metadata
dict
text
stringlengths
60
3.49M
{ "source": "JorgeDeLosSantos/curso_mecanica_de_materiales", "score": 3 }
#### File: proyecto_01/prj01/uitor.py ```python import wx import ui import numpy as np class wxFrame(wx.Frame): def __init__(self): wx.Frame.__init__(self,parent=None,title="ABC",size=(600,450)) self.init_ctrls() self.SetBackgroundColour("#E5E5E5") self.Show() def init_ctrls(self): self.msz = wx.BoxSizer(wx.VERTICAL) self.numsz = wx.BoxSizer(wx.HORIZONTAL) self.dep = wx.StaticBox(self, -1, 'Datos de entrada') self.desz = wx.StaticBoxSizer(self.dep, wx.VERTICAL) self.dsp = wx.StaticBox(self, -1, 'Datos de salida') self.dssz = wx.StaticBoxSizer(self.dsp, wx.VERTICAL) lb = wx.StaticText(self, -1, u"Número de elementos", size=(120,-1)) self.numel = wx.TextCtrl(self, -1, "", size=(80,-1)) self.oknumel = wx.Button(self, -1, "OK", size=(40,-1)) # Datos de entrada self.input_data = ui.DataGrid(self,(5,5)) self.desz.Add(self.input_data, 1, wx.EXPAND) # Datos de salida self.output_data = ui.DataGrid(self,(5,2)) self.dssz.Add(self.output_data, 1, wx.EXPAND) # Botón calcular self.calc = wx.Button(self, -1, "Calcular") self.numsz.Add(lb, 0, wx.ALIGN_CENTRE|wx.ALL, 5) self.numsz.Add(self.numel, 0, wx.ALIGN_CENTRE|wx.ALL, 5) self.numsz.Add(self.oknumel, 0, wx.ALIGN_CENTRE|wx.ALL, 5) self.msz.Add(self.numsz, 1, wx.EXPAND) self.msz.Add(self.desz, 5, wx.EXPAND|wx.ALL, 5) self.msz.Add(self.dssz, 5, wx.EXPAND|wx.ALL, 5) self.msz.Add(self.calc, 1, wx.ALL|wx.ALIGN_CENTRE, 5) self.SetSizer(self.msz) colnames = "ID,OD,L,T,G".split(",") for k,col in enumerate(colnames): self.input_data.SetColLabelValue(k,col) colnames_out = u"\N{GREEK SMALL LETTER TAU},\N{GREEK SMALL LETTER PHI}".split(",") for k,col in enumerate(colnames_out): self.output_data.SetColLabelValue(k,col) self.Bind(wx.EVT_BUTTON, self.on_numel, self.oknumel) self.Bind(wx.EVT_BUTTON, self.calcular, self.calc) def on_numel(self,event): numel = int(self.numel.GetValue()) self.input_data.UpdateGridSize(numel,5) self.output_data.UpdateGridSize(numel,2) def calcular(self,event): data = self.input_data.GetArrayData() ID = data[:,0] OD = data[:,1] L = data[:,2] T = data[:,3] G = data[:,4] J = np.pi/2*((OD/2)**4-(ID/2)**4) TS = [] for k in range(len(T)): _ts = sum(T[0:k+1]) TS.append(_ts) TS = np.array(TS) phi = ((TS*L)/(J*G))*(180/np.pi) tau = (TS*OD)/J self.output_data.SetArrayData(np.column_stack((tau,phi))) if __name__ == '__main__': app = wx.App() fr = wxFrame() app.MainLoop() ```
{ "source": "JorgeDeLosSantos/git-test", "score": 3 }
#### File: JorgeDeLosSantos/git-test/app_demo.py ```python import wx class MiAplicacion(wx.Frame): def __init__(self,parent,title): wx.Frame.__init__(self,parent,title=title,size=(250,200)) self.sz = wx.BoxSizer(wx.VERTICAL) bt = wx.Button(self,-1,"Hola") txt02 = wx.TextCtrl(self,-1,"") self.sz.Add(bt, 1, wx.EXPAND) self.sz.Add(txt02, 1, wx.EXPAND) self.SetBackgroundColour("#ff7700") txt = wx.TextCtrl(self, -1, "") self.sz.Add(txt, 1, wx.EXPAND) self.SetSizer(self.sz) self.Centre(True) self.Show() # This line was added by lab2dls user # Testing collab... if __name__=='__main__': version = "0.1.1" app = wx.App() frame = MiAplicacion(None, u"AppDemo %s"%(version)) app.MainLoop() ```
{ "source": "JorgeDeLosSantos/iwx", "score": 3 }
#### File: iwx/iwx/grid.py ```python import wx import wx.grid as grid import numpy as np from utils import * # Using openpyxl openpyxl_warning = """ Please install openpyxl to use the "Export to Excel" feature. """ try: import openpyxl except ImportError: print openpyxl_error pass class DataGrid(grid.Grid): """ Create a wx.grid.Grid based grid, with other features, as add and delete rows and columns interactively. DataGrid allows use only numeric data, if the input value (on cell edit) isn't a number, then the value changes to NaN (NumPy constant). parent : wxPython container Parent object gridsize : `tuple`, `list` Size of grid, using format -> ``(rows, columns)`` Example :: app = wx.App() fr = wx.Frame(None, -1, u"ABC") dp = DataGrid(fr,(10,2)) fr.Show() app.MainLoop() """ def __init__(self,parent,gridsize,**kwargs): grid.Grid.__init__(self,parent=parent,id=-1,**kwargs) rows = int(gridsize[0]) cols = int(gridsize[1]) self.CreateGrid(rows,cols) self.SetRowLabelSize(20) self.Bind(grid.EVT_GRID_CELL_CHANGE, self.OnCellEdit) self.Bind(grid.EVT_GRID_CELL_RIGHT_CLICK, self.OnRightClick) def UpdateGridSize(self,rows,cols): """ Update the grid Size """ self.ClearGrid() ccols = self.GetNumberCols() crows = self.GetNumberRows() if rows > crows: self.AppendRows(rows-crows) elif rows < crows: self.DeleteRows(0,crows-rows) if cols > ccols: self.AppendCols(cols-ccols) elif cols < ccols: self.DeleteCols(0,ccols-cols) def SetArrayData(self,data): """ Set the data for grid, data must be a numpy array. :: data = np.random.random((20,20)) gd.SetArrayData(data) """ r,c = data.shape # For numpy array self.UpdateGridSize(r,c) for i in range(r): for j in range(c): val = str(data[i][j]) self.SetCellValue(i,j,val) def GetArrayData(self): """ Get the grid data, return a numpy array. """ nrows = self.GetNumberRows() ncols = self.GetNumberCols() X = np.zeros((nrows,ncols)) for i in range(nrows): for j in range(ncols): cval = self.GetCellValue(i,j) if not isempty(cval): try: X[i][j] = float(cval) except: # ? X[i][j] = np.nan else: X[i][j] = np.nan return X def GetSelectedData(self): """ Get the data from selected cells. """ scols = self.GetSelectedCols() srows = self.GetSelectedRows() X = np.zeros((len(srows),len(scols))) for ii,row in enumerate(srows): for jj,col in enumerate(scols): try: X[ii][jj] = self.GetCellValue(row,col) except ValueError: X[ii][jj] = np.nan return X def GetSelectedCols(self): """ Return a list with selected columns index """ scols = [] top_left = self.GetSelectionBlockTopLeft() bottom_right = self.GetSelectionBlockBottomRight() if not isempty(bottom_right) and not isempty(top_left): max_col = bottom_right[0][1] min_col = top_left[0][1] scols = range(min_col,max_col+1) return scols def GetSelectedRows(self): """ Return a list with selected rows index """ srows = [] top_left = self.GetSelectionBlockTopLeft() bottom_right = self.GetSelectionBlockBottomRight() if not isempty(bottom_right) and not isempty(top_left): max_row = bottom_right[0][0] min_row = top_left[0][0] srows = range(min_row,max_row+1) return srows def OnCellEdit(self,event): """ Method that handle response when edited a cell. **Features** * Evaluates simple arithmetic expressions using Microsoft Excel formulas syntax, like: ``=1+2`` * If value isn't a number, then the cell value is assigned to NaN (Numpy constant). """ row,col = (event.GetRow(),event.GetCol()) cval = self.GetCellValue(row,col) if cval.startswith("="): try: cval = str(eval(cval[1:])) self.SetCellValue(row,col,cval) except: pass try: cval = float(cval) except ValueError: cval = np.nan self.SetCellValue(row,col,str(cval)) def OnRightClick(self,event): """ Show a pop-up-menu when right click is pressed over the DataGrid, with following options: * Delete rows * Delete columns * Add row... * Add column... * Randomly fill columns * Randomly fill cells """ pum = wx.Menu() # Pop-up menu delrows = wx.MenuItem(pum, -1, "Delete rows") pum.AppendItem(delrows) delcols = wx.MenuItem(pum, -1, "Delete columns") pum.AppendItem(delcols) pum.AppendSeparator() addrow = wx.MenuItem(pum, -1, "Add row...") pum.AppendItem(addrow) addcol = wx.MenuItem(pum, -1, "Add column...") pum.AppendItem(addcol) pum.AppendSeparator() randomfill_cols = wx.MenuItem(pum, -1, "Randomly fill columns") pum.AppendItem(randomfill_cols) randomfill_cells = wx.MenuItem(pum, -1, "Randomly fill cells") pum.AppendItem(randomfill_cells) # Binds events pum.Bind(wx.EVT_MENU, self.del_rows, delrows) pum.Bind(wx.EVT_MENU, self.del_cols, delcols) pum.Bind(wx.EVT_MENU, self.add_row, addrow) pum.Bind(wx.EVT_MENU, self.add_col, addcol) pum.Bind(wx.EVT_MENU, self.random_fill_cols, randomfill_cols) pum.Bind(wx.EVT_MENU, self.random_fill_cells, randomfill_cells) # Show self.PopupMenu(pum) pum.Destroy() #Destroy the pop-up menu def del_rows(self,event): """ Delete selected rows """ rows = self.GetSelectedRows() self.DeleteRows(rows[0],len(rows)) def del_cols(self,event): """ Delete selected columns """ cols = self.GetSelectedCols() self.DeleteCols(cols[0],len(cols)) def add_row(self,event): """ Append one row """ self.AppendRows(1) def add_col(self,event): """ Append one column """ self.AppendCols(1) def random_fill(self): """ Fills all the grid with random numbers """ nrows = self.GetNumberRows() ncols = self.GetNumberCols() data = np.random.random((nrows,ncols)) self.SetArrayData(data) def random_fill_cols(self,event): """ Fills selected columns with random numbers. """ cols = self.GetSelectedCols() nrows = self.GetNumberRows() for ii in range(nrows): for col in cols: val = str(np.random.rand()) self.SetCellValue(ii,col,val) def random_fill_cells(self,event): """ Fills selected cells with random numbers. """ scols = self.GetSelectedCols() srows = self.GetSelectedRows() for ii,row in enumerate(srows): for jj,col in enumerate(scols): val = str(np.random.rand()) self.SetCellValue(row, col, val) def toExcel(self): """ Export grid data to Excel sheet. (not implemented yet) """ pass def toHTMLTable(self): """ Export grid data to HTML table format. (not implemented yet) """ pass if __name__=='__main__': app = wx.App() fr = wx.Frame(None, -1, u"ABC") dp = DataGrid(fr,(10,2)) dp.random_fill() fr.Show() app.MainLoop() ```
{ "source": "JorgeDeLosSantos/NanchiPlot", "score": 3 }
#### File: NanchiPlot/nanchi/image.py ```python import numpy as np from skimage import io, color, filters path_img = r"C:/Users/User/Pictures/ittg_logo.png" def sobel(X): sbl = filters.sobel(X) return sbl def prewitt(X): pw = filters.prewitt(X) return pw def roberts(X): rb = filters.roberts(X) return rb def rgb2gray(X): gray = color.rgb2gray(X) return gray def binarize(X): th = 0.5 bX = X > th return bX.astype('float') if __name__ == '__main__': img = io.imread(path_img) img = rgb2gray(img) #img = sobel(img) bi = binarize(img) io.imshow(bi) io.show() ``` #### File: NanchiPlot/nanchi/setplot.py ```python import matplotlib as mpl import matplotlib.cm as cm import matplotlib.pyplot as plt from _const_ import * # WX Backend ? def set_default_params(axes,figure): # Figure properties #~ axes.cla() #~ mpl.rc('figure',autolayout=True) set_default_axes_props(axes) def set_default_axes_props(axes): axes.cla() axes.set_aspect("auto") if is_reversed_yaxis(axes): axes.invert_yaxis() if not axes.get_frame_on(): axes.set_frame_on(True) def is_reversed_yaxis(axes): """ """ a,b = axes.get_ylim() if a > b: return True return False ``` #### File: NanchiPlot/nanchi/uibase.py ```python import wx import wx.aui as aui import wx.grid as grid import wx.lib.scrolledpanel as scrolled import os import numpy as np import matplotlib import matplotlib.pyplot as plt from matplotlib.figure import Figure try: from uimpl import FigureCanvas # Customized canvas import setplot import uimpl import uiaux as aux from util import isempty, rgb2hex from _const_ import * # String & Constants values except ImportError: from nanchi.uimpl import FigureCanvas # Customized canvas import nanchi.setplot as setplot import nanchi.uimpl as uimpl import nanchi.uiaux as aux from nanchi.util import isempty, rgb2hex from nanchi._const_ import * # String & Constants values class NanchiNoteBook(aui.AuiNotebook): def __init__(self, parent): _styles = aui.AUI_NB_TOP | aui.AUI_NB_TAB_SPLIT | aui.AUI_NB_TAB_MOVE aui.AuiNotebook.__init__(self, parent=parent, style=_styles) # Graph Panel self.graphs = GraphPanel(self) self.data = DataPanel(self) #self.setup = SetupPanel(self) self.axes = self.graphs.axes self.figure = self.graphs.figure self.canvas = self.graphs.canvas self.AddPage(self.graphs, u"Graphs") self.AddPage(self.data, u"Data") #self.AddPage(self.setup, u"Settings") self.Bind(aui.EVT_AUINOTEBOOK_PAGE_CHANGED, self.OnPageChanged) def OnPageChanged(self, event): pass #gp = pickle.load(open("graph_properties.dat","rb")) #self.axes.set_xlabel(gp["xlabel"]) #self.axes.set_ylabel(gp["ylabel"]) #self.canvas.draw() # Draw canvas class GraphPanel(wx.Panel): def __init__(self,parent,*args,**kwargs): wx.Panel.__init__(self,parent,-1) # Sizer self.mainsz = wx.BoxSizer(wx.VERTICAL) # Init canvas Figure & Axes self.initCanvas() # Color properties self.SetBackgroundColour(PANEL_BG_COLOR) # Status bar from NanchiPlot App self.sb = self.GetParent().GetParent().GetParent().GetStatusBar() #print self.sb # debug # Configurar sizer self.SetSizer(self.mainsz) def initCanvas(self): # Creating Figure & Axes self.figure = Figure() self.axes = self.figure.add_subplot(111) self.canvas = FigureCanvas(self, -1, self.figure) # Initial events self.EVT_ON_RIGHT = self.canvas.mpl_connect('button_press_event', self.OnRightClick) self.EVT_ON_SCROLL = self.canvas.mpl_connect('scroll_event', self.OnScroll) # Graph properties setplot.set_default_params(self.axes,self.figure) # FigureCanvas self.mainsz.Add(self.canvas, 1, wx.EXPAND|wx.ALL, 1) def OnRightClick(self,event): if event.button == 3: self.InitPopUpMenu() elif event.button == 1: # To implement: move lines and texts # without previous selection of this option # on LineToolbar pass def OnScroll(self,event): """ Zoom -> Scrolling Mouse """ scale_factor = 2.0 minx, maxx = self.axes.get_xlim() miny, maxy = self.axes.get_ylim() xdata, ydata = event.xdata, event.ydata if event.button == "up": kf = 1.0/scale_factor elif event.button == "down": kf= scale_factor xfactor = 0.5*(maxx - minx)*kf yfactor = 0.5*(maxy - miny)*kf if event.key is not(None) and "control" in event.key: # ctrl + control --- why ? self.axes.set_xlim((xdata - xfactor, xdata + xfactor)) self.axes.set_ylim((ydata - yfactor, ydata + yfactor)) else: pass self.canvas.draw() # Update def InitPopUpMenu(self): pum = wx.Menu() ls = wx.MenuItem(pum, -1, "Line style") pum.AppendItem(ls) linecolor = wx.MenuItem(pum, -1, u"Line color") pum.AppendItem(linecolor) linewidth = wx.MenuItem(pum, -1, u"Line width") pum.AppendItem(linewidth) pum.AppendSeparator() gs = wx.MenuItem(pum, -1, "Grid style") pum.AppendItem(gs) gridcolor = wx.MenuItem(pum, -1, u"Grid color") pum.AppendItem(gridcolor) gridwidth = wx.MenuItem(pum, -1, u"Grid width") pum.AppendItem(gridwidth) pum.AppendSeparator() axbackg = wx.MenuItem(pum, -1, u"Background Color") pum.AppendItem(axbackg) aspax = wx.Menu() _aspax_auto = wx.MenuItem(aspax, -1, u"auto") aspax.AppendItem(_aspax_auto) _aspax_equal = wx.MenuItem(aspax, -1, u"equal") aspax.AppendItem(_aspax_equal) pum.AppendMenu(-1, "Axes aspect", aspax) pum.AppendSeparator() xlabel = wx.MenuItem(pum, -1, u"X-Label") pum.AppendItem(xlabel) ylabel = wx.MenuItem(pum, -1, u"Y-Label") pum.AppendItem(ylabel) title = wx.MenuItem(pum, -1, u"Insert title") pum.AppendItem(title) intext = wx.MenuItem(pum, -1, u"Insert text/annotation") pum.AppendItem(intext) pum.AppendSeparator() setxticks = wx.MenuItem(pum, -1, u"Update xticks") pum.AppendItem(setxticks) setyticks = wx.MenuItem(pum, -1, u"Update yticks") pum.AppendItem(setyticks) pum.AppendSeparator() zoom_box = wx.MenuItem(pum, -1, u"Zoom Box") pum.AppendItem(zoom_box) # Binds self.Bind(wx.EVT_MENU, self.OnText, intext) self.Bind(wx.EVT_MENU, self.OnBackground, axbackg) self.Bind(wx.EVT_MENU, self.OnGridColor, gridcolor) self.Bind(wx.EVT_MENU, self.OnGridWidth, gridwidth) self.Bind(wx.EVT_MENU, self.OnGridStyle, gs) self.Bind(wx.EVT_MENU, self.OnXLabel, xlabel) self.Bind(wx.EVT_MENU, self.OnYLabel, ylabel) self.Bind(wx.EVT_MENU, self.OnTitle, title) self.Bind(wx.EVT_MENU, self.OnZoom, zoom_box) self.Bind(wx.EVT_MENU, self.OnAxesAspect, _aspax_equal) self.Bind(wx.EVT_MENU, self.OnAxesAspect, _aspax_auto) # Lines self.Bind(wx.EVT_MENU, self.OnLineStyle, ls) self.Bind(wx.EVT_MENU, self.OnLineColor, linecolor) self.Bind(wx.EVT_MENU, self.OnLineWidth, linewidth) # Ticks self.Bind(wx.EVT_MENU, self.OnXTicks, setxticks) self.Bind(wx.EVT_MENU, self.OnYTicks, setyticks) # Show self.PopupMenu(pum) pum.Destroy() def OnText(self,event): self.TEXT_EVT = self.canvas.mpl_connect("button_press_event", self.set_text) def set_text(self,event): cx = event.xdata cy = event.ydata dialog = wx.TextEntryDialog(self,"Insert text", NANCHI_MAIN_CAPTION, u"", style=wx.OK|wx.CANCEL) if dialog.ShowModal() == wx.ID_OK: if not cx is None and not cy is None: self.axes.text(cx, cy, unicode(dialog.GetValue()), picker=True) self.canvas.draw() else: msg = wx.MessageDialog(self,u"Select a position inside of Axes", caption=DEFAULT_DIALOG_CAPTION, style=wx.ICON_ERROR|wx.OK) msg.ShowModal() msg.Destroy() dialog.Destroy() self.canvas.mpl_disconnect(self.TEXT_EVT) def OnBackground(self,event): dlg = wx.ColourDialog(self) if dlg.ShowModal() == wx.ID_OK: color = dlg.GetColourData().Colour r,g,b = color.Red(),color.Green(),color.Blue() self.axes.set_axis_bgcolor(rgb2hex(r,g,b)) dlg.Destroy() self.canvas.draw() def OnAxesAspect(self,event): aspect = event.GetEventObject().GetLabel(event.GetId()) self.axes.set_aspect(aspect) self.canvas.draw() def OnGridColor(self,event): dlg = wx.ColourDialog(self) if dlg.ShowModal() == wx.ID_OK: color = dlg.GetColourData().Colour r,g,b = color.Red(),color.Green(),color.Blue() self.axes.grid(color=rgb2hex(r,g,b)) dlg.Destroy() self.canvas.draw() def OnGridStyle(self,event): dlg = aux.LineStyleDialog(None) if dlg.ShowModal() == wx.ID_OK: self._gs = dlg.GetData() self.axes.grid(ls=self._gs) dlg.Destroy() self.canvas.draw() def OnGridWidth(self,event): dlg = wx.TextEntryDialog(self, u"Insert a width", NANCHI_MAIN_CAPTION) if dlg.ShowModal()==wx.ID_OK: _lw = float(dlg.GetValue()) self.axes.grid(lw=_lw) dlg.Destroy() self.canvas.draw() def OnLineColor(self,event): self.LINE_COLOR_EVT = self.canvas.mpl_connect("pick_event", self.set_line_color) def set_line_color(self,event): dlg = wx.ColourDialog(self) if dlg.ShowModal() == wx.ID_OK: color = dlg.GetColourData().Colour r,g,b = color.Red(),color.Green(),color.Blue() event.artist.set_color(rgb2hex(r,g,b)) dlg.Destroy() self.canvas.draw() self.canvas.mpl_disconnect(self.LINE_COLOR_EVT) def OnLineStyle(self,event): self.LINE_STYLE_EVT = self.canvas.mpl_connect("pick_event", self.set_line_style) self.sb.SetStatusText("Select a line") def set_line_style(self,event): dlg = aux.LineStyleDialog(None) if dlg.ShowModal() == wx.ID_OK: self._ls = dlg.GetData() event.artist.set_linestyle(self._ls) dlg.Destroy() # Quit LS_EVT self.canvas.mpl_disconnect(self.LINE_STYLE_EVT) # Update SB self.sb.SetStatusText("Done: Line style applied") self.canvas.draw() def OnLineWidth(self,event): self.LINE_WIDTH_EVT = self.canvas.mpl_connect("pick_event", self.set_line_width) self.sb.SetStatusText("Select a line") def set_line_width(self,event): self.canvas.mpl_disconnect(self.LINE_WIDTH_EVT) dlg = wx.TextEntryDialog(self, u"Insert a width", NANCHI_MAIN_CAPTION) if dlg.ShowModal()==wx.ID_OK: try: _lw = float(dlg.GetValue()) except ValueError: _lw = event.artist.get_linewidth() event.artist.set_linewidth(_lw) dlg.Destroy() self.canvas.draw() def OnXLabel(self,event): current_label = unicode(self.axes.get_xlabel()) dialog = wx.TextEntryDialog(None, "Insert xlabel", NANCHI_MAIN_CAPTION, current_label, style=wx.OK|wx.CANCEL) if dialog.ShowModal() == wx.ID_OK: self.axes.set_xlabel(dialog.GetValue()) self.canvas.draw() dialog.Destroy() def OnYLabel(self,event): current_label = unicode(self.axes.get_ylabel()) dialog = wx.TextEntryDialog(self, "Insert ylabel", NANCHI_MAIN_CAPTION, current_label, style=wx.OK|wx.CANCEL) if dialog.ShowModal() == wx.ID_OK: self.axes.set_ylabel(dialog.GetValue()) self.canvas.draw() dialog.Destroy() def OnTitle(self,event): dialog = wx.TextEntryDialog(self, u"Insert a title", NANCHI_MAIN_CAPTION, "", style=wx.OK|wx.CANCEL) if dialog.ShowModal() == wx.ID_OK: self.axes.set_title(dialog.GetValue()) self.canvas.draw() dialog.Destroy() def OnXTicks(self,event): dlg = aux.TickDialog(self, self.axes, "x") if dlg.ShowModal() == wx.ID_OK: ticks,labels = dlg.GetData() self.axes.set_xticks(ticks) self.axes.set_xticklabels(labels) dlg.Destroy() self.canvas.draw() def OnYTicks(self,event): dlg = aux.TickDialog(self, self.axes, "y") if dlg.ShowModal() == wx.ID_OK: ticks,labels = dlg.GetData() self.axes.set_yticks(ticks) self.axes.set_yticklabels(labels) self.sb.SetStatusText(u"") dlg.Destroy() self.canvas.draw() def OnLineLabel(self,event): self.LINE_LABEL_EVT = self.canvas.mpl_connect("pick_event", self.set_line_label) def set_line_label(self,event): self.canvas.mpl_disconnect(self.LINE_LABEL_EVT) dlg = wx.TextEntryDialog(self, u"Insert a label", NANCHI_MAIN_CAPTION) if dlg.ShowModal()==wx.ID_OK: _label = dlg.GetValue() event.artist.set_label(_label) dlg.Destroy() self.canvas.draw() def OnShowLegend(self,event): self.axes.legend(loc="best") self.canvas.draw() def OnPieLabels(self,event): pass def OnZoom(self,event): self.sb.SetStatusText(u"Drag the cursor to select a region") self.canvas.zoomit() def OnMoveLine(self,event): self.MOVE_LINE_EVT = self.canvas.mpl_connect("pick_event", self.move_line) self.sb.SetStatusText(u"Select a line to move") def move_line(self,event): self._selected_line = event.artist self._p0 = (event.mouseevent.xdata, event.mouseevent.ydata) self._xdata0 = self._selected_line.get_xdata() self._ydata0 = self._selected_line.get_ydata() self._mpl_ml_motion = self.canvas.mpl_connect("motion_notify_event", self._ml_motion) self._mpl_ml_release = self.canvas.mpl_connect("button_release_event", self._ml_release) def _ml_motion(self,event): """ Move line motion """ cx = event.xdata cy = event.ydata deltax = cx - self._p0[0] deltay = cy - self._p0[1] self._selected_line.set_xdata(self._xdata0 + deltax) self._selected_line.set_ydata(self._ydata0 + deltay) self.canvas.draw() def _ml_release(self,event): self.canvas.mpl_disconnect(self._mpl_ml_motion) self.canvas.mpl_disconnect(self._mpl_ml_release) self.canvas.mpl_disconnect(self.MOVE_LINE_EVT) self.axes.relim() self.axes.autoscale_view(True,True,True) self.canvas.draw() self.sb.SetStatusText(u"Line %s has been moved"%(self._selected_line.__repr__())) def OnMoveText(self,event): self.MOVE_TEXT_EVT = self.canvas.mpl_connect("pick_event", self.move_text) self.sb.SetStatusText(u"Select a text to move") def move_text(self,event): self._selected_text = event.artist self._mpl_mt_motion = self.canvas.mpl_connect("motion_notify_event", self._mt_motion) self._mpl_mt_release = self.canvas.mpl_connect("button_release_event", self._mt_release) def _mt_motion(self,event): cx = event.xdata cy = event.ydata self._selected_text.set_position((cx,cy)) self.canvas.draw() def _mt_release(self,event): self.canvas.mpl_disconnect(self._mpl_mt_motion) self.canvas.mpl_disconnect(self._mpl_mt_release) self.canvas.mpl_disconnect(self.MOVE_TEXT_EVT) self.axes.relim() self.axes.autoscale_view(True,True,True) self.canvas.draw() self.sb.SetStatusText(u"Text %s has been moved to the position (%0.4f,%0.4f)" %(self._selected_text.get_text(), self._selected_text.get_position()[0], self._selected_text.get_position()[1])) # ===================================================================== class GraphWindow(wx.Frame): def __init__(self,parent,title,*args,**kwargs): wx.Frame.__init__(self,parent=parent,title=title,*args,**kwargs) self.SetBackgroundColour(FRAME_BG_COLOR) self.Centre(True) # ===================================================================== class DataPanel(scrolled.ScrolledPanel): def __init__(self,parent,*args,**kwargs): scrolled.ScrolledPanel.__init__(self,parent,-1,size=(100,-1), style = wx.TAB_TRAVERSAL|wx.SUNKEN_BORDER) self.initCtrls() self.initSizers() self.initEvents() self.SetupScrolling() # Color properties self.SetBackgroundColour(PANEL_BG_COLOR) def initCtrls(self): self.grid_data = DataGrid(self,(10,2)) def initSizers(self): # Create sizers self.mainsz = wx.BoxSizer(wx.VERTICAL) # Add to sizers self.mainsz.Add(self.grid_data, 5, wx.EXPAND|wx.ALL, 2) # Set Sizers self.SetSizer(self.mainsz) def initEvents(self): pass # Main class for grid data class DataGrid(grid.Grid): def __init__(self,parent,gridsize,**kwargs): grid.Grid.__init__(self,parent=parent,id=-1,**kwargs) rows = int(gridsize[0]) cols = int(gridsize[1]) self.CreateGrid(rows,cols) self.SetRowLabelSize(20) # Para graficar desde rejilla if isinstance(self.GetParent(),DataPanel): self.axes = self.GetParent().GetParent().graphs.axes self.canvas = self.GetParent().GetParent().graphs.canvas self.Bind(grid.EVT_GRID_CELL_CHANGE, self.OnCellEdit) self.Bind(grid.EVT_GRID_CELL_RIGHT_CLICK, self.OnRightClick) def UpdateGridSize(self,rows,cols): self.ClearGrid() ccols = self.GetNumberCols() crows = self.GetNumberRows() if rows > crows: self.AppendRows(rows-crows) elif rows < crows: self.DeleteRows(0,crows-rows) if cols > ccols: self.AppendCols(cols-ccols) elif cols < ccols: self.DeleteCols(0,ccols-cols) def SetArrayData(self,data): """ Data must be a numpy array """ r,c = data.shape # For numpy array self.UpdateGridSize(r,c) for i in range(r): for j in range(c): if i==0: self.SetColFormatFloat(5, 6, 4) val = str(data[i][j]) self.SetCellValue(i,j,val) def GetArrayData(self): nrows = self.GetNumberRows() ncols = self.GetNumberCols() X = np.zeros((nrows,ncols)) for i in range(nrows): for j in range(ncols): cval = self.GetCellValue(i,j) if not isempty(cval): try: X[i][j] = float(cval) except: # Revisar valores devueltos X[i][j] = np.nan else: X[i][j] = np.nan return X def GetSelectedData(self): scols = self.GetSelectedCols() srows = self.GetSelectedRows() X = np.zeros((len(srows),len(scols))) for ii,row in enumerate(srows): for jj,col in enumerate(scols): try: X[ii][jj] = self.GetCellValue(row,col) except ValueError: X[ii][jj] = np.nan return X def GetSelectedCols(self): scols = [] top_left = self.GetSelectionBlockTopLeft() bottom_right = self.GetSelectionBlockBottomRight() if not isempty(bottom_right) and not isempty(top_left): max_col = bottom_right[0][1] min_col = top_left[0][1] scols = range(min_col,max_col+1) return scols def GetSelectedRows(self): srows = [] top_left = self.GetSelectionBlockTopLeft() bottom_right = self.GetSelectionBlockBottomRight() if not isempty(bottom_right) and not isempty(top_left): max_row = bottom_right[0][0] min_row = top_left[0][0] srows = range(min_row,max_row+1) return srows def OnCellEdit(self,event): """ """ row,col = (event.GetRow(),event.GetCol()) cval = self.GetCellValue(row,col) if cval.startswith("="): try: cval = str(eval(cval[1:])) self.SetCellValue(row,col,cval) except: pass try: cval = float(cval) except ValueError: cval = np.nan self.SetCellValue(row,col,str(cval)) def OnRightClick(self,event): """ On right click, show pop-up menu. """ pum = wx.Menu() delrows = wx.MenuItem(pum, -1, "Delete rows") pum.AppendItem(delrows) delcols = wx.MenuItem(pum, -1, "Delete columns") pum.AppendItem(delcols) pum.AppendSeparator() addrow = wx.MenuItem(pum, -1, "Add rows...") pum.AppendItem(addrow) addcol = wx.MenuItem(pum, -1, "Add columns...") pum.AppendItem(addcol) pum.AppendSeparator() editcollabel = wx.MenuItem(pum, -1, "Edit column label") pum.AppendItem(editcollabel) pum.AppendSeparator() randomfill = wx.MenuItem(pum, -1, "Fill columns randomly") pum.AppendItem(randomfill) # Binds pum.Bind(wx.EVT_MENU, self.del_rows, delrows) pum.Bind(wx.EVT_MENU, self.del_cols, delcols) pum.Bind(wx.EVT_MENU, self.add_row, addrow) pum.Bind(wx.EVT_MENU, self.add_col, addcol) pum.Bind(wx.EVT_MENU, self.edit_collabel, editcollabel) pum.Bind(wx.EVT_MENU, self.random_fill, randomfill) # Show self.PopupMenu(pum) pum.Destroy() def del_rows(self,event): """ Delete rows """ rows = self.GetSelectedRows() if not isempty(rows): self.DeleteRows(rows[0],len(rows)) def del_cols(self,event): """ Delete columns """ cols = self.GetSelectedCols() if not isempty(cols): self.DeleteCols(cols[0],len(cols)) def add_row(self,event): """ Add row """ self.AppendRows(1) def add_col(self,event): """ Add column """ self.AppendCols(1) def edit_collabel(self,event): """ Set column label """ ccols = self.GetSelectedCols() dlg = wx.TextEntryDialog(None, "Insert new label...", DEFAULT_DIALOG_CAPTION) if dlg.ShowModal() == wx.ID_OK: label = dlg.GetValue() for col in ccols: self.SetColLabelValue(col,label) def random_fill(self,event): """ Fill columns randomly """ cols = self.GetSelectedCols() nrows = self.GetNumberRows() for ii in range(nrows): for col in cols: val = str(np.random.rand()) self.SetCellValue(ii,col,val) class SetupWindow(wx.Frame): def __init__(self,**kwargs): wx.Frame.__init__(self, parent=None, id=wx.ID_ANY, title="Settings", size=(400,200), **kwargs) # Init controls self.initCtrls() # Center self.Centre(True) self.Show() def initCtrls(self): self.mainsz = wx.BoxSizer(wx.VERTICAL) self.themesz = wx.BoxSizer(wx.HORIZONTAL) self.buttonsz = wx.BoxSizer(wx.HORIZONTAL) # Theme controls themes = "White|Dark".split("|") _theme_label = wx.StaticText(self, wx.ID_ANY, "Themes") _theme_options = wx.ComboBox(self, wx.ID_ANY, choices=themes) self.themesz.Add(_theme_label, 1, wx.ALIGN_LEFT|wx.ALL, 2) self.themesz.Add(_theme_options, 4, wx.ALIGN_LEFT|wx.ALL, 2) # Buttons (OK|CANCEL) _ok_button = wx.Button(self, wx.ID_OK) _cancel_button = wx.Button(self, wx.ID_CANCEL) self.buttonsz.Add(_ok_button, 1, wx.ALIGN_CENTER|wx.ALL, 5) self.buttonsz.Add(_cancel_button, 1, wx.ALIGN_CENTER|wx.ALL, 5) self.mainsz.Add(self.themesz, 1, wx.EXPAND|wx.ALL, 5) self.mainsz.Add(self.buttonsz, 1, wx.ALIGN_CENTRE|wx.ALL, 5) self.SetSizer(self.mainsz) # Bind events _ok_button.Bind(wx.EVT_BUTTON, self.OnOK) _cancel_button.Bind(wx.EVT_BUTTON, self.OnCancel) def OnOK(self,event): print 1 def OnCancel(self,event): print 0 self.Close(True) class Graph3DWindow(object): def __init__(self, data): from mpl_toolkits.mplot3d import Axes3D self.data = data self.initCtrls() def initCtrls(self): self.figure = plt.figure() nr, nc = self.data.shape X, Y = np.meshgrid(np.linspace(1,nr,nr), np.linspace(1,nc,nc)) Z = self.data self.axes = self.figure.add_subplot(111, projection="3d") surf = self.axes.plot_surface(X, Y, Z, rstride=1, cstride=1,cmap="hot") plt.show() if __name__=='__main__': #~ app = wx.App() Graph3DWindow(np.random.random((10,10))) #~ app.MainLoop() ``` #### File: NanchiPlot/nanchi/uimpl.py ```python import matplotlib.pyplot as plt from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg import matplotlib.lines as lines import numpy as np import wx class ZoomRectangle(object): def __init__(self,figure,axes,canvas): self.canvas = canvas self.figure = figure self.axes = axes self.cline = lines.Line2D([],[], color="#00ff00", ls="--") def connect(self): print "connect: ",self.canvas,self.figure,self.axes self.btpress = self.canvas.mpl_connect("button_press_event", self.on_press) self.btrelease = self.canvas.mpl_connect("button_release_event", self.on_release) print self.btpress, self.btrelease self.axes.add_line(self.cline) def on_motion(self,event): self.cline.set_xdata([]) self.cline.set_ydata([]) # --- self.x = event.xdata self.y = event.ydata # --- xdata = [self.x0, self.x0, self.x, self.x, self.x0] ydata = [self.y0, self.y, self.y, self.y0, self.y0] # --- self.cline.set_xdata(xdata) self.cline.set_ydata(ydata) # --- self.canvas.draw() def on_press(self,event): #~ print "Press" self.x0 = event.xdata self.y0 = event.ydata self.motion = self.canvas.mpl_connect("motion_notify_event", self.on_motion) def on_release(self,event): "Release" self.canvas.mpl_disconnect(self.motion) self.canvas.mpl_disconnect(self.btpress) self.canvas.mpl_disconnect(self.btrelease) min_x = min([self.x0, self.x]) max_x = max([self.x0, self.x]) min_y = min([self.y0, self.y]) max_y = max([self.y0, self.y]) self.axes.set_xlim(min_x, max_x) self.axes.set_ylim(min_y, max_y) self.canvas.draw() class FigureCanvas(FigureCanvasWxAgg): def __init__(self,parent,id,figure,**kwargs): FigureCanvasWxAgg.__init__(self,parent=parent, id=id, figure=figure,**kwargs) self.figure = figure self.axes = self.figure.get_axes()[0] def disconnect_all(self): try: self.mpl_disconnect(self.motion) self.mpl_disconnect(self.btpress) self.mpl_disconnect(self.btrelease) except: pass def zoomit(self): self.cline = lines.Line2D([],[], color="#ff00ff", ls="--", lw=2.0) self.btpress = self.mpl_connect("button_press_event", self.on_press) self.btrelease = self.mpl_connect("button_release_event", self.on_release) self.axes.add_line(self.cline) def on_motion(self,event): self.cline.set_xdata([]) self.cline.set_ydata([]) # --- self.x = event.xdata self.y = event.ydata # --- xdata = [self.x0, self.x0, self.x, self.x, self.x0] ydata = [self.y0, self.y, self.y, self.y0, self.y0] # --- self.cline.set_xdata(xdata) self.cline.set_ydata(ydata) # --- self.draw() def on_press(self,event): self.x0 = event.xdata self.y0 = event.ydata self.motion = self.mpl_connect("motion_notify_event", self.on_motion) def on_release(self,event): self.disconnect_all() try: self.cline.remove() # Delete box except: self.stop_event_loop() min_x = min([self.x0, self.x]) max_x = max([self.x0, self.x]) min_y = min([self.y0, self.y]) max_y = max([self.y0, self.y]) self.axes.set_xlim(min_x, max_x) self.axes.set_ylim(min_y, max_y) self.draw() if __name__ == '__main__': plt.plot([1,2,3,12,1,3]) fig = plt.gcf() ax = plt.gca() zr = ZoomRectangle(fig,ax,fig.canvas) zr.connect() plt.show() ```
{ "source": "JorgeDeLosSantos/nusa", "score": 3 }
#### File: examples/spring/simple_case.py ```python from nusa.core import * from nusa.model import * from nusa.element import * def simple_case(): P = 750 k = 300 # Model ms = SpringModel("Simple") # Nodes n1 = Node((0,0)) n2 = Node((0,0)) # Elements e1 = Spring((n1,n2),k) for nd in (n1,n2): ms.add_node(nd) ms.add_element(e1) ms.add_force(n2,(P,)) ms.add_constraint(n1,ux=0) ms.solve() # print("Node displacements") # for n in ms.get_nodes(): # print(n.ux, n.uy) print(ms.simple_report()) if __name__ == '__main__': simple_case() ``` #### File: nusa/nusa/_experimental.py ```python import numpy as np import numpy.linalg as la import json from nusa import * # class NusaModelReader(object): # def __init__(self,filename): # self.filename = filename def read_model(filename,mtype="spring"): if mtype == "spring": return _read_spring_model(filename) elif mtype == "truss": return _read_truss_model(filename) else: raise ValueError("mtype must be a valid model type (spring, truss, bar, beam, lineartriangle)") def _read_truss_model(filename): nodes_data,elements_data,constraints_data,forces_data = _get_data_from_json(filename) nc = nodes_data ec = elements_data x,y = nc[:,0], nc[:,1] nodes = [] elements = [] for k,nd in enumerate(nc): cn = Node((x[k],y[k])) nodes.append(cn) for k,elm in enumerate(ec): i,j,E,A = int(elm[0]-1),int(elm[1]-1),elm[2],elm[3] ni,nj = nodes[i],nodes[j] ce = Truss((ni,nj), E, A) elements.append(ce) model = TrussModel("Truss Model") for n in nodes: model.add_node(n) for e in elements: model.add_element(e) for c in constraints_data: k,ux,uy = int(c[0]),c[1],c[2] if ~np.isnan(ux) and ~np.isnan(uy): model.add_constraint(nodes[k-1], ux=ux, uy=uy) elif ~np.isnan(ux): model.add_constraint(nodes[k-1], ux=ux) elif ~np.isnan(uy): model.add_constraint(nodes[k-1], uy=uy) for f in forces_data: k,fx,fy = int(f[0]),f[1],f[2] model.add_force(nodes[k-1],(fx,fy)) return model def _read_spring_model(filename): nodes_data,elements_data,constraints_data,forces_data = _get_data_from_json(filename) nc = nodes_data ec = elements_data x,y = nc[:,0], nc[:,1] nodes = [] elements = [] for k,nd in enumerate(nc): cn = Node((x[k],y[k])) nodes.append(cn) for k,elm in enumerate(ec): i,j,ke = int(elm[0]-1),int(elm[1]-1),elm[2] ni,nj = nodes[i],nodes[j] ce = Spring((ni,nj), ke) elements.append(ce) model = SpringModel("Truss Model") for n in nodes: model.add_node(n) for e in elements: model.add_element(e) for c in constraints_data: k,ux,uy = int(c[0]),c[1],c[2] if ~np.isnan(ux) and ~np.isnan(uy): model.add_constraint(nodes[k-1], ux=ux, uy=uy) elif ~np.isnan(ux): model.add_constraint(nodes[k-1], ux=ux) elif ~np.isnan(uy): model.add_constraint(nodes[k-1], uy=uy) for f in forces_data: k,fx,fy = int(f[0]),f[1],f[2] model.add_force(nodes[k-1],(fx,fy)) return model def _dicts2array(listofdicts): """ Convert a list of dicts to numpy array [internal purposes only] """ nel = len(listofdicts) nch = len(listofdicts[0]) keys = listofdicts[0].keys() array = np.zeros((nel,nch)) for i,dc in enumerate(listofdicts): for j,key in enumerate(keys): value = dc[key] if value == "free": # in case of "free" constraints value = np.nan array[i,j] = value return array def _get_data_from_json(filename): with open(filename, 'r') as nusafile: data = nusafile.read() obj = json.loads(data) nodes_data = _dicts2array(obj["nodes"]) elements_data = _dicts2array(obj["elements"]) constraints_data = _dicts2array(obj["constraints"]) forces_data = _dicts2array(obj["forces"]) return nodes_data,elements_data,constraints_data,forces_data if __name__=='__main__': fname = "data/truss_model01.nusa" m1 = read_model(fname, "truss") m1.solve() m1.simple_report() ```
{ "source": "JorgeDeLosSantos/PiChi", "score": 2 }
#### File: PiChi/core/__testCtrls.py ```python import wx class Test(wx.Frame): def __init__(self,parent): wx.Frame.__init__(self,parent,title="Test") mainsz = wx.BoxSizer(wx.VERTICAL) self.SetSizer(mainsz) lc = wx.ListCtrl(self, -1, size=(-1,100), style=wx.LC_REPORT |wx.BORDER_SUNKEN) lc.InsertColumn(0, "C1") lc.InsertColumn(1, "C2") lc.InsertColumn(2, "C3") for x in range(0,5): lc.InsertStringItem(x, "RPY") lc.SetStringItem(x, 1, "HI") lc.SetStringItem(x, 2, "HI") mainsz.Add(lc, 1, wx.EXPAND) self.Centre(1) self.Show() def main(): app = wx.App() fr = Test(None) app.MainLoop() if __name__=='__main__': main() ``` #### File: PiChi/core/uicalc.py ```python import wx import sympy import matplotlib matplotlib.use('WXAgg') from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigureCanvas from matplotlib.figure import Figure from sympy import (sin,cos,tan,sec,csc,cot,ln,log,exp,asin,acos,atan,sqrt) # Algunas funciones from cfg import * def preproc(cad): """ Replace this function for other in "util" module """ return cad.replace("^","**") class UIDer(wx.Frame): def __init__(self,parent): wx.Frame.__init__(self,parent,title=PICHI_STR,size=(400,300)) self.funpanel = wx.Panel(self,-1) self.initSizers() self.initCanvas() self.initCtrls() self.Centre(1) self.Show() def initSizers(self): self.mainsz = wx.BoxSizer(wx.VERTICAL) self.funsz = wx.BoxSizer(wx.HORIZONTAL) self.funpanel.SetSizer(self.funsz) self.SetSizer(self.mainsz) def initCtrls(self): self.funlabel = wx.StaticText(self.funpanel, -1, " f(x) ") self.fun = wx.TextCtrl(self.funpanel, -1, "") self.boton = wx.Button(self, -1, "Derivar") # Fonts font1 = self.funlabel.GetFont() font1.SetPointSize(12) self.funlabel.SetFont(font1) self.fun.SetFont(font1) self.fun.SetForegroundColour((0,0,255)) self.funsz.Add(self.funlabel, 1, wx.EXPAND|wx.ALL, 5) self.funsz.Add(self.fun, 7, wx.EXPAND|wx.ALL, 5) self.mainsz.Add(self.funpanel, 1, wx.EXPAND|wx.ALL, 5) self.mainsz.Add(self.boton, 1, wx.EXPAND|wx.ALL, 5) self.mainsz.Add(self.canvas, 6, wx.EXPAND|wx.ALL, 5) self.Bind(wx.EVT_BUTTON, self.derivar, self.boton) def initCanvas(self): self.figure = Figure() # FigureCanvas self.canvas = FigureCanvas(self, -1, self.figure) self.figure.set_facecolor((1,1,1)) # ... self.string = self.figure.text(0.05, 0.5, "") self.string.set_fontsize(18) def derivar(self,event): x = sympy.Symbol("x") fx = self.fun.GetValue() # Función original fx = preproc(fx) Fx = sympy.diff(eval(fx)) # Función derivada str_Fx = "$\\frac{d}{dx}(%s)\, = \,%s$"%(sympy.latex(eval(fx)), sympy.latex(Fx)) self.string.set_text(str_Fx) self.canvas.draw() # "Redibujar" class UIInt(wx.Frame): def __init__(self,parent): wx.Frame.__init__(self,parent,title=PICHI_STR,size=(400,300)) self.funpanel = wx.Panel(self, -1) self.initSizers() self.initCanvas() self.initCtrls() self.SetBackgroundColour("#FFFFFF") self.Centre(1) self.Show() def initSizers(self): self.mainsz = wx.BoxSizer(wx.VERTICAL) self.funsz = wx.BoxSizer(wx.HORIZONTAL) self.funpanel.SetSizer(self.funsz) self.SetSizer(self.mainsz) def initCtrls(self): self.funlabel = wx.StaticText(self.funpanel, -1, " f(x) ") self.fun = wx.TextCtrl(self.funpanel, -1, "") self.boton = wx.Button(self, -1, "Integrar", size=(100,25)) # Fonts font1 = self.funlabel.GetFont() font1.SetPointSize(12) self.funlabel.SetFont(font1) self.fun.SetFont(font1) self.fun.SetForegroundColour((0,0,255)) self.funsz.Add(self.funlabel, 1, wx.EXPAND|wx.ALL, 5) self.funsz.Add(self.fun, 7, wx.EXPAND|wx.ALL, 5) self.mainsz.Add(self.funpanel, 1, wx.EXPAND|wx.ALL, 5) self.mainsz.Add(self.canvas, 6, wx.EXPAND|wx.ALL, 5) self.mainsz.Add(self.boton, 0, wx.ALIGN_CENTRE|wx.ALL, 5) self.Bind(wx.EVT_BUTTON, self.integrar, self.boton) def initCanvas(self): self.figure = Figure() # FigureCanvas self.canvas = FigureCanvas(self, -1, self.figure) self.figure.set_facecolor((1,1,1)) self.string = self.figure.text(0.05, 0.5, "") self.string.set_fontsize(18) def integrar(self,event): x = sympy.Symbol("x") fx = self.fun.GetValue() # Función original fx = preproc(fx) Fx = sympy.integrate(eval(fx)) # Función integrada str_Fx = "$\int \, (%s) \,dx \,= \,%s + C$"%(sympy.latex(eval(fx)), sympy.latex(Fx)) self.string.set_text(str_Fx) self.canvas.draw() class UILimit(wx.Frame): def __init__(self,parent): wx.Frame.__init__(self,parent,title=PICHI_STR,size=(400,300)) self.funpanel = wx.Panel(self, -1) self.initSizers() self.initCanvas() self.initCtrls() self.Centre(1) self.Show() def initSizers(self): self.mainsz = wx.BoxSizer(wx.VERTICAL) self.funsz = wx.BoxSizer(wx.HORIZONTAL) self.funpanel.SetSizer(self.funsz) self.SetSizer(self.mainsz) def initCtrls(self): self.funlabel = wx.StaticText(self.funpanel, -1, " f(x) ") self.fun = wx.TextCtrl(self.funpanel, -1, "", style= wx.TE_PROCESS_ENTER) self.boton = wx.Button(self, -1, "Calcular limite") # Fonts font1 = self.funlabel.GetFont() font1.SetPointSize(12) self.funlabel.SetFont(font1) self.fun.SetFont(font1) self.fun.SetForegroundColour((0,0,255)) self.funsz.Add(self.funlabel, 1, wx.EXPAND|wx.ALL, 5) self.funsz.Add(self.fun, 7, wx.EXPAND|wx.ALL, 5) self.mainsz.Add(self.funpanel, 1, wx.EXPAND|wx.ALL, 5) self.mainsz.Add(self.boton, 1, wx.EXPAND|wx.ALL, 5) self.mainsz.Add(self.canvas, 6, wx.EXPAND|wx.ALL, 5) self.Bind(wx.EVT_BUTTON, self.limite, self.boton) self.Bind(wx.EVT_TEXT_ENTER, self.limite) def initCanvas(self): self.figure = Figure() # FigureCanvas self.canvas = FigureCanvas(self, -1, self.figure) self.figure.set_facecolor((1,1,1)) self.string = self.figure.text(0.05, 0.5, "") self.string.set_fontsize(18) def limite(self,event): x = sympy.Symbol("x") so = self.fun.GetValue() # Función original if not(so): print "Función no definida" return False so = preproc(so) so = so.split(",") fx = so[0] val = float(so[1]) Fx = sympy.limit(eval(fx),x,val) # Función integrada str_Fx = r"$ \lim_{x \to %s} \, (%s) \,dx \,= \,%s$"%(val, sympy.latex(eval(fx)), sympy.latex(Fx)) self.string.set_text(str_Fx) self.canvas.draw() if __name__=='__main__': app = wx.App() fr = UILimit(None) app.MainLoop() ``` #### File: PiChi/core/uilinalg.py ```python import wx from cfg import * class UIDet(wx.Frame): def __init__(self,parent): wx.Frame.__init__(self,parent,title=PYXMATH_NAME,size=(400,300)) self.Centre(1) self.Show() if __name__=='__main__': app = wx.App() fr = UIDet(None) app.MainLoop() ```
{ "source": "JorgeDeLosSantos/pyapdl", "score": 3 }
#### File: pyapdl/pyapdl/materials.py ```python import numpy as np class Material(object): def __init__(self,name,**props): """ Create a material class Properties ---------- E : int,float Young modulus nu : int,float Poisson's ratio density : int,float Density """ self.name = name if props.has_key("E"): self.__E = props["E"] if props.has_key("nu"): self.__nu = props["nu"] if props.has_key("density"): self.__density = props["density"] @property def nu(self): return self.__nu @nu.setter def nu(self,val): self.__nu = val @property def E(self): return self.__E @E.setter def E(self,val): self.__E = val @property def density(self): return self.__density @density.setter def density(self,val): self.__density = val def toANSYS(self,number): E_str = "MP,EX,%g,%g"%(number,self.E) nu_str = "MP,NUXY,%g,%g"%(number,self.nu) density_str = "MP,DENS,%g,%g"%(number,self.density) return "\n".join([E_str,nu_str,density_str]) def create_material(n,**kwargs): m = Material(n,**kwargs) return m.toANSYS(n) if __name__ == '__main__': print create_material(1,E=100,nu=0.3,density=7850) ``` #### File: pyapdl/pyapdl/meshing.py ```python def mesh_line(line): _ml = "LMESH,%s,,"%(line) return _ml if __name__ == '__main__': pass ```
{ "source": "JorgeDeLosSantos/ubim", "score": 3 }
#### File: images/ch4/code_mpl.py ```python import matplotlib.pyplot as plt import numpy as np __all__ = ["img_01", "img_02", "img_03", "img_04", "img_05", "img_06", "img_07"] def img_01(): x = np.linspace(0,10) y = np.cos(x) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(x, y) plt.savefig("img_01.png") def img_02(): T = [50, 60, 70, 80, 90, 100, 110, 120] P = [12, 20, 33, 54, 90, 148, 244, 403] fig = plt.figure() ax = fig.add_subplot(111) ax.plot(T, P) ax.set_xlabel(u"Temperatura (°C)") ax.set_ylabel(u"Presión (KPa)") ax.set_title(u"Relación P-T") plt.savefig("img_02.png") def img_03(): x = np.linspace(0,10) y = np.cos(x) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(x, y, lw=2) ax.plot(x, y+1, lw=4) ax.plot(x, y+2, linewidth=6) plt.savefig("img_03c.png") def img_04(): theta = np.linspace(0,2*np.pi,1000) r = 0.25*np.cos(3*theta) fig = plt.figure() ax = fig.add_subplot(111, projection="polar") ax.plot(theta, r) plt.savefig("img_04.png") def img_05():pass def img_06():pass def img_07():pass def img_08():pass if __name__=='__main__': [eval(fun+"()") for fun in __all__] ```
{ "source": "Jorge-DevOps/API_HealthTech", "score": 2 }
#### File: Apps/LoginUsuarios/serializers.py ```python from rest_framework import serializers from django.contrib.auth.models import User # User Serializer class UserSerializer(serializers.ModelSerializer): class Meta: model = User fields = ('id', 'username', 'email','password') extra_kwargs = {'password':{'<PASSWORD>': True}} def create(self, validated_data): user = User( email=validated_data['email'], username=validated_data['username'] ) user.set_password(validated_data['password']) user.save() return user # Register Serializer class RegisterSerializer(serializers.ModelSerializer): class Meta: model = User fields = ('id', 'username', 'email', 'password') extra_kwargs = {'password': {'<PASSWORD>': True}} def create(self, validated_data): user = User.objects.create_user(validated_data['username'], validated_data['email'], validated_data['password']) return user ``` #### File: Apps/LoginUsuarios/views.py ```python from django.http import response from django.shortcuts import render from django.shortcuts import render # Create your views here. from rest_framework import generics, permissions from rest_framework.response import Response from knox.models import AuthToken from .serializers import UserSerializer, RegisterSerializer from django.http import HttpResponse # Register-- API class RegisterAPI(generics.GenericAPIView): serializer_class = RegisterSerializer def post(self, request, *args, **kwargs): serializer = self.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) user = serializer.save() return Response({ "user": UserSerializer(user, context=self.get_serializer_context()).data, "token": AuthToken.objects.create(user)[1] }) #---------Part Login in the api------------ from django.contrib.auth import login from rest_framework import permissions from rest_framework.authtoken.serializers import AuthTokenSerializer from knox.views import LoginView as KnoxLoginView import json from django import http from Apps.share.paciente.models import Paciente from Apps.share.medico.models import Medico from Apps.share.administrador.models import Administrador class LoginAPI(KnoxLoginView): permission_classes = (permissions.AllowAny,) def traerPerfil(consulta): for p in consulta: print("valor de P: ",p.id_perfil.id_perfil) return int(p.id_perfil.id_perfil) def post(self, request, format=None): serializer = AuthTokenSerializer(data=request.data) serializer.is_valid(raise_exception=True) user = serializer.validated_data['user'] #Validación dataRequestPerfil=request.data.get('perfil') dataRequestUsername=request.data.get('username') if dataRequestPerfil=="1": queryAdministrador=f"SELECT id_usuario, id_perfil FROM administrador WHERE email = '{dataRequestUsername}'" consulta=Administrador.objects.raw(queryAdministrador) elif dataRequestPerfil=="2": queryPaciente=f"SELECT id_usuario, id_perfil FROM paciente WHERE email = '{dataRequestUsername}'" consulta=Paciente.objects.raw(queryPaciente) elif dataRequestPerfil=="3": queryMedico=f"SELECT id_usuario, id_perfil FROM medico WHERE email = '{dataRequestUsername}'" consulta=Medico.objects.raw(queryMedico) #queryPaciente2= Paciente.objects.raw(f'SELECT id_perfil FROM paciente WHERE email = '{dataRequestUsername}'') if LoginAPI.traerPerfil(consulta)==int(dataRequestPerfil): login(request, user) response=super(LoginAPI, self).post(request, format=None) print("si es un paciente") else: response=HttpResponse("Credenciales invalidas") #Parte del codigo que se usa para el Login return response ``` #### File: share/cita/views.py ```python from django.shortcuts import render from django.db import connection from django.views.generic.base import View from rest_framework.generics import UpdateAPIView from xlwt.Formatting import Font from django.http import HttpResponse import xlwt from Apps.share.medico.models import Medico from Apps.horario.models import horario from Apps.agenda.models import Agenda import json from json import loads from django.views import View from rest_framework import permissions from django.views.generic.edit import UpdateView from knox.views import LoginView as KnoxLoginView #from knox.views import LoginView as KnoxLoginView # Create your views here. def traerMedicos(request): consulta = list(Medico.objects.values('username', 'id_agenda')) response = HttpResponse(json.dumps(consulta, indent=4), content_type='application/json') return response def horariosDisponibles(request): dic = loads(request.body) idAgenda=dic['id_agenda'] dataRequestFecha=dic['fecha'] #with connection.cursor() as cursor: # cursor.execute("""SELECT agenda.id_agenda # FROM agenda # JOIN medico ON (agenda.id_agenda = medico.id_agenda) # WHERE medico.email = %s""", [dataRequestUsername] # ) # # result = dictfetchall(cursor) #idAgenda = result[0]['id_agenda'] with connection.cursor() as cursor: cursor.execute("""SELECT * FROM horario WHERE horario.id_horario NOT IN ( SELECT cita.id_horario FROM cita WHERE cita.fecha =%s AND cita.id_agenda =%s )""", [dataRequestFecha, idAgenda] ) result = dictfetchall(cursor) response = HttpResponse(json.dumps(result, indent=4, default=str),content_type='application/json') return response def export_informeCitas(request): response = HttpResponse(content_type='application/ms-excel') #nesecitamos enviarle el contenido response['Content-Disposition'] = 'attachment; filename=Ep_' + \ str('informeCitasMedicas')+'.xls' wb = xlwt.Workbook(encoding='utf-8') ws=wb.add_sheet('Cita') row_num = 0 font_style=xlwt.XFStyle() font_style.font.bold =True columns = ['id_cita','id_agenda','id_usuario','fecha','id_horario'] for col_num in range(len(columns)): ws.write(row_num,col_num,columns[col_num], font_style) font_style=xlwt.XFStyle() with connection.cursor() as cursor: cursor.execute("SELECT id_cita, id_agenda, id_usuario, fecha, id_horario FROM cita ") rawData = cursor.fetchall() result = [] for r in rawData: result.append(list(r)) rows = result for row in rows: row_num+=1 for col_num in range(len(row)): ws.write(row_num,col_num,str(row[col_num]), font_style) wb.save(response) return response from json import loads def lista_citas(request): dic = loads(request.body) dataRequestUsername=dic['username'] with connection.cursor() as cursor: cursor.execute("""SELECT medico.username, cita.fecha, horario.hora_inicio, horario.hora_fin, consultorio.nombre FROM medico JOIN agenda ON (medico.id_agenda = agenda.id_agenda) JOIN consultorio ON(agenda.id_consultorio = consultorio.id_consultorio) JOIN cita ON (agenda.id_agenda = cita.id_agenda) JOIN horario ON (cita.id_horario = horario.id_horario) JOIN paciente ON (cita.id_usuario = paciente.id_usuario) WHERE paciente.email = %s""", [dataRequestUsername]) result = dictfetchall(cursor) response = HttpResponse(json.dumps(result, indent=4, default=str),content_type='application/json') return response def dictfetchall(cursor): "Return all rows from a cursor as a dict" columns = [col[0] for col in cursor.description] return [ dict(zip(columns, row)) for row in cursor.fetchall() ] ```
{ "source": "jorgedfbranco/apm-server", "score": 3 }
#### File: apm-server/script/check_changelogs.py ```python import io import hashlib import os import requests SUPPORTED_VERSIONS = ["6.8", "7.5", "7.6", "7.x"] def parse_version(version): return tuple([int(x) if x != "x" else 100 for x in version.split('.')]) def shasum(fp): h = hashlib.sha1() while True: buf = fp.read() if len(buf) == 0: break h.update(buf) return h.hexdigest() def main(): cl_dir = 'changelogs' any_failures = False for cl in sorted(os.listdir(cl_dir)): version, _ = os.path.splitext(cl) if version not in SUPPORTED_VERSIONS: continue parsed_version = parse_version(version) with open(os.path.join(cl_dir, cl), mode='rb') as f: master = shasum(f) print("**", cl, master, "**") for v in SUPPORTED_VERSIONS: if parsed_version <= parse_version(v): print("checking {} on {}".format(cl, v)) url = "https://raw.githubusercontent.com/elastic/apm-server/{}/changelogs/{}".format(v, cl) rsp = requests.get(url) status = "success" if rsp.status_code == 200: h = shasum(io.BytesIO(rsp.content)) else: h = "error: {}".format(rsp.status_code) # rsp.raise_for_status() if h != master: status = "failed" any_failures = True print(h, url, status) print() if any_failures: raise Exception('Some changelogs are missing, please look at for failed.') if __name__ == '__main__': main() ```
{ "source": "jorgediazjr/dials-dev20191018", "score": 2 }
#### File: cbflib/drel-ply/drel-gu.py ```python import drel_lex import drel_yacc import sys import CifFile import StarFile class Process: def execute_method(self): #create our lexer and parser self.lexer = drel_lex.lexer self.parser = drel_yacc.parser #use a simple dictionary self.testdic = CifFile.CifDic("dict/cif_short.dic") self.testdic.diclang = "DDLm" self.testblock = CifFile.CifFile("tests/c2ctest5.cif") ["c2ctest5"] #create the global namespace self.namespace = self.testblock.keys() self.namespace = dict(map(None,self.namespace,self.namespace)) self.parser.loopable_cats = ["import"] self.parser.special_id = [self.namespace] self.parser.withtable = {} self.parser.target_id = None self.parser.indent = "" #get valuename from cmdline valuename = sys.argv[1] f = open("method_expression") expression = f.readline() str_list = [] str_list.append(expression) while expression: expression = f.readline() str_list.append(expression) expression = "".join(str_list) self.parser.target_id = valuename res = self.parser.parse(expression + "\n", lexer=self.lexer) realfunc = drel_yacc.make_func(res, "myfunc", valuename) print "Compiling dREL....." exec realfunc realres = myfunc(self.testdic,self.testblock) print "Generated value: %s" % realres fout = open("method_output", 'w') print>>fout, realres #method returns realres as the value that would be missing #for validation #failUnless(realres == value) p = Process() p.execute_method() ``` #### File: pycbf/xmas/readmarheader.py ```python import struct # Convert mar c header file types to python struct module types mar_c_to_python_struct = { "INT32" : "i", "UINT32" : "I", "char" : "c", "UINT16" : "H" } # Sizes (bytes) of mar c header objects mar_c_sizes = { "INT32" : 4, "UINT32" : 4, "char" : 1, "UINT16" : 2 } # This was worked out by trial and error from a trial image I think MAXIMAGES=9 def make_format(cdefinition): """ Reads the header definition in c and makes the format string to pass to struct.unpack """ lines = cdefinition.split("\n") fmt = "" names = [] expected = 0 for line in lines: if line.find(";")==-1: continue decl = line.split(";")[0].lstrip().rstrip() try: [type, name] = decl.split() except: #print "skipping:",line continue # print "type:",type," name:",name if name.find("[")>-1: # repeated ... times try: num = name.split("[")[1].split("]")[0] num = num.replace("MAXIMAGES",str(MAXIMAGES)) num = num.replace("sizeof(INT32)","4") times = eval(num) except: print "Please decode",decl raise else: times=1 try: fmt += mar_c_to_python_struct[type]*times names += [name]*times expected += mar_c_sizes[type]*times except: #print "skipping",line continue #print "%4d %4d"%(mar_c_sizes[type]*times,expected),name,":",times,line #print struct.calcsize(fmt),expected return names, fmt def read_mar_header(filename): """ Get the header from a binary file """ f = open(filename,"rb") f.seek(1024) header=f.read(3072) f.close() return header def interpret_header(header, fmt, names): """ given a format and header interpret it """ values = struct.unpack(fmt,header) dict = {} i=0 for name in names: if dict.has_key(name): if type(values[i]) == type("string"): dict[name] = dict[name]+values[i] else: try: dict[name].append(values[i]) except: dict[name] = [dict[name],values[i]] else: dict[name] = values[i] i=i+1 return dict # Now for the c definition (found on mar webpage) # The following string is therefore copyrighted by Mar I guess cdefinition = """ typedef struct frame_header_type { /* File/header format parameters (256 bytes) */ UINT32 header_type; /* flag for header type (can be used as magic number) */ char header_name[16]; /* header name (MMX) */ UINT32 header_major_version; /* header_major_version (n.) */ UINT32 header_minor_version; /* header_minor_version (.n) */ UINT32 header_byte_order;/* BIG_ENDIAN (Motorola,MIPS); LITTLE_ENDIAN (DEC, Intel) */ UINT32 data_byte_order; /* BIG_ENDIAN (Motorola,MIPS); LITTLE_ENDIAN (DEC, Intel) */ UINT32 header_size; /* in bytes */ UINT32 frame_type; /* flag for frame type */ UINT32 magic_number; /* to be used as a flag - usually to indicate new file */ UINT32 compression_type; /* type of image compression */ UINT32 compression1; /* compression parameter 1 */ UINT32 compression2; /* compression parameter 2 */ UINT32 compression3; /* compression parameter 3 */ UINT32 compression4; /* compression parameter 4 */ UINT32 compression5; /* compression parameter 4 */ UINT32 compression6; /* compression parameter 4 */ UINT32 nheaders; /* total number of headers */ UINT32 nfast; /* number of pixels in one line */ UINT32 nslow; /* number of lines in image */ UINT32 depth; /* number of bytes per pixel */ UINT32 record_length; /* number of pixels between succesive rows */ UINT32 signif_bits; /* true depth of data, in bits */ UINT32 data_type; /* (signed,unsigned,float...) */ UINT32 saturated_value; /* value marks pixel as saturated */ UINT32 sequence; /* TRUE or FALSE */ UINT32 nimages; /* total number of images - size of each is nfast*(nslow/nimages) */ UINT32 origin; /* corner of origin */ UINT32 orientation; /* direction of fast axis */ UINT32 view_direction; /* direction to view frame */ UINT32 overflow_location;/* FOLLOWING_HEADER, FOLLOWING_DATA */ UINT32 over_8_bits; /* # of pixels with counts 255 */ UINT32 over_16_bits; /* # of pixels with count 65535 */ UINT32 multiplexed; /* multiplex flag */ UINT32 nfastimages; /* # of images in fast direction */ UINT32 nslowimages; /* # of images in slow direction */ UINT32 background_applied; /* flags correction has been applied - hold magic number ? */ UINT32 bias_applied; /* flags correction has been applied - hold magic number ? */ UINT32 flatfield_applied; /* flags correction has been applied - hold magic number ? */ UINT32 distortion_applied; /* flags correction has been applied - hold magic number ? */ UINT32 original_header_type; /* Header/frame type from file that frame is read from */ UINT32 file_saved; /* Flag that file has been saved, should be zeroed if modified */ char reserve1[(64-40)*sizeof(INT32)-16]; /* Data statistics (128) */ UINT32 total_counts[2]; /* 64 bit integer range = 1.85E19*/ UINT32 special_counts1[2]; UINT32 special_counts2[2]; UINT32 min; UINT32 max; UINT32 mean; UINT32 rms; UINT32 p10; UINT32 p90; UINT32 stats_uptodate; UINT32 pixel_noise[MAXIMAGES]; /* 1000*base noise value (ADUs) */ char reserve2[(32-13-MAXIMAGES)*sizeof(INT32)]; /* More statistics (256) */ UINT16 percentile[128]; /* Goniostat parameters (128 bytes) */ INT32 xtal_to_detector; /* 1000*distance in millimeters */ INT32 beam_x; /* 1000*x beam position (pixels) */ INT32 beam_y; /* 1000*y beam position (pixels) */ INT32 integration_time; /* integration time in milliseconds */ INT32 exposure_time; /* exposure time in milliseconds */ INT32 readout_time; /* readout time in milliseconds */ INT32 nreads; /* number of readouts to get this image */ INT32 start_twotheta; /* 1000*two_theta angle */ INT32 start_omega; /* 1000*omega angle */ INT32 start_chi; /* 1000*chi angle */ INT32 start_kappa; /* 1000*kappa angle */ INT32 start_phi; /* 1000*phi angle */ INT32 start_delta; /* 1000*delta angle */ INT32 start_gamma; /* 1000*gamma angle */ INT32 start_xtal_to_detector; /* 1000*distance in mm (dist in um)*/ INT32 end_twotheta; /* 1000*two_theta angle */ INT32 end_omega; /* 1000*omega angle */ INT32 end_chi; /* 1000*chi angle */ INT32 end_kappa; /* 1000*kappa angle */ INT32 end_phi; /* 1000*phi angle */ INT32 end_delta; /* 1000*delta angle */ INT32 end_gamma; /* 1000*gamma angle */ INT32 end_xtal_to_detector; /* 1000*distance in mm (dist in um)*/ INT32 rotation_axis; /* active rotation axis */ INT32 rotation_range; /* 1000*rotation angle */ INT32 detector_rotx; /* 1000*rotation of detector around X */ INT32 detector_roty; /* 1000*rotation of detector around Y */ INT32 detector_rotz; /* 1000*rotation of detector around Z */ char reserve3[(32-28)*sizeof(INT32)]; /* Detector parameters (128 bytes) */ INT32 detector_type; /* detector type */ INT32 pixelsize_x; /* pixel size (nanometers) */ INT32 pixelsize_y; /* pixel size (nanometers) */ INT32 mean_bias; /* 1000*mean bias value */ INT32 photons_per_100adu; /* photons / 100 ADUs */ INT32 measured_bias[MAXIMAGES]; /* 1000*mean bias value for each image*/ INT32 measured_temperature[MAXIMAGES]; /* Temperature of each detector in milliKelvins */ INT32 measured_pressure[MAXIMAGES]; /* Pressure of each chamber in microTorr */ /* Retired reserve4 when MAXIMAGES set to 9 from 16 and two fields removed, and temp and pressure added char reserve4[(32-(5+3*MAXIMAGES))*sizeof(INT32)] */ /* X-ray source and optics parameters (128 bytes) */ /* X-ray source parameters (8*4 bytes) */ INT32 source_type; /* (code) - target, synch. etc */ INT32 source_dx; /* Optics param. - (size microns) */ INT32 source_dy; /* Optics param. - (size microns) */ INT32 source_wavelength; /* wavelength (femtoMeters) */ INT32 source_power; /* (Watts) */ INT32 source_voltage; /* (Volts) */ INT32 source_current; /* (microAmps) */ INT32 source_bias; /* (Volts) */ INT32 source_polarization_x; /* () */ INT32 source_polarization_y; /* () */ char reserve_source[4*sizeof(INT32)]; /* X-ray optics_parameters (8*4 bytes) */ INT32 optics_type; /* Optics type (code)*/ INT32 optics_dx; /* Optics param. - (size microns) */ INT32 optics_dy; /* Optics param. - (size microns) */ INT32 optics_wavelength; /* Optics param. - (size microns) */ INT32 optics_dispersion; /* Optics param. - (*10E6) */ INT32 optics_crossfire_x; /* Optics param. - (microRadians) */ INT32 optics_crossfire_y; /* Optics param. - (microRadians) */ INT32 optics_angle; /* Optics param. - (monoch. 2theta - microradians) */ INT32 optics_polarization_x; /* () */ INT32 optics_polarization_y; /* () */ char reserve_optics[4*sizeof(INT32)]; char reserve5[((32-28)*sizeof(INT32))]; /* File parameters (1024 bytes) */ char filetitle[128]; /* Title */ char filepath[128]; /* path name for data file */ char filename[64]; /* name of data file */ char acquire_timestamp[32]; /* date and time of acquisition */ char header_timestamp[32]; /* date and time of header update */ char save_timestamp[32]; /* date and time file saved */ char file_comments[512]; /* comments, use as desired */ char reserve6[1024-(128+128+64+(3*32)+512)]; /* Dataset parameters (512 bytes) */ char dataset_comments[512]; /* comments, used as desired */ /* pad out to 3072 bytes */ char pad[3072-(256+128+256+(3*128)+1024+512)]; } frame_header; """ class marheaderreader: """ Class to sit and read a series of images (makes format etc only once) """ def __init__(self): """ Initialise internal stuff """ self.names , self.fmt = make_format(cdefinition) def get_header(self,filename): """ Reads a header from file filename """ h=read_mar_header(filename) dict = interpret_header(h,self.fmt,self.names) # Append ESRF formatted stuff items = self.readesrfstring(dict["dataset_comments[512]"]) for pair in items: dict[pair[0]]=pair[1] items = self.readesrfstring(dict["file_comments[512]"]) for pair in items: dict[pair[0]]=pair[1] dict["pixelsize_x_mm"]= str(float(dict["pixelsize_x"])/1e6) dict["pixelsize_y_mm"]= str(float(dict["pixelsize_y"])/1e6) dict["integration_time_sec"]= str(float(dict["integration_time"])/1e3) dict["beam_y_mm"]= str(float(dict["pixelsize_y_mm"])* float(dict["beam_y"])/1000.) dict["beam_x_mm"]= str(float(dict["pixelsize_x_mm"])* float(dict["beam_x"])/1000.) return dict def readesrfstring(self,s): """ Interpret the so called "esrf format" header lines which are in comment sections """ s=s.replace("\000","") items = filter(None, [len(x)>1 and x or None for x in [ item.split("=") for item in s.split(";")]]) return items if __name__=="__main__": """ Make a little program to process files """ import sys print "Starting" names,fmt = make_format(cdefinition) print "Names and format made" h = read_mar_header(sys.argv[1]) print "Read header, interpreting" d = interpret_header(h,fmt,names) printed = {} for name in names: if printed.has_key(name): continue print name,":",d[name] printed[name]=1 ``` #### File: application/group/group_reflections.py ```python from __future__ import absolute_import, division, print_function from six.moves import range from xfel.merging.application.worker import worker from dials.array_family import flex from xfel.merging.application.reflection_table_utils import reflection_table_utils from xfel.merging.application.utils.memory_usage import get_memory_usage class hkl_group(worker): '''For each asu hkl, gather all of its measurements from all ranks at a single rank, while trying to evenly distribute asu HKLs over the ranks.''' def __init__(self, params, mpi_helper=None, mpi_logger=None): super(hkl_group, self).__init__(params=params, mpi_helper=mpi_helper, mpi_logger=mpi_logger) def __repr__(self): return "Group symmetry-reduced HKLs" def distribute_reflection_table(self): '''Create a reflection table for storing reflections distributed over hkl chunks''' table = flex.reflection_table() table['miller_index_asymmetric'] = flex.miller_index() table['intensity.sum.value'] = flex.double() table['intensity.sum.variance'] = flex.double() table['exp_id'] = flex.std_string() return table def run(self, experiments, reflections): self.logger.log_step_time("GROUP") # set up hkl chunks to be used for all-to-all; every avialable rank participates in all-to-all, even a rank that doesn't load any data self.logger.log_step_time("SETUP_CHUNKS") self.setup_hkl_chunks() self.logger.log_step_time("SETUP_CHUNKS", True) # for the ranks, which have loaded the data, distribute the reflections over the hkl chunks self.logger.log_step_time("DISTRIBUTE_OVER_CHUNKS") self.distribute_reflections_over_hkl_chunks(reflections=reflections) self.logger.log_step_time("DISTRIBUTE_OVER_CHUNKS", True) # run all-to-all if self.params.parallel.a2a == 1: # 1 means: the number of slices in each chunk is 1, i.e. alltoall is done on the whole chunks alltoall_reflections = self.get_reflections_from_alltoall() else: # do alltoall on chunk slices - useful if the run-time memory is not sufficient to do alltoall on the whole chunks alltoall_reflections = self.get_reflections_from_alltoall_sliced(number_of_slices=self.params.parallel.a2a) self.logger.log_step_time("SORT") self.logger.log("Sorting consolidated reflection table...") alltoall_reflections.sort('miller_index_asymmetric') self.logger.log_step_time("SORT", True) self.logger.log_step_time("GROUP", True) return experiments, alltoall_reflections def setup_hkl_chunks(self): '''Set up a list of reflection tables, or chunks, for distributing reflections''' # split the full miller set into chunks; the number of chunks is equal to the number of ranks import numpy as np self.hkl_split_set = np.array_split(self.params.scaling.miller_set.indices(), self.mpi_helper.size) # initialize a list of hkl chunks - reflection tables to store distributed reflections self.hkl_chunks = [] for i in range(len(self.hkl_split_set)): self.hkl_chunks.append(self.distribute_reflection_table()) def distribute_reflections_over_hkl_chunks(self, reflections): '''Distribute reflections, according to their HKLs, over pre-set HKL chunks''' total_reflection_count = reflections.size() total_distributed_reflection_count = 0 if total_reflection_count > 0: # set up two lists to be passed to the C++ extension: HKLs and chunk ids. It's basically a hash table to look up chunk ids by HKLs hkl_list = flex.miller_index() chunk_id_list = flex.int() for i in range(len(self.hkl_split_set)): for j in range(len(self.hkl_split_set[i])): hkl = (self.hkl_split_set[i][j][0], self.hkl_split_set[i][j][1], self.hkl_split_set[i][j][2]) hkl_list.append(hkl) chunk_id_list.append(i) # distribute reflections over hkl chunks, using a C++ extension from xfel.merging import get_hkl_chunks_cpp get_hkl_chunks_cpp(reflections, hkl_list, chunk_id_list, self.hkl_chunks) for chunk in self.hkl_chunks: total_distributed_reflection_count += len(chunk) self.logger.log("Distributed %d out of %d reflections"%(total_distributed_reflection_count, total_reflection_count)) self.logger.log("Memory usage: %d MB"%get_memory_usage()) reflections.clear() def get_reflections_from_alltoall(self): '''Use MPI alltoall method to gather all reflections with the same asu hkl from all ranks at a single rank''' self.logger.log_step_time("ALL-TO-ALL") self.logger.log("Executing MPI all-to-all...") received_hkl_chunks = self.mpi_helper.comm.alltoall(self.hkl_chunks) self.logger.log("Received %d hkl chunks after all-to-all"%len(received_hkl_chunks)) self.logger.log_step_time("ALL-TO-ALL", True) self.logger.log_step_time("CONSOLIDATE") self.logger.log("Consolidating reflection tables...") result_reflections = flex.reflection_table() for chunk in received_hkl_chunks: result_reflections.extend(chunk) self.logger.log_step_time("CONSOLIDATE", True) return result_reflections def get_reflections_from_alltoall_sliced(self, number_of_slices): '''Split each hkl chunk into N slices. This is needed to address the MPI alltoall memory problem''' result_reflections = self.distribute_reflection_table() # the total reflection table, which this rank will receive after all slices of alltoall list_of_sliced_hkl_chunks = [] # if self.hkl_chunks is [A,B,C...], this list will be [[A1,A2,...,An], [B1,B2,...,Bn], [C1,C2,...,Cn], ...], where n is the number of chunk slices for i in range(len(self.hkl_chunks)): hkl_chunk_slices = [] for chunk_slice in reflection_table_utils.get_next_reflection_table_slice(self.hkl_chunks[i], number_of_slices, self.distribute_reflection_table): hkl_chunk_slices.append(chunk_slice) list_of_sliced_hkl_chunks.append(hkl_chunk_slices) self.logger.log("Ready for all-to-all...") self.logger.log("Memory usage: %d MB"%get_memory_usage()) for j in range(number_of_slices): hkl_chunks_for_alltoall = list() for i in range(len(self.hkl_chunks)): hkl_chunks_for_alltoall.append(list_of_sliced_hkl_chunks[i][j]) # [Aj,Bj,Cj...] self.logger.log_step_time("ALL-TO-ALL") self.logger.log("Executing MPI all-to-all...") self.logger.log("Memory usage: %d MB"%get_memory_usage()) received_hkl_chunks = comm.alltoall(hkl_chunks_for_alltoall) self.logger.log("After all-to-all received %d hkl chunks" %len(received_hkl_chunks)) self.logger.log_step_time("ALL-TO-ALL", True) self.logger.log_step_time("CONSOLIDATE") self.logger.log("Consolidating reflection tables...") for chunk in received_hkl_chunks: result_reflections.extend(chunk) self.logger.log_step_time("CONSOLIDATE", True) return result_reflections if __name__ == '__main__': from xfel.merging.application.worker import exercise_worker exercise_worker(hkl_group) ``` #### File: algorithms/indexing/stills_indexer.py ```python from __future__ import absolute_import, division, print_function import copy import math import logging import libtbx from dxtbx.model.experiment_list import Experiment, ExperimentList from dials.array_family import flex from dials.algorithms.indexing.indexer import Indexer from dials.algorithms.indexing.known_orientation import IndexerKnownOrientation from dials.algorithms.indexing.lattice_search import BasisVectorSearch, LatticeSearch from dials.algorithms.indexing.nave_parameters import NaveParameters from dials.algorithms.indexing import DialsIndexError, DialsIndexRefineError logger = logging.getLogger(__name__) def calc_2D_rmsd_and_displacements(reflections): displacements = flex.vec2_double( reflections["xyzobs.px.value"].parts()[0], reflections["xyzobs.px.value"].parts()[1], ) - flex.vec2_double( reflections["xyzcal.px"].parts()[0], reflections["xyzcal.px"].parts()[1] ) rmsd = math.sqrt(flex.mean(displacements.dot(displacements))) return rmsd, displacements def plot_displacements(reflections, predictions, experiments): rmsd, displacements = calc_2D_rmsd_and_displacements(predictions) from matplotlib import pyplot as plt plt.figure() for cv in displacements: plt.plot([cv[0]], [-cv[1]], "r.") plt.title(" %d spots, r.m.s.d. %5.2f pixels" % (len(displacements), rmsd)) plt.axes().set_aspect("equal") plt.show() plt.close() plt.figure() sz1, sz2 = experiments[0].detector[0].get_image_size() for item, cv in zip(predictions, displacements): plt.plot([item["xyzcal.px"][0]], [sz1 - item["xyzcal.px"][1]], "r.") plt.plot([item["xyzobs.px.value"][0]], [sz1 - item["xyzobs.px.value"][1]], "g.") plt.plot( [item["xyzcal.px"][0], item["xyzcal.px"][0] + 10.0 * cv[0]], [sz1 - item["xyzcal.px"][1], sz1 - item["xyzcal.px"][1] - 10.0 * cv[1]], "r-", ) plt.xlim([0, experiments[0].detector[0].get_image_size()[0]]) plt.ylim([0, experiments[0].detector[0].get_image_size()[1]]) plt.title(" %d spots, r.m.s.d. %5.2f pixels" % (len(displacements), rmsd)) plt.axes().set_aspect("equal") plt.show() plt.close() def e_refine(params, experiments, reflections, graph_verbose=False): # Stills-specific parameters we always want assert params.refinement.reflections.outlier.algorithm in ( None, "null", ), ( "Cannot index, set refinement.reflections.outlier.algorithm=null" ) # we do our own outlier rejection from dials.algorithms.refinement.refiner import RefinerFactory refiner = RefinerFactory.from_parameters_data_experiments( params, reflections, experiments ) refiner.run() ref_sel = refiner.selection_used_for_refinement() assert ref_sel.count(True) == len(reflections) if not graph_verbose: return refiner RR = refiner.predict_for_reflection_table(reflections) plot_displacements(reflections, RR, experiments) return refiner class StillsIndexer(Indexer): """ Class for indexing stills """ def __init__(self, reflections, experiments, params=None): if params.refinement.reflections.outlier.algorithm in ("auto", libtbx.Auto): # The stills_indexer provides its own outlier rejection params.refinement.reflections.outlier.algorithm = "null" super(StillsIndexer, self).__init__(reflections, experiments, params) def index(self): # most of this is the same as dials.algorithms.indexing.indexer.indexer_base.index(), with some stills # specific modifications (don't re-index after choose best orientation matrix, but use the indexing from # choose best orientation matrix, also don't use macrocycles) of refinement after indexing. # 2017 update: do accept multiple lattices per shot experiments = ExperimentList() while True: self.d_min = self.params.refinement_protocol.d_min_start max_lattices = self.params.multiple_lattice_search.max_lattices if max_lattices is not None and len(experiments) >= max_lattices: break if len(experiments) > 0: cutoff_fraction = ( self.params.multiple_lattice_search.recycle_unindexed_reflections_cutoff ) d_spacings = 1 / self.reflections["rlp"].norms() d_min_indexed = flex.min(d_spacings.select(self.indexed_reflections)) min_reflections_for_indexing = cutoff_fraction * len( self.reflections.select(d_spacings > d_min_indexed) ) crystal_ids = self.reflections.select(d_spacings > d_min_indexed)["id"] if (crystal_ids == -1).count(True) < min_reflections_for_indexing: logger.info( "Finish searching for more lattices: %i unindexed reflections remaining." % (min_reflections_for_indexing) ) break n_lattices_previous_cycle = len(experiments) # index multiple lattices per shot if len(experiments) == 0: experiments.extend(self.find_lattices()) if len(experiments) == 0: raise DialsIndexError("No suitable lattice could be found.") else: try: new = self.find_lattices() experiments.extend(new) except Exception as e: logger.info("Indexing remaining reflections failed") logger.debug( "Indexing remaining reflections failed, exception:\n" + str(e) ) # reset reflection lattice flags # the lattice a given reflection belongs to: a value of -1 indicates # that a reflection doesn't belong to any lattice so far self.reflections["id"] = flex.int(len(self.reflections), -1) self.index_reflections(experiments, self.reflections) if len(experiments) == n_lattices_previous_cycle: # no more lattices found break if ( not self.params.stills.refine_candidates_with_known_symmetry and self.params.known_symmetry.space_group is not None ): self._apply_symmetry_post_indexing( experiments, self.reflections, n_lattices_previous_cycle ) # discard nearly overlapping lattices on the same shot if self._check_have_similar_crystal_models(experiments): break self.indexed_reflections = self.reflections["id"] > -1 if self.d_min is None: sel = self.reflections["id"] <= -1 else: sel = flex.bool(len(self.reflections), False) lengths = 1 / self.reflections["rlp"].norms() isel = (lengths >= self.d_min).iselection() sel.set_selected(isel, True) sel.set_selected(self.reflections["id"] > -1, False) self.unindexed_reflections = self.reflections.select(sel) reflections_for_refinement = self.reflections.select( self.indexed_reflections ) if len(self.params.stills.isoforms) > 0: logger.info("") logger.info("#" * 80) logger.info("Starting refinement") logger.info("#" * 80) logger.info("") isoform_experiments = ExperimentList() isoform_reflections = flex.reflection_table() # Note, changes to params after initial indexing. Cannot use tie to target when fixing the unit cell. self.all_params.refinement.reflections.outlier.algorithm = "null" self.all_params.refinement.parameterisation.crystal.fix = "cell" self.all_params.refinement.parameterisation.crystal.unit_cell.restraints.tie_to_target = ( [] ) for expt_id, experiment in enumerate(experiments): reflections = reflections_for_refinement.select( reflections_for_refinement["id"] == expt_id ) reflections["id"] = flex.int(len(reflections), 0) refiners = [] for isoform in self.params.stills.isoforms: iso_experiment = copy.deepcopy(experiment) crystal = iso_experiment.crystal if ( isoform.lookup_symbol != crystal.get_space_group().type().lookup_symbol() ): logger.info( "Crystal isoform lookup_symbol %s does not match isoform %s lookup_symbol %s" % ( crystal.get_space_group().type().lookup_symbol(), isoform.name, isoform.lookup_symbol, ) ) continue crystal.set_B(isoform.cell.fractionalization_matrix()) logger.info("Refining isoform %s" % isoform.name) refiners.append( e_refine( params=self.all_params, experiments=ExperimentList([iso_experiment]), reflections=reflections, graph_verbose=False, ) ) if len(refiners) == 0: raise DialsIndexError( "No isoforms had a lookup symbol that matched" ) positional_rmsds = [ math.sqrt(P.rmsds()[0] ** 2 + P.rmsds()[1] ** 2) for P in refiners ] logger.info( "Positional rmsds for all isoforms:" + str(positional_rmsds) ) minrmsd_mm = min(positional_rmsds) minindex = positional_rmsds.index(minrmsd_mm) logger.info( "The smallest rmsd is %5.1f um from isoform %s" % ( 1000.0 * minrmsd_mm, self.params.stills.isoforms[minindex].name, ) ) if self.params.stills.isoforms[minindex].rmsd_target_mm is not None: logger.info( "Asserting %f < %f" % ( minrmsd_mm, self.params.stills.isoforms[minindex].rmsd_target_mm, ) ) assert ( minrmsd_mm < self.params.stills.isoforms[minindex].rmsd_target_mm ) logger.info( "Acceptable rmsd for isoform %s." % (self.params.stills.isoforms[minindex].name) ) if len(self.params.stills.isoforms) == 2: logger.info( "Rmsd gain over the other isoform %5.1f um." % (1000.0 * abs(positional_rmsds[0] - positional_rmsds[1])) ) R = refiners[minindex] # Now one last check to see if direct beam is out of bounds if self.params.stills.isoforms[minindex].beam_restraint is not None: from scitbx import matrix refined_beam = matrix.col( R.get_experiments()[0] .detector[0] .get_beam_centre_lab(experiments[0].beam.get_s0())[0:2] ) known_beam = matrix.col( self.params.stills.isoforms[minindex].beam_restraint ) logger.info( "Asserting difference in refined beam center and expected beam center %f < %f" % ( (refined_beam - known_beam).length(), self.params.stills.isoforms[minindex].rmsd_target_mm, ) ) assert ( (refined_beam - known_beam).length() < self.params.stills.isoforms[minindex].rmsd_target_mm ) # future--circle of confusion could be given as a separate length in mm instead of reusing rmsd_target experiment = R.get_experiments()[0] experiment.crystal.identified_isoform = self.params.stills.isoforms[ minindex ].name isoform_experiments.append(experiment) reflections["id"] = flex.int(len(reflections), expt_id) isoform_reflections.extend(reflections) experiments = isoform_experiments reflections_for_refinement = isoform_reflections if self.params.refinement_protocol.mode == "repredict_only": from dials.algorithms.indexing.nave_parameters import NaveParameters from dials.algorithms.refinement.prediction.managed_predictors import ( ExperimentsPredictorFactory, ) refined_experiments, refined_reflections = ( experiments, reflections_for_refinement, ) ref_predictor = ExperimentsPredictorFactory.from_experiments( experiments, force_stills=True, spherical_relp=self.all_params.refinement.parameterisation.spherical_relp_model, ) ref_predictor(refined_reflections) refined_reflections["delpsical2"] = ( refined_reflections["delpsical.rad"] ** 2 ) for expt_id in range(len(refined_experiments)): refls = refined_reflections.select( refined_reflections["id"] == expt_id ) nv = NaveParameters( params=self.all_params, experiments=refined_experiments[expt_id : expt_id + 1], reflections=refls, refinery=None, graph_verbose=False, ) experiments[expt_id].crystal = nv() ref_predictor = ExperimentsPredictorFactory.from_experiments( experiments, force_stills=True, spherical_relp=self.all_params.refinement.parameterisation.spherical_relp_model, ) ref_predictor(refined_reflections) elif self.params.refinement_protocol.mode is None: refined_experiments, refined_reflections = ( experiments, reflections_for_refinement, ) else: try: refined_experiments, refined_reflections = self.refine( experiments, reflections_for_refinement ) except Exception as e: s = str(e) if len(experiments) == 1: raise DialsIndexRefineError(e.message) logger.info("Refinement failed:") logger.info(s) del experiments[-1] break self._unit_cell_volume_sanity_check(experiments, refined_experiments) self.refined_reflections = refined_reflections.select( refined_reflections["id"] > -1 ) for i, expt in enumerate(self.experiments): ref_sel = self.refined_reflections.select( self.refined_reflections["imageset_id"] == i ) ref_sel = ref_sel.select(ref_sel["id"] >= 0) for i_expt in set(ref_sel["id"]): refined_expt = refined_experiments[i_expt] expt.detector = refined_expt.detector expt.beam = refined_expt.beam expt.goniometer = refined_expt.goniometer expt.scan = refined_expt.scan refined_expt.imageset = expt.imageset if not ( self.all_params.refinement.parameterisation.beam.fix == "all" and self.all_params.refinement.parameterisation.detector.fix == "all" ): # Experimental geometry may have changed - re-map centroids to # reciprocal space self.reflections.map_centroids_to_reciprocal_space(self.experiments) # update for next cycle experiments = refined_experiments self.refined_experiments = refined_experiments if self.refined_experiments is None: raise DialsIndexRefineError("None of the experiments could refine.") # discard experiments with zero reflections after refinement id_set = set(self.refined_reflections["id"]) if len(id_set) < len(self.refined_experiments): filtered_refined_reflections = flex.reflection_table() for i in range(len(self.refined_experiments)): if i not in id_set: del self.refined_experiments[i] for old, new in zip(sorted(id_set), range(len(id_set))): subset = self.refined_reflections.select( self.refined_reflections["id"] == old ) subset["id"] = flex.int(len(subset), new) filtered_refined_reflections.extend(subset) self.refined_reflections = filtered_refined_reflections if len(self.refined_experiments) > 1: from dials.algorithms.indexing.compare_orientation_matrices import ( rotation_matrix_differences, ) logger.info( rotation_matrix_differences(self.refined_experiments.crystals()) ) logger.info("Final refined crystal models:") for i, crystal_model in enumerate(self.refined_experiments.crystals()): n_indexed = 0 for _ in experiments.where(crystal=crystal_model): n_indexed += (self.reflections["id"] == i).count(True) logger.info("model %i (%i reflections):" % (i + 1, n_indexed)) logger.info(crystal_model) if ( "xyzcal.mm" in self.refined_reflections ): # won't be there if refine_all_candidates = False and no isoforms self._xyzcal_mm_to_px(self.experiments, self.refined_reflections) def experiment_list_for_crystal(self, crystal): experiments = ExperimentList() for imageset in self.experiments.imagesets(): experiments.append( Experiment( imageset=imageset, beam=imageset.get_beam(), detector=imageset.get_detector(), goniometer=imageset.get_goniometer(), scan=imageset.get_scan(), crystal=crystal, ) ) return experiments def choose_best_orientation_matrix(self, candidate_orientation_matrices): logger.info("*" * 80) logger.info("Selecting the best orientation matrix") logger.info("*" * 80) class CandidateInfo(libtbx.group_args): pass candidates = [] params = copy.deepcopy(self.all_params) for icm, cm in enumerate(candidate_orientation_matrices): if icm >= self.params.basis_vector_combinations.max_refine: break # Index reflections in P1 sel = self.reflections["id"] == -1 refl = self.reflections.select(sel) experiments = self.experiment_list_for_crystal(cm) self.index_reflections(experiments, refl) indexed = refl.select(refl["id"] >= 0) indexed = indexed.select(indexed.get_flags(indexed.flags.indexed)) # If target symmetry supplied, try to apply it. Then, apply the change of basis to the reflections # indexed in P1 to the target setting if ( self.params.stills.refine_candidates_with_known_symmetry and self.params.known_symmetry.space_group is not None ): new_crystal, cb_op_to_primitive = self._symmetry_handler.apply_symmetry( cm ) if new_crystal is None: logger.info("Cannot convert to target symmetry, candidate %d", icm) continue new_crystal = new_crystal.change_basis( self._symmetry_handler.cb_op_primitive_inp ) cm = new_crystal experiments = self.experiment_list_for_crystal(cm) if not cb_op_to_primitive.is_identity_op(): indexed["miller_index"] = cb_op_to_primitive.apply( indexed["miller_index"] ) if self._symmetry_handler.cb_op_primitive_inp is not None: indexed[ "miller_index" ] = self._symmetry_handler.cb_op_primitive_inp.apply( indexed["miller_index"] ) if params.indexing.stills.refine_all_candidates: try: logger.info( "$$$ stills_indexer::choose_best_orientation_matrix, candidate %d initial outlier identification", icm, ) acceptance_flags = self.identify_outliers( params, experiments, indexed ) # create a new "indexed" list with outliers thrown out: indexed = indexed.select(acceptance_flags) logger.info( "$$$ stills_indexer::choose_best_orientation_matrix, candidate %d refinement before outlier rejection", icm, ) R = e_refine( params=params, experiments=experiments, reflections=indexed, graph_verbose=False, ) ref_experiments = R.get_experiments() # try to improve the outcome with a second round of outlier rejection post-initial refinement: acceptance_flags = self.identify_outliers( params, ref_experiments, indexed ) # insert a round of Nave-outlier rejection on top of the r.m.s.d. rejection nv0 = NaveParameters( params=params, experiments=ref_experiments, reflections=indexed, refinery=R, graph_verbose=False, ) nv0() acceptance_flags_nv0 = nv0.nv_acceptance_flags indexed = indexed.select(acceptance_flags & acceptance_flags_nv0) logger.info( "$$$ stills_indexer::choose_best_orientation_matrix, candidate %d after positional and delta-psi outlier rejection", icm, ) R = e_refine( params=params, experiments=ref_experiments, reflections=indexed, graph_verbose=False, ) ref_experiments = R.get_experiments() nv = NaveParameters( params=params, experiments=ref_experiments, reflections=indexed, refinery=R, graph_verbose=False, ) crystal_model = nv() assert ( len(crystal_model) == 1 ), "$$$ stills_indexer::choose_best_orientation_matrix, Only one crystal at this stage" crystal_model = crystal_model[0] # Drop candidates that after refinement can no longer be converted to the known target space group if ( not self.params.stills.refine_candidates_with_known_symmetry and self.params.known_symmetry.space_group is not None ): new_crystal, cb_op_to_primitive = self._symmetry_handler.apply_symmetry( crystal_model ) if new_crystal is None: logger.info( "P1 refinement yielded model diverged from target, candidate %d", icm, ) continue rmsd, _ = calc_2D_rmsd_and_displacements( R.predict_for_reflection_table(indexed) ) except Exception as e: logger.info( "Couldn't refine candidate %d, %s: %s", icm, e.__class__.__name__, str(e), ) else: logger.info( "$$$ stills_indexer::choose_best_orientation_matrix, candidate %d done", icm, ) candidates.append( CandidateInfo( crystal=crystal_model, green_curve_area=nv.green_curve_area, ewald_proximal_volume=nv.ewald_proximal_volume(), n_indexed=len(indexed), rmsd=rmsd, indexed=indexed, experiments=ref_experiments, ) ) else: from dials.algorithms.refinement.prediction.managed_predictors import ( ExperimentsPredictorFactory, ) ref_predictor = ExperimentsPredictorFactory.from_experiments( experiments, force_stills=True, spherical_relp=params.refinement.parameterisation.spherical_relp_model, ) rmsd, _ = calc_2D_rmsd_and_displacements(ref_predictor(indexed)) candidates.append( CandidateInfo( crystal=cm, n_indexed=len(indexed), rmsd=rmsd, indexed=indexed, experiments=experiments, ) ) if len(candidates) == 0: raise DialsIndexError("No suitable indexing solution found") logger.info("**** ALL CANDIDATES:") for i, XX in enumerate(candidates): logger.info("\n****Candidate %d %s", i, XX) cc = XX.crystal if hasattr(cc, "get_half_mosaicity_deg"): logger.info( " half mosaicity %5.2f deg.", (cc.get_half_mosaicity_deg()) ) logger.info(" domain size %.0f Ang.", (cc.get_domain_size_ang())) logger.info("\n**** BEST CANDIDATE:") results = flex.double([c.rmsd for c in candidates]) best = candidates[flex.min_index(results)] logger.info(best) if params.indexing.stills.refine_all_candidates: if best.rmsd > params.indexing.stills.rmsd_min_px: raise DialsIndexError("RMSD too high, %f" % best.rmsd) if len(candidates) > 1: for i in range(len(candidates)): if i == flex.min_index(results): continue if best.ewald_proximal_volume > candidates[i].ewald_proximal_volume: logger.info( "Couldn't figure out which candidate is best; picked the one with the best RMSD." ) best.indexed["entering"] = flex.bool(best.n_indexed, False) return best.crystal, best.n_indexed def identify_outliers(self, params, experiments, indexed): if not params.indexing.stills.candidate_outlier_rejection: return flex.bool(len(indexed), True) logger.info("$$$ stills_indexer::identify_outliers") refiner = e_refine(params, experiments, indexed, graph_verbose=False) RR = refiner.predict_for_reflection_table(indexed) px_sz = experiments[0].detector[0].get_pixel_size() class Match(object): pass matches = [] for item in RR.rows(): m = Match() m.x_obs = item["xyzobs.px.value"][0] * px_sz[0] m.y_obs = item["xyzobs.px.value"][1] * px_sz[1] m.x_calc = item["xyzcal.px"][0] * px_sz[0] m.y_calc = item["xyzcal.px"][1] * px_sz[1] m.miller_index = item["miller_index"] matches.append(m) from rstbx.phil.phil_preferences import indexing_api_defs import iotbx.phil hardcoded_phil = iotbx.phil.parse(input_string=indexing_api_defs).extract() from rstbx.indexing_api.outlier_procedure import OutlierPlotPDF # comment this in if PDF graph is desired: # hardcoded_phil.indexing.outlier_detection.pdf = "outlier.pdf" # new code for outlier rejection inline here if hardcoded_phil.indexing.outlier_detection.pdf is not None: hardcoded_phil.__inject__( "writer", OutlierPlotPDF(hardcoded_phil.indexing.outlier_detection.pdf) ) # execute Sauter and Poon (2010) algorithm from rstbx.indexing_api import outlier_detection od = outlier_detection.find_outliers_from_matches( matches, verbose=True, horizon_phil=hardcoded_phil ) if hardcoded_phil.indexing.outlier_detection.pdf is not None: od.make_graphs(canvas=hardcoded_phil.writer.R.c, left_margin=0.5) hardcoded_phil.writer.R.c.showPage() hardcoded_phil.writer.R.c.save() return od.get_cache_status() def refine(self, experiments, reflections): acceptance_flags = self.identify_outliers( self.all_params, experiments, reflections ) # create a new "reflections" list with outliers thrown out: reflections = reflections.select(acceptance_flags) R = e_refine( params=self.all_params, experiments=experiments, reflections=reflections, graph_verbose=False, ) ref_experiments = R.get_experiments() # try to improve the outcome with a second round of outlier rejection post-initial refinement: acceptance_flags = self.identify_outliers( self.all_params, ref_experiments, reflections ) # insert a round of Nave-outlier rejection on top of the r.m.s.d. rejection nv0 = NaveParameters( params=self.all_params, experiments=ref_experiments, reflections=reflections, refinery=R, graph_verbose=False, ) nv0() acceptance_flags_nv0 = nv0.nv_acceptance_flags reflections = reflections.select(acceptance_flags & acceptance_flags_nv0) R = e_refine( params=self.all_params, experiments=ref_experiments, reflections=reflections, graph_verbose=False, ) ref_experiments = R.get_experiments() nv = NaveParameters( params=self.all_params, experiments=ref_experiments, reflections=reflections, refinery=R, graph_verbose=False, ) nv() rmsd, _ = calc_2D_rmsd_and_displacements( R.predict_for_reflection_table(reflections) ) matches = R.get_matches() xyzcal_mm = flex.vec3_double(len(reflections)) xyzcal_mm.set_selected(matches["iobs"], matches["xyzcal.mm"]) reflections["xyzcal.mm"] = xyzcal_mm reflections.set_flags(matches["iobs"], reflections.flags.used_in_refinement) reflections["entering"] = flex.bool(len(reflections), False) if self.all_params.indexing.stills.set_domain_size_ang_value is not None: for exp in ref_experiments: exp.crystal.set_domain_size_ang( self.all_params.indexing.stills.set_domain_size_ang_value ) if self.all_params.indexing.stills.set_mosaic_half_deg_value is not None: for exp in ref_experiments: exp.crystal.set_half_mosaicity_deg( self.all_params.indexing.stills.set_mosaic_half_deg_value ) return ref_experiments, reflections """ Mixin class definitions that override the dials indexing class methods specific to stills """ class StillsIndexerKnownOrientation(IndexerKnownOrientation, StillsIndexer): pass class StillsIndexerBasisVectorSearch(StillsIndexer, BasisVectorSearch): pass class StillsIndexerLatticeSearch(StillsIndexer, LatticeSearch): pass ``` #### File: algorithms/integration/image_integrator.py ```python from __future__ import absolute_import, division, print_function import logging import platform from time import time import dials.algorithms.integration logger = logging.getLogger(__name__) class ProcessorImageBase(object): """ Processor interface class. """ def __init__(self, manager): """ Initialise the processor. The processor requires a manager class implementing the Manager interface. This class executes all the workers in separate threads and accumulates the results to expose to the user. :param manager: The processing manager :param params: The phil parameters """ self.manager = manager @property def executor(self): """ Get the executor :return: The executor """ return self.manager.executor @executor.setter def executor(self, function): """ Set the executor :param function: The executor """ self.manager.executor = function def process(self): """ Do all the processing tasks. :return: The processing results """ from dials.util.mp import multi_node_parallel_map start_time = time() self.manager.initialize() mp_method = self.manager.params.integration.mp.method mp_nproc = min(len(self.manager), self.manager.params.integration.mp.nproc) if ( mp_nproc > 1 and platform.system() == "Windows" ): # platform.system() forks which is bad for MPI, so don't use it unless nproc > 1 logger.warning( "\n" + "*" * 80 + "\n" + "Multiprocessing is not available on windows. Setting nproc = 1\n" + "*" * 80 + "\n" ) mp_nproc = 1 assert mp_nproc > 0, "Invalid number of processors" logger.info(self.manager.summary()) logger.info(" Using %s with %d parallel job(s)\n" % (mp_method, mp_nproc)) if mp_nproc > 1: def process_output(result): for message in result[1]: logger.log(message.levelno, message.msg) self.manager.accumulate(result[0]) result[0].reflections = None result[0].data = None def execute_task(task): from dials.util import log log.config_simple_cached() result = task() handlers = logging.getLogger("dials").handlers assert len(handlers) == 1, "Invalid number of logging handlers" return result, handlers[0].messages() multi_node_parallel_map( func=execute_task, iterable=list(self.manager.tasks()), njobs=mp_njobs, nproc=mp_nproc, callback=process_output, method=mp_method, preserve_order=True, preserve_exception_message=True, ) else: for task in self.manager.tasks(): self.manager.accumulate(task()) self.manager.finalize() end_time = time() self.manager.time.user_time = end_time - start_time result = self.manager.result() return result, self.manager.time class Result(object): """ A class representing a processing result. """ def __init__(self, index, reflections): """ Initialise the data. :param index: The processing job index :param reflections: The processed reflections :param data: Other processed data """ self.index = index self.reflections = reflections class Dataset(object): def __init__(self, frames, size): from dials.array_family import flex self.frames = frames nframes = frames[1] - frames[0] self.data = [] self.mask = [] for sz in size: self.data.append(flex.double(flex.grid(nframes, sz[0], sz[1]))) self.mask.append(flex.bool(flex.grid(nframes, sz[0], sz[1]))) def set_image(self, index, data, mask): from dials.array_family import flex for d1, d2 in zip(self.data, data): h, w = d2.all() d2.reshape(flex.grid(1, h, w)) d1[index : index + 1, :, :] = d2.as_double() for m1, m2 in zip(self.mask, mask): h, w = m2.all() m2.reshape(flex.grid(1, h, w)) m1[index : index + 1, :, :] = m2 class Task(object): """ A class to perform a null task. """ def __init__(self, index, frames, reflections, experiments, params, executor): """ Initialise the task :param index: The index of the processing job :param frames: The frames to process :param experiments: The list of experiments :param reflections: The list of reflections :param params The processing parameters :param executor: The executor class """ self.index = index self.frames = frames self.experiments = experiments self.reflections = reflections self.params = params self.executor = executor def __call__(self): """ Do the processing. :return: The processed data """ from dials.model.data import make_image from dials.model.data import MultiPanelImageVolume from dials.model.data import ImageVolume from dials.algorithms.integration.processor import job # Set the job index job.index = self.index # Get the start time start_time = time() # Check all reflections have same imageset and get it exp_id = list(set(self.reflections["id"])) imageset = self.experiments[exp_id[0]].imageset for i in exp_id[1:]: assert ( self.experiments[i].imageset == imageset ), "Task can only handle 1 imageset" # Get the sub imageset frame00, frame01 = self.frames try: frame10, frame11 = imageset.get_array_range() except Exception: frame10, frame11 = (0, len(imageset)) try: assert frame00 < frame01 assert frame10 < frame11 assert frame00 >= frame10 assert frame01 <= frame11 index0 = frame00 - frame10 index1 = index0 + (frame01 - frame00) assert index0 < index1 assert index0 >= 0 assert index1 <= len(imageset) imageset = imageset[index0:index1] except Exception: raise RuntimeError("Programmer Error: bad array range") try: frame0, frame1 = imageset.get_array_range() except Exception: frame0, frame1 = (0, len(imageset)) # Initialise the dataset image_volume = MultiPanelImageVolume() for panel in self.experiments[0].detector: image_volume.add( ImageVolume( frame0, frame1, panel.get_image_size()[1], panel.get_image_size()[0] ) ) # Read all the images into a block of data read_time = 0.0 for i in range(len(imageset)): st = time() image = imageset.get_corrected_data(i) mask = imageset.get_mask(i) if self.params.integration.lookup.mask is not None: assert len(mask) == len(self.params.lookup.mask), ( "Mask/Image are incorrect size %d %d" % (len(mask), len(self.params.integration.lookup.mask)) ) mask = tuple( m1 & m2 for m1, m2 in zip(self.params.integration.lookup.mask, mask) ) image_volume.set_image(frame0 + i, make_image(image, mask)) read_time += time() - st del image del mask # Process the data st = time() data = self.executor.process(image_volume, self.experiments, self.reflections) process_time = time() - st # Set the result values result = Result(self.index, self.reflections) result.read_time = read_time result.process_time = process_time result.total_time = time() - start_time result.data = data return result class ManagerImage(object): """ A class to manage processing book-keeping """ def __init__(self, experiments, reflections, params): """ Initialise the manager. :param experiments: The list of experiments :param reflections: The list of reflections :param params: The phil parameters """ # Initialise the callbacks self.executor = None # Save some data self.experiments = experiments self.reflections = reflections # Save some parameters self.params = params # Set the finalized flag to False self.finalized = False # Initialise the timing information self.time = dials.algorithms.integration.TimingInfo() def initialize(self): """ Initialise the processing """ from dials_algorithms_integration_integrator_ext import ( ReflectionManagerPerImage, ) # Get the start time start_time = time() # Ensure the reflections contain bounding boxes assert "bbox" in self.reflections, "Reflections have no bbox" # Split the reflections into partials self._split_reflections() # Create the reflection manager frames = self.experiments[0].scan.get_array_range() self.manager = ReflectionManagerPerImage(frames, self.reflections) # Parallel reading of HDF5 from the same handle is not allowed. Python # multiprocessing is a bit messed up and used fork on linux so need to # close and reopen file. for exp in self.experiments: if exp.imageset.reader().is_single_file_reader(): exp.imageset.reader().nullify_format_instance() # Set the initialization time self.time.initialize = time() - start_time def task(self, index): """ Get a task. """ return Task( index=index, frames=self.manager.frames(index), reflections=self.manager.split(index), experiments=self.experiments, params=self.params, executor=self.executor, ) def tasks(self): """ Iterate through the tasks. """ for i in range(len(self)): yield self.task(i) def accumulate(self, result): """ Accumulate the results. """ self.manager.accumulate(result.index, result.reflections) if result.data is not None: self.executor.accumulate(result.index, result.data) self.time.read += result.read_time self.time.process += result.process_time self.time.total += result.total_time def finalize(self): """ Finalize the processing and finish. """ # Get the start time start_time = time() # Check manager is finished assert self.manager.finished(), "Manager is not finished" # Update the time and finalized flag self.time.finalize = time() - start_time self.finalized = True def result(self): """ Return the result. :return: The result """ assert self.finalized, "Manager is not finalized" return self.reflections def finished(self): """ Return if all tasks have finished. :return: True/False all tasks have finished """ return self.finalized and self.manager.finished() def __len__(self): """ Return the number of tasks. :return: the number of tasks """ return len(self.manager) def summary(self): return "" def _split_reflections(self): """ Split the reflections into partials or over job boundaries """ # Optionally split the reflection table into partials, otherwise, # split over job boundaries num_full = len(self.reflections) self.reflections.split_partials() num_partial = len(self.reflections) assert num_partial >= num_full, "Invalid number of partials" if num_partial > num_full: logger.info( " Split %d reflections into %d partial reflections\n" % (num_full, num_partial) ) class ProcessorImage(ProcessorImageBase): """ Top level processor for per image processing. """ def __init__(self, experiments, reflections, params): """ Initialise the manager and the processor. """ # Create the processing manager manager = ManagerImage(experiments, reflections, params) # Initialise the processor super(ProcessorImage, self).__init__(manager) class InitializerRot(object): """ A pre-processing class for oscillation data. """ def __init__(self, experiments, params): """ Initialise the pre-processor. """ self.experiments = experiments self.params = params def __call__(self, reflections): """ Do some pre-processing. """ from dials.array_family import flex # Compute some reflection properties reflections.compute_zeta_multi(self.experiments) reflections.compute_d(self.experiments) reflections.compute_bbox(self.experiments) # Filter the reflections by zeta mask = flex.abs(reflections["zeta"]) < self.params.filter.min_zeta reflections.set_flags(mask, reflections.flags.dont_integrate) # Filter the reflections by powder ring if self.params.filter.powder_filter is not None: mask = self.params.filter.powder_filter(reflections["d"]) reflections.set_flags(mask, reflections.flags.in_powder_ring) class FinalizerRot(object): """ A post-processing class for oscillation data. """ def __init__(self, experiments, params): """ Initialise the post processor. """ self.experiments = experiments self.params = params def __call__(self, reflections): """ Do some post processing. """ # Compute the corrections reflections.compute_corrections(self.experiments) class ImageIntegratorExecutor(object): def __init__(self): pass def process(self, image_volume, experiments, reflections): from dials.algorithms.integration.processor import job # Compute the partiality reflections.compute_partiality(experiments) # Get some info full_value = 0.997 fully_recorded = reflections["partiality"] > full_value npart = fully_recorded.count(False) nfull = fully_recorded.count(True) nice = reflections.get_flags(reflections.flags.in_powder_ring).count(True) nint = reflections.get_flags(reflections.flags.dont_integrate).count(False) ntot = len(reflections) # Write some output logger.info("") logger.info(" Beginning integration job %d" % job.index) logger.info("") logger.info( " Frames: %d -> %d" % (image_volume.frame0(), image_volume.frame1()) ) logger.info("") logger.info(" Number of reflections") logger.info(" Partial: %d" % npart) logger.info(" Full: %d" % nfull) logger.info(" In ice ring: %d" % nice) logger.info(" Integrate: %d" % nint) logger.info(" Total: %d" % ntot) logger.info("") # Print a histogram of reflections on frames if image_volume.frame1() - image_volume.frame0() > 1: logger.info( " The following histogram shows the number of reflections predicted" ) logger.info(" to have all or part of their intensity on each frame.") logger.info("") logger.info(frame_hist(reflections["bbox"], prefix=" ", symbol="*")) logger.info("") # Compute the shoebox mask reflections.compute_mask(experiments=experiments, image_volume=image_volume) # Compute the background reflections.compute_background( experiments=experiments, image_volume=image_volume ) # Compute the summed intensity reflections.compute_summed_intensity(image_volume=image_volume) # Compute the centroid reflections.compute_centroid(experiments=experiments, image_volume=image_volume) # Get some reflection info image_volume.update_reflection_info(reflections) # Print some info fmt = " Integrated % 5d (sum) + % 5d (prf) / % 5d reflections" nsum = reflections.get_flags(reflections.flags.integrated_sum).count(True) nprf = reflections.get_flags(reflections.flags.integrated_prf).count(True) ntot = len(reflections) logger.info(fmt % (nsum, nprf, ntot)) class ImageIntegrator(object): """ A class that does integration directly on the image skipping the shoebox creation step. """ def __init__(self, experiments, reflections, params): """ Initialize the integrator :param experiments: The experiment list :param reflections: The reflections to process :param params: The parameters to use """ # Check all reflections have same imageset and get it imageset = experiments[0].imageset for expr in experiments: assert expr.imageset == imageset, "All experiments must share and imageset" # Save some stuff self.experiments = experiments self.reflections = reflections self.params = Parameters.from_phil(params.integration) self.profile_model_report = None self.integration_report = None def integrate(self): """ Integrate the data """ from dials.algorithms.integration.report import IntegrationReport from dials.util.command_line import heading # Init the report self.profile_model_report = None self.integration_report = None # Print the summary logger.info( "=" * 80 + ( "\n\n" "Processing reflections\n\n" " Processing the following experiments:\n" "\n" " Experiments: %d\n" " Beams: %d\n" " Detectors: %d\n" " Goniometers: %d\n" " Scans: %d\n" " Crystals: %d\n" " Imagesets: %d\n" ) % ( len(self.experiments), len(self.experiments.beams()), len(self.experiments.detectors()), len(self.experiments.goniometers()), len(self.experiments.scans()), len(self.experiments.crystals()), len(self.experiments.imagesets()), ) ) # Print a heading logger.info("=" * 80) logger.info("") logger.info(heading("Integrating reflections")) logger.info("") # Initialise the processing initialize = InitializerRot(self.experiments, self.params) initialize(self.reflections) # Construvt the image integrator processor processor = ProcessorImage(self.experiments, self.reflections, self.params) processor.executor = ImageIntegratorExecutor() # Do the processing self.reflections, time_info = processor.process() # Finalise the processing finalize = FinalizerRot(self.experiments, self.params) finalize(self.reflections) # Create the integration report self.integration_report = IntegrationReport(self.experiments, self.reflections) logger.info("") logger.info(self.integration_report.as_str(prefix=" ")) # Print the time info logger.info(str(time_info)) logger.info("") # Return the reflections return self.reflections ``` #### File: refinement/parameterisation/autoreduce.py ```python from __future__ import absolute_import, division, print_function import logging logger = logging.getLogger(__name__) # Parameterisation auto reduction helpers from dials_refinement_helpers_ext import surpl_iter as surpl from dials_refinement_helpers_ext import uc_surpl_iter as uc_surpl from dials_refinement_helpers_ext import pg_surpl_iter as pg_surpl from scitbx.array_family import flex from dials.algorithms.refinement import DialsRefineConfigError # PHIL from libtbx.phil import parse phil_str = """ min_nref_per_parameter = 5 .help = "the smallest number of reflections per parameter for a" "model parameterisation below which the parameterisation will" "not be made in full, but the action described below will be" "triggered." .type = int(value_min=1) action = *fail fix remove .help = "action to take if there are too few reflections across the" "experiments related to a particular model parameterisation." "If fail, an exception will be raised and refinement will not" "proceed. If fix, refinement will continue but with the" "parameters relating to that model remaining fixed at their" "initial values. If remove, parameters relating to that model" "will be fixed, and in addition all reflections related to" "that parameterisation will be removed. This will therefore" "remove these reflections from other parameterisations of the" "global model too. For example, if a crystal model could not" "be parameterised it will be excised completely and not" "contribute to the joint refinement of the detector and beam." "In the fix mode, reflections emanating from that crystal will" "still form residuals and will contribute to detector and beam" "refinement." .type = choice detector_reduce = False .type = bool .help = "Special case designed for detector metrology refinement" "(particularly of the CSPAD). See detector_reduce_list for" "details." .expert_level = 2 detector_reduce_list = Dist Tau2 Tau3 .type = strings .help = "Partial names to match to detector parameters to try fixing." "If there are still not" "enough parameters for refinement after fixing these, then" "fail. This is to ensure that metrology refinement never" "completes if it is not able to refine some panels. The default" "is to try fixing the distance as well as Tau2 and Tau3" "rotations of detector panel, leaving the in-plane shifts and" "the rotation around the detector normal for refinement." "groups only." .expert_level = 2 """ phil_scope = parse(phil_str) class AutoReduce(object): """Checks for over-parameterisation of models and acts in that case. Tests each provided model parameterisation to ensure there are enough reflections in refinement to support that parameterisation. If there are not then some action is taken. More details are given in documentation within the phil_str alongside this class definition. Attributes: det_params (list): A list of DetectorParameterisation objects beam_params (list): A list of BeamParameterisation objects xl_ori_params (list): A list of CrystalOrientationParameterisation objects xl_uc_params (list): A list of CrystalUnitCellParameterisation objects gon_params (list): A list of GoniometerParameterisation objects reflections: A reflection table """ def __init__( self, options, det_params, beam_params, xl_ori_params, xl_uc_params, gon_params, reflection_manager, scan_varying=False, ): """Initialise the AutoReduce object Args: options: A PHIL scope containing the auto reduction options det_params (list): A list of DetectorParameterisation objects beam_params (list): A list of BeamParameterisation objects xl_ori_params (list): A list of CrystalOrientationParameterisation objects xl_uc_params (list): A list of CrystalUnitCellParameterisation objects gon_params (list): A list of GoniometerParameterisation objects reflection_manager: The ReflectionManager object handling reflection data for refinement scan_varying (bool): Whether preparing for scan-varying refinement or scan static refinement """ self.det_params = det_params self.beam_params = beam_params self.xl_ori_params = xl_ori_params self.xl_uc_params = xl_uc_params self.gon_params = gon_params self.reflection_manager = reflection_manager self._options = options self._scan_varying = scan_varying # A template logging message to fill in when failing self._failmsg = ( "Too few reflections to parameterise {0}\nTry modifying " "refinement.parameterisation.auto_reduction options" ) # Determine if there are enough reflections to support a particular # parameterisation. First, a minimum number of reflections is determined, # by the product of the number of free parameters and a user-provided # minimum number of reflections per parameter. The total number of reflections # affected by this parameterisation is calculated, and the difference between # that and the minimum number of reflections is returned. def _surplus_reflections(self, p): reflections = self.reflection_manager.get_obs() cutoff = self._options.min_nref_per_parameter * p.num_free() return surpl(reflections["id"], p.get_experiment_ids()).result - cutoff # Special version of _surplus_reflections for crystal unit cell # parameterisations. In some cases certain parameters of a unit cell # parameterisation may affect only some subset of the total number of # reflections. For example, for an orthorhombic cell the g_param_0 parameter # has no effect on predictions in the plane (0,k,l). Here, take the number # of affected reflections for each parameter individually into account. def _unit_cell_surplus_reflections(self, p): F_dbdp = flex.mat3_double(p.get_ds_dp()) min_nref = self._options.min_nref_per_parameter reflections = self.reflection_manager.get_obs() # if no free parameters, do as _surplus_reflections if len(F_dbdp) == 0: exp_ids = p.get_experiment_ids() isel = flex.size_t() for exp_id in exp_ids: isel.extend((reflections["id"] == exp_id).iselection()) return len(isel) return ( uc_surpl( reflections["id"], reflections["miller_index"], p.get_experiment_ids(), F_dbdp, ).result - min_nref ) # Special version of _surplus_reflections for hierarchical multi-panel detector # parameterisations. In that case, certain parameters affect only the # reflections that fall on a particular panel group of the detector. def _panel_gp_surplus_reflections(self, p, pnl_ids, group): exp_ids = p.get_experiment_ids() gp_params = [gp == group for gp in p.get_param_panel_groups()] fixlist = p.get_fixed() free_gp_params = [a and not b for a, b in zip(gp_params, fixlist)] nparam = free_gp_params.count(True) cutoff = self._options.min_nref_per_parameter * nparam reflections = self.reflection_manager.get_obs() surplus = pg_surpl( reflections["id"], reflections["panel"], pnl_ids, exp_ids, cutoff ).result return surplus def _weak_parameterisation_search(self): weak = None nref_deficit = 0 panels = None pnl_gp = None name = None for i, p in enumerate(self.beam_params): net_nref = self._surplus_reflections(p) if net_nref < nref_deficit: nref_deficit = net_nref weak = p name = "Beam{}".format(i + 1) for i, p in enumerate(self.xl_ori_params): net_nref = self._surplus_reflections(p) if net_nref < nref_deficit: nref_deficit = net_nref weak = p name = "Crystal{} orientation".format(i + 1) for i, p in enumerate(self.xl_uc_params): net_nref = self._unit_cell_surplus_reflections(p) if net_nref < nref_deficit: nref_deficit = net_nref weak = p name = "Crystal{} unit cell".format(i + 1) for i, p in enumerate(self.det_params): try: pnl_groups = p.get_panel_ids_by_group() for igp, gp in enumerate(pnl_groups): net_nref = self._panel_gp_surplus_reflections(p, gp, igp) if net_nref < nref_deficit: nref_deficit = net_nref weak = p panels = gp pnl_gp = igp name = "Detector{0}PanelGroup{1}".format(i + 1, pnl_gp + 1) except AttributeError: # non-hierarchical detector parameterisation net_nref = self._surplus_reflections(p) if net_nref < nref_deficit: nref_deficit = net_nref weak = p panels = None pnl_gp = None name = "Detector{}".format(i + 1) for i, p in enumerate(self.gon_params): net_nref = self._surplus_reflections(p) if net_nref < nref_deficit: nref_deficit = net_nref weak = p name = "Goniometer{}".format(i + 1) return { "parameterisation": weak, "panels": panels, "panel_group_id": pnl_gp, "name": name, } def detector_reduce(self): """Reduce detector parameters. Special case intended for metrology refinement of multi-panel detectors.""" reduce_list = self._options.detector_reduce_list for i, dp in enumerate(self.det_params): to_fix = flex.bool(dp.get_fixed()) try: # test for hierarchical detector parameterisation pnl_groups = dp.get_panel_ids_by_group() for igp, gp in enumerate(pnl_groups): surplus = self._panel_gp_surplus_reflections(dp, gp, igp) if surplus < 0: msg = ( "Require {0} more reflections to parameterise Detector{1} " "panel group {2}" ) logger.warning( msg.format(-1 * surplus, i + 1, igp + 1) + "\nAttempting reduction of non-essential parameters" ) names = cls._filter_parameter_names(dp) prefix = "Group{}".format(igp + 1) reduce_this_group = [prefix + e for e in reduce_list] to_fix |= flex.bool(string_sel(reduce_this_group, names)) # try again, and fail if still unsuccessful surplus = self._panel_gp_surplus_reflections(dp, gp, igp) if surplus < 0: msg = msg.format(-1 * surplus, i + 1, igp + 1) raise DialsRefineConfigError(msg + "\nFailing.") except AttributeError: if self._surplus_reflections(dp) < 0: mdl = "Detector{}".format(i + 1) msg = self._failmsg.format(mdl) raise DialsRefineConfigError(msg) dp.set_fixed(to_fix) def check_and_fail(self): """Check for too few reflections to support the model parameterisation. Test each parameterisation of each type against the reflections it affects. Returns: None Raises: DialsRefineConfigError: If there are too few reflections to support a parameterisation. """ for i, bp in enumerate(self.beam_params): if self._surplus_reflections(bp) < 0: mdl = "Beam{}".format(i + 1) msg = self._failmsg.format(mdl) raise DialsRefineConfigError(msg) for i, xlo in enumerate(self.xl_ori_params): if self._surplus_reflections(xlo) < 0: mdl = "Crystal{} orientation".format(i + 1) msg = self._failmsg.format(mdl) raise DialsRefineConfigError(msg) for i, xluc in enumerate(self.xl_uc_params): if self._unit_cell_surplus_reflections(xluc) < 0: mdl = "Crystal{} unit cell".format(i + 1) msg = self._failmsg.format(mdl) raise DialsRefineConfigError(msg) for i, dp in enumerate(self.det_params): try: # test for hierarchical detector parameterisation pnl_groups = dp.get_panel_ids_by_group() for igp, gp in enumerate(pnl_groups): if self._panel_gp_surplus_reflections(dp, gp, igp) < 0: msg = "Too few reflections to parameterise Detector{0} panel group {1}" msg = msg.format(i + 1, igp + 1) msg += "\nTry modifying refinement.parameterisation.auto_reduction options" raise DialsRefineConfigError(msg) except AttributeError: if self._surplus_reflections(dp) < 0: mdl = "Detector{}".format(i + 1) msg = self._failmsg.format(mdl) raise DialsRefineConfigError(msg) for i, gonp in enumerate(self.gon_params): if self._surplus_reflections(gonp) < 0: mdl = "Goniometer{}".format(i + 1) msg = self._failmsg.format(mdl) raise DialsRefineConfigError(msg) def check_and_fix(self): """Fix parameters when there are too few reflections. Test each parameterisation of each type against the reflections it affects. If there are too few reflections to support that parameterisation, fix the parameters. Returns: None """ warnmsg = "Too few reflections to parameterise {0}" tmp = [] for i, bp in enumerate(self.beam_params): if self._surplus_reflections(bp) >= 0: tmp.append(bp) else: mdl = "Beam{}".format(i + 1) msg = warnmsg.format(mdl) logger.warning(msg) self.beam_params = tmp tmp = [] for i, xlo in enumerate(self.xl_ori_params): if self._surplus_reflections(xlo) >= 0: tmp.append(xlo) else: mdl = "Crystal{} orientation".format(i + 1) msg = warnmsg.format(mdl) logger.warning(msg) self.xl_ori_params = tmp tmp = [] for i, xluc in enumerate(self.xl_uc_params): if self._unit_cell_surplus_reflections(xluc) >= 0: tmp.append(xluc) else: mdl = "Crystal{} unit cell".format(i + 1) msg = warnmsg.format(mdl) logger.warning(msg) self.xl_uc_params = tmp tmp = [] for i, dp in enumerate(self.det_params): fixlist = dp.get_fixed() try: # test for hierarchical detector parameterisation pnl_groups = dp.get_panel_ids_by_group() for igp, gp in enumerate(pnl_groups): if self._panel_gp_surplus_reflections(dp, gp, igp) < 0: msg = "Too few reflections to parameterise Detector{0}PanelGroup{1}" msg = msg.format(i + 1, igp + 1) logger.warning(msg) gp_params = [gp == igp for gp in dp.get_param_panel_groups()] for j, val in enumerate(gp_params): if val: fixlist[j] = True dp.set_fixed(fixlist) if dp.num_free() > 0: tmp.append(dp) else: msg = "No parameters remain free for Detector{}".format(i + 1) logger.warning(msg) except AttributeError: if self._surplus_reflections(dp) >= 0: tmp.append(dp) else: mdl = "Detector{}".format(i + 1) msg = warnmsg.format(mdl) logger.warning(msg) self.det_params = tmp tmp = [] for i, gonp in enumerate(self.gon_params): if self._surplus_reflections(gonp) >= 0: tmp.append(gonp) else: mdl = "Goniometer{}".format(i + 1) msg = warnmsg.format(mdl) logger.warning(msg) self.gon_params = tmp def check_and_remove(self): """Fix parameters and remove reflections when there are too few reflections. Test each parameterisation of each type against the reflections it affects. If there are too few reflections to support that parameterisation, fix the parameters and remove those reflections so that they will not be included in refinement. Returns: None Raises: DialsRefineConfigError: error if only one single panel detector is present. """ # If there is only one detector in a single experiment, the detector should # be multi-panel for remove to make sense if len(self.det_params) == 1: n_exp = len(self.det_params[0].get_experiment_ids()) if n_exp == 1 and not self.det_params[0].is_multi_state(): raise DialsRefineConfigError( "For single experiment, single panel refinement " "auto_reduction.action=remove cannot be used as it could only " "remove all reflections from refinement" ) # Define a warning message template to use each search iteration warnmsg = "Too few reflections to parameterise {0}" warnmsg += ( "\nAssociated reflections will be removed from the Reflection Manager" ) while True: # Identify a poorly-supported parameterisation dat = self._weak_parameterisation_search() if dat["parameterisation"] is None: break exp_ids = dat["parameterisation"].get_experiment_ids() msg = warnmsg.format(dat["name"]) # Fix relevant parameters and identify observations to remove obs = self.reflection_manager.get_obs() isel = flex.size_t() if dat["panels"] is not None: fixlist = dat["parameterisation"].get_fixed() pnl_gps = dat["parameterisation"].get_param_panel_groups() for i, gp in enumerate(pnl_gps): if gp == dat["panel_group_id"]: fixlist[i] = True dat["parameterisation"].set_fixed(fixlist) # identify observations on this panel group from associated experiments for exp_id in exp_ids: subsel = (obs["id"] == exp_id).iselection() panels_this_exp = obs["panel"].select(subsel) for pnl in dat["panels"]: isel.extend(subsel.select(panels_this_exp == pnl)) else: fixlist = [True] * dat["parameterisation"].num_total() dat["parameterisation"].set_fixed(fixlist) # identify observations from the associated experiments for exp_id in exp_ids: isel.extend((obs["id"] == exp_id).iselection()) # Now remove the selected reflections sel = flex.bool(len(obs), True) sel.set_selected(isel, False) self.reflection_manager.filter_obs(sel) logger.warning(msg) # Strip out parameterisations with zero free parameters self.beam_params = [p for p in self.beam_params if p.num_free() > 0] self.xl_ori_params = [p for p in self.xl_ori_params if p.num_free() > 0] self.xl_uc_params = [p for p in self.xl_uc_params if p.num_free() > 0] self.det_params = [p for p in self.det_params if p.num_free() > 0] self.gon_params = [p for p in self.gon_params if p.num_free() > 0] def __call__(self): """Perform checks and parameter reduction according to the selected option. Returns: None """ # In the scan-varying case we can't calculate dB_dp before composing the # model, so revert to the original function if self._scan_varying: self._unit_cell_surplus_reflections = self._surplus_reflections # As a special case for detector metrology, try reducing the number of # detector parameters if there are too few for some panel group. If this is # unsuccessful, fail outright. if self._options.detector_reduce: self.detector_reduce() if self._options.action == "fail": self.check_and_fail() elif self._options.action == "fix": self.check_and_fix() elif self._options.action == "remove": self.check_and_remove() ``` #### File: refinement/parameterisation/scan_varying_prediction_parameters.py ```python from __future__ import absolute_import, division, print_function import math from collections import namedtuple from scitbx import matrix from dials.array_family import flex from dials.algorithms.refinement.parameterisation.prediction_parameters import ( XYPhiPredictionParameterisation, SparseGradientVectorMixin, ) class StateDerivativeCache(object): """Keep derivatives of the model states in a memory-efficient format by storing each derivative once alongside the indices of reflections affected by that derivative""" def __init__(self, parameterisations=None): if parameterisations is None: parameterisations = [] self._cache = dict.fromkeys(parameterisations) self._Pair = namedtuple("Pair", ["derivative", "iselection"]) # set up lists with the right number of elements self.clear() self._nref = 0 def build_gradients(self, parameterisation, isel=None, imatch=None): """Return an object mimicking a list of flex arrays containing state gradients wrt each parameter of the parameterisation. In fact this is a generator so that iterating over the elements of the list will return control here so that the gradient array for a single parameter can be reconstructed on the fly""" # Get the data from the cache entry = self._cache[parameterisation] # Figure out the right flex array type from entries in the cache shape = None for e in entry: if e: shape = e[0].derivative.n break if shape is None: raise TypeError("No model state derivatives found") if shape == (3, 1): arr_type = flex.vec3_double null = (0, 0, 0) elif shape == (3, 3): arr_type = flex.mat3_double null = (0, 0, 0, 0, 0, 0, 0, 0, 0) else: raise TypeError("Unrecognised model state derivative type") # Loop over the data for each parameter for p_data in entry: # Build an empty array of the same length as the original reflection # list used when the cache was filled ds_dp = arr_type(self._nref, null) # Reconstitute full array from the cache for pair in p_data: ds_dp.set_selected(pair.iselection, pair.derivative) # First select only elements relevant to the current gradient calculation # block (i.e. if nproc > 1 or gradient_calculation_blocksize was set) if imatch is not None: ds_dp = ds_dp.select(imatch) # Now select only those reflections from the full list that are affected # by this parameterisation if isel is not None: ds_dp = ds_dp.select(isel) yield ds_dp def clear(self): """Clear all cached values""" for p in self._cache: self._cache[p] = [[] for i in range(p.num_free())] def append(self, parameterisation, iparam, derivative, iselection): """For a particular parameterisation and parameter number of the free parameters of that parameterisation, append a state derivative and the iselection of reflections it affects to the cache""" l1 = self._cache[parameterisation] l2 = l1[iparam] l2.append(self._Pair(derivative, iselection)) @property def nref(self): """Get the length of the reflection list to which indices in the iselections refer""" return self._nref @nref.setter def nref(self, value): """Set the length of the reflection list to which indices in the iselections refer""" self._nref = value class ScanVaryingPredictionParameterisation(XYPhiPredictionParameterisation): """An extension of the rotation scans version of the PredictionParameterisation class that supports model parameterisations that vary smoothly with the observed image number""" def __init__( self, experiments, detector_parameterisations=None, beam_parameterisations=None, xl_orientation_parameterisations=None, xl_unit_cell_parameterisations=None, goniometer_parameterisations=None, ): if detector_parameterisations is None: detector_parameterisations = [] if beam_parameterisations is None: beam_parameterisations = [] if xl_orientation_parameterisations is None: xl_orientation_parameterisations = [] if xl_unit_cell_parameterisations is None: xl_unit_cell_parameterisations = [] if goniometer_parameterisations is None: goniometer_parameterisations = [] # determine once here which types of parameterisations are scan-varying self._varying_detectors = any( hasattr(p, "num_sets") for p in detector_parameterisations ) self._varying_beams = any( hasattr(p, "num_sets") for p in beam_parameterisations ) self._varying_xl_orientations = any( hasattr(p, "num_sets") for p in xl_orientation_parameterisations ) self._varying_xl_unit_cells = any( hasattr(p, "num_sets") for p in xl_unit_cell_parameterisations ) self._varying_goniometers = any( hasattr(p, "num_sets") for p in goniometer_parameterisations ) to_cache = [] if self._varying_detectors: to_cache.extend(detector_parameterisations) if self._varying_beams: to_cache.extend(beam_parameterisations) if self._varying_xl_orientations: to_cache.extend(xl_orientation_parameterisations) if self._varying_xl_unit_cells: to_cache.extend(xl_unit_cell_parameterisations) if self._varying_goniometers: to_cache.extend(goniometer_parameterisations) self._derivative_cache = StateDerivativeCache(to_cache) # set up base class super(ScanVaryingPredictionParameterisation, self).__init__( experiments, detector_parameterisations=detector_parameterisations, beam_parameterisations=beam_parameterisations, xl_orientation_parameterisations=xl_orientation_parameterisations, xl_unit_cell_parameterisations=xl_unit_cell_parameterisations, goniometer_parameterisations=goniometer_parameterisations, ) # Avoid calculation in calculate_model_state_uncertainties unless this # is set to True self.set_scan_varying_errors = False def _get_xl_orientation_parameterisation(self, experiment_id): """Return the crystal orientation parameterisation for the requested experiment number (or None if the crystal orientation in that experiment is not parameterised)""" param_set = self._exp_to_param[experiment_id] xl_op = None if param_set.xl_ori_param is not None: xl_op = self._xl_orientation_parameterisations[param_set.xl_ori_param] return xl_op def _get_xl_unit_cell_parameterisation(self, experiment_id): """Return the crystal unit cell parameterisation for the requested experiment number (or None if the crystal unit cell in that experiment is not parameterised)""" param_set = self._exp_to_param[experiment_id] xl_ucp = None if param_set.xl_uc_param is not None: xl_ucp = self._xl_unit_cell_parameterisations[param_set.xl_uc_param] return xl_ucp def _get_beam_parameterisation(self, experiment_id): """Return the beam parameterisation for the requested experiment number (or None if the beam in that experiment is not parameterised)""" param_set = self._exp_to_param[experiment_id] bp = None if param_set.beam_param is not None: bp = self._beam_parameterisations[param_set.beam_param] return bp def _get_detector_parameterisation(self, experiment_id): """Return the detector parameterisation for the requested experiment number (or None if the detector in that experiment is not parameterised)""" param_set = self._exp_to_param[experiment_id] dp = None if param_set.det_param is not None: dp = self._detector_parameterisations[param_set.det_param] return dp def _get_goniometer_parameterisation(self, experiment_id): """Return the goniometer parameterisation for the requested experiment number (or None if the goniometer in that experiment is not parameterised)""" param_set = self._exp_to_param[experiment_id] gp = None if param_set.gonio_param is not None: gp = self._goniometer_parameterisations[param_set.gonio_param] return gp def _get_state_from_parameterisation( self, parameterisation, frame, multi_state_elt=None ): """Get the model state from the parameterisation at the specified frame, taking care of whether it is a scan-varying parameterisation or not""" if parameterisation is None: return None if ( hasattr(parameterisation, "num_sets") and not self._current_frame.get(parameterisation) == frame ): parameterisation.compose(frame) self._current_frame[parameterisation] = frame if multi_state_elt is None: state = parameterisation.get_state() else: state = parameterisation.get_state(multi_state_elt=multi_state_elt) return state def _prepare_for_compose(self, reflections, skip_derivatives=False): """Add columns to the reflection table to hold the varying state matrices or vectors for the experimental models, if required. Also prepare the cache for the derivatives of states that are scan-varying""" nref = len(reflections) # set columns if needed if "u_matrix" not in reflections: reflections["u_matrix"] = flex.mat3_double(nref) if "b_matrix" not in reflections: reflections["b_matrix"] = flex.mat3_double(nref) if "s0_vector" not in reflections: reflections["s0_vector"] = flex.vec3_double(nref) if "d_matrix" not in reflections: reflections["d_matrix"] = flex.mat3_double(nref) if "D_matrix" not in reflections: reflections["D_matrix"] = flex.mat3_double(nref) if "S_matrix" not in reflections: reflections["S_matrix"] = flex.mat3_double(nref) # Clear the state derivative cache and set the number of reflections needed # to reconstruct the derivative arrays later self._derivative_cache.clear() self._derivative_cache.nref = nref def compose(self, reflections, skip_derivatives=False): """Compose scan-varying crystal parameterisations at the specified image number, for the specified experiment, for each image. Put the varying matrices in the reflection table, and cache the derivatives.""" self._prepare_for_compose(reflections, skip_derivatives) for iexp, exp in enumerate(self._experiments): # select the reflections of interest sel = reflections["id"] == iexp isel = sel.iselection() blocks = reflections["block"].select(isel) # identify which parameterisations to use for this experiment xl_op = self._get_xl_orientation_parameterisation(iexp) xl_ucp = self._get_xl_unit_cell_parameterisation(iexp) bp = self._get_beam_parameterisation(iexp) dp = self._get_detector_parameterisation(iexp) gp = self._get_goniometer_parameterisation(iexp) # reset current frame cache for scan-varying parameterisations self._current_frame = {} # get state and derivatives for each block for block in range(flex.min(blocks), flex.max(blocks) + 1): # determine the subset of reflections this affects subsel = isel.select(blocks == block) if len(subsel) == 0: continue # get the panels hit by these reflections panels = reflections["panel"].select(subsel) # get the integer frame number nearest the centre of that block frames = reflections["block_centre"].select(subsel) # can only be false if original block assignment has gone wrong assert frames.all_eq( frames[0] ), "Failing: a block contains reflections that shouldn't be there" frame = int(math.floor(frames[0])) # model states at current frame U = self._get_state_from_parameterisation(xl_op, frame) if U is None: U = matrix.sqr(exp.crystal.get_U()) B = self._get_state_from_parameterisation(xl_ucp, frame) if B is None: B = matrix.sqr(exp.crystal.get_B()) s0 = self._get_state_from_parameterisation(bp, frame) if s0 is None: s0 = matrix.col(exp.beam.get_s0()) S = self._get_state_from_parameterisation(gp, frame) if S is None: S = matrix.sqr(exp.goniometer.get_setting_rotation()) # set states for crystal, beam and goniometer reflections["u_matrix"].set_selected(subsel, U.elems) reflections["b_matrix"].set_selected(subsel, B.elems) reflections["s0_vector"].set_selected(subsel, s0.elems) reflections["S_matrix"].set_selected(subsel, S.elems) # set states and derivatives for this detector if dp is not None: # detector is parameterised if dp.is_multi_state(): # parameterised detector is multi panel # loop through the panels in this detector for panel_id, _ in enumerate(exp.detector): # get the right subset of array indices to set for this panel subsel2 = subsel.select(panels == panel_id) if len(subsel2) == 0: # if no reflections intersect this panel, skip calculation continue dmat = self._get_state_from_parameterisation( dp, frame, multi_state_elt=panel_id ) if dmat is None: dmat = exp.detector[panel_id].get_d_matrix() Dmat = exp.detector[panel_id].get_D_matrix() reflections["d_matrix"].set_selected(subsel2, dmat) reflections["D_matrix"].set_selected(subsel2, Dmat) if self._varying_detectors and not skip_derivatives: for j, dd in enumerate( dp.get_ds_dp( multi_state_elt=panel_id, use_none_as_null=True ) ): if dd is None: continue self._derivative_cache.append(dp, j, dd, subsel) else: # parameterised detector is single panel dmat = self._get_state_from_parameterisation(dp, frame) if dmat is None: dmat = exp.detector[0].get_d_matrix() Dmat = exp.detector[0].get_D_matrix() reflections["d_matrix"].set_selected(subsel, dmat) reflections["D_matrix"].set_selected(subsel, Dmat) if self._varying_detectors and not skip_derivatives: for j, dd in enumerate(dp.get_ds_dp(use_none_as_null=True)): if dd is None: continue self._derivative_cache.append(dp, j, dd, subsel) else: # set states for unparameterised detector (dp is None) # loop through the panels in this detector for panel_id, _ in enumerate(exp.detector): # get the right subset of array indices to set for this panel subsel2 = subsel.select(panels == panel_id) if len(subsel2) == 0: # if no reflections intersect this panel, skip to the next continue dmat = exp.detector[panel_id].get_d_matrix() Dmat = exp.detector[panel_id].get_D_matrix() reflections["d_matrix"].set_selected(subsel2, dmat) reflections["D_matrix"].set_selected(subsel2, Dmat) # set derivatives of the states for crystal, beam and goniometer if not skip_derivatives: if xl_op is not None and self._varying_xl_orientations: for j, dU in enumerate(xl_op.get_ds_dp(use_none_as_null=True)): if dU is None: continue self._derivative_cache.append(xl_op, j, dU, subsel) if xl_ucp is not None and self._varying_xl_unit_cells: for j, dB in enumerate(xl_ucp.get_ds_dp(use_none_as_null=True)): if dB is None: continue self._derivative_cache.append(xl_ucp, j, dB, subsel) if bp is not None and self._varying_beams: for j, ds0 in enumerate(bp.get_ds_dp(use_none_as_null=True)): if ds0 is None: continue self._derivative_cache.append(bp, j, ds0, subsel) if gp is not None and self._varying_goniometers: for j, dS in enumerate(gp.get_ds_dp(use_none_as_null=True)): if dS is None: continue self._derivative_cache.append(gp, j, dS, subsel) # set the UB matrices for prediction reflections["ub_matrix"] = reflections["u_matrix"] * reflections["b_matrix"] # called by refiner.run for setting the crystal scan points def get_varying_UB(self, obs_image_numbers, experiment_id): """Extract the setting matrix from the contained scan-dependent crystal parameterisations at specified image number.""" if not (self._varying_xl_unit_cells or self._varying_xl_orientations): return None # identify which crystal parameterisations to use for this experiment xl_op = self._get_xl_orientation_parameterisation(experiment_id) xl_ucp = self._get_xl_unit_cell_parameterisation(experiment_id) UB_list = [] for i in obs_image_numbers: U = self._get_state_from_parameterisation(xl_op, i) B = self._get_state_from_parameterisation(xl_ucp, i) UB_list.append(U * B) return UB_list # called by refiner.run for setting the beam scan points def get_varying_s0(self, obs_image_numbers, experiment_id): """Extract the s0 vector from the contained scan-dependent beam parameterisation at specified image number.""" if not self._varying_beams: return None # identify which beam parameterisation to use for this experiment bp = self._get_beam_parameterisation(experiment_id) s0_list = [] for i in obs_image_numbers: s0 = self._get_state_from_parameterisation(bp, i) s0_list.append(s0) return s0_list # called by refiner.run for setting the goniometer scan points def get_varying_setting_rotation(self, obs_image_numbers, experiment_id): """Extract the S matrix from the contained scan-dependent goniometer parameterisation at specified image number.""" if not self._varying_goniometers: return None # identify which goniometer parameterisation to use for this experiment gp = self._get_goniometer_parameterisation(experiment_id) S_list = [] for i in obs_image_numbers: S = self._get_state_from_parameterisation(gp, i) S_list.append(S) return S_list # overloaded for the scan-varying case def _get_model_data_for_experiment(self, experiment, reflections): """helper function to return model data s0, U, B, D and S for a particular experiment. In this scan-varying overload this is trivial because these values are already set as arrays in the reflection table""" return { "s0": reflections["s0_vector"], "U": reflections["u_matrix"], "B": reflections["b_matrix"], "D": reflections["D_matrix"], "S": reflections["S_matrix"], } def _beam_derivatives(self, isel, parameterisation, reflections): """Determine whether ds0_dp was precalculated then call the base class method""" if self._varying_beams: if "imatch" in reflections: imatch = reflections["imatch"] else: imatch = None ds0_dxluc_p = self._derivative_cache.build_gradients( parameterisation=parameterisation, isel=isel, imatch=imatch ) else: ds0_dxluc_p = None return super(ScanVaryingPredictionParameterisation, self)._beam_derivatives( isel, parameterisation, ds0_dxluc_p ) def _xl_orientation_derivatives(self, isel, parameterisation, reflections): """Determine whether dU_dp was precalculated then call the base class method""" if self._varying_xl_orientations: if "imatch" in reflections: imatch = reflections["imatch"] else: imatch = None dU_dxlo_p = self._derivative_cache.build_gradients( parameterisation=parameterisation, isel=isel, imatch=imatch ) else: dU_dxlo_p = None return super( ScanVaryingPredictionParameterisation, self )._xl_orientation_derivatives(isel, parameterisation, dU_dxlo_p) def _xl_unit_cell_derivatives(self, isel, parameterisation, reflections): """Determine whether dB_dp was precalculated then call the base class method""" if self._varying_xl_unit_cells: if "imatch" in reflections: imatch = reflections["imatch"] else: imatch = None dB_dxluc_p = self._derivative_cache.build_gradients( parameterisation=parameterisation, isel=isel, imatch=imatch ) else: dB_dxluc_p = None return super( ScanVaryingPredictionParameterisation, self )._xl_unit_cell_derivatives(isel, parameterisation, dB_dxluc_p) def _detector_derivatives(self, isel, panel_id, parameterisation, reflections): """Determine whether dd_dp was precalculated then call the base class method""" if self._varying_detectors: if "imatch" in reflections: imatch = reflections["imatch"] else: imatch = None dd_ddet_p = self._derivative_cache.build_gradients( parameterisation=parameterisation, isel=isel, imatch=imatch ) else: dd_ddet_p = None return super(ScanVaryingPredictionParameterisation, self)._detector_derivatives( isel, panel_id, parameterisation, dd_ddet_p ) def _goniometer_derivatives(self, isel, parameterisation, reflections): """Determine whether dS_dp was precalculated then call the base class method""" if self._varying_goniometers: if "imatch" in reflections: imatch = reflections["imatch"] else: imatch = None dS_dgon_p = self._derivative_cache.build_gradients( parameterisation=parameterisation, isel=isel, imatch=imatch ) else: dS_dgon_p = None return super( ScanVaryingPredictionParameterisation, self )._goniometer_derivatives(isel, parameterisation, dS_dgon_p) def calculate_model_state_uncertainties( self, var_cov=None, obs_image_number=None, experiment_id=None ): """Take a variance-covariance matrix of all free parameters (probably calculated by a minimisation engine). For each parameterisation in the global model, extract the subset of this matrix for the associated block of parameters. Pass this on to the relevant model parameterisation to calculate its own uncertainty of state. This scan-varying version should first be called with var_cov set but obs_image_number=None and experiment_id=None. This calls the scan-static version to do the calculation for the scan-static parameterisations and also caches the subsets of var_cov relevant for the scan-varying parameterisations. Subsequent calls should provide obs_image_number and experiment_id to calculate for a particular crystal at a particular scan-point""" # First call, only a variance-covariance matrix is supplied if var_cov is not None: assert [obs_image_number, experiment_id].count(None) == 2 super( ScanVaryingPredictionParameterisation, self ).calculate_model_state_uncertainties(var_cov) return # Later calls, only an experiment and image number are supplied for # identify the crystal parameterisations for this experiment xl_op = self._get_xl_orientation_parameterisation(experiment_id) xl_ucp = self._get_xl_unit_cell_parameterisation(experiment_id) result = {} # compose at the requested image number and calculate using the cached # varcov matrices. Take the first elt of the list because the crystal # parameterisations are not multi-state if xl_op is not None: try: xl_op.compose(obs_image_number) result["U_cov"] = xl_op.calculate_state_uncertainties(var_cov=None)[0] except TypeError: pass if xl_ucp is not None: try: xl_ucp.compose(obs_image_number) result["B_cov"] = xl_ucp.calculate_state_uncertainties(var_cov=None)[0] except TypeError: pass return result def set_model_state_uncertainties(self, u_cov_list, b_cov_list, experiment_id=None): """Identify the crystal parameterisations and set the list of covariance matrices, if available. They will only be available if the parameterisation is a scan-varying type, otherwise they are None""" xl_op = self._get_xl_orientation_parameterisation(experiment_id) xl_ucp = self._get_xl_unit_cell_parameterisation(experiment_id) if u_cov_list: try: xl_op.set_state_uncertainties(u_cov_list) except AttributeError: pass if b_cov_list: try: xl_ucp.set_state_uncertainties(b_cov_list) except AttributeError: pass class ScanVaryingPredictionParameterisationSparse( SparseGradientVectorMixin, ScanVaryingPredictionParameterisation ): pass ``` #### File: scaling/error_model/error_model.py ```python from __future__ import absolute_import, division, print_function from math import log, exp from dials.array_family import flex from scitbx import sparse from libtbx.table_utils import simple_table def get_error_model(error_model_type): """Return the correct error model class from a params option.""" if error_model_type == "basic": return BasicErrorModel else: raise ValueError("Invalid choice of error model: %s" % error_model_type) class BasicErrorModel(object): """ Object to manage calculation of deviations for an error model. """ min_reflections_required = 250 def __init__(self, Ih_table, n_bins=10, min_Ih=25.0, min_partiality=0.95): self.Ih_table = Ih_table self.n_bins = n_bins self.binning_info = { "initial_variances": [], "bin_boundaries": [], "bin_variances": [], "refl_per_bin": [], "n_reflections": None, } # First select on initial delta self.filter_unsuitable_reflections( cutoff=12.0, min_Ih=min_Ih, min_partiality=min_partiality ) self.n_h = self.Ih_table.calc_nh() self.sigmaprime = self.calc_sigmaprime([1.0, 0.0]) self.bin_variances = None self._summation_matrix = self.create_summation_matrix() self.weights = self.binning_info["refl_per_bin"] ** 0.5 self.refined_parameters = [1.0, 0.0] self.delta_hl = self.calc_deltahl() self.calculate_bin_variances() self.binning_info["initial_variances"] = self.binning_info["bin_variances"] def __str__(self): a = abs(self.refined_parameters[0]) b = abs(self.refined_parameters[1]) ISa = "%.3f" % (1.0 / (b * a)) if (b * a) > 0 else "Unable to estimate" return "\n".join( ( "", "Error model details:", " Type: basic", " Current parameters: a = %.5f, b = %.5f" % (a, b), " Error model formula: " + u"\u03C3" + "'" + u"\xb2" + " = a" + u"\xb2" + "(" + u"\u03C3\xb2" " + (bI)" + u"\xb2" + ")", " estimated I/sigma asymptotic limit: %s" % ISa, "", ) ) def minimisation_summary(self): """Generate a summary of the model minimisation for output.""" header = [ "Intensity range (<Ih>)", "n_refl", "Uncorrected variance", "Corrected variance", ] rows = [] bin_bounds = ["%.2f" % i for i in self.binning_info["bin_boundaries"]] for i, (initial_var, bin_var, n_refl) in enumerate( zip( self.binning_info["initial_variances"], self.binning_info["bin_variances"], self.binning_info["refl_per_bin"], ) ): rows.append( [ bin_bounds[i] + " - " + bin_bounds[i + 1], str(int(n_refl)), str(round(initial_var, 3)), str(round(bin_var, 3)), ] ) st = simple_table(rows, header) return "\n".join( ( "Results of error model refinement. Uncorrected and corrected variances", "of normalised intensity deviations for given intensity ranges. Variances", "are expected to be ~1.0 for reliable errors (sigmas).", st.format(), "", ) ) @property def summation_matrix(self): """A sparse matrix to allow summation over intensity groups.""" return self._summation_matrix @property def bin_counts(self): """An array of the number of intensities assigned to each bin.""" return self.binning_info["refl_per_bin"] def filter_unsuitable_reflections(self, cutoff, min_Ih, min_partiality): """Do a first pass to calculate delta_hl and filter out the largest deviants, so that the error model is not misled by these and instead operates on the central ~90% of the data. Also choose reflection groups with n_h > 1, as these have deltas of zero by definition and will bias the variance calculations. Also, only use groups where <Ih> > 25.0, as the assumptions of normally distributed deltas will not hold for low <Ih>.""" self.n_h = self.Ih_table.calc_nh() self.sigmaprime = self.calc_sigmaprime([1.0, 0.0]) delta_hl = self.calc_deltahl() # make sure the fit isn't misled by extreme values sel = flex.abs(delta_hl) < cutoff if "partiality" in self.Ih_table.Ih_table: sel &= self.Ih_table.Ih_table["partiality"] > min_partiality self.Ih_table = self.Ih_table.select(sel) n = self.Ih_table.size sum_I_over_var = ( self.Ih_table.intensities / self.Ih_table.variances ) * self.Ih_table.h_index_matrix n_per_group = flex.double(n, 1) * self.Ih_table.h_index_matrix avg_I_over_var = sum_I_over_var / n_per_group sel = avg_I_over_var > 0.85 self.Ih_table = self.Ih_table.select_on_groups(sel) self.n_h = self.Ih_table.calc_nh() scaled_Ih = self.Ih_table.Ih_values * self.Ih_table.inverse_scale_factors # need a scaled min_Ih, where can reasonably expect norm distribution # (use min_Ih=25 by default, sigma ~ 5) sel2 = scaled_Ih > min_Ih # can't calculate a true deviation for groups of 1 sel3 = self.n_h > 1.0 sel4 = self.Ih_table.intensities > 0.001 # don't want to include weaker reflections where the background adds # significantly to the variances, as these would no longer be normally # distributed and skew the fit. self.Ih_table = self.Ih_table.select(sel2 & sel3 & sel4) n = self.Ih_table.size if n < self.min_reflections_required: raise ValueError( "Insufficient reflections (%s) to perform error modelling." % n ) self.n_h = self.Ih_table.calc_nh() # now make sure any left also have n > 1 sel = self.n_h > 1.0 self.Ih_table = self.Ih_table.select(sel) self.n_h = self.Ih_table.calc_nh() def calc_sigmaprime(self, x): """Calculate the error from the model.""" sigmaprime = ( x[0] * ((self.Ih_table.variances) + ((x[1] * self.Ih_table.intensities) ** 2)) ** 0.5 ) / self.Ih_table.inverse_scale_factors return sigmaprime def calc_deltahl(self): """Calculate the normalised deviations from the model.""" I_hl = self.Ih_table.intensities g_hl = self.Ih_table.inverse_scale_factors I_h = self.Ih_table.Ih_values prefactor = ((self.n_h - flex.double(self.n_h.size(), 1.0)) / self.n_h) ** 0.5 delta_hl = prefactor * ((I_hl / g_hl) - I_h) / self.sigmaprime return delta_hl def update_for_minimisation(self, x): """"Calculate the updated quantites.""" self.sigmaprime = self.calc_sigmaprime(x) self.delta_hl = self.calc_deltahl() self.bin_variances = self.calculate_bin_variances() def create_summation_matrix(self): """"Create a summation matrix to allow sums into intensity bins. This routine attempts to bin into bins equally spaced in log(intensity), to give a representative sample across all intensities. To avoid undersampling, it is required that there are at least 100 reflections per intensity bin unless there are very few reflections.""" n = self.Ih_table.size if n < self.min_reflections_required: raise ValueError( "Insufficient reflections (%s) to perform error modelling." % n ) self.binning_info["n_reflections"] = n summation_matrix = sparse.matrix(n, self.n_bins) Ih = self.Ih_table.Ih_values * self.Ih_table.inverse_scale_factors size_order = flex.sort_permutation(Ih, reverse=True) Imax = max(Ih) Imin = max(1.0, min(Ih)) # avoid log issues spacing = (log(Imax) - log(Imin)) / float(self.n_bins) boundaries = [Imax] + [ exp(log(Imax) - (i * spacing)) for i in range(1, self.n_bins + 1) ] boundaries[-1] = min(Ih) - 0.01 self.binning_info["bin_boundaries"] = boundaries self.binning_info["refl_per_bin"] = flex.double() n_cumul = 0 if Ih.size() > 100 * self.min_reflections_required: self.min_reflections_required = int(Ih.size() / 100.0) min_per_bin = min(self.min_reflections_required, int(n / (3.0 * self.n_bins))) for i in range(len(boundaries) - 1): maximum = boundaries[i] minimum = boundaries[i + 1] sel1 = Ih <= maximum sel2 = Ih > minimum sel = sel1 & sel2 isel = sel.iselection() n_in_bin = isel.size() if n_in_bin < min_per_bin: # need more in this bin m = n_cumul + min_per_bin if m < n: # still some refl left to use idx = size_order[m] intensity = Ih[idx] boundaries[i + 1] = intensity minimum = boundaries[i + 1] sel = sel1 & (Ih > minimum) isel = sel.iselection() n_in_bin = isel.size() self.binning_info["refl_per_bin"].append(n_in_bin) for j in isel: summation_matrix[j, i] = 1 n_cumul += n_in_bin cols_to_del = [] for i, col in enumerate(summation_matrix.cols()): if col.non_zeroes < min_per_bin - 5: cols_to_del.append(i) n_new_cols = summation_matrix.n_cols - len(cols_to_del) if n_new_cols == self.n_bins: return summation_matrix new_sum_matrix = sparse.matrix(summation_matrix.n_rows, n_new_cols) next_col = 0 refl_per_bin = flex.double() for i, col in enumerate(summation_matrix.cols()): if i not in cols_to_del: new_sum_matrix[:, next_col] = col next_col += 1 refl_per_bin.append(self.binning_info["refl_per_bin"][i]) self.binning_info["refl_per_bin"] = refl_per_bin return new_sum_matrix def calculate_bin_variances(self): """Calculate the variance of each bin.""" sum_deltasq = (self.delta_hl ** 2) * self.summation_matrix sum_delta_sq = (self.delta_hl * self.summation_matrix) ** 2 bin_vars = (sum_deltasq / self.bin_counts) - ( sum_delta_sq / (self.bin_counts ** 2) ) self.binning_info["bin_variances"] = bin_vars return bin_vars def update_variances(self, variances, intensities): """Use the error model parameter to calculate new values for the variances.""" new_variance = (self.refined_parameters[0] ** 2) * ( variances + ((self.refined_parameters[1] * intensities) ** 2) ) return new_variance def clear_Ih_table(self): """Delete the Ih_table, to free memory.""" del self.Ih_table ``` #### File: scaling/model/scaling_model_factory.py ```python from __future__ import absolute_import, division, print_function from collections import OrderedDict from dials.array_family import flex import dials.algorithms.scaling.model.model as Model class KBSMFactory(object): """ Factory for creating a KB scaling model. """ @classmethod def create(cls, params, _, __): """create the simple KB scaling model.""" configdict = OrderedDict({"corrections": []}) parameters_dict = {} if params.parameterisation.decay_term: configdict["corrections"].append("decay") parameters_dict["decay"] = { "parameters": flex.double([0.0]), "parameter_esds": None, } if params.parameterisation.scale_term: configdict["corrections"].append("scale") parameters_dict["scale"] = { "parameters": flex.double([1.0]), "parameter_esds": None, } return Model.KBScalingModel(parameters_dict, configdict) class PhysicalSMFactory(object): """ Factory for creating a physical scaling model. """ @classmethod def create(cls, params, experiments, _): """Create the scaling model defined by the params.""" configdict = OrderedDict({"corrections": []}) parameters_dict = {} osc_range = experiments.scan.get_oscillation_range() one_osc_width = experiments.scan.get_oscillation()[1] configdict.update({"valid_osc_range": osc_range}) if params.parameterisation.scale_term: configdict["corrections"].append("scale") n_scale_param, s_norm_fac, scale_rot_int = Model.initialise_smooth_input( osc_range, one_osc_width, params.parameterisation.scale_interval ) configdict.update( {"s_norm_fac": s_norm_fac, "scale_rot_interval": scale_rot_int} ) parameters_dict["scale"] = { "parameters": flex.double(n_scale_param, 1.0), "parameter_esds": None, } if params.parameterisation.decay_term: configdict["corrections"].append("decay") n_decay_param, d_norm_fac, decay_rot_int = Model.initialise_smooth_input( osc_range, one_osc_width, params.parameterisation.decay_interval ) configdict.update( {"d_norm_fac": d_norm_fac, "decay_rot_interval": decay_rot_int} ) parameters_dict["decay"] = { "parameters": flex.double(n_decay_param, 0.0), "parameter_esds": None, } if params.parameterisation.absorption_term: configdict["corrections"].append("absorption") lmax = params.parameterisation.lmax n_abs_param = (2 * lmax) + (lmax ** 2) # arithmetic sum formula (a1=3, d=2) configdict.update({"lmax": lmax}) surface_weight = params.parameterisation.surface_weight configdict.update({"abs_surface_weight": surface_weight}) parameters_dict["absorption"] = { "parameters": flex.double(n_abs_param, 0.0), "parameter_esds": None, } return Model.PhysicalScalingModel(parameters_dict, configdict) def calc_n_param_from_bins(value_min, value_max, n_bins): """Return the correct number of bins for initialising the gaussian smoothers.""" assert n_bins > 0 assert isinstance(n_bins, int) bin_width = (value_max - value_min) / n_bins if n_bins == 1: n_param = 2 elif n_bins == 2: n_param = 3 else: n_param = n_bins + 2 return n_param, bin_width class ArraySMFactory(object): """ Factory for creating an array-based scaling model. """ @classmethod def create(cls, params, experiments, reflections): """create an array-based scaling model.""" reflections = reflections.select(reflections["d"] > 0.0) configdict = OrderedDict({"corrections": []}) # First initialise things common to more than one correction. one_osc_width = experiments.scan.get_oscillation()[1] osc_range = experiments.scan.get_oscillation_range() configdict.update({"valid_osc_range": osc_range}) n_time_param, time_norm_fac, time_rot_int = Model.initialise_smooth_input( osc_range, one_osc_width, params.parameterisation.decay_interval ) (xvalues, yvalues, _) = reflections["xyzobs.px.value"].parts() (xmax, xmin) = (flex.max(xvalues) + 0.001, flex.min(xvalues) - 0.001) (ymax, ymin) = (flex.max(yvalues) + 0.001, flex.min(yvalues) - 0.001) parameters_dict = {} if params.parameterisation.decay_term: configdict["corrections"].append("decay") resmax = (1.0 / (flex.min(reflections["d"]) ** 2)) + 0.001 resmin = (1.0 / (flex.max(reflections["d"]) ** 2)) - 0.001 n_res_bins = params.parameterisation.n_resolution_bins n_res_param, res_bin_width = calc_n_param_from_bins( resmin, resmax, n_res_bins ) configdict.update( { "n_res_param": n_res_param, "n_time_param": n_time_param, "resmin": resmin, "res_bin_width": res_bin_width, "time_norm_fac": time_norm_fac, "time_rot_interval": time_rot_int, } ) parameters_dict["decay"] = { "parameters": flex.double((n_time_param * n_res_param), 1.0), "parameter_esds": None, } if params.parameterisation.absorption_term: configdict["corrections"].append("absorption") nxbins = nybins = params.parameterisation.n_absorption_bins n_x_param, x_bin_width = calc_n_param_from_bins(xmin, xmax, nxbins) n_y_param, y_bin_width = calc_n_param_from_bins(ymin, ymax, nybins) configdict.update( { "n_x_param": n_x_param, "n_y_param": n_y_param, "xmin": xmin, "ymin": ymin, "x_bin_width": x_bin_width, "y_bin_width": y_bin_width, "n_time_param": n_time_param, "time_norm_fac": time_norm_fac, "time_rot_interval": time_rot_int, } ) parameters_dict["absorption"] = { "parameters": flex.double((n_x_param * n_y_param * n_time_param), 1.0), "parameter_esds": None, } if params.parameterisation.modulation_term: configdict["corrections"].append("modulation") nx_det_bins = ny_det_bins = params.parameterisation.n_modulation_bins n_x_mod_param, x_det_bw = calc_n_param_from_bins(xmin, xmax, nx_det_bins) n_y_mod_param, y_det_bw = calc_n_param_from_bins(ymin, ymax, ny_det_bins) configdict.update( { "n_x_mod_param": n_x_mod_param, "n_y_mod_param": n_y_mod_param, "xmin": xmin, "ymin": ymin, "x_det_bin_width": x_det_bw, "y_det_bin_width": y_det_bw, } ) parameters_dict["modulation"] = { "parameters": flex.double((n_x_mod_param * n_y_mod_param), 1.0), "parameter_esds": None, } return Model.ArrayScalingModel(parameters_dict, configdict) ``` #### File: algorithms/statistics/temp.py ```python from __future__ import absolute_import, division, print_function # from scipy.stats.distributions import ksone # v1 = [] # v2 = [] # x = 0.5 # n = 100 # m = int(floor(n * (1 - x))) # for j in range(0, m+1): # a = x + float(j) / n # if a > 0 and a < 1: # b = (j - 1) / log(a) # c = (n - j) / log(1 - a) # elif a <= 0: # b = 0 # c = 0 # elif a >= 1: # b = -100 # c = 0 # v1.append(b) # v2.append(c) # from matplotlib import pylab # pylab.plot(v1) # pylab.plot(v2) # pylab.show() # exit(0) # def smirnov2(n, e): # from math import floor # assert(n > 0 and e >= 0.0 and e <= 1.0) # if e == 0.0: # return 1.0 # nn = int(floor(n * (1.0 - e))) # p = 0.0 # c = 1.0 # for v in range(0, nn+1): # evn = e + float(v) / n # aa = pow(evn, (v - 1)) # bb = pow(1.0 - evn, n - v) # p += c * aa * bb # print aa, bb, c, p # c *= float(n - v) / (v + 1) ##print v, c # return p * e def compute_lz(z): from math import sqrt, pi, exp s = sum( exp(-(2.0 * k - 1.0) ** 2 * pi ** 2 / (8.0 * z ** 2)) for k in range(1, 10000) ) return s * sqrt(2.0 * pi) / z from dials.algorithms.statistics import * from math import sqrt xx = [] scdf = [] kcdf = [] x = 0.01 # for n in range(1, 100): # s = smirnov_cdf(n, x) # k = compute_lz(x) / sqrt(n) ##k = kolmogorov_cdf(n, x) # xx.append(n) # scdf.append(s) # kcdf.append(k) n = 100 for i in range(1, 200): x = float(i) / 100.0 s = 0 # s = smirnov_cdf(n, x) k = 0 k = compute_lz(x) / sqrt(n) xx.append(x) scdf.append(s) kcdf.append(k) from matplotlib import pylab p1 = pylab.plot(xx, scdf, color="r") p2 = pylab.plot(xx, kcdf, color="b") pylab.show() ``` #### File: symmetry/cosym/test_cosym_symmetry_analysis.py ```python from __future__ import absolute_import, division, print_function from scitbx.array_family import flex from cctbx import crystal, sgtbx, uctbx import pytest def test_symmetry_analysis(): coords = flex.double( [ [0.835, 0.158], [0.772, 0.104], [0.108, 0.907], [0.058, 0.76], [0.926, 0.189], [0.221, 0.888], [0.957, 0.137], [0.958, 0.143], [-0.015, 0.726], [-0.066, 0.29], [0.135, 0.848], [0.085, 0.788], [0.897, 0.126], [0.749, 0.073], [0.166, 0.943], [0.871, 0.248], [0.116, 0.968], [0.116, 0.973], [0.706, 0.007], [0.288, -0.055], [0.137, 0.848], [0.089, 0.78], [0.893, 0.122], [0.749, 0.077], [0.165, 0.941], [0.877, 0.242], [0.114, 0.968], [0.12, 0.971], [0.716, 0.002], [0.292, -0.062], [0.841, 0.162], [0.774, 0.104], [0.1, 0.909], [0.054, 0.761], [0.927, 0.184], [0.227, 0.88], [0.957, 0.137], [0.961, 0.143], [-0.007, 0.716], [-0.061, 0.287], [0.13, 0.848], [0.084, 0.783], [0.898, 0.124], [0.749, 0.075], [0.169, 0.94], [0.871, 0.247], [0.114, 0.969], [0.12, 0.969], [0.717, 0.0], [0.296, -0.066], [0.84, 0.154], [0.776, 0.103], [0.104, 0.908], [0.057, 0.755], [0.925, 0.19], [0.227, 0.883], [0.958, 0.136], [0.962, 0.143], [-0.017, 0.724], [-0.067, 0.295], ] ) sym_ops = [ sgtbx.rt_mx(s) for s in ("-z,-y,-x", "y,z,x", "x,y,z", "-x,-z,-y", "z,x,y", "-y,-x,-z") ] crystal_symmetry = crystal.symmetry( unit_cell=uctbx.unit_cell((98.33, 98.33, 135.99, 90, 90, 120)), space_group_info=sgtbx.space_group_info("R3:H"), ).minimum_cell() from cctbx.sgtbx.lattice_symmetry import metric_subgroups subgroups = metric_subgroups( crystal_symmetry, max_delta=5, bravais_types_only=False ) cb_op_inp_min = sgtbx.change_of_basis_op() from dials.algorithms.symmetry.cosym import SymmetryAnalysis analysis = SymmetryAnalysis(coords, sym_ops, subgroups, cb_op_inp_min) assert analysis.best_solution.likelihood > 0.99 assert analysis.best_solution.confidence > 0.98 assert ( analysis.best_solution.subgroup["best_subsym"].space_group().type().number() == 148 ) # R -3 :H assert ( str(analysis) == """\ Scoring individual symmetry elements ---------------------------------------------- likelihood Z-CC CC Operator ---------------------------------------------- 0.087 1.96 0.20 2 |(0, -1, 1) 0.087 1.96 0.20 2 |(-1, 0, 1) 0.949 10.00 1.00 *** 3^-1 |(1, 1, 1) 0.087 1.96 0.20 2 |(-1, 1, 0) 0.949 10.00 1.00 *** 3 |(1, 1, 1) ---------------------------------------------- Scoring all possible sub-groups -------------------------------------------------------------------------------- Patterson group Likelihood NetZcc Zcc+ Zcc- delta Reindex operator -------------------------------------------------------------------------------- R -3 :H *** 0.995 8.04 10.00 1.96 0.0 b-c,-a+c,a+b+c P -1 0.003 -6.50 0.00 6.50 0.0 a,b,c R -3 m :H 0.001 6.50 6.50 0.00 0.0 b-c,-a+c,a+b+c C 1 2/m 1 0.000 -5.24 1.96 7.21 0.0 -a-b,a-b,c C 1 2/m 1 0.000 -5.24 1.96 7.21 0.0 -b-c,b-c,a C 1 2/m 1 0.000 -5.24 1.96 7.21 0.0 -a-c,-a+c,b -------------------------------------------------------------------------------- Best solution: R -3 :H Unit cell: (98.33, 98.33, 135.99, 90, 90, 120) Reindex operator: b-c,-a+c,a+b+c Laue group probability: 0.995 Laue group confidence: 0.994""" ) d = analysis.as_dict() assert d["sym_op_scores"][0] == { "cc": pytest.approx(0.19620531091685714), "operator": "-x,-z,-y", "likelihood": pytest.approx(0.08665625555575088), "stars": "", "z_cc": pytest.approx(1.9620531091685713), } assert d["subgroup_scores"][0] == { "confidence": pytest.approx(0.9940687431995551), "z_cc_for": pytest.approx(9.999725360190128), "stars": "***", "patterson_group": "-R 3", "max_angular_difference": 0.0, "likelihood": pytest.approx(0.995493024305035), "cb_op": "-1/3*x+2/3*y-1/3*z,-2/3*x+1/3*y+1/3*z,1/3*x+1/3*y+1/3*z", "z_cc_against": pytest.approx(1.9620621986200772), "unit_cell": pytest.approx( ( 98.32999999999998, 98.32999999999998, 135.99, 90.0, 90.0, 119.99999999999999, ) ), "z_cc_net": pytest.approx(8.037663161570052), } ``` #### File: dials/command_line/analyse_output.py ```python from __future__ import absolute_import, division, print_function import copy import errno import os import math import matplotlib import libtbx.phil from dials.array_family import flex from dials.util import show_mail_on_error # Offline backend matplotlib.use("Agg") from matplotlib import pyplot RAD2DEG = 180 / math.pi help_message = """ Generate a number of analysis plots from input integrated or indexed reflections. Examples:: dials.analyse_output indexed.refl dials.analyse_output refined.refl dials.analyse_output integrated.refl """ # Create the phil parameters phil_scope = libtbx.phil.parse( """ output { directory = . .type = str .help = "The directory to store the results" } grid_size = Auto .type = ints(size=2) pixels_per_bin = 10 .type = int(value_min=1) centroid_diff_max = None .help = "Magnitude in pixels of shifts mapped to the extreme colours" "in the heatmap plots centroid_diff_x and centroid_diff_y" .type = float .expert_level = 1 """ ) def ensure_directory(path): """ Make the directory if not already there. """ try: os.makedirs(path) except OSError as e: if e.errno != errno.EEXIST: raise def ensure_required(rlist, required): """ Check which keys aren't present. """ not_present = [] for k in required: if k not in rlist: not_present.append(k) if len(not_present) != 0: print(" Skipping: following required fields not present:") for k in not_present: print(" %s" % k) return False return True def determine_grid_size(rlist, grid_size=None): from libtbx import Auto panel_ids = rlist["panel"] n_panels = flex.max(panel_ids) + 1 if grid_size is not None and grid_size is not Auto: assert (grid_size[0] * grid_size[1]) >= n_panels, n_panels return grid_size n_cols = int(math.floor(math.sqrt(n_panels))) n_rows = int(math.ceil(n_panels / n_cols)) return n_cols, n_rows class per_panel_plot(object): title = None filename = None cbar_ylabel = None xlabel = "x" ylabel = "y" def __init__(self, rlist, directory, grid_size=None, pixels_per_bin=10): min_x, max_x, min_y, max_y = self.get_min_max_xy(rlist) panel_ids = rlist["panel"] crystal_ids = rlist["id"] n_crystals = flex.max(crystal_ids) + 1 n_panels = flex.max(panel_ids) + 1 n_cols, n_rows = determine_grid_size(rlist, grid_size=grid_size) for i_crystal in range(n_crystals): crystal_sel = crystal_ids == i_crystal fig, axes = pyplot.subplots(n_rows, n_cols, squeeze=False) self.gridsize = tuple( int(math.ceil(i)) for i in (max_x / pixels_per_bin, max_y / pixels_per_bin) ) clim = (1e8, 1e-8) plots = [] i_panel = 0 for i_row in range(n_rows): for i_col in range(n_cols): panel_sel = panel_ids == i_panel sel = panel_sel & crystal_sel i_panel += 1 if n_panels > 1: axes[i_row][i_col].set_title("Panel %d" % i_panel) axes[i_row][i_col].set_title("Panel %d" % i_panel) if (i_row + 1) == n_rows: axes[i_row][i_col].set_xlabel(self.xlabel) else: pyplot.setp(axes[i_row][i_col].get_xticklabels(), visible=False) if i_col == 0: axes[i_row][i_col].set_ylabel(self.ylabel) else: pyplot.setp(axes[i_row][i_col].get_yticklabels(), visible=False) if sel.count(True) > 0: rlist_sel = rlist.select(sel) if len(rlist_sel) <= 1: ax = pyplot.scatter([], []) # create empty plot else: ax = self.plot_one_panel(axes[i_row][i_col], rlist_sel) clim = ( min(clim[0], ax.get_clim()[0]), max(clim[1], ax.get_clim()[1]), ) plots.append(ax) axes[i_row][i_col].set_xlim(min_x, max_x) axes[i_row][i_col].set_ylim(min_y, max_y) axes[i_row][i_col].axes.set_aspect("equal") axes[i_row][i_col].invert_yaxis() for p in plots: p.set_clim(clim) default_size = fig.get_size_inches() if self.cbar_ylabel is not None and (n_cols, n_rows) == (1, 24): fig.set_size_inches( (n_cols * default_size[0], 0.15 * n_rows * default_size[1]) ) elif self.cbar_ylabel is not None and (n_cols, n_rows) == (5, 24): fig.set_size_inches( (n_cols * default_size[0], 0.5 * n_rows * default_size[1]) ) else: fig.set_size_inches( (n_cols * default_size[0], n_rows * default_size[1]) ) # pyplot.tight_layout() if self.cbar_ylabel is not None: cax = fig.add_axes([0.9, 0.1, 0.03, 0.8]) for ax in plots: try: cbar = fig.colorbar(ax, cax=cax) cbar.ax.set_ylabel(self.cbar_ylabel, fontsize=n_cols * 10) cbar.ax.tick_params(labelsize=n_cols * 8) except Exception: continue else: break if 1 and (n_cols, n_rows) == (1, 24): fig.subplots_adjust(hspace=0.1 / (n_rows), right=0.8) elif n_panels > 1: fig.subplots_adjust(hspace=0.1 / n_rows, right=0.8) if self.title is not None: fig.suptitle(self.title, fontsize=n_cols * 12) fig.savefig(os.path.join(directory, self.filename)) fig.set_size_inches(default_size) pyplot.close() def get_min_max_xy(self, rlist): xc, yc, zc = rlist["xyzcal.px"].parts() xo, yo, zo = rlist["xyzobs.px.value"].parts() min_x = math.floor(min(flex.min(xc), flex.min(xo))) min_y = math.floor(min(flex.min(yc), flex.min(yo))) max_x = math.ceil(max(flex.max(xc), flex.max(xo))) max_y = math.ceil(max(flex.max(yc), flex.max(yo))) return min_x, max_x, min_y, max_y def plot_one_panel(self, ax, rlist): raise NotImplementedError() class StrongSpotsAnalyser(object): """ Analyse a list of strong spots. """ def __init__(self, directory): """ Setup the directory. """ # Set the directory self.directory = os.path.join(directory, "strong") ensure_directory(self.directory) # Set the required fields self.required = ["xyzobs.px.value", "panel"] def __call__(self, rlist): """ Analyse the strong spots. """ from dials.util.command_line import Command # Check we have the required fields print("Analysing strong spots") if not ensure_required(rlist, self.required): return # Remove I_sigma <= 0 selection = rlist["intensity.sum.variance"] <= 0 if selection.count(True) > 0: rlist.del_selected(selection) print(" Removing %d reflections with variance <= 0" % selection.count(True)) if "flags" in rlist: # Select only strong reflections Command.start(" Selecting only strong reflections") mask = rlist.get_flags(rlist.flags.strong) if mask.count(True) > 0: rlist = rlist.select(mask) Command.end(" Selected %d strong reflections" % len(rlist)) # Look at distribution of spot counts self.spot_count_per_image(rlist) self.spot_count_per_panel(rlist) def spot_count_per_image(self, rlist): """ Analyse the spot count per image. """ x, y, z = rlist["xyzobs.px.value"].parts() max_z = int(math.ceil(flex.max(z))) ids = rlist["id"] spot_count_per_image = [] for j in range(flex.max(ids) + 1): spot_count_per_image.append(flex.int()) zsel = z.select(ids == j) for i in range(max_z): sel = (zsel >= i) & (zsel < (i + 1)) spot_count_per_image[j].append(sel.count(True)) colours = ["blue", "red", "green", "orange", "purple", "black"] * 10 assert len(spot_count_per_image) <= colours fig = pyplot.figure() ax = fig.add_subplot(111) ax.set_title("Spot count per image") for j in range(len(spot_count_per_image)): ax.scatter( list(range(len(spot_count_per_image[j]))), spot_count_per_image[j], s=5, color=colours[j], marker="o", alpha=0.4, ) ax.set_xlabel("Image #") ax.set_ylabel("# spots") pyplot.savefig(os.path.join(self.directory, "spots_per_image.png")) pyplot.close() def spot_count_per_panel(self, rlist): """ Analyse the spot count per panel. """ panel = rlist["panel"] if flex.max(panel) == 0: # only one panel, don't bother generating a plot return n_panels = int(flex.max(panel)) spot_count_per_panel = flex.int() for i in range(n_panels): sel = (panel >= i) & (panel < (i + 1)) spot_count_per_panel.append(sel.count(True)) fig = pyplot.figure() ax = fig.add_subplot(111) ax.set_title("Spot count per panel") ax.scatter( list(range(len(spot_count_per_panel))), spot_count_per_panel, s=10, color="blue", marker="o", alpha=0.4, ) ax.set_xlabel("Panel #") ax.set_ylabel("# spots") pyplot.savefig(os.path.join(self.directory, "spots_per_panel.png")) pyplot.close() class CentroidAnalyser(object): """ Analyse the reflection centroids. """ def __init__( self, directory, grid_size=None, pixels_per_bin=10, centroid_diff_max=1.5 ): """ Setup the directory. """ # Set the directory self.directory = os.path.join(directory, "centroid") ensure_directory(self.directory) self.grid_size = grid_size self.pixels_per_bin = pixels_per_bin self.centroid_diff_max = centroid_diff_max # Set the required fields self.required = [ "intensity.sum.value", "intensity.sum.variance", "xyzcal.px", "xyzobs.px.value", "xyzcal.mm", "xyzobs.mm.value", ] def __call__(self, rlist): """ Analyse the reflection centroids. """ from dials.util.command_line import Command # Check we have the required fields print("Analysing reflection centroids") if not ensure_required(rlist, self.required): return # Remove I_sigma <= 0 selection = rlist["intensity.sum.variance"] <= 0 if selection.count(True) > 0: rlist.del_selected(selection) print(" Removing %d reflections with variance <= 0" % selection.count(True)) # Remove partial reflections as their observed centroids won't be accurate if "partiality" in rlist: selection = rlist["partiality"] < 0.99 if selection.count(True) > 0 and selection.count(True) < selection.size(): rlist.del_selected(selection) print(" Removing %d partial reflections" % selection.count(True)) # Select only integrated reflections Command.start(" Selecting only summation-integated reflections") mask = rlist.get_flags(rlist.flags.integrated_sum) if mask.count(True) > 0: threshold = 10 rlist = rlist.select(mask) Command.end(" Selected %d summation-integrated reflections" % len(rlist)) else: # Select only those reflections used in refinement threshold = 0 mask = rlist.get_flags(rlist.flags.used_in_refinement) rlist = rlist.select(mask) Command.end(" Selected %d refined reflections" % len(rlist)) # Look at differences in calculated/observed position print(" Analysing centroid differences with I/Sigma > %s" % threshold) self.centroid_diff_hist(rlist, threshold) print(" Analysing centroid differences in x/y with I/Sigma > %s" % threshold) self.centroid_diff_xy(rlist, threshold) self.centroid_xy_xz_zy_residuals(rlist, threshold) print(" Analysing centroid differences in z with I/Sigma > %s" % threshold) self.centroid_diff_z(rlist, threshold) print(" Analysing centroid differences vs phi with I/Sigma > %s" % threshold) self.centroid_mean_diff_vs_phi(rlist, threshold) def centroid_diff_hist(self, rlist, threshold): """ Analyse the correlations. """ I = rlist["intensity.sum.value"] I_sig = flex.sqrt(rlist["intensity.sum.variance"]) I_over_S = I / I_sig mask = I_over_S > threshold rlist = rlist.select(mask) assert len(rlist) > 0 xc, yc, zc = rlist["xyzcal.px"].parts() xo, yo, zo = rlist["xyzobs.px.value"].parts() xd = xo - xc yd = yo - yc zd = zo - zc diff = flex.sqrt(xd * xd + yd * yd + zd * zd) fig = pyplot.figure() pyplot.title("Difference between observed and calculated") pyplot.hist(diff, bins=20) pyplot.xlabel("Difference in position (pixels)") pyplot.ylabel("# reflections") fig.savefig(os.path.join(self.directory, "centroid_diff_hist.png")) pyplot.close() def centroid_diff_xy(self, rlist, threshold): """ Look at the centroid difference in x, y """ I = rlist["intensity.sum.value"] I_sig = flex.sqrt(rlist["intensity.sum.variance"]) I_over_S = I / I_sig mask = I_over_S > threshold rlist = rlist.select(mask) assert len(rlist) > 0 class diff_x_plot(per_panel_plot): def __init__(self, *args, **kwargs): self.title = "Difference between observed and calculated in X" self.filename = "centroid_diff_x.png" self.cbar_ylabel = "Difference in x position (pixels)" self.centroid_diff_max = kwargs.pop("centroid_diff_max", None) super(diff_x_plot, self).__init__(*args, **kwargs) def plot_one_panel(self, ax, rlist): xc, yc, zc = rlist["xyzcal.px"].parts() xo, yo, zo = rlist["xyzobs.px.value"].parts() xd = xo - xc if self.centroid_diff_max is None: self.centroid_diff_max = max(abs(xd)) hex_ax = ax.hexbin( xc.as_numpy_array(), yc.as_numpy_array(), C=xd.as_numpy_array(), gridsize=self.gridsize, vmin=-1.0 * self.centroid_diff_max, vmax=self.centroid_diff_max, ) return hex_ax class diff_y_plot(per_panel_plot): def __init__(self, *args, **kwargs): self.title = "Difference between observed and calculated in Y" self.filename = "centroid_diff_y.png" self.cbar_ylabel = "Difference in y position (pixels)" self.centroid_diff_max = kwargs.pop("centroid_diff_max", None) super(diff_y_plot, self).__init__(*args, **kwargs) def plot_one_panel(self, ax, rlist): xc, yc, zc = rlist["xyzcal.px"].parts() xo, yo, zo = rlist["xyzobs.px.value"].parts() yd = yo - yc if self.centroid_diff_max is None: self.centroid_diff_max = max(abs(yd)) hex_ax = ax.hexbin( xc.as_numpy_array(), yc.as_numpy_array(), C=yd.as_numpy_array(), gridsize=self.gridsize, vmin=-1.0 * self.centroid_diff_max, vmax=self.centroid_diff_max, ) return hex_ax diff_x_plot( rlist, self.directory, grid_size=self.grid_size, pixels_per_bin=self.pixels_per_bin, centroid_diff_max=self.centroid_diff_max, ) diff_y_plot( rlist, self.directory, grid_size=self.grid_size, pixels_per_bin=self.pixels_per_bin, centroid_diff_max=self.centroid_diff_max, ) def centroid_diff_z(self, rlist, threshold): """ Look at the centroid difference in x, y """ I = rlist["intensity.sum.value"] I_sig = flex.sqrt(rlist["intensity.sum.variance"]) I_over_S = I / I_sig mask = I_over_S > threshold rlist = rlist.select(mask) assert len(rlist) > 0 xc, yc, zc = rlist["xyzcal.px"].parts() xo, yo, zo = rlist["xyzobs.px.value"].parts() zd = zo - zc fig = pyplot.figure() pyplot.title("Difference between observed and calculated in Z") cax = pyplot.hexbin(zc, zd, gridsize=100) cax.axes.set_xlabel("z (images)") cax.axes.set_ylabel("Difference in z position") cbar = pyplot.colorbar(cax) cbar.ax.set_ylabel("# Reflections") fig.savefig(os.path.join(self.directory, "centroid_diff_z.png")) pyplot.close() def centroid_mean_diff_vs_phi(self, rlist, threshold): I = rlist["intensity.sum.value"] I_sig = flex.sqrt(rlist["intensity.sum.variance"]) I_over_S = I / I_sig mask = I_over_S > threshold rlist = rlist.select(mask) assert len(rlist) > 0 xc, yc, zc = rlist["xyzcal.mm"].parts() xo, yo, zo = rlist["xyzobs.mm.value"].parts() dx = xc - xo dy = yc - yo dphi = (zc - zo) * RAD2DEG mean_residuals_x = flex.double() mean_residuals_y = flex.double() mean_residuals_phi = flex.double() rmsd_x = flex.double() rmsd_y = flex.double() rmsd_phi = flex.double() phi_obs_deg = RAD2DEG * zo phi = [] for i_phi in range( int(math.floor(flex.min(phi_obs_deg))), int(math.ceil(flex.max(phi_obs_deg))), ): sel = (phi_obs_deg >= i_phi) & (phi_obs_deg < (i_phi + 1)) if sel.count(True) == 0: continue mean_residuals_x.append(flex.mean(dx.select(sel))) mean_residuals_y.append(flex.mean(dy.select(sel))) mean_residuals_phi.append(flex.mean(dphi.select(sel))) rmsd_x.append(math.sqrt(flex.mean_sq(dx.select(sel)))) rmsd_y.append(math.sqrt(flex.mean_sq(dy.select(sel)))) rmsd_phi.append(math.sqrt(flex.mean_sq(dphi.select(sel)))) phi.append(i_phi) fig = pyplot.figure() ax = fig.add_subplot(311) # fig.subplots_adjust(hspace=0.5) pyplot.axhline(0, color="grey") ax.scatter(phi, mean_residuals_x) ax.set_xlabel("phi (deg)") ax.set_ylabel(r"mean $\Delta$ x (mm)") ax = fig.add_subplot(312) pyplot.axhline(0, color="grey") ax.scatter(phi, mean_residuals_y) ax.set_xlabel("phi (deg)") ax.set_ylabel(r"mean $\Delta$ y (mm)") ax = fig.add_subplot(313) pyplot.axhline(0, color="grey") ax.scatter(phi, mean_residuals_phi) ax.set_xlabel("phi (deg)") ax.set_ylabel(r"mean $\Delta$ phi (deg)") pyplot.savefig(os.path.join(self.directory, "centroid_mean_diff_vs_phi.png")) pyplot.close() fig = pyplot.figure() ax = fig.add_subplot(311) # fig.subplots_adjust(hspace=0.5) pyplot.axhline(flex.mean(rmsd_x), color="grey") ax.scatter(phi, rmsd_x) ax.set_xlabel("phi (deg)") ax.set_ylabel("rmsd x (mm)") ax = fig.add_subplot(312) pyplot.axhline(flex.mean(rmsd_y), color="grey") ax.scatter(phi, rmsd_y) ax.set_xlabel("phi (deg)") ax.set_ylabel("rmsd y (mm)") ax = fig.add_subplot(313) pyplot.axhline(flex.mean(rmsd_phi), color="grey") ax.scatter(phi, rmsd_phi) ax.set_xlabel("phi (deg)") ax.set_ylabel("rmsd phi (deg)") pyplot.savefig(os.path.join(self.directory, "centroid_rmsd_vs_phi.png")) pyplot.close() def centroid_xy_xz_zy_residuals(self, rlist, threshold): I = rlist["intensity.sum.value"] I_sig = flex.sqrt(rlist["intensity.sum.variance"]) I_over_S = I / I_sig mask = I_over_S > threshold rlist = rlist.select(mask) assert len(rlist) > 0 class residuals_xy_plot(per_panel_plot): title = "Centroid residuals in X and Y" filename = "centroid_xy_residuals.png" cbar_ylabel = None xlabel = "X (pixels)" ylabel = "Y (pixels)" def plot_one_panel(self, ax, rlist): xc, yc, zc = rlist["xyzcal.px"].parts() xo, yo, zo = rlist["xyzobs.px.value"].parts() dx = xc - xo dy = yc - yo ax.axhline(0, color="grey") ax.axvline(0, color="grey") ax_xy = ax.scatter( dx.as_numpy_array(), dy.as_numpy_array(), c="b", alpha=0.3 ) ax.set_aspect("equal") return ax_xy def get_min_max_xy(self, rlist): xc, yc, zc = rlist["xyzcal.px"].parts() xo, yo, zo = rlist["xyzobs.px.value"].parts() dx = xc - xo dy = yc - yo min_x = math.floor(flex.min(dx)) min_y = math.floor(flex.min(dy)) max_x = math.ceil(flex.max(dx)) max_y = math.ceil(flex.max(dy)) return min_x, max_x, min_y, max_y class residuals_zy_plot(per_panel_plot): title = "Centroid residuals in Z and Y" filename = "centroid_zy_residuals.png" cbar_ylabel = None xlabel = "Z (images)" ylabel = "Y (pixels)" def plot_one_panel(self, ax, rlist): xc, yc, zc = rlist["xyzcal.px"].parts() xo, yo, zo = rlist["xyzobs.px.value"].parts() dy = yc - yo dz = zc - zo ax.axhline(0, color="grey") ax.axvline(0, color="grey") ax_zy = ax.scatter( dz.as_numpy_array(), dy.as_numpy_array(), c="b", alpha=0.3 ) ax.set_aspect("equal") return ax_zy def get_min_max_xy(self, rlist): _, yc, zc = rlist["xyzcal.px"].parts() _, yo, zo = rlist["xyzobs.px.value"].parts() dy = yc - yo dz = zc - zo min_x = math.floor(flex.min(dz)) min_y = math.floor(flex.min(dy)) max_x = math.ceil(flex.max(dz)) max_y = math.ceil(flex.max(dy)) return min_x, max_x, min_y, max_y class residuals_xz_plot(per_panel_plot): title = "Centroid residuals in X and Z" filename = "centroid_xz_residuals.png" cbar_ylabel = None xlabel = "X (pixels)" ylabel = "Z (images)" def plot_one_panel(self, ax, rlist): xc, yc, zc = rlist["xyzcal.px"].parts() xo, yo, zo = rlist["xyzobs.px.value"].parts() dx = xc - xo dz = zc - zo ax.axhline(0, color="grey") ax.axvline(0, color="grey") ax_xz = ax.scatter( dx.as_numpy_array(), dz.as_numpy_array(), c="b", alpha=0.3 ) ax.set_aspect("equal") return ax_xz def get_min_max_xy(self, rlist): xc, yc, zc = rlist["xyzcal.px"].parts() xo, yo, zo = rlist["xyzobs.px.value"].parts() dx = xc - xo dz = zc - zo min_x = math.floor(flex.min(dx)) min_y = math.floor(flex.min(dz)) max_x = math.ceil(flex.max(dx)) max_y = math.ceil(flex.max(dz)) return min_x, max_x, min_y, max_y residuals_xy_plot(rlist, self.directory, grid_size=self.grid_size) residuals_zy_plot(rlist, self.directory, grid_size=self.grid_size) residuals_xz_plot(rlist, self.directory, grid_size=self.grid_size) class BackgroundAnalyser(object): """ Analyse the background. """ def __init__(self, directory, grid_size=None, pixels_per_bin=10): """ Setup the directory. """ # Set the directory self.directory = os.path.join(directory, "background") ensure_directory(self.directory) self.grid_size = grid_size self.pixels_per_bin = pixels_per_bin # Set the required fields self.required = [ "background.mse", "background.mean", "intensity.sum.value", "intensity.sum.variance", "xyzcal.px", ] def __call__(self, rlist): """ Analyse the relfection background. """ from dials.util.command_line import Command # Check we have the required fields print("Analysing reflection backgrounds") if not ensure_required(rlist, self.required): return selection = rlist["intensity.sum.variance"] <= 0 if selection.count(True) > 0: rlist.del_selected(selection) print(" Removing %d reflections with variance <= 0" % selection.count(True)) selection = rlist["background.mse"] < 0 if selection.count(True) > 0: rlist.del_selected(selection) print( " Removing %d reflections with negative background model RMSD" % selection.count(True) ) selection = rlist["background.mean"] <= 0 if selection.count(True) > 0: rlist.del_selected(selection) print( " Removing %d reflections with mean background <= 0" % selection.count(True) ) # Select only integrated reflections Command.start(" Selecting only integated reflections") mask = rlist.get_flags(rlist.flags.integrated) if mask.count(True) == 0: return rlist = rlist.select(mask) Command.end(" Selected %d integrated reflections" % len(rlist)) # Look at distribution of I/Sigma print(" Analysing distribution of background mean") self.mean_hist(rlist) print(" Analysing distribution of background mean vs XY") self.mean_vs_xy(rlist) print(" Analysing distribution of background mean vs z") self.mean_vs_z(rlist) print(" Analysing distribution of background mean vs I/Sigma") self.mean_vs_ios(rlist) print(" Analysing distribution of background CVRMSD") self.rmsd_hist(rlist) print(" Analysing distribution of background CVRMSD vs XY") self.rmsd_vs_xy(rlist) print(" Analysing distribution of background CVRMSD vs z") self.rmsd_vs_z(rlist) print(" Analysing distribution of background CVRMSD vs I/Sigma") self.rmsd_vs_ios(rlist) def mean_hist(self, rlist): """ Analyse the background RMSD. """ MEAN = rlist["background.mean"] fig = pyplot.figure() pyplot.title("Background Model mean histogram") pyplot.hist(MEAN, bins=20) pyplot.xlabel("mean") pyplot.ylabel("# reflections") fig.savefig(os.path.join(self.directory, "background_model_mean_hist")) pyplot.close() def mean_vs_xy(self, rlist): """ Plot I/Sigma vs X/Y """ class mean_vs_xy_plot(per_panel_plot): title = "Distribution of Background Model mean vs X/Y" filename = "background_model_mean_vs_xy.png" cbar_ylabel = "Background Model mean" def plot_one_panel(self, ax, rlist): MEAN = rlist["background.mean"] x, y, z = rlist["xyzcal.px"].parts() hex_ax = ax.hexbin( x.as_numpy_array(), y.as_numpy_array(), C=MEAN.as_numpy_array(), gridsize=self.gridsize, vmin=0, vmax=1, ) return hex_ax mean_vs_xy_plot( rlist, self.directory, grid_size=self.grid_size, pixels_per_bin=self.pixels_per_bin, ) def mean_vs_z(self, rlist): """ Plot I/Sigma vs Z. """ MEAN = rlist["background.mean"] x, y, z = rlist["xyzcal.px"].parts() fig = pyplot.figure() pyplot.title("Distribution of Background Model mean vs Z") cax = pyplot.hexbin(z, MEAN, gridsize=100) cax.axes.set_xlabel("z (images)") cax.axes.set_ylabel("Background Model mean") cbar = pyplot.colorbar(cax) cbar.ax.set_ylabel("# reflections") fig.savefig(os.path.join(self.directory, "background_model_mean_vs_z.png")) pyplot.close() def mean_vs_ios(self, rlist): """ Analyse the correlations. """ MEAN = rlist["background.mean"] I = rlist["intensity.sum.value"] I_sig = flex.sqrt(rlist["intensity.sum.variance"]) I_over_S = I / I_sig mask = I_over_S > 0.1 I_over_S = I_over_S.select(mask) MEAN = MEAN.select(mask) fig = pyplot.figure() pyplot.title("Background Model mean vs Log I/Sigma") cax = pyplot.hexbin(flex.log(I_over_S), MEAN, gridsize=100) cbar = pyplot.colorbar(cax) cax.axes.set_xlabel("Log I/Sigma") cax.axes.set_ylabel("Background Model mean") cbar.ax.set_ylabel("# reflections") fig.savefig(os.path.join(self.directory, "background_model_mean_vs_ios.png")) pyplot.close() def rmsd_hist(self, rlist): """ Analyse the background RMSD. """ RMSD = flex.sqrt(rlist["background.mse"]) MEAN = rlist["background.mean"] RMSD = RMSD / MEAN fig = pyplot.figure() pyplot.title("Background Model mean histogram") pyplot.hist(RMSD, bins=20) pyplot.xlabel("mean") pyplot.ylabel("# reflections") fig.savefig(os.path.join(self.directory, "background_model_cvrmsd_hist")) pyplot.close() def rmsd_vs_xy(self, rlist): """ Plot I/Sigma vs X/Y """ class rmsd_vs_xy_plot(per_panel_plot): title = "Distribution of Background Model CVRMSD vs X/Y" filename = "background_model_cvrmsd_vs_xy.png" cbar_ylabel = "Background Model CVRMSD" def plot_one_panel(self, ax, rlist): RMSD = flex.sqrt(rlist["background.mse"]) MEAN = rlist["background.mean"] RMSD = RMSD / MEAN x, y, z = rlist["xyzcal.px"].parts() hex_ax = ax.hexbin( x.as_numpy_array(), y.as_numpy_array(), C=RMSD.as_numpy_array(), gridsize=self.gridsize, vmin=0, vmax=1, ) return hex_ax rmsd_vs_xy_plot( rlist, self.directory, grid_size=self.grid_size, pixels_per_bin=self.pixels_per_bin, ) def rmsd_vs_z(self, rlist): """ Plot I/Sigma vs Z. """ RMSD = flex.sqrt(rlist["background.mse"]) MEAN = rlist["background.mean"] RMSD = RMSD / MEAN x, y, z = rlist["xyzcal.px"].parts() fig = pyplot.figure() pyplot.title("Distribution of Background Model CVRMSD vs Z") cax = pyplot.hexbin(z, RMSD, gridsize=100) cax.axes.set_xlabel("z (images)") cax.axes.set_ylabel("Background Model CVRMSD") cbar = pyplot.colorbar(cax) cbar.ax.set_ylabel("# reflections") fig.savefig(os.path.join(self.directory, "background_model_cvrmsd_vs_z.png")) pyplot.close() def rmsd_vs_ios(self, rlist): """ Analyse the correlations. """ RMSD = flex.sqrt(rlist["background.mse"]) MEAN = rlist["background.mean"] RMSD = RMSD / MEAN I = rlist["intensity.sum.value"] I_sig = flex.sqrt(rlist["intensity.sum.variance"]) I_over_S = I / I_sig mask = I_over_S > 0.1 I_over_S = I_over_S.select(mask) RMSD = RMSD.select(mask) fig = pyplot.figure() pyplot.title("Background Model CVRMSD vs Log I/Sigma") cax = pyplot.hexbin(flex.log(I_over_S), RMSD, gridsize=100) cbar = pyplot.colorbar(cax) cax.axes.set_xlabel("Log I/Sigma") cax.axes.set_ylabel("Background Model CVRMSD") cbar.ax.set_ylabel("# reflections") fig.savefig(os.path.join(self.directory, "background_model_cvrmsd_vs_ios.png")) pyplot.close() class IntensityAnalyser(object): """ Analyse the intensities. """ def __init__(self, directory, grid_size=None, pixels_per_bin=10): """ Set up the directory. """ # Set the directory self.directory = os.path.join(directory, "intensity") ensure_directory(self.directory) self.grid_size = grid_size self.pixels_per_bin = pixels_per_bin # Set the required fields self.required = ["intensity.sum.value", "intensity.sum.variance", "xyzcal.px"] def __call__(self, rlist): """ Analyse the reflection centroids. """ from dials.util.command_line import Command # FIXME Do the same and a comparison for intensity.prf # Check we have the required fields print("Analysing reflection intensities") if not ensure_required(rlist, self.required): return selection = rlist["intensity.sum.variance"] <= 0 if selection.count(True) > 0: rlist.del_selected(selection) print(" Removing %d reflections with variance <= 0" % selection.count(True)) selection = rlist["intensity.sum.value"] <= 0 if selection.count(True) > 0: rlist.del_selected(selection) print( " Removing %d reflections with intensity <= 0" % selection.count(True) ) # Select only integrated reflections Command.start(" Selecting only integated reflections") mask = rlist.get_flags(rlist.flags.integrated) if mask.count(True) == 0: return rlist = rlist.select(mask) Command.end(" Selected %d integrated reflections" % len(rlist)) # Look at distribution of I/Sigma print(" Analysing distribution of I/Sigma") self.i_over_s_hist(rlist) print(" Analysing distribution of I/Sigma vs xy") self.i_over_s_vs_xy(rlist, "sum") print(" Analysing distribution of I/Sigma vs xy") self.i_over_s_vs_xy(rlist, "prf") print(" Analysing distribution of I/Sigma vs z") self.i_over_s_vs_z(rlist) print(" Analysing number of background pixels used") self.num_background_hist(rlist) print(" Analysing number of foreground pixels used") self.num_foreground_hist(rlist) def i_over_s_hist(self, rlist): """ Analyse the correlations. """ I = rlist["intensity.sum.value"] I_sig = flex.sqrt(rlist["intensity.sum.variance"]) I_over_S = I / I_sig fig = pyplot.figure() pyplot.title("Log I/Sigma histogram") pyplot.hist(flex.log(I_over_S), bins=20) pyplot.xlabel("Log I/Sigma") pyplot.ylabel("# reflections") fig.savefig(os.path.join(self.directory, "ioversigma_hist")) pyplot.close() def i_over_s_vs_xy(self, rlist, intensity_type): """ Plot I/Sigma vs X/Y """ class i_over_s_vs_xy_plot(per_panel_plot): title = "Distribution of I/Sigma vs X/Y" filename = "ioversigma_%s_vs_xy.png" % intensity_type cbar_ylabel = "Log I/Sigma" def plot_one_panel(self, ax, rlist): I_sig = flex.sqrt(rlist["intensity.%s.variance" % intensity_type]) sel = I_sig > 0 rlist = rlist.select(sel) I_sig = I_sig.select(sel) I = rlist["intensity.%s.value" % intensity_type] I_over_S = I / I_sig x, y, z = rlist["xyzcal.px"].parts() hex_ax = ax.hexbin( x.as_numpy_array(), y.as_numpy_array(), C=flex.log(I_over_S), gridsize=self.gridsize, ) return hex_ax i_over_s_vs_xy_plot( rlist, self.directory, grid_size=self.grid_size, pixels_per_bin=self.pixels_per_bin, ) def i_over_s_vs_z(self, rlist): """ Plot I/Sigma vs Z. """ I = rlist["intensity.sum.value"] I_sig = flex.sqrt(rlist["intensity.sum.variance"]) I_over_S = I / I_sig x, y, z = rlist["xyzcal.px"].parts() fig = pyplot.figure() pyplot.title("Distribution of I/Sigma vs Z") cax = pyplot.hexbin(z, flex.log(I_over_S), gridsize=100) cax.axes.set_xlabel("z (images)") cax.axes.set_ylabel("Log I/Sigma") cbar = pyplot.colorbar(cax) cbar.ax.set_ylabel("# reflections") fig.savefig(os.path.join(self.directory, "ioversigma_vs_z.png")) pyplot.close() def num_background_hist(self, rlist): """ Analyse the number of background pixels. """ if "n_background" in rlist: N = rlist["n_background"] fig = pyplot.figure() pyplot.title("Num Background Pixel Histogram") pyplot.hist(N, bins=20) pyplot.xlabel("Number of pixels") pyplot.ylabel("# reflections") fig.savefig(os.path.join(self.directory, "n_background_hist.png")) pyplot.close() def num_foreground_hist(self, rlist): """ Analyse the number of foreground pixels. """ if "n_foreground" in rlist: N = rlist["n_foreground"] fig = pyplot.figure() pyplot.title("Num Foreground Pixel Histogram") pyplot.hist(N, bins=20) pyplot.xlabel("Number of pixels") pyplot.ylabel("# reflections") fig.savefig(os.path.join(self.directory, "n_foreground_hist.png")) pyplot.close() class ReferenceProfileAnalyser(object): """ Analyse the reference profiles. """ def __init__(self, directory, grid_size=None, pixels_per_bin=10): """ Set up the directory. """ # Set the directory self.directory = os.path.join(directory, "reference") ensure_directory(self.directory) self.grid_size = grid_size self.pixels_per_bin = pixels_per_bin # Set the required fields self.required = [ "intensity.prf.value", "intensity.prf.variance", "xyzcal.px", "profile.correlation", ] def __call__(self, rlist): """ Analyse the reference profiles. """ from dials.util.command_line import Command # Check we have the required fields print("Analysing reference profiles") if not ensure_required(rlist, self.required): return # Select only integrated reflections Command.start(" Selecting only integated reflections") mask = rlist.get_flags(rlist.flags.integrated) if mask.count(True) == 0: return rlist = rlist.select(mask) Command.end(" Selected %d integrated reflections" % len(rlist)) # Analyse distribution of reference spots print(" Analysing reference profile distribution vs x/y") self.reference_xy(rlist) print(" Analysing reference profile distribution vs z") self.reference_z(rlist) # Look at correlations between profiles def ideal_correlations(filename, rlist): """ Call for reference spots and all reflections. """ print(" Analysing reflection profile correlations") self.ideal_reflection_corr_hist(rlist, filename) print(" Analysing reflection profile correlations vs x/y") self.ideal_reflection_corr_vs_xy(rlist, filename) print(" Analysing reflection profile correlations vs z") self.ideal_reflection_corr_vs_z(rlist, filename) print(" Analysing reflection profile correlations vs I/Sigma") self.ideal_reflection_corr_vs_ios(rlist, filename) # Look at correlations between profiles def correlations(filename, rlist): """ Call for reference spots and all reflections. """ print(" Analysing reflection profile correlations") self.reflection_corr_hist(rlist, filename) print(" Analysing reflection profile correlations vs x/y") self.reflection_corr_vs_xy(rlist, filename) print(" Analysing reflection profile correlations vs z") self.reflection_corr_vs_z(rlist, filename) print(" Analysing reflection profile correlations vs I/Sigma") self.reflection_corr_vs_ios(rlist, filename) mask = rlist.get_flags(rlist.flags.reference_spot) correlations("reference", rlist.select(mask)) correlations("reflection", rlist) ideal_correlations("reference", rlist.select(mask)) ideal_correlations("reflection", rlist) def reference_xy(self, rlist): """ Analyse the distribution of reference profiles. """ mask = rlist.get_flags(rlist.flags.reference_spot) rlist = rlist.select(mask) class reference_xy_plot(per_panel_plot): title = "Reference profiles binned in X/Y" filename = "reference_xy.png" cbar_ylabel = "# reflections" def plot_one_panel(self, ax, rlist): x, y, z = rlist["xyzcal.px"].parts() hex_ax = ax.hexbin( x.as_numpy_array(), y.as_numpy_array(), gridsize=self.gridsize ) return hex_ax reference_xy_plot( rlist, self.directory, grid_size=self.grid_size, pixels_per_bin=self.pixels_per_bin, ) def reference_z(self, rlist): """ Analyse the distribution of reference profiles. """ x, y, z = rlist["xyzcal.px"].parts() fig = pyplot.figure() pyplot.title("Reference profiles binned in Z") pyplot.hist(z, bins=20) pyplot.xlabel("z (images)") pyplot.ylabel("# reflections") fig.savefig(os.path.join(self.directory, "reference_z.png")) pyplot.close() def reflection_corr_hist(self, rlist, filename): """ Analyse the correlations. """ corr = rlist["profile.correlation"] fig = pyplot.figure() pyplot.title("Reflection correlations histogram") pyplot.hist(corr, bins=20) pyplot.xlabel("Correlation with reference profile") pyplot.ylabel("# reflections") fig.savefig(os.path.join(self.directory, "%s_corr_hist" % filename)) pyplot.close() def reflection_corr_vs_xy(self, rlist, filename): """ Analyse the correlations. """ tmp_filename = filename class corr_vs_xy_plot(per_panel_plot): title = "Reflection correlations binned in X/Y" filename = "%s_corr_vs_xy.png" % tmp_filename cbar_ylabel = "Correlation with reference profile" def plot_one_panel(self, ax, rlist): corr = rlist["profile.correlation"] x, y, z = rlist["xyzcal.px"].parts() hex_ax = ax.hexbin( x.as_numpy_array(), y.as_numpy_array(), C=corr.as_numpy_array(), gridsize=self.gridsize, vmin=0, vmax=1, ) return hex_ax corr_vs_xy_plot( rlist, self.directory, grid_size=self.grid_size, pixels_per_bin=self.pixels_per_bin, ) def reflection_corr_vs_z(self, rlist, filename): """ Analyse the correlations. """ corr = rlist["profile.correlation"] x, y, z = rlist["xyzcal.px"].parts() fig = pyplot.figure() pyplot.title("Reflection correlations vs Z") cax = pyplot.hexbin(z, corr, gridsize=100) cbar = pyplot.colorbar(cax) cax.axes.set_xlabel("z (images)") cax.axes.set_ylabel("Correlation with reference profile") cbar.ax.set_ylabel("# reflections") fig.savefig(os.path.join(self.directory, "%s_corr_vs_z.png" % filename)) pyplot.close() def reflection_corr_vs_ios(self, rlist, filename): """ Analyse the correlations. """ corr = rlist["profile.correlation"] I = rlist["intensity.prf.value"] I_sig = flex.sqrt(rlist["intensity.prf.variance"]) mask = I_sig > 0 I = I.select(mask) I_sig = I_sig.select(mask) corr = corr.select(mask) I_over_S = I / I_sig mask = I_over_S > 0.1 I_over_S = I_over_S.select(mask) corr = corr.select(mask) fig = pyplot.figure() pyplot.title("Reflection correlations vs Log I/Sigma") cax = pyplot.hexbin(flex.log(I_over_S), corr, gridsize=100) cbar = pyplot.colorbar(cax) cax.axes.set_xlabel("Log I/Sigma") cax.axes.set_ylabel("Correlation with reference profile") cbar.ax.set_ylabel("# reflections") fig.savefig(os.path.join(self.directory, "%s_corr_vs_ios.png" % filename)) pyplot.close() def ideal_reflection_corr_hist(self, rlist, filename): """ Analyse the correlations. """ if "correlation.ideal.profile" in rlist: corr = rlist["correlation.ideal.profile"] pyplot.title("Reflection correlations histogram") pyplot.hist(corr, bins=20) pyplot.xlabel("Correlation with reference profile") pyplot.ylabel("# reflections") pyplot.savefig( os.path.join(self.directory, "ideal_%s_corr_hist" % filename) ) pyplot.close() def ideal_reflection_corr_vs_xy(self, rlist, filename): """ Analyse the correlations. """ if "correlation.ideal.profile" in rlist: corr = rlist["correlation.ideal.profile"] x, y, z = rlist["xyzcal.px"].parts() pyplot.title("Reflection correlations binned in X/Y") cax = pyplot.hexbin(x, y, C=corr, gridsize=100, vmin=0.0, vmax=1.0) cbar = pyplot.colorbar(cax) pyplot.xlabel("x (pixels)") pyplot.ylabel("y (pixels)") cbar.ax.set_ylabel("Correlation with reference profile") pyplot.savefig( os.path.join(self.directory, "ideal_%s_corr_vs_xy.png" % filename) ) pyplot.close() def ideal_reflection_corr_vs_z(self, rlist, filename): """ Analyse the correlations. """ if "correlation.ideal.profile" in rlist: corr = rlist["correlation.ideal.profile"] x, y, z = rlist["xyzcal.px"].parts() pyplot.title("Reflection correlations vs Z") cax = pyplot.hexbin(z, corr, gridsize=100) cbar = pyplot.colorbar(cax) pyplot.xlabel("z (images)") pyplot.ylabel("Correlation with reference profile") cbar.ax.set_ylabel("# reflections") pyplot.savefig( os.path.join(self.directory, "ideal_%s_corr_vs_z.png" % filename) ) pyplot.close() def ideal_reflection_corr_vs_ios(self, rlist, filename): """ Analyse the correlations. """ if "correlation.ideal.profile" in rlist: corr = rlist["correlation.ideal.profile"] I = rlist["intensity.prf.value"] I_sig = flex.sqrt(rlist["intensity.prf.variance"]) mask = I_sig > 0 I = I.select(mask) I_sig = I_sig.select(mask) corr = corr.select(mask) I_over_S = I / I_sig mask = I_over_S > 0.1 I_over_S = I_over_S.select(mask) corr = corr.select(mask) pyplot.title("Reflection correlations vs Log I/Sigma") cax = pyplot.hexbin(flex.log(I_over_S), corr, gridsize=100) cbar = pyplot.colorbar(cax) pyplot.xlabel("Log I/Sigma") pyplot.ylabel("Correlation with reference profile") cbar.ax.set_ylabel("# reflections") pyplot.savefig( os.path.join(self.directory, "ideal_%s_corr_vs_ios.png" % filename) ) pyplot.close() def analyse(rlist, directory, grid_size=None, pixels_per_bin=10, centroid_diff_max=1.5): """ Setup the analysers. """ directory = os.path.join(directory, "analysis") analysers = [ StrongSpotsAnalyser(directory), CentroidAnalyser( directory, grid_size=grid_size, pixels_per_bin=pixels_per_bin, centroid_diff_max=centroid_diff_max, ), BackgroundAnalyser( directory, grid_size=grid_size, pixels_per_bin=pixels_per_bin ), IntensityAnalyser( directory, grid_size=grid_size, pixels_per_bin=pixels_per_bin ), ReferenceProfileAnalyser( directory, grid_size=grid_size, pixels_per_bin=pixels_per_bin ), ] """ Do all the analysis. """ for a in analysers: a(copy.deepcopy(rlist)) def run(): from dials.util.options import OptionParser # Create the parser usage = "usage: dials.analyse_output [options] observations.refl" parser = OptionParser( usage=usage, phil=phil_scope, read_reflections=True, epilog=help_message ) parser.add_option( "--xkcd", action="store_true", dest="xkcd", default=False, help="Special drawing mode", ) # Parse the command line arguments params, options = parser.parse_args(show_diff_phil=True) if options.xkcd: pyplot.xkcd() # Show the help if len(params.input.reflections) != 1: parser.print_help() exit(0) # Analyse the reflections analyse( params.input.reflections[0].data, params.output.directory, grid_size=params.grid_size, pixels_per_bin=params.pixels_per_bin, centroid_diff_max=params.centroid_diff_max, ) if __name__ == "__main__": with show_mail_on_error(): run() ``` #### File: dials/command_line/compute_delta_cchalf.py ```python from __future__ import absolute_import, division, print_function import collections import logging from math import sqrt import matplotlib from iotbx.reflection_file_reader import any_reflection_file from libtbx.phil import parse import dials.util from dials.algorithms.statistics.delta_cchalf import PerImageCChalfStatistics from dials.array_family import flex from dials.util import Sorry from dials.util.exclude_images import exclude_image_ranges_for_scaling from dials.util.multi_dataset_handling import select_datasets_on_ids matplotlib.use("Agg") from matplotlib import pylab logger = logging.getLogger("dials.command_line.compute_delta_cchalf") help_message = """ This program computes the delta cchalf excluding images """ # Set the phil scope phil_scope = parse( """ input { mtzfile = None .type = str .help = "We can also import an MTZ file" } mode = *dataset image_group .type = choice .help = "Perform analysis on whole datasets or batch groups" group_size = 10 .type = int(value_min=1) .help = "The number of images to group together when calculating delta" "cchalf in image_group mode" output { experiments = "filtered.expt" .type = str .help = "The filtered experiments file" reflections = "filtered.refl" .type = str .help = "The filtered reflections file" table = "delta_cchalf.dat" .type = str .help = "A file with delta cchalf values" } nbins = 10 .type = int(value_min=1) .help = "The number of resolution bins to use" dmin = None .type = float .help = "The maximum resolution" dmax = None .type = float .help = "The minimum resolution" stdcutoff = 4.0 .type = float .help = "Datasets with a delta cc half below (mean - stdcutoff*std) are removed" output { log = 'dials.compute_delta_cchalf.log' .type = str .help = "The log filename" } """ ) class Script(object): """A class for running the script.""" def __init__(self, params, experiments, reflections): """Initialise the script.""" self.experiments = experiments self.reflections = reflections self.params = params self.delta_cchalf_i = {} self.results_summary = { "dataset_removal": { "mode": self.params.mode, "stdcutoff": self.params.stdcutoff, } } # Set up a named tuple self.DataRecord = collections.namedtuple( "DataRecord", ( "unit_cell", "space_group", "miller_index", "dataset", "intensity", "variance", "identifiers", "images", ), ) def prepare_data(self): """Prepare the data into a DataRecord.""" if self.params.mode == "image_group": for exp in self.experiments: if not exp.scan: raise Sorry("Cannot use mode=image_group with scanless experiments") if len(self.experiments) > 0: if len(self.experiments) > 0 and len(self.reflections) == 1: data = self.read_experiments(self.experiments, self.reflections[0]) elif len(self.experiments) > 0 and len(self.experiments) == len( self.reflections ): # need to join together reflections joint_table = flex.reflection_table() for table in self.reflections: joint_table.extend(table) self.reflections = [joint_table] data = self.read_experiments(self.experiments, self.reflections[0]) else: raise Sorry("Unequal number of reflection tables and experiments") elif self.params.input.mtzfile is not None: data = self.read_mtzfile(self.params.input.mtzfile) else: raise SystemExit return data def run(self): """Run the delta_cc_half algorithm.""" data = self.prepare_data() # Create the statistics object statistics = PerImageCChalfStatistics( data.miller_index, data.identifiers, data.dataset, data.images, data.intensity, data.variance, data.unit_cell, data.space_group, self.params.nbins, self.params.dmin, self.params.dmax, self.params.mode, self.params.group_size, ) self.delta_cchalf_i = statistics.delta_cchalf_i() self.results_summary["mean_cc_half"] = statistics._cchalf_mean # Print out the datasets in order of delta cc 1/2 sorted_datasets, sorted_cc_half_values = self.sort_deltacchalf_values( self.delta_cchalf_i, self.results_summary ) # Write a text file with delta cchalf value logger.info("Writing table to %s", self.params.output.table) with open(self.params.output.table, "w") as outfile: for dataset, cchalf in zip(sorted_datasets, sorted_cc_half_values): outfile.write("%d %f\n" % (dataset, cchalf)) # Remove datasets based on delta cc1/2 if self.experiments and len(self.reflections) == 1: cutoff_value = self._calculate_cutoff_value( self.delta_cchalf_i, self.params.stdcutoff ) self.results_summary["dataset_removal"].update( {"cutoff_value": cutoff_value} ) below_cutoff = sorted_cc_half_values < cutoff_value ids_to_remove = sorted_datasets.select(below_cutoff) if self.params.mode == "dataset": filtered_reflections = self.remove_datasets_below_cutoff( self.experiments, self.reflections[0], ids_to_remove, self.results_summary, ) elif self.params.mode == "image_group": filtered_reflections = self.remove_image_ranges_below_cutoff( self.experiments, self.reflections[0], ids_to_remove, statistics.image_group_to_expid_and_range, statistics.expid_to_image_groups, self.results_summary, ) self.reflections = [filtered_reflections] def read_experiments(self, experiments, reflections): """ Get information from experiments and reflections """ # Get space group and unit cell space_group = None unit_cell = [] exp_identifiers = [] for e in experiments: if space_group is None: space_group = e.crystal.get_space_group() else: assert ( space_group.type().number() == e.crystal.get_space_group().type().number() ) unit_cell.append(e.crystal.get_unit_cell()) exp_identifiers.append(e.identifier) # get a list of the ids from the reflection table corresponding to exp_ids identifiers = [] for expit in exp_identifiers: for k in reflections.experiment_identifiers().keys(): if reflections.experiment_identifiers()[k] == expit: identifiers.append(k) break # Selection of reflections selection = ~( reflections.get_flags(reflections.flags.bad_for_scaling, all=False) ) outliers = reflections.get_flags(reflections.flags.outlier_in_scaling) reflections = reflections.select(selection & ~outliers) # Scale factor inv_scale_factor = reflections["inverse_scale_factor"] selection = inv_scale_factor > 0 reflections = reflections.select(selection) inv_scale_factor = reflections["inverse_scale_factor"] # Get the reflection data index = reflections["id"] miller_index = reflections["miller_index"] intensity = reflections["intensity.scale.value"] / inv_scale_factor variance = reflections["intensity.scale.variance"] / inv_scale_factor ** 2 # calculate image number of observation (e.g 0.0 <= z < 1.0), image = 1 images = flex.floor(reflections["xyzobs.px.value"].parts()[2]).iround() + 1 # Get the MTZ file return self.DataRecord( unit_cell=unit_cell, space_group=space_group, miller_index=miller_index, dataset=index, intensity=intensity, variance=variance, identifiers=identifiers, images=images, ) def read_mtzfile(self, filename): """ Read the mtz file """ # Read the mtz file reader = any_reflection_file(filename) # Get the columns as miller arrays miller_arrays = reader.as_miller_arrays(merge_equivalents=False) # Select the desired columns intensities = None batches = None for array in miller_arrays: if array.info().labels == ["I", "SIGI"]: intensities = array if array.info().labels == ["BATCH"]: batches = array assert intensities is not None assert batches is not None assert len(batches.data()) == len(intensities.data()) # Get the unit cell and space group unit_cell = intensities.unit_cell() space_group = intensities.crystal_symmetry().space_group() # The reflection data miller_index = intensities.indices() batch = batches.data() intensity = intensities.data() variance = intensities.sigmas() ** 2 # Create unit cell list min_batch = min(batch) dataset = batch - min_batch num_datasets = max(dataset) + 1 unit_cell_list = [unit_cell for _ in range(num_datasets)] # Get the MTZ file return self.DataRecord( unit_cell=unit_cell_list, space_group=space_group, miller_index=miller_index, dataset=dataset, intensity=intensity, variance=variance, ) @staticmethod def sort_deltacchalf_values(delta_cchalf_i, results_summary): """Return the sorted datasets and cchalf values. Also add the sorted lists to the results summary. Datasets are sorted from low to high based on deltacchalf values.""" datasets = list(delta_cchalf_i.keys()) sorted_index = sorted( range(len(datasets)), key=lambda x: delta_cchalf_i[datasets[x]] ) # sorted by deltacchalf from low to high sorted_cc_half_values = flex.double([]) sorted_datasets = flex.int([]) for i in sorted_index: val = delta_cchalf_i[datasets[i]] logger.info("Dataset: %d, Delta CC 1/2: %.3f", datasets[i], 100 * val) sorted_cc_half_values.append(val) sorted_datasets.append(datasets[i]) results_summary["per_dataset_delta_cc_half_values"] = { "datasets": list(sorted_datasets), "delta_cc_half_values": list(sorted_cc_half_values), } return sorted_datasets, sorted_cc_half_values @staticmethod def _calculate_cutoff_value(delta_cchalf_i, stdcutoff): Y = list(delta_cchalf_i.values()) mean = sum(Y) / len(Y) sdev = sqrt(sum((yy - mean) ** 2 for yy in Y) / len(Y)) logger.info("\nmean delta_cc_half %s", (mean * 100)) logger.info("stddev delta_cc_half %s", (sdev * 100)) cutoff_value = mean - stdcutoff * sdev logger.info("cutoff value: %s \n", (cutoff_value * 100)) return cutoff_value @staticmethod def remove_image_ranges_below_cutoff( experiments, reflections, ids_to_remove, image_group_to_expid_and_range, expid_to_image_groups, results_summary, ): """Remove image ranges from the datasets.""" n_valid_reflections = reflections.get_flags( reflections.flags.bad_for_scaling, all=False ).count(False) experiments_to_delete = [] exclude_images = [] image_ranges_removed = [] # track for results summary n_removed_this_cycle = 1 while n_removed_this_cycle != 0: other_potential_ids_to_remove = [] n_removed_this_cycle = 0 for id_ in sorted(ids_to_remove): exp_id, image_range = image_group_to_expid_and_range[ id_ ] # numerical id identifier = reflections.experiment_identifiers()[exp_id] if expid_to_image_groups[exp_id][-1] == id_: # is last group image_ranges_removed.append([image_range, exp_id]) logger.info( "Removing image range %s from experiment %s", image_range, identifier, ) exclude_images.append( [ identifier + ":" + str(image_range[0]) + ":" + str(image_range[1]) ] ) del expid_to_image_groups[exp_id][-1] n_removed_this_cycle += 1 else: other_potential_ids_to_remove.append(id_) ids_to_remove = other_potential_ids_to_remove for id_ in other_potential_ids_to_remove: exp_id, image_range = image_group_to_expid_and_range[id_] identifier = reflections.experiment_identifiers()[exp_id] logger.info( """Image range %s from experiment %s is below the cutoff, but not at the end of a sequence.""", image_range, identifier, ) # Now remove individual batches if -1 in reflections["id"]: reflections = reflections.select(reflections["id"] != -1) reflection_list = reflections.split_by_experiment_id() reflection_list, experiments = exclude_image_ranges_for_scaling( reflection_list, experiments, exclude_images ) # check if any image groups were all outliers and missed by the analysis # This catches an edge case where there is an image group full of # outliers, which gets filtered out before the analysis but should # be set as not a valid image range. for exp in experiments: if len(exp.scan.get_valid_image_ranges(exp.identifier)) > 1: exp.scan.set_valid_image_ranges( exp.identifier, [exp.scan.get_valid_image_ranges(exp.identifier)[0]] ) logger.info( "Limited image range for %s to %s due to scaling outlier group", exp.identifier, exp.scan.get_valid_image_ranges(exp.identifier), ) # if a whole experiment has been excluded: need to remove it here for exp in experiments: if not exp.scan.get_valid_image_ranges( exp.identifier ): # if all removed above experiments_to_delete.append(exp.identifier) if experiments_to_delete: experiments, reflection_list = select_datasets_on_ids( experiments, reflection_list, exclude_datasets=experiments_to_delete ) assert len(reflection_list) == len(experiments) output_reflections = flex.reflection_table() for r in reflection_list: output_reflections.extend(r) n_valid_filtered_reflections = output_reflections.get_flags( output_reflections.flags.bad_for_scaling, all=False ).count(False) results_summary["dataset_removal"].update( { "image_ranges_removed": image_ranges_removed, "experiments_fully_removed": experiments_to_delete, "n_reflections_removed": n_valid_reflections - n_valid_filtered_reflections, } ) return output_reflections @staticmethod def remove_datasets_below_cutoff( experiments, reflections, ids_to_remove, results_summary ): """Remove the datasets with ids in ids_to_remove. Remove from the experiemnts and reflections and add information to the results summary dict. Returns: output_reflections: The reflection table with data removed. """ n_valid_reflections = reflections.get_flags( reflections.flags.bad_for_scaling, all=False ).count(False) datasets_to_remove = [] for id_ in sorted(ids_to_remove): logger.info("Removing dataset %d", id_) datasets_to_remove.append(reflections.experiment_identifiers()[id_]) output_reflections = reflections.remove_on_experiment_identifiers( datasets_to_remove ) experiments.remove_on_experiment_identifiers(datasets_to_remove) output_reflections.assert_experiment_identifiers_are_consistent(experiments) n_valid_filtered_reflections = output_reflections.get_flags( output_reflections.flags.bad_for_scaling, all=False ).count(False) results_summary["dataset_removal"].update( { "experiments_fully_removed": datasets_to_remove, "n_reflections_removed": n_valid_reflections - n_valid_filtered_reflections, } ) return output_reflections def write_experiments_and_reflections(self): """Save the reflections and experiments data.""" if self.experiments and len(self.reflections) == 1: logger.info( "Saving %d reflections to %s", len(self.reflections[0]), self.params.output.reflections, ) self.reflections[0].as_file(self.params.output.reflections) logger.info("Saving the experiments to %s", self.params.output.experiments) self.experiments.as_file(self.params.output.experiments) def plot_data(self): """Plot histogram and line plot of cc half values.""" fig, ax = pylab.subplots() ax.hist(list(self.delta_cchalf_i.values())) ax.set_xlabel("Delta CC 1/2") fig.savefig("plot1.png") X = list(self.delta_cchalf_i.keys()) Y = list(self.delta_cchalf_i.values()) fig, ax = pylab.subplots() ax.plot(X, Y) ax.set_xlabel("Dataset number") ax.set_ylabel("Delta CC 1/2") fig.savefig("plot2.png") def run(args=None, phil=phil_scope): """Run the command-line script.""" import dials.util.log from dials.util.options import OptionParser from dials.util.options import flatten_reflections from dials.util.options import flatten_experiments usage = "dials.compute_delta_cchalf [options] scaled.expt scaled.refl" parser = OptionParser( usage=usage, phil=phil, epilog=help_message, read_experiments=True, read_reflections=True, check_format=False, ) params, _ = parser.parse_args(args=args, show_diff_phil=False) dials.util.log.config(logfile=params.output.log) experiments = flatten_experiments(params.input.experiments) reflections = flatten_reflections(params.input.reflections) if len(experiments) == 0 and not params.input.mtzfile: parser.print_help() return script = Script(params, experiments, reflections) script.run() script.write_experiments_and_reflections() script.plot_data() if __name__ == "__main__": with dials.util.show_mail_on_error(): run() ``` #### File: dials/command_line/resolutionizer.py ```python from __future__ import absolute_import, division, print_function import logging import sys import libtbx.phil from dials.util import resolutionizer from dials.util import log from dials.util.options import OptionParser from dials.util.options import flatten_reflections, flatten_experiments from dials.util.version import dials_version from dials.util.multi_dataset_handling import parse_multiple_datasets logger = logging.getLogger("dials.resolutionizer") help_message = """ """ phil_scope = libtbx.phil.parse( """ include scope dials.util.resolutionizer.phil_defaults output { log = dials.resolutionizer.log .type = path } """, process_includes=True, ) def run(args): usage = ( "dials.resolutionizer [options] scaled.expt scaled.refl | scaled_unmerged.mtz" ) parser = OptionParser( usage=usage, phil=phil_scope, read_reflections=True, read_experiments=True, check_format=False, epilog=help_message, ) params, options, unhandled = parser.parse_args( return_unhandled=True, show_diff_phil=True ) reflections = flatten_reflections(params.input.reflections) experiments = flatten_experiments(params.input.experiments) if (not reflections or not experiments) and not unhandled: parser.print_help() return if reflections and experiments and unhandled: sys.exit( "Must provide either scaled unmerged mtz OR dials-format scaled reflections and experiments files" ) # Configure the logging log.config(logfile=params.output.log) logger.info(dials_version()) if len(unhandled) == 1: scaled_unmerged = unhandled[0] m = resolutionizer.Resolutionizer.from_unmerged_mtz( scaled_unmerged, params.resolutionizer ) else: reflections = parse_multiple_datasets(reflections) m = resolutionizer.Resolutionizer.from_reflections_and_experiments( reflections, experiments, params.resolutionizer ) m.resolution_auto() if __name__ == "__main__": run(sys.argv[1:]) ``` #### File: dials/command_line/sequence_to_stills.py ```python from __future__ import absolute_import, division, print_function import logging from libtbx.phil import parse from scitbx import matrix from dxtbx.model import MosaicCrystalSauter2014 from dxtbx.model.experiment_list import Experiment, ExperimentList from dials.algorithms.refinement.prediction.managed_predictors import ( ExperimentsPredictorFactory, ) from dials.array_family import flex from dials.model.data import Shoebox from dials.util import show_mail_on_error from dials.util.options import OptionParser, flatten_experiments, flatten_reflections logger = logging.getLogger("dials.command_line.sequence_to_stills") # The phil scope phil_scope = parse( """ output { experiments = stills.expt .type = str .help = "Filename for the experimental models that have been converted to stills" reflections = stills.refl .type = str .help = "Filename for the reflection tables with split shoeboxes (3D to 2D)" domain_size_ang = None .type = float .help = "Override for domain size. If None, use the crystal's domain size, if" "available" half_mosaicity_deg = None .type = float .help = "Override for mosaic angle. If None, use the crystal's mosaic angle, if" "available" } max_scan_points = None .type = int .expert_level = 2 .help = Limit number of scan points """ ) def sequence_to_stills(experiments, reflections, params): assert len(reflections) == 1 reflections = reflections[0] new_experiments = ExperimentList() new_reflections = flex.reflection_table() # This is the subset needed to integrate for key in [ "id", "imageset_id", "shoebox", "bbox", "intensity.sum.value", "intensity.sum.variance", "entering", "flags", "miller_index", "panel", "xyzobs.px.value", "xyzobs.px.variance", ]: if key in reflections: new_reflections[key] = type(reflections[key])() elif key == "imageset_id": assert len(experiments.imagesets()) == 1 reflections["imageset_id"] = flex.int(len(reflections), 0) new_reflections["imageset_id"] = flex.int() elif key == "entering": reflections["entering"] = flex.bool(len(reflections), False) new_reflections["entering"] = flex.bool() else: raise RuntimeError("Expected key not found in reflection table: %s" % key) for expt_id, experiment in enumerate(experiments): # Get the goniometr setting matrix goniometer_setting_matrix = matrix.sqr( experiment.goniometer.get_setting_rotation() ) goniometer_axis = matrix.col(experiment.goniometer.get_rotation_axis()) step = experiment.scan.get_oscillation()[1] refls = reflections.select(reflections["id"] == expt_id) _, _, _, _, z1, z2 = refls["bbox"].parts() # Create an experiment for each scanpoint for i_scan_point in range(*experiment.scan.get_array_range()): if params.max_scan_points and i_scan_point >= params.max_scan_points: break # The A matrix is the goniometer setting matrix for this scan point # times the scan varying A matrix at this scan point. Note, the # goniometer setting matrix for scan point zero will be the identity # matrix and represents the beginning of the oscillation. # For stills, the A matrix needs to be positioned in the midpoint of an # oscillation step. Hence, here the goniometer setting matrixis rotated # by a further half oscillation step. A = ( goniometer_axis.axis_and_angle_as_r3_rotation_matrix( angle=experiment.scan.get_angle_from_array_index(i_scan_point) + (step / 2), deg=True, ) * goniometer_setting_matrix * matrix.sqr(experiment.crystal.get_A_at_scan_point(i_scan_point)) ) crystal = MosaicCrystalSauter2014(experiment.crystal) crystal.set_A(A) # Copy in mosaic parameters if available if params.output.domain_size_ang is None and hasattr( experiment.crystal, "get_domain_size_ang" ): crystal.set_domain_size_ang(experiment.crystal.get_domain_size_ang()) elif params.output.domain_size_ang is not None: crystal.set_domain_size_ang(params.output.domain_size_ang) if params.output.half_mosaicity_deg is None and hasattr( experiment.crystal, "get_half_mosaicity_deg" ): crystal.set_half_mosaicity_deg( experiment.crystal.get_half_mosaicity_deg() ) elif params.output.half_mosaicity_deg is not None: crystal.set_half_mosaicity_deg(params.output.half_mosaicity_deg) new_experiment = Experiment( detector=experiment.detector, beam=experiment.beam, crystal=crystal, imageset=experiment.imageset.as_imageset()[ i_scan_point : i_scan_point + 1 ], ) new_experiments.append(new_experiment) # Each reflection in a 3D shoebox can be found on multiple images. # Slice the reflections such that any reflection on this scan point # is included with this image new_id = len(new_experiments) - 1 subrefls = refls.select((i_scan_point >= z1) & (i_scan_point < z2)) for refl in subrefls.rows(): assert i_scan_point in range(*refl["bbox"][4:6]) new_sb = Shoebox() start = i_scan_point - refl["bbox"][4] # z1 new_sb.data = refl["shoebox"].data[start : start + 1, :, :] new_sb.background = refl["shoebox"].background[start : start + 1, :, :] new_sb.mask = refl["shoebox"].mask[start : start + 1, :, :] intensity = new_sb.summed_intensity() new_sb.bbox = tuple( list(refl["bbox"])[0:4] + [0, 1] ) # keep the original shoebox but reset the z values new_sb.panel = refl["panel"] new_refl = {} new_refl["id"] = new_refl["imageset_id"] = new_id new_refl["shoebox"] = new_sb new_refl["bbox"] = new_sb.bbox new_refl["intensity.sum.value"] = intensity.observed.value new_refl["intensity.sum.variance"] = intensity.observed.variance for key in ["entering", "flags", "miller_index", "panel"]: new_refl[key] = refl[key] centroid = new_sb.centroid_foreground_minus_background() new_refl["xyzobs.px.value"] = centroid.px.position new_refl["xyzobs.px.variance"] = centroid.px.variance new_reflections.append({}) for key in new_refl: new_reflections[key][-1] = new_refl[key] # Re-predict using the reflection slices and the stills predictors ref_predictor = ExperimentsPredictorFactory.from_experiments( new_experiments, force_stills=new_experiments.all_stills() ) new_reflections = ref_predictor(new_reflections) return (new_experiments, new_reflections) def run(args=None, phil=phil_scope): """ Validate the arguments and load experiments/reflections for sequence_to_stills Arguments: args: The command line arguments to use. Defaults to sys.argv[1:] phil: The phil_scope. Defaults to the master phil_scope for this program """ # The script usage usage = "usage: dials.sequence_to_stills [options] [param.phil] models.expt reflections.refl" # Create the parser parser = OptionParser( usage=usage, phil=phil, read_experiments=True, read_reflections=True, check_format=False, epilog=__doc__, ) params, options = parser.parse_args(args=args, show_diff_phil=True) # Try to load the models and data if not params.input.experiments or not params.input.reflections: parser.print_help() return experiments = flatten_experiments(params.input.experiments) reflections = flatten_reflections(params.input.reflections) (new_experiments, new_reflections) = sequence_to_stills( experiments, reflections, params ) # Write out the output experiments, reflections new_experiments.as_file(params.output.experiments) new_reflections.as_file(params.output.reflections) if __name__ == "__main__": with show_mail_on_error(): run() ``` #### File: algorithms/polygon/test_polygon.py ```python from __future__ import absolute_import, division, print_function def test_polygon(): from dials.algorithms.polygon import polygon x = 1 y = 1 vertices = [(0, 0), (2, 0), (2, 2), (0, 2)] poly = polygon(vertices) assert poly.is_inside(x, y) poly = polygon([(3, 5), (40, 90), (80, 70), (50, 50), (70, 20)]) for p in [(42, 40), (16, 25), (64, 67), (16, 30), (48, 45), (21, 30)]: assert poly.is_inside(p[0], p[1]) for p in [(59, 4), (70, 15), (57, 14), (21, 78), (37, 100), (88, 89)]: assert not poly.is_inside(p[0], p[1]) ``` #### File: test/command_line/test_slice_sweep.py ```python from __future__ import absolute_import, division, print_function import six.moves.cPickle as pickle import pytest import os from libtbx import easy_run from dxtbx.model.experiment_list import ExperimentListFactory def test_slice_sweep_and_compare_with_expected_results(dials_regression, run_in_tmpdir): # use the i04_weak_data for this test data_dir = os.path.join(dials_regression, "refinement_test_data", "i04_weak_data") experiments_path = os.path.join(data_dir, "experiments.json") pickle_path = os.path.join(data_dir, "indexed_strong.pickle") for pth in (experiments_path, pickle_path): assert os.path.exists(pth) cmd = ( "dials.slice_sweep " + experiments_path + " " + pickle_path + ' "image_range=1 20"' ) result = easy_run.fully_buffered(command=cmd).raise_if_errors() # load results sliced_exp = ExperimentListFactory.from_json_file( "experiments_1_20.expt", check_format=False )[0] with open("indexed_strong_1_20.refl", "rb") as f: sliced_refs = pickle.load(f) # simple test of results assert sliced_exp.scan.get_image_range() == (1, 20) assert len(sliced_refs) == 3670 def test_slice_sweep_with_first_images_missing(dials_regression, run_in_tmpdir): """Test slicing where scan image range does not start at 1, exercising a case that exposed a bug""" # use the i04_weak_data for this test data_dir = os.path.join(dials_regression, "refinement_test_data", "i04_weak_data") experiments_path = os.path.join(data_dir, "experiments.json") # first slice cmd = "dials.slice_sweep " + experiments_path + " image_range=5,20" result = easy_run.fully_buffered(command=cmd).raise_if_errors() # second slice cmd = "dials.slice_sweep experiments_5_20.expt image_range=10,20" result = easy_run.fully_buffered(command=cmd).raise_if_errors() sliced_exp = ExperimentListFactory.from_json_file( "experiments_5_20_10_20.expt", check_format=False )[0] assert sliced_exp.scan.get_image_range() == (10, 20) assert sliced_exp.scan.get_array_range() == (9, 20) assert sliced_exp.scan.get_oscillation()[0] == pytest.approx(83.35) ``` #### File: test/command_line/test_split_experiments.py ```python from __future__ import absolute_import, division, print_function """Tests for dials.split_experiments when experiment ids are set""" import procrunner from dials.array_family import flex from dxtbx.model import Beam, Experiment, ExperimentList from dxtbx.model.experiment_list import ExperimentListFactory def generate_exp(wavelength=1): """Generate an experiment containing a beam with a given wavelength.""" beam = Beam(direction=(0.0, 0.0, 1.0), wavelength=wavelength) exp = Experiment(beam=beam) return exp def test_split_by_wavelength(tmpdir): """Test the split_by_wavelength option of dials.split_experiments""" experiments = ExperimentList() exp = generate_exp(wavelength=1.0) exp.identifier = "0" experiments.append(exp) exp = generate_exp(wavelength=0.5) exp.identifier = "1" experiments.append(exp) reflections = flex.reflection_table() reflections["id"] = flex.int([0, 1]) reflections["intensity"] = flex.double([100.0, 200.0]) reflections.experiment_identifiers()[0] = "0" reflections.experiment_identifiers()[1] = "1" experiments.as_json(tmpdir.join("tmp.expt").strpath) reflections.as_file(tmpdir.join("tmp.refl").strpath) result = procrunner.run( ["dials.split_experiments", "tmp.expt", "tmp.refl", "by_wavelength=True"], working_directory=tmpdir, ) assert not result.returncode and not result.stderr for i, (wl, ids, intensity) in enumerate( zip([0.5, 1.0], ["1", "0"], [200.0, 100.0]) ): assert tmpdir.join("split_%d.expt" % i).check() assert tmpdir.join("split_%d.refl" % i).check() exp_single = ExperimentListFactory.from_json_file( tmpdir.join("split_%d.expt" % i).strpath, check_format=False ) ref_single = flex.reflection_table.from_file( tmpdir.join("split_%d.refl" % i).strpath ) assert exp_single[0].beam.get_wavelength() == wl assert exp_single[0].identifier == ids id_ = ref_single["id"][0] assert ref_single.experiment_identifiers()[id_] == ids assert list(ref_single["intensity"]) == [intensity] # Now test for successful error handling if no identifiers set. experiments[0].identifier = "" experiments[1].identifier = "" experiments.as_json(tmpdir.join("tmp.expt").strpath) result = procrunner.run( ["dials.split_experiments", "tmp.expt", "tmp.refl", "by_wavelength=True"], working_directory=tmpdir, ) assert result.returncode == 1 assert result.stderr.startswith(b"Sorry") experiments[0].identifier = "0" experiments[1].identifier = "1" del reflections.experiment_identifiers()[0] del reflections.experiment_identifiers()[1] experiments.as_json(tmpdir.join("tmp.expt").strpath) reflections.as_file(tmpdir.join("tmp.refl").strpath) result = procrunner.run( ["dials.split_experiments", "tmp.expt", "tmp.refl", "by_wavelength=True"], working_directory=tmpdir, ) assert result.returncode == 1 assert result.stderr.startswith(b"Sorry") ``` #### File: test/command_line/test_spot_counts_per_image.py ```python from __future__ import absolute_import, division, print_function import os from libtbx import easy_run from glob import glob def test_spot_counts_per_image(dials_data, run_in_tmpdir): path = dials_data("centroid_test_data").strpath # import the data cmd = "dials.import %s output.experiments=imported.expt" % " ".join( glob(os.path.join(path, "*.cbf")) ) easy_run.fully_buffered(cmd).raise_if_errors() assert os.path.exists("imported.expt") # find the spots cmd = "dials.find_spots imported.expt min_spot_size=3" easy_run.fully_buffered(cmd).raise_if_errors() assert os.path.exists("strong.refl") cmd = "dials.spot_counts_per_image imported.expt strong.refl plot=spot_counts.png" result = easy_run.fully_buffered(cmd).raise_if_errors() assert os.path.exists("spot_counts.png"), result.show_stdout() assert ( "| image | #spots | #spots_no_ice | total_intensity |" + " d_min | d_min (distl method 1) | d_min (distl method 2) |" in result.stdout_lines ), result.stdout_lines ``` #### File: test/command_line/test_spotfinder.py ```python from __future__ import absolute_import, division, print_function import six.moves.cPickle as pickle import os import procrunner import pytest from dials.array_family import flex # noqa: F401, import dependency def test_find_spots_from_images(dials_data, tmpdir): result = procrunner.run( [ "dials.find_spots", "output.reflections=spotfinder.refl", "output.shoeboxes=True", "algorithm=dispersion", ] + [ f.strpath for f in dials_data("centroid_test_data").listdir("centroid*.cbf") ], working_directory=tmpdir.strpath, ) assert not result.returncode and not result.stderr assert tmpdir.join("spotfinder.refl").check(file=1) with tmpdir.join("spotfinder.refl").open("rb") as f: reflections = pickle.load(f) assert len(reflections) in range(653, 655) refl = reflections[0] assert refl["intensity.sum.value"] == pytest.approx(42) assert refl["bbox"] == pytest.approx((1398, 1400, 513, 515, 0, 1)) assert refl["xyzobs.px.value"] == pytest.approx( (1399.1190476190477, 514.2142857142857, 0.5) ) assert "shoebox" in reflections def test_find_spots_with_resolution_filter(dials_data, tmpdir): result = procrunner.run( [ "dials.find_spots", "output.reflections=spotfinder.refl", "output.shoeboxes=False", "algorithm=dispersion", "filter.d_min=2", "filter.d_max=15", ] + [ f.strpath for f in dials_data("centroid_test_data").listdir("centroid*.cbf") ], working_directory=tmpdir.strpath, ) assert not result.returncode and not result.stderr assert tmpdir.join("spotfinder.refl").check(file=1) with tmpdir.join("spotfinder.refl").open("rb") as f: reflections = pickle.load(f) assert len(reflections) in range(467, 469) assert "shoebox" not in reflections def test_find_spots_with_hot_mask(dials_data, tmpdir): # now write a hot mask result = procrunner.run( [ "dials.find_spots", "write_hot_mask=True", "output.reflections=spotfinder.refl", "algorithm=dispersion", "output.shoeboxes=False", ] + [ f.strpath for f in dials_data("centroid_test_data").listdir("centroid*.cbf") ], working_directory=tmpdir.strpath, ) assert not result.returncode and not result.stderr assert tmpdir.join("spotfinder.refl").check(file=1) assert tmpdir.join("hot_mask_0.pickle").check(file=1) with tmpdir.join("spotfinder.refl").open("rb") as f: reflections = pickle.load(f) assert len(reflections) in range(653, 655) assert "shoebox" not in reflections with tmpdir.join("hot_mask_0.pickle").open("rb") as f: mask = pickle.load(f) assert len(mask) == 1 assert mask[0].count(False) == 12 def test_find_spots_with_hot_mask_with_prefix(dials_data, tmpdir): # now write a hot mask result = procrunner.run( [ "dials.find_spots", "write_hot_mask=True", "hot_mask_prefix=my_hot_mask", "output.reflections=spotfinder.refl", "output.shoeboxes=False", "algorithm=dispersion", ] + [ f.strpath for f in dials_data("centroid_test_data").listdir("centroid*.cbf") ], working_directory=tmpdir.strpath, ) assert not result.returncode and not result.stderr assert tmpdir.join("spotfinder.refl").check(file=1) assert tmpdir.join("my_hot_mask_0.pickle").check(file=1) with tmpdir.join("spotfinder.refl").open("rb") as f: reflections = pickle.load(f) assert len(reflections) in range(653, 655) assert "shoebox" not in reflections with tmpdir.join("my_hot_mask_0.pickle").open("rb") as f: mask = pickle.load(f) assert len(mask) == 1 assert mask[0].count(False) == 12 def test_find_spots_with_generous_parameters(dials_data, tmpdir): # now with more generous parameters result = procrunner.run( [ "dials.find_spots", "min_spot_size=3", "max_separation=3", "output.reflections=spotfinder.refl", "algorithm=dispersion", ] + [ f.strpath for f in dials_data("centroid_test_data").listdir("centroid*.cbf") ], working_directory=tmpdir.strpath, ) assert not result.returncode and not result.stderr assert tmpdir.join("spotfinder.refl").check(file=1) with tmpdir.join("spotfinder.refl").open("rb") as f: reflections = pickle.load(f) assert len(reflections) in range(678, 680) def test_find_spots_with_user_defined_mask(dials_data, tmpdir): # Now with a user defined mask result = procrunner.run( [ "dials.find_spots", "output.reflections=spotfinder.refl", "output.shoeboxes=True", "algorithm=dispersion", "lookup.mask=" + dials_data("centroid_test_data").join("mask.pickle").strpath, ] + [ f.strpath for f in dials_data("centroid_test_data").listdir("centroid*.cbf") ], working_directory=tmpdir.strpath, ) assert not result.returncode and not result.stderr assert tmpdir.join("spotfinder.refl").check(file=1) with tmpdir.join("spotfinder.refl").open("rb") as f: reflections = pickle.load(f) from dxtbx.model.experiment_list import ExperimentListFactory experiments = ExperimentListFactory.from_json_file( dials_data("centroid_test_data").join("experiments.json").strpath ) assert len(experiments) == 1 imageset = experiments.imagesets()[0] detector = imageset.get_detector() beam = imageset.get_beam() for x, y, z in reflections["xyzobs.px.value"]: d = detector[0].get_resolution_at_pixel(beam.get_s0(), (x, y)) assert d >= 3 def test_find_spots_with_user_defined_region(dials_data, tmpdir): result = procrunner.run( [ "dials.find_spots", "output.reflections=spotfinder.refl", "output.shoeboxes=True", "region_of_interest=800,1200,800,1200", ] + [ f.strpath for f in dials_data("centroid_test_data").listdir("centroid*.cbf") ], working_directory=tmpdir.strpath, ) assert not result.returncode and not result.stderr assert tmpdir.join("spotfinder.refl").check(file=1) with tmpdir.join("spotfinder.refl").open("rb") as f: reflections = pickle.load(f) x, y, z = reflections["xyzobs.px.value"].parts() assert x.all_ge(800) assert y.all_ge(800) assert x.all_lt(1200) assert y.all_lt(1200) def test_find_spots_with_xfel_stills(dials_regression, tmpdir): # now with XFEL stills result = procrunner.run( [ "dials.find_spots", os.path.join( dials_regression, "spotfinding_test_data", "idx-s00-20131106040302615.cbf", ), "output.reflections=spotfinder.refl", "algorithm=dispersion", ], working_directory=tmpdir.strpath, ) assert not result.returncode and not result.stderr assert tmpdir.join("spotfinder.refl").check(file=1) with tmpdir.join("spotfinder.refl").open("rb") as f: reflections = pickle.load(f) assert len(reflections) == 2643 ``` #### File: test/util/test_options.py ```python from __future__ import absolute_import, division, print_function from mock import Mock from dials.util.options import flatten_reflections, flatten_experiments, OptionParser from dials.array_family import flex def test_can_read_headerless_h5_and_no_detector_is_present(dials_data): data_h5 = dials_data("vmxi_thaumatin").join("image_15799_data_000001.h5").strpath parser = OptionParser(read_experiments=True, read_experiments_from_images=True) params, options = parser.parse_args([data_h5]) experiments = flatten_experiments(params.input.experiments) assert len(experiments) == 1 assert not experiments[0].detector def mock_reflection_file_object(id_=0, identifier=True): """Create a mock reflection_file_object.""" fileobj = Mock() r = flex.reflection_table() r["id"] = flex.int([-1, id_, id_]) if identifier: r.experiment_identifiers()[id_] = str(id_) fileobj.data = r return fileobj def mock_two_reflection_file_object(ids=[0, 2]): """Create a mock reflection_file_object with two datasets.""" fileobj = Mock() r = flex.reflection_table() r["id"] = flex.int([-1, ids[0], ids[0], ids[1], ids[1]]) r.experiment_identifiers()[ids[0]] = str(ids[0]) r.experiment_identifiers()[ids[1]] = str(ids[1]) fileobj.data = r return fileobj def test_flatten_experiments_updating_id_values(): """Test the correct handling of duplicate table id values. Note that this function does not have the ability to update the experiment string identifier, only ensure that the table id values do not clash (it is not possible even to load multiple experiments with the same identifier). """ # Test the case of two single reflection tables. file_list = [mock_reflection_file_object(id_=0), mock_reflection_file_object(id_=0)] rs = flatten_reflections(file_list) assert rs[0] is file_list[0].data assert list(rs[0]["id"]) == [-1, 0, 0] assert list(rs[0].experiment_identifiers().keys()) == [0] assert list(rs[0].experiment_identifiers().values()) == ["0"] assert rs[1] is file_list[1].data assert list(rs[1]["id"]) == [-1, 1, 1] assert list(rs[1].experiment_identifiers().keys()) == [1] assert list(rs[1].experiment_identifiers().values()) == ["0"] # Now test the case where one reflection table contains two experiments file_list = [mock_two_reflection_file_object(), mock_reflection_file_object(id_=0)] rs = flatten_reflections(file_list) assert rs[0] is file_list[0].data assert list(rs[0]["id"]) == [-1, 0, 0, 1, 1] assert list(rs[0].experiment_identifiers().keys()) == [0, 1] assert list(rs[0].experiment_identifiers().values()) == ["0", "2"] assert rs[1] is file_list[1].data assert list(rs[1]["id"]) == [-1, 2, 2] assert list(rs[1].experiment_identifiers().keys()) == [2] assert list(rs[1].experiment_identifiers().values()) == ["0"] file_list = [ mock_reflection_file_object(id_=0), mock_two_reflection_file_object(ids=[1, 2]), ] rs = flatten_reflections(file_list) assert rs[0] is file_list[0].data assert list(rs[0]["id"]) == [-1, 0, 0] assert list(rs[0].experiment_identifiers().keys()) == [0] assert list(rs[0].experiment_identifiers().values()) == ["0"] assert rs[1] is file_list[1].data assert list(rs[1]["id"]) == [-1, 1, 1, 2, 2] assert list(rs[1].experiment_identifiers().keys()) == [1, 2] assert list(rs[1].experiment_identifiers().values()) == ["1", "2"] ``` #### File: image_viewer/slip_viewer/frame.py ```python from __future__ import absolute_import, division, print_function import imp import math import os import wx from . import pyslip from . import tile_generation from ..rstbx_frame import EVT_EXTERNAL_UPDATE from ..rstbx_frame import XrayFrame as XFBaseClass from rstbx.viewer import settings as rv_settings, image as rv_image from wxtbx import bitmaps pyslip._Tiles = tile_generation._Tiles class chooser_wrapper(object): def __init__(self, image_set, index): self.image_set = image_set self.path = os.path.basename(image_set.get_path(index)) self.full_path = image_set.get_path(index) self.index = index self._raw_data = None def __str__(self): return "%s [%d]" % (self.path, self.index + 1) def get_detector(self): return self.image_set.get_detector() def get_scan(self): return self.image_set.get_scan() def get_beam(self): return self.image_set.get_beam() def get_mask(self): return self.image_set.get_mask(self.index) def get_raw_data(self): if self._raw_data is None: return self.image_set[self.index] return self._raw_data def set_raw_data(self, raw_data): self._raw_data = raw_data def get_detectorbase(self): return self.image_set.get_detectorbase(self.index) def get_vendortype(self): return self.image_set.get_vendortype(self.index) def show_header(self): return self.image_set.get_detectorbase(self.index).show_header() class XrayFrame(XFBaseClass): def set_pyslip(self, parent): self.pyslip = pyslip.PySlip(parent, tile_dir=None, min_level=0) def __init__(self, *args, **kwds): self.params = kwds.get("params", None) if "params" in kwds: del kwds["params"] # otherwise wx complains ### Collect any plugins slip_viewer_dir = os.path.join(os.path.dirname(__file__)) contents = os.listdir(slip_viewer_dir) plugin_names = [ f.split(".py")[0] for f in contents if f.endswith("_frame_plugin.py") ] self.plugins = {} for name in plugin_names: self.plugins[name] = imp.load_source( name, os.path.join(slip_viewer_dir, name + ".py") ) if len(plugin_names) > 0: print("Loaded plugins: " + ", ".join(plugin_names)) wx.Frame.__init__(self, *args, **kwds) self.settings = rv_settings() self.sizer = wx.BoxSizer(wx.VERTICAL) self.SetSizer(self.sizer) # initialization is done in stages as windows are created self.pyslip = None self.viewer = wx.Panel(self, wx.ID_ANY) self.viewer.SetMinSize((640, 640)) self.viewer.SetBackgroundColour(wx.BLACK) self.viewer.ClearBackground() self.sizer.Add(self.viewer, 1, wx.EXPAND) self.statusbar = self.CreateStatusBar() self.settings_frame = None self._calibration_frame = None self._ring_frame = None self._uc_frame = None self._score_frame = None self._plugins_frame = {key: None for key in self.plugins} self.zoom_frame = None self.plot_frame = None self.metrology_matrices = None # Currently displayed image. XXX Can this be zapped? self._img = None self._distl = None self.toolbar = self.CreateToolBar(style=wx.TB_3DBUTTONS | wx.TB_TEXT) self.setup_toolbar() self.toolbar.Realize() self.mb = wx.MenuBar() self.setup_menus() self.SetMenuBar(self.mb) self.Fit() self.SetMinSize(self.GetSize()) self.SetSize((720, 720)) self.Bind(EVT_EXTERNAL_UPDATE, self.OnExternalUpdate) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateUICalibration, id=self._id_calibration) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateUINext, id=wx.ID_FORWARD) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateUIPrevious, id=wx.ID_BACKWARD) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateUIRing, id=self._id_ring) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateUIUC, id=self._id_uc) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateUIScore, id=self._id_score) for p in self.plugins: self.Bind( wx.EVT_UPDATE_UI, self.OnUpdateUIPluginWrapper(p), id=self._id_plugins[p], ) # consolidate initialization of PySlip object into a single function def init_pyslip(self): self.set_pyslip(self.viewer) self.init_pyslip_presizer() def Show(self): # Due to the asynchronous nature of X11 on Linux, just showing a frame # does not guarantee window creation. The frame calls Raise() so that it # will be shown. This addresses an error with PySlip requiring the # window to exist before instantiation. super(XrayFrame, self).Show() self.Raise() def setup_toolbar(self): XFBaseClass.setup_toolbar(self) btn = self.toolbar.AddLabelTool( id=wx.ID_SAVEAS, label="Save As...", bitmap=bitmaps.fetch_icon_bitmap("actions", "save_all", 32), shortHelp="Save As...", kind=wx.ITEM_NORMAL, ) self.Bind(wx.EVT_MENU, self.OnSaveAs, btn) # using StaticBox creates a horizontal white bar in Linux def make_gui(self, parent): parent.sizer = wx.BoxSizer(wx.HORIZONTAL) parent.SetSizer(parent.sizer) parent.sizer.Add(self.pyslip, 1, wx.EXPAND) def init_pyslip_presizer(self): self.demo_select_dispatch = {} # self.tile_directory = None#"/Users/nksauter/rawdata/demo/insulin_1_001.img" # build the GUI self.make_gui(self.viewer) # finally, bind event to handler self.pyslip.Bind(pyslip.EVT_PYSLIP_POSITION, self.handle_position_event) def handle_position_event(self, event): """Handle a pySlip POSITION event.""" posn_str = "" if event.position: (lon, lat) = event.position fast_picture, slow_picture = self.pyslip.tiles.lon_lat_to_picture_fast_slow( lon, lat ) posn_str = "Picture: slow=%.3f / fast=%.3f pixels." % ( slow_picture, fast_picture, ) coords = self.pyslip.tiles.get_flex_pixel_coordinates(lon, lat) if len(coords) >= 2: if len(coords) == 3: readout = int(round(coords[2])) else: readout = -1 coords_str = "slow=%.3f / fast=%.3f pixels" % (coords[0], coords[1]) if len(coords) == 2: posn_str += " Readout: " + coords_str + "." elif readout >= 0: posn_str += " Readout %d: %s." % (readout, coords_str) possible_intensity = None fi = self.pyslip.tiles.raw_image detector = fi.get_detector() ifs = (int(coords[1]), int(coords[0])) # int fast slow isf = (int(coords[0]), int(coords[1])) # int slow fast raw_data = fi.get_raw_data() if not isinstance(raw_data, tuple): raw_data = (raw_data,) if len(detector) > 1: if readout >= 0: if detector[readout].is_coord_valid(ifs): possible_intensity = raw_data[readout][isf] else: if detector[0].is_coord_valid(ifs): possible_intensity = raw_data[0][isf] if possible_intensity is not None: if possible_intensity == 0: format_str = " I=%6.4f" else: yaya = int(math.ceil(math.log10(abs(possible_intensity)))) format_str = " I=%%6.%df" % (max(0, 5 - yaya)) posn_str += format_str % possible_intensity if ( len(coords) > 2 and readout >= 0 ): # indicates it's a tiled image in a valid region reso = self.pyslip.tiles.get_resolution( coords[1], coords[0], readout ) else: reso = self.pyslip.tiles.get_resolution(coords[1], coords[0]) if reso is not None: posn_str += " Resolution: %.3f" % (reso) self.statusbar.SetStatusText(posn_str) else: self.statusbar.SetStatusText( "Click and drag to pan; " + "middle-click and drag to plot intensity profile, right-click to zoom" ) # print "event with no position",event return def init_pyslip_postsizer(self): self.pyslip.ZoomToLevel(-2) # tiles.zoom_level self.pyslip.GotoPosition( self.pyslip.tiles.get_initial_instrument_centering_within_picture_as_lon_lat() ) def setup_menus(self): file_menu = wx.Menu() self.mb.Append(file_menu, "File") item = file_menu.Append(-1, "Open integration results...") self.Bind(wx.EVT_MENU, self.OnLoadIntegration, item) item = file_menu.Append(-1, "Open image...") self.Bind(wx.EVT_MENU, self.OnLoadFile, item) self._actions_menu = wx.Menu() self.mb.Append(self._actions_menu, "Actions") # item = self._actions_menu.Append(-1, "Change beam center...") # self.Bind(wx.EVT_MENU, self.OnChangeBeamCenter, item) # item = self._actions_menu.Append(-1, "Reset beam center to header value") # self.Bind(wx.EVT_MENU, lambda evt: self.viewer.ResetBeamCenter(), item) item = self._actions_menu.Append(-1, "Save As...") self.Bind(wx.EVT_MENU, self.OnSaveAs, item) # Known wxWidgets/wxPython issue # (http://trac.wxwidgets.org/ticket/12394): stock item ID is # expected for zero-length text. Work around by making text # contain single space. XXX Placement self._id_calibration = wx.NewId() item = self._actions_menu.Append(self._id_calibration, " ") self.Bind(wx.EVT_MENU, self.OnCalibration, source=item) # XXX Placement self._id_ring = wx.NewId() item = self._actions_menu.Append(self._id_ring, " ") self.Bind(wx.EVT_MENU, self.OnRing, source=item) # XXX Placement self._id_uc = wx.NewId() item = self._actions_menu.Append(self._id_uc, " ") self.Bind(wx.EVT_MENU, self.OnUC, source=item) # XXX Placement self._id_score = wx.NewId() item = self._actions_menu.Append(self._id_score, " ") self.Bind(wx.EVT_MENU, self.OnScore, source=item) self._id_plugins = {} for p in self.plugins: self._id_plugins[p] = wx.NewId() item = self._actions_menu.Append(self._id_plugins[p], " ") self.Bind(wx.EVT_MENU, self.OnPluginWrapper(p), source=item) def has_four_quadrants(self): d = self.pyslip.tiles.raw_image.get_detector() return len(d) > 1 and len(d.hierarchy()) == 4 def add_file_name_or_data(self, file_name_or_data): """The add_file_name_or_data() function appends @p file_name_or_data to the image chooser, unless it is already present. For file-backed images, the base name is displayed in the chooser. If necessary, the number of entries in the chooser is pruned. The function returns the index of the recently added entry. XXX This is probably the place for heuristics to determine if the viewer was given a pattern, or a plain list of files. XXX Rename this function, because it only deals with the chooser? """ key = self.get_key(file_name_or_data) for i in range(self.image_chooser.GetCount()): if key == str(self.image_chooser.GetClientData(i)): return i if self.image_chooser.GetCount() >= self.CHOOSER_SIZE: self.image_chooser.Delete(0) i = self.image_chooser.GetCount() if type(file_name_or_data) is dict: self.image_chooser.Insert(key, i, None) elif isinstance(file_name_or_data, chooser_wrapper): self.image_chooser.Insert(key, i, file_name_or_data) else: self.image_chooser.Insert(os.path.basename(key), i, key) return i def get_beam_center_px(self): """ Get the beam center in pixel coordinates relative to the tile closest to it. @return panel_id, beam_center_fast, beam_center_slow. panel_id is the panel the returned coordinates are relative to. """ detector = self.get_detector() beam = self.get_beam() if abs(detector[0].get_distance()) == 0: return 0.0, 0.0 # FIXME assumes all detector elements use the same millimeter-to-pixel convention try: # determine if the beam intersects one of the panels panel_id, (x_mm, y_mm) = detector.get_ray_intersection(beam.get_s0()) except RuntimeError as e: if not ("DXTBX_ASSERT(" in str(e) and ") failure" in str(e)): # unknown exception from dxtbx raise e if len(detector) > 1: # find the panel whose center is closest to the beam. panel_id = 0 lowest_res = 0 for p_id, panel in enumerate(detector): w, h = panel.get_image_size() res = panel.get_resolution_at_pixel(beam.get_s0(), (w // 2, h // 2)) if res > lowest_res: panel_id = p_id lowest_res = res x_mm, y_mm = detector[panel_id].get_beam_centre(beam.get_s0()) else: panel_id = 0 # FIXME this is horrible but cannot find easier way without # restructuring code - N.B. case I am debugging now is one # panel detector *parallel to beam* for which the question is # ill posed. try: x_mm, y_mm = detector[0].get_beam_centre(beam.get_s0()) except RuntimeError as e: if "DXTBX_ASSERT" in str(e): x_mm, y_mm = 0.0, 0.0 else: raise e beam_pixel_fast, beam_pixel_slow = detector[panel_id].millimeter_to_pixel( (x_mm, y_mm) ) return panel_id, beam_pixel_fast, beam_pixel_slow def load_image(self, file_name_or_data, get_raw_data=None, show_untrusted=False): """The load_image() function displays the image from @p file_name_or_data. The chooser is updated appropriately. """ # Due to a bug in wxPython 3.0.2 for Linux # http://trac.wxwidgets.org/ticket/16034 # the creation of the PySlip object is deferred until it is needed and # after other windows are created if self.pyslip is None: self.init_pyslip() # The settings dialog is created after PySlip because it may require # values from PySlip if self.settings_frame is None: self.OnShowSettings(None) self.Layout() if isinstance(file_name_or_data, chooser_wrapper): img = rv_image(file_name_or_data) else: try: img = rv_image(file_name_or_data.get_detectorbase()) except AttributeError: img = rv_image(os.path.abspath(file_name_or_data)) try: title = file_name_or_data.full_path except AttributeError: title = str(file_name_or_data) self.SetTitle(title) # Update the selection in the chooser. i = self.add_file_name_or_data(file_name_or_data) self.image_chooser.SetSelection(i) self.pyslip.tiles.show_untrusted = show_untrusted self.pyslip.tiles.current_brightness = self.settings.brightness self.pyslip.tiles.current_color_scheme = self.settings.color_scheme self.pyslip.tiles.set_image( file_name_or_data=img, metrology_matrices=self.metrology_matrices, get_raw_data=get_raw_data, ) # Initialise position zoom level for first image. XXX Why do we # have to coll ZoomToLevel to refresh subsequent images? if self._img is None: self.init_pyslip_postsizer() else: self.pyslip.ZoomToLevel(self.pyslip.tiles.zoom_level) self._img = img # XXX self.settings_frame.set_image(self._img) self.update_statusbar() # XXX Not always working? # self.Layout() detector = self.get_detector() if abs(detector[0].get_distance()) > 0: def map_coords(x, y, p): if len(self.pyslip.tiles.raw_image.get_detector()) > 1: y, x = self.pyslip.tiles.flex_image.tile_readout_to_picture( p, y - 0.5, x - 0.5 ) return self.pyslip.tiles.picture_fast_slow_to_map_relative(x, y) panel_id, beam_pixel_fast, beam_pixel_slow = self.get_beam_center_px() self.beam_center_cross_data = [ ( ( map_coords(beam_pixel_fast + 3.0, beam_pixel_slow, panel_id), map_coords(beam_pixel_fast - 3.0, beam_pixel_slow, panel_id), ), {"width": 2, "color": "#0000FFA0", "closed": False}, ), ( ( map_coords(beam_pixel_fast, beam_pixel_slow + 3.0, panel_id), map_coords(beam_pixel_fast, beam_pixel_slow - 3.0, panel_id), ), {"width": 2, "color": "#0000FFA0", "closed": False}, ), ] # Unconditionally delete extra layers--update_settings() will add # them back if appropriate. This also creates the self.*_layer # variables. if hasattr(self, "beam_layer") and self.beam_layer is not None: self.pyslip.DeleteLayer(self.beam_layer, update=False) self.beam_layer = None if hasattr(self, "spotfinder_layer") and self.spotfinder_layer is not None: self.pyslip.DeleteLayer(self.spotfinder_layer) self.spotfinder_layer = None if hasattr(self, "tile_layer") and self.tile_layer is not None: self.pyslip.DeleteLayer(self.tile_layer) self.tile_layer = None if hasattr(self, "tile_text_layer") and self.tile_text_layer is not None: self.pyslip.DeleteLayer(self.tile_text_layer) self.tile_text_layer = None # if hasattr(self, 'plugins_layer') and hasattr(self.plugins_layer, "__iter__"): # for key in self.plugins_layer: # if self.plugins_layer[key] is not None: # self.pyslip.DeleteLayer(self.plugins_layer[key]) # self.plugins_layer = {key:None for key in self.plugins} self.update_settings() # Destroy the calibration frame if it present but unsupported for # this image. XXX Need to do something about the ring tool too # when switching between different kinds of images. XXX Centering # is broken when switching between different kinds of images. if self._calibration_frame and not self.has_four_quadrants(): self.OnCalibration(None) def get_detector(self): return self.pyslip.tiles.raw_image.get_detector() def get_beam(self): return self.pyslip.tiles.raw_image.get_beam() def get_key(self, file_name_or_data): """This overridden get_key() function returns the key of @p file_name_or_data if it's an DetectorImageBase object. Otherwise it returns the super class's key """ from iotbx.detectors.detectorbase import DetectorImageBase if isinstance(file_name_or_data, DetectorImageBase): return file_name_or_data.filename elif isinstance(file_name_or_data, chooser_wrapper): return str(file_name_or_data) else: return super(XrayFrame, self).get_key(file_name_or_data) def update_settings(self, layout=True): # XXX The zoom level from the settings panel are not taken into # account here. new_brightness = self.settings.brightness new_color_scheme = self.settings.color_scheme if ( new_brightness is not self.pyslip.tiles.current_brightness or new_color_scheme is not self.pyslip.tiles.current_color_scheme ): self.pyslip.tiles.update_brightness(new_brightness, new_color_scheme) if self.settings.show_beam_center: if self.beam_layer is None and hasattr(self, "beam_center_cross_data"): self.beam_layer = self.pyslip.AddPolygonLayer( self.beam_center_cross_data, name="<beam_layer>", show_levels=[-2, -1, 0, 1, 2, 3, 4, 5], update=False, ) elif self.beam_layer is not None: self.pyslip.DeleteLayer(self.beam_layer, update=False) self.beam_layer = None if self.settings.show_spotfinder_spots: if self.spotfinder_layer is None: tdata = self.pyslip.tiles.get_spotfinder_data(self.params) self.spotfinder_layer = self.pyslip.AddPointLayer( tdata, color="green", name="<spotfinder_layer>", radius=2, renderer=self.pyslip.LightweightDrawPointLayer, show_levels=[-2, -1, 0, 1, 2, 3, 4, 5], ) elif self.spotfinder_layer is not None: self.pyslip.DeleteLayer(self.spotfinder_layer) self.spotfinder_layer = None if self.settings.show_effective_tiling: if self.tile_layer is None: tdata, ttdata = self.pyslip.tiles.get_effective_tiling_data(self.params) self.tile_layer = self.pyslip.AddPolygonLayer( tdata, name="<tiling_layer>", show_levels=[-2, -1, 0, 1, 2, 3, 4, 5] ) if self.tile_text_layer is None: self.tile_text_layer = self.pyslip.AddTextLayer( ttdata, name="<tiling_text_layer>", show_levels=[-2, -1, 0, 1, 2, 3, 4, 5], colour="#0000FFA0", textcolour="#0000FFA0", fontsize=30, placement="cc", radius=0, ) elif (self.tile_layer is not None) and (self.tile_text_layer is not None): self.pyslip.DeleteLayer(self.tile_layer) self.tile_layer = None self.pyslip.DeleteLayer(self.tile_text_layer) self.tile_text_layer = None if hasattr(self, "user_callback"): self.user_callback(self) self.pyslip.Update() # triggers redraw def OnCalibration(self, event): from rstbx.slip_viewer.calibration_frame import SBSettingsFrame if not self._calibration_frame: self._calibration_frame = SBSettingsFrame( self, wx.ID_ANY, "Quadrant calibration", style=wx.CAPTION | wx.CLOSE_BOX ) self._calibration_frame.Show() self._calibration_frame.Raise() else: self._calibration_frame.Destroy() def OnRing(self, event): from .ring_frame import RingSettingsFrame if not self._ring_frame: self._ring_frame = RingSettingsFrame( self, wx.ID_ANY, "Ring tool", style=wx.CAPTION | wx.CLOSE_BOX ) self._ring_frame.Show() self._ring_frame.Raise() else: self._ring_frame.Destroy() def OnUC(self, event): from .uc_frame import UCSettingsFrame if not self._uc_frame: self._uc_frame = UCSettingsFrame( self, wx.ID_ANY, "Unit cell tool", style=wx.CAPTION | wx.CLOSE_BOX ) self._uc_frame.Show() self._uc_frame.Raise() else: self._uc_frame.Destroy() def OnScore(self, event): from .score_frame import ScoreSettingsFrame if not self._score_frame: self._score_frame = ScoreSettingsFrame( self, wx.ID_ANY, "Score tool", style=wx.CAPTION | wx.CLOSE_BOX ) self._score_frame.Show() self._score_frame.Raise() else: self._score_frame.Destroy() def OnPluginWrapper(self, p): def OnPlugin(event): if not self._plugins_frame[p]: helper = self.plugins[p].PluginHelper self._plugins_frame[p] = helper._plugin_settings_frame( self, wx.ID_ANY, helper._plugin_title, style=wx.CAPTION | wx.CLOSE_BOX, ) self._plugins_frame[p].Show() self._plugins_frame[p].Raise() else: self._plugins_frame[p].Destroy() return OnPlugin def OnUpdateUICalibration(self, event): # If quadrant calibration is not supported for this image, disable # the corresponding menu item. Toggle the menu item text # depending on the state of the tool. if self.has_four_quadrants(): event.Enable(True) if self._calibration_frame: event.SetText("Hide quadrant calibration") else: event.SetText("Show quadrant calibration") else: event.Enable(False) event.SetText("Show quadrant calibration") def OnUpdateUINext(self, event): # Enable/disable the "Next" button based on the image's position # in the list. event.Enable( self.image_chooser.GetSelection() + 1 < self.image_chooser.GetCount() ) def OnUpdateUIPrevious(self, event): # Enable/disable the "Previous" button based on the image's # position in the list. event.Enable(self.image_chooser.GetSelection() >= 1) def OnUpdateUIRing(self, event): # Toggle the menu item text depending on the state of the tool. if self._ring_frame: event.SetText("Hide ring tool") else: event.SetText("Show ring tool") def OnUpdateUIUC(self, event): # Toggle the menu item text depending on the state of the tool. if self._uc_frame: event.SetText("Hide unit cell tool") else: event.SetText("Show unit cell tool") def OnUpdateUIScore(self, event): # Toggle the menu item text depending on the state of the tool. if self._score_frame: event.SetText("Hide score tool") else: event.SetText("Show score tool") def OnUpdateUIPluginWrapper(self, p): def OnUpdateUIPlugin(event): # Toggle the menu item text depending on the state of the tool. helper = self.plugins[p].PluginHelper if self._plugins_frame[p]: event.SetText(helper._plugin_hide_text) else: event.SetText(helper._plugin_show_text) return OnUpdateUIPlugin def OnSaveAs(self, event): ### XXX TODO: Save overlays ### XXX TODO: Fix bug where multi-asic images are slightly cropped due to tranformation error' import PIL.Image as Image dialog = wx.FileDialog( self, defaultDir="", message="Save PNG or PDF file", style=wx.FD_SAVE | wx.FD_OVERWRITE_PROMPT, wildcard="PNG file (*.png)|*.png|PDF file (*.pdf)|*.pdf", ) if dialog.ShowModal() != wx.ID_OK: return file_name = dialog.GetPath() if file_name == "": return self.update_statusbar("Writing " + file_name + "...") if dialog.GetFilterIndex() == 0: # XXX Copied from tile_generation.py; all its disclaimers # apply. raw_img = self.pyslip.tiles.raw_image detector = raw_img.get_detector() data = raw_img.get_raw_data() if not isinstance(data, tuple): # XXX should not need this test data = (data,) if len(detector) > 1: from .tile_generation import _get_flex_image_multipanel flex_img = _get_flex_image_multipanel( brightness=self.settings.brightness / 100, panels=detector, raw_data=data, beam=raw_img.get_beam(), ) else: from .tile_generation import _get_flex_image flex_img = _get_flex_image( brightness=self.settings.brightness / 100, data=data[0], saturation=detector[0].get_trusted_range()[1], vendortype=raw_img.get_vendortype(), ) if flex_img.supports_rotated_tiles_antialiasing_recommended: currentZoom = self.pyslip.level self.pyslip.tiles.UseLevel(0) # 1:1 zoom level try: x, y, width, height = self._img._raw.bounding_box_mm() x1, y1 = self._img._raw.detector_coords_as_image_coords(x, y) x2, y2 = self._img._raw.detector_coords_as_image_coords( x + width, y + height ) except AttributeError: x1 = min( [ p.get_pixel_lab_coord(c)[0] / p.get_pixel_size()[0] for p in detector for c in [ (0, 0), (0, p.get_image_size()[1]), (p.get_image_size()[0], 0), (p.get_image_size()[0], p.get_image_size()[1]), ] ] ) y1 = min( [ p.get_pixel_lab_coord(c)[1] / p.get_pixel_size()[1] for p in detector for c in [ (0, 0), (0, p.get_image_size()[1]), (p.get_image_size()[0], 0), (p.get_image_size()[0], p.get_image_size()[1]), ] ] ) x2 = max( [ p.get_pixel_lab_coord(c)[0] / p.get_pixel_size()[0] for p in detector for c in [ (0, 0), (0, p.get_image_size()[1]), (p.get_image_size()[0], 0), (p.get_image_size()[0], p.get_image_size()[1]), ] ] ) y2 = max( [ p.get_pixel_lab_coord(c)[1] / p.get_pixel_size()[1] for p in detector for c in [ (0, 0), (0, p.get_image_size()[1]), (p.get_image_size()[0], 0), (p.get_image_size()[0], p.get_image_size()[1]), ] ] ) # Map > View - determine layout in X direction x_offset = x1 start_x_tile = int(math.floor(x_offset / self.pyslip.tile_size_x)) stop_x_tile = ( x2 + self.pyslip.tile_size_x - 1 ) / self.pyslip.tile_size_x stop_x_tile = int(stop_x_tile) col_list = range(start_x_tile, stop_x_tile) x_pix = start_x_tile * self.pyslip.tile_size_y - x_offset y_offset = y1 start_y_tile = int(math.floor(y_offset / self.pyslip.tile_size_y)) stop_y_tile = ( y2 + self.pyslip.tile_size_y - 1 ) / self.pyslip.tile_size_y stop_y_tile = int(stop_y_tile) row_list = range(start_y_tile, stop_y_tile) y_pix_start = start_y_tile * self.pyslip.tile_size_y - y_offset bitmap = wx.EmptyBitmap(x2 - x1, y2 - y1) dc = wx.MemoryDC() dc.SelectObject(bitmap) # start pasting tiles for x in col_list: y_pix = y_pix_start for y in row_list: dc.DrawBitmap( self.pyslip.tiles.GetTile(x, y), x_pix, y_pix, False ) y_pix += self.pyslip.tile_size_y x_pix += self.pyslip.tile_size_x dc.SelectObject(wx.NullBitmap) wximg = wx.ImageFromBitmap(bitmap) imageout = Image.new("RGB", (wximg.GetWidth(), wximg.GetHeight())) imageout.frombytes(wximg.GetData()) self.pyslip.tiles.UseLevel(currentZoom) else: # write the image out at full resolution flex_img.setWindow(0.0, 0.0, 1) flex_img.spot_convention(0) flex_img.adjust(color_scheme=self.settings.color_scheme) flex_img.prep_string() data_string = flex_img.as_bytes() imageout = Image.frombytes( "RGB", (flex_img.ex_size2(), flex_img.ex_size1()), data_string ) with open(file_name, "wb") as fh: imageout.save(fh, "PNG") elif dialog.GetFilterIndex() == 1: from reportlab.lib.units import inch from reportlab.pdfgen import canvas # Dots per inch in PDF output, and fudge factor to not make # fine features impossibly small. XXX The fudge factor should # go. DPI = 72 LINE_WIDTH_FACTOR = 0.6 # XXX Copied from tile_generation.py; all its disclaimers # apply. raw_img = self.pyslip.tiles.raw_image detector = raw_img.get_detector() data = raw_img.get_raw_data() if not isinstance(data, tuple): # XXX should not need this test data = (data,) if len(detector) > 1: from .tile_generation import _get_flex_image_multipanel flex_img = _get_flex_image_multipanel( brightness=self.settings.brightness / 100, panels=detector, raw_data=data, beam=raw_img.get_beam(), ) else: from .tile_generation import _get_flex_image flex_img = _get_flex_image( brightness=self.settings.brightness / 100, data=data[0], saturation=detector[0].get_trusted_range()[1], vendortype=raw_img.get_vendortype(), ) flex_img.setWindow(0, 0, 1) flex_img.adjust(color_scheme=self.settings.color_scheme) flex_img.prep_string() # XXX Order of size1/size2 correct? pdf_size = (flex_img.size2() * inch / DPI, flex_img.size1() * inch / DPI) pdf_canvas = canvas.Canvas(filename=file_name, pagesize=pdf_size) pil_img = Image.frombytes( "RGB", (flex_img.size2(), flex_img.size1()), flex_img.as_bytes() ) pdf_canvas.drawInlineImage( pil_img, 0, 0, width=pdf_size[0], height=pdf_size[1] ) for layer_id in self.pyslip.layer_z_order: layer = self.pyslip.layer_mapping[layer_id] # XXX This would probably be more elegant if these were # functions in some layer class. Note repeated roundabout # way (via a wx.Pen object) to extract RGB values from the # colour parameter. if layer.type == self.pyslip.TypeEllipse: for ( p, place, width, colour, closed, filled, fillcolour, x_off, y_off, pdata, ) in layer.data: if layer.map_rel: pp = [] for pelement in p: fs = self.pyslip.tiles.map_relative_to_picture_fast_slow( pelement[0], pelement[1] ) pp.append( ( fs[0] * inch / DPI, pdf_size[1] - fs[1] * inch / DPI, ) ) ellipse_center = (pp[0][0], pp[0][1]) major = ( pp[1][0] - ellipse_center[0], pp[1][1] - ellipse_center[1], ) minor = ( pp[2][0] - ellipse_center[0], pp[2][1] - ellipse_center[1], ) else: raise NotImplementedError( "PDF output in view-relative coordinates not implemented" ) pen = wx.Pen(colour) pdf_canvas.setLineWidth(width * LINE_WIDTH_FACTOR) pdf_canvas.setStrokeColorRGB( pen.Colour.Red() / 255, pen.Colour.Green() / 255, pen.Colour.Blue() / 255, ) angle = math.atan2(major.elems[1], major.elems[0]) r_major = math.hypot(major.elems[0], major.elems[1]) r_minor = math.hypot(minor.elems[0], minor.elems[1]) pdf_canvas.saveState() pdf_canvas.translate( ellipse_center.elems[0], ellipse_center.elems[1] ) pdf_canvas.rotate(math.degrees(angle)) pdf_canvas.ellipse(-r_major, -r_minor, r_major, r_minor) pdf_canvas.restoreState() elif layer.type == self.pyslip.TypeImage: raise NotImplementedError( "PDF output of image layers not implemented" ) elif layer.type == self.pyslip.TypePoint: for ( lon, lat, place, radius, colour, x_off, y_off, pdata, ) in layer.data: if layer.map_rel: fs = self.pyslip.tiles.map_relative_to_picture_fast_slow( lon, lat ) else: raise NotImplementedError( "PDF output in view-relative coordinates not implemented" ) pt = (fs[0] * inch / DPI, pdf_size[1] - fs[1] * inch / DPI) pen = wx.Pen(colour) pdf_canvas.setLineWidth(radius) pdf_canvas.setStrokeColorRGB( pen.Colour.Red() / 255, pen.Colour.Green() / 255, pen.Colour.Blue() / 255, ) pdf_canvas.circle(pt[0], pt[1], 0.5 * radius * inch / DPI) elif layer.type == self.pyslip.TypePolygon: for ( p, place, width, colour, closed, filled, fillcolour, x_off, y_off, pdata, ) in layer.data: path = pdf_canvas.beginPath() for i, pp in enumerate(p): if layer.map_rel: fs = self.pyslip.tiles.map_relative_to_picture_fast_slow( pp[0], pp[1] ) else: raise NotImplementedError( "PDF output in view-relative coordinates not implemented" ) pt = (fs[0] * inch / DPI, pdf_size[1] - fs[1] * inch / DPI) if i == 0: path.moveTo(pt[0], pt[1]) else: path.lineTo(pt[0], pt[1]) if closed: path.close() pen = wx.Pen(colour) pdf_canvas.setFillColorRGB( pen.Colour.Red() / 255, pen.Colour.Green() / 255, pen.Colour.Blue() / 255, ) pdf_canvas.setLineWidth(width * LINE_WIDTH_FACTOR) pdf_canvas.setStrokeColorRGB( pen.Colour.Red() / 255, pen.Colour.Green() / 255, pen.Colour.Blue() / 255, ) pdf_canvas.drawPath(path, fill=filled) elif layer.type == self.pyslip.TypeText: for ( lon, lat, tdata, placement, radius, colour, textcolour, fontname, fontsize, offset_x, offset_y, data, ) in layer.data: if placement != "cc": print( Warning( "Only centered placement available when drawing text on pdf" ) ) if layer.map_rel: fs = self.pyslip.tiles.map_relative_to_picture_fast_slow( lon, lat ) else: raise NotImplementedError( "PDF output in view-relative coordinates not implemented" ) from reportlab.pdfbase.pdfmetrics import stringWidth scale = 5 # XXX this scaleup by 5 is arbitrary! try: w = stringWidth(tdata, fontname, fontsize * scale) except KeyError: fontname = "Helvetica" w = stringWidth(tdata, fontname, fontsize * scale) if fs[0] - (w / 2) < 0: # handle text falling off the left side txt = pdf_canvas.beginText(x=0, y=fs[1]) else: txt = pdf_canvas.beginText(x=fs[0] - (w / 2), y=fs[1]) txt.setFont(fontname, fontsize * scale) txt.setFillColor(textcolour) txt.setStrokeColor(textcolour) txt.textLine(tdata) pdf_canvas.drawText(txt) pdf_canvas.save() self.update_statusbar("Writing " + file_name + "..." + " Done.") from rstbx.viewer.frame import SettingsFrame def override_SF_set_image(self, image): self.Layout() self.Fit() SettingsFrame.set_image = override_SF_set_image ``` #### File: dials/util/Resolutionizer.py ```python from __future__ import absolute_import, division, print_function import math import sys import time import iotbx.phil from cctbx.array_family import flex from dials.util import Sorry from scitbx import lbfgs def nint(a): return int(round(a)) start_time = time.time() def stamp(message): # print("[%7.3f] %s" % (time.time() - start_time, message)) return def poly_residual(xp, y, params): """Compute the residual between the observations y[i] and sum_j params[j] x[i]^j. For efficiency, x[i]^j are pre-calculated in xp.""" c = len(y) e = flex.double([flex.sum(xp[j] * params) for j in range(c)]) return flex.sum(flex.pow2(y - e)) def poly_gradients(xp, y, params): """Compute the gradient of the residual w.r.t. the parameters, N.B. will be performed using a finite difference method. N.B. this should be trivial to do algebraicly.""" eps = 1.0e-6 g = flex.double() n = len(params) for j in range(n): rs = [] for signed_eps in [-eps, eps]: params_eps = params[:] params_eps[j] += signed_eps rs.append(poly_residual(xp, y, params_eps)) g.append((rs[1] - rs[0]) / (2 * eps)) return g class poly_fitter(object): """A class to do the polynomial fit. This will fit observations y at points x with a polynomial of order n.""" def __init__(self, points, values, order): self.x = flex.double([1.0 for j in range(order)]) self._x = flex.double(points) self._y = flex.double(values) # precalculate x[j]^[0-(n - 1)] values self._xp = [ flex.double([math.pow(x, j) for j in range(order)]) for x in self._x ] return def refine(self): """Actually perform the parameter refinement.""" tp = lbfgs.termination_parameters(max_iterations=1000) r = lbfgs.run(target_evaluator=self, termination_params=tp) return r def compute_functional_and_gradients(self): return ( poly_residual(self._xp, self._y, self.x), poly_gradients(self._xp, self._y, self.x), ) def get_parameters(self): return list(self.x) def evaluate(self, x): """Evaluate the resulting fit at point x.""" return sum([math.pow(x, k) * self.x[k] for k in range(len(self.x))]) def fit(x, y, order): """Fit the values y(x) then return this fit. x, y should be iterables containing floats of the same size. The order is the order of polynomial to use for this fit. This will be useful for e.g. I/sigma.""" stamp("fitter: %s %s %s" % (x, y, order)) pf = poly_fitter(x, y, order) stamp("fitter: refine") pf.refine() stamp("fitter: done") return [pf.evaluate(_x) for _x in x] def tanh_fit(x, y, iqr_multiplier=None): from scitbx.math import curve_fitting tf = curve_fitting.tanh_fit(x, y) f = curve_fitting.tanh(*tf.params) if iqr_multiplier is not None: assert iqr_multiplier > 0 yc = f(x) dy = y - yc from scitbx.math import five_number_summary min_x, q1_x, med_x, q3_x, max_x = five_number_summary(dy) iqr_x = q3_x - q1_x cut_x = iqr_multiplier * iqr_x outliers = (dy > q3_x + cut_x) | (dy < q1_x - cut_x) if outliers.count(True) > 0: xo = x.select(~outliers) yo = y.select(~outliers) tf = curve_fitting.tanh_fit(xo, yo) f = curve_fitting.tanh(*tf.params) return f(x) def log_fit(x, y, order): """Fit the values log(y(x)) then return exp() to this fit. x, y should be iterables containing floats of the same size. The order is the order of polynomial to use for this fit. This will be useful for e.g. I/sigma.""" ly = [math.log(_y) for _y in y] pf = poly_fitter(x, ly, order) pf.refine() return [math.exp(pf.evaluate(_x)) for _x in x] def log_inv_fit(x, y, order): """Fit the values log(1 / y(x)) then return the inverse of this fit. x, y should be iterables, the order of the polynomial for the transformed fit needs to be specified. This will be useful for e.g. Rmerge.""" ly = [math.log(1.0 / _y) for _y in y] pf = poly_fitter(x, ly, order) pf.refine() return [(1.0 / math.exp(pf.evaluate(_x))) for _x in x] def interpolate_value(x, y, t): """Find the value of x: y(x) = t.""" if t > max(y) or t < min(y): raise RuntimeError("t outside of [%f, %f]" % (min(y), max(y))) for j in range(1, len(x)): x0 = x[j - 1] y0 = y[j - 1] x1 = x[j] y1 = y[j] if (y0 - t) * (y1 - t) < 0: return x0 + (t - y0) * (x1 - x0) / (y1 - y0) phil_str = """ rmerge = None .type = float(value_min=0) .help = "Maximum value of Rmerge in the outer resolution shell" .short_caption = "Outer shell Rmerge" .expert_level = 1 completeness = None .type = float(value_min=0) .help = "Minimum completeness in the outer resolution shell" .short_caption = "Outer shell completeness" .expert_level = 1 cc_ref = 0.1 .type = float(value_min=0) .help = "Minimum value of CC vs reference dataset in the outer resolution shell" .short_caption = "Outer shell CCref" .expert_level = 1 cc_half = 0.3 .type = float(value_min=0) .help = "Minimum value of CC1/2 in the outer resolution shell" .short_caption = "Outer shell CC1/2" .expert_level = 1 cc_half_method = *half_dataset sigma_tau .type = choice cc_half_significance_level = 0.1 .type = float(value_min=0, value_max=1) .expert_level = 1 cc_half_fit = polynomial *tanh .type = choice .expert_level = 1 isigma = 0.25 .type = float(value_min=0) .help = "Minimum value of the unmerged <I/sigI> in the outer resolution shell" .short_caption = "Outer shell unmerged <I/sigI>" .expert_level = 1 misigma = 1.0 .type = float(value_min=0) .help = "Minimum value of the merged <I/sigI> in the outer resolution shell" .short_caption = "Outer shell merged <I/sigI>" .expert_level = 1 i_mean_over_sigma_mean = None .type = float(value_min=0) .help = "Minimum value of the unmerged <I>/<sigI> in the outer resolution shell" .short_caption = "Outer shell unmerged <I>/<sigI>" .expert_level = 2 nbins = 100 .type = int .help = "Number of resolution bins to use for estimation of resolution limit." .short_caption = "Number of resolution bins." .expert_level = 1 binning_method = *counting_sorted volume .type = choice .help = "Use equal-volume bins or bins with approximately equal numbers of reflections per bin." .short_caption = "Equal-volume or equal #ref binning." .expert_level = 1 anomalous = False .type = bool .short_caption = "Keep anomalous pairs separate in merging statistics" .expert_level = 1 labels = None .type = strings space_group = None .type = space_group .expert_level = 1 reference = None .type = path """ phil_defaults = iotbx.phil.parse( """ resolutionizer { %s batch_range = None .type = ints(size=2, value_min=0) plot = False .type = bool .expert_level = 2 } """ % phil_str ) class resolution_plot(object): def __init__(self, ylabel): import matplotlib matplotlib.use("Agg") from matplotlib import pyplot pyplot.style.use("ggplot") self.ylabel = ylabel self.fig = pyplot.figure() self.ax = self.fig.add_subplot(111) def plot(self, d_star_sq, values, label): self.ax.plot(d_star_sq, values, label=label) if label.startswith("CC"): ylim = self.ax.get_ylim() self.ax.set_ylim(0, max(ylim[1], 1.05)) def plot_resolution_limit(self, d): from cctbx import uctbx d_star_sq = uctbx.d_as_d_star_sq(d) self.ax.plot([d_star_sq, d_star_sq], self.ax.get_ylim(), linestyle="--") def savefig(self, filename): from cctbx import uctbx xticks = self.ax.get_xticks() xticks_d = [ "%.2f" % uctbx.d_star_sq_as_d(ds2) if ds2 > 0 else 0 for ds2 in xticks ] self.ax.set_xticklabels(xticks_d) self.ax.set_xlabel("Resolution (A)") self.ax.set_ylabel(self.ylabel) self.ax.legend(loc="best") self.fig.savefig(filename) class resolutionizer(object): """A class to calculate things from merging reflections.""" def __init__(self, i_obs, params, batches=None, reference=None): self._params = params self._reference = reference if self._reference is not None: self._reference = self._reference.merge_equivalents( use_internal_variance=False ).array() i_obs = i_obs.customized_copy( anomalous_flag=params.anomalous, info=i_obs.info() ) if self._params.batch_range is not None and batches is not None: batch_min, batch_max = self._params.batch_range assert batches is not None sel = (batches.data() >= batch_min) & (batches.data() <= batch_max) i_obs = i_obs.select(sel).set_info(i_obs.info()) if self._params.space_group is not None: i_obs = i_obs.customized_copy( space_group_info=self._params.space_group, info=i_obs.info() ) self._intensities = i_obs import iotbx.merging_statistics self._merging_statistics = iotbx.merging_statistics.dataset_statistics( i_obs=i_obs, n_bins=self._params.nbins, cc_one_half_significance_level=self._params.cc_half_significance_level, cc_one_half_method=self._params.cc_half_method, binning_method=self._params.binning_method, anomalous=params.anomalous, use_internal_variance=False, eliminate_sys_absent=False, assert_is_not_unique_set_under_symmetry=False, ) @classmethod def from_unmerged_mtz(cls, scaled_unmerged, params): def miller_array_from_mtz(unmerged_mtz): from iotbx import reflection_file_reader hkl_in = reflection_file_reader.any_reflection_file(scaled_unmerged) miller_arrays = hkl_in.as_miller_arrays(merge_equivalents=False) i_obs = None batches = None all_i_obs = [] for array in miller_arrays: labels = array.info().label_string() if array.is_xray_intensity_array(): all_i_obs.append(array) if labels == "BATCH": assert batches is None batches = array if i_obs is None: if len(all_i_obs) == 0: raise Sorry("No intensities found in %s." % file_name) elif len(all_i_obs) > 1: if params.labels is not None: from iotbx.reflection_file_utils import label_table lab_tab = label_table(all_i_obs) i_obs = lab_tab.select_array( label=params.labels[0], command_line_switch="labels" ) if i_obs is None: raise Sorry( "Multiple intensity arrays - please specify one:\n%s" % "\n".join( [ " labels=%s" % a.info().label_string() for a in all_i_obs ] ) ) else: i_obs = all_i_obs[0] if hkl_in.file_type() == "ccp4_mtz": # need original miller indices otherwise we don't get correct anomalous # merging statistics mtz_object = hkl_in.file_content() if "M_ISYM" in mtz_object.column_labels(): indices = mtz_object.extract_original_index_miller_indices() i_obs = i_obs.customized_copy(indices=indices, info=i_obs.info()) return i_obs, batches i_obs, batches = miller_array_from_mtz(scaled_unmerged) if params.reference is not None: reference, _ = miller_array_from_mtz(params.reference) else: reference = None return cls(i_obs, params, batches=batches, reference=reference) def resolution_auto(self): """Compute resolution limits based on the current self._params set.""" if self._params.rmerge: stamp("ra: rmerge") print("Resolution rmerge: %.2f" % self.resolution_rmerge()) if self._params.completeness: stamp("ra: comp") print("Resolution completeness: %.2f" % self.resolution_completeness()) if self._params.cc_half: stamp("ra: cc") print("Resolution cc_half : %.2f" % self.resolution_cc_half()) if self._params.cc_ref and self._reference is not None: stamp("ra: cc") print("Resolution cc_ref : %.2f" % self.resolution_cc_ref()) if self._params.isigma: stamp("ra: isig") print("Resolution I/sig: %.2f" % self.resolution_unmerged_isigma()) if self._params.misigma: stamp("ra: mnisig") print("Resolution Mn(I/sig): %.2f" % self.resolution_merged_isigma()) if self._params.i_mean_over_sigma_mean: print( "Resolution Mn(I)/Mn(sig): %.2f" % self.resolution_i_mean_over_sigma_mean() ) def resolution_rmerge(self, limit=None, log=None): """Compute a resolution limit where either rmerge = 1.0 (limit if set) or the full extent of the data. N.B. this fit is only meaningful for positive values.""" if limit is None: limit = self._params.rmerge rmerge_s = flex.double( [b.r_merge for b in self._merging_statistics.bins] ).reversed() s_s = flex.double( [1 / b.d_min ** 2 for b in self._merging_statistics.bins] ).reversed() sel = rmerge_s > 0 rmerge_s = rmerge_s.select(sel) s_s = s_s.select(sel) if limit == 0.0: r_rmerge = 1.0 / math.sqrt(flex.max(s_s)) rmerge_f = None elif limit > flex.max(rmerge_s): r_rmerge = 1.0 / math.sqrt(flex.max(s_s)) rmerge_f = None else: rmerge_f = log_inv_fit(s_s, rmerge_s, 6) if log: fout = open(log, "w") for j, s in enumerate(s_s): d = 1.0 / math.sqrt(s) o = rmerge_s[j] m = rmerge_f[j] fout.write("%f %f %f %f\n" % (s, d, o, m)) fout.close() try: r_rmerge = 1.0 / math.sqrt(interpolate_value(s_s, rmerge_f, limit)) except Exception: r_rmerge = 1.0 / math.sqrt(flex.max(s_s)) if self._params.plot: plot = resolution_plot(ylabel="Rmerge") if rmerge_f is not None: plot.plot(s_s, rmerge_f, label="fit") plot.plot(s_s, rmerge_s, label="Rmerge") plot.plot_resolution_limit(r_rmerge) plot.savefig("rmerge.png") return r_rmerge def resolution_i_mean_over_sigma_mean(self, limit=None, log=None): """Compute a resolution limit where either <I>/<sigma> = 1.0 (limit if set) or the full extent of the data.""" if limit is None: limit = self._params.i_mean_over_sigma_mean isigma_s = flex.double( [b.i_mean_over_sigi_mean for b in self._merging_statistics.bins] ).reversed() s_s = flex.double( [1 / b.d_min ** 2 for b in self._merging_statistics.bins] ).reversed() sel = isigma_s > 0 isigma_s = isigma_s.select(sel) s_s = s_s.select(sel) if flex.min(isigma_s) > limit: r_isigma = 1.0 / math.sqrt(flex.max(s_s)) isigma_f = None else: isigma_f = log_fit(s_s, isigma_s, 6) if log: fout = open(log, "w") for j, s in enumerate(s_s): d = 1.0 / math.sqrt(s) o = isigma_s[j] m = isigma_f[j] fout.write("%f %f %f %f\n" % (s, d, o, m)) fout.close() try: r_isigma = 1.0 / math.sqrt(interpolate_value(s_s, isigma_f, limit)) except Exception: if limit > max(isigma_f): r_isigma = 1.0 / math.sqrt(flex.min(s_s)) else: r_isigma = 1.0 / math.sqrt(flex.max(s_s)) if self._params.plot: plot = resolution_plot(ylabel="Unmerged <I>/<sigma>") if isigma_f is not None: plot.plot(s_s, isigma_f, label="fit") plot.plot(s_s, isigma_s, label="Unmerged <I>/<sigma>") plot.plot_resolution_limit(r_isigma) plot.savefig("i_mean_over_sigma_mean.png") return r_isigma def resolution_unmerged_isigma(self, limit=None, log=None): """Compute a resolution limit where either I/sigma = 1.0 (limit if set) or the full extent of the data.""" if limit is None: limit = self._params.isigma isigma_s = flex.double( [b.unmerged_i_over_sigma_mean for b in self._merging_statistics.bins] ).reversed() s_s = flex.double( [1 / b.d_min ** 2 for b in self._merging_statistics.bins] ).reversed() sel = isigma_s > 0 isigma_s = isigma_s.select(sel) s_s = s_s.select(sel) if flex.min(isigma_s) > limit: r_isigma = 1.0 / math.sqrt(flex.max(s_s)) isigma_f = None else: isigma_f = log_fit(s_s, isigma_s, 6) if log: fout = open(log, "w") for j, s in enumerate(s_s): d = 1.0 / math.sqrt(s) o = isigma_s[j] m = isigma_f[j] fout.write("%f %f %f %f\n" % (s, d, o, m)) fout.close() try: r_isigma = 1.0 / math.sqrt(interpolate_value(s_s, isigma_f, limit)) except Exception: r_isigma = 1.0 / math.sqrt(flex.max(s_s)) if self._params.plot: plot = resolution_plot(ylabel="Unmerged I/sigma") if isigma_f is not None: plot.plot(s_s, isigma_f, label="fit") plot.plot(s_s, isigma_s, label="Unmerged I/sigma") plot.plot_resolution_limit(r_isigma) plot.savefig("isigma.png") return r_isigma def resolution_merged_isigma(self, limit=None, log=None): """Compute a resolution limit where either Mn(I/sigma) = 1.0 (limit if set) or the full extent of the data.""" if limit is None: limit = self._params.misigma misigma_s = flex.double( [b.i_over_sigma_mean for b in self._merging_statistics.bins] ).reversed() s_s = flex.double( [1 / b.d_min ** 2 for b in self._merging_statistics.bins] ).reversed() sel = misigma_s > 0 misigma_s = misigma_s.select(sel) s_s = s_s.select(sel) if flex.min(misigma_s) > limit: r_misigma = 1.0 / math.sqrt(flex.max(s_s)) misigma_f = None else: misigma_f = log_fit(s_s, misigma_s, 6) if log: fout = open(log, "w") for j, s in enumerate(s_s): d = 1.0 / math.sqrt(s) o = misigma_s[j] m = misigma_f[j] fout.write("%f %f %f %f\n" % (s, d, o, m)) fout.close() try: r_misigma = 1.0 / math.sqrt(interpolate_value(s_s, misigma_f, limit)) except Exception: r_misigma = 1.0 / math.sqrt(flex.max(s_s)) if self._params.plot: plot = resolution_plot(ylabel="Merged I/sigma") if misigma_f is not None: plot.plot(s_s, misigma_f, label="fit") plot.plot(s_s, misigma_s, label="Merged I/sigma") plot.plot_resolution_limit(r_misigma) plot.savefig("misigma.png") return r_misigma def resolution_completeness(self, limit=None, log=None): """Compute a resolution limit where completeness < 0.5 (limit if set) or the full extent of the data. N.B. this completeness is with respect to the *maximum* completeness in a shell, to reflect triclinic cases.""" if limit is None: limit = self._params.completeness comp_s = flex.double( [b.completeness for b in self._merging_statistics.bins] ).reversed() s_s = flex.double( [1 / b.d_min ** 2 for b in self._merging_statistics.bins] ).reversed() if flex.min(comp_s) > limit: r_comp = 1.0 / math.sqrt(flex.max(s_s)) comp_f = None else: comp_f = fit(s_s, comp_s, 6) rlimit = limit * max(comp_s) if log: fout = open(log, "w") for j, s in enumerate(s_s): d = 1.0 / math.sqrt(s) o = comp_s[j] m = comp_f[j] fout.write("%f %f %f %f\n" % (s, d, o, m)) fout.close() try: r_comp = 1.0 / math.sqrt(interpolate_value(s_s, comp_f, rlimit)) except Exception: r_comp = 1.0 / math.sqrt(flex.max(s_s)) if self._params.plot: plot = resolution_plot(ylabel="Completeness") if comp_f is not None: plot.plot(s_s, comp_f, label="fit") plot.plot(s_s, comp_s, label="Completeness") plot.plot_resolution_limit(r_comp) plot.savefig("completeness.png") return r_comp def resolution_cc_half(self, limit=None, log=None): """Compute a resolution limit where cc_half < 0.5 (limit if set) or the full extent of the data.""" if limit is None: limit = self._params.cc_half if self._params.cc_half_method == "sigma_tau": cc_s = flex.double( [b.cc_one_half_sigma_tau for b in self._merging_statistics.bins] ).reversed() else: cc_s = flex.double( [b.cc_one_half for b in self._merging_statistics.bins] ).reversed() s_s = flex.double( [1 / b.d_min ** 2 for b in self._merging_statistics.bins] ).reversed() p = self._params.cc_half_significance_level if p is not None: if self._params.cc_half_method == "sigma_tau": significance = flex.bool( [ b.cc_one_half_sigma_tau_significance for b in self._merging_statistics.bins ] ).reversed() cc_half_critical_value = flex.double( [ b.cc_one_half_sigma_tau_critical_value for b in self._merging_statistics.bins ] ).reversed() else: significance = flex.bool( [b.cc_one_half_significance for b in self._merging_statistics.bins] ).reversed() cc_half_critical_value = flex.double( [ b.cc_one_half_critical_value for b in self._merging_statistics.bins ] ).reversed() # index of last insignificant bin i = flex.last_index(significance, False) if i is None or i == len(significance) - 1: i = 0 else: i += 1 else: i = 0 if self._params.cc_half_fit == "tanh": cc_f = tanh_fit(s_s[i:], cc_s[i:], iqr_multiplier=4) else: cc_f = fit(s_s[i:], cc_s[i:], 6) stamp("rch: fits") rlimit = limit * max(cc_s) if log: fout = open(log, "w") for j, s in enumerate(s_s): d = 1.0 / math.sqrt(s) o = cc_s[j] m = cc_f[j] fout.write("%f %f %f %f\n" % (s, d, o, m)) fout.close() try: r_cc = 1.0 / math.sqrt(interpolate_value(s_s[i:], cc_f, rlimit)) except Exception: r_cc = 1.0 / math.sqrt(max(s_s[i:])) stamp("rch: done : %s" % r_cc) if self._params.plot: plot = resolution_plot("CC1/2") plot.plot(s_s[i:], cc_f, label="fit") plot.plot(s_s, cc_s, label="CC1/2") if p is not None: plot.plot( s_s, cc_half_critical_value, label="Confidence limit (p=%g)" % p ) plot.plot_resolution_limit(r_cc) plot.savefig("cc_half.png") return r_cc def resolution_cc_ref(self, limit=None, log=None): """Compute a resolution limit where cc_ref < 0.5 (limit if set) or the full extent of the data.""" if limit is None: limit = self._params.cc_ref intensities = self._intensities.merge_equivalents( use_internal_variance=False ).array() cc_s = flex.double() for b in self._merging_statistics.bins: sel = intensities.resolution_filter_selection(d_min=b.d_min, d_max=b.d_max) sel_ref = self._reference.resolution_filter_selection( d_min=b.d_min, d_max=b.d_max ) d = intensities.select(sel) dref = self._reference.select(sel_ref) cc = d.correlation(dref, assert_is_similar_symmetry=False) cc_s.append(cc.coefficient()) cc_s = cc_s.reversed() s_s = flex.double( [1 / b.d_min ** 2 for b in self._merging_statistics.bins] ).reversed() if self._params.cc_half_fit == "tanh": cc_f = tanh_fit(s_s, cc_s, iqr_multiplier=4) else: cc_f = fit(s_s, cc_s, 6) stamp("rch: fits") rlimit = limit * max(cc_s) if log: fout = open(log, "w") for j, s in enumerate(s_s): d = 1.0 / math.sqrt(s) o = cc_s[j] m = cc_f[j] fout.write("%f %f %f %f\n" % (s, d, o, m)) fout.close() try: r_cc = 1.0 / math.sqrt(interpolate_value(s_s, cc_f, rlimit)) except Exception: r_cc = 1.0 / math.sqrt(max(s_s)) stamp("rch: done : %s" % r_cc) if self._params.plot: plot = resolution_plot("CCref") plot.plot(s_s, cc_f, label="fit") plot.plot(s_s, cc_s, label="CCref") plot.plot_resolution_limit(r_cc) plot.savefig("cc_ref.png") return r_cc def run(args): working_phil = phil_defaults interp = working_phil.command_line_argument_interpreter(home_scope="resolutionizer") params, unhandled = interp.process_and_fetch( args, custom_processor="collect_remaining" ) params = params.extract().resolutionizer if len(unhandled) == 0: working_phil.show() exit() assert len(unhandled) == 1 scaled_unmerged = unhandled[0] stamp("Resolutionizer.py starting") m = resolutionizer.from_unmerged_mtz(scaled_unmerged, params) stamp("instantiated") m.resolution_auto() stamp("the end.") if __name__ == "__main__": run(sys.argv[1:]) ``` #### File: data/beamline_defs/PILATUS_2M_S_N_24_0107_Diamond.py ```python from __future__ import absolute_import, division, print_function import iotbx.cif.model import dxtbx.data.beamline_defs class get_definition(dxtbx.data.beamline_defs.template): def __init__(self, timestamp=None, **kwargs): self._timestamp = timestamp def CIF_block(self): """Interface function to generate a CIF block for this detector.""" return self._identify_time()(mmcif=False) def mmCIF_block(self): """Interface function to generate an mmCIF block for this detector.""" return self._identify_time()(mmcif=True) def _identify_time(self): """Determine detector environment based on timestamp.""" if not self._timestamp: # default to I19 return self._at_I19 if self._timestamp >= self._date_to_epoch(2015, 11, 1): return self._at_I19 # moved to I19 on 01.11.2015 return self._at_I04_1 # before was on I04-1 def _base(self, mmcif=False): """Generates 1. a CIF/mmCIF block that contains information that is always true about the detector. 2. a lookup function for CIF/mmCIF strings.""" # prepare string lookup table lookup = self._lookup(mmcif) b = iotbx.cif.model.block() b[lookup("df.detector")] = "Photon counting pixel array" b[lookup("df.rad.type")] = "Synchrotron" return b, lookup def _at_I19(self, mmcif=False): b, lookup = self._base(mmcif) b[lookup("df.m.dev")] = "Fixed \\c 3-circle diffractometer" b[lookup("df.m.dev_type")] = "Fluid Film Devices" b[lookup("df.m.method")] = "shutterless scans" b[lookup("df.m.spec_supp")] = "MiTeGen MicroMount" b[lookup("df.rad.source")] = "Diamond Light Source Beamline I19-1" b[lookup("df.rad.mono")] = "Silicon 111" return b def _at_I04_1(self, mmcif=False): b, lookup = self._base(mmcif) b[lookup("df.rad.source")] = "Diamond Light Source Beamline I04-1" return b ``` #### File: dxtbx/format/FormatEiger0MQDump.py ```python from __future__ import absolute_import, division, print_function import json import os import numpy from scitbx.array_family import flex import msgpack from dxtbx.format.Format import Format try: import bitshuffle except ImportError: pass # not available in conda class FormatEiger0MQDump(Format): @staticmethod def understand(image_file): if os.path.exists(os.path.join(os.path.split(image_file)[0], "header")): return True return False def _start(self): header = os.path.join(os.path.split(self._image_file)[0], "header") data = msgpack.unpackb(self.open_file(header).read()) self._header = json.loads(data[1]) def _goniometer(self): return None # return self._goniometer_factory.single_axis() def _detector(self): """Return a model for a simple detector, presuming no one has one of these on a two-theta stage. Assert that the beam centre is provided in the Mosflm coordinate frame.""" distance = self._header["detector_distance"] * 1000 if distance == 0: # XXX hack for development distance = 175 pixel_size_x = self._header["x_pixel_size"] pixel_size_y = self._header["y_pixel_size"] beam_x = self._header["beam_center_x"] * pixel_size_x * 1000 beam_y = self._header["beam_center_y"] * pixel_size_y * 1000 if beam_x == 0 and beam_y == 0: # hack for development beam_x = 154.87 beam_y = 165.66 pixel_size_x = 1000 * self._header["x_pixel_size"] pixel_size_y = 1000 * self._header["y_pixel_size"] image_size = ( self._header["x_pixels_in_detector"], self._header["y_pixels_in_detector"], ) # XXX fixme hard coded overload = 0xFFFF underload = -1 return self._detector_factory.simple( "PAD", distance, (beam_x, beam_y), "+x", "-y", (pixel_size_x, pixel_size_y), image_size, (underload, overload), [], ) def _beam(self, index=None): return self._beam_factory.simple(self._header["wavelength"]) def _scan(self): return None def get_goniometer(self, index=None): return self._goniometer() def get_detector(self, index=None): return self._detector() def get_beam(self, index=None): return self._beam() def get_scan(self, index=None): if index is None: return self._scan() scan = self._scan() if scan is not None: return scan[index] return scan def get_raw_data(self): nx = self._header["x_pixels_in_detector"] ny = self._header["y_pixels_in_detector"] depth = self._header["bit_depth_image"] assert self._header["pixel_mask_applied"] is True if depth == 16: dtype = numpy.uint16 elif depth == 32: dtype = numpy.uint32 else: dtype = 1 / 0 dt = numpy.dtype(dtype) data = msgpack.unpackb(self.open_file(self._image_file).read(), raw=False)[2] blob = numpy.fromstring(data[12:], dtype=numpy.uint8) if dtype == numpy.uint32: block = numpy.ndarray(shape=(), dtype=">u4", buffer=data[8:12]) / 4 image = bitshuffle.decompress_lz4(blob, (ny, nx), dt, block) else: image = bitshuffle.decompress_lz4(blob, (ny, nx), dt) image = flex.int(image.astype("int32")) # only need to overwrite values if read and used in 16-bit mode if dtype == numpy.uint16: bad = 2 ** 16 - 1 sel = image.as_1d() >= bad image.as_1d().set_selected(sel, -1) return image def get_detectorbase(self, index=None): raise NotImplementedError ``` #### File: dxtbx/format/FormatSMVJHSim.py ```python from __future__ import absolute_import, division, print_function import calendar import sys import time from iotbx.detectors import SMVImage from dxtbx.format.FormatSMV import FormatSMV class FormatSMVJHSim(FormatSMV): """A class for reading SMV format JHSim images, and correctly constructing a model for the experiment from this.""" # all ADSC detectors generate images with an ADC offset of 40 # for Mar/Rayonix it is 10 # Rigaku SMV uses 20, and 5 for image plate formats # for one particular simulation, I used 1 ADC_OFFSET = 1 image_pedestal = 1 @staticmethod def understand(image_file): """Check to see if this looks like an JHSim SMV format image, i.e. we can make sense of it. From JH: "The best way to identify images from any of my simulators is to look for BEAMLINE=fake in the header.".""" size, header = FormatSMV.get_smv_header(image_file) if header.get("BEAMLINE") == "fake": return True else: return False def detectorbase_start(self): if not hasattr(self, "detectorbase") or self.detectorbase is None: self.detectorbase = SMVImage(self._image_file) self.detectorbase.open_file = self.open_file self.detectorbase.readHeader() def _goniometer(self): """Return a model for a simple single-axis goniometer. This should probably be checked against the image header.""" return self._goniometer_factory.single_axis() def _detector(self): """Return a model for a simple detector, presuming no one has one of these on a two-theta stage. Assert that the beam centre is provided in the Mosflm coordinate frame.""" distance = float(self._header_dictionary["DISTANCE"]) beam_x = float(self._header_dictionary["BEAM_CENTER_X"]) beam_y = float(self._header_dictionary["BEAM_CENTER_Y"]) pixel_size = float(self._header_dictionary["PIXEL_SIZE"]) image_size = ( float(self._header_dictionary["SIZE1"]), float(self._header_dictionary["SIZE2"]), ) image_pedestal = 1 try: image_pedestal = float(self._header_dictionary["ADC_OFFSET"]) except (KeyError): pass overload = 65535 - image_pedestal underload = 1 - image_pedestal # interpret beam center conventions image_height_mm = pixel_size * image_size[1] adxv_beam_center = (beam_x, beam_y) cctbx_beam_center = ( adxv_beam_center[0] + pixel_size, image_height_mm - adxv_beam_center[1] + pixel_size, ) # Guess whether this is mimicking a Pilatus, if so set detector type so # that spot-finding parameters are appropriate if pixel_size == 0.172: stype = "SENSOR_PAD" else: stype = "CCD" return self._detector_factory.simple( stype, distance, cctbx_beam_center, "+x", "-y", (pixel_size, pixel_size), image_size, (underload, overload), [], ) def _beam(self): """Return a simple model for the beam.""" wavelength = float(self._header_dictionary["WAVELENGTH"]) return self._beam_factory.simple(wavelength) def _scan(self): """Return the scan information for this image.""" format = self._scan_factory.format("SMV") exposure_time = 1 epoch = None # PST, PDT timezones not recognised by default... epoch = 0 try: date_str = self._header_dictionary["DATE"] date_str = date_str.replace("PST", "").replace("PDT", "") except KeyError: date_str = "" for format_string in ["%a %b %d %H:%M:%S %Y", "%a %b %d %H:%M:%S %Z %Y"]: try: epoch = calendar.timegm(time.strptime(date_str, format_string)) break except ValueError: pass # assert(epoch) osc_start = float(self._header_dictionary["OSC_START"]) osc_range = float(self._header_dictionary["OSC_RANGE"]) return self._scan_factory.single( self._image_file, format, exposure_time, osc_start, osc_range, epoch ) def get_raw_data(self): """Get the pixel intensities (i.e. read the image and return as a flex array of integers.)""" assert len(self.get_detector()) == 1 panel = self.get_detector()[0] image_size = panel.get_image_size() raw_data = self._get_endianic_raw_data(size=image_size) # apply image pedestal, will result in *negative pixel values* # this is a horrible idea since raw_data is unsigned # see all instances of image_pedestal in dxtbx image_pedestal = self._header_dictionary.get("ADC_OFFSET", 1) raw_data -= int(image_pedestal) return raw_data if __name__ == "__main__": for arg in sys.argv[1:]: print(FormatSMVJHSim.understand(arg)) ``` #### File: dxtbx/format/FormatXTCJungfrau.py ```python from __future__ import absolute_import, division, print_function import sys from builtins import range import numpy as np from libtbx.phil import parse from scitbx.array_family import flex from scitbx.matrix import col import psana from dxtbx.format.FormatXTC import FormatXTC, locator_str from dxtbx.model import Detector try: from xfel.cxi.cspad_ana import cspad_tbx except ImportError: # xfel not configured pass jungfrau_locator_str = """ jungfrau { dark = True .type = bool .help = Dictates if dark subtraction is done from raw data monolithic = False .type = bool .help = switch to FormatXTCJungfrauMonolithic if True. Used for LS49 image averaging } """ jungfrau_locator_scope = parse( jungfrau_locator_str + locator_str, process_includes=True ) class FormatXTCJungfrau(FormatXTC): def __init__(self, image_file, **kwargs): super(FormatXTCJungfrau, self).__init__( image_file, locator_scope=jungfrau_locator_scope, **kwargs ) self._ds = FormatXTC._get_datasource(image_file, self.params) self._env = self._ds.env() self.populate_events() self.n_images = len(self.times) self._cached_detector = {} self._cached_psana_detectors = {} @staticmethod def understand(image_file): try: params = FormatXTC.params_from_phil(jungfrau_locator_scope, image_file) except Exception: return False return any(["jungfrau" in src.lower() for src in params.detector_address]) def get_raw_data(self, index): d = FormatXTCJungfrau.get_detector(self, index) evt = self._get_event(index) run = self.get_run_from_index(index) if run.run() not in self._cached_psana_detectors: assert len(self.params.detector_address) == 1 self._cached_psana_detectors[run.run()] = psana.Detector( self.params.detector_address[0], self._env ) det = self._cached_psana_detectors[run.run()] data = det.calib(evt) data = data.astype(np.float64) self._raw_data = [] for quad_count, quad in enumerate(d.hierarchy()): for asic_count, asic in enumerate(quad): fdim, sdim = asic.get_image_size() sensor_id = asic_count // 4 # There are 2X4 asics per quadrant asic_in_sensor_id = asic_count % 4 # this number will be 0,1,2 or 3 asic_data = data[quad_count][ sensor_id * sdim : (sensor_id + 1) * sdim, asic_in_sensor_id * fdim : (asic_in_sensor_id + 1) * fdim, ] # 8 sensors per quad self._raw_data.append(flex.double(np.array(asic_data))) assert len(d) == len(self._raw_data) return tuple(self._raw_data) def get_num_images(self): return self.n_images def get_detector(self, index=None): return FormatXTCJungfrau._detector(self, index) def get_beam(self, index=None): return self._beam(index) def _beam(self, index=None): """Returns a simple model for the beam """ if index is None: index = 0 evt = self._get_event(index) wavelength = cspad_tbx.evt_wavelength(evt) if wavelength is None: return None return self._beam_factory.simple(wavelength) def get_goniometer(self, index=None): return None def get_scan(self, index=None): return None def _detector(self, index=None): run = self.get_run_from_index(index) if run.run() in self._cached_detector: return self._cached_detector[run.run()] if index is None: index = 0 self._env = self._ds.env() assert len(self.params.detector_address) == 1 self._det = psana.Detector(self.params.detector_address[0], self._env) geom = self._det.pyda.geoaccess(self._get_event(index).run()) pixel_size = ( self._det.pixel_size(self._get_event(index)) / 1000.0 ) # convert to mm d = Detector() pg0 = d.hierarchy() # first deal with D0 det_num = 0 D0 = geom.get_top_geo().get_list_of_children()[0] xx, yy, zz = D0.get_pixel_coords() xx = xx / 1000.0 # to mm yy = yy / 1000.0 # to mm zz = zz / 1000.0 # to mm oriD0 = col((np.mean(xx), np.mean(yy), -np.mean(zz))) fp = col((xx[0][0][1], yy[0][0][1], zz[0][0][1])) sp = col((xx[0][1][0], yy[0][1][0], zz[0][1][0])) op = col((xx[0][0][0], yy[0][0][0], zz[0][0][0])) origin = oriD0 fast = (fp - op).normalize() slow = (sp - op).normalize() pg0.set_local_frame(fast.elems, slow.elems, origin.elems) pg0.set_name("D%d" % (det_num)) # Now deal with Qx for quad_num in range(2): pg1 = pg0.add_group() Qx = D0.get_list_of_children()[quad_num] xx, yy, zz = Qx.get_pixel_coords() xx = xx / 1000.0 # to mm yy = yy / 1000.0 # to mm zz = zz / 1000.0 # to mm oriQx = col((np.mean(xx), np.mean(yy), np.mean(zz))) fp = col((xx[0][1], yy[0][1], zz[0][1])) sp = col((xx[1][0], yy[1][0], zz[1][0])) op = col((xx[0][0], yy[0][0], zz[0][0])) origin = oriQx fast = (fp - op).normalize() slow = (sp - op).normalize() pg1.set_local_frame(fast.elems, slow.elems, origin.elems) pg1.set_name("D%dQ%d" % (det_num, quad_num)) # Now deal with Az for asic_num in range(8): val = "ARRAY_D0Q%dA%d" % (quad_num, asic_num) p = pg1.add_panel() dim_slow = xx.shape[0] dim_fast = xx.shape[1] sensor_id = asic_num // 4 # There are 2X4 asics per quadrant asic_in_sensor_id = asic_num % 4 # this number will be 0,1,2 or 3 id_slow = sensor_id * (dim_slow // 2) id_fast = asic_in_sensor_id * (dim_fast // 4) oriAy = col( (xx[id_slow][id_fast], yy[id_slow][id_fast], zz[id_slow][id_fast]) ) fp = col( ( xx[id_slow][id_fast + 1], yy[id_slow][id_fast + 1], zz[id_slow][id_fast + 1], ) ) sp = col( ( xx[id_slow + 1][id_fast], yy[id_slow + 1][id_fast], zz[id_slow + 1][id_fast], ) ) origin = oriAy - oriQx fast = (fp - oriAy).normalize() slow = (sp - oriAy).normalize() p.set_local_frame(fast.elems, slow.elems, origin.elems) p.set_pixel_size((pixel_size, pixel_size)) p.set_image_size((dim_fast // 4, dim_slow // 2)) p.set_trusted_range((-1, 2e6)) p.set_name(val) self._cached_detector[run.run()] = d return d class FormatXTCJungfrauMonolithic(FormatXTCJungfrau): """ Monolithic version of the Jungfrau, I.E. use the psana detector image function to assemble a monolithic image """ @staticmethod def understand(image_file): try: params = FormatXTC.params_from_phil(jungfrau_locator_scope, image_file) if params.jungfrau.monolithic: return True return False except Exception: return False def get_raw_data(self, index): self.get_detector(index) # is this line required? evt = self._get_event(index) run = self.get_run_from_index(index) if run.run() not in self._cached_psana_detectors: assert len(self.params.detector_address) == 1 self._cached_psana_detectors[run.run()] = psana.Detector( self.params.detector_address[0], self._env ) det = self._cached_psana_detectors[run.run()] data = det.image(evt) data = data.astype(np.float64) self._raw_data = flex.double(data) return self._raw_data def get_detector(self, index=None): return self._detector(index) def _detector(self, index=None): return self._detector_factory.simple( sensor="UNKNOWN", distance=100.0, beam_centre=(50.0, 50.0), fast_direction="+x", slow_direction="-y", pixel_size=(0.075, 0.075), image_size=(1030, 1064), trusted_range=(-1, 2e6), mask=[], ) if __name__ == "__main__": for arg in sys.argv[1:]: # Bug, should call this part differently for understand method to work print(FormatXTCJungfrau.understand(arg)) ``` #### File: dxtbx/model/experiment_list.py ```python from __future__ import absolute_import, division, print_function import copy import json import os import warnings from builtins import range import pkg_resources import six import six.moves.cPickle as pickle from dxtbx.datablock import ( BeamComparison, DataBlockFactory, DataBlockTemplateImporter, DetectorComparison, GoniometerComparison, SequenceDiff, ) from dxtbx.format.FormatMultiImage import FormatMultiImage from dxtbx.format.image import ImageBool, ImageDouble from dxtbx.imageset import ImageGrid, ImageSequence, ImageSet, ImageSetFactory from dxtbx.model import ( BeamFactory, CrystalFactory, DetectorFactory, Experiment, ExperimentList, GoniometerFactory, ProfileModelFactory, ScanFactory, ) from dxtbx.sequence_filenames import template_image_range from dxtbx.serialize import xds from dxtbx.serialize.filename import resolve_path from dxtbx.serialize.load import _decode_dict try: from typing import Any, Dict, Optional, Tuple except ImportError: pass __all__ = [ "BeamComparison", "DetectorComparison", "ExperimentListFactory", "GoniometerComparison", "SequenceDiff", ] class InvalidExperimentListError(RuntimeError): """ Indicates an error whilst validating the experiment list. This means that there is some structural problem that prevents the given data from representing a well-formed experiment list. This doesn't indicate e.g. some problem with the data or model consistency. """ class ExperimentListDict(object): """A helper class for serializing the experiment list to dictionary (needed to save the experiment list to JSON format.""" def __init__(self, obj, check_format=True, directory=None): """ Initialise. Copy the dictionary. """ # Basic check: This is a dict-like object. This can happen if e.g. we # were passed a DataBlock list instead of an ExperimentList dictionary if isinstance(obj, list) or not hasattr(obj, "get"): raise InvalidExperimentListError( "Expected dictionary, not {}".format(type(obj)) ) self._obj = copy.deepcopy(obj) self._check_format = check_format self._directory = directory # If this doesn't claim to be an ExperimentList, don't even try if self._obj.get("__id__") != "ExperimentList": raise InvalidExperimentListError( "Expected __id__ 'ExperimentList', but found {}".format( repr(self._obj.get("__id__")) ) ) # Extract lists of models referenced by experiments # Go through all the imagesets and make sure the dictionary # references by an index rather than a file path. self._lookups = { model: self._extract_models(model, function) for model, function in ( ("beam", BeamFactory.from_dict), ("detector", DetectorFactory.from_dict), ("goniometer", GoniometerFactory.from_dict), ("scan", ScanFactory.from_dict), ("crystal", CrystalFactory.from_dict), ("profile", ProfileModelFactory.from_dict), ("imageset", lambda x: x), ("scaling_model", self._scaling_model_from_dict), ) } def _extract_models(self, name, from_dict): """ Helper function. Extract the models. """ """if name == imageset: Extract imageset objects from the source. This function does resolving of an (old) method of imageset lookup e.g. it was valid to have a string as the imageset value in an experiment instead of an int - in which case the imageset was loaded from the named file in the target directory. If any experiments point to a file in this way, the imageset is loaded and the experiment is rewritted with an integer pointing to the new ImageSet in the returned list. Returns: The ordered list of serialized-ImageSet dictionaries that the Experiment list points to. """ # Extract all the model list mlist = self._obj.get(name, []) # Convert the model from dictionary to concreate # python class for the model. mlist = [from_dict(d) for d in mlist] # Dictionaries for file mappings mmap = {} # For each experiment, check the model is not specified by # a path, if it is then get the dictionary of the model # and insert it into the list. Replace the path reference # with an index for eobj in self._obj["experiment"]: value = eobj.get(name) if value is None: continue elif isinstance(value, str): if value not in mmap: mmap[value] = len(mlist) mlist.append( from_dict(_experimentlist_from_file(value, self._directory)) ) eobj[name] = mmap[value] elif not isinstance(value, int): raise TypeError("expected int or str, got %s" % type(value)) # Return the model list return mlist def _load_pickle_path(self, imageset_data, param): # type: (Dict, str) -> Tuple[Optional[str], Any] """Read a filename from an imageset dict and load if required. Args: imageset_data: The dictionary holding imageset information param: The key name to lookup in the imageset dictionary Returns: A tuple of (filename, data) where data has been loaded from the pickle file. If there is no key entry then (None, None) is returned. If the configuration parameter check_format is False then (filename, None) will be returned. """ if param not in imageset_data: return "", None filename = resolve_path(imageset_data[param], directory=self._directory) if self._check_format and filename: with open(filename, "rb") as fh: if six.PY3: return filename, pickle.load(fh, encoding="bytes") else: return filename, pickle.load(fh) return filename or "", None def decode(self): """ Decode the dictionary into a list of experiments. """ # Extract all the experiments # Map of imageset/scan pairs imagesets = {} # For every experiment, use the given input to create # a sensible experiment. el = ExperimentList() for eobj in self._obj["experiment"]: # Get the models identifier = eobj.get("identifier", "") beam = self._lookup_model("beam", eobj) detector = self._lookup_model("detector", eobj) goniometer = self._lookup_model("goniometer", eobj) scan = self._lookup_model("scan", eobj) crystal = self._lookup_model("crystal", eobj) profile = self._lookup_model("profile", eobj) scaling_model = self._lookup_model("scaling_model", eobj) key = (eobj.get("imageset"), eobj.get("scan")) imageset = None try: imageset = imagesets[key] # type: ImageSet except KeyError: # This imageset hasn't been loaded yet - create it imageset_data = self._lookup_model("imageset", eobj) # Create the imageset from the input data if imageset_data is not None: if "params" in imageset_data: format_kwargs = imageset_data["params"] else: format_kwargs = {} # Load the external lookup data mask_filename, mask = self._load_pickle_path(imageset_data, "mask") gain_filename, gain = self._load_pickle_path(imageset_data, "gain") pedestal_filename, pedestal = self._load_pickle_path( imageset_data, "pedestal" ) dx_filename, dx = self._load_pickle_path(imageset_data, "dx") dy_filename, dy = self._load_pickle_path(imageset_data, "dy") if imageset_data["__id__"] == "ImageSet": imageset = self._make_stills( imageset_data, format_kwargs=format_kwargs ) elif imageset_data["__id__"] == "ImageGrid": imageset = self._make_grid( imageset_data, format_kwargs=format_kwargs ) elif ( imageset_data["__id__"] == "ImageSequence" or imageset_data["__id__"] == "ImageSweep" ): imageset = self._make_sequence( imageset_data, beam=beam, detector=detector, goniometer=goniometer, scan=scan, format_kwargs=format_kwargs, ) elif imageset_data["__id__"] == "MemImageSet": imageset = self._make_mem_imageset(imageset_data) else: raise RuntimeError("Unknown imageset type") if imageset is not None: # Set the external lookup if mask is None: mask = ImageBool() else: mask = ImageBool(mask) if gain is None: gain = ImageDouble() else: gain = ImageDouble(gain) if pedestal is None: pedestal = ImageDouble() else: pedestal = ImageDouble(pedestal) if dx is None: dx = ImageDouble() else: dx = ImageDouble(dx) if dy is None: dy = ImageDouble() else: dy = ImageDouble(dy) if not imageset.external_lookup.mask.data.empty(): if not mask.empty(): mask = tuple(m.data() for m in mask) for m1, m2 in zip( mask, imageset.external_lookup.mask.data ): m1 &= m2.data() imageset.external_lookup.mask.data = ImageBool(mask) else: imageset.external_lookup.mask.data = mask imageset.external_lookup.mask.filename = mask_filename imageset.external_lookup.gain.data = gain imageset.external_lookup.gain.filename = gain_filename imageset.external_lookup.pedestal.data = pedestal imageset.external_lookup.pedestal.filename = pedestal_filename imageset.external_lookup.dx.data = dx imageset.external_lookup.dx.filename = dx_filename imageset.external_lookup.dy.data = dy imageset.external_lookup.dy.filename = dy_filename # Update the imageset models if isinstance(imageset, ImageSequence): imageset.set_beam(beam) imageset.set_detector(detector) imageset.set_goniometer(goniometer) imageset.set_scan(scan) elif isinstance(imageset, (ImageSet, ImageGrid)): for i in range(len(imageset)): imageset.set_beam(beam, i) imageset.set_detector(detector, i) imageset.set_goniometer(goniometer, i) imageset.set_scan(scan, i) imageset.update_detector_px_mm_data() # Add the imageset to the dict - even if empty - as this will # prevent a duplicated attempt at reconstruction imagesets[key] = imageset # Append the experiment el.append( Experiment( imageset=imageset, beam=beam, detector=detector, goniometer=goniometer, scan=scan, crystal=crystal, profile=profile, scaling_model=scaling_model, identifier=identifier, ) ) # Return the experiment list return el def _make_mem_imageset(self, imageset): """ Can't make a mem imageset from dict. """ return None def _make_stills(self, imageset, format_kwargs=None): """ Make a still imageset. """ filenames = [ resolve_path(p, directory=self._directory) for p in imageset["images"] ] indices = None if "single_file_indices" in imageset: indices = imageset["single_file_indices"] assert len(indices) == len(filenames) return ImageSetFactory.make_imageset( filenames, None, check_format=self._check_format, single_file_indices=indices, format_kwargs=format_kwargs, ) def _make_grid(self, imageset, format_kwargs=None): """ Make a still imageset. """ grid_size = imageset["grid_size"] return ImageGrid.from_imageset( self._make_stills(imageset, format_kwargs=format_kwargs), grid_size ) def _make_sequence( self, imageset, beam=None, detector=None, goniometer=None, scan=None, format_kwargs=None, ): """ Make an image sequence. """ # Get the template format template = resolve_path(imageset["template"], directory=self._directory) # Get the number of images (if no scan is given we'll try # to find all the images matching the template if scan is None: i0, i1 = template_image_range(template) else: i0, i1 = scan.get_image_range() format_class = None if self._check_format is False: if "single_file_indices" in imageset: format_class = FormatMultiImage # Make a sequence from the input data return ImageSetFactory.make_sequence( template, list(range(i0, i1 + 1)), format_class=format_class, check_format=self._check_format, beam=beam, detector=detector, goniometer=goniometer, scan=scan, format_kwargs=format_kwargs, ) def _lookup_model(self, name, experiment_dict): """ Find a model by looking up its index from a dictionary Args: name (str): The model name e.g. 'beam', 'detector' experiment_dict (Dict[str, int]): The experiment dictionary. experiment_dict[name] must exist and be not None to retrieve a model. If this key exists, then there *must* be an item with this index in the ExperimentListDict internal model stores. Returns: Optional[Any]: A model by looking up the index pointed to by experiment_dict[name]. If not present or empty, then None is returned. """ if experiment_dict.get(name) is None: return None return self._lookups[name][experiment_dict[name]] @staticmethod def _scaling_model_from_dict(obj): """ Get the scaling model from a dictionary. """ for entry_point in pkg_resources.iter_entry_points("dxtbx.scaling_model_ext"): if entry_point.name == obj["__id__"]: return entry_point.load().from_dict(obj) def _experimentlist_from_file(filename, directory=None): """ Load a model dictionary from a file. """ filename = resolve_path(filename, directory=directory) try: with open(filename, "r") as infile: return json.load(infile, object_hook=_decode_dict) except IOError: raise IOError("unable to read file, %s" % filename) class ExperimentListDumper(object): """ A class to help writing JSON files. """ def __init__(self, experiment_list): """ Initialise """ warnings.warn( "class ExperimentListDumper() is deprecated. " "Use experiment_list.as_json(), experiment_list.as_pickle(), experiment_list.as_file() directly", DeprecationWarning, stacklevel=2, ) assert experiment_list self.as_json = experiment_list.as_json self.as_pickle = experiment_list.as_pickle self.as_file = experiment_list.as_file class ExperimentListFactory(object): """ A class to help instantiate experiment lists. """ @staticmethod def from_args(args, verbose=False, unhandled=None): """ Try to load experiment from any recognised format. """ # Create a list for unhandled arguments if unhandled is None: unhandled = [] experiments = ExperimentList() ## First try as image files # experiments = ExperimentListFactory.from_datablock( # DataBlockFactory.from_args(args, verbose, unhandled1)) # Try to load from serialized formats for filename in args: try: experiments.extend( ExperimentListFactory.from_serialized_format(filename) ) if verbose: print("Loaded experiments from %s" % filename) except Exception as e: if verbose: print("Could not load experiments from %s: %s" % (filename, str(e))) unhandled.append(filename) # Return the experiments return experiments @staticmethod def from_filenames( filenames, verbose=False, unhandled=None, compare_beam=None, compare_detector=None, compare_goniometer=None, scan_tolerance=None, format_kwargs=None, load_models=True, ): """ Create a list of data blocks from a list of directory or file names. """ experiments = ExperimentList() for db in DataBlockFactory.from_filenames( filenames, verbose=verbose, unhandled=unhandled, compare_beam=compare_beam, compare_detector=compare_detector, compare_goniometer=compare_goniometer, scan_tolerance=scan_tolerance, format_kwargs=format_kwargs, ): experiments.extend( ExperimentListFactory.from_datablock_and_crystal(db, None, load_models) ) return experiments @staticmethod def from_imageset_and_crystal(imageset, crystal, load_models=True): """ Load an experiment list from an imageset and crystal. """ if isinstance(imageset, ImageSequence): return ExperimentListFactory.from_sequence_and_crystal( imageset, crystal, load_models ) else: return ExperimentListFactory.from_stills_and_crystal( imageset, crystal, load_models ) @staticmethod def from_sequence_and_crystal(imageset, crystal, load_models=True): """ Create an experiment list from sequence and crystal. """ if load_models: return ExperimentList( [ Experiment( imageset=imageset, beam=imageset.get_beam(), detector=imageset.get_detector(), goniometer=imageset.get_goniometer(), scan=imageset.get_scan(), crystal=crystal, ) ] ) else: return ExperimentList([Experiment(imageset=imageset, crystal=crystal)]) @staticmethod def from_stills_and_crystal(imageset, crystal, load_models=True): """ Create an experiment list from stills and crystal. """ experiments = ExperimentList() if load_models: for i in range(len(imageset)): experiments.append( Experiment( imageset=imageset[i : i + 1], beam=imageset.get_beam(i), detector=imageset.get_detector(i), goniometer=imageset.get_goniometer(i), scan=imageset.get_scan(i), crystal=crystal, ) ) else: for i in range(len(imageset)): experiments.append( Experiment(imageset=imageset[i : i + 1], crystal=crystal) ) return experiments @staticmethod def from_datablock_and_crystal(datablock, crystal, load_models=True): """ Load an experiment list from a datablock. """ # Initialise the experiment list experiments = ExperimentList() # If we have a list, loop through if isinstance(datablock, list): for db in datablock: experiments.extend( ExperimentListFactory.from_datablock_and_crystal( db, crystal, load_models ) ) return experiments # Add all the imagesets for imageset in datablock.extract_imagesets(): experiments.extend( ExperimentListFactory.from_imageset_and_crystal( imageset, crystal, load_models ) ) # Check the list is consistent assert experiments.is_consistent() # Return the experiments return experiments @staticmethod def from_dict(obj, check_format=True, directory=None): """Load an experiment list from a dictionary. Args: obj (dict): Dictionary containing either ExperimentList or DataBlock structure. check_format (bool): If True, the file will be read to verify metadata. directory (str): Returns: ExperimentList: The dictionary converted """ try: experiments = ExperimentList() for db in DataBlockFactory.from_dict( obj, check_format=check_format, directory=directory ): experiments.extend( ExperimentListFactory.from_datablock_and_crystal(db, None) ) except Exception: experiments = None # Decode the experiments from the dictionary if experiments is None: experiments = ExperimentListDict( obj, check_format=check_format, directory=directory ).decode() # Check the list is consistent assert experiments.is_consistent() # Return the experiments return experiments @staticmethod def from_json(text, check_format=True, directory=None): """ Load an experiment list from JSON. """ return ExperimentListFactory.from_dict( json.loads(text, object_hook=_decode_dict), check_format=check_format, directory=directory, ) @staticmethod def from_json_file(filename, check_format=True): """ Load an experiment list from a json file. """ filename = os.path.abspath(filename) directory = os.path.dirname(filename) with open(filename, "r") as infile: return ExperimentListFactory.from_json( infile.read(), check_format=check_format, directory=directory ) @staticmethod def from_pickle_file(filename): """ Decode an experiment list from a pickle file. """ with open(filename, "rb") as infile: obj = pickle.load(infile) assert isinstance(obj, ExperimentList) return obj @staticmethod def from_xds(xds_inp, xds_other): """ Generate an experiment list from XDS files. """ # Get the sequence from the XDS files sequence = xds.to_imageset(xds_inp, xds_other) # Get the crystal from the XDS files crystal = xds.to_crystal(xds_other) # Create the experiment list experiments = ExperimentListFactory.from_imageset_and_crystal(sequence, crystal) # Set the crystal in the experiment list assert len(experiments) == 1 # Return the experiment list return experiments @staticmethod def from_serialized_format(filename, check_format=True): """ Try to load the experiment list from a serialized format. """ # First try as a JSON file try: return ExperimentListFactory.from_json_file(filename, check_format) except Exception: pass # Now try as a pickle file return ExperimentListFactory.from_pickle_file(filename) class ExperimentListTemplateImporter(object): """ A class to import an experiment list from a template. """ def __init__(self, templates, verbose=False, **kwargs): importer = DataBlockTemplateImporter(templates, verbose=verbose, **kwargs) self.experiments = ExperimentList() for db in importer.datablocks: self.experiments.extend( ExperimentListFactory.from_datablock_and_crystal(db, None) ) ``` #### File: dxtbx/model/goniometer.py ```python from __future__ import absolute_import, division, print_function import math from builtins import object, range import libtbx.phil from scitbx.array_family import flex import pycbf from dxtbx_model_ext import KappaGoniometer # noqa: F401, exported symbol from dxtbx_model_ext import Goniometer, MultiAxisGoniometer goniometer_phil_scope = libtbx.phil.parse( """ goniometer .expert_level = 1 .short_caption = "Goniometer overrides" { axes = None .type = floats .help = "Override the goniometer axes. Axes must be provided in the" "order crystal-to-goniometer, i.e. for a Kappa goniometer" "phi,kappa,omega" .short_caption="Goniometer axes" angles = None .type = floats .help = "Override the goniometer angles. Axes must be provided in the" "order crystal-to-goniometer, i.e. for a Kappa goniometer" "phi,kappa,omega" .short_caption = "Goniometer angles" names = None .type = str .help = "The multi axis goniometer axis names" .short_caption = "The axis names" scan_axis = None .type = int .help = "The scan axis" .short_caption = "The scan axis" fixed_rotation = None .type = floats(size=9) .help = "Override the fixed rotation matrix" .short_caption = "Fixed rotation matrix" setting_rotation = None .type = floats(size=9) .help = "Override the setting rotation matrix" .short_caption = "Setting rotation matrix" invert_rotation_axis = False .type = bool .help = "Invert the rotation axis" .short_caption = "Invert rotation axis" } """ ) class GoniometerFactory(object): """A factory class for goniometer objects, which will encapsulate some standard goniometer designs to make it a little easier to get started with all of this - for cases when we are not using a CBF. When we have a CBF just use that factory method and everything will be peachy.""" @staticmethod def single_axis_goniometer_from_phil(params, reference=None): """ Generate or overwrite a single axis goniometer """ # Check the axes parameter if params.goniometer.axes is not None and len(params.goniometer.axes) != 3: raise RuntimeError("Single axis goniometer requires 3 axes parameters") # Check the angles parameter if params.goniometer.angles is not None: raise RuntimeError("Single axis goniometer requires angles == None") # Check the names parameter if params.goniometer.names is not None: raise RuntimeError("Single axis goniometer requires names == None") # Init the gonionmeter if reference is None: goniometer = Goniometer() else: goniometer = reference # Set the parameters if params.goniometer.axes is not None: goniometer.set_rotation_axis_datum(params.goniometer.axes) if params.goniometer.fixed_rotation is not None: goniometer.set_fixed_rotation(params.goniometer.fixed_rotation) if params.goniometer.setting_rotation is not None: goniometer.set_setting_rotation(params.goniometer.setting_rotation) if params.goniometer.invert_rotation_axis is True: rotation_axis = goniometer.get_rotation_axis_datum() goniometer.set_rotation_axis_datum([-x for x in rotation_axis]) # Return the model return goniometer @staticmethod def multi_axis_goniometer_from_phil(params, reference=None): # Check the axes parameter if params.goniometer.axes is not None: if len(params.goniometer.axes) % 3: raise RuntimeError( "Number of values for axes parameter must be multiple of 3." ) # Check the fixed rotation if params.goniometer.fixed_rotation is not None: raise RuntimeError("Multi-axis goniometer requires fixed_rotation == None") # Check the setting rotation if params.goniometer.setting_rotation is not None: raise RuntimeError( "Multi-axis goniometer requires setting_rotation == None" ) # Check the input if reference is None: if params.goniometer.axes is None: raise RuntimeError("No axes set") # Create the axes axes = flex.vec3_double( params.goniometer.axes[i * 3 : (i * 3) + 3] for i in range(len(params.goniometer.axes) // 3) ) # Invert the rotation axis if params.goniometer.invert_rotation_axis is True: axes = flex.vec3_double([[-x for x in v] for v in axes]) # Create the angles if params.goniometer.angles is not None: angles = params.goniometer.angles if len(angles) != len(axes): raise RuntimeError("Number of angles must match axes") else: angles = flex.double([0] * len(axes)) # Create the names if params.goniometer.names is not None: names = params.goniometer.names if len(names) != len(axes): raise RuntimeError("Number of names must match axes") else: names = flex.std_string([""] * len(axes)) # Create the scan axis if params.goniometer.scan_axis is not None: scan_axis = params.goniometer.scan_axis else: scan_axis = 0 # Create the model goniometer = MultiAxisGoniometer(axes, angles, names, scan_axis) else: goniometer = reference # Set the axes if params.goniometer.axes is not None: axes = flex.vec3_double( params.goniometer.axes[i * 3 : (i * 3) + 3] for i in range(len(params.goniometer.axes) // 3) ) if len(goniometer.get_axes()) != len(axes): raise RuntimeError( "Number of axes must match the current goniometer (%s)" % len(goniometer.get_axes()) ) goniometer.set_axes(axes) # Invert rotation axis if params.goniometer.invert_rotation_axis is True: axes = flex.vec3_double( [[-x for x in v] for v in goniometer.get_axes()] ) goniometer.set_axes(axes) # Set the angles if params.goniometer.angles is not None: if len(goniometer.get_angles()) != len(params.goniometer.angles): raise RuntimeError( "Number of angles must match the current goniometer (%s)" % len(goniometer.get_angles()) ) goniometer.set_angles(params.goniometer.angles) # Set the namess if params.goniometer.names is not None: if len(goniometer.get_names()) != len(params.goniometer.names): raise RuntimeError( "Number of names must match the current goniometer (%s)" % len(goniometer.get_names()) ) goniometer.set_names(params.goniometer.names) # Set the scan axis if params.goniometer.scan_axis is not None: raise RuntimeError("Can not override scan axis") # Return the model return goniometer @staticmethod def from_phil(params, reference=None): """ Convert the phil parameters into a beam model """ if reference is not None: if isinstance(reference, MultiAxisGoniometer): goniometer = GoniometerFactory.multi_axis_goniometer_from_phil( params, reference ) else: goniometer = GoniometerFactory.single_axis_goniometer_from_phil( params, reference ) else: if params.goniometer.axes is None: return None if len(params.goniometer.axes) > 3: goniometer = GoniometerFactory.multi_axis_goniometer_from_phil(params) else: goniometer = GoniometerFactory.single_axis_goniometer_from_phil(params) return goniometer @staticmethod def from_dict(d, t=None): """Convert the dictionary to a goniometer model Params: d The dictionary of parameters t The template dictionary to use Returns: The goniometer model """ if d is None and t is None: return None joint = t.copy() if t else {} joint.update(d) # Create the model from the joint dictionary if {"axes", "angles", "scan_axis"}.issubset(joint): return MultiAxisGoniometer.from_dict(joint) return Goniometer.from_dict(joint) @staticmethod def make_goniometer(rotation_axis, fixed_rotation): return Goniometer( tuple(map(float, rotation_axis)), tuple(map(float, fixed_rotation)) ) @staticmethod def make_kappa_goniometer(alpha, omega, kappa, phi, direction, scan_axis): omega_axis = (1, 0, 0) phi_axis = (1, 0, 0) c = math.cos(alpha * math.pi / 180) s = math.sin(alpha * math.pi / 180) if direction == "+y": kappa_axis = (c, s, 0.0) elif direction == "+z": kappa_axis = (c, 0.0, s) elif direction == "-y": kappa_axis = (c, -s, 0.0) elif direction == "-z": kappa_axis = (c, 0.0, -s) else: raise RuntimeError("Invalid direction") if scan_axis == "phi": scan_axis = 0 else: scan_axis = 2 axes = flex.vec3_double((phi_axis, kappa_axis, omega_axis)) angles = flex.double((phi, kappa, omega)) names = flex.std_string(("PHI", "KAPPA", "OMEGA")) return GoniometerFactory.make_multi_axis_goniometer( axes, angles, names, scan_axis ) @staticmethod def make_multi_axis_goniometer(axes, angles, names, scan_axis): return MultiAxisGoniometer(axes, angles, names, scan_axis) @staticmethod def single_axis(): """Construct a single axis goniometer which is canonical in the CBF reference frame.""" axis = (1, 0, 0) fixed = (1, 0, 0, 0, 1, 0, 0, 0, 1) return GoniometerFactory.make_goniometer(axis, fixed) @staticmethod def single_axis_reverse(): """Construct a single axis goniometer which is canonical in the CBF reference frame, but reversed in rotation.""" axis = (-1, 0, 0) fixed = (1, 0, 0, 0, 1, 0, 0, 0, 1) return GoniometerFactory.make_goniometer(axis, fixed) @staticmethod def known_axis(axis): """Return an goniometer instance for a known rotation axis, assuming that nothing is known about the fixed element of the rotation axis.""" assert len(axis) == 3 fixed = (1, 0, 0, 0, 1, 0, 0, 0, 1) return Goniometer(axis, fixed) @staticmethod def kappa(alpha, omega, kappa, phi, direction, scan_axis): """Return a kappa goniometer where omega is the primary axis (i,e. aligned with X in the CBF coordinate frame) and has the kappa arm with angle alpha attached to it, aligned with -z, +y, +z or -y at omega = 0, that being the direction, which in turn has phi fixed to it which should initially be coincident with omega. We also need to know which axis is being used for the scan i.e. phi or omega. All angles should be given in degrees. This will work by first constructing the rotation axes and then composing them to the scan axis and fixed component of the rotation.""" return GoniometerFactory.make_kappa_goniometer( alpha, omega, kappa, phi, direction, scan_axis ) @staticmethod def multi_axis(axes, angles, names, scan_axis): """""" return GoniometerFactory.make_multi_axis_goniometer( axes, angles, names, scan_axis ) @staticmethod def imgCIF(cif_file): """Initialize a goniometer model from an imgCIF file.""" # FIXME in here work out how to get the proper setting matrix if != 1 cbf_handle = pycbf.cbf_handle_struct() cbf_handle.read_file(cif_file.encode(), pycbf.MSG_DIGEST) return GoniometerFactory.imgCIF_H(cbf_handle) @staticmethod def imgCIF_H(cbf_handle): """Initialize a goniometer model from an imgCIF file handle, where it is assumed that the file has already been read.""" # find the goniometer axes and dependencies axis_names = flex.std_string() depends_on = flex.std_string() axes = flex.vec3_double() angles = flex.double() scan_axis = None cbf_handle.find_category(b"axis") for i in range(cbf_handle.count_rows()): cbf_handle.find_column(b"equipment") if cbf_handle.get_value() == b"goniometer": cbf_handle.find_column(b"id") axis_names.append(cbf_handle.get_value()) axis = [] for i in range(3): cbf_handle.find_column(b"vector[%i]" % (i + 1)) axis.append(float(cbf_handle.get_value())) axes.append(axis) cbf_handle.find_column(b"depends_on") depends_on.append(cbf_handle.get_value()) cbf_handle.next_row() # find the starting angles of each goniometer axis and figure out which one # is the scan axis (i.e. non-zero angle_increment) cbf_handle.find_category(b"diffrn_scan_axis") for i in range(cbf_handle.count_rows()): cbf_handle.find_column(b"axis_id") axis_name = cbf_handle.get_value() if axis_name.decode() not in axis_names: cbf_handle.next_row() continue cbf_handle.find_column(b"angle_start") axis_angle = float(cbf_handle.get_value()) cbf_handle.find_column(b"angle_increment") increment = float(cbf_handle.get_value()) angles.append(axis_angle) if abs(increment) > 0: assert ( scan_axis is None ), "More than one scan axis is defined: not currently supported" scan_axis = flex.first_index(axis_names, axis_name) cbf_handle.next_row() assert axes.size() == angles.size() if scan_axis is None: # probably a still shot -> scan axis arbitrary as no scan scan_axis = 0 # figure out the order of the axes from the depends_on values order = flex.size_t() for i in range(axes.size()): if depends_on[i] == ".": o = 0 else: o = flex.first_index(axis_names, depends_on[i]) + 1 assert o not in order order.append(o) # multi-axis gonio requires axes in order as viewed from crystal to gonio base # i.e. the reverse of the order we have from cbf header order = order.reversed() axes = axes.select(order) angles = angles.select(order) axis_names = axis_names.select(order) scan_axis = axes.size() - scan_axis - 1 # construct a multi-axis goniometer gonio = GoniometerFactory.multi_axis(axes, angles, axis_names, scan_axis) return gonio ``` #### File: tests/command_line/test_to_xds.py ```python from __future__ import absolute_import, division, print_function import procrunner import pytest from dxtbx.imageset import ImageSetFactory from dxtbx.serialize import dump @pytest.fixture(scope="session") def expected_output(dials_data): return """\ DETECTOR=PILATUS MINIMUM_VALID_PIXEL_VALUE=0 OVERLOAD=495976 SENSOR_THICKNESS= 0.320 DIRECTION_OF_DETECTOR_X-AXIS= 1.00000 0.00000 0.00000 DIRECTION_OF_DETECTOR_Y-AXIS= 0.00000 1.00000 0.00000 NX=2463 NY=2527 QX=0.1720 QY=0.1720 DETECTOR_DISTANCE= 190.180 ORGX= 1235.84 ORGY= 1279.58 ROTATION_AXIS= 1.00000 0.00000 0.00000 STARTING_ANGLE= 0.000 OSCILLATION_RANGE= 0.200 X-RAY_WAVELENGTH= 0.97950 INCIDENT_BEAM_DIRECTION= -0.000 -0.000 1.021 FRACTION_OF_POLARIZATION= 0.999 POLARIZATION_PLANE_NORMAL= 0.000 1.000 0.000 NAME_TEMPLATE_OF_DATA_FRAMES= %s TRUSTED_REGION= 0.0 1.41 UNTRUSTED_RECTANGLE= 487 495 0 2528 UNTRUSTED_RECTANGLE= 981 989 0 2528 UNTRUSTED_RECTANGLE= 1475 1483 0 2528 UNTRUSTED_RECTANGLE= 1969 1977 0 2528 UNTRUSTED_RECTANGLE= 0 2464 195 213 UNTRUSTED_RECTANGLE= 0 2464 407 425 UNTRUSTED_RECTANGLE= 0 2464 619 637 UNTRUSTED_RECTANGLE= 0 2464 831 849 UNTRUSTED_RECTANGLE= 0 2464 1043 1061 UNTRUSTED_RECTANGLE= 0 2464 1255 1273 UNTRUSTED_RECTANGLE= 0 2464 1467 1485 UNTRUSTED_RECTANGLE= 0 2464 1679 1697 UNTRUSTED_RECTANGLE= 0 2464 1891 1909 UNTRUSTED_RECTANGLE= 0 2464 2103 2121 UNTRUSTED_RECTANGLE= 0 2464 2315 2333 DATA_RANGE= 1 9 JOB=XYCORR INIT COLSPOT IDXREF DEFPIX INTEGRATE CORRECT\ """ % ( dials_data("centroid_test_data").join("centroid_????.cbf").strpath ) def test_to_xds_from_images(dials_data, expected_output, tmpdir): file_names = dials_data("centroid_test_data").listdir("centroid_*.cbf") result = procrunner.run(["dxtbx.to_xds"] + file_names, working_directory=tmpdir) assert not result.returncode and not result.stderr # allow extra lines to have been added (these may be comments) for record in expected_output.split("\n"): assert record.strip().encode("latin-1") in result.stdout, record def test_to_xds_from_json(dials_data, expected_output, tmpdir): file_names = dials_data("centroid_test_data").listdir("centroid_*.cbf") # now test reading from a json file sequence = ImageSetFactory.new([f.strpath for f in file_names])[0] with tmpdir.join("sequence.json").open("wb") as fh: dump.imageset(sequence, fh) result = procrunner.run(["dxtbx.to_xds", "sequence.json"], working_directory=tmpdir) assert not result.returncode and not result.stderr # allow extra lines to have been added (these may be comments) for record in expected_output.split("\n"): assert record.strip().encode("latin-1") in result.stdout, record ``` #### File: modules/tntbx/run_tests.py ```python from libtbx import test_utils import libtbx.load_env def run(): tst_list = ( "$D/tst_tntbx_ext.py", "$D/tst_large_eigen.py", ) build_dir = libtbx.env.under_build("tntbx") dist_dir = libtbx.env.dist_path("tntbx") test_utils.run_tests(build_dir, dist_dir, tst_list) if (__name__ == "__main__"): run() ``` #### File: modules/tntbx/tst_large_eigen.py ```python import tntbx.eigensystem from scitbx.array_family import flex from libtbx.test_utils import approx_equal from itertools import count try: import platform except ImportError: release = "" else: release = platform.release() if ( release.endswith("_FC4") or release.endswith("_FC4smp")): Numeric = None # LinearAlgebra.generalized_inverse is broken else: try: import Numeric except ImportError: Numeric = None else: import LinearAlgebra def exercise_eigensystem(): m = [0.13589302585705959, -0.041652833629281995, 0.0, -0.02777294381303139, 0.0, -0.028246956907939123, -0.037913518508910102, -0.028246956907939123, 0.028246956907939127, 0.066160475416849232, 0.0, -1.998692119493731e-18, 0.0, 1.9342749002960583e-17, 2.1341441122454314e-17, -0.041652833629281995, 0.16651402880692701, -0.041652833629282252, -0.054064923492613354, -0.041657741914063608, -0.027943612435735281, 0.058527480224229975, -0.027943612435735132, -0.034820867346713427, -0.030583867788494697, 0.062764479782448576, 1.2238306785281e-33, 0.0, 2.0081205093967302e-33, 8.4334666705394195e-34, 0.0, -0.041652833629282252, 0.13589302585705959, 0.0, -0.041574928784987308, -0.028246956907939064, 0.0, -0.028246956907939064, 0.063090910812553094, 0.028246956907939068, -0.034843953904614026, -1.9986921194937106e-18, -8.9229029691439759e-18, 1.0316952905846454e-17, 3.3927420561961863e-18, -0.02777294381303139, -0.05406492349261334, 0.0, 1.0754189352289423, 0.0, 0.055233150062734049, -0.030424256077943676, 0.02480889398479039, -0.024808893984790394, -0.024808893984790425, 0.0, -6.8972719971392908e-18, -1.7405118013554239e-17, 6.1312902919038241e-18, -4.3765557245111121e-18, 0.0, -0.041657741914063601, -0.041574928784987308, 0.0, 1.0754189352289425, 0.02824584556921347, 0.0, 0.056206884746120872, -0.028245845569213546, -0.02824584556921347, -0.027961039176907447, 5.9506047506615062e-18, 0.0, -1.4122576510436466e-18, -7.3628624017051534e-18, -0.028246956907939123, -0.027943612435735277, -0.028246956907939064, 0.055233150062734056, 0.028245845569213474, 0.058637637326162888, -0.021712364921140592, 0.038218912676148069, -0.039777184406252442, -0.036925272405022302, 0.0015582717301043682, 4.0451470549537404e-18, 0.0, -1.3724767734658202e-17, -1.7769914789611943e-17, -0.037913518508910102, 0.058527480224229982, 0.0, -0.030424256077943652, 0.0, -0.021712364921140592, 0.28175206518101342, 0.0039066487534216467, -0.0039066487534216484, -0.26003970025987289, 0.0, 7.5625035918149771e-18, 1.2380916665439571e-17, -1.0148697613996034e-16, -9.6668563066335756e-17, -0.028246956907939123, -0.027943612435735128, -0.028246956907939064, 0.02480889398479039, 0.056206884746120879, 0.038218912676148069, 0.0039066487534216484, 0.058637637326162798, -0.031992570455625299, -0.042125561429569719, -0.026645066870537512, 4.0451470549537242e-18, 9.6341055014789307e-18, -2.0511818948105707e-17, -1.4922860501580496e-17, 0.028246956907939127, -0.034820867346713427, 0.063090910812553094, -0.024808893984790394, -0.028245845569213508, -0.039777184406252442, -0.0039066487534216501, -0.031992570455625306, 0.2922682186182603, 0.043683833159674099, -0.26027564816263499, -5.2586006938540899e-18, 0.0, 9.7867664544895616e-18, 1.5045367148343648e-17, 0.066160475416849232, -0.030583867788494701, 0.028246956907939068, -0.024808893984790466, -0.028245845569213474, -0.036925272405022302, -0.26003970025987289, -0.042125561429569719, 0.043683833159674092, 0.29696497266489519, -0.0015582717301043699, -7.5250966340669269e-19, 2.6213138712286628e-17, -1.5094268920622606e-17, 1.1871379455070714e-17, 0.0, 0.062764479782448576, -0.034843953904614026, 0.0, -0.027961039176907457, 0.0015582717301043665, 0.0, -0.026645066870537509, -0.26027564816263499, -0.0015582717301043699, 0.28692071503317257, -3.8759778199373453e-18, 3.9691789817943108e-17, -8.14982209920807e-18, 3.5417945538672385e-17, -1.998692119493731e-18, 1.6308338425568088e-33, -1.9986921194937102e-18, -6.8972719971392892e-18, 5.950604750661507e-18, 4.0451470549537412e-18, 7.5625035918149756e-18, 4.0451470549537242e-18, -5.2586006938540899e-18, -7.5250966340669346e-19, -3.8759778199373446e-18, 0.054471159454508082, 0.0064409353489570716, 0.0035601061597435495, -0.044470117945807464, 0.0, 0.0, -8.9229029691439759e-18, -1.7405118013554239e-17, 0.0, 0.0, 1.2380916665439569e-17, 9.6341055014789307e-18, 0.0, 2.6213138712286628e-17, 3.9691789817943114e-17, 0.0064409353489570777, 0.47194161564298681, -0.17456675614101194, 0.29093392415301783, 1.9342749002960583e-17, 1.4951347746978839e-33, 1.0316952905846454e-17, 6.1312902919038033e-18, -1.4122576510436468e-18, -1.3724767734658202e-17, -1.0148697613996034e-16, -2.0511818948105704e-17, 9.7867664544895616e-18, -1.5094268920622603e-17, -8.1498220992080684e-18, 0.0035601061597435478, -0.17456675614101194, 0.61470061296798617, 0.4365737506672307, 2.1341441122454314e-17, 1.5911491532730484e-34, 3.392742056196186e-18, -4.3765557245111453e-18, -7.3628624017051534e-18, -1.7769914789611943e-17, -9.6668563066335731e-17, -1.4922860501580496e-17, 1.5045367148343648e-17, 1.1871379455070717e-17, 3.5417945538672392e-17, -0.044470117945807464, 0.29093392415301783, 0.4365737506672307, 0.77197779276605605] # m = flex.double(m) m.resize(flex.grid(15,15)) s = tntbx.eigensystem.real(m) e_values = s.values() # if (Numeric is not None): n = Numeric.asarray(m) n.shape = (15,15) n_values = LinearAlgebra.eigenvalues(n) assert len(e_values) == len(n_values) # print ' Eigenvalues' print ' %-16s %-16s' % ('TNT','Numpy') for i,e,n in zip(count(1), e_values, n_values): if (isinstance(e, complex)): e = e.real if (isinstance(n, complex)): n = n.real print " %2d %16.12f %16.12f" % (i, e, n) # sorted_values = e_values.select( flex.sort_permutation(data=e_values, reverse=True)) assert approx_equal(sorted_values, [ 1.1594490522786849, 1.0940938851317932, 1.0788186474215089, 0.68233800454109983, 0.62042869735706307, 0.53297576878337871, 0.18708677344352156, 0.16675360561093594, 0.12774949816038345, 0.071304124011754358, 0.02865105770313877, 0.027761263516876356, 1.5830173657858035e-17, 2.6934929627275647e-18, -5.5511151231257827e-17]) def run(): exercise_eigensystem() print "OK" if (__name__ == "__main__"): run() ``` #### File: xia2/command_line/compare_merging_stats.py ```python from __future__ import absolute_import, division, print_function import os import iotbx.phil from cctbx import uctbx from dials.util.options import OptionParser help_message = """ """ phil_scope = iotbx.phil.parse( """ n_bins = 20 .type = int(value_min=1) anomalous = False .type = bool use_internal_variance = False .type = bool eliminate_sys_absent = False .type = bool plot_labels = None .type = strings data_labels = None .type = str size_inches = None .type = floats(size=2, value_min=0) image_dir = None .type = path format = *png pdf .type = choice style = *ggplot .type = choice """, process_includes=True, ) def run(args): import libtbx.load_env usage = "%s [options]" % libtbx.env.dispatcher_name parser = OptionParser( usage=usage, phil=phil_scope, check_format=False, epilog=help_message ) params, options, args = parser.parse_args( show_diff_phil=True, return_unhandled=True ) results = [] for mtz in args: print(mtz) assert os.path.isfile(mtz), mtz results.append( get_merging_stats( mtz, anomalous=params.anomalous, n_bins=params.n_bins, use_internal_variance=params.use_internal_variance, eliminate_sys_absent=params.eliminate_sys_absent, data_labels=params.data_labels, ) ) plot_merging_stats( results, labels=params.plot_labels, size_inches=params.size_inches, image_dir=params.image_dir, format=params.format, style=params.style, ) def get_merging_stats( scaled_unmerged_mtz, anomalous=False, n_bins=20, use_internal_variance=False, eliminate_sys_absent=False, data_labels=None, ): import iotbx.merging_statistics i_obs = iotbx.merging_statistics.select_data( scaled_unmerged_mtz, data_labels=data_labels ) i_obs = i_obs.customized_copy(anomalous_flag=False, info=i_obs.info()) result = iotbx.merging_statistics.dataset_statistics( i_obs=i_obs, n_bins=n_bins, anomalous=anomalous, use_internal_variance=use_internal_variance, eliminate_sys_absent=eliminate_sys_absent, ) return result def plot_merging_stats( results, labels=None, plots=None, prefix=None, size_inches=None, image_dir=None, format="png", style="ggplot", ): import matplotlib matplotlib.use("Agg") from matplotlib import pyplot if style is not None: pyplot.style.use(style) from cycler import cycler colors = pyplot.rcParams["axes.prop_cycle"].by_key()["color"] linestyles = [] for style in ("-", "--", ":", "-."): linestyles.extend([style] * len(colors)) colors = colors * len(set(linestyles)) pyplot.rc("axes", prop_cycle=(cycler("c", colors) + cycler("ls", linestyles))) plots_ = { "r_merge": "$R_{merge}$", "r_meas": "$R_{meas}$", "r_pim": "$R_{pim}$", "cc_one_half": r"$CC_{\frac{1}{2}}$", "cc_one_half_sigma_tau": r"$CC_{\frac{1}{2}}$", "cc_anom": "$CC_{anom}$", "i_over_sigma_mean": r"$< I / \sigma(I) >$", "completeness": "Completeness", "mean_redundancy": "Multiplicity", } if plots is None: plots = plots_ else: plots = {k: plots_[k] for k in plots} if prefix is None: prefix = "" if labels is not None: assert len(results) == len(labels) if image_dir is None: image_dir = "." elif not os.path.exists(image_dir): os.makedirs(image_dir) for k in plots: def plot_data(results, k, labels, linestyle=None): for i, result in enumerate(results): if labels is not None: label = labels[i].replace("\\$", "$") else: label = None bins = result.bins x = [bins[i].d_min for i in range(len(bins))] x = [uctbx.d_as_d_star_sq(d) for d in x] y = [getattr(bins[i], k) for i in range(len(bins))] pyplot.plot(x, y, label=label, linestyle=linestyle) plot_data(results, k, labels) pyplot.xlabel(r"Resolution ($\AA$)") pyplot.ylabel(plots.get(k, k)) if k in ("cc_one_half", "cc_one_half_sigma_tau", "completeness"): pyplot.ylim(0, 1.05) elif k in ("cc_anom",): pyplot.ylim(min(0, pyplot.ylim()[0]), 1.05) else: pyplot.ylim(0, pyplot.ylim()[1]) ax = pyplot.gca() xticks = ax.get_xticks() xticks_d = [ "%.2f" % uctbx.d_star_sq_as_d(ds2) if ds2 > 0 else 0 for ds2 in xticks ] ax.set_xticklabels(xticks_d) if size_inches is not None: fig = pyplot.gcf() fig.set_size_inches(size_inches) if labels is not None: if k.startswith("cc"): pyplot.legend(loc="lower left") elif k.startswith("r_"): pyplot.legend(loc="upper left") elif k.startswith("i_"): pyplot.legend(loc="upper right") else: pyplot.legend(loc="best") pyplot.tight_layout() pyplot.savefig(os.path.join(image_dir, prefix + k + ".%s" % format)) pyplot.clf() if __name__ == "__main__": import sys from libtbx.utils import show_times_at_exit show_times_at_exit() run(sys.argv[1:]) ``` #### File: xia2/command_line/ispyb_json.py ```python from __future__ import absolute_import, division, print_function import json import os import sys import xia2.Interfaces.ISPyB from xia2.Schema.XProject import XProject def ispyb_object(): from xia2.Interfaces.ISPyB.ISPyBXmlHandler import ISPyBXmlHandler assert os.path.exists("xia2.json") assert os.path.exists("xia2.txt") command_line = "" for record in open("xia2.txt"): if record.startswith("Command line:"): command_line = record.replace("Command line:", "").strip() xinfo = XProject.from_json(filename="xia2.json") crystals = xinfo.get_crystals() assert len(crystals) == 1 crystal = next(crystals.itervalues()) ISPyBXmlHandler.add_xcrystal(crystal) return ISPyBXmlHandler.json_object(command_line=command_line) def zocalo_object(): assert os.path.exists("xia2.json") xinfo = XProject.from_json(filename="xia2.json") crystals = xinfo.get_crystals() assert len(crystals) == 1 return xia2.Interfaces.ISPyB.xia2_to_json_object(crystals.values()) def ispyb_json(json_out): with open(json_out, "w") as fh: json.dump(ispyb_object(), fh, indent=2) if __name__ == "__main__": if len(sys.argv) >= 2: ispyb_json(sys.argv[1]) else: ispyb_json("ispyb.json") ``` #### File: xia2/command_line/to_shelxcde.py ```python from __future__ import absolute_import, division, print_function def to_shelxcde(hklin, prefix, sites=0): """Read hklin (unmerged reflection file) and generate SHELXC input file and HKL file""" from iotbx.reflection_file_reader import any_reflection_file from iotbx.shelx.hklf import miller_array_export_as_shelx_hklf reader = any_reflection_file(hklin) intensities = [ ma for ma in reader.as_miller_arrays(merge_equivalents=False) if ma.info().labels == ["I", "SIGI"] ][0] mtz_object = reader.file_content() indices = reader.file_content().extract_original_index_miller_indices() intensities = intensities.customized_copy(indices=indices, info=intensities.info()) with open("%s.hkl" % prefix, "wb") as hkl_file_handle: miller_array_export_as_shelx_hklf(intensities, hkl_file_handle) uc = intensities.unit_cell().parameters() sg = intensities.space_group().type().lookup_symbol().replace(" ", "") # spacegroup name disputes if sg.startswith("R3:"): sg = "H3" elif sg.startswith("R32:"): sg = "H32" open("%s.sh" % prefix, "w").write( "\n".join( [ "shelxc %s << eof" % prefix, "cell %f %f %f %f %f %f" % uc, "spag %s" % sg, "sad %s.hkl" % prefix, "find %d" % sites, "maxm %d" % ((2 * intensities.data().size() // 1000000) + 1), "eof", "", ] ) ) if __name__ == "__main__": import sys if len(sys.argv) > 3: sites = int(sys.argv[3]) to_shelxcde(sys.argv[1], sys.argv[2], sites) else: to_shelxcde(sys.argv[1], sys.argv[2]) ``` #### File: xia2/command_line/wilson_stuff.py ```python from __future__ import absolute_import, division, print_function import sys from iotbx import mtz from mmtbx.scaling import data_statistics m = mtz.object(sys.argv[1]) mas = m.as_miller_arrays() data = None for ma in mas: if ma.is_xray_intensity_array(): data = ma break def nres_from_mtz(m): sg = m.space_group() uc = m.crystals()[0].unit_cell() n_ops = len(sg.all_ops()) v_asu = uc.volume() / n_ops return v_asu / (2.7 * 128) n_res = nres_from_mtz(m) wilson_scaling = data_statistics.wilson_scaling(miller_array=data, n_residues=n_res) wilson_scaling.show() ``` #### File: modules/xia2/conftest.py ```python from __future__ import absolute_import, division, print_function import argparse import os import re import procrunner import pytest import six from dials.conftest import run_in_tmpdir # noqa: F401 def pytest_addoption(parser): """ Option '--regression-full' needs to be used to run all regression tests, including the full-length xia2 runs. """ class RFAction(argparse.Action): def __call__(self, parser, namespace, values, option_string): namespace.regression = True namespace.regression_full = True parser.addoption( "--regression-full", nargs=0, action=RFAction, help="run all regression tests, this will take a while. Implies --regression", ) def pytest_configure(config): if six.PY3: import dxtbx.tests.python3_test_filter as ptf exp = ptf.Python3TestFailureExpectationPlugin(config) config.pluginmanager.register(exp) @pytest.fixture(scope="session") def regression_test(request): if not request.config.getoption("--regression-full"): pytest.skip("Test requires --regression-full option to run.") @pytest.fixture(scope="session") def ccp4(): """ Return information about the CCP4 installation. Skip the test if CCP4 is not installed. """ if not os.getenv("CCP4"): pytest.skip("CCP4 installation required for this test") try: result = procrunner.run(["refmac5", "-i"], print_stdout=False) except OSError: pytest.skip( "CCP4 installation required for this test - Could not find CCP4 executable" ) if result["exitcode"] or result["timeout"]: pytest.skip( "CCP4 installation required for this test - Could not run CCP4 executable" ) version = re.search(br"patch level *([0-9]+)\.([0-9]+)\.([0-9]+)", result["stdout"]) if not version: pytest.skip( "CCP4 installation required for this test - Could not determine CCP4 version" ) return {"path": os.getenv("CCP4"), "version": [int(v) for v in version.groups()]} @pytest.fixture(scope="session") def xds(): """ Return information about the XDS installation. Skip the test if XDS is not installed. """ try: result = procrunner.run(["xds"], print_stdout=False) except OSError: pytest.skip("XDS installation required for this test") if result["exitcode"] or result["timeout"]: pytest.skip("XDS installation required for this test - Could not run XDS") if "license expired" in result["stdout"]: pytest.skip("XDS installation required for this test - XDS license is expired") version = re.search(br"BUILT=([0-9]+)\)", result["stdout"]) if not version: pytest.skip( "XDS installation required for this test - Could not determine XDS version" ) return {"version": int(version.groups()[0])} ``` #### File: xia2/Driver/DriverFactory.py ```python from __future__ import absolute_import, division, print_function import os # another factory to delegate to from xia2.Driver.ClusterDriverFactory import ClusterDriverFactory from xia2.Driver.InteractiveDriver import InteractiveDriver from xia2.Driver.QSubDriver import QSubDriver from xia2.Driver.ScriptDriver import ScriptDriver from xia2.Driver.SimpleDriver import SimpleDriver class _DriverFactory(object): def __init__(self): self._driver_type = "simple" self._implemented_types = [ "simple", "script", "interactive", "qsub", "cluster.sge", ] # should probably write a message or something explaining # that the following Driver implementation is being used if "XIA2CORE_DRIVERTYPE" in os.environ: self.set_driver_type(os.environ["XIA2CORE_DRIVERTYPE"]) def set_driver_type(self, driver_type): """Set the kind of driver this factory should produce.""" if driver_type not in self._implemented_types: raise RuntimeError("unimplemented driver class: %s" % driver_type) self._driver_type = driver_type def get_driver_type(self): return self._driver_type def Driver(self, driver_type=None): """Create a new Driver instance, optionally providing the type of Driver we want.""" if not driver_type: driver_type = self._driver_type if "cluster" in driver_type: return ClusterDriverFactory.Driver(driver_type) driver_class = { "simple": SimpleDriver, "script": ScriptDriver, "interactive": InteractiveDriver, "qsub": QSubDriver, }.get(driver_type) if driver_class: return driver_class() raise RuntimeError('Driver class "%s" unknown' % driver_type) DriverFactory = _DriverFactory() ``` #### File: xia2/Experts/MissetExpert.py ```python from __future__ import absolute_import, division, print_function from scitbx import matrix from scitbx.math import r3_rotation_axis_and_angle_from_matrix from scitbx.math.euler_angles import xyz_angles, xyz_matrix class MosflmMissetExpert(object): """A class to calculate the missetting angles to use for integration given some values around the start and a good way in (ideally 90 degrees) to the data processing. The protocol to obtain these remains to be established.""" def __init__(self, phi0, misset0, phi1, misset1): """Initialise the rotation axis and what have you from some experimental results. N.B. all input values in DEGREES.""" # canonical: X = X-ray beam # Z = rotation axis # Y = Z ^ X z = matrix.col([0, 0, 1]) # then calculate the rotation axis R = ( ( z.axis_and_angle_as_r3_rotation_matrix(phi1, deg=True) * matrix.sqr(xyz_matrix(misset1[0], misset1[1], misset1[2])) ) * ( z.axis_and_angle_as_r3_rotation_matrix(phi0, deg=True) * matrix.sqr(xyz_matrix(misset0[0], misset0[1], misset0[2])) ).inverse() ) self._z = z self._r = matrix.col(r3_rotation_axis_and_angle_from_matrix(R).axis) self._M0 = matrix.sqr(xyz_matrix(misset0[0], misset0[1], misset0[2])) return def get_r(self): """Get the rotation axis.""" return self._r.elems def missets(self, phi): """Calculate the missetting angles for the given rotation angle.""" P = self._z.axis_and_angle_as_r3_rotation_matrix(phi, deg=True) R = self._r.axis_and_angle_as_r3_rotation_matrix(phi, deg=True) M = P.inverse() * R * self._M0 return xyz_angles(M) if __name__ == "__main__": # example taken from the problematic myoglobin data set mme = MosflmMissetExpert(0.25, (-0.33, -0.32, -0.01), 91.75, (0.56, -0.12, -0.03)) for j in range(0, 320, 20): phi = 0.5 * j + 0.25 x, y, z = mme.missets(phi) print("%8.2f %8.2f %8.2f %8.2f" % (j + 1, x, y, z)) ``` #### File: xia2/Handlers/Environment.py ```python from __future__ import absolute_import, division, print_function import ctypes import os import platform import tempfile from xia2.Handlers.Streams import Chatter, Debug def which(pgm, debug=False): path = os.getenv("PATH") for p in path.split(os.path.pathsep): p = os.path.join(p, pgm) if debug: Chatter.write("Seeking %s" % p) if os.path.exists(p) and os.access(p, os.X_OK): return p def memory_usage(): try: import resource return resource.getrusage(resource.RUSAGE_SELF).ru_maxrss except Exception as e: Debug.write("Error getting RAM usage: %s" % str(e)) return 0 def debug_memory_usage(): """Print line, file, memory usage.""" try: import inspect frameinfo = inspect.getframeinfo(inspect.stack()[1][0]) Debug.write( "RAM usage at %s %d: %d" % (os.path.split(frameinfo.filename)[-1], frameinfo.lineno, memory_usage()) ) except Exception as e: Debug.write("Error getting RAM usage: %s" % str(e)) def df(path=os.getcwd()): """Return disk space in bytes in path.""" if platform.system() == "Windows": try: bytes = ctypes.c_ulonglong(0) ctypes.windll.kernel32.GetDiskFreeSpaceExW( ctypes.c_wchar_p(path), None, None, ctypes.pointer(bytes) ) return bytes.value except Exception as e: Debug.write("Error getting disk space: %s" % str(e)) return 0 s = os.statvfs(path) return s.f_frsize * s.f_bavail def ulimit_n(): # see xia2#172 - change limit on number of file handles to smaller of # hard limit, 4096 try: import resource except ImportError: # not available on all operating systems. do nothing. return current, hard = resource.getrlimit(resource.RLIMIT_NOFILE) demand = min(4096, hard) resource.setrlimit(resource.RLIMIT_NOFILE, (demand, demand)) current, hard = resource.getrlimit(resource.RLIMIT_NOFILE) return current, demand, hard class _Environment(object): """A class to store environmental considerations.""" def __init__(self, working_directory=None): if working_directory is None: self._working_directory = os.getcwd() else: self._working_directory = working_directory self._is_setup = False def _setup(self): if self._is_setup: return # Make sure USER env var is defined (historical reasons) if not "USER" in os.environ: if "USERNAME" in os.environ: os.environ["USER"] = os.environ["USERNAME"] else: os.environ["USER"] = "xia2" # define a local CCP4_SCR ccp4_scr = tempfile.mkdtemp() os.environ["CCP4_SCR"] = ccp4_scr Debug.write("Created CCP4_SCR: %s" % ccp4_scr) ulimit = ulimit_n() if ulimit: Debug.write("File handle limits: %d/%d/%d" % ulimit) self._is_setup = True def set_working_directory(self, working_directory): self._working_directory = working_directory def generate_directory(self, path_tuple): """Used for generating working directories.""" self._setup() path = self._working_directory if isinstance(path_tuple, type("string")): path_tuple = (path_tuple,) for p in path_tuple: path = os.path.join(path, p) if not os.path.exists(path): Debug.write("Making directory: %s" % path) os.makedirs(path) else: Debug.write("Directory exists: %s" % path) return path def setenv(self, name, value): """A wrapper for os.environ.""" self._setup() os.environ[name] = value def getenv(self, name): """A wrapper for os.environ.""" self._setup() return os.environ.get(name) def cleanup(self): return Environment = _Environment() # jiffy functions def get_number_cpus(): """Portably get the number of processor cores available.""" if os.name == "nt": # Windows only has once CPU because easy_mp does not support more. #191 return 1 # if environmental variable NSLOTS is set to a number then use that try: return int(os.environ.get("NSLOTS")) except (ValueError, TypeError): pass from libtbx.introspection import number_of_processors return number_of_processors(return_value_if_unknown=-1) if __name__ == "__main__": print(get_number_cpus()) print(df(os.getcwd())) ``` #### File: xia2/Handlers/Flags.py ```python from __future__ import absolute_import, division, print_function import os class _Flags(object): """A singleton to manage boolean flags.""" def __init__(self): # XDS specific things - to help with handling tricky data sets self._xparm = None self._xparm_beam_vector = None self._xparm_rotation_axis = None self._xparm_origin = None self._xparm_a = None self._xparm_b = None self._xparm_c = None # starting directory (to allow setting working directory && relative # paths on input) self._starting_directory = os.getcwd() def get_starting_directory(self): return self._starting_directory def set_xparm(self, xparm): self._xparm = xparm from xia2.Wrappers.XDS.XDS import xds_read_xparm xparm_info = xds_read_xparm(xparm) self._xparm_origin = xparm_info["ox"], xparm_info["oy"] self._xparm_beam_vector = tuple(xparm_info["beam"]) self._xparm_rotation_axis = tuple(xparm_info["axis"]) self._xparm_distance = xparm_info["distance"] def get_xparm(self): return self._xparm def get_xparm_origin(self): return self._xparm_origin def get_xparm_rotation_axis(self): return self._xparm_rotation_axis def get_xparm_beam_vector(self): return self._xparm_beam_vector def get_xparm_distance(self): return self._xparm_distance def set_xparm_ub(self, xparm): self._xparm_ub = xparm tokens = map(float, open(xparm, "r").read().split()) self._xparm_a = tokens[-9:-6] self._xparm_b = tokens[-6:-3] self._xparm_c = tokens[-3:] def get_xparm_a(self): return self._xparm_a def get_xparm_b(self): return self._xparm_b def get_xparm_c(self): return self._xparm_c def set_freer_file(self, freer_file): freer_file = os.path.abspath(freer_file) if not os.path.exists(freer_file): raise RuntimeError("%s does not exist" % freer_file) from xia2.Modules.FindFreeFlag import FindFreeFlag from xia2.Handlers.Streams import Debug column = FindFreeFlag(freer_file) Debug.write("FreeR_flag column in %s found: %s" % (freer_file, column)) self._freer_file = freer_file Flags = _Flags() ``` #### File: xia2/Handlers/Streams.py ```python from __future__ import absolute_import, division, print_function import inspect import logging import os import sys from datetime import date import libtbx.load_env try: from dlstbx.util.colorstreamhandler import ColorStreamHandler except ImportError: ColorStreamHandler = None april = { "CC half ": "Cromulence", "I/sigma ": "Excellence", "Total observations": "How many spots ", "Total unique": "Unique spots", "High resolution limit ": "Littlest visible thing", "Low resolution limit ": "Biggest visible thing", "Resolution limit for": "Littlest visible thing", } def banner(comment, forward=True, size=60): if not comment: return "-" * size l = len(comment) m = (size - (l + 2)) // 2 n = size - (l + 2 + m) return "%s %s %s" % ("-" * m, comment, "-" * n) class _Stream(object): """A class to represent an output stream. This will be used as a number of static instances - Debug and Chatter in particular.""" def __init__(self, streamname, prefix): """Create a new stream.""" # FIXME would rather this goes to a file... # unless this is impossible if streamname: self._file_name = "%s.txt" % streamname else: self._file_name = None self._file = None self._streamname = streamname self._prefix = prefix self._otherstream = None self._off = False self._cache = False self._cachelines = [] self._additional = False self._filter = None def cache(self): self._cache = True self._cachelines = [] def filter(self, filter): self._filter = filter def uncache(self): if not self._cache: return self._cache = False for record, forward in self._cachelines: self.write(record, forward) return self._cachelines def get_file(self): if self._file: return self._file if not self._file_name: self._file = sys.stdout else: self._file = open(self._file_name, "w") return self._file def set_file(self, file): self._file = file def set_additional(self): self._additional = True def write(self, record, forward=True, strip=True): if self._filter: for replace in self._filter: record = record.replace(replace, self._filter[replace]) if self._off: return None if self._cache: self._cachelines.append((record, forward)) return if self._additional: f = inspect.currentframe().f_back m = f.f_code.co_filename l = f.f_lineno record = "Called from %s / %d\n%s" % (m, l, record) for r in record.split("\n"): if self._prefix: result = self.get_file().write( ("[%s] %s\n" % (self._prefix, r.strip() if strip else r)).encode( "utf-8" ) ) else: result = self.get_file().write( ("%s\n" % (r.strip() if strip else r)).encode("utf-8") ) self.get_file().flush() if self._otherstream and forward: self._otherstream.write(record, strip=strip) return result def bigbanner(self, comment, forward=True, size=60): """Write a big banner for something.""" hashes = "#" * size self.write(hashes, forward) self.write("# %s" % comment, forward) self.write(hashes, forward) def banner(self, comment, forward=True, size=60): self.write(banner(comment, forward=forward, size=size)) def smallbanner(self, comment, forward): """Write a small batter for something, like this: ----- comment ------.""" dashes = "-" * 10 self.write("%s %s %s" % (dashes, comment, dashes), forward) def block(self, task, data, program, options): """Print out a description of the task being performed with the program and a dictionary of options which will be printed in alphabetical order.""" self.banner("%s %s with %s" % (task, data, program), size=80) for o in sorted(options): if options[o]: oname = "%s:" % o self.write("%s %s" % (oname.ljust(30), options[o])) def entry(self, options): """Print subsequent entries to the above block.""" for o in sorted(options): if options[o]: oname = "%s:" % o self.write("%s %s" % (oname.ljust(30), options[o])) def join(self, otherstream): """Join another stream so that all output from this stream goes also to that one.""" self._otherstream = otherstream def off(self): """Switch the stream writing off...""" self._off = True # FIXME 23/NOV/06 now write a xia2.txt from chatter and rename that # output stream Stdout... then copy everything there! cl = libtbx.env.dispatcher_name if cl: if "xia2" not in cl or "python" in cl or cl == "xia2.new": cl = "xia2" else: cl = "xia2" if cl.endswith(".bat"): # windows adds .bat extension to dispatcher cl = cl[:-4] Chatter = _Stream("%s" % cl, None) Journal = _Stream("%s-journal" % cl, None) Stdout = _Stream(None, None) day = date.today().timetuple() if (day.tm_mday == 1 and day.tm_mon == 4) or "XIA2_APRIL" in os.environ: # turning log fonts to GREEN Stdout.filter(april) Debug = _Stream("%s-debug" % cl, None) Chatter.join(Stdout) def streams_off(): """Switch off the chatter output - designed for unit tests...""" Chatter.off() Journal.off() Debug.off() def setup_logging(logfile=None, debugfile=None, verbose=False): """ Initialise logging for xia2 :param logfile: Filename for info/info+debug log output. :type logfile: str :param debugfile: Filename for debug log output. :type debugfile: str :param verbose: Enable debug output for logfile and console. :type verbose: bool """ if verbose: loglevel = logging.DEBUG else: loglevel = logging.INFO if os.getenv("COLOURLOG") and ColorStreamHandler: console = ColorStreamHandler(sys.stdout) else: console = logging.StreamHandler(sys.stdout) console.setLevel(loglevel) xia2_logger = logging.getLogger("xia2") xia2_logger.addHandler(console) xia2_logger.setLevel(loglevel) other_loggers = [logging.getLogger(package) for package in ("dials", "dxtbx")] if logfile: fh = logging.FileHandler(filename=logfile, mode="w") fh.setLevel(loglevel) xia2_logger.addHandler(fh) for logger in other_loggers: logger.addHandler(fh) logger.setLevel(loglevel) if debugfile: fh = logging.FileHandler(filename=debugfile, mode="w") fh.setLevel(logging.DEBUG) for logger in [xia2_logger] + other_loggers: logger.addHandler(fh) logger.setLevel(logging.DEBUG) def reconfigure_streams_to_logging(): "Modify xia2 Chatter/Debug objects to use python logging" def logger_file(loggername, level=logging.INFO): "Returns a file-like object that writes to a logger" log_function = logging.getLogger(loggername).log class _(object): @staticmethod def flush(): pass @staticmethod def write(logobject): if logobject.endswith("\n"): # the Stream.write() function adds a trailing newline. # remove that again logobject = logobject[:-1] log_function(level, logobject) return _() Debug.set_file(logger_file("xia2.stream.debug", level=logging.DEBUG)) Debug.join(None) Chatter.set_file(logger_file("xia2.stream.chatter")) Chatter.join(None) Stdout.set_file(logger_file("xia2.stream.stdout")) Stdout.join(None) if __name__ == "__main__": setup_logging(logfile="logfile", debugfile="debugfile") reconfigure_streams_to_logging() Chatter.write("nothing much, really") Debug.write("this is a debug-level message") Stdout.write("I write to stdout") ``` #### File: xia2/Handlers/Syminfo.py ```python from __future__ import absolute_import, division, print_function import copy import os import re import sys from cctbx import sgtbx class _Syminfo(object): """An object to retain symmetry information.""" def __init__(self): """Initialise everything.""" self._parse_symop() self._int_re = re.compile("^[0-9]*$") def _generate_lattice(self, lattice_type, shortname): """Generate a lattice name (e.g. tP) from TETRAGONAL and P422.""" hash = { "TRICLINIC": "a", "MONOCLINIC": "m", "ORTHORHOMBIC": "o", "TETRAGONAL": "t", "TRIGONAL": "h", "HEXAGONAL": "h", "CUBIC": "c", } lattice = "%s%s" % (hash[lattice_type.upper()], shortname[0].upper()) if lattice[1] != "H": return lattice else: return "%sR" % lattice[0] def _parse_symop(self): """Parse the CCP4 symop library.""" self._symop = {} self._spacegroup_name_to_lattice = {} self._spacegroup_short_to_long = {} self._spacegroup_long_to_short = {} self._spacegroup_name_to_number = {} self._spacegroup_name_to_pointgroup = {} current = 0 for line in open(os.path.join(os.environ["CLIBD"], "symop.lib")).readlines(): if line[0] != " ": index, _, _, shortname, _, lattice_type = line.split()[0:6] index = int(index) lattice_type = lattice_type.lower() longname = line.split("'")[1] lattice = self._generate_lattice(lattice_type, shortname) pointgroup = "" for token in longname.split(): if len(longname.split()) <= 2: pointgroup += token[0] elif token[0] != "1": pointgroup += token[0] self._symop[index] = { "index": index, "lattice_type": lattice_type, "lattice": lattice, "name": shortname, "longname": longname, "pointgroup": pointgroup, "symops": 0, "operations": [], } if shortname not in self._spacegroup_name_to_lattice: self._spacegroup_name_to_lattice[shortname] = lattice if shortname not in self._spacegroup_name_to_number: self._spacegroup_name_to_number[shortname] = index if longname not in self._spacegroup_long_to_short: self._spacegroup_long_to_short[longname] = shortname if shortname not in self._spacegroup_short_to_long: self._spacegroup_short_to_long[shortname] = longname if shortname not in self._spacegroup_name_to_pointgroup: self._spacegroup_name_to_pointgroup[shortname] = pointgroup current = index else: self._symop[current]["symops"] += 1 self._symop[current]["operations"].append(line.strip()) def get_syminfo(self, spacegroup_number): """Return the syminfo for spacegroup number.""" return copy.deepcopy(self._symop[spacegroup_number]) def get_pointgroup(self, name): """Get the pointgroup for this spacegroup, e.g. P422 for P43212.""" space_group = sgtbx.space_group_info(name).group() point_group = ( space_group.build_derived_patterson_group().build_derived_acentric_group() ) return point_group.type().lookup_symbol().replace(" ", "") def get_lattice(self, name): """Get the lattice for a named spacegroup.""" # check that this isn't already a lattice name if name in [ "aP", "mP", "mC", "oP", "oC", "oI", "oF", "tP", "tI", "hR", "hP", "cP", "cI", "cF", ]: return name from cctbx.sgtbx.bravais_types import bravais_lattice if isinstance(name, int): lattice = bravais_lattice(number=name) elif self._int_re.match(name): name = int(name) lattice = bravais_lattice(number=name) else: lattice = bravais_lattice(symbol=str(name)) return str(lattice) def get_spacegroup_numbers(self): """Get a list of all spacegroup numbers.""" numbers = sorted(self._symop.keys()) return numbers def spacegroup_number_to_name(self, spacegroup_number): """Return the name of this spacegroup.""" return sgtbx.space_group_info(spacegroup_number).type().lookup_symbol() def spacegroup_name_to_number(self, spacegroup): """Return the number corresponding to this spacegroup.""" # check have not had number passed in try: number = int(spacegroup) return number except ValueError: pass return sgtbx.space_group_info(str(spacegroup)).type().number() def get_num_symops(self, spacegroup_number): """Get the number of symmetry operations that spacegroup number has.""" return len(sgtbx.space_group_info(number=spacegroup_number).group()) def get_symops(self, spacegroup): """Get the operations for spacegroup number N.""" try: number = int(spacegroup) except ValueError: number = self.spacegroup_name_to_number(spacegroup) return self._symop[number]["operations"] def get_subgroups(self, spacegroup): """Get the list of spacegroups which are included entirely in this spacegroup.""" try: number = int(spacegroup) except ValueError: number = self.spacegroup_name_to_number(spacegroup) symops = self._symop[number]["operations"] subgroups = [ self.spacegroup_number_to_name(j) for j in range(1, 231) if all(operation in symops for operation in self._symop[j]["operations"]) ] return subgroups Syminfo = _Syminfo() if __name__ == "__main__": for arg in sys.argv[1:]: print(Syminfo.get_pointgroup(arg)) print(Syminfo.get_lattice(arg)) ``` #### File: xia2/Modules/DeltaCcHalf.py ```python from __future__ import absolute_import, division, print_function import sys import iotbx.phil from cctbx import crystal from cctbx.array_family import flex from libtbx.phil import command_line from xia2.Modules.Analysis import separate_unmerged master_phil_scope = iotbx.phil.parse( """\ cc_one_half_method = half_dataset *sigma_tau .type = choice unit_cell = None .type = unit_cell n_bins = 20 .type = int(value_min=1) d_min = None .type = float(value_min=0) batch .multiple = True { id = None .type = str range = None .type = ints(size=2, value_min=0) } include scope xia2.Modules.MultiCrystalAnalysis.batch_phil_scope """, process_includes=True, ) class delta_cc_half(object): def __init__( self, unmerged_intensities, batches_all, n_bins=20, d_min=None, cc_one_half_method="sigma_tau", id_to_batches=None, ): sel = unmerged_intensities.sigmas() > 0 unmerged_intensities = unmerged_intensities.select(sel).set_info( unmerged_intensities.info() ) batches_all = batches_all.select(sel) unmerged_intensities.setup_binner(n_bins=n_bins) self.unmerged_intensities = unmerged_intensities self.merged_intensities = unmerged_intensities.merge_equivalents().array() separate = separate_unmerged( unmerged_intensities, batches_all, id_to_batches=id_to_batches ) self.intensities = separate.intensities self.batches = separate.batches self.run_id_to_batch_id = separate.run_id_to_batch_id from iotbx.merging_statistics import dataset_statistics self.merging_statistics = dataset_statistics( unmerged_intensities, n_bins=n_bins, cc_one_half_significance_level=0.01, binning_method="counting_sorted", anomalous=True, use_internal_variance=False, eliminate_sys_absent=False, cc_one_half_method=cc_one_half_method, ) if cc_one_half_method == "sigma_tau": cc_overall = self.merging_statistics.cc_one_half_sigma_tau_overall else: cc_overall = self.merging_statistics.cc_one_half_overall self.merging_statistics.show() self.delta_cc = flex.double() for test_k in self.intensities.keys(): # print test_k indices_i = flex.miller_index() data_i = flex.double() sigmas_i = flex.double() for k, unmerged in self.intensities.iteritems(): if k == test_k: continue indices_i.extend(unmerged.indices()) data_i.extend(unmerged.data()) sigmas_i.extend(unmerged.sigmas()) unmerged_i = unmerged_intensities.customized_copy( indices=indices_i, data=data_i, sigmas=sigmas_i ).set_info(unmerged_intensities.info()) unmerged_i.setup_binner_counting_sorted(n_bins=n_bins) if cc_one_half_method == "sigma_tau": cc_bins = unmerged_i.cc_one_half_sigma_tau( use_binning=True, return_n_refl=True ) else: cc_bins = unmerged_i.cc_one_half(use_binning=True, return_n_refl=True) cc_i = flex.mean_weighted( flex.double(b[0] for b in cc_bins.data[1:-1]), flex.double(b[1] for b in cc_bins.data[1:-1]), ) delta_cc_i = cc_i - cc_overall self.delta_cc.append(delta_cc_i) def _labels(self): if self.run_id_to_batch_id is not None: labels = self.run_id_to_batch_id.values() else: labels = ["%i" % (j + 1) for j in range(len(self.delta_cc))] return labels def _normalised_delta_cc_i(self): mav = flex.mean_and_variance(self.delta_cc) return (self.delta_cc - mav.mean()) / mav.unweighted_sample_standard_deviation() def get_table(self): from libtbx import table_utils rows = [["dataset", "batches", "delta_cc_i", "sigma"]] labels = self._labels() normalised_score = self._normalised_delta_cc_i() perm = flex.sort_permutation(self.delta_cc) for i in perm: bmin = flex.min(self.batches[i].data()) bmax = flex.max(self.batches[i].data()) rows.append( [ str(labels[i]), "%i to %i" % (bmin, bmax), "% .3f" % self.delta_cc[i], "% .2f" % normalised_score[i], ] ) return table_utils.format(rows, has_header=True, prefix="|", postfix="|") def plot_histogram(self, filename): import math from matplotlib import pyplot normalised_score = self._normalised_delta_cc_i() pyplot.figure() # bins = range( # int(math.floor(flex.min(normalised_score))), int(math.ceil(flex.max(normalised_score)))+1) from libtbx.utils import frange bins = frange( math.floor(flex.min(normalised_score)), math.ceil(flex.max(normalised_score)) + 1, step=0.1, ) n, bins, patches = pyplot.hist( normalised_score.as_numpy_array(), bins=bins, fill=False ) pyplot.xlabel(r"$\sigma$") pyplot.ylabel("Frequency") pyplot.savefig(filename) def run(args): cmd_line = command_line.argument_interpreter(master_params=master_phil_scope) working_phil, args = cmd_line.process_and_fetch( args=args, custom_processor="collect_remaining" ) working_phil.show() params = working_phil.extract() if params.unit_cell is not None: unit_cell = params.unit_cell crystal_symmetry = crystal.symmetry(unit_cell=unit_cell) else: crystal_symmetry = None from iotbx.reflection_file_reader import any_reflection_file result = any_reflection_file(args[0]) unmerged_intensities = None batches_all = None for ma in result.as_miller_arrays( merge_equivalents=False, crystal_symmetry=crystal_symmetry ): # print ma.info().labels if ma.info().labels == ["I(+)", "SIGI(+)", "I(-)", "SIGI(-)"]: assert ma.anomalous_flag() unmerged_intensities = ma elif ma.info().labels == ["I", "SIGI"]: assert not ma.anomalous_flag() unmerged_intensities = ma elif ma.info().labels == ["BATCH"]: batches_all = ma assert batches_all is not None assert unmerged_intensities is not None id_to_batches = None if len(params.batch) > 0: id_to_batches = {} for b in params.batch: assert b.id is not None assert b.range is not None assert b.id not in id_to_batches, "Duplicate batch id: %s" % b.id id_to_batches[b.id] = b.range result = delta_cc_half( unmerged_intensities, batches_all, n_bins=params.n_bins, d_min=params.d_min, cc_one_half_method=params.cc_one_half_method, id_to_batches=id_to_batches, ) hist_filename = "delta_cc_hist.png" print("Saving histogram to %s" % hist_filename) result.plot_histogram(hist_filename) print(result.get_table()) from xia2.Handlers.Citations import Citations Citations.cite("delta_cc_half") for citation in Citations.get_citations_acta(): print(citation) if __name__ == "__main__": run(sys.argv[1:]) ``` #### File: Modules/Indexer/XDSIndexerSum.py ```python from __future__ import absolute_import, division, print_function import os from xia2.Handlers.Phil import PhilIndex from xia2.Handlers.Streams import Debug from xia2.Modules.Indexer.XDSIndexer import XDSIndexer from xia2.Wrappers.XDS.Merge2cbf import Merge2cbf # the class that we are extending # odds and sods that are needed # FIXME need to put in access here to Phil parameters to know how wide to make # the summed images class XDSIndexerSum(XDSIndexer): """An extension of XDSIndexer using all available images.""" def __init__(self): super(XDSIndexerSum, self).__init__() # XDSIndexer.__init__ modfies this! self._index_select_images = _index_select_images # helper functions def _index_select_images(self): """Select correct images based on image headers.""" # FIXME in here (i) sum the images defined from the existing class # contents then (ii) change the template stored, the directory and # the header contents to correspond to those new images. Finally make # a note of these changes so we can correct XPARM file at the end. assert min(self.get_matching_images()) == 1 # make a note so we can fix the XPARM.XDS file at the end self._true_phi_width = self.get_header_item("phi_width") params = PhilIndex.params.xds.merge2cbf if params.data_range is None: params.data_range = 1, len(self.get_matching_images()) m2c = Merge2cbf(params=params) m2c.setup_from_image(self.get_image_name(1)) m2c.set_working_directory( os.path.join(self.get_working_directory(), "summed_images") ) os.mkdir(m2c.get_working_directory()) m2c.run() # Is this safe to do? self._setup_from_image( os.path.join(m2c.get_working_directory(), "merge2cbf_averaged_0001.cbf") ) phi_width = self.get_header_item("phi_width") if phi_width == 0.0: raise RuntimeError("cannot use still images") # use five degrees for the background calculation five_deg = int(round(5.0 / phi_width)) - 1 if five_deg < 5: five_deg = 5 images = self.get_matching_images() # characterise the images - are there just two (e.g. dna-style # reference images) or is there a full block? if it is the # former then we have a problem, as we want *all* the images in the # sweep... wedges = [] min_images = params.xia2.settings.input.min_images if len(images) < 3 and len(images) < min_images: raise RuntimeError( "This INDEXER cannot be used for only %d images" % len(images) ) Debug.write("Adding images for indexer: %d -> %d" % (min(images), max(images))) wedges.append((min(images), max(images))) # FIXME this should have a wrapper function! if min(images) + five_deg in images: self._background_images = (min(images), min(images) + five_deg) else: self._background_images = (min(images), max(images)) return wedges # FIXME here override _index_finish by calling original _index_finish # then correcting the XPARM file as mentioned above. def _index_finish(self): self._modify_xparm_xds() XDSIndexer._index_finish(self) def _modify_xparm_xds(self): import fileinput xparm_filename = os.path.join(self.get_working_directory(), "XPARM.XDS") assert os.path.isfile(xparm_filename) f = fileinput.input(xparm_filename, mode="rb", inplace=1) updated_oscillation_range = False for line in f: if not updated_oscillation_range: # Starting image number (STARTING_FRAME=), # spindle angle at start (STARTING_ANGLE=), # oscillation range, # and laboratory coordinates of the rotation axis. tokens = line.split() if len(tokens) == 6: summed_oscillation_range = float(tokens[2]) # sanity check - is this actually necessary? assert ( summed_oscillation_range - self.get_header_item("phi_width") ) < 1e-6 tokens[2] = "%.4f" % self._true_phi_width print(" ".join(tokens)) continue print(line, end=" ") f.close() # copy across file contents internally self._data_files["XPARM.XDS"] = open(xparm_filename, mode="rb").read() ``` #### File: Modules/Integrater/IntegraterFactory.py ```python from __future__ import absolute_import, division, print_function import os from xia2.DriverExceptions.NotAvailableError import NotAvailableError from xia2.Handlers.Phil import PhilIndex from xia2.Handlers.PipelineSelection import add_preference, get_preferences from xia2.Handlers.Streams import Debug from xia2.Modules.Integrater.DialsIntegrater import DialsIntegrater from xia2.Modules.Integrater.MosflmIntegrater import MosflmIntegrater from xia2.Modules.Integrater.XDSIntegrater import XDSIntegrater # FIXME 06/SEP/06 this should take an implementation of indexer to # help with the decision about which integrater to # use, and also to enable invisible configuration. # # FIXME 06/SEP/06 also need interface which will work with xsweep # objects. def IntegraterForXSweep(xsweep, json_file=None): """Create an Integrater implementation to work with the provided XSweep.""" # FIXME this needs properly implementing... if xsweep is None: raise RuntimeError("XSweep instance needed") if not xsweep.__class__.__name__ == "XSweep": raise RuntimeError("XSweep instance needed") integrater = Integrater() if json_file is not None: assert os.path.isfile(json_file) Debug.write("Loading integrater from json: %s" % json_file) import time t0 = time.time() integrater = integrater.__class__.from_json(filename=json_file) t1 = time.time() Debug.write("Loaded integrater in %.2f seconds" % (t1 - t0)) else: integrater.setup_from_imageset(xsweep.get_imageset()) integrater.set_integrater_sweep_name(xsweep.get_name()) # copy across resolution limits if xsweep.get_resolution_high() or xsweep.get_resolution_low(): d_min = PhilIndex.params.xia2.settings.resolution.d_min d_max = PhilIndex.params.xia2.settings.resolution.d_max # override with sweep versions if set - xia2#146 if xsweep.get_resolution_high(): d_min = xsweep.get_resolution_high() if xsweep.get_resolution_low(): d_max = xsweep.get_resolution_low() if d_min is not None and d_min != integrater.get_integrater_high_resolution(): Debug.write("Assigning resolution limits from XINFO input:") Debug.write("d_min: %.3f" % d_min) integrater.set_integrater_high_resolution(d_min, user=True) if d_max is not None and d_max != integrater.get_integrater_low_resolution(): Debug.write("Assigning resolution limits from XINFO input:") Debug.write("d_max: %.3f" % d_max) integrater.set_integrater_low_resolution(d_max, user=True) # check the epoch and perhaps pass this in for future reference # (in the scaling) if xsweep._epoch > 0: integrater.set_integrater_epoch(xsweep._epoch) # need to do the same for wavelength now as that could be wrong in # the image header... if xsweep.get_wavelength_value(): Debug.write( "Integrater factory: Setting wavelength: %.6f" % xsweep.get_wavelength_value() ) integrater.set_wavelength(xsweep.get_wavelength_value()) # likewise the distance... if xsweep.get_distance(): Debug.write( "Integrater factory: Setting distance: %.2f" % xsweep.get_distance() ) integrater.set_distance(xsweep.get_distance()) integrater.set_integrater_sweep(xsweep, reset=False) return integrater def Integrater(): """Return an Integrater implementation.""" # FIXME this should take an indexer as an argument... integrater = None preselection = get_preferences().get("integrater") if not integrater and (not preselection or preselection == "dials"): try: integrater = DialsIntegrater() Debug.write("Using Dials Integrater") if PhilIndex.params.xia2.settings.pipeline in ["dials", "dials-full"]: integrater.set_output_format("pickle") except NotAvailableError: if preselection == "dials": raise RuntimeError( "preselected integrater dials not available: " + "dials not installed?" ) if not integrater and (not preselection or preselection == "mosflmr"): try: integrater = MosflmIntegrater() Debug.write("Using MosflmR Integrater") if not get_preferences().get("scaler"): add_preference("scaler", "ccp4a") except NotAvailableError: if preselection == "mosflmr": raise RuntimeError("preselected integrater mosflmr not available") if not integrater and (not preselection or preselection == "xdsr"): try: integrater = XDSIntegrater() Debug.write("Using XDS Integrater in new resolution mode") except NotAvailableError: if preselection == "xdsr": raise RuntimeError( "preselected integrater xdsr not available: " + "xds not installed?" ) if not integrater: raise RuntimeError("no integrater implementations found") # check to see if resolution limits were passed in through the # command line... dmin = PhilIndex.params.xia2.settings.resolution.d_min dmax = PhilIndex.params.xia2.settings.resolution.d_max if dmin: Debug.write("Adding user-assigned resolution limits:") if dmax: Debug.write("dmin: %.3f dmax: %.2f" % (dmin, dmax)) integrater.set_integrater_resolution(dmin, dmax, user=True) else: Debug.write("dmin: %.3f" % dmin) integrater.set_integrater_high_resolution(dmin, user=True) return integrater if __name__ == "__main__": integrater = Integrater() ``` #### File: xia2/Modules/Mtzdump.py ```python from __future__ import absolute_import, division, print_function import copy import os import sys from iotbx import mtz class Mtzdump(object): """A class to give the same functionality as the wrapper for the CCP4 MTZDUMP program.""" def __init__(self): self._header = {} self._header["datasets"] = [] self._header["dataset_info"] = {} self._batch_header = {} self._batches = None self._reflections = 0 self._resolution_range = (0, 0) def set_working_directory(self, wd): pass def get_working_directory(self): return None def set_hklin(self, hklin): self._hklin = hklin def dump(self): """Actually obtain the contents of the mtz file header.""" assert self._hklin, self._hklin assert os.path.exists(self._hklin), self._hklin mtz_obj = mtz.object(self._hklin) # work through the file acculumating the necessary information self._header["datasets"] = [] self._header["dataset_info"] = {} self._batches = [batch.num() for batch in mtz_obj.batches()] self._header["column_labels"] = [column.label() for column in mtz_obj.columns()] self._header["column_types"] = [column.type() for column in mtz_obj.columns()] self._resolution_range = mtz_obj.max_min_resolution() self._header["spacegroup"] = mtz_obj.space_group_name() self._reflections = mtz_obj.n_reflections() for crystal in mtz_obj.crystals(): if crystal.name() == "HKL_base": continue pname = crystal.project_name() xname = crystal.name() cell = crystal.unit_cell().parameters() for dataset in crystal.datasets(): dname = dataset.name() wavelength = dataset.wavelength() dataset_id = "%s/%s/%s" % (pname, xname, dname) dataset_number = dataset.i_dataset() assert dataset_id not in self._header["datasets"] self._header["datasets"].append(dataset_id) self._header["dataset_info"][dataset_id] = {} self._header["dataset_info"][dataset_id]["wavelength"] = wavelength self._header["dataset_info"][dataset_id]["cell"] = cell self._header["dataset_info"][dataset_id]["id"] = dataset_number def dump_batch_headers(self): """Actually print the contents of the mtz file batch headers.""" assert self._hklin, self._hklin assert os.path.exists(self._hklin), self._hklin mtz_obj = mtz.object(self._hklin) for batch in mtz_obj.batches(): current_batch = batch.num() umat = batch.umat() self._batch_header[current_batch] = {"umat": umat} def get_batch_header(self, batch): return copy.deepcopy(self._batch_header[batch]) def get_columns(self): """Get a list of the columns and their types as tuples (label, type) in a list.""" results = [] for i in range(len(self._header["column_labels"])): results.append( (self._header["column_labels"][i], self._header["column_types"][i]) ) return results def get_resolution_range(self): return self._resolution_range def get_datasets(self): """Return a list of available datasets.""" return self._header["datasets"] def get_dataset_info(self, dataset): """Get the cell, spacegroup & wavelength associated with a dataset. The dataset is specified by pname/xname/dname.""" result = copy.deepcopy(self._header["dataset_info"][dataset]) result["spacegroup"] = self._header["spacegroup"] return result def get_spacegroup(self): """Get the spacegroup recorded for this reflection file.""" return self._header["spacegroup"] def get_batches(self): """Get a list of batches found in this reflection file.""" return self._batches def get_column_range(self, column): """Get the value ranges for this column. This now works by reading the file rather than using cached values => could be slow.""" assert self._hklin, self._hklin assert os.path.exists(self._hklin), self._hklin mtz_obj = mtz.object(self._hklin) col = mtz_obj.get_column(column) valid = col.extract_valid_values() return min(valid), max(valid) def get_reflections(self): """Return the number of reflections found in the reflection file.""" return self._reflections if __name__ == "__main__": m = Mtzdump() if len(sys.argv) > 1: m.set_hklin(sys.argv[1]) else: raise RuntimeError("%s hklin.mtz" % sys.argv[0]) m.dump() print(m.get_spacegroup()) ``` #### File: xia2/Modules/MtzUtils.py ```python from __future__ import absolute_import, division, print_function import iotbx.mtz def space_group_from_mtz(file_name): mtz_obj = iotbx.mtz.object(file_name=file_name) return mtz_obj.space_group() def space_group_name_from_mtz(file_name): return space_group_from_mtz(file_name).type().lookup_symbol() def space_group_number_from_mtz(file_name): return space_group_from_mtz(file_name).type().number() def batches_from_mtz(file_name): mtz_obj = iotbx.mtz.object(file_name=file_name) return [batch.num() for batch in mtz_obj.batches()] def nref_from_mtz(file_name): mtz_obj = iotbx.mtz.object(file_name=file_name) return mtz_obj.n_reflections() def reindex(hklin, hklout, change_of_basis_op, space_group=None): from cctbx import sgtbx from xia2.Modules.Scaler.CommonScaler import clean_reindex_operator if not isinstance(change_of_basis_op, sgtbx.change_of_basis_op): change_of_basis_op = sgtbx.change_of_basis_op( str(clean_reindex_operator(change_of_basis_op)) ) if space_group is not None and not isinstance(space_group, sgtbx.space_group): space_group = sgtbx.space_group_info(str(space_group)).group() mtz_obj = iotbx.mtz.object(file_name=hklin) original_index_miller_indices = mtz_obj.extract_original_index_miller_indices() reindexed_miller_indices = change_of_basis_op.apply(original_index_miller_indices) if space_group is not None: mtz_obj.set_space_group(space_group) mtz_obj.replace_original_index_miller_indices(reindexed_miller_indices) mtz_obj.write(hklout) ``` #### File: Modules/Scaler/CCP4ScalerHelpers.py ```python from __future__ import absolute_import, division, print_function import math import os import sys import xia2.Wrappers.CCP4.Pointless import xia2.Wrappers.Dials.Symmetry from iotbx import mtz from xia2.Experts.ResolutionExperts import remove_blank from xia2.Handlers.Files import FileHandler from xia2.Handlers.Phil import PhilIndex from xia2.Handlers.Streams import Debug from xia2.lib.bits import auto_logfiler from xia2.Modules import MtzUtils ############ JIFFY FUNCTIONS ################# def nint(a): return int(round(a) - 0.5) + (a > 0) def _resolution_estimate(ordered_pair_list, cutoff): """Come up with a linearly interpolated estimate of resolution at cutoff cutoff from input data [(resolution, i_sigma)].""" x = [] y = [] for o in ordered_pair_list: x.append(o[0]) y.append(o[1]) if max(y) < cutoff: # there is no resolution where this exceeds the I/sigma # cutoff return -1.0 # this means that there is a place where the resolution cutof # can be reached - get there by working backwards x.reverse() y.reverse() if y[0] >= cutoff: # this exceeds the resolution limit requested return x[0] j = 0 while y[j] < cutoff: j += 1 resolution = x[j] + (cutoff - y[j]) * (x[j - 1] - x[j]) / (y[j - 1] - y[j]) return resolution def ersatz_resolution(reflection_file, batch_ranges): mtz_obj = mtz.object(reflection_file) miller = mtz_obj.extract_miller_indices() dmax, dmin = mtz_obj.max_min_resolution() ipr_column = None sigipr_column = None i_column = None sigi_column = None batch_column = None uc = None for crystal in mtz_obj.crystals(): if crystal.name() == "HKL_Base": continue uc = crystal.unit_cell() for dataset in crystal.datasets(): for column in dataset.columns(): if column.label() == "IPR": ipr_column = column elif column.label() == "SIGIPR": sigipr_column = column elif column.label() == "BATCH": batch_column = column elif column.label() == "I": i_column = column elif column.label() == "SIGI": sigi_column = column assert ipr_column or i_column assert sigipr_column or sigi_column assert batch_column if ipr_column is None: ipr_column = i_column if sigipr_column is None: sigipr_column = sigi_column ipr_values = ipr_column.extract_values() sigipr_values = sigipr_column.extract_values() batch_values = batch_column.extract_values() batches = batch_values.as_double().iround() resolutions = {} for start, end in batch_ranges: sel = (batches >= start) & (batches <= end) d = uc.d(miller.select(sel)) isig = ipr_values.select(sel) / sigipr_values.select(sel) resolutions[(start, end)] = compute_resolution(dmax, dmin, d, isig) return resolutions def meansd(values): mean = sum(values) / len(values) var = sum([(v - mean) * (v - mean) for v in values]) / len(values) return mean, math.sqrt(var) def compute_resolution(dmax, dmin, d, isig): # XXX As far as I can tell this function doesn't do anything useful as it # just returns the unmodified dmin that was passed as input! Please refer # to return 1.0 / math.sqrt(s) below & remove comment when you are happy... bins = {} smax = 1.0 / (dmax * dmax) smin = 1.0 / (dmin * dmin) for j in range(len(d)): s = 1.0 / (d[j] * d[j]) n = nint(100.0 * (s - smax) / (smin - smax)) if not n in bins: bins[n] = [] bins[n].append(isig[j]) # compute starting point i.e. maximum point on the curve, to cope with # cases where low resolution has low I / sigma - see #1690. max_misig = 0.0 max_bin = 0 for b in sorted(bins): s = smax + b * (smin - smax) / 100.0 misig = meansd(bins[b])[0] if misig > max_misig: max_misig = misig max_bin = b for b in sorted(bins): if b < max_bin: continue s = smax + b * (smin - smax) / 100.0 misig = meansd(bins[b])[0] if misig < 1.0: return 1.0 / math.sqrt(s) return dmin def _prepare_pointless_hklin(working_directory, hklin, phi_width): """Prepare some data for pointless - this will take only 180 degrees of data if there is more than this (through a "pointless" command) else will simply return hklin.""" # also remove blank images? if not PhilIndex.params.xia2.settings.small_molecule: Debug.write("Excluding blank images") hklout = os.path.join( working_directory, "%s_noblank.mtz" % (os.path.split(hklin)[-1][:-4]) ) FileHandler.record_temporary_file(hklout) hklin = remove_blank(hklin, hklout) # find the number of batches batches = MtzUtils.batches_from_mtz(hklin) n_batches = max(batches) - min(batches) phi_limit = 180 if ( n_batches * phi_width < phi_limit or PhilIndex.params.xia2.settings.small_molecule ): return hklin hklout = os.path.join( working_directory, "%s_prepointless.mtz" % (os.path.split(hklin)[-1][:-4]) ) pl = xia2.Wrappers.CCP4.Pointless.Pointless() pl.set_working_directory(working_directory) auto_logfiler(pl) pl.set_hklin(hklin) pl.set_hklout(hklout) first = min(batches) last = first + int(phi_limit / phi_width) Debug.write( "Preparing data for pointless - %d batches (%d degrees)" % ((last - first), phi_limit) ) pl.limit_batches(first, last) # we will want to delete this one exit FileHandler.record_temporary_file(hklout) return hklout def _fraction_difference(value, reference): """How much (what %age) does value differ to reference?""" if reference == 0.0: return value return math.fabs((value - reference) / reference) ############### HELPER CLASS ######################### class CCP4ScalerHelper(object): """A class to help the CCP4 Scaler along a little.""" def __init__(self): self._working_directory = os.getcwd() def set_working_directory(self, working_directory): self._working_directory = working_directory def get_working_directory(self): return self._working_directory def Pointless(self): """Create a Pointless wrapper from the xia2 wrapper - and set the working directory and log file stuff as a part of this...""" pointless = xia2.Wrappers.CCP4.Pointless.Pointless() pointless.set_working_directory(self.get_working_directory()) auto_logfiler(pointless) return pointless def dials_symmetry(self): symmetry = xia2.Wrappers.Dials.Symmetry.DialsSymmetry() symmetry.set_working_directory(self.get_working_directory()) auto_logfiler(symmetry) return symmetry def pointless_indexer_jiffy(self, hklin, refiner): """A jiffy to centralise the interactions between pointless and the Indexer.""" need_to_return = False probably_twinned = False if PhilIndex.params.xia2.settings.symmetry.program == "dials": symmetry = self.dials_symmetry() else: symmetry = self.Pointless() symmetry.set_hklin(hklin) symmetry.decide_pointgroup() rerun_pointless = False possible = symmetry.get_possible_lattices() correct_lattice = None Debug.write("Possible lattices (pointless):") Debug.write(" ".join(possible)) for lattice in possible: state = refiner.set_refiner_asserted_lattice(lattice) if state == refiner.LATTICE_CORRECT: Debug.write("Agreed lattice %s" % lattice) correct_lattice = lattice break elif state == refiner.LATTICE_IMPOSSIBLE: Debug.write("Rejected lattice %s" % lattice) rerun_pointless = True continue elif state == refiner.LATTICE_POSSIBLE: Debug.write("Accepted lattice %s, will reprocess" % lattice) need_to_return = True correct_lattice = lattice break if correct_lattice is None: correct_lattice = refiner.get_refiner_lattice() rerun_pointless = True Debug.write("No solution found: assuming lattice from refiner") if rerun_pointless: symmetry.set_correct_lattice(correct_lattice) symmetry.decide_pointgroup() Debug.write("Pointless analysis of %s" % symmetry.get_hklin()) pointgroup = symmetry.get_pointgroup() reindex_op = symmetry.get_reindex_operator() probably_twinned = symmetry.get_probably_twinned() Debug.write("Pointgroup: %s (%s)" % (pointgroup, reindex_op)) return pointgroup, reindex_op, need_to_return, probably_twinned def pointless_indexer_multisweep(self, hklin, refiners): """A jiffy to centralise the interactions between pointless and the Indexer, multisweep edition.""" need_to_return = False probably_twinned = False pointless = self.Pointless() pointless.set_hklin(hklin) pointless.decide_pointgroup() rerun_pointless = False possible = pointless.get_possible_lattices() correct_lattice = None Debug.write("Possible lattices (pointless):") Debug.write(" ".join(possible)) # any of them contain the same indexer link, so all good here. refiner = refiners[0] for lattice in possible: state = refiner.set_refiner_asserted_lattice(lattice) if state == refiner.LATTICE_CORRECT: Debug.write("Agreed lattice %s" % lattice) correct_lattice = lattice break elif state == refiner.LATTICE_IMPOSSIBLE: Debug.write("Rejected lattice %s" % lattice) rerun_pointless = True continue elif state == refiner.LATTICE_POSSIBLE: Debug.write("Accepted lattice %s, will reprocess" % lattice) need_to_return = True correct_lattice = lattice break if correct_lattice is None: correct_lattice = refiner.get_refiner_lattice() rerun_pointless = True Debug.write("No solution found: assuming lattice from refiner") if need_to_return: if ( PhilIndex.params.xia2.settings.integrate_p1 and not PhilIndex.params.xia2.settings.reintegrate_correct_lattice ): need_to_return = False rerun_pointless = True else: for refiner in refiners[1:]: refiner.refiner_reset() if rerun_pointless: pointless.set_correct_lattice(correct_lattice) pointless.decide_pointgroup() Debug.write("Pointless analysis of %s" % pointless.get_hklin()) pointgroup = pointless.get_pointgroup() reindex_op = pointless.get_reindex_operator() probably_twinned = pointless.get_probably_twinned() Debug.write("Pointgroup: %s (%s)" % (pointgroup, reindex_op)) return pointgroup, reindex_op, need_to_return, probably_twinned # Sweep info class to replace dictionary... #884 class SweepInformation(object): def __init__(self, integrater): self._project_info = integrater.get_integrater_project_info() self._sweep_name = integrater.get_integrater_sweep_name() self._integrater = integrater sweep = integrater.get_integrater_sweep() self._batches = sweep.get_frames_to_process() if self._batches is None: self._batches = integrater.get_integrater_batches() self._batch_offset = 0 self._image_to_epoch = integrater.get_integrater_sweep().get_image_to_epoch() self._image_to_dose = {} self._reflections = None self._experiments = None def to_dict(self): obj = {} obj["__id__"] = "SweepInformation" import inspect attributes = inspect.getmembers(self, lambda m: not (inspect.isroutine(m))) for a in attributes: if a[0].startswith("__"): continue elif a[0] == "_integrater": obj[a[0]] = a[1].to_dict() else: obj[a[0]] = a[1] return obj @classmethod def from_dict(cls, obj): assert obj["__id__"] == "SweepInformation" return_obj = cls.__new__(cls) for k, v in obj.iteritems(): if k == "_integrater": from libtbx.utils import import_python_object integrater_cls = import_python_object( import_path=".".join((v["__module__"], v["__name__"])), error_prefix="", target_must_be="", where_str="", ).object v = integrater_cls.from_dict(v) setattr(return_obj, k, v) return return_obj def get_project_info(self): return self._project_info def get_sweep_name(self): return self._sweep_name def get_integrater(self): return self._integrater def get_batches(self): return self._batches def set_batches(self, batches): Debug.write( "Setting batches for sweep %s: %i to %i" % (self.get_sweep_name(), batches[0], batches[1]) ) self._batches = batches def set_batch_offset(self, batch_offset): self._batch_offset = batch_offset def get_batch_offset(self): return self._batch_offset def get_batch_range(self): return min(self._batches), max(self._batches) def get_header(self): return self._integrater.get_header() def get_template(self): return self._integrater.get_template() def set_dose_information(self, epoch_to_dose): for i in self._image_to_epoch: e = self._image_to_epoch[i] d = epoch_to_dose[e] self._image_to_dose[i] = d def get_circle_resolution(self): """Get the resolution of the inscribed circle used for this sweep.""" header = self._integrater.get_header() wavelength = self._integrater.get_wavelength() detector_width = header["size"][0] * header["pixel"][0] detector_height = header["size"][1] * header["pixel"][1] distance = self._integrater.get_integrater_indexer().get_indexer_distance() beam = self._integrater.get_integrater_indexer().get_indexer_beam_centre() radius = min( [beam[0], detector_width - beam[0], beam[1], detector_height - beam[1]] ) theta = 0.5 * math.atan(radius / distance) return wavelength / (2 * math.sin(theta)) def get_integrater_resolution(self): return self._integrater.get_integrater_high_resolution() def get_reflections(self): if self._reflections: return self._reflections else: return self._integrater.get_integrater_intensities() def set_reflections(self, reflections): self._reflections = reflections def set_experiments(self, experiments): self._experiments = experiments def get_experiments(self): return self._experiments class SweepInformationHandler(object): def __init__(self, epoch_to_integrater): self._sweep_information = {} for epoch in epoch_to_integrater: self._sweep_information[epoch] = SweepInformation( epoch_to_integrater[epoch] ) self._first = sorted(self._sweep_information)[0] def to_dict(self): obj = {} obj["__id__"] = "SweepInformationHandler" d = {} for k, v in self._sweep_information.iteritems(): d[k] = v.to_dict() obj["_sweep_information"] = d return obj @classmethod def from_dict(cls, obj): assert obj["__id__"] == "SweepInformationHandler" return_obj = cls.__new__(cls) d = {} for k, v in obj["_sweep_information"].iteritems(): d[k] = SweepInformation.from_dict(v) return_obj._sweep_information = d return_obj._first = sorted(return_obj._sweep_information)[0] return return_obj def get_epochs(self): return sorted(self._sweep_information) def remove_epoch(self, epoch): del self._sweep_information[epoch] self._first = sorted(self._sweep_information)[0] def get_sweep_information(self, epoch): return self._sweep_information[epoch] def get_project_info(self): si = self._sweep_information[self._first] pname, xname, dname = si.get_project_info() for e in self._sweep_information: si = self._sweep_information[e] assert si.get_project_info()[0] == pname assert si.get_project_info()[1] == xname return pname, xname def anomalous_signals(hklin): """ Compute some measures of anomalous signal: df / f and di / sig(di). """ m = mtz.object(hklin) mas = m.as_miller_arrays() data = None for ma in mas: if not ma.anomalous_flag(): continue if str(ma.observation_type()) != "xray.intensity": continue data = ma if not data: Debug.write("no anomalous data found") return df_f = data.anomalous_signal() differences = data.anomalous_differences() di_sigdi = sum(abs(differences.data())) / sum(differences.sigmas()) return df_f, di_sigdi def mosflm_B_matrix(uc): from scitbx.matrix import sqr from math import sin, cos, pi parameters = uc.parameters() r_parameters = uc.reciprocal_parameters() a = parameters[:3] al = [pi * p / 180.0 for p in parameters[3:]] b = r_parameters[:3] be = [pi * p / 180.0 for p in r_parameters[3:]] mosflm_B = sqr( ( b[0], b[1] * cos(be[2]), b[2] * cos(be[1]), 0, b[1] * sin(be[2]), -b[2] * sin(be[1]) * cos(al[0]), 0, 0, 1.0 / a[2], ) ) return mosflm_B def get_umat_bmat_lattice_symmetry_from_mtz(mtz_file): """Get the U matrix and lattice symmetry derived from the unit cell constants from an MTZ file.""" from iotbx import mtz m = mtz.object(mtz_file) # assert first U matrix from batches is OK uc = m.crystals()[0].unit_cell() from cctbx.sgtbx import lattice_symmetry_group lattice_symm = lattice_symmetry_group(uc, max_delta=0.0) return tuple(m.batches()[0].umat()), mosflm_B_matrix(uc), lattice_symm if __name__ == "__main__": for arg in sys.argv[1:]: df_f, di_sigdi = anomalous_signals(arg) print("%s: %.3f %.3f" % (os.path.split(arg)[-1], df_f, di_sigdi)) ``` #### File: Modules/Scaler/CommonScaler.py ```python from __future__ import absolute_import, division, print_function import math import os from iotbx import mtz from xia2.Handlers.Files import FileHandler from xia2.Handlers.Phil import PhilIndex from xia2.Handlers.Streams import Chatter, Debug from xia2.Handlers.CIF import CIF, mmCIF from xia2.lib.bits import nifty_power_of_ten, auto_logfiler from xia2.Modules.AnalyseMyIntensities import AnalyseMyIntensities from xia2.Modules import MtzUtils from xia2.Modules.CCP4InterRadiationDamageDetector import ( CCP4InterRadiationDamageDetector, ) from xia2.Modules.Scaler.CCP4ScalerHelpers import anomalous_signals from xia2.Schema.Interfaces.Scaler import Scaler # new resolution limit code from xia2.Wrappers.XIA.Merger import Merger def clean_reindex_operator(reindex_operator): return reindex_operator.replace("[", "").replace("]", "") class CommonScaler(Scaler): """Unified bits which the scalers have in common over the interface.""" def __init__(self): super(CommonScaler, self).__init__() self._sweep_handler = None self._scalr_twinning_score = None self._scalr_twinning_conclusion = None self._spacegroup_reindex_operator = None def _sort_together_data_ccp4(self): """Sort together in the right order (rebatching as we go) the sweeps we want to scale together.""" max_batches = 0 for epoch in self._sweep_handler.get_epochs(): si = self._sweep_handler.get_sweep_information(epoch) pname, xname, dname = si.get_project_info() sname = si.get_sweep_name() hklin = si.get_reflections() # limit the reflections - e.g. if we are re-running the scaling step # on just a subset of the integrated data hklin = si.get_reflections() limit_batch_range = None for sweep in PhilIndex.params.xia2.settings.sweep: if sweep.id == sname and sweep.range is not None: limit_batch_range = sweep.range break if limit_batch_range is not None: Debug.write( "Limiting batch range for %s: %s" % (sname, limit_batch_range) ) start, end = limit_batch_range hklout = os.path.splitext(hklin)[0] + "_tmp.mtz" FileHandler.record_temporary_file(hklout) rb = self._factory.Pointless() rb.set_hklin(hklin) rb.set_hklout(hklout) rb.limit_batches(start, end) si.set_reflections(hklout) si.set_batches(limit_batch_range) # keep a count of the maximum number of batches in a block - # this will be used to make rebatch work below. hklin = si.get_reflections() batches = MtzUtils.batches_from_mtz(hklin) if 1 + max(batches) - min(batches) > max_batches: max_batches = max(batches) - min(batches) + 1 Debug.write("Biggest sweep has %d batches" % max_batches) max_batches = nifty_power_of_ten(max_batches) # then rebatch the files, to make sure that the batch numbers are # in the same order as the epochs of data collection. counter = 0 for epoch in self._sweep_handler.get_epochs(): si = self._sweep_handler.get_sweep_information(epoch) hklin = si.get_reflections() pname, xname, dname = si.get_project_info() sname = si.get_sweep_name() hklout = os.path.join( self.get_working_directory(), "%s_%s_%s_%s_integrated.mtz" % (pname, xname, dname, sname), ) first_batch = min(si.get_batches()) si.set_batch_offset(counter * max_batches - first_batch + 1) from xia2.Modules.Scaler.rebatch import rebatch new_batches = rebatch( hklin, hklout, first_batch=counter * max_batches + 1, pname=pname, xname=xname, dname=dname, ) # update the "input information" si.set_reflections(hklout) si.set_batches(new_batches) # update the counter & recycle counter += 1 s = self._factory.Sortmtz() hklout = os.path.join( self.get_working_directory(), "%s_%s_sorted.mtz" % (self._scalr_pname, self._scalr_xname), ) s.set_hklout(hklout) for epoch in self._sweep_handler.get_epochs(): s.add_hklin( self._sweep_handler.get_sweep_information(epoch).get_reflections() ) s.sort() # verify that the measurements are in the correct setting # choice for the spacegroup hklin = hklout hklout = hklin.replace("sorted.mtz", "temp.mtz") if not self.get_scaler_reference_reflection_file(): if PhilIndex.params.xia2.settings.symmetry.program == "dials": p = self._factory.dials_symmetry() else: p = self._factory.Pointless() FileHandler.record_log_file( "%s %s pointless" % (self._scalr_pname, self._scalr_xname), p.get_log_file(), ) if len(self._sweep_handler.get_epochs()) > 1: p.set_hklin(hklin) else: # permit the use of pointless preparation... epoch = self._sweep_handler.get_epochs()[0] p.set_hklin( self._prepare_pointless_hklin( hklin, self._sweep_handler.get_sweep_information(epoch) .get_integrater() .get_phi_width(), ) ) if self._scalr_input_spacegroup: Debug.write( "Assigning user input spacegroup: %s" % self._scalr_input_spacegroup ) p.decide_spacegroup() spacegroup = p.get_spacegroup() reindex_operator = p.get_spacegroup_reindex_operator() Debug.write( "Pointless thought %s (reindex as %s)" % (spacegroup, reindex_operator) ) spacegroup = self._scalr_input_spacegroup reindex_operator = "h,k,l" self._spacegroup_reindex_operator = reindex_operator else: p.decide_spacegroup() spacegroup = p.get_spacegroup() reindex_operator = p.get_spacegroup_reindex_operator() self._spacegroup_reindex_operator = clean_reindex_operator( reindex_operator ) Debug.write( "Pointless thought %s (reindex as %s)" % (spacegroup, reindex_operator) ) if self._scalr_input_spacegroup: self._scalr_likely_spacegroups = [self._scalr_input_spacegroup] else: self._scalr_likely_spacegroups = p.get_likely_spacegroups() Chatter.write("Likely spacegroups:") for spag in self._scalr_likely_spacegroups: Chatter.write("%s" % spag) Chatter.write( "Reindexing to first spacegroup setting: %s (%s)" % (spacegroup, clean_reindex_operator(reindex_operator)) ) else: spacegroup = MtzUtils.space_group_name_from_mtz( self.get_scaler_reference_reflection_file() ) reindex_operator = "h,k,l" self._scalr_likely_spacegroups = [spacegroup] Debug.write("Assigning spacegroup %s from reference" % spacegroup) # then run reindex to set the correct spacegroup ri = self._factory.Reindex() ri.set_hklin(hklin) ri.set_hklout(hklout) ri.set_spacegroup(spacegroup) ri.set_operator(reindex_operator) ri.reindex() FileHandler.record_temporary_file(hklout) # then resort the reflections (one last time!) s = self._factory.Sortmtz() temp = hklin hklin = hklout hklout = temp s.add_hklin(hklin) s.set_hklout(hklout) s.sort() # done preparing! self._prepared_reflections = s.get_hklout() def _sort_together_data_xds(self): if len(self._sweep_information) == 1: return self._sort_together_data_xds_one_sweep() max_batches = 0 for epoch in self._sweep_information.keys(): hklin = self._sweep_information[epoch]["scaled_reflections"] if self._sweep_information[epoch]["batches"] == [0, 0]: Chatter.write("Getting batches from %s" % hklin) batches = MtzUtils.batches_from_mtz(hklin) self._sweep_information[epoch]["batches"] = [min(batches), max(batches)] Chatter.write("=> %d to %d" % (min(batches), max(batches))) batches = self._sweep_information[epoch]["batches"] if 1 + max(batches) - min(batches) > max_batches: max_batches = max(batches) - min(batches) + 1 Debug.write("Biggest sweep has %d batches" % max_batches) max_batches = nifty_power_of_ten(max_batches) epochs = sorted(self._sweep_information.keys()) counter = 0 for epoch in epochs: hklin = self._sweep_information[epoch]["scaled_reflections"] pname = self._sweep_information[epoch]["pname"] xname = self._sweep_information[epoch]["xname"] dname = self._sweep_information[epoch]["dname"] hklout = os.path.join( self.get_working_directory(), "%s_%s_%s_%d.mtz" % (pname, xname, dname, counter), ) # we will want to delete this one exit FileHandler.record_temporary_file(hklout) # record this for future reference - will be needed in the # radiation damage analysis... # hack - reset this as it gets in a muddle... intgr = self._sweep_information[epoch]["integrater"] self._sweep_information[epoch]["batches"] = intgr.get_integrater_batches() first_batch = min(self._sweep_information[epoch]["batches"]) offset = counter * max_batches - first_batch + 1 self._sweep_information[epoch]["batch_offset"] = offset from xia2.Modules.Scaler.rebatch import rebatch new_batches = rebatch( hklin, hklout, add_batch=offset, pname=pname, xname=xname, dname=dname ) # update the "input information" self._sweep_information[epoch]["hklin"] = hklout self._sweep_information[epoch]["batches"] = new_batches # update the counter & recycle counter += 1 s = self._factory.Sortmtz() hklout = os.path.join( self.get_working_directory(), "%s_%s_sorted.mtz" % (self._scalr_pname, self._scalr_xname), ) s.set_hklout(hklout) for epoch in epochs: s.add_hklin(self._sweep_information[epoch]["hklin"]) s.sort(vrset=-99999999.0) self._prepared_reflections = hklout if self.get_scaler_reference_reflection_file(): spacegroups = [ MtzUtils.space_group_name_from_mtz( self.get_scaler_reference_reflection_file() ) ] reindex_operator = "h,k,l" else: pointless = self._factory.Pointless() pointless.set_hklin(hklout) pointless.decide_spacegroup() FileHandler.record_log_file( "%s %s pointless" % (self._scalr_pname, self._scalr_xname), pointless.get_log_file(), ) spacegroups = pointless.get_likely_spacegroups() reindex_operator = pointless.get_spacegroup_reindex_operator() if self._scalr_input_spacegroup: Debug.write( "Assigning user input spacegroup: %s" % self._scalr_input_spacegroup ) spacegroups = [self._scalr_input_spacegroup] reindex_operator = "h,k,l" self._scalr_likely_spacegroups = spacegroups spacegroup = self._scalr_likely_spacegroups[0] self._scalr_reindex_operator = reindex_operator Chatter.write("Likely spacegroups:") for spag in self._scalr_likely_spacegroups: Chatter.write("%s" % spag) Chatter.write( "Reindexing to first spacegroup setting: %s (%s)" % (spacegroup, clean_reindex_operator(reindex_operator)) ) hklin = self._prepared_reflections hklout = os.path.join( self.get_working_directory(), "%s_%s_reindex.mtz" % (self._scalr_pname, self._scalr_xname), ) FileHandler.record_temporary_file(hklout) ri = self._factory.Reindex() ri.set_hklin(hklin) ri.set_hklout(hklout) ri.set_spacegroup(spacegroup) ri.set_operator(reindex_operator) ri.reindex() hklin = hklout hklout = os.path.join( self.get_working_directory(), "%s_%s_sorted.mtz" % (self._scalr_pname, self._scalr_xname), ) s = self._factory.Sortmtz() s.set_hklin(hklin) s.set_hklout(hklout) s.sort(vrset=-99999999.0) self._prepared_reflections = hklout Debug.write( "Updating unit cell to %.2f %.2f %.2f %.2f %.2f %.2f" % tuple(ri.get_cell()) ) self._scalr_cell = tuple(ri.get_cell()) return def _sort_together_data_xds_one_sweep(self): assert len(self._sweep_information) == 1 epoch = self._sweep_information.keys()[0] hklin = self._sweep_information[epoch]["scaled_reflections"] if self.get_scaler_reference_reflection_file(): spacegroups = [ MtzUtils.space_group_name_from_mtz( self.get_scaler_reference_reflection_file() ) ] reindex_operator = "h,k,l" elif self._scalr_input_spacegroup: Debug.write( "Assigning user input spacegroup: %s" % self._scalr_input_spacegroup ) spacegroups = [self._scalr_input_spacegroup] reindex_operator = "h,k,l" else: pointless = self._factory.Pointless() pointless.set_hklin(hklin) pointless.decide_spacegroup() FileHandler.record_log_file( "%s %s pointless" % (self._scalr_pname, self._scalr_xname), pointless.get_log_file(), ) spacegroups = pointless.get_likely_spacegroups() reindex_operator = pointless.get_spacegroup_reindex_operator() self._scalr_likely_spacegroups = spacegroups spacegroup = self._scalr_likely_spacegroups[0] self._scalr_reindex_operator = clean_reindex_operator(reindex_operator) Chatter.write("Likely spacegroups:") for spag in self._scalr_likely_spacegroups: Chatter.write("%s" % spag) Chatter.write( "Reindexing to first spacegroup setting: %s (%s)" % (spacegroup, clean_reindex_operator(reindex_operator)) ) hklout = os.path.join( self.get_working_directory(), "%s_%s_reindex.mtz" % (self._scalr_pname, self._scalr_xname), ) FileHandler.record_temporary_file(hklout) if reindex_operator == "[h,k,l]": # just assign spacegroup from cctbx import sgtbx s = sgtbx.space_group(sgtbx.space_group_symbols(str(spacegroup)).hall()) m = mtz.object(hklin) m.set_space_group(s).write(hklout) self._scalr_cell = m.crystals()[-1].unit_cell().parameters() Debug.write( "Updating unit cell to %.2f %.2f %.2f %.2f %.2f %.2f" % tuple(self._scalr_cell) ) del m del s else: ri = self._factory.Reindex() ri.set_hklin(hklin) ri.set_hklout(hklout) ri.set_spacegroup(spacegroup) ri.set_operator(reindex_operator) ri.reindex() Debug.write( "Updating unit cell to %.2f %.2f %.2f %.2f %.2f %.2f" % tuple(ri.get_cell()) ) self._scalr_cell = tuple(ri.get_cell()) hklin = hklout hklout = os.path.join( self.get_working_directory(), "%s_%s_sorted.mtz" % (self._scalr_pname, self._scalr_xname), ) s = self._factory.Sortmtz() s.set_hklin(hklin) s.set_hklout(hklout) s.sort(vrset=-99999999.0) self._prepared_reflections = hklout def _scale_finish(self): # compute anomalous signals if anomalous if self.get_scaler_anomalous(): self._scale_finish_chunk_1_compute_anomalous() # next transform to F's from I's etc. if not self._scalr_scaled_refl_files: raise RuntimeError("no reflection files stored") # run xia2.report on each unmerged mtz file # self._scale_finish_chunk_2_report() if not PhilIndex.params.xia2.settings.small_molecule: self._scale_finish_chunk_3_truncate() self._scale_finish_chunk_4_mad_mangling() if PhilIndex.params.xia2.settings.small_molecule: self._scale_finish_chunk_5_finish_small_molecule() self._scale_finish_export_shelxt() return # finally add a FreeR column, and record the new merged reflection # file with the free column added. self._scale_finish_chunk_6_add_free_r() self._scale_finish_chunk_7_twinning() # next have a look for radiation damage... if more than one wavelength if len(self._scalr_scaled_refl_files.keys()) > 1: self._scale_finish_chunk_8_raddam() # finally add xia2 version to mtz history from iotbx.reflection_file_reader import any_reflection_file from xia2.XIA2Version import Version import time mtz_files = [self._scalr_scaled_reflection_files["mtz"]] mtz_files.extend(self._scalr_scaled_reflection_files["mtz_unmerged"].values()) for mtz_file in mtz_files: reader = any_reflection_file(mtz_file) mtz_object = reader.file_content() date_str = time.strftime("%d/%m/%Y at %H:%M:%S", time.gmtime()) mtz_object.add_history("From %s, run on %s" % (Version, date_str)) mtz_object.write(mtz_file) def _scale_finish_chunk_1_compute_anomalous(self): for key in self._scalr_scaled_refl_files: f = self._scalr_scaled_refl_files[key] m = mtz.object(f) if m.space_group().is_centric(): Debug.write("Spacegroup is centric: %s" % f) continue Debug.write("Running anomalous signal analysis on %s" % f) a_s = anomalous_signals(f) if a_s is not None: self._scalr_statistics[(self._scalr_pname, self._scalr_xname, key)][ "dF/F" ] = [a_s[0]] self._scalr_statistics[(self._scalr_pname, self._scalr_xname, key)][ "dI/s(dI)" ] = [a_s[1]] def _scale_finish_chunk_2_report(self): from cctbx.array_family import flex from iotbx.reflection_file_reader import any_reflection_file from xia2.lib.bits import auto_logfiler from xia2.Wrappers.XIA.Report import Report for wavelength in self._scalr_scaled_refl_files.keys(): mtz_unmerged = self._scalr_scaled_reflection_files["mtz_unmerged"][ wavelength ] reader = any_reflection_file(mtz_unmerged) mtz_object = reader.file_content() batches = mtz_object.as_miller_arrays_dict()[ "HKL_base", "HKL_base", "BATCH" ] dose = flex.double(batches.size(), -1) batch_to_dose = self.get_batch_to_dose() for i, b in enumerate(batches.data()): dose[i] = batch_to_dose[b] c = mtz_object.crystals()[0] d = c.datasets()[0] d.add_column("DOSE", "R").set_values(dose.as_float()) tmp_mtz = os.path.join(self.get_working_directory(), "dose_tmp.mtz") mtz_object.write(tmp_mtz) hklin = tmp_mtz FileHandler.record_temporary_file(hklin) report = Report() report.set_working_directory(self.get_working_directory()) report.set_mtz_filename(hklin) htmlout = os.path.join( self.get_working_directory(), "%s_%s_%s_report.html" % (self._scalr_pname, self._scalr_xname, wavelength), ) report.set_html_filename(htmlout) report.set_chef_min_completeness(0.95) # sensible? auto_logfiler(report) try: report.run() FileHandler.record_html_file( "%s %s %s report" % (self._scalr_pname, self._scalr_xname, wavelength), htmlout, ) except Exception as e: Debug.write("xia2.report failed:") Debug.write(str(e)) def _scale_finish_chunk_3_truncate(self): for wavelength in self._scalr_scaled_refl_files.keys(): hklin = self._scalr_scaled_refl_files[wavelength] truncate = self._factory.Truncate() truncate.set_hklin(hklin) if self.get_scaler_anomalous(): truncate.set_anomalous(True) else: truncate.set_anomalous(False) FileHandler.record_log_file( "%s %s %s truncate" % (self._scalr_pname, self._scalr_xname, wavelength), truncate.get_log_file(), ) hklout = os.path.join( self.get_working_directory(), "%s_truncated.mtz" % wavelength ) truncate.set_hklout(hklout) truncate.truncate() xmlout = truncate.get_xmlout() if xmlout is not None: FileHandler.record_xml_file( "%s %s %s truncate" % (self._scalr_pname, self._scalr_xname, wavelength), xmlout, ) Debug.write( "%d absent reflections in %s removed" % (truncate.get_nabsent(), wavelength) ) b_factor = truncate.get_b_factor() if math.isnan(b_factor): b_factor = None # record the b factor somewhere (hopefully) useful... self._scalr_statistics[(self._scalr_pname, self._scalr_xname, wavelength)][ "Wilson B factor" ] = [b_factor] # and record the reflection file.. self._scalr_scaled_refl_files[wavelength] = hklout def _scale_finish_chunk_4_mad_mangling(self): if len(self._scalr_scaled_refl_files.keys()) > 1: reflection_files = {} for wavelength in self._scalr_scaled_refl_files.keys(): cad = self._factory.Cad() cad.add_hklin(self._scalr_scaled_refl_files[wavelength]) cad.set_hklout( os.path.join( self.get_working_directory(), "cad-tmp-%s.mtz" % wavelength ) ) cad.set_new_suffix(wavelength) cad.update() reflection_files[wavelength] = cad.get_hklout() FileHandler.record_temporary_file(cad.get_hklout()) # now merge the reflection files together... hklout = os.path.join( self.get_working_directory(), "%s_%s_merged.mtz" % (self._scalr_pname, self._scalr_xname), ) FileHandler.record_temporary_file(hklout) Debug.write("Merging all data sets to %s" % hklout) cad = self._factory.Cad() for wavelength in reflection_files.keys(): cad.add_hklin(reflection_files[wavelength]) cad.set_hklout(hklout) cad.merge() self._scalr_scaled_reflection_files["mtz_merged"] = hklout else: self._scalr_scaled_reflection_files[ "mtz_merged" ] = self._scalr_scaled_refl_files[self._scalr_scaled_refl_files.keys()[0]] def _scale_finish_chunk_5_finish_small_molecule(self): # keep 'mtz' and remove 'mtz_merged' from the dictionary for # consistency with non-small-molecule workflow self._scalr_scaled_reflection_files[ "mtz" ] = self._scalr_scaled_reflection_files["mtz_merged"] del self._scalr_scaled_reflection_files["mtz_merged"] FileHandler.record_data_file(self._scalr_scaled_reflection_files["mtz"]) def _scale_finish_export_shelxt(self): """Read hklin (unmerged reflection file) and generate SHELXT input file and HKL file""" from iotbx.reflection_file_reader import any_reflection_file from iotbx.shelx import writer from iotbx.shelx.hklf import miller_array_export_as_shelx_hklf from cctbx.xray.structure import structure from cctbx.xray import scatterer for wavelength_name in self._scalr_scaled_refl_files.keys(): prefix = wavelength_name if len(self._scalr_scaled_refl_files.keys()) == 1: prefix = "shelxt" prefixpath = os.path.join(self.get_working_directory(), prefix) mtz_unmerged = self._scalr_scaled_reflection_files["mtz_unmerged"][ wavelength_name ] reader = any_reflection_file(mtz_unmerged) intensities = [ ma for ma in reader.as_miller_arrays(merge_equivalents=False) if ma.info().labels == ["I", "SIGI"] ][0] indices = reader.file_content().extract_original_index_miller_indices() intensities = intensities.customized_copy( indices=indices, info=intensities.info() ) with open("%s.hkl" % prefixpath, "wb") as hkl_file_handle: # limit values to 4 digits (before decimal point), as this is what shelxt # writes in its output files, and shelxl seems to read. ShelXL apparently # does not read values >9999 properly miller_array_export_as_shelx_hklf( intensities, hkl_file_handle, scale_range=(-9999.0, 9999.0), normalise_if_format_overflow=True, ) crystal_symm = intensities.crystal_symmetry() unit_cell_dims = self._scalr_cell unit_cell_esds = self._scalr_cell_esd cb_op = crystal_symm.change_of_basis_op_to_reference_setting() if cb_op.c().r().as_hkl() == "h,k,l": print("Change of basis to reference setting: %s" % cb_op) crystal_symm = crystal_symm.change_basis(cb_op) if str(cb_op) != "a,b,c": unit_cell_dims = None unit_cell_esds = None # Would need to apply operation to cell errors, too. Need a test case for this # crystal_symm.show_summary() xray_structure = structure(crystal_symmetry=crystal_symm) for element in "CNOH": xray_structure.add_scatterer(scatterer(label=element, occupancy=1)) wavelength = self._scalr_xcrystal.get_xwavelength( wavelength_name ).get_wavelength() with open("%s.ins" % prefixpath, "w") as insfile: insfile.write( "".join( writer.generator( xray_structure, wavelength=wavelength, full_matrix_least_squares_cycles=0, title=prefix, unit_cell_dims=unit_cell_dims, unit_cell_esds=unit_cell_esds, ) ) ) FileHandler.record_data_file("%s.ins" % prefixpath) FileHandler.record_data_file("%s.hkl" % prefixpath) def _scale_finish_chunk_6_add_free_r(self): hklout = os.path.join( self.get_working_directory(), "%s_%s_free_temp.mtz" % (self._scalr_pname, self._scalr_xname), ) FileHandler.record_temporary_file(hklout) scale_params = PhilIndex.params.xia2.settings.scale if self.get_scaler_freer_file(): # e.g. via .xinfo file freein = self.get_scaler_freer_file() Debug.write("Copying FreeR_flag from %s" % freein) c = self._factory.Cad() c.set_freein(freein) c.add_hklin(self._scalr_scaled_reflection_files["mtz_merged"]) c.set_hklout(hklout) c.copyfree() elif scale_params.freer_file is not None: # e.g. via -freer_file command line argument freein = scale_params.freer_file Debug.write("Copying FreeR_flag from %s" % freein) c = self._factory.Cad() c.set_freein(freein) c.add_hklin(self._scalr_scaled_reflection_files["mtz_merged"]) c.set_hklout(hklout) c.copyfree() else: if scale_params.free_total: ntot = scale_params.free_total # need to get a fraction, so... nref = MtzUtils.nref_from_mtz( self._scalr_scaled_reflection_files["mtz_merged"] ) free_fraction = float(ntot) / float(nref) else: free_fraction = scale_params.free_fraction f = self._factory.Freerflag() f.set_free_fraction(free_fraction) f.set_hklin(self._scalr_scaled_reflection_files["mtz_merged"]) f.set_hklout(hklout) f.add_free_flag() # then check that this FreeR set is complete hklin = hklout hklout = os.path.join( self.get_working_directory(), "%s_%s_free.mtz" % (self._scalr_pname, self._scalr_xname), ) # default fraction of 0.05 free_fraction = 0.05 if scale_params.free_fraction: free_fraction = scale_params.free_fraction elif scale_params.free_total: ntot = scale_params.free_total() # need to get a fraction, so... nref = MtzUtils.nref_from_mtz(hklin) free_fraction = float(ntot) / float(nref) f = self._factory.Freerflag() f.set_free_fraction(free_fraction) f.set_hklin(hklin) f.set_hklout(hklout) f.complete_free_flag() # remove 'mtz_merged' from the dictionary - this is made # redundant by the merged free... del self._scalr_scaled_reflection_files["mtz_merged"] # changed from mtz_merged_free to plain ol' mtz self._scalr_scaled_reflection_files["mtz"] = hklout # record this for future reference FileHandler.record_data_file(hklout) def _scale_finish_chunk_7_twinning(self): hklout = self._scalr_scaled_reflection_files["mtz"] m = mtz.object(hklout) # FIXME in here should be able to just drop down to the lowest symmetry # space group with the rotational elements for this calculation? I.e. # P422 for P4/mmm? if not m.space_group().is_centric(): from xia2.Toolkit.E4 import E4_mtz E4s = E4_mtz(hklout, native=True) self._scalr_twinning_score = E4s.items()[0][1] if self._scalr_twinning_score > 1.9: self._scalr_twinning_conclusion = "Your data do not appear twinned" elif self._scalr_twinning_score < 1.6: self._scalr_twinning_conclusion = "Your data appear to be twinned" else: self._scalr_twinning_conclusion = "Ambiguous score (1.6 < score < 1.9)" else: self._scalr_twinning_conclusion = "Data are centric" self._scalr_twinning_score = 0 Chatter.write("Overall twinning score: %4.2f" % self._scalr_twinning_score) Chatter.write(self._scalr_twinning_conclusion) def _scale_finish_chunk_8_raddam(self): crd = CCP4InterRadiationDamageDetector() crd.set_working_directory(self.get_working_directory()) crd.set_hklin(self._scalr_scaled_reflection_files["mtz"]) if self.get_scaler_anomalous(): crd.set_anomalous(True) hklout = os.path.join(self.get_working_directory(), "temp.mtz") FileHandler.record_temporary_file(hklout) crd.set_hklout(hklout) status = crd.detect() if status: Chatter.write("") Chatter.banner("Local Scaling %s" % self._scalr_xname) for s in status: Chatter.write("%s %s" % s) Chatter.banner("") else: Debug.write("Local scaling failed") def _estimate_resolution_limit( self, hklin, batch_range=None, use_isigma=True, use_misigma=True, reflections=None, experiments=None, ): params = PhilIndex.params.xia2.settings.resolution m = Merger() m.set_working_directory(self.get_working_directory()) from xia2.lib.bits import auto_logfiler auto_logfiler(m) if hklin: m.set_hklin(hklin) else: assert reflections and experiments m.set_reflections(reflections) m.set_experiments(experiments) m.set_limit_rmerge(params.rmerge) m.set_limit_completeness(params.completeness) m.set_limit_cc_half(params.cc_half) m.set_cc_half_fit(params.cc_half_fit) m.set_cc_half_significance_level(params.cc_half_significance_level) if use_isigma: m.set_limit_isigma(params.isigma) if use_misigma: m.set_limit_misigma(params.misigma) if PhilIndex.params.xia2.settings.small_molecule: m.set_nbins(20) if batch_range is not None: start, end = batch_range m.set_batch_range(start, end) m.run() resolution_limits = [] reasoning = [] if params.completeness is not None: r_comp = m.get_resolution_completeness() resolution_limits.append(r_comp) reasoning.append("completeness > %s" % params.completeness) if params.cc_half is not None: r_cc_half = m.get_resolution_cc_half() resolution_limits.append(r_cc_half) reasoning.append("cc_half > %s" % params.cc_half) if params.rmerge is not None: r_rm = m.get_resolution_rmerge() resolution_limits.append(r_rm) reasoning.append("rmerge > %s" % params.rmerge) if params.isigma is not None: r_uis = m.get_resolution_isigma() resolution_limits.append(r_uis) reasoning.append("unmerged <I/sigI> > %s" % params.isigma) if params.misigma is not None: r_mis = m.get_resolution_misigma() resolution_limits.append(r_mis) reasoning.append("merged <I/sigI> > %s" % params.misigma) if any(resolution_limits): resolution = max(resolution_limits) reasoning = [ reason for limit, reason in zip(resolution_limits, reasoning) if limit >= resolution ] reasoning = ", ".join(reasoning) else: resolution = 0.0 reasoning = None return resolution, reasoning def _compute_scaler_statistics( self, scaled_unmerged_mtz, selected_band=None, wave=None ): """ selected_band = (d_min, d_max) with None for automatic determination. """ # mapping of expected dictionary names to iotbx.merging_statistics attributes key_to_var = { "I/sigma": "i_over_sigma_mean", "Completeness": "completeness", "Low resolution limit": "d_max", "Multiplicity": "mean_redundancy", "Rmerge(I)": "r_merge", #'Wilson B factor':, "Rmeas(I)": "r_meas", "High resolution limit": "d_min", "Total observations": "n_obs", "Rpim(I)": "r_pim", "CC half": "cc_one_half", "Total unique": "n_uniq", } anom_key_to_var = { "Rmerge(I+/-)": "r_merge", "Rpim(I+/-)": "r_pim", "Rmeas(I+/-)": "r_meas", "Anomalous completeness": "anom_completeness", "Anomalous correlation": "anom_half_corr", "Anomalous multiplicity": "mean_redundancy", } stats = {} select_result, select_anom_result = None, None # don't call self.get_scaler_likely_spacegroups() since that calls # self.scale() which introduced a subtle bug from cctbx import sgtbx sg = sgtbx.space_group_info(str(self._scalr_likely_spacegroups[0])).group() from xia2.Handlers.Environment import Environment log_directory = Environment.generate_directory("LogFiles") merging_stats_file = os.path.join( log_directory, "%s_%s%s_merging-statistics.txt" % ( self._scalr_pname, self._scalr_xname, "" if wave is None else "_%s" % wave, ), ) merging_stats_json = os.path.join( log_directory, "%s_%s%s_merging-statistics.json" % ( self._scalr_pname, self._scalr_xname, "" if wave is None else "_%s" % wave, ), ) result, select_result, anom_result, select_anom_result = None, None, None, None n_bins = PhilIndex.params.xia2.settings.merging_statistics.n_bins import iotbx.merging_statistics while result is None: try: result = self._iotbx_merging_statistics( scaled_unmerged_mtz, anomalous=False, n_bins=n_bins ) result.as_json(file_name=merging_stats_json) with open(merging_stats_file, "w") as fh: result.show(out=fh) four_column_output = selected_band and any(selected_band) if four_column_output: select_result = self._iotbx_merging_statistics( scaled_unmerged_mtz, anomalous=False, d_min=selected_band[0], d_max=selected_band[1], n_bins=n_bins, ) if sg.is_centric(): anom_result = None anom_key_to_var = {} else: anom_result = self._iotbx_merging_statistics( scaled_unmerged_mtz, anomalous=True, n_bins=n_bins ) stats["Anomalous slope"] = [anom_result.anomalous_np_slope] if four_column_output: select_anom_result = self._iotbx_merging_statistics( scaled_unmerged_mtz, anomalous=True, d_min=selected_band[0], d_max=selected_band[1], n_bins=n_bins, ) except iotbx.merging_statistics.StatisticsError: # Too few reflections for too many bins. Reduce number of bins and try again. result = None n_bins = n_bins - 3 if n_bins > 5: continue else: raise from six.moves import cStringIO as StringIO result_cache = StringIO() result.show(out=result_cache) for d, r, s in ( (key_to_var, result, select_result), (anom_key_to_var, anom_result, select_anom_result), ): for k, v in d.iteritems(): if four_column_output: values = ( getattr(s.overall, v), getattr(s.bins[0], v), getattr(s.bins[-1], v), getattr(r.overall, v), ) else: values = ( getattr(r.overall, v), getattr(r.bins[0], v), getattr(r.bins[-1], v), ) if "completeness" in v: values = [v_ * 100 for v_ in values] if values[0] is not None: stats[k] = values return stats def _iotbx_merging_statistics( self, scaled_unmerged_mtz, anomalous=False, d_min=None, d_max=None, n_bins=None ): import iotbx.merging_statistics params = PhilIndex.params.xia2.settings.merging_statistics i_obs = iotbx.merging_statistics.select_data( scaled_unmerged_mtz, data_labels=None ) i_obs = i_obs.customized_copy(anomalous_flag=True, info=i_obs.info()) result = iotbx.merging_statistics.dataset_statistics( i_obs=i_obs, d_min=d_min, d_max=d_max, n_bins=n_bins or params.n_bins, anomalous=anomalous, use_internal_variance=params.use_internal_variance, eliminate_sys_absent=params.eliminate_sys_absent, assert_is_not_unique_set_under_symmetry=False, ) result.anomalous_np_slope = None if anomalous: merged_intensities = i_obs.merge_equivalents( use_internal_variance=params.use_internal_variance ).array() slope, intercept, n_pairs = anomalous_probability_plot(merged_intensities) if slope is not None: Debug.write("Anomalous difference normal probability plot:") Debug.write("Slope: %.2f" % slope) Debug.write("Intercept: %.2f" % intercept) Debug.write("Number of pairs: %i" % n_pairs) slope, intercept, n_pairs = anomalous_probability_plot( merged_intensities, expected_delta=0.9 ) if slope is not None: result.anomalous_np_slope = slope Debug.write( "Anomalous difference normal probability plot (within expected delta 0.9):" ) Debug.write("Slope: %.2f" % slope) Debug.write("Intercept: %.2f" % intercept) Debug.write("Number of pairs: %i" % n_pairs) return result def _update_scaled_unit_cell(self): params = PhilIndex.params fast_mode = params.dials.fast_mode if ( params.xia2.settings.integrater == "dials" and not fast_mode and params.xia2.settings.scale.two_theta_refine ): from xia2.Wrappers.Dials.TwoThetaRefine import TwoThetaRefine from xia2.lib.bits import auto_logfiler Chatter.banner("Unit cell refinement") # Collect a list of all sweeps, grouped by project, crystal, wavelength groups = {} self._scalr_cell_dict = {} tt_refine_experiments = [] tt_refine_reflections = [] tt_refine_reindex_ops = [] for epoch in self._sweep_handler.get_epochs(): si = self._sweep_handler.get_sweep_information(epoch) pi = "_".join(si.get_project_info()) intgr = si.get_integrater() groups[pi] = groups.get(pi, []) + [ ( intgr.get_integrated_experiments(), intgr.get_integrated_reflections(), intgr.get_integrater_reindex_operator(), ) ] # Two theta refine the unit cell for each group p4p_file = os.path.join( self.get_working_directory(), "%s_%s.p4p" % (self._scalr_pname, self._scalr_xname), ) for pi in groups.keys(): tt_grouprefiner = TwoThetaRefine() tt_grouprefiner.set_working_directory(self.get_working_directory()) auto_logfiler(tt_grouprefiner) args = zip(*groups[pi]) tt_grouprefiner.set_experiments(args[0]) tt_grouprefiner.set_reflection_files(args[1]) tt_grouprefiner.set_output_p4p(p4p_file) tt_refine_experiments.extend(args[0]) tt_refine_reflections.extend(args[1]) tt_refine_reindex_ops.extend(args[2]) reindex_ops = args[2] from cctbx.sgtbx import change_of_basis_op as cb_op if self._spacegroup_reindex_operator is not None: reindex_ops = [ ( cb_op(str(self._spacegroup_reindex_operator)) * cb_op(str(op)) ).as_hkl() if op is not None else self._spacegroup_reindex_operator for op in reindex_ops ] tt_grouprefiner.set_reindex_operators(reindex_ops) tt_grouprefiner.run() Chatter.write( "%s: %6.2f %6.2f %6.2f %6.2f %6.2f %6.2f" % tuple( ["".join(pi.split("_")[2:])] + list(tt_grouprefiner.get_unit_cell()) ) ) self._scalr_cell_dict[pi] = ( tt_grouprefiner.get_unit_cell(), tt_grouprefiner.get_unit_cell_esd(), tt_grouprefiner.import_cif(), tt_grouprefiner.import_mmcif(), ) if len(groups) > 1: cif_in = tt_grouprefiner.import_cif() cif_out = CIF.get_block(pi) for key in sorted(cif_in.keys()): cif_out[key] = cif_in[key] mmcif_in = tt_grouprefiner.import_mmcif() mmcif_out = mmCIF.get_block(pi) for key in sorted(mmcif_in.keys()): mmcif_out[key] = mmcif_in[key] # Two theta refine everything together if len(groups) > 1: tt_refiner = TwoThetaRefine() tt_refiner.set_working_directory(self.get_working_directory()) tt_refiner.set_output_p4p(p4p_file) auto_logfiler(tt_refiner) tt_refiner.set_experiments(tt_refine_experiments) tt_refiner.set_reflection_files(tt_refine_reflections) if self._spacegroup_reindex_operator is not None: reindex_ops = [ ( cb_op(str(self._spacegroup_reindex_operator)) * cb_op(str(op)) ).as_hkl() if op is not None else self._spacegroup_reindex_operator for op in tt_refine_reindex_ops ] else: reindex_ops = tt_refine_reindex_ops tt_refiner.set_reindex_operators(reindex_ops) tt_refiner.run() self._scalr_cell = tt_refiner.get_unit_cell() Chatter.write( "Overall: %6.2f %6.2f %6.2f %6.2f %6.2f %6.2f" % tt_refiner.get_unit_cell() ) self._scalr_cell_esd = tt_refiner.get_unit_cell_esd() cif_in = tt_refiner.import_cif() mmcif_in = tt_refiner.import_mmcif() else: self._scalr_cell, self._scalr_cell_esd, cif_in, mmcif_in = self._scalr_cell_dict.values()[ 0 ] if params.xia2.settings.small_molecule: FileHandler.record_data_file(p4p_file) import dials.util.version cif_out = CIF.get_block("xia2") mmcif_out = mmCIF.get_block("xia2") cif_out["_computing_cell_refinement"] = mmcif_out[ "_computing.cell_refinement" ] = ("DIALS 2theta refinement, %s" % dials.util.version.dials_version()) for key in sorted(cif_in.keys()): cif_out[key] = cif_in[key] for key in sorted(mmcif_in.keys()): mmcif_out[key] = mmcif_in[key] Debug.write("Unit cell obtained by two-theta refinement") else: ami = AnalyseMyIntensities() ami.set_working_directory(self.get_working_directory()) average_unit_cell, ignore_sg = ami.compute_average_cell( [ self._scalr_scaled_refl_files[key] for key in self._scalr_scaled_refl_files ] ) Debug.write("Computed average unit cell (will use in all files)") self._scalr_cell = average_unit_cell self._scalr_cell_esd = None # Write average unit cell to .cif cif_out = CIF.get_block("xia2") cif_out["_computing_cell_refinement"] = "AIMLESS averaged unit cell" for cell, cifname in zip( self._scalr_cell, [ "length_a", "length_b", "length_c", "angle_alpha", "angle_beta", "angle_gamma", ], ): cif_out["_cell_%s" % cifname] = cell Debug.write("%7.3f %7.3f %7.3f %7.3f %7.3f %7.3f" % self._scalr_cell) def unify_setting(self): """Unify the setting for the sweeps.""" # Currently implemented for CCP4ScalerA and DialsScaler from scitbx.matrix import sqr reference_U = None i3 = sqr((1, 0, 0, 0, 1, 0, 0, 0, 1)) for epoch in self._sweep_handler.get_epochs(): si = self._sweep_handler.get_sweep_information(epoch) intgr = si.get_integrater() fixed = sqr(intgr.get_goniometer().get_fixed_rotation()) # delegate UB lattice symmetry calculation to individual Scalers. u, b, s = self.get_UBlattsymm_from_sweep_info(si) U = fixed.inverse() * sqr(u).transpose() B = sqr(b) if reference_U is None: reference_U = U continue results = [] for op in s.all_ops(): R = B * sqr(op.r().as_double()).transpose() * B.inverse() nearly_i3 = (U * R).inverse() * reference_U score = sum([abs(_n - _i) for (_n, _i) in zip(nearly_i3, i3)]) results.append((score, op.r().as_hkl(), op)) results.sort() best = results[0] Debug.write("Best reindex: %s %.3f" % (best[1], best[0])) reindex_op = best[2].r().inverse().as_hkl() # delegate reindexing to individual Scalers. self.apply_reindex_operator_to_sweep_info( si, reindex_op, reason="unifying [U] setting" ) # recalculate to verify u, _, __ = self.get_UBlattsymm_from_sweep_info(si) U = fixed.inverse() * sqr(u).transpose() Debug.write("New reindex: %s" % (U.inverse() * reference_U)) # FIXME I should probably raise an exception at this stage if this # is not about I3... def brehm_diederichs_reindexing(self): """Run brehm diederichs reindexing algorithm.""" # Currently implemented for CCP4ScalerA and DialsScaler brehm_diederichs_files_in = [] for epoch in self._sweep_handler.get_epochs(): si = self._sweep_handler.get_sweep_information(epoch) brehm_diederichs_files_in.append(self.get_mtz_data_from_sweep_info(si)) # now run cctbx.brehm_diederichs to figure out the indexing hand for # each sweep from xia2.Wrappers.Cctbx.BrehmDiederichs import BrehmDiederichs brehm_diederichs = BrehmDiederichs() brehm_diederichs.set_working_directory(self.get_working_directory()) auto_logfiler(brehm_diederichs) brehm_diederichs.set_input_filenames(brehm_diederichs_files_in) # 1 or 3? 1 seems to work better? brehm_diederichs.set_asymmetric(1) brehm_diederichs.run() reindexing_dict = brehm_diederichs.get_reindexing_dict() for i, epoch in enumerate(self._sweep_handler.get_epochs()): si = self._sweep_handler.get_sweep_information(epoch) hklin = brehm_diederichs_files_in[i] reindex_op = reindexing_dict.get(os.path.abspath(hklin)) assert reindex_op is not None if reindex_op != "h,k,l": self.apply_reindex_operator_to_sweep_info( si, reindex_op, reason="match reference" ) def assess_resolution_limits( self, hklin, user_resolution_limits, use_isigma=True, use_misigma=True, experiments=None, reflections=None, ): """Assess resolution limits from hklin and sweep batch info""" # Implemented for DialsScaler and CCP4ScalerA highest_resolution = 100.0 highest_suggested_resolution = None for epoch in self._sweep_handler.get_epochs(): si = self._sweep_handler.get_sweep_information(epoch) _, __, dname = si.get_project_info() sname = si.get_sweep_name() intgr = si.get_integrater() start, end = si.get_batch_range() if (dname, sname) in self._scalr_resolution_limits: continue elif (dname, sname) in user_resolution_limits: limit = user_resolution_limits[(dname, sname)] self._scalr_resolution_limits[(dname, sname)] = (limit, None) if limit < highest_resolution: highest_resolution = limit Chatter.write( "Resolution limit for %s: %5.2f (user provided)" % (dname, limit) ) continue if hklin: limit, reasoning = self._estimate_resolution_limit( hklin, batch_range=(start, end), use_isigma=use_isigma, use_misigma=use_misigma, ) else: limit, reasoning = self._estimate_resolution_limit( hklin=None, batch_range=(start, end), use_isigma=use_isigma, use_misigma=use_misigma, reflections=reflections, experiments=experiments, ) if PhilIndex.params.xia2.settings.resolution.keep_all_reflections: suggested = limit if ( highest_suggested_resolution is None or limit < highest_suggested_resolution ): highest_suggested_resolution = limit limit = intgr.get_detector().get_max_resolution( intgr.get_beam_obj().get_s0() ) self._scalr_resolution_limits[(dname, sname)] = (limit, suggested) Debug.write("keep_all_reflections set, using detector limits") Debug.write("Resolution for sweep %s: %.2f" % (sname, limit)) if (dname, sname) not in self._scalr_resolution_limits: self._scalr_resolution_limits[(dname, sname)] = (limit, None) self.set_scaler_done(False) if limit < highest_resolution: highest_resolution = limit limit, suggested = self._scalr_resolution_limits[(dname, sname)] if suggested is None or limit == suggested: reasoning_str = "" if reasoning: reasoning_str = " (%s)" % reasoning Chatter.write( "Resolution for sweep %s/%s: %.2f%s" % (dname, sname, limit, reasoning_str) ) else: Chatter.write( "Resolution limit for %s/%s: %5.2f (%5.2f suggested)" % (dname, sname, limit, suggested) ) if highest_suggested_resolution is not None and highest_resolution >= ( highest_suggested_resolution - 0.004 ): Debug.write( "Dropping resolution cut-off suggestion since it is" " essentially identical to the actual resolution limit." ) highest_suggested_resolution = None self._scalr_highest_resolution = highest_resolution if highest_suggested_resolution is not None: Debug.write( "Suggested highest resolution is %5.2f (%5.2f suggested)" % (highest_resolution, highest_suggested_resolution) ) else: Debug.write("Scaler highest resolution set to %5.2f" % highest_resolution) return highest_suggested_resolution def anomalous_probability_plot(intensities, expected_delta=None): from scitbx.math import distributions from scitbx.array_family import flex assert intensities.is_unique_set_under_symmetry() assert intensities.anomalous_flag() dI = intensities.anomalous_differences() if not dI.size(): return None, None, None y = dI.data() / dI.sigmas() perm = flex.sort_permutation(y) y = y.select(perm) distribution = distributions.normal_distribution() x = distribution.quantiles(y.size()) if expected_delta is not None: sel = flex.abs(x) < expected_delta x = x.select(sel) y = y.select(sel) fit = flex.linear_regression(x, y) assert fit.is_well_defined() return fit.slope(), fit.y_intercept(), x.size() ``` #### File: Modules/Xia2html/Magpie.py ```python from __future__ import absolute_import, division, print_function import copy ####################################################################### # Import modules that this module depends on ####################################################################### import re import xia2.Modules.Xia2html.smartie as smartie # Magpie.py: Text file processor # Copyright (C) Diamond 2009 <NAME> # ######################################################################## # # Magpie.py # ######################################################################## # # Provide classes and functions for extracting information from # text files based on pattern matching # __cvs_id__ = "$Id$" __version__ = "0.0.1" ####################################################################### # Module constants ####################################################################### # Constants for defining Blocks INCLUDE = 0 EXCLUDE = 1 EXCLUDE_START = 2 EXCLUDE_END = 3 ####################################################################### # Class definitions ####################################################################### # Magpie # # Generic text file processing class class Magpie: """Generic text processing class Creates a configurable line-by-line text processor object which can process input from a file or from text.""" def __init__(self, txtfile=None, verbose=False): """New Magpie object Optionally, 'txtfile' is the name and full path of the file to be processed. """ # Source text file self.__txtfile = txtfile # Verbose output self.__verbose = verbose # List of data items self.__data = [] # List of blocks self.__blocks = [] # Maximum buffer size (number of lines) self.__buffersize = 50 # Patterns to match against self.__regex = PatternMatcher() return def reset(self): """Reset the processor Erases any results of previous processing but leaves the pattern and block definitions intact. This enables an application to use the processor multiple times without needing to redefine patterns and blocks.""" self.__data = [] return def defineBlock( self, name, starts_with, ends_with, include_flag=INCLUDE, pattern=None, pattern_keys=None, ): """Define a block of lines to collect""" new_block = Block( name, starts_with, ends_with, pattern, pattern_keys, include_flag, verbose=self.__verbose, ) self.__blocks.append(new_block) return new_block def addData(self, name, data): """Add a data element""" new_data = Data(name, data) self.__data.append(new_data) return new_data def addPattern(self, name, pattern, keys=None): """Define a new regexp pattern""" self.__regex.addPattern(name, pattern, keys) return def getData(self, name=""): """Return a list of Data elements If a 'name' string is specified then the list will be limited to the Data elements that match the name; otherwise the list will contain all Data elements.""" if name == "": return copy.copy(self.__data) else: data = [] for datum in self.__data: if datum.name() == name: data.append(datum) return data def __getitem__(self, name): """Implements Magpie[name] for fetching items Return a list of Data elements matching 'name'.""" return self.getData(name) def __iter__(self): """Return an iterator for this object Implements 'for item in Magpie:...'""" # Use iter() to turn the list of data items into # an iterator return iter(self.__data) def count(self, name): """Return number of occurances of Data elements called 'name'""" return len(self.getData(name)) def process(self): """Run the processor on the source text""" self.processFile(self.__txtfile) def processFile(self, filename): """Run the processor on a file""" with open(filename, "r") as txt: self.__process(txt) def processText(self, txt): """Run the processor on a block of text""" self.__process(str(txt).split("\n")) def __process(self, source): """Process source text 'source' must be an iterable object (typically either an open file object, or a list of lines of text) which acts as the data source. This method steps through the data source line-by-line, extracting and storing data from fragments that match the Pattern and Block definitions.""" # Smartie buffer object stores chunks of text buff = smartie.buffer(self.__buffersize) # Move through the file buffering chunks # and testing them against our stored patterns for line in source: buff.append(line) # Get a chunk of text to process ##bufftext = buff.tail() # Get the whole buffer as text # Maybe later we can optimise by having different # chunk sizes explicitly set for different patterns bufftext = buff.all() # Test the line for matches for pattern in self.__regex.listPatterns(): test = self.__regex.test(pattern, bufftext) if test: self.__print("Matched pattern '" + str(pattern) + "'") for key in test.keys(): self.__print(">>> " + str(key) + ": " + str(test[key])) text = test[pattern] self.addData(pattern, test) # Clear the buffer and break out the loop buff.clear() break # Deal with blocks for block in self.__blocks: if not block.isComplete(): block.add(line) if block.isComplete(): # Create a new Data object to # store the block and then reset self.addData(block.name(), block.getData()) block.reset() self.__print("Finished") def __print(self, text): """Internal: print to stdout Controlled by the __verbose attribute.""" if self.__verbose: print(text) class Data: """Data items from the output""" def __init__(self, name, data): self.__name = name self.__data = data return def __getitem__(self, key): """Implement x = Data[key] Wrapper for value() method.""" return self.value(key) def __setitem__(self, key, value): """Implement Data[key] = x Wrapper for setValue() method.""" return self.setValue(key, value) def __str__(self): """Return string representation""" try: return self.__data[self.__name] except KeyError: # Assume that the name isn't defined # Return a concatentation of all the # data items text = "" for key in self.__data.keys(): text += str(self.__data[key]) + "\n" text = text.strip("\n") return text def keys(self): """Return the keys of the data dictionary""" return self.__data.keys() def name(self): """Return the name of the Data object""" return self.__name def data(self): """Return the data dictionary""" return self.__data def value(self, key): """Return the value stored against key""" return self.__data[key] def setValue(self, key, value): """Set the value of a data item Sets the value of 'key' to 'value'. Doesn't check if 'key' already exists.""" self.__data[key] = value return class Block: """Chunk of output delimited by start/end patterns 'name' is an identifier, 'starts_with' and 'ends_with' are text strings which mark the beginning and end of the block of output that is of interest. To match blocks ending (or starting) with a blank line (i.e. a line containing whitespace only), set the 'ends_with' (or 'starts_with') parameter to an empty string i.e. ''. include_flag determines whether the delimiters should also be added to the block. Values are: INCLUDE : include both start and end delimiters (the default) EXCLUDE : exclude both start and end delimiters EXCLUDE_START : include only the end delimiter EXCLUDE_END : include only the start delimiter 'pattern' defines an optional regular expression pattern. If this provided then it will be applied to the matching text when the block is complete. If 'pattern_keys' are also provided then each key will create a data element with the matching regular expression group.""" def __init__( self, name, starts_with, ends_with, pattern=None, pattern_keys=None, include_flag=INCLUDE, verbose=False, ): self.__name = name self.__text = "" self.__start = starts_with self.__end = ends_with self.__include = include_flag self.__verbose = verbose if pattern: self.__pattern = Pattern(name, pattern, pattern_keys) else: self.__pattern = None self.__active = False self.__complete = False def __repr__(self): return str(self.__name) + ":\n" + str(self.__text) def name(self): """Returns the name of the block""" return self.__name def text(self): """Returns the block text""" return self.__text def isComplete(self): """Check if the block is complete (i.e. end delimiter reached)""" return self.__complete def isActive(self): """Check if the block is active (i.e. start delimiter supplied)""" return self.__active def getData(self): """Return data from the block""" data = dict() if self.__pattern: # Apply the regular expression pattern data = self.__pattern.test(self.__text) if not data: # Associate the name of the block with # the stored text data = {self.__name: self.__text} self.__print("Matched block '" + str(self.__name) + "'") for key in data.keys(): self.__print(">>> " + str(key) + ": " + str(data[key])) return data def add(self, text): """Present text to be added to the block Text will only be added if the block is active but not complete. The block is activated by text which includes the start delimiter substring. Once the block is active all text that is supplied is stored until text is supplied which includes the end delimiter - at this point ths block is complete and will not accept any more text.""" if self.__complete: # Can't add more return if not self.__active: # Check for start delimiter if self.__contains(text, self.__start): self.__active = True if self.__include == EXCLUDE or self.__include == EXCLUDE_START: # Don't store the start delimiter line return else: # Add text self.__text += text return else: return # Check for end delimiter if self.__contains(text, self.__end): self.__complete = True if self.__include == EXCLUDE or self.__include == EXCLUDE_END: # Don't store the end delimiter line return # Add text self.__text += text return def reset(self): """Reset the block to accept data This frees a "completed" block by resetting it to the initial (empty) state""" self.__text = "" self.__active = False self.__complete = False def __contains(self, text, pattern): """Internal: test if text contains a pattern Used by the 'add' method to determine if supplied 'text' contains the text in 'pattern'. Returns True if a match is found and False otherwise. If 'pattern' evaluates as False (e.g. an empty string) then 'text' will match if it contains whitespace only.""" if not pattern: return str(text).isspace() elif str(text).find(pattern) > -1: return True return False def __print(self, text): """Internal: print to stdout Controlled by the __verbose attribute.""" if self.__verbose: print(text) class PatternMatcher: """Store and invoke regexp pattern matches For each regular expression supplied along with a name via the addPattern method, a new Pattern object is created and stored. Multiple patterns can be associated with the same name. A list of (unique) pattern names can be retrieved via the listPatterns method. A text string can be tested against the named expression(s) using the test method.""" def __init__(self): # List of the regular expression Pattern objects self.__patterns = [] # List of stored (unique) pattern names self.__names = [] return def addPattern(self, name, pattern, keys=None): """Add a named pattern to the PatternMatcher Adds the regular expression pattern associated with 'name'. Optionally, also associate a list of keys with the pattern. Each element of the list should correspond to a group defined in the regular expression. Note that keys cannot be the same as the pattern name.""" # Create and store the Pattern object self.__patterns.append(Pattern(name, pattern, keys)) # Store the name if not self.__names.count(name): self.__names.append(name) return def test(self, name, text): """Test text against named regexp pattern(s) Test each stored pattern associated with 'name'. When a match is found then a Python dictionary is returned with information about the match (see the test method of the Pattern object for the details). If no match is found (or if there are no patterns with the supplied name) then an empty Python dictionary instance is returned.""" for pattern in self.__patterns: if pattern.name() == name: # Test this pattern test = pattern.test(text) if test: return test # No matches - return an empty dictionary return dict() def listPatterns(self): """Return the list of pattern names""" return self.__names class Pattern: """Store and invoke a regular expression. Stores a single regular expression associated with a name. Arbitrary text can be tested against the stored pattern using the test method. Optionally, a list of keys can also be associated with the pattern. Each element of the list should correspond to a group defined in the regular expression. Note that none of the keys can be the same as the pattern name.""" def __init__(self, name, pattern, keys=None): self.__name = name self.__pattern = re.compile(pattern, re.DOTALL) self.__keys = keys def __repr__(self): return str(self.__name) def name(self): """Return the name of the pattern""" return self.__name def test(self, text): """Test text against the regular expression pattern Returns a dictionary object. If the text matches the regular expression then the dictionary will be populated with data extracted from the text as described. The element with key 'name' will always contain the full matching text. If a set of keys was also supplied when the pattern was defined then the dictionary will also contain elements matching these keys, with the value of the corresponding regexp group assigned. If there is no match then the dictionary will be empty.""" data = dict() match = self.__pattern.search(text) if match: # Build a dictionary for the match data[self.__name] = match.group(0) # Check if there are associated keys for # this pattern # # Populate the "data" dictionary with the # value of each regexp group assigned to # the corresponding keys in order # # If there are more keys than groups then # remaining if self.__keys: i = 1 for key in self.__keys: try: data[key] = match.group(i) except IndexError: # Insufficient groups for # number of keys data[key] = None i += 1 ##return match.group(0) return data # Tabulator # # Break up a raw text "table" class Tabulator: """Extract data from a raw text 'table' The Tabulator will break up a supplied block of text treating each line as a table 'row', and split each row into individual data items according to a specified delimiter. The first data item in each "row" becomes a key to retrieve that row (which is stored as a Python list containing all the data items in the row). For example to access the 'High' row of this 'table': High 5.0 9.0 Medium 3.0 4.5 Low 1.0 0.0 use Tabulator['High']. To access the last data item in the 'Medium' row, use Tabulator['Medium'][1].""" def __init__(self, tabular_data, delimiter="\t"): """Create and populate a new Tabulator object 'tabular_data' is the raw text of the 'table';""" self.__tabular_data = tabular_data self.__delimiter = delimiter # List of keys (stored data items) self.__keys = [] self.__data = {} # Extract data and populate the data structure self.__extract_tabular_data(tabular_data) def __extract_tabular_data(self, tabular_data): """Internal: build data structure from tabular data""" for row in tabular_data.strip("\n").split("\n"): row_data = row.split(self.__delimiter) key = row_data[0].strip() self.__keys.append(key) self.__data[key] = row_data def __getitem__(self, key): """Implement x = Tabulator[key] for get operations Returns the 'row' of data associated with the key 'name' i.e. a list of items.""" return self.__data[key] def has_key(self, key): """Check if a row called 'key' exists""" return key in self.__data def keys(self): """Return the list of data item names (keys)""" return self.__keys def table(self): """Return the original data that was supplied""" return self.__tabular_data ####################################################################### # Module Functions ####################################################################### def version(): """Return the version of the Magpie module""" return __version__ ``` #### File: Schema/Exceptions/NegativeMosaicError.py ```python from __future__ import absolute_import, division, print_function class NegativeMosaicError(Exception): """An exception to be raised when the mosaic spread is negative.""" def __init__(self, value): self.parameter = value def __str__(self): return repr(self.parameter) ``` #### File: xia2/Schema/__init__.py ```python from __future__ import absolute_import, division, print_function import collections import os from xia2.Handlers.Phil import PhilIndex class _ImagesetCache(dict): pass imageset_cache = _ImagesetCache() def longest_common_substring(s1, s2): m = [[0] * (1 + len(s2)) for i in xrange(1 + len(s1))] longest, x_longest = 0, 0 for x in xrange(1, 1 + len(s1)): for y in xrange(1, 1 + len(s2)): if s1[x - 1] == s2[y - 1]: m[x][y] = m[x - 1][y - 1] + 1 if m[x][y] > longest: longest = m[x][y] x_longest = x else: m[x][y] = 0 return s1[x_longest - longest : x_longest] def load_imagesets( template, directory, id_image=None, image_range=None, use_cache=True, reversephi=False, ): global imageset_cache from dxtbx.model.experiment_list import ExperimentListFactory from xia2.Applications.xia2setup import known_hdf5_extensions from dxtbx.imageset import ImageSequence as ImageSweep full_template_path = os.path.join(directory, template) if full_template_path not in imageset_cache or not use_cache: from dxtbx.model.experiment_list import BeamComparison from dxtbx.model.experiment_list import DetectorComparison from dxtbx.model.experiment_list import GoniometerComparison params = PhilIndex.params.xia2.settings compare_beam = BeamComparison( wavelength_tolerance=params.input.tolerance.beam.wavelength, direction_tolerance=params.input.tolerance.beam.direction, polarization_normal_tolerance=params.input.tolerance.beam.polarization_normal, polarization_fraction_tolerance=params.input.tolerance.beam.polarization_fraction, ) compare_detector = DetectorComparison( fast_axis_tolerance=params.input.tolerance.detector.fast_axis, slow_axis_tolerance=params.input.tolerance.detector.slow_axis, origin_tolerance=params.input.tolerance.detector.origin, ) compare_goniometer = GoniometerComparison( rotation_axis_tolerance=params.input.tolerance.goniometer.rotation_axis, fixed_rotation_tolerance=params.input.tolerance.goniometer.fixed_rotation, setting_rotation_tolerance=params.input.tolerance.goniometer.setting_rotation, ) scan_tolerance = params.input.tolerance.scan.oscillation format_kwargs = { "dynamic_shadowing": params.input.format.dynamic_shadowing, "multi_panel": params.input.format.multi_panel, } if os.path.splitext(full_template_path)[-1] in known_hdf5_extensions: # if we are passed the correct file, use this, else look for a master # file (i.e. something_master.h5) if os.path.exists(full_template_path) and os.path.isfile( full_template_path ): master_file = full_template_path else: import glob g = glob.glob(os.path.join(directory, "*_master.h5")) master_file = None for p in g: substr = longest_common_substring(template, p) if substr: if master_file is None or ( len(substr) > len(longest_common_substring(template, master_file)) ): master_file = p if master_file is None: raise RuntimeError("Can't find master file for %s" % full_template_path) unhandled = [] experiments = ExperimentListFactory.from_filenames( [master_file], verbose=False, unhandled=unhandled, compare_beam=compare_beam, compare_detector=compare_detector, compare_goniometer=compare_goniometer, scan_tolerance=scan_tolerance, format_kwargs=format_kwargs, ) assert len(unhandled) == 0, ( "unhandled image files identified: %s" % unhandled ) else: from dxtbx.sequence_filenames import locate_files_matching_template_string params = PhilIndex.get_python_object() read_all_image_headers = params.xia2.settings.read_all_image_headers if read_all_image_headers: paths = sorted( locate_files_matching_template_string(full_template_path) ) unhandled = [] experiments = ExperimentListFactory.from_filenames( paths, verbose=False, unhandled=unhandled, compare_beam=compare_beam, compare_detector=compare_detector, compare_goniometer=compare_goniometer, scan_tolerance=scan_tolerance, format_kwargs=format_kwargs, ) assert len(unhandled) == 0, ( "unhandled image files identified: %s" % unhandled ) else: from dxtbx.model.experiment_list import ExperimentListTemplateImporter importer = ExperimentListTemplateImporter( [full_template_path], format_kwargs=format_kwargs ) experiments = importer.experiments imagesets = [ iset for iset in experiments.imagesets() if isinstance(iset, ImageSweep) ] assert len(imagesets) > 0, "no imageset found" imageset_cache[full_template_path] = collections.OrderedDict() if reversephi: for imageset in imagesets: goniometer = imageset.get_goniometer() goniometer.set_rotation_axis( tuple(-g for g in goniometer.get_rotation_axis()) ) reference_geometry = PhilIndex.params.xia2.settings.input.reference_geometry if reference_geometry is not None and len(reference_geometry) > 0: update_with_reference_geometry(imagesets, reference_geometry) # Update the geometry params = PhilIndex.params.xia2.settings update_geometry = [] from dials.command_line.dials_import import ManualGeometryUpdater from dials.util.options import geometry_phil_scope # Then add manual geometry work_phil = geometry_phil_scope.format(params.input) diff_phil = geometry_phil_scope.fetch_diff(source=work_phil) if diff_phil.as_str() != "": update_geometry.append(ManualGeometryUpdater(params.input)) imageset_list = [] for imageset in imagesets: for updater in update_geometry: imageset = updater(imageset) imageset_list.append(imageset) imagesets = imageset_list from scitbx.array_family import flex for imageset in imagesets: scan = imageset.get_scan() exposure_times = scan.get_exposure_times() epochs = scan.get_epochs() if exposure_times.all_eq(0) or exposure_times[0] == 0: exposure_times = flex.double(exposure_times.size(), 1) scan.set_exposure_times(exposure_times) elif not exposure_times.all_gt(0): exposure_times = flex.double(exposure_times.size(), exposure_times[0]) scan.set_exposure_times(exposure_times) if epochs.size() > 1 and not epochs.all_gt(0): if epochs[0] == 0: epochs[0] = 1 for i in range(1, epochs.size()): epochs[i] = epochs[i - 1] + exposure_times[i - 1] scan.set_epochs(epochs) _id_image = scan.get_image_range()[0] imageset_cache[full_template_path][_id_image] = imageset if id_image is not None: return [imageset_cache[full_template_path][id_image]] elif image_range is not None: for imageset in imageset_cache[full_template_path].values(): scan = imageset.get_scan() scan_image_range = scan.get_image_range() if ( image_range[0] >= scan_image_range[0] and image_range[1] <= scan_image_range[1] ): imagesets = [ imageset[ image_range[0] - scan_image_range[0] : image_range[1] + 1 - scan_image_range[0] ] ] assert len(imagesets[0]) == image_range[1] - image_range[0] + 1, len( imagesets[0] ) return imagesets return imageset_cache[full_template_path].values() def update_with_reference_geometry(imagesets, reference_geometry_list): assert reference_geometry_list is not None assert len(reference_geometry_list) >= 1 reference_components = load_reference_geometries(reference_geometry_list) for imageset in imagesets: reference_geometry = find_relevant_reference_geometry( imageset, reference_components ) imageset.set_beam(reference_geometry["beam"]) imageset.set_detector(reference_geometry["detector"]) def load_reference_geometries(geometry_file_list): from dxtbx.serialize import load reference_components = [] for file in geometry_file_list: try: experiments = load.experiment_list(file, check_format=False) assert len(experiments.detectors()) == 1 assert len(experiments.beams()) == 1 reference_detector = experiments.detectors()[0] reference_beam = experiments.beams()[0] except Exception: experiments = load.experiment_list(file) imageset = experiments.imagesets()[0] reference_detector = imageset.get_detector() reference_beam = imageset.get_beam() reference_components.append( {"detector": reference_detector, "beam": reference_beam, "file": file} ) import itertools for combination in itertools.combinations(reference_components, 2): if compare_geometries(combination[0]["detector"], combination[1]["detector"]): from xia2.Handlers.Streams import Chatter Chatter.write( "Reference geometries given in %s and %s are too similar" % (combination[0]["file"], combination[1]["file"]) ) raise Exception("Reference geometries too similar") return reference_components def compare_geometries(detectorA, detectorB): return detectorA.is_similar_to( detectorB, fast_axis_tolerance=0.1, slow_axis_tolerance=0.1, origin_tolerance=10, ignore_trusted_range=True, ) def find_relevant_reference_geometry(imageset, geometry_list): for geometry in geometry_list: if compare_geometries(geometry["detector"], imageset.get_detector()): break else: raise Exception("No appropriate reference geometry found") return geometry ``` #### File: Modules/Indexer/test_labelit_indexer.py ```python from __future__ import absolute_import, division, print_function import pytest def test_labelit_indexer(regression_test, ccp4, dials_data, run_in_tmpdir): template = dials_data("insulin").join("insulin_1_###.img").strpath from xia2.Modules.Indexer.LabelitIndexer import LabelitIndexer from xia2.DriverExceptions.NotAvailableError import NotAvailableError try: ls = LabelitIndexer(indxr_print=True) except NotAvailableError: pytest.skip("labelit not found") ls.set_working_directory(run_in_tmpdir.strpath) from dxtbx.model.experiment_list import ExperimentListTemplateImporter importer = ExperimentListTemplateImporter([template]) experiments = importer.experiments imageset = experiments.imagesets()[0] ls.add_indexer_imageset(imageset) ls.index() assert ls.get_indexer_cell() == pytest.approx( (78.58, 78.58, 78.58, 90, 90, 90), abs=0.5 ) solution = ls.get_solution() assert solution["rmsd"] <= 0.2 assert solution["metric"] <= 0.16 assert solution["number"] == 22 assert solution["lattice"] == "cI" assert solution["mosaic"] <= 0.25 assert solution["nspots"] == pytest.approx(860, abs=30) beam_centre = ls.get_indexer_beam_centre() assert beam_centre == pytest.approx((94.3416, 94.4994), abs=2e-1) assert ls.get_indexer_images() == [(1, 1), (22, 22), (45, 45)] print(ls.get_indexer_experiment_list()[0].crystal) print(ls.get_indexer_experiment_list()[0].detector) json_str = ls.as_json() # print(json_str) ls1 = LabelitIndexer.from_json(string=json_str) ls1.index() print(ls.get_indexer_experiment_list()[0].crystal) assert ls.get_indexer_beam_centre() == ls1.get_indexer_beam_centre() assert ls1.get_indexer_images() == [ [1, 1], [22, 22], [45, 45], ] # in JSON tuples become lists assert ls.get_distance() == ls1.get_distance() ls.eliminate() ls1.eliminate() print(ls1.get_indexer_experiment_list()[0].crystal) assert ls.get_indexer_beam_centre() == ls1.get_indexer_beam_centre() assert ls.get_indexer_images() == [(1, 1), (22, 22), (45, 45)] assert ls1.get_indexer_images() == [ [1, 1], [22, 22], [45, 45], ] # in JSON tuples become lists assert ls.get_distance() == ls1.get_distance() print(ls1.get_indexer_cell()) print(ls1.get_solution()) assert ls.get_indexer_cell() == pytest.approx( (111.11, 111.11, 68.08, 90.0, 90.0, 120.0), abs=5e-1 ) solution = ls1.get_solution() assert solution["rmsd"] >= 0.07, solution["rmsd"] assert solution["metric"] == pytest.approx(0.1291, abs=1e-1) assert solution["lattice"] == "hR", solution["lattice"] assert solution["mosaic"] <= 0.3, solution["mosaic"] assert solution["nspots"] == pytest.approx(856, abs=30) ``` #### File: Test/regression/test_insulin.py ```python from __future__ import absolute_import, division, print_function import procrunner import pytest import xia2.Test.regression expected_data_files = [ "AUTOMATIC_DEFAULT_NATIVE_SWEEP1_INTEGRATE.mtz", "AUTOMATIC_DEFAULT_free.mtz", "AUTOMATIC_DEFAULT_scaled.sca", "AUTOMATIC_DEFAULT_scaled_unmerged.mtz", "AUTOMATIC_DEFAULT_scaled_unmerged.sca", ] def test_2d(regression_test, dials_data, tmpdir, ccp4): command_line = [ "xia2", "pipeline=2di", "nproc=1", "trust_beam_centre=True", dials_data("insulin").strpath, ] result = procrunner.run(command_line, working_directory=tmpdir.strpath) success, issues = xia2.Test.regression.check_result( "insulin.2d", result, tmpdir, ccp4, expected_data_files=expected_data_files ) assert success, issues ``` #### File: Test/System/test_run_xia2.py ```python from __future__ import absolute_import, division, print_function def test_start_xia2(): import procrunner result = procrunner.run(["xia2"]) assert result["exitcode"] == 0 ``` #### File: xia2/Toolkit/MendBKGINIT.py ```python from __future__ import absolute_import, division, print_function import binascii import copy import sys from cbflib_adaptbx import compress, uncompress from scitbx.array_family import flex def recompute_BKGINIT(bkginit_in, init_lp, bkginit_out): start_tag = binascii.unhexlify("0c1a04d5") data = open(bkginit_in, "rb").read() data_offset = data.find(start_tag) + 4 cbf_header = data[: data_offset - 4] fast = 0 slow = 0 length = 0 for record in cbf_header.split("\n"): if "X-Binary-Size-Fastest-Dimension" in record: fast = int(record.split()[-1]) elif "X-Binary-Size-Second-Dimension" in record: slow = int(record.split()[-1]) elif "X-Binary-Number-of-Elements" in record: length = int(record.split()[-1]) assert length == fast * slow pixel_values = uncompress(packed=data[data_offset:], fast=fast, slow=slow) untrusted = [] for record in open(init_lp): if "UNTRUSTED_RECTANGLE=" in record: untrusted.append(map(int, record.replace(".", " ").split()[1:5])) modified_pixel_values = copy.deepcopy(pixel_values) for s in range(5, slow - 5): y = s + 1 for f in range(5, fast - 5): x = f + 1 trusted = True for x0, x1, y0, y1 in untrusted: if (x >= x0) and (x <= x1) and (y >= y0) and (y <= y1): trusted = False break if trusted: pixel = pixel_values[s * fast + f] if pixel < 0: pixels = [] for j in range(-2, 3): for i in range(-2, 3): p = pixel_values[(s + j) * fast + f + i] if p > 0: pixels.append(p) modified_pixel_values[s * fast + f] = int(sum(pixels) / len(pixels)) open(bkginit_out, "wb").write( cbf_header + start_tag + compress(modified_pixel_values) ) return if __name__ == "__main__": recompute_BKGINIT("BKGINIT.cbf", "INIT.LP", sys.argv[1]) ``` #### File: xia2/Toolkit/PolyFitter.py ```python from __future__ import absolute_import, division, print_function import math from cctbx.array_family import flex from scitbx import lbfgs def poly_residual(xp, y, params): """Compute the residual between the observations y[i] and sum_j params[j] x[i]^j. For efficiency, x[i]^j are pre-calculated in xp.""" r = 0.0 n = len(params) c = len(y) e = flex.double([flex.sum(xp[j] * params) for j in range(c)]) return flex.sum(flex.pow2(y - e)) def poly_gradients(xp, y, params): """Compute the gradient of the residual w.r.t. the parameters, N.B. will be performed using a finite difference method. N.B. this should be trivial to do algebraicly.""" eps = 1.0e-6 g = flex.double() n = len(params) for j in range(n): rs = [] for signed_eps in [-eps, eps]: params_eps = params[:] params_eps[j] += signed_eps rs.append(poly_residual(xp, y, params_eps)) g.append((rs[1] - rs[0]) / (2 * eps)) return g class poly_fitter(object): """A class to do the polynomial fit. This will fit observations y at points x with a polynomial of order n.""" def __init__(self, points, values, order): self.x = flex.double([1.0 for j in range(order)]) self._x = flex.double(points) self._y = flex.double(values) # precalculate x[j]^[0-(n - 1)] values self._xp = [ flex.double([math.pow(x, j) for j in range(order)]) for x in self._x ] return def refine(self): """Actually perform the parameter refinement.""" return lbfgs.run(target_evaluator=self) def compute_functional_and_gradients(self): return ( poly_residual(self._xp, self._y, self.x), poly_gradients(self._xp, self._y, self.x), ) def get_parameters(self): return list(self.x) def evaluate(self, x): """Evaluate the resulting fit at point x.""" return sum([math.pow(x, k) * self.x[k] for k in range(len(self.x))]) def fit(x, y, order): """Fit the values y(x) then return this fit. x, y should be iterables containing floats of the same size. The order is the order of polynomial to use for this fit. This will be useful for e.g. I/sigma.""" pf = poly_fitter(x, y, order) pf.refine() return [pf.evaluate(_x) for _x in x] def log_fit(x, y, order): """Fit the values log(y(x)) then return exp() to this fit. x, y should be iterables containing floats of the same size. The order is the order of polynomial to use for this fit. This will be useful for e.g. I/sigma.""" ly = [math.log(_y) for _y in y] pf = poly_fitter(x, ly, order) pf.refine() return [math.exp(pf.evaluate(_x)) for _x in x] def log_inv_fit(x, y, order): """Fit the values log(1 / y(x)) then return the inverse of this fit. x, y should be iterables, the order of the polynomial for the transformed fit needs to be specified. This will be useful for e.g. Rmerge.""" ly = [math.log(1.0 / _y) for _y in y] pf = poly_fitter(x, ly, order) pf.refine() return [(1.0 / math.exp(pf.evaluate(_x))) for _x in x] def interpolate_value(x, y, t): """Find the value of x: y(x) = t.""" if t > max(y) or t < min(y): raise RuntimeError("t outside of [%f, %f]" % (min(y), max(y))) for j in range(1, len(x)): x0 = x[j - 1] y0 = y[j - 1] x1 = x[j] y1 = y[j] if (y0 - t) * (y1 - t) < 0: return x0 + (t - y0) * (x1 - x0) / (y1 - y0) def get_positive_values(x): """Return a list of values v from x where v > 0.""" result = [] for _x in x: if _x > 0: result.append(_x) else: return result return result if __name__ == "__main__": # trying to work out why something is slow... x = [ 0.28733375585344956, 0.3336648239480671, 0.37392475503798783, 0.4116791460480823, 0.44667362480391215, 0.48010999459819637, 0.5123842907520316, 0.5445830447029069, 0.5747600267080056, 0.605268188207491, 0.6348694178757428, 0.6628307139444256, 0.6915543733106164, 0.7190850546688736, 0.7466325833791124, 0.7726534107667972, 0.7991813564734889, 0.8246120592630442, 0.8509431563671859, 0.8752222362981207, 0.9003835108822839, 0.925531251174205, 0.9495577347489563, 0.9736107180716824, 0.9977616739729435, 1.0211126767435303, 1.0442229585861016, 1.0676870644761218, 1.089626948783452, 1.11325323064326, 1.1353748686331517, 1.157229309091089, 1.1793787289152926, 1.2012850147174827, 1.223192876382562, 1.2442806850714754, 1.2659456255540278, 1.2868725763092403, 1.3077684542819044, 1.329693962546648, 1.3497661431014192, 1.3703975279412275, 1.3913213083813614, 1.4118099020522166, 1.431944241466548, 1.451565968015303, 1.4726043408387703, 1.4926361862881505, 1.511947564871118, 1.531623424311822, 1.5518379642619582, 1.571415292664728, 1.590956013986232, 1.6101289757746151, 1.629504706812003, 1.6488436799317054, 1.6677873136267631, 1.6871236000102316, 1.7063804384195065, 1.7247788587316706, 1.74385084639364, 1.7632567530747427, 1.7810671017919066, 1.8000204739946506, 1.8187750413718835, 1.8362045669565548, 1.855888986697667, 1.8736099866108273, 1.8919543734165152, 1.9099014671201333, 1.9278705840578851, 1.9459285536685293, 1.9644838792250359, 1.9822046837796143, 1.9995268983422625, 2.0173386661672104, 2.0350303628559123, 2.0527713302473805, 2.0715436512758125, 2.088532979967127, 2.105448870913261, 2.122996752747121, 2.140658402767489, 2.1580900095590096, 2.1754356707821283, 2.19275774398331, 2.211194475389986, 2.232982621587298, 2.2551925602858534, 2.280016719289489, 2.3063211626596343, 2.3350430868315497, 2.3665452139200425, 2.4015454429869205, 2.440733908945748, 2.4858785233713427, 2.5418727931246536, 2.6144084555616858, 2.7959062808147896, ] y = [ 24.77724034532261, 24.37804249554226, 24.19024290469251, 24.060132497289498, 23.78910669554878, 23.490999254422075, 23.230491536468016, 23.05617339327898, 22.64620165329114, 22.579695553808385, 22.383003610771798, 22.262032410277936, 22.21201767180415, 21.93212194269467, 21.726772939444658, 21.460467444724543, 21.27059568803877, 21.06466968773921, 20.634888404569303, 20.238281789327637, 19.672916110100605, 19.546897202422976, 18.87739359459743, 18.59488191380871, 18.14880392608624, 17.6962994383689, 17.37710441451018, 16.81250842496295, 16.678882667587086, 16.182391499497715, 15.828587302315464, 15.205433904690839, 14.495596165710925, 14.511859823120211, 13.971753232798177, 13.658395498023248, 13.366842896276086, 13.05856744427929, 12.337465723961392, 12.29682965701954, 12.147839110097841, 11.760324551597702, 11.471407424003074, 11.049213704891022, 10.919965795059092, 10.601626749506291, 10.335411804585565, 9.718082839773091, 9.585767093427409, 9.423114689530454, 9.251666562241514, 9.124491493213558, 8.906324740537787, 8.29969595224133, 8.179515265478527, 8.078946904786891, 8.074081206125799, 7.795640184700349, 7.327064345560753, 7.180371145672737, 6.982901221348126, 6.831549776236767, 6.774329916623371, 6.598455395485047, 6.242034228013543, 6.211893244192715, 5.978124228824288, 5.616738659970417, 5.760183273642267, 5.255614400544779, 5.040337222517639, 4.970512178822339, 4.967344687551919, 4.548778129253488, 4.451021806395992, 4.264074612710173, 4.067343853822604, 4.043692161771108, 3.6569324304568642, 3.727811294231763, 3.4954349302961947, 3.345749115417511, 3.2665114375808058, 3.1220011432385397, 2.8973373248698233, 2.853040292102494, 2.713019895460359, 2.573460999432591, 2.4801019159829423, 2.2829226930395405, 2.1913185826611636, 2.0872962418506518, 1.9316795102089115, 1.6848508083758817, 1.5530229534306241, 1.361701873571922, 1.1916682079143257, 1.053122785634863, 0.771132065724789, ] m = log_fit(x, y, 6) for j in range(len(x)): print(x[j], y[j], m[j]) ``` #### File: Wrappers/CCP4/Pointless.py ```python from __future__ import absolute_import, division, print_function import math import os import xml.dom.minidom from xia2.Decorators.DecoratorFactory import DecoratorFactory from xia2.Driver.DriverFactory import DriverFactory from xia2.Handlers.Phil import PhilIndex from xia2.Handlers.Streams import Debug # this was rather complicated - now simpler! from xia2.lib.SymmetryLib import ( clean_reindex_operator, lauegroup_to_lattice, spacegroup_name_xHM_to_old, ) def mend_pointless_xml(xml_file): """Repair XML document""" text = open(xml_file, "r").read().split("\n") result = [] for record in text: if not "CenProb" in record: result.append(record) continue if "/CenProb" in record: result.append(record) continue tokens = record.split("CenProb") assert len(tokens) == 3 result.append("%sCenProb%s/CenProb%s" % tuple(tokens)) open(xml_file, "w").write("\n".join(result)) def Pointless(DriverType=None): """A factory for PointlessWrapper classes.""" DriverInstance = DriverFactory.Driver(DriverType) CCP4DriverInstance = DecoratorFactory.Decorate(DriverInstance, "ccp4") class PointlessWrapper(CCP4DriverInstance.__class__): """A wrapper for Pointless, using the CCP4-ified Driver.""" def __init__(self): # generic things CCP4DriverInstance.__class__.__init__(self) self.set_executable(os.path.join(os.environ.get("CBIN", ""), "pointless")) self._input_laue_group = None self._pointgroup = None self._spacegroup = None self._reindex_matrix = None self._reindex_operator = None self._spacegroup_reindex_matrix = None self._spacegroup_reindex_operator = None self._confidence = 0.0 self._hklref = None self._xdsin = None self._probably_twinned = False self._allow_out_of_sequence_files = False # pname, xname, dname stuff for when we are copying reflections self._pname = None self._xname = None self._dname = None # space to store all possible solutions, to allow discussion of # the correct lattice with the indexer... this should be a # list containing e.g. 'tP' self._possible_lattices = [] self._lattice_to_laue = {} # all "likely" spacegroups... self._likely_spacegroups = [] # and unit cell information self._cell_info = {} self._cell = None # and scale factors to use in conversion self._scale_factor = 1.0 def set_scale_factor(self, scale_factor): self._scale_factor = scale_factor def set_hklref(self, hklref): self._hklref = hklref def set_allow_out_of_sequence_files(self, allow=True): self._allow_out_of_sequence_files = allow def get_hklref(self): return self._hklref def set_project_info(self, pname, xname, dname): self._pname = pname self._xname = xname self._dname = dname def check_hklref(self): if self._hklref is None: raise RuntimeError("hklref not defined") if not os.path.exists(self._hklref): raise RuntimeError("hklref %s does not exist" % self._hklref) def set_xdsin(self, xdsin): self._xdsin = xdsin def get_xdsin(self): return self._xdsin def check_xdsin(self): if self._xdsin is None: raise RuntimeError("xdsin not defined") if not os.path.exists(self._xdsin): raise RuntimeError("xdsin %s does not exist" % self._xdsin) def set_correct_lattice(self, lattice): """In a rerunning situation, set the correct lattice, which will assert a correct lauegroup based on the previous run of the program...""" if self._lattice_to_laue == {}: raise RuntimeError("no lattice to lauegroup mapping") if lattice not in self._lattice_to_laue: raise RuntimeError("lattice %s not possible" % lattice) self._input_laue_group = self._lattice_to_laue[lattice] def sum_mtz(self, summedlist): """Sum partials in an MTZ file from Mosflm to a text file.""" self.add_command_line("-c") self.check_hklin() self.start() self.input("output summedlist %s" % summedlist) self.close_wait() # get out the unit cell - we will need this... output = self.get_all_output() cell = None for j in range(len(output)): line = output[j] if "Space group from HKLIN file" in line: cell = tuple(map(float, output[j + 1].split()[1:])) return cell def limit_batches(self, first, last): """Replacement for rebatch, removing batches.""" self.check_hklin() self.check_hklout() self.add_command_line("-c") self.start() if first > 1: self.input("exclude batch %d to %d" % (0, first - 1)) self.input("exclude batch %d to %d" % (last + 1, 9999999)) self.close_wait() def xds_to_mtz(self): """Use pointless to convert XDS file to MTZ.""" if not self._xdsin: raise RuntimeError("XDSIN not set") self.check_hklout() # -c for copy - just convert the file to MTZ multirecord self.add_command_line("-c") self.start() if self._pname and self._xname and self._dname: self.input( "name project %s crystal %s dataset %s" % (self._pname, self._xname, self._dname) ) self.input("xdsin %s" % self._xdsin) if self._scale_factor: Debug.write("Scaling intensities by factor %e" % self._scale_factor) self.input("multiply %e" % self._scale_factor) self.close_wait() # FIXME need to check the status and so on here if self._xdsin: from xia2.Wrappers.XDS import XDS XDS.add_xds_version_to_mtz_history(self.get_hklout()) def decide_pointgroup(self, ignore_errors=False, batches=None): """Decide on the correct pointgroup for hklin.""" if not self._xdsin: self.check_hklin() self.set_task( "Computing the correct pointgroup for %s" % self.get_hklin() ) else: Debug.write("Pointless using XDS input file %s" % self._xdsin) self.set_task( "Computing the correct pointgroup for %s" % self.get_xdsin() ) # FIXME this should probably be a standard CCP4 keyword if self._xdsin: self.add_command_line("xdsin") self.add_command_line(self._xdsin) self.add_command_line("xmlout") self.add_command_line("%d_pointless.xml" % self.get_xpid()) if self._hklref: self.add_command_line("hklref") self.add_command_line(self._hklref) self.start() if self._allow_out_of_sequence_files: self.input("allow outofsequencefiles") # https://github.com/xia2/xia2/issues/125 pass in run limits for this # HKLIN file - prevents automated RUN determination from causing errors if batches: self.input("run 1 batch %d to %d" % tuple(batches)) self.input("systematicabsences off") self.input("setting symmetry-based") if self._hklref: dev = PhilIndex.params.xia2.settings.developmental if dev.pointless_tolerance > 0.0: self.input("tolerance %f" % dev.pointless_tolerance) # may expect more %age variation for small molecule data if PhilIndex.params.xia2.settings.small_molecule: if self._hklref: self.input("tolerance 5.0") if PhilIndex.params.xia2.settings.symmetry.chirality is not None: self.input( "chirality %s" % PhilIndex.params.xia2.settings.symmetry.chirality ) if self._input_laue_group: self.input("lauegroup %s" % self._input_laue_group) self.close_wait() # check for errors self.check_for_errors() # check for fatal errors output = self.get_all_output() fatal_error = False for j, record in enumerate(output): if "FATAL ERROR message:" in record: if ignore_errors: fatal_error = True else: raise RuntimeError( "Pointless error: %s" % output[j + 1].strip() ) if ( "Resolution range of Reference data and observed data do not" in record and ignore_errors ): fatal_error = True if "All reflection pairs rejected" in record and ignore_errors: fatal_error = True if ( "Reference data and observed data do not overlap" in record and ignore_errors ): fatal_error = True hklin_spacegroup = "" # split loop - first seek hklin symmetry then later look for everything # else for o in self.get_all_output(): if "Spacegroup from HKLIN file" in o: hklin_spacegroup = spacegroup_name_xHM_to_old( o.replace("Spacegroup from HKLIN file :", "").strip() ) if "Space group from HKLREF file" in o: hklref_spacegroup = spacegroup_name_xHM_to_old( o.replace("Space group from HKLREF file :", "").strip() ) # https://github.com/xia2/xia2/issues/115 if fatal_error: assert hklref_spacegroup self._pointgroup = hklref_spacegroup self._confidence = 1.0 self._totalprob = 1.0 self._reindex_matrix = [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0] self._reindex_operator = "h,k,l" return "ok" for o in self.get_all_output(): if "No alternative indexing possible" in o: # then the XML file will be broken - no worries... self._pointgroup = hklin_spacegroup self._confidence = 1.0 self._totalprob = 1.0 self._reindex_matrix = [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0] self._reindex_operator = "h,k,l" return "ok" if "**** Incompatible symmetries ****" in o: raise RuntimeError( "reindexing against a reference with different symmetry" ) if "***** Stopping because cell discrepancy between files" in o: raise RuntimeError("incompatible unit cells between data sets") if "L-test suggests that the data may be twinned" in o: self._probably_twinned = True # parse the XML file for the information I need... xml_file = os.path.join( self.get_working_directory(), "%d_pointless.xml" % self.get_xpid() ) mend_pointless_xml(xml_file) # catch the case sometimes on ppc mac where pointless adds # an extra .xml on the end... if not os.path.exists(xml_file) and os.path.exists("%s.xml" % xml_file): xml_file = "%s.xml" % xml_file if not self._hklref: dom = xml.dom.minidom.parse(xml_file) try: best = dom.getElementsByTagName("BestSolution")[0] except IndexError: raise RuntimeError("error getting solution from pointless") self._pointgroup = ( best.getElementsByTagName("GroupName")[0].childNodes[0].data ) self._confidence = float( best.getElementsByTagName("Confidence")[0].childNodes[0].data ) self._totalprob = float( best.getElementsByTagName("TotalProb")[0].childNodes[0].data ) self._reindex_matrix = map( float, best.getElementsByTagName("ReindexMatrix")[0] .childNodes[0] .data.split(), ) self._reindex_operator = clean_reindex_operator( best.getElementsByTagName("ReindexOperator")[0] .childNodes[0] .data.strip() ) else: # if we have provided a HKLREF input then the xml output # is changed... # FIXME in here, need to check if there is the legend # "No possible alternative indexing" in the standard # output, as this will mean that the index scores are # not there... c/f oppf1314, with latest pointless build # 1.2.14. dom = xml.dom.minidom.parse(xml_file) try: best = dom.getElementsByTagName("IndexScores")[0] except IndexError: Debug.write("Reindex not found in xml output") # check for this legend then found = False for record in self.get_all_output(): if "No possible alternative indexing" in record: found = True if not found: raise RuntimeError("error finding solution") best = None hklref_pointgroup = "" # FIXME need to get this from the reflection file HKLREF reflection_file_elements = dom.getElementsByTagName("ReflectionFile") for rf in reflection_file_elements: stream = rf.getAttribute("stream") if stream == "HKLREF": hklref_pointgroup = ( rf.getElementsByTagName("SpacegroupName")[0] .childNodes[0] .data.strip() ) # Chatter.write('HKLREF pointgroup is %s' % \ # hklref_pointgroup) if hklref_pointgroup == "": raise RuntimeError("error finding HKLREF pointgroup") self._pointgroup = hklref_pointgroup self._confidence = 1.0 self._totalprob = 1.0 if best: index = best.getElementsByTagName("Index")[0] self._reindex_matrix = map( float, index.getElementsByTagName("ReindexMatrix")[0] .childNodes[0] .data.split(), ) self._reindex_operator = clean_reindex_operator( index.getElementsByTagName("ReindexOperator")[0] .childNodes[0] .data.strip() ) else: # no alternative indexing is possible so just # assume the default... self._reindex_matrix = [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0] self._reindex_operator = "h,k,l" if not self._input_laue_group and not self._hklref: scorelist = dom.getElementsByTagName("LaueGroupScoreList")[0] scores = scorelist.getElementsByTagName("LaueGroupScore") for s in scores: lauegroup = ( s.getElementsByTagName("LaueGroupName")[0].childNodes[0].data ) netzc = float( s.getElementsByTagName("NetZCC")[0].childNodes[0].data ) # record this as a possible lattice if its Z score is positive lattice = lauegroup_to_lattice(lauegroup) if not lattice in self._possible_lattices: if netzc > 0.0: self._possible_lattices.append(lattice) # do we not always want to have access to the # solutions, even if they are unlikely - this will # only be invoked if they are known to # be right... self._lattice_to_laue[lattice] = lauegroup return "ok" def decide_spacegroup(self): """Given data indexed in the correct pointgroup, have a guess at the spacegroup.""" if not self._xdsin: self.check_hklin() self.set_task( "Computing the correct spacegroup for %s" % self.get_hklin() ) else: Debug.write("Pointless using XDS input file %s" % self._xdsin) self.set_task( "Computing the correct spacegroup for %s" % self.get_xdsin() ) # FIXME this should probably be a standard CCP4 keyword if self._xdsin: self.add_command_line("xdsin") self.add_command_line(self._xdsin) self.add_command_line("xmlout") self.add_command_line("%d_pointless.xml" % self.get_xpid()) self.add_command_line("hklout") self.add_command_line("pointless.mtz") self.start() self.input("lauegroup hklin") self.input("setting symmetry-based") if PhilIndex.params.xia2.settings.symmetry.chirality is not None: self.input( "chirality %s" % PhilIndex.params.xia2.settings.symmetry.chirality ) self.close_wait() # check for errors self.check_for_errors() xml_file = os.path.join( self.get_working_directory(), "%d_pointless.xml" % self.get_xpid() ) mend_pointless_xml(xml_file) if not os.path.exists(xml_file) and os.path.exists("%s.xml" % xml_file): xml_file = "%s.xml" % xml_file dom = xml.dom.minidom.parse(xml_file) sg_list = dom.getElementsByTagName("SpacegroupList")[0] sg_node = sg_list.getElementsByTagName("Spacegroup")[0] best_prob = float( sg_node.getElementsByTagName("TotalProb")[0].childNodes[0].data.strip() ) # FIXME 21/NOV/06 in here record a list of valid spacegroups # (that is, those which are as likely as the most likely) # for later use... self._spacegroup = ( sg_node.getElementsByTagName("SpacegroupName")[0] .childNodes[0] .data.strip() ) self._spacegroup_reindex_operator = ( sg_node.getElementsByTagName("ReindexOperator")[0] .childNodes[0] .data.strip() ) self._spacegroup_reindex_matrix = tuple( map( float, sg_node.getElementsByTagName("ReindexMatrix")[0] .childNodes[0] .data.split(), ) ) # get a list of "equally likely" spacegroups for node in sg_list.getElementsByTagName("Spacegroup"): prob = float( node.getElementsByTagName("TotalProb")[0].childNodes[0].data.strip() ) name = ( node.getElementsByTagName("SpacegroupName")[0] .childNodes[0] .data.strip() ) if math.fabs(prob - best_prob) < 0.01: # this is jolly likely! self._likely_spacegroups.append(name) # now parse the output looking for the unit cell information - # this should look familiar from mtzdump output = self.get_all_output() length = len(output) a = 0.0 b = 0.0 c = 0.0 alpha = 0.0 beta = 0.0 gamma = 0.0 self._cell_info["datasets"] = [] self._cell_info["dataset_info"] = {} for i in range(length): line = output[i][:-1] if "Dataset ID, " in line: block = 0 while output[block * 5 + i + 2].strip(): dataset_number = int(output[5 * block + i + 2].split()[0]) project = output[5 * block + i + 2][10:].strip() crystal = output[5 * block + i + 3][10:].strip() dataset = output[5 * block + i + 4][10:].strip() cell = map(float, output[5 * block + i + 5].strip().split()) wavelength = float(output[5 * block + i + 6].strip()) dataset_id = "%s/%s/%s" % (project, crystal, dataset) self._cell_info["datasets"].append(dataset_id) self._cell_info["dataset_info"][dataset_id] = {} self._cell_info["dataset_info"][dataset_id][ "wavelength" ] = wavelength self._cell_info["dataset_info"][dataset_id]["cell"] = cell self._cell_info["dataset_info"][dataset_id][ "id" ] = dataset_number block += 1 for dataset in self._cell_info["datasets"]: cell = self._cell_info["dataset_info"][dataset]["cell"] a += cell[0] b += cell[1] c += cell[2] alpha += cell[3] beta += cell[4] gamma += cell[5] n = len(self._cell_info["datasets"]) self._cell = (a / n, b / n, c / n, alpha / n, beta / n, gamma / n) if self._xdsin: from xia2.Wrappers.XDS import XDS XDS.add_xds_version_to_mtz_history(self.get_hklout()) return "ok" def get_reindex_matrix(self): return self._reindex_matrix def get_reindex_operator(self): return self._reindex_operator def get_pointgroup(self): return self._pointgroup def get_spacegroup(self): return self._spacegroup def get_cell(self): return self._cell def get_probably_twinned(self): return self._probably_twinned def get_spacegroup_reindex_operator(self): return self._spacegroup_reindex_operator def get_spacegroup_reindex_matrix(self): return self._spacegroup_reindex_matrix def get_likely_spacegroups(self): return self._likely_spacegroups def get_confidence(self): return self._confidence def get_possible_lattices(self): return self._possible_lattices return PointlessWrapper() ``` #### File: Wrappers/Dials/EstimateResolutionLimit.py ```python from __future__ import absolute_import, division, print_function def EstimateResolutionLimit(DriverType=None): """A factory for EstimateResolutionLimitWrapper classes.""" from xia2.Driver.DriverFactory import DriverFactory DriverInstance = DriverFactory.Driver(DriverType) class EstimateResolutionLimitWrapper(DriverInstance.__class__): def __init__(self): DriverInstance.__class__.__init__(self) self.set_executable("dials.estimate_resolution_limit") self._experiments_filename = None self._reflections_filename = None self._estimated_d_min = None def set_experiments_filename(self, experiments_filename): self._experiments_filename = experiments_filename def set_reflections_filename(self, reflections_filename): self._reflections_filename = reflections_filename def get_estimated_d_min(self): return self._estimated_d_min def run(self): from xia2.Handlers.Streams import Debug Debug.write("Running dials.estimate_resolution_limit") self.clear_command_line() self.add_command_line(self._experiments_filename) self.add_command_line(self._reflections_filename) self.start() self.close_wait() self.check_for_errors() for line in self.get_all_output(): if line.startswith("estimated d_min:"): self._estimated_d_min = float(line.split(":")[1]) return self._estimated_d_min return EstimateResolutionLimitWrapper() ``` #### File: Wrappers/Dials/ExportXDS.py ```python from __future__ import absolute_import, division, print_function def ExportXDS(DriverType=None): """A factory for ExportXDSWrapper classes.""" from xia2.Driver.DriverFactory import DriverFactory DriverInstance = DriverFactory.Driver(DriverType) class ExportXDSWrapper(DriverInstance.__class__): def __init__(self): DriverInstance.__class__.__init__(self) self.set_executable("dials.export") self._sweep_filename = None self._crystal_filename = None def set_experiments_filename(self, experiments_filename): self._experiments_filename = experiments_filename def run(self): from xia2.Handlers.Streams import Debug Debug.write("Running dials.export") self.clear_command_line() self.add_command_line(self._experiments_filename) self.add_command_line("format=xds") self.start() self.close_wait() self.check_for_errors() return ExportXDSWrapper() ``` #### File: Wrappers/Dials/Report.py ```python from __future__ import absolute_import, division, print_function def Report(DriverType=None): """A factory for ReportWrapper classes.""" from xia2.Driver.DriverFactory import DriverFactory DriverInstance = DriverFactory.Driver(DriverType) class ReportWrapper(DriverInstance.__class__): def __init__(self): DriverInstance.__class__.__init__(self) self.set_executable("dials.report") self._experiments_filename = None self._reflections_filename = None self._html_filename = None def set_experiments_filename(self, experiments_filename): self._experiments_filename = experiments_filename def set_reflections_filename(self, reflections_filename): self._reflections_filename = reflections_filename def set_html_filename(self, html_filename): self._html_filename = html_filename def run(self, wait_for_completion=False): from xia2.Handlers.Streams import Debug Debug.write("Running dials.report") self.clear_command_line() assert ( self._experiments_filename is not None or self._reflections_filename is not None ) if self._experiments_filename is not None: self.add_command_line(self._experiments_filename) if self._reflections_filename is not None: self.add_command_line(self._reflections_filename) if self._html_filename is not None: self.add_command_line("output.html=%s" % self._html_filename) self.start() if wait_for_completion: self.close_wait() else: self.close() self.check_for_errors() return ReportWrapper() ``` #### File: Wrappers/Labelit/LabelitDistl.py ```python from __future__ import absolute_import, division, print_function import os from xia2.Driver.DriverFactory import DriverFactory def LabelitDistl(DriverType=None): """Factory for LabelitDistl wrapper classes, with the specified Driver type.""" DriverInstance = DriverFactory.Driver(DriverType) class LabelitDistlWrapper(DriverInstance.__class__): """A wrapper for the program labelit.distl - which will provide functionality for looking for ice rings and screening diffraction images.""" def __init__(self): DriverInstance.__class__.__init__(self) self.set_executable("labelit.distl") self._images = [] self._statistics = {} def add_image(self, image): """Add an image for indexing.""" if not image in self._images: self._images.append(image) return def distl(self): """Actually analyse the images.""" self._images.sort() for i in self._images: self.add_command_line(i) task = "Screen images:" for i in self._images: task += " %s" % i self.set_task(task) self.start() self.close_wait() # check for errors self.check_for_errors() # ok now we're done, let's look through for some useful stuff output = self.get_all_output() current_image = None for o in output: if "None" in o and "Resolution" in o: l = o.replace("None", "0.0").split() else: l = o.split() if l[:1] == ["File"]: current_image = l[2] self._statistics[current_image] = {} if l[:2] == ["Spot", "Total"]: self._statistics[current_image]["spots_total"] = int(l[-1]) if l[:2] == ["In-Resolution", "Total"]: self._statistics[current_image]["spots"] = int(l[-1]) if l[:3] == ["Good", "Bragg", "Candidates"]: self._statistics[current_image]["spots_good"] = int(l[-1]) if l[:2] == ["Ice", "Rings"]: self._statistics[current_image]["ice_rings"] = int(l[-1]) if l[:3] == ["Method", "1", "Resolution"]: self._statistics[current_image]["resol_one"] = float(l[-1]) if l[:3] == ["Method", "2", "Resolution"]: self._statistics[current_image]["resol_two"] = float(l[-1]) if l[:3] == ["%Saturation,", "Top", "50"]: self._statistics[current_image]["saturation"] = float(l[-1]) return "ok" # things to get results from the indexing def get_statistics(self, image): """Get the screening statistics from image as dictionary. The keys are spots_total, spots, spots_good, ice_rings, resol_one, resol_two.""" return self._statistics[os.path.split(image)[-1]] return LabelitDistlWrapper() ``` #### File: Wrappers/Labelit/LabelitStats_distl.py ```python from __future__ import absolute_import, division, print_function import os from xia2.Driver.DriverFactory import DriverFactory def LabelitStats_distl(DriverType=None): """Factory for LabelitStats_distl wrapper classes, with the specified Driver type.""" DriverInstance = DriverFactory.Driver(DriverType) class LabelitStats_distlWrapper(DriverInstance.__class__): """A wrapper for the program labelit.stats_distl - which will provide functionality for looking for ice rings and screening diffraction images.""" def __init__(self): DriverInstance.__class__.__init__(self) self.set_executable("labelit.stats_distl") self._statistics = {} def stats_distl(self): """Return the image statistics.""" self.set_task("Return statistics from last distl run") self.start() self.close_wait() # check for errors self.check_for_errors() # ok now we're done, let's look through for some useful stuff output = self.get_all_output() current_image = None for o in output: if "None" in o and "Resolution" in o: l = o.replace("None", "0.0").split() else: l = o.split() if l[:1] == ["File"]: current_image = l[2] self._statistics[current_image] = {} if l[:2] == ["Spot", "Total"]: self._statistics[current_image]["spots_total"] = int(l[-1]) if l[:2] == ["In-Resolution", "Total"]: self._statistics[current_image]["spots"] = int(l[-1]) if l[:3] == ["Good", "Bragg", "Candidates"]: self._statistics[current_image]["spots_good"] = int(l[-1]) if l[:2] == ["Ice", "Rings"]: self._statistics[current_image]["ice_rings"] = int(l[-1]) if l[:3] == ["Method", "1", "Resolution"]: self._statistics[current_image]["resol_one"] = float(l[-1]) if l[:3] == ["Method", "2", "Resolution"]: self._statistics[current_image]["resol_two"] = float(l[-1]) if l[:3] == ["%Saturation,", "Top", "50"]: self._statistics[current_image]["saturation"] = float(l[-1]) return "ok" # things to get results from the indexing def get_statistics(self, image): """Get the screening statistics from image as dictionary. The keys are spots_total, spots, spots_good, ice_rings, resol_one, resol_two.""" return self._statistics[os.path.split(image)[-1]] return LabelitStats_distlWrapper() ``` #### File: Wrappers/XDS/test_XDSIntegrateHelpers.py ```python from xia2.Wrappers.XDS.XDSIntegrateHelpers import _parse_integrate_lp def test_parse_integrate_lp(tmpdir): integrate_lp = tmpdir.join("INTEGRATE.LP") with integrate_lp.open("wb") as f: f.write(integrate_lp_example_1) per_image_stats = _parse_integrate_lp(integrate_lp.strpath) assert per_image_stats.keys() == list(range(1, 22)) assert per_image_stats[1] == { "distance": 213.68, "all": 2486, "scale": 0.01, "overloads": 0, "rmsd_phi": 0.2, "rejected": 1, "beam": [2217.03, 2306.1], "fraction_weak": 0.9605792437650845, "rmsd_pixel": 0.5, "strong": 98, "unit_cell": (57.687, 57.687, 149.879, 90.0, 90.0, 90.0), "mosaic": 0.042, } integrate_lp = tmpdir.join("INTEGRATE.LP") with integrate_lp.open("wb") as f: f.write(integrate_lp_big_n_refl) per_image_stats = _parse_integrate_lp(integrate_lp.strpath) assert per_image_stats.keys() == list(range(2601, 2611)) print(per_image_stats[2601]) assert per_image_stats[2601] == { "all": 1092650, "scale": 0.975, "overloads": 0, "rmsd_phi": 15.4, "rejected": 8, "fraction_weak": 0.9997409966594976, "rmsd_pixel": 1.86, "strong": 283, } integrate_lp_example_1 = """\ OSCILLATION_RANGE= 0.250000 DEGREES ****************************************************************************** PROCESSING OF IMAGES 1 ... 21 ****************************************************************************** IMAGE IER SCALE NBKG NOVL NEWALD NSTRONG NREJ SIGMAB SIGMAR 1 0 0.010 16768425 0 2486 98 1 0.01970 0.05000 2 0 0.010 16767966 0 2482 113 1 0.02078 0.05000 3 0 0.010 16768952 0 2457 92 1 0.01999 0.05000 4 0 0.010 16768674 0 2507 95 1 0.01898 0.05000 5 0 0.010 16768968 0 2531 90 0 0.02025 0.05000 6 0 0.010 16768173 0 2500 104 0 0.01927 0.05000 7 0 0.010 16768177 0 2528 102 0 0.01925 0.05000 8 0 0.010 16768711 0 2471 91 0 0.01968 0.05000 9 0 0.010 16769564 0 2439 77 0 0.02068 0.05000 10 0 0.010 16768394 0 2464 100 0 0.01907 0.05000 11 0 0.010 16769104 0 2501 85 0 0.01894 0.05000 12 0 0.010 16769057 0 2442 86 0 0.01787 0.05000 13 0 0.010 16768710 0 2542 89 0 0.01865 0.05000 14 0 0.010 16768293 0 2498 99 0 0.01954 0.05000 15 0 0.010 16768756 0 2485 91 0 0.01893 0.05000 16 0 0.010 16768205 0 2478 102 0 0.02038 0.05000 17 0 0.010 16768731 0 2494 98 0 0.01906 0.05000 18 0 0.010 16769096 0 2519 89 0 0.01905 0.05000 19 0 0.010 16769308 0 2470 84 1 0.01861 0.05000 20 0 0.010 16770288 0 2532 73 0 0.01845 0.05000 21 0 0.010 16768056 0 2521 110 0 0.01916 0.05000 1433 OUT OF 1433 REFLECTIONS ACCEPTED FOR REFINEMENT REFINED PARAMETERS: POSITION ORIENTATION CELL STANDARD DEVIATION OF SPOT POSITION (PIXELS) 0.50 STANDARD DEVIATION OF SPINDLE POSITION (DEGREES) 0.05 SPACE GROUP NUMBER 75 UNIT CELL PARAMETERS 57.687 57.687 149.879 90.000 90.000 90.000 REC. CELL PARAMETERS 0.017335 0.017335 0.006672 90.000 90.000 90.000 COORDINATES OF UNIT CELL A-AXIS 17.374 -51.023 20.558 COORDINATES OF UNIT CELL B-AXIS -51.259 -7.193 25.468 COORDINATES OF UNIT CELL C-AXIS -51.864 -67.388 -123.421 CRYSTAL ROTATION OFF FROM INITIAL ORIENTATION -0.004 0.014 0.003 shown as x,y,z components of rotation axis X angle (degrees) CRYSTAL MOSAICITY (DEGREES) 0.042 LAB COORDINATES OF ROTATION AXIS 0.999943 -0.006986 -0.008051 DIRECT BEAM COORDINATES (REC. ANGSTROEM) 0.008789 0.010077 1.020035 DETECTOR COORDINATES (PIXELS) OF DIRECT BEAM 2217.03 2306.10 DETECTOR ORIGIN (PIXELS) AT 2192.48 2277.95 CRYSTAL TO DETECTOR DISTANCE (mm) 213.68 LAB COORDINATES OF DETECTOR X-AXIS 1.000000 0.000000 0.000000 LAB COORDINATES OF DETECTOR Y-AXIS 0.000000 1.000000 0.000000 STANDARD DEVIATIONS OF BEAM DIVERGENCE AND REFLECTING RANGE OBTAINED FROM 1433 REFLECTION PROFILES AT 9 POSITIONS ON THE DETECTOR SURFACE. POSITION NUMBER 1 2 3 4 5 6 7 8 9 X-COORDINATE (pixel) 2074.0 3619.9 3167.1 2074.0 980.9 528.1 980.9 2073.9 3167.0 Y-COORDINATE (pixel) 2181.0 2181.0 3330.5 3806.6 3330.5 2181.1 1031.6 555.4 1031.4 NUMBER 467 137 165 155 104 72 82 111 132 SIGMAB (degree) 0.016 0.017 0.017 0.017 0.017 0.017 0.016 0.016 0.017 SIGMAR (degree) 0.038 0.037 0.037 0.038 0.037 0.036 0.037 0.038 0.038 """ integrate_lp_big_n_refl = """\ OSCILLATION_RANGE= 0.050000 DEGREES ****************************************************************************** PROCESSING OF IMAGES 2601 ... 2610 ****************************************************************************** IMAGE IER SCALE NBKG NOVL NEWALD NSTRONG NREJ SIGMAB SIGMAR 2601 0 0.975 16680318 01092650 283 8 0.01281 0.40765 2602 0 0.969 16680543 01092588 268 6 0.01308 0.46286 2603 0 0.973 16680424 01092451 274 5 0.01419 0.44668 2604 0 0.979 16679844 01092457 282 7 0.01460 0.43985 2605 0 0.972 16679268 01092620 294 4 0.01438 0.43988 2606 0 0.979 16678476 01092578 301 8 0.01346 0.44049 2607 0 0.975 16679456 01092483 285 8 0.01428 0.43287 2608 0 0.980 16679874 01092729 283 6 0.01392 0.48593 2609 0 0.985 16679847 01092438 280 5 0.01349 0.46816 2610 0 0.978 16679911 01092542 276 5 0.01438 0.47244 6989 OUT OF 9308 REFLECTIONS ACCEPTED FOR REFINEMENT REFINED PARAMETERS: POSITION BEAM ORIENTATION CELL STANDARD DEVIATION OF SPOT POSITION (PIXELS) 1.86 STANDARD DEVIATION OF SPINDLE POSITION (DEGREES) 0.77 """ ``` #### File: Wrappers/XIA/Diffdump.py ```python from __future__ import absolute_import, division, print_function import copy import datetime import math import os import sys import time import traceback import pycbf from scitbx import matrix from scitbx.math import r3_rotation_axis_and_angle_from_matrix from xia2.Driver.DriverFactory import DriverFactory if __name__ == "__main__": debug = False else: debug = False class _HeaderCache(object): """A cache for image headers.""" def __init__(self): self._headers = {} def put(self, image, header): self._headers[image] = copy.deepcopy(header) def get(self, image): return self._headers[image] def check(self, image): return image in self._headers def write(self, filename): import json json.dump(self._headers, open(filename, "w")) return def read(self, filename): assert self._headers == {} import json self._headers = json.load(open(filename, "r")) return len(self._headers) HeaderCache = _HeaderCache() # FIXME this does not include all MAR, RAXIS detectors detector_class = { ("adsc", 2304, 81): "adsc q4", ("adsc", 1152, 163): "adsc q4 2x2 binned", ("adsc", 1502, 163): "adsc q4 2x2 binned", ("adsc", 4096, 51): "adsc q210", ("adsc", 2048, 102): "adsc q210 2x2 binned", ("adsc", 6144, 51): "adsc q315", ("adsc", 3072, 102): "adsc q315 2x2 binned", ("adsc", 4168, 64): "adsc q270", ("adsc", 4168, 65): "adsc q270", ("adsc", 2084, 128): "adsc q270 2x2 binned", ("adsc", 2084, 129): "adsc q270 2x2 binned", ("adsc", 2084, 130): "adsc q270 2x2 binned", ("cbf", 2463, 172): "pilatus 6M", ("mini-cbf", 2463, 172): "pilatus 6M", ("dectris", 2527, 172): "pilatus 6M", ("dectris", 1679, 172): "pilatus 2M", ("marccd", 4096, 73): "mar 300 ccd", ("marccd", 4096, 79): "mar 325 ccd", ("marccd", 3072, 73): "mar 225 ccd", ("marccd", 2048, 78): "mar 165 ccd", ("marccd", 2048, 79): "mar 165 ccd", ("marccd", 2048, 64): "mar 135 ccd", ("mar", 4096, 73): "mar 300 ccd", ("mar", 4096, 79): "mar 325 ccd", ("mar", 3072, 73): "mar 225 ccd", ("mar", 2048, 78): "mar 165 ccd", ("mar", 2048, 79): "mar 165 ccd", ("mar", 2048, 64): "mar 135 ccd", ("mar", 1200, 150): "mar 180", ("mar", 1600, 150): "mar 240", ("mar", 2000, 150): "mar 300", ("mar", 2300, 150): "mar 345", ("mar", 3450, 100): "mar 345", ("raxis", 3000, 100): "raxis IV", ("rigaku", 3000, 100): "raxis IV", ("saturn", 2048, 45): "rigaku saturn 92", ("saturn", 1024, 90): "rigaku saturn 92 2x2 binned", ("saturn", 2084, 45): "rigaku saturn 944", ("saturn", 1042, 90): "rigaku saturn 944 2x2 binned", ("rigaku", 2048, 45): "rigaku saturn 92", ("rigaku", 1024, 90): "rigaku saturn 92 2x2 binned", ("rigaku", 1042, 35): "rigaku saturn 724", ("rigaku", 1042, 70): "rigaku saturn 724 2x2 binned", ("rigaku", 2084, 45): "rigaku saturn 944", ("rigaku", 1042, 90): "rigaku saturn 944 2x2 binned", ("rigaku", 1042, 89): "rigaku saturn 944 2x2 binned", } def read_A200(image): """Read the header from a Rigaku A200 image. This is to work around the diffdump program falling over with such images.""" raise RuntimeError("this needs implementing!") # FIXME get proper specifications for these detectors... def find_detector_id(cbf_handle): detector_id = "" cbf_handle.rewind_datablock() nblocks = cbf_handle.count_datablocks() for j in range(nblocks): cbf_handle.select_datablock(0) ncat = cbf_handle.count_categories() for j in range(ncat): cbf_handle.select_category(j) if not cbf_handle.category_name() == "diffrn_detector": continue nrows = cbf_handle.count_rows() ncols = cbf_handle.count_columns() cbf_handle.rewind_column() while True: if cbf_handle.column_name() == "id": detector_id = cbf_handle.get_value() break try: cbf_handle.next_column() except Exception: break return detector_id def cbf_gonio_to_effective_axis(cbf_gonio): """Given a cbf goniometer handle, determine the real rotation axis.""" x = cbf_gonio.rotate_vector(0.0, 1, 0, 0) y = cbf_gonio.rotate_vector(0.0, 0, 1, 0) z = cbf_gonio.rotate_vector(0.0, 0, 0, 1) R = matrix.rec(x + y + z, (3, 3)).transpose() x1 = cbf_gonio.rotate_vector(1.0, 1, 0, 0) y1 = cbf_gonio.rotate_vector(1.0, 0, 1, 0) z1 = cbf_gonio.rotate_vector(1.0, 0, 0, 1) R1 = matrix.rec(x1 + y1 + z1, (3, 3)).transpose() RA = R1 * R.inverse() axis = r3_rotation_axis_and_angle_from_matrix(RA).axis return axis def failover_full_cbf(cbf_file): """Use pycbf library to read full cbf file description.""" header = {} cbf_handle = pycbf.cbf_handle_struct() cbf_handle.read_widefile(cbf_file, pycbf.MSG_DIGEST) detector_id_map = { "Pilatus2M": "pilatus 2M", "Pilatus6M": "pilatus 6M", "i19-p300k": "pilatus 300K", "ADSCQ315-SN920": "adsc q315 2x2 binned", } header["detector_class"] = detector_id_map[find_detector_id(cbf_handle)] if "pilatus" in header["detector_class"]: header["detector"] = "dectris" elif "adsc" in header["detector_class"]: header["detector"] = "adsc" else: raise RuntimeError("unknown detector %s" % header["detector_class"]) cbf_handle.rewind_datablock() detector = cbf_handle.construct_detector(0) # FIXME need to check that this is doing something sensible...! header["beam"] = tuple(map(math.fabs, detector.get_beam_center()[2:])) detector_normal = tuple(detector.get_detector_normal()) gonio = cbf_handle.construct_goniometer() axis = tuple(gonio.get_rotation_axis()) angles = tuple(gonio.get_rotation_range()) header["distance"] = detector.get_detector_distance() header["pixel"] = ( detector.get_inferred_pixel_size(1), detector.get_inferred_pixel_size(2), ) header["phi_start"], header["phi_width"] = angles header["phi_end"] = header["phi_start"] + header["phi_width"] year, month, day, hour, minute, second, x = cbf_handle.get_datestamp() struct_time = datetime.datetime(year, month, day, hour, minute, second).timetuple() header["date"] = time.asctime(struct_time) header["epoch"] = cbf_handle.get_timestamp()[0] header["size"] = tuple(cbf_handle.get_image_size(0)) header["exposure_time"] = cbf_handle.get_integration_time() header["wavelength"] = cbf_handle.get_wavelength() # compute the true two-theta offset... which is kind-of going around # the houses. oh and the real rotation axis. origin = detector.get_pixel_coordinates(0, 0) fast = detector.get_pixel_coordinates(0, 1) slow = detector.get_pixel_coordinates(1, 0) dfast = matrix.col([fast[j] - origin[j] for j in range(3)]).normalize() dslow = matrix.col([slow[j] - origin[j] for j in range(3)]).normalize() dorigin = matrix.col(origin) dnormal = dfast.cross(dslow) centre = -(dorigin - dorigin.dot(dnormal) * dnormal) f = centre.dot(dfast) s = centre.dot(dslow) header["fast_direction"] = dfast.elems header["slow_direction"] = dslow.elems header["detector_origin_mm"] = f, s header["rotation_axis"] = cbf_gonio_to_effective_axis(gonio) two_theta = dfast.angle(matrix.col((0.0, 1.0, 0.0)), deg=True) if math.fabs(two_theta - 180.0) < 1.0: header["two_theta"] = 0 else: header["two_theta"] = two_theta # find the direct beam vector - takes a few steps cbf_handle.find_category("axis") # find record with equipment = source cbf_handle.find_column("equipment") cbf_handle.find_row("source") # then get the vector and offset from this beam_direction = [] for j in range(3): cbf_handle.find_column("vector[%d]" % (j + 1)) beam_direction.append(cbf_handle.get_doublevalue()) # FIXME in here add in code to compute from first principles the beam # centre etc. detector.__swig_destroy__(detector) del detector gonio.__swig_destroy__(gonio) del gonio return header def failover_cbf(cbf_file): """CBF files from the latest update to the PILATUS detector cause a segmentation fault in diffdump. This is a workaround.""" header = {} header["two_theta"] = 0.0 for record in open(cbf_file): if "_array_data.data" in record: break if "PILATUS 2M" in record: header["detector_class"] = "pilatus 2M" header["detector"] = "dectris" header["size"] = (1679, 1475) continue if "PILATUS3 2M" in record: header["detector_class"] = "pilatus 2M" header["detector"] = "dectris" header["size"] = (1679, 1475) continue if "PILATUS 6M" in record: header["detector_class"] = "pilatus 6M" header["detector"] = "dectris" header["size"] = (2527, 2463) continue if "PILATUS3 6M" in record: header["detector_class"] = "pilatus 6M" header["detector"] = "dectris" header["size"] = (2527, 2463) continue if "Start_angle" in record: header["phi_start"] = float(record.split()[-2]) continue if "Angle_increment" in record: header["phi_width"] = float(record.split()[-2]) continue if "Exposure_period" in record: header["exposure_time"] = float(record.split()[-2]) continue if "Silicon sensor" in record: header["sensor"] = 1000 * float(record.split()[4]) continue if "Count_cutoff" in record: header["saturation"] = int(record.split()[2]) continue if "Detector_distance" in record: header["distance"] = 1000 * float(record.split()[2]) continue if "Wavelength" in record: header["wavelength"] = float(record.split()[-2]) continue if "Pixel_size" in record: header["pixel"] = ( 1000 * float(record.split()[2]), 1000 * float(record.split()[5]), ) continue if "Beam_xy" in record: # N.B. this is swapped again for historical reasons beam_pixels = map( float, record.replace("(", "").replace(")", "").replace(",", "").split()[2:4], ) header["beam"] = ( beam_pixels[1] * header["pixel"][1], beam_pixels[0] * header["pixel"][0], ) header["raw_beam"] = ( beam_pixels[1] * header["pixel"][1], beam_pixels[0] * header["pixel"][0], ) continue # try to get the date etc. literally. try: datestring = record.split()[-1].split(".")[0] format = "%Y-%b-%dT%H:%M:%S" struct_time = time.strptime(datestring, format) header["date"] = time.asctime(struct_time) header["epoch"] = time.mktime(struct_time) except Exception: pass try: if not "date" in header: datestring = record.split()[-1].split(".")[0] format = "%Y-%m-%dT%H:%M:%S" struct_time = time.strptime(datestring, format) header["date"] = time.asctime(struct_time) header["epoch"] = time.mktime(struct_time) except Exception: pass try: if not "date" in header: datestring = record.replace("#", "").strip().split(".")[0] format = "%Y/%b/%d %H:%M:%S" struct_time = time.strptime(datestring, format) header["date"] = time.asctime(struct_time) header["epoch"] = time.mktime(struct_time) except Exception: pass header["phi_end"] = header["phi_start"] + header["phi_width"] return header last_format = None def failover_dxtbx(image_file): """Failover to use the dxtbx to read the image headers...""" # replacement dxtbx for rigaku saturns sometimes from dxtbx.format.Registry import Registry from dxtbx.model.detector_helpers_types import detector_helpers_types global last_format if last_format: iformat = last_format else: iformat = Registry.find(image_file) from xia2.Handlers.Streams import Debug Debug.write("Using dxtbx format instance: %s" % iformat.__name__) if not iformat.understand(image_file): raise RuntimeError("image file %s not understood by dxtbx" % image_file) last_format = iformat i = iformat(image_file) b = i.get_beam() g = i.get_goniometer() d = i.get_detector() s = i.get_scan() header = {} if not hasattr(d, "get_image_size"): # cope with new detector as array of panels dxtbx api fast, slow = map(int, d[0].get_image_size()) _f, _s = d[0].get_pixel_size() F = matrix.col(d[0].get_fast_axis()) S = matrix.col(d[0].get_slow_axis()) N = F.cross(S) origin = matrix.col(d[0].get_origin()) else: fast, slow = map(int, d.get_image_size()) _f, _s = d.get_pixel_size() F = matrix.col(d.get_fast_axis()) S = matrix.col(d.get_slow_axis()) N = F.cross(S) origin = matrix.col(d.get_origin()) beam = matrix.col(b.get_sample_to_source_direction()) # FIXME detector has methods to compute the beam centre now... centre = -(origin - origin.dot(N) * N) x = centre.dot(F) y = centre.dot(S) header["fast_direction"] = F.elems header["slow_direction"] = S.elems header["rotation_axis"] = g.get_rotation_axis() if hasattr(s, "get_exposure_time"): header["exposure_time"] = s.get_exposure_time() else: header["exposure_time"] = s.get_exposure_times()[0] header["distance"] = math.fabs(origin.dot(N)) if math.fabs(beam.angle(N, deg=True) - 180) < 0.1: header["two_theta"] = 180 - beam.angle(N, deg=True) else: header["two_theta"] = -beam.angle(N, deg=True) header["raw_beam"] = x, y header["phi_start"] = s.get_oscillation()[0] header["phi_width"] = s.get_oscillation()[1] header["phi_end"] = sum(s.get_oscillation()) header["pixel"] = _f, _s # FIXME this is very bad as it relates to teh legacy backwards Mosflm # beam centre standard still... FIXME-SCI-948 header["beam"] = y, x header["epoch"] = s.get_image_epoch(s.get_image_range()[0]) header["date"] = time.ctime(header["epoch"]) header["wavelength"] = b.get_wavelength() header["size"] = fast, slow if hasattr(i, "detector_class"): header["detector_class"] = i.detector_class header["detector"] = i.detector else: if hasattr(d, "get_type"): # cope with new detector as array of panels API dtype = d.get_type() else: dtype = d[0].get_type() detector_type = detector_helpers_types.get( dtype, fast, slow, int(1000 * _f), int(1000 * _s) ) header["detector_class"] = detector_type.replace("-", " ") header["detector"] = detector_type.split("-")[0] return header def Diffdump(DriverType=None): """A factory for wrappers for the diffdump.""" DriverInstance = DriverFactory.Driver(DriverType) class DiffdumpWrapper(DriverInstance.__class__): """Provide access to the functionality in diffdump.""" def __init__(self): DriverInstance.__class__.__init__(self) self.set_executable("diffdump") self._image = None self._header = {} self._previous_crashed = False return def set_image(self, image): """Set an image to read the header of.""" self._image = image self._header = {} return def _get_time(self, datestring): """Unpack a date string to a structure.""" if not datestring: raise RuntimeError("empty date") if datestring == "N/A": # we don't have the date! # set default to 0-epoch return datetime.datetime(1970, 0, 0, 0, 0, 0).timetuple(), 0.0 # problem here is multiple formats for date strings! # so have to change the structure... # FIXME! # pilatus: 2007/Sep/22 21:15:03.229 # format: %Y/%b/%d %H:%M:%S # allow for milliseconds ms = 0.0 struct_time = None try: format = "%Y/%b/%d %H:%M:%S" ms = 0.001 * int(datestring.split(".")[1]) _datestring = datestring.split(".")[0] struct_time = time.strptime(_datestring, format) except Exception: struct_time = None # ADSC CBF format if not struct_time: try: format = "%d/%m/%Y %H:%M:%S" ms = 0.001 * int(datestring.split(".")[1]) _datestring = datestring.split(".")[0] struct_time = time.strptime(_datestring, format) except Exception: struct_time = None if not struct_time: try: struct_time = time.strptime(datestring) except Exception: struct_time = None if not struct_time: # this may be a mar format date... # MMDDhhmmYYYY.ss - go figure # or it could also be the format from # saturn images like: # 23-Oct-2006 13:42:36 if not "-" in datestring: month = int(datestring[:2]) day = int(datestring[2:4]) hour = int(datestring[4:6]) minute = int(datestring[6:8]) year = int(datestring[8:12]) second = int(datestring[-2:]) d = datetime.datetime(year, month, day, hour, minute, second) struct_time = d.timetuple() else: struct_time = time.strptime(datestring, "%d-%b-%Y %H:%M:%S") return struct_time, ms def _epoch(self, datestring): """Compute an epoch from a date string.""" t, ms = self._get_time(datestring) return time.mktime(t) + ms def _date(self, datestring): """Compute a human readable date from a date string.""" return time.asctime(self._get_time(datestring)[0]) def readheader(self): """Read the image header.""" if self._header: return copy.deepcopy(self._header) if HeaderCache.check(self._image): self._header = HeaderCache.get(self._image) return copy.deepcopy(self._header) if os.path.getsize(self._image) == 0: raise RuntimeError("empty file: %s" % self._image) if not self._previous_crashed: try: return self.readheader_diffdump() except Exception: self._previous_crashed = True try: self._header = failover_dxtbx(self._image) HeaderCache.put(self._image, self._header) return copy.deepcopy(self._header) except Exception: traceback.print_exc(file=sys.stdout) def readheader_diffdump(self): """Read the image header.""" global detector_class # check that the input file exists.. if not os.path.exists(self._image): raise RuntimeError("image %s does not exist" % self._image) # consider using more recent code to read these images in # first instance, to replace diffdump try: if ".cbf" in self._image[-4:]: header = failover_cbf(self._image) assert header["detector_class"] in ["pilatus 2M", "pilatus 6M"] self._header = header HeaderCache.put(self._image, self._header) return copy.deepcopy(self._header) except Exception: if ".cbf" in self._image[-4:]: header = failover_full_cbf(self._image) self._header = header HeaderCache.put(self._image, self._header) return copy.deepcopy(self._header) self.clear_command_line() self.add_command_line(self._image) self.start() self.close_wait() # why is this commented out? # self.check_for_errors() # results were ok, so get all of the output out output = self.get_all_output() if debug: print("! all diffdump output follows") for o in output: print("! %s" % o[:-1]) # note that some of the records in the image header # will depend on the detector class - this should # really be fixed in the program diffdump... detector = None fudge = { "adsc": {"wavelength": 1.0, "pixel": 1.0}, "dectris": {"wavelength": 1.0, "pixel": 1.0}, "rigaku": {"wavelength": 1.0, "pixel": 1.0}, "raxis": {"wavelength": 1.0, "pixel": 1.0}, "saturn": {"wavelength": 1.0, "pixel": 1.0}, "marccd": {"wavelength": 1.0, "pixel": 0.001}, "mini-cbf": {"wavelength": 1.0, "pixel": 1.0}, "cbf": {"wavelength": 1.0, "pixel": 1.0}, "mar": {"wavelength": 1.0, "pixel": 1.0}, } cbf_format = False for o in output: l = o.split(":") if len(l) > 1: l2 = l[1].split() else: l2 = "" # latest version of diffdump prints out manufacturer in # place of image type... if ("Image type" in o) or ("Manufacturer" in o): if debug: print("! found image type: %s" % l[1].strip().lower()) self._header["detector"] = l[1].strip().lower() # correct spelling, perhaps if self._header["detector"] == "mar ccd": self._header["detector"] = "marccd" if self._header["detector"] == "mar 345": self._header["detector"] = "mar" if self._header["detector"] == "rigaku saturn": self._header["detector"] = "saturn" if self._header["detector"] == "rigaku raxis": self._header["detector"] = "raxis" if self._header["detector"] == "rigaku r-axis": self._header["detector"] = "raxis" detector = self._header["detector"] if "Format" in o: if o.split()[-1] == "CBF": cbf_format = True # FIXME in here need to check a trust file timestamp flag if "Exposure epoch" in o or "Collection date" in o: try: d = o[o.index(":") + 1 :] if d.strip(): self._header["epoch"] = self._epoch(d.strip()) self._header["date"] = self._date(d.strip()) if debug: print( "! exposure epoch: %d" % int(self._header["epoch"]) ) else: self._header["epoch"] = 0.0 self._header["date"] = "" except Exception as e: if debug: print("! error interpreting date: %s" % str(e)) # this is badly formed.... # so perhaps read the file creation date? # time.ctime(os.stat(filename)[8]) -> date # os.stat(filename)[8] -> epoch self._header["epoch"] = float(os.stat(self._image)[8]) self._header["date"] = time.ctime(self._header["epoch"]) # self._header['epoch'] = 0.0 # self._header['date'] = '' if "Exposure time" in o: self._header["exposure_time"] = float(l2[0]) if "Wavelength" in o: self._header["wavelength"] = ( float(l2[0]) * fudge[detector]["wavelength"] ) if debug: print("! found wavelength: %f" % self._header["wavelength"]) if "Distance" in o: self._header["distance"] = float(l[1].replace("mm", "").strip()) if "Beam cent" in o: beam = ( l[1] .replace("(", "") .replace(")", "") .replace("mm", " ") .split(",") ) self._header["beam"] = map(float, beam) self._header["raw_beam"] = map(float, beam) if "Image Size" in o: image = l[1].replace("px", "") image = image.replace("(", "").replace(")", "").split(",") self._header["size"] = map(float, image) if "Pixel Size" in o: image = l[1].replace("mm", "") x, y = image.replace("(", "").replace(")", "").split(",") if detector == "marccd" and math.fabs(float(x)) < 1.0: self._header["pixel"] = (float(x), float(y)) else: self._header["pixel"] = ( float(x) * fudge[detector]["pixel"], float(y) * fudge[detector]["pixel"], ) if "Angle range" in o: phi = map(float, l[1].split("->")) self._header["phi_start"] = phi[0] self._header["phi_end"] = phi[1] self._header["phi_width"] = phi[1] - phi[0] if "Oscillation" in o: phi = map(float, l[1].replace("deg", "").split("->")) self._header["phi_start"] = phi[0] self._header["phi_end"] = phi[1] self._header["phi_width"] = phi[1] - phi[0] if "Oscillation range" in o: phi = map(float, l[1].replace("deg", "").split("->")) self._header["phi_start"] = phi[0] self._header["phi_end"] = phi[1] self._header["phi_width"] = phi[1] - phi[0] if "Two Theta value" in o: try: two_theta = float(o.split(":")[1].split()[0]) self._header["two_theta"] = two_theta * -1.0 except ValueError: self._header["two_theta"] = 0.0 # check to see if the beam centre needs to be converted # from pixels to mm - e.g. MAR 300 images from APS ID 23 if ( "beam" in self._header and "pixel" in self._header and "size" in self._header ): # look to see if the current beam is somewhere in the middle # pixel count wise... beam = self._header["beam"] size = self._header["size"] pixel = self._header["pixel"] if math.fabs((beam[0] - 0.5 * size[0]) / size[0]) < 0.25: new_beam = (beam[0] * pixel[0], beam[1] * pixel[1]) self._header["beam"] = new_beam # check beam centre is sensible i.e. not NULL if ( math.fabs(self._header["beam"][0]) < 0.01 and math.fabs(self._header["beam"][1]) < 0.01 ): size = self._header["size"] pixel = self._header["pixel"] self._header["beam"] = ( 0.5 * size[0] * pixel[0], 0.5 * size[1] * pixel[1], ) if ( "detector" in self._header and "pixel" in self._header and "size" in self._header ): # compute the detector class detector = self._header["detector"] width = int(self._header["size"][0]) pixel = int(1000 * self._header["pixel"][0]) key = (detector, width, pixel) self._header["detector_class"] = detector_class[key] # check for mar ccd and perhaps reassign if detector == "mar" and "ccd" in self._header["detector_class"]: self._header["detector"] = "marccd" # currently diffdump swaps x, y in beam centre output if self._header["detector_class"] == "pilatus 2M": x, y = self._header["beam"] self._header["beam"] = y, x x, y = self._header["raw_beam"] self._header["raw_beam"] = y, x else: self._header["detector_class"] = "unknown" # quickly check diffdump didn't do something stupid... if detector == "adsc" and not cbf_format: osc_start = 0.0 osc_range = 0.0 size = int(open(self._image, "r").read(20).split()[-1]) hdr = open(self._image, "r").read(size) for record in hdr.split("\n"): if "OSC_START" in record: osc_start = float(record.replace(";", "").split("=")[-1]) if "OSC_RANGE" in record: osc_range = float(record.replace(";", "").split("=")[-1]) self._header["phi_start"] = osc_start self._header["phi_width"] = osc_range self._header["phi_end"] = osc_start + osc_range if detector == "adsc" and abs(header["two_theta"]) > 1.0: raise RuntimeError("adsc + two-theta not supported") HeaderCache.put(self._image, self._header) return copy.deepcopy(self._header) def gain(self): """Estimate gain for this image.""" # check that the input file exists.. if not os.path.exists(self._image): raise RuntimeError("image %s does not exist" % self._image) self.add_command_line("-gain") self.add_command_line(self._image) self.start() self.close_wait() self.check_for_errors() # results were ok, so get all of the output out output = self.get_all_output() gain = 0.0 for o in output: l = o.split(":") if "Estimation of gain" in o: # This often seems to be an underestimate... gain = 1.333 * float(l[1]) return gain return DiffdumpWrapper() ``` #### File: Wrappers/XIA/FrenchWilson.py ```python from __future__ import absolute_import, division, print_function import os from xia2.Driver.DriverFactory import DriverFactory def FrenchWilson(DriverType=None): """A factory for FrenchWilsonWrapper classes.""" DriverInstance = DriverFactory.Driver(DriverType) class FrenchWilsonWrapper(DriverInstance.__class__): """A wrapper for cctbx French and Wilson analysis.""" def __init__(self): DriverInstance.__class__.__init__(self) self.set_executable("cctbx.python") self._anomalous = False self._nres = 0 # should we do wilson scaling? self._wilson = True self._b_factor = 0.0 self._moments = None self._wilson_fit_grad = 0.0 self._wilson_fit_grad_sd = 0.0 self._wilson_fit_m = 0.0 self._wilson_fit_m_sd = 0.0 self._wilson_fit_range = None # numbers of reflections in and out, and number of absences # counted self._nref_in = 0 self._nref_out = 0 self._nabsent = 0 self._xmlout = None def set_anomalous(self, anomalous): self._anomalous = anomalous def set_wilson(self, wilson): """Set the use of Wilson scaling - if you set this to False Wilson scaling will be switched off...""" self._wilson = wilson def set_hklin(self, hklin): self._hklin = hklin def get_hklin(self): return self._hklin def set_hklout(self, hklout): self._hklout = hklout def get_hklout(self): return self._hklout def check_hklout(self): return self.checkHklout() def get_xmlout(self): return self._xmlout def truncate(self): """Actually perform the truncation procedure.""" from xia2.Modules import CctbxFrenchWilson as fw_module self.add_command_line(fw_module.__file__) self.add_command_line(self._hklin) self.add_command_line("hklout=%s" % self._hklout) if self._anomalous: self.add_command_line("anomalous=true") else: self.add_command_line("anomalous=false") self.start() self.close_wait() try: self.check_for_errors() except RuntimeError: try: os.remove(self.get_hklout()) except Exception: pass raise RuntimeError("truncate failure") lines = self.get_all_output() for i, line in enumerate(lines): if "ML estimate of overall B value:" in line: self._b_factor = float(lines[i + 1].strip().split()[0]) def get_b_factor(self): return self._b_factor def get_wilson_fit(self): return ( self._wilson_fit_grad, self._wilson_fit_grad_sd, self._wilson_fit_m, self._wilson_fit_m_sd, ) def get_wilson_fit_range(self): return self._wilson_fit_range def get_moments(self): return self._moments def get_nref_in(self): return self._nref_in def get_nref_out(self): return self._nref_out def get_nabsent(self): return self._nabsent return FrenchWilsonWrapper() ``` #### File: Wrappers/XIA/Printpeaks.py ```python from __future__ import absolute_import, division, print_function import math import os from xia2.Driver.DriverFactory import DriverFactory from xia2.Wrappers.XIA.Diffdump import Diffdump from xia2.Wrappers.XIA.PrintpeaksMosflm import PrintpeaksMosflm def Printpeaks(DriverType=None): """A factory for wrappers for the printpeaks.""" if not "XIA2_USE_PRINTPEAKS" in os.environ: return PrintpeaksMosflm(DriverType=DriverType) DriverInstance = DriverFactory.Driver(DriverType) class PrintpeaksWrapper(DriverInstance.__class__): """Provide access to the functionality in printpeaks.""" def __init__(self): DriverInstance.__class__.__init__(self) self.set_executable("printpeaks") self._image = None self._peaks = {} def set_image(self, image): """Set an image to read the header of.""" self._image = image self._peaks = {} def get_maxima(self): """Run diffdump, printpeaks to get a list of diffraction maxima at their image positions, to allow for further analysis.""" if not self._image: raise RuntimeError("image not set") if not os.path.exists(self._image): raise RuntimeError("image %s does not exist" % self._image) dd = Diffdump() dd.set_image(self._image) header = dd.readheader() beam = header["raw_beam"] pixel = header["pixel"] self.add_command_line(self._image) self.start() self.close_wait() self.check_for_errors() # results were ok, so get all of the output out output = self.get_all_output() peaks = [] for record in output: if not "Peak" in record[:4]: continue lst = record.replace(":", " ").split() x = float(lst[4]) y = float(lst[6]) i = float(lst[-1]) x += beam[0] y += beam[1] x /= pixel[0] y /= pixel[1] peaks.append((x, y, i)) return peaks def printpeaks(self): """Run printpeaks and get the list of peaks out, then decompose this to a histogram.""" if not self._image: raise RuntimeError("image not set") if not os.path.exists(self._image): raise RuntimeError("image %s does not exist" % self._image) self.add_command_line(self._image) self.start() self.close_wait() self.check_for_errors() # results were ok, so get all of the output out output = self.get_all_output() peaks = [] self._peaks = {} for record in output: if not "Peak" in record[:4]: continue intensity = float(record.split(":")[-1]) peaks.append(intensity) # now construct the histogram log_max = int(math.log10(peaks[0])) + 1 max_limit = int(math.pow(10.0, log_max)) for limit in [5, 10, 20, 50, 100, 200, 500, 1000]: if limit > max_limit: continue self._peaks[float(limit)] = len([j for j in peaks if j > limit]) return self._peaks def threshold(self, nspots): if not self._peaks: peaks = self.printpeaks() else: peaks = self._peaks keys = sorted(peaks.keys()) keys.reverse() for thresh in keys: if peaks[thresh] > nspots: return thresh return min(keys) def screen(self): if not self._image: raise RuntimeError("image not set") if not os.path.exists(self._image): raise RuntimeError("image %s does not exist" % self._image) self.add_command_line("-th") self.add_command_line("10") self.add_command_line(self._image) self.start() self.close_wait() self.check_for_errors() # results were ok, so get all of the output out output = self.get_all_output() peaks = [] self._peaks = {} for record in output: if not "Peak" in record[:4]: continue intensity = float(record.split(":")[-1]) peaks.append(intensity) print(len(peaks), max(peaks)) if len(peaks) < 10: return "blank" return "ok" def getpeaks(self): """Just get the list of peaks out, as (x, y, i).""" if not self._image: raise RuntimeError("image not set") if not os.path.exists(self._image): raise RuntimeError("image %s does not exist" % self._image) self.add_command_line(self._image) self.start() self.close_wait() self.check_for_errors() # results were ok, so get all of the output out output = self.get_all_output() peaks = [] for record in output: if not "Peak" in record[:4]: continue lst = record.split(":") x = float(lst[1].split()[0]) y = float(lst[2].split()[0]) i = float(lst[4]) peaks.append((x, y, i)) return peaks return PrintpeaksWrapper() ```
{ "source": "jorgediazjr/fast_dp", "score": 3 }
#### File: fast_dp/lib/xds_reader.py ```python import sys import re from cell_spacegroup import constrain_cell, lattice_to_spacegroup from pointless_reader import read_pointless_xml def read_xds_idxref_lp(idxref_lp_file): '''Read the XDS IDXREF.LP file and return a dictionary indexed by the spacegroup number (ASSERT: this is the lowest symmetry spacegroup for the corresponding lattice) containing unit cell constants and a penalty. N.B. this also works from CORRECT.LP for the autoindexing results.''' # try doing this with regular expression: * int lattice...` regexp = re.compile(r'^ \*\ ') results = {} for record in open(idxref_lp_file, 'r').readlines(): if regexp.match(record): tokens = record.split() spacegroup = lattice_to_spacegroup(tokens[2]) cell = tuple(map(float, tokens[4:10])) constrained_cell = constrain_cell(tokens[2][0], cell) penalty = float(tokens[3]) if spacegroup in results: if penalty < results[spacegroup][0]: results[spacegroup] = penalty, constrained_cell else: results[spacegroup] = penalty, constrained_cell if 'DETECTOR COORDINATES (PIXELS) OF DIRECT BEAM' in record: results['beam centre pixels'] = map(float, record.split()[-2:]) assert('beam centre pixels' in results) return results def read_xds_correct_lp(correct_lp_file): '''Read the XDS CORRECT.LP file and get out the spacegroup and unit cell constants it decided on.''' unit_cell = None space_group_number = None for record in open(correct_lp_file, 'r').readlines(): if 'SPACE_GROUP_NUMBER=' in record: try: space_group_number = int(record.split()[-1]) except: space_group_number = 0 if 'UNIT_CELL_CONSTANTS=' in record and 'used' not in record: unit_cell = tuple(map(float, record.split()[-6:])) return unit_cell, space_group_number def read_correct_lp_get_resolution(correct_lp_file): '''Read the CORRECT.LP file and get an estimate of the resolution limit. This should then be recycled to a rerun of CORRECT, from which the reflections will be merged to get the statistics.''' correct_lp = open(correct_lp_file, 'r').readlines() rec = -1 for j in range(len(correct_lp)): record = correct_lp[j] if 'RESOLUTION RANGE I/Sigma Chi^2 R-FACTOR R-FACTOR' in record: rec = j + 3 break if rec < 0: raise RuntimeError('resolution information not found') j = rec while '--------' not in correct_lp[j]: isigma = float(correct_lp[j].split()[2]) if isigma < 1: return float(correct_lp[j].split()[1]) j += 1 # this will assume that strong reflections go to the edge of the detector # => do not need to feed back a resolution limit... return None ```
{ "source": "jorgediazjr/zero_fast_dp", "score": 2 }
#### File: zero_fast_dp/lib/cell_spacegroup.py ```python import os from cctbx import xray from cctbx.sgtbx import space_group from cctbx.sgtbx import space_group_symbols from cctbx.uctbx import unit_cell from cctbx.crystal import symmetry import sys if sys.version_info < (3, 0): version = 2 def ersatz_pointgroup(spacegroup_name): '''Guess the pointgroup for the spacegroup by mapping from short to long name, then taking 1st character from each block.''' pg = None for record in open( os.path.join(os.environ['CLIBD'], 'symop.lib'), 'r').readlines(): if ' ' in record[:1]: continue if spacegroup_name == record.split()[3]: pg = record.split()[4][2:] elif spacegroup_name == record.split('\'')[1].replace(' ', ''): pg = record.split()[4][2:] if not pg: if version == 2: try: raise RuntimeError, 'spacegroup %s unknown' % spacegroup_name except: pass else: raise RuntimeError('spacegroup {} unknown'.format(spacegroup_name)) # FIXME this is probably not correct for small molecule work... # just be aware of this, in no danger right now of handling non-chiral # spacegroups if '/' in pg: pg = pg.split('/')[0] result = spacegroup_name[0] + pg if 'H3' in result: result = result.replace('H3', 'R3') return result def spacegroup_to_lattice(input_spacegroup): ''' This generates a lattics from a the imported file bu chopping off the first letter of the cell type, changing to lowercase and then prepending it to the first letter of the spacegroup.''' def fix_hH(lattice): if lattice != 'hH': return lattice return 'hR' mapping = {'TRICLINIC':'a', 'MONOCLINIC':'m', 'ORTHORHOMBIC':'o', 'TETRAGONAL':'t', 'TRIGONAL':'h', 'HEXAGONAL':'h', 'CUBIC':'c'} if type(input_spacegroup) == type(u''): input_spacegroup = str(input_spacegroup) if type(input_spacegroup) == type(''): for record in open( os.path.join(os.environ['CLIBD'], 'symop.lib'), 'r').readlines(): if ' ' in record[:1]: continue if input_spacegroup == record.split()[3]: return fix_hH(mapping[record.split()[5]] + record.split()[3][0]) elif type(input_spacegroup) == type(0): for record in open( os.path.join(os.environ['CLIBD'], 'symop.lib'), 'r').readlines(): if ' ' in record[:1]: continue if input_spacegroup == int(record.split()[0]): return fix_hH(mapping[record.split()[5]] + record.split()[3][0]) else: if version == 2: try: raise RuntimeError, 'bad type for input: %s' % type(input_spacegroup) except: pass else: raise RuntimeError('bad type for input: {}'.format(type(input_spacegroup))) return None def check_spacegroup_name(spacegroup_name): '''Will return normalised name if spacegroup name is recognised, raise exception otherwise. For checking command-line options.''' try: j = int(spacegroup_name) if j > 230 or j <= 0: if version == 2: try: raise RuntimeError, 'spacegroup number nonsense: %s' \ % spacegroup_name except: pass else: raise RuntimeError('spacegroup number nonsense: {}'.format( spacegroup_name)) return spacegroup_number_to_name(j) except ValueError as e: pass found_spacegroup = None for record in open( os.path.join(os.environ['CLIBD'], 'symop.lib'), 'r').readlines(): if ' ' in record[:1]: continue if spacegroup_name == record.split()[3]: return spacegroup_name if version == 2: try: raise RuntimeError, 'spacegroup name "%s" not recognised' % spacegroup_name except: pass else: raise RuntimeError('spacegroup name "{}" not recognised'.format(spacegroup_name)) def check_split_cell(cell_string): '''Will return tuple of floats a, b, c, alpha, beta, gamma from input cell string which contains a,b,c,alpha,beta,gamma raising an exception if there is a problem.''' ideal_string = 'a,b,c,alpha,beta,gamma' if not cell_string.count(',') == 5: if version == 2: try: raise RuntimeError, '%s should be of the form %s' % \ (cell_string, ideal_string) except: pass else: raise RuntimeError('{} should be of the form {}'.format( cell_string, ideal_string)) a, b, c, alpha, beta, gamma = tuple( map(float, cell_string.split(','))) return a, b, c, alpha, beta, gamma def constrain_cell(lattice_class, cell): '''Constrain cell to fit lattice class x.''' a, b, c, alpha, beta, gamma = cell if lattice_class == 'a': return (a, b, c, alpha, beta, gamma) elif lattice_class == 'm': return (a, b, c, 90.0, beta, 90.0) elif lattice_class == 'o': return (a, b, c, 90.0, 90.0, 90.0) elif lattice_class == 't': e = (a + b) / 2.0 return (e, e, c, 90.0, 90.0, 90.0) elif lattice_class == 'h': e = (a + b) / 2.0 return (e, e, c, 90.0, 90.0, 120.0) elif lattice_class == 'c': e = (a + b + c) / 3.0 return (e, e, e, 90.0, 90.0, 90.0) if version == 2: try: raise RuntimeError, 'lattice class not recognised: %s' % lattice_class except: pass else: raise RuntimeError('lattice class not recognised: {}'.format(lattice_class)) def spacegroup_number_to_name(spg_num): '''Convert a spacegroup number to a more readable name.''' database = {} for record in open( os.path.join(os.environ['CLIBD'], 'symop.lib'), 'r').readlines(): if ' ' in record[:1]: continue number = int(record.split()[0]) name = record.split('\'')[1].strip() database[number] = name return database[spg_num] def lattice_to_spacegroup(lattice): ''' Converts a lattice to the spacegroup with the lowest symmetry possible for that lattice''' l2s = { 'aP':1, 'mP':3, 'mC':5, 'mI':5, 'oP':16, 'oC':21, 'oI':23, 'oF':22, 'tP':75, 'tI':79, 'hP':143, 'hR':146, 'hH':146, 'cP':195, 'cF':196, 'cI':197 } return l2s[lattice] def lauegroup_to_lattice(lauegroup): '''Convert a Laue group representation (from pointless, e.g. I m m m) to something useful, like the implied crystal lattice (in this case, oI.)''' # this has been calculated from the results of Ralf GK's sginfo and a # little fiddling... # # 19/feb/08 added mI record as pointless has started producing this - # why??? this is not a "real" spacegroup... may be able to switch this # off... # 'I2/m': 'mI', lauegroup_to_lattice = {'Ammm': 'oA', 'C2/m': 'mC', 'I2/m': 'mI', 'Cmmm': 'oC', 'Fm-3': 'cF', 'Fm-3m': 'cF', 'Fmmm': 'oF', 'H-3': 'hR', 'H-3m': 'hR', 'R-3:H': 'hR', 'R-3m:H': 'hR', 'R-3': 'hR', 'R-3m': 'hR', 'I4/m': 'tI', 'I4/mmm': 'tI', 'Im-3': 'cI', 'Im-3m': 'cI', 'Immm': 'oI', 'P-1': 'aP', 'P-3': 'hP', 'P-3m': 'hP', 'P2/m': 'mP', 'P4/m': 'tP', 'P4/mmm': 'tP', 'P6/m': 'hP', 'P6/mmm': 'hP', 'Pm-3': 'cP', 'Pm-3m': 'cP', 'Pmmm': 'oP'} updated_laue = '' for l in lauegroup.split(): if not l == '1': updated_laue += l return lauegroup_to_lattice[updated_laue] def generate_primitive_cell(unit_cell_constants, space_group_name): '''For a given set of unit cell constants and space group, determine the corresponding primitive unit cell...''' uc = unit_cell(unit_cell_constants) sg = space_group(space_group_symbols(space_group_name).hall()) cs = symmetry(unit_cell = uc, space_group = sg) csp = cs.change_basis(cs.change_of_basis_op_to_primitive_setting()) return csp.unit_cell() if __name__ == '__main__': for token in sys.argv[1:]: print ersatz_pointgroup(token) ```
{ "source": "Jorgedlara/challenge-python-03", "score": 3 }
#### File: challenge-python-03/src/main.py ```python import re def run(): with open ('encoded.txt', 'r', encoding='utf-8') as f: texto_cifrado = f.read() mensaje = "" mensaje = re.findall("[a-z]", texto_cifrado) mensaje_oculto = ''.join(mensaje) print(mensaje_oculto) if __name__ == '__main__': run() ```
{ "source": "jorgedouglas71/pyplan-ide", "score": 2 }
#### File: pyplan_engine/application/views.py ```python import os from django.http import HttpResponse, JsonResponse from django.shortcuts import render from rest_framework import status from rest_framework.decorators import api_view from rest_framework.response import Response from pyplan_engine.classes.Application import Application from pyplan_engine.utils.exception_handler import genericApiException @api_view(["GET"]) def test(request): try: return JsonResponse({"app": "OK"}, safe=False) except Exception as e: return genericApiException(e) @api_view(["GET"]) def getStatus(request): """GET app status""" try: app = Application() return JsonResponse(app.getStatus(), safe=False) except Exception as e: return genericApiException(e) @api_view(["GET"]) def sleep(request): """ Try sleep 10 seconds """ try: import time time.sleep(10) return JsonResponse({"sleep": "OK"}, safe=False) except ValueError as e: return genericApiException(e) @api_view(["GET"]) def checkRead(request): """Check read""" try: _path = request.query_params.get("path") import os res = str(os.listdir(_path)) return HttpResponse(res) except ValueError as e: return genericApiException(e) @api_view(["GET"]) def checkWrite(request): """Check write""" try: _path = request.query_params.get("path") import os _file = open(_path + "test.txt", "w") _file.write("engine write test") _file.close() return HttpResponse(_path + "test.txt") except ValueError as e: return genericApiException(e) @api_view(["GET"]) def healthCheck(request, *args, **kargs): return Response(status=status.HTTP_200_OK) @api_view(["GET"]) def cmdtest(request, *args, **kargs): _cmd = request.query_params.get("cmd") _list = str(_cmd).split(",") import subprocess p = subprocess.Popen(_list, stdout=subprocess.PIPE) out = p.stdout.read() out = str(out).replace("\\n", "<br>") return HttpResponse(out) ``` #### File: classes/evaluators/PandasEvaluator.py ```python import json import numpy as np import pandas as pd from pyplan_engine.classes.evaluators.BaseEvaluator import BaseEvaluator from pyplan_engine.common.classes.filterChoices import filterChoices from pyplan_engine.common.classes.indexValuesReq import IndexValuesReq from cubepy.cube import kindToString class PandasEvaluator(BaseEvaluator): PAGESIZE = 100 def evaluateNode(self, result, nodeDic, nodeId, dims=None, rows=None, columns=None, summaryBy="sum", bottomTotal=False, rightTotal=False, fromRow=0, toRow=0): sby = np.nansum if summaryBy == 'avg': sby = np.nanmean elif summaryBy == 'max': sby = np.nanmax elif summaryBy == 'min': sby = np.nanmin if (fromRow is None) or int(fromRow) <= 0: fromRow = 1 if (toRow is None) or int(toRow) < 1: toRow = 100 fromRow = int(fromRow) toRow = int(toRow) _filters = {} _rows = [] _columns = [] theResult = self.prepareDataframeForTable(result) if not rows is None: for row in rows: if self.hasDim(theResult, str(row["field"]).split(".")[0]): _rows.append(str(row["field"]).split(".")[0]) self.addToFilter(row, _filters) if not columns is None: for column in columns: if self.hasDim(theResult, str(column["field"]).split(".")[0]): _columns.append(str(column["field"]).split(".")[0]) self.addToFilter(column, _filters) if not dims is None: for dim in dims: if self.hasDim(theResult, str(dim["field"]).split(".")[0]): self.addToFilter(dim, _filters) res = None pageInfo = None dfResult = None if len(_rows) == 0 and len(_columns) == 0: dfResult = self.applyFilter(theResult, _filters) # if have indexes sum all if not dfResult.index is None and not dfResult.index.names is None and len(dfResult.index.names) > 0 and not dfResult.index.names[0] is None: serieResult = dfResult.agg(sby) dfResult = pd.DataFrame({"total": serieResult}).T else: needT = False if len(_rows) == 0: needT = True aux = _rows _rows = _columns _columns = aux _filteredDataFrame = self.applyFilter(theResult, _filters) # Don't use margins = True to obtain totals. This have a bug for dataframes with more than 5 level indexes dfResult = pd.DataFrame.pivot_table( _filteredDataFrame, index=_rows, columns=_columns, aggfunc=sby, margins=False, margins_name="Total") if needT: dfResult = dfResult.T aux = _rows _rows = _columns _columns = aux if bottomTotal and dfResult.shape[0] > 1: row_total = sby(dfResult.values, axis=0) new_values = np.concatenate( [dfResult.values, [row_total]], axis=0) new_index = pd.Index(np.concatenate( [dfResult.index.values, ["Total"]])) _df = pd.DataFrame( data=new_values, columns=dfResult.columns, index=new_index) dfResult = _df if rightTotal and dfResult.shape[1] > 1: row_total = sby(dfResult.values, axis=1) new_values = np.concatenate( [dfResult.values, row_total.reshape(row_total.size, 1)], axis=1) new_columns = np.concatenate([dfResult.columns, ["Total"]]) _df = pd.DataFrame( data=new_values, columns=new_columns, index=dfResult.index) dfResult = _df if (dfResult.shape[0] > self.PAGESIZE): if int(toRow) > dfResult.shape[0]: toRow = dfResult.shape[0] pageInfo = { "fromRow": int(fromRow), "toRow": int(toRow), "totalRows": dfResult.shape[0] } #res = dfResult[fromRow-1:toRow].to_json(orient='split') _range = list(range(fromRow-1, toRow)) if bottomTotal: _range = _range + [len(dfResult)-1] res = dfResult.iloc[_range].to_json( orient='split', date_format='iso') else: res = dfResult[:300].to_json(orient='split', date_format='iso') return self.createResult(res, type(theResult), resultIsJson=True, pageInfo=pageInfo, node=nodeDic[nodeId], onRow=(_rows[0] if len(_rows) > 0 else None), onColumn=(_columns[0] if len(_columns) > 0 else None)) def addToFilter(self, dim, filters): if "values" in dim and dim["values"] is not None and len(dim["values"]) > 0: for itemValue in dim["values"]: field = str(dim["field"]).split(".")[0] # if (field in filters): # filters[field] += " or " + field + "==" + "'" + itemValue["value"] + "'" # else: # filters[field] = "( " + field + "==" + "'" + itemValue["value"] + "'" if (field in filters): filters[field].append(itemValue["value"]) else: filters[field] = [itemValue["value"]] def applyFilter(self, result, filters): if not result is None: if len(filters) > 0: res = result for key in filters: res = res[res.index.get_level_values( key).isin(filters[key])] return res else: return result def hasDim(self, result, dim): if dim in result.index.names: return True elif dim in result.dtypes.index: return True elif dim in result.columns: return True else: return False def isIndexed(self, result): if not result is None: result = self.prepareDataframeForTable(result) obj = result if isinstance(obj, pd.DataFrame): return self._isIndexedDataframe(obj) return False def getIndexes(self, node, result=None): res = [] if not node._result is None: obj = self.prepareDataframeForTable(node._result) if isinstance(obj, pd.DataFrame): if self.isIndexed(obj): res = list(obj.index.names) res = [x + "." + node.identifier for x in res] return res def getIndexesWithLevels(self, node, result=None): res = [] if result is None: result = node._result if not result is None: result = self.prepareDataframeForTable(result) if self.isIndexed(result): for indexItem in result.index.names: itemDim = indexItem.split(",")[0] item = {"field": itemDim+"."+node.identifier, "name": itemDim, "description": "", "levels": []} if node.model.existNode(itemDim): levelNode = node.model.getNode(itemDim) if levelNode.title: item["name"] = levelNode.title item["description"] = levelNode.description if levelNode.numberFormat: item["numberFormat"] = levelNode.numberFormat else: # try generate default formatter if "datetime" in result.index.get_level_values(itemDim).dtype.name: item["numberFormat"] = "2,DD,0,,0,0,4,0,$,5,FULL,0" res.append(item) return res def getIndexValues(self, nodeDic, data: IndexValuesReq, result=None): res = [] if data.node_id: if (not data.node_id is None) & (data.node_id in nodeDic): node = nodeDic[data.node_id] if result is None: result = node.result if (f"{data.index_id}.{data.node_id}") in self.getIndexes(node): if self.isIndexed(result): prepared_result = self.prepareDataframeForTable( node.result) for index in prepared_result.index.levels: if index.name == data.index_id: res = self.checkDateFormat( index.values).tolist() break else: res = result[data.index_id].unique().tolist() elif data.index_id: if result is None: result = nodeDic[data.index_id].result res = list(result) if data.text1: text1 = data.text1.lower() if data.filter == filterChoices.CONTAINS.value: res = list( filter(lambda item: text1 in str(item).lower(), res)) elif data.filter == filterChoices.NOT_CONTAINS.value: res = list( filter(lambda item: not text1 in str(item).lower(), res)) return res def getIndexType(self, nodeDic, nodeId, indexId): numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] res = "S" if nodeId: if (not nodeId is None) & (nodeId in nodeDic): node = nodeDic[nodeId] nodeIndexes = self.getIndexes(node) if (indexId+"."+nodeId) in nodeIndexes: if self.isIndexed(node.result): prepared_result = self.prepareDataframeForTable( node.result) for index in prepared_result.index.levels: if index.name == indexId: res = "S" break else: #res = list(node.result[indexId].unique())[:1000] res = "S" elif indexId in nodeIndexes and isinstance(node.result, cubepy.Cube): if str(node.result.axis(indexId).values.dtype) in numerics: res = "N" else: res = "S" return res def getCubeMetadata(self, result, nodeDic, nodeId): res = None _result = self.prepareDataframeForPivot(result) if isinstance(_result, pd.DataFrame): res = { "dims": [], "measures": [], "aggregator": "sum", "isEditable": False, "nodeProperties": { "title": nodeDic[nodeId].title if not nodeDic[nodeId].title is None else nodeDic[nodeId].identifier, "numberFormat": nodeDic[nodeId].numberFormat } } for dim in self.getCubeIndexes(_result, nodeDic, nodeId): field = dim.split(".")[0] itemDim = { "field": dim, "name": field } if field in nodeDic: if nodeDic[field].numberFormat: itemDim["numberFormat"] = nodeDic[field].numberFormat else: if "datetime" in _result.index.get_level_values(field).dtype.name: itemDim["numberFormat"] = "2,DD,0,,0,0,4,0,$,5,FULL,0" res["dims"].append(itemDim) res["dims"].append({ "field": "data_index", "name": "Data Index" }) numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] for col in _result.columns: res["measures"].append({ "field": str(col), "name": str(col) }) _result = None return res def getCubeIndexes(self, result, nodeDic, nodeId): res = list(result.index.names) res = [x + "." + nodeDic[nodeId].identifier for x in res] return res def getCubeValues(self, result, nodeDic, nodeId, query): _result = self.prepareDataframeForPivot(result) if isinstance(_result, pd.DataFrame): cube_indexes = self.getCubeIndexes(_result, nodeDic, nodeId) _filters = {} if not query["filters"] is None: for dim in query["filters"]: if "values" in dim and dim["values"] is not None and len(dim["values"]) > 0: for itemValue in dim["values"]: field = str(dim["field"]).split(".")[0] if (field in _filters): _filters[field].append(itemValue) else: _filters[field] = [itemValue] _filteredResult = self.applyFilter(_result, _filters) for col in query["columns"]: if col in cube_indexes: item = { "field": col, "count": 0, "values": _filteredResult.index.get_level_values(col.split(".")[0]).unique().tolist() } # "values": _filteredResult[col.split(".")[0]].unique().tolist() item["count"] = len(item["values"]) _cols = [x.split(".")[0] for x in query["columns"]] if len(_cols) == 0: listResult = _filteredResult[query["measures"]].sum( ).reset_index().values.tolist() if len(listResult) > 0 and len(listResult[0]) > 1: if np.isinf(listResult[0][1]): listResult[0][1] = None return [["data_index", "data_value"]] + listResult else: """ # cambiado por lo de abajo para tome columnas con string dfValues = pd.DataFrame.pivot_table(_filteredResult, index=_cols, aggfunc=np.sum) firstCol = query["columns"] + ["data_index","data_value"] res = [firstCol] + dfValues.reset_index().melt(id_vars=_cols, value_vars=query["measures"]).values.tolist() return res """ """ @cambiado por lo de abajo para permitir multiples agrupaciones por medida...muy picante t1= _filteredResult.stack() t1.index.set_names("data_index",level=t1.index.nlevels-1,inplace=True) t2 = t1.iloc[t1.index.get_level_values("data_index").isin(query["measures"]) ].reset_index()[_cols + ["data_index",0]] firstCol = query["columns"] + ["data_index","data_value"] t3 = t2.groupby( _cols + ["data_index"]).aggregate({0:"sum"}).reset_index() res = [firstCol] + t3.values[:10000].tolist() t1=None t2=None t3=None _result = None return res @cambiado por lo de abajo para permitir custom measures ... extra picante """ _measures = list(query["measures"]) useCustomFillMeasures = False try: # test if have groupMeasures property _aa = _result.groupMeasures useCustomFillMeasures = True except AttributeError as ex: pass _groupedDF = None if useCustomFillMeasures: _groupedDF = _filteredResult.groupby( _cols, sort=False).sum() else: _agg = dict() for measure in _measures: # TODO: POR AHORA sum, Mas adelante tomar de la query el tipo de agrupamiento _agg[measure] = "sum" _groupedDF = _filteredResult.groupby( _cols, sort=False).agg(_agg) if useCustomFillMeasures: for key in _result.groupMeasures: _groupedDF[key] = _result.groupMeasures[key]( _groupedDF) finalDF = _groupedDF.reset_index().melt(id_vars=_cols, value_vars=query["measures"], var_name="data_index", value_name="data_value") # fill inf values only if is numeric _kind = finalDF["data_value"].dtype.kind if _kind in {'i', 'u', 'f', 'c'}: if np.isinf(finalDF["data_value"]).any(): finalDF["data_value"][np.isinf( finalDF["data_value"])] = 0 # fill nan values finalDF["data_value"].fillna(0, inplace=True) firstCol = query["columns"] + ["data_index", "data_value"] sortedColumns = [ x.split(".")[0] for x in query["columns"]] + ["data_index", "data_value"] res = [firstCol] + \ finalDF[sortedColumns].values[:1000000].tolist() _result = None return res def getCubeDimensionValues(self, result, nodeDic, nodeId, query): _result = self.prepareDataframeForPivot(result) if isinstance(_result, pd.DataFrame): if len(query["columns"]) > 0: dimension = query["columns"][-1] if dimension in nodeDic[nodeId].indexes: #uniquelist = _result[dimension.split(".")[0]].unique() uniquelist = _result.index.get_level_values( dimension.split(".")[0]).unique() # uniquelist.sort() return uniquelist.sort_values().tolist()[:1000] return [] def previewNode(self, nodeDic, nodeId): from pyplan_engine.classes.Helpers import Helpers from sys import getsizeof res = { "resultType": str(type(nodeDic[nodeId].result)), "dims": [], "columns": [], "console": nodeDic[nodeId].lastEvaluationConsole, "preview": "" } if isinstance(nodeDic[nodeId].result, pd.DataFrame): cube = nodeDic[nodeId].result if self.isIndexed(cube): res["dims"] = list(cube.index.names) for idx, col in enumerate(cube.columns.values[:500]): res["columns"].append( str(col) + " (" + kindToString(cube.dtypes[idx].kind) + ")") res["preview"] += "Rows: " + str(len(cube.index)) #res += "\nColumns: " + ', '.join([''.join(row) for row in cube.columns.values[:500]]) res["preview"] += "\nShape: " + str(cube.shape) res["preview"] += "\nMemory: " + \ str(round(cube.memory_usage(deep=True).sum() / 1024/1024, 2)) + " Mb" #res["preview"] += "\nValues: \n" + str(cube.head(20)) res["preview"] += "\nValues: \n" + cube.head(20).to_string() elif isinstance(nodeDic[nodeId].result, pd.Series): serie = nodeDic[nodeId].result if self.isIndexed(serie): res["dims"] = list(serie.index.names) res["preview"] += "Rows: " + str(len(serie.index)) res["preview"] += "\nMemory: " + \ str(round(serie.memory_usage(deep=True) / 1024/1024, 2)) + " Mb" #res["preview"] += "\nValues: \n" + str(serie.head(20)) res["preview"] += "\nValues: \n" + serie.head(20).to_string() elif isinstance(nodeDic[nodeId].result, pd.Index): res["preview"] = str(nodeDic[nodeId].result)[:1000] return json.dumps(res) def ensureDataFrame(self, result): res = result if isinstance(res, pd.Series): res = pd.DataFrame({"values": res}) return res def exportFlatNode(self, nodeDic, nodeId, numberFormat, columnFormat, fileName): if columnFormat == "tab": columnFormat = "\t" decimalSep = "." if numberFormat == 'TSPDSC': decimalSep = "," _result = self.ensureDataFrame(nodeDic[nodeId].result) if isinstance(_result, pd.DataFrame): _result.to_csv(fileName, sep=columnFormat, encoding="iso-8859-1") return True return False def postCalculate(self, node, result): """Method executed after calculate node """ if node.nodeClass == "index": if isinstance(result, pd.Index) and result.name is None: result.name = node.identifier def copyAsValues(self, result, nodeDic, nodeId): """ Copy node as values """ newDef = "" if isinstance(result, pd.Index): np.set_printoptions(threshold=np.prod(result.values.shape)) values = np.array2string(result.values, separator=",", precision=20, formatter={ 'float_kind': lambda x: repr(x)}).replace('\n', '') newDef = f"result = pd.Index({values})" else: return False nodeDic[nodeId].definition = newDef return True def _isIndexedDataframe(self, dataframe): """Return True if dataframe is an indexed dataframe""" return len(dataframe.index.names) > 1 or not dataframe.index.names[0] is None def prepareDataframeForTable(self, result): """ Prepare dataframe for use un tables and charts """ df = result if isinstance(df, pd.Series): df = pd.DataFrame({"values": df}) if self._isIndexedDataframe(df): if df.size == 0: df["values"] = np.nan elif len(df.columns) > 1: if isinstance(df.columns, pd.MultiIndex): df.columns = df.columns.map(' | '.join) df = df.stack() if isinstance(df, pd.Series): df = pd.DataFrame({"values": df}) current_columns_name = list(df.index.names) current_columns_name[len(current_columns_name)-1] = "Measures" df.index.names = current_columns_name return df def prepareDataframeForPivot(self, result): """ Prepare dataframe for use in pivot cube""" df = result if isinstance(df, pd.Series): df = pd.DataFrame({"values": df}) if self._isIndexedDataframe(df): if isinstance(df.columns, pd.MultiIndex): df.columns = df.columns.map(' | '.join) df = df.select_dtypes(include=['float64', 'int64']) if df.size == 0: df["values"] = np.nan # try to keep group measures try: df.groupMeasures = result.groupMeasures except: pass return df ``` #### File: classes/evaluators/XArrayEvaluator.py ```python import json import math import numpy as np import pandas as pd import xarray as xr from pyplan_engine.classes.evaluators.BaseEvaluator import BaseEvaluator from pyplan_engine.classes.evaluators.PandasEvaluator import PandasEvaluator from pyplan_engine.classes.XHelpers import XHelpers, XIndex from pyplan_engine.common.classes.filterChoices import filterChoices from pyplan_engine.common.classes.indexValuesReq import IndexValuesReq class XArrayEvaluator(BaseEvaluator): PAGESIZE = 100 def evaluateNode(self, result, nodeDic, nodeId, dims=None, rows=None, columns=None, summaryBy="sum", bottomTotal=False, rightTotal=False, fromRow=0, toRow=0): if isinstance(result, xr.DataArray): return self.cubeEvaluate(result, nodeDic, nodeId, dims, rows, columns, summaryBy, bottomTotal, rightTotal, fromRow, toRow) elif isinstance(result, XIndex): return self.indexEvaluate(result, nodeDic, nodeId, dims, rows, columns, summaryBy, bottomTotal, rightTotal, fromRow, toRow) def cubeEvaluate(self, result, nodeDic, nodeId, dims=None, rows=None, columns=None, summaryBy="sum", bottomTotal=False, rightTotal=False, fromRow=0, toRow=0): sby = np.sum if summaryBy == 'avg': sby = np.mean elif summaryBy == 'max': sby = np.max elif summaryBy == 'min': sby = np.min if (fromRow is None) or int(fromRow) <= 0: fromRow = 1 if (toRow is None) or int(toRow) < 1: toRow = 100 fromRow = int(fromRow) toRow = int(toRow) result = self.applyHierarchy( result, nodeDic, nodeId, dims, rows, columns, sby) _filters = {} _rows = [] _columns = [] if not rows is None: for row in rows: if self.hasDim(result, str(row["field"])): _rows.append(str(row["field"]).split(".")[0]) self.addToFilter(nodeDic, row, _filters) if not columns is None: for column in columns: if self.hasDim(result, str(column["field"])): _columns.append(str(column["field"]).split(".")[0]) self.addToFilter(nodeDic, column, _filters) if not dims is None: for dim in dims: if self.hasDim(result, str(dim["field"]).split(".")[0]): self.addToFilter(nodeDic, dim, _filters) tmp = None filteredResult = result if len(_filters) > 0: filteredResult = result.sel(_filters) if len(_rows) == 0 and len(_columns) == 0 and result.ndim > 0: try: tmp = sby(filteredResult) except Exception as ex: if "flexible type" in str(ex): tmp = sby(filteredResult.astype("O")) else: raise ex else: otherDims = [ xx for xx in filteredResult.dims if xx not in (_rows + _columns)] if len(otherDims) > 0: try: tmp = filteredResult.reduce( sby, otherDims).transpose(*(_rows + _columns)) except Exception as ex: if "flexible type" in str(ex): tmp = filteredResult.astype("O").reduce( sby, otherDims).transpose(*(_rows + _columns)) else: tmp = filteredResult.transpose(*(_rows + _columns)) finalValues = tmp.values finalIndexes = [] if tmp.ndim > 0: finalIndexes = tmp.coords[tmp.dims[0]].values finalColumns = ["Total"] if tmp.ndim == 2: finalColumns = tmp.coords[tmp.dims[1]].values # Add totales _totalRow = None if bottomTotal and len(_rows) > 0: # add total row if tmp.ndim == 1: _totalRow = finalValues.sum(axis=0).reshape(1) else: _totalRow = finalValues.sum( axis=0).reshape(1, len(finalValues[0])) _totalRow = _totalRow[0] if rightTotal: _totalRow = np.append(_totalRow, finalValues.sum()) if rightTotal and len(_columns) > 0: # add total column if tmp.ndim == 1: finalIndexes = np.append(finalIndexes, "Total") finalValues = np.append( finalValues, finalValues.sum(axis=0).reshape(1), axis=0) else: finalColumns = np.append(finalColumns, "Total") finalValues = np.append(finalValues, finalValues.sum( axis=1).reshape(len(finalValues), 1), axis=1) # chek inf if self.kindToString(finalValues.dtype.kind) == "numeric": if np.isinf(finalValues).any(): finalValues[np.isinf(finalValues)] = None # chec if haver nan values if pd.isnull(finalValues).any(): try: finalValues = np.where( np.isnan(finalValues), None, finalValues) except: finalValues[pd.isnull(finalValues)] = None res = {} pageInfo = None onRow = None onColumn = None if len(_rows) == 0 and len(_columns) == 0: res = { "columns": [], "index": ["Total"], "data": [[finalValues.tolist()]] } elif len(_rows) == 0: onColumn = _columns[0] res = { "columns": self.checkDateFormat(finalIndexes[:300]).tolist(), "index": finalColumns, "data": [finalValues[:300].tolist()] } elif len(_columns) == 0: if (len(finalIndexes) > self.PAGESIZE): pageInfo = { "fromRow": int(fromRow), "toRow": int(toRow), "totalRows": len(finalIndexes) } onRow = _rows[0] res = { "columns": finalColumns, "index": self.checkDateFormat(finalIndexes[fromRow-1:toRow]).tolist(), "data": [[x] for x in finalValues[fromRow-1:toRow].tolist()] } # add total rows if not _totalRow is None: res["index"].append("Total") res["data"].append(_totalRow.tolist()) else: onColumn = _columns[0] onRow = _rows[0] if (len(finalIndexes) > self.PAGESIZE): pageInfo = { "fromRow": int(fromRow), "toRow": int(toRow), "totalRows": len(finalIndexes) } res = { "columns": self.checkDateFormat(finalColumns[:300]).tolist(), "index": self.checkDateFormat(finalIndexes[fromRow-1:toRow]).tolist(), "data": finalValues[fromRow-1:toRow, :300].tolist() } # add total rows if not _totalRow is None: res["index"].append("Total") res["data"].append(_totalRow[:300].tolist()) return self.createResult(res, type(tmp), onRow=onRow, onColumn=onColumn, node=nodeDic[nodeId], pageInfo=pageInfo) def hasDim(self, result, dim): return True if dim.split(".")[0] in result.dims else False def addToFilter(self, nodeDic, dim, filters): if "values" in dim and dim["values"] is not None and len(dim["values"]) > 0: field = str(dim["field"]).split(".")[0] # chek if the node id of the index we are using to filter has changed nodeId = None indexType = None indexType = self.getIndexType(nodeDic, nodeId, field) # check if the indexes have change _values = None if indexType == "S": _values = [str(xx["value"]) for xx in dim["values"]] else: _values = [int(xx["value"]) for xx in dim["values"]] all_values = None npValues = np.array(_values) if field in nodeDic: all_values = nodeDic[field].result.values elif len(dim["field"].split(".")) > 1: node_id = str(dim["field"]).split(".")[1] if field in nodeDic[node_id].result.dims: all_values = nodeDic[node_id].result.coords[field].values serie = pd.Series(all_values) if not all_values is None and serie.isin(npValues).any(): npValues = all_values[serie.isin(npValues)] if len(npValues) > 0: filters[field] = npValues def getIndexes(self, node, result=None): if result is None: result = node._result return [(xx+"."+node.identifier) for xx in result.dims] def getIndexesWithLevels(self, node, result=None): res = [] if result is None: result = node._result if not result is None: _model = node.model for indexItem in result.dims: itemDim = indexItem.split(",")[0] item = {"field": itemDim+"."+node.identifier, "name": itemDim, "description": "", "levels": []} if _model.existNode(itemDim): levelNode = _model.getNode(itemDim) if levelNode.title: item["name"] = levelNode.title item["description"] = levelNode.description if levelNode.numberFormat: item["numberFormat"] = levelNode.numberFormat # check for levels if not levelNode.hierarchy_parents is None: def buildLevels(parents, levelList): if not isinstance(parents, list): parents = [parents] for parentIndexId in parents: parentIndexNode = _model.getNode(parentIndexId) if parentIndexNode is None: raise ValueError( f"Node {parentIndexId} not found") levelItem = { "field": parentIndexId, "name": parentIndexNode.title or parentIndexId} levelList.append(levelItem) _dummy = parentIndexNode.result # to force calc if not parentIndexNode.hierarchy_parents is None: buildLevels( parentIndexNode.hierarchy_parents, levelList) listOfLevels = [ {"field": itemDim, "name": item["name"]}] indexParents = levelNode.hierarchy_parents buildLevels(indexParents, listOfLevels) item["levels"] = listOfLevels elif "datetime" in result.coords[itemDim].dtype.name: item["numberFormat"] = "2,DD,0,,0,0,4,0,$,5,FULL,0" res.append(item) return res def isIndexed(self, result): if not result is None: obj = result if isinstance(obj, pd.Series): obj = pd.DataFrame({"values": obj}) if isinstance(obj, pd.DataFrame): if (isinstance(obj.index, pd.MultiIndex) or isinstance(obj.index, pd.Index)) and len(obj.index.names) > 0 and (not obj.index.names[0] is None): return True return False def getIndexValues(self, nodeDic, data: IndexValuesReq, result=None): res = [] if data.node_id: if (not data.node_id is None) & (data.node_id in nodeDic): node = nodeDic[data.node_id] if result is None: result = node.result res = self.checkDateFormat( result[data.index_id].values).tolist() elif (not data.index_id is None) & (data.index_id in nodeDic): node = nodeDic[data.index_id] if result is None: result = node.result if isinstance(result, XIndex): res = result.values.tolist() elif isinstance(result, np.ndarray): res = self.checkDateFormat(result).tolist() else: res = list(result) if data.text1: text1 = data.text1.lower() if data.filter == filterChoices.CONTAINS.value: res = list( filter(lambda item: text1 in str(item).lower(), res)) elif data.filter == filterChoices.NOT_CONTAINS.value: res = list( filter(lambda item: not text1 in str(item).lower(), res)) return res def getIndexType(self, nodeDic, nodeId, indexId): numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] res = "S" if (not indexId is None) & (indexId in nodeDic): node = nodeDic[indexId] if isinstance(node.result, XIndex) or isinstance(node.result, pd.Index): if str(node.result.values.dtype) in numerics: res = "N" elif isinstance(node.result, np.ndarray): if str(node.result.dtype) in numerics: res = "N" elif nodeId: if (not nodeId is None) & (nodeId in nodeDic): node = nodeDic[nodeId] if str(node.result.coords[indexId].values.dtype) in numerics: res = "N" return res def getCubeValues(self, result, nodeDic, nodeId, query): if isinstance(result, xr.DataArray): res = { "dims": [], "values": [] } # fix field.array query["columns"] = [xx.split(".")[0] for xx in query["columns"]] _filters = {} if not query["filters"] is None: for dimFilter in query["filters"]: field = str(dimFilter["field"]).split(".")[0] if self.hasDim(result, field): dimFilter["values"] = [{"value": xx} for xx in dimFilter["values"]] self.addToFilter(nodeDic, dimFilter, _filters) _filteredResult = result if len(_filters): _filteredResult = result.sel(_filters) nodeIndexes = self.getIndexes(nodeDic[nodeId], result) nodeIndexes = [xx.split(".")[0] for xx in nodeIndexes] for col in query["columns"]: if col in nodeIndexes: item = { "field": col, "count": 0, "values": [str(v) for v in self.checkDateFormat(_filteredResult.coords[col].values).tolist()] # "values": result.filter(_filters).axis(col).values.tolist() } item["count"] = len(item["values"]) res["dims"].append(item) otherDims = [ xx for xx in _filteredResult.dims if xx not in query["columns"]] resultValues = None if len(otherDims) > 0: resultValues = _filteredResult.sum(otherDims) else: resultValues = _filteredResult #resultValues = _filteredResult.sum(keep=query["columns"]) if isinstance(resultValues, xr.DataArray): if len(query["columns"]) > 0: res["values"] = resultValues.transpose( *query["columns"]).values.reshape(resultValues.size).tolist() else: res["values"] = [resultValues.values.tolist()] else: res["values"] = resultValues return res def getCubeDimensionValues(self, result, nodeDic, nodeId, query): if isinstance(result, xr.DataArray): if len(query["columns"]) > 0: dimension = query["columns"][-1] if (dimension+"."+nodeId) in self.getIndexes(nodeDic[nodeId], result): finalList = [ str(v) for v in self.checkDateFormat(result.coords[dimension].values).tolist()[:1000]] finalList.sort() return finalList return [] def getCubeMetadata(self, result, nodeDic, nodeId): res = None if isinstance(result, xr.DataArray): res = { "dims": [], "measures": [], "aggregator": "sum", "isEditable": True if self.isTable(nodeDic[nodeId]) == "1" else False, "nodeProperties": { "title": nodeDic[nodeId].title if not nodeDic[nodeId].title is None else nodeDic[nodeId].identifier, "numberFormat": nodeDic[nodeId].numberFormat } } # check if is in scenario if nodeDic[nodeId].model.isNodeInScenario(nodeDic[nodeId].identifier): res["nodeProperties"]["scenario"] = True for dim in result.dims: indexPart = str(dim).split(".")[0] itemDim = { "field": dim, "name": indexPart } if indexPart in nodeDic: if not nodeDic[indexPart].title is None: itemDim["name"] = nodeDic[indexPart].title if nodeDic[indexPart].numberFormat: itemDim["numberFormat"] = nodeDic[indexPart].numberFormat res["dims"].append(itemDim) res["measures"].append({ "field": "datavalue", "name": "datavalue" }) return res def isTable(self, node): res = "0" if isinstance(node.result, xr.DataArray): if not node.definition is None and node.definition != "": import re deff = re.sub( '[\s+]', '', str(node.definition).strip(' \t\n\r')).lower() if (deff.startswith("result=pp.dataarray(") or deff.startswith("result=pp.cube(") or deff.startswith("result=xr.dataarray(") or deff.startswith("result=create_dataarray(")): res = "1" return res def setNodeValueChanges(self, nodeDic, nodeId, nodeChanges): if isinstance(nodeDic[nodeId].result, xr.DataArray): for change in nodeChanges["changes"]: newValue = change["definition"] filters = {} for filterItem in change["filterList"]: aux = { "field": filterItem["Key"], "values": [{ "value": filterItem["Value"] }]} self.addToFilter(nodeDic, aux, filters) for key in filters: filters[key] = slice(filters[key][0], filters[key][0]) nodeDic[nodeId].result.loc[filters] = newValue nodeDic[nodeId].definition = self.generateNodeDefinition( nodeDic, nodeId) return "ok" def generateNodeDefinition(self, nodeDic, nodeId, forceXArray=False): array = nodeDic[nodeId].result """Generate code for cube definition""" np.set_printoptions(threshold=np.prod(array.values.shape)) data = np.array2string(array.values, separator=",", precision=20, formatter={ 'float_kind': lambda x: repr(x)}).replace('\n', '') indexes = [] for dim in list(array.dims): if dim in nodeDic: indexes.append(dim) else: index_values = np.array2string(array[dim].values, separator=",", precision=20, formatter={ 'float_kind': lambda x: repr(x)}).replace('\n', '') coord = f"pd.Index({index_values},name='{dim}')" indexes.append(coord) indexes = "[" + ",".join(indexes).replace("'", '"') + "]" if forceXArray or "xr.DataArray" in nodeDic[nodeId].definition or "create_dataarray" in nodeDic[nodeId].definition: if self.kindToString(array.values.dtype.kind) == "string" or self.kindToString(array.values.dtype.kind) == "object": deff = f'result = xr.DataArray({data},{indexes}).astype("O")' else: deff = f'result = xr.DataArray({data},{indexes})' else: if self.kindToString(array.values.dtype.kind) == "string" or self.kindToString(array.values.dtype.kind) == "object": deff = "result = pp.cube(" + indexes + \ "," + data + ", dtype='O')" else: deff = "result = pp.cube(" + indexes + "," + data + ")" return deff def dumpNodeToFile(self, nodeDic, nodeId, fileName): definition = self.generateNodeDefinition(nodeDic, nodeId) with open(fileName, 'w') as f: f.write(definition) f.close() def applyHierarchy(self, result, nodeDic, nodeId, dims, rows, columns, sby): def hierarchize(dataArray, levels, maps, hierarchyDic): mapArray = nodeDic[maps[0]].result coordValues = mapArray.values.copy() targetIndexId = nodeDic[levels[1]].result.name for pos, level in enumerate(levels): if pos > 0: if not maps[pos] is None: mapArrayLevel = nodeDic[maps[pos]].result for ii in range(len(coordValues)): if not coordValues[ii] is None: try: newVal = mapArrayLevel.sel( {mapArrayLevel.dims[0]: coordValues[ii]}, drop=True).values.item(0) coordValues[ii] = newVal except Exception as ex: coordValues[ii] = None #raise ValueError("Hierarchy not found. Level: " + targetIndexId + ", value: " + coordValues[ii]) pass # perform aggregate dataArray.coords[levels[0]].values = coordValues _df = dataArray.to_series() _df = _df.groupby(list(dataArray.dims), sort=False).agg(sby) _da = _df.to_xarray() reindex_dic = dict() for dimension in _da.dims: if dimension == levels[0]: reindex_dic[dimension] = nodeDic[levels[-1:] [0]].result.values elif dimension in nodeDic and isinstance(nodeDic[dimension].result, pd.Index): node_id = dimension if not hierarchyDic is None and dimension in hierarchyDic: node_id = hierarchyDic[dimension] reindex_dic[dimension] = nodeDic[node_id].result.values _db = _da.reindex(reindex_dic) return _db allDims = (dims or []) + (rows or []) + (columns or []) hierarchyDic = dict() for dim in allDims: if dim and dim["currentLevel"] and dim["currentLevel"] != str(dim["field"]).split(".")[0]: hierarchyDic[str(dim["field"]).split(".")[ 0]] = dim["currentLevel"] # recursive fn for search parent def findPath(indexNode, level, levels, maps): if indexNode.identifier == level: levels.append(indexNode.identifier) maps.append(None) return True else: _for_calc = indexNode.result parents = indexNode.hierarchy_parents if parents is None: return False else: if not isinstance(parents, list): parents = [parents] mapArrays = indexNode.hierarchy_maps if not isinstance(mapArrays, list): mapArrays = [mapArrays] mapPos = 0 for parentId in parents: parent = nodeDic[parentId] if findPath(parent, level, levels, maps): levels.append(indexNode.identifier) maps.append(mapArrays[mapPos]) return True mapPos += 1 return False field = str(dim["field"]).split(".")[0] currentLevel = dim["currentLevel"] indexNode = nodeDic[field] levels = [] maps = [] findPath(indexNode, currentLevel, levels, maps) levels.reverse() maps.reverse() result = hierarchize(result.copy(), levels, maps, hierarchyDic) return result def geoUnclusterData(self, result, nodeDic, nodeId, rowIndex, attIndex, latField="latitude", lngField="longitude", geoField="geoField", labelField="labelField", sizeField="sizeField", colorField="colorField", iconField="iconField"): _tmp_for_geo = XIndex('tmp_for_geo', [ latField, lngField, geoField, labelField, sizeField, colorField, iconField]) attIndex = attIndex.split(".")[0] rowIndex = rowIndex.split(".")[0] _idx = nodeDic[attIndex].result rowIndexObj = nodeDic[rowIndex].result #mapCube = result.sel({_idx.name:_tmp_for_geo}).transpose([rowIndex,"tmp_for_geo"]).values mapCube = XHelpers.changeIndex(None, result, _idx, _tmp_for_geo).transpose( *[rowIndex, "tmp_for_geo"]).values res = dict() points = [] pos = 0 for itemRow in mapCube: vo = dict() vo["id"] = str(rowIndexObj.values[pos]) vo["lat"] = itemRow[0] vo["lng"] = itemRow[1] vo["geoDef"] = itemRow[2] vo["labelRes"] = itemRow[3] vo["sizeRes"] = itemRow[4] vo["colorRes"] = itemRow[5] vo["iconRes"] = itemRow[6] points.append(vo) pos += 1 res["points"] = points for nn, point in enumerate(res["points"]): if nn == 0: try: if not math.isnan(float(point["sizeRes"])): res["minSize"] = float(point["sizeRes"]) res["maxSize"] = float(point["sizeRes"]) except Exception as ex: pass try: if not math.isnan(float(point["colorRes"])): res["minColor"] = float(point["colorRes"]) res["maxColor"] = float(point["colorRes"]) except Exception as ex: pass try: if not math.isnan(float(point["iconRes"])): res["minIcon"] = float(point["iconRes"]) res["maxIcon"] = float(point["iconRes"]) except Exception as ex: pass else: try: if not math.isnan(float(point["sizeRes"])): if point["sizeRes"] > res["maxSize"]: res["maxSize"] = point["sizeRes"] if point["sizeRes"] < res["minSize"]: res["minSize"] = point["sizeRes"] except Exception as ex: pass try: if not math.isnan(float(point["colorRes"])): if point["colorRes"] > res["maxColor"]: res["maxColor"] = point["colorRes"] if point["colorRes"] < res["minColor"]: res["minColor"] = point["colorRes"] except Exception as ex: pass try: if not math.isnan(float(point["iconRes"])): if point["iconRes"] > res["maxIcon"]: res["maxIcon"] = point["iconRes"] if point["iconRes"] < res["minIcon"]: res["minIcon"] = point["iconRes"] except Exception as ex: pass return res def postCalculate(self, node, result): """Method executed after calculate node """ if isinstance(result, xr.DataArray): result.name = node.title def copyAsValues(self, result, nodeDic, nodeId): """ Copy node as values """ newDef = "" if isinstance(result, float) or isinstance(result, int): newDef = "result = " + str(result) elif isinstance(result, xr.DataArray): newDef = self.generateNodeDefinition(nodeDic, nodeId, True) else: return False nodeDic[nodeId].definition = newDef return True def kindToString(self, kind): """Returns the data type on human-readable string """ if kind in {'U', 'S'}: return "string" elif kind in {'b'}: return "boolean" elif kind in {'i', 'u', 'f', 'c'}: return "numeric" elif kind in {'m', 'M'}: return "date" elif kind in {'O'}: return "object" elif kind in {'V'}: return "void" ``` #### File: pyplan_engine/classes/IOEngine.py ```python class IOEngine(object): def __init__(self, node): self.node = node self.inputs = [] self.outputs = [] def release(self): self.inputs = None self.outputs = None self.node = None def updateInputs(self, names): # remove prior outputs for inputNode in self.inputs: if not inputNode in names: if self.node.model.existNode(inputNode): self.node.model.getNode(inputNode).ioEngine.removeOutput( self.node.identifier) newInputs = [] for nodeId in names: if self.node.model.existNode(nodeId): newInputs.append(nodeId) if not nodeId in self.inputs: self.node.model.getNode(nodeId).ioEngine.addOutput( self.node.identifier) self.inputs = newInputs def removeOutput(self, nodeId): if nodeId in self.outputs: self.outputs.remove(nodeId) def removeInput(self, nodeId): if nodeId in self.inputs: self.inputs.remove(nodeId) def addOutput(self, nodeId): self.outputs.append(nodeId) def updateNodeId(self, oldId, newId): for inputNode in self.inputs: if self.node.model.existNode(inputNode): self.node.model.getNode( inputNode).ioEngine.updateOutputId(oldId, newId) for outputNode in self.outputs: if self.node.model.existNode(outputNode): self.node.model.getNode( outputNode).ioEngine.updateInputId(oldId, newId) def updateOnDeleteNode(self): for inputNode in self.inputs: if self.node.model.existNode(inputNode): self.node.model.getNode(inputNode).ioEngine.removeOutput( self.node.identifier) for outputNode in self.outputs: if self.node.model.existNode(outputNode): self.node.model.getNode(outputNode).ioEngine.removeInput( self.node.identifier) def updateOutputId(self, oldId, newId): if oldId in self.outputs: self.outputs.remove(oldId) self.outputs.append(newId) def updateInputId(self, oldId, newId): if oldId in self.inputs: self.inputs.remove(oldId) self.inputs.append(newId) self.node.updateDefinitionForChangeId(oldId, newId) ``` #### File: classes/wizards/DataframeIndex.py ```python from pyplan_engine.classes.wizards.BaseWizard import BaseWizard import pandas as pd import jsonpickle class Wizard(BaseWizard): def __init__(self): self.code = "DataframeIndex" def generateDefinition(self, model, params): nodeId = params["nodeId"] if model.existNode(nodeId): currentDef = model.getNode(nodeId).definition newDef = self.getLastDefinition(currentDef) newDef = newDef + "\n# Set index" reset_index = "" if not isinstance(model.getNode(nodeId).result.index, pd.RangeIndex): reset_index = ".reset_index()" if not params is None and "columns" in params and len(params["columns"]) > 0: newDef = newDef + \ f"\nresult = _df{reset_index}.set_index({params['columns']})" else: newDef = newDef + f"\nresult = _df{reset_index}" model.getNode(nodeId).definition = self.formatDefinition(newDef) return "ok" return "" ``` #### File: common/classes/indexValuesReq.py ```python class IndexValuesReq(object): def __init__(self, **kargs): self.node_id = kargs['node_id'] if 'node_id' in kargs else None self.index_id = kargs['index_id'] if 'index_id' in kargs else None self.filter = kargs['filter'] if 'filter' in kargs else None self.text1 = kargs['text1'] if 'text1' in kargs else None self.text2 = kargs['text2'] if 'text2' in kargs else None ``` #### File: pyplan_engine/utils/exception_handler.py ```python import traceback from django.conf import settings from django.http import HttpResponse from rest_framework.exceptions import APIException from rest_framework.response import Response from rest_framework.views import exception_handler def genericApiException(ex, engine=None): msg = "No error data" if not engine is None and engine.getStopReason(): msg = engine.getStopReason() else: if not ex is None: msg = str(ex.args) if settings.DEBUG: msg += "\n----------------\n" + traceback.format_exc() return HttpResponse(msg, content_type="text/plain", status=207) def ex_handler(exc, context): # Call REST framework's default exception handler first, # to get the standard error response. #response = exception_handler(exc, context) msg = "Unmanaged error." if not exc is None: msg += " "+str(exc.args[0]) if settings.DEBUG: msg += "\n----------------\n" + traceback.format_exc() return HttpResponse(msg, content_type="text/plain", status=207) ``` #### File: email/classes/eEmailType.py ```python from enum import Enum class eEmailType(Enum): WORKFLOW_ASSIGNED_TASK = 0 WORKFLOW_CHANGE_STATE = 1 WORKFLOW_CHANGE_PERCENT = 2 INTERFACE_COMMENT = 3 INTERFACE_REFRESH_USER_IN_COMMENT = 4 # TODO:Implement this INTERFACE_SHARED = 5 APPLICATION_SHARED = 6 RESET_PASSWORD = 7 CHANGED_PASSWORD = 8 TEST = 9 WELCOME_USER = 10 CREATED_USER = 11 ACTIVATED_USER = 12 SCHEDULE_TASK_STATUS_CHANGED = 13 DEACTIVATED_USER = 14 # TODO:Implement this def __str__(self): return self.value ``` #### File: common/engineTypes/engineType.py ```python from abc import ABC, abstractmethod class IEngineType(ABC): from_app_pool = False engineParams = "" currentSession = None engineURI = "" engineUID = "" engineParams = "" lock = None @abstractmethod def createEngine(self): raise NotImplementedError @abstractmethod def releaseEngine(self): raise NotImplementedError @abstractmethod def stop(self): raise NotImplementedError @abstractmethod def getEngineURI(self): raise NotImplementedError @abstractmethod def getEngineUID(self): raise NotImplementedError @abstractmethod def getEngineParams(self): raise NotImplementedError @abstractmethod def openModel(self, file): raise NotImplementedError @abstractmethod def getDiagram(self, module_id=None): raise NotImplementedError @abstractmethod def getArrows(self, module_id=None): raise NotImplementedError @abstractmethod def getNodeProperty( self, node_id, property_name): raise NotImplementedError @abstractmethod def getNodeProperties(self, node_id, properties): raise NotImplementedError @abstractmethod def setNodeProperties(self, node_id, properties): raise NotImplementedError @abstractmethod def saveModel(self, file_path): raise NotImplementedError @abstractmethod def getNodeInputs(self, node_id): raise NotImplementedError @abstractmethod def getNodeOutputs(self, node_id): raise NotImplementedError @abstractmethod def searchNodes(self, text, module_id, node_class, extra_classes, fill_detail): raise NotImplementedError @abstractmethod def isChild(self, node: str, module_ids: list = [] ): raise NotImplementedError @abstractmethod def getModelPreferences(self): raise NotImplementedError @abstractmethod def setModelProperties(self, modelProperties): raise NotImplementedError @abstractmethod def closeModel(self): raise NotImplementedError @abstractmethod def getModelName(self): raise NotImplementedError @abstractmethod def getModelId(self): raise NotImplementedError @abstractmethod def previewNode(self, node): raise NotImplementedError @abstractmethod def evaluate(self, definition): raise NotImplementedError @abstractmethod def callFunction(self, nodeId, params): raise NotImplementedError @abstractmethod def evaluateNode( self, node_id, dims, rows, columns, summary_by="sum", from_row=0, to_row=0, bottom_total=False, right_total=False ): raise NotImplementedError @abstractmethod def getIndexType(self, id): raise NotImplementedError @abstractmethod def getIndexValues(self, data): raise NotImplementedError @abstractmethod def isResultComputed(self, nodes): raise NotImplementedError @abstractmethod def getNodeIndexes(self, node_id): raise NotImplementedError @abstractmethod def isChoice(self, node_id): raise NotImplementedError @abstractmethod def isSelector(self, node_id): raise NotImplementedError @abstractmethod def getSelector(self, node_id): raise NotImplementedError @abstractmethod def isIndex(self, node_id): raise NotImplementedError @abstractmethod def isTable(self, node_id): raise NotImplementedError @abstractmethod def isTime(self, field): raise NotImplementedError @abstractmethod def getToolbars(self, extra_path): raise NotImplementedError @abstractmethod def profileNode(self, node_id): raise NotImplementedError @abstractmethod def createNode(self, node): raise NotImplementedError @abstractmethod def deleteNodes(self, node_ids): raise NotImplementedError @abstractmethod def createAlias(self, node_ids): raise NotImplementedError @abstractmethod def createInputNode(self, node_ids): raise NotImplementedError @abstractmethod def copyNodes(self, nodes): raise NotImplementedError @abstractmethod def copyAsValues(self, params): raise NotImplementedError @abstractmethod def moveNodes(self, nodes): raise NotImplementedError @abstractmethod def createNewModel(self, modelFile, modelName): raise NotImplementedError @abstractmethod def existNode(self, nodeId): raise NotImplementedError @abstractmethod def setNodeIdFromTitle(self, node_id): raise NotImplementedError @abstractmethod def exportFlatNode(self, nodeId, numberFormat, columnFormat, fileName): raise NotImplementedError @abstractmethod def exportModule(self, moduleId, filename): raise NotImplementedError @abstractmethod def importModule(self, moduleId, filename, importType): raise NotImplementedError @abstractmethod def callWizard(self, wizardRequest): raise NotImplementedError @abstractmethod def getCubeMetadata(self, query): raise NotImplementedError @abstractmethod def getCubeValues(self, query): raise NotImplementedError @abstractmethod def setNodeValueChanges(self, changes): raise NotImplementedError @abstractmethod def getCubeDimensionValues(self, query): raise NotImplementedError @abstractmethod def getUnclusterData(self, query): raise NotImplementedError @abstractmethod def executeButton(self, nodeId): raise NotImplementedError @abstractmethod def is_healthy(self): raise NotImplementedError @abstractmethod def getSystemResources(self): raise NotImplementedError @abstractmethod def installLibrary(self, lib, target): raise NotImplementedError @abstractmethod def getInstallProgress(self, from_line): raise NotImplementedError ``` #### File: common/serializers/ObjectField.py ```python from rest_framework import serializers class ObjectField(serializers.Field): def to_representation(self, value): return value ``` #### File: pyplan/companies/service.py ```python from pyplan.pyplan.common.baseService import BaseService from pyplan.pyplan.companies.models import Company from pyplan.pyplan.department.models import Department class CompaniesService(BaseService): def list_with_groups_and_depts(self): res = [] companies = None # check for superuser if self.current_user.is_superuser: companies = Company.objects.all() else: companies = Company.objects.filter( id=self.client_session.companyId) if companies: for company in companies: comp = {} comp['company'] = company departments = Department.objects.filter(company=company) comp['departments'] = departments.values() res.append(comp) return res ``` #### File: pyplan/company_preference/admin.py ```python from django.contrib import admin from .models import CompanyPreference @admin.register(CompanyPreference) class CompanyPreferenceAdmin(admin.ModelAdmin): list_display = ('id', 'company_name', 'definition', 'preference') def company_name(self, obj): return obj.company.name ``` #### File: dashboard/classes/nodeEvalProperties.py ```python class NodeEvalProperties(object): def __init__(self): self.node = "" self.properties = list() self.forceThisNode = False class NodeEvalProperty(object): def __init__(self, name, value): self.name = name self.value = value ``` #### File: dashboard/classes/nodeFullData.py ```python from .nodeResult import NodeResult class NodeFullData(object): def __init__(self): self.nodeId = "" self.nodeName = "" self.dims = list() self.rows = list() self.columns = list() self.itemType = "" self.objectType = "" self.itemProperties = object self.nodeResult = NodeResult() ``` #### File: pyplan/dashboard_comment/permissions.py ```python from rest_framework import permissions class DashboardCommentPermissions(permissions.BasePermission): def has_permission(self, request, view): """ Checks permissions """ has_action_permission = False if request.user and request.user.is_authenticated: if view.action in ['list']: has_action_permission = request.user.has_perm('pyplan.list_dashboardcomments') elif view.action in ['retrieve']: has_action_permission = request.user.has_perm('pyplan.view_dashboardcomment') elif view.action in ['create']: has_action_permission = request.user.has_perm('pyplan.add_dashboardcomment') elif view.action in ['update', 'partial_update']: has_action_permission = request.user.has_perm('pyplan.change_dashboardcomment') elif view.action in ['destroy']: has_action_permission = request.user.has_perm('pyplan.delete_dashboardcomment') return has_action_permission ``` #### File: pyplan/dashboardstyle/service.py ```python from rest_framework import exceptions from pyplan.pyplan.common.baseService import BaseService from .models import DashboardStyle class DashboardStyleService(BaseService): def getByStyleType(self, style_type): """Get By Style Type""" if style_type and isinstance(style_type, int): return DashboardStyle.objects.filter(owner_id=self.client_session.userCompanyId, style_type=int(style_type)) return DashboardStyle.objects.filter(owner_id=self.client_session.userCompanyId) def getById(self, id): """Get By Style Type""" return DashboardStyle.objects.filter( owner_id=self.client_session.userCompanyId, pk=id) ``` #### File: pyplan/department/models.py ```python from jsonfield import JSONField from django.db import models from pyplan.pyplan.companies.models import Company class Department(models.Model): code = models.CharField(max_length=50, blank=False, null=False) name = models.CharField(max_length=255, blank=True, null=True) engine_definitions = JSONField(blank=True, null=True) login_action = JSONField(blank=True, null=True) # denied folders and modules denied_items = JSONField( blank=True, null=True, help_text='{ "folders": ["folder_a"], "modules": [{ "model_id": "model_a", "modules_ids": ["id_of_module"] }] }') company = models.ForeignKey(Company, on_delete=models.CASCADE) def __str__(self): return f"[{self.company.code}] - {self.code} - {self.name}" ``` #### File: pyplan/department/permissions.py ```python from rest_framework import permissions class DepartmentPermissions(permissions.BasePermission): def has_permission(self, request, view): """ Checks permissions """ has_action_permission = False if request.user and request.user.is_authenticated: if view.action in ['list', 'retrieve', 'by_current_company']: has_action_permission = request.user.has_perm('pyplan.view_department') elif view.action in ['create']: has_action_permission = request.user.has_perm('pyplan.add_department') elif view.action in ['update', 'partial_update', 'denied', 'deny_items']: has_action_permission = request.user.has_perm('pyplan.change_department') elif view.action in ['destroy']: has_action_permission = request.user.has_perm('pyplan.delete_department') return has_action_permission ``` #### File: pyplan/diagram_shortcut/views.py ```python from rest_framework import viewsets from rest_framework.response import Response from .models import DiagramShortcut from .permissions import DiagramShortcutPermissions from .serializers import (DiagramShortcutCreateSerializer, DiagramShortcutSerializer) from .service import DiagramShortcutService class DiagramShortcutViewSet(viewsets.ModelViewSet): """ Updates and retrieves diagram shortcut relations """ queryset = DiagramShortcut.objects.all() serializer_class = DiagramShortcutSerializer permission_classes = (DiagramShortcutPermissions,) pagination_class = None def create(self, request, *args, **kwargs): service = DiagramShortcutService(self.request) serializer = DiagramShortcutCreateSerializer(data=request.query_params) serializer.is_valid(raise_exception=True) shortcut = service.create(serializer.data) return Response(DiagramShortcutSerializer(shortcut).data) ``` #### File: external_link/dashboard/permissions.py ```python from rest_framework import permissions class DashboardExternalLinkPermissions(permissions.BasePermission): def has_permission(self, request, view): """ Checks permissions """ has_action_permission = False if request.user and request.user.is_authenticated: if view.action == 'list' or view.action == 'retrieve': has_action_permission = request.user.has_perm('pyplan.view_dashboardexternallink') elif view.action == 'create': has_action_permission = request.user.has_perm('pyplan.add_dashboardexternallink') elif view.action == 'update' or view.action == 'partial_update': has_action_permission = request.user.has_perm('pyplan.change_dashboardexternallink') elif view.action == 'destroy': has_action_permission = request.user.has_perm('pyplan.delete_dashboardexternallink') return has_action_permission ``` #### File: external_link/dashboard/service.py ```python from pyplan.pyplan.common.baseService import BaseService from pyplan.pyplan.usercompanies.models import UserCompany from .models import DashboardExternalLink class DashboardExternalLinkService(BaseService): def getDashboardExternalLink(self, dashboard_id): model_path = self.client_session.modelInfo.uri user_company_id = self.client_session.userCompanyId external_links = DashboardExternalLink.objects.filter( owner=user_company_id, model_path=model_path, ) if not dashboard_id is None and dashboard_id.isnumeric(): external_links = external_links.filter( dashboard__pk=int(dashboard_id), ) return external_links.order_by('created_at') def createDashboardExternalLink(self, dashboard_id): return DashboardExternalLink.objects.create( dashboard_id=dashboard_id, model_path=self.client_session.modelInfo.uri, owner_id=self.client_session.userCompanyId, ) ``` #### File: pyplan/external_link/models.py ```python import uuid from django.db import models from pyplan.pyplan.usercompanies.models import UserCompany class ExternalLink(models.Model): id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) model_path = models.CharField(max_length=255, blank=False, null=False) is_active = models.BooleanField(default=True) common_instance = models.BooleanField(default=False) owner = models.ForeignKey(UserCompany, on_delete=models.DO_NOTHING, related_name='external_links') created_at = models.DateTimeField(auto_now_add=True) class Meta: ordering = ['created_at'] def __str__(self): return str(self.id) ``` #### File: external_link/report/models.py ```python from django.db import models from pyplan.pyplan.report.models import Report from pyplan.pyplan.external_link.models import ExternalLink class ReportExternalLink(ExternalLink): external_link = models.OneToOneField( ExternalLink, on_delete=models.CASCADE, parent_link=True, related_name='report_external_link') report = models.ForeignKey(Report, on_delete=models.CASCADE, related_name='external_links') def __str__(self): return self.report.name ``` #### File: external_link/report/service.py ```python from pyplan.pyplan.common.baseService import BaseService from pyplan.pyplan.usercompanies.models import UserCompany from .models import ReportExternalLink class ReportExternalLinkService(BaseService): def getReportExternalLink(self, report_id): model_path = self.client_session.modelInfo.uri user_company_id = self.client_session.userCompanyId external_links = ReportExternalLink.objects.filter( owner=user_company_id, model_path=model_path, ) if not report_id is None and report_id.isnumeric(): external_links = external_links.filter( report__pk=int(report_id), ) return external_links.order_by('created_at') def createReportExternalLink(self, report_id): return ReportExternalLink.objects.create( report_id=report_id, model_path=self.client_session.modelInfo.uri, owner_id=self.client_session.userCompanyId, ) ``` #### File: filemanager/classes/fileEntry.py ```python from enum import Enum from .fileEntryData import FileEntryData class eFileTypes(Enum): NOTHING = 0 MY_FOLDER = 1 PUBLIC = 2 COMPANY = 3 MODELS_PATH = 4 SHARED_WITH_ME = 5 class FileEntry(object): def __init__(self, show=True, text="", type=eFileTypes.NOTHING, data=FileEntryData()): self.show = show self.text = text self.type = type.value self.data = data ``` #### File: pyplan/filemanager/service.py ```python import base64 import csv import json import os import shutil import tempfile import zipfile from datetime import datetime from errno import ENOTDIR from itertools import islice from shlex import split from subprocess import PIPE, Popen from uuid import uuid4 import pandas as pd from django.conf import settings from django.core.files.storage import FileSystemStorage from openpyxl import load_workbook from rest_framework import exceptions from pyplan.pyplan.common.baseService import BaseService from pyplan.pyplan.companies.models import Company from pyplan.pyplan.preference.models import Preference from pyplan.pyplan.user_company_preference.models import UserCompanyPreference from .classes.fileEntry import FileEntry, eFileTypes from .classes.fileEntryData import (FileEntryData, eSpecialFileType, eSpecialFolder) class FileManagerService(BaseService): optimizable_templates = [".xls", ".xlsx", ".xlsm", ".xlsb"] def getMainFolders(self): """ list: Return a list of all folders. """ result = list() company_code = self.client_session.company_code # User Workspace result.append( FileEntry( text="My Workspace", type=eFileTypes.NOTHING, data=FileEntryData( fullPath="", specialFolderType=eSpecialFolder.MY_FOLDER ) ) ) # if self.current_user.has_perm("pyplan.view_model_path_root"): # result.append( # FileEntry( # text="Root", # type=eFileTypes.NOTHING, # data=FileEntryData( # fullPath="", # specialFolderType=eSpecialFolder.MODELS_PATH # ) # ) # ) # if self.current_user.has_perm("pyplan.view_company_root"): # result.append( # FileEntry( # text=self.client_session.companyName, # type=eFileTypes.NOTHING, # data=FileEntryData( # fullPath=company_code, # specialFolderType=eSpecialFolder.MODELS_PATH # ) # ) # ) # else: # # Special Folders # result.append( # FileEntry( # text="Public", # type=eFileTypes.NOTHING, # data=FileEntryData( # fullPath=f"{company_code}/Public", # specialFolderType=eSpecialFolder.PUBLIC # ) # ) # ) return result def getFoldersAndFiles(self, folder=''): """ list: Return a list of all folders. """ storage = FileSystemStorage( os.path.join(settings.MEDIA_ROOT, 'models')) result = list() base_path = "" if folder.startswith("/"): base_path = folder[1:] elif folder: base_path = f"{folder}/" items = storage.listdir(base_path) denied_folders = [] if not self.current_user.has_perm('pyplan.change_group_permissions'): denied_folders = self._getDeniedFolders() # folders for item in sorted(items[0], key=str.lower): full_path = f"{base_path}{item}" if not denied_folders or not item in denied_folders: result.append( FileEntry( show=not item.startswith('.'), text=item, type=eFileTypes.MY_FOLDER, data=FileEntryData( fileSize=None, fullPath=full_path, # specialFolderType=eSpecialFolder.MODELS_PATH lastUpdateTime=storage.get_modified_time( full_path), ) ) ) # files for item in sorted(items[1], key=str.lower): full_path = f"{base_path}{item}" specialFileType = eSpecialFileType.FILE lowerItem = item.lower() if lowerItem.endswith('.ppl') | lowerItem.endswith('.cbpy') | \ lowerItem.endswith('.model') | lowerItem.endswith('.ana'): specialFileType = eSpecialFileType.MODEL elif lowerItem.endswith('.zip'): specialFileType = eSpecialFileType.ZIP result.append( FileEntry( text=item, type=eFileTypes.PUBLIC, data=FileEntryData( fileSize=storage.size(full_path), fullPath=full_path, extension=full_path[full_path.rfind('.')+1:], specialFileType=specialFileType, lastUpdateTime=storage.get_modified_time(full_path), ) ) ) return result def createFolder(self, folder_path, folder_name): """ create: Creates a folder inside provided path. """ storage = FileSystemStorage( os.path.join(settings.MEDIA_ROOT, 'models')) full_path = os.path.join( storage.base_location, folder_path, folder_name) if storage.exists(full_path): raise exceptions.NotAcceptable('Folder already exists') else: os.mkdir(full_path) return os.path.join(folder_path, folder_name) def createFile(self, my_file, folder_path, name, chunk): file_path = os.path.join( settings.MEDIA_ROOT, 'models', folder_path, name) # Moves file if it already exists if chunk is 0 and os.path.isfile(file_path): new_name = f"{name}-{datetime.today().strftime('%Y%m%d-%H:%M:%S')}.old" self._copy( file_path, os.path.join(settings.MEDIA_ROOT, 'models', folder_path, new_name) ) os.remove(file_path) # Appends all chunks of this request (chunks of chunks) # UI sends multiple requests with multiple chunks each per file with open(file_path, 'ab+') as temp_file: for chunk in my_file.chunks(): temp_file.write(chunk) def copyFileOrFolder(self, source, destination): """ create: Duplicate file or Folder. """ storage = FileSystemStorage( os.path.join(settings.MEDIA_ROOT, 'models')) return self._linuxCopy( f"{storage.base_location}/{source}", f"{storage.base_location}/{destination}" ) def ensureUserWorkspace(self): storage = FileSystemStorage( os.path.join(settings.MEDIA_ROOT, 'models')) # User Workspace if not storage.exists(storage.base_location): os.makedirs(storage.base_location) def renameFile(self, source, new_name): storage = FileSystemStorage( os.path.join(settings.MEDIA_ROOT, 'models')) src = f"{storage.base_location}/{source}" dest = f"{src[0:src.rfind('/')+1]}{new_name}" os.rename(src, dest) return dest def duplicateFiles(self, sources): result = [] storage = FileSystemStorage( os.path.join(settings.MEDIA_ROOT, 'models')) for source in sources: src = f"{storage.base_location}/{source}" dest_path, dest_name = source.rsplit('/', 1) dest = f"{storage.base_location}/{dest_path}/Copy 1 of {dest_name}" n = 1 while storage.exists(dest): n += 1 dest = f"{storage.base_location}/{dest_path}/Copy {n} of {dest_name}" result.append(self._linuxCopy(src, dest)) return result def moveFiles(self, sources, target): result = [] storage = FileSystemStorage( os.path.join(settings.MEDIA_ROOT, 'models')) for source in sources: src = f"{storage.base_location}/{source}" dest_path, dest_name = source.rsplit('/', 1) dest = f"{storage.base_location}/{target}/{dest_name}" result.append(self.recursive_overwrite(src, dest)) if os.path.isdir(src): shutil.rmtree(src) else: storage.delete(src) return result def copyFiles(self, sources, target): storage = FileSystemStorage( os.path.join(settings.MEDIA_ROOT, 'models')) for source in sources: src = f"{storage.base_location}/{source}" dest_path, dest_name = source.rsplit('/', 1) dest = f"{storage.base_location}/{target}/" self._linuxCopy(src, dest) return True def copyToMyWorkspace(self, source): storage = FileSystemStorage( os.path.join(settings.MEDIA_ROOT, 'models')) target = f"{storage.base_location}/{self.client_session.company_code}/{self.current_user.username}" src = f"{storage.base_location}/{source}" return self._linuxCopy(src, target) def deleteFiles(self, sources): storage = FileSystemStorage( os.path.join(settings.MEDIA_ROOT, 'models')) files = [] for source in sources: full_path = f'{storage.base_location}/{source}' if not storage.exists(full_path): raise exceptions.NotAcceptable(f'File {source} does not exist') else: files.append(full_path) for file_to_delete in files: if os.path.isfile(file_to_delete): storage.delete(file_to_delete) else: shutil.rmtree(file_to_delete) def download(self, sources): storage = FileSystemStorage( os.path.join(settings.MEDIA_ROOT, 'models')) src_0 = f"{storage.base_location}/{sources[0]}" if len(sources) is 1 and os.path.isfile(src_0): return open(src_0, 'rb'), os.path.relpath(src_0, os.path.join(src_0, '..')) else: temp = tempfile.SpooledTemporaryFile() with zipfile.ZipFile(temp, 'w', zipfile.ZIP_DEFLATED) as zfobj: for source in sources: src = f"{storage.base_location}/{source}" if os.path.isfile(src): zfobj.write(src, os.path.relpath( src, os.path.join(src, '..'))) else: self._zipdir(src, zfobj) for zfile in zfobj.filelist: zfile.create_system = 0 temp.seek(0) return temp, f"{os.path.relpath(sources[0], os.path.join(sources[0], '..'))}.zip" def makeJsonStream(self, json_string: str): """ Returns streamed temp file from json string """ temp = tempfile.SpooledTemporaryFile(mode='w+b') temp.write(str.encode(json_string)) temp.seek(0) return temp def unzipFile(self, source, target_folder): storage = FileSystemStorage( os.path.join(settings.MEDIA_ROOT, 'models')) src = f"{storage.base_location}/{source}" dest = f"{storage.base_location}/{target_folder}" # Unzip the file, creating subdirectories as needed zfobj = zipfile.ZipFile(src) zfobj.extractall(dest) def zipFiles(self, sources): storage = FileSystemStorage( os.path.join(settings.MEDIA_ROOT, 'models')) zip_file = f"{storage.base_location}/{sources[0]}.zip" if storage.exists(zip_file): file_name, file_extension = os.path.splitext(zip_file) zip_file = f'{file_name}_{uuid4().hex}{file_extension}' with zipfile.ZipFile(zip_file, 'w', zipfile.ZIP_DEFLATED) as zfobj: for source in sources: src = f"{storage.base_location}/{source}" if os.path.isfile(src): zfobj.write(src, os.path.relpath( src, os.path.join(src, '..'))) else: self._zipdir(src, zfobj) for zfile in zfobj.filelist: zfile.create_system = 0 def getHome(self): company_id = self.getSession().companyId model_path = eSpecialFolder.MODELS_PATH res = {} filepath = os.path.join(settings.MEDIA_ROOT, 'models', 'home.json') if os.path.isfile(filepath): with open(filepath, "r") as json_file: try: res = json.load(json_file) if "tabs" in res: for tab in res["tabs"]: if "folders" in tab: for folder in tab["folders"]: if "items" in folder: for item in folder["items"]: if "image" in item: image_path = os.path.join( settings.MEDIA_ROOT, 'models', item["image"]) if os.path.isfile(image_path): with open(image_path, "rb") as f_image: item["imagesrc"] = str( base64.b64encode(f_image.read()), "utf-8") except Exception as ex: raise exceptions.NotAcceptable(ex) return res def optimizeTemplates(self, sources): """Generate csv file for each named range in template for future read. """ if sources: preference = Preference.objects.filter( code="optimize_templates").first() if preference: user_company_id = self.client_session.userCompanyId c_pref = UserCompanyPreference.objects.filter( user_company_id=user_company_id, preference__code="optimize_templates").first() if c_pref: preference.definition = c_pref.definition if preference.definition["value"]: for template in sources: filename, file_extension = os.path.splitext(template) if file_extension in self.optimizable_templates: template_filename = os.path.join( settings.MEDIA_ROOT, 'models', template) self._generate_csv_from_excel(template_filename) # Private def _zipdir(self, path, ziph): denied_folders = self._getDeniedFolders() # ziph is zipfile handle for root, dirs, files in os.walk(path): # check if folder is not in any department denied folders if not denied_folders or not any(list(map(lambda item: item in denied_folders, root.rsplit('/')))): for file in files: ziph.write(os.path.join(root, file), os.path.relpath( os.path.join(root, file), os.path.join(path, '..'))) def _generate_csv_from_excel(self, filename): """Generate compressed csv from excel file """ target_dir = os.path.dirname(filename) file_name, file_extension = os.path.splitext(filename) target_dir = os.path.join(target_dir, file_name) if not os.path.isdir(target_dir): os.mkdir(target_dir) wb = load_workbook(filename, data_only=True, read_only=True) for item in wb.defined_names.definedName: if not item.is_external and item.type == "RANGE" and item.attr_text and "!$" in item.attr_text: target_filename = os.path.join(target_dir, item.name+".pkl") if os.path.isfile(target_filename): os.remove(target_filename) dests = item.destinations for title, coord in dests: if title in wb: ws = wb[title] rangeToRead = ws[coord] if not isinstance(rangeToRead, tuple): rangeToRead = ((rangeToRead,),) nn = 0 cols = [] values = [] for row in rangeToRead: if nn == 0: cols = [str(c.value) for c in row] else: values.append([c.value for c in row]) nn += 1 nn = 0 _finalCols = [] for _col in cols: if _col is None: _finalCols.append("Unnamed" + str(nn)) nn += 1 else: _finalCols.append(_col) df = pd.DataFrame( values, columns=_finalCols).dropna(how="all") df.to_pickle(target_filename, compression='gzip') def recursive_overwrite(self, src, dest, ignore=None): if os.path.isdir(src): if not os.path.isdir(dest): os.makedirs(dest) files = os.listdir(src) if ignore is not None: ignored = ignore(src, files) else: ignored = set() for f in files: if f not in ignored: self.recursive_overwrite( os.path.join(src, f), os.path.join(dest, f), ignore ) else: shutil.copy(src, dest) return dest def _copy(self, src, dest): try: return shutil.copytree(src, dest) except OSError as e: # If the error was caused because the source wasn't a directory if e.errno == ENOTDIR: return shutil.copy(src, dest) else: raise exceptions.NotAcceptable( 'Directory not copied. Error: %s' % e) except Exception as e: raise e def _linuxCopy(self, src, dest): src_path = src.replace(' ', '\ ') dest_path = dest.replace(' ', '\ ') # -R, -r, --recursive # copy directories recursively # -u, --update # copy only when the SOURCE file is newer # than the destination file or when the # destination file is missing # -v, --verbose # explain what is being done cmd = f'cp -ruv {src_path} {dest_path}' popen = Popen(split(cmd), stdout=PIPE, universal_newlines=True) stdout, stderr = popen.communicate() if stderr: raise exceptions.NotAcceptable(stderr) return True ``` #### File: pyplan/migrations/0013_guestuser_permissions_20190919_1715.py ```python from django.contrib.contenttypes.management import ( create_contenttypes, get_contenttypes_and_models) from django.db import migrations def update_guest_groups_permissions(apps, schema_editor): """ This migration adds necessary permissions to guest groups. """ Dashboard = apps.get_model('pyplan', 'Dashboard') InputTemplate = apps.get_model('pyplan', 'InputTemplate') Group = apps.get_model('auth', 'Group') Permission = apps.get_model('auth', 'Permission') ContentType = apps.get_model('contenttypes', 'ContentType') content_types, app_models = get_contenttypes_and_models( apps.app_configs['pyplan'], 'default', ContentType) # If content_types are not created yet, then it's a clean install. # In order to add permissions after, we need to force ContentType creation. if not content_types: create_contenttypes(apps.app_configs['pyplan']) # Dashboard content type ctype_dashboard = ContentType.objects.get_for_model(Dashboard) # Dashboard permissions view_dashboard_perm, view_dash_perm_created = Permission.objects.get_or_create( codename='view_dashboard', content_type=ctype_dashboard, ) if view_dash_perm_created: view_dashboard_perm.name = 'Can view dashboard' view_dashboard_perm.save() change_dashboard_perm, change_dash_perm_created = Permission.objects.get_or_create( codename='change_dashboard', content_type=ctype_dashboard, ) if change_dash_perm_created: change_dashboard_perm.name = 'Can change dashboard' change_dashboard_perm.save() # InputTemplate content type ctype_inputtemplate = ContentType.objects.get_for_model(InputTemplate) # InputTemplate permissions view_inputtemplate_perm, view_inptmp_created = Permission.objects.get_or_create( codename='view_inputtemplate', content_type=ctype_inputtemplate, ) if view_inptmp_created: view_inputtemplate_perm.name = 'Can view input template' view_inputtemplate_perm.save() change_inputtemplate_perm, change_inptmp_created = Permission.objects.get_or_create( codename='change_inputtemplate', content_type=ctype_inputtemplate, ) if change_inptmp_created: change_inputtemplate_perm.name = 'Can change input template' change_inputtemplate_perm.save() guest_groups = Group.objects.filter(name__icontains='guest') for guest_group in guest_groups: guest_group.permissions.add(view_dashboard_perm) guest_group.permissions.add(change_dashboard_perm) guest_group.permissions.add(view_inputtemplate_perm) guest_group.permissions.add(change_inputtemplate_perm) guest_group.save() class Migration(migrations.Migration): dependencies = [ ('pyplan', '0012_new_email_preferences_20190824'), ] operations = [ migrations.RunPython(update_guest_groups_permissions), ] ``` #### File: modelmanager/classes/copyAsValuesParam.py ```python class CopyAsValuesParam(object): def __init__(self, **kargs): self.nodeId = kargs["nodeId"] if "nodeId" in kargs else None self.asNewNode = kargs["asNewNode"] if "asNewNode" in kargs else False ``` #### File: modelmanager/classes/eFormNodeType.py ```python from enum import Enum class eFormNodeType(Enum): CHECKBOX = 0 COMBOBOX = 1 SCALARINPUT = 2 BUTTON = 3 def __str__(self): return self.value ``` #### File: pyplan/preference_module/models.py ```python from django.db import models class PreferenceModule(models.Model): code = models.CharField(max_length=50, blank=False, null=False) description = models.CharField(max_length=255, blank=True, null=True) def __str__(self): return self.code ``` #### File: pyplan/report/service.py ```python from datetime import datetime from django.db.models import Q from pyplan.pyplan.common.baseService import BaseService from pyplan.pyplan.dashboard.models import Dashboard from pyplan.pyplan.dashboardstyle.models import DashboardStyle from pyplan.pyplan.department.models import Department from pyplan.pyplan.usercompanies.models import UserCompany from .models import Report class ReportManagerService(BaseService): def getReport(self, report_id): return Report.objects.get(pk=report_id) def myReports(self, parent_id=None, favs=None): usercompany_id = self.client_session.userCompanyId model_id = self.client_session.modelInfo.modelId reports = Report.objects.filter( model=model_id, ) if parent_id and parent_id.isnumeric(): reports = reports.filter( parent__pk=int(parent_id), ) else: reports = reports.filter( owner_id=usercompany_id, parent__pk__isnull=True, ) if type(favs) is bool and favs: reports = reports.filter( is_fav=True, ) return reports.order_by('order').distinct() def sharedWithMe(self, parent): company_id = self.client_session.companyId usercompany_id = self.client_session.userCompanyId model_id = self.client_session.modelInfo.modelId reports = Report.objects.filter( # shared to specific users, me included Q(usercompanies__pk=usercompany_id) | # shared to departments where I belong Q(departments__usercompanies__pk=usercompany_id) | # public but not mine (Q(is_public=True) & ~Q(owner_id=usercompany_id)), # from the same company owner__company__pk=company_id, model=model_id, ) if parent and isinstance(parent, int): reports = reports.filter( parent__pk=int(parent), ) else: reports = reports.filter( parent__pk__isnull=True, ) return reports.order_by('order').distinct() def mySharedReports(self, parent): usercompany_id = self.client_session.userCompanyId model_id = self.client_session.modelInfo.modelId reports = Report.objects.filter( Q(departments__isnull=False) | Q(usercompanies__isnull=False) | Q(is_public=True), owner__pk=usercompany_id, model=model_id, ) if parent and isinstance(parent, int): reports = reports.filter( parent__pk=int(parent), ) else: reports = reports.filter( parent__pk__isnull=True, ) return reports.order_by("order").distinct() def createReport(self, data): user_company = UserCompany(id=self.client_session.userCompanyId) parent = None if "parentId" in data and not data["parentId"] is None: parent = Report(id=data["parentId"]) report = Report.objects.create( model=self.client_session.modelInfo.modelId, name=data["name"], is_fav=data["is_fav"], is_public=data["is_public"], parent=parent, owner=user_company, ) return report def updateReport(self, pk, data): report = Report.objects.get(pk=pk) if report: if "name" in data: report.name = data["name"] report.is_fav = data["is_fav"] report.is_public = data["is_public"] if "parentId" in data and not data["parentId"] is None: report.parent = Report(id=data["parentId"]) report.save() return report def getNavigator(self, report_id, dashboard_id): result = { "priorId": None, "priorName": None, "nextId": None, "nextName": None, "list": [], } report = None dashboards = [] if report_id: report = Report.objects.get(pk=report_id) dashboards = report.dashboards.all() dash_count = report.dashboards.count() # only next, on click dashboard id will come and sort if dash_count > 0: next_dashboard = dashboards[1] result["nextId"] = next_dashboard['id'] result["nextName"] = next_dashboard['name'] if dashboard_id: dashboard = Dashboard.objects.get(pk=dashboard_id) report = report if report_id else dashboard.report if report: dashboards = report.dashboards previous = Dashboard.objects.filter(report=report, order=dashboard.order-1).all() if previous.count() > 0: result["priorId"] = previous[0].id result["priorName"] = previous[0].name following = Dashboard.objects.filter(report=report, order=dashboard.order+1).all() if following.count() > 0: result["nextId"] = following[0].id result["nextName"] = following[0].name else: dashboards.append(dashboard) result['list'] = dashboards return result def bulkDelete(self, ids): return Report.objects.filter(pk__in=ids).delete() def changeOrder(self, ids): for index, val in enumerate(ids): if val.isnumeric(): report = Report.objects.get(pk=int(val)) report.order = index + 1 report.save() def search(self, text): reports = Report.objects.filter(name__icontains=text) dashboards = Dashboard.objects.filter(name__icontains=text) return {"reports": reports, "dashboards": dashboards} def duplicateItems(self, data): for report_id in data["report_ids"]: report = Report.objects.get(pk=report_id) self._duplicateReport(report, True) for dashboard_id in data["dashboard_ids"]: dashboard = Dashboard.objects.get(pk=dashboard_id) self._duplicateDashboard(dashboard, True) def copyToMyReports(self, data): owner_id = self.client_session.userCompanyId for report_id in data["report_ids"]: report = Report.objects.get(pk=report_id) self._copyReport(report, owner_id) for dashboard_id in data["dashboard_ids"]: dashboard = Dashboard.objects.get(pk=dashboard_id) self._copyDashboard(dashboard, owner_id) def setAsFav(self, data): reports = Report.objects.filter(pk__in=data["report_ids"]) reports.update(is_fav=data["is_fav"]) dashboards = Dashboard.objects.filter(pk__in=data["dashboard_ids"]) dashboards.update(is_fav=data["is_fav"]) return {"reports": reports, "dashboards": dashboards} def dropOnReport(self, report_ids, dashboard_ids, report_id=None): reports = Report.objects.filter(pk__in=report_ids) reports.update(parent_id=report_id) dashboards_childrens = None quantity = 0 if report_id: parent_report = Report.objects.get(pk=report_id) dashboards_childrens = parent_report.dashboards.all() quantity = len(dashboards_childrens.values()) else: dashboards_childrens = Dashboard.objects.filter(report_id__isnull=True) quantity = dashboards_childrens.count() for dash_id in dashboard_ids: dash = Dashboard.objects.get(pk=dash_id) dash.report_id = report_id dash.order = quantity+1 dash.save() quantity += 1 dashboards = Dashboard.objects.filter(pk__in=dashboard_ids) return {"reports": reports, "dashboards": dashboards} def exportItems(self, data): reports = Report.objects.filter(pk__in=data['report_ids']) dashboards = Dashboard.objects.filter(pk__in=data['dashboard_ids']) styles = [] styles.extend(DashboardStyle.objects.filter(dashboards__id__in=data['dashboard_ids']).all()) self._getStyles(reports, styles) return { 'dashboards': dashboards, 'reports': reports, 'styles': list(set(styles)), }, f"dashboards-{datetime.today().strftime('%Y%m%d-%H%M%S')}" def _getStyles(self, reports, styles): for report in reports: styles.extend(DashboardStyle.objects.filter(pk__in=list( set(report.dashboards.all().values_list('styles', flat=True)))).all()) if report.reports.count() > 0: self._getStyles(report.reports.all(), styles) def importItems(self, data): user_company_id = self.client_session.userCompanyId model_id = self.client_session.modelInfo.modelId result = {"reports": [], "dashboards": [], "styles": []} styles = dict() for item in data["styles"]: ds = DashboardStyle.objects.create( name=item["name"], definition=item["definition"], style_type=item["style_type"], owner_id=user_company_id, ) styles.update({item["id"]: ds.pk}) for item in data["reports"]: report = Report.objects.create( model=model_id, name=item["name"], is_fav=item["is_fav"], is_public=item["is_public"], order=item["order"], parent_id=item["parent_id"], owner_id=user_company_id, ) self._createChildReportsAndDashboards(report, item, result, styles) for item in data["dashboards"]: dash_created = Dashboard.objects.create( model=model_id, name=item["name"], node=item["node"] if "node" in item else None, is_fav=item["is_fav"], definition=item["definition"] if "definition" in item else None, order=item["order"], owner_id=user_company_id, ) dash_created.styles.set(DashboardStyle.objects.filter(pk__in=list( map(lambda style: styles[style], item["styles"])))) result["dashboards"].append(dash_created) return result def getShares(self, report_id): report = Report.objects.get(pk=report_id) is_shared = report.usercompanies.count() > 0 or report.departments.count() > 0 return { "departments": Department.objects.filter(company_id=self.client_session.companyId).all(), "usercompanies_shares": report.usercompanies, "departments_shares": report.departments, "sharedToEveryone": report.is_public, "sharedTo": is_shared, "noShared": not is_shared, } def setShares(self, report_id, data): report = Report.objects.get(pk=report_id) report.is_public = data["sharedToEveryone"] report.usercompanies.clear() report.departments.clear() if not data["noShared"]: for usercompany_id in data["usercompanies_ids"]: usercompany = UserCompany.objects.get(pk=usercompany_id) report.usercompanies.add(usercompany) for department_id in data["departments_ids"]: department = Department.objects.get(pk=department_id) report.departments.add(department) report.save() return { "departments": Department.objects.filter(company_id=self.client_session.companyId).all(), "usercompanies_shares": report.usercompanies, "departments_shares": report.departments, "sharedToEveryone": report.is_public, "sharedTo": report.usercompanies.count() > 0 or report.departments.count() > 0, } # private def _createChildReportsAndDashboards(self, parent, item, result, styles): user_company_id = self.client_session.userCompanyId model_id = self.client_session.modelInfo.modelId for rep in item["reports"]: report = Report.objects.create( model=model_id, name=rep["name"], is_fav=rep["is_fav"], is_public=rep["is_public"], order=item["order"], parent=parent, owner_id=user_company_id, ) self._createChildReportsAndDashboards(report, rep, result, styles) for dash in item["dashboards"]: dash_created = Dashboard.objects.create( model=model_id, name=dash["name"], node=dash["node"] if "node" in dash else None, is_fav=dash["is_fav"], definition=dash["definition"] if "definition" in dash else None, order=item["order"], report=parent, owner_id=user_company_id ) dash_created.styles.set(DashboardStyle.objects.filter(pk__in=list( map(lambda item: styles[item], dash["styles"])))) result["reports"].append(parent) def _copyReport(self, report, owner_id, parent_id=None): old_report_id = report.pk report.owner_id = owner_id report.parent_id = parent_id report.pk = None report.is_public = False report.save() for child_report in Report.objects.filter(parent_id=old_report_id): child_report.parent = report self._copyReport(child_report, owner_id, report.pk) for child_dashboard in Dashboard.objects.filter(report_id=old_report_id): child_dashboard.report = report self._copyDashboard(child_dashboard, owner_id, report.pk) def _copyDashboard(self, dashboard, owner_id, report_id=None): dashboard.pk = None dashboard.owner_id = owner_id dashboard.is_public = False dashboard.report_id = report_id dashboard.save() def _duplicateReport(self, report, is_main=False): old_report_id = report.pk report.pk = None report.is_public = False if is_main: report.name += f"_copy {datetime.today().strftime('%Y%m%d-%H:%M:%S')}" report.save() for child_report in Report.objects.filter(parent_id=old_report_id): child_report.parent = report self._duplicateReport(child_report) for child_dashboard in Dashboard.objects.filter(report_id=old_report_id): child_dashboard.report = report self._duplicateDashboard(child_dashboard) def _duplicateDashboard(self, dashboard, is_main=False): dashboard.pk = None dashboard.is_public = False if is_main: dashboard.name += f"_copy {datetime.today().strftime('%Y%m%d-%H:%M:%S')}" dashboard.save() ``` #### File: pyplan/usercompanies/views.py ```python from rest_framework import status, viewsets from rest_framework.decorators import action from rest_framework.response import Response from pyplan.pyplan.preference.serializers import PreferenceSerializer from pyplan.pyplan.user_company_preference.service import \ UserCompanyPreferenceService from .models import UserCompany from .permissions import UserCompanyPermissions from .serializers import UserCompanySerializer, UserCompanyCreateUpdateSerializer, UserCompanyPartialUpdateSerializer, ListByCompanyIdSerializer from .service import UserCompanyService from .pagination import UserCompaniesPagination class UserCompanyViewSet(viewsets.ModelViewSet): """ Updates and retrieves user companies relations """ queryset = UserCompany.objects.all() serializer_class = UserCompanySerializer permission_classes = (UserCompanyPermissions,) pagination_class = UserCompaniesPagination def list(self, request, *args, **kwargs): try: service = UserCompanyService(request) response = service.list() if len(response) > 0: return Response(UserCompanySerializer(response, many=True).data, status=status.HTTP_200_OK) return Response("There was an error in the list", status=status.HTTP_406_NOT_ACCEPTABLE) except Exception as ex: return Response(str({ex}), status=status.HTTP_406_NOT_ACCEPTABLE) def create(self, request, *args, **kwargs): try: serializer = UserCompanyCreateUpdateSerializer(data=request.data) serializer.is_valid(raise_exception=True) service = UserCompanyService(request) response = service.create(serializer.validated_data) if len(response) > 0: return Response(UserCompanySerializer(response, many=True).data, status=status.HTTP_201_CREATED) return Response("There was an error in the creation", status=status.HTTP_406_NOT_ACCEPTABLE) except Exception as ex: return Response(str({ex}), status=status.HTTP_406_NOT_ACCEPTABLE) def update(self, request, *args, **kwargs): try: user_id = kwargs.get("pk") serializer = UserCompanyPartialUpdateSerializer(data=request.data) serializer.is_valid(raise_exception=True) service = UserCompanyService(request) response = service.partial_update(user_id, serializer.validated_data) if response: return Response(UserCompanySerializer(response, many=True).data, status=status.HTTP_200_OK) return Response("There was an error in the update", status=status.HTTP_406_NOT_ACCEPTABLE) except Exception as ex: return Response(str({ex}), status=status.HTTP_406_NOT_ACCEPTABLE) def partial_update(self, request, *args, **kwargs): try: user_id = kwargs.get("pk") serializer = UserCompanyPartialUpdateSerializer(data=request.data) serializer.is_valid(raise_exception=True) service = UserCompanyService(request) response = service.partial_update(user_id, serializer.validated_data) if response: return Response(UserCompanySerializer(response, many=True).data, status=status.HTTP_200_OK) return Response("There was an error in the update", status=status.HTTP_406_NOT_ACCEPTABLE) except Exception as ex: return Response(str({ex}), status=status.HTTP_406_NOT_ACCEPTABLE) @action(detail=False, methods=['get']) def preferences(self, request): preferences = UserCompanyPreferenceService(request).getUserCompanyPreferences() if preferences: return Response(PreferenceSerializer(preferences, many=True).data) return Response(status=status.HTTP_204_NO_CONTENT) @action(detail=False, methods=['get']) def preference_by_code(self, request): code = str(request.query_params.get("code", None)) if code: preference = UserCompanyPreferenceService(request).getUserCompanyPreference(code) if preference: return Response(PreferenceSerializer(preference).data) return Response(status=status.HTTP_204_NO_CONTENT) @action(detail=False, methods=['get']) def list_by_company_id(self, request): try: service = UserCompanyService(request) users = service.listByCompanyId() if len(users) > 0: return Response(ListByCompanyIdSerializer(users, many=True).data) return Response(status=status.HTTP_204_NO_CONTENT) except Exception as ex: return Response(str(ex), status=status.HTTP_406_NOT_ACCEPTABLE) ``` #### File: pyplan/user_company_preference/permissions.py ```python from rest_framework import permissions class UserCompanyPreferencePermissions(permissions.BasePermission): def has_permission(self, request, view): """ Checks permissions """ has_action_permission = False if request.user and request.user.is_authenticated: if view.action in ['list', 'retrieve']: has_action_permission = request.user.has_perm('pyplan.view_usercompanypreference') elif view.action in ['create']: has_action_permission = request.user.has_perm('pyplan.add_usercompanypreference') elif view.action in ['update', 'partial_update']: has_action_permission = request.user.has_perm('pyplan.change_usercompanypreference') elif view.action in ['destroy']: has_action_permission = request.user.has_perm('pyplan.delete_usercompanypreference') return has_action_permission ``` #### File: pyplan/users/permissions.py ```python from rest_framework import permissions class UserPermissions(permissions.BasePermission): """ Object-level permission to only allow owners of an object to edit it. """ def has_object_permission(self, request, view, obj): """ Checks permissions """ has_action_permission = False if request.user and request.user.is_authenticated: if view.action in ['list', 'retrieve']: return True elif view.action in ['create']: has_action_permission = request.user.has_perm('pyplan.add_user') elif view.action in ['update', 'partial_update']: has_action_permission = request.user.has_perm('pyplan.change_user') or obj == request.user elif view.action in ['destroy']: has_action_permission = request.user.has_perm('pyplan.delete_user') return has_action_permission ```
{ "source": "jorgedroguett/cajonera", "score": 3 }
#### File: jorgedroguett/cajonera/cajonera_3_cajones.py ```python hol_lado = 13 # variables h = 900 a = 600 prof_c = 400 h_c = 120 a_c = 200 hol_sup = 20 hol_inf = 10 hol_int = 40 hol_lateral = 2 esp_lado = 18 esp_sup = 18 esp_inf = 18 esp_c = 15 cubre_der_total = True cubre_iz_total = True def calcular_lado_cajon(prof_c, esp_c): lado_cajon = prof_c - 2 * esp_c return lado_cajon def calcular_a_c(cubre_iz_total, cubre_der_total, esp_lado, hol_lado, hol_lateral, a): if cubre_der_total: espesor_derecho = esp_lado else: espesor_derecho = esp_lado / 2 - hol_lateral if cubre_iz_total: espesor_izquierdo = esp_lado else: espesor_izquierdo = esp_lado / 2 - hol_lateral ancho_cajon = a - espesor_izquierdo - espesor_derecho - 2 * hol_lateral return ancho_cajon def calcular_h_c(h, esp_sup, esp_inf, hol_sup, hol_int, hol_inf): suma_holhura = hol_sup + hol_int + hol_inf suma_espesor = esp_sup + esp_inf espacio_cajones = h - suma_espesor - suma_holhura altura_cajon = espacio_cajones / 3 return altura_cajon h_c = calcular_h_c(h, esp_sup, esp_inf, hol_sup, hol_int, hol_inf) a_c = calcular_a_c(cubre_iz_total, cubre_der_total, esp_lado, hol_lado, hol_lateral, a) l_c = calcular_lado_cajon(prof_c, esp_c) print("frente cajon: ", a_c, " X ", round(h_c)) print("lado cajon: ", l_c, " X ", round(h_c)) ```
{ "source": "Jorgee1/Sam_Excel_Exporter", "score": 2 }
#### File: Jorgee1/Sam_Excel_Exporter/main.py ```python import sys import csv import ntpath import os.path from PyQt5.QtWidgets import QMainWindow, QApplication, QInputDialog, QLineEdit, QFileDialog, QListWidgetItem from PyQt5.QtCore import (QCoreApplication, Qt, QEvent) from mainUI import Ui_MainWindow from data_extractor import * """ C&W Networks <NAME> <NAME> """ #pyuic5 mainWindow.ui -o mainUI.py class Qfile(QListWidgetItem): def __init__(self, path, parent=None): self.path = path self.filename = os.path.basename(self.path) super().__init__(self.filename) class AppWindow(QMainWindow): def __init__(self): super().__init__() self.listIndex = -1 self.ui = Ui_MainWindow() self.ui.setupUi(self) self.ui.open_fileB.triggered.connect(self.openFileNameDialog) self.ui.pushButton.clicked.connect(self.extract_data) self.ui.listWidget.itemSelectionChanged.connect(self.test) def test(self): self.listIndex = self.ui.listWidget.currentRow() print(self.ui.listWidget.currentRow()) def keyPressEvent(self, event): key = event.key() if key == Qt.Key_Escape: QCoreApplication.quit() elif key == Qt.Key_Delete: print(self.ui.listWidget.currentRow()) if self.listIndex>=0: item = self.ui.listWidget.takeItem(self.ui.listWidget.currentRow()) item = None for i in range(self.ui.listWidget.count()): self.ui.listWidget.item(i).setSelected(False) self.listIndex = -1 self.ui.pushButton.setFocus() def mousePressEvent(self, event): #print("X:",event.x(),", Y:",event.y()) for i in range(self.ui.listWidget.count()): self.ui.listWidget.item(i).setSelected(False) self.listIndex = -1 self.ui.pushButton.setFocus() def openFileNameDialog(self): options = QFileDialog.Options() options |= QFileDialog.DontUseNativeDialog fileNames, _ = QFileDialog.getOpenFileNames(self,"Abrir TXT", "","TXT (*.txt)", options=options) if fileNames: for i in fileNames: self.ui.listWidget.addItem(Qfile(i)) self.ui.pushButton.setFocus() def extract_data(self): outFile = 'Resultado_SAPs' final_data = [["Name", "Service", "Saps", "Ports"]] if os.path.isfile(outFile +'.csv'): index = 0 print("Problem") while True: if os.path.isfile(outFile + '_' + str(index) + '.csv'): index = index + 1 else: outFile = outFile + '_' + str(index) break; print( outFile + '_' + str(index) + '.csv') with open(outFile +'.csv', 'w', newline='') as f: for i in range(self.ui.listWidget.count()): #print(self.ui.listWidget.item(i).text()) data = extract(self.ui.listWidget.item(i).path) final_data = final_data + data + [["","","",""]] writer = csv.writer(f) writer.writerows(final_data) self.ui.listWidget.clear() app = QApplication(sys.argv) w = AppWindow() w.show() sys.exit(app.exec_()) w.end() ```
{ "source": "Jorgee97/CovidTwilio", "score": 3 }
#### File: app/data/scrapping.py ```python import requests from bs4 import BeautifulSoup from .model import DayImage, Covid, Movies from ..config import Config import pandas as pd from sodapy import Socrata def get_day_image(): r = requests.get('https://www.minsalud.gov.co/salud/publica/PET/Paginas/Covid-19_copia.aspx') soup = BeautifulSoup(r.text, 'html.parser') results_row = soup.find_all('div', attrs={'id': 'WebPartWPQ4'}) results = [] origin_url = 'https://www.minsalud.gov.co' for resultRow in results_row: text = "Casos de COVID19 en Colombia" img = resultRow.find('img').get('src') results.append({ 'text': text, 'img': origin_url + img }) save_data_image(results) def save_data_image(data: list): DayImage(title=data[0]['text'], url=data[0]['img']).save() def get_data(): client = Socrata("www.datos.gov.co", Config.DATOS_GOV_KEY) results = client.get("gt2j-8ykr", limit=10000000) results_df = pd.DataFrame.from_records(results) results_df.index = results_df['id_de_caso'] results_df = results_df.drop('id_de_caso', axis=1) f = lambda x: x.astype(str).str.lower() translate_lambda = lambda s: s.astype(str).str.normalize('NFKD').str.encode('ascii', errors='ignore').str.decode( 'utf-8') results_df = results_df.apply(f) results_df = results_df.apply(translate_lambda) results_df.to_csv('covid19-colombia.csv') # Covid.drop_collection() # Verify how much data do we have saved and then start inserting from there start_point = len(Covid.objects) save_covid_data(start_point + 1) def save_covid_data(start_point): with open('covid19-colombia.csv', 'r') as file: data = file.readlines() for info in data[start_point:]: id_case, date, code, city, departament, attention, age, sex, tipo, state, precedence = info.split(',')[:11] Covid(id_caso=id_case, fecha_diagnostico=date, ciudad_ubicacion=city, departamento=departament, atencion=attention, edad=age, sexo=sex, tipo=tipo, pais_procedencia=precedence).save() def get_movies_series(): req = requests.get( 'http://finde.latercera.com/series-y-peliculas/que-ver-en-netflix-peliculas-series-buenas-abril-2/') info = BeautifulSoup(req.text, 'html.parser') info_row = info.find_all('div', attrs={'class': 'bg-white collapse-fix-xs'}) h2_titles = info_row[0].find_all('h2')[:-2] images = info_row[0].select('figure > img')[:-2] Movies.drop_collection() for title, img in zip(h2_titles, images): Movies(title=title.text, url=img.get('src')).save() ```
{ "source": "Jorgee97/Python_Projects", "score": 4 }
#### File: Python_Projects/Scripts/hangMan.py ```python import random words = ["house", "car", "creation", "junior", "developer", "glasses", "kitchen"] word = words[random.randint(0, len(words) - 1)] print(word) def find_letters_on_word(letter): index = [] for i, l in enumerate(word): if l == letter: index.append(i) return index def assign_size(): string = "" for i in range(0, len(word)): string += str(i) return string def assign_value_found(my_index, guess): l = list(guess) for i, v in enumerate(my_index): l[v] = word[v] return "".join(l) guessed = assign_size() maximumTry = 3 while maximumTry > 0: maximumTry -= 1 letter = input("Guess the word, please write one letter: \n") indexArray = find_letters_on_word(letter) if not len(indexArray) == 0: guessed = assign_value_found(indexArray, guessed) print(guessed) if maximumTry == 0: guess = input("Please write the completed word: \n") if guess == word: print("You have won the game, the word was " + word.upper()) else: print("You have failed, the word was " + word.upper()) ``` #### File: Python_Projects/Takenotes/takeNotes.py ```python import click import datetime import getpass class Note(object): def __init__(self, text, user): self.text = text self.user = user self.date = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") @click.group() def setup_directory(): pass @setup_directory.command() @click.argument('save_directory') def setup(save_directory): # create setup file ''' Provide the location where you want your notes to be safe, default file name is notes.txt, that cannot be change yet. Here is an example of how you should use this command argument: takeNotes.py setup /home/username/some_folder ''' with open("setup.txt", "w") as file: file.write(save_directory + "/notes.txt") @click.group() def note_taking(): pass @note_taking.command() @click.argument('note') def note(note): ''' This command only receive the notes under quotes. Example: takeNotes.py note "This is a cool note!" ''' with open("setup.txt", "r") as file: with open(file.readline(), "a") as notes: n = Note(note, getpass.getuser()) notes.write(n.text + "/" + str(n.user) + "/" + str(n.date) + "\n") @click.group() def list_notes(): pass @list_notes.command() def list(): ''' This command does not take any argument. This command will return all your notes, in the order of writing from top to bottom, there is not any sort implementation yet. Example: takeNotes.py list ''' with open("setup.txt", "r") as file: with open(file.readline(), "r") as note: for l in note: l = l.strip('\n') n = l.split('/') click.echo(f"{n[1]}: {n[0]} - {n[2]}") main = click.CommandCollection(sources=[setup_directory, note_taking, list_notes]) if __name__ == '__main__': main() ```
{ "source": "jorgeebn16/Project_2", "score": 2 }
#### File: jorgeebn16/Project_2/app.py ```python import numpy as np import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, func from sqlalchemy.inspection import inspect from flask import Flask, jsonify, render_template, redirect, request from etl import * import plotly import plotly.graph_objs as go from collections import defaultdict from urllib.request import urlopen import json ################################################# # Database Setup ################################################# engine = create_engine("sqlite:///assets/data/mortality.db") # reflect an existing database into a new model Base = automap_base() # reflect the tables Base.prepare(engine, reflect=True) # Save reference to the table mortality_county = Base.classes.mortality_county mortality_state = Base.classes.mortality_state mortality_us = Base.classes.mortality_us #mortality_categories = Base.classes.vw_Category ################################################# # Flask Setup ################################################# app = Flask(__name__) ################################################# # Flask Routes ################################################# @app.route("/") def index(): feature = 'Bar' plot_1 = create_plot_1(feature) plot_top5 = create_plot_top5(feature) plot_bot5 = create_plot_bot5(feature) plot_2 = create_plot_2() plot_3 = create_plot_3() plot_4 = create_plot_4() plot_5 = create_plot_5() return render_template('index.html', plot_1 = plot_1, plot_top5 = plot_top5, plot_bot5 = plot_bot5, plot_2 = plot_2 , plot_3 = plot_3 , plot_4 = plot_4 , plot_5 = plot_5) @app.route("/etl") @app.route("/etl/") def etl(): #return process_etl() try: process_etl() return redirect("/", code=302) except: return 'Something went horribly wrong!' @app.route("/api/") @app.route("/api") def api(): """List all available api routes.""" return ( f"Available Routes:<br/>" f'<hr>' f'<a href="/api/v1.0/categories">/api/v1.0/categories</a></br>' f'<a href="/api/v1.0/years">/api/v1.0/years</a></br>' f'<a href="/api/v1.0/county_all">/api/v1.0/county_all</a></br>' f'<a href="/api/v1.0/county_year/2000">/api/v1.0/county_year/&ltyear&gt</a></br>' f'<a href="/api/v1.0/state_year/2000">/api/v1.0/state_year/&ltyear&gt</a></br>' f'<a href="/api/v1.0/us_year/2000">/api/v1.0/us_year/&ltyear&gt</a></br>' f'</br>' f'<hr>' f'<a href="/">Return to the Dashboard</a>' ) @app.route("/api/v1.0/categories/") @app.route("/api/v1.0/categories") def categories(): # Create our session (link) from Python to the DB session = Session(engine) """Return a list of all Category names""" # Query all passengers results = session.query(mortality_us.Category).distinct().all() session.close() # Convert list of tuples into normal list all_categories = list(np.ravel(results)) return jsonify(all_categories) @app.route("/api/v1.0/years/") @app.route("/api/v1.0/years") def years(): # Create our session (link) from Python to the DB session = Session(engine) results = session.query(mortality_us.Date).distinct().all() session.close() # Convert list of tuples into normal list all_categories = list(np.ravel(results)) return jsonify(all_categories) @app.route("/api/v1.0/county_all/") @app.route("/api/v1.0/county_all") def county_all(): # Create our session (link) from Python to the DB session = Session(engine) results = session.query(mortality_county.FIPS, mortality_county.Category, mortality_county.Date, mortality_county.Value).all() session.close() # Create a dictionary from the row data and append to a list of all_passengers all_data = [] for FIPS, Category, Date, Value in results: mortality_dict = {} mortality_dict["FIPS"] = FIPS mortality_dict["Category"] = Category mortality_dict["Date"] = Date mortality_dict["Value"] = Value all_data.append(mortality_dict) return jsonify(all_data) @app.route("/api/v1.0/county_year/<year>/") @app.route("/api/v1.0/county_year/<year>") def county_year(year): # Create our session (link) from Python to the DB session = Session(engine) results = session.query(mortality_county.FIPS, mortality_county.Category, mortality_county.Date, mortality_county.Value).\ filter(mortality_county.Date == year).all() session.close() # Create a dictionary from the row data and append to a list of all_passengers all_data = [] for FIPS, Category, Date, Value in results: mortality_dict = {} mortality_dict["FIPS"] = FIPS mortality_dict["Category"] = Category mortality_dict["Date"] = Date mortality_dict["Value"] = Value all_data.append(mortality_dict) return jsonify(all_data) @app.route("/api/v1.0/state_year/<year>/") @app.route("/api/v1.0/state_year/<year>") def state_year(year): # Create our session (link) from Python to the DB session = Session(engine) results = session.query(mortality_state.FIPS, mortality_state.Category, mortality_state.Date, mortality_state.Value).\ filter(mortality_state.Date == year).all() session.close() # Create a dictionary from the row data and append to a list of all_passengers all_data = [] for FIPS, Category, Date, Value in results: mortality_dict = {} mortality_dict["FIPS"] = FIPS mortality_dict["Category"] = Category mortality_dict["Date"] = Date mortality_dict["Value"] = Value all_data.append(mortality_dict) return jsonify(all_data) @app.route("/api/v1.0/us_year/<year>/") @app.route("/api/v1.0/us_year/<year>") def us_year(year): # Create our session (link) from Python to the DB session = Session(engine) results = session.query(mortality_us.Category, mortality_us.Date, mortality_us.Value).\ filter(mortality_us.Date == year).all() session.close() # Create a dictionary from the row data and append to a list of all_passengers all_data = [] for Category, Date, Value in results: mortality_dict = {} mortality_dict["Category"] = Category mortality_dict["Date"] = Date mortality_dict["Value"] = Value all_data.append(mortality_dict) return jsonify(all_data) @app.route('/bar', methods=['GET', 'POST']) def change_features(): feature = request.args['selected'] graphJSON = create_plot_1(feature) return graphJSON @app.route('/bar2', methods=['GET', 'POST']) def change_features2(): feature = request.args['selected'] graphJSON = create_plot_top5(feature) return graphJSON @app.route('/bar3', methods=['GET', 'POST']) def change_features3(): feature = request.args['selected'] graphJSON = create_plot_bot5(feature) return graphJSON def create_plot_1(feature): session = Session(engine) #df = pd.read_sql_table(table_name = 'mortality_us', con=session.connection(), index_col="index") df = pd.read_sql(f"select Value, Category, Date from mortality_state", con=session.connection()) session.close() cat = df['Category'].unique() dates = df['Date'].unique() ymax = df['Value'].max() fig = go.Figure() if feature == 'Box': cnt = 1 for i in dates: val = df.query(f'Date == "{i}"')['Value'] #cat = df.query(f'Date == "{i}"')['Category'] fig.add_trace( go.Box( visible=False, x=df.query(f'Date == "{i}"')['Category'], # assign x as the dataframe column 'x' y=val, name = i ) ) if cnt == len(df['Date'].unique()): fig.data[0].visible = True else: cnt += 1 # fig = go.Figure(data = [[ # go.Box(name=i, x=df.query(f'Category == "{i}"')['Date'], y=df.query(f'Category == "{i}"')['Value']) for i in df['Category'].unique()] # ,go.Box(name='All', x=df['Date'], y=df['Value']) # ]) fig.update_layout(title="Box Plot - All Years by Category") elif feature == 'Bar': cnt = 1 for i in df['Date'].unique(): val = df.query(f'Date == "{i}"')['Value'] fig.add_trace( go.Bar( visible=False, x=cat, # assign x as the dataframe column 'x' y=val, name = i ) ) if cnt == len(df['Date'].unique()): fig.data[0].visible = True else: cnt += 1 #fig = go.Figure(data = [go.Bar(name=i, x=df.query(f'Date == "{i}"')['Category'], y=df.query(f'Date == "{i}"')['Value']) for i in df['Date'].unique()]) fig.update_layout(barmode='stack') fig.update_layout(title="Stacked Bar Chart - Category by Year") else: cnt = 1 for i in df['Date'].unique(): val = df.query(f'Date == "{i}"')['Value'] fig.add_trace( go.Scatter( visible=False, x=cat, # assign x as the dataframe column 'x' y=val, name = i ) ) if cnt == len(df['Date'].unique()): fig.data[0].visible = True else: cnt += 1 #fig = go.Figure(data = [go.Scatter(name=i, x=df.query(f'Category == "{i}"')['Date'], y=df.query(f'Category == "{i}"')['Value']) for i in df['Category'].unique()]) fig.update_layout(title="Line Chart - Category by Year") steps = [] for i in range(len(fig.data)): step = dict( method="restyle", args=["visible", [False] * len(fig.data)], label=fig.data[i]['name'] ) step["args"][1][i] = True # Toggle i'th trace to "visible" steps.append(step) sliders = [dict( active=0, currentvalue={"prefix": "Year: "}, pad={"t": 50}, steps=steps )] fig.update_layout( sliders=sliders ) fig.update_yaxes(range=[0, ymax]) graphJSON = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) #print(graphJSON) return graphJSON def create_plot_top5(feature): session = Session(engine) #df = pd.read_sql_table(table_name = 'mortality_us', con=session.connection(), index_col="index") df = pd.read_sql(f"select f.Category,f.date, f.Value from mortality_us f where rowid in (select rowid from mortality_us where Date = f.Date order by Value desc limit 6) order by f.Date asc;", con=session.connection()) session.close() if feature == 'Box': fig = go.Figure(data = [ go.Box( x=df['Category'], # assign x as the dataframe column 'x' y=df['Value'] ) ]) fig.update_layout(title="Box Plot - Top 6 - All Years by Category") elif feature == 'Bar': fig = go.Figure(data = [go.Bar(name=i, x=df.query(f'Date == "{i}"')['Category'], y=df.query(f'Date == "{i}"')['Value']) for i in df['Date'].unique()]) fig.update_layout(barmode='stack') fig.update_layout(title="Stacked Bar Chart (Top 6) - Category by Year") else: fig = go.Figure(data = [go.Scatter(name=i, x=df.query(f'Category == "{i}"')['Date'], y=df.query(f'Category == "{i}"')['Value']) for i in df['Category'].unique()]) fig.update_layout(title="Line Chart (Top 6) - Category by Year") graphJSON = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) #print(graphJSON) return graphJSON def create_plot_bot5(feature): session = Session(engine) #df = pd.read_sql_table(table_name = 'mortality_us', con=session.connection(), index_col="index") df = pd.read_sql(f"select f.Category,f.date, f.Value from mortality_us f where rowid in (select rowid from mortality_us where Date = f.Date order by Value asc limit 5) order by f.Date asc;", con=session.connection()) session.close() if feature == 'Box': fig = go.Figure(data = [ go.Box( x=df['Category'], # assign x as the dataframe column 'x' y=df['Value'] ) ]) fig.update_layout(title="Box Plot - Top 6 - All Years by Category") elif feature == 'Bar': fig = go.Figure(data = [go.Bar(name=i, x=df.query(f'Date == "{i}"')['Category'], y=df.query(f'Date == "{i}"')['Value']) for i in df['Date'].unique()]) fig.update_layout(barmode='stack') fig.update_layout(title="Stacked Bar Chart (Top 6) - Category by Year") else: fig = go.Figure(data = [go.Scatter(name=i, x=df.query(f'Category == "{i}"')['Date'], y=df.query(f'Category == "{i}"')['Value']) for i in df['Category'].unique()]) fig.update_layout(title="Line Chart (Top 6) - Category by Year") graphJSON = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) #print(graphJSON) return graphJSON def create_plot_2(): session = Session(engine) df = pd.read_sql_table(table_name = 'mortality_us', con=session.connection(), index_col="index") session.close() ymax = df['Value'].max() fig = go.Figure(data = [ go.Scatterpolar( theta=df['Category'], # assign x as the dataframe column 'x' r=df['Value'] ) ]) fig.update_layout(title="Radar Chart - Category (All Years)") steps = [] for i in range(len(fig.data)): step = dict( method="restyle", args=["visible", [False] * len(fig.data)], label=fig.data[i]['name'] ) step["args"][1][i] = True # Toggle i'th trace to "visible" steps.append(step) sliders = [dict( active=10, currentvalue={"prefix": "Year: "}, pad={"t": 50}, steps=steps )] fig.update_layout( sliders=sliders ) fig.update_yaxes(range=[0, ymax]) graphJSON = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) #print(graphJSON) return graphJSON def create_plot_3(): session = Session(engine) df = pd.read_sql_table(table_name = 'mortality_us', con=session.connection(), index_col="index") session.close() fig = go.Figure(data = [ go.Pie( labels=df['Category'], # assign x as the dataframe column 'x' values=df['Value'] ) ]) fig.update_layout(title="Pie Chart - Category (All Years)") graphJSON = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) #print(graphJSON) return graphJSON def create_plot_4(): with urlopen('https://raw.githubusercontent.com/plotly/datasets/master/geojson-counties-fips.json') as response: counties = json.load(response) session = Session(engine) #df = pd.read_sql_table(table_name = 'mortality_county', con=session.connection(), index_col="index") #df = pd.read_sql(f"select * from mortality_county where Date = '2014' and Category = 'Diabetes'", con=session.connection(), index_col="index") df = pd.read_sql(f"select Value, FIPS, Category, Date from mortality_county where Date = '2014'", con=session.connection()) session.close() cat = df['Category'].unique() #dates = df['Date'].unique() #data = [] fig = go.Figure() cnt = 1 for c in cat: cat_df = df.query(f'Category == "{c}"') fig.add_trace( go.Choroplethmapbox(geojson=counties, locations=cat_df.FIPS, z=cat_df.Value, colorscale = "Viridis", name = c, #text =regions, #colorbar = dict(thickness=20, ticklen=3), marker_line_width=0, marker_opacity=0.7, visible=False)) if cnt == len(cat): fig.data[cnt-1].visible = True else: cnt += 1 fig.update_layout(mapbox_style="carto-positron", mapbox_zoom=3, mapbox_center = {"lat": 37.0902, "lon": -95.7129}) #fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0}) fig.update_layout(title="US Mortality by County - Category (2014)") fig.update_layout(height=600) button_layer_1_height = 1.12 #08 fig.update_layout( updatemenus=[ go.layout.Updatemenu( buttons=list([ dict( args=["colorscale", "Viridis"], label="Viridis", method="restyle" ), dict( args=["colorscale", "Cividis"], label="Cividis", method="restyle" ), dict( args=["colorscale", "Blues"], label="Blues", method="restyle" ), dict( args=["colorscale", "Greens"], label="Greens", method="restyle" ), ]), direction="down", pad={"r": 10, "t": 10}, showactive=True, x=0.1, xanchor="left", y=button_layer_1_height, yanchor="top" ), go.layout.Updatemenu( buttons=list([ dict( args=["reversescale", False], label="False", method="restyle" ), dict( args=["reversescale", True], label="True", method="restyle" ) ]), direction="down", pad={"r": 10, "t": 10}, showactive=True, x=0.37, xanchor="left", y=button_layer_1_height, yanchor="top" ) ] ) steps = [] for i in range(len(fig.data)): step = dict( method="restyle", args=["visible", [False] * len(fig.data)], label=fig.data[i]['name'] ) step["args"][1][i] = True # Toggle i'th trace to "visible" steps.append(step) sliders = [dict( active=10, currentvalue={"prefix": "COD: "}, pad={"t": 50}, steps=steps )] fig.update_layout( sliders=sliders ) fig.update_layout( annotations=[ go.layout.Annotation(text="colorscale", x=0, xref="paper", y=1.06, yref="paper", align="left", showarrow=False), go.layout.Annotation(text="Reverse<br>Colorscale", x=0.25, xref="paper", y=1.07, yref="paper", showarrow=False) ]) graphJSON = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) #print(graphJSON) return graphJSON def create_plot_5x(): session = Session(engine) df = pd.read_sql(f"select Value, Category, Date from mortality_state", con=session.connection()) session.close() cat = df['Category'].unique() dates = df['Date'].unique() ymax = df['Value'].max() fig = go.Figure() cnt = 1 for i in df['Date'].unique(): val = df.query(f'Date == "{i}"')['Value'] fig.add_trace( go.Scatter( visible=False, x=cat, # assign x as the dataframe column 'x' y=val, name = i, mode='markers' ) ) if cnt == len(df['Date'].unique()): fig.data[cnt-1].visible = True else: cnt += 1 steps = [] for i in range(len(fig.data)): step = dict( method="restyle", args=["visible", [False] * len(fig.data)], label=fig.data[i]['name'] ) step["args"][1][i] = True # Toggle i'th trace to "visible" steps.append(step) sliders = [dict( active=10, currentvalue={"prefix": "Year: "}, pad={"t": 50}, steps=steps )] fig.update_layout( sliders=sliders ) fig.update_yaxes(range=[0, ymax]) graphJSON = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) #print(graphJSON) return graphJSON #fig.show() def create_plot_5(): session = Session(engine) df = pd.read_sql(f"select Value, Category, Date from mortality_us", con=session.connection()) session.close() df = df.pivot(index='Date',columns='Category',values='Value') ymax=df.max() fig = go.Figure() fig = go.Figure(data=go.Splom(dimensions=[dict(label=c, values=df[c]) for c in df.columns],text=df.index ,marker=dict(color=df.index.astype('int'),size=5,colorscale='Bluered',line=dict(width=0.5,color='rgb(230,230,230)')))) # cnt = 1 # for i in df['Date'].unique(): # val = df.query(f'Date == "{i}"')['Value'] # fig.add_trace( # go.Scatter( # visible=False, # x=cat, # assign x as the dataframe column 'x' # y=val, # name = i, # mode='markers' # ) # ) # if cnt == len(df['Date'].unique()): # fig.data[cnt-1].visible = True # else: # cnt += 1 steps = [] for i in range(len(fig.data)): step = dict( method="restyle", args=["visible", [False] * len(fig.data)], label=fig.data[i]['name'] ) step["args"][1][i] = True # Toggle i'th trace to "visible" steps.append(step) sliders = [dict( active=10, currentvalue={"prefix": "Year: "}, pad={"t": 50}, steps=steps )] fig.update_layout( sliders=sliders ) fig.update_yaxes(range=[0, ymax]) fig.update_layout(title='Scatter Plot Matrix', dragmode='select', width=1000, height=1000, hovermode='closest') graphJSON = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) #print(graphJSON) return graphJSON #fig.show() if __name__ == '__main__': app.run(debug=True) ```
{ "source": "jorgeebn16/sqlalchemy-challenge", "score": 3 }
#### File: jorgeebn16/sqlalchemy-challenge/climate_app.py ```python from flask import Flask , jsonify import sqlalchemy from sqlalchemy import create_engine, func from sqlalchemy.orm import Session from sqlalchemy.ext.automap import automap_base import datetime as dt from sqlalchemy.orm import scoped_session, sessionmaker ############################################# # Database Setup ############################################# engine = create_engine("sqlite:///Resources/hawaii.sqlite",echo=False) Base = automap_base() Base.prepare(engine, reflect=True) Measurement = Base.classes.measurement Station = Base.classes.station session = scoped_session(sessionmaker(bind=engine)) last_date = session.query( Measurement.date ).order_by( Measurement.date.desc() ).first()[0] last_date = dt.datetime.strptime(last_date,"%Y-%m-%d") first_date = last_date - dt.timedelta(days = 365) ############################################ # Flask Setup ############################################ app = Flask(__name__) ############################################ # Flask Setup ############################################ @app.route("/") def welcome(): return ( f"Available Routes:<br/>" f"The dates and temperature observations from the last year:<br/>" f"/api/v1.0/precipitation<br/>" f"List of stations from the dataset:<br/>" f"/api/v1.0/stations<br/>" f"List of Temperature Observations (tobs) for the previous year:<br/>" f"/api/v1.0/tobs<br/>" f"List of the minimum temperature, the average temperature, and the max temperature for a given start(i.e.2017-1-1):<br/>" f"/api/v1.0/<start><br/>" f"List of the minimum temperature, the average temperature, and the max temperature for a given start and end(i.e.2017-01-01/2017-01-07):<br/>" f"/api/v1.0/<start>/<end><br/>" ) @app.route("/api/v1.0/precipitation") def precipitation(): twelve_month_data = session.query( Measurement.date, Measurement.prcp ).filter( Measurement.date > first_date ).order_by( Measurement.date ).all() precipitation_data = dict(twelve_month_data) return jsonify({'Data':precipitation_data}) @app.route("/api/v1.0/stations") def stations(): stations = session.query(Station).all() stations_list = list() for station in stations: stations_dict = dict() stations_dict['Station'] = station.station stations_dict["Station Name"] = station.name stations_dict["Latitude"] = station.latitude stations_dict["Longitude"] = station.longitude stations_dict["Elevation"] = station.elevation stations_list.append(stations_dict) return jsonify ({'Data':stations_list}) @app.route("/api/v1.0/tobs") def tobs(): twelve_month_tobs = session.query( Measurement.tobs, Measurement.date, Measurement.station ).filter( Measurement.date > first_date ).all() temp_list = list() for data in twelve_month_tobs: temp_dict = dict() temp_dict['Station'] = data.station temp_dict['Date'] = data.date temp_dict['Temp'] = data.tobs temp_list.append(temp_dict) return jsonify ({'Data':temp_list}) @app.route("/api/v1.0/<start>") def start_temp(start=None): start_temps = session.query( func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs) ).filter( Measurement.date >= start ).all() start_list = list() for tmin, tavg, tmax in start_temps: start_dict = {} start_dict["Min Temp"] = tmin start_dict["Max Temp"] = tavg start_dict["Avg Temp"] = tmax start_list.append(start_dict) return jsonify ({'Data':start_list}) @app.route("/api/v1.0/<start>/<end>") def calc_temps(start=None,end=None): temps = session.query( func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs) ).filter( Measurement.date >= start, Measurement.date <= end ).all() temp_list = list() for tmin, tavg, tmax in temps: temp_dict = dict() temp_dict["Min Temp"] = tmin temp_dict["Avg Temo"] = tavg temp_dict["Max Temp"] = tmax temp_list.append(temp_dict) return jsonify ({'Data':temp_list}) if __name__ == '__main__': app.run(debug=True) ```
{ "source": "jorgefalconcampos/ECAD", "score": 2 }
#### File: app/ecad_app/mailer.py ```python from django.core import mail #EmailMessage lives here from django.utils.text import format_lazy as fl from django.conf import settings as conf_settings from django.template.loader import render_to_string from django.utils.translation import ugettext_lazy as _ from django.core.mail.backends.smtp import EmailBackend from django.core.mail import send_mail, get_connection, send_mass_mail class BaseMassiveMailer(): def __init__(self, message_to, context, subject, template, sndr_host, sndr_username, sndr_pass, sndr_port, sndr_tls, **substitutions): self.con = mail.get_connection() self.subject = subject self.message_to = message_to #A list of emails self.template = template self.context = context self.sndr_host = sndr_host self.sndr_port = sndr_port self.sndr_username = sndr_username self.sndr_pass = <PASSWORD> self.sndr_tls = sndr_tls self.substitutions = { } for key in substitutions: self.substitutions.update({key:substitutions[key]}) def create_emails(self): try: # creating connection self.con.open() #filling the connection (EmailBackend) object self.mail_obj = EmailBackend( host=self.sndr_host, port=self.sndr_port, username=self.sndr_username, password=self.sndr_pass, use_tls=self.sndr_tls) self.mails = [] # filling the EmailMessage objects for email in self.message_to: for k,v in self.context.items(): if k == email: ctxt = { 'email':k, 'unsubscribe_url':v, 'index_url':self.substitutions["index_url"], 'post_title':self.substitutions["post_title"], 'post_url':self.substitutions["post_url"], 'post_preview':self.substitutions["post_preview"], 'post_bg_img':self.substitutions["post_bg_img"], 'privacy_url':self.substitutions["privacy_url"],} body_msg = render_to_string(self.template, ctxt) new_mail_msg = mail.EmailMessage( subject=self.subject, body=body_msg, from_email=self.sndr_username, to=[email], connection=self.con) self.mails.append(new_mail_msg) except Exception as e: print(f'\n\n# --- PY: Error while creating the connection or mail(s) message(s): --- #\n{e}') def send_massive_email(self): self.create_emails() try: for mail in self.mails: mail.content_subtype = 'html' self.mail_obj.send_messages(self.mails) self.con.close() return True except Exception as e: print(f'\n\n# --- PY: Error sending massive emails: --- #\n{e}') return False class BaseMailer(): def __init__(self, message_to, context, subject, template, sndr_host, sndr_port, sndr_username, sndr_pass, sndr_tls, **substitutions): self.con = mail.get_connection() self.message_to = message_to self.subject = subject self.body_msg = render_to_string(template, context) self.sndr_host = sndr_host self.sndr_port = sndr_port self.sndr_username = sndr_username self.sndr_pass = <PASSWORD> self.sndr_tls = sndr_tls # sth like request o algo asi xd self.substitutions = {} for key in substitutions: self.substitutions.update({key:substitutions[key]}) def create_email(self): try: # creating connection self.con.open() #filling the connection (EmailBackend) object self.mail_obj = EmailBackend( host=self.sndr_host, port=self.sndr_port, username=self.sndr_username, password=<PASSWORD>.<PASSWORD>, use_tls=self.sndr_tls) # filling the EmailMessage object self.mail = mail.EmailMessage( subject=self.subject, body=self.body_msg, from_email=self.sndr_username, to=[self.message_to], connection=self.con) except Exception as e: print(f'\n\n# --- PY: Error while creating the connection or mail(s) message(s): --- #\n{e}') def send_email(self): self.create_email() try: self.mail.content_subtype = 'html' self.con.send_messages([self.mail]) #sending email with the current connection, this is intended to send messages to multiple mails w/ the same conn # self.mail.send(self.mail) #sending email with the EmailMessage object # self.mail_obj.send_messages([self.mail]) #sending email with EmailBackend self.con.close() return True except Exception as e: print(f'\n\n# --- PY: Error sending email: --- #\n{e}') return False class SendNewsletterConfirmation(BaseMailer): def __init__(self, message_to, context, **substitutions): super().__init__( message_to, context, subject = _('str_confirmYourEmail'), template = 'ecad_app/mails/blog/confirm-mail.html', sndr_host = conf_settings.EMAIL_HOST, sndr_port = conf_settings.EMAIL_PORT, sndr_username = conf_settings.NEWSLETTER_HOST_USER, sndr_pass = conf_settings.NEWSLETTER_HOST_PASSWORD, sndr_tls = conf_settings.EMAIL_USE_TLS, **substitutions ) class SendConfirmationMail(BaseMailer): def __init__(self, message_to, context, **substitutions): super().__init__( message_to, context, subject = fl('{} {} {}', _('str_mails_activationMail4'), substitutions["first_name"], substitutions["last_name"]), template = 'ecad_app/mails/user/activate-email.html', sndr_host = conf_settings.EMAIL_HOST, sndr_username = conf_settings.USERS_HOST_USER, sndr_pass = conf_settings.USERS_HOST_PASSWORD, sndr_port = conf_settings.EMAIL_PORT, sndr_tls = conf_settings.EMAIL_USE_TLS, **substitutions ) class SendContactMail(BaseMailer): def __init__(self, message_to, context, **substitutions): super().__init__( message_to, context, subject = fl('{}: {}', _('str_mails_newMail'), substitutions["subj"]), template = 'ecad_app/user/contact-mail.html', sndr_host = conf_settings.EMAIL_HOST, # ---- change only username and pass sndr_username = conf_settings.CONTACT_HOST_USER, sndr_pass = conf_settings.CONTACT_HOST_PASSWORD, # change only username and pass ---- sndr_port = conf_settings.EMAIL_PORT, sndr_tls = conf_settings.EMAIL_USE_TLS, **substitutions ) class SendNewsletterMessage(BaseMassiveMailer): def __init__(self, message_to, context, **substitutions): super().__init__( message_to, context, subject = fl('{}: {}', _('str_mails_newsletterNewMail'), substitutions["post_title"]), template = 'ecad_app/mails/blog/avg-mail.html', sndr_host = conf_settings.EMAIL_HOST, sndr_username = conf_settings.NEWSLETTER_HOST_USER, sndr_pass = conf_settings.NEWSLETTER_HOST_PASSWORD, sndr_port = conf_settings.EMAIL_PORT, sndr_tls = conf_settings.EMAIL_USE_TLS, **substitutions ) ``` #### File: app/ecad_app/models.py ```python import os from django.db import models as m #Importando "pre_save" para auto-generar el slug del post y "post_save" para auto-generar/actualizar el modelo Autor from django.db.models.signals import pre_save, post_save from django.dispatch import receiver from taggit.managers import TaggableManager from django.utils import timezone from ecad_project.utils import unique_slug_generator #Importando el the auto slug generator from django.contrib.auth.models import User from django.db.models import Count from django.utils.translation import gettext as _ from django.template.defaultfilters import slugify # Modelo Author, representa un "autor" o profesor quién escribe posts y tiene accesos al dashboard class Author(m.Model): name = m.OneToOneField(User, on_delete=m.CASCADE, related_name='autor') slug = m.SlugField(unique=True, null=True, blank=True) title = m.CharField(max_length=100, blank=True) email = m.EmailField(unique=True, null=True) image = m.ImageField(upload_to='author/img/', default='author/default-img.png') bio = m.TextField(max_length=500) facebook_URL = m.URLField(null=True, blank=True) twitter_URL = m.URLField(null=True, blank=True) linkedin_URL = m.URLField(null=True, blank=True) activated_account = m.BooleanField(default=False) def __str__(self): return self.name.username @receiver(post_save, sender=User) def create_profile(sender, instance, created, **kwargs): if created: Author.objects.create(name=instance) if not User.is_superuser: instance.Author.save() # @receiver(pre_save, sender=User) # def save_instance(sender, instance, **kwargs): # instance.Author.save() def image_filename(self): return os.path.basename(self.image.name) def save(self, *args, **kwargs): self.slug = slugify(self.name.first_name+' '+self.name.last_name) super (Author, self).save(*args, **kwargs) def activate_account(self, *args, **kwargs): self.activated_account = True super (Author, self).save(*args, **kwargs) # Modelo Category, representa una "categoría", tema, o materia en términos generales class Category(m.Model): name = m.CharField(max_length=100) description = m.CharField(max_length=300) slug = m.SlugField(unique=True) image = m.ImageField(upload_to='categories/', default='no-category.png') def __str__(self): return self.name def save(self, *args, **kwargs): self.slug = slugify(self.name) super (Category, self).save(*args, **kwargs) # Status en los que se puede encontrar el post post_status = ( (0, 'Draft'), (1, 'Approved'), (2, 'Rejected'), (3, 'Archived') ) # Modelo Post, representa una "nota", apunte o anotación class Post(m.Model): author = m.ForeignKey(Author, on_delete=m.CASCADE, related_name='author') title = m.CharField(max_length=150) subtitle = m.CharField(max_length=200, blank=True) #Subtitulo es opcional slug = m.SlugField(unique=True) category = m.ForeignKey(Category, on_delete=m.CASCADE, related_name='catego', default='1') image = m.ImageField(upload_to='img/', default='no-img.png') unsplash_URL = m.URLField(null=True, blank=True) post_body = m.TextField() #Post body tags = TaggableManager() #Tags created_date = m.DateTimeField(default=timezone.now) published_date = m.DateTimeField(blank=True, null=True) status = m.IntegerField(choices=post_status, default=0) # Reacciones y votos para el post: fav, util, like o dislike vote_fav = m.IntegerField(default=0) vote_util = m.IntegerField(default=0) vote_tmbup = m.IntegerField(default=0) vote_tmbdn = m.IntegerField(default=0) send_to_newsletter = m.BooleanField(null=True, default=False) def publish(self): self.published_date = timezone.now() self.save() def approve_post(self): self.published_date = timezone.now() self.status = 1 self.save() def reject_post(self): self.status = 2 self.save() def archive_post(self): self.status = 3 self.save() def unarchive_post(self): self.status = 0 self.save() def all_cmts(self): return Comment.objects.filter(in_post=self).count() or False def approved_cmts(self): return Comment.objects.filter(in_post=self, is_approved=True).count() def non_approved_cmts(self): return Comment.objects.filter(in_post=self, is_approved=False).count() def __str__(self): return self.title def save(self, *args, **kwargs): self.slug = slugify(self.title) super (Post, self).save(*args, **kwargs) # Modelo Comment, representa un "comentario" dentro de un post class Comment(m.Model): in_post = m.ForeignKey(Post, on_delete=m.CASCADE, related_name="comments") author = m.CharField(max_length=125) author_email = m.EmailField() comment_body = m.TextField() created_date = m.DateTimeField(auto_now_add=True) is_approved = m.BooleanField(default=False) has_report = m.BooleanField(default=False) # approve method, to approve or disapprove comments def approve(self): self.is_approved = True self.save() def report(self): self.has_report = True self.save() def approved_comments(self): return self.Comment.objects.filter(is_approved=True) # Modelo Misc, representa un objeto "misceláneo", puede ser un anuncio general, página de reglas, cookies (si aplica) etc class Misc(m.Model): name = m.CharField(max_length=100) date = m.DateTimeField(default=timezone.now) head_desc = m.CharField(max_length=200) #Description for HTML bgImage = m.URLField(max_length=500) content = m.TextField() #Post body def __str__(self): return self.name # Modelo Subscriber, representa un "suscriptor" que está suscrito al Newsletter class Subscriber(m.Model): email = m.EmailField(unique=True) conf_num = m.CharField(max_length=15) confirmed = m.BooleanField(default=False) def __str__(self): return self.email + " (" + ("not " if not self.confirmed else "") + "confirmed)" # Auto-generador de slug para una instancia del modelo Post cuando es guardado de una petición HTTP (form) def slug_generator(sender, instance, *args, **kwargs): if not instance.slug: instance.slug = unique_slug_generator(instance) pre_save.connect(slug_generator, sender=Post) ``` #### File: ecad_app/templatetags/url_builder_openGraph.py ```python from django import template from django.templatetags import static register = template.Library() class FullStaticNode(static.StaticNode): def url(self, context): request = context['request'] return request.build_absolute_uri(super().url(context)) @register.tag('fullstatic') def do_static(parser, token): return FullStaticNode.handle_token(parser, token) ``` #### File: app/ecad_app/tokens.py ```python from django.contrib.auth.tokens import PasswordResetTokenGenerator import six class TokenGenerator(PasswordResetTokenGenerator): def _make_hash_value(self, user, timestamp): return ( six.text_type(user.pk) + six.text_type(timestamp) + six.text_type(user.is_active) ) account_activation_token = TokenGenerator() # from django.contrib.auth.tokens import PasswordResetTokenGenerator # import six # class UserTokenGenerator(PasswordResetTokenGenerator): # def _make_hash_value(self, user, timestamp): # user_id = six.text_type(user.pk) # ts = six.text_type(timestamp) # is_active = six.text_type(user.is_active) # return f"{user_id}{ts}{is_active}" # user_tokenizer = UserTokenGenerator() ```
{ "source": "jorgefandinno/eclingo", "score": 2 }
#### File: src/eclingo/control.py ```python from pprint import pprint import sys from typing import Iterable, Tuple from clingo import Symbol from eclingo import internal_states from eclingo.config import AppConfig from eclingo.grounder import Grounder from eclingo.solver import Solver from eclingo.util.logger import logger from eclingo import __version__ class Control(object): def __init__(self, control=None, config=None): if control is not None: self.project = control.configuration.solve.project self.max_models = int(control.configuration.solve.models) control.configuration.solve.project = "auto,3" control.configuration.solve.models = 0 self.control = control else: self.project = None self.max_models = 1 self.control = internal_states.InternalStateControl(['0', '--project'], logger=logger) if config is None: config = AppConfig() self.config = config if self.max_models == 0: self.max_models = sys.maxsize self.epistemic_signature = dict() self.grounder = Grounder(self.control, self.config) self.models = 0 self.grounded = False self.solver = None self.epistemic_signature_symbol = dict() def add_program(self, program): self.grounder.add_program(program) def load(self, input_path): with open(input_path, 'r') as program: self.add_program(program.read()) def ground(self, parts: Iterable[Tuple[str, Iterable[Symbol]]] = (("base", []),)): self.grounder.ground(parts) self.epistemic_signature = self.grounder.epistemic_signature self.epistemic_signature_symbol = dict( (s.epistemic_literal, s) for s in self.epistemic_signature.values() ) self.grounded = True def preprocess(self): pass def prepare_solver(self): if not self.grounded: self.ground() self.solver = Solver(self.control, self.config) def solve(self): if self.solver is None: self.prepare_solver() for model in self.solver.solve(): self.models += 1 yield model if self.models >= self.max_models: break ``` #### File: eclingo/solver/preprocessor.py ```python from typing import Set from clingo import Symbol from eclingo.config import AppConfig import eclingo.internal_states.internal_control as internal_control class Preprocessor(): def __init__(self, config: AppConfig, control: internal_control.InternalStateControl) -> None: self._control = control self._config = config self._epistemic_to_test_mapping = self._control.epistemic_to_test_mapping self.facts = set(self._control.facts()) self._epistemic_facts = self._generate_epistemic_facts(self._epistemic_to_test_mapping, self.facts) def __call__(self): self._add_epistemic_facts_to_control() def _generate_epistemic_facts(self, epistemic_to_test, facts) -> Set[Symbol]: epistemic_facts: Set[Symbol] = set() for epistemic_literal, test_literal in epistemic_to_test.items(): if test_literal in facts: epistemic_facts.add(epistemic_literal) return epistemic_facts def _add_epistemic_facts_to_control(self): with self._control.symbolic_backend() as backend: for fact in self._epistemic_facts: backend.add_rule([fact], [], [], False) # self._control.cleanup() ``` #### File: eclingo/tests/test_app.py ```python import os from os import register_at_fork import subprocess import unittest from clingo import Number import eclingo from eclingo.util.logger import silent_logger APP_PATH = '../src/eclingo/main.py' INPUT_PROG_PATH = 'prog/input/' OUTPUT_PROG_PATH = 'prog/output/' KB_ELIGIBLE_PATH = 'eligible/eligible.lp' INPUT_ELIGIBLE_PATH = 'eligible/input/' OUTPUT_ELIGIBLE_PATH = 'eligible/output/' KB_YALE_PATH = 'yale/yale.lp' INPUT_YALE_PATH = 'yale/input/' OUTPUT_YALE_PATH = 'yale/output/' def parse_output(output): lines = output.split('\n') world_views = [] is_world_view = False for line in lines: if is_world_view: world_view = line.split() world_views.append(world_view) is_world_view = False elif line.startswith('World view:'): is_world_view = True return world_views class TestExamples(unittest.TestCase): def assert_world_views(self, command, output_path): process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = process.communicate() output = stdout.decode('utf-8') world_views = parse_output(output) for world_view in world_views: world_view.sort() world_views.sort() world_views = [str(wv) for wv in world_views] world_views = str(world_views).replace(' ', '').replace("'", '').replace('"', '') with open(output_path, 'r') as output_prog: sol = output_prog.read() sol = sol.replace('\n', '').replace(' ', '') self.assertEqual(world_views, sol, 'in ' + str(command)) def test_prog_g94(self): for i in range(1, 11): path = os.path.dirname(os.path.realpath(__file__)) input_path = os.path.join(path, INPUT_PROG_PATH) input_path = os.path.join(input_path, f'prog{i:02d}.lp') output_path = os.path.join(path, OUTPUT_PROG_PATH) output_path = os.path.join(output_path, f'sol{i:02d}.txt') app_path = os.path.join(path, APP_PATH) command = ['python', app_path, '0', input_path] self.assert_world_views(command, output_path) def test_eligible_g94(self): for i in range(1, 17): path = os.path.dirname(os.path.realpath(__file__)) elegible_path = os.path.join(path, KB_ELIGIBLE_PATH) input_path = os.path.join(path, INPUT_ELIGIBLE_PATH) input_path = os.path.join(input_path, f'eligible{i:02d}.lp') output_path = os.path.join(path, OUTPUT_ELIGIBLE_PATH) output_path = os.path.join(output_path, f'sol_eligible{i:02d}.txt') app_path = os.path.join(path, APP_PATH) command = ['python', app_path, '0', elegible_path, input_path] self.assert_world_views(command, output_path) def test_yale_g94(self): for i in range(1, 9): if i != 6: path = os.path.dirname(os.path.realpath(__file__)) yale_path = os.path.join(path, KB_YALE_PATH) input_path = os.path.join(path, INPUT_YALE_PATH) input_path = os.path.join(input_path, f'yale{i:02d}.lp') output_path = os.path.join(path, OUTPUT_YALE_PATH) output_path = os.path.join(output_path, f'sol_yale{i:02d}.txt') app_path = os.path.join(path, APP_PATH) constant = '-c length=%d' % i command = ['python', app_path, constant, '0', yale_path, input_path] self.assert_world_views(command, output_path) ``` #### File: eclingo/tests/test_eclingo_examples.py ```python import os import unittest from clingo import Number from eclingo import control as _control, internal_states, config as _config from eclingo.util.logger import silent_logger INPUT_PROG_PATH = 'prog/input/' OUTPUT_PROG_PATH = 'prog/output/' KB_ELIGIBLE_PATH = 'eligible/eligible.lp' INPUT_ELIGIBLE_PATH = 'eligible/input/' OUTPUT_ELIGIBLE_PATH = 'eligible/output/' KB_YALE_PATH = 'yale/yale-parameter.lp' INPUT_YALE_PATH = 'yale/input/' OUTPUT_YALE_PATH = 'yale/output/' class TestExamples(unittest.TestCase): def test_prog_g94(self): for i in range(1, 11): control = internal_states.InternalStateControl(logger=silent_logger) control.configuration.solve.models = 0 eclingo_control = _control.Control(control=control) path = os.path.dirname(os.path.realpath(__file__)) input_path = os.path.join(path, INPUT_PROG_PATH) input_path = os.path.join(input_path, f'prog{i:02d}.lp') output_path = os.path.join(path, OUTPUT_PROG_PATH) output_path = os.path.join(output_path, f'sol{i:02d}.txt') eclingo_control.load(input_path) eclingo_control.ground() result = [[ str(symbol) for symbol in model.symbols ] for model in eclingo_control.solve()] result = [sorted(model) for model in result] result = str(sorted(result)).replace(' ', '').replace("'", '') with open(output_path, 'r') as output_prog: sol = output_prog.read() sol = sol.replace('\n', '').replace(' ', '') self.assertEqual(result, sol, 'in ' + input_path) def test_eligible_g94(self): for i in range(1, 17): control = internal_states.InternalStateControl(logger=silent_logger) control.configuration.solve.models = 0 _config.add_efacts = True eclingo_control = _control.Control(control=control) # eclingo_control.config.eclingo_verbose = 2 path = os.path.dirname(os.path.realpath(__file__)) elegible_path = os.path.join(path, KB_ELIGIBLE_PATH) input_path = os.path.join(path, INPUT_ELIGIBLE_PATH) input_path = os.path.join(input_path, f'eligible{i:02d}.lp') output_path = os.path.join(path, OUTPUT_ELIGIBLE_PATH) output_path = os.path.join(output_path, f'sol_eligible{i:02d}.txt') eclingo_control.load(elegible_path) eclingo_control.load(input_path) eclingo_control.ground() result = [[ str(symbol) for symbol in model.symbols ] for model in eclingo_control.solve()] result = [sorted(model) for model in result] result = str(sorted(result)).replace(' ', '').replace("'", '') with open(output_path, 'r') as output_prog: sol = output_prog.read() sol = sol.replace('\n', '').replace(' ', '') self.assertEqual(result, sol, 'in ' + input_path) def test_yale_g94(self): for i in range(1, 9): if i != 6: control = internal_states.InternalStateControl(logger=silent_logger) control.configuration.solve.models = 0 eclingo_control = _control.Control(control=control) # eclingo_control.config.eclingo_verbose = 10 path = os.path.dirname(os.path.realpath(__file__)) yale_path = os.path.join(path, KB_YALE_PATH) input_path = os.path.join(path, INPUT_YALE_PATH) input_path = os.path.join(input_path, f'yale{i:02d}.lp') output_path = os.path.join(path, OUTPUT_YALE_PATH) output_path = os.path.join(output_path, f'sol_yale{i:02d}.txt') eclingo_control.load(yale_path) eclingo_control.load(input_path) parts = [] parts.append(('base', [])) parts.append(('base', [Number(i)])) eclingo_control.ground(parts) result = [[ str(symbol) for symbol in model.symbols ] for model in eclingo_control.solve()] result = [sorted(model) for model in result] result = str(sorted(result)).replace(' ', '').replace("'", '') with open(output_path, 'r') as output_prog: sol = output_prog.read() sol = sol.replace('\n', '').replace(' ', '') self.assertEqual(result, sol, 'in ' + input_path) ``` #### File: eclingo/tests/test_transformers.py ```python import unittest import clingo from clingo import ast as _ast from eclingo.parsing.transformers.theory_parser_epistemic import \ parse_epistemic_literals_elements as _parse_epistemic_literals_elements clingo_version = clingo.__version__ def parse_string(statement, fun): if clingo_version < '5.5.1': return clingo.parse_program(statement, fun) return _ast.parse_string(statement, fun) def ast_type(stm): if clingo_version < '5.5.1': return stm.type return stm.ast_type def theory_atom_element_terms(stm): if clingo_version < '5.5.1': return stm.tuple return stm.terms class ProgramParser(object): def __init__(self): self._statements = [] def _parse_statement(self, statement: _ast.AST) -> None: # pylint: disable=no-member self._statements.append(statement) def parse_statement(self, statement): parse_string(statement, self._parse_statement) def literal_statment_from_str(s): parser = ProgramParser() parser.parse_statement(":- " + s) return parser._statements[1].body[0] def theory_atom_statment_from_str(s): return literal_statment_from_str(s).atom class Test(unittest.TestCase): def test_epistemic_atom(self): statement = theory_atom_statment_from_str("&k{a}.") self.assertEqual(len(statement.elements), 1) element = statement.elements[0] self.assertEqual(ast_type(element), _ast.ASTType.TheoryAtomElement) terms = theory_atom_element_terms(element) self.assertEqual(len(terms), 1) term = terms[0] if clingo_version < '5.5.1': self.assertEqual(ast_type(term), _ast.ASTType.TheoryUnparsedTerm) else: self.assertEqual(ast_type(term), _ast.ASTType.SymbolicTerm) result = _parse_epistemic_literals_elements(statement) self.assertEqual(len(result.elements), 1) element = result.elements[0] self.assertEqual(ast_type(element), _ast.ASTType.TheoryAtomElement) terms = theory_atom_element_terms(element) self.assertEqual(len(terms), 1) term = terms[0] self.assertEqual(ast_type(term), _ast.ASTType.Literal) ```
{ "source": "JorgeFCS/Deep-Learning-fire-segmentation", "score": 3 }
#### File: Deep-Learning-fire-segmentation/Functions/data_augmentation.py ```python import tensorflow as tf __author__ = "<NAME>" __credits__ = ["<NAME>"] __license__ = "MIT" __version__ = "0.1.0" __status__ = "Development" # Data augmentation: horizontal flip. def a_mirror_image(image): """ Data augmentation: horizontal flip. """ #image = tf.cast(image, tf.float32) image = tf.image.flip_left_right(image) image = tf.image.resize(image,[384,512]) return image # Data augmentation: central crop. def a_central_crop(image): """ Data augmentation: central crop. """ #image = tf.cast(image, tf.float32) image = tf.image.central_crop(image,central_fraction=0.5) image = tf.image.resize(image,[384,512]) return image # Data augmentation: rotation 180 degrees. def a_rotate_180(image): """ Data augmentation: rotation - 180 degrees. """ #image = tf.cast(image, tf.float32) image = tf.image.rot90(image,2) image = tf.image.resize(image,[384,512]) return image # Data augmentation: rotation 90 degrees. def a_rotate_90(image): """ Data augmentation: rotation - 90 degrees. """ #image = tf.cast(image, tf.float32) image = tf.image.rot90(image,1) image = tf.image.resize(image,[384,512]) return image # Auxiliary function to convert to uint8. def convert_binary(image): """ Auxiliary function to cast an image to uint8. """ image = tf.cast(image, tf.uint8) return image ```
{ "source": "JorgeFelix11/MCA_automatizacion", "score": 3 }
#### File: python/mac_files_config/mac_files_config.py ```python import json import os import re import shutil import sys from argparse import ArgumentParser, RawTextHelpFormatter WORKDIR = os.getcwd() # Current working directory (where script is run) RESULTS_PATH = os.path.join(WORKDIR, 'resulting_mac_files') BASE_MAC_FILE = os.path.join(WORKDIR, 'base.mac') CONFIG_JSON = os.path.join(WORKDIR, 'config.json') def main(): """Generate new .mac files.""" try: args = _parse_args(sys.argv[1:]) config = _get_config(args.config_json) base_mac = _verify_base_mac_file(args.base_mac) _set_results_path() destination_path = _verify_destination_path(args.destination_path) for _, particle in config.items(): _generate_particle_mac( particle, args.iterations, args.add_zeros, args.iteration_digits, destination_path, base_mac ) except KeyboardInterrupt: print('Stopped due user interruption.\n') except Exception as error: _print_error(f'An error occurred: {error}\n') def _parse_args(args): """Parse input arguments and return input values.""" parser = ArgumentParser( formatter_class=lambda prog: RawTextHelpFormatter( prog, max_help_position=7 ), description=('Script to generate new .mac files combining different ' 'parameters from a config.json file.') ) parser.add_argument( '--add_zeros', action='store_true', help='Add zeros to the left side of the iteration number.' ) parser.add_argument( '--base_mac', default=BASE_MAC_FILE, help='Absolute path of the base .mac file.' ) parser.add_argument( '--config_json', default=CONFIG_JSON, help='Absolute path of the configuration JSON file.' ) parser.add_argument( '-d', '--destination_path', default='', help=('Absolute path of destination location. Generated files will be ' 'copied to this location.') ) parser.add_argument( '-i', '--iterations', default=1, type=int, help='Number of files creation iterations (copies).' ) parser.add_argument( '--iteration_digits', default=4, type=int, help=('Number of iteration digits. Applicable only if --add_zeros is ' 'specified.') ) return parser.parse_args(args) def _get_config(config_file): """Return an object with the dumped configuration JSON file.""" if not os.path.isfile(config_file): _print_error(f'Configuration file "{config_file}" does not exist.') with open(config_file) as json_file: return json.load(json_file) def _set_results_path(): """Set the results path. If the results path does not exist, it will be created. If the results path exists, it will be emptied. """ if not os.path.isdir(RESULTS_PATH): print(f'Creating results path "{RESULTS_PATH}"...') os.mkdir(RESULTS_PATH) else: print(f'Removing files in results path "{RESULTS_PATH}"...') _empty_results_path() def _verify_base_mac_file(base_mac_file): """Verify the base .mac file exists.""" if not os.path.isfile(base_mac_file): _print_error(f'The base .mac file "{base_mac_file}" does not exist.') return base_mac_file def _verify_destination_path(destination_path): """Verify the destination path exists.""" if not destination_path: destination_path = RESULTS_PATH if not os.path.isdir(destination_path): _print_error( f'The destination path "{destination_path}" does not exist.' ) print(f'Destination path is "{destination_path}".') return destination_path def _empty_results_path(): """Remove all the files in the results path.""" for filename in os.listdir(RESULTS_PATH): file_path = os.path.join(RESULTS_PATH, filename) try: if os.path.isfile(file_path) or os.path.islink(file_path): os.unlink(file_path) elif os.path.isdir(file_path): shutil.rmtree(file_path) except Exception as error: print(f'Failed to delete {file_path}. Reason: {error}') def _generate_particle_mac(particle, iterations, add_zeros, iteration_digits, destination_path, base_mac): """Generate the .mac files with all the particle combinations.""" specification_list = [ # Split elements and remove white spaces i.strip() for i in particle['specification'].split(',') ] particle_name = particle['name'] energy_list = particle['energy'] simulations = particle['simulations'] creation_count = 0 print(f'Generating the .mac files for particle "{particle_name}"...') for specification in specification_list: for energy_unit, energy_levels in energy_list.items(): # Split the energy level list in config JSON (separated by commas) energy_levels = [ i.strip() for i in energy_levels.split(',') ] for energy in energy_levels: new_files_number = _create_mac_files( iterations, add_zeros, iteration_digits, destination_path, base_mac, { 'specification': specification, 'particle_name': particle_name, 'energy': energy, 'energy_unit': energy_unit, 'simulations': simulations } ) creation_count += new_files_number print(f'{creation_count} files were created for "{particle_name}" ' 'particle.') def _create_mac_files(iterations, add_zeros, iteration_digits, destination_path, base_mac, metrics): """Create a .mac with metrics given, the given number of iterations.""" _validate_integer_metrics({ # Check set metrics are integers 'energy': metrics["energy"], 'simulations': metrics['simulations'] }) count = 0 for run_number in range(iterations): if add_zeros: # Add zeros to the left size of number run_number = _add_left_zeros(run_number, iteration_digits) mac_name = ( # Set the name for .mac (and .root) file f'wcs_{metrics["specification"]}_{metrics["particle_name"]}' f'__{run_number}_{metrics["energy"]}_{metrics["energy_unit"]}' ) # Dictionary containing .mac placeholders (left) and their values # to be replaced (right) replacing_dict = { '@particle': metrics['particle_name'], '@energy_value': metrics['energy'], '@energy_unit': metrics['energy_unit'], '@output_name': mac_name, '@simulations': metrics['simulations'] } # Set the new .mac file path new_mac_file = os.path.join(RESULTS_PATH, f'{mac_name}.mac') _replace_string_in_file( base_mac, new_mac_file, replacing_dict ) _copy_new_mac_file( # Copy new file in custom destination new_mac_file, f'{mac_name}.mac', destination_path ) count += 1 return count def _validate_integer_metrics(metrics): """Validate elements of a list of metrics are integers.""" for metric_name, metric_value in metrics.items(): try: int(metric_value) except ValueError: _print_error( f'Metric "{metric_name}" must contain integers only. ' f'Incorrect value: "{metric_value}".' ) def _add_left_zeros(number, iteration_digits): """Add zeros to the left side of the experiment run number. Zeros will be added according to missing spaces until iterations_digits are reached. """ number = str(number) return f'{"0" * (iteration_digits - len(number))}{number}' def _replace_string_in_file(source_file, new_file, repldict): """Find strings within a file and creates a new one with strings replaced. Keyword arguments: source_file -- Source file, with the string(s) to be replaced new_file -- File name that will have the content of the source file with the string(s) replaced. repldict -- Dictionary containing one or more strings to be replaced. The keys will be the matching strings and the values will be the replacing strings. I.e. repldict = { 'old string1': 'new string1', 'old string2': 'new string2', ... } """ pfile_path = source_file def _replfunc(match): # Replacing function return repldict[match.group(0)] regex = re.compile('|'.join(re.escape(i) for i in repldict)) with open(pfile_path) as fin: with open(new_file, 'w') as fout: for line in fin: fout.write(regex.sub(_replfunc, line)) def _copy_new_mac_file(mac_file_path, mac_file_name, destination_path): """Copy the generated .mac file in the results path.""" if destination_path != RESULTS_PATH: destination_file = os.path.join(destination_path, mac_file_name) shutil.copyfile(mac_file_path, destination_file) def _print_error(msg): """Print the error message and exit program.""" print(msg) sys.exit(1) if __name__ == '__main__': main() ```
{ "source": "JorgeFrancoIbanez/Flask-api", "score": 3 }
#### File: Flask-api/app/models.py ```python from app import db from app import login from sqlalchemy.sql import func from werkzeug.security import generate_password_hash, check_password_hash from flask_login import UserMixin class User(UserMixin, db.Model): id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(64), index=True, unique=True) email = db.Column(db.String(120), index=True, unique=True) password_hash = db.Column(db.String(128)) timestamp = db.Column(db.DateTime(timezone=True), index=True, server_default=func.now()) profile_image = db.Column(db.LargeBinary) def __init__(self, username, email): self.username = username self.email = email def __repr__(self): return '<User {}>'.format(self.username) def set_password(self, password): self.password_hash = generate_password_hash(password) def check_password(self, password): return check_password_hash(self.password_hash, password) class Post(db.Model): id = db.Column(db.Integer, primary_key=True) message = db.Column(db.String(140)) node_id = db.Column(db.Integer, db.ForeignKey('node.id')) timestamp = db.Column(db.DateTime(timezone=True), index=True, server_default=func.now()) def __init__(self, message, node_id): self.message = message self.node_id = node_id def __repr__(self): return '<Post {}>'.format(self.message) class Node(db.Model): id = db.Column(db.Integer, primary_key=True) mac = db.Column(db.String(140)) name = db.Column(db.String(140)) pool_id = db.Column(db.Integer, db.ForeignKey('pool.id')) timestamp = db.Column(db.DateTime(timezone=True), index=True, server_default=func.now()) user_id = db.Column(db.Integer, db.ForeignKey('user.id')) def __init__(self, mac, name, user_id): self.mac = mac self.name = name self.user_id = user_id def __repr__(self): return '<Node {}>'.format(self.name) class Object(db.Model): id = db.Column(db.Integer, primary_key=True) message = db.Column(db.String(140)) pool_id = db.Column(db.Integer, db.ForeignKey('pool.id')) user_id = db.Column(db.Integer, db.ForeignKey('user.id')) def __init__(self, name, data): self.name = name self.data = data def __repr__(self): return '<Node {}>'.format(self.name) class Pool(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(140)) timestamp = db.Column(db.DateTime(timezone=True), index=True, server_default=func.now()) repository = db.Column(db.String(140)) def __init__(self, name, repository): self.name = name self.repository = repository def __repr__(self): return '<Node {}>'.format(self.name) @login.user_loader def load_user(id): return User.query.get(int(id)) ``` #### File: app/utils/check_if_exist.py ```python from app.models import Node, User, Pool def check_node(data): node = Node.query.filter(Node.mac == data).all() if not node: return False else: return True def check_node_pool(pool): pool = Pool.query.filter(Node.pool == pool).all() if not pool: return False else: return True def check_user(email): user = User.query.filter(User.email == email).all() if not user: return False else: return user ``` #### File: Flask-api/utils/get_mac.py ```python import os def get_mac(): try: for i in os.listdir('/sys/class/net/'): operstate = open('/sys/class/net/%s/operstate' %i).read() if operstate == 'up' and i == 'eth0' or i == 'enp0s31f6': mac_address = open('/sys/class/net/%s/address' %i).read() return str(mac_address[0:17]) except ValueError: print 'Please check your available connections before continuing' ```
{ "source": "Jorge-fubar/raspberry-thermostat", "score": 3 }
#### File: Jorge-fubar/raspberry-thermostat/thermostat.py ```python import config import os import glob import time import datetime import logging from logging import StreamHandler, Formatter from logging.handlers import TimedRotatingFileHandler import sqlite3 def get_logger(logger_name): _logger = logging.getLogger(logger_name) file_formatter = Formatter( '%(levelname)s | %(asctime)s | %(name)s | %(message)s | %(pathname)s:%(lineno)d' ) #TODO the path for the logs file needs to be absolute when the script is executed on startup when registered in the /etc/rc.local file time_rotating_handler = TimedRotatingFileHandler(\ '{0}/{1}.log'.format('./logs', logger_name), when="midnight", backupCount=10, encoding='utf-8') time_rotating_handler.suffix = "%Y-%m-%d" time_rotating_handler.setFormatter(file_formatter) _logger.addHandler(time_rotating_handler) _logger.setLevel(logging.DEBUG) return _logger def init_db(): #TODO the path for the db file needs to be absolute conn = sqlite3.connect('thermostat.db') return conn def read_temp_raw(): f = open(device_file, 'r') lines = f.readlines() f.close() return lines def read_temp(): lines = read_temp_raw() while lines[0].strip()[-3:] != 'YES': time.sleep(0.2) lines = read_temp_raw() equals_pos = lines[1].find('t=') if equals_pos != -1: temp_string = lines[1][equals_pos+2:] temp_c = float(temp_string) / 1000.0 return temp_c def get_time_range(datetime : datetime.datetime): time_range = datetime.hour * 2 if (datetime.minute <= 30): time_range += 1 return time_range logger = get_logger('thermostat') os.system('modprobe w1-gpio') os.system('modprobe w1-therm') base_dir = '/sys/bus/w1/devices/' device_folder = glob.glob(base_dir + '28*')[0] device_file = device_folder + '/w1_slave' try: conn = init_db() while True: now = datetime.datetime.now() current_time = now.strftime('%Y%m%dT%H:%M') current_temp = read_temp() logger.debug('Read temperature %s° at time %s', current_temp, current_time) conn.execute('INSERT INTO temperatures VALUES (?, ?)', (current_time, current_temp)) conn.commit() for row in conn.execute('SELECT temperature FROM week_schedule WHERE day = ? AND time_range = ?', (0, get_time_range(now))): print(row[0]) time.sleep(60) except KeyboardInterrupt: logger.warn('Temperature daemon stopped by user') finally: conn.close() ```
{ "source": "Jorge-Fuentes/flaskrplus", "score": 3 }
#### File: Jorge-Fuentes/flaskrplus/flaskr.py ```python import os import sqlite3 from flask import Flask, request, session, g, redirect, url_for, abort, \ render_template, flash app = Flask(__name__) app.config.from_object(__name__) app.config.update(dict( DATABASE=os.path.join(app.root_path, 'flaskr.db'), SECRET_KEY='development key', USERNAME='admin', PASSWORD='<PASSWORD>' )) app.config.from_envvar('FLASKR_SETTINGS', silent=True) def connect_db(): """Connects to the specific database.""" rv = sqlite3.connect(app.config['DATABASE']) rv.row_factory = sqlite3.Row return rv export FLASK_APP=flaskr export FLASK_DEBUG=1 flask run def init_db(): db = get_db() with app.open_resource('schema.sql', mode='r') as f: db.cursor().executescript(f.read()) db.commit() @app.cli.command('initdb') def initdb_command(): """Initializes the database.""" init_db() print 'Initialized the database.' def get_db(): if not hasattr(g, 'sqlite_db'): g.sqlite_db = connect_db() return g.sqlite_db @app.teardown_appcontext def close_db(error): """Closes the database again at the end of the request.""" if hasattr(g, 'sqlite_db'): g.sqlite_db.close() @app.route('/') def show_entries(): #Shows entries# db = get_db() cur = db.execute('select title, text from entries order by id desc') entries = cur.fetchall() return render_template('show_entries.html', entries=entries) g.b.execute('delete from entries where word=?', [request.form['entry_to_delete']]) g.db.commit() flash('The entry was removed! HAHA!') return redirect(url_for('show_entries')) if__name__'__main__': app.run() ```
{ "source": "JorgeG94/roofline_plot", "score": 3 }
#### File: JorgeG94/roofline_plot/roofline.py ```python import csv import sys import argparse import numpy import matplotlib.pyplot import matplotlib #matplotlib.rc('font', family='Times New Roman') # Constants # The following constants define the span of the intensity axis START = -3 STOP = 4 N = abs(STOP - START + 1) def roofline(num_platforms, peak_performance, peak_bandwidth, intensity): """ Computes the roofline model for the given platforms. Returns The achievable performance """ assert isinstance(num_platforms, int) and num_platforms > 0 assert isinstance(peak_performance, numpy.ndarray) assert isinstance(peak_bandwidth, numpy.ndarray) assert isinstance(intensity, numpy.ndarray) assert (num_platforms == peak_performance.shape[0] and num_platforms == peak_bandwidth.shape[0]) achievable_performance = numpy.zeros((num_platforms, len(intensity))) for i in range(num_platforms): achievable_performance[i:] = numpy.minimum(peak_performance[i], peak_bandwidth[i] * intensity) return achievable_performance def process(hw_platforms, sw_apps, xkcd): """ Processes the hw_platforms and sw_apps to plot the Roofline. """ assert isinstance(hw_platforms, list) assert isinstance(sw_apps, list) assert isinstance(xkcd, bool) # arithmetic intensity arithmetic_intensity = numpy.logspace(START, STOP, num=N, base=10) # Hardware platforms platforms = [p[0] for p in hw_platforms] # Compute the rooflines achievable_performance = roofline(len(platforms), numpy.array([p[1] for p in hw_platforms]), numpy.array([p[2] for p in hw_platforms]), arithmetic_intensity) # Apps if sw_apps != []: apps = [a[0] for a in sw_apps] apps_intensity = numpy.array([a[1] for a in sw_apps]) floprate = numpy.array([a[2] for a in sw_apps]) # Plot the graphs if xkcd: matplotlib.pyplot.xkcd() fig, axis = matplotlib.pyplot.subplots() axis.set_xscale('log', basex=10) axis.set_yscale('log', basey=10) axis.set_xlabel('Arithmetic Intensity (FLOP/byte)', fontsize=14) axis.grid(True, which='both', color='gray', linestyle='-',linewidth=0.2) #matplotlib.pyplot.setp(axis, xticks=numpy.logspace(1,20,num=20,base=10), matplotlib.pyplot.setp(axis, xticks=arithmetic_intensity, yticks=numpy.logspace(1, 20, num=20, base=10)) matplotlib.pyplot.yticks(fontsize=12) matplotlib.pyplot.xticks(fontsize=12) axis.set_ylabel("FLOP-rate (GFLOP/s)", fontsize=14) axis.set_ylim(bottom=10, top=100500) #axis.set_title('Roofline Plot', fontsize=14) l1 = numpy.array((0.12,100)) l2 = numpy.array((10,35)) trans_angle = matplotlib.pyplot.gca().transData.transform_angles(numpy.array((75,)), l2.reshape((1,2)))[0] th1 = matplotlib.pyplot.text(l1[0],l1[1], ' HBM BW: 778 GB/s ', fontsize=10, rotation=trans_angle,rotation_mode='anchor') th2 = matplotlib.pyplot.text(20,10000, ' DP Peak: 7.66 TF/s ', fontsize=10) for idx, val in enumerate(platforms): axis.plot(arithmetic_intensity, achievable_performance[idx, 0:], label=val) if sw_apps != []: color = matplotlib.pyplot.cm.rainbow(numpy.linspace(0, 1, len(apps))) for idx, val in enumerate(apps): axis.plot(apps_intensity[idx], floprate[idx], label=val, linestyle='-.', marker='o', color=color[idx]) axis.legend(loc='upper left', prop={'size': 9}) fig.tight_layout() #matplotlib.pyplot.show() matplotlib.pyplot.savefig('plot_roofline.png', dpi=500 ) def read_file(filename, row_len, csv_name): """ Reads CSV file and returns a list of row_len-ary tuples """ assert isinstance(row_len, int) elements = list() try: in_file = open(filename, 'r') if filename is not None else sys.stdin reader = csv.reader(in_file, dialect='excel') for row in reader: if len(row) != row_len: print("Error: Each row in %s must be contain exactly %d entries!" % (csv_name, row_len), file=sys.stderr) sys.exit(1) element = tuple([row[0]] + [float(r) for r in row[1:]]) elements.append(element) if filename is not None: in_file.close() except IOError as ex: print(ex, file=sys.stderr) sys.exit(1) return elements def main(): """ main function """ hw_platforms = list() apps = list() parser = argparse.ArgumentParser() parser.add_argument("-i", metavar="hw_csv", help="HW platforms CSV file", type=str) parser.add_argument("-a", metavar="apps_csv", help="applications CSV file", type=str) parser.add_argument("--hw-only", action='store_true', default=False) parser.add_argument("--xkcd", action='store_true', default=False) args = parser.parse_args() # HW print("Reading HW characteristics...") hw_platforms = read_file(args.i, 4, "HW CSV") # apps if args.hw_only: print("Plotting only HW characteristics without any applications...") apps = list() else: print("Reading applications intensities...") apps = read_file(args.a, 3, "SW CSV") print(hw_platforms) print("Plotting using XKCD plot style is set to %s" % (args.xkcd)) if apps != []: print(apps) process(hw_platforms, apps, args.xkcd) sys.exit(0) if __name__ == "__main__": main() ''' BSD 3-Clause License Copyright (c) 2018, <NAME> All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' ```
{ "source": "jorgegarcia7/flumine", "score": 2 }
#### File: flumine/execution/betfairexecution.py ```python import logging import requests from typing import Callable from betfairlightweight import BetfairError from .baseexecution import BaseExecution from ..clients.clients import ExchangeType from ..order.orderpackage import BaseOrderPackage, OrderPackageType from ..exceptions import OrderExecutionError logger = logging.getLogger(__name__) class BetfairExecution(BaseExecution): EXCHANGE = ExchangeType.BETFAIR def execute_place( self, order_package: BaseOrderPackage, http_session: requests.Session ) -> None: response = self._execution_helper(self.place, order_package, http_session) if response: for (order, instruction_report) in zip( order_package, response.place_instruction_reports ): with order.trade: self._order_logger( order, instruction_report, OrderPackageType.PLACE ) if instruction_report.status == "SUCCESS": if instruction_report.order_status == "PENDING": pass # async request pending processing else: order.executable() # let process.py pick it up elif instruction_report.status == "FAILURE": order.lapsed() # todo correct? elif instruction_report.status == "TIMEOUT": # https://docs.developer.betfair.com/display/1smk3cen4v3lu3yomq5qye0ni/Betting+Enums#BettingEnums-ExecutionReportStatus pass # update transaction counts order_package.client.add_transaction(len(order_package)) def place(self, order_package: OrderPackageType, session: requests.Session): return order_package.client.betting_client.betting.place_orders( market_id=order_package.market_id, instructions=order_package.place_instructions, customer_ref=order_package.id.hex, market_version=order_package.market_version, customer_strategy_ref=order_package.customer_strategy_ref, async_=order_package.async_, session=session, ) def execute_cancel( self, order_package: BaseOrderPackage, http_session: requests.Session ) -> None: response = self._execution_helper(self.cancel, order_package, http_session) if response: failed_transaction_count = 0 order_lookup = {o.bet_id: o for o in order_package} for instruction_report in response.cancel_instruction_reports: # get order (can't rely on the order they are returned) order = order_lookup.pop(instruction_report.instruction.bet_id) with order.trade: self._order_logger( order, instruction_report, OrderPackageType.CANCEL ) if instruction_report.status == "SUCCESS": if ( instruction_report.size_cancelled == order.size_remaining or order.size_remaining == 0 # handle orders stream update / race condition ): order.execution_complete() else: order.executable() elif instruction_report.status == "FAILURE": order.executable() failed_transaction_count += 1 elif instruction_report.status == "TIMEOUT": order.executable() # reset any not returned so that they can be picked back up for order in order_lookup.values(): with order.trade: order.executable() # update transaction counts if failed_transaction_count: order_package.client.add_transaction( failed_transaction_count, failed=True ) def cancel(self, order_package: OrderPackageType, session: requests.Session): # temp copy to prevent an empty list of instructions sent # this can occur if order is matched during the execution # cycle, resulting in all orders being cancelled! cancel_instructions = list(order_package.cancel_instructions) if not cancel_instructions: logger.warning("Empty cancel_instructions", extra=order_package.info) raise OrderExecutionError() return order_package.client.betting_client.betting.cancel_orders( market_id=order_package.market_id, instructions=cancel_instructions, customer_ref=order_package.id.hex, session=session, ) def execute_update( self, order_package: BaseOrderPackage, http_session: requests.Session ) -> None: response = self._execution_helper(self.update, order_package, http_session) if response: failed_transaction_count = 0 for (order, instruction_report) in zip( order_package, response.update_instruction_reports ): with order.trade: self._order_logger( order, instruction_report, OrderPackageType.UPDATE ) if instruction_report.status == "SUCCESS": order.executable() elif instruction_report.status == "FAILURE": order.executable() failed_transaction_count += 1 elif instruction_report.status == "TIMEOUT": order.executable() # update transaction counts if failed_transaction_count: order_package.client.add_transaction( failed_transaction_count, failed=True ) def update(self, order_package: OrderPackageType, session: requests.Session): return order_package.client.betting_client.betting.update_orders( market_id=order_package.market_id, instructions=order_package.update_instructions, customer_ref=order_package.id.hex, session=session, ) def execute_replace( self, order_package: BaseOrderPackage, http_session: requests.Session ) -> None: response = self._execution_helper(self.replace, order_package, http_session) if response: failed_transaction_count = 0 market = self.flumine.markets.markets[order_package.market_id] for (order, instruction_report) in zip( order_package, response.replace_instruction_reports ): with order.trade: # process cancel response if ( instruction_report.cancel_instruction_reports.status == "SUCCESS" ): self._order_logger( order, instruction_report.cancel_instruction_reports, OrderPackageType.CANCEL, ) order.execution_complete() elif ( instruction_report.cancel_instruction_reports.status == "FAILURE" ): order.executable() failed_transaction_count += 1 elif ( instruction_report.cancel_instruction_reports.status == "TIMEOUT" ): order.executable() # process place response if instruction_report.place_instruction_reports.status == "SUCCESS": # create new order replacement_order = order.trade.create_order_replacement( order, instruction_report.place_instruction_reports.instruction.limit_order.price, instruction_report.place_instruction_reports.instruction.limit_order.size, ) self._order_logger( replacement_order, instruction_report.place_instruction_reports, OrderPackageType.REPLACE, ) # add to blotter market.place_order(replacement_order, execute=False) replacement_order.executable() elif ( instruction_report.place_instruction_reports.status == "FAILURE" ): pass # todo elif ( instruction_report.place_instruction_reports.status == "TIMEOUT" ): pass # todo # update transaction counts order_package.client.add_transaction(len(order_package)) if failed_transaction_count: order_package.client.add_transaction( failed_transaction_count, failed=True ) def replace(self, order_package: OrderPackageType, session: requests.Session): return order_package.client.betting_client.betting.replace_orders( market_id=order_package.market_id, instructions=order_package.replace_instructions, customer_ref=order_package.id.hex, market_version=order_package.market_version, async_=order_package.async_, session=session, ) def _execution_helper( self, trading_function: Callable, order_package: BaseOrderPackage, http_session: requests.Session, ): if order_package.elapsed_seconds > 0.1 and order_package.retry_count == 0: logger.warning( "High latency between current time and OrderPackage creation time, it is likely that the thread pool is currently exhausted", extra={ "trading_function": trading_function.__name__, "session": http_session, "latency": round(order_package.elapsed_seconds, 3), "order_package": order_package.info, }, ) if order_package.orders: try: response = trading_function(order_package, http_session) except BetfairError as e: logger.error( "Execution error", extra={ "trading_function": trading_function.__name__, "response": e, "order_package": order_package.info, }, exc_info=True, ) if order_package.retry(): self.handler(order_package) self._return_http_session(http_session, err=True) return except Exception as e: logger.critical( "Execution unknown error", extra={ "trading_function": trading_function.__name__, "exception": e, "order_package": order_package.info, }, exc_info=True, ) self._return_http_session(http_session, err=True) return logger.info( "execute_%s" % trading_function.__name__, extra={ "trading_function": trading_function.__name__, "elapsed_time": response.elapsed_time, "response": response._data, "order_package": order_package.info, }, ) self._return_http_session(http_session) return response else: logger.warning("Empty package, not executing", extra=order_package.info) self._return_http_session(http_session) ``` #### File: flumine/flumine/flumine.py ```python import logging from .baseflumine import BaseFlumine from .events.events import EventType from . import worker logger = logging.getLogger(__name__) class Flumine(BaseFlumine): def run(self) -> None: """ Main run thread """ with self: while True: event = self.handler_queue.get() if event.EVENT_TYPE == EventType.TERMINATOR: self._process_end_flumine() break elif event.EVENT_TYPE == EventType.MARKET_CATALOGUE: self._process_market_catalogues(event) elif event.EVENT_TYPE == EventType.MARKET_BOOK: self._process_market_books(event) elif event.EVENT_TYPE == EventType.RAW_DATA: self._process_raw_data(event) elif event.EVENT_TYPE == EventType.CURRENT_ORDERS: self._process_current_orders(event) elif event.EVENT_TYPE == EventType.CLEARED_MARKETS: self._process_cleared_markets(event) elif event.EVENT_TYPE == EventType.CLEARED_ORDERS: self._process_cleared_orders(event) elif event.EVENT_TYPE == EventType.CLOSE_MARKET: self._process_close_market(event) elif event.EVENT_TYPE == EventType.CUSTOM_EVENT: self._process_custom_event(event) else: logger.error("Unknown item in handler_queue: %s" % str(event)) del event def _add_default_workers(self): ka_interval = min((self.client.betting_client.session_timeout / 2), 1200) self.add_worker( worker.BackgroundWorker( self, function=worker.keep_alive, interval=ka_interval ) ) self.add_worker( worker.BackgroundWorker( self, function=worker.poll_account_balance, interval=120, start_delay=10, # wait for login ) ) self.add_worker( worker.BackgroundWorker( self, function=worker.poll_market_catalogue, interval=60, start_delay=10, # wait for streams to populate ) ) self.add_worker( worker.BackgroundWorker( self, function=worker.poll_market_closure, interval=60, start_delay=10, # wait for login ) ) def __repr__(self) -> str: return "<Flumine>" def __str__(self) -> str: return "<Flumine>" ``` #### File: flumine/tests/test_integration.py ```python import unittest from flumine import FlumineBacktest, clients, BaseStrategy, config from flumine.order.trade import Trade from flumine.order.order import OrderStatus from flumine.order.ordertype import LimitOrder, MarketOnCloseOrder from flumine.utils import get_price class IntegrationTest(unittest.TestCase): def setUp(self) -> None: # change config to raise errors config.raise_errors = True def test_backtest_basic(self): class Ex(BaseStrategy): def check_market_book(self, market, market_book): return True def process_market_book(self, market, market_book): return client = clients.BacktestClient() framework = FlumineBacktest(client=client) strategy = Ex(market_filter={"markets": ["tests/resources/BASIC-1.132153978"]}) framework.add_strategy(strategy) framework.run() def test_backtest_pro(self): class LimitOrders(BaseStrategy): def check_market_book(self, market, market_book): if not market_book.inplay and market.seconds_to_start < 100: return True def process_market_book(self, market, market_book): with market.transaction() as t: for runner in market_book.runners: if runner.status == "ACTIVE": back = get_price(runner.ex.available_to_back, 0) runner_context = self.get_runner_context( market.market_id, runner.selection_id ) if runner_context.trade_count == 0: trade = Trade( market_book.market_id, runner.selection_id, runner.handicap, self, ) order = trade.create_order( side="BACK", order_type=LimitOrder(back, 2.00), ) t.place_order(order) class LimitReplaceOrders(BaseStrategy): def check_market_book(self, market, market_book): if not market_book.inplay and market.seconds_to_start < 100: return True def process_market_book(self, market, market_book): with market.transaction() as t: for runner in market_book.runners: if runner.status == "ACTIVE": runner_context = self.get_runner_context( market.market_id, runner.selection_id ) if runner_context.trade_count == 0: trade = Trade( market_book.market_id, runner.selection_id, runner.handicap, self, ) order = trade.create_order( side="BACK", order_type=LimitOrder(1000, 2.00), ) t.place_order(order) def process_orders(self, market, orders: list) -> None: with market.transaction() as t: for order in orders: if order.status == OrderStatus.EXECUTABLE: if order.size_matched == 0: t.replace_order(order, new_price=1.01) class LimitOrdersInplay(BaseStrategy): def check_market_book(self, market, market_book): if market_book.inplay: return True def process_market_book(self, market, market_book): for runner in market_book.runners: if runner.status == "ACTIVE" and runner.last_price_traded < 2: lay = get_price(runner.ex.available_to_lay, 0) trade = Trade( market_book.market_id, runner.selection_id, runner.handicap, self, ) order = trade.create_order( side="LAY", order_type=LimitOrder(lay, 2.00), ) market.place_order(order) def process_orders(self, market, orders): for order in orders: if order.status == OrderStatus.EXECUTABLE: if order.elapsed_seconds and order.elapsed_seconds > 2: market.cancel_order(order) class MarketOnCloseOrders(BaseStrategy): def check_market_book(self, market, market_book): if not market_book.inplay and market.seconds_to_start < 100: return True def process_market_book(self, market, market_book): for runner in market_book.runners: if runner.status == "ACTIVE": runner_context = self.get_runner_context( market.market_id, runner.selection_id ) if runner_context.trade_count == 0: trade = Trade( market_book.market_id, runner.selection_id, runner.handicap, self, ) order = trade.create_order( side="LAY", order_type=MarketOnCloseOrder(100.00), ) market.place_order(order) client = clients.BacktestClient() framework = FlumineBacktest(client=client) limit_strategy = LimitOrders( market_filter={"markets": ["tests/resources/PRO-1.170258213"]}, max_order_exposure=1000, max_selection_exposure=105, max_trade_count=1, ) framework.add_strategy(limit_strategy) limit_replace_strategy = LimitReplaceOrders( market_filter={"markets": ["tests/resources/PRO-1.170258213"]}, max_order_exposure=1000, max_selection_exposure=105, max_trade_count=1, ) framework.add_strategy(limit_replace_strategy) limit_inplay_strategy = LimitOrdersInplay( market_filter={"markets": ["tests/resources/PRO-1.170258213"]}, max_order_exposure=1000, max_selection_exposure=105, ) framework.add_strategy(limit_inplay_strategy) market_strategy = MarketOnCloseOrders( market_filter={"markets": ["tests/resources/PRO-1.170258213"]}, max_order_exposure=1000, max_selection_exposure=105, ) framework.add_strategy(market_strategy) framework.run() self.assertEqual(len(framework.markets), 1) for market in framework.markets: limit_orders = market.blotter.strategy_orders(limit_strategy) self.assertEqual( round(sum([o.simulated.profit for o in limit_orders]), 2), -16.8 ) self.assertEqual(len(limit_orders), 14) limit_replace_orders = market.blotter.strategy_orders( limit_replace_strategy ) self.assertEqual( round(sum([o.simulated.profit for o in limit_replace_orders]), 2), -16.8 ) self.assertEqual(len(limit_replace_orders), 28) limit_inplay_orders = market.blotter.strategy_orders(limit_inplay_strategy) self.assertEqual( round(sum([o.simulated.profit for o in limit_inplay_orders]), 2), 18.96 ) self.assertEqual(len(limit_inplay_orders), 15) market_orders = market.blotter.strategy_orders(market_strategy) self.assertEqual( round(sum([o.simulated.profit for o in market_orders]), 2), -6.68 ) self.assertEqual(len(market_orders), 14) # check transaction count self.assertEqual(market._transaction_id, 25428) def tearDown(self) -> None: config.simulated = False config.raise_errors = False ```
{ "source": "JorgeGarciaIrazabal/baby_tracker_be", "score": 2 }
#### File: src/controllers/feed.py ```python from datetime import datetime from typing import List, Optional from fastapi import Depends from fastapi_jwt_auth import AuthJWT from sqlalchemy import desc from src.app import app, get_db from src.models import Feed, PFeed from sqlalchemy.orm import Session from src.services.auth import validate_baby_relationship @app.get("/baby/{baby_id}/feed", response_model=List[PFeed], tags=["api"]) def get_baby_feeds( baby_id: int, start_at: Optional[datetime] = None, end_at: Optional[datetime] = None, page: Optional[int] = None, page_size: Optional[int] = None, db: Session = Depends(get_db), auth: AuthJWT = Depends(), ): validate_baby_relationship(auth, baby_id) current_filter = Feed.baby_id == baby_id if start_at is not None: current_filter &= Feed.start_at >= start_at if end_at is not None: current_filter &= Feed.end_at <= end_at if page_size is not None: page = page or 0 if page is not None: page_size = page_size or 30 feeds_query = db.query(Feed).order_by(desc(Feed.start_at)).filter(current_filter) if page is not None: feeds = feeds_query[page * page_size : (page * page_size) + page_size] else: feeds = feeds_query.all() return [PFeed.from_orm(feed) for feed in feeds] @app.post("/feed", response_model=PFeed, tags=["api"]) def create_feed( p_feed: PFeed, db: Session = Depends(get_db), auth: AuthJWT = Depends() ): validate_baby_relationship(auth, p_feed.baby_id) feed = Feed(**p_feed.dict()) db.add(feed) db.commit() return PFeed.from_orm(feed) @app.put("/feed", response_model=PFeed, tags=["api"]) def update_feed( p_feed: PFeed, db: Session = Depends(get_db), auth: AuthJWT = Depends() ): validate_baby_relationship(auth, p_feed.baby_id) feed: Feed = db.query(Feed).get(p_feed.id) feed.update(p_feed) db.add(feed) db.commit() return PFeed.from_orm(feed) @app.delete("/feed/{id}", response_model=PFeed, tags=["api"]) def delete_feed(id: int, db: Session = Depends(get_db), auth: AuthJWT = Depends()): feed: Feed = db.query(Feed).get(id) validate_baby_relationship(auth, feed.baby_id) db.delete(feed) db.commit() return PFeed.from_orm(feed) ``` #### File: src/controllers/pee.py ```python from typing import List, Optional from fastapi import Depends from fastapi_jwt_auth import AuthJWT from sqlalchemy import desc from sqlalchemy.orm import Session from src.app import app, get_db from src.models import Pee, PPee from src.services.auth import validate_baby_relationship @app.get("/baby/{baby_id}/pee", response_model=List[PPee], tags=["api"]) def get_baby_pees( baby_id: int, page: Optional[int] = None, page_size: Optional[int] = None, db: Session = Depends(get_db), auth: AuthJWT = Depends(), ): validate_baby_relationship(auth, baby_id) current_filter = Pee.baby_id == baby_id if page_size is not None: page = page or 0 if page is not None: page_size = page_size or 30 pees_query = db.query(Pee).order_by(desc(Pee.at)).filter(current_filter) if page is not None: pees = pees_query[page * page_size: (page * page_size) + page_size] else: pees = pees_query.all() return [PPee.from_orm(pee) for pee in pees] @app.post("/pee", response_model=PPee, tags=["api"]) def create_pee( p_pee: PPee, db: Session = Depends(get_db), auth: AuthJWT = Depends() ): validate_baby_relationship(auth, p_pee.baby_id) pee = Pee(**p_pee.dict()) db.add(pee) db.commit() return PPee.from_orm(pee) @app.put("/pee", response_model=PPee, tags=["api"]) def update_pee( p_pee: PPee, db: Session = Depends(get_db), auth: AuthJWT = Depends() ): validate_baby_relationship(auth, p_pee.baby_id) pee: Pee = db.query(Pee).get(p_pee.id) pee.update(p_pee) db.add(pee) db.commit() return PPee.from_orm(pee) @app.delete("/pee/{id}", response_model=PPee, tags=["api"]) def delete_pee(id: int, db: Session = Depends(get_db), auth: AuthJWT = Depends()): pee: Pee = db.query(Pee).get(id) validate_baby_relationship(auth, pee.baby_id) db.delete(pee) db.commit() return PPee.from_orm(pee) ```
{ "source": "JorgeGarciaIrazabal/cf-scripts", "score": 2 }
#### File: conda_forge_tick/migrators/conda_forge_yaml_cleanup.py ```python import os import typing from typing import Any from ruamel.yaml import YAML from conda_forge_tick.xonsh_utils import indir from conda_forge_tick.migrators.core import MiniMigrator if typing.TYPE_CHECKING: from ..migrators_types import AttrsTypedDict class CondaForgeYAMLCleanup(MiniMigrator): # if you add a key here, you need to add it to the set of # keys kept in the graph in make_graph.py keys_to_remove = [ "min_r_ver", "max_r_ver", "min_py_ver", "max_py_ver", "compiler_stack", ] def filter(self, attrs: "AttrsTypedDict", not_bad_str_start: str = "") -> bool: """only remove the keys if they are there""" cfy = attrs.get("conda-forge.yml", {}) if any(k in cfy for k in self.keys_to_remove): return False else: return True def migrate(self, recipe_dir: str, attrs: "AttrsTypedDict", **kwargs: Any) -> None: with indir(recipe_dir): cfg_path = os.path.join("..", "conda-forge.yml") yaml = YAML() yaml.indent(mapping=2, sequence=4, offset=2) with open(cfg_path) as fp: cfg = yaml.load(fp.read()) for k in self.keys_to_remove: if k in cfg: del cfg[k] with open(cfg_path, "w") as fp: yaml.dump(cfg, fp) ``` #### File: conda_forge_tick/migrators/license.py ```python import os import re import tempfile import subprocess import typing from typing import Any import logging from rever.tools import replace_in_file from conda_forge_tick.xonsh_utils import indir from conda_forge_tick.utils import eval_cmd, _get_source_code from conda_forge_tick.recipe_parser import CondaMetaYAML from conda_forge_tick.migrators.core import MiniMigrator try: from conda_smithy.lint_recipe import NEEDED_FAMILIES except ImportError: NEEDED_FAMILIES = ["gpl", "bsd", "mit", "apache", "psf", "agpl", "lgpl"] if typing.TYPE_CHECKING: from ..migrators_types import AttrsTypedDict LICENSE_SPLIT = re.compile(r"\||\+") LOGGER = logging.getLogger("conda_forge_tick.migrators.license") def _to_spdx(lic): """ we are munging this stuff from conda-build d_license = {'agpl3': ['AGPL-3', 'AGPL (>= 3)', 'AGPL', 'GNU Affero General Public License'], 'artistic2': ['Artistic-2.0', 'Artistic License 2.0'], 'gpl2': ['GPL-2', 'GPL (>= 2)', 'GNU General Public License (>= 2)'], 'gpl3': ['GPL-3', 'GPL (>= 3)', 'GNU General Public License (>= 3)', 'GPL', 'GNU General Public License'], 'lgpl2': ['LGPL-2', 'LGPL (>= 2)'], 'lgpl21': ['LGPL-2.1', 'LGPL (>= 2.1)'], 'lgpl3': ['LGPL-3', 'LGPL (>= 3)', 'LGPL', 'GNU Lesser General Public License'], 'bsd2': ['BSD_2_clause', 'BSD_2_Clause', 'BSD 2-clause License'], 'bsd3': ['BSD_3_clause', 'BSD_3_Clause', 'BSD 3-clause License'], 'mit': ['MIT'], } """ r_to_spdx = { "AGPL-3": "AGPL-3.0-only", "AGPL (>= 3)": "AGPL-3.0-or-later", "Artistic License 2.0": "Artistic-2.0", "GPL-2": "GPL-2.0-only", "GPL (>= 2)": "GPL-2.0-or-later", "GNU General Public License (>= 2)": "GPL-2.0-or-later", "GPL-3": "GPL-3.0-only", "GPL (>= 3)": "GPL-3.0-or-later", "GNU General Public License (>= 3)": "GPL-3.0-or-later", "LGPL-2": "LGPL-2.0-only", "LGPL (>= 2)": "LGPL-2.0-or-later", "LGPL-2.1": "LGPL-2.1-only", "LGPL (>= 2.1)": "LGPL-2.1-or-later", "LGPL-3": "LGPL-3.0-only", "LGPL (>= 3)": "LGPL-3.0-or-later", "BSD_2_clause": "BSD-2-Clause", "BSD_2_Clause": "BSD-2-Clause", "BSD 2-clause License": "BSD-2-Clause", "BSD_3_clause": "BSD-3-Clause", "BSD_3_Clause": "BSD-3-Clause", "BSD 3-clause License": "BSD-3-Clause", "Apache License 2.0": "Apache-2.0", "CC BY-SA 4.0": "CC-BY-SA-4.0", "Apache License (== 2.0)": "Apache-2.0", "FreeBSD": "BSD-2-Clause-FreeBSD", "Apache License (>= 2.0)": "Apache-2.0", "CC0": "CC0-1.0", "MIT License": "MIT", "CeCILL-2": "CECILL-2.0", "CC BY-NC-SA 4.0": "CC-BY-NC-SA-4.0", "CC BY 4.0": "CC-BY-4.0", } return r_to_spdx.get(lic, lic) def _remove_file_refs(_parts): _p = [] for p in _parts: if p.strip().startswith("file "): pass else: _p.append(p) return _p def _munge_licenses(lparts): new_lparts = [] for lpart in lparts: if " | " in lpart: _parts = _remove_file_refs(lpart.split(" | ")) last = len(_parts) - 1 for i, _p in enumerate(_parts): _p = _munge_licenses([_p]) if len(_p) > 1: new_lparts.append("(") new_lparts.extend(_p) if len(_p) > 1: new_lparts.append(")") if i != last: new_lparts.append(" OR ") elif " + " in lpart: _parts = _remove_file_refs(lpart.split(" + ")) last = len(_parts) - 1 for i, _p in enumerate(_parts): _p = _munge_licenses([_p]) if len(_p) > 1: new_lparts.append("(") new_lparts.extend(_p) if len(_p) > 1: new_lparts.append(")") if i != last: new_lparts.append(" AND ") else: new_lparts.append(_to_spdx(lpart.strip())) return new_lparts def _scrape_license_string(pkg): d = {} if pkg.startswith("r-"): pkg = pkg[2:] LOGGER.info("LICENSE running cran skeleton for pkg %s" % pkg) with tempfile.TemporaryDirectory() as tmpdir, indir(tmpdir): subprocess.run( [ "conda", "skeleton", "cran", "--allow-archived", "--use-noarch-generic", pkg, ], check=True, ) with open("r-%s/meta.yaml" % pkg) as fp: in_about = False meta_yaml = [] for line in fp.readlines(): if line.startswith("about:"): in_about = True elif line.startswith("extra:"): in_about = False if in_about: meta_yaml.append(line) if line.startswith("# License:"): d["cran_license"] = line[len("# License:") :].strip() cmeta = CondaMetaYAML("".join(meta_yaml)) d["license_file"] = [ lf for lf in cmeta.meta.get("about", {}).get("license_file", []) ] if len(d["license_file"]) == 0: d["license_file"] = None if "cran_license" in d: spdx = _munge_licenses([d["cran_license"]]) if "(Restricts use)" in cmeta.meta.get("about", {}).get("license", ""): if len(spdx) > 1: spdx = ["("] + spdx + [")", " AND ", "LicenseRef-RestrictsUse"] else: spdx = spdx + [" AND ", "LicenseRef-RestrictsUse"] d["spdx_license"] = "".join(spdx) else: d["spdx_license"] = None if d: return d else: return None def _do_r_license_munging(pkg, recipe_dir): try: d = _scrape_license_string(pkg) LOGGER.info("LICENSE R package license data: %s" % d) with open(os.path.join(recipe_dir, "meta.yaml")) as fp: cmeta = CondaMetaYAML(fp.read()) if d["license_file"] is not None: cmeta.meta["about"]["license_file"] = d["license_file"] if d["spdx_license"] is not None: cmeta.meta["about"]["license"] = d["spdx_license"] elif d["cran_license"] is not None: cmeta.meta["about"]["license"] = d["cran_license"] with open(os.path.join(recipe_dir, "meta.yaml"), "w") as fp: cmeta.dump(fp) except Exception as e: LOGGER.info("LICENSE R license ERROR: %s" % repr(e)) pass def _is_r(attrs): if ( attrs.get("feedstock_name", "").startswith("r-") or attrs.get("name", "").startswith("r-") ) and ( "r-base" in attrs.get("raw_meta_yaml", "") or "r-base" in attrs.get("requirements", {}).get("run", set()) ): return True else: return False class LicenseMigrator(MiniMigrator): post_migration = True def filter(self, attrs: "AttrsTypedDict", not_bad_str_start: str = "") -> bool: license = attrs.get("meta_yaml", {}).get("about", {}).get("license", "") license_fam = ( attrs.get("meta_yaml", {}) .get("about", {}) .get("license_family", "") .lower() or license.lower().partition("-")[0].partition("v")[0].partition(" ")[0] ) if ( license_fam in NEEDED_FAMILIES or any(n in license_fam for n in NEEDED_FAMILIES) or _is_r(attrs) ) and "license_file" not in attrs.get("meta_yaml", {}).get("about", {}): return False return True def migrate(self, recipe_dir: str, attrs: "AttrsTypedDict", **kwargs: Any) -> None: # r- recipes have a special syntax here if ( attrs.get("feedstock_name", "").startswith("r-") or attrs.get("name", "").startswith("r-") ) and "r-base" in attrs["raw_meta_yaml"]: if attrs.get("feedstock_name", None) is not None: if attrs.get("feedstock_name", None).endswith("-feedstock"): name = attrs.get("feedstock_name")[: -len("-feedstock")] else: name = attrs.get("feedstock_name") else: name = attrs.get("name", None) _do_r_license_munging(name, recipe_dir) return try: cb_work_dir = _get_source_code(recipe_dir) except Exception: return if cb_work_dir is None: return with indir(cb_work_dir): # look for a license file license_files = [ s for s in os.listdir(".") if any( s.lower().startswith(k) for k in ["license", "copying", "copyright"] ) ] eval_cmd(f"rm -r {cb_work_dir}") # if there is a license file in tarball update things if license_files: with indir(recipe_dir): """BSD 3-Clause License Copyright (c) 2017, <NAME> Copyright (c) 2018, The Regro Developers All rights reserved.""" with open("meta.yaml") as f: raw = f.read() lines = raw.splitlines() ptn = re.compile(r"(\s*?)" + "license:") for i, line in enumerate(lines): m = ptn.match(line) if m is not None: break # TODO: Sketchy type assertion assert m is not None ws = m.group(1) if len(license_files) == 1: replace_in_file( line, line + "\n" + ws + f"license_file: {list(license_files)[0]}", "meta.yaml", ) else: # note that this white space is not perfect but works for # most of the situations replace_in_file( line, line + "\n" + ws + "license_file: \n" + "".join(f"{ws*2}- {z} \n" for z in license_files), "meta.yaml", ) # if license not in tarball do something! # check if github in dev url, then use that to get the license ``` #### File: conda_forge_tick/migrators/matplotlib_base.py ```python import os import typing from typing import Any import copy from conda_forge_tick.migrators.core import Replacement, _parse_bad_attr from conda_forge_tick.utils import frozen_to_json_friendly if typing.TYPE_CHECKING: from ..migrators_types import AttrsTypedDict, MigrationUidTypedDict class MatplotlibBase(Replacement): migrator_version = 0 def filter(self, attrs: "AttrsTypedDict", not_bad_str_start: str = "") -> bool: # I shipped a bug where I added an entry to the migrator uid and now the # graph is corrupted - this is being fixed here def parse_already_pred() -> bool: migrator_uid: "MigrationUidTypedDict" = typing.cast( "MigrationUidTypedDict", frozen_to_json_friendly(self.migrator_uid(attrs))["data"], ) already_migrated_uids: typing.Iterable["MigrationUidTypedDict"] = list( copy.deepcopy(z["data"]) for z in attrs.get("PRed", []) ) # we shipped a bug, so fixing this here - # need to ignore name in uuid for uid in already_migrated_uids: if uid["migrator_name"] == "MatplotlibBase" and "name" in uid: del uid["name"] del migrator_uid["name"] return migrator_uid in already_migrated_uids _is_archived = attrs.get("archived", False) _is_pred = parse_already_pred() _is_bad = _parse_bad_attr(attrs, not_bad_str_start) requirements = attrs.get("requirements", {}) rq = ( requirements.get("build", set()) | requirements.get("host", set()) | requirements.get("run", set()) | requirements.get("test", set()) ) _no_dep = len(rq & self.packages) == 0 return _is_archived or _is_pred or _is_bad or _no_dep def migrate( self, recipe_dir: str, attrs: "AttrsTypedDict", **kwargs: Any ) -> "MigrationUidTypedDict": yum_pth = os.path.join(recipe_dir, "yum_requirements.txt") if not os.path.exists(yum_pth): yum_lines = [] else: with open(yum_pth) as fp: yum_lines = fp.readlines() if "xorg-x11-server-Xorg\n" not in yum_lines: yum_lines.append("xorg-x11-server-Xorg\n") for i in range(len(yum_lines)): if yum_lines[i][-1] != "\n": yum_lines[i] = yum_lines[i] + "\n" with open(yum_pth, "w") as fp: for line in yum_lines: fp.write(line) return super().migrate(recipe_dir, attrs, **kwargs) ``` #### File: cf-scripts/tests/test_cos7_config_migrator.py ```python import os import pytest from conda_forge_tick.migrators import ( Version, Cos7Config, ) from conda_forge_tick.migrators.cos7 import REQUIRED_RE_LINES, _has_line_set from test_migrators import run_test_migration VERSION_COS7 = Version( set(), piggy_back_migrations=[Cos7Config()], ) YAML_PATH = os.path.join(os.path.dirname(__file__), "test_yaml") @pytest.mark.parametrize("remove_quay", [False, True]) @pytest.mark.parametrize("case", list(range(len(REQUIRED_RE_LINES)))) def test_version_cos7_config(case, remove_quay, tmpdir): with open(os.path.join(YAML_PATH, "version_cos7_config_simple.yaml")) as fp: in_yaml = fp.read() with open( os.path.join(YAML_PATH, "version_cos7_config_simple_correct.yaml"), ) as fp: out_yaml = fp.read() os.makedirs(os.path.join(tmpdir, "recipe"), exist_ok=True) cfg = os.path.join(tmpdir, "recipe", "conda_build_config.yaml") with open(cfg, "w") as fp: for i, (_, _, first, second) in enumerate(REQUIRED_RE_LINES): if i != case: fp.write(first + "\n") if "docker_image" in first and remove_quay: fp.write( second.replace("quay.io/condaforge/", "condaforge/") + "\n", ) run_test_migration( m=VERSION_COS7, inp=in_yaml, output=out_yaml, kwargs={"new_version": "0.9"}, prb="Dependencies have been updated if changed", mr_out={ "migrator_name": "Version", "migrator_version": Version.migrator_version, "version": "0.9", }, tmpdir=os.path.join(tmpdir, "recipe"), ) with open(cfg) as fp: cfg_lines = fp.readlines() for first_re, second_re, first, second in REQUIRED_RE_LINES: assert _has_line_set(cfg_lines, first_re, second_re), (first, second) @pytest.mark.parametrize("case", list(range(len(REQUIRED_RE_LINES)))) def test_version_cos7_config_skip(case, tmpdir): with open(os.path.join(YAML_PATH, "version_cos7_config_simple.yaml")) as fp: in_yaml = fp.read() with open( os.path.join(YAML_PATH, "version_cos7_config_simple_correct.yaml"), ) as fp: out_yaml = fp.read() os.makedirs(os.path.join(tmpdir, "recipe"), exist_ok=True) cfg = os.path.join(tmpdir, "recipe", "conda_build_config.yaml") with open(cfg, "w") as fp: for i, (_, _, first, second) in enumerate(REQUIRED_RE_LINES): if i != case: fp.write(first + "blarg\n") fp.write(second + "blarg\n") run_test_migration( m=VERSION_COS7, inp=in_yaml, output=out_yaml, kwargs={"new_version": "0.9"}, prb="Dependencies have been updated if changed", mr_out={ "migrator_name": "Version", "migrator_version": Version.migrator_version, "version": "0.9", }, tmpdir=os.path.join(tmpdir, "recipe"), ) with open(cfg) as fp: cfg_lines = fp.readlines() for i, (first_re, second_re, first, second) in enumerate(REQUIRED_RE_LINES): if i != case: assert _has_line_set(cfg_lines, first_re, second_re), (first, second) ``` #### File: cf-scripts/tests/test_cross_compile.py ```python import os from conda_forge_tick.migrators import ( UpdateConfigSubGuessMigrator, Version, GuardTestingMigrator, UpdateCMakeArgsMigrator, CrossRBaseMigrator, CrossPythonMigrator, Build2HostMigrator, NoCondaInspectMigrator, ) from test_migrators import run_test_migration config_migrator = UpdateConfigSubGuessMigrator() guard_testing_migrator = GuardTestingMigrator() cmake_migrator = UpdateCMakeArgsMigrator() cross_python_migrator = CrossPythonMigrator() cross_rbase_migrator = CrossRBaseMigrator() b2h_migrator = Build2HostMigrator() nci_migrator = NoCondaInspectMigrator() version_migrator_autoconf = Version( set(), piggy_back_migrations=[config_migrator, cmake_migrator, guard_testing_migrator], ) version_migrator_cmake = Version( set(), piggy_back_migrations=[ cmake_migrator, guard_testing_migrator, cross_rbase_migrator, cross_python_migrator, ], ) version_migrator_python = Version( set(), piggy_back_migrations=[cross_python_migrator], ) version_migrator_rbase = Version( set(), piggy_back_migrations=[cross_rbase_migrator], ) version_migrator_b2h = Version( set(), piggy_back_migrations=[b2h_migrator], ) version_migrator_nci = Version( set(), piggy_back_migrations=[nci_migrator], ) config_recipe = """\ {% set version = "7.0" %} package: name: readline version: {{ version }} source: url: https://ftp.gnu.org/gnu/readline/readline-{{ version }}.tar.gz sha256: 750d437185286f40a369e1e4f4764eda932b9459b5ec9a731628393dd3d32334 build: skip: true # [win] number: 2 run_exports: # change soname at major ver: https://abi-laboratory.pro/tracker/timeline/readline/ - {{ pin_subpackage('readline') }} requirements: build: - pkg-config - {{ compiler('c') }} - make - cmake host: - ncurses run: - ncurses about: home: https://cnswww.cns.cwru.edu/php/chet/readline/rltop.html license: GPL-3.0-only license_file: COPYING summary: library for editing command lines as they are typed in extra: recipe-maintainers: - croth1 """ config_recipe_correct = """\ {% set version = "8.0" %} package: name: readline version: {{ version }} source: url: https://ftp.gnu.org/gnu/readline/readline-{{ version }}.tar.gz sha256: e339f51971478d369f8a053a330a190781acb9864cf4c541060f12078948e461 build: skip: true # [win] number: 0 run_exports: # change soname at major ver: https://abi-laboratory.pro/tracker/timeline/readline/ - {{ pin_subpackage('readline') }} requirements: build: - pkg-config - gnuconfig # [unix] - {{ compiler('c') }} - make - cmake host: - ncurses run: - ncurses about: home: https://cnswww.cns.cwru.edu/php/chet/readline/rltop.html license: GPL-3.0-only license_file: COPYING summary: library for editing command lines as they are typed in extra: recipe-maintainers: - croth1 """ config_recipe_correct_cmake = """\ {% set version = "8.0" %} package: name: readline version: {{ version }} source: url: https://ftp.gnu.org/gnu/readline/readline-{{ version }}.tar.gz sha256: e339f51971478d369f8a053a330a190781acb9864cf4c541060f12078948e461 build: skip: true # [win] number: 0 run_exports: # change soname at major ver: https://abi-laboratory.pro/tracker/timeline/readline/ - {{ pin_subpackage('readline') }} requirements: build: - pkg-config - {{ compiler('c') }} - make - cmake host: - ncurses run: - ncurses about: home: https://cnswww.cns.cwru.edu/php/chet/readline/rltop.html license: GPL-3.0-only license_file: COPYING summary: library for editing command lines as they are typed in extra: recipe-maintainers: - croth1 """ rbase_recipe = """\ {% set version = "2.0.0" %} {% set posix = 'm2-' if win else '' %} {% set native = 'm2w64-' if win else '' %} package: name: r-magrittr version: {{ version|replace("-", "_") }} source: url: - {{ cran_mirror }}/src/contrib/magrittr_{{ version }}.tar.gz - {{ cran_mirror }}/src/contrib/Archive/magrittr/magrittr_{{ version }}.tar.gz sha256: 05c45943ada9443134caa0ab24db4a962b629f00b755ccf039a2a2a7b2c92ae8 build: merge_build_host: true # [win] number: 1 rpaths: - lib/R/lib/ - lib/ requirements: build: - {{ compiler('c') }} # [not win] - {{ compiler('m2w64_c') }} # [win] - {{ posix }}filesystem # [win] - {{ posix }}make - {{ posix }}sed # [win] - {{ posix }}coreutils # [win] - {{ posix }}zip # [win] host: - r-base - r-rlang run: - r-base - r-rlang - {{ native }}gcc-libs # [win] test: commands: - $R -e "library('magrittr')" # [not win] - "\\"%R%\\" -e \\"library('magrittr')\\"" # [win] about: home: https://magrittr.tidyverse.org, https://github.com/tidyverse/magrittr license: MIT summary: Provides a mechanism for chaining commands with a new forward-pipe operator, %>%. This operator will forward a value, or the result of an expression, into the next function call/expression. There is flexible support for the type of right-hand side expressions. For more information, see package vignette. To quote <NAME>, "Ceci n'est pas un pipe." license_family: MIT license_file: - {{ environ["PREFIX"] }}/lib/R/share/licenses/MIT - LICENSE extra: recipe-maintainers: - conda-forge/r - ocefpaf """ rbase_recipe_correct = """\ {% set version = "2.0.1" %} {% set posix = 'm2-' if win else '' %} {% set native = 'm2w64-' if win else '' %} package: name: r-magrittr version: {{ version|replace("-", "_") }} source: url: - {{ cran_mirror }}/src/contrib/magrittr_{{ version }}.tar.gz - {{ cran_mirror }}/src/contrib/Archive/magrittr/magrittr_{{ version }}.tar.gz sha256: 75c265d51cc2b34beb27040edb09823c7b954d3990a7a931e40690b75d4aad5f build: merge_build_host: true # [win] number: 0 rpaths: - lib/R/lib/ - lib/ requirements: build: - cross-r-base {{ r_base }} # [build_platform != target_platform] - r-rlang # [build_platform != target_platform] - {{ compiler('c') }} # [not win] - {{ compiler('m2w64_c') }} # [win] - {{ posix }}filesystem # [win] - {{ posix }}make - {{ posix }}sed # [win] - {{ posix }}coreutils # [win] - {{ posix }}zip # [win] host: - r-base - r-rlang run: - r-base - r-rlang - {{ native }}gcc-libs # [win] test: commands: - $R -e "library('magrittr')" # [not win] - "\\"%R%\\" -e \\"library('magrittr')\\"" # [win] about: home: https://magrittr.tidyverse.org, https://github.com/tidyverse/magrittr license: MIT summary: Provides a mechanism for chaining commands with a new forward-pipe operator, %>%. This operator will forward a value, or the result of an expression, into the next function call/expression. There is flexible support for the type of right-hand side expressions. For more information, see package vignette. To quote Rene Magritte, "Ceci n'est pas un pipe." license_family: MIT license_file: - {{ environ["PREFIX"] }}/lib/R/share/licenses/MIT - LICENSE extra: recipe-maintainers: - conda-forge/r - ocefpaf """ python_recipe = """\ {% set version = "1.19.0" %} package: name: numpy version: {{ version }} source: url: https://github.com/numpy/numpy/releases/download/v{{ version }}/numpy-{{ version }}.tar.gz sha256: 153cf8b0176e57a611931981acfe093d2f7fef623b48f91176efa199798a6b90 build: number: 0 skip: true # [py27] entry_points: - f2py = numpy.f2py.f2py2e:main # [win] requirements: build: - {{ compiler('c') }} # gcc 7.3 segfaults on aarch64 - clangdev # [aarch64] host: - python - pip - cython - libblas - libcblas - liblapack run: - python test: requires: - pytest - hypothesis commands: - f2py -h - export OPENBLAS_NUM_THREADS=1 # [unix] - set OPENBLAS_NUM_THREADS=1 # [win] imports: - numpy - numpy.linalg.lapack_lite about: home: http://numpy.scipy.org/ license: BSD-3-Clause license_file: LICENSE.txt summary: Array processing for numbers, strings, records, and objects. doc_url: https://docs.scipy.org/doc/numpy/reference/ dev_url: https://github.com/numpy/numpy extra: recipe-maintainers: - jakirkham - msarahan - pelson - rgommers - ocefpaf """ # noqa python_recipe_correct = """\ {% set version = "1.19.1" %} package: name: numpy version: {{ version }} source: url: https://github.com/numpy/numpy/releases/download/v{{ version }}/numpy-{{ version }}.tar.gz sha256: 1396e6c3d20cbfc119195303b0272e749610b7042cc498be4134f013e9a3215c build: number: 0 skip: true # [py27] entry_points: - f2py = numpy.f2py.f2py2e:main # [win] requirements: build: - python # [build_platform != target_platform] - cross-python_{{ target_platform }} # [build_platform != target_platform] - cython # [build_platform != target_platform] - {{ compiler('c') }} # gcc 7.3 segfaults on aarch64 - clangdev # [aarch64] host: - python - pip - cython - libblas - libcblas - liblapack run: - python test: requires: - pytest - hypothesis commands: - f2py -h - export OPENBLAS_NUM_THREADS=1 # [unix] - set OPENBLAS_NUM_THREADS=1 # [win] imports: - numpy - numpy.linalg.lapack_lite about: home: http://numpy.scipy.org/ license: BSD-3-Clause license_file: LICENSE.txt summary: Array processing for numbers, strings, records, and objects. doc_url: https://docs.scipy.org/doc/numpy/reference/ dev_url: https://github.com/numpy/numpy extra: recipe-maintainers: - jakirkham - msarahan - pelson - rgommers - ocefpaf """ # noqa python_no_build_recipe = """\ {% set version = "2020.4.5.2" %} {% set pip_version = "19.1.1" %} {% set setuptools_version = "41.0.1" %} package: name: certifi version: {{ version }} source: - url: https://pypi.io/packages/source/c/certifi/certifi-{{ version }}.tar.gz sha256: 5ad7e9a056d25ffa5082862e36f119f7f7cec6457fa07ee2f8c339814b80c9b1 folder: certifi # bootstrap pip and setuptools to avoid circular dependency # but without losing metadata - url: https://pypi.io/packages/py2.py3/p/pip/pip-{{ pip_version }}-py2.py3-none-any.whl sha256: 993134f0475471b91452ca029d4390dc8f298ac63a712814f101cd1b6db46676 folder: pip_wheel - url: https://pypi.io/packages/py2.py3/s/setuptools/setuptools-{{ setuptools_version }}-py2.py3-none-any.whl sha256: c7769ce668c7a333d84e17fe8b524b1c45e7ee9f7908ad0a73e1eda7e6a5aebf folder: setuptools_wheel build: number: 0 requirements: host: - python run: - python test: imports: - certifi about: home: http://certifi.io/ license: ISC license_file: certifi/LICENSE summary: Python package for providing Mozilla's CA Bundle. description: | Certifi is a curated collection of Root Certificates for validating the trustworthiness of SSL certificates while verifying the identity of TLS hosts. doc_url: https://pypi.python.org/pypi/certifi dev_url: https://github.com/certifi/python-certifi doc_source_url: https://github.com/certifi/certifi.io/blob/master/README.rst extra: recipe-maintainers: - jakirkham - pelson - sigmavirus24 - ocefpaf - mingwandroid - jjhelmus """ # noqa python_no_build_recipe_correct = """\ {% set version = "2020.6.20" %} {% set pip_version = "19.1.1" %} {% set setuptools_version = "41.0.1" %} package: name: certifi version: {{ version }} source: - url: https://pypi.io/packages/source/c/certifi/certifi-{{ version }}.tar.gz sha256: 5930595817496dd21bb8dc35dad090f1c2cd0adfaf21204bf6732ca5d8ee34d3 folder: certifi # bootstrap pip and setuptools to avoid circular dependency # but without losing metadata - url: https://pypi.io/packages/py2.py3/p/pip/pip-{{ pip_version }}-py2.py3-none-any.whl sha256: 993134f0475471b91452ca029d4390dc8f298ac63a712814f101cd1b6db46676 folder: pip_wheel - url: https://pypi.io/packages/py2.py3/s/setuptools/setuptools-{{ setuptools_version }}-py2.py3-none-any.whl sha256: c7769ce668c7a333d84e17fe8b524b1c45e7ee9f7908ad0a73e1eda7e6a5aebf folder: setuptools_wheel build: number: 0 requirements: build: - python # [build_platform != target_platform] - cross-python_{{ target_platform }} # [build_platform != target_platform] host: - python run: - python test: imports: - certifi about: home: http://certifi.io/ license: ISC license_file: certifi/LICENSE summary: Python package for providing Mozilla's CA Bundle. description: | Certifi is a curated collection of Root Certificates for validating the trustworthiness of SSL certificates while verifying the identity of TLS hosts. doc_url: https://pypi.python.org/pypi/certifi dev_url: https://github.com/certifi/python-certifi doc_source_url: https://github.com/certifi/certifi.io/blob/master/README.rst extra: recipe-maintainers: - jakirkham - pelson - sigmavirus24 - ocefpaf - mingwandroid - jjhelmus """ # noqa python_recipe_b2h = """\ {% set version = "1.19.0" %} package: name: numpy version: {{ version }} source: url: https://github.com/numpy/numpy/releases/download/v{{ version }}/numpy-{{ version }}.tar.gz sha256: 153cf8b0176e57a611931981acfe093d2f7fef623b48f91176efa199798a6b90 build: number: 0 skip: true # [py27] entry_points: - f2py = numpy.f2py.f2py2e:main # [win] requirements: build: - python - pip - cython - libblas - libcblas - liblapack run: - python test: requires: - pytest - hypothesis commands: - f2py -h - export OPENBLAS_NUM_THREADS=1 # [unix] - set OPENBLAS_NUM_THREADS=1 # [win] imports: - numpy - numpy.linalg.lapack_lite about: home: http://numpy.scipy.org/ license: BSD-3-Clause license_file: LICENSE.txt summary: Array processing for numbers, strings, records, and objects. doc_url: https://docs.scipy.org/doc/numpy/reference/ dev_url: https://github.com/numpy/numpy extra: recipe-maintainers: - jakirkham - msarahan - pelson - rgommers - ocefpaf """ # noqa python_recipe_b2h_correct = """\ {% set version = "1.19.1" %} package: name: numpy version: {{ version }} source: url: https://github.com/numpy/numpy/releases/download/v{{ version }}/numpy-{{ version }}.tar.gz sha256: 1396e6c3d20cbfc119195303b0272e749610b7042cc498be4134f013e9a3215c build: number: 0 skip: true # [py27] entry_points: - f2py = numpy.f2py.f2py2e:main # [win] requirements: host: - python - pip - cython - libblas - libcblas - liblapack run: - python test: requires: - pytest - hypothesis commands: - f2py -h - export OPENBLAS_NUM_THREADS=1 # [unix] - set OPENBLAS_NUM_THREADS=1 # [win] imports: - numpy - numpy.linalg.lapack_lite about: home: http://numpy.scipy.org/ license: BSD-3-Clause license_file: LICENSE.txt summary: Array processing for numbers, strings, records, and objects. doc_url: https://docs.scipy.org/doc/numpy/reference/ dev_url: https://github.com/numpy/numpy extra: recipe-maintainers: - jakirkham - msarahan - pelson - rgommers - ocefpaf """ # noqa python_recipe_b2h_buildok = """\ {% set version = "1.19.0" %} package: name: numpy version: {{ version }} source: url: https://github.com/numpy/numpy/releases/download/v{{ version }}/numpy-{{ version }}.tar.gz sha256: 153cf8b0176e57a611931981acfe093d2f7fef623b48f91176efa199798a6b90 build: number: 0 skip: true # [py27] entry_points: - f2py = numpy.f2py.f2py2e:main # [win] requirements: build: - {{ compiler('c') }} - python - pip - cython - libblas - libcblas - liblapack run: - python test: requires: - pytest - hypothesis commands: - f2py -h - export OPENBLAS_NUM_THREADS=1 # [unix] - set OPENBLAS_NUM_THREADS=1 # [win] imports: - numpy - numpy.linalg.lapack_lite about: home: http://numpy.scipy.org/ license: BSD-3-Clause license_file: LICENSE.txt summary: Array processing for numbers, strings, records, and objects. doc_url: https://docs.scipy.org/doc/numpy/reference/ dev_url: https://github.com/numpy/numpy extra: recipe-maintainers: - jakirkham - msarahan - pelson - rgommers - ocefpaf """ # noqa python_recipe_b2h_buildok_correct = """\ {% set version = "1.19.1" %} package: name: numpy version: {{ version }} source: url: https://github.com/numpy/numpy/releases/download/v{{ version }}/numpy-{{ version }}.tar.gz sha256: 1396e6c3d20cbfc119195303b0272e749610b7042cc498be4134f013e9a3215c build: number: 0 skip: true # [py27] entry_points: - f2py = numpy.f2py.f2py2e:main # [win] requirements: build: - {{ compiler('c') }} - python - pip - cython - libblas - libcblas - liblapack run: - python test: requires: - pytest - hypothesis commands: - f2py -h - export OPENBLAS_NUM_THREADS=1 # [unix] - set OPENBLAS_NUM_THREADS=1 # [win] imports: - numpy - numpy.linalg.lapack_lite about: home: http://numpy.scipy.org/ license: BSD-3-Clause license_file: LICENSE.txt summary: Array processing for numbers, strings, records, and objects. doc_url: https://docs.scipy.org/doc/numpy/reference/ dev_url: https://github.com/numpy/numpy extra: recipe-maintainers: - jakirkham - msarahan - pelson - rgommers - ocefpaf """ # noqa python_recipe_b2h_bhskip = """\ {% set version = "1.19.0" %} package: name: numpy version: {{ version }} source: url: https://github.com/numpy/numpy/releases/download/v{{ version }}/numpy-{{ version }}.tar.gz sha256: 153cf8b0176e57a611931981acfe093d2f7fef623b48f91176efa199798a6b90 build: number: 0 skip: true # [py27] entry_points: - f2py = numpy.f2py.f2py2e:main # [win] requirements: build: - {{ compiler('c') }} host: run: - python test: requires: - pytest - hypothesis commands: - f2py -h - export OPENBLAS_NUM_THREADS=1 # [unix] - set OPENBLAS_NUM_THREADS=1 # [win] imports: - numpy - numpy.linalg.lapack_lite about: home: http://numpy.scipy.org/ license: BSD-3-Clause license_file: LICENSE.txt summary: Array processing for numbers, strings, records, and objects. doc_url: https://docs.scipy.org/doc/numpy/reference/ dev_url: https://github.com/numpy/numpy extra: recipe-maintainers: - jakirkham - msarahan - pelson - rgommers - ocefpaf """ # noqa python_recipe_b2h_bhskip_correct = """\ {% set version = "1.19.1" %} package: name: numpy version: {{ version }} source: url: https://github.com/numpy/numpy/releases/download/v{{ version }}/numpy-{{ version }}.tar.gz sha256: 1396e6c3d20cbfc119195303b0272e749610b7042cc498be4134f013e9a3215c build: number: 0 skip: true # [py27] entry_points: - f2py = numpy.f2py.f2py2e:main # [win] requirements: build: - {{ compiler('c') }} host: run: - python test: requires: - pytest - hypothesis commands: - f2py -h - export OPENBLAS_NUM_THREADS=1 # [unix] - set OPENBLAS_NUM_THREADS=1 # [win] imports: - numpy - numpy.linalg.lapack_lite about: home: http://numpy.scipy.org/ license: BSD-3-Clause license_file: LICENSE.txt summary: Array processing for numbers, strings, records, and objects. doc_url: https://docs.scipy.org/doc/numpy/reference/ dev_url: https://github.com/numpy/numpy extra: recipe-maintainers: - jakirkham - msarahan - pelson - rgommers - ocefpaf """ # noqa python_recipe_nci = """\ {% set version = "1.19.0" %} package: name: numpy version: {{ version }} source: url: https://github.com/numpy/numpy/releases/download/v{{ version }}/numpy-{{ version }}.tar.gz sha256: 153cf8b0176e57a611931981acfe093d2f7fef623b48f91176efa199798a6b90 build: number: 0 skip: true # [py27] entry_points: - f2py = numpy.f2py.f2py2e:main # [win] requirements: host: - python - pip - cython - libblas - libcblas - liblapack run: - python test: requires: - pytest - hypothesis commands: - f2py -h - export OPENBLAS_NUM_THREADS=1 # [unix] - set OPENBLAS_NUM_THREADS=1 # [win] - conda inspect linkages # comment - conda inspect objects # comment - conda inspect cars # comment imports: - numpy - numpy.linalg.lapack_lite about: home: http://numpy.scipy.org/ license: BSD-3-Clause license_file: LICENSE.txt summary: Array processing for numbers, strings, records, and objects. doc_url: https://docs.scipy.org/doc/numpy/reference/ dev_url: https://github.com/numpy/numpy extra: recipe-maintainers: - jakirkham - msarahan - pelson - rgommers - ocefpaf """ # noqa python_recipe_nci_correct = """\ {% set version = "1.19.1" %} package: name: numpy version: {{ version }} source: url: https://github.com/numpy/numpy/releases/download/v{{ version }}/numpy-{{ version }}.tar.gz sha256: 1396e6c3d20cbfc119195303b0272e749610b7042cc498be4134f013e9a3215c build: number: 0 skip: true # [py27] entry_points: - f2py = numpy.f2py.f2py2e:main # [win] requirements: host: - python - pip - cython - libblas - libcblas - liblapack run: - python test: requires: - pytest - hypothesis commands: - f2py -h - export OPENBLAS_NUM_THREADS=1 # [unix] - set OPENBLAS_NUM_THREADS=1 # [win] imports: - numpy - numpy.linalg.lapack_lite about: home: http://numpy.scipy.org/ license: BSD-3-Clause license_file: LICENSE.txt summary: Array processing for numbers, strings, records, and objects. doc_url: https://docs.scipy.org/doc/numpy/reference/ dev_url: https://github.com/numpy/numpy extra: recipe-maintainers: - jakirkham - msarahan - pelson - rgommers - ocefpaf """ # noqa def test_correct_config_sub(tmpdir): with open(os.path.join(tmpdir, "build.sh"), "w") as f: f.write("#!/bin/bash\n./configure") run_test_migration( m=version_migrator_autoconf, inp=config_recipe, output=config_recipe_correct, prb="Dependencies have been updated if changed", kwargs={"new_version": "8.0"}, mr_out={ "migrator_name": "Version", "migrator_version": Version.migrator_version, "version": "8.0", }, tmpdir=tmpdir, ) with open(os.path.join(tmpdir, "build.sh")) as f: assert len(f.readlines()) == 4 def test_make_check(tmpdir): with open(os.path.join(tmpdir, "build.sh"), "w") as f: f.write("#!/bin/bash\nmake check") run_test_migration( m=version_migrator_autoconf, inp=config_recipe, output=config_recipe_correct, prb="Dependencies have been updated if changed", kwargs={"new_version": "8.0"}, mr_out={ "migrator_name": "Version", "migrator_version": Version.migrator_version, "version": "8.0", }, tmpdir=tmpdir, ) expected = [ "#!/bin/bash\n", "# Get an updated config.sub and config.guess\n", "cp $BUILD_PREFIX/share/gnuconfig/config.* ./support\n", 'if [[ "${CONDA_BUILD_CROSS_COMPILATION}" != "1" ]]; then\n', "make check\n", "fi\n", ] with open(os.path.join(tmpdir, "build.sh")) as f: lines = f.readlines() assert lines == expected def test_cmake(tmpdir): with open(os.path.join(tmpdir, "build.sh"), "w") as f: f.write("#!/bin/bash\ncmake ..\nctest") run_test_migration( m=version_migrator_cmake, inp=config_recipe, output=config_recipe_correct_cmake, prb="Dependencies have been updated if changed", kwargs={"new_version": "8.0"}, mr_out={ "migrator_name": "Version", "migrator_version": Version.migrator_version, "version": "8.0", }, tmpdir=tmpdir, ) expected = [ "#!/bin/bash\n", "cmake ${CMAKE_ARGS} ..\n", 'if [[ "${CONDA_BUILD_CROSS_COMPILATION}" != "1" ]]; then\n', "ctest\n", "fi\n", ] with open(os.path.join(tmpdir, "build.sh")) as f: lines = f.readlines() assert lines == expected def test_cross_rbase(tmpdir): run_test_migration( m=version_migrator_rbase, inp=rbase_recipe, output=rbase_recipe_correct, prb="Dependencies have been updated if changed", kwargs={"new_version": "2.0.1"}, mr_out={ "migrator_name": "Version", "migrator_version": Version.migrator_version, "version": "2.0.1", }, tmpdir=tmpdir, ) def test_cross_rbase_build_sh(tmpdir): with open(os.path.join(tmpdir, "build.sh"), "w") as f: f.write("#!/bin/bash\nR CMD INSTALL --build .") run_test_migration( m=version_migrator_rbase, inp=rbase_recipe, output=rbase_recipe_correct, prb="Dependencies have been updated if changed", kwargs={"new_version": "2.0.1"}, mr_out={ "migrator_name": "Version", "migrator_version": Version.migrator_version, "version": "2.0.1", }, tmpdir=tmpdir, ) expected = [ "#!/bin/bash\n", "\n", "export DISABLE_AUTOBREW=1\n", "\n", "# shellcheck disable=SC2086\n", "${R} CMD INSTALL --build . ${R_ARGS}\n", ] with open(os.path.join(tmpdir, "build.sh")) as f: lines = f.readlines() assert lines == expected def test_cross_python(tmpdir): run_test_migration( m=version_migrator_python, inp=python_recipe, output=python_recipe_correct, prb="Dependencies have been updated if changed", kwargs={"new_version": "1.19.1"}, mr_out={ "migrator_name": "Version", "migrator_version": Version.migrator_version, "version": "1.19.1", }, tmpdir=tmpdir, ) def test_cross_python_no_build(tmpdir): run_test_migration( m=version_migrator_python, inp=python_no_build_recipe, output=python_no_build_recipe_correct, prb="Dependencies have been updated if changed", kwargs={"new_version": "2020.6.20"}, mr_out={ "migrator_name": "Version", "migrator_version": Version.migrator_version, "version": "2020.6.20", }, tmpdir=tmpdir, ) def test_build2host(tmpdir): run_test_migration( m=version_migrator_b2h, inp=python_recipe_b2h, output=python_recipe_b2h_correct, prb="Dependencies have been updated if changed", kwargs={"new_version": "1.19.1"}, mr_out={ "migrator_name": "Version", "migrator_version": Version.migrator_version, "version": "1.19.1", }, tmpdir=tmpdir, ) def test_build2host_buildok(tmpdir): run_test_migration( m=version_migrator_b2h, inp=python_recipe_b2h_buildok, output=python_recipe_b2h_buildok_correct, prb="Dependencies have been updated if changed", kwargs={"new_version": "1.19.1"}, mr_out={ "migrator_name": "Version", "migrator_version": Version.migrator_version, "version": "1.19.1", }, tmpdir=tmpdir, ) def test_build2host_bhskip(tmpdir): run_test_migration( m=version_migrator_b2h, inp=python_recipe_b2h_bhskip, output=python_recipe_b2h_bhskip_correct, prb="Dependencies have been updated if changed", kwargs={"new_version": "1.19.1"}, mr_out={ "migrator_name": "Version", "migrator_version": Version.migrator_version, "version": "1.19.1", }, tmpdir=tmpdir, ) def test_nocondainspect(tmpdir): run_test_migration( m=version_migrator_nci, inp=python_recipe_nci, output=python_recipe_nci_correct, prb="Dependencies have been updated if changed", kwargs={"new_version": "1.19.1"}, mr_out={ "migrator_name": "Version", "migrator_version": Version.migrator_version, "version": "1.19.1", }, tmpdir=tmpdir, ) ``` #### File: cf-scripts/tests/test_env_management.py ```python import os from conda_forge_tick.env_management import SensitiveEnv def test_simple_sensitive_env(env_setup): os.environ["PASSWORD"] = "hi" s = SensitiveEnv() s.hide_env_vars() assert "PASSWORD" not in os.environ s.reveal_env_vars() assert "PASSWORD" in os.environ assert os.environ["PASSWORD"] == "hi" def test_ctx_sensitive_env(env_setup): os.environ["PASSWORD"] = "hi" s = SensitiveEnv() with s.sensitive_env(): assert "PASSWORD" in os.environ assert os.environ["PASSWORD"] == "hi" assert "PASSWORD" not in os.environ def test_double_sensitive_env(env_setup): os.environ["PASSWORD"] = "hi" os.environ["pwd"] = "<PASSWORD>" s = SensitiveEnv() s.hide_env_vars() s.SENSITIVE_KEYS.append("pwd") s.hide_env_vars() s.reveal_env_vars() assert os.environ["pwd"] == "<PASSWORD>" assert os.environ["PASSWORD"] == "hi" ``` #### File: cf-scripts/tests/test_feedstock_parser.py ```python import os import pprint import pytest from conda_forge_tick.feedstock_parser import _get_requirements from conda_forge_tick.utils import parse_meta_yaml @pytest.mark.parametrize( "plat,arch,cfg,has_cudnn", [ ( "linux", "64", "linux_64_cuda_compiler_version10.2numpy1.19python3.9.____cpython.yaml", True, ), ("osx", "64", "osx_64_numpy1.16python3.6.____cpython.yaml", False), ], ) def test_parse_cudnn(plat, arch, cfg, has_cudnn): recipe_dir = os.path.abspath( os.path.join( os.path.dirname(__file__), "pytorch-cpu-feedstock", "recipe", ), ) with open(os.path.join(recipe_dir, "meta.yaml")) as fp: recipe_text = fp.read() meta = parse_meta_yaml( recipe_text, for_pinning=False, platform=plat, arch=arch, recipe_dir=recipe_dir, cbc_path=os.path.join(recipe_dir, "..", ".ci_support", cfg), log_debug=True, ) if has_cudnn: assert any( "cudnn" in out.get("requirements", {}).get("host", []) for out in meta["outputs"] ), pprint.pformat(meta) else: assert all( "cudnn" not in out.get("requirements", {}).get("host", []) for out in meta["outputs"] ), pprint.pformat(meta) def test_get_requirements(): meta_yaml = { "requirements": {"build": ["1", "2"], "host": ["2", "3"]}, "outputs": [ {"requirements": {"host": ["4"]}}, {"requirements": {"run": ["5"]}}, {"requirements": ["6"]}, ], } assert _get_requirements({}) == set() assert _get_requirements(meta_yaml) == {"1", "2", "3", "4", "5", "6"} assert _get_requirements(meta_yaml, outputs=False) == {"1", "2", "3"} assert _get_requirements(meta_yaml, host=False) == {"1", "2", "5", "6"} ``` #### File: cf-scripts/tests/test_migrators.py ```python import os import builtins import re import pytest import networkx as nx from conda_forge_tick.contexts import MigratorSessionContext, MigratorContext from conda_forge_tick.migrators import ( Version, MigrationYaml, Replacement, ) # Legacy THINGS from conda_forge_tick.migrators.disabled.legacy import ( JS, Compiler, Noarch, Pinning, NoarchR, BlasRebuild, Rebuild, ) from conda_forge_tick.utils import ( parse_meta_yaml, frozen_to_json_friendly, ) from conda_forge_tick.feedstock_parser import populate_feedstock_attributes from xonsh.lib import subprocess from xonsh.lib.os import indir sample_yaml_rebuild = """ {% set version = "1.3.2" %} package: name: scipy version: {{ version }} source: url: https://github.com/scipy/scipy/archive/v{{ version }}.tar.gz sha256: ac0937d29a3f93cc26737fdf318c09408e9a48adee1648a25d0cdce5647b8eb4 patches: - gh10591.patch - relax_gmres_error_check.patch # [aarch64] - skip_problematic_boost_test.patch # [aarch64 or ppc64le] - skip_problematic_root_finding.patch # [aarch64 or ppc64le] - skip_TestIDCTIVFloat_aarch64.patch # [aarch64] - skip_white_tophat03.patch # [aarch64 or ppc64le] # remove this patch when updating to 1.3.3 {% if version == "1.3.2" %} - scipy-1.3.2-bad-tests.patch # [osx and py == 38] - gh11046.patch # [ppc64le] {% endif %} build: number: 0 skip: true # [win or py2k] requirements: build: - {{ compiler('fortran') }} - {{ compiler('c') }} - {{ compiler('cxx') }} host: - libblas - libcblas - liblapack - python - setuptools - cython - numpy - pip run: - python - {{ pin_compatible('numpy') }} test: requires: - pytest - pytest-xdist - mpmath {% if version == "1.3.2" %} - blas * netlib # [ppc64le] {% endif %} about: home: http://www.scipy.org/ license: BSD-3-Clause license_file: LICENSE.txt summary: Scientific Library for Python description: | SciPy is a Python-based ecosystem of open-source software for mathematics, science, and engineering. doc_url: http://www.scipy.org/docs.html dev_url: https://github.com/scipy/scipy extra: recipe-maintainers: - jakirkham - msarahan - rgommers - ocefpaf - beckermr """ updated_yaml_rebuild = """ {% set version = "1.3.2" %} package: name: scipy version: {{ version }} source: url: https://github.com/scipy/scipy/archive/v{{ version }}.tar.gz sha256: ac0937d29a3f93cc26737fdf318c09408e9a48adee1648a25d0cdce5647b8eb4 patches: - gh10591.patch - relax_gmres_error_check.patch # [aarch64] - skip_problematic_boost_test.patch # [aarch64 or ppc64le] - skip_problematic_root_finding.patch # [aarch64 or ppc64le] - skip_TestIDCTIVFloat_aarch64.patch # [aarch64] - skip_white_tophat03.patch # [aarch64 or ppc64le] # remove this patch when updating to 1.3.3 {% if version == "1.3.2" %} - scipy-1.3.2-bad-tests.patch # [osx and py == 38] - gh11046.patch # [ppc64le] {% endif %} build: number: 1 skip: true # [win or py2k] requirements: build: - {{ compiler('fortran') }} - {{ compiler('c') }} - {{ compiler('cxx') }} host: - libblas - libcblas - liblapack - python - setuptools - cython - numpy - pip run: - python - {{ pin_compatible('numpy') }} test: requires: - pytest - pytest-xdist - mpmath {% if version == "1.3.2" %} - blas * netlib # [ppc64le] {% endif %} about: home: http://www.scipy.org/ license: BSD-3-Clause license_file: LICENSE.txt summary: Scientific Library for Python description: | SciPy is a Python-based ecosystem of open-source software for mathematics, science, and engineering. doc_url: http://www.scipy.org/docs.html dev_url: https://github.com/scipy/scipy extra: recipe-maintainers: - jakirkham - msarahan - rgommers - ocefpaf - beckermr """ updated_yaml_rebuild_no_build_number = """ {% set version = "1.3.2" %} package: name: scipy version: {{ version }} source: url: https://github.com/scipy/scipy/archive/v{{ version }}.tar.gz sha256: ac0937d29a3f93cc26737fdf318c09408e9a48adee1648a25d0cdce5647b8eb4 patches: - gh10591.patch - relax_gmres_error_check.patch # [aarch64] - skip_problematic_boost_test.patch # [aarch64 or ppc64le] - skip_problematic_root_finding.patch # [aarch64 or ppc64le] - skip_TestIDCTIVFloat_aarch64.patch # [aarch64] - skip_white_tophat03.patch # [aarch64 or ppc64le] # remove this patch when updating to 1.3.3 {% if version == "1.3.2" %} - scipy-1.3.2-bad-tests.patch # [osx and py == 38] - gh11046.patch # [ppc64le] {% endif %} build: number: 0 skip: true # [win or py2k] requirements: build: - {{ compiler('fortran') }} - {{ compiler('c') }} - {{ compiler('cxx') }} host: - libblas - libcblas - liblapack - python - setuptools - cython - numpy - pip run: - python - {{ pin_compatible('numpy') }} test: requires: - pytest - pytest-xdist - mpmath {% if version == "1.3.2" %} - blas * netlib # [ppc64le] {% endif %} about: home: http://www.scipy.org/ license: BSD-3-Clause license_file: LICENSE.txt summary: Scientific Library for Python description: | SciPy is a Python-based ecosystem of open-source software for mathematics, science, and engineering. doc_url: http://www.scipy.org/docs.html dev_url: https://github.com/scipy/scipy extra: recipe-maintainers: - jakirkham - msarahan - rgommers - ocefpaf - beckermr """ class NoFilter: def filter(self, attrs, not_bad_str_start=""): return False class _MigrationYaml(NoFilter, MigrationYaml): pass yaml_rebuild = _MigrationYaml(yaml_contents="hello world", name="hi") yaml_rebuild.cycles = [] yaml_rebuild_no_build_number = _MigrationYaml( yaml_contents="hello world", name="hi", bump_number=0, ) yaml_rebuild_no_build_number.cycles = [] def run_test_yaml_migration( m, *, inp, output, kwargs, prb, mr_out, tmpdir, should_filter=False ): os.makedirs(os.path.join(tmpdir, "recipe"), exist_ok=True) with open(os.path.join(tmpdir, "recipe", "meta.yaml"), "w") as f: f.write(inp) with indir(tmpdir): subprocess.run(["git", "init"]) # Load the meta.yaml (this is done in the graph) try: pmy = parse_meta_yaml(inp) except Exception: pmy = {} if pmy: pmy["version"] = pmy["package"]["version"] pmy["req"] = set() for k in ["build", "host", "run"]: pmy["req"] |= set(pmy.get("requirements", {}).get(k, set())) try: pmy["meta_yaml"] = parse_meta_yaml(inp) except Exception: pmy["meta_yaml"] = {} pmy["raw_meta_yaml"] = inp pmy.update(kwargs) assert m.filter(pmy) is should_filter if should_filter: return mr = m.migrate(os.path.join(tmpdir, "recipe"), pmy) assert mr_out == mr pmy.update(PRed=[frozen_to_json_friendly(mr)]) with open(os.path.join(tmpdir, "recipe/meta.yaml")) as f: actual_output = f.read() assert actual_output == output assert os.path.exists(os.path.join(tmpdir, ".ci_support/migrations/hi.yaml")) with open(os.path.join(tmpdir, ".ci_support/migrations/hi.yaml")) as f: saved_migration = f.read() assert saved_migration == m.yaml_contents def test_yaml_migration_rebuild(tmpdir): run_test_yaml_migration( m=yaml_rebuild, inp=sample_yaml_rebuild, output=updated_yaml_rebuild, kwargs={"feedstock_name": "scipy"}, prb="This PR has been triggered in an effort to update **hi**.", mr_out={ "migrator_name": yaml_rebuild.__class__.__name__, "migrator_version": yaml_rebuild.migrator_version, "name": "hi", "bot_rerun": False, }, tmpdir=tmpdir, ) def test_yaml_migration_rebuild_no_buildno(tmpdir): run_test_yaml_migration( m=yaml_rebuild_no_build_number, inp=sample_yaml_rebuild, output=updated_yaml_rebuild_no_build_number, kwargs={"feedstock_name": "scipy"}, prb="This PR has been triggered in an effort to update **hi**.", mr_out={ "migrator_name": yaml_rebuild.__class__.__name__, "migrator_version": yaml_rebuild.migrator_version, "name": "hi", "bot_rerun": False, }, tmpdir=tmpdir, ) sample_js = """{% set name = "jstz" %} {% set version = "1.0.11" %} {% set sha256 = "985d5fd8705930aab9cc59046e99c1f512d05109c9098039f880df5f5df2bf24" %} package: name: {{ name|lower }} version: {{ version }} source: url: https://github.com/iansinnott/{{ name }}/archive/v{{ version }}.tar.gz sha256: {{ sha256 }} build: number: 0 noarch: generic script: npm install -g . requirements: build: - nodejs test: commands: - npm list -g jstz requires: - nodejs about: home: https://github.com/iansinnott/jstz license: MIT license_family: MIT license_file: LICENCE summary: 'Timezone detection for JavaScript' description: | This library allows you to detect a user's timezone from within their browser. It is often useful to use JSTZ in combination with a timezone parsing library such as Moment Timezone. doc_url: http://pellepim.bitbucket.org/jstz/ dev_url: https://github.com/iansinnott/jstz extra: recipe-maintainers: - cshaley - sannykr""" sample_js2 = """{% set name = "jstz" %} {% set version = "1.0.11" %} {% set sha256 = "985d5fd8705930aab9cc59046e99c1f512d05109c9098039f880df5f5df2bf24" %} package: name: {{ name|lower }} version: {{ version }} source: url: https://github.com/iansinnott/{{ name }}/archive/v{{ version }}.tar.gz sha256: {{ sha256 }} build: number: 0 noarch: generic script: | tgz=$(npm pack) npm install -g $tgz requirements: build: - nodejs test: commands: - npm list -g jstz requires: - nodejs about: home: https://github.com/iansinnott/jstz license: MIT license_family: MIT license_file: LICENCE summary: 'Timezone detection for JavaScript' description: | This library allows you to detect a user's timezone from within their browser. It is often useful to use JSTZ in combination with a timezone parsing library such as Moment Timezone. doc_url: http://pellepim.bitbucket.org/jstz/ dev_url: https://github.com/iansinnott/jstz extra: recipe-maintainers: - cshaley - sannykr""" correct_js = """{% set name = "jstz" %} {% set version = "1.0.11" %} {% set sha256 = "985d5fd8705930aab9cc59046e99c1f512d05109c9098039f880df5f5df2bf24" %} package: name: {{ name|lower }} version: {{ version }} source: url: https://github.com/iansinnott/{{ name }}/archive/v{{ version }}.tar.gz sha256: {{ sha256 }} build: number: 1 noarch: generic script: | tgz=$(npm pack) npm install -g $tgz requirements: build: - nodejs test: commands: - npm list -g jstz requires: - nodejs about: home: https://github.com/iansinnott/jstz license: MIT license_family: MIT license_file: LICENCE summary: 'Timezone detection for JavaScript' description: | This library allows you to detect a user's timezone from within their browser. It is often useful to use JSTZ in combination with a timezone parsing library such as Moment Timezone. doc_url: http://pellepim.bitbucket.org/jstz/ dev_url: https://github.com/iansinnott/jstz extra: recipe-maintainers: - cshaley - sannykr """ sample_cb3 = """ {# sample_cb3 #} {% set version = "1.14.5" %} {% set build_number = 0 %} {% set variant = "openblas" %} {% set build_number = build_number + 200 %} package: name: numpy version: {{ version }} source: url: https://github.com/numpy/numpy/releases/download/v{{ version }}/numpy-{{ version }}.tar.gz sha256: 1b4a02758fb68a65ea986d808867f1d6383219c234aef553a8741818e795b529 build: number: {{ build_number }} skip: true # [win32 or (win and py27)] features: - blas_{{ variant }} requirements: build: - python - pip - cython - toolchain - blas 1.1 {{ variant }} - openblas 0.2.20|0.2.20.* run: - python - blas 1.1 {{ variant }} - openblas 0.2.20|0.2.20.* test: requires: - nose commands: - f2py -h - conda inspect linkages -p $PREFIX $PKG_NAME # [not win] - conda inspect objects -p $PREFIX $PKG_NAME # [osx] imports: - numpy - numpy.linalg.lapack_lite about: home: http://numpy.scipy.org/ license: BSD 3-Clause license_file: LICENSE.txt summary: 'Array processing for numbers, strings, records, and objects.' doc_url: https://docs.scipy.org/doc/numpy/reference/ dev_url: https://github.com/numpy/numpy extra: recipe-maintainers: - jakirkham - msarahan - pelson - rgommers - ocefpaf """ # noqa correct_cb3 = """ {# correct_cb3 #} {% set version = "1.14.5" %} {% set build_number = 1 %} {% set variant = "openblas" %} {% set build_number = build_number + 200 %} package: name: numpy version: {{ version }} source: url: https://github.com/numpy/numpy/releases/download/v{{ version }}/numpy-{{ version }}.tar.gz sha256: 1b4a02758fb68a65ea986d808867f1d6383219c234aef553a8741818e795b529 build: number: {{ build_number }} skip: true # [win32 or (win and py27)] features: - blas_{{ variant }} requirements: build: - {{ compiler('fortran') }} - {{ compiler('c') }} - {{ compiler('cxx') }} host: - python - pip - cython - blas 1.1 {{ variant }} - openblas run: - python - blas 1.1 {{ variant }} - openblas test: requires: - nose commands: - f2py -h - conda inspect linkages -p $PREFIX $PKG_NAME # [not win] - conda inspect objects -p $PREFIX $PKG_NAME # [osx] imports: - numpy - numpy.linalg.lapack_lite about: home: http://numpy.scipy.org/ license: BSD 3-Clause license_file: LICENSE.txt summary: 'Array processing for numbers, strings, records, and objects.' doc_url: https://docs.scipy.org/doc/numpy/reference/ dev_url: https://github.com/numpy/numpy extra: recipe-maintainers: - jakirkham - msarahan - pelson - rgommers - ocefpaf """ # noqa sample_r_base = """ {# sample_r_base #} {% set version = '0.7-1' %} {% set posix = 'm2-' if win else '' %} {% set native = 'm2w64-' if win else '' %} package: name: r-stabledist version: {{ version|replace("-", "_") }} source: fn: stabledist_{{ version }}.tar.gz url: - https://cran.r-project.org/src/contrib/stabledist_{{ version }}.tar.gz - https://cran.r-project.org/src/contrib/Archive/stabledist/stabledist_{{ version }}.tar.gz sha256: 06c5704d3a3c179fa389675c537c39a006867bc6e4f23dd7e406476ed2c88a69 build: number: 1 rpaths: - lib/R/lib/ - lib/ skip: True # [win32] requirements: build: - r-base run: - r-base test: commands: - $R -e "library('stabledist')" # [not win] - "\\"%R%\\" -e \\"library('stabledist')\\"" # [win] """ # noqa updated_r_base = """ {# updated_r_base #} {% set version = '0.7-1' %} {% set posix = 'm2-' if win else '' %} {% set native = 'm2w64-' if win else '' %} package: name: r-stabledist version: {{ version|replace("-", "_") }} source: fn: stabledist_{{ version }}.tar.gz url: - https://cran.r-project.org/src/contrib/stabledist_{{ version }}.tar.gz - https://cran.r-project.org/src/contrib/Archive/stabledist/stabledist_{{ version }}.tar.gz sha256: 06c5704d3a3c179fa389675c537c39a006867bc6e4f23dd7e406476ed2c88a69 build: noarch: generic number: 2 rpaths: - lib/R/lib/ - lib/ requirements: build: - r-base run: - r-base test: commands: - $R -e "library('stabledist')" # [not win] - "\\"%R%\\" -e \\"library('stabledist')\\"" # [win] """ # noqa sample_r_base2 = """ {% set version = '0.7-1' %} {% set posix = 'm2-' if win else '' %} {% set native = 'm2w64-' if win else '' %} package: name: r-stabledist version: {{ version|replace("-", "_") }} source: fn: stabledist_{{ version }}.tar.gz url: - https://cran.r-project.org/src/contrib/stabledist_{{ version }}.tar.gz - https://cran.r-project.org/src/contrib/Archive/stabledist/stabledist_{{ version }}.tar.gz sha256: 06c5704d3a3c179fa389675c537c39a006867bc6e4f23dd7e406476ed2c88a69 build: number: 1 rpaths: - lib/R/lib/ - lib/ skip: True # [win32] requirements: build: - r-base - {{ compiler('c') }} run: - r-base test: commands: - $R -e "library('stabledist')" # [not win] - "\\"%R%\\" -e \\"library('stabledist')\\"" # [win] """ # noqa updated_r_base2 = """ {% set version = '0.7-1' %} {% set posix = 'm2-' if win else '' %} {% set native = 'm2w64-' if win else '' %} package: name: r-stabledist version: {{ version|replace("-", "_") }} source: fn: stabledist_{{ version }}.tar.gz url: - https://cran.r-project.org/src/contrib/stabledist_{{ version }}.tar.gz - https://cran.r-project.org/src/contrib/Archive/stabledist/stabledist_{{ version }}.tar.gz sha256: 06c5704d3a3c179fa389675c537c39a006867bc6e4f23dd7e406476ed2c88a69 build: number: 2 rpaths: - lib/R/lib/ - lib/ skip: True # [win32] requirements: build: - r-base - {{ compiler('c') }} run: - r-base test: commands: - $R -e "library('stabledist')" # [not win] - "\\"%R%\\" -e \\"library('stabledist')\\"" # [win] """ # noqa # Test that filepaths to various licenses are updated for a noarch recipe sample_r_licenses_noarch = """ {% set version = '0.7-1' %} {% set posix = 'm2-' if win else '' %} {% set native = 'm2w64-' if win else '' %} package: name: r-stabledist version: {{ version|replace("-", "_") }} source: fn: stabledist_{{ version }}.tar.gz url: - https://cran.r-project.org/src/contrib/stabledist_{{ version }}.tar.gz - https://cran.r-project.org/src/contrib/Archive/stabledist/stabledist_{{ version }}.tar.gz sha256: 06c5704d3a3c179fa389675c537c39a006867bc6e4f23dd7e406476ed2c88a69 build: number: 1 rpaths: - lib/R/lib/ - lib/ skip: True # [win32] requirements: build: - r-base run: - r-base test: commands: - $R -e "library('stabledist')" # [not win] - "\\"%R%\\" -e \\"library('stabledist')\\"" # [win] about: license_family: GPL3 license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/GPL-3' # [unix] license_file: '{{ environ["PREFIX"] }}\\R\\share\\licenses\\GPL-3' # [win] license_family: MIT license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/MIT' # [unix] license_file: '{{ environ["PREFIX"] }}\\R\\share\\licenses\\MIT' # [win] license_family: LGPL license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/LGPL-2' # [unix] license_file: '{{ environ["PREFIX"] }}\\R\\share\\licenses\\LGPL-2' # [win] license_family: LGPL license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/LGPL-2.1' # [unix] license_file: '{{ environ["PREFIX"] }}\\R\\share\\licenses\\LGPL-2.1' # [win] license_family: BSD license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/BSD_3_clause' # [unix] license_file: '{{ environ["PREFIX"] }}\\R\\share\\licenses\\BSD_3_clause' # [win] license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/GPL-2' # [unix] license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/BSD_3_clause' # [unix] """ # noqa updated_r_licenses_noarch = """ {% set version = '0.7-1' %} {% set posix = 'm2-' if win else '' %} {% set native = 'm2w64-' if win else '' %} package: name: r-stabledist version: {{ version|replace("-", "_") }} source: fn: stabledist_{{ version }}.tar.gz url: - https://cran.r-project.org/src/contrib/stabledist_{{ version }}.tar.gz - https://cran.r-project.org/src/contrib/Archive/stabledist/stabledist_{{ version }}.tar.gz sha256: 06c5704d3a3c179fa389675c537c39a006867bc6e4f23dd7e406476ed2c88a69 build: noarch: generic number: 2 rpaths: - lib/R/lib/ - lib/ requirements: build: - r-base run: - r-base test: commands: - $R -e "library('stabledist')" # [not win] - "\\"%R%\\" -e \\"library('stabledist')\\"" # [win] about: license_family: GPL3 license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/GPL-3' license_family: MIT license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/MIT' license_family: LGPL license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/LGPL-2' license_family: LGPL license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/LGPL-2.1' license_family: BSD license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/BSD_3_clause' license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/GPL-2' license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/BSD_3_clause' """ # noqa # Test that filepaths to various licenses are updated for a compiled recipe sample_r_licenses_compiled = """ {% set version = '0.7-1' %} {% set posix = 'm2-' if win else '' %} {% set native = 'm2w64-' if win else '' %} package: name: r-stabledist version: {{ version|replace("-", "_") }} source: fn: stabledist_{{ version }}.tar.gz url: - https://cran.r-project.org/src/contrib/stabledist_{{ version }}.tar.gz - https://cran.r-project.org/src/contrib/Archive/stabledist/stabledist_{{ version }}.tar.gz sha256: 06c5704d3a3c179fa389675c537c39a006867bc6e4f23dd7e406476ed2c88a69 build: number: 1 rpaths: - lib/R/lib/ - lib/ skip: True # [win32] requirements: build: - r-base - {{ compiler('c') }} run: - r-base test: commands: - $R -e "library('stabledist')" # [not win] - "\\"%R%\\" -e \\"library('stabledist')\\"" # [win] about: license_family: GPL3 license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/GPL-3' # [unix] license_file: '{{ environ["PREFIX"] }}\\R\\share\\licenses\\GPL-3' # [win] license_family: MIT license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/MIT' # [unix] license_file: '{{ environ["PREFIX"] }}\\R\\share\\licenses\\MIT' # [win] license_family: LGPL license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/LGPL-2' # [unix] license_file: '{{ environ["PREFIX"] }}\\R\\share\\licenses\\LGPL-2' # [win] license_family: LGPL license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/LGPL-2.1' # [unix] license_file: '{{ environ["PREFIX"] }}\\R\\share\\licenses\\LGPL-2.1' # [win] license_family: BSD license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/BSD_3_clause' # [unix] license_file: '{{ environ["PREFIX"] }}\\R\\share\\licenses\\BSD_3_clause' # [win] license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/GPL-2' # [unix] license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/BSD_3_clause' # [unix] """ # noqa updated_r_licenses_compiled = """ {% set version = '0.7-1' %} {% set posix = 'm2-' if win else '' %} {% set native = 'm2w64-' if win else '' %} package: name: r-stabledist version: {{ version|replace("-", "_") }} source: fn: stabledist_{{ version }}.tar.gz url: - https://cran.r-project.org/src/contrib/stabledist_{{ version }}.tar.gz - https://cran.r-project.org/src/contrib/Archive/stabledist/stabledist_{{ version }}.tar.gz sha256: 06c5704d3a3c179fa389675c537c39a006867bc6e4f23dd7e406476ed2c88a69 build: number: 2 rpaths: - lib/R/lib/ - lib/ skip: True # [win32] requirements: build: - r-base - {{ compiler('c') }} run: - r-base test: commands: - $R -e "library('stabledist')" # [not win] - "\\"%R%\\" -e \\"library('stabledist')\\"" # [win] about: license_family: GPL3 license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/GPL-3' license_family: MIT license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/MIT' license_family: LGPL license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/LGPL-2' license_family: LGPL license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/LGPL-2.1' license_family: BSD license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/BSD_3_clause' license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/GPL-2' license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/BSD_3_clause' """ # noqa sample_noarch = """ {# sample_noarch #} {% set name = "xpdan" %} {% set version = "0.3.3" %} {% set sha256 = "3f1a84f35471aa8e383da3cf4436492d0428da8ff5b02e11074ff65d400dd076" %} package: name: {{ name|lower }} version: {{ version }} source: fn: {{ name }}-{{ version }}.tar.gz url: https://github.com/xpdAcq/{{ name }}/releases/download/{{ version }}/{{ version }}.tar.gz sha256: {{ sha256 }} build: number: 0 script: python -m pip install --no-deps --ignore-installed . requirements: build: - python >=3 - pip run: - python >=3 - numpy - scipy - matplotlib - pyyaml - scikit-beam - pyfai - pyxdameraulevenshtein - xray-vision - databroker - bluesky - streamz_ext - xpdsim - shed - xpdview - ophyd - xpdconf test: imports: - xpdan - xpdan.pipelines about: home: http://github.com/xpdAcq/xpdAn license: BSD-3-Clause license_family: BSD license_file: LICENSE summary: 'Analysis Tools for XPD' doc_url: http://xpdacq.github.io/xpdAn/ dev_url: http://github.com/xpdAcq/xpdAn extra: recipe-maintainers: - CJ-Wright """ # noqa updated_noarch = """ {# updated_noarch #} {% set name = "xpdan" %} {% set version = "0.3.3" %} {% set sha256 = "3f1a84f35471aa8e383da3cf4436492d0428da8ff5b02e11074ff65d400dd076" %} package: name: {{ name|lower }} version: {{ version }} source: fn: {{ name }}-{{ version }}.tar.gz url: https://github.com/xpdAcq/{{ name }}/releases/download/{{ version }}/{{ version }}.tar.gz sha256: {{ sha256 }} build: noarch: python number: 1 script: python -m pip install --no-deps --ignore-installed . requirements: host: - python >=3 - pip run: - python >=3 - numpy - scipy - matplotlib - pyyaml - scikit-beam - pyfai - pyxdameraulevenshtein - xray-vision - databroker - bluesky - streamz_ext - xpdsim - shed - xpdview - ophyd - xpdconf test: imports: - xpdan - xpdan.pipelines about: home: http://github.com/xpdAcq/xpdAn license: BSD-3-Clause license_family: BSD license_file: LICENSE summary: 'Analysis Tools for XPD' doc_url: http://xpdacq.github.io/xpdAn/ dev_url: http://github.com/xpdAcq/xpdAn extra: recipe-maintainers: - CJ-Wright """ # noqa sample_noarch_space = """ {# sample_noarch_space #} {% set name = "xpdan" %} {% set version = "0.3.3" %} {% set sha256 = "3f1a84f35471aa8e383da3cf4436492d0428da8ff5b02e11074ff65d400dd076" %} package: name: {{ name|lower }} version: {{ version }} source: fn: {{ name }}-{{ version }}.tar.gz url: https://github.com/xpdAcq/{{ name }}/releases/download/{{ version }}/{{ version }}.tar.gz sha256: {{ sha256 }} build: number: 0 script: python -m pip install --no-deps --ignore-installed . requirements: build: - python >=3 - pip run: - python >=3 - numpy - scipy - matplotlib - pyyaml - scikit-beam - pyfai - pyxdameraulevenshtein - xray-vision - databroker - bluesky - streamz_ext - xpdsim - shed - xpdview - ophyd - xpdconf test: imports: - xpdan - xpdan.pipelines about: home: http://github.com/xpdAcq/xpdAn license: BSD-3-Clause license_family: BSD license_file: LICENSE summary: 'Analysis Tools for XPD' doc_url: http://xpdacq.github.io/xpdAn/ dev_url: http://github.com/xpdAcq/xpdAn extra: recipe-maintainers: - CJ-Wright """ # noqa updated_noarch_space = """ {# updated_noarch_space #} {% set name = "xpdan" %} {% set version = "0.3.3" %} {% set sha256 = "3f1a84f35471aa8e383da3cf4436492d0428da8ff5b02e11074ff65d400dd076" %} package: name: {{ name|lower }} version: {{ version }} source: fn: {{ name }}-{{ version }}.tar.gz url: https://github.com/xpdAcq/{{ name }}/releases/download/{{ version }}/{{ version }}.tar.gz sha256: {{ sha256 }} build: noarch: python number: 1 script: python -m pip install --no-deps --ignore-installed . requirements: host: - python >=3 - pip run: - python >=3 - numpy - scipy - matplotlib - pyyaml - scikit-beam - pyfai - pyxdameraulevenshtein - xray-vision - databroker - bluesky - streamz_ext - xpdsim - shed - xpdview - ophyd - xpdconf test: imports: - xpdan - xpdan.pipelines about: home: http://github.com/xpdAcq/xpdAn license: BSD-3-Clause license_family: BSD license_file: LICENSE summary: 'Analysis Tools for XPD' doc_url: http://xpdacq.github.io/xpdAn/ dev_url: http://github.com/xpdAcq/xpdAn extra: recipe-maintainers: - CJ-Wright """ # noqa sample_pinning = """ {# sample_pinning #} {% set version = "2.44_01" %} package: name: perl-xml-parser version: {{ version }} source: fn: XML-Parser-{{ version }}.tar.gz url: https://cpan.metacpan.org/authors/id/T/TO/TODDR/XML-Parser-{{ version }}.tar.gz sha256: 5310ea5c8c707f387589bba8934ab9112463a452f828adf2755792d968b9ac7e build: number: 0 skip: True # [win] requirements: build: - toolchain3 - perl 5.22.2.1 - expat 2.2.* run: - perl 5.22.2.1 - perl-xml-parser - expat 2.2.* test: imports: - XML::Parser - XML::Parser::Expat - XML::Parser::Style::Debug - XML::Parser::Style::Objects - XML::Parser::Style::Stream - XML::Parser::Style::Subs - XML::Parser::Style::Tree about: home: https://metacpan.org/pod/XML::Parser # According to http://dev.perl.org/licenses/ Perl5 is licensed either under # GPL v1 or later or the Artistic License license: GPL-3.0 license_family: GPL summary: A perl module for parsing XML documents extra: recipe-maintainers: - kynan """ updated_perl = """ {# updated_perl #} {% set version = "2.44_01" %} package: name: perl-xml-parser version: {{ version }} source: fn: XML-Parser-{{ version }}.tar.gz url: https://cpan.metacpan.org/authors/id/T/TO/TODDR/XML-Parser-{{ version }}.tar.gz sha256: 5310ea5c8c707f387589bba8934ab9112463a452f828adf2755792d968b9ac7e build: number: 1 skip: True # [win] requirements: build: - toolchain3 - perl - expat 2.2.* run: - perl - perl-xml-parser - expat 2.2.* test: imports: - XML::Parser - XML::Parser::Expat - XML::Parser::Style::Debug - XML::Parser::Style::Objects - XML::Parser::Style::Stream - XML::Parser::Style::Subs - XML::Parser::Style::Tree about: home: https://metacpan.org/pod/XML::Parser # According to http://dev.perl.org/licenses/ Perl5 is licensed either under # GPL v1 or later or the Artistic License license: GPL-3.0 license_family: GPL summary: A perl module for parsing XML documents extra: recipe-maintainers: - kynan """ updated_pinning = """ {# updated_pinning #} {% set version = "2.44_01" %} package: name: perl-xml-parser version: {{ version }} source: fn: XML-Parser-{{ version }}.tar.gz url: https://cpan.metacpan.org/authors/id/T/TO/TODDR/XML-Parser-{{ version }}.tar.gz sha256: 5310ea5c8c707f387589bba8934ab9112463a452f828adf2755792d968b9ac7e build: number: 1 skip: True # [win] requirements: build: - toolchain3 - perl - expat run: - perl - perl-xml-parser - expat test: imports: - XML::Parser - XML::Parser::Expat - XML::Parser::Style::Debug - XML::Parser::Style::Objects - XML::Parser::Style::Stream - XML::Parser::Style::Subs - XML::Parser::Style::Tree about: home: https://metacpan.org/pod/XML::Parser # According to http://dev.perl.org/licenses/ Perl5 is licensed either under # GPL v1 or later or the Artistic License license: GPL-3.0 license_family: GPL summary: A perl module for parsing XML documents extra: recipe-maintainers: - kynan """ sample_blas = """ {# sample_blas #} {% set version = "1.2.1" %} {% set variant = "openblas" %} package: name: scipy version: {{ version }} source: url: https://github.com/scipy/scipy/archive/v{{ version }}.tar.gz sha256: d4b9c1c1dee37ffd1653fd62ea52587212d3b1570c927f16719fd7c4077c0d0a build: number: 0 skip: true # [win] features: - blas_{{ variant }} requirements: build: - {{ compiler('fortran') }} - {{ compiler('c') }} - {{ compiler('cxx') }} host: - python - setuptools - cython - blas 1.1 {{ variant }} - openblas - numpy run: - python - blas 1.1 {{ variant }} - openblas - {{ pin_compatible('numpy') }} test: requires: - pytest - mpmath """ updated_blas = """ {# updated_blas #} {% set version = "1.2.1" %} package: name: scipy version: {{ version }} source: url: https://github.com/scipy/scipy/archive/v{{ version }}.tar.gz sha256: d4b9c1c1dee37ffd1653fd62ea52587212d3b1570c927f16719fd7c4077c0d0a build: number: 1 skip: true # [win] features: requirements: build: - {{ compiler('fortran') }} - {{ compiler('c') }} - {{ compiler('cxx') }} host: - libblas - libcblas - python - setuptools - cython - numpy run: - python - {{ pin_compatible('numpy') }} test: requires: - pytest - mpmath """ sample_matplotlib = """ {% set version = "0.9" %} package: name: viscm version: {{ version }} source: url: https://pypi.io/packages/source/v/viscm/viscm-{{ version }}.tar.gz sha256: c770e4b76f726e653d2b7c2c73f71941a88de6eb47ccf8fb8e984b55562d05a2 build: number: 0 noarch: python script: python -m pip install --no-deps --ignore-installed . requirements: host: - python - pip - numpy run: - python - numpy - matplotlib - colorspacious test: imports: - viscm about: home: https://github.com/bids/viscm license: MIT license_file: LICENSE license_family: MIT # license_file: '' we need to an issue upstream to get a license in the source dist. summary: A colormap tool extra: recipe-maintainers: - kthyng """ sample_matplotlib_correct = """ {% set version = "0.9" %} package: name: viscm version: {{ version }} source: url: https://pypi.io/packages/source/v/viscm/viscm-{{ version }}.tar.gz sha256: c770e4b76f726e653d2b7c2c73f71941a88de6eb47ccf8fb8e984b55562d05a2 build: number: 1 noarch: python script: python -m pip install --no-deps --ignore-installed . requirements: host: - python - pip - numpy run: - python - numpy - matplotlib-base - colorspacious test: imports: - viscm about: home: https://github.com/bids/viscm license: MIT license_file: LICENSE license_family: MIT # license_file: '' we need to an issue upstream to get a license in the source dist. summary: A colormap tool extra: recipe-maintainers: - kthyng """ js = JS() version = Version(set()) # compiler = Compiler() noarch = Noarch() noarchr = NoarchR() perl = Pinning(removals={"perl"}) pinning = Pinning() class _Rebuild(NoFilter, Rebuild): pass rebuild = _Rebuild(name="rebuild", cycles=[]) class _BlasRebuild(NoFilter, BlasRebuild): pass blas_rebuild = _BlasRebuild(cycles=[]) matplotlib = Replacement( old_pkg="matplotlib", new_pkg="matplotlib-base", rationale=( "Unless you need `pyqt`, recipes should depend only on " "`matplotlib-base`." ), pr_limit=5, ) G = nx.DiGraph() G.add_node("conda", reqs=["python"]) env = builtins.__xonsh__.env # type: ignore env["GRAPH"] = G env["CIRCLE_BUILD_URL"] = "hi world" def run_test_migration( m, inp, output, kwargs, prb, mr_out, should_filter=False, tmpdir=None, ): mm_ctx = MigratorSessionContext( graph=G, smithy_version="", pinning_version="", github_username="", github_password="", circle_build_url=env["CIRCLE_BUILD_URL"], ) m_ctx = MigratorContext(mm_ctx, m) m.bind_to_ctx(m_ctx) if mr_out: mr_out.update(bot_rerun=False) with open(os.path.join(tmpdir, "meta.yaml"), "w") as f: f.write(inp) # read the conda-forge.yml if os.path.exists(os.path.join(tmpdir, "..", "conda-forge.yml")): with open(os.path.join(tmpdir, "..", "conda-forge.yml")) as fp: cf_yml = fp.read() else: cf_yml = "{}" # Load the meta.yaml (this is done in the graph) try: name = parse_meta_yaml(inp)["package"]["name"] except Exception: name = "blah" pmy = populate_feedstock_attributes(name, {}, inp, cf_yml) # these are here for legacy migrators pmy["version"] = pmy["meta_yaml"]["package"]["version"] pmy["req"] = set() for k in ["build", "host", "run"]: req = pmy["meta_yaml"].get("requirements", {}) or {} _set = req.get(k) or set() pmy["req"] |= set(_set) pmy["raw_meta_yaml"] = inp pmy.update(kwargs) assert m.filter(pmy) is should_filter if should_filter: return pmy m.run_pre_piggyback_migrations( tmpdir, pmy, hash_type=pmy.get("hash_type", "sha256"), ) mr = m.migrate(tmpdir, pmy, hash_type=pmy.get("hash_type", "sha256")) m.run_post_piggyback_migrations( tmpdir, pmy, hash_type=pmy.get("hash_type", "sha256"), ) assert mr_out == mr if not mr: return pmy pmy.update(PRed=[frozen_to_json_friendly(mr)]) with open(os.path.join(tmpdir, "meta.yaml")) as f: actual_output = f.read() # strip jinja comments pat = re.compile(r"{#.*#}") actual_output = pat.sub("", actual_output) output = pat.sub("", output) assert actual_output == output if isinstance(m, Compiler): assert m.messages in m.pr_body(None) # TODO: fix subgraph here (need this to be xsh file) elif isinstance(m, Version): pass elif isinstance(m, Rebuild): return pmy else: assert prb in m.pr_body(None) assert m.filter(pmy) is True return pmy @pytest.mark.skip def test_js_migrator(tmpdir): run_test_migration( m=js, inp=sample_js, output=correct_js, kwargs={}, prb="Please merge the PR only after the tests have passed.", mr_out={"migrator_name": "JS", "migrator_version": JS.migrator_version}, tmpdir=tmpdir, ) @pytest.mark.skip def test_js_migrator2(tmpdir): run_test_migration( m=js, inp=sample_js2, output=correct_js2, # noqa kwargs={}, prb="Please merge the PR only after the tests have passed.", mr_out={"migrator_name": "JS", "migrator_version": JS.migrator_version}, tmpdir=tmpdir, ) @pytest.mark.skip def test_cb3(tmpdir): run_test_migration( m=compiler, inp=sample_cb3, output=correct_cb3, kwargs={}, prb="N/A", mr_out={ "migrator_name": "Compiler", "migrator_version": Compiler.migrator_version, }, tmpdir=tmpdir, ) def test_noarch(tmpdir): # It seems this injects some bad state somewhere, mostly because it isn't # valid yaml run_test_migration( m=noarch, inp=sample_noarch, output=updated_noarch, kwargs={ "feedstock_name": "xpdan", "req": [ "python", "pip", "numpy", "scipy", "matplotlib", "pyyaml", "scikit-beam", "pyfai", "pyxdameraulevenshtein", "xray-vision", "databroker", "bluesky", "streamz_ext", "xpdsim", "shed", "xpdview", "ophyd", "xpdconf", ], }, prb="I think this feedstock could be built with noarch.\n" "This means that the package only needs to be built " "once, drastically reducing CI usage.\n", mr_out={"migrator_name": "Noarch", "migrator_version": Noarch.migrator_version}, tmpdir=tmpdir, ) def test_noarch_space(tmpdir): # It seems this injects some bad state somewhere, mostly because it isn't # valid yaml run_test_migration( m=noarch, inp=sample_noarch_space, output=updated_noarch_space, kwargs={ "feedstock_name": "xpdan", "req": [ "python", "pip", "numpy", "scipy", "matplotlib", "pyyaml", "scikit-beam", "pyfai", "pyxdameraulevenshtein", "xray-vision", "databroker", "bluesky", "streamz_ext", "xpdsim", "shed", "xpdview", "ophyd", "xpdconf", ], }, prb="I think this feedstock could be built with noarch.\n" "This means that the package only needs to be built " "once, drastically reducing CI usage.\n", mr_out={"migrator_name": "Noarch", "migrator_version": Noarch.migrator_version}, tmpdir=tmpdir, ) def test_noarch_space_python(tmpdir): run_test_migration( m=noarch, inp=sample_noarch_space, output=updated_noarch_space, kwargs={"feedstock_name": "python"}, prb="I think this feedstock could be built with noarch.\n" "This means that the package only needs to be built " "once, drastically reducing CI usage.\n", mr_out={"migrator_name": "Noarch", "migrator_version": Noarch.migrator_version}, should_filter=True, tmpdir=tmpdir, ) def test_perl(tmpdir): run_test_migration( m=perl, inp=sample_pinning, output=updated_perl, kwargs={"req": {"toolchain3", "perl", "expat"}}, prb="I noticed that this recipe has version pinnings that may not be needed.", mr_out={ "migrator_name": "Pinning", "migrator_version": Pinning.migrator_version, }, tmpdir=tmpdir, ) def test_perl_pinning(tmpdir): run_test_migration( m=pinning, inp=sample_pinning, output=updated_pinning, kwargs={"req": {"toolchain3", "perl", "expat"}}, prb="perl: 5.22.2.1", mr_out={ "migrator_name": "Pinning", "migrator_version": Pinning.migrator_version, }, tmpdir=tmpdir, ) def test_nnoarch_r(tmpdir): run_test_migration( m=noarchr, inp=sample_r_base, output=updated_r_base, kwargs={"feedstock_name": "r-stabledist"}, prb="I think this feedstock could be built with noarch", mr_out={ "migrator_name": "NoarchR", "migrator_version": noarchr.migrator_version, }, tmpdir=tmpdir, ) def test_rebuild_r(tmpdir): run_test_migration( m=rebuild, inp=sample_r_base2, output=updated_r_base2, kwargs={"feedstock_name": "r-stabledist"}, prb="It is likely this feedstock needs to be rebuilt.", mr_out={ "migrator_name": "_Rebuild", "migrator_version": rebuild.migrator_version, "name": "rebuild", }, tmpdir=tmpdir, ) def test_nnoarch_r_licenses(tmpdir): run_test_migration( m=noarchr, inp=sample_r_licenses_noarch, output=updated_r_licenses_noarch, kwargs={"feedstock_name": "r-stabledist"}, prb="I think this feedstock could be built with noarch", mr_out={ "migrator_name": "NoarchR", "migrator_version": noarchr.migrator_version, }, tmpdir=tmpdir, ) def test_blas_rebuild(tmpdir): run_test_migration( m=blas_rebuild, inp=sample_blas, output=updated_blas, kwargs={"feedstock_name": "scipy"}, prb="This PR has been triggered in an effort to update for new BLAS scheme.", mr_out={ "migrator_name": "_BlasRebuild", "migrator_version": blas_rebuild.migrator_version, "name": "blas2", }, tmpdir=tmpdir, ) def test_generic_replacement(tmpdir): run_test_migration( m=matplotlib, inp=sample_matplotlib, output=sample_matplotlib_correct, kwargs={}, prb="I noticed that this recipe depends on `matplotlib` instead of ", mr_out={ "migrator_name": "Replacement", "migrator_version": matplotlib.migrator_version, "name": "matplotlib-to-matplotlib-base", }, tmpdir=tmpdir, ) ``` #### File: cf-scripts/tests/test_security.py ```python import os import subprocess def test_env_is_protected_against_malicious_recipes(tmpdir, caplog, env_setup): from conda_forge_tick.xonsh_utils import indir import logging from conda_forge_tick.feedstock_parser import populate_feedstock_attributes malicious_recipe = """\ {% set version = "0" %} package: name: muah_ha_ha version: {{ version }} source: url: - https://{{ os.environ["PASSWORD"][0] }}/{{ os.environ["PASSWORD"][1:] }} - {{ os.environ['pwd'] }} sha256: dca77e463c56d42bbf915197c9b95e98913c85bef150d2e1dd18626b8c2c9c32 build: number: 0 noarch: python script: python -m pip install --no-deps --ignore-installed . requirements: host: - python - pip - numpy run: - python - numpy - matplotlib - colorspacious test: imports: - viscm about: home: https://github.com/bids/viscm license: MIT license_family: MIT # license_file: '' we need to an issue upstream to get a license in the source dist. summary: A colormap tool extra: recipe-maintainers: - kthyng - {{ os.environ["PASSWORD"] }} """ # noqa caplog.set_level( logging.DEBUG, logger="conda_forge_tick.migrators.version", ) in_yaml = malicious_recipe os.makedirs(os.path.join(tmpdir, "recipe"), exist_ok=True) with open(os.path.join(tmpdir, "recipe", "meta.yaml"), "w") as f: f.write(in_yaml) with indir(tmpdir): subprocess.run(["git", "init"]) pmy = populate_feedstock_attributes("blah", {}, in_yaml, "{}") # This url gets saved in https://github.com/regro/cf-graph-countyfair pswd = os.environ.get("TEST_PASSWORD_VAL", "<PASSWORD>") tst_url = f"https://{pswd[0]}/{pswd[1:]}" assert pmy["url"][0] != tst_url assert pmy["url"][1] == "pwd" ``` #### File: cf-scripts/tests/test_utils.py ```python import os import json import pickle from conda_forge_tick.utils import LazyJson, dumps def test_lazy_json(tmpdir): f = os.path.join(tmpdir, "hi.json") assert not os.path.exists(f) lj = LazyJson(f) assert os.path.exists(lj.file_name) with open(f) as ff: assert ff.read() == json.dumps({}) lj["hi"] = "world" assert lj["hi"] == "world" assert os.path.exists(lj.file_name) with open(f) as ff: assert ff.read() == dumps({"hi": "world"}) lj.update({"hi": "globe"}) with open(f) as ff: assert ff.read() == dumps({"hi": "globe"}) p = pickle.dumps(lj) lj2 = pickle.loads(p) assert not getattr(lj2, "_data", None) assert lj2["hi"] == "globe" with lj as attrs: attrs.setdefault("lst", []).append("universe") with open(f) as ff: assert ff.read() == dumps({"hi": "globe", "lst": ["universe"]}) with lj as attrs: attrs.setdefault("lst", []).append("universe") with lj as attrs_again: attrs_again.setdefault("lst", []).append("universe") attrs.setdefault("lst", []).append("universe") with open(f) as ff: assert ff.read() == dumps({"hi": "globe", "lst": ["universe"] * 4}) with lj as attrs: with lj as attrs_again: attrs_again.setdefault("lst2", []).append("universe") attrs.setdefault("lst2", []).append("universe") with open(f) as ff: assert ff.read() == dumps( {"hi": "globe", "lst": ["universe"] * 4, "lst2": ["universe"] * 2}, ) lj.clear() with open(f) as ff: assert ff.read() == dumps({}) ```
{ "source": "JorgeGarciaIrazabal/pysenv", "score": 2 }
#### File: pysenv/senv/shell.py ```python import os import signal import sys from contextlib import contextmanager from os import environ import pexpect import typer from clikit.utils.terminal import Terminal from poetry.utils.shell import Shell from senv.log import log WINDOWS = sys.platform == "win32" @contextmanager def temp_environ(): environ = dict(os.environ) try: yield finally: os.environ.clear() os.environ.update(environ) class SenvShell(Shell): def activate(self, command): if environ.get("SENV_ACTIVE", "0") == "1": log.info("environment already active") raise typer.Abort("environment already activate") environ["SENV_ACTIVE"] = "1" terminal = Terminal() with temp_environ(): c = pexpect.spawn( self._path, ["-i"], dimensions=(terminal.height, terminal.width) ) if self._name == "zsh": c.setecho(False) c.sendline(command) def resize(sig, data): terminal = Terminal() c.setwinsize(terminal.height, terminal.width) signal.signal(signal.SIGWINCH, resize) # Interact with the new shell. c.interact(escape_character=None) c.close() environ.pop("SENV_ACTIVE") sys.exit(c.exitstatus) ``` #### File: tests/unit/test_settings_writter.py ```python from shutil import copyfile import pytest from senv.main import app from senv.pyproject import BuildSystem, PyProject from senv.tests.conftest import STATIC_PATH @pytest.fixture() def temp_pyproject(tmp_path): simple_pyproject = STATIC_PATH / "simple_pyproject.toml" temp_path = tmp_path / "simple_pyproject.toml" copyfile(simple_pyproject, temp_path) return temp_path def test_set_config_add_value_to_pyproject(temp_pyproject, cli_runner): result = cli_runner.invoke( app, [ "config", "-f", str(temp_pyproject), "set", "venv.conda-lock-platforms", "linux-64", ], catch_exceptions=False, ) assert result.exit_code == 0 PyProject.read_toml(temp_pyproject) assert PyProject.get().senv.venv.conda_lock_platforms == {"linux-64"} def test_set_config_with_wrong_value_does_not_change_pyproject( temp_pyproject, cli_runner ): original_config = PyProject.read_toml(temp_pyproject).dict() cli_runner.invoke( app, [ "-f", str(temp_pyproject), "config", "set", "conda-path", "none_existing_path", ], catch_exceptions=False, ) new_config = PyProject.read_toml(temp_pyproject).dict() assert new_config == original_config def test_remove_config_key_removes_it_from_file(temp_pyproject, cli_runner): cli_runner.invoke( app, [ "config", "set", "venv.build-system", "poetry", "-f", str(temp_pyproject), ], ) cli_runner.invoke( app, [ "config", "remove", "venv.build-system", "-f", str(temp_pyproject), ], ) assert ( PyProject.read_toml(temp_pyproject).senv.venv.build_system == BuildSystem.CONDA ) ```
{ "source": "JorgeGarciaIrazabal/WhereAppUBE", "score": 3 }
#### File: WhereAppUBE/Classes/InfoTable.py ```python from collections import OrderedDict import json from enum.enum import Enum from ValidateStrings import getUnicode, getStr from utils.DictPrint import dict2Str class Order(Enum): ASC,DESC=False,True __author__ = 'jgarc' class InfoTableException(Exception): pass class InfoRow(): def __init__(self): self.dict=OrderedDict() def __getitem__(self, item): if isinstance(item, int): return self.dict.items()[item][1] return self.dict.__getitem__(item.lower()) def __contains__(self, item): return self.dict.__contains__(item.lower()) def __setitem__(self, key, value): if isinstance(key, int): self.dict.items()[key][1]=value self.dict.__setitem__(key.lower(),value) def get(self, k, d=None): if isinstance(k, int): try: return self.dict.items()[k][1] except: return d return self.dict.get(k.lower(), d) def __str__(self, rowSeparator="\n", columnSeparator="\t"): return getStr(dict2Str(self.dict)) def __unicode__(self): return str(self) def __repr__(self): return str(self) class InfoTable(): """ Structured data for tables (Database tables) """ def __init__(self, data=None, rowSeparator="\n", columnSeparator="\t"): self._columns=list() self.headers=[] self._lowerHeaders=[] """@type: list of str""" if data is None: return if isinstance(data, list) or isinstance(data, tuple): self.constructFromArray(data) elif isinstance(data, (str, unicode)): self.constructFromString(data, rowSeparator, columnSeparator) def renameHeader(self,column, newHeader): column=self.__getColumn__(column) self.__dict__.pop(self._lowerHeaders[column]) self.headers[column]=newHeader self._lowerHeaders[column]=newHeader.lower() self.__dict__[newHeader.lower()]=self[newHeader.lower()] def constructFromArray(self, data): """ @param data: matrix to construct the infoTable @type data: list of list """ self._lowerHeaders = [header.lower() for header in data[0]] self.headers=data[0] for i in range(len(self.headers)): self._columns.append([data[j][i] for j in range(1,len(data))]) for head in self._lowerHeaders: self.__dict__[head]=self[head] def constructFromString(self, data, rowSeparator="\n", columnSeparator="\t"): """ @param data: string with rowSeparators and columnSeparators to construct the infoTable @type data: str """ data = [row.split(columnSeparator) for row in data.split(rowSeparator)] self.constructFromArray(data) def get(self, column=0, row=0): """redundant of __getItem__ with the default values""" return self[column][row] def fastGet(self,column=0,row=0): """ same as get but the column has to be an integer, it should be used if the performance is critical """ return self._columns[column][row] def __getColumn__(self, column=""): """ gets the column index from the column name, if column is a valid integer, it returns the integer @param column: can be a header value or its index @raise InfoTableException: """ if isinstance(column, int) and abs(column) < len(self.headers): return column else: try: return self._lowerHeaders.index(column.lower()) except: raise InfoTableException("Column not found:" + str(column)) def __iter__(self): """ returns an InfoRow of the row x @rtype: InfoRow """ for x in range(self.size()): yield self.getRow(x) def __getitem__(self, item): """ if item is a integer, gets the column in the index if item is a str, it gets the column where the header is the item @return: an array the all the column values """ column=self.__getColumn__(item) return self._columns[column] def __setitem__(self, key, value): column=self.__getColumn__(key) self._columns[column]=value def getRow(self, row=0): if abs(row) > self.size(): raise InfoTableException("Out of bounds, size = " + str(self.size()) + " row= " + str(row)) infoRow = InfoRow() for column in self._lowerHeaders: infoRow[column] = self[column][row] return infoRow def hasColumn(self,column): if isinstance(column, int) and abs(column) < len(self.headers): return True else: return column.lower() in self._lowerHeaders def size(self): return self.__len__() def __len__(self): if len(self.headers) == 0 or len(self._columns) == 0: return 0 return len(self._columns[0]) def set(self, column, row, value): self[column][row] = value def fastSet(self, column, row, value): self._columns[column][row]=value def getColumn(self, column, join=None): if join is None: return self[column] else: return join.join([str(cell) for cell in self[column]]) def __str__(self, rowSeparator="\n", columnSeparator="\t"): string = [columnSeparator.join(self.headers)] for i in range(self.size()): string.append([]) for column in range(len(self.headers)): cell=getUnicode(self.get(column, i)) string[-1].append(cell) string[-1]=columnSeparator.join(string[-1]) return getStr(rowSeparator.join(string)) def __unicode__(self): return str(self) def __repr__(self): return str(self) def findAll(self,column,value): index = [] idx = -1 while True: try: idx = self[column].index(value, idx+1) index.append(idx) except ValueError: break return index def findFirst(self,column,value, notValue=False): if not notValue: return self[column].index(value) else: for i,cellValue in enumerate(self[column]): if cellValue!=value: return i raise ValueError("%s is not in list"%str(value)) def getAll(self,column,value, refColumn=None): index=self.findAll(column,value) if refColumn is None: refColumn=column refColumn=self.__getColumn__(refColumn) values=[] for i in index: values.append(self.fastGet(refColumn,i)) return values def getFirst(self, column, value, refColumn=None, notValue=False): if refColumn is None: refColumn=column return self.get(refColumn,self.findFirst(column,value, notValue=notValue)) def addColumn(self,column, values=list()): lowerColumn=column.lower() if lowerColumn in self._lowerHeaders: raise Exception("Header already exists in info table") self.headers.append(column) self._lowerHeaders.append(lowerColumn) if not isinstance(values,list) or isinstance(values,tuple): values=[values]*self.size() if len(values) > 0 and len(values)!=self.size(): Warning("Values length does not match with infoTable length, creating empty column") values=[None]*self.size() elif len(values) == 0: values=[None]*self.size() if self.size()>0 else [] self._columns.append(values) def addRow(self): for i in range(len(self.headers)): self[i].append(None) def removeColumns(self, columns): if not (isinstance(columns,list) or isinstance(columns,tuple)): columns=[columns] columns=sorted(set([self.__getColumn__(column) for column in columns if column.lower() in self._lowerHeaders])) for column in reversed(columns): self.headers.pop(column) self._lowerHeaders.pop(column) self._columns.pop(column) def sort(self, column, order=Order.ASC): data=self[column] sortedIndex=[i[0] for i in sorted(enumerate(data), key=lambda x:x[1], reverse=order.value)] for c in range(len(self.headers)): self[c]=[self[c][sortedIndex[j]] for j in range(len(self[c]))] def removeRows(self, rows): if not (isinstance(rows,list) or isinstance(rows,tuple)): rows=[rows] for row in rows: for col in range(len(self.headers)): self[col].pop(row) def toJson(self): j={} for head in self.headers: j[head]=[getUnicode(d) for d in self.getColumn(head)] return json.dumps(j) ``` #### File: WhereAppUBE/Classes/QueryManager.py ```python from Classes.QueryTable import QueryTable import MySQLdb __author__ = 'jorge' class QueryManager(): def __init__(self): self.init() def init(self): self.connection = MySQLdb.connect(user="root", passwd="", db="WAU", unix_socket="/opt/lampp/var/mysql/mysql.sock",) def select(self, query, parameters=list()): cursor = self.connection.cursor() cursor.execute("select " + query, parameters) return cursor def selectQt(self, query, parameters=list()): return QueryTable(self.select(query, parameters)) def insertUser(self, email, phoneNumber, GCMID): cursor = self.connection.cursor() cursor.callproc("LogIn",(email,phoneNumber,GCMID)) qt = QueryTable(cursor) self.connection.commit() return qt ``` #### File: JorgeGarciaIrazabal/WhereAppUBE/MainServer.py ```python import sys, json, xmpp, random, string SERVER = 'gcm.googleapis.com' PORT = 5235 USERNAME = "238220266388" PASSWORD = "<KEY>" REGISTRATION_ID = "Registration Id of the target device" unacked_messages_quota = 100 send_queue = [] # Return a random alphanumerical id def random_id(): rid = '' for x in range(8): rid += random.choice(string.ascii_letters + string.digits) return rid def message_callback(session, message): global unacked_messages_quota gcm = message.getTags('gcm') if gcm: gcm_json = gcm[0].getData() msg = json.loads(gcm_json) if not msg.has_key('message_type'): # Acknowledge the incoming message immediately. send({'to': msg['from'], 'message_type': 'ack', 'message_id': msg['message_id']}) # Queue a response back to the server. if msg.has_key('from'): # Send a dummy echo response back to the app that sent the upstream message. send_queue.append({'to': msg['from'], 'message_id': random_id(), 'data': {'pong': 1}}) elif msg['message_type'] == 'ack' or msg['message_type'] == 'nack': unacked_messages_quota += 1 def send(json_dict): template = ("<message><gcm xmlns='google:mobile:data'>{1}</gcm></message>") client.send(xmpp.protocol.Message( node=template.format(client.Bind.bound[0], json.dumps(json_dict)))) def flush_queued_messages(): global unacked_messages_quota while len(send_queue) and unacked_messages_quota > 0: send(send_queue.pop(0)) unacked_messages_quota -= 1 client = xmpp.Client('gcm.googleapis.com', debug=['socket']) client.connect(server=(SERVER,PORT), secure=1, use_srv=False) auth = client.auth(USERNAME, PASSWORD) if not auth: print 'Authentication failed!' sys.exit(1) client.RegisterHandler('message', message_callback) send_queue.append({'to': REGISTRATION_ID, 'message_id': 'reg_id', 'data': {'message_destination': 'RegId', 'message_id': random_id()}}) while True: client.Process(1) flush_queued_messages() ```
{ "source": "jorgegaticav/pytorch-GAT", "score": 3 }
#### File: jorgegaticav/pytorch-GAT/prediction_script_ki.py ```python import argparse import torch from models.definitions.GAT import GAT from utils.data_loading import load_graph_data, load_ki_graph_data from utils.constants import * # Simple decorator function so that I don't have to pass arguments that don't change from epoch to epoch def predict(gat, node_features, edge_index, pred_indices, slide_name): node_dim = 0 # node axis # train_labels = node_labels.index_select(node_dim, train_indices) # node_features shape = (N, FIN), edge_index shape = (2, E) graph_data = (node_features, edge_index) # I pack data into tuples because GAT uses nn.Sequential which requires it def main_loop(): # Certain modules behave differently depending on whether we're training the model or not. # e.g. nn.Dropout - we only want to drop model weights during the training. gat.eval() # Do a forwards pass and extract only the relevant node scores (train/val or test ones) # Note: [0] just extracts the node_features part of the data (index 1 contains the edge_index) # shape = (N, C) where N is the number of nodes in the split (train/val/test) and C is the number of classes nodes_unnormalized_scores = gat(graph_data)[0].index_select(node_dim, pred_indices) # Finds the index of maximum (unnormalized) score for every node and that's the class prediction for that node. # Compare those to true (ground truth) labels and find the fraction of correct predictions -> accuracy metric. class_predictions = torch.argmax(nodes_unnormalized_scores, dim=-1) print(f'exporting csv: predictions/{slide_name}_gat_prediction.csv') class_predictions.cpu().numpy().tofile(f'predictions/{slide_name}_gat_prediction.csv', sep=',') print('done!') return main_loop # return the decorated function ki_prediction_paths = [ # train ['P01_1_1', 'P01_1_1_delaunay_forGAT_pred_edges.csv', 'P01_1_1_delaunay_forGAT_pred_nodes.csv'], ['N10_1_1', 'N10_1_1_delaunay_forGAT_pred_edges.csv', 'N10_1_1_delaunay_forGAT_pred_nodes.csv'], ['N10_1_2', 'N10_1_2_delaunay_forGAT_pred_edges.csv', 'N10_1_2_delaunay_forGAT_pred_nodes.csv'], ['N10_2_1', 'N10_2_1_delaunay_forGAT_pred_edges.csv', 'N10_2_1_delaunay_forGAT_pred_nodes.csv'], ['N10_2_2', 'N10_2_2_delaunay_forGAT_pred_edges.csv', 'N10_2_2_delaunay_forGAT_pred_nodes.csv'], ['N10_3_1', 'N10_3_1_delaunay_forGAT_pred_edges.csv', 'N10_3_1_delaunay_forGAT_pred_nodes.csv'], ['N10_3_2', 'N10_3_2_delaunay_forGAT_pred_edges.csv', 'N10_3_2_delaunay_forGAT_pred_nodes.csv'], ['N10_4_1', 'N10_4_1_delaunay_forGAT_pred_edges.csv', 'N10_4_1_delaunay_forGAT_pred_nodes.csv'], ['P7_HE_Default_Extended_1_1', 'P7_HE_Default_Extended_1_1_delaunay_forGAT_pred_edges.csv', 'P7_HE_Default_Extended_1_1_delaunay_forGAT_pred_nodes.csv'], ['P7_HE_Default_Extended_3_2', 'P7_HE_Default_Extended_3_2_delaunay_forGAT_pred_edges.csv', 'P7_HE_Default_Extended_3_2_delaunay_forGAT_pred_nodes.csv'], ['P7_HE_Default_Extended_4_2', 'P7_HE_Default_Extended_4_2_delaunay_forGAT_pred_edges.csv', 'P7_HE_Default_Extended_4_2_delaunay_forGAT_pred_nodes.csv'], ['P7_HE_Default_Extended_5_2', 'P7_HE_Default_Extended_5_2_delaunay_forGAT_pred_edges.csv', 'P7_HE_Default_Extended_5_2_delaunay_forGAT_pred_nodes.csv'], ['P11_1_1', 'P11_1_1_delaunay_forGAT_pred_edges.csv', 'P11_1_1_delaunay_forGAT_pred_nodes.csv'], ['P9_1_1', 'P9_1_1_delaunay_forGAT_pred_edges.csv', 'P9_1_1_delaunay_forGAT_pred_nodes.csv'], ['P9_3_1', 'P9_3_1_delaunay_forGAT_pred_edges.csv', 'P9_3_1_delaunay_forGAT_pred_nodes.csv'], ['P20_6_1', 'P20_6_1_delaunay_forGAT_pred_edges.csv', 'P20_6_1_delaunay_forGAT_pred_nodes.csv'], ['P19_1_1', 'P19_1_1_delaunay_forGAT_pred_edges.csv', 'P19_1_1_delaunay_forGAT_pred_nodes.csv'], ['P19_3_2', 'P19_3_2_delaunay_forGAT_pred_edges.csv', 'P19_3_2_delaunay_forGAT_pred_nodes.csv'], # val ['N10_4_2', 'N10_4_2_delaunay_forGAT_pred_edges.csv', 'N10_4_2_delaunay_forGAT_pred_nodes.csv'], ['N10_5_2', 'N10_5_2_delaunay_forGAT_pred_edges.csv', 'N10_5_2_delaunay_forGAT_pred_nodes.csv'], ['N10_6_2', 'N10_6_2_delaunay_forGAT_pred_edges.csv', 'N10_6_2_delaunay_forGAT_pred_nodes.csv'], ['P19_2_1', 'P19_2_1_delaunay_forGAT_pred_edges.csv', 'P19_2_1_delaunay_forGAT_pred_nodes.csv'], ['P9_4_1', 'P9_4_1_delaunay_forGAT_pred_edges.csv', 'P9_4_1_delaunay_forGAT_pred_nodes.csv'], ['P7_HE_Default_Extended_2_1', 'P7_HE_Default_Extended_2_1_delaunay_forGAT_pred_edges.csv', 'P7_HE_Default_Extended_2_1_delaunay_forGAT_pred_nodes.csv'], # test ['P9_2_1', 'P9_2_1_delaunay_forGAT_pred_edges.csv', 'P9_2_1_delaunay_forGAT_pred_nodes.csv'], ['P7_HE_Default_Extended_2_2', 'P7_HE_Default_Extended_2_2_delaunay_forGAT_pred_edges.csv', 'P7_HE_Default_Extended_2_2_delaunay_forGAT_pred_nodes.csv'], ['P7_HE_Default_Extended_3_1', 'P7_HE_Default_Extended_3_1_delaunay_forGAT_pred_edges.csv', 'P7_HE_Default_Extended_3_1_delaunay_forGAT_pred_nodes.csv'], ['P20_5_1', 'P20_5_1_delaunay_forGAT_pred_edges.csv', 'P20_5_1_delaunay_forGAT_pred_nodes.csv'], ['P19_3_1', 'P19_3_1_delaunay_forGAT_pred_edges.csv', 'P19_3_1_delaunay_forGAT_pred_nodes.csv'], ['P13_1_1', 'P13_1_1_delaunay_forGAT_pred_edges.csv', 'P13_1_1_delaunay_forGAT_pred_nodes.csv'], # ['P7_HE_Default_Extended_4_1', 'P7_HE_Default_Extended_4_1_delaunay_forGAT_pred_edges.csv', # 'P7_HE_Default_Extended_4_1_delaunay_forGAT_pred_nodes.csv'], ['P13_2_2', 'P13_2_2_delaunay_forGAT_pred_edges.csv', 'P13_2_2_delaunay_forGAT_pred_nodes.csv'], ['N10_7_2', 'N10_7_2_delaunay_forGAT_pred_edges.csv', 'N10_7_2_delaunay_forGAT_pred_nodes.csv'], ['N10_7_3', 'N10_7_3_delaunay_forGAT_pred_edges.csv', 'N10_7_3_delaunay_forGAT_pred_nodes.csv'], ['N10_8_2', 'N10_8_2_delaunay_forGAT_pred_edges.csv', 'N10_8_2_delaunay_forGAT_pred_nodes.csv'], ['N10_8_3', 'N10_8_3_delaunay_forGAT_pred_edges.csv', 'N10_8_3_delaunay_forGAT_pred_nodes.csv'], ['P11_1_2', 'P11_1_2_delaunay_forGAT_pred_edges.csv', 'P11_1_2_delaunay_forGAT_pred_nodes.csv'], ['P11_2_2', 'P11_2_2_delaunay_forGAT_pred_edges.csv', 'P11_2_2_delaunay_forGAT_pred_nodes.csv'], ] def predict_gat_ki(config): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # checking whether you have a GPU, I hope so! # Step 2: prepare the model gat = GAT(num_of_layers=config['num_of_layers'], num_heads_per_layer=config['num_heads_per_layer'], num_features_per_layer=config['num_features_per_layer'], add_skip_connection=config['add_skip_connection'], bias=config['bias'], dropout=config['dropout'], layer_type=config['layer_type'], log_attention_weights=False).to(device) # TODO gat.load_state_dict(torch.load('./models/binaries/gat_KI_000087.pth')['state_dict']) # 0.83 acc # Step 1: load the graph data for paths in ki_prediction_paths: print(f'loading {paths[0]}') node_features, node_labels, edge_index, pred_indices = \ load_ki_graph_data(device, paths, '') print(f'loaded!') slide_name = paths[0] # TODO main_loop = predict(gat, node_features, edge_index, pred_indices, slide_name) # Prediction try: main_loop() except Exception as e: # "patience has run out" exception :O print(str(e)) def get_prediction_args(): parser = argparse.ArgumentParser() # Dataset related parser.add_argument("--dataset_name", choices=[el.name for el in DatasetType], help='dataset to use for training', default=DatasetType.KI.name) # Logging/debugging/checkpoint related (helps a lot with experimentation) args = parser.parse_args() # Model architecture related gat_config = { "num_of_layers": 2, # GNNs, contrary to CNNs, are often shallow (it ultimately depends on the graph properties) # "num_heads_per_layer": [8, 1], "num_heads_per_layer": [8, 1], "num_features_per_layer": [KI_NUM_INPUT_FEATURES, 8, KI_NUM_CLASSES], "add_skip_connection": True, # hurts perf on Cora "bias": False, # result is not so sensitive to bias # "dropout": 0.6, # result is sensitive to dropout "dropout": 0, # result is sensitive to dropout "layer_type": LayerType.IMP3 # fastest implementation enabled by default } # Wrapping training configuration into a dictionary prediction_config = dict() for arg in vars(args): prediction_config[arg] = getattr(args, arg) # Add additional config information prediction_config.update(gat_config) return prediction_config if __name__ == '__main__': # Train the graph attention network (GAT) predict_gat_ki(get_prediction_args()) ```
{ "source": "jorgegil96/Yargi", "score": 2 }
#### File: Yargi/src/parser.py ```python import ply.lex as lex import ply.yacc as yacc from src.semantics.model import * keywords = { 'if': 'IF', 'else': 'ELSE', 'and': 'AND', 'or': 'OR', 'int': 'INT', 'float': 'FLOAT', 'bool': 'BOOL', 'string': 'STRING', 'fun': 'FUN', 'when': 'WHEN', 'for': 'FOR', 'while': 'WHILE', 'in': 'IN', 'return': 'RETURN', 'write': 'WRITE', 'read': 'READ', 'global': 'GLOBAL', 'data': 'DATA', 'class': 'CLASS', 'interface': 'INTERFACE', 'list': 'LIST', 'range': 'RANGE', 'main': 'MAIN', 'private': 'PRIVATE' } tokens = [ 'INTNUM', 'FLOATNUM', 'TRUE', 'FALSE', 'PARIZQ', 'PARDER', 'LLAVEIZQ', 'LLAVEDER', 'MAS', 'MENOS', 'POR', 'SOBRE', 'DOSPUNTOS', 'COMA', 'COLON', 'MAYORQUE', 'MENORQUE', 'DIFERENTE', 'IGUALIGUAL', 'MENOROIGUAL', 'MAYOROIGUAL', 'COMENTARIOS', 'CORCHIZQ', 'CORCHDER', 'COMILLAS', 'PUNTO', 'IGUAL', 'PUNTOSRANGO', 'FLECHITA', 'STRINGVAL', 'NULL', 'ID', 'CID', 'EOL' ] + list(keywords.values()) t_PARIZQ = r'\(' t_PARDER = r'\)' t_LLAVEIZQ = r'\{' t_LLAVEDER = r'\}' t_MAS = r'\+' t_MENOS = r'\-' t_POR = r'\*' t_SOBRE = r'\/' t_DOSPUNTOS = r'\:' t_COMA = r'\,' t_COLON = r'\;' t_MAYORQUE = r'\>' t_MENORQUE = r'\<' t_DIFERENTE = r'\!=' t_IGUALIGUAL = r'\==' t_MENOROIGUAL = r'\<=' t_MAYOROIGUAL = r'\>=' t_COMENTARIOS = r'\//' t_CORCHIZQ = r'\[' t_CORCHDER = r'\]' t_COMILLAS = r'\"' t_PUNTO = r'\.' t_IGUAL = r'=' t_PUNTOSRANGO = r'\.\.' t_FLECHITA = r'\-\>' def t_FLOATNUM(token): r'[0-9]+\.[0-9]+' token.type = keywords.get(token.value, 'FLOATNUM') token.value = float(token.value) return token def t_INTNUM(token): r'[0-9]+' token.type = keywords.get(token.value, 'INTNUM') token.value = int(token.value) return token def t_TRUE(token): 'true' token.type = keywords.get(token.value, 'TRUE') token.value = True return token def t_FALSE(token): 'false' token.type = keywords.get(token.value, 'FALSE') token.value = False return token def t_NULL(token): 'null' token.type = keywords.get(token.value, 'NULL') token.value = None return token def t_CID(token): r'[A-Z][a-zA-z0-9]*' token.type = keywords.get(token.value, 'CID') return token def t_ID(token): r'[a-zA-Z][a-zA-z0-9]*' token.type = keywords.get(token.value, 'ID') return token def t_STRINGVAL(token): r'[\"][^"]*[\"]' token.type = keywords.get(token.value, 'STRINGVAL') token.value = str(token.value)[1:-1] return token t_ignore = " \t" def t_EOL(token): r'\n+' token.lexer.lineno += token.value.count("\n") ''' Parses a series of interfaces (0 or more), followed by a series of classes (1 or more). Returns a Pair containing a list of interfaces and a list of classes. ''' def p_file(p): ''' file : interface_r class classr ''' p[0] = p[1], [p[2]] + p[3] ''' Parses a series of interfaces. An interface is defined with the following syntax: interface MyInterface { fun foo(); fun bar(int x=; } Returns a list containing the available interfaces or an empty list if none were declared. ''' def p_interface_r(p): ''' interface_r : INTERFACE CID interface_body interface_r | empty ''' if len(p) == 2: p[0] = [] else: p[0] = [Interface(p[2], p[3])] + p[4] def p_interface_body(p): ''' interface_body : LLAVEIZQ interface_fun interface_fun_r LLAVEDER ''' p[0] = [p[2]] + p[3] def p_interface_fun(p): ''' interface_fun : FUN ID PARIZQ fun2 PARDER COLON ''' p[0] = InterfaceFun(p[2], p[4]) def p_interface_fun_r(p): ''' interface_fun_r : interface_fun interface_fun_r | empty ''' if len(p) == 2: p[0] = [] else: p[0] = [p[1]] + p[2] def p_classr(p): ''' classr : class classr | empty ''' if len(p) == 2: p[0] = [] else: p[0] = [p[1]] + p[2] ''' Parses a class or a data class. A class follows the syntax: class MyClass() : MyInterface, MySuperClass() { < functions > < main > } A data classes follows the syntax: data class MyDataClass(int x, bool y) Returns a Class object containing the information of the declared class. ''' def p_class(p): ''' class : CLASS CID classparams class2 body | DATA CLASS CID classparams ''' if len(p) == 6: interfaces, parent = p[4] p[0] = Class(name=p[2], members=p[3], body=p[5], class_parent=parent, interfaces=interfaces) else: p[0] = Class(name=p[3], members=p[4], body=None, class_parent=None, interfaces=[]) def p_class2(p): ''' class2 : DOSPUNTOS class_extras | empty ''' if len(p) == 2: p[0] = [], None elif len(p) == 3: p[0] = p[2] def p_class_extras(p): ''' class_extras : CID class_extras_2 ''' arg1, arg2, arg3, type = p[2] if type == "SUPERCLASS": p[0] = [], ClassParent(p[1], arg2) elif type == "BOTH": p[0] = [p[1]] + arg2, arg3 else: raise Exception("Illegal state") def p_class_extras_2(p): ''' class_extras_2 : COMA CID class_extras_2 | PARIZQ vars2 PARDER ''' type = p.slice[1].type if type == "PARIZQ": p[0] = p[1], p[2], p[3], "SUPERCLASS" else: arg1, arg2, arg3, type = p[3] if type == "SUPERCLASS": p[0] = None, [], ClassParent(p[2], arg2), "BOTH" elif type == "BOTH": p[0] = None, [p[2]] + arg2, arg3, "BOTH" else: raise Exception("Illegal state") def p_classparams(p): ''' classparams : PARIZQ classparams2 PARDER | empty ''' if len(p) == 2: p[0] = [] else: p[0] = p[2] def p_classparams2(p): ''' classparams2 : vars3 tipo ID classparams3 | empty ''' if len(p) == 2: p[0] = [] else: p[0] = [VarDeclaration(p[3], p[2], p[1])] + p[4] def p_classparams3(p): ''' classparams3 : COMA vars3 tipo ID classparams3 | empty ''' if len(p) == 2: p[0] = [] else: p[0] = [VarDeclaration(p[4], p[3], p[2])] + p[5] def p_varcte(p): ''' varcte : ID | INTNUM | FLOATNUM | TRUE | FALSE | STRINGVAL | NULL | ID CORCHIZQ varcte CORCHDER | ID PUNTO ID varcte_param_fun | ID PARIZQ llamada_param PARDER ''' if len(p) == 2: type = p.slice[1].type p[0] = ConstantVar(p[1], type) elif len(p) == 5: type = p.slice[2].type if type == "PARIZQ": p[0] = FunCall(p[1], p[3]) else: if p[4] is None: p[0] = ObjectMember(p[1], p[3]) else: p[0] = FunCall(p[3], p[4], p[1]) def p_varcte_param_fun(p): ''' varcte_param_fun : PARIZQ llamada_param PARDER | empty ''' if len(p) == 2: p[0] = None else: p[0] = p[2] def p_expresion(p): ''' expresion : megaexp ''' p[0] = p[1] def p_expresionr(p): ''' expresionr : COMA expresion expresionr | empty ''' if len(p) == 2: p[0] = [] else: p[0] = [p[2]] + p[3] def p_expresion2(p): ''' expresion2 : expresion expresionr | empty ''' def p_superexp(p): ''' superexp : exp oplog ''' p[0] = RelationalOperation(p[1], p[2]) def p_oplog(p): ''' oplog : MAYORQUE exp | MENORQUE exp | DIFERENTE exp | MAYOROIGUAL exp | MENOROIGUAL exp | IGUALIGUAL exp | empty ''' if len(p) == 2: p[0] = None else: p[0] = RelationalOperand(p[1], p[2]) def p_megaexp(p): ''' megaexp : superexp megaexpr ''' p[0] = LogicalOperation(p[1], p[2]) def p_megaexpr(p): ''' megaexpr : AND superexp megaexpr | OR superexp megaexpr | empty ''' if len(p) == 2: p[0] = None else: p[0] = LogicalOperand(p[1], p[2], p[3]) def p_vars(p): ''' vars : vars3 tipo vars2 COLON | vars3 tipo LIST vars2 COLON ''' variables = [] visibility = p[1] type = p[2] for var in p[3]: variables.append(VarDeclaration(var, type, visibility)) p[0] = variables def p_varsr(p): ''' varsr : COMA ID varsr | empty ''' if len(p) == 2: p[0] = [] else: p[0] = [p[2]] + p[3] def p_vars2(p): ''' vars2 : ID varsr ''' p[0] = [p[1]] + p[2] def p_vars3(p): ''' vars3 : PRIVATE | empty ''' p[0] = p[1] def p_estatuto(p): ''' estatuto : asignacion estatuto | condicion estatuto | escritura estatuto | for estatuto | while estatuto | when estatuto | llamada estatuto | obj_call estatuto | empty ''' if len(p) == 2: p[0] = [] else: p[0] = [p[1]] + p[2] def p_asignacion(p): ''' asignacion : ID asignacion3 IGUAL asignacion2 COLON ''' p[0] = Assignment(p[1], p[4]) def p_asignacion2(p): ''' asignacion2 : expresion | CORCHDER expresion asignacion2r CORCHIZQ | READ PARIZQ assign_read PARDER | CID PARIZQ class_call_args expresionr PARDER ''' if len(p) == 2: p[0] = p[1] elif len(p) == 5: p[0] = Read(p[3]) elif len(p) == 6: p[0] = NewObject(p[1], p[3] + p[4]) def p_class_call_args(p): ''' class_call_args : expresion | empty ''' if p[1] is None: p[0] = [] else: p[0] = [p[1]] def p_assign_read(p): ''' assign_read : STRINGVAL | empty ''' p[0] = p[1] def p_asignacion2r(p): ''' asignacion2r : COMA expresion asignacion2r | empty ''' def p_asignacion3(p): ''' asignacion3 : CORCHIZQ expresion CORCHDER | PUNTO ID | empty ''' def p_condicion(p): ''' condicion : IF condicion2 estatutor ''' base_exp, stmts = p[2] p[0] = If(base_exp, stmts, p[3]) def p_condicion2(p): ''' condicion2 : PARIZQ expresion PARDER bloque ''' p[0] = p[2], p[4] def p_condicionr(p): ''' condicionr : ELSE IF condicion2 | empty ''' def p_bloque(p): ''' bloque : LLAVEIZQ estatuto bloque2 LLAVEDER ''' p[0] = p[2] def p_bloque2(p): ''' bloque2 : RETURN bloque3 | empty ''' if len(p) == 2: p[0] = None else: p[0] = p[2] def p_bloque3(p): ''' bloque3 : expresion COLON | empty ''' if len(p) == 2: p[0] = None else: p[0] = p[1] def p_estatutor(p): ''' estatutor : ELSE bloque | empty ''' if len(p) == 2: p[0] = [] else: p[0] = p[2] def p_escritura(p): ''' escritura : WRITE PARIZQ esc1 esc2 PARDER COLON ''' p[0] = Write(p[3] + p[4]) def p_esc1(p): ''' esc1 : expresion | STRING ''' p[0] = [p[1]] def p_esc2(p): ''' esc2 : COMA esc1 esc2 | empty ''' if len(p) == 2: p[0] = [] else: p[0] = p[2] + p[3] def p_tipo(p): ''' tipo : INT | FLOAT | BOOL | STRING | CID ''' p[0] = p[1] def p_factor(p): ''' factor : PARIZQ expresion PARDER | factor2 varcte ''' if p[1] is None: p[0] = p[2] else: p[0] = ArithmeticOperand(p[1], p[2]) def p_terminor(p): ''' terminor : POR factor terminor | SOBRE factor terminor | empty ''' if len(p) == 2: p[0] = None else: type = p.slice[1].type if type == 'POR': p[0] = TerminoR(operator.mul, p[2], p[3]) elif type == 'SOBRE': p[0] = TerminoR(operator.floordiv, p[2], p[3]) else: raise Exception("Invalid operator type %s in terminor" % type) def p_termino(p): ''' termino : factor terminor ''' p[0] = Termino(p[1], p[2]) def p_exp(p): ''' exp : termino expr ''' p[0] = Exp(p[1], p[2]) def p_expr(p): ''' expr : MAS termino expr | MENOS termino expr | empty ''' if len(p) == 2: p[0] = None else: type = p.slice[1].type if type == 'MAS': p[0] = ExpR(operator.add, p[2], p[3]) elif type == 'MENOS': p[0] = ExpR(operator.sub, p[2], p[3]) else: raise Exception("Invalid operator type %s in expr" % type) def p_varcter(p): ''' varcter : COMA varcte varcter | empty ''' def p_factor2(p): ''' factor2 : MAS | MENOS | empty ''' if p[1] is None: p[0] = None else: type = p.slice[1].type if type == 'MAS': p[0] = operator.add elif type == 'MENOS': p[0] = operator.sub else: raise Exception("Invalid operator type %s in factor2" % type) def p_for(p): ''' for : FOR PARIZQ ID IN for2 PARDER bloque ''' p[0] = ForIn(p[3], p[5], p[7]) def p_for2(p): ''' for2 : ID | range ''' p[0] = p[1] def p_range(p): ''' range : INTNUM PUNTOSRANGO INTNUM | ID PUNTOSRANGO ID | ID PUNTOSRANGO INTNUM | INTNUM PUNTOSRANGO ID ''' type = p.slice[1].type type2 = p.slice[3].type p[0] = Range(ConstantVar(p[1], type), ConstantVar(p[3], type2)) def p_while(p): ''' while : WHILE PARIZQ expresion PARDER bloque ''' p[0] = While(p[3], p[5]) def p_when(p): ''' when : WHEN LLAVEIZQ when2 LLAVEDER ''' p[0] = p[3] def p_when2(p): ''' when2 : expresion FLECHITA bloque when2 | ELSE FLECHITA bloque | empty ''' if len(p) == 2: p[0] = None elif len(p) == 4: p[0] = WhenBranch(None, p[3], None) else: p[0] = WhenBranch(p[1], p[3], p[4]) def p_fun(p): ''' fun : vars3 FUN ID PARIZQ fun2 PARDER fun3 funbody ''' body: FunBody = p[8] body.params = p[5] p[0] = Fun(name=p[3], type=p[7], visibility=p[1], body=body) def p_fun2(p): ''' fun2 : tipo ID funparamr | empty ''' if len(p) == 2: p[0] = [] else: p[0] = [VarDeclaration(name=p[2], type=p[1], visibility=None)] + p[3] def p_funparamr(p): ''' funparamr : COMA tipo ID funparamr | empty ''' if len(p) == 2: p[0] = [] else: p[0] = [VarDeclaration(name=p[3], type=p[2], visibility=None)] + p[4] def p_fun3(p): ''' fun3 : DOSPUNTOS tipo | empty ''' if len(p) == 2: p[0] = "void" else: p[0] = p[2] def p_funbody(p): ''' funbody : LLAVEIZQ opc1 opc2 bloque2 LLAVEDER ''' p[0] = FunBody([], p[2], p[3], p[4]) def p_opc1(p): ''' opc1 : vars multvarsdecl | empty ''' if p[1] is None: p[0] = [] else: p[0] = p[1] + p[2] def p_opc2(p): ''' opc2 : estatuto | empty ''' if p[1] is None: return [] else: p[0] = p[1] def p_body(p): ''' body : LLAVEIZQ body2 funr body_main LLAVEDER | empty ''' if len(p) == 2: p[0] = None else: p[0] = ClassBody(vars=p[2], funs=p[3], main=p[4]) def p_body_main(p): ''' body_main : MAIN PARIZQ PARDER mainbloque | empty ''' if len(p) == 2: p[0] = None else: p[0] = p[4] def p_body2(p): ''' body2 : vars multvarsdecl | empty ''' if p[1] is None: p[0] = [] else: p[0] = p[1] + p[2] def p_mainbloque(p): ''' mainbloque : LLAVEIZQ body2 estatuto LLAVEDER ''' p[0] = Main(p[2], p[3]) def p_multvarsdecl(p): ''' multvarsdecl : vars multvarsdecl | empty ''' if len(p) == 2: p[0] = [] else: p[0] = p[1] + p[2] def p_funr(p): ''' funr : fun funr | empty ''' if len(p) == 2: p[0] = [] else: p[0] = [p[1]] + p[2] def p_llamada(p): ''' llamada : ID PARIZQ llamada_param PARDER COLON | empty ''' p[0] = FunCall(p[1], p[3]) def p_obj_call(p): ''' obj_call : ID PUNTO ID PARIZQ llamada_param PARDER COLON | empty ''' p[0] = FunCall(p[3], p[5], p[1]) def p_llamada_param(p): ''' llamada_param : expresion expresionr | empty ''' if len(p) == 2: p[0] = [] else: p[0] = [p[1]] + p[2] def p_error(p): if p is not None: print("Syntax error at line %d, illegal token '%s' found" % (p.lineno, p.value)) print("Unexpected end of input") def p_empty(p): '''empty : ''' lex.lex() parser = yacc.yacc(start='file') ```
{ "source": "JorgeGMarques/micropython-scikit-fuzzy", "score": 4 }
#### File: docs/examples/plot_cmeans.py ```python from ulab import numpy as np import ulab_extended as _np from bipes import databoard as db import _cmeans import normalize_columns import math import random import gc # Enable garbage collection gc.enable() NV_MAGICCONST = 4 * math.exp(-0.5)/2.0**.5 # Number os points per cluster POINTS = 50 # Define three cluster centers centers = [[4, 2], [1, 7], [5, 6]] # Define three cluster sigmas in x and y, respectively sigmas = [[0.8, 0.3], [0.3, 0.5], [1.1, 0.7]] # Generate test data xpts = np.zeros(1) ypts = np.zeros(1) labels = np.zeros(1) def hstack_1d(a,b): ca = a.size cb = b.size _hstack = np.zeros(ca+cb) for i in range(0, ca+cb): if i < ca: _hstack[i] = a[i] else: _hstack[i] = b[i-ca] return _hstack def normalvariate(x): """Normal distribution. mu is the mean, and sigma is the standard deviation. `source <https://microbit-micropython.readthedocs.io/en/latest/_modules/random.html>`_ """ # Uses Kinderman and Monahan method. Reference: Kinderman, # A.J. and <NAME>., "Computer generation of random # variables using the ratio of uniform deviates", ACM Trans # Math Software, 3, (1977), pp257-260. mu = 1 sigma = 1 while 1: u1 = random.random() u2 = 1.0 - random.random() z = NV_MAGICCONST*(u1-0.5)/u2 zz = z*z/4.0 if zz <= -math.log(u2): break return mu + z*sigma for i, ((xmu, ymu), (xsigma, ysigma)) in enumerate(zip(centers, sigmas)): u0 = np.zeros(POINTS) vrand = np.vectorize(normalvariate) u0 = vrand(u0) u1 = np.zeros(POINTS) vrand = np.vectorize(normalvariate) u1 = vrand(u1) xpts = hstack_1d(xpts, u0 * xsigma + xmu) ypts = hstack_1d(ypts, u1 * ysigma + ymu) labels = hstack_1d(labels, np.ones(POINTS) * i) # Print test data for label in range(0,3): db.push(xpts[labels == label], ypts[labels == label], label, 'clusters0') gc.collect() """ Clustering ---------- Above is our test data. We see three distinct blobs. However, what would happen if we didn't know how many clusters we should expect? Perhaps if the data were not so clearly clustered? Let's try clustering our data several times, with between 2 and 5 clusters. """ def vstack_1d(a,b): ca = a.size cb = b.size _hstack = np.zeros(1,ca+cb) for i in range(0, ca+cb): if i < ca: _hstack[i] = a[i] else: _hstack[i] = b[i-ca] # Set up the loop and plot alldata = _np.vstack(xpts, ypts) fpcs = [] for ncenters in range(2, 6): cntr, u, u0, d, jm, p, fpc = _cmeans.cmeans( alldata, ncenters, 2, error=0.005, maxiter=1000, init=None) # Store fpc values for later fpcs.append(fpc) # Plot assigned clusters, for each data point in training set cluster_membership = np.argmax(u, axis=0) _comma = ',' for j in range(ncenters): db.push(xpts[cluster_membership == j], ypts[cluster_membership == j], j, 'clusters1_' + str(ncenters)) # Mark the center of each fuzzy cluster i = 0 for pt in cntr: db.push(pt[0], pt[1], ncenters + i, 'clusters1_' + str(ncenters)) i+=1 gc.collect() """ The fuzzy partition coefficient (FPC) ------------------------------------- The FPC is defined on the range from 0 to 1, with 1 being best. It is a metric which tells us how cleanly our data is described by a certain model. Next we will cluster our set of data - which we know has three clusters - several times, with between 2 and 9 clusters. We will then show the results of the clustering, and plot the fuzzy partition coefficient. When the FPC is maximized, our data is described best. """ label_ = np.zeros(len(fpcs)) for i_ in range(0,len(fpcs)): label_[i_] = i_+2 db.push(label_, fpcs, 0, 'clusters2_fpc') """ As we can see, the ideal number of centers is 3. This isn't news for our contrived example, but having the FPC available can be very useful when the structure of your data is unclear. Note that we started with *two* centers, not one; clustering a dataset with only one cluster center is the trivial solution and will by definition return FPC == 1. ==================== Classifying New Data ==================== Now that we can cluster data, the next step is often fitting new points into an existing model. This is known as prediction. It requires both an existing model and new data to be classified. Building the model ------------------ We know our best model has three cluster centers. We'll rebuild a 3-cluster model for use in prediction, generate new uniform data, and predict which cluster to which each new data point belongs. """ # Regenerate fuzzy model with 3 cluster centers - note that center ordering # is random in this clustering algorithm, so the centers may change places cntr, u_orig, _, _, _, _, _ = _cmeans.cmeans( alldata, 3, 2, error=0.005, maxiter=1000) # Show 3-cluster model for j in range(3): db.push(xpts[np.argmax(u_orig, axis=0) == j], ypts[np.argmax(u_orig, axis=0) == j], j, 'clusters3') """ Prediction ---------- Finally, we generate uniformly sampled data over this field and classify it via ``cmeans_predict``, incorporating it into the pre-existing model. """ # Generate uniformly sampled data spread across the range [0, 10] in x and y newdata = np.zeros((2,100)) vrand = np.vectorize(_cmeans.rand) newdata = vrand(u0) * 10 # Predict new cluster membership with `cmeans_predict` as well as # `cntr` from the 3-cluster model u, u0, d, jm, p, fpc = _cmeans.cmeans_predict( newdata, cntr, 2, error=0.005, maxiter=1000) # Plot the classified uniform data. Note for visualization the maximum # membership value has been taken at each point (i.e. these are hardened, # not fuzzy results visualized) but the full fuzzy result is the output # from cmeans_predict. cluster_membership = np.argmax(u, axis=0) # Hardening for visualization for j in range(3): db.push(newdata[0][cluster_membership == j], newdata[1][cluster_membership == j], j, 'clusters4') ``` #### File: skfuzzy/fuzzymath/fuzzy_logic.py ```python import numpy as np def _resampleuniverse(x, mfx, y, mfy): """ Resamples fuzzy universes `x` and `y` to include the full range of either universe, with resolution of the lowest difference between any two reported points. """ minstep = np.asarray([np.diff(x).min(), np.diff(y).min()]).min() mi = min(x.min(), y.min()) ma = max(x.max(), y.max()) z = np.r_[mi:ma:minstep] xidx = np.argsort(x) mfx = mfx[xidx] x = x[xidx] mfx2 = np.interp(z, x, mfx) yidx = np.argsort(y) mfy = mfy[yidx] y = y[yidx] mfy2 = np.interp(z, y, mfy) return z, mfx2, mfy2 def fuzzy_norm(x, mfx, y, mfy, norm): """ Fuzzy operator, logic operatrion of two fuzzy sets. Parameters ---------- x : 1d array Universe variable for fuzzy membership function `mfx`. mfx : 1d array Fuzzy membership function for universe variable `x`. y : 1d array Universe variable for fuzzy membership function `mfy`. mfy : 1d array Fuzzy membership function for universe variable `y`. norm : Function T-norm or T-conorm (S-norm) Returns ------- z : 1d array Universe variable for union of the two provided fuzzy sets. mfz : 1d array Fuzzy membership function, the result of the operation of `mfx` and `mfy`. Notes ------- See `T-Norm <https://en.wikipedia.org/wiki/T-norm>`_ for t-norms. """ # Check if universes are the same sameuniverse = False if x.shape == y.shape and (x == y).all(): z = x mfx2 = mfx mfy2 = mfy sameuniverse = True if not sameuniverse: z, mfx2, mfy2 = _resampleuniverse(x, mfx, y, mfy) return z, norm(mfx2, mfy2) def fuzzy_and(x, mfx, y, mfy): """ Fuzzy AND operator, a.k.a. the intersection of two fuzzy sets. Parameters ---------- x : 1d array Universe variable for fuzzy membership function `mfx`. mfx : 1d array Fuzzy membership function for universe variable `x`. y : 1d array Universe variable for fuzzy membership function `mfy`. mfy : 1d array Fuzzy membership function for universe variable `y`. Returns ------- z : 1d array Universe variable for union of the two provided fuzzy sets. mfz : 1d array Fuzzy AND (intersection) of `mfx` and `mfy`. """ # Check if universes are the same return fuzzy_norm(x, mfx, y, mfy, norm=np.fmin) def fuzzy_or(x, mfx, y, mfy): """ Fuzzy OR operator, a.k.a. union of two fuzzy sets. Parameters ---------- x : 1d array Universe variable for fuzzy membership function `mfx`. mfx : 1d array Fuzzy membership function for universe variable `x`. y : 1d array Universe variable for fuzzy membership function `mfy`. mfy : 1d array Fuzzy membership function for universe variable `y`. Returns ------- z : 1d array Universe variable for intersection of the two provided fuzzy sets. mfz : 1d array Fuzzy OR (union) of `mfx` and `mfy`. """ # Check if universes are the same return fuzzy_norm(x, mfx, y, mfy, norm=np.fmax) def fuzzy_not(mfx): """ Fuzzy NOT operator, a.k.a. complement of a fuzzy set. Parameters ---------- mfx : 1d array Fuzzy membership function. Returns ------- mfz : 1d array Fuzzy NOT (complement) of `mfx`. Notes ----- This operation does not require a universe variable, because the complement is defined for a single set. The output remains defined on the same universe. """ return 1. - mfx ``` #### File: skfuzzy/intervals/intervalops.py ```python import numpy as np from ..defuzzify import lambda_cut_series def addval(interval1, interval2): """ Add intervals interval1 and interval2. Parameters ---------- interval1 : 2-element iterable First interval set. interval2 : 2-element iterable Second interval set. Returns ------- Z : 2-element array Sum of interval1 and interval2, defined as:: Z = interval1 + interval2 = [a + c, b + d] """ # Handle arrays if not isinstance(interval1, np.ndarray): interval1 = np.asarray(interval1) if not isinstance(interval2, np.ndarray): interval2 = np.asarray(interval2) try: return np.r_[interval1] + np.r_[interval2] except Exception: return interval1 + interval2 def divval(interval1, interval2): """ Divide ``interval2`` into ``interval1``, by inversion and multiplication. Parameters ---------- interval1 : 2-element iterable First interval set. interval2 : 2-element iterable Second interval set. Returns ------- z : 2-element array Interval result of interval1 / interval2. """ # Handle arrays if not isinstance(interval1, np.ndarray): interval1 = np.asarray(interval1) if not isinstance(interval2, np.ndarray): interval2 = np.asarray(interval2) # Invert interval2 and multiply interval2 = 1. / interval2 return multval(interval1, interval2) def dsw_add(x, mfx, y, mfy, n): """ Add two fuzzy variables together using the restricted DSW method [1]. Parameters ---------- x : 1d array Universe for first fuzzy variable. mfx : 1d array Fuzzy membership for universe ``x``. Must be convex. y : 1d array Universe for second fuzzy variable. mfy : 1d array Fuzzy membership for universe ``y``. Must be convex. n : int Number of lambda-cuts to use; a higher number will have greater resolution toward the limit imposed by input sets ``x`` and ``y``. Returns ------- z : 1d array Output universe variable. mfz : 1d array Output fuzzy membership on universe ``z``. Notes ----- The Dong, Shah, and Wong (DSW) method requires convex fuzzy membership functions. The ``dsw_*`` functions return results similar to Matplotlib's ``fuzarith`` function. References ---------- .. [1] <NAME> and <NAME> and <NAME>, Fuzzy computations in risk and decision analysis, Civ Eng Syst, 2, 1985, pp 201-208. """ # Restricted DSW w/n lambda cuts x = lambda_cut_series(x, mfx, n) y = lambda_cut_series(y, mfy, n) n1, n2 = x.shape ff = np.zeros((n1, n2)) ff[:, 0] = x[:, 0] # Compute F = x + y for n in range(n1): ff[n, [1, 2]] = addval(x[n, [1, 2]], y[n, [1, 2]]) # Arrange for output or plotting out = np.zeros((2 * n1, 2)) out[0:n1, 1] = ff[:, 0] out[n1:2 * n1, 1] = np.flipud(ff[:, 0]) out[0:n1, 0] = ff[:, 1] out[n1:2 * n1, 0] = np.flipud(ff[:, 2]) # No need for transposes; rank-1 arrays have no transpose in Python return out[:, 0], out[:, 1] def dsw_div(x, mfx, y, mfy, n): """ Divide one fuzzy variable by another using the restricted DSW method [1]. Parameters ---------- x : 1d array Universe for first fuzzy variable. mfx : 1d array Fuzzy membership for universe ``x``. Must be convex. y : 1d array Universe for second fuzzy variable. mfy : 1d array Fuzzy membership for universe ``y``. Must be convex. n : int Number of lambda-cuts to use; a higher number will have greater resolution toward the limit imposed by input sets ``x`` and ``y``. Returns ------- z : 1d array Output universe variable. mfz : 1d array Output fuzzy membership on universe ``z``. Notes ----- The Dong, Shah, and Wong (DSW) method requires convex fuzzy membership functions. The ``dsw_*`` functions return results similar to Matplotlib's ``fuzarith`` function. References ---------- .. [1] <NAME> and <NAME> and <NAME>, Fuzzy computations in risk and decision analysis, Civ Eng Syst, 2, 1985, pp 201-208. """ # Restricted DSW w/n lambda cuts x = lambda_cut_series(x, mfx, n) y = lambda_cut_series(y, mfy, n) n1, n2 = x.shape ff = np.zeros((n1, n2)) ff[:, 0] = x[:, 0] # Compute F = x / y for n in range(n1): ff[n, [1, 2]] = divval(x[n, [1, 2]], y[n, [1, 2]]) # Arrange for output or plotting out = np.zeros((2 * n1, 2)) out[0:n1, 1] = ff[:, 0] out[n1:2 * n1, 1] = np.flipud(ff[:, 0]) out[0:n1, 0] = ff[:, 1] out[n1:2 * n1, 0] = np.flipud(ff[:, 2]) # No need for transposes; rank-1 arrays have no transpose in Python return out[:, 0], out[:, 1] def dsw_mult(x, mfx, y, mfy, n): """ Multiply two fuzzy variables using the restricted DSW method [1]. Parameters ---------- x : 1d array Universe for first fuzzy variable. mfx : 1d array Fuzzy membership for universe ``x``. Must be convex. y : 1d array Universe for second fuzzy variable. mfy : 1d array Fuzzy membership for universe ``y``. Must be convex. n : int Number of lambda-cuts to use; a higher number will have greater resolution toward the limit imposed by input sets ``x`` and ``y``. Returns ------- z : 1d array Output universe variable. mfz : 1d array Output fuzzy membership on universe ``z``. Notes ----- The Dong, Shah, and Wong (DSW) method requires convex fuzzy membership functions. The ``dsw_*`` functions return results similar to Matplotlib's ``fuzarith`` function. References ---------- .. [1] <NAME> and <NAME> and <NAME>, Fuzzy computations in risk and decision analysis, Civ Eng Syst, 2, 1985, pp 201-208. """ # Restricted DSW w/n lambda cuts x = lambda_cut_series(x, mfx, n) y = lambda_cut_series(y, mfy, n) n1, n2 = x.shape ff = np.zeros((n1, n2)) ff[:, 0] = x[:, 0] # Compute F = x * y for n in range(n1): ff[n, [1, 2]] = multval(x[n, [1, 2]], y[n, [1, 2]]) # Arrange for output or plotting out = np.zeros((2 * n1, 2)) out[0:n1, 1] = ff[:, 0] out[n1:2 * n1, 1] = np.flipud(ff[:, 0]) out[0:n1, 0] = ff[:, 1] out[n1:2 * n1, 0] = np.flipud(ff[:, 2]) # No need for transposes; rank-1 arrays have no transpose in Python return out[:, 0], out[:, 1] def dsw_sub(x, mfx, y, mfy, n): """ Subtract a fuzzy variable from another by the restricted DSW method [1]. Parameters ---------- x : 1d array Universe for first fuzzy variable. mfx : 1d array Fuzzy membership for universe ``x``. Must be convex. y : 1d array Universe for second fuzzy variable, which will be subtracted from ``x``. mfy : 1d array Fuzzy membership for universe ``y``. Must be convex. n : int Number of lambda-cuts to use; a higher number will have greater resolution toward the limit imposed by input sets ``x`` and ``y``. Returns ------- z : 1d array Output universe variable. mfz : 1d array Output fuzzy membership on universe ``z``. Notes ----- The Dong, Shah, and Wong (DSW) method requires convex fuzzy membership functions. The ``dsw_*`` functions return results similar to Matplotlib's ``fuzarith`` function. References ---------- .. [1] <NAME> and <NAME> and <NAME>, Fuzzy computations in risk and decision analysis, Civ Eng Syst, 2, 1985, pp 201-208. """ # Restricted DSW w/n lambda cuts x = lambda_cut_series(x, mfx, n) y = lambda_cut_series(y, mfy, n) n1, n2 = x.shape ff = np.zeros((n1, n2)) ff[:, 0] = x[:, 0] # Compute F = x - y for n in range(n1): ff[n, [1, 2]] = subval(x[n, [1, 2]], y[n, [1, 2]]) # Arrange for output or plotting out = np.zeros((2 * n1, 2)) out[0:n1, 1] = ff[:, 0] out[n1:2 * n1, 1] = np.flipud(ff[:, 0]) out[0:n1, 0] = ff[:, 1] out[n1:2 * n1, 0] = np.flipud(ff[:, 2]) # No need for transposes; rank-1 arrays have no transpose in Python return out[:, 0], out[:, 1] def multval(interval1, interval2): """ Multiply intervals interval1 and interval2. Parameters ---------- interval1 : 1d array, length 2 First interval. interval2 : 1d array, length 2 Second interval. Returns ------- z : 1d array, length 2 Interval resulting from multiplication of interval1 and interval2. """ # Handle arrays if not isinstance(interval1, np.ndarray): interval1 = np.asarray(interval1) if not isinstance(interval2, np.ndarray): interval2 = np.asarray(interval2) try: crosses = np.r_[interval1[0] * interval2[0], interval1[0] * interval2[1], interval1[1] * interval2[0], interval1[1] * interval2[1]] return np.r_[crosses.min(), crosses.max()] except Exception: return interval1 * interval2 def scaleval(q, interval): """ Multiply scalar q with interval ``interval``. Parameters ---------- q : float Scalar to multiply interval with. interval : 1d array, length 2 Interval. Must have exactly two elements. Returns ------- z : 1d array, length 2 New interval; z = q x interval. """ # Handle array if not isinstance(interval, np.ndarray): interval = np.asarray(interval) try: return np.r_[min(q * interval[0], q * interval[1]), max(q * interval[0], q * interval[1])] except Exception: return q * interval def subval(interval1, interval2): """ Subtract interval interval2 from interval interval1. Parameters ---------- interval1 : 1d array, length 2 First interval. interval2 : 1d array, length 2 Second interval. Returns ------- Z : 1d array, length 2 Resultant subtracted interval. """ # Handle arrays if not isinstance(interval1, np.ndarray): interval1 = np.asarray(interval1) if not isinstance(interval2, np.ndarray): interval2 = np.asarray(interval2) try: return np.r_[interval1[0] - interval2[1], interval1[1] - interval2[0]] except Exception: return interval1 - interval2 ```
{ "source": "jorgehatccrma/pygrfnn", "score": 2 }
#### File: pygrfnn/examples/rhythm2.py ```python from __future__ import division from time import time import sys sys.path.append('../') # needed to run the examples from within the package folder import numpy as np from scipy.signal import hilbert from scipy.io import loadmat from pygrfnn.network import Model, make_connections, modelFromJSON from pygrfnn.oscillator import Zparam from pygrfnn.grfnn import GrFNN import matplotlib.pyplot as plt from pygrfnn.vis import plot_connections from pygrfnn.vis import tf_detail from pygrfnn.vis import GrFNN_RT_plot from pyrhythm.library import get_pattern from daspy import Signal from daspy.processing import onset_detection_signal use_matlab_stimulus = False RT_display = True def get_stimulus(pattern_name="iso"): if use_matlab_stimulus: D = loadmat('examples/iso44_signal') sr = float(D['Fs'][0][0]) s = D['signal'][0] # analytical signal (generated in matlab) s = Signal(s, sr=sr) else: p = get_pattern(pattern_name) sr = 22050 x, _ = p.as_signal(tempo=120.0, reps=6.0, lead_silence=0.0, sr=sr, click_freq=1200.0, with_beat=False, beat_freq=1800.0, accented=False) x = Signal(x, sr=sr) s = onset_detection_signal(x) rms = np.sqrt(np.sum(s**2)/len(s)) s *= 0.06/rms s = Signal(hilbert(s), sr=s.sr) t = s.time_vector() dt = 1/s.sr # print "SR: ", s.sr return s, t, dt def rhythm_model(): rhythm_model_definition = """ { "name": "Sensory Motor Rhythm model", "layers": [ { "name": "sensory network", "zparams": { "alpha": 0.00001, "beta1": 0.0, "beta2": -2.0, "delta1": 0.0, "delta2": 0.0, "epsilon": 1.0 }, "frequency_range": [0.375, 12.0], "num_oscs": 321, "stimulus_conn_type": "linear", "w": 3.0, "input_channel": 0 }, { "name": "motor network", "zparams": { "alpha": -0.4, "beta1": 1.75, "beta2": -1.25, "delta1": 0.0, "delta2": 0.0, "epsilon": 1.0 }, "frequency_range": [0.375, 12.0], "num_oscs": 321, "stimulus_conn_type": "active" } ], "connections": [ { "source_name": "sensory network", "target_name": "sensory network", "modes": [0.333333333333, 0.5, 1, 2.0, 3.0], "amps": [1, 1, 1, 1, 1], "strength": 1.0, "range": 1.05, "connection_type": "2freq", "self_connect": false, "weight": 0.1 }, { "source_name": "sensory network", "target_name": "motor network", "modes": [0.333333333333, 0.5, 1, 2.0, 3.0], "amps": [1, 1, 1, 1, 1], "strength": 1.25, "range": 1.05, "connection_type": "2freq", "self_connect": true, "weight": 0.4 }, { "source_name": "motor network", "target_name": "motor network", "modes": [0.333333333333, 0.5, 1, 2.0, 3.0], "amps": [1, 1, 1, 1, 1], "strength": 1.0, "range": 1.05, "connection_type": "2freq", "self_connect": false, "weight": 0.1 }, { "source_name": "motor network", "target_name": "sensory network", "modes": [0.333333333333, 0.5, 1, 2.0, 3.0], "amps": [1, 1, 1, 1, 1], "strength": 0.2, "range": 1.05, "connection_type": "2freq", "self_connect": true, "weight": 0.05 } ] } """ return modelFromJSON(rhythm_model_definition) if __name__ == '__main__': if len(sys.argv) > 1: pattern_name = sys.argv[1] else: pattern_name = "iso" s, t, dt = get_stimulus(pattern_name) model = rhythm_model() layer1, layer2 = model.layers() # Simulation if RT_display: plt.ion() plt.plot(t, s); plt.title('Stimulus') GrFNN_RT_plot(layer1, update_interval=2.0/s.sr, title='First Layer') GrFNN_RT_plot(layer2, update_interval=2.0/s.sr, title='Second Layer') tic = time() model.run(s, t, dt) print "Run time: {:0.1f} seconds".format(time() - tic) TF = layer2.Z r = np.sum(TF, 0) rms = np.sqrt(np.sum(r*np.conj(r))/len(r)) r *= 0.06/rms plt.figure() plt.plot(t, np.real(r)) plt.plot(t, np.real(s)) ```
{ "source": "Jorgehdzdata/sqlalchemy-challenge", "score": 3 }
#### File: Jorgehdzdata/sqlalchemy-challenge/app.py ```python import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, func import numpy as np from flask import Flask, jsonify # Database Setup engine = create_engine("sqlite:///Resources//hawaii.sqlite") # reflect an existing database into a new model conn = engine.connect() Base = automap_base() # reflect the tables Base.prepare(engine, reflect=True) # View all of the classes that automap found Base.classes.keys() # Save references to each table mes = Base.classes.measurement station = Base.classes.station # # Create our session (link) from Python to the DB # session = Session(conn) # Flask Setup app = Flask(__name__) # Flask Routes @app.route("/") def welcome(): """List all available api routes.""" return ( f"Available Routes:<br/>" f"/api/v1.0/precipitation<br/>" f"/api/v1.0/stations<br/>" f"/api/v1.0/tobs" ) @app.route("/api/v1.0/precipitation") def measurement(): """Convert the query results to a dictionary using date as the key and prcp as the value. Return the JSON representation of your dictionary. """ session = Session(engine) # Query all measurements results = session.query(mes.date , mes.prcp).all() session.close() all_measurements = [] for d, p in results: measurements_dict = {} measurements_dict["date"] = d measurements_dict["prcp"] = p all_measurements.append(measurements_dict) return jsonify(all_measurements) @app.route("/api/v1.0/stations") def stations(): """Return a JSON list of stations from the dataset.""" session = Session(engine) # Query all Stations result2 = session.query(station.station).all() session.close() # Convert list of tuples into normal list all_stat = list(np.ravel(result2)) return jsonify(all_stat) @app.route("/api/v1.0/tobs") def tob(): """Return a JSON list of stations from the dataset.""" session = Session(engine) # Query all Stations result3 = session.query(mes.date, mes.tobs).filter(mes.date >= '2016-08-23').filter(mes.station == 'USC00519281') session.close() tobs_365 = [] for d, t in result3: tobs_dict = {} tobs_dict["date"] = d tobs_dict["prcp"] = t tobs_365.append(tobs_dict) return jsonify(tobs_365) if __name__ == "__main__": app.run(debug=True) ```
{ "source": "Jorgehdzdata/web-scraping-challenge", "score": 3 }
#### File: web-scraping-challenge/Mission_to_Mars/app.py ```python from flask_pymongo import PyMongo from flask import Flask, render_template, redirect import scrape_mars app = Flask(__name__) # Use flask_pymongo to set up mongo connection app.config["MONGO_URI"] = "mongodb://localhost:27017/mission_to_mars_app" mongodb = PyMongo(app) # Create main page @app.route("/") def index(): mars_data = mongo.db.mars_data.find_one() return render_template("index.html", data = mars_data) # Create scrape page @app.route("/scrape") def scraper(): mars_data = mongo.db.mars_data mars_item_data = scrape_mars.scrape() mars_data.update({}, mars_item_data, upsert=True) return redirect("/", code=302) if __name__ == "__main__": app.run(debug=True) ```
{ "source": "jorgeibesi/PyDatSet", "score": 3 }
#### File: PyDatSet/pydatset/sfddd.py ```python import numpy as np import os from scipy.ndimage import imread def get_data(directory, num_validation=2000): ''' Load the SFDDD dataset from disk and perform preprocessing to prepare it for the neural net classifier. ''' # Load the raw SFDDD data Xtr, Ytr = load(directory) X_test = Xtr[:num_validation] y_test = Ytr[:num_validation] X_train = Xtr[num_validation:] y_train = Ytr[num_validation:] l = len(X_train) mask = np.random.choice(l, l) X_train = X_train[mask] y_train = y_train[mask] X_train = X_train.astype(np.float64) X_test = X_test.astype(np.float64) # Transpose so that channels come first X_train = X_train.transpose(0, 3, 1, 2) X_test = X_test.transpose(0, 3, 1, 2) mean_image = np.mean(X_train, axis=0) std = np.std(X_train) X_train -= mean_image X_test -= mean_image X_train /= std X_test /= std return { 'X_train': X_train, 'y_train': y_train, 'X_test': X_test, 'y_test': y_test, 'mean': mean_image, 'std': std } def load_imgs(folder): ''' Load all images in a folder ''' names = [x for x in os.listdir(folder) if '.jpg' in x] num_of_images = len(names) imgs = [] for i in range(num_of_images): imgs.append(imread(os.path.join(folder, names[i]), mode='RGB')) return imgs def load(ROOT): ''' load all of SFDDD ''' xs = [] ys = [] for b in range(10): imgs = load_imgs(os.path.join(ROOT, 'train', 'c%d' % (b, ))) ys.append([b] * len(imgs)) xs.append(imgs) Xtr = np.concatenate(xs) Ytr = np.concatenate(ys) mask = np.arange(len(Ytr)) np.random.shuffle(mask) Xtr = Xtr[mask] Ytr = Ytr[mask] return Xtr, Ytr ```
{ "source": "jorge-imperial/mongo_ftdc", "score": 3 }
#### File: mongo_ftdc/tests/test_parse_file.py ```python def test_import(): import pyftdc assert 0 == 0 diagnostics_file = './diagnostic.data_40/metrics.2021-07-22T17-16-31Z-00000' def test_parse(): import pyftdc # Create a parser object p = pyftdc.FTDCParser() status = p.parse_file(diagnostics_file) assert status == 0 def test_parse_get_metadata(): import pyftdc # Create a parser object p = pyftdc.FTDCParser() status = p.parse_file(diagnostics_file) assert status == 0 meta = p.metadata if len(meta) > 0: print(meta[0]) print(f"metadata has {len(meta)} elements") assert len(meta) > 0 def test_parse_get_timestamps(): import pyftdc # Create a parser object p = pyftdc.FTDCParser() status = p.parse_file(diagnostics_file) assert status == 0 ts = p.get_timestamps() print(f"There are {len(ts)} timestamps") assert len(ts) > 0 def test_parse_metrics(): import pyftdc # Create a parser object p = pyftdc.FTDCParser() status = p.parse_file(diagnostics_file) assert status == 0 metrics = p.metric_names for m in metrics: print(f"\tMetric: {m}") print(f"There are {len(metrics)} metrics") assert len(metrics) > 0 def test_metrics_samples(): import pyftdc # Create a parser object p = pyftdc.FTDCParser() status = p.parse_file(diagnostics_file) assert status == 0 metrics = p.metric_names m = p.get_metric(metrics[37]) n = p.get_metric(metrics[73]) assert len(n) == len(m) ts = p.get_timestamps() middle_ts = ts[int(len(ts)/2)] h1 = p.get_metric(metrics[73], end=middle_ts) h2 = p.get_metric(metrics[73], start=middle_ts) assert len(ts) == len(h1) + len(h2) # Ten samples (same chunk, for this metrics file) ten_more = ts[int(len(ts)/2)+10] m_10 = p.get_metric(metrics[37], start=middle_ts, end=ten_more) assert 10 == len(m_10) # Four hundred so me use two chunks (again, for this particular metrics file) four_hundred_more = ts[int(len(ts)/2)+400] m_400 = p.get_metric(metrics[37], start=middle_ts, end=four_hundred_more) assert 400 == len(m_400) #TODO: Test for lists of samples def test_metrics_numpy(): import pyftdc # Create a parser object p = pyftdc.FTDCParser() status = p.parse_file(diagnostics_file) assert status == 0 metrics = p.metric_names m = p.get_metric(metrics[37]) n = p.get_metric(metrics[73]) assert len(n) == len(m) ts = p.get_timestamps() middle_ts = ts[int(len(ts)/2)] h1 = p.get_metric_numpy(metrics[73], end=middle_ts) h2 = p.get_metric_numpy(metrics[73], start=middle_ts) assert len(ts) == len(h1) + len(h2) # Ten samples (same chunk, for this metrics file) ten_more = ts[int(len(ts)/2)+10] m_10 = p.get_metric_numpy(metrics[37], start=middle_ts, end=ten_more) assert 10 == len(m_10) # Four hundred so me use two chunks (again, for this particular metrics file) four_hundred_more = ts[int(len(ts)/2)+400] m_400 = p.get_metric_numpy(metrics[37], start=middle_ts, end=four_hundred_more) assert 400 == len(m_400) assert str(type(m_400)) == "<class 'numpy.ndarray'>" mm = p.get_metrics_list_numpy([metrics[73], metrics[37]]) assert str(type(mm[0])) == "<class 'numpy.ndarray'>" assert len(mm) == 2 assert len(mm[0]) == len(n) assert len(mm[1]) == len(m) def test_metrics_rated_numpy(): import pyftdc # Create a parser object p = pyftdc.FTDCParser() status = p.parse_file(diagnostics_file) assert status == 0 metrics = p.metric_names m = p.get_metric(metrics[37]) n = p.get_metric(metrics[73]) assert len(n) == len(m) m_rated_with_name = p.get_metric('@'+metrics[37]) m_rated = p.get_metric(metrics[37], rated_metric=True) assert len(m_rated_with_name) == len(m_rated) def test_metrics_stall(): import pyftdc # Create a parser object p = pyftdc.FTDCParser() status = p.parse_file(diagnostics_file) assert status == 0 ftdc_metrics_keys = [ "start", # When starting with @ apply a rated differential # WT tickets "serverStatus.wiredTiger.concurrentTransactions.read.out", "serverStatus.wiredTiger.concurrentTransactions.write.out", "serverStatus.wiredTiger.concurrentTransactions.read.totalTickets", "serverStatus.wiredTiger.concurrentTransactions.write.totalTickets", # application threads "@serverStatus.wiredTiger.lock.checkpoint lock application thread wait time (usecs)", "@serverStatus.wiredTiger.lock.dhandle lock application thread time waiting (usecs)", "@serverStatus.wiredTiger.lock.durable timestamp queue lock application thread time waiting (usecs)", "@serverStatus.wiredTiger.lock.metadata lock application thread wait time (usecs)", "@serverStatus.wiredTiger.lock.read timestamp queue lock application thread time waiting (usecs)", "@serverStatus.wiredTiger.lock.schema lock application thread wait time (usecs)", "@serverStatus.wiredTiger.lock.table lock application thread time waiting for the table lock (usecs)", "@serverStatus.wiredTiger.lock.txn global lock application thread time waiting (usecs)", "@serverStatus.wiredTiger.cache.cache overflow cursor application thread wait time (usecs)", # global WT lock acquistions "@serverStatus.wiredTiger.lock.txn global read lock acquisitions", "@serverStatus.wiredTiger.connection.pthread mutex shared lock read-lock calls", "@serverStatus.wiredTiger.connection.pthread mutex shared lock write-lock calls", "@serverStatus.wiredTiger.connection.pthread mutex condition wait calls", "@serverStatus.wiredTiger.transaction.transaction range of IDs currently pinned", "@serverStatus.wiredTiger.transaction.transaction range of IDs currently pinned by a checkpoint", # internal threads "@serverStatus.wiredTiger.lock.checkpoint lock internal thread wait time (usecs)", "@serverStatus.wiredTiger.lock.dhandle lock internal thread time waiting (usecs)", "@serverStatus.wiredTiger.lock.metadata lock internal thread wait time (usecs)", "@serverStatus.wiredTiger.lock.durable timestamp queue lock internal thread time waiting (usecs)", "@serverStatus.wiredTiger.lock.read timestamp queue lock internal thread time waiting (usecs)", "@serverStatus.wiredTiger.lock.schema lock internal thread wait time (usecs)", "@serverStatus.wiredTiger.lock.table lock internal thread time waiting for the table lock (usecs)", "@serverStatus.wiredTiger.lock.txn global lock internal thread time waiting (usecs)", # capacities? learning how these work as a function of available CPU time (what domain?)... "@serverStatus.wiredTiger.capacity.time waiting due to total capacity (usecs)", "@serverStatus.wiredTiger.capacity.time waiting during checkpoint (usecs)", "@serverStatus.wiredTiger.capacity.time waiting during eviction (usecs)", "@serverStatus.wiredTiger.capacity.time waiting during logging (usecs)", "@serverStatus.wiredTiger.capacity.time waiting during read (usecs)", # cache, full-ness & pressure - unrated "serverStatus.wiredTiger.cache.tracked dirty bytes in the cache", "serverStatus.wiredTiger.cache.bytes currently in the cache", "serverStatus.wiredTiger.cache.bytes dirty in the cache cumulative", "serverStatus.wiredTiger.cache.bytes not belonging to page images in the cache", "serverStatus.wiredTiger.cache.bytes belonging to the cache overflow table in the cache", # cache, storage demand & pressure "@serverStatus.wiredTiger.cache.bytes read into cache", "@serverStatus.wiredTiger.cache.bytes written from cache", "@serverStatus.wiredTiger.connection.total read I/Os", "@serverStatus.wiredTiger.connection.total write I/Os", "@serverStatus.wiredTiger.block-manager.bytes read", "@serverStatus.wiredTiger.block-manager.bytes written", # checkpoint pressure "serverStatus.wiredTiger.transaction.transaction checkpoint currently running", # unrated "serverStatus.wiredTiger.connection.files currently open", # unrated "@serverStatus.wiredTiger.cache.eviction worker thread evicting pages", "@serverStatus.wiredTiger.cache.hazard pointer check calls", "@serverStatus.wiredTiger.cursor.cursor search near calls", # overflow / lookaside pressure (on host demand) pre-4.4 "@serverStatus.wiredTiger.cache.cache overflow score", "@serverStatus.wiredTiger.cache.cache overflow table entries", "@serverStatus.wiredTiger.cache.cache overflow table insert calls", "@serverStatus.wiredTiger.cache.cache overflow table remove calls", # "@serverStatus.wiredTiger.cache.cache overflow cursor internal thread wait time (usecs)" # new in 4.4: "@serverStatus.wiredTiger.cache.history store score", "@serverStatus.wiredTiger.cache.history store table on-disk size" "@serverStatus.wiredTiger.cache.history store table insert calls", "@serverStatus.wiredTiger.cache.history store table reads", "@local.oplog.rs.stats.wiredTiger.reconciliation.overflow values written", "@local.oplog.rs.stats.wiredTiger.btree.overflow pages", "@serverStatus.wiredTiger.cache.overflow pages read into cache", "@serverStatus.wiredTiger.cache.pages selected for eviction unable to be evicted as the parent page has overflow items", # WT backup cursors "serverStatus.storageEngine.backupCursorOpen", "serverStatus.storageEngine.oldestRequiredTimestampForCrashRecovery.t", "serverStatus.storageEngine.oldestRequiredTimestampForCrashRecovery.i", # dhandles "serverStatus.wiredTiger.data-handle.connection data handles currently active", ] mm = p.get_metrics_list_numpy(ftdc_metrics_keys) print(len(mm)) ```
{ "source": "jorgeisa/Respaldo_EDD_Fase1", "score": 3 }
#### File: Respaldo_EDD_Fase1/team13/Main.py ```python from timeit import default_timer import Funciones as j # Test para funciones def test(): print("Creacion de DBs:") print(j.createDatabase('DB1'), end="-") print(j.createDatabase('DB2'), end="-") print(j.createDatabase('DB3'), end="-") print(j.createDatabase('DB4'), end="-") print(j.createDatabase('DB5'), end="-") print(j.createDatabase('DB6'), end="-") print(j.createDatabase('DB7'), end="-") print(j.createDatabase('DB8'), end="-") print(j.createDatabase('DB9'), end="-") print(j.createDatabase('DB10'), end="-") print(j.createDatabase('DB11'), end="-") print(j.createDatabase('DB12'), end="-") print(j.createDatabase('DB13'), end="-") print(j.createDatabase('DB14'), end="-") print(j.createDatabase('DB15'), end="-") print(j.createDatabase('DB16'), end="-") print(j.createDatabase('DB17'), end="-") print(j.createDatabase('DB18'), end="-") print(j.createDatabase('DB19'), end="-") print(j.createDatabase('DB20'), end="-") print(j.createDatabase('DB21'), end="-") print(j.createDatabase('DB22'), end="-") print(j.createDatabase('DB23'), end="-") print(j.createDatabase('DB24'), end="-") print(j.createDatabase('DB25')) print(j.createDatabase('DB26'), end="-") print(j.createDatabase('DB27'), end="-") print(j.createDatabase('DB28'), end="-") print(j.createDatabase('DB29'), end="-") print(j.createDatabase('DB30'), end="-") print(j.createDatabase('DB31'), end="-") print(j.createDatabase('DB32'), end="-") print(j.createDatabase('DB33'), end="-") print(j.createDatabase('DB34'), end="-") print(j.createDatabase('DB35'), end="-") print(j.createDatabase('DB36'), end="-") print(j.createDatabase('DB37'), end="-") print(j.createDatabase('DB38'), end="-") print(j.createDatabase('DB39'), end="-") print(j.createDatabase('DB40'), end="-") print(j.createDatabase('DB41'), end="-") print(j.createDatabase('DB42'), end="-") print(j.createDatabase('DB43'), end="-") print(j.createDatabase('DB44'), end="-") print(j.createDatabase('DB45'), end="-") print(j.createDatabase('DB46'), end="-") print(j.createDatabase('DB47'), end="-") print(j.createDatabase('DB48'), end="-") print(j.createDatabase('DB49'), end="-") print(j.createDatabase('DB50')) print(j.createDatabase('DB51'), end="-") print(j.createDatabase('DB52'), end="-") print(j.createDatabase('DB53'), end="-") print(j.createDatabase('DB54'), end="-") print(j.createDatabase('DB55'), end="-") print(j.createDatabase('DB56'), end="-") print(j.createDatabase('DB57'), end="-") print(j.createDatabase('DB58'), end="-") print(j.createDatabase('DB59'), end="-") print(j.createDatabase('DB60'), end="-") print(j.createDatabase('DB61'), end="-") print(j.createDatabase('DB62'), end="-") print(j.createDatabase('DB63'), end="-") print(j.createDatabase('DB64'), end="-") print(j.createDatabase('DB65'), end="-") print(j.createDatabase('DB66'), end="-") print(j.createDatabase('DB67'), end="-") print(j.createDatabase('DB68'), end="-") print(j.createDatabase('DB69'), end="-") print(j.createDatabase('DB70'), end="-") print(j.createDatabase('DB71'), end="-") print(j.createDatabase('DB72'), end="-") print(j.createDatabase('DB73'), end="-") print(j.createDatabase('DB74'), end="-") print(j.createDatabase('DB75')) print(j.createDatabase('DB76'), end="-") print(j.createDatabase('DB77'), end="-") print(j.createDatabase('DB78'), end="-") print(j.createDatabase('DB79'), end="-") print(j.createDatabase('DB80'), end="-") print(j.createDatabase('DB81'), end="-") print(j.createDatabase('DB82'), end="-") print(j.createDatabase('DB83'), end="-") print(j.createDatabase('DB84'), end="-") print(j.createDatabase('DB85'), end="-") print(j.createDatabase('DB86'), end="-") print(j.createDatabase('DB87'), end="-") print(j.createDatabase('DB88'), end="-") print(j.createDatabase('DB89'), end="-") print(j.createDatabase('DB90'), end="-") print(j.createDatabase('DB91'), end="-") print(j.createDatabase('DB92'), end="-") print(j.createDatabase('DB93'), end="-") print(j.createDatabase('DB94'), end="-") print(j.createDatabase('DB95'), end="-") print(j.createDatabase('DB96'), end="-") print(j.createDatabase('DB97'), end="-") print(j.createDatabase('DB98'), end="-") print(j.createDatabase('DB99'), end="-") print(j.createDatabase('DB100')) print("\nCreacion de Tablas en DBs:") print("Creacion Tablas DB2:") print(j.createTable('DB2', 'Table1_DB2', 2), end="-") print(j.createTable('DB2', 'Table2_DB2', 2), end="-") print(j.createTable('DB2', 'Table3_DB2', 2), end="-") print(j.createTable('DB2', 'Table4_DB2', 2), end="-") print(j.createTable('DB2', 'Table5_DB2', 2), end="-") print(j.createTable('DB2', 'Table6_DB2', 2), end="-") print(j.createTable('DB2', 'Table7_DB2', 2), end="-") print(j.createTable('DB2', 'Table8_DB2', 2), end="-") print(j.createTable('DB2', 'Table9_DB2', 2), end="-") print(j.createTable('DB2', 'Table10_DB2', 2), end="-") print(j.createTable('DB2', 'Table11_DB2', 2), end="-") print(j.createTable('DB2', 'Table12_DB2', 2), end="-") print(j.createTable('DB2', 'Table13_DB2', 2), end="-") print(j.createTable('DB2', 'Table14_DB2', 2), end="-") print(j.createTable('DB2', 'Table15_DB2', 2), end="-") print(j.createTable('DB2', 'Table16_DB2', 2), end="-") print(j.createTable('DB2', 'Table17_DB2', 2), end="-") print(j.createTable('DB2', 'Table18_DB2', 2), end="-") print(j.createTable('DB2', 'Table19_DB2', 2), end="-") print(j.createTable('DB2', 'Table20_DB2', 2), end="-") print(j.createTable('DB2', 'Table21_DB2', 2), end="-") print(j.createTable('DB2', 'Table22_DB2', 2), end="-") print(j.createTable('DB2', 'Table23_DB2', 2), end="-") print(j.createTable('DB2', 'Table24_DB2', 2), end="-") print(j.createTable('DB2', 'Table25_DB2', 2)) print(j.createTable('DB2', 'Table26_DB2', 2), end="-") print(j.createTable('DB2', 'Table27_DB2', 2), end="-") print(j.createTable('DB2', 'Table28_DB2', 2), end="-") print(j.createTable('DB2', 'Table29_DB2', 2), end="-") print(j.createTable('DB2', 'Table30_DB2', 2), end="-") print(j.createTable('DB2', 'Table31_DB2', 2), end="-") print(j.createTable('DB2', 'Table32_DB2', 2), end="-") print(j.createTable('DB2', 'Table33_DB2', 2), end="-") print(j.createTable('DB2', 'Table34_DB2', 2), end="-") print(j.createTable('DB2', 'Table35_DB2', 2), end="-") print(j.createTable('DB2', 'Table36_DB2', 2), end="-") print(j.createTable('DB2', 'Table37_DB2', 2), end="-") print(j.createTable('DB2', 'Table38_DB2', 2), end="-") print(j.createTable('DB2', 'Table39_DB2', 2), end="-") print(j.createTable('DB2', 'Table40_DB2', 2), end="-") print(j.createTable('DB2', 'Table41_DB2', 2), end="-") print(j.createTable('DB2', 'Table42_DB2', 2), end="-") print(j.createTable('DB2', 'Table43_DB2', 2), end="-") print(j.createTable('DB2', 'Table44_DB2', 2), end="-") print(j.createTable('DB2', 'Table45_DB2', 2), end="-") print(j.createTable('DB2', 'Table46_DB2', 2), end="-") print(j.createTable('DB2', 'Table47_DB2', 2), end="-") print(j.createTable('DB2', 'Table48_DB2', 2), end="-") print(j.createTable('DB2', 'Table49_DB2', 2), end="-") print(j.createTable('DB2', 'Table50_DB2', 2)) # Creando tablas a DB4 print("Creacion Tablas DB4:") print(j.createTable('DB4', 'Table1_DB4', 4), end="-") print(j.createTable('DB4', 'Table2_DB4', 4), end="-") print(j.createTable('DB4', 'Table3_DB4', 4), end="-") print(j.createTable('DB4', 'Table4_DB4', 4), end="-") print(j.createTable('DB4', 'Table5_DB4', 4), end="-") print(j.createTable('DB4', 'Table6_DB4', 4), end="-") print(j.createTable('DB4', 'Table7_DB4', 4), end="-") print(j.createTable('DB2', 'Table8_DB4', 4), end="-") print(j.createTable('DB4', 'Table9_DB4', 4), end="-") print(j.createTable('DB4', 'Table10_DB4', 4), end="-") print(j.createTable('DB4', 'Table11_DB4', 4), end="-") print(j.createTable('DB4', 'Table12_DB4', 4), end="-") print(j.createTable('DB4', 'Table13_DB4', 4), end="-") print(j.createTable('DB4', 'Table14_DB4', 4), end="-") print(j.createTable('DB4', 'Table15_DB4', 4), end="-") print(j.createTable('DB4', 'Table16_DB4', 4), end="-") print(j.createTable('DB4', 'Table17_DB4', 4), end="-") print(j.createTable('DB4', 'Table18_DB4', 4), end="-") print(j.createTable('DB4', 'Table19_DB4', 4), end="-") print(j.createTable('DB4', 'Table20_DB4', 4), end="-") print(j.createTable('DB4', 'Table21_DB4', 4), end="-") print(j.createTable('DB4', 'Table22_DB4', 4), end="-") print(j.createTable('DB4', 'Table23_DB4', 4), end="-") print(j.createTable('DB4', 'Table24_DB4', 4), end="-") print(j.createTable('DB4', 'Table25_DB4', 4)) print(j.createTable('DB4', 'Table26_DB4', 4), end="-") print(j.createTable('DB4', 'Table27_DB4', 4), end="-") print(j.createTable('DB4', 'Table28_DB4', 4), end="-") print(j.createTable('DB4', 'Table29_DB4', 4), end="-") print(j.createTable('DB4', 'Table30_DB4', 4), end="-") print(j.createTable('DB4', 'Table31_DB4', 4), end="-") print(j.createTable('DB4', 'Table32_DB4', 4), end="-") print(j.createTable('DB4', 'Table33_DB4', 4), end="-") print(j.createTable('DB4', 'Table34_DB4', 4), end="-") print(j.createTable('DB4', 'Table35_DB4', 4), end="-") print(j.createTable('DB4', 'Table36_DB4', 4), end="-") print(j.createTable('DB4', 'Table37_DB4', 4), end="-") print(j.createTable('DB4', 'Table38_DB4', 4), end="-") print(j.createTable('DB4', 'Table39_DB4', 4), end="-") print(j.createTable('DB4', 'Table40_DB4', 4), end="-") print(j.createTable('DB4', 'Table41_DB4', 4), end="-") print(j.createTable('DB4', 'Table42_DB4', 4), end="-") print(j.createTable('DB4', 'Table43_DB4', 4), end="-") print(j.createTable('DB4', 'Table44_DB4', 4), end="-") print(j.createTable('DB4', 'Table45_DB4', 4), end="-") print(j.createTable('DB4', 'Table46_DB4', 4), end="-") print(j.createTable('DB4', 'Table47_DB4', 4), end="-") print(j.createTable('DB4', 'Table48_DB4', 4), end="-") print(j.createTable('DB4', 'Table49_DB4', 4), end="-") print(j.createTable('DB4', 'Table50_DB4', 4)) print("Creacion Tablas DB6:") print(j.createTable('DB6', 'Table1_DB6', 6), end="-") print(j.createTable('DB6', 'Table2_DB6', 6), end="-") print(j.createTable('DB6', 'Table3_DB6', 6), end="-") print(j.createTable('DB6', 'Table4_DB6', 6), end="-") print(j.createTable('DB6', 'Table5_DB6', 6), end="-") print(j.createTable('DB6', 'Table6_DB6', 6), end="-") print(j.createTable('DB6', 'Table7_DB6', 6), end="-") print(j.createTable('DB6', 'Table8_DB6', 6), end="-") print(j.createTable('DB6', 'Table9_DB6', 6), end="-") print(j.createTable('DB6', 'Table10_DB6', 6), end="-") print(j.createTable('DB6', 'Table11_DB6', 6), end="-") print(j.createTable('DB6', 'Table12_DB6', 6), end="-") print(j.createTable('DB6', 'Table13_DB6', 6), end="-") print(j.createTable('DB6', 'Table14_DB6', 6), end="-") print(j.createTable('DB6', 'Table15_DB6', 6), end="-") print(j.createTable('DB6', 'Table16_DB6', 6), end="-") print(j.createTable('DB6', 'Table17_DB6', 6), end="-") print(j.createTable('DB6', 'Table18_DB6', 6), end="-") print(j.createTable('DB6', 'Table19_DB6', 6), end="-") print(j.createTable('DB6', 'Table20_DB6', 6), end="-") print(j.createTable('DB6', 'Table21_DB6', 6), end="-") print(j.createTable('DB6', 'Table22_DB6', 6), end="-") print(j.createTable('DB6', 'Table23_DB6', 6), end="-") print(j.createTable('DB6', 'Table24_DB6', 6), end="-") print(j.createTable('DB6', 'Table25_DB6', 6)) print(j.createTable('DB6', 'Table26_DB6', 6), end="-") print(j.createTable('DB6', 'Table27_DB6', 6), end="-") print(j.createTable('DB6', 'Table28_DB6', 6), end="-") print(j.createTable('DB6', 'Table29_DB6', 6), end="-") print(j.createTable('DB6', 'Table30_DB6', 6), end="-") print(j.createTable('DB6', 'Table31_DB6', 6), end="-") print(j.createTable('DB6', 'Table32_DB6', 6), end="-") print(j.createTable('DB6', 'Table33_DB6', 6), end="-") print(j.createTable('DB6', 'Table34_DB6', 6), end="-") print(j.createTable('DB6', 'Table35_DB6', 6), end="-") print(j.createTable('DB6', 'Table36_DB6', 6), end="-") print(j.createTable('DB6', 'Table37_DB6', 6), end="-") print(j.createTable('DB6', 'Table38_DB6', 6), end="-") print(j.createTable('DB6', 'Table39_DB6', 6), end="-") print(j.createTable('DB6', 'Table40_DB6', 6), end="-") print(j.createTable('DB6', 'Table41_DB6', 6), end="-") print(j.createTable('DB6', 'Table42_DB6', 6), end="-") print(j.createTable('DB6', 'Table43_DB6', 6), end="-") print(j.createTable('DB6', 'Table44_DB6', 6), end="-") print(j.createTable('DB6', 'Table45_DB6', 6), end="-") print(j.createTable('DB6', 'Table46_DB6', 6), end="-") print(j.createTable('DB6', 'Table47_DB6', 6), end="-") print(j.createTable('DB6', 'Table48_DB6', 6), end="-") print(j.createTable('DB6', 'Table49_DB6', 6), end="-") print(j.createTable('DB6', 'Table50_DB6', 6)) print("Creacion Tablas DB8:") print(j.createTable('DB8', 'Table1_DB8', 8), end="-") print(j.createTable('DB8', 'Table2_DB8', 8), end="-") print(j.createTable('DB8', 'Table3_DB8', 8), end="-") print(j.createTable('DB8', 'Table4_DB8', 8), end="-") print(j.createTable('DB8', 'Table5_DB8', 8), end="-") print(j.createTable('DB8', 'Table6_DB8', 8), end="-") print(j.createTable('DB8', 'Table7_DB8', 8), end="-") print(j.createTable('DB8', 'Table8_DB8', 8), end="-") print(j.createTable('DB8', 'Table9_DB8', 8), end="-") print(j.createTable('DB8', 'Table10_DB8', 8), end="-") print(j.createTable('DB8', 'Table11_DB8', 8), end="-") print(j.createTable('DB8', 'Table12_DB8', 8), end="-") print(j.createTable('DB8', 'Table13_DB8', 8), end="-") print(j.createTable('DB8', 'Table14_DB8', 8), end="-") print(j.createTable('DB8', 'Table15_DB8', 8), end="-") print(j.createTable('DB8', 'Table16_DB8', 8), end="-") print(j.createTable('DB8', 'Table17_DB8', 8), end="-") print(j.createTable('DB8', 'Table18_DB8', 8), end="-") print(j.createTable('DB8', 'Table19_DB8', 8), end="-") print(j.createTable('DB8', 'Table20_DB8', 8), end="-") print(j.createTable('DB8', 'Table21_DB8', 8), end="-") print(j.createTable('DB8', 'Table22_DB8', 8), end="-") print(j.createTable('DB8', 'Table23_DB8', 8), end="-") print(j.createTable('DB8', 'Table24_DB8', 8), end="-") print(j.createTable('DB8', 'Table25_DB8', 8)) print(j.createTable('DB8', 'Table26_DB8', 8), end="-") print(j.createTable('DB8', 'Table27_DB8', 8), end="-") print(j.createTable('DB8', 'Table28_DB8', 8), end="-") print(j.createTable('DB8', 'Table29_DB8', 8), end="-") print(j.createTable('DB8', 'Table30_DB8', 8), end="-") print(j.createTable('DB8', 'Table31_DB8', 8), end="-") print(j.createTable('DB8', 'Table32_DB8', 8), end="-") print(j.createTable('DB8', 'Table33_DB8', 8), end="-") print(j.createTable('DB8', 'Table34_DB8', 8), end="-") print(j.createTable('DB8', 'Table35_DB8', 8), end="-") print(j.createTable('DB8', 'Table36_DB8', 8), end="-") print(j.createTable('DB8', 'Table37_DB8', 8), end="-") print(j.createTable('DB8', 'Table38_DB8', 8), end="-") print(j.createTable('DB8', 'Table39_DB8', 8), end="-") print(j.createTable('DB8', 'Table40_DB8', 8), end="-") print(j.createTable('DB8', 'Table41_DB8', 8), end="-") print(j.createTable('DB8', 'Table42_DB8', 8), end="-") print(j.createTable('DB8', 'Table43_DB8', 8), end="-") print(j.createTable('DB8', 'Table44_DB8', 8), end="-") print(j.createTable('DB8', 'Table45_DB8', 8), end="-") print(j.createTable('DB8', 'Table46_DB8', 8), end="-") print(j.createTable('DB8', 'Table47_DB8', 8), end="-") print(j.createTable('DB8', 'Table48_DB8', 8), end="-") print(j.createTable('DB8', 'Table49_DB8', 8), end="-") print(j.createTable('DB8', 'Table50_DB8', 8)) print("Creacion Tablas DB10:") print(j.createTable('DB10', 'Table1_DB10', 10), end="-") print(j.createTable('DB10', 'Table2_DB10', 10), end="-") print(j.createTable('DB10', 'Table3_DB10', 10), end="-") print(j.createTable('DB10', 'Table4_DB10', 10), end="-") print(j.createTable('DB10', 'Table5_DB10', 10), end="-") print(j.createTable('DB10', 'Table6_DB10', 10), end="-") print(j.createTable('DB10', 'Table7_DB10', 10), end="-") print(j.createTable('DB10', 'Table8_DB10', 10), end="-") print(j.createTable('DB10', 'Table9_DB10', 10), end="-") print(j.createTable('DB10', 'Table10_DB10', 10), end="-") print(j.createTable('DB10', 'Table11_DB10', 10), end="-") print(j.createTable('DB10', 'Table12_DB10', 10), end="-") print(j.createTable('DB10', 'Table13_DB10', 10), end="-") print(j.createTable('DB10', 'Table14_DB10', 10), end="-") print(j.createTable('DB10', 'Table15_DB10', 10), end="-") print(j.createTable('DB10', 'Table16_DB10', 10), end="-") print(j.createTable('DB10', 'Table17_DB10', 10), end="-") print(j.createTable('DB10', 'Table18_DB10', 10), end="-") print(j.createTable('DB10', 'Table19_DB10', 10), end="-") print(j.createTable('DB10', 'Table20_DB10', 10), end="-") print(j.createTable('DB10', 'Table21_DB10', 10), end="-") print(j.createTable('DB10', 'Table22_DB10', 10), end="-") print(j.createTable('DB10', 'Table23_DB10', 10), end="-") print(j.createTable('DB10', 'Table24_DB10', 10), end="-") print(j.createTable('DB10', 'Table25_DB10', 10)) print(j.createTable('DB10', 'Table26_DB10', 10), end="-") print(j.createTable('DB10', 'Table27_DB10', 10), end="-") print(j.createTable('DB10', 'Table28_DB10', 10), end="-") print(j.createTable('DB10', 'Table29_DB10', 10), end="-") print(j.createTable('DB10', 'Table30_DB10', 10), end="-") print(j.createTable('DB10', 'Table31_DB10', 10), end="-") print(j.createTable('DB10', 'Table32_DB10', 10), end="-") print(j.createTable('DB10', 'Table33_DB10', 10), end="-") print(j.createTable('DB10', 'Table34_DB10', 10), end="-") print(j.createTable('DB10', 'Table35_DB10', 10), end="-") print(j.createTable('DB10', 'Table36_DB10', 10), end="-") print(j.createTable('DB10', 'Table37_DB10', 10), end="-") print(j.createTable('DB10', 'Table38_DB10', 10), end="-") print(j.createTable('DB10', 'Table39_DB10', 10), end="-") print(j.createTable('DB10', 'Table40_DB10', 10), end="-") print(j.createTable('DB10', 'Table41_DB10', 10), end="-") print(j.createTable('DB10', 'Table42_DB10', 10), end="-") print(j.createTable('DB10', 'Table43_DB10', 10), end="-") print(j.createTable('DB10', 'Table44_DB10', 10), end="-") print(j.createTable('DB10', 'Table45_DB10', 10), end="-") print(j.createTable('DB10', 'Table46_DB10', 10), end="-") print(j.createTable('DB10', 'Table47_DB10', 10), end="-") print(j.createTable('DB10', 'Table48_DB10', 10), end="-") print(j.createTable('DB10', 'Table49_DB10', 10), end="-") print(j.createTable('DB10', 'Table50_DB10', 10)) print('\nj.insertando tuplas en DB4:') print(j.insert('DB4', 'Table1_DB4', [1, "Manuel", 0.5, "Azul"]), end='-') print(j.insert('DB4', 'Table1_DB4', [2, "Gabriela", 1.5, "Amarillo"]), end='-') print(j.insert('DB4', 'Table1_DB4', [3, "Diego", 2.5, "Verde"]), end='-') print(j.insert('DB4', 'Table1_DB4', [4, "Antonio", 3.5, "Rosado"]), end='-') print(j.insert('DB4', 'Table1_DB4', [5, "Jorge", 4.5, "Anaranjado"]), end='-') print(j.insert('DB4', 'Table1_DB4', [6, "Mynor", 5.5, "Gris"]), end='-') print(j.insert('DB4', 'Table1_DB4', [7, "Kevin", 6.5, "Celeste"]), end='-') print(j.insert('DB4', 'Table1_DB4', [8, "Aejandro", 7.5, "Blanco"]), end='-') print(j.insert('DB4', 'Table1_DB4', [9, "Nathan", 8.5, "Negro"]), end='-') print(j.insert('DB4', 'Table1_DB4', [10, "Jessica", 9.5, "Rojo"]), end='-') print(j.insert('DB4', 'Table1_DB4', [11, "Ericha", 10.5, "Azul"]), end='-') print(j.insert('DB4', 'Table1_DB4', [12, "Merry", 11.5, "Amarillo"]), end='-') print(j.insert('DB4', 'Table1_DB4', [13, "Sib", 12.5, "Verde"]), end='-') print(j.insert('DB4', 'Table1_DB4', [14, "Violetta", 13.5, "Rosado"]), end='-') print(j.insert('DB4', 'Table1_DB4', [15, "Meghan", 14.5, "Anaranjado"]), end='-') print(j.insert('DB4', 'Table1_DB4', [16, "Heinrick", 15.5, "Gris"]), end='-') print(j.insert('DB4', 'Table1_DB4', [17, "Tiler", 16.5, "Celeste"]), end='-') print(j.insert('DB4', 'Table1_DB4', [18, "Dennie", 17.5, "Blanco"]), end='-') print(j.insert('DB4', 'Table1_DB4', [19, "Dorie", 18.5, "Negro"]), end='-') print(j.insert('DB4', 'Table1_DB4', [20, "Niles", 19.5, "Rojo"]), end='-') print(j.insert('DB4', 'Table1_DB4', [21, "Olag", 20.5, "Azul"]), end='-') print(j.insert('DB4', 'Table1_DB4', [22, "Noland", 21.5, "Amarillo"]), end='-') print(j.insert('DB4', 'Table1_DB4', [23, "Paulita", 22.5, "Verde"]), end='-') print(j.insert('DB4', 'Table1_DB4', [24, "Forrest", 23.5, "Rosado"]), end='-') print(j.insert('DB4', 'Table1_DB4', [25, "Ulrick", 24.5, "Anaranjado"])) print(j.insert('DB4', 'Table1_DB4', [26, "Angil", 25.5, "Gris"]), end='-') print(j.insert('DB4', 'Table1_DB4', [27, "Fiona", 26.5, "Celeste"]), end='-') print(j.insert('DB4', 'Table1_DB4', [28, "Rodrick", 27.5, "Blanco"]), end='-') print(j.insert('DB4', 'Table1_DB4', [29, "Carolyne", 28.5, "Negro"]), end='-') print(j.insert('DB4', 'Table1_DB4', [30, "Cortney", 29.5, "Rojo"]), end='-') print(j.insert('DB4', 'Table1_DB4', [31, "Byron", 30.5, "Azul"]), end='-') print(j.insert('DB4', 'Table1_DB4', [32, "Lazarus", 31.5, "Amarillo"]), end='-') print(j.insert('DB4', 'Table1_DB4', [33, "Cyndy", 32.5, "Verde"]), end='-') print(j.insert('DB4', 'Table1_DB4', [34, "Becca", 33.5, "Rosado"]), end='-') print(j.insert('DB4', 'Table1_DB4', [35, "Brody", 34.5, "Anaranjado"]), end='-') print(j.insert('DB4', 'Table1_DB4', [36, "Darda", 35.5, "Gris"]), end='-') print(j.insert('DB4', 'Table1_DB4', [37, "Patrice", 36.5, "Celeste"]), end='-') print(j.insert('DB4', 'Table1_DB4', [38, "Bay", 37.5, "Blanco"]), end='-') print(j.insert('DB4', 'Table1_DB4', [39, "Giffy", 38.5, "Negro"]), end='-') print(j.insert('DB4', 'Table1_DB4', [40, "Hallsy", 39.5, "Rojo"]), end='-') print(j.insert('DB4', 'Table1_DB4', [41, "Elinor", 40.5, "Azul"]), end='-') print(j.insert('DB4', 'Table1_DB4', [42, "Maitilde", 41.5, "Amarillo"]), end='-') print(j.insert('DB4', 'Table1_DB4', [43, "Van", 42.5, "Verde"]), end='-') print(j.insert('DB4', 'Table1_DB4', [44, "Marcel", 43.5, "Rosado"]), end='-') print(j.insert('DB4', 'Table1_DB4', [45, "Giselle", 44.5, "Anaranjado"]), end='-') print(j.insert('DB4', 'Table1_DB4', [46, "Olympe", 45.5, "Gris"]), end='-') print(j.insert('DB4', 'Table1_DB4', [47, "Roxi", 46.5, "Celeste"]), end='-') print(j.insert('DB4', 'Table1_DB4', [48, "Debbi", 47.5, "Blanco"]), end='-') print(j.insert('DB4', 'Table1_DB4', [49, "Baron", 48.5, "Negro"]), end='-') print(j.insert('DB4', 'Table1_DB4', [50, "Debera", 49.5, "Rojo"])) print("Impresion 1") testShow('DB4', 'Table1_DB4') print("\nProbando j.alterDatabase: DB4") print(j.alterDatabase("DB4", "DB4P"), end='-') # Caso bueno print(j.alterDatabase("DB4_Plus2", 7), end='-') # error print(j.alterDatabase("DB4", "DB4_Plus"), end='-') # no existe old print(j.alterDatabase("DB4_Plus", "DB5")) # existe new print("\nImpresion 2:") testShow("DB4P", 'Table1_DB4') print('\nProbando j.dropDatabase:') print(j.dropDatabase('DB5'), end='-') # print(j.dropDatabase('DB4P'), end='-') print(j.dropDatabase('DB11'), end='-') print(j.dropDatabase('@'), end='-') # error print(j.dropDatabase('DB4_Plus8')) # No existente print("\nProbando j.extractTable:") print(j.extractTable("DB4P", "Table1_DB4")) # Lista de tuplas print(j.extractTable("DB4P", "Table2_DB4"), end="-") # Lista vacia, sin tupla print(j.extractTable("DB4Pll", "Table2_DB4"), end="-") # DB no existe print(j.extractTable("DB4P", "Table2_DB4ll"), end="-") # Tabla no existe print(j.extractTable("DB4P", 1)) # Error print("\nImpresion 3:") testShow("DB4P", 'Table1_DB4') print("\nProbado el j.extractRangeTable:") print(j.extractRangeTable("DB4P", "Table1_DB4", 2, 22.5, 39.5)) # Existe valido print(j.extractRangeTable("DB4P", "Table2_DB4", 2, 22.5, 39.5), end="-") # No existen tuplas print(j.extractRangeTable("DB4P", 1, 2, 22.5, 39.5)) # no existe base, tabla o error print("\nProbado el j.alterAddPK:") print(j.alterAddPK("DB4P", "Table1_DB4", [0, 5]), end='-') # Columna fuera de limite print(j.alterAddPK("DB4P", "Table1_DB4", [0, 1, 2, 3, 4, 5]), end='-') # Fuera de rango print(j.alterAddPK("DB4P", "Table1_DB4", [0, "Colu"]), end="-") # Error print(j.alterAddPK("DB4Pl", "Table1_DB4", [0, 2]), end="-") # DB no existente print(j.alterAddPK("DB4P", "Table1_DB4l", [0, 2]), end="-") # Tabla no existente print(j.alterAddPK("DB4P", "Table1_DB4", [3]), end="-") # Hay repetidos, error # print(j.alterAddPK("DB4P", "Table1_DB4", [0, 2, 3]), end="-") # Hay repetidos, error print(j.alterAddPK("DB4P", "Table1_DB4", [0, 2]), end="-") # Exitoso print(j.alterAddPK("DB4P", "Table1_DB4", [1])) # ya existe llave primaria print("\nProbando el AlterDrop:") print(j.alterDropPK("DB4P", 7), end="-") # Error print(j.alterDropPK("DB4Pll", "Table1_DB4"), end="-") # db no existe print(j.alterDropPK("DB4P", "Table1_DB4ll"), end="-") # tabla no existe print(j.alterDropPK("DB4P", "Table2_DB4"), end="-") # pk no existe print(j.alterDropPK("DB4P", "Table1_DB4")) # Exito print("\nProbando el j.alterTable:") print(j.alterTable("DB4P", [0], "nuevaTabla"), end="-") # error print(j.alterTable("DB4Pll", "tablaAntigua", "nuevaTabla"), end="-") # DB no existe print(j.alterTable("DB4P", "Table1_DB4ll", "TableNew_DB4"), end="-") # Tabla no existe print(j.alterTable("DB4P", "Table1_DB4", "Table2_DB4"), end="-") # New existe print(j.alterTable("DB4P", "Table1_DB4", "TableNew_DB4")) # New existe print("\nProbando el j.alterAddColumn:") print(j.alterAddColumn("DB4P", "TableNew_DB4", "NuevaColumna"), end="-") print(j.alterAddColumn("DB4P", "TableNew_DB4", []), end="-") # error print(j.alterAddColumn("DB4Plll", "TableNew_DB4", "NuevaColumna"), end="-") # db no existe print(j.alterAddColumn("DB4P", "TableNew_DB4lll", "NuevaColumna")) # tabla no existe print("\nImpresion 4:") testShow("DB4P", 'TableNew_DB4') print("\nProbando j.alterDropColumn:") print(j.alterDropColumn("DB4P", "TableNew_DB4", [0]), end="-") # Error print(j.alterDropColumn("DB4Pll", "TableNew_DB4", 0), end="-") # DB no existe print(j.alterDropColumn("DB4P", "TableNew_DB4ll", 0), end="-") # Tabla no existe print(j.alterDropColumn("DB4P", "TableNew_DB4", 5), end="-") # Fuera de limites print(j.alterDropColumn("DB4P", "TableNew_DB4", 4), end="-") # Correcto print(j.alterDropColumn("DB4P", "TableNew_DB4", 3), end="-") # Correcto print(j.alterDropColumn("DB4P", "TableNew_DB4", 2), end="-") # Correcto # print(j.alterDropColumn("DB4P", "TableNew_DB4", 1), end="-") # Correcto print(j.alterAddPK("DB4P", "TableNew_DB4", [1])) # **Prueba de llave primaria. comentar linea superior** print(j.alterDropColumn("DB4P", "TableNew_DB4", 1)) # Incorrecto, no se puede vaciar la tabala print("\nImpresion 5:") testShow("DB4P", 'TableNew_DB4') print("\nProbando j.dropTable:") print(j.dropTable("DB4P", "TableNew_DB4")) def testShow(db, tabla): print("\nImprimiento DB") print(j.showDatabases()) print("\nImprimiento Tablas", db) print(j.showTables(db)) print("\nImprimiento Tuplas", db) print(j.extractTable(db, tabla)) # Main() inicio = default_timer() test() fin = default_timer() print(fin - inicio) ```
{ "source": "jorgeisa/Respaldo_EDD_Fase2", "score": 3 }
#### File: fase2/team13/main.py ```python from Funciones import * import Funciones as j def test(): print('#' * 10 + ' DATABASES ') print(createDatabase('db6', 'b', 'utf8'), end='-') print(createDatabase('db6', 'bplus', 'ascii'), end='-') # 2, exist db print(createDatabase('db1', 'avl', 'asci'), end='-') # 4, encoding incorrect print(createDatabase('db2', 'avl', 'utf8'), end='-') print(createDatabase('db8', 'isam', 'utf8'), end='-') print(createDatabase('db4', 'jsona', 'utf8'), end='-') # 3, mode incorrect print(createDatabase('db5', 'json', 'utf8'), end='-') print(createDatabase('db7', 'hash', 'ascii')) print('#' * 10 + ' TABLES ') print(createTable('db6', 'Table1_DB6', 3), end='-') print(createTable('db6', 'Table2_DB6', 2), end='-') print(createTable('db6', 'Table3_DB6', 4), end='-') print(createTable('db7', 'Table1_DB7', 4), end='-') print(createTable('db7', 'Table2_DB7', 3)) print('#' * 10 + ' REGISTERS ') print('DB6 - TABLE1', end=': ') print(insert('db66', 'Table1', ['A1', 'B1', 'C1']), end='-') # 2, database doesn't exist print(insert('db6', 'Table1', ['A2', 'B2', 'C2']), end='-') print(insert('db6', 'Table1', ['A3', 'B3', 'C3'])) print('DB6 - TABLE2', end=': ') print(insert('db6', 'Table2', ['A12', 'B12', 'C12']), end='-') print(insert('db6', 'Table2', ['A22', 'B22', 'C22']), end='-') print(insert('db6', 'Table2', ['A32', 'B32', 'C32'])) print('#' * 10 + ' ALTER_DATABASE_MODE') print('BEFORE') dictionary = load('metadata') showDict(dictionary) showMode('b') showMode('bplus') print(alterTableAddFK('db6', 'Table2_DB6', 'Rel1', [0, 1], 'Table1_DB6', [0])) # 0 print(alterTableAddFK('db63', 'Table2_DB6', 'Rel1', [0, 1], 'Table1_DB6', [0])) # 2 print(alterTableAddFK('db6', 'Table2', 'Rel1', [0, 1], 'Table1_DB6', [0])) # 3 print(alterTableAddFK('db6', 'Table2_DB6', 'Rel1', [0, 1], 'Table1', [0])) # 3 print(alterTableAddFK('db6', 'Table2_DB6', 'Rel1', [], 'Table1_DB6', [0])) # 4 print(alterTableAddFK('db6', 'Table2_DB6', 'Rel1', [0, 1], 'Table1_DB6', [])) # 4 print(alterTableAddFK('db6', 'Table2_DB6', 'Rel1', [0, 1], 'Table1_DB6', [0])) # 6 print(alterTableAddFK('db6', 'Table2_DB6', 'Rel2', [0, 1], 'Table1_DB6', [0])) # 0 print(alterTableAddFK('db6', 'Table2_DB6', 'Rel3', [0, 1], 'Table1_DB6', [0])) # 0 print(alterTableAddFK('db6', 'Table2_DB6', 'Rel4', [0, 1], 'Table1_DB6', [0])) # 0 showFK(load('FK')) print('alterDatabaseMode: ', alterDatabaseMode('db6', 'bplus')) print('AFTER') dictionary = load('metadata') showDict(dictionary) showMode('b') showMode('bplus') j = checkMode('b') print('MODE B - DB6: ', j.showTables('db6')) j = checkMode('bplus') print('MODE BPLUS - DB6', j.showTables('db6')) print(showTables('db6')) print(alterTableDropFK('db63', 'Table2_DB6', 'Rel1')) # 2 print(alterTableDropFK('db6', 'Table4', 'Rel3')) # 3 print(alterTableDropFK('db6', 'Table2_DB6', 'Rel3')) # 0 print(alterTableDropFK('db6', 'Table2_DB6', 'Rel1')) # 0 print(alterTableDropFK('db6', 'Table2_DB6', 'Rel2')) # 0 print(alterTableDropFK('db6', 'Table2_DB6', 'Rel3')) # 4 print(alterTableDropFK('db6', 'Table2_DB6', 'Rel4')) # 0 showFK(load('FK')) def test2(): print('#' * 20 + ' Create Database') print(createDatabase('db1', 'avl', 'utf8'), end='-') print(createDatabase('db2', 'b', 'utf8'), end='-') print(createDatabase('db3', 'bplus', 'utf8')) print('#' * 20 + ' Create Table') print(createTable('db1', 'Table1_DB1', 3), end='-') print(createTable('db2', 'Table1_DB2', 3)) print('#' * 20 + ' Insert') print(insert('db1', 'Table1_DB1', ['A1', 'B1', 'C1']), end='-') print(insert('db1', 'Table1_DB1', ['A2', 'B2', 'C2']), end='-') print(insert('db1', 'Table1_DB1', ['A3', 'B3', 'C3']), end='-') print(insert('db2', 'Table1_DB2', ['A1_DB2', 'B1', 'C1']), end='-') print(insert('db2', 'Table1_DB2', ['A2_DB2', 'B2', 'C2']), end='-') print(insert('db2', 'Table1_DB2', ['A3_DB2', 'B3', 'C3'])) print(alterDatabaseEncoding('db1', 'iso-8859-1')) print(extractTable('db1', 'Table1_DB1')) print(checksumDatabase('db1', 'MD5')) print(checksumDatabase('db1', 'MD5')) print(insert('db1', 'Table1_DB1', ['A4', 'B4', 'C4'])) print(checksumDatabase('db1', 'MD5')) print('----------------------------------------------') print(checksumTable('db2', 'Table1_DB2', 'SHA256')) print(checksumTable('db2', 'Table1_DB2', 'SHA256')) print(insert('db2', 'Table1_DB2', ['A4_DB2', 'B4', 'C4'])) print(checksumTable('db2', 'Table1_DB2', 'SHA256')) print(showChecksums(load('checksum'))) print('----------------------------------------------') print(alterTableCompress('db1', 'Table1_DB1', 8)) print(extractTable('db1', 'Table1_DB1')) print(alterTableDecompress('db1', 'Table1_DB1', )) print(extractTable('db1', 'Table1_DB1')) print('#' * 20 + ' Extract Row') print(extractRow('db1', 'Table1_DB1', [1])) print('#' * 20 + ' Update') print(update('db1', 'Table1_DB1', {1: 'B1_Update'}, [1])) print('#' * 20 + ' Extract Row') print(extractRow('db1', 'Table1_DB1', [1])) print('#' * 20 + ' delete') print(delete('db2', 'Table1_DB2', [0])) print(delete('db2', 'Table1_DB2', [1])) print('#' * 20 + ' Extract Row') print(extractRow('db2', 'Table1_DB2', [2])) print('#' * 20 + ' Extract Row Before') print(extractRow('db2', 'Table1_DB2', [0])) print(extractRow('db2', 'Table1_DB2', [1])) print(extractRow('db2', 'Table1_DB2', [2])) print('#' * 20 + ' truncate') print(truncate('db2', 'Table1_DB2')) print('#' * 20 + ' Extract Row After') print(extractRow('db2', 'Table1_DB2', [0])) print(extractRow('db2', 'Table1_DB2', [1])) print(extractRow('db2', 'Table1_DB2', [2])) def test3(): print('#' * 20 + ' Create Database') print(createDatabase('db1', 'avl', 'utf8'), end='-') print(createDatabase('db2', 'b', 'utf8'), end='-') print(createDatabase('db3', 'bplus', 'utf8'), end='-') print(createDatabase('db4', 'isam', 'utf8'), end='-') print(createDatabase('db5', 'json', 'utf8'), end='-') print(createDatabase('db6', 'hash', 'utf8')) print('#' * 20 + ' Create Table') print(createTable('db1', 'Table1_DB1', 3), end='-') print(createTable('db1', 'Table2_DB1', 3), end='-') print(createTable('db1', 'Table3_DB1', 3), end='-') print(createTable('db1', 'Table4_DB1', 3), end='-') print(createTable('db2', 'Table1_DB2', 3), end='-') print(createTable('db2', 'Table2_DB2', 3), end='-') print(createTable('db2', 'Table3_DB2', 3), end='-') print(createTable('db2', 'Table4_DB2', 3), end='-') print(createTable('db3', 'Table1_DB3', 3), end='-') print(createTable('db3', 'Table2_DB3', 3), end='-') print(createTable('db3', 'Table3_DB3', 3), end='-') print(createTable('db3', 'Table4_DB3', 3), end='-') print(createTable('db4', 'Table1_DB4', 3), end='-') print(createTable('db4', 'Table2_DB4', 3), end='-') print(createTable('db4', 'Table3_DB4', 3), end='-') print(createTable('db4', 'Table4_DB4', 3), end='-') print(createTable('db5', 'Table1_DB5', 3), end='-') print(createTable('db5', 'Table2_DB5', 3), end='-') print(createTable('db5', 'Table3_DB5', 3), end='-') print(createTable('db5', 'Table4_DB5', 3), end='-') print(createTable('db6', 'Table1_DB6', 3), end='-') print(createTable('db6', 'Table2_DB6', 3), end='-') print(createTable('db6', 'Table3_DB6', 3), end='-') print(createTable('db6', 'Table4_DB6', 3)) print('#' * 20 + ' Insert') print(insert('db1', 'Table1_DB1', ['A1', 'B1', 'C1']), end='-') print(insert('db1', 'Table2_DB1', ['A2', 'B2', 'C2']), end='-') print(insert('db1', 'Table3_DB1', ['A3', 'B3', 'C3']), end='-') print(insert('db2', 'Table1_DB2', ['A', 'B', 'C']), end='-') print(insert('db2', 'Table1_DB2', ['AA', 'BB', 'CC']), end='-') print(insert('db2', 'Table1_DB2', ['AAA', 'BBB', 'CCC']), end='-') print(insert('db2', 'Table2_DB2', ['A2', 'B2', 'C2']), end='-') print(insert('db2', 'Table3_DB2', ['A3', 'B3', 'C3']), end='-') print(insert('db3', 'Table1_DB3', ['A1', 'B1', 'C1']), end='-') print(insert('db3', 'Table2_DB3', ['A2', 'B2', 'C2']), end='-') print(insert('db3', 'Table3_DB3', ['A3', 'B3', 'C3']), end='-') print(insert('db4', 'Table1_DB4', ['A1', 'B1', 'C1']), end='-') print(insert('db4', 'Table2_DB4', ['A2', 'B2', 'C2']), end='-') print(insert('db4', 'Table3_DB4', ['A3', 'B3', 'C3']), end='-') print(insert('db5', 'Table1_DB5', ['A1', 'B1', 'C1']), end='-') print(insert('db5', 'Table2_DB5', ['A2', 'B2', 'C2']), end='-') print(insert('db5', 'Table3_DB5', ['A3', 'B3', 'C3']), end='-') print(insert('db6', 'Table1_DB6', ['A1', 'B1', 'C1']), end='-') print(insert('db6', 'Table2_DB6', ['A2', 'B2', 'C2']), end='-') print(insert('db6', 'Table3_DB6', ['A3', 'B3', 'C3'])) print() print('#' * 20 + ' EXTRACTROW ' + '#' * 20) print(extractRow('db1', 'Table1_DB1', [2])) print('#' * 20 + ' Show Tables') print(showTables('db1')) print(showTables('db2')) print(showTables('db3')) print(showTables('db4')) print(showTables('db5')) print(showTables('db6')) print() print('#' * 20 + ' Security Mode ' + '#' * 20) print(safeModeOn('db1', 'Table1_DB1')) print(insert('db1', 'Table1_DB1', ['A11', 'B12', 'C13']), end='-') print(insert('db1', 'Table1_DB1', ['A21', 'B22', 'C23']), end='-') print(insert('db1', 'Table1_DB1', ['A31', 'B32', 'C33']), end='-') print(insert('db1', 'Table1_DB1', ['41', 'B42', 'C43'])) dictionary = load('metadata') showDict(dictionary) print('#' * 20 + ' Extract Table') print(extractTable('db1', 'Table1_DB1')) print(extractTable('db2', 'Table1_DB2')) print(extractTable('db3', 'Table1_DB3')) print(extractTable('db4', 'Table1_DB4')) print(extractTable('db5', 'Table1_DB5')) print(extractTable('db6', 'Table1_DB6')) print('#' * 20 + ' Extract Range Table') print(extractRangeTable('db1', 'Table1_DB1', 0, 'A1', 'C1')) print(extractRangeTable('db2', 'Table1_DB2', 0, 'A1', 'C1')) print(extractRangeTable('db3', 'Table1_DB3', 0, 'A1', 'C1')) print(extractRangeTable('db4', 'Table1_DB4', 0, 'A1', 'C1')) print(extractRangeTable('db5', 'Table1_DB5', 0, 'A1', 'C1')) print(extractRangeTable('db6', 'Table1_DB6', 0, 'A1', 'C1')) print('#' * 20 + ' Alter Add PK') print(alterAddPK('db1', 'Table1_DB1', [1])) print(alterAddPK('db2', 'Table1_DB2', [1])) print(alterAddPK('db3', 'Table1_DB3', [1])) print(alterAddPK('db4', 'Table1_DB4', [1])) print(alterAddPK('db5', 'Table1_DB5', [1])) print(alterAddPK('db6', 'Table1_DB6', [1])) print('#' * 20 + ' UPDATE' + '#' * 20) print(update('db1', 'Table1_DB1', {0: 'JORGE8'}, ['B32'])) # print(safeModeOff('db1', 'Table1_DB1')) print('#' * 20 + ' Alter Drop PK') print(alterDropPK('db1', 'Table1_DB1')) print(alterDropPK('db2', 'Table1_DB2')) print(alterDropPK('db3', 'Table1_DB3')) print(alterDropPK('db4', 'Table1_DB4')) print(alterDropPK('db5', 'Table1_DB5')) print(alterDropPK('db6', 'Table1_DB6')) print('#' * 20 + ' Alter Table') print(alterTable('db1', 'Table1_DB1', 'Table1New_DB1')) print(alterTable('db2', 'Table1_DB2', 'Table1New_DB2')) print(alterTable('db3', 'Table1_DB3', 'Table1New_DB3')) print(alterTable('db4', 'Table1_DB4', 'Table1New_DB4')) print(alterTable('db5', 'Table1_DB5', 'Table1New_DB5')) print(alterTable('db6', 'Table1_DB6', 'Table1New_DB6')) dictionary = load('metadata') showDict(dictionary) print('#' * 20 + ' Alter drop Column') print(alterDropColumn('db1', 'Table2_DB1', 1)) print(alterDropColumn('db2', 'Table2_DB2', 1)) print(alterDropColumn('db3', 'Table2_DB3', 1)) print(alterDropColumn('db4', 'Table2_DB4', 1)) print(alterDropColumn('db5', 'Table2_DB5', 1)) print(alterDropColumn('db6', 'Table2_DB6', 1)) print('#' * 20 + ' drop Table') print(dropTable('db1', 'Table3_DB1')) print(dropTable('db2', 'Table3_DB2')) print(dropTable('db3', 'Table3_DB3')) print(dropTable('db4', 'Table3_DB4')) print(dropTable('db5', 'Table3_DB5')) print(dropTable('db6', 'Table3_DB6')) dictionary = load('metadata') showDict(dictionary) def testCompress(): print(createDatabase('db1', 'b', 'utf8')) print(createDatabase('db2', 'avl', 'utf8')) print(createTable('db1', 'Table1_DB1', 3)) print(createTable('db1', 'Table2_DB1', 3)) print(createTable('db1', 'Table3_DB1', 3)) print(createTable('db2', 'Table1_DB2', 3)) print(insert('db1', 'Table1_DB1', ['Ya valines todos', 'F con el proyecto xdxd', 123])) print(insert('db1', 'Table1_DB1', ['ABC', 'DEF', 'GHI'])) print(insert('db1', 'Table2_DB1', ['A ver si funciona esto xd', 'F en el chat', 'Si sale el lab'])) print(insert('db1', 'Table3_DB1', ['ya super F', 'Isaac es mal coordinador', 'Son bromas es un papucho'])) print(insert('db2', 'Table1_DB2', ['Test de compresion de las bases de datos xdxd', 'Ya no se que mas poner en estas tuplas jsjsjs', 'F en el chat'])) print('#' * 10 + ' Before') print(extractTable('db1', 'Table1_DB1')) print(extractTable('db1', 'Table2_DB1')) print(extractTable('db1', 'Table3_DB1')) print(extractTable('db2', 'Table1_DB2')) print(alterDatabaseCompress('db2', 6)) print('#' * 10 + ' After') print(extractTable('db1', 'Table1_DB1')) print(extractTable('db1', 'Table2_DB1')) print(extractTable('db1', 'Table3_DB1')) print(extractTable('db2', 'Table1_DB2')) print(alterDatabaseDecompress('db2')) print('#' * 10 + ' After') print(extractTable('db1', 'Table1_DB1')) print(extractTable('db1', 'Table2_DB1')) print(extractTable('db1', 'Table3_DB1')) print(extractTable('db2', 'Table1_DB2')) # print(alterTableCompress('db1', 'Table1_DB1', 6)) # # table = extractTable('db1', 'Table1_DB1') # # print('Prueba') # # for tuple in table[0]: # # print("Tamaño Real %d" % len(tuple)) # print('#' * 10 + ' After') # print(extractTable('db1', 'Table1_DB1')) # # print(alterTableDecompress('db1', 'Table1_DB1')) # print('#' * 10 + ' Decompress') # print(extractTable('db1', 'Table1_DB1')) def final_test(): # def createDatabase(database: str, mode: string, encoding: string) -> int: # mode: 'avl', 'b', 'bplus', 'dict', 'isam', 'json', 'hash' # encoding: 'ascii', 'iso-8859-1', 'utf8' # {0: success, 1: error, 2: db exist, 3: incorrect mode, 4: incorrect encoding print('#' * 20 + ' Create Database' + '#' * 20) print(j.createDatabase('db1', 'avl', 'ascii'), end='-') print(j.createDatabase('db2', 'avl', 'ascii'), end='-') print(j.createDatabase('db3', 'avl', 'ascii'), end='-') print(j.createDatabase('db4', 'b', 'ascii'), end='-') print(j.createDatabase('db5', 'b', 'ascii'), end='-') print(j.createDatabase('db6', 'b', 'ascii'), end='-') print(j.createDatabase('db7', 'bplus', 'ascii'), end='-') print(j.createDatabase('db8', 'bplus', 'iso-8859-1'), end='-') print(j.createDatabase('db9', 'bplus', 'iso-8859-1'), end='-') print(j.createDatabase('db10', 'dict', 'iso-8859-1'), end='-') print(j.createDatabase('db11', 'dict', 'iso-8859-1'), end='-') print(j.createDatabase('db12', 'dict', 'iso-8859-1'), end='-') print(j.createDatabase('db13', 'isam', 'iso-8859-1'), end='-') print(j.createDatabase('db14', 'isam', 'iso-8859-1'), end='-') print(j.createDatabase('db15', 'isam', 'utf8'), end='-') print(j.createDatabase('db16', 'json', 'utf8'), end='-') print(j.createDatabase('db17', 'json', 'utf8'), end='-') print(j.createDatabase('db18', 'json', 'utf8'), end='-') print(j.createDatabase('db19', 'hash', 'utf8'), end='-') print(j.createDatabase('db20', 'hash', 'utf8'), end='-') print(j.createDatabase('db21', 'hash', 'utf8')) print() print('#' * 20 + ' Show Databases ' + '#' * 20) print(j.showDatabases()) # def createTable(database: str, table: str, numberColumns: int) -> int: # {0: success, 1: error, 2: db not exist, 3: table exist print() print('#' * 20 + ' Create Table ' + '#' * 20) print(j.createTable('db1', 'T1DB1', 1), end='-') print(j.createTable('db1', 'T2DB1', 1), end='-') print(j.createTable('db1', 'T3DB1', 1)) print(j.createTable('db4', 'T1DB4', 2), end='-') print(j.createTable('db4', 'T2DB4', 2), end='-') print(j.createTable('db4', 'T3DB4', 2)) print(j.createTable('db7', 'T1DB7', 3), end='-') print(j.createTable('db7', 'T2DB7', 3), end='-') print(j.createTable('db7', 'T3DB7', 3)) print(j.createTable('db8', 'T1DB8', 4), end='-') print(j.createTable('db8', 'T2DB8', 4), end='-') print(j.createTable('db8', 'T3DB8', 4)) print(j.createTable('db9', 'T1DB9', 5), end='-') print(j.createTable('db9', 'T2DB9', 5), end='-') print(j.createTable('db9', 'T3DB9', 5)) print(j.createTable('db10', 'T1DB10', 3), end='-') print(j.createTable('db10', 'T2DB10', 3), end='-') print(j.createTable('db10', 'T3DB10', 3)) print(j.createTable('db13', 'T1DB13', 3), end='-') print(j.createTable('db13', 'T2DB13', 3), end='-') print(j.createTable('db13', 'T3DB13', 3)) print(j.createTable('db16', 'T1DB16', 3), end='-') print(j.createTable('db16', 'T2DB16', 3), end='-') print(j.createTable('db16', 'T3DB16', 3)) print(j.createTable('db19', 'T1DB19', 3), end='-') print(j.createTable('db19', 'T2DB19', 3), end='-') print(j.createTable('db19', 'T3DB19', 3)) # def insert(database: str, table: str, register: list) -> int: # {0: success, 1: error, 2: db not exist, 3: table not exist, 4: PK duplicated, 5: out limit print('#' * 20 + ' Insert ' + '#' * 20) print(j.insert('db1', 'T1DB1', ['A1']), end='-') print(j.insert('db1', 'T1DB1', ['A11']), end='-') print(j.insert('db1', 'T1DB1', ['A111']), end='-') print(j.insert('db1', 'T1DB1', ['A1111']), end='-') print(j.insert('db1', 'T2DB1', ['B1']), end='-') print(j.insert('db1', 'T3DB1', ['C1'])) print(j.insert('db4', 'T1DB4', ['A1', 'A2']), end='-') print(j.insert('db4', 'T1DB4', ['A11', 'A22']), end='-') print(j.insert('db4', 'T1DB4', ['A111', 'A222']), end='-') print(j.insert('db4', 'T1DB4', ['A1111', 'A2222']), end='-') print(j.insert('db4', 'T2DB4', ['B1', 'B2']), end='-') print(j.insert('db4', 'T3DB4', ['C1', 'C2'])) print(j.insert('db7', 'T1DB7', ['A1', 'A2', 'A3']), end='-') print(j.insert('db7', 'T1DB7', ['A11', 'A22', 'A33']), end='-') print(j.insert('db7', 'T1DB7', ['A111', 'A222', 'A333']), end='-') print(j.insert('db7', 'T1DB7', ['A1111', 'A2222', 'A3333']), end='-') print(j.insert('db7', 'T2DB7', ['B1', 'B2', 'B3']), end='-') print(j.insert('db7', 'T3DB7', ['C1', 'C2', 'C3'])) print(j.insert('db10', 'T1DB10', ['A1', 'A2', 'A3']), end='-') print(j.insert('db10', 'T1DB10', ['A11', 'A22', 'A33']), end='-') print(j.insert('db10', 'T1DB10', ['A111', 'A222', 'A333']), end='-') print(j.insert('db10', 'T1DB10', ['A1111', 'A2222', 'A3333']), end='-') print(j.insert('db10', 'T2DB10', ['B1', 'B2', 'B3']), end='-') print(j.insert('db10', 'T3DB10', ['C1', 'C2', 'C3'])) print(j.insert('db13', 'T1DB13', ['A1', 'A2', 'A3']), end='-') print(j.insert('db13', 'T1DB13', ['A11', 'A22', 'A33']), end='-') print(j.insert('db13', 'T1DB13', ['A111', 'A222', 'A333']), end='-') print(j.insert('db13', 'T1DB13', ['A1111', 'A2222', 'A3333']), end='-') print(j.insert('db13', 'T2DB13', ['B1', 'B2', 'B3']), end='-') print(j.insert('db13', 'T3DB13', ['C1', 'C2', 'C3'])) print(j.insert('db16', 'T1DB16', ['A1', 'A2', 'A3']), end='-') print(j.insert('db16', 'T1DB16', ['A11', 'A22', 'A33']), end='-') print(j.insert('db16', 'T1DB16', ['A111', 'A222', 'A333']), end='-') print(j.insert('db16', 'T1DB16', ['A1111', 'A2222', 'A3333']), end='-') print(j.insert('db16', 'T2DB16', ['B1', 'B2', 'B3']), end='-') print(j.insert('db16', 'T3DB16', ['C1', 'C2', 'C3'])) print(j.insert('db19', 'T1DB19', ['A1', 'A2', 'A3']), end='-') print(j.insert('db19', 'T1DB19', ['A11', 'A22', 'A33']), end='-') print(j.insert('db19', 'T1DB19', ['A111', 'A222', 'A333']), end='-') print(j.insert('db19', 'T1DB19', ['A1111', 'A2222', 'A3333']), end='-') print(j.insert('db19', 'T2DB19', ['B1', 'B2', 'B3']), end='-') print(j.insert('db19', 'T3DB19', ['C1', 'C2', 'C3'])) # def showDatabases() -> list: # {[]: error, not db } # dictionary = load('metadata') # showDict(dictionary) print() print('#' * 20 + ' showDatabases ' + '#' * 20) print(j.showDatabases()) print() print('#' * 20 + ' extract Table Prueba1: sin cambiar nombre ' + '#' * 20) print(j.extractTable("db1", "T1DB1")) print(j.extractTable("db4", "T1DB4")) print(j.extractTable("db7", "T1DB7")) print(j.extractTable("db10", "T1DB10")) print(j.extractTable("db13", "T1DB13")) print(j.extractTable("db16", "T1DB16")) print(j.extractTable("db19", "T1DB19")) print() print('#' * 20 + ' Show Tables y exctract Table ISAM ' + '#' * 20) print(j.showTables("db13")) print(j.extractTable("db13", "T3DB13")) # isam mode # def alterDatabase(databaseOld, databaseNew) -> int: # {0: success, 1: error, 2: dbOld not exist, 3: dbNew exist} print() print('#' * 20 + ' alterdatabase ' + '#' * 20) print(j.alterDatabase("db1", "db101")) print(j.alterDatabase("db4", "db104")) print(j.alterDatabase("db7", "db107")) print(j.alterDatabase("db10", "db110")) print(j.alterDatabase("db13", "db113")) print(j.alterDatabase("db16", "db116")) print(j.alterDatabase("db19", "db119")) print() print('#' * 20 + ' Show Databases ' + '#' * 20) print(j.showDatabases()) print() print('#' * 20 + ' drop database ' + '#' * 20) # def dropDatabase(database: str) -> int: # {0: success, 1: error, 2: db not exist} print(j.dropDatabase("db2")) print(j.dropDatabase("db3")) print(j.dropDatabase("db5")) print(j.dropDatabase("db6")) print(j.dropDatabase("db8")) print(j.dropDatabase("db9")) print(j.dropDatabase("db11")) print() print('#' * 20 + ' Show Databases ' + '#' * 20) print(j.showDatabases()) print() # def showDatabases() -> list: # {[]: error, not tables, None: not db } print('#' * 20 + ' showTables ' + '#' * 20) print(j.showTables("db101")) print(j.showTables("db104")) print(j.showTables("db107")) print(j.showTables("db110")) print(j.showTables("db113")) print(j.showTables("db116")) print(j.showTables("db119")) print() # def extractTable(database: str, table: str) -> list: # {[]: , []: not registers, None: error} print('#' * 20 + ' extract Table ' + '#' * 20) print(j.extractTable("db101", "T1DB1")) print(j.extractTable("db104", "T1DB4")) print(j.extractTable("db107", "T1DB7")) print(j.extractTable("db110", "T1DB10")) print(j.extractTable("db113", "T3DB13")) print(j.extractTable("db116", "T1DB16")) print(j.extractTable("db119", "T1DB19")) print() print('#' * 20 + ' extract Range Table ' + '#' * 20) # def extractRangeTable(database: str, table: str, columnNumber: int, lower: any, upper: any) -> list: # {[]: not registers, None: not db, not table, error} print(j.extractRangeTable("db1", "T1DB1", 1, "A", "A")) print('#' * 20 + ' alter Drop PK ' + '#' * 20) print(j.alterDropPK('db101', 'T1DB1')) print(j.alterDropPK('db104', 'T1DB4')) print(j.alterDropPK('db107', 'T1DB7')) print(j.alterDropPK('db110', 'T1DB10')) print(j.alterDropPK('db113', 'T1DB13')) print(j.alterDropPK('db116', 'T1DB16')) print(j.alterDropPK('db119', 'T1DB19')) print() # def alterAddPK(database: str, table: str, columns: list) -> int: # {0: success, 1: error, 2: db not exist, 3: table not exist, 4: PK exist} print('#' * 20 + ' alter Add PK ' + '#' * 20) print(j.alterAddPK('db101', 'T1DB1', [0])) print(j.alterAddPK('db104', 'T1DB4', [0])) print(j.alterAddPK('db107', 'T1DB7', [0])) print(j.alterAddPK('db110', 'T1DB10', [0])) print(j.alterAddPK('db113', 'T1DB13', [0])) print(j.alterAddPK('db116', 'T1DB16', [0])) print(j.alterAddPK('db119', 'T1DB19', [0])) print() # def alterDropPK(database: str, table: str) -> int: # {0: success, 1: error, 2: db not exist, 3: table not exist, 4: PK not exist} print('#' * 20 + ' alter Drop PK ' + '#' * 20) print(j.alterDropPK('db101', 'T1DB1')) print(j.alterDropPK('db104', 'T1DB4')) print(j.alterDropPK('db107', 'T1DB7')) print(j.alterDropPK('db110', 'T1DB10')) print(j.alterDropPK('db113', 'T1DB13')) print(j.alterDropPK('db116', 'T1DB16')) print(j.alterDropPK('db119', 'T1DB19')) print() # def alterAddPK(database: str, table: str, columns: list) -> int: # {0: success, 1: error, 2: db not exist, 3: table not exist, 4: PK exist} print('#' * 20 + ' alter Add PK ' + '#' * 20) print(j.alterAddPK('db101', 'T1DB1', [0])) print(j.alterAddPK('db104', 'T1DB4', [0])) print(j.alterAddPK('db107', 'T1DB7', [0])) print(j.alterAddPK('db110', 'T1DB10', [0])) print(j.alterAddPK('db113', 'T1DB13', [0])) print(j.alterAddPK('db116', 'T1DB16', [0])) print(j.alterAddPK('db119', 'T1DB19', [0])) print() # def alterTable(database: str, tableOld: str, tableNew: str) -> int: # {0: success, 1: error, 2: db not exist, 3:tableOld not exist, 4: tableNew exist} print(j.alterTable('db101', 'T1DB1', 'T1DB101')) print(j.alterTable('db104', 'T1DB4', 'T1DB104')) #### print(j.alterTable('db107', 'T1DB7', 'T1DB107')) print(j.alterTable('db110', 'T1DB10', 'T1DB110')) print(j.alterTable('db113', 'T1DB13', 'T1DB113')) print(j.alterTable('db116', 'T1DB16', 'T1DB116')) print(j.alterTable('db119', 'T1DB19', 'T1DB119')) print() # def showDatabases() -> list: # {[]: error, not tables, None: not db } print('#' * 20 + ' showTables ' + '#' * 20) print(j.showTables("db101")) print(j.showTables("db104")) print(j.showTables("db107")) print(j.showTables("db110")) print(j.showTables("db113")) print(j.showTables("db116")) print(j.showTables("db119")) print() print('#' * 20 + ' alter Add Column ' + '#' * 20) # def alterAddColumn(database: str, table: str, default: any) -> int: # {0: success, 1: error, 2: db not exist, 3: table not exist} print(j.alterAddColumn('db101', 'T1DB101', 'NuevaColumna101')) print(j.alterAddColumn('db104', 'T1DB104', 'NuevaColumna104')) #### print(j.alterAddColumn('db107', 'T1DB107', 'NuevaColumna107')) print(j.alterAddColumn('db110', 'T1DB110', 'NuevaColumna110')) print(j.alterAddColumn('db113', 'T1DB113', 'NuevaColumna113')) print(j.alterAddColumn('db116', 'T1DB116', 'NuevaColumna116')) print(j.alterAddColumn('db119', 'T1DB119', 'NuevaColumna119')) print() # def extractTable(database: str, table: str) -> list: # {[]: , []: not registers, None: error} print('#' * 20 + ' extract Table ' + '#' * 20) print(j.extractTable("db101", "T1DB101")) print(j.extractTable("db104", "T1DB104")) print(j.extractTable("db107", "T1DB107")) print(j.extractTable("db110", "T1DB110")) print(j.extractTable("db113", "T1DB113")) print(j.extractTable("db116", "T1DB116")) print(j.extractTable("db119", "T1DB119")) print() print('#' * 20 + ' alter Drop Column ' + '#' * 20) # def alterDropColumn(database: str, table: str, columnNumber: int) -> int: # {0: success, 1: error, 2: db not exist, 3: table not exist, 4: not eliminated or without columns, 5: out limit} print(j.alterDropColumn('db101', 'T1DB101', 1)) print(j.alterDropColumn('db104', 'T1DB104', 2)) print(j.alterDropColumn('db107', 'T1DB107', 3)) print(j.alterDropColumn('db110', 'T1DB110', 3)) print(j.alterDropColumn('db113', 'T1DB113', 3)) print(j.alterDropColumn('db116', 'T1DB116', 3)) print(j.alterDropColumn('db119', 'T1DB119', 3)) print() # def extractTable(database: str, table: str) -> list: # {[]: , []: not registers, None: error} print('#' * 20 + ' extract Table ' + '#' * 20) print(j.extractTable("db101", "T1DB101")) print(j.extractTable("db104", "T1DB104")) print(j.extractTable("db107", "T1DB107")) print(j.extractTable("db110", "T1DB110")) print(j.extractTable("db113", "T1DB113")) print(j.extractTable("db116", "T1DB116")) print(j.extractTable("db119", "T1DB119")) print() print('#' * 20 + ' dropTable ' + '#' * 20) # def dropTable(database: str, table: str) -> int: # {0: success, 1: error, 2 db not exist, 3: table not exist} print(j.dropTable('db101', 'T2DB1')) #### print(j.dropTable('db104', 'T2DB4')) print(j.dropTable('db107', 'T2DB7')) print(j.dropTable('db110', 'T2DB10')) print(j.dropTable('db113', 'T2DB13')) print(j.dropTable('db116', 'T2DB16')) print(j.dropTable('db119', 'T2DB19')) print() # def showDatabases() -> list: # {[]: error, not tables, None: not db } print('#' * 20 + ' showTables ' + '#' * 20) print(j.showTables("db101")) print(j.showTables("db104")) print(j.showTables("db107")) print(j.showTables("db110")) print(j.showTables("db113")) print(j.showTables("db116")) print(j.showTables("db119")) # Probando update con numeros print(j.insert('db101', 'T3DB1', [110])) print(j.insert('db101', 'T3DB1', [120])) print(j.insert('db101', 'T3DB1', [130])) print(j.insert('db101', 'T3DB1', [140])) print(j.alterAddPK('db101', 'T3DB1', [0])) print() print('#' * 20 + ' update ' + '#' * 20) # def update(database: str, table: str, register: dict, columns: list) -> int: # {0: success, 1: error, 2 db not exist, 3: table not exist, 4:PK not exist} print(j.update('db101', 'T1DB101', {0: 'Nuevo1'}, ['A1'])) print(j.update('db101', 'T3DB1', {0: 'Clear'}, [110])) print(j.update('db101', 'T3DB1', {0: 'Clear1'}, ['C1'])) print(j.update('db104', 'T1DB104', {1: 'Nuevo1'}, ['A1'])) print(j.update('db107', 'T1DB107', {1: 'Nuevo1'}, ['A1'])) print(j.update('db110', 'T1DB110', {1: 'Nuevo1'}, ['A1'])) print(j.update('db113', 'T1DB113', {1: 'Nuevo1'}, ['A1'])) print(j.update('db116', 'T1DB116', {1: 'Nuevo1'}, ['A1'])) print(j.update('db119', 'T1DB119', {1: 'Nuevo1'}, ['A1'])) print() # def extractTable(database: str, table: str) -> list: # {[]: , []: not registers, None: error} print('#' * 20 + ' extract Table ' + '#' * 20) print(j.extractTable("db101", "T1DB101")) print(j.extractTable("db101", "T3DB1")) print(j.extractTable("db104", "T1DB104")) print(j.extractTable("db107", "T1DB107")) print(j.extractTable("db110", "T1DB110")) print(j.extractTable("db113", "T1DB113")) print(j.extractTable("db116", "T1DB116")) print(j.extractTable("db119", "T1DB119")) print() # def extractRow(database: str, table: str, columns: list) -> list: # {[tuple]: success , []: not registers, error} print('#' * 20 + ' extract Row ' + '#' * 20) print(j.extractRow("db101", "T1DB101", ['Nuevo1'])) print(j.extractRow("db101", "T3DB1", [110])) print(j.extractRow("db104", "T1DB104", ['A1'])) print(j.extractRow("db107", "T1DB107", ['A1'])) print(j.extractRow("db110", "T1DB110", ['A1'])) print(j.extractRow("db113", "T1DB113", ['A1'])) print(j.extractRow("db116", "T1DB116", ['A1'])) print(j.extractRow("db119", "T1DB119", ['A1'])) print() # def extractTable(database: str, table: str) -> list: # {[]: , []: not registers, None: error} print('#' * 20 + ' extract Table ' + '#' * 20) print(j.extractTable("db101", "T1DB101")) print(j.extractTable("db101", "T3DB1")) print(j.extractTable("db104", "T1DB104")) print(j.extractTable("db107", "T1DB107")) print(j.extractTable("db110", "T1DB110")) print(j.extractTable("db113", "T1DB113")) print(j.extractTable("db116", "T1DB116")) print(j.extractTable("db119", "T1DB119")) print() # def delete(database: str, table: str, columns: list) -> int: # {0: success, 1: error, 2: db not exist, 3: table not exist, 4: PK not exist} print('#' * 20 + ' delete ' + '#' * 20) print(j.delete("db101", "T1DB101", ['Nuevo1'])) print(j.delete("db101", "T3DB1", ['Clear1'])) print(j.delete("db101", "T3DB1", [110])) print(j.delete("db104", "T1DB104", ['A1'])) print(j.delete("db107", "T1DB107", ['A1'])) print(j.delete("db110", "T1DB110", ['A1'])) print(j.delete("db113", "T1DB113", ['A1'])) print(j.delete("db116", "T1DB116", ['A1'])) print(j.delete("db119", "T1DB119", ['A1'])) print() # def extractTable(database: str, table: str) -> list: # {[]: , []: not registers, None: error} print('#' * 20 + ' extract Table ' + '#' * 20) print(j.extractTable("db101", "T1DB101")) print(j.extractTable("db101", "T3DB1")) print(j.extractTable("db104", "T1DB104")) print(j.extractTable("db107", "T1DB107")) print(j.extractTable("db110", "T1DB110")) print(j.extractTable("db113", "T1DB113")) print(j.extractTable("db116", "T1DB116")) print(j.extractTable("db119", "T1DB119")) print() # def truncate(database: str, table: str) -> int: # {0: success, 1: error, 2: db not exist, 3: table not exist} print('#' * 20 + ' extract Table ' + '#' * 20) print(j.truncate("db101", "T1DB101")) print(j.truncate("db101", "T3DB1")) print(j.truncate("db104", "T1DB104")) print(j.truncate("db107", "T1DB107")) print(j.truncate("db110", "T1DB110")) print(j.truncate("db113", "T1DB113")) print(j.truncate("db116", "T1DB116")) print(j.truncate("db119", "T1DB119")) print() # def extractTable(database: str, table: str) -> list: # {[]: , []: not registers, None: error} print('#' * 20 + ' extract Table ' + '#' * 20) print(j.extractTable("db101", "T1DB101")) print(j.extractTable("db101", "T3DB1")) print(j.extractTable("db104", "T1DB104")) print(j.extractTable("db107", "T1DB107")) print(j.extractTable("db110", "T1DB110")) print(j.extractTable("db113", "T1DB113")) print(j.extractTable("db116", "T1DB116")) print(j.extractTable("db119", "T1DB119")) print() # def loadCSV(file: str, database: str, table: str) -> list: # {int insert: success, []: error} # {0: success, 1: error, 2: db not exist, 3: table not exist, 4: PK duplicated, 5: out limit print('#' * 20 + ' extract Table ' + '#' * 20) print(j.loadCSV('ids.csv', "db101", "T1DB101")) print(j.loadCSV('ids.csv', "db101", "T3DB1")) print(j.loadCSV("idsnames.csv", "db104", "T1DB104")) print(j.loadCSV("treeColumnsProfesors.csv", "db107", "T1DB107")) print(j.loadCSV("treeColumnsProfesors.csv", "db110", "T1DB110")) print(j.loadCSV("treeColumnsProfesors.csv", "db113", "T1DB113")) print(j.loadCSV("treeColumnStudent.csv", "db116", "T1DB116")) print(j.loadCSV("treeColumnStudent.csv", "db119", "T1DB119")) print() # def extractTable(database: str, table: str) -> list: # {[]: , []: not registers, None: error} print('#' * 20 + ' extract Table ' + '#' * 20) print(j.extractTable("db101", "T1DB101")) print(j.extractTable("db101", "T3DB1")) print(j.extractTable("db104", "T1DB104")) print(j.extractTable("db107", "T1DB107")) print(j.extractTable("db110", "T1DB110")) print(j.extractTable("db113", "T1DB113")) print(j.extractTable("db116", "T1DB116")) print(j.extractTable("db119", "T1DB119")) # mode: 'avl', 'b', 'bplus', 'dict', 'isam', 'json', 'hash' final_test() # test() # testCompress() ```
{ "source": "jorgejesus/pywps-flask", "score": 2 }
#### File: pywps-flask/processes/buffer.py ```python from pywps import Process, LiteralInput, \ ComplexInput, ComplexOutput, Format, FORMATS from pywps.validator.mode import MODE __author__ = 'Brauni' class Buffer(Process): def __init__(self): inputs = [ComplexInput('poly_in', 'Input vector file', supported_formats=[Format('application/gml+xml')], mode=MODE.STRICT), LiteralInput('buffer', 'Buffer size', data_type='float', allowed_values=(0, 1, 10, (10, 10, 100), (100, 100, 1000)))] outputs = [ComplexOutput('buff_out', 'Buffered file', supported_formats=[ Format('application/gml+xml') ] )] super(Buffer, self).__init__( self._handler, identifier='buffer', version='0.1', title="GDAL Buffer process", abstract="""The process returns buffers around the input features, using the GDAL library""", profile='', inputs=inputs, outputs=outputs, store_supported=True, status_supported=True ) def _handler(self, request, response): from osgeo import ogr inSource = ogr.Open(request.inputs['poly_in'][0].file) inLayer = inSource.GetLayer() out = inLayer.GetName() + '_buffer' # create output file driver = ogr.GetDriverByName('GML') outSource = driver.CreateDataSource( out, ["XSISCHEMAURI=\ http://schemas.opengis.net/gml/2.1.2/feature.xsd"]) outLayer = outSource.CreateLayer(out, None, ogr.wkbUnknown) # for each feature featureCount = inLayer.GetFeatureCount() index = 0 while index < featureCount: # get the geometry inFeature = inLayer.GetNextFeature() inGeometry = inFeature.GetGeometryRef() # make the buffer buff = inGeometry.Buffer(float(request.inputs['buffer'][0].data)) # create output feature to the file outFeature = ogr.Feature(feature_def=outLayer.GetLayerDefn()) outFeature.SetGeometryDirectly(buff) outLayer.CreateFeature(outFeature) outFeature.Destroy() # makes it crash when using debug index += 1 response.update_status('Buffering', 100*(index/featureCount)) outSource.Destroy() response.outputs['buff_out'].output_format = FORMATS.GML response.outputs['buff_out'].file = out return response ```
{ "source": "jorgejesus/soils-revealed-lambda", "score": 2 }
#### File: soils-revealed-lambda/soils/utils.py ```python def binds(dataset,variable): binds_dic = { "experimental": {'stocks': 80, 'concentration': 20}, "historic": {'stocks': 40}, "recent": {'stocks': 10}, "crop_I": {'stocks': 30}, "crop_MG": {'stocks': 30}, "crop_MGI": {'stocks': 30}, "grass_part": {'stocks': 30}, "grass_full": {'stocks': 30}, "rewilding": {'stocks': 60}, "degradation_ForestToGrass": {'stocks': 51}, "degradation_ForestToCrop": {'stocks': 51}, "degradation_NoDeforestation": {'stocks': 51} } return binds_dic[dataset][variable] def ranges(dataset,variable): ranges_dic = { "experimental": {'stocks': [-50, 50], 'concentration': [-10, 10]}, "historic": {'stocks': [-40,40]}, "recent": {'stocks': [-50,50]}, "crop_I": {'stocks': [0,30]}, "crop_MG": {'stocks': [0,30]}, "crop_MGI": {'stocks': [0,30]}, "grass_part": {'stocks': [0,30]}, "grass_full": {'stocks': [0,30]}, "rewilding": {'stocks': [-30,30]}, "degradation_ForestToGrass": {'stocks': [-50,1]}, "degradation_ForestToCrop": {'stocks': [-50,1]}, "degradation_NoDeforestation": {'stocks': [-50,1]} } return ranges_dic[dataset][variable] ```
{ "source": "jorgejimenez98/auditorio-django-react", "score": 2 }
#### File: apps/core/serializers.py ```python from django.contrib.auth import get_user_model from rest_framework import serializers from rest_framework_simplejwt.tokens import RefreshToken from rest_framework import serializers class UserMiniSerializer(serializers.ModelSerializer): class Meta: model = get_user_model() fields = ['id', 'name'] class UserSerializer(serializers.ModelSerializer): isAdmin = serializers.SerializerMethodField(read_only=True) rol = serializers.SerializerMethodField(read_only=True) bolRol = serializers.SerializerMethodField(read_only=True) class Meta: model = get_user_model() fields = ['id', 'email', 'name', 'isAdmin', 'isBoosWorkOrder', 'isBoosPlan', 'isAuditor', 'rol', 'bolRol'] extra_kwargs = {'password': {'<PASSWORD>': <PASSWORD>, 'required': True}} def get_isAdmin(self, obj): return obj.is_staff def get_rol(self, obj): if obj.is_staff: return 'Administrador' elif obj.isBoosWorkOrder: return 'Rector' elif obj.isBoosPlan: return 'Jefe de Plan' elif obj.isAuditor: return 'Auditor' return 'Sin ROL' def get_bolRol(self, obj): if obj.is_staff: return 'isAdmin' elif obj.isBoosWorkOrder: return 'isBoosWorkOrder' elif obj.isBoosPlan: return 'isBoosPlan' elif obj.isAuditor: return 'isAuditor' return 'Sin ROL' class UserSerializerWithToken(UserSerializer): token = serializers.SerializerMethodField(read_only=True) class Meta: model = get_user_model() fields = ['id', 'email', 'name', 'isAdmin', 'isBoosWorkOrder', 'isBoosPlan', 'isAuditor', 'token'] def get_token(self, obj): token = RefreshToken.for_user(obj) return str(token.access_token) ``` #### File: backend/apps/extraPermissions.py ```python from rest_framework.permissions import BasePermission class IsAuditor(BasePermission): """ Allows access only to Food And Drink Boss users. """ def has_permission(self, request, view): return bool(request.user and request.user.isAuditor) ``` #### File: apps/inventory/serializers.py ```python from rest_framework import serializers from .models import Inventory, InventoryItem class InventoryItemSerializer(serializers.ModelSerializer): class Meta: model = InventoryItem fields = '__all__' class InventorySerializer(serializers.ModelSerializer): yearPlan = serializers.SerializerMethodField(read_only=True) workOrder = serializers.SerializerMethodField(read_only=True) inventoryItems = serializers.SerializerMethodField(read_only=True) class Meta: model = Inventory fields = ["id", 'author', 'yearPlan', 'workOrder', 'dateTimeCreate', 'inventoryItems'] def get_yearPlan(self, obj): return {'id': obj.yearPlan.pk, 'year': obj.yearPlan.year} def get_workOrder(self, obj): return {'id': obj.workOrder.pk, 'noWO': obj.workOrder.noWO} def get_inventoryItems(self, obj): serializer = InventoryItemSerializer(obj.inventoryItems.all(), many=True) return serializer.data ``` #### File: apps/yearPlan/views.py ```python from django.db import IntegrityError from rest_framework.decorators import action from .serializers import YearPlanSerializer, YearPlan, YearPlanMiniSerializer from rest_framework import viewsets, status from rest_framework.response import Response from rest_framework.permissions import IsAuthenticated from apps.extraPermissions import IsAuditor from apps.errorMessages import * class YearPlanViewSet(viewsets.ModelViewSet): queryset = YearPlan.objects.all().order_by('-year') serializer_class = YearPlanSerializer permission_classes = [IsAuthenticated, IsAuditor] @action(methods=['POST'], detail=False) def createYearPlan(self, request): data = request.data try: # Create Year Plan yearPlan = YearPlan.objects.create( year=int(data.get('year')), author=data.get('author'), cantidadAudit=int(data.get('cantidadAudit')), diasAudit=int(data.get('diasAudit')), diasFeriad=int(data.get('diasFeriad')), diasVacaciones=int(data.get('diasVacaciones')), diasCapacitacion=int(data.get('diasCapacitacion')), diasReservas=int(data.get('diasReservas')), controlInterno=int(data.get('controlInterno')), ) # Return Response return Response({"yearPlanId": yearPlan.pk}, status=status.HTTP_200_OK) except Exception as e: return Response({'detail': e.args[0]}, status=status.HTTP_400_BAD_REQUEST) @action(methods=['POST'], detail=False) def deleteYearPlan(self, request): data = request.data try: # Delete All Years Plans for yearPlan in data: yearPlanToDelete = YearPlan.objects.get(id=int(yearPlan.get('id'))) yearPlanToDelete.delete() # Return Response return Response({"message": "Year Plan Deleted"}, status=status.HTTP_200_OK) except IntegrityError: message = getDeleteProtectedError("Ordenes de Trabajo") return Response({'detail': message}, status=status.HTTP_400_BAD_REQUEST) except Exception as e: return Response({'detail': e.args[0]}, status=status.HTTP_400_BAD_REQUEST) ```
{ "source": "jorgejimenez98/backend-evaluacion-desempenno", "score": 2 }
#### File: apps/currency/models.py ```python from django.db import models class Currency(models.Model): id = models.IntegerField(primary_key=True) # id_moneda acronym = models.CharField(max_length=218) # cod_mone description = models.CharField(max_length=218) # desc_mone active = models.BooleanField() # activo def __str__(self): return f'Currency {self.description}' ``` #### File: evaluation/viewSets/monthlyGastronomyEvaluationViewSet.py ```python from ..serializers.monthlyGastronomySerializer import MonthlyGastronomyEvaluationSerializer from rest_framework import viewsets, status from rest_framework.decorators import action from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from ..models import MonthlyGastronomyEvaluation, MonthlyMeliaEvaluation from backend.extraPermissions import IsFoodAndDrinkBoss from ...payTime.models import PayTime from ...workers.models import Worker def getMaxEval(indicators: []) -> int: indicators.sort() indicators.reverse() count, bigger = 0, 0 for i in indicators: if indicators.count(i) > count: count = indicators.count(i) bigger = i return bigger class MonthlyGastronomyEvaluationViewSet(viewsets.ModelViewSet): queryset = MonthlyGastronomyEvaluation.objects.all() serializer_class = MonthlyGastronomyEvaluationSerializer permission_classes = [IsAuthenticated, IsFoodAndDrinkBoss] @action(detail=False, methods=['POST']) def createMonthlyGastronomyEvaluation(self, request): data = request.data try: # Create Gastronomy Evaluation payTime = PayTime.objects.get(id=int(data.get('payTimeId'))) evaluateWorker = Worker.objects.get(no_interno=data.get('evaluateWorkerId')) evaluatorWorker = Worker.objects.get(no_interno=data.get('evaluatorWorkerId')) evaluations = data.get('evaluations') e = MonthlyGastronomyEvaluation.objects.create( payTime=payTime, evaluateWorker=evaluateWorker, evaluateWorkerCharge=evaluateWorker.cargo, evaluatorWorker=evaluatorWorker, evaluatorWorkerCharge=evaluatorWorker.cargo, ind1_CDRI=evaluations[0].get('points'), ind2_AMD=evaluations[1].get('points'), ind3_PAPPI=evaluations[2].get('points'), ind4_CEDP=evaluations[3].get('points'), ind5_ROCR=evaluations[4].get('points'), ind6_PCRBBRC=evaluations[5].get('points'), ind7_CNPE=evaluations[6].get('points'), ind8_CCPC=evaluations[7].get('points'), ind9_NSC=evaluations[8].get('points'), ind10_CPI=evaluations[9].get('points'), ind11_INI=evaluations[10].get('points'), ind12_RAP=evaluations[11].get('points'), ind13_GV=evaluations[12].get('points'), ind14_DF=evaluations[13].get('points'), ind15_CTP=evaluations[14].get('points'), ind16_AC=evaluations[15].get('points'), ind17_DIS=evaluations[16].get('points'), ind18_CDPA=evaluations[17].get('points'), ind19_CTA=evaluations[18].get('points'), ind20_HOPT=evaluations[19].get('points'), ind21_CNSS=evaluations[20].get('points'), ind22_UIE=evaluations[21].get('points'), ind23_LCH=evaluations[22].get('points'), ind24_APAT=evaluations[23].get('points'), ind25_UCU=evaluations[24].get('points'), ) # Create Melia Evaluation from Gastronomy Evaluation MonthlyMeliaEvaluation.objects.create( payTime=payTime, evaluateWorker=evaluateWorker, evaluateWorkerCharge=evaluateWorker.cargo, evaluatorWorker=evaluatorWorker, evaluatorWorkerCharge=evaluatorWorker.cargo, asist_punt=getMaxEval([e.ind1_CDRI, e.ind2_AMD, e.ind24_APAT]), dom_cum_tars=getMaxEval([e.ind10_CPI, e.ind13_GV, e.ind14_DF, e.ind15_CTP, e.ind19_CTA]), trab_equipo=getMaxEval([e.ind3_PAPPI, e.ind17_DIS, e.ind18_CDPA]), cal_aten_cliente=getMaxEval( [e.ind8_CCPC, e.ind9_NSC, e.ind16_AC, e.ind20_HOPT, e.ind21_CNSS, e.ind22_UIE, e.ind23_LCH] ), cui_area_rec_medios=getMaxEval([e.ind5_ROCR, e.ind6_PCRBBRC]), cump_normas=getMaxEval([e.ind4_CEDP, e.ind7_CNPE, e.ind25_UCU]), cap_camb_ini_int=getMaxEval([e.ind11_INI, e.ind12_RAP]), observations='' ) return Response({'Monthly Gastronomy Evaluation Created'}, status=status.HTTP_200_OK) except Exception as e: return Response({'detail': e.args[0]}, status=status.HTTP_400_BAD_REQUEST) @action(detail=False, methods=['PUT']) def editMonthlyGastronomyEvaluation(self, request): data = request.data try: monthlyEval = MonthlyGastronomyEvaluation.objects.get(pk=int(data.get('evalId'))) payTime = PayTime.objects.get(id=int(data.get('payTimeId'))) evaluateWorker = Worker.objects.get(no_interno=data.get('evaluateWorkerId')) evaluatorWorker = Worker.objects.get(no_interno=data.get('evaluatorWorkerId')) evaluations = data.get('evaluations') # Update Gastronomy Evaluation monthlyEval.payTime = payTime monthlyEval.evaluateWorker = evaluateWorker monthlyEval.evaluateWorkerCharge = evaluateWorker.cargo monthlyEval.evaluatorWorker = evaluatorWorker monthlyEval.evaluatorWorkerCharge = evaluatorWorker.cargo monthlyEval.ind1_CDRI = evaluations[0].get('points') monthlyEval.ind2_AMD = evaluations[1].get('points') monthlyEval.ind3_PAPPI = evaluations[2].get('points') monthlyEval.ind4_CEDP = evaluations[3].get('points') monthlyEval.ind5_ROCR = evaluations[4].get('points') monthlyEval.ind6_PCRBBRC = evaluations[5].get('points') monthlyEval.ind7_CNPE = evaluations[6].get('points') monthlyEval.ind8_CCPC = evaluations[7].get('points') monthlyEval.ind9_NSC = evaluations[8].get('points') monthlyEval.ind10_CPI = evaluations[9].get('points') monthlyEval.ind11_INI = evaluations[10].get('points') monthlyEval.ind12_RAP = evaluations[11].get('points') monthlyEval.ind13_GV = evaluations[12].get('points') monthlyEval.ind14_DF = evaluations[13].get('points') monthlyEval.ind15_CTP = evaluations[14].get('points') monthlyEval.ind16_AC = evaluations[15].get('points') monthlyEval.ind17_DIS = evaluations[16].get('points') monthlyEval.ind18_CDPA = evaluations[17].get('points') monthlyEval.ind19_CTA = evaluations[18].get('points') monthlyEval.ind20_HOPT = evaluations[19].get('points') monthlyEval.ind21_CNSS = evaluations[20].get('points') monthlyEval.ind22_UIE = evaluations[21].get('points') monthlyEval.ind23_LCH = evaluations[22].get('points') monthlyEval.ind24_APAT = evaluations[23].get('points') monthlyEval.ind25_UCU = evaluations[24].get('points') monthlyEval.save() # Update Melia Evaluation monthlyMeliaEval = MonthlyMeliaEvaluation.objects.get(evaluateWorker=evaluateWorker, payTime=payTime) monthlyMeliaEval.payTime = payTime monthlyMeliaEval.evaluateWorker = evaluateWorker monthlyMeliaEval.evaluateWorkerCharge = evaluateWorker.cargo monthlyMeliaEval.evaluatorWorker = evaluatorWorker monthlyMeliaEval.evaluatorWorkerCharge = evaluatorWorker.cargo monthlyMeliaEval.asist_punt = getMaxEval( [monthlyEval.ind1_CDRI, monthlyEval.ind2_AMD, monthlyEval.ind24_APAT] ) monthlyMeliaEval.dom_cum_tars = getMaxEval( [monthlyEval.ind10_CPI, monthlyEval.ind13_GV, monthlyEval.ind14_DF, monthlyEval.ind15_CTP, monthlyEval.ind19_CTA] ) monthlyMeliaEval.trab_equipo = getMaxEval( [monthlyEval.ind3_PAPPI, monthlyEval.ind17_DIS, monthlyEval.ind18_CDPA] ) monthlyMeliaEval.cal_aten_cliente = getMaxEval( [monthlyEval.ind8_CCPC, monthlyEval.ind9_NSC, monthlyEval.ind16_AC, monthlyEval.ind20_HOPT, monthlyEval.ind21_CNSS, monthlyEval.ind22_UIE, monthlyEval.ind23_LCH] ) monthlyMeliaEval.cui_area_rec_medios = getMaxEval([monthlyEval.ind5_ROCR, monthlyEval.ind6_PCRBBRC]) monthlyMeliaEval.cump_normas = getMaxEval( [monthlyEval.ind4_CEDP, monthlyEval.ind7_CNPE, monthlyEval.ind25_UCU] ) monthlyMeliaEval.cap_camb_ini_int = getMaxEval([monthlyEval.ind11_INI, monthlyEval.ind12_RAP]) monthlyMeliaEval.save() return Response({'Monthly Gastronomy Evaluation EDITED'}, status=status.HTTP_200_OK) except Exception as e: return Response({'detail': e.args[0]}, status=status.HTTP_400_BAD_REQUEST) ``` #### File: apps/evaluation/views.py ```python from rest_framework import status from rest_framework.decorators import api_view, permission_classes from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from apps.evaluation.serializers.monthlyMeliaEvaluationSerliazer import MonthlyMeliaEvaluationSerliazer from apps.hotel.models import Hotel from backend.extraPermissions import IsFoodAndDrinkBoss from apps.evaluation.models import MonthlyGastronomyEvaluation, MonthlyMeliaEvaluation from apps.payTime.models import PayTime from apps.workers.models import Worker from backend.utils import insertion_sort def getGastronomyEvaluationOnPayTime(pay_time: PayTime, worker: Worker): if MonthlyGastronomyEvaluation.objects.filter(payTime__id=pay_time.id, evaluateWorker__no_interno=worker.no_interno).exists(): model = MonthlyGastronomyEvaluation.objects.get(payTime__id=pay_time.id, evaluateWorker__no_interno=worker.no_interno) return model.id return None def getMeliaEvaluationOnPayTime(pay_time: PayTime, worker: Worker): if MonthlyMeliaEvaluation.objects.filter(payTime__id=pay_time.id, evaluateWorker__no_interno=worker.no_interno).exists(): model = MonthlyMeliaEvaluation.objects.get(payTime__id=pay_time.id, evaluateWorker__no_interno=worker.no_interno) return model.id return None @api_view(['POST']) @permission_classes([IsAuthenticated, IsFoodAndDrinkBoss]) def getMonthlyPerformanceEvaluationReport(request): data = request.data try: hotel = Hotel.objects.get(pk=int(data.get('hotelId'))) payTime = PayTime.objects.get(pk=int(data.get('payTimeId'))) listToOrder, listNone = [], [] for worker in hotel.workers.filter(activo=True): evalId = getMeliaEvaluationOnPayTime(payTime, worker) meliaEvaluation = None if evalId is None else MonthlyMeliaEvaluation.objects.get(pk=evalId) serializer = None if evalId is None else MonthlyMeliaEvaluationSerliazer(meliaEvaluation, many=False).data newItem = { 'worker': str(worker.nombreCompleto()).title(), 'meliaEvaluation': serializer, 'total': None if meliaEvaluation is None else meliaEvaluation.totalPoints(), 'discount': None if meliaEvaluation is None else meliaEvaluation.getDisscount(), } if newItem['meliaEvaluation'] is None: listNone.append(newItem) else: listToOrder.append(newItem) insertion_sort(listToOrder) listToReturn = listToOrder + listNone return Response(listToReturn, status=status.HTTP_200_OK) except Exception as e: return Response({"detail": e.args[0]}, status=status.HTTP_400_BAD_REQUEST) ``` #### File: apps/hotel/viewSet.py ```python from rest_framework import viewsets from rest_framework.decorators import action, api_view from rest_framework.response import Response from rest_framework import status from django.db import IntegrityError from rest_framework.permissions import IsAuthenticated, IsAdminUser from .serializers import HotelSerializer, Hotel from backend import utils class HotelViewSet(viewsets.ModelViewSet): queryset = Hotel.objects.all().order_by('-pk') serializer_class = HotelSerializer permission_classes = [IsAuthenticated, IsAdminUser] def create(self, request, *args, **kwargs): data = request.data try: Hotel.objects.create( name=data.get('name'), pos_db_name=data.get('pos_db_name'), pms_db_name=data.get('pms_db_name'), zunPrUnidadOrganizativaId=data.get('zunPrUnidadOrganizativaId'), ) return Response({'Hotel Created Successfully'}, status=status.HTTP_200_OK) except IntegrityError: message = utils.getUniqueHotelErrorMessage(data['name']) return Response({'detail': message}, status=status.HTTP_400_BAD_REQUEST) except Exception as e: return Response({'detail': e.args[0]}, status=status.HTTP_400_BAD_REQUEST) @action(detail=False, methods=['POST']) def deleteHotels(self, request): try: for hotel in request.data: Hotel.objects.get(pk=hotel.get('id')).delete() return Response({'Hotels Eliminated Successfully'}, status=status.HTTP_200_OK) except IntegrityError: return Response({'detail': utils.getDeleteErrorMessage('Hotel')}, status=status.HTTP_400_BAD_REQUEST) except Exception as e: return Response({'detail': e.args[0]}, status=status.HTTP_400_BAD_REQUEST) @api_view(['GET']) def getHotelsWithOutPermission(request): try: hotels = Hotel.objects.all() return Response(HotelSerializer(hotels, many=True).data, status=status.HTTP_200_OK) except Exception as e: return Response({'detail': e.args[0]}, status=status.HTTP_400_BAD_REQUEST) @api_view(['GET']) def getHotelWithOutPermission(request, pk): try: hotel = Hotel.objects.get(pk=pk) return Response(HotelSerializer(hotel, many=False).data, status=status.HTTP_200_OK) except Exception as e: return Response({'detail': e.args[0]}, status=status.HTTP_400_BAD_REQUEST) ``` #### File: apps/sellArea/models.py ```python from django.db import models from apps.hotel.models import Hotel # Restpvta === ZunPosGH, ColonPos class PuntoDeVenta(models.Model): id_pvta = models.IntegerField(primary_key=True) cod_pvta = models.CharField(max_length=5) desc_pvta = models.CharField(max_length=25, blank=True, null=True) activo = models.BooleanField() hotel = models.ForeignKey(Hotel, on_delete=models.PROTECT, default=None, related_name='puntos_ventas') def __str__(self): return f'Punto De venta: {self.cod_pvta} - {self.desc_pvta} {self.activo}' class Meta: unique_together = (('cod_pvta', 'hotel'),) index_together = (('cod_pvta', 'hotel'),) ``` #### File: users/serializers/userSerializer.py ```python from django.contrib.auth import get_user_model from rest_framework_simplejwt.tokens import RefreshToken from rest_framework import serializers class UserMiniSerializer(serializers.ModelSerializer): isAdmin = serializers.SerializerMethodField(read_only=True) name = serializers.SerializerMethodField(read_only=True) email = serializers.SerializerMethodField(read_only=True) isFoodAndDrinkBoss = serializers.SerializerMethodField(read_only=True) rol = serializers.SerializerMethodField(read_only=True) class Meta: model = get_user_model() fields = ['id', 'username', 'name', 'email', 'rol', 'isAdmin', 'isFoodAndDrinkBoss'] extra_kwargs = {'password': {'<PASSWORD>': <PASSWORD>, 'required': True}} def get_isAdmin(self, obj): return obj.is_staff def get_name(self, obj): return obj.get_full_name() def get_email(self, obj): return obj.email if obj.email != '' else 'No registrado' def get_isFoodAndDrinkBoss(self, obj): return obj.isFoodAndDrinkBoss def get_rol(self, obj): if self.get_isAdmin(obj): return 'Administrador' if self.get_isFoodAndDrinkBoss(obj): return 'Jefe de Alimentos y Bebidas del complejo' return 'Usuario normal' class UserSerializer(UserMiniSerializer): permissions = serializers.SerializerMethodField(read_only=True) class Meta: model = get_user_model() fields = ['id', 'username', 'first_name', 'last_name', 'email', 'rol', 'isAdmin', 'isFoodAndDrinkBoss', 'date_joined', 'last_login', 'permissions'] def get_permissions(self, obj): permissions = obj.get_user_permissions() return permissions class UserSerializerWithToken(UserSerializer): token = serializers.SerializerMethodField(read_only=True) class Meta: model = get_user_model() fields = ['id', 'username', 'email', 'name', 'isAdmin', 'isFoodAndDrinkBoss', 'rol', 'token'] def get_token(self, obj): token = RefreshToken.for_user(obj) return str(token.access_token) ``` #### File: backend/backend/extraPermissions.py ```python from rest_framework.permissions import BasePermission class IsFoodAndDrinkBoss(BasePermission): """ Allows access only to Food And Drink Boss users. """ def has_permission(self, request, view): return bool(request.user and request.user.isFoodAndDrinkBoss) ```
{ "source": "jorgejimenez98/covid19-vaccine-system", "score": 3 }
#### File: apps/locality/formClass.py ```python class ProvinceForm: def __init__(self, id, name): self.__id = id self.__name = name @property def id(self): return self.__id @id.setter def id(self, value): self.__id = value @property def name(self): return self.__name @name.setter def name(self, value): self.__name = value class MunicipalityForm: def __init__(self, id, name, provinceId, provinceName): self.__id = id self.__name = name self.__provinceId = provinceId self.__provinceName = provinceName @property def id(self): return self.__id @id.setter def id(self, value): self.__id = value @property def name(self): return self.__name @name.setter def name(self, value): self.__name = value @property def provinceId(self): return self.__provinceId @provinceId.setter def provinceId(self, value): self.__provinceId = value @property def provinceName(self): return self.__provinceName @provinceName.setter def provinceName(self, value): self.__provinceName = value class SchoolForm: def __init__(self, id, name, munId, munName): self.__id = id self.__name = name self.__munId = munId self.__munName = munName @property def id(self): return self.__id @id.setter def id(self, value): self.__id = value @property def name(self): return self.__name @name.setter def name(self, value): self.__name = value @property def munId(self): return self.__munId @munId.setter def munId(self, value): self.__munId = value @property def munName(self): return self.__munName @munName.setter def munName(self, value): self.__munName = value ``` #### File: apps/main/decorators.py ```python from django.contrib.auth.decorators import user_passes_test def checkUserAccess(rol, error_url=None): """ Decorador para comprobar que un usuario tiene un rol dado, de no tenerlo lanza la vista ala url que se pasa por parametro, se utizila la funcion user_passes_test de django.contrib.auth.decorators. """ def userHasRol(user): if rol == 'SPECIALIST' and user.isSpecialist: return True elif rol == 'ADMIN' and user.is_staff: return True return False return user_passes_test(userHasRol, login_url=error_url) ``` #### File: apps/people/views.py ```python from django.shortcuts import render, redirect from django.core.exceptions import ValidationError from django.db.models import ProtectedError from django.contrib import messages from django.contrib.auth.decorators import login_required from ..main.decorators import checkUserAccess from ..main.errorFunctions import * from ..locality.models import ConsultingRoom from .models import People from .formClass import PersonForm import django_excel as excel """ PERSONS LIST """ @login_required(login_url='/login') @checkUserAccess(rol='SPECIALIST', error_url='/403') def peopleListView(request): # Init Context context = {"persons": People.objects.all()} if request.method == 'POST': val_edad = request.POST.get('val_edad') if val_edad != '': maximaEdad, minimaEdad = 0, 0 if '+' in val_edad: context['persons'] = People.objects.filter(age__gte=60) else: aux = val_edad.split('-') minimaEdad, maximaEdad = int(aux[0]), int(aux[1]) context['persons'] = People.objects.filter(age__gte=minimaEdad, age__lte=maximaEdad) # Render List return render(request, 'people/list.html', context) """ ADD PERSON """ @login_required(login_url='/login') @checkUserAccess(rol='SPECIALIST', error_url='/403') def peopleAddView(request): # Init Context context = { "person": PersonForm(), "consults": ConsultingRoom.objects.all() } if request.method == 'POST': # Get data from template val_ci = request.POST.get('val_ci') val_name = request.POST.get('val_name') val_last_names = request.POST.get('val_last_names') val_sex = request.POST.get('val_sex') val_age = request.POST.get('val_age') val_adress = request.POST.get('val_adress') val_consultId = request.POST.get('val_consult') val_prc_possitive = request.POST.get('val_prc_possitive') == 'on' val_date_prc = request.POST.get('val_date_prc') # Update context context['person'].ci = val_ci.strip() context['person'].name = val_name context['person'].last_names = val_last_names context['person'].sex = val_sex context['person'].age = val_age context['person'].address = val_adress context['person'].consulting_room_id = val_consultId context['person'].positive_pcr = val_prc_possitive context['person'].date_pcr = val_date_prc # Try execpt try: """ Validate CI """ validateCI(str(val_ci).strip()) # Validate pcr and date if val_prc_possitive and val_date_prc == '': raise Exception(getNoDatePcr()) elif not val_prc_possitive and val_date_prc != '': raise Exception(getNoPcrSelect()) # Create Person People.objects.create( ci=val_ci.strip(), name=val_name, last_names=val_last_names, sex=val_sex, age=int(val_age), address=val_adress, consulting_room=ConsultingRoom.objects.get( pk=int(val_consultId)), positive_pcr=val_prc_possitive, date_pcr=None if val_date_prc == '' else getDateFromString( val_date_prc) ) # Render to list after create messages.success(request, getSuccessCreatedMessage("Persona")) return redirect('peopleListView') except ValidationError: # Validate Unique CI messages.error(request, getUniqueCIError("Persona", val_ci)) except Exception as e: # Manage All posible Errors messages.error(request, e.args[0]) # Render Form return render(request, 'people/addOrEdit.html', context) """ EDIT PERSON """ @login_required(login_url='/login') @checkUserAccess(rol='SPECIALIST', error_url='/403') def peopleEditView(request, pk): # Init Context person = People.objects.get(id=pk) personForm = PersonForm() personForm.updateValues(person) context = { "person": personForm, "consults": ConsultingRoom.objects.all() } if request.method == 'POST': # Get data from template val_ci = request.POST.get('val_ci') val_name = request.POST.get('val_name') val_last_names = request.POST.get('val_last_names') val_sex = request.POST.get('val_sex') val_age = request.POST.get('val_age') val_adress = request.POST.get('val_adress') val_consultId = request.POST.get('val_consult') val_prc_possitive = request.POST.get('val_prc_possitive') == 'on' val_date_prc = request.POST.get('val_date_prc') # Update context context['person'].id = pk context['person'].ci = val_ci.strip() context['person'].name = val_name context['person'].last_names = val_last_names context['person'].sex = val_sex context['person'].age = val_age context['person'].address = val_adress context['person'].consulting_room_id = val_consultId context['person'].positive_pcr = val_prc_possitive context['person'].date_pcr = val_date_prc # Try execpt try: """ Validate CI """ validateCI(str(val_ci).strip()) # Validate pcr and date if val_prc_possitive and val_date_prc == '': raise Exception(getNoDatePcr()) elif not val_prc_possitive and val_date_prc != '': raise Exception(getNoPcrSelect()) # Update Person Values person.ci = val_ci.strip() person.name = val_name person.last_names = val_last_names person.sex = val_sex person.age = int(val_age) person.address = val_adress person.consulting_room = ConsultingRoom.objects.get(pk=int(val_consultId)) person.positive_pcr = val_prc_possitive person.date_pcr = None if val_date_prc == '' else getDateFromString(val_date_prc) person.save() # Render to list after create messages.success(request, getSuccessEditMessage("Persona")) return redirect('peopleListView') except ValidationError: # Validate Unique CI messages.error(request, getUniqueCIError("Persona", val_ci)) except Exception as e: # Manage All posible Errors messages.error(request, e.args[0]) # Render Form return render(request, 'people/addOrEdit.html', context) """ DELETE PERSON """ @login_required(login_url='/login') @checkUserAccess(rol='SPECIALIST', error_url='/403') def peopleDeleteView(request, pk): people = People.objects.get(id=pk) try: people.delete() messages.success(request, getDelSuccessText("Persona", people.name)) except ProtectedError: messages.error(request, getDelProtectText("Persona", people.name)) return redirect('peopleListView') """ Export to Excel """ def peopleExportView(request): rows = [['CI', 'Nombre', 'Apellidos', "Sexo", "Edad", "Direccion", "Consultorio", "PCR Positivo"]] for person in People.objects.all(): rows.append([ person.ci, person.name, person.last_names, person.sex, person.age, person.address, person.consulting_room.name + " " + person.consulting_room.polyclinic.name, "SI" if person.positive_pcr is not None else "NO" ]) sheet = excel.pe.Sheet(rows) return excel.make_response(sheet, "csv", file_name='listado de personas') ```
{ "source": "jorgejimenez98/pyqt5-ejemplo-taxis", "score": 3 }
#### File: pyqt5-ejemplo-taxis/modelo/servicio_repositorio.py ```python from modelo.funciones_de_ayuda import * class Servicio_Repositorio: def __init__(self, rep): self.__repositorio = rep def importe_x_codigo_viaje(self, cod): if len(self.__repositorio.lista_viajes) == 0: raise Exception("No hay viajes registrados") for i in self.__repositorio.lista_viajes: if i.es_cod_viaje(cod): return i.importe() raise Exception("No hay viajes registrados con el codigo ({})".format(cod)) def prom_edad_chferes__viajes_locales_pas_embote_x_fecha(self, fecha): if len(self.__repositorio.lista_viajes_locales()) == 0: raise Exception("No hay viajes locales registrados") cont, suma, hay_x_fecha, hay_embot = 0, 0, False, False for i in self.__repositorio.lista_viajes_locales(): bol = valor_booleano(solo_fecha(i.fecha_inicio), solo_fecha(i.fecha_termina), fecha) if bol: hay_x_fecha = True if i.paso_embotellamineto: hay_embot = True cont += 1 suma += i.chofer.edad if not hay_x_fecha: raise Exception("No hay viajes locales registrados en la fecha ({})".format(str(fecha))) elif not hay_embot: raise Exception("No hay viajes locales registrados que hayan pasado por enbotellamiento") return round(suma / cont, 2) def porciento_viajes_locales_q_hicieron_por_servicio_taxi(self): if len(self.__repositorio.lista_viajes_locales()) == 0: raise Exception("No hay viajes locales registrados") total, parte, existe = 0, 0, False for i in self.__repositorio.lista_viajes_locales(): total += 1 if i.fue_servicio_recorrida: existe = True parte += 1 if not existe: raise Exception("No hay viajes locales registrados que hicieron el servicio se recorrida") return round((100 * parte) / total, 2) def datos_viaje_local_mayor_duracion_x_fecha(self, fecha): if len(self.__repositorio.lista_viajes_locales()) == 0: raise Exception("No hay viajes locales registrados") existe = False lista = [] for i in range(len(self.__repositorio.lista_viajes_locales())): e = self.__repositorio.lista_viajes_locales()[i] if solo_fecha(e.fecha_inicio) <= fecha <= solo_fecha(e.fecha_termina): existe = True dur = duracion(e.fecha_inicio, e.fecha_termina) tupla = (dur, i, e) lista.append(tupla) if not existe: raise Exception("No hay viajes locales registrados en la fecha ({})".format(str(fecha))) lista.sort(), lista.reverse() i = lista[0][2] res = [i.cod_viaje, i.fecha_inicio, i.fecha_termina, i.num_taxi, i.chofer.nombre, i.chofer.sexo, i.chofer.edad, i.chofer.experiencia, i.cant_pasajaros, i.fue_servicio_recorrida, i.paso_embotellamineto] return res def listado_viajes_fuera_ciudad_ordenado_x_distancia(self): if len(self.__repositorio.lista_viajes_fuera_ciudad()) == 0: raise Exception("No hay viajes fuera de la ciudad registrados") l = [i for i in self.__repositorio.lista_viajes_fuera_ciudad() if i.es_si_chofer_habilito(False)] if len(l) == 0: raise Exception("No hay viajes fuera de la ciudad registrados que no tengan el coche habilitado") l.sort() res = [[i.cod_viaje, i.fecha_inicio, i.fecha_termina, i.num_taxi, i.chofer.nombre, i.chofer.sexo, i.chofer.edad, i.chofer.experiencia, i.distancia_klm, i.si_chofer_habilito] for i in l] return res ``` #### File: pyqt5-ejemplo-taxis/presentador/presentador_operacion_3.py ```python from modelo.servicio_repositorio import Servicio_Repositorio from vista.dialogo_operacion_3 import Dialogo_3 class Presentador_Operacion_3: def __init__(self, rep): self.__repositorio = rep self.__servicio_repositorio = Servicio_Repositorio(self.__repositorio) def iniciar(self): self.__vista = Dialogo_3(self) self.__vista.calculo() def fun_mostrar_informacion(self): try: res = self.__servicio_repositorio.porciento_viajes_locales_q_hicieron_por_servicio_taxi() self.__vista.mostrar_informacoion(res) except Exception as e: self.__vista.mostrar_error(e.args[0]) ``` #### File: pyqt5-ejemplo-taxis/presentador/presentador_operacion_4.py ```python from modelo.servicio_repositorio import Servicio_Repositorio from vista.dialogo_operacion_4 import Dialogo_4 from datetime import date class Presentador_Operacion_4: def __init__(self, rep): self.__repositorio = rep self.__servicio_repositorio = Servicio_Repositorio(self.__repositorio) def iniciar(self): self.__vista = Dialogo_4(self) self.__vista.show() def fun_mostrar_informacion(self): try: fecha = self.__vista.valor_fecha i = self.__servicio_repositorio.datos_viaje_local_mayor_duracion_x_fecha(fecha) cod, fecha_inicio, fecha_termina, num_taxi, nombre, llamada, emb = i[0], i[1], i[2], i[3], i[4], i[9], i[10] llam = 'No' if llamada: llam = 'Si' em = 'No' if emb: em = 'Si' self.__vista.mostrar_informacion(fecha, cod, fecha_inicio, fecha_termina, num_taxi, nombre, llam, em) self.__vista.valor_fecha = date(2018, 1, 1) except Exception as e: self.__vista.mostrar_error(e.args[0]) ```
{ "source": "jorgejimenez98/recipe-app-api", "score": 3 }
#### File: user/tests/test_user_api.py ```python from django.test import TestCase from django.contrib.auth import get_user_model from django.urls import reverse # Rest-Framework Imports from rest_framework.test import APIClient from rest_framework import status CREATE_USER_URL = reverse('user:create') TOKEN_URL = reverse('user:token') ME_URL = reverse('user:me') def create_user(**params): return get_user_model().objects.create_user(**params) class PublicUserApiTest(TestCase): """ Test the users api public """ def setUp(self): self.client = APIClient() def test_create_valid_user_success(self): """ Test creating with valid payload is successful """ payload = { 'email': '<EMAIL>', 'password': '<PASSWORD>', 'name': 'Test Name' } res = self.client.post(CREATE_USER_URL, payload) self.assertEqual(res.status_code, status.HTTP_201_CREATED) user = get_user_model().objects.get(**res.data) self.assertTrue(user.check_password(payload['password'])) self.assertNotIn('password', res.data) def test_user_exists(self): """ Test checking if a user exist """ payload = {'email': '<EMAIL>', 'password': '<PASSWORD>'} create_user(**payload) res = self.client.post(CREATE_USER_URL, payload) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_password_too_short(self): """ Test that user password is less than 5 characters """ payload = {'email': '<EMAIL>', 'password': 'te'} res = self.client.post(CREATE_USER_URL, payload) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) user_exist = get_user_model().objects.filter( email=payload['email'] ).exists() self.assertFalse(user_exist) def test_create_token_for_user(self): """ Test that a token is created for the user """ payload = {'email': '<EMAIL>', 'password': '<PASSWORD>'} create_user(**payload) res = self.client.post(TOKEN_URL, payload) self.assertIn('token', res.data) self.assertEqual(res.status_code, status.HTTP_200_OK) def test_create_token_invalid_credentials(self): """ Test that token is not created in invalid credentials are given """ create_user(email='<EMAIL>', password='<PASSWORD>') payload = {'email': '<EMAIL>', 'password': '<PASSWORD>'} res = self.client.post(TOKEN_URL, payload) self.assertNotIn('token', res.data) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_create_token_not_user(self): """ Test tha token is not created without a user """ payload = {'email': '<EMAIL>', 'password': '<PASSWORD>'} res = self.client.post(TOKEN_URL, payload) self.assertNotIn('token', res.data) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_create_token_missing_field(self): """ Test that email and password are required """ res = self.client.post(TOKEN_URL, { 'email': 'one', 'password': '' }) self.assertNotIn('token', res.data) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_retrieve_user_unauthorize(self): """ Test that authentication is required for users """ res = self.client.get(ME_URL) self.assertEqual(res.status_code, status.HTTP_401_UNAUTHORIZED) class PrivateUserApiTests(TestCase): """ Tesit Api that require authentication """ def setUp(self): self.user = create_user( email='<EMAIL>', password='<PASSWORD>', name='Test Name' ) self.client = APIClient() self.client.force_authenticate(user=self.user) def test_retrieve_profile_success(self): """ Test retrieving profile for logged in user """ res = self.client.get(ME_URL) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(res.data, { 'name': self.user.name, 'email': self.user.email }) def test_post_not_allowed(self): """ Test that post is not allowed no the me url """ res = self.client.post(ME_URL, {}) self.assertEqual(res.status_code, status.HTTP_405_METHOD_NOT_ALLOWED) def test_update_user_profile(self): """ Test updatiing user profile for authenticated user """ payload = {'name': '<NAME>', 'password': '<PASSWORD>'} res = self.client.patch(ME_URL, payload) self.user.refresh_from_db() self.assertEqual(self.user.name, payload['name']) self.assertTrue(self.user.check_password(payload['password'])) self.assertEqual(res.status_code, status.HTTP_200_OK) ```
{ "source": "jorgelaranjo/generator-flask-api", "score": 2 }
#### File: model/templates/object_model.py ```python <% if (database === 'postgresql') { -%> import psycopg2 <% } else if (database === 'mysql') { -%> import mysql.connector <% } else if (database === 'sqlite') { -%> import sqlite3 <% } -%> <% if (database !== 'none') { -%> <% } -%> class <%= modelClass %>(object): def __init__(self, id): self.id = id # Additional fields def __repr__(self): return '<%= modelClass %> {}>'.format(self.id) ```
{ "source": "jorgellop/orbitize", "score": 2 }
#### File: orbitize/tests/conftest.py ```python import pytest codeastro_mode = False def pytest_addoption(parser): parser.addoption( "--mode", action="store", metavar="NAME", help="different test modes NAME.", ) def pytest_runtest_setup(item): global codeastro_mode envnames = [mark.args[0] for mark in item.iter_markers(name="mode")] if envnames: if item.config.getoption("--mode") == 'codeastro': codeastro_mode = True a1 = [83, 101, 99, 114, 101, 116, 32, 67, 111, 100, 101, 58, 32, 119, 101, 100, 105, 100, 105, 116, 33] a2 = [78, 111, 32, 115, 101, 99, 114, 101, 116, 32, 99, 111, 100, 101, 32, 121, 101, 116, 46] @pytest.hookimpl() def pytest_terminal_summary(terminalreporter, exitstatus, config): if config.getoption("--mode") == 'codeastro': if terminalreporter._session.testsfailed == 0: vals = a1 else: vals = a2 output_str = "".join([chr(x) for x in vals]) print(output_str) ``` #### File: orbitize/tests/test_priors.py ```python import numpy as np import pytest from scipy.stats import norm as nm import orbitize.priors as priors threshold = 1e-1 initialization_inputs = { priors.GaussianPrior : [1000., 1.], priors.LogUniformPrior : [1., 2.], priors.UniformPrior : [0., 1.], priors.SinPrior : [], priors.LinearPrior : [-2., 2.] } expected_means_mins_maxes = { priors.GaussianPrior : (1000.,0.,np.inf), priors.LogUniformPrior : (1/np.log(2),1., 2.), priors.UniformPrior : (0.5, 0., 1.), priors.SinPrior : (np.pi/2., 0., np.pi), priors.LinearPrior : (1./3.,0.,1.0) } lnprob_inputs = { priors.GaussianPrior : np.array([-3.0, np.inf, 1000., 999.]), priors.LogUniformPrior : np.array([-1., 0., 1., 1.5, 2., 2.5]), priors.UniformPrior : np.array([0., 0.5, 1., -1., 2.]), priors.SinPrior : np.array([0., np.pi/2., np.pi, 10., -1.]), priors.LinearPrior : np.array([0., 0.5, 1., 2., -1.]) } expected_probs = { priors.GaussianPrior : np.array([0., 0., nm(1000.,1.).pdf(1000.), nm(1000.,1.).pdf(999.)]), priors.LogUniformPrior : np.array([0., 0., 1., 2./3., 0.5, 0.])/np.log(2), priors.UniformPrior : np.array([1., 1., 1., 0., 0.]), priors.SinPrior : np.array([0., 0.5, 0., 0., 0.]), priors.LinearPrior : np.array([2., 1., 0., 0., 0.]) } def test_draw_samples(): """ Test basic functionality of `draw_samples()` method of each `Prior` class. """ for Prior in initialization_inputs.keys(): inputs = initialization_inputs[Prior] TestPrior = Prior(*inputs) samples = TestPrior.draw_samples(10000) exp_mean, exp_min, exp_max = expected_means_mins_maxes[Prior] assert np.mean(samples) == pytest.approx(exp_mean, abs=threshold) assert np.min(samples) > exp_min assert np.max(samples) < exp_max def test_compute_lnprob(): """ Test basic functionality of `compute_lnprob()` method of each `Prior` class. """ for Prior in initialization_inputs.keys(): inputs = initialization_inputs[Prior] TestPrior = Prior(*inputs) values2test = lnprob_inputs[Prior] lnprobs = TestPrior.compute_lnprob(values2test) assert np.log(expected_probs[Prior]) == pytest.approx(lnprobs, abs=threshold) if __name__=='__main__': test_compute_lnprob() test_draw_samples() ```
{ "source": "jorgelmp/sistop-2022-1", "score": 4 }
#### File: GarciaFigueroaAlberto-GarciaEdgar/DEAD_CODE/Cliente.py ```python import threading class Cliente(object): def __init__(self,id,tienda): self.numero = id self.tienda = tienda global CajaCliente CajaCliente=threading.Semaphore(0) def entrar(self): print("Cliente "+str(self.numero)+" quiere entrar a la tienda") self.tienda.pass_client(self) def agarra(self): if self.tienda.estante <15: print("El cliente"+str(self.numero)+"notifica que se acaban los productos...") self.tienda.checarEstante() print("El cliente"+str(self.numero)+" agarra los productos") self.pagar() def pagar(self): self.tienda.CajaCliente.release() self.tienda.CajaEmpleado.acquire() print("El cliente "+str(self.numero)+" ha pagado sus productos") self.salir() def salir(self): print("El cliente"+str(self.numero)+" abandona la tienda") self.tienda.leave_client(self) ``` #### File: 1/GarciaFigueroaAlberto-GarciaEdgar/main.py ```python import threading import random import time #Recursos compartidos contador_personas=0 mercancia=100 #Administración de procesos estante_mutex= threading.Semaphore(1) entrada_mutex= threading.Semaphore(1) salida_mutex= threading.Semaphore(1) caja_mutex= threading.Semaphore(1) suministro=threading.Event() ticket=threading.Event() caja=threading.Event() ## La función empleado define el proceso que debe seguir para administrar los pagos def Empleado(num): global id, caja runEmpleado(num) while(True): flag=caja.wait() #Esta bandera nos indica si un cliente a solicitado que se le cobren sus productos if flag: print(" ╬ El empleado despacha el pedido del cliente") ticket.set() #Una vez recibido el pago, se libera el ticket break #Iniciamos hilo Empleado def runEmpleado(numC): print(" ╬ Empleado "+str(numC)+" se prepara para trabajar") ##CLIENTE, define las acciones que debe realizar el cliente a lo largo del tiempo def Cliente(num): global contador_personas runCliente(num) entrada_mutex.acquire() #Implementamos torniquete para evitar que entren más personas contador_personas+=1 if contador_personas < 4: entrar(num) entrada_mutex.release() #Inicia hilo cliente def runCliente(numC): print(" ┼ Cliente "+str(numC)+" solicitando entrar") #Con el método agarrar, se define como el cliente adquiere sus productos, utilizando un mutex para evitar posibles problemas def agarrar(num): global mercancia viendo=random.randint(1,6) time.sleep(viendo) print(" ┼ El cliente "+str(num)+" decide realizar una compra en la tienda") despensa=random.randint(5,100) estante_mutex.acquire() mercancia=mercancia-despensa if mercancia<20: #Cuando se detecte que el inventario se está acabando, avisamos al proveedor a traves de una bandera. print(" *** El inventario esta acabandose, el empleado debe llamar al provedor *** ") suministro.set() estante_mutex.release() pagar(num) #Método que inidica que un cliente ha solicitado el cobro de sus productos def pagar(numC): global ticket caja_mutex.acquire() print(" ┼ El cliente "+str(numC)+" está pagando por sus articulos") caja.set() while True: flag=ticket.wait() #Avisamos al empleado que se ha iniciado el pago para que se generé su ticket if flag: caja_mutex.release() salir(numC) break #Método que indica cuando un cliente está adentro de la tienda def entrar(num): print(" ┼ El cliente "+str(num)+" entró a la tienda") agarrar(num) #Método que indica que un cliente a salido de la tienda def salir(num): global contador_personas print(" ┼ El cliente "+str(num)+ " ya compró y abandona la tienda") salida_mutex.acquire() contador_personas-=1 salida_mutex.release() ##PROVEDOR, def Proveedor(num): runProveedor(num) #Una vez que se detecta que se está acabando la mercancia, proveedor suministra más mercancia def runProveedor(numC): global mercancia, suministro print(" = El proveedor "+str(numC)+" está listo para despachar, esperando la llamada de empleado") suministro.wait(timeout=None) while True: if suministro.wait(timeout=None): estante_mutex.acquire() print(" = Estoy surtiendo los estantes con de la tienda") time.sleep(5) mercancia=100 flag=suministro.clear() estante_mutex.release() # Almacenamos los hilos de actores hilos_clientes = [] hilos_empleados = [] hilos_proveedores= [] clientes_atendidos=0 def main(): print(" ╔"+"═"*21+"╗") print(" ║ TIENDA DE DISFRACES ║") print(" ╚"+"═"*21+"╝") numClientes = int(input(" - ¿Cuántos clientes llegarán a la tienda?")) for k in range (1): hilos_proveedores.append(threading.Thread(target=Proveedor, args=[k])) #Creamos los hilos de los proovedores hilos_proveedores[k].start() time.sleep(1.5) for j in range (1): hilos_empleados.append(threading.Thread(target=Empleado, args=[j]))#Creamos los hilos de los empleados hilos_empleados[j].start() time.sleep(1.5) for i in range(numClientes): hilos_clientes.append(threading.Thread(target=Cliente, args=[i])) #Creamos los hilos de los clientes hilos_clientes[i].start() time.sleep(0.5) for k in range (1): hilos_proveedores[k].join() for j in range (1): hilos_empleados[j].join() for i in range(numClientes): hilos_clientes[i].join() main() ``` #### File: JimenezRodrigo/codigo/interfaz.py ```python import curses from time import sleep import proyecto as pyt import config as c from threading import Semaphore, Thread def menu(): #Se inicia pantalla, se obtienen dimensiones de la consola scr = curses.initscr() curses.noecho() dims = scr.getmaxyx() hilosCorriendo = False q = -1 while q != 113 and q != 81: scr.nodelay(1) q = scr.getch() scr.clear() #Pantalla de titulo scr.addstr(1,dims[1]-24, 'Presione \'q\' para salir') scr.addstr(2,(dims[1]-39)//2,' _____ _ _ __ ') scr.addstr(3,(dims[1]-39)//2,'| ___| | | | / _| ') scr.addstr(4,(dims[1]-39)//2,'| |__ | | | |__ _ _| |_ ___ _ __ ') scr.addstr(5,(dims[1]-39)//2,'| __|| | | \'_ \\| | | | _/ _ \\| \'_ \\ ') scr.addstr(6,(dims[1]-39)//2,'| |___| | | |_) | |_| | || (_) | | | |') scr.addstr(7,(dims[1]-39)//2,'\\____/|_| |_.__/ \\__,_|_| \\___/|_| |_|') scr.addstr(8,(dims[1]-50)//2,' _ _ \n') scr.addstr(9,(dims[1]-50)//2,' | | | | \n') scr.addstr(10,(dims[1]-50)//2,' ___ _ __ ___| | | |_ _ __ ___ _ __ ___ \n') scr.addstr(11,(dims[1]-50)//2,' / _ \\ \'_ \\ / _ \\ | | __| \'__/ _ \\| \'_ \\ / _ \\ \n') scr.addstr(12,(dims[1]-50)//2,'| __/ | | | | __/ | | |_| | | (_) | | | | (_) |\n') scr.addstr(13,(dims[1]-50)//2,' \\___|_| |_| \\___|_| \\__|_| \\___/|_| |_|\\___/ \n') scr.addstr(16,(dims[1]//2)-15,'1. El problema') scr.addstr(18,(dims[1]//2)-15,"""2. Ejecución visual Opcion:""") scr.refresh() s = -1 #1. El problema if q == 49: scr.clear() scr.nodelay(1) #Mostrar la descripcion del problema hasta salir. while s != 115 and s != 83: scr.addstr(1, dims[1]-33,'Presiona \'s\' parar salir al menú') scr.addstr(2, (dims[1]-20)//2,'El bufón en el trono') scr.addstr(3, 2,""" El bufón de la corte tiene un pasatiempo secreto: le gusta disfrazarse del rey y sentarse en el trono. Sin embargo, solo puede hacer esto cuando no hay nadie presente en la sala: ni el rey ni los cortesanos. -El bufón aprovechará cualquier oportunidad que tenga para darse este lujo. -El rey suele ausentarse por periodos considerables de tiempo, mientras que varios cortesanos pueden entrar y salir de la sala. -Si el rey llega mientras el bufón está sentado, el bufón tiene que levantarse inmediatamente y cederle el trono. -Si un cortesano llega mientras el bufón está sentado, pensará que es el rey y no lo molestará. -El bufón también es impaciente, por lo que si cuenta que ya pasaron 10 cortesanos por la sala y no lo han dejado a solas con el trono, aún en presencia del rey, cerrará maliciosamente la puerta de los cortesanos y esperará a que todos se vayan. -Los cortesanos tendrán que esperar afuera. Desafortunadamente, cuando hay 5 cortesanos esperando, éstos se ponen impacientes, y el bufón tiene abrirles la puerta, aún si no está sentado.""") scr.nodelay(0) s = scr.getch() scr.clear() #2. Ejecucion visual elif q == 50: scr.clear() scr.nodelay(1) #Lista de los últimos 10 eventos textoEntrante = [""]*10 #Se crean y se inician los hilos la primera vez que se entra aquí if not hilosCorriendo: hiloRey = Thread(target = pyt.rey, args = []) hiloBufon = Thread(target = pyt.bufon, args = []) hiloCortesanos = Thread(target = pyt.llegadaCortesanos, args = []) hiloRey.start() hiloBufon.start() hiloCortesanos.start() hilosCorriendo = True #Se abre el torniquete para generar cortesanos c.pausa.release() while s != 115 and s != 83: s = scr.getch() #Se espera a que un hilo avise de una actualización c.sigHilos.acquire() scr.clear() #Se visualiza el estado actual del escenario scr.addstr(1, dims[1]-33,'Presiona \'s\' parar salir al menú') scr.addstr(2,(dims[1]-20)//2,"El bufón en el trono") scr.addstr(4,(dims[1]-23)//2,c.grafico[0]) scr.addstr(5,(dims[1]-23)//2,c.grafico[1]) scr.addstr(6,(dims[1]-23)//2,c.grafico[2]) scr.addstr(7,(dims[1]-23)//2,c.grafico[3]) scr.addstr(8,(dims[1]-23)//2,c.grafico[4]) scr.addstr(9,(dims[1]-23)//2,c.grafico[5]) scr.addstr(10,(dims[1]-23)//2,c.grafico[6]) scr.addstr(12,(dims[1]-31)//2,"B-Bufon C-Cortesano K-Rey") #Se actualiza la lista de eventos recientes, y se muestra for i in reversed(range(9)): textoEntrante[i+1] = textoEntrante[i] textoEntrante[0] = c.grafico[7] scr.addstr(14,(dims[1]-66)//2,textoEntrante[9]) scr.addstr(15,(dims[1]-66)//2,textoEntrante[8]) scr.addstr(16,(dims[1]-66)//2,textoEntrante[7]) scr.addstr(17,(dims[1]-66)//2,textoEntrante[6]) scr.addstr(18,(dims[1]-66)//2,textoEntrante[5]) scr.addstr(19,(dims[1]-66)//2,textoEntrante[4]) scr.addstr(20,(dims[1]-66)//2,textoEntrante[3]) scr.addstr(21,(dims[1]-66)//2,textoEntrante[2]) scr.addstr(22,(dims[1]-66)//2,textoEntrante[1]) scr.addstr(23,(dims[1]-66)//2,textoEntrante[0]) scr.refresh() sleep(0.25) #Se señaliza al actor que ya se termino de actualizar la pantalla. c.sigInterfaz.release() #Se cierra el torniquete para detener la generación de cortesanos c.pausa.acquire() sleep(0.05) curses.endwin() menu() ``` #### File: 1/MorenoEduardo/aeropuerto.py ```python import threading import time import random import sys import os num_maletas = 0 limite_maletas = False num_pasajeros = 0 limite_pasajeros = False num_hack = 0 num_serf = 0 maletas_ = threading.Semaphore(0) #💼 pasajeros_ = threading.Semaphore(0) #👤 mutex_ingreso = threading.Semaphore(3) mutex_maletas = threading.Semaphore(2) mutex_pasajeros = threading.Semaphore(2) mutex_recoger = threading.Semaphore(2) def maletas(): #maletas es la función que permite ingresar maletas a la banda, no recibe un argumento. global num_maletas global mutex_maletas global limite_pasajeros global limite_maletas global maletas_ mutex_maletas.acquire() if (num_maletas == 15 and limite_maletas==False): limite_maletas = True mutex_maletas.release() elif (num_maletas >= 7 and num_maletas < 15 ): num_maletas += 1 print("Ha llegado ", end="") ingresa("maleta") print("") mutex_maletas.release() else: if(limite_maletas == False): num_maletas += 1 print("Ha llegado ", end="") ingresa("maleta") print("") mutex_maletas.release() maletas_.acquire() elif(limite_maletas == False and num_maletas != 15): limite_maletas = True else: mutex_maletas.release() print("¡No hay espacio en la cinta!") def pasajeros(recoge): # Pasajeros es la función que permite ingresar pasajeros alrededor de la banda, como tal recibe el argumento global num_pasajeros # recoge, el cual le indica si va a recoger una maleta o no, con esta información libera pasajero y maleta. global limite_maletas global limite_pasajeros global mutex_pasajeros global pasajeros_ global maletas_ mutex_pasajeros.acquire() if (num_pasajeros == 20 and limite_pasajeros == False): limite_pasajeros = True mutex_pasajeros.release() elif (num_pasajeros >= 7 and num_pasajeros <= 20 and recoge == 1): #ingresa("pasajero") #pantalla() pasajeros_.release() maletas_.release() mutex_pasajeros.release() recoger() else: if(limite_pasajeros == False): num_pasajeros += 1 print("Ha llegado ", end="") ingresa("pasajero") print("") mutex_pasajeros.release() pasajeros_.acquire() elif(limite_pasajeros == False and num_maletas !=20): limite_pasajeros == True else: mutex_pasajeros.release() print("¡No hay espacio alrededor de la cinta!") def ingresa(tipo): # Esta función imprime una maleta o un pasajero dependiendo de lo que se le mande en su argumento de entrada if(tipo == "maleta"): print("💼", end="") elif(tipo == "pasajero"): print("👤", end="") def imprimirProblema(): # Es el encargado de imprimir el enunciado inicial. print(" ✈️ 🌎 ======== La cinta del aeropuerto ======== ✈️ 🌎 ") print("Nos encontramos en un aeropuerto, en el aeropuerto tenemos una cinta que trae el equipaje," + " alrededor de ella hay gente esperando para recogerlo, pasa el tiempo, entra y sale equipaje, así como personas, no todo" + " el equipaje saldrá, pero observemos como se mueve el ritmo de maletas en el aeropuerto") def recoger(): # Recoger es la función encargada de que el pasajero recoja la maleta, de esta manera se eliminan global num_maletas # los hilos de una maleta y un pasajero. global num_pasajeros # No necesita de ninguna entrada y no devuelve nada. global limite_maletas global limite_pasajeros mutex_recoger.acquire() num_maletas = num_maletas -1 num_pasajeros = num_pasajeros -1 if (num_pasajeros == 0 or num_maletas == 0): print("No hay nada") elif(num_pasajeros >= 1 and num_maletas >= 1): print("Se va ", end="") ingresa("pasajero") print("") print("Se va ", end="") ingresa("maleta") print("") else: print("Todo mal") mutex_recoger.release() def pantalla(): # Se imprimen las maletas y los pasajeros existentes alrededor y encima de la cinta. global num_pasajeros # No es necesario un argumento, y tampoco tiene una salida global num_maletas a = 0 b = 0 mutex_ingreso.acquire() while a < num_maletas: #Impresión de las maletas en la banda ingresa("maleta") a += 1 print(" ") while b < num_pasajeros: #Impresión de los pasajeros alrededor de la banda ingresa("pasajero") b += 1 mutex_ingreso.release() try: imprimirProblema() while True: if round(random.choice([0,1])) == 0: threading.Thread(target = maletas, args = []).start() time.sleep(2) pantalla() print("") else: threading.Thread(target = pasajeros, args = [round(random.choice([0,1]))]).start() time.sleep(2) pantalla() print("") except KeyboardInterrupt: print(" ║║ Vámonos a casa ║║ ") sys.exit() except AttributeError: sys.exit() ``` #### File: 2/CarrilloRicardo/tarea2.py ```python import threading import time import random alumnos_sentados = [] mutex = threading.Semaphore(1) barrera = threading.Semaphore(0) contador_alumnos = 0 def alumno(id): global mutex, barrera, contador_alumnos #llego un alumno if len(alumnos_sentados) < 5: #verifica si tiene espacio en el cubiculo mutex.acquire() print('\033[;37malumno sentadito: \033[;36m'+ str(id) ) alumnos_sentados.append(id) contador_alumnos += 1 mutex.release() barrera.release() else: #si no hay lugar se duerme y espera a que se desocupe print(f"\033[;37malumno \033[;36m{id} \033[;37mdice: no hay lugar mejor me duermo") time.sleep(random.random()) pass def profesor(): global mutex, barrera, contador_alumnos while True: print("\033[;33mESPERANDO A QUE SE JUNTEN ALUMNOS") print(f"\033[;35mHAY {contador_alumnos} ALUMNOS EN ESPERA") #verifica si hay alumnos esperando ser atendidos if contador_alumnos >= 3: # pasa grupo de 3 alumnos print(f"\033[;32mPASANDO GRUPO DE {contador_alumnos} ALUMNOS") barrera.acquire() while alumnos_sentados: # mientras haya alumnos en su cubiculo a = alumnos_sentados.pop() # atendemos las dudas del primer alumno contador_alumnos -= 1 for duda in range(random.randint(1,5)): print(f'\033[;37mATENDIENDO SU DUDA # \033[;31m{duda} \033[;37mALUMNO \033[;36m{a}') time.sleep(random.random()) else: print('\033[;37mMIMIDO, NO MOLESTAR') #si no se ha juntado grupo de alumnos el profesor duerme time.sleep(5) threading.Thread(target = profesor).start() id = 0 while True: threading.Thread(target=alumno,args=[id]).start() id += 1 time.sleep(random.random()) if id >= 10: time.sleep(random.randint(10,15)) ``` #### File: 2/HernandezIvan/alum_ase.py ```python from threading import Semaphore, Thread import time import random cuenta = 0 num_alumnos = 9 descansa_asesor = Semaphore(0) mutex = Semaphore(1) torniquete = Semaphore(1) duda = Semaphore(2) cubiculo = Semaphore (0) def asesor(): global duda while(True): global cuenta, num_alumnos,mutex, duda duda.acquire() print("Asesor dando asesoria") time.sleep(3) duda.release() #print(cuenta) if cuenta == num_alumnos: print("Asesor se va a dormir") descansa.asesor.acquire() def alumnos(id): global cuenta, mutex, duda torniquete.acquire() time.sleep(1) torniquete.release() mutex.acquire() cuenta = cuenta + 1 duda.acquire() print("Alumno %d tomando asesoria" % id) time.sleep(3) duda.release() mutex.release() Thread(target=asesor).start() for i in range(num_alumnos): Thread(target=alumnos, args=[i]).start() ``` #### File: 2/SantiagoDiego-UgaldeArmando/los_alumnos_y_el_asesor.py ```python import threading, queue import time # El problema es parecido al productor-consumidor, # sin embargo, en este caso una vez que se atienda a un # alumno, se enviará a la cola de nuevo en caso de que # aún tenga preguntas disponibles (tiene y inicialmente) buf = queue.Queue() # Máximo número de alumnos en el salón de clase x = 10 # Máximo número de preguntas por alumno y = 5 # Id de los alumnos eid = 1 eid_lock = threading.Lock() # Mutex de la cola de estudiantes mutex = threading.Semaphore(1) # Semáforo con el total de alumnos en la cola estudiantes = threading.Semaphore(0) class Estudiante: def __init__(self, eid): self.preguntas_restantes = y self.id = eid def preguntas_se_acabaron(self): return self.preguntas_restantes == 0 def hacer_pregunta(self): print("Estudiante " + str(self.id) + " hizo una pregunta") time.sleep(0.5) # Actualizar el número de preguntas de este estudiante self.preguntas_restantes -= 1 # Llenar el salón de clases def llenar_salon_inicial(): for i in range(x): producir_estudiante() # Simular que los alumnos llegan después de haber iniciado def llenar_salon_periodicamente(): while True: producir_estudiante() time.sleep(5) # Añadir un estudiante al salón de clases para que sea # atendido. De no haber lugar, será rechazado def producir_estudiante(): global eid # Generar estudiante con nuevo id with eid_lock: estudiante = Estudiante(eid) eid = eid + 1 mutex.acquire() # Hay espacio en el salón, agregar estudiante if buf.qsize() < x: buf.put(estudiante) print("Estudiante agregado (" + str(estudiante.id) + ")") estudiantes.release() # No hay espacio, rechazarlo else: print("Estudiante " + str(estudiante.id) + " rechazado") mutex.release() # El profesor atenderá a los estudiantes presentes en el # salón de clase. Estos estarán formados en una cola. Cuando # un estudiante es atendido, se envía al final de la "fila" # para atender a los demás estudiantes lo más rápido posible. # Cuando un estudiante termina todas sus preguntas, sale del # salón (se elimina de la cola), dejando un espacio libre para # otro estudiante. def profe_consumidor(): while True: mutex.acquire() estudiante = buf.get() estudiante.hacer_pregunta() # Sacarlo del salón if estudiante.preguntas_se_acabaron(): print("Estudiante " + str(estudiante.id) + " terminó sus preguntas") estudiantes.acquire() # Enviarlo al final de la fila else: buf.put(estudiante) mutex.release() time.sleep(1.5) llenar_salon_inicial() # El productor estará enviando estudiantes al salón threading.Thread(target=llenar_salon_periodicamente, args=[]).start() profe_consumidor() ``` #### File: 3/GarciaFigueroaAlberto-GarciaEdgar/Proceso.py ```python class Proceso: def __init__(self,tiempo_de_llegada,t,id): self.t=t self.tiempo_de_llegada=tiempo_de_llegada self.id=id self.inicio=0 self.fin=0 self.T=0 self.E=0 self.P=0 self.tRestantes = t ``` #### File: 3/GarciaFigueroaAlberto-GarciaEdgar/RR.py ```python from collections import deque import operator class RR: def __init__(self,ProcesoA,ProcesoB,ProcesoC,ProcesoD,ProcesoE,quantum): #Tiempos en donde entran al sistema self.A=ProcesoA self.B=ProcesoB self.C=ProcesoC self.E=ProcesoE self.D=ProcesoD self.T_total=0 self.P_total=0 self.E_total=0 self.quantum=quantum self.TiempoTotal=0 self.Final = [] def runRR(self): procesos=[self.A,self.B,self.C,self.D,self.E] procesosBase=[self.A,self.B,self.C,self.D,self.E] #PROCESOS ORDENADOS sortedProcesses=sorted(procesos, key=operator.attrgetter("tiempo_de_llegada")) queueProcesos = [] for i in sortedProcesses: queueProcesos.append(i) primero = True terminados=[] #COLA CON PROCESO EN ESPERA waiting=[] waiting.append(sortedProcesses.pop(0)) while waiting: proc = waiting.pop(0) if(primero==True): proc.inicio = proc.tiempo_de_llegada primero = False banderaQuantum = 0 #SE REQUIERE QUE NO HAYA EXCEDIDO EL QUANTUM Y QUE AÚN LE FALTE TIEMPO PARA TERMINAR EL PROCESO while (banderaQuantum < self.quantum and proc.tRestantes > 0): banderaQuantum += 1 proc.tRestantes-=1 self.TiempoTotal += 1 self.Final += proc.id for x in procesosBase: ##BUSCA EN LA BASE DE LOS PROCESOS SI ALGUNO TIENE SU TIEMPO DE LLEGADA EN EL QUANTUM ACTUAL PARA AGREGARLO A LA COLA DE PROCESOS EN ESPERA if(x.tiempo_de_llegada == self.TiempoTotal): try: waiting.append(sortedProcesses.pop(0)) except(IndexError): print("Somos estudiantes, Parece que algo malo paso") if proc.tRestantes: ##SI LE FALTA TIEMPO DE EJECUCIÓN SE VUELVE A AGREGAR A LA COLA DE PROCESOS PENDIENTES waiting.append(proc) else: proc.fin= self.TiempoTotal terminados.append(proc) #SE LLENAN LOS PARAMETROS CALCULADOS DE LOS PROCESOS for i in terminados: i.T =i.fin - i.tiempo_de_llegada i.E = i.T -i.t i.P =i.T /i.t #print(i.id +" "+str(i.tiempo_de_llegada)+" "+str(i.t)+" "+str(i.inicio)+" "+str(i.fin)+" " +str(i.T)+" " + str(i.E)+" " + str(i.P)) self.T_total= self.T_total + i.T self.E_total= self.E_total + i.E self.P_total= self.P_total + i.P self.T_total=self.T_total / len(terminados) self.E_total=self.E_total / len(terminados) self.P_total=self.P_total / len(terminados) def listDiaf(self): for i in self.Final: print(str(i) , end = '') print("") print("\nEL valor de T:"+str(self.T_total)) print("EL valor de E:"+str(self.E_total)) print("EL valor de P:"+str(round((self.P_total),2))) ``` #### File: 3/ManzanaresJorge-SalazarJesus/fcfs.py ```python from scheduler import Scheduler from collections import deque class Fcfs(Scheduler): name = "First Come First Serve (FCFS)" def __init__(self,procesos): self.ejecutados = [] self.ejecutados_visual = "" self.fcfs_queue = deque(procesos) self.t = self.fcfs_queue[0].arrvl_time def execute(self): while len(self.fcfs_queue)>0: if self.fcfs_queue[0].arrvl_time > self.t: self.emptyExec() else: ejecutando = self.fcfs_queue.popleft() while ejecutando.timeLeft > 0 : self.ejecutados_visual+=ejecutando.id ejecutando.execute(1) self.t +=1 ejecutando.compl_time = self.t self.ejecutados.append(ejecutando) ``` #### File: 3/VillanuevaMiguel/algoritmos_deplaneacion.py ```python import random import copy def fifo(procesos_datos): T=0 T1=0 t_inicial=0 E=0 P=0 resultado=[] for i in range(len(procesos_datos)): t_llegada=procesos_datos[i][1] t_n=procesos_datos[i][2] T1=((t_inicial - t_llegada)+t_n) T=T+T1 #print('T1=',T1) E1=T1-t_n #print('E1=',E1) P1=T1/t_n #print('P1=',P1) E=E+E1 P=P+P1 t_inicial=t_inicial + t_n Ttotal=T/len(procesos_datos) Etotal=E/len(procesos_datos) Ptotal=P/len(procesos_datos) letra=procesos_datos[i][0] if t_n > 0: letra=letra*t_n resultado.append(letra) print("".join(resultado)) print("FIFO: T=",Ttotal," E=",Etotal,"P=",Ptotal) def rr1(procesos_datos): proc_final=[] cadena='' datos=copy.deepcopy(procesos_datos) E=0 T=0 P=0 cont=0 condicion=len(datos) while condicion>0: for i in range(len(procesos_datos)): t_llegada1=datos[i][1] t_n1=datos[i][2] letra1=datos[i][0] if t_llegada1 <= cont and t_n1>0: cadena += letra1 t_n1 -= 1 datos[i][2]=t_n1 cont+=1 if t_n1==0 and letra1 not in proc_final: t_llegada=procesos_datos[i][1] t_n=procesos_datos[i][2] T1=len(cadena)-t_llegada #print(T1) T=T1+T E1=T1-t_n E=E1+E P1=T1/t_n P=P+P1 Ttotal=T/len(procesos_datos) Etotal=E/len(procesos_datos) Ptotal=P/len(procesos_datos) proc_final.append(letra1) condicion-=1 print(cadena) print("RR1: T=",Ttotal," E=",Etotal," P=",Ptotal) def spn(procesos_datos): espera=[] proc_final=[] datos=copy.deepcopy(procesos_datos) cadena='' cadena1='' E=0 T=0 P=0 cont=0 i=0 while i < len(datos): t_llegada1=datos[i][1] t_n1=datos[i][2] letra1=datos[i][0] if t_llegada1 == cont: cadena1= letra1*t_n1 cont += t_n1 t_n1 = 0 datos[i][2]=t_n1 cadena+=cadena1 i+=1 elif i ==len(datos)-1: cadena1= letra1*t_n1 cont+= t_n1 t_n1 = 0 datos[i][2]=t_n1 i+=1 cadena+=cadena1 elif t_n1<=datos[i+1][2]: cadena1= letra1*t_n1 cont+= t_n1 t_n1 = 0 datos[i][2]=t_n1 i+=1 cadena+=cadena1 elif t_n1>datos[i+1][2]: cadena1= datos[i+1][0]*datos[i+1][2] cont+= datos[i+1][2] datos[i+1][2] = 0 cadena+=cadena1 D1=datos[i+1][0] D2=datos[i+1][1] D3=datos[i+1][2] datos[i+1][0]=letra1 datos[i+1][1]=t_llegada1 datos[i+1][2]=t_n1 i+=1 if t_n1 == 0 and letra1 not in proc_final: t_llegada=procesos_datos[i-1][1] t_n=procesos_datos[i-1][2] T1=len(cadena)-t_llegada #print(T1) T=T1+T E1=T1-t_n #print("e1=",E1) E=E1+E P1=T1/t_n #print("p1=",P1) P=P+P1 Ttotal=T/len(procesos_datos) Etotal=E/len(procesos_datos) Ptotal=P/len(procesos_datos) proc_final.append(letra1) elif D3 == 0 and D1 not in proc_final: t_llegada=procesos_datos[i][1] t_n=procesos_datos[i][2] T1=len(cadena)-t_llegada #print(T1) T=T1+T E1=T1-t_n #print("e1=",E1) E=E1+E P1=T1/t_n #print("p1=",P1) P=P+P1 Ttotal=T/len(procesos_datos) Etotal=E/len(procesos_datos) Ptotal=P/len(procesos_datos) proc_final.append(datos[i][2]) print(cadena) print("SPN: T=",Ttotal," E=",Etotal," P=",Ptotal) proceso=["A","B","C","D","E"] procesos_datos=[] proceso_llegada=0 #procesos_datos=[['A',0, 3], ['B', 1,5],['C',3,2],['D', 9, 5], ['E', 12, 5]] for i in range(len(proceso)): proceso_t=random.randint(1,10) procesos_datos.append([proceso[i],proceso_llegada,proceso_t]) proceso_llegada += random.randint(1,5) print(procesos_datos) fifo(procesos_datos) rr1(procesos_datos) spn(procesos_datos) ```
{ "source": "Jorgelof/DAS_Sistemas", "score": 4 }
#### File: Ago-Dic-2020/Parcial 1/Practica1.py ```python class Matrix: def __init__(self, matrix_string): self.lista = [[int(i) for i in j.split()] for j in matrix_string.splitlines()] def row(self, fila): return list(self.lista[fila-1]) def column(self, column): return [i[column-1] for i in self.lista] matriz = Matrix("9 8 7 \n5 3 2 \n6 6 7") print(matriz.lista) fila=input("fila a solicitar: " ) columna=input("Columna a solicitra: ") print("Fila ", matriz.row(int(fila))) print("Columna ", matriz.column(int(columna))) ```
{ "source": "jorgelopez1/hdfs", "score": 2 }
#### File: helloworld/tests/test_soak.py ```python import logging import os import pytest import shakedown # required by sdk_utils version checks import sdk_cmd import sdk_plan import sdk_tasks import sdk_upgrade import sdk_utils from tests import config log = logging.getLogger(__name__) FRAMEWORK_NAME = "secrets/hello-world" NUM_HELLO = 2 NUM_WORLD = 3 # check environment first... if "FRAMEWORK_NAME" in os.environ: FRAMEWORK_NAME = os.environ["FRAMEWORK_NAME"] if "NUM_HELLO" in os.environ: NUM_HELLO = int(os.environ["NUM_HELLO"]) if "NUM_WORLD" in os.environ: NUM_WORLD = int(os.environ["NUM_WORLD"]) @pytest.mark.soak_upgrade def test_soak_upgrade_downgrade(): sdk_upgrade.soak_upgrade_downgrade( config.PACKAGE_NAME, config.SERVICE_NAME, config.DEFAULT_TASK_COUNT) @pytest.mark.soak_secrets_update @sdk_utils.dcos_1_10_or_higher def test_soak_secrets_update(): secret_content_alternative = "hello-world-secret-data-alternative" test_soak_secrets_framework_alive() sdk_cmd.run_cli("package install --cli dcos-enterprise-cli --yes") sdk_cmd.run_cli("package install --cli hello-world --yes") sdk_cmd.run_cli("security secrets update --value={} secrets/secret1".format(secret_content_alternative)) sdk_cmd.run_cli("security secrets update --value={} secrets/secret2".format(secret_content_alternative)) sdk_cmd.run_cli("security secrets update --value={} secrets/secret3".format(secret_content_alternative)) test_soak_secrets_restart_hello0() # get new task ids - only first pod hello_tasks = sdk_tasks.get_task_ids(FRAMEWORK_NAME, "hello-0") world_tasks = sdk_tasks.get_task_ids(FRAMEWORK_NAME, "world-0") # make sure content is changed assert secret_content_alternative == task_exec(world_tasks[0], "bash -c 'echo $WORLD_SECRET1_ENV'") assert secret_content_alternative == task_exec(world_tasks[0], "cat WORLD_SECRET2_FILE") assert secret_content_alternative == task_exec(world_tasks[0], "cat secrets/secret3") # make sure content is changed assert secret_content_alternative == task_exec(hello_tasks[0], "bash -c 'echo $HELLO_SECRET1_ENV'") assert secret_content_alternative == task_exec(hello_tasks[0], "cat HELLO_SECRET1_FILE") assert secret_content_alternative == task_exec(hello_tasks[0], "cat HELLO_SECRET2_FILE") # revert back to some other value sdk_cmd.run_cli("security secrets update --value=SECRET1 secrets/secret1") sdk_cmd.run_cli("security secrets update --value=SECRET2 secrets/secret2") sdk_cmd.run_cli("security secrets update --value=SECRET3 secrets/secret3") test_soak_secrets_restart_hello0() @pytest.mark.soak_secrets_alive @sdk_utils.dcos_1_10_or_higher def test_soak_secrets_framework_alive(): sdk_plan.wait_for_completed_deployment(FRAMEWORK_NAME) sdk_tasks.check_running(FRAMEWORK_NAME, NUM_HELLO + NUM_WORLD) def test_soak_secrets_restart_hello0(): hello_tasks_old = sdk_tasks.get_task_ids(FRAMEWORK_NAME, "hello-0") world_tasks_old = sdk_tasks.get_task_ids(FRAMEWORK_NAME, "world-0") # restart pods to retrieve new secret's content sdk_cmd.svc_cli(config.PACKAGE_NAME, FRAMEWORK_NAME, 'pod restart hello-0') sdk_cmd.svc_cli(config.PACKAGE_NAME, FRAMEWORK_NAME, 'pod restart world-0') # wait pod restart to complete sdk_tasks.check_tasks_updated(FRAMEWORK_NAME, "hello-0", hello_tasks_old) sdk_tasks.check_tasks_updated(FRAMEWORK_NAME, 'world-0', world_tasks_old) # wait till it all running sdk_tasks.check_running(FRAMEWORK_NAME, NUM_HELLO + NUM_WORLD) def task_exec(task_name, command): cmd_str = "task exec {} {}".format(task_name, command) lines = sdk_cmd.run_cli(cmd_str).split('\n') log.info('dcos %s output: %s', cmd_str, lines) for i in lines: # ignore text starting with: # Overwriting Environment Variable .... # Overwriting PATH ...... if not i.isspace() and not i.startswith("Overwriting"): return i return "" ``` #### File: kafka/tests/test_ports.py ```python import pytest import sdk_cmd import sdk_install import sdk_marathon import sdk_tasks from tests import config STATIC_PORT_OPTIONS_DICT = {"brokers": {"port": 9092}} DYNAMIC_PORT_OPTIONS_DICT = {"brokers": {"port": 0}} @pytest.fixture(scope='module', autouse=True) def configure_package(configure_security): try: sdk_install.uninstall(config.PACKAGE_NAME, config.SERVICE_NAME) yield # let the test session execute finally: sdk_install.uninstall(config.PACKAGE_NAME, config.SERVICE_NAME) @pytest.mark.sanity def test_dynamic_port_comes_online(): sdk_install.install( config.PACKAGE_NAME, config.SERVICE_NAME, config.DEFAULT_BROKER_COUNT, additional_options=DYNAMIC_PORT_OPTIONS_DICT) sdk_tasks.check_running(config.SERVICE_NAME, config.DEFAULT_BROKER_COUNT) sdk_install.uninstall(config.PACKAGE_NAME, config.SERVICE_NAME) @pytest.mark.sanity def test_static_port_comes_online(): sdk_install.install( config.PACKAGE_NAME, config.SERVICE_NAME, config.DEFAULT_BROKER_COUNT, additional_options=STATIC_PORT_OPTIONS_DICT) sdk_tasks.check_running(config.SERVICE_NAME, config.DEFAULT_BROKER_COUNT) # static config continues to be used in the following tests: @pytest.mark.sanity def test_port_static_to_static_port(): sdk_tasks.check_running(config.SERVICE_NAME, config.DEFAULT_BROKER_COUNT) broker_ids = sdk_tasks.get_task_ids(config.SERVICE_NAME, '{}-'.format(config.DEFAULT_POD_TYPE)) marathon_config = sdk_marathon.get_config(config.SERVICE_NAME) for broker_id in range(config.DEFAULT_BROKER_COUNT): result = sdk_cmd.svc_cli(config.PACKAGE_NAME, config.SERVICE_NAME, 'broker get {}'.format(broker_id), json=True) assert result['port'] == 9092 result = sdk_cmd.svc_cli(config.PACKAGE_NAME, config.SERVICE_NAME, 'endpoints broker', json=True) assert len(result['address']) == config.DEFAULT_BROKER_COUNT assert len(result['dns']) == config.DEFAULT_BROKER_COUNT for port in result['address']: assert int(port.split(':')[-1]) == 9092 for port in result['dns']: assert int(port.split(':')[-1]) == 9092 marathon_config['env']['BROKER_PORT'] = '9095' sdk_marathon.update_app(config.SERVICE_NAME, marathon_config) sdk_tasks.check_tasks_updated(config.SERVICE_NAME, '{}-'.format(config.DEFAULT_POD_TYPE), broker_ids) # all tasks are running sdk_tasks.check_running(config.SERVICE_NAME, config.DEFAULT_BROKER_COUNT) result = sdk_cmd.svc_cli(config.PACKAGE_NAME, config.SERVICE_NAME, 'endpoints broker', json=True) assert len(result['address']) == config.DEFAULT_BROKER_COUNT assert len(result['dns']) == config.DEFAULT_BROKER_COUNT for port in result['address']: assert int(port.split(':')[-1]) == 9095 for port in result['dns']: assert int(port.split(':')[-1]) == 9095 @pytest.mark.sanity def test_port_static_to_dynamic_port(): sdk_tasks.check_running(config.SERVICE_NAME, config.DEFAULT_BROKER_COUNT) broker_ids = sdk_tasks.get_task_ids(config.SERVICE_NAME, '{}-'.format(config.DEFAULT_POD_TYPE)) marathon_config = sdk_marathon.get_config(config.SERVICE_NAME) marathon_config['env']['BROKER_PORT'] = '0' sdk_marathon.update_app(config.SERVICE_NAME, marathon_config) sdk_tasks.check_tasks_updated(config.SERVICE_NAME, '{}-'.format(config.DEFAULT_POD_TYPE), broker_ids) # all tasks are running sdk_tasks.check_running(config.SERVICE_NAME, config.DEFAULT_BROKER_COUNT) for broker_id in range(config.DEFAULT_BROKER_COUNT): result = sdk_cmd.svc_cli(config.PACKAGE_NAME, config.SERVICE_NAME, 'broker get {}'.format(broker_id), json=True) assert result['port'] != 9092 result = sdk_cmd.svc_cli(config.PACKAGE_NAME, config.SERVICE_NAME, 'endpoints broker', json=True) assert len(result['address']) == config.DEFAULT_BROKER_COUNT assert len(result['dns']) == config.DEFAULT_BROKER_COUNT for port in result['address']: assert int(port.split(':')[-1]) != 9092 for port in result['dns']: assert int(port.split(':')[-1]) != 9092 @pytest.mark.sanity def test_port_dynamic_to_dynamic_port(): sdk_tasks.check_running(config.SERVICE_NAME, config.DEFAULT_BROKER_COUNT) broker_ids = sdk_tasks.get_task_ids(config.SERVICE_NAME, '{}-'.format(config.DEFAULT_POD_TYPE)) sdk_marathon.bump_cpu_count_config(config.SERVICE_NAME, 'BROKER_CPUS') sdk_tasks.check_tasks_updated(config.SERVICE_NAME, '{}-'.format(config.DEFAULT_POD_TYPE), broker_ids) # all tasks are running sdk_tasks.check_running(config.SERVICE_NAME, config.DEFAULT_BROKER_COUNT) @pytest.mark.sanity def test_can_adjust_config_from_dynamic_to_static_port(): sdk_tasks.check_running(config.SERVICE_NAME, config.DEFAULT_BROKER_COUNT) broker_ids = sdk_tasks.get_task_ids(config.SERVICE_NAME, '{}-'.format(config.DEFAULT_POD_TYPE)) marathon_config = sdk_marathon.get_config(config.SERVICE_NAME) marathon_config['env']['BROKER_PORT'] = '9092' sdk_marathon.update_app(config.SERVICE_NAME, marathon_config) sdk_tasks.check_tasks_updated(config.SERVICE_NAME, '{}-'.format(config.DEFAULT_POD_TYPE), broker_ids) # all tasks are running sdk_tasks.check_running(config.SERVICE_NAME, config.DEFAULT_BROKER_COUNT) for broker_id in range(config.DEFAULT_BROKER_COUNT): result = sdk_cmd.svc_cli(config.PACKAGE_NAME, config.SERVICE_NAME, 'broker get {}'.format(broker_id), json=True) assert result['port'] == 9092 result = sdk_cmd.svc_cli(config.PACKAGE_NAME, config.SERVICE_NAME, 'endpoints broker', json=True) assert len(result['address']) == config.DEFAULT_BROKER_COUNT assert len(result['dns']) == config.DEFAULT_BROKER_COUNT for port in result['address']: assert int(port.split(':')[-1]) == 9092 for port in result['dns']: assert int(port.split(':')[-1]) == 9092 ``` #### File: kafka/tests/test_sanity.py ```python import urllib import dcos import dcos.config import dcos.http import pytest import sdk_cmd import sdk_hosts import sdk_install import sdk_marathon import sdk_metrics import sdk_plan import sdk_tasks import sdk_upgrade import sdk_utils import shakedown from tests import config, test_utils @pytest.fixture(scope='module', autouse=True) def configure_package(configure_security): try: foldered_name = sdk_utils.get_foldered_name(config.SERVICE_NAME) sdk_install.uninstall(config.PACKAGE_NAME, foldered_name) if shakedown.dcos_version_less_than("1.9"): # Last beta-kafka release (1.1.25-0.10.1.0-beta) excludes 1.8. Skip upgrade tests with 1.8 and just install sdk_install.install( config.PACKAGE_NAME, foldered_name, config.DEFAULT_BROKER_COUNT, additional_options={"service": {"name": foldered_name}}) else: sdk_upgrade.test_upgrade( config.PACKAGE_NAME, foldered_name, config.DEFAULT_BROKER_COUNT, additional_options={"service": {"name": foldered_name}}) # wait for brokers to finish registering before starting tests test_utils.broker_count_check(config.DEFAULT_BROKER_COUNT, service_name=foldered_name) yield # let the test session execute finally: sdk_install.uninstall(config.PACKAGE_NAME, foldered_name) # --------- Endpoints ------------- @pytest.mark.smoke @pytest.mark.sanity def test_endpoints_address(): foldered_name = sdk_utils.get_foldered_name(config.SERVICE_NAME) def fun(): ret = sdk_cmd.svc_cli( config.PACKAGE_NAME, foldered_name, 'endpoints {}'.format(config.DEFAULT_TASK_NAME), json=True) if len(ret['address']) == config.DEFAULT_BROKER_COUNT: return ret return False endpoints = shakedown.wait_for(fun) # NOTE: do NOT closed-to-extension assert len(endpoints) == _something_ assert len(endpoints['address']) == config.DEFAULT_BROKER_COUNT assert len(endpoints['dns']) == config.DEFAULT_BROKER_COUNT for i in range(len(endpoints['dns'])): assert sdk_hosts.autoip_host(foldered_name, 'kafka-{}-broker'.format(i)) in endpoints['dns'][i] assert endpoints['vip'] == sdk_hosts.vip_host(foldered_name, 'broker', 9092) @pytest.mark.smoke @pytest.mark.sanity def test_endpoints_zookeeper_default(): foldered_name = sdk_utils.get_foldered_name(config.SERVICE_NAME) zookeeper = sdk_cmd.svc_cli(config.PACKAGE_NAME, foldered_name, 'endpoints zookeeper') assert zookeeper.rstrip('\n') == 'master.mesos:2181/{}'.format(sdk_utils.get_zk_path(foldered_name)) @pytest.mark.smoke @pytest.mark.sanity def test_custom_zookeeper(): foldered_name = sdk_utils.get_foldered_name(config.SERVICE_NAME) broker_ids = sdk_tasks.get_task_ids(foldered_name, '{}-'.format(config.DEFAULT_POD_TYPE)) # create a topic against the default zk: test_utils.create_topic(config.DEFAULT_TOPIC_NAME, service_name=foldered_name) marathon_config = sdk_marathon.get_config(foldered_name) # should be using default path when this envvar is empty/unset: assert marathon_config['env']['KAFKA_ZOOKEEPER_URI'] == '' # use a custom zk path that's WITHIN the 'dcos-service-' path, so that it's automatically cleaned up in uninstall: zk_path = 'master.mesos:2181/{}/CUSTOMPATH'.format(sdk_utils.get_zk_path(foldered_name)) marathon_config['env']['KAFKA_ZOOKEEPER_URI'] = zk_path sdk_marathon.update_app(foldered_name, marathon_config) sdk_tasks.check_tasks_updated(foldered_name, '{}-'.format(config.DEFAULT_POD_TYPE), broker_ids) sdk_plan.wait_for_completed_deployment(foldered_name) # wait for brokers to finish registering test_utils.broker_count_check(config.DEFAULT_BROKER_COUNT, service_name=foldered_name) zookeeper = sdk_cmd.svc_cli(config.PACKAGE_NAME, foldered_name, 'endpoints zookeeper') assert zookeeper.rstrip('\n') == zk_path # topic created earlier against default zk should no longer be present: topic_list_info = sdk_cmd.svc_cli(config.PACKAGE_NAME, foldered_name, 'topic list', json=True) test_utils.assert_topic_lists_are_equal_without_automatic_topics([], topic_list_info) # tests from here continue with the custom ZK path... # --------- Broker ------------- @pytest.mark.smoke @pytest.mark.sanity def test_broker_list(): brokers = sdk_cmd.svc_cli(config.PACKAGE_NAME, sdk_utils.get_foldered_name(config.SERVICE_NAME), 'broker list', json=True) assert set(brokers) == set([str(i) for i in range(config.DEFAULT_BROKER_COUNT)]) @pytest.mark.smoke @pytest.mark.sanity def test_broker_invalid(): try: sdk_cmd.svc_cli( config.PACKAGE_NAME, sdk_utils.get_foldered_name(config.SERVICE_NAME), 'broker get {}'.format(config.DEFAULT_BROKER_COUNT + 1), json=True) assert False, "Should have failed" except AssertionError as arg: raise arg except: pass # expected to fail # --------- Pods ------------- @pytest.mark.smoke @pytest.mark.sanity def test_pods_restart(): test_utils.restart_broker_pods(sdk_utils.get_foldered_name(config.SERVICE_NAME)) @pytest.mark.smoke @pytest.mark.sanity def test_pod_replace(): test_utils.replace_broker_pod(sdk_utils.get_foldered_name(config.SERVICE_NAME)) # --------- Topics ------------- @pytest.mark.smoke @pytest.mark.sanity def test_topic_create(): test_utils.create_topic(config.EPHEMERAL_TOPIC_NAME, sdk_utils.get_foldered_name(config.SERVICE_NAME)) @pytest.mark.smoke @pytest.mark.sanity def test_topic_delete(): test_utils.delete_topic(config.EPHEMERAL_TOPIC_NAME, sdk_utils.get_foldered_name(config.SERVICE_NAME)) @pytest.mark.sanity def test_topic_partition_count(): foldered_name = sdk_utils.get_foldered_name(config.SERVICE_NAME) sdk_cmd.svc_cli( config.PACKAGE_NAME, foldered_name, 'topic create {}'.format(config.DEFAULT_TOPIC_NAME), json=True) topic_info = sdk_cmd.svc_cli( config.PACKAGE_NAME, foldered_name, 'topic describe {}'.format(config.DEFAULT_TOPIC_NAME), json=True) assert len(topic_info['partitions']) == config.DEFAULT_PARTITION_COUNT @pytest.mark.sanity def test_topic_offsets_increase_with_writes(): foldered_name = sdk_utils.get_foldered_name(config.SERVICE_NAME) offset_info = sdk_cmd.svc_cli( config.PACKAGE_NAME, foldered_name, 'topic offsets --time="-1" {}'.format(config.DEFAULT_TOPIC_NAME), json=True) assert len(offset_info) == config.DEFAULT_PARTITION_COUNT offsets = {} for o in offset_info: assert len(o) == config.DEFAULT_REPLICATION_FACTOR offsets.update(o) assert len(offsets) == config.DEFAULT_PARTITION_COUNT num_messages = 10 write_info = sdk_cmd.svc_cli( config.PACKAGE_NAME, foldered_name, 'topic producer_test {} {}'.format(config.DEFAULT_TOPIC_NAME, num_messages), json=True) assert len(write_info) == 1 assert write_info['message'].startswith('Output: {} records sent'.format(num_messages)) offset_info = sdk_cmd.svc_cli( config.PACKAGE_NAME, foldered_name, 'topic offsets --time="-1" {}'.format(config.DEFAULT_TOPIC_NAME), json=True) assert len(offset_info) == config.DEFAULT_PARTITION_COUNT post_write_offsets = {} for offsets in offset_info: assert len(o) == config.DEFAULT_REPLICATION_FACTOR post_write_offsets.update(o) assert not offsets == post_write_offsets @pytest.mark.sanity def test_decreasing_topic_partitions_fails(): partition_info = sdk_cmd.svc_cli( config.PACKAGE_NAME, sdk_utils.get_foldered_name(config.SERVICE_NAME), 'topic partitions {} {}'.format(config.DEFAULT_TOPIC_NAME, config.DEFAULT_PARTITION_COUNT - 1), json=True) assert len(partition_info) == 1 assert partition_info['message'].startswith('Output: WARNING: If partitions are increased') assert ('The number of partitions for a topic can only be increased' in partition_info['message']) @pytest.mark.sanity def test_setting_topic_partitions_to_same_value_fails(): partition_info = sdk_cmd.svc_cli( config.PACKAGE_NAME, sdk_utils.get_foldered_name(config.SERVICE_NAME), 'topic partitions {} {}'.format(config.DEFAULT_TOPIC_NAME, config.DEFAULT_PARTITION_COUNT), json=True) assert len(partition_info) == 1 assert partition_info['message'].startswith('Output: WARNING: If partitions are increased') assert ('The number of partitions for a topic can only be increased' in partition_info['message']) @pytest.mark.sanity def test_increasing_topic_partitions_succeeds(): partition_info = sdk_cmd.svc_cli( config.PACKAGE_NAME, sdk_utils.get_foldered_name(config.SERVICE_NAME), 'topic partitions {} {}'.format(config.DEFAULT_TOPIC_NAME, config.DEFAULT_PARTITION_COUNT + 1), json=True) assert len(partition_info) == 1 assert partition_info['message'].startswith('Output: WARNING: If partitions are increased') assert ('The number of partitions for a topic can only be increased' not in partition_info['message']) @pytest.mark.sanity def test_no_under_replicated_topics_exist(): partition_info = sdk_cmd.svc_cli( config.PACKAGE_NAME, sdk_utils.get_foldered_name(config.SERVICE_NAME), 'topic under_replicated_partitions', json=True) assert len(partition_info) == 1 assert partition_info['message'] == '' @pytest.mark.sanity def test_no_unavailable_partitions_exist(): partition_info = sdk_cmd.svc_cli( config.PACKAGE_NAME, sdk_utils.get_foldered_name(config.SERVICE_NAME), 'topic unavailable_partitions', json=True) assert len(partition_info) == 1 assert partition_info['message'] == '' # --------- CLI ------------- @pytest.mark.smoke @pytest.mark.sanity def test_help_cli(): sdk_cmd.svc_cli(config.PACKAGE_NAME, sdk_utils.get_foldered_name(config.SERVICE_NAME), 'help') @pytest.mark.smoke @pytest.mark.sanity def test_config_cli(): foldered_name = sdk_utils.get_foldered_name(config.SERVICE_NAME) configs = sdk_cmd.svc_cli(config.PACKAGE_NAME, foldered_name, 'config list', json=True) assert len(configs) >= 1 # refrain from breaking this test if earlier tests did a config update assert sdk_cmd.svc_cli(config.PACKAGE_NAME, foldered_name, 'config show {}'.format(configs[0]), print_output=False) # noisy output assert sdk_cmd.svc_cli(config.PACKAGE_NAME, foldered_name, 'config target', json=True) assert sdk_cmd.svc_cli(config.PACKAGE_NAME, foldered_name, 'config target_id', json=True) @pytest.mark.smoke @pytest.mark.sanity def test_plan_cli(): foldered_name = sdk_utils.get_foldered_name(config.SERVICE_NAME) assert sdk_cmd.svc_cli(config.PACKAGE_NAME, foldered_name, 'plan list', json=True) assert sdk_cmd.svc_cli(config.PACKAGE_NAME, foldered_name, 'plan show {}'.format(config.DEFAULT_PLAN_NAME)) assert sdk_cmd.svc_cli(config.PACKAGE_NAME, foldered_name, 'plan show --json {}'.format(config.DEFAULT_PLAN_NAME), json=True) assert sdk_cmd.svc_cli(config.PACKAGE_NAME, foldered_name, 'plan show {} --json'.format(config.DEFAULT_PLAN_NAME), json=True) assert sdk_cmd.svc_cli(config.PACKAGE_NAME, foldered_name, 'plan force-restart {}'.format(config.DEFAULT_PLAN_NAME)) assert sdk_cmd.svc_cli(config.PACKAGE_NAME, foldered_name, 'plan interrupt {} {}'.format(config.DEFAULT_PLAN_NAME, config.DEFAULT_PHASE_NAME)) assert sdk_cmd.svc_cli(config.PACKAGE_NAME, foldered_name, 'plan continue {} {}'.format(config.DEFAULT_PLAN_NAME, config.DEFAULT_PHASE_NAME)) @pytest.mark.smoke @pytest.mark.sanity def test_state_cli(): foldered_name = sdk_utils.get_foldered_name(config.SERVICE_NAME) assert sdk_cmd.svc_cli(config.PACKAGE_NAME, foldered_name, 'state framework_id', json=True) assert sdk_cmd.svc_cli(config.PACKAGE_NAME, foldered_name, 'state properties', json=True) @pytest.mark.smoke @pytest.mark.sanity def test_pod_cli(): foldered_name = sdk_utils.get_foldered_name(config.SERVICE_NAME) assert sdk_cmd.svc_cli(config.PACKAGE_NAME, foldered_name, 'pod list', json=True) assert sdk_cmd.svc_cli(config.PACKAGE_NAME, foldered_name, 'pod status {}-0'.format(config.DEFAULT_POD_TYPE), json=True) assert sdk_cmd.svc_cli(config.PACKAGE_NAME, foldered_name, 'pod info {}-0'.format(config.DEFAULT_POD_TYPE), print_output=False) # noisy output @pytest.mark.sanity @pytest.mark.metrics @sdk_utils.dcos_1_9_or_higher def test_metrics(): expected_metrics = [ "kafka.network.RequestMetrics.ResponseQueueTimeMs.max", "kafka.socket-server-metrics.io-ratio", "kafka.controller.ControllerStats.LeaderElectionRateAndTimeMs.p95" ] def expected_metrics_exist(emitted_metrics): return sdk_metrics.check_metrics_presence(emitted_metrics, expected_metrics) sdk_metrics.wait_for_service_metrics( config.PACKAGE_NAME, sdk_utils.get_foldered_name(config.SERVICE_NAME), "kafka-0-broker", config.DEFAULT_KAFKA_TIMEOUT, expected_metrics_exist ) ``` #### File: hdfs/testing/sdk_utils.py ```python import functools import logging import dcos import shakedown import pytest import os log = logging.getLogger(__name__) def list_reserved_resources(): '''Displays the currently reserved resources on all agents via state.json; Currently for INFINITY-1881 where we believe uninstall may not be always doing its job correctly.''' state_json_slaveinfo = dcos.mesos.DCOSClient().get_state_summary()['slaves'] for slave in state_json_slaveinfo: reserved_resources = slave['reserved_resources'] if reserved_resources == {}: continue msg = 'on slaveid=%s hostname=%s reserved resources: %s' log.info(msg % (slave['id'], slave['hostname'], reserved_resources)) def get_foldered_name(service_name): # DCOS 1.9 & earlier don't support "foldered", service names aka marathon # group names if dcos_version_less_than('1.10'): return service_name return '/test/integration/' + service_name def get_zk_path(service_name): # Foldered services have slashes removed: '/test/integration/foo' => 'test__integration__foo' return 'dcos-service-{}'.format(service_name.lstrip('/').replace('/', '__')) @functools.lru_cache() def dcos_version_less_than(version): return shakedown.dcos_version_less_than(version) def is_test_failure(pytest_request): '''Determine if the test run failed using the request object from pytest. The reports being evaluated are set in conftest.py:pytest_runtest_makereport() https://docs.pytest.org/en/latest/builtin.html#_pytest.fixtures.FixtureRequest ''' for report in ('rep_setup', 'rep_call', 'rep_teardown'): if not hasattr(pytest_request.node, report): continue if not getattr(pytest_request.node, report).failed: continue return True return False def is_open_dcos(): '''Determine if the tests are being run against open DC/OS. This is presently done by checking the envvar DCOS_ENTERPRISE.''' return not (os.environ.get('DCOS_ENTERPRISE', 'true').lower() == 'true') dcos_ee_only = pytest.mark.skipif( 'sdk_utils.is_open_dcos()', reason="Feature only supported in DC/OS EE.") # WARNING: Any file that uses these must also "import shakedown" in the same file. dcos_1_9_or_higher = pytest.mark.skipif( 'sdk_utils.dcos_version_less_than("1.9")', reason="Feature only supported in DC/OS 1.9 and up") dcos_1_10_or_higher = pytest.mark.skipif( 'sdk_utils.dcos_version_less_than("1.10")', reason="Feature only supported in DC/OS 1.10 and up") ```
{ "source": "jorgelopezcoronado/VAAR-VSR--CLI", "score": 3 }
#### File: VAAR-VSR--CLI/extras/solver.py ```python import z3; import sys; import emoji; def createSMTInput(values = []): """ Our variables that we can abstract from tosca-configs So the user can use them to create their own validations """ variables = ";; ---------------" variables += ";; VARIABLES" variables += ";; ---------------" variables += file('./variables.smt2').read() variables += "(declare-const vars (Array Int Int))\n" """ Values found on the user tosca-conf request, we assign the values to the corresponding variable """ configValues = "" for i in range(0, len(values)): configValues += "(assert (= (store vars " + str(i) +" "+ str(values[i]) +") vars))\n" initVariables = "" v = variables.strip().split("\n") v.pop() for i in range(0, len(v)): name = v[i].split(' ')[1] initVariables += "(assert (= " + name +" (select vars " + str(i) + ")))\n" """ User-Custom-Validations: specified by the user """ userRules = file('./user.smt').read() blob = variables + configValues + initVariables + userRules output = open('./output.smt2', mode="w") output.write(blob) output.close() def check(values = []): createSMTInput(values) f = z3.parse_smt2_file("./output.smt2") s = z3.Solver() s.add(f) sat = str(s.check()) if sat == "sat": return { "sat": "sat", "model": s.model() } else: return { "sat": "unsat", "model": "" } def main(): values = [] if len(sys.argv) == 3: values = [int(sys.argv[1]), int(sys.argv[2])] print("Input Values\n---------------------") # + ", ".join(map(lambda x: str(x), values))) print("total_cpus: " + str(values[0])) print("mem_size: " + str(values[1])) # print(check()["sat"]) sat = check()["sat"] if sat == "unsat": print emoji.emojize('sat: :x:', use_aliases=True) print("Is unsat without initializing any variable") exit(1) solver = check(values) if solver["sat"] == "sat": print emoji.emojize('sat: :white_check_mark:', use_aliases=True) else: while solver["sat"] == "unsat" and len(values) > 0: values.pop() solver = check(values) print emoji.emojize('sat: :x:', use_aliases=True) print "\n" + emoji.emojize(':rotating_light: Suggestion :rotating_light:', use_aliases=True)+"\n---------------------" for i in range(len(solver["model"])-2, 0, -1): print solver["model"][i], ": ", solver["model"][solver["model"][i]] # main() f = z3.parse_smt2_file("./ouput2.smt2") s = z3.Solver() s.add(f) print s.check() ``` #### File: VAAR-VSR--CLI/lib/preprocessor_types.py ```python import md5 def dec2Bin(num): sym = "B" total = num if total > 999: sym = "KB" total = total / 1000 if total > 999: sym = "MB" total = total / 1000 if total > 999: sym = "GB" total = total / 1000 if total > 999: sym = "TB" total = total / 1000 if total > 999: sym = "PB" total = total / 1000 return str(total) + " " + sym def bin2Dec(rawBin): rawBin = str(rawBin).upper() if "MB" in rawBin: return str(int(rawBin.split("MB")[0]) * (10**6)) if "GB" in rawBin: return str(int(rawBin.split("GB")[0]) * (10**9)) if "KB" in rawBin: return str(int(rawBin.split("KB")[0]) * (10**3)) if "TB" in rawBin: return str(int(rawBin.split("TB")[0]) * (10**12)) if "PB" in rawBin: return str(int(rawBin.split("PB")[0]) * (10**15)) if "B" in rawBin: return str(int(rawBin.split("B")[0])) return rawBin def IP2Int(ip): o = map(int, ip.split('.')) res = (16777216 * o[0]) + (65536 * o[1]) + (256 * o[2]) + o[3] return str(res) def Int2IP(ipnum): o1 = int(ipnum / 16777216) % 256 o2 = int(ipnum / 65536) % 256 o3 = int(ipnum / 256) % 256 o4 = int(ipnum) % 256 return '%(o1)s.%(o2)s.%(o3)s.%(o4)s' % locals() def preProcessor(line, MainData): if preProcessBytes(line): return preProcessBytes(line) elif preProcessIPs(line): return preProcessIPs(line) elif preProcessString(line, MainData): return preProcessString(line, MainData) # elif preProcessFloats(line, MainData): # return preProcessString(line, MainData) return line def preProcessIPs(line): try: pattern = re.compile(r"([0-9]{1,3})\.([0-9]{1,3})\.([0-9]{1,3})\.([0-9]{1,3})") start = pattern.search(line).start() end = pattern.search(line).end() ipRaw = line[start:end] ipNumber = IP2Int(ipRaw) return pattern.sub(ipNumber, line) except: return False def preProcessString(line, MainData): try: pattern = re.compile(r"\'.+\'") start = pattern.search(line).start() end = pattern.search(line).end() value = line[start+1:end-1] result = str(int(md5.new(value).hexdigest(), 16)) MainData["stringsHashMap"][result] = value return pattern.sub(result, line) except: return False def preProcessBytes(line): # detect bytes try: pattern = re.compile(r"(\d)+(\ )?(KB|MB|GB|TB|PB|B)") start = pattern.search(line).start() end = pattern.search(line).end() bytesRaw = line[start:end] bytesNumber = bin2Dec(bytesRaw) return pattern.sub(bytesNumber, line) except: return False def toscaRawValueToSMTCorrectType(attributeName, value, MainData): # if is ip if len(str(value).split('.')) is 4: MainData["valueTypes"][attributeName] = "ip" return IP2Int(value) # if is memory size 100 GB sizes = ["B", "KB", "MB", "GB", "TB", "PB"] for k in sizes: if k in str(value): MainData["valueTypes"][attributeName] = "size" return bin2Dec(value) # if is true or false if str(value) is "True" or str(value) is "False": MainData["valueTypes"][attributeName] = "bool" return str(int(value)) # if is int/port try: MainData["valueTypes"][attributeName] = "int" return str(int(value)) except: # if is float/version # if is string MainData["valueTypes"][attributeName] = "string" result = str(int(md5.new(value).hexdigest(), 16)) MainData["stringsHashMap"][result] = value return result def isTypeIP(value): value = value.strip() parts = value.split('.') if len(parts) is not 4: return False types = map(lambda x: type(x), parts) typesDict = {} for t in types: typesDict.setdefault(t, []) typesDict[t].append(t) if len(typesDict.keys()) is not 1: return False if len(typesDict[typesDict.keys()[0]]) is not 4: return False if typesDict[typesDict.keys()[0]][0] is not type(1): return False return True ```
{ "source": "jorgeluis098/proyecto_cripto", "score": 2 }
#### File: algoritmos/views/sha3_view.py ```python from django.shortcuts import render from django.views import View #Para SHA-3 de 384 y 512 bits from Cryptodome.Hash import SHA3_384, SHA3_512 class SHA2_384(View): template_name = 'dummy.html' # Pueden ver a la función "get" como un main def get(self, request, *args, **kwargs): #codigo #codigo #codigo context = { # Nota: El contexto son las variables que se van a mandar a la página web # Si quieren por el momento no vamos a mandar nada a la página web y todo lo manejamos por la consola # Y a variables que decidan imprimir al final, son las que se mandarán en el conexto a la pg web # Por el momento lo pueden dejar en blanco # La estructura es la siguiente # 'nombre_variable_html' : nombre_variable_python, } return render(request, self.template_name, context) def funcion_2(self, arg1, arg2): #codigo #codigo #codigo return class SHA2_512(View): template_name = 'dummy.html' # Pueden ver a la función "get" como un main def get(self, request, *args, **kwargs): #codigo #codigo #codigo context = { # Nota: El contexto son las variables que se van a mandar a la página web # Si quieren por el momento no vamos a mandar nada a la página web y todo lo manejamos por la consola # Y a variables que decidan imprimir al final, son las que se mandarán en el conexto a la pg web # Por el momento lo pueden dejar en blanco # La estructura es la siguiente # 'nombre_variable_html' : nombre_variable_python, } return render(request, self.template_name, context) def funcion_2(self, arg1, arg2): #codigo #codigo #codigo return ```
{ "source": "jorgeluis11/profile", "score": 2 }
#### File: profile/profile/views.py ```python from django.shortcuts import render_to_response, HttpResponse, render, redirect, get_list_or_404 from django.template import RequestContext import json, httplib, urllib from project.models import Projects def index(request): data = { "projects" : get_list_or_404(Projects.objects.all().order_by("-submit_date")) } return render(request,"index.html",data); ```
{ "source": "jorgeluis11/tpinterview", "score": 2 }
#### File: tpinterview/question/views.py ```python import ast import reportlab from django.http import HttpResponse from django.shortcuts import HttpResponse from django.shortcuts import HttpResponseRedirect from django.shortcuts import render_to_response from django.contrib.auth import authenticate from django.contrib.auth import login from django.contrib.auth import logout from django.contrib.auth.decorators import login_required from django.template import RequestContext from django.views.generic import TemplateView from .models import Answer from easy_pdf.views import PDFTemplateView from reportlab.pdfgen import canvas @login_required def index(request): return render_to_response("index.html", {}) @login_required def languages(request): # if not request.user.is_authenticated(): # return HttpResponseRedirect('/login') # else: return render_to_response("language/language_list.html", {}) @login_required def languagesDetail(request): return render_to_response("language/language_detail.html", {}) @login_required def languagesQuestionList(request): return render_to_response("language/language_question.html", {}) @login_required def testList(request): return render_to_response("test/test_list.html", {}) @login_required def testCandidatesList(request): return render_to_response("test/test_candidates_list.html", {}) @login_required def testCandidatesTestRetrieve(request): return render_to_response("test/test_candidates_retrieve.html", {}) class HelloPDFView(PDFTemplateView): template_name = "easy_pdf/test-candidate.html" def get_context_data(self, **kwargs): candidate = self.request.GET.get("candidate") test = self.request.GET.get('test') answers = Answer.objects.filter(candidate__slug=candidate, question__test__slug=test).order_by('question__order') return super(HelloPDFView, self).get_context_data( answers=answers, **kwargs) def user_login_redirect(request): return HttpResponseRedirect('/login') def user_login(request): # Like before, obtain the context for the user's request. context = RequestContext(request) # If the request is a HTTP POST, try to pull out the relevant information. if request.method == 'POST': # Gather the username and password provided by the user. # This information is obtained from the login form. username = request.POST['username'] password = request.POST['password'] # Use Django's machinery to attempt to see if the username/password # combination is valid - a User object is returned if it is. user = authenticate(username=username, password=password) # If we have a User object, the details are correct. # If None (Python's way of representing the absence of a value), #no user with matching credentials was found. if user: # Is the account active? It could have been disabled. if user.is_active: # If the account is valid and active, we can log the user in. # We'll send the user back to the homepage. login(request, user) return HttpResponseRedirect('/') else: # An inactive account was used - no logging in! return HttpResponse("Your TP account is disabled.") else: # Bad login details were provided. So we can't log the user in. print "Invalid login details: {0}, {1}".format(username, password) return render_to_response('login.html', {'error': True}, context) # The request is not a HTTP POST, so display the login form. # This scenario would most likely be a HTTP GET. else: # No context variables to pass to the template system, hence the # blank dictionary object... return render_to_response('login.html', {}, context) def user_logout(request): logout(request) return HttpResponseRedirect('/login') def insert_question(request): # Like before, obtain the context for the user's request. answers = dict(request.POST) # print answers['{"answers":"text"}'] # print request.POST.post['answers'] for key, value in request.POST.iteritems(): answer = key print ast.literal_eval(answer)[0] return HttpResponse(answers) ```
{ "source": "jorgeluisc-code2/ecommerce-master2", "score": 2 }
#### File: ecommerce-master2/ecom/views.py ```python from django.shortcuts import render, redirect from . import forms, models from django.http import HttpResponseRedirect from django.core.mail import send_mail from django.contrib.auth.models import Group from django.contrib.auth.decorators import login_required, user_passes_test from django.contrib import messages from math import ceil from .models import Product, Orders from django.http import JsonResponse from django.contrib.auth.models import User from django.db.models import Count from django.db.models import Sum from django.views.generic import ListView, CreateView, UpdateView, DetailView, View, TemplateView from rest_framework.authtoken.models import Token import os from django.shortcuts import get_object_or_404, redirect, reverse import json from django.views import generic def home_view(request): products = models.Product.objects.all().order_by('-id')[:12] categoria = models.Categoria.objects.all() products_slider = models.Product.objects.all().order_by('-id') productods_total = models.Product.objects.all() proveedores = models.Proveedor.objects.all() allProds = [] cats = {3} for cat in cats: prod = models.Product.objects.filter() n = len(prod) nSlides = n // 4 + ceil((n / 4) - (n // 4)) allProds.append([prod, range(1, nSlides), nSlides]) params = {'allProds': allProds} if 'product_ids' in request.COOKIES: product_ids = request.COOKIES['product_ids'] counter = product_ids.split('|') product_count_in_cart = len(set(counter)) else: product_count_in_cart = 0 if request.user.is_authenticated: return HttpResponseRedirect('afterlogin') return render(request, 'ecom/index.html', {'products': products, 'proveedores': proveedores, 'categoria': categoria, 'allProds': allProds, 'products_slider': products_slider, 'product_count_in_cart': product_count_in_cart, 'productods_total': productods_total}) # para mostrar el botón de inicio de sesión para el administrador (por sumit) def adminclick_view(request): if request.user.is_authenticated: return HttpResponseRedirect('afterlogin') return HttpResponseRedirect('adminlogin') def customer_signup_view(request): customerForm = forms.CustomerForm() mydict = {'customerForm': customerForm} if request.method == 'POST': usuario = request.POST.get("usuario") contrasena = request.POST.get("contraseña") nombres = request.POST.get("nombres") apellidos = request.POST.get("apellidos") customerForm = forms.CustomerForm(request.POST, request.FILES) if customerForm.is_valid(): user = models.User(username=usuario, password=<PASSWORD>, first_name=nombres, last_name=apellidos) user.set_password(<PASSWORD>) user.save() customer = customerForm.save(commit=False) customer.user = user customer.save() my_customer_group = Group.objects.get_or_create(name='CUSTOMER') my_customer_group[0].user_set.add(user) t = Token.objects.create(user=user) t.save() return HttpResponseRedirect('customerlogin') return render(request, 'ecom/customersignup.html', context=mydict) def eleccion_registro_view(request): if 'product_ids' in request.COOKIES: product_ids = request.COOKIES['product_ids'] counter = product_ids.split('|') product_count_in_cart = len(set(counter)) else: product_count_in_cart = 0 return render(request, 'ecom/eleccion_registro.html', {"product_count_in_cart": product_count_in_cart}) # -----------para comprobar el usuario -> iscustomer def is_customer(user): return user.groups.filter(name='CUSTOMER').exists() # -----------para comprobar el usuario -> isclienteempresarial def is_customer_empresarial(user): return user.groups.filter(name='CUSTOMEREMPRESARIAL').exists() # -----------para comprobar el usuario -> isdistribuidor def is_distribuidor(user): return user.groups.filter(name='DISTRIBUIDOR').exists() # ---------DESPUÉS DE INTRODUCIR LAS CREDENCIALES, COMPROBAMOS SI EL NOMBRE DE USUARIO Y LA CONTRASEÑA ES DE ADMIN, CLIENTE, DISTRIBUIDOR, CLIENTE EMPRESARIAL def afterlogin_view(request): if is_customer(request.user): return redirect('customer-home') elif is_distribuidor(request.user): return redirect('distribuidor-home') elif is_customer_empresarial(request.user): return redirect('customer-empresarial-home') else: return redirect('admin-dashboard') # --------------------------------------------------------------------------------- # ------------------------ INICIO DE VISTAS RELACIONADAS CON ADMIN ------------------------------ # --------------------------------------------------------------------------------- @login_required(login_url='adminlogin') def admin_dashboard_view(request): # para tarjetas en el tablero customercount = models.Customer.objects.all().count() productcount = models.Product.objects.all().count() ordercount = models.Orders.objects.all().count() categoria = Product.objects.values('categoria').annotate(Count('categoria')) feedback = models.Feedback.objects.all().count() feedbacks2 = models.Feedback.objects.all().filter(estado="Pendiente") # para tablas de pedidos recientes orders = models.Orders.objects.all() ordered_products = [] ordered_bys = [] for order in orders: ordered_product = models.Product.objects.all().filter(id=order.product.id) ordered_by = models.Customer.objects.all().filter(id=order.customer.id) ordered_products.append(ordered_product) ordered_bys.append(ordered_by) mydict = { 'customercount': customercount, 'productcount': productcount, 'ordercount': ordercount, 'distribuidorcount': models.Distribuidor.objects.all().count(), 'categoria': categoria, 'feedback': feedback, 'feedbacks2': feedbacks2, 'data': zip(ordered_products, ordered_bys, orders), } return render(request, 'ecom/admin_dashboard.html', context=mydict) from django.db.models import Func # Dashboard detalles -------------------------------------------------- @login_required(login_url='adminlogin') def admin_dashboard_detalle(request): camara = Product.objects.filter(categoria__categoria__icontains='camara').count() pc = Product.objects.filter(categoria__categoria__icontains='PC').count() impresora = Product.objects.filter(categoria__categoria__icontains='impresora').count() clientes_registrados = User.objects.all().filter(groups__name='CUSTOMER').count() # ----------------- USUARIO - GRUPOS ----------------------- total_usuarios = User.objects.all().count() total_grupos = Group.objects.all().count() r = Product.objects.all().aggregate(Sum('price')) t = r.get("price__sum") # y = ''.join(map(str, r)) # ----------------- ORDENES ----------------------- orders = models.Orders.objects.all().filter(status__contains='pendiente').order_by('-id')[:3] ordered_products = [] ordered_bys = [] for order in orders: ordered_product = models.Product.objects.all().filter(id=order.product.id) ordered_by = models.Customer.objects.all().filter(id=order.customer.id) ordered_products.append(ordered_product) ordered_bys.append(ordered_by) orders2 = models.Orders.objects.all().filter(status__contains='Orden Confirmada').order_by('-id')[:3] ordered_products2 = [] ordered_bys2 = [] for order2 in orders2: ordered_product2 = models.Product.objects.all().filter(id=order2.product.id) ordered_by2 = models.Customer.objects.all().filter(id=order2.customer.id) ordered_products2.append(ordered_product2) ordered_bys2.append(ordered_by2) mydict = { 'camara': camara, 'pc': pc, 'data': zip(ordered_products, ordered_bys, orders), 'data2': zip(ordered_products2, ordered_bys2, orders2), 'impresora': impresora, 'customercount': models.Customer.objects.all().count(), 'productcount': models.Product.objects.all().count(), 'ordercount': models.Orders.objects.all().count(), 'total_grupos': total_grupos, 'total_usuarios': total_usuarios, 'cliente_registrado': clientes_registrados, 'total_ordenes_pendientes': Orders.objects.filter(status__contains='Pendiente').count(), 'total_ordenes_confirmadas': Orders.objects.filter(status__contains='Orden Confirmada').count(), 'total_ordenes_delivery': Orders.objects.filter(status__contains='Fuera para entregar').count(), 'total_ordenes_entregada': Orders.objects.filter(status__contains='Entregada').count(), 'total_productos_precio': t, 'distribuidorcount': models.Distribuidor.objects.all().count(), } return render(request, 'ecom/dashboard/dashboard_detalle.html', context=mydict) ###########----------PAGOS-----------############################## # administrador ver tabla de pagos @login_required(login_url='adminlogin') def admin_pagos_view(request): pagos = models.Payment.objects.all().order_by('-id') return render(request, 'ecom/admin/admin_pagos.html', {'pagos': pagos}) class admin_fecha_ordenes(View): def get(self, request, *args, **kwargs): return render(request, 'ecom/admin/admin_buscar_fecha_ordenes.html') def post(self, request, *args, **kwargs): fecha = request.POST.get("fecha") fecha2 = request.POST.get("fecha2") ordenes = Orders.objects.raw( 'select id AS id, order_date, address from ecom_orders where order_date between "' + fecha + '"and"' + fecha2 + '"') return render(request, 'ecom/admin/admin_buscar_fecha_ordenes.html', {"ordenes": ordenes}) # ------------------------------------------------------------------------- # administrador ver tabla de clientes @login_required(login_url='adminlogin') def view_customer_view(request): customers = models.Customer.objects.all() clientesempresarial = models.CustomerEmpresarial.objects.all() return render(request, 'ecom/view_customer.html', {'customers': customers, 'clientesempresarial': clientesempresarial}) # administrador eliminar cliente @login_required(login_url='adminlogin') def delete_customer_view(request, pk): customer = models.Customer.objects.get(id=pk) user = models.User.objects.get(id=customer.user_id) user.delete() customer.delete() return redirect('view-customer') # administrador eliminar cliente-empresarial @login_required(login_url='adminlogin') def delete_customerempresarial_view(request, pk): customerempresarial = models.CustomerEmpresarial.objects.get(id=pk) user = models.User.objects.get(id=customerempresarial.user_id) user.delete() customerempresarial.delete() return redirect('view-customer') # administrador actualizar cliente @login_required(login_url='adminlogin') def update_customer_view(request, pk): customer = models.Customer.objects.get(id=pk) user = models.User.objects.get(id=customer.user_id) userForm = forms.CustomerUserForm(instance=user) customerForm = forms.CustomerForm(request.FILES, instance=customer) mydict = {'userForm': userForm, 'customerForm': customerForm} if request.method == 'POST': userForm = forms.CustomerUserForm(request.POST, instance=user) customerForm = forms.CustomerForm(request.POST, instance=customer) if userForm.is_valid() and customerForm.is_valid(): user = userForm.save() user.set_password(<PASSWORD>) user.save() customerForm.save() return redirect('view-customer') return render(request, 'ecom/admin_update_customer.html', context=mydict) # administrador actualizar cliente-empresarial @login_required(login_url='adminlogin') def update_customerempresarial_view(request, pk): customerempresarial = models.CustomerEmpresarial.objects.get(id=pk) user = models.User.objects.get(id=customerempresarial.user_id) userempresarialForm = forms.CustomerEmpresarialUserForm(instance=user) customerempresarialForm = forms.CustomerEmpresarialForm(request.FILES, instance=customerempresarial) mydict = {'userempresarialForm': userempresarialForm, 'customerempresarialForm': customerempresarialForm} if request.method == 'POST': userempresarialForm = forms.CustomerEmpresarialUserForm(request.POST, instance=user) customerempresarialForm = forms.CustomerEmpresarialForm(request.POST, instance=customerempresarial) if userempresarialForm.is_valid() and customerempresarialForm.is_valid(): user = userempresarialForm.save() user.set_password(<PASSWORD>) user.save() customerempresarialForm.save() return redirect('view-customer') return render(request, 'ecom/admin/admin_update_clienteempresarial.html', context=mydict) def editProduct(request, pk): prod = models.Product.objects.get(id=pk) if request.method == "POST": if len(request.FILES) != 0: if len(prod.product_image) > 0: os.remove(prod.product_image.path) prod.product_image = request.FILES['product_image'] prod.save() messages.success(request, "Product Updated Successfully") return redirect('admin-products') context = {'prod': prod} return render(request, 'ecom/admin/admin_actualizar_producto_imagen.html', context) def editCliente(request, pk): prod = models.Customer.objects.get(id=pk) if request.method == "POST": if len(request.FILES) != 0: if len(prod.profile_pic) > 0: os.remove(prod.profile_pic.path) prod.profile_pic = request.FILES['profile_pic'] prod.address = request.POST.get('address') prod.movile = request.POST.get('mobile') prod.save() messages.success(request, "Product Updated Successfully") return redirect('view-customer') context = {'prod': prod} return render(request, 'ecom/admin/admin_actualizar_cliente_imagen.html', context) # administrador ver el producto @login_required(login_url='adminlogin') def admin_products_view(request): products = models.Product.objects.all() if products.filter(stock__lte=10): messages.info(request, 'Cuidado el stock de algunos productos ha bajado!') elif products.filter(stock__gte=15): messages.success(request, 'Tu stock esta correcto!') elif products.filter(stock__exact=0): messages.error(request, 'El stock de tus productos se ha acabado :(') else: messages.warning(request, '¡¡Hey!!, uno de tus productos su stock se ha acabado!') return render(request, 'ecom/admin_products.html', {'products': products}) # admin agregue producto haciendo clic en el botón flotante @login_required(login_url='adminlogin') def admin_add_product_view(request): productForm = forms.ProductForm() if request.method == 'POST': productForm = forms.ProductForm(request.POST, request.FILES) if productForm.is_valid(): productForm.save() return HttpResponseRedirect('admin-products') return render(request, 'ecom/admin_add_products.html', {'productForm': productForm}) @login_required(login_url='adminlogin') def delete_product_view(request, pk): product = models.Product.objects.get(id=pk) product.delete() return redirect('admin-products') class update_product_view(UpdateView): model = Product fields = "__all__" template_name = 'ecom/admin_update_product.html' success_url = '/admin-products' # -------------------------------------------- # ------------- ORDENES ---------------------- # -------------------------------------------- @login_required(login_url='adminlogin') def admin_view_booking_view(request): producto = models.Product.objects.all() orders = models.Orders.objects.all().order_by('-id') ordered_products = [] ultima_ordenes = [] ordered_bys = [] for order in orders: ordered_product = models.Product.objects.all().filter(id=order.product.id).order_by('-id') ordered_by = models.Customer.objects.all().filter(id=order.customer.id).order_by('-id') ordered_products.append(ordered_product) ordered_bys.append(ordered_by) ultima_orden = models.Customer.objects.all().filter(id=order.customer.id).order_by('-id') ultima_ordenes.append(ultima_orden) return render(request, 'ecom/admin_view_booking.html', {'data': zip(ordered_products, ordered_bys, orders), "producto": producto}) @login_required(login_url='adminlogin') def delete_order_view(request, pk): order = models.Orders.objects.get(id=pk) order.delete() return redirect('admin-view-booking') # para cambiar el estado del pedido (pendiente, entregado ...) @login_required(login_url='adminlogin') def update_order_view(request, pk): order = models.Orders.objects.get(id=pk) orderForm = forms.OrderForm(instance=order) if request.method == 'POST': orderForm = forms.OrderForm(request.POST, instance=order) if orderForm.is_valid(): orderForm.save() return redirect('admin-view-booking') return render(request, 'ecom/update_order.html', {'orderForm': orderForm}) # administrador ver los comentarios @login_required(login_url='adminlogin') def view_feedback_view(request): feedbacks = models.Feedback.objects.all().filter(estado="Pendiente").order_by('-id') return render(request, 'ecom/view_feedback.html', {'feedbacks': feedbacks}) @login_required(login_url='adminlogin') def responder_feedback_view(request, pk): responderFeedback = forms.ResponderFeedbackForm() if request.method == 'POST': responder = forms.ResponderFeedbackForm(request.POST) if responder.is_valid(): enquiry_x = models.Feedback.objects.get(id=pk) enquiry_x.descripcion_solucion = responder.cleaned_data['descripcion_solucion'] enquiry_x.estado = "Respondido" enquiry_x.save() else: print("El formulario es invalido") return HttpResponseRedirect('/view-feedback') return render(request, 'ecom/admin/admin_responder_feedback.html', {'responderFeedback': responderFeedback}) # --------------------------------------------------------------------------------- # ------------------------ INICIO DE VISTAS RELACIONADAS CON CLIENTES PÚBLICOS ---- # --------------------------------------------------------------------------------- class detalle_producto_DetailView(DetailView): # Detalle de producto model = Product def get_context_data(self, **kwargs): # Call the base implementation first to get a context context = super().get_context_data(**kwargs) # Add in a QuerySet of all the books context['categoria'] = models.Categoria.objects.all() return context class detalle_order_DetailView(DetailView): # Para ver el detalle de las ordenes model = Orders template_name = 'ecom/detalle-orden.html' def search_view(request): # whatever user write in search box we get in query query = request.GET['query'] products = models.Product.objects.all().filter(name__icontains=query) if 'product_ids' in request.COOKIES: product_ids = request.COOKIES['product_ids'] counter = product_ids.split('|') product_count_in_cart = len(set(counter)) else: product_count_in_cart = 0 # La variable de palabra se mostrará en html cuando el usuario haga clic en el botón de búsqueda word = "Resultados de la Busqueda :" if request.user.is_authenticated: return render(request, 'ecom/customer_home.html', {'products': products, 'word': word, 'product_count_in_cart': product_count_in_cart}) return render(request, 'ecom/index.html', {'products': products, 'word': word, 'product_count_in_cart': product_count_in_cart}) def search_view_categorias(request): # cualquier usuario que escriba en el cuadro de búsqueda, obtenemos en la consulta query = request.GET['query'] products = models.Product.objects.all().filter(categoria__categoria__icontains=query) if 'product_ids' in request.COOKIES: product_ids = request.COOKIES['product_ids'] counter = product_ids.split('|') product_count_in_cart = len(set(counter)) else: product_count_in_cart = 0 # La variable de palabra se mostrará en html cuando el usuario haga clic en el botón de búsqueda word = "Resultados de la Busqueda :" categoria = models.Categoria.objects.all() proveedores = models.Proveedor.objects.all() if request.user.is_authenticated: return render(request, 'ecom/customer_home.html', {'products': products, 'categoria': categoria, 'proveedores': proveedores, 'word': word, 'product_count_in_cart': product_count_in_cart}) return render(request, 'ecom/index.html', {'products': products, 'categoria': categoria, 'proveedores': proveedores, 'word': word, 'product_count_in_cart': product_count_in_cart}) def search_view_proveedores(request): # cualquier usuario que escriba en el cuadro de búsqueda, obtenemos en la consulta query = request.GET['query'] products = models.Product.objects.all().filter(proveedor_id=query) if 'product_ids' in request.COOKIES: product_ids = request.COOKIES['product_ids'] counter = product_ids.split('|') product_count_in_cart = len(set(counter)) else: product_count_in_cart = 0 # La variable de palabra se mostrará en html cuando el usuario haga clic en el botón de búsqueda word = "Resultados de la Busqueda :" categoria = models.Categoria.objects.all() proveedores = models.Proveedor.objects.all() if request.user.is_authenticated: return render(request, 'ecom/customer_home.html', {'products': products, 'categoria': categoria, 'proveedores': proveedores, 'word': word, 'product_count_in_cart': product_count_in_cart}) return render(request, 'ecom/index.html', {'products': products, 'categoria': categoria, 'proveedores': proveedores, 'word': word, 'product_count_in_cart': product_count_in_cart}) # cualquiera puede agregar un producto al carrito, sin necesidad de iniciar sesión def add_to_cart_view(request, pk): products = models.Product.objects.all().order_by('-id')[:12] # para el contador de carritos, obteniendo ID de productos agregados por el cliente desde las cookies if 'product_ids' in request.COOKIES: product_ids = request.COOKIES['product_ids'] counter = product_ids.split('|') product_count_in_cart = len(set(counter)) else: product_count_in_cart = 1 response = render(request, 'ecom/index.html', {'products': products, 'product_count_in_cart': product_count_in_cart}) # agregar ID de producto a las cookies if 'product_ids' in request.COOKIES: product_ids = request.COOKIES['product_ids'] if product_ids == "": product_ids = str(pk) else: product_ids = product_ids + "|" + str(pk) response.set_cookie('product_ids', product_ids) else: response.set_cookie('product_ids', pk) product = models.Product.objects.get(id=pk) messages.info(request, product.name + ' Agregado al carro exitosamente!') return response # para pagar el carrito def cart_view(request): # para contador de carritos if 'product_ids' in request.COOKIES: product_ids = request.COOKIES['product_ids'] counter = product_ids.split('|') product_count_in_cart = len(set(counter)) else: product_count_in_cart = 0 word = "No has agregado ningun producto" # fetching product details from db whose id is present in cookie products = None total = 0 descuento = 0 word = "No has agregado ningun producto" if 'product_ids' in request.COOKIES: product_ids = request.COOKIES['product_ids'] if product_ids != "": product_id_in_cart = product_ids.split('|') products = models.Product.objects.all().filter(id__in=product_id_in_cart) productos = models.Product.objects.all().filter(id__in=product_id_in_cart) # for total price shown in cart for p in products: if p.estado == "Agotado": total = 0 else: descuento = descuento + p.product_precio_discuento total = total + p.price - p.product_precio_discuento else: word = "No has agregado ningun producto" else: word = "No has agregado ningun producto" return render(request, 'ecom/cart.html', {'products': products, 'total': total, 'descuento': descuento, 'word': word, 'product_count_in_cart': product_count_in_cart}) def remove_from_cart_view(request, pk): # for counter in cart if 'product_ids' in request.COOKIES: product_ids = request.COOKIES['product_ids'] counter = product_ids.split('|') product_count_in_cart = len(set(counter)) else: product_count_in_cart = 0 # removing product id from cookie total = 0 descuento = 0 if 'product_ids' in request.COOKIES: product_ids = request.COOKIES['product_ids'] product_id_in_cart = product_ids.split('|') product_id_in_cart = list(set(product_id_in_cart)) product_id_in_cart.remove(str(pk)) products = models.Product.objects.all().filter(id__in=product_id_in_cart) # for total price shown in cart after removing product for p in products: descuento = descuento + p.product_precio_discuento total = total + p.price - descuento # for update coookie value after removing product id in cart value = "" for i in range(len(product_id_in_cart)): if i == 0: value = value + product_id_in_cart[0] else: value = value + "|" + product_id_in_cart[i] response = render(request, 'ecom/cart.html', {'products': products, 'total': total, 'descuento': descuento, 'product_count_in_cart': product_count_in_cart}) if value == "": response.delete_cookie('product_ids') response.set_cookie('product_ids', value) return response def añadir_cantidad_cart_view(request, pk, price): if 'product_ids' in request.COOKIES: product_ids = request.COOKIES['product_ids'] counter = product_ids.split('|') product_count_in_cart = len(set(counter)) else: product_count_in_cart = 0 # removing product id from cookie total = 0 descuento = 0 if 'product_ids' in request.COOKIES: product_ids = request.COOKIES['product_ids'] product_id_in_cart = product_ids.split('|') product_id_in_cart = list(set(product_id_in_cart)) product_id_in_cart.append(str(pk)) products = models.Product.objects.all().filter(id__in=product_id_in_cart) # for total price shown in cart after añadir producto for p in products: if p.pk == pk: if p.price == price: p.price += price total = total + p.price else: total = total + p.price response = render(request, 'ecom/cart.html', {'products': products, 'descuento': descuento, 'total': total, 'product_count_in_cart': product_count_in_cart}) response.set_cookie('price', price) return response def disminuir_cantidad_cart_view(request, pk, price): # for counter in cart if 'product_ids' in request.COOKIES: product_ids = request.COOKIES['product_ids'] counter = product_ids.split('|') product_count_in_cart = len(set(counter)) else: product_count_in_cart = 0 # removing product id from cookie total = 0 descuento = 0 if 'product_ids' in request.COOKIES: product_ids = request.COOKIES['product_ids'] product_id_in_cart = product_ids.split('|') product_id_in_cart = list(set(product_id_in_cart)) product_id_in_cart.remove(str(pk)) products = models.Product.objects.all().filter(id__in=product_id_in_cart) # for total price shown in cart after removing product for p in products: descuento = descuento + p.product_precio_discuento p.price = price - p.price total = total + p.price - descuento return render(request, 'ecom/cart.html', {'products': products, 'descuento': descuento, 'total': total, 'product_count_in_cart': product_count_in_cart}) def send_feedback_view(request): feedbackForm = forms.FeedbackForm() if request.method == 'POST': feedbackForm = forms.FeedbackForm(request.POST) if feedbackForm.is_valid(): feedbackForm.save() return render(request, 'ecom/feedback_sent.html') return render(request, 'ecom/send_feedback.html', {'feedbackForm': feedbackForm}) # --------------------------------------------------------------------------------- # ------------------------ INICIO DE VISTAS RELACIONADAS CON EL CLIENTE ------------------------------ # --------------------------------------------------------------------------------- @login_required(login_url='customerlogin') @user_passes_test(is_customer) def customer_home_view(request): products = models.Product.objects.all().order_by('-id')[:12] categoria = models.Categoria.objects.all() proveedores = models.Proveedor.objects.all() products_slider = models.Product.objects.all().order_by('-id') productods_total = models.Product.objects.all() allProds = [] cats = {3} for cat in cats: prod = models.Product.objects.filter() n = len(prod) nSlides = n // 4 + ceil((n / 4) - (n // 4)) allProds.append([prod, range(1, nSlides), nSlides]) params = {'allProds': allProds} if 'product_ids' in request.COOKIES: product_ids = request.COOKIES['product_ids'] counter = product_ids.split('|') product_count_in_cart = len(set(counter)) else: product_count_in_cart = 0 return render(request, 'ecom/customer_home.html', {'products': products, 'productods_total': productods_total, 'categoria': categoria, 'proveedores': proveedores, 'product_count_in_cart': product_count_in_cart, 'allProds': allProds, 'products_slider': products_slider}) # dirección de envío antes de realizar el pedido @login_required(login_url='customerlogin') def customer_address_view(request): # esto es para verificar si el producto está presente en el carrito o no # Si no hay ningún producto en el carrito, no mostraremos el formulario de dirección. product_in_cart = False if 'product_ids' in request.COOKIES: product_ids = request.COOKIES['product_ids'] if product_ids != "": product_in_cart = True # para mostrador en carrito if 'product_ids' in request.COOKIES: product_ids = request.COOKIES['product_ids'] counter = product_ids.split('|') product_count_in_cart = len(set(counter)) else: product_count_in_cart = 0 CALLBACK_URL = request.build_absolute_uri(reverse("confirmar_payment")) addressForm = forms.AddressForm() if request.method == 'POST': addressForm = forms.AddressForm(request.POST) if addressForm.is_valid(): # aquí estamos tomando la dirección, el correo electrónico, el teléfono móvil al momento de realizar el pedido # no lo tomamos de la tabla de cuentas del cliente porque # estas cosas pueden ser cambios email = addressForm.cleaned_data['Email'] mobile = addressForm.cleaned_data['Mobile'] address = addressForm.cleaned_data['Address'] dni = addressForm.cleaned_data['Dni'] distrito = addressForm.cleaned_data['Distrito'] localidad = addressForm.cleaned_data['localidad'] # para mostrar el precio total en la página de pago ... acceder a la identificación de las cookies y luego obtener el precio del producto de db total = 0 if 'product_ids' in request.COOKIES: product_ids = request.COOKIES['product_ids'] if product_ids != "": product_id_in_cart = product_ids.split('|') products = models.Product.objects.all().filter(id__in=product_id_in_cart) for p in products: total = total + p.price response = render(request, 'ecom/payment.html', {'total': total, 'CALLBACK_URL': CALLBACK_URL}) response.set_cookie('email', email) response.set_cookie('mobile', mobile) response.set_cookie('address', address) response.set_cookie('localidad', localidad) response.set_cookie('dni', dni) response.set_cookie('distrito', distrito) return response else: messages.error(request, "el telefono no es correcto") return render(request, 'ecom/customer_address.html', {'addressForm': addressForm, 'product_in_cart': product_in_cart, 'product_count_in_cart': product_count_in_cart}) def confirmar_payment(request): return render(request, 'ecom/payment_success.html') class payment_success_view(generic.View): def post(self, request, *args, **kwargs): # Aquí haremos el pedido | después del pago exitoso # buscaremos el móvil del cliente, la dirección, el correo electrónico # Obtendremos la identificación del producto de las cookies y luego los detalles respectivos de la base de datos. # luego crearemos objetos de pedido y los almacenaremos en db # después de eso, eliminaremos las cookies porque después de realizar el pedido ... el carrito debe estar vacío customer = models.Customer.objects.get(user_id=request.user.id) products = None kardexs = None email = None mobile = None address = None localidad = None distrito = None dni = None if 'product_ids' in request.COOKIES: product_ids = request.COOKIES['product_ids'] if product_ids != "": product_id_in_cart = product_ids.split('|') products = models.Product.objects.all().filter(id__in=product_id_in_cart) kardexs = models.Product.objects.all().filter(id__in=product_id_in_cart) # Aquí obtenemos una lista de productos que serán pedidos por un cliente a la vez. # estas cosas se pueden cambiar así que accediendo en el momento de realizar el pedido ... if 'email' in request.COOKIES: email = request.COOKIES['email'] if 'mobile' in request.COOKIES: mobile = request.COOKIES['mobile'] if 'address' in request.COOKIES: address = request.COOKIES['address'] if 'localidad' in request.COOKIES: localidad = request.COOKIES['localidad'] if 'distrito' in request.COOKIES: distrito = request.COOKIES['distrito'] if 'dni' in request.COOKIES: dni = request.COOKIES['dni'] # here we are placing number of orders as much there is a products # suppose if we have 5 items in cart and we place order....so 5 rows will be created in orders table # there will be lot of redundant data in orders table...but its become more complicated if we normalize it # para guardar los productos seleccionados en la tabla orden for product in products: o = models.Orders(customer=customer, product=product, status='Pendiente', email=email, mobile=mobile, address=address, delivery_zona=localidad, distribuidor=models.Distribuidor.objects.get(id=1), distrito=distrito, dni=dni) o.save() send_email(email, distrito, address, o.id) # para guardar los productos seleccionados en la tabla Kardex for product in kardexs: k = models.Kardex(ingreso=0, descripcion="Reducción del producto", salida=1, producto_id=product) k.save() product.stock -= 1 product.save() body = json.loads(request.body) payment = models.Payment( order=o, succesful=True, raw_response=json.dumps(body), amount=float(body["purchase_units"][0]["amount"]["value"]), payment_method='Paypal' ) payment.save() # después de realizar el pedido, las cookies deben eliminarse response = HttpResponseRedirect('confirmar_payment') response.delete_cookie('product_ids') response.delete_cookie('email') response.delete_cookie('mobile') response.delete_cookie('address') response.delete_cookie('localidad') response.delete_cookie('distrito') response.delete_cookie('dni') return response @login_required(login_url='customerlogin') @user_passes_test(is_customer) def my_order_view(request): categorias = models.Categoria.objects.all() product_in_cart = False if 'product_ids' in request.COOKIES: product_ids = request.COOKIES['product_ids'] if product_ids != "": product_in_cart = True # para mostrador en carrito if 'product_ids' in request.COOKIES: product_ids = request.COOKIES['product_ids'] counter = product_ids.split('|') product_count_in_cart = len(set(counter)) else: product_count_in_cart = 0 customer = models.Customer.objects.get(user_id=request.user.id) orders = models.Orders.objects.all().filter(customer_id=customer).order_by('-id')[:6] ordered_products = [] for order in orders: ordered_product = models.Product.objects.all().filter(id=order.product.id) ordered_products.append(ordered_product) return render(request, 'ecom/my_order.html', {'data': zip(ordered_products, orders, ), "product_count_in_cart": product_count_in_cart, "categoria": categorias}) # --------------para descargar e imprimir la factura del paciente al alta (pdf) import io from xhtml2pdf import pisa from django.http import HttpResponse def render_to_pdf(template_src, context_dict): template = get_template(template_src) html = template.render(context_dict) result = io.BytesIO() pdf = pisa.pisaDocument(io.BytesIO(html.encode("ISO-8859-1")), result) if not pdf.err: return HttpResponse(result.getvalue(), content_type='application/pdf') return @login_required(login_url='customerlogin') @user_passes_test(is_customer) def download_invoice_view(request, orderID, productID): order = models.Orders.objects.get(id=orderID) product = models.Product.objects.get(id=productID) mydict = { 'orderDate': order.order_date, 'customerName': request.user, 'customerEmail': order.email, 'customerMobile': order.mobile, 'shipmentAddress': order.address, 'orderStatus': order.status, 'productName': product.name, 'productImage': product.product_image, 'productPrice': product.price, 'productDescription': product.description, } return render_to_pdf('ecom/download_invoice.html', mydict) @login_required(login_url='customerlogin') @user_passes_test(is_customer) def my_profile_view(request): customer = models.Customer.objects.get(user_id=request.user.id) return render(request, 'ecom/my_profile.html', {'customer': customer}) @login_required(login_url='customerlogin') @user_passes_test(is_customer) def edit_profile_view(request): customer = models.Customer.objects.get(user_id=request.user.id) user = models.User.objects.get(id=customer.user_id) userForm = forms.CustomerUserForm(instance=user) customerForm = forms.CustomerForm(request.FILES, instance=customer) mydict = {'userForm': userForm, 'customerForm': customerForm} if request.method == 'POST': userForm = forms.CustomerUserForm(request.POST, instance=user) customerForm = forms.CustomerForm(request.POST, instance=customer) if userForm.is_valid() and customerForm.is_valid(): user = userForm.save() user.set_password(<PASSWORD>) user.save() customerForm.save() return HttpResponseRedirect('my-profile') return render(request, 'ecom/edit_profile.html', context=mydict) # --------------------------------------------------------------------------------- # ------------------------ ABOUT US AND CONTACT US VIEWS START -------------------- # --------------------------------------------------------------------------------- def aboutus_view(request): return render(request, 'ecom/aboutus.html') def contactus_view(request): sub = forms.ContactusForm() if request.method == 'POST': sub = forms.ContactusForm(request.POST) if sub.is_valid(): email = sub.cleaned_data['Email'] name = sub.cleaned_data['Name'] message = sub.cleaned_data['Message'] send_mail(str(name) + ' || ' + str(email), message, settings.EMAIL_HOST_USER, settings.EMAIL_RECEIVING_USER, fail_silently=False) return render(request, 'ecom/contactussuccess.html') return render(request, 'ecom/contactus.html', {'form': sub}) from django.conf import settings from django.shortcuts import render from django.template.loader import get_template from django.core.mail import EmailMultiAlternatives def send_email(mail, distrito, address, orden): context = {'mail': mail, 'distrito': distrito, 'direccion': address, 'orden': orden} template = get_template('ecom/correo.html') content = template.render(context) email = EmailMultiAlternatives( 'Mensaje de Empresa Ikergust', 'Venta realizada', settings.EMAIL_HOST_USER, [mail], ) email.attach_alternative(content, 'text/html') email.send() class send_feedback_view(View): def get(self, request, *args, **kwargs): a = Product.objects.all() product_in_cart = False if 'product_ids' in request.COOKIES: product_ids = request.COOKIES['product_ids'] if product_ids != "": product_in_cart = True # para mostrador en carrito if 'product_ids' in request.COOKIES: product_ids = request.COOKIES['product_ids'] counter = product_ids.split('|') product_count_in_cart = len(set(counter)) else: product_count_in_cart = 0 return render(request, "ecom/send_feedback.html", {"a": a, "product_count_in_cart": product_count_in_cart}) def post(self, request, *args, **kwargs): usuario = request.POST.get("usuario") name = request.POST.get("nombre") tipoproblema = request.POST.get("tipoproblema") feedback = request.POST.get("feedback") user = models.User.objects.get(id=usuario) feedback = models.Feedback(user=user, name=name, feedback=feedback, descripcion_solucion="", estado="Pendiente", tipo=tipoproblema) feedback.save() return render(request, "ecom/send_feedback.html") ##################################### # ADMIN KARDEX #### ##################################### def kardex_opciones(request): kardex = models.Kardex.objects.all() return render(request, 'ecom/admin/admin_opcionKardex.html', {"kardex": kardex}) class buscar_producto_kardex(View): def get(self, request, *args, **kwargs): categoria = models.Categoria.objects.all() return render(request, "ecom/admin/Buscar_producto_kardex.html", {"categoria": categoria}) def post(self, request, *args, **kwargs): categorias = models.Categoria.objects.all() productos = models.Product.objects.all() categoria = request.POST.get("categoria") cat = models.Categoria.objects.get(id=categoria) produc = [] for p in productos: produc = models.Product.objects.all().filter(categoria_id=cat) return render(request, "ecom/admin/Buscar_producto_kardex.html", {"productos": produc, "categoria": categorias}) def Actualizar_producto_kardex_view(request, pk): if request.method == "GET": producto_id = models.Product.objects.get(id=pk) return render(request, 'ecom/admin/admin_kardex_añadirstock.html', {'producto': producto_id}) elif request.method == "POST": pk = request.POST.get("id_producto") stock = request.POST.get("stock") producto_id = models.Product.objects.get(id=pk) producto_id.stock = int(stock) + producto_id.stock producto_id.save() kardex = models.Kardex(ingreso=stock, descripcion="Aumento del producto", salida=0, producto_id=producto_id) kardex.save() categoria = models.Categoria.objects.all() return render(request, 'ecom/admin/Buscar_producto_kardex.html', {"categoria": categoria}) def kardex_view(request): kardex = models.Kardex.objects.all().order_by('-id')[:10] return render(request, 'ecom/admin/admin_kardex.html', {"kardex": kardex}) def admin_distribuidor(request): ordenes = models.Orders.objects.all().filter(status="Pendiente") return render(request, 'ecom/admin/admin_distribuidor.html', {"ordenes": ordenes}) def admin_distribuidor_agregar(request): customerForm = forms.CustomerForm() mydict = {'customerForm': customerForm} if request.method == 'POST': usuario = request.POST.get("usuario") contrasena = request.POST.get("contraseña") nombres = request.POST.get("nombres") apellidos = request.POST.get("apellidos") customerForm = forms.CustomerForm(request.POST, request.FILES) if customerForm.is_valid(): user = models.User(username=usuario, password=<PASSWORD>, first_name=nombres, last_name=apellidos) user.set_password(<PASSWORD>) user.save() customer = customerForm.save(commit=False) customer.user = user customer.save() my_customer_group = Group.objects.get_or_create(name='DISTRIBUIDOR') my_customer_group[0].user_set.add(user) Token.objects.create(user=user) return HttpResponseRedirect('customerlogin') return render(request, 'ecom/customersignup.html', context=mydict) ##################################### # ADMIN PAQUETES #### ##################################### def Paquete_opciones(request): return render(request, 'ecom/admin/admin_opcionpaquetes.html') ##################################### # ERRORES #### ##################################### class Error404(TemplateView): template_name = 'ecom/error404.html' ```
{ "source": "jorgeluisrmx/labtools_ThermoCalcCLI", "score": 3 }
#### File: thermocalc/controllers/rawtocurve.py ```python from __future__ import absolute_import import os import sys import argparse from thermocalc.models import TFurnance, Curve def parse_sysargv(): descr = """genera un archivo .curve con la distribución térmica de un horno tubular basado en las mediciones tomadas con un termopar; pares posicion temperatura.""" parser = argparse.ArgumentParser(description=descr) parser.add_argument('ltubo', help="longitud del tubo en [mm]", type=float) parser.add_argument('ltermopar', help="longitud del termopar en [mm]", type=float) parser.add_argument('datafile', help="archivo de datos [x T]", type=str) return parser.parse_args() # ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ def raw_to_curve(): # arguments parsing args = parse_sysargv() # creacion de modelo goemtrico del horno horno = TFurnance(args.ltubo, args.ltermopar) # creacion de la curva con los datos del archivo [x T] curva = Curve() try: with open(args.datafile, 'r') as data: for line in data: x, y = line.replace('\n', '').split(' ') curva.add_point(horno.x2R(float(x)), float(y)) # se agrega el ala simetrica a la curva curva.add_simetry() except: print 'Archivo de datos "{}" NO VALIDO'.format(args.datafile) print sys.exc_info() return # generacion del archivo .curve file_name = args.datafile.split('.')[0] + '.curve' with open(file_name, 'w') as target: target.write('{}\n'.format(args.ltubo)) target.write('{}\n'.format(args.ltermopar)) for x, y in curva: target.write('{},{}\n'.format(x, y)) print ' archivo {} generado con exito'.format(file_name) ```
{ "source": "jorgemarpa/kepler-apertures", "score": 2 }
#### File: src/kepler_apertures/EXBAMachine.py ```python import os import glob import warnings import datetime import wget import numpy as np import pandas as pd from scipy import sparse import matplotlib.pyplot as plt from matplotlib import colors from matplotlib import patches from tqdm.auto import tqdm from astropy.coordinates import SkyCoord, match_coordinates_3d from astropy.time import Time from astropy import units from astropy.io import fits from astropy.table import Table from astropy.timeseries import BoxLeastSquares import lightkurve as lk from .utils import get_gaia_sources from . import PACKAGEDIR, DATAOUTDIR from .version import __version__ class EXBAMachine(object): """ Class that works with Kepler's EXBA data, to identify observed sources using Gaia catalogs, and create light curves from simple aperture photometry. """ def __init__(self, channel=53, quarter=5, magnitude_limit=20, gaia_dr=3): """ Parameters ---------- channel : int Channel number of the EXBA image. quarter : int Quarter number of the EXBA image. magnitude_limit : float Limiting magnitude in g band used when querying Gaia catalogs, default is 20 mag. gaia_dr : int Gaia data release, dafult is EDR3. Attributes ---------- quarter : int Channel number of the EXBA image. channel : int Quarter number of the EXBA image. gaia_dr : int Gaia data release, dafult is EDR3. tpfs : lightkurve.TargetPixelFileCollection Collection of 4 TPFs that form the full EXBA mask. time : numpy.ndarray Data array containing the time values. cadences : numpy.ndarray Data array containing the cadence numbers. row : numpy.ndarray Data array containing the valid pixel row numbers. Has shape of [n_pixels]. column : numpy.ndarray Data array containing the valid pixel columns numbers. Has shape of [n_pixels]. flux : numpy.ndarray Data array containing the valid image fluxes. Has shape of [n_times, n_pixels]. flux_err : numpy.ndarray Data array containing the valid image flux errors. Has shape of [n_times, n_pixels]. ra : numpy.ndarray Data array containing the valid RA pixel values. Has shape of [n_pixels]. dec : numpy.ndarray Data array containing the valid Dec pixel values. Has shape of [n_pixels]. dx : numpy.ndarray Distance between pixel and source coordinates, units of pixels. Has shape of [n_sources, n_pixels] dy : numpy.ndarray Distance between pixel and source coordinates, units of pixels. Has shape of [n_sources, n_pixels] r : numpy.ndarray Radial distance between pixel and source coordinates (polar coordinates), in units of pixels. phi : numpy.ndarray Angle between pixel and source coordinates (polar coordinates), in units of radians n_sources : int Number of sources in Gaia catalog observed in the EXBA mask. n_rows : int Number rows in the EXBA image. n_columns : int Number columns in the EXBA image. aperture_mask : numpy.ndarray Data array with the source aperture masks. Has shape of [n_sources, n_pixels] FLFRCSAP : numpy.array Data array with the completeness metric for every source computed from the photometric aperture. CROWDSAP : numpy.array Data array with the contamination metric for every source computed from the photometric aperture. """ self.quarter = quarter self.channel = channel self.gaia_dr = gaia_dr # load local TPFs files tpfs_paths = np.sort( glob.glob( "%s/data/fits/exba/q%i/ch%02i/*_lpd-targ.fits.gz" % (DATAOUTDIR, quarter, channel) ) ) if len(tpfs_paths) == 0: print("Downloading TPFs for EXBA mask...") self.download_exba(channel=channel, quarter=quarter) tpfs_paths = np.sort( glob.glob( "%s/data/fits/exba/q%i/ch%02i/*_lpd-targ.fits.gz" % (DATAOUTDIR, quarter, channel) ) ) self.tpfs_files = tpfs_paths tpfs = lk.TargetPixelFileCollection( [lk.KeplerTargetPixelFile(f) for f in tpfs_paths] ) self.tpfs = tpfs self.wcs = tpfs[0].wcs print(self.tpfs) # check for same channels and quarter channels = [tpf.get_header()["CHANNEL"] for tpf in tpfs] quarters = [tpf.get_header()["QUARTER"] for tpf in tpfs] self.hdr = tpfs[0].get_header() if len(set(channels)) != 1 and list(set(channels)) != [channel]: raise ValueError( "All TPFs must be from the same channel %s" % ",".join([str(k) for k in channels]) ) if len(set(quarters)) != 1 and list(set(quarters)) != [quarter]: raise ValueError( "All TPFs must be from the same quarter %s" % ",".join([str(k) for k in quarters]) ) # stich channel's strips and parse TPFs time, cadences, row, col, flux, flux_err, unw = self._parse_TPFs_channel(tpfs) self.time, self.cadences, flux, flux_err = self._preprocess( time, cadences, flux, flux_err ) self.row_2d, self.column_2d, self.flux_2d, self.flux_err_2d = ( row.copy(), col.copy(), flux.copy(), flux_err.copy(), ) self.row, self.column, self.flux, self.flux_err, self.unw = ( row.ravel(), col.ravel(), flux.reshape(flux.shape[0], np.product(flux.shape[1:])), flux_err.reshape(flux_err.shape[0], np.product(flux_err.shape[1:])), unw.ravel(), ) self.ra, self.dec = self._convert_to_wcs(tpfs, self.row, self.column) # search Gaia sources in the sky sources = self._do_query( self.ra, self.dec, epoch=self.time[0], magnitude_limit=magnitude_limit, load=True, ) sources["col"], sources["row"] = self.wcs.wcs_world2pix( sources.ra, sources.dec, 0.0 ) sources["col"] += tpfs[0].column sources["row"] += tpfs[0].row self.sources, self.bad_sources = self._clean_source_list( sources, self.ra, self.dec ) self.dx, self.dy = np.asarray( [ np.vstack( [ self.column - self.sources["col"][idx], self.row - self.sources["row"][idx], ] ) for idx in range(len(self.sources)) ] ).transpose([1, 0, 2]) self.r = np.hypot(self.dx, self.dy) self.phi = np.arctan2(self.dy, self.dx) self.n_sources = self.sources.shape[0] self.n_rows = self.flux_2d.shape[1] self.n_columns = self.flux_2d.shape[2] self.aperture_mask = np.zeros_like(self.dx).astype(bool) self.FLFRCSAP = np.zeros(self.sources.shape[0]) self.CROWDSAP = np.zeros(self.sources.shape[0]) self.cut = np.zeros(self.sources.shape[0]) def __repr__(self): q_result = ",".join([str(k) for k in list([self.quarter])]) return "EXBA Patch:\n\t Channel %i, Quarter %s, Gaia DR%i sources %i" % ( self.channel, q_result, self.gaia_dr, len(self.sources), ) @staticmethod def download_exba(channel=1, quarter=5): """ Download EXBA fits file to a dedicated quarter/channel directory It uses a exba_tpfs_info.csv to map the quarter/channel to the corresponding file names in MAST archive. Parameters ---------- channel : int Number of channel to be download, valid numbers are bwtween 1 and 84. quarter : int Number of quarter to be download, valid numbers are bwtween 1 and 17. """ url = "https://archive.stsci.edu/missions/kepler/target_pixel_files/1000" map = pd.read_csv("%s/data/exba_tpfs_info.csv" % (PACKAGEDIR), index_col=0) file_names = map.query("channel == %i and quarter == %i" % (channel, quarter)) if not os.path.isdir( "%s/data/fits/exba/q%i/ch%02i" % (DATAOUTDIR, quarter, channel) ): os.makedirs("%s/data/fits/exba/q%i/ch%02i" % (DATAOUTDIR, quarter, channel)) for i, row in file_names.iterrows(): name = row["file_name"] kid = row["kepler_id"].split(" ")[-1] out = "%s/data/fits/exba/q%i/ch%02i/%s" % ( DATAOUTDIR, quarter, channel, name, ) print("%s/%s/%s" % (url, kid, name)) wget.download("%s/%s/%s" % (url, kid, name), out=out) return def _parse_TPFs_channel(self, tpfs): """ Function to parse the TPFs containing the EXBA masks (4 per channel) and tile them. Parameters ---------- tpfs : list of TPFs or TargetPixelFileCollection A list of TPFs that contain the 4 EXBA mask per channel. Returns ------- times : numpy.ndarray Data array containing the time values. cadences : numpy.ndarray Data array containing the cadence numbers. row : numpy.ndarray Data array containing the pixel row numbers. col : numpy.ndarray Data array containing the pixel column numbers. flux : numpy.ndarray Data array containing the image flux. flux_err : numpy.ndarray Data array containing the image flux errors. """ cadences = np.array([tpf.cadenceno for tpf in tpfs]) # check if all TPFs has same cadences if not np.all(cadences[1:, :] - cadences[-1:, :] == 0): raise ValueError("All TPFs must have same time basis") # make sure tpfs are sorted by colum direction tpfs = lk.TargetPixelFileCollection( [tpfs[i] for i in np.argsort([tpf.column for tpf in tpfs])] ) # extract times times = tpfs[0].time.jd # extract row,column mesh grid col, row = np.hstack( [ np.mgrid[ tpf.column : tpf.column + tpf.shape[2], tpf.row : tpf.row + tpf.shape[1], ] for tpf in tpfs ] ) # extract flux vales flux = np.hstack([tpf.flux.transpose(1, 2, 0) for tpf in tpfs]).transpose( 2, 0, 1 ) flux_err = np.hstack( [tpf.flux_err.transpose(1, 2, 0) for tpf in tpfs] ).transpose(2, 0, 1) # bookkeeping of tpf-pixel unw = np.hstack( [np.ones(tpf.shape[1:], dtype=np.int) * i for i, tpf in enumerate(tpfs)] ) return times, cadences[0], row.T, col.T, flux, flux_err, unw def _preprocess(self, times, cadences, flux, flux_err): """ Function to clean pixels with nan values and bad cadences. It Returns the same input arrays but cleaned. Parameters ---------- times : numpy.ndarray Data array with the time values. cadences : numpy.ndarray Data array with the cadence numbers. flux : numpy.ndarray Data array with the image flux. flux_err : numpy.ndarray Data array with the image flux errors. Returns ------- times : numpy.ndarray Data array with the time values. cadences : numpy.ndarray Data array with the cadence numbers. flux : numpy.ndarray Data array with the image flux. flux_err : numpy.ndarray Data array with the image flux errors. """ # Remove cadences with nan flux nan_cadences = np.array([np.isnan(im).sum() == 0 for im in flux]) times = times[nan_cadences] cadences = cadences[nan_cadences] flux = flux[nan_cadences] flux_err = flux_err[nan_cadences] return times, cadences, flux, flux_err def _convert_to_wcs(self, tpfs, row, col): """ Function to convert pixel number to RA and Dec values using the WCS solution embedded in the TPFs. Parameters ---------- tpfs : list of TPFs or TargetPixelFileCollection A list of TPFs that contain the EXBA tiles. row : numpy.ndarray Data aray with the row pixel values to be converted to RA & Dec. col : numpy.ndarray Data aray with the column pixel values to be converted to RA & Dec. Returns ------- ra : numpy.ndarray Right Ascension coordinate obtained from the WCS solution. dec : numpy.ndarray Declination coordinate obtained from the WCS solution. """ ra, dec = self.wcs.wcs_pix2world( (col - tpfs[0].column), (row - tpfs[0].row), 0.0 ) return ra, dec def _do_query(self, ra, dec, epoch=2020, magnitude_limit=20, load=True): """ Calculate ra, dec coordinates and search radius to query Gaia catalog. Parameters ---------- ra : numpy.ndarray Right ascension coordinate of pixels to do Gaia search dec : numpy.ndarray Declination coordinate of pixels to do Gaia search epoch : float Epoch of obervation in Julian Days of ra, dec coordinates, will be used to propagate proper motions in Gaia. magnitude_limit : int Limiting magnitued for query load : boolean Load or not the saved query. Set to False if want to force to run new queries. Returns ------- sources : pandas.DataFrame Catalog with query result """ columns = [ "designation", "ra", "ra_error", "dec", "dec_error", "pmra", "pmdec", "parallax", "parallax_error", "phot_g_n_obs", "phot_g_mean_flux", "phot_g_mean_flux_error", "phot_g_mean_mag", "phot_bp_n_obs", "phot_bp_mean_flux", "phot_bp_mean_flux_error", "phot_bp_mean_mag", "phot_rp_n_obs", "phot_rp_mean_flux", "phot_rp_mean_flux_error", "phot_rp_mean_mag", ] file_name = "%s/data/catalogs/exba/%i/channel_%02i_gaiadr%s_xmatch.csv" % ( DATAOUTDIR, self.quarter, self.channel, str(self.gaia_dr), ) if os.path.isfile(file_name) and load: print("Loading query from file...") print(file_name) sources = pd.read_csv(file_name) sources = sources.loc[:, columns] else: # find the max circle per TPF that contain all pixel data to query Gaia ra_q = ra.mean() dec_q = dec.mean() rad_q = np.hypot(ra - ra_q, dec - dec_q).max() + 10 / 3600 # query Gaia with epoch propagation sources = get_gaia_sources( tuple([ra_q]), tuple([dec_q]), tuple([rad_q]), magnitude_limit=magnitude_limit, epoch=Time(epoch, format="jd").jyear, dr=self.gaia_dr, ) sources = sources.loc[:, columns] if not os.path.isdir( "%s/data/catalogs/exba/%i" % (DATAOUTDIR, self.quarter) ): os.makedirs("%s/data/catalogs/exba/%i" % (DATAOUTDIR, self.quarter)) sources.to_csv(file_name) return sources def _clean_source_list(self, sources, ra, dec): """ Function to clean surces from the catalog removing sources outside the image coverage (allowing for sources up to 4" outside the mask), and to remove blended sources (within 2"). Parameters ---------- sources : pandas.DataFrame Catalog with sources to be removed ra : numpy.ndarray Data array with values of RA for every pixel in the image. dec : numpy.ndarray Data array with values of Dec for every pixel in the image. Returns ------- sources : pandas.DataFrame Clean catalog """ # find sources on the image inside = ( (sources.row > self.row.min() - 1.0) & (sources.row < self.row.max() + 1.0) & (sources.col > self.column.min() - 1.0) & (sources.col < self.column.max() + 1.0) ) # find well separated sources s_coords = SkyCoord(sources.ra, sources.dec, unit=("deg")) midx, mdist = match_coordinates_3d(s_coords, s_coords, nthneighbor=2)[:2] # remove sources closer than 4" = 1 pix closest = mdist.arcsec < 2.0 blocs = np.vstack([midx[closest], np.where(closest)[0]]) bmags = np.vstack( [ sources.phot_g_mean_mag[midx[closest]], sources.phot_g_mean_mag[np.where(closest)[0]], ] ) faintest = [blocs[idx][s] for s, idx in enumerate(np.argmax(bmags, axis=0))] unresolved = np.in1d(np.arange(len(sources)), faintest) del s_coords, midx, mdist, closest, blocs, bmags # Keep track of sources that we removed sources.loc[:, "clean_flag"] = 0 sources.loc[~inside, "clean_flag"] += 2 ** 0 # outside TPF sources.loc[unresolved, "clean_flag"] += 2 ** 1 # close contaminant # combine 2 source masks clean = sources.clean_flag == 0 removed_sources = sources[~clean].reset_index(drop=True) sources = sources[clean].reset_index(drop=True) return sources, removed_sources def do_photometry(self, aperture_mask): """ Function to do aperture photometry on a set of sources. It creates/update class attributes that contains the SAP flux, errors, and aperture masks. Parameters ---------- aperture_mask : numpy.ndarray Boolean mask of shape [n_sources, n_pixels] that has the aperture mask to be used to compute photometry for a set of sources. """ sap = np.zeros((self.sources.shape[0], self.flux.shape[0])) sap_e = np.zeros((self.sources.shape[0], self.flux.shape[0])) for sidx in tqdm(range(len(aperture_mask)), desc="SAP", leave=True): sap[sidx, :] = self.flux[:, aperture_mask[sidx]].sum(axis=1) sap_e[sidx, :] = ( np.power(self.flux_err[:, aperture_mask[sidx]].value, 2).sum(axis=1) ** 0.5 ) self.sap_flux = sap self.sap_flux_err = sap_e self.aperture_mask = aperture_mask self.aperture_mask_2d = aperture_mask.reshape( self.n_sources, self.n_rows, self.n_columns ) return def create_lcs(self, aperture_mask): """ Funciton to create `lightkurve.LightCurve` with the light curves using aperture photometry. It creates a class attribute `self.lcs` that is a `lk.LightCurveCollection` with the light curves of all input sources. Parameters ---------- aperture_mask : numpy.ndarray Boolean mask of shape [n_sources, n_pixels] that has the aperture mask to be used to compute photometry for a set of sources. """ self.do_photometry(aperture_mask) lcs = [] for idx, s in self.sources.iterrows(): tile = int((s.col - self.tpfs[0].column) / 9) meta = { "ORIGIN": "EXBAMachine", # "APERTURE_MASK": self.aperture_mask_2d[idx], "VERSION": __version__, "LABEL": s.designation, "TARGETID": int(s.designation.split(" ")[-1]), "MISSION": "Kepler", "INSTRUME": "Kepler Photometer", "OBSMODE": "long cadence", "SEASON": self.tpfs[tile].get_header()["SEASON"], "EQUINOX": 2000, "RA": s.ra, "DEC": s.dec, "PMRA": s.pmra / 1000 if np.isfinite(s.pmra) else None, "PMDEC": s.pmdec / 1000 if np.isfinite(s.pmdec) else None, "PARALLAX": s.parallax if np.isfinite(s.parallax) else None, "GMAG": s.phot_g_mean_mag if np.isfinite(s.phot_g_mean_mag) else None, "RPMAG": s.phot_rp_mean_mag if np.isfinite(s.phot_rp_mean_mag) else None, "BPMAG": s.phot_bp_mean_mag if np.isfinite(s.phot_bp_mean_mag) else None, "CHANNEL": self.channel, "MODULE": self.hdr["MODULE"], "OUTPUT": self.hdr["OUTPUT"], "QUARTER": self.quarter, "CAMPAIGN": "EXBA", "ROW": np.round(s.row, decimals=4), "COLUMN": np.round(s.col, decimals=4), "FLFRCSAP": np.round(self.FLFRCSAP[idx], decimals=6), "CROWDSAP": np.round(self.CROWDSAP[idx], decimals=6), "PERCENT": self.cut[idx], } lc = lk.LightCurve( time=self.time * units.d, flux=self.sap_flux[idx] * (units.electron / units.second), flux_err=self.sap_flux_err[idx] * (units.electron / units.second), meta=meta, # time_format="jd", # flux_unit="electron/s", cadenceno=self.cadences, ) lcs.append(lc) self.lcs = lk.LightCurveCollection(lcs) return def apply_CBV(self, do_under=False, plot=True): """ Applies CBV corrections to all the light curves in `self.lcs`. It optimizes the alpha parameter for each correction, if optimization fails, uses the alpha value calculated for previous light curve. It creates class attributes to access the CBV-corrected light curves, and under/over fitting metrics. Parameters ---------- do_under : boolean Compute or not the under-fitting metric for the CBV correction. plot : boolean Plot or not CBVcorrector diagnostic figures. """ if True: warnings.filterwarnings("ignore", category=RuntimeWarning) warnings.filterwarnings("ignore", category=lk.LightkurveWarning) # Select which CBVs to use in the correction cbv_type = ["SingleScale"] # Select which CBV indices to use # Use the first 8 SingleScale and all Spike CBVS cbv_indices = [np.arange(1, 9)] over_fit_m = [] under_fit_m = [] corrected_lcs = [] alpha = 1e-1 self.alpha = np.zeros(len(self.lcs)) # what if I optimize alpha for the first lc, then use that one for the rest? for i in tqdm(range(len(self.lcs)), desc="Applying CBVs to LCs", leave=True): lc = self.lcs[i][self.lcs[i].flux_err > 0].remove_outliers( sigma_upper=5, sigma_lower=1e20 ) cbvcor = lk.correctors.CBVCorrector(lc, interpolate_cbvs=False) if i % 1 == 0: print("Optimizing alpha") try: cbvcor.correct( cbv_type=cbv_type, cbv_indices=cbv_indices, alpha_bounds=[1e-2, 1e2], target_over_score=0.9, target_under_score=0.8, ) alpha = cbvcor.alpha if plot: cbvcor.diagnose() cbvcor.goodness_metric_scan_plot( cbv_type=cbv_type, cbv_indices=cbv_indices ) plt.show() except (ValueError, TimeoutError): print( "Alpha optimization failed, using previous value %.4f" % alpha ) self.alpha[i] = alpha cbvcor.correct_gaussian_prior( cbv_type=cbv_type, cbv_indices=cbv_indices, alpha=alpha ) over_fit_m.append(cbvcor.over_fitting_metric()) if do_under: under_fit_m.append(cbvcor.under_fitting_metric()) corrected_lcs.append(cbvcor.corrected_lc) self.corrected_lcs = lk.LightCurveCollection(corrected_lcs) self.over_fitting_metrics = np.array(over_fit_m) if do_under: self.under_fitting_metrics = np.array(under_fit_m) return def image_to_fits(self, path=None, overwrite=False): """ Creates a FITS file that contains the time-average imagege of the EXBA mask in a ImageHDU, and the source catalog in a BinTableHDU. Parameters ---------- path : string Directory path where to save the FITS file. overwrite : bool Overwrite the output file. Returns ------- hdu : ImageHDU An Image header unit containing the EXBA flux. """ primary_hdu = fits.PrimaryHDU(data=None, header=self.tpfs[0].get_header()) phdr = primary_hdu.header phdr.set("OBJECT", "EXBA mask", "type of image") phdr.set("RA_OBJ", self.ra.mean()) phdr.set("DEC_OBJ", self.dec.mean()) phdr.set("ROW_0", self.row.min(), "reference pixel value, origin top left") phdr.set("COL_0", self.column.min(), "reference pixel value, origin top left") image_hdu = fits.ImageHDU(data=self.flux_2d.mean(axis=0).value) image_hdu.header["TTYPE1"] = "FLUX" image_hdu.header["TFORM1"] = "E" image_hdu.header["TUNIT1"] = "e-/s" image_hdu.header["DATE"] = (datetime.datetime.now().strftime("%Y-%m-%d"),) table_hdu = fits.BinTableHDU(data=Table.from_pandas(self.sources)) table_hdu.header["GAIA_DR"] = self.gaia_dr hdu = fits.HDUList([primary_hdu, image_hdu, table_hdu]) if path is not None: hdu.writeto(path, overwrite=overwrite, checksum=True) else: return hdu def lcs_to_fits(self, path=None): """ Save all the light curves to fits files... """ hdu_list = [] for i, lc in enumerate(self.lcs): # lc.quality = 0 # lc.centroid_col = lc.column # lc.centroid_row = lc.row hdu = lc.to_fits(**lc.meta) hdu[1].header["FLFRCSAP"] = lc.FLFRCSAP hdu[1].header["CROWDSAP"] = lc.CROWDSAP hdu = lk.lightcurve._make_aperture_extension(hdu, self.aperture_mask_2d[i]) hdu[2].header["FLFRCSAP"] = lc.FLFRCSAP hdu[2].header["CROWDSAP"] = lc.CROWDSAP del hdu[0].header["FLFRCSAP"], hdu[0].header["CROWDSAP"] if path is not None: name = "%s/lc_%s.fits" % (path, lc.label.replace(" ", "_")) hdu.writeto(name, overwrite=overwrite, checksum=True) hdu_list.append(hdu) return hdu_list def plot_image(self, frame=0, sources=True, ax=None): """ Function to plot the full EXBA image and the Gaia Sources. Parameters ---------- frame : int Frame number. The default is 0, i.e. the first frame. sources : boolean Whether to overplot or not the source catalog ax : matplotlib.axes Matlotlib axis can be provided, if not one will be created and returned Returns ------- ax : matplotlib.axes Matlotlib axis with the figure """ if ax is None: fig, ax = plt.subplots(1, figsize=(5, 7)) ax = plt.subplot(projection=self.wcs) ax.set_title("EXBA mask Quarter %i Channel %i" % (self.quarter, self.channel)) pc = ax.pcolormesh( self.column_2d, self.row_2d, self.flux_2d[frame], shading="auto", cmap="viridis", norm=colors.SymLogNorm(linthresh=100, vmin=0, vmax=1000, base=10), rasterized=True, ) if sources: ax.scatter( self.sources.col, self.sources.row, s=20, facecolors="none", marker="o", edgecolors="r", linewidth=1.5, label="Gaia Sources", ) ax.set_xlabel("R.A. [hh:mm:ss]", fontsize=14) ax.set_ylabel("Dec [deg]", fontsize=14) cbar = fig.colorbar(pc, fraction=0.1, pad=0.04) cbar.set_label(label=r"Flux ($e^{-}s^{-1}$)", size=14) ax.set_aspect("equal", adjustable="box") return ax def plot_stamp(self, source_idx=0, aperture_mask=False, ax=None): """ Creates a figure with the "stamp" image of a given source and its aperture mask. Parameters ---------- source_idx : int Index of the source in `self.sources` catalog to be plotted. aperture_mask : boolean Plot or not the aperutre mask. ax : matplotlib.axes Matlotlib axis can be provided, if not one will be created and returned. Returns ------- ax : matplotlib.axes Matlotlib axis with the figure """ if isinstance(source_idx, str): idx = np.where(self.sources.designation == source_idx)[0][0] else: idx = source_idx if ax is None: fig, ax = plt.subplots(1) pc = ax.pcolor( self.flux_2d[0], shading="auto", norm=colors.SymLogNorm(linthresh=50, vmin=3, vmax=5000, base=10), ) ax.scatter( self.sources.col - self.column.min() + 0.5, self.sources.row - self.row.min() + 0.5, s=20, facecolors="y", marker="o", edgecolors="k", ) ax.scatter( self.sources.col.iloc[idx] - self.column.min() + 0.5, self.sources.row.iloc[idx] - self.row.min() + 0.5, s=25, facecolors="r", marker="o", edgecolors="r", ) ax.set_xlabel("Pixels") ax.set_ylabel("Pixels") plt.colorbar(pc, label=r"Flux ($e^{-}s^{-1}$)", ax=ax) ax.set_aspect("equal", adjustable="box") if aperture_mask: for i in range(self.n_rows): for j in range(self.n_columns): if self.aperture_mask_2d[idx, i, j]: rect = patches.Rectangle( xy=(j, i), width=1, height=1, color="red", fill=False, hatch="", lw=1.5, ) ax.add_patch(rect) zoom = np.argwhere(self.aperture_mask_2d[idx] == True) ax.set_ylim( np.maximum(0, zoom[0, 0] - 5), np.minimum(zoom[-1, 0] + 5, self.n_rows), ) ax.set_xlim( np.maximum(0, zoom[0, -1] - 5), np.minimum(zoom[-1, -1] + 5, self.n_columns), ) ax.set_title( "FLFRCSAP %.2f\nCROWDSAP %.2f" % (self.FLFRCSAP[idx], self.CROWDSAP[idx]), bbox=dict(facecolor="white", alpha=1), ) return ax def plot_lightcurve(self, source_idx=0, ax=None): """ Creates a figure with the light curve of a given source. mask. Parameters ---------- source_idx : int Index of the source in `self.sources` catalog to be plotted. ax : matplotlib.axes Matlotlib axis can be provided, if not one will be created and returned. Returns ------- ax : matplotlib.axes Matlotlib axis with the figure """ if ax is None: fig, ax = plt.subplots(1, figsize=(9, 3)) if isinstance(source_idx, str): s = np.where(self.sources.designation == source_idx)[0][0] else: s = source_idx ax.set_title( "Channel %i Quarter %i Source %s (%i)" % (self.channel, self.quarter, self.lcs[s].label, s) ) if hasattr(self, "flatten_lcs"): self.lcs[s].normalize().plot(label="raw", ax=ax, c="k", alpha=0.4) self.flatten_lcs[s].plot(label="flatten", ax=ax, c="k", offset=-0.02) if hasattr(self, "corrected_lcs"): self.corrected_lcs[s].normalize().plot( label="CBV", ax=ax, c="tab:blue", offset=+0.04 ) else: self.lcs[s].plot(label="raw", ax=ax, c="k", alpha=0.4) if hasattr(self, "corrected_lcs"): self.corrected_lcs[s].plot( label="CBV", ax=ax, c="tab:blue", offset=-0.02 ) return ax ``` #### File: src/kepler_apertures/KeplerPRF.py ```python import os import warnings import numpy as np import pandas as pd from scipy import sparse from scipy.optimize import minimize_scalar import matplotlib.pyplot as plt import matplotlib.colors as colors from matplotlib import patches from astropy.io import fits from . import PACKAGEDIR, DATAOUTDIR from .utils import _make_A_polar warnings.filterwarnings("ignore", category=RuntimeWarning) warnings.filterwarnings("ignore", category=sparse.SparseEfficiencyWarning) class KeplerPRF(object): """ Class to load PRF models computed from FFI, to create photometric apertures """ def __init__( self, prf_ws: np.array, n_r_knots: int = 5, n_phi_knots: int = 15, rmin: float = 0.25, rmax: float = 5, ): """ A KeplerPRF object is build by providing the hyperparameters of the spline model, and the weights of each basis spline. The hyperparameters allow to reconstruct the same basis splines while the weights are used at evaluation of the model in new data. Parameters __________ prf_ws : numpy.ndarray Weights corresponding to each basis of the design matrix. rmin : float The minimum radius for the PRF model to be fit. rmax : float The maximum radius for the PRF model to be fit. n_r_knots : int Number of radial knots in the spline model. n_phi_knots : int Number of azimuthal knots in the spline model. Attributes ---------- prf_w : numpy.ndarray Weights corresponding to each basis of the design matrix. rmin : float The minimum radius for the PRF model to be fit. rmax : float The maximum radius for the PRF model to be fit. n_r_knots : int Number of radial knots in the spline model. n_phi_knots : int Number of azimuthal knots in the spline model. """ self.prf_ws = prf_ws self.rmin = rmin self.rmax = rmax self.n_r_knots = n_r_knots self.n_phi_knots = n_phi_knots @staticmethod def load_from_file( quarter: int = 5, channel: int = 1, ): """ Loads a PRF model build from Kepler's FFI for a given quarter and channel. Note: the file with the PRF models is csv file with a multiindex pandas DataFrame, the FITS version is in development. Parameters ---------- channel : int Channel number of the FFI to be used to model the PRF. Valid values are between 1 and 84. quarter : int Number of the quarter that will be used to model the PRF. Valid values are between 1 and 17. Returns ------- KeplerPRF : KeplerPRF An object with the PRF model ready to be evaluated in new data. """ # load PSF model fname = "%s/data/ffi_prf_models_v0.1.0.csv" % (PACKAGEDIR) if not os.path.isfile(fname): raise FileNotFoundError("No PSF files: ", fname) try: tab = pd.read_csv(fname, index_col=0, header=[0, 1]) n_r_knots = int(tab.loc[channel, (str(quarter), "n_r_knots")]) n_phi_knots = int(tab.loc[channel, (str(quarter), "n_phi_knots")]) rmin = int(tab.loc[channel, (str(quarter), "rmin")]) rmax = int(tab.loc[channel, (str(quarter), "rmax")]) prf_ws = tab.loc[channel, str(quarter)].iloc[4:].values except KeyError: raise IOError( "Quarter %i and channel %i has no PRF model data" % (quarter, channel) ) return KeplerPRF(prf_ws, n_r_knots, n_phi_knots, rmin, rmax) def evaluate_PSF(self, dx, dy): """ Function to evaluate the PRF model in a grid of data. THe function returns a the prediction of the model as normalized flux. The model is evaluated in pixels up to r < 7 from the location of the source. Parameters ---------- dx : numpy.ndarray Distance between pixels (row direction) and source coordinates. dx : numpy.ndarray Distance between pixels (column direction) and source coordinates. Returns ------- source_model: scipy.sparse.csr_matrix Normalized fluxvalues of the PRF model evaluation in the dx, dy grid """ r = np.hypot(dx, dy) phi = np.arctan2(dy, dx) source_mask = r <= np.floor(self.rmax) phi[phi >= np.pi] = np.pi - 1e-6 try: dm = _make_A_polar( phi[source_mask].ravel(), r[source_mask].ravel(), rmin=self.rmin, rmax=self.rmax, n_r_knots=self.n_r_knots, n_phi_knots=self.n_phi_knots, ) except ValueError: dm = _make_A_polar( phi[source_mask].ravel(), r[source_mask].ravel(), rmin=np.percentile(r[source_mask].ravel(), 1), rmax=np.percentile(r[source_mask].ravel(), 99), n_r_knots=self.n_r_knots, n_phi_knots=self.n_phi_knots, ) source_model = sparse.csr_matrix(r.shape) m = 10 ** dm.dot(self.prf_ws) source_model[source_mask] = m source_model.eliminate_zeros() # psf_models = source_model.multiply(1 / source_model.sum(axis=1)).tocsr() return source_model def diagnose_metrics(self, psf_models, idx=0, ax=None, plot=True): """ Function to evaluate the flux metrics for a single source as a function of the parameter that controls the aperture size. The flux metrics are computed by taking into account the PSF models of neighbor sources. This function is meant to be used only to generate the diagnostic or as a helping function of `optimize_aperture()` to precalculate the values of the metrics and find the optimal aperture in case of isolated sources, where the optimal is the full aperture. Parameters ---------- psf_models : scipy.sparse.csr_matrix Sparse matrix with the PSF models of all sources in the field. It has shape of [n_sources, n_pixels] idx : int Index of the source for which the metrcs will be computed. Has to be a number between 0 and psf_models.shape[0]. ax : matplotlib.axes Axis to be used to plot the figure plot : boolean Plot the metrics values. Returns ------- ax : matplotlib.axes Figure axes """ compl, crowd, cut = [], [], [] for p in range(0, 101, 1): cut.append(p) mask = ( psf_models[idx] >= np.percentile(psf_models[idx].data, p) ).toarray()[0] crowd.append(self.compute_CROWDSAP(psf_models, mask, idx)) compl.append(self.compute_FLFRCSAP(psf_models[idx].toarray()[0], mask)) self.compl = np.array(compl) self.crowd = np.array(crowd) self.cut = np.array(cut) if plot: if ax is None: fig, ax = plt.subplots(1) ax.plot(self.cut, self.compl, label=r"FLFRCSAP") ax.plot(self.cut, self.crowd, label=r"CROWDSAP") ax.set_xlabel("Percentile") ax.set_ylabel("Metric") ax.legend() return ax def create_aperture_mask(self, psf_models, percentile=0, idx=None): """ Function to create the aperture mask of a given source for a given aperture size. This function can compute aperutre mask for one or all sources available in the psf_models Parameters ---------- psf_models : scipy.sparse.csr_matrix Sparse matrix with the PSF models of all sources in the field. It has shape of [n_sources, n_pixels] percentile : float Percentile value that defines the isophote from the distribution of values in the psf model of the source idx : int Index of the source for which the metrcs will be computed. Has to be a number between 0 and psf_models.shape[0]. If None, then it computes the apertures for all sources in psf_models. Returns ------- mask : numpy.ndarray Boolean array with the aperture mask. completeness : numpy.ndarray Flux metric indicating flux completeness for the selected aperture. crowdeness : numpy.ndarray Flux metric indicating flux contamination for the selected aperture. """ if idx is not None: mask = ( psf_models[idx] >= np.percentile(psf_models[idx].data, percentile) ).toarray()[0] # recompute metrics for optimal mask complet = self.compute_FLFRCSAP(psf_models[idx].toarray()[0], mask) crowd = self.compute_CROWDSAP(psf_models, mask, idx) return mask, complet, crowd else: masks, completeness, crowdeness = [], [], [] for idx in range(psf_models.shape[0]): mask = ( psf_models[idx] >= np.percentile(psf_models[idx].data, percentile) ).toarray()[0] masks.append(mask) completeness.append( self.compute_FLFRCSAP(psf_models[idx].toarray()[0], mask) ) crowdeness.append(self.compute_CROWDSAP(psf_models, mask, idx)) return np.array(masks), np.array(completeness), np.array(crowdeness) def optimize_aperture( self, psf_models, idx=0, target_complet=0.9, target_crowd=0.9, max_iter=100 ): """ Function to optimize the aperture mask for a given source. There are two special cases: * Isolated sources, the optimal aperture is the full aperture. * If optimizing for one single metric. For these last two case, no actual optimization if performed, and we use the results from `diagnose_metrics()`. The optimization is done using scipy Brent's algorithm and it uses a custom loss function that uses a Leaky ReLU term to achive the target value for both metrics. Parameters ---------- psf_models : scipy.sparse.csr_matrix Sparse matrix with the PSF models of all sources in the field. It has shape of [n_sources, n_pixels] idx : int Index of the source for which the metrcs will be computed. Has to be a number between 0 and psf_models.shape[0]. If None, then it computes the apertures for all sources in psf_models. target_complet : float Value of the target completeness metric. target_crowd : float Value of the target crowdeness metric. max_iter : int Numer of maximum iterations to be performed by the optimizer. Returns ------- mask : numpy.ndarray Boolean array with the aperture mask. completeness : float Flux metric indicating flux completeness for the selected aperture. crowdeness : float Flux metric indicating flux contamination for the selected aperture. optimal_percentile : float Percentile of the normalized flux distribution that defines the isophote. """ # Do special cases when optimizing for only one metric self.diagnose_metrics(psf_models, idx=idx, plot=False) if target_complet < 0 and target_crowd > 0: optim_p = self.cut[np.argmax(self.crowd)] elif target_crowd < 0 and target_complet > 0: optim_p = self.cut[np.argmax(self.compl)] # for isolated sources, only need to optimize for completeness, in case of # asking for 2 metrics elif target_complet > 0 and target_crowd > 0 and all(self.crowd > 0.99): optim_p = self.cut[np.argmax(self.compl)] else: optim_params = { "percentile_bounds": [5, 95], "target_complet": target_complet, "target_crowd": target_crowd, "max_iter": max_iter, "psf_models": psf_models, "idx": idx, } minimize_result = minimize_scalar( self._goodness_metric_obj_fun, method="Bounded", bounds=[5, 95], options={"maxiter": max_iter, "disp": False}, args=(optim_params), ) optim_p = minimize_result.x mask = ( psf_models[idx] >= np.percentile(psf_models[idx].data, optim_p) ).toarray()[0] # recompute metrics for optimal mask complet = self.compute_FLFRCSAP(psf_models[idx].toarray()[0], mask) crowd = self.compute_CROWDSAP(psf_models, mask, idx) return mask, complet, crowd, optim_p def _goodness_metric_obj_fun(self, percentile, optim_params): """ The objective function to minimize with scipy.optimize.minimize_scalar called during optimization of the photometric aperture. Parameters ---------- percentile : int Percentile of the normalized flux distribution that defines the isophote. optim_params : dictionary Dictionary with the variables needed for evaluate the metric: psf_models idx target_complet target_crowd Returns ------- penalty : int Value of the objective function to be used for optiization. """ psf_models = optim_params["psf_models"] idx = optim_params["idx"] # Find the value where to cut cut = np.percentile(psf_models[idx].data, int(percentile)) # create "isophot" mask with current cut mask = (psf_models[idx] > cut).toarray()[0] # Do not compute and ignore if target score < 0 if optim_params["target_complet"] > 0: completMetric = self.compute_FLFRCSAP(psf_models[idx].toarray()[0], mask) else: completMetric = 1.0 # Do not compute and ignore if target score < 0 if optim_params["target_crowd"] > 0: crowdMetric = self.compute_CROWDSAP(psf_models, mask, idx) else: crowdMetric = 1.0 # Once we hit the target we want to ease-back on increasing the metric # However, we don't want to ease-back to zero pressure, that will # unconstrain the penalty term and cause the optmizer to run wild. # So, use a "Leaky ReLU" # metric' = threshold + (metric - threshold) * leakFactor leakFactor = 0.01 if ( optim_params["target_complet"] > 0 and completMetric >= optim_params["target_complet"] ): completMetric = optim_params["target_complet"] + 0.001 * ( completMetric - optim_params["target_complet"] ) if ( optim_params["target_crowd"] > 0 and crowdMetric >= optim_params["target_crowd"] ): crowdMetric = optim_params["target_crowd"] + 0.1 * ( crowdMetric - optim_params["target_crowd"] ) penalty = -(completMetric + 10 * crowdMetric) return penalty # def plot_mean_PSF(self, ax=None): # """ # Function to plot the PRF model as created from the FFI. This is only for # illustration purposes. # # Parameters # ---------- # ax : matplotlib.axes # Matlotlib axis can be provided, if not one will be created and returned # # Returns # ------- # ax : matplotlib.axes # Matlotlib axis with the figure # """ # if not hasattr(self, "x_data"): # raise AttributeError("Class doesn't have attributes to plot PSF model") # # if ax is None: # fig, ax = plt.subplots(1, 2, figsize=(8, 3)) # vmin = -0.5 # vmax = -3 # cax = ax[0].scatter( # self.x_data, # self.y_data, # c=self.f_data, # marker=".", # s=2, # vmin=vmin, # vmax=vmax, # ) # fig.colorbar(cax, ax=ax[0]) # ax[0].set_title("Data mean flux") # ax[0].set_ylabel("dy") # ax[0].set_xlabel("dx") # # cax = ax[1].scatter( # self.x_data, # self.y_data, # c=self.f_model, # marker=".", # s=2, # vmin=vmin, # vmax=vmax, # ) # fig.colorbar(cax, ax=ax[1]) # ax[1].set_title("Average PSF Model") # ax[1].set_xlabel("dx") # # return ax def plot_aperture(self, flux, mask=None, ax=None, log=False): """ Function to plot the photometric aperture for a given source. Parameters ---------- flux : numpy.ndarray Data array with the flux image. mask : numpy.ndarray Boolean array with the aperture mask log : boolean Plot the image in log or linear scale. ax : matplotlib.axes Matlotlib axis can be provided, if not one will be created and returned Returns ------- ax : matplotlib.axes Matlotlib axis with the figure """ if ax is None: fig, ax = plt.subplots(1, figsize=(5, 5)) pc = ax.pcolor( flux, shading="auto", norm=colors.LogNorm() if log else None, ) plt.colorbar(pc, label="", fraction=0.038, ax=ax) ax.set_aspect("equal", adjustable="box") ax.set_title("") if mask is not None: for i in range(flux.shape[0]): for j in range(flux.shape[1]): if mask[i, j]: rect = patches.Rectangle( xy=(j, i), width=1, height=1, color="red", fill=False, hatch="", ) ax.add_patch(rect) zoom = np.argwhere(mask == True) ax.set_ylim( np.maximum(0, zoom[0, 0] - 3), np.minimum(zoom[-1, 0] + 3, flux.shape[0]), ) ax.set_xlim( np.maximum(0, zoom[0, -1] - 3), np.minimum(zoom[-1, -1] + 3, flux.shape[1]), ) else: ax.set_xlim(np.argmax(flux)) ax.set_ylim() return ax @staticmethod def compute_FLFRCSAP(psf_model, mask): """ Compute fraction of target flux enclosed in the optimal aperture to total flux for a given source (flux completeness). Parameters ---------- psf_model: numpy ndarray Array with the PSF model for the target source. It has shape [n_pixels] mask: boolean array Array of boolean indicating the aperture for the target source. Returns ------- FLFRCSAP: float Completeness metric """ return psf_model[mask].sum() / psf_model.sum() @staticmethod def compute_CROWDSAP(psf_models, mask, idx): """ Compute the ratio of target flux relative to flux from all sources within the photometric aperture (i.e. 1 - Crowdeness). Parameters ---------- psf_models: numpy ndarray Array with the PSF models for all targets in the cutout. It has shape [n_sources, n_pixels]. mask: boolean array Array of boolean indicating the aperture for the target source. idx: int Index of the source to compute the metric. It has to be a number between 0 and psf_models.shape[0]. Returns ------- CROWDSAP: float Crowdeness metric """ ratio = ( psf_models.multiply(1 / psf_models.sum(axis=0)).tocsr()[idx].toarray()[0] ) return ratio[mask].sum() / mask.sum() ```
{ "source": "jorgemarpa/lightkurve", "score": 2 }
#### File: lightkurve/seismology/core.py ```python import logging import warnings import numpy as np from matplotlib import pyplot as plt from scipy.signal import find_peaks from astropy import units as u from astropy.units import cds from .. import MPLSTYLE from . import utils, stellar_estimators from ..periodogram import SNRPeriodogram from ..utils import LightkurveWarning, validate_method from .utils import SeismologyQuantity # Import the optional Bokeh dependency required by ``interact_echelle```, # or print a friendly error otherwise. try: import bokeh # Import bokeh first so we get an ImportError we can catch from bokeh.io import show, output_notebook from bokeh.plotting import figure from bokeh.models import LogColorMapper, Slider, RangeSlider, Button from bokeh.layouts import layout, Spacer except: # Nice error will be raised when ``interact_echelle``` is called. pass log = logging.getLogger(__name__) __all__ = ["Seismology"] class Seismology(object): """Enables astroseismic quantities to be estimated from periodograms. This class provides easy access to methods to estimate numax, deltanu, radius, mass, and logg, and stores them on its tray for easy diagnostic plotting. Examples -------- Download the TESS light curve for HIP 116158: >>> import lightkurve as lk >>> lc = lk.search_lightcurve("HIP 116158", sector=2).download() # doctest: +SKIP >>> lc = lc.normalize().remove_nans().remove_outliers() # doctest: +SKIP Create a Lomb-Scargle periodogram: >>> pg = lc.to_periodogram(normalization='psd', minimum_frequency=100, maximum_frequency=800) # doctest: +SKIP Create a Seismology object and use it to estimate parameters: >>> seismology = pg.flatten().to_seismology() # doctest: +SKIP >>> seismology.estimate_numax() # doctest: +SKIP numax: 415.00 uHz (method: ACF2D) >>> seismology.estimate_deltanu() # doctest: +SKIP deltanu: 28.78 uHz (method: ACF2D) >>> seismology.estimate_radius(teff=5080) # doctest: +SKIP radius: 2.78 solRad (method: Uncorrected Scaling Relations) Parameters ---------- periodogram : `~lightkurve.periodogram.Periodogram` object Periodogram to be analyzed. Must be background-corrected, e.g. using `periodogram.flatten()`. """ periodogram = None """The periodogram from which seismological parameters are being extracted.""" def __init__(self, periodogram): if not isinstance(periodogram, SNRPeriodogram): warnings.warn( "Seismology received a periodogram which does not appear " "to have been background-corrected. Please consider calling " "`periodogram.flatten()` prior to extracting seismological parameters.", LightkurveWarning, ) self.periodogram = periodogram def __repr__(self): attrs = np.asarray(["numax", "deltanu", "mass", "radius", "logg"]) tray = np.asarray([hasattr(self, attr) for attr in attrs]) if tray.sum() == 0: tray_str = " - no values have been computed so far." else: tray_str = " - computed values:\n * " + "\n * ".join( [getattr(self, attr).__repr__() for attr in attrs[tray]] ) return "Seismology(ID: {}){}".format(self.periodogram.label, tray_str) @staticmethod def from_lightcurve(lc, **kwargs): """Returns a `Seismology` object given a `LightCurve`.""" log.info( "Building a Seismology object directly from a light curve " "uses default periodogram parameters. For further tuneability, " "create a periodogram object first, using `to_periodogram`." ) return Seismology( periodogram=lc.normalize() .remove_nans() .fill_gaps() .to_periodogram(**kwargs) .flatten() ) def _validate_numax(self, numax): """Raises exception if `numax` is None and `self.numax` is not set.""" if numax is None: try: return self.numax except AttributeError: raise AttributeError( "You need to call `Seismology.estimate_numax()` first." ) return numax def _validate_deltanu(self, deltanu): """Raises exception if `deltanu` is None and `self.deltanu` is not set.""" if deltanu is None: try: return self.deltanu except AttributeError: raise AttributeError( "You need to call `Seismology.estimate_deltanu()` first." ) return deltanu def _clean_echelle( self, deltanu=None, numax=None, minimum_frequency=None, maximum_frequency=None, smooth_filter_width=0.1, scale="linear", ): """Takes input seismology object and creates the necessary arrays for an echelle diagram. Validates all the inputs. Parameters ---------- deltanu : float Value for the large frequency separation of the seismic mode frequencies in the periodogram. Assumed to have the same units as the frequencies, unless given an Astropy unit. Is assumed to be in the same units as frequency if not given a unit. numax : float Value for the frequency of maximum oscillation. If a numax is passed, a suitable range one FWHM of the mode envelope either side of the will be shown. This is overwritten by custom frequency ranges. Is assumed to be in the same units as frequency if not given a unit. minimum_frequency : float The minimum frequency at which to display the echelle Is assumed to be in the same units as frequency if not given a unit. maximum_frequency : float The maximum frequency at which to display the echelle. Is assumed to be in the same units as frequency if not given a unit. smooth_filter_width : float If given a value, will smooth periodogram used to plot the echelle diagram using the periodogram.smooth(method='boxkernel') method with a filter width of `smooth_filter_width`. This helps visualise the echelle diagram. Is assumed to be in the same units as the periodogram frequency. ax : `~matplotlib.axes.Axes` A matplotlib axes object to plot into. If no axes is provided, a new one will be created. scale: str Set z axis to be "linear" or "log". Default is linear. Returns ------- ep : np.ndarray Echelle diagram power x_f : np.ndarray frequencies for X axis y_f : np.ndarray frequencies for Y axis """ if (minimum_frequency is None) & (maximum_frequency is None): numax = self._validate_numax(numax) deltanu = self._validate_deltanu(deltanu) if (not hasattr(numax, "unit")) & (numax is not None): numax = numax * self.periodogram.frequency.unit if (not hasattr(deltanu, "unit")) & (deltanu is not None): deltanu = deltanu * self.periodogram.frequency.unit if smooth_filter_width: pgsmooth = self.periodogram.smooth(filter_width=smooth_filter_width) freq = pgsmooth.frequency # Makes code below more readable below power = pgsmooth.power # Makes code below more readable below else: freq = self.periodogram.frequency # Makes code below more readable power = self.periodogram.power # Makes code below more readable fmin = freq[0] fmax = freq[-1] # Check for any superfluous input if (numax is not None) & ( any([a is not None for a in [minimum_frequency, maximum_frequency]]) ): warnings.warn( "You have passed both a numax and a frequency limit. " "The frequency limit will override the numax input.", LightkurveWarning, ) # Ensure input numax is in the correct units (if there is one) if numax is not None: numax = u.Quantity(numax, freq.unit).value if numax > freq[-1].value: raise ValueError( "You can't pass in a numax outside the" "frequency range of the periodogram." ) fwhm = utils.get_fwhm(self.periodogram, numax) fmin = numax - 2 * fwhm if fmin < freq[0].value: fmin = freq[0].value fmax = numax + 2 * fwhm if fmax > freq[-1].value: fmax = freq[-1].value # Set limits and set them in the right units if minimum_frequency is not None: fmin = u.Quantity(minimum_frequency, freq.unit).value if fmin > freq[-1].value: raise ValueError( "You can't pass in a limit outside the " "frequency range of the periodogram." ) if maximum_frequency is not None: fmax = u.Quantity(maximum_frequency, freq.unit).value if fmax > freq[-1].value: raise ValueError( "You can't pass in a limit outside the " "frequency range of the periodogram." ) # Make sure fmin and fmax are Quantities or code below will break fmin = u.Quantity(fmin, freq.unit) fmax = u.Quantity(fmax, freq.unit) # Add on 1x deltanu so we don't miss off any important range due to rounding if fmax < freq[-1] - 1.5 * deltanu: fmax += deltanu fs = np.median(np.diff(freq)) x0 = int(freq[0] / fs) ff = freq[int(fmin / fs) - x0 : int(fmax / fs) - x0] # Selected frequency range pp = power[int(fmin / fs) - x0 : int(fmax / fs) - x0] # Power range # Reshape the power into n_rows of n_columns # When modulus ~ zero, deltanu divides into frequency without remainder mod_zeros = find_peaks(-1.0 * (ff % deltanu))[0] # The bottom left corner of the plot is the lowest frequency that # divides into deltanu with almost zero remainder start = mod_zeros[0] # The top left corner of the plot is the highest frequency that # divides into deltanu with almost zero remainder. This index is the # approximate end, because we fix an integer number of rows and columns approx_end = mod_zeros[-1] # The number of rows is the number of times you can partition your # frequency range into chunks of size deltanu, start and ending at # frequencies that divide nearly evenly into deltanu n_rows = len(mod_zeros) - 1 # The number of columns is the total number of frequency points divided # by the number of rows, floor divided to the nearest integer value n_columns = int((approx_end - start) / n_rows) # The exact end point is therefore the ncolumns*nrows away from the start end = start + n_columns * n_rows ep = np.reshape(pp[start:end], (n_rows, n_columns)) if scale == "log": ep = np.log10(ep) # Reshape the freq into n_rowss of n_columnss & create arays ef = np.reshape(ff[start:end], (n_rows, n_columns)) x_f = (ef[0, :] - ef[0, 0]) % deltanu y_f = ef[:, 0] return ep, x_f, y_f def plot_echelle( self, deltanu=None, numax=None, minimum_frequency=None, maximum_frequency=None, smooth_filter_width=0.1, scale="linear", ax=None, cmap="Blues", ): """Plots an echelle diagram of the periodogram by stacking the periodogram in slices of deltanu. Modes of equal radial degree should appear approximately vertically aligned. If no structure is present, you are likely dealing with a faulty deltanu value or a low signal to noise case. This method is adapted from work by <NAME> & <NAME>. Parameters ---------- deltanu : float Value for the large frequency separation of the seismic mode frequencies in the periodogram. Assumed to have the same units as the frequencies, unless given an Astropy unit. Is assumed to be in the same units as frequency if not given a unit. numax : float Value for the frequency of maximum oscillation. If a numax is passed, a suitable range one FWHM of the mode envelope either side of the will be shown. This is overwritten by custom frequency ranges. Is assumed to be in the same units as frequency if not given a unit. minimum_frequency : float The minimum frequency at which to display the echelle Is assumed to be in the same units as frequency if not given a unit. maximum_frequency : float The maximum frequency at which to display the echelle. Is assumed to be in the same units as frequency if not given a unit. smooth_filter_width : float If given a value, will smooth periodogram used to plot the echelle diagram using the periodogram.smooth(method='boxkernel') method with a filter width of `smooth_filter_width`. This helps visualise the echelle diagram. Is assumed to be in the same units as the periodogram frequency. scale: str Set z axis to be "linear" or "log". Default is linear. cmap : str The name of the matplotlib colourmap to use in the echelle diagram. Returns ------- ax : `~matplotlib.axes.Axes` The matplotlib axes object. """ if (minimum_frequency is None) & (maximum_frequency is None): numax = self._validate_numax(numax) deltanu = self._validate_deltanu(deltanu) if (not hasattr(numax, "unit")) & (numax is not None): numax = numax * self.periodogram.frequency.unit if (not hasattr(deltanu, "unit")) & (deltanu is not None): deltanu = deltanu * self.periodogram.frequency.unit ep, x_f, y_f = self._clean_echelle( numax=numax, deltanu=deltanu, minimum_frequency=minimum_frequency, maximum_frequency=maximum_frequency, smooth_filter_width=smooth_filter_width, ) # Plot the echelle diagram with plt.style.context(MPLSTYLE): if ax is None: _, ax = plt.subplots() extent = (x_f[0].value, x_f[-1].value, y_f[0].value, y_f[-1].value) figsize = plt.rcParams["figure.figsize"] a = figsize[1] / figsize[0] b = (extent[3] - extent[2]) / (extent[1] - extent[0]) vmin = np.nanpercentile(ep.value, 1) vmax = np.nanpercentile(ep.value, 99) im = ax.imshow( ep.value, cmap=cmap, aspect=a / b, origin="lower", extent=extent, vmin=vmin, vmax=vmax, ) cbar = plt.colorbar(im, ax=ax, extend="both", pad=0.01) if isinstance(self.periodogram, SNRPeriodogram): ylabel = "Signal to Noise Ratio (SNR)" elif self.periodogram.power.unit == cds.ppm: ylabel = "Amplitude [{}]".format( self.periodogram.power.unit.to_string("latex") ) else: ylabel = "Power Spectral Density [{}]".format( self.periodogram.power.unit.to_string("latex") ) if scale == "log": ylabel = "log10(" + ylabel + ")" cbar.set_label(ylabel) ax.set_xlabel(r"Frequency mod. {:.2f}".format(deltanu)) ax.set_ylabel( r"Frequency [{}]".format( self.periodogram.frequency.unit.to_string("latex") ) ) ax.set_title("Echelle diagram for {}".format(self.periodogram.label)) return ax def _make_echelle_elements( self, deltanu, cmap="viridis", minimum_frequency=None, maximum_frequency=None, smooth_filter_width=0.1, scale="linear", plot_width=490, plot_height=340, title="Echelle", ): """Helper function to make the elements of the echelle diagram for bokeh plotting.""" if not hasattr(deltanu, "unit"): deltanu = deltanu * self.periodogram.frequency.unit if smooth_filter_width: pgsmooth = self.periodogram.smooth(filter_width=smooth_filter_width) freq = pgsmooth.frequency # Makes code below more readable below else: freq = self.periodogram.frequency # Makes code below more readable ep, x_f, y_f = self._clean_echelle( deltanu=deltanu, minimum_frequency=minimum_frequency, maximum_frequency=maximum_frequency, smooth_filter_width=smooth_filter_width, scale=scale, ) fig = figure( plot_width=plot_width, plot_height=plot_height, x_range=(0, 1), y_range=(y_f[0].value, y_f[-1].value), title=title, tools="pan,box_zoom,reset", toolbar_location="above", border_fill_color="white", ) fig.yaxis.axis_label = r"Frequency [{}]".format(freq.unit.to_string()) fig.xaxis.axis_label = r"Frequency / {:.3f} Mod. 1".format(deltanu) lo, hi = np.nanpercentile(ep.value, [0.1, 99.9]) vlo, vhi = 0.3 * lo, 1.7 * hi vstep = (lo - hi) / 500 color_mapper = LogColorMapper(palette="RdYlGn10", low=lo, high=hi) fig.image( image=[ep.value], x=0, y=y_f[0].value, dw=1, dh=y_f[-1].value, color_mapper=color_mapper, name="img", ) stretch_slider = RangeSlider( start=vlo, end=vhi, step=vstep, title="", value=(lo, hi), orientation="vertical", width=10, height=230, direction="rtl", show_value=False, sizing_mode="fixed", name="stretch", ) def stretch_change_callback(attr, old, new): """TPF stretch slider callback.""" fig.select("img")[0].glyph.color_mapper.high = new[1] fig.select("img")[0].glyph.color_mapper.low = new[0] stretch_slider.on_change("value", stretch_change_callback) return fig, stretch_slider def interact_echelle(self, notebook_url="localhost:8888", **kwargs): """Display an interactive Jupyter notebook widget showing an Echelle diagram. This feature only works inside an active Jupyter Notebook, and requires an optional dependency, ``bokeh`` (v1.0 or later). This dependency can be installed using e.g. `conda install bokeh`. Parameters ---------- notebook_url : str Location of the Jupyter notebook page (default: "localhost:8888") When showing Bokeh applications, the Bokeh server must be explicitly configured to allow connections originating from different URLs. This parameter defaults to the standard notebook host and port. If you are running on a different location, you will need to supply this value for the application to display properly. If no protocol is supplied in the URL, e.g. if it is of the form "localhost:8888", then "http" will be used. """ try: import bokeh if bokeh.__version__[0] == "0": warnings.warn( "interact() requires Bokeh version 1.0 or later", LightkurveWarning ) except ImportError: log.error( "The interact() tool requires the `bokeh` Python package; " "you can install bokeh using e.g. `conda install bokeh`." ) return None maximum_frequency = kwargs.pop( "maximum_frequency", self.periodogram.frequency.max().value ) minimum_frequency = kwargs.pop( "minimum_frequency", self.periodogram.frequency.min().value ) if not hasattr(self, "deltanu"): dnu = SeismologyQuantity( quantity=self.periodogram.frequency.max() / 30, name="deltanu", method="echelle", ) else: dnu = self.deltanu def create_interact_ui(doc): fig_tpf, stretch_slider = self._make_echelle_elements( dnu, maximum_frequency=maximum_frequency, minimum_frequency=minimum_frequency, **kwargs ) maxdnu = self.periodogram.frequency.max().value / 5 # Interactive slider widgets dnu_slider = Slider( start=0.01, end=maxdnu, value=dnu.value, step=0.01, title="Delta Nu", width=290, ) r_button = Button(label=">", button_type="default", width=30) l_button = Button(label="<", button_type="default", width=30) rr_button = Button(label=">>", button_type="default", width=30) ll_button = Button(label="<<", button_type="default", width=30) def update(attr, old, new): """Callback to take action when dnu slider changes""" dnu = SeismologyQuantity( quantity=dnu_slider.value * u.microhertz, name="deltanu", method="echelle", ) ep, _, _ = self._clean_echelle( deltanu=dnu, minimum_frequency=minimum_frequency, maximum_frequency=maximum_frequency, **kwargs ) fig_tpf.select("img")[0].data_source.data["image"] = [ep.value] fig_tpf.xaxis.axis_label = r"Frequency / {:.3f} Mod. 1".format(dnu) def go_right_by_one_small(): """Step forward in time by a single cadence""" existing_value = dnu_slider.value if existing_value < maxdnu: dnu_slider.value = existing_value + 0.002 def go_left_by_one_small(): """Step back in time by a single cadence""" existing_value = dnu_slider.value if existing_value > 0: dnu_slider.value = existing_value - 0.002 def go_right_by_one(): """Step forward in time by a single cadence""" existing_value = dnu_slider.value if existing_value < maxdnu: dnu_slider.value = existing_value + 0.01 def go_left_by_one(): """Step back in time by a single cadence""" existing_value = dnu_slider.value if existing_value > 0: dnu_slider.value = existing_value - 0.01 dnu_slider.on_change("value", update) r_button.on_click(go_right_by_one_small) l_button.on_click(go_left_by_one_small) rr_button.on_click(go_right_by_one) ll_button.on_click(go_left_by_one) widgets_and_figures = layout( [fig_tpf, [Spacer(height=20), stretch_slider]], [ ll_button, Spacer(width=30), l_button, Spacer(width=25), dnu_slider, Spacer(width=30), r_button, Spacer(width=23), rr_button, ], ) doc.add_root(widgets_and_figures) output_notebook(verbose=False, hide_banner=True) return show(create_interact_ui, notebook_url=notebook_url) def estimate_numax(self, method="acf2d", **kwargs): """Returns the frequency of the peak of the seismic oscillation modes envelope. At present, the only method supported is based on using a 2D autocorrelation function (ACF2D). This method is implemented by the `~lightkurve.seismology.estimate_numax_acf2d` function which accepts the parameters `numaxs`, `window_width`, and `spacing`. For details and literature references, please read the detailed docstring of this function by typing ``lightkurve.seismology.estimate_numax_acf2d?`` in a Python terminal or notebook. Parameters ---------- method : str Method to use. Only ``"acf2d"`` is supported at this time. Returns ------- numax : `~lightkurve.seismology.SeismologyQuantity` Numax of the periodogram, including details on the units and method. """ method = validate_method(method, supported_methods=["acf2d"]) if method == "acf2d": from .numax_estimators import estimate_numax_acf2d result = estimate_numax_acf2d(self.periodogram, **kwargs) self.numax = result return result def diagnose_numax(self, numax=None): """Create diagnostic plots showing how numax was estimated.""" numax = self._validate_numax(numax) return numax.diagnostics_plot_method(numax, self.periodogram) def estimate_deltanu(self, method="acf2d", numax=None): """Returns the average value of the large frequency spacing, DeltaNu, of the seismic oscillations of the target. At present, the only method supported is based on using an autocorrelation function (ACF2D). This method is implemented by the `~lightkurve.seismology.estimate_deltanu_acf2d` function which requires the parameter `numax`. For details and literature references, please read the detailed docstring of this function by typing ``lightkurve.seismology.estimate_deltanu_acf2d?`` in a Python terminal or notebook. Parameters ---------- method : str Method to use. Only ``"acf2d"`` is supported at this time. Returns ------- deltanu : `~lightkurve.seismology.SeismologyQuantity` DeltaNu of the periodogram, including details on the units and method. """ method = validate_method(method, supported_methods=["acf2d"]) numax = self._validate_numax(numax) if method == "acf2d": from .deltanu_estimators import estimate_deltanu_acf2d result = estimate_deltanu_acf2d(self.periodogram, numax=numax) self.deltanu = result return result def diagnose_deltanu(self, deltanu=None): """Create diagnostic plots showing how numax was estimated.""" deltanu = self._validate_deltanu(deltanu) return deltanu.diagnostics_plot_method(deltanu, self.periodogram) def estimate_radius(self, teff=None, numax=None, deltanu=None): """Returns a stellar radius estimate based on the scaling relations. The two global observable seismic parameters, numax and deltanu, along with temperature, scale with fundamental stellar properties (Brown et al. 1991; Kjeldsen & Bedding 1995). These scaling relations can be rearranged to calculate a stellar radius as R = Rsol * (numax/numax_sol)(deltanu/deltanusol)^-2(Teff/Teffsol)^0.5 where R is the radius and Teff is the effective temperature, and the suffix 'sol' indicates a solar value. In this method we use the solar values for numax and deltanu as given in Huber et al. (2011) and for Teff as given in Prsa et al. (2016). This code structure borrows from work done in Bellinger et al. (2019), which also functions as an accessible explanation of seismic scaling relations. If no value of effective temperature is given, this function will check the meta data of the `Periodogram` object used to create the `Seismology` object. These data will often contain an effective tempearture from the Kepler Input Catalogue (KIC, https://ui.adsabs.harvard.edu/abs/2011AJ....142..112B/abstract), or from the EPIC or TIC for K2 and TESS respectively. The temperature values in these catalogues are estimated using photometry, and so have large associated uncertainties (roughly 200 K, see KIC). For more better results, spectroscopic measurements of temperature are often more precise. NOTE: These scaling relations are scaled to the Sun, and therefore do not always produce an entirely accurate result for more evolved stars. Parameters ---------- numax : float The frequency of maximum power of the seismic mode envelope. If not given an astropy unit, assumed to be in units of microhertz. deltanu : float The frequency spacing between two consecutive overtones of equal radial degree. If not given an astropy unit, assumed to be in units of microhertz. teff : float The effective temperature of the star. In units of Kelvin. numax_err : float Error on numax. Assumed to be same units as numax deltanu_err : float Error on deltanu. Assumed to be same units as deltanu teff_err : float Error on Teff. Assumed to be same units as Teff. Returns ------- radius : `~lightkurve.seismology.SeismologyQuantity` Stellar radius estimate. """ numax = self._validate_numax(numax) deltanu = self._validate_deltanu(deltanu) if teff is None: teff = self.periodogram.meta.get("TEFF") if teff is None: raise ValueError( "You must provide an effective temperature argument (`teff`) to `estimate_radius`," "because the Periodogram object does not contain it in its meta data (i.e. `pg.meta['TEFF']` is missing" ) else: log.info( "Using value for effective temperature from the Kepler Input Catalogue." "These temperatue values may sometimes differ significantly from modern estimates." ) pass else: pass result = stellar_estimators.estimate_radius(numax, deltanu, teff) self.radius = result return result def estimate_mass(self, teff=None, numax=None, deltanu=None): """Calculates mass using the asteroseismic scaling relations. The two global observable seismic parameters, numax and deltanu, along with temperature, scale with fundamental stellar properties (Brown et al. 1991; Kjeldsen & Bedding 1995). These scaling relations can be rearranged to calculate a stellar mass as M = Msol * (numax/numax_sol)^3(deltanu/deltanusol)^-4(Teff/Teffsol)^1.5 where M is the mass and Teff is the effective temperature, and the suffix 'sol' indicates a solar value. In this method we use the solar values for numax and deltanu as given in Huber et al. (2011) and for Teff as given in Prsa et al. (2016). This code structure borrows from work done in Bellinger et al. (2019), which also functions as an accessible explanation of seismic scaling relations. If no value of effective temperature is given, this function will check the meta data of the `Periodogram` object used to create the `Seismology` object. These data will often contain an effective tempearture from the Kepler Input Catalogue (KIC, https://ui.adsabs.harvard.edu/abs/2011AJ....142..112B/abstract), or from the EPIC or TIC for K2 and TESS respectively. The temperature values in these catalogues are estimated using photometry, and so have large associated uncertainties (roughly 200 K, see KIC). For more better results, spectroscopic measurements of temperature are often more precise. NOTE: These scaling relations are scaled to the Sun, and therefore do not always produce an entirely accurate result for more evolved stars. Parameters ---------- numax : float The frequency of maximum power of the seismic mode envelope. If not given an astropy unit, assumed to be in units of microhertz. deltanu : float The frequency spacing between two consecutive overtones of equal radial degree. If not given an astropy unit, assumed to be in units of microhertz. teff : float The effective temperature of the star. In units of Kelvin. numax_err : float Error on numax. Assumed to be same units as numax deltanu_err : float Error on deltanu. Assumed to be same units as deltanu teff_err : float Error on Teff. Assumed to be same units as Teff. Returns ------- mass : `~lightkurve.seismology.SeismologyQuantity` Stellar mass estimate. """ numax = self._validate_numax(numax) deltanu = self._validate_deltanu(deltanu) if teff is None: teff = self.periodogram.meta.get("TEFF") if teff is None: raise ValueError( "You must provide an effective temperature argument (`teff`) to `estimate_radius`," "because the Periodogram object does not contain it in its meta data (i.e. `pg.meta['TEFF']` is missing" ) else: log.info( "Using value for effective temperature from the Kepler Input Catalogue." "These temperatue values may sometimes differ significantly from modern estimates." ) pass else: pass result = stellar_estimators.estimate_mass(numax, deltanu, teff) self.mass = result return result def estimate_logg(self, teff=None, numax=None): """Calculates the log of the surface gravity using the asteroseismic scaling relations. The two global observable seismic parameters, numax and deltanu, along with temperature, scale with fundamental stellar properties (Brown et al. 1991; Kjeldsen & Bedding 1995). These scaling relations can be rearranged to calculate a stellar surface gravity as g = gsol * (numax/numax_sol)(Teff/Teffsol)^0.5 where g is the surface gravity and Teff is the effective temperature, and the suffix 'sol' indicates a solar value. In this method we use the solar values for numax as given in Huber et al. (2011) and for Teff as given in Prsa et al. (2016). The solar surface gravity is calcluated from the astropy constants for solar mass and radius and does not have an error. The solar surface gravity is returned as log10(g) with units in dex, as is common in the astrophysics literature. This code structure borrows from work done in Bellinger et al. (2019), which also functions as an accessible explanation of seismic scaling relations. If no value of effective temperature is given, this function will check the meta data of the `Periodogram` object used to create the `Seismology` object. These data will often contain an effective tempearture from the Kepler Input Catalogue (KIC, https://ui.adsabs.harvard.edu/abs/2011AJ....142..112B/abstract), or from the EPIC or TIC for K2 and TESS respectively. The temperature values in these catalogues are estimated using photometry, and so have large associated uncertainties (roughly 200 K, see KIC). For more better results, spectroscopic measurements of temperature are often more precise. NOTE: These scaling relations are scaled to the Sun, and therefore do not always produce an entirely accurate result for more evolved stars. Parameters ---------- numax : float The frequency of maximum power of the seismic mode envelope. If not given an astropy unit, assumed to be in units of microhertz. teff : float The effective temperature of the star. In units of Kelvin. numax_err : float Error on numax. Assumed to be same units as numax teff_err : float Error on teff. Assumed to be same units as teff. Returns ------- logg : `~lightkurve.seismology.SeismologyQuantity` Stellar surface gravity estimate. """ numax = self._validate_numax(numax) if teff is None: teff = self.periodogram.meta.get("TEFF") if teff is None: raise ValueError( "You must provide an effective temperature argument (`teff`) to `estimate_radius`," "because the Periodogram object does not contain it in its meta data (i.e. `pg.meta['TEFF']` is missing" ) else: log.info( "Using value for effective temperature from the Kepler Input Catalogue." "These temperatue values may sometimes differ significantly from modern estimates." ) pass else: pass result = stellar_estimators.estimate_logg(numax, teff) self.logg = result return result ``` #### File: tests/io/test_kepseismic.py ```python import pytest from astropy.io import fits import numpy as np from lightkurve.io.kepseismic import read_kepseismic_lightcurve from lightkurve.io.detect import detect_filetype @pytest.mark.remote_data def test_detect_kepseismic(): """Can we detect the correct format for KEPSEISMIC files?""" url = "https://archive.stsci.edu/hlsps/kepseismic/001200000/92147/20d-filter/hlsp_kepseismic_kepler_phot_kplr001292147-20d_kepler_v1_cor-filt-inp.fits" f = fits.open(url) assert detect_filetype(f) == "KEPSEISMIC" @pytest.mark.remote_data def test_read_kepseismic(): """Can we read KEPSEISMIC files?""" url = "https://archive.stsci.edu/hlsps/kepseismic/001200000/92147/20d-filter/hlsp_kepseismic_kepler_phot_kplr001292147-20d_kepler_v1_cor-filt-inp.fits" with fits.open(url, mode="readonly") as hdulist: fluxes = hdulist[1].data["FLUX"] lc = read_kepseismic_lightcurve(url) flux_lc = lc.flux.value # print(flux_lc, fluxes) assert np.sum(fluxes) == np.sum(flux_lc) ``` #### File: lightkurve/tests/test_correctors.py ```python import pytest @pytest.mark.remote_data def test_to_corrector(): """Does the tpf.to_corrector('pld') convenience method work?""" from lightkurve import KeplerTargetPixelFile from .test_targetpixelfile import TABBY_TPF tpf = KeplerTargetPixelFile(TABBY_TPF) lc = tpf.to_corrector("pld").correct() assert len(lc.flux) == len(tpf.time) ``` #### File: lightkurve/tests/test_units.py ```python import pytest import lightkurve as lk # necessary to enable the units tested below from astropy import units as u def test_custom_units(): """Are ppt, ppm, and percent enabled AstroPy units?""" u.Unit("ppt") # custom unit defined in lightkurve.units u.Unit("ppm") # not enabled by default; enabled in lightkurve.units u.Unit("percent") # standard AstroPy unit @pytest.mark.remote_data def test_tasoc_ppm_units(): """Regression test for #956.""" lc = lk.search_lightcurve('HV 2112', author='TASOC', sector=1, exptime=1800).download() assert lc['flux_corr'].unit == "ppm" assert "Unrecognized" not in repr(lc['flux_corr'].unit) ```
{ "source": "jorgemarpa/psfmachine", "score": 2 }
#### File: src/psfmachine/ffi.py ```python import os import logging import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from astropy.io import fits from astropy.stats import SigmaClip from astropy.time import Time from astropy.wcs import WCS import astropy.units as u from astropy.stats import sigma_clip from photutils import Background2D, MedianBackground, BkgZoomInterpolator # from . import PACKAGEDIR from .utils import do_tiled_query, _make_A_cartesian, solve_linear_model from .machine import Machine from .version import __version__ log = logging.getLogger(__name__) __all__ = ["FFIMachine"] class FFIMachine(Machine): """ Subclass of Machine for working with FFI data. It is a subclass of Machine """ def __init__( self, time, flux, flux_err, ra, dec, sources, column, row, wcs=None, limit_radius=32.0, n_r_knots=10, n_phi_knots=15, n_time_knots=10, n_time_points=200, time_radius=8, cut_r=6, rmin=1, rmax=16, meta=None, ): """ Class to work with FFI data. Parameters ---------- time: numpy.ndarray Time values in JD flux: numpy.ndarray Flux values at each pixels and times in units of electrons / sec. Has shape [n_times, n_rows, n_columns] flux_err: numpy.ndarray Flux error values at each pixels and times in units of electrons / sec. Has shape [n_times, n_rows, n_columns] ra: numpy.ndarray Right Ascension coordinate of each pixel dec: numpy.ndarray Declination coordinate of each pixel sources: pandas.DataFrame DataFrame with source present in the images column: np.ndarray Data array containing the "columns" of the detector that each pixel is on. row: np.ndarray Data array containing the "columns" of the detector that each pixel is on. wcs : astropy.wcs World coordinates system solution for the FFI. Used for plotting. meta : dictionary Meta data information related to the FFI Attributes ---------- All attributes inherited from Machine. meta : dictionary Meta data information related to the FFI wcs : astropy.wcs World coordinates system solution for the FFI. Used for plotting. flux_2d : numpy.ndarray 2D image representation of the FFI, used for plotting. Has shape [n_times, image_height, image_width] image_shape : tuple Shape of 2D image """ self.column = column self.row = row self.ra = ra self.dec = dec # keep 2d image for easy plotting self.flux_2d = flux self.image_shape = flux.shape[1:] # reshape flux and flux_err as [ntimes, npix] self.flux = flux.reshape(flux.shape[0], -1) self.flux_err = flux_err.reshape(flux_err.shape[0], -1) self.sources = sources # remove background and mask bright/saturated pixels # these steps need to be done before `machine` init, so sparse delta # and flux arrays have the same shape if not meta["BACKAPP"]: self._remove_background() self._mask_pixels() # init `machine` object super().__init__( time, self.flux, self.flux_err, self.ra, self.dec, self.sources, self.column, self.row, n_r_knots=n_r_knots, n_phi_knots=n_phi_knots, n_time_knots=n_time_knots, n_time_points=n_time_points, time_radius=time_radius, cut_r=cut_r, rmin=rmin, rmax=rmax, # hardcoded to work for Kepler and TESS FFIs sparse_dist_lim=40 if meta["TELESCOP"] == "Kepler" else 210, ) self.meta = meta self.wcs = wcs def __repr__(self): return f"FFIMachine (N sources, N times, N pixels): {self.shape}" @staticmethod def from_file( fname, extension=1, cutout_size=None, cutout_origin=[0, 0], correct_offsets=False, plot_offsets=False, **kwargs, ): """ Reads data from files and initiates a new object of FFIMachine class. Parameters ---------- fname : str or list of strings File name or list of file names of the FFI files. extension : int Number of HDU extension to be used, for Kepler FFIs this corresponds to the channel number. For TESS FFIs, it correspond to the HDU extension containing the image data (1). cutout_size : int Size of the cutout in pixels, assumed to be squared cutout_origin : tuple of ints Origin pixel coordinates where to start the cut out. Follows matrix indexing correct_offsets : boolean Check and correct for coordinate offset due to wrong WCS. It is off by default. plot_offsets : boolean Create diagnostic plot for oordinate offset correction. **kwargs : dictionary Keyword arguments that defines shape model in a `machine` class object. See `psfmachine.Machine` for details. Returns ------- FFIMachine : Machine object A Machine class object built from the FFI. """ # load FITS files and parse arrays ( wcs, time, flux, flux_err, ra, dec, column, row, metadata, ) = _load_file(fname, extension=extension) # create cutouts if asked if cutout_size is not None: flux, flux_err, ra, dec, column, row = _do_image_cutout( flux, flux_err, ra, dec, column, row, cutout_size=cutout_size, cutout_origin=cutout_origin, ) # hardcoded: the grid size to do the Gaia tiled query. This is different for # cutouts and full channel. TESS and Kepler also need different grid sizes. if metadata["TELESCOP"] == "Kepler": ngrid = (2, 2) if flux.shape[1] <= 500 else (4, 4) else: ngrid = (5, 5) if flux.shape[1] < 500 else (10, 10) # query Gaia and clean sources. sources = _get_sources( ra, dec, wcs, magnitude_limit=18 if metadata["TELESCOP"] == "Kepler" else 15, epoch=time.jyear.mean(), ngrid=ngrid, dr=3, img_limits=[[row.min(), row.max()], [column.min(), column.max()]], ) # correct coordinate offset if necessary. if correct_offsets: ra, dec, sources = _check_coordinate_offsets( ra, dec, row, column, flux[0], sources, wcs, plot=plot_offsets, cutout_size=100, ) return FFIMachine( time.jd, flux, flux_err, ra.ravel(), dec.ravel(), sources, column.ravel(), row.ravel(), wcs=wcs, meta=metadata, **kwargs, ) def save_shape_model(self, output=None): """ Saves the weights of a PRF fit to a disk. Parameters ---------- output : str, None Output file name. If None, one will be generated. """ # asign a file name if output is None: output = "./%s_ffi_shape_model_ext%s_q%s.fits" % ( self.meta["MISSION"], str(self.meta["EXTENSION"]), str(self.meta["QUARTER"]), ) log.info(f"File name: {output}") # create data structure (DataFrame) to save the model params table = fits.BinTableHDU.from_columns( [fits.Column(name="psf_w", array=self.psf_w, format="D")] ) # include metadata and descriptions table.header["object"] = ("PRF shape", "PRF shape parameters") table.header["datatype"] = ("FFI", "Type of data used to fit shape model") table.header["origin"] = ("PSFmachine.FFIMachine", "Software of origin") table.header["version"] = (__version__, "Software version") table.header["TELESCOP"] = (self.meta["TELESCOP"], "Telescope name") table.header["mission"] = (self.meta["MISSION"], "Mission name") table.header["quarter"] = ( self.meta["QUARTER"], "Quarter/Campaign/Sector of observations", ) table.header["channel"] = (self.meta["EXTENSION"], "Channel/Camera-CCD output") table.header["MJD-OBS"] = (self.time[0], "MJD of observation") table.header["n_rknots"] = ( self.n_r_knots, "Number of knots for spline basis in radial axis", ) table.header["n_pknots"] = ( self.n_phi_knots, "Number of knots for spline basis in angle axis", ) table.header["rmin"] = (self.rmin, "Minimum value for knot spacing") table.header["rmax"] = (self.rmax, "Maximum value for knot spacing") table.header["cut_r"] = ( self.cut_r, "Radial distance to remove angle dependency", ) # spline degree is hardcoded in `_make_A_polar` implementation. table.header["spln_deg"] = (3, "Degree of the spline basis") table.writeto(output, checksum=True, overwrite=True) def load_shape_model(self, input=None, plot=False): """ Loads a PRF model from disk Parameters ---------- input : str, None Input file name. If None, one will be generated. plot : boolean Plot the PRF mean model loaded from disk """ if input is None: raise NotImplementedError( "Loading default model not implemented. Please provide input file." ) # check if file exists and is the right format if not os.path.isfile(input): raise FileNotFoundError("No shape file: %s" % input) if not input.endswith(".fits"): # should use a custom exception for wrong file format raise ValueError("File format not suported. Please provide a FITS file.") # create source mask and uncontaminated pixel mask self._get_source_mask() self._get_uncontaminated_pixel_mask() # open file hdu = fits.open(input) # check if shape parameters are for correct mission, quarter, and channel if hdu[1].header["MISSION"] != self.meta["MISSION"]: raise ValueError( "Wrong shape model: file is for mission '%s'," % (hdu[1].header["MISSION"]) + " it should be '%s'." % (self.meta["MISSION"]) ) if hdu[1].header["QUARTER"] != self.meta["QUARTER"]: raise ValueError( "Wrong shape model: file is for quarter %i," % (hdu[1].header["QUARTER"]) + " it should be %i." % (self.meta["QUARTER"]) ) if hdu[1].header["CHANNEL"] != self.meta["EXTENSION"]: raise ValueError( "Wrong shape model: file is for channel %i," % (hdu[1].header["CHANNEL"]) + " it should be %i." % (self.meta["EXTENSION"]) ) # load model hyperparameters and weights self.n_r_knots = hdu[1].header["n_rknots"] self.n_phi_knots = hdu[1].header["n_pknots"] self.rmin = hdu[1].header["rmin"] self.rmax = hdu[1].header["rmax"] self.cut_r = hdu[1].header["cut_r"] self.psf_w = hdu[1].data["psf_w"] del hdu # create mean model, but PRF shapes from FFI are in pixels! and TPFMachine # work in arcseconds self._get_mean_model() # remove background pixels and recreate mean model self._update_source_mask_remove_bkg_pixels() if plot: return self.plot_shape_model() return def save_flux_values(self, output=None, format="fits"): """ Saves the flux values of all sources to a file. For FITS output files a multi- extension file is created with each extension containing a single cadence/frame. Parameters ---------- output : str, None Output file name. If None, one will be generated. format : str Format of the output file. Only FITS is supported for now. """ # check if model was fitted if not hasattr(self, "ws"): self.fit_model(fit_va=False) # asign default output file name if output is None: output = "./%s_source_catalog_ext%s_q%s_mjd%s.fits" % ( self.meta["MISSION"], str(self.meta["EXTENSION"]), str(self.meta["QUARTER"]), str(self.time[0]), ) log.info(f"File name: {output}") primary_hdu = fits.PrimaryHDU() primary_hdu.header["object"] = ("Photometric Catalog", "Photometry") primary_hdu.header["origin"] = ("PSFmachine.FFIMachine", "Software of origin") primary_hdu.header["version"] = (__version__, "Software version") primary_hdu.header["TELESCOP"] = (self.meta["TELESCOP"], "Telescope") primary_hdu.header["mission"] = (self.meta["MISSION"], "Mission name") primary_hdu.header["DCT_TYPE"] = (self.meta["DCT_TYPE"], "Data type") primary_hdu.header["quarter"] = ( self.meta["QUARTER"], "Quarter/Campaign/Sector of observations", ) primary_hdu.header["channel"] = ( self.meta["EXTENSION"], "Channel/Camera-CCD output", ) primary_hdu.header["aperture"] = ("PSF", "Type of photometry") primary_hdu.header["N_OBS"] = (self.time.shape[0], "Number of cadences") primary_hdu.header["DATSETNM"] = (self.meta["DATSETNM"], "data set name") primary_hdu.header["RADESYS"] = ( self.meta["RADESYS"], "reference frame of celestial coordinates", ) primary_hdu.header["EQUINOX"] = ( self.meta["EQUINOX"], "equinox of celestial coordinate system", ) hdul = fits.HDUList([primary_hdu]) # create bin table with photometry for k in range(self.time.shape[0]): id_col = fits.Column( name="gaia_id", array=self.sources.designation, format="29A" ) ra_col = fits.Column( name="ra", array=self.sources.ra, format="D", unit="deg" ) dec_col = fits.Column( name="dec", array=self.sources.dec, format="D", unit="deg" ) flux_col = fits.Column( name="psf_flux", array=self.ws[k, :], format="D", unit="-e/s" ) flux_err_col = fits.Column( name="psf_flux_err", array=self.werrs[k, :], format="D", unit="-e/s" ) table_hdu = fits.BinTableHDU.from_columns( [id_col, ra_col, dec_col, flux_col, flux_err_col] ) table_hdu.header["EXTNAME"] = "CATALOG" table_hdu.header["MJD-OBS"] = (self.time[k], "MJD of observation") hdul.append(table_hdu) hdul.writeto(output, checksum=True, overwrite=True) return def _remove_background(self, mask=None): """ Background removal. It models the background using a median estimator, rejects flux values with sigma clipping. It modiffies the attributes `flux` and `flux_2d`. The background model are stored in the `background_model` attribute. Parameters ---------- mask : numpy.ndarray of booleans Mask to reject pixels containing sources. Default None. """ # model background for all cadences self.background_model = np.array( [ Background2D( flux_2d, mask=mask, box_size=(64, 50), filter_size=15, exclude_percentile=20, sigma_clip=SigmaClip(sigma=3.0, maxiters=5), bkg_estimator=MedianBackground(), interpolator=BkgZoomInterpolator(order=3), ).background for flux_2d in self.flux_2d ] ) # substract background self.flux_2d -= self.background_model # flatten flix image self.flux = self.flux_2d.reshape(self.flux_2d.shape[0], -1) return def _saturated_pixels_mask(self, saturation_limit=1.5e5, tolerance=3): """ Finds and removes saturated pixels, including bleed columns. Parameters ---------- saturation_limit : foat Saturation limit at which pixels are removed. tolerance : float Number of pixels masked around the saturated pixel, remove bleeding. Returns ------- mask : numpy.ndarray Boolean mask with rejected pixels """ # Which pixels are saturated # this nanpercentile takes forever to compute for a single cadance ffi # saturated = np.nanpercentile(self.flux, 99, axis=0) # assume we'll use ffi for 1 single cadence saturated = np.where(self.flux > saturation_limit)[1] # Find bad pixels, including allowence for a bleed column. bad_pixels = np.vstack( [ np.hstack( [ self.column[saturated] + idx for idx in np.arange(-tolerance, tolerance) ] ), np.hstack( [self.row[saturated] for idx in np.arange(-tolerance, tolerance)] ), ] ).T # Find unique row/column combinations bad_pixels = bad_pixels[ np.unique(["".join(s) for s in bad_pixels.astype(str)], return_index=True)[ 1 ] ] # Build a mask of saturated pixels m = np.zeros(len(self.column), bool) # this works for FFIs but is slow for p in bad_pixels: m |= (self.column == p[0]) & (self.row == p[1]) saturated = (self.flux > saturation_limit)[0] return m def _bright_sources_mask(self, magnitude_limit=8, tolerance=30): """ Finds and mask pixels with halos produced by bright stars (e.g. <8 mag). Parameters ---------- magnitude_limit : foat Magnitude limit at which bright sources are identified. tolerance : float Radius limit (in pixels) at which pixels around bright sources are masked. Returns ------- mask : numpy.ndarray Boolean mask with rejected pixels """ bright_mask = self.sources["phot_g_mean_mag"] <= magnitude_limit mask = [ np.hypot(self.column - s.column, self.row - s.row) < tolerance for _, s in self.sources[bright_mask].iterrows() ] mask = np.array(mask).sum(axis=0) > 0 return mask def _mask_pixels(self, pixel_saturation_limit=1.2e5, magnitude_bright_limit=8): """ Mask saturated pixels and halo/difraction pattern from bright sources. Parameters ---------- pixel_saturation_limit: float Flux value at which pixels saturate. magnitude_bright_limit: float Magnitude limit for sources at which pixels are masked. """ # mask saturated pixels. self.non_sat_pixel_mask = ~self._saturated_pixels_mask( saturation_limit=pixel_saturation_limit ) self.non_bright_source_mask = ~self._bright_sources_mask( magnitude_limit=magnitude_bright_limit ) good_pixels = self.non_sat_pixel_mask & self.non_bright_source_mask self.column = self.column[good_pixels] self.row = self.row[good_pixels] self.ra = self.ra[good_pixels] self.dec = self.dec[good_pixels] self.flux = self.flux[:, good_pixels] self.flux_err = self.flux_err[:, good_pixels] return def residuals(self, plot=False, zoom=False, metric="residuals"): """ Get the residuals (model - image) and compute statistics. It creates a model of the full image using the `mean_model` and the weights computed when fitting the shape model. Parameters ---------- plot : bool Do plotting zoom : bool If plot is True then zoom into a section of the image for better visualization. metric : string Type of metric used to plot. Default is "residuals", "chi2" is also available. Return ------ fig : matplotlib figure Figure """ if not hasattr(self, "ws"): self.fit_model(fit_va=False) # evaluate mean model ffi_model = self.mean_model.T.dot(self.ws[0]) ffi_model_err = self.mean_model.T.dot(self.werrs[0]) # compute residuals residuals = ffi_model - self.flux[0] weighted_chi = (ffi_model - self.flux[0]) ** 2 / ffi_model_err # mask background source_mask = ffi_model != 0.0 # rms self.rms = np.sqrt((residuals[source_mask] ** 2).mean()) self.frac_esidual_median = np.median( residuals[source_mask] / self.flux[0][source_mask] ) self.frac_esidual_std = np.std( residuals[source_mask] / self.flux[0][source_mask] ) if plot: fig, ax = plt.subplots(2, 2, figsize=(15, 15)) ax[0, 0].scatter( self.column, self.row, c=self.flux[0], marker="s", s=7.5 if zoom else 1, norm=colors.SymLogNorm(linthresh=500, vmin=0, vmax=5000, base=10), ) ax[0, 0].set_aspect("equal", adjustable="box") ax[0, 1].scatter( self.column, self.row, c=ffi_model, marker="s", s=7.5 if zoom else 1, norm=colors.SymLogNorm(linthresh=500, vmin=0, vmax=5000, base=10), ) ax[0, 1].set_aspect("equal", adjustable="box") if metric == "residuals": to_plot = residuals norm = colors.SymLogNorm(linthresh=500, vmin=-5000, vmax=5000, base=10) cmap = "RdBu" elif metric == "chi2": to_plot = weighted_chi norm = colors.LogNorm(vmin=1, vmax=5000) cmap = "viridis" else: raise ValueError("wrong type of metric") cbar = ax[1, 0].scatter( self.column[source_mask], self.row[source_mask], c=to_plot[source_mask], marker="s", s=7.5 if zoom else 1, cmap=cmap, norm=norm, ) ax[1, 0].set_aspect("equal", adjustable="box") plt.colorbar( cbar, ax=ax[1, 0], label=r"Flux ($e^{-}s^{-1}$)", fraction=0.042 ) ax[1, 1].hist( residuals[source_mask] / self.flux[0][source_mask], bins=50, log=True, label=( "RMS (model - data) = %.3f" % self.rms + "\nMedian = %.3f" % self.frac_esidual_median + "\nSTD = %3f" % self.frac_esidual_std ), ) ax[1, 1].legend(loc="best") ax[0, 0].set_ylabel("Pixel Row Number") ax[0, 0].set_xlabel("Pixel Column Number") ax[0, 1].set_xlabel("Pixel Column Number") ax[1, 0].set_ylabel("Pixel Row Number") ax[1, 0].set_xlabel("Pixel Column Number") ax[1, 1].set_xlabel("(model - data) / data") ax[1, 0].set_title(metric) if zoom: ax[0, 0].set_xlim(self.column.min(), self.column.min() + 100) ax[0, 0].set_ylim(self.row.min(), self.row.min() + 100) ax[0, 1].set_xlim(self.column.min(), self.column.min() + 100) ax[0, 1].set_ylim(self.row.min(), self.row.min() + 100) ax[1, 0].set_xlim(self.column.min(), self.column.min() + 100) ax[1, 0].set_ylim(self.row.min(), self.row.min() + 100) return fig return def plot_image(self, ax=None, sources=False): """ Function to plot the Full Frame Image and Gaia sources. Parameters ---------- ax : matplotlib.axes Matlotlib axis can be provided, if not one will be created and returned. sources : boolean Whether to overplot or not the source catalog. Returns ------- ax : matplotlib.axes Matlotlib axis with the figure """ if ax is None: fig, ax = plt.subplots(1, figsize=(10, 10)) ax = plt.subplot(projection=self.wcs) row_2d, col_2d = np.mgrid[ self.row.min() : self.row.max() + 1, self.column.min() : self.column.max() + 1, ] im = ax.pcolormesh( col_2d, row_2d, self.flux_2d[0], cmap=plt.cm.viridis, shading="nearest", # origin="lower", norm=colors.SymLogNorm(linthresh=200, vmin=0, vmax=2000, base=10), rasterized=True, ) plt.colorbar(im, ax=ax, label=r"Flux ($e^{-}s^{-1}$)", fraction=0.042) ax.set_title( "%s FFI Ch/CCD %s MJD %f" % (self.meta["MISSION"], self.meta["EXTENSION"], self.time[0]) ) ax.set_xlabel("R.A. [hh:mm]") ax.set_ylabel("Decl. [deg]") ax.grid(True, which="major", axis="both", ls="-", color="w", alpha=0.7) ax.set_xlim(self.column.min() - 2, self.column.max() + 2) ax.set_ylim(self.row.min() - 2, self.row.max() + 2) ax.set_aspect("equal", adjustable="box") if sources: ax.scatter( self.sources.column, self.sources.row, facecolors="none", edgecolors="r", linewidths=0.5 if self.sources.shape[0] > 1000 else 1, alpha=0.9, ) return ax def plot_pixel_masks(self, ax=None): """ Function to plot the mask used to reject saturated and bright pixels. Parameters ---------- ax : matplotlib.axes Matlotlib axis can be provided, if not one will be created and returned. Returns ------- ax : matplotlib.axes Matlotlib axis with the figure. """ row_2d, col_2d = np.mgrid[: self.flux_2d.shape[1], : self.flux_2d.shape[2]] if ax is None: fig, ax = plt.subplots(1, figsize=(10, 10)) if hasattr(self, "non_bright_source_mask"): ax.scatter( col_2d.ravel()[~self.non_bright_source_mask], row_2d.ravel()[~self.non_bright_source_mask], c="y", marker="s", s=1, label="bright mask", ) if hasattr(self, "non_sat_pixel_mask"): ax.scatter( col_2d.ravel()[~self.non_sat_pixel_mask], row_2d.ravel()[~self.non_sat_pixel_mask], c="r", marker="s", s=1, label="saturated pixels", ) ax.legend(loc="best") ax.set_xlabel("Column Pixel Number") ax.set_ylabel("Row Pixel Number") ax.set_title("Pixel Mask") return ax def _load_file(fname, extension=1): """ Helper function to load FFI files and parse data. It parses the FITS files to extract the image data and metadata. It checks that all files provided in fname correspond to FFIs from the same mission. Parameters ---------- fname : string or list of strings Name of the FFI files extension : int Number of HDU extension to use, for Kepler FFIs this corresponds to the channel Returns ------- wcs : astropy.wcs World coordinates system solution for the FFI. Used to convert RA, Dec to pixels time : numpy.array Array with time values in MJD flux_2d : numpy.ndarray Array with 2D (image) representation of flux values flux_err_2d : numpy.ndarray Array with 2D (image) representation of flux errors ra_2d : numpy.ndarray Array with 2D (image) representation of flux RA dec_2d : numpy.ndarray Array with 2D (image) representation of flux Dec col_2d : numpy.ndarray Array with 2D (image) representation of pixel column row_2d : numpy.ndarray Array with 2D (image) representation of pixel row meta : dict Dictionary with metadata """ if not isinstance(fname, list): fname = np.sort([fname]) imgs = [] times = [] telescopes = [] dct_types = [] quarters = [] extensions = [] for i, f in enumerate(fname): if not os.path.isfile(f): raise FileNotFoundError("FFI calibrated fits file does not exist: ", f) hdul = fits.open(f) header = hdul[0].header telescopes.append(header["TELESCOP"]) # kepler if f.split("/")[-1].startswith("kplr"): dct_types.append(header["DCT_TYPE"]) quarters.append(header["QUARTER"]) extensions.append(hdul[extension].header["CHANNEL"]) hdr = hdul[extension].header times.append((hdr["MJDEND"] + hdr["MJDSTART"]) / 2) imgs.append(hdul[extension].data) # K2 elif f.split("/")[-1].startswith("ktwo"): dct_types.append(header["DCT_TYPE"]) quarters.append(header["CAMPAIGN"]) extensions.append(hdul[extension].header["CHANNEL"]) hdr = hdul[extension].header times.append((hdr["MJDEND"] + hdr["MJDSTART"]) / 2) imgs.append(hdul[extension].data) # TESS elif f.split("/")[-1].startswith("tess"): dct_types.append(header["CREATOR"].split(" ")[-1].upper()) quarters.append(f.split("/")[-1].split("-")[1]) hdr = hdul[1].header times.append((hdr["TSTART"] + hdr["TSTOP"]) / 2) imgs.append(hdul[1].data) extensions.append("%i.%i" % (hdr["CAMERA"], hdr["CCD"])) # raise NotImplementedError else: raise ValueError("FFI is not from Kepler or TESS.") if i == 0: wcs = WCS(hdr) # check for integrity of files, same telescope, all FFIs and same quarter/campaign if len(set(telescopes)) != 1: raise ValueError("All FFIs must be from same telescope") if len(set(dct_types)) != 1 or "FFI" not in set(dct_types).pop(): raise ValueError("All images must be FFIs") if len(set(quarters)) != 1: raise ValueError("All FFIs must be of same quarter/campaign/sector.") # collect meta data, get everthing from one header. attrs = [ "TELESCOP", "INSTRUME", "MISSION", "DATSETNM", ] meta = {k: header[k] for k in attrs if k in header.keys()} attrs = [ "RADESYS", "EQUINOX", "BACKAPP", ] meta.update({k: hdr[k] for k in attrs if k in hdr.keys()}) # we use "EXTENSION" to combine channel/camera keywords and "QUARTERS" to refer to # Kepler quarters and TESS campaigns meta.update({"EXTENSION": extensions[0], "QUARTER": quarters[0], "DCT_TYPE": "FFI"}) if "MISSION" not in meta.keys(): meta["MISSION"] = meta["TELESCOP"] # sort by times in case fnames aren't times = Time(times, format="mjd" if meta["TELESCOP"] == "Kepler" else "btjd") tdx = np.argsort(times) times = times[tdx] # remove overscan of image row_2d, col_2d, flux_2d = _remove_overscan(meta["TELESCOP"], np.array(imgs)[tdx]) # kepler FFIs have uncent maps stored in different files, so we use Poison noise as # flux error for now. flux_err_2d = np.sqrt(np.abs(flux_2d)) # convert to RA and Dec ra, dec = wcs.all_pix2world(np.vstack([col_2d.ravel(), row_2d.ravel()]).T, 0.0).T # some Kepler Channels/Modules have image data but no WCS (e.g. ch 5-8). If the WCS # doesn't exist or is wrong, it could produce RA Dec values out of bound. if ra.min() < 0.0 or ra.max() > 360 or dec.min() < -90 or dec.max() > 90: raise ValueError("WCS lead to out of bound RA and Dec coordinates.") ra_2d = ra.reshape(flux_2d.shape[1:]) dec_2d = dec.reshape(flux_2d.shape[1:]) del hdul, header, hdr, imgs, ra, dec return ( wcs, times, flux_2d, flux_err_2d, ra_2d, dec_2d, col_2d, row_2d, meta, ) def _get_sources(ra, dec, wcs, img_limits=[[0, 0], [0, 0]], **kwargs): """ Query Gaia catalog in a tiled manner and clean sources off sensor. Parameters ---------- ra : numpy.ndarray Data array with pixel RA values used to create the grid for tiled query and compute centers and radius of cone search dec : numpy.ndarray Data array with pixel Dec values used to create the grid for tiled query and compute centers and radius of cone search wcs : astropy.wcs World coordinates system solution for the FFI. Used to convert RA, Dec to pixels img_limits : Image limits in pixel numbers to remove sources outside the CCD. **kwargs Keyword arguments to be passed to `psfmachine.utils.do_tiled_query()`. Returns ------- sources : pandas.DataFrame Data Frame with query result """ sources = do_tiled_query(ra, dec, **kwargs) sources["column"], sources["row"] = wcs.all_world2pix( sources.loc[:, ["ra", "dec"]].values, 0.0 ).T # remove sources outiside the ccd with a tolerance tolerance = 0 inside = ( (sources.row > img_limits[0][0] - tolerance) & (sources.row < img_limits[0][1] + tolerance) & (sources.column > img_limits[1][0] - tolerance) & (sources.column < img_limits[1][1] + tolerance) ) sources = sources[inside].reset_index(drop=True) return sources def _do_image_cutout( flux, flux_err, ra, dec, column, row, cutout_size=100, cutout_origin=[0, 0] ): """ Creates a cutout of the full image. Return data arrays corresponding to the cutout. Parameters ---------- flux : numpy.ndarray Data array with Flux values, correspond to full size image. flux_err : numpy.ndarray Data array with Flux errors values, correspond to full size image. ra : numpy.ndarray Data array with RA values, correspond to full size image. dec : numpy.ndarray Data array with Dec values, correspond to full size image. column : numpy.ndarray Data array with pixel column values, correspond to full size image. row : numpy.ndarray Data array with pixel raw values, correspond to full size image. cutout_size : int Size in pixels of the cutout, assumedto be squared. Default is 100. cutout_origin : tuple of ints Origin of the cutout following matrix indexing. Default is [0 ,0]. Returns ------- flux : numpy.ndarray Data array with Flux values of the cutout. flux_err : numpy.ndarray Data array with Flux errors values of the cutout. ra : numpy.ndarray Data array with RA values of the cutout. dec : numpy.ndarray Data array with Dec values of the cutout. column : numpy.ndarray Data array with pixel column values of the cutout. row : numpy.ndarray Data array with pixel raw values of the cutout. """ if cutout_size + cutout_origin[0] < np.minimum(*flux.shape[1:]): column = column[ cutout_origin[0] : cutout_origin[0] + cutout_size, cutout_origin[1] : cutout_origin[1] + cutout_size, ] row = row[ cutout_origin[0] : cutout_origin[0] + cutout_size, cutout_origin[1] : cutout_origin[1] + cutout_size, ] flux = flux[ :, cutout_origin[0] : cutout_origin[0] + cutout_size, cutout_origin[1] : cutout_origin[1] + cutout_size, ] flux_err = flux_err[ :, cutout_origin[0] : cutout_origin[0] + cutout_size, cutout_origin[1] : cutout_origin[1] + cutout_size, ] ra = ra[ cutout_origin[0] : cutout_origin[0] + cutout_size, cutout_origin[1] : cutout_origin[1] + cutout_size, ] dec = dec[ cutout_origin[0] : cutout_origin[0] + cutout_size, cutout_origin[1] : cutout_origin[1] + cutout_size, ] else: raise ValueError("Cutout size is larger than image shape ", flux.shape) return flux, flux_err, ra, dec, column, row def _remove_overscan(telescope, imgs): """ Removes overscan of the CCD. Return the image data with overscan columns and rows removed, also return 2D data arrays with pixel columns and row values. Parameters ---------- telescope : string Name of the telescope. imgs : numpy.ndarray Array of 2D images to. Has shape of [n_times, image_height, image_width]. Returns ------- row_2d : numpy.ndarray Data array with pixel row values col_2d : numpy.ndarray Data array with pixel column values flux_2d : numpy.ndarray Data array with flux values """ if telescope == "Kepler": # CCD overscan for Kepler r_min = 20 r_max = 1044 c_min = 12 c_max = 1112 elif telescope == "TESS": # CCD overscan for TESS r_min = 0 r_max = 2048 c_min = 45 c_max = 2093 else: raise TypeError("File is not from Kepler or TESS mission") # remove overscan row_2d, col_2d = np.mgrid[: imgs[0].shape[0], : imgs[0].shape[1]] col_2d = col_2d[r_min:r_max, c_min:c_max] row_2d = row_2d[r_min:r_max, c_min:c_max] flux_2d = imgs[:, r_min:r_max, c_min:c_max] return row_2d, col_2d, flux_2d def _compute_coordinate_offset(ra, dec, flux, sources, plot=True): """ Compute coordinate offsets if the RA Dec of objects in source catalog don't align with the RA Dec values of the image. How it works: first compute dra, ddec and radius of each pixel respect to the objects listed in sources. Then masks out all pixels further than ~25 arcsecs around each source. It uses spline basis to model the flux as a function of the spatial coord and find the scene centroid offsets. Parameters ---------- ra : numpy.ndarray Data array with pixel RA coordinates. dec : numpy.ndarray Data array with pixel Dec coordinates. flux : numpy.ndarray Data array with flux values. sources : pandas DataFrame Catalog with sources detected in the image. plot : boolean Create diagnostic plots. Returns ------- ra_offset : float RA coordinate offset dec_offset : float Dec coordinate offset """ # diagnostic plot if plot: fig, ax = plt.subplots(1, 3, figsize=(15, 4)) ax[0].pcolormesh( ra, dec, flux, cmap=plt.cm.viridis, shading="nearest", norm=colors.SymLogNorm(linthresh=200, vmin=0, vmax=2000, base=10), rasterized=True, ) ax[0].scatter( sources.ra, sources.dec, facecolors="none", edgecolors="r", linewidths=1, alpha=0.9, ) # create a temporal mask of ~25 (6 pix) arcsec around each source ra, dec, flux = ra.ravel(), dec.ravel(), flux.ravel() dra, ddec = np.asarray( [ [ ra - sources["ra"][idx], dec - sources["dec"][idx], ] for idx in range(len(sources)) ] ).transpose(1, 0, 2) dra = dra * (u.deg) ddec = ddec * (u.deg) r = np.hypot(dra, ddec).to("arcsec") source_rad = 0.5 * np.log10(sources.phot_g_mean_flux) ** 1.5 + 25 tmp_mask = r.value < source_rad.values[:, None] flx = np.tile(flux, (sources.shape[0], 1))[tmp_mask] # design matrix in cartesian coord to model flux(dra, ddec) A = _make_A_cartesian( dra.value[tmp_mask], ddec.value[tmp_mask], radius=np.percentile(r[tmp_mask], 90) / 3600, n_knots=8, ) prior_sigma = np.ones(A.shape[1]) * 10 prior_mu = np.zeros(A.shape[1]) + 10 w = solve_linear_model( A, flx, y_err=np.sqrt(np.abs(flx)), prior_mu=prior_mu, prior_sigma=prior_sigma, ) # iterate to reject outliers from nearby sources using (data - model) for k in range(3): bad = sigma_clip(flx - A.dot(w), sigma=3).mask w = solve_linear_model( A, flx, y_err=np.sqrt(np.abs(flx)), k=~bad, prior_mu=prior_mu, prior_sigma=prior_sigma, ) # flux model flx_mdl = A.dot(w) # mask flux values from model to be used as weights k = flx_mdl > np.percentile(flx_mdl, 90) # compute centroid offsets in arcseconds ra_offset = np.average(dra[tmp_mask][k], weights=np.sqrt(flx_mdl[k])).to("arcsec") dec_offset = np.average(ddec[tmp_mask][k], weights=np.sqrt(flx_mdl[k])).to("arcsec") # diagnostic plots if plot: ax[1].scatter( dra[tmp_mask] * 3600, ddec[tmp_mask] * 3600, c=np.log10(flx), s=2, vmin=2.5, vmax=3, ) ax[2].scatter( dra[tmp_mask][k] * 3600, ddec[tmp_mask][k] * 3600, c=np.log10(flx_mdl[k]), s=2, ) ax[1].set_xlim(-30, 30) ax[1].set_ylim(-30, 30) ax[2].set_xlim(-30, 30) ax[2].set_ylim(-30, 30) ax[1].set_xlabel("R.A.") ax[1].set_ylabel("Dec") ax[1].set_xlabel(r"$\delta x$") ax[1].set_ylabel(r"$\delta y$") ax[2].set_xlabel(r"$\delta x$") ax[2].set_ylabel(r"$\delta y$") ax[1].axvline(ra_offset.value, c="r", ls="-") ax[1].axhline(dec_offset.value, c="r", ls="-") plt.show() return ra_offset, dec_offset def _check_coordinate_offsets( ra, dec, row, column, flux, sources, wcs, cutout_size=50, plot=False ): """ Checks if there is any offset between the pixel coordinates and the Gaia sources due to wrong WCS. It checks all 4 corners and image center, compute coordinates offsets and sees if offsets are consistent in all regions. Parameters ---------- ra : numpy.ndarray Data array with pixel RA coordinates. dec : numpy.ndarray Data array with pixel Dec coordinates. flux : numpy.ndarray Data array with flux values. sources : pandas DataFrame Catalog with sources detected in the image. wcs : astropy.wcs World coordinates system solution for the FFI. cutout_size : int Size of the cutouts in each corner and center to be used to compute offsets. Use larger cutouts for regions with low number of sources detected. plot : boolean Create diagnostic plots. Returns ------- ra : numpy.ndarray Data arrays with corrected coordinates. dec : numpy.ndarray Data arrays with corrected coordinates. sources : pandas DataFrame Catalog with corrected pixel row and column coordinates. """ # define cutout origins for corners and image center cutout_org = [ [0, 0], [flux.shape[0] - cutout_size, 0], [0, flux.shape[1] - cutout_size], [flux.shape[0] - cutout_size, flux.shape[1] - cutout_size], [(flux.shape[0] - cutout_size) // 2, (flux.shape[1] - cutout_size) // 2], ] ra_offsets, dec_offsets = [], [] # iterate over cutouts to get offsets for cdx, c_org in enumerate(cutout_org): # create cutouts and sources inside cutout_f = flux[ c_org[0] : c_org[0] + cutout_size, c_org[1] : c_org[1] + cutout_size ] cutout_ra = ra[ c_org[0] : c_org[0] + cutout_size, c_org[1] : c_org[1] + cutout_size ] cutout_dec = dec[ c_org[0] : c_org[0] + cutout_size, c_org[1] : c_org[1] + cutout_size ] cutout_row = row[ c_org[0] : c_org[0] + cutout_size, c_org[1] : c_org[1] + cutout_size ] cutout_col = column[ c_org[0] : c_org[0] + cutout_size, c_org[1] : c_org[1] + cutout_size ] inside = ( (sources.row > cutout_row.min()) & (sources.row < cutout_row.max()) & (sources.column > cutout_col.min()) & (sources.column < cutout_col.max()) ) sources_in = sources[inside].reset_index(drop=True) ra_offset, dec_offset = _compute_coordinate_offset( cutout_ra, cutout_dec, cutout_f, sources_in, plot=plot ) ra_offsets.append(ra_offset.value) dec_offsets.append(dec_offset.value) ra_offsets = np.asarray(ra_offsets) * u.arcsec dec_offsets = np.asarray(dec_offsets) * u.arcsec # diagnostic plot if plot: plt.plot(ra_offsets, label="RA offset") plt.plot(dec_offsets, label="Dec offset") plt.legend() plt.xlabel("Cutout number") plt.ylabel(r"$\delta$ [arcsec]") plt.show() # if offsets are > 1 arcsec and all within 1" from each other, then apply offsets # to source coordinates if ( (np.abs(ra_offsets.mean()) > 1 * u.arcsec) and (np.abs(dec_offsets.mean()) > 1 * u.arcsec) and (np.abs(ra_offsets - ra_offsets.mean()) < 1 * u.arcsec).all() and (np.abs(dec_offsets - dec_offsets.mean()) < 1 * u.arcsec).all() ): log.info("All offsets are > 1'' and in the same direction") # correct the pix coord of sources sources["column"], sources["row"] = wcs.all_world2pix( np.array( [ sources.ra + ra_offsets.mean().to("deg"), sources.dec + dec_offsets.mean().to("deg"), ] ).T, 0.0, ).T # correct the ra, dec grid with the offsets ra -= ra_offsets.mean().to("deg").value dec -= dec_offsets.mean().to("deg").value return ra, dec, sources def buildKeplerPRFDatabase(fnames): """Procedure to build the database of Kepler PRF shape models. Parameters --------- fnames: list of str List of filenames for Kepler FFIs. """ # This proceedure should be stored as part of the module, because it will # be vital for reproducability. # 1. Do some basic checks on FFI files that they are Kepler FFIs, and that # all 53 are present, all same channel etc. # 2. Iterate through files # for fname in fnames: # f = FFIMachine.from_file(fname, HARD_CODED_PARAMETERS) # f.build_shape_model() # f.fit_model() # # output = ( # PACKAGEDIR # + f"src/psfmachine/data/q{quarter}_ch{channel}_{params}.csv" # ) # f.save_shape_model(output=output) raise NotImplementedError ```
{ "source": "JorgeMartinezG/prism-frontend", "score": 2 }
#### File: app/tests/test_calculate.py ```python from datetime import datetime, timezone from unittest.mock import patch from app.kobo import get_form_responses from app.zonal_stats import calculate_stats def test_calculate_stats_json_output(): """ Test calculate_stats with geojson_out=False.""" zones = '/app/tests/small_admin_boundaries.json' geotiff = '/app/tests/raster_sample.tif' features = calculate_stats(zones, geotiff, geojson_out=False) assert len(features) == 26 assert True def test_calculate_stats_geojson_output(): """ Test calculate_stats with geojson_out=True.""" zones = '/app/tests/small_admin_boundaries.json' geotiff = '/app/tests/raster_sample.tif' features = calculate_stats(zones, geotiff, geojson_out=True) assert len(features) == 26 assert features[0]['type'] == 'Feature' assert True def test_calculate_stats_with_group_by(): """ Test calculate_stats with a group_by argument.""" zones = '/app/tests/small_admin_boundaries.json' geotiff = '/app/tests/raster_sample.tif' features = calculate_stats( zones, geotiff, group_by='ADM1_PCODE', geojson_out=False) assert len(features) == 4 assert True def test_calculate_stats_wfs_polygons(): """ Test calculate_stats with a group_by argument.""" zones = '/app/tests/small_admin_boundaries.json' geotiff = '/app/tests/raster_sample.tif' wfs_response = {'filter_property_key': 'label', 'path': '/app/tests/wfs_response.json'} features = calculate_stats( zones, geotiff, geojson_out=False, wfs_response=wfs_response) assert len(features) == 5 features = calculate_stats( zones, geotiff, group_by='ADM1_PCODE', geojson_out=False, wfs_response=wfs_response) assert len(features) == 2 assert True @patch('app.kobo.get_responses_from_kobo') @patch('app.kobo.get_kobo_params') def test_kobo_response_form(kobo_params, kobo_data): """ Test form response parsing. """ form_fields = { 'name': 'name', 'datetime': 'date', 'geom': 'geom', 'filters': { 'status': 'Approved' } } kobo_params.return_value = (('test', 'test'), form_fields) kobo_data_json = [ { 'date': '2019-09-22T21:35:54', 'geom': '21.908012 95.986908 0 0', 'value': '2', '_validation_status': {'label': 'Approved'}, 'username': 'jorge' }, { 'date': '2021-01-01T10:00:08', 'geom': '21.916222 95.955971 0 0', 'value': '3', '_validation_status': {'label': 'Approved'}, 'username': 'test' } ] labels = {'value': 'integer', 'geom': 'geopoint', 'username': 'username', 'date': 'datetime'} kobo_data.return_value = (kobo_data_json, labels) begin = datetime(2000, 1, 1).replace(tzinfo=timezone.utc) end = datetime(2030, 1, 1).replace(tzinfo=timezone.utc) forms = get_form_responses(begin, end) assert len(forms) == 2 assert forms[0]['lat'] == 21.908012 assert forms[0]['lon'] == 95.986908 assert forms[0]['value'] == 2 assert forms[0]['status'] == 'Approved' form_fields = { 'name': 'name', 'datetime': 'date', 'geom': 'geom', 'filters': { 'status': 'Approved', 'username': 'jorge' } } kobo_params.return_value = (('test', 'test'), form_fields) forms = get_form_responses(begin, end) assert len(forms) == 1 # Test Filter begin = datetime(2000, 1, 1).replace(tzinfo=timezone.utc) end = datetime(2020, 1, 1).replace(tzinfo=timezone.utc) forms = get_form_responses(begin, end) assert len(forms) == 1 assert True ``` #### File: api-flask/app/zonal_stats.py ```python import logging from collections import defaultdict from datetime import datetime from json import dump, load from urllib.parse import urlencode from app.caching import cache_file, get_json_file from app.timer import timed import rasterio from rasterstats import zonal_stats from shapely.geometry import mapping, shape from shapely.ops import cascaded_union from werkzeug.exceptions import InternalServerError logger = logging.getLogger(__name__) DEFAULT_STATS = ['min', 'max', 'mean', 'median'] def get_wfs_response(wfs_params): """ Execute Web Feature Service (WFS) request to external OGC server. This request returns geospatial features that match required filters within cql_filter param. https://docs.geoserver.org/stable/en/user/services/wfs/reference.html """ cql_filter = [] if 'time' in wfs_params.keys(): from_date = datetime.strptime(wfs_params.get('time'), '%Y-%m-%d') cql_filter.append('timestamp DURING {}/P1D'.format(from_date.isoformat())) params = { 'service': 'WFS', 'version': '1.0.0', 'request': 'GetFeature', 'typeName': wfs_params.get('layer_name'), 'outputFormat': 'application/json', } if len(cql_filter) > 0: params['cql_filter'] = ' AND '.join(cql_filter) wfs_url = '{url}?{params}'.format(url=wfs_params.get('url'), params=urlencode(params)) wfs_response_path = cache_file(url=wfs_url, prefix='wfs') return dict(filter_property_key=wfs_params['key'], path=wfs_response_path) def _extract_features_properties(zones): with open(zones) as json_file: zones = load(json_file) return [f['properties'] for f in zones.get('features', [])] def _group_zones(zones, group_by): """Group zones by a key id and merge polygons.""" with open(zones) as json_file: geojson_data = load(json_file) features = geojson_data.get('features', []) grouped_polygons = defaultdict(list) for zone_feature in features: grouped_polygons[zone_feature['properties'][group_by]].append( shape(zone_feature['geometry']) ) new_features = [] for group_id, polygons in grouped_polygons.items(): new_geometry = mapping(cascaded_union(polygons)) new_features.append( dict( type='Feature', id=group_id, properties=dict([(group_by, group_id)]), geometry=dict( type=new_geometry['type'], coordinates=new_geometry['coordinates']) ) ) outjson = dict(type='FeatureCollection', features=new_features) output_file = '{zones}.{group_by}'.format(zones=zones, group_by=group_by) with open(output_file, 'w') as outfile: dump(outjson, outfile) return output_file def _create_shapely_geoms(geojson_dict, filter_property_key): """ Read and parse geojson dictionary geometries into shapely objects. returns a tuple with the property value that matches filter_property_key and shapely object. """ shapely_dicts = [] for f in geojson_dict.get('features'): if f.get('geometry').get('type') not in ['MultiPolygon', 'Polygon']: continue obj_key = f['properties'][filter_property_key] shapely_dicts.append((obj_key, shape(f.get('geometry')))) return shapely_dicts def _get_intersected_polygons(zones_geojson, wfs_geojson, filter_property_key): """ Generate polygon intersection between each zone and polygons from wfs response. This function returns an array of dictionaries - 'geom' key contains the shapely object which is used for statistics - 'feature' key is a geojson feature with the intersected geometry """ wfs_shapes = _create_shapely_geoms(wfs_geojson, filter_property_key) intersected_zones = [] for zone in zones_geojson.get('features'): # Shapely object from zone geojson geometry. geom = shape(zone.get('geometry')) # Get geometry intersection between zone and wfs response polygons. filtered = [(k, geom.intersection(s)) for k, s in wfs_shapes if geom.intersects(s)] if len(filtered) == 0: continue filtered_dict = [] for k, geom in filtered: properties = zone.get('properties').copy() # Include property value from wfs_response. properties[filter_property_key] = k # Create geojson feature. feature = { 'type': 'Feature', 'geometry': mapping(geom), 'properties': properties } filtered_dict.append({'geom': geom, 'feature': feature}) intersected_zones.append(filtered_dict) # Flatten. intersected_zones = [item for sublist in intersected_zones for item in sublist] return intersected_zones @timed def calculate_stats( zones, geotiff, group_by=None, stats=DEFAULT_STATS, prefix='stats_', geojson_out=False, wfs_response=None ): """Calculate stats.""" if group_by: zones = _group_zones(zones, group_by) stats_input = zones if wfs_response: zones_geojson = get_json_file(zones) wfs_geojson = get_json_file(wfs_response.get('path')) zones = _get_intersected_polygons(zones_geojson, wfs_geojson, wfs_response.get('filter_property_key')) # Extract shapely objects to compute stats. stats_input = [s.get('geom') for s in zones] prefix = None try: stats = zonal_stats( stats_input, geotiff, stats=stats, prefix=prefix, geojson_out=geojson_out ) except rasterio.errors.RasterioError as e: logger.error(e) raise InternalServerError('An error occured calculating statistics.') if wfs_response: zones_features = [z.get('feature') for z in zones] # Add statistics as feature property fields. features = [{**z, 'properties': {**z.get('properties'), **s}} for z, s in zip(zones_features, stats)] # Return stats as geojson array of features. return features if not geojson_out: feature_properties = _extract_features_properties(zones) stats = [{**properties, **stat} for stat, properties in zip(stats, feature_properties)] return stats ```
{ "source": "jorgemauricio/automatizacion_python", "score": 3 }
#### File: jorgemauricio/automatizacion_python/generar_graficas_por_estacion.py ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt import requests import json def main(): # leer csv df = pd.read_csv("data/estado1_5.csv") # arrar de variables array_variables = ["prec", "tmax", "tmin", "tmed", "velvmax", "velv", "dirv", "radg", "humr"] array_titulos = ['Precipitación mm', "Temperatura máxima ºC", "Temperatura media ºC", "Temperatura mínima ºC", "Velocidad máxima del viento km/h", "Velocidad promedio del viento km/h", "Dirección del viento ºAz", "Radiación global W/m2", "Humedad relativa"] # Ciclo de información por estación for estacion in df['nombre'].unique(): # data frame temporal para guardar la información df_temporal = df.where(df['nombre'] == estacion).dropna() # ciclo de información por variable y elemento for elemento in range(len(array_variables)): # generar una figura en blanco fig = plt.figure(figsize=(15,5)) # crear gráfica axes = fig.add_axes([0.1,0.1,0.8,0.8]) # valor de x x = np.arange(len(df_temporal['nombre'])) # valor de y y = df_temporal[array_variables[elemento]] # mapeo de datos axes.plot(x,y) # agregar título a la gráfica axes.set_title(estacion) # agregar nomenclatura para eje Y axes.set_ylabel(array_titulos[elemento]) # agregar nomenclatura para eje X axes.set_xlabel("Día") # guardar archivo nombre_grafica = "graphs/{}_{}.png".format(estacion, array_variables[elemento]) fig.savefig(nombre_grafica, dpi=300) # limpiar el espacio de trabajo fig.clf() if __name__ == '__main__': main() ```
{ "source": "jorgemauricio/becarios", "score": 4 }
#### File: becarios/ejercicios/10_examen.py ```python import random import time def main(): horizontal_1 = False horizontal_2 = False horizontal_3 = False vertical_1 = False vertical_2 = False vertical_3 = False diagonal_1 = False diagonal_2 = False espacio_1 = 0 espacio_2 = 0 espacio_3 = 0 espacio_4 = 0 espacio_5 = 0 espacio_6 = 0 espacio_7 = 0 espacio_8 = 0 espacio_9 = 0 array_valores = [1,2,3,4,5,6,7,8,9] dic = {"a1":[0, False], "a2":[0, False], "a3":[0, False], "a4":[0, False], "a5":[0, False], "a6":[0, False], "a7":[0, False], "a8":[0, False], "a9":[0, False]} status = True contador = 0 while status: arr = random.sample(array_valores, len(array_valores)) arr_validacion = [] for k,v in dic.items(): if v[1] == False: arr_validacion.append(k) for i in arr_validacion: if dic[i][1] == False: if dic["a1"][0] + dic["a2"][0] + dic["a3"][0] == 15: horizontal_1 = True dic["a1"][1] = True dic["a2"][1] = True dic["a3"][1] = True if dic["a4"][0] + dic["a5"][0] + dic["a6"][0] == 15: horizontal_1 = True dic["a4"][1] = True dic["a5"][1] = True dic["a6"][1] = True if dic["a7"][0] + dic["a8"][0] + dic["a9"][0] == 15: horizontal_1 = True dic["a7"][1] = True dic["a8"][1] = True dic["a9"][1] = True if dic["a1"][0] + dic["a4"][0] + dic["a7"][0] == 15: vertical_1 = True dic["a1"][1] = True dic["a4"][1] = True dic["a7"][1] = True if dic["a2"][0] + dic["a5"][0] + dic["a8"][0] == 15: vertical_2 = True dic["a2"][1] = True dic["a5"][1] = True dic["a8"][1] = True if dic["a3"][0] + dic["a6"][0] + dic["a9"][0] == 15: vertical_3 = True dic["a3"][1] = True dic["a6"][1] = True dic["a9"][1] = True if dic["a1"][0] + dic["a5"][0] + dic["a9"][0] == 15: diagonal_1 = True dic["a1"][1] = True dic["a5"][1] = True dic["a9"][1] = True if dic["a7"][0] + dic["a5"][0] + dic["a3"][0] == 15: diagonal_2 = True dic["a7"][1] = True dic["a5"][1] = True dic["a3"][1] = True contador += 1 if horizontal_1 and horizontal_2 and horizontal_3 and vertical_1 and vertical_2 and vertical_3 and diagonal_1 and diagonal_2: status = False imprimir_cuadro(dic["a1"][0],dic["a2"][0],dic["a3"][0],dic["a4"][0],dic["a5"][0],dic["a6"][0],dic["a7"][0],dic["a8"][0],dic["a9"][0]) print("iteraciones: ", contador) print("Iteraciones: {}".format(count)) def validacion(a1,a2,a3,a4,a5,a6,a7,a8,a9): pass def imprimir_cuadro(a1,a2,a3,a4,a5,a6,a7,a8,a9): print("\n") print("{}|{}|{}".format(a1,a2,a3)) print("{}|{}|{}".format(a4,a5,a6)) print("{}|{}|{}".format(a7,a8,a9)) print("\n") #time.sleep(0.5) if __name__ == '__main__': main() ```
{ "source": "jorgemauricio/becarios_utna", "score": 3 }
#### File: becarios_utna/ejercicios/09_examen.py ```python def main(): palabra = "parangaricutirimicuaro" def ordenar_letras(word): """ Función que ordena las letras de una palabra param: word: palabra a la cual se le van a ordenar sus letras """ if __name__ == '__main__': main() ``` #### File: becarios_utna/ejercicios/10_examen.py ```python import random import time def main(): def imprimir_cuadro(a1,a2,a3,a4,a5,a6,a7,a8,a9): print("\n") print("{}|{}|{}".format(a1,a2,a3)) print("{}|{}|{}".format(a4,a5,a6)) print("{}|{}|{}".format(a7,a8,a9)) print("\n") #time.sleep(0.5) if __name__ == '__main__': main() ```
{ "source": "jorgemauricio/esparrago", "score": 2 }
#### File: jorgemauricio/esparrago/generateWindStations.py ```python from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt import numpy as np from numpy import meshgrid import pandas as pd import math plt.figure(figsize=(24,12)) m = Basemap(projection='mill',llcrnrlat=25,urcrnrlat=33,llcrnrlon=-115,urcrnrlon=-107,resolution='c') #%% read txt file data = pd.read_csv('data/db_sonora.csv') #%% calculate U and V vectors def calculateU(windSpeed, windDirection): ''' Generate U vector ''' return windSpeed * math.cos(windDirection) def calculateV(windSpeed, windDirection): ''' Generate V vector ''' return windSpeed * math.sin(windDirection) #%% cut info data = data.loc[data['longitud'] > -115.0] data = data.loc[data['longitud'] < -107.0] data = data.loc[data['latitud'] > 25.0] data = data.loc[data['latitud'] < 33.0] #%% calculate U data['u'] = data.apply(lambda x: calculateU(x['velv'], x['dirv']), axis=1) #%% calculate V data['v'] = data.apply(lambda x: calculateV(x['velv'], x['dirv']), axis=1) #%% get fecha columns as array dates = np.array(data['fecha']) #%% get all the uniques values from fecha dates = np.unique(dates) #%% loop for i in dates: plt.clf() dataTemp = data.loc[data['fecha'] == i] #%% read x, y, value lons = np.array(dataTemp['longitud']) lats = np.array(dataTemp['latitud']) u = np.array(dataTemp['u']) v = np.array(dataTemp['v']) speed = np.sqrt(u*u + v*v) x, y = m(lons, lats) m.fillcontinents(color='#cc9955', lake_color='aqua', zorder = 0) m.drawcoastlines(color = '0.15') m.quiver(x, y, u, v, speed, cmap=plt.cm.autumn) #%% tempTitle for png file tempTitleForPNG = 'maps/map_stations_{}.png'.format(i) plt.savefig(tempTitleForPNG,dpi=300) print('***** {}'.format(tempTitleForPNG)) ```
{ "source": "jorgemauricio/get_modis_files_from_nasa", "score": 3 }
#### File: jorgemauricio/get_modis_files_from_nasa/pre_procesamiento_evi.py ```python import time import os import re import pandas as pd import numpy as np import datetime from pyhdf.SD import SD, SDC # funcion main def main(): # constantes DATAFIELD_NAME = "CMG 0.05 Deg 16 days EVI" LONG_MIN = -118.2360 LONG_MAX = -86.1010 LAT_MIN = 12.3782 LAT_MAX = 33.5791 # lista de archivos a procesar lista_de_archivos = [x for x in os.listdir("data") if x.endswith(".hdf")] # ciclo de procesamiento for archivo in lista_de_archivos: # init timer start_time = time.time() # generar nombres tipo, fecha, coleccion, produccion, extension = archivo.split(".") anio = int(fecha[1:5]) dia = int(fecha[5:]) new_fecha = datetime.date(anio,1,1) + datetime.timedelta(dia) new_fecha = new_fecha.strftime("%Y-%m-%d") anio, mes, dia = new_fecha.split("-") # procesamiento hdf hdf = SD("data/{}".format(archivo), SDC.READ) # leer el dataset data2D = hdf.select(DATAFIELD_NAME) data = data2D[:,:].astype(np.double) # read attributes attrs = data2D.attributes(full=1) lna = attrs['long_name'] long_name = lna[0] vra = attrs['valid_range'] valid_range = vra[0] fva = attrs['_FillValue'] _FillValue = fva[0] ua = attrs['units'] units = ua[0] # Handle fill value invalid = data == _FillValue invalid = np.logical_or(invalid, data < valid_range[0]) invalid = np.logical_or(invalid, data > valid_range[1]) data[invalid] = np.nan # apply scale factor and offset data = (data - 0.0) / 10000 # normally we would use the grid metadata to reconstruct the grid, but # the grid metadata is incorrect x = np.linspace(-180, 180, 7200) y = np.linspace(90, -90, 3600) lon, lat = np.meshgrid(x,y) # init xi, yi, zi xi = [] yi = [] zi = [] # ciclo for i in range(len(lon)): for j in range(len(lat)): xi.append(x[i]) yi.append(y[j]) zi.append(data[j,i]) # generar arreglo de datos arr = np.stack((xi,yi,zi), axis=1) # columnas para el df cols = ['lon', 'lat', 'value'] # crear data frame con la informacion del hdf df = pd.DataFrame(arr, columns=cols) # delimitar el area de estudio df = df.where((df['lon'] > LONG_MIN) & (df['lon'] < LONG_MAX)).dropna() df = df.where((df['lat'] > LAT_MIN) & (df['lat'] < LAT_MAX)).dropna() # obtener valores de x, y lons = np.array(df['lon']) lats = np.array(df['lat']) # agregar anio, mes y dia al data frame df['Anio'] = anio df['Mes'] = mes df['Dia'] = dia # titulo archivo titulo_archivo = "{}-{}-{}_EVI.csv".format(anio, mes, dia) # exportar df a csv df.to_csv("processing/{}".format(titulo_archivo), index=False) # print file print(titulo_archivo) # end time print("Tiempo de procesamiento: ", time.time() - start_time) # frames frames = [] # lista de archivos procesados files = [x for x in os.listdir("processing") if x.endswith("EVI.csv")] # loop for file in files: temp = pd.read_csv("processing/{}".format(file)) frames.append(temp) # generar un solo archivo resultado = pd.concat(frames) # guardar a csv resultado.to_csv("results/compilado_EVI.csv") if __name__ == '__main__': main() ```
{ "source": "jorgemauricio/GradosDiasDesarrollo", "score": 3 }
#### File: jorgemauricio/GradosDiasDesarrollo/algoritmo.py ```python import math import pandas as pd import numpy as np ### Functions # Metodo residual def metodoResidual(tmax, tmin, tbase): gdd = 0.0 if (tmax > umbralSuperior): tmax = umbralSuperior else: tmax = tmax if (tmin < umbralInferior): tmin = umbralInferior else: tmin = tmin gdd = ((tmax + tmin) / 2.0) - tbase if (gdd < 0): gdd = 0.0 return gdd # Metodo triangulo simple def metodoTrianguloSimple(tmax, tmin): gdd = 0.0 if (tmin > umbralSuperior and tmax > umbralSuperior): gdd = umbralSuperior - umbralInferior elif (tmax < umbralInferior and tmin < umbralInferior): gdd = 0.0 elif (tmin >= umbralInferior and tmax <= umbralSuperior): gdd = ((6 * (tmax + tmin - 2.0 * umbralInferior)) / 12) elif (tmin < umbralInferior and tmax > umbralSuperior): dti = tmax - umbralInferior dts = tmax - umbralSuperior dt = tmax - tmin gdd = ((6 * pow(dti, 2.0) / dt) - ((6 * pow(dts, 2.0)) / dt)) / 12 elif (tmin < umbralInferior and tmax > umbralInferior and tmax < umbralSuperior): dti = tmax - umbralInferior dt = tmax - tmin gdd = ((6 * (pow(dti, 2.0)) / dt)) / 12 elif (tmin > umbralInferior and tmin < umbralSuperior and tmax > umbralSuperior): dt = tmax - tmin dts = tmax - umbralSuperior gddTS = ((6 * (tmax + tmin - 2.0 * umbralInferior)) / 12) - (((6 * pow(dts, 2.0)) / dt) / 12) return gdd # Metodo seno simple # Subrutina para metodo del seno simple def sinec(suma, diff, temp1): twopi = 6.2834 pihlf = 1.5708 d2 = temp1 - suma d3 = diff * diff d4 = d2 * d2 d5 = math.sqrt(d3 - d4) theta = math.atan2(d2, d5) if (d2 < 0 and theta > 0): theta = theta - 3.1416 heat = (diff * math.cos(theta) - d2 * (pihlf - theta)) / twopi return heat def metodoSenoSimple(tmax, tmin): gdd = 0.0 if (tmin > umbralSuperior): gdd = umbralSuperior - umbralInferior else: if (tmax <= umbralInferior): gdd = 0.0 else: temp1 = 2 * umbralInferior diff = tmax - tmin suma = tmax + tmin if (tmin >= umbralInferior): gdd = (suma - temp1) / 2 else: gdd = sinec(suma, diff, temp1) if (tmax > umbralSuperior): temp1 = 2 * umbralSuperior gdd2 = gdd gdd = sinec(suma, diff, temp1) gdd = gdd2 - gdd return gdd # Leer archivo .csv data = pd.read_csv('data/datos.csv') # Solicitar al usuario los umbrales del cultivo print ("*************************************************************") print ("***** Programa para calcular grados-dias en Python *****") print ("***** Metodos: *****") print ("***** + Residual *****") print ("***** + Triangulo Simple *****") print ("***** + Metodo Seno Simple *****") print ("*************************************************************") # limites umbralInferiorText = input("Introduce el umbral inferior: ") umbralSuperiorText = input("Introduce el umbral superior: ") tbaseText = input("Introduce la temperatura base: ") umbralSuperior = float(umbralSuperiorText) umbralInferior = float(umbralInferiorText) tbase = int(tbaseText) # variables gddTS = 0.0 gddTD = 0.0 gddSS = 0.0 # validacion de umbrales if (umbralSuperior >= umbralInferior): data['GDDR'] = data.apply(lambda row: metodoResidual(row['tmax'], row['tmin'], tbase), axis=1) data['GDDTS'] = data.apply(lambda row: metodoTrianguloSimple(row['tmax'], row['tmin']), axis=1) data['GDDSS'] = data.apply(lambda row: metodoSenoSimple(row['tmax'], row['tmin']), axis=1) data.to_csv('data/datos_procesados.csv', sep=',') else: print ("Error \nLimite inferior mayor al superior") ```
{ "source": "jorgemauricio/InvestigacionAreaFoliar", "score": 3 }
#### File: jorgemauricio/InvestigacionAreaFoliar/algoritmoGeneracionDeIndicadores.py ```python import numpy as np import pandas as pd import matplotlib.pyplot as plt import os from PIL import Image #%% estilo de la grafica plt.style.use('ggplot') # - - - - - MAIN - - - - - def main(): # leer archivo de analisis foliar dataFoliar = pd.read_csv('data/Foliares_Hass.csv') # estructura de archivo csv de resultados textToData = "Id,N,P,K,Ca,Mg,S,Fe,Cu,Mn,Zn,B,Mo,Na,Cl,pVerde,pCafeRojo,pCafe,pAmarillo,pAmarilloDorado,pCafeAmarillo\n" # obtener los archivos de imagen a clasificar # generar una lista con todas las imagenes fileList = [x for x in os.listdir('images/train') if x.endswith('.jpg')] # ciclo for para evaluar cada imagen for file in fileList: # declarar dict dictColores = {} # determinar los principales colores en las imágenes # print nombre de la imagen print("***** Procesando: {}".format(file)) # nombre temporal del archivo a evaluar nombreTemporalArchivo = "images/train/{}".format(file) # cargar la imagen im = Image.open(nombreTemporalArchivo) pix = im.load() # tamaño de la imagen x, y = im.size # ciclo for para contabilizar los colores for i in range(x): for j in range(y): vR, vG, vB = pix[i, j] valueL, valueA, valueB = convertirRGBtoLAB(vR, vG, vB) statusColor = validarArea(valueL, valueA, valueB) if statusColor: nombreTemporalClave = "{}/{}/{}".format(valueL, valueA, valueB) if nombreTemporalClave in dictColores: dictColores[nombreTemporalClave] += 1 else: dictColores[nombreTemporalClave] = 1 # dict to DataFrame data = pd.DataFrame() data['color'] = dictColores.keys() data['frecuencia'] = dictColores.values() # ordenar información data = data.sort_values(by='frecuencia', ascending = False) # nombre archivo de colores para cada imagen nombreTemporalArchivoColores = 'resultados/totalDeColores_{}.csv'.format(file.split('.')[0]) # save to csv data.to_csv(nombreTemporalArchivoColores, index=False) # crear columna L data['L'] = data.apply(lambda x: generarValorL(x['color']), axis=1) # crear columna L data['a'] = data.apply(lambda x: generarValorA(x['color']), axis=1) # crear columna L data['b'] = data.apply(lambda x: generarValorB(x['color']), axis=1) # eliminar colores grises # data = data.loc[(data['a'] <= -5) | (data['a'] >= 5) | (data['b'] <= -5) | (data['b'] >= 5)] # clasificacion de hoja de acuerdo al porcentaje de color verde data['clasificacionColor'] = data.apply(lambda x: clasificacionDecolor(x['L'],x['a'],x['b']), axis=1) # eliminar colores de fondo data = data.loc[data['clasificacionColor'] != "f"] # sumatoria de la frecuencia sumatoriaFrecuencia = data['frecuencia'].sum() # generar columna de porcentaje data['porcentaje'] = data['frecuencia'] / sumatoriaFrecuencia * 100 # sumatoria de porcentajes data['sumatoriaPorcentaje'] = data['porcentaje'].cumsum() # tomar solo en cuenta el 80-20 de los datos # data = data.loc[data['sumatoriaPorcentaje'] <= 80] # nombre archivo de colores clasificados para cada imagen nombreTemporalArchivoColoresClasificados = 'resultados/totalDecolores_clasificados_{}.csv'.format(file.split('.')[0]) # guardar como csv data.to_csv(nombreTemporalArchivoColoresClasificados, index=False) # numero de registros por clasificacion pVerde = len(np.array(data.loc[data['clasificacionColor'] == 'v'])) pCafeRojo = len(np.array(data.loc[data['clasificacionColor'] == 'cr'])) pCafe = len(np.array(data.loc[data['clasificacionColor'] == 'c'])) pAmarillo = len(np.array(data.loc[data['clasificacionColor'] == 'a'])) pAmarilloDorado = len(np.array(data.loc[data['clasificacionColor'] == 'ag'])) pCafeAmarillo = len(np.array(data.loc[data['clasificacionColor'] == 'ca'])) print(pVerde, pCafeRojo, pCafe, pAmarillo, pAmarilloDorado, pCafeAmarillo) # numero total de registros numeroTotalDeRegistros = pVerde + pCafeRojo + pCafe + pAmarillo + pAmarilloDorado + pCafeAmarillo # numero de registros por clasificacion pVerde = pVerde / numeroTotalDeRegistros * 100 pCafeRojo = pCafeRojo / numeroTotalDeRegistros * 100 pCafe = pCafe / numeroTotalDeRegistros * 100 pAmarillo = pAmarillo / numeroTotalDeRegistros * 100 pAmarilloDorado = pAmarilloDorado / numeroTotalDeRegistros * 100 pCafeAmarillo = pCafeAmarillo / numeroTotalDeRegistros * 100 # agregar record al texto dataTemporalFoliar = dataFoliar.loc[dataFoliar['Id'] == int(file.split('.')[0])] N = np.array(dataTemporalFoliar['N']) P = np.array(dataTemporalFoliar['P']) K = np.array(dataTemporalFoliar['K']) Ca = np.array(dataTemporalFoliar['Ca']) Mg = np.array(dataTemporalFoliar['Mg']) S = np.array(dataTemporalFoliar['S']) Fe = np.array(dataTemporalFoliar['Fe']) Cu = np.array(dataTemporalFoliar['Cu']) Mn = np.array(dataTemporalFoliar['Mn']) Zn = np.array(dataTemporalFoliar['Zn']) B = np.array(dataTemporalFoliar['B']) Mo = np.array(dataTemporalFoliar['Mo']) Na = np.array(dataTemporalFoliar['Na']) Cl = np.array(dataTemporalFoliar['Cl']) print('***** N: {}'.format(N[0])) print('***** pVerde: {}'.format(pVerde)) textToData += "{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{:0.2f},{:0.2f},{:0.2f},{:0.2f},{:0.2f},{:0.2f}\n".format(file.split('.')[0],N[0],P[0],K[0],Ca[0],Mg[0],S[0],Fe[0],Cu[0],Mn[0],Zn[0],B[0],Mo[0],Na[0],Cl[0],pVerde,pCafeRojo,pCafe,pAmarillo,pAmarilloDorado,pCafeAmarillo) # guardar archivo con los resultados nombreTemporalDeArchivoFinal = 'data/Foliar_join_porcentajes.csv' archivoCompiladoFinal = open(nombreTemporalDeArchivoFinal, "w") archivoCompiladoFinal.write(textToData) archivoCompiladoFinal.close() # funcion para determinar el porcentaje de color verde def clasificacionDecolor(L,a,b): """ Determina la clasificacion del color mediante los espectros de color Lab param: L: valor L param: a: valor a param: b: valor b regresa v: verde, r: rojo, c: cafe, a: amarillo, n: naranja, az: azul, f: fondo """ if L >= 2 and L <= 73 and a >= -64 and a <= -2 and b >= 3 and b <= 72: return "v" elif L >= 74 and L <= 99 and a >= -66 and a <= -4 and b >= 5 and b <= 95: return "a" elif L >= 41 and L <= 94 and a >= -18 and a <= -10 and b >= 48 and b <= 80: return "ag" elif L >= 3 and L <= 67 and a >= 2 and a <= 42 and b >= 4 and b <= 75: return "c" elif L >= 10 and L <= 60 and a >= -14 and a <=-5 and b >= 15 and b <= 64: return "ca" elif L >= 2 and L <= 19 and a >= 11 and a <= 40 and b >= 4 and b <= 29: return "cr" else: return "f" # función para generar la columna L def generarValorL(valor): """ Genera el valor de L del string de color param: valor: string de color """ L, a, b = valor.split("/") return float(L) # función para generar la columna L def generarValorA(valor): """ Genera el valor de L del string de color param: valor: string de color """ L, a, b = valor.split("/") return float(a) # función para generar la columna L def generarValorB(valor): """ Genera el valor de L del string de color param: valor: string de color """ L, a, b = valor.split("/") return float(b) # Function RGB to Lab def convertirRGBtoLAB(vr, vg, vb): """ Convertir colores del espectro RGB a Lab param: vr: valor espectro r param: vg: valor espectro g param: vb: valor espectro b """ r = (vr + 0.0) / 255 g = (vg + 0.0) / 255 b = (vb + 0.0) / 255 if (r > 0.04045): r = pow((r + 0.055) / 1.055, 2.4) else: r = r / 12.92 if (g > 0.04045): g = pow((g + 0.055) / 1.055, 2.4) else: g = g / 12.92 if (b > 0.04045): b = pow((b + 0.055) / 1.055, 2.4) else: b = b / 12.92 r = r * 100.0 g = g * 100.0 b = b * 100.0 var_x = r * 0.4124 + g * 0.3576 + b * 0.1805 var_y = r * 0.2126 + g * 0.7152 + b * 0.0722 var_z = r * 0.0193 + g * 0.1192 + b * 0.9505 var_x = var_x / 95.047 var_y = var_y / 100.00 var_z = var_z / 108.883 if (var_x > 0.008856): var_x = pow(var_x, (1.0 / 3.0)) else: var_x = (7.787 * var_x) + (16.0 / 116.0) if (var_y > 0.008856): var_y = pow(var_y, (1.0 / 3.0)) else: var_y = (7.787 * var_y) + (16.0 / 116.0) if (var_z > 0.008856): var_z = pow(var_z, (1.0 / 3.0)) else: var_z = (7.787 * var_z) + (16.0 / 116.0) var_L = (116.0 * var_y) - 16.0 var_a = 500.0 * (var_x - var_y) var_b = 200.0 * (var_y - var_z) if (var_L >= 0 and var_L <= 100 and var_a == 0 and var_b == 0): return 0.0, 0.0, 0.0 else: return var_L, var_a, var_b def validarArea(vL, vA, vB): """ Eliminar puntos grises y fondo param: vL: valor espectro L param: vA: valor espectro a param: vB: valor espectro b """ # validate grayscale and mark points if vL >= 0 and vL <= 100 and vA > -5 and vA < 5 and vB > -5 and vB < 5: return False else: return True if __name__ == "__main__": main() ```
{ "source": "jorgemauricio/mexico", "score": 3 }
#### File: jorgemauricio/mexico/generar_archivos_sonora.py ```python import pandas as pd import numpy as np import os import time from time import gmtime, strftime def main(): # dia actual #today = strftime("%Y-%m-%d") today = "2018-10-12" # variables arr_variables = ['temp','rh', 'tmax','rain','tsoil010','u','v','dewpoint', 'tmin'] for variable in arr_variables: titulo_archivo = "/home/jorge/Documents/Research/mexico/data/{}/{}_{}.csv".format(today,today, variable) # crear dataframe df = pd.read_csv(titulo_archivo) # filtrar información df = df.where((df["lons"] > -115.65) & (df["lons"] < -107.94) & (df["lats"] > 25.4) & (df["lats"] < 33.06)).dropna() # exportar dataframe a csv df.to_csv("/home/jorge/Documents/Research/mexico/data/{}/sonora_{}_{}.csv".format(today, today,variable), index=False) if __name__ == '__main__': main() ```
{ "source": "jorgemauricio/procesamiento_raster", "score": 3 }
#### File: procesamiento_raster/algoritmos/preprocesamiento_informacion.py ```python import pandas as pd import numpy as np import os # main def main(): # path path_guardar_archivo = "/home/jorge/Documents/Research/procesamiento_raster/data" path_leer_archivo = "/media/jorge/backup1/Magali" # variable de archivos lista_de_archivos = [x for x in os.listdir(path_leer_archivo) if x.endswith('.xyz')] for i in lista_de_archivos: nombre_archivo, extension = i.split(".") ruta_del_archivo = "{}/{}".format(path_leer_archivo, i) # leer archivo data = pd.read_table(ruta_del_archivo, sep="\s+", header=None) # variable de columnas cols = ["x","y", nombre_archivo] # asignar columnas data.columns = cols # delimitar valores de x data = data.loc[data["x"] >= 672496] # delimitar valores de y data = data.loc[data["y"] >= 2834425] # delimitar valores de índice data = data.loc[data[nombre_archivo] >= 0] nombre_archivo_exportar = "{}/{}_pp.csv".format(path_guardar_archivo, nombre_archivo) data.to_csv(nombre_archivo_exportar, index=False) print(nombre_archivo_exportar) # if if __name__ == '__main__': main() ```
{ "source": "jorgemauricio/proyectoCaborca", "score": 3 }
#### File: proyectoCaborca/algoritmos/algoritmo.py ```python import os import urllib.request import time from time import gmtime, strftime import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap from numpy import meshgrid from scipy.interpolate import griddata as gd import os from netCDF4 import Dataset import numpy as np import pandas as pd # programa principal def main(): # descargar información print("Iniciar descarga de archivos") iniciarDescarga() # procesamiento información print("Iniciar procesamiento de archivos") iniciarProcesamiento() def iniciarDescarga(): # ***** constantes URL_DESCARGA = "http://satepsanone.nesdis.noaa.gov/pub/FIRE/GBBEPx" # elementos arrayElementos = ['bc','co', 'co2','oc','pm25','so2'] # Mac /Users/jorgemauricio/Documents/Research/proyectoCaborca # Linux /home/jorge/Documents/Research/proyectoCaborca URL_CARPETA = "/Users/jorgemauricio/Documents/Research/proyectoCaborca" # fecha actual fechaActual = strftime("%Y-%m-%d") # fecha -1 anio, mes, dia = generarDiaAnterior(fechaActual) # nombre de la ruta para la descarga rutaDeCarpetaParaDescarga = '{}/data/{}-{:02d}-{:02d}'.format(URL_CARPETA,anio,mes,dia) # nombre de la ruta para guardar temporales rutaDeCarpetaParaTemporales = '{}/temp/{}-{:02d}-{:02d}'.format(URL_CARPETA,anio,mes,dia) # nombre de la ruta para guardar mapas rutaDeCarpetaParaMapas = '{}/maps/{}-{:02d}-{:02d}'.format(URL_CARPETA,anio,mes,dia) # nombre de la ruta para shapes rutaParaArchivosShapes = '{}/shapes/Estados.shp'.format(URL_CARPETA) # crear carpeta para descarga if not os.path.exists(rutaDeCarpetaParaDescarga): os.mkdir(rutaDeCarpetaParaDescarga) else: print("***** Carpeta descarga ya existe") # crear carpeta para guardar mapas # crear carpeta para descarga if not os.path.exists(rutaDeCarpetaParaMapas): os.mkdir(rutaDeCarpetaParaMapas) else: print("***** Carpeta mapas ya existe") # crear carpeta para guardar archivos temporales if not os.path.exists(rutaDeCarpetaParaTemporales): os.mkdir(rutaDeCarpetaParaTemporales) else: print("***** Carpeta temporales ya existe") # cambiar a carpeta de descarga os.chdir(rutaDeCarpetaParaDescarga) # ciclo de descarga for i in arrayElementos: # crear nombre temporal de archivo a descargar urlDescarga = "{}/GBBEPx.emis_{}.001.{}{:02d}{:02d}.nc".format(URL_DESCARGA,i,anio,mes,dia) nombreDelArchivo = "GBBEPx.emis_{}.001.{}{:02d}{:02d}.nc".format(i,anio,mes,dia) print("***** Descarga de archivo: {}".format(nombreDelArchivo)) descargaArchivo(urlDescarga, nombreDelArchivo) def descargaArchivo(ud, na): """ Función que permite la descarga del archivo indicado param: ud: url de descarga param: na: nombre del archivo """ urllib.request.urlretrieve(ud, na) def generarDiaAnterior(f): """ Función que permite conocer el día anterior para descargar el archivo param: f: fecha actual """ anio, mes, dia = f.split('-') anio = int(anio) mes = int(mes) dia = int(dia) dia -= 1 if dia == 0: mes -= 1 if mes == 0: anio -= 1 mes = 12 diasEnElMes = numeroDeDiasEnElMes(mes) return (anio, mes, dia) def numeroDeDiasEnElMes(m): """ Función que permite saber el número de días en un mes param: m: mes actual """ if mes == 2 and anio % 4 == 0: return 29 elif mes == 2 and anio % 4 != 0: return 28 elif mes == 1 or mes == 3 or mes == 5 or mes == 7 or mes == 8 or mes == 10 or mes == 12: return 31 elif mes == 4 or mes == 6 or mes == 9 or mes == 11: return 30 def iniciarProcesamiento(): # Mac /Users/jorgemauricio/Documents/Research/proyectoCaborca # Linux /home/jorge/Documents/Research/proyectoCaborca URL_CARPETA = "/Users/jorgemauricio/Documents/Research/proyectoCaborca" # ruta para acceder a los archivos shapes# nombre de la ruta para shapes rutaParaArchivosShapes = '{}/shapes/Estados'.format(URL_CARPETA) # coordenadas estaciones dataEstaciones = pd.read_csv("/Users/jorgemauricio/Documents/Research/proyectoCaborca/data/coordenadas_estaciones.csv") # fecha actual fechaActual = strftime("%Y-%m-%d") # fecha -1 anio, mes, dia = generarDiaAnterior(fechaActual) # nombre de la ruta para la descarga rutaDeCarpetaParaElProcesamiento = '{}/data/{}-{:02d}-{:02d}'.format(URL_CARPETA,anio,mes,dia) # constantes LONG_MIN = -115.65 LONG_MAX = -107.94 LAT_MIN = 25.41 LAT_MAX = 33.06 # archivos a procesar listaDeArchivos = [x for x in os.listdir(rutaDeCarpetaParaElProcesamiento) if x.endswith('.nc')] # ciclo de procesamiento for archivo in listaDeArchivos: # nombre del archivo # nombreArchivo = "GBBEPx.emis_so2.001.20180118.nc" arrayNombreArchivo = archivo.split(".") arrayComponente = arrayNombreArchivo[1].split("_") nombreParaMapa = arrayComponente[1] rutaArchivo = "{}/{}".format(rutaDeCarpetaParaElProcesamiento, archivo) # leer el archivo netcdf dataset = Dataset(rutaArchivo) # generar las arreglos de las variables biomass = dataset.variables['biomass'][:] Latitude = dataset.variables['Latitude'][:] Longitude = dataset.variables['Longitude'][:] # variable para generar CSV dataText = "Long,Lat,Biomass\n" # procesamiento de información for i in range(Longitude.shape[0]): for j in range(Latitude.shape[0]): tempText = "{},{},{}\n".format(Longitude[i], Latitude[j], biomass[0,j,i]) dataText += tempText # generar archivo temporal csv fileName = "{}/temp/{}-{:02d}-{:02d}/{}.csv".format(URL_CARPETA, anio, mes, dia, nombreParaMapa) textFile = open(fileName, "w") textFile.write(dataText) textFile.close() # leer el archivo temporal csv data = pd.read_csv(fileName) # limites longitud > -115.65 y < -107.94 data = data.loc[data['Long'] > LONG_MIN] data = data.loc[data['Long'] < LONG_MAX] # limites latitud > 25.41 y < 33.06 data = data.loc[data['Lat'] > LAT_MIN] data = data.loc[data['Lat'] < LAT_MAX] # ug/m3 a ppm data['Biomass'] = data['Biomass'] * 10000000000 # obtener valores de x, y lons = np.array(data['Long']) lats = np.array(data['Lat']) #%% iniciar la gráfica plt.clf() # agregar locación de estaciones xC = np.array(dataEstaciones['Long']) yC = np.array(dataEstaciones['Lat']) m = Basemap(projection='mill',llcrnrlat=LAT_MIN,urcrnrlat=LAT_MAX,llcrnrlon=LONG_MIN,urcrnrlon=LONG_MAX,resolution='h') # generar lats, lons x, y = m(lons, lats) # numero de columnas y filas numCols = len(x) numRows = len(y) # generar xi, yi xi = np.linspace(x.min(), x.max(), numCols) yi = np.linspace(y.min(), y.max(), numRows) # generar el meshgrid xi, yi = np.meshgrid(xi, yi) # generar zi z = np.array(data['Biomass']) zi = gd((x,y), z, (xi,yi), method='cubic') # generar clevs stepVariable = 1 step = (z.max() - z.min()) / 10 # verificar el valor del intervalo if step <= 1: stepVariable = 1 clevs = np.linspace(z.min(), z.max() + stepVariable , 10) #clevs = [1,2,3,4,5,6,7,8,9,10] # contour plot cs = m.contourf(xi,yi,zi, clevs, zorder=5, alpha=0.5, cmap='PuBu') # agregar archivo shape de estados m.readshapefile(rutaParaArchivosShapes, 'Estados') # agregar puntos de estaciones m.scatter(xC, yC, latlon=True,s=1, marker='o', color='r', zorder=25) # colorbar cbar = m.colorbar(cs, location='right', pad="5%") cbar.set_label('pm') tituloTemporalParaElMapa = "{} {}-{:02d}-{:02d}".format(nombreParaMapa,anio,mes,dia) plt.title(tituloTemporalParaElMapa) # Mac /Users/jorgemauricio/Documents/Research/proyectoGranizo/Maps/{}_{}.png # Linux /home/jorge/Documents/Research/proyectoGranizo/Maps/{}_{}.png nombreTemporalParaElMapa = "/Users/jorgemauricio/Documents/Research/proyectoCaborca/maps/{}-{:02d}-{:02d}/{}.png".format(anio, mes, dia, nombreParaMapa) plt.annotate('@2018 INIFAP', xy=(-109,29), xycoords='figure fraction', xytext=(0.45,0.45), color='g', zorder=50) plt.savefig(nombreTemporalParaElMapa, dpi=300) print('****** Genereate: {}'.format(nombreTemporalParaElMapa)) if __name__ == '__main__': main() ``` #### File: proyectoCaborca/algoritmos/descargaInfo.py ```python import os import urllib.request import time from time import gmtime, strftime def main(): print("Init") def iniciarDescarga(): # Constantes URL_DESCARGA = "http://satepsanone.nesdis.noaa.gov/pub/FIRE/GBBEPx" arrayElementos = ['bc','co', 'co2','oc','pm25','so2'] # Mac /Users/jorgemauricio/Documents/Research/proyectoCaborca # Linux /home/jorge/Documents/Research/proyectoCaborca URL_CARPETA_DATA = "/Users/jorgemauricio/Documents/Research/proyectoCaborca/data" # fecha actual fechaPronostico = strftime("%Y-%m-%d") # fecha - 1 anio, mes, dia = generarDiaAnterior(fechaPronostico) # nombre de la ruta para la descarga rutaDeCarpetaParaDescarga = '{}/{}-{:02d}-{:02d}'.format(URL_CARPETA_DATA,anio,mes,dia) # crear carpeta apra descarga os.mkdir(rutaDeCarpetaParaDescarga) # cambiar a carpeta de descarga os.chdir(rutaDeCarpetaParaDescarga) # ciclo de descarga for i in arrayElementos: # crear nombre temporal de archivo a descargar urlDescarga = "{}/GBBEPx.emis_{}.001.{}{:02d}{:02d}.nc".format(URL_DESCARGA,i,anio,mes,dia) nombreDelArchivo = "GBBEPx.emis_{}.001.{}{:02d}{:02d}.nc".format(i,anio,mes,dia) print("***** Descarga de archivo: {}".format(nombreDelArchivo)) descargaArchivo(urlDescarga, nombreDelArchivo) def descargaArchivo(ud, na): """ Función que permite la descarga del archivo indicado param: ud: url de descarga param: na: nombre del archivo """ urllib.request.urlretrieve(ud, na) def generarDiaAnterior(f): """ Función que permite conocer el día anterior para descargar el archivo param: f: fecha actual """ anio, mes, dia = f.split('-') anio = int(anio) mes = int(mes) dia = int(dia) dia -= 1 if dia == 0: mes -= 1 if mes == 0: anio -= 1 mes = 12 diasEnElMes = numeroDeDiasEnElMes(mes) return (anio, mes, dia) def numeroDeDiasEnElMes(m): """ Función que permite saber el número de días en un mes param: m: mes actual """ if mes == 2 and anio % 4 == 0: return 29 elif mes == 2 and anio % 4 != 0: return 28 elif mes == 1 or mes == 3 or mes == 5 or mes == 7 or mes == 8 or mes == 10 or mes == 12: return 31 elif mes == 4 or mes == 6 or mes == 9 or mes == 11: return 30 ```
{ "source": "jorgemauricio/proyectoGranizo", "score": 2 }
#### File: proyectoGranizo/algoritmos_procesamiento/algoritmo_procesamiento_hdf5_area_influencia.py ```python import h5py import pandas as pd import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap from numpy import meshgrid from scipy.interpolate import griddata as gd import os # programa principal def main(): # distancia DISTANCIA_1KM = 0.0043 # obtener coordenadas cañones antigranizo dataAntigranizo = pd.read_csv("data/Coordenadas_caniones.csv") #print(dataAntigranizo.head()) # Nombre del archivo # filename = 'data/3B-HHR-L.MS.MRG.3IMERG.20180101-S000000-E002959.0000.V05B.HDF5' # obtener archivos listaDeArchivos = [x for x in os.listdir('data/hdf5') if x.endswith('HDF5')] # print(listaDeArchivos) # ciclo de procesamiento de datos for nombre in listaDeArchivos: # ruta temporal de archivo nombreTemporalArchivo = "data/hdf5/{}".format(nombre) #lectura del hdf5 f = h5py.File(nombreTemporalArchivo, 'r') # variable temporal para procesar el hdf5 grid = f['Grid'] # arrays de numpy lon = np.array(grid['lon']) lat = np.array(grid['lat']) precipitation = np.array(grid['precipitationCal']) # crear la variable que guardara el texto dataText = "Long,Lat,Prec\n" for i in range(lon.shape[0]): for j in range(lat.shape[0]): tempText = "{},{},{}\n".format(lon[i], lat[j], precipitation[i,j]) dataText += tempText # generar variables extras nombreEnArray = nombre.split('.') # fecha y minutos tempfecha = nombreEnArray[4] minutos = nombreEnArray[5] fecha, temp1, temp2 = tempfecha.split('-') # guardar a CSV nombreArchivoParaPandas = guardarCSV(dataText, fecha, minutos) # leer archivo en pandas data = pd.read_csv(nombreArchivoParaPandas) # ciclo de área de influencia # iniciar con el procesamiento for i in range(0, dataAntigranizo["Nombre"].count()): # generar variables para la clasificación de información # Nombre nombreEstacion = dataAntigranizo.iloc[i]["Nombre"] # Latitud latitud = dataAntigranizo.iloc[i]["Lat"] # Mes longitud = dataAntigranizo.iloc[i]["Long"] longitud_min = longitud - (3 * DISTANCIA_1KM) longitud_max = longitud + (3 * DISTANCIA_1KM) latitud_min = latitud - (3 * DISTANCIA_1KM) latitud_max = latitud + (3 * DISTANCIA_1KM) # limites longitud > -106.49 y < -97.5 data = data.loc[data['Long'] > -106.49] data = data.loc[data['Long'] < -97.5] # limites latitud > 17.43 y < 25.23 data = data.loc[data['Lat'] > 17.43] data = data.loc[data['Lat'] < 25.23] x = np.array(data['Long']) y = np.array(data['Lat']) # numero de columnas y filas numCols = len(x) numRows = len(y) # generar xi, yi xi = np.linspace(longitud_min, longitud_max, numCols) yi = np.linspace(longitud_min, latitud_max, numRows) # generar el meshgrid xi, yi = np.meshgrid(xi, yi) # generar zi z = np.array(data['Prec']) zi = gd((x,y), z, (xi,yi), method='cubic') fileName = 'temp/test_zi.csv' np.savetxt(fileName, zi, delimiter=",") break # print data print("***** ",nombreEstacion) # nombre para eliminar el archivo temporal nombreTemporalArchivoEliminar = 'temp/{}_{}.csv'.format(fecha, minutos) os.remove(nombreTemporalArchivoEliminar) print("Eliminar: {}".format(nombreTemporalArchivoEliminar)) # cerrar archivo hdf5 f.close() def generarNombreDelMapa(nombre): """ Función que genera el título del mapa param: nombre: nombre del archivo """ def guardarCSV(variableTexto, fecha, minutos): """ Función que permite guardar una viriable de texto a .csv param: txt: variable de texto a guardar """ fileName = 'temp/{}_{}.csv'.format(fecha, minutos) textFile = open(fileName, "w") textFile.write(variableTexto) textFile.close() return fileName if __name__ == '__main__': main() ```
{ "source": "jorgemauricio/rainMap", "score": 2 }
#### File: jorgemauricio/rainMap/algoritmoRainAgsWithMun.py ```python import numpy as np import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap from scipy.interpolate import griddata as gd #%% read csv data1 = pd.read_table('data/d1.txt', sep=',') data2 = pd.read_table('data/d2.txt', sep=',') data3 = pd.read_table('data/d3.txt', sep=',') data4 = pd.read_table('data/d4.txt', sep=',') data5 = pd.read_table('data/d5.txt', sep=',') #%% make one dataFrame data = data1.filter(items=['Long', 'Lat','Rain']) data['Rain2'] = data2['Rain'] data['Rain3'] = data3['Rain'] data['Rain4'] = data4['Rain'] data['Rain5'] = data5['Rain'] data['Acum'] = data['Rain'] + data['Rain2'] + data['Rain3'] + data['Rain4'] + data['Rain5'] #%% get values from Ags data = data.loc[data['Lat'] > 21.0] data = data.loc[data['Lat'] < 24.0] data = data.loc[data['Long'] > -104.0] data = data.loc[data['Long'] < -100.0] #%% get x and y values lons = np.array(data['Long']) lats = np.array(data['Lat']) #%% set up plot plt.clf() #fig = plt.figure(figsize=(48,24)) m = Basemap(projection='mill',llcrnrlat=21.38,urcrnrlat=22.74,llcrnrlon=-103.05,urcrnrlon=-101.21,resolution='h') #%% generate lats, lons x, y = m(lons,lats) #%% number of cols and rows numcols = len(x) numrows = len(y) #%% generate xi, yi xi = np.linspace(x.min(), x.max(), numcols) yi = np.linspace(y.min(), y.max(), numrows) #%% generate meshgrid xi, yi = np.meshgrid(xi,yi) #%% genate zi z = np.array(data['Rain']) zi = gd((x,y), z, (xi,yi), method='cubic') #%% generate clevs def generateClevs(minV, maxV): arrayValues = [] step = (maxV - minV) / 10 for i in range(10): rangeOfValue = int(step * i) arrayValues.append(rangeOfValue) return arrayValues clevs = generateClevs(z.min(), z.max()) #%% contour plot cs = m.contourf(xi,yi,zi, clevs, zorder=4, alpha=0.5, cmap='Spectral_r') #%% draw map details m.drawcoastlines() #m.drawstates(linewidth=0.7) m.drawcountries() #%% read municipios shape file m.readshapefile('shapes/Municipios', 'Municipios') #m.readshapefile('shapes/Estados', 'Estados') #m.drawmapscale(22, -103, 23, -102, 100, units='km', fontsize=14, yoffset=None, barstyle='fancy', labelstyle='simple', fillcolor1='w', fillcolor2='#000000',fontcolor='#000000', zorder=5) #%% colorbar cbar = m.colorbar(cs, location='right', pad="5%") cbar.set_label('mm') plt.title('Precipitación') plt.savefig('maps/precipitacionCubic2.png', dpi=300, transparent=True) plt.show() ``` #### File: jorgemauricio/rainMap/algoritmoRainAll.py ```python import numpy as np import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap from scipy.interpolate import griddata as gd from time import gmtime, strftime import time #%% fecha del pronostico fechaPronostico = strftime("%Y-%m-%d") #%% read csv data1 = pd.read_table('data/d1.txt', sep=',') data2 = pd.read_table('data/d2.txt', sep=',') data3 = pd.read_table('data/d3.txt', sep=',') data4 = pd.read_table('data/d4.txt', sep=',') data5 = pd.read_table('data/d5.txt', sep=',') #%% make one dataFrame data = data1.filter(items=['Long', 'Lat','Rain']) data['Rain1'] = data1['Rain'] data['Rain2'] = data2['Rain'] data['Rain3'] = data3['Rain'] data['Rain4'] = data4['Rain'] data['Rain5'] = data5['Rain'] data['Acum'] = data['Rain'] + data['Rain2'] + data['Rain3'] + data['Rain4'] + data['Rain5'] #%% get values from Ags data = data.loc[data['Lat'] > 21.0] data = data.loc[data['Lat'] < 24.0] data = data.loc[data['Long'] > -104.0] data = data.loc[data['Long'] < -100.0] #%% get x and y values lons = np.array(data['Long']) lats = np.array(data['Lat']) #%% generate arrayFechas # Generate Days arrayFechas = [] tanio, tmes, tdia = fechaPronostico.split('-') anio = int(tanio) mes = int(tmes) dia = int(tdia) for i in range(0,5,1): if i == 0: newDiaString = '{}'.format(dia) if len(newDiaString) == 1: newDiaString = '0' + newDiaString newMesString = '{}'.format(mes) if len(newMesString) == 1: newMesString = '0' + newMesString fecha = '{}'.format(anio)+"-"+newMesString+"-"+newDiaString arrayFechas.append(fecha) if i > 0: dia = dia + 1 if mes == 2 and anio % 4 == 0: diaEnElMes = 29 elif mes == 2 and anio % 4 != 0: diaEnElMes = 28 elif mes == 1 or mes == 3 or mes == 5 or mes == 7 or mes == 8 or mes == 10 or mes == 12: diaEnElMes = 31 elif mes == 4 or mes == 6 or mes == 9 or mes == 11: diaEnElMes = 30 if dia > diaEnElMes: mes = mes + 1 dia = 1 if mes > 12: anio = anio + 1 mes = 1 newDiaString = '{}'.format(dia) if len(newDiaString) == 1: newDiaString = '0' + newDiaString newMesString = '{}'.format(mes) if len(newMesString) == 1: newMesString = '0' + newMesString fecha = '{}'.format(anio)+"-"+newMesString+"-"+newDiaString arrayFechas.append(fecha) #%% loop diarios counterFecha = 0 for i in range(1,6,1): #%% set up plot plt.clf() #fig = plt.figure(figsize=(48,24)) m = Basemap(projection='mill',llcrnrlat=21.3,urcrnrlat=23,llcrnrlon=-103.5,urcrnrlon=-101,resolution='h') #%% generate lats, lons x, y = m(lons,lats) #%% number of cols and rows numcols = len(x) numrows = len(y) #%% generate xi, yi xi = np.linspace(x.min(), x.max(), numcols) yi = np.linspace(y.min(), y.max(), numrows) #%% generate meshgrid xi, yi = np.meshgrid(xi,yi) #%% genate zi tempTitleColumn = "Rain{}".format(i) z = np.array(data[tempTitleColumn]) zi = gd((x,y), z, (xi,yi), method='cubic') #%% generate clevs def generateClevs(minV, maxV): arrayValues = [] step = (maxV - minV) / 10 for i in range(10): rangeOfValue = int(step * i) arrayValues.append(rangeOfValue) return arrayValues clevs = generateClevs(z.min(), z.max()) #%% contour plot cs = m.contourf(xi,yi,zi, clevs, zorder=4, alpha=0.5, cmap='Spectral_r') #%% draw map details m.drawcoastlines() #m.drawstates(linewidth=0.7) m.drawcountries() #%% read municipios shape file m.readshapefile('shapes/Municipios', 'Municipios') #m.readshapefile('shapes/Estados', 'Estados') #m.drawmapscale(22, -103, 23, -102, 100, units='km', fontsize=14, yoffset=None, barstyle='fancy', labelstyle='simple', fillcolor1='w', fillcolor2='#000000',fontcolor='#000000', zorder=5) #%% colorbar cbar = m.colorbar(cs, location='right', pad="5%") cbar.set_label('mm') tempMapTitle = "Precipitación acumulada en 24h (mm)\nPronóstico válido para: {}".format(arrayFechas[counterFecha]) plt.title(tempMapTitle) tempFileName = "maps/{}.png".format(arrayFechas[counterFecha]) plt.annotate('INIFAP (WRF -EMS)', xy=(-102,22), xycoords='data', xytext=(-102,21), color='g') plt.savefig(tempFileName, dpi=300, transparent=True) counterFecha += 1 print('****** Genereate: {}'.format(tempFileName)) #%% generate Acum #%% set up plot plt.clf() #fig = plt.figure(figsize=(48,24)) m = Basemap(projection='mill',llcrnrlat=21.3,urcrnrlat=23,llcrnrlon=-103.5,urcrnrlon=-101,resolution='h') #%% generate lats, lons x, y = m(lons,lats) #%% number of cols and rows numcols = len(x) numrows = len(y) #%% generate xi, yi xi = np.linspace(x.min(), x.max(), numcols) yi = np.linspace(y.min(), y.max(), numrows) #%% generate meshgrid xi, yi = np.meshgrid(xi,yi) #%% genate zi z = np.array(data['Acum']) zi = gd((x,y), z, (xi,yi), method='cubic') #%% generate clevs def generateClevs(minV, maxV): arrayValues = [] step = (maxV - minV) / 10 for i in range(10): rangeOfValue = int(step * i) arrayValues.append(rangeOfValue) return arrayValues clevs = generateClevs(z.min(), z.max()) #%% contour plot cs = m.contourf(xi,yi,zi, clevs, zorder=4, alpha=0.5, cmap='Spectral_r') #%% draw map details m.drawcoastlines() #m.drawstates(linewidth=0.7) m.drawcountries() #%% read municipios shape file m.readshapefile('shapes/Municipios', 'Municipios') #m.readshapefile('shapes/Estados', 'Estados') #m.drawmapscale(22, -103, 23, -102, 100, units='km', fontsize=14, yoffset=None, barstyle='fancy', labelstyle='simple', fillcolor1='w', fillcolor2='#000000',fontcolor='#000000', zorder=5) #%% colorbar cbar = m.colorbar(cs, location='right', pad="5%") cbar.set_label('mm') tempMapTitle = "Precipitación acumulada en 24h (mm)\nPronóstico válido para {} al {}".format(arrayFechas[0],arrayFechas[-1]) plt.title(tempMapTitle) plt.annotate('INIFAP (WRF -EMS)', xy=(-102,22), xycoords='data', xytext=(-102,21), color='g') plt.savefig("maps/acum.png", dpi=300, transparent=True) print('****** Genereate: Acum') ```
{ "source": "jorgemauricio/ResearchWheatRust", "score": 3 }
#### File: jorgemauricio/ResearchWheatRust/algoritmoEstacionesAnalisis.py ```python import pandas as pd import numpy as np import math import matplotlib.pyplot as plt def main(): #%% read data stations dataStations = pd.read_csv('data/db_sonora.csv') #%% read data indicencia dataInc = pd.read_csv('data/incidencia_sonora.csv') #%% generate new data base textToDataIncidencia = 'lat,long,problem,incidencia,anio,mes,dia,ciclo,tipo\n' #%% loop for for row in dataInc.itertuples(): latProcesamiento = getattr(row,'lat') longProcesamiento = getattr(row, 'long') problemProcesamiento = getattr(row,'problem') incidenciaProcesamiento = getattr(row,'incidencia') cicloProcesamiento = getattr(row,'ciclo') anio = getattr(row,'anio') mes = getattr(row,'mes') dia = getattr(row,'dia') arrayFechasProcesamiento = generacionDeFechas(anio, mes, dia) textToDataIncidencia += "{},{},{},{},{},{},{},{},N\n".format(latProcesamiento, longProcesamiento, problemProcesamiento, incidenciaProcesamiento, anio, mes, dia, cicloProcesamiento) for i in arrayFechasProcesamiento: tanio, tmes, tdia = i.split("-") textToDataIncidencia += "{},{},{},0.0,{},{},{},{},G\n".format(latProcesamiento, longProcesamiento, problemProcesamiento, tanio, tmes, tdia, cicloProcesamiento) #%% from text to data tempTitle = 'resultados/db_incidencia.csv' textFile = open(tempTitle, 'w') textFile.write(textToDataIncidencia) textFile.close() #%% read new data incidencia dataIncidencia = pd.read_csv('resultados/db_incidencia.csv') #%% generate punto de rocio dataStations['dpoint'] = dataStations.apply(lambda x: puntoDeRocio(x['humr'], x['tmed']), axis=1) #%% generate tmidnight dataStations['tmidnight'] = dataStations['tmax'] - dataStations['tmin'] #%% dataStations to np arrays latInc = np.array(dataIncidencia['lat']) longInc = np.array(dataIncidencia['long']) problemInc = np.array(dataIncidencia['problem']) incidenciaInc = np.array(dataIncidencia['incidencia']) cicloInc = np.array(dataIncidencia['ciclo']) anioInc = np.array(dataIncidencia['anio']) mesInc = np.array(dataIncidencia['mes']) diaInc = np.array(dataIncidencia['dia']) tipoInc = np.array(dataIncidencia['tipo']) indexInc = np.array(dataIncidencia.index) #%% create text for data textToData = "lat,long,problem,incidencia,anio,mes,dia,ciclo,prec,tmax,tmin,tmed,velvmax,velv,dirvvmax,dirv,radg,humr,et,dpoint,tmidnight,condiciones,tipo\n" #%% loop for i in range(len(latInc)): anio = anioInc[i] mes = mesInc[i] dia = diaInc[i] latitud = latInc[i] longitud = longInc[i] incidencia = incidenciaInc[i] ciclo = cicloInc[i] problema = problemInc[i] tipo = tipoInc[i] dataTemp = dataStations.loc[(dataStations['anio'] == anio) & (dataStations['mes'] == mes) & (dataStations['dia'] == dia)] dataTemp['distancia'] = dataTemp.apply(lambda x: distanciaPuntoAPunto(x['latitud'], latitud, x['longitud'], longitud), axis=1) distanciaMinima = dataTemp['distancia'].min() dataTemp = dataTemp.loc[dataTemp['distancia'] == distanciaMinima] prec = np.array(dataTemp['prec']) tmax = np.array(dataTemp['tmax']) tmin = np.array(dataTemp['tmin']) tmed = np.array(dataTemp['tmed']) velvmax = np.array(dataTemp['velvmax']) velv = np.array(dataTemp['velv']) dirvvmax = np.array(dataTemp['dirvvmax']) dirv = np.array(dataTemp['dirv']) radg = np.array(dataTemp['radg']) humr = np.array(dataTemp['humr']) et = np.array(dataTemp['et']) dpoint = np.array(dataTemp['dpoint']) tmidnight = np.array(dataTemp['tmidnight']) condicion = validarCondicion(tmed, tmidnight, dpoint) textToData += "{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{}\n".format(latitud, longitud, problema, incidencia, anio, mes, dia, ciclo, prec[0], tmax[0], tmin[0], tmed[0], velvmax[0], velv[0], dirvvmax[0], dirv[0],radg[0],humr[0],et[0], dpoint[0], tmidnight[0], condicion, tipo) #%% from text to data tempTitle = 'resultados/db_join_estaciones_10_25.csv' textFile = open(tempTitle, 'w') textFile.write(textToData) textFile.close() #%% read data data = pd.read_csv('resultados/db_join_estaciones_10_25.csv') #%% generar indice Presencia data['indicePresencia'] = data['condiciones'].shift(-1) + data['condiciones'].shift(-2) + data['condiciones'].shift(-3) + data['condiciones'].shift(-4) #%% eliminar tados generados data = data.loc[data['tipo']== 'N'] #%% generar porcentaje de presencia data['porcentajePresencia'] = data['indicePresencia'] * 0.25 #%% guardar info data.to_csv('resultados/db_join_estaciones_10_25_pp.csv', index=False) #%% Longitud del punto def distanciaPuntoAPunto(lat1, lat2, long1, long2): """ Calcula la distancia entre el punto de incidencia y el punto de la estacion param: lat1: latitud del punto de incidencia param: lat2: latitud de la estacion param: long1: longitud del punto de incidencia param: long2: longitud de la estacion """ dX = (lat2 - lat1) ** 2 dY = (long2 - long1) ** 2 return math.sqrt(dX + dY) #%% generate punto de rocio def puntoDeRocio(hr, t): """ Calcula el punto de rocio param: hr: humedad relativa param: t: temperatura ambiente """ pr = (hr / 100.0)**(1/8.0) * (112 + 0.9 * t) + (0.1 * t) - 112 return pr def generacionDeFechas(anio, mes, dia): """ Genera el arreglo de 4 días previos a la fecha de incidencia param: anio : año de la incidencia param: mes : mes de la incidencia param: dia: dia de la incidencia """ arrayFechas = [] for i in range(0,4,1): dia -= 1 if dia < 1: mes = mes - 1 if mes == 2 and anio % 4 == 0: diasEnMes = 29 elif mes == 2 and anio % 4 != 0: diasEnMes = 28 elif mes == 1 or mes == 3 or mes == 5 or mes == 7 or mes == 8 or mes == 10 or mes == 12: diasEnMes = 31 elif mes == 4 or mes == 6 or mes == 9 or mes == 11: diasEnMes = 30 dia = diasEnMes if mes < 1: mes = 12 fecha = '{}-{}-{}'.format(anio, mes, dia) arrayFechas.append(fecha) return arrayFechas def validarCondicion(tempPro, tempMid, dwpoint): """ Calcular si existen condiciones para la presencia de roya param: tempPro: temperatura promedio param: tempMid: temperatura nocturna param: dwpoint: punto de rocio """ if (tempPro >= 10 and tempPro <= 25 ) and (tempMid >= 15 and tempMid <= 20) and dwpoint >= 5: return 1 else: return 0 if __name__ == "__main__": main() ```
{ "source": "jorgemb/lotimg", "score": 4 }
#### File: jorgemb/lotimg/files.py ```python import os import os.path import tkinter from tkinter import filedialog from tkinter.filedialog import askdirectory def get_image_file_names(parent=None, initial_dir=""): """ Asks the user to specify image files to convert. :param parent: TKinter interface :param initial_dir: Initial directory to be shown to the user. :return: List of files picked by the user """ root = parent if parent is None: root = tkinter.Tk() root.withdraw() if initial_dir == "": initial_dir = os.path.expanduser("~") opts = {"parent": root, "filetypes": [("Imagenes", "*.jpg;*.bmp;*.gif;*.png;*.tiff;*.tga")], "initialdir": initial_dir} all_files = filedialog.askopenfilenames(**opts) if len(all_files) == 0: return [] # No longer necessary to split file names # file_names = split_file_names(all_files) file_names = list(all_files) if parent is None: root.destroy() del root return file_names def get_names_in_path(path_list): """ Returns a list with the name of all the archives in a path. :param path_list: A path list, as returned by getFileNames :return: A name list """ names = list() for path in path_list: name = os.path.split(path)[1] names.append(name) return names def split_file_names(names): """ Splits file names from the response given by the selection dialog. :param names: String with names separated with {} :return: List with paths as string """ first = 0 counter = 0 names_list = list() for letter in names: if letter == "{": first = counter elif letter == "}": names_list.append(names[first + 1:counter]) counter += 1 return names_list def get_save_directory(parent=None, initial_dir=""): """ Asks the user to choose a directory where the converted images will be saved. :param parent: Tkinter parent :param initial_dir: Initial directory to show to the user. :return: String with the chosen directory. """ root = parent if parent is None: root = tkinter.Tk() root.withdraw() if initial_dir == "": initial_dir = os.path.expanduser("~") opts = {"parent": root, "initialdir": initial_dir} directory = askdirectory(**opts) if parent is None: root.destroy() del root return directory def change_names_with_rule(names, rule): """ Changes the names list using the given rule, which is executed as Python code. :param names: List of original names :param rule: Rule to apply to each name :return: List with changed names """ changed = 0 if rule is None: return [], 0 # Compile rule if isinstance(rule, str): try: rule = compile(rule, "<string>", "exec") except: print("changeNames - Bad rule") return [], changed # Apply rule to each name modified_names = names[:] for n in range(len(modified_names)): try: local_variables = {"name": modified_names[n], "n": n} # TODO: Define allowed builtins exec(rule, {"__builtins__": {'str': str, 'int': int}}, local_variables) # TODO: Add verifications in order to see if there's a name clash or blank names. modified_names[n] = local_variables["name"] changed += 1 except Exception as e: # Any exception is logged # TODO: Log exception pass return modified_names, changed def make_naming_rule(name, digits=4): """ Compiles a new naming rule in the form: Name#### :param name: Name to use :param digits: Amount of digits to use :return: Compiled rule """ rule = "name = '%s' + str(n+1).zfill(%d)\n" % (str(name), digits) return compile_rule(rule) def compile_rule(rule): """ Compiles a rule in string format. Basically checks that is valid python format. :param rule: :return: """ if len(rule) == 0: return None try: c_rule = compile(rule, "<string>", "exec") return c_rule except: return None ```
{ "source": "JorgeMemorandum/PythonTest", "score": 3 }
#### File: PythonTest/Python_chatting_application/server.py ```python import socket import threading s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind((socket.gethostname(), 1023)) print(socket.gethostname()) s.listen(5) clients = [] nickename = [] def Client_Handler(cli): while True: try: reply = cli.recv(1024).decode("utf-8") if reply == "QUIT": index_of_cli = clients.index(cli) nick = nickename[index_of_cli] nickename.remove(nick) clients.remove(cli) BroadCasating(f"{nick} has left the chat room") print(f"Disconnected with f{nick}") break BroadCasating(reply) except: index_of_cli = clients.index(cli) print(index_of_cli) nick = nickename[index_of_cli] nickename.remove(nick) clients.remove(cli) BroadCasating(f"{nick} has left the chat room") print(f"Disconnected with {nick}") break def BroadCasating(msg): for client in clients: client.send(bytes(msg, "utf-8")) def recieve(): while True: client_sckt, addr = s.accept() print(f"Connection has been established {addr}") client_sckt.send(bytes("NICK", "utf-8")) nick = client_sckt.recv(1024).decode("utf-8") nickename.append(nick) clients.append(client_sckt) print(f"{nick} has joined the chat room ") BroadCasating(f"{nick} has joined the chat room say hi !!!") threading._start_new_thread(Client_Handler , (client_sckt , )) recieve() s.close() ```
{ "source": "jorgemf/kaggle_redefining_cancer_treatment", "score": 2 }
#### File: src/d2v/doc2vec_eval_doc_prediction.py ```python import sys import numpy as np import tensorflow as tf from tensorflow.python.training import training_util from .. import evaluator, metrics from ..configuration import * from .doc2vec_train_doc_prediction import doc2vec_prediction_model from .doc2vec_train_doc_prediction import DocPredictionDataset class DocPredictionEval(evaluator.Evaluator): def __init__(self, dataset, log_dir=DIR_D2V_DOC_LOGDIR): config = tf.ConfigProto() config.gpu_options.allow_growth = True super(DocPredictionEval, self).__init__(checkpoints_dir=log_dir, output_path=os.path.join(log_dir, dataset.type), dataset=dataset, singular_monitored_session_config=config, infinite_loop=True) self.best_loss = -1 def model(self, input_vectors, input_gene, input_variation, output_label, batch_size, embedding_size=EMBEDDINGS_SIZE, output_classes=9): logits, targets = doc2vec_prediction_model(input_vectors, input_gene, input_variation, output_label, batch_size, is_training=False, embedding_size=embedding_size, output_classes=output_classes) loss = tf.nn.softmax_cross_entropy_with_logits(labels=targets, logits=logits) self.global_step = training_util.get_or_create_global_step() global_step_increase = tf.assign_add(self.global_step, 1) self.accumulated_loss = tf.Variable(0.0, dtype=tf.float32, name='accumulated_loss', trainable=False) self.accumulated_loss = tf.assign_add(self.accumulated_loss, tf.reduce_sum(loss)) self.prediction = tf.nn.softmax(logits) self.metrics = metrics.single_label(self.prediction, targets, moving_average=False) steps = tf.cast(global_step_increase, dtype=tf.float32) tf.summary.scalar('loss', self.accumulated_loss / (steps * batch_size)) return None def create_graph(self, dataset_tensor, batch_size): input_vectors, input_gene, input_variation, output_label = dataset_tensor self.batch_size = batch_size return self.model(input_vectors, input_gene, input_variation, output_label, batch_size) def step(self, session, graph_data, summary_op): self.num_steps, self.final_metrics, self.final_loss, summary = \ session.run([self.global_step, self.metrics, self.accumulated_loss, summary_op]) return summary def after_create_session(self, session, coord): super(DocPredictionEval, self).after_create_session(session, coord) def end(self, session): super(DocPredictionEval, self).end(session) cm = self.final_metrics['confusion_matrix'] data_size = self.num_steps * self.batch_size loss = self.final_loss / data_size print('Loss: {}'.format(loss)) print('Confusion matrix:') for r in cm: print('\t'.join([str(x) for x in r])) if self.best_loss < 0 or loss < self.best_loss: self.best_loss = loss self.copy_checkpoint_as_best() class DocPredictionInference(evaluator.Evaluator): def __init__(self, dataset, log_dir=DIR_D2V_DOC_LOGDIR): config = tf.ConfigProto() config.gpu_options.allow_growth = True super(DocPredictionInference, self).__init__(checkpoints_dir=log_dir, output_path=os.path.join(log_dir, dataset.type), dataset=dataset, singular_monitored_session_config=config, infinite_loop=False) def model(self, input_vectors, input_gene, input_variation, batch_size, embedding_size=EMBEDDINGS_SIZE, output_classes=9): self.global_step = training_util.get_or_create_global_step() logits, _ = doc2vec_prediction_model(input_vectors, input_gene, input_variation, None, batch_size, is_training=False, embedding_size=embedding_size, output_classes=output_classes) global_step_increase = tf.assign_add(self.global_step, 1) with tf.control_dependencies([global_step_increase]): self.prediction = tf.nn.softmax(logits) return self.prediction def end(self, session): pass def create_graph(self, dataset_tensor, batch_size): input_vectors, input_gene, input_variation, _ = dataset_tensor return self.model(input_vectors, input_gene, input_variation, batch_size) def after_create_session(self, session, coord): super(DocPredictionInference, self).after_create_session(session, coord) print('ID,class1,class2,class3,class4,class5,class6,class7,class8,class9') def step(self, session, graph_data, summary_op): step, predictions = session.run([self.global_step, self.prediction]) predictions = predictions[0] predictions = [p + 0.01 for p in predictions] # penalize less the mistakes sum = np.sum(predictions) predictions = [p / sum for p in predictions] print('{},{}'.format(step, ','.join(['{:.3f}'.format(x) for x in predictions]))) return None if __name__ == '__main__': import logging logging.getLogger().setLevel(logging.INFO) if len(sys.argv) > 1 and sys.argv[1] == 'val': # get validation error evaluator = DocPredictionEval(dataset=DocPredictionDataset(type='val'), log_dir=os.path.join(DIR_D2V_DOC_LOGDIR)) evaluator.run() elif len(sys.argv) > 1 and sys.argv[1] == 'test': # get validation error evaluator = DocPredictionInference(dataset=DocPredictionDataset(type='stage2_test'), log_dir=os.path.join(DIR_D2V_DOC_LOGDIR, 'val')) evaluator.run() elif len(sys.argv) > 1 and sys.argv[1] == 'train': # get validation error evaluator = DocPredictionEval(dataset=DocPredictionDataset(type='train'), log_dir=os.path.join(DIR_D2V_DOC_LOGDIR)) evaluator.run() ``` #### File: src/d2v/doc2vec_train_eval_word_embeds.py ```python import tensorflow as tf import csv import time from datetime import timedelta import shutil import sys from tensorflow.contrib import layers from .. import trainer from .doc2vec_train_word_embeds import Doc2VecDataset from ..rnn.text_classification_train import _load_embeddings from tensorflow.python.training import training_util from ..configuration import * class Doc2VecTrainerEval(trainer.Trainer): """ Helper class to run the training and create the model for the training. See trainer.Trainer for more details. """ def __init__(self, dataset, log_dir=DIR_D2V_EVAL_LOGDIR): config = tf.ConfigProto() config.gpu_options.allow_growth = True super(Doc2VecTrainerEval, self).__init__(log_dir, dataset=dataset, monitored_training_session_config=config, log_step_count_steps=1000, save_summaries_steps=1000) def model(self, input_doc, input_words, output_label, batch_size, vocabulary_size=VOCABULARY_SIZE, embedding_size=EMBEDDINGS_SIZE, context_size=D2V_CONTEXT_SIZE, num_negative_samples=D2V_NEGATIVE_NUM_SAMPLES, learning_rate_initial=D2V_LEARNING_RATE_INITIAL, learning_rate_decay=D2V_LEARNING_RATE_DECAY, learning_rate_decay_steps=D2V_LEARNING_RATE_DECAY_STEPS): self.global_step = training_util.get_or_create_global_step() # inputs/outputs input_doc = tf.reshape(input_doc, [batch_size]) input_words = tf.reshape(input_words, [batch_size, context_size]) output_label = tf.reshape(output_label, [batch_size, 1]) # embeddings word_embeddings = _load_embeddings(vocabulary_size, embedding_size, filename_prefix='word_embeddings', from_dir=DIR_DATA_DOC2VEC) self.word_embeddings = tf.constant(value=word_embeddings, shape=[vocabulary_size, embedding_size], dtype=tf.float32, name='word_embeddings') self.doc_embeddings = tf.get_variable(shape=[self.dataset.num_docs, embedding_size], initializer=layers.xavier_initializer(), dtype=tf.float32, name='doc_embeddings') words_embed = tf.nn.embedding_lookup(self.word_embeddings, input_words) doc_embed = tf.nn.embedding_lookup(self.word_embeddings, input_doc) # average the words_embeds words_embed_average = tf.reduce_mean(words_embed, axis=1) embed = tf.concat([words_embed_average, doc_embed], axis=1) # NCE loss nce_weights = tf.get_variable(shape=[vocabulary_size, embedding_size * 2], initializer=layers.xavier_initializer(), dtype=tf.float32, name='nce_weights') nce_biases = tf.get_variable(shape=[vocabulary_size], initializer=layers.xavier_initializer(), dtype=tf.float32, name='nce_biases') nce_loss = tf.nn.nce_loss(weights=nce_weights, biases=nce_biases, labels=output_label, inputs=embed, num_sampled=num_negative_samples, num_classes=vocabulary_size) self.loss = tf.reduce_mean(nce_loss) tf.summary.scalar('loss', self.loss) # learning rate & optimizer self.learning_rate = tf.train.exponential_decay(learning_rate_initial, self.global_step, learning_rate_decay_steps, learning_rate_decay, staircase=True, name='learning_rate') tf.summary.scalar('learning_rate', self.learning_rate) sgd = tf.train.GradientDescentOptimizer(self.learning_rate) self.optimizer = sgd.minimize(self.loss, global_step=self.global_step) return None def create_graph(self, dataset_tensor, batch_size): input_doc, input_word, output_label = dataset_tensor return self.model(input_doc, input_word, output_label, batch_size) def step(self, session, graph_data): if self.is_chief: lr, _, loss, step, self.embeddings_docs = \ session.run([self.learning_rate, self.optimizer, self.loss, self.global_step, self.doc_embeddings]) if time.time() > self.print_timestamp + 5 * 60: self.print_timestamp = time.time() elapsed_time = str(timedelta(seconds=time.time() - self.init_time)) m = 'step: {} loss: {:0.4f} learning_rate = {:0.6f} elapsed seconds: {}' print(m.format(step, loss, lr, elapsed_time)) current_time = time.time() embeddings_file = 'doc_eval_embeddings_{}_{}_{}'.format(self.dataset.type, VOCABULARY_SIZE, EMBEDDINGS_SIZE) embeddings_filepath = os.path.join(DIR_DATA_DOC2VEC, embeddings_file) if not os.path.exists(embeddings_filepath): self.save_embeddings(self.embeddings_docs) else: embeddings_file_timestamp = os.path.getmtime(embeddings_filepath) # save the embeddings every 30 minutes if current_time - embeddings_file_timestamp > 30 * 60: self.save_embeddings(self.embeddings_docs) else: session.run([self.optimizer]) def after_create_session(self, session, coord): self.init_time = time.time() self.print_timestamp = time.time() def end(self, session): if self.is_chief: self.save_embeddings(self.embeddings_docs) def save_embeddings(self, doc_embeddings): print('Saving embeddings in text format...') embeddings_file = 'doc_eval_embeddings_{}_{}_{}'.format(self.dataset.type, VOCABULARY_SIZE, EMBEDDINGS_SIZE) embeddings_filepath = os.path.join(DIR_DATA_DOC2VEC, embeddings_file) with open(embeddings_filepath, 'w') as f: writer = csv.writer(f, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) writer.writerows(doc_embeddings) # copy the embeddings file to the log dir so we can download it from tensorport if os.path.exists(embeddings_filepath): shutil.copy(embeddings_filepath, self.log_dir) if __name__ == '__main__': import logging logging.getLogger().setLevel(logging.INFO) if len(sys.argv) > 1 and sys.argv[1] == 'train_val': # start the training for eval trainer = Doc2VecTrainerEval(dataset=Doc2VecDataset(type='val'), log_dir=os.path.join(DIR_D2V_EVAL_LOGDIR, 'val')) trainer.run(epochs=D2V_EPOCHS, batch_size=D2V_BATCH_SIZE) elif len(sys.argv) > 1 and sys.argv[1] == 'train_test': # start the training for second stage dataset trainer = Doc2VecTrainerEval(dataset=Doc2VecDataset(type='stage2_test'), log_dir=os.path.join(DIR_D2V_EVAL_LOGDIR, 'test')) trainer.run(epochs=D2V_EPOCHS, batch_size=D2V_BATCH_SIZE) ``` #### File: src/rnn/text_classification_dataset.py ```python import tensorflow as tf import numpy as np from itertools import groupby from ..configuration import * from ..tf_dataset import TFDataSet def _padding(arr, pad, token=-1): len_arr = len(arr) if len_arr > pad: return arr[:pad] elif len_arr < pad: arr.extend([token] * (pad - len_arr)) return arr else: return arr class TextClassificationDataset(TFDataSet): """ Helper class for the dataset. See dataset_filelines.DatasetFilelines for more details. """ def __init__(self, type='train', sentence_split=False): """ :param str type: type of set, either 'train' or 'test' :param bool sentence_split: whether to split the doc in sentences or use only words """ data_files = os.path.join(DIR_DATA_TEXT_CLASSIFICATION, '{}_set'.format(type)) if type == 'train' or type == 'val': if sentence_split: padded_shape = ([None, MAX_WORDS_IN_SENTENCE], [1]) else: padded_shape = ([None], [1]) padded_values = (-1, -1) elif type == 'test' or type == 'stage2_test': if sentence_split: padded_shape = [None, MAX_WORDS_IN_SENTENCE] else: padded_shape = [None] padded_values = -1 else: raise ValueError( 'Type can only be train, val, test or stage2_test but it is {}'.format(type)) self.type = type self.sentence_split = None if sentence_split: dict_filename = 'word2vec_dataset_{}_dict'.format(VOCABULARY_SIZE) dict_filepath = os.path.join(DIR_DATA_WORD2VEC, dict_filename) with tf.gfile.FastGFile(dict_filepath, 'r') as f: for line in f: data = line.split() symbol = data[0] if symbol == '.': self.sentence_split = int(data[1]) break super(TextClassificationDataset, self).__init__(name=type, data_files_pattern=data_files, min_queue_examples=100, shuffle_size=10000) # TODO TF <= 1.2.0 have an issue with padding with more than one dimension # padded_shapes=padded_shape, # padded_values=padded_values) def _map(self, example_serialized): variant_padding = 20 sentence_padding = [-1] * MAX_WORDS_IN_SENTENCE def _parse_sequence(example_serialized, dataset_type): example_serialized = example_serialized.split('||') example_class = example_serialized[0].strip() example_gene = np.int32(example_serialized[1].strip()) example_variant = list([np.int32(w) for w in example_serialized[2].strip().split()]) sequence = list([np.int32(w) for w in example_serialized[3].strip().split()]) example_variant = _padding(example_variant, variant_padding) if self.sentence_split is not None: groups = groupby(sequence, lambda x: x == self.sentence_split) sequence = list([list(g) for k, g in groups if not k]) for i, sentence in enumerate(sequence): sentence = _padding(sentence, MAX_WORDS_IN_SENTENCE) sequence[i] = np.asarray(sentence, dtype=np.int32) sequence_begin = _padding(sequence, MAX_SENTENCES, token=sentence_padding) sequence_end = _padding(list(reversed(sequence)), MAX_SENTENCES, token=sentence_padding) else: sequence_begin = _padding(sequence, MAX_WORDS) sequence_end = _padding(list(reversed(sequence)), MAX_WORDS, token=sentence_padding) if dataset_type == 'train' or dataset_type == 'val': # first class is 1, last one is 9 data_sample_class = int(example_class) - 1 return [ np.asarray(sequence_begin, dtype=np.int32), np.asarray(sequence_end, dtype=np.int32), np.int32(example_gene), np.asarray(example_variant, dtype=np.int32), np.int32(data_sample_class), ] elif dataset_type == 'test' or dataset_type == 'stage2_test': return [ np.asarray(sequence_begin, dtype=np.int32), np.asarray(sequence_end, dtype=np.int32), np.int32(example_gene), np.asarray(example_variant, dtype=np.int32), ] else: raise ValueError() if self.type == 'train' or self.type == 'val': sequence_begin, sequence_end, gene, variant, result_class = \ tf.py_func(lambda x: _parse_sequence(x, self.type), [example_serialized], [tf.int32, tf.int32, tf.int32, tf.int32, tf.int32], stateful=True) elif self.type == 'test' or self.type == 'stage2_test': sequence_begin, sequence_end, gene, variant = \ tf.py_func(lambda x: _parse_sequence(x, self.type), [example_serialized], [tf.int32, tf.int32, tf.int32, tf.int32], stateful=True) result_class = None else: raise ValueError() # TODO for TF <= 1.2.0 set shape because of padding if self.sentence_split is not None: sequence_begin = tf.reshape(sequence_begin, [MAX_SENTENCES, MAX_WORDS_IN_SENTENCE]) else: sequence_end = tf.reshape(sequence_end, [MAX_WORDS]) gene = tf.reshape(gene, [1]) variant = tf.reshape(variant, [variant_padding]) if result_class is not None: result_class = tf.reshape(result_class, [1]) return sequence_begin, sequence_end, gene, variant, result_class else: return sequence_begin, sequence_end, gene, variant ``` #### File: src/rnn/text_classification_train.py ```python import tensorflow as tf import csv import time from datetime import timedelta import sys import numpy as np from tensorflow.python.training import training_util from tensorflow.contrib import slim from tensorflow.python.ops import variables as tf_variables from ..configuration import * from .. import trainer, evaluator, metrics from ..task_spec import get_task_spec from .text_classification_dataset import TextClassificationDataset def _load_embeddings(vocabulary_size, embeddings_size, filename_prefix='embeddings', from_dir=DIR_DATA_WORD2VEC): embeddings = [] embeddings_file = '{}_{}_{}'.format(filename_prefix, vocabulary_size, embeddings_size) with open(os.path.join(from_dir, embeddings_file), 'r') as file: reader = csv.reader(file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) for row in reader: embeddings.append([float(r) for r in row]) return embeddings class TextClassificationTrainer(trainer.Trainer): """ Helper class to run the training and create the model for the training. See trainer.Trainer for more details. """ def __init__(self, dataset, text_classification_model, log_dir=DIR_TC_LOGDIR, use_end_sequence=False, task_spec=None, max_steps=None): self.text_classification_model = text_classification_model self.use_end_sequence = use_end_sequence config = tf.ConfigProto() config.gpu_options.allow_growth = True super(TextClassificationTrainer, self).__init__(log_dir=log_dir, dataset=dataset, task_spec=task_spec, max_steps=max_steps, monitored_training_session_config=config) def model(self, input_text_begin, input_text_end, gene, variation, expected_labels, batch_size, vocabulary_size=VOCABULARY_SIZE, embeddings_size=EMBEDDINGS_SIZE, output_classes=9): # embeddings embeddings = _load_embeddings(vocabulary_size, embeddings_size) # global step self.global_step = training_util.get_or_create_global_step() # model with slim.arg_scope(self.text_classification_model.model_arg_scope()): outputs = self.text_classification_model.model(input_text_begin, input_text_end, gene, variation, output_classes, embeddings=embeddings, batch_size=batch_size) # loss targets = self.text_classification_model.targets(expected_labels, output_classes) self.loss = self.text_classification_model.loss(targets, outputs) tf.summary.scalar('loss', self.loss) # learning rate self.optimizer, self.learning_rate = \ self.text_classification_model.optimize(self.loss, self.global_step) if self.learning_rate is not None: tf.summary.scalar('learning_rate', self.learning_rate) # metrics self.metrics = metrics.single_label(outputs['prediction'], targets) # saver to save the model self.saver = tf.train.Saver() # check a nan value in the loss self.loss = tf.check_numerics(self.loss, 'loss is nan') return None def create_graph(self, dataset_tensor, batch_size): input_text_begin, input_text_end, gene, variation, expected_labels = dataset_tensor if not self.use_end_sequence: input_text_end = None return self.model(input_text_begin, input_text_end, gene, variation, expected_labels, batch_size) def step(self, session, graph_data): lr, _, loss, step, metrics = \ session.run([self.learning_rate, self.optimizer, self.loss, self.global_step, self.metrics]) if self.is_chief and time.time() > self.print_timestamp + 5 * 60: self.print_timestamp = time.time() elapsed_time = str(timedelta(seconds=time.time() - self.init_time)) m = 'step: {} loss: {:0.4f} learning_rate = {:0.6f} elapsed seconds: {} ' \ 'precision: {} recall: {} accuracy: {}' logging.info(m.format(step, loss, lr, elapsed_time, metrics['precision'], metrics['recall'], metrics['accuracy'])) def after_create_session(self, session, coord): self.init_time = time.time() self.print_timestamp = time.time() class TextClassificationTest(evaluator.Evaluator): """Evaluator for distributed training""" def __init__(self, dataset, text_classification_model, output_path, log_dir=DIR_TC_LOGDIR, use_end_sequence=False,max_steps=None): self.use_end_sequence = use_end_sequence config = tf.ConfigProto() config.gpu_options.allow_growth = True super(TextClassificationTest, self).__init__(checkpoints_dir=log_dir, dataset=dataset, output_path=output_path, max_steps=max_steps, singular_monitored_session_config=config) self.text_classification_model = text_classification_model self.eval_writer = tf.summary.FileWriter(log_dir) def model(self, input_text_begin, input_text_end, gene, variation, expected_labels, batch_size, vocabulary_size=VOCABULARY_SIZE, embeddings_size=EMBEDDINGS_SIZE, output_classes=9): # embeddings embeddings = _load_embeddings(vocabulary_size, embeddings_size) # model with slim.arg_scope(self.text_classification_model.model_arg_scope()): outputs = self.text_classification_model.model(input_text_begin, input_text_end, gene, variation, output_classes, embeddings=embeddings, batch_size=batch_size, training=False) # loss targets = self.text_classification_model.targets(expected_labels, output_classes) loss = self.text_classification_model.loss(targets, outputs) self.accumulated_loss = tf.Variable(0.0, dtype=tf.float32, name='accumulated_loss', trainable=False) self.accumulated_loss = tf.assign_add(self.accumulated_loss, loss) step = tf.Variable(0, dtype=tf.int32, name='eval_step', trainable=False) step_increase = tf.assign_add(step, 1) self.loss = self.accumulated_loss / tf.cast(step_increase, dtype=tf.float32) tf.summary.scalar('loss', self.loss) # metrics self.metrics = metrics.single_label(outputs['prediction'], targets, moving_average=False) return None def create_graph(self, dataset_tensor, batch_size): input_text_begin, input_text_end, gene, variation, expected_labels = dataset_tensor if not self.use_end_sequence: input_text_end = None graph_data = self.model(input_text_begin, input_text_end, gene, variation, expected_labels, batch_size) return graph_data def step(self, session, graph_data, summary_op): summary, self.loss_result, self.metrics_results = \ session.run([summary_op, self.loss, self.metrics]) return summary def end(self, session): super(TextClassificationTest, self).end(session) chk_step = int(self.lastest_checkpoint.split('-')[-1]) m = 'step: {} loss: {:0.4f} precision: {} recall: {} accuracy: {}' logging.info(m.format(chk_step, self.loss_result, self.metrics_results['precision'], self.metrics_results['recall'], self.metrics_results['accuracy'])) def after_create_session(self, session, coord): # checkpoints_file = os.path.join(self.checkpoints_dir, 'checkpoint') # alt_checkpoints_dir = '{}_tp'.format(self.checkpoints_dir) # import glob # files = glob.glob('{}/model.ckpt-*.data-*'.format(alt_checkpoints_dir)) # chk_step = 0 # for f in files: # num = f.split('model.ckpt-')[1].split('.')[0] # num = int(num) # if chk_step == 0 or num < chk_step: # chk_step = num # if chk_step != 0: # ckpt_files = glob.glob('{}/model.ckpt-{}.data-*'.format(alt_checkpoints_dir, chk_step)) # ckpt_files = [x.split('/')[-1] for x in ckpt_files] # for f in ckpt_files + ['model.ckpt-{}.index', 'model.ckpt-{}.meta']: # f = f.format(chk_step) # os.rename(os.path.join(alt_checkpoints_dir, f), os.path.join(self.checkpoints_dir, f)) # with open(checkpoints_file, 'wb') as f: # f.write('model_checkpoint_path: "./model.ckpt-{}"\n'.format(chk_step)) # f.write('all_model_checkpoint_paths: "./model.ckpt-{}"\n'.format(chk_step)) super(TextClassificationTest, self).after_create_session(session, coord) # with open(checkpoints_file, 'wb') as f: # f.write('model_checkpoint_path: "./model.ckpt-"\n') # f.write('all_model_checkpoint_paths: "./model.ckpt-"\n') class TextClassificationEval(evaluator.Evaluator): """Evaluator for text classification""" def __init__(self, dataset, text_classification_model, output_path, log_dir=DIR_TC_LOGDIR, use_end_sequence=False): self.use_end_sequence = use_end_sequence config = tf.ConfigProto() config.gpu_options.allow_growth = True super(TextClassificationEval, self).__init__(checkpoints_dir=log_dir, output_path=output_path, infinite_loop=False, singular_monitored_session_config=config) self.dataset = dataset self.text_classification_model = text_classification_model def model(self, input_text_begin, input_text_end, gene, variation, batch_size, vocabulary_size=VOCABULARY_SIZE, embeddings_size=EMBEDDINGS_SIZE, output_classes=9): # embeddings embeddings = _load_embeddings(vocabulary_size, embeddings_size) # global step self.global_step = training_util.get_or_create_global_step() self.global_step = tf.assign_add(self.global_step, 1) # model with tf.control_dependencies([self.global_step]): with slim.arg_scope(self.text_classification_model.model_arg_scope()): self.outputs = self.text_classification_model.model(input_text_begin, input_text_end, gene, variation, output_classes, embeddings=embeddings, batch_size=batch_size, training=False) # restore only the trainable variables self.saver = tf.train.Saver(var_list=tf_variables.trainable_variables()) return self.outputs def create_graph(self, dataset_tensor, batch_size): input_text_begin, input_text_end, gene, variation = dataset_tensor if not self.use_end_sequence: input_text_end = None return self.model(input_text_begin, input_text_end, gene, variation, batch_size) def after_create_session(self, session, coord): super(TextClassificationEval, self).after_create_session(session, coord) print('ID,class1,class2,class3,class4,class5,class6,class7,class8,class9') def step(self, session, graph_data, summary_op): step, predictions = session.run([self.global_step, self.outputs['prediction']]) predictions = predictions[0] predictions = [p + 0.01 for p in predictions] # penalize less the mistakes sum = np.sum(predictions) predictions = [p / sum for p in predictions] print('{},{}'.format(step, ','.join(['{:.3f}'.format(x) for x in predictions]))) return None import logging def main(model, name, sentence_split=False, end_sequence=USE_END_SEQUENCE, batch_size=TC_BATCH_SIZE): """ Main method to execute the text_classification models :param ModelSimple model: object model based on ModelSimple :param str name: name of the model :param bool sentence_split: whether to split the dataset in sentneces or not, only used for hatt model :param bool end_sequence: whether to use or not the end of the sequences in the models :param int batch_size: batch size of the models """ logging.getLogger().setLevel(logging.INFO) log_dir = '{}_{}'.format(DIR_TC_LOGDIR, name) if len(sys.argv) > 1 and sys.argv[1] == 'test': # execute the test with the train dataset dataset = TextClassificationDataset(type='train', sentence_split=sentence_split) tester = TextClassificationTest(dataset=dataset, text_classification_model=model, log_dir=log_dir, output_path=os.path.join(log_dir, 'test_trainset'), use_end_sequence=end_sequence) tester.run() elif len(sys.argv) > 1 and sys.argv[1] == 'validate': dataset = TextClassificationDataset(type='val', sentence_split=sentence_split) tester = TextClassificationTest(dataset=dataset, text_classification_model=model, log_dir=log_dir, output_path=os.path.join(log_dir, 'validate'), use_end_sequence=end_sequence) tester.run() elif len(sys.argv) > 1 and sys.argv[1] == 'eval': # evaluate the data of the test dataset. We submit this output to kaggle dataset = TextClassificationDataset(type='test', sentence_split=sentence_split) evaluator = TextClassificationEval(dataset=dataset, text_classification_model=model, log_dir=log_dir, output_path=os.path.join(log_dir, 'test'), use_end_sequence=end_sequence) evaluator.run() elif len(sys.argv) > 1 and sys.argv[1] == 'eval_stage2': # evaluate the data of the test dataset. We submit this output to kaggle dataset = TextClassificationDataset(type='stage2_test', sentence_split=sentence_split) evaluator = TextClassificationEval(dataset=dataset, text_classification_model=model, log_dir=log_dir, output_path=os.path.join(log_dir, 'test_stage2'), use_end_sequence=end_sequence) evaluator.run() else: # training task_spec = get_task_spec(with_evaluator=USE_LAST_WORKER_FOR_VALIDATION) if task_spec.join_if_ps(): # join if it is a parameters server and do nothing else return with(tf.gfile.Open(os.path.join(DIR_DATA_TEXT_CLASSIFICATION, 'train_set'))) as f: max_steps = int(TC_EPOCHS * len(f.readlines()) / batch_size) if task_spec.is_evaluator(): dataset = TextClassificationDataset(type='val', sentence_split=sentence_split) # evaluator running in the last worker tester = TextClassificationTest(dataset=dataset, text_classification_model=model, log_dir=log_dir, output_path=os.path.join(log_dir, 'val'), use_end_sequence=end_sequence, max_steps=max_steps) tester.run() else: dataset = TextClassificationDataset(type='train', sentence_split=sentence_split) trainer = TextClassificationTrainer(dataset=dataset, text_classification_model=model, log_dir=log_dir, use_end_sequence=end_sequence, task_spec=task_spec, max_steps=max_steps) trainer.run(epochs=TC_EPOCHS, batch_size=batch_size) ``` #### File: src/w2v/word2vec_process_data.py ```python import re import io from ..configuration import * from ..preprocess_data import load_csv_wikipedia_gen, load_csv_dataset, group_count def load_word2vec_data(filename, vocabulary_size=VOCABULARY_SIZE): """ Loads the word2vec data: the dictionary file with the relation of the word with its int id, the dataset as a list of list of ids and a dictionary with the frequency of the words in the dataset. :param str filename: name of the file with the word2vec dataset, the dictionary file and the frequency file are generated with the suffixes _dict and _count based on this fiename :return (Dict[str,int], List[List[int]], Dict[int,float]: a tuple with a dictionary for the symbols and a list of sentences where each sentence is a list of int and a dictionary with the frequencies of the words """ filename = '{}_{}'.format(filename, vocabulary_size) filename_dict = '{}_dict'.format(filename) filename_count = '{}_count'.format(filename) with open(os.path.join(DIR_DATA_WORD2VEC, filename_dict), 'r') as f: symbols_dict = { } for line in f.readlines(): data = line.split() symbol = data[0] encoded = int(data[1]) symbols_dict[symbol] = encoded encoded_text = [] with open(os.path.join(DIR_DATA_WORD2VEC, filename), 'r') as f: for line in f.readlines(): encoded_text.append([int(word) for word in line.split()]) total_count = 0 with open(os.path.join(DIR_DATA_WORD2VEC, filename_count), 'r') as f: word_frequency_dict = { } for line in f.readlines(): line = line.strip() if len(line) > 0: data = line.split(' = ') symbol = symbols_dict[data[0].strip()] count = int(data[1].strip()) if symbol in symbols_dict: word_frequency_dict[symbol] += count else: word_frequency_dict[symbol] = count total_count += count for key in word_frequency_dict.keys(): word_frequency_dict[key] = float(word_frequency_dict[key]) / total_count return symbols_dict, encoded_text, word_frequency_dict def load_or_create_dataset_word2vec(filename, text_samples, vocabulary_size=VOCABULARY_SIZE): """ Loads the dataset for word2vec or creates it from the text_samples if the file doesn't exits. Three files are generated: dictionary file, word frequency file and dataset file. The dataset file already contains the ids instead of the words. The vocabulary is truncated to fit the vocabulary size, the less frequent words are transformed into the unknown id (the number 0) :param str filename: filename prefix of the dataset :param List[List[str]] text_samples: list of list of words :param int vocabulary_size: the final size of the vocabulary :return (Dict[str,int], List[List[int]], Dict[int,float]: a tuple with a dictionary for the symbols and a list of sentences where each sentence is a list of int and a dictionary with the frequencies of the words """ filename_vocabulary = '{}_{}'.format(filename, vocabulary_size) filename_dict = '{}_dict'.format(filename_vocabulary) filename_count = '{}_count'.format(filename_vocabulary) filename_tsv = '{}.tsv'.format(filename_vocabulary) if not os.path.exists(os.path.join(DIR_DATA_WORD2VEC, filename_vocabulary)): text_lines = [] for text_sample in text_samples: sentences = re.split('\n|\s\.\s', text_sample.lower()) for sentence in sentences: words = sentence.split() if len(words) > 0: words.append('.') words = list([word.strip().lower() for word in words]) text_lines.append(words) symbols_count = group_count(text_lines) symbols_ordered_by_count = sorted(symbols_count.items(), key=lambda x: x[1], reverse=True) total_symbols = len(symbols_ordered_by_count) print('Total symbols: {}'.format(total_symbols)) print('Vocabulary size: {}'.format(vocabulary_size)) unknown_symbols = symbols_ordered_by_count[vocabulary_size - 1:] known_symbols = symbols_ordered_by_count[:vocabulary_size - 1] symbols_dict = { } for symbol, _ in unknown_symbols: symbols_dict[symbol] = 0 counter = 1 for symbol, _ in known_symbols: symbols_dict[symbol] = counter counter += 1 encoded_text = [] words_count = 0 for sentence in text_lines: words_count += len(sentence) encoded_sentence = [] for word in sentence: encoded_sentence.append(symbols_dict[word]) if len(encoded_sentence) > 0: encoded_text.append(encoded_sentence) print('Total sentences: {}'.format(len(text_lines))) print('Total words: {}'.format(words_count)) print('words/sentences: {}'.format(float(words_count) / float(len(text_lines)))) with io.open(os.path.join(DIR_DATA_WORD2VEC, filename_dict), 'w', encoding='utf8') as f: for symbol in sorted(symbols_dict.keys()): f.write(u'{} {}\n'.format(symbol, symbols_dict[symbol])) with io.open(os.path.join(DIR_DATA_WORD2VEC, filename_vocabulary), 'w', encoding='utf8') as f: for sentence in encoded_text: f.write(u' '.join(str(word) for word in sentence)) f.write(u'\n') with io.open(os.path.join(DIR_DATA_WORD2VEC, filename_count), 'w', encoding='utf8') as f: for symbol, count in symbols_ordered_by_count: f.write(u'{} = {}\n'.format(symbol, count)) with io.open(os.path.join(DIR_DATA_WORD2VEC, filename_tsv), 'w', encoding='utf8') as f: f.write(u'word\tcount\tid\n') f.write(u'_UNKOWN_\t{}\t0\n'.format(len(unknown_symbols))) pos = 1 for symbol, count in known_symbols: f.write(u'{}\t{}\t{}\n'.format(symbol, count, pos)) pos += 1 return load_word2vec_data(filename) if __name__ == '__main__': import logging logging.getLogger().setLevel(logging.INFO) print('Generate text for Word2Vec model... (without using test data)') train_set = load_csv_dataset('train_set_numbers_parsed') genes_articles = load_csv_wikipedia_gen('wikipedia_mutations_parsed') word2vec_text = [s.text for s in genes_articles] + [s.text for s in train_set] symbols_dict, word2vec_encoded_text, word_frequency = load_or_create_dataset_word2vec( 'word2vec_dataset', word2vec_text) ```
{ "source": "jorgemfm27/AutoDepGraph", "score": 2 }
#### File: autodepgraph/tests/write_test_graphs.py ```python import autodepgraph as adg from autodepgraph.graph_v2 import AutoDepGraph_DAG import autodepgraph.node as n import networkx as nx import os ############################################ # This file generates and saves predefined # graphs used in the tests. ############################################ test_dir = os.path.join(adg.__path__[0], 'tests', 'test_data') # # Write graph for test_graph # nodeA = n.CalibrationNode('A') # nodeB = n.CalibrationNode('B') # nodeE = n.CalibrationNode('E') # nodeF = n.CalibrationNode('F') # a = g.Graph('new_graph') # a.add_node(nodeA) # a.add_node(nodeB) # a.add_node(nodeE) # a.add_node(nodeF) # nodeA.state('good') # nodeB.state('bad') # nodeE.state('unknown') # a.save_graph(os.path.join(test_dir, 'test_graph_new_nodes.yaml')) # # Write graph for test_visualization # nodeC = n.CalibrationNode('C') # nodeD = n.CalibrationNode('D') # nodeG = n.CalibrationNode('G') # nodeH = n.CalibrationNode('H') # a.add_node('C') # a.add_node('D') # a.add_node('G') # a.add_node('H') # nodeA.state('good') # nodeB.state('needs calibration') # nodeD.state('bad') # nodeE.state('unknown') # nodeF.state('good') # nodeC.state('active') # nodeD.add_parent('C') # nodeD.add_parent('A') # nodeE.add_parent('D') # nodeG.add_parent('F') # nodeC.add_parent('B') # nodeB.add_parent('A') # nodeG.add_parent('D') # nodeH.add_parent('G') # for node in a.nodes.values(): # node.calibrate_function('test_calibration_True') # nodeC.calibrate_function('NotImplementedCalibration') # nodeF.calibrate_function('NotImplementedCalibration') # a.save_graph(os.path.join(test_dir, 'test_graph_states.yaml')) # for node in a.nodes.values(): # node.close() # a.close() # def create_rabi_sims_example_graph(): # rmg = g.Graph('Rabi_sims_example_graph') # nodenames = ['mixer_offset', 'mixer_skewness', 'frequency_spec', # 'Amplitude_coarse', 'SSRO', 'frequency_ramsey', 'Motzoi', # 'Amplitude_fine', 'High_fidelity_single_qubit_gates', # 'High_readout_fidelity', 'Chevron_amp', 'Trotter_chevron', # 'Photon_meter', 'Wigner_tomography', 'Rabi_simulation'] # for nodename in nodenames: # rmg.add_node(nodename) # rmg.nodes[nodename].calibrate_function('test_calibration_True') # rmg.nodes[nodename].check_function('always_needs_calibration') # rmg.mixer_skewness.parents(['mixer_offset']) # rmg.Amplitude_coarse.parents(['frequency_spec', # 'mixer_offset', 'mixer_skewness']) # rmg.SSRO.parents(['Amplitude_coarse']) # rmg.frequency_ramsey.parents(['Amplitude_coarse', 'SSRO', # 'frequency_spec']) # rmg.Motzoi.parents(['Amplitude_coarse', 'frequency_ramsey']) # rmg.Amplitude_fine.parents(['Motzoi']) # rmg.High_fidelity_single_qubit_gates.parents( # ['Amplitude_fine', 'Motzoi', 'frequency_ramsey']) # rmg.High_readout_fidelity.parents( # ['High_fidelity_single_qubit_gates', 'SSRO']) # rmg.Chevron_amp.parents( # ['High_fidelity_single_qubit_gates', 'High_readout_fidelity']) # rmg.Trotter_chevron.parents(['Chevron_amp']) # rmg.Photon_meter.parents(['Trotter_chevron']) # rmg.Wigner_tomography.parents(['Photon_meter']) # rmg.Rabi_simulation.parents( # ['Wigner_tomography', 'Photon_meter', # 'High_fidelity_single_qubit_gates', 'High_readout_fidelity']) # rmg.save_graph(os.path.join(test_dir, 'rabi_sims_example_graph.yaml')) # create_rabi_sims_example_graph() class Qubit(): def __init__(self, name): self.name = name class Device(): def __init__(self, name, qubits): self.name = name self.qubits = qubits def create_dep_graph_single_qubit(self): print(self.name+' DAG') DAG = AutoDepGraph_DAG(name=self.name+' DAG') DAG.add_node(self.name+' resonator frequency') DAG.add_node(self.name+' frequency coarse') DAG.add_edge(self.name+' frequency coarse', self.name+' resonator frequency') DAG.add_node(self.name+' mixer offsets drive') DAG.add_node(self.name+' mixer skewness drive') DAG.add_node(self.name+' mixer offsets readout') DAG.add_node(self.name + ' pulse amplitude coarse') DAG.add_edge(self.name + ' pulse amplitude coarse', self.name+' frequency coarse') DAG.add_edge(self.name + ' pulse amplitude coarse', self.name+' mixer offsets drive') DAG.add_edge(self.name + ' pulse amplitude coarse', self.name+' mixer skewness drive') DAG.add_edge(self.name + ' pulse amplitude coarse', self.name+' mixer offsets readout') DAG.add_node(self.name+' T1') DAG.add_node(self.name+' T2-echo') DAG.add_node(self.name+' T2-star') DAG.add_edge(self.name + ' T1', self.name+' pulse amplitude coarse') DAG.add_edge(self.name + ' T2-echo', self.name+' pulse amplitude coarse') DAG.add_edge(self.name + ' T2-star', self.name+' pulse amplitude coarse') DAG.add_node(self.name+' frequency fine') DAG.add_edge(self.name + ' frequency fine', self.name+' pulse amplitude coarse') DAG.add_node(self.name + ' pulse amplitude med') DAG.add_edge(self.name + ' pulse amplitude med', self.name+' frequency fine') DAG.add_node(self.name + ' optimal weights') DAG.add_edge(self.name + ' optimal weights', self.name+' pulse amplitude med') DAG.add_node(self.name+' gates restless') DAG.add_edge(self.name + ' gates restless', self.name+' optimal weights') # easy to implement a check DAG.add_node(self.name+' frequency fine') DAG.add_node(self.name+' room temp. dist. corr.') DAG.add_node(self.name+' cryo dist. corr.') DAG.add_edge(self.name+' cryo dist. corr.', self.name+' room temp. dist. corr.') DAG.add_edge(self.name+' cryo dist. corr.', self.name+' gates restless') # DAG.add_node(self.name+' ') return DAG def create_dep_graph_device(self, dags): DAG = nx.compose_all(dags) DAG.add_node(self.name+' multiplexed readout') DAG.add_node(self.name+' resonator frequencies coarse') DAG.add_node('AWG8 MW-staircase') DAG.add_node('AWG8 Flux-staircase') DAG.add_node('Chevron q0-q1') DAG.add_node('Chevron q1-q2') DAG.add_node('CZ q0-q1') DAG.add_node('CZ q1-q2') DAG.add_edge('CZ q0-q1', 'Chevron q0-q1') DAG.add_edge('CZ q1-q2', 'Chevron q1-q2') DAG.add_edge('CZ q0-q1', 'q0 cryo dist. corr.') DAG.add_edge('CZ q0-q1', 'q1 cryo dist. corr.') DAG.add_edge('CZ q1-q2', 'q1 cryo dist. corr.') DAG.add_edge('CZ q1-q2', 'q2 cryo dist. corr.') DAG.add_edge('Chevron q0-q1', 'q0 gates restless') DAG.add_edge('Chevron q0-q1', 'AWG8 Flux-staircase') DAG.add_edge('Chevron q0-q1', 'q1 gates restless') DAG.add_edge('Chevron q0-q1', self.name+' multiplexed readout') DAG.add_edge('Chevron q1-q2', 'q0 gates restless') DAG.add_edge('Chevron q1-q2', 'AWG8 Flux-staircase') DAG.add_edge('Chevron q1-q2', 'q1 gates restless') DAG.add_edge('Chevron q1-q2', self.name+' multiplexed readout') for qubit in self.qubits: q_name = qubit.name DAG.add_edge(q_name+' room temp. dist. corr.', 'AWG8 Flux-staircase') DAG.add_edge(self.name+' multiplexed readout', q_name+' optimal weights') DAG.add_edge(q_name+' resonator frequency', self.name+' resonator frequencies coarse') DAG.add_edge(q_name+' pulse amplitude coarse', 'AWG8 MW-staircase') return DAG qubit_names = ['q0', 'q1', 'q2'] qubits = [] dags = [] for qubit_name in qubit_names: qi = Qubit(qubit_name) qubits.append(qi) dep_graph = create_dep_graph_single_qubit(qi) dags.append(dep_graph) device = Device('3 qubit device', qubits) device_dag = create_dep_graph_device(device, dags) for node, attrs in device_dag.nodes(True): attrs['calibrate_function'] = 'autodepgraph.node_functions.calibration_functions.test_calibration_True' device_dag.draw_svg() fn = os.path.join(test_dir, 'three_qubit_graph.yaml') nx.readwrite.write_yaml(device_dag, fn) ```
{ "source": "jorgeMFS/Defacer", "score": 3 }
#### File: src/WRFiles/FileWriter.py ```python import datetime import os import sys import time import nibabel as nib import nrrd import numpy as np from pydicom.dataset import Dataset, FileDataset class FileWriter(object): def __init__(self, file_name_path, np_array): self.save_file_path, self.save_file_name = self.path_file(file_name_path) self.np_array = np_array self.determine_format() @staticmethod def path_file(file_and_path): path, filename = os.path.split(file_and_path) return path, filename def determine_format(self): _, file_extension = os.path.splitext(self.save_file_name) if file_extension == '.nrrd': self.nrrd_writer() elif file_extension == ".dcm": self.dcm_writer() elif file_extension == ".nii": self.nibabel_writer() else: print("not supported file, please try dcm, nifti or nrrd file formats") sys.exit(0) def nrrd_writer(self): os.chdir(self.save_file_path) nrrd.write(self.save_file_name, self.np_array) def nibabel_writer(self): os.chdir(self.save_file_path) save_img = nib.Nifti1Image(self.np_array, affine=np.eye(4)) nib.save(save_img, filename=self.save_file_name) def dcm_writer(self): if self.np_array.ndim == 2: os.chdir(self.save_file_path) self.write_dicom(self.np_array, self.save_file_name) elif self.np_array.ndim == 3: os.chdir(self.save_file_path) self.create_multiple_files() @staticmethod def write_dicom(pixel_array, dcm_name): """ Input: pixel_array: 2D numpy ndarray. If pixel_array is larger than 2D, errors. filename: string name for the output file. """ file_meta = Dataset() file_meta.MediaStorageSOPClassUID = 'Secondary Capture Image Storage' file_meta.MediaStorageSOPInstanceUID = '1.3.6.1.4.1.9590.100.1.1.111165684411017669021768385720736873780' file_meta.ImplementationClassUID = '1.3.6.1.4.1.9590.100.1.0.100.4.0' ds = FileDataset(dcm_name, {}, file_meta=file_meta, preamble=b"\0" * 128) ds.Modality = 'WSD' ds.ContentDate = str(datetime.date.today()).replace('-', '') ds.ContentTime = str(time.time()) # milliseconds since the epoch ds.StudyInstanceUID = '1.3.6.1.4.1.9590.100.1.1.124313977412360175234271287472804872093' ds.SeriesInstanceUID = '1.3.6.1.4.1.9590.100.1.1.369231118011061003403421859172643143649' ds.SOPInstanceUID = '1.3.6.1.4.1.9590.100.1.1.111165684411017669021768385720736873780' ds.SOPClassUID = 'Secondary Capture Image Storage' ds.SecondaryCaptureDeviceManufctur = 'Python 3' # These are the necessary imaging components of the FileDataset object. ds.SamplesPerPixel = 1 ds.PhotometricInterpretation = "MONOCHROME2" ds.PixelRepresentation = 0 ds.HighBit = 15 ds.BitsStored = 16 ds.BitsAllocated = 16 ds.SmallestImagePixelValue = b'\\x00\\x00' ds.LargestImagePixelValue = b'\\xff\\xff' ds.Columns = pixel_array.shape[0] ds.Rows = pixel_array.shape[1] if pixel_array.dtype != np.uint16: pixel_array = pixel_array.astype(np.uint16) ds.PixelData = pixel_array.tostring() ds.save_as(dcm_name) return def create_multiple_files(self): array = self.np_array string_file_name, file_extension = os.path.splitext(self.save_file_name) index = np.where(array.shape == np.min(array.shape))[0] if index == 0: for it in range(np.min(array.shape)): px_array = array[it, :, :] ss = string_file_name + '_' + str(it) + file_extension self.write_dicom(pixel_array=px_array, dcm_name=ss) if index == 1: print(np.max(array.shape)) for it in range(np.min(array.shape)): px_array = array[:, it, :] ss = string_file_name + '_' + str(it) + file_extension self.write_dicom(pixel_array=px_array, dcm_name=ss) if index == 2: for it in range(np.min(array.shape)): px_array = array[:, :, it] ss = string_file_name + '_' + str(it) + file_extension self.write_dicom(pixel_array=px_array, dcm_name=ss) def main(): x = np.arange(16).reshape(16, 1) pixel_array = (x + x.T) * 32 pixel_array = np.tile(pixel_array, (16, 16)) file_path = '/home/mikejpeg/IdeaProjects/Defacer/image/results/dicom/pretty.dcm' FileWriter(file_name_path=file_path, np_array=pixel_array) return 0 if __name__ == '__main__': sys.exit(main()) ```
{ "source": "JorgeMGuimaraes/escalonador", "score": 3 }
#### File: JorgeMGuimaraes/escalonador/disco.py ```python from processo import Processo, estado estado_disco = { 'idle': 0, 'ocupado': 1 } ## classe class Disco: def __init__(self, id_disco) -> None: self.id_disco = id_disco # Refatorar, trocar esse estado por checar se processo is none, como no processador self.estado = estado_disco['idle'] self.processo_atual = None return def define_estado(self, novo_estado: int) -> None: self.estado = novo_estado return def disponivel(self) -> bool: return self.processo_atual == None def gravar(self) -> bool: if self.disponivel(): return False return True def define_processo_atual(self, processo: Processo) -> None: self.processo_atual = processo # TODO: ver se podemos remover esse print print(f'Disco {self.id_disco} foi atribuido ao Processo {processo.id_processo}') return def pode_agregar(self, processo: Processo) -> bool: if self.processo_atual is None and processo.discos > 0: processo.discos -= 1 self.define_processo_atual(processo) return True return False def liberar(self): self.processo_atual = None return ``` #### File: JorgeMGuimaraes/escalonador/estado_processo.py ```python from processo import Processo from typing import List ## classes class EstadoProcesso: def __init__(self, atual: List[Processo], proximo: List[Processo], estado:int, msg_padrao: str) -> None: self.atual = atual self.proximo = proximo self.msg_padrao = msg_padrao self.estado = estado return def neste(self, processo: Processo): self.proximo.append(processo) self.atual.remove(processo) processo.estado = self.estado return f'Processo {processo.id_processo}: {self.msg_padrao}' ``` #### File: JorgeMGuimaraes/escalonador/sistema_operacional.py ```python import io from escalonador import Escalonador from processo import Processo from recursos import Recursos from typing import List ## classes ## definicoes def processa_entrada(quantum: int) -> List[Processo]: filename ='entrada' contador_processos = 0 processos = [] with open(file=filename,mode='r') as arquivo: for linha in arquivo: if linha.startswith('#') or linha == '\n' or linha == '': continue valores = linha.split(',') chegada = int(valores[0].strip()) prioridade = int(valores[1].strip()) duracao = int(valores[2].strip()) memoria = int(valores[3].strip()) discos = int(valores[4].strip()) entrada = Processo( id_processo = contador_processos, chegada = chegada, prioridade = prioridade, duracao = duracao, memoria = memoria, discos = discos ) entrada.define_quantum(quantum) processos.append(entrada) contador_processos += 1 return processos def imprime_header(quantum: int) -> None: espacamento = ' ' s = 'Estado Atual:\n' s += f'Quantum: {quantum}\n' print(s) return def main(): # TODO: pegar valores do usuário quantum = 2 contador_quanta = 0 cpus = 4 discos = 4 memoria = 16 * 1024 recursos = Recursos(cpus, discos, memoria) escalonador = Escalonador(recursos, processa_entrada(quantum)) escalonador.imprime_processos_recebidos() print() while escalonador.continuar_processando(): imprime_header(contador_quanta) escalonador.ativa_prontos_suspensos() escalonador.executa_leitura_gravacao() escalonador.reserva_discos() escalonador.instanciar_processos(contador_quanta) escalonador.admitir_processos() escalonador.despachar() escalonador.processar_threads() escalonador.atualiza_estado_idle(contador_quanta) recursos.imprime_processadores() recursos.imprime_memoria() recursos.imprime_discos() escalonador.imprime_log_processos() escalonador.imprime_andamento(contador_quanta) contador_quanta += 1 _ = input() return ## Programa principal if __name__ == "__main__": main() ```
{ "source": "JorgeMiguelGomes/pimpmypython", "score": 2 }
#### File: JorgeMiguelGomes/pimpmypython/app.py ```python import random import pandas as pd import numpy as np # Import Dash and Dash Bootstrap Components import dash import dash_daq as daq from dash import Input, Output, dcc, html import dash_bootstrap_components as dbc # _________________________________________ import plotly.express as px app = dash.Dash( external_stylesheets=[dbc.themes.CYBORG], #suppress_callback_exceptions=True, meta_tags=[{"name": "viewport", "content": "width=device-width, initial-scale=1"}], ) app.layout = html.Div( dbc.Container( html.Div([ html.H4('PIMP MY PYTHON'), html.Div(html.H4(id='ip')), html.Div(html.H2(id='a')), html.Div(id='b'), html.Div(id='c'), html.Div(id='d'), dcc.Graph(id='graph'), dcc.Interval( id='component', interval=1*1000, # in milliseconds n_intervals=0 ) ]) ) ) @app.callback( Output(component_id="ip",component_property="children"), Output(component_id="a",component_property="children"), Output(component_id="b",component_property="children"), Output(component_id="c",component_property="children"), Output(component_id="d",component_property="children"), Output(component_id="graph",component_property="figure"), Input(component_id="component",component_property="n_intervals") ) def update(component): a = str(random.randint(1, 254)) b = str(random.randint(1, 254)) c = str(random.randint(1, 254)) d = str(random.randint(1, 254)) dot = "." ip = a + dot + b + dot + c + dot + d a1 = str(random.randint(1, 1400)) b1 = str(random.randint(1, 700)) c1 = str(random.randint(1, 800)) d1 = str(random.randint(1, 1240)) fig = px.pie(names=['resistance','threath','exploit','profit'], values=[c1, d1, b1, d1], template='plotly_dark',hole=0.6, color_discrete_sequence=px.colors.sequential.Viridis) return ip,a,b,c,d,fig if __name__ == "__main__": app.run_server(debug=True, port=8888) # END APP ```
{ "source": "jorgemira/Calories", "score": 3 }
#### File: calories/deploy/gunicorn.py ```python import multiprocessing from abc import ABC from gunicorn.app.base import BaseApplication from calories.main import cfg def number_of_workers(): return (multiprocessing.cpu_count() * 2) + 1 class StandaloneApplication(BaseApplication, ABC): def __init__(self, app, options=None): self.options = options or {} self.application = app super().__init__() def load_config(self): config = { key: value for key, value in self.options.items() if key in self.cfg.settings and value is not None } for key, value in config.items(): self.cfg.set(key.lower(), value) def load(self): return self.application def run(app): options = { "bind": "%s:%s" % (cfg.ADDRESS, cfg.PORT), "workers": number_of_workers(), "keyfile": cfg.KEYFILE, # 'certs/server.key', "certfile": cfg.CERTFILE, # 'certs/server.crt', "ca-certs": cfg.CACERTS, # 'certs/ca-crt.pem', "cert-reqs": 2, } return StandaloneApplication(app, options).run() ``` #### File: controller/helpers/__init__.py ```python class RequestError(Exception): def __init__(self, message: str, code: int): self.message = message self.code = code class BadRequest(RequestError): def __init__(self, message: str): super().__init__(message, 400) class Unauthorized(RequestError): def __init__(self, message: str): super().__init__(message, 401) class Forbidden(RequestError): def __init__(self, message: str): super().__init__(message, 403) class NotFound(RequestError): def __init__(self, message: str): super().__init__(message, 404) class Conflict(RequestError): def __init__(self, message: str): super().__init__(message, 409) ``` #### File: main/controller/meals.py ```python from flask import abort from calories.main import logger from calories.main.controller import ResponseType, RequestBodyType from calories.main.controller.helpers import RequestError from calories.main.controller.helpers.auth import is_allowed from calories.main.controller.helpers.meals import ( get_meals, get_meal, crt_meal, updt_meal, dlt_meals, ) from calories.main.models.models import Role @is_allowed(roles_allowed=[Role.USER], only_allow_self=True) def read_meals( user: str, username: str, filter_results: str = None, items_per_page: int = 10, page_number: int = 1, ) -> ResponseType: """Read the list of meals for a given user :param user: The user that requests the action :param username: User to return al his meals :param filter_results: Filter string for the results :param items_per_page: Number of items of every page, defaults to 10 :param page_number: Page number of the results defaults to 1 """ try: data, pagination = get_meals( username, filter_results, items_per_page, page_number ) except RequestError as e: data = pagination = None logger.warning(e.message) abort(e.code, e.message) logger.info( f"User: '{user}', read meals for user: '{username}'," f" filter: '{filter_results}', itemsPerPage: '{items_per_page}'," f" pageNumber: '{page_number}'" ) return ( { "status": 200, "title": "Success", "detail": f"List of meals succesfully read for user: '{username}'", "data": data, "num_pages": pagination.num_pages, "total_result": pagination.total_results, }, 200, ) @is_allowed(roles_allowed=[Role.USER], only_allow_self=True) def read_meal(user: str, username: str, meal_id: int) -> ResponseType: """Read a meal that belongs to a user :param user: The user that requests the action :param username: Username to read his meal :param meal_id: Id of the meal """ try: data = get_meal(username, meal_id) except RequestError as e: data = None logger.warning(e.message) abort(e.code, e.message) logger.info(f"User: '{user}' read meal: '{meal_id}' of user: '{username}'") return ( { "status": 200, "title": "Success", "detail": f"Meal: '{meal_id}' of user: '{username}' succesfully read", "data": data, }, 200, ) @is_allowed(roles_allowed=[Role.USER], only_allow_self=True) def create_meal(user: str, username: str, body: RequestBodyType) -> ResponseType: """Create a meal :param user: User that requests the action :param username: User whose meal is going to be created :param body: Information about the new meal :return: A success message if the meal was found or a 400 error if any parameter was wrong """ try: data = crt_meal(username, body) except RequestError as e: data = None logger.warning(e.message) abort(e.code, e.message) logger.info( f"User: '{user}' created meal: '{data.get('id')}' for user: '{username}'" ) return ( { "status": 201, "title": "Success", "detail": f"Meal: '{data.get('id')}' of user: '{username}' " f"succesfully created", "data": data, }, 201, ) @is_allowed(roles_allowed=[Role.USER], only_allow_self=True) def update_meal( user: str, username: str, meal_id: int, body: RequestBodyType ) -> ResponseType: """Update a meal :param user: User that requests the action :param username: User whose meal is going to be updated :param meal_id: Meal id to update :param body: New body of the updated meal :return: A success message if the meal was found or a 404 error if either the user or the meal does not exist """ try: data = updt_meal(username, meal_id, body) except RequestError as e: data = None logger.warning(e.message) abort(e.code, e.message) logger.info(f"User: '{user}' updated meal: '{meal_id}' for user: '{username}'") return ( { "status": 200, "title": "Success", "detail": f"Meal: '{meal_id}' of user: '{username}' succesfully updated", "data": data, }, 200, ) @is_allowed(roles_allowed=[Role.USER], only_allow_self=True) def delete_meal(user: str, username: str, meal_id: int) -> ResponseType: """Delete a meal :param user: User that requests the action :param username: User whose meal is going to be deleted :param meal_id: Meal id to delete :return: A success message if the meal was found or a 404 error if either the user or the meal does not exist """ try: dlt_meals(username, meal_id) except RequestError as e: logger.warning(e.message) abort(e.code, e.message) logger.info(f"User: '{user}' deleted meal: '{meal_id}' for user: '{username}'") return ( { "status": 200, "title": "Success", "detail": f"Meal: '{meal_id}' of user: '{username}' succesfully deleted", "data": None, }, 200, ) ``` #### File: main/models/models.py ```python from enum import Enum from sqlalchemy.ext.hybrid import hybrid_property from werkzeug.security import generate_password_hash from calories.main import db, ma class Role(str, Enum): """Enum for Role types""" USER = "USER" MANAGER = "MANAGER" ADMIN = "ADMIN" class User(db.Model): """Database Model Class for users""" __tablename__ = "user" id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(32), unique=True) _password = db.Column("password", db.String(128)) name = db.Column(db.String(128)) email = db.Column(db.String(128)) role = db.Column(db.Enum(Role)) daily_calories = db.Column(db.Integer) meals = db.relationship( "Meal", backref="user", cascade="all, delete, delete-orphan", single_parent=True, ) @hybrid_property def password(self): return self._password @password.setter def password(self, plaintext: str): self._password = generate_password_hash(plaintext) class Meal(db.Model): """Database Model Class for meals""" __tablename__ = "meal" id = db.Column(db.Integer, primary_key=True) user_id = db.Column(db.Integer, db.ForeignKey("user.id")) date = db.Column(db.Date) time = db.Column(db.Time) name = db.Column(db.String(128)) grams = db.Column(db.Integer, default=0) description = db.Column(db.String) calories = db.Column(db.Integer, default=0) under_daily_total = db.Column(db.Boolean, default=True) class UserSchema(ma.ModelSchema): class Meta: model = User sqla_session = db.session class MealSchema(ma.ModelSchema): class Meta: model = Meal sqla_session = db.session ``` #### File: main/util/external_apis.py ```python import requests from calories.main import cfg, logger def calories_from_nutritionix(meal: str) -> int: """Query Nutritionix API to get the calories information of a meal :param meal: Name of the meal :return: The calories of the specified meal """ auth = {"appId": cfg.NTX_APP_ID, "appKey": cfg.NTX_API_KEY} try: food_info = requests.get( "/".join([cfg.NTX_BASE_URL, "search", meal]), params={**auth, "results": "0:1"}, ).json() except (requests.RequestException, ValueError) as e: logger.warning( f"Exception happened while trying to get calories for '{meal}': {e} " ) return 0 if not food_info.get("total_hits", None): return 0 try: meal_id = food_info["hits"][0]["fields"]["item_id"] except LookupError as e: logger.warning( f"Exception happened while trying to get calories for '{meal}': {e} " ) return 0 try: food_info = requests.get( "/".join([cfg.NTX_BASE_URL, "item"]), params={**auth, "id": meal_id} ).json() except (requests.RequestException, ValueError) as e: logger.warning( f"Exception happened while trying to get calories for '{meal}': {e} " ) return 0 logger.info(f"Successfully read calories from Nutrionix API for meal: '{meal}'") return food_info.get("nf_calories", 0) ``` #### File: main/util/filters.py ```python import re from fiql_parser import parse_str_to_expression, FiqlException from sqlalchemy_filters import apply_filters, apply_pagination from sqlalchemy_filters.exceptions import FieldNotFound, BadFilterFormat from werkzeug.exceptions import abort def to_fiql(filter_spec: str): """Transform a filter specification in out format to Fiql""" transformations = [ (r"\beq\b", r"=="), (r"\bne\b", r"!="), (r"\bgt\b", r"=gt="), (r"\bge\b", r"=ge="), (r"\blt\b", r"=lt="), (r"\ble\b", r"=le="), (r"\band\b", r";"), (r"\bor\b", r","), (r'"', r"'"), (r"\s", r""), ] for a, b in transformations: filter_spec = re.sub(a, b, filter_spec, flags=re.I) return parse_str_to_expression(filter_spec).to_python() def to_sql_alchemy(filter_spec): """Transform a Fiql object into a SQLAlchemy filter expression :param filter_spec: Fiql object containing the filter :type filter_spec: dict :return: The SQLAlchemy filter expression """ if None in filter_spec: raise FiqlException if isinstance(filter_spec, tuple): if "'" in filter_spec[2]: value = filter_spec[2].replace("'", "") else: try: value = int(filter_spec[2]) except ValueError: value = filter_spec[2] return {"field": filter_spec[0], "op": filter_spec[1], "value": value} if isinstance(filter_spec, list): return {filter_spec[0].lower(): [to_sql_alchemy(e) for e in filter_spec[1:]]} def apply_filter( query: str, filter_spec: str = None, page_size: int = 10, page_number: int = 1 ): """Apply filtering and pagination to any given query :param query: Query to apply filtering to :param filter_spec: Filter to apply to the query :param page_size: Page size used for pagination :param page_number: Page number used for pagination :return: The query after applying the filter and pagination options selected, and the pagination information :rtype: tuple """ if filter_spec: try: query = apply_filters(query, to_sql_alchemy(to_fiql(filter_spec))) except (FiqlException, FieldNotFound, BadFilterFormat): abort(400, f"Filter '{filter_spec}' is invalid") query, pagination = apply_pagination( query, page_number=page_number, page_size=page_size ) return query, pagination ``` #### File: test/controller/__init__.py ```python import json import unittest from typing import Dict, Union, List, Any from urllib.parse import quote from calories.test import BaseTestCase HeaderType = Dict[str, str] class TestAPI(BaseTestCase): def setUp(self): super().setUp() self.path = 'api' def delete(self, path: str, headers: HeaderType = None): return self.client.delete(path, content_type='application/json', headers=headers) def get(self, path: str, headers: HeaderType = None): return self.client.get(path, content_type='application/json', headers=headers) def post(self, path: str, data: HeaderType, headers: HeaderType = None): return self.client.post(path, data=json.dumps(data), content_type='application/json', headers=headers) def put(self, path: str, data, headers: HeaderType = None): return self.client.put(path, data=json.dumps(data), content_type='application/json', headers=headers) def _login(self, username: str = 'admin', password: str = '<PASSWORD>') -> str: path = 'api/login' request_data = {'username': username, 'password': password} response = self.post(path, request_data) data = json.loads(response.data.decode()) return data['Authorization'] def _get_headers(self, username: str = 'admin', password: str = '<PASSWORD>') -> HeaderType: return {'accept': 'application/json', 'Authorization': f'Bearer {self._login(username, password)}'} def _check_error(self, response: ..., code: int, title: str, detail: str) -> None: data = json.loads(response.data.decode()) self.assertEqual(data['status'], code) self.assertEqual(data['title'], title) self.assertEqual(data['detail'], detail) self.assertEqual(response.content_type, 'application/problem+json') self.assertEqual(response.status_code, code) def _check_succes(self, expected: Any, response: ..., code: int) -> None: data = json.loads(response.data.decode()) self.assertEqual(data['status'], code) self.assertEqual(data['title'], 'Success') self.assertEqual(data['data'], expected) self.assertEqual(response.content_type, 'application/json') self.assertEqual(response.status_code, code) ``` #### File: test/controller/test_users.py ```python import unittest from urllib.parse import quote from calories.test.controller import TestAPI class TestUsers(TestAPI): """Test class for calories.main.controller.users""" def test_get_all_users_unauthenticated(self): """Unauthenticated request""" path = "/".join([self.path, "users"]) with self.client: response = self.get(path, None) self._check_error( response, 401, "Unauthorized", "No authorization token provided" ) def test_get_all_users_success_admin(self): """Successful request as admin""" path = "/".join([self.path, "users"]) with self.client: expected = [ { "daily_calories": 0, "email": "<EMAIL>", "name": "Administrator", "role": "ADMIN", "username": "admin", }, { "daily_calories": 2000, "email": "<EMAIL>", "name": "<NAME>", "role": "MANAGER", "username": "manager1", }, { "daily_calories": 4000, "email": "<EMAIL>", "name": "<NAME>", "role": "MANAGER", "username": "manager2", }, { "daily_calories": 2500, "email": "<EMAIL>", "name": "User 1", "role": "USER", "username": "user1", }, { "daily_calories": 3000, "email": "<EMAIL>", "name": "User 2", "role": "USER", "username": "user2", }, ] response = self.get(path, self._get_headers()) self._check_succes(expected, response, 200) def test_get_all_users_user_not_allowed(self): """User is not allowed to see user list""" path = "/".join([self.path, "users"]) with self.client: response = self.get(path, self._get_headers("user1", "pass_user1")) self._check_error( response, 403, "Forbidden", "User 'user1' belongs to the role 'USER' and is not allowed to perform the action", ) def test_get_all_users_manager_allowed(self): """Manager is allowed to see user list""" path = "/".join([self.path, "users"]) with self.client: expected = [ { "daily_calories": 0, "email": "<EMAIL>", "name": "Administrator", "role": "ADMIN", "username": "admin", }, { "daily_calories": 2000, "email": "<EMAIL>", "name": "<NAME>", "role": "MANAGER", "username": "manager1", }, { "daily_calories": 4000, "email": "<EMAIL>", "name": "<NAME>", "role": "MANAGER", "username": "manager2", }, { "daily_calories": 2500, "email": "<EMAIL>", "name": "User 1", "role": "USER", "username": "user1", }, { "daily_calories": 3000, "email": "<EMAIL>", "name": "User 2", "role": "USER", "username": "user2", }, ] response = self.get(path, self._get_headers("manager1", "pass_manager1")) self._check_succes(expected, response, 200) def test_get_all_users_manager_allowed_first_page(self): """Manager is allowed to see user list, test pagination: first page""" path = "/".join([self.path, "users"]) with self.client: expected = [ { "daily_calories": 0, "email": "<EMAIL>", "name": "Administrator", "role": "ADMIN", "username": "admin", }, { "daily_calories": 2000, "email": "<EMAIL>", "name": "<NAME>", "role": "MANAGER", "username": "manager1", }, ] paged_path = path + "?items_per_page=2&page_number=1" response = self.get( paged_path, self._get_headers("manager1", "pass_manager1") ) self._check_succes(expected, response, 200) def test_get_all_users_manager_allowed_last_page(self): """Manager is allowed to see user list, test pagination: last page""" path = "/".join([self.path, "users"]) with self.client: expected = [ { "daily_calories": 3000, "email": "<EMAIL>", "name": "<NAME>", "role": "USER", "username": "user2", } ] paged_path = path + "?items_per_page=2&page_number=3" response = self.get( paged_path, self._get_headers("manager1", "pass_manager1") ) self._check_succes(expected, response, 200) def test_get_all_users_manager_allowed_beyond_last_page(self): """Manager is allowed to see user list, test pagination: beyond last page""" path = "/".join([self.path, "users"]) with self.client: expected = [] paged_path = path + "?items_per_page=2&page_number=20" response = self.get( paged_path, self._get_headers("manager1", "pass_manager1") ) self._check_succes(expected, response, 200) def test_get_all_users_manager_allowed_filtering1(self): """Manager is allowed to see user list, filtering 1""" path = "/".join([self.path, "users"]) with self.client: expected = [ { "daily_calories": 3000, "email": "<EMAIL>", "name": "User 2", "role": "USER", "username": "user2", } ] filtered_path = ( path + "?filter_results=" + quote( "(username ne 'user1') AND " "((daily_calories gt 2200) AND (daily_calories lt 3500))" ) ) response = self.get( filtered_path, self._get_headers("manager1", "pass_manager1") ) self._check_succes(expected, response, 200) def test_get_all_users_manager_allowed_filtering2(self): """Manager is allowed to see user list, filtering 2""" path = "/".join([self.path, "users"]) with self.client: filtered_path = path + "?filter_results=" + quote("wrongfilter") response = self.get( filtered_path, self._get_headers("manager1", "pass_manager1") ) self._check_error( response, 400, "Bad Request", "Filter 'wrongfilter' is invalid" ) def test_post_user_unauthenticated(self): """Unauthenticated request""" path = "/".join([self.path, "users"]) with self.client: request_data = {"username": "admin", "password": "<PASSWORD>"} response = self.post(path, request_data, None) self._check_error( response, 401, "Unauthorized", "No authorization token provided" ) def test_post_user_missing_parameters(self): """Request missing parameters""" path = "/".join([self.path, "users"]) with self.client: request_data = {"username": "admin", "password": "<PASSWORD>"} response = self.post(path, request_data, self._get_headers()) self._check_error( response, 400, "Bad Request", "'name' is a required property" ) def test_post_user_correct_request(self): """Correct request""" path = "/".join([self.path, "users"]) with self.client: request_data = { "username": "user3", "name": "User 3", "email": "<EMAIL>", "role": "USER", "daily_calories": 2500, "password": "<PASSWORD>", } expected = request_data.copy() expected.pop("password") response = self.post(path, request_data, self._get_headers()) self._check_succes(expected, response, 201) def test_post_user_username_exists(self): """Username exists""" path = "/".join([self.path, "users"]) with self.client: request_data = { "username": "user1", "name": "User 1", "email": "<EMAIL>", "role": "USER", "daily_calories": 2500, "password": "<PASSWORD>", } response = self.post(path, request_data, self._get_headers()) self._check_error(response, 409, "Conflict", "User 'user1' exists already") def test_post_user_user_add_user(self): """Role user tries to add user""" path = "/".join([self.path, "users"]) with self.client: request_data = { "username": "user4", "name": "User 4", "email": "<EMAIL>", "role": "USER", "daily_calories": 2500, "password": "<PASSWORD>", } response = self.post( path, request_data, self._get_headers("user1", "pass_user1") ) self._check_error( response, 403, "Forbidden", "User 'user1' belongs to the role 'USER' and is not allowed to perform the action", ) def test_post_user_manager_add_user(self): """Manager tries to add a user""" path = "/".join([self.path, "users"]) with self.client: request_data = { "username": "user4", "name": "<NAME>", "email": "<EMAIL>", "role": "USER", "daily_calories": 2500, "password": "<PASSWORD>", } expected = request_data.copy() expected.pop("password") response = self.post( path, request_data, self._get_headers("manager1", "pass_manager1") ) self._check_succes(expected, response, 201) def test_delete_user_unauthenticated(self): """Unauthenticated request""" path = "/".join([self.path, "users"]) with self.client: response = self.delete("/".join([path, "user1"]), None) self._check_error( response, 401, "Unauthorized", "No authorization token provided" ) def test_delete_user_user_not_allowed(self): """User cannot delete other users""" path = "/".join([self.path, "users"]) with self.client: response = self.delete( "/".join([path, "manager1"]), self._get_headers("user1", "pass_user1") ) self._check_error( response, 403, "Forbidden", "User 'user1' belongs to the role 'USER' and is not allowed to perform the action", ) def test_delete_user_user_himself(self): """User can delete himself""" path = "/".join([self.path, "users"]) with self.client: expected = None response = self.delete( "/".join([path, "user1"]), self._get_headers("user1", "pass_user1") ) self._check_succes(expected, response, 200) def test_delete_user_manager_to_manager(self): """Managers cannot delete managers""" path = "/".join([self.path, "users"]) with self.client: response = self.delete( "/".join([path, "manager2"]), self._get_headers("manager1", "pass_manager1"), ) self._check_error( response, 403, "Forbidden", "User 'manager1' can only delete users with role USER", ) def test_delete_user_not_exists(self): """Error deleting non existing user""" path = "/".join([self.path, "users"]) with self.client: response = self.delete( "/".join([path, "user4"]), self._get_headers("manager1", "pass_manager1"), ) self._check_error(response, 404, "Not Found", "User 'user4' not found") def test_get_user_unauthenticated(self): """Unauthenticated request""" path = "/".join([self.path, "users"]) with self.client: response = self.get("/".join([path, "user1"]), None) self._check_error( response, 401, "Unauthorized", "No authorization token provided" ) def test_get_user_user_other(self): """User cannot get other users""" path = "/".join([self.path, "users"]) with self.client: response = self.get( "/".join([path, "manager1"]), self._get_headers("user1", "pass_user1") ) self._check_error( response, 403, "Forbidden", "User 'user1' belongs to the role 'USER' and is not allowed to perform the action", ) def test_get_user_himself(self): """User can get himself request""" path = "/".join([self.path, "users"]) with self.client: expected = { "daily_calories": 2500, "email": "<EMAIL>", "name": "User 1", "role": "USER", "username": "user1", } response = self.get( "/".join([path, "user1"]), self._get_headers("user1", "pass_user1") ) self._check_succes(expected, response, 200) def test_get_user_manager_users(self): """User managers can get users""" path = "/".join([self.path, "users"]) with self.client: expected = { "daily_calories": 4000, "email": "<EMAIL>", "name": "<NAME>", "role": "MANAGER", "username": "manager2", } response = self.get( "/".join([path, "manager2"]), self._get_headers("manager1", "pass_manager1"), ) self._check_succes(expected, response, 200) def test_get_user_error_not_found(self): """Error getting non existing user""" path = "/".join([self.path, "users"]) with self.client: response = self.get( "/".join([path, "user3"]), self._get_headers("manager1", "pass_manager1"), ) self._check_error(response, 404, "Not Found", "User 'user3' not found") def test_put_user_unauthenticated(self): """Unauthenticated request""" path = "/".join([self.path, "users"]) with self.client: request_data = {"username": "admin", "password": "<PASSWORD>"} response = self.put("/".join([path, "user1"]), request_data, None) self._check_error( response, 401, "Unauthorized", "No authorization token provided" ) def test_put_user_user_other_users(self): """User cannot get other users""" path = "/".join([self.path, "users"]) with self.client: request_data = {"username": "admin", "password": "<PASSWORD>"} response = self.put( "/".join([path, "manager1"]), request_data, self._get_headers("user1", "pass_user1"), ) self._check_error( response, 403, "Forbidden", "User 'user1' belongs to the role 'USER' and is not allowed to perform the action", ) def test_put_user_user_himself(self): """User can put himself""" path = "/".join([self.path, "users"]) with self.client: expected = { "daily_calories": 2500, "email": "<EMAIL>", "name": "User 1A", "role": "USER", "username": "user1a", } request_data = { "username": "user1a", "password": "<PASSWORD>", "name": "User 1A", } response = self.put( "/".join([path, "user1"]), request_data, self._get_headers("user1", "pass_user1"), ) self._check_succes(expected, response, 200) def test_put_user_manager_user(self): """User managers can put users""" path = "/".join([self.path, "users"]) with self.client: expected = { "daily_calories": 2500, "email": "<EMAIL>", "name": "User 1", "role": "USER", "username": "user1", } request_data = {"password": "<PASSWORD>"} response = self.put( "/".join([path, "user1"]), request_data, self._get_headers("manager1", "pass_manager1"), ) self._check_succes(expected, response, 200) def test_put_user_non_existing(self): """Error getting non existing user""" path = "/".join([self.path, "users"]) with self.client: request_data = {"password": "<PASSWORD>"} response = self.put( "/".join([path, "user3"]), request_data, self._get_headers("manager1", "pass_manager1"), ) self._check_error(response, 404, "Not Found", "User 'user3' not found") if __name__ == "__main__": unittest.main() ``` #### File: test/util/test_filters.py ```python import unittest from sqlalchemy_filters.exceptions import InvalidPage from werkzeug.exceptions import BadRequest from calories.main.models.models import User from calories.main.util.filters import apply_filter from calories.test import BaseTestCase class TestExternalAPIs(BaseTestCase): """Test class for calories.main.util.filters""" def setUp(self): super().setUp() self.users = User.query.order_by(User.username) def test_filters_eq(self): """Test filtering eq operator""" query, pagination = apply_filter(self.users, "username eq user1") filtered = query.all() self.assertEqual(len(filtered), 1) self.assertEqual(filtered[0].username, "user1") self.assertEqual(pagination.num_pages, 1) self.assertEqual(pagination.total_results, 1) def test_filters_ne(self): """Test filtering ne operator""" query, pagination = apply_filter(self.users, "username ne user1") filtered = query.all() self.assertEqual(len(filtered), 4) self.assertEqual(filtered[0].username, "admin") self.assertEqual(filtered[1].username, "manager1") self.assertEqual(filtered[2].username, "manager2") self.assertEqual(filtered[3].username, "user2") self.assertEqual(pagination.num_pages, 1) self.assertEqual(pagination.total_results, 4) def test_filters_and(self): """Test filtering and operator""" query, pagination = apply_filter( self.users, "username ne 'user1' AND daily_calories lt 2000" ) filtered = query.all() self.assertEqual(len(filtered), 1) self.assertEqual(filtered[0].username, "admin") self.assertEqual(pagination.num_pages, 1) self.assertEqual(pagination.total_results, 1) def test_filters_complex(self): """Test filtering with complex filter""" query, pagination = apply_filter( self.users, "username ne 'user1' AND (daily_calories lt 3000 AND " "daily_calories gt 1000)", ) filtered = query.all() self.assertEqual(len(filtered), 1) self.assertEqual(filtered[0].username, "manager1") self.assertEqual(pagination.num_pages, 1) self.assertEqual(pagination.total_results, 1) def test_filters_no_results(self): """Test filtering returning no results""" query, pagination = apply_filter(self.users, "username eq 'wronguser'") filtered = query.all() self.assertEqual(len(filtered), 0) self.assertEqual(pagination.num_pages, 0) self.assertEqual(pagination.total_results, 0) def test_filters_wrong_field(self): """Test filtering providing wrong fields""" with self.assertRaises(BadRequest): apply_filter(self.users, "wrongfield eq 'wronguser'") def test_filters_wrong_filter(self): """Test filtering providing wrong filters""" with self.assertRaises(BadRequest): apply_filter(self.users, "wrongfilter") def test_pagination_1_2(self): """Test pagination page_number=1 and page_size=2""" query, pagination = apply_filter(self.users, page_number=1, page_size=2) filtered = query.all() self.assertEqual(len(filtered), 2) self.assertEqual(filtered[0].username, "admin") self.assertEqual(filtered[1].username, "manager1") self.assertEqual(pagination.num_pages, 3) self.assertEqual(pagination.total_results, 5) def test_pagination_2_2(self): """Test pagination page_number=2 and page_size=2""" query, pagination = apply_filter(self.users, page_number=2, page_size=2) filtered = query.all() self.assertEqual(len(filtered), 2) self.assertEqual(filtered[0].username, "manager2") self.assertEqual(filtered[1].username, "user1") self.assertEqual(pagination.num_pages, 3) self.assertEqual(pagination.total_results, 5) def test_pagination_3_2(self): """Test pagination page_number=3 and page_size=2""" query, pagination = apply_filter(self.users, page_number=3, page_size=2) filtered = query.all() self.assertEqual(len(filtered), 1) self.assertEqual(filtered[0].username, "user2") self.assertEqual(pagination.num_pages, 3) self.assertEqual(pagination.total_results, 5) def test_pagination_4_2(self): """Test pagination page_number=4 and page_size=2""" query, pagination = apply_filter(self.users, page_number=4, page_size=2) filtered = query.all() self.assertEqual(len(filtered), 0) self.assertEqual(pagination.num_pages, 3) self.assertEqual(pagination.total_results, 5) def test_pagination_0_2(self): """Test pagination invalid page_number=0 and page_size=2""" with self.assertRaises(InvalidPage): apply_filter(self.users, page_number=0, page_size=2) if __name__ == "__main__": unittest.main() ```
{ "source": "jorgemira/euler-py", "score": 4 }
#### File: jorgemira/euler-py/p005.py ```python from fractions import gcd RESULT = 232792560 def lcm(num1, num2): '''Return least common multiple of two numbers''' return num1 * num2 // gcd(num1, num2) def lcmm(numbers): '''Return least common multiple of a list of numbers''' return reduce(lcm, numbers) def solve(): '''Main function''' max_num = 20 return lcmm(xrange(1, max_num)) if __name__ == '__main__': print solve() ``` #### File: jorgemira/euler-py/p007.py ```python from utils import is_prime RESULT = 104743 def solve(): '''Main function''' count = 0 num = 1 nth_num = 10001 while count < nth_num: num += 1 if is_prime(num): count += 1 return num if __name__ == '__main__': print solve() ``` #### File: jorgemira/euler-py/p009.py ```python RESULT = 31875000 def solve(): '''Main function''' total = 1000 for num_a in xrange(1, 251): num_b = num_a + 1 while num_b < (total - num_a - num_b): num_c = total - num_a - num_b if num_a**2 + num_b**2 == num_c**2: return num_a * num_b * num_c num_b += 1 if __name__ == '__main__': print solve() ``` #### File: jorgemira/euler-py/p010.py ```python from utils import eratosthenes2 RESULT = 142913828922 def solve(): '''Main function''' max_primes = 2000000 return sum(eratosthenes2(max_primes)) if __name__ == '__main__': print solve() ``` #### File: jorgemira/euler-py/p011.py ```python from utils import mul, slurp_file RESULT = 70600674 def solve(): '''Main function''' grid = [] res = 0 max_adj = 4 text = slurp_file('p011.txt') for row in text.split('\n'): grid.append([int(x) for x in row.split(' ')]) len_grid = len(grid) # Horizontal for i in xrange(len_grid): for j in xrange(len_grid - max_adj): res = max(res, mul([grid[i][j+x] for x in xrange(max_adj)])) # Vertical for i in xrange(len_grid): for j in xrange(len_grid - max_adj): res = max(res, mul([grid[j+x][i] for x in xrange(max_adj)])) # Diag 1 for i in xrange(len_grid - max_adj): for j in xrange(len_grid - max_adj): res = max(res, mul([grid[i + x][j + x] for x in xrange(max_adj)])) # Diag 2 for i in xrange(max_adj - 1, len_grid - max_adj): for j in xrange(len_grid - max_adj): res = max(res, mul([grid[i - x][j + x] for x in xrange(max_adj)])) return res if __name__ == '__main__': print solve() ``` #### File: jorgemira/euler-py/p015.py ```python from math import factorial RESULT = 137846528820 def solve(): '''Main function''' size = 20 result = factorial(size * 2) / factorial(size)**2 return result if __name__ == '__main__': print solve() ``` #### File: jorgemira/euler-py/p029.py ```python RESULT = 9183 def solve(): '''Main function''' vals = set() limit = 100 for i in xrange(2, limit + 1): for j in xrange(2, limit + 1): vals.add(i**j) return len(vals) if __name__ == '__main__': print solve() ``` #### File: jorgemira/euler-py/p034.py ```python from math import factorial FACTS = [factorial(n) for n in xrange(10)] RESULT = 40730 def get_digits(num): '''Generator that yields the digits of a number''' while num: yield num % 10 num /= 10 def is_curious(num): '''Return True if a number is equal to the sum of the factorials of its digits, false otherwise''' return num == sum([FACTS[x] for x in get_digits(num)]) def get_limit(): '''Return the upper limit for the problem''' count = 1 while 10 ** count < count * FACTS[9]: count += 1 return FACTS[9] * count def solve(): '''Main function''' total = 0 limit = get_limit() for num in xrange(10, limit): if is_curious(num): total += num return total if __name__ == "__main__": print solve() ``` #### File: jorgemira/euler-py/p035.py ```python from utils import is_prime RESULT = 55 def get_rotations(num): '''Returns a list with the rotations of a given number''' result = set() result.add(num) str_num = str(num) for _ in xrange(len(str(num)) - 1): str_num = str_num[1:] + str_num[:1] result.add(int(str_num)) return result def all_odd(num): '''Checks wether all the digits of a number are odd or not''' if num == 2: # 2 is even but prime return True else: return all([int(x) % 2 for x in str(num)]) def solve(): '''Main function''' max_nums = 1000000 checked = set() result = 0 for num in xrange(max_nums): rotations = get_rotations(num) min_rot = min(rotations) if not min_rot in checked: checked.add(min_rot) if all_odd(num) and all([is_prime(x) for x in rotations]): result += len(rotations) return result if __name__ == '__main__': print solve() ``` #### File: jorgemira/euler-py/test_problems.py ```python import unittest import sys from glob import glob from time import time class TestProblems(unittest.TestCase): '''Generic class for testing problems of Project Euler''' @classmethod def setUpClass(cls): '''Set up the list for the test times''' cls.times = [] @classmethod def tearDownClass(cls): '''Print test times''' print for test_time in cls.times: print test_time def setUp(self): '''Initialize start_time variable''' self.start_time = time() def tearDown(self): '''Calculate time spent in test and add it to the list''' time_spent = time() - self.start_time test_name = self.id().split('.')[-1] self.times.append("%s: %.3fs" % (test_name, time_spent)) def generate_test(problem): '''Dinamically generates a test case for a problem''' def test_problem(self): '''Check whether %s returns the expected result''' prob = __import__(problem) self.assertEqual(prob.solve(), prob.RESULT) test_problem.__doc__ %= problem return test_problem def get_names(nums): '''Return the corret module names from the numbers given''' files = [] for num in nums: for _ in xrange(3 - len(num)): num = '0%s' % num files.append('p%s' % num) return files def get_all(): '''Returns all the file names without the extension containing problems in the current directory''' files = [] for f_name in glob('p???.py'): files.append(f_name[:4]) return files def run_tests(tests): '''Creates and runs test cases for the specified problems''' problems = [] if not tests or 'all' in tests: problems = get_all() else: problems = get_names(tests) for problem in sorted(problems): setattr(TestProblems, 'test_%s' % problem, generate_test(problem)) unittest.main() if __name__ == '__main__': sys.argv, args = sys.argv[:1], sys.argv[1:] run_tests(args) ```
{ "source": "jorgemira/gps_tracker", "score": 3 }
#### File: client/gps_tracker/jobs.py ```python from typing import Callable import schedule from . import constants as c from .gpsd import GPSD from .logging import get_logger from .server import Server logger = get_logger(__name__) def schedule_job(job: Callable, seconds: int) -> None: """Clear a previously running job, if exists, and launch it again""" schedule.clear(job.__name__) job() schedule.every(seconds).seconds.do(job).tag(job.__name__) def post_location_job() -> None: """Post unsent location list and then post current location""" if not Server.token: Server.login() try: location = GPSD.get_location() except Exception: logger.exception("Cannot acquire location") return if Server.token: Server.send_unsent_locations() Server.post_location(location) else: Server.append_failed_location(location) def panic_job() -> None: """Check for panic mode and reschedule post_location_job if necesary""" new_panic = Server.is_panic_mode() if Server.panic_mode and not new_panic: logger.info("Disabling panic mode") schedule_job(post_location_job, c.TIME_NO_PANIC) elif not Server.panic_mode and new_panic: logger.info("Enabling panic mode") schedule_job(post_location_job, c.TIME_PANIC) Server.panic_mode = new_panic ``` #### File: client/gps_tracker/server.py ```python import json import os from json.decoder import JSONDecodeError from typing import List, Union import requests from requests import RequestException from . import constants as c from .location import Location from .logging import get_logger logger = get_logger(__name__) class Server: token: Union[str, None] = None panic: bool = False panic_mode: bool = False @classmethod def login(cls) -> None: """Get and store authentication token from server""" contents = {"username": c.USERNAME, "password": <PASSWORD>} try: response = requests.post(c.AUTH_URL, json=contents) if response.status_code != 200: raise ValueError("Log in response was not successful") content = json.loads(response.content) cls.token = content["token"] except (RequestException, JSONDecodeError, ValueError): logger.exception("Error logging into server") cls.token = None @classmethod def post_location(cls, location: Location) -> None: """Upload a location into the server""" headers = {"Authorization": f"Token {cls.token}"} data = location.to_json() try: response = requests.post(c.LOCATIONS_URL, json=data, headers=headers) if response.status_code != 201: raise ValueError("Location posting response was not successful") except (RequestException, ValueError): logger.exception("Error posting location") cls.append_failed_location(location) @classmethod def is_panic_mode(cls) -> bool: headers = {"Authorization": f"Token {cls.token}"} try: response = requests.get(c.PANIC_URL, headers=headers) content = json.loads(response.content) return content["panic"] except (RequestException, JSONDecodeError): logger.exception("Cannot get panic mode") return False @staticmethod def append_failed_location(location: Location) -> None: """Append location into PENDING_FILE""" try: with open(c.PENDING_FILE, "a") as file: file.write(json.dumps(location.to_json()) + "\n") except IOError: logger.exception("Cannot append failed location") @classmethod def send_unsent_locations(cls) -> None: """Iterate through the list of locations that have not been sent and try to send them""" unsent_locations = cls._get_unsent_locations() for location in unsent_locations: cls.post_location(location) @staticmethod def _get_unsent_locations() -> List[Location]: """Return a list of the locations that have not been sent""" locations = [] if not os.path.exists(c.PENDING_FILE): return locations with open(c.PENDING_FILE) as file: for line in file: try: locations.append(Location.from_json(line)) except JSONDecodeError: logger.warn(f"Error decoding string: '{line}'") os.remove(c.PENDING_FILE) return locations ```
{ "source": "jorgeMorfinezM/binary_search_algorithms", "score": 4 }
#### File: jorgeMorfinezM/binary_search_algorithms/binary_for_search.py ```python def binary_search(list_data, search_data): left_index, right_index = 0, len(list_data) - 1 while left_index <= right_index: pivot_index = (left_index + right_index) // 2 pivot_data = list_data[pivot_index] if pivot_data == search_data: return pivot_index if search_data < pivot_data: right_index = pivot_index - 1 else: left_index = pivot_index + 1 # sale del ciclo, significa que no existe el valor buscado en el arreglo return -1 """ Tests """ # Test con arreglo numericos data_list = [1, 2, 3, 10, 50, 80, 120, 150, 500, 1000] print("Busqueda para la lista: ", data_list) data_search = 500 index_search = binary_search(data_list, data_search) print("El elemento {} esta en el indice {}".format(data_search, index_search)) # Test con arreglo de cadenas data_list = ["Albino", "Bambu", "Becerro", "Contaminacion", "Cortina", "Trampolin"] print("Busqueda para la lista: ", data_list) data_search = "Cortina" index_search = binary_search(data_list, data_search) print("El elemento {} esta en el indice {}".format(data_search, index_search)) data_chars = ["{", "[", "]", "}", "]"] print("Busqueda para la lista: ", data_chars) data_search = '[' search = binary_search(data_chars, data_search) print("El elemento {} esta en el indice {}".format(data_search, search)) ```
{ "source": "jorgeMorfinezM/cargamos_api_test", "score": 2 }
#### File: jorgeMorfinezM/cargamos_api_test/app.py ```python __author__ = "<NAME> (<EMAIL>)" __copyright__ = "Copyright 2021, <NAME>" __license__ = "" __history__ = """ """ __version__ = "1.1.A19.1 ($Rev: 1 $)" import json import re import threading import time import uuid from flask import Flask, jsonify, render_template, json, request from flask_jwt_extended import JWTManager from auth_controller.api_authentication import * from utilities.Utility import Utility as Util from logger_controller.logger_control import * from db_controller.database_backend import * from model.StoreModel import StoreModel from model.ProductModel import ProductModel logger = configure_ws_logger() app = Flask(__name__, static_url_path='/static') app.config['JWT_SECRET_KEY'] = '<KEY>' app.config['JWT_BLACKLIST_ENABLED'] = False app.config['JWT_BLACKLIST_TOKEN_CHECKS'] = ['access', 'refresh'] app.config['JWT_ERROR_MESSAGE_KEY'] = 'message' app.config['JWT_ACCESS_TOKEN_EXPIRES'] = 3600 app.config['PROPAGATE_EXCEPTIONS'] = True jwt = JWTManager(app) # Se inicializa la App con un hilo para evitar problemas de ejecución # (Falta validacion para cuando ya exista hilo corriendo) @app.before_first_request def activate_job(): def run_job(): while True: time.sleep(2) thread = threading.Thread(target=run_job) thread.start() # Contiene la llamada al HTML que soporta la documentacion de la API, # sus metodos, y endpoints con los modelos de datos I/O @app.route('/') def main(): return render_template('api_manage_ecommerce.html') def get_stock_all_stores_by_product(product_sku): stock_list = [] stock_in_stores = select_all_stock_in_product(product_sku) stock_list = json.loads(stock_in_stores) if stock_list: logger.info('List Stock in all Stores by SKU: {}: {}: '.format(product_sku, stock_list)) return stock_list @app.route('/api/ecommerce/stock/total/', methods=['GET', 'OPTIONS']) @jwt_required def endpoint_list_stock_all_stores(): headers = request.headers auth = headers.get('Authorization') if not auth and 'Bearer' not in auth: return request_unauthorized() else: if request.method == 'OPTIONS': headers = { 'Access-Control-Allow-Methods': 'POST, GET, OPTIONS', 'Access-Control-Max-Age': 1000, 'Access-Control-Allow-Headers': 'origin, x-csrftoken, content-type, accept', } return '', 200, headers elif request.method == 'GET': data = request.get_json(force=True) product_sku = data['product_sku'] json_data = get_stock_all_stores_by_product(product_sku) if not product_sku: return request_conflict() return json.dumps(json_data) else: return not_found() def get_stock_by_store_by_product(product_sku, store_code): stock_list = [] stock_in_store = select_stock_in_product(store_code, product_sku) stock_list = json.loads(stock_in_store) if stock_list: logger.info('List Stock in one Store: {} by SKU: {}: {}: '.format(store_code, product_sku, stock_list)) return stock_list @app.route('/api/ecommerce/stock/detail/', methods=['GET', 'OPTIONS']) @jwt_required def endpoint_detailed_stock_by_sku(): headers = request.headers auth = headers.get('Authorization') if not auth and 'Bearer' not in auth: return request_unauthorized() else: if request.method == 'OPTIONS': headers = { 'Access-Control-Allow-Methods': 'POST, GET, OPTIONS', 'Access-Control-Max-Age': 1000, 'Access-Control-Allow-Headers': 'origin, x-csrftoken, content-type, accept', } return '', 200, headers elif request.method == 'GET': data = request.get_json(force=True) product_sku = data['product_sku'] store_code = data['store_code'] json_data = get_stock_by_store_by_product(product_sku, store_code) if not product_sku: return request_conflict() return json.dumps(json_data) else: return not_found() def add_stock_by_store_by_product(stock, product_sku, store_code): stock_add = [] stock_in_product = update_product_store_stock(stock, product_sku, store_code) stock_add = json.loads(stock_in_product) if stock_add: logger.info('Add Stock: {} in one Product: {} by Store: {}: {}: '.format(stock, product_sku, store_code, stock_add)) return stock_add @app.route('/api/ecommerce/stock/add/', methods=['POST', 'OPTIONS']) @jwt_required def endpoint_update_stock(): headers = request.headers auth = headers.get('Authorization') if not auth and 'Bearer' not in auth: return request_unauthorized() else: if request.method == 'OPTIONS': headers = { 'Access-Control-Allow-Methods': 'POST, GET, OPTIONS', 'Access-Control-Max-Age': 1000, 'Access-Control-Allow-Headers': 'origin, x-csrftoken, content-type, accept', } return '', 200, headers elif request.method == 'GET': data = request.get_json(force=True) stock = data['stock'] product_sku = data['product_sku'] store_code = data['store_code'] json_data = add_stock_by_store_by_product(stock, product_sku, store_code) if not product_sku and not store_code and not stock: return request_conflict() return json.dumps(json_data) else: return not_found() def manage_store_requested_data(store_data): store_data_manage = [] store_model_db = StoreModelDb() try: store_code = store_data.get("store_code") store_name = store_data.get("store_name") store_street_address = store_data("street_address") store_external_number = store_data("external_number_address") store_suburb_address = store_data.get("suburb_address") store_city_address = store_data.get("city_address") store_country_address = store_data.get("country_address") store_zippostal_code = store_data.get("zip_postal_code_address") store_min_inventory = store_data.get("minimum_inventory") store_obj = StoreModel(store_code, store_name, store_external_number, store_street_address, store_suburb_address, store_city_address, store_country_address, store_zippostal_code, store_min_inventory) store_data = store_model_db.manage_store_data(store_obj) store_data_manage = json.loads(store_data) if len(store_data_manage) != 0: logger.info('Response Store Data: %s', str(store_data_manage)) return store_data_manage except SQLAlchemyError as error: raise mvc_exc.ConnectionError( 'Can\'t connect to database, verify data connection to "{}".\nOriginal Exception raised: {}'.format( store_model_db.__tablename__, error ) ) def get_stores_by_code(store_code): store_list_data = {} store_get_list_data = select_by_store_code(store_code) store_list_data = json.loads(store_get_list_data) if store_list_data: logger.info('List Stores data by code: {}: {}: '.format(store_code, store_list_data)) return store_list_data def update_store_data_endpoint(store_dict_input): store_updated = dict() store_updated = update_store_data(store_dict_input) return store_updated @app.route('/api/ecommerce/manage/store/', methods=['POST', 'GET', 'PUT', 'DELETE', 'OPTIONS']) @jwt_required def endpoint_processing_store_data(): headers = request.headers auth = headers.get('Authorization') if not auth and 'Bearer' not in auth: return request_unauthorized() else: if request.method == 'OPTIONS': headers = { 'Access-Control-Allow-Methods': 'POST, GET, PUT, DELETE, OPTIONS', 'Access-Control-Max-Age': 1000, 'Access-Control-Allow-Headers': 'origin, x-csrftoken, content-type, accept', } return '', 200, headers elif request.method == 'POST': data = request.get_json(force=True) if not data or str(data) is None: return request_conflict() logger.info('Data Json Store to Manage on DB: %s', str(data)) json_store_response = manage_store_requested_data(data) return json.dumps(json_store_response) elif request.method == 'GET': data = request.get_json(force=True) store_code = data['store_code'] json_data = [] json_data = get_stores_by_code(store_code) logger.info('Stores List data by Code: %s', str(json_data)) if not store_code: return request_conflict() return json.dumps(json_data) elif request.method == 'PUT': data_store = request.get_json(force=True) store_code = data_store.get("store_code") store_name = data_store.get("store_name") if not data_store: return request_conflict() json_data = dict() json_data = update_store_data_endpoint(data_store) logger.info('Data to update Store: %s', "Store code: {0}, Store name: {1}".format(store_code, store_name)) logger.info('Store updated Info: %s', str(json_data)) return json_data elif request.method == 'DELETE': data = request.get_json(force=True) store_code = data['store_code'] logger.info('Store to Delete: %s', 'Store Code: {}'.format(store_code)) json_data = [] if not store_code and not Util.validate_store_code_syntax(store_code): return request_conflict() json_data = delete_store_data(store_code) logger.info('Store deleted: %s', json_data) return json.dumps(json_data) else: return not_found() def manage_product_requested_data(product_data): product_data_manage = [] product_model_db = ProductModelDb() try: product_sku = product_data.get("product_sku") product_unspc = product_data.get("product_unspc") product_brand = product_data.get("product_brand") category_id = product_data.get("category_id") parent_category_id = product_data.get("parent_category_id") product_uom = product_data.get("unit_of_measure") product_stock = product_data.get("product_stock") store_code = product_data.get("product_store_code") product_name = product_data.get("product_name") product_title = product_data.get("product_title") product_long_description = product_data.get("product_long_description") product_photo = product_data.get("product_photo") product_price = product_data.get("product_price") product_tax = product_data.get("product_tax") product_currency = product_data.get("product_currency") product_status = product_data.get("product_status") product_published = product_data.get("product_published") manage_stock = product_data.get("product_manage_stock") product_length = product_data.get("product_length") product_width = product_data.get("product_width") product_height = product_data.get("product_height") product_weight = product_data.get("product_weight") product_obj = ProductModel(product_sku, product_unspc, product_brand, category_id, parent_category_id, product_uom, product_stock, store_code, product_name, product_title, product_long_description, product_photo, product_price, product_tax, product_currency, product_status, product_published, manage_stock, product_length, product_width, product_height, product_weight) data_product = product_model_db.manage_product_data(product_obj) product_data_manage = json.loads(data_product) if len(product_data_manage) != 0: logger.info('Response Product Data: %s', str(product_data_manage)) return product_data_manage except SQLAlchemyError as error: raise mvc_exc.ConnectionError( 'Can\'t connect to database, verify data connection to "{}".\nOriginal Exception raised: {}'.format( product_model_db.__tablename__, error ) ) def get_products_by_sku(product_sku): product_list_data = {} product_get_list_data = select_by_product_sku(product_sku) product_list_data = json.loads(product_get_list_data) if product_list_data: logger.info('List Product data by SKU: {}: {}: '.format(product_sku, product_list_data)) return product_list_data @app.route('/api/ecommerce/manage/product/', methods=['POST', 'GET', 'PUT', 'DELETE', 'OPTIONS']) @jwt_required def endpoint_processing_product_data(): headers = request.headers auth = headers.get('Authorization') if not auth and 'Bearer' not in auth: return request_unauthorized() else: if request.method == 'OPTIONS': headers = { 'Access-Control-Allow-Methods': 'POST, GET, PUT, DELETE, OPTIONS', 'Access-Control-Max-Age': 1000, 'Access-Control-Allow-Headers': 'origin, x-csrftoken, content-type, accept', } return '', 200, headers elif request.method == 'POST': data = request.get_json(force=True) if not data or str(data) is None: return request_conflict() logger.info('Data Json Store to Manage on DB: %s', str(data)) json_store_response = manage_product_requested_data(data) return json.dumps(json_store_response) elif request.method == 'GET': data = request.get_json(force=True) product_sku = data['product_sku'] json_data = [] json_data = get_products_by_sku(product_sku) logger.info('Product List data by SKU: %s', str(json_data)) if not product_sku: return request_conflict() return json.dumps(json_data) elif request.method == 'PUT': data_store = request.get_json(force=True) product_sku = data_store.get('product_sku') product_stock = data_store.get('product_stock') product_store_code = data_store.get('product_store_code') product_name = data_store.get('product_name') if not data_store: return request_conflict() json_data = dict() json_data = update_product_data(data_store) logger.info('Data to update Product: %s', "Product SKU: {0}, " "Product Name: {1}, " "Product Store Code: {2}, " "Product Stock: {3}".format(product_sku, product_name, product_store_code, product_stock)) logger.info('Product updated Info: %s', str(json_data)) return json_data elif request.method == 'DELETE': data = request.get_json(force=True) store_code = data['store_code'] product_sku = data['product_sku'] logger.info('Store to Delete: %s', 'Store Code: {}'.format(store_code)) json_data = [] if not store_code and not Util.validate_store_code_syntax(store_code): return request_conflict() json_data = delete_product_data(product_sku, store_code) logger.info('Product deleted: %s', json_data) return json.dumps(json_data) else: return not_found() @app.route('/api/ecommerce/authorization/', methods=['POST', 'OPTIONS']) def get_authentication(): json_token = {} if request.method == 'OPTIONS': headers = { 'Access-Control-Allow-Methods': 'POST, GET, OPTIONS', 'Access-Control-Max-Age': 1000, 'Access-Control-Allow-Headers': 'origin, x-csrftoken, content-type, accept', } return '', 200, headers elif request.method == 'POST': data = request.get_json(force=True) user_name = data['username'] password = data['password'] rfc = data['rfc_client'] regex_email = r"^[(a-z0-9\_\-\.)]+@[(a-z0-9\_\-\.)]+\.[(a-z)]{2,15}$" regex_passwd = r"^[(A-Za-z0-9\_\-\.\$\#\&\*)(A-Za-z0-9\_\-\.\$\#\&\*)]+" regex_rfc = r"^([A-ZÑ&]{3,4})?(?:-?)?(\d{2}(?:0[1-9]|1[0-2])(?:0[1-9]|[12]\d|3[01]))?(?:-?)?([A-Z\d]{2})([A\d])$" match_email = re.match(regex_email, user_name, re.M | re.I) match_passwd = re.match(regex_passwd, password, re.M | re.I) match_rfc = re.match(regex_rfc, rfc, re.M | re.I) if match_email and match_rfc and match_passwd: password = <PASSWORD> json_token = user_registration(user_name, password) json_token = json.dumps(json_token) return json_token else: return request_conflict() else: return not_found() @app.errorhandler(404) def not_found(error=None): message = { 'error_code': 404, 'error_message': 'Page Not Found: ' + request.url, } resp = jsonify(message) resp.status_code = 404 return resp @app.errorhandler(500) def server_error(error=None): message = { 'error_code': 500, 'error_message': 'Server Error: ' + request.url, } resp = jsonify(message) resp.status_code = 500 return resp @app.errorhandler(401) def request_unauthorized(error=None): message = { 'error_code': 401, 'error_message': 'Request Unauthorized: ' + request.url, } resp = jsonify(message) resp.status_code = 401 return resp @app.errorhandler(409) def request_conflict(error=None): message = { "error_code": 409, "error_message": 'Request data conflict or Authentication data conflict, please verify it. ' + request.url, } resp = jsonify(message) resp.status_code = 409 return resp if __name__ == "__main__": app.debug = True app.run() ```
{ "source": "jorgeMorfinezM/product_api_test", "score": 3 }
#### File: apps/api_authentication/UsersAuthModel.py ```python __author__ = "<NAME> (<EMAIL>)" __copyright__ = "Copyright 2021" __license__ = "" __history__ = """ User's Model """ __version__ = "1.21.H28.1 ($Rev: 1 $)" import json import logging from datetime import datetime from sqlalchemy_filters import apply_filters from sqlalchemy import Column, Boolean, Integer, String, Date, Time, Sequence from db_controller.database_backend import * from db_controller import mvc_exceptions as mvc_exc cfg_db = get_config_settings_db() USERS_ID_SEQ = Sequence('users_seq') # define sequence explicitly class UsersAuthModel(Base): r""" Class to instance User data to authenticate the API. Transactions: - Create: Add Product and Users data to database if not exists. - Update: Update Product and Users data on database if exists. - Delete: Inactivaate Product and Users data on database if exists. """ __tablename__ = cfg_db.user_auth_table user_id = Column('user_id', Integer, USERS_ID_SEQ, primary_key=True, server_default=USERS_ID_SEQ.next_value()) user_name = Column('user_name', String, nullable=False) password = Column('password_hash', String, nullable=False) is_active = Column('is_active', Boolean, nullable=False) is_staff = Column('is_staff', Boolean, nullable=False) is_superuser = Column('is_superuser', Boolean, nullable=False) creation_date = Column('creation_date', Date, nullable=False) last_update_date = Column('last_update_date', Date, nullable=True) def __init__(self, data_user): self.user_name = data_user.get('username') self.password = data_user.get('password') self.is_active = data_user.get('is_active') self.is_staff = data_user.get('is_staff') self.is_superuser = data_user.get('is_superuser') # self.email = data_user.get('creation_date') def manage_user_authentication(self, session, data): try: user_verification = self.check_if_row_exists(session, data) # insert validation if user_verification: # update method self.user_update_password(session, data) else: # insert self.insert_data(session, data) except SQLAlchemyError as e: logger.exception('An exception was occurred while execute transactions: %s', e) raise mvc_exc.ItemNotStored( 'Can\'t insert user_id: "{}" with user_name: {} because it\'s not stored in "{}"'.format( data.get('username'), data.get('is_active'), UsersAuthModel.__tablename__ ) ) # Transaction to looking for a User on db to authenticate def check_if_row_exists(self, session, data): r""" Looking for a ciudad by name on the database to valid authentication. :param session: The session of the database. :param data: The data of User model to valid authentication on the API. :return row_exists: Statement data row to valid if the ciudad name exists to authenticate the API. """ row_exists = None user_id = 0 try: user_row = self.get_user_by_id(session, data) if user_row is not None: user_id = user_row.user_id else: user_id = 0 logger.info('User Row object in DB: %s', str(user_row)) row_exists = session.query(UsersAuthModel).filter(UsersAuthModel.user_id == user_id). \ filter(UsersAuthModel.is_active == "true").scalar() logger.info('Row to data: {}, Exists: %s'.format(data), str(row_exists)) except SQLAlchemyError as exc: row_exists = None logger.exception('An exception was occurred while execute transactions: %s', str(str(exc.args) + ':' + str(exc.code))) raise mvc_exc.IntegrityError( 'Row not stored in "{}". IntegrityError: {}'.format(data.get('username'), str(str(exc.args) + ':' + str(exc.code))) ) finally: session.close() return row_exists def insert_data(self, session, data): r""" Looking for a User on the database to valid authentication. :param session: The session of the database. :param data: The data of User model to valid authentication on the API. """ endpoint_response = None if not self.check_if_row_exists(session, data): try: self.creation_date = get_current_date(session) data['creation_date'] = self.creation_date new_row = UsersAuthModel(data) logger.info('New Row User name: %s', str(new_row.user_name)) session.add(new_row) user_row = self.get_user_by_id(session, data) logger.info('User ID Inserted: %s', str(user_row.user_id)) session.flush() data['user_id'] = user_row.user_id # check insert correct row_inserted = self.get_one_user(session, data) logger.info('Data User inserted: %s, Original Data: {}'.format(data), str(row_inserted)) if row_inserted: logger.info('User inserted is: %s', 'Username: {}, ' 'IsActive: {} ' 'CreationDate: {}'.format(row_inserted.user_name, row_inserted.is_active, row_inserted.creation_date)) endpoint_response = json.dumps({ "Username": row_inserted.user_name, "Password": <PASSWORD>, "IsActive": row_inserted.is_active, "IsStaff": row_inserted.is_staff, "IsSuperUser": row_inserted.is_superuser, "CreationDate": row_inserted.creation_date }) except SQLAlchemyError as exc: endpoint_response = None session.rollback() logger.exception('An exception was occurred while execute transactions: %s', str(str(exc.args) + ':' + str(exc.code))) raise mvc_exc.IntegrityError( 'Row not stored in "{}". IntegrityError: {}'.format(data.get('username'), str(str(exc.args) + ':' + str(exc.code))) ) finally: session.close() return endpoint_response # Transaction to update user's data on db to authenticate - PUT def user_update(self, session, data): r""" Transaction to update data of a user to authenticate on the API correctly. :param session: The ciudad name to update password hashed. :param data: The password hashed to authenticate on the API. """ endpoint_response = None if self.check_if_row_exists(session, data): try: user_row = self.get_user_by_id(session, data) if user_row is not None: user_id = user_row.user_id else: user_id = 0 self.last_update_date = get_current_date(session) data['last_update_date'] = self.last_update_date # update row to database session.query(UsersAuthModel).filter(UsersAuthModel.user_id == user_id). \ update({"user_name": data.get('username'), "password": data.get('password'), "is_active": data.get('is_active'), "is_staff": data.get('is_staff'), "is_superuser": data.get('is_superuser'), "last_update_date": data.get('last_update_date')}, synchronize_session='fetch') session.flush() # check update correct row_updated = self.get_one_user(session, data) logger.info('Data Updated: %s', str(row_updated)) if row_updated: logger.info('Data User updated') endpoint_response = json.dumps({ "Username": row_updated.user_name, "Password": <PASSWORD>, "IsActive": row_updated.is_active, "IsStaff": row_updated.is_staff, "IsSuperUser": row_updated.is_superuser, "CreationDate": row_updated.creation_date, "UpdatedDate": row_updated.last_update_date }) except SQLAlchemyError as exc: session.rollback() endpoint_response = None logger.exception('An exception was occurred while execute transactions: %s', str(str(exc.args) + ':' + str(exc.code))) raise mvc_exc.IntegrityError( 'Row not stored in "{}". IntegrityError: {}'.format(data.get('username'), str(str(exc.args) + ':' + str(exc.code))) ) finally: session.close() return endpoint_response # Transaction to update user's password hashed on db to authenticate - # On manage function to POST User def user_update_password(self, session, data): r""" Transaction to update data of a user to authenticate on the API correctly. :param session: The ciudad name to update password hashed. :param data: The password hashed to authenticate on the API. """ endpoint_response = None if self.check_if_row_exists(session, data): try: user_row = self.get_user_by_id(session, data) if user_row is not None: user_id = user_row.user_id else: user_id = 0 self.last_update_date = get_current_date(session) data['last_update_date'] = self.last_update_date # update row to database session.query(UsersAuthModel).filter(UsersAuthModel.user_id == user_id). \ update({"password": data.get('password'), "last_update_date": data.get('last_update_date')}, synchronize_session='fetch') session.flush() # check update correct row_updated = self.get_one_user(session, data) logger.info('Data Updated: %s', str(row_updated)) if row_updated: logger.info('Data User updated') endpoint_response = json.dumps({ "Username": row_updated.user_name, "Password": <PASSWORD>, "IsActive": row_updated.is_active, "IsStaff": row_updated.is_staff, "IsSuperUser": row_updated.is_superuser, "CreationDate": row_updated.creation_date, "UpdatedDate": row_updated.last_update_date }) except SQLAlchemyError as exc: session.rollback() endpoint_response = None logger.exception('An exception was occurred while execute transactions: %s', str(str(exc.args) + ':' + str(exc.code))) raise mvc_exc.IntegrityError( 'Row not stored in "{}". IntegrityError: {}'.format(data.get('username'), str(str(exc.args) + ':' + str(exc.code))) ) finally: session.close() return endpoint_response # Transaction to delete user's data on db to authenticate - DELETE def user_inactivate(self, session, data): r""" Transaction to inactivate user to authenticate on the API correctly. :param session: The database object session connect. :param data: The data dictionary to inactivate on the API. """ endpoint_response = None if self.check_if_row_exists(session, data): try: user_row = self.get_user_by_id(session, data) if user_row is not None: user_id = user_row.user_id else: user_id = 0 self.last_update_date = get_current_date(session) data['last_update_date'] = self.last_update_date # update row to database session.query(UsersAuthModel).filter(UsersAuthModel.user_id == user_id). \ filter(UsersAuthModel.is_active == "true"). \ update({"is_active": "false", "last_update_date": data.get('last_update_date')}, synchronize_session='fetch') session.flush() # check update correct row_updated = self.get_one_user(session, data) logger.info('Data Deleted: %s', str(row_updated)) if row_updated: logger.info('Data User updated') endpoint_response = json.dumps({ "Username": row_updated.user_name, "Password": <PASSWORD>, "IsActive": row_updated.is_active, "IsStaff": row_updated.is_staff, "IsSuperUser": row_updated.is_superuser, "CreationDate": row_updated.creation_date, "UpdatedDate": row_updated.last_update_date }) except SQLAlchemyError as exc: session.rollback() endpoint_response = None logger.exception('An exception was occurred while execute transactions: %s', str(str(exc.args) + ':' + str(exc.code))) raise mvc_exc.IntegrityError( 'Row not stored in "{}". IntegrityError: {}'.format(data.get('username'), str(str(exc.args) + ':' + str(exc.code))) ) finally: session.close() return endpoint_response @staticmethod def get_user_by_id(session, data): row = None try: row_exists = session.query(UsersAuthModel).filter(UsersAuthModel.user_name == data.get('username')). \ filter(UsersAuthModel.is_active == data.get('is_active')). \ filter(UsersAuthModel.is_superuser == data.get('is_superuser')).scalar() if row_exists: row = session.query(UsersAuthModel).filter(UsersAuthModel.user_name == data.get('username')).\ filter(UsersAuthModel.is_active == data.get('is_active')).\ filter(UsersAuthModel.is_superuser == data.get('is_superuser')).one() logger.info('Data User on Db: %s', 'Username: {}, Is_Active: {}'.format(row.user_name, row.is_activee)) except SQLAlchemyError as exc: logger.exception('An exception was occurred while execute transactions: %s', str(str(exc.args) + ':' + str(exc.code))) raise mvc_exc.ItemNotStored( 'Can\'t read data: "{}" because it\'s not stored in "{}". Row empty: {}'.format( data.get('username'), UsersAuthModel.__tablename__, str(str(exc.args) + ':' + str(exc.code)) ) ) finally: session.close() return row def get_one_user(self, session, data): row_user = None try: user_row = self.get_user_by_id(session, data) if session.query(UsersAuthModel).filter(UsersAuthModel.user_id == user_row.user_id).scalar(): row_user = session.query(UsersAuthModel).filter(UsersAuthModel.user_id == user_row.user_id).one() if row_user: logger.info('Data Bank on Db: %s', 'Bank Name: {}, Bank usaToken: {}, Bank Status: {}'.format(row_user.nombre_banco, row_user.usa_token, row_user.estatus_banco)) except SQLAlchemyError as exc: logger.exception('An exception was occurred while execute transactions: %s', str(str(exc.args) + ':' + str(exc.code))) raise mvc_exc.ItemNotStored( 'Can\'t read data: "{}" because it\'s not stored in "{}". Row empty: {}'.format( data.get('user_id'), UsersAuthModel.__tablename__, str(str(exc.args) + ':' + str(exc.code)) ) ) finally: session.close() return row_user @staticmethod def get_all_users(session, data): r""" Function to retrieve all users registered. :param session: The database object session connect. :param data: The data dictionary to inactivate on the API. """ all_users = None user_data = [] page = 1 per_page = 10 email_recipients = [] all_users = session.query(UsersAuthModel).all() if 'offset' in data.keys() and 'limit' in data.keys(): page = data.get('offset') per_page = data.get('limit') all_users = session.query(UsersAuthModel).paginate(page=page, per_page=per_page, error_out=False).all() for user_rs in all_users: id_user = user_rs.user_id username = user_rs.user_name password = <PASSWORD> is_active = user_rs.is_active is_staff = user_rs.is_staff is_superuser = user_rs.is_superuser creation_date = user_rs.creation_date last_update_date = user_rs.last_update_date user_data += [{ "AuthUser": { "Id": id_user, "Username": username, "Password": password, "IsActive": is_active, "IsStaff": is_staff, "IsSuperuser": is_superuser, "CreationDate": creation_date, "LastUpdateDate": last_update_date } }] if bool(is_active) and bool(is_superuser): email_recipients.append(username) cfg_app.email_recipients = email_recipients return json.dumps(user_data) @staticmethod def get_users_recipients(session): r""" Function to retrieve all usernames registered to generate recipients. :param session: The database object session connect. """ all_users = None email_recipients = [] all_users = session.query(UsersAuthModel).all() for user_rs in all_users: username = user_rs.user_name if bool(is_active) and bool(is_superuser): email_recipients.append(username) return email_recipients def __repr__(self): return "<AuthUserModel(id_user='%s', username='%s', password='%s', email='%s', " \ "first_name='%s', last_name='%s', is_active='%s', is_staff='%s', is_superuser='%s', " \ "date_joined='%s')>" % (self.user_id, self.username, self.password, self.email, self.first_name, self.last_name, self.is_active, self.is_staff, self.is_superuser, self.date_joined) ``` #### File: apps/category/CategoryModel.py ```python __author__ = "<NAME> (<EMAIL>)" __copyright__ = "Copyright 2021" __license__ = "" __history__ = """ """ __version__ = "1.21.H28.1 ($Rev: 1 $)" import json import logging from sqlalchemy_filters import apply_filters from sqlalchemy import Column, Numeric, Integer, String, Date, Time, Sequence from db_controller.database_backend import * from db_controller import mvc_exceptions as mvc_exc cfg_db = get_config_settings_db() CATEGORY_ID_SEQ = Sequence('category_seq') # define sequence explicitly class CategoryModel(Base): r""" Class to instance the data of CategoryModel on the database. Transactions: - Create: Add data to the database if not exists. - Update: Update data to the database if exists. - Delete: Inactivate data to the database if exists. - Select: Get data from databases. """ __tablename__ = 'category' category_id = Column('id_category', Integer, CATEGORY_ID_SEQ, primary_key=True, server_default=CATEGORY_ID_SEQ.next_value()) category_name = Column('name_category', String, nullable=False, index=True) category_short_description = Column('short_desc_category', String, nullable=False) category_status = Column('status_category', String, nullable=False, index=True) creation_date = Column('creation_date', Date, nullable=False) last_update_date = Column('last_update_date', Date, nullable=True) def __init__(self, data_category): self.category_name = data_category.get('nombre_categoria') self.category_short_description = data_category.get('descrippcion_corta_categoria') self.category_status = data_category.get('estatus_categoria') def check_if_row_exists(self, session, data): """ Validate if row exists on database from dictionary data :param session: Session database object :param data: Dictionary with data to make validation function :return: row_exists: Object with boolean response from db """ row_exists = None id_category = 0 try: # for example to check if the insert on db is correct row_category = self.get_category_id(session, data) if row_category is not None: id_category = row_category.category_id else: id_category = 0 logger.info('Category Row object in DB: %s', str(id_category)) row_exists = session.query(CategoryModel).filter(CategoryModel.category_id == id_category). \ filter(CategoryModel.category_status == 'activo').scalar() logger.info('Row to data: {}, Exists: %s'.format(data), str(row_exists)) except SQLAlchemyError as exc: row_exists = None logger.exception('An exception was occurred while execute transactions: %s', str(str(exc.args) + ':' + str(exc.code))) raise mvc_exc.IntegrityError( 'Row not stored in "{}". IntegrityError: {}'.format(data.get('nombre_categoria'), str(str(exc.args) + ':' + str(exc.code))) ) finally: session.close() return row_exists def insert_data(self, session, data): """ Function to insert new row on database :param session: Session database object :param data: Dictionary to insert new the data containing on the db :return: endpoint_response """ endpoint_response = None if not self.check_if_row_exists(session, data): try: self.creation_date = get_current_date(session) data['creation_date'] = self.creation_date new_row = CategoryModel(data) logger.info('New Row Category: %s', str(new_row.category_name)) session.add(new_row) row_category = self.get_category_id(session, data) logger.info('Category ID Inserted: %s', str(row_category.category_id)) session.flush() data['id_categoria'] = row_category.category_id # check insert correct row_inserted = self.get_one_category(session, data) logger.info('Data Category inserted: %s, Original Data: {}'.format(data), str(row_inserted)) if row_inserted: endpoint_response = json.dumps({ "id_categoria": str(row_category.category_id), "nombre_categoria": row_category.category_name, "descripcion_categoria": row_category.category_short_description, "estatus_categoria": row_category.category_status }) except SQLAlchemyError as exc: endpoint_response = None session.rollback() logger.exception('An exception was occurred while execute transactions: %s', str(str(exc.args) + ':' + str(exc.code))) raise mvc_exc.IntegrityError( 'Row not stored in "{}". IntegrityError: {}'.format(data.get('nombre_categoria'), str(str(exc.args) + ':' + str(exc.code))) ) finally: session.close() return endpoint_response # Transaction to update Category's data on db to authenticate - PUT def update_data(self, session, data): r""" Transaction to update data of a user to authenticate on the API correctly. :param session: The ciudad name to update password hashed. :param data: The password hashed to authenticate on the API. """ endpoint_response = None if self.check_if_row_exists(session, data): try: row_category = self.get_category_id(session, data) if row_category is not None: id_category = row_category.category_id else: id_category = 0 self.last_update_date = get_current_date(session) data['last_update_date'] = self.last_update_date # update row to database session.query(CategoryModel).filter(CategoryModel.category_id == id_category). \ update({"category_name": data.get('nombre_categoria'), "category_short_description": data.get('descrippcion_corta_categoria'), "category_status": data.get('estatus_categoria'), "last_update_date": data.get('last_update_date')}, synchronize_session='fetch') session.flush() # check update correct row_updated = self.get_one_category(session, data) logger.info('Data Updated: %s', str(row_updated)) if row_updated: logger.info('Data Category updated') endpoint_response = json.dumps({ "id_categoria": str(row_updated.category_id), "nombre_categoria": row_updated.category_name, "descripcion_categoria": row_updated.category_short_description, "estatus_categoria": row_updated.category_status, "creation_date": row_updated.creation_date, "last_update_date": row_updated.last_update_date }) except SQLAlchemyError as exc: session.rollback() endpoint_response = None logger.exception('An exception was occurred while execute transactions: %s', str(str(exc.args) + ':' + str(exc.code))) raise mvc_exc.IntegrityError( 'Row not stored in "{}". IntegrityError: {}'.format(data.get('nombre_categoria'), str(str(exc.args) + ':' + str(exc.code))) ) finally: session.close() return endpoint_response # Transaction to delete category's data on db to authenticate - DELETE def category_inactivate(self, session, data): r""" Transaction to inactivate category data on the API correctly. :param session: The database object session connect. :param data: The data dictionary to inactivate on the API. """ endpoint_response = None if self.check_if_row_exists(session, data): try: row_category = self.get_category_id(session, data) if row_category is not None: id_category = row_category.category_id else: id_category = 0 self.last_update_date = get_current_date(session) data['last_update_date'] = self.last_update_date # update row to database session.query(CategoryModel).filter(CategoryModel.category_id == id_category). \ filter(CategoryModel.category_status == "activo"). \ update({"category_status": "inactivo", "last_update_date": data.get('last_update_date')}, synchronize_session='fetch') session.flush() # check delete correct row_deleted = self.get_one_category(session, data) logger.info('Data Deleted: %s', str(row_deleted)) if row_deleted: logger.info('Data Category inactivated') endpoint_response = json.dumps({ "id_categoria": str(row_deleted.category_id), "nombre_categoria": row_deleted.category_name, "descripcion_categoria": row_deleted.category_short_description, "estatus_categoria": row_deleted.category_status, "creation_date": row_deleted.creation_date, "last_update_date": row_deleted.last_update_date }) except SQLAlchemyError as exc: session.rollback() endpoint_response = None logger.exception('An exception was occurred while execute transactions: %s', str(str(exc.args) + ':' + str(exc.code))) raise mvc_exc.IntegrityError( 'Row not stored in "{}". IntegrityError: {}'.format(data.get('nombre_categoria'), str(str(exc.args) + ':' + str(exc.code))) ) finally: session.close() return endpoint_response @staticmethod def get_category_id(session, data): """ Get Category object row registered on database to get the ID :param session: Database session object :param data: Dictionary with data to get row :return: row_category: The row on database registered """ row_category = None try: row_exists = session.query(CategoryModel).\ filter(CategoryModel.category_name == data.get('nombre_categoria')).scalar() logger.info('Row Data Category Exists on DB: %s', str(row_exists)) if row_exists: row_category = session.query(CategoryModel). \ filter(CategoryModel.category_name == data.get('nombre_categoria')). \ filter(CategoryModel.category_status == data.get('estatus_categoria')).one() logger.info('Row ID Category data from database object: {}'.format(str(row_category))) except SQLAlchemyError as exc: logger.exception('An exception was occurred while execute transactions: %s', str(str(exc.args) + ':' + str(exc.code))) raise mvc_exc.ItemNotStored( 'Can\'t read data: "{}" because it\'s not stored in "{}". Row empty: {}'.format( data.get('nombre_categoria'), CategoryModel.__tablename__, str(str(exc.args) + ':' + str(exc.code)) ) ) finally: session.close() return row_category @staticmethod def get_one_category(session, data): row = None try: row = session.query(CategoryModel).filter(CategoryModel.category_id == data.get('id_categoria')).one() if row: logger.info('Data Categoria on Db: %s', 'Nombre: {}, Estatus: {}'.format(row.category_name, row.category_status)) except SQLAlchemyError as exc: row = None logger.exception('An exception was occurred while execute transactions: %s', str(str(exc.args) + ':' + str(exc.code))) raise mvc_exc.ItemNotStored( 'Can\'t read data: "{}" because it\'s not stored in "{}". Row empty: {}'.format( data.get('nombre_categoria'), CategoryModel.__tablename__, str(str(exc.args) + ':' + str(exc.code)) ) ) finally: session.close() return row @staticmethod def get_all_categories(session, data): """ Get all Categories objects data registered on database. :param data: Dictionary contains relevant data to filter Query on resultSet DB :param session: Database session :return: json.dumps dict """ all_categories = None category_data = [] page = None per_page = None all_categories = session.query(CategoryModel).all() if 'offset' in data.keys() and 'limit' in data.keys(): page = data.get('offset') per_page = data('limit') all_categories = session.query(CategoryModel).paginate(page=page, per_page=per_page, error_out=False).all() for category in all_categories: category_id = category.category_id category_name = category.category_name category_short_desc = category.category_short_description category_status = category.category_status category_data += [{ "Categoria": { "id_categoria": str(category_id), "nombre_categoria": category_name, "descripcion_categoria": category_short_desc, "estatus_categoria": category_status, "creation_date": category.creation_date, "last_update_date": category.last_update_date } }] return json.dumps(category_data) @staticmethod def get_category_by_filters(session, data, filter_spec): """ Get list of States filtered by options by user request :param session: Database session :param data: Dictionary contains relevant data to filter Query on resultSet DB :param filter_spec: List of options defined by user request :return: json.dumps dict """ page = 1 per_page = 10 query_result = None category_data = [] if 'offset' in data.keys() and 'limit' in data.keys(): page = data.get('offset') per_page = data('limit') query_result = session.query(CategoryModel).all() query = session.query(CategoryModel) filtered_query = apply_filters(query, filter_spec) if filter_spec is not None and filtered_query is not None: query_result = filtered_query.paginate(page=page, per_page=per_page, error_out=False).all() logger.info('Query filtered resultSet: %s', str(query_result)) for category in query_result: category_id = category.category_id category_name = category.category_name category_short_desc = category.category_short_description category_status = category.category_status category_data += [{ "Categoria": { "id_categoria": str(category_id), "nombre_categoria": category_name, "descripcion_categoria": category_short_desc, "estatus_categoria": category_status, "creation_date": category.creation_date, "last_update_date": category.last_update_date } }] return json.dumps(category_data) def __repr__(self): return "<CategoryModel(category_id='%s', " \ " category_name='%s', " \ " category_short_description='%s', " \ " category_status='%s'," \ " creation_date='%s', " \ " last_update_date='%s')>" % (self.category_id, self.category_name, self.category_short_description, self.category_status, self.creation_date, self.last_update_date) ``` #### File: apps/category/view_endpoints.py ```python __author__ = "<NAME> (<EMAIL>)" __copyright__ = "Copyright 2021" __license__ = "" __history__ = """ """ __version__ = "1.21.H05.1 ($Rev: 2 $)" from flask import Blueprint, json, request from flask_jwt_extended import JWTManager, jwt_required from db_controller.database_backend import * from .CategoryModel import CategoryModel from handler_controller.ResponsesHandler import ResponsesHandler as HandlerResponse from handler_controller.messages import SuccessMsg, ErrorMsg from logger_controller.logger_control import * from utilities.Utility import * cfg_app = get_config_settings_app() category_api = Blueprint('category_api', __name__) jwt = JWTManager(category_api) logger = configure_logger('ws') @category_api.route('/', methods=['POST', 'PUT', 'GET', 'DELETE']) @jwt_required def endpoint_manage_category_data(): conn_db, session_db = init_db_connection() headers = request.headers auth = headers.get('Authorization') if not auth and 'Bearer' not in auth: return HandlerResponse.request_unauthorized(ErrorMsg.ERROR_REQUEST_UNAUTHORIZED, auth) else: if request.method == 'POST': data = request.get_json(force=True) category_model = CategoryModel(data) if not data or str(data) is None: return HandlerResponse.request_conflict(ErrorMsg.ERROR_REQUEST_DATA_CONFLICT, data) logger.info('Data Json Category to Manage on DB: %s', str(data)) category_response = category_model.insert_data(session_db, data) logger.info('Data Category to Register on DB: %s', str(data)) if not category_response: return HandlerResponse.response_success(ErrorMsg.ERROR_DATA_NOT_FOUND, category_response) return HandlerResponse.response_resource_created(SuccessMsg.MSG_CREATED_RECORD, category_response) elif request.method == 'PUT': data = request.get_json(force=True) category_model = CategoryModel(data) if not data or str(data) is None: return HandlerResponse.request_conflict(ErrorMsg.ERROR_REQUEST_DATA_CONFLICT, data) logger.info('Data Json Category to Manage on DB: %s', str(data)) category_response = category_model.update_data(session_db, data) logger.info('Data Driver to Update on DB: %s', str(data)) if not category_response: return HandlerResponse.response_success(ErrorMsg.ERROR_DATA_NOT_FOUND, category_response) return HandlerResponse.response_resource_created(SuccessMsg.MSG_UPDATED_RECORD, category_response) elif request.method == 'DELETE': data = request.get_json(force=True) category_model = CategoryModel(data) if not data or str(data) is None: return HandlerResponse.request_conflict(ErrorMsg.ERROR_REQUEST_DATA_CONFLICT, data) logger.info('Data Json Category to Manage on DB: %s', str(data)) category_response = category_model.category_inactivate(session_db, data) logger.info('Data Driver to Update on DB: %s', str(data)) if not category_response: return HandlerResponse.response_success(ErrorMsg.ERROR_DATA_NOT_FOUND, category_response) return HandlerResponse.response_resource_created(SuccessMsg.MSG_DELETED_RECORD, category_response) elif request.method == 'GET': data = dict() states_on_db = None data['offset'] = request.args.get('offset', 1) data['limit'] = request.args.get('limit', 10) category_model = CategoryModel(data) states_on_db = category_model.get_all_categories(session_db, data) if not bool(states_on_db) or not states_on_db or "[]" == states_on_db: return HandlerResponse.response_success(ErrorMsg.ERROR_DATA_NOT_FOUND, states_on_db) return HandlerResponse.response_success(SuccessMsg.MSG_GET_RECORD, states_on_db) else: return HandlerResponse.request_not_found(ErrorMsg.ERROR_METHOD_NOT_ALLOWED) @category_api.route('/filter', methods=['GET']) def get_looking_for_category(): conn_db, session_db = init_db_connection() data = dict() query_string = request.query_string.decode('utf-8') if request.method == 'GET': state_on_db = None filter_spec = [] data['offset'] = request.args.get('offset', 1) data['limit'] = request.args.get('limit', 10) if 'nombre_categoria' in query_string: category_name = request.args.get('nombre_categoria') data['nombre_categoria'] = category_name filter_spec.append({'field': 'category_name', 'op': 'ilike', 'value': category_name}) # filter_spec.append({'field': 'nombre_estado', 'op': '==', 'value': category_name}) if 'estatus_categoria' in query_string: category_status = request.args.get('estatus_categoria') data['estatus_categoria'] = category_status filter_spec.append({'field': 'category_status', 'op': '==', 'value': category_status}) category_model = CategoryModel(data) state_on_db = category_model.get_category_by_filters(session_db, data, filter_spec) if not bool(state_on_db) or not state_on_db or "[]" == state_on_db: return HandlerResponse.response_success(ErrorMsg.ERROR_DATA_NOT_FOUND, state_on_db) return HandlerResponse.response_success(SuccessMsg.MSG_GET_RECORD, state_on_db) else: return HandlerResponse.request_not_found(ErrorMsg.ERROR_METHOD_NOT_ALLOWED) ``` #### File: apps/product/ProductModel.py ```python __author__ = "<NAME> (<EMAIL>)" __copyright__ = "Copyright 2021" __license__ = "" __history__ = """ """ __version__ = "1.21.H05.1 ($Rev: 2 $)" import json import logging from apps.category.CategoryModel import CategoryModel from sqlalchemy_filters import apply_filters from sqlalchemy import Column, Numeric, Integer, Float, String, Date, Time, Boolean, Sequence from db_controller.database_backend import * from db_controller import mvc_exceptions as mvc_exc from utilities.Utility import * cfg_db = get_config_settings_db() PRODUCT_ID_SEQ = Sequence('product_seq') # define sequence explicitly class ProductModel(Base): r""" Class to instance the data of MunicipioModel on the database. Transactions: - Insert: Add data to the database if not exists. - Select: """ __tablename__ = 'product' product_id = Column('id_product', Integer, PRODUCT_ID_SEQ, primary_key=True, server_default=PRODUCT_ID_SEQ.next_value()) product_sku = Column('sku_product', String, nullable=False, index=True) product_brand = Column('brand_product', String, nullable=False, index=True) unit_of_measure = Column('uom_product', String, nullable=False, index=True) product_stock = Column('stock_product', Integer, nullable=False, index=True) product_name = Column('name_product', String, nullable=False, index=True) product_title = Column('title_product', String, nullable=False, index=True) product_long_description = Column('description_product', String, nullable=False) product_photo = Column('photo_product', String, nullable=False) product_price = Column('price_product', Float, nullable=False, index=True) product_tax = Column('tax_product', Float, nullable=False) product_tax_rate = Column('tax_rate_product', Float, nullable=False) product_status = Column('status_product', String, nullable=False, index=True) product_published = Column('published_product', Boolean, nullable=False, index=True) product_length = Column('length_product', Float, nullable=False) product_width = Column('width_product', Float, nullable=False) product_height = Column('height_product', Float, nullable=False) product_weight = Column('weight_product', Float, nullable=False) # Flag to notify id user change data on product (On PUT or DELETE) change_made = Column('change_made', Boolean, nullable=False, index=True) # Number of times of anonymous user was queried product product_queried_count = Column('product_queried_count', Integer, nullable=False, index=True) creation_date = Column('creation_date', Date, nullable=False) last_update_date = Column('last_update_date', Date, nullable=True) category_id = Column( 'product_id_category', Integer, ForeignKey('CategoryModel.category_id', onupdate='CASCADE', ondelete='CASCADE'), nullable=True, unique=True # no need to add index=True, all FKs have indexes ) id_category = relationship(CategoryModel, backref=__tablename__) parent_category_id = Column( 'product_id_parent_cat', Integer, nullable=True) def __init__(self, data_product): self.product_sku = data_product.get('sku_producto') self.product_brand = data_product.get('marca_producto') self.unit_of_measure = data_product.get('unidad_medida_producto') self.product_stock = data_product.get('inventario_producto') self.product_name = data_product.get('nombre_producto') self.product_title = data_product.get('titulo_producto') self.product_long_description = data_product.get('descripcion_larga') self.product_photo = data_product.get('url_imagen') self.product_price = decimal_formatting(data_product.get('precio_unitario')) self.product_tax = decimal_formatting(data_product.get('costo_impuesto')) self.product_tax_rate = decimal_formatting(data_product.get('tasa_impuesto')) self.product_status = data_product.get('estatus_producto') self.product_published = data_product.get('producto_publicado') self.product_length = decimal_formatting(data_product.get('volumetria_largo_producto')) self.product_width = decimal_formatting(data_product.get('volumetria_ancho_producto')) self.product_height = decimal_formatting(data_product.get('volumetria_alto_producto')) self.product_weight = decimal_formatting(data_product.get('volumetria_peso_producto')) self.category_id = data_product.get('id_categoria_producto') self.parent_category_id = data_product.get('id_categoria_padre_producto') def check_if_row_exists(self, session, data): """ Validate if row exists on database from dictionary data :param session: Session database object :param data: Dictionary with data to make validation function :return: row_exists: Object with boolean response from db """ row_exists = None id_product = 0 try: # for example to check if the insert on db is correct row_product = self.get_product_id(session, data) if row_product is not None: id_product = row_product.product_id else: id_product = 0 logger.info('Product Row object in DB: %s', str(id_product)) row_exists = session.query(ProductModel).filter(ProductModel.product_id == id_product).scalar() logger.info('Row to data: {}, Exists: %s'.format(data), str(row_exists)) except SQLAlchemyError as exc: row_exists = None logger.exception('An exception was occurred while execute transactions: %s', str(str(exc.args) + ':' + str(exc.code))) raise mvc_exc.IntegrityError( 'Row not stored in "{}". IntegrityError: {}'.format(data.get('sku_producto'), str(str(exc.args) + ':' + str(exc.code))) ) finally: session.close() return row_exists def insert_data(self, session, data): """ Function to insert/create new row on database :param session: Session database object :param data: Dictionary to insert new the data containing on the db :return: endpoint_response """ endpoint_response = None if not self.check_if_row_exists(session, data): try: self.creation_date = get_current_date(session) data['creation_date'] = self.creation_date new_row = ProductModel(data) logger.info('New Row Product: %s', str(new_row.product_sku)) session.add(new_row) row_product = self.get_product_id(session, data) logger.info('Product ID Inserted: %s', str(row_product.product_id)) session.flush() data['id_product'] = row_product.product_id # check insert correct row_inserted = self.get_one_product(session, data) logger.info('Data Product inserted: %s, Original Data: {}'.format(data), str(row_inserted)) if row_inserted: endpoint_response = json.dumps({ "sku_producto": row_inserted.product_sku, "marca_producto": row_inserted.product_brand, "unidad_medida_producto": row_inserted.unit_of_measure, "inventario_producto": row_inserted.product_stock, "nombre_producto": row_inserted.product_name, "titulo_producto": row_inserted.product_title, "descripcion_larga": row_inserted.product_long_description, "url_imagen": row_inserted.product_photo, "precio_unitario": str(row_inserted.product_price), "costo_impuesto": str(row_inserted.product_tax), "tasa_impuesto": str(row_inserted.product_tax_rate), "estatus_producto": row_inserted.product_status, "producto_publicado": row_inserted.product_published, "volumetria_largo_producto": str(row_inserted.product_length), "volumetria_ancho_producto": str(row_inserted.product_width), "volumetria_alto_producto": str(row_inserted.product_height), "volumetria_peso_producto": str(row_inserted.product_weight), "id_categoria_producto": str(row_inserted.category_id), "id_categoria_padre_producto": str(row_inserted.parent_category_id), "fecha_alta": str(row_inserted.creation_date) }) except SQLAlchemyError as exc: endpoint_response = None session.rollback() logger.exception('An exception was occurred while execute transactions: %s', str(str(exc.args) + ':' + str(exc.code))) raise mvc_exc.IntegrityError( 'Row not stored in "{}". IntegrityError: {}'.format(data.get('sku_producto'), str(str(exc.args) + ':' + str(exc.code))) ) finally: session.close() return endpoint_response # Transaction to update Product's data on db to authenticate - PUT def update_data(self, session, data): r""" Transaction to update data by a user authenticated on the API correctly. :param session: The product object db session. :param data: The dictionary json request on the API to update data values. """ endpoint_response = None if self.check_if_row_exists(session, data): try: row_product = self.get_product_id(session, data) logger.info('Product ID Updated: %s', str(row_product.product_id)) data['id_product'] = row_product.product_id if row_product is not None: id_product = row_product.product_id else: id_product = 0 self.last_update_date = get_current_date(session) data['last_update_date'] = self.last_update_date # update row to database session.query(ProductModel).filter(ProductModel.product_id == id_product). \ update({"product_sku": data.get('sku_producto'), "product_brand": data.get('marca_producto'), "unit_of_measure": data.get('unidad_medida_producto'), "product_stock": data.get('inventario_producto'), "product_name": data.get('unidad_medida_producto'), "product_title": data.get('unidad_medida_producto'), "product_long_description": data.get('unidad_medida_producto'), "product_photo": data.get('unidad_medida_producto'), "product_price": data.get('unidad_medida_producto'), "product_tax": data.get('unidad_medida_producto'), "product_tax_rate": data.get('unidad_medida_producto'), "product_status": data.get('unidad_medida_producto'), "product_published": data.get('unidad_medida_producto'), "product_length": data.get('unidad_medida_producto'), "product_width": data.get('unidad_medida_producto'), "product_height": data.get('unidad_medida_producto'), "product_weight": data.get('unidad_medida_producto'), "category_id": data.get('unidad_medida_producto'), "parent_category_id": data.get('unidad_medida_producto'), "change_made": "True", "last_update_date": data.get('last_update_date')}, synchronize_session='fetch') session.flush() # check update correct row_updated = self.get_one_product(session, data) logger.info('Data Product updated: %s, Original Data: {}'.format(data), str(row_updated)) if row_updated: logger.info('Data Product updated') endpoint_response = json.dumps({ "sku_producto": row_updated.product_sku, "marca_producto": row_updated.product_brand, "unidad_medida_producto": row_updated.unit_of_measure, "inventario_producto": row_updated.product_stock, "nombre_producto": row_updated.product_name, "titulo_producto": row_updated.product_title, "descripcion_larga": row_updated.product_long_description, "url_imagen": row_updated.product_photo, "precio_unitario": str(row_updated.product_price), "costo_impuesto": str(row_updated.product_tax), "tasa_impuesto": str(row_updated.product_tax_rate), "estatus_producto": row_updated.product_status, "producto_publicado": row_updated.product_published, "volumetria_largo_producto": str(row_updated.product_length), "volumetria_ancho_producto": str(row_updated.product_width), "volumetria_alto_producto": str(row_updated.product_height), "volumetria_peso_producto": str(row_updated.product_weight), "id_categoria_producto": str(row_updated.category_id), "id_categoria_padre_producto": str(row_updated.parent_category_id), "cambio_realizado": bool(row_updated.change_made), "fecha_alta": str(row_updated.creation_date), "fecha_actualizacion": str(row_updated.last_update_date) }) except SQLAlchemyError as exc: session.rollback() endpoint_response = None logger.exception('An exception was occurred while execute transactions: %s', str(str(exc.args) + ':' + str(exc.code))) raise mvc_exc.IntegrityError( 'Row not stored in "{}". IntegrityError: {}'.format(data.get('sku_producto'), str(str(exc.args) + ':' + str(exc.code))) ) finally: session.close() return endpoint_response # Transaction to delete Product's data on db - DELETE def product_inactivate(self, session, data): r""" Transaction to inactivate Product data on the API correctly. :param session: The database object session connect. :param data: The data dictionary to inactivate register on the API. """ endpoint_response = None if self.check_if_row_exists(session, data): try: row_product = self.get_product_id(session, data) logger.info('Product ID Inactivated: %s', str(row_product.product_id)) data['id_product'] = row_product.product_id if row_product is not None: id_product = row_product.product_id else: id_product = 0 self.last_update_date = get_current_date(session) data['last_update_date'] = self.last_update_date # update row to database session.query(ProductModel).filter(ProductModel.product_id == id_product). \ filter(ProductModel.product_status == "activo"). \ update({"product_status": "inactivo", "last_update_date": data.get('last_update_date')}, synchronize_session='fetch') session.flush() # check delete correct row_deleted = self.get_one_product(session, data) logger.info('Data Deleted: %s', str(row_deleted)) if row_deleted: logger.info('Data Product inactivated') endpoint_response = json.dumps({ "sku_producto": row_deleted.product_sku, "marca_producto": row_deleted.product_brand, "unidad_medida_producto": row_deleted.unit_of_measure, "inventario_producto": row_deleted.product_stock, "nombre_producto": row_deleted.product_name, "titulo_producto": row_deleted.product_title, "descripcion_larga": row_deleted.product_long_description, "url_imagen": row_deleted.product_photo, "precio_unitario": str(row_deleted.product_price), "costo_impuesto": str(row_deleted.product_tax), "tasa_impuesto": str(row_deleted.product_tax_rate), "estatus_producto": row_deleted.product_status, "producto_publicado": row_deleted.product_published, "volumetria_largo_producto": str(row_deleted.product_length), "volumetria_ancho_producto": str(row_deleted.product_width), "volumetria_alto_producto": str(row_deleted.product_height), "volumetria_peso_producto": str(row_deleted.product_weight), "id_categoria_producto": str(row_deleted.category_id), "id_categoria_padre_producto": str(row_deleted.parent_category_id), "creation_date": str(row_deleted.creation_date), "last_update_date": str(row_deleted.last_update_date) }) except SQLAlchemyError as exc: session.rollback() endpoint_response = None logger.exception('An exception was occurred while execute transactions: %s', str(str(exc.args) + ':' + str(exc.code))) raise mvc_exc.IntegrityError( 'Row not stored in "{}". IntegrityError: {}'.format(data.get('sku_producto'), str(str(exc.args) + ':' + str(exc.code))) ) finally: session.close() return endpoint_response @staticmethod def get_product_id(session, data): """ Get Producto object row registered on database to get the ID :param session: Database session object :param data: Dictionary with data to get row :return: row_product: The row on database registered """ row_product = None try: row_exists = session.query(ProductModel).\ filter(ProductModel.product_sku == data.get('sku_producto')).\ filter(ProductModel.product_name == data.get('nombre_producto')).\ filter(ProductModel.product_brand == data.get('marca_producto')).scalar() logger.info('Row Data Producto Exists on DB: %s', str(row_exists)) if row_exists: row_product = session.query(ProductModel). \ filter(ProductModel.product_sku == data.get('sku_producto')). \ filter(ProductModel.product_name == data.get('nombre_producto')). \ filter(ProductModel.product_brand == data.get('marca_producto')).one() logger.info('Row ID Product data from database object: {}'.format(str(row_product))) except SQLAlchemyError as exc: logger.exception('An exception was occurred while execute transactions: %s', str(str(exc.args) + ':' + str(exc.code))) raise mvc_exc.ItemNotStored( 'Can\'t read data: "{}" because it\'s not stored in "{}". Row empty: {}'.format( data.get('nombre_producto'), ProductModel.__tablename__, str(str(exc.args) + ':' + str(exc.code)) ) ) finally: session.close() return row_product @staticmethod def get_one_product(session, data): row = None try: row = session.query(ProductModel). \ filter(ProductModel.product_sku == data.get('sku_producto')). \ filter(ProductModel.product_name == data.get('nombre_producto')). \ filter(ProductModel.product_brand == data.get('marca_producto')).one() if row: logger.info('Data Product on Db: %s', 'Nombre: {}, SKU: {}, Marca: {}'.format(row.product_name, row.product_sku, row.product_brand)) except SQLAlchemyError as exc: row = None logger.exception('An exception was occurred while execute transactions: %s', str(str(exc.args) + ':' + str(exc.code))) raise mvc_exc.ItemNotStored( 'Can\'t read data: "{}" because it\'s not stored in "{}". Row empty: {}'.format( data.get('nombre_producto'), ProductModel.__tablename__, str(str(exc.args) + ':' + str(exc.code)) ) ) finally: session.close() return row @staticmethod def get_all_products(session, data): """ Get all Products objects data registered on database. :param data: Dictionary contains relevant data to filter Query on resultSet DB :param session: Database session :return: json.dumps dict """ querying_counter = 0 all_products = None product_data = [] page = None per_page = None all_products = session.query(ProductModel).all() if 'offset' in data.keys() and 'limit' in data.keys(): page = data.get('offset') per_page = data('limit') all_products = session.query(ProductModel).paginate(page=page, per_page=per_page, error_out=False).all() for product in all_products: if product.product_queried_count is not None: querying_counter = int(product.product_queried_count) querying_counter += 1 data['last_update_date'] = get_current_date(session) # update row to database session.query(ProductModel).filter(ProductModel.product_id == product.id_product). \ update({"product_queried_count": querying_counter, "last_update_date": data.get('last_update_date')}, synchronize_session='fetch') session.flush() product_data += [{ "Product": { "sku_producto": product.product_sku, "marca_producto": product.product_brand, "unidad_medida_producto": product.unit_of_measure, "inventario_producto": product.product_stock, "nombre_producto": product.product_name, "titulo_producto": product.product_title, "descripcion_larga": product.product_long_description, "url_imagen": product.product_photo, "precio_unitario": str(product.product_price), "costo_impuesto": str(product.product_tax), "tasa_impuesto": str(product.product_tax_rate), "estatus_producto": product.product_status, "producto_publicado": product.product_published, "volumetria_largo_producto": str(product.product_length), "volumetria_ancho_producto": str(product.product_width), "volumetria_alto_producto": str(product.product_height), "volumetria_peso_producto": str(product.product_weight), "id_categoria_producto": str(product.category_id), "id_categoria_padre_producto": str(product.parent_category_id), "contador_busqueda": str(querying_counter), "fecha_alta": str(product.creation_date), "fecha_actualizacion": str(data.get('last_update_date')) } }] return json.dumps(product_data) @staticmethod def get_products_by_filters(session, data, filter_spec): """ Get list of Products filtered by options by user request :param session: Database session :param data: Dictionary contains relevant data to filter Query on resultSet DB :param filter_spec: List of options defined by user request :return: json.dumps dict """ querying_counter = 0 page = 1 per_page = 10 query_result = None product_data = [] if 'offset' in data.keys() and 'limit' in data.keys(): page = data.get('offset') per_page = data('limit') query_result = session.query(ProductModel).all() query = session.query(ProductModel) filtered_query = apply_filters(query, filter_spec) if filter_spec is not None and filtered_query is not None: query_result = filtered_query.paginate(page=page, per_page=per_page, error_out=False).all() logger.info('Query filtered resultSet: %s', str(query_result)) for product in query_result: if product.product_queried_count is not None: querying_counter = int(product.product_queried_count) querying_counter += 1 data['last_update_date'] = get_current_date(session) # update row to database session.query(ProductModel).filter(ProductModel.product_id == product.id_product). \ update({"product_queried_count": querying_counter, "last_update_date": data.get('last_update_date')}, synchronize_session='fetch') session.flush() product_data += [{ "Product": { "sku_producto": product.product_sku, "marca_producto": product.product_brand, "unidad_medida_producto": product.unit_of_measure, "inventario_producto": product.product_stock, "nombre_producto": product.product_name, "titulo_producto": product.product_title, "descripcion_larga": product.product_long_description, "url_imagen": product.product_photo, "precio_unitario": str(product.product_price), "costo_impuesto": str(product.product_tax), "tasa_impuesto": str(product.product_tax_rate), "estatus_producto": product.product_status, "producto_publicado": product.product_published, "volumetria_largo_producto": str(product.product_length), "volumetria_ancho_producto": str(product.product_width), "volumetria_alto_producto": str(product.product_height), "volumetria_peso_producto": str(product.product_weight), "id_categoria_producto": str(product.category_id), "id_categoria_padre_producto": str(product.parent_category_id), "contador_busqueda": str(querying_counter), "fecha_alta": str(product.creation_date), "fecha_actualizacion": str(data.get('last_update_date')) } }] return json.dumps(product_data) def __repr__(self): return "<MunicipioModel(product_id='%s'" \ " product_sku='%s', " \ " product_brand='%s', " \ " unit_of_measure='%s', " \ " product_stock='%s'" \ " product_name='%s'" \ " product_title='%s'" \ " product_long_description='%s'" \ " product_photo='%s'" \ " product_price='%s'" \ " product_tax='%s'" \ " product_tax_rate='%s'" \ " product_status='%s'" \ " product_published='%s'" \ " product_length='%s'" \ " product_width='%s'" \ " product_height='%s'" \ " product_weight='%s'" \ " category_id='%s'" \ " parent_category_id='%s'" \ " creation_date='%s'" \ " last_update_date='%s')>" % (self.product_id, self.product_sku, self.product_brand, self.unit_of_measure, self.product_stock, self.product_name, self.product_title, self.product_long_description, self.product_photo, self.product_price, self.product_tax, self.product_tax_rate, self.product_status, self.product_published, self.product_length, self.product_width, self.product_height, self.product_weight, self.category_id, self.parent_category_id, self.creation_date, self.last_update_date) ``` #### File: product_api_test/db_controller/database_backend.py ```python __author__ = "<NAME> (<EMAIL>)" __copyright__ = "Copyright 2021" __license__ = "" __history__ = """ Script with functions to manage database back end""" __version__ = "1.21.H05.1 ($Rev: 2 $)" import psycopg2 from sqlalchemy import create_engine, ForeignKey from sqlalchemy_utils import database_exists, create_database from sqlalchemy.orm import sessionmaker, relationship from sqlalchemy.exc import SQLAlchemyError from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.engine.reflection import Inspector from db_controller import mvc_exceptions as mvc_exc from logger_controller.logger_control import * from utilities.Utility import * from flask_bcrypt import Bcrypt Base = declarative_base() bcrypt = Bcrypt() cfg_db = get_config_settings_db() cfg_app = get_config_settings_app() # logger = configure_logger(cfg_app.log_types[2].__str__()) logger = configure_logger('db') logging.basicConfig() logging.getLogger('sqlalchemy.engine').setLevel(logging.DEBUG) def create_engine_db(): # For Test connection: engine = create_engine(cfg_db.Development.SQLALCHEMY_DATABASE_URI.__str__(), client_encoding="utf8", execution_options={"isolation_level": "REPEATABLE READ"}) if not 'development' == cfg_app.flask_api_env: engine = create_engine(cfg_db.Production.SQLALCHEMY_DATABASE_URI.__str__(), client_encoding="utf8", execution_options={"isolation_level": "REPEATABLE READ"}) logger.info("Engine Created by URL: {}".format(cfg_db.Development.SQLALCHEMY_DATABASE_URI.__str__())) return engine def create_database_api(engine_session): if not database_exists(engine_session.url): logger.info("Create the Database...") create_database(engine_session.url, 'utf-8') logger.info("Database created...") def create_bd_objects(engine_obj): inspector = Inspector.from_engine(engine_obj) table_names = list() table_names.append(cfg_db.user_auth_table.__str__()) table_names.append(cfg_db.category_table.__str__()) table_names.append(cfg_db.product_table.__str__()) if not inspector.get_table_names(): Base.metadata.create_all(bind=engine_obj) logger.info("Database objects created...") else: for table_name in inspector.get_table_names(): logger.info('Table on database: %s', str(table_name)) if table_name in table_names: logger.info('Table already created: %s', str(table_name)) else: # Create tables Base.metadata.create_all(bind=engine_obj) logger.info("Database objects created...") # Base.metadata.create_all(bind=engine_obj) logger.info("Database objects created...") def session_to_db(engine_se): r""" Get and manage the session connect to the database engine. :return connection: Object to connect to the database and transact on it. """ session = None connection = None try: if engine_se: session_maker = sessionmaker(bind=engine_se, autocommit=True) connection = engine_se.connect() session = session_maker(bind=connection) logger.info("Connection and Session objects created...") else: logger.error("Database not created or some parameters with the connection to the database can't be read") except mvc_exc.DatabaseError as db_error: logger.exception("Can not connect to database, verify data connection", db_error, exc_info=True) raise mvc_exc.ConnectionError( 'Can not connect to database, verify data connection.\nOriginal Exception raised: {}'.format(db_error) ) return connection, session def init_db_connection(): engine_db = create_engine_db() create_database_api(engine_db) create_bd_objects(engine_db) connection, session = session_to_db(engine_db) return connection, session def scrub(input_string): """Clean an input string (to prevent SQL injection). Parameters ---------- input_string : str Returns ------- str """ return "".join(k for k in input_string if k.isalnum()) def create_cursor(conn): r""" Create an object statement to transact to the database and manage his data. :param conn: Object to connect to the database. :return cursor: Object statement to transact to the database with the connection. """ try: cursor = conn.cursor() except mvc_exc.ConnectionError as conn_error: logger.exception("Can not create the cursor object, verify database connection", conn_error, exc_info=True) raise mvc_exc.ConnectionError( 'Can not connect to database, verify data connection.\nOriginal Exception raised: {}'.format( conn_error ) ) return cursor def disconnect_from_db(conn): r""" Generate close session to the database through the disconnection of the conn object. :param conn: Object connector to close session. """ if conn is not None: conn.close() def close_cursor(cursor): r""" Generate close statement to the database through the disconnection of the cursor object. :param cursor: Object cursor to close statement. """ if cursor is not None: cursor.close() def get_current_date(session): # sql_current_date = 'SELECT CURDATE()' # For MySQL sql_current_date = 'SELECT NOW()' # For PostgreSQL current_date = session.execute(sql_current_date).one() logger.info('CurrentDate: %s', current_date) return current_date def get_systimestamp_date(session): last_updated_date_column = session.execute('SELECT systimestamp from dual').scalar() logger.info('Timestamp from DUAL: %s', last_updated_date_column) return last_updated_date_column def get_current_date_from_db(session, conn, cursor): r""" Get the current date and hour from the database server to set to the row registered or updated. :return last_updated_date: The current day with hour to set the date value. """ last_updated_date = None try: # sql_current_date = 'SELECT CURDATE()' # For MySQL sql_current_date = 'SELECT NOW()' # For PostgreSQL cursor.execute(sql_current_date) result = cursor.fetchone()[0] print("NOW() :", result) if result is not None: # last_updated_date = datetime.datetime.strptime(str(result), "%Y-%m-%d %H:%M:%S") # last_updated_date = datetime.datetime.strptime(str(result), "%Y-%m-%d %I:%M:%S") last_updated_date = result cursor.close() except SQLAlchemyError as error: conn.rollback() logger.exception('An exception occurred while execute transaction: %s', error) raise SQLAlchemyError( "A SQL Exception {} occurred while transacting with the database.".format(error) ) finally: disconnect_from_db(conn) return last_updated_date ``` #### File: product_api_test/logger_controller/logger_control.py ```python import errno import logging import os import sys from utilities.Utility import * from datetime import datetime sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..')) # Possible values to LOGGER: DEBUG, INFO, WARN, ERROR, and CRITICAL # LOG_LEVEL = logging.DEBUG # Para LOG file de App principal def configure_logging(log_name, path_to_log_directory, logger_type): """ Configure logger :param logger_type: The type to write logger and setup on the modules of App :param log_name: Name of the log file saved :param path_to_log_directory: Path to directory to write log file in :return: """ cfg = get_config_settings_app() _date_name = datetime.now().strftime('%Y-%m-%dT%H%M') log_filename = str(log_name + _date_name + cfg.log_file_extension) _importer_logger = logging.getLogger(logger_type) _importer_logger.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - Module: %(module)s - Line No: %(lineno)s : %(name)s : %(levelname)s - ' '%(message)s') if not os.path.exists(path_to_log_directory): fh = logging.FileHandler(filename=os.path.join(path_to_log_directory, log_filename), mode='a', encoding='utf-8', delay=False) else: fh = logging.FileHandler(filename=os.path.join(path_to_log_directory, log_filename), mode='w', encoding='utf-8', delay=False) fh.setLevel(logging.DEBUG) fh.setFormatter(formatter) _importer_logger.addHandler(fh) # For Testing logging - Comment sh = logging.StreamHandler(sys.stdout) sh.setLevel(logging.DEBUG) sh.setFormatter(formatter) _importer_logger.addHandler(sh) create_directory_if_not_exists(_importer_logger, path_to_log_directory) return _importer_logger # Para LOG console de App principal def configure_logging_console(logger_type): """ Configure logger :param logger_type: The type to write logger and setup on the modules of App :return _imoporter_log: """ _date_name = datetime.now().strftime('%Y-%m-%dT%H%M') _importer_logger = logging.getLogger(logger_type) _importer_logger.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - Module: %(module)s - Line No: %(lineno)s : %(name)s : %(levelname)s - ' '%(message)s') sh = logging.StreamHandler(sys.stdout) sh.setLevel(logging.DEBUG) sh.setFormatter(formatter) _importer_logger.addHandler(sh) return _importer_logger def log_critical_error(logger, exc, message): """ Logs the exception at ´CRITICAL´ log level :param logger: the logger :param exc: exception to log :param message: description message to log details of where/why exc occurred """ if logger is not None: logger.critical(message) logger.critical(exc) def create_directory_if_not_exists(logger, path): """ Creates 'path' if it does not exist If creation fails, an exception will be thrown :param logger: the logger :param path: the path to ensure it exists """ try: os.makedirs(path) except OSError as exc: if exc.errno != errno.EEXIST and not os.path.isdir(path): log_critical_error(logger, exc, 'An error happened trying to create ' + path) raise def configure_logger(logger_type): """ Declare and validate existence of log directory; create and configure logger object :return: instance of configured logger object """ cfg = get_config_settings_app() log_name = cfg.log_file_app_name log_dir = cfg.log_file_save_path logger = configure_logging(log_name, log_dir, logger_type) if logger is not None: return logger def configure_console_logger(logger_type): """ Declare and validate existence of log directory; create and configure logger object :param logger_type: The type to write logger and setup on the modules of App :return: instance of configured logger object """ logger = configure_logging_console(logger_type) if logger is not None: return logger ``` #### File: product_api_test/tests/UserAuthenticationTest.py ```python __author__ = "<NAME> (<EMAIL>)" __copyright__ = "Copyright 2021, <NAME>" __license__ = "" __history__ = """ """ __version__ = "1.1.I02.1 ($Rev: 1 $)" import unittest import json from tests.BaseCase import BaseCase class TestUserLogin(BaseCase): def test_successful_login(self): user_name = "<EMAIL>" password = "<PASSWORD>" email = "<EMAIL>" payload = json.dumps({ "username": user_name, "password": password, "is_active": 1, "is_staff": 0, "is_superuser": 1, }) # When response = self.app.post('/api/v1.0/manager/user/login/', headers={"Content-Type": "application/json"}, data=payload) token_response = json.loads(response.get_data(as_text=True)) # Then self.assertEqual(str, type(token_response['message_login'])) self.assertEqual(str, type(token_response['access_token'])) self.assertEqual(str, type(token_response['refresh_token'])) self.assertEqual(str, type(token_response['data'])) self.assertEqual(200, response.status_code) return token_response['access_token'] def test_login_already_existing_user(self): user_name = "<EMAIL>" password = "<PASSWORD>" email = "<EMAIL>" payload = json.dumps({ "username": user_name, "password": password, "is_active": 1, "is_staff": 1, "is_superuser": 0, }) # When response = self.app.post('/api/v1.0/manager/user/login/', headers={"Content-Type": "application/json"}, data=payload) login_response = json.loads(response.get_data(as_text=True)) # Then # self.assertEqual(str, type(login_response['Username'])) # self.assertEqual(str, type(login_response['Password'])) # self.assertEqual(str, type(login_response['IsActive'])) # self.assertEqual(str, type(login_response['IsStaff'])) # self.assertEqual(str, type(login_response['IsSuperUser'])) # self.assertEqual(str, type(login_response['CreationDate'])) self.assertEqual(str, type(login_response['message_login'])) self.assertEqual(str, type(login_response['access_token'])) self.assertEqual(str, type(login_response['refresh_token'])) self.assertEqual(str, type(login_response['data'])) self.assertEqual(200, response.status_code) def test_login_with_invalid_username(self): user_name = "<EMAIL>" password = "<PASSWORD>" email = "<EMAIL>" payload = json.dumps({ "username": user_name, "password": password, "is_active": 1, "is_staff": 0, "is_superuser": 0, }) # When response = self.app.post('/api/v1.0/manager/user/login/', headers={"Content-Type": "application/json"}, data=payload) user_response = json.loads(response.get_data(as_text=True)) # Then self.assertEqual(str, type(user_response['message_login'])) self.assertEqual(str, type(user_response['data'])) def test_login_with_invalid_password(self): user_name = "<EMAIL>" password = "Ñ" email = "<EMAIL>" payload = json.dumps({ "username": user_name, "password": password, "is_active": 1, "is_staff": 0, "is_superuser": 0, }) # When response = self.app.post('/api/v1.0/manager/user/login/', headers={"Content-Type": "application/json"}, data=payload) user_response = json.loads(response.get_data(as_text=True)) # Then self.assertEqual(str, type(user_response['message_login'])) self.assertEqual(str, type(user_response['data'])) def test_login_get_users(self): # When response = self.app.get('/api/v1.0/manager/user/list', headers={"Content-Type": "application/json"}) user_response = json.loads(response.get_data(as_text=True)) # Then self.assertEqual(str, type(user_response["AuthUser"]['Id'])) self.assertEqual(str, type(user_response["AuthUser"]['Username'])) self.assertEqual(str, type(user_response["AuthUser"]['Password'])) self.assertEqual(str, type(user_response["AuthUser"]['IsActive'])) self.assertEqual(str, type(user_response["AuthUser"]['IsStaff'])) self.assertEqual(str, type(user_response["AuthUser"]['IsSuperUser'])) self.assertEqual(str, type(user_response["AuthUser"]['CreationDate'])) self.assertEqual(str, type(user_response["AuthUser"]['LastUpdateDate'])) self.assertEqual(200, response.status_code) def test_user_update_data(self): user_name = "<EMAIL>" password = "<PASSWORD>" email = "<EMAIL>" payload = json.dumps({ "username": user_name, "password": password, "is_active": 1, "is_staff": 0, "is_superuser": 0, }) # When response = self.app.put('/api/v1.0/manager/user/', headers={"Content-Type": "application/json"}, data=payload) user_response = json.loads(response.get_data(as_text=True)) # Then self.assertEqual(str, type(user_response['Username'])) self.assertEqual(str, type(user_response['Password'])) self.assertEqual(str, type(user_response['IsActive'])) self.assertEqual(str, type(user_response['IsStaff'])) self.assertEqual(str, type(user_response['IsSuperUser'])) self.assertEqual(str, type(user_response['CreationDate'])) self.assertEqual(str, type(user_response['LastUpdateDate'])) self.assertEqual(200, response.status_code) def test_user_delete_data(self): user_name = "<EMAIL>" password = "<PASSWORD>" email = "<EMAIL>" payload = json.dumps({ "username": user_name, "password": password, "is_active": 1, "is_staff": 0, "is_superuser": 0, }) # When response = self.app.delete('/api/v1.0/manager/user/', headers={"Content-Type": "application/json"}, data=payload) user_response = json.loads(response.get_data(as_text=True)) # Then self.assertEqual(str, type(user_response['Username'])) self.assertEqual(str, type(user_response['Password'])) self.assertEqual(str, type(user_response['IsActive'])) self.assertEqual(str, type(user_response['IsStaff'])) self.assertEqual(str, type(user_response['IsSuperUser'])) self.assertEqual(str, type(user_response['CreationDate'])) self.assertEqual(str, type(user_response['LastUpdateDate'])) self.assertEqual(200, response.status_code) ``` #### File: product_api_test/utilities/Utility.py ```python __author__ = "<NAME> (<EMAIL>)" __copyright__ = "Copyright 2021" __license__ = "" __history__ = """ """ __version__ = "1.21.H05.1 ($Rev: 2 $)" from settings.settings import * from datetime import datetime import pytz # Define y obtiene el configurador para las constantes generales del sistema def get_config_settings_app(): """ Get the config object to charge the settings configurator. :return object: cfg object, contain the Match to the settings allowed in Constants file configuration. """ settings_api = AppConstants() return settings_api # Define y obtiene el configurador para las constantes de la base de datos def get_config_settings_db(): """ Get the config object to charge the settings database configurator. :return object: cfg object, contain the Match to the settings allowed in Constants file configuration. """ settings_db = DbConstants() return settings_db def decimal_formatting(value): return ('%.2f' % value).rstrip('0').rstrip('.') # Cambia fecha-hora en datos a timezone UTC desde el dato y timezone definido def set_utc_date_data(data_date, timezone_date): utc_date_convert = "" utc_hour_convert = "" date_on_utc = "" local_date = pytz.timezone(timezone_date) naive = datetime.strptime(data_date, "%Y-%m-%d %H:%M:%S") local_dt = local_date.localize(naive, is_dst=None) utc_dt = local_dt.astimezone(pytz.utc) print(utc_dt) date_on_utc = str(utc_dt).split() utc_date_convert = date_on_utc[0] utc_hour_convert = date_on_utc[1] return utc_date_convert, utc_hour_convert ```
{ "source": "jorgeMorfinezM/TVOrderS3Uploader", "score": 2 }
#### File: jorgeMorfinezM/TVOrderS3Uploader/app.py ```python __author__ = "<NAME> (<EMAIL>)" __copyright__ = "Copyright 2019, <NAME>" __license__ = "" __history__ = """ """ __version__ = "1.20.D10.1.2.1 ($Rev: 10 $)" from constants.constants import Constants as Const import fnmatch import boto3 from ftplib import FTP_TLS import argparse from logger_controller.logger_control import * import time logger = configure_logger() # Conecta al FTP B2B def ftp_orders_b2b_tecnofin_connector(): cfg = get_config_constant_file() remote_host = cfg['ACCESS_B2B']['HOST'] remote_port = cfg['ACCESS_B2B']['PORT'] remote_username = cfg['ACCESS_B2B']['USERNAME'] remote_password = cfg['ACCESS_B2B']['PASSWORD'] remote_timeout = cfg['ACCESS_B2B']['TIME_OUT'] ftps = FTP_TLS(remote_host) ftps.set_debuglevel(2) ftps.set_pasv(True) ftps.connect(port=remote_port, timeout=remote_timeout) ftps.login(remote_username, remote_password) logger.info('FTP Connected to: %s', remote_username+'@'+str(remote_host)) ftps.prot_p() return ftps # Conecta al FTP B2C de Tecnofin def ftp_orders_b2c_tecnofin_connector(): cfg = get_config_constant_file() remote_host = cfg['ACCESS_B2C']['HOST'] remote_port = cfg['ACCESS_B2C']['PORT'] remote_username = cfg['ACCESS_B2C']['USERNAME'] remote_password = cfg['ACCESS_B2C']['PASSWORD'] remote_timeout = cfg['ACCESS_B2C']['TIME_OUT'] ftps = FTP_TLS(remote_host) ftps.set_debuglevel(2) ftps.set_pasv(True) ftps.connect(port=remote_port, timeout=remote_timeout) ftps.login(remote_username, remote_password) logger.info('FTP Connected to: %s', remote_username+'@'+str(remote_host)) ftps.prot_p() return ftps # Parsea todos los XML de pedidos pendientes # para insertarlos mediante API de Pedidos def parse_xml_pedidos_b2c_tv(order_type): import os cfg = get_config_constant_file() orders_status_list = cfg['ORDERS_STATUS_LIST'] if 'B2C' in order_type: remote_path = cfg['PATH_ORDERS_B2C'] local_temp_path = cfg['PATH_LOCAL'] pattern = cfg['EXT_ORDERS_TV'] ftps = ftp_orders_b2c_tecnofin_connector() ftps.cwd(remote_path) pedidos = ftps.nlst() # ssh = connect_to_ftp_pedidos() # sftp = ssh.open_sftp() # pedidos = sftp.listdir(remote_path) file_remote = None file_local = None for pedido in pedidos: # print all entries that are files if fnmatch.fnmatch(pedido, pattern): file_remote = remote_path + '/' + pedido file_local = local_temp_path + '/' + pedido pedido_s3_exists = validate_order_exists_s3(pedido) logger.info('Pedido Order Exists in S3: %s', 'Pedido: {0} ¿exists?: {1}'.format(pedido, pedido_s3_exists)) if pedido_s3_exists is False: logger.info('Server File >>> ' + file_remote + ' : ' + file_local + ' <<< Local File') ftps.retrbinary('RETR %s' % file_remote, open(file_local, 'wb').write) # sftp.get(file_remote, file_local) # NOT USE IT logger.info('Local File Pedido was created: %s', str(file_local)) copy_order_to_aws_s3(pedido) # If file exists, delete it ## if os.path.isfile(file_local): os.remove(file_local) logger.info('Local File Pedido was deleted: %s', str(file_local)) else: # Show an error ## logger.error("Error: %s file not found" % file_local) else: logger.info('Pedido File: %s', '{0} already exists in Bucket S3!'.format(pedido)) ftps.delete(pedido) time.sleep(1) ftps.close() elif 'B2B' in order_type: remote_path = cfg['PATH_ORDERS_B2B'] local_temp_path = cfg['PATH_LOCAL'] pattern = cfg['EXT_ORDERS_TV'] ftps = ftp_orders_b2b_tecnofin_connector() ftps.cwd(remote_path) pedidos = ftps.nlst() for pedido in pedidos: # print all entries that are files if fnmatch.fnmatch(pedido, pattern): file_remote = remote_path + '/' + pedido file_local = local_temp_path + '/' + pedido pedido_s3_exists = validate_order_exists_s3(pedido) logger.info('Pedido Order Exists in S3: %s', 'Pedido: {0} ¿exists?: {1}'.format(pedido, pedido_s3_exists)) if pedido_s3_exists is False: logger.info('Server File >>> ' + file_remote + ' : ' + file_local + ' <<< Local File') ftps.retrbinary('RETR %s' % file_remote, open(file_local, 'wb').write) # sftp.get(file_remote, file_local) # NOT USE IT logger.info('Local File Pedido was created: %s', str(file_local)) copy_order_to_aws_s3(pedido) # If file exists, delete it ## if os.path.isfile(file_local): os.remove(file_local) logger.info('Local File Pedido was deleted: %s', str(file_local)) else: # Show an error ## logger.error("Error: %s file not found" % file_local) else: logger.info('Pedido File: %s', '{0} already exists in Bucket S3!'.format(pedido)) ftps.close() # Contiene el codigo para conectar Bucket AWS de S3 # y subir el archivo del pedido: def copy_order_to_aws_s3(pedido): cfg = get_config_constant_file() bucket_s3_name = cfg['BUCKET_AWS_S3']['S3_NAME'] s3_access_key = cfg['BUCKET_AWS_S3']['ACCESS_KEY'] s3_secret_key = cfg['BUCKET_AWS_S3']['SECRET_KEY'] bucketname = bucket_s3_name logger.info('Bucket S3 to Upload Order file: %s', bucketname) logger.info('Order Pedido file to upload: %s', pedido) s3 = boto3.resource('s3', aws_access_key_id=s3_access_key, aws_secret_access_key=s3_secret_key) s3.Object(bucketname, pedido).upload_file(Filename=pedido) logger.info('Order Pedido file uploaded: %s', pedido) # Conecta a AWS S3 para descargar y leer cada pedido XML def connect_aws_s3(): cfg = get_config_constant_file() bucket_s3_name = cfg['BUCKET_AWS_S3']['S3_NAME'] s3_access_key = cfg['BUCKET_AWS_S3']['ACCESS_KEY'] s3_secret_key = cfg['BUCKET_AWS_S3']['SECRET_KEY'] bucketname = bucket_s3_name s3 = boto3.resource('s3', aws_access_key_id=s3_access_key, aws_secret_access_key=s3_secret_key) bucket_pedidos = s3.Bucket(bucketname) # s3.Object(bucketname, pedido).upload_file(Filename=pedido) return bucket_pedidos def validate_order_exists_s3(pedido_order): pedido_s3_exists = False bucket_pedidos = connect_aws_s3() logger.info('Pedido to validate in S3: %s', str(pedido_order)) for pedido in bucket_pedidos.objects.all(): order_name = pedido.key logger.info('File Pedido into S3 Bucket: %s', str(order_name)) if str(pedido_order) in str(order_name): pedido_s3_exists = True else: pedido_s3_exists = False return pedido_s3_exists # Define y obtiene el configurador para las constantes del sistema: def get_config_constant_file(): """Contiene la obtencion del objeto config para setear datos de constantes en archivo configurador :rtype: object """ # TEST _constants_file = "constants/constants.yml" # PROD # _constants_file = "constants/constants.yml" cfg = Const.get_constants_file(_constants_file) return cfg def main(): pass parser = argparse.ArgumentParser() parser.add_argument('--order_type', required=True, type=str, help="Parametro Tipo de Orden B2C o B2B entre comillas") args = parser.parse_args() order_type = args.order_type logger.info('ORDER_TYPE ARG: %s', str(order_type)) parse_xml_pedidos_b2c_tv(order_type) if __name__ == "__main__": pass main() ```
{ "source": "jorgemorgado/puppet-metrics", "score": 3 }
#### File: puppet-metrics/bin/genjson.py ```python __version__ = 1.0 import sys import re import json import argparse from collections import defaultdict version = """%(prog)s 1.0 (c)2015 <EMAIL>""" description = "Generate a JSON output from a cloc/SQLite query input." parser = argparse.ArgumentParser(description=description) parser.add_argument('-v', '--version', action='version', version=version) parser.add_argument('-d', '--debug', action='store_true', dest='debug', default=False, help='enable debug mode (developers only)') args = parser.parse_args() # Disable traceback if not in debug mode if not args.debug: sys.tracebacklimit = 0 def main(): modules = defaultdict(list) pattern_manifest = re.compile(r'^\.\/common\/modules\/(?P<name>.*?)\/manifests\/(?P<file>.*?)\.pp\|(?P<lines>\d+?)$') pattern_template = re.compile(r'^\.\/common\/modules\/(?P<name>.*?)\/templates\/(?P<file>.*?)\.erb\|(?P<lines>\d+?)$') for line in sys.stdin: # Does it matches a manifest file? match = pattern_manifest.match(line) if match: modulename = match.group('name') filelines = match.group('lines') if match.group('file') == 'init': filename = modulename else: filename = modulename + '::' + match.group('file').replace('/', '::') modules[modulename].append([ filename, filelines ]) # Does it matches a template file? match = pattern_template.match(line) if match: modulename = match.group('name') filelines = match.group('lines') filename = modulename + '/' + match.group('file') + '.erb' modules[modulename].append([ filename, filelines ]) flare_children = [] for k, v in modules.iteritems(): #print "Module %s:" % k children = [] for item in v: #print "\t", item[0], item[1] children.append({ "name": item[0], "size": int(item[1]) }) node = { "name": k, "children": children } #print node flare_children.append(node) data = { "name": "flare", "children": flare_children } # Output JSON data print json.dumps(data) if __name__ == "__main__": try: sys.exit(main()) except KeyboardInterrupt: print "Caught Ctrl-C." sys.exit(ERROR) ```
{ "source": "jorgemorgado/sqlalchemy", "score": 2 }
#### File: test/orm/test_cache_key.py ```python import random import sqlalchemy as sa from sqlalchemy import Column from sqlalchemy import func from sqlalchemy import inspect from sqlalchemy import Integer from sqlalchemy import null from sqlalchemy import select from sqlalchemy import Table from sqlalchemy import testing from sqlalchemy import text from sqlalchemy import true from sqlalchemy import update from sqlalchemy.orm import aliased from sqlalchemy.orm import Bundle from sqlalchemy.orm import defaultload from sqlalchemy.orm import defer from sqlalchemy.orm import join as orm_join from sqlalchemy.orm import joinedload from sqlalchemy.orm import lazyload from sqlalchemy.orm import Load from sqlalchemy.orm import load_only from sqlalchemy.orm import Query from sqlalchemy.orm import relationship from sqlalchemy.orm import selectinload from sqlalchemy.orm import Session from sqlalchemy.orm import subqueryload from sqlalchemy.orm import synonym from sqlalchemy.orm import with_expression from sqlalchemy.orm import with_loader_criteria from sqlalchemy.orm import with_polymorphic from sqlalchemy.sql.base import CacheableOptions from sqlalchemy.sql.expression import case from sqlalchemy.sql.visitors import InternalTraversal from sqlalchemy.testing import AssertsCompiledSQL from sqlalchemy.testing import eq_ from sqlalchemy.testing import fixtures from sqlalchemy.testing import ne_ from sqlalchemy.testing.fixtures import fixture_session from test.orm import _fixtures from .inheritance import _poly_fixtures from .test_query import QueryTest from ..sql.test_compare import CacheKeyFixture def stmt_20(*elements): return tuple( elem._statement_20() if isinstance(elem, Query) else elem for elem in elements ) class CacheKeyTest(CacheKeyFixture, _fixtures.FixtureTest): run_setup_mappers = "once" run_inserts = None run_deletes = None @classmethod def setup_mappers(cls): cls._setup_stock_mapping() def test_mapper_and_aliased(self): User, Address, Keyword = self.classes("User", "Address", "Keyword") self._run_cache_key_fixture( lambda: (inspect(User), inspect(Address), inspect(aliased(User))), compare_values=True, ) def test_attributes(self): User, Address, Keyword = self.classes("User", "Address", "Keyword") self._run_cache_key_fixture( lambda: ( User.id, Address.id, aliased(User).id, aliased(User, name="foo").id, aliased(User, name="bar").id, User.name, User.addresses, Address.email_address, aliased(User).addresses, ), compare_values=True, ) def test_bundles_in_annotations(self): User = self.classes.User self._run_cache_key_fixture( lambda: ( Bundle("mybundle", User.id).__clause_element__(), Bundle("myotherbundle", User.id).__clause_element__(), Bundle("mybundle", User.name).__clause_element__(), Bundle("mybundle", User.id, User.name).__clause_element__(), ), compare_values=True, ) def test_bundles_directly(self): User = self.classes.User self._run_cache_key_fixture( lambda: ( Bundle("mybundle", User.id), Bundle("mybundle", User.id).__clause_element__(), Bundle("myotherbundle", User.id), Bundle("mybundle", User.name), Bundle("mybundle", User.id, User.name), ), compare_values=True, ) def test_query_expr(self): (User,) = self.classes("User") self._run_cache_key_fixture( lambda: ( with_expression(User.name, true()), with_expression(User.name, null()), with_expression(User.name, func.foobar()), with_expression(User.name, User.name == "test"), Load(User).with_expression(User.name, true()), Load(User).with_expression(User.name, null()), Load(User).with_expression(User.name, func.foobar()), Load(User).with_expression(User.name, User.name == "test"), ), compare_values=True, ) def test_loader_criteria(self): User, Address = self.classes("User", "Address") from sqlalchemy import Column, Integer, String class Foo(object): id = Column(Integer) name = Column(String) self._run_cache_key_fixture( lambda: ( with_loader_criteria(User, User.name != "somename"), with_loader_criteria(User, User.id != 5), with_loader_criteria(User, lambda cls: cls.id == 10), with_loader_criteria(Address, Address.id != 5), with_loader_criteria(Foo, lambda cls: cls.id == 10), ), compare_values=True, ) def test_loader_criteria_bound_param_thing(self): from sqlalchemy import Column, Integer class Foo(object): id = Column(Integer) def go(param): return with_loader_criteria(Foo, lambda cls: cls.id == param) g1 = go(10) g2 = go(20) ck1 = g1._generate_cache_key() ck2 = g2._generate_cache_key() eq_(ck1.key, ck2.key) eq_(ck1.bindparams[0].key, ck2.bindparams[0].key) eq_(ck1.bindparams[0].value, 10) eq_(ck2.bindparams[0].value, 20) def test_instrumented_attributes(self): User, Address, Keyword, Order, Item = self.classes( "User", "Address", "Keyword", "Order", "Item" ) self._run_cache_key_fixture( lambda: ( User.addresses, User.addresses.of_type(aliased(Address)), User.orders, User.orders.and_(Order.id != 5), User.orders.and_(Order.description != "somename"), ), compare_values=True, ) def test_unbound_options(self): User, Address, Keyword, Order, Item = self.classes( "User", "Address", "Keyword", "Order", "Item" ) self._run_cache_key_fixture( lambda: ( joinedload(User.addresses), joinedload(User.addresses.of_type(aliased(Address))), joinedload("addresses"), joinedload(User.orders), joinedload(User.orders.and_(Order.id != 5)), joinedload(User.orders.and_(Order.id == 5)), joinedload(User.orders.and_(Order.description != "somename")), joinedload(User.orders).selectinload("items"), joinedload(User.orders).selectinload(Order.items), defer(User.id), defer("id"), defer("*"), defer(Address.id), subqueryload(User.orders), selectinload(User.orders), joinedload(User.addresses).defer(Address.id), joinedload(aliased(User).addresses).defer(Address.id), joinedload(User.addresses).defer("id"), joinedload(User.orders).joinedload(Order.items), joinedload(User.orders).subqueryload(Order.items), subqueryload(User.orders).subqueryload(Order.items), subqueryload(User.orders) .subqueryload(Order.items) .defer(Item.description), defaultload(User.orders).defaultload(Order.items), defaultload(User.orders), ), compare_values=True, ) def test_unbound_sub_options(self): """test #6869""" User, Address, Keyword, Order, Item = self.classes( "User", "Address", "Keyword", "Order", "Item" ) self._run_cache_key_fixture( lambda: ( joinedload(User.addresses).options( joinedload(Address.dingaling) ), joinedload(User.addresses).options( joinedload(Address.dingaling).options(load_only("name")) ), joinedload(User.orders).options( joinedload(Order.items).options(joinedload(Item.keywords)) ), ), compare_values=True, ) def test_bound_options(self): User, Address, Keyword, Order, Item = self.classes( "User", "Address", "Keyword", "Order", "Item" ) a1 = aliased(Address) self._run_cache_key_fixture( lambda: ( Load(User).joinedload(User.addresses), Load(User).joinedload( User.addresses.of_type(aliased(Address)) ), Load(User).joinedload(User.orders), Load(User).joinedload(User.orders.and_(Order.id != 5)), Load(User).joinedload( User.orders.and_(Order.description != "somename") ), Load(User).defer(User.id), Load(User).subqueryload(User.addresses), Load(Address).defer(Address.id), Load(Address).defer("*"), Load(a1).defer(a1.id), Load(User).joinedload(User.addresses).defer(Address.id), Load(User).joinedload(User.orders).joinedload(Order.items), Load(User).joinedload(User.orders).subqueryload(Order.items), Load(User).subqueryload(User.orders).subqueryload(Order.items), Load(User) .subqueryload(User.orders) .subqueryload(Order.items) .defer(Item.description), Load(User).defaultload(User.orders).defaultload(Order.items), Load(User).defaultload(User.orders), Load(Address).raiseload("*"), Load(Address).raiseload(Address.user), ), compare_values=True, ) def test_selects_w_orm_joins(self): User, Address, Keyword, Order, Item = self.classes( "User", "Address", "Keyword", "Order", "Item" ) a1 = aliased(Address) self._run_cache_key_fixture( lambda: ( select(User).join(User.addresses), select(User).join(User.orders), select(User).join(User.addresses).join(User.orders), select(User).join(Address, User.addresses), select(User).join(a1, User.addresses), select(User).join(User.addresses.of_type(a1)), select(User).join( User.addresses.and_(Address.email_address == "foo") ), select(User) .join(Address, User.addresses) .join_from(User, Order), select(User) .join(Address, User.addresses) .join_from(User, User.orders), select(User.id, Order.id).select_from( orm_join(User, Order, User.orders) ), ), compare_values=True, ) def test_orm_query_w_orm_joins(self): User, Address, Keyword, Order, Item = self.classes( "User", "Address", "Keyword", "Order", "Item" ) a1 = aliased(Address) self._run_cache_key_fixture( lambda: stmt_20( fixture_session().query(User).join(User.addresses), fixture_session().query(User).join(User.orders), fixture_session() .query(User) .join(User.addresses) .join(User.orders), fixture_session() .query(User) .join(User.addresses) .join(Address.dingaling), fixture_session().query(User).join(Address, User.addresses), fixture_session().query(User).join(a1, User.addresses), fixture_session().query(User).join(User.addresses.of_type(a1)), ), compare_values=True, ) def test_orm_query_using_with_entities(self): """test issue #6503""" User, Address, Keyword, Order, Item = self.classes( "User", "Address", "Keyword", "Order", "Item" ) self._run_cache_key_fixture( lambda: stmt_20( fixture_session() .query(User) .join(User.addresses) .with_entities(Address.id), # fixture_session().query(Address.id).join(User.addresses), # fixture_session() .query(User) .options(selectinload(User.addresses)) .with_entities(User.id), # fixture_session() .query(User) .options(selectinload(User.addresses)), # fixture_session().query(User).with_entities(User.id), # # here, propagate_attr->orm is Address, entity is Address.id, # but the join() + with_entities() will log a # _MemoizedSelectEntities to differentiate fixture_session() .query(Address, Order) .join(Address.dingaling) .with_entities(Address.id), # # same, propagate_attr->orm is Address, entity is Address.id, # but the join() + with_entities() will log a # _MemoizedSelectEntities to differentiate fixture_session() .query(Address, User) .join(Address.dingaling) .with_entities(Address.id), ), compare_values=True, ) def test_synonyms(self, registry): """test for issue discovered in #7394""" @registry.mapped class User2(object): __table__ = self.tables.users name_syn = synonym("name") @registry.mapped class Address2(object): __table__ = self.tables.addresses name_syn = synonym("email_address") self._run_cache_key_fixture( lambda: ( User2.id, User2.name, User2.name_syn, Address2.name_syn, Address2.email_address, aliased(User2).name_syn, aliased(User2, name="foo").name_syn, aliased(User2, name="bar").name_syn, ), compare_values=True, ) def test_more_with_entities_sanity_checks(self): """test issue #6503""" User, Address, Keyword, Order, Item = self.classes( "User", "Address", "Keyword", "Order", "Item" ) sess = fixture_session() q1 = ( sess.query(Address, Order) .with_entities(Address.id) ._statement_20() ) q2 = ( sess.query(Address, User).with_entities(Address.id)._statement_20() ) assert not q1._memoized_select_entities assert not q2._memoized_select_entities # no joins or options, so q1 and q2 have the same cache key as Order/ # User are discarded. Note Address is first so propagate_attrs->orm is # Address. eq_(q1._generate_cache_key(), q2._generate_cache_key()) q3 = sess.query(Order).with_entities(Address.id)._statement_20() q4 = sess.query(User).with_entities(Address.id)._statement_20() # with Order/User as lead entity, this affects propagate_attrs->orm # so keys are different ne_(q3._generate_cache_key(), q4._generate_cache_key()) # confirm by deleting propagate attrs and memoized key and # running again q3._propagate_attrs = None q4._propagate_attrs = None del q3.__dict__["_generate_cache_key"] del q4.__dict__["_generate_cache_key"] eq_(q3._generate_cache_key(), q4._generate_cache_key()) # once there's a join() or options() prior to with_entities, now they # are not discarded from the key; Order and User are in the # _MemoizedSelectEntities q5 = ( sess.query(Address, Order) .join(Address.dingaling) .with_entities(Address.id) ._statement_20() ) q6 = ( sess.query(Address, User) .join(Address.dingaling) .with_entities(Address.id) ._statement_20() ) assert q5._memoized_select_entities assert q6._memoized_select_entities ne_(q5._generate_cache_key(), q6._generate_cache_key()) def test_orm_query_from_statement(self): User, Address, Keyword, Order, Item = self.classes( "User", "Address", "Keyword", "Order", "Item" ) self._run_cache_key_fixture( lambda: stmt_20( fixture_session() .query(User) .from_statement(text("select * from user")), select(User).from_statement(text("select * from user")), fixture_session() .query(User) .options(selectinload(User.addresses)) .from_statement(text("select * from user")), fixture_session() .query(User) .options(subqueryload(User.addresses)) .from_statement(text("select * from user")), fixture_session() .query(User) .from_statement(text("select * from user order by id")), fixture_session() .query(User.id) .from_statement(text("select * from user")), ), compare_values=True, ) def test_orm_query_basic(self): User, Address, Keyword, Order, Item = self.classes( "User", "Address", "Keyword", "Order", "Item" ) a1 = aliased(Address) self._run_cache_key_fixture( lambda: stmt_20( fixture_session().query(User), fixture_session().query(User).prefix_with("foo"), fixture_session().query(User).filter_by(name="ed"), fixture_session() .query(User) .filter_by(name="ed") .order_by(User.id), fixture_session() .query(User) .filter_by(name="ed") .order_by(User.name), fixture_session() .query(User) .filter_by(name="ed") .group_by(User.id), fixture_session() .query(User) .join(User.addresses) .filter(User.name == "ed"), fixture_session().query(User).join(User.orders), fixture_session() .query(User) .join(User.orders) .filter(Order.description == "adsf"), fixture_session() .query(User) .join(User.addresses) .join(User.orders), fixture_session().query(User).join(Address, User.addresses), fixture_session().query(User).join(a1, User.addresses), fixture_session().query(User).join(User.addresses.of_type(a1)), fixture_session().query(Address).join(Address.user), fixture_session().query(User, Address).filter_by(name="ed"), fixture_session().query(User, a1).filter_by(name="ed"), ), compare_values=True, ) def test_options(self): class MyOpt(CacheableOptions): _cache_key_traversal = [ ("x", InternalTraversal.dp_plain_obj), ("y", InternalTraversal.dp_plain_obj), ] x = 5 y = () self._run_cache_key_fixture( lambda: ( MyOpt, MyOpt + {"x": 10}, MyOpt + {"x": 15, "y": ("foo",)}, MyOpt + {"x": 15, "y": ("foo",)} + {"y": ("foo", "bar")}, ), compare_values=True, ) class PolyCacheKeyTest(CacheKeyFixture, _poly_fixtures._Polymorphic): run_setup_mappers = "once" run_inserts = None run_deletes = None def test_wp_objects(self): Person, Manager, Engineer, Boss = self.classes( "Person", "Manager", "Engineer", "Boss" ) self._run_cache_key_fixture( lambda: ( inspect(with_polymorphic(Person, [Manager, Engineer])), inspect(with_polymorphic(Person, [Manager])), inspect(with_polymorphic(Person, [Manager, Engineer, Boss])), inspect( with_polymorphic(Person, [Manager, Engineer], flat=True) ), inspect( with_polymorphic( Person, [Manager, Engineer], select(Person) .outerjoin(Manager) .outerjoin(Engineer) .subquery(), ) ), ), compare_values=True, ) def test_wp_queries(self): Person, Manager, Engineer, Boss = self.classes( "Person", "Manager", "Engineer", "Boss" ) def two(): wp = with_polymorphic(Person, [Manager, Engineer]) return fixture_session().query(wp) def three(): wp = with_polymorphic(Person, [Manager, Engineer]) return fixture_session().query(wp).filter(wp.name == "asdfo") def three_a(): wp = with_polymorphic(Person, [Manager, Engineer], flat=True) return fixture_session().query(wp).filter(wp.name == "asdfo") def five(): subq = ( select(Person) .outerjoin(Manager) .outerjoin(Engineer) .subquery() ) wp = with_polymorphic(Person, [Manager, Engineer], subq) return fixture_session().query(wp).filter(wp.name == "asdfo") self._run_cache_key_fixture( lambda: stmt_20(two(), three(), three_a(), five()), compare_values=True, ) def test_wp_joins(self): Company, Person, Manager, Engineer, Boss = self.classes( "Company", "Person", "Manager", "Engineer", "Boss" ) def one(): return ( fixture_session() .query(Company) .join(Company.employees) .filter(Person.name == "asdf") ) def two(): wp = with_polymorphic(Person, [Manager, Engineer]) return ( fixture_session() .query(Company) .join(Company.employees.of_type(wp)) .filter(wp.name == "asdf") ) def three(): wp = with_polymorphic(Person, [Manager, Engineer]) return ( fixture_session() .query(Company) .join(Company.employees.of_type(wp)) .filter(wp.Engineer.name == "asdf") ) self._run_cache_key_fixture( lambda: stmt_20(one(), two(), three()), compare_values=True, ) class RoundTripTest(QueryTest, AssertsCompiledSQL): __dialect__ = "default" run_setup_mappers = None @testing.fixture def plain_fixture(self): users, Address, addresses, User = ( self.tables.users, self.classes.Address, self.tables.addresses, self.classes.User, ) self.mapper_registry.map_imperatively( User, users, properties={ "addresses": relationship( Address, back_populates="user", order_by=addresses.c.id ) }, ) self.mapper_registry.map_imperatively( Address, addresses, properties={ "user": relationship(User, back_populates="addresses") }, ) return User, Address def test_subqueryload(self, plain_fixture): # subqueryload works pretty poorly w/ caching because it has # to create a new query. previously, baked query went through a # bunch of hoops to improve upon this and they were found to be # broken anyway. so subqueryload currently pulls out the original # query as well as the requested query and works with them at row # processing time to create its own query. all of which is fairly # non-performant compared to the selectinloader that has a fixed # query. User, Address = plain_fixture s = Session(testing.db, future=True) def query(names): stmt = ( select(User) .where(User.name.in_(names)) .options(subqueryload(User.addresses)) .order_by(User.id) ) return s.execute(stmt) def go1(): r1 = query(["ed"]) eq_( r1.scalars().all(), [User(name="ed", addresses=[Address(), Address(), Address()])], ) def go2(): r1 = query(["ed", "fred"]) eq_( r1.scalars().all(), [ User( name="ed", addresses=[Address(), Address(), Address()] ), User(name="fred", addresses=[Address()]), ], ) for i in range(5): fn = random.choice([go1, go2]) self.assert_sql_count(testing.db, fn, 2) @testing.combinations((True,), (False,), argnames="use_core") @testing.combinations((True,), (False,), argnames="arbitrary_element") @testing.combinations((True,), (False,), argnames="exercise_caching") def test_column_targeting_core_execute( self, plain_fixture, connection, use_core, arbitrary_element, exercise_caching, ): """test that CursorResultSet will do a column rewrite for any core execute even if the ORM compiled the statement. This translates the current stmt.selected_columns to the cached ResultSetMetaData._keymap. The ORM skips this because loading.py has also cached the selected_columns that are used. But for an outside-facing Core execute, this has to remain turned on. Additionally, we want targeting of SQL expressions to work with both Core and ORM statement executions. So the ORM still has to do some translation here for these elements to be supported. """ User, Address = plain_fixture user_table = inspect(User).persist_selectable def go(): my_thing = case((User.id > 9, 1), else_=2) # include entities in the statement so that we test that # the column indexing from # ORM select()._raw_columns -> Core select()._raw_columns is # translated appropriately stmt = ( select(User, Address.email_address, my_thing, User.name) .join(Address) .where(User.name == "ed") ) if arbitrary_element: target, exp = (my_thing, 2) elif use_core: target, exp = (user_table.c.name, "ed") else: target, exp = (User.name, "ed") if use_core: row = connection.execute(stmt).first() else: row = Session(connection).execute(stmt).first() eq_(row._mapping[target], exp) if exercise_caching: for i in range(3): go() else: go() @testing.combinations( (lazyload, 2), (joinedload, 1), (selectinload, 2), (subqueryload, 2), argnames="strat,expected_stmt_cache", ) def test_cache_key_loader_strategies( self, plain_fixture, strat, expected_stmt_cache, connection, ): User, Address = plain_fixture cache = {} connection = connection.execution_options(compiled_cache=cache) sess = Session(connection) def go(): stmt = ( select(User).where(User.id == 7).options(strat(User.addresses)) ) u1 = sess.execute(stmt).scalars().first() eq_(u1.addresses, [Address(id=1)]) go() lc = len(cache) stmt_entries = [k for k in cache] eq_(len(stmt_entries), expected_stmt_cache) for i in range(3): go() eq_(len(cache), lc) class CompositeTest(fixtures.MappedTest): __dialect__ = "default" @classmethod def define_tables(cls, metadata): Table( "edges", metadata, Column("id", Integer, primary_key=True), Column("x1", Integer), Column("y1", Integer), Column("x2", Integer), Column("y2", Integer), ) @classmethod def setup_mappers(cls): edges = cls.tables.edges class Point(cls.Comparable): def __init__(self, x, y): self.x = x self.y = y def __composite_values__(self): return [self.x, self.y] __hash__ = None def __eq__(self, other): return ( isinstance(other, Point) and other.x == self.x and other.y == self.y ) def __ne__(self, other): return not isinstance(other, Point) or not self.__eq__(other) class Edge(cls.Comparable): def __init__(self, *args): if args: self.start, self.end = args cls.mapper_registry.map_imperatively( Edge, edges, properties={ "start": sa.orm.composite(Point, edges.c.x1, edges.c.y1), "end": sa.orm.composite(Point, edges.c.x2, edges.c.y2), }, ) def test_bulk_update_cache_key(self): """test secondary issue located as part of #7209""" Edge, Point = (self.classes.Edge, self.classes.Point) stmt = ( update(Edge) .filter(Edge.start == Point(14, 5)) .values({Edge.end: Point(16, 10)}) ) stmt2 = ( update(Edge) .filter(Edge.start == Point(14, 5)) .values({Edge.end: Point(17, 8)}) ) eq_(stmt._generate_cache_key(), stmt2._generate_cache_key()) ```
{ "source": "JorgeMtzVera/prueba_tecnica_ai_engineer", "score": 2 }
#### File: JorgeMtzVera/prueba_tecnica_ai_engineer/ThirdAttempt.py ```python from datetime import timedelta import airflow from airflow import DAG from airflow.operators.bash_operator import BashOperator from airflow.operators.python_operator import PythonOperator from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression import pickle import pandas as pd import matplotlib.pyplot as plt import numpy as np import json import os from sqlalchemy import create_engine #Default arguments of the DAG default_args = { 'owner': 'jorgemtzvera', 'depends_on_past': False, 'start_date': airflow.utils.dates.days_ago(1), 'email': ['<EMAIL>'], 'email_on_failure': True, 'email_on_retry': False, 'retries': 1, 'retry_delay': timedelta(minutes=2) } #Define the functions which will inclu def extract_data(): """ 1. We set our working directory. 2. We choose our relevant variables. 3. Separate them into a training and a validation set. 4. Save them into different .csv files. """ os.chdir("/opt/airflow") archivo = os.getcwd() + '/train.csv' bicicletas_df = pd.read_csv(archivo, index_col='datetime', parse_dates=True); engine = create_engine('postgresql://postgres:[email protected]:5432/test'); columnas_relevantes = ['temp', 'season', 'weather', 'humidity'] parametros_ppales = bicicletas_df[columnas_relevantes] bicicletas_usadas = bicicletas_df["count"] parametros_ppales_train, parametros_ppales_test, bicicletas_usadas_train, bicicletas_usadas_test = train_test_split(parametros_ppales, bicicletas_usadas, random_state=21) parametros_ppales_train.to_csv("parametros_ppales_train.csv") parametros_ppales_test.to_csv("parametros_ppales_test.csv") bicicletas_usadas_train.to_csv("bicicletas_usadas_train.csv") bicicletas_usadas_test.to_csv("bicicletas_usadas_test.csv") parametros_ppales_train.to_sql("parametros_ppales_train", con = engine, if_exists = 'append') parametros_ppales_test.to_sql("parametros_ppales_test", con = engine, if_exists = 'append') bicicletas_usadas_train.to_sql("bicicletas_usadas_train", con = engine, if_exists = 'append') bicicletas_usadas_test.to_sql("bicicletas_usadas_test", con = engine, if_exists = 'append') print("Los archivos fueron guardados correctamente") def train_model(): """ 1. We load the training data. 2. We obtain linear regression coefficients of a model. 3. Save the model in a pickle file. """ os.chdir("/opt/airflow") archivo_1 = os.getcwd() + '/parametros_ppales_train.csv' parametros_ppales_train = pd.read_csv(archivo_1, index_col='datetime', parse_dates=True); archivo_2 = os.getcwd() + '/bicicletas_usadas_train.csv' bicicletas_usadas_train = pd.read_csv(archivo_2, index_col='datetime', parse_dates=True); linreg = LinearRegression() linreg.fit(parametros_ppales_train, bicicletas_usadas_train) pickle.dump(linreg, open('modelo.p','wb')) def validation(): """ 1. We load the model from the pickle file. 2. We load the tests from the .csv files. 4. Save the predictions in .csv and in the POSTGRESQL database. 5. We print metric values. """ os.chdir("/opt/airflow") engine = create_engine('postgresql://postgres:[email protected]:5432/test'); modelo_pred = pickle.load(open('modelo.p','rb')) archivo_4 = os.getcwd() + '/parametros_ppales_test.csv' parametros_ppales_test = pd.read_csv(archivo_4, index_col='datetime', parse_dates=True); archivo_5 = os.getcwd() + '/bicicletas_usadas_test.csv' bicicletas_usadas_test = pd.read_csv(archivo_5, index_col='datetime', parse_dates=True); y_pred = modelo_pred.predict(parametros_ppales_test) df_y_pred = pd.DataFrame(y_pred.tolist(),columns=['Count']) df_y_pred.to_csv("prediction.csv") df_y_pred.to_sql("prediction", con = engine, if_exists = 'append') def plotting(): """ 1. Plot some of the results. """ os.chdir("/opt/airflow") modelo_pred = pickle.load(open('modelo.p','rb')) archivo_6 = os.getcwd() + '/parametros_ppales_test.csv' parametros_ppales_test = pd.read_csv(archivo_6, index_col='datetime', parse_dates=True); archivo_7 = os.getcwd() + '/bicicletas_usadas_test.csv' bicicletas_usadas_test = pd.read_csv(archivo_7, index_col='datetime', parse_dates=True); y_pred = modelo_pred.predict(parametros_ppales_test) df_y_pred = pd.DataFrame(y_pred.tolist(),columns=['Count']) plt.scatter(parametros_ppales_test['temp'],bicicletas_usadas_test , color='gray',label="Data") plt.scatter(parametros_ppales_test['temp'], y_pred, color='red',label="Prediction") plt.xlabel("Temperature (C)") plt.ylabel("Number of Rides") plt.legend(loc='upper left') plt.savefig('PLOT.pdf') # Create the DAG with DAG( dag_id="Third_DAG", default_args=default_args, description='Tercer intento de utilizar un DAG', schedule_interval='@hourly', catchup = False ) as f: # Escribimos las tareas TareaM1 = BashOperator( task_id ='Start', bash_command = "pwd" ) Tarea0 = PythonOperator( task_id ='Extraction', python_callable = extract_data ) Tarea1 = PythonOperator( task_id ='Training', python_callable = train_model ) Tarea2 = PythonOperator( task_id ='Testing', python_callable = validation ) Tarea3 = PythonOperator( task_id ='Plotting', python_callable = plotting ) #Establecemos la jerarquía entre las tareas TareaM1 >> Tarea0 >> Tarea1 >> Tarea2 >> Tarea3 ```
{ "source": "Jorgen1040/discord.py-components", "score": 3 }
#### File: discord.py-components/discord_components/client.py ```python from discord import ( Client, TextChannel, Message, Embed, AllowedMentions, InvalidArgument, User, File, ) from discord.ext.commands import Bot, Context as DContext from discord.http import Route from discord.abc import Messageable from functools import wraps from asyncio import TimeoutError from typing import Union, List, Callable, Awaitable from json import dumps from .button import Button from .select import Select from .component import Component from .context import Context from .message import ComponentMessage from .interaction import InteractionEventType __all__ = ("DiscordComponents",) class DiscordComponents: """discord_components client Parameters ---------- bot: Union[:class:`discord.Client`, :class:`discord.ext.commands.Bot`] The bot change_discord_methods: :class:`bool` Whether to change the methods of the discord module If this is enabled, you can just use :class:`await <Messageable>.send`, :class:`await <Context>.send` as :class:`await <DiscordButton>.send_button_msg`, :class:`await <Message>.edit`, as :class:`await <DiscordComponents>.edit_component_msg` Attributes ---------- bot: Union[:class:`discord.Client`, :class:`discord.ext.commands.Bot`] The bot """ def __init__(self, bot: Union[Client, Bot], change_discord_methods: bool = True): self.bot = bot if change_discord_methods: self.change_discord_methods() def change_discord_methods(self): """A function that change the methods of the discord module""" async def send_component_msg_prop(ctxorchannel, *args, **kwargs) -> Message: if isinstance(ctxorchannel, DContext): return await self.send_component_msg(ctxorchannel.channel, *args, **kwargs) else: return await self.send_component_msg(ctxorchannel, *args, **kwargs) async def edit_component_msg_prop(*args, **kwargs): return await self.edit_component_msg(*args, **kwargs) async def wait_for_interact_ctx(ctx, *args, **kwargs): return await self.wait_for_interact(*args, **kwargs) Messageable.send = send_component_msg_prop Message.edit = edit_component_msg_prop DContext.wait_for_interact = wait_for_interact_ctx async def send_component_msg( self, channel: TextChannel, content: str = "", *, tts: bool = False, embed: Embed = None, file: File = None, allowed_mentions: AllowedMentions = None, components: List[Union[Component, List[Component]]] = None, **options, ) -> Message: """A function that sends a message with components :returns: :class:`discord.Message` Parameters ---------- channel: :class:`discord.Messageable` The channel to send the message content: str The message's content tts: :class:`bool` Indicates if the message should be sent using text-to-speech. embed: :class:`discord.Embed` The rich embed for the content. file: :class:`discord.File` The file to upload. allowed_mentions: :class:`discord.AllowedMentions` Controls the mentions being processed in this message. If this is passed, then the object is merged with :attr:`discord.Client.allowed_mentions`. The merging behaviour only overrides attributes that have been explicitly passed to the object, otherwise it uses the attributes set in :attr:`discord.Client.allowed_mentions`. If no object is passed at all then the defaults given by :attr:`discord.Client.allowed_mentions` are used instead. components: List[Union[:class:`~discord_components.Component`, List[:class:`~discord_components.Component`]]] The components to send. If this is 2-dimensional array, a array is a line """ state = self.bot._get_state() if embed: embed = embed.to_dict() if allowed_mentions: if state.allowed_mentions: allowed_mentions = state.allowed_mentions.merge(allowed_mentions).to_dict() else: allowed_mentions = allowed_mentions.to_dict() else: allowed_mentions = state.allowed_mentions and state.allowed_mentions.to_dict() data = { "content": content, **self._get_components_json(components), **options, "embed": embed, "allowed_mentions": allowed_mentions, "tts": tts, } if file: try: await self.bot.http.request( Route("POST", f"/channels/{channel.id}/messages"), form=[ { "name": "payload_json", "value": dumps(data, separators=(",", ":"), ensure_ascii=True), }, { "name": "file", "value": file.fp, "filename": file.filename, "content_type": "application/octet-stream", }, ], files=[file], ) finally: file.close() else: data = await self.bot.http.request( Route("POST", f"/channels/{channel.id}/messages"), json=data ) return ComponentMessage(components=components, state=state, channel=channel, data=data) async def edit_component_msg( self, message: ComponentMessage, content: str = "", *, tts: bool = False, embed: Embed = None, file: File = None, allowed_mentions: AllowedMentions = None, components: List[Union[Component, List[Component]]] = None, **options, ): """A function that edits a message with components :returns: :class:`discord_components.ComponentMessage` Parameters ---------- channel: :class:`discord.Messageable` The channel to send the message content: str The message's content tts: :class:`bool` Indicates if the message should be sent using text-to-speech. embed: :class:`discord.Embed` The rich embed for the content. file: :class:`discord.File` The file to upload. allowed_mentions: :class:`discord.AllowedMentions` Controls the mentions being processed in this message. If this is passed, then the object is merged with :attr:`discord.Client.allowed_mentions`. The merging behaviour only overrides attributes that have been explicitly passed to the object, otherwise it uses the attributes set in :attr:`discord.Client.allowed_mentions`. If no object is passed at all then the defaults given by :attr:`discord.Client.allowed_mentions` are used instead. components: List[Union[:class:`~discord_components.Component`, List[:class:`~discord_components.Component`]]] The components to send. If this is 2-dimensional array, a array is a line """ state = self.bot._get_state() if embed: embed = embed.to_dict() if allowed_mentions: if state.allowed_mentions: allowed_mentions = state.allowed_mentions.merge(allowed_mentions).to_dict() else: allowed_mentions = allowed_mentions.to_dict() else: allowed_mentions = state.allowed_mentions and state.allowed_mentions.to_dict() data = { "content": content, **self._get_components_json(components), **options, "embed": embed, "allowed_mentions": allowed_mentions, "tts": tts, } if file: try: await self.bot.http.request( Route("PATCH", f"/channels/{message.channel.id}/messages/{message.id}"), form=[ { "name": "payload_json", "value": dumps(data, separators=(",", ":"), ensure_ascii=True), }, { "name": "file", "value": file.fp, "filename": file.filename, "content_type": "application/octet-stream", }, ], files=[file], ) finally: file.close() else: await self.bot.http.request( Route("PATCH", f"/channels/{message.channel.id}/messages/{message.id}"), json=data ) def _get_components_json( self, components: List[Union[Component, List[Component]]] = None ) -> dict: if not components: return {} for i in range(len(components)): if not isinstance(components[i], list): components[i] = [components[i]] lines = components return { "components": ( [ { "type": 1, "components": [component.to_dict() for component in components], } for components in lines ] if lines else [] ), } def _get_component_type(self, type: int): if type == 2: return Button elif type == 3: return Select def _structured_raw_data(self, raw_data: dict) -> dict: data = { "interaction": raw_data["d"]["id"], "interaction_token": raw_data["d"]["token"], "raw": raw_data, } raw_data = raw_data["d"] state = self.bot._get_state() components = [] for line in raw_data["message"]["components"]: if line["type"] >= 2: components.append(self._get_component_type(line["type"]).from_json(line)) for btn in line["components"]: if btn["type"] >= 2: components.append(self._get_component_type(line["type"]).from_json(btn)) data["message"] = ComponentMessage( state=state, channel=self.bot.get_channel(int(raw_data["channel_id"])), data=raw_data["message"], components=components, ) if "member" in raw_data: userData = raw_data["member"]["user"] else: userData = raw_data["user"] data["user"] = User(state=state, data=userData) data["custom_id"] = raw_data["data"]["custom_id"] return data async def wait_for_interact( self, type: str, check: Callable[[Context], Awaitable[bool]] = None, timeout: float = None, ) -> Context: """A function that waits until a user clicks a button on the message :returns: :class:`~discord_components.Context` Parameters ---------- type: :class:`str` The interaction event type check: Optional[Callable[[:class:`Context`], Coroutine[:class:`bool`]]] The wait_for check function timeout: Optional[:class:`float`] The wait_for timeout """ while True: res = await self.bot.wait_for("socket_response", check=check, timeout=timeout) if res["t"] != "INTERACTION_CREATE": continue if InteractionEventType[type] != res["d"]["data"]["component_type"]: continue break data = self._structured_raw_data(res) rescomponent = None for component in data["message"].components: if component.id == data["custom_id"]: rescomponent = component ctx = Context( bot=self.bot, client=self, user=data["user"], component=rescomponent, raw_data=data["raw_data"], message=data["message"], ) return ctx async def fetch_component_message(self, message: Message) -> ComponentMessage: """Converts a message class to a ComponentMessage class :returns: :class:`~discord_components.ComponentMessage` Parameters ---------- message: :class:`discord.Message` The message to convert """ res = await self.bot.http.request( Route("GET", f"/channels/{message.channel.id}/messages/{message.id}") ) components = [] for i in res["components"]: if i["type"] >= 2: components.append(self._get_component_type(i["type"]).from_json(i)) continue for j in i["components"]: if j["type"] < 2: continue components.append(self._get_component_type(i["type"]).from_json(i)) return ComponentMessage( channel=message.channel, state=self.bot._get_state(), data=res, components=components ) ```
{ "source": "Jorgen1040/jassa-bot", "score": 2 }
#### File: jassa-bot/src/bot.py ```python import asyncio import hashlib import io import json import logging import os import random import stat import sys import time import traceback from datetime import datetime from distutils.util import strtobool from urllib.parse import quote import colorlog import discord import ffmpeg import requests import rule34 from bs4 import BeautifulSoup as bs from discord.ext import commands from discord_together import DiscordTogether token = os.environ["BOT_TOKEN"] ownerid = int(os.environ["OWNER_ID"]) tarkov_key = os.getenv("TARKOV_API") if os.getenv("ERROR_DM") is not None: dm = bool(strtobool(os.getenv("ERROR_DM"))) else: dm = True prefix = os.getenv("PREFIX", "+") logging_level = os.getenv("LOGGING_LEVEL", "INFO") # Disable logging from discord.py logging.getLogger("discord").setLevel(logging.CRITICAL) # Set up colorlog handler = logging.StreamHandler() handler.setFormatter(colorlog.ColoredFormatter( fmt="%(log_color)s%(asctime)s [%(levelname)s]: %(message)s", datefmt="%Y-%m-%d %H:%M:%S", )) logger = logging.getLogger("bot") logger.setLevel(logging_level) logger.addHandler(handler) rule34 = rule34.Sync() intents = discord.Intents().default() intents.members = True bot = commands.Bot(command_prefix=prefix, owner_id=ownerid, intents=intents) # Emojis :) ok = "✅" no = "❌" nsfw = "🔞" # TODO: Add a task that selects a random user to change server icon # TODO: Add pin command (custom pin channel, that works over the 50 cap) if tarkov_key is not None: tarkov_market = True logger.info("Tarkov API enabled. (from https://tarkov-market.com)") else: tarkov_market = False logger.warning("No tarkov-market API key found, price of items won't be available") # Check for linux and folders if sys.platform != "linux": logger.warning("Bot is not made for non Linux installations. Persistence may not work") try: if os.path.isdir("/jassa-bot/output/optimized"): logger.info("All files are correct :). Persistence is enabled") else: os.makedirs("/jassa-bot/output/optimized") logger.info("Made output folders, persistence is now enabled") # TODO: Merge servers.json and aliases.json if not os.path.isfile("/jassa-bot/aliases.json"): logger.info("Missing aliases.json, making file") with open("/jassa-bot/aliases.json", "x") as f: f.write("{}") os.chmod("/jassa-bot/aliases.json", stat.S_IRWXO) if not os.path.isfile("/jassa-bot/servers.json"): logger.info("Missing servers.json, making file") with open("/jassa-bot/servers.json", "x") as f: f.write("{}") os.chmod("/jassa-bot/servers.json", stat.S_IRWXO) except PermissionError as e: logger.warning(e) logger.warning("Permission denied for /jassa-bot directory. Persistence will not work!") @bot.event async def on_ready(): await bot.change_presence(activity=discord.Game(f"{prefix}jasså")) bot.togetherControl = await DiscordTogether(token) logger.info(f"Logged in as {bot.user}") @bot.event async def on_command(ctx): logger.info(f"{ctx.message.author} called {ctx.command}") @bot.event async def on_command_error(ctx, error): await ctx.message.remove_reaction(ok, bot.user) error = getattr(error, 'original', error) if isinstance(error, commands.NSFWChannelRequired): await ctx.message.add_reaction(nsfw) # Only send meme response in the right discord server if ctx.guild.id == 461648348622094347: await ctx.send("IKKE I GENERAL DA! KUN I <#607395883239342080>") else: await ctx.send("This command is only available in channels marked NSFW") elif isinstance(error, commands.NotOwner): await ctx.message.add_reaction(no) await ctx.send("You have to be the bot owner to use this command") elif isinstance(error, commands.NoPrivateMessage): await ctx.message.add_reaction(no) await ctx.send("This command is only available in a guild") elif isinstance(error, commands.MissingPermissions): await ctx.message.add_reaction(no) if len(error.missing_perms) > 1: await ctx.send(f"You are missing the following permissions for this command: `{'`, `'.join(error.missing_perms)}`") else: await ctx.send(f"You need the `{error.missing_perms[0]}` permission to use this command") elif not isinstance(error, commands.CommandNotFound): # Only error if not already handled matches = [no, nsfw] for reaction in ctx.message.reactions: if any(x in reaction.emoji for x in matches): return await ctx.message.add_reaction(no) await ctx.send("Unknown error") logger.error(f'"{error}" in {ctx.guild.name}: {ctx.channel.name}') if dm is True: owner = bot.get_user(int(ownerid)) trace = traceback.format_exception(type(error), error, error.__traceback__) if "NoneType: None" in trace: trace = str(error) if len(trace) < 2000: await owner.send(f"**Guild:** {ctx.guild.name} **Channel:** {ctx.channel.name} **Time:** {datetime.now().strftime('%d/%m/%Y %H:%M:%S')}\n```\n{trace}\n```") else: await owner.send(f"Errored in {ctx.guild.name}, {ctx.channel.name} at {datetime.now().strftime('%d/%m/%Y %H:%M:%S')}") await owner.send(file=discord.File(io.StringIO(trace), filename="traceback.txt")) traceback.print_exception(type(error), error, error.__traceback__) @bot.command(aliases=["pog"]) async def ping(ctx): ping = round(bot.latency * 1000) await ctx.send(f"{ping}ms") logger.info(f"{ping}ms") @bot.command(aliases=["jasså"]) async def jassa(ctx, args): await ctx.message.add_reaction(ok) async with ctx.channel.typing(): name = hashlib.md5(args.encode()).hexdigest() filename = "/jassa-bot/output/" + name + ".mp4" optimized = "/jassa-bot/output/optimized/" + name + ".gif" if os.path.isfile(optimized): logger.info("Gif exists, sending file") await ctx.send(file=discord.File(optimized)) else: start_time = time.time() logger.info("Making new gif") # Generate mp4 with text try: ( ffmpeg .input('media/template.mp4') .drawtext(fontfile="ProximaNova-Semibold.otf", text=args, x=160, y=656, fontsize=32.5, fontcolor="white", enable="between(t,0.5,5)") .filter('fps', fps=19) .filter('scale', "400", "trunc(ow/a/2)*2", flags="lanczos") .output(filename) .run(quiet=True) ) except ffmpeg.Error as e: print('stdout:', e.stdout.decode('utf8')) print('stderr:', e.stderr.decode('utf8')) raise e # Convert mp4 to gif logger.info("Converting mp4 to gif") try: ( ffmpeg .filter([ ffmpeg.input(filename), ffmpeg.input("media/palette.png") ], filter_name="paletteuse", dither="bayer" ) .filter("fps", fps=19, round="up") .output(optimized) .run(quiet=True) ) except ffmpeg.Error as e: print("stdout:", e.stdout.decode("utf8")) print("stderr:", e.stderr.decode("utf8")) raise e logger.info(f"Successfully generated gif with {args} in {time.time()-start_time} seconds") await ctx.send(file=discord.File(optimized)) @jassa.error async def jassa_error(ctx, error): if isinstance(error, commands.MissingRequiredArgument): await ctx.message.add_reaction(no) await ctx.send(f"Mangler navn (eller noe annet).\nRiktig bruk: `{prefix}jasså <navn>`") @bot.command(aliases=["activites", "activity"]) @commands.guild_only() async def together(ctx, name: str): if ctx.author.voice is None: await ctx.message.add_reaction(no) return await ctx.send("You have to be in a voice channel.") try: link = await bot.togetherControl.create_link(ctx.author.voice.channel.id, name) except discord.InvalidArgument as e: await ctx.message.add_reaction(no) return await ctx.send(str(e)) await ctx.send(f"Click the blue link! (Not the Play button)\n{link}") await ctx.message.add_reaction(ok) @together.error async def together_error(ctx, error): if isinstance(error, commands.MissingRequiredArgument): await ctx.message.add_reaction(no) app_list = [] for app in DiscordTogether.default_choices: app_list.append(f"`{app}`") await ctx.send( "Please specify what application you want to use.\n" "Available applications:\n" + ", ".join(app_list) ) @bot.command() @commands.guild_only() @commands.bot_has_guild_permissions(manage_nicknames=True) async def setnick(ctx, member: discord.Member, *, nickname: str = None): old_nick = member.display_name if nickname is not None and len(nickname) > 32: await ctx.message.add_reaction(no) return await ctx.send("Nickname can't be longer than 32 characters") if member == ctx.author and ctx.author.guild_permissions.manage_nicknames is False: await ctx.message.add_reaction(no) return await ctx.send("You can't change your own nickname") if member == ctx.guild.owner: await ctx.message.add_reaction(no) return await ctx.send("You can't change the server owner's name. (Discord doesn't allow it)") try: await member.edit(nick=nickname) except discord.Forbidden: await ctx.message.add_reaction(no) return await ctx.send("Missing permissions to change that user's nickname") await ctx.message.add_reaction(ok) # Send to log with open("/jassa-bot/servers.json") as f: servers = json.load(f) try: log_id = servers[str(ctx.guild.id)]["nickname_log_channel"] log_channel = bot.get_channel(log_id) except KeyError: # If no log channel is set, just return return # Generate embed embed = discord.Embed( description=f"**{ctx.author.mention} changed nickname of {member.mention}**", timestamp=datetime.utcnow(), color=discord.Colour.random(seed=member.id) ) embed.set_author(name=str(ctx.author), icon_url=ctx.author.avatar_url) embed.add_field(name="Before", value=old_nick, inline=False) embed.add_field(name="After", value=nickname, inline=False) await log_channel.send(embed=embed) @setnick.error async def setnick_error(ctx, error): if isinstance(error, commands.MemberNotFound): await ctx.message.add_reaction(no) await ctx.send("Unable to find that member") if isinstance(error, commands.MissingRequiredArgument): await ctx.message.add_reaction(no) await ctx.send(f"Missing required argument.\nUsage: `{prefix}setnick <Username/Mention> <Optional: nickname>`") @bot.command() @commands.guild_only() @commands.has_guild_permissions(manage_guild=True) async def setnicklog(ctx, channel: discord.TextChannel): if channel.guild != ctx.guild: await ctx.send("Cannot set log channel outside of server") return await ctx.message.add_reaction(no) with open("/jassa-bot/servers.json", "r") as f: servers = json.load(f) try: servers[str(ctx.guild.id)] except KeyError: print("Guild ID not already in servers.json, adding it") servers[str(ctx.guild.id)] = {} servers[str(ctx.guild.id)]["nickname_log_channel"] = channel.id with open("/jassa-bot/servers.json", "w") as f: json.dump(servers, f, indent=4) await channel.send(f"Successfully set this as the log channel for the `{prefix}setnick` command") await ctx.message.add_reaction(ok) @setnicklog.error async def setnicklog_error(ctx, error): if isinstance(error, commands.ChannelNotFound): await ctx.send("Unable to find channel. Please be more specific or use an ID or mention it with #") await ctx.message.add_reaction(no) @bot.command(aliases=["shut", "shutyobitchassup", "shutyobitchass", "sybap"]) @commands.guild_only() async def shutup(ctx): await ctx.message.add_reaction(ok) async with ctx.channel.typing(): try: mention = ctx.message.mentions[0] except IndexError: # Get author from previous message if no one is mentioned history = await ctx.channel.history(limit=2).flatten() mention = history[1].author if ctx.message.role_mentions: await ctx.message.remove_reaction(ok, bot.user) await ctx.message.add_reaction(no) return await ctx.send("You mentioned a role. Please mention a user.") if mention == ctx.message.author: await ctx.message.remove_reaction(ok, bot.user) await ctx.message.add_reaction(no) return await ctx.send("Unable to find a user to mute (mention them)") if mention.bot: await ctx.message.remove_reaction(ok, bot.user) await ctx.message.add_reaction(no) return await ctx.send("Won't mute a bot ;)") muted_role = discord.utils.get(ctx.guild.roles, name="Muted") if muted_role is None: await ctx.message.remove_reaction(ok, bot.user) await ctx.message.add_reaction(no) return await ctx.send("The role `Muted` does not exist. Has it been renamed?") # Make sure users don't accidentally get muted in VCs # TODO: Optimize this # * Disabled due to being WAY TOO SLOW # channels = ctx.guild.voice_channels # for channel in channels: # # ? If user calling command is in a vc with the other, also do vc mute # await channel.set_permissions(muted_role, speak=True) await ctx.message.author.add_roles(muted_role) await mention.add_roles(muted_role) await ctx.send("https://tenor.com/view/meryl-streep-shut-up-yell-gif-15386483") await asyncio.sleep(60) await ctx.message.author.remove_roles(muted_role) await mention.remove_roles(muted_role) @bot.command(aliases=["q"]) async def quest(ctx, *, args: str): # TODO: Detect quests, and give quest objectives await ctx.message.add_reaction(ok) query = quote(args) search_url = "https://escapefromtarkov.gamepedia.com/Special:Search?scope=internal&search=" + query r = requests.get(search_url) results = bs(r.text, "html.parser") # Find the first search result if results.find("a", class_="unified-search__result__title"): result = results.find("a", class_="unified-search__result__title").get("href") r = requests.get(result) page = bs(r.text, "html.parser") else: page = results # Handle disambiguation pages if page.find("table", class_="plainlinks ambox ambox-green"): result = "https://escapefromtarkov.gamepedia.com" + page.find("div", class_="mw-parser-output").find("a").get("href") r = requests.get(result) page = bs(r.text, "html.parser") title = page.find("h1", id="firstHeading").get_text().strip() if "Search results for" in title: await ctx.send(f"Unable to find {discord.utils.escape_markdown(args)}, try being more specific.") return embed = discord.Embed(title=title, url=r.url) # Get prices from tarkov-market.com if API key is set if tarkov_market: api = requests.get('https://tarkov-market.com/api/v1/item?q=' + title, headers={'x-api-key': tarkov_key}) try: tarkov_item = api.json()[0] except IndexError: # If no results are found, state so embed.add_field(name="Price", value=f"No results found for {title}") else: name = tarkov_item["name"] price = format(tarkov_item["price"], ",") avg24h = format(tarkov_item["avg24hPrice"], ",") per_slot = format(int(tarkov_item["price"] / tarkov_item["slots"]), ",") market_link = tarkov_item["link"] trader_name = tarkov_item["traderName"] trader_price = format(tarkov_item["traderPrice"], ",") trader_currency = tarkov_item["traderPriceCur"] # Check if wiki and API name is same, if not display API name to avoid wrong price if name == title: name_string = "Price" else: name_string = f"Price ({name})" embed.add_field(name=name_string, value=f"**Current:** {price} ₽\n**Per slot:** {per_slot} ₽\n**24h average:** {avg24h} ₽\n**{trader_name}:** {trader_price} {trader_currency}\n[More info]({market_link})") if page.find(id="Quests"): quests = page.find(id="Quests").find_parent("h2").find_next_sibling("ul").find_all("li") quests_string = "" for quest in quests: text = quest.get_text() for href in quest.find_all("a"): quest_name = href.get_text() quest_url = "https://escapefromtarkov.gamepedia.com" + href.get("href") text = text.replace(quest_name, f"[{quest_name}]({quest_url})") if "in raid" in text: text = text.replace("in raid", "**in raid**") quests_string += text + "\n" if len(quests_string) > 1024: embed.add_field(name="Quests", value=f"Too many quests to show, see more [here]({r.url + '#Quests'})", inline=False) else: embed.add_field(name="Quests", value=quests_string, inline=False) if page.find(id="Hideout"): uses_element = page.find(id="Hideout").find_parent("h2").find_next_sibling() # If uses_element isn't "ul", there's probably no hideout uses if uses_element.name == "ul": uses_string = "" if uses_element.name == "p": uses_string = uses_element.text else: uses = uses_element.find_all("li") for use in uses: uses_string += use.get_text() + "\n" if len(uses_string) > 1024: embed.add_field(name="Hideout", value=f"Too many hideout uses to show, see more [here]({r.url + '#Hideout'})", inline=False) else: embed.add_field(name="Hideout", value=uses_string, inline=False) # TODO: Fix formatting for Trading and Crafting embed # Fix weird formatting for multiple items (both with x amount and + another item) # Formatting for additional notes (ex. "After completing his task ...") if page.find(id="Trading"): # If the Trading tab is empty, skip it try: trades = page.find(id="Trading").find_parent("h2").find_next_sibling("table", class_="wikitable").find_all("tr") except AttributeError: pass else: trades_string = "" previous_level = "" for trade in trades: th = trade.find_all("th") trader_info = th[2].get_text().strip().split() trader = trader_info[0] trader_level = trader_info[1] barter_in = th[0].get_text().strip() barter_out = th[4].get_text().strip() if trader_level != previous_level: trades_string += f"**{trader} {trader_level}:**\n" previous_level = trader_level trades_string += f"{barter_in} -> {barter_out}\n" if len(trades_string) > 1024: embed.add_field(name="Trading", value=f"Too many trades to show, see more [here]({r.url + '#Trading'})", inline=False) else: embed.add_field(name="Trading", value=trades_string, inline=False) if page.find(id="Crafting"): # If the Crafting tab is empty, skip it try: crafts = page.find(id="Crafting").find_parent("h2").find_next_sibling("table", class_="wikitable").find_all("tr") except AttributeError: pass else: crafts_string = "" previous_station = "" for craft in crafts: th = craft.find_all("th") station = th[2].find("big").get_text() time = th[2].get_text().strip().replace(station, "") craft_in = th[0].get_text().strip() craft_out = th[4].get_text().strip() if station != previous_station: crafts_string += f"**{station}:**\n" previous_station = station crafts_string += f"{time}: {craft_in} -> {craft_out}\n" if len(crafts_string) > 1024: embed.add_field(name="Crafting", value=f"Too many crafts to show, see more [here]({r.url + '#Crafting'})", inline=False) else: embed.add_field(name="Crafting", value=crafts_string, inline=False) # Check for icon icon = None if page.find("td", class_="va-infobox-icon"): icon = page.find("td", class_="va-infobox-icon").find("a", class_="image").get("href") else: # TODO: Make it so that it retries until it finds an item if page.find("td", class_="va-infobox-mainimage-image"): icon = page.find("td", class_="va-infobox-mainimage-image").find("a", class_="image").get("href") embed.set_footer(text="This might not be an item") if icon is not None: embed.set_thumbnail(url=icon) await ctx.send(embed=embed) @quest.error async def quest_error(ctx, error): if isinstance(error, commands.MissingRequiredArgument): await ctx.message.add_reaction(no) await ctx.send(f"Missing search query. Usage: `{prefix}quest <query>`") @bot.command(aliases=["map"]) async def maps(ctx, *, args: str): async with ctx.channel.typing(): query = quote(args) # TODO: Make this do a search for more reliable results url = "https://escapefromtarkov.gamepedia.com/wiki/" + query r = requests.get(url) results = bs(r.text, "html.parser") if results.find(id="Maps"): # Get all maps maps = results.find(id="Maps").find_parent("h2").find_next_siblings("p") await ctx.send(f"Maps found for **{args}** ({url}):") for map_img in maps: if "Interactive Map" in map_img.text: # Skip the image if its from an Interactive Map continue if map_img.find("a"): map_url = map_img.find("a").get("href") await ctx.send(map_url) await ctx.message.add_reaction(ok) else: await ctx.message.add_reaction(no) await ctx.send(f"Unable to find any maps for **{args}**") @bot.command() @commands.has_guild_permissions(administrator=True) async def vcmute(ctx): # This command has only been tested with the Vexera Muted role await ctx.message.add_reaction(ok) muted_role = discord.utils.get(ctx.guild.roles, name="Muted") if muted_role is None: return await ctx.send("The role `Muted` does not exist. Has it been renamed?") channels = ctx.guild.voice_channels perm = not channels[0].overwrites_for(muted_role).speak for channel in channels: await channel.set_permissions(muted_role, speak=perm) await ctx.send(f"Set Speak permission for the Muted role to {perm} in {len(channels)} voice channels") @bot.command(aliases=["mv"]) @commands.has_guild_permissions(move_members=True) async def moveall(ctx, *, channel: str): with open("/jassa-bot/aliases.json", "r") as f: aliases = json.load(f) try: channel = aliases[str(ctx.guild.id)][channel] channel = bot.get_channel(int(channel)) except KeyError: channel = discord.utils.find(lambda x: x.name == channel, ctx.guild.voice_channels) if channel is None: await ctx.message.add_reaction(no) return await ctx.send("Unable to find channel") for member in ctx.message.author.voice.channel.members: await member.move_to(channel) logger.info(f"Moved {member} to {channel} in {ctx.guild}") await ctx.message.add_reaction(ok) @moveall.error async def moveall_error(ctx, error): if isinstance(error, commands.MissingRequiredArgument): await ctx.message.add_reaction(no) await ctx.send(f"Missing voice channel ID/name to move to. Usage: `{prefix}moveall <vc id/name>`") if isinstance(error, commands.ChannelNotFound): await ctx.message.add_reaction(no) await ctx.send("Unable to find channel") @bot.command(aliases=["mvalias", "movealias"]) @commands.has_guild_permissions(administrator=True) async def alias(ctx, alias: str, channel: discord.VoiceChannel = None): await ctx.message.add_reaction(ok) with open("/jassa-bot/aliases.json", "r") as f: aliases = json.load(f) try: aliases[str(ctx.guild.id)] except KeyError: print("Guild ID not already in list, adding it") aliases[str(ctx.guild.id)] = {} if channel is None: await ctx.send(f"Removed alias for channel ID {aliases[str(ctx.guild.id)][alias]}") aliases[str(ctx.guild.id)].pop(alias) else: alias_list = {} alias_list[alias] = str(channel.id) aliases[str(ctx.guild.id)].update(alias_list) await ctx.send("Added alias for channel") with open("/jassa-bot/aliases.json", "w") as f: json.dump(aliases, f, indent=4) @alias.error async def alias_error(ctx, error): if isinstance(error, commands.MissingRequiredArgument): await ctx.message.add_reaction(no) await ctx.send(f"Missing alias and/or channel ID. Usage: `{prefix}alias <alias> <channel ID/name in quotes>`") if isinstance(error, commands.ChannelNotFound): await ctx.message.add_reaction(no) await ctx.send("Unable to find channel") @bot.command(aliases=["lb", "rolelb", "leaderboard"]) async def roleleaderboard(ctx, arg: str = None): try: await ctx.message.add_reaction(ok) if arg is None: limit = 11 elif arg == "full": limit = -999999 elif arg == "0": await ctx.message.add_reaction(no) await ctx.message.remove_reaction(ok, bot.user) return await ctx.send("Number must be more than `0`") else: limit = int(arg) + 1 members_list = ctx.guild.members roles = {} for member in members_list: roles[member.display_name] = len(member.roles) sorted_list = {k: v for k, v in sorted(roles.items(), key=lambda item: item[1], reverse=True)} embed = discord.Embed(colour=discord.Colour.gold()) value_string = "" role_place = 1 for item in sorted_list.items(): if role_place == limit: break username = discord.utils.escape_markdown(item[0], ignore_links=False) current = f"{role_place}. {username}: {item[1]} roles\n" if len(value_string) + len(current) >= 1024: await ctx.send("Too many users, displaying as many as possible") break else: value_string += current role_place += 1 embed.add_field(name="Role leaderboard", value=value_string) await ctx.send(embed=embed) except ValueError: await ctx.message.add_reaction(no) await ctx.message.remove_reaction(ok, bot.user) await ctx.send("Command only accepts either numbers or `full` as arguments") @bot.command(aliases=["rule34"]) @commands.is_nsfw() async def r34(ctx, *, tags): # Check for illegal tags if ("cub" or "loli" or "shota" or "child" or "underage" or "shotacon") in tags: await ctx.message.add_reaction(nsfw) await ctx.send("NEI TOS") else: logger.info(f"Rule34: Searching for {tags}") await ctx.message.add_reaction(ok) # TODO: Swap to use getImages instead xml_url = rule34.URLGen(tags + "+-cub -loli -underage -shotacon -shota") logger.info(f"Got API url for {tags}: {xml_url}") xml = bs(requests.get(xml_url).text, "lxml") urls = [] for post in xml.findAll("post"): file_url = post.attrs["file_url"] urls += [file_url] count = len(urls) count_text = str(count) if count >= 100: count_text = "100+" if count >= 1: random_url = random.choice(urls) await ctx.send(f"Found {count_text} results, here is one of them") await ctx.send(random_url) logger.info(f"Rule34: Sent {random_url} with tag(s): {tags}") else: logger.info(f"Rule34: No posts were found with the tag(s): {tags}") await ctx.send(f"No posts were found with the tag(s): {tags}") @r34.error async def r34_error(ctx, error): if isinstance(error, commands.MissingRequiredArgument): await ctx.message.add_reaction(no) await ctx.send(f"Missing tags to search for.\nUsage: `{prefix}r34/rule34 <tags>` or for multiple tags `{prefix}r34/rule34 <tag1> <tag2> ...`") @bot.command() @commands.is_owner() async def close(ctx): ctx.add_reaction("👋") await bot.close() bot.run(token) ```
{ "source": "jorgen99/smarthus", "score": 4 }
#### File: smarthus/events/greenhouse.py ```python import sqlite3 from sqlite3 import Error def add_temperature(temperature, db="greenhouse.db"): try: conn = sqlite3.connect(db) cursor = conn.cursor() create_table_if_not_exist(cursor) sql = """ INSERT INTO greenhouse(time, temperature) values(?, ?) """ cursor.execute(sql, temperature) conn.commit() except sqlite3.Error as error: print("Error while talking to sqlite...", error) finally: if conn: conn.close() def create_table_if_not_exist(cursor): cursor.execute( """CREATE TABLE IF NOT EXISTS greenhouse ( time text NOT NULL, temperature real );""" ) def apa(bepa): return "Hej {}".format(bepa) ``` #### File: smarthus/events/sensor.py ```python class Sensor: def __init__(self, house, unit): self.house = house self.unit = unit def event_is_from_me(self, event): return self.house == event.house and self.unit == event.unit ```
{ "source": "jorgenavarroortiz/collision_avoidance_resource_allocation_lorawan_device", "score": 3 }
#### File: collision_avoidance_resource_allocation_lorawan_device/lib/LoRaAirTimeCalc.py ```python from network import WLAN, LoRa # For Pycom MicroPython #import LoRa # For Python3 import struct from math import ceil # From atom console (pycom) #from LoRaAirTimeCalc import * #airtimetheoretical(20, 10, LoRa.BW_125KHZ, LoRa.CODING_4_5) # Using Pycom constants for bw and cr, calculates the DR (datarate) in bps def dataratetheoretical(sf, bw, cr): if bw == LoRa.BW_125KHZ: bwv = 125 if bw == LoRa.BW_250KHZ: bwv = 250 if bw == LoRa.BW_500KHZ: bwv = 500 crv = 4/(4 + cr) return 1000*sf*bwv*(crv)/2**sf # Air time (in seconds) theoretical calculation for LoRa-RAW, where there is a default preamble of 8 bytes plus 5 bytes of CRC, etc def airtimetheoretical(payloadsize, sf, bw, cr): if bw == LoRa.BW_125KHZ: bwv = 125 if bw == LoRa.BW_250KHZ: bwv = 250 if bw == LoRa.BW_500KHZ: bwv = 500 if sf in [11,12]: lowDRopt = 1 else: lowDRopt = 0 tsym = (2**sf)/(bwv*1000) tpreamble = (8 + 4.25)*tsym # Preamble with 8 bytes numbersymbolspayload = 8 + max(ceil((8*payloadsize - 4*sf + 28 + 16)/(4*(sf - 2*lowDRopt)))*(4 + cr),0) tpayload = numbersymbolspayload*tsym tpacket = tpreamble + tpayload return tpacket, tpreamble, tpayload, tsym, numbersymbolspayload ``` #### File: jorgenavarroortiz/collision_avoidance_resource_allocation_lorawan_device/main.py ```python import machine from network import WLAN import utime from network import LoRa import socket import time import ubinascii import crypto from LoRaAirTimeCalc import * import sys from pycoproc import Pycoproc from microWebCli import MicroWebCli ## PARAMETERS # Debug messages debug = 0 # Fixed channel and spreading factor from CARA initial resource block, for testing... bFixedChannelAndDR=True # Time to reconnect to Wi-Fi wifiRetryTime = 20.0 # OTAA or ABP # VERY IMPORTANT!!! If ABP is used, make sure that RX2 data rate is set to 5 # and RX2 frequency is set to 869.525 MHz (chirpstack -> device profile -> # -> join (OTAA/ABP))). Set Class-C confirmed downlink timeout to 5 seconds in # both cases (chirpstack -> device profile -> class-C) # IMPORTANT!!!: for ABP, first activate the device (before starting this program) bOTAA = True # For OTAA AppEUI = '<KEY>' # Not used AppKey = '00000000000000000000000000000001' # For ABP DevAddr = '00000001' NwkSKey = '00000000000000000000000000000001' AppSKey = '00000000000000000000000000000001' # Retransmission time for JOINREQ joinReqRtxTime = 5.0 # First transmission starting on a CARA period (only for debugging) bFirstTransmissionStartingOnACARAPeriod = False # Global variables selectedFreq = 0 selectedDR = 0 ## FUNCTIONS # General functions def Random(): r = crypto.getrandbits(32) return ((r[0]<<24)+(r[1]<<16)+(r[2]<<8)+r[3])/4294967295.0 def RandomRange(rfrom, rto): return Random()*(rto-rfrom)+rfrom def zfill(s, width): return '{:0>{w}}'.format(s, w=width) # Functions related to board def showBoard(lora): print("[INFO] Detected board:", sys.platform) # Expansion board #pyexp = Pycoproc() #pid = pyexp.read_product_id() #if (pid == 61458): # print("Detected expansion board: PySense") #elif (pid == 61459): # print("Detected expansion board: PyTrack") #else: # print("Expansion board identifier: ", pid) ## WI-FI MAC address #print("Device unique ID:", ubinascii.hexlify(machine.unique_id()).upper().decode('utf-8')) print("[INFO] Wi-Fi MAC: ", ubinascii.hexlify(WLAN().mac()[0]).upper().decode('utf-8')) ## LORAWAN MAC address print("[INFO] LORAWAN DevEUI:", ubinascii.hexlify(lora.mac()).upper().decode('utf-8')) # Functions related to Wi-Fi def connectWiFi(): # Connect to Wi-Fi for synchronizing using NTP #print("Trying to connect to Wi-Fi network...") wlan = WLAN(mode=WLAN.STA) #wlan.connect('ARTEMIS', auth=(WLAN.WPA2, 'wimunet!')) wifi_count=1 while not wlan.isconnected(): # machine.idle() print('[INFO] Connecting to Wi-Fi, attempt {}...'.format(wifi_count)) wlan.connect('ARTEMIS', auth=(WLAN.WPA2, 'wimunet!')) #, timeout=5000) time.sleep(wifiRetryTime) wifi_count = wifi_count + 1 print('[INFO] WiFi connected') print(wlan.ifconfig()) # Functions related to synchronization def synchronizeTime(): # Synchronization rtc = machine.RTC() rtc.ntp_sync('pool.ntp.org', update_period=3600) while not rtc.synced(): machine.idle() print("[INFO] RTC NTP sync complete") print(rtc.now()) utime.timezone(7200) print("[INFO] Local time:", end=" ") print(utime.localtime()) return rtc # Functions related to LoRaWAN def initializeLoRaWAN(randomTimeForJoining): timeToWaitForJoining = RandomRange(0,randomTimeForJoining) print("[INFO] Time waiting before joining = {:.1f}".format(timeToWaitForJoining)) time.sleep(timeToWaitForJoining) if (bOTAA): # Create an OTAA authentication parameters app_eui = ubinascii.unhexlify(AppEUI) app_key = ubinascii.unhexlify(AppKey) # Join a network using OTAA (Over the Air Activation) lora.join(activation=LoRa.OTAA, auth=(app_eui, app_key), timeout=0) else: # Create an ABP authentication params dev_addr = struct.unpack(">l", ubinascii.unhexlify(DevAddr))[0] nwk_swkey = ubinascii.unhexlify(NwkSKey) app_swkey = ubinascii.unhexlify(AppSKey) # Join a network using ABP (Activation By Personalization) lora.join(activation=LoRa.ABP, auth=(dev_addr, nwk_swkey, app_swkey), timeout=0) # Wait until the module has joined the network print('[INFO] Not joined yet...') while not lora.has_joined(): #blink(red, 0.5, 1) time.sleep(2.5) print('[INFO] Not joined yet...') print('[INFO] --- Joined Sucessfully --- ') # Create a LoRa socket s = socket.socket(socket.AF_LORA, socket.SOCK_RAW) # Set the LoRaWAN data rate (DR0...DR5 - the lower DR, the higher SF) s.setsockopt(socket.SOL_LORA, socket.SO_DR, 5) # Set CONFIRMED to false s.setsockopt(socket.SOL_LORA, socket.SO_CONFIRMED, False) return s def frequencyForChannel(value): return (867100000 + value*200000) def convertDRtoSF(value): return (12 - value) def convertSFtoDR(value): return (12 - value) def setTransmissionParameters(s, selectedFreq, selectedDR): if (debug > 0): print("[DEBUG] Changing frequency to {:d}".format(selectedFreq)) # Add all channels with the selected frequency for channel in range(0, 15): lora.add_channel(channel, frequency=selectedFreq, dr_min=0, dr_max=5) # Set spreading factor s.setsockopt(socket.SOL_LORA, socket.SO_DR, selectedDR) if (debug > 0): print("[DEBUG] Changing DR to {:d} (SF={:d})".format(selectedDR, convertDRtoSF(selectedDR))) def createResourceBlocksLists(sfMask): channelsList = [] sfList = [] sfMaskStr = bin(sfMask)[2:] sfMaskStr = zfill(sfMaskStr, 6) #print("sfMask = {}".format(bin(sfMask))) if (debug > 0): print("[DEBUG] SF mask = {}".format(sfMaskStr)) i = 0 for sfIndex in reversed(range(0, len(sfMaskStr))): for channel in range(0, 8): if (sfMaskStr[sfIndex] == "1"): sfList.append(12-sfIndex) channelsList.append(frequencyForChannel(channel)) if (debug > 0): print("[DEBUG] Resource block {:d} with channel {:d} and SF {:d}".format(i, channel, 12-sfIndex)) i = i + 1 return [channelsList, sfList] def setDataRate(s, selectedDR): # Set spreading factor s.setsockopt(socket.SOL_LORA, socket.SO_DR, selectedDR) if (debug > 0): print("[DEBUG] Changing DR to {:d} (SF={:d})".format(selectedDR, convertDRtoSF(selectedDR))) def generateMessage(messageCounter): if (messageCounter < 10): message = "Testing data....." + str(messageCounter) elif (messageCounter < 100): message = "Testing data...." + str(messageCounter) elif (messageCounter < 1000): message = "Testing data..." + str(messageCounter) elif (messageCounter < 10000): message = "Testing data.." + str(messageCounter) else: message = "Testing data." + str(messageCounter) return message # Functions related to resource blocks def getCARAParameters(): contentBytes = MicroWebCli.GETRequest('http://192.168.1.205/CARA/joinTime') randomTimeForJoining = float(contentBytes) print("[INFO] Random time for joining = {:f}".format(randomTimeForJoining)) # Time between transmissions = fixedTime + rand(randomTime) contentBytes = MicroWebCli.GETRequest('http://192.168.1.205/CARA/fixedTime') fixedTime = float(contentBytes) print("[INFO] Fixed time between LoRaWAN frames = {:f}".format(fixedTime)) contentBytes = MicroWebCli.GETRequest('http://192.168.1.205/CARA/randomTime') randomTime = float(contentBytes) print("[INFO] Ramdom time between LoRaWAN frames = {:f}".format(randomTime)) # Duration of each period with same transmission parameters (freq and SF) # We assume that 48*durationOfPeriod is a divisor of 24h*3600s contentBytes = MicroWebCli.GETRequest('http://192.168.1.205/CARA/durationOfPeriod') durationOfPeriod = float(contentBytes) print("[INFO] Duration of CARA period = {:f}".format(durationOfPeriod)) # Avoid (or not) border effect (transmissions that spread over two periods) contentBytes = MicroWebCli.GETRequest('http://192.168.1.205/CARA/avoidBorderEffect') avoidBorderEffect = int(contentBytes) print("[INFO] Avoid border effect = {:d}".format(avoidBorderEffect)) contentBytes = MicroWebCli.GETRequest('http://192.168.1.205/CARA/borderEffectGuardTime') borderEffectGuardTime = float(contentBytes) print("[INFO] Border effect guard time = {:f}".format(borderEffectGuardTime)) contentBytes = MicroWebCli.GETRequest('http://192.168.1.205/CARA/count_v2.php') countNodes = int(contentBytes) print("[INFO] Nodes with version 2 counted = {:d}".format(countNodes)) return [randomTimeForJoining, fixedTime, randomTime, durationOfPeriod, avoidBorderEffect, borderEffectGuardTime] def receiveJoinAccept(): # Waiting for JoinAccept message JoinAcceptReceived = False # JoinRequest has to be transmitted timeToRetransmitJoinReq = True while not JoinAcceptReceived: if (timeToRetransmitJoinReq): s.setblocking(True) s.send("#JOINREQ#") print("[INFO] #JOINREQ# sent!") s.setblocking(False) timeToRetransmitJoinReq = False timeJoinReq1 = utime.ticks_ms() #if (bOTAA): if (True): data, port = s.recvfrom(64) else: data = s.recv(64) lg = len (data) if lg > 0: if (debug > 0): print("[DEBUG] Downlink Port={:d} Size={:d} Payload={}".format(port, lg, ubinascii.hexlify(data).upper()) ) strDecodedData = ubinascii.a2b_base64(ubinascii.b2a_base64(data)).decode('utf-8') if (debug > 0): print("[DEBUG] Downlink Port={:d} Size={:d} Payload={}".format(port, lg, strDecodedData) ) if strDecodedData.find("#JOINACC#") == 0: print ("[INFO] #JOINACC# received") JoinAcceptReceived = True strDecodedDataSplit = strDecodedData.split() caraEnabled = int(strDecodedDataSplit[1]) if caraEnabled == 1: print("[INFO] CARA enabled") initialResourceBlock = int(strDecodedDataSplit[2]) sfMask = int(strDecodedDataSplit[3]) print("[INFO] Initial resource block = {:d}".format(initialResourceBlock)) print("[INFO] SF mask = {:d}".format(sfMask)) #print("SF mask={:d}".format(sfMask)) channelsList, sfList = createResourceBlocksLists(sfMask) selectedSF = sfList[initialResourceBlock] selectedDR = convertSFtoDR(selectedSF) # Remove all the channels (first three are default channels and cannot be removed) for channel in range(0, 15): lora.remove_channel(channel) else: print("[INFO] CARA disabled, using standard LoRaWAN...") # If CARA is disabled, the server will use 0...5 as the initial resource block, # which will be used to define the DR (i.e. the spreading factor) for each node selectedDR = int(strDecodedDataSplit[2]) #[4]) setDataRate(s, selectedDR) print("[INFO] Selected DataRate = {:d}".format(selectedDR)) time.sleep(0.1) timeJoinReq2 = utime.ticks_ms() timeFromLastJoinReq = utime.ticks_diff(timeJoinReq2,timeJoinReq1) #print("Time (ms) from last transmission of Join Request = {:.3f}".format(timeFromLastJoinReq)) if (timeFromLastJoinReq > (1000*joinReqRtxTime)): timeToRetransmitJoinReq = True return [caraEnabled, initialResourceBlock, sfMask, selectedDR, channelsList, sfList] def assignmentAlgorithm1(timeNextTransmission, channelsList, sfList, initialResourceBlock): # THIS ALGORITHM SELECT THE CHANNEL AND SF FOLLOWING A SEQUENTIAL ORDER if (debug > 0): print("[DEBUG] Time for next transmission (sec) = {:.3f}".format(timeNextTransmission)) #print("durationOfPeriod = {:.2f}".format(durationOfPeriod)) indexCurrentPeriod = int(timeNextTransmission / durationOfPeriod) if (debug > 0): print("[DEBUG] Current period = {:d}".format(indexCurrentPeriod)) noResourceBlocks = len(channelsList) currentResourceBlock = (indexCurrentPeriod+initialResourceBlock) % noResourceBlocks selectedFreq = channelsList[currentResourceBlock] selectedSF = sfList[currentResourceBlock] selectedDR = convertSFtoDR(selectedSF) #nextResourceBlock = (indexCurrentPeriod+initialResourceBlock+1) % noResourceBlocks #selectedFreqForNextPeriod = channelsList[nextResourceBlock] #selectedSFForNextPeriod = sfList[nextResourceBlock] #selectedDRForNextPeriod = convertSFtoDR(selectedSFForNextPeriod) if (debug > 0): print("[DEBUG] Current resource block = {:d}".format(currentResourceBlock)) print("[DEBUG] Selected frequency = {:d}".format(selectedFreq)) print("[DEBUG] Selected DR = {:d}".format(selectedDR)) #print("Next resource block = {:d}".format(nextResourceBlock)) #print("Selected frequency for next period = {:d}".format(selectedFreqForNextPeriod)) #print("Selected DR for next period = {:d}".format(selectedDRForNextPeriod)) #return [selectedFreq, selectedDR, selectedFreqForNextPeriod, selectedDRForNextPeriod] return [selectedFreq, selectedDR] #def checkBorderEffect(timeNextTransmission, selectedFreq, selectedDR, selectedFreqForNextPeriod, selectedDRForNextPeriod, borderEffectGuardTime, payloadsize): def checkBorderEffect(timeNextTransmission, selectedFreq, selectedDR, borderEffectGuardTime, payloadsize): # CHECK TIME OVER AIR TO AVOID BORDER EFFECTS (WAIT FOR NEXT PERIOD IF NECESSARY) airTime = airtimetheoretical(payloadsize, convertDRtoSF(selectedDR), LoRa.BW_125KHZ, LoRa.CODING_4_5)[0] limitForThisPeriod = (int(timeNextTransmission / durationOfPeriod)+1) * durationOfPeriod if (debug > 0): print("checkBorderEffect: timeNextTransmission={:.2f}, airTime={:.2f}, limitForThisPeriod={:.2f}".format(timeNextTransmission, airTime, limitForThisPeriod)) if ( (timeNextTransmission + airTime + borderEffectGuardTime) > limitForThisPeriod ): # The transmission has to wait for next period #timeNextTransmission = limitForThisPeriod + 0.1 # timeNextTransmission = timeNextTransmission + airTime + borderEffectGuardTime + 0.1 # if (debug > 0): # print("AVOIDING BORDER EFFECT: timeNextTransmission = {:.3f}".format(timeNextTransmission)) borderTransmission = True else: # The transmission can be fitted in the current period # print("The transmission can be fitted in the current period") borderTransmission = False # return timeNextTransmission return borderTransmission ################### ## MAIN FUNCTION ## ################### # INITIALIZE LORA (LORAWAN mode. Europe = LoRa.EU868) lora = LoRa(mode=LoRa.LORAWAN, region=LoRa.EU868, public=True, tx_retries=3, device_class=LoRa.CLASS_C, adr=False) # BOARD INFORMATION showBoard(lora) # CONNECT TO WIFI timeToWaitForWiFi = RandomRange(0,10) time.sleep(timeToWaitForWiFi) connectWiFi() ## TIME SYNCHRONIZATION rtc = synchronizeTime() # OBTAIN EXPERIMENT PARAMETERS randomTimeForJoining, fixedTime, randomTime, durationOfPeriod, avoidBorderEffect, borderEffectGuardTime = getCARAParameters() ## LORAWAN (initialize and return a socket) s = initializeLoRaWAN(randomTimeForJoining) # Waiting for Join Accept message (from CARA server) caraEnabled, initialResourceBlock, sfMask, selectedDR, channelsList, sfList = receiveJoinAccept() # Infinite loop messageCounter = 0 while True: message = generateMessage (messageCounter) # Testing data.....01, ... payloadsize = len(message) messageCounter = messageCounter + 1 # Time between transmissions randNo = fixedTime + RandomRange(0,randomTime) if (debug > 0): print("[DEBUG] Random number = {:.1f}".format(randNo)) # Initially we assume that there is no border effect (checked later) borderTransmission = False if (messageCounter == 1): year, month, day, hour, minute, second, usecond, nothing = rtc.now() currentTime = hour*3600 + minute*60 + second + usecond/1000000 if (bFirstTransmissionStartingOnACARAPeriod): # In order to start (first message) at the beginning of one period... just for testing limitForThisPeriod = (int(currentTime / durationOfPeriod)+1) * durationOfPeriod timeNextTransmission = limitForThisPeriod + 1.0 else: # First packet sent at random time timeNextTransmission = currentTime + randNo selectedFreq, selectedDR = assignmentAlgorithm1(timeNextTransmission, channelsList, sfList, initialResourceBlock) else: # Not the first packet if caraEnabled == 1: # Our algorithm for assigning a frequency and a spreading factor for this transmission timeNextTransmission = timeLastTransmission + randNo selectedFreq, selectedDR = assignmentAlgorithm1(timeNextTransmission, channelsList, sfList, initialResourceBlock) # If border effect has to be avoided if avoidBorderEffect == 1: # timeNextTransmission = checkBorderEffect(timeNextTransmission, selectedFreq, selectedDR, borderEffectGuardTime, payloadsize) # selectedFreq, selectedDR = assignmentAlgorithm1(timeNextTransmission, channelsList, sfList, initialResourceBlock) borderTransmission = checkBorderEffect(timeNextTransmission, selectedFreq, selectedDR, borderEffectGuardTime, payloadsize) # FOR TESTING, FIXED CHANNEL AND DR (OBTAINED FROM CARA - #JOINACC# PARAMETERS)... if bFixedChannelAndDR: selectedFreq = channelsList[initialResourceBlock] selectedSF = sfList[initialResourceBlock] selectedDR = convertSFtoDR(selectedSF) # Set transmission parameters (frequency and spreading factor) setTransmissionParameters(s, selectedFreq, selectedDR) # end if (caraEnabled == 1) airTime = airtimetheoretical(payloadsize, convertDRtoSF(selectedDR), LoRa.BW_125KHZ, LoRa.CODING_4_5)[0] year, month, day, hour, minute, second, usecond, nothing = rtc.now() currentTime = hour*3600 + minute*60 + second + usecond/1000000 #timeToWait = randNo - (currentTime - lastTime) - airTime timeToWait = timeNextTransmission - currentTime if (debug > 0): print("[DEBUG] currentTime = {:.3f}".format(currentTime)) print("[DEBUG] timeNextTransmission = {:.3f}".format(timeNextTransmission)) print("[DEBUG] timeToWait = {:.3f}".format(timeToWait)) print("[DEBUG] airTime = {:.3f}".format(airTime)) timeLastTransmission = timeNextTransmission if (timeToWait > 0): print("[INFO] Waiting for next transmission (t={:.3f})...".format(timeNextTransmission)) time.sleep(timeToWait) else: print("[INFO] Next transmission starts immediately (time between transmissions too short)!") if (borderTransmission == False): s.setblocking(True) s.send(message) s.setblocking(False) year, month, day, hour, minute, second, usecond, nothing = rtc.now() print("[INFO] Message sent at {:02d}:{:02d}:{:02d}.{:.06d} on {:d} Hz with DR {:d} (air time {:.3f} s)".format(hour, minute, second, usecond, selectedFreq, selectedDR, airTime)) else: year, month, day, hour, minute, second, usecond, nothing = rtc.now() print("[INFO] Message not sent at {:02d}:{:02d}:{:02d}.{:.06d} due to border effect".format(hour, minute, second, usecond)) ```