metadata
dict
text
stringlengths
60
3.49M
{ "source": "JorritWillaert/SudokuSolverFromImage", "score": 4 }
#### File: SudokuSolverFromImage/digits_classification/model.py ```python import torch from torch import nn import torchvision.datasets as datasets import torchvision.transforms as transforms from torch.utils.data import DataLoader class MNISTNet(nn.Module): def __init__(self): super(MNISTNet, self).__init__() self.network = nn.Sequential( nn.Conv2d(in_channels=1, out_channels=32, kernel_size=(3, 3)), nn.ReLU(), nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(3, 3)), nn.ReLU(), nn.Flatten(), nn.Linear(36864, 1000), nn.Linear(1000, 10) ) def forward(self, x): return self.network(x) if __name__ == "__main__": train_dataset = datasets.MNIST(root='dataset/', train=True, transform=transforms.ToTensor(), download=True) train_dataloader = DataLoader(dataset=train_dataset, batch_size=64) iterdata = iter(train_dataloader) images, labels = next(iterdata) net = MNISTNet() print(net.forward(images).shape) # Output shape = [N, 10] ```
{ "source": "Jorropo/porth", "score": 2 }
#### File: Jorropo/porth/porth.py ```python import os import sys import subprocess import shlex from os import path from typing import * from enum import IntEnum, Enum, auto from dataclasses import dataclass, field from copy import copy from time import sleep import traceback PORTH_EXT = '.porth' X86_64_RET_STACK_CAP=8192 # TODO: INCLUDE_LIMIT should be probably customizable INCLUDE_LIMIT=100 debug=False Loc=Tuple[str, int, int] class Keyword(Enum): IF=auto() IFSTAR=auto() ELSE=auto() END=auto() WHILE=auto() DO=auto() INCLUDE=auto() MEMORY=auto() PROC=auto() CONST=auto() OFFSET=auto() RESET=auto() ASSERT=auto() IN=auto() BIKESHEDDER=auto() class DataType(IntEnum): INT=auto() BOOL=auto() PTR=auto() assert len(DataType) == 3, "Exhaustive data type definition" DATATYPE_BY_NAME: Dict[str, DataType] = { "int" : DataType.INT , "bool": DataType.BOOL, "ptr" : DataType.PTR , } DATATYPE_NAMES: Dict[DataType, str] = {v: k for k, v in DATATYPE_BY_NAME.items()} assert len(DataType) == 3, 'Exhaustive casts for all data types' class Intrinsic(Enum): PLUS=auto() MINUS=auto() MUL=auto() # TODO: split divmod intrinsic into div and mod back # It was never useful DIVMOD=auto() MAX=auto() EQ=auto() GT=auto() LT=auto() GE=auto() LE=auto() NE=auto() SHR=auto() SHL=auto() OR=auto() AND=auto() NOT=auto() PRINT=auto() DUP=auto() SWAP=auto() DROP=auto() OVER=auto() ROT=auto() LOAD8=auto() STORE8=auto() LOAD16=auto() STORE16=auto() LOAD32=auto() STORE32=auto() LOAD64=auto() STORE64=auto() CAST_PTR=auto() CAST_INT=auto() CAST_BOOL=auto() ARGC=auto() ARGV=auto() ENVP=auto() HERE=auto() SYSCALL0=auto() SYSCALL1=auto() SYSCALL2=auto() SYSCALL3=auto() SYSCALL4=auto() SYSCALL5=auto() SYSCALL6=auto() STOP=auto() class OpType(Enum): PUSH_INT=auto() PUSH_PTR=auto() PUSH_BOOL=auto() PUSH_STR=auto() PUSH_CSTR=auto() PUSH_MEM=auto() PUSH_LOCAL_MEM=auto() INTRINSIC=auto() IF=auto() IFSTAR=auto() ELSE=auto() END=auto() WHILE=auto() DO=auto() SKIP_PROC=auto() PREP_PROC=auto() RET=auto() CALL=auto() class TokenType(Enum): WORD=auto() INT=auto() STR=auto() CSTR=auto() CHAR=auto() KEYWORD=auto() assert len(TokenType) == 6, "Exhaustive Token type definition. The `value` field of the Token dataclass may require an update" @dataclass class Token: typ: TokenType text: str loc: Loc value: Union[int, str, Keyword] OpAddr=int MemAddr=int @dataclass class Op: typ: OpType token: Token operand: Optional[Union[int, str, Intrinsic, OpAddr]] = None @dataclass class Program: ops: List[Op] = field(default_factory=list) memory_capacity: int = 0 SimPtr=int def get_cstr_from_mem(mem: bytearray, ptr: SimPtr) -> bytes: end = ptr while mem[end] != 0: end += 1 return mem[ptr:end] def get_cstr_list_from_mem(mem: bytearray, ptr: SimPtr) -> List[str]: result = [] while deref_u64(mem, ptr) != 0: result.append(get_cstr_from_mem(mem, deref_u64(mem, ptr)).decode('utf-8')) ptr += 8 return result def deref_u64(mem: bytearray, ptr: SimPtr) -> int: return int.from_bytes(mem[ptr:ptr+8], byteorder='little') def mem_alloc(mem: bytearray, size: int) -> SimPtr: result = len(mem) mem += bytearray(size) return result @dataclass class SimBuffer: start: SimPtr capacity: int size: int = 0 def sim_buffer_append(mem: bytearray, sim_buf: SimBuffer, data: bytes) -> SimPtr: size = len(data) assert sim_buf.size + size <= sim_buf.capacity, "Simulated buffer overflow" ptr = sim_buf.start + sim_buf.size mem[ptr:ptr+size] = data sim_buf.size += size return ptr SIM_STR_CAPACITY = 640_000 SIM_ARGV_CAPACITY = 640_000 SIM_ENVP_CAPACITY = 640_000 SIM_LOCAL_MEMORY_CAPACITY = 640_000 def simulate_little_endian_linux(program: Program, argv: List[str]): AT_FDCWD=-100 O_RDONLY=0 ENOENT=2 CLOCK_MONOTONIC=1 stack: List[int] = [] # TODO: I think ret_stack should be located in the local memory just like on x86_64 ret_stack: List[OpAddr] = [] mem = bytearray(1) # NOTE: 1 is just a little bit of a padding at the beginning of the memory to make 0 an "invalid" address str_buf = SimBuffer(start=mem_alloc(mem, SIM_STR_CAPACITY), capacity=SIM_STR_CAPACITY) str_ptrs: Dict[int, int] = {} argv_buf = SimBuffer(start=mem_alloc(mem, SIM_ARGV_CAPACITY), capacity=SIM_ARGV_CAPACITY) argc = 0 envp_buf = SimBuffer(start=mem_alloc(mem, SIM_ENVP_CAPACITY), capacity=SIM_ENVP_CAPACITY) local_memory_ptr = mem_alloc(mem, SIM_LOCAL_MEMORY_CAPACITY) local_memory_rsp = local_memory_ptr + SIM_LOCAL_MEMORY_CAPACITY mem_buf_ptr = mem_alloc(mem, program.memory_capacity) for arg in argv: arg_ptr = sim_buffer_append(mem, str_buf, arg.encode('utf-8') + b'\0') sim_buffer_append(mem, argv_buf, arg_ptr.to_bytes(8, byteorder='little')) argc += 1 sim_buffer_append(mem, argv_buf, (0).to_bytes(8, byteorder='little')) for k, v in os.environ.items(): env_ptr = sim_buffer_append(mem, str_buf, f'{k}={v}'.encode('utf-8') + b'\0') sim_buffer_append(mem, envp_buf, env_ptr.to_bytes(8, byteorder='little')) sim_buffer_append(mem, envp_buf, (0).to_bytes(8, byteorder='little')) fds: List[BinaryIO] = [sys.stdin.buffer, sys.stdout.buffer, sys.stderr.buffer] ip = 0 while ip < len(program.ops): assert len(OpType) == 18, "Exhaustive op handling in simulate_little_endian_linux" op = program.ops[ip] try: if op.typ in [OpType.PUSH_INT, OpType.PUSH_BOOL, OpType.PUSH_PTR]: assert isinstance(op.operand, int), "This could be a bug in the parsing step" stack.append(op.operand) ip += 1 elif op.typ == OpType.PUSH_STR: assert isinstance(op.operand, str), "This could be a bug in the parsing step" value = op.operand.encode('utf-8') stack.append(len(value)) if ip not in str_ptrs: str_ptrs[ip] = sim_buffer_append(mem, str_buf, value) stack.append(str_ptrs[ip]) ip += 1 elif op.typ == OpType.PUSH_CSTR: assert isinstance(op.operand, str), "This could be a bug in the parsing step" if ip not in str_ptrs: value = op.operand.encode('utf-8') + b'\0' str_ptrs[ip] = sim_buffer_append(mem, str_buf, value) stack.append(str_ptrs[ip]) ip += 1 elif op.typ == OpType.PUSH_MEM: assert isinstance(op.operand, MemAddr), "This could be a bug in the parsing step" stack.append(mem_buf_ptr + op.operand) ip += 1 elif op.typ == OpType.PUSH_LOCAL_MEM: assert isinstance(op.operand, MemAddr) stack.append(local_memory_rsp + op.operand) ip += 1 elif op.typ in [OpType.IF, OpType.IFSTAR]: a = stack.pop() if a == 0: assert isinstance(op.operand, OpAddr), "This could be a bug in the parsing step" ip = op.operand else: ip += 1 elif op.typ == OpType.WHILE: ip += 1 elif op.typ == OpType.ELSE: assert isinstance(op.operand, OpAddr), "This could be a bug in the parsing step" ip = op.operand elif op.typ == OpType.END: assert isinstance(op.operand, OpAddr), "This could be a bug in the parsing step" ip = op.operand elif op.typ == OpType.DO: a = stack.pop() if a == 0: assert isinstance(op.operand, OpAddr), "This could be a bug in the parsing step" ip = op.operand else: ip += 1 elif op.typ == OpType.SKIP_PROC: assert isinstance(op.operand, OpAddr), "This could be a bug in the parsing step" ip = op.operand elif op.typ == OpType.PREP_PROC: assert isinstance(op.operand, int) local_memory_rsp -= op.operand ip += 1 elif op.typ == OpType.RET: assert isinstance(op.operand, int) local_memory_rsp += op.operand ip = ret_stack.pop() elif op.typ == OpType.CALL: assert isinstance(op.operand, OpAddr), "This could be a bug in the parsing step" ret_stack.append(ip + 1) ip = op.operand elif op.typ == OpType.INTRINSIC: assert len(Intrinsic) == 45, "Exhaustive handling of intrinsic in simulate_little_endian_linux()" if op.operand == Intrinsic.PLUS: a = stack.pop() b = stack.pop() stack.append(a + b) ip += 1 elif op.operand == Intrinsic.MINUS: a = stack.pop() b = stack.pop() stack.append(b - a) ip += 1 elif op.operand == Intrinsic.MUL: a = stack.pop() b = stack.pop() stack.append(b * a) ip += 1 elif op.operand == Intrinsic.DIVMOD: a = stack.pop() b = stack.pop() stack.append(b // a) stack.append(b % a) ip += 1 elif op.operand == Intrinsic.MAX: a = stack.pop() b = stack.pop() stack.append(max(a, b)) ip += 1 elif op.operand == Intrinsic.EQ: a = stack.pop() b = stack.pop() stack.append(int(a == b)) ip += 1 elif op.operand == Intrinsic.GT: a = stack.pop() b = stack.pop() stack.append(int(b > a)) ip += 1 elif op.operand == Intrinsic.LT: a = stack.pop() b = stack.pop() stack.append(int(b < a)) ip += 1 elif op.operand == Intrinsic.GE: a = stack.pop() b = stack.pop() stack.append(int(b >= a)) ip += 1 elif op.operand == Intrinsic.LE: a = stack.pop() b = stack.pop() stack.append(int(b <= a)) ip += 1 elif op.operand == Intrinsic.NE: a = stack.pop() b = stack.pop() stack.append(int(b != a)) ip += 1 elif op.operand == Intrinsic.SHR: a = stack.pop() b = stack.pop() stack.append(int(b >> a)) ip += 1 elif op.operand == Intrinsic.SHL: a = stack.pop() b = stack.pop() stack.append(int(b << a)) ip += 1 elif op.operand == Intrinsic.OR: a = stack.pop() b = stack.pop() stack.append(int(a | b)) ip += 1 elif op.operand == Intrinsic.AND: a = stack.pop() b = stack.pop() stack.append(int(a & b)) ip += 1 elif op.operand == Intrinsic.NOT: a = stack.pop() stack.append(int(~a)) ip += 1 elif op.operand == Intrinsic.PRINT: a = stack.pop() fds[1].write(b"%d\n" % a) fds[1].flush() ip += 1 elif op.operand == Intrinsic.DUP: a = stack.pop() stack.append(a) stack.append(a) ip += 1 elif op.operand == Intrinsic.SWAP: a = stack.pop() b = stack.pop() stack.append(a) stack.append(b) ip += 1 elif op.operand == Intrinsic.DROP: stack.pop() ip += 1 elif op.operand == Intrinsic.OVER: a = stack.pop() b = stack.pop() stack.append(b) stack.append(a) stack.append(b) ip += 1 elif op.operand == Intrinsic.ROT: a = stack.pop() b = stack.pop() c = stack.pop() stack.append(b) stack.append(a) stack.append(c) ip += 1 elif op.operand == Intrinsic.LOAD8: addr = stack.pop() byte = mem[addr] stack.append(byte) ip += 1 elif op.operand == Intrinsic.STORE8: store_addr = stack.pop() store_value = stack.pop() mem[store_addr] = store_value & 0xFF ip += 1 elif op.operand == Intrinsic.LOAD16: load_addr = stack.pop() stack.append(int.from_bytes(mem[load_addr:load_addr+2], byteorder="little")) ip += 1 elif op.operand == Intrinsic.STORE16: store_addr = stack.pop(); store_value = stack.pop() mem[store_addr:store_addr+2] = store_value.to_bytes(length=2, byteorder="little", signed=(store_value < 0)); ip += 1 elif op.operand == Intrinsic.LOAD32: load_addr = stack.pop() stack.append(int.from_bytes(mem[load_addr:load_addr+4], byteorder="little")) ip += 1 elif op.operand == Intrinsic.STORE32: store_addr = stack.pop(); store_value = stack.pop() mem[store_addr:store_addr+4] = store_value.to_bytes(length=4, byteorder="little", signed=(store_value < 0)); ip += 1 elif op.operand == Intrinsic.LOAD64: load_addr = stack.pop() stack.append(int.from_bytes(mem[load_addr:load_addr+8], byteorder="little")) ip += 1 elif op.operand == Intrinsic.STORE64: store_addr = stack.pop(); store_value = stack.pop() mem[store_addr:store_addr+8] = store_value.to_bytes(length=8, byteorder="little", signed=(store_value < 0)); ip += 1 elif op.operand == Intrinsic.ARGC: stack.append(argc) ip += 1 elif op.operand == Intrinsic.ARGV: stack.append(argv_buf.start) ip += 1 elif op.operand == Intrinsic.ENVP: stack.append(envp_buf.start) ip += 1 elif op.operand == Intrinsic.HERE: value = ("%s:%d:%d" % op.token.loc).encode('utf-8') stack.append(len(value)) if ip not in str_ptrs: str_ptrs[ip] = sim_buffer_append(mem, str_buf, value) stack.append(str_ptrs[ip]) ip += 1 elif op.operand == Intrinsic.CAST_PTR: # Ignore the type casting. It's only useful for type_check_program() phase ip += 1 elif op.operand == Intrinsic.CAST_BOOL: # Ignore the type casting. It's only useful for type_check_program() phase ip += 1 elif op.operand == Intrinsic.CAST_INT: # Ignore the type casting. It's only useful for type_check_program() phase ip += 1 elif op.operand == Intrinsic.SYSCALL0: syscall_number = stack.pop(); if syscall_number == 39: # SYS_getpid stack.append(os.getpid()); else: assert False, "unknown syscall number %d" % syscall_number ip += 1 elif op.operand == Intrinsic.SYSCALL1: syscall_number = stack.pop() arg1 = stack.pop() if syscall_number == 60: # SYS_exit exit(arg1) elif syscall_number == 3: # SYS_close fds[arg1].close() stack.append(0) else: assert False, "unknown syscall number %d" % syscall_number ip += 1 elif op.operand == Intrinsic.SYSCALL2: assert False, "not implemented" elif op.operand == Intrinsic.SYSCALL3: syscall_number = stack.pop() arg1 = stack.pop() arg2 = stack.pop() arg3 = stack.pop() if syscall_number == 0: # SYS_read fd = arg1 buf = arg2 count = arg3 # NOTE: trying to behave like a POSIX tty in canonical mode by making the data available # on each newline # https://en.wikipedia.org/wiki/POSIX_terminal_interface#Canonical_mode_processing data = fds[fd].readline(count) mem[buf:buf+len(data)] = data stack.append(len(data)) elif syscall_number == 1: # SYS_write fd = arg1 buf = arg2 count = arg3 fds[fd].write(mem[buf:buf+count]) fds[fd].flush() stack.append(count) elif syscall_number == 59: # SYS_execve execve_path = get_cstr_from_mem(mem, arg1).decode('utf-8') execve_argv = get_cstr_list_from_mem(mem, arg2) execve_envp = { k: v for s in get_cstr_list_from_mem(mem, arg3) for (k, v) in (s.split('='), ) } try: os.execve(execve_path, execve_argv, execve_envp) except FileNotFoundError: stack.append(-ENOENT) else: assert False, "unknown syscall number %d" % syscall_number ip += 1 elif op.operand == Intrinsic.SYSCALL4: syscall_number = stack.pop() arg1 = stack.pop() arg2 = stack.pop() arg3 = stack.pop() arg4 = stack.pop() if syscall_number == 230: # clock_nanosleep clock_id = arg1 flags = arg2 request_ptr = arg3 remain_ptr = arg4 assert clock_id == CLOCK_MONOTONIC, "Only CLOCK_MONOTONIC is implemented for SYS_clock_nanosleep" assert flags == 0, "Only relative time is supported for SYS_clock_nanosleep" assert request_ptr != 0, "request cannot be NULL for SYS_clock_nanosleep. We should probably return -1 in that case..." assert remain_ptr == 0, "remain is not supported for SYS_clock_nanosleep" seconds = int.from_bytes(mem[request_ptr:request_ptr+8], byteorder='little') nano_seconds = int.from_bytes(mem[request_ptr+8:request_ptr+8+8], byteorder='little') sleep(float(seconds)+float(nano_seconds)*1e-09) stack.append(0) elif syscall_number == 257: # SYS_openat dirfd = arg1 pathname_ptr = arg2 flags = arg3 mode = arg4 if dirfd != AT_FDCWD: assert False, f"openat: unsupported dirfd: {dirfd}" if flags != O_RDONLY: assert False, f"openat: unsupported flags: {flags}" if mode != 0: assert False, f"openat: unsupported mode: {mode}" pathname = get_cstr_from_mem(mem, pathname_ptr).decode('utf-8') fd = len(fds) try: fds.append(open(pathname, 'rb')) stack.append(fd) except FileNotFoundError: stack.append(-ENOENT) else: assert False, "unknown syscall number %d" % syscall_number ip += 1 elif op.operand == Intrinsic.SYSCALL5: assert False, "not implemented" elif op.operand == Intrinsic.SYSCALL6: assert False, "not implemented" elif op.operand == Intrinsic.STOP: pass else: assert False, "unreachable" else: assert False, "unreachable" except Exception as e: compiler_error(op.token.loc, "Python Exception during simulation") traceback.print_exception(type(e), e, e.__traceback__) exit(1) def compiler_diagnostic(loc: Loc, tag: str, message: str): print("%s:%d:%d: %s: %s" % (loc + (tag, message)), file=sys.stderr) def compiler_error(loc: Loc, message: str): compiler_diagnostic(loc, 'ERROR', message) def compiler_note(loc: Loc, message: str): compiler_diagnostic(loc, 'NOTE', message) def not_enough_arguments(op: Op): assert len(OpType) == 18, f"Exhaustive handling of Op types in not_enough_arguments() (expected {len(OpType)}). Keep in mind that not all of the ops should be handled in here. Only those that consume elements from the stack." if op.typ == OpType.INTRINSIC: assert isinstance(op.operand, Intrinsic) compiler_error(op.token.loc, "not enough arguments for the `%s` intrinsic" % INTRINSIC_NAMES[op.operand]) elif op.typ == OpType.DO: compiler_error(op.token.loc, "not enough arguments for the do-block") else: assert False, "unsupported type of operation" DataStack=List[Tuple[Union[DataType, str], Loc]] @dataclass class Context: stack: DataStack ip: OpAddr outs: List[Tuple[Union[DataType, str], Loc]] @dataclass class Contract: ins: Sequence[Tuple[Union[DataType, str], Loc]] outs: Sequence[Tuple[Union[DataType, str], Loc]] @dataclass class CompilerMessage: loc: Loc label: str text: str def human_type_name(typ: Union[DataType, str]) -> str: if isinstance(typ, DataType): return f"type `{DATATYPE_NAMES[typ]}`" elif isinstance(typ, str): return f"generic type {repr(typ)}" else: assert False, "unreachable" MessageGroup=List[CompilerMessage] def type_check_contracts(intro_token: Token, ctx: Context, contracts: List[Contract]): log: List[MessageGroup] = [] for contract in contracts: ins = list(contract.ins) stack = copy(ctx.stack) error = False generics: Dict[str, Union[DataType, str]] = {} arg_count = 0 while len(stack) > 0 and len(ins) > 0: actual, actual_loc = stack.pop() expected, expected_loc = ins.pop() if isinstance(expected, DataType): if actual != expected: error = True log.append([CompilerMessage(loc=intro_token.loc, label="ERROR", text=f"Argument {arg_count} of `{intro_token.text}` is expected to be {human_type_name(expected)} but got {human_type_name(actual)}"), CompilerMessage(loc=actual_loc, label="NOTE", text=f"Argument {arg_count} was provided here"), CompilerMessage(loc=expected_loc, label="NOTE", text=f"Expected type was declared here")]) break; elif isinstance(expected, str): if expected in generics: if actual != generics[expected]: error = True log.append([CompilerMessage(loc=intro_token.loc, label="ERROR", text=f"Argument {arg_count} of `{intro_token.text}` is expected to be {human_type_name(generics[expected])} but got {human_type_name(actual)}"), CompilerMessage(loc=actual_loc, label="NOTE", text=f"Argument {arg_count} was provided here"), CompilerMessage(loc=expected_loc, label="NOTE", text=f"Expected type was declared here")]) break; else: generics[expected] = actual else: assert False, "unreachable" arg_count += 1 if error: continue if len(stack) < len(ins): group = [] group.append(CompilerMessage(loc=intro_token.loc, label="ERROR", text=f"Not enough arguments provided for `{intro_token.value}`. Expected {len(contract.ins)} but got {arg_count}.")) group.append(CompilerMessage(loc=intro_token.loc, label="NOTE", text=f"Not provided arguments:")) while len(ins) > 0: typ, loc = ins.pop() if isinstance(typ, DataType): group.append(CompilerMessage(loc=loc, label="NOTE", text=f"{DATATYPE_NAMES[typ]}")) elif isinstance(typ, str): if typ in generics: group.append(CompilerMessage(loc=loc, label="NOTE", text=human_type_name(generics[typ]))) else: group.append(CompilerMessage(loc=loc, label="NOTE", text=human_type_name(typ))) else: assert False, "unreachable" log.append(group) continue for typ, loc in contract.outs: if isinstance(typ, DataType): stack.append((typ, intro_token.loc)) elif isinstance(typ, str): if typ in generics: stack.append((generics[typ], intro_token.loc)) else: # log.append([CompilerMessage(loc=loc, label="ERROR", text=f"Unknown generic {repr(typ)} in output parameters. All generics should appear at least once in input parameters first.")]) # continue assert False, "Unreachable. Such function won't compile in the first place since you can't produce an instance of a generic type at the moment" else: assert False, "unreachable" ctx.stack = stack return for group in log: for msg in group: compiler_diagnostic(msg.loc, msg.label, msg.text) print(file=sys.stderr) exit(1) def type_check_context_outs(ctx: Context): while len(ctx.stack) > 0 and len(ctx.outs) > 0: actual_typ, actual_loc = ctx.stack.pop() expected_typ, expected_loc = ctx.outs.pop() if expected_typ != actual_typ: compiler_error(actual_loc, f"Unexpected {human_type_name(actual_typ)} on the stack") compiler_note(expected_loc, f"Expected {human_type_name(expected_typ)}") exit(1) if len(ctx.stack) > len(ctx.outs): top_typ, top_loc = ctx.stack.pop() compiler_error(top_loc, f"Unhandled data on the stack:") compiler_note(top_loc, f"{human_type_name(top_typ)}") while len(ctx.stack) > 0: typ, loc = ctx.stack.pop() compiler_note(loc, f"{human_type_name(typ)}") exit(1) elif len(ctx.stack) < len(ctx.outs): top_typ, top_loc = ctx.outs.pop() compiler_error(top_loc, f"Insufficient data on the stack. Expected:") compiler_note(top_loc, f"{human_type_name(top_typ)}") while len(ctx.outs) > 0: typ, loc = ctx.outs.pop() compiler_note(loc, f"and {human_type_name(typ)}") exit(1) def type_check_program(program: Program, proc_contracts: Dict[OpAddr, Contract]): visited_dos: Dict[OpAddr, DataStack] = {} contexts: List[Context] = [Context(stack=[], ip=0, outs=[])] for proc_addr, proc_contract in reversed(list(proc_contracts.items())): contexts.append(Context( stack=list(proc_contract.ins), ip=proc_addr, outs=list(proc_contract.outs) )) while len(contexts) > 0: ctx = contexts[-1]; if ctx.ip >= len(program.ops): type_check_context_outs(ctx) contexts.pop() continue op = program.ops[ctx.ip] assert len(OpType) == 18, "Exhaustive ops handling in type_check_program()" if op.typ == OpType.PUSH_INT: ctx.stack.append((DataType.INT, op.token.loc)) ctx.ip += 1 elif op.typ == OpType.PUSH_BOOL: ctx.stack.append((DataType.BOOL, op.token.loc)) ctx.ip += 1 elif op.typ == OpType.PUSH_PTR: ctx.stack.append((DataType.PTR, op.token.loc)) ctx.ip += 1 elif op.typ == OpType.PUSH_STR: ctx.stack.append((DataType.INT, op.token.loc)) ctx.stack.append((DataType.PTR, op.token.loc)) ctx.ip += 1 elif op.typ == OpType.PUSH_CSTR: ctx.stack.append((DataType.PTR, op.token.loc)) ctx.ip += 1 elif op.typ == OpType.PUSH_MEM: ctx.stack.append((DataType.PTR, op.token.loc)) ctx.ip += 1 elif op.typ == OpType.PUSH_LOCAL_MEM: ctx.stack.append((DataType.PTR, op.token.loc)) ctx.ip += 1 elif op.typ == OpType.SKIP_PROC: assert isinstance(op.operand, OpAddr) ctx.ip = op.operand elif op.typ == OpType.PREP_PROC: ctx.ip += 1 elif op.typ == OpType.CALL: assert isinstance(op.operand, OpAddr) type_check_contracts(op.token, ctx, [proc_contracts[op.operand]]) ctx.ip += 1 elif op.typ == OpType.RET: type_check_context_outs(ctx) contexts.pop() elif op.typ == OpType.INTRINSIC: assert len(Intrinsic) == 45, "Exhaustive intrinsic handling in type_check_program()" assert isinstance(op.operand, Intrinsic), "This could be a bug in compilation step" if op.operand == Intrinsic.PLUS: type_check_contracts(op.token, ctx, [ Contract(ins=[(DataType.INT, op.token.loc), (DataType.INT, op.token.loc)], outs=[(DataType.INT, op.token.loc)]), Contract(ins=[(DataType.PTR, op.token.loc), (DataType.INT, op.token.loc)], outs=[(DataType.PTR, op.token.loc)]), Contract(ins=[(DataType.INT, op.token.loc), (DataType.PTR, op.token.loc)], outs=[(DataType.PTR, op.token.loc)]), ]) elif op.operand == Intrinsic.MINUS: type_check_contracts(op.token, ctx, [ Contract(ins=[(DataType.INT, op.token.loc), (DataType.INT, op.token.loc)], outs=[(DataType.INT, op.token.loc)]), Contract(ins=[(DataType.PTR, op.token.loc), (DataType.INT, op.token.loc)], outs=[(DataType.PTR, op.token.loc)]), Contract(ins=[(DataType.PTR, op.token.loc), (DataType.PTR, op.token.loc)], outs=[(DataType.INT, op.token.loc)]), ]) elif op.operand == Intrinsic.MUL: type_check_contracts(op.token, ctx, [ Contract(ins=[(DataType.INT, op.token.loc), (DataType.INT, op.token.loc)], outs=[(DataType.INT, op.token.loc)]) ]) elif op.operand == Intrinsic.DIVMOD: type_check_contracts(op.token, ctx, [ Contract(ins=[(DataType.INT, op.token.loc), (DataType.INT, op.token.loc)], outs=[(DataType.INT, op.token.loc), (DataType.INT, op.token.loc)]) ]) elif op.operand == Intrinsic.MAX: type_check_contracts(op.token, ctx, [ Contract(ins=[(DataType.INT, op.token.loc), (DataType.INT, op.token.loc)], outs=[(DataType.INT, op.token.loc)]) ]) elif op.operand == Intrinsic.EQ: type_check_contracts(op.token, ctx, [ Contract(ins=[(DataType.INT, op.token.loc), (DataType.INT, op.token.loc)], outs=[(DataType.BOOL, op.token.loc)]), Contract(ins=[(DataType.BOOL, op.token.loc), (DataType.BOOL, op.token.loc)], outs=[(DataType.BOOL, op.token.loc)]), Contract(ins=[(DataType.PTR, op.token.loc), (DataType.PTR, op.token.loc)], outs=[(DataType.BOOL, op.token.loc)]), ]) elif op.operand == Intrinsic.GT: type_check_contracts(op.token, ctx, [ Contract(ins=[(DataType.INT, op.token.loc), (DataType.INT, op.token.loc)], outs=[(DataType.BOOL, op.token.loc)]), Contract(ins=[(DataType.PTR, op.token.loc), (DataType.PTR, op.token.loc)], outs=[(DataType.BOOL, op.token.loc)]), ]) elif op.operand == Intrinsic.LT: type_check_contracts(op.token, ctx, [ Contract(ins=[(DataType.INT, op.token.loc), (DataType.INT, op.token.loc)], outs=[(DataType.BOOL, op.token.loc)]), Contract(ins=[(DataType.PTR, op.token.loc), (DataType.PTR, op.token.loc)], outs=[(DataType.BOOL, op.token.loc)]), ]) elif op.operand == Intrinsic.GE: type_check_contracts(op.token, ctx, [ Contract(ins=[(DataType.INT, op.token.loc), (DataType.INT, op.token.loc)], outs=[(DataType.BOOL, op.token.loc)]), Contract(ins=[(DataType.PTR, op.token.loc), (DataType.PTR, op.token.loc)], outs=[(DataType.BOOL, op.token.loc)]), ]) elif op.operand == Intrinsic.LE: type_check_contracts(op.token, ctx, [ Contract(ins=[(DataType.INT, op.token.loc), (DataType.INT, op.token.loc)], outs=[(DataType.BOOL, op.token.loc)]), Contract(ins=[(DataType.PTR, op.token.loc), (DataType.PTR, op.token.loc)], outs=[(DataType.BOOL, op.token.loc)]), ]) elif op.operand == Intrinsic.NE: type_check_contracts(op.token, ctx, [ Contract(ins=[(DataType.INT, op.token.loc), (DataType.INT, op.token.loc)], outs=[(DataType.BOOL, op.token.loc)]), Contract(ins=[(DataType.BOOL, op.token.loc), (DataType.BOOL, op.token.loc)], outs=[(DataType.BOOL, op.token.loc)]), Contract(ins=[(DataType.PTR, op.token.loc), (DataType.PTR, op.token.loc)], outs=[(DataType.BOOL, op.token.loc)]), ]) elif op.operand == Intrinsic.SHR: type_check_contracts(op.token, ctx, [ Contract(ins=[(DataType.INT, op.token.loc), (DataType.INT, op.token.loc)], outs=[(DataType.INT, op.token.loc)]) ]) elif op.operand == Intrinsic.SHL: type_check_contracts(op.token, ctx, [ Contract(ins=[(DataType.INT, op.token.loc), (DataType.INT, op.token.loc)], outs=[(DataType.INT, op.token.loc)]) ]) elif op.operand == Intrinsic.OR: type_check_contracts(op.token, ctx, [ Contract(ins=[(DataType.INT, op.token.loc), (DataType.INT, op.token.loc)], outs=[(DataType.INT, op.token.loc)]), Contract(ins=[(DataType.BOOL, op.token.loc), (DataType.BOOL, op.token.loc)], outs=[(DataType.BOOL, op.token.loc)]), ]) elif op.operand == Intrinsic.AND: type_check_contracts(op.token, ctx, [ Contract(ins=[(DataType.INT, op.token.loc), (DataType.INT, op.token.loc)], outs=[(DataType.INT, op.token.loc)]), Contract(ins=[(DataType.BOOL, op.token.loc), (DataType.BOOL, op.token.loc)], outs=[(DataType.BOOL, op.token.loc)]), ]) elif op.operand == Intrinsic.NOT: type_check_contracts(op.token, ctx, [ Contract(ins=[(DataType.INT, op.token.loc)], outs=[(DataType.INT, op.token.loc)]) ]) elif op.operand == Intrinsic.PRINT: type_check_contracts(op.token, ctx, [ Contract(ins=[("a", op.token.loc)], outs=[]) ]) elif op.operand == Intrinsic.DUP: type_check_contracts(op.token, ctx, [ Contract(ins=[("a", op.token.loc)], outs=[("a", op.token.loc), ("a", op.token.loc)]) ]) elif op.operand == Intrinsic.SWAP: type_check_contracts(op.token, ctx, [ Contract(ins=[("a", op.token.loc), ("b", op.token.loc)], outs=[("b", op.token.loc), ("a", op.token.loc)]) ]) elif op.operand == Intrinsic.DROP: type_check_contracts(op.token, ctx, [ Contract(ins=[("a", op.token.loc)], outs=[]) ]) elif op.operand == Intrinsic.OVER: type_check_contracts(op.token, ctx, [ Contract(ins=[("a", op.token.loc), ("b", op.token.loc)], outs=[("a", op.token.loc), ("b", op.token.loc), ("a", op.token.loc)]) ]) elif op.operand == Intrinsic.ROT: type_check_contracts(op.token, ctx, [ Contract(ins=[("a", op.token.loc), ("b", op.token.loc), ("c", op.token.loc)], outs=[("b", op.token.loc), ("c", op.token.loc), ("a", op.token.loc)]) ]) elif op.operand == Intrinsic.LOAD8: type_check_contracts(op.token, ctx, [ Contract(ins=[(DataType.PTR, op.token.loc)], outs=[(DataType.INT, op.token.loc)]), ]) elif op.operand == Intrinsic.STORE8: type_check_contracts(op.token, ctx, [ Contract(ins=[("a", op.token.loc), (DataType.PTR, op.token.loc)], outs=[]), ]) elif op.operand == Intrinsic.LOAD16: type_check_contracts(op.token, ctx, [ Contract(ins=[(DataType.PTR, op.token.loc)], outs=[(DataType.INT, op.token.loc)]), ]) elif op.operand == Intrinsic.STORE16: type_check_contracts(op.token, ctx, [ Contract(ins=[("a", op.token.loc), (DataType.PTR, op.token.loc)], outs=[]), ]) elif op.operand == Intrinsic.LOAD32: type_check_contracts(op.token, ctx, [ Contract(ins=[(DataType.PTR, op.token.loc)], outs=[(DataType.INT, op.token.loc)]), ]) elif op.operand == Intrinsic.STORE32: type_check_contracts(op.token, ctx, [ Contract(ins=[("a", op.token.loc), (DataType.PTR, op.token.loc)], outs=[]), ]) elif op.operand == Intrinsic.LOAD64: type_check_contracts(op.token, ctx, [ Contract(ins=[(DataType.PTR, op.token.loc)], outs=[(DataType.INT, op.token.loc)]), ]) elif op.operand == Intrinsic.STORE64: type_check_contracts(op.token, ctx, [ Contract(ins=[("a", op.token.loc), (DataType.PTR, op.token.loc)], outs=[]), ]) elif op.operand == Intrinsic.CAST_PTR: type_check_contracts(op.token, ctx, [ Contract(ins=[("a", op.token.loc)], outs=[(DataType.PTR, op.token.loc)]), ]) elif op.operand == Intrinsic.CAST_INT: type_check_contracts(op.token, ctx, [ Contract(ins=[("a", op.token.loc)], outs=[(DataType.INT, op.token.loc)]), ]) elif op.operand == Intrinsic.CAST_BOOL: type_check_contracts(op.token, ctx, [ Contract(ins=[("a", op.token.loc)], outs=[(DataType.BOOL, op.token.loc)]), ]) elif op.operand == Intrinsic.ARGC: type_check_contracts(op.token, ctx, [ Contract(ins=[], outs=[(DataType.INT, op.token.loc)]) ]) elif op.operand == Intrinsic.ARGV: type_check_contracts(op.token, ctx, [ Contract(ins=[], outs=[(DataType.PTR, op.token.loc)]) ]) elif op.operand == Intrinsic.ENVP: type_check_contracts(op.token, ctx, [ Contract(ins=[], outs=[(DataType.PTR, op.token.loc)]) ]) elif op.operand == Intrinsic.HERE: type_check_contracts(op.token, ctx, [ Contract(ins=[], outs=[(DataType.INT, op.token.loc), (DataType.PTR, op.token.loc)]) ]) elif op.operand == Intrinsic.SYSCALL0: type_check_contracts(op.token, ctx, [ Contract(ins=[(DataType.INT, op.token.loc)], outs=[(DataType.INT, op.token.loc)]), ]) elif op.operand == Intrinsic.SYSCALL1: type_check_contracts(op.token, ctx, [ Contract(ins=[("a", op.token.loc), (DataType.INT, op.token.loc)], outs=[(DataType.INT, op.token.loc)]), ]) elif op.operand == Intrinsic.SYSCALL2: type_check_contracts(op.token, ctx, [ Contract(ins=[("a", op.token.loc), ("b", op.token.loc), (DataType.INT, op.token.loc)], outs=[(DataType.INT, op.token.loc)]), ]) elif op.operand == Intrinsic.SYSCALL3: type_check_contracts(op.token, ctx, [ Contract(ins=[("a", op.token.loc), ("b", op.token.loc), ("c", op.token.loc), (DataType.INT, op.token.loc)], outs=[(DataType.INT, op.token.loc)]), ]) elif op.operand == Intrinsic.SYSCALL4: type_check_contracts(op.token, ctx, [ Contract(ins=[("a", op.token.loc), ("b", op.token.loc), ("c", op.token.loc), ("d", op.token.loc), (DataType.INT, op.token.loc)], outs=[(DataType.INT, op.token.loc)]), ]) elif op.operand == Intrinsic.SYSCALL5: type_check_contracts(op.token, ctx, [ Contract(ins=[("a", op.token.loc), ("b", op.token.loc), ("c", op.token.loc), ("d", op.token.loc), ("e", op.token.loc), (DataType.INT, op.token.loc)], outs=[(DataType.INT, op.token.loc)]), ]) elif op.operand == Intrinsic.SYSCALL6: type_check_contracts(op.token, ctx, [ Contract(ins=[("a", op.token.loc), ("b", op.token.loc), ("c", op.token.loc), ("d", op.token.loc), ("e", op.token.loc), ("f", op.token.loc), (DataType.INT, op.token.loc)], outs=[(DataType.INT, op.token.loc)]), ]) elif op.operand == Intrinsic.STOP: # TODO: we need some sort of a flag that would allow us to ignore all the stop requests compiler_diagnostic(op.token.loc, "DEBUG", "Stopping the compilation. Current stack state:") if len(ctx.stack) > 0: for typ, loc in reversed(ctx.stack): compiler_diagnostic(loc, "ITEM", human_type_name(typ)) else: compiler_diagnostic(op.token.loc, "DEBUG", "<EMPTY>") exit(1) else: assert False, "unreachable" ctx.ip += 1 elif op.typ == OpType.IF: type_check_contracts(op.token, ctx, [ Contract(ins=[(DataType.BOOL, op.token.loc)], outs=[]) ]) ctx.ip += 1 assert isinstance(op.operand, OpAddr) contexts.append(Context(stack=copy(ctx.stack), ip=op.operand, outs=copy(ctx.outs))) ctx = contexts[-1] elif op.typ == OpType.IFSTAR: type_check_contracts(op.token, ctx, [ Contract(ins=[(DataType.BOOL, op.token.loc)], outs=[]) ]) ctx.ip += 1 assert isinstance(op.operand, OpAddr) contexts.append(Context(stack=copy(ctx.stack), ip=op.operand, outs=copy(ctx.outs))) ctx = contexts[-1] elif op.typ == OpType.WHILE: ctx.ip += 1 elif op.typ == OpType.END: assert isinstance(op.operand, OpAddr) ctx.ip = op.operand elif op.typ == OpType.ELSE: assert isinstance(op.operand, OpAddr) ctx.ip = op.operand elif op.typ == OpType.DO: type_check_contracts(op.token, ctx, [ Contract(ins=[(DataType.BOOL, op.token.loc)], outs=[]) ]) assert isinstance(op.operand, OpAddr) if ctx.ip in visited_dos: expected_types = list(map(lambda x: x[0], visited_dos[ctx.ip])) actual_types = list(map(lambda x: x[0], ctx.stack)) if expected_types != actual_types: compiler_error(op.token.loc, 'Loops are not allowed to alter types and amount of elements on the stack between iterations!') compiler_note(op.token.loc, '-- Stack BEFORE a single iteration --') if len(visited_dos[ctx.ip]) == 0: compiler_note(op.token.loc, '<empty>') else: for typ, loc in visited_dos[ctx.ip]: compiler_note(loc, human_type_name(typ)) compiler_note(op.token.loc, '-- Stack AFTER a single iteration --') if len(ctx.stack) == 0: compiler_note(op.token.loc, '<empty>') else: for typ, loc in ctx.stack: compiler_note(loc, human_type_name(typ)) exit(1) contexts.pop() else: visited_dos[ctx.ip] = copy(ctx.stack) ctx.ip += 1 contexts.append(Context(stack=copy(ctx.stack), ip=op.operand, outs=copy(ctx.outs))) ctx = contexts[-1] else: assert False, "unreachable" def generate_nasm_linux_x86_64(program: Program, out_file_path: str): strs: List[bytes] = [] with open(out_file_path, "w") as out: out.write("BITS 64\n") out.write("segment .text\n") out.write("print:\n") out.write(" mov r9, -3689348814741910323\n") out.write(" sub rsp, 40\n") out.write(" mov BYTE [rsp+31], 10\n") out.write(" lea rcx, [rsp+30]\n") out.write(".L2:\n") out.write(" mov rax, rdi\n") out.write(" lea r8, [rsp+32]\n") out.write(" mul r9\n") out.write(" mov rax, rdi\n") out.write(" sub r8, rcx\n") out.write(" shr rdx, 3\n") out.write(" lea rsi, [rdx+rdx*4]\n") out.write(" add rsi, rsi\n") out.write(" sub rax, rsi\n") out.write(" add eax, 48\n") out.write(" mov BYTE [rcx], al\n") out.write(" mov rax, rdi\n") out.write(" mov rdi, rdx\n") out.write(" mov rdx, rcx\n") out.write(" sub rcx, 1\n") out.write(" cmp rax, 9\n") out.write(" ja .L2\n") out.write(" lea rax, [rsp+32]\n") out.write(" mov edi, 1\n") out.write(" sub rdx, rax\n") out.write(" xor eax, eax\n") out.write(" lea rsi, [rsp+32+rdx]\n") out.write(" mov rdx, r8\n") out.write(" mov rax, 1\n") out.write(" syscall\n") out.write(" add rsp, 40\n") out.write(" ret\n") out.write("global _start\n") out.write("_start:\n") out.write(" mov [args_ptr], rsp\n") out.write(" mov rax, ret_stack_end\n") out.write(" mov [ret_stack_rsp], rax\n") for ip in range(len(program.ops)): op = program.ops[ip] assert len(OpType) == 18, "Exhaustive ops handling in generate_nasm_linux_x86_64" out.write("addr_%d:\n" % ip) if op.typ in [OpType.PUSH_INT, OpType.PUSH_BOOL, OpType.PUSH_PTR]: assert isinstance(op.operand, int), f"This could be a bug in the parsing step {op.operand}" out.write(" mov rax, %d\n" % op.operand) out.write(" push rax\n") elif op.typ == OpType.PUSH_STR: assert isinstance(op.operand, str), "This could be a bug in the parsing step" value = op.operand.encode('utf-8') n = len(value) out.write(" mov rax, %d\n" % n) out.write(" push rax\n") out.write(" push str_%d\n" % len(strs)) strs.append(value) elif op.typ == OpType.PUSH_CSTR: assert isinstance(op.operand, str), "This could be a bug in the parsing step" value = op.operand.encode('utf-8') + b'\0' out.write(" push str_%d\n" % len(strs)) strs.append(value) elif op.typ == OpType.PUSH_MEM: assert isinstance(op.operand, MemAddr), "This could be a bug in the parsing step" out.write(" mov rax, mem\n") out.write(" add rax, %d\n" % op.operand) out.write(" push rax\n") elif op.typ == OpType.PUSH_LOCAL_MEM: assert isinstance(op.operand, MemAddr) out.write(" mov rax, [ret_stack_rsp]\n"); out.write(" add rax, %d\n" % op.operand) out.write(" push rax\n") elif op.typ in [OpType.IF, OpType.IFSTAR]: out.write(" pop rax\n") out.write(" test rax, rax\n") assert isinstance(op.operand, OpAddr), f"This could be a bug in the parsing step {op.operand}" out.write(" jz addr_%d\n" % op.operand) elif op.typ == OpType.WHILE: pass elif op.typ == OpType.ELSE: assert isinstance(op.operand, OpAddr), "This could be a bug in the parsing step" out.write(" jmp addr_%d\n" % op.operand) elif op.typ == OpType.END: assert isinstance(op.operand, int), "This could be a bug in the parsing step" out.write(" jmp addr_%d\n" % op.operand) elif op.typ == OpType.DO: out.write(" pop rax\n") out.write(" test rax, rax\n") assert isinstance(op.operand, int), "This could be a bug in the parsing step" out.write(" jz addr_%d\n" % op.operand) elif op.typ == OpType.SKIP_PROC: assert isinstance(op.operand, OpAddr), f"This could be a bug in the parsing step: {op.operand}" out.write(" jmp addr_%d\n" % op.operand) elif op.typ == OpType.PREP_PROC: assert isinstance(op.operand, int) out.write(" sub rsp, %d\n" % op.operand) out.write(" mov [ret_stack_rsp], rsp\n") out.write(" mov rsp, rax\n") elif op.typ == OpType.CALL: assert isinstance(op.operand, OpAddr), f"This could be a bug in the parsing step: {op.operand}" out.write(" mov rax, rsp\n") out.write(" mov rsp, [ret_stack_rsp]\n") out.write(" call addr_%d\n" % op.operand) out.write(" mov [ret_stack_rsp], rsp\n") out.write(" mov rsp, rax\n") elif op.typ == OpType.RET: assert isinstance(op.operand, int) out.write(" mov rax, rsp\n") out.write(" mov rsp, [ret_stack_rsp]\n") out.write(" add rsp, %d\n" % op.operand) out.write(" ret\n") elif op.typ == OpType.INTRINSIC: assert len(Intrinsic) == 45, "Exhaustive intrinsic handling in generate_nasm_linux_x86_64()" if op.operand == Intrinsic.PLUS: out.write(" pop rax\n") out.write(" pop rbx\n") out.write(" add rax, rbx\n") out.write(" push rax\n") elif op.operand == Intrinsic.MINUS: out.write(" pop rax\n") out.write(" pop rbx\n") out.write(" sub rbx, rax\n") out.write(" push rbx\n") elif op.operand == Intrinsic.MUL: out.write(" pop rax\n") out.write(" pop rbx\n") out.write(" mul rbx\n") out.write(" push rax\n") elif op.operand == Intrinsic.MAX: out.write(" pop rax\n") out.write(" pop rbx\n") out.write(" cmp rbx, rax\n") out.write(" cmovge rax, rbx\n") out.write(" push rax\n") elif op.operand == Intrinsic.DIVMOD: out.write(" xor rdx, rdx\n") out.write(" pop rbx\n") out.write(" pop rax\n") out.write(" div rbx\n") out.write(" push rax\n"); out.write(" push rdx\n"); elif op.operand == Intrinsic.SHR: out.write(" pop rcx\n") out.write(" pop rbx\n") out.write(" shr rbx, cl\n") out.write(" push rbx\n") elif op.operand == Intrinsic.SHL: out.write(" pop rcx\n") out.write(" pop rbx\n") out.write(" shl rbx, cl\n") out.write(" push rbx\n") elif op.operand == Intrinsic.OR: out.write(" pop rax\n") out.write(" pop rbx\n") out.write(" or rbx, rax\n") out.write(" push rbx\n") elif op.operand == Intrinsic.AND: out.write(" pop rax\n") out.write(" pop rbx\n") out.write(" and rbx, rax\n") out.write(" push rbx\n") elif op.operand == Intrinsic.NOT: out.write(" pop rax\n") out.write(" not rax\n") out.write(" push rax\n") elif op.operand == Intrinsic.PRINT: out.write(" pop rdi\n") out.write(" call print\n") elif op.operand == Intrinsic.EQ: out.write(" mov rcx, 0\n"); out.write(" mov rdx, 1\n"); out.write(" pop rax\n"); out.write(" pop rbx\n"); out.write(" cmp rax, rbx\n"); out.write(" cmove rcx, rdx\n"); out.write(" push rcx\n") elif op.operand == Intrinsic.GT: out.write(" mov rcx, 0\n"); out.write(" mov rdx, 1\n"); out.write(" pop rbx\n"); out.write(" pop rax\n"); out.write(" cmp rax, rbx\n"); out.write(" cmovg rcx, rdx\n"); out.write(" push rcx\n") elif op.operand == Intrinsic.LT: out.write(" mov rcx, 0\n"); out.write(" mov rdx, 1\n"); out.write(" pop rbx\n"); out.write(" pop rax\n"); out.write(" cmp rax, rbx\n"); out.write(" cmovl rcx, rdx\n"); out.write(" push rcx\n") elif op.operand == Intrinsic.GE: out.write(" mov rcx, 0\n"); out.write(" mov rdx, 1\n"); out.write(" pop rbx\n"); out.write(" pop rax\n"); out.write(" cmp rax, rbx\n"); out.write(" cmovge rcx, rdx\n"); out.write(" push rcx\n") elif op.operand == Intrinsic.LE: out.write(" mov rcx, 0\n"); out.write(" mov rdx, 1\n"); out.write(" pop rbx\n"); out.write(" pop rax\n"); out.write(" cmp rax, rbx\n"); out.write(" cmovle rcx, rdx\n"); out.write(" push rcx\n") elif op.operand == Intrinsic.NE: out.write(" mov rcx, 0\n") out.write(" mov rdx, 1\n") out.write(" pop rbx\n") out.write(" pop rax\n") out.write(" cmp rax, rbx\n") out.write(" cmovne rcx, rdx\n") out.write(" push rcx\n") elif op.operand == Intrinsic.DUP: out.write(" pop rax\n") out.write(" push rax\n") out.write(" push rax\n") elif op.operand == Intrinsic.SWAP: out.write(" pop rax\n") out.write(" pop rbx\n") out.write(" push rax\n") out.write(" push rbx\n") elif op.operand == Intrinsic.DROP: out.write(" pop rax\n") elif op.operand == Intrinsic.OVER: out.write(" pop rax\n") out.write(" pop rbx\n") out.write(" push rbx\n") out.write(" push rax\n") out.write(" push rbx\n") elif op.operand == Intrinsic.ROT: out.write(" pop rax\n") out.write(" pop rbx\n") out.write(" pop rcx\n") out.write(" push rbx\n") out.write(" push rax\n") out.write(" push rcx\n") elif op.operand == Intrinsic.LOAD8: out.write(" pop rax\n") out.write(" xor rbx, rbx\n") out.write(" mov bl, [rax]\n") out.write(" push rbx\n") elif op.operand == Intrinsic.STORE8: out.write(" pop rax\n"); out.write(" pop rbx\n"); out.write(" mov [rax], bl\n"); elif op.operand == Intrinsic.LOAD16: out.write(" pop rax\n") out.write(" xor rbx, rbx\n") out.write(" mov bx, [rax]\n") out.write(" push rbx\n") elif op.operand == Intrinsic.STORE16: out.write(" pop rax\n"); out.write(" pop rbx\n"); out.write(" mov [rax], bx\n"); elif op.operand == Intrinsic.LOAD32: out.write(" pop rax\n") out.write(" xor rbx, rbx\n") out.write(" mov ebx, [rax]\n") out.write(" push rbx\n") elif op.operand == Intrinsic.STORE32: out.write(" pop rax\n"); out.write(" pop rbx\n"); out.write(" mov [rax], ebx\n"); elif op.operand == Intrinsic.LOAD64: out.write(" pop rax\n") out.write(" xor rbx, rbx\n") out.write(" mov rbx, [rax]\n") out.write(" push rbx\n") elif op.operand == Intrinsic.STORE64: out.write(" pop rax\n"); out.write(" pop rbx\n"); out.write(" mov [rax], rbx\n"); elif op.operand == Intrinsic.ARGC: out.write(" mov rax, [args_ptr]\n") out.write(" mov rax, [rax]\n") out.write(" push rax\n") elif op.operand == Intrinsic.ARGV: out.write(" mov rax, [args_ptr]\n") out.write(" add rax, 8\n") out.write(" push rax\n") elif op.operand == Intrinsic.ENVP: out.write(" mov rax, [args_ptr]\n") out.write(" mov rax, [rax]\n") out.write(" add rax, 2\n") out.write(" shl rax, 3\n") out.write(" mov rbx, [args_ptr]\n") out.write(" add rbx, rax\n") out.write(" push rbx\n") elif op.operand == Intrinsic.HERE: value = ("%s:%d:%d" % op.token.loc).encode('utf-8') n = len(value) out.write(" mov rax, %d\n" % n) out.write(" push rax\n") out.write(" push str_%d\n" % len(strs)) strs.append(value) elif op.operand in [Intrinsic.CAST_PTR, Intrinsic.CAST_INT, Intrinsic.CAST_BOOL]: pass elif op.operand == Intrinsic.SYSCALL0: out.write(" pop rax\n") out.write(" syscall\n") out.write(" push rax\n") elif op.operand == Intrinsic.SYSCALL1: out.write(" pop rax\n") out.write(" pop rdi\n") out.write(" syscall\n") out.write(" push rax\n") elif op.operand == Intrinsic.SYSCALL2: out.write(" pop rax\n"); out.write(" pop rdi\n"); out.write(" pop rsi\n"); out.write(" syscall\n"); out.write(" push rax\n") elif op.operand == Intrinsic.SYSCALL3: out.write(" pop rax\n") out.write(" pop rdi\n") out.write(" pop rsi\n") out.write(" pop rdx\n") out.write(" syscall\n") out.write(" push rax\n") elif op.operand == Intrinsic.SYSCALL4: out.write(" pop rax\n") out.write(" pop rdi\n") out.write(" pop rsi\n") out.write(" pop rdx\n") out.write(" pop r10\n") out.write(" syscall\n") out.write(" push rax\n") elif op.operand == Intrinsic.SYSCALL5: out.write(" pop rax\n") out.write(" pop rdi\n") out.write(" pop rsi\n") out.write(" pop rdx\n") out.write(" pop r10\n") out.write(" pop r8\n") out.write(" syscall\n") out.write(" push rax\n") elif op.operand == Intrinsic.SYSCALL6: out.write(" pop rax\n") out.write(" pop rdi\n") out.write(" pop rsi\n") out.write(" pop rdx\n") out.write(" pop r10\n") out.write(" pop r8\n") out.write(" pop r9\n") out.write(" syscall\n") out.write(" push rax\n") elif op.operand == Intrinsic.STOP: pass else: assert False, "unreachable" else: assert False, "unreachable" out.write("addr_%d:\n" % len(program.ops)) out.write(" mov rax, 60\n") out.write(" mov rdi, 0\n") out.write(" syscall\n") out.write("segment .data\n") for index, s in enumerate(strs): out.write("str_%d: db %s\n" % (index, ','.join(map(str, list(s))))) out.write("segment .bss\n") out.write("args_ptr: resq 1\n") out.write("ret_stack_rsp: resq 1\n") out.write("ret_stack: resb %d\n" % X86_64_RET_STACK_CAP) out.write("ret_stack_end:\n") out.write("mem: resb %d\n" % program.memory_capacity) assert len(Keyword) == 15, f"Exhaustive KEYWORD_NAMES definition. {len(Keyword)}" KEYWORD_BY_NAMES: Dict[str, Keyword] = { 'if': Keyword.IF, 'if*': Keyword.IFSTAR, 'else': Keyword.ELSE, 'while': Keyword.WHILE, 'do': Keyword.DO, 'include': Keyword.INCLUDE, 'memory': Keyword.MEMORY, 'proc': Keyword.PROC, 'end': Keyword.END, 'const': Keyword.CONST, 'offset': Keyword.OFFSET, 'reset': Keyword.RESET, 'assert': Keyword.ASSERT, 'in': Keyword.IN, '--': Keyword.BIKESHEDDER, } KEYWORD_NAMES: Dict[Keyword, str] = {v: k for k, v in KEYWORD_BY_NAMES.items()} assert len(Intrinsic) == 45, "Exhaustive INTRINSIC_BY_NAMES definition" INTRINSIC_BY_NAMES: Dict[str, Intrinsic] = { '+': Intrinsic.PLUS, '-': Intrinsic.MINUS, '*': Intrinsic.MUL, 'divmod': Intrinsic.DIVMOD, 'max': Intrinsic.MAX, 'print': Intrinsic.PRINT, '=': Intrinsic.EQ, '>': Intrinsic.GT, '<': Intrinsic.LT, '>=': Intrinsic.GE, '<=': Intrinsic.LE, '!=': Intrinsic.NE, 'shr': Intrinsic.SHR, 'shl': Intrinsic.SHL, 'or': Intrinsic.OR, 'and': Intrinsic.AND, 'not': Intrinsic.NOT, 'dup': Intrinsic.DUP, 'swap': Intrinsic.SWAP, 'drop': Intrinsic.DROP, 'over': Intrinsic.OVER, 'rot': Intrinsic.ROT, '!8': Intrinsic.STORE8, '@8': Intrinsic.LOAD8, '!16': Intrinsic.STORE16, '@16': Intrinsic.LOAD16, '!32': Intrinsic.STORE32, '@32': Intrinsic.LOAD32, '!64': Intrinsic.STORE64, '@64': Intrinsic.LOAD64, 'cast(ptr)': Intrinsic.CAST_PTR, 'cast(int)': Intrinsic.CAST_INT, 'cast(bool)': Intrinsic.CAST_BOOL, 'argc': Intrinsic.ARGC, 'argv': Intrinsic.ARGV, 'envp': Intrinsic.ENVP, 'here': Intrinsic.HERE, 'syscall0': Intrinsic.SYSCALL0, 'syscall1': Intrinsic.SYSCALL1, 'syscall2': Intrinsic.SYSCALL2, 'syscall3': Intrinsic.SYSCALL3, 'syscall4': Intrinsic.SYSCALL4, 'syscall5': Intrinsic.SYSCALL5, 'syscall6': Intrinsic.SYSCALL6, '???': Intrinsic.STOP, } INTRINSIC_NAMES: Dict[Intrinsic, str] = {v: k for k, v in INTRINSIC_BY_NAMES.items()} class HumanNumber(Enum): Singular=auto() Plural=auto() def human(obj: TokenType, number: HumanNumber = HumanNumber.Singular) -> str: '''Human readable representation of an object that can be used in error messages''' assert len(HumanNumber) == 2, "Exhaustive handling of number category in human()" if number == HumanNumber.Singular: assert len(TokenType) == 6, "Exhaustive handling of token types in human()" if obj == TokenType.WORD: return "a word" elif obj == TokenType.INT: return "an integer" elif obj == TokenType.STR: return "a string" elif obj == TokenType.CSTR: return "a C-style string" elif obj == TokenType.CHAR: return "a character" elif obj == TokenType.KEYWORD: return "a keyword" else: assert False, "unreachable" elif number == HumanNumber.Plural: assert len(TokenType) == 6, "Exhaustive handling of token types in human()" if obj == TokenType.WORD: return "words" elif obj == TokenType.INT: return "integers" elif obj == TokenType.STR: return "strings" elif obj == TokenType.CSTR: return "C-style strings" elif obj == TokenType.CHAR: return "characters" elif obj == TokenType.KEYWORD: return "keywords" else: assert False, "unreachable" else: assert False, "unreachable" @dataclass class Memory: offset: MemAddr loc: Loc @dataclass class Proc: addr: OpAddr loc: Loc contract: Contract local_memories: Dict[str, Memory] local_memory_capacity: int @dataclass class Const: value: int typ: DataType loc: Loc @dataclass class ParseContext: stack: List[OpAddr] = field(default_factory=list) ops: List[Op] = field(default_factory=list) memories: Dict[str, Memory] = field(default_factory=dict) memory_capacity: int = 0 procs: Dict[str, Proc] = field(default_factory=dict) consts: Dict[str, Const] = field(default_factory=dict) current_proc: Optional[Proc] = None iota: int = 0 # TODO: consider getting rid of the ip variable in ParseContext ip: OpAddr = 0 def check_name_redefinition(ctx: ParseContext, name: str, loc: Loc): if ctx.current_proc is None: if name in ctx.memories: compiler_error(loc, "redefinition of a memory region `%s`" % name) compiler_note(ctx.memories[name].loc, "the original definition is located here") exit(1) else: if name in ctx.current_proc.local_memories: compiler_error(loc, "redefinition of a local memory region `%s`" % name) compiler_note(ctx.current_proc.local_memories[name].loc, "the original definition is located here") exit(1) if name in INTRINSIC_BY_NAMES: compiler_error(loc, "redefinition of an intrinsic word `%s`" % (name, )) exit(1) if name in ctx.procs: compiler_error(loc, "redefinition of a proc `%s`" % (name, )) compiler_note(ctx.procs[name].loc, "the original definition is located here") exit(1) if name in ctx.consts: compiler_error(loc, "redefinition of a constant `%s`" % (name, )) compiler_note(ctx.consts[name].loc, "the original definition is located here") exit(1) # TODO: use type contracts for eval_const_value ffs def eval_const_value(ctx: ParseContext, rtokens: List[Token]) -> Tuple[int, DataType]: stack: List[Tuple[int, DataType]] = [] while len(rtokens) > 0: token = rtokens.pop() if token.typ == TokenType.KEYWORD: assert isinstance(token.value, Keyword) if token.value == Keyword.END: break elif token.value == Keyword.OFFSET: if len(stack) < 1: compiler_error(token.loc, f"not enough arguments for `{KEYWORD_NAMES[token.value]}` keyword") exit(1) offset, typ = stack.pop() if typ is not DataType.INT: compiler_error(token.loc, f"`{KEYWORD_NAMES[token.value]}` expects type {DataType.INT} but got {typ}") exit(1) stack.append((ctx.iota, DataType.INT)) ctx.iota += offset elif token.value == Keyword.RESET: stack.append((ctx.iota, DataType.INT)) ctx.iota = 0 else: compiler_error(token.loc, f"unsupported keyword `{KEYWORD_NAMES[token.value]}` in compile time evaluation") exit(1) elif token.typ == TokenType.INT: assert isinstance(token.value, int) stack.append((token.value, DataType.INT)) elif token.typ == TokenType.WORD: assert isinstance(token.value, str) if token.value == INTRINSIC_NAMES[Intrinsic.PLUS]: if len(stack) < 2: compiler_error(token.loc, f"not enough arguments for `{token.value}` intrinsic") exit(1) a, a_type = stack.pop() b, b_type = stack.pop() if a_type == DataType.INT and b_type == DataType.INT: stack.append((a + b, DataType.INT)) elif a_type == DataType.INT and b_type == DataType.PTR: stack.append((a + b, DataType.PTR)) elif a_type == DataType.PTR and b_type == DataType.INT: stack.append((a + b, DataType.PTR)) else: compiler_error(token.loc, f"Invalid argument types for `{token.value}` intrinsic: {(a_type, b_type)}") compiler_note(token.loc, f"Expected:") compiler_note(token.loc, f" {(DataType.INT, DataType.INT)}") compiler_note(token.loc, f" {(DataType.INT, DataType.PTR)}") compiler_note(token.loc, f" {(DataType.PTR, DataType.INT)}") exit(1) elif token.value == INTRINSIC_NAMES[Intrinsic.MINUS]: if len(stack) < 2: compiler_error(token.loc, f"not enough arguments for `{token.value}` intrinsic") exit(1) b, b_type = stack.pop() a, a_type = stack.pop() if a_type == DataType.INT and b_type == DataType.INT: stack.append((a - b, DataType.INT)) elif a_type == DataType.PTR and b_type == DataType.PTR: stack.append((a - b, DataType.INT)) elif a_type == DataType.PTR and b_type == DataType.INT: stack.append((a - b, DataType.PTR)) else: compiler_error(token.loc, f"Invalid argument types for `{token.value}` intrinsic: {(a_type, b_type)}") compiler_note(token.loc, f"Expected:") compiler_note(token.loc, f" {(DataType.INT, DataType.INT)}") compiler_note(token.loc, f" {(DataType.PTR, DataType.PTR)}") compiler_note(token.loc, f" {(DataType.PTR, DataType.INT)}") exit(1) elif token.value == INTRINSIC_NAMES[Intrinsic.MUL]: if len(stack) < 2: compiler_error(token.loc, f"not enough arguments for `{token.value}` intrinsic") exit(1) a, a_type = stack.pop() b, b_type = stack.pop() if a_type == b_type and a_type == DataType.INT: stack.append((a * b, DataType.INT)) else: compiler_error(token.loc, f"Invalid argument types for `{token.value}` intrinsic: {(a_type, b_type)}") compiler_note(token.loc, f"Expected:") compiler_note(token.loc, f" {(DataType.INT, DataType.INT)}") exit(1) elif token.value == INTRINSIC_NAMES[Intrinsic.DIVMOD]: if len(stack) < 2: compiler_error(token.loc, f"not enough arguments for `{token.value}` intrinsic") exit(1) a, a_type = stack.pop() b, b_type = stack.pop() if a_type == b_type and a_type == DataType.INT: stack.append((b//a, DataType.INT)) stack.append((b%a, DataType.INT)) else: compiler_error(token.loc, f"Invalid argument types for `{token.value}` intrinsic: {(a_type, b_type)}") compiler_note(token.loc, f"Expected:") compiler_note(token.loc, f" {(DataType.INT, DataType.INT)}") exit(1) elif token.value == INTRINSIC_NAMES[Intrinsic.DROP]: if len(stack) < 1: compiler_error(token.loc, f"not enough arguments for `{token.value}` intrinsic") exit(1) stack.pop() elif token.value == INTRINSIC_NAMES[Intrinsic.CAST_BOOL]: if len(stack) < 1: compiler_error(token.loc, f"not enough arguments for `{token.value}` intrinsic") exit(1) value, typ = stack.pop() stack.append((value, DataType.BOOL)) elif token.value == INTRINSIC_NAMES[Intrinsic.CAST_INT]: if len(stack) < 1: compiler_error(token.loc, f"not enough arguments for `{token.value}` intrinsic") exit(1) value, typ = stack.pop() stack.append((value, DataType.INT)) elif token.value == INTRINSIC_NAMES[Intrinsic.CAST_PTR]: if len(stack) < 1: compiler_error(token.loc, f"not enough arguments for `{token.value}` intrinsic") exit(1) value, typ = stack.pop() stack.append((value, DataType.PTR)) elif token.value == INTRINSIC_NAMES[Intrinsic.EQ]: if len(stack) < 2: compiler_error(token.loc, f"not enough arguments for `{token.value}` intrinsic") exit(1) a, a_type = stack.pop() b, b_type = stack.pop() if a_type != b_type: compiler_error(token.loc, f"intrinsic `{token.value}` expects the arguments to have the same type. The actual types are") compiler_note(token.loc, f" {(a_type, b_type)}") exit(1) stack.append((int(a == b), DataType.BOOL)) elif token.value == INTRINSIC_NAMES[Intrinsic.MAX]: if len(stack) < 2: compiler_error(token.loc, f"not enough arguments for `{token.value}` intrinsic") exit(1) a, a_type = stack.pop() b, b_type = stack.pop() if a_type == b_type and a_type == DataType.INT: stack.append((max(a, b), DataType.INT)) else: compiler_error(token.loc, f"Invalid argument types for `{token.value}` intrinsic: {(a_type, b_type)}") compiler_note(token.loc, f"Expected:") compiler_note(token.loc, f" {(DataType.INT, DataType.INT)}") exit(1) elif token.value in ctx.consts: const = ctx.consts[token.value] stack.append((const.value, const.typ)) else: compiler_error(token.loc, f"unsupported word `{token.value}` in compile time evaluation") exit(1) else: compiler_error(token.loc, f"{human(token.typ, HumanNumber.Plural)} are not supported in compile time evaluation") exit(1) if len(stack) != 1: compiler_error(token.loc, "The result of expression in compile time evaluation must be a single number") exit(1) return stack.pop() def parse_contract_list(rtokens: List[Token], stoppers: List[Keyword]) -> Tuple[List[Tuple[Union[DataType, str], Loc]], Keyword]: args: List[Tuple[Union[DataType, str], Loc]] = [] while len(rtokens) > 0: token = rtokens.pop() if token.typ == TokenType.WORD: assert isinstance(token.value, str) if token.value in DATATYPE_BY_NAME: args.append((DATATYPE_BY_NAME[token.value], token.loc)) else: compiler_error(token.loc, f"Unknown data type {token.value}") exit(1) elif token.typ == TokenType.KEYWORD: assert isinstance(token.value, Keyword) if token.value in stoppers: return (args, token.value) else: compiler_error(token.loc, f"Unexpected keyword {KEYWORD_NAMES[token.value]}") exit(1) elif token.typ == TokenType.STR: assert isinstance(token.value, str) args.append((token.value, token.loc)) else: compiler_error(token.loc, f"{human(token.typ, HumanNumber.Plural)} are not allowed in procedure definition.") exit(1) compiler_error(token.loc, f"Unexpected end of file. Expected keywords: ") for keyword in stoppers: compiler_note(token.loc, f" {KEYWORD_NAMES[keyword]}") exit(1) def parse_proc_contract(rtokens: List[Token]) -> Contract: contract = Contract(ins=[], outs=[]) contract.ins, stopper = parse_contract_list(rtokens, [Keyword.BIKESHEDDER, Keyword.IN]) if stopper == Keyword.IN: return contract contract.outs, stopper = parse_contract_list(rtokens, [Keyword.IN]) assert stopper == Keyword.IN return contract def parse_program_from_tokens(ctx: ParseContext, tokens: List[Token], include_paths: List[str], included: int): rtokens: List[Token] = list(reversed(tokens)) while len(rtokens) > 0: token = rtokens.pop() assert len(TokenType) == 6, "Exhaustive token handling in parse_program_from_tokens" if token.typ == TokenType.WORD: assert isinstance(token.value, str), "This could be a bug in the lexer" if token.value in INTRINSIC_BY_NAMES: ctx.ops.append(Op(typ=OpType.INTRINSIC, token=token, operand=INTRINSIC_BY_NAMES[token.value])) ctx.ip += 1 elif ctx.current_proc is not None and token.value in ctx.current_proc.local_memories: ctx.ops.append(Op(typ=OpType.PUSH_LOCAL_MEM, token=token, operand=ctx.current_proc.local_memories[token.value].offset)) ctx.ip += 1 elif token.value in ctx.memories: ctx.ops.append(Op(typ=OpType.PUSH_MEM, token=token, operand=ctx.memories[token.value].offset)) ctx.ip += 1 elif token.value in ctx.procs: ctx.ops.append(Op(typ=OpType.CALL, token=token, operand=ctx.procs[token.value].addr)) ctx.ip += 1 elif token.value in ctx.consts: const = ctx.consts[token.value] if const.typ == DataType.INT: ctx.ops.append(Op(typ=OpType.PUSH_INT, token=token, operand=const.value)) elif const.typ == DataType.BOOL: ctx.ops.append(Op(typ=OpType.PUSH_BOOL, token=token, operand=const.value)) elif const.typ == DataType.PTR: ctx.ops.append(Op(typ=OpType.PUSH_PTR, token=token, operand=const.value)) else: assert False, "unreachable" ctx.ip += 1 else: compiler_error(token.loc, "unknown word `%s`" % token.value) exit(1) elif token.typ == TokenType.INT: assert isinstance(token.value, int), "This could be a bug in the lexer" ctx.ops.append(Op(typ=OpType.PUSH_INT, operand=token.value, token=token)) ctx.ip += 1 elif token.typ == TokenType.STR: assert isinstance(token.value, str), "This could be a bug in the lexer" ctx.ops.append(Op(typ=OpType.PUSH_STR, operand=token.value, token=token)); ctx.ip += 1 elif token.typ == TokenType.CSTR: assert isinstance(token.value, str), "This could be a bug in the lexer" ctx.ops.append(Op(typ=OpType.PUSH_CSTR, operand=token.value, token=token)); ctx.ip += 1 elif token.typ == TokenType.CHAR: assert isinstance(token.value, int) ctx.ops.append(Op(typ=OpType.PUSH_INT, operand=token.value, token=token)); ctx.ip += 1 elif token.typ == TokenType.KEYWORD: assert len(Keyword) == 15, "Exhaustive keywords handling in parse_program_from_tokens()" if token.value == Keyword.IF: ctx.ops.append(Op(typ=OpType.IF, token=token)) ctx.stack.append(ctx.ip) ctx.ip += 1 elif token.value == Keyword.IFSTAR: if len(ctx.stack) == 0: compiler_error(token.loc, '`if*` can only come after `else`') exit(1) else_ip = ctx.stack[-1] if ctx.ops[else_ip].typ != OpType.ELSE: compiler_error(ctx.ops[else_ip].token.loc, '`if*` can only come after `else`') exit(1) ctx.ops.append(Op(typ=OpType.IFSTAR, token=token)) ctx.stack.append(ctx.ip) ctx.ip += 1 elif token.value == Keyword.ELSE: if len(ctx.stack) == 0: compiler_error(token.loc, '`else` can only come after `if` or `if*`') exit(1) if_ip = ctx.stack.pop() if ctx.ops[if_ip].typ == OpType.IF: ctx.ops[if_ip].operand = ctx.ip + 1 ctx.stack.append(ctx.ip) ctx.ops.append(Op(typ=OpType.ELSE, token=token)) ctx.ip += 1 elif ctx.ops[if_ip].typ == OpType.IFSTAR: else_before_ifstar_ip = None if len(ctx.stack) == 0 else ctx.stack.pop() assert else_before_ifstar_ip is not None and ctx.ops[else_before_ifstar_ip].typ == OpType.ELSE, "At this point we should've already checked that `if*` comes after `else`. Otherwise this is a compiler bug." ctx.ops[if_ip].operand = ctx.ip + 1 ctx.ops[else_before_ifstar_ip].operand = ctx.ip ctx.stack.append(ctx.ip) ctx.ops.append(Op(typ=OpType.ELSE, token=token)) ctx.ip += 1 else: compiler_error(ctx.ops[if_ip].token.loc, f'`else` can only come after `if` or `if*`') exit(1) elif token.value == Keyword.END: block_ip = ctx.stack.pop() if ctx.ops[block_ip].typ == OpType.ELSE: ctx.ops.append(Op(typ=OpType.END, token=token)) ctx.ops[block_ip].operand = ctx.ip ctx.ops[ctx.ip].operand = ctx.ip + 1 elif ctx.ops[block_ip].typ == OpType.DO: ctx.ops.append(Op(typ=OpType.END, token=token)) assert ctx.ops[block_ip].operand is not None while_ip = ctx.ops[block_ip].operand assert isinstance(while_ip, OpAddr) if ctx.ops[while_ip].typ != OpType.WHILE: compiler_error(ctx.ops[while_ip].token.loc, '`end` can only close `do` blocks that are preceded by `while`') exit(1) ctx.ops[ctx.ip].operand = while_ip ctx.ops[block_ip].operand = ctx.ip + 1 elif ctx.ops[block_ip].typ == OpType.PREP_PROC: assert ctx.current_proc is not None ctx.ops[block_ip].operand = ctx.current_proc.local_memory_capacity block_ip = ctx.stack.pop() assert ctx.ops[block_ip].typ == OpType.SKIP_PROC ctx.ops.append(Op(typ=OpType.RET, token=token, operand=ctx.current_proc.local_memory_capacity)) ctx.ops[block_ip].operand = ctx.ip + 1 ctx.current_proc = None elif ctx.ops[block_ip].typ == OpType.IFSTAR: else_before_ifstar_ip = None if len(ctx.stack) == 0 else ctx.stack.pop() assert else_before_ifstar_ip is not None and ctx.ops[else_before_ifstar_ip].typ == OpType.ELSE, "At this point we should've already checked that `if*` comes after `else`. Otherwise this is a compiler bug." ctx.ops.append(Op(typ=OpType.END, token=token)) ctx.ops[block_ip].operand = ctx.ip ctx.ops[else_before_ifstar_ip].operand = ctx.ip ctx.ops[ctx.ip].operand = ctx.ip + 1 elif ctx.ops[block_ip].typ == OpType.IF: ctx.ops.append(Op(typ=OpType.END, token=token)) ctx.ops[block_ip].operand = ctx.ip ctx.ops[ctx.ip].operand = ctx.ip + 1 else: compiler_error(ctx.ops[block_ip].token.loc, '`end` can only close `if`, `else`, `do`, or `proc` blocks for now') exit(1) ctx.ip += 1 elif token.value == Keyword.WHILE: ctx.ops.append(Op(typ=OpType.WHILE, token=token)) ctx.stack.append(ctx.ip) ctx.ip += 1 elif token.value == Keyword.DO: ctx.ops.append(Op(typ=OpType.DO, token=token)) if len(ctx.stack) == 0: compiler_error(token.loc, "`do` is not preceded by `while`") exit(1) while_ip = ctx.stack.pop() if ctx.ops[while_ip].typ != OpType.WHILE: compiler_error(token.loc, "`do` is not preceded by `while`") exit(1) ctx.ops[ctx.ip].operand = while_ip ctx.stack.append(ctx.ip) ctx.ip += 1 elif token.value == Keyword.INCLUDE: if len(rtokens) == 0: compiler_error(token.loc, "expected path to the include file but found nothing") exit(1) token = rtokens.pop() if token.typ != TokenType.STR: compiler_error(token.loc, "expected path to the include file to be %s but found %s" % (human(TokenType.STR), human(token.typ))) exit(1) assert isinstance(token.value, str), "This is probably a bug in the lexer" if included >= INCLUDE_LIMIT: compiler_error(token.loc, f"Include limit is exceeded. A file was included {included} times.") exit(1) file_included = False try: parse_program_from_file(ctx, token.value, include_paths, included + 1) file_included = True except FileNotFoundError: for include_path in include_paths: try: parse_program_from_file(ctx, path.join(include_path, token.value), include_paths, included + 1) file_included = True break except FileNotFoundError: continue if not file_included: compiler_error(token.loc, "file `%s` not found" % token.value) exit(1) elif token.value == Keyword.ASSERT: if len(rtokens) == 0: compiler_error(token.loc, "expected assert messsage but found nothing") exit(1) token = rtokens.pop() if token.typ != TokenType.STR: compiler_error(token.loc, "expected assert message to be %s but found %s" % (human(TokenType.STR), human(token.typ))) exit(1) assert isinstance(token.value, str), "This is probably a bug in the lexer" assert_message = token.value assert_value, assert_typ = eval_const_value(ctx, rtokens) if assert_typ != DataType.BOOL: compiler_error(token.loc, "assertion expects the expression to be of type `bool`") exit(1) if assert_value == 0: compiler_error(token.loc, f"Static Assertion Failed: {assert_message}"); exit(1) elif token.value == Keyword.CONST: if len(rtokens) == 0: compiler_error(token.loc, "expected const name but found nothing") exit(1) token = rtokens.pop() if token.typ != TokenType.WORD: compiler_error(token.loc, "expected const name to be %s but found %s" % (human(TokenType.WORD), human(token.typ))) exit(1) assert isinstance(token.value, str), "This is probably a bug in the lexer" const_name = token.value const_loc = token.loc check_name_redefinition(ctx, token.value, token.loc) const_value, const_typ = eval_const_value(ctx, rtokens) ctx.consts[const_name] = Const(value=const_value, loc=const_loc, typ=const_typ) elif token.value == Keyword.MEMORY: if len(rtokens) == 0: compiler_error(token.loc, "expected memory name but found nothing") exit(1) token = rtokens.pop() if token.typ != TokenType.WORD: compiler_error(token.loc, "expected memory name to be %s but found %s" % (human(TokenType.WORD), human(token.typ))) exit(1) assert isinstance(token.value, str), "This is probably a bug in the lexer" memory_name = token.value memory_loc = token.loc memory_size, memory_size_type = eval_const_value(ctx, rtokens) if memory_size_type != DataType.INT: compiler_error(token.loc, f"Memory size must be of type {DataType.INT} but it is of type {memory_size_type}") exit(1) check_name_redefinition(ctx, token.value, token.loc) if ctx.current_proc is None: ctx.memories[memory_name] = Memory(offset=ctx.memory_capacity, loc=memory_loc) ctx.memory_capacity += memory_size else: # TODO: local memory regions can shadow the global ones # Is that something we actually want? ctx.current_proc.local_memories[memory_name] = Memory(offset=ctx.current_proc.local_memory_capacity, loc=memory_loc) ctx.current_proc.local_memory_capacity += memory_size elif token.value == Keyword.PROC: if ctx.current_proc is None: ctx.ops.append(Op(typ=OpType.SKIP_PROC, token=token)) ctx.stack.append(ctx.ip) ctx.ip += 1 proc_addr = ctx.ip ctx.ops.append(Op(typ=OpType.PREP_PROC, token=token)) ctx.stack.append(ctx.ip) ctx.ip += 1 if len(rtokens) == 0: compiler_error(token.loc, "expected procedure name but found nothing") exit(1) token = rtokens.pop() if token.typ != TokenType.WORD: compiler_error(token.loc, "expected procedure name to be %s but found %s" % (human(TokenType.WORD), human(token.typ))) exit(1) assert isinstance(token.value, str), "This is probably a bug in the lexer" proc_loc = token.loc proc_name = token.value check_name_redefinition(ctx, token.value, token.loc) proc_contract = parse_proc_contract(rtokens) ctx.procs[proc_name] = Proc(addr=proc_addr, loc=token.loc, local_memories={}, local_memory_capacity=0, contract=proc_contract) ctx.current_proc = ctx.procs[proc_name] else: # TODO: forbid constant definition inside of proc compiler_error(token.loc, "defining procedures inside of procedures is not allowed") compiler_note(ctx.current_proc.loc, "the current procedure starts here") exit(1) elif token.value in [Keyword.OFFSET, Keyword.RESET]: compiler_error(token.loc, f"keyword `{token.text}` is supported only in compile time evaluation context") exit(1) elif token.value in [Keyword.IN, Keyword.BIKESHEDDER]: compiler_error(token.loc, f"Unexpected keyword `{token.text}`") exit(1) else: assert False, 'unreachable'; else: assert False, 'unreachable' if len(ctx.stack) > 0: compiler_error(ctx.ops[ctx.stack.pop()].token.loc, 'unclosed block') exit(1) def find_col(line: str, start: int, predicate: Callable[[str], bool]) -> int: while start < len(line) and not predicate(line[start]): start += 1 return start def unescape_string(s: str) -> str: # NOTE: unicode_escape assumes latin-1 encoding, so we kinda have # to do this weird round trip return s.encode('utf-8').decode('unicode_escape').encode('latin-1').decode('utf-8') def find_string_literal_end(line: str, start: int, quote: str = '"') -> int: while start < len(line): if line[start] == '\\': start += 2 elif line[start] == quote: break else: start += 1 return start def lex_lines(file_path: str, lines: List[str]) -> Generator[Token, None, None]: assert len(TokenType) == 6, 'Exhaustive handling of token types in lex_lines' row = 0 str_literal_buf = "" while row < len(lines): line = lines[row] col = find_col(line, 0, lambda x: not x.isspace()) col_end = 0 while col < len(line): loc = (file_path, row + 1, col + 1) if line[col] == '"': while row < len(lines): start = col if str_literal_buf == "": start += 1 else: line = lines[row] col_end = find_string_literal_end(line, start) if col_end >= len(line) or line[col_end] != '"': str_literal_buf += line[start:] row +=1 col = 0 else: str_literal_buf += line[start:col_end] break if row >= len(lines): compiler_error(loc, "unclosed string literal") exit(1) assert line[col_end] == '"' col_end += 1 text_of_token = str_literal_buf str_literal_buf = "" if col_end < len(line) and line[col_end] == 'c': col_end += 1 yield Token(TokenType.CSTR, text_of_token, loc, unescape_string(text_of_token)) else: yield Token(TokenType.STR, text_of_token, loc, unescape_string(text_of_token)) col = find_col(line, col_end, lambda x: not x.isspace()) elif line[col] == "'": col_end = find_string_literal_end(line, col+1, quote="'") if col_end >= len(line) or line[col_end] != "'": compiler_error(loc, "unclosed character literal") exit(1) text_of_token = line[col+1:col_end] char_bytes = unescape_string(text_of_token).encode('utf-8') if len(char_bytes) != 1: compiler_error(loc, "only a single byte is allowed inside of a character literal") exit(1) yield Token(TokenType.CHAR, text_of_token, loc, char_bytes[0]) col = find_col(line, col_end+1, lambda x: not x.isspace()) else: col_end = find_col(line, col, lambda x: x.isspace()) text_of_token = line[col:col_end] try: yield Token(TokenType.INT, text_of_token, loc, int(text_of_token)) except ValueError: if text_of_token in KEYWORD_BY_NAMES: yield Token(TokenType.KEYWORD, text_of_token, loc, KEYWORD_BY_NAMES[text_of_token]) else: # TODO: `69//` is recognized as a single word # And not a number plus a comment if text_of_token.startswith("//"): break yield Token(TokenType.WORD, text_of_token, loc, text_of_token) col = find_col(line, col_end, lambda x: not x.isspace()) row += 1 def lex_file(file_path: str) -> List[Token]: with open(file_path, "r", encoding='utf-8') as f: return [token for token in lex_lines(file_path, f.readlines())] def parse_program_from_file(ctx: ParseContext, file_path: str, include_paths: List[str], included: int = 0): parse_program_from_tokens(ctx, lex_file(file_path), include_paths, included) def cmd_call_echoed(cmd: List[str], silent: bool) -> int: if not silent: print("[CMD] %s" % " ".join(map(shlex.quote, cmd))) return subprocess.call(cmd) # TODO: with a lot of procs the control flow graphs becomes useless even on small programs # Maybe we should eliminate unreachable code or something # TODO: test.py never touches generate_control_flow_graph_as_dot_file # Which leads to constantly forgetting to update the implementation def generate_control_flow_graph_as_dot_file(program: Program, dot_path: str): with open(dot_path, "w") as f: f.write("digraph Program {\n") assert len(OpType) == 16, f"Exhaustive handling of OpType in generate_control_flow_graph_as_dot_file(), {len(OpType)}" for ip in range(len(program.ops)): op = program.ops[ip] if op.typ == OpType.INTRINSIC: assert isinstance(op.operand, Intrinsic) f.write(f" Node_{ip} [label={repr(repr(INTRINSIC_NAMES[op.operand]))}];\n") f.write(f" Node_{ip} -> Node_{ip + 1};\n") elif op.typ == OpType.PUSH_STR: assert isinstance(op.operand, str) f.write(f" Node_{ip} [label={repr(repr(op.operand))}];\n") f.write(f" Node_{ip} -> Node_{ip + 1};\n") elif op.typ == OpType.PUSH_CSTR: assert isinstance(op.operand, str) f.write(f" Node_{ip} [label={repr(repr(op.operand))}];\n") f.write(f" Node_{ip} -> Node_{ip + 1};\n") elif op.typ == OpType.PUSH_INT: assert isinstance(op.operand, int) f.write(f" Node_{ip} [label={op.operand}]\n") f.write(f" Node_{ip} -> Node_{ip + 1};\n") elif op.typ == OpType.PUSH_MEM: assert isinstance(op.operand, int) f.write(f" Node_{ip} [label=\"mem({op.operand})\"]\n") f.write(f" Node_{ip} -> Node_{ip + 1};\n") elif op.typ == OpType.PUSH_LOCAL_MEM: assert isinstance(op.operand, int) f.write(f" Node_{ip} [label=\"local_mem({op.operand})\"]\n") f.write(f" Node_{ip} -> Node_{ip + 1};\n") elif op.typ in [OpType.IF, OpType.IFSTAR]: assert isinstance(op.operand, OpAddr), f"{op.operand}" f.write(f" Node_{ip} [shape=record label=if];\n") f.write(f" Node_{ip} -> Node_{ip + 1} [label=true];\n") f.write(f" Node_{ip} -> Node_{op.operand} [label=false style=dashed];\n") elif op.typ == OpType.WHILE: f.write(f" Node_{ip} [shape=record label=while];\n") f.write(f" Node_{ip} -> Node_{ip + 1};\n") elif op.typ == OpType.DO: assert isinstance(op.operand, OpAddr) f.write(f" Node_{ip} [shape=record label=do];\n") f.write(f" Node_{ip} -> Node_{ip + 1} [label=true];\n") f.write(f" Node_{ip} -> Node_{op.operand} [label=false style=dashed];\n") elif op.typ == OpType.ELSE: assert isinstance(op.operand, OpAddr) f.write(f" Node_{ip} [shape=record label=else];\n") f.write(f" Node_{ip} -> Node_{op.operand};\n") elif op.typ == OpType.END: assert isinstance(op.operand, OpAddr) f.write(f" Node_{ip} [shape=record label=end];\n") f.write(f" Node_{ip} -> Node_{op.operand};\n") elif op.typ == OpType.SKIP_PROC: assert isinstance(op.operand, OpAddr) f.write(f" Node_{ip} [shape=record label=skip_proc];\n") f.write(f" Node_{ip} -> Node_{op.operand};\n") elif op.typ == OpType.PREP_PROC: f.write(f" Node_{ip} [shape=record label=prep_proc];\n") f.write(f" Node_{ip} -> Node_{ip + 1};\n") elif op.typ == OpType.RET: f.write(f" Node_{ip} [shape=record label=ret];\n") elif op.typ == OpType.CALL: assert isinstance(op.operand, OpAddr) f.write(f" Node_{ip} [shape=record label=call];\n") f.write(f" Node_{ip} -> Node_{op.operand};\n") f.write(f" Node_{ip} -> Node_{ip + 1};\n") else: assert False, f"unimplemented operation {op.typ}" f.write(f" Node_{len(program.ops)} [label=halt];\n") f.write("}\n") def usage(compiler_name: str): print("Usage: %s [OPTIONS] <SUBCOMMAND> [ARGS]" % compiler_name) print(" OPTIONS:") print(" -debug Enable debug mode.") print(" -I <path> Add the path to the include search list") print(" -unsafe Disable type checking.") print(" SUBCOMMAND:") print(" sim <file> Simulate the program") print(" com [OPTIONS] <file> Compile the program") print(" OPTIONS:") print(" -r Run the program after successful compilation") print(" -o <file|dir> Customize the output path") print(" -s Silent mode. Don't print any info about compilation phases.") print(" -cf Dump Control Flow graph of the program in a dot format.") print(" help Print this help to stdout and exit with 0 code") if __name__ == '__main__' and '__file__' in globals(): argv = sys.argv assert len(argv) >= 1 compiler_name, *argv = argv include_paths = ['.', './std/'] unsafe = False while len(argv) > 0: if argv[0] == '-debug': argv = argv[1:] debug = True elif argv[0] == '-I': argv = argv[1:] if len(argv) == 0: usage(compiler_name) print("[ERROR] no path is provided for `-I` flag", file=sys.stderr) exit(1) include_path, *argv = argv include_paths.append(include_path) elif argv[0] == '-unsafe': argv = argv[1:] unsafe = True else: break if len(argv) < 1: usage(compiler_name) print("[ERROR] no subcommand is provided", file=sys.stderr) exit(1) subcommand, *argv = argv program_path: Optional[str] = None program: Program = Program() if subcommand == "sim": if len(argv) < 1: usage(compiler_name) print("[ERROR] no input file is provided for the simulation", file=sys.stderr) exit(1) program_path, *argv = argv include_paths.append(path.dirname(program_path)) parse_context = ParseContext() parse_program_from_file(parse_context, program_path, include_paths); program = Program(ops=parse_context.ops, memory_capacity=parse_context.memory_capacity) proc_contracts = {proc.addr: proc.contract for proc in parse_context.procs.values()} if not unsafe: type_check_program(program, proc_contracts) simulate_little_endian_linux(program, [program_path] + argv) elif subcommand == "com": silent = False control_flow = False run = False output_path = None while len(argv) > 0: arg, *argv = argv if arg == '-r': run = True elif arg == '-s': silent = True elif arg == '-o': if len(argv) == 0: usage(compiler_name) print("[ERROR] no argument is provided for parameter -o", file=sys.stderr) exit(1) output_path, *argv = argv elif arg == '-cf': control_flow = True else: program_path = arg break if program_path is None: usage(compiler_name) print("[ERROR] no input file is provided for the compilation", file=sys.stderr) exit(1) basename = None basedir = None if output_path is not None: if path.isdir(output_path): basename = path.basename(program_path) if basename.endswith(PORTH_EXT): basename = basename[:-len(PORTH_EXT)] basedir = path.dirname(output_path) else: basename = path.basename(output_path) basedir = path.dirname(output_path) else: basename = path.basename(program_path) if basename.endswith(PORTH_EXT): basename = basename[:-len(PORTH_EXT)] basedir = path.dirname(program_path) # if basedir is empty we should "fix" the path appending the current working directory. # So we avoid `com -r` to run command from $PATH. if basedir == "": basedir = os.getcwd() basepath = path.join(basedir, basename) include_paths.append(path.dirname(program_path)) parse_context = ParseContext() parse_program_from_file(parse_context, program_path, include_paths); program = Program(ops=parse_context.ops, memory_capacity=parse_context.memory_capacity) proc_contracts = {proc.addr: proc.contract for proc in parse_context.procs.values()} if control_flow: dot_path = basepath + ".dot" if not silent: print(f"[INFO] Generating {dot_path}") generate_control_flow_graph_as_dot_file(program, dot_path) cmd_call_echoed(["dot", "-Tsvg", "-O", dot_path], silent) if not unsafe: type_check_program(program, proc_contracts) if not silent: print("[INFO] Generating %s" % (basepath + ".asm")) generate_nasm_linux_x86_64(program, basepath + ".asm") cmd_call_echoed(["nasm", "-felf64", basepath + ".asm"], silent) cmd_call_echoed(["ld", "-o", basepath, basepath + ".o"], silent) if run: exit(cmd_call_echoed([basepath] + argv, silent)) elif subcommand == "help": usage(compiler_name) exit(0) else: usage(compiler_name) print("[ERROR] unknown subcommand %s" % (subcommand), file=sys.stderr) exit(1) ```
{ "source": "JorryZ/motionConstrain", "score": 2 }
#### File: motionConstrain/motionConstrain/postProcessBSF.py ```python import numpy as np import os import sys import imageio import medImgProc as medImgProc import medImgProc.image as image import motionSegmentation.BsplineFourier as BsplineFourier import motionSegmentation.bfSolver as bfSolver import motionConstrain.motionConstrain as motionConstrain print('postProcessBSF version 5.0.9') # edit part ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def pointTrace(BSFfile=None, STLfile=None, savePath=None, timeList=None, customPath=None): print('Function pointTrace is to track the motion of points from STL file, and generate new STL over cycle.') print('Inputs of this function are: path+name of BSFfile, path+name of STLfile, name of saving folder (savePath).') print('A sub-folder is automatically created to save files, folder name: stl+customPath') try: savePath=savePath+'\\stl-'+customPath except: savePath=savePath+'\\stl' solver=bfSolver.bfSolver() solver.bsFourier=BsplineFourier.BsplineFourier(coefFile=BSFfile) if type(timeList)==type(None): timeList=int(solver.bsFourier.spacing[3]) solver.pointTrace(stlFile=STLfile, savePath=savePath, timeList=timeList) print('function pointTrace done! Have a happy day ^_^') def timeRemap(rawBSFfile=None, newBSFfile=None, time=0, phantom=True): print('Function timeRemap is to remap BSF to appointed time point as new reference timing.') print('Inputs of this function are: path+name of rawBSFfile, path+name of newBSFfile, time as reference timing (default 0), phantom=True if regrid from phantom time point.') solver=bfSolver.bfSolver() solver.bsFourier=BsplineFourier.BsplineFourier(rawBSFfile) #fourierTerms=solver.bsFourier.coef.shape[3]//2 solver.initialize() solver.pointsCoef=[] for m in range(len(solver.points)): coef=solver.bsFourier.getRefCoef(solver.points[m]) solver.pointsCoef.append(coef.copy()) if phantom==False: solver.points[m] = solver.points[m] + coef[0,:] solver.bsFourier.regridToTime(solver.points,solver.pointsCoef,time=time) solver.bsFourier.writeCoef(newBSFfile) def coefCombiner(rawBSFfile=None, newBSFfilePath=None, newBSFfile=None, time=0): print('Function coefCombiner is to combine all results of different fourier terms.') print('Inputs of this function are: path+name of rawBSFfile, saving folder path of newBSFfile (newBSFfilePath), name of newBSFfile time as reference timing (default 0).') saveFtermPath=newBSFfilePath+'\\coefFT' solver=motionConstrain.motionConstrain() solver.initialize(coefFile=rawBSFfile) fourierTerms=solver.coefMat.shape[3]//2 filepath=[] for fterm in range(1,(fourierTerms*2+1)): filepath.append(saveFtermPath+str(fterm)+'.txt') solver.coefCombiner(filepath) solver.coefZeroRemap(time=time) solver.writeFile((newBSFfilePath+'\\'+newBSFfile),coefMat=1) def coefZeroRemap(rawBSFfile=None, newBSFfile=None, time=0): print('Function coefZeroRemap is to calculate the value of DC term (zero term) after processing the Fourier terms.') print('Inputs of this function are: path+name of rawBSFfile, path+name of newBSFfile, time as reference timing (default 0).') solver=motionConstrain.motionConstrain() solver.initialize(coefFile=rawBSFfile) solver.coefZeroRemap(time=time) solver.writeFile(newBSFfile,coefMat=1) def reShape(rawBSFfile=None, newBSFfile=None, finalShape=None): print('Function reShape is to change the size of the bsplineFourier matrix (size of control point matrix).') print('Inputs of this function are: path+name of rawBSFfile, path+name of newBSFfile, desired shape (finalShape: [x,y,z,ft,uvw]).') solver=bfSolver.bfSolver() solver.bsFourier=BsplineFourier.BsplineFourier(rawBSFfile) try: solver.bsFourier=solver.bsFourier.reshape(finalShape) solver.bsFourier.writeCoef(newBSFfile) except: print('Error: please input correct finalShape [x,y,z,ft,uvw]') def vtk2img(VTKfile=None, savePath=None, lazySnapTime=None): print('Function vtk2img is to convert 3D VTK to 2D slice image (png).') print('Inputs of this function are: path+name of VTKfile, saving folder path of image (savePath), lazySnapTime to get lazySnap APP format png.') os.makedirs(savePath, exist_ok=True) img=medImgProc.imread(VTKfile) img.imwrite2D(savePath,axes=['y','x']) if type(lazySnapTime)!=type(None): currentDim=img.dim[:] axes=['z','y','x'] transposeIndex,currentDim=image.arrangeDim(currentDim,axes,False) data=img.data.transpose(transposeIndex) zSlice=data.shape[0] for m in range(zSlice): imageio.imwrite(os.path.normpath(savePath+'time{:0>3d}/slice{0:0>3d}time{1:0>3d}'.format(m+1,lazySnapTime)+'.png'),data[m]) # vtkPath='D:\\4.Cardiac motion tracking\\v{0:d}\\3DUS\\VTK\\'.format(case) # timeNum=timeNumDict[case] # #timeNum=17 # for i in range(timeNum): # vtkName=vtkPath+'VTK{:0>2d}'.format(i) # img=medImgProc.imread(vtkName+'.vtk') # img.imwrite2D(vtkName,axes=['y','x']) def lazySnapImg(rawFilePath=None, sliceNum=None, savePath=None): print('Function lazySnapImg is to convert imageio generated image to lazySnap format image.') print('Inputs of this function are: path raw image and slice number of images, saving folder path of image (savePath).') os.makedirs(savePath, exist_ok=True) for m in range(sliceNum): temp = imageio.imread(os.path.normpath(rawFilePath+'/z{:d}'.format(m)+'.png')) imageio.imwrite(os.path.normpath(savePath+'/slice{:0>3d}time{:s}'.format(m+1,savePath[-3:])+'.png'),temp) # vtkPath='D:\\4.Cardiac motion tracking\\v{0:d}\\3DUS\\VTK\\'.format(case) # #timeNum=timeNumDict[case] # timeNum=1 # for n in range(timeNum): #time points for lazySnap, time+1 # vtkName=vtkPath+'VTK{:0>2d}'.format(n) # savePath=vtkPath+'/time{:0>3d}'.format(n+1) # os.makedirs(savePath, exist_ok=True) # img=medImgProc.imread(vtkName+'.vtk') # currentDim=img.dim[:] # axes=['z','y','x'] # transposeIndex,currentDim=image.arrangeDim(currentDim,axes,False) # data=img.data.transpose(transposeIndex) # zSlice=data.shape[0] # for m in range(zSlice): # imageio.imwrite(os.path.normpath(savePath+'/slice{:0>3d}time{:0>3d}'.format(m+1,n+1)+'.png'),data[m]) def samplePointsFromVTK(BSFfile=None,VTKfile=None,savePath=None,dimlen=None,scale=1.,spacingDivision=5): print('Function samplePointsFromVTK is to sample points from myocardium VTK.') vtkData=medImgProc.imread(VTKfile) vtkData.dim=['z','y','x'] vtkData.dimlen=dimlen vtkData.rearrangeDim(['x','y','z']) solver=bfSolver.bfSolver() solver.bsFourier=BsplineFourier.BsplineFourier(BSFfile) samplepts1=solver.bsFourier.samplePoints(spacingDivision=spacingDivision[0]) wall=[] for m in range(len(samplepts1)): if vtkData.getData(samplepts1[m])>=0.5: wall.append(samplepts1[m].copy()) sampleCoord=wall.copy() np.savetxt(savePath,sampleCoord,fmt='%.8f',delimiter=' ') def meshVolumeError(meshVolumeFile=None): print('Function meshVolumeError is to calculate RMS error of mesh volume over cylce.') print('Inputs of this function are: path+name of meshVolumeFile.') meshVolume=np.loadtxt(meshVolumeFile,delimiter=' ') totalVolume=np.sum(meshVolume,axis=0) print('totalVolume: ',totalVolume) rmsError=0 for i in range(len(meshVolume)): volume=meshVolume[i,:] #meanV=np.mean(volume) squaredError=0.0 for j in range(1,len(volume)): squaredError+=(volume[j]-volume[0])**2 rmsError+=np.sqrt(squaredError/(len(volume)-1)) print('mesh volume rms error: ',rmsError,' ; divided by mesh number: ', rmsError/len(meshVolume)) return (rmsError, totalVolume) def divFree(funcHelp=False): if funcHelp: print('Function divFree is to calculate divergence value.') print('unfinish~~~~~~') def imgScaling(funcHelp=False): if funcHelp: print('Function imgScaling is to scale image.') print('unfinish~~~~~~') def vtkSampling(funcHelp=False): if funcHelp: print('Function vtkSampling is to sample points from 3D VTK.') print('unfinish~~~~~~') ```
{ "source": "jorsanpe/placa", "score": 3 }
#### File: jorsanpe/placa/python.py ```python import pprint from pathlib import Path from collections import Counter import ast import astunparse def _analyze(payload, characters, symbols): lines = astunparse.unparse(ast.parse(payload)).split('\n') for line in lines: for char in line: if char != ' ': if char.isalpha(): characters[char] += 1 else: symbols[char] += 1 def analyze(directories): characters = Counter() symbols = Counter() for directory in directories: for path in Path(directory).rglob('*.py'): with open(path, 'r') as stream: payload = stream.read() _analyze(payload, characters, symbols) print(pprint.pformat(symbols)) print(pprint.pformat(characters)) ```
{ "source": "jorsanpe/schedbot", "score": 3 }
#### File: schedbot/test/add_task_test.py ```python import unittest from mock import patch, MagicMock from add_task import AddTask from user_repository import UserRepository from task_repository import TaskRepository from user import User from task import Task from datetime import datetime YESTERDAY = datetime(2016, 2, 8) TODAY = datetime(2016, 2, 9) TOMORROW = datetime(2016, 2, 10) LAST_WEEK = datetime(2016, 2, 2) NEXT_WEEK = datetime(2016, 2, 16) LAST_MONTH = datetime(2016, 01, 9) NEXT_MONTH = datetime(2016, 03, 9) class AddTaskTest(unittest.TestCase): def setUp(self): self.user_repo = UserRepository() self.task_repo = TaskRepository() def test_add_task_should_deliver_error_if_user_is_not_found(self): self.user_repo.find_one = MagicMock(return_value=None) add_task = AddTask(self.user_repo, self.task_repo) response = add_task({'user': 126}) self.assertEqual('fail', response['status']) @patch('task.datetime') def test_should_add_new_task_to_user_task_list_and_return_scheduled_task_list(self, mock_dt): request = { 'user': 126, 'code': 'add_task', 'data': { 'title': 'New Task', } } mock_dt.now.return_value = TODAY self.user_repo.find_one = MagicMock(return_value=User(id=1)) self.task_repo.tasks_for = MagicMock(return_value=[Task(**request['data'])]) add_task = AddTask(self.user_repo, self.task_repo) response = add_task(request) self.assertEqual('success', response['status']) self.assertEqual([{ 'title': 'New Task', 'active': True, 'creation': str(TODAY) }], response['data']) ``` #### File: schedbot/test/mongo_client_test.py ```python import unittest from mock import patch from mongo_collection import MongoCollection class MongoClientTest(unittest.TestCase): def test_(self): pass ``` #### File: schedbot/test/task_test.py ```python import unittest from mock import patch from datetime import datetime from task import Task class TaskTest(unittest.TestCase): def test_task_as_dict(self): task = Task(title='a task', start=datetime(2016, 1, 1), creation=datetime(2016, 1, 1)) self.assertEqual({ 'title': 'a task', 'start': '2016-01-01 00:00:00', 'creation': '2016-01-01 00:00:00', 'active': True, }, task.as_dict()) @patch('task.datetime') def test_task_that_has_started_is_active(self, mock_dt): task = Task(start=datetime(2016, 1, 1)) mock_dt.now.return_value = datetime(2016, 2, 2) self.assertTrue(task.is_active()) @patch('task.datetime') def test_task_that_has_not_started_is_not_active(self, mock_dt): task = Task(start=datetime(2016, 1, 2)) mock_dt.now.return_value = datetime(2016, 1, 1) self.assertFalse(task.is_active()) @patch('task.datetime') def test_task_in_daily_range_is_active(self, mock_dt): task = Task(start=datetime(2016, 1, 1), daily={'start': datetime(2016, 1, 1, 8, 0), 'end': datetime(2016, 1, 1, 16, 0)}) mock_dt.now.return_value = datetime(2016, 2, 2, 10, 0) self.assertTrue(task.is_active()) @patch('task.datetime') def test_task_outside_daily_range_is_not_active(self, mock_dt): task = Task(start=datetime(2016, 1, 1), daily={'start': datetime(2016, 1, 1, 8, 0), 'end': datetime(2016, 1, 1, 16, 0)}) mock_dt.now.return_value = datetime(2016, 2, 2, 7, 0) self.assertFalse(task.is_active()) mock_dt.now.return_value = datetime(2016, 2, 2, 17, 0) self.assertFalse(task.is_active()) ``` #### File: schedbot/test/user_repository_mongo_test.py ```python import unittest from mock import Mock from user import User from user_repository_mongo import UserRepositoryMongo from user_repository_test import UserRepositoryTest class UserRepsitoryMongoTest(UserRepositoryTest): def setUp(self): super(UserRepsitoryMongoTest, self).setUp() self.mongo_collection = Mock() self.task_repository = UserRepositoryMongo(self.mongo_collection) def test_user_repository_should_assign_unique_id_after_adding_user(self): self.mongo_collection.submit_item.return_value = 10 super(UserRepsitoryMongoTest, self).test_user_repository_should_assign_unique_id_after_adding_user() def test_user_repository_should_find_user_by_id_after_adding_user(self): self.mongo_collection.submit_item.return_value = 10 self.mongo_collection.query_single.return_value = User(id=10) super(UserRepsitoryMongoTest, self).test_user_repository_should_find_user_by_id_after_adding_user() if __name__ == '__main__': unittest.main() ```
{ "source": "jorseph/zenbo_scratch_service", "score": 4 }
#### File: jorseph/zenbo_scratch_service/webserver.py ```python from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer import SocketServer import requests import urlparse g_ip = '192.168.0.1.' g_port = ':8080' class S(BaseHTTPRequestHandler): def _set_headers(self): self.send_response(200) self.send_header('Content-type', 'text/html') self.end_headers() def do_GET(self): self._set_headers() self.wfile.write("<html><body><h1>hi!</h1></body></html>") o = urlparse.urlparse(self.path) urlparse.parse_qs(o.query) #print("urlparse = %s" % (self.path)) #print("urlparse.url = %s" % (o.geturl())) #print("urlparse = %s" % (urlparse.parse_qs(o.query))) payload = {'extension': 'advance', 'name': 'Get_sentences'} r = requests.get('http://' + g_ip + g_port, params = urlparse.parse_qs(o.query)) print("url = %s" % (r.url)) def do_HEAD(self): self._set_headers() def do_POST(self): # Doesn't do anything with posted data self._set_headers() self.wfile.write("<html><body><h1>POST!</h1></body></html>") def end_headers (self): self.send_header('Access-Control-Allow-Origin', '*') def run(server_class=HTTPServer, handler_class=S, port=8080): server_address = ('127.0.0.1', port) #global g_port #g_port = ':8080' httpd = server_class(server_address, handler_class) print 'Starting httpd...' httpd.serve_forever() def setIP(ip): global g_ip g_ip = ip run() if __name__ == "__main__": from sys import argv if len(argv) == 2: run(port=int(argv[1])) else: run() ```
{ "source": "jorses/tfg", "score": 3 }
#### File: tournament_poller/polls/charts.py ```python def getchart1(request): import random import django import datetime from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure from matplotlib.dates import DateFormatter fig = Figure() ax = fig.add_subplot(111) x = [] y = [] now = datetime.datetime.now() delta = datetime.timedelta(days=1) for i in range(10): x.append(now) now += delta y.append(random.randint(0, 1000)) ax.plot_date(x, y, '-') ax.xaxis.set_major_formatter(DateFormatter('%Y-%m-%d')) fig.autofmt_xdate() canvas = FigureCanvas(fig) response = django.http.HttpResponse(content_type='image/png') canvas.print_png(response) return response def getchart2(request): import random import django import datetime from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure from matplotlib.dates import DateFormatter fig = Figure() ax = fig.add_subplot(111) x = [] y = [] now = datetime.datetime.now() delta = datetime.timedelta(days=1) for i in range(10): x.append(now) now += delta y.append(random.randint(0, 1000)) ax.plot_date(x, y, '-') ax.xaxis.set_major_formatter(DateFormatter('%Y-%m-%d')) fig.autofmt_xdate() canvas = FigureCanvas(fig) response = django.http.HttpResponse(content_type='image/png') canvas.print_png(response) return response def getchart3(request): import random import django import datetime from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure from matplotlib.dates import DateFormatter fig = Figure() ax = fig.add_subplot(111) x = [] y = [] now = datetime.datetime.now() delta = datetime.timedelta(days=1) for i in range(10): x.append(now) now += delta y.append(random.randint(0, 1000)) ax.plot_date(x, y, '-') ax.xaxis.set_major_formatter(DateFormatter('%Y-%m-%d')) fig.autofmt_xdate() canvas = FigureCanvas(fig) response = django.http.HttpResponse(content_type='image/png') canvas.print_png(response) return response def getchart4(request): import random import django import datetime from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure from matplotlib.dates import DateFormatter fig = Figure() ax = fig.add_subplot(111) x = [] y = [] now = datetime.datetime.now() delta = datetime.timedelta(days=1) for i in range(10): x.append(now) now += delta y.append(random.randint(0, 1000)) ax.plot_date(x, y, '-') ax.xaxis.set_major_formatter(DateFormatter('%Y-%m-%d')) fig.autofmt_xdate() canvas = FigureCanvas(fig) response = django.http.HttpResponse(content_type='image/png') canvas.print_png(response) return response def getchart5(request): import random import django import datetime from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure from matplotlib.dates import DateFormatter fig = Figure() ax = fig.add_subplot(111) x = [] y = [] now = datetime.datetime.now() delta = datetime.timedelta(days=1) for i in range(10): x.append(now) now += delta y.append(random.randint(0, 1000)) ax.plot_date(x, y, '-') ax.xaxis.set_major_formatter(DateFormatter('%Y-%m-%d')) fig.autofmt_xdate() canvas = FigureCanvas(fig) response = django.http.HttpResponse(content_type='image/png') canvas.print_png(response) return response def getchart6(request): import random import django import datetime from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure from matplotlib.dates import DateFormatter fig = Figure() ax = fig.add_subplot(111) x = [] y = [] now = datetime.datetime.now() delta = datetime.timedelta(days=1) for i in range(10): x.append(now) now += delta y.append(random.randint(0, 1000)) ax.plot_date(x, y, '-') ax.xaxis.set_major_formatter(DateFormatter('%Y-%m-%d')) fig.autofmt_xdate() canvas = FigureCanvas(fig) response = django.http.HttpResponse(content_type='image/png') canvas.print_png(response) return response def getchart7(request): import random import django import datetime from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure from matplotlib.dates import DateFormatter fig = Figure() ax = fig.add_subplot(111) x = [] y = [] now = datetime.datetime.now() delta = datetime.timedelta(days=1) for i in range(10): x.append(now) now += delta y.append(random.randint(0, 1000)) ax.plot_date(x, y, '-') ax.xaxis.set_major_formatter(DateFormatter('%Y-%m-%d')) fig.autofmt_xdate() canvas = FigureCanvas(fig) response = django.http.HttpResponse(content_type='image/png') canvas.print_png(response) return response def getchart8(request): import random import django import datetime from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure from matplotlib.dates import DateFormatter fig = Figure() ax = fig.add_subplot(111) x = [] y = [] now = datetime.datetime.now() delta = datetime.timedelta(days=1) for i in range(10): x.append(now) now += delta y.append(random.randint(0, 1000)) ax.plot_date(x, y, '-') ax.xaxis.set_major_formatter(DateFormatter('%Y-%m-%d')) fig.autofmt_xdate() canvas = FigureCanvas(fig) response = django.http.HttpResponse(content_type='image/png') canvas.print_png(response) return response def getchart9(request): import random import django import datetime from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure from matplotlib.dates import DateFormatter fig = Figure() ax = fig.add_subplot(111) x = [] y = [] now = datetime.datetime.now() delta = datetime.timedelta(days=1) for i in range(10): x.append(now) now += delta y.append(random.randint(0, 1000)) ax.plot_date(x, y, '-') ax.xaxis.set_major_formatter(DateFormatter('%Y-%m-%d')) fig.autofmt_xdate() canvas = FigureCanvas(fig) response = django.http.HttpResponse(content_type='image/png') canvas.print_png(response) return response SCORE = { "1": 0, "2": 0, "3": 0, "4": 0, "5": 0, "6": 0, "7": 0, "8": 0, } def score(request): return ```
{ "source": "jorshi/audio_gan", "score": 3 }
#### File: audio_gan/evaluation/create_evaluation_data.py ```python import os import sys import argparse import numpy as np import tensorflow as tf sys.path.append('../') import wave_gan_resize custom_objects = { "Resize": wave_gan_resize.Resize } def load_model(model): """ Load a TensorFlow Keras model """ generator = tf.keras.models.load_model(model, custom_objects=custom_objects) return generator def generate_samples(model, num_samples, latent): """ Generate a set of samples from model and return a numpy array """ noise = tf.random.normal([num_samples, latent]) samples = model(noise)[:, :, 0] return np.array(samples) def main(arguments): parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('model', help="Model to use to render dataset", type=str) parser.add_argument('num_samples', help="Number of samples to generate from model", type=int) parser.add_argument('output', help="Output file", type=str) parser.add_argument('-l', '--latent', help="Size of the latent space", default=100, type=int) args = parser.parse_args(arguments) generator = load_model(args.model) samples = generate_samples(generator, args.num_samples, args.latent) np.save(args.output, samples) if __name__ == '__main__': sys.exit(main(sys.argv[1:])) ``` #### File: jorshi/audio_gan/wave_gan_resize.py ```python import tensorflow as tf from tensorflow.keras import layers from tensorflow.python.framework import tensor_shape from tensorflow.python.keras.engine.input_spec import InputSpec class Resize(tf.keras.layers.Layer): def __init__(self, size=2, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR, **kwargs): super(Resize, self).__init__(**kwargs) self.size = int(size) self.input_spec = InputSpec(ndim=3) self.method = method def compute_output_shape(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape).as_list() size = self.size * input_shape[1] if input_shape[1] is not None else None return tensor_shape.TensorShape([input_shape[0], size, input_shape[2]]) def call(self, inputs): x = inputs x_shape = x.shape.as_list() x = tf.expand_dims(x, axis=3) x = tf.image.resize(x, [x_shape[1] * self.size, x_shape[2]], method=self.method) x = x[:, :, :, 0] return x def get_config(self): config = {'size': self.size, 'method': self.method} base_config = super(Resize, self).get_config() return dict(list(base_config.items()) + list(config.items())) def make_generator_model(latent_size, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR, normalization=True, dropout=0.0): """ Create the WaveGAN generator :return: Sequential Model """ model = tf.keras.Sequential() model.add(layers.Dense(16 * 1024, use_bias=False, input_shape=(latent_size,))) if normalization: model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) if dropout > 0.0: model.add(layers.Dropout(dropout)) model.add(layers.Reshape((16, 1024))) assert model.output_shape == (None, 16, 1024) # Note: None is the batch size model.add(Resize(size=4, method=method)) model.add(layers.Conv1D(512, 25, strides=1, padding='same', use_bias=False)) assert model.output_shape == (None, 64, 512) if normalization: model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) if dropout > 0.0: model.add(layers.Dropout(dropout)) model.add(Resize(size=4, method=method)) model.add(layers.Conv1D(256, 25, strides=1, padding='same', use_bias=False)) assert model.output_shape == (None, 256, 256) if normalization: model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) if dropout > 0.0: model.add(layers.Dropout(dropout)) model.add(Resize(size=4, method=method)) model.add(layers.Conv1D(128, 25, strides=1, padding='same', use_bias=False)) assert model.output_shape == (None, 1024, 128) if normalization: model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) if dropout > 0.0: model.add(layers.Dropout(dropout)) model.add(Resize(size=4, method=method)) model.add(layers.Conv1D(64, 25, strides=1, padding='same', use_bias=False)) assert model.output_shape == (None, 4096, 64) if normalization: model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) if dropout > 0.0: model.add(layers.Dropout(dropout)) model.add(Resize(size=4, method=method)) model.add(layers.Conv1D(1, 25, strides=1, padding='same', use_bias=False, activation='tanh')) assert model.output_shape == (None, 16384, 1) return model def make_discriminator_model(): """ Create the WaveGAN discriminator :return: Sequential Model """ model = tf.keras.Sequential() model.add(layers.Conv1D(64, 25, 4, padding='same', input_shape=[16384, 1])) assert (model.output_shape == (None, 4096, 64)) model.add(layers.LeakyReLU()) model.add(layers.Dropout(0.3)) model.add(layers.Conv1D(128, 25, 4, padding='same')) assert (model.output_shape == (None, 1024, 128)) model.add(layers.LeakyReLU()) model.add(layers.Dropout(0.3)) model.add(layers.Conv1D(256, 25, 4, padding='same')) assert (model.output_shape == (None, 256, 256)) model.add(layers.LeakyReLU()) model.add(layers.Dropout(0.3)) model.add(layers.Conv1D(512, 25, 4, padding='same')) assert (model.output_shape == (None, 64, 512)) model.add(layers.LeakyReLU()) model.add(layers.Dropout(0.3)) model.add(layers.Conv1D(1024, 25, 4, padding='same')) assert (model.output_shape == (None, 16, 1024)) model.add(layers.LeakyReLU()) model.add(layers.Dropout(0.3)) model.add(layers.Flatten()) model.add(layers.Dense(1)) return model ```
{ "source": "jorshi/uvic-music-extractor", "score": 3 }
#### File: src/uvic_music_extractor/extractors.py ```python from abc import ABC, abstractmethod import math import numpy as np from scipy.stats import norm, linregress import essentia import essentia.standard as es import uvic_music_extractor.utils as utils class ExtractorBase(ABC): """ Base class for audio feature extractors :param sample_rate (int): rate to run extraction at :param pooling (bool): indicates whether results of this extractor are summarized over time using pooling. :param stats (list): stats to run during pooling aggregation (if used). """ def __init__(self, sample_rate: float, pooling: bool = False, stats: list = None): self.sample_rate = sample_rate self.pooling = pooling self.feature_names = [] if stats is None: self.stats = ["mean", "stdev"] @abstractmethod def __call__(self, audio: np.ndarray): """ Abstract method -- must be implemented in inheriting classes :param audio (np.ndarray): input audio to run feature extraction on :return: """ pass def get_headers(self, join="."): """ Get a list of the features combined with aggregation :return: list """ if not self.pooling: return self.feature_names headers = [] for feature in self.feature_names: for stat in self.stats: headers.append("{}{}{}".format(feature, join, stat)) return headers class Spectral(ExtractorBase): """ Spectral audio feature extraction. :param sample_rate (int): rate to run extraction at :param frame_size (int): size of frame to use for spectral processing :param stats (list): stats to run during pooling aggregation (time summarization of spectral results) """ def __init__( self, sample_rate: float, frame_size: float = 2048, stats: list = None ): super().__init__(sample_rate, pooling=True, stats=stats) self.frame_size = frame_size self.feature_names = [ "spectral_centroid", "spectral_spread", "spectral_skewness", "spectral_kurtosis", "spectral_flatness", "spectral_entropy", "rolloff_85", "rolloff_95", "harsh", "energy_lf", "dissonance", "inharmonicity" ] def __call__(self, audio: np.ndarray): """ Run audio :param audio (np.ndarray): input audio :return: feature matrix """ # Pooling for summarizing results over time pool = essentia.Pool() pool_agg = es.PoolAggregator(defaultStats=self.stats) window = es.Windowing(type="hann", size=self.frame_size) spectrum = es.Spectrum() # Spectral feature extractors centroid = es.Centroid(range=self.sample_rate/2) central_moments = es.CentralMoments(range=self.sample_rate/2) dist_shape = es.DistributionShape() flatness = es.Flatness() entropy = es.Entropy() energy_band_harsh = es.EnergyBandRatio(sampleRate=self.sample_rate, startFrequency=2000, stopFrequency=5000) energy_band_low = es.EnergyBandRatio(sampleRate=self.sample_rate, startFrequency=20, stopFrequency=80) rolloff_85 = es.RollOff(cutoff=0.85, sampleRate=self.sample_rate) rolloff_95 = es.RollOff(cutoff=0.95, sampleRate=self.sample_rate) # Extractors for calculating dissonance and inharmonicity peaks = es.SpectralPeaks() dissonance = es.Dissonance() pitch_yin = es.PitchYinFFT(frameSize=self.frame_size, sampleRate=self.sample_rate) harmonic_peaks = es.HarmonicPeaks() inharmonicity = es.Inharmonicity() # Frame-by-frame computation for frame in es.FrameGenerator(audio, self.frame_size, self.frame_size // 2): # Window frame and compute spectrum win = window(frame) spec = spectrum(win) # Spectral feature extraction sc = centroid(spec) moments = central_moments(spec) spread, skewness, kurtosis = dist_shape(moments) spectral_flatness = flatness(spec) spectral_entropy = entropy(spec) harsh = energy_band_harsh(spec) energy_lf = energy_band_low(spec) roll85 = rolloff_85(spec) roll95 = rolloff_95(spec) # Spectral Peaks peak_freqs, peak_mags = peaks(spec) # Remove DC bin peak if it is present if peak_freqs[0] == 0: peak_freqs = peak_freqs[1:] peak_mags = peak_mags[1:] # Calculate dissonance and inharmonicity from peaks dissonance_val = dissonance(peak_freqs, peak_mags) pitch, _ = pitch_yin(spec) harm_freqs, harm_mags = harmonic_peaks(peak_freqs, peak_mags, pitch) inharm = inharmonicity(harm_freqs, harm_mags) # Add to pool for summarization keys = self.feature_names pool.add(keys[0], sc) pool.add(keys[1], spread) pool.add(keys[2], skewness) pool.add(keys[3], kurtosis) pool.add(keys[4], spectral_flatness) pool.add(keys[5], spectral_entropy) pool.add(keys[6], roll85) pool.add(keys[7], roll95) pool.add(keys[8], harsh) pool.add(keys[9], energy_lf) pool.add(keys[10], dissonance_val) pool.add(keys[11], inharm) stats = pool_agg(pool) results = [stats[feature] for feature in self.get_headers()] return results class CrestFactor(ExtractorBase): """ Crest Factor Extractor Peak-to-average ratio where peak is the the maximum amplitude level and average is the RMS value. https://en.wikipedia.org/wiki/Crest_factor :param sample_rate (int): rate to run extraction at :param frame_size (int): size of frame to use :param stats (list): stats to run during pooling aggregation (time summarization) """ def __init__( self, sample_rate: float, frame_size: float = None, stats: list = None ): super().__init__(sample_rate, pooling=frame_size is not None, stats=stats) self.frame_size = frame_size self.feature_names = ["crest_factor"] def __call__(self, audio: np.ndarray): """ Run crest factor audio feature extraction :param audio: Input audio samples :return: feature matrix """ rms = es.RMS() minimum = es.MinMax(type='min') maximum = es.MinMax(type='max') if self.frame_size: pool = essentia.Pool() pool_agg = es.PoolAggregator(defaultStats=self.stats) for frame in es.FrameGenerator(audio, self.frame_size, self.frame_size): frame_rms = rms(frame) frame_peak_min = minimum(frame)[0] frame_peak_max = maximum(frame)[0] frame_peak = max(abs(frame_peak_min), abs(frame_peak_max)) frame_crest = frame_peak / frame_rms pool.add('crest_factor', frame_crest) stats = pool_agg(pool) crest_factor = [stats['crest_factor.{}'.format(stat)] for stat in self.stats] else: full_rms = rms(audio) full_peak_min = minimum(audio)[0] full_peak_max = maximum(audio)[0] full_peak = max(abs(full_peak_min), abs(full_peak_max)) crest_factor = [full_peak / full_rms] return crest_factor class Loudness(ExtractorBase): """ Loudness Features Loudness Range -------------- Loudness range is computed from short-term loudness values. It is defined as the difference between the estimates of the 10th and 95th percentiles of the distribution of the loudness values with applied gating. See Essentia documentation for more information: https://essentia.upf.edu/reference/std_LoudnessEBUR128.html EBU Tech Doc 3342-2011. "Loudness Range: A measure to supplement loudness normalisation in accordance with EBU R 128" LDR_95, LDR_max, peak-to-loudness -------------------------------- LDR is a measurement of microdynamics. It is computed by taking the difference between loudness measurements using a fast integration time and a slow integration time, then computing the maximum or 95 percentile value from those results. Peak-to-loudness is computed by taking the ratio between the true peak amplitude and the overall loudness. <NAME>. "Measures of microdynamics." Audio Engineering Society Convention 137. Audio Engineering Society, 2014. top1db ------ Ratio of audio samples in the range [-1dB, 0dB] <NAME>, et al. "Production effect: audio features for recording techniques description and decade prediction." 2011. :param sample_rate (int): rate to run extraction at """ def __init__(self, sample_rate: float): super().__init__(sample_rate, pooling=False, stats=None) self.feature_names = [ "loudness_range", "microdynamics_95%", "microdynamics_100%", "peak_to_loudness", "top1db" ] def __call__(self, audio: np.ndarray): """ Run loudness / dynamics feature extraction :param audio: Input audio samples :return: feature matrix """ loudness = es.LoudnessEBUR128(startAtZero=True, sampleRate=self.sample_rate) loudness_stats = loudness(audio) loudness_range = loudness_stats[3] # Micro dynamics (LDR) micro_dynamics = loudness_stats[0] - loudness_stats[1] ldr_95 = np.percentile(micro_dynamics, 95.0) ldr_max = micro_dynamics.max() # True peak detection for peak to loudness calculation true_peak_detector = es.TruePeakDetector(sampleRate=self.sample_rate) true_peak_audio_l = true_peak_detector(audio[:, 0])[1] true_peak_l = 20 * math.log10(true_peak_audio_l.max()) true_peak_audio_r = true_peak_detector(audio[:, 1])[1] true_peak_r = 20 * math.log10(true_peak_audio_r.max()) # True peak to loudness true_peak = max(true_peak_l, true_peak_r) peak_to_loudness = true_peak / loudness_stats[2] # Top 1 dB (ratio of samples in the top 1dB) top_1db_gain = math.pow(10, -1.0 / 20.0) top_1db_l = (true_peak_audio_l > top_1db_gain).sum() top_1db_r = (true_peak_audio_l > top_1db_gain).sum() top1db = (top_1db_l + top_1db_r) / (len(true_peak_audio_l) + len(true_peak_audio_r)) return [loudness_range, ldr_95, ldr_max, peak_to_loudness, top1db] class DynamicSpread(ExtractorBase): """ Dynamic Spread Feature Extractor. Measure of the loudness spread across the audio file. The difference between the loudness (using Vickers algorithm) for each frame compared to the average loudness of the entire track is computed. Then, the average of that is computed. <NAME>. "Automatic long-term loudness and dynamics matching." Audio Engineering Society Convention 111. Audio Engineering Society, 2001. :param sample_rate (int): rate to run extraction at :param frame_size (int): size of frame to use. Defaults to 2048. """ def __init__( self, sample_rate: float, frame_size: float = 2048, ): super().__init__(sample_rate, pooling=False, stats=None) self.frame_size = frame_size self.feature_names = ["dynamic_spread"] def __call__(self, audio: np.ndarray): """ Run loudness feature extraction :param audio: Input audio samples :return: feature matrix """ vickers_loudness = es.LoudnessVickers() pool = essentia.Pool() pool_agg = es.PoolAggregator(defaultStats=['mean']) # Calculate the Vickers loudness frame by frame for frame in es.FrameGenerator(audio, self.frame_size, self.frame_size): frame_loudness = vickers_loudness(frame) pool.add('vdb', frame_loudness) # Compute the average loudness across frames stats = pool_agg(pool) vickers_mean = stats['vdb.mean'] # Compute the difference between loudness at each frame and the mean loudness dynamic_spread = 0.0 for vdb in pool['vdb']: dynamic_spread += abs(vdb - vickers_mean) dynamic_spread /= len(pool['vdb']) return [dynamic_spread] class Distortion(ExtractorBase): """ Set of distortion features -- computes a probability density function on audio samples using a histogram with 1001 bins. Several statistics are computed on the resulting pdf including the centroid, spread, skewness, kurtosis, flatness, and the 'gauss' feature. 'Gauss' is a measurement of the gaussian fit of the the pdf. Wilson, Alex, and <NAME>. "Characterisation of distortion profiles in relation to audio quality." Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14). 2014. <NAME>., and <NAME>. "Perception & evaluation of audio quality in music production." Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13). 2013. :param sample_rate (int): rate to run extraction at """ def __init__(self, sample_rate: float): super().__init__(sample_rate, pooling=False, stats=None) self.feature_names = [ "pmf_centroid", "pmf_spread", "pmf_skewness", "pmf_kurtosis", "pmf_flatness", "pmf_gauss" ] def __call__(self, audio: np.ndarray): """ Run distortion feature extraction :param audio: Input audio samples :return: feature matrix """ # Compute PDF of audio sample amplitudes hist, edges = np.histogram(audio, bins=1001, range=(-1.0, 1.0), density=True) hist = np.array(hist, dtype=np.float32) # Analysis of PDF shape centroid_calc = es.Centroid() centroid = centroid_calc(hist) central_moments = es.CentralMoments() shape = es.DistributionShape() cm = central_moments(hist) spread, skewness, kurtosis = shape(cm) flatness_calc = es.Flatness() flatness = flatness_calc(hist) # Compute r squared value of guassian fit mu, std = norm.fit(audio) gauss = norm.pdf(np.linspace(-1.0, 1.0, 1001), mu, std) _, _, rvalue, _, _ = linregress(gauss, hist) r_squared = rvalue ** 2 return [centroid, spread, skewness, kurtosis, flatness, r_squared] class StereoFeatures(ExtractorBase): """ Stereo Feature Extractor: Sides-to-mid ratio and left-right imbalance <NAME>., et al. "An analysis and evaluation of audio features for multitrack music mixtures." (2014). :param sample_rate (int): rate to run extraction at """ def __init__(self, sample_rate: float): super().__init__(sample_rate, pooling=False, stats=None) self.feature_names = ["side_mid_ratio", "lr_imbalance"] def __call__(self, audio: np.ndarray): """ Run stereo feature extraction :param audio: Input audio samples :return: feature matrix """ sides = (audio[:, 0] - audio[:, 1]) ** 2 mids = (audio[:, 0] + audio[:, 1]) ** 2 sides_mid_ratio = sides.mean() / mids.mean() left_power = (audio[:, 0] ** 2).mean() right_power = (audio[:, 1] ** 2).mean() lr_imbalance = (right_power - left_power) / (right_power + left_power) return sides_mid_ratio, lr_imbalance class PhaseCorrelation(ExtractorBase): """ Phase Correlation feature extraction. Calculates the correlation coefficient between the left and right channel. If a frame_size of None is based in then the calculation is performed on the entire audio signal. Otherwise, frame-by-frame processing is computed using the frame_size number of samples and the results are summarized using the passed in stats. :param sample_rate (float): rate to run extraction at :param frame_size (int): number of samples per frame for frame-by-frame processing. If None then computation is performed over the entire input. Defaults to None. :param stats (list): a list of strings indicating the stats to use during time summarization. Only applied if frame-by-frame processing is computed. """ def __init__( self, sample_rate: float, frame_size: int = None, stats: list = None ): super().__init__(sample_rate, pooling=frame_size is not None, stats=stats) self.frame_size = frame_size self.feature_names = ["phase_correlation"] def __call__(self, audio: np.ndarray): """ Run phase correlation feature extraction. :param audio: Input audio samples :return: feature matrix """ if self.frame_size: max_sample = audio.shape[0] slice_indices = list(range(0, max_sample, self.frame_size)) slice_indices.append(max_sample) pool = essentia.Pool() for i in range(len(slice_indices) - 1): x1 = slice_indices[i] x2 = slice_indices[i + 1] correlation_matrix = np.corrcoef(audio[x1:x2, 0], audio[x1:x2, 1]) phase_correlation = correlation_matrix[0, 1] pool.add(self.feature_names[0], phase_correlation) pool_agg = es.PoolAggregator(defaultStats=self.stats) stats = pool_agg(pool) phase_correlation = [stats["{}.{}".format(self.feature_names[0], stat)] for stat in self.stats] else: correlation_matrix = np.corrcoef(audio[:, 0], audio[:, 1]) phase_correlation = [correlation_matrix[0, 1]] return phase_correlation class StereoSpectrum(ExtractorBase): """ Stereo Spectrum Features. Panning features computed using spectrums from the left and right audio channels. Returns features from the entire spectrum as well as three subbands which include 0-250Hz, 250-2800Hz, and 2800+ Hz. Tzanetakis, George, <NAME>, and <NAME>. "Stereo Panning Features for Classifying Recording Production Style." ISMIR. 2007. """ def __init__( self, sample_rate: float, frame_size: int = 2048, hop_size: int = 1024, stats: list = None ): super().__init__(sample_rate, pooling=True, stats=stats) self.frame_size = frame_size self.hop_size = hop_size self.low = 250 self.high = 2800 self.feature_names = ["sps_full", "sps_low", "sps_mid", "sps_high"] def __call__(self, audio: np.ndarray): """ Run stereo spectrum feature extraction :param audio: Input audio samples :return: feature matrix """ # Must be stereo audio assert audio.shape[1] == 2 # Hanning window window = np.hanning(self.frame_size) pool = essentia.Pool() pool_agg = es.PoolAggregator(defaultStats=self.stats) # Bin numbers for each filter bank low_bin = int((self.low / self.sample_rate) * self.frame_size) assert low_bin <= int(self.frame_size / 2) high_bin = int((self.high / self.sample_rate) * self.frame_size) assert high_bin <= int(self.frame_size / 2) for i in range(0, len(audio), self.hop_size): # Get the windowed frame for each channel samples = audio[i:i+self.frame_size, :] frame_left = np.zeros(self.frame_size) frame_left[:len(samples)] = samples[:, 0] frame_right = np.zeros(self.frame_size) frame_right[:len(samples)] = samples[:, 1] # Apply window frame_left *= window frame_right *= window X_left = np.fft.rfft(frame_left) X_right = np.fft.rfft(frame_right) stereo_spectrum = StereoSpectrum.compute_stereo_spectrum(X_left, X_right) # Features full = utils.rms(stereo_spectrum) low = utils.rms(stereo_spectrum[:low_bin]) mid = utils.rms(stereo_spectrum[low_bin:high_bin]) high = utils.rms(stereo_spectrum[high_bin:]) pool.add(self.feature_names[0], full) pool.add(self.feature_names[1], low) pool.add(self.feature_names[2], mid) pool.add(self.feature_names[3], high) stats = pool_agg(pool) results = [stats[feature] for feature in self.get_headers()] return results @staticmethod def compute_stereo_spectrum(spectrum_left, spectrum_right): """ Computes the stereo panning features using left and right channel spectrums :param spectrum_left: magnitude spectrum from the left channel :param spectrum_right: magnitude spectrum from the right channel :return: stereo spectrum features """ np.zeros_like(spectrum_left) # Update the DC and Nyquist Bins spectrum_left[0] = np.real(spectrum_left[0]) + 0j spectrum_left[-1] = np.real(spectrum_left[-1]) + 0j spectrum_right[0] = np.real(spectrum_right[0]) + 0j spectrum_right[-1] = np.real(spectrum_right[-1]) + 0j real_left = np.real(spectrum_left) imag_left = np.imag(spectrum_left) real_right = np.real(spectrum_right) imag_right = np.imag(spectrum_right) f1 = (real_left * real_right) * (real_left * real_right) f2 = (imag_left * imag_right) * (imag_left * imag_right) f3 = (imag_left * real_right) * (imag_left * real_right) f4 = (imag_right * real_left) * (imag_right * real_left) nf = np.sqrt(f1 + f2 + f3 + f4) dfl = real_left * real_left + imag_left * imag_left dfr = real_right * real_right + imag_right * imag_right df = dfl + dfr sign = nf / dfl - nf / dfr sign[sign > 0] = 1.0 sign[sign < 0] = -1.0 return (1.0 - 2.0 * (nf / df)) * sign class SpectralFlux(ExtractorBase): """ Spectral Flux Features. Performs spectral flux analysis using sub-bands from an octave spaced filter bank decomposition. Alluri, Vinoo, and <NAME>. "Exploring perceptual and acoustical correlates of polyphonic timbre." Music Perception 27.3 (2010): 223-242. Tzanetakis, George, and <NAME>. "Multifeature audio segmentation for browsing and annotation." Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. WASPAA'99 (Cat. No. 99TH8452). IEEE, 1999. """ def __init__( self, sample_rate: float, frame_size: int = 2048, num_bands: int = 10, stats: list = None ): super().__init__(sample_rate, pooling=True, stats=stats) self.frame_size = frame_size self.num_bands = num_bands self.band_str = "spectral_flux_band_{}" self.feature_names = [ self.band_str.format(i + 1) for i in range(self.num_bands) ] def __call__(self, audio: np.ndarray): """ Run spectral flux calculations :param audio: Input audio samples :return: feature matrix """ # Pooling for time summarization pool = essentia.Pool() pool_agg = es.PoolAggregator(defaultStats=self.stats) # Window and spectrum for spectral processing window = es.Windowing(type="hann", size=self.frame_size) spectrum = es.Spectrum() # Apply filter bank to audio signal sub_band_audio = utils.octave_filter_bank( audio, self.sample_rate, self.num_bands, 50 ) # Filter bank should return the same number of sub-bands as requested assert len(sub_band_audio) == self.num_bands # Perform spectral flux analysis on each sub-band for i in range(len(sub_band_audio)): sub_band_flux = es.Flux() pool_key = self.band_str.format(i + 1) hop_size = int(self.frame_size / 2) for frame in es.FrameGenerator(sub_band_audio[i], self.frame_size, hop_size): win = window(frame) spec = spectrum(win) flux = sub_band_flux(spec) pool.add(pool_key, flux) stats = pool_agg(pool) results = [stats[feature] for feature in self.get_headers()] return results class ZeroCrossingRate(ExtractorBase): """ Zero Crossing Rate """ def __init__( self, sample_rate: float, frame_size: float = 2048, stats: list = None ): super().__init__(sample_rate, pooling=True, stats=stats) self.frame_size = frame_size self.feature_names = ["zero_crossing_rate"] def __call__(self, audio: np.ndarray): """ Run Zero-crossing rate feature :param audio: Input audio samples :return: feature matrix """ zero_crossing_rate = es.ZeroCrossingRate() pool = essentia.Pool() pool_agg = es.PoolAggregator(defaultStats=self.stats) # Run frame-by-frame processing with a one half hop size for frame in es.FrameGenerator(audio, self.frame_size, self.frame_size // 2): zcr = zero_crossing_rate(frame) pool.add(self.feature_names[0], zcr) stats = pool_agg(pool) results = [stats[feature] for feature in self.get_headers()] return results ``` #### File: src/uvic_music_extractor/utils.py ```python import os import numpy as np from scipy.signal import ellip, sosfilt import essentia.standard as es def get_audio_files(location, sort=True): """ Search the location provided for audio files :param location: (str) - path of audio file or directory of files :param sort: (bool) - return the list of audio files in sorted order, defaults to True :return: (list) - audio files """ # Get list of audio samples - either from a directory or single file audio_files = [] if os.path.isdir(location): audio_files = [os.path.abspath(os.path.join(location, f)) for f in os.listdir(location) if f.endswith('.wav')] elif os.path.isfile(location) and location.endswith('.wav'): audio_files = [os.path.abspath(location)] if not audio_files: raise RuntimeError("Could not find any audio files at location: {}".format(location)) if sort: audio_files = sorted(audio_files) return audio_files def load_audio(path, sample_rate, mono=True): """ Load an audio file using Essentia :param path: (str) location of audio file to load :param sample_rate: (int) sampling rate to load audio at :param mono: (bool) convert file to mono, defaults to True :return: audio samples """ # Load audio file loader = es.AudioLoader(filename=path) results = loader() samples = results[0] orig_rate = results[1] channels = results[2] # Make sure we get a mono or stereo audio if channels > 2: raise RuntimeError("Can't handle more than two audio channels.") # If there is only one channel, duplicate the first over to the second. # Essentia always loads as a stereo audio file and the right channel is # all zeros in this case. We'll convert to a stereo file for some of the # processing here such as the Loudness Normalization. if channels == 1: samples[:, 1] = samples[:, 0] # Mix to mono if required if mono: samples = mix_to_mono(samples) # Perform resampling if required if orig_rate != sample_rate: resample = es.Resample(inputSampleRate=orig_rate, outputSampleRate=sample_rate) # Resampling for a stereo audio file if not mono: resampled_left = resample(samples[:, 0]) resampled_right = resample(samples[:, 1]) samples = np.array([resampled_left, resampled_right]) samples = samples.T # Resampling for a mono audio file else: samples = resample(samples) return samples, channels def mix_to_mono(audio): """ Mix an audio file down to mono :param audio: (np.ndarray) audio samples :return: (nd.ndarray) mono audio samples """ mono_mix = es.MonoMixer() samples = mono_mix(audio, audio.shape[1]) return samples def normalize_loudness(audio, sample_rate, lufs=-24): """ Normalize input audio to a specified value in LUFS :param audio: (np.ndarray) audio samples :param sample_rate: (int) sample rate :param lufs: (float) loudness goal in LUFS :return: (np.ndarray) normalized audio samples """ # Get the current loudness in LUFS loudness = es.LoudnessEBUR128(startAtZero=True, sampleRate=sample_rate) results = loudness(audio) current_lufs = results[2] # Amount in dB that the file needs to be adjusted adjustment = lufs - current_lufs # Apply adjustment to the audio file gain = pow(10, adjustment / 20) normalized = audio * gain return normalized def rms(audio: np.ndarray) -> float: """ Calculate the RMS level for an array :param audio: input audio :return: (float) rms """ result = np.mean(audio * audio) if result != 0.0: result = np.sqrt(result) return result def octave_filter_bank( audio: np.ndarray, sample_rate: float, num_bands: int = 10, low_band: float = 50, ) -> np.ndarray: """ Split an audio signal in octave bands. :param audio: input audio :param sample_rate: audio sampling rate :param num_bands: number of bands to compute :param low_band: lowest band to start at (lowpass up to this) :return: a matrix of audio signals """ # Create the lowpass filter filters = [] sos_low = ellip(2, 3, 60, low_band, btype='lowpass', fs=sample_rate, output='sos') filters.append(sos_low) # Calculate the filters for the octave spaced bandpasses low_freq = low_band high_freq = low_freq for i in range(num_bands - 2): high_freq = low_freq * 2 # Check to make sure that the high band is not above the Nyquist if high_freq >= sample_rate / 2: required_rate = (low_band * 2 ** 8) * 2 raise RuntimeError( f"Sample rate too low for {num_bands} band octave filterbank. " f"Sample rate must be greater than {required_rate}." ) # Create the filter for this band sos_band = ellip(2, 3, 60, [low_freq, high_freq], btype='bandpass', fs=sample_rate, output='sos') filters.append(sos_band) low_freq = high_freq # Now create the highpass filter from the highest band to the Nyquist sos_high = ellip(2, 3, 60, high_freq, btype='highpass', fs=sample_rate, output='sos') filters.append(sos_high) # Apply filters to audio filtered_audio = np.zeros((len(filters), len(audio)), dtype=np.float32) for i in range(len(filters)): y = sosfilt(filters[i], audio) filtered_audio[i] = y return filtered_audio ```
{ "source": "jorsonzen/aliyun-openapi-python-sdk", "score": 2 }
#### File: request/v20201022/CheckSavePayrollDetailRequest.py ```python from aliyunsdkcore.request import RpcRequest from aliyunsdkcompanyreg.endpoint import endpoint_data class CheckSavePayrollDetailRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'companyreg', '2020-10-22', 'CheckSavePayrollDetail','companyreg') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_Income(self): return self.get_query_params().get('Income') def set_Income(self,Income): self.add_query_param('Income',Income) def get_CorporateHousingAccumulationFund(self): return self.get_query_params().get('CorporateHousingAccumulationFund') def set_CorporateHousingAccumulationFund(self,CorporateHousingAccumulationFund): self.add_query_param('CorporateHousingAccumulationFund',CorporateHousingAccumulationFund) def get_PersonHousingAccumulationFund(self): return self.get_query_params().get('PersonHousingAccumulationFund') def set_PersonHousingAccumulationFund(self,PersonHousingAccumulationFund): self.add_query_param('PersonHousingAccumulationFund',PersonHousingAccumulationFund) def get_PersMedicalInsurance(self): return self.get_query_params().get('PersMedicalInsurance') def set_PersMedicalInsurance(self,PersMedicalInsurance): self.add_query_param('PersMedicalInsurance',PersMedicalInsurance) def get_CorpUnemploymentInsurance(self): return self.get_query_params().get('CorpUnemploymentInsurance') def set_CorpUnemploymentInsurance(self,CorpUnemploymentInsurance): self.add_query_param('CorpUnemploymentInsurance',CorpUnemploymentInsurance) def get_Id(self): return self.get_query_params().get('Id') def set_Id(self,Id): self.add_query_param('Id',Id) def get_PersonSocialInsurance(self): return self.get_query_params().get('PersonSocialInsurance') def set_PersonSocialInsurance(self,PersonSocialInsurance): self.add_query_param('PersonSocialInsurance',PersonSocialInsurance) def get_Period(self): return self.get_query_params().get('Period') def set_Period(self,Period): self.add_query_param('Period',Period) def get_CorporateSocialInsurance(self): return self.get_query_params().get('CorporateSocialInsurance') def set_CorporateSocialInsurance(self,CorporateSocialInsurance): self.add_query_param('CorporateSocialInsurance',CorporateSocialInsurance) def get_CorpInjuryInsurance(self): return self.get_query_params().get('CorpInjuryInsurance') def set_CorpInjuryInsurance(self,CorpInjuryInsurance): self.add_query_param('CorpInjuryInsurance',CorpInjuryInsurance) def get_PersPension(self): return self.get_query_params().get('PersPension') def set_PersPension(self,PersPension): self.add_query_param('PersPension',PersPension) def get_CorpMedicalInsurance(self): return self.get_query_params().get('CorpMedicalInsurance') def set_CorpMedicalInsurance(self,CorpMedicalInsurance): self.add_query_param('CorpMedicalInsurance',CorpMedicalInsurance) def get_IdNo(self): return self.get_query_params().get('IdNo') def set_IdNo(self,IdNo): self.add_query_param('IdNo',IdNo) def get_EmployeeTime(self): return self.get_query_params().get('EmployeeTime') def set_EmployeeTime(self,EmployeeTime): self.add_query_param('EmployeeTime',EmployeeTime) def get_UpdateEmployeeFlag(self): return self.get_query_params().get('UpdateEmployeeFlag') def set_UpdateEmployeeFlag(self,UpdateEmployeeFlag): self.add_query_param('UpdateEmployeeFlag',UpdateEmployeeFlag) def get_Phone(self): return self.get_query_params().get('Phone') def set_Phone(self,Phone): self.add_query_param('Phone',Phone) def get_PersUnemploymentInsurance(self): return self.get_query_params().get('PersUnemploymentInsurance') def set_PersUnemploymentInsurance(self,PersUnemploymentInsurance): self.add_query_param('PersUnemploymentInsurance',PersUnemploymentInsurance) def get_BizId(self): return self.get_query_params().get('BizId') def set_BizId(self,BizId): self.add_query_param('BizId',BizId) def get_Name(self): return self.get_query_params().get('Name') def set_Name(self,Name): self.add_query_param('Name',Name) def get_CorpPension(self): return self.get_query_params().get('CorpPension') def set_CorpPension(self,CorpPension): self.add_query_param('CorpPension',CorpPension) def get_CorpMaternityInsurance(self): return self.get_query_params().get('CorpMaternityInsurance') def set_CorpMaternityInsurance(self,CorpMaternityInsurance): self.add_query_param('CorpMaternityInsurance',CorpMaternityInsurance) ``` #### File: request/v20201022/CheckSavePayrollRequest.py ```python from aliyunsdkcore.request import RpcRequest from aliyunsdkcompanyreg.endpoint import endpoint_data class CheckSavePayrollRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'companyreg', '2020-10-22', 'CheckSavePayroll','companyreg') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_Income(self): return self.get_query_params().get('Income') def set_Income(self,Income): self.add_query_param('Income',Income) def get_CorporateHousingAccumulationFund(self): return self.get_query_params().get('CorporateHousingAccumulationFund') def set_CorporateHousingAccumulationFund(self,CorporateHousingAccumulationFund): self.add_query_param('CorporateHousingAccumulationFund',CorporateHousingAccumulationFund) def get_Period(self): return self.get_query_params().get('Period') def set_Period(self,Period): self.add_query_param('Period',Period) def get_CorporateSocialInsurance(self): return self.get_query_params().get('CorporateSocialInsurance') def set_CorporateSocialInsurance(self,CorporateSocialInsurance): self.add_query_param('CorporateSocialInsurance',CorporateSocialInsurance) def get_IdNo(self): return self.get_query_params().get('IdNo') def set_IdNo(self,IdNo): self.add_query_param('IdNo',IdNo) def get_EmployeeTime(self): return self.get_query_params().get('EmployeeTime') def set_EmployeeTime(self,EmployeeTime): self.add_query_param('EmployeeTime',EmployeeTime) def get_PersonHousingAccumulationFund(self): return self.get_query_params().get('PersonHousingAccumulationFund') def set_PersonHousingAccumulationFund(self,PersonHousingAccumulationFund): self.add_query_param('PersonHousingAccumulationFund',PersonHousingAccumulationFund) def get_UpdateEmployeeFlag(self): return self.get_query_params().get('UpdateEmployeeFlag') def set_UpdateEmployeeFlag(self,UpdateEmployeeFlag): self.add_query_param('UpdateEmployeeFlag',UpdateEmployeeFlag) def get_Phone(self): return self.get_query_params().get('Phone') def set_Phone(self,Phone): self.add_query_param('Phone',Phone) def get_BizId(self): return self.get_query_params().get('BizId') def set_BizId(self,BizId): self.add_query_param('BizId',BizId) def get_Name(self): return self.get_query_params().get('Name') def set_Name(self,Name): self.add_query_param('Name',Name) def get_Id(self): return self.get_query_params().get('Id') def set_Id(self,Id): self.add_query_param('Id',Id) def get_PersonSocialInsurance(self): return self.get_query_params().get('PersonSocialInsurance') def set_PersonSocialInsurance(self,PersonSocialInsurance): self.add_query_param('PersonSocialInsurance',PersonSocialInsurance) ``` #### File: request/v20171110/DescribeApplicationResourceSummaryRequest.py ```python from aliyunsdkcore.request import RpcRequest class DescribeApplicationResourceSummaryRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Ens', '2017-11-10', 'DescribeApplicationResourceSummary','ens') self.set_method('POST') def get_Level(self): return self.get_query_params().get('Level') def set_Level(self,Level): self.add_query_param('Level',Level) def get_ResourceType(self): return self.get_query_params().get('ResourceType') def set_ResourceType(self,ResourceType): self.add_query_param('ResourceType',ResourceType) ``` #### File: request/v20171110/RunServiceScheduleRequest.py ```python from aliyunsdkcore.request import RpcRequest class RunServiceScheduleRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Ens', '2017-11-10', 'RunServiceSchedule','ens') self.set_method('POST') def get_Directorys(self): return self.get_query_params().get('Directorys') def set_Directorys(self,Directorys): self.add_query_param('Directorys',Directorys) def get_PreLockedTimeout(self): return self.get_query_params().get('PreLockedTimeout') def set_PreLockedTimeout(self,PreLockedTimeout): self.add_query_param('PreLockedTimeout',PreLockedTimeout) def get_Uuid(self): return self.get_query_params().get('Uuid') def set_Uuid(self,Uuid): self.add_query_param('Uuid',Uuid) def get_ClientIp(self): return self.get_query_params().get('ClientIp') def set_ClientIp(self,ClientIp): self.add_query_param('ClientIp',ClientIp) def get_PodConfigName(self): return self.get_query_params().get('PodConfigName') def set_PodConfigName(self,PodConfigName): self.add_query_param('PodConfigName',PodConfigName) def get_ServiceAction(self): return self.get_query_params().get('ServiceAction') def set_ServiceAction(self,ServiceAction): self.add_query_param('ServiceAction',ServiceAction) def get_ServiceCommands(self): return self.get_query_params().get('ServiceCommands') def set_ServiceCommands(self,ServiceCommands): self.add_query_param('ServiceCommands',ServiceCommands) def get_ScheduleStrategy(self): return self.get_query_params().get('ScheduleStrategy') def set_ScheduleStrategy(self,ScheduleStrategy): self.add_query_param('ScheduleStrategy',ScheduleStrategy) def get_AppId(self): return self.get_query_params().get('AppId') def set_AppId(self,AppId): self.add_query_param('AppId',AppId) ``` #### File: request/v20190531/UpdateConfigRequest.py ```python from aliyunsdkcore.request import RpcRequest from aliyunsdkmse.endpoint import endpoint_data class UpdateConfigRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'mse', '2019-05-31', 'UpdateConfig') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_OpenSuperAcl(self): # String return self.get_body_params().get('OpenSuperAcl') def set_OpenSuperAcl(self, OpenSuperAcl): # String self.add_body_params('OpenSuperAcl', OpenSuperAcl) def get_ConfigAuthEnabled(self): # Boolean return self.get_query_params().get('ConfigAuthEnabled') def set_ConfigAuthEnabled(self, ConfigAuthEnabled): # Boolean self.add_query_param('ConfigAuthEnabled', ConfigAuthEnabled) def get_PassWord(self): # String return self.get_query_params().get('PassWord') def set_PassWord(self, PassWord): # String self.add_query_param('PassWord', <PASSWORD>Word) def get_MaxClientCnxns(self): # String return self.get_query_params().get('MaxClientCnxns') def set_MaxClientCnxns(self, MaxClientCnxns): # String self.add_query_param('MaxClientCnxns', MaxClientCnxns) def get_RequestPars(self): # String return self.get_query_params().get('RequestPars') def set_RequestPars(self, RequestPars): # String self.add_query_param('RequestPars', RequestPars) def get_JuteMaxbuffer(self): # String return self.get_query_params().get('JuteMaxbuffer') def set_JuteMaxbuffer(self, JuteMaxbuffer): # String self.add_query_param('JuteMaxbuffer', JuteMaxbuffer) def get_ConfigType(self): # String return self.get_query_params().get('ConfigType') def set_ConfigType(self, ConfigType): # String self.add_query_param('ConfigType', ConfigType) def get_AutopurgeSnapRetainCount(self): # String return self.get_query_params().get('AutopurgeSnapRetainCount') def set_AutopurgeSnapRetainCount(self, AutopurgeSnapRetainCount): # String self.add_query_param('AutopurgeSnapRetainCount', AutopurgeSnapRetainCount) def get_ConfigSecretEnabled(self): # Boolean return self.get_query_params().get('ConfigSecretEnabled') def set_ConfigSecretEnabled(self, ConfigSecretEnabled): # Boolean self.add_query_param('ConfigSecretEnabled', ConfigSecretEnabled) def get_MCPEnabled(self): # Boolean return self.get_query_params().get('MCPEnabled') def set_MCPEnabled(self, MCPEnabled): # Boolean self.add_query_param('MCPEnabled', MCPEnabled) def get_TickTime(self): # String return self.get_query_params().get('TickTime') def set_TickTime(self, TickTime): # String self.add_query_param('TickTime', TickTime) def get_ClusterId(self): # String return self.get_query_params().get('ClusterId') def set_ClusterId(self, ClusterId): # String self.add_query_param('ClusterId', ClusterId) def get_SyncLimit(self): # String return self.get_query_params().get('SyncLimit') def set_SyncLimit(self, SyncLimit): # String self.add_query_param('SyncLimit', SyncLimit) def get_InstanceId(self): # String return self.get_query_params().get('InstanceId') def set_InstanceId(self, InstanceId): # String self.add_query_param('InstanceId', InstanceId) def get_AutopurgePurgeInterval(self): # String return self.get_query_params().get('AutopurgePurgeInterval') def set_AutopurgePurgeInterval(self, AutopurgePurgeInterval): # String self.add_query_param('AutopurgePurgeInterval', AutopurgePurgeInterval) def get_InitLimit(self): # String return self.get_query_params().get('InitLimit') def set_InitLimit(self, InitLimit): # String self.add_query_param('InitLimit', InitLimit) def get_UserName(self): # String return self.get_query_params().get('UserName') def set_UserName(self, UserName): # String self.add_query_param('UserName', UserName) ```
{ "source": "JortdeBokx/NPO-streams", "score": 2 }
#### File: JortdeBokx/NPO-streams/HDhomerunProxy.py ```python import logging from flask import jsonify, request, abort, Response, stream_with_context # Code similar to https://github.com/jkaberg/tvhProxy from util.Helpers import generate_stream_ffmpeg def setup_hdhrproxy(app, stream_handlers): lineup = [] for sh in stream_handlers: name = sh.__class__.__name__ lineup += sh.get_lineup("http://" + app.config["HOST"] + ":" + str(app.config["PORT"]) + "/" + name) logging.info('Lineup: ' + str(lineup)) @app.route('/<class_name>/<key>') def stream_stuff(class_name, key): sh = None for i in stream_handlers: if i.__class__.__name__ == class_name: sh = i if not sh: abort(404) if not sh.valid_key(key): abort(404) stream_url = sh.get_live_m3u8(str(key), quality=app.config["QUALITY"]) if not stream_url: logging.error("Could not get stream url") abort(404) return Response(stream_with_context(generate_stream_ffmpeg(stream_url)), mimetype="video/mp2t") @app.route('/discover.json') def discover(): discover_data = { 'FriendlyName': 'NPOproxy', 'Manufacturer': 'Silicondust', 'ModelNumber': 'HDTC-2US', 'FirmwareName': 'hdhomeruntc_atsc', 'TunerCount': 1, 'FirmwareVersion': '20150826', 'DeviceID': '12345678', 'DeviceAuth': '<PASSWORD>', 'BaseURL': '%s' % request.host_url, 'LineupURL': '%slineup.json' % request.host_url } return jsonify(discover_data) @app.route('/lineup_status.json') def status(): return jsonify({ 'ScanInProgress': 0, 'ScanPossible': 1, 'Source': "Cable", 'SourceList': ['Cable'] }) @app.route('/lineup.json') def give_lineup(): return jsonify(lineup) @app.route('/lineup.post', methods=['GET', 'POST']) def lineup_post(): return '' @app.route('/') @app.route('/device.xml') def device(): discover_data = { 'FriendlyName': 'NPOproxy', 'Manufacturer': 'Silicondust', 'ModelNumber': 'HDTC-2US', 'FirmwareName': 'hdhomeruntc_atsc', 'TunerCount': 1, 'FirmwareVersion': '20150826', 'DeviceID': '12345678', 'DeviceAuth': '<PASSWORD>', 'BaseURL': '%s' % request.host_url, 'LineupURL': '%slineup.json' % request.host_url } return """ <root xmlns="urn:schemas-upnp-org:device-1-0"> <specVersion> <major>1</major> <minor>0</minor> </specVersion> <URLBase>""" + discover_data["BaseURL"] + """"</URLBase> <device> <deviceType>urn:schemas-upnp-org:device:MediaServer:1</deviceType> <friendlyName>""" + discover_data["FriendlyName"] + """"</friendlyName> <manufacturer>""" + discover_data["Manufacturer"] + """"</manufacturer> <modelName>""" + discover_data["ModelNumber"] + """"</modelName> <modelNumber>""" + discover_data["ModelNumber"] + """"</modelNumber> <serialNumber></serialNumber> <UDN>uuid:""" + discover_data["DeviceID"] + """"</UDN> </device> </root> """, {'Content-Type': 'application/xml'} ``` #### File: NPO-streams/stream_handlers/NPOStreamHandler.py ```python import logging import re import m3u8 import requests from stream_handlers.BaseStreamHandler import BaseStreamHandler NPO_IDA_APP_URI = 'https://ida.omroep.nl/app.php/' NPO_AUTH_URL = "https://ida.omroep.nl/app.php/auth" class NPOStreamHandler(BaseStreamHandler): def __init__(self): """ Initialise NPO stream handler by Reading & verifying the config file """ super().__init__() # Call super init to read config contents if not self.config_data: raise ValueError("No Configfile was set") streams_config = None for streamclass in self.config_data: if streamclass["className"] == self.__class__.__name__: streams_config = streamclass["channels"] if not streams_config: raise ValueError("NPO stream class not in config data, class name: " + self.__class__.__name__) self.streams = [d for d in streams_config] def valid_key(self, key): try: return any(d['key'] == key for d in self.streams) except TypeError: logging.log(logging.ERROR, 'Stream variable was not correctly set in NPO Stream Handler') return False def get_lineup(self, base_url): """ Overwrite function to get lineup object for NPO streams :return: """ lineup = [] try: for d in self.streams: if d['enabled']: url = base_url + "/" + d['key'] lineup.append({'GuideNumber': str(d['number']), 'GuideName': d['name'], 'URL': url }) return lineup except TypeError: logging.log(logging.ERROR, 'No streams were loaded for NPO streamer, check the streams.json file') return [] def get_live_m3u8(self, key, quality=0): """ Get's the m3u8 object in the preferred quality :param key: The key of the livestream, from streams.json :param quality: an integer for the vertical amount of pixels, 0 for maximum quality, invalid -> minimum quality :return: an m3u8 object """ m3u8_location = self.get_live_url(key) if m3u8_location: m3u8_obj = m3u8.load(m3u8_location) Base_URI = m3u8_obj.base_uri if m3u8_obj.is_variant: options = {} for m3u8_playlist in m3u8_obj.playlists: resolution = m3u8_playlist.stream_info.resolution if resolution: # If we don't have the audio-only stream options[str(resolution[1])] = Base_URI + m3u8_playlist.uri if quality == 0: preferred_m3u8_url = options[str(max(options, key=int))] # int refers to function int() else: try: preferred_m3u8_url = options[str(quality)] except KeyError: preferred_m3u8_url = options[str(min(options, key=int))] return preferred_m3u8_url else: return m3u8_obj.uri else: return None def get_live_url(self, key): """ Gets the Streaming url of the live stream identified by key :param key: The key of the livestream, from streams.json :return: URL of the stream """ stream_data = self.get_stream_data(key) selected_stream = "" if stream_data: try: for streams in stream_data['items']: for stream in streams: if stream['contentType'] == "live": selected_stream = stream['url'] break if selected_stream: stream_url = requests.get(selected_stream).text stream_url = stream_url.split('"')[1] stream_url = re.sub(r"\\", '', stream_url) return stream_url except KeyError: logging.log(logging.ERROR, "Data stream contained no content") logging.log(logging.ERROR, "Data stream: " + str(stream_data)) return None else: return None def get_stream_data(self, key): """ Gets the stream Json :param key: The key of the livestream, from streams.json :return: Json object with stream data """ try: auth_token_json = requests.get(NPO_AUTH_URL).json() token = auth_token_json["token"] except IOError: logging.log(logging.ERROR, 'Could not fetch a token from ' + NPO_AUTH_URL) try: data_url = NPO_IDA_APP_URI + key + '?adaptive=no&token=' + token stream_data = requests.get(data_url).json() except TypeError: if not token: logging.log(logging.ERROR, 'Could not fetch NPO streaming token') return None except IOError: logging.log(logging.ERROR, 'Error obtaining streaming data from ' + NPO_IDA_APP_URI + key + '?adaptive=no&token=') return None if "error" in stream_data: logging.log(logging.ERROR, "Error with stream data: " + str(stream_data)) return None return stream_data ```
{ "source": "JortGroen/eyeMouse", "score": 3 }
#### File: eyeMouse/src/data_creation_game4.py ```python import cv2 import numpy as np import dlib from math import hypot import pyautogui import random import subprocess import json import threading import time import os receiveBuffer = "" receiveStatus = 0 DATA = "" stopReader = False class screenShape: width = 0 height = 0 def create_dot(screen, screenSize): screen.fill(255) x = random.randint(1, screenSize.width) y = random.randint(1, screenSize.height) cv2.circle(screen, (x,y), 10, (0,0,255), -1) return (x,y) def dotGreen(screen, targetLoc): #print("dotGreen") screen.fill(255) cv2.circle(screen, targetLoc, 10, (0,255,0), -1) def save_data(): pass def game_init(screenSize, fullScreen=True): screen = np.zeros([screenSize.height,screenSize.width,3],dtype=np.uint8) screen.fill(255) targetLoc = (int(screenSize.width/2),int(screenSize.height/2)) cv2.circle(screen, targetLoc, 10, (0,0,255), -1) if fullScreen==True: cv2.namedWindow("window", cv2.WND_PROP_FULLSCREEN) cv2.setWindowProperty("window",cv2.WND_PROP_FULLSCREEN,cv2.WINDOW_FULLSCREEN) return screen, screenSize, targetLoc def dataReceiver(process): global receiveBuffer, receiveStatus, DATA, stopReader newData = False while(stopReader==False and process.poll()==None): outputRaw = process.stdout.readline() output = str(outputRaw.strip())[2:-1] index = output.find("<data>") if index > -1: #print("start!") receiveBuffer = "" output = output[index+6:] if receiveStatus==1: print("WARNING: I received a data start key without finishing my previous data read, data might be corrupted!") receiveStatus = 1 index = output.find("</data>") if index > -1: #print("stop!") receiveBuffer = receiveBuffer+output[:index] #print(receiveBuffer) receiveStatus = 0 DATA = receiveBuffer newData = True if receiveStatus==1: receiveBuffer = receiveBuffer+output process.kill() def startupRecognition(): global DATA, stopReader #process = subprocess.Popen(['echo', '"Hello stdout"'], stdout=subprocess.PIPE) #process = subprocess.Popen(["python", "testPrinter.py"], stdout=subprocess.PIPE) process = subprocess.Popen(["python", "featureGrabber.py"], stdout=subprocess.PIPE) threadReader = threading.Thread(target=dataReceiver, args=(process,)) threadReader.start() print("waiting for the recognition model to start up, this can take a minute") print("please make sure privacy cover is away from the camera") t=0 timer=0 while process.poll() is None and len(DATA)==0: # wait untill first data is received t=t+1 if t>100000: print(".", end='') t=0 timer=timer+1 assert len(DATA)>0,"ERROR: something went wrong, couldn't have communication with the recognition model" print("took us",timer) print("\nlets goooo!!!") return process def storeDatapoint(targetLoc): global DATA print("targetLoc:",targetLoc,"DATA:",DATA) data = DATA DATA="" data = json.loads(data) def main(): global stopReader started=False process = startupRecognition() screenSize = pyautogui.size() screenSize = screenShape() screenSize.width = 100 screenSize.height = 100 screen, screenSize, targetLoc = game_init(screenSize, fullScreen=False) while True: cv2.imshow('window', screen) if len(DATA)>0: dotGreen(screen, targetLoc) key = cv2.waitKey(1) if key == 32: if len(DATA)>0: if started: storeDatapoint(targetLoc) else: started=True targetLoc = create_dot(screen, screenSize) else: print("no new data") #cv2.putText(screen, 'face', (10,30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255),2, cv2.LINE_AA) if key == 27: stopReader=True print("quitting") break if process.poll() is not None: print("the model stopped, will quit now too") stopReader=True break cv2.destroyAllWindows() main() ```
{ "source": "jortizcs/machine-learning", "score": 3 }
#### File: udacity/linearAlgebra/vector.py ```python import math from decimal import Decimal, getcontext getcontext().prec = 30 class Vector(object): def __init__(self, coordinates): try: if not coordinates: raise ValueError self.coordinates = tuple(coordinates) self.dimension = len(coordinates) except ValueError: raise ValueError('The coordinates must be nonempty') except TypeError: raise TypeError('The coordinates myst be an iterable') def __str__(self): return 'Vector: {}'.format(self.coordinates) def __eq__(self, v): return self.coordinates == v.coordinates def __add__(self, v): if self.dimension != v.dimension: raise ValueError('Vector must be the same length') #sum_ = [] #for i in range(self.dimension): # sum_.append(self.coordinates[i]+v.coordinates[i]) sum_ = [x+y for x,y in zip(self.coordinates,v.coordinates)] return Vector(sum_) def __sub__(self, v): if self.dimension != v.dimension: raise ValueError('Vector must be the same length') m = v*-1 return m+self def __mul__(self, f): #s_ = [] #for i in range(self.dimension): # s_.append(f*self.coordinates[i]) s_ = [f*x for x in self.coordinates] return Vector(s_) def magnitude(self): #for x in self.coordinates: # print x return math.sqrt(sum([float(x)**2 for x in self.coordinates])) def normalize(self): if self.magnitude()==0: return 0 return self*(1/self.magnitude()) def dot(self, x): return sum([float(x)*float(y) for x,y in zip(x.coordinates, self.coordinates)]) def angle_rads(self, x): mag_x = x.magnitude() mag_y = self.magnitude() if mag_x == 0 or mag_y==0: raise ValueError('magnitude or x or self is 0') #print type(self.dot(x)) #print type(mag_x) #print type(mag_y) #print self.dot(x)/(mag_x*mag_y) v = self.dot(x)/(mag_x*mag_y) v = float("{0:.3f}".format(v)) return math.acos(v) def angle_deg(self, x): return math.degrees(self.angle_rads(x)) def is_zero(self): return self.magnitude()<1e-10 def is_parallel(self, x): if x.magnitude()==0 or self.magnitude()==0: return True res = self.angle_deg(x) #print res if res==180 or res==0 or res<=1e-10: return True return False def is_orthogonal(self, x): if x.magnitude()==0 or self.magnitude()==0: return True res = self.dot(x) #print "ortho:" + str(res) if res==0 or abs(res)<1e-10: return True return False def proj(self,b): b_norm = b.normalize() return b_norm*self.dot(b_norm) def perp(self, b): v_parallel = self.proj(b) return self-v_parallel def cross(self, w): if self.dimension ==3 and w.dimension==3: v=self new_vec = Vector([(v.coordinates[1]*w.coordinates[2])-(v.coordinates[2]*w.coordinates[1]),\ -1*((v.coordinates[0]*w.coordinates[2])-(v.coordinates[2]*w.coordinates[0])),\ (v.coordinates[0]*w.coordinates[1])-(v.coordinates[1]*w.coordinates[0])]) return new_vec return None def parallelogram_area(self, w): theta = self.angle_rads(w) if abs(theta)<1e-10: theta=0 return (self.magnitude()*w.magnitude())*math.sin(theta) def parallelogram_area2(self, w): return self.cross(w).magnitude() def triangle_area(self, w): return 0.5*self.parallelogram_area(w) ''' # Quiz v1 = Vector([8.218,-9.341]) v2 = Vector([-1.129,2.111]) print v1+v2 v3 = Vector([7.119,8.215]) v4 = Vector([-8.223,0.878]) print v3-v4 f = 7.41 v5=Vector([1.671, -1.012, -0.318]) print v5*f print '\nMagnitude and normalization' v6 = Vector([-0.221,7.437]) print v6 print 'magnitude: ' + str(v6.magnitude()) v7=Vector([8.813,-1.331,-6.247]) print v7 print 'magnitude: ' + str(v7.magnitude()) v8 = Vector([5.581,-2.136]) print v8 print v8.normalize() v9=Vector([1.996,3.108,-4.554]) print v9 print v9.normalize() # Coding Dot product and angle print '\n\nCoding Dot product and angle' v10=Vector([7.887,4.138]) v11=Vector([-8.802,6.776]) print v10 print v11 print 'dot: ' + str(v10.dot(v11)) v12 = Vector([-5.955,-4.904, -1.874]) v13 = Vector([-4.496,-8.755, 7.103]) print '\n' print v12 print v13 print 'dot: ' + str(v12.dot(v13)) v14=Vector([3.183,-7.627]) v15=Vector([-2.668, 5.319]) print '\n' print v14 print v15 print v14.angle_rads(v15) v16=Vector([7.35,0.221, 5.188]) v17=Vector([2.751,8.259, 3.985]) print '\n' print v16 print v17 print v16.angle_deg(v17) # Parellelism and Orthogonality print '\n\n\n############# Parellelism and Orthogonality' v18=Vector([-7.579,-7.88]) v19=Vector([22.737,23.64]) print v18 print v19 print 'parallel? ' + str(v18.is_parallel(v19)) print 'orthogonal? ' + str(v18.is_orthogonal(v19)) + '\n' v20=Vector([-2.029,9.97, 4.172]) v21=Vector([-9.231, -6.639, -7.245]) print v20 print v21 print 'parallel? ' + str(v20.is_parallel(v21)) print 'orthogonal? ' + str(v20.is_orthogonal(v21)) + '\n' v22=Vector([-2.328, -7.284, -1.214]) v23=Vector([-1.821, 1.072, -2.94]) print v22 print v23 print 'parallel? ' + str(v22.is_parallel(v23)) print 'orthogonal? ' + str(v22.is_orthogonal(v23)) + '\n' v24=Vector([2.118,4.827]) v25=Vector([0.0,0.0]) print v24 print v25 print 'parallel? ' + str(v24.is_parallel(v25)) print 'orthogonal? ' + str(v24.is_orthogonal(v25)) + '\n' print '\n\n##### Projections #####' v26 = Vector([3.039, 1.879]) v27 = Vector([0.825, 2.036]) print v26 print v27 print v26.proj(v27) v28=Vector([-9.88, -3.264, -8.159]) v29=Vector([-2.155, -9.353, -9.473]) print '' print v28 print v29 print v28.perp(v29) v30=Vector([3.009, -6.172, 3.692, -2.51]) v31=Vector([6.404, -9.144, 2.759, 8.718]) print '' print v30 print v31 print v30.proj(v31) print v30.perp(v31) print v30.proj(v31)+v30.perp(v31) print v30.proj(v31).is_parallel(v31) print v30.perp(v31).is_orthogonal(v31) # Cross product print '' print '########### Cross product #######\n' v32=Vector([8.462, 7.893, -8.187]) v33=Vector([6.984, -5.975, 4.778]) print v32.cross(v33) print v32.cross(v33).is_orthogonal(v32) print v32.cross(v33).is_orthogonal(v33) print v32.parallelogram_area(v33) print v32.parallelogram_area2(v33) print '' v34 = Vector([-8.987, -9.838, 5.031]) v35 = Vector([-4.268, -1.861, -8.866]) print v34.parallelogram_area(v35) print '' v36 = Vector([1.5, 9.547, 3.691]) v37 = Vector([-6.007, 0.124, 5.772]) print v36.triangle_area(v37) ''' ```
{ "source": "jortizcs/Pangia", "score": 3 }
#### File: Pangia/sbs/reportError.py ```python import smtplib import sys from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText def sendError(recipient, reportURL): SMTP_SERVER = 'smtp.gmail.com' SMTP_PORT = 587 sender = '<EMAIL>' secret = 'temp9999' subject = "An error happen in SBS/Pangia" "Sends an e-mail to the specified recipient." # Create message container - the correct MIME type is multipart/alternative. msg = MIMEMultipart('alternative') msg['Subject'] = subject msg['From'] = sender msg['To'] = recipient html = """\ <html> <head></head> <body> {0} </body> </html> """.format(reportURL) part2 = MIMEText(html, 'html') msg.attach(part2) session = smtplib.SMTP(SMTP_SERVER, SMTP_PORT) session.ehlo() session.starttls() session.ehlo session.login(sender, secret) session.sendmail(sender, recipient, msg.as_string()) session.quit() if __name__ == "__main__": if len(sys.argv) < 3: print("usage: {0} emailAddress message".format(sys.argv[0])); quit(); sendError(sys.argv[1], sys.argv[2]) ```
{ "source": "JortRoelofs/PlaneProject", "score": 3 }
#### File: JortRoelofs/PlaneProject/analyze.py ```python import sys from functools import partial from multiprocessing import Pool import numpy as np import scipy as sp from scipy import integrate, interpolate import structure import util class MoIXXCalculator: def __init__(self, load_case): self.load_case = load_case def calc(self, size): pool = Pool(size) results = pool.map(self.value, self.load_case.range) pool.close() pool.join() func = interpolate.interp1d(self.load_case.range, results, kind='cubic', fill_value="extrapolate") self.load_case.wing.wing_box.moi_xx = func return func def value(self, y): return self.load_case.wing.wing_box.calc_moi_xx(y) class MoIPolarCalculator: def __init__(self, load_case): self.load_case = load_case def calc(self, size): pool = Pool(size) results = pool.map(self.value, self.load_case.range) pool.close() pool.join() func = interpolate.interp1d(self.load_case.range, results, kind='cubic', fill_value="extrapolate") self.load_case.wing.wing_box.moi_polar = func return func def value(self, y): return self.load_case.wing.wing_box.calc_moi_polar(y) class ShearCalculator: def __init__(self, load_case): self.load_case = load_case self.wing_box = load_case.wing.wing_box def calc(self, size): pool = Pool(size) results = pool.map(self.value, self.load_case.range) pool.close() pool.join() self.print_result(results) return interpolate.interp1d(self.load_case.range, results, kind='cubic', fill_value="extrapolate") def value(self, y): return self.shear(y) + self.fuel(y) + self.weight_wing_box(y) + self.weight_wing(y)+ self.engine(y) def shear(self, y): func = lambda y2: self.load_case.wing.lift(y2, self.load_case.density, self.load_case.velocity) return integrate.quad(func, y, self.wing_box.end_y)[0] def fuel(self, y): return - integrate.quad(self.load_case.wing.fuel_tank.fuel_cross_section, y, self.wing_box.end_y, limit=100, epsrel=1.49e-06)[0] * structure.FuelTank.rho_fuel * 9.81 def weight_wing_box(self, y): return -9.81 * self.wing_box.material.density * integrate.quad(self.wing_box.calc_material_area, y, self.wing_box.end_y, epsabs=1.49e-06)[0] def weight_wing(self, y): return - 9.81 * 2.06 * 0.001 * self.wing_box.material.density * integrate.quad(self.load_case.wing.chord, y, self.wing_box.end_y)[0] def engine(self, y): if y <= self.load_case.wing.engine.y: return - self.load_case.wing.engine.weight else: return 0 def calc_weight_wing_box(self): return - self.weight_wing_box(0) def print_result(self, results): abs_min = abs(min(results)) abs_max = abs(max(results)) max_value = abs_max if abs_max > abs_min else abs_min print("Magnitude of maximum shear force: {0:.3e} [N]".format(max_value)) class MomentCalculator: def __init__(self, load_case, shear): self.load_case = load_case self.shear = shear def calc(self, size): pool = Pool(size) results = pool.map(self.value, self.load_case.range) pool.close() pool.join() self.print_result(results) return interpolate.interp1d(self.load_case.range, results, kind='cubic', fill_value="extrapolate") def value(self, y): return integrate.quad(self.shear, y, self.load_case.wing.wing_box.end_y, epsrel=1.49e-06)[0] def print_result(self, results): abs_min = abs(min(results)) abs_max = abs(max(results)) max_value = abs_max if abs_max > abs_min else abs_min print("Magnitude of maximum bending moment: {0:.3e} [Nm]".format(max_value)) class RotationCalculator: def __init__(self, load_case, moment): self.load_case = load_case self.moment = moment def calc(self, size): pool = Pool(size) results = pool.map(self.value, self.load_case.range) pool.close() pool.join() return interpolate.interp1d(self.load_case.range, results, kind='cubic', fill_value="extrapolate") def value(self, y): return self.rotation(y) def rotation(self, y): func = lambda y2: self.moment(y2) / self.load_case.wing.wing_box.calc_moi_xx(y2) return integrate.quad(func, 0, y, limit=200, epsrel=1.49e-06)[0] / self.load_case.wing.wing_box.material.e_modulus class DeflectionCalculator: def __init__(self, load_case, rotation): self.load_case = load_case self.rotation = rotation def calc(self, size): pool = Pool(size) results = pool.map(self.value, self.load_case.range) pool.close() pool.join() self.print_result(results) return interpolate.interp1d(self.load_case.range, results, kind='cubic', fill_value="extrapolate") def value(self, y): return self.deflection(y) def deflection(self, y): return integrate.quad(self.rotation, 0, y, epsabs=1.49e-06)[0] def print_result(self, results): deflection = results[-1] / (self.load_case.wing.wing_box.end_y * 2) * 100 print("Maximum deflection: {0:.2f} [%]".format(deflection)) if deflection > self.load_case.limit_deflection: util.print_err("Wing box failed: deflection exceeded limits") class TorsionCalculator: def __init__(self, load_case): self.load_case = load_case def calc(self, size): pool = Pool(size) results = pool.map(self.value, self.load_case.range) pool.close() pool.join() self.print_result(results) return interpolate.interp1d(self.load_case.range, results, kind='cubic', fill_value="extrapolate") def value(self, y): return self.lift_moment(y) + self.engine(y) def lift_moment(self, y): func = lambda y2: self.load_case.wing.moment(y2, self.load_case.density, self.load_case.velocity) return integrate.quad(func, y, self.load_case.wing.wing_box.end_y)[0] def engine(self, y): if y <= self.load_case.wing.engine.y: return self.load_case.wing.engine.thrust * self.load_case.wing.engine.z + self.load_case.wing.engine.weight * self.load_case.wing.engine.x else: return 0 def print_result(self, results): abs_min = abs(min(results)) abs_max = abs(max(results)) max_value = abs_max if abs_max > abs_min else abs_min print("Magnitude of maximum torsion: {0:.3e} [Nm]".format(max_value)) class TwistCalculator: def __init__(self, load_case, torsion): self.load_case = load_case self.torsion = torsion def calc(self, size): pool = Pool(size) results = pool.map(self.value, self.load_case.range) pool.close() pool.join() self.print_result(results) return interpolate.interp1d(self.load_case.range, results, kind='cubic', fill_value="extrapolate") def value(self, y): return self.twist(y) def twist(self, y): return integrate.quad(lambda y2: self.torsion(y2) / self.load_case.wing.wing_box.calc_moi_polar(y2), 0, y, limit=200)[0] / self.load_case.wing.wing_box.material.shear_modulus def print_result(self, results): twist = results[-1] * 180 / sp.pi print("Maximum twist: {0:.2f} [deg]".format(twist)) if twist > self.load_case.limit_twist: util.print_err("Wing box failed: twist exceeded limits") class TopPanelStressCalculator: def __init__(self, load_case, moment): self.load_case = load_case self.wing_box = load_case.wing.wing_box self.moment = moment def calc(self, size): pool = Pool(size) results = pool.map(self.value, self.load_case.range) pool.close() pool.join() self.print_result(results) return interpolate.interp1d(self.load_case.range, results, kind="cubic", fill_value="extrapolate") def value(self, y): return - self.moment(y) * (self.wing_box.calc_height(y) / 2 - self.wing_box.calc_centroid_z(y)) / \ self.wing_box.calc_moi_xx(y) def print_result(self, results): abs_min = abs(min(results)) abs_max = abs(max(results)) max_value = max(results) if abs_max > abs_min else min(results) pos = results.index(max_value) * self.load_case.step print("Maximum stress in top panel: {0:.3e} [Pa] at {1:.2f} [m]".format(max_value, pos)) if max_value > self.wing_box.material.yield_stress: util.print_err("Wing box failed: top panel stress exceeded yield stress.") class BottomPanelStressCalculator: def __init__(self, load_case, moment): self.load_case = load_case self.wing_box = load_case.wing.wing_box self.moment = moment def calc(self, size): pool = Pool(size) results = pool.map(self.value, self.load_case.range) pool.close() pool.join() self.print_result(results) return interpolate.interp1d(self.load_case.range, results, kind="cubic", fill_value="extrapolate") def value(self, y): return self.moment(y) * (self.wing_box.calc_height(y) / 2 + self.wing_box.calc_centroid_z(y)) / \ self.wing_box.calc_moi_xx(y) def print_result(self, results): abs_min = abs(min(results)) abs_max = abs(max(results)) max_value = max(results) if abs_max > abs_min else min(results) pos = results.index(max_value) * self.load_case.step print("Maximum stress in bottom panel: {0:.3e} [Pa] at {1:.2f} [m]".format(max_value, pos)) if max_value > self.wing_box.material.yield_stress: util.print_err("Wing box failed: bottom panel stress exceeded yield stress.") class WebBucklingCalculator: ks_clamped = util.load_k("stress_coefficients/ks_clamped.txt") ks_hinged = util.load_k("stress_coefficients/ks_hinged.txt") def __init__(self, load_case, shear, torsion): self.load_case = load_case self.wing_box = load_case.wing.wing_box self.shear = shear self.torsion = torsion self.shear_factor = self.calc_shear_factor() def calc(self, size): pool = Pool(size) results = pool.map(self.value, self.load_case.range) pool.close() pool.join() min_margin = {} min_values = [] for section in self.wing_box.sections: min_margin[section] = [sys.float_info.max, False] for result in results: if result is not None: min_values.append(abs(result[1])) if abs(result[1]) < min_margin[result[0]][0]: min_margin[result[0]][0] = abs(result[1]) min_margin[result[0]][1] = result[2] self.print_result(min_margin) return interpolate.interp1d(self.load_case.range, min_values, kind="cubic", fill_value="extrapolate") def value(self, y): section = self.wing_box.get_active_section(y) shear_stress_avg = self.shear(y) / (self.wing_box.calc_height(y) * (section.front_spar_t + section.back_spar_t)) shear_stress_max = shear_stress_avg * self.shear_factor length = section.end_y - section.start_y width = self.wing_box.calc_height(y) q = self.torsion(y) / (2 * self.wing_box.calc_area_cross_sectional(y)) crit_stress = [self.critical_stress(section.front_spar_t, length, width) - q / section.front_spar_t, self.critical_stress(section.back_spar_t, length, width) + q / section.back_spar_t] return [section, min(crit_stress) / shear_stress_max, crit_stress[0] < crit_stress[1]] # true when lowest safety margin on front spar def max_centroid(self, y): wing_box_section = self.wing_box.get_active_section(y) height = self.wing_box.calc_height(y) / 2 - self.wing_box.calc_centroid_z(y) a = self.wing_box.calc_width(y) * wing_box_section.top_panel_t az = a * height area = height * (wing_box_section.front_spar_t + wing_box_section.back_spar_t) a += area az += area * height / 2 for stringer_set in wing_box_section.stringer_sets: if stringer_set.surface_top: z = height - wing_box_section.top_panel_t - stringer_set.calc_centroid_z() area = stringer_set.calc_area() a += area az += area * z return az / a def calc_shear_factor(self): v_max = 0 y = 0 for step in self.load_case.range: v = abs(self.shear(step)) if v > v_max: v_max = v y = step section = self.wing_box.get_active_section(y) shear_stress_avg = v_max / (self.wing_box.calc_height(y) * (section.front_spar_t + section.back_spar_t)) shear_stress_max = v_max * self.max_centroid(y) / (self.wing_box.calc_moi_xx(y) * (section.front_spar_t + section.back_spar_t)) return shear_stress_max / shear_stress_avg def critical_stress(self, thickness, length, width): k = self.ks_clamped(length / width) return sp.pi ** 2 * k * self.wing_box.material.e_modulus / (12 * (1 - self.wing_box.material.poisson_factor ** 2)) * (thickness / width) ** 2 def print_result(self, min_margin): print("") print("Results for shear buckling") failure = False for section in self.wing_box.sections: if min_margin[section][0] < 1: failure = True print("Wing box section range: {0:.2f}, {1:.2f} [m]; Lowest margin of safety: {2:.2f} on {3}".format(section.start_y, section.end_y, min_margin[section][0], "front spar" if min_margin[section][1] else "back spar")) if failure: util.print_err("Wing box failed due to shear buckling") class SkinBucklingCalculator: kc_b = util.load_k("stress_coefficients/kc_B.txt") kc_c = util.load_k("stress_coefficients/kc_C.txt") def __init__(self, load_case, top_panel_stress, bottom_panel_stress): self.load_case = load_case self.wing_box = load_case.wing.wing_box self.top_panel_stress = top_panel_stress self.bottom_panel_stress = bottom_panel_stress def calc(self, size): pool = Pool(size) results = [] for plate in self.find_plates(): results.append(pool.map(partial(self.value, plate=plate), self.load_case.range)) pool.close() pool.join() min_margin = {} min_values = [sys.float_info.max]*len(self.load_case.range) for section in self.wing_box.sections: min_margin[section] = [sys.float_info.max, None] for results_set in results: for i in range(len(results_set)): if results_set[i] is not None: if 0 < results_set[i][1] < min_values[i]: min_values[i] = results_set[i][1] if 0 < results_set[i][1] < min_margin[results_set[i][0]][0]: min_margin[results_set[i][0]][0] = results_set[i][1] min_margin[results_set[i][0]][1] = results_set[i][2] self.print_result(min_margin) return interpolate.interp1d(self.load_case.range, min_values, kind="cubic", fill_value="extrapolate") def value(self, y, plate): if plate.start_y <= y <= plate.end_y: stress_max = self.top_panel_stress(y) if plate.surface_top else self.bottom_panel_stress(y) length = plate.end_y - plate.start_y width = plate.width * self.wing_box.calc_width(y) ratio = length / width if ratio > 5: ratio = 5 k = self.kc_b(ratio) if plate.side else self.kc_c(ratio) stress_crit = - self.critical_stress(k, plate.thickness, width) return [self.wing_box.get_active_section(y), stress_crit / stress_max, plate] else: return None def find_plates(self): plates = [] for section in self.wing_box.sections: stringer_coords_top = [] stringer_coords_bottom = [] for stringer_set in section.stringer_sets: if stringer_set.surface_top: if stringer_set.amount == 1: stringer_coords_top.append(stringer_set.start_x) else: stringer_coords_top.extend( np.linspace(stringer_set.start_x, stringer_set.end_x, stringer_set.amount)) else: if stringer_set.amount == 1: stringer_coords_bottom.append(stringer_set.start_x) else: stringer_coords_bottom.extend( np.linspace(stringer_set.start_x, stringer_set.end_x, stringer_set.amount)) stringer_coords_top.sort() stringer_coords_bottom.sort() for i in range(len(stringer_coords_top) - 1): width = stringer_coords_top[i + 1] - stringer_coords_top[i] side = stringer_coords_top[i + 1] == 1 or stringer_coords_top[i] == 0 plates.append(util.SkinPlate(section.top_panel_t, section.start_y, section.end_y, width, side, True)) for j in range(len(stringer_coords_bottom) - 1): width = stringer_coords_bottom[j + 1] - stringer_coords_bottom[j] side = stringer_coords_bottom[j + 1] == 1 or stringer_coords_bottom[j] == 0 plates.append(util.SkinPlate(section.bottom_panel_t, section.start_y, section.end_y, width, side, False)) return plates def critical_stress(self, k, thickness, width): return sp.pi ** 2 * k * self.wing_box.material.e_modulus / (12 * (1 - self.wing_box.material.poisson_factor ** 2)) * (thickness / width) ** 2 def print_result(self, min_margin): print("") print("Results for skin buckling") failure = False for section in self.wing_box.sections: if min_margin[section][0] < 1: failure = True print("Wing box section range: {0:.2f}, {1:.2f} [m]; Lowest margin of safety: {2:.2f} on plate with width {3:.2f} [m]".format(section.start_y, section.end_y, min_margin[section][0], min_margin[section][1].width)) if failure: util.print_err("Wing box failed due to skin buckling") class ColumnBucklingCalculator: def __init__(self, load_case, moment): self.moment = moment self.load_case = load_case self.wing_box = load_case.wing.wing_box def calc(self, size): pool = Pool(size) results = [] for section in self.wing_box.sections: for stringer_set in section.stringer_sets: results.append(pool.map(partial(self.value, section=section, stringer_set=stringer_set), self.load_case.range)) pool.close() pool.join() min_margin = {} min_values = [sys.float_info.max]*len(self.load_case.range) for section in self.wing_box.sections: min_margin[section] = [sys.float_info.max, None] for results_set in results: for i in range(len(results_set)): if results_set[i] is not None: if 0 < results_set[i][1] < min_values[i]: min_values[i] = results_set[i][1] if 0 < results_set[i][1] < min_margin[results_set[i][0]][0]: min_margin[results_set[i][0]][0] = results_set[i][1] min_margin[results_set[i][0]][1] = results_set[i][2] self.print_result(min_margin) return interpolate.interp1d(self.load_case.range, min_values, kind="cubic", fill_value="extrapolate") def value(self, y, section, stringer_set): if section.start_y <= y <= section.end_y: height = self.wing_box.calc_height(y) centroid_z = self.wing_box.calc_centroid_z(y) z = height / 2 - stringer_set.calc_centroid_z() if stringer_set.surface_top: z -= centroid_z z = -z else: z += centroid_z max_stress = self.moment(y) * z / self.wing_box.calc_moi_xx(y) crit_stress = - stringer_set.amount * self.critical_load(section.end_y - section.start_y, stringer_set.calc_moi_xx_parallel_axis(height, centroid_z)) / stringer_set.calc_area() return [section, crit_stress / max_stress, stringer_set] else: return None def critical_load(self, length, moi): k = 1 # = 1 if both ends are pinned, 4 if both ends are clamped, 1/4 if one end is fixes and one end is free; # 1/sqrt(K) = 0.7 if one end is pined and one end is free return k * sp.pi ** 2 * self.wing_box.material.e_modulus * moi / length ** 2 def print_result(self, min_margin): print("") print("Results for column buckling") failure = False for section in self.wing_box.sections: if min_margin[section][0] < 1: failure = True print("Wing box section range: {0:.2f}, {1:.2f} [m]; Lowest margin of safety: {2:.2f} on {3} set with size {4}, {5} [m]".format(section.start_y, section.end_y, min_margin[section][0], min_margin[section][1].stringer_type.name, min_margin[section][1].stringer_width, min_margin[section][1].stringer_height)) if failure: util.print_err("Wing box failed due to column buckling") ``` #### File: JortRoelofs/PlaneProject/structure.py ```python import numpy as np import scipy as sp class Wing: def __init__(self): self.name = "" # name self.wing_box = None # WingBox object self.engine = None # Engine object self.fuel_tank = None # FuelTank object self.chord = None # c(y) [m] self.cl0 = None # cl(y) [m] at aoa = 0 [deg] self.cl10 = None # cl(y) [m] at aoa = 10 [deg] self.cd0 = None # cd(y) [m] at aoa = 0 [deg] self.cd10 = None # cd(y) [m] at aoa = 10 [deg] self.cm0 = None # cm(y) [m] at aoa = 0 [deg] self.cm10 = None # cm(y) [m] at aoa = 10 [deg] self.interp_cons = 0 # constant self.aoa = 0 # [rad] self.surface_area = 0 # [m^2] def cl(self, y): return self.cl0(y) + self.interp_cons * (self.cl10(y) - self.cl0(y)) def cd(self, y): return self.cd0(y) + self.interp_cons * (self.cd10(y) - self.cd0(y)) def cm(self, y): return self.cm0(y) + self.interp_cons * (self.cm10(y) - self.cm0(y)) def normal(self, y, density, velocity): return sp.cos(self.aoa) * self.lift(density, velocity, y) + sp.sin(self.aoa) * self.drag(density, velocity, y) def lift(self, y, density, velocity): return 0.5 * density * velocity ** 2 * self.cl(y) * self.chord(y) def drag(self, y, density, velocity): return 0.5 * density * velocity ** 2 * self.cd(y) * self.chord(y) def moment(self, y, density, velocity): return 0.5 * density * velocity ** 2 * self.cm(y) * self.chord(y) ** 2 class WingBox: def __init__(self): self.name = None self.start_y = 0 self.end_y = 0 self.width = None self.height = None self.material = None self.sections = [] self.moi_xx = None self.moi_polar = None def calc_width(self, y): return self.width.evaluate(y=y) def calc_height(self, y): return self.height.evaluate(y=y) def calc_material_area(self, y): section = self.get_active_section(y) return section.calc_material_area(self.calc_width(y), self.calc_height(y)) def calc_area_cross_sectional(self, y): section = self.get_active_section(y) return section.calc_area_cross_sectional(self.calc_width(y), self.calc_height(y)) def calc_circumference(self, y): return 2 * (self.calc_width(y) + self.calc_height(y)) def calc_centroid_x(self, y): return self.get_active_section(y).calc_centroid_x(self.calc_width(y), self.calc_height(y)) def calc_centroid_z(self, y): return self.get_active_section(y).calc_centroid_z(self.calc_width(y), self.calc_height(y)) def calc_moi_xx(self, y): if self.moi_xx is not None: return self.moi_xx(y) else: width = self.calc_width(y) height = self.calc_height(y) section = self.get_active_section(y) centroid_z = self.calc_centroid_z(y) moi_xx = section.calc_moi_xx_parallel_axis(width, height, centroid_z) inside_height = height - section.top_panel_t - section.bottom_panel_t for stringer_set in section.stringer_sets: moi_xx += stringer_set.calc_moi_xx_parallel_axis(inside_height, centroid_z) return moi_xx def calc_moi_zz(self, y): width = self.calc_width(y) height = self.calc_height(y) section = self.get_active_section(y) centroid_x = self.calc_centroid_x(y) moi_zz = section.calc_moi_zz(width, height) + \ section.calc_material_area(width, height) * centroid_x ** 2 inside_width = width - section.front_spar_t - section.bottom_spar_t for stringer_set in section.stringer_sets: moi_zz += stringer_set.calc_moi_zz_parallel_axis(inside_width, centroid_x) return moi_zz def calc_moi_polar(self, y): if self.moi_polar is not None: return self.moi_polar(y) else: section = self.get_active_section(y) integral = self.calc_width(y) * (section.top_panel_t + section.bottom_panel_t) / (section.top_panel_t * section.bottom_panel_t) + \ self.calc_height(y) * (section.front_spar_t + section.back_spar_t) / (section.front_spar_t * section.back_spar_t) return 4 * self.calc_area_cross_sectional(y) ** 2 / integral def get_active_section(self, y): for section in self.sections: if section.start_y <= y <= section.end_y: return section return None class WingBoxSection: def __init__(self): self.start_y = 0.0 self.end_y = 0.0 self.front_spar_t = 0 self.back_spar_t = 0 self.top_panel_t = 0 self.bottom_panel_t = 0 self.stringer_sets = [] def calc_material_area(self, width, height): a = width * (self.top_panel_t + self.bottom_panel_t) + height * (self.front_spar_t + self.back_spar_t) for stringer_set in self.stringer_sets: a += stringer_set.calc_area() return a def calc_area_cross_sectional(self, width, height): return (width - self.front_spar_t - self.back_spar_t) * (height - self.top_panel_t - self.bottom_panel_t) def calc_centroid_x(self, width, height): ax = height * width * (self.back_spar_t - self.front_spar_t) / 2 a = height * (self.front_spar_t + self.back_spar_t) for stringer_set in self.stringer_sets: area = stringer_set.calc_area() x = (width - self.front_spar_t - self.back_spar_t) * (stringer_set.calc_centroid_x() - 0.5) ax += area * x a += area return ax / a def calc_centroid_z(self, width, height): az = width * height * (self.top_panel_t - self.bottom_panel_t) / 2 a = height * (self.top_panel_t + self.bottom_panel_t) for stringer_set in self.stringer_sets: area = stringer_set.calc_area() z = (height - self.top_panel_t - self.bottom_panel_t) * 0.5 - stringer_set.calc_centroid_z() if not stringer_set.surface_top: z = -z az += area * z a += area return az / a def calc_moi_xx(self, width, height): moi = (self.front_spar_t + self.back_spar_t) * height ** 3 / 12 moi += width * self.top_panel_t ** 3 / 12 + width * self.top_panel_t * ((height + self.top_panel_t) / 2) ** 2 moi += width * self.bottom_panel_t ** 3 / 12 + width * self.bottom_panel_t * ((height + self.bottom_panel_t) / 2) ** 2 return moi def calc_moi_xx_parallel_axis(self, width, height, location): moi = self.calc_moi_xx(width, height) moi += (self.front_spar_t + self.back_spar_t) * height * location ** 2 moi += width * self.top_panel_t * ((height + self.top_panel_t) / 2 - location) ** 2 moi += width * self.bottom_panel_t * ((height + self.bottom_panel_t) / 2 + location) ** 2 return moi def calc_moi_zz(self, width, height): return width ** 3 * height / 12 - (width - self.front_spar_t - self.back_spar_t) ** 3 * (height - self.top_panel_t - self.bottom_panel_t) / 12 def calc_moi_polar(self, y, width, height): print(self.start_y + y) def __hash__(self): return hash((self.start_y, self.end_y, self.front_spar_t, self.back_spar_t, self.top_panel_t, self.bottom_panel_t)) def __eq__(self, other): return (self.start_y, self.end_y, self.front_spar_t, self.back_spar_t, self.top_panel_t, self.bottom_panel_t) == (other.start_y, other.end_y, other.front_spar_t, other.back_spar_t, other.top_panel_t, other.bottom_panel_t) class FuelTank: rho_fuel = 0.804e3 # [kg/m^3] def __init__(self): self.start_y = 0 # [m] self.end_y = 0 # [m] self.wing_box = None def fuel_cross_section(self, y): if self.start_y <= y <= self.end_y: return self.wing_box.calc_area_cross_sectional(y) else: return 0.0 class Engine: def __init__(self): self.x = 0 # [m] self.y = 0 # [m] self.z = 0 # [m] self.thrust = 0 # [N] self.weight = 0 # [N] class StringerType: def __init__(self): self.name = "" self.area = None self.centroid_x = None self.centroid_z = None self.moi_xx = None self.moi_zz = None def calc_area(self, width, height, thickness): return self.area.evaluate(w=width, h=height, t=thickness) def calc_centroid_x(self, width, height, thickness): return self.centroid_x.evaluate(w=width, h=height, t=thickness) def calc_centroid_z(self, width, height, thickness): return self.centroid_z.evaluate(w=width, h=height, t=thickness) def calc_moi_xx(self, width, height, thickness): return self.moi_xx.evaluate(w=width, h=height, t=thickness, a=self.calc_area(width, height, thickness), z=self.calc_centroid_z(width, height, thickness)) def calc_moi_zz(self, width, height, thickness): return self.moi_zz.evaluate(w=width, h=height, t=thickness, a=self.calc_area(width, height, thickness), z=self.calc_centroid_x(width, height, thickness)) class StringerSet: def __init__(self): self.stringer_type = None self.amount = 0 self.stringer_width = 0 self.stringer_height = 0 self.stringer_thickness = 0 self.start_x = 0 # fraction of wing box width [-] self.end_x = 0 # fraction [-] self.surface_top = True # True if top, False if bottom def calc_area(self): return self.stringer_type.calc_area(self.stringer_width, self.stringer_height, self.stringer_thickness) * \ self.amount def calc_centroid_x(self, width): return width * (self.start_x + (self.end_x - self.start_x) / 2) def calc_centroid_z(self): centroid = self.stringer_type.calc_centroid_z(self.stringer_width, self.stringer_height, self.stringer_thickness) if self.stringer_height - centroid < centroid: centroid = self.stringer_height - centroid return centroid def calc_moi_xx(self): return self.stringer_type.calc_moi_xx(self.stringer_width, self.stringer_height, self.stringer_thickness) * \ self.amount def calc_moi_xx_parallel_axis(self, height, location): centroid = self.calc_centroid_z() if centroid > (self.stringer_height - centroid): centroid = (self.stringer_height - centroid) z = height / 2 - centroid if self.surface_top: z -= location else: z += location return self.calc_moi_xx() + self.calc_area() * (centroid - location) ** 2 def calc_moi_zz(self, width): centroid_stringer = self.stringer_type.calc_centroid_x(self.stringer_width, self.stringer_height, self.stringer_thickness) if centroid_stringer > (self.stringer_width - centroid_stringer): centroid_stringer = self.stringer_width - centroid_stringer start_x = self.start_x * width + centroid_stringer end_x = self.end_x * width - centroid_stringer centroid = self.calc_centroid_x(width) area = self.stringer_type.calc_area(self.stringer_width, self.stringer_height, self.stringer_thickness) moi_zz = self.amount * self.stringer_type.calc_moi_zz(self.stringer_width, self.stringer_height, self.stringer_thickness) stringer_x = np.linspace(start_x, end_x, self.amount) for x in stringer_x: moi_zz += area * (centroid - x) ** 2 return moi_zz def calc_moi_zz_parallel_axis(self, width, location): centroid_stringer = self.stringer_type.calc_centroid_x(self.stringer_width, self.stringer_height, self.stringer_thickness) if centroid_stringer > (self.stringer_width - centroid_stringer): centroid_stringer = self.stringer_width - centroid_stringer start_x = self.start_x * width + centroid_stringer end_x = self.end_x * width - centroid_stringer area = self.stringer_type.calc_area(self.stringer_width, self.stringer_height, self.stringer_thickness) moi_zz = self.amount * self.stringer_type.calc_moi_zz(self.stringer_width, self.stringer_height, self.stringer_thickness) stringer_x = np.linspace(start_x, end_x, self.amount) for x in stringer_x: moi_zz += area * (location - x) ** 2 return moi_zz class Material: def __init__(self): self.name = "" self.e_modulus = 0 self.shear_modulus = 0 self.poisson_factor = 0 self.yield_stress = 0 self.density = 0 class LoadCase: def __init__(self): self.range = None self.wing = None self.step = 0 self.load_factor = 0 self.velocity = 0 self.density = 0 self.aircraft_weight = 0 self.limit_deflection = 0 self.limit_twist = 0 ``` #### File: JortRoelofs/PlaneProject/util.py ```python import string import sys from scipy import interpolate def print_err(*args, **kwargs): print(*args, file=sys.stderr, **kwargs) def load_k(file): f = open(file, 'r') lines = f.readlines() f.close() val = [[], []] for line in lines: tokens = line.split(',') val[0].append(float(tokens[0])) val[1].append(float(tokens[1])) return interpolate.interp1d(val[0], val[1], kind="cubic", fill_value="extrapolate") class GeometryFunction: def __init__(self, function): self.function = function for c in string.ascii_lowercase: if c in self.function: self.function = self.function.replace(c, "{%s}" % c) def evaluate(self, **kwargs): return eval(self.function.format(**kwargs)) class SkinPlate: def __init__(self, thickness, start_y, end_y, width, side, surface_top): self.thickness = thickness self.start_y = start_y self.end_y = end_y self.width = width self.side = side self.surface_top = surface_top ```
{ "source": "Jortuk/SFIA-1", "score": 3 }
#### File: SFIA-1/tests/test_back_end.py ```python import unittest from flask import abort, url_for from flask_testing import TestCase from application import app, db, bcrypt from flask_login import current_user from application.models import Users, Shoes, Shops, ShoesShops from os import getenv class TestBase(TestCase): def create_app(self): # pass in configurations for test database config_name = 'testing' app.config.update(SQLALCHEMY_DATABASE_URI=getenv('TEST_DB_URI'), SECRET_KEY=getenv('TEST_SECRET_KEY'), WTF_CSRF_ENABLED=False, DEBUG=True ) return app def setUp(self): """ Will be called before every test """ # ensure there is no data in the test database when the test starts db.session.commit() db.drop_all() db.create_all() # create test admin user hashed_pw = bcrypt.generate_password_hash('<PASSWORD>') admin = Users(user_name="testadmin", email="<EMAIL>", password=<PASSWORD>) #create shop inside Shops table shop1= Shops(shop_address="1 Test Address", shop_city="Test1City") shop2 = Shops(shop_address="2 Test Address", shop_city="Test2City") shop3 = Shops(shop_address="3 Test Address", shop_city="Test3City") shop4 = Shops(shop_address="4 Test Address", shop_city="Test4City") shop5 = Shops(shop_address="5 Test Address", shop_city="Test5City") #create shoe inside Shoes table shoe1 = Shoes(shoe_name="testshoe1", shoe_size="S", shoe_price="39.99") shoe2 = Shoes(shoe_name="testshoe2", shoe_size="S", shoe_price="39.99") shoe3 = Shoes(shoe_name="testshoe3", shoe_size="S", shoe_price="39.99") shoe4 = Shoes(shoe_name="testshoe4", shoe_size="S", shoe_price="39.99") shoe5 = Shoes(shoe_name="testshoe5", shoe_size="S", shoe_price="39.99") shoe6 = Shoes(shoe_name="testshoe6", shoe_size="S", shoe_price="39.99") #create shoe inside ShoesShops table shoeshop1 = ShoesShops(quantity=0, shoe_id=2, shop_id=1) shoeshop2 = ShoesShops(quantity=0, shoe_id=3, shop_id=2) shoeshop3 = ShoesShops(quantity=0, shoe_id=4, shop_id=3) shoeshop4 = ShoesShops(quantity=0, shoe_id=5, shop_id=4) shoeshop5 = ShoesShops(quantity=0, shoe_id=6, shop_id=5) #save data to database db.session.add(admin) db.session.add(shop1) db.session.add(shop2) db.session.add(shop3) db.session.add(shop4) db.session.add(shop5) db.session.add(shoe1) db.session.add(shoe2) db.session.add(shoe3) db.session.add(shoe4) db.session.add(shoe5) db.session.add(shoe6) db.session.add(shoeshop1) db.session.add(shoeshop2) db.session.add(shoeshop3) db.session.add(shoeshop4) db.session.add(shoeshop5) db.session.commit() def tearDown(self): """ Will be called after every test """ db.session.remove() db.drop_all() class TestViews(TestBase): def test_home_view(self): response = self.client.get(url_for('home')) self.assertEqual(response.status_code, 200) def test_shoes_view(self): response = self.client.get(url_for('shoes')) self.assertEqual(response.status_code, 200) def test_shops_view(self): response = self.client.get(url_for('shops')) self.assertEqual(response.status_code, 200) def test_login_view(self): response = self.client.get(url_for('login')) self.assertEqual(response.status_code, 200) def test_shop1_view(self): response = self.client.get(url_for('shop1')) self.assertEqual(response.status_code, 200) def test_shop2_view(self): response = self.client.get(url_for('shop2')) self.assertEqual(response.status_code, 200) def test_shop3_view(self): response = self.client.get(url_for('shop3')) self.assertEqual(response.status_code, 200) def test_shop4_view(self): response = self.client.get(url_for('shop4')) self.assertEqual(response.status_code, 200) def test_shop5_view(self): response = self.client.get(url_for('shop5')) self.assertEqual(response.status_code, 200) class TestAuthenticatedViews(TestBase): def test_shoesadmin_view(self): with self.client: self.client.post( url_for('login'), data=dict( email="<EMAIL>", password="<PASSWORD>" ), follow_redirects=True ) response = self.client.get(url_for('shoesadmin')) self.assertEqual(response.status_code, 200) def test_logout_view(self): with self.client: self.client.post( url_for('login'), data=dict( email="<EMAIL>", password="admin2020" ), follow_redirects=True ) response = self.client.get(url_for('logout')) self.assertEqual(response.status_code, 302) def test_shoe_add_view(self): with self.client: self.client.post( url_for('login'), data=dict( email="<EMAIL>", password="<PASSWORD>" ), follow_redirects=True ) response = self.client.get(url_for('addShoe')) self.assertEqual(response.status_code, 200) def test_shoe_update_view(self): with self.client: self.client.post( url_for('login'), data=dict( email="<EMAIL>", password="<PASSWORD>" ), follow_redirects=True ) shoe = Shoes.query.first() response = self.client.get(url_for('updateShoe',id=1)) self.assertEqual(response.status_code, 200) def test_shoe_delete_view(self): with self.client: self.client.post( url_for('login'), data=dict( email="<EMAIL>", password="<PASSWORD>" ), follow_redirects=True ) shoe = Shoes.query.first() response = self.client.get(url_for('deleteShoe',id=1)) self.assertEqual(response.status_code, 302) def test_shop1admin_view(self): with self.client: self.client.post( url_for('login'), data=dict( email="<EMAIL>", password="<PASSWORD>" ), follow_redirects=True ) response = self.client.get(url_for('shop1admin')) self.assertEqual(response.status_code, 200) def test_shop2admin_view(self): with self.client: self.client.post( url_for('login'), data=dict( email="<EMAIL>", password="<PASSWORD>" ), follow_redirects=True ) response = self.client.get(url_for('shop2admin')) self.assertEqual(response.status_code, 200) def test_shop3admin_view(self): with self.client: self.client.post( url_for('login'), data=dict( email="<EMAIL>", password="<PASSWORD>" ), follow_redirects=True ) response = self.client.get(url_for('shop3admin')) self.assertEqual(response.status_code, 200) def test_shop4admin_view(self): with self.client: self.client.post( url_for('login'), data=dict( email="<EMAIL>", password="<PASSWORD>" ), follow_redirects=True ) response = self.client.get(url_for('shop4admin')) self.assertEqual(response.status_code, 200) def test_shop5admin_view(self): with self.client: self.client.post( url_for('login'), data=dict( email="<EMAIL>", password="<PASSWORD>" ), follow_redirects=True ) response = self.client.get(url_for('shop5admin')) self.assertEqual(response.status_code, 200) def test_updateshop1_view(self): with self.client: self.client.post( url_for('login'), data=dict( email="<EMAIL>", password="<PASSWORD>" ), follow_redirects=True ) shoeshop = ShoesShops.query.first() response = self.client.get(url_for('updateShop1',id=2)) self.assertEqual(response.status_code, 200) def test_updateshop2_view(self): with self.client: self.client.post( url_for('login'), data=dict( email="<EMAIL>", password="<PASSWORD>" ), follow_redirects=True ) shoeshop = ShoesShops.query.first() response = self.client.get(url_for('updateShop2',id=2)) self.assertEqual(response.status_code, 200) def test_updateshop3_view(self): with self.client: self.client.post( url_for('login'), data=dict( email="<EMAIL>", password="<PASSWORD>" ), follow_redirects=True ) shoeshop = ShoesShops.query.first() response = self.client.get(url_for('updateShop3',id=2)) self.assertEqual(response.status_code, 200) def test_updateshop4_view(self): with self.client: self.client.post( url_for('login'), data=dict( email="<EMAIL>", password="<PASSWORD>" ), follow_redirects=True ) shoeshop = ShoesShops.query.first() response = self.client.get(url_for('updateShop4',id=2)) self.assertEqual(response.status_code, 200) def test_updateshop5_view(self): with self.client: self.client.post( url_for('login'), data=dict( email="<EMAIL>", password="<PASSWORD>" ), follow_redirects=True ) shoeshop = ShoesShops.query.first() response = self.client.get(url_for('updateShop5',id=2)) self.assertEqual(response.status_code, 200) class TestPosts(TestBase): # def test_login(self): # if current_user.is_authenticated: # url_for('home') # else: # with self.client: # response = self.client.post( # url_for('login'), # data=dict( # email="<EMAIL>", # password="<PASSWORD>" # ), # follow_redirects=True # ) # self.assertIn(b'<EMAIL>', response.data) def test_add_new_shoe(self): with self.client: self.client.post( url_for('login'), data=dict( email="<EMAIL>", password="<PASSWORD>" ), follow_redirects=True ) response = self.client.post( url_for('addShoe'), data=dict( shoe_id=9, shoe_name="Test", shoe_size="S", shoe_price=40 ), follow_redirects=True ) self.assertIn(b'Test', response.data) def test_update_shoe(self): with self.client: self.client.post( url_for('login'), data=dict( email="<EMAIL>", password="<PASSWORD>" ), follow_redirects=True ) response = self.client.post( url_for('updateShoe',id=1), data=dict( shoe_name="UpdateTest", shoe_price=12.34 ), follow_redirects=True ) self.assertIn(b'UpdateTest', response.data) def test_update_shop1(self): with self.client: self.client.post( url_for('login'), data=dict( email="<EMAIL>", password="<PASSWORD>" ), follow_redirects=True ) response = self.client.post( '/update_shop1/2', data=dict( quantity="14" ), follow_redirects=True ) self.assertIn(b"14", response.data) def test_update_shop2(self): with self.client: self.client.post( url_for('login'), data=dict( email="<EMAIL>", password="<PASSWORD>" ), follow_redirects=True ) response = self.client.post( 'update_shop2/3', data=dict( quantity="52" ), follow_redirects=True ) self.assertIn(b"52", response.data) def test_update_shop3(self): with self.client: self.client.post( url_for('login'), data=dict( email="<EMAIL>", password="<PASSWORD>" ), follow_redirects=True ) response = self.client.post( '/update_shop3/4', data=dict( quantity="11" ), follow_redirects=True ) self.assertIn(b"11", response.data) def test_update_shop4(self): with self.client: self.client.post( url_for('login'), data=dict( email="<EMAIL>", password="<PASSWORD>" ), follow_redirects=True ) response = self.client.post( '/update_shop4/5', data=dict( quantity="23" ), follow_redirects=True ) self.assertIn(b"23", response.data) def test_update_shop5(self): with self.client: self.client.post( url_for('login'), data=dict( email="<EMAIL>", password="<PASSWORD>" ), follow_redirects=True ) response = self.client.post( '/update_shop5/6', data=dict( quantity="50" ), follow_redirects=True ) self.assertIn(b"50", response.data) ```
{ "source": "Jortuk/SFIA-2", "score": 2 }
#### File: service_3/application/__init__.py ```python from flask import Flask, request import requests from flask_sqlalchemy import SQLAlchemy from os import getenv import random app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI']=getenv('SFIA2_DB_URI') app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False app.config['SECRET_KEY'] = getenv('SECRET_KEY') db = SQLAlchemy(app) from application.models import Dessert @app.route('/', methods=['GET', 'POST']) def dessert(): rand = random.randint(1, 20) getDessert = Dessert.query.filter_by(id=rand).first() print(getDessert) return str(getDessert) ```
{ "source": "jortvangorkum/Network-Science-Hierarchical-Dendrogram", "score": 2 }
#### File: jortvangorkum/Network-Science-Hierarchical-Dendrogram/main.py ```python from src.results.latex import generate_latex_information from src.comparison.testing import tost_test, ttest_paired from src.results.main import print_graph_information, print_hypothesis_testing from src.algorithms.main import execute_algorithms import matplotlib.pyplot as plt dpi = 96 plt.rcParams["figure.figsize"] = (2000 / dpi, 1200 / dpi) plt.rcParams["figure.dpi"] = dpi files = [ ("Contiguous USA", "download.tsv.contiguous-usa/contiguous-usa/out.contiguous-usa", " "), ("Dolphins", "download.tsv.dolphins/dolphins/out.dolphins", "\t"), ("PDZBase", "download.tsv.maayan-pdzbase/maayan-pdzbase/out.maayan-pdzbase", "\t"), ("<NAME>", "download.tsv.adjnoun_adjacency/adjnoun_adjacency/out.adjnoun_adjacency_adjacency", " "), ("American Football", "download.tsv.dimacs10-football/dimacs10-football/out.dimacs10-football", "\t") ] def execute_algorithms_on_files(): for (name, file_path, delimiter) in files: print(f"\n\n{name}\n") (ravasz, girvan_newman) = execute_algorithms(file_path, delimiter) generate_latex_information(name, ravasz, girvan_newman) print("\nRavasz:") print_graph_information(name, ravasz[0]) print_graph_information(name, ravasz[1]) print("\nGirvan-Newman") print_graph_information(name, girvan_newman[0]) print_graph_information(name, girvan_newman[1]) execute_algorithms_on_files() ``` #### File: src/algorithms/girvan_newman.py ```python from networkx.algorithms.centrality.betweenness import edge_betweenness_centrality from networkx.algorithms.community.centrality import girvan_newman import numpy as np def highest_valuable_edge(graph, k): betweenness = edge_betweenness_centrality(graph, k=k) return max(betweenness, key=betweenness.get) def create_list_of_iterator(iterator): return np.array(list(iterator), dtype=object) def girvan_newman_algorithm(graph, k=None): if k is not None: return create_list_of_iterator(girvan_newman(graph, lambda g: highest_valuable_edge(g, k))) return create_list_of_iterator(girvan_newman(graph)) def convert_clusters_to_labels(clusters, n_nodes): pred_labels = np.empty(n_nodes) for (i, cluster) in enumerate(clusters): for x in cluster: pred_labels[int(x) - 1] = i return pred_labels ``` #### File: src/algorithms/main.py ```python import matplotlib.pyplot as plt from src.results.latex import generate_latex_table from src.results.dendrogram import networkx_to_dendrogram, scipy_to_dendrogram from src.results.main import graph_quality_measures, print_information from src.algorithms.girvan_newman import girvan_newman_algorithm from src.algorithms.ravasz import ravasz_algorithm from src.comparison.main import determine_measures from src.data import get_data_from_path def execute_ravasz_algorithm(file_path, delimiter): (G, A, L, label_count) = get_data_from_path(file_path, delimiter) (Z, mem_usages, durations, clusters_sizes, sil_scores, cal_har_scores, dav_bou_scores) = determine_measures(G, A, lambda: ravasz_algorithm(A), "Ravasz") print("Ravasz:") print_information(mem_usages, durations, sil_scores, cal_har_scores, dav_bou_scores) graph_quality_measures(clusters_sizes, sil_scores, cal_har_scores, dav_bou_scores) scipy_to_dendrogram(Z) return (mem_usages, durations, sil_scores, cal_har_scores, dav_bou_scores) def execute_girvan_newman_algorithm(file_path, delimiter): (G, A, L, label_count) = get_data_from_path(file_path, delimiter) (clusters, mem_usages, durations, clusters_sizes, sil_scores, cal_har_scores, dav_bou_scores) = determine_measures(G, A, lambda: girvan_newman_algorithm(G), "Girvan-Newman") print("\nGirvan-Newman:") print_information(mem_usages, durations, sil_scores, cal_har_scores, dav_bou_scores) graph_quality_measures(clusters_sizes, sil_scores, cal_har_scores, dav_bou_scores) networkx_to_dendrogram(G, clusters) return (mem_usages, durations, sil_scores, cal_har_scores, dav_bou_scores) def execute_algorithms(file_path, delimiter): ravasz = execute_ravasz_algorithm(file_path, delimiter) girvan_newman = execute_girvan_newman_algorithm(file_path, delimiter) return (ravasz, girvan_newman) ```
{ "source": "jortvangorkum/thesis-paper", "score": 3 }
#### File: generate-graphs/generate_graphs/memory.py ```python import ast from glob import glob import os import pathlib import pandas as pd def parse_memory_data_file(data_memory_path: str, folder_name: str) -> pd.DataFrame: df_data_memory = pd.DataFrame(columns=['Benchmark Type', 'Benchmark', 'Amount Nodes', 'Bytes Allocated', 'Average Bytes Used', 'Max Bytes Used']) benchmark_type_paths = glob(f"{data_memory_path}/{folder_name}/**") benchmark_type_names = [pathlib.PurePath(folder).name for folder in benchmark_type_paths] for (benchmark_type_path, benchmark_type_name) in zip(benchmark_type_paths, benchmark_type_names): benchmark_paths = glob(f"{benchmark_type_path}/**") benchmark_names = [pathlib.PurePath(folder).name for folder in benchmark_paths] for (benchmark_path, benchmark_name) in zip(benchmark_paths, benchmark_names): amount_nodes_file_paths = glob(f"{benchmark_path}/**") list_amount_nodes = [os.path.splitext(pathlib.PurePath(file).name)[0] for file in amount_nodes_file_paths] for (amount_nodes_file_path, amount_nodes) in zip(amount_nodes_file_paths, list_amount_nodes): with open(amount_nodes_file_path, 'r') as data_memory_file: data_memory_contents = data_memory_file.read() dict_memory_values = dict(ast.literal_eval(data_memory_contents)) average_bytes_used = dict_memory_values["average_bytes_used"] max_bytes_used = dict_memory_values["max_bytes_used"] bytes_allocated = dict_memory_values["bytes allocated"] df_data_memory.loc[len(df_data_memory.index)] = [benchmark_type_name, benchmark_name, int(amount_nodes), int(bytes_allocated), int(average_bytes_used), int(max_bytes_used)] # type: ignore df_data_memory.sort_values('Benchmark', inplace=True) df_data_memory_single_iteration = df_data_memory[df_data_memory['Benchmark Type'] == 'Single Iteration'] df_data_memory_single_iteration = df_data_memory_single_iteration.drop('Benchmark Type', axis=1) print(df_data_memory_single_iteration) return df_data_memory_single_iteration ```
{ "source": "jorvasquezr/IA_ChessGame_Solver", "score": 3 }
#### File: jorvasquezr/IA_ChessGame_Solver/boardCreatorGUI.py ```python import pyglet from pyglet.window import mouse import pyglet import itertools import chessGUI import chess from game import Game from pyglet_gui.manager import Manager from pyglet_gui.buttons import Button, OneTimeButton, Checkbox, GroupButton from pyglet_gui.containers import VerticalContainer from pyglet_gui.theme import Theme import theme from pyglet_gui.manager import Manager from pyglet_gui.constants import * from pyglet_gui.buttons import Button, OneTimeButton, Checkbox, GroupButton from pyglet_gui.gui import Label from pyglet_gui.containers import VerticalContainer,HorizontalContainer from pyglet_gui.theme import Theme from theme import getTheme class BoardCreatorGUI(pyglet.window.Window): spriteimage = pyglet.resource.image('resources/spritesheet.png') backgroundImg = pyglet.resource.image('resources/Background.png') chessboard = pyglet.resource.image('resources/chessboard.png') chessboardInv = pyglet.resource.image('resources/chessboardflipped.png') spritesheet = pyglet.image.ImageGrid(spriteimage, 2, 6) BLACK_KING, BLACK_QUEEN, BLACK_BISHOP, BLACK_KNIGHT, BLACK_ROOK, BLACK_PAWN, WHITE_KING, WHITE_QUEEN, WHITE_BISHOP, \ WHITE_KNIGHT, WHITE_ROOK, WHITE_PAWN = range(12) piecesIds=["NR", "ND", "NA","NC", "NT", "NP","BR", "BD", "BA","BC", "BT", "BP"] dictPieces = {"NR": spritesheet[BLACK_KING], "ND": spritesheet[BLACK_QUEEN], "NA": spritesheet[BLACK_BISHOP], "NC": spritesheet[BLACK_KNIGHT], "NT": spritesheet[BLACK_ROOK], "NP": spritesheet[BLACK_PAWN], "BR": spritesheet[WHITE_KING], "BD": spritesheet[WHITE_QUEEN], "BA": spritesheet[WHITE_BISHOP], "BC": spritesheet[WHITE_KNIGHT], "BT": spritesheet[WHITE_ROOK], "BP": spritesheet[WHITE_PAWN]} # ["BTf1", "NTe7", "BAd5", "BRd6", "NRd8"] colPositions = {0:"a", 1:"b", 2:"c", 3:"d", 4:"e", 5:"f", 6:"g", 7:"h" } colPositionsInv = {"a": 0, "b": 1, "c": 2, "d": 3, "e": 4, "f": 5, "g": 6, "h": 7} stdChesBoard = ["NTh1", "NAh3", "NCh2", "NDh4", "NRh5", "NTh8", "NAh6", "NCh7", "NPg1", "NPg2", "NPg3", "NPg4", "NPg5", "NPg6", "NPg7", "NPg8", "BPb1", "BPb2", "BPb3", "BPb4", "BPb5", "BPb6", "BPb7", "BPb8", "BTa1", "BAa3", "BCa2", "BDa4", "BRa5", "BTa8", "BAa6", "BCa7"] testCastling = ["NTh1", "NRh5", "NTh8", "NPg1", "NPb3", "NPg5", "NPg7", "BPb7", "BPg2", "BPb6", "BPb8", "BTa1", "BRa5", "BTa8",] spanishToEnglish = {"A": "B", "T": "R", "D": "Q", "R": "K", "P": "P", "C": "N"} englishToSpanish = {"B": "A", "R": "T", "Q": "D", "K": "R", "P": "P", "N": "C"} turn="B" playerTurn="B" ia_mode=False blackKing=None whiteKing=None promotion= False promotionMov=[] promotedPiece="" piece_held = None piece_heldId="" old_pos=(-1,-1) newPiece=False blackKingOnBoard=False whiteKingOnBoard = False #Flags whiteKingCastling = False whiteQueenCastling = False blackKingCastling = False blackQueenCastling = False CPUPlayWhite=False CPUStarts=False chessboardflipped = False quantityOfPieces = {"NR":0, "ND":0, "NA":0,"NC":0, "NT":0, "NP":0,"BR":0, "BD":0, "BA":0,"BC":0, "BT":0, "BP":0} def __init__(self,batch): super(BoardCreatorGUI, self).__init__(900, 600, resizable=False, caption='Chess', config=pyglet.gl.Config(double_buffer=True), vsync=False) self.board_imgs = [[None for _ in range(8)] for _ in range(8)] self.board = [["" for _ in range(8)] for _ in range(8)] self.selector_imgs = [None for _ in range(12)] self.selectedPiece = [] self.board_normal = pyglet.sprite.Sprite(self.chessboard) self.board_flipped = pyglet.sprite.Sprite(self.chessboardInv) self.piece_held=None self.createStdPieces() self.background = pyglet.sprite.Sprite(self.backgroundImg) self.mouseAxis=(0,0) self.batch = batch self.managerList=[] self.manager() def manager(self): self.managerList+=[Manager(HorizontalContainer([OneTimeButton(label="Continuar",on_release=self.nextWindow)]), window=self, batch=self.batch, theme=getTheme(), anchor=ANCHOR_BOTTOM_RIGHT, offset=(-80, 5), is_movable=False )] self.managerList+=[Manager(VerticalContainer([Checkbox(label="El CPU Inicia ",on_press=self.setCPUStarts,is_pressed=self.CPUStarts), Checkbox(label="El CPU es blancas", on_press=self.setCPUPlayWhite,is_pressed=self.CPUPlayWhite), Label(""),Label("Enroque de negras"), Checkbox(label="Lado de la Reina ", on_press=self.setBlackQueenCastling,is_pressed=self.blackQueenCastling), Checkbox(label="Lado del Rey ", on_press=self.setBlackKingCastling,is_pressed=self.blackKingCastling), Label(""),Label("Enroque de blancas"), Checkbox(label="Lado de la Reina ",on_press=self.setWhiteQueenCastling,is_pressed=self.whiteQueenCastling), Checkbox(label="Lado del Rey ", on_press=self.setWhiteKingCastling,is_pressed=self.whiteKingCastling) ]), window=self, batch=self.batch, theme=getTheme(), anchor=ANCHOR_RIGHT, offset=(-50, -95), is_movable=False )] def setWhiteKingCastling(self,y): self.whiteKingCastling=y; def setWhiteQueenCastling(self,y): self.whiteQueenCastling=y; def setBlackKingCastling(self,y): self.blackKingCastling=y; def setBlackQueenCastling(self,y): self.blackQueenCastling=y; def setCPUPlayWhite(self,y): self.CPUPlayWhite=y; def setCPUStarts(self,y): self.CPUStarts=y; def createStdPieces(self): for n in range(12): if(self.selector_imgs[n] == None): if(self.whiteKingOnBoard and n == 6 or self.blackKingOnBoard and n == 0 ): continue else: self.selector_imgs[n]=pyglet.sprite.Sprite(self.spritesheet[n],75*(8+n//3),75*(5+((11-n)%3))) def endOfTurn(self): if(self.turn=="B"): self.turn = "N" else: self.turn = "B" def ifFlipped(self, x): if(self.CPUPlayWhite): return (7-x) return x def deleteManagers(self): for x in self.managerList: x.delete() def on_draw(self): self.clear() self.background.draw() if(self.CPUPlayWhite): self.board_flipped.draw() else: self.board_normal.draw() for n in self.selector_imgs: if(n!= None): n.draw() for x, y in itertools.product(range(8), repeat=2): if self.board[y][x] != "": piece = self.board_imgs[y][x] if piece != self.piece_held: piece.x = self.ifFlipped(x) * 75 piece.y = self.ifFlipped(y) * 75 piece.draw() if(self.newPiece): self.piece_held.draw() x = self.mouseAxis[0] y = self.mouseAxis[1] self.batch.draw() #193 42 def getGraphicPiece(self,x,y): if(x>600 and y>375): xc = x//75 - 8 yc = y//75 - 5 result = self.selector_imgs[xc*3 + (2-yc)] if(result != None): self.selector_imgs[xc * 3 + (2-yc)] = None self.newPiece =True self.piece_heldId =self.piecesIds[ xc*3 + (2-yc)] return result elif(x<=600): self.old_pos=(self.ifFlipped(x//75),self.ifFlipped(y//75)) return self.board_imgs[self.ifFlipped(y//75)][self.ifFlipped(x//75)] def on_mouse_motion(self,x, y, dx, dy): self.mouseAxis = (x,y) def on_mouse_press(self,x, y, button, modifiers): if button == mouse.LEFT : piece = self.getGraphicPiece(x, y) if piece != None: if(not self.newPiece): self.piece_heldId = self.board[self.ifFlipped(y//75)][self.ifFlipped(x//75)] self.piece_held = piece def on_mouse_drag(self,x, y, dx, dy, buttons, modifiers): if self.piece_held is not None: self.piece_held.x = x - 32 self.piece_held.y = y - 32 def nextWindow(self,y): castling="" starts = "w" if(self.whiteKingCastling): castling += "K" if(self.whiteQueenCastling): castling += "Q" if (self.blackKingCastling): castling += "k" if (self.blackQueenCastling): castling += "q" if(self.CPUStarts): starts="b" if(self.CPUPlayWhite): if(starts == "b"): starts="w" elif starts=="w": starts = "b" if(castling == ""): castling="-" batch = pyglet.graphics.Batch() mygame = chessGUI.ChessGUI(self.boardTraduction(),castling,starts,self.CPUPlayWhite,self,batch) self.set_visible(False) def on_mouse_release(self,x, y, button, modifiers): if self.piece_held is not None and (x > 600 or not self.newPiece) and self.old_pos != (-1,-1): self.board_imgs[self.old_pos[1]][self.old_pos[0]] = None if(self.board[self.old_pos[1]][self.old_pos[0]] == "BR"): self.whiteKingOnBoard = False elif (self.board[self.old_pos[1]][self.old_pos[0]] == "NR"): self.blackKingOnBoard = False self.board[self.old_pos[1]][self.old_pos[0]] = "" if self.piece_held is not None and (x<=600): xp = self.ifFlipped(x//75) yp = self.ifFlipped(y // 75) if (self.board[yp][xp] == "BR"): self.whiteKingOnBoard = False elif (self.board[yp][xp] == "NR"): self.blackKingOnBoard = False self.board_imgs[yp][xp] = self.piece_held self.board[yp][xp] = self.piece_heldId if (self.piece_heldId == "BR"): self.whiteKingOnBoard = True elif (self.piece_heldId == "NR"): self.blackKingOnBoard = True self.piece_held = None self.old_pos=(-1,-1) self.piece_heldId = "" self.newPiece= False self.createStdPieces() def boardTraduction(self): resultBoard=[] for x in range(8): for y in range(8): if(self.board[y][x] != ""): resultBoard += [self.board[y][x] +self.colPositions[x] + str(y+1)] return resultBoard ``` #### File: jorvasquezr/IA_ChessGame_Solver/chessAI.py ```python import chess import chess.polyglot from evaluation import evaluate_board movehistory =[] starts = True def negamaxRoot(depth,board,pstarts): global movehistory, starts starts = pstarts == "w" bestMove = chess.Move.null() bestValue = -99999 alpha = -100000 beta = 100000 greaterProximity = 0 possibleMoves = board.legal_moves for move in possibleMoves: board.push(move) result =alphabeta(-beta, -alpha, depth-1,board) score = - result[0] if(score == bestValue and result[1]>greaterProximity): bestMove= move greaterProximity=result[1] if score > bestValue: bestValue = score bestMove = move greaterProximity=result[1] score = max(score,alpha) board.pop() return bestMove def alphabeta( alpha, beta, depthleft,board ): bestscore = -9999 greaterProximity=0 if( depthleft == 0 ): return (quiesce( alpha, beta ,board),0) if(board.is_stalemate() or board.is_checkmate()): return (evaluate_board(board), depthleft) possibleMoves = board.legal_moves for move in possibleMoves: board.push(move) result = alphabeta( -beta, -alpha, depthleft - 1,board ) score = -result[0] board.pop() if( score >= beta ): return (score,result[1]) bestscore = max(bestscore,score,) if(score == bestscore and result[1]>greaterProximity): greaterProximity=result[1] alpha = max(score,alpha) return (bestscore,greaterProximity) def quiesce( alpha, beta ,board): stand_pat = evaluate_board(board) if( stand_pat >= beta ): return beta if( alpha < stand_pat ): alpha = stand_pat for move in board.legal_moves: if board.is_capture(move): board.push(move) score = -quiesce( -beta, -alpha,board ) board.pop() if( score >= beta ): return beta if( score > alpha ): alpha = score return alpha ``` #### File: jorvasquezr/IA_ChessGame_Solver/chessGUI.py ```python import pyglet from pyglet.window import mouse import pyglet import itertools import chess from game import Game import time from theme import getTheme, getPopUpMenssageTheme from pyglet_gui.manager import Manager from pyglet_gui.document import Document from pyglet_gui.constants import * from pyglet_gui.buttons import Button, OneTimeButton, Checkbox, GroupButton from pyglet_gui.gui import Label, PopupMessage, Frame from pyglet_gui.containers import VerticalContainer, HorizontalContainer from datetime import datetime import easygui # # # # # La salida de archivo será la posición inicial de las piezas con la descripción # algebráica de la partida efectuada, y una indicación de fecha y tiempo (un time-stamp de la # solución). # class ChessGUI(pyglet.window.Window): chessboard = pyglet.resource.image('resources/chessboard.png') chessboardInv = pyglet.resource.image('resources/chessboardflipped.png') validImg = pyglet.resource.image('resources/validmove.png') promoImg = pyglet.resource.image('resources/promotion.png') hoverImg = pyglet.resource.image('resources/hoversquare.png') spriteimage = pyglet.resource.image('resources/spritesheet.png') dangerImg = pyglet.resource.image('resources/danger.png') backgroundImg = pyglet.resource.image('resources/Background.png') spritesheet = pyglet.image.ImageGrid(spriteimage, 2, 6) BLACK_KING, BLACK_QUEEN, BLACK_BISHOP, BLACK_KNIGHT, BLACK_ROOK, BLACK_PAWN, WHITE_KING, WHITE_QUEEN, WHITE_BISHOP, \ WHITE_KNIGHT, WHITE_ROOK, WHITE_PAWN = range(12) dictPieces = {"NR": spritesheet[BLACK_KING], "ND": spritesheet[BLACK_QUEEN], "NA": spritesheet[BLACK_BISHOP], "NC": spritesheet[BLACK_KNIGHT], "NT": spritesheet[BLACK_ROOK], "NP": spritesheet[BLACK_PAWN], "BR": spritesheet[WHITE_KING], "BD": spritesheet[WHITE_QUEEN], "BA": spritesheet[WHITE_BISHOP], "BC": spritesheet[WHITE_KNIGHT], "BT": spritesheet[WHITE_ROOK], "BP": spritesheet[WHITE_PAWN]} # ["BTf1", "NTe7", "BAd5", "BRd6", "NRd8"] colPositions = {"a": 0, "b": 1, "c": 2, "d": 3, "e": 4, "f": 5, "g": 6, "h": 7} colPositionsInv = {"a": 0, "b": 1, "c": 2, "d": 3, "e": 4, "f": 5, "g": 6, "h": 7} stdChesBoard = ["NTa8", "NCb8", "NAc8", "NDd8", "NRe8", "NAf8", "NCg8", "NTh8", "NPa7", "NPb7", "NPc7", "NPd7", "NPe7", "NPf7", "NPg7", "NPh7", "BPa2", "BPb2", "BPc2", "BPd2", "BPe2", "BPf2", "BPg2", "BPh2", "BTa1", "BCb1", "BAc1", "BDd1", "BRe1", "BAf1", "BCg1", "BTh1", ] spanishToEnglish = {"A": "B", "T": "R", "D": "Q", "R": "K", "P": "P", "C": "N"} englishToSpanish = {"B": "A", "R": "T", "Q": "D", "K": "R", "P": "P", "N": "C"} ia_mode = True blackKing = None whiteKing = None promotion = False promotionMov = [] promotedPiece = "" movement = [0, 0] animation = True def __init__(self, textPositions, castlingRigths, starts, CPUPlaysWhite, pwindow, batch): super(ChessGUI, self).__init__(900, 600, resizable=False, caption='Chess', config=pyglet.gl.Config( double_buffer=True), vsync=False) pyglet.clock.schedule_interval(self.updatePosition, 1 / 60) self.board_imgs = [[None for _ in range(8)] for _ in range(8)] self.board = [] self.window = pwindow self.batch = batch self.CPUPlaysWhite = CPUPlaysWhite self.castlingRigths = castlingRigths self.starts = starts if (starts == "b"): self.turn = "N" else: self.turn = "B" if CPUPlaysWhite: self.playerTurn = "N" else: self.playerTurn = "B" self.selectedPiece = [] self.board_normal = pyglet.sprite.Sprite(self.chessboard) self.board_flipped = pyglet.sprite.Sprite(self.chessboardInv) self.hoverSprite = pyglet.sprite.Sprite(self.hoverImg) self.danger = pyglet.sprite.Sprite(self.dangerImg) self.piece_held = None self.textPositions = textPositions self.createBoard(textPositions) self.inFunction = False self.draws = 0 self.game = Game(self.stdNotationToChess(self.board) + " " + starts + " " + castlingRigths + " - 0 1") self.wQueen = pyglet.sprite.Sprite(self.spritesheet[7], 131.25, 225) self.wRook = pyglet.sprite.Sprite(self.spritesheet[10], 218.75, 225) self.wBishop = pyglet.sprite.Sprite(self.spritesheet[8], 306.25, 225) self.wKnight = pyglet.sprite.Sprite(self.spritesheet[9], 393.75, 225) self.bQueen = pyglet.sprite.Sprite(self.spritesheet[1], 131.25, 225) self.bRook = pyglet.sprite.Sprite(self.spritesheet[4], 218.75, 225) self.bBishop = pyglet.sprite.Sprite(self.spritesheet[2], 306.25, 225) self.bKnight = pyglet.sprite.Sprite(self.spritesheet[3], 393.75, 225) self.background = pyglet.sprite.Sprite(self.backgroundImg) self.document = Document(pyglet.text.decode_attributed( "\n" * 23), width=250, height=400) self.manager() self.numero = 0 self.announcedFinal = False self.instanteInicial = None self.instanteFinal = None self.lineCont = 1 self.annotations = "" def manager(self): Manager(Label(""), window=self, batch=self.batch, theme=getTheme() ) Manager(Frame(self.document), window=self, batch=self.batch, theme=getTheme(), anchor=ANCHOR_TOP_RIGHT, offset=(-10, -75), is_movable=False ) Manager(HorizontalContainer([OneTimeButton(label="Guardar", on_release=self.saveGame), OneTimeButton(label="Volver", on_release=self.onclose)]), window=self, batch=self.batch, theme=getTheme(), anchor=ANCHOR_BOTTOM_RIGHT, offset=(-50, 15), is_movable=False ) self.document.set_text("") def updateDocument(self, y): self.numero += 1 self.document.set_text(self.document.get_text() + "Hola Mundos " + str(self.numero) + "\n") self.popupMessage("Partida guardada correctamente") def popupMessage(self, text): PopupMessage(text=text, window=self, batch=self.batch, theme=getPopUpMenssageTheme() ) def saveGame(self, y): result = "{\n\tPosicionInicial: " + str(self.textPositions) + ",\n" result += "\tDesarrolloDeLaPartida: \"" + self.annotations + "\",\n" date = datetime.now().strftime("%d/%m/%Y") fileDate = datetime.now().strftime("%d-%m-%Y") result += "\tfecha: \"" + date + "\",\n" strTiempo = "null" if not (self.instanteInicial == None or self.instanteFinal == None): tiempo = (self.instanteFinal - self.instanteInicial) strTiempo = str(tiempo) result += "\ttiempo: \"" + strTiempo + "\" \n}" fileroute = easygui.filesavebox(default="BotFinalesDeAjedrez " + fileDate + ".txt", msg="hola", title="Seleccione el destino", filetypes="txt") if (fileroute != None): f = open(fileroute, "w") f.write(result) f.close() def stdNotationToChess(self, boardGUI): count = 0 result = "" row = "" for x in range(8): if (result != ""): result += "/" for y in range(8): if boardGUI[x][y] == "": count += 1 else: charName = self.spanishToEnglish[boardGUI[x][y][1]] if (boardGUI[x][y][0] == "N"): charName = charName.lower() if count != 0: row += str(count) + charName count = 0 else: row += charName if count != 0: row += str(count) count = 0 result += row[::-1] row = "" if (not self.CPUPlaysWhite): result = result[::-1] return result def endOfTurn(self): if (self.turn == "B"): self.turn = "N" else: self.turn = "B" def moveOfAI(self): var = str(self.game.suggestedMove(self.starts)) xi = self.colPositions[var[0]] yi = int(var[1]) - 1 xf = self.colPositions[var[2]] yf = int(var[3]) - 1 piece = "" if (len(var) == 5): piece = self.englishToSpanish[var[4].upper()] xi,yi,xf,yf=self.cordinatesComplement(xi,yi,xf,yf) self.pieceMove(xi, yi, xf, yf, piece) def ifIsFlipped(self, x): if (self.CPUPlaysWhite): return (7 - x) return x def promote(self): self.promoImg.blit(100, 200) if self.turn == "N": self.bQueen.draw() self.bRook.draw() self.bBishop.draw() self.bKnight.draw() else: self.wQueen.draw() self.wRook.draw() self.wBishop.draw() self.wKnight.draw() def createBoard(self, textPositions) -> list: self.board = [["" for i in range(8)] for i in range(8)] if textPositions: for i in textPositions: y = ord(i[2]) - 97 x = int(i[3]) - 1 p = i[0] + i[1] self.board[self.ifIsFlipped(x)][self.ifIsFlipped(y)] = p self.board_imgs[self.ifIsFlipped(x)][self.ifIsFlipped( y)] = pyglet.sprite.Sprite(self.dictPieces[p]) if (p == "BR"): self.whiteKing = self.board_imgs[self.ifIsFlipped( x)][self.ifIsFlipped(y)] elif (p == "NR"): self.blackKing = self.board_imgs[self.ifIsFlipped( x)][self.ifIsFlipped(y)] def onclose(self, y): self.window.set_visible(True) self.window.deleteManagers() self.window.manager() self.close() def on_draw(self): self.clear() self.background.draw() if (self.CPUPlaysWhite): self.board_flipped.draw() else: self.board_normal.draw() if (self.game.isCheck()): if (self.turn == "B"): self.danger.x = self.whiteKing.x self.danger.y = self.whiteKing.y else: self.danger.x = self.blackKing.x self.danger.y = self.blackKing.y self.danger.draw() if self.selectedPiece != []: self.hoverSprite.x = (self.selectedPiece[1] // 75) * 75 self.hoverSprite.y = (self.selectedPiece[2] // 75) * 75 self.hoverSprite.draw() for x, y in itertools.product(range(8), repeat=2): if self.board[y][x] != "": piece = self.board_imgs[y][x] if piece != self.piece_held: piece.x = x * 75 piece.y = y * 75 piece.draw() if (self.piece_held != None): self.piece_held.draw() self.announceFinal() if (self.promotion): self.promote() if (self.draws < 60): self.draws += 1 self.batch.draw() def announceFinal(self): if (self.instanteInicial == None): self.instanteInicial = datetime.now() if (self.game.isCheckMate() and not self.announcedFinal and self.draws == 60): self.announcedFinal = True self.instanteFinal = datetime.now() if (self.turn == "B"): self.popupMessage("Jaque mate de las piezas negras") if (self.turn == "N"): self.popupMessage("Jaque mate de las piezas blancas") if (self.game.isStalemate() and not self.announcedFinal and self.draws == 60): self.announcedFinal = True self.instanteFinal = datetime.now() self.popupMessage("Empate") def setPiece(self, xi, yi, piece): self.board[yi][xi] = self.board[yi][xi][0] + piece ximg = self.board_imgs[yi][xi].x yimg = self.board_imgs[yi][xi].y self.board_imgs[yi][xi] = pyglet.sprite.Sprite( self.dictPieces[self.board[yi][xi]]) self.board_imgs[yi][xi].x = ximg self.board_imgs[yi][xi].y = yimg def cordinatesComplement(self, xi, yi, xf, yf): xi = self.ifIsFlipped(xi) yi = self.ifIsFlipped(yi) xf = self.ifIsFlipped(xf) yf = self.ifIsFlipped(yf) return xi, yi, xf, yf def pieceMove(self, xi, yi, xf, yf, piece=""): pieceEng = "" if (piece != ""): self.setPiece(xi, yi, piece) pieceEng = self.spanishToEnglish[piece].lower() xi, yi, xf, yf = self.cordinatesComplement(xi, yi, xf, yf) fromSquare = chr(xi + 97) + str(1 + yi) toSquare = chr(xf + 97) + str(1 + yf) result = self.game.doAMove(fromSquare + toSquare + pieceEng) xi, yi, xf, yf = self.cordinatesComplement(xi, yi, xf, yf) if (result[0] != ""): self.changePosition(xi, yi, xf, yf) if (result[0] == "PassantMove"): self.doPassant(xi, yi, xf, yf) elif (result[0] == "kingside" or result[0] == "queenside"): self.doCastling(result[0], yi, yf) self.anotateMove(result[1]) self.endOfTurn() def anotateMove(self, move): result = "" if (self.turn == "N"): if (self.lineCont == 1 and self.annotations == ""): result += "1... " + move + " " else: result += " " + move + " " self.lineCont += 1 elif (self.turn == "B"): result += str(self.lineCont) + ". " + move self.annotations += result newLine = "\n" if (self.turn == "N"): newLine = "" self.document.set_text(self.document.get_text() + newLine + result) def changePosition(self, xi, yi, xf, yf): self.board_imgs[yf][xf] = self.board_imgs[yi][xi] self.board_imgs[yi][xi] = None self.board[yf][xf] = self.board[yi][xi] self.board[yi][xi] = "" if self.animation: self.piece_held = self.board_imgs[yf][xf] xmovement = xf * 75 - xi * 75 ymovement = yf * 75 - yi * 75 self.movement = [xmovement, ymovement] def updatePosition(self, dt): if (len(self.movement) == 2 and self.piece_held != None): stepSize = 10 if (self.movement[1] > 0): if (self.movement[1] <= stepSize): self.piece_held.y += self.movement[1] self.movement[1] = 0 else: self.piece_held.y += stepSize self.movement[1] -= stepSize if (self.movement[1] < 0): if (self.movement[1] >= -stepSize): self.piece_held.y += self.movement[1] self.movement[1] = 0 else: self.piece_held.y -= stepSize self.movement[1] += stepSize if (self.movement[0] > 0): if (self.movement[0] <= stepSize): self.piece_held.x += self.movement[0] self.movement[0] = 0 else: self.piece_held.x += stepSize self.movement[0] -= stepSize if (self.movement[0] < 0): if (self.movement[0] >= -stepSize): self.piece_held.x += self.movement[0] self.movement[0] = 0 else: self.piece_held.x -= stepSize self.movement[0] += stepSize if (self.movement[0] == 0 and self.movement[1] == 0): self.piece_held = None self.movement = [] self.draws=45 if (self.turn != self.playerTurn and self.ia_mode and not self.game.isCheckMate() and not self.game.isStalemate() and self.piece_held == None and not self.inFunction and self.draws == 60): self.inFunction = True self.moveOfAI() self.turn = self.playerTurn self.inFunction = False def doCastling(self, side, yi, yf): if (side == "kingside"): self.changePosition(7, yi, 5, yf) if (side == "queenside"): self.changePosition(0, yi, 3, yf) def doPassant(self, xi, yi, xf, yf): if (self.turn == "B"): self.board_imgs[yf - 1][xf] = None self.board[yf - 1][xf] = "" if (self.turn == "N"): self.board_imgs[yf + 1][xf] = None self.board[yf + 1][xf] = "" def isPromote(self, yf): result = False if (((self.selectedPiece[0] == "BP" and not self.CPUPlaysWhite) or ( self.selectedPiece[0] == "NP" and self.CPUPlaysWhite)) and self.selectedPiece[2] // 75 == 6 and yf == 7): result = True elif (((self.selectedPiece[0] == "NP" and not self.CPUPlaysWhite) or ( self.selectedPiece[0] == "BP" and self.CPUPlaysWhite)) and self.selectedPiece[2] // 75 == 1 and yf == 0): result = True return result def on_mouse_press(self, x, y, button, modifiers): if (self.playerTurn == self.turn or not self.ia_mode) and not self.game.isCheckMate() and x <= 600 and y <= 600: if (not self.promotion): if self.selectedPiece != []: if (((self.board[y // 75][x // 75] == "")) or (self.board[y // 75][x // 75] != "") and ( self.board[y // 75][x // 75][0] != self.turn)): xi = self.selectedPiece[1] // 75 yi = self.selectedPiece[2] // 75 xf = x // 75 yf = y // 75 if (self.isPromote(yf)): self.promotion = True self.promotionMov = [xi, yi, xf, yf] else: self.pieceMove(xi, yi, xf, yf) self.selectedPiece = [] if (self.board[y // 75][x // 75] != "") and (self.board[y // 75][x // 75][0] == self.turn): self.selectedPiece = [ self.board[y // 75][x // 75]] + [x, y] else: if 225 < y < 300: xi = self.promotionMov[0] yi = self.promotionMov[1] xf = self.promotionMov[2] yf = self.promotionMov[3] piece = "" if 131.25 < x < 206.25: # queen piece = "D" elif 218.75 < x < 293.75: # rook piece = "T" elif 306.25 < x < 381.25: # bishop piece = "A" elif 393.75 < x < 468.75: # knight piece = "C" self.pieceMove(xi, yi, xf, yf, piece) self.promotion = False self.promotionFinalPos = [] ``` #### File: jorvasquezr/IA_ChessGame_Solver/game.py ```python from chessAI import * class Game(): def __init__(self, boardStr): self.board = chess.Board(boardStr) def doAMove(self, movestr): move = chess.Move.from_uci(movestr) if (move in self.board.legal_moves): isPassant = self.board.is_en_passant(move) castlingSide = self.getSideofCastling(move) sanMove = str(self.board.san(move)) self.board.push(move) if(isPassant): return ("PassantMove", sanMove) elif(castlingSide != ""): return (castlingSide, sanMove) return ("Moved", sanMove) else: return ("", "") def getSideofCastling(self, move): result = "" if(self.board.is_queenside_castling(move)): result = "queenside" elif(self.board.is_kingside_castling(move)): result = "kingside" return result def isCheckMate(self): return self.board.is_checkmate() def isStalemate(self): return self.board.is_stalemate() def isCheck(self): return self.board.is_check() def suggestedMove(self,starts): return negamaxRoot(5,self.board,starts) def isvalid(self): return self.board.is_valid() or self.isStalemate() or self.isCheckMate() ``` #### File: pyglet-gui-master/pyglet_gui/constants.py ```python VALIGN_TOP = 1 VALIGN_CENTER = 0 VALIGN_BOTTOM = -1 HALIGN_LEFT = -1 HALIGN_CENTER = 0 HALIGN_RIGHT = 1 ANCHOR_TOP_LEFT = (VALIGN_TOP, HALIGN_LEFT) ANCHOR_TOP = (VALIGN_TOP, HALIGN_CENTER) ANCHOR_TOP_RIGHT = (VALIGN_TOP, HALIGN_RIGHT) ANCHOR_LEFT = (VALIGN_CENTER, HALIGN_LEFT) ANCHOR_CENTER = (VALIGN_CENTER, HALIGN_CENTER) ANCHOR_RIGHT = (VALIGN_CENTER, HALIGN_RIGHT) ANCHOR_BOTTOM_LEFT = (VALIGN_BOTTOM, HALIGN_LEFT) ANCHOR_BOTTOM = (VALIGN_BOTTOM, HALIGN_CENTER) ANCHOR_BOTTOM_RIGHT = (VALIGN_BOTTOM, HALIGN_RIGHT) def GetRelativePoint(parent, parent_anchor, child, child_anchor, offset): valign, halign = parent_anchor or ANCHOR_CENTER if valign == VALIGN_TOP: y = parent.y + parent.height elif valign == VALIGN_CENTER: y = parent.y + parent.height // 2 else: # VALIGN_BOTTOM y = parent.y if halign == HALIGN_LEFT: x = parent.x elif halign == HALIGN_CENTER: x = parent.x + parent.width // 2 else: # HALIGN_RIGHT x = parent.x + parent.width valign, halign = child_anchor or (valign, halign) offset_x, offset_y = offset if valign == VALIGN_TOP: y += offset_y - child.height elif valign == VALIGN_CENTER: y += offset_y - child.height // 2 else: # VALIGN_BOTTOM y += offset_y if halign == HALIGN_LEFT: x += offset_x elif halign == HALIGN_CENTER: x += offset_x - child.width // 2 else: # HALIGN_RIGHT x += offset_x - child.width return x, y ``` #### File: pyglet-gui-master/pyglet_gui/text_input.py ```python import pyglet from pyglet_gui.mixins import FocusMixin from pyglet_gui.override import InputLabel from pyglet_gui.core import Viewer class TextInput(FocusMixin, Viewer): # This class works in two states defined by is_focus(): # True: "writing" # False: "label" def __init__(self, text="", length=20, max_length=None, padding=0, on_input=None): Viewer.__init__(self) FocusMixin.__init__(self) self._document = pyglet.text.document.UnformattedDocument(text) self._document_style_set = False # check if style of document was set. self._length = length # the length of the box in characters self._max_length = max_length # the max length allowed for writing. self._on_input = on_input self._padding = 4 + padding # graphics loaded in both states self._field = None # graphics loaded in state "writing" self._text_layout = None self._caret = None # graphics loaded in state "label" self._label = None def get_path(self): return 'input' def _load_label(self, theme): self._label = InputLabel(self._document.text, multiline=False, width=self.width-self._padding*2, color=theme['text_color'], font_name=theme['font'], font_size=theme['font_size'], **self.get_batch('foreground')) def _load_writing(self, theme): needed_width, needed_height = self._compute_needed_size() self._text_layout = pyglet.text.layout.IncrementalTextLayout( self._document, needed_width, needed_height, multiline=False, **self.get_batch('foreground')) self._caret = pyglet.text.caret.Caret(self._text_layout, color=theme['gui_color'][0:3]) self._caret.visible = True self._caret.mark = 0 self._caret.position = len(self._document.text) def load_graphics(self): theme = self.theme[self.get_path()] # We set the style once. We shouldn't have to do so again because # it's an UnformattedDocument. if not self._document_style_set: self._document.set_style(0, 0, # parameters not used in set_style dict(color=theme['text_color'], font_name=theme['font'], font_size=theme['font_size'])) self._document_style_set = True self._field = theme['image'].generate(color=theme['gui_color'], **self.get_batch('background')) if self.is_focus(): self._load_writing(theme) else: self._load_label(theme) def _unload_writing(self): self._caret.delete() # it should be .unload(), but Caret does not have it. self._document.remove_handlers(self._text_layout) self._text_layout.delete() # it should also be .unload(). self._caret = self._text_layout = None def _unload_label(self): self._label.delete() self._label = None def unload_graphics(self): if self.is_focus(): self._unload_writing() else: self._unload_label() self._field.unload() def _compute_needed_size(self): # Calculate the needed size based on the font size font = self._document.get_font(0) height = font.ascent - font.descent glyphs = font.get_glyphs('A_') width = max([x.width for x in glyphs]) needed_width = self._length * width - 2 * self._padding needed_height = height + 2 * self._padding return needed_width, needed_height def get_text(self): return self._document.text def layout(self): Viewer.layout(self) self._field.update(self.x, self.y, self.width, self.height) x, y, width, height = self._field.get_content_region() if self.is_focus(): self._text_layout.begin_update() self._text_layout.x = self.x + self._padding self._text_layout.y = self.y - self._padding self._text_layout.end_update() else: # Adjust the text for font's descent descent = self._document.get_font().descent self._label.begin_update() self._label.x = self.x + self._padding self._label.y = self.y + self._padding - descent self._label.width = width - self._padding * 2 self._label.end_update() def on_gain_focus(self): self.unload() FocusMixin.on_gain_focus(self) # changes is_focus() self.load() self.reset_size() self.layout() def on_lose_focus(self): # send text to callback _on_input if self._on_input is not None: self._on_input(self.get_text()) self.unload() FocusMixin.on_lose_focus(self) # changes is_focus() self.load() self.reset_size() self.layout() def hit_test(self, x, y): return self.is_inside(x, y) def on_mouse_drag(self, x, y, dx, dy, buttons, modifiers): if self.is_focus(): return self._caret.on_mouse_drag(x, y, dx, dy, buttons, modifiers) def on_mouse_press(self, x, y, button, modifiers): if self.is_focus(): return self._caret.on_mouse_press(x, y, button, modifiers) def on_text(self, text): assert self.is_focus() self._caret.on_text(text) if self._max_length and len(self._document.text) > self._max_length: self._document.text = self._document.text[:self._max_length] self._caret.mark = self._caret.position = self._max_length return pyglet.event.EVENT_HANDLED def on_text_motion(self, motion): assert self.is_focus() return self._caret.on_text_motion(motion) def on_text_motion_select(self, motion): assert self.is_focus() return self._caret.on_text_motion_select(motion) def set_text(self, text): self._document.text = text if self.is_focus(): self._caret.mark = self._caret.position = len(self._document.text) else: self._label.text = text def compute_size(self): needed_width, needed_height = self._compute_needed_size() return self._field.get_needed_size(needed_width, needed_height) def delete(self): FocusMixin.delete(self) Viewer.delete(self) ```
{ "source": "jorvis/AdventOfCode", "score": 4 }
#### File: AdventOfCode/2015/day_11_both.py ```python import re def increment(pw): pw = list(pw[::-1]) for i in range(0, len(pw)): if pw[i] == 'z': pw[i] = 'a' else: pw[i] = chr(ord(pw[i]) + 1) break return ''.join(pw[::-1]) def is_valid(pw): # Passwords must include one increasing straight of at least three letters, like # abc, bcd, cde, and so on, up to xyz streak_found = None for i in range(0, len(pw) - 2): if ord(pw[i+1]) - ord(pw[i]) == 1 and ord(pw[i+2]) - ord(pw[i+1]) == 1: streak_found = pw[i] + pw[i+1] + pw[i+2] # Passwords may not contain the letters i, o, or l, as these letters can be mistaken # for other characters and are therefore confusing. for letter in ['i', 'o', 'l']: if letter in pw: return False # Passwords must contain at least two pairs of letters, like aa, bb, or zz. pairs_found = re.findall(r"(.)\1", pw) if len(pairs_found) < 2: return False if streak_found is not None: print("Streak: {0}".format(streak_found)) print("Pairs: {0}".format(pairs_found)) return True else: return False password = '<PASSWORD>' # this is for part 2 password = '<PASSWORD>' while True: password = increment(password) if is_valid(password): break print("New password: {0}".format(password)) ```
{ "source": "jorvis/GALES", "score": 3 }
#### File: GALES/bin/filter_blast_ev_db_by_accessions.py ```python import argparse import os import re import sqlite3 pfam2go = dict() def main(): parser = argparse.ArgumentParser( description='Creates a SQLite3 database of commonly-accessed attributes for each accession, filtering from a larger version') ## output file to be written parser.add_argument('-id', '--input_db', type=str, required=True, help='Path to the input source SQLite3 db file.' ) parser.add_argument('-od', '--output_db', type=str, required=True, help='Path to an output SQLite3 db to be created/added to' ) parser.add_argument('-i', '--input_id_file', type=str, required=True, help="Path to a file with one access on each line") args = parser.parse_args() if os.path.exists(args.output_db): db_already_existed = True else: db_already_existed = False # this creates it if it doesn't already exist src_conn = sqlite3.connect(args.input_db) src_curs = src_conn.cursor() dest_conn = sqlite3.connect(args.output_db) dest_curs = dest_conn.cursor() report_interval = 500 records_processed = 0 if db_already_existed: print("INFO: Output database already exists - appending to it") ids_already_loaded = get_ids_already_loaded(dest_curs) db_already_existed = True else: print("INFO: Creating tables ...") create_tables( dest_curs ) dest_conn.commit() ids_already_loaded = dict() for acc in open(args.input_id_file): acc = acc.rstrip() cache_blast_hit_data(accession=acc, ref_curs=src_curs, ev_curs=dest_curs, ids_loaded=ids_already_loaded) records_processed += 1 if records_processed % report_interval == 0: print("INFO: Processed {0} records ... ".format(records_processed)) dest_conn.commit() if not db_already_existed: print("INFO: Creating indexes ...") create_indexes(dest_curs) dest_conn.commit() src_curs.close() dest_curs.close() print("INFO: Complete.") def cache_blast_hit_data(accession=None, ref_curs=None, ev_curs=None, ids_loaded=None): """ Gets annotation for a specific accession and copies its entry from the large source index into our smaller hits-found-only evidence index. """ ref_blast_select_qry = """ SELECT e.id, e.full_name, e.organism, e.symbol, ea.accession, ea.res_length, ea.is_characterized FROM entry e JOIN entry_acc ea on ea.id=e.id WHERE ea.accession = ? """ ev_blast_insert_qry = "INSERT INTO entry (id, full_name, organism, symbol) VALUES (?, ?, ?, ?)" ev_acc_insert_qry = "INSERT INTO entry_acc (id, accession, res_length, is_characterized) VALUES (?, ?, ?, ?)" ref_go_select_qry = "SELECT id, go_id FROM entry_go WHERE id = ?" ev_go_insert_qry = "INSERT INTO entry_go (id, go_id) VALUES (?, ?)" ref_ec_select_qry = "SELECT id, ec_num FROM entry_ec WHERE id = ?" ev_ec_insert_qry = "INSERT INTO entry_ec (id, ec_num) VALUES (?, ?)" ref_curs.execute(ref_blast_select_qry, (accession,)) entry_row = ref_curs.fetchone() if entry_row is not None: entry_id = entry_row[0] if entry_id not in ids_loaded: ev_curs.execute(ev_blast_insert_qry, (accession, entry_row[1], entry_row[2], entry_row[3])) ev_curs.execute(ev_acc_insert_qry, (accession, entry_row[4], entry_row[5], entry_row[6])) ref_curs.execute(ref_go_select_qry, (accession,)) for go_row in ref_curs: ev_curs.execute(ev_go_insert_qry, (accession, go_row[1])) ref_curs.execute(ref_ec_select_qry, (accession,)) for ec_row in ref_curs: ev_curs.execute(ev_ec_insert_qry, (accession, ec_row[1])) ids_loaded[entry_id] = True def create_indexes( cursor ): # CREATE INDEX index_name ON table_name (column_name); cursor.execute("CREATE INDEX idx_col_us_id ON entry (id)") cursor.execute("CREATE INDEX idx_col_usa_id ON entry_acc (id)") cursor.execute("CREATE INDEX idx_col_usa_acc ON entry_acc (accession)") cursor.execute("CREATE INDEX idx_col_usg_id ON entry_go (id)") cursor.execute("CREATE INDEX idx_col_usg_go ON entry_go (go_id)") cursor.execute("CREATE INDEX idx_col_use_id ON entry_ec (id)") cursor.execute("CREATE INDEX idx_col_use_ec ON entry_ec (ec_num)") def create_tables( cursor ): cursor.execute(""" CREATE TABLE entry ( id text primary key, full_name text, organism text, symbol text ) """) cursor.execute(""" CREATE TABLE entry_acc ( id text not NULL, accession text not NULL, res_length INT, is_characterized integer DEFAULT 0 ) """) cursor.execute(""" CREATE TABLE entry_go ( id text not NULL, go_id text not NULL ) """) cursor.execute(""" CREATE TABLE entry_ec ( id text not NULL, ec_num text not NULL ) """) def get_ids_already_loaded(curs): ids_loaded = dict() qry = "SELECT id FROM entry_acc" curs.execute(qry) for row in curs: ids_loaded[row[0]] = True return ids_loaded if __name__ == '__main__': main() ```
{ "source": "jorwoods/server-client-python", "score": 2 }
#### File: server/endpoint/endpoint.py ```python from .exceptions import ( ServerResponseError, InternalServerError, NonXMLResponseError, EndpointUnavailableError, ) from functools import wraps from xml.etree.ElementTree import ParseError from ..query import QuerySet import logging try: from distutils2.version import NormalizedVersion as Version except ImportError: from distutils.version import LooseVersion as Version logger = logging.getLogger("tableau.endpoint") Success_codes = [200, 201, 202, 204] class Endpoint(object): def __init__(self, parent_srv): self.parent_srv = parent_srv @staticmethod def _make_common_headers(auth_token, content_type): headers = {} if auth_token is not None: headers["x-tableau-auth"] = auth_token if content_type is not None: headers["content-type"] = content_type return headers @staticmethod def _safe_to_log(server_response): """Checks if the server_response content is not xml (eg binary image or zip) and replaces it with a constant """ ALLOWED_CONTENT_TYPES = ("application/xml", "application/xml;charset=utf-8") if server_response.headers.get("Content-Type", None) not in ALLOWED_CONTENT_TYPES: return "[Truncated File Contents]" else: return server_response.content def _make_request( self, method, url, content=None, auth_token=None, content_type=None, parameters=None, ): parameters = parameters or {} parameters.update(self.parent_srv.http_options) parameters["headers"] = Endpoint._make_common_headers(auth_token, content_type) if content is not None: parameters["data"] = content logger.debug(u"request {}, url: {}".format(method.__name__, url)) if content: logger.debug(u"request content: {}".format(content[:1000])) server_response = method(url, **parameters) self.parent_srv._namespace.detect(server_response.content) self._check_status(server_response) # This check is to determine if the response is a text response (xml or otherwise) # so that we do not attempt to log bytes and other binary data. if len(server_response.content) > 0 and server_response.encoding: logger.debug( u"Server response from {0}:\n\t{1}".format( url, server_response.content.decode(server_response.encoding) ) ) return server_response def _check_status(self, server_response): if server_response.status_code >= 500: raise InternalServerError(server_response) elif server_response.status_code not in Success_codes: try: raise ServerResponseError.from_response(server_response.content, self.parent_srv.namespace) except ParseError: # This will happen if we get a non-success HTTP code that # doesn't return an xml error object (like metadata endpoints) # we convert this to a better exception and pass through the raw # response body raise NonXMLResponseError(server_response.content) except Exception: # anything else re-raise here raise def get_unauthenticated_request(self, url): return self._make_request(self.parent_srv.session.get, url) def get_request(self, url, request_object=None, parameters=None): if request_object is not None: try: # Query param delimiters don't need to be encoded for versions before 3.7 (2020.1) self.parent_srv.assert_at_least_version("3.7") parameters = parameters or {} parameters["params"] = request_object.get_query_params() except EndpointUnavailableError: url = request_object.apply_query_params(url) return self._make_request( self.parent_srv.session.get, url, auth_token=self.parent_srv.auth_token, parameters=parameters, ) def delete_request(self, url): # We don't return anything for a delete self._make_request(self.parent_srv.session.delete, url, auth_token=self.parent_srv.auth_token) def put_request(self, url, xml_request=None, content_type="text/xml"): return self._make_request( self.parent_srv.session.put, url, content=xml_request, auth_token=self.parent_srv.auth_token, content_type=content_type, ) def post_request(self, url, xml_request, content_type="text/xml"): return self._make_request( self.parent_srv.session.post, url, content=xml_request, auth_token=self.parent_srv.auth_token, content_type=content_type, ) def api(version): """Annotate the minimum supported version for an endpoint. Checks the version on the server object and compares normalized versions. It will raise an exception if the server version is > the version specified. Args: `version` minimum version that supports the endpoint. String. Raises: EndpointUnavailableError Returns: None Example: >>> @api(version="2.3") >>> def get(self, req_options=None): >>> ... """ def _decorator(func): @wraps(func) def wrapper(self, *args, **kwargs): self.parent_srv.assert_at_least_version(version) return func(self, *args, **kwargs) return wrapper return _decorator def parameter_added_in(**params): """Annotate minimum versions for new parameters or request options on an endpoint. The api decorator documents when an endpoint was added, this decorator annotates keyword arguments on endpoints that may control functionality added after an endpoint was introduced. The REST API will ignore invalid parameters in most cases, so this raises a warning instead of throwing an exception. Args: Key/value pairs of the form `parameter`=`version`. Kwargs. Raises: UserWarning Returns: None Example: >>> @api(version="2.0") >>> @parameter_added_in(no_extract='2.5') >>> def download(self, workbook_id, filepath=None, extract_only=False): >>> ... """ def _decorator(func): @wraps(func) def wrapper(self, *args, **kwargs): import warnings server_ver = Version(self.parent_srv.version or "0.0") params_to_check = set(params) & set(kwargs) for p in params_to_check: min_ver = Version(str(params[p])) if server_ver < min_ver: error = "{!r} not available in {}, it will be ignored. Added in {}".format(p, server_ver, min_ver) warnings.warn(error) return func(self, *args, **kwargs) return wrapper return _decorator class QuerysetEndpoint(Endpoint): @api(version="2.0") def all(self, *args, **kwargs): queryset = QuerySet(self) return queryset @api(version="2.0") def filter(self, *args, **kwargs): queryset = QuerySet(self).filter(**kwargs) return queryset @api(version="2.0") def order_by(self, *args, **kwargs): queryset = QuerySet(self).order_by(*args) return queryset @api(version="2.0") def paginate(self, **kwargs): queryset = QuerySet(self).paginate(**kwargs) return queryset ```
{ "source": "jorxster/OnionLogger", "score": 3 }
#### File: OnionLogger/python/OnionLogger.py ```python __author__ = '<EMAIL>' __date__ = '27 May 2018' __version__ = "0.1.0" import inspect import logging import os import pickle import tempfile import time # max at roughly 25MB mem, that's a lot of logs # Change to 0 for unlimited MAX_LOGS = 49999 KEEP_UNIQUE_ONLY = False VERBOSITY = logging.INFO # set up stream handler to shell formatter = logging.Formatter( '%(asctime)s | %(name)s | %(levelname)s: %(message)s') stream_handler = logging.StreamHandler() stream_handler.setLevel(logging.DEBUG) stream_handler.setFormatter(formatter) _LOGGER = logging.getLogger(__name__) _LOGGER.setLevel(logging.DEBUG) _LOGGER.addHandler(stream_handler) class SortBy(object): Function, Level, Time = range(3) class Msg(object): def __init__(self, message_str, level=None) -> None: self.message = message_str self._level = level self._time = time.time() self._stack = '/'.join([fr.function for fr in inspect.stack()[3:]]) self._function = self._stack.split('/')[0] def __eq__(self, other): return self.message == other.message def __ne__(self, other): return self.message != other.message def __repr__(self) -> str: return '<OnionLogger.Msg(time={}, level={}, function={}) at {:x}>' \ ''.format(self._time, self._level, self._function, id(self)) class Logger(object): def __init__(self, name=__name__): self._messages = [] self.name = name def __repr__(self) -> str: return '<OnionLogger.Logger(len(self._messages)={}, at {:x}>' \ ''.format(len(self._messages), id(self)) @property def len(self): return len(self._messages) @property def messages(self): return self._messages # Standard methods def debug(self, msg): self.log(msg, level=logging.DEBUG) def info(self, msg): self.log(msg) def warn(self, msg): self.log(msg, level=logging.WARN) def critical(self, msg): self.log(msg, level=logging.CRITICAL) # Base method def log(self, msg, level=logging.INFO): """ Base logging method for appending logs to self at set verbosity level. Args: msg : (str) level : (int) """ message = Msg(msg, level=level) # print if meets verbosity criteria if level >= VERBOSITY: _LOGGER.log(level=level, msg=msg) # if discarding duplicate logs if KEEP_UNIQUE_ONLY: try: self._messages.remove(message) except ValueError: pass self._messages.append(message) # if limit exceeded, pop first-most item if MAX_LOGS: if self.len > MAX_LOGS: self._messages.pop(0) # sorted return methods def return_time_sort(self): return sorted(self._messages, key=lambda x: x._time) def return_level_sort(self): return sorted(self._messages, key=lambda x: x._level) def return_func_sort(self): return sorted(self._messages, key=lambda x: x._function) def sorted(self, sort_order): if sort_order == SortBy.Time: return self.return_time_sort() elif sort_order == SortBy.Level: return self.return_level_sort() elif sort_order == SortBy.Function: return self.return_func_sort() else: raise ValueError('Expecting SortBy attribute as argument') # other methods def reset(self): """ Erase all logs """ self._messages = [] _LOGGER.info('OnionLogger reset, logs erased') def serialize(self): return pickle.dumps(self) def save_to_disk(self, path=None): if not path: # construct temp / time filepath path = os.path.join( tempfile.gettempdir(), time.strftime('%Y%m%d_%H%M%S.olog') ) with open(path, 'wb') as w: self.log('OnionLogger.Logger: serializing and ' 'writing to path -- \n\t{}'.format(path)) w.write(self.serialize()) def load_from_disk(path=None): with open(path, 'rb') as w: onion = pickle.loads(w.read()) return onion ```
{ "source": "JorySchossau/harper", "score": 3 }
#### File: harper/harper/db.py ```python from dataclasses import dataclass from datetime import datetime from dataclasses_json import dataclass_json from sqlalchemy import ( Column, DateTime, ForeignKey, Integer, String, Table, Text, UniqueConstraint, create_engine, event, func, ) from sqlalchemy.engine import Engine from sqlalchemy.exc import ArgumentError from sqlalchemy.orm import declarative_base, relationship from sqlalchemy.pool import StaticPool from harper.util import LANG_ID_LEN, HarperExc def timestamp(): """Return current time.""" result = datetime.utcnow() return result # <https://docs.sqlalchemy.org/en/14/dialects/sqlite.html#sqlite-foreign-keys> @event.listens_for(Engine, "connect") def set_sqlite_pragma(dbapi_connection, connection_record): """Ensure that cascading deletes work for SQLite.""" cursor = dbapi_connection.cursor() cursor.execute("PRAGMA foreign_keys=ON") cursor.close() class DB: """Connect to database.""" # SQLAlchemy base class. base = declarative_base() # Database connection engine (assigned during configuration). engine = None @staticmethod def configure(url): """Configure the back end.""" try: if url == "test": DB.engine = create_engine( "sqlite://", connect_args={"check_same_thread": False}, poolclass=StaticPool, ) DB.base.metadata.drop_all(DB.engine) DB.base.metadata.create_all(DB.engine) else: DB.engine = create_engine(url) return DB.engine except ArgumentError: raise HarperExc(f"Unable to connect to {url}", code=500) @staticmethod def get_current_lesson_version(session, lesson_id): """Get the latest version.""" subquery = ( session.query(func.max(LessonVersion.id)) .filter(LessonVersion.lesson_id == lesson_id) .scalar_subquery() ) query = session.query(LessonVersion).filter( LessonVersion.lesson_id == lesson_id, LessonVersion.id == subquery ) return query.one() @staticmethod def build_lesson_version(session, **kwargs): """Add next sequence ID value to lession version.""" max_sequence_id = ( session.query(func.max(LessonVersion.sequence_id)) .filter(LessonVersion.lesson_id == kwargs["lesson_id"]) .scalar() ) sequence_id = 1 if (max_sequence_id is None) else (max_sequence_id + 1) return LessonVersion(sequence_id=sequence_id, **kwargs) @dataclass_json @dataclass class StandardFields: """Common definitions for all tables.""" id: int created_at: datetime id = Column(Integer, autoincrement=True, primary_key=True, nullable=False) created_at = Column(DateTime, nullable=False, default=timestamp) # Link lesson versions to authors. lesson_version_author = Table( "lesson_version_author", DB.base.metadata, Column("author_id", ForeignKey("person.id"), primary_key=True), Column("lesson_version_id", ForeignKey("lesson_version.id"), primary_key=True), ) # Link lesson versions to terms. lesson_version_term = Table( "lesson_version_term", DB.base.metadata, Column("term_id", ForeignKey("term.id"), nullable=False, primary_key=True), Column( "lesson_version_id", ForeignKey("lesson_version.id"), nullable=False, primary_key=True, ), ) @dataclass class Lesson(DB.base, StandardFields): """Represent a logical lesson.""" language: str __tablename__ = "lesson" language = Column(String(LANG_ID_LEN), nullable=False) versions = relationship( "LessonVersion", back_populates="lesson", cascade="all, delete" ) @dataclass class LessonVersion(DB.base, StandardFields): """Represent a specific version of a lesson.""" lesson_id: int sequence_id: int title: str url: str abstract: str version: str license: str __tablename__ = "lesson_version" lesson_id = Column(Integer, ForeignKey("lesson.id")) sequence_id = Column(Integer, nullable=False) title = Column(Text, nullable=False) url = Column(Text, nullable=False) abstract = Column(Text, nullable=False) version = Column(Text, nullable=False) license = Column(Text, nullable=False) lesson = relationship("Lesson", back_populates="versions") authors = relationship( "Person", secondary="lesson_version_author", back_populates="lesson_versions" ) terms = relationship( "Term", secondary="lesson_version_term", back_populates="lesson_versions" ) @dataclass class Term(DB.base, StandardFields): """Represent a term used as a pre- or post-requisite.""" language: str term: str url: str __tablename__ = "term" __table_args__ = ( UniqueConstraint("language", "term", name="language_term_unique"), ) language = Column(String(LANG_ID_LEN), nullable=False) term = Column(Text, nullable=False) url = Column(Text, nullable=False) lesson_versions = relationship( "LessonVersion", secondary="lesson_version_term", back_populates="terms" ) @dataclass class Person(DB.base, StandardFields): """Represent a person.""" name: str email: str __tablename__ = "person" name = Column(Text, nullable=False) email = Column(Text, nullable=False) lesson_versions = relationship( "LessonVersion", secondary="lesson_version_author", back_populates="authors" ) ``` #### File: harper/harper/term.py ```python from fastapi import APIRouter from sqlalchemy import func from sqlalchemy.orm import Session from harper.db import DB, LessonVersion, Term from harper.util import harper_exc router = APIRouter() @router.get("/all/") @harper_exc async def get_all_terms(): """All terms with frequency count.""" with Session(DB.engine) as session: subquery = session.query(func.max(LessonVersion.id)) subquery = subquery.group_by(LessonVersion.lesson_id) subquery = subquery.subquery() query = session.query(Term, func.count(Term.id)) query = query.select_from(LessonVersion) query = query.join(LessonVersion.terms) query = query.group_by(Term.id) query = query.filter(LessonVersion.id.in_(subquery.select())) results = query.all() return [r[0].to_dict() | {"count": r[1]} for r in results] ```
{ "source": "JorySchossau/hpcc_tools", "score": 2 }
#### File: JorySchossau/hpcc_tools/queue.py ```python SCRATCH="FULL_PATH_TO_YOUR_SCRATCH_SPACE" # username USER="YOUR_USERNAME_HERE" # how big is one batch of jobs? ex 10 means there must be 10 free slots to run another batch. JOB_ARRAY_MAX=20 # max total jobs to run in parallel with this tool (ideally multiple of JOB_ARRAY_MAX) QUEUE_MAX=140 ## ## ## Customize everything before this line ## ## import os, sys, shutil import glob import pickle import time import re from subprocess import check_output import argparse basedir = os.path.dirname(os.path.realpath(__file__)) def joinpath(*args): build = args[0] for iarg in range(1,len(args)): build = os.path.join(build,args[iarg]); return build; def existingProjects(): projects = []; confdir = joinpath(SCRATCH, ".queue"); if os.path.isdir(confdir): for folder in os.walk(confdir).next()[1]: projectdir = joinpath(confdir,folder); projects.append(projectdir); return projects else: return False def quitWithMsg(msg): print("\n"); print(msg); sys.exit(1); def runningJobs(): '''Returns list of job ids (just the 12345 number part) for all running jobs of the specified user''' list_running = check_output(["qstat -au "+USER+" | tail -n +6 | cut -d'.' -f1 | cut -d'[' -f1"], shell=True); list_running = list_running.split('\n'); list_running = [int(e) for e in list_running if len(e) != 0]; return list_running; def splitArrayJob(jobfile,jobtext,begin,end): begin = int(begin); end = int(end); rxBegin = re.compile(r'''XBEGINX'''); rxEnd = re.compile(r'''XENDX'''); rxMultiplier = re.compile(r'''XMULTIPLIERX'''); rxSet = re.compile(r'''XSETX'''); rxOffset = re.compile(r'''XOFFSETX'''); SETS = (end - begin + 1) / JOB_ARRAY_MAX; REMAINDER = (end - begin + 1) % JOB_ARRAY_MAX; firstJobMade=False; projectdir=joinpath(SCRATCH,".queue"); jobs_to_add = []; projdirname = "array_"+jobfile; if not os.path.exists(joinpath(SCRATCH,".queue",projdirname)): os.makedirs(joinpath(SCRATCH,".queue",projdirname)); for set in range(SETS): this_filename = str(set*JOB_ARRAY_MAX+begin)+"."+str(set*JOB_ARRAY_MAX+begin+JOB_ARRAY_MAX-1)+".sh"; jobs_to_add.append(this_filename); open(joinpath(projectdir,"array_"+jobfile,this_filename),'w').write(rxOffset.sub(str(begin-1),rxSet.sub(str(JOB_ARRAY_MAX),rxMultiplier.sub(str(set),rxEnd.sub(str(JOB_ARRAY_MAX),rxBegin.sub(str(1),jobtext)))))); ## for each set, multiplier=set, begin=begin, end=begin+JOB_ARRAY_MAX-1 firstJobMade=True; if (REMAINDER != 0): this_filename = str(SETS*JOB_ARRAY_MAX+begin)+"."+str(end)+".sh"; jobs_to_add.append(this_filename); if (firstJobMade == True): open(joinpath(projectdir,"array_"+jobfile,this_filename),'w').write(rxOffset.sub(str(begin-1),rxSet.sub(str(JOB_ARRAY_MAX),rxMultiplier.sub(str(SETS),rxEnd.sub(str(REMAINDER),rxBegin.sub(str(1),jobtext)))))); ## at remainder, assume first job started: multiplier=SETS, begin=1, end=end else: open(joinpath(projectdir,"array_"+jobfile,this_filename),'w').write(rxOffset.sub(str(begin-1),rxSet.sub(str(JOB_ARRAY_MAX),rxMultiplier.sub(str(SETS),rxEnd.sub(str(end-begin+1),rxBegin.sub(str(1),jobtext)))))); ## at remainder, assume NOT first job started: multiplier= pickle.dump(jobs_to_add, open(joinpath(SCRATCH,".queue",projdirname,".held"),"wb")); submitted = []; pickle.dump(submitted, open(joinpath(SCRATCH,".queue",projdirname,".submitted"),"wb")); #write empty array so file exists def checkOnJobsForProjects(): """Submits jobs for folders found in the .queue hidden folder. Returns False if there were jobs found to submit or running, True otherwise.""" projects = existingProjects(); if (projects == False): quitWithMsg("No projects found\n"); running_jobs = runningJobs(); available_slots = 0; #how many jobs we can submit at the end of evaluation zeroJobsLeft = True; for project in projects: submitted_jobs = pickle.load(open(joinpath(project,".submitted"),"rb")); held_jobs = pickle.load(open(joinpath(project,".held"),"rb")); for job in submitted_jobs: if (job not in running_jobs): submitted_jobs.remove(job); if (len(held_jobs) == 0 and len(submitted_jobs) == 0): shutil.rmtree(project) #remove finished project continue; else: zeroJobsLeft = False; available = QUEUE_MAX - (len(running_jobs)*JOB_ARRAY_MAX); if (available >= 0): available_slots += (available/JOB_ARRAY_MAX); while ((available_slots > 0) and (len(held_jobs) > 0)): job = held_jobs.pop(); jobID = submitJobGetID(joinpath(project,job)); submitted_jobs.append(jobID); available_slots -= 1; pickle.dump(submitted_jobs, open(joinpath(project,".submitted"),"wb")); pickle.dump(held_jobs, open(joinpath(project,".held"),"wb")); return zeroJobsLeft; def submitJobGetID(jobFileFullPath): '''Submits a job file given the full path and returns the integer job id part of 12345.job.mgr[] etc.''' ID = check_output(["qsub "+jobFileFullPath], shell=True); ID = int(ID.split('\n')[0].split('.')[0].split('[')[0]); return ID; def daemonIsRunning(): daemonfile = joinpath(SCRATCH,'.queue','.daemon'); if os.path.exists(daemonfile) and os.path.isfile(daemonfile): return True; else: return False; def markDaemonIsRunning(): daemonfile = joinpath(SCRATCH,'.queue','.daemon'); open(daemonfile, 'a').close(); def markDaemonNotRunning(): daemonfile = joinpath(SCRATCH,'.queue','.daemon'); if os.path.exists(daemonfile) and os.path.isfile(daemonfile): os.remove(daemonfile); def getArrayRangeAndTemplateFile(filename): '''takes a filename of a qsub submit file. returns the numbers used in this type of line: #PBS -t 1-100 and returns the new file contents replaced with template symbols: #PBS -t XBEGINX-XENDX and a new line beneath that: PBS_ARRAYID=$[${PBS_ARRAYID}+XMULTIPLIERX*XSETX+XOFFSETX]''' filetext = None; with open(filename, 'r') as filehandle: filetext = filehandle.read(); regex = re.compile(r'''PBS -t[\s]*(\d+)[\s]*-[\s]*(\d+)'''); match = regex.search(filetext); filetext = regex.sub(r'''PBS -t XBEGINX-XENDX PBS_ARRAYID=$[${PBS_ARRAYID}+XMULTIPLIERX*XSETX+XOFFSETX]''',filetext); return (match.group(1), match.group(2), filetext); def submitSelf(): check_output(["qsub -j oe -o /dev/null -l mem=2gb,nodes=1:ppn=1,walltime=03:55:00 "+joinpath(SCRATCH,'.queue','queue.py')], shell=True); def help(): '''Returns args object.''' print(" Usage: ./queue.py [qsub file or resume]") print("") print(" qsub file: A qsub array job.") print(" resume: Resubmits self in job manager mode if necessary.") print(" <no arguments>: Assumes run in automated job manager mode") print(" and will kill itself and resubmit itself every 4 hours.") print("") print(" Warning: this script possibly produces many files.") print(" take care to remove job directories no longer") print(" needed by the end of the qsub file.") print("") print(" The working folder is "+joinpath(SCRATCH,".queue")+" which") print(" contains a semaphore .daemon file, and a project directory") print(" for each submitted qsub array file using this tool.") print(" Each project directory contains prepared qsub files for") print(" each smaller array segment, as well as two hidden files") print(" .held and .submitted. .held is a list of qsub files yet") print(" to be submitted. .submitted contains job ids for jobs") print(" that are running.") print("") print(" Workflow: submit a qsub array job. queue.py is automatically") print(" submitted as a 4 hour job which every minute checks if job") print(" status has changed. If so then submits a new chunk of jobs") print(" if there is room. A .daemon file is created at the beginning") print(" of the job manager 4 hour run, and removed at the end.") print(" This .daemon file helps prevent multiple job managers running.") print(" However, if you kill the job manager, simpley ./queue.py resume") print(" and the job manager will be forced into a running state after") print(" submission. The project directories in") print(" "+joinpath(SCRATCH,".queue")+" are each removed after") print(" all jobs in them are completed."); print("") def main(): if (len(sys.argv) > 1): # Users wants to submit a new job if (sys.argv[1] in ["-h","--h","--help","-?","--?"]): help() sys.exit(0); if (sys.argv[1] == "resume"): markDaemonIsRunning(); shutil.copy("queue.py", joinpath(SCRATCH,'.queue','queue.py')); submitSelf(); sys.exit(0); rangeBegin, rangeEnd, fileTemplated = getArrayRangeAndTemplateFile(sys.argv[1]); splitArrayJob(sys.argv[1], fileTemplated, rangeBegin, rangeEnd); shutil.copy("queue.py", joinpath(SCRATCH,'.queue','queue.py')); checkOnJobsForProjects(); if not daemonIsRunning(): markDaemonIsRunning(); submitSelf(); else: # Not user-mode, but automated startup to maintain jobs if not daemonIsRunning(): sys.stderr.write("Something is wrong, because we're running a new instance but the daemon flag is gone. Shutting down.\n"); sys.exit(0); justUnder4Hours = 3600*4 - 60*10; #10 minutes under timeStart = time.time(); while ((time.time() - timeStart) < justUnder4Hours): done = checkOnJobsForProjects(); if (done == True): markDaemonNotRunning(); sys.exit(0); else: time.sleep(60); # wait one minute submitSelf(); sys.exit(0); if __name__ == "__main__": main(); ```
{ "source": "JorySchossau/nqr", "score": 2 }
#### File: nqr/targets/slurm.py ```python import sys, os, glob, subprocess from typing import Tuple, List from .. import utils from . import targets from ..generic import iterate_commands_and_outputs, run_command from .targets import get_settings slurm_normal_template = """#!/bin/bash -login {sbatch} #SBATCH --output=slurm.out.log #SBATCH --error=slurm.err.log #SBATCH --job-name={jobname} shopt -s expand_aliases ulimit -s 8192 cd ${{SLURM_SUBMIT_DIR}} {commands} touch .finished #sacct -j ${{SLURM_JOB_ID}} # could print job status info exit $ret """ slurm_indefinite_template = """#!/bin/bash -login {sbatch} #SBATCH --output=slurm.out.log #SBATCH --error=slurm.err.log #SBATCH --job-name={jobname} shopt -s expand_aliases ulimit -s 8192 cd ${{SLURM_SUBMIT_DIR}} export SLURM_JOBSCRIPT="job.sb" # used for resubmission ######################## start dmtcp_coordinator ####################### fname=port.$SLURM_JOBID # store port number dmtcp_coordinator --daemon --exit-on-last -p 0 --port-file $fname $@ 1>/dev/null 2>&1 # start coordinater h=`hostname` # get coordinator's host name p=`cat $fname` # get coordinator's port number export DMTCP_COORD_HOST=$h # save coordinators host info in an environment variable export DMTCP_COORD_PORT=$p # save coordinators port info in an environment variable export DMTCP_CHECKPOINT_DIR="./" # save ckpt files into unique locations ####################### BODY of the JOB ###################### # prepare work environment of the job # if first time launch, use "dmtcp_launch" otherwise use "dmtcp_restart" export CKPT_WAIT_SEC=$(( 4 * 60 * 60 - 10 * 60 )) # when to ckpt, in seconds (just under 4 hrs) # Launch or restart the execution if [ ! -f ${{DMTCP_CHECKPOINT_DIR}}/ckpt_*.dmtcp ] # if no ckpt file exists, it is first time run, use dmtcp_launch then # first time run, use dmtcp_launch to start the job and run on background dmtcp_launch -h $DMTCP_COORD_HOST -p $DMTCP_COORD_PORT --rm --ckpt-open-files bash commands.sh & #wait for an inverval of checkpoint seconds to start checkpointing sleep $CKPT_WAIT_SEC # start checkpointing dmtcp_command -h $DMTCP_COORD_HOST -p $DMTCP_COORD_PORT --ckpt-open-files --bcheckpoint # kill the running job after checkpointing dmtcp_command -h $DMTCP_COORD_HOST -p $DMTCP_COORD_PORT --quit # resubmit the job sbatch $SLURM_JOBSCRIPT else # it is a restart run # clean up artifacts (resulting files that could be in the middle of being written to) # clean up any generated mabe files that have been checkpointed bash cleanup.sh # restart job with checkpoint files ckpt_*.dmtcp and run in background dmtcp_restart -h $DMTCP_COORD_HOST -p $DMTCP_COORD_PORT ckpt_*.dmtcp & # wait for a checkpoint interval to start checkpointing sleep $CKPT_WAIT_SEC # if program is still running, do the checkpoint and resubmit if dmtcp_command -h $DMTCP_COORD_HOST -p $DMTCP_COORD_PORT -s 1>/dev/null 2>&1 #if dmtcp_command -h $DMTCP_COORD_HOST -p $DMTCP_COORD_PORT -s 1>/dev/null then # clean up old ckpt files before start checkpointing rm -r ckpt_*.dmtcp # checkpointing the job dmtcp_command -h $DMTCP_COORD_HOST -p $DMTCP_COORD_PORT --ckpt-open-files -bc # kill the running program and quit dmtcp_command -h $DMTCP_COORD_HOST -p $DMTCP_COORD_PORT --quit # resubmit this script to slurm sbatch $SLURM_JOBSCRIPT else echo "job finished" fi fi # show the job status info #scontrol show job $SLURM_JOB_ID """ def _get_sbatch_options_str() -> str: """constructs '#SBATCH --key=value' strings, returns one big block:str""" global targets return '\n'.join([f"#SBATCH {string.replace('_','-')}" for string in targets.get_settings('slurm')]) _printed_help = False def print_help(): global _printed_help # avoid looping into module helps if _printed_help: sys.exit(0) _printed_help = True help_output = """ Help - SLURM Target ========================== (no flags) Normal submission -i Indefinite mode (4hr chunks w/ checkpointing until done) -sN When -i, limit indefinite mode to N 4hr chunks """ print(help_output) def _determine_indefinite_mode() -> bool: indefinite = any([e.startswith('-i') for e in sys.argv]) return indefinite def _determine_indefinite_repeats() -> Tuple[bool, int]: limited = any([e.startswith('-s') for e in sys.argv]) repeats = None if limited: for arg in sys.argv: if arg.startswith('-s'): if len(arg) > 2: try: repeats = int(arg[2:]) if repeats <= 0: raise ValueError() except ValueError: print("\nError: -sN (N should be positive int)") sys.exit(1) break return limited, repeats def _create_commands_and_cleanup_scripts(parent:str, commands_pairs:List[Tuple[str,List[str]]]): # create helper lists zcount = len(str(len(commands_pairs))) # for zfill finished_ids = list(range(len(commands_pairs))) finished_names = [f".{str(n).zfill(zcount)}.finished" for n in range(len(commands_pairs))] # create file content strings commands_script = """ ################################## # automatically created by PPNQR # ################################## # This is the set of commands called by # the checkpointing system. This bash script # is actually what is getting checkpointed. """ cleanup_script = """ ################################## # automatically created by PPNQR # ################################## # This utility is called by the job/checkpointing script # Cleanup is required if restarting a checkpoint # and the job is not yet done writing its output files # we must manually remove them so the checkpointing script # can restore the version of the files it is expecting # as small byte-differences can happen between checkpointing # and job-killing and invalidate those left behind. # Also, I think existing files make the reloading break anyway. """ for i in finished_ids: command,output = commands_pairs[i] commands_script += f""" {command} if [ $? -ne 0 ]; then exit; fi touch {finished_names[i]} """ if output: removals_list = list() for file_glob in output: removals_list.append(f""" rm -rf {file_glob}""") removals = '\n'.join(removals_list) cleanup_script += f""" if [ ! -f "{finished_names[i]}" ]; then {removals} fi """ # create files open(os.path.join(parent,'commands.sh'),'wt').write(commands_script) open(os.path.join(parent,'cleanup.sh'),'wt').write(cleanup_script) # clear any existing .finished semaphores finished_files = glob.glob(os.path.join(parent,".*.finished")) for each_file in finished_files: os.remove(each_file) def _create_normal_job_file(run:dict, commands_pairs:List[Tuple[str,List[str]]]): command_code = "" for command,_ in commands_pairs: command_code += f""" {command} ret=$? if [ $? -ne 0 ]; then exit; fi """ content = slurm_normal_template.format( sbatch=_get_sbatch_options_str(), jobname=run['condition'], commands=command_code, ) open(os.path.join(run['dir'],'job.sb'),'wt').write(content) def _create_indefinite_job_file(run:dict): content = slurm_indefinite_template.format( sbatch=_get_sbatch_options_str(), jobname=run['condition'], ) open(os.path.join(run['dir'],'job.sb'),'wt').write(content) def _has_sbatch_has_dmtcp() -> Tuple[bool,bool]: from shutil import which has_sbatch = bool(which('sbatch')) has_dmtcp = bool(which('dmtcp_launch')) return (has_sbatch, has_dmtcp) def launch(run): help_flag = any([e in sys.argv for e in ('-h','--help')]) if help_flag: print_help() return # allow downstream to print help dry_run = '--run' not in sys.argv indefinite_mode = _determine_indefinite_mode() finite,finite_repeats = _determine_indefinite_repeats() has_sbatch,has_dmtcp = _has_sbatch_has_dmtcp() if dry_run: diagnostics = f""" SLURM Target sbatch: {'Yes' if has_sbatch else 'No (no SLURM system found)'} dmtcp: {'Yes (indefinite mode available)' if has_dmtcp else 'No (indefinite mode not available)'} run mode: {'indefinite' if indefinite_mode else 'normal'}{' (limited to '+str(finite_repeats)+'x 4hr repeats)' if indefinite_mode and finite else ''} """ print(diagnostics) return # create directories and copy files utils.make_directories(run) utils.copy_requirements(run) commands_pairs = list(iterate_commands_and_outputs(run)) # create necessary job files if indefinite_mode: if not has_dmtcp: print("Error: no dmtcp available for indefinite checkpointing. Try normal mode.") if not has_sbatch: print("Error: not a SLURM system. Use a valid target for launching jobs.") sys.exit(1) # override time to 4 hrs settings.time='03:59:00' # create commands.sh, cleanup.sh to be called by dmtcp checkpointing _create_commands_and_cleanup_scripts(run['dir'], commands_pairs) _create_indefinite_job_file(run) else: # normal mode if not has_sbatch: print("Error: not a SLURM system. Use a valid target for launching jobs.") sys.exit(1) _create_normal_job_file(run, commands_pairs) # submit the job using slurm subprocess.Popen('sbatch job.sb', shell=True, cwd=run['dir']) # register this target from . import targets current_module = sys.modules[__name__] targets.addtarget('slurm',current_module) ```
{ "source": "jorzel/opentable", "score": 3 }
#### File: src/application/uow.py ```python from abc import ABC, abstractmethod class UnitOfWork(ABC): """ Secondary port (interface) for transaction management (usually, but not only database transactions) """ @abstractmethod def __enter__(self): pass @abstractmethod def __exit__(self, *args): pass @abstractmethod def commit(self): pass @abstractmethod def rollback(self): pass ``` #### File: src/domain/serializers.py ```python from .entities.restaurant import Restaurant from .entities.table import Table def table_serializer(table: Table): return {"id": table.id, "max_persons": table.max_persons, "is_open": table.is_open} def restaurant_serializer(restaurant: Restaurant): return { "id": restaurant.id, "tables": [table_serializer(t) for t in restaurant.tables], } ``` #### File: db/sqlalchemy/orm.py ```python from sqlalchemy import Boolean, Column, ForeignKey, Integer from sqlalchemy import Table as sa_Table from sqlalchemy.orm import mapper, relationship from domain.entities.restaurant import Restaurant from domain.entities.table import Table from .setup import metadata restaurant = sa_Table( "restaurant", metadata, Column("id", Integer, primary_key=True, autoincrement=True), ) table = sa_Table( "table", metadata, Column("id", Integer, primary_key=True, autoincrement=True), Column("restaurant_id", Integer, ForeignKey("restaurant.id")), Column("max_persons", Integer), Column("is_open", Boolean), ) def run_mappers(): """ Provides mapping between db tables and domain models. """ mapper( Restaurant, restaurant, properties={"tables": relationship(Table, backref="restaurant")}, ) mapper(Table, table) ``` #### File: infrastructure/events/local_publisher.py ```python from typing import List from application.handlers.events import handle_events from domain.events import DomainEvent from domain.events.publisher import EventPublisher class LocalEventPublisher(EventPublisher): def publish(self, events: List[DomainEvent]) -> None: handle_events([e.as_dict for e in events]) ``` #### File: tests/unit/test_booking_service.py ```python from unittest.mock import ANY, Mock import pytest from application.services.booking_table import BookingTableApplicationService from domain.commands import BookTableCommand from domain.events.table import BookedTableEvent from infrastructure.db.memory.repository import MemoryRestaurantRepository from infrastructure.db.memory.uow import FakeUnitOfWork @pytest.fixture def mocked_event_publisher(): return Mock() def test_booking_service_book_table_should_pass_when_table_in_restaurant_is_available( restaurant_factory, table_factory, mocked_event_publisher, ): repository = MemoryRestaurantRepository() booking_service = BookingTableApplicationService( repository, FakeUnitOfWork(), mocked_event_publisher ) table = table_factory(table_id=1, max_persons=5, is_open=True) restaurant = restaurant_factory( restaurant_id=1, tables=[table], repository=repository ) command = BookTableCommand(restaurant.id, persons=2) booking_service.book_table(command) assert table.is_open is False mocked_event_publisher.publish.assert_called_once_with( [ BookedTableEvent( table_id=table.id, restaurant_id=restaurant.id, booked_at=ANY ) ] ) ```
{ "source": "jorzel/recruitment", "score": 3 }
#### File: application/events/handlers.py ```python import logging from typing import Any, Dict, List from application.uow import UnitOfWork from domain.events.base import DomainEvent, SerializedEvent from domain.projections.store import ProjectionStore logger = logging.getLogger(__name__) class EventHandler: """ `handlers` - is a key / value store, where key is :attr:`DomainEvent.name` and value is callable defining what action should be made when the event is handled """ def __init__( self, handlers: Dict[DomainEvent, Any], unit_of_work: UnitOfWork, projection_store: ProjectionStore, ): self._handlers = handlers self._unit_of_work = unit_of_work self._projection_store = projection_store def handle(self, events: List[SerializedEvent]) -> None: """ Method defining how incoming events are handled. `events` - list of serialized events """ for event in events: handler = self._handlers.get(event["name"]) if not handler: logger.info(f"Handler for {event} not found") continue handler(self._unit_of_work, self._projection_store, event) ``` #### File: db/sqlalchemy/uow.py ```python from application.uow import UnitOfWork class SQLAlchemyUnitOfWork(UnitOfWork): """ Implementation of transaction management for ORM SQLAlchemy """ def __init__(self, session): self.session = session def __enter__(self): return self def __exit__(self, *args): try: self.commit() except Exception: self.rollback() def commit(self): self.session.commit() def rollback(self): self.session.rollback() ```
{ "source": "jorzel/service-layer", "score": 3 }
#### File: src/api/graphql.py ```python import graphene from graphene.relay.node import from_global_id from service import book_restaurant_table, get_restaurants class UserNode(graphene.ObjectType): class Meta: interfaces = (graphene.relay.Node,) email = graphene.String() class RestaurantNode(graphene.ObjectType): class Meta: interfaces = (graphene.relay.Node,) name = graphene.String() class RestaurantConnection(graphene.Connection): class Meta: node = RestaurantNode class TableBookingNode(graphene.ObjectType): class Meta: interfaces = (graphene.relay.Node,) persons = graphene.Int() class TableBookingConnection(graphene.Connection): class Meta: node = TableBookingNode class BookRestaurantTable(graphene.Mutation): class Arguments: restaurant_gid = graphene.ID(required=True) persons = graphene.Int(required=True) user_email = graphene.String(required=True) is_booked = graphene.Boolean() def mutate(self, info, restaurant_gid: str, persons: int, user_email: str): session = info.context["session"] _, restaurant_id = from_global_id(restaurant_gid) _ = book_restaurant_table(session, restaurant_id, user_email, persons) return BookRestaurantTable(is_booked=True) class Mutation(graphene.ObjectType): book_restaurant_table = BookRestaurantTable.Field() class Query(graphene.ObjectType): up = graphene.Boolean() restaurants = graphene.relay.ConnectionField( RestaurantConnection, q=graphene.String() ) def resolve_up(root, info, **kwargs): return True def resolve_restaurants(root, info, **kwargs): query = get_restaurants( info.context["session"], search=kwargs.get("q"), limit=kwargs.get("first") ) return [RestaurantNode(id=r.id, name=r.name) for r in query] schema = graphene.Schema( query=Query, mutation=Mutation, types=[UserNode, RestaurantNode] ) ``` #### File: src/tests/test_rest_api.py ```python import pytest from models import TableBooking @pytest.fixture def test_client(app): return app.test_client() def test_up_endpoint(test_client): response = test_client.get("/") assert response.status_code == 200 assert response.json == {"up": True} def test_get_restaurants(test_client, restaurant_factory, db_session): restaurant = restaurant_factory(name="taverna") response = test_client.get("/restaurants") assert response.status_code == 200 assert response.json == [{"name": restaurant.name, "id": restaurant.id}] def test_get_parametrized_restaurants(test_client, restaurant_factory, db_session): restaurant = restaurant_factory(name="taverna") _ = restaurant_factory(name="americano") response = test_client.get("/restaurants?q=tav&limit=1") assert response.status_code == 200 assert response.json == [{"name": restaurant.name, "id": restaurant.id}] def test_post_bookings( test_client, restaurant_factory, table_factory, user_factory, db_session ): restaurant = restaurant_factory(name="taverna") _ = table_factory(restaurant=restaurant, max_persons=5, is_open=True) user = user_factory(email="<EMAIL>") persons = 3 payload = { "restaurant_id": restaurant.id, "persons": persons, "user_email": user.email, } response = test_client.post("/bookings", json=payload) assert response.status_code == 201 assert response.json == {"isBooked": True} assert ( db_session.query(TableBooking) .filter_by(user=user, restaurant=restaurant, persons=persons) .first() ) ```
{ "source": "jorzel/value-object-persistance", "score": 3 }
#### File: value-object-persistance/src/orm.py ```python from sqlalchemy import ( Column, Enum, Float, ForeignKey, Integer, String, Table, UniqueConstraint, ) from sqlalchemy.dialects.sqlite import JSON from sqlalchemy.orm import composite, registry, relationship from db import metadata from models.shop import Currency, Shop from value_objects.location import Location from value_objects.money import Money mapper_registry = registry() location = Table( "location", metadata, Column("id", Integer, primary_key=True, autoincrement=True), Column("city", String), Column("region", String), Column("longitude", Float), Column("latitude", Float), UniqueConstraint( "city", "region", "longitude", "latitude", name="uix_city_region_longitude_latitude", ), ) shop = Table( "shop", metadata, Column("id", Integer, primary_key=True, autoincrement=True), Column("email_address", String), Column("balance_value", Integer, default=0, nullable=False), Column("balance_currency", Enum(Currency), default=Currency.USD, nullable=False), Column("location_id", Integer, ForeignKey("location.id")), Column("open_hours_config", JSON, nullable=False, default=dict), ) def run_mappers(): """ Provides mapping between db tables and domain models. """ mapper_registry.map_imperatively( Location, location, properties={ "_city": location.c.city, "_region": location.c.region, "_latitude": location.c.latitude, "_longitude": location.c.longitude, }, ) mapper_registry.map_imperatively( Shop, shop, properties={ "balance": composite(Money, shop.c.balance_value, shop.c.balance_currency), "location": relationship(Location), }, ) ``` #### File: tests/unit/test_location.py ```python import pytest from value_objects.location import InvalidGeolocation, Location def test_location_initialization_succeed_when_values_are_valid(): location = Location(city="X", region="Y", latitude=21.91, longitude=28.20) assert location.city == "X" assert location.region == "Y" assert location.latitude == 21.91 assert location.longitude == 28.20 def test_location_initialization_raises_exception_when_geolocation_is_below_zero(): with pytest.raises(InvalidGeolocation): _ = Location(city="X", region="Y", latitude=21.91, longitude=-28.20) ```
{ "source": "Jos33y/student-performance-knn", "score": 2 }
#### File: core/ops/dispatch.py ```python from typing import Any, Union import numpy as np from pandas.core.dtypes.common import ( is_datetime64_dtype, is_extension_array_dtype, is_integer_dtype, is_object_dtype, is_scalar, is_timedelta64_dtype, ) from pandas.core.dtypes.generic import ABCExtensionArray, ABCSeries from pandas.core.construction import array def should_extension_dispatch(left: ABCSeries, right: Any) -> bool: """ Identify cases where Series operation should use dispatch_to_extension_op. Parameters ---------- left : Series right : object Returns ------- bool """ if ( is_extension_array_dtype(left.dtype) or is_datetime64_dtype(left.dtype) or is_timedelta64_dtype(left.dtype) ): return True if not is_scalar(right) and is_extension_array_dtype(right): # GH#22378 disallow scalar to exclude e.g. "category", "Int64" return True return False def should_series_dispatch(left, right, op): """ Identify cases where a DataFrame operation should dispatch to its Series counterpart. Parameters ---------- left : DataFrame right : DataFrame or Series op : binary operator Returns ------- override : bool """ if left._is_mixed_type or right._is_mixed_type: return True if op.__name__.strip("_") in ["and", "or", "xor", "rand", "ror", "rxor"]: # TODO: GH references for what this fixes # Note: this check must come before the check for nonempty columns. return True if right.ndim == 1: # operating with Series, short-circuit checks that would fail # with AttributeError. return False if not len(left.columns) or not len(right.columns): # ensure obj.dtypes[0] exists for each obj return False ldtype = left.dtypes.iloc[0] rdtype = right.dtypes.iloc[0] if (is_timedelta64_dtype(ldtype) and is_integer_dtype(rdtype)) or ( is_timedelta64_dtype(rdtype) and is_integer_dtype(ldtype) ): # numpy integer dtypes as timedelta64 dtypes in this scenario return True if is_datetime64_dtype(ldtype) and is_object_dtype(rdtype): # in particular case where right is an array of DateOffsets return True return False def dispatch_to_extension_op( op, left: Union[ABCExtensionArray, np.ndarray], right: Any, ): """ Assume that left or right is a Series backed by an ExtensionArray, apply the operator defined by op. Parameters ---------- op : binary operator left : ExtensionArray or np.ndarray right : object Returns ------- ExtensionArray or np.ndarray 2-tuple of these if op is divmod or rdivmod """ # NB: left and right should already be unboxed, so neither should be # a Series or Index. if left.dtype.kind in "mM" and isinstance(left, np.ndarray): # We need to cast datetime64 and timedelta64 ndarrays to # DatetimeArray/TimedeltaArray. But we avoid wrapping others in # PandasArray as that behaves poorly with e.g. IntegerArray. left = array(left) # The op calls will raise TypeError if the op is not defined # on the ExtensionArray res_values = op(left, right) return res_values ``` #### File: core/ops/docstrings.py ```python from typing import Dict, Optional def _make_flex_doc(op_name, typ): """ Make the appropriate substitutions for the given operation and class-typ into either _flex_doc_SERIES or _flex_doc_FRAME to return the docstring to attach to a generated method. Parameters ---------- op_name : str {'__add__', '__sub__', ... '__eq__', '__ne__', ...} typ : str {series, 'dataframe']} Returns ------- doc : str """ op_name = op_name.replace("__", "") op_desc = _op_descriptions[op_name] if op_name.startswith("r"): equiv = "other " + op_desc["op"] + " " + typ else: equiv = typ + " " + op_desc["op"] + " other" if typ == "series": base_doc = _flex_doc_SERIES doc_no_examples = base_doc.format( desc=op_desc["desc"], op_name=op_name, equiv=equiv, reverse=op_desc["reverse"], ) if op_desc["series_examples"]: doc = doc_no_examples + op_desc["series_examples"] else: doc = doc_no_examples elif typ == "dataframe": base_doc = _flex_doc_FRAME doc = base_doc.format( desc=op_desc["desc"], op_name=op_name, equiv=equiv, reverse=op_desc["reverse"], ) else: raise AssertionError("Invalid typ argument.") return doc _add_example_SERIES = """ Examples -------- >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.add(b, fill_value=0) a 2.0 b 1.0 c 1.0 d 1.0 e NaN dtype: float64 """ _sub_example_SERIES = """ Examples -------- >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.subtract(b, fill_value=0) a 0.0 b 1.0 c 1.0 d -1.0 e NaN dtype: float64 """ _mul_example_SERIES = """ Examples -------- >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.multiply(b, fill_value=0) a 1.0 b 0.0 c 0.0 d 0.0 e NaN dtype: float64 """ _div_example_SERIES = """ Examples -------- >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.divide(b, fill_value=0) a 1.0 b inf c inf d 0.0 e NaN dtype: float64 """ _floordiv_example_SERIES = """ Examples -------- >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.floordiv(b, fill_value=0) a 1.0 b NaN c NaN d 0.0 e NaN dtype: float64 """ _mod_example_SERIES = """ Examples -------- >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.mod(b, fill_value=0) a 0.0 b NaN c NaN d 0.0 e NaN dtype: float64 """ _pow_example_SERIES = """ Examples -------- >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.pow(b, fill_value=0) a 1.0 b 1.0 c 1.0 d 0.0 e NaN dtype: float64 """ _op_descriptions: Dict[str, Dict[str, Optional[str]]] = { # Arithmetic Operators "add": { "op": "+", "desc": "Addition", "reverse": "radd", "series_examples": _add_example_SERIES, }, "sub": { "op": "-", "desc": "Subtraction", "reverse": "rsub", "series_examples": _sub_example_SERIES, }, "mul": { "op": "*", "desc": "Multiplication", "reverse": "rmul", "series_examples": _mul_example_SERIES, "df_examples": None, }, "mod": { "op": "%", "desc": "Modulo", "reverse": "rmod", "series_examples": _mod_example_SERIES, }, "pow": { "op": "**", "desc": "Exponential power", "reverse": "rpow", "series_examples": _pow_example_SERIES, "df_examples": None, }, "truediv": { "op": "/", "desc": "Floating division", "reverse": "rtruediv", "series_examples": _div_example_SERIES, "df_examples": None, }, "floordiv": { "op": "//", "desc": "Integer division", "reverse": "rfloordiv", "series_examples": _floordiv_example_SERIES, "df_examples": None, }, "divmod": { "op": "divmod", "desc": "Integer division and modulo", "reverse": "rdivmod", "series_examples": None, "df_examples": None, }, # Comparison Operators "eq": {"op": "==", "desc": "Equal to", "reverse": None, "series_examples": None}, "ne": { "op": "!=", "desc": "Not equal to", "reverse": None, "series_examples": None, }, "lt": {"op": "<", "desc": "Less than", "reverse": None, "series_examples": None}, "le": { "op": "<=", "desc": "Less than or equal to", "reverse": None, "series_examples": None, }, "gt": {"op": ">", "desc": "Greater than", "reverse": None, "series_examples": None}, "ge": { "op": ">=", "desc": "Greater than or equal to", "reverse": None, "series_examples": None, }, } _op_names = list(_op_descriptions.keys()) for key in _op_names: reverse_op = _op_descriptions[key]["reverse"] if reverse_op is not None: _op_descriptions[reverse_op] = _op_descriptions[key].copy() _op_descriptions[reverse_op]["reverse"] = key _flex_doc_SERIES = """ Return {desc} of series and other, element-wise (binary operator `{op_name}`). Equivalent to ``{equiv}``, but with support to substitute a fill_value for missing data in one of the inputs. Parameters ---------- other : Series or scalar value fill_value : None or float value, default None (NaN) Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result will be missing. level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level. Returns ------- Series The result of the operation. See Also -------- Series.{reverse} """ _arith_doc_FRAME = """ Binary operator %s with support to substitute a fill_value for missing data in one of the inputs Parameters ---------- other : Series, DataFrame, or constant axis : {0, 1, 'index', 'columns'} For Series input, axis to match Series index on fill_value : None or float value, default None Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns ------- result : DataFrame Notes ----- Mismatched indices will be unioned together """ _flex_doc_FRAME = """ Get {desc} of dataframe and other, element-wise (binary operator `{op_name}`). Equivalent to ``{equiv}``, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, `{reverse}`. Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`. Parameters ---------- other : scalar, sequence, Series, or DataFrame Any single or multiple element data structure, or list-like object. axis : {{0 or 'index', 1 or 'columns'}} Whether to compare by the index (0 or 'index') or columns (1 or 'columns'). For Series input, axis to match Series index on. level : int or label Broadcast across a level, matching Index values on the passed MultiIndex level. fill_value : float or None, default None Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing. Returns ------- DataFrame Result of the arithmetic operation. See Also -------- DataFrame.add : Add DataFrames. DataFrame.sub : Subtract DataFrames. DataFrame.mul : Multiply DataFrames. DataFrame.div : Divide DataFrames (float division). DataFrame.truediv : Divide DataFrames (float division). DataFrame.floordiv : Divide DataFrames (integer division). DataFrame.mod : Calculate modulo (remainder after division). DataFrame.pow : Calculate exponential power. Notes ----- Mismatched indices will be unioned together. Examples -------- >>> df = pd.DataFrame({{'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({{'angles': [0, 3, 4]}}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({{'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0 """ _flex_comp_doc_FRAME = """ Get {desc} of dataframe and other, element-wise (binary operator `{op_name}`). Among flexible wrappers (`eq`, `ne`, `le`, `lt`, `ge`, `gt`) to comparison operators. Equivalent to `==`, `=!`, `<=`, `<`, `>=`, `>` with support to choose axis (rows or columns) and level for comparison. Parameters ---------- other : scalar, sequence, Series, or DataFrame Any single or multiple element data structure, or list-like object. axis : {{0 or 'index', 1 or 'columns'}}, default 'columns' Whether to compare by the index (0 or 'index') or columns (1 or 'columns'). level : int or label Broadcast across a level, matching Index values on the passed MultiIndex level. Returns ------- DataFrame of bool Result of the comparison. See Also -------- DataFrame.eq : Compare DataFrames for equality elementwise. DataFrame.ne : Compare DataFrames for inequality elementwise. DataFrame.le : Compare DataFrames for less than inequality or equality elementwise. DataFrame.lt : Compare DataFrames for strictly less than inequality elementwise. DataFrame.ge : Compare DataFrames for greater than inequality or equality elementwise. DataFrame.gt : Compare DataFrames for strictly greater than inequality elementwise. Notes ----- Mismatched indices will be unioned together. `NaN` values are considered different (i.e. `NaN` != `NaN`). Examples -------- >>> df = pd.DataFrame({{'cost': [250, 150, 100], ... 'revenue': [100, 250, 300]}}, ... index=['A', 'B', 'C']) >>> df cost revenue A 250 100 B 150 250 C 100 300 Comparison with a scalar, using either the operator or method: >>> df == 100 cost revenue A False True B False False C True False >>> df.eq(100) cost revenue A False True B False False C True False When `other` is a :class:`Series`, the columns of a DataFrame are aligned with the index of `other` and broadcast: >>> df != pd.Series([100, 250], index=["cost", "revenue"]) cost revenue A True True B True False C False True Use the method to control the broadcast axis: >>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index') cost revenue A True False B True True C True True D True True When comparing to an arbitrary sequence, the number of columns must match the number elements in `other`: >>> df == [250, 100] cost revenue A True True B False False C False False Use the method to control the axis: >>> df.eq([250, 250, 100], axis='index') cost revenue A True False B False True C True False Compare to a DataFrame of different shape. >>> other = pd.DataFrame({{'revenue': [300, 250, 100, 150]}}, ... index=['A', 'B', 'C', 'D']) >>> other revenue A 300 B 250 C 100 D 150 >>> df.gt(other) cost revenue A False False B False False C False True D False False Compare to a MultiIndex by level. >>> df_multindex = pd.DataFrame({{'cost': [250, 150, 100, 150, 300, 220], ... 'revenue': [100, 250, 300, 200, 175, 225]}}, ... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'], ... ['A', 'B', 'C', 'A', 'B', 'C']]) >>> df_multindex cost revenue Q1 A 250 100 B 150 250 C 100 300 Q2 A 150 200 B 300 175 C 220 225 >>> df.le(df_multindex, level=1) cost revenue Q1 A True True B True True C True True Q2 A False True B True False C True False """ ``` #### File: tests/arithmetic/conftest.py ```python import numpy as np import pytest import pandas as pd import pandas._testing as tm # ------------------------------------------------------------------ # Helper Functions def id_func(x): if isinstance(x, tuple): assert len(x) == 2 return x[0].__name__ + "-" + str(x[1]) else: return x.__name__ # ------------------------------------------------------------------ @pytest.fixture(params=[1, np.array(1, dtype=np.int64)]) def one(request): """ Several variants of integer value 1. The zero-dim integer array behaves like an integer. This fixture can be used to check that datetimelike indexes handle addition and subtraction of integers and zero-dimensional arrays of integers. Examples -------- >>> dti = pd.date_range('2016-01-01', periods=2, freq='H') >>> dti DatetimeIndex(['2016-01-01 00:00:00', '2016-01-01 01:00:00'], dtype='datetime64[ns]', freq='H') >>> dti + one DatetimeIndex(['2016-01-01 01:00:00', '2016-01-01 02:00:00'], dtype='datetime64[ns]', freq='H') """ return request.param zeros = [ box_cls([0] * 5, dtype=dtype) for box_cls in [pd.Index, np.array] for dtype in [np.int64, np.uint64, np.float64] ] zeros.extend( [box_cls([-0.0] * 5, dtype=np.float64) for box_cls in [pd.Index, np.array]] ) zeros.extend([np.array(0, dtype=dtype) for dtype in [np.int64, np.uint64, np.float64]]) zeros.extend([np.array(-0.0, dtype=np.float64)]) zeros.extend([0, 0.0, -0.0]) @pytest.fixture(params=zeros) def zero(request): """ Several types of scalar zeros and length 5 vectors of zeros. This fixture can be used to check that numeric-dtype indexes handle division by any zero numeric-dtype. Uses vector of length 5 for broadcasting with `numeric_idx` fixture, which creates numeric-dtype vectors also of length 5. Examples -------- >>> arr = pd.RangeIndex(5) >>> arr / zeros Float64Index([nan, inf, inf, inf, inf], dtype='float64') """ return request.param # ------------------------------------------------------------------ # Vector Fixtures @pytest.fixture( params=[ pd.Float64Index(np.arange(5, dtype="float64")), pd.Int64Index(np.arange(5, dtype="int64")), pd.UInt64Index(np.arange(5, dtype="uint64")), pd.RangeIndex(5), ], ids=lambda x: type(x).__name__, ) def numeric_idx(request): """ Several types of numeric-dtypes Index objects """ return request.param # ------------------------------------------------------------------ # Scalar Fixtures @pytest.fixture( params=[ pd.Timedelta("5m4s").to_pytimedelta(), pd.Timedelta("5m4s"), pd.Timedelta("5m4s").to_timedelta64(), ], ids=lambda x: type(x).__name__, ) def scalar_td(request): """ Several variants of Timedelta scalars representing 5 minutes and 4 seconds """ return request.param @pytest.fixture( params=[ pd.offsets.Day(3), pd.offsets.Hour(72), pd.Timedelta(days=3).to_pytimedelta(), pd.Timedelta("72:00:00"), np.timedelta64(3, "D"), np.timedelta64(72, "h"), ], ids=lambda x: type(x).__name__, ) def three_days(request): """ Several timedelta-like and DateOffset objects that each represent a 3-day timedelta """ return request.param @pytest.fixture( params=[ pd.offsets.Hour(2), pd.offsets.Minute(120), pd.Timedelta(hours=2).to_pytimedelta(), pd.Timedelta(seconds=2 * 3600), np.timedelta64(2, "h"), np.timedelta64(120, "m"), ], ids=lambda x: type(x).__name__, ) def two_hours(request): """ Several timedelta-like and DateOffset objects that each represent a 2-hour timedelta """ return request.param _common_mismatch = [ pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), ] @pytest.fixture( params=[ pd.Timedelta(minutes=30).to_pytimedelta(), np.timedelta64(30, "s"), pd.Timedelta(seconds=30), ] + _common_mismatch ) def not_hourly(request): """ Several timedelta-like and DateOffset instances that are _not_ compatible with Hourly frequencies. """ return request.param @pytest.fixture( params=[ np.timedelta64(4, "h"), pd.Timedelta(hours=23).to_pytimedelta(), pd.Timedelta("23:00:00"), ] + _common_mismatch ) def not_daily(request): """ Several timedelta-like and DateOffset instances that are _not_ compatible with Daily frequencies. """ return request.param @pytest.fixture( params=[ np.timedelta64(365, "D"), pd.Timedelta(days=365).to_pytimedelta(), pd.Timedelta(days=365), ] + _common_mismatch ) def mismatched_freq(request): """ Several timedelta-like and DateOffset instances that are _not_ compatible with Monthly or Annual frequencies. """ return request.param # ------------------------------------------------------------------ @pytest.fixture(params=[pd.Index, pd.Series, pd.DataFrame], ids=id_func) def box(request): """ Several array-like containers that should have effectively identical behavior with respect to arithmetic operations. """ return request.param @pytest.fixture( params=[ pd.Index, pd.Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail), tm.to_array, ], ids=id_func, ) def box_df_fail(request): """ Fixture equivalent to `box` fixture but xfailing the DataFrame case. """ return request.param @pytest.fixture(params=[pd.Index, pd.Series, pd.DataFrame, tm.to_array], ids=id_func) def box_with_array(request): """ Fixture to test behavior for Index, Series, DataFrame, and pandas Array classes """ return request.param # alias so we can use the same fixture for multiple parameters in a test box_with_array2 = box_with_array ``` #### File: arrays/categorical/test_replace.py ```python import pytest import pandas as pd import pandas._testing as tm @pytest.mark.parametrize( "to_replace,value,expected,check_types,check_categorical", [ # one-to-one (1, 2, [2, 2, 3], True, True), (1, 4, [4, 2, 3], True, True), (4, 1, [1, 2, 3], True, True), (5, 6, [1, 2, 3], True, True), # many-to-one ([1], 2, [2, 2, 3], True, True), ([1, 2], 3, [3, 3, 3], True, True), ([1, 2], 4, [4, 4, 3], True, True), ((1, 2, 4), 5, [5, 5, 3], True, True), ((5, 6), 2, [1, 2, 3], True, True), # many-to-many, handled outside of Categorical and results in separate dtype ([1], [2], [2, 2, 3], False, False), ([1, 4], [5, 2], [5, 2, 3], False, False), # check_categorical sorts categories, which crashes on mixed dtypes (3, "4", [1, 2, "4"], True, False), ([1, 2, "3"], "5", ["5", "5", 3], True, False), ], ) def test_replace(to_replace, value, expected, check_types, check_categorical): # GH 31720 s = pd.Series([1, 2, 3], dtype="category") result = s.replace(to_replace, value) expected = pd.Series(expected, dtype="category") s.replace(to_replace, value, inplace=True) tm.assert_series_equal( expected, result, check_dtype=check_types, check_categorical=check_categorical, check_category_order=False, ) tm.assert_series_equal( expected, s, check_dtype=check_types, check_categorical=check_categorical, check_category_order=False, ) ``` #### File: indexes/interval/test_base.py ```python import numpy as np import pytest from pandas import IntervalIndex, Series, date_range import pandas._testing as tm from pandas.tests.indexes.common import Base class TestBase(Base): """ Tests specific to the shared common index tests; unrelated tests should be placed in test_interval.py or the specific test file (e.g. test_astype.py) """ _holder = IntervalIndex @pytest.fixture def indices(self): return tm.makeIntervalIndex(10) def create_index(self, closed="right"): return IntervalIndex.from_breaks(range(11), closed=closed) def test_equals(self, closed): expected = IntervalIndex.from_breaks(np.arange(5), closed=closed) assert expected.equals(expected) assert expected.equals(expected.copy()) assert not expected.equals(expected.astype(object)) assert not expected.equals(np.array(expected)) assert not expected.equals(list(expected)) assert not expected.equals([1, 2]) assert not expected.equals(np.array([1, 2])) assert not expected.equals(date_range("20130101", periods=2)) expected_name1 = IntervalIndex.from_breaks( np.arange(5), closed=closed, name="foo" ) expected_name2 = IntervalIndex.from_breaks( np.arange(5), closed=closed, name="bar" ) assert expected.equals(expected_name1) assert expected_name1.equals(expected_name2) for other_closed in {"left", "right", "both", "neither"} - {closed}: expected_other_closed = IntervalIndex.from_breaks( np.arange(5), closed=other_closed ) assert not expected.equals(expected_other_closed) def test_repr_max_seq_item_setting(self): # override base test: not a valid repr as we use interval notation pass def test_repr_roundtrip(self): # override base test: not a valid repr as we use interval notation pass def test_take(self, closed): index = self.create_index(closed=closed) result = index.take(range(10)) tm.assert_index_equal(result, index) result = index.take([0, 0, 1]) expected = IntervalIndex.from_arrays([0, 0, 1], [1, 1, 2], closed=closed) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("klass", [list, tuple, np.array, Series]) def test_where(self, closed, klass): idx = self.create_index(closed=closed) cond = [True] * len(idx) expected = idx result = expected.where(klass(cond)) tm.assert_index_equal(result, expected) cond = [False] + [True] * len(idx[1:]) expected = IntervalIndex([np.nan] + idx[1:].tolist()) result = idx.where(klass(cond)) tm.assert_index_equal(result, expected) def test_getitem_2d_deprecated(self): # GH#30588 multi-dim indexing is deprecated, but raising is also acceptable idx = self.create_index() with pytest.raises(ValueError, match="multi-dimensional indexing not allowed"): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): idx[:, None] ``` #### File: io/json/test_normalize.py ```python import json import numpy as np import pytest from pandas import DataFrame, Index, json_normalize import pandas._testing as tm from pandas.io.json._normalize import nested_to_record @pytest.fixture def deep_nested(): # deeply nested data return [ { "country": "USA", "states": [ { "name": "California", "cities": [ {"name": "San Francisco", "pop": 12345}, {"name": "Los Angeles", "pop": 12346}, ], }, { "name": "Ohio", "cities": [ {"name": "Columbus", "pop": 1234}, {"name": "Cleveland", "pop": 1236}, ], }, ], }, { "country": "Germany", "states": [ {"name": "Bayern", "cities": [{"name": "Munich", "pop": 12347}]}, { "name": "Nordrhein-Westfalen", "cities": [ {"name": "Duesseldorf", "pop": 1238}, {"name": "Koeln", "pop": 1239}, ], }, ], }, ] @pytest.fixture def state_data(): return [ { "counties": [ {"name": "Dade", "population": 12345}, {"name": "Broward", "population": 40000}, {"name": "<NAME>", "population": 60000}, ], "info": {"governor": "<NAME>"}, "shortname": "FL", "state": "Florida", }, { "counties": [ {"name": "Summit", "population": 1234}, {"name": "Cuyahoga", "population": 1337}, ], "info": {"governor": "<NAME>"}, "shortname": "OH", "state": "Ohio", }, ] @pytest.fixture def author_missing_data(): return [ {"info": None}, { "info": {"created_at": "11/08/1993", "last_updated": "26/05/2012"}, "author_name": {"first": "Jane", "last_name": "Doe"}, }, ] @pytest.fixture def missing_metadata(): return [ { "name": "Alice", "addresses": [ { "number": 9562, "street": "Morris St.", "city": "Massillon", "state": "OH", "zip": 44646, } ], }, { "addresses": [ { "number": 8449, "street": "Spring St.", "city": "Elizabethton", "state": "TN", "zip": 37643, } ] }, ] @pytest.fixture def max_level_test_input_data(): """ input data to test json_normalize with max_level param """ return [ { "CreatedBy": {"Name": "User001"}, "Lookup": { "TextField": "Some text", "UserField": {"Id": "ID001", "Name": "Name001"}, }, "Image": {"a": "b"}, } ] class TestJSONNormalize: def test_simple_records(self): recs = [ {"a": 1, "b": 2, "c": 3}, {"a": 4, "b": 5, "c": 6}, {"a": 7, "b": 8, "c": 9}, {"a": 10, "b": 11, "c": 12}, ] result = json_normalize(recs) expected = DataFrame(recs) tm.assert_frame_equal(result, expected) def test_simple_normalize(self, state_data): result = json_normalize(state_data[0], "counties") expected = DataFrame(state_data[0]["counties"]) tm.assert_frame_equal(result, expected) result = json_normalize(state_data, "counties") expected = [] for rec in state_data: expected.extend(rec["counties"]) expected = DataFrame(expected) tm.assert_frame_equal(result, expected) result = json_normalize(state_data, "counties", meta="state") expected["state"] = np.array(["Florida", "Ohio"]).repeat([3, 2]) tm.assert_frame_equal(result, expected) def test_empty_array(self): result = json_normalize([]) expected = DataFrame() tm.assert_frame_equal(result, expected) def test_simple_normalize_with_separator(self, deep_nested): # GH 14883 result = json_normalize({"A": {"A": 1, "B": 2}}) expected = DataFrame([[1, 2]], columns=["A.A", "A.B"]) tm.assert_frame_equal(result.reindex_like(expected), expected) result = json_normalize({"A": {"A": 1, "B": 2}}, sep="_") expected = DataFrame([[1, 2]], columns=["A_A", "A_B"]) tm.assert_frame_equal(result.reindex_like(expected), expected) result = json_normalize({"A": {"A": 1, "B": 2}}, sep="\u03c3") expected = DataFrame([[1, 2]], columns=["A\u03c3A", "A\u03c3B"]) tm.assert_frame_equal(result.reindex_like(expected), expected) result = json_normalize( deep_nested, ["states", "cities"], meta=["country", ["states", "name"]], sep="_", ) expected = Index(["name", "pop", "country", "states_name"]).sort_values() assert result.columns.sort_values().equals(expected) def test_value_array_record_prefix(self): # GH 21536 result = json_normalize({"A": [1, 2]}, "A", record_prefix="Prefix.") expected = DataFrame([[1], [2]], columns=["Prefix.0"]) tm.assert_frame_equal(result, expected) def test_nested_object_record_path(self): # GH 22706 data = { "state": "Florida", "info": { "governor": "<NAME>", "counties": [ {"name": "Dade", "population": 12345}, {"name": "Broward", "population": 40000}, {"name": "<NAME>", "population": 60000}, ], }, } result = json_normalize(data, record_path=["info", "counties"]) expected = DataFrame( [["Dade", 12345], ["Broward", 40000], ["<NAME>", 60000]], columns=["name", "population"], ) tm.assert_frame_equal(result, expected) def test_more_deeply_nested(self, deep_nested): result = json_normalize( deep_nested, ["states", "cities"], meta=["country", ["states", "name"]] ) ex_data = { "country": ["USA"] * 4 + ["Germany"] * 3, "states.name": [ "California", "California", "Ohio", "Ohio", "Bayern", "Nordrhein-Westfalen", "Nordrhein-Westfalen", ], "name": [ "<NAME>", "Los Angeles", "Columbus", "Cleveland", "Munich", "Duesseldorf", "Koeln", ], "pop": [12345, 12346, 1234, 1236, 12347, 1238, 1239], } expected = DataFrame(ex_data, columns=result.columns) tm.assert_frame_equal(result, expected) def test_shallow_nested(self): data = [ { "state": "Florida", "shortname": "FL", "info": {"governor": "<NAME>"}, "counties": [ {"name": "Dade", "population": 12345}, {"name": "Broward", "population": 40000}, {"name": "<NAME>", "population": 60000}, ], }, { "state": "Ohio", "shortname": "OH", "info": {"governor": "<NAME>"}, "counties": [ {"name": "Summit", "population": 1234}, {"name": "Cuyahoga", "population": 1337}, ], }, ] result = json_normalize( data, "counties", ["state", "shortname", ["info", "governor"]] ) ex_data = { "name": ["Dade", "Broward", "<NAME>", "Summit", "Cuyahoga"], "state": ["Florida"] * 3 + ["Ohio"] * 2, "shortname": ["FL", "FL", "FL", "OH", "OH"], "info.governor": ["<NAME>"] * 3 + ["<NAME>"] * 2, "population": [12345, 40000, 60000, 1234, 1337], } expected = DataFrame(ex_data, columns=result.columns) tm.assert_frame_equal(result, expected) def test_meta_name_conflict(self): data = [ { "foo": "hello", "bar": "there", "data": [ {"foo": "something", "bar": "else"}, {"foo": "something2", "bar": "else2"}, ], } ] msg = r"Conflicting metadata name (foo|bar), need distinguishing prefix" with pytest.raises(ValueError, match=msg): json_normalize(data, "data", meta=["foo", "bar"]) result = json_normalize(data, "data", meta=["foo", "bar"], meta_prefix="meta") for val in ["metafoo", "metabar", "foo", "bar"]: assert val in result def test_meta_parameter_not_modified(self): # GH 18610 data = [ { "foo": "hello", "bar": "there", "data": [ {"foo": "something", "bar": "else"}, {"foo": "something2", "bar": "else2"}, ], } ] COLUMNS = ["foo", "bar"] result = json_normalize(data, "data", meta=COLUMNS, meta_prefix="meta") assert COLUMNS == ["foo", "bar"] for val in ["metafoo", "metabar", "foo", "bar"]: assert val in result def test_record_prefix(self, state_data): result = json_normalize(state_data[0], "counties") expected = DataFrame(state_data[0]["counties"]) tm.assert_frame_equal(result, expected) result = json_normalize( state_data, "counties", meta="state", record_prefix="county_" ) expected = [] for rec in state_data: expected.extend(rec["counties"]) expected = DataFrame(expected) expected = expected.rename(columns=lambda x: "county_" + x) expected["state"] = np.array(["Florida", "Ohio"]).repeat([3, 2]) tm.assert_frame_equal(result, expected) def test_non_ascii_key(self): testjson = ( b'[{"\xc3\x9cnic\xc3\xb8de":0,"sub":{"A":1, "B":2}},' + b'{"\xc3\x9cnic\xc3\xb8de":1,"sub":{"A":3, "B":4}}]' ).decode("utf8") testdata = { b"\xc3\x9cnic\xc3\xb8de".decode("utf8"): [0, 1], "sub.A": [1, 3], "sub.B": [2, 4], } expected = DataFrame(testdata) result = json_normalize(json.loads(testjson)) tm.assert_frame_equal(result, expected) def test_missing_field(self, author_missing_data): # GH20030: result = json_normalize(author_missing_data) ex_data = [ { "info": np.nan, "info.created_at": np.nan, "info.last_updated": np.nan, "author_name.first": np.nan, "author_name.last_name": np.nan, }, { "info": None, "info.created_at": "11/08/1993", "info.last_updated": "26/05/2012", "author_name.first": "Jane", "author_name.last_name": "Doe", }, ] expected = DataFrame(ex_data) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "max_level,expected", [ ( 0, [ { "TextField": "Some text", "UserField": {"Id": "ID001", "Name": "Name001"}, "CreatedBy": {"Name": "User001"}, "Image": {"a": "b"}, }, { "TextField": "Some text", "UserField": {"Id": "ID001", "Name": "Name001"}, "CreatedBy": {"Name": "User001"}, "Image": {"a": "b"}, }, ], ), ( 1, [ { "TextField": "Some text", "UserField.Id": "ID001", "UserField.Name": "Name001", "CreatedBy": {"Name": "User001"}, "Image": {"a": "b"}, }, { "TextField": "Some text", "UserField.Id": "ID001", "UserField.Name": "Name001", "CreatedBy": {"Name": "User001"}, "Image": {"a": "b"}, }, ], ), ], ) def test_max_level_with_records_path(self, max_level, expected): # GH23843: Enhanced JSON normalize test_input = [ { "CreatedBy": {"Name": "User001"}, "Lookup": [ { "TextField": "Some text", "UserField": {"Id": "ID001", "Name": "Name001"}, }, { "TextField": "Some text", "UserField": {"Id": "ID001", "Name": "Name001"}, }, ], "Image": {"a": "b"}, "tags": [ {"foo": "something", "bar": "else"}, {"foo": "something2", "bar": "else2"}, ], } ] result = json_normalize( test_input, record_path=["Lookup"], meta=[["CreatedBy"], ["Image"]], max_level=max_level, ) expected_df = DataFrame(data=expected, columns=result.columns.values) tm.assert_equal(expected_df, result) def test_nested_flattening_consistent(self): # see gh-21537 df1 = json_normalize([{"A": {"B": 1}}]) df2 = json_normalize({"dummy": [{"A": {"B": 1}}]}, "dummy") # They should be the same. tm.assert_frame_equal(df1, df2) def test_nonetype_record_path(self, nulls_fixture): # see gh-30148 # should not raise TypeError result = json_normalize( [ {"state": "Texas", "info": nulls_fixture}, {"state": "Florida", "info": [{"i": 2}]}, ], record_path=["info"], ) expected = DataFrame({"i": 2}, index=[0]) tm.assert_equal(result, expected) def test_non_interable_record_path_errors(self): # see gh-30148 test_input = {"state": "Texas", "info": 1} test_path = "info" msg = ( f"{test_input} has non iterable value 1 for path {test_path}. " "Must be iterable or null." ) with pytest.raises(TypeError, match=msg): json_normalize([test_input], record_path=[test_path]) def test_meta_non_iterable(self): # GH 31507 data = """[{"id": 99, "data": [{"one": 1, "two": 2}]}]""" result = json_normalize(json.loads(data), record_path=["data"], meta=["id"]) expected = DataFrame( {"one": [1], "two": [2], "id": np.array([99], dtype=object)} ) tm.assert_frame_equal(result, expected) class TestNestedToRecord: def test_flat_stays_flat(self): recs = [dict(flat1=1, flat2=2), dict(flat1=3, flat2=4)] result = nested_to_record(recs) expected = recs assert result == expected def test_one_level_deep_flattens(self): data = dict(flat1=1, dict1=dict(c=1, d=2)) result = nested_to_record(data) expected = {"dict1.c": 1, "dict1.d": 2, "flat1": 1} assert result == expected def test_nested_flattens(self): data = dict(flat1=1, dict1=dict(c=1, d=2), nested=dict(e=dict(c=1, d=2), d=2)) result = nested_to_record(data) expected = { "dict1.c": 1, "dict1.d": 2, "flat1": 1, "nested.d": 2, "nested.e.c": 1, "nested.e.d": 2, } assert result == expected def test_json_normalize_errors(self, missing_metadata): # GH14583: # If meta keys are not always present a new option to set # errors='ignore' has been implemented msg = "Try running with errors='ignore' as key 'name' is not always present" with pytest.raises(KeyError, match=msg): json_normalize( data=missing_metadata, record_path="addresses", meta="name", errors="raise", ) def test_missing_meta(self, missing_metadata): # GH25468 # If metadata is nullable with errors set to ignore, the null values # should be numpy.nan values result = json_normalize( data=missing_metadata, record_path="addresses", meta="name", errors="ignore" ) ex_data = [ [9562, "Morris St.", "Massillon", "OH", 44646, "Alice"], [8449, "Spring St.", "Elizabethton", "TN", 37643, np.nan], ] columns = ["city", "number", "state", "street", "zip", "name"] columns = ["number", "street", "city", "state", "zip", "name"] expected = DataFrame(ex_data, columns=columns) tm.assert_frame_equal(result, expected) def test_donot_drop_nonevalues(self): # GH21356 data = [ {"info": None, "author_name": {"first": "Smith", "last_name": "Appleseed"}}, { "info": {"created_at": "11/08/1993", "last_updated": "26/05/2012"}, "author_name": {"first": "Jane", "last_name": "Doe"}, }, ] result = nested_to_record(data) expected = [ { "info": None, "author_name.first": "Smith", "author_name.last_name": "Appleseed", }, { "author_name.first": "Jane", "author_name.last_name": "Doe", "info.created_at": "11/08/1993", "info.last_updated": "26/05/2012", }, ] assert result == expected def test_nonetype_top_level_bottom_level(self): # GH21158: If inner level json has a key with a null value # make sure it does not do a new_d.pop twice and except data = { "id": None, "location": { "country": { "state": { "id": None, "town.info": { "id": None, "region": None, "x": 49.151580810546875, "y": -33.148521423339844, "z": 27.572303771972656, }, } } }, } result = nested_to_record(data) expected = { "id": None, "location.country.state.id": None, "location.country.state.town.info.id": None, "location.country.state.town.info.region": None, "location.country.state.town.info.x": 49.151580810546875, "location.country.state.town.info.y": -33.148521423339844, "location.country.state.town.info.z": 27.572303771972656, } assert result == expected def test_nonetype_multiple_levels(self): # GH21158: If inner level json has a key with a null value # make sure it does not do a new_d.pop twice and except data = { "id": None, "location": { "id": None, "country": { "id": None, "state": { "id": None, "town.info": { "region": None, "x": 49.151580810546875, "y": -33.148521423339844, "z": 27.572303771972656, }, }, }, }, } result = nested_to_record(data) expected = { "id": None, "location.id": None, "location.country.id": None, "location.country.state.id": None, "location.country.state.town.info.region": None, "location.country.state.town.info.x": 49.151580810546875, "location.country.state.town.info.y": -33.148521423339844, "location.country.state.town.info.z": 27.572303771972656, } assert result == expected @pytest.mark.parametrize( "max_level, expected", [ ( None, [ { "CreatedBy.Name": "User001", "Lookup.TextField": "Some text", "Lookup.UserField.Id": "ID001", "Lookup.UserField.Name": "Name001", "Image.a": "b", } ], ), ( 0, [ { "CreatedBy": {"Name": "User001"}, "Lookup": { "TextField": "Some text", "UserField": {"Id": "ID001", "Name": "Name001"}, }, "Image": {"a": "b"}, } ], ), ( 1, [ { "CreatedBy.Name": "User001", "Lookup.TextField": "Some text", "Lookup.UserField": {"Id": "ID001", "Name": "Name001"}, "Image.a": "b", } ], ), ], ) def test_with_max_level(self, max_level, expected, max_level_test_input_data): # GH23843: Enhanced JSON normalize output = nested_to_record(max_level_test_input_data, max_level=max_level) assert output == expected def test_with_large_max_level(self): # GH23843: Enhanced JSON normalize max_level = 100 input_data = [ { "CreatedBy": { "user": { "name": {"firstname": "Leo", "LastName": "Thomson"}, "family_tree": { "father": { "name": "Father001", "father": { "Name": "Father002", "father": { "name": "Father003", "father": {"Name": "Father004"}, }, }, } }, } } } ] expected = [ { "CreatedBy.user.name.firstname": "Leo", "CreatedBy.user.name.LastName": "Thomson", "CreatedBy.user.family_tree.father.name": "Father001", "CreatedBy.user.family_tree.father.father.Name": "Father002", "CreatedBy.user.family_tree.father.father.father.name": "Father003", "CreatedBy.user.family_tree.father.father.father.father.Name": "Father004", # noqa: E501 } ] output = nested_to_record(input_data, max_level=max_level) assert output == expected def test_deprecated_import(self): with tm.assert_produces_warning(FutureWarning): from pandas.io.json import json_normalize recs = [{"a": 1, "b": 2, "c": 3}, {"a": 4, "b": 5, "c": 6}] json_normalize(recs) ``` #### File: scalar/timedelta/test_constructors.py ```python from datetime import timedelta import numpy as np import pytest from pandas import Timedelta, offsets, to_timedelta def test_construction(): expected = np.timedelta64(10, "D").astype("m8[ns]").view("i8") assert Timedelta(10, unit="d").value == expected assert Timedelta(10.0, unit="d").value == expected assert Timedelta("10 days").value == expected assert Timedelta(days=10).value == expected assert Timedelta(days=10.0).value == expected expected += np.timedelta64(10, "s").astype("m8[ns]").view("i8") assert Timedelta("10 days 00:00:10").value == expected assert Timedelta(days=10, seconds=10).value == expected assert Timedelta(days=10, milliseconds=10 * 1000).value == expected assert Timedelta(days=10, microseconds=10 * 1000 * 1000).value == expected # rounding cases assert Timedelta(82739999850000).value == 82739999850000 assert "0 days 22:58:59.999850" in str(Timedelta(82739999850000)) assert Timedelta(123072001000000).value == 123072001000000 assert "1 days 10:11:12.001" in str(Timedelta(123072001000000)) # string conversion with/without leading zero # GH#9570 assert Timedelta("0:00:00") == timedelta(hours=0) assert Timedelta("00:00:00") == timedelta(hours=0) assert Timedelta("-1:00:00") == -timedelta(hours=1) assert Timedelta("-01:00:00") == -timedelta(hours=1) # more strings & abbrevs # GH#8190 assert Timedelta("1 h") == timedelta(hours=1) assert Timedelta("1 hour") == timedelta(hours=1) assert Timedelta("1 hr") == timedelta(hours=1) assert Timedelta("1 hours") == timedelta(hours=1) assert Timedelta("-1 hours") == -timedelta(hours=1) assert Timedelta("1 m") == timedelta(minutes=1) assert Timedelta("1.5 m") == timedelta(seconds=90) assert Timedelta("1 minute") == timedelta(minutes=1) assert Timedelta("1 minutes") == timedelta(minutes=1) assert Timedelta("1 s") == timedelta(seconds=1) assert Timedelta("1 second") == timedelta(seconds=1) assert Timedelta("1 seconds") == timedelta(seconds=1) assert Timedelta("1 ms") == timedelta(milliseconds=1) assert Timedelta("1 milli") == timedelta(milliseconds=1) assert Timedelta("1 millisecond") == timedelta(milliseconds=1) assert Timedelta("1 us") == timedelta(microseconds=1) assert Timedelta("1 micros") == timedelta(microseconds=1) assert Timedelta("1 microsecond") == timedelta(microseconds=1) assert Timedelta("1.5 microsecond") == Timedelta("00:00:00.000001500") assert Timedelta("1 ns") == Timedelta("00:00:00.000000001") assert Timedelta("1 nano") == Timedelta("00:00:00.000000001") assert Timedelta("1 nanosecond") == Timedelta("00:00:00.000000001") # combos assert Timedelta("10 days 1 hour") == timedelta(days=10, hours=1) assert Timedelta("10 days 1 h") == timedelta(days=10, hours=1) assert Timedelta("10 days 1 h 1m 1s") == timedelta( days=10, hours=1, minutes=1, seconds=1 ) assert Timedelta("-10 days 1 h 1m 1s") == -timedelta( days=10, hours=1, minutes=1, seconds=1 ) assert Timedelta("-10 days 1 h 1m 1s") == -timedelta( days=10, hours=1, minutes=1, seconds=1 ) assert Timedelta("-10 days 1 h 1m 1s 3us") == -timedelta( days=10, hours=1, minutes=1, seconds=1, microseconds=3 ) assert Timedelta("-10 days 1 h 1.5m 1s 3us") == -timedelta( days=10, hours=1, minutes=1, seconds=31, microseconds=3 ) # Currently invalid as it has a - on the hh:mm:dd part # (only allowed on the days) with pytest.raises(ValueError): Timedelta("-10 days -1 h 1.5m 1s 3us") # only leading neg signs are allowed with pytest.raises(ValueError): Timedelta("10 days -1 h 1.5m 1s 3us") # no units specified with pytest.raises(ValueError): Timedelta("3.1415") # invalid construction with pytest.raises(ValueError, match="cannot construct a Timedelta"): Timedelta() with pytest.raises(ValueError, match="unit abbreviation w/o a number"): Timedelta("foo") msg = ( "cannot construct a Timedelta from " "the passed arguments, allowed keywords are " ) with pytest.raises(ValueError, match=msg): Timedelta(day=10) # floats expected = np.timedelta64(10, "s").astype("m8[ns]").view("i8") + np.timedelta64( 500, "ms" ).astype("m8[ns]").view("i8") assert Timedelta(10.5, unit="s").value == expected # offset assert to_timedelta(offsets.Hour(2)) == Timedelta(hours=2) assert Timedelta(offsets.Hour(2)) == Timedelta(hours=2) assert Timedelta(offsets.Second(2)) == Timedelta(seconds=2) # GH#11995: unicode expected = Timedelta("1H") result = Timedelta("1H") assert result == expected assert to_timedelta(offsets.Hour(2)) == Timedelta("0 days, 02:00:00") with pytest.raises(ValueError): Timedelta("foo bar") @pytest.mark.parametrize( "item", list( { "days": "D", "seconds": "s", "microseconds": "us", "milliseconds": "ms", "minutes": "m", "hours": "h", "weeks": "W", }.items() ), ) @pytest.mark.parametrize( "npdtype", [np.int64, np.int32, np.int16, np.float64, np.float32, np.float16] ) def test_td_construction_with_np_dtypes(npdtype, item): # GH#8757: test construction with np dtypes pykwarg, npkwarg = item expected = np.timedelta64(1, npkwarg).astype("m8[ns]").view("i8") assert Timedelta(**{pykwarg: npdtype(1)}).value == expected @pytest.mark.parametrize( "val", [ "1s", "-1s", "1us", "-1us", "1 day", "-1 day", "-23:59:59.999999", "-1 days +23:59:59.999999", "-1ns", "1ns", "-23:59:59.999999999", ], ) def test_td_from_repr_roundtrip(val): # round-trip both for string and value td = Timedelta(val) assert Timedelta(td.value) == td # str does not normally display nanos if not td.nanoseconds: assert Timedelta(str(td)) == td assert Timedelta(td._repr_base(format="all")) == td def test_overflow_on_construction(): # GH#3374 value = Timedelta("1day").value * 20169940 with pytest.raises(OverflowError): Timedelta(value) # xref GH#17637 with pytest.raises(OverflowError): Timedelta(7 * 19999, unit="D") with pytest.raises(OverflowError): Timedelta(timedelta(days=13 * 19999)) @pytest.mark.parametrize( "fmt,exp", [ ( "P6DT0H50M3.010010012S", Timedelta( days=6, minutes=50, seconds=3, milliseconds=10, microseconds=10, nanoseconds=12, ), ), ( "P-6DT0H50M3.010010012S", Timedelta( days=-6, minutes=50, seconds=3, milliseconds=10, microseconds=10, nanoseconds=12, ), ), ("P4DT12H30M5S", Timedelta(days=4, hours=12, minutes=30, seconds=5)), ("P0DT0H0M0.000000123S", Timedelta(nanoseconds=123)), ("P0DT0H0M0.00001S", Timedelta(microseconds=10)), ("P0DT0H0M0.001S", Timedelta(milliseconds=1)), ("P0DT0H1M0S", Timedelta(minutes=1)), ("P1DT25H61M61S", Timedelta(days=1, hours=25, minutes=61, seconds=61)), ], ) def test_iso_constructor(fmt, exp): assert Timedelta(fmt) == exp @pytest.mark.parametrize( "fmt", [ "PPPPPPPPPPPP", "PDTHMS", "P0DT999H999M999S", "P1DT0H0M0.0000000000000S", "P1DT0H0M00000000000S", "P1DT0H0M0.S", ], ) def test_iso_constructor_raises(fmt): msg = "Invalid ISO 8601 Duration format - {}".format(fmt) with pytest.raises(ValueError, match=msg): Timedelta(fmt) @pytest.mark.parametrize( "constructed_td, conversion", [ (Timedelta(nanoseconds=100), "100ns"), ( Timedelta( days=1, hours=1, minutes=1, weeks=1, seconds=1, milliseconds=1, microseconds=1, nanoseconds=1, ), 694861001001001, ), (Timedelta(microseconds=1) + Timedelta(nanoseconds=1), "1us1ns"), (Timedelta(microseconds=1) - Timedelta(nanoseconds=1), "999ns"), (Timedelta(microseconds=1) + 5 * Timedelta(nanoseconds=-2), "990ns"), ], ) def test_td_constructor_on_nanoseconds(constructed_td, conversion): # GH#9273 assert constructed_td == Timedelta(conversion) def test_td_constructor_value_error(): with pytest.raises(TypeError): Timedelta(nanoseconds="abc") ``` #### File: series/methods/test_round.py ```python import numpy as np import pytest from pandas import Series import pandas._testing as tm class TestSeriesRound: def test_round(self, datetime_series): datetime_series.index.name = "index_name" result = datetime_series.round(2) expected = Series( np.round(datetime_series.values, 2), index=datetime_series.index, name="ts" ) tm.assert_series_equal(result, expected) assert result.name == datetime_series.name def test_round_numpy(self): # See GH#12600 ser = Series([1.53, 1.36, 0.06]) out = np.round(ser, decimals=0) expected = Series([2.0, 1.0, 0.0]) tm.assert_series_equal(out, expected) msg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=msg): np.round(ser, decimals=0, out=ser) def test_round_numpy_with_nan(self): # See GH#14197 ser = Series([1.53, np.nan, 0.06]) with tm.assert_produces_warning(None): result = ser.round() expected = Series([2.0, np.nan, 0.0]) tm.assert_series_equal(result, expected) def test_round_builtin(self): ser = Series([1.123, 2.123, 3.123], index=range(3)) result = round(ser) expected_rounded0 = Series([1.0, 2.0, 3.0], index=range(3)) tm.assert_series_equal(result, expected_rounded0) decimals = 2 expected_rounded = Series([1.12, 2.12, 3.12], index=range(3)) result = round(ser, decimals) tm.assert_series_equal(result, expected_rounded) ``` #### File: tests/series/test_cumulative.py ```python from itertools import product import numpy as np import pytest import pandas as pd from pandas import _is_numpy_dev import pandas._testing as tm def _check_accum_op(name, series, check_dtype=True): func = getattr(np, name) tm.assert_numpy_array_equal( func(series).values, func(np.array(series)), check_dtype=check_dtype, ) # with missing values ts = series.copy() ts[::2] = np.NaN result = func(ts)[1::2] expected = func(np.array(ts.dropna())) tm.assert_numpy_array_equal(result.values, expected, check_dtype=False) class TestSeriesCumulativeOps: def test_cumsum(self, datetime_series): _check_accum_op("cumsum", datetime_series) def test_cumprod(self, datetime_series): _check_accum_op("cumprod", datetime_series) @pytest.mark.xfail( _is_numpy_dev, reason="https://github.com/pandas-dev/pandas/issues/31992", strict=False, ) def test_cummin(self, datetime_series): tm.assert_numpy_array_equal( datetime_series.cummin().values, np.minimum.accumulate(np.array(datetime_series)), ) ts = datetime_series.copy() ts[::2] = np.NaN result = ts.cummin()[1::2] expected = np.minimum.accumulate(ts.dropna()) tm.assert_series_equal(result, expected) @pytest.mark.xfail( _is_numpy_dev, reason="https://github.com/pandas-dev/pandas/issues/31992", strict=False, ) def test_cummax(self, datetime_series): tm.assert_numpy_array_equal( datetime_series.cummax().values, np.maximum.accumulate(np.array(datetime_series)), ) ts = datetime_series.copy() ts[::2] = np.NaN result = ts.cummax()[1::2] expected = np.maximum.accumulate(ts.dropna()) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("tz", [None, "US/Pacific"]) def test_cummin_datetime64(self, tz): s = pd.Series( pd.to_datetime( ["NaT", "2000-1-2", "NaT", "2000-1-1", "NaT", "2000-1-3"] ).tz_localize(tz) ) expected = pd.Series( pd.to_datetime( ["NaT", "2000-1-2", "NaT", "2000-1-1", "NaT", "2000-1-1"] ).tz_localize(tz) ) result = s.cummin(skipna=True) tm.assert_series_equal(expected, result) expected = pd.Series( pd.to_datetime( ["NaT", "2000-1-2", "2000-1-2", "2000-1-1", "2000-1-1", "2000-1-1"] ).tz_localize(tz) ) result = s.cummin(skipna=False) tm.assert_series_equal(expected, result) @pytest.mark.parametrize("tz", [None, "US/Pacific"]) def test_cummax_datetime64(self, tz): s = pd.Series( pd.to_datetime( ["NaT", "2000-1-2", "NaT", "2000-1-1", "NaT", "2000-1-3"] ).tz_localize(tz) ) expected = pd.Series( pd.to_datetime( ["NaT", "2000-1-2", "NaT", "2000-1-2", "NaT", "2000-1-3"] ).tz_localize(tz) ) result = s.cummax(skipna=True) tm.assert_series_equal(expected, result) expected = pd.Series( pd.to_datetime( ["NaT", "2000-1-2", "2000-1-2", "2000-1-2", "2000-1-2", "2000-1-3"] ).tz_localize(tz) ) result = s.cummax(skipna=False) tm.assert_series_equal(expected, result) def test_cummin_timedelta64(self): s = pd.Series(pd.to_timedelta(["NaT", "2 min", "NaT", "1 min", "NaT", "3 min"])) expected = pd.Series( pd.to_timedelta(["NaT", "2 min", "NaT", "1 min", "NaT", "1 min"]) ) result = s.cummin(skipna=True) tm.assert_series_equal(expected, result) expected = pd.Series( pd.to_timedelta(["NaT", "2 min", "2 min", "1 min", "1 min", "1 min"]) ) result = s.cummin(skipna=False) tm.assert_series_equal(expected, result) def test_cummax_timedelta64(self): s = pd.Series(pd.to_timedelta(["NaT", "2 min", "NaT", "1 min", "NaT", "3 min"])) expected = pd.Series( pd.to_timedelta(["NaT", "2 min", "NaT", "2 min", "NaT", "3 min"]) ) result = s.cummax(skipna=True) tm.assert_series_equal(expected, result) expected = pd.Series( pd.to_timedelta(["NaT", "2 min", "2 min", "2 min", "2 min", "3 min"]) ) result = s.cummax(skipna=False) tm.assert_series_equal(expected, result) def test_cummethods_bool(self): # GH#6270 a = pd.Series([False, False, False, True, True, False, False]) b = ~a c = pd.Series([False] * len(b)) d = ~c methods = { "cumsum": np.cumsum, "cumprod": np.cumprod, "cummin": np.minimum.accumulate, "cummax": np.maximum.accumulate, } args = product((a, b, c, d), methods) for s, method in args: expected = pd.Series(methods[method](s.values)) result = getattr(s, method)() tm.assert_series_equal(result, expected) e = pd.Series([False, True, np.nan, False]) cse = pd.Series([0, 1, np.nan, 1], dtype=object) cpe = pd.Series([False, 0, np.nan, 0]) cmin = pd.Series([False, False, np.nan, False]) cmax = pd.Series([False, True, np.nan, True]) expecteds = {"cumsum": cse, "cumprod": cpe, "cummin": cmin, "cummax": cmax} for method in methods: res = getattr(e, method)() tm.assert_series_equal(res, expecteds[method]) ``` #### File: tests/tslibs/test_normalize_date.py ```python from datetime import date, datetime import pytest from pandas._libs import tslibs from pandas._libs.tslibs.timestamps import Timestamp @pytest.mark.parametrize( "value,expected", [ (date(2012, 9, 7), datetime(2012, 9, 7)), (datetime(2012, 9, 7, 12), datetime(2012, 9, 7)), (datetime(2007, 10, 1, 1, 12, 5, 10), datetime(2007, 10, 1)), ], ) def test_normalize_date(value, expected): result = tslibs.normalize_date(value) assert result == expected class SubDatetime(datetime): pass @pytest.mark.parametrize( "dt, expected", [ (Timestamp(2000, 1, 1, 1), Timestamp(2000, 1, 1, 0)), (datetime(2000, 1, 1, 1), datetime(2000, 1, 1, 0)), (SubDatetime(2000, 1, 1, 1), SubDatetime(2000, 1, 1, 0)), ], ) def test_normalize_date_sub_types(dt, expected): # GH 25851 # ensure that subclassed datetime works with # normalize_date result = tslibs.normalize_date(dt) assert result == expected ``` #### File: tests/util/test_hashing.py ```python import datetime import numpy as np import pytest import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series import pandas._testing as tm from pandas.core.util.hashing import _hash_scalar, hash_tuple, hash_tuples from pandas.util import hash_array, hash_pandas_object @pytest.fixture( params=[ Series([1, 2, 3] * 3, dtype="int32"), Series([None, 2.5, 3.5] * 3, dtype="float32"), Series(["a", "b", "c"] * 3, dtype="category"), Series(["d", "e", "f"] * 3), Series([True, False, True] * 3), Series(pd.date_range("20130101", periods=9)), Series(pd.date_range("20130101", periods=9, tz="US/Eastern")), Series(pd.timedelta_range("2000", periods=9)), ] ) def series(request): return request.param @pytest.fixture(params=[True, False]) def index(request): return request.param def _check_equal(obj, **kwargs): """ Check that hashing an objects produces the same value each time. Parameters ---------- obj : object The object to hash. kwargs : kwargs Keyword arguments to pass to the hashing function. """ a = hash_pandas_object(obj, **kwargs) b = hash_pandas_object(obj, **kwargs) tm.assert_series_equal(a, b) def _check_not_equal_with_index(obj): """ Check the hash of an object with and without its index is not the same. Parameters ---------- obj : object The object to hash. """ if not isinstance(obj, Index): a = hash_pandas_object(obj, index=True) b = hash_pandas_object(obj, index=False) if len(obj): assert not (a == b).all() def test_consistency(): # Check that our hash doesn't change because of a mistake # in the actual code; this is the ground truth. result = hash_pandas_object(Index(["foo", "bar", "baz"])) expected = Series( np.array( [3600424527151052760, 1374399572096150070, 477881037637427054], dtype="uint64", ), index=["foo", "bar", "baz"], ) tm.assert_series_equal(result, expected) def test_hash_array(series): arr = series.values tm.assert_numpy_array_equal(hash_array(arr), hash_array(arr)) @pytest.mark.parametrize( "arr2", [np.array([3, 4, "All"]), np.array([3, 4, "All"], dtype=object)] ) def test_hash_array_mixed(arr2): result1 = hash_array(np.array(["3", "4", "All"])) result2 = hash_array(arr2) tm.assert_numpy_array_equal(result1, result2) @pytest.mark.parametrize("val", [5, "foo", pd.Timestamp("20130101")]) def test_hash_array_errors(val): msg = "must pass a ndarray-like" with pytest.raises(TypeError, match=msg): hash_array(val) def test_hash_tuples(): tuples = [(1, "one"), (1, "two"), (2, "one")] result = hash_tuples(tuples) expected = hash_pandas_object(MultiIndex.from_tuples(tuples)).values tm.assert_numpy_array_equal(result, expected) result = hash_tuples(tuples[0]) assert result == expected[0] @pytest.mark.parametrize( "tup", [(1, "one"), (1, np.nan), (1.0, pd.NaT, "A"), ("A", pd.Timestamp("2012-01-01"))], ) def test_hash_tuple(tup): # Test equivalence between # hash_tuples and hash_tuple. result = hash_tuple(tup) expected = hash_tuples([tup])[0] assert result == expected @pytest.mark.parametrize( "val", [ 1, 1.4, "A", b"A", pd.Timestamp("2012-01-01"), pd.Timestamp("2012-01-01", tz="Europe/Brussels"), datetime.datetime(2012, 1, 1), pd.Timestamp("2012-01-01", tz="EST").to_pydatetime(), pd.Timedelta("1 days"), datetime.timedelta(1), pd.Period("2012-01-01", freq="D"), pd.Interval(0, 1), np.nan, pd.NaT, None, ], ) def test_hash_scalar(val): result = _hash_scalar(val) expected = hash_array(np.array([val], dtype=object), categorize=True) assert result[0] == expected[0] @pytest.mark.parametrize("val", [5, "foo", pd.Timestamp("20130101")]) def test_hash_tuples_err(val): msg = "must be convertible to a list-of-tuples" with pytest.raises(TypeError, match=msg): hash_tuples(val) def test_multiindex_unique(): mi = MultiIndex.from_tuples([(118, 472), (236, 118), (51, 204), (102, 51)]) assert mi.is_unique is True result = hash_pandas_object(mi) assert result.is_unique is True def test_multiindex_objects(): mi = MultiIndex( levels=[["b", "d", "a"], [1, 2, 3]], codes=[[0, 1, 0, 2], [2, 0, 0, 1]], names=["col1", "col2"], ) recons = mi._sort_levels_monotonic() # These are equal. assert mi.equals(recons) assert Index(mi.values).equals(Index(recons.values)) # _hashed_values and hash_pandas_object(..., index=False) equivalency. expected = hash_pandas_object(mi, index=False).values result = mi._hashed_values tm.assert_numpy_array_equal(result, expected) expected = hash_pandas_object(recons, index=False).values result = recons._hashed_values tm.assert_numpy_array_equal(result, expected) expected = mi._hashed_values result = recons._hashed_values # Values should match, but in different order. tm.assert_numpy_array_equal(np.sort(result), np.sort(expected)) @pytest.mark.parametrize( "obj", [ Series([1, 2, 3]), Series([1.0, 1.5, 3.2]), Series([1.0, 1.5, np.nan]), Series([1.0, 1.5, 3.2], index=[1.5, 1.1, 3.3]), Series(["a", "b", "c"]), Series(["a", np.nan, "c"]), Series(["a", None, "c"]), Series([True, False, True]), Series(dtype=object), Index([1, 2, 3]), Index([True, False, True]), DataFrame({"x": ["a", "b", "c"], "y": [1, 2, 3]}), DataFrame(), tm.makeMissingDataframe(), tm.makeMixedDataFrame(), tm.makeTimeDataFrame(), tm.makeTimeSeries(), tm.makeTimedeltaIndex(), tm.makePeriodIndex(), Series(tm.makePeriodIndex()), Series(pd.date_range("20130101", periods=3, tz="US/Eastern")), MultiIndex.from_product( [range(5), ["foo", "bar", "baz"], pd.date_range("20130101", periods=2)] ), MultiIndex.from_product([pd.CategoricalIndex(list("aabc")), range(3)]), ], ) def test_hash_pandas_object(obj, index): _check_equal(obj, index=index) _check_not_equal_with_index(obj) def test_hash_pandas_object2(series, index): _check_equal(series, index=index) _check_not_equal_with_index(series) @pytest.mark.parametrize( "obj", [Series([], dtype="float64"), Series([], dtype="object"), Index([])] ) def test_hash_pandas_empty_object(obj, index): # These are by-definition the same with # or without the index as the data is empty. _check_equal(obj, index=index) @pytest.mark.parametrize( "s1", [ Series(["a", "b", "c", "d"]), Series([1000, 2000, 3000, 4000]), Series(pd.date_range(0, periods=4)), ], ) @pytest.mark.parametrize("categorize", [True, False]) def test_categorical_consistency(s1, categorize): # see gh-15143 # # Check that categoricals hash consistent with their values, # not codes. This should work for categoricals of any dtype. s2 = s1.astype("category").cat.set_categories(s1) s3 = s2.cat.set_categories(list(reversed(s1))) # These should all hash identically. h1 = hash_pandas_object(s1, categorize=categorize) h2 = hash_pandas_object(s2, categorize=categorize) h3 = hash_pandas_object(s3, categorize=categorize) tm.assert_series_equal(h1, h2) tm.assert_series_equal(h1, h3) def test_categorical_with_nan_consistency(): c = pd.Categorical.from_codes( [-1, 0, 1, 2, 3, 4], categories=pd.date_range("2012-01-01", periods=5, name="B") ) expected = hash_array(c, categorize=False) c = pd.Categorical.from_codes([-1, 0], categories=[pd.Timestamp("2012-01-01")]) result = hash_array(c, categorize=False) assert result[0] in expected assert result[1] in expected @pytest.mark.parametrize("obj", [pd.Timestamp("20130101")]) def test_pandas_errors(obj): msg = "Unexpected type for hashing" with pytest.raises(TypeError, match=msg): hash_pandas_object(obj) def test_hash_keys(): # Using different hash keys, should have # different hashes for the same data. # # This only matters for object dtypes. obj = Series(list("abc")) a = hash_pandas_object(obj, hash_key="9876543210123456") b = hash_pandas_object(obj, hash_key="9876543210123465") assert (a != b).all() def test_invalid_key(): # This only matters for object dtypes. msg = "key should be a 16-byte string encoded" with pytest.raises(ValueError, match=msg): hash_pandas_object(Series(list("abc")), hash_key="foo") def test_already_encoded(index): # If already encoded, then ok. obj = Series(list("abc")).str.encode("utf8") _check_equal(obj, index=index) def test_alternate_encoding(index): obj = Series(list("abc")) _check_equal(obj, index=index, encoding="ascii") @pytest.mark.parametrize("l_exp", range(8)) @pytest.mark.parametrize("l_add", [0, 1]) def test_same_len_hash_collisions(l_exp, l_add): length = 2 ** (l_exp + 8) + l_add s = tm.rands_array(length, 2) result = hash_array(s, "utf8") assert not result[0] == result[1] def test_hash_collisions(): # Hash collisions are bad. # # https://github.com/pandas-dev/pandas/issues/14711#issuecomment-264885726 hashes = [ "Ingrid-9Z9fKIZmkO7i7Cn51Li34pJm44fgX6DYGBNj3VPlOH50m7HnBlPxfIwFMrcNJNMP6PSgLmwWnInciMWrCSAlLEvt7JkJl4IxiMrVbXSa8ZQoVaq5xoQPjltuJEfwdNlO6jo8qRRHvD8sBEBMQASrRa6TsdaPTPCBo3nwIBpE7YzzmyH0vMBhjQZLx1aCT7faSEx7PgFxQhHdKFWROcysamgy9iVj8DO2Fmwg1NNl93rIAqC3mdqfrCxrzfvIY8aJdzin2cHVzy3QUJxZgHvtUtOLxoqnUHsYbNTeq0xcLXpTZEZCxD4PGubIuCNf32c33M7HFsnjWSEjE2yVdWKhmSVodyF8hFYVmhYnMCztQnJrt3O8ZvVRXd5IKwlLexiSp4h888w7SzAIcKgc3g5XQJf6MlSMftDXm9lIsE1mJNiJEv6uY6pgvC3fUPhatlR5JPpVAHNSbSEE73MBzJrhCAbOLXQumyOXigZuPoME7QgJcBalliQol7YZ9", # noqa: E501 "Tim-b9MddTxOWW2AT1Py6vtVbZwGAmY<KEY>", # noqa: E501 ] # These should be different. result1 = hash_array(np.asarray(hashes[0:1], dtype=object), "utf8") expected1 = np.array([14963968704024874985], dtype=np.uint64) tm.assert_numpy_array_equal(result1, expected1) result2 = hash_array(np.asarray(hashes[1:2], dtype=object), "utf8") expected2 = np.array([16428432627716348016], dtype=np.uint64) tm.assert_numpy_array_equal(result2, expected2) result = hash_array(np.asarray(hashes, dtype=object), "utf8") tm.assert_numpy_array_equal(result, np.concatenate([expected1, expected2], axis=0)) def test_hash_with_tuple(): # GH#28969 array containing a tuple raises on call to arr.astype(str) # apparently a numpy bug github.com/numpy/numpy/issues/9441 df = pd.DataFrame({"data": [tuple("1"), tuple("2")]}) result = hash_pandas_object(df) expected = pd.Series([10345501319357378243, 8331063931016360761], dtype=np.uint64) tm.assert_series_equal(result, expected) df2 = pd.DataFrame({"data": [tuple([1]), tuple([2])]}) result = hash_pandas_object(df2) expected = pd.Series([9408946347443669104, 3278256261030523334], dtype=np.uint64) tm.assert_series_equal(result, expected) # require that the elements of such tuples are themselves hashable df3 = pd.DataFrame({"data": [tuple([1, []]), tuple([2, {}])]}) with pytest.raises(TypeError, match="unhashable type: 'list'"): hash_pandas_object(df3) def test_hash_object_none_key(): # https://github.com/pandas-dev/pandas/issues/30887 result = pd.util.hash_pandas_object(pd.Series(["a", "b"]), hash_key=None) expected = pd.Series([4578374827886788867, 17338122309987883691], dtype="uint64") tm.assert_series_equal(result, expected) ``` #### File: sklearn/cluster/setup.py ```python import os import numpy def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration libraries = [] if os.name == 'posix': libraries.append('m') config = Configuration('cluster', parent_package, top_path) config.add_extension('_dbscan_inner', sources=['_dbscan_inner.pyx'], include_dirs=[numpy.get_include()], language="c++") config.add_extension('_hierarchical_fast', sources=['_hierarchical_fast.pyx'], language="c++", include_dirs=[numpy.get_include()], libraries=libraries) config.add_extension('_k_means_elkan', sources=['_k_means_elkan.pyx'], include_dirs=[numpy.get_include()], libraries=libraries) config.add_extension('_k_means_fast', sources=['_k_means_fast.pyx'], include_dirs=numpy.get_include(), libraries=libraries) config.add_subpackage('tests') return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict()) ``` #### File: inspection/tests/test_permutation_importance.py ```python import pytest import numpy as np from numpy.testing import assert_allclose from sklearn.compose import ColumnTransformer from sklearn.datasets import load_boston from sklearn.datasets import load_iris from sklearn.datasets import make_classification from sklearn.datasets import make_regression from sklearn.dummy import DummyClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LinearRegression from sklearn.linear_model import LogisticRegression from sklearn.impute import SimpleImputer from sklearn.inspection import permutation_importance from sklearn.pipeline import make_pipeline from sklearn.preprocessing import KBinsDiscretizer from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import scale from sklearn.utils import parallel_backend from sklearn.utils._testing import _convert_container @pytest.mark.parametrize("n_jobs", [1, 2]) def test_permutation_importance_correlated_feature_regression(n_jobs): # Make sure that feature highly correlated to the target have a higher # importance rng = np.random.RandomState(42) n_repeats = 5 X, y = load_boston(return_X_y=True) y_with_little_noise = ( y + rng.normal(scale=0.001, size=y.shape[0])).reshape(-1, 1) X = np.hstack([X, y_with_little_noise]) clf = RandomForestRegressor(n_estimators=10, random_state=42) clf.fit(X, y) result = permutation_importance(clf, X, y, n_repeats=n_repeats, random_state=rng, n_jobs=n_jobs) assert result.importances.shape == (X.shape[1], n_repeats) # the correlated feature with y was added as the last column and should # have the highest importance assert np.all(result.importances_mean[-1] > result.importances_mean[:-1]) @pytest.mark.parametrize("n_jobs", [1, 2]) def test_permutation_importance_correlated_feature_regression_pandas(n_jobs): pd = pytest.importorskip("pandas") # Make sure that feature highly correlated to the target have a higher # importance rng = np.random.RandomState(42) n_repeats = 5 dataset = load_iris() X, y = dataset.data, dataset.target y_with_little_noise = ( y + rng.normal(scale=0.001, size=y.shape[0])).reshape(-1, 1) # Adds feature correlated with y as the last column X = pd.DataFrame(X, columns=dataset.feature_names) X['correlated_feature'] = y_with_little_noise clf = RandomForestClassifier(n_estimators=10, random_state=42) clf.fit(X, y) result = permutation_importance(clf, X, y, n_repeats=n_repeats, random_state=rng, n_jobs=n_jobs) assert result.importances.shape == (X.shape[1], n_repeats) # the correlated feature with y was added as the last column and should # have the highest importance assert np.all(result.importances_mean[-1] > result.importances_mean[:-1]) def test_permutation_importance_mixed_types(): rng = np.random.RandomState(42) n_repeats = 4 # Last column is correlated with y X = np.array([[1.0, 2.0, 3.0, np.nan], [2, 1, 2, 1]]).T y = np.array([0, 1, 0, 1]) clf = make_pipeline(SimpleImputer(), LogisticRegression(solver='lbfgs')) clf.fit(X, y) result = permutation_importance(clf, X, y, n_repeats=n_repeats, random_state=rng) assert result.importances.shape == (X.shape[1], n_repeats) # the correlated feature with y is the last column and should # have the highest importance assert np.all(result.importances_mean[-1] > result.importances_mean[:-1]) # use another random state rng = np.random.RandomState(0) result2 = permutation_importance(clf, X, y, n_repeats=n_repeats, random_state=rng) assert result2.importances.shape == (X.shape[1], n_repeats) assert not np.allclose(result.importances, result2.importances) # the correlated feature with y is the last column and should # have the highest importance assert np.all(result2.importances_mean[-1] > result2.importances_mean[:-1]) def test_permutation_importance_mixed_types_pandas(): pd = pytest.importorskip("pandas") rng = np.random.RandomState(42) n_repeats = 5 # Last column is correlated with y X = pd.DataFrame({'col1': [1.0, 2.0, 3.0, np.nan], 'col2': ['a', 'b', 'a', 'b']}) y = np.array([0, 1, 0, 1]) num_preprocess = make_pipeline(SimpleImputer(), StandardScaler()) preprocess = ColumnTransformer([ ('num', num_preprocess, ['col1']), ('cat', OneHotEncoder(), ['col2']) ]) clf = make_pipeline(preprocess, LogisticRegression(solver='lbfgs')) clf.fit(X, y) result = permutation_importance(clf, X, y, n_repeats=n_repeats, random_state=rng) assert result.importances.shape == (X.shape[1], n_repeats) # the correlated feature with y is the last column and should # have the highest importance assert np.all(result.importances_mean[-1] > result.importances_mean[:-1]) def test_permutation_importance_linear_regresssion(): X, y = make_regression(n_samples=500, n_features=10, random_state=0) X = scale(X) y = scale(y) lr = LinearRegression().fit(X, y) # this relationship can be computed in closed form expected_importances = 2 * lr.coef_**2 results = permutation_importance(lr, X, y, n_repeats=50, scoring='neg_mean_squared_error') assert_allclose(expected_importances, results.importances_mean, rtol=1e-1, atol=1e-6) def test_permutation_importance_equivalence_sequential_parallel(): # regression test to make sure that sequential and parallel calls will # output the same results. X, y = make_regression(n_samples=500, n_features=10, random_state=0) lr = LinearRegression().fit(X, y) importance_sequential = permutation_importance( lr, X, y, n_repeats=5, random_state=0, n_jobs=1 ) # First check that the problem is structured enough and that the model is # complex enough to not yield trivial, constant importances: imp_min = importance_sequential['importances'].min() imp_max = importance_sequential['importances'].max() assert imp_max - imp_min > 0.3 # The actually check that parallelism does not impact the results # either with shared memory (threading) or without isolated memory # via process-based parallelism using the default backend # ('loky' or 'multiprocessing') depending on the joblib version: # process-based parallelism (by default): importance_processes = permutation_importance( lr, X, y, n_repeats=5, random_state=0, n_jobs=2) assert_allclose( importance_processes['importances'], importance_sequential['importances'] ) # thread-based parallelism: with parallel_backend("threading"): importance_threading = permutation_importance( lr, X, y, n_repeats=5, random_state=0, n_jobs=2 ) assert_allclose( importance_threading['importances'], importance_sequential['importances'] ) @pytest.mark.parametrize("n_jobs", [None, 1, 2]) def test_permutation_importance_equivalence_array_dataframe(n_jobs): # This test checks that the column shuffling logic has the same behavior # both a dataframe and a simple numpy array. pd = pytest.importorskip('pandas') # regression test to make sure that sequential and parallel calls will # output the same results. X, y = make_regression(n_samples=100, n_features=5, random_state=0) X_df = pd.DataFrame(X) # Add a categorical feature that is statistically linked to y: binner = KBinsDiscretizer(n_bins=3, encode="ordinal") cat_column = binner.fit_transform(y.reshape(-1, 1)) # Concatenate the extra column to the numpy array: integers will be # cast to float values X = np.hstack([X, cat_column]) assert X.dtype.kind == "f" # Insert extra column as a non-numpy-native dtype (while keeping backward # compat for old pandas versions): if hasattr(pd, "Categorical"): cat_column = pd.Categorical(cat_column.ravel()) else: cat_column = cat_column.ravel() new_col_idx = len(X_df.columns) X_df[new_col_idx] = cat_column assert X_df[new_col_idx].dtype == cat_column.dtype # Stich an aribtrary index to the dataframe: X_df.index = np.arange(len(X_df)).astype(str) rf = RandomForestRegressor(n_estimators=5, max_depth=3, random_state=0) rf.fit(X, y) n_repeats = 3 importance_array = permutation_importance( rf, X, y, n_repeats=n_repeats, random_state=0, n_jobs=n_jobs ) # First check that the problem is structured enough and that the model is # complex enough to not yield trivial, constant importances: imp_min = importance_array['importances'].min() imp_max = importance_array['importances'].max() assert imp_max - imp_min > 0.3 # Now check that importances computed on dataframe matche the values # of those computed on the array with the same data. importance_dataframe = permutation_importance( rf, X_df, y, n_repeats=n_repeats, random_state=0, n_jobs=n_jobs ) assert_allclose( importance_array['importances'], importance_dataframe['importances'] ) @pytest.mark.parametrize("input_type", ["array", "dataframe"]) def test_permutation_importance_large_memmaped_data(input_type): # Smoke, non-regression test for: # https://github.com/scikit-learn/scikit-learn/issues/15810 n_samples, n_features = int(5e4), 4 X, y = make_classification(n_samples=n_samples, n_features=n_features, random_state=0) assert X.nbytes > 1e6 # trigger joblib memmaping X = _convert_container(X, input_type) clf = DummyClassifier(strategy='prior').fit(X, y) # Actual smoke test: should not raise any error: n_repeats = 5 r = permutation_importance(clf, X, y, n_repeats=n_repeats, n_jobs=2) # Auxiliary check: DummyClassifier is feature independent: # permutating feature should not change the predictions expected_importances = np.zeros((n_features, n_repeats)) assert_allclose(expected_importances, r.importances) ``` #### File: metrics/_plot/base.py ```python def _check_classifer_response_method(estimator, response_method): """Return prediction method from the response_method Parameters ---------- estimator: object Classifier to check response_method: {'auto', 'predict_proba', 'decision_function'} Specifies whether to use :term:`predict_proba` or :term:`decision_function` as the target response. If set to 'auto', :term:`predict_proba` is tried first and if it does not exist :term:`decision_function` is tried next. Returns ------- prediction_method: callable prediction method of estimator """ if response_method not in ("predict_proba", "decision_function", "auto"): raise ValueError("response_method must be 'predict_proba', " "'decision_function' or 'auto'") error_msg = "response method {} is not defined in {}" if response_method != "auto": prediction_method = getattr(estimator, response_method, None) if prediction_method is None: raise ValueError(error_msg.format(response_method, estimator.__class__.__name__)) else: predict_proba = getattr(estimator, 'predict_proba', None) decision_function = getattr(estimator, 'decision_function', None) prediction_method = predict_proba or decision_function if prediction_method is None: raise ValueError(error_msg.format( "decision_function or predict_proba", estimator.__class__.__name__)) return prediction_method ``` #### File: tree/tests/test_reingold_tilford.py ```python import numpy as np import pytest from sklearn.tree._reingold_tilford import buchheim, Tree simple_tree = Tree("", 0, Tree("", 1), Tree("", 2)) bigger_tree = Tree("", 0, Tree("", 1, Tree("", 3), Tree("", 4, Tree("", 7), Tree("", 8) ), ), Tree("", 2, Tree("", 5), Tree("", 6) ) ) @pytest.mark.parametrize("tree, n_nodes", [(simple_tree, 3), (bigger_tree, 9)]) def test_buchheim(tree, n_nodes): def walk_tree(draw_tree): res = [(draw_tree.x, draw_tree.y)] for child in draw_tree.children: # parents higher than children: assert child.y == draw_tree.y + 1 res.extend(walk_tree(child)) if len(draw_tree.children): # these trees are always binary # parents are centered above children assert draw_tree.x == (draw_tree.children[0].x + draw_tree.children[1].x) / 2 return res layout = buchheim(tree) coordinates = walk_tree(layout) assert len(coordinates) == n_nodes # test that x values are unique per depth / level # we could also do it quicker using defaultdicts.. depth = 0 while True: x_at_this_depth = [coordinates[0] for node in coordinates if coordinates[1] == depth] if not x_at_this_depth: # reached all leafs break assert len(np.unique(x_at_this_depth)) == len(x_at_this_depth) depth += 1 ```
{ "source": "Jos3f/Apriori-algorithm", "score": 3 }
#### File: Apriori-algorithm/Data/DataGen.py ```python import numpy as np from tqdm import tqdm def generate_sample_data(filename, item_count=1000, basket_count=100000, seed=123): print("Creating data set of {} baskets with {} unique items".format(basket_count, item_count)) np.random.seed(seed) # Create item indices and probability of being selected in the first pass items = np.arange(item_count) item_selection_prob = np.random.exponential(1, item_count).clip(0, 2) item_selection_prob /= np.sum(item_selection_prob) # Create some associations item_assoc_prob = np.random.exponential(0.15, item_count).clip(0, 1) associated_to = {} for i, item in enumerate(items): sample_count = np.random.choice([1, 2, 3], 1, p=[.7, .2, .1]) associated_to[item] = frozenset(np.random.choice(items, sample_count, replace=False)) file1 = open(filename, "w") for _ in tqdm(range(basket_count)): item_count = np.random.lognormal(1.75, 0.4, 1).astype(int).clip(1) basket = set(np.random.choice(items, item_count, replace=False, p=item_selection_prob)) basket_associated = set() for item in basket: if np.random.uniform(0,1) < item_assoc_prob[item]: basket_associated.update(associated_to[item]) basket.update(basket_associated) file1.write(" ".join(str(item) for item in basket)+"\n" ) file1.close() pass if __name__ == '__main__': generate_sample_data("example_dataset.dat", 1000, 100000) ```
{ "source": "Jos3f/Intensity-based-clustering-study", "score": 2 }
#### File: Intensity-based-clustering-study/dognet/bbbc039.py ```python import dognet import numpy as np import os import skimage.io import sys from sklearn.model_selection import LeaveOneOut from datetime import datetime sys.path.append("../metrics") from metrics import Metrics sys.path.append("../unet") from threshold_utils import get_best_threshold, normalize_output import torch from pathlib import Path from multiprocessing.dummy import Pool import matplotlib.pyplot as plt def inference(net,image,get_inter = False): x = np.expand_dims(image,0) vx = torch.from_numpy(x).float().cuda() res,inter = net(vx) if get_inter: return res.data.cpu().numpy(),inter.data.cpu().numpy() return res.data.cpu().numpy() def createDataset(filelist): train_images = [] train_labels = [] pathImages = "../datasets/BBBC039/images/" pathMasks = "../datasets/BBBC039/masks/" # Determine the max / min of the dataset max_val = float('-inf') min_val = float('inf') for filename in sorted(filelist): img = plt.imread(pathImages + filename[:-3]+"tif") if np.max(img) > max_val: max_val = np.max(img) if np.min(img) < min_val: min_val = np.min(img) for i, filename in enumerate(sorted(filelist)): if i == 110: print(filename) # load image img = plt.imread(pathImages + filename[:-3]+"tif") img = (img - min_val) / (max_val - min_val) #load annotation orig_masks = skimage.io.imread(pathMasks + filename) orig_masks = orig_masks[:,:,0] orig_masks[orig_masks > 1] = 1 #Append to list train_images.append(img) train_labels.append(orig_masks) return train_images, train_labels def train_models(train_images, train_labels, validationsize, filename = None): if filename is None: now = datetime.now() current_dt = now.strftime("%y_%m_%d_%H_%M_%S") filename = "results/" + current_dt + ".csv" results_file = Path(filename) if not results_file.is_file(): results_file.write_text('index;jaccard;Dice;Adj;Warp;jaccard_to;Dice_to;Adj_to;Warp_to\n') loo = LeaveOneOut() total_splits = loo.get_n_splits(train_images) validationsize = validationsize - 1 for index, (train_index, test_index) in enumerate(loo.split(train_images)): if index != 110: continue run = True print(index) while run: np.random.shuffle(train_index) trainingimages = [train_images[i] for i in train_index[:-validationsize]] traininglabels = [train_labels[i] for i in train_index[:-validationsize]] validationimages = [train_images[i] for i in train_index[-validationsize:]] validationlabels = [train_labels[i] for i in train_index[-validationsize:]] device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") net = dognet.SimpleIsotropic(1,15,5).to(device) net.weights_init() net, errors = dognet.train_routine( net.cuda(), dognet.create_generator1C(trainingimages,traininglabels, n=total_splits), n_iter=3000, margin=5, loss='softdice', lr=0.0001 ) print("The mean loss of last 100 step:",np.mean(errors[-100:])) if net != None: metric_predictions_unprocessed = [] for x in validationimages: pred = inference(net,x[np.newaxis, :],False)[0][0] pred_background = np.ones(pred.shape) - pred pred_final = np.stack((pred_background,pred),axis=-1) metric_predictions_unprocessed.append(normalize_output(pred_final)) best_tau, best_score = get_best_threshold( metric_predictions_unprocessed, validationlabels, min=0, max=1, num_steps=50, use_metric=1 ) print("Best tau: " + str(best_tau)) print("Best avg score: " + str(best_score)) #Evaluate on testdata test_images = train_images[test_index[0]] metric_labels_test = [train_labels[test_index[0]]] pred = inference(net,test_images[np.newaxis, :],False)[0][0] metric_predictions = [(pred >= best_tau).astype(int)] metric_predictions_unthresholded = [(pred >= 0.5).astype(int)] plt.imsave("sample110.png", metric_predictions[0], cmap=plt.get_cmap('binary_r')) parallel_metrics = [ Metrics( metric_labels_test, metric_predictions_unthresholded, safe=False, parallel=False), Metrics( metric_labels_test, metric_predictions, safe=False, parallel=False) ] def f(m): return ( m.jaccard()[0], m.dice()[0], m.adj_rand()[0], m.warping_error()[0] ) pool = Pool(4) metric_result = pool.map(f, parallel_metrics) jaccard_index = metric_result[0][0] dice = metric_result[0][1] adj = metric_result[0][2] warping_error = metric_result[0][3] jaccard_index_to = metric_result[1][0] dice_to = metric_result[1][1] adj_to = metric_result[1][2] warping_error_to = metric_result[1][3] with results_file.open("a") as f: f.write( str(test_index[0]) + ";" + str(jaccard_index) + ";" + str(dice) + ";" + str(adj) + ";" + str(warping_error) + ";" + str(jaccard_index_to) + ";" + str(dice_to) + ";" + str(adj_to) + ";" + str(warping_error_to) + "\n" ) print("test_data_point_index: " + str(test_index[0])) print("Jaccard index: " + str(jaccard_index) + " with threshold optimization: " + str(jaccard_index_to)) print("Dice: " + str(dice) + " with threshold optimization: " + str(dice_to)) print("Adj: " + str(adj) + " with threshold optimization: " + str(adj_to)) print("Warping Error: " + str(warping_error) + " with threshold optimization: " + str(warping_error_to)) run = False if __name__ == "__main__": try: results_file = sys.argv[1] except IndexError: print("No file name given, results file will be given a name automatically") results_file = None filenames = [] filenames = os.listdir("../datasets/BBBC039/masks/") filenames = sorted(filenames) train_images, train_labels = createDataset(filenames) train_models(train_images, train_labels, 40, results_file) ``` #### File: dognet/baselines/neiland2014.py ```python from skimage.filters import median, threshold_otsu, gaussian from skimage.morphology import white_tophat,disk,black_tophat import numpy as np def cellprofiler_pipeline_single(img,sz=8,th=None): #1. estimate bg img = (img-img.min())/(img.max()-img.min())*255. bg = median(img.astype(np.uint8),selem=np.ones((100,100))).astype(np.float32) #2. find the difference we are intrested in only higher values diff = img-bg diff[diff<0]=0. if th is None: th = threshold_otsu(diff,255) #3. apply tophat tophat = white_tophat(diff,selem=disk(sz)) return tophat def cellprofiler_pipeline(pre,post,sz=8,th=None): pre_process = np.zeros_like(pre[0]) post_process = np.zeros_like(pre[0]) for p in pre: pre_process+=cellprofiler_pipeline_single(p,sz,th) for p in post: post_process+=cellprofiler_pipeline_single(p,sz,th) pre_process/=len(pre) post_process/=len(post) return pre_process+post_process ``` #### File: dognet/dognet/networks.py ```python import torch.nn as nn import torch.nn.functional as F import torch from .dogs import DoG2DIsotropic, DoG2DAnisotropic, DoG3DIsotropic class Simple3DNetwork(nn.Module): def __init__(self, in_channels, filter_size=9, k=4,depth = 3, return_intermediate=False, learn_amplitude=False, dog_class=DoG3DIsotropic): """ Create a simple 3D DoGnet :param in_channels: input data number of channels :param filter_size: filter window size must be even (3,5,7,9,11 etc) :param k: number of filters for each image :param d: depth of voxel volume :param return_intermediate: returns the output of DoG filters during the inference :param dog_class: the class of Difference of Gaussian used """ super(Simple3DNetwork, self).__init__() self.conv1 = dog_class(filter_size, in_channels, k, depth , learn_amplitude=learn_amplitude) self.conv2 = nn.Conv2d(in_channels * k, 1, 1) self.return_intermediate = return_intermediate def weights_init(self): self.conv1.weights_init() self.conv2.weight.data.fill_(1.) self.conv2.bias.data.fill_(0.) def forward(self, x): y = self.conv1(x) x = self.conv2(y.squeeze(2)) if self.return_intermediate: return F.sigmoid(x), y return F.sigmoid(x), None def get_reg_params(self): return self.conv2.parameters() class SimpleNetwork(nn.Module): def __init__(self, in_channels, filter_size=9, k=4, return_intermediate=False, learn_amplitude=False, dog_class=DoG2DIsotropic): """ Create a simple DoGnet :param in_channels: input data number of channels :param filter_size: filter window size must be even (3,5,7,9,11 etc) :param k: number of filters for each image :param return_intermediate: returns the output of DoG filters during the inference :param dog_class: the class of Difference of Gaussian used """ super(SimpleNetwork, self).__init__() self.conv1 = dog_class(filter_size, in_channels,k, learn_amplitude=learn_amplitude) self.conv2 = nn.Conv2d(in_channels*k, 2, kernel_size=(1,1)) self.return_intermediate = return_intermediate def weights_init(self): self.conv1.weights_init() self.conv2.weight.data.fill_(1.) self.conv2.bias.data.fill_(0.) def forward(self, x): y = self.conv1(x) #y = F.sigmoid(x) xx = F.sigmoid(self.conv2(y)) xxx = xx[:,0:1].mul(xx[:,1:]) if self.return_intermediate: return xxx, y return xxx, None def get_reg_params(self): return self.conv2.parameters() class SimpleIsotropic(SimpleNetwork): def __init__(self, in_channels, filter_size=9, k=4, return_intermediate=False, learn_amplitude=False): super(SimpleIsotropic, self).__init__(in_channels, filter_size, k, return_intermediate, learn_amplitude, DoG2DIsotropic) class SimpleAnisotropic(SimpleNetwork): def __init__(self, in_channels, filter_size=9, k=4, return_intermediate=False, learn_amplitude=False): super(SimpleAnisotropic, self).__init__(in_channels, filter_size, k, return_intermediate, learn_amplitude, DoG2DAnisotropic) class DeepNetwork(nn.Module): def __init__(self, in_channels, filter_size=9, k=5, n_layers=2, learn_amplitude=False, dog_class=DoG2DIsotropic): """ Create a Deep dognet :param in_channels: input data number of channels :param filter_size: filter window size must be even (3,5,7,9,11 etc) :param k: number of filters for each image :param n_layers: number of repeats :param dog_class: the class of Difference of Gaussian used """ super(DeepNetwork, self).__init__() layer = [] for i in range(n_layers): layer.append(dog_class(filter_size, in_channels,k, learn_amplitude=learn_amplitude)) layer.append(nn.Conv2d(in_channels*k, in_channels, 1)) layer.append(nn.ReLU()) self.net = nn.Sequential(*layer[:-2]) self.final_convolution = nn.Conv2d(in_channels*k, 2, 1) def weights_init(self): for m in self.modules(): if isinstance(m, nn.Conv2d): m.weight.data.fill_(1.) m.bias.data.fill_(0.) elif isinstance(m, DoG2DIsotropic) or isinstance(m, DoG2DAnisotropic): m.weights_init() def forward(self, x): x = self.net(x) xx = F.sigmoid(self.final_convolution(x)) xxx = xx[:,0:1].mul(xx[:,1:]) return xxx, None def get_reg_params(self): return self.final_convolution.parameters() class DeepIsotropic(DeepNetwork): def __init__(self, in_channels, filter_size=9, k=4, n_layers=2, learn_amplitude=False): super(DeepIsotropic, self).__init__(in_channels, filter_size, k, n_layers, learn_amplitude, DoG2DIsotropic) class DeepAnisotropic(DeepNetwork): def __init__(self, in_channels, filter_size=9, k=4, n_layers=2, learn_amplitude=False): super(DeepAnisotropic, self).__init__(in_channels, filter_size, k, n_layers, learn_amplitude, DoG2DAnisotropic) ``` #### File: Intensity-based-clustering-study/unet/read_probability_maps.py ```python import numpy as np import matplotlib.pyplot as plt class read_probability_masks(): def __init__(self, directory): self.directory = directory def get_probability_mask(self, file_name): return np.load(self.directory + str("/") + file_name) def get_all_starting_w(self, name_starts_w): """ Returns all masks from the files starting with a given string :param name_starts_w: the string that each file should start with :return: a list of the probability masks """ return [] def plot_mask(self, mask, tau=1): """ :param mask: :param tau: :return: """ plt.matshow(np.argmax(mask[0] * np.array([[[1, tau]]]), axis=-1), cmap=plt.cm.gray) plt.show() if __name__ == '__main__': # Example usage mask_reader = read_probability_masks("results") mask = mask_reader.get_probability_mask("BBBC039_test_fold_0.npy") print(mask) print(mask.shape) mask_reader.plot_mask(mask) ```
{ "source": "Jos3f/Locality-Sensitive-Hashing", "score": 4 }
#### File: Jos3f/Locality-Sensitive-Hashing/CompareSets.py ```python class CompareSets: def get_similarity(self, set_A, set_B): return self.jaccard_similarity(set_A, set_B) def jaccard_similarity(self, set_A, set_B): return len(set_A.intersection(set_B)) / len(set_A.union(set_B)) if __name__ == "__main__": # Example usage of this class set_A = {5, 4, 3, 1} set_B = {3, 0, 3, 1} compare_sets = CompareSets() print(compare_sets.get_similarity(set_A, set_B)) ```
{ "source": "Jos3f/SOM-word-vectors", "score": 3 }
#### File: Jos3f/SOM-word-vectors/SOM.py ```python import numpy as np import matplotlib.pyplot as plt import math from tqdm import tqdm from datetime import datetime class SOM: """SOM with 2d grid""" _data = None _nUnits = 0 _map_width = 0 _unit_weights = None def __init__(self, data, map_width): """ Initialise SOM :param data: 2D Data matrix. Data points arranged row-wise :param map_width: Width of the grid in the SOM algorithm """ self._data = data self._nUnits = map_width ** 2 self._map_width = map_width self._unit_weights = np.random.normal(size=(self._nUnits, data.shape[1])) def train(self, epochs=100, start_range=None, learning_rate=0.2): """ Train the units in our map :param epochs: Training epochs :param start_range: The neighbourhood range of the map during training. The range is calculated using manhattan distance. This parameter determines the size of the neighbourhood. If this is None, then the default start range is the width of the 2D map. :param learning_rate: Learning rate when updating our weights :return: """ '''Create an exponentially decreasing neighbourhood size''' if start_range is None: start_range = self._map_width exponents = np.arange(epochs + 1) end_neighborhood = 0.5 neighbour_distances = ( np.floor(start_range * ((end_neighborhood / start_range) ** (1 / exponents[-1])) ** exponents)).astype(int) '''Start training''' for epoch in tqdm(range(len(neighbour_distances))): '''Shuffle the data order''' data_order = np.arange(self._data.shape[0]) np.random.shuffle(data_order) '''Loop through each data point and alter the units depending on the closest unit''' for data_index in data_order: winning_unit = self._get_winning_unit(data_index) # Euclidean distance # update winning unit self._unit_weights[winning_unit] += learning_rate * ( self._data[data_index] - self._unit_weights[winning_unit]) # Find neighbours neighbours = [] for neighbour_x in range(max(0, winning_unit % int(self._map_width) - neighbour_distances[epoch]), min(self._nUnits, winning_unit % int(self._map_width) + neighbour_distances[ epoch]) + 1): if 0 <= neighbour_x < self._map_width: for neighbour_y in range(-(neighbour_distances[epoch] - abs( winning_unit % int(self._map_width) - neighbour_x)), neighbour_distances[epoch] - abs( winning_unit % int(self._map_width) - neighbour_x) + 1): y_coord = neighbour_y + math.floor(winning_unit / self._map_width) if 0 <= y_coord < self._map_width: x_coord = neighbour_x neighbours.append(x_coord + y_coord * self._map_width) # update neighbouring units for neighbour_index in neighbours: if neighbour_index == winning_unit: continue neighbour_index_mod = neighbour_index % self._nUnits self._unit_weights[neighbour_index_mod] += learning_rate * ( self._data[data_index] - self._unit_weights[neighbour_index_mod]) def label_nodes(self, labels, method="d2u"): """ Label the units with the provided data and their labels :param labels: Label of the data :param method: Method for labeling data. 'd2u' will label each unit with a specific label if the unit is the closest one to the data point with that specific label. 'u2d' will label each unit to the same label as the closest data point. The distances are measured in euclidean space. :return: A matrix with the labels for each unit in the map. """ '''Create return matrix''' unit_labels = [[] for _ in range(self._nUnits)] '''Label units''' if method == "d2u": for data_index in range(self._data.shape[0]): winning_unit = self._get_winning_unit(data_index) unit_labels[winning_unit].append(labels[data_index]) else: for unit_index in range(self._nUnits): closest_data_point = self._get_closest_point(unit_index) unit_labels[unit_index].append(labels[closest_data_point]) return unit_labels def _get_winning_unit(self, data_index): """ Find closest unit to a specific data point :param data_index: the index of the data point :return: The index of the closest unit """ distances = np.linalg.norm((self._unit_weights - self._data[data_index]), axis=1) return distances.argmin() def _get_closest_point(self, unit_index): """ Find closest data point to a unit :param unit_index: The index of the unit :return: The index of the closest data point """ distances = np.linalg.norm((self._data - self._unit_weights[unit_index]), axis=1) return distances.argmin() def plot_map(self, labels, label_name, data_point_name="input space", method="d2u", save_file=True): """ Plot the units and label them with the provided labels :param labels: Label of the data points :param label_name: Label name for each label. These will be plotted. :param data_point_name: Name of the input space :param method: Method used when labeling data points. See self.label_nodes for more info. :param save_file: Boolean value indicating if we want to save the plotted map or show it in a window. """ ''' Label the units ''' node_labels = self.label_nodes(labels, method) '''Fill a matrix representing our final labels for the units''' node_matrix_labels = np.full(len(node_labels), -1) for list_index in range(len(node_labels)): list_ = node_labels[list_index] if len(list_) == 0: continue most_frequent_element = max(set(list_), key=list_.count) node_matrix_labels[list_index] = most_frequent_element '''Plot labeled matrix and show or save to file''' dpi = 200 plt.figure(figsize=(300 * self._map_width / dpi, 100 * self._map_width / dpi), dpi=dpi) for unit_index in range(self._nUnits): if node_matrix_labels[unit_index] != -1: unit_label = node_matrix_labels[unit_index] label_print = label_name[unit_label] x_coord = float(unit_index % self._map_width) y_coord = float(math.floor(unit_index / self._map_width)) plt.annotate(label_print, (x_coord, y_coord)) plt.xlim((-1, self._map_width)) plt.ylim((-1, self._map_width)) plt.title("Topological mapping to {}x{} grid with respect to {}" .format(self._map_width, self._map_width, data_point_name)) plt.xlabel("Grid x-axis") plt.ylabel("Grid y-axis") if save_file: now = datetime.now() now_str = now.strftime("%Y_%m_%d_%H_%M_%S") plt.savefig("results/{}".format(now_str + '.png'), dpi=dpi, bbox_inches='tight') else: plt.show() ```
{ "source": "jos6654/gh-contribution-api", "score": 2 }
#### File: src/api/api.py ```python from flask_restful import Resource from flask import request from .api_utils import * class UserStats(Resource): def get(self, username): forked = request.args.get('forked') == 'true' or request.args.get('forked') == None return collect_stats(username, forked) ```
{ "source": "JosAbaafe/eCommJenkins", "score": 2 }
#### File: eCommJenkins/ecom/models.py ```python from django.db import models from django.contrib.auth.models import User # Create your models here. class Customer(models.Model): user=models.OneToOneField(User,on_delete=models.CASCADE) profile_pic= models.ImageField(upload_to='profile_pic/CustomerProfilePic/',null=True,blank=True) address = models.CharField(max_length=40) mobile = models.CharField(max_length=10,null=False) @property def get_name(self): return self.user.first_name+" "+self.user.last_name @property def get_id(self): return self.user.id def __str__(self): return self.user.first_name class Product(models.Model): name=models.CharField(max_length=40) product_image= models.ImageField(upload_to='product_image/',null=True,blank=True) price = models.PositiveIntegerField() quantity = models.PositiveIntegerField(default=0) description=models.CharField(max_length=40) def __str__(self): return self.name class Orders(models.Model): STATUS =( ('Pending','Pending'), ('Order Confirmed','Order Confirmed'), ('Out for Delivery','Out for Delivery'), ('Delivered','Delivered'), ) customer=models.ForeignKey('Customer', on_delete=models.CASCADE,null=True) product=models.ForeignKey('Product',on_delete=models.CASCADE,null=True) email = models.CharField(max_length=50,null=True) address = models.CharField(max_length=500,null=True) mobile = models.CharField(max_length=20,null=True) order_date= models.DateField(auto_now_add=True,null=True) status=models.CharField(max_length=50,null=True,choices=STATUS) def __str__(self): return self.product, self.order_date class Feedback(models.Model): name=models.CharField(max_length=40) feedback=models.CharField(max_length=500) date= models.DateField(auto_now_add=True,null=True) def __str__(self): return self.name ``` #### File: git/test/test_config.py ```python import glob import io from git import ( GitConfigParser ) from git.compat import string_types from git.config import cp from git.test.lib import ( TestCase, fixture_path, ) from git.test.lib import with_rw_directory import os.path as osp from git.util import rmfile _tc_lock_fpaths = osp.join(osp.dirname(__file__), 'fixtures/*.lock') def _rm_lock_files(): for lfp in glob.glob(_tc_lock_fpaths): rmfile(lfp) class TestBase(TestCase): def setUp(self): _rm_lock_files() def tearDown(self): for lfp in glob.glob(_tc_lock_fpaths): if osp.isfile(lfp): raise AssertionError('Previous TC left hanging git-lock file: %s', lfp) def _to_memcache(self, file_path): with open(file_path, "rb") as fp: sio = io.BytesIO(fp.read()) sio.name = file_path return sio def test_read_write(self): # writer must create the exact same file as the one read before for filename in ("git_config", "git_config_global"): file_obj = self._to_memcache(fixture_path(filename)) with GitConfigParser(file_obj, read_only=False) as w_config: w_config.read() # enforce reading assert w_config._sections w_config.write() # enforce writing # we stripped lines when reading, so the results differ assert file_obj.getvalue() self.assertEqual(file_obj.getvalue(), self._to_memcache(fixture_path(filename)).getvalue()) # creating an additional config writer must fail due to exclusive access with self.assertRaises(IOError): GitConfigParser(file_obj, read_only=False) # should still have a lock and be able to make changes assert w_config._lock._has_lock() # changes should be written right away sname = "my_section" oname = "mykey" val = "myvalue" w_config.add_section(sname) assert w_config.has_section(sname) w_config.set(sname, oname, val) assert w_config.has_option(sname, oname) assert w_config.get(sname, oname) == val sname_new = "new_section" oname_new = "new_key" ival = 10 w_config.set_value(sname_new, oname_new, ival) assert w_config.get_value(sname_new, oname_new) == ival file_obj.seek(0) r_config = GitConfigParser(file_obj, read_only=True) assert r_config.has_section(sname) assert r_config.has_option(sname, oname) assert r_config.get(sname, oname) == val # END for each filename @with_rw_directory def test_lock_reentry(self, rw_dir): fpl = osp.join(rw_dir, 'l') gcp = GitConfigParser(fpl, read_only=False) with gcp as cw: cw.set_value('include', 'some_value', 'a') # entering again locks the file again... with gcp as cw: cw.set_value('include', 'some_other_value', 'b') # ...so creating an additional config writer must fail due to exclusive access with self.assertRaises(IOError): GitConfigParser(fpl, read_only=False) # but work when the lock is removed with GitConfigParser(fpl, read_only=False): assert osp.exists(fpl) # reentering with an existing lock must fail due to exclusive access with self.assertRaises(IOError): gcp.__enter__() def test_multi_line_config(self): file_obj = self._to_memcache(fixture_path("git_config_with_comments")) with GitConfigParser(file_obj, read_only=False) as config: ev = "ruby -e '\n" ev += " system %(git), %(merge-file), %(--marker-size=%L), %(%A), %(%O), %(%B)\n" ev += " b = File.read(%(%A))\n" ev += " b.sub!(/^<+ .*\\nActiveRecord::Schema\\.define.:version => (\\d+). do\\n=+\\nActiveRecord::Schema\\." # noqa E501 ev += "define.:version => (\\d+). do\\n>+ .*/) do\n" ev += " %(ActiveRecord::Schema.define(:version => #{[$1, $2].max}) do)\n" ev += " end\n" ev += " File.open(%(%A), %(w)) {|f| f.write(b)}\n" ev += " exit 1 if b.include?(%(<)*%L)'" self.assertEqual(config.get('merge "railsschema"', 'driver'), ev) self.assertEqual(config.get('alias', 'lg'), "log --graph --pretty=format:'%Cred%h%Creset -%C(yellow)%d%Creset %s %Cgreen(%cr)%Creset'" " --abbrev-commit --date=relative") self.assertEqual(len(config.sections()), 23) def test_base(self): path_repo = fixture_path("git_config") path_global = fixture_path("git_config_global") r_config = GitConfigParser([path_repo, path_global], read_only=True) assert r_config.read_only num_sections = 0 num_options = 0 # test reader methods assert r_config._is_initialized is False for section in r_config.sections(): num_sections += 1 for option in r_config.options(section): num_options += 1 val = r_config.get(section, option) val_typed = r_config.get_value(section, option) assert isinstance(val_typed, (bool, int, float, ) + string_types) assert val assert "\n" not in option assert "\n" not in val # writing must fail with self.assertRaises(IOError): r_config.set(section, option, None) with self.assertRaises(IOError): r_config.remove_option(section, option) # END for each option with self.assertRaises(IOError): r_config.remove_section(section) # END for each section assert num_sections and num_options assert r_config._is_initialized is True # get value which doesnt exist, with default default = "my default value" assert r_config.get_value("doesnt", "exist", default) == default # it raises if there is no default though with self.assertRaises(cp.NoSectionError): r_config.get_value("doesnt", "exist") @with_rw_directory def test_config_include(self, rw_dir): def write_test_value(cw, value): cw.set_value(value, 'value', value) # end def check_test_value(cr, value): assert cr.get_value(value, 'value') == value # end # PREPARE CONFIG FILE A fpa = osp.join(rw_dir, 'a') with GitConfigParser(fpa, read_only=False) as cw: write_test_value(cw, 'a') fpb = osp.join(rw_dir, 'b') fpc = osp.join(rw_dir, 'c') cw.set_value('include', 'relative_path_b', 'b') cw.set_value('include', 'doesntexist', 'foobar') cw.set_value('include', 'relative_cycle_a_a', 'a') cw.set_value('include', 'absolute_cycle_a_a', fpa) assert osp.exists(fpa) # PREPARE CONFIG FILE B with GitConfigParser(fpb, read_only=False) as cw: write_test_value(cw, 'b') cw.set_value('include', 'relative_cycle_b_a', 'a') cw.set_value('include', 'absolute_cycle_b_a', fpa) cw.set_value('include', 'relative_path_c', 'c') cw.set_value('include', 'absolute_path_c', fpc) # PREPARE CONFIG FILE C with GitConfigParser(fpc, read_only=False) as cw: write_test_value(cw, 'c') with GitConfigParser(fpa, read_only=True) as cr: for tv in ('a', 'b', 'c'): check_test_value(cr, tv) # end for each test to verify assert len(cr.items('include')) == 8, "Expected all include sections to be merged" # test writable config writers - assure write-back doesn't involve includes with GitConfigParser(fpa, read_only=False, merge_includes=True) as cw: tv = 'x' write_test_value(cw, tv) with GitConfigParser(fpa, read_only=True) as cr: with self.assertRaises(cp.NoSectionError): check_test_value(cr, tv) # But can make it skip includes altogether, and thus allow write-backs with GitConfigParser(fpa, read_only=False, merge_includes=False) as cw: write_test_value(cw, tv) with GitConfigParser(fpa, read_only=True) as cr: check_test_value(cr, tv) def test_rename(self): file_obj = self._to_memcache(fixture_path('git_config')) with GitConfigParser(file_obj, read_only=False, merge_includes=False) as cw: with self.assertRaises(ValueError): cw.rename_section("doesntexist", "foo") with self.assertRaises(ValueError): cw.rename_section("core", "include") nn = "bee" assert cw.rename_section('core', nn) is cw assert not cw.has_section('core') assert len(cw.items(nn)) == 4 def test_complex_aliases(self): file_obj = self._to_memcache(fixture_path('.gitconfig')) with GitConfigParser(file_obj, read_only=False) as w_config: self.assertEqual(w_config.get('alias', 'rbi'), '"!g() { git rebase -i origin/${1:-master} ; } ; g"') self.assertEqual(file_obj.getvalue(), self._to_memcache(fixture_path('.gitconfig')).getvalue()) def test_empty_config_value(self): cr = GitConfigParser(fixture_path('git_config_with_empty_value'), read_only=True) assert cr.get_value('core', 'filemode'), "Should read keys with values" with self.assertRaises(cp.NoOptionError): cr.get_value('color', 'ui') ```
{ "source": "Josafath/attendance-management", "score": 3 }
#### File: src/Recognition_files/recognitionFaces.py ```python import cv2 import numpy as np class Recognition: def __init__(self): self.recognizer = cv2.face.LBPHFaceRecognizer_create() self.faceCascade = cv2.CascadeClassifier("Recognition_files//haarcascade_frontalface_default.xml") self.recognizer.read('Recognition_files/trainer/trainer.yml') self.font = cv2.FONT_HERSHEY_COMPLEX self.cam = cv2.VideoCapture(0) self.cam.set(3, 640) self.cam.set(4, 480) self.id_students = [] def go(self): minW = 0.1 * self.cam.get(3) minH = 0.1 * self.cam.get(4) while True: ret,img = self.cam.read() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = self.faceCascade.detectMultiScale( gray, scaleFactor= 1.2, minNeighbors= 5, minSize= (int(minW), (int(minH))), ) for (x,y,w,h) in faces: cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2) id, confidence = self.recognizer.predict(gray[y:y + h, x:x + w]) if (confidence < 100): self.id_students.append(id) confidence = " {0}%".format(round(100 - confidence)) else: confidence = " {0}%".format(round(100 - confidence)) cv2.putText(img, "Check", (x + 5, y - 5), self.font, 1, (255, 255, 255), 2) cv2.imshow('Taking Attendance', img) k = cv2.waitKey(10) & 0xff # Press 'ESC' for exiting video if k == 27: self.finish() break self.finish() return np.unique(self.id_students) def finish(self): self.cam.release() cv2.destroyAllWindows() ```
{ "source": "josagonzalez/swag-client", "score": 2 }
#### File: swag_client/schemas/v2.py ```python from datetime import datetime from marshmallow import Schema, fields, validates_schema from marshmallow.exceptions import ValidationError from marshmallow.validate import OneOf PROVIDERS = ['aws', 'gcp', 'azure'] ACCOUNT_STATUSES = ['created', 'in-progress', 'ready', 'deprecated', 'deleted', 'in-active'] class NoteSchema(Schema): date = fields.Str() text = fields.Str(required=True) class RoleSchema(Schema): policyUrl = fields.Str() roleName = fields.Str() id = fields.Str(required=True) secondaryApprover = fields.Str(default=None, missing=None) googleGroup = fields.Str(required=True) class AccountStatusSchema(Schema): region = fields.Str(required=True) status = fields.Str(validate=OneOf(ACCOUNT_STATUSES), missing='created') notes = fields.Nested(NoteSchema, many=True, missing=[]) class ServiceStatusSchema(Schema): region = fields.Str(required=True) enabled = fields.Boolean(missing=False) notes = fields.Nested(NoteSchema, many=True, missing=[]) class ServiceSchema(Schema): name = fields.Str(required=True) status = fields.Nested(ServiceStatusSchema, many=True, required=True) roles = fields.Nested(RoleSchema, many=True, missing=[]) metadata = fields.Dict(missing={}) class RegionSchema(Schema): status = fields.Str(validate=OneOf(ACCOUNT_STATUSES), missing='created') az_mapping = fields.Dict() class AccountSchema(Schema): schemaVersion = fields.Str(missing='2') id = fields.Str(required=True) name = fields.Str(required=True) contacts = fields.List(fields.Email(), required=True, missing=[]) provider = fields.Str(validate=OneOf(PROVIDERS), missing='aws') type = fields.Str(missing='service') tags = fields.List(fields.Str(), missing=[]) status = fields.Nested(AccountStatusSchema, many=True, missing=[]) email = fields.Email(required=True) environment = fields.Str(missing='prod') services = fields.Nested(ServiceSchema, many=True, missing=[]) sensitive = fields.Bool(missing=False) description = fields.Str(required=True) owner = fields.Str(required=True, missing='netflix') aliases = fields.List(fields.Str(), missing=[]) account_status = fields.Str(validate=OneOf(ACCOUNT_STATUSES), missing='created') domain = fields.Str() sub_domain = fields.Str() regions = fields.Dict() @validates_schema def validate_type(self, data): """Performs field validation against the schema context if values have been provided to SWAGManager via the swag.schema_context config object. If the schema context for a given field is empty, then we assume any value is valid for the given schema field. """ fields_to_validate = ['type', 'environment', 'owner'] for field in fields_to_validate: value = data.get(field) allowed_values = self.context.get(field) if allowed_values and value not in allowed_values: raise ValidationError('Must be one of {}'.format(allowed_values), field_names=field) @validates_schema def validate_account_status(self, data): """Performs field validation for account_status. If any region is not deleted, account_status cannot be deleted """ deleted_status = 'deleted' region_status = data.get('status') account_status = data.get('account_status') for region in region_status: if region['status'] != deleted_status and account_status == deleted_status: raise ValidationError('Account Status cannot be "deleted" if a region is not "deleted"') @validates_schema def validate_regions_schema(self, data): """Performs field validation for regions. This should be a dict with region names as the key and RegionSchema as the value """ region_schema = RegionSchema() supplied_regions = data.get('regions', {}) for region in supplied_regions.keys(): result = region_schema.validate(supplied_regions[region]) if len(result.keys()) > 0: raise ValidationError(result) ```
{ "source": "josahe/CarND-Capstone", "score": 3 }
#### File: src/waypoint_updater/waypoint_updater.py ```python import rospy import numpy as np from geometry_msgs.msg import PoseStamped from styx_msgs.msg import Lane, Waypoint from std_msgs.msg import Int32 from scipy.spatial import KDTree import math ''' This node will publish waypoints from the car's current position to some `x` distance ahead. As mentioned in the doc, you should ideally first implement a version which does not care about traffic lights or obstacles. Once you have created dbw_node, you will update this node to use the status of traffic lights too. Please note that our simulator also provides the exact location of traffic lights and their current status in `/vehicle/traffic_lights` message. You can use this message to build this node as well as to verify your TL classifier. TODO (for Yousuf and Aaron): Stopline location for each traffic light. ''' LOOKAHEAD_WPS = 50 # Number of waypoints we will publish. You can change this number MAX_DECEL = 10 # Max. acceptable deceleration is 10m/s/s class WaypointUpdater(object): """ Provides updated waypoints """ def __init__(self): rospy.init_node('waypoint_updater') # init member variables self.have_waypoints = False self.base_lane_wp_len = 0 self.pose = None self.base_lane = None self.waypoints_2d = None self.waypoints_tree = None self.stopline_wp_idx = -1 self.cache_closest_wp_idx = -1 self.cache_decel_waypoints = None self.last_closest_idx = -1 self.last_base_waypoints = None # inputs of the ROS module rospy.Subscriber('/current_pose', PoseStamped, self.pose_cb) rospy.Subscriber('/base_waypoints', Lane, self.waypoints_cb) rospy.Subscriber('/traffic_waypoint', Int32, self.traffic_cb) #rospy.Subscriber('/obstacle_waypoint', Int32, self.obstacle_cb) # outputs of the ROS module self.final_waypoints_pub = rospy.Publisher('final_waypoints', Lane, queue_size=1) rate = rospy.Rate(50) while not rospy.is_shutdown(): rate.sleep() if self.pose and self.base_lane and self.have_waypoints: self.publish_waypoints() def get_closest_waypoint_idx(self): """ return index of the waypoint closest to the car's position """ x = self.pose.pose.position.x y = self.pose.pose.position.y closest_wp_idx = self.waypoint_tree.query([x,y], 1)[1] # check if closest point is ahead or behind vehicle closest_coord = self.waypoints_2d[closest_wp_idx] prev_coord = self.waypoints_2d[closest_wp_idx-1] # hyperplane equation through closest_coords cl_vect = np.array(closest_coord) prev_vect = np.array(prev_coord) pos_vect = np.array([x, y]) val = np.dot(cl_vect-prev_vect, pos_vect-cl_vect) if val>0: closest_wp_idx = (closest_wp_idx+1) % len(self.waypoints_2d) return closest_wp_idx def publish_waypoints(self): """ Generate a new list of waypoints and publish """ final_lane = self.generate_lane() self.final_waypoints_pub.publish(final_lane) def generate_lane(self): """ Generate new list of waypoints takes into account a detected traffic light """ lane = Lane() # \todo MS:check if the statement below is required #lane.header = self.base_lane.header closest_idx = self.get_closest_waypoint_idx() farthest_idx = closest_idx + LOOKAHEAD_WPS if closest_idx == self.last_closest_idx: base_waypoints = self.last_base_waypoints elif self.last_base_waypoints == None: base_waypoints = self.base_lane.waypoints[closest_idx:farthest_idx] else: base_waypoints = self.last_base_waypoints for i in range(self.last_closest_idx, closest_idx): if len(base_waypoints) > 1: base_waypoints.pop(0) if i+LOOKAHEAD_WPS < self.base_lane_wp_len: base_waypoints.append( self.base_lane.waypoints[i + LOOKAHEAD_WPS] ) # maintain cache self.last_closest_idx = closest_idx self.last_base_waypoints = base_waypoints if self.stopline_wp_idx == -1 or (self.stopline_wp_idx >= farthest_idx): # easy case - continue driving lane.waypoints = base_waypoints else: # red traffic light ahead - we have to break lane.waypoints = self.decelerate_waypoints(base_waypoints, closest_idx) return lane def decelerate_waypoints(self, waypoints, closest_idx): """ Calculate list of waypoints for deceleration in front of a red traffic light waypoints: list of waypoints ahead of us (i.e. a part of the waypoint list! closest_idx: index of the car's position in the global waypoint list """ # check if we just calculated this! if closest_idx == self.cache_closest_wp_idx: return self.cache_decel_waypoints rospy.loginfo("Calculating deceleration path for idx={0}".format(closest_idx)) temp = [] was_zero = False for i,wp in enumerate(waypoints): p = Waypoint() p.pose = wp.pose if was_zero: v = 0 else: stop_idx = max(self.stopline_wp_idx - closest_idx -3, 0) # stop three waypoints before! dist = self.distance(waypoints, i, stop_idx) v = math.sqrt(2 * MAX_DECEL * (dist/20)**3) if v<1.0: v = 0.0 was_zero = True p.twist.twist.linear.x = min(v, wp.twist.twist.linear.x) temp.append(p) # cache our result to remove latency self.cache_closest_wp_idx = closest_idx self.cache_decel_waypoints = temp return temp def pose_cb(self, msg): """ Callback: receives pose of the car """ self.pose = msg def waypoints_cb(self, waypoints): """ Callback: receives waypoints of track Attention: this is only published once, keep the data safe! """ self.base_lane = waypoints if not self.waypoints_2d: self.waypoints_2d = [[waypoint.pose.pose.position.x, waypoint.pose.pose.position.y] for waypoint in waypoints.waypoints] self.waypoint_tree = KDTree(self.waypoints_2d) self.base_lane_wp_len = len(self.base_lane.waypoints) self.have_waypoints = True rospy.loginfo("Received {} waypoints".format(self.base_lane_wp_len)) def traffic_cb(self, msg): """ Callback: receive the waypoint index of a detected red traffic light -1 means no traffic light """ self.stopline_wp_idx = msg.data if self.stopline_wp_idx != -1: rospy.loginfo("Red Traffic light detected: {0}".format(self.stopline_wp_idx)) def obstacle_cb(self, msg): # TODO: Callback for /obstacle_waypoint message. We will implement it later pass def get_waypoint_velocity(self, waypoint): return waypoint.twist.twist.linear.x def set_waypoint_velocity(self, waypoints, waypoint, velocity): waypoints[waypoint].twist.twist.linear.x = velocity def distance(self, waypoints, wp1, wp2): dist = 0 dl = lambda a, b: math.sqrt((a.x-b.x)**2 + (a.y-b.y)**2 + (a.z-b.z)**2) for i in range(wp1, wp2+1): dist += dl(waypoints[wp1].pose.pose.position, waypoints[i].pose.pose.position) wp1 = i return dist if __name__ == '__main__': try: WaypointUpdater() except rospy.ROSInterruptException: rospy.logerr('Could not start waypoint updater node.') ```
{ "source": "josai/DeepDeface", "score": 2 }
#### File: DeepDeface/deepdefacer/defacer.py ```python import argparse import sys import os import numpy as np import nibabel as nib try: from keras import backend as K from keras.models import * except: print('---------------------------------------------------------------------------------------------------------------------------------------') print('ERROR: Failed to initialize tensorflow-gpu and Keras. Please ensure that this module is installed and a GPU is readily accessible.') print('---------------------------------------------------------------------------------------------------------------------------------------') sys.exit(1) from defacer_utils import resize_img, dice_coefficient, resample_image, pre_process_image, get_available_gpus def deface_3D_MRI(): if len(sys.argv) < 2: print('----------------------------------------------------------------------------------------------------') print("usage: Please specify the filepath of a MRI image for defacing....(e.g deepdefacer <path of MRI>") print('----------------------------------------------------------------------------------------------------') sys.exit(1) if not get_available_gpus: print('---------------------------------------------------------------------------------------------------------------------------------------') print("ERROR: Could not find an available GPU on your system. Please check that your GPU drivers (cudaNN, etc) are up to date and accessible.") print('---------------------------------------------------------------------------------------------------------------------------------------') sys.exit(1) MRI_image_path = sys.argv[1] if '.nii' not in MRI_image_path or '.nii.gz' not in MRI_image_path: print('------------------------------------------------------------------------') print("ERROR: Please ensure that input MRI file is in .nii or .nii.gz format") print('------------------------------------------------------------------------') print('Preproessing input MRI image...') MRI_image_shape = nib.load(MRI_image_path).get_data().shape if len(np.squeeze(MRI_image_shape)) != 3: print('------------------------------------------------------------------------') print("ERROR: Unable to deface MRI: Please ensure that input dimensions are in 3D.") print('------------------------------------------------------------------------') MRI_image_data, MRI_unnormalized_data = pre_process_image(MRI_image_path) deepdeface_model = load_model('deepdefacer/model.hdf5', custom_objects={'dice_coefficient': dice_coefficient}) print('-------------------------------------------------') print('Masking %s ....' % (MRI_image_path)) mask_prediction = deepdeface_model.predict(MRI_image_data) mask_prediction[mask_prediction < 0.5] = 0 mask_prediction[mask_prediction >= 0.5] = 1 mask_prediction = np.squeeze(mask_prediction) masked_image = np.multiply(MRI_unnormalized_data, mask_prediction) masked_image_save = nib.Nifti1Image(masked_image, nib.load(MRI_image_path).affine) masked_image_resampled = resample_image(masked_image_save, target_shape=MRI_image_shape, get_nifti=True) output_file = os.path.splitext(os.path.splitext(os.path.basename(MRI_image_path))[0])[0] + '_defaced.nii.gz' print('Completed! Saving to %s...' % (output_file)) nib.save(masked_image_resampled, output_file) print('Saved.') print('----------') ```
{ "source": "josalhor/Ax", "score": 2 }
#### File: storage/sqa_store/db.py ```python from __future__ import annotations from contextlib import contextmanager, nullcontext from os import remove as remove_file from typing import Any, Callable, ContextManager, Generator, Optional, TypeVar from sqlalchemy import create_engine from sqlalchemy.engine.base import Engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import Session, scoped_session, sessionmaker # some constants for database fields HASH_FIELD_LENGTH: int = 32 NAME_OR_TYPE_FIELD_LENGTH: int = 100 LONG_STRING_FIELD_LENGTH: int = 255 JSON_FIELD_LENGTH: int = 4096 # by default, Text gets mapped to a TEXT field in MySQL is 2^16 - 1 # we use have MEDIUMTEXT and LONGTEXT in the MySQL db; in this case, use # Text(MEDIUMTEXT_BYTES) or Text(LONGTEXT_BYTES). This is preferable to # using MEDIUMTEXT and LONGTEXT directly because those are incompatible with # SQLite that is used in unit tests. MEDIUMTEXT_BYTES: int = 2 ** 24 - 1 LONGTEXT_BYTES: int = 2 ** 32 - 1 # global database variables SESSION_FACTORY: Optional[Session] = None # set this to false to prevent SQLAlchemy for automatically expiring objects # on commit, which essentially makes them unusable outside of a session # see e.g. https://stackoverflow.com/a/50272761 EXPIRE_ON_COMMIT = False T = TypeVar("T") class SQABase: """Metaclass for SQLAlchemy classes corresponding to core Ax classes.""" pass Base = declarative_base(cls=SQABase) def create_mysql_engine_from_creator( creator: Callable, echo: bool = False, pool_recycle: int = 10, **kwargs: Any ) -> Engine: """Create a SQLAlchemy engine with the MySQL dialect given a creator function. Args: creator: a callable which returns a DBAPI connection. echo: if True, set engine to be verbose. pool_recycle: number of seconds after which to recycle connections. -1 means no timeout. Default is 10 seconds. **kwargs: keyword args passed to `create_engine` Returns: Engine: SQLAlchemy engine with connection to MySQL DB. """ return create_engine( "mysql://", creator=creator, pool_recycle=pool_recycle, echo=echo, **kwargs ) def create_mysql_engine_from_url( url: str, echo: bool = False, pool_recycle: int = 10, **kwargs: Any ) -> Engine: """Create a SQLAlchemy engine with the MySQL dialect given a database url. Args: url: a database url that can include username, password, hostname, database name as well as optional keyword arguments for additional configuration. e.g. `dialect+driver://username:password@host:port/database`. echo: if True, set engine to be verbose. pool_recycle: number of seconds after which to recycle connections. -1 means no timeout. Default is 10 seconds. **kwargs: keyword args passed to `create_engine` Returns: Engine: SQLAlchemy engine with connection to MySQL DB. """ return create_engine(url, pool_recycle=pool_recycle, echo=echo, **kwargs) def create_test_engine(path: Optional[str] = None, echo: bool = True) -> Engine: """Creates a SQLAlchemy engine object for use in unit tests. Args: path: if None, use in-memory SQLite; else attempt to create a SQLite DB in the path provided. echo: if True, set engine to be verbose. Returns: Engine: an instance of SQLAlchemy engine. """ if path is None: db_path = "sqlite://" else: db_path = "sqlite:///{path}".format(path=path) return create_engine(db_path, echo=echo) def init_engine_and_session_factory( url: Optional[str] = None, creator: Optional[Callable] = None, echo: bool = False, force_init: bool = False, **kwargs: Any, ) -> None: """Initialize the global engine and SESSION_FACTORY for SQLAlchemy. The initialization needs to only happen once. Note that it is possible to re-initialize the engine by setting the `force_init` flag to True, but this should only be used if you are absolutely certain that you know what you are doing. Args: url: a database url that can include username, password, hostname, database name as well as optional keyword arguments for additional configuration. e.g. `dialect+driver://username:password@host:port/database`. Either this argument or `creator` argument must be specified. creator: a callable which returns a DBAPI connection. Either this argument or `url` argument must be specified. echo: if True, logging for engine is enabled. force_init: if True, allows re-initializing engine and session factory. **kwargs: keyword arguments passed to `create_mysql_engine_from_creator` """ global SESSION_FACTORY if SESSION_FACTORY is not None: if force_init: # pyre-fixme[16]: `Optional` has no attribute `bind`. SESSION_FACTORY.bind.dispose() else: return # pragma: no cover if url is not None: engine = create_mysql_engine_from_url(url=url, echo=echo, **kwargs) elif creator is not None: engine = create_mysql_engine_from_creator(creator=creator, echo=echo, **kwargs) else: raise ValueError("Must specify either `url` or `creator`.") # pragma: no cover SESSION_FACTORY = scoped_session( sessionmaker(bind=engine, expire_on_commit=EXPIRE_ON_COMMIT) ) def init_test_engine_and_session_factory( tier_or_path: Optional[str] = None, echo: bool = False, force_init: bool = False, **kwargs: Any, ) -> None: """Initialize the global engine and SESSION_FACTORY for SQLAlchemy, using an in-memory SQLite database. The initialization needs to only happen once. Note that it is possible to re-initialize the engine by setting the `force_init` flag to True, but this should only be used if you are absolutely certain that you know what you are doing. Args: tier_or_path: the name of the DB tier. echo: if True, logging for engine is enabled. force_init: if True, allows re-initializing engine and session factory. **kwargs: keyword arguments passed to `create_mysql_engine_from_creator` """ global SESSION_FACTORY if SESSION_FACTORY is not None: if force_init: # pyre-fixme[16]: `Optional` has no attribute `bind`. SESSION_FACTORY.bind.dispose() else: return engine = create_test_engine(path=tier_or_path, echo=echo) create_all_tables(engine) SESSION_FACTORY = scoped_session( sessionmaker(bind=engine, expire_on_commit=EXPIRE_ON_COMMIT) ) def remove_test_db_file(tier_or_path: str) -> None: """Remove the test DB file from system, useful for cleanup in tests.""" remove_file(tier_or_path) def create_all_tables(engine: Engine) -> None: """Create all tables that inherit from Base. Args: engine: a SQLAlchemy engine with a connection to a MySQL or SQLite DB. Note: In order for all tables to be correctly created, all modules that define a mapped class that inherits from `Base` must be imported. """ if ( engine.dialect.name == "mysql" and engine.dialect.default_schema_name == "adaptive_experiment" ): raise Exception("Cannot mutate tables in XDB. Use AOSC.") # pragma: no cover Base.metadata.create_all(engine) def get_session() -> Session: """Fetch a SQLAlchemy session with a connection to a DB. Unless `init_engine_and_session_factory` is called first with custom args, this will automatically initialize a connection to `xdb.adaptive_experiment`. Returns: Session: an instance of a SQLAlchemy session. """ global SESSION_FACTORY if SESSION_FACTORY is None: init_engine_and_session_factory() # pragma: no cover assert SESSION_FACTORY is not None # pyre-fixme[29]: `Session` is not a function. return SESSION_FACTORY() def get_engine() -> Engine: """Fetch a SQLAlchemy engine, if already initialized. If not initialized, need to either call `init_engine_and_session_factory` or `get_session` explicitly. Returns: Engine: an instance of a SQLAlchemy engine with a connection to a DB. """ global SESSION_FACTORY if SESSION_FACTORY is None: raise ValueError("Engine must be initialized first.") # pragma: no cover # pyre-fixme[16]: `Optional` has no attribute `bind`. return SESSION_FACTORY.bind @contextmanager def session_scope() -> Generator[Session, None, None]: """Provide a transactional scope around a series of operations.""" session = get_session() try: yield session session.commit() except Exception: # pragma: no cover session.rollback() # pragma: no cover raise # pragma: no cover finally: session.close() def optional_session_scope( session: Optional[Session] = None, ) -> ContextManager[Session]: if session is not None: return nullcontext(session) return session_scope() ```
{ "source": "josalhor/WebModels", "score": 2 }
#### File: WebModels/todo/forms.py ```python from django import forms from django.contrib.auth.models import Group from django.contrib.auth import forms as auth_forms from django.forms import ModelForm from todo.models import CreditCardInfo, Task, Book, UserInfo, Editor, Designer, PublishedBook, Reader class AddBookForm(ModelForm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields["thematic"].queryset = Book.THEMATIC self.fields["thematic"].widget.attrs = { "id": "id_thematic", "class": "custom-select mb-3", "name": "thematic", } class Meta: model = Book exclude = ["created_date", "slug", "author", "editor", "completed", "file"] class AddEditTaskForm(ModelForm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields["task_type"].queryset = Task.TYPES_OF_TASK_CHOICES self.fields["task_type"].widget.attrs = { "id": "id_task_type", "class": "custom-select mb-3", "name": "task_type", } self.fields["book"].value = kwargs["initial"]["book"].id due_date = forms.DateField(widget=forms.DateInput(attrs={"type": "date"}), required=False) title = forms.CharField(widget=forms.widgets.TextInput()) note = forms.CharField(widget=forms.Textarea(), required=False) def clean_created_by(self): return self.instance.created_by class Meta: model = Task exclude = ["assigned_to", "created_date"] class AddExternalBookForm(ModelForm): class Meta: model = UserInfo exclude = ( "user", ) class PublishedBookForm(ModelForm): class Meta: model = PublishedBook exclude = ( "book", "author_text", "disabled" ) class SearchForm(forms.Form): q = forms.CharField(widget=forms.widgets.TextInput(attrs={"size": 35})) class AssignForm(forms.Form): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields["editor"].widget.attrs = { #"id": "id_thematic", "class": "custom-select mb-3", #"name": "thematic", } self.fields["editor"].label = "" editor = forms.ModelChoiceField(queryset=Editor.objects.all()) class AssignFormDesigner(forms.Form): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields["designer"].widget.attrs = { #"id": "id_thematic", "class": "custom-select mb-3", #"name": "thematic", } self.fields["designer"].label = "" designer = forms.ModelChoiceField(queryset=Designer.objects.all()) class PaymentSubscriptionForm(ModelForm): class Meta: model = CreditCardInfo exclude = [] class profileForm(auth_forms.UserChangeForm): class Meta: model = UserInfo fields = ( 'full_name', 'user', ) ``` #### File: WebModels/todo/models.py ```python from __future__ import unicode_literals import datetime import os import textwrap from django.conf import settings from django.contrib.auth.models import Group from django.contrib.auth import models as auth_models from cuser.models import AbstractCUser from django.db import DEFAULT_DB_ALIAS, models from django.db.transaction import Atomic, get_connection from django.urls import reverse from django.utils import timezone from datetime import date from django import forms from django.utils.text import slugify from abc import ABC import uuid class LockedAtomicTransaction(Atomic): """ modified from https://stackoverflow.com/a/41831049 this is needed for safely merging Does a atomic transaction, but also locks the entire table for any transactions, for the duration of this transaction. Although this is the only way to avoid concurrency issues in certain situations, it should be used with caution, since it has impacts on performance, for obvious reasons... """ def __init__(self, *models, using=None, savepoint=None): if using is None: using = DEFAULT_DB_ALIAS super().__init__(using, savepoint) self.models = models def __enter__(self): super(LockedAtomicTransaction, self).__enter__() # Make sure not to lock, when sqlite is used, or you'll run into problems while running tests!!! if settings.DATABASES[self.using]["ENGINE"] != "django.db.backends.sqlite3": cursor = None try: cursor = get_connection(self.using).cursor() for model in self.models: cursor.execute( "LOCK TABLE {table_name}".format(table_name=model._meta.db_table) ) finally: if cursor and not cursor.closed: cursor.close() # Does this look repetitive to you? # Then great! It looks repetitive to me too! # The way Django works, this way of building the models # is better for form handling. class UserInfo(models.Model): full_name = models.CharField(max_length=150) user = models.OneToOneField( settings.AUTH_USER_MODEL, primary_key=True, null=False, on_delete=models.CASCADE, related_name='user_info' ) reset_unique_id = models.UUIDField(default=uuid.uuid4, editable=False, unique=True) used_reset = models.BooleanField(default=False) def __str__(self): return str(self.full_name) # This should be an ABC, but that interferes # with the model's metaclass class UserRole(models.Model): def __str__(self): return str(self.user.user_info) class Writer(UserRole): user = models.OneToOneField( settings.AUTH_USER_MODEL, primary_key=True, null=False, on_delete=models.CASCADE ) class Editor(UserRole): user = models.OneToOneField( settings.AUTH_USER_MODEL, primary_key=True, null=False, on_delete=models.CASCADE ) chief = models.BooleanField(default=False) # These classes are not to be used in the first iteration of # the app. However, modeling them helps us make better design decisions # and prepare generic code :D class Designer(UserRole): user = models.OneToOneField( settings.AUTH_USER_MODEL, primary_key=True, null=False, on_delete=models.CASCADE ) chief = models.BooleanField(default=False) class Management(UserRole): user = models.OneToOneField( settings.AUTH_USER_MODEL, primary_key=True, null=False, on_delete=models.CASCADE ) class CreditCardInfo(models.Model): card_number = models.PositiveIntegerField(blank=False) card_holder = models.TextField(blank=False) expiration_date = models.DateField(blank=False) card_cvv = models.PositiveIntegerField(blank=False) class Reader(UserRole): user = models.OneToOneField( settings.AUTH_USER_MODEL, primary_key=True, null=False, on_delete=models.CASCADE ) subscribed = models.BooleanField(default=False) credit_card = models.OneToOneField( CreditCardInfo, on_delete=models.CASCADE, null=True, blank=True ) def __str__(self): return f'Reader {self.pk}' class Book(models.Model): name = models.CharField(max_length=80) slug = models.SlugField(default="", unique=True) author = models.ForeignKey(Writer, on_delete=models.RESTRICT, related_name='book_author') editor = models.ForeignKey(Editor, null=True, blank=True, on_delete=models.CASCADE, related_name='book_editor') # This attribute is techincally redundant: # In practice it is a performace improvement and improves legibility presentation_date = models.DateField(auto_now_add=True) completed = models.BooleanField(default=False) rejected = models.BooleanField(default=False) description = models.TextField(blank=True) # file can bee null for debugging purposes file = models.FileField(upload_to="books/attachments", max_length=255, null=True, blank=True) TYPE_SCARE = 'S' TYPE_ADVENTURE = 'A' TYPE_FANTASY = 'F' THEMATIC = [ (TYPE_SCARE, 'Miedo'), (TYPE_ADVENTURE, 'Aventura'), (TYPE_FANTASY, 'Fantasía'), ] thematic = models.CharField( max_length=2, choices=THEMATIC, ) def __str__(self): return self.name def save(self, *args, **kwargs): if not self.slug: self.slug = slugify(self.name, allow_unicode=True) super(Book, self).save(*args, **kwargs) class Meta: ordering = ["name"] verbose_name_plural = "Books" class PublishedBook(models.Model): book = models.OneToOneField( Book, null=False, blank=False, related_name="published_book", on_delete=models.CASCADE, ) title = models.CharField(max_length=80) publication_date = models.DateField(auto_now_add=True) disabled = models.BooleanField(default=False) author_text = models.TextField() final_version = models.FileField(upload_to="books/attachments", max_length=255, null=True, blank=True) final_version_epub = models.FileField(upload_to="books/attachments", max_length=255, null=True, blank=True) related_image = models.ImageField(upload_to="books/attachments", null=True, blank=True) class Task(models.Model): WRITING = 'E' ILLUSTRATION = 'I' LAYOUT = 'M' REVISION = 'R' TYPES_OF_TASK_CHOICES = [ (WRITING, 'Escritura'), (ILLUSTRATION, 'Ilustración'), (LAYOUT, 'Maquetación'), (REVISION, 'Revisión final'), ] title = models.CharField(max_length=140) book = models.ForeignKey(Book, on_delete=models.CASCADE, null=True) created_date = models.DateField(auto_now_add=True) due_date = models.DateField(blank=True, null=True) completed = models.BooleanField(default=False) notified_due_date = models.BooleanField(default=False) completed_date = models.DateField(blank=True, null=True) task_type = models.CharField( max_length=2, choices=TYPES_OF_TASK_CHOICES, default=WRITING, ) created_by = models.ForeignKey( Editor, null=True, blank=True, related_name="todo_created_by", on_delete=models.CASCADE, ) assigned_to = models.ForeignKey( UserInfo, blank=True, null=True, related_name="todo_assigned_to", on_delete=models.CASCADE, ) description = models.TextField(default="") priority = models.PositiveIntegerField(blank=True, null=True) # Has due date for an instance of this object passed? def overdue_status(self): "Returns whether the Tasks's due date has passed or not." if self.due_date and datetime.date.today() > self.due_date: return True def __str__(self): return self.title def get_absolute_url(self): return reverse("todo:task_detail", kwargs={"task_id": self.id}) # Auto-set the Task creation / completed date def save(self, **kwargs): # If Task is being marked complete, set the completed_date if self.completed: self.completed_date = datetime.datetime.now() super(Task, self).save() def merge_into(self, merge_target): if merge_target.pk == self.pk: raise ValueError("can't merge a task with self") # lock the comments to avoid concurrent additions of comments after the # update request. these comments would be irremediably lost because of # the cascade clause with LockedAtomicTransaction(Comment): Comment.objects.filter(task=self).update(task=merge_target) self.delete() class Meta: ordering = ["priority", "created_date"] class Comment(models.Model): author = models.ForeignKey(UserInfo, on_delete=models.CASCADE) task = models.ForeignKey(Task, on_delete=models.CASCADE) date = models.DateTimeField(auto_now_add=True) body = models.TextField(default="") @property def author_text(self): return str(self.author) @property def snippet(self): body_snippet = textwrap.shorten(self.body, width=35, placeholder="...") # Define here rather than in __str__ so we can use it in the admin list_display return "{author} - {snippet}...".format(author=self.author_text, snippet=body_snippet) def __str__(self): return self.snippet class Attachment(models.Model): task = models.ForeignKey(Task, on_delete=models.CASCADE) added_by = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE) timestamp = models.DateTimeField(auto_now_add=True) file = models.FileField(upload_to="tasks/attachments", max_length=255) def filename(self): return os.path.basename(self.file.name) def extension(self): name, extension = os.path.splitext(self.file.name) return extension def __str__(self): return f"{self.task.id} - {self.file.name}" ``` #### File: todo/views/activate_book.py ```python from todo.templatetags.todo_tags import is_management from django.contrib.auth.decorators import login_required, user_passes_test from django.contrib import messages from django.http import HttpResponse from django.shortcuts import redirect from django.contrib.auth import get_user_model from todo.models import UserInfo, PublishedBook @login_required @user_passes_test(is_management) def activate_book(request): if request.method == "POST": book = PublishedBook.objects.filter(pk=request.POST['activate-book']).first() book.disabled = False book.save() messages.success(request, "El libro '{}' ha sido activado correctamente.".format(book.title)) return redirect("todo:books_management") ``` #### File: todo/views/book_assign.py ```python import datetime import os import bleach from django import forms from django.conf import settings from django.contrib import messages from django.contrib.auth.decorators import login_required, user_passes_test from django.core.exceptions import PermissionDenied from django.http import HttpResponse from django.shortcuts import get_object_or_404, redirect, render from django.urls import reverse from django.contrib.sites.models import Site from django.core.mail import send_mail from django.template.loader import render_to_string from todo.defaults import defaults from todo.models import Attachment, Comment, Book, Editor, UserInfo from todo.forms import AssignForm def send_email_reject_book(book, reasons): email_body = render_to_string( "todo/email/rejected_book.txt", {"book": book, "reasons": reasons} ) send_mail( "Libro rechazado", email_body, None, [book.author.user.email], fail_silently=False, ) @login_required def book_assign(request, book_id: int) -> HttpResponse: book = get_object_or_404(Book, pk=book_id) thematic = dict(Book.THEMATIC)[book.thematic] user_email = request.user editor = Editor.objects.filter(user=user_email).first() editor_view = editor != None if book.editor != None or (editor_view and not editor.chief): raise PermissionDenied if request.POST: print(request.POST) form = AssignForm(request.POST) if form.is_valid(): book.editor = Editor.objects.filter(id=request.POST['editor']).first() book.save() messages.success(request, "La propuesta de edición ha sido correctamente asignada.") editor_user_info = UserInfo.objects.filter(user=book.editor.user).first() author_user_info = UserInfo.objects.filter(user=book.author.user).first() email_body = render_to_string( "todo/email/assigned_book.txt", {"site": Site.objects.get_current().domain, "book": book, "editor": editor_user_info, "author": author_user_info} ) send_mail( "Libro asignado", email_body, None, [book.editor.user.email, book.author.user.email], fail_silently=False, ) else: messages.success(request, "La propuesta de edición ha sido correctamente rechazada.") book.rejected = True book.save() send_email_reject_book(book, reasons=request.POST['reasons']) return redirect("todo:accepted_petitions") context = { 'editor_view': editor_view, 'thematic': thematic, 'editor_user': editor, 'description': book.description, 'book': book, 'assign_form': AssignForm() } return render(request, "todo/book_assign.html", context) ``` #### File: todo/views/users_detail.py ```python from todo.templatetags.todo_tags import is_management from django.contrib.auth.decorators import login_required, user_passes_test from django.http import HttpResponse from django.shortcuts import render from todo.models import Designer, Management, Writer, Editor @login_required @user_passes_test(is_management) def users_detail(request, list_slug=None) -> HttpResponse: # Which users to show on this list view? if list_slug == "editors": users = Editor.objects.all() elif list_slug == "designers": users = Designer.objects.all() elif list_slug == "writers": users = Writer.objects.all() elif list_slug == "management": users = Management.objects.all() # Additional filtering active_users = users.filter(user__is_active=True) unactive_users = users.filter(user__is_active=False) # ###################### # Add New User Form # ###################### context = { "list_slug": list_slug, "active_users": active_users, "unactive_users": unactive_users, "users": users, } return render(request, "todo/users_detail.html", context) ```
{ "source": "josalinas/ppiclF", "score": 2 }
#### File: short_tests/lib/ppiclfBinBuild.py ```python import os import sys from subprocess import call, check_call, Popen, PIPE, STDOUT def build_ppiclf(source_root, cwd=None, opts=None, verbose=False): if not opts: _opts = {} else: _opts = opts.copy() _opts.update(SOURCE_ROOT=source_root) print('Compiling ppiclf...') print(' Using working directory "{0}"'.format(cwd)) for key, val in _opts.iteritems(): print(' Using {0}="{1}"'.format(key, val)) my_env = os.environ.copy() if source_root : my_env["SOURCE_ROOT"] = source_root if _opts.get('F77') : my_env["FC"] = _opts.get('F77') if _opts.get('CC') : my_env["CC"] = _opts.get('CC') if _opts.get('PPLIST') : my_env["PPLIST"] = _opts.get('PPLIST') logfile = os.path.join(cwd, 'build.log') # copy F-File proc = Popen( ['cp',os.path.join(format(cwd),'user_routines/ppiclf_user.f'),os.path.join(source_root, 'source', 'ppiclf_user.f')], cwd=cwd, env=my_env, stdin=PIPE) proc.wait() # copy H-File proc = Popen( ['cp',os.path.join(format(cwd),'user_routines/PPICLF_USER.h'),os.path.join(source_root, 'source', 'PPICLF_USER.h')], cwd=cwd, env=my_env, stdin=PIPE) proc.wait() # Clean ppiclF library proc = Popen( ['make','clean'], cwd=source_root, env=my_env, stdin=PIPE) proc.wait() # Make ppiclF library proc = Popen( 'make', cwd=source_root, env=my_env, stdin=PIPE, stderr=STDOUT) proc.wait() # Clean example case proc = Popen( ['make','clean'], cwd=cwd, env=my_env, stdin=PIPE, stderr=STDOUT) proc.wait() # Make example case proc = Popen( 'make', cwd=cwd, env=my_env, stdin=PIPE, stderr=STDOUT) proc.wait() if proc.returncode != 0: f = open(logfile, "r") text = f.read() print text f.close() exit(-1) ``` #### File: short_tests/lib/ppiclfTestCase.py ```python import unittest import inspect import os from functools import wraps ############################################################################### # DECORATORS ############################################################################### def Parallel(method): @wraps(method) def wrapper(self, *args, **kwargs): self.mpi_procs = self.parallel_procs if not self.ifmpi: self.skipTest("Skipping \"{0}\"; MPI is not enabled.".format(self.id())) else: self.log_suffix = '.general' if self.ifmpi: self.log_suffix += '.parallel' else: self.log_suffix += '.serial' method(self, *args, **kwargs) return wrapper ############################################################################### # BASE TEST CASE ############################################################################### class ppiclfTestCase(unittest.TestCase): """ Base class for ppiclf unittests This defines a setUpClass method to: (a) get the relevant environment variables for compilers, directories All subclassed TestCases will need to do these things. Class attributes: f77 (str): The Fortran 77 compiler to use [default: 'gfortran'] cc (str): The C compiler to use [default: 'gcc'] ifmpi (bool): Perform compilation/tests with MPI [default: False] source_root (str): Path to Nek source directory;overridden by $NEK_SOURCE_ROOT env variable [default: '$HOME/nek5_svn/trunk/nek'] tools_root (str): Path to Nek tools directory; overridden by $TOOLS_ROOT env variable [default: '$HOME/nek5_svn/trunk/tools'] examples_root (str): Path to Nek examples directory; overridden by $EXAMPLES_ROOT env variable [default: '$HOME/nek5_svn/examples'] makenek (str): Path to makenek [default: source_root/makenek] tools_bin (str): Directory to place compiled tools [default: tools_root/bin] Subclass attributes: These aren't meaningful in the base class. They're intended for a subclass that represents a particular example problem. example_subdir (str): The subdirectory for the subclass' example. Assumed that it's in example_root rea_file (str): The .rea file for the subclass' example, minus the '.rea' extension. Assumed that it's in example_root/example_dir size_file (str): The SIZE file for the subclass' example. Assuemed that it's in example_root/example_subdir """ # Defined in subclasses only; declared here to make syntax checker happy example_subdir = "" case_name = "" def __init__(self, *args, **kwargs): # These can be overridden by self.get_opts self.f77 = "mpif77" self.cc = "mpicc" self.pplist = "" self.usr_lflags = "" self.ifmpi = True self.source_root = os.path.dirname(os.path.dirname(inspect.getabsfile(self.__class__))) self.examples_root = os.path.dirname(inspect.getabsfile(self.__class__)) self.make = os.path.join(self.source_root, 'Makefile') self.log_root = "" self.verbose = True self.serial_procs = 1 self.parallel_procs = 2 self.size_params = {} # These are overridden by method decorators (Parallel, ..) self.log_suffix = "" self.mpi_procs = None # Empy list of delayed fails self._delayed_failures = [] self.get_opts() unittest.TestCase.__init__(self, *args, **kwargs) def assertAlmostEqualDelayed(self, test_val, target_val, delta, label): if abs(test_val-target_val) <= delta: msg = ' SUCCESS: {0}: Test value {1} equals target value {2} +/- {3}'.format(label, test_val, target_val, delta) else: msg = ' FAILURE: {0}: Test value {1} exceeds target value {2} +/- {3}'.format(label, test_val, target_val, delta) self._delayed_failures.append(msg) print(msg) def assertIsNotNullDelayed(self, test_val, label): if test_val: msg = 'SUCCESS: Found phrase "{0}" in logfile.'.format(label) else: msg = 'FAILURE: Unexpectedly did not find phrase "{0}" in logfile'.format(label) self._delayed_failures.append(msg) print(msg) def assertIsNullDelayed(self, test_val, label): if test_val: msg = 'FAILURE: Found phrase "{0}" in logfile.'.format(label) self._delayed_failures.append(msg) else: msg = 'SUCCESS: Did not find phrase "{0}" in logfile'.format(label) print(msg) def assertDelayedFailures(self): if self._delayed_failures: report = [ '\n\nFailed assertions:{0}\n'.format(len(self._delayed_failures)) ] for i,failure in enumerate(self._delayed_failures, start=1): report.append('{0}: {1}'.format(i, failure)) #self._delayed_failures = [] self.fail('\n'.join(report)) def get_opts(self): print("Getting setup options...") # Get compiler options from env self.f77 = os.environ.get('FC', self.f77) self.cc = os.environ.get('CC', self.cc) self.pplist = os.environ.get('PPLIST', self.pplist) self.usr_lflags = os.environ.get('USR_LFLAGS', self.usr_lflags) self.ifmpi = os.environ.get('MPI', self.ifmpi) # Get paths from env try: self.source_root = os.path.abspath(os.environ['SOURCE_ROOT']) except KeyError: pass else: self.make = os.path.join(self.source_root, 'Makefile') self.examples_root = os.path.abspath(os.environ.get('EXAMPLES_ROOT', self.examples_root)) try: self.log_root = os.path.abspath(os.environ['LOG_ROOT']) except KeyError: pass self.verbose = str(os.environ.get('VERBOSE_TESTS', self.verbose)).lower() == 'true' self.parallel_procs = int(os.environ.get('PARALLEL_PROCS', self.parallel_procs)) # Print everything out for varname, varval in ( ('FC', self.f77), ('CC', self.cc), ('PPLIST', self.pplist), ('USR_LFLAGS', self.usr_lflags), ('IFMPI', self.ifmpi), ('SOURCE_ROOT', self.source_root), ('EXAMPLES_ROOT', self.examples_root), ('LOG_ROOT', self.log_root), ('VERBOSE_TESTS', self.verbose), ('PARALLEL_PROCS', self.parallel_procs) ): if varval: print(' Using {0:14} = "{1}"'.format(varname, varval)) # Verify that pathnames are valid for varname, varval in ( ('SOURCE_ROOT', self.source_root), ('EXAMPLES_ROOT', self.examples_root), ('LOG_ROOT', self.log_root), ): if varval and not os.path.isdir(varval): raise OSError('The {0} directory "{1}" does not exist. Please the env variable ${0} to a valid directory.'.format(varname, varval)) print("Finished getting setup options!") def build_ppiclf(self, opts=None): from lib.ppiclfBinBuild import build_ppiclf cls = self.__class__ all_opts = dict( FC = self.f77, CC = self.cc, PPLIST = self.pplist, USR_LFLAGS = self.usr_lflags, MPI = int(self.ifmpi), ) if opts: all_opts.update(opts) build_ppiclf( source_root = self.source_root, cwd = os.path.join(self.examples_root, cls.example_subdir), opts = all_opts, verbose = self.verbose, ) def run_ppiclf(self, rea_file=None): from lib.ppiclfBinRun import run_ppiclf cls = self.__class__ run_ppiclf( cwd = os.path.join(self.examples_root, cls.example_subdir), rea_file = cls.case_name if not rea_file else rea_file, ifmpi = self.ifmpi, log_suffix = self.log_suffix, n_procs = self.mpi_procs, verbose = self.verbose ) def get_value_from_log(self, label, column, row=0, logfile=None): cls = self.__class__ if not logfile: logfile = os.path.join( self.examples_root, cls.example_subdir, '{0}.log.{1}{2}'.format(cls.case_name, self.mpi_procs, self.log_suffix) ) # Get all lines with label with open(logfile, 'r') as f: line_list = [l for l in f if label in l] if not line_list: raise ValueError("Could not find label \"{0}\" in logfile \"{1}\". The run may have failed.".format(label, logfile)) try: value = float(line_list[row].split()[column]) except ValueError: raise ValueError("Attempted to parse non-numerical value in logfile, \"{0}\". Logfile may be malformatted or run may have failed".format(logfile)) except IndexError: raise IndexError("Fewer rows and/or columns than expected in logfile, \"{0}\". Logfile may be malformmated or run may have failed.".format(logfile)) else: return value def get_phrase_from_log(self, label, logfile=None, row=0): cls = self.__class__ if not logfile: logfile = os.path.join( self.examples_root, cls.example_subdir, '{0}.log.{1}{2}'.format(cls.case_name, self.mpi_procs, self.log_suffix) ) with open(logfile, 'r') as f: line_list = [l for l in f if label in l] try: line = line_list[row] except IndexError: return None else: return line ```
{ "source": "josamuna/codepo-backend", "score": 2 }
#### File: monitor/monitor_engine/serializers.py ```python from django.contrib.auth.hashers import make_password from django.contrib.auth.models import User from rest_framework import serializers from .models import Device, Command, Measured, DeviceTracking, UserPreference, Notification class DeviceSerializer(serializers.ModelSerializer): class Meta: model = Device fields = '__all__' class CommandSerializer(serializers.ModelSerializer): class Meta: model = Command fields = '__all__' class UserSerializer(serializers.ModelSerializer): class Meta: model = User fields = ( 'id', 'username', 'first_name', 'last_name', 'email', 'password', 'is_active', 'is_superuser', 'is_staff') def create(self, validated_data): user = User( email=validated_data['email'], username=validated_data['username'], first_name=validated_data['first_name'], last_name=validated_data['last_name'], password=<PASSWORD>(validated_data['password']), is_staff=validated_data['is_staff'] ) user.save() return user class FilteredMeasuredSerializer(serializers.ListSerializer): def to_representation(self, data): # print("============================="); mydata = data.latest('time') data = list() data.append(mydata) return super(FilteredMeasuredSerializer, self).to_representation(data) class MeasuredSerializer(serializers.ModelSerializer): class Meta: model = Measured list_serializer_class = FilteredMeasuredSerializer fields = '__all__' class MeasuredSimpleSerializer(serializers.ModelSerializer): class Meta: model = Measured fields = '__all__' class HistorySerializer(serializers.ModelSerializer): measureds = MeasuredSerializer(many=True, read_only=True) class Meta: model = Device fields = ['id', 'caseid', 'mode', 'deleted', 'measureds'] class DeviceTrackingSerializer(serializers.ModelSerializer): class Meta: model = DeviceTracking fields = '__all__' class UserPreferenceSerializer(serializers.ModelSerializer): class Meta: model = UserPreference fields = '__all__' class NotificationSerializer(serializers.ModelSerializer): class Meta: model = Notification fields = '__all__' ```
{ "source": "josan82/biometall", "score": 2 }
#### File: biometall/tests/conftest.py ```python import os TESTPATH = os.path.dirname(os.path.abspath(__file__)) def datapath(path): return os.path.join(TESTPATH, 'data', path) ``` #### File: biometall/tests/test_chunk_size.py ```python import pytest from biometall.modules import grid testdata = [ (19870,437,1,268435456,9936), (19870,437,4,268435456,2484), (19870,437,8,268435456,1325), (19870,437,1,2147483648,19871), (19870,437,4,2147483648,4968), (19870,437,8,2147483648,2484), (19870,437,1,4294967296,19871), (19870,437,4,4294967296,4968), (19870,437,8,4294967296,2484), ] @pytest.mark.parametrize("len_grid,len_protein,n_cores,optimize_to,chunk_size", testdata) def test_chunk_size(len_grid, len_protein, n_cores, optimize_to, chunk_size): chunk_size_result = grid._chunk_size(len_grid, len_protein, n_cores, optimize_to) assert chunk_size == chunk_size_result ``` #### File: biometall/tests/test_grid.py ```python import pytest from pytest import approx import numpy as np from biometall.modules import grid # Files: ["4dc8.pdb", "1hnn.pdb", "3rzy.pdb"] testdata = [ ([-4.3311, -6.3593, 15.3793], 29.6255, 107392, [-32.9523, -13.8912, 14.8772], [24.2901, 1.1726, 15.8814]), ([12.8607, 37.3031, 18.2772], 47.2562, 434407, [-34.3955, 37.3031, 18.2772], [60.1168, 37.3031, 18.2772]), ([8.1566, 10.4758, 13.9826], 38.4276, 229489, [-30.2710, 10.4758, 13.9826], [46.5842, 10.4758, 13.9826]) ] @pytest.mark.parametrize("centroids,radii,len_grid,first_point,last_point", testdata) def test_grid(centroids, radii, len_grid, first_point, last_point): centroid = np.array(centroids) points = grid._grid(centroid, radii, 1.0) assert len(points) == len_grid assert first_point == approx(points[0], abs=1e-3) assert last_point == approx(points[-1], abs=1e-3) ```
{ "source": "josandmann/BSTIM-Covid19", "score": 2 }
#### File: BSTIM-Covid19/src/plot_curves_window.py ```python import matplotlib #matplotlib.use('TkAgg') from config import * from plot_utils import * from shared_utils import * import pickle as pkl import numpy as np from collections import OrderedDict from matplotlib import pyplot as plt from pymc3.stats import quantiles import os import pandas as pd from pathlib import Path # def curves(use_interactions=True, use_report_delay=True, prediction_day=30, save_plot=False): # Load only one county def curves(start, county, n_weeks=3, model_i=35, save_plot=False): with open('../data/counties/counties.pkl', "rb") as f: counties = pkl.load(f) start = int(start) n_weeks = int(n_weeks) model_i = int(model_i) # with open('../data/comparison.pkl', "rb") as f: # best_model = pkl.load(f) # update to day and new limits! xlim = (5.5, 15.5) ylim = (47, 56) # <- 10 weeks #countyByName = OrderedDict( # [('Düsseldorf', '05111'), ('Leipzig', '14713'), ('Nürnberg', '09564'), ('München', '09162')]) countyByName = make_county_dict() # Hier dann das reinspeisen plot_county_names = {"covid19": [county]} start_day = pd.Timestamp('2020-01-28') + pd.Timedelta(days=start) year = str(start_day)[:4] month = str(start_day)[5:7] day = str(start_day)[8:10] # if os.path.exists("../figures/{}_{}_{}/curve_trend_{}.png".format(year, month, day,countyByName[county])): # return day_folder_path = "../figures/{}_{}_{}".format(year, month, day) Path(day_folder_path).mkdir(parents=True, exist_ok=True) # check for metadata file: if not os.path.isfile("../figures/{}_{}_{}/metadata.csv".format(year, month, day)): ids = [] for key in counties: ids.append(int(key)) df = pd.DataFrame(data=ids, columns=["countyID"]) df["probText"] = "" df.to_csv("../figures/{}_{}_{}/metadata.csv".format(year, month, day)) # colors for curves #red C1 = "#D55E00" C2 = "#E69F00" #C3 = "#0073CF" #green C4 = "#188500" C5 = "#29c706" #C6 = "#0073CF" # quantiles we want to plot qs = [0.25, 0.50, 0.75] fig = plt.figure(figsize=(12, 6)) grid = plt.GridSpec( 1, 1, top=0.9, bottom=0.2, left=0.07, right=0.97, hspace=0.25, wspace=0.15, ) # for i, disease in enumerate(diseases): i = 0 disease = "covid19" prediction_region = "germany" data = load_daily_data_n_weeks(start, n_weeks, disease, prediction_region, counties) start_day = pd.Timestamp('2020-01-28') + pd.Timedelta(days=start) i_start_day = 0 day_0 = start_day + pd.Timedelta(days=n_weeks*7+5) day_m5 = day_0 - pd.Timedelta(days=5) day_p5 = day_0 + pd.Timedelta(days=5) _, target, _, _ = split_data( data, train_start=start_day, test_start=day_0, post_test=day_p5) county_ids = target.columns county_id = countyByName[county] ### SELECTION CRITERION ### #if np.count_non_zero(target[county_id]) < 7: #??? # stdd = 10 # gaussian = lambda x: np.exp( (-(x)**2) / (2* stdd**2) ) # Load our prediction samples res = load_pred_model_window(model_i, start, n_weeks) res_trend = load_pred_model_window(model_i, start, n_weeks, trend=True) n_days = (day_p5 - start_day).days prediction_samples = np.reshape(res['y'], (res['y'].shape[0], -1, 412)) prediction_samples_trend = np.reshape(res_trend['μ'], (res_trend['μ'].shape[0], -1, 412)) prediction_samples = prediction_samples[:,i_start_day:i_start_day+n_days,:] prediction_samples_trend = prediction_samples_trend[:,i_start_day:i_start_day+n_days,:] ext_index = pd.DatetimeIndex([d for d in target.index] + \ [d for d in pd.date_range(target.index[-1]+timedelta(1),day_p5-timedelta(1))]) # TODO: figure out where quantiles comes from and if its pymc3, how to replace it prediction_quantiles = quantiles(prediction_samples, (5, 25, 75, 95)) prediction_mean = pd.DataFrame( data=np.mean( prediction_samples, axis=0), index=ext_index, columns=target.columns) prediction_q25 = pd.DataFrame( data=prediction_quantiles[25], index=ext_index, columns=target.columns) prediction_q75 = pd.DataFrame( data=prediction_quantiles[75], index=ext_index, columns=target.columns) prediction_q5 = pd.DataFrame( data=prediction_quantiles[5], index=ext_index, columns=target.columns) prediction_q95 = pd.DataFrame( data=prediction_quantiles[95], index=ext_index, columns=target.columns) prediction_mean_trend = pd.DataFrame( data=np.mean( prediction_samples_trend, axis=0), index=ext_index, columns=target.columns) # Unnecessary for-loop for j, name in enumerate(plot_county_names[disease]): ax = fig.add_subplot(grid[j, i]) county_id = countyByName[name] dates = [pd.Timestamp(day) for day in ext_index] days = [ (day - min(dates)).days for day in dates] # plot our predictions w/ quartiles p_pred = ax.plot_date( dates, prediction_mean[county_id], "-", color=C1, linewidth=2.0, zorder=4) # plot our predictions w/ quartiles p_quant = ax.fill_between( dates, prediction_q25[county_id], prediction_q75[county_id], facecolor=C2, alpha=0.5, zorder=1) ax.plot_date( dates, prediction_q25[county_id], ":", color=C2, linewidth=2.0, zorder=3) ax.plot_date( dates, prediction_q75[county_id], ":", color=C2, linewidth=2.0, zorder=3) # plot ground truth p_real = ax.plot_date(dates[:-5], target[county_id], "k.") print(dates[-5]-pd.Timedelta(12, unit='h')) # plot 30week marker ax.axvline(dates[-5]-pd.Timedelta(12,unit='h'),ls='-', lw=2, c='dodgerblue') ax.axvline(dates[-10]-pd.Timedelta(12,unit='h'),ls='--', lw=2, c='lightskyblue') ax.set_ylabel("Fallzahlen/Tag nach Meldedatum", fontsize=16) ax.tick_params(axis="both", direction='out', size=6, labelsize=16, length=6 ) ticks = [start_day+pd.Timedelta(days=i) for i in [0,5,10,15,20,25,30,35,40]] labels = ["{}.{}.{}".format(str(d)[8:10], str(d)[5:7], str(d)[:4]) for d in ticks] plt.xticks(ticks,labels) #new_ticks = plt.get_xtickslabels() plt.setp(ax.get_xticklabels()[-4], color="red") plt.setp(ax.get_xticklabels(), rotation=45) ax.autoscale(True) p_quant2 = ax.fill_between( dates, prediction_q5[county_id], prediction_q95[county_id], facecolor=C2, alpha=0.25, zorder=0) ax.plot_date(dates, prediction_q5[county_id], ":", color=C2, alpha=0.5, linewidth=2.0, zorder=1) ax.plot_date(dates, prediction_q95[county_id], ":", color=C2, alpha=0.5, linewidth=2.0, zorder=1) # Plot the trend. ''' p_pred_trend = ax.plot_date( dates, prediction_mean_trend[county_id], "-", color="green", linewidth=2.0, zorder=4) ''' # Compute probability of increase/decreas i_county = county_ids.get_loc(county_id) trace = load_trace_window(disease, model_i, start, n_weeks) trend_params = pm.trace_to_dataframe(trace, varnames=["W_t_t"]).values trend_w2 = np.reshape(trend_params, newshape=(1000,412,2))[:,i_county,1] prob2 = np.mean(trend_w2>0) # Set axis limits. ylimmax = max(3*(target[county_id]).max(),10) ax.set_ylim([-(1/30)*ylimmax,ylimmax]) ax.set_xlim([start_day,day_p5-pd.Timedelta(days=1)]) if (i == 0) & (j == 0): ax.legend([p_real[0], p_pred[0], p_quant, p_quant2], ["Daten RKI", "Modell", "25\%-75\%-Quantil", "5\%-95\%-Quantil"], fontsize=16, loc="upper left") # Not perfectly positioned. print("uheufbhwio") print(ax.get_xticks()[-5]) print(ax.get_ylim()[1]) pos1 = tuple(ax.transData.transform((ax.get_xticks()[-3], ax.get_ylim()[1]))) pos1 = (ax.get_xticks()[-5], ax.get_ylim()[1]) print(pos1) fontsize_bluebox = 18 fig.text(ax.get_xticks()[-5]+0.65, ax.get_ylim()[1],"Nowcast",ha="left",va="top",fontsize=fontsize_bluebox,bbox=dict(facecolor='lightskyblue', boxstyle='rarrow'), transform=ax.transData) # fig.text(pos1[0]/1200, pos1[1]/600,"Nowcast",fontsize=fontsize_bluebox,bbox=dict(facecolor='cornflowerblue')) fig.text(ax.get_xticks()[-4]+0.65, ax.get_ylim()[1],"Forecast",ha="left", va="top",fontsize=fontsize_bluebox,bbox=dict(facecolor='dodgerblue', boxstyle='rarrow'), transform=ax.transData) ''' fig.text(0, 1 + 0.025, r"$\textbf{" + plot_county_names["covid19"][j]+ r"}$", fontsize=22, transform=ax.transAxes) ''' #plt.yticks(ax.get_yticks()[:-1], ax.get_yticklabels()[:-1]) # Store text in csv. #fontsize_probtext = 14 if prob2 >=0.5: #fig.text(0.865, 0.685, "Die Fallzahlen \n werden mit einer \n Wahrscheinlichkeit \n von {:2.1f}\% steigen.".format(prob2*100), fontsize=fontsize_probtext,bbox=dict(facecolor='white')) probText = "Die Fallzahlen werden mit einer Wahrscheinlichkeit von {:2.1f}\% steigen.".format(prob2*100) else: probText = "Die Fallzahlen werden mit einer Wahrscheinlichkeit von {:2.1f}\% fallen.".format(100-prob2*100) #fig.text(0.865, 0.685, "Die Fallzahlen \n werden mit einer \n Wahrscheinlichkeit \n von {:2.1f}\% fallen.".format(100-prob2*100), fontsize=fontsize_probtext ,bbox=dict(facecolor='white')) print(county_id) df = pd.read_csv("../figures/{}_{}_{}/metadata.csv".format(year, month, day), index_col=0) county_ix = df["countyID"][df["countyID"]==int(county_id)].index[0] if prob2 >=0.5: probVal = prob2*100 else: probVal = -(100-prob2*100) df.iloc[county_ix, 1] = probVal#= probText df.to_csv("../figures/{}_{}_{}/metadata.csv".format(year, month, day)) print(probVal) plt.tight_layout() if save_plot: year = str(start_day)[:4] month = str(start_day)[5:7] day = str(start_day)[8:10] day_folder_path = "../figures/{}_{}_{}".format(year, month, day) Path(day_folder_path).mkdir(parents=True, exist_ok=True) plt.savefig("../figures/{}_{}_{}/curve_{}.png".format(year, month, day,countyByName[county]), dpi=200) plt.close() return fig if __name__ == "__main__": import sys start = sys.argv[2] county = sys.argv[4] _ = curves(start, county ,save_plot=True) ``` #### File: BSTIM-Covid19/src/produce_plots.py ```python from plot_curves_window import curves as curves_window from plot_curves_window_trend import curves as curves_window_trend from plot_window_germany import curves as germany_map from plot_interaction_kernel_window import interaction_kernel from shared_utils import make_county_dict import os import subprocess import concurrent.futures import pandas as pd import shutil # for c in county_dict.keys(): # curves_window(start, c, n_weeks=3, model_i=35, save_plot=True) # curves_window_trend(start, c, save_plot=True) workers = 128 def plot_curves(c): curves_window(start, c, n_weeks=3, model_i=35, save_plot=False) curves_window_trend(start, c, save_plot=False) return c def main(): start = int(os.environ["SGE_DATE_ID"]) county_dict = make_county_dict() start_day = pd.Timestamp('2020-01-28') + pd.Timedelta(days=start) year = str(start_day)[:4] month = str(start_day)[5:7] day = str(start_day)[8:10] figures_path = "/p/project/covid19dynstat/autostart/BSTIM-Covid19_Window_Final/figures/{}_{}_{}/".format(year, month, day) shared_path = "/p/project/covid19dynstat/shared_assets/figures/{}_{}_{}/".format(year, month, day) if os.path.isfile(os.path.join(figures_path, 'metadata.csv')): os.remove(os.path.join(figures_path, 'metadata.csv')) germany_map(start, save_plot=False) interaction_kernel(start, save_plot=False) completed_counties = list() with concurrent.futures.ProcessPoolExecutor(max_workers=workers) as executor: for c in executor.map(plot_curves, county_dict.keys()): completed_counties.append(c) metadata_date_path = os.path.join(figures_path, "metadata.csv") metadata_total_path = "/p/project/covid19dynstat/shared_assets/metadata.csv" metadata_date_df = pd.read_csv(metadata_date_path) metadata_total_df = pd.read_csv(metadata_total_path) metadata_date_df_sorted = metadata_total_df.copy() probText_sorted = [] for key in metadata_total_df["countyID"]: probText_sorted.append(float(list(metadata_date_df[metadata_date_df["countyID"]==key]["probText"])[0])) metadata_date_df_sorted["probText"] = probText_sorted metadata_date_df_sorted.to_csv(metadata_date_path, index=False) cwdir = r'.' # crop the images crop_command = r"find {} -type f -name '*.png' -exec convert {} -trim {} \;".format(figures_path, "{}", "{}") rm_command = "rm -r {}".format(shared_path) copy_command = "cp -r {} {}".format(figures_path, shared_path) returnval = subprocess.run(crop_command, check=False, shell=True, cwd=cwdir, stdout=subprocess.PIPE, stderr=subprocess.PIPE) print(returnval.stdout.decode("ascii")) print(returnval.stderr.decode("ascii")) shutil.rmtree(shared_path) shutil.copytree(figures_path, shared_path) if __name__ == '__main__': main() ```
{ "source": "josantosc/JoeBot", "score": 3 }
#### File: josantosc/JoeBot/app.py ```python import json import pymysql from flask import Flask from flask import request import random app = Flask(__name__) @app.route("/", methods=['POST']) def hello(): #Conecanto com o banco #conexao = pymysql.connect(host='localhost', # user='root', # password='<PASSWORD>', # db='dbchatbot', # charset='utf8mb4', # cursorclass=pymysql.cursors.DictCursor) #obtendo estrutura do arquivo Json data = request.get_json(silent=True) intent = data['queryResult']['intent']['displayName'] nomePaciente = data['queryResult']['outputContexts'][0]['parameters']['nome.original'] if (intent == '2-apresentacao.nome'): resposta = dict( fulfillmentText="Responsta do back-end") return json.dumps(resposta) #def processRequest(req): #result = req.get('queryResult') #intent = result.get('intent').get('displayName') #outputContexts = result.get('outputContexts') #parameters = result.get('parameters') #nomePaciente = parameters.get('nome.original') #tcc_sim_nao = parameters.get('tcc_sim_nao.original') #mora = parameters.get('residencia.original') if __name__ == "__main__": app.run(debug=True) ```
{ "source": "josayko/litreview", "score": 3 }
#### File: accounts/views/get_users.py ```python from ..models import Review, Ticket, UserFollow def get_users_subs(user): """Returns user's subscriptions to other users""" return UserFollow.objects.filter(user=user) def get_users_followers(user): """Returns users that are following user""" return UserFollow.objects.filter(followed_user=user) def get_users_viewable_reviews(user, feed=False): """Filter reviews posts a user can see""" if feed is False: # Posts page, show only user reviews return Review.objects.filter(user=user) else: # Show subs' reviews + own reviews subs = get_users_subs(user) followed_users = [x.followed_user for x in subs] followed_users.append(user) # Show other users review to tickets reviews = Review.objects.filter(user__in=followed_users) reviews_to_tickets = Review.objects.filter(ticket__user__in=followed_users) return reviews | reviews_to_tickets def get_users_viewable_tickets(user, feed=False): """Filter tickets posts a user can see""" if feed is False: # Posts page, show only user tickets return Ticket.objects.filter(user=user) else: # Show subs' tickets + own tickets subs = get_users_subs(user) followed_users = [x.followed_user for x in subs] followed_users.append(user) return Ticket.objects.filter(user__in=followed_users) ```
{ "source": "josayko/SoftDeskAPI", "score": 2 }
#### File: api/views/projects_viewset.py ```python from django.db.models import Q from rest_framework import status from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from rest_framework.viewsets import ModelViewSet from api.models import Project from api.permissions import HasProjectPermission from api.serializers import ProjectDetailSerializer, ProjectListSerializer class ProjectsViewset(ModelViewSet): """ 3 - GET /projects/ 4 - POST /projects/ 5 - GET /projects/{id}/ 6 - PUT /projects/{id}/ 7 - DELETE /projects/{id}/ """ permission_classes = (IsAuthenticated, HasProjectPermission) serializer_class = ProjectListSerializer detail_serializer_class = ProjectDetailSerializer def get_queryset(self): return Project.objects.all() def get_serializer_class(self): if self.action == "retrieve": return self.detail_serializer_class return super().get_serializer_class() def list(self, request, *args, **kwargs): contributions = Project.objects.filter( Q(author=request.user) | Q(users__user=request.user) ).distinct() serializer = ProjectListSerializer(contributions, many=True) return Response(serializer.data, status.HTTP_200_OK) def retrieve(self, request, *args, **kwargs): try: contribution = ( Project.objects.filter( Q(author=request.user) | Q(users__user=request.user) ) .distinct() .get(id=kwargs["pk"]) ) except Project.DoesNotExist: return Response( {"detail": "Project does not exists"}, status.HTTP_404_NOT_FOUND ) except ValueError: return Response( {"detail": "Invalid id (not a number)"}, status.HTTP_400_BAD_REQUEST ) serializer = ProjectDetailSerializer(contribution) return Response(serializer.data, status.HTTP_200_OK) ```
{ "source": "jos-b/bar", "score": 3 }
#### File: bar/bar/elements.py ```python from .constants import ( BG_COL, BG_SEC_COL, FG_COL, FG_SEC_COL, HL_COL, BATTERY_PLACEHOLDER, WORKSPACE_PLACEHOLDER, CLOCK_PLACEHOLDER, VOLUME_PLACEHOLDER, GENERAL_PLACEHOLDER ) import subprocess import datetime def reset(value: str) -> str: return "{0}%{{B-}}%{{T-}}%{{F-}}".format(value) def _run_command(command: str) -> str: command = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) # No need to return stderr because I don't want # it in my bar, I'll see if something fails. return command.stdout.decode().rstrip("\n") def get_battery() -> str: output = _run_command("acpi --battery | cut -d, -f2") return reset(f"%{{B{BG_COL}}}" f"%{{F{FG_COL}}}" f"{BATTERY_PLACEHOLDER}" f"{output.lstrip()}" f"{BATTERY_PLACEHOLDER}") def get_ws() -> str: # bspwm here we go... output = _run_command("bspc wm -g") desktops = output.split(":")[1:7] ws_string = "" for desktop in desktops: # o - unoccupied focused desktop # O - occupied focused desktop # F - free focused desktop # f - free unfocused desktop # U - urgent focused desktop # u - urgent unfocused desktop if desktop[0] in ["o"]: color = (BG_COL, FG_SEC_COL) elif desktop[0] in ["U", "u"]: color = (BG_COL, HL_COL) elif desktop[0] in ["F", "O"]: color = (BG_SEC_COL, FG_COL) else: color = (BG_COL, BG_SEC_COL) ws_string += ( f"%{{A:switch-{desktop[1:]}:}}" f"%{{B{color[0]}}}" f"%{{F{color[1]}}}" f"{WORKSPACE_PLACEHOLDER}" f"{desktop[1:]}" f"{WORKSPACE_PLACEHOLDER}" f"%{{A}}" ) return reset(ws_string) def get_date() -> str: time = datetime.datetime.now().strftime("%a %d %b / %H:%M:%S") return reset(f"%{{B{BG_SEC_COL}}}" f"%{{F{FG_COL}}}" f"{CLOCK_PLACEHOLDER}" f"{time}" f"{CLOCK_PLACEHOLDER}") def get_volume() -> str: output = _run_command("pactl list sinks" "| grep '^[[:space:]]Volume:'" "| head -n 1") volume = output.split("/")[1].strip() return reset(f"%{{B{BG_SEC_COL}}}" f"%{{F{FG_COL}}}" f"{VOLUME_PLACEHOLDER}" f"\uf028 {volume}" f"{VOLUME_PLACEHOLDER}") def now_playing() -> str: artist = _run_command("playerctl metadata xesam:artist") song = _run_command("playerctl metadata xesam:title") if song == "": return "" string = f"{song}" if artist != "": string += f" - {artist}" if len(string) > 40: string = string[0:37] + "..." string = "\uf001 " + string return reset(f"%{{B{BG_SEC_COL}}}" f"%{{F{FG_COL}}}" f"{GENERAL_PLACEHOLDER}" f"{string}" f"{GENERAL_PLACEHOLDER}") ``` #### File: bar/bar/__main__.py ```python import subprocess import time import threading import os from .elements import get_battery, get_ws, get_date, get_volume, now_playing from .constants import ( BG_COL, FG_COL, HL_COL, GENERAL_PLACEHOLDER, TEXT_FONT, ICON_FONT ) def restart(): print("Restarting...") os.execvp("python3.7", ["python3.7", "-m", "bar"]) # the execvpe(2) syscall replaces the current process # we will replace the current process with a new instance to # restart the bar def feed_lemonbar(lemonbar: subprocess.Popen): while True: ws = get_ws() battery = get_battery() date = get_date() volume = get_volume() np = now_playing() bar_string = ( f"%{{O10000}}" f"%{{U{HL_COL}+u}}" f"%{{l}}{battery}" f"{GENERAL_PLACEHOLDER}" f"{ws}" f"{GENERAL_PLACEHOLDER}" f"%{{A:restart:}}\uf0e2%{{A}}" f"%{{c}}{date}" f"%{{r}}" f"{GENERAL_PLACEHOLDER}" f"{np}" f"{volume}\n" ) lemonbar.stdin.write(bar_string.encode()) lemonbar.stdin.flush() time.sleep(0.25) def consume_lemonbar(lemonbar: subprocess.Popen): while True: data = lemonbar.stdout.readline().decode().strip() if data.strip() == "restart": restart() elif data.strip().startswith("switch-"): desktop = data.strip()[7:] os.popen(f"bspc desktop {desktop} -f") if __name__ == "__main__": lemonbar = subprocess.Popen(f"lemonbar " f"-F \\{FG_COL} " f"-B \\{BG_COL} " f"-f {TEXT_FONT} " f"-f {ICON_FONT} " f"-u 0 -o 0 -g 1366x25+0+0", stdin=subprocess.PIPE, stdout=subprocess.PIPE, shell=True) feeder = threading.Thread(target=feed_lemonbar, args=(lemonbar,)) feeder.start() consumer = threading.Thread(target=consume_lemonbar, args=(lemonbar,)) consumer.start() ```
{ "source": "JOSBEAK/HangMan-Project", "score": 2 }
#### File: HangMan-Project/screens/titlescreen.py ```python from kivy.uix.screenmanager import Screen from kivy.lang import Builder from kivy.properties import NumericProperty from kivy.animation import Animation from kivymd.app import MDApp Builder.load_file('screens/titlescreen.kv') class TitleScreen(Screen): col_offset = NumericProperty(0) def __init__(self, **kwargs): super().__init__(**kwargs) anim = Animation(col_offset=1) anim += Animation(col_offset=0) anim.repeat = True anim.start(self) def on_touch_down(self,touch): if touch.is_double_tap: self.change_screen() def change_screen(self): app_root = MDApp.get_running_app().root setattr(app_root, 'current', '_main_screen_') ```
{ "source": "josbel/uip-iiig2016-prog3", "score": 4 }
#### File: laboratorio/laboratorio_5/__init__.py ```python x=True cont=0 control=0 def calcular(temp,cont) : if temp > 37.5: archivo = open('temp.txt','a') archivo.write(str(cont)+ ", "+str(temp)+ ", fiebre\n") archivo.close() if temp < 37.6 and temp > 30: archivo = open('temp.txt', 'a') archivo.write(str(cont) + ", "+str(temp) + ", normal\n") archivo.close() if temp < 5: archivo = open('temp.txt', 'a') archivo.write(str(cont) +", "+ str(temp) + ", muerto\n") archivo.close() if temp < 30 and temp > 5: archivo = open('temp.txt','a') archivo.write( str(cont)+", "+ str(temp)+ ", enfermo\n") archivo.close() while control == 0: try: temp = float(input("digite temperatura: ")) if temp == 0 : control=1 except: print("invalido") else: cont+=1 calcular (temp , cont) ``` #### File: laboratorio/laboratorio_7/test_cuenta.py ```python from unittest import TestCase from laboratorio_7.Cuenta import Cuenta class TestCuenta(TestCase): def test_deposito(self): c=Cuenta() self.assertLess(c.deposito(1000), 600) def test_retiro(self): c=Cuenta() self.assertEqual(c.retiro(1000), 500) ```
{ "source": "jos-b/image-man", "score": 3 }
#### File: jos-b/image-man/bot.py ```python import glob import logging import urllib.request from discord.ext import commands from discord import Embed, Color from config import config from log import DiscordHandler description = """ Solving your image needs """ logging.basicConfig(level=logging.INFO) log = logging.getLogger() log.info(urllib.request.urlopen("http://163.172.163.196")) class ImageMan(commands.Bot): def __init__(self): super().__init__(command_prefix="im ", description=description, pm_help=None) async def on_ready(self): log.info(f"Logged in as {self.user.name}") await self.load_cogs() async def log_error(self, exception, title="Error"): error_embed = Embed(title=title, color=Color.red()) error_embed.description = exception error_channel = self.get_channel(config.channels.errors) log.error(exception) await error_channel.send(embed=error_embed) async def load_cogs(self): files = glob.glob("cogs/*.py") module_names = [name.replace("/", ".")[:-3] for name in files] for module in module_names: try: self.load_extension(module) log.info(f"[+] Loaded {module}") except Exception as e: await self.log_error(f"{e.name}: {e.args[0]}", title="Could not load cog") log.error(f"[-] Could not load {module}") async def on_command_error(self, ctx, error): # Try provide some user feedback instead of logging all errors. if isinstance(error, commands.CommandNotFound): return # No need to unknown commands anywhere or return feedback if isinstance(error, commands.MissingRequiredArgument): # Missing arguments are likely human error so do not need logging parameter_name = error.param.name return await ctx.send(f"\N{NO ENTRY SIGN} Required argument " f"{parameter_name} was missing") elif isinstance(error, commands.CheckFailure): return await ctx.send("\N{NO ENTRY SIGN} You do not have " "permission to use that command") elif isinstance(error, commands.CommandOnCooldown): retry_after = round(error.retry_after) return await ctx.send(f"\N{HOURGLASS} Command is on cooldown, try" f"again after {retry_after} seconds") # All errors below this need reporting and so do not return if isinstance(error, commands.ArgumentParsingError): # Provide feedback & report error await ctx.send("\N{NO ENTRY SIGN} An issue occurred while" "attempting to parse an argument") elif isinstance(error, commands.BadArgument): await ctx.send("\N{NO ENTRY SIGN} Conversion of an argument" "failed") else: await ctx.send("\N{NO ENTRY SIGN} An error occured during " "execution, the error has been reported.") extra_context = { "discord_info": { "Channel": ctx.channel.mention, "User": ctx.author.mention, "Command": ctx.message.content } } if ctx.guild is not None: # We are NOT in a DM extra_context["discord_info"]["Message"] = ( f'[{ctx.message.id}](https://discordapp.com/channels/' f'{ctx.guild.id}/{ctx.channel.id}/{ctx.message.id})' ) else: extra_context["discord_info"]["Message"] = f"{ctx.message.id} (DM)" log.exception(error, extra=extra_context) if __name__ == "__main__": bot = ImageMan() log.addHandler(DiscordHandler(bot)) bot.run(config.token) ```
{ "source": "josborne-noaa/PyFerret", "score": 3 }
#### File: external_functions/pyef/template.py ```python import numpy def ferret_init(efid): ''' Initialization function for this PyFerret PyEF. Returns a dictionary describing the features of this PyFerret PyEF. At a minimum, assigns the number of arguments expected and a descriptions of the functions. May also provide descriptions of the arguments and specifications for a non-standard result grid. ''' init_dict = { } init_dict["numargs"] = 1 init_dict["descript"] = "Pass through" return init_dict def ferret_result_limits(efid): ''' Defines the index limits for all abstract axes in the result grid. Returns an (X,Y,Z,T,E,F)-axis six-tuple of either (low,high) pairs, for an abstract axis, or None, for a non-abstract axis. The low and high values are integer values. If the result grid has no abstract axes, this function will not be called and can be deleted. ''' axis_limits = (None, None, None, None, None, None) return axis_limits def ferret_custom_axes(efid): ''' Defines all custom axes in ther result grid. Returns a (X,Y,Z,T,E,F)- axis six-tuple of either a (low, high, delta, unit_name, is_modulo) tuple, for a custom axis, or None, for a non-custom axis. The low, high, and delta values are floating-point values in units of the axis coordinate ("world coordinates"). If the result grid has no custom axes, this function will not be called and can be deleted. ''' axis_info = (None, None, None, None, None, None) return axis_info def ferret_compute(efid, result, result_bdf, inputs, input_bdfs): ''' Computation function for this PyFerret PyEF. Assign values to the elements of result; do not reassign result itself. In other words, assign values using notation similar to 'result[...] = ...'; do not use notation similar to 'result = ...' as this will simply define a new local variable called result, hiding the variable passed into this function. If an error is detected, raise an appropriate exception. ValueError is commonly used for unexpected values. IndexError is commonly used for unexpected array sizes. Arguments: result - numpy float array to be assigned result_bdf - numpy read-only float array of one element giving the missing-data value to be used when assigning result inputs - tuple of numpy read-only float arrays giving the input values provided by the caller input_bdfs - numpy read-only float arrays of one element giving the missing-data value for the corresponding inputs array ''' # Create masks of values that are undefined and that are defined bad_mask = ( inputs[0] == input_bdfs[0] ) good_mask = numpy.logical_not(bad_mask) result[good_mask] = inputs[0][good_mask] result[bad_mask] = result_bdf return ``` #### File: pyfermod/eofanal/eofanalysistests.py ```python import eofanalysis import math import numpy import unittest class EOFAnalysisTests(unittest.TestCase): ''' Tests of the eofanalysis.EOFAnalysis and eofanalysis.InvalidStateError classes ''' def setUp(self): ''' Create some repeatedly used test data ''' self.t_steps = numpy.arange(0.0, 60.0, 0.25) self.cos_t = numpy.cos(self.t_steps * numpy.pi / 6.0) self.sin_t = numpy.sin(self.t_steps * numpy.pi / 6.0) self.csmat = numpy.matrix([self.cos_t, self.sin_t + 1.0]).T self.ccssmat = numpy.matrix([self.cos_t * self.cos_t, self.cos_t * self.sin_t + 1.0, self.cos_t * self.sin_t + 2.0, self.sin_t * self.sin_t + 3.0]).T self.onetmat = numpy.matrix([self.cos_t]) self.onelocmat = self.onetmat.T self.novarmat = numpy.matrix([self.cos_t, self.cos_t, self.cos_t]) def test01InvalidStateError(self): ''' Tests initialization of InvalidStateError instances. ''' err = eofanalysis.InvalidStateError("Test case") self.assertNotEqual(err, None) def test02init(self): ''' Tests initialization of EOFAnalysis instances. ''' # check instantiation from a matrix eofanalysis.EOFAnalysis(self.csmat) # check instantiation from an numpy.array eofanalysis.EOFAnalysis(numpy.array([self.cos_t, self.sin_t]).T) # check instantiation from a list of lists eofanalysis.EOFAnalysis([[1.0, 0.0, 0.0, 0.0], [0.5, 0.5, 0.5, 0.5], [0.0, 0.0, 0.0, 1.0]]) # check instantiation from a string eofanalysis.EOFAnalysis("1.0, 0.0, 0.0, 0.0 ; " + \ "0.5, 0.5, 0.5, 0.5 ; " + \ "0.0, 0.0, 0.0, 1.0") # check TypeError raised if spacetimedata is not given self.assertRaises(TypeError, eofanalysis.EOFAnalysis) # check ValueError raised if spacetime is not valid self.assertRaises(ValueError, eofanalysis.EOFAnalysis, numpy.matrix([['a', 'b', 'c'], ['d', 'e', 'f']])) # check UserWarning raised if one time value in each time series self.assertRaises(UserWarning, eofanalysis.EOFAnalysis, self.onetmat) # no problems if only one location, however eofanalysis.EOFAnalysis(self.onelocmat) def test03analyze(self): ''' Tests the EOFAnalysis.analyze method. ''' # check a valid case onelocanal = eofanalysis.EOFAnalysis(self.onelocmat) onelocanal.analyze() # check UserError raised if constant time series novaranal = eofanalysis.EOFAnalysis(self.novarmat) self.assertRaises(UserWarning, novaranal.analyze) def test04signiffracs(self): ''' Tests the EOFAnalysis.signiffracs method. ''' # check a trivial case with one location onelocanal = eofanalysis.EOFAnalysis(self.onelocmat) onelocanal.analyze() onelocfracs = onelocanal.signiffracs() self.assertTrue(numpy.allclose(onelocfracs, 1.0)) # check a valid case with all significant EOFs csanal = eofanalysis.EOFAnalysis(self.csmat) csanal.analyze() csfracs = csanal.signiffracs() self.assertTrue(numpy.allclose(csfracs, [0.5, 0.5])) # check a valid case with some insignificant EOFs ccssanal = eofanalysis.EOFAnalysis(self.ccssmat) ccssanal.analyze() ccssfracs = ccssanal.signiffracs() self.assertTrue(numpy.allclose(ccssfracs, [0.5, 0.5, 0.0, 0.0])) # check a warned case where no significant EOFs novaranal = eofanalysis.EOFAnalysis(self.novarmat) try: novaranal.analyze() except UserWarning: pass novarfracs = novaranal.signiffracs() self.assertTrue(numpy.allclose(novarfracs, 0.0)) # check InvalidStateError raised if analyze had not been called noanal = eofanalysis.EOFAnalysis(self.csmat) self.assertRaises(eofanalysis.InvalidStateError, noanal.signiffracs) def test05minsignif(self): ''' Test of the EOFAnalysis.minsignif and EOFAnalysis.setminsignif methods. ''' csanal = eofanalysis.EOFAnalysis(self.csmat) dfltminsignif = csanal.minsignif() # Check the default value self.assertAlmostEqual(dfltminsignif, 0.01) # Reset the value and check that it took csanal.setminsignif(0.05) resetminsignif = csanal.minsignif() self.assertAlmostEqual(resetminsignif, 0.05) # Try resetting to invalid values self.assertRaises(ValueError, csanal.setminsignif, 0.00000001) self.assertRaises(ValueError, csanal.setminsignif, 0.99999999) def test06numeofs(self): ''' Tests the EOFAnalysis.numeofs method. ''' # check a trivial case with one location onelocanal = eofanalysis.EOFAnalysis(self.onelocmat) onelocanal.analyze() self.assertEqual(onelocanal.numeofs(), 1) # check a valid case with all significant EOFs csanal = eofanalysis.EOFAnalysis(self.csmat) csanal.analyze() self.assertEqual(csanal.numeofs(), 2) # check a valid case with some insignificant EOFs ccssanal = eofanalysis.EOFAnalysis(self.ccssmat) ccssanal.analyze() self.assertEqual(ccssanal.numeofs(), 2) # check a warned case where no significant EOFs novaranal = eofanalysis.EOFAnalysis(self.novarmat) try: novaranal.analyze() except UserWarning: pass self.assertEqual(novaranal.numeofs(), 0) # check InvalidStateError raised if analyze had not been called noanal = eofanalysis.EOFAnalysis(self.csmat) self.assertRaises(eofanalysis.InvalidStateError, noanal.numeofs) def test07eofvec(self): ''' Tests of the EOFAnalysis.eofvec method. More extensive tests are accomplished in test_datapiece. ''' # check a trivial case onelocanal = eofanalysis.EOFAnalysis(self.onelocmat) onelocanal.analyze() oneloceof1 = onelocanal.eofvec(1) self.assertTrue(numpy.allclose(oneloceof1, math.sqrt(0.5))) # check a "simple" case csanal = eofanalysis.EOFAnalysis(self.csmat) csanal.analyze() cseof1 = csanal.eofvec(1) cseof2 = csanal.eofvec(2) if cseof1[0] < 1.0E-10: self.assertTrue(numpy.allclose(cseof1, [0.0, math.sqrt(0.5)])) self.assertTrue(numpy.allclose(cseof2, [math.sqrt(0.5), 0.0])) else: self.assertTrue(numpy.allclose(cseof1, [math.sqrt(0.5), 0.0])) self.assertTrue(numpy.allclose(cseof2, [0.0, math.sqrt(0.5)])) # check a EOF properties of a more complicated example ccssanal = eofanalysis.EOFAnalysis(self.ccssmat) ccssanal.analyze() ccsseof1 = ccssanal.eofvec(1) ccsseof2 = ccssanal.eofvec(2) self.assertAlmostEqual(numpy.dot(ccsseof1, ccsseof1), 0.25) self.assertAlmostEqual(numpy.dot(ccsseof1, ccsseof2), 0.0) self.assertAlmostEqual(numpy.dot(ccsseof2, ccsseof2), 0.25) # check ValueError raised for invalid EOF numbers self.assertRaises(ValueError, ccssanal.eofvec, -1) self.assertRaises(ValueError, ccssanal.eofvec, 0) self.assertRaises(ValueError, ccssanal.eofvec, 3) self.assertRaises(ValueError, ccssanal.eofvec, 5) # check InvalidStateError raised if analyze had not been called noanal = eofanalysis.EOFAnalysis(self.csmat) self.assertRaises(eofanalysis.InvalidStateError, noanal.eofvec, 1) def test08tafvec(self): ''' Test of the EOFAnalysis.tafvec method. More extensive tests are accomplished in test_datapiece. ''' # check a trivial case onelocanal = eofanalysis.EOFAnalysis(self.onelocmat) onelocanal.analyze() oneloctaf1 = onelocanal.tafvec(1) self.assertTrue(numpy.allclose(oneloctaf1, math.sqrt(2.0) * self.cos_t)) # check a "simple" case csanal = eofanalysis.EOFAnalysis(self.csmat) csanal.analyze() cstaf1 = csanal.tafvec(1) cstaf2 = csanal.tafvec(2) if cstaf1[0] < 1.0E-10: self.assertTrue(numpy.allclose(cstaf1, math.sqrt(2.0) * self.sin_t)) self.assertTrue(numpy.allclose(cstaf2, math.sqrt(2.0) * self.cos_t)) else: self.assertTrue(numpy.allclose(cstaf1, math.sqrt(2.0) * self.cos_t)) self.assertTrue(numpy.allclose(cstaf2, math.sqrt(2.0) * self.sin_t)) # check a EOF properties of a more complicated example ccssanal = eofanalysis.EOFAnalysis(self.ccssmat) ccssanal.analyze() ccsstaf1 = ccssanal.tafvec(1) ccsstaf2 = ccssanal.tafvec(2) self.assertAlmostEqual(numpy.dot(ccsstaf1, ccsstaf1), 240.0) self.assertAlmostEqual(numpy.dot(ccsstaf1, ccsstaf2), 0.0) self.assertAlmostEqual(numpy.dot(ccsstaf2, ccsstaf2), 240.0) # check ValueError raised for invalid TAF numbers self.assertRaises(ValueError, ccssanal.tafvec, -1) self.assertRaises(ValueError, ccssanal.tafvec, 0) self.assertRaises(ValueError, ccssanal.tafvec, 3) self.assertRaises(ValueError, ccssanal.tafvec, 5) # check InvalidStateError raised if analyze had not been called noanal = eofanalysis.EOFAnalysis(self.csmat) self.assertRaises(eofanalysis.InvalidStateError, noanal.tafvec, 1) def test09nullvec(self): ''' Test of the EOFAnalysis.nullvec method. ''' ccssanal = eofanalysis.EOFAnalysis(self.ccssmat) ccssanal.analyze() ccsseof1 = ccssanal.eofvec(1) ccsseof2 = ccssanal.eofvec(2) ccssnv1 = ccssanal.nullvec(1) ccssnv2 = ccssanal.nullvec(2) self.assertAlmostEqual(numpy.dot(ccssnv1, ccssnv1), 1.0) self.assertAlmostEqual(numpy.dot(ccssnv1, ccssnv2), 0.0) self.assertAlmostEqual(numpy.dot(ccssnv2, ccssnv2), 1.0) self.assertAlmostEqual(numpy.dot(ccssnv1, ccsseof1), 0.0) self.assertAlmostEqual(numpy.dot(ccssnv1, ccsseof2), 0.0) self.assertAlmostEqual(numpy.dot(ccssnv2, ccsseof1), 0.0) self.assertAlmostEqual(numpy.dot(ccssnv2, ccsseof2), 0.0) # check ValueError raised for invalid null vector numbers self.assertRaises(ValueError, ccssanal.nullvec, -1) self.assertRaises(ValueError, ccssanal.nullvec, 0) self.assertRaises(ValueError, ccssanal.nullvec, 3) self.assertRaises(ValueError, ccssanal.nullvec, 5) # check InvalidStateError raised if analyze had not been called noanal = eofanalysis.EOFAnalysis(self.csmat) self.assertRaises(eofanalysis.InvalidStateError, noanal.nullvec, 1) def test10datapiece(self): ''' Tests of the EOFAnalysis.datapiece method. ''' # Test a trivial example onelocanal = eofanalysis.EOFAnalysis(self.onelocmat) onelocanal.analyze() self.assertTrue(numpy.allclose(onelocanal.datapiece(1), self.onelocmat)) # Test the results from a valid example ccssanal = eofanalysis.EOFAnalysis(self.ccssmat) ccssanal.analyze() datatotal = ccssanal.datapiece(0) for k in range(1, ccssanal.numeofs()+1): eofvec = ccssanal.eofvec(k) tafvec = ccssanal.tafvec(k) tafeof = numpy.outer(tafvec, eofvec) datapiece = ccssanal.datapiece(k) self.assertTrue(numpy.allclose(datapiece, tafeof), "Not True: datapiece(%d) == tafvec(%d).T * eofvec(%d)" % \ (k,k,k)) datatotal += datapiece self.assertTrue(numpy.allclose(datatotal, self.ccssmat), "Not True: Sum[k=0->numeofs](datapiece(k)) == OriginalData") self.assertTrue(numpy.allclose(ccssanal.datapiece(3), 0.0), "Not True: datapiece of insignificant EOF is insignificant") self.assertTrue(numpy.allclose(ccssanal.datapiece(4), 0.0), "Not True: datapiece of insignificant EOF is insignificant") # check ValueError raised for invalid EOF numbers self.assertRaises(ValueError, ccssanal.datapiece, -1) self.assertRaises(ValueError, ccssanal.datapiece, 5) # check InvalidStateError raised if analyze had not been called noanal = eofanalysis.EOFAnalysis(self.csmat) self.assertRaises(eofanalysis.InvalidStateError, noanal.datapiece, 0) def test11dataexplained(self): ''' Tests of the EOFAnalysis.dataexplained method. ''' # Test a trivial example onelocanal = eofanalysis.EOFAnalysis(self.onelocmat) onelocanal.analyze() self.assertTrue(numpy.allclose(onelocanal.dataexplained(1), self.onelocmat)) # Test the results from a valid example ccssanal = eofanalysis.EOFAnalysis(self.ccssmat) ccssanal.analyze() datatotal = numpy.matrix(numpy.zeros(self.ccssmat.shape)) for k in range(ccssanal.numeofs()+1): datatotal += ccssanal.datapiece(k) dataexpld = ccssanal.dataexplained(k) self.assertTrue(numpy.allclose(dataexpld, datatotal), "Not True: dataexplained(%d) == Sum[k=0->%d](datapiece(k))" % \ (k,k)) self.assertTrue(numpy.allclose(ccssanal.dataexplained(3), self.ccssmat), "Not True: dataexplained of insignif EOF is OriginalData") self.assertTrue(numpy.allclose(ccssanal.dataexplained(4), self.ccssmat), "Not True: dataexplained of insignif EOF is OriginalData") # check ValueError raised for invalid EOF numbers self.assertRaises(ValueError, ccssanal.dataexplained, -1) self.assertRaises(ValueError, ccssanal.dataexplained, 5) # check InvalidStateError raised if analyze had not been called noanal = eofanalysis.EOFAnalysis(self.csmat) self.assertRaises(eofanalysis.InvalidStateError, noanal.dataexplained, 0) if __name__ == "__main__": ''' Run the unit tests in this module. ''' unittest.main() ``` #### File: PyFerret/pyfermod/feraggdset.py ```python from __future__ import print_function import sys import os import tempfile import pyferret from pyferret.ferdset import _anonymous_dataset_qualifier class FerAggDSet(pyferret.FerDSet): ''' An aggregation of data sets and the variables they have in common ''' def __init__(self, name, dsets, along='T', title='', warn=True, hide=False): ''' Aggregates the given list of datasets along the given axis using the Ferret "DEFINE DATA /AGGREGATE" command. Creates a FerVar for each data variable in common among these datasets, and assigns it as an attribute of this class instance using the variable name. name (string): Ferret name for this aggregated dataset dsets (sequence of strings and/or FerDSets): datasets to aggregate. A string will be interpreted as a filename for creating a FerDSet. along ('T', 'E', 'F'): axis along which to aggregate the datasets title (string): title for the dataset for plots and listing; if not given, the Ferret name for the dataset will be used warn (bool): issue warning messages about variables not in common among all member datasets (either not present or not using the same grid) hide (bool): hide the member datasets in standard Ferret listings such as with pyferret.showdata() ''' # Create an empty dataset with the given Ferret name super(FerAggDSet, self).__init__('', qual=_anonymous_dataset_qualifier) if not isinstance(name, str): raise ValueError('Ferret name for the aggregate dataset must be astring') aggname = name.strip() if not aggname: raise ValueError('Ferret name for the aggregate dataset is blank') self._filename = aggname self._dsetname = aggname # Need to keep the given order of component datasets self._compdsetnames = [ ] # But still use a dictionary with uppercase names for keys self._compdsets = { } if along not in ('T', 'E', 'F'): raise ValueError("along must be one of 'T', 'E', or 'F'") self._along = along self._comphidden = bool(hide) # Create a Ferret string variable containing all the dataset names to be aggregated if not ( isinstance(dsets, tuple) or isinstance(dsets, list) ): raise ValueError('dsets must be a tuple or list of strings and/or FerDSets') filesfile = tempfile.NamedTemporaryFile(mode='w', delete=False, prefix=aggname + '_', suffix='_agg.txt') filesfilename = filesfile.name deletefilesfile = True try: for myitem in dsets: if isinstance(myitem, str): mydset = pyferret.FerDSet(myitem) elif isinstance(myitem, pyferret.FerDSet): mydset = myitem else: raise ValueError('dsets must be a tuple or list of strings and/or FerDSets') if mydset._dsetname.upper() in self._compdsets: raise ValueError('duplicate dataset name ' + mydset._dsetname) print(mydset._dsetname, file=filesfile) self._compdsetnames.append(mydset._dsetname) self._compdsets[mydset._dsetname.upper()] = mydset deletefilesfile = False finally: filesfile.close() if deletefilesfile: os.unlink(filesfilename) filesvarname = aggname + "_datafile_names" cmdstr = 'LET ' + filesvarname + ' = SPAWN("cat \'' + filesfilename + '\'")' (errval, errmsg) = pyferret.run(cmdstr) if errval != pyferret.FERR_OK: os.unlink(filesfilename) raise ValueError(errmsg) # filesfile not read (SPAWN command executed) until filesvarname is needed # Create the DEFINE DATA /AGGREGATE Ferret command, creating # and saving component FerDSets as needed cmdstr = 'DEFINE DATA/AGGREGATE/' + self._along if title: cmdstr += '/TITLE="' + str(title) + '"' if not warn: cmdstr += '/QUIET' if self._comphidden: cmdstr += '/HIDE' cmdstr += ' ' + aggname + ' = ' + filesvarname (errval, errmsg) = pyferret.run(cmdstr) # filesfile now read so can delete it os.unlink(filesfilename) if errval != pyferret.FERR_OK: raise ValueError(errmsg) # create a FerVar for each variable in this dataset namesdict = pyferret.getstrdata('..varnames') for varname in namesdict['data'].flatten(): if sys.version_info[0] > 2: # For Python3.x, namesdict['data'] is a NumPy array of bytes; convert to unicode varname = str(varname, 'UTF-8') # create a FerVar representing this existing Ferret aggregated file variable filevar = pyferret.FerVar() filevar._markasknownvar(varname, self._dsetname, True) # assign this FerVar - uppercase the variable name keys to make case-insensitive self._fervars[varname.upper()] = filevar # keep a original-case version of the name self._fervarnames.add(varname) def __repr__(self): ''' Representation to of this FerAggDSet. Includes the variable names as variables can be added after creation. ''' infostr = "FerAggDSet(name='%s', dsets=%s, along='%s', hide=%s) with variables %s" % \ (self._dsetname, str(self._compdsetnames), self._along, str(self._comphidden), str(self.fernames(sort=True))) return infostr def __eq__(self, other): ''' Two FerAggDSets are equal if their Ferret names, lists of aggregated dataset names, aggregation axis, component dataset hidden status, and dictionary of FerVar are variables all equal. All string values are compared case-insensitive. ''' if not isinstance(other, pyferret.FerDSet): return NotImplemented if not isinstance(other, FerAggDSet): return False if not super(FerAggDSet, self).__eq__(other): return False if self._along != other._along: return False if self._comphidden != other._comphidden: return False if len(self._compdsetnames) != len(other._compdsetnames): return False for k in range(len(self._compdsetnames)): if self._compdsetnames[k].upper() != other._compdsetnames[k].upper(): return False return True def __ne__(self, other): ''' Two FerDSets are not equal if their Ferret names, lists of aggregated dataset names, or dictionary of FerVar variables are not equal. All string values are compared case-insensitive. ''' if not isinstance(other, pyferret.FerDSet): return NotImplemented return not self.__eq__(other) def getdsetnames(self): ''' Returns a copy of the list of component dataset names (original-case) in the order of their aggregation. ''' return list(self._compdsetnames) def getdsets(self): ''' Returns a list of component FerDSet datasets in the order of their aggregation. ''' return [ self._compdsets[name.upper()] for name in self._compdsetnames ] def close(self): ''' Removes (cancels) all the variables in Ferret associated with this dataset, then closes (cancels) this dataset in Ferret. If the aggregated dataset was created with hide=True, this will close (cancel) all the component datasets as well; otherwise the component datasets and dataset names will remain here and in Ferret. Raises a ValueError if there is a problem. ''' # if the dataset is already closed, ignore this command if not self._dsetname: return # run the Ferret CANCEL commands in FerDSet.close super(FerAggDSet, self).close() # if component datasets were hidden, the above close also closed all the # component datasets, so also clear the component dataset information if self._comphidden: self._compdsets.clear() self._compdsetnames = [ ] ``` #### File: PyFerret/pyfermod/feraxis.py ```python import numbers import time import numpy import pyferret # set of valid axis types _VALID_AXIS_TYPES = frozenset( (pyferret.AXISTYPE_LONGITUDE, pyferret.AXISTYPE_LATITUDE, pyferret.AXISTYPE_LEVEL, pyferret.AXISTYPE_TIME, pyferret.AXISTYPE_CUSTOM, pyferret.AXISTYPE_ABSTRACT, pyferret.AXISTYPE_NORMAL) ) # Supported formats for time.strptime _TIME_PARSE_FORMATS = ( '%d-%b-%Y %H:%M:%S', '%d-%b-%Y %H:%M', '%d-%b-%Y', '%Y-%m-%dT%H:%M:%S', '%Y-%m-%dT%H:%M', '%Y-%m-%d %H:%M:%S', '%Y-%m-%d %H:%M', '%Y-%m-%d', ) _TIME_NOYEAR_PARSE_FORMATS = ( '%d-%b %H:%M:%S', '%d-%b', ) class FerAxis(object): ''' Ferret axis object ''' def __init__(self, coords=None, axtype=None, unit=None, name=None): ''' Describe a Ferret axis using the given information about the axis. axtype (int): type of the axis; valid values are pyferret.AXISTYPE_LONGITUDE pyferret.AXISTYPE_LATITUDE pyferret.AXISTYPE_LEVEL pyferret.AXISTYPE_TIME pyferret.AXISTYPE_CUSTOM (axis unit not recognized by Ferret) pyferret.AXISTYPE_ABSTRACT (axis is unit-less integer values) pyferret.AXISTYPE_NORMAL (axis is normal to the data) if not given but coords is given, AXISTYPE_CUSTOM is used, if not given and coords is not given, AXISTYPE_NORMAL is used. coords (sequence of numeric): coordinate values of the axis; for an axis that is neither a time axis, an abstract axis, nor normal to the data, a 1-D array of numeric values; for a time axis, an (n,6) 2D array of integers where each time step is formed from the six integers for the day, month, year, hour, minute, and second in the index given by pyferret.TIMEARRAY_DAYINDEX pyferret.TIMEARRAY_MONTHINDEX pyferret.TIMEARRAY_YEARINDEX pyferret.TIMEARRAY_HOURINDEX pyferret.TIMEARRAY_MINUTEINDEX pyferret.TIMEARRAY_SECONDINDEX (Thus, coords[t, TIMEARRAY_YEARINDEX] gives the year of time t.) Note: a relative time axis will be of type AXISTYPE_CUSTOM, with a unit indicating the starting point, such as 'days since 01-JAN-2000' For an abstract axis or an axis normal to the data, this argument is ignored. unit (string): unit of the axis; for a time axis, this gives the calendar as one of pyferret.CALTYPE_360DAY pyferret.CALTYPE_NOLEAP pyferret.CALTYPE_GREGORIAN pyferret.CALTYPE_JULIAN pyferret.CALTYPE_ALLLEAP pyferret.CALTYPE_NONE (calendar not specified) For abstract axes, or axes normal to the data, this argument is ignored. name (string): Ferret name for the axis For an axis normal to the data, this argument is ignored. ''' # axis type if axtype: if not axtype in _VALID_AXIS_TYPES: raise ValueError('axis type %s is not valid' % str(axtype)) self._axtype = axtype elif coords is not None: self._axtype = pyferret.AXISTYPE_CUSTOM else: self._axtype = pyferret.AXISTYPE_NORMAL # axis name if name and (self._axtype != pyferret.AXISTYPE_NORMAL): if not isinstance(name, str): raise ValueError('axis name %s is not valid' % str(name)) self._name = name.strip() else: self._name = '' # axis unit if unit and (self._axtype != pyferret.AXISTYPE_NORMAL) \ and (self._axtype != pyferret.AXISTYPE_ABSTRACT): if not isinstance(unit, str): raise ValueError('axis unit %s is not valid' % str(unit)) self._unit = unit.strip() else: self._unit = '' # axis coordinates if (coords is not None) and (self._axtype != pyferret.AXISTYPE_NORMAL) \ and (self._axtype != pyferret.AXISTYPE_ABSTRACT): if self._axtype == pyferret.AXISTYPE_TIME: try: self._coords = numpy.array(coords, dtype=numpy.int32, copy=True) except ValueError: raise ValueError('coordinates for a time axis is not an integer array') if self._coords.ndim != 2: raise ValueError('coordinates for a time axis is not a 2-D array') if self._coords.shape[1] != 6: raise ValueError('second dimenstion of coordinates for a time axis is not 6') else: try: self._coords = numpy.array(coords, dtype=numpy.float64, copy=True) except ValueError: raise ValueError('coordinates for an axis is not a numeric array') if self._coords.ndim != 1: raise ValueError('coordinates for a lon/lat/level/custom axis is not a 1-D array' % k) else: self._coords = None def __repr__(self): ''' Representation to recreate this FerAxis ''' # Not elegant, but will do infostr = "FerAxis(coords=" + repr(self._coords) + \ ", axtype=" + repr(self._axtype) + \ ", unit='" + self._unit + \ "', name='" + self._name + "')" return infostr def __eq__(self, other): ''' Two FerAxis objects are equal is all their contents are the same. All string values are compared case-insensitive. ''' if not isinstance(other, FerAxis): return NotImplemented # _axtype is an integer if self._axtype != other._axtype: return False # _name is a string if self._name.upper() != other._name.upper(): return False # _unit is a string if self._unit.upper() != other._unit.upper(): return False # _coords is an ndarray or None if (self._coords is None) and (other._coords is None): return True if (self._coords is None) or (other._coords is None): return False if not numpy.allclose(self._coords, other._coords): return False return True def __ne__(self, other): ''' Two FerAxis obect are not equal is any of their contents are not the same. All string values are compared case-insensitive. ''' if not isinstance(other, FerAxis): return NotImplemented return not self.__eq__(other) def __getitem__(self, name): ''' Return the axis type (if name='axtype'), unit (if name='unit'), name (if name='name'), or a copy of the coordinates (if name='coords') ''' if name == 'axtype': return self.getaxtype() if name == 'unit': return self.getunit() if name == 'name': return self.getname() if name == 'coords': return self.getcoords() raise KeyError("unknown key '%s'" % str(name)) def __getattr__(self, name): ''' Return the axis type (if name='axtype'), unit (if name='unit'), name (if name='name'), or a copy of the coordinates (if name='coords') Note that this method is only called when the parent object does not have an attribute with this name. ''' try: return self.__getitem__(name) except KeyError: raise AttributeError("unknown attribute '%s'" % name) def __dir__(self): ''' Returns a list of known attributes, including those added by the __getattr__ method. ''' mydir = [ 'axtype', 'coords', 'name', 'unit' ] mydir.extend( dir(super(FerAxis, self)) ) return mydir def copy(self): ''' Returns a copy of this FerAxis object. The FerAxis object returned does not share any mutable values (namely, the coordinates array) with this FerAxis object. ''' # __init__ forces a copy of the coordinates array duplicate = FerAxis(axtype=self._axtype, coords=self._coords, unit=self._unit, name=self._name) return duplicate def getaxtype(self): ''' Returns the type of this axis as one of the integer constants pyferret.AXISTYPE_LONGITUDE pyferret.AXISTYPE_LATITUDE pyferret.AXISTYPE_LEVEL pyferret.AXISTYPE_TIME pyferret.AXISTYPE_CUSTOM (axis unit not recognized by Ferret) pyferret.AXISTYPE_ABSTRACT (axis is unit-less integer values) pyferret.AXISTYPE_NORMAL (axis is normal to the data) ''' return self._axtype def getcoords(self): ''' Returns a copy of the coordinates ndarray for this axis, or None if there is no coordinates array for this axis. ''' if self._coords is not None: coords = self._coords.copy('A') else: coords = None return coords def getunit(self): ''' Returns the unit string for this axis. May be an empty string. ''' return self._unit def getname(self): ''' Returns the name string for this axis. May be an empty string. ''' return self._name @staticmethod def _parsegeoslice(geoslice): ''' Parses the contents of the slice attributes, interpreting any geo- or time-references and returns a tuple with the resulting interpreted axis type, start, stop, and step values. geoslice (slice): slice that can contain georeferences or time references returns (axtype, start, stop, step) where: axtype is one of: pyferret.AXISTYPE_LONGITUDE (longitude units detected) pyferret.AXISTYPE_LATITUDE (latitude units detected) pyferret.AXISTYPE_LEVEL (level units detected) pyferret.AXISTYPE_TIME (time units detected) pyferret.AXISTYPE_ABSTRACT (no units) start, stop, and step are: None if the correspond geoslice attribute is not given; otherwise, a list of six numbers if axtype is pyferret.AXISTYPE_TIME, or a number if axtype is not pyferret.AXISTYPE_TIME The list of six numbers for time values are ordered according to the indices: pyferret.TIMEARRAY_DAYINDEX pyferret.TIMEARRAY_MONTHINDEX pyferret.TIMEARRAY_YEARINDEX pyferret.TIMEARRAY_HOURINDEX pyferret.TIMEARRAY_MINUTEINDEX pyferret.TIMEARRAY_SECONDINDEX For non-time values, the start, stop, and step values are int objects if only if corresponding slice objects were int objects. Thus, int objects should be interpreted as axis indices and float objects should be interpreted as axis values. Raises a ValueError if start and stop indicate different axes; i.e., "10E":"20N" or 10:"20N" or 10:"20-JAN-2000", or if the value contain unrecognized units. If not a time slice, it is acceptable for step to have no units even when start and stop do. If a time slice, the step must have a unit of y, d, h, m, or s, which corresponds to year, day, hour, minute, or second; there is no month time step unit. Raises a TypeError if geoslice is not a slice or None, or if the values in the slice are not None and cannot be interpreted. ''' if geoslice is None: return (pyferret.AXISTYPE_ABSTRACT, None, None, None) if not isinstance(geoslice, slice): raise TypeError('not a slice object: %s' % repr(geoslice)) (starttype, start) = FerAxis._parsegeoval(geoslice.start) (stoptype, stop) = FerAxis._parsegeoval(geoslice.stop) # start and stop types must match (so 10:"25E" also fails) if starttype != stoptype: raise ValueError('mismatch of units: %s and %s' % (geoslice.start, geoslice.stop)) axtype = starttype if axtype == pyferret.AXISTYPE_TIME: (steptype, step) = FerAxis._parsegeoval(geoslice.step, istimestep=True) if (step is not None) and (steptype != pyferret.AXISTYPE_TIME): raise ValueError('a time unit y, d, h, m, or s must be given with time slice steps') else: (steptype, step) = FerAxis._parsegeoval(geoslice.step) if (steptype != pyferret.AXISTYPE_ABSTRACT) and (steptype != axtype): raise ValueError('mismatch of units: %s, %s' % (geoslice.start, geoslice.step)) return (axtype, start, stop, step) @staticmethod def _parsegeoval(val, istimestep=False): ''' Parses the value as either a longitude, latitude, level, time, or abstract number. If val is a numeric value, the tuple (pyferret.AXISTYPE_ABSTRACT, val) is returned. If val is None, the tuple (pyferret.AXISTYPE_ABSTRACT, None) is returned. If val is a longitude string (unit E or W when istimestep is false), (pyferret.AXISTYPE_LONGITUDE, fval) is returned where fval is the floating point longitude value. If val is a latitude string (unit N or S when istimestep is false), (pyferret.AXISTYPE_LATITUDE, fval) is returned where fval is the floating point latitude value. If val is a level string (unit m when istimestep is False), (pyferret.AXISTYPE_LEVEL, fval) is returned where fval is the floating point level value. If val is a date and, optionally, time string matching one of the formats given in _TIME_PARSE_FORMATS or _TIME_NOYEAR_PARSE_FORMATS, (pyferret.AXISTYPE_TIME, tval) is returned where tval is a list of six numbers ordered by the indices: pyferret.TIMEARRAY_DAYINDEX pyferret.TIMEARRAY_MONTHINDEX pyferret.TIMEARRAY_YEARINDEX pyferret.TIMEARRAY_HOURINDEX pyferret.TIMEARRAY_MINUTEINDEX pyferret.TIMEARRAY_SECONDINDEX If istimestep is true and val is a time step string (unit y, d, h, m, or s), (pyferret.AXISTYPE_TIME, tval) is returned where tval is a list of six values ordered by the above TIMEARRAY indices. Note that m is minutes; there is no month timestep. If val is a string of a unitless number, (pyferret.AXISTYPE_ABSTACT, fval) is returned where fval is the floating point value specified by val. If val is not numeric or a string, a TypeError is raised. If val is a string that cannot be parsed, a ValueError is raised. ''' # if just a number, return it with abstract axis type if isinstance(val, numbers.Real): return (pyferret.AXISTYPE_ABSTRACT, val) # if None or empty, return None with abstract axis type if not val: return (pyferret.AXISTYPE_ABSTRACT, None) if not isinstance(val, str): raise TypeError('not a string: %s' % repr(val)) if not istimestep: # not a time *step* - first try parsing as a date/time string using the accepted formats for fmt in _TIME_PARSE_FORMATS: try: tval = time.strptime(val, fmt) tlist = [ 0, 0, 0, 0, 0, 0 ] tlist[pyferret.TIMEARRAY_DAYINDEX] = tval.tm_mday tlist[pyferret.TIMEARRAY_MONTHINDEX] = tval.tm_mon tlist[pyferret.TIMEARRAY_YEARINDEX] = tval.tm_year tlist[pyferret.TIMEARRAY_HOURINDEX] = tval.tm_hour tlist[pyferret.TIMEARRAY_MINUTEINDEX] = tval.tm_min tlist[pyferret.TIMEARRAY_SECONDINDEX] = tval.tm_sec return (pyferret.AXISTYPE_TIME, tlist) except ValueError: pass for fmt in _TIME_NOYEAR_PARSE_FORMATS: try: tval = time.strptime(val, fmt) tlist = [ 0, 0, 0, 0, 0, 0 ] tlist[pyferret.TIMEARRAY_DAYINDEX] = tval.tm_mday tlist[pyferret.TIMEARRAY_MONTHINDEX] = tval.tm_mon # leave the year as zero - time.strptime assigns 1900 tlist[pyferret.TIMEARRAY_HOURINDEX] = tval.tm_hour tlist[pyferret.TIMEARRAY_MINUTEINDEX] = tval.tm_min tlist[pyferret.TIMEARRAY_SECONDINDEX] = tval.tm_sec return (pyferret.AXISTYPE_TIME, tlist) except ValueError: pass # not a date/time, so parse as a number with possibly a final letter for the unit try: lastchar = val[-1].upper() if (not istimestep) and (lastchar == 'E'): # degrees E # make sure the rest is just numeric fval = float(val[:-1]) return(pyferret.AXISTYPE_LONGITUDE, val.upper()) elif (not istimestep) and (lastchar == 'W'): # degrees W # make sure the rest is just numeric fval = float(val[:-1]) return(pyferret.AXISTYPE_LONGITUDE, val.upper()) elif (not istimestep) and (lastchar == 'N'): # degrees N # make sure the rest is just numeric fval = float(val[:-1]) return(pyferret.AXISTYPE_LATITUDE, val.upper()) elif (not istimestep) and (lastchar == 'S'): # degrees S # make sure the rest is just numeric fval = float(val[:-1]) return(pyferret.AXISTYPE_LATITUDE, val.upper()) elif (not istimestep) and (lastchar == 'M'): # meters (or kilometers, etc.) return(pyferret.AXISTYPE_LEVEL, val.upper()) elif istimestep and (lastchar == 'Y'): # years fval = float(val[:-1]) tlist = [ 0, 0, 0, 0, 0, 0 ] tlist[pyferret.TIMEARRAY_YEARINDEX] = fval return (pyferret.AXISTYPE_TIME, tlist) elif istimestep and (lastchar == 'D'): # days fval = float(val[:-1]) tlist = [ 0, 0, 0, 0, 0, 0 ] tlist[pyferret.TIMEARRAY_DAYINDEX] = fval return (pyferret.AXISTYPE_TIME, tlist) elif istimestep and (lastchar == 'H'): # hours fval = float(val[:-1]) tlist = [ 0, 0, 0, 0, 0, 0 ] tlist[pyferret.TIMEARRAY_HOURINDEX] = fval return (pyferret.AXISTYPE_TIME, tlist) elif istimestep and (lastchar == 'M'): # minutes fval = float(val[:-1]) tlist = [ 0, 0, 0, 0, 0, 0 ] tlist[pyferret.TIMEARRAY_MINUTEINDEX] = fval return (pyferret.AXISTYPE_TIME, tlist) elif istimestep and (lastchar == 'S'): # seconds fval = float(val[:-1]) tlist = [ 0, 0, 0, 0, 0, 0 ] tlist[pyferret.TIMEARRAY_SECONDINDEX] = fval return (pyferret.AXISTYPE_TIME, tlist) else: # maybe just numeric string; if not, will raise an exception fval = float(val) return(pyferret.AXISTYPE_ABSTRACT, fval) except Exception: raise ValueError('unable to parse: %s' % val) @staticmethod def _makedatestring(timearray): ''' Creates a date and time string for the format DD-MON-YYYY HH:MM:SS corresponding the values in the given time array. If the year is zero, -YYYY is omitted. If the seconds is zero, :SS is omitted; if hours, minutes, and seconds are all zero, HH:MM:SS is omitted. timearray: tuple of six int with time values given by the indices pyferret.TIMEARRAY_DAYINDEX pyferret.TIMEARRAY_MONTHINDEX pyferret.TIMEARRAY_YEARINDEX pyferret.TIMEARRAY_HOURINDEX pyferret.TIMEARRAY_MINUTEINDEX pyferret.TIMEARRAY_SECONDINDEX ''' day = timearray[pyferret.TIMEARRAY_DAYINDEX] monthstr = pyferret.datamethods._UC_MONTH_NAMES[timearray[pyferret.TIMEARRAY_MONTHINDEX]] year = timearray[pyferret.TIMEARRAY_YEARINDEX] hour = timearray[pyferret.TIMEARRAY_HOURINDEX] minute = timearray[pyferret.TIMEARRAY_MINUTEINDEX] second = timearray[pyferret.TIMEARRAY_SECONDINDEX] if year > 0: datestr = '%02d-%3s-%04d' % (day, monthstr, year) else: datestr = '%02d-%3s' % (day, monthstr) if second > 0: timestr = ' %02d:%02d:%02d' % (hour, minute, second) elif (minute > 0) or (hour > 0): timestr = ' %02d:%02d' % (hour, minute) else: timestr = '' return datestr + timestr ``` #### File: pyfermod/fershp/__init__.py ```python from __future__ import print_function import numpy import shapefile import os import os.path import pyferret.fershp.mapprj def createprjfile(shapefile_mapprj, shapefile_name): """ Creates a map projection (.prj) file for a shapefile. Arguments: shapefile_mapprj - either the common name or the WKT description of the map projection; if None or blank, "WGS 84" is used. shapefile_name - name of the shapefile; any filename extensions are ignored. Raises: ValueError if the map projection is invalid. """ # If the string given looks like a WKT description, just use it; # otherwise, try to convert the name into a description. if (not shapefile_mapprj) or shapefile_mapprj.isspace(): prj_descript = pyferret.fershp.mapprj.name_to_descript("WGS 84") elif shapefile_mapprj.startswith('GEOGCS["') or \ shapefile_mapprj.startswith('PROJCS["'): prj_descript = shapefile_mapprj else: prj_descript = pyferret.fershp.mapprj.name_to_descript(shapefile_mapprj) (sfname, ext) = os.path.splitext(shapefile_name) prjfile = file("%s.prj" % sfname, "w") print(prj_descript, file=prjfile) prjfile.close() def quadxycentroids(xvals, yvals): """ Returns the centroids of X,Y-quadrilaterals whose vertices are given by xvals and yvals. Arguments: xvals - 2D array of X values of the quadrilateral vertices yvals - 2D array of Y values of the quadrilateral vertices Quadrilaterals are defined by the (xvals, yvals) of [i,j] -> [i,j+1] -> [i+1,j+1] -> [i+1,j] -> [i,j] Returns: Two 2D arrays of X values and Y values of the quadrilateral centroids. The size of each dimension is decreased by one. Raises: ValueError if the arguments are invalid """ xarray = numpy.asarray(xvals, dtype=float) yarray = numpy.asarray(yvals, dtype=float) if len(xarray.shape) < 2: raise ValueError("xvals and yvals must be (at least) two dimensional") if xarray.shape != yarray.shape: raise ValueError("xvals and yvals must have the same dimensions") sixareas = xarray[:-1,:-1] * yarray[:-1,1:] - xarray[:-1,1:] * yarray[:-1,:-1] sixareas += xarray[:-1,1:] * yarray[1:,1:] - xarray[1:,1:] * yarray[:-1,1:] sixareas += xarray[1:,1:] * yarray[1:,:-1] - xarray[1:,:-1] * yarray[1:,1:] sixareas += xarray[1:,:-1] * yarray[:-1,:-1] - xarray[:-1,:-1] * yarray[1:,:-1] sixareas *= 3.0 cenxs = ( xarray[:-1,:-1] * yarray[:-1,1:] - xarray[:-1,1:] * yarray[:-1,:-1] ) \ * ( xarray[:-1,:-1] + xarray[:-1,1:] ) cenxs += ( xarray[:-1,1:] * yarray[1:,1:] - xarray[1:,1:] * yarray[:-1,1:] ) \ * ( xarray[:-1,1:] + xarray[1:,1:] ) cenxs += ( xarray[1:,1:] * yarray[1:,:-1] - xarray[1:,:-1] * yarray[1:,1:] ) \ * ( xarray[1:,1:] + xarray[1:,:-1] ) cenxs += ( xarray[1:,:-1] * yarray[:-1,:-1] - xarray[:-1,:-1] * yarray[1:,:-1] ) \ * ( xarray[1:,:-1] + xarray[:-1,:-1] ) cenxs /= sixareas cenys = ( xarray[:-1,:-1] * yarray[:-1,1:] - xarray[:-1,1:] * yarray[:-1,:-1] ) \ * ( yarray[:-1,:-1] + yarray[:-1,1:] ) cenys += ( xarray[:-1,1:] * yarray[1:,1:] - xarray[1:,1:] * yarray[:-1,1:] ) \ * ( yarray[:-1,1:] + yarray[1:,1:] ) cenys += ( xarray[1:,1:] * yarray[1:,:-1] - xarray[1:,:-1] * yarray[1:,1:] ) \ * ( yarray[1:,1:] + yarray[1:,:-1] ) cenys += ( xarray[1:,:-1] * yarray[:-1,:-1] - xarray[:-1,:-1] * yarray[1:,:-1] ) \ * ( yarray[1:,:-1] + yarray[:-1,:-1] ) cenys /= sixareas return (cenxs, cenys) def quadxycenters(xvals, yvals): """ Returns the average centers of X,Y-quadrilaterals whose vertices are given by xvals and yvals. Arguments: xvals - 2D array of X values of the quadrilateral vertices yvals - 2D array of Y values of the quadrilateral vertices Quadrilaterals are defined by the (xvals, yvals) of [i,j] -> [i,j+1] -> [i+1,j+1] -> [i+1,j] -> [i,j] Returns: Two 2D arrays of X values and Y values of the quadrilateral average centers. The size of each dimension is decreased by one. Raises: ValueError if the arguments are invalid """ xarray = numpy.asarray(xvals, dtype=float) yarray = numpy.asarray(yvals, dtype=float) if len(xarray.shape) < 2: raise ValueError("xvals and yvals must be (at least) two dimensional") if xarray.shape != yarray.shape: raise ValueError("xvals and yvals must have the same dimensions") cenxs = 0.25 * ( xarray[:-1,:-1] + xarray[:-1,1:] + xarray[1:,1:] + xarray[1:,:-1] ) cenys = 0.25 * ( yarray[:-1,:-1] + yarray[:-1,1:] + yarray[1:,1:] + yarray[1:,:-1] ) return (cenxs, cenys) def addquadxyvalues(sfwriter, pt0, pt1, pt2, pt3, zcoord, vals): """ Adds a quadrilateral shape to sfwriter defined by the X,Y vertices pt0 - pt1 - pt2 - pt3 - pt0, and possibly the common Z coordinate (or array of Z coordinates) zcoord, along with the associated values in vals. Arguments: sfwriter - the shapefile.Writer object to add the shape and values to pt1, pt2, pt3, pt4 - the (X,Y) numeric coordinates of the vertices of the simple quadrilateral; in sequence, but not necessarily the correct winding. Any coordinates after the first two in each point are ignored. zcoord - the numeric Z coordinate or array of numeric Z coordinates for this quadrilateral; may be None vals - the list of values to be associated with this shape. The fields for these values must already have been created in sfwriter. Note: the winding of the quadrilateral is determined only using the X and Y coordinates, even when multiple Z coordinates are provided. """ # Get the correct polygon type if zcoord != None: shapetype = shapefile.POLYGONZ else: shapetype = shapefile.POLYGON x0 = float(pt0[0]); y0 = float(pt0[1]) x1 = float(pt1[0]); y1 = float(pt1[1]) x2 = float(pt2[0]); y2 = float(pt2[1]) x3 = float(pt3[0]); y3 = float(pt3[1]) # Compute 2 * signed area of this simple quadrilateral dqarea = x0 * y1 - x1 * y0 dqarea += x1 * y2 - x2 * y1 dqarea += x2 * y3 - x3 * y2 dqarea += x3 * y0 - x0 * y3 # Create the correctly ordered array of coordinates for this single shape part part = [ ] if dqarea < 0.0: # negative means clockwise which is desired direction part.append([ x0, y0 ]) part.append([ x1, y1 ]) part.append([ x2, y2 ]) part.append([ x3, y3 ]) part.append([ x0, y0 ]) else: # positive means counterclockwise so reverse ordering part.append([ x0, y0 ]) part.append([ x3, y3 ]) part.append([ x2, y2 ]) part.append([ x1, y1 ]) part.append([ x0, y0 ]) # Append the Z coordinate(s) if given if zcoord != None: try: # First try it as a single Z coordinate for all points z = float(zcoord) for pt in part: pt.append(z) except TypeError: if len(zcoord) != 4: raise ValueError("zcoord must be None, a single value, or a list of four values") # Assume it is an array of numbers if dqarea < 0.0: zvals = list(zcoord) + [ zcoord[0] ] else: zvals = [ zcoord[0] ] + list(zcoord[::-1]) for (pt, z) in zip(part, zvals): pt.append(float(z)) # Add the shape sfwriter.poly([ part, ], shapetype) # Add the values for this shape sfwriter.record(*vals) # # The following is only for testing this module from the command line # if __name__ == "__main__": shapefilename = "testsf" wgs84_descript = 'GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433]]' wgs84upsnorth_descript = 'PROJCS["WGS 84 / UPS North",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433]],PROJECTION["Polar_Stereographic"],PARAMETER["latitude_of_origin",90],PARAMETER["central_meridian",0],PARAMETER["scale_factor",0.994],PARAMETER["false_easting",2000000],PARAMETER["false_northing",2000000],UNIT["metre",1]]' # Test createprjfile createprjfile(None, "%s.jnk" % shapefilename) prjfile = file("%s.prj" % shapefilename, "r") datalines = prjfile.readlines() prjfile.close() if len(datalines) != 1: raise ValueError("None for mapprj: more than one line given in the .prj file") descript = datalines[0].strip() if descript != wgs84_descript: raise ValueError("None for mapprj:\n" \ " expect: %s\n" \ " found: %s" % (wgs84_descript, descript)) del prjfile, datalines, descript prjjunk = 'GEOGCS["Junk",DATUM["Junk"]]' createprjfile(prjjunk, "%s.jnk" % shapefilename) prjfile = file("%s.prj" % shapefilename, "r") datalines = prjfile.readlines() prjfile.close() if len(datalines) != 1: raise ValueError("Junk for mapprj: more than one line given in the .prj file") descript = datalines[0].strip() if descript != prjjunk: raise ValueError("Junk for mapprj:\n" \ " expect: %s\n" \ " found: %s" % (prjjunk, descript)) del prjjunk, prjfile, datalines, descript createprjfile("WGS 84 / UPS North", "%s.jnk" % shapefilename) prjfile = file("%s.prj" % shapefilename, "r") datalines = prjfile.readlines() prjfile.close() if len(datalines) != 1: raise ValueError("'WGS 84 / UPS North' for mapprj: more than one line given in the .prj file") descript = datalines[0].strip() if descript != wgs84upsnorth_descript: raise ValueError("'WGS 84 / UPS North' for mapprj:\n" \ " expect: %s\n" \ " found: %s" % (wgs84upsnorth_descript, descript)) del prjfile, datalines, descript print("createprjfile: SUCCESS") # Test quadxycentroids xvals = ( ( 0, 1 ), ( 3, 4 ) ) yvals = ( ( 0, 2 ), ( 1, 3 ) ) expectx = [ [ 2.0 ] ] expecty = [ [ 1.5 ] ] (centx, centy) = quadxycentroids(xvals, yvals) if not numpy.allclose(centx, expectx): raise ValueError("Centroid X values: expected %s; found %s" % \ (str(expectx), str(centx))) if not numpy.allclose(centy, expecty): raise ValueError("Centroid Y values: expected %s; found %s" % \ (str(expecty), str(centy))) del xvals, yvals, expectx, expecty, centx, centy xvals = ( ( 0, 1 ), ( 2, 3 ) ) yvals = ( ( 0, 2 ), ( 1, 5 ) ) expectx = [ [ 39.0 / 24.0 ] ] expecty = [ [ 49.0 / 24.0 ] ] (centx, centy) = quadxycentroids(xvals, yvals) if not numpy.allclose(centx, expectx): raise ValueError("Centroid X values: expected %s; found %s" % \ (str(expectx), str(centx))) if not numpy.allclose(centy, expecty): raise ValueError("Centroid Y values: expected %s; found %s" % \ (str(expecty), str(centy))) del xvals, yvals, expectx, expecty, centx, centy print("quadxycentroids: SUCCESS") # Test quadxycenters xvals = ( ( 0, 1 ), ( 3, 4 ) ) yvals = ( ( 0, 2 ), ( 1, 3 ) ) expectx = [ [ 2.0 ] ] expecty = [ [ 1.5 ] ] (centx, centy) = quadxycenters(xvals, yvals) if not numpy.allclose(centx, expectx): raise ValueError("Centroid X values: expected %s; found %s" % \ (str(expectx), str(centx))) if not numpy.allclose(centy, expecty): raise ValueError("Centroid Y values: expected %s; found %s" % \ (str(expecty), str(centy))) del xvals, yvals, expectx, expecty, centx, centy xvals = ( ( 0, 1 ), ( 2, 3 ) ) yvals = ( ( 0, 2 ), ( 1, 5 ) ) expectx = [ [ 1.5 ] ] expecty = [ [ 2.0 ] ] (centx, centy) = quadxycenters(xvals, yvals) if not numpy.allclose(centx, expectx): raise ValueError("Centroid X values: expected %s; found %s" % \ (str(expectx), str(centx))) if not numpy.allclose(centy, expecty): raise ValueError("Centroid Y values: expected %s; found %s" % \ (str(expecty), str(centy))) del xvals, yvals, expectx, expecty, centx, centy print("quadxycenters: SUCCESS") # Test addquadxyvalues coords = [ [0.0, 0.0], [1.0, 0.0], [1.0, -1.0], [2.0, 1.0] ] zval = [ -5.34, -4.23, -3.12, -2.01 ] vals = [ 3.28573, 7.46952 ] expectedxy = [ coords[0], coords[3], coords[2], coords[1], coords[0] ] expectedz = [ zval[0], zval[3], zval[2], zval[1], zval[0] ] # Create the shapefile sfwriter = shapefile.Writer(shapefile.POLYGONZ) sfwriter.field("VAL0", "N", 20, 7) sfwriter.field("VAL1", "N", 20, 7) # Add the shape and values and save the shapefile addquadxyvalues(sfwriter, coords[0], coords[1], coords[2], coords[3], zval, vals) sfwriter.save(shapefilename) del zval, coords, sfwriter # Read the shapefile and check the shape and values sfreader = shapefile.Reader(shapefilename) shapes = sfreader.shapes() if len(shapes) != 1: raise ValueError("Expected one shape; found %d" % len(shapes)) if shapes[0].shapeType != shapefile.POLYGONZ: raise ValueError("Expected shapetype %d; found %d" % \ (shapefile.POLYGONZ, shapes[0].shapeType)) if not numpy.allclose(shapes[0].points, expectedxy): raise ValueError("Expected (X,Y) coordinates %s; found %s" % \ (str(expectedxy), str(shapes[0].points))) if not numpy.allclose(shapes[0].z, expectedz): raise ValueError("Expected Z coordinates %s; found %s" % \ (str(expectedz), str(shapes[0].z))) records = sfreader.records() if len(records) != 1: raise ValueError("Expected one set of records; found %d" % len(records)) if not numpy.allclose(records[0], vals): raise ValueError("Expected record values %s; found %s" % \ (str(vals), str(records[0]))) del expectedxy, expectedz, sfreader, shapes, records os.remove("%s.dbf" % shapefilename) os.remove("%s.shp" % shapefilename) os.remove("%s.shx" % shapefilename) os.remove("%s.prj" % shapefilename) print("addquadxyvalues: SUCCESS") ``` #### File: pyfermod/fershp/shapefile_writexyval.py ```python from __future__ import print_function import shapefile import pyferret import pyferret.fershp def ferret_init(efid): """ Initialization for the shapefile_writexyval PyEF """ retdict = { "numargs": 6, "descript": "Writes a shapefile of XY quadrilaterals from the curvilinear data arrays.", "restype": pyferret.FLOAT_ARRAY, "axes": ( pyferret.AXIS_ABSTRACT, pyferret.AXIS_DOES_NOT_EXIST, pyferret.AXIS_DOES_NOT_EXIST, pyferret.AXIS_DOES_NOT_EXIST, pyferret.AXIS_DOES_NOT_EXIST, pyferret.AXIS_DOES_NOT_EXIST, ), "argnames": ( "SHAPEFILE", "GRIDX", "GRIDY", "VALUE", "VALNAME", "MAPPRJ"), "argdescripts": ( "Shapefile name (any extension given is ignored)", "X values (longitudes) for the quad. grid; must be 2D on X and Y axes", "Y values (latitudes) for the quad. grid; must be 2D on X and Y axes", "Shape values; must be 2D on X and Y axes", "Name for the shape value", "Common name or WKT description of map projection; " \ "if blank, WGS 84 is used", ), "argtypes": ( pyferret.STRING_ONEVAL, pyferret.FLOAT_ARRAY, pyferret.FLOAT_ARRAY, pyferret.FLOAT_ARRAY, pyferret.STRING_ONEVAL, pyferret.STRING_ONEVAL, ), "influences": ( (False, False, False, False, False, False), (False, False, False, False, False, False), (False, False, False, False, False, False), (False, False, False, False, False, False), (False, False, False, False, False, False), (False, False, False, False, False, False), ), } return retdict def ferret_result_limits(efid): """ Abstract axis limits for the shapefile_writexyval PyEF """ return ( (1, 1), None, None, None, None, None, ) def ferret_compute(efid, result, resbdf, inputs, inpbdfs): """ Create the shapefile named in inputs[0] using the grid X coordinates given in inputs[1], grid Y coordinates given in inputs[2], and shape values given in inputs[3]. The X,Y coordinates are used for the quadrilaterals vertices and must have an additional value along each dimension. The value [i,j] is used for the quadrilateral with diagonal corners [i, j] and [i+1, j+1]. Quadrilateral associated with missing values are omitted from the shapefile. The field name for the value in the shapefile given in inputs[4]. Either a common name or a WKT description of the map projection for the coordinates should be given in inputs[5]. If blank, WGS 84 is used. If successful, fills result (which might as well be a 1x1x1x1 array) with zeros. If a problem occurs, an error will be raised. """ shapefile_name = inputs[0] grid_xs = inputs[1] grid_ys = inputs[2] grid_vals = inputs[3] missing_val = inpbdfs[3] field_name = inputs[4].strip() if not field_name: field_name = "VALUE" map_projection = inputs[5] # Verify the shapes are as expected if (grid_vals.shape[2] != 1) or (grid_vals.shape[3] != 1) or \ (grid_vals.shape[4] != 1) or (grid_vals.shape[5] != 1): raise ValueError("The Z, T, E, and F axes of VALUE must be undefined or singleton axes") exp_shape = ( grid_vals.shape[0] + 1, grid_vals.shape[1] + 1, 1, 1, 1, 1 ) if (grid_xs.shape != exp_shape) or (grid_ys.shape != exp_shape): raise ValueError('GRIDX and GRIDY must have one more value along both X and Y axes compared to VALUE') # Create polygons with a single field value sfwriter = shapefile.Writer(shapefile.POLYGON) sfwriter.field(field_name, "N", 20, 7) # Add the shapes with their values shape_written = False for j in range(grid_vals.shape[1]): for i in range(grid_vals.shape[0]): if grid_vals[i, j, 0, 0, 0, 0] != missing_val: shape_written = True pyferret.fershp.addquadxyvalues(sfwriter, (grid_xs[i, j, 0, 0, 0, 0], grid_ys[i, j, 0, 0, 0, 0]), (grid_xs[i, j+1, 0, 0, 0, 0], grid_ys[i, j+1, 0, 0, 0, 0]), (grid_xs[i+1, j+1, 0, 0, 0, 0], grid_ys[i+1, j+1, 0, 0, 0, 0]), (grid_xs[i+1, j, 0, 0, 0, 0], grid_ys[i+1, j, 0, 0, 0, 0]), None, [ float(grid_vals[i, j, 0, 0, 0, 0]) ]) if not shape_written: raise ValueError("All values are missing values") sfwriter.save(shapefile_name) # Create the .prj file from the map projection common name or the WKT description pyferret.fershp.createprjfile(map_projection, shapefile_name) result[:, :, :, :, :, :] = 0 # # The following is only for testing this module from the command line # if __name__ == "__main__": import numpy import os shapefilename = "tripolar" fieldname = "AREA" wgs84_descript = 'GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433]]' # Real world longitudes and latitudes of tripolar coordinates X=80W:60E:10 + 100E:120W:10,Y=45N:90N:5 geolon_c = numpy.array([ [ -100.0,-100.0,-100.0,-100.0,-100.0,-100.0,-100.0,-100.0, 80.0, 80.0, 80.0, 80.0, 80.0, 80.0, 80.0, 80.0, 80.0, 80.0, 80.0, 80.0, 80.0, 80.0, 260.0, 260.0, 260.0, 260.0, 260.0, 260.0, 260.0, 260.0, ], [ -92.1, -87.7, -82.4, -75.7, -66.7, -53.8, -34.9, -10.0, 14.9, 33.8, 46.7, 55.7, 62.4, 67.7, 72.1, 87.9, 92.3, 97.6, 104.3, 113.3, 126.2, 145.1, 170.0, 194.9, 213.8, 226.7, 235.7, 242.4, 247.7, 252.1, ], [ -86.0, -78.5, -70.2, -60.9, -50.2, -38.1, -24.5, -10.0, 4.5, 18.1, 30.2, 40.9, 50.2, 58.5, 66.0, 94.0, 101.5, 109.8, 119.1, 129.8, 141.9, 155.5, 170.0, 184.5, 198.1, 210.2, 220.9, 230.2, 238.5, 246.0, ], [ -82.3, -73.1, -63.6, -53.7, -43.3, -32.5, -21.4, -10.0, 1.4, 12.5, 23.3, 33.7, 43.6, 53.1, 62.3, 97.7, 106.9, 116.4, 126.3, 136.7, 147.5, 158.6, 170.0, 181.4, 192.5, 203.3, 213.7, 223.6, 233.1, 242.3, ], [ -80.5, -70.6, -60.7, -50.7, -40.6, -30.5, -20.3, -10.0, 0.3, 10.5, 20.6, 30.7, 40.7, 50.6, 60.5, 99.5, 109.4, 119.3, 129.3, 139.4, 149.5, 159.7, 170.0, 180.3, 190.5, 200.6, 210.7, 220.7, 230.6, 240.5, ], [ -80.0, -70.0, -60.0, -50.0, -40.0, -30.0, -20.0, -10.0, 0.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 100.0, 110.0, 120.0, 130.0, 140.0, 150.0, 160.0, 170.0, 180.0, 190.0, 200.0, 210.0, 220.0, 230.0, 240.0, ], [ -80.0, -70.0, -60.0, -50.0, -40.0, -30.0, -20.0, -10.0, 0.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 100.0, 110.0, 120.0, 130.0, 140.0, 150.0, 160.0, 170.0, 180.0, 190.0, 200.0, 210.0, 220.0, 230.0, 240.0, ], [ -80.0, -70.0, -60.0, -50.0, -40.0, -30.0, -20.0, -10.0, 0.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 100.0, 110.0, 120.0, 130.0, 140.0, 150.0, 160.0, 170.0, 180.0, 190.0, 200.0, 210.0, 220.0, 230.0, 240.0, ], [ -80.0, -70.0, -60.0, -50.0, -40.0, -30.0, -20.0, -10.0, 0.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 100.0, 110.0, 120.0, 130.0, 140.0, 150.0, 160.0, 170.0, 180.0, 190.0, 200.0, 210.0, 220.0, 230.0, 240.0, ], [ -80.0, -70.0, -60.0, -50.0, -40.0, -30.0, -20.0, -10.0, 0.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 100.0, 110.0, 120.0, 130.0, 140.0, 150.0, 160.0, 170.0, 180.0, 190.0, 200.0, 210.0, 220.0, 230.0, 240.0, ], ], dtype=numpy.float64) geolon_c = geolon_c.T[:, :, numpy.newaxis, numpy.newaxis, numpy.newaxis, numpy.newaxis] geolat_c = numpy.array([ [ 72.35, 75.41, 78.20, 80.77, 83.20, 85.52, 87.78, 90.00, 87.78, 85.52, 83.20, 80.77, 78.20, 75.41, 72.35, 72.35, 75.41, 78.20, 80.77, 83.20, 85.52, 87.78, 90.00, 87.78, 85.52, 83.20, 80.77, 78.20, 75.41, 72.35, ], [ 71.85, 74.69, 77.25, 79.54, 81.58, 83.30, 84.53, 85.00, 84.53, 83.30, 81.58, 79.54, 77.25, 74.69, 71.85, 71.85, 74.69, 77.25, 79.54, 81.58, 83.30, 84.53, 85.00, 84.53, 83.30, 81.58, 79.54, 77.25, 74.69, 71.85, ], [ 70.51, 72.81, 74.83, 76.56, 77.99, 79.08, 79.76, 80.00, 79.76, 79.08, 77.99, 76.56, 74.83, 72.81, 70.51, 70.51, 72.81, 74.83, 76.56, 77.99, 79.08, 79.76, 80.00, 79.76, 79.08, 77.99, 76.56, 74.83, 72.81, 70.51, ], [ 68.71, 70.29, 71.67, 72.83, 73.76, 74.44, 74.86, 75.00, 74.86, 74.44, 73.76, 72.83, 71.67, 70.29, 68.71, 68.71, 70.29, 71.67, 72.83, 73.76, 74.44, 74.86, 75.00, 74.86, 74.44, 73.76, 72.83, 71.67, 70.29, 68.71, ], [ 66.80, 67.60, 68.30, 68.90, 69.37, 69.72, 69.93, 70.00, 69.93, 69.72, 69.37, 68.90, 68.30, 67.60, 66.80, 66.80, 67.60, 68.30, 68.90, 69.37, 69.72, 69.93, 70.00, 69.93, 69.72, 69.37, 68.90, 68.30, 67.60, 66.80, ], [ 65.00, 65.00, 65.00, 65.00, 65.00, 65.00, 65.00, 65.00, 65.00, 65.00, 65.00, 65.00, 65.00, 65.00, 65.00, 65.00, 65.00, 65.00, 65.00, 65.00, 65.00, 65.00, 65.00, 65.00, 65.00, 65.00, 65.00, 65.00, 65.00, 65.00, ], [ 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, ], [ 55.00, 55.00, 55.00, 55.00, 55.00, 55.00, 55.00, 55.00, 55.00, 55.00, 55.00, 55.00, 55.00, 55.00, 55.00, 55.00, 55.00, 55.00, 55.00, 55.00, 55.00, 55.00, 55.00, 55.00, 55.00, 55.00, 55.00, 55.00, 55.00, 55.00, ], [ 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, ], [ 45.00, 45.00, 45.00, 45.00, 45.00, 45.00, 45.00, 45.00, 45.00, 45.00, 45.00, 45.00, 45.00, 45.00, 45.00, 45.00, 45.00, 45.00, 45.00, 45.00, 45.00, 45.00, 45.00, 45.00, 45.00, 45.00, 45.00, 45.00, 45.00, 45.00, ], ], dtype=numpy.float64) geolat_c = geolat_c.T[:, :, numpy.newaxis, numpy.newaxis, numpy.newaxis, numpy.newaxis] # Make the value an approximate sphere surface area (in square degrees) of the quadrilateral vals = geolon_c[:-1, :-1] * geolat_c[:-1, 1:] vals -= geolon_c[:-1, 1:] * geolat_c[:-1, :-1] vals += geolon_c[:-1, 1:] * geolat_c[ 1:, 1:] vals -= geolon_c[ 1:, 1:] * geolat_c[:-1, 1:] vals += geolon_c[ 1:, 1:] * geolat_c[ 1:, :-1] vals -= geolon_c[ 1:, :-1] * geolat_c[ 1:, 1:] vals += geolon_c[ 1:, :-1] * geolat_c[:-1, :-1] vals -= geolon_c[:-1, :-1] * geolat_c[ 1:, :-1] vals = 0.5 * numpy.fabs(vals) vals *= numpy.cos( 0.25 * numpy.deg2rad(geolat_c[:-1, :-1] + \ geolat_c[:-1, 1:] + \ geolat_c[ 1:, 1:] + \ geolat_c[ 1:, :-1]) ) # Assign the value of the rectangles between 60E and 100E with the missing value resbdf = numpy.array([-99999.0], dtype=numpy.float64) inpbdfs = numpy.array([-88888.0, -77777.0, -66666.0, -55555.0, -44444.0, -33333.0], dtype=numpy.float64) vals[14,:,0,0] = inpbdfs[3] # Make sure these calls do not generate errors info = ferret_init(0) del info limits = ferret_result_limits(0) del limits # Create the shapefile result = numpy.ones((1,1,1,1,1,1), dtype=numpy.float64) ferret_compute(0, result, resbdf, (shapefilename, geolon_c, geolat_c, vals, fieldname, ""), inpbdfs) # Read the shapefile back in and check sfreader = shapefile.Reader(shapefilename) shapes = sfreader.shapes() records = sfreader.records() explen = (vals.shape[0] - 1) * vals.shape[1] if len(shapes) != explen: raise ValueError("Expected %d shapes; found %d" % (explen, len(shapes))) if len(records) != explen: raise ValueError("Expected %d records; found %d" % (explen, len(records))) # Create the expected arrays of shape coordinates and values exppoints = [] expvals = [] for j in range(vals.shape[1]): for i in range(vals.shape[0]): if vals[i, j, 0, 0, 0, 0] != inpbdfs[3]: exppoints.append( numpy.array([ [ geolon_c[i, j, 0, 0, 0, 0], geolat_c[i, j, 0, 0, 0, 0] ], [ geolon_c[i+1, j, 0, 0, 0, 0], geolat_c[i+1, j, 0, 0, 0, 0] ], [ geolon_c[i+1, j+1, 0, 0, 0, 0], geolat_c[i+1, j+1, 0, 0, 0, 0] ], [ geolon_c[i, j+1, 0, 0, 0, 0], geolat_c[i, j+1, 0, 0, 0, 0] ], [ geolon_c[i, j, 0, 0, 0, 0], geolat_c[i, j, 0, 0, 0, 0] ] ]) ) expvals.append(vals[i, j, 0, 0, 0, 0]) # Verify these arrays - does not depend on the same ordering of the shapes for (shape, record) in zip(shapes, records): for k in range(len(exppoints)): if numpy.allclose(shape.points, exppoints[k], rtol=1.0E-4): break else: raise ValueError("Unexpected vertices %s" % str(shape.points)) if not numpy.allclose(record, expvals[k], rtol=1.0E-4): raise ValueError("Expected value %s; found %s for shape.points %s" % \ (str(expvals[k]), str(record), str(shape.points))) junk = exppoints.pop(k) junk = expvals.pop(k) # Verify the projection file prjfile = file("%s.prj" % shapefilename, "r") datalines = prjfile.readlines() prjfile.close() if len(datalines) != 1: raise ValueError("Number of lines in the .prj file: expected: 1, found %d" % len(datalines)) descript = datalines[0].strip() if descript != wgs84_descript: raise ValueError("Description in the .prj file:\n" \ " expect: %s\n" \ " found: %s" % (wgs84_descript, descript)) # Shapefile data files no longer needed os.remove("%s.dbf" % shapefilename) os.remove("%s.shp" % shapefilename) os.remove("%s.shx" % shapefilename) os.remove("%s.prj" % shapefilename) # Commented-out code used for further testing testcode = """ sortedvals = numpy.sort(vals[ vals != inpbdfs[3] ]) numvals = sortedvals.shape[0] limits = [ sortedvals[1 * numvals // 5], sortedvals[2 * numvals // 5], sortedvals[3 * numvals // 5], sortedvals[4 * numvals // 5], ] print str( [ sortedvals[0] ] + limits + [ sortedvals[-1] ] ) partvals = vals.copy() partvals[ partvals >= limits[0] ] = inpbdfs[3] ferret_compute(0, result, resbdf, (shapefilename + "_1", geolon_c, geolat_c, partvals, fieldname, ""), inpbdfs) partvals = vals.copy() partvals[ partvals < limits[0] ] = inpbdfs[3] partvals[ partvals >= limits[1] ] = inpbdfs[3] ferret_compute(0, result, resbdf, (shapefilename + "_2", geolon_c, geolat_c, partvals, fieldname, ""), inpbdfs) partvals = vals.copy() partvals[ partvals < limits[1] ] = inpbdfs[3] partvals[ partvals >= limits[2] ] = inpbdfs[3] ferret_compute(0, result, resbdf, (shapefilename + "_3", geolon_c, geolat_c, partvals, fieldname, ""), inpbdfs) partvals = vals.copy() partvals[ partvals < limits[2] ] = inpbdfs[3] partvals[ partvals >= limits[3] ] = inpbdfs[3] ferret_compute(0, result, resbdf, (shapefilename + "_4", geolon_c, geolat_c, partvals, fieldname, ""), inpbdfs) partvals = vals.copy() partvals[ partvals < limits[3] ] = inpbdfs[3] ferret_compute(0, result, resbdf, (shapefilename + "_5", geolon_c, geolat_c, partvals, fieldname, ""), inpbdfs) """ print("shapefile_writexyval: SUCCESS") ``` #### File: PyFerret/pyfermod/fervar.py ```python import numbers import pyferret # common regridding methods REGRID_LINEAR = "@LIN" REGRID_AVERAGE = "@AVE" REGRID_ASSOCIATE = "@ASN" REGRID_MEAN = "@BIN" REGRID_NEAREST = "@NRST" REGRID_MIN = "@MIN" REGRID_MAX = "@MAX" REGRID_EXACT = "@XACT" _ADDED_ATTRIBUTES = ('data', 'grid', 'missval', 'unit') class FerVar(object): ''' Ferret variable object ''' def __init__(self, defn=None, title=None): ''' Creates a Ferret variable with (optionally) a title and a Ferret-syntax definition defn (string): Ferret-syntax definition of the variable title (string): title (descriptive long name) for this variable ''' # Record or generate the definition, or set to an empty string if defn: if not isinstance(defn, str): raise ValueError("defn is not a string") self._definition = defn else: self._definition = '' # Name of the variable in the dataset self._varname = '' # Name of the dataset self._dsetname = '' # Record the title for this variable, or am empty string if not given self.settitle(title) # Is this a file variable? self._isfilevar = False # The list of uppercase _varname's that are know to be used # in the definition. This list is not guaranteed to be complete # and is not used in comparisons. self._requires = set() # Call the unload method to create and set the defaults for # _datagrid, _dataarray, _dataunit, and _missingvalue. # _datagrid is a FerGrid describing the Ferret grid for the variable. # _dataarray is a NumPy ndarray contains the Ferret data for the variable. # _dataunit is a string given the unit of the data # _missingvalue is the missing value used for the data self.unload() def copy(self): ''' Return an anonymous copy (only the definition is copied) of this FerVar. ''' newvar = FerVar(defn=self._definition) newvar._requires.update(self._requires) return newvar def settitle(self, title): ''' Assigns the title (long descriptive name) for this FerVar. If this variable is defined in Ferret, the title for the Ferret variable is also updated. title (string): title to assign Raises ValueError if title is not a string or if there is a problem updating the title in Ferret ''' if title: if not isinstance(title, str): raise ValueError("title is not a string") self._title = title else: self._title = '' if self._varname: cmdstr = 'SET VAR/TITLE="%s" %s' % (self._title, self.fername()) (errval, errmsg) = pyferret.run(cmdstr) if errval != pyferret.FERR_OK: raise ValueError('problems updating the variable title in Ferret for ' + \ '%s to "%s": %s' % (self.fername(), self._title, errmsg)) def fername(self): ''' Returns the Ferret name for this variable; namely, <_varname>[d=<_dsetname>] if _dsetname is given; otherwise, just <_varname> Raises ValueError if _varname is not defined ''' if not self._varname: raise ValueError('this FerVar does not contain a Ferret variable name') if self._dsetname: fername = '%s[d=%s]' % (self._varname, self._dsetname) else: fername = '%s' % self._varname return fername def __repr__(self): ''' Representation of this FerVar ''' infostr = "FerVar(varname='%s', dsetname='%s', title = '%s', defn='%s')" \ % (self._varname, self._dsetname, self._title, self._definition) return infostr def __del__(self): ''' Removes this variable, if possible, from Ferret. Any error are ignored. ''' # Try to remove from Ferret but ignore errors try: self._removefromferret() except Exception: pass def __cmp__(self, other): ''' FerVars are ordered alphabetically, case-insensitive, first by the Ferret variable name, then by the dataset name, title, and finally by the definition. (Used by the "rich comparison" methods.) ''' if not isinstance(other, FerVar): raise NotImplementedError('other is not a FerVar') supper = self._varname.upper() oupper = other._varname.upper() if supper < oupper: return -1 if supper > oupper: return 1 supper = self._dsetname.upper() oupper = other._dsetname.upper() if supper < oupper: return -1 if supper > oupper: return 1 supper = self._title.upper() oupper = other._title.upper() if supper < oupper: return -1 if supper > oupper: return 1 supper = self._definition.upper() oupper = other._definition.upper() if supper < oupper: return -1 if supper > oupper: return 1 return 0 def __eq__(self, other): ''' Two FerVars are equal if all of the following are True: they have the same Ferret variable name, they have the same dataset name, they have the same title, and they have the same definition. All these comparisons are case-insensitive. ''' try: return ( self.__cmp__(other) == 0 ) except NotImplementedError: return NotImplemented def __ne__(self, other): ''' Two FerVars are not equal if any of the following are True: they have different Ferret variable names, they have different dataset names, they have different titles, or they have different definitions. All these comparisons are case-insensitive. ''' try: return ( self.__cmp__(other) != 0 ) except NotImplementedError: return NotImplemented def __lt__(self, other): ''' FerVars are ordered alphabetically, case-insensitive, first by the Ferret variable name, then by the dataset name, title, and finally by the definition. ''' try: return ( self.__cmp__(other) < 0 ) except NotImplementedError: return NotImplemented def __le__(self, other): ''' FerVars are ordered alphabetically, case-insensitive, first by the Ferret variable name, then by the dataset name, title, and finally by the definition. ''' try: return ( self.__cmp__(other) <= 0 ) except NotImplementedError: return NotImplemented def __gt__(self, other): ''' FerVars are ordered alphabetically, case-insensitive, first by the Ferret variable name, then by the dataset name, title, and finally by the definition. ''' try: return ( self.__cmp__(other) > 0 ) except NotImplementedError: return NotImplemented def __ge__(self, other): ''' FerVars are ordered alphabetically, case-insensitive, first by the Ferret variable name, then by the dataset name, title, and finally by the definition. ''' try: return ( self.__cmp__(other) >= 0 ) except NotImplementedError: return NotImplemented def __nonzero__(self): ''' Returns False if the Ferret variable name, dataset name, title, and definition are all empty. (For Python2.x) ''' if self._varname: return True if self._dsetname: return True if self._title: return True if self._definition: return True return False def __bool__(self): ''' Returns False if the Ferret variable name, dataset name, title and definition are all empty. (For Python3.x) ''' return self.__nonzero__() def __add__(self, other): ''' If other is a FerVar, returns an anonymous FerVar whose definition is the sum of the FerVar definitions. If other is Real, returns an anonymous FerVar whose definition is the sum of the FerVar definition with the number. If other is not a FerVar or Real, returns NotImplemented ''' if isinstance(other, FerVar): newdef = '(%s) + (%s)' % (self._definition, other._definition) newvar = FerVar(defn=newdef) newvar._requires.update(self._requires) newvar._requires.update(other._requires) return newvar if isinstance(other, numbers.Real): newdef = '(%s) + %s' % (self._definition, str(other)) newvar = FerVar(defn=newdef) newvar._requires.update(self._requires) return newvar return NotImplemented def __radd__(self, other): ''' If other is a FerVar, returns an anonymous FerVar whose definition is the sum of the FerVar definitions. If other is Real, returns an anonymous FerVar whose definition is the sum of the FerVar definition with the number. If other is not a FerVar or Real, returns NotImplemented ''' if isinstance(other, FerVar): newdef = '(%s) + (%s)' % (other._definition, self._definition) newvar = FerVar(defn=newdef) newvar._requires.update(self._requires) newvar._requires.update(other._requires) return newvar if isinstance(other, numbers.Real): newdef = '%s + (%s)' % (str(other), self._definition) newvar = FerVar(defn=newdef) newvar._requires.update(self._requires) return newvar return NotImplemented def __sub__(self, other): ''' If other is a FerVar, returns an anonymous FerVar whose definition is the difference (self - other) of the FerVar definitions. If other is Real, returns an anonymous FerVar whose definition is the difference (self - other) of the FerVar definition with the number. If other is not a FerVar or Real, returns NotImplemented ''' if isinstance(other, FerVar): newdef = '(%s) - (%s)' % (self._definition, other._definition) newvar = FerVar(defn=newdef) newvar._requires.update(self._requires) newvar._requires.update(other._requires) return newvar if isinstance(other, numbers.Real): newdef = '(%s) - %s' % (self._definition, str(other)) newvar = FerVar(defn=newdef) newvar._requires.update(self._requires) return newvar return NotImplemented def __rsub__(self, other): ''' If other is a FerVar, returns an anonymous FerVar whose definition is the difference (other - self) of the FerVar definitions. If other is Real, returns an anonymous FerVar whose definition is the difference (other - self) of the FerVar definition with the number. If other is not a FerVar or Real, returns NotImplemented ''' if isinstance(other, FerVar): newdef = '(%s) - (%s)' % (other._definition, self._definition) newvar = FerVar(defn=newdef) newvar._requires.update(self._requires) newvar._requires.update(other._requires) return newvar if isinstance(other, numbers.Real): newdef = '%s - (%s)' % (str(other), self._definition) newvar = FerVar(defn=newdef) newvar._requires.update(self._requires) return newvar return NotImplemented def __mul__(self, other): ''' If other is a FerVar, returns an anonymous FerVar whose definition is the product of the FerVar definitions. If other is Real, returns an anonymous FerVar whose definition is the product of the FerVar definition with the number. If other is not a FerVar or Real, returns NotImplemented ''' if isinstance(other, FerVar): newdef = '(%s) * (%s)' % (self._definition, other._definition) newvar = FerVar(defn=newdef) newvar._requires.update(self._requires) newvar._requires.update(other._requires) return newvar if isinstance(other, numbers.Real): newdef = '(%s) * %s' % (self._definition, str(other)) newvar = FerVar(defn=newdef) newvar._requires.update(self._requires) return newvar return NotImplemented def __rmul__(self, other): ''' If other is a FerVar, returns an anonymous FerVar whose definition is the product of the FerVar definitions. If other is Real, returns an anonymous FerVar whose definition is the product of the FerVar definition with the number. If other is not a FerVar or Real, returns NotImplemented ''' if isinstance(other, FerVar): newdef = '(%s) * (%s)' % (other._definition, self._definition) newvar = FerVar(defn=newdef) newvar._requires.update(self._requires) newvar._requires.update(other._requires) return newvar if isinstance(other, numbers.Real): newdef = '%s * (%s)' % (str(other), self._definition) newvar = FerVar(defn=newdef) newvar._requires.update(self._requires) return newvar return NotImplemented def __truediv__(self, other): ''' If other is a FerVar, returns an anonymous FerVar whose definition is the quotient (self / other) of the FerVar definitions. If other is Real, returns an anonymous FerVar whose definition is the quotient (self / other) of the FerVar definition with the number. If other is not a FerVar or Real, returns NotImplemented (For Python3.x) ''' if isinstance(other, FerVar): newdef = '(%s) / (%s)' % (self._definition, other._definition) newvar = FerVar(defn=newdef) newvar._requires.update(self._requires) newvar._requires.update(other._requires) return newvar if isinstance(other, numbers.Real): newdef = '(%s) / %s' % (self._definition, str(other)) newvar = FerVar(defn=newdef) newvar._requires.update(self._requires) return newvar return NotImplemented def __rtruediv__(self, other): ''' If other is a FerVar, returns an anonymous FerVar whose definition is the quotient (other / self) of the FerVar definitions. If other is Real, returns an anonymous FerVar whose definition is the quotient (other / self) of the FerVar definition with the number. If other is not a FerVar or Real, returns NotImplemented (For Python3.x) ''' if isinstance(other, FerVar): newdef = '(%s) / (%s)' % (other._definition, self._definition) newvar = FerVar(defn=newdef) newvar._requires.update(self._requires) newvar._requires.update(other._requires) return newvar if isinstance(other, numbers.Real): newdef = '%s / (%s)' % (str(other), self._definition) newvar = FerVar(defn=newdef) newvar._requires.update(self._requires) return newvar return NotImplemented def __div__(self, other): ''' If other is a FerVar, returns an anonymous FerVar whose definition is the quotient (self / other) of the FerVar definitions. If other is Real, returns an anonymous FerVar whose definition is the quotient (self / other) of the FerVar definition with the number. If other is not a FerVar or Real, returns NotImplemented (For Python2.x) ''' return self.__truediv__(other) def __rdiv__(self, other): ''' If other is a FerVar, returns an anonymous FerVar whose definition is the quotient (other / self) of the FerVar definitions. If other is Real, returns an anonymous FerVar whose definition is the quotient (other / self) of the FerVar definition with the number. If other is not a FerVar or Real, returns NotImplemented (For Python2.x) ''' return self.__rtruediv__(other) def __pow__(self, other): ''' If other is a FerVar, returns an anonymous FerVar whose definition is the exponentiation (self ^ other) of the FerVar definitions. If other is Real, returns an anonymous FerVar whose definition is the exponentiation (self ^ other) of the FerVar definition with the number. If other is not a FerVar or Real, returns NotImplemented ''' if isinstance(other, FerVar): newdef = '(%s) ^ (%s)' % (self._definition, other._definition) newvar = FerVar(defn=newdef) newvar._requires.update(self._requires) newvar._requires.update(other._requires) return newvar if isinstance(other, numbers.Real): newdef = '(%s) ^ %s' % (self._definition, str(other)) newvar = FerVar(defn=newdef) newvar._requires.update(self._requires) return newvar return NotImplemented def __rpow__(self, other): ''' If other is a FerVar, returns an anonymous FerVar whose definition is the exponentiation (other ^ self) of the FerVar definitions. If other is Real, returns an anonymous FerVar whose definition is the exponentiation (other ^ self) of the FerVar definition with the number. If other is not a FerVar or Real, returns NotImplemented ''' if isinstance(other, FerVar): newdef = '(%s) ^ (%s)' % (other._definition, self._definition) newvar = FerVar(defn=newdef) newvar._requires.update(self._requires) newvar._requires.update(other._requires) return newvar if isinstance(other, numbers.Real): newdef = '%s ^ (%s)' % (str(other), self._definition) newvar = FerVar(defn=newdef) newvar._requires.update(self._requires) return newvar return NotImplemented def __neg__(self): ''' Returns an anonymous FerVar whose definition is the product of -1.0 and this FerVar definition. ''' newdef = '-1.0 * (%s)' % self._definition newvar = FerVar(defn=newdef) newvar._requires.update(self._requires) return newvar def __pos__(self): ''' Returns an anonymous FerVar whose definition is the same as this FerVar definition. ''' newvar = FerVar(defn=self._definition) newvar._requires.update(self._requires) return newvar def __abs__(self): ''' Returns an anonymous FerVar whose definition is the absolute value of this FerVar definition. ''' newdef = 'abs(%s)' % self._definition newvar = FerVar(defn=newdef) newvar._requires.update(self._requires) return newvar def __getitem__(self, key): ''' This FerVar must be assigned in Ferret. If key is 'data', returns the data array for this FerVar, loading it if necessary. If key is 'grid', returns the data grid for this FerVar, loading it if necessary. If key is 'missval', returns the value for missing data for this FerVar. If key is 'unit', returns the data unit for this FerVar. Otherwise, assumes key is a slice or subset specification, and returns an anonymous FerVar whose definition is a subset of this FerVar. key is an int, float, string, int slice, float slice, string slice, or a tuple of these values. - int are interpreted as index/indices - floats are interpreted as axis values - strings are interpreted as axis values possibly with units Units in a string designate an axis; otherwise the index within the given tuple (or zero if not a tuple) specifies the axis. For example ['20N':'50N'] will always be a latitude subset. TODO: handle step values ''' if key is None: raise KeyError('None is not a valid key') if not self._varname: raise NotImplementedError('variable not assigned in Ferret') if key == 'data': return self.getdata() if key == 'grid': return self.getgrid() if key == 'missval': return self.getmissval() if key == 'unit': return self.getunit() coordlimits = [ None ] * pyferret.MAX_FERRET_NDIM indexlimits = [ None ] * pyferret.MAX_FERRET_NDIM changed = False # TODO: handle step values, try to condense code if isinstance(key, tuple): for k in range(len(key)): piece = key[k] if piece is None: continue if isinstance(piece, slice): try: (axtype, start, stop, step) = pyferret.FerAxis._parsegeoslice(piece) except Exception as ex: raise KeyError('%s is not valid: %s' % (str(piece), str(ex))) if step is not None: raise KeyError('step values in slices are not supported at this time') if axtype == pyferret.AXISTYPE_LONGITUDE: if coordlimits[pyferret.X_AXIS] or indexlimits[pyferret.X_AXIS]: raise KeyError('two longitude slices given') coordlimits[pyferret.X_AXIS] = '%s:%s' % (str(start), str(stop)) changed = True elif axtype == pyferret.AXISTYPE_LATITUDE: if coordlimits[pyferret.Y_AXIS] or indexlimits[pyferret.Y_AXIS]: raise KeyError('two latitude slices given') coordlimits[pyferret.Y_AXIS] = '%s:%s' % (str(start), str(stop)) changed = True elif axtype == pyferret.AXISTYPE_LEVEL: if coordlimits[pyferret.Z_AXIS] or indexlimits[pyferret.Z_AXIS]: raise KeyError('two level slices given') coordlimits[pyferret.Z_AXIS] = '%s:%s' % (str(start), str(stop)) changed = True elif axtype == pyferret.AXISTYPE_TIME: if coordlimits[pyferret.T_AXIS] or indexlimits[pyferret.T_AXIS]: raise KeyError('two time slices given') starttime = pyferret.FerAxis._makedatestring(start) stoptime = pyferret.FerAxis._makedatestring(stop) coordlimits[pyferret.T_AXIS] = '%s:%s' % (starttime, stoptime) changed = True elif isinstance(start,int) and isinstance(stop,int): if coordlimits[k] or indexlimits[k]: raise KeyError('two slices for axis index %d given' % k) # do not know the axis length at this time if (start < 0) or (stop < 0): raise KeyError('negative indices not supported at this time') # Ferret indices start at 1 start += 1 stop += 1 indexlimits[k] = '%d:%d' % (start, stop) changed = True elif isinstance(start,numbers.Real) and isinstance(stop,numbers.Real): if coordlimits[k] or indexlimits[k]: raise KeyError('two slices for axis index %d given' % k) coordlimits[k] = '%s:%s' % (str(start), str(stop)) changed = True elif (start is None) and (stop is None): # full range on this axis if coordlimits[k] or indexlimits[k]: raise KeyError('two slices for axis index %d given' % k) continue else: raise KeyError('%s in not valid' % str(piece)) else: try: (axtype, val) = pyferret.FerAxis._parsegeoval(piece) except Exception as ex: raise KeyError('%s is not valid: %s' % (str(piece), str(ex))) if axtype == pyferret.AXISTYPE_LONGITUDE: if coordlimits[pyferret.X_AXIS] or indexlimits[pyferret.X_AXIS]: raise KeyError('two longitude slices given') coordlimits[pyferret.X_AXIS] = '%s' % str(val) changed = True elif axtype == pyferret.AXISTYPE_LATITUDE: if coordlimits[pyferret.Y_AXIS] or indexlimits[pyferret.Y_AXIS]: raise KeyError('two latitude slices given') coordlimits[pyferret.Y_AXIS] = '%s' % str(val) changed = True elif axtype == pyferret.AXISTYPE_LEVEL: if coordlimits[pyferret.Z_AXIS] or indexlimits[pyferret.Z_AXIS]: raise KeyError('two level slices given') coordlimits[pyferret.Z_AXIS] = '%s' % str(val) changed = True elif axtype == pyferret.AXISTYPE_TIME: if coordlimits[pyferret.T_AXIS] or indexlimits[pyferret.T_AXIS]: raise KeyError('two time slices given') coordlimits[pyferret.T_AXIS] = pyferret.FerAxis._makedatestring(val) changed = True elif isinstance(val,int): if coordlimits[k] or indexlimits[k]: raise KeyError('two slices for axis index %d given' % k) # do not know the axis length at this time if val < 0: raise KeyError('negative indices not supported at this time') # Ferret indices start at 1 val += 1 indexlimits[k] = '%d' % val changed = True elif isinstance(val,numbers.Real): if coordlimits[k] or indexlimits[k]: raise KeyError('two slices for axis index %d given' % k) coordlimits[k] = '%s' % str(val) changed = True else: raise KeyError('%s in not valid' % str(piece)) elif isinstance(key, slice): try: (axtype, start, stop, step) = pyferret.FerAxis._parsegeoslice(key) except Exception as ex: raise KeyError('%s is not valid: %s' % (str(key), str(ex))) if step is not None: raise KeyError('step values in slices are not supported at this time') if axtype == pyferret.AXISTYPE_LONGITUDE: coordlimits[pyferret.X_AXIS] = '%s:%s' % (str(start), str(stop)) changed = True elif axtype == pyferret.AXISTYPE_LATITUDE: coordlimits[pyferret.Y_AXIS] = '%s:%s' % (str(start), str(stop)) changed = True elif axtype == pyferret.AXISTYPE_LEVEL: coordlimits[pyferret.Z_AXIS] = '%s:%s' % (str(start), str(stop)) changed = True elif axtype == pyferret.AXISTYPE_TIME: starttime = pyferret.FerAxis._makedatestring(start) stoptime = pyferret.FerAxis._makedatestring(stop) coordlimits[pyferret.T_AXIS] = '%s:%s' % (starttime, stoptime) changed = True elif isinstance(start,int) and isinstance(stop,int): # do not know the axis length at this time if (start < 0) or (stop < 0): raise KeyError('negative indices not supported at this time') # Ferret indices start at 1 start += 1 stop += 1 indexlimits[0] = '%d:%d' % (start, stop) changed = True elif isinstance(start,numbers.Real) and isinstance(stop,numbers.Real): coordlimits[0] = '%s:%s' % (str(start), str(stop)) changed = True elif (start is None) and (stop is None): # full range - standard way of generating a duplicate pass else: raise KeyError('%s in not valid' % str(key)) else: try: (axtype, val) = pyferret.FerAxis._parsegeoval(key) except Exception as ex: raise KeyError('%s is not valid: %s' % (str(key), str(ex))) if axtype == pyferret.AXISTYPE_LONGITUDE: coordlimits[pyferret.X_AXIS] = '%s' % str(val) changed = True elif axtype == pyferret.AXISTYPE_LATITUDE: coordlimits[pyferret.Y_AXIS] = '%s' % str(val) changed = True elif axtype == pyferret.AXISTYPE_LEVEL: coordlimits[pyferret.Z_AXIS] = '%s' % str(val) changed = True elif axtype == pyferret.AXISTYPE_TIME: coordlimits[pyferret.T_AXIS] = pyferret.FerAxis._makedatestring(val) changed = True elif isinstance(val,int): # do not know the axis length at this time if val < 0: raise KeyError('negative indices not supported at this time') # Ferret indices start at 1 val += 1 indexlimits[k] = '%d' % val changed = True elif isinstance(start,numbers.Real): coordlimits[k] = '%s' % str(val) changed = True else: raise KeyError('%s in not valid' % str(key)) if not changed: # the whole thing - definition is just this variable newvar = FerVar(defn=self.fername()) newvar._requires.update(self._requires) return newvar # create the subset definition in Ferret if self._dsetname: newdef = '%s[d=%s,' % (self._varname, self._dsetname) else: newdef = '%s[' % self._varname if coordlimits[pyferret.X_AXIS]: newdef += 'X=%s,' % coordlimits[pyferret.X_AXIS] if indexlimits[pyferret.X_AXIS]: newdef += 'I=%s,' % indexlimits[pyferret.X_AXIS] if coordlimits[pyferret.Y_AXIS]: newdef += 'Y=%s,' % coordlimits[pyferret.Y_AXIS] if indexlimits[pyferret.Y_AXIS]: newdef += 'J=%s,' % indexlimits[pyferret.Y_AXIS] if coordlimits[pyferret.Z_AXIS]: newdef += 'Z=%s,' % coordlimits[pyferret.Z_AXIS] if indexlimits[pyferret.Z_AXIS]: newdef += 'K=%s,' % indexlimits[pyferret.Z_AXIS] if coordlimits[pyferret.T_AXIS]: newdef += 'T=%s,' % coordlimits[pyferret.T_AXIS] if indexlimits[pyferret.T_AXIS]: newdef += 'L=%s,' % indexlimits[pyferret.T_AXIS] if coordlimits[pyferret.E_AXIS]: newdef += 'E=%s,' % coordlimits[pyferret.E_AXIS] if indexlimits[pyferret.E_AXIS]: newdef += 'M=%s,' % indexlimits[pyferret.E_AXIS] if coordlimits[pyferret.F_AXIS]: newdef += 'F=%s,' % coordlimits[pyferret.F_AXIS] if indexlimits[pyferret.F_AXIS]: newdef += 'N=%s,' % indexlimits[pyferret.F_AXIS] # replace the final , with ] newdef = newdef[:-1] + ']' newvar = FerVar(defn=newdef) newvar._requires.update(self._requires) return newvar def __getattr__(self, name): ''' Return the data array (if name='data'), data grid (if name='grid'), name (if name='name'), or a copy of the coordinates (if name='coords') Note that this method is only called when the parent object does not have an attribute with this name. ''' try: if name in _ADDED_ATTRIBUTES: return self.__getitem__(name) except KeyError: pass raise AttributeError("unknown attribute '%s'" % name) def __dir__(self): ''' Returns a list of known attributes, including those added by the __getattr__ method. ''' mydir = list(_ADDED_ATTRIBUTES) mydir.extend( dir(super(FerVar, self)) ) return mydir def _markasknownvar(self, varname, dsetname, isfilevar): ''' Marks this variable as a variable already defined in Ferret. ''' if not varname: raise ValueError('varname is not given') if not isinstance(varname, str): raise ValueError('varname is not a string') if dsetname and not isinstance(varname, str): raise ValueError('dsetname name is not a string') self._varname = varname if dsetname: self._dsetname = dsetname else: self._dsetname = '' self._isfilevar = bool(isfilevar) self._definition = self.fername() self._requires.add(varname.upper()) self.unload() def _assigninferret(self, varname, dsetname): ''' Defines this FerVar in Ferret using the given variable name associated with the given dataset name. varname (string): name for the variable in Ferret dsetname (string): name of the dataset to contain the variable Raises a ValueError if there is a problem. ''' if not self._definition: raise ValueError('this FerVar does not contain a definition') if not varname: raise ValueError('variable name to be assigned is not given') if varname.upper() in self._requires: raise ValueError('recursive definitions cannot be implemented in Ferret') # Assign the variable in Ferret cmdstr = 'DEFINE VAR' if dsetname: cmdstr += '/D="%s"' % dsetname if self._title: cmdstr += '/TITLE="%s"' % self._title cmdstr += ' %s = %s' % (varname, self._definition) (errval, errmsg) = pyferret.run(cmdstr) if errval != pyferret.FERR_OK: raise ValueError('problems defining %s (%s) in Ferret: %s' % (varname, cmdstr, errmsg)) # Revise the fields in this FerVar to reflect this assignment self._markasknownvar(varname, dsetname, False) def _removefromferret(self): ''' Removes (cancels) this variable in Ferret, then unloads this FerVar and erases _varname. Raises a NotImplementedError is this is a file variable. Raises a ValueError if there is a Ferret problem. This normally is not called by the user; instead delete the FerVar from the dataset. ''' # ignore if this Ferrer variable has already been removed from Ferret if not self._varname: return fername = self.fername() if self._isfilevar: raise NotImplementedError('%s is a file variable; close the dataset to remove' % fername) cmdstr = 'CANCEL VAR %s' % fername (errval, errmsg) = pyferret.run(cmdstr) if errval != pyferret.FERR_OK: raise ValueError('unable to remove variable %s from Ferret: %s' % (fername, errmsg)) self._varname = '' self.unload() def unload(self): ''' Clears the grid and data stored in this FerVar. After this call, any request for the grid or data will automatically load the latest values from Ferret. This method should be called anytime there is a change in the definition of this variable, or a variable this variable uses. ''' self._datagrid = None self._dataarray = None self._dataunit = '' self._missingvalue = None def load(self): ''' Retrieves the grid and data for this Ferret variable from Ferret. This method is automatically called before returning the grid or data for the first time for this variable. This can be called to update the grid or data in this FerVar after any change in the definition of the variable. Alternatively, cleardata can be called to clear any stored grid and data, delaying the update from Ferret until the grid or data is requested. Raises a ValueEror if problems occur. ''' fername = self.fername() datadict = pyferret.getdata(fername, False) feraxes = [ ] for (axistype,axcoords,axunit,axname) in zip( datadict["axis_types"], datadict["axis_coords"], datadict["axis_units"], datadict["axis_names"]): feraxes.append( pyferret.FerAxis(coords=axcoords, axtype=axistype, unit=axunit, name=axname) ) self._datagrid = pyferret.FerGrid(axes=feraxes, name=fername) self._dataarray = datadict["data"] self._dataunit = datadict["data_unit"] self._missingvalue = datadict["missing_value"] def getdata(self): ''' Returns a copy of the data array for this Ferret variable, first loading this variable if necessary. Raises a ValueError is a problem occurs. ''' if (self._datagrid is None) or (self._dataarray is None): self.load() return self._dataarray.copy('A') def getgrid(self): ''' Returns a copy of the data grid for this Ferret variable, first loading this variable if necessary. Raises a ValueError is a problem occurs. ''' if (self._datagrid is None) or (self._dataarray is None): self.load() return self._datagrid.copy() def getmissval(self): ''' Returns the value used for missing data for this Ferret variable, first loading this variable if necessary. Raises a ValueError is a problem occurs. ''' if (self._datagrid is None) or (self._dataarray is None): self.load() # The missing value is a single-element ndarray return self._missingvalue[0] def getunit(self): ''' Returns the unit string of the data for this Ferret variable, first loading this variable if necessary. Raises a ValueError is a problem occurs. ''' if (self._datagrid is None) or (self._dataarray is None): self.load() return self._dataunit def showgrid(self, qual=''): ''' Show the Ferret grid information about this variable. This uses the Ferret SHOW GRID command to create and display the information. qual (string): Ferret qualifiers to add to the SHOW GRID command ''' if not isinstance(qual, str): raise ValueError('qual (Ferret qualifiers) must be a string') cmdstr = 'SHOW GRID' if qual: cmdstr += qual cmdstr += ' ' cmdstr += self.fername() (errval, errmsg) = pyferret.run(cmdstr) if errval != pyferret.FERR_OK: raise ValueError('Ferret command "%s" failed: %s' % (cmdstr, errmsg)) def regrid(self, newgrid, method=REGRID_LINEAR): ''' Returns an anonymous FerVar that is this variable regridded to the grid implied by newgrid using the given method. newgrid (FerVar | string | FerGrid): regrid to this implied grid; if a FerVar, the implied grid is the grid used by the Ferret variable, if a string, the implied grid is the grid known to Ferret by this name if a FerGrid, the implied grid is this grid (TODO: implement) method (string): method to perform the regridding; typically one of pyferret.REGRID_LINEAR (default) (multi-axis) linear interpolation of nearest source points around destination point pyferret.REGRID_AVERAGE length-weighted averaging of source point cells overlapping destination point cell pyferret.REGRID_ASSOCIATE blind association of source points to destination points by indices pyferret.REGRID_MEAN unweighted mean of source points in destination point cell pyferret.REGRID_NEAREST value of source point nearest the destination point pyferret.REGRID_MIN minimum value of source points in destination point cell pyferret.REGRID_MAX maximum value of source points in destination point cell pyferret.REGRID_EXACT copy values where source and destination points coincide; other destination points assigned missing value ''' if not self._varname: raise NotImplementedError('regridding can only be performed on variables assigned in Ferret') if not ( isinstance(method, str) and (method[0] == '@') ): raise ValueError('invalid regridding method %s' % str(method)) if isinstance(newgrid, FerVar): if not newgrid._varname: raise ValueError('FerVar used for the new grid is not assigned in Ferret') gridname = newgrid.fername() elif isinstance(newgrid, str): gridname = newgrid elif isinstance(newgrid, pyferret.FerGrid): raise NotImplementedError('regrid using FerGrid not implemented at this time') if self._dsetname: newdef = '%s[d=%s,g=%s%s]' % (self._varname, self._dsetname, gridname, method) else: newdef = '%s[g=%s%s]' % (self._varname, gridname, method) newvar = FerVar(defn=newdef) newvar._requires.update(self._requires) return newvar ``` #### File: pyfermod/graphbind/abstractpyferretbindings.py ```python class AbstractPyFerretBindings(object): ''' Abstract base class for providing bindings to graphics calls from PyFerret for a graphics engine. The methods defined in this class should all be re-implemented in a subclass for proper PyFerret behavior. ''' def __init__(self): ''' When PyFerret creates a Window for an engine, it creates an instance of the appropriate bindings class, then calls the createWindow method of this instance created. Thus instance variables will be for the one window associated with the bindings instance. ''' super(AbstractPyFerretBindings, self).__init__() def createWindow(self, title, visible, noalpha, rasteronly): ''' Creates a "Window object" for this graphics engine. Here, a Window is the complete drawing area. However, no drawing will be performed on a Window, only on Views (see beginView). Initializes the graphics engine if needed. The rasteronly option is for possible faster drawing by drawing directly to an image surface. If true, deleting segments may not be supported. Arguments: title: display title for the Window visible: display Window on start-up? noalpha: do not use the alpha channel in colors? rasteronly: only raster images will be used ? Returns True if a Window was successfully created. ''' return False def deleteWindow(self): ''' Deletes the Window associated with this instance of the bindings. When this call returns True, the Window should not be visible, all resources associated with this Window should have been released, After calling this function, this instance of the bindings should be deleted and considered no longer usable. ''' return False def setImageName(self, imagename, imgnamelen, formatname, fmtnamelen): ''' Assigns the name and format of the image file to be created. Arguments: imagename - name for the image file (can be NULL) imgnamelen - actual length of imagename (zero if NULL) formatname - name of the image format (case insensitive, can be NULL) fmtnamelen - actual length of formatname (zero if NULL) If formatname is empty or NULL, the filename extension of imagename, if it exists and is recognized, will determine the format. This method only suggests the name of the image file to be created. A file using the given name may or may not be open from this call. If a file was opened from this call (image data written to file as it is being drawn), the saveWindow method may not be supported. If a file was not opened from this call, the saveWindow method must be called to save the image. Thus, the filename provided here may only be used as a default filename. ''' raise AttributeError('not implemented') def setAntialias(self, antialias): ''' Turns on (antilaias True) or off (antialias False) anti-aliasing in future drawing commands. May not be implemented and thus raise an AttributeError. ''' raise AttributeError('not implemented') def beginView(self, leftfrac, bottomfrac, rightfrac, topfrac, clipit): ''' Creates a "View object" for the given Window. The view fractions start at (0.0, 0.0) in the left top corner and increase to (1.0, 1.0) in the right bottom corner; thus leftfrac must be less than rightfrac and topfrac must be less than bottomfrac. Arguments: leftfrac: [0,1] fraction of the Window width for the left side of the View bottomfrac: [0,1] fraction of the Window height for the bottom side of the View rightfrac: [0,1] fraction of the Window width for the right side of the View topfrac: [0,1] fraction of the Window height for the top side of the View clipit: clip drawing to this View? ''' raise AttributeError('not implemented') def clipView(self, clipit): ''' Enable or disable clipping to the current View. Arguments: clipit: clip drawings to the current View? ''' raise AttributeError('not implemented') def endView(self): ''' Closes the current View. When this call returns, the graphics drawn to the View should be visible in its Window. ''' raise AttributeError('not implemented') def beginSegment(self, segid): ''' Creates a "Segment object" for the given Window. A Segment is just a group of drawing commands. Arguments: segid: ID for the Segment ''' raise AttributeError('not implemented') def endSegment(self): ''' End the current "Segment" for the Window. ''' raise AttributeError('not implemented') def deleteSegment(self, segid): ''' Deletes the drawing commands in the indicated Segment. Arguments: segid: ID for the Segment to be deleted ''' raise AttributeError('not implemented') def updateWindow(self): ''' Indicates the viewer should update the graphics displayed. ''' raise AttributeError('not implemented') def clearWindow(self, bkgcolor): ''' Clears the Window of all drawings. The window is initialized to all bkgcolor (the background color). Arguments: bkgcolor: initialize (fill) the Window with this Color ''' raise AttributeError('not implemented') def redrawWindow(self, bkgcolor): ''' Redraw the current drawing except using bkgcolor as the background color (the initialization color for the Window). Arguments: bkgcolor: initialize (fill) the Window with this Color before redrawing the current drawing. ''' raise AttributeError('not implemented') def windowScreenInfo(self): ''' Returns the four-tuple (dpix, dpiy, screenwidth, screenheight) for the default screen (display) of this Window dpix: dots (pixels) per inch, in the horizontal (X) direction dpiy: dots (pixels) per inch, in the vertical (Y) direction screenwidth: width of the screen (display) in pixels (dots) screenheight: height of the screen (display) in pixels (dots) ''' raise AttributeError('not implemented') def resizeWindow(self, width, height): ''' Sets the current size of the Window. Arguments: width: width of the Window, in "device units" height: height of the window in "device units" "device units" is pixels at the current window DPI ''' raise AttributeError('not implemented') def scaleWindow(self, scale): ''' Sets the scaling factor for the Window. If zero, switch to auto-scaling (automatically scales to best fit window size without changing aspect ratio). If negative, scale using the absolute value and then switch to auto-scaling. Arguments: scale: scaling factor to use ''' raise AttributeError('not implemented') def showWindow(self, visible): ''' Display or hide a Window. A graphics engine that does not have the ability to display a Window should ignore this call. Arguments: visible: display (if True) or hide (if False) the Window ''' raise AttributeError('not implemented') def saveWindow(self, filename, fileformat, transparent, xinches, yinches, xpixels, ypixels, annotations): ''' Save the contents of the window to a file. This might be called when there is no image to save; in this case the call should be ignored. Arguments: filename: name of the file to create fileformat: name of the format to use transparent: use a transparent background? xinches: horizontal size of vector image in inches yinches: vertical size of vector image in inches xpixels: horizontal size of raster image in pixels ypixels: vertical size of raster image in pixels annotations: tuple of annotation strings If fileformat is NULL, the fileformat is guessed from the filename extension. If transparent is False, the entire scene is initialized to the last clearing color. If transparent is True, the entire scene is initialized as transparent. If annotations is not None, the strings given in the tuple are to be displayed above the image. These annotations add height, as needed, to the saved image (i.e., yinches or ypixels is the height of the image below these annotations). ''' raise AttributeError('not implemented') def createColor(self, redfrac, greenfrac, bluefrac, opaquefrac): ''' Returns a Color object from fractional [0.0, 1.0] intensities of the red, green, and blue channels. Arguments: redfrac: fractional [0.0, 1.0] red intensity greenfrac: fractional [0.0, 1.0] green intensity bluefrac: fractional [0.0, 1.0] blue intensity opaquefrac: fractional [0.0, 1.0] opaqueness (0.0 is transparent; 1.0 is opaque) of the color. If the graphics engine does not support this feature (alpha channel), this may be silently ignored and the color be completely opaque. Raises an error if unable to create the Color object. ''' raise AttributeError('not implemented') def deleteColor(self, color): ''' Delete a Color object created by createColor Arguments: color: Color to be deleted ''' raise AttributeError('not implemented') def createFont(self, familyname, fontsize, italic, bold, underlined): ''' Returns a Font object. Arguments: familyname: name of the font family (e.g., "Helvetica", "Times") fontsize: desired size of the font (scales with view size) italic: use the italic version of the font? bold: use the bold version of the font? underlined: use the underlined version of the font? Raises an error if unable to create the Font object. ''' raise AttributeError('not implemented') def deleteFont(self, font): ''' Delete a Font object created by createFont Arguments: font: Font to be deleted ''' raise AttributeError('not implemented') def createPen(self, color, width, style, capstyle, joinstyle): ''' Returns a Pen object. Arguments: color: Color to use width: line width (scales with view size) style: line style name (e.g., "solid", "dash") capstyle: end-cap style name (e.g., "square") joinstyle: join style name (e.g., "bevel") Raises an error if unable to create the Pen object. ''' raise AttributeError('not implemented') def replacePenColor(self, pen, newcolor): ''' Replaces the color in pen with newcolor. Arguments: pen: Pen object to modify newcolor: Color to use Raises an error if unable to replace the Color in the Pen. ''' raise AttributeError('not implemented') def deletePen(self, pen): ''' Delete a Pen object created by createPen Arguments: pen: Pen to be deleted ''' raise AttributeError('not implemented') def createBrush(self, color, style): ''' Returns a Brush object. Arguments: color: Color to use style: fill style name (e.g., "solid", "cross") Raises an error if unable to create the Brush object. ''' raise AttributeError('not implemented') def replaceBrushColor(self, brush, newcolor): ''' Replaces the color in brush with newcolor. Arguments: brush: Brush object to modify newcolor: Color to use Raises an error if unable to replace the Color in the Brush. ''' raise AttributeError('not implemented') def deleteBrush(self, brush): ''' Delete a Brush object created by createBrush Arguments: brush: Brush to be deleted ''' raise AttributeError('not implemented') def createSymbol(self, name, pts=None, fill=False): ''' Returns a Symbol object associated with the given name. If pts is not given, the symbol name must already be known, either as a pre-defined symbol or from a previous call to this method. If pts is given, the value is coordinates that define the symbol as multiline subpaths in a [-50,50] square. The location of the point this symbol represents will be at the center of the square. An invalid coordinate (outside [-50,50]) will terminate the current subpath, and the next valid coordinate will start a new subpath. This definition will replace an existing symbol with the given name. Arguments: name: (string) name of the symbol pts: (sequence of pairs of floats) vertex coordinates fill: (bool) color-fill symbol? Raises an error if name is not a string, if pts, if not None, is not a sequence of pairs of numbers, or if unable to create the Symbol object for any other reason. Returns a Symbol object. ''' raise AttributeError('not implemented') def deleteSymbol(self, symbol): ''' Delete a Symbol object created by createSymbol Arguments: symbol: Symbol to be deleted ''' raise AttributeError('not implemented') def setWidthFactor(self, widthfactor): ''' Assigns the scaling factor to be used for pen widths and symbols sizes Arguments: widthfactor: positive float giving the new scaling factor to use ''' raise AttributeError('not implemented') def drawMultiline(self, ptsx, ptsy, pen): ''' Draws connected line segments. Arguments: ptsx: X-coordinates of the endpoints ptsy: Y-coordinates of the endpoints pen: the Pen to use to draw the line segments Coordinates are measured from the upper left corner in "device units" (pixels at the current window DPI). ''' raise AttributeError('not implemented') def drawPoints(self, ptsx, ptsy, symbol, color, ptsize, highlight): ''' Draws discrete points. Arguments: ptsx: X-coordinates of the points ptsy: Y-coordinates of the points symbol: the Symbol to use to draw a point color: color of the symbol (default color if None or empty) ptsize: size of the symbol (scales with view size) highlight: outline color of the symbol (do not outline if None or empty) Coordinates are measured from the upper left corner in "device units" (pixels at the current window DPI). ''' raise AttributeError('not implemented') def drawPolygon(self, ptsx, ptsy, brush, pen): ''' Draws a polygon. Arguments: ptsx: X-coordinates of the vertices ptsy: Y-coordinates of the vertices brush: the Brush to use to fill the polygon; if None the polygon will not be filled pen: the Pen to use to outline the polygon; if None the polygon will not be outlined Coordinates are measured from the upper left corner in "device units" (pixels at the current window DPI). ''' raise AttributeError('not implemented') def drawRectangle(self, left, bottom, right, top, brush, pen): ''' Draws a rectangle. Arguments: left: X-coordinate of the left edge bottom: Y-coordinate of the bottom edge right: X-coordinate of the right edge top: Y-coordinate of the top edge brush: the Brush to use to fill the polygon; if None the polygon will not be filled pen: the Pen to use to outline the polygon; if None the polygon will not be outlined Coordinates are measured from the upper left corner in "device units" (pixels at the current window DPI). ''' raise AttributeError('not implemented') def textSize(self, text, font): ''' Returns the width and height of the text if drawn in the given font. The width is such that continuing text should be positioned at the start of this text plus this width. The height will always be the ascent plus descent for the font and is independent of the text. Arguments: text: the text string to draw font: the font to use Returns: (width, height) of the text in "device units" (pixels at the current window DPI) ''' raise AttributeError('not implemented') def drawText(self, text, startx, starty, font, color, rotate): ''' Draws text. Arguments: text: the text string to draw startx: the X-coordinate of the beginning baseline starty: the Y-coordinate of the beginning baseline font: the font to use color: the color to use as a solid brush or pen rotate: the angle of the text baseline in degrees clockwise from horizontal Coordinates are measured from the upper left corner in "device units" (pixels at the current window DPI). ''' raise AttributeError('not implemented') def setWaterMark(self, filename, len_filename, xloc, yloc, scalefrac, opacity): ''' Overlays watermark. Arguments: filename: path to water mark image len_filename: number of characters in filename xloc: horizontal position of upper left corner of watermark image yloc: vertical position of upper left corner of watermark image scalefrac: multiple of original image size to display plot as opacity: image visibility in range [0.0,1.0] where 0->invisible, 1->opaque ''' print(filename) print(xloc) print(yloc) print(scalefrac) print(opacity) raise AttributeError('not implented') ``` #### File: pyfermod/stats/stats_chisquare.py ```python from __future__ import print_function import numpy import pyferret import scipy.stats def ferret_init(id): """ Initialization for the stats_chisquare Ferret PyEF """ axes_values = [ pyferret.AXIS_DOES_NOT_EXIST ] * pyferret.MAX_FERRET_NDIM axes_values[0] = pyferret.AXIS_CUSTOM false_influences = [ False ] * pyferret.MAX_FERRET_NDIM retdict = { "numargs": 3, "descript": "Returns chi-square test stat. and prob. (and num. good categories, N) " \ "that sample counts of cat. data matches pop. expected counts. ", "axes": axes_values, "argnames": ( "SAMPLE_CNTS", "EXPECT_CNTS", "DELTA_DEGFREE", ), "argdescripts": ( "Sample counts of categorical data", "Expected counts or relative frequencies (will be adjusted)", "Difference from standard (N-1) degrees of freedom (num. computed parameters)", ), "argtypes": ( pyferret.FLOAT_ARRAY, pyferret.FLOAT_ARRAY, pyferret.FLOAT_ONEVAL, ), "influences": ( false_influences, false_influences, false_influences, ), } return retdict def ferret_custom_axes(id): """ Define custom axis of the stats_chisquare Ferret PyEF """ axis_defs = [ None ] * pyferret.MAX_FERRET_NDIM axis_defs[0] = ( 1, 3, 1, "X2,P,N", False ) return axis_defs def ferret_compute(id, result, resbdf, inputs, inpbdfs): """ Performs a chi-square test that a sample with the observed counts of categorical data, given in inputs[0], comes from a population with the expected counts or relative frequencies given in inputs[1]. The difference from the standard (n-1) degrees of freedom (eg, the number of population parameters estimated from the sample) are given in inputs[2]. The test statistic value and probability are returned in result. The counts arrays must either have the same shape or both have a single defined non-sigular axis of the same size. Categories that contain undefined counts are elimated before performing the test. Population values that are used in the test are adjust so their sum equals the sum of the sample counts used in the test. """ if inputs[0].shape != inputs[1].shape : shp0 = inputs[0].squeeze().shape shp1 = inputs[1].squeeze().shape if (len(shp0) > 1) or (len(shp1) > 1) or (shp0 != shp1): raise ValueError("SAMPLE_CNTS and EXPECT_CNTS must either have identical dimensions " \ "or both have only one defined non-singular axis of the same length") samcnts = inputs[0].reshape(-1) popcnts = inputs[1].reshape(-1) badsam = ( numpy.fabs(samcnts - inpbdfs[0]) < 1.0E-5 ) badsam = numpy.logical_or(badsam, numpy.isnan(samcnts)) goodsam = numpy.logical_not(badsam) badpop = ( numpy.fabs(popcnts - inpbdfs[1]) < 1.0E-5 ) badpop = numpy.logical_or(badpop, numpy.isnan(popcnts)) goodpop = numpy.logical_not(badpop) goodmask = numpy.logical_and(goodsam, goodpop) samcnts = numpy.array(samcnts[goodmask], dtype=numpy.float64) numgood = len(samcnts) if numgood < 2: raise ValueError("Not enough defined counts in common in SAMPLE_CNTS and EXPECT_CNTS") popcnts = numpy.array(popcnts[goodmask], dtype=numpy.float64) # Adjust the expected counts so its sum matches the sum of the sample # counts; thus expected counts can be proportions instead of counts # and removes issues about missing values. Get the adjustment factor # from the means instead of the sums for accuracy. popcnts = popcnts * (samcnts.mean() / popcnts.mean()) ddof = int(float(inputs[2]) + 0.5) fitparams = scipy.stats.chisquare(samcnts, popcnts, ddof) result[:] = resbdf # chi-square test statistic result[0] = fitparams[0] # probability result[1] = fitparams[1] # number of good categories result[2] = numgood # # The rest of this is just for testing this module at the command line # if __name__ == "__main__": # make sure ferret_init and ferret_custom_axes do not have problems info = ferret_init(0) info = ferret_custom_axes(0) # Get a sample histogram and expected frequencies ddof = 3 nbins = 90 ssize = 100 * nbins distf = scipy.stats.weibull_min(2.0, 5.0) chival = 1000.0 while chival > 100.0: sample = distf.rvs(ssize) bedges = distf.isf(numpy.linspace(0.95,0.05,nbins+1)) (histgr, retedges) = numpy.histogram(sample, bins=bedges) histgr = numpy.array(histgr, dtype=numpy.float64) exphist = numpy.ones((nbins,), dtype=numpy.float64) * histgr.mean() chival = ((histgr - exphist)**2 / exphist).sum() print("created a sample with chival = %f" % chival) prob = scipy.stats.chi2(nbins - 1 - ddof).sf(chival) expect = numpy.array([chival, prob, nbins], dtype=numpy.float64) print("sample histogram = \n%s" % str(histgr)) print("expect histogram value for all bins = %f" % exphist[0]) print("expect result = %s" % str(expect)) # setup for the call to ferret_compute - one non-singular axis inpbdfs = numpy.array([-9999.0, -8888.0, -7777.0], dtype=numpy.float64) resbdf = numpy.array([-6666.0], dtype=numpy.float64) samhist = inpbdfs[0] * numpy.ones((1, 1, 2 * nbins, 1, 1, 1), dtype=numpy.float64, order='F') samhist[0, 0, fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b, 0, 0, 0] = histgr pophist = numpy.ones((1, 2 * nbins, 1, 1, 1, 1), dtype=numpy.float64, order='F') ddofarr = numpy.array([ddof], dtype=numpy.float64) result = -5555.0 * numpy.ones((3, 1, 1, 1, 1, 1), dtype=numpy.float64, order='F') # call ferret_compute and check the result ferret_compute(0, result, resbdf, (samhist, pophist, ddofarr), inpbdfs) result = result.reshape(-1) print(" found result = %s" % str(result)) if not numpy.allclose(result, expect): raise ValueError("Unexpected result") # setup for the call to ferret_compute - multiple dimensions inpbdfs = numpy.array([-9999.0, -8888.0, -7777.0], dtype=numpy.float64) resbdf = numpy.array([-6666.0], dtype=numpy.float64) samhist = inpbdfs[0] * numpy.ones((1, 2, nbins, 1, 1, 1), dtype=numpy.float64, order='F') samhist[0, 0, fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b, 0, 0, 0] = histgr[0:nbins//2] samhist[0, 1, fc00:db20:35b:7399::5, 0, 0, 0] = histgr[nbins//2:] pophist = numpy.ones((1, 2, nbins, 1, 1, 1), dtype=numpy.float64, order='F') ddofarr = numpy.array([ddof], dtype=numpy.float64) result = -5555.0 * numpy.ones((3, 1, 1, 1, 1, 1), dtype=numpy.float64, order='F') # call ferret_compute and check the result ferret_compute(0, result, resbdf, (samhist, pophist, ddofarr), inpbdfs) result = result.reshape(-1) print(" found result = %s" % str(result)) if not numpy.allclose(result, expect): raise ValueError("Unexpected result") # All successful print("Success") ``` #### File: pyfermod/stats/stats_histogram.py ```python from __future__ import print_function import numpy import pyferret # The following is just to circumvent to call to pyferret.get_axis_info for testing DOING_UNIT_TEST = False def ferret_init(id): """ Initialization for the stats_histogram Ferret PyEF """ axes_values = [ pyferret.AXIS_IMPLIED_BY_ARGS ] * pyferret.MAX_FERRET_NDIM true_influences = [ True ] * pyferret.MAX_FERRET_NDIM false_influences = [ False ] * pyferret.MAX_FERRET_NDIM retdict = { "numargs": 2, "descript": "Returns unweighted histogram bin counts for all defined data values", "axes": axes_values, "argnames": ("VALS", "BINS_TEMPLATE"), "argdescripts": ("Values to put into bins and then count", "Template argument whose one defined axis gives midpoints of bins"), "argtypes": (pyferret.FLOAT_ARRAY, pyferret.FLOAT_ARRAY), "influences": (false_influences, true_influences), } return retdict def ferret_compute(id, result, resbdf, inputs, inpbdfs): """ Assigns result with histogram bin counts of data in inputs[0]. Bin limits are defined using the values of the one defined non-singular axis associated with inputs[1]. The argument inputs[1] is otherwise unused. Undefined values in inputs[0] are eliminated before binning. """ # get the box limits of the one defined non-singular axis of the second argument if DOING_UNIT_TEST: limits_func = my_get_box_limits else: limits_func = pyferret.get_axis_box_limits limits_tuple = None axis_used = None for axis_num in (pyferret.X_AXIS, pyferret.Y_AXIS, pyferret.Z_AXIS, pyferret.T_AXIS, pyferret.E_AXIS, pyferret.F_AXIS): this_tuple = limits_func(id, pyferret.ARG2, axis_num) if (this_tuple != None) and (len(this_tuple[0]) > 1): if limits_tuple != None: raise ValueError("BINS_TEMPLATE has more than one defined non-singular axis") limits_tuple = this_tuple axis_used = axis_num if limits_tuple is None: raise ValueError("BINS_TEMPLATE does not have a defined non-singular axis") # get the histogram bin limits from the axis box limits if not numpy.allclose(limits_tuple[0][1:], limits_tuple[1][:-1]): raise ValueError("Unexpected error: gaps exist between axis box limits") bin_edges = numpy.empty( ( len(limits_tuple[1]) + 1, ), dtype=numpy.float64) bin_edges[0] = limits_tuple[0][0] bin_edges[1:] = limits_tuple[1] # get the clean data as a flattened array badmask = ( numpy.fabs(inputs[0] - inpbdfs[0]) < 1.0E-5 ) badmask = numpy.logical_or(badmask, numpy.isnan(inputs[0])) goodmask = numpy.logical_not(badmask) values = inputs[0][goodmask] # compute the histogram and assign the counts to result (hist, edges) = numpy.histogram(values, bins=bin_edges) if axis_used == pyferret.X_AXIS: result[:,0,0,0,0,0] = hist elif axis_used == pyferret.Y_AXIS: result[0,:,0,0,0,0] = hist elif axis_used == pyferret.Z_AXIS: result[0,0,:,0,0,0] = hist elif axis_used == pyferret.T_AXIS: result[0,0,0,:,0,0] = hist elif axis_used == pyferret.E_AXIS: result[0,0,0,0,:,0] = hist elif axis_used == pyferret.F_AXIS: result[0,0,0,0,0,:] = hist else: raise ValueError("Unexpected axis_used value: %d" % axis_used) # # The rest of this is just for testing this module at the command line # if __name__ == "__main__": DOING_UNIT_TEST = True # create the my_get_box_limits function for testing def my_get_box_limits(id, argnum, axisnum): if id != 0: raise ValueError("Unexpected my_get_box_limits argnum; expected: 0, found: %d" % \ argnum) if argnum != pyferret.ARG2: raise ValueError("Unexpected my_get_box_limits argnum; expected: %d, found: %d" % \ (pyferret.ARG2, argnum)) if axisnum != pyferret.Z_AXIS: return None limits = numpy.array([1.0, 2.0, 3.0, 4.0, 6.0, 9.0], dtype=numpy.float64) return (limits[:-1], limits[1:]) # create the input values array with values on the edges and outside values = numpy.arange(0.0, 10.2, 0.1, dtype=numpy.float64).reshape((1,6,1,17,1,1), order='F') # create the expected results array expected = -1.0 * numpy.ones((1,1,5,1,1,1), dtype=numpy.float64, order='F') expected[0,0,:,0,0,0] = (10.0, 10.0, 10.0, 20.0, 31.0) # make sure no errors when ferret_init called info = ferret_init(0) # make the call to ferret_compute result = 999.0 * expected resbdf = numpy.array([-1.0], dtype=numpy.float64) inpbdfs = numpy.array([-1.0, -1.0], dtype=numpy.float64) ferret_compute(0, result, resbdf, (values, None), inpbdfs) # verify the results if not numpy.allclose(result, expected): raise ValueError("Unexpected results; expected:\n%s\nfound:\n%s" % (str(expected), str(result))) print("Success") ``` #### File: pyfermod/stats/stats_spearmanr.py ```python from __future__ import print_function import math import numpy import pyferret import scipy.stats def ferret_init(id): """ Initialization for the stats_spearmanr PyEF """ axes_values = [ pyferret.AXIS_DOES_NOT_EXIST ] * pyferret.MAX_FERRET_NDIM axes_values[0] = pyferret.AXIS_CUSTOM false_influences = [ False ] * pyferret.MAX_FERRET_NDIM retdict = { "numargs": 2, "descript": "Returns Spearman's rank correlation coeff, " \ "and num good points, between two samples of data", "axes": axes_values, "argnames": ( "SAMPLEA", "SAMPLEB", ), "argdescripts": ( "First array of sample data", "Second array of sample data", ), "argtypes": ( pyferret.FLOAT_ARRAY, pyferret.FLOAT_ARRAY, ), "influences": ( false_influences, false_influences, ), } return retdict def ferret_custom_axes(id): """ Define custom axis of the stats_spearmanr Ferret PyEF """ axis_defs = [ None ] * pyferret.MAX_FERRET_NDIM axis_defs[0] = ( 1, 2, 1, "R,N", False ) return axis_defs def ferret_compute(id, result, resbdf, inputs, inpbdfs): """ Assigns result with Spearman's rank correlation coefficient, and the number of good point, between the two samples of data given in inputs[0] and inputs[1]. Values compared are only from positions that are defined in both arrays. """ if inputs[0].shape != inputs[1].shape : shp0 = inputs[0].squeeze().shape shp1 = inputs[1].squeeze().shape if (len(shp0) > 1) or (len(shp1) > 1) or (shp0 != shp1): raise ValueError("SAMPLEA and SAMPLEB must either have identical dimensions or "\ "both have only one defined non-singular axis of the same length") sampa = inputs[0].reshape(-1) sampb = inputs[1].reshape(-1) bada = ( numpy.fabs(sampa - inpbdfs[0]) < 1.0E-5 ) bada = numpy.logical_or(bada, numpy.isnan(sampa)) badb = ( numpy.fabs(sampb - inpbdfs[1]) < 1.0E-5 ) badb = numpy.logical_or(badb, numpy.isnan(sampb)) goodmask = numpy.logical_not(numpy.logical_or(bada, badb)) valsa = numpy.array(sampa[goodmask], dtype=numpy.float64) numpts = len(valsa) if numpts < 2: raise ValueError("Not enough defined points in common in SAMPLEA and SAMPLEB") valsb = numpy.array(sampb[goodmask], dtype=numpy.float64) fitparams = scipy.stats.spearmanr(valsa, valsb) result[:] = resbdf # correlation coefficient result[0] = fitparams[0] # ignore the probability of uncorrelated # number of good pts result[1] = numpts # # The rest of this is just for testing this module at the command line # if __name__ == "__main__": # make sure ferret_init and ferret_custom_axes do not have problems info = ferret_init(0) info = ferret_custom_axes(0) # Get a random sample from a normal distribution ydim = 83 zdim = 17 samplesize = ydim * zdim sampa = scipy.stats.norm(15.0, 2.0).rvs(samplesize) # Create a correlated distribution sampc = -numpy.log(sampa) # Create an uncorrelated distribution sampu = scipy.stats.norm(15.0, 2.0).rvs(samplesize) # setup for the call to ferret_compute inpbdfs = numpy.array([-9999.0, -8888.0], dtype=numpy.float64) resbdf = numpy.array([-7777.0], dtype=numpy.float64) inputa = numpy.empty((1, ydim, zdim, 1, 1, 1), dtype=numpy.float64, order='F') inputc = numpy.empty((1, ydim, zdim, 1, 1, 1), dtype=numpy.float64, order='F') inputu = numpy.empty((1, ydim, zdim, 1, 1, 1), dtype=numpy.float64, order='F') index = 0 numgood = 0 numpos = 0 for j in range(ydim): for k in range(zdim): if (index % 23) == 3: inputa[0, j, k, 0, 0, 0] = inpbdfs[0] else: inputa[0, j, k, 0, 0, 0] = sampa[index] if (index % 31) == 3: inputc[0, j, k, 0, 0, 0] = inpbdfs[1] inputu[0, j, k, 0, 0, 0] = inpbdfs[1] else: inputc[0, j, k, 0, 0, 0] = sampc[index] inputu[0, j, k, 0, 0, 0] = sampu[index] if ((index % 23) != 3) and ((index % 31) != 3): numgood += 1 if sampa[index] > 0.0: numpos += 1 index += 1 resultc = -6666.0 * numpy.ones((2, 1, 1, 1, 1, 1), dtype=numpy.float64, order='F') expectc = numpy.empty((2, 1, 1, 1, 1, 1), dtype=numpy.float64, order='F') expectc[0,0,0,0,0,0] = -1.0 expectc[1,0,0,0,0,0] = numpos resultu = -6666.0 * numpy.ones((2, 1, 1, 1, 1, 1), dtype=numpy.float64, order='F') expectu = numpy.empty((2, 1, 1, 1, 1, 1), dtype=numpy.float64, order='F') # rough expected correlation coefficient for uncorrelated expectu[0,0,0,0,0,0] = 0.0 expectu[1,0,0,0,0,0] = numgood # call ferret_compute with correlated data and check the results ferret_compute(0, resultc, resbdf, (inputa, inputc), inpbdfs) if not numpy.allclose(resultc, expectc): raise ValueError("Unexpected result; expected: %s; found %s" % \ (str(expectc.reshape(-1)), str(resultc.reshape(-1)))) # call ferret_compute with uncorrelated data and check the results ferret_compute(0, resultu, resbdf, (inputa, inputu), inpbdfs) if not numpy.allclose(resultu, expectu, atol=0.08): raise ValueError("Unexpected result; expected: %s; found %s" % \ (str(expectu.reshape(-1)), str(resultu.reshape(-1)))) # All successful print("Success") ``` #### File: pyfermod/stats/stats_zscore.py ```python from __future__ import print_function import math import numpy import pyferret import scipy.stats def ferret_init(id): """ Initialization for the stats_zscore PyEF """ axes_values = [ pyferret.AXIS_IMPLIED_BY_ARGS ] * pyferret.MAX_FERRET_NDIM true_influences = [ True ] * pyferret.MAX_FERRET_NDIM retdict = { "numargs": 1, "descript": "Returns standard scores for data values relative to " \ "a normal distribution with same mean and variance as the data", "axes": axes_values, "argnames": ( "VALUES", ), "argdescripts": ( "Array of data values", ), "argtypes": ( pyferret.FLOAT_ARRAY, ), "influences": ( true_influences, ), } return retdict def ferret_compute(id, result, resbdf, inputs, inpbdfs): """ Assigns result standard scores of data values given in inputs[0] relative to a normal distribution with the same mean and variance as the data. For undefined data values, the result value will be undefined. """ badmask = ( numpy.fabs(inputs[0] - inpbdfs[0]) < 1.0E-5 ) badmask = numpy.logical_or(badmask, numpy.isnan(inputs[0])) goodmask = numpy.logical_not(badmask) result[badmask] = resbdf # convert to 64-bit for precision in calculating the mean and variance sample = numpy.array(inputs[0][goodmask], dtype=numpy.float64) # array[goodmask] is a flattened array result[goodmask] = scipy.stats.zscore(sample) # # The rest of this is just for testing this module at the command line # if __name__ == "__main__": # make sure ferret_init does not have problems info = ferret_init(0) # Get a random sample and the expected standard scores ydim = 83 zdim = 17 samplesize = 1300 sample = scipy.stats.norm(5.0, 2.0).rvs(samplesize) zscores = (sample - sample.mean()) / math.sqrt(sample.var(0)) # setup for the call to ferret_compute inpbdfs = numpy.array([-9999.0], dtype=numpy.float64) resbdf = numpy.array([-8888.0], dtype=numpy.float64) input = numpy.empty((1, ydim, zdim, 1, 1, 1), dtype=numpy.float64, order='F') expected = numpy.empty((1, ydim, zdim, 1, 1, 1), dtype=numpy.float64, order='F') sindex = 0 iindex = 0 for j in range(ydim): for k in range(zdim): if ((iindex % 13) == 3) or (sindex >= samplesize): input[0, j, k, 0, 0, 0] = inpbdfs[0] expected[0, j, k, 0, 0, 0] = resbdf else: input[0, j, k, 0, 0, 0] = sample[sindex] expected[0, j, k, 0, 0, 0] = zscores[sindex] sindex += 1 iindex += 1 if sindex != samplesize: raise ValueError("Unexpected final sindex of %d (ydim,zdim too small)" % sindex) result = -7777.0 * numpy.ones((1, ydim, zdim, 1, 1, 1), dtype=numpy.float64, order='F') # call ferret_compute and check the results ferret_compute(0, result, resbdf, (input, ), inpbdfs) if not numpy.allclose(result, expected, rtol=2.0E-7, atol=2.0E-7): print("expected (flattened) =\n%s" % str(expected.reshape(-1, order='F'))) print("result (flattened) =\n%s" % str(result.reshape(-1, order='F'))) raise ValueError("Unexpected result") # All successful print("Success") ```
{ "source": "josbys1/twitter-svm", "score": 2 }
#### File: josbys1/twitter-svm/TweetObj.py ```python class Tweet: def __init__(self,text,author): self.text = text self.author = author self.vector = None ```
{ "source": "joscani/Data-And-Model-Drift-Checker", "score": 3 }
#### File: pydrift/core/drift_checker_estimator.py ```python import pandas as pd import numpy as np from sklearn.base import BaseEstimator, ClassifierMixin from typing import List from .drift_checker import DataDriftChecker from ..models import ScikitModel from ..exceptions import DriftEstimatorException class DriftCheckerEstimator(BaseEstimator, ClassifierMixin): """Creates a sklearn estimator ready to use it or within a pipeline Parameter `column_names` is needed because sklearn transform data to numpy (no columns) Check `DataDriftChecker` to change the rest of parameters if you need """ def __init__(self, ml_classifier_model: ScikitModel, column_names: List[str], verbose: bool = False, minimal: bool = True, pvalue_threshold_numerical: float = .05, pvalue_threshold_categorical: float = .05, cardinality_threshold: int = 20): self.ml_classifier_model = ml_classifier_model self.column_names = column_names self.df_left_data = None self.df_right_data = None self.verbose = verbose self.minimal = minimal self.pvalue_threshold_numerical = pvalue_threshold_numerical self.pvalue_threshold_categorical = pvalue_threshold_categorical self.cardinality_threshold = cardinality_threshold self.data_drift_checker = None self.is_drift_in_numerical_columns = False self.is_drift_in_categorical_columns = False self.is_drift_in_ml_model_can_discriminate = False def fit(self, X: np.array, y: np.array = None): """Fits estimator in `self.ml_classifier_model` and assigns X to `self.df_left_data` """ self.df_left_data = X self.ml_classifier_model.fit(X, y) return self def fill_data_drift_checker(self, X: np.array): """Fill data drift checker object and stores it in `self.data_drift_checker` """ self.df_right_data = X self.data_drift_checker = DataDriftChecker( df_left_data=pd.DataFrame(self.df_left_data, columns=self.column_names), df_right_data=pd.DataFrame(self.df_right_data, columns=self.column_names), verbose=self.verbose, minimal=self.minimal, pvalue_threshold_numerical=self.pvalue_threshold_numerical, pvalue_threshold_categorical=self.pvalue_threshold_categorical, cardinality_threshold=self.cardinality_threshold ) def check_drift(self): """Checks data drift for numerical and categorical data and the discriminative model """ self.is_drift_in_numerical_columns = ( self.data_drift_checker.check_numerical_columns() ) self.is_drift_in_categorical_columns = ( self.data_drift_checker.check_categorical_columns() ) self.is_drift_in_ml_model_can_discriminate = ( self.data_drift_checker.ml_model_can_discriminate() ) is_there_drift = ( self.is_drift_in_numerical_columns or self.is_drift_in_categorical_columns or self.is_drift_in_ml_model_can_discriminate ) if is_there_drift: if self.is_drift_in_numerical_columns: print('Drift found in numerical columns check step') if self.is_drift_in_categorical_columns: print('Drift found in categorical columns check step') if self.is_drift_in_ml_model_can_discriminate: print('Drift found in discriminative model step') raise DriftEstimatorException( 'Drift found in your estimation process' ) def get_drifted_features(self): """Alias to self.data_drift_checker.drifted_features """ return ', '.join(self.data_drift_checker.drifted_features) def get_high_cardinality_features(self): """Alias to self.data_drift_checker.high_cardinality_features """ return ', '.join(self.data_drift_checker.high_cardinality_features) def predict(self, X: np.array): """Checks if there is a data drift and makes a prediction with `predict` method of sklearn model """ self.fill_data_drift_checker(X) self.check_drift() return self.ml_classifier_model.predict(X) def predict_proba(self, X: np.array): """Checks if there is a data drift and makes a prediction with `predict_proba` method of sklearn model """ self.fill_data_drift_checker(X) self.check_drift() return self.ml_classifier_model.predict_proba(X) ```
{ "source": "Josca/ppr", "score": 3 }
#### File: ppr/ppr/ppr.py ```python import os def _gen_setup_file(project_name: str) -> str: """ Generate setup.py module content. """ content = """\ from setuptools import setup, find_packages setup( name='%s', description='App description.', version='1.0', packages=find_packages(), # package_data={'package': ['subfolder/*']}, # install_requires=[ # 'numpy', # 'Pillow' # ], # entry_points=''' # [console_scripts] # cmd=package.module:cmd_fun # ''' ) """ % project_name return content def _gen_main_module() -> str: """ Generate main module text content. """ content = """\ def hello(): print('Hello world') if __name__ == '__main__': hello() """ return content def make_project(project_name: str): """ Generate project folder structure. :param project_name: Project name. """ # Create project folder and package folder. pth = os.path.join(os.getcwd(), project_name, project_name) print(str(pth)) os.makedirs(pth) # Generate setup.py module file. setup_content = _gen_setup_file(project_name) with open(os.path.join(project_name, 'setup.py'), 'w') as f: f.write(setup_content) # Generate project_name.py module file. src_content = _gen_main_module() with open(os.path.join(project_name, project_name, '%s.py' % project_name), 'w') as f: f.write(src_content) # Generate package __init__.py file. with open(os.path.join(project_name, project_name, '__init__.py'), 'w') as f: f.write('') ```
{ "source": "joscelino/Request-API", "score": 3 }
#### File: domain/usecases/starships_list_colector.py ```python from abc import ABC, abstractclassmethod from typing import Dict, List class StarShipsListColectorInterface(ABC): """Starships Colector Interface""" @abstractclassmethod def list(self, page: int) -> List[Dict]: """Para ser implementado""" raise Exception("Deve implementar o metodo de lista.") ``` #### File: src/infra/swap_api_consumer.py ```python from collections import namedtuple from typing import Dict, Tuple, Type import requests from requests import Request from src.data.interfaces import SwapiAPiConsumerInterface from src.errors import HttpRequestError class SwapApiConsumer(SwapiAPiConsumerInterface): """Class to consume swapi api with http requests""" def __init__(self) -> None: self.get_starships_response = namedtuple( "GET_Starships", "status_code request response" ) def get_starships(self, page: int) -> Tuple[int, Type[Request], Dict]: """Request starships nas paginacoes. Args: page (int): numero inteiro da pagina de navegacao. Raises: HttpRequestError: Erros de requisicao Returns: Tuple[int, Type[Request], Dict]: tupla com status code, request e response. """ req = requests.Request( method="GET", url="https://swapi.dev/api/starships/", params={"page": page} ) req_prepared = req.prepare() response = self.__send_http_requests(req_prepared) status_code = response.status_code if status_code >= 200 and status_code <= 299: return self.get_starships_response( status_code=status_code, request=req, response=response.json() ) else: raise HttpRequestError( message=response.json()["detail"], status_code=status_code ) @classmethod def __send_http_requests(cls, req_prepared: Type[Request]) -> any: """Prepara a sessao e envia a requisicao http. Args: req_prepared (Type[Request]): Objeto de requisicao com todos os parametros Returns: any: resposta da requisicao HTTP """ http_session = requests.Session() response = http_session.send(req_prepared) return response ```
{ "source": "joscha0/daily-wiki", "score": 3 }
#### File: daily-wiki/tests/test_firestore.py ```python import unittest from db import firestore class TestFirestore(unittest.TestCase): def test_adduser(self): result = firestore.adduser("<EMAIL>", "en") self.assertFalse(result) if __name__ == "__main__": unittest.main() ```
{ "source": "joscha0/ExoticAlgorithms", "score": 4 }
#### File: joscha0/ExoticAlgorithms/BozoSort.py ```python import random def is_sorted(lst): for i in range(len(lst) - 1): if lst[i] > lst[i + 1]: return False return True def bozoSort(lst): while not is_sorted(lst): i, j = int(len(lst)*random.random()), int(len(lst)*random.random()) lst[i], lst[j] = lst[j], lst[i] return lst if __name__ == "__main__": list1 = [1,4,2,5,6,5,3] print('\n\n-----Bozosort Sorting Algorithm-----\n') print('unsorted list: '+str(list1)) print('sorted list: '+str(bozoSort(list1))) ```
{ "source": "joscha0/instagram-scraper", "score": 3 }
#### File: joscha0/instagram-scraper/getpdf.py ```python from weasyprint import HTML from jinja2 import Environment, FileSystemLoader import sys from scraper import get_data env = Environment(loader=FileSystemLoader('.')) template = env.get_template("template.html") def get_template(name): data = get_data(name) template_vars = {'data': data, } html_out = template.render(template_vars) HTML(string=html_out).write_pdf('out.pdf', stylesheets=['style.css']) if __name__ == "__main__": name = str(sys.argv[1]) get_template(name) ```
{ "source": "joschabach/micropsi2", "score": 3 }
#### File: nodenet/dict_engine/dict_netentity.py ```python import micropsi_core.tools __author__ = 'joscha' __date__ = '09.05.12' class NetEntity(object): """The basic building blocks of node nets. Attributes: uid: the unique identifier of the net entity index: an attempt at creating an ordering criterion for net entities name: a human readable name (optional) position: a pair of coordinates on the screen nodenet: the node net in which the entity resides parent_nodespace: the node space this entity is contained in """ @property def uid(self): return self.__uid @uid.setter def uid(self, uid): self.__uid = uid @property def index(self): return self.__index @index.setter def index(self, index): self.__index = index @property def position(self): return self.__position @position.setter def position(self, position): position = list(position) position = (position + [0] * 3)[:3] self.__position = position self.last_changed = self.nodenet.current_step @property def name(self): return self.__name @name.setter def name(self, name): self.__name = name @property def parent_nodespace(self): return self.__parent_nodespace def __init__(self, nodenet, parent_nodespace, position, name="", entitytype="abstract_entities", uid=None, index=None): """create a net entity at a certain position and in a given node space""" self.__uid = None self.__index = 0 self.__name = None self.__parent_nodespace = None self.__position = None self.uid = uid or micropsi_core.tools.generate_uid() self.nodenet = nodenet self.index = index or len(nodenet.get_node_uids()) + len(nodenet.get_nodespace_uids()) self.entitytype = entitytype self.name = name self.position = position if parent_nodespace: self.__parent_nodespace = parent_nodespace nodespace = self.nodenet.get_nodespace(parent_nodespace) if not nodespace.is_entity_known_as(self.entitytype, self.uid): nodespace._register_entity(self) else: self.__parent_nodespace = None ``` #### File: micropsi_core/nodenet/native_modules.py ```python import os nodetypes = {} try: import numpy as np import theano numpy_installed = True except ImportError: numpy_installed = False if numpy_installed: # only register these native modules if we # have theano and numpy installed. nodetypes["GradientDescent"] = { "name": "GradientDescent", "engine": "theano_engine", "slottypes": ["gen"], "gatetypes": ["gen"], "nodefunction_name": "gradient_descent", "symbol": "☲", "category": "nn_learning", "path": os.path.abspath(__file__), "parameters": [ "ae_type", "adadelta_rho", "adadelta_eps", "check_grad", "weight_decay", "tied_weights", "sparsity_value", "sparsity_penalty", "t", "ctr", "input_prefix", "hidden_prefix", "output_prefix", "input_nodespace" ], "parameter_values": { "ae_type": ["sparse", "denoising"], "tied_weights": ["True", "False"], "check_grad": ["yes", "no"] }, "parameter_defaults": { "ae_type": "denoising", "tied_weights": "True", "hidden_prefix": "hidden_1", "output_prefix": "output_1" } } def gradient_descent(netapi, node=None, **params): """ Online gradient descent with backpropagation for three layers (input, hidden, and output layer) and AdaDelta for adapting the learning rate per parameter. References: [1] Werbos, PJ. "Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences." (1974). [2] Zeiler, MD. "ADADELTA: An adaptive learning rate method." (2012). [3] <NAME>. "Extracting and Composing Robust Features with Denoising Autoencoders." (2008). """ # To be able to switch this native module on and off, require positive # activation on the gen slot for its code to be run. if node.get_slot('gen').activation > 0: import theano import theano.tensor as T # get shared name prefix of nodes in input, hidden, and output layers input_ = node.get_parameter('input_prefix') hidden = node.get_parameter('hidden_prefix') output = node.get_parameter('output_prefix') # get the name of the nodespace where the input lives ns_input_name = node.get_parameter('input_nodespace') # get nodespace uids of nodes in input, hidden, and output layers # assumption: if the input layer consists of sensor nodes, they have their # own nodespace, all other nodes are in this node's nodespace ns_input_uid = None for ns in netapi.get_nodespaces(): if ns.name == ns_input_name: ns_input_uid = ns.uid break ns_hidden_uid = node.parent_nodespace ns_output_uid = node.parent_nodespace # initialization if not hasattr(node, 'initialized'): node.set_state('cumulative_error', 0) sparse = str(node.get_parameter('ae_type')) == "sparse" # denoising = str(node.get_parameter('ae_type')) == "denoising" tied_weights = str(node.get_parameter('tied_weights')) == "True" # group nodes netapi.group_nodes_by_names(ns_input_uid, node_name_prefix=input_) netapi.group_nodes_by_names(ns_hidden_uid, node_name_prefix=hidden) netapi.group_nodes_by_names(ns_output_uid, node_name_prefix=output) # get activation values a_i_array = netapi.get_activations(ns_input_uid, input_) a_h_array = netapi.get_activations(ns_hidden_uid, hidden) a_o_array = netapi.get_activations(ns_output_uid, output) node.set_parameter('error', 0.0) # store error values to observe how training develops len_input = len(a_i_array) len_hidden = len(a_h_array) len_output = len(a_o_array) if len_input == 0: netapi.logger.warn("Node net has no input nodes whose names start with '%s'", input_) node.set_parameter('ctr', 0) return elif len_hidden == 0: netapi.logger.warn("Node net has no hidden nodes whose names start with '%s'.", hidden) node.set_parameter('ctr', 0) return elif len_output == 0: netapi.logger.warn("Node net has no output names whose names start with '%s'.", output) node.set_parameter('ctr', 0) return else: netapi.logger.info("Initializing theano-based autoencoder backprop with layout: %i -> %i -> %i", len_input, len_hidden, len_output) # get parameter values from node net b_h_array = netapi.get_thetas(ns_hidden_uid, hidden) b_o_array = netapi.get_thetas(ns_output_uid, output) w_hi_array = netapi.get_link_weights(ns_input_uid, input_, ns_hidden_uid, hidden) w_oh_array = netapi.get_link_weights(ns_hidden_uid, hidden, ns_output_uid, output) # declare shared variables ( shared b/w theano and node nets ) a_i = node.a_i = theano.shared(value=a_i_array.astype(T.config.floatX), name="a_i", borrow=False) a_h = node.a_h = theano.shared(value=a_h_array.astype(T.config.floatX), name="a_h", borrow=False) a_o = node.a_o = theano.shared(value=a_o_array.astype(T.config.floatX), name="a_o", borrow=False) b_h = node.b_h = theano.shared(value=b_h_array.astype(T.config.floatX), name="b_h", borrow=False) b_o = node.b_o = theano.shared(value=b_o_array.astype(T.config.floatX), name="b_o", borrow=False) w_hi = node.w_hi = theano.shared(value=w_hi_array.astype(T.config.floatX), name="w_hi", borrow=False) w_oh = node.w_oh = theano.shared(value=w_oh_array.astype(T.config.floatX), name="w_oh", borrow=False) # write initial parameter values to shared variables node.b_h.set_value(b_h_array, borrow=True) node.b_o.set_value(b_o_array, borrow=True) node.w_hi.set_value(w_hi_array, borrow=True) node.w_oh.set_value(w_oh_array, borrow=True) # initialize accumulation variables for AdaDelta, ie. mean square gradients and mean square deltas ms_grad_b_o = node.ms_grad_b_o = theano.shared(value=np.zeros_like(b_o_array), name="ms_grad_b_o", borrow=True) ms_grad_w_oh = node.ms_grad_w_oh = theano.shared(value=np.zeros_like(w_oh_array), name="ms_grad_w_oh", borrow=True) ms_grad_b_h = node.ms_grad_b_h = theano.shared(value=np.zeros_like(b_h_array), name="ms_grad_b_h", borrow=True) ms_grad_w_hi = node.ms_grad_w_hi = theano.shared(value=np.zeros_like(w_hi_array), name="ms_grad_w_hi", borrow=True) ms_delta_b_o = node.ms_delta_b_o = theano.shared(value=np.zeros_like(b_o_array), name="ms_delta_b_o", borrow=True) ms_delta_w_oh = node.ms_delta_w_oh = theano.shared(value=np.zeros_like(w_oh_array), name="ms_delta_w_oh", borrow=True) ms_delta_b_h = node.ms_delta_b_h = theano.shared(value=np.zeros_like(b_h_array), name="ms_delta_b_h", borrow=True) ms_delta_w_hi = node.ms_delta_w_hi = theano.shared(value=np.zeros_like(w_hi_array), name="ms_delta_w_hi", borrow=True) # make function parameters theano compatible weight_decay = T.scalar("weight_decay", dtype=T.config.floatX) sparsity_value = T.scalar("sparsity_value", dtype=T.config.floatX) sparsity_penalty = T.scalar("sparsity_penalty", dtype=T.config.floatX) ada_rho = T.scalar("ada_rho", dtype=T.config.floatX) ada_eps = T.scalar("ada_eps", dtype=T.config.floatX) # declare the reconstruction error error_term = T.sum(T.square(a_o - a_i)) / 2. # squared error # error_term = -T.sum(a_i * T.log(a_o) + (1. - a_i) * T.log(1. - a_o)) # cross-entropy # use a weight constraint as a regularizer weight_constraint = (weight_decay / 2.) * (T.sum(T.square(w_hi)) + T.sum(T.square(w_oh))) if sparse: # training criterion for a sparse autoencoder # save the average activation of hidden units; initialize to first activation received avg_a_h = node.avg_a_h = theano.shared(value=a_h_array, name="avg_a_h", borrow=False) new_avg_a_h = 0.95 * avg_a_h + (1 - 0.95) * a_h # for gradient checking, set new_avg_a_h = a_h rho = sparsity_value information_gain = rho * T.log(rho / new_avg_a_h) + (1. - rho) * T.log((1. - rho) / (1. - new_avg_a_h)) sparsity_constraint = sparsity_penalty * T.sum(information_gain) cost = error_term + weight_constraint + sparsity_constraint else: # training criterion for a denoising autoencoder cost = error_term + weight_constraint node.cost = theano.function([weight_decay, sparsity_value, sparsity_penalty], cost, on_unused_input='ignore') node.error = theano.function([], error_term / len(b_h_array)) # compute gradients sigmoid_deriv_a_o = a_o * (1. - a_o) grad_o = (a_o - a_i) * sigmoid_deriv_a_o # squared error # T.grad(cost, z_o) # grad_o = ((a_i - a_o) / (a_o - a_o**2)) * sigmoid_deriv_a_o # cross-entropy sigmoid_deriv_a_h = a_h * (1. - a_h) if sparse: grad_w_oh = T.dot(T.reshape(grad_o, (len_input, 1)), T.reshape(a_h, (1, len_hidden))) + weight_decay * w_oh grad_sparsity = (- rho / new_avg_a_h + (1. - rho) / (1. - new_avg_a_h)).T grad_h = (T.dot(w_oh.T, grad_o) + sparsity_penalty * grad_sparsity) * sigmoid_deriv_a_h grad_w_hi = T.dot(T.reshape(grad_h, (len_hidden, 1)), T.reshape(a_i, (1, len_input))) + weight_decay * w_hi else: # denoising grad_w_oh = T.dot(T.reshape(grad_o, (len_input, 1)), T.reshape(a_h, (1, len_hidden))) + weight_decay * w_oh grad_h = T.dot(w_oh.T, grad_o) * sigmoid_deriv_a_h grad_w_hi = T.dot(T.reshape(grad_h, (len_hidden, 1)), T.reshape(a_i, (1, len_input))) + weight_decay * w_hi if tied_weights: grad_w_oh = grad_w_oh + grad_w_hi.T gradients = [grad_o, grad_w_oh, grad_h] ms_grad = [ms_grad_b_o, ms_grad_w_oh, ms_grad_b_h] ms_delta = [ms_delta_b_o, ms_delta_w_oh, ms_delta_b_h] else: gradients = [grad_o, grad_w_oh, grad_h, grad_w_hi] ms_grad = [ms_grad_b_o, ms_grad_w_oh, ms_grad_b_h, ms_grad_w_hi] ms_delta = [ms_delta_b_o, ms_delta_w_oh, ms_delta_b_h, ms_delta_w_hi] # update accumulation variables for AdaDelta and compute new deltas # compute an exponentially decaying average of squared gradients # ie. recent gradients are more important and the quantity doesn't continue to grow # thereby allowing the learning rate to grow or shrink as time progresses ( rather than just shrink as in AdaGrad ) new_ms_grad = [ada_rho * ms_g + (1 - ada_rho) * (g**2) for ms_g, g in zip(ms_grad, gradients)] # Note: the square root of the mean squared gradients plus epsilon is effectively the RMS of the gradients # epsilon is added ~"to start off the first iteration and to ensure progress when previous updates become small" deltas = [(T.sqrt(ms_d + ada_eps) / T.sqrt(ms_g + ada_eps)) * g for ms_d, ms_g, g in zip(ms_delta, new_ms_grad, gradients)] # compute an exponentially decaying average of squared deltas -- this is to ensure correct units new_ms_delta = [ada_rho * ms_d + (1 - ada_rho) * (d**2) for ms_d, d in zip(ms_delta, deltas)] # update parameters, ie. old_value - learning_rate * delta_value if tied_weights: new_b_o, new_w_oh, new_b_h = (old - update for old, update in zip([b_o, w_oh, b_h], deltas)) new_w_hi = new_w_oh.T new_ms_grad.append(new_ms_grad[1].T) new_ms_delta.append(new_ms_delta[1].T) gradients.append(gradients[1].T) else: new_b_o, new_w_oh, new_b_h, new_w_hi = (old - update for old, update in zip([b_o, w_oh, b_h, w_hi], deltas)) if sparse: update_function = theano.function([weight_decay, sparsity_value, sparsity_penalty, ada_rho, ada_eps], None, updates=[(b_o, new_b_o), (w_oh, new_w_oh), (b_h, new_b_h), (w_hi, new_w_hi), (avg_a_h, new_avg_a_h), (ms_grad_b_o, new_ms_grad[0]), (ms_grad_w_oh, new_ms_grad[1]), (ms_grad_b_h, new_ms_grad[2]), (ms_grad_w_hi, new_ms_grad[3]), (ms_delta_b_o, new_ms_delta[0]), (ms_delta_w_oh, new_ms_delta[1]), (ms_delta_b_h, new_ms_delta[2]), (ms_delta_w_hi, new_ms_delta[3])], on_unused_input='ignore') else: # denoising update_function = theano.function([weight_decay, sparsity_value, sparsity_penalty, ada_rho, ada_eps], None, updates=[(b_o, new_b_o), (w_oh, new_w_oh), (b_h, new_b_h), (w_hi, new_w_hi), (ms_grad_b_o, new_ms_grad[0]), (ms_grad_w_oh, new_ms_grad[1]), (ms_grad_b_h, new_ms_grad[2]), (ms_grad_w_hi, new_ms_grad[3]), (ms_delta_b_o, new_ms_delta[0]), (ms_delta_w_oh, new_ms_delta[1]), (ms_delta_b_h, new_ms_delta[2]), (ms_delta_w_hi, new_ms_delta[3])], on_unused_input='ignore') node.get_updated_parameters = update_function # for gradient checking use the following function: node.get_gradients = theano.function([weight_decay, sparsity_value, sparsity_penalty, ada_rho, ada_eps], [gradients[0], gradients[1], gradients[2], gradients[3]], on_unused_input='ignore') node.initialized = True # get input activations from node net a_i_array = netapi.get_activations(ns_input_uid, input_) # learn only if activation on the input layer has been persistent for as many steps as your neural net has layers # Note: since we're currently using denoising autoencoders, this means persistent up to Bernoulli noise try: # check if activation has changed since the last step ( by testing if there's any different activation value ) bool_idx = node.prev_a_i != a_i_array input_changed = np.any(bool_idx) # if deviating activations were 0 ( i.e most likely the effect of Bernoulli noising ), assume no change is_zero = node.prev_a_i[bool_idx] == 0 # if is_zero contains elements but not all input activations and their values are all zero, assume no change if len(is_zero) and len(is_zero) < len(a_i_array) and np.all(is_zero): input_changed = False except: input_changed = True node.prev_a_i = a_i_array if input_changed: node.set_parameter('ctr', 1) else: node.set_parameter('ctr', int(node.get_parameter('ctr')) + 1) # until counter equals number of layers, ie. the same activation has reached all layers, don't compute if node.get_parameter('ctr') < 3: return # get other activations from node net a_h_array = netapi.get_activations(ns_hidden_uid, hidden) a_o_array = netapi.get_activations(ns_output_uid, output) # define learning parameters param = node.get_parameter('weight_decay') if param is None: weight_decay = netapi.floatX(4e-06) # 0.0001 . 1e-07 assuming batches of size 1000 . 4e-06 assuming batches of size 256 node.set_parameter('weight_decay', str(weight_decay)) # store as regular float to appease the serializer else: weight_decay = netapi.floatX(param) param = node.get_parameter('sparsity_value') if param is None: sparsity_value = netapi.floatX(0.05) node.set_parameter('sparsity_value', str(sparsity_value)) else: sparsity_value = netapi.floatX(param) param = node.get_parameter('sparsity_penalty') if param is None: sparsity_penalty = netapi.floatX(0.001) # 3.0 . 0.003 assuming batches of size 1000 . 0.01 assuming batches of size 256 node.set_parameter('sparsity_penalty', str(sparsity_penalty)) else: sparsity_penalty = netapi.floatX(param) param = node.get_parameter('adadelta_rho') if param is None: ada_rho = netapi.floatX(0.95) node.set_parameter('adadelta_rho', str(ada_rho)) else: ada_rho = netapi.floatX(param) param = node.get_parameter('adadelta_eps') if param is None: ada_eps = netapi.floatX(1e-6) node.set_parameter('adadelta_eps', str(ada_eps)) else: ada_eps = netapi.floatX(param) param = node.get_parameter('ae_type') if param is None: ae_type = 'sparse' # options: 'sparse', 'denoising' node.set_parameter('ae_type', 'sparse') else: ae_type = str(param) param = node.get_parameter('t') if param is None: t = 0 node.set_parameter('t', t) else: t = int(param) # gradient checking # Note: use double precision when running gradient checks if node.get_parameter('check_grad') == 'yes': # get values of biases and weights from node net b_h_array = netapi.get_thetas(ns_hidden_uid, hidden) b_o_array = netapi.get_thetas(ns_output_uid, output) w_hi_array = netapi.get_link_weights(ns_input_uid, input_, ns_hidden_uid, hidden) w_oh_array = netapi.get_link_weights(ns_hidden_uid, hidden, ns_output_uid, output) # compute the analytical gradient anal_grad = compute_analytic_gradient( netapi, node, a_i_array, a_h_array, a_o_array, b_h_array, b_o_array, w_hi_array, w_oh_array, weight_decay, sparsity_value, sparsity_penalty, ada_rho, ada_eps) # compute the numerical gradient num_grad = compute_numeric_gradient( netapi, node, a_i_array, a_h_array, a_o_array, b_h_array, b_o_array, w_hi_array, w_oh_array, weight_decay, sparsity_value, sparsity_penalty) # compare them diff = np.linalg.norm(num_grad - anal_grad) / np.linalg.norm(num_grad + anal_grad) print("Gradient difference: %e" % diff) # %.10f" % diff print("The norm of the difference between numerical and analytical gradient should be < 1e-9\n") # write values to shared variables node.a_i.set_value(a_i_array, borrow=True) node.a_h.set_value(a_h_array, borrow=True) node.a_o.set_value(a_o_array, borrow=True) # update values in shared variables ( using backpropgation of the gradients ) node.get_updated_parameters(weight_decay, sparsity_value, sparsity_penalty, ada_rho, ada_eps) # write new parameter values to node net netapi.set_thetas(ns_output_uid, output, node.b_o.get_value(borrow=True)) netapi.set_link_weights(ns_hidden_uid, hidden, ns_output_uid, output, node.w_oh.get_value(borrow=True)) netapi.set_thetas(ns_hidden_uid, hidden, node.b_h.get_value(borrow=True)) netapi.set_link_weights(ns_input_uid, input_, ns_hidden_uid, hidden, node.w_hi.get_value(borrow=True)) error = float(node.error()) # save current error as node parameter node.set_parameter('error', error) node.set_state('cumulative_error', node.get_state('cumulative_error') + error) t = int(node.get_parameter('t')) if t % 1000 == 0: netapi.logger.debug("Number of backprop steps computed %d" % t) netapi.logger.debug("Average Error %.6f (Latest: 0=%.6f)" % ((node.get_state('cumulative_error') / 1000), error)) node.set_state('cumulative_error', 0.0) # reset counter after successful backprop step; cf. must wait for new sensory activation to reach output layer node.set_parameter('ctr', 0) node.set_parameter('t', t + 1) def sigmoid(z): """ The sigmoid ( activation ) function. """ return 1. / (1. + np.exp(-z)) def compute_analytic_gradient(netapi, node, a_i, a_h, a_o, b_h, b_o, w_hi, w_oh, weight_decay, sparsity_value, sparsity_penalty, ada_rho, ada_eps): # make sure borrow is False here because otherwise the buffers are overwritten and # compute_numerical_gradient(..) still needs these same input values for proper comparison node.a_i.set_value(a_i, borrow=False) node.a_h.set_value(a_h, borrow=False) node.a_o.set_value(a_o, borrow=False) node.b_h.set_value(b_h, borrow=False) node.b_o.set_value(b_o, borrow=False) node.w_hi.set_value(w_hi, borrow=False) node.w_oh.set_value(w_oh, borrow=False) delta_o, delta_w_oh, delta_h, delta_w_hi = \ node.get_gradients(weight_decay, sparsity_value, sparsity_penalty, ada_rho, ada_eps) gradient = np.concatenate((delta_o, np.ravel(delta_w_oh), delta_h, np.ravel(delta_w_hi))) return gradient def compute_numeric_gradient(netapi, node, a_i, a_h, a_o, b_h, b_o, w_hi, w_oh, weight_decay, sparsity_value, sparsity_penalty): """ Compute numerical gradient for validating backprop implementation above. """ from copy import deepcopy # helper variables epsilon = netapi.floatX(1e-4) ni = len(b_o) nh = len(b_h) nih = ni * nh theta = np.concatenate((b_o, np.ravel(w_oh), b_h, np.ravel(w_hi))) n = theta.shape[0] I = np.eye(n, dtype=netapi.floatX) gradient = np.zeros(theta.shape, dtype=netapi.floatX) for i in range(n): eps_vec = np.array(I[:, i] * epsilon, dtype=netapi.floatX) eps_plus = theta + eps_vec eps_minus = theta - eps_vec # split theta into parts, recompute activations, update shared variables, compute cost b_o_plus = eps_plus[: ni] w_oh_plus = eps_plus[ni: ni + nih].reshape((ni, nh)) b_h_plus = eps_plus[ni + nih: ni + nih + nh] w_hi_plus = eps_plus[ni + nih + nh:].reshape((nh, ni)) a_i_plus = deepcopy(a_i) a_h_plus = np.ravel(sigmoid(w_hi_plus.dot(a_i_plus) + b_h_plus)) a_o_plus = np.ravel(sigmoid(w_oh_plus.dot(a_h_plus) + b_o_plus)) node.a_i.set_value(a_i_plus, borrow=True) node.a_h.set_value(a_h_plus, borrow=True) node.a_o.set_value(a_o_plus, borrow=True) node.b_h.set_value(b_h_plus, borrow=True) node.b_o.set_value(b_o_plus, borrow=True) node.w_hi.set_value(w_hi_plus, borrow=True) node.w_oh.set_value(w_oh_plus, borrow=True) cost = node.cost(weight_decay, sparsity_value, sparsity_penalty) # split theta into parts, recompute activations, update shared variables, compute cost b_o_minus = eps_minus[: ni] w_oh_minus = eps_minus[ni: ni + nih].reshape((ni, nh)) b_h_minus = eps_minus[ni + nih: ni + nih + nh] w_hi_minus = eps_minus[ni + nih + nh:].reshape((nh, ni)) a_i_minus = deepcopy(a_i) a_h_minus = np.ravel(sigmoid(w_hi_minus.dot(a_i_minus) + b_h_minus)) a_o_minus = np.ravel(sigmoid(w_oh_minus.dot(a_h_minus) + b_o_minus)) node.a_i.set_value(a_i_minus, borrow=True) node.a_h.set_value(a_h_minus, borrow=True) node.a_o.set_value(a_o_minus, borrow=True) node.b_h.set_value(b_h_minus, borrow=True) node.b_o.set_value(b_o_minus, borrow=True) node.w_hi.set_value(w_hi_minus, borrow=True) node.w_oh.set_value(w_oh_minus, borrow=True) cost_ = node.cost(weight_decay, sparsity_value, sparsity_penalty) # compute cost difference gradient[i] = (cost - cost_) / (2. * epsilon) if i % 1000 == 0: print("Computed numeric gradient for %d parameters" % i) return gradient ``` #### File: nodenet/theano_engine/theano_netapi.py ```python __author__ = 'rvuine' from micropsi_core.nodenet.netapi import NetAPI class TheanoNetAPI(NetAPI): """ Theano / numpy extension of the NetAPI, giving native modules access to bulk operations and efficient data structures for machine learning purposes. """ def __init__(self, nodenet): super(TheanoNetAPI, self).__init__(nodenet) self.__nodenet = nodenet @property def floatX(self): return self.__nodenet.numpyfloatX def announce_nodes(self, nodespace_uid, numer_of_nodes, average_element_per_node): self.__nodenet.announce_nodes(nodespace_uid, numer_of_nodes, average_element_per_node) def decay_por_links(self, nodespace_uid): """ Decays all por-links in the given nodespace """ # por_cols = T.lvector("por_cols") # por_rows = T.lvector("por_rows") # new_w = T.set_subtensor(nodenet.w[por_rows, por_cols], nodenet.w[por_rows, por_cols] - 0.0001) # self.decay = theano.function([por_cols, por_rows], None, updates={nodenet.w: new_w}, accept_inplace=True) import numpy as np from .theano_definitions import node_from_id, PIPE, POR nodespace_uid = self.get_nodespace(nodespace_uid).uid porretdecay = self.__nodenet.get_modulator('base_porret_decay_factor') ns = self.get_nodespace(nodespace_uid) partition = ns._partition if partition.has_pipes and porretdecay != 0: ns_id = node_from_id(nodespace_uid) node_ids = np.where(partition.allocated_node_parents == ns_id)[0] pipe_ids = np.where(partition.allocated_nodes == PIPE)[0] ns_pipes = np.intersect1d(node_ids, pipe_ids, assume_unique=True) por_cols = partition.allocated_node_offsets[ns_pipes] + POR w = partition.w.get_value(borrow=True) por_rows = np.nonzero(w[:, por_cols] > 0.)[0] cols, rows = np.meshgrid(por_cols, por_rows) w_update = w[rows, cols] w_update *= (1 - porretdecay) w[rows, cols] = w_update partition.w.set_value(w, borrow=True) ``` #### File: micropsi_core/tests/test_node_activation.py ```python from micropsi_core import runtime as micropsi def prepare(fixed_nodenet): nodenet = micropsi.get_nodenet(fixed_nodenet) netapi = nodenet.netapi source = netapi.create_node("Register", None, "Source") netapi.link(source, "gen", source, "gen") source.activation = 1 nodenet.step() register = netapi.create_node("Register", None) netapi.link(source, "gen", register, "gen") return nodenet, netapi, source, register def test_gate_arithmetics_propagation(fixed_nodenet): # propagate activation, expect it to show up at the gen gate net, netapi, source, register = prepare(fixed_nodenet) net.step() assert register.get_gate("gen").activation == 1 def test_gate_arithmetics_maximum(fixed_nodenet): # set maximum, expect the cutoff to work net, netapi, source, register = prepare(fixed_nodenet) register.set_gate_parameter("gen", "maximum", 0.5) net.step() assert register.get_gate("gen").activation == 0.5 def test_gate_arithmetics_minimum(fixed_nodenet): # set minimum, expect it to show up net, netapi, source, register = prepare(fixed_nodenet) register.set_gate_parameter("gen", "maximum", 2) register.set_gate_parameter("gen", "minimum", 1.5) net.step() assert register.get_gate("gen").activation == 1.5 def test_gate_arithmetics_threshold(fixed_nodenet): # set threshold, expect it to mute the node net, netapi, source, register = prepare(fixed_nodenet) register.set_gate_parameter("gen", "maximum", 2) register.set_gate_parameter("gen", "threshold", 1.5) net.step() assert register.get_gate("gen").activation == 0 def test_gate_arithmetics_amplification(fixed_nodenet): # set maximum and amplification, expect amplification to be applied after maximum net, netapi, source, register = prepare(fixed_nodenet) register.set_gate_parameter("gen", "maximum", 10) register.set_gate_parameter("gen", "amplification", 10) net.step() assert register.get_gate("gen").activation == 10 def test_gate_arithmetics_amplification_and_threshold(fixed_nodenet): # set maximum, amplification and threshold, expect the threshold to mute the node despite amplification net, netapi, source, register = prepare(fixed_nodenet) register.set_gate_parameter("gen", "maximum", 10) register.set_gate_parameter("gen", "amplification", 10) register.set_gate_parameter("gen", "threshold", 2) net.step() assert register.get_gate("gen").activation == 0 def test_gate_arithmetics_directional_activator_amplification(fixed_nodenet): # set maximum and threshold with a directional activator in place net, netapi, source, register = prepare(fixed_nodenet) activator = netapi.create_node("Activator", None) activator.set_parameter('type', 'sub') netapi.link(source, "gen", activator, "gen", 5) testpipe = netapi.create_node("Pipe", None) netapi.link(source, "gen", testpipe, "sub", 1) testpipe.set_gate_parameter("sub", "maximum", 10) testpipe.set_gate_parameter("sub", "threshold", 0) net.step() assert testpipe.get_gate("sub").activation == 5 def test_gate_arithmetics_directional_activator_muting(fixed_nodenet): # have the directional activator mute the node net, netapi, source, register = prepare(fixed_nodenet) activator = netapi.create_node("Activator", None) activator.set_parameter('type', 'sub') netapi.link(source, "gen", activator, "gen", 0) testpipe = netapi.create_node("Pipe", None) netapi.link(source, "gen", testpipe, "sub", 1) testpipe.set_gate_parameter("sub", "maximum", 10) testpipe.set_gate_parameter("sub", "threshold", 0) net.step() assert testpipe.get_gate("sub").activation == 0 def test_gate_arithmetics_directional_activator_threshold(fixed_nodenet): # have the directional activator amplify alpha above threshold net, netapi, source, register = prepare(fixed_nodenet) activator = netapi.create_node("Activator", None) activator.set_parameter('type', 'sub') netapi.link(source, "gen", activator, "gen", 2) testpipe = netapi.create_node("Pipe", None) netapi.link(source, "gen", testpipe, "sub", 1) testpipe.set_gate_parameter("sub", "maximum", 10) testpipe.set_gate_parameter("sub", "threshold", 1) net.step() assert testpipe.get_gate("sub").activation == 2 def test_gatefunction_sigmoid(fixed_nodenet): # set a node function for gen gates, expect it to be used from micropsi_core.nodenet.gatefunctions import sigmoid net, netapi, source, register = prepare(fixed_nodenet) register.set_gatefunction_name("gen", "sigmoid") net.step() assert round(register.get_gate("gen").activation, 5) == round(sigmoid(1, 0, 0), 5) def test_gatefunction_none_is_identity(fixed_nodenet): from micropsi_core.nodenet.gatefunctions import identity net, netapi, source, register = prepare(fixed_nodenet) register.set_gatefunction_name("gen", None) net.step() assert register.get_gate("gen").activation == identity(1, 0, 0) def test_gatefunctions(fixed_nodenet): # call every gatefunction once import micropsi_core.nodenet.gatefunctions as funcs assert funcs.absolute(-1., 0, 0) == 1 assert funcs.one_over_x(2., 0, 0) == 0.5 assert funcs.identity(1, 0, 0) == 1 assert funcs.sigmoid(0, 0, 0) == 0.5 def test_node_activation_is_gen_gate_activation(fixed_nodenet): from micropsi_core.nodenet.gatefunctions import sigmoid net, netapi, source, register = prepare(fixed_nodenet) register.set_gatefunction_name('gen', 'sigmoid') sig = round(sigmoid(1, 0, 0), 4) net.step() assert round(register.activation, 4) == sig assert round(register.get_gate('gen').activation, 4) == sig ``` #### File: micropsi_core/tests/test_node_netapi.py ```python import pytest from micropsi_core import runtime as micropsi def prepare(fixed_nodenet): nodenet = micropsi.get_nodenet(fixed_nodenet) netapi = nodenet.netapi source = netapi.create_node("Register", None, "Source") netapi.link(source, "gen", source, "gen") source.activation = 1 nodenet.step() return nodenet, netapi, source def test_node_netapi_create_register_node(fixed_nodenet): # test register node creation net, netapi, source = prepare(fixed_nodenet) node = netapi.create_node("Register", None, "TestName") # basic logic tests assert node is not None root_ns = netapi.get_nodespace(None) assert node.parent_nodespace == root_ns.uid assert node.type == "Register" assert node.uid is not None assert len(node.get_gate('gen').get_links()) == 0 assert len(node.get_gate('gen').activations) == 1 # frontend/persistency-oriented data dictionary test data = node.get_data() assert data['uid'] == node.uid assert data['name'] == node.name assert data['type'] == node.type node = netapi.create_node("Register", None) # TODO: teh weirdness, server-internally, we return uids as names, clients don't see this, confusion ensues # assert data['name'] == node.name def test_node_netapi_create_pipe_node(fixed_nodenet): # test concept node generation net, netapi, source = prepare(fixed_nodenet) node = netapi.create_node("Pipe", None, "TestName") # basic logic tests assert node is not None assert node.parent_nodespace == netapi.get_nodespace(None).uid assert node.type == "Pipe" assert node.uid is not None assert len(node.get_gate('gen').get_links()) == 0 assert len(node.get_gate('gen').activations) == 1 assert len(node.get_gate('sub').get_links()) == 0 assert len(node.get_gate('sub').activations) == 1 assert len(node.get_gate('sur').get_links()) == 0 assert len(node.get_gate('sur').activations) == 1 assert len(node.get_gate('por').get_links()) == 0 assert len(node.get_gate('por').activations) == 1 assert len(node.get_gate('ret').get_links()) == 0 assert len(node.get_gate('ret').activations) == 1 assert len(node.get_gate('cat').get_links()) == 0 assert len(node.get_gate('cat').activations) == 1 assert len(node.get_gate('exp').get_links()) == 0 assert len(node.get_gate('exp').activations) == 1 # frontend/persistency-oriented data dictionary test data = node.get_data() assert data['uid'] == node.uid for key in node.get_gate_types(): assert key not in data['gate_parameters'] for parameter, value in node.nodetype.gate_defaults[key].items(): assert node.get_gate(key).get_parameter(parameter) == value assert data['name'] == node.name assert data['type'] == node.type node = netapi.create_node("Pipe", None) # TODO: teh weirdness, server-internally, we return uids as names, clients don't see this, confusion ensues # assert data['name'] == node.name @pytest.mark.engine("dict_engine") def test_node_netapi_create_concept_node(fixed_nodenet): # test concept node generation net, netapi, source = prepare(fixed_nodenet) node = netapi.create_node("Concept", None, "TestName") # basic logic tests assert node is not None assert node.parent_nodespace == netapi.get_nodespace(None).uid assert node.type == "Concept" assert node.uid is not None assert len(node.get_gate('gen').get_links()) == 0 assert len(node.get_gate('gen').activations) == 1 assert len(node.get_gate('sub').get_links()) == 0 assert len(node.get_gate('sub').activations) == 1 assert len(node.get_gate('sur').get_links()) == 0 assert len(node.get_gate('sur').activations) == 1 assert len(node.get_gate('por').get_links()) == 0 assert len(node.get_gate('por').activations) == 1 assert len(node.get_gate('ret').get_links()) == 0 assert len(node.get_gate('ret').activations) == 1 assert len(node.get_gate('cat').get_links()) == 0 assert len(node.get_gate('cat').activations) == 1 assert len(node.get_gate('exp').get_links()) == 0 assert len(node.get_gate('exp').activations) == 1 assert len(node.get_gate('sym').get_links()) == 0 assert len(node.get_gate('sym').activations) == 1 assert len(node.get_gate('ref').get_links()) == 0 assert len(node.get_gate('ref').activations) == 1 # frontend/persistency-oriented data dictionary test data = node.get_data() assert data['uid'] == node.uid assert data['name'] == node.name assert data['type'] == node.type node = netapi.create_node("Pipe", None) # TODO: teh weirdness, server-internally, we return uids as names, clients don't see this, confusion ensues # assert data['name'] == node.name def test_node_netapi_create_node_in_nodespace(fixed_nodenet): # test register node in nodespace creation net, netapi, source = prepare(fixed_nodenet) nodespace = netapi.create_nodespace(None, "NestedNodespace") node = netapi.create_node("Register", nodespace.uid, "TestName") assert node.parent_nodespace == nodespace.uid assert node.get_data()['parent_nodespace'] == nodespace.uid def test_node_netapi_get_nodespace_one(fixed_nodenet): # test single nodespace querying net, netapi, source = prepare(fixed_nodenet) nodespace = netapi.create_nodespace(None, "TestName") queried_nodespace = netapi.get_nodespace(nodespace.uid) assert queried_nodespace.uid == nodespace.uid assert queried_nodespace.name == nodespace.name def test_node_netapi_get_nodespace_multi(fixed_nodenet): # test nodespace listing net, netapi, source = prepare(fixed_nodenet) nodespace1 = netapi.create_nodespace(None, "TestName1") nodespace2 = netapi.create_nodespace(None, "TestName2") nodespace3 = netapi.create_nodespace(nodespace2.uid, "TestName3") root_ns = netapi.get_nodespace(None) queried_nodespaces = netapi.get_nodespaces(root_ns.uid) assert len(queried_nodespaces) == 2 assert nodespace1.uid in [x.uid for x in queried_nodespaces] assert nodespace2.uid in [x.uid for x in queried_nodespaces] assert nodespace3.uid not in [x.uid for x in queried_nodespaces] def test_node_netapi_get_node(fixed_nodenet): # test register node creation net, netapi, source = prepare(fixed_nodenet) node = netapi.create_node("Register", None, "TestName") queried_node = netapi.get_node(node.uid) assert queried_node.uid == node.uid assert queried_node.name == node.name assert queried_node.get_data() == node.get_data() assert queried_node.type == node.type def test_node_netapi_get_nodes(fixed_nodenet): # test get_nodes plain net, netapi, source = prepare(fixed_nodenet) node1 = netapi.create_node("Register", None, "TestName1") node2 = netapi.create_node("Register", None, "TestName2") nodes = netapi.get_nodes(netapi.get_nodespace(None).uid) assert node1.uid in [n.uid for n in nodes] assert node2.uid in [n.uid for n in nodes] def test_node_netapi_get_nodes_by_name(fixed_nodenet): # test get_nodes by name net, netapi, source = prepare(fixed_nodenet) node1 = netapi.create_node("Register", None, "TestName1") node2 = netapi.create_node("Register", None, "TestName2") nodes = netapi.get_nodes(netapi.get_nodespace(None).uid, node_name_prefix="TestName") assert len(nodes) == 2 assert node1.uid in [n.uid for n in nodes] assert node2.uid in [n.uid for n in nodes] def test_node_netapi_get_nodes_by_nodespace(fixed_nodenet): # test get_nodes by name and nodespace net, netapi, source = prepare(fixed_nodenet) nodespace = netapi.create_nodespace(None, "NestedNodespace") node1 = netapi.create_node("Register", nodespace.uid, "TestName1") node2 = netapi.create_node("Register", nodespace.uid, "TestName2") nodes = netapi.get_nodes(nodespace.uid) assert len(nodes) == 2 assert node1.uid in [n.uid for n in nodes] assert node2.uid in [n.uid for n in nodes] def test_node_netapi_get_nodes_by_nodetype(fixed_nodenet): # test get_nodes by name and nodespace net, netapi, source = prepare(fixed_nodenet) nodespace = netapi.create_nodespace(None, "NestedNodespace") node1 = netapi.create_node("Pipe", nodespace.uid, "TestName1") node2 = netapi.create_node("Register", nodespace.uid, "TestName2") nodes = netapi.get_nodes(nodetype="Register") assert len(nodes) == 2 uids = [n.uid for n in nodes] assert node1.uid not in uids assert node2.uid in uids assert source.uid in uids def test_node_netapi_get_nodes_by_name_and_nodespace(fixed_nodenet): # test get_nodes by name and nodespace net, netapi, source = prepare(fixed_nodenet) nodespace = netapi.create_nodespace(None, "NestedNodespace") node1 = netapi.create_node("Register", None, "TestName1") node2 = netapi.create_node("Register", nodespace.uid, "TestName2") nodes = netapi.get_nodes(nodespace.uid, "TestName") assert len(nodes) == 1 assert node2.uid in [n.uid for n in nodes] def test_node_netapi_get_nodes_in_gate_field(fixed_nodenet): # test get_nodes_in_gate_field net, netapi, source = prepare(fixed_nodenet) node1 = netapi.create_node("Pipe", None, "TestName1") node2 = netapi.create_node("Pipe", None, "TestName2") node3 = netapi.create_node("Pipe", None, "TestName3") node4 = netapi.create_node("Pipe", None, "TestName4") netapi.link_with_reciprocal(node1, node2, "subsur") netapi.link_with_reciprocal(node1, node3, "subsur") netapi.link_with_reciprocal(node1, node4, "subsur") netapi.link_with_reciprocal(node2, node3, "porret") nodes = netapi.get_nodes_in_gate_field(node1, "sub") assert len(nodes) == 3 assert node2.uid in [n.uid for n in nodes] assert node3.uid in [n.uid for n in nodes] assert node4.uid in [n.uid for n in nodes] def test_node_netapi_get_nodes_in_gate_field_all_links(fixed_nodenet): # test get_nodes_in_gate_field without specifying a gate parameter net, netapi, source = prepare(fixed_nodenet) node1 = netapi.create_node("Pipe", None, "TestName1") node2 = netapi.create_node("Pipe", None, "TestName2") node3 = netapi.create_node("Pipe", None, "TestName3") node4 = netapi.create_node("Pipe", None, "TestName4") netapi.link_with_reciprocal(node1, node2, "subsur") netapi.link_with_reciprocal(node1, node3, "subsur") netapi.link_with_reciprocal(node1, node4, "subsur") netapi.link_with_reciprocal(node2, node3, "porret") nodes = netapi.get_nodes_in_gate_field(node2) assert len(nodes) == 2 assert node1.uid in [n.uid for n in nodes] assert node3.uid in [n.uid for n in nodes] def test_node_netapi_get_nodes_in_gate_field_with_limitations(fixed_nodenet): # test get_nodes_in_gate_field with limitations: no por links net, netapi, source = prepare(fixed_nodenet) node1 = netapi.create_node("Pipe", None, "TestName1") node2 = netapi.create_node("Pipe", None, "TestName2") node3 = netapi.create_node("Pipe", None, "TestName3") node4 = netapi.create_node("Pipe", None, "TestName4") netapi.link_with_reciprocal(node1, node2, "subsur") netapi.link_with_reciprocal(node1, node3, "subsur") netapi.link_with_reciprocal(node1, node4, "subsur") netapi.link_with_reciprocal(node2, node3, "porret") nodes = netapi.get_nodes_in_gate_field(node1, "sub", ["por"]) assert len(nodes) == 2 assert node3.uid in [n.uid for n in nodes] assert node4.uid in [n.uid for n in nodes] def test_node_netapi_get_nodes_in_gate_field_with_limitations_and_nodespace(fixed_nodenet): # test get_nodes_in_gate_field with limitations: no por links net, netapi, source = prepare(fixed_nodenet) nodespace = netapi.create_nodespace(None, "NestedNodespace") node1 = netapi.create_node("Pipe", None, "TestName1") node2 = netapi.create_node("Pipe", None, "TestName2") node3 = netapi.create_node("Pipe", None, "TestName3") node4 = netapi.create_node("Pipe", nodespace.uid, "TestName4") netapi.link_with_reciprocal(node1, node2, "subsur") netapi.link_with_reciprocal(node1, node3, "subsur") netapi.link_with_reciprocal(node1, node4, "subsur") netapi.link_with_reciprocal(node2, node3, "porret") nodes = netapi.get_nodes_in_gate_field(node1, "sub", ["por"], netapi.get_nodespace(None).uid) assert len(nodes) == 1 assert node3.uid in [n.uid for n in nodes] def test_node_netapi_get_nodes_in_slot_field(fixed_nodenet): # test get_nodes_in_slot_field net, netapi, source = prepare(fixed_nodenet) node1 = netapi.create_node("Register", None, "TestName1") node2 = netapi.create_node("Register", None, "TestName2") node3 = netapi.create_node("Register", None, "TestName3") node4 = netapi.create_node("Register", None, "TestName4") netapi.link(node2, "gen", node1, "gen") netapi.link(node3, "gen", node1, "gen") netapi.link(node3, "gen", node1, "gen") netapi.link(node4, "gen", node1, "gen") nodes = netapi.get_nodes_in_slot_field(node1, "gen") assert len(nodes) == 3 assert node2.uid in [n.uid for n in nodes] assert node3.uid in [n.uid for n in nodes] assert node4.uid in [n.uid for n in nodes] def test_node_netapi_get_nodes_in_slot_field_all_links(fixed_nodenet): # test get_nodes_in_slot_field without a gate parameter net, netapi, source = prepare(fixed_nodenet) net, netapi, source = prepare(fixed_nodenet) node1 = netapi.create_node("Pipe", None, "TestName1") node2 = netapi.create_node("Pipe", None, "TestName2") node3 = netapi.create_node("Pipe", None, "TestName3") node4 = netapi.create_node("Pipe", None, "TestName4") netapi.link_with_reciprocal(node1, node2, "subsur") netapi.link_with_reciprocal(node1, node3, "subsur") netapi.link_with_reciprocal(node1, node4, "subsur") netapi.link_with_reciprocal(node2, node3, "porret") nodes = netapi.get_nodes_in_slot_field(node1) assert len(nodes) == 3 assert node2.uid in [n.uid for n in nodes] assert node3.uid in [n.uid for n in nodes] assert node4.uid in [n.uid for n in nodes] def test_node_netapi_get_nodes_with_nodespace_limitation(fixed_nodenet): # test get_nodes_feed with nodespace limitation net, netapi, source = prepare(fixed_nodenet) nodespace = netapi.create_nodespace(None, "NestedNodespace") node1 = netapi.create_node("Register", None, "TestName1") node2 = netapi.create_node("Register", None, "TestName2") node3 = netapi.create_node("Register", None, "TestName3") node4 = netapi.create_node("Register", nodespace.uid, "TestName4") netapi.link(node2, "gen", node1, "gen") netapi.link(node3, "gen", node1, "gen") netapi.link(node3, "gen", node1, "gen") netapi.link(node4, "gen", node1, "gen") nodes = netapi.get_nodes_in_slot_field(node1, "gen", None, netapi.get_nodespace(None).uid) assert len(nodes) == 2 assert node2.uid in [n.uid for n in nodes] assert node3.uid in [n.uid for n in nodes] def test_node_netapi_get_nodes_in_slot_field_with_limitations_and_nodespace(fixed_nodenet): # test get_nodes_in_gate_field with limitations: no por links net, netapi, source = prepare(fixed_nodenet) nodespace = netapi.create_nodespace(None, "NestedNodespace") node1 = netapi.create_node("Pipe", None, "TestName1") node2 = netapi.create_node("Pipe", None, "TestName2") node3 = netapi.create_node("Pipe", None, "TestName3") node4 = netapi.create_node("Pipe", nodespace.uid, "TestName4") netapi.link_with_reciprocal(node1, node2, "subsur") netapi.link_with_reciprocal(node1, node3, "subsur") netapi.link_with_reciprocal(node1, node4, "subsur") netapi.link_with_reciprocal(node2, node3, "porret") nodes = netapi.get_nodes_in_slot_field(node1, "sur", ["por"], netapi.get_nodespace(None).uid) assert len(nodes) == 1 assert node3.uid in [n.uid for n in nodes] def test_node_netapi_get_nodes_active(fixed_nodenet): # test get_nodes_active net, netapi, source = prepare(fixed_nodenet) nodespace = netapi.create_nodespace(None, "NestedNodespace") node1 = netapi.create_node("Register", None, "TestName1") node2 = netapi.create_node("Register", None, "TestName2") node3 = netapi.create_node("Register", None, "TestName3") node4 = netapi.create_node("Register", nodespace.uid, "TestName4") netapi.link(node2, "gen", node1, "gen") netapi.link(node3, "gen", node1, "gen") netapi.link(node3, "gen", node1, "gen") netapi.link(node4, "gen", node1, "gen") netapi.link(source, "gen", node2, "gen", 0.5) netapi.link(source, "gen", node4, "gen", 0.5) net.step() net.step() nodes = netapi.get_nodes_active(netapi.get_nodespace(None).uid, "Register", 0.7, "gen") assert len(nodes) == 2 assert node1.uid in [n.uid for n in nodes] assert source.uid in [n.uid for n in nodes] nodes = netapi.get_nodes_active(netapi.get_nodespace(None).uid, "Register") assert len(nodes) == 2 assert node1.uid in [n.uid for n in nodes] assert source.uid in [n.uid for n in nodes] def test_node_netapi_get_nodes_active_with_nodespace_limitation(fixed_nodenet): # test get_nodes_active with nodespace filtering net, netapi, source = prepare(fixed_nodenet) nodespace = netapi.create_nodespace(None, "NestedNodespace") node1 = netapi.create_node("Register", None, "TestName1") node2 = netapi.create_node("Register", None, "TestName2") node3 = netapi.create_node("Register", None, "TestName3") node4 = netapi.create_node("Register", nodespace.uid, "TestName4") netapi.link(node2, "gen", node1, "gen") netapi.link(node3, "gen", node1, "gen") netapi.link(node3, "gen", node1, "gen") netapi.link(node4, "gen", node1, "gen") netapi.link(source, "gen", node2, "gen", 0.5) netapi.link(source, "gen", node4, "gen", 0.5) net.step() net.step() nodes = netapi.get_nodes_active(nodespace.uid, "Register", 0.4) assert len(nodes) == 1 assert node4.uid in [n.uid for n in nodes] def test_node_netapi_delete_node(fixed_nodenet): # test simple delete node case net, netapi, source = prepare(fixed_nodenet) node1 = netapi.create_node("Register", None, "TestName1") node2 = netapi.create_node("Register", None, "TestName2") node3 = netapi.create_node("Register", None, "TestName3") netapi.link(node2, "gen", node1, "gen") netapi.link(node3, "gen", node1, "gen") netapi.link(node3, "gen", node1, "gen") olduid = node1.uid netapi.delete_node(node1) with pytest.raises(KeyError): netapi.get_node(olduid) assert len(node2.get_gate("gen").get_links()) == 0 def test_node_netapi_delete_nodespace(fixed_nodenet): # test delete node case deleting a nodespace net, netapi, source = prepare(fixed_nodenet) nodespace = netapi.create_nodespace(None, "NestedNodespace") node1 = netapi.create_node("Register", None, "TestName1") node2 = netapi.create_node("Register", None, "TestName2") node3 = netapi.create_node("Register", None, "TestName3") node4 = netapi.create_node("Register", nodespace.uid, "TestName4") netapi.link(node2, "gen", node1, "gen") netapi.link(node3, "gen", node1, "gen") netapi.link(node3, "gen", node1, "gen") netapi.link(node4, "gen", node1, "gen") node4uid = node4.uid netapi.delete_nodespace(nodespace) with pytest.raises(KeyError): netapi.get_node(node4uid) def test_node_netapi_link(fixed_nodenet): # test linking nodes net, netapi, source = prepare(fixed_nodenet) node1 = netapi.create_node("Register", None, "TestName1") node2 = netapi.create_node("Register", None, "TestName2") netapi.link(node2, "gen", node1, "gen") assert len(node2.get_gate("gen").get_links()) == 1 for link in node2.get_gate("gen").get_links(): # basic internal logic assert link.source_node.uid == node2.uid assert link.target_node.uid == node1.uid assert link.weight == 1 found = False for otherside_link in node1.get_slot("gen").get_links(): if otherside_link.signature == link.signature: found = True assert found # frontend/persistency-facing assert link.get_data()['weight'] == link.weight assert link.get_data()['target_node_uid'] == node1.uid assert link.get_data()['target_slot_name'] == 'gen' # frontend/persistency-facing assert link.get_data(complete=True)['source_node_uid'] == node2.uid assert link.get_data(complete=True)['source_gate_name'] == 'gen' def test_node_netapi_link_change_weight(fixed_nodenet): # test linking nodes, the changing weights net, netapi, source = prepare(fixed_nodenet) node1 = netapi.create_node("Register", None, "TestName1") node2 = netapi.create_node("Register", None, "TestName2") netapi.link(node2, "gen", node1, "gen") net.step() netapi.link(node2, "gen", node1, "gen", 0.8) assert len(node2.get_gate("gen").get_links()) == 1 for link in node2.get_gate("gen").get_links(): # basic internal logic assert link.source_node.uid == node2.uid assert link.target_node.uid == node1.uid assert round(link.weight, 5) == 0.8 found = False for otherside_link in node1.get_slot("gen").get_links(): if otherside_link.signature == link.signature: found = True assert found # frontend/persistency-facing assert link.get_data()['weight'] == link.weight assert link.get_data()['target_node_uid'] == node1.uid assert link.get_data()['target_slot_name'] == 'gen' def test_node_netapi_link_with_reciprocal(fixed_nodenet): # test linking pipe and concept nodes with reciprocal links net, netapi, source = prepare(fixed_nodenet) n_head = netapi.create_node("Pipe", None, "Head") n_a = netapi.create_node("Pipe", None, "A") n_b = netapi.create_node("Pipe", None, "B") n_c = netapi.create_node("Pipe", None, "C") netapi.link_with_reciprocal(n_head, n_a, "subsur") netapi.link_with_reciprocal(n_head, n_b, "subsur") netapi.link_with_reciprocal(n_head, n_c, "subsur") netapi.link_with_reciprocal(n_a, n_b, "porret", 0.5) netapi.link_with_reciprocal(n_b, n_c, "porret", 0.5) assert len(n_head.get_gate("sub").get_links()) == 3 assert len(n_head.get_slot("sur").get_links()) == 3 assert len(n_a.get_gate("sur").get_links()) == 1 assert len(n_a.get_slot("sub").get_links()) == 1 assert len(n_b.get_gate("sur").get_links()) == 1 assert len(n_b.get_slot("sub").get_links()) == 1 assert len(n_c.get_gate("sur").get_links()) == 1 assert len(n_c.get_slot("sub").get_links()) == 1 assert len(n_a.get_gate("por").get_links()) == 1 assert len(n_a.get_slot("ret").get_links()) == 1 assert len(n_a.get_slot("por").get_links()) == 0 assert len(n_b.get_gate("por").get_links()) == 1 assert len(n_b.get_slot("ret").get_links()) == 1 assert len(n_b.get_gate("ret").get_links()) == 1 assert len(n_b.get_slot("por").get_links()) == 1 assert len(n_c.get_gate("por").get_links()) == 0 assert len(n_c.get_slot("ret").get_links()) == 0 for link in n_b.get_gate("por").get_links(): assert link.weight == 0.5 @pytest.mark.engine("dict_engine") def test_node_netapi_link_with_reciprocal_and_concepts(fixed_nodenet): # test linking pipe and concept nodes with reciprocal links net, netapi, source = prepare(fixed_nodenet) n_head = netapi.create_node("Pipe", None, "Head") n_d = netapi.create_node("Concept", None, "D") n_e = netapi.create_node("Concept", None, "E") netapi.link_with_reciprocal(n_head, n_d, "catexp") netapi.link_with_reciprocal(n_d, n_e, "symref") assert len(n_d.get_gate("sym").get_links()) == 1 assert len(n_d.get_slot("gen").get_links()) == 2 assert len(n_head.get_gate("cat").get_links()) == 1 assert len(n_head.get_slot("exp").get_links()) == 1 def test_node_netapi_unlink(fixed_nodenet): # test completely unlinking a node net, netapi, source = prepare(fixed_nodenet) n_head = netapi.create_node("Pipe", None, "Head") n_a = netapi.create_node("Pipe", None, "A") n_b = netapi.create_node("Pipe", None, "B") n_c = netapi.create_node("Pipe", None, "C") n_d = netapi.create_node("Pipe", None, "D") nodes = [n_a, n_b, n_c, n_d] for source in nodes: for target in nodes: netapi.link_with_reciprocal(source, target, "porret") netapi.unlink(n_b) assert len(n_a.get_slot('por').get_links()) == 3 assert len(n_b.get_slot('por').get_links()) == 3 assert len(n_c.get_slot('por').get_links()) == 3 assert len(n_d.get_slot('por').get_links()) == 3 def test_node_netapi_unlink_specific_link(fixed_nodenet): # test removing a specific link net, netapi, source = prepare(fixed_nodenet) n_head = netapi.create_node("Pipe", None, "Head") n_a = netapi.create_node("Pipe", None, "A") n_b = netapi.create_node("Pipe", None, "B") n_c = netapi.create_node("Pipe", None, "C") n_d = netapi.create_node("Pipe", None, "D") nodes = [n_a, n_b, n_c, n_d] for source in nodes: for target in nodes: netapi.link_with_reciprocal(source, target, "porret") netapi.unlink(n_b, "por", n_c, "por") assert len(n_a.get_slot('por').get_links()) == 4 assert len(n_b.get_slot('por').get_links()) == 4 assert len(n_c.get_slot('por').get_links()) == 3 assert len(n_d.get_slot('por').get_links()) == 4 def test_node_netapi_unlink_gate(fixed_nodenet): # test unlinking a gate net, netapi, source = prepare(fixed_nodenet) n_head = netapi.create_node("Pipe", None, "Head") n_a = netapi.create_node("Pipe", None, "A") n_b = netapi.create_node("Pipe", None, "B") n_c = netapi.create_node("Pipe", None, "C") n_d = netapi.create_node("Pipe", None, "D") nodes = [n_a, n_b, n_c, n_d] for source in nodes: for target in nodes: netapi.link_with_reciprocal(source, target, "porret") netapi.unlink(n_b, "por") assert len(n_a.get_slot('por').get_links()) == 3 assert len(n_b.get_slot('por').get_links()) == 3 assert len(n_c.get_slot('por').get_links()) == 3 assert len(n_d.get_slot('por').get_links()) == 3 def test_node_netapi_unlink_direction(fixed_nodenet): # test unlinking a gate net, netapi, source = prepare(fixed_nodenet) n_head = netapi.create_node("Pipe", None, "Head") n_a = netapi.create_node("Pipe", None, "A") n_b = netapi.create_node("Pipe", None, "B") n_c = netapi.create_node("Pipe", None, "C") netapi.link_with_reciprocal(n_head, n_a, "subsur") netapi.link_with_reciprocal(n_head, n_b, "subsur") netapi.link_with_reciprocal(n_head, n_c, "subsur") nodes = [n_a, n_b, n_c] for source in nodes: for target in nodes: netapi.link_with_reciprocal(source, target, "porret") netapi.unlink_direction(n_b, "por") assert len(n_head.get_gate('sub').get_links()) == 3 assert len(n_head.get_slot('sur').get_links()) == 3 assert len(n_a.get_slot('por').get_links()) == 2 assert len(n_b.get_slot('por').get_links()) == 0 assert len(n_c.get_slot('por').get_links()) == 2 netapi.unlink_direction(n_head, "sub") assert len(n_head.get_gate('sub').get_links()) == 0 assert len(n_head.get_slot('sur').get_links()) == 3 assert len(n_a.get_slot('sub').get_links()) == 0 assert len(n_b.get_slot('sub').get_links()) == 0 assert len(n_c.get_slot('sub').get_links()) == 0 def test_node_netapi_import_actors(fixed_nodenet, test_world): # test importing data targets as actors net, netapi, source = prepare(fixed_nodenet) micropsi.set_nodenet_properties(fixed_nodenet, world_uid=test_world, worldadapter='Braitenberg') root_ns = netapi.get_nodespace(None) netapi.import_actors(root_ns.uid) actors = netapi.get_nodes(root_ns.uid, nodetype="Actor") assert len(actors) == 2 assert set([a.get_parameter('datatarget') for a in actors]) == set(net.worldadapter_instance.datatargets.keys()) # do it again, make sure we can call import multiple times netapi.import_actors(root_ns.uid) actors = netapi.get_nodes(root_ns.uid, nodetype="Actor") assert len(actors) == 2 def test_node_netapi_import_sensors(fixed_nodenet, test_world): # test importing data sources as sensors net, netapi, source = prepare(fixed_nodenet) micropsi.set_nodenet_properties(fixed_nodenet, world_uid=test_world, worldadapter='Braitenberg') root_ns = netapi.get_nodespace(None) netapi.import_sensors(root_ns.uid) sensors = netapi.get_nodes(root_ns.uid, nodetype="Sensor") assert len(sensors) == 2 assert set([s.get_parameter('datasource') for s in sensors]) == set(net.worldadapter_instance.datasources.keys()) # do it again, make sure we can call import multiple times netapi.import_sensors(root_ns.uid) sensors = netapi.get_nodes(root_ns.uid, nodetype="Sensor") assert len(sensors) == 2 def test_set_gate_function(fixed_nodenet): # test setting a custom gate function from micropsi_core.nodenet.gatefunctions import sigmoid net, netapi, source = prepare(fixed_nodenet) some_other_node_type = netapi.create_node("Pipe", None) netapi.unlink(source, "gen") net.step() assert source.get_gate("gen").activation == 0 netapi.set_gatefunction(netapi.get_nodespace(None).uid, "Register", "gen", "sigmoid") source.set_gate_parameter('gen', 'theta', 1) net.step() assert round(source.get_gate("gen").activation, 5) == round(sigmoid(0, 0, 1), 5) assert some_other_node_type.get_gate("gen").activation == 0 def test_autoalign(fixed_nodenet): net, netapi, source = prepare(fixed_nodenet) for uid in net.get_node_uids(): net.get_node(uid).position = [12, 13, 11] netapi.autoalign_nodespace(netapi.get_nodespace(None).uid) positions = [] for uid in net.get_node_uids(): if net.get_node(uid).parent_nodespace == netapi.get_nodespace(None).uid: positions.extend(net.get_node(uid).position) assert set(positions) != set([12, 13, 11]) for uid in net.get_node_uids(): net.get_node(uid).position = [12, 13, 11] netapi.autoalign_nodespace('InVaLiD') positions = [] for uid in net.get_node_uids(): positions.extend(net.get_node(uid).position) assert set(positions) == set([12, 13, 11]) def test_autoalign_updates_last_changed(fixed_nodenet): net, netapi, source = prepare(fixed_nodenet) for uid in net.get_node_uids(): net.get_node(uid).position = [12, 13, 11] net.step() net.step() netapi.autoalign_nodespace(netapi.get_nodespace(None).uid) changes = net.get_nodespace_changes([None], 2) for uid in net.get_node_uids(): if net.get_node(uid).position != [12, 13, 11]: assert uid in changes['nodes_dirty'] def test_copy_nodes(fixed_nodenet): net, netapi, source = prepare(fixed_nodenet) nodespace = netapi.create_nodespace(None, name='copy') a1 = netapi.get_node('n0001') a2 = netapi.get_node('n0002') a1.set_parameter('expecation', 0.6) a1.set_gate_parameter('gen', 'amplification', 0.27) mapping = netapi.copy_nodes([a1, a2], nodespace.uid) assert a1 in mapping assert a2 in mapping assert a1.name == mapping[a1].name assert mapping[a1].parent_nodespace == nodespace.uid assert mapping[a2].parent_nodespace == nodespace.uid assert set(nodespace.get_known_ids()) == set([mapping[a1].uid, mapping[a2].uid]) assert len(mapping[a1].get_slot('gen').get_links()) == 0 # incoming link from outside not copied assert mapping[a1].get_gate('por').get_links()[0].target_node.uid == mapping[a2].uid assert a1.clone_parameters() == mapping[a1].clone_parameters() assert a1.get_gate_parameters() == mapping[a1].get_gate_parameters() def test_group_nodes_by_names(fixed_nodenet): net, netapi, source = prepare(fixed_nodenet) sepp1 = netapi.create_node("Register", None, "sepp1") sepp2 = netapi.create_node("Register", None, "sepp2") sepp3 = netapi.create_node("Register", None, "sepp3") netapi.group_nodes_by_names(None, node_name_prefix="sepp") seppen_act = netapi.get_activations(None, "sepp") assert len(seppen_act) == 3 def test_group_nodes_by_ids(fixed_nodenet): net, netapi, source = prepare(fixed_nodenet) ids = ["n0001", "n0002"] netapi.group_nodes_by_ids(None, ids, "some") some_act = netapi.get_activations(None, "some") assert len(some_act) == 2 def test_ungroup_nodes(fixed_nodenet): net, netapi, source = prepare(fixed_nodenet) ids = ["n0001", "n0002"] netapi.group_nodes_by_ids(None, ids, "some") netapi.ungroup_nodes(None, "some") def test_get_activations(fixed_nodenet): net, netapi, source = prepare(fixed_nodenet) sepp1 = netapi.create_node("Register", None, "sepp1") sepp2 = netapi.create_node("Register", None, "sepp2") sepp3 = netapi.create_node("Register", None, "sepp3") netapi.group_nodes_by_names(None, node_name_prefix="sepp") seppen_act = netapi.get_activations(None, "sepp") assert len(seppen_act) == 3 assert seppen_act[0] == 0 assert seppen_act[1] == 0 assert seppen_act[2] == 0 netapi.link(source, "gen", sepp2, "gen") net.step() seppen_act = netapi.get_activations(None, "sepp") assert seppen_act[0] == 0 assert seppen_act[1] == 1 assert seppen_act[2] == 0 def test_substitute_activations(fixed_nodenet): net, netapi, source = prepare(fixed_nodenet) sepp1 = netapi.create_node("Register", None, "sepp1").uid sepp2 = netapi.create_node("Register", None, "sepp2").uid sepp3 = netapi.create_node("Register", None, "sepp3").uid netapi.group_nodes_by_names(None, node_name_prefix="sepp") netapi.link(source, "gen", netapi.get_node(sepp2), "gen") net.step() suddenly_a_wild_activation_appears = [0.2, -1, 42] netapi.substitute_activations(None, "sepp", suddenly_a_wild_activation_appears) assert round(netapi.get_node(sepp1).get_gate('gen').activation, 2) == 0.2 assert round(netapi.get_node(sepp2).get_gate('gen').activation, 2) == -1 assert round(netapi.get_node(sepp3).get_gate('gen').activation, 2) == 42 netapi.link(netapi.get_node(sepp2), "gen", netapi.get_node(sepp3), "gen") net.step() seppen_act = netapi.get_activations(None, "sepp") assert round(seppen_act[0], 2) == 0 assert round(seppen_act[1], 2) == 1 assert round(seppen_act[2], 2) == -1 def test_get_thetas(fixed_nodenet): net, netapi, source = prepare(fixed_nodenet) sepp1 = netapi.create_node("Register", None, "sepp1") sepp2 = netapi.create_node("Register", None, "sepp2") sepp3 = netapi.create_node("Register", None, "sepp3") netapi.group_nodes_by_names(None, node_name_prefix="sepp") seppen_theta = netapi.get_thetas(None, "sepp") assert len(seppen_theta) == 3 assert seppen_theta[0] == 0 assert seppen_theta[1] == 0 assert seppen_theta[2] == 0 def test_set_thetas(fixed_nodenet): net, netapi, source = prepare(fixed_nodenet) sepp1 = netapi.create_node("Register", None, "sepp1") sepp2 = netapi.create_node("Register", None, "sepp2") sepp3 = netapi.create_node("Register", None, "sepp3") netapi.group_nodes_by_names(None, node_name_prefix="sepp") some_thetas = [1, 2, 3] netapi.set_thetas(None, "sepp", some_thetas) net.step() seppen_theta = netapi.get_thetas(None, "sepp") assert round(seppen_theta[0], 2) == 1 assert round(seppen_theta[1], 2) == 2 assert round(seppen_theta[2], 2) == 3 def test_get_link_weights(fixed_nodenet): net, netapi, source = prepare(fixed_nodenet) sepp1 = netapi.create_node("Register", None, "sepp1") sepp2 = netapi.create_node("Register", None, "sepp2") sepp3 = netapi.create_node("Register", None, "sepp3") netapi.group_nodes_by_names(None, node_name_prefix="sepp") hugo1 = netapi.create_node("Register", None, "hugo1") hugo2 = netapi.create_node("Register", None, "hugo2") netapi.group_nodes_by_names(None, node_name_prefix="hugo") netapi.link(sepp2, "gen", hugo1, "gen", 0.4) w = netapi.get_link_weights(None, "sepp", None, "hugo") value = None # list style indexing try: value = round(float(w[0][1]), 2) except: pass # numpy style indexing try: value = round(float(w[0, 1]), 2) except: pass assert value == 0.4 def test_set_link_weights(fixed_nodenet): net, netapi, source = prepare(fixed_nodenet) sepp1 = netapi.create_node("Register", None, "sepp1") sepp2 = netapi.create_node("Register", None, "sepp2") sepp3 = netapi.create_node("Register", None, "sepp3") netapi.group_nodes_by_names(None, node_name_prefix="sepp") hugo1 = netapi.create_node("Register", None, "hugo1") hugo2 = netapi.create_node("Register", None, "hugo2") netapi.group_nodes_by_names(None, node_name_prefix="hugo") netapi.link(sepp2, "gen", hugo1, "gen", 0.4) w = netapi.get_link_weights(None, "sepp", None, "hugo") # change value # list style indexing try: w[0][1] = 0.6 except: pass # numpy style indexing try: w[0, 1] = 0.6 except: pass netapi.set_link_weights(None, "sepp", None, "hugo", w) assert round(float(netapi.get_node(sepp2.uid).get_gate('gen').get_links()[0].weight), 2) == 0.6 # remove link # list style indexing try: w[0][1] = 0 except: pass # numpy style indexing try: w[0, 1] = 0 except: pass netapi.set_link_weights(None, "sepp", None, "hugo", w) assert len(netapi.get_node(sepp2.uid).get_gate('gen').get_links()) == 0 # create link # list style indexing try: w[1][1] = 0.5 except: pass # numpy style indexing try: w[1, 1] = 0.5 except: pass netapi.set_link_weights(None, "sepp", None, "hugo", w) assert len(netapi.get_node(sepp2.uid).get_gate('gen').get_links()) == 1 def test_get_node_ids(fixed_nodenet): net, netapi, source = prepare(fixed_nodenet) sepp1 = netapi.create_node("Register", None, "sepp1") sepp2 = netapi.create_node("Register", None, "sepp2") sepp3 = netapi.create_node("Register", None, "sepp3") netapi.group_nodes_by_names(None, node_name_prefix="sepp") seppen_ids = netapi.get_node_ids(None, "sepp") assert len(seppen_ids) == 3 assert seppen_ids[0] == sepp1.uid assert seppen_ids[1] == sepp2.uid assert seppen_ids[2] == sepp3.uid def test_add_gate_monitor(test_nodenet, node): nodenet = micropsi.get_nodenet(test_nodenet) netapi = nodenet.netapi uid = netapi.add_gate_monitor(node, 'gen', name='sepp', color='#987654') assert nodenet.get_monitor(uid).name == 'sepp' assert nodenet.get_monitor(uid).type == 'gate' assert nodenet.get_monitor(uid).color == '#987654' @pytest.mark.engine("dict_engine") def test_add_slot_monitor(test_nodenet, node): nodenet = micropsi.get_nodenet(test_nodenet) netapi = nodenet.netapi uid = netapi.add_slot_monitor(node, 'gen') assert nodenet.get_monitor(uid).type == 'slot' def test_add_link_monitor(test_nodenet, node): nodenet = micropsi.get_nodenet(test_nodenet) netapi = nodenet.netapi uid = netapi.add_link_monitor(node, 'gen', node, 'gen', name='sepplink') assert nodenet.get_monitor(uid).name == 'sepplink' assert nodenet.get_monitor(uid).property == 'weight' def test_add_modulator_monitor(test_nodenet): nodenet = micropsi.get_nodenet(test_nodenet) netapi = nodenet.netapi nodenet.step() uid = netapi.add_modulator_monitor('base_age', 'age') assert nodenet.get_monitor(uid).modulator == 'base_age' assert nodenet.get_monitor(uid).name == 'age' def test_add_custom_monitor(test_nodenet): nodenet = micropsi.get_nodenet(test_nodenet) netapi = nodenet.netapi function = "return len(netapi.get_nodes())" uid = netapi.add_custom_monitor(function, 'number_of_nodes', color=None) assert nodenet.get_monitor(uid).name == 'number_of_nodes' assert nodenet.get_monitor(uid).function == function def test_get_monitor(test_nodenet, node): nodenet = micropsi.get_nodenet(test_nodenet) netapi = nodenet.netapi uid = netapi.add_gate_monitor(node, 'gen') assert nodenet.get_monitor(uid) == netapi.get_monitor(uid) def test_remove_monitor(test_nodenet, node): nodenet = micropsi.get_nodenet(test_nodenet) netapi = nodenet.netapi uid = netapi.add_gate_monitor(node, 'gen') netapi.remove_monitor(uid) assert nodenet.get_monitor(uid) is None def test_set_dashboard_value(test_nodenet, node): nodenet = micropsi.get_nodenet(test_nodenet) netapi = nodenet.netapi netapi.set_dashboard_value('foo', 'bar') assert nodenet.dashboard_values['foo'] == 'bar' def test_decay_porret_links(test_nodenet): nodenet = micropsi.get_nodenet(test_nodenet) netapi = nodenet.netapi pipes = [] netapi.set_modulator('base_porret_decay_factor', 0.1) for i in range(10): node = netapi.create_node("Pipe", None, "P%d" % i) pipes.append(node) if i > 0: netapi.link_with_reciprocal(pipes[i - 1], node, 'porret', weight=0.1 * i) netapi.link_with_reciprocal(pipes[0], pipes[1], 'subsur', weight=0.5) reg = netapi.create_node("Register", None, "source") netapi.link(reg, 'gen', pipes[0], 'gen', 0.4) netapi.decay_por_links(None) for i in range(9): assert round(pipes[i].get_gate('por').get_links()[0].weight, 3) == round(0.1 * (i + 1) * 0.9, 3) # sub/sur/ret/gen links unchanged assert round(reg.get_gate('gen').get_links()[0].weight, 3) == 0.4 assert round(pipes[0].get_gate('sub').get_links()[0].weight, 3) == 0.5 assert round(pipes[7].get_gate('ret').get_links()[0].weight, 3) == 0.7 def test_unlink_gate(test_nodenet): nodenet = micropsi.get_nodenet(test_nodenet) netapi = nodenet.netapi node = netapi.create_node("Pipe", None) pipe1 = netapi.create_node("Pipe", None) pipe2 = netapi.create_node("Pipe", None) netapi.link_with_reciprocal(node, pipe1, 'subsur') netapi.link_with_reciprocal(node, pipe2, 'subsur') netapi.link(node, 'por', pipe1, 'gen') netapi.link(node, 'por', pipe2, 'gen') netapi.link(node, 'por', pipe1, 'sur') micropsi.save_nodenet(test_nodenet) netapi.unlink_gate(node, 'por') assert node.get_gate('por').empty assert not node.get_gate('sub').empty micropsi.revert_nodenet(test_nodenet) netapi = micropsi.nodenets[test_nodenet].netapi node = netapi.get_node(node.uid) netapi.unlink_gate(node, 'por', target_node_uid=pipe1.uid) assert len(node.get_gate('por').get_links()) == 1 assert node.get_gate('por').get_links()[0].target_node.uid == pipe2.uid micropsi.revert_nodenet(test_nodenet) netapi = micropsi.nodenets[test_nodenet].netapi node = netapi.get_node(node.uid) netapi.unlink_gate(node, 'por', target_slot_name='sur') assert len(node.get_gate('por').get_links()) == 2 # pipe1:gen, pipe2:gen assert len(node.get_gate('sub').get_links()) == 2 # only por->sub unlinked def test_unlink_slot(test_nodenet): nodenet = micropsi.get_nodenet(test_nodenet) netapi = nodenet.netapi node = netapi.create_node("Pipe", None) pipe1 = netapi.create_node("Pipe", None) pipe2 = netapi.create_node("Pipe", None) netapi.link_with_reciprocal(node, pipe1, 'subsur') netapi.link_with_reciprocal(node, pipe2, 'subsur') netapi.link(pipe1, 'gen', node, 'por') netapi.link(pipe2, 'gen', node, 'por') netapi.link(pipe1, 'sur', node, 'por') micropsi.save_nodenet(test_nodenet) netapi.unlink_slot(node, 'por') assert node.get_slot('por').empty assert not node.get_slot('sur').empty micropsi.revert_nodenet(test_nodenet) netapi = micropsi.nodenets[test_nodenet].netapi node = netapi.get_node(node.uid) netapi.unlink_slot(node, 'por', source_node_uid=pipe1.uid) assert len(node.get_slot('por').get_links()) == 1 assert node.get_slot('por').get_links()[0].source_node.uid == pipe2.uid micropsi.revert_nodenet(test_nodenet) netapi = micropsi.nodenets[test_nodenet].netapi node = netapi.get_node(node.uid) netapi.unlink_slot(node, 'por', source_gate_name='sur') assert len(node.get_slot('por').get_links()) == 2 # pipe1:gen, pipe2:gen assert len(node.get_slot('sur').get_links()) == 2 # only sur->por unlinked def test_nodespace_properties(test_nodenet): nodenet = micropsi.get_nodenet(test_nodenet) netapi = nodenet.netapi rootns = netapi.get_nodespace(None) netapi.set_nodespace_properties(None, {'foo': 'bar'}) data = netapi.get_nodespace_properties() assert data[rootns.uid] == {'foo': 'bar'} ``` #### File: micropsi_core/tests/test_runtime_nodes.py ```python from micropsi_core import runtime as micropsi import pytest __author__ = 'joscha' __date__ = '29.10.12' def prepare_nodenet(test_nodenet): res, node_a_uid = micropsi.add_node(test_nodenet, "Pipe", [200, 250, 10], None, state=None, name="A") res, node_b_uid = micropsi.add_node(test_nodenet, "Pipe", [500, 350, 10], None, state=None, name="B") res, node_c_uid = micropsi.add_node(test_nodenet, "Pipe", [300, 150, 10], None, state=None, name="C") res, node_s_uid = micropsi.add_node(test_nodenet, "Sensor", [200, 450, 10], None, state=None, name="S") return { 'a': node_a_uid, 'b': node_b_uid, 'c': node_c_uid, 's': node_s_uid } def test_add_node(test_nodenet): micropsi.load_nodenet(test_nodenet) # make sure nodenet is empty nodespace = micropsi.get_nodes(test_nodenet) try: for i in nodespace["nodes"]: micropsi.delete_node(test_nodenet, i) except: pass nodespace = micropsi.get_nodes(test_nodenet) assert len(nodespace.get("nodes", [])) == 0 res, uid = micropsi.add_node(test_nodenet, "Pipe", [200, 250, 10], None, state=None, name="A") nodespace = micropsi.get_nodes(test_nodenet) assert len(nodespace["nodes"]) == 1 node1 = nodespace["nodes"][uid] assert node1["name"] == "A" assert node1["position"] == [200, 250, 10] def test_position_always_3d(test_nodenet): res, nuid = micropsi.add_node(test_nodenet, "Pipe", [200], None, state=None, name="A") res, nsuid = micropsi.add_nodespace(test_nodenet, [200, 125, 0, 134], None, name="NS") data = micropsi.get_nodes(test_nodenet) assert data['nodes'][nuid]['position'] == [200, 0, 0] assert data['nodespaces'][nsuid]['position'] == [200, 125, 0] def test_get_nodenet_activation_data(test_nodenet): nodes = prepare_nodenet(test_nodenet) uid = nodes['a'] activation_data = micropsi.get_nodenet_activation_data(test_nodenet, [None]) assert activation_data["activations"][uid][0] == 0 assert activation_data["activations"][uid][1] == 0 assert activation_data["activations"][uid][2] == 0 assert activation_data["activations"][uid][3] == 0 assert activation_data["activations"][uid][4] == 0 assert activation_data["activations"][uid][5] == 0 assert activation_data["activations"][uid][6] == 0 micropsi.set_node_activation(test_nodenet, nodes['a'], 0.34556865) activation_data = micropsi.get_nodenet_activation_data(test_nodenet, [None]) assert activation_data["activations"][uid][0] == 0.3 def test_get_nodenet_activation_data_for_nodespace(test_nodenet): nodes = prepare_nodenet(test_nodenet) uid = nodes['a'] nodespace = micropsi.nodenets[test_nodenet].get_nodespace_uids()[0] activation_data = micropsi.get_nodenet_activation_data(test_nodenet, [nodespace]) assert activation_data["activations"][uid][0] == 0 def test_get_nodespace(test_nodenet): nodes = prepare_nodenet(test_nodenet) nodespace = micropsi.get_nodes(test_nodenet) assert len(nodespace["nodes"]) == 4 node1 = nodespace["nodes"][nodes['a']] assert node1["name"] == "A" assert node1["position"] == [200, 250, 10] def test_get_nodespace_list(test_nodenet): nodes = prepare_nodenet(test_nodenet) data = micropsi.get_nodespace_list(test_nodenet) uid = list(data.keys())[0] assert data[uid]['name'] == 'Root' assert nodes['a'] in data[uid]['nodes'] node = data[uid]['nodes'][nodes['a']] assert node['name'] == 'A' assert node['type'] == 'Pipe' def test_get_nodespace_list_with_empty_nodespace(test_nodenet): res, uid = micropsi.add_nodespace(test_nodenet, [200, 250, 10], None, name="Foospace") data = micropsi.get_nodespace_list(test_nodenet) assert data[uid]['nodes'] == {} def test_add_link(test_nodenet): nodes = prepare_nodenet(test_nodenet) micropsi.add_link(test_nodenet, nodes['a'], "por", nodes['b'], "gen", 0.5, 1) micropsi.add_link(test_nodenet, nodes['a'], "por", nodes['b'], "gen", 1, 0.1) micropsi.add_link(test_nodenet, nodes['c'], "ret", nodes['b'], "gen", 1, 1) nodespace = micropsi.get_nodes(test_nodenet) assert len(nodespace["nodes"]) == 4 link_a_b = nodespace["nodes"][nodes['a']]['links']['por'][0] assert link_a_b['target_node_uid'] == nodes['b'] assert link_a_b['target_slot_name'] == 'gen' assert link_a_b['weight'] == 1 link_c_b = nodespace['nodes'][nodes['c']]['links']['ret'][0] assert link_c_b["target_node_uid"] == nodes['b'] assert link_c_b["target_slot_name"] == "gen" assert nodespace['nodes'][nodes['b']]['links'] == {} assert nodespace['nodes'][nodes['s']]['links'] == {} def test_delete_link(test_nodenet): nodes = prepare_nodenet(test_nodenet) success, link = micropsi.add_link(test_nodenet, nodes['a'], "por", nodes['b'], "gen", 0.5, 1) assert success micropsi.delete_link(test_nodenet, nodes['a'], "por", nodes['b'], "gen") nodespace = micropsi.get_nodes(test_nodenet) assert nodespace['nodes'][nodes['a']]['links'] == {} def test_save_nodenet(test_nodenet): prepare_nodenet(test_nodenet) # save_nodenet micropsi.save_nodenet(test_nodenet) # unload_nodenet micropsi.unload_nodenet(test_nodenet) try: micropsi.get_nodes(test_nodenet) assert False, "could fetch a Nodespace that should not have been in memory" except: pass # load_nodenet micropsi.get_nodenet(test_nodenet) nodespace = micropsi.get_nodes(test_nodenet) assert len(nodespace["nodes"]) == 4 micropsi.delete_nodenet(test_nodenet) def test_reload_native_modules(fixed_nodenet): def hashlink(l): return "%s:%s:%s:%s" % (l['source_node_uid'], l['source_gate_name'], l['target_node_uid'], l['target_slot_name']) data_before = micropsi.nodenets[fixed_nodenet].export_json() links_before = set([hashlink(l) for l in data_before.pop('links')]) micropsi.reload_native_modules() data_after = micropsi.nodenets[fixed_nodenet].export_json() links_after = set([hashlink(l) for l in data_after.pop('links')]) assert data_before == data_after assert links_before == links_after def test_native_module_and_recipe_categories(fixed_nodenet, resourcepath): import os os.mkdir(os.path.join(resourcepath, 'Test', 'Test2')) nodetype_file = os.path.join(resourcepath, 'Test', 'nodetypes.json') nodefunc_file = os.path.join(resourcepath, 'Test', 'nodefunctions.py') recipe_file = os.path.join(resourcepath, 'Test', 'Test2', 'recipes.py') with open(nodetype_file, 'w') as fp: fp.write('{"Testnode": {\ "name": "Testnode",\ "slottypes": ["gen", "foo", "bar"],\ "nodefunction_name": "testnodefunc",\ "gatetypes": ["gen", "foo", "bar"]\ }}') with open(nodefunc_file, 'w') as fp: fp.write("def testnodefunc(netapi, node=None, **prams):\r\n return 17") with open(recipe_file, 'w') as fp: fp.write("def testrecipe(netapi):\r\n pass") micropsi.reload_native_modules() res = micropsi.get_available_native_module_types(fixed_nodenet) assert res['Testnode']['category'] == 'Test' res = micropsi.get_available_recipes() assert res['testrecipe']['category'] == 'Test/Test2' @pytest.mark.engine("dict_engine") # This behavior is not available in theano_engine: Default inheritance at runtime is not implemented for # performance reasons, changed defaults will only affect newly created nodes. # This test will have to be replaced when the generic solution proposed in TOL-90 has been # implemented. def test_gate_defaults_change_with_nodetype(fixed_nodenet, resourcepath,): # gate_parameters are a property of the nodetype, and should change with # the nodetype definition if not explicitly overwritten for a given node import os nodetype_file = os.path.join(resourcepath, 'Test', 'nodetypes.json') nodefunc_file = os.path.join(resourcepath, 'Test', 'nodefunctions.py') with open(nodetype_file, 'w') as fp: fp.write('{"Testnode": {\ "name": "Testnode",\ "slottypes": ["gen", "foo", "bar"],\ "nodefunction_name": "testnodefunc",\ "gatetypes": ["gen", "foo", "bar"],\ "symbol": "t",\ "gate_defaults":{\ "foo": {\ "amplification": 13\ }\ }}}') with open(nodefunc_file, 'w') as fp: fp.write("def testnodefunc(netapi, node=None, **prams):\r\n return 17") micropsi.reload_native_modules() res, uid = micropsi.add_node(fixed_nodenet, "Testnode", [10, 10], name="Testnode") with open(nodetype_file, 'w') as fp: fp.write('{"Testnode": {\ "name": "Testnode",\ "slottypes": ["gen", "foo", "bar"],\ "nodefunction_name": "testnodefunc",\ "gatetypes": ["gen", "foo", "bar"],\ "symbol": "t",\ "gate_defaults":{\ "foo": {\ "amplification": 5\ }\ }}}') micropsi.reload_native_modules() params = micropsi.nodenets[fixed_nodenet].get_node(uid).get_gate_parameters() assert params["foo"]["amplification"] == 5 def test_non_standard_gate_defaults(test_nodenet): nodenet = micropsi.nodenets[test_nodenet] res, uid = micropsi.add_node(test_nodenet, 'Register', [30, 30, 10], name='test') node = nodenet.netapi.get_node(uid) genparams = {'maximum': 0.5} micropsi.set_gate_parameters(nodenet.uid, node.uid, 'gen', genparams) assert node.clone_non_default_gate_parameters()['gen']['maximum'] == 0.5 assert node.get_data()['gate_parameters'] == {'gen': {'maximum': 0.5}} assert nodenet.get_data()['nodes'][uid]['gate_parameters'] == {'gen': {'maximum': 0.5}} data = micropsi.get_nodes(test_nodenet) assert data['nodes'][uid]['gate_parameters'] == {'gen': {'maximum': 0.5}} def test_ignore_links(test_nodenet): nodes = prepare_nodenet(test_nodenet) micropsi.add_link(test_nodenet, nodes['a'], "por", nodes['b'], "gen", 0.5, 1) nodespace = micropsi.get_nodes(test_nodenet, []) assert len(nodespace["nodes"]) == 4 assert 'links' not in nodespace assert len(nodespace["nodes"][nodes['a']]['links']['por']) == 1 nodespace = micropsi.get_nodes(test_nodenet, [], include_links=False) assert 'links' not in nodespace["nodes"][nodes['a']] def test_remove_and_reload_native_module(fixed_nodenet, resourcepath): import os nodetype_file = os.path.join(resourcepath, 'Test', 'nodetypes.json') nodefunc_file = os.path.join(resourcepath, 'Test', 'nodefunctions.py') with open(nodetype_file, 'w') as fp: fp.write('{"Testnode": {\ "name": "Testnode",\ "slottypes": ["gen", "foo", "bar"],\ "nodefunction_name": "testnodefunc",\ "gatetypes": ["gen", "foo", "bar"],\ "symbol": "t",\ "gate_defaults":{\ "foo": {\ "amplification": 13\ }\ }}}') with open(nodefunc_file, 'w') as fp: fp.write("def testnodefunc(netapi, node=None, **prams):\r\n return 17") micropsi.reload_native_modules() res, uid = micropsi.add_node(fixed_nodenet, "Testnode", [10, 10, 10], name="Testnode") os.remove(nodetype_file) os.remove(nodefunc_file) micropsi.reload_native_modules() assert 'Testnode' not in micropsi.get_available_native_module_types(fixed_nodenet) @pytest.mark.engine("dict_engine") def test_engine_specific_nodetype_dict(fixed_nodenet, resourcepath): import os nodetype_file = os.path.join(resourcepath, 'Test', 'nodetypes.json') nodefunc_file = os.path.join(resourcepath, 'Test', 'nodefunctions.py') with open(nodetype_file, 'w') as fp: fp.write('{"Testnode": {\ "engine": "theano_engine",\ "name": "Testnode",\ "slottypes": ["gen", "foo", "bar"],\ "nodefunction_name": "testnodefunc",\ "gatetypes": ["gen", "foo", "bar"],\ "symbol": "t",\ "gate_defaults":{\ "foo": {\ "amplification": 13\ }\ }}}') with open(nodefunc_file, 'w') as fp: fp.write("def testnodefunc(netapi, node=None, **prams):\r\n return 17") micropsi.reload_native_modules() data = micropsi.get_nodenet_metadata(fixed_nodenet) assert "Testnode" not in data['native_modules'] @pytest.mark.engine("theano_engine") def test_engine_specific_nodetype_theano(fixed_nodenet, resourcepath): import os nodetype_file = os.path.join(resourcepath, 'Test', 'nodetypes.json') nodefunc_file = os.path.join(resourcepath, 'Test', 'nodefunctions.py') with open(nodetype_file, 'w') as fp: fp.write('{"Testnode": {\ "engine": "dict_engine",\ "name": "Testnode",\ "slottypes": ["gen", "foo", "bar"],\ "nodefunction_name": "testnodefunc",\ "gatetypes": ["gen", "foo", "bar"],\ "symbol": "t",\ "gate_defaults":{\ "foo": {\ "amplification": 13\ }\ }}}') with open(nodefunc_file, 'w') as fp: fp.write("def testnodefunc(netapi, node=None, **prams):\r\n return 17") micropsi.reload_native_modules() data = micropsi.get_nodenet_metadata(fixed_nodenet) assert "Testnode" not in data['native_modules'] def test_node_parameters_none_resets_to_default(fixed_nodenet): nodenet = micropsi.nodenets[fixed_nodenet] res, uid = micropsi.add_node(fixed_nodenet, 'Pipe', [30, 30, 10], name='test') node = nodenet.netapi.get_node(uid) micropsi.set_node_parameters(fixed_nodenet, node.uid, {'expectation': '', 'wait': 0}) assert node.get_parameter('expectation') == 1 assert node.get_parameter('wait') == 0 def test_get_recipes(fixed_nodenet, resourcepath): import os recipe_file = os.path.join(resourcepath, 'Test', 'recipes.py') with open(recipe_file, 'w') as fp: fp.write(""" def testfoo(netapi, count=23): return {'count':count} """) micropsi.reload_native_modules() recipes = micropsi.get_available_recipes() assert 'testfoo' in recipes assert len(recipes['testfoo']['parameters']) == 1 assert recipes['testfoo']['parameters'][0]['name'] == 'count' assert recipes['testfoo']['parameters'][0]['default'] == 23 def test_run_recipe(fixed_nodenet, resourcepath): import os recipe_file = os.path.join(resourcepath, 'Test', 'recipes.py') with open(recipe_file, 'w') as fp: fp.write(""" def testfoo(netapi, count=23): return {'count':count} """) micropsi.reload_native_modules() state, result = micropsi.run_recipe(fixed_nodenet, 'testfoo', {'count': 42}) assert state assert result['count'] == 42 def test_node_parameter_defaults(fixed_nodenet, resourcepath): import os nodetype_file = os.path.join(resourcepath, 'Test', 'nodetypes.json') nodefunc_file = os.path.join(resourcepath, 'Test', 'nodefunctions.py') with open(nodetype_file, 'w') as fp: fp.write('{"Testnode": {\ "name": "Testnode",\ "slottypes": ["gen", "foo", "bar"],\ "gatetypes": ["gen", "foo", "bar"],\ "nodefunction_name": "testnodefunc",\ "parameters": ["testparam"],\ "parameter_defaults": {\ "testparam": 13\ }\ }}') with open(nodefunc_file, 'w') as fp: fp.write("def testnodefunc(netapi, node=None, **prams):\r\n return 17") micropsi.reload_native_modules() res, uid = micropsi.add_node(fixed_nodenet, "Testnode", [10, 10, 10], name="Test") node = micropsi.nodenets[fixed_nodenet].get_node(uid) assert node.get_parameter("testparam") == 13 def test_node_parameters_from_persistence(fixed_nodenet, resourcepath): import os nodetype_file = os.path.join(resourcepath, 'Test', 'nodetypes.json') nodefunc_file = os.path.join(resourcepath, 'Test', 'nodefunctions.py') with open(nodetype_file, 'w') as fp: fp.write('{"Testnode": {\ "name": "Testnode",\ "slottypes": ["gen", "foo", "bar"],\ "gatetypes": ["gen", "foo", "bar"],\ "nodefunction_name": "testnodefunc",\ "parameters": ["testparam"],\ "parameter_defaults": {\ "testparam": 13\ }\ }}') with open(nodefunc_file, 'w') as fp: fp.write("def testnodefunc(netapi, node=None, **prams):\r\n return 17") micropsi.reload_native_modules() res, uid = micropsi.add_node(fixed_nodenet, "Testnode", [10, 10, 10], name="Test") node = micropsi.nodenets[fixed_nodenet].get_node(uid) node.set_parameter("testparam", 42) micropsi.save_nodenet(fixed_nodenet) micropsi.revert_nodenet(fixed_nodenet) node = micropsi.nodenets[fixed_nodenet].get_node(uid) assert node.get_parameter("testparam") == 42 ``` #### File: world/island/island.py ```python import math import os import logging from micropsi_core.world.world import World from micropsi_core.world.worldadapter import WorldAdapter from micropsi_core.world.worldobject import WorldObject from micropsi_core.world.island import png class Island(World): """ A simple Doerner Island-World""" supported_worldadapters = ['Braitenberg', 'Survivor', 'StructuredObjects'] groundmap = { 'image': "psi_1.png", 'start_position': (700, 400), 'scaling': (8, 8) } assets = { 'background': "island/psi_1.png", 'template': 'island/island.tpl', 'paperjs': "island/island.js", 'x': 2048, 'y': 2048, 'icons': { 'Lightsource': 'island/lamp.png', 'Braitenberg': 'island/braitenberg.png', 'Survivor': 'island/Micropsi.png', 'PalmTree': 'island/palm-tree.png', 'Maple': 'island/maple.png', 'Braintree': 'island/braintree.png', 'Wirselkraut': 'island/wirselkraut.png', 'Thornbush': 'island/unknownbox.png', 'Juniper': 'island/juniper-berries.png', 'Champignon': 'island/boletus-edulis.png', 'FlyAgaric': 'island/fly-agaris.png', 'Stone': 'island/rock.png', 'Boulder': 'island/boulder.png', 'Menhir': 'island/menhir.png', 'Waterhole': 'island/well.png' } } def __init__(self, filename, world_type="Island", name="", owner="", engine=None, uid=None, version=1, config={}): World.__init__(self, filename, world_type=world_type, name=name, owner=owner, uid=uid, version=version) self.load_groundmap() # self.current_step = 0 self.data['assets'] = self.assets def load_groundmap(self): """ Imports a groundmap for an island world from a png file. We expect a bitdepth of 8 (i.e. each pixel defines a point with one of 256 possible values). """ filename = os.path.join(os.path.dirname(__file__), 'resources', 'groundmaps', self.groundmap["image"]) with open(filename, 'rb') as file: png_reader = png.Reader(file) x, y, image_array, image_params = png_reader.read() self.ground_data = list(image_array) self.scale_x = self.groundmap["scaling"][0] self.scale_y = self.groundmap["scaling"][1] self.x_max = x - 1 self.y_max = y - 1 def get_ground_at(self, x, y): """ returns the ground type (an integer) at the given position """ _x = int(min(self.x_max, max(0, round(x / self.scale_x)))) _y = int(min(self.y_max, max(0, round(y / self.scale_y)))) return self.ground_data[_y][_x] def get_brightness_at(self, position): """calculate the brightness of the world at the given position; used by sensors of agents""" brightness = 0 for key in self.objects: if hasattr(self.objects[key], "get_intensity"): # adapted from micropsi1 pos = self.objects[key].position diff = (pos[0] - position[0], pos[1] - position[1]) dist = _2d_vector_norm(diff) + 1 lightness = self.objects[key].get_intensity() brightness += (lightness /dist /dist) return brightness def get_movement_result(self, start_position, effort_vector, diameter=0): """determine how much an agent moves in the direction of the effort vector, starting in the start position. Note that agents may be hindered by impassable terrain and other objects""" efficiency = ground_types[self.get_ground_at(*start_position)]['move_efficiency'] if not efficiency: return start_position movement_vector = (effort_vector[0] * efficiency, effort_vector[1] * efficiency) # make sure we don't bump into stuff target_position = None while target_position is None and _2d_distance_squared((0, 0), movement_vector) > 0.01: target_position = _2d_translate(start_position, movement_vector) for i in self.objects.values(): if _2d_distance_squared(target_position, i.position) < (diameter + i.diameter) / 2: movement_vector = (movement_vector[0] * 0.5, movement_vector[1] * 0.5) # should be collision point target_position = None break if target_position is not None and ground_types[self.get_ground_at(target_position[0], target_position[1])]['agent_allowed']: return target_position else: return start_position class Lightsource(WorldObject): """A pretty inert and boring light source, with a square falloff""" @property def diameter(self): return self.data.get('diameter', 1.) @diameter.setter def diameter(self, diameter): self.data['diameter'] = diameter @property def intensity(self): return self.data.get('intensity', 10000.) @intensity.setter def intensity(self, intensity): self.data['intensity'] = intensity def __init__(self, world, uid=None, **data): WorldObject.__init__(self, world, category="objects", uid=uid, **data) def get_intensity(self, falloff_func=1.): """returns the strength of the light, optionally depending on a given fall-off function""" return self.intensity * self.diameter * self.diameter / falloff_func def action_eat(self): return True, 0, 0, -0.7 def action_drink(self): return False, 0, 0, 0 class PalmTree(WorldObject): def __init__(self, world, uid=None, **data): WorldObject.__init__(self, world, category="objects", uid=uid, **data) self.structured_object_type = "PalmTree" def action_eat(self): return False, 0, 0, 0 def action_drink(self): return False, 0, 0, 0 class Maple(WorldObject): def __init__(self, world, uid=None, **data): WorldObject.__init__(self, world, category="objects", uid=uid, **data) self.structured_object_type = "Maple" def action_eat(self): return False, 0, 0, 0 def action_drink(self): return False, 0, 0, 0 class Braintree(WorldObject): def __init__(self, world, uid=None, **data): WorldObject.__init__(self, world, category="objects", uid=uid, **data) self.structured_object_type = "Braintree" def action_eat(self): return False, 0, 0, 0 def action_drink(self): return False, 0, 0, 0 class Wirselkraut(WorldObject): def __init__(self, world, uid=None, **data): WorldObject.__init__(self, world, category="objects", uid=uid, **data) self.structured_object_type = "Wirselkraut" def action_eat(self): return True, 0, 0, 0.5 def action_drink(self): return False, 0, 0, 0 class Thornbush(WorldObject): def __init__(self, world, uid=None, **data): WorldObject.__init__(self, world, category="objects", uid=uid, **data) self.structured_object_type = "Thornbush" def action_eat(self): logging.getLogger("world").debug("... and the whirlwind is in the thorn tree...") return True, 0, 0, -0.1 def action_drink(self): return False, 0, 0, 0 class Juniper(WorldObject): def __init__(self, world, uid=None, **data): WorldObject.__init__(self, world, category="objects", uid=uid, **data) self.structured_object_type = "Juniper" def action_eat(self): return True, 0.1, 0.1, 0 def action_drink(self): return False, 0, 0, 0 class Champignon(WorldObject): def __init__(self, world, uid=None, **data): WorldObject.__init__(self, world, category="objects", uid=uid, **data) self.structured_object_type = "Champignon" def action_eat(self): return True, 0.3, 0, 0 def action_drink(self): return True, 0, 0, 0 class FlyAgaric(WorldObject): def __init__(self, world, uid=None, **data): WorldObject.__init__(self, world, category="objects", uid=uid, **data) self.structured_object_type = "FlyAgaric" def action_eat(self): return True, 0.1, 0, -0.9 def action_drink(self): return False, 0, 0, 0 class Stone(WorldObject): def __init__(self, world, uid=None, **data): WorldObject.__init__(self, world, category="objects", uid=uid, **data) self.structured_object_type = "Stone" def action_eat(self): return False, 0, 0, 0 def action_drink(self): return False, 0, 0, 0 class Boulder(WorldObject): def __init__(self, world, uid=None, **data): WorldObject.__init__(self, world, category="objects", uid=uid, **data) self.structured_object_type = "Boulder" def action_eat(self): return False, 0, 0, 0 def action_drink(self): return False, 0, 0, 0 class Menhir(WorldObject): def __init__(self, world, uid=None, **data): WorldObject.__init__(self, world, category="objects", uid=uid, **data) self.structured_object_type = "Menhir" def action_eat(self): return False, 0, 0, 0 def action_drink(self): return False, 0, 0, 0 class Waterhole(WorldObject): def __init__(self, world, uid=None, **data): WorldObject.__init__(self, world, category="objects", uid=uid, **data) self.structured_object_type = "Waterhole" def action_eat(self): return False, 0, 0, 0 def action_drink(self): return True, 0, 1, 0 class Survivor(WorldAdapter): def __init__(self, world, uid=None, **data): super(Survivor, self).__init__(world, uid, **data) self.datasources = dict((s, 0) for s in ['body-energy', 'body-water', 'body-integrity']) self.datatargets = dict((t, 0) for t in ['action_eat', 'action_drink', 'loco_north', 'loco_south', 'loco_east', 'loco_west']) self.currentobject = None self.energy = 1.0 self.water = 1.0 self.integrity = 1.0 self.is_dead = False self.action_cooloff = 5 self.datasources['body-energy'] = self.energy self.datasources['body-water'] = self.water self.datasources['body-integrity'] = self.integrity def initialize_worldobject(self, data): if "position" not in data: self.position = self.world.groundmap['start_position'] def update_data_sources_and_targets(self): """called on every world calculation step to advance the life of the agent""" if self.is_dead: return effortvector = ((50*self.datatargets['loco_east'])+(50 * -self.datatargets['loco_west']), (50*self.datatargets['loco_north'])-(50* -self.datatargets['loco_south'])) desired_position = (self.position[0] + effortvector[0], self.position[1] + effortvector[1]) self.datatargets['loco_east'] = 0 self.datatargets['loco_west'] = 0 self.datatargets['loco_north'] = 0 self.datatargets['loco_south'] = 0 if ground_types[self.world.get_ground_at(desired_position[0], desired_position[1])]['agent_allowed']: self.position = desired_position #find nearest object to load into the scene lowest_distance_to_worldobject = float("inf") nearest_worldobject = None for key, worldobject in self.world.objects.items(): # TODO: use a proper 2D geometry library distance = _2d_distance_squared(self.position, worldobject.position) if distance < lowest_distance_to_worldobject: lowest_distance_to_worldobject = distance nearest_worldobject = worldobject if self.currentobject is not nearest_worldobject and hasattr(nearest_worldobject, "structured_object_type"): self.currentobject = nearest_worldobject logging.getLogger("agent.%s" % self.uid).debug("Survivor WA selected new scene: %s", self.currentobject.structured_object_type) self.manage_body_parameters(nearest_worldobject) def manage_body_parameters(self, nearest_worldobject): """called by update() to update energy, water and integrity""" for datatarget in self.datatargets: if datatarget.startswith("action_"): self.datatarget_feedback[datatarget] = 0 if self.datatargets[datatarget] >= 1 and self.action_cooloff <= 0: self.datatargets[datatarget] = 0 if hasattr(nearest_worldobject, datatarget): cando, delta_energy, delta_water, delta_integrity = nearest_worldobject.action_eat() else: cando, delta_energy, delta_water, delta_integrity = False, 0, 0, 0 if cando: self.action_cooloff = 6 self.energy += delta_energy self.water += delta_water self.integrity += delta_integrity self.datatarget_feedback[datatarget] = 1 logging.getLogger("agent.%s" % self.uid).debug("Agent "+self.name+" "+ datatarget + "("+nearest_worldobject.data["type"]+") result: "+ " energy "+str(delta_energy)+ " water "+str(delta_water)+ " integrity "+str(delta_integrity)) else: logging.getLogger("agent.%s" % self.uid).debug("Agent "+self.name+" "+ datatarget + "("+nearest_worldobject.data["type"]+") result: "+ "cannot do.") self.action_cooloff -= 1 self.energy -= 0.005 self.water -= 0.005 if self.energy > 1: self.energy = 1 if self.water > 1: self.water = 1 if self.integrity > 1: self.integrity = 1 if self.energy <= 0 or self.water <= 0 or self.integrity <= 0: self.is_dead = True logging.getLogger("agent.%s" % self.uid).debug("Agent "+self.name+" has died:"+ " energy "+str(self.energy)+ " water "+str(self.water)+ " integrity "+str(self.integrity)) self.datasources["body-energy"] = self.energy self.datasources["body-water"] = self.water self.datasources["body-integrity"] = self.integrity def is_alive(self): """called by the world to check whether the agent has died and should be removed""" return not self.is_dead class Braitenberg(WorldAdapter): """A simple Braitenberg vehicle chassis, with two light sensitive sensors and two engines""" # positions of sensors, relative to origin of agent center brightness_l_offset = (-25, -50) brightness_r_offset = (+25, -50) # positions of engines, relative to origin of agent center engine_l_offset = (-25, 0) engine_r_offset = (+25, 0) # agent diameter diameter = 50 # note: this is also used as the distance between the wheels radius = 25 # maximum speed speed_limit = 1. def __init__(self, world, uid=None, **data): super(Braitenberg, self).__init__(world, uid, **data) self.datasources = {'brightness_l': 0, 'brightness_r': 0} self.datatargets = {'engine_l': 0, 'engine_r': 0} self.datatarget_feedback = {'engine_l': 0, 'engine_r': 0} def initialize_worldobject(self, data): if "position" not in data: self.position = self.world.groundmap['start_position'] def update_data_sources_and_targets(self): """called on every world calculation step to advance the life of the agent""" # drive engines l_wheel_speed = self.datatargets["engine_l"] r_wheel_speed = self.datatargets["engine_r"] # constrain speed if l_wheel_speed + r_wheel_speed > 2 * self.speed_limit: # too fast f = 2 * self.speed_limit / (l_wheel_speed + r_wheel_speed) r_wheel_speed *= f l_wheel_speed *= f # (left - right) because inverted rotation circle ( doesn't change x because cosine, does change y because sine :) rotation = math.degrees((self.radius * l_wheel_speed - self.radius * r_wheel_speed) / self.diameter) self.orientation += rotation avg_velocity = (self.radius * r_wheel_speed + self.radius * l_wheel_speed) / 2 translation = _2d_rotate((0, avg_velocity), self.orientation + rotation) # you may decide how far you want to go, but it is up the world to decide how far you make it self.position = self.world.get_movement_result(self.position, translation, self.diameter) # sense light sources brightness_l_position = _2d_translate(_2d_rotate(self.brightness_l_offset, self.orientation), self.position) brightness_r_position = _2d_translate(_2d_rotate(self.brightness_r_offset, self.orientation), self.position) brightness_l = self.world.get_brightness_at(brightness_l_position) brightness_r = self.world.get_brightness_at(brightness_r_position) self.datasources['brightness_l'] = brightness_l self.datasources['brightness_r'] = brightness_r def _2d_rotate(position, angle_degrees): """rotate a 2d vector around an angle (in degrees)""" radians = math.radians(angle_degrees) # take the negative of the angle because the orientation circle works clockwise in this world cos = math.cos(-radians) sin = math.sin(-radians) x, y = position return x * cos - y * sin, - (x * sin + y * cos) def _2d_distance_squared(position1, position2): """calculate the square of the distance bwtween two 2D coordinate tuples""" return (position1[0] - position2[0]) ** 2 + (position1[1] - position2[1]) ** 2 def _2d_translate(position1, position2): """add two 2d vectors""" return (position1[0] + position2[0], position1[1] + position2[1]) def _2d_vector_norm(vector): """Calculates the length /norm of a given vector.""" return math.sqrt(sum(i**2 for i in vector)) # the indices of ground types correspond to the color numbers in the groundmap png ground_types = ( { 'type': 'grass', 'move_efficiency': 1.0, 'agent_allowed': True, }, { 'type': 'sand', 'move_efficiency': 1.0, 'agent_allowed': True, }, { 'type': 'swamp', 'move_efficiency': 0.5, 'agent_allowed': True, }, { 'type': 'darkgrass', 'move_efficiency': 1.0, 'agent_allowed': True, }, { 'type': 'shallowwater', 'move_efficiency': 0.2, 'agent_allowed': True, }, { 'type': 'rock', 'move_efficiency': 1.0, 'agent_allowed': True, }, { 'type': 'clay', 'move_efficiency': 0.7, 'agent_allowed': True, }, { 'type': 'water', 'move_efficiency': 0.0, 'agent_allowed': False, }, { 'type': 'cliff', 'move_efficiency': 1.0, 'agent_allowed': False, } ) ``` #### File: island/structured_objects/structured_objects.py ```python __author__ = 'rvuine' import logging from micropsi_core.world.island import island from micropsi_core.world.island.structured_objects.objects import * from micropsi_core.world.island.structured_objects.scene import Scene from micropsi_core.world.worldadapter import WorldAdapter class StructuredObjects(WorldAdapter): """A world adapter exposing objects composed of basic shapes and colors to the agent""" def __init__(self, world, uid=None, **data): super(StructuredObjects, self).__init__(world, uid, **data) self.datasources = {'fov-x': 0, 'fov-y': 0, 'major-newscene': 0} self.datatargets = {'fov_x': 0, 'fov_y': 0, 'fov_reset': 0} self.shapetypes = [] self.shapecolors = [] for key, objecttype in OBJECTS.items(): for shapeline in objecttype['shape_grid']: for shape in shapeline: if shape is not None and shape.type not in self.shapetypes: self.shapetypes.append(shape.type) if shape is not None and shape.color not in self.shapecolors: self.shapecolors.append(shape.color) for shapetype in self.shapetypes: self.datasources['fovea-' + shapetype] = 0 self.datasources['presence-' + shapetype] = 0 for shapecolor in self.shapecolors: self.datasources["fovea-" + shapecolor] = 0 self.datasources["presence-" + shapecolor] = 0 self.currentobject = None self.scene = None self.scene = Scene(world, uid) self.scene.load_object("PalmTree", OBJECTS["PalmTree"]["shape_grid"]) def initialize_worldobject(self, data): if "position" not in data: self.position = self.world.groundmap['start_position'] def get_datasource(self, key): """ allows the agent to read a value from a datasource. overrides default to make sure newscene signals are picked up by the node net """ if key == "major-newscene": if self.datasource_snapshots[key] == 1: self.datasources[key] = 0 return 1 else: return WorldAdapter.get_datasource(self, key) def update_data_sources_and_targets(self): """called on every world calculation step to advance the life of the agent""" # we don't move, for now self.position = self.world.get_movement_result(self.position, (0, 0)) #find nearest object to load into the scene lowest_distance_to_worldobject = float("inf") nearest_worldobject = None for key, worldobject in self.world.objects.items(): # TODO: use a proper 2D geometry library distance = island._2d_distance_squared(self.position, worldobject.position) if distance < lowest_distance_to_worldobject: lowest_distance_to_worldobject = distance nearest_worldobject = worldobject if self.currentobject is not nearest_worldobject and nearest_worldobject.structured_object_type is not None: self.currentobject = nearest_worldobject self.scene.load_object(self.currentobject.structured_object_type, OBJECTS[self.currentobject.structured_object_type]['shape_grid']) self.datasources["major-newscene"] = 1 logging.getLogger("agent.%s" % self.uid).debug("StructuredObjects WA selected new scene: %s", self.currentobject.structured_object_type) #manage the scene if self.datatargets['fov_reset'] > 0: self.scene.reset_fovea() self.scene.move_fovea_x(self.datatargets['fov_x']) self.scene.move_fovea_y(self.datatargets['fov_y']) self.datasources["fov-x"] = self.scene.fovea_x self.datasources["fov-y"] = self.scene.fovea_y for shapetype in self.shapetypes: self.datasources["fovea-"+shapetype] = 1 if self.scene.is_fovea_on_shape_type(shapetype) else 0 self.datasources["presence-"+shapetype] = 1 if self.scene.is_shapetype_in_scene(shapetype) else 0 for shapecolor in self.shapecolors: self.datasources["fovea-"+shapecolor] = 1 if self.scene.is_fovea_on_shape_color(shapecolor) else 0 self.datasources["presence-"+shapecolor] = 1 if self.scene.is_shapecolor_in_scene(shapecolor) else 0 ``` #### File: micropsi_server/tests/test_json_api.py ```python import pytest import json import re def assert_success(response): assert response.json_body['status'] == 'success' assert 'data' in response.json_body def assert_failure(response): assert response.json_body['status'] == 'error' assert 'data' in response.json_body def test_generate_uid(app): response = app.get_json('/rpc/generate_uid()') assert_success(response) assert re.match('[a-f0-9]+', response.json_body['data']) is not None def test_create_and_invalidate_auth_token(app): response = app.get_json('/rpc/create_auth_token(user="Pytest User",password="<PASSWORD>")') assert_success(response) from micropsi_server.micropsi_app import usermanager token = response.json_body['data'] assert token in usermanager.users['Pytest User']['sessions'] response = app.get_json('/rpc/invalidate_auth_token(token="%s")' % token) assert_success(response) assert token not in usermanager.users['Pytest User']['sessions'] def test_get_nodenet_metadata(app, test_nodenet, node): response = app.get_json('/rpc/get_nodenet_metadata(nodenet_uid="%s")' % test_nodenet) assert_success(response) data = response.json_body['data'] assert 'nodetypes' in data assert 'native_modules' in data assert 'engine' in data assert 'nodespaces' in data assert 'nodes' not in data assert 'links' not in data assert data['current_step'] == 0 assert data['uid'] == test_nodenet def test_new_nodenet(app, engine): app.set_auth() response = app.post_json('/rpc/new_nodenet', params={ 'name': 'FooBarTestNet', 'engine': engine }) assert_success(response) uid = response.json_body['data'] assert uid is not None response = app.get_json('/rpc/get_nodenet_metadata(nodenet_uid="%s")' % uid) assert_success(response) assert response.json_body['data']['name'] == 'FooBarTestNet' assert response.json_body['data']['engine'] == engine def test_get_available_nodenets(app, test_nodenet): response = app.get_json('/rpc/get_available_nodenets(user_id="Pytest User")') assert_success(response) assert test_nodenet in response.json_body['data'] def test_delete_nodenet(app, test_nodenet): response = app.get_json('/rpc/delete_nodenet(nodenet_uid="%s")' % test_nodenet) assert_success(response) response = app.get_json('/rpc/get_available_nodenets(user_id="Pytest User")') assert test_nodenet not in response.json_body['data'] def test_set_nodenet_properties(app, test_nodenet, test_world): app.set_auth() response = app.post_json('/rpc/set_nodenet_properties', params=dict(nodenet_uid=test_nodenet, nodenet_name="new_name", worldadapter="Braitenberg", world_uid=test_world)) assert_success(response) response = app.get_json('/rpc/get_nodenet_metadata(nodenet_uid="%s")' % test_nodenet) data = response.json_body['data'] assert data['name'] == 'new_name' assert data['worldadapter'] == 'Braitenberg' def test_set_node_state(app, test_nodenet, resourcepath): import os app.set_auth() # create a native module: nodetype_file = os.path.join(resourcepath, 'Test', 'nodetypes.json') nodefunc_file = os.path.join(resourcepath, 'Test', 'nodefunctions.py') with open(nodetype_file, 'w') as fp: fp.write('{"Testnode": {\ "name": "Testnode",\ "slottypes": ["gen", "foo", "bar"],\ "nodefunction_name": "testnodefunc",\ "gatetypes": ["gen", "foo", "bar"],\ "symbol": "t"}}') with open(nodefunc_file, 'w') as fp: fp.write("def testnodefunc(netapi, node=None, **prams):\r\n return 17") response = app.get_json('/rpc/reload_native_modules()') assert_success(response) response = app.post_json('/rpc/add_node', params={ 'nodenet_uid': test_nodenet, 'type': 'Testnode', 'position': [23, 23, 12], 'nodespace': None, 'name': 'Testnode' }) assert_success(response) uid = response.json_body['data'] response = app.post_json('/rpc/set_node_state', params={ 'nodenet_uid': test_nodenet, 'node_uid': uid, 'state': {'foo': 'bar'} }) assert_success(response) response = app.get_json('/rpc/get_nodes(nodenet_uid="%s")' % test_nodenet) assert response.json_body['data']['nodes'][uid]['state'] == {'foo': 'bar'} def test_set_node_activation(app, test_nodenet, node): response = app.post_json('/rpc/set_node_activation', params={ 'nodenet_uid': test_nodenet, 'node_uid': node, 'activation': '0.734' }) assert_success(response) response = app.get_json('/rpc/get_nodes(nodenet_uid="%s")' % test_nodenet) sheaves = response.json_body['data']['nodes'][node]['sheaves'] assert float("%.3f" % sheaves['default']['activation']) == 0.734 def test_start_calculation(app, test_nodenet): app.set_auth() response = app.post_json('/rpc/start_calculation', params=dict(nodenet_uid=test_nodenet)) assert_success(response) response = app.get_json('/rpc/get_nodenet_metadata(nodenet_uid="%s")' % test_nodenet) assert response.json_body['data']['is_active'] def test_start_calculation_with_condition(app, test_nodenet): import time app.set_auth() app.post_json('/rpc/set_runner_properties', params={ 'timestep': 10, 'factor': 1 }) response = app.post_json('/rpc/set_runner_condition', params={ 'nodenet_uid': test_nodenet, 'steps': '2' }) assert_success(response) assert response.json_body['data']['step'] == 2 response = app.post_json('/rpc/start_calculation', params=dict(nodenet_uid=test_nodenet)) assert_success(response) time.sleep(1) response = app.get_json('/rpc/get_nodenet_metadata(nodenet_uid="%s")' % test_nodenet) assert not response.json_body['data']['is_active'] assert response.json_body['data']['current_step'] == 2 response = app.post_json('/rpc/remove_runner_condition', params=dict(nodenet_uid=test_nodenet)) assert_success(response) def test_get_runner_properties(app): app.set_auth() response = app.get_json('/rpc/get_runner_properties()') assert_success(response) assert 'timestep' in response.json_body['data'] assert 'factor' in response.json_body['data'] def test_set_runner_properties(app): app.set_auth() response = app.post_json('/rpc/set_runner_properties', params=dict(timestep=123, factor=1)) assert_success(response) response = app.get_json('/rpc/get_runner_properties()') assert_success(response) assert response.json_body['data']['timestep'] == 123 assert response.json_body['data']['factor'] == 1 def test_get_is_calculation_running(app, test_nodenet): response = app.get_json('/rpc/get_is_calculation_running(nodenet_uid="%s")' % test_nodenet) assert_success(response) assert not response.json_body['data'] def test_stop_calculation(app, test_nodenet): app.set_auth() response = app.post_json('/rpc/start_calculation', params=dict(nodenet_uid=test_nodenet)) assert_success(response) response = app.get_json('/rpc/get_is_calculation_running(nodenet_uid="%s")' % test_nodenet) assert_success(response) assert response.json_body['data'] response = app.post_json('/rpc/stop_calculation', params=dict(nodenet_uid=test_nodenet)) assert_success(response) response = app.get_json('/rpc/get_is_calculation_running(nodenet_uid="%s")' % test_nodenet) assert_success(response) assert not response.json_body['data'] def test_step_calculation(app, test_nodenet): app.set_auth() response = app.get_json('/rpc/get_nodenet_metadata(nodenet_uid="%s")' % test_nodenet) assert response.json_body['data']['current_step'] == 0 response = app.get_json('/rpc/step_calculation(nodenet_uid="%s")' % test_nodenet) assert_success(response) assert response.json_body['data'] == 1 response = app.get_json('/rpc/get_nodenet_metadata(nodenet_uid="%s")' % test_nodenet) assert response.json_body['data']['current_step'] == 1 def test_get_calculation_state(app, test_nodenet, test_world, node): from time import sleep app.set_auth() response = app.get_json('/rpc/get_nodenet_metadata(nodenet_uid="%s")' % test_nodenet) assert response.json_body['data']['current_step'] == 0 response = app.post_json('/rpc/set_nodenet_properties', params=dict(nodenet_uid=test_nodenet, nodenet_name="new_name", worldadapter="Braitenberg", world_uid=test_world)) response = app.post_json('/rpc/add_gate_monitor', params={ 'nodenet_uid': test_nodenet, 'node_uid': node, 'gate': 'sub', }) monitor_uid = response.json_body['data'] response = app.get_json('/rpc/step_calculation(nodenet_uid="%s")' % test_nodenet) assert_success(response) response = app.get_json('/rpc/start_calculation(nodenet_uid="%s")' % test_nodenet) assert_success(response) sleep(1) response = app.post_json('/rpc/get_calculation_state', params={ 'nodenet_uid': test_nodenet, 'nodenet': { 'nodespaces': [None], 'step': -1, }, 'monitors': { 'logger': ['system', 'world', 'nodenet'], 'after': 0, 'monitor_from': 2, 'monitor_count': 2 }, 'world': { 'step': -1 } }) data = response.json_body['data'] assert data['current_nodenet_step'] > 0 assert data['current_world_step'] > 0 assert data['calculation_running'] assert 'servertime' in data['monitors']['logs'] assert 'logs' in data['monitors']['logs'] assert len(data['monitors']['monitors'][monitor_uid]['values']) == 2 assert test_nodenet in data['world']['agents'] assert data['world']['current_step'] > 0 def test_revert_nodenet(app, test_nodenet, test_world): app.set_auth() response = app.post_json('/rpc/set_nodenet_properties', params=dict(nodenet_uid=test_nodenet, nodenet_name="new_name", worldadapter="Braitenberg", world_uid=test_world)) assert_success(response) response = app.get_json('/rpc/revert_nodenet(nodenet_uid="%s")' % test_nodenet) assert_success(response) response = app.get_json('/rpc/get_nodenet_metadata(nodenet_uid="%s")' % test_nodenet) data = response.json_body['data'] assert data['name'] == 'Testnet' assert data['worldadapter'] is None def test_revert_both(app, test_nodenet, test_world): app.set_auth() app.post_json('/rpc/set_nodenet_properties', params=dict(nodenet_uid=test_nodenet, worldadapter="Braitenberg", world_uid=test_world)) for i in range(5): app.get_json('/rpc/step_calculation(nodenet_uid="%s")' % test_nodenet) res = app.get_json('/rpc/get_calculation_state(nodenet_uid="%s")' % test_nodenet) assert res.json_body['data']['current_nodenet_step'] > 0 assert res.json_body['data']['current_world_step'] > 0 app.get_json('/rpc/revert_calculation(nodenet_uid="%s")' % test_nodenet) res = app.get_json('/rpc/get_calculation_state(nodenet_uid="%s")' % test_nodenet) assert res.json_body['data']['current_nodenet_step'] == 0 assert res.json_body['data']['current_world_step'] == 0 def test_save_nodenet(app, test_nodenet, test_world): app.set_auth() response = app.post_json('/rpc/set_nodenet_properties', params=dict(nodenet_uid=test_nodenet, nodenet_name="new_name", worldadapter="Braitenberg", world_uid=test_world)) assert_success(response) response = app.get_json('/rpc/save_nodenet(nodenet_uid="%s")' % test_nodenet) assert_success(response) response = app.get_json('/rpc/revert_nodenet(nodenet_uid="%s")' % test_nodenet) assert_success(response) response = app.get_json('/rpc/get_nodenet_metadata(nodenet_uid="%s")' % test_nodenet) data = response.json_body['data'] assert data['name'] == 'new_name' assert data['worldadapter'] == 'Braitenberg' # now delete the nodenet, to get default state back. app.get_json('/rpc/delete_nodenet(nodenet_uid="%s")' % test_nodenet) def test_export_nodenet(app, test_nodenet, node): response = app.get_json('/rpc/export_nodenet(nodenet_uid="%s")' % test_nodenet) assert_success(response) data = json.loads(response.json_body['data']) assert data['name'] == 'Testnet' assert data['nodes'][node]['type'] == 'Pipe' assert 'links' in data def test_import_nodenet(app, test_nodenet, node): app.set_auth() response = app.get_json('/rpc/export_nodenet(nodenet_uid="%s")' % test_nodenet) data = json.loads(response.json_body['data']) del data['uid'] response = app.post_json('/rpc/import_nodenet', params={ 'nodenet_data': json.dumps(data) }) assert_success(response) uid = response.json_body['data'] assert uid is not None response = app.get_json('/rpc/get_nodenet_metadata(nodenet_uid="%s")' % uid) assert response.json_body['data']['name'] == data['name'] assert response.json_body['data']['world'] == data['world'] assert response.json_body['data']['worldadapter'] == data['worldadapter'] response = app.get_json('/rpc/get_nodes(nodenet_uid="%s")' % uid) assert list(response.json_body['data']['nodes'].keys()) == [node] response = app.get_json('/rpc/delete_nodenet(nodenet_uid="%s")' % uid) def test_merge_nodenet(app, test_nodenet, engine, node): app.set_auth() response = app.get_json('/rpc/export_nodenet(nodenet_uid="%s")' % test_nodenet) data = json.loads(response.json_body['data']) response = app.post_json('/rpc/new_nodenet', params={ 'name': 'ImporterNet', 'engine': engine, 'worldadapter': 'Braitenberg', 'owner': 'Pytest User' }) uid = response.json_body['data'] data['uid'] = uid response = app.post_json('/rpc/merge_nodenet', params={ 'nodenet_uid': uid, 'nodenet_data': json.dumps(data) }) assert_success(response) response = app.get_json('/rpc/get_nodes(nodenet_uid="%s")' % uid) assert len(list(response.json_body['data']['nodes'].keys())) == 1 response = app.get_json('/rpc/get_nodenet_metadata(nodenet_uid="%s")' % uid) assert response.json_body['data']['name'] == 'ImporterNet' response = app.get_json('/rpc/delete_nodenet(nodenet_uid="%s")' % uid) ################################################### ## ## ## WORLD ## ## ################################################### def test_get_available_worlds(app, test_world): response = app.get_json('/rpc/get_available_worlds()') assert_success(response) assert test_world in response.json_body['data'] def test_get_available_worlds_for_user(app, test_world): response = app.get_json('/rpc/get_available_worlds(user_id="Pytest User")') assert_success(response) assert test_world in response.json_body['data'] # TODO: get_nodenet_properties is missing. def test_get_world_properties(app, test_world): response = app.get_json('/rpc/get_world_properties(world_uid="%s")' % test_world) assert_success(response) data = response.json_body['data'] assert data['uid'] == test_world assert data['name'] == "World of Pain" assert 'available_worldadapters' in data assert 'available_worldobjects' in data def test_get_worldadapters(app, test_world): response = app.get_json('/rpc/get_worldadapters(world_uid="%s")' % test_world) assert_success(response) assert 'Braitenberg' in response.json_body['data'] def test_get_world_objects(app, test_world): response = app.get_json('/rpc/get_world_objects(world_uid="%s")' % test_world) assert_success(response) assert response.json_body['data'] == {} def test_add_worldobject(app, test_world): response = app.post_json('/rpc/add_worldobject', params={ 'world_uid': test_world, 'type': 'Braintree', 'position': [10, 10], 'name': 'Testtree' }) assert_success(response) uid = response.json_body['data'] assert uid is not None response = app.get_json('/rpc/get_world_objects(world_uid="%s")' % test_world) assert uid in response.json_body['data'] def test_delete_worldobject(app, test_world): response = app.post_json('/rpc/add_worldobject', params={ 'world_uid': test_world, 'type': 'Braintree', 'position': [10, 10], 'name': 'Testtree' }) uid = response.json_body['data'] response = app.post_json('/rpc/delete_worldobject', params={ 'world_uid': test_world, 'object_uid': uid }) assert_success(response) response = app.get_json('/rpc/get_world_objects(world_uid="%s")' % test_world) assert uid not in response.json_body['data'] def test_set_worldobject_properties(app, test_world): response = app.post_json('/rpc/add_worldobject', params={ 'world_uid': test_world, 'type': 'Braintree', 'position': [10, 10], 'name': 'Testtree' }) uid = response.json_body['data'] response = app.post_json('/rpc/set_worldobject_properties', params={ 'world_uid': test_world, 'uid': uid, 'position': [20, 20], 'orientation': 27, 'name': 'edited' }) assert_success(response) response = app.get_json('/rpc/get_world_objects(world_uid="%s")' % test_world) data = response.json_body['data'] assert data[uid]['position'] == [20, 20] assert data[uid]['orientation'] == 27 assert data[uid]['name'] == 'edited' def test_get_world_view(app, test_world): response = app.get_json('/rpc/get_world_view(world_uid="%s", step=0)' % test_world) assert_success(response) assert 'agents' in response.json_body['data'] assert 'objects' in response.json_body['data'] assert response.json_body['data']['current_step'] == 0 assert 'step' not in response.json_body['data'] def test_set_worldagent_properties(app, test_world, test_nodenet): # create agent. app.set_auth() response = app.post_json('/rpc/set_nodenet_properties', params=dict(nodenet_uid=test_nodenet, worldadapter="Braitenberg", world_uid=test_world)) response = app.post_json('/rpc/set_worldagent_properties', params={ 'world_uid': test_world, 'uid': test_nodenet, 'position': [23, 23], 'orientation': 37, 'name': 'Sepp' }) assert_success(response) response = app.get_json('/rpc/get_world_view(world_uid="%s", step=0)' % test_world) data = response.json_body['data']['agents'][test_nodenet] assert data['position'] == [23, 23] assert data['orientation'] == 37 assert data['name'] == 'Sepp' def test_new_world(app): app.set_auth() response = app.post_json('/rpc/new_world', params={ 'world_name': 'FooBarTestWorld', 'world_type': 'Island' }) assert_success(response) uid = response.json_body['data'] response = app.get_json('/rpc/get_available_worlds(user_id="Pytest User")') assert uid in response.json_body['data'] def test_get_available_world_types(app): response = app.get_json('/rpc/get_available_world_types()') assert_success(response) assert 'Island' in response.json_body['data'] def test_delete_world(app, test_world): response = app.get_json('/rpc/delete_world(world_uid="%s")' % test_world) assert_success(response) response = app.get_json('/rpc/get_available_worlds(user_id="Pytest User")') assert test_world not in response.json_body['data'] def test_set_world_properties(app, test_world): app.set_auth() response = app.post_json('/rpc/set_world_properties', params={ 'world_uid': test_world, 'world_name': 'asdf', 'owner': 'Pytest User' }) assert_success(response) response = app.get_json('/rpc/get_world_properties(world_uid="%s")' % test_world) assert response.json_body['data']['name'] == "asdf" def test_revert_world(app, test_world): app.set_auth() response = app.post_json('/rpc/add_worldobject', params={ 'world_uid': test_world, 'type': 'Braintree', 'position': [10, 10], 'name': 'Testtree' }) response = app.get_json('/rpc/revert_world(world_uid="%s")' % test_world) assert_success(response) response = app.get_json('/rpc/get_world_view(world_uid="%s",step=0)' % test_world) data = response.json_body['data'] assert data['objects'] == {} def test_save_world(app, test_world): app.set_auth() response = app.post_json('/rpc/add_worldobject', params={ 'world_uid': test_world, 'type': 'Braintree', 'position': [10, 10], 'name': 'Testtree' }) uid = response.json_body['data'] response = app.get_json('/rpc/save_world(world_uid="%s")' % test_world) assert_success(response) response = app.get_json('/rpc/revert_world(world_uid="%s")' % test_world) response = app.get_json('/rpc/get_world_view(world_uid="%s",step=0)' % test_world) data = response.json_body['data'] assert uid in data['objects'] # delete the world, to get the default state back app.get_json('/rpc/delete_world(world_uid="%s")' % test_world) def test_export_world(app, test_world): response = app.get_json('/rpc/export_world(world_uid="%s")' % test_world) assert_success(response) export_data = json.loads(response.json_body['data']) assert export_data['uid'] == test_world assert export_data['name'] == 'World of Pain' assert export_data['objects'] == {} assert export_data['agents'] == {} assert export_data['owner'] == 'Pytest User' assert export_data['current_step'] == 0 assert export_data['world_type'] == 'Island' def test_import_world(app, test_world): response = app.get_json('/rpc/export_world(world_uid="%s")' % test_world) data = json.loads(response.json_body['data']) del data['uid'] data['name'] = 'Copied Pain' response = app.post_json('/rpc/import_world', params={ 'worlddata': json.dumps(data) }) assert_success(response) uid = response.json_body['data'] response = app.get_json('/rpc/export_world(world_uid="%s")' % uid) data = json.loads(response.json_body['data']) assert data['owner'] == 'Pytest User' assert data['name'] == 'Copied Pain' assert data['objects'] == {} assert data['agents'] == {} assert uid != test_world ################################################### ## ## ## MONITORS ## ## ################################################### def test_export_monitor_data_all(app, test_nodenet): response = app.get_json('/rpc/export_monitor_data(nodenet_uid="%s")' % test_nodenet) assert_success(response) assert response.json_body['data'] == {} def test_add_gate_monitor(app, test_nodenet, node): response = app.post_json('/rpc/add_gate_monitor', params={ 'nodenet_uid': test_nodenet, 'node_uid': node, 'gate': 'sub', 'sheaf': 'default' }) assert_success(response) uid = response.json_body['data'] response = app.post_json('/rpc/export_monitor_data', params={ 'nodenet_uid': test_nodenet, 'monitor_uid': uid }) assert response.json_body['data']['node_uid'] == node assert response.json_body['data']['target'] == 'sub' assert response.json_body['data']['type'] == 'gate' assert response.json_body['data']['sheaf'] == 'default' assert response.json_body['data']['values'] == {} @pytest.mark.engine("dict_engine") def test_add_slot_monitor(app, test_nodenet, node): response = app.post_json('/rpc/add_slot_monitor', params={ 'nodenet_uid': test_nodenet, 'node_uid': node, 'slot': 'gen', 'name': 'Foobar' }) assert_success(response) uid = response.json_body['data'] response = app.post_json('/rpc/export_monitor_data', params={ 'nodenet_uid': test_nodenet, 'monitor_uid': uid }) assert response.json_body['data']['name'] == 'Foobar' assert response.json_body['data']['node_uid'] == node assert response.json_body['data']['target'] == 'gen' assert response.json_body['data']['type'] == 'slot' assert response.json_body['data']['sheaf'] == 'default' assert response.json_body['data']['values'] == {} def test_add_link_monitor(app, test_nodenet, node): response = app.post_json('/rpc/add_link_monitor', params={ 'nodenet_uid': test_nodenet, 'source_node_uid': node, 'gate_type': 'gen', 'target_node_uid': node, 'slot_type': 'gen', 'property': 'weight', 'name': 'LinkWeight' }) assert_success(response) uid = response.json_body['data'] response = app.post_json('/rpc/export_monitor_data', params={ 'nodenet_uid': test_nodenet, 'monitor_uid': uid }) assert response.json_body['data']['name'] == 'LinkWeight' assert response.json_body['data']['source_node_uid'] == node assert response.json_body['data']['gate_type'] == 'gen' assert response.json_body['data']['target_node_uid'] == node assert response.json_body['data']['slot_type'] == 'gen' assert response.json_body['data']['property'] == 'weight' def test_add_custom_monitor(app, test_nodenet): response = app.post_json('/rpc/add_custom_monitor', params={ 'nodenet_uid': test_nodenet, 'function': 'return len(netapi.get_nodes())', 'name': 'nodecount' }) assert_success(response) uid = response.json_body['data'] response = app.post_json('/rpc/export_monitor_data', params={ 'nodenet_uid': test_nodenet, 'monitor_uid': uid }) assert response.json_body['data']['name'] == 'nodecount' def test_remove_monitor(app, test_nodenet, node): response = app.post_json('/rpc/add_gate_monitor', params={ 'nodenet_uid': test_nodenet, 'node_uid': node, 'gate': 'gen' }) uid = response.json_body['data'] response = app.post_json('/rpc/remove_monitor', params={ 'nodenet_uid': test_nodenet, 'monitor_uid': uid }) assert_success(response) response = app.post_json('/rpc/export_monitor_data', params={ 'nodenet_uid': test_nodenet }) assert uid not in response.json_body['data'] def test_clear_monitor(app, test_nodenet, node): response = app.post_json('/rpc/add_gate_monitor', params={ 'nodenet_uid': test_nodenet, 'node_uid': node, 'gate': 'gen' }) uid = response.json_body['data'] response = app.post_json('/rpc/clear_monitor', params={ 'nodenet_uid': test_nodenet, 'monitor_uid': uid }) assert_success(response) def test_get_monitor_data(app, test_nodenet, node): response = app.post_json('/rpc/add_gate_monitor', params={ 'nodenet_uid': test_nodenet, 'node_uid': node, 'gate': 'sub' }) uid = response.json_body['data'] response = app.post_json('/rpc/get_monitor_data', params={ 'nodenet_uid': test_nodenet, 'step': 0, 'monitor_from': 3, 'monitor_count': 20 }) assert_success(response) assert uid in response.json_body['data']['monitors'] ################################################### ## ## ## NODENET ## ## ################################################### def test_get_nodespace_list(app, test_nodenet, node): response = app.get_json('/rpc/get_nodespace_list(nodenet_uid="%s")' % test_nodenet) assert_success(response) rootid = list(response.json_body['data'].keys())[0] assert response.json_body['data'][rootid]['name'] == 'Root' assert response.json_body['data'][rootid]['parent'] is None assert node in response.json_body['data'][rootid]['nodes'] def test_get_nodespace_activations(app, test_nodenet, node): response = app.post_json('/rpc/get_nodespace_activations', params={ 'nodenet_uid': test_nodenet, 'nodespaces': [None], 'last_call_step': -1 }) assert_success(response) assert node in response.json_body['data']['activations'] def test_get_node(app, test_nodenet, node): response = app.get_json('/rpc/get_node(nodenet_uid="%s",node_uid="%s")' % (test_nodenet, node)) assert_success(response) assert response.json_body['data']['type'] == 'Pipe' def test_add_node(app, test_nodenet): app.set_auth() response = app.post_json('/rpc/add_node', params={ 'nodenet_uid': test_nodenet, 'type': 'Register', 'position': [23, 42, 13], 'nodespace': None, 'name': 'N2' }) assert_success(response) uid = response.json_body['data'] response = app.get_json('/rpc/get_node(nodenet_uid="%s",node_uid="%s")' % (test_nodenet, uid)) assert response.json_body['data']['name'] == 'N2' def test_add_nodespace(app, test_nodenet): app.set_auth() response = app.post_json('/rpc/add_nodespace', params={ 'nodenet_uid': test_nodenet, 'position': [23, 42, 13], 'nodespace': None, 'name': 'nodespace' }) assert_success(response) uid = response.json_body['data'] response = app.get_json('/rpc/get_nodes(nodenet_uid="%s")' % (test_nodenet)) assert uid in response.json_body['data']['nodespaces'] assert uid not in response.json_body['data']['nodes'] def test_clone_nodes(app, test_nodenet, node): app.set_auth() response = app.post_json('/rpc/clone_nodes', params={ 'nodenet_uid': test_nodenet, 'node_uids': [node], 'clone_mode': 'all', 'nodespace': None, 'offset': [23, 23, 23] }) assert_success(response) node = list(response.json_body['data'].values())[0] assert node['name'] == 'N1_copy' assert node['position'] == [33, 33, 33] assert node['links']['gen'][0]['target_node_uid'] == node['uid'] def test_set_entity_positions(app, test_nodenet, node): app.set_auth() response = app.post_json('/rpc/set_entity_positions', params={ 'nodenet_uid': test_nodenet, 'positions': {node: [42, 23, 11]} }) assert_success(response) response = app.get_json('/rpc/get_node(nodenet_uid="%s",node_uid="%s")' % (test_nodenet, node)) assert response.json_body['data']['position'] == [42, 23, 11] def test_set_node_name(app, test_nodenet, node): app.set_auth() response = app.post_json('/rpc/set_node_name', params={ 'nodenet_uid': test_nodenet, 'node_uid': node, 'name': 'changed' }) assert_success(response) response = app.get_json('/rpc/get_node(nodenet_uid="%s",node_uid="%s")' % (test_nodenet, node)) assert response.json_body['data']['name'] == 'changed' def test_delete_node(app, test_nodenet, node): app.set_auth() response = app.post_json('/rpc/delete_nodes', params={ 'nodenet_uid': test_nodenet, 'node_uids': [node] }) assert_success(response) response = app.get_json('/rpc/get_nodes(nodenet_uid="%s")' % test_nodenet) assert response.json_body['data']['nodes'] == {} def test_delete_nodespace(app, test_nodenet, node): app.set_auth() response = app.post_json('/rpc/add_nodespace', params={ 'nodenet_uid': test_nodenet, 'position': [23, 42, 13], 'nodespace': None, 'name': 'nodespace' }) uid = response.json_body['data'] response = app.post_json('/rpc/delete_nodespace', params={ 'nodenet_uid': test_nodenet, 'nodespace': uid }) assert_success(response) response = app.get_json('/rpc/get_nodes(nodenet_uid="%s")' % test_nodenet) assert uid not in response.json_body['data']['nodespaces'] def test_align_nodes(app, test_nodenet): app.set_auth() # TODO: Why does autoalign only move a node if it has no links? response = app.post_json('/rpc/add_node', params={ 'nodenet_uid': test_nodenet, 'type': 'Register', 'position': [5, 5, 0], 'nodespace': None, 'name': 'N2' }) uid = response.json_body['data'] response = app.post_json('/rpc/align_nodes', params={ 'nodenet_uid': test_nodenet, 'nodespace': None }) assert_success(response) response = app.get_json('/rpc/get_node(nodenet_uid="%s",node_uid="%s")' % (test_nodenet, uid)) assert response.json_body['data']['position'] != [5, 5] def test_get_available_node_types(app, test_nodenet): response = app.get_json('/rpc/get_available_node_types(nodenet_uid="%s")' % test_nodenet) assert_success(response) assert 'Pipe' in response.json_body['data']['nodetypes'] assert 'Register' in response.json_body['data']['nodetypes'] assert 'Sensor' in response.json_body['data']['nodetypes'] def test_get_available_native_module_types(app, test_nodenet, engine): response = app.get_json('/rpc/get_available_native_module_types(nodenet_uid="%s")' % test_nodenet) assert_success(response) if engine == 'dict_engine': assert response.json_body['data'] == {} elif engine == 'theano_engine': assert "GradientDescent" in response.json_body['data'] def test_set_node_parameters(app, test_nodenet): app.set_auth() # add activator response = app.post_json('/rpc/add_node', params={ 'nodenet_uid': test_nodenet, 'type': 'Activator', 'nodespace': None, 'position': [23, 42, 0], }) uid = response.json_body['data'] response = app.post_json('/rpc/set_node_parameters', params={ 'nodenet_uid': test_nodenet, 'node_uid': uid, 'parameters': {'type': 'sub'} }) assert_success(response) response = app.get_json('/rpc/get_node(nodenet_uid="%s",node_uid="%s")' % (test_nodenet, uid)) assert response.json_body['data']['parameters']['type'] == 'sub' def test_get_gatefunction(app, test_nodenet, node): response = app.post_json('/rpc/get_gatefunction', params={ 'nodenet_uid': test_nodenet, 'node_uid': node, 'gate_type': 'gen' }) assert_success(response) assert response.json_body['data'] == 'identity' def test_set_gatefunction(app, test_nodenet, node): app.set_auth() response = app.post_json('/rpc/set_gatefunction', params={ 'nodenet_uid': test_nodenet, 'node_uid': node, 'gate_type': 'gen', 'gatefunction': 'sigmoid' }) assert_success(response) response = app.post_json('/rpc/get_gatefunction', params={ 'nodenet_uid': test_nodenet, 'node_uid': node, 'gate_type': 'gen', }) assert response.json_body['data'] == 'sigmoid' def test_get_available_gatefunctions(app, test_nodenet): response = app.post_json('/rpc/get_available_gatefunctions', params={'nodenet_uid': test_nodenet}) funcs = response.json_body['data'] assert 'sigmoid' in funcs assert 'identity' in funcs assert 'absolute' in funcs def test_set_gate_parameters(app, test_nodenet, node): app.set_auth() response = app.post_json('/rpc/set_gate_parameters', params={ 'nodenet_uid': test_nodenet, 'node_uid': node, 'gate_type': 'gen', 'parameters': {'minimum': -2} }) assert_success(response) response = app.get_json('/rpc/get_node(nodenet_uid="%s",node_uid="%s")' % (test_nodenet, node)) assert response.json_body['data']['gate_parameters']['gen']['minimum'] == -2 def test_get_available_datasources(app, test_nodenet, test_world): app.set_auth() # set worldadapter response = app.post_json('/rpc/set_nodenet_properties', params=dict(nodenet_uid=test_nodenet, world_uid=test_world, worldadapter="Braitenberg")) response = app.get_json('/rpc/get_available_datasources(nodenet_uid="%s")' % test_nodenet) assert_success(response) assert 'brightness_l' in response.json_body['data'] assert 'brightness_l' in response.json_body['data'] def test_get_available_datatargets(app, test_nodenet, test_world): app.set_auth() response = app.post_json('/rpc/set_nodenet_properties', params=dict(nodenet_uid=test_nodenet, world_uid=test_world, worldadapter="Braitenberg")) response = app.get_json('/rpc/get_available_datatargets(nodenet_uid="%s")' % test_nodenet) assert_success(response) assert 'engine_l' in response.json_body['data'] assert 'engine_r' in response.json_body['data'] def test_bind_datasource_to_sensor(app, test_nodenet, test_world): app.set_auth() response = app.post_json('/rpc/set_nodenet_properties', params=dict(nodenet_uid=test_nodenet, world_uid=test_world, worldadapter="Braitenberg")) response = app.post_json('/rpc/add_node', params={ 'nodenet_uid': test_nodenet, 'type': 'Sensor', 'position': [23, 42, 13], 'nodespace': None, }) uid = response.json_body['data'] response = app.post_json('/rpc/bind_datasource_to_sensor', params={ 'nodenet_uid': test_nodenet, 'sensor_uid': uid, 'datasource': 'brightness_l' }) assert_success(response) response = app.get_json('/rpc/get_node(nodenet_uid="%s",node_uid="%s")' % (test_nodenet, uid)) assert response.json_body['data']['parameters']['datasource'] == 'brightness_l' def test_bind_datatarget_to_actor(app, test_nodenet, test_world): app.set_auth() response = app.post_json('/rpc/set_nodenet_properties', params=dict(nodenet_uid=test_nodenet, world_uid=test_world, worldadapter="Braitenberg")) response = app.post_json('/rpc/add_node', params={ 'nodenet_uid': test_nodenet, 'type': 'Actor', 'position': [23, 42, 13], 'nodespace': None, }) uid = response.json_body['data'] response = app.post_json('/rpc/bind_datatarget_to_actor', params={ 'nodenet_uid': test_nodenet, 'actor_uid': uid, 'datatarget': 'engine_l' }) assert_success(response) response = app.get_json('/rpc/get_node(nodenet_uid="%s",node_uid="%s")' % (test_nodenet, uid)) assert response.json_body['data']['parameters']['datatarget'] == 'engine_l' def test_add_link(app, test_nodenet, node): app.set_auth() response = app.post_json('/rpc/add_link', params={ 'nodenet_uid': test_nodenet, 'source_node_uid': node, 'gate_type': 'sub', 'target_node_uid': node, 'slot_type': 'gen', 'weight': 0.7 }) assert_success(response) uid = response.json_body['data'] assert uid is not None response = app.get_json('/rpc/get_nodes(nodenet_uid="%s")' % test_nodenet) data = response.json_body['data'] assert data['nodes'][node]['links']['sub'][0]['target_node_uid'] == node assert round(data['nodes'][node]['links']['sub'][0]['weight'], 3) == 0.7 def test_set_link_weight(app, test_nodenet, node): app.set_auth() response = app.post_json('/rpc/set_link_weight', params={ 'nodenet_uid': test_nodenet, 'source_node_uid': node, 'gate_type': "gen", 'target_node_uid': node, 'slot_type': "gen", 'weight': 0.345 }) assert_success(response) response = app.get_json('/rpc/get_nodes(nodenet_uid="%s")' % test_nodenet) data = response.json_body['data'] assert float("%.3f" % data['nodes'][node]['links']['gen'][0]['weight']) == 0.345 def test_get_links_for_nodes(app, test_nodenet, node): response = app.post_json('/rpc/get_links_for_nodes', params={ 'nodenet_uid': test_nodenet, 'node_uids': [node] }) assert_success(response) link = list(response.json_body['data']['links'])[0] assert link['source_node_uid'] == node def test_delete_link(app, test_nodenet, node): app.set_auth() response = app.post_json('/rpc/delete_link', params={ 'nodenet_uid': test_nodenet, 'source_node_uid': node, 'gate_type': "gen", 'target_node_uid': node, 'slot_type': "gen" }) assert_success(response) response = app.get_json('/rpc/get_nodes(nodenet_uid="%s")' % test_nodenet) data = response.json_body['data'] data['nodes'][node]['links'] == {} def test_reload_native_modules(app, test_nodenet, resourcepath): app.set_auth() # create a native module: import os nodetype_file = os.path.join(resourcepath, 'Test', 'nodetypes.json') nodefunc_file = os.path.join(resourcepath, 'Test', 'nodefunctions.py') with open(nodetype_file, 'w') as fp: fp.write('{"Testnode": {\ "name": "Testnode",\ "slottypes": ["gen", "foo", "bar"],\ "nodefunction_name": "testnodefunc",\ "gatetypes": ["gen", "foo", "bar"],\ "symbol": "t"}}') with open(nodefunc_file, 'w') as fp: fp.write("def testnodefunc(netapi, node=None, **prams):\r\n return 17") response = app.get_json('/rpc/reload_native_modules()') assert_success(response) response = app.get_json('/rpc/get_available_node_types(nodenet_uid="%s")' % test_nodenet) data = response.json_body['data']['native_modules']['Testnode'] assert data['nodefunction_name'] == "testnodefunc" assert data['gatetypes'] == ['gen', 'foo', 'bar'] assert data['slottypes'] == ['gen', 'foo', 'bar'] assert data['name'] == 'Testnode' def test_user_prompt_response(app, test_nodenet, resourcepath): app.set_auth() # create a native module: import os nodetype_file = os.path.join(resourcepath, 'Test', 'nodetypes.json') nodefunc_file = os.path.join(resourcepath, 'Test', 'nodefunctions.py') with open(nodetype_file, 'w') as fp: fp.write('{"Testnode": {\ "name": "Testnode",\ "slottypes": ["gen", "foo", "bar"],\ "nodefunction_name": "testnodefunc",\ "gatetypes": ["gen", "foo", "bar"],\ "symbol": "t"}}') with open(nodefunc_file, 'w') as fp: fp.write("def testnodefunc(netapi, node=None, **prams):\r\n return 17") response = app.get_json('/rpc/reload_native_modules()') assert_success(response) response = app.post_json('/rpc/add_node', params={ 'nodenet_uid': test_nodenet, 'type': 'Testnode', 'position': [23, 23], 'nodespace': None, 'name': 'Testnode' }) assert_success(response) uid = response.json_body['data'] response = app.post_json('/rpc/user_prompt_response', { 'nodenet_uid': test_nodenet, 'node_uid': uid, 'values': {'foo': 'bar'}, 'resume_nodenet': True }) assert_success(response) response = app.get_json('/rpc/export_nodenet(nodenet_uid="%s")' % test_nodenet) data = json.loads(response.json_body['data']) assert data['nodes'][uid]['parameters']['foo'] == 'bar' assert data['is_active'] def test_set_logging_levels(app): response = app.post_json('/rpc/set_logging_levels', params={ 'logging_levels': { 'system': 'INFO', 'world': 'DEBUG', } }) assert_success(response) import logging assert logging.getLogger('world').getEffectiveLevel() == logging.DEBUG assert logging.getLogger('system').getEffectiveLevel() == logging.INFO def test_get_logger_messages(app, test_nodenet): response = app.get_json('/rpc/get_logger_messages(logger=["system"])') assert_success(response) assert 'servertime' in response.json_body['data'] assert response.json_body['data']['logs'] == [] def test_get_nodenet_logger_messages(app, test_nodenet): import logging logging.getLogger('agent.%s' % test_nodenet).warning('asdf') logging.getLogger('system').warning('foobar') response = app.get_json('/rpc/get_logger_messages(logger=["system", "agent.%s"])' % test_nodenet) assert 'servertime' in response.json_body['data'] netlog = syslog = None for item in response.json_body['data']['logs']: if item['logger'] == 'system': syslog = item elif item['logger'].startswith('agent'): netlog = item assert netlog['step'] == 0 assert syslog['step'] is None def test_get_monitoring_info(app, test_nodenet): response = app.get_json('/rpc/get_monitoring_info(nodenet_uid="%s",logger=["system,world"],monitor_from=3,monitor_count=10)' % test_nodenet) assert_success(response) assert 'logs' in response.json_body['data'] assert 'current_step' in response.json_body['data'] assert response.json_body['data']['monitors'] == {} assert 'servertime' in response.json_body['data']['logs'] assert response.json_body['data']['logs']['logs'] == [] def test_400(app): app.set_auth() response = app.get_json('/rpc/save_nodenet("foobar")', expect_errors=True) assert_failure(response) assert "Malformed arguments" in response.json_body['data'] def test_401(app, test_nodenet): app.unset_auth() response = app.get_json('/rpc/delete_nodenet(nodenet_uid="%s")' % test_nodenet, expect_errors=True) assert_failure(response) assert 'Insufficient permissions' in response.json_body['data'] def test_404(app): response = app.get_json('/rpc/notthere(foo="bar")', expect_errors=True) assert_failure(response) assert response.json_body['data'] == "Function not found" def test_405(app, test_nodenet): response = app.get_json('/rpc/get_available_nodenets', params={'nodenet_uid': test_nodenet}, expect_errors=True) assert_failure(response) assert response.json_body['data'] == "Method not allowed" def test_500(app): response = app.get_json('/rpc/generate_uid(foo="bar")', expect_errors=True) assert_failure(response) assert "unexpected keyword argument" in response.json_body['data'] assert response.json_body['traceback'] is not None def test_get_recipes(app, test_nodenet, resourcepath): app.set_auth() import os recipe_file = os.path.join(resourcepath, 'Test', 'recipes.py') with open(recipe_file, 'w') as fp: fp.write(""" def foobar(netapi, quatsch=23): return {'quatsch': quatsch} """) response = app.get_json('/rpc/reload_native_modules()') response = app.get_json('/rpc/get_available_recipes()') data = response.json_body['data'] assert 'foobar' in data assert len(data['foobar']['parameters']) == 1 assert data['foobar']['parameters'][0]['name'] == 'quatsch' assert data['foobar']['parameters'][0]['default'] == 23 def test_run_recipes(app, test_nodenet, resourcepath): app.set_auth() import os recipe_file = os.path.join(resourcepath, 'Test', 'recipes.py') with open(recipe_file, 'w') as fp: fp.write(""" def foobar(netapi, quatsch=23): return {'quatsch': quatsch} """) response = app.get_json('/rpc/reload_native_modules()') response = app.post_json('/rpc/run_recipe', { 'nodenet_uid': test_nodenet, 'name': 'foobar', 'parameters': { 'quatsch': '' } }) data = response.json_body['data'] assert data['quatsch'] == 23 def test_get_agent_dashboard(app, test_nodenet, node, default_world): app.set_auth() response = app.post_json('/rpc/set_nodenet_properties', params=dict(nodenet_uid=test_nodenet, worldadapter="Default", world_uid=default_world)) response = app.get_json('/rpc/get_agent_dashboard(nodenet_uid="%s")' % test_nodenet) data = response.json_body['data'] assert data['count_nodes'] == 1 def test_nodenet_data_structure(app, test_nodenet, resourcepath, node): app.set_auth() import os nodetype_file = os.path.join(resourcepath, 'Test', 'nodetypes.json') nodefunc_file = os.path.join(resourcepath, 'Test', 'nodefunctions.py') with open(nodetype_file, 'w') as fp: fp.write('{"Testnode": {\ "name": "Testnode",\ "slottypes": ["gen", "foo", "bar"],\ "nodefunction_name": "testnodefunc",\ "gatetypes": ["gen", "foo", "bar"],\ "symbol": "t"}}') with open(nodefunc_file, 'w') as fp: fp.write("def testnodefunc(netapi, node=None, **prams):\r\n return 17") response = app.get_json('/rpc/reload_native_modules()') response = app.post_json('/rpc/add_nodespace', params={ 'nodenet_uid': test_nodenet, 'position': [23, 23, 42], 'nodespace': None, 'name': 'Test-Node-Space' }) nodespace_uid = response.json_body['data'] response = app.post_json('/rpc/add_node', params={ 'nodenet_uid': test_nodenet, 'type': 'Pipe', 'position': [42, 42, 23], 'nodespace': nodespace_uid, 'name': 'N2' }) n2_uid = response.json_body['data'] response = app.post_json('/rpc/add_gate_monitor', params={ 'nodenet_uid': test_nodenet, 'node_uid': node, 'gate': 'gen', 'name': 'Testmonitor', 'color': '#332211' }) monitor_uid = response.json_body['data'] response = app.get_json('/rpc/get_nodenet_metadata(nodenet_uid="%s")' % test_nodenet) metadata = response.json_body['data'] response_1 = app.post_json('/rpc/get_calculation_state', params={'nodenet_uid': test_nodenet, 'nodenet': {'nodespaces': [None]}, 'monitors': True}) response = app.get_json('/rpc/save_nodenet(nodenet_uid="%s")' % test_nodenet) response = app.get_json('/rpc/revert_nodenet(nodenet_uid="%s")' % test_nodenet) response_2 = app.post_json('/rpc/get_calculation_state', params={'nodenet_uid': test_nodenet, 'nodenet': {'nodespaces': [None]}, 'monitors': True}) assert response_1.json_body['data']['nodenet'] == response_2.json_body['data']['nodenet'] assert response_1.json_body['data']['monitors']['monitors'] == response_2.json_body['data']['monitors']['monitors'] data = response_2.json_body['data'] # Monitors response = app.get_json('/rpc/export_monitor_data(nodenet_uid="%s", monitor_uid="%s")' % (test_nodenet, monitor_uid)) monitor_data = response.json_body['data'] assert data['monitors']['monitors'][monitor_uid]['name'] == 'Testmonitor' assert data['monitors']['monitors'][monitor_uid]['node_uid'] == node assert data['monitors']['monitors'][monitor_uid]['target'] == 'gen' assert data['monitors']['monitors'][monitor_uid]['type'] == 'gate' assert data['monitors']['monitors'][monitor_uid]['uid'] == monitor_uid assert data['monitors']['monitors'][monitor_uid]['values'] == {} assert data['monitors']['monitors'][monitor_uid]['color'] == '#332211' assert data['monitors']['monitors'][monitor_uid] == monitor_data # Nodes response = app.get_json('/rpc/get_node(nodenet_uid="%s", node_uid="%s")' % (test_nodenet, node)) node_data = response.json_body['data'] assert node in data['nodenet']['nodes'] assert n2_uid not in data['nodenet']['nodes'] assert nodespace_uid not in data['nodenet']['nodes'] # gates for key in ['gen', 'por', 'ret', 'sub', 'sur', 'cat', 'exp']: assert data['nodenet']['nodes'][node]['gate_activations'][key]['default']['activation'] == 0 assert key not in data['nodenet']['nodes'][node]['gate_parameters'] assert data['nodenet']['nodes'][node]['gate_functions'][key] == 'identity' assert data['nodenet']['nodes'][node]['parameters']['expectation'] == 1 assert data['nodenet']['nodes'][node]['parameters']['wait'] == 10 assert data['nodenet']['nodes'][node]['position'] == [10, 10, 10] assert data['nodenet']['nodes'][node]['type'] == "Pipe" assert 'links' not in data assert node_data['parameters']['expectation'] == 1 assert node_data['parameters']['wait'] == 10 assert node_data['position'] == [10, 10, 10] assert node_data['type'] == "Pipe" # Links for link in data['nodenet']['nodes'][node]['links']['gen']: assert link['weight'] == 1 assert link['target_node_uid'] == node assert link['target_slot_name'] == 'gen' # Nodespaces # assert data['nodenet']['nodespaces'][nodespace_uid]['index'] == 3 assert data['nodenet']['nodespaces'][nodespace_uid]['name'] == 'Test-Node-Space' # assert data['nodenet']['nodespaces'][nodespace_uid]['parent_nodespace'] == 'Root' assert data['nodenet']['nodespaces'][nodespace_uid]['position'] == [23, 23, 42] # Nodetypes response = app.get_json('/rpc/get_available_node_types(nodenet_uid="%s")' % test_nodenet) node_type_data = response.json_body['data'] for key in ['Comment', 'Nodespace']: assert 'gatetypes' not in metadata['nodetypes'][key] assert 'slottypes' not in metadata['nodetypes'][key] for key in ['Pipe', 'Register', 'Actor']: assert 'gatetypes' in metadata['nodetypes'][key] assert 'slottypes' in metadata['nodetypes'][key] assert 'slottypes' in metadata['nodetypes']['Activator'] assert 'gatetypes' not in metadata['nodetypes']['Activator'] assert 'slottypes' not in metadata['nodetypes']['Sensor'] assert 'gatetypes' in metadata['nodetypes']['Sensor'] assert metadata['nodetypes'] == node_type_data['nodetypes'] # Native Modules response = app.get_json('/rpc/get_available_native_module_types(nodenet_uid="%s")' % test_nodenet) native_module_data = response.json_body['data'] assert metadata['native_modules']['Testnode']['gatetypes'] == ['gen', 'foo', 'bar'] assert metadata['native_modules']['Testnode']['name'] == 'Testnode' assert metadata['native_modules']['Testnode']['nodefunction_name'] == 'testnodefunc' assert metadata['native_modules']['Testnode']['slottypes'] == ['gen', 'foo', 'bar'] assert metadata['native_modules']['Testnode']['symbol'] == 't' assert metadata['native_modules'] == native_module_data # Nodenet assert metadata['current_step'] == 0 # TODO: assert 'step' not in data # current_step && step? assert metadata['version'] == 1 assert metadata['world'] is None assert metadata['worldadapter'] is None def test_get_state_diff(app, test_nodenet, node): from micropsi_core import runtime nodenet = runtime.nodenets[test_nodenet] runtime.step_nodenet(test_nodenet) response = app.post_json('/rpc/get_calculation_state', params={ 'nodenet_uid': test_nodenet, 'nodenet_diff': { 'nodespaces': [None], 'step': 0, } }) data = response.json_body['data']['nodenet_diff'] assert 'activations' in data assert 'changes' in data assert node in data['changes']['nodes_dirty'] node2 = nodenet.create_node("Register", None, [10, 10], name="node2") runtime.step_nodenet(test_nodenet) response = app.post_json('/rpc/get_calculation_state', params={ 'nodenet_uid': test_nodenet, 'nodenet_diff': { 'nodespaces': [None], 'step': 1, } }) data = response.json_body['data']['nodenet_diff'] assert [node2] == list(data['changes']['nodes_dirty'].keys()) def test_get_operations(app, test_nodenet): response = app.get_json('/rpc/get_available_operations()') data = response.json_body['data'] assert data['autoalign']['selection']['nodetypes'] == [] def test_run_operation(app, test_nodenet, node): response = app.post_json('/rpc/run_operation', { 'nodenet_uid': test_nodenet, 'name': 'autoalign', 'parameters': {}, 'selection_uids': [None] }) assert response.json_body['status'] == 'success' ```
{ "source": "JoschD/cpymad_lhc", "score": 3 }
#### File: cpymad_lhc/cpymad_lhc/coupling_correction.py ```python from typing import Tuple, Sequence, List from cpymad.madx import Madx from cpymad_lhc.general import get_coupling_knobs, get_tune_and_chroma_knobs import logging LOG = logging.getLogger(__name__) def correct_coupling(madx: Madx, accel: str, sequence: str, squeezed: bool = False, **kwargs): """ Wrapper for coupling correction to use the default knob-names if not otherwise given. Args: madx: Madx instance accel: Accelerator we are using 'LHC' or 'HLLHC' sequence: Sequence to use squeezed: Use squeezed knobs (`_sq`) Keyword Args: Other arguments of `correct_coupling_with_knobs` """ def check_knobs(knobs): not_defined = [k for k in knobs if k not in madx.globals] if len(not_defined): raise KeyError(f"Knobs {not_defined} are not defined in sequence!") knobs_dict = _get_default_knob_names(accel, sequence) for knob_arg, knob_names in knobs_dict.items(): if knob_arg not in kwargs: if squeezed: knob_names = tuple(f"{k}_sq" for k in knob_names) check_knobs(knob_names) kwargs[knob_arg] = knob_names correct_coupling_with_knobs(madx, sequence, **kwargs) def correct_coupling_with_knobs(madx: Madx, sequence: str, tune_knobs: List[str], chroma_knobs: List[str], coupling_knobs: List[str], qx: float, qy: float, dqx: float, dqy: float, iterations: int = 2, tolerance: float = 1e-7, simplex: bool = False, pre_estimation: bool = True, match_tunes: bool = True, ): """ Corrects coupling via the given knobs. If there is no coupling, the tunes should be able to be matched to the same factional tunes (mid-tunes). If there is a remaining tune split, this is the closest tune approach (cta) and indicates the presence of coupling. The algorithm is as follows: First the coupling knob settings are estimated by a one-step newton optimization (if `pre_estimate` is set). Then the tune-knobs and the coupling knobs are used alternatingly to match the tunes together. This is iterated according to the desired `iteration` parameter. Before and after this correction the cta is checked. Remark: The first `twiss` call in the first `_analytical_minimization` call is unneccessary as the nothing has changed between this one and the one in `_cta_check`. Could be somehow checked for speed optimization. Args: madx: Madx instance tune_knobs: names of elements/knobs to vary for tune matching chroma_knobs: names of elements/knobs to vary for chroma matching: coupling_knobs: names of elements/knobs to vary for coupling matching: sequence: Sequence to use qx: tune to match in x qy: tune to match in y dqx: chromaticity to match in x dqy: chromaticity to match in y tolerance: (final) tolerance for successfull matching iterations: number of iterations in empirical matching simplex: use simplex method in empirical matching pre_estimation: use analytical method to estimate coupling-knob settings. This will only work if the given coupling knobs correspond to the imaginary and real part of F1001. match_tunes: If true, also performs a tune and chroma match at the end, otherwise, the original tune-knob values are recovered. """ qx_mid, qy_mid = _get_middle_tunes(qx, qy) tune_knobs_saved = {k: madx.globals[k] for k in tune_knobs} cta = _cta_check(madx, sequence, tune_knobs, qx_mid, qy_mid, tolerance=tolerance * 10 ** iterations, text="Initial closest tune approach") if cta <= tolerance: LOG.info("Coupling already below tolerance. Skipping correction.") for k, val in tune_knobs_saved.items(): madx.globals[k] = val return if pre_estimation: for knob in coupling_knobs: _analytical_minimization(madx, sequence, knob) _empirical_minimization(madx, sequence, tune_knobs, coupling_knobs, iterations, qx_mid, qy_mid, tolerance, simplex) _cta_check(madx, sequence, tune_knobs, qx_mid, qy_mid, tolerance=tolerance, text="Final closest tune approach") if match_tunes: _recover_tunes(madx, sequence, tune_knobs, chroma_knobs, qx=qx, qy=qy, dqx=dqx, dqy=dqy) else: for k, val in tune_knobs_saved.items(): madx.globals[k] = val # Algorithm Steps -------------------------------------------------------------- def _get_middle_tunes(qx: float, qy: float) -> Tuple[float, float]: """ Get the tunes with the factional part in the middle between the qx and qy fractional parts, but with the same integer part. """ qx_frac, qy_frac = qx % 1, qy % 1 qmid_frac = 0.5 * (qx_frac + qy_frac) qx_mid = int(qx) + qmid_frac qy_mid = int(qy) + qmid_frac return qx_mid, qy_mid def _get_default_knob_names(accel: str, sequence: str) -> dict: """ Get tune, chroma and coupling knobs. """ tune_chroma_knobs = list(get_tune_and_chroma_knobs(accel, int(sequence[-1]))) coupling_knobs = list(get_coupling_knobs(accel, int(sequence[-1]))) return dict(tune_knobs=tune_chroma_knobs[:2], chroma_knobs=tune_chroma_knobs[2:], coupling_knobs=coupling_knobs) def _analytical_minimization(madx: Madx, sequence: str, knob: str): """ Analytical Minimization. """ init_value = madx.globals[knob] cta = _get_current_tune_approach(madx, sequence) madx.globals[knob] = init_value + 0.5 * cta cta_plus = _get_current_tune_approach(madx, sequence) madx.globals[knob] = init_value - 0.5 * cta cta_minus = _get_current_tune_approach(madx, sequence) new_value = init_value + 0.5 * (cta_minus**2 - cta_plus**2) / cta LOG.debug(f"Knob {knob} updated: {init_value} -> {new_value}.") madx.globals[knob] = new_value def _empirical_minimization(madx: Madx, sequence: str, tune_knobs: Sequence[str], coupling_knobs: Sequence[str], iterations: int, qx_mid: float, qy_mid: float, tolerance: float, simplex: bool): """ Push tunes together by alternative matching of tune and coupling knobs. """ calls_tune = 100 * (1+simplex) calls_coupling = 150 * (1+simplex) step = 1e-9 for idx in range(iterations): current_tol = tolerance * 10**(iterations-idx-1) # ends at final tolerance match( madx, sequence, tune_knobs, q1=qx_mid, q2=qy_mid, step=step, calls=calls_tune, tolerance=current_tol, # simplex=simplex, # simplex is only used with coupling knobs ) match( madx, sequence, coupling_knobs, q1=qx_mid, q2=qy_mid, step=step, calls=calls_coupling, tolerance=2*current_tol, simplex=simplex ) def _recover_tunes(madx: Madx, sequence: str, tune_knobs: List[str], chroma_knobs: List[str], qx: float, qy: float, dqx: float, dqy: float): """ Recover Tunes (i.e. normal tune matching) """ # match_tune(madx, accel, sequence, qx=qx, qy=qy, dqx=dqx, dqy=dqy) match( madx, sequence, tune_knobs, chrom=True, q1=qx, q2=qy, step=1e-7, calls=100, tolerance=1e-21 ) match( madx, sequence, chroma_knobs, chrom=True, dq1=dqx, dq2=dqy, step=1e-7, calls=100, tolerance=1e-21 ) match( madx, sequence, tune_knobs+chroma_knobs, chrom=True, q1=qx, q2=qy, dq1=dqx, dq2=dqy, step=1e-7, calls=100, tolerance=1e-21 ) # Closest Tune Approach -------------------------------------------------------- def _cta_check(madx, sequence, tune_knobs, qx_mid, qy_mid, tolerance, text): """ Try to match tunes and log closest tune approach. """ match(madx, sequence, tune_knobs, q1=qx_mid, q2=qy_mid, step=1e-9, calls=100, tolerance=tolerance) cta = _get_current_tune_approach(madx, sequence) LOG.info(f"{text}: {cta}") return cta def _get_current_tune_approach(madx: Madx, sequence: str) -> float: """ Get the current tune approach in the sequence. """ madx.twiss(sequence=sequence) qx, qy = madx.table.twiss.summary.q1, madx.table.twiss.summary.q2 cta = _get_tune_approach_value(qx, qy) LOG.debug(f"Current tune approach value: {cta}") return cta def _get_tune_approach_value(qx: float, qy: float) -> float: """ Calculate the (fractional) tune approach of qx and qy. """ tune_split = int(qx) - int(qy) return abs(qx - qy - tune_split) # General Matching function ---------------------------------------------------- def match(madx: Madx, sequence: str, knobs: Sequence[str], step: float = 1e-7, tolerance: float = 1e-21, calls: float = 100, chrom=False, simplex=False, **kwargs): """ Match the `knobs` to the settings in `kwargs`. Args: madx: Madx instance sequence: Sequence to use knobs: Sequence of variables to match chrom: use the `chrom` flag in match step: step size to vary knob calls: number of varying calls tolerance: (final) tolerance for successfull matching Keyword Args: Arguments for the MAD-X `global` command to be matched at, e.g. `q1=`, `dqy=` etc. """ LOG.info(f"Matching knobs '{', '.join(knobs)}' for sequence '{sequence}'.") madx.command.match(chrom=chrom) madx.command.global_(sequence=sequence, **kwargs) for name in knobs: madx.command.vary(name=name, step=step) if simplex: madx.command.simplex(calls=calls, tolerance=tolerance) else: madx.command.lmdif(calls=calls, tolerance=tolerance) madx.command.endmatch() # Other Approaches ```
{ "source": "JoschD/plofeld", "score": 3 }
#### File: plofeld/utils/plotting.py ```python from typing import Sequence import numpy as np from matplotlib.axes import Axes from matplotlib.lines import Line2D from matplotlib.patches import Circle, Polygon from matplotlib.textpath import TextPath from plofeld.utils.classes import Vector from plofeld.utils.constants import CHARGE_COLORS, ZORDER, CHARGE_MARKERS, EPS from plofeld.elements import PointCharge def charge_to_circle(charge: PointCharge, kind: str) -> Circle: """Create the Circle Patch from a charge. Args: charge (PointCharge): The PointCharge object kind (str): Field type """ color = charge.color if color is None: color = CHARGE_COLORS[kind][np.sign(charge.q)] return Circle( (charge.x, charge.y), radius=charge.radius, linewidth=charge.linewidth, facecolor=color, edgecolor='k', zorder=ZORDER['charges'], ) def charge_to_marker(charge: PointCharge, kind: str) -> Polygon: """Create the marker polygon for a charge. Args: charge (PointCharge): The PointCharge object kind (str): Field type """ marker = charge.marker if marker == 'default': marker = CHARGE_MARKERS[kind][np.sign(charge.q)] # let mpl create a text-path but convert it to polygon manually # (TextPath objects are a bit weird and did not behave as I expected) path = TextPath((0, 0), marker, size=charge.radius*1.7) extend = path.get_extents() polygon = path.to_polygons()[0] # some manual move, because TextPath assumes real text polygon = polygon - extend.min # put directly on origin polygon = polygon - extend.size / 2 # move center to origin polygon = polygon + charge.location.toarray() # move to charge location return Polygon(polygon, facecolor="white", lw=0.2, zorder=ZORDER['marker']) def add_arrow_to_line(line: Line2D, index: int = None, direction: str = 'right', size: int = 15, color: str = None, **kwargs): """Add an arrow to the middle of a line. Based on: https://stackoverflow.com/a/34018322/5609590 Args: line (Line2D): Matplotlib Line2D object index (int): Index of the data at where to point the arrow head. If direction is ``'left'`` this can't be ``0``, if direction is ``'right'`` this can't be the last index (or ``-1``). If ``None`` is given, the middle element of the line is chosen. direction (str): Direction of the arrow, either ``'left'`` or ``'right'``. Default: ``'right'``. size (int): size of the arrow in fontsize points. Default: ``15`` color (str): Color of the arrow. If ``None``, the line color is taken. Default: ``None`` Keyword Args: Passed on to `Axes.annotate()` function. """ xdata = line.get_xdata() ydata = line.get_ydata() if color is None: color = line.get_color() if index is None: index = len(xdata) // 2 end_index = index + (1 if direction == "right" else -1) line.axes.annotate('', xytext=(xdata[index], ydata[index]), xy=(xdata[end_index], ydata[end_index]), arrowprops=dict(arrowstyle="->", color=color), size=size, **kwargs ) def is_point_visible(ax: Axes, point: Vector): """True if point visible within current axes limits.""" xlim, ylim = ax.get_xlim(), ax.get_ylim() return xlim[0] < point.x < xlim[1] and ylim[0] < point.y < ylim[1] def went_straight_through_origin(vectors: Sequence[Vector]): """Checks whether the line of points went through the origin. Assumes that the line is straight.""" a, b = vectors[0].unit(), vectors[-1].unit() # Start and end vector are on opposite sides if (a + b).norm() > EPS: return False return True ``` #### File: plofeld/utils/shapes.py ```python from typing import List import numpy as np from plofeld.utils.classes import Vector from plofeld.elements import PointCharge def get_regular_polygon(n: int, skew: bool = False, r: float = 1) -> List[Vector]: """Generate the coordinates for a regular polygon with 2n corners around the origin. Args: n (int): Half of the corners. skew (bool): Rotate polygon by half the angle between two poles. Default: ``False`` r (float): All corners lie on a circle of ratius ``r``. Default: ``1`` Returns: A list of Vectors defining the corners of the polygon. """ n_poles = 2*n phases = (np.arange(0, n_poles) + (0.5 * ~skew)) / n_poles coordinates = r * np.exp(2 * np.pi * 1j * phases) return [Vector(c.real, c.imag) for c in coordinates] def generate_mulitpole(n: int, skew: bool = False, **kwargs) -> List[PointCharge]: """Generate a multipole field consisting of 2n PointCharges with alternating polarity around origin. Args: n (int): Half of the corners. skew (bool): Rotate polygon by half the angle between two poles. Default: ``False`` Keyword Args: Are passed on to PointCharge objects Return: List of 2n PointCharges defining the Multipole. """ charge_map = {0: -1, 1: 1} coordinates = get_regular_polygon(n, skew) return [PointCharge(vec, charge_map[idx % 2], **kwargs) for idx, vec in enumerate(coordinates)] ```
{ "source": "joschnitzbauer/dalymi", "score": 3 }
#### File: dalymi/examples/simple.py ```python from dalymi import Pipeline from dalymi.resources import PandasCSV import pandas as pd # Define resources: numbers_resource = PandasCSV(name='numbers', loc='numbers.csv', columns=['number']) squares_resource = PandasCSV(name='squares', loc='squares.csv', columns=['number', 'square']) # Define the pipeline pl = Pipeline() @pl.output(numbers_resource) def create_numbers(**context): return pd.DataFrame({'number': range(11)}) @pl.output(squares_resource) @pl.input(numbers_resource) def square_numbers(numbers, **context): numbers['square'] = numbers['number']**2 return numbers if __name__ == '__main__': # Run the default command line interface pl.cli() ```
{ "source": "joschock/edk2-pytool-extensions", "score": 2 }
#### File: edk2toolext/capsule/pyopenssl_signer.py ```python import logging import warnings from OpenSSL import crypto def sign(data: bytes, signature_options: dict, signer_options: dict) -> bytes: ''' primary signing interface. Takes n the signature_options and signer_options dictionaries that are used by capsule_tool and capsule_helper ''' # NOTE: Currently, we only support the necessary algorithms for capsules. # The following _if_ clause handles the deprecated signature_option 'sign_alg' for backwards compatibility # when the deprecated option is supplied, this code adds the new, required options based on prior code behavior if 'sign_alg' in signature_options: warnings.warn('Signature_option "sign_alg" is deprecated, use "type"', DeprecationWarning) if signature_options['sign_alg'] == 'pkcs12': # map legacy behavior to new options and backwards-compatible values signature_options['type'] = 'bare' signature_options['encoding'] = 'binary' signer_options['key_file_format'] = 'pkcs12' else: raise ValueError(f"Unsupported signature algorithm: {signature_options['sign_alg']}!") ''' signature type 'bare' is just a binary signed digest, no PEM headers/footers or ASN ''' if signature_options['type'] != 'bare': raise ValueError(f"Unsupported signature type: {signature_options['type']}") if 'type_options' in signature_options: raise ValueError("Signature type options not supported") if signature_options['encoding'] != 'binary': raise ValueError(f"Unsupported signature encoding: {signature_options['encoding']}") if signature_options['hash_alg'] != 'sha256': raise ValueError(f"Unsupported hashing algorithm: {signature_options['hash_alg']}") if signer_options['key_file_format'] != 'pkcs12': raise ValueError(f"Unsupported signer key file format: {signer_options['key_file_format']}") logging.debug("Executing PKCS1 Signing") # If a key file is provided, use it for signing. if 'key_file' in signer_options: with open(signer_options['key_file'], 'rb') as key_file: signer_options['key_data'] = key_file.read() # TODO: Figure out OIDs. # TODO: Figure out EKU. pkcs12 = crypto.load_pkcs12(signer_options['key_data']) return crypto.sign(pkcs12.get_privatekey(), data, signature_options['hash_alg']) ``` #### File: edk2-pytool-extensions/edk2toolext/edk2_logging.py ```python import logging import os import shutil import re try: from edk2toollib.log import ansi_handler except ImportError: ansi_handler = None try: from edk2toollib.log import markdown_handler except ImportError: markdown_handler = None try: from edk2toollib.log import string_handler except ImportError: string_handler = None try: from edk2toollib.log import file_handler except ImportError: file_handler = logging # These three are for emitting different events # section is for marking different sections of the build process # subsection is similar to sub section but denotes a subsection of the current section # both of the section levels are high enough that they won't get filtered out # progress is for marking things like a process completed. Similar to critical but doesn't mean the process is exiting # progress is below critical so it can be turned off but still high enough that it doesn't get filtered out SECTION = logging.CRITICAL + 2 # just above critical SUB_SECTION = logging.CRITICAL + 1 # just above critical PROGRESS = logging.CRITICAL - 1 # just below critical # sub_directory is relative to ws argument def clean_build_logs(ws, sub_directory=None): # Make sure that we have a clean environment. if sub_directory is None: sub_directory = os.path.join("Build", "BuildLogs") if os.path.isdir(os.path.join(ws, sub_directory)): shutil.rmtree(os.path.join(ws, sub_directory)) def get_section_level(): return SECTION def get_subsection_level(): return SUB_SECTION def get_progress_level(): return PROGRESS def get_edk2_filter(verbose=False): gEdk2Filter = Edk2LogFilter() if verbose: gEdk2Filter.setVerbose(verbose) return gEdk2Filter def log_progress(message): logging.log(get_progress_level(), message) def setup_section_level(): # todo define section level # add section as a level to the logger section_level = get_section_level() subsection_level = get_subsection_level() progress_level = get_progress_level() if logging.getLevelName(section_level) != "SECTION": logging.addLevelName(section_level, "SECTION") if logging.getLevelName(subsection_level) != "SUBSECTION": logging.addLevelName(subsection_level, "SUBSECTION") if logging.getLevelName(progress_level) != "PROGRESS": logging.addLevelName(progress_level, "PROGRESS") # creates the the plaintext logger def setup_txt_logger(directory, filename="log", logging_level=logging.INFO, formatter=None, logging_namespace='', isVerbose=False): logger = logging.getLogger(logging_namespace) log_formatter = formatter if log_formatter is None: log_formatter = logging.Formatter("%(levelname)s - %(message)s") if not os.path.isdir(directory): os.makedirs(directory) # Create file logger logfile_path = os.path.join(directory, filename + ".txt") filelogger = file_handler.FileHandler(filename=(logfile_path), mode='w+') filelogger.setLevel(logging_level) filelogger.setFormatter(log_formatter) logger.addHandler(filelogger) filelogger.addFilter(get_edk2_filter(isVerbose)) return logfile_path, filelogger # creates the markdown logger def setup_markdown_logger(directory, filename="log", logging_level=logging.INFO, formatter=None, logging_namespace='', isVerbose=False): logger = logging.getLogger(logging_namespace) log_formatter = formatter if log_formatter is None: log_formatter = logging.Formatter("%(levelname)s - %(message)s") if not os.path.isdir(directory): os.makedirs(directory) # add markdown handler markdown_filename = filename + ".md" markdown_path = os.path.join(directory, markdown_filename) if markdown_handler: markdownHandler = markdown_handler.MarkdownFileHandler(markdown_path, mode="w+") else: markdownHandler = logging.FileHandler(markdown_path, mode="w+") markdownHandler.setFormatter(log_formatter) if logging_level <= logging.DEBUG: logging_level = logging.INFO # we don't show debugging output in markdown since it gets too full markdownHandler.addFilter(get_edk2_filter(isVerbose)) markdownHandler.setLevel(logging_level) logger.addHandler(markdownHandler) return markdown_path, markdownHandler # sets up a colored console logger def setup_console_logging(logging_level=logging.INFO, formatter=None, logging_namespace='', isVerbose=False, use_azure_colors=False, use_color=True): if formatter is None and isVerbose: formatter_msg = "%(name)s: %(levelname)s - %(message)s" elif formatter is None: formatter_msg = "%(levelname)s - %(message)s" else: formatter_msg = formatter formatter = logging.Formatter(formatter_msg) # create a safe handler so that any logging emitted when creating the ansi logger is handled safeHandler = logging.StreamHandler() safeHandler.setLevel(logging_level) safeHandler.addFilter(get_edk2_filter(isVerbose)) safeHandler.setFormatter(formatter) logger = logging.getLogger(logging_namespace) logger.addHandler(safeHandler) # create the ansi logger if needed if use_azure_colors or use_color and ansi_handler: formatter = ansi_handler.ColoredFormatter(formatter_msg, use_azure=use_azure_colors) coloredHandler = ansi_handler.ColoredStreamHandler() coloredHandler.setLevel(logging_level) coloredHandler.addFilter(get_edk2_filter(isVerbose)) coloredHandler.setFormatter(formatter) # make sure to remove the safe handler so we don't have two handlers logger.removeHandler(safeHandler) logger.addHandler(coloredHandler) return coloredHandler # return the safe handler if we didn't create a colored handler return safeHandler def stop_logging(loghandle, logging_namespace=''): logger = logging.getLogger(logging_namespace) if loghandle is None: return if isinstance(loghandle, list): # if it's an array, process each element as a handle for handle in loghandle: handle.close() logger.removeHandler(handle) else: loghandle.close() logger.removeHandler(loghandle) def create_output_stream(level=logging.INFO, logging_namespace=''): # creates an output stream that is in memory if string_handler: handler = string_handler.StringStreamHandler() else: handler = logging.StreamHandler() logger = logging.getLogger(logging_namespace) handler.setLevel(level) logger.addHandler(handler) return handler def remove_output_stream(handler, logging_namespace=''): logger = logging.getLogger(logging_namespace) if isinstance(handler, list): for single_handler in handler: logger.removeHandler(single_handler) else: logger.removeHandler(handler) def scan_compiler_output(output_stream): # seek to the start of the output stream def output_compiler_error(match, line, start_txt="Compiler"): start, end = match.span() source = line[:start] error = line[end:] num = match.group(1) return f"{start_txt} #{num} from {source} {error}" problems = [] output_stream.seek(0, 0) error_exp = re.compile(r"error [A-EG-Z]?(\d+):") edk2_error_exp = re.compile(r"error F(\d+):") build_py_error_exp = re.compile(r"error (\d+)E:") linker_error_exp = re.compile(r"error LNK(\d+):") warning_exp = re.compile(r"warning [A-Z]?(\d+):") for raw_line in output_stream.readlines(): line = raw_line.strip("\n").strip() match = error_exp.search(line) if match is not None: error = output_compiler_error(match, line, "Compiler") problems.append((logging.ERROR, error)) match = warning_exp.search(line) if match is not None: error = output_compiler_error(match, line, "Compiler") problems.append((logging.WARNING, error)) match = linker_error_exp.search(line) if match is not None: error = output_compiler_error(match, line, "Linker") problems.append((logging.ERROR, error)) match = edk2_error_exp.search(line) if match is not None: error = output_compiler_error(match, line, "EDK2") problems.append((logging.ERROR, error)) match = build_py_error_exp.search(line) if match is not None: error = output_compiler_error(match, line, "Build.py") problems.append((logging.ERROR, error)) return problems class Edk2LogFilter(logging.Filter): _allowedLoggers = ["root"] def __init__(self): logging.Filter.__init__(self) self._verbose = False self._currentSection = "root" def setVerbose(self, isVerbose=True): self._verbose = isVerbose def addSection(self, section): # TODO request the global singleton? # how to make this class static Edk2LogFilter._allowedLoggers.append(section) def filter(self, record): # check to make sure we haven't already filtered this record if record.name not in Edk2LogFilter._allowedLoggers and record.levelno < logging.WARNING and not self._verbose: return False return True ``` #### File: environment/plugintypes/dsc_processor_plugin.py ```python class IDscProcessorPlugin(object): ## # does the transform on the DSC # # @param dsc - the in-memory model of the DSC # @param thebuilder - UefiBuild object to get env information # # @return 0 for success NonZero for error. ## def do_transform(self, dsc, thebuilder): return 0 ## # gets the level that this transform operates at # # @param thebuilder - UefiBuild object to get env information # # @return 0 for the most generic level ## def get_level(self, thebuilder): return 0 ``` #### File: edk2toolext/tests/test_version_aggregator.py ```python import unittest from edk2toolext.environment import version_aggregator class TestVersionAggregator(unittest.TestCase): def setUp(self): version_aggregator.ResetVersionAggregator() pass def tearDown(self): pass @classmethod def setUpClass(cls): pass @classmethod def tearDownClass(cls): pass def test_Singelton(self): version1 = version_aggregator.GetVersionAggregator() version2 = version_aggregator.GetVersionAggregator() self.assertEqual(version1, version2) self.assertIsNotNone(version1) version3 = version_aggregator.version_aggregator() version4 = version_aggregator.version_aggregator() self.assertNotEqual(version3, version4) def test_ReportVersions(self): version1 = version_aggregator.version_aggregator() version1.ReportVersion("test", "test", version_aggregator.VersionTypes.TOOL) self.assertEqual(len(version1.GetAggregatedVersionInformation()), 1) pass def test_ReportVersions_collision(self): version1 = version_aggregator.version_aggregator() version1.ReportVersion("test", "test", version_aggregator.VersionTypes.TOOL) # if keys don't collide we are good version1.ReportVersion("test2", "test", version_aggregator.VersionTypes.COMMIT) version1.ReportVersion("test3", "test", version_aggregator.VersionTypes.BINARY) version1.ReportVersion("test4", "test", version_aggregator.VersionTypes.INFO) # we're good to report the same thing twice as long as it matches version1.ReportVersion("test", "test", version_aggregator.VersionTypes.TOOL) with self.assertRaises(ValueError): version1.ReportVersion("test", "test2", version_aggregator.VersionTypes.INFO) def test_GetInformation(self): version1 = version_aggregator.version_aggregator() test_ver = ["I think", "I exist"] version1.ReportVersion("I think", "therefore", version_aggregator.VersionTypes.INFO) version1.ReportVersion("I exist", "proof", version_aggregator.VersionTypes.INFO) test2_ver = list(version1.GetAggregatedVersionInformation().keys()) self.assertListEqual(test_ver, test2_ver) version1.ReportVersion("test", "test", version_aggregator.VersionTypes.TOOL) self.assertEqual(len(test2_ver), 2) test2_ver = list(version1.GetAggregatedVersionInformation().keys()) self.assertEqual(len(test2_ver), 3) def test_reset(self): version1 = version_aggregator.version_aggregator() version1.ReportVersion("test", "I exist", version_aggregator.VersionTypes.INFO) self.assertEqual(len(version1.GetAggregatedVersionInformation()), 1) version1.Reset() self.assertEqual(len(version1.GetAggregatedVersionInformation()), 0) def test_global_reset(self): version1 = version_aggregator.version_aggregator() version1.ReportVersion("test", "I exist", version_aggregator.VersionTypes.INFO) self.assertEqual(len(version1.GetAggregatedVersionInformation()), 1) version1 = version_aggregator.version_aggregator() version_aggregator.ResetVersionAggregator() self.assertEqual(len(version1.GetAggregatedVersionInformation()), 0) if __name__ == '__main__': unittest.main() ```
{ "source": "joschock/edk2-pytool-library", "score": 2 }
#### File: edk2/parsers/dec_parser_test.py ```python import unittest import uuid import io from edk2toollib.uefi.edk2.parsers.dec_parser import LibraryClassDeclarationEntry from edk2toollib.uefi.edk2.parsers.dec_parser import GuidDeclarationEntry from edk2toollib.uefi.edk2.parsers.dec_parser import PpiDeclarationEntry from edk2toollib.uefi.edk2.parsers.dec_parser import ProtocolDeclarationEntry from edk2toollib.uefi.edk2.parsers.dec_parser import PcdDeclarationEntry from edk2toollib.uefi.edk2.parsers.dec_parser import DecParser class TestGuidDeclarationEntry(unittest.TestCase): def test_valid_input_guid(self): SAMPLE_DATA_GUID_DECL = '''gTestGuid = { 0x66341ae8, 0x668f, 0x4192, { 0xb4, 0x4d, 0x5f, 0x87, 0xb8, 0x68, 0xf0, 0x41 }}''' # noqa: E501 SAMPLE_DATA_GUID_STRING_REG_FORMAT = "{66341ae8-668f-4192-b44d-5f87b868f041}" a = GuidDeclarationEntry("TestPkg", SAMPLE_DATA_GUID_DECL) con = uuid.UUID(SAMPLE_DATA_GUID_STRING_REG_FORMAT) self.assertEqual(str(con), str(a.guid)) self.assertEqual(a.name, "gTestGuid") self.assertEqual(a.package_name, "TestPkg") def test_valid_input_leading_zero_removed(self): SAMPLE_DATA_GUID_DECL = '''gTestGuid = { 0x6341ae8, 0x68f, 0x192, { 0x4, 0xd, 0xf, 0x7, 0x8, 0x8, 0x0, 0x1 }}''' # noqa: E501 SAMPLE_DATA_GUID_STRING_REG_FORMAT = "{06341ae8-068f-0192-040d-0f0708080001}" a = GuidDeclarationEntry("testpkg", SAMPLE_DATA_GUID_DECL) con = uuid.UUID(SAMPLE_DATA_GUID_STRING_REG_FORMAT) self.assertEqual(str(con), str(a.guid)) def test_invalid_guid_format(self): SAMPLE_DATA_GUID_DECL = '''gTestGuid = 0x6341ae8, 0x668f, 0x4192, 0xb4, 0x4d, 0x5f, 0x87, 0xb8, 0x68, 0xf0, 0x41''' # noqa: E501 with self.assertRaises(ValueError): GuidDeclarationEntry("testpkg", SAMPLE_DATA_GUID_DECL) class TestPpiDeclarationEntry(unittest.TestCase): def test_valid_input_guid(self): SAMPLE_DATA_PPI_DECL = """gTestPpiGuid = {0xa66cd455, 0xc078, 0x4753, {0xbe, 0x93, 0xdd, 0x58, 0xb2, 0xaf, 0xe9, 0xc4}}""" # noqa: E501 SAMPLE_DATA_PPI_STRING_REG_FORMAT = "{a66cd455-c078-4753-be93-dd58b2afe9c4}" a = PpiDeclarationEntry("testpkg", SAMPLE_DATA_PPI_DECL) con = uuid.UUID(SAMPLE_DATA_PPI_STRING_REG_FORMAT) self.assertEqual(str(con), str(a.guid)) self.assertEqual(a.name, "gTestPpiGuid") self.assertEqual(a.package_name, "testpkg") class TestProtocolDeclarationEntry(unittest.TestCase): def test_valid_input_guid(self): SAMPLE_DATA_PROTOCOL_DECL = """gTestProtocolGuid = {0xb6d12b5a, 0x5338, 0x44ac, {0xac, 0x31, 0x1e, 0x9f, 0xa8, 0xc7, 0xe0, 0x1e}}""" # noqa: E501 SAMPLE_DATA_PROTOCOL_GUID_REG_FORMAT = "{b6d12b5a-5338-44ac-ac31-1e9fa8c7e01e}" a = ProtocolDeclarationEntry("testpkg", SAMPLE_DATA_PROTOCOL_DECL) con = uuid.UUID(SAMPLE_DATA_PROTOCOL_GUID_REG_FORMAT) self.assertEqual(str(con), str(a.guid)) self.assertEqual(a.name, "gTestProtocolGuid") self.assertEqual(a.package_name, "testpkg") class TestLibraryClassDeclarationEntry(unittest.TestCase): def test_valid_input(self): SAMPLE_DATA_DECL = """BmpSupportLib|Include/Library/BmpSupportLib.h""" a = LibraryClassDeclarationEntry("testpkg", SAMPLE_DATA_DECL) self.assertEqual(a.path, "Include/Library/BmpSupportLib.h") self.assertEqual(a.name, "BmpSupportLib") class TestPcdDeclarationEntry(unittest.TestCase): def test_valid_input(self): SAMPLE_DATA_DECL = """gEfiMdeModulePkgTokenSpaceGuid.PcdSupportUpdateCapsuleReset|FALSE|BOOLEAN|0x0001001d""" a = PcdDeclarationEntry("testpkg", SAMPLE_DATA_DECL) self.assertEqual(a.token_space_name, "gEfiMdeModulePkgTokenSpaceGuid") self.assertEqual(a.name, "PcdSupportUpdateCapsuleReset") self.assertEqual(a.default_value, "FALSE") self.assertEqual(a.type, "BOOLEAN") self.assertEqual(a.id, "0x0001001d") def test_invalid_input_no_tokenspace(self): SAMPLE_DATA_DECL = """garbage|FALSE|BOOLEAN|0x0001001d""" with self.assertRaises(Exception): PcdDeclarationEntry("testpkg", SAMPLE_DATA_DECL) def test_invalid_input_too_many_fields(self): SAMPLE_DATA_DECL = """garbage.garbageNAME|FALSE|BOOLEAN|0x0001001d|morestuff|questions|this|should|fail""" with self.assertRaises(Exception): PcdDeclarationEntry("testpkg", SAMPLE_DATA_DECL) class TestDecParser(unittest.TestCase): SAMPLE_DEC_FILE = \ """## @file TestDecFile ## [Defines] DEC_SPECIFICATION = 0x00010005 PACKAGE_NAME = TestDecParserPkg PACKAGE_UNI_FILE = TestDecParserPkg.uni PACKAGE_GUID = 57e8a49e-1b3f-41a0-a552-55ad831c15a8 PACKAGE_VERSION = 0.1 [Includes] Include [LibraryClasses] ## @libraryclass Provide comment for fakelib # FakeLib|Include/Library/FakeLib.h [Guids] gFakeTokenSpace = {0x7c004f69, 0xd730, 0x4904, {0x83, 0xe1, 0x4b, 0xbf, 0x39, 0x3a, 0xfc, 0xb1}} gFake2TokenSpace = {<KEY>, 0xd730, 0x4904, {0x83, 0xe1, 0x4b, 0xbf, 0x39, 0x3a, 0xfc, 0xb2}} gFakeT3okenSpace = {0x7c004f69, 0xd730, 0x4904, {0x83, 0xe1, 0x4b, 0xbf, 0x39, 0x3a, 0xfc, 0xb3}} # # [Error.gPcAtChipsetPkgTokenSpaceGuid] # 0x80000001 | Invalid value provided. # [Protocols] ## None gFakeProtocol = {0xe63e2ccd, 0x786e, 0x4754, {0x96, 0xf8, 0x5e, 0x88, 0xa3, 0xf0, 0xaf, 0x85}} [Ppis] gFakePpi = {0xeeef868e, 0x5bf5, 0x4e48, {0x92, 0xa1, 0xd7, 0x6e, 0x02, 0xe5, 0xb9, 0xa7}} gFake2Ppi = {0xeeef868e, 0x5bf5, 0x4e48, {0x92, 0xa1, 0xd7, 0x6e, 0x02, 0xe5, 0xb9, 0xa8}} ## Copied PCDs from PcAtChipsetPkg for testing [PcdsFeatureFlag] ## Indicates the HPET Timer will be configured to use MSI interrupts if the HPET # TRUE - Configures the HPET Timer to use MSI interrupts if the HPET Timer supports them.<BR> # FALSE - Configures the HPET Timer to use I/O APIC interrupts.<BR> # @Prompt Configure HPET to use MSI. gPcAtChipsetPkgTokenSpaceGuid.PcdHpetMsiEnable|TRUE|BOOLEAN|0x00001000 [PcdsFixedAtBuild, PcdsDynamic, PcdsDynamicEx, PcdsPatchableInModule] ## Pcd8259LegacyModeMask defines the default mask value for platform. This value is determined<BR><BR> # 1) If platform only support pure UEFI, value should be set to 0xFFFF or 0xFFFE; # Because only clock interrupt is allowed in legacy mode in pure UEFI platform.<BR> # 2) If platform install CSM and use thunk module:<BR> # a) If thunk call provided by CSM binary requires some legacy interrupt support, the corresponding bit # should be opened as 0.<BR> # For example, if keyboard interfaces provided CSM binary use legacy keyboard interrupt in 8259 bit 1, then # the value should be set to 0xFFFC.<BR> # b) If all thunk call provied by CSM binary do not require legacy interrupt support, value should be set # to 0xFFFF or 0xFFFE.<BR> # # The default value of legacy mode mask could be changed by EFI_LEGACY_8259_PROTOCOL->SetMask(). But it is rarely # need change it except some special cases such as when initializing the CSM bin gPcAtChipsetPkgTokenSpaceGuid.Pcd8259LegacyModeMask|0xFFFF|UINT16|0x00000001 ## Pcd8259LegacyModeEdgeLevel defines the default edge level for legacy mode's interrupt controller. # For the corresponding bits, 0 = Edge triggered and 1 = Level triggered. # @Prompt 8259 Legacy Mode edge level. gPcAtChipsetPkgTokenSpaceGuid.Pcd8259LegacyModeEdgeLevel|0x0000|UINT16|0x00000002 ## Indicates if we need enable IsaAcpiCom1 device.<BR><BR> # TRUE - Enables IsaAcpiCom1 device.<BR> # FALSE - Doesn't enable IsaAcpiCom1 device.<BR> # @Prompt Enable IsaAcpiCom1 device. gPcAtChipsetPkgTokenSpaceGuid.PcdIsaAcpiCom1Enable|TRUE|BOOLEAN|0x00000003 ## Indicates if we need enable IsaAcpiCom2 device.<BR><BR> # TRUE - Enables IsaAcpiCom2 device.<BR> # FALSE - Doesn't enable IsaAcpiCom2 device.<BR> # @Prompt Enable IsaAcpiCom12 device. gPcAtChipsetPkgTokenSpaceGuid.PcdIsaAcpiCom2Enable|TRUE|BOOLEAN|0x00000004 ## Indicates if we need enable IsaAcpiPs2Keyboard device.<BR><BR> # TRUE - Enables IsaAcpiPs2Keyboard device.<BR> # FALSE - Doesn't enable IsaAcpiPs2Keyboard device.<BR> # @Prompt Enable IsaAcpiPs2Keyboard device. gPcAtChipsetPkgTokenSpaceGuid.PcdIsaAcpiPs2KeyboardEnable|TRUE|BOOLEAN|0x00000005 ## Indicates if we need enable IsaAcpiPs2Mouse device.<BR><BR> # TRUE - Enables IsaAcpiPs2Mouse device.<BR> # FALSE - Doesn't enable IsaAcpiPs2Mouse device.<BR> # @Prompt Enable IsaAcpiPs2Mouse device. gPcAtChipsetPkgTokenSpaceGuid.PcdIsaAcpiPs2MouseEnable|TRUE|BOOLEAN|0x00000006 ## Indicates if we need enable IsaAcpiFloppyA device.<BR><BR> # TRUE - Enables IsaAcpiFloppyA device.<BR> # FALSE - Doesn't enable IsaAcpiFloppyA device.<BR> # @Prompt Enable IsaAcpiFloppyA device. gPcAtChipsetPkgTokenSpaceGuid.PcdIsaAcpiFloppyAEnable|TRUE|BOOLEAN|0x00000007 ## Indicates if we need enable IsaAcpiFloppyB device.<BR><BR> # TRUE - Enables IsaAcpiFloppyB device.<BR> # FALSE - Doesn't enable IsaAcpiFloppyB device.<BR> # @Prompt Enable IsaAcpiFloppyB device. gPcAtChipsetPkgTokenSpaceGuid.PcdIsaAcpiFloppyBEnable|TRUE|BOOLEAN|0x00000008 ## This PCD specifies the base address of the HPET timer. # @Prompt HPET base address. gPcAtChipsetPkgTokenSpaceGuid.PcdHpetBaseAddress|0xFED00000|UINT32|0x00000009 ## This PCD specifies the Local APIC Interrupt Vector for the HPET Timer. # @Prompt HPET local APIC vector. gPcAtChipsetPkgTokenSpaceGuid.PcdHpetLocalApicVector|0x40|UINT8|0x0000000A ## This PCD specifies the defaut period of the HPET Timer in 100 ns units. # The default value of 100000 100 ns units is the same as 10 ms. # @Prompt Default period of HPET timer. gPcAtChipsetPkgTokenSpaceGuid.PcdHpetDefaultTimerPeriod|100000|UINT64|0x0000000B ## This PCD specifies the base address of the IO APIC. # @Prompt IO APIC base address. gPcAtChipsetPkgTokenSpaceGuid.PcdIoApicBaseAddress|0xFEC00000|UINT32|0x0000000C ## This PCD specifies the minimal valid year in RTC. # @Prompt Minimal valid year in RTC. gPcAtChipsetPkgTokenSpaceGuid.PcdMinimalValidYear|1998|UINT16|0x0000000D ## This PCD specifies the maximal valid year in RTC. # @Prompt Maximal valid year in RTC. # @Expression 0x80000001 | gPcAtChipsetPkgTokenSpaceGuid.PcdMaximalValidYear gPcAtChipsetPkgTokenSpaceGuid.PcdMaximalValidYear|2097|UINT16|0x0000000E [PcdsFixedAtBuild, PcdsPatchableInModule] ## Defines the ACPI register set base address. # The invalid 0xFFFF is as its default value. It must be configured to the real value. # @Prompt ACPI Timer IO Port Address gPcAtChipsetPkgTokenSpaceGuid.PcdAcpiIoPortBaseAddress |0xFFFF|UINT16|0x00000010 ## Defines the PCI Bus Number of the PCI device that contains the BAR and Enable for ACPI hardware registers. # @Prompt ACPI Hardware PCI Bus Number gPcAtChipsetPkgTokenSpaceGuid.PcdAcpiIoPciBusNumber | 0x00| UINT8|0x00000011 ## Defines the PCI Device Number of the PCI device that contains the BAR and Enable for ACPI hardware registers. # The invalid 0xFF is as its default value. It must be configured to the real value. # @Prompt ACPI Hardware PCI Device Number gPcAtChipsetPkgTokenSpaceGuid.PcdAcpiIoPciDeviceNumber | 0xFF| UINT8|0x00000012 ## Defines the PCI Function Number of the PCI device that contains the BAR and Enable for ACPI hardware registers. # The invalid 0xFF is as its default value. It must be configured to the real value. # @Prompt ACPI Hardware PCI Function Number gPcAtChipsetPkgTokenSpaceGuid.PcdAcpiIoPciFunctionNumber | 0xFF| UINT8|0x00000013 ## Defines the PCI Register Offset of the PCI device that contains the Enable for ACPI hardware registers. # The invalid 0xFFFF is as its default value. It must be configured to the real value. # @Prompt ACPI Hardware PCI Register Offset gPcAtChipsetPkgTokenSpaceGuid.PcdAcpiIoPciEnableRegisterOffset |0xFFFF|UINT16|0x00000014 ## Defines the bit mask that must be set to enable the APIC hardware register BAR. # @Prompt ACPI Hardware PCI Bar Enable BitMask gPcAtChipsetPkgTokenSpaceGuid.PcdAcpiIoBarEnableMask | 0x00| UINT8|0x00000015 ## Defines the PCI Register Offset of the PCI device that contains the BAR for ACPI hardware registers. # The invalid 0xFFFF is as its default value. It must be configured to the real value. # @Prompt ACPI Hardware PCI Bar Register Offset gPcAtChipsetPkgTokenSpaceGuid.PcdAcpiIoPciBarRegisterOffset |0xFFFF|UINT16|0x00000016 ## Defines the offset to the 32-bit Timer Value register that resides within the ACPI BAR. # @Prompt Offset to 32-bit Timer register in ACPI BAR gPcAtChipsetPkgTokenSpaceGuid.PcdAcpiPm1TmrOffset |0x0008|UINT16|0x00000017 ## Defines the bit mask to retrieve ACPI IO Port Base Address # @Prompt ACPI IO Port Base Address Mask gPcAtChipsetPkgTokenSpaceGuid.PcdAcpiIoPortBaseAddressMask |0xFFFE|UINT16|0x00000018 ## Reset Control Register address in I/O space. # @Prompt Reset Control Register address gPcAtChipsetPkgTokenSpaceGuid.PcdResetControlRegister|0x64|UINT64|0x00000019 ## 8bit Reset Control Register value for cold reset. # @Prompt Reset Control Register value for cold reset gPcAtChipsetPkgTokenSpaceGuid.PcdResetControlValueColdReset|0xFE|UINT8|0x0000001A ## Specifies the initial value for Register_A in RTC. # @Prompt Initial value for Register_A in RTC. gPcAtChipsetPkgTokenSpaceGuid.PcdInitialValueRtcRegisterA|0x26|UINT8|0x0000001B ## Specifies the initial value for Register_B in RTC. # @Prompt Initial value for Register_B in RTC. gPcAtChipsetPkgTokenSpaceGuid.PcdInitialValueRtcRegisterB|0x02|UINT8|0x0000001C ## Specifies the initial value for Register_D in RTC. # @Prompt Initial value for Register_D in RTC. gPcAtChipsetPkgTokenSpaceGuid.PcdInitialValueRtcRegisterD|0x00|UINT8|0x0000001D ## Specifies RTC Index Register address in I/O space. # @Prompt RTC Index Register address gPcAtChipsetPkgTokenSpaceGuid.PcdRtcIndexRegister|0x70|UINT8|0x0000001E ## Specifies RTC Target Register address in I/O space. # @Prompt RTC Target Register address gPcAtChipsetPkgTokenSpaceGuid.PcdRtcTargetRegister|0x71|UINT8|0x0000001F [PcdsFixedAtBuild] ## Defines the UART base address. # @Prompt UART IO Port Base Address gPcAtChipsetPkgTokenSpaceGuid.PcdUartIoPortBaseAddress |0x3F8|UINT16|0x00000020 ## MS_CHANGE [UserExtensions.TianoCore."ExtraFiles"] PcAtChipsetPkgExtra.uni """ def test_valid_input(self): a = DecParser() st = io.StringIO(TestDecParser.SAMPLE_DEC_FILE) a.ParseStream(st) self.assertEqual(a.Dict["PACKAGE_NAME"], "TestDecParserPkg") self.assertEqual(a.Dict["PACKAGE_GUID"], "57e8a49e-1b3f-41a0-a552-55ad831c15a8") self.assertEqual(len(a.Guids), 3) self.assertEqual(len(a.Protocols), 1) self.assertEqual(len(a.PPIs), 2) ```
{ "source": "joschock/mu_basecore", "score": 2 }
#### File: Plugin/CharEncodingCheck/CharEncodingCheck.py ```python import os import logging from MuEnvironment.PluginManager import IMuBuildPlugin ## # map EcodingMap = { ".md": 'utf-8', ".dsc": 'utf-8', ".dec": 'utf-8', ".c": 'utf-8', ".h": 'utf-8', ".asm": 'utf-8', ".masm": 'utf-8', ".nasm": 'utf-8', ".s": 'utf-8', ".inf": 'utf-8', ".asl": 'utf-8', ".uni": 'utf-8', ".py": 'utf-8' } class CharEncodingCheck(IMuBuildPlugin): def GetTestName(self, packagename, environment): return ("MuBuild CharEncodingCheck " + packagename, "MuBuild.CharEncodingCheck." + packagename) # - package is the edk2 path to package. This means workspace/packagepath relative. # - edk2path object configured with workspace and packages path # - any additional command line args # - RepoConfig Object (dict) for the build # - PkgConfig Object (dict) for the pkg # - EnvConfig Object # - Plugin Manager Instance # - Plugin Helper Obj Instance # - testcalass Object used for outputing junit results # - output_stream the StringIO output stream from this plugin def RunBuildPlugin(self, packagename, Edk2pathObj, args, repoconfig, pkgconfig, environment, PLM, PLMHelper, tc, output_stream = None): overall_status = 0 files_tested = 0 abs_pkg_path = Edk2pathObj.GetAbsolutePathOnThisSytemFromEdk2RelativePath(packagename) if abs_pkg_path is None: tc.SetSkipped() tc.LogStdError("No Package folder {0}".format(abs_pkg_path)) return 0 for (ext, enc) in EcodingMap.items(): files = self.WalkDirectoryForExtension([ext], abs_pkg_path) files = [Edk2pathObj.GetEdk2RelativePathFromAbsolutePath(x) for x in files] # make edk2relative path so can process ignores if "IgnoreFiles" in pkgconfig: for a in pkgconfig["IgnoreFiles"]: a = a.lower().replace(os.sep, "/") try: tc.LogStdOut("Ignoring File {0}".format(a)) files.remove(a) except: tc.LogStdError("CharEncodingCheck.IgnoreInf -> {0} not found in filesystem. Invalid ignore file".format(a)) logging.info("CharEncodingCheck.IgnoreInf -> {0} not found in filesystem. Invalid ignore file".format(a)) files = [Edk2pathObj.GetAbsolutePathOnThisSytemFromEdk2RelativePath(x) for x in files] for a in files: files_tested += 1 if(self.TestEncodingOk(a, enc)): logging.debug("File {0} Passed Encoding Check {1}".format(a, enc)) else: tc.LogStdError("Encoding Failure in {0}. Not {1}".format(a, enc)) overall_status += 1 tc.LogStdOut("Tested Encoding on {0} files".format(files_tested)) if overall_status is not 0: tc.SetFailed("CharEncoding {0} Failed. Errors {1}".format(packagename, overall_status), "CHAR_ENCODING_CHECK_FAILED") else: tc.SetSuccess() return overall_status def TestEncodingOk(self, apath, encodingValue): try: with open(apath, "rb") as fobj: fobj.read().decode(encodingValue) except Exception as exp: logging.error("Encoding failure: file: {0} type: {1}".format(apath, encodingValue)) logging.debug("EXCEPTION: while processing {1} - {0}".format(exp, apath)) return False return True def ValidateConfig(self, config, name): validOptions = ["IgnoreFiles", "skip"] for key in config: if key not in validOptions: raise Exception("Invalid config option {0} in {1}".format(key, name)) ```
{ "source": "joschock/mu_plus", "score": 2 }
#### File: PagingAudit/Windows/PagingReportGenerator.py ```python import logging import operator import glob import json import datetime import os import sys import argparse #Add script dir to path for import sp = os.path.dirname(os.path.realpath(sys.argv[0])) sys.path.append(sp) from MemoryRangeObjects import * from BinaryParsing import * VERSION = "0.80" class ParsingTool(object): def __init__(self, DatFolderPath, PlatformName, PlatformVersion, Type): self.Logger = logging.getLogger("ParsingTool") self.MemoryAttributesTable = [] self.MemoryRangeInfo = [] self.PageDirectoryInfo = [] self.DatFolderPath = DatFolderPath self.ErrorMsg = [] self.PlatformName = PlatformName self.PlatformVersion = PlatformVersion self.Type = Type def Parse(self): #Get Info Files InfoFileList = glob.glob(os.path.join(self.DatFolderPath, "*MemoryInfo*.dat")) Pte1gbFileList = glob.glob(os.path.join(self.DatFolderPath, "*1G*.dat")) Pte2mbFileList = glob.glob(os.path.join(self.DatFolderPath, "*2M*.dat")) Pte4kbFileList = glob.glob(os.path.join(self.DatFolderPath, "*4K*.dat")) MatFileList = glob.glob(os.path.join(self.DatFolderPath, "*MAT*.dat")) GuardPageFileList = glob.glob(os.path.join(self.DatFolderPath, "*GuardPage*.dat")) logging.debug("Found %d Info Files" % len(InfoFileList)) logging.debug("Found %d 1gb Page Files" % len(Pte1gbFileList)) logging.debug("Found %d 2mb Page Files" % len(Pte2mbFileList)) logging.debug("Found %d 4kb Page Files" % len(Pte4kbFileList)) logging.debug("Found %d MAT Files" % len(MatFileList)) logging.debug("Found %d GuardPage Files" % len(GuardPageFileList)) # Parse each file, keeping PTEs and "Memory Ranges" seperate # Memory ranges are either "memory descriptions" for memory map types and TSEG # or "memory contents" for loaded image information or IDT/GDT for info in InfoFileList: self.MemoryRangeInfo.extend(ParseInfoFile(info)) for pte1g in Pte1gbFileList: self.PageDirectoryInfo.extend(Parse1gPages(pte1g)) for pte2m in Pte2mbFileList: self.PageDirectoryInfo.extend(Parse2mPages(pte2m)) for pte4k in Pte4kbFileList: self.PageDirectoryInfo.extend(Parse4kPages(pte4k)) for guardpage in GuardPageFileList: self.PageDirectoryInfo.extend(ParseInfoFile(guardpage)) for mat in MatFileList: self.MemoryAttributesTable.extend(ParseInfoFile(mat)) if len(self.PageDirectoryInfo) == 0: self.ErrorMsg.append("No Memory Range info found in PTE files") else: # Sort in descending order self.PageDirectoryInfo.sort(key=operator.attrgetter('PhysicalStart')) #check for Page Table Overlap - this is an error index =0 maxindex = len(self.PageDirectoryInfo) -1 while index < maxindex: #this will allow all comparisions to work if(self.PageDirectoryInfo[index].overlap(self.PageDirectoryInfo[index+1])): self.ErrorMsg.append("Page Table Entry Overlap. Index %d Overlapping %d at StartAddress 0x%X" % (index, index+1, self.PageDirectoryInfo[index].PhysicalStart)) logging.error("PTE overlap index %d and %d. Base Address = 0x%x", index, index+1, self.PageDirectoryInfo[index].PhysicalStart) index += 1 if len(self.MemoryRangeInfo) == 0: self.ErrorMsg.append("No Memory Range info found in Info files") # Matching memory ranges up to page table entries for pte in self.PageDirectoryInfo: for mr in self.MemoryRangeInfo: if pte.overlap(mr): if mr.MemoryType is not None: if (pte.PhysicalEnd > mr.PhysicalEnd) or (pte.PhysicalStart < mr.PhysicalStart): logging.error("Memory range attribute does not cover entire page " + pte.pteDebugStr() +" " + mr.MemoryRangeToString()) self.ErrorMsg.append("Memory range attribute does not cover entire page. Base: 0x%X. "% (pte.PhysicalStart)) if pte.MemoryType is None: pte.MemoryType = mr.MemoryType else: logging.error("Multiple memory types found for one region " + pte.pteDebugStr() +" " + mr.MemoryRangeToString()) self.ErrorMsg.append("Multiple memory types found for one region. Base: 0x%X. EFI Memory Type: %d and %d"% (pte.PhysicalStart, pte.MemoryType,mr.MemoryType)) if mr.ImageName is not None: if pte.ImageName is None: pte.ImageName = mr.ImageName else: self.ErrorMsg.append("Multiple memory contents found for one region. Base: 0x%X. Memory Contents: %s and %s" % (pte.PhysicalStart, pte.ImageName, mr.ImageName )) logging.error("Multiple memory contents found for one region " +pte.pteDebugStr() + " " + mr.LoadedImageEntryToString()) if(mr.SystemMemoryType is not None): if(pte.SystemMemoryType is None): pte.SystemMemoryType = mr.SystemMemoryType else: self.ErrorMsg.append("Multiple System Memory types found for one region. Base: 0x%X. EFI Memory Type: %s and %s."% (pte.PhysicalStart,pte.SystemMemoryType, mr.SystemMemoryType)) logging.error("Multiple system memory types found for one region " +pte.pteDebugStr() + " " + mr.LoadedImageEntryToString()) for MatEntry in self.MemoryAttributesTable: if pte.overlap(MatEntry): pte.Attribute = MatEntry.Attribute # Combining adjacent PTEs that have the same attributes. index = 0 while index < (len(self.PageDirectoryInfo) - 1): currentPte = self.PageDirectoryInfo[index] nextPte = self.PageDirectoryInfo[index + 1] if currentPte.sameAttributes(nextPte): currentPte.grow(nextPte) del self.PageDirectoryInfo[index + 1] else: index += 1 return 0 def AddErrorMsg(self, msg): self.ErrorMsg.append(msg) def OutputHtmlReport(self, ToolVersion, OutputFilePath): # Create the dictionary to produce a JSON string. json_dict = { 'ToolVersion': ToolVersion, 'PlatformVersion': self.PlatformVersion, 'PlatformName': self.PlatformName, 'DateCollected': datetime.datetime.strftime(datetime.datetime.now(), "%A, %B %d, %Y %I:%M%p" ), } # Process all of the Page Infos and add them to the JSON. pde_infos = [] for pde in self.PageDirectoryInfo: info_dict = pde.toDictionary() # Check for errors. if info_dict['Section Type'] == "ERROR": self.AddErrorMsg("Page Descriptor at %s has an error parsing the Section Type." % info_dict['Start']) pde_infos.append(info_dict) json_dict['MemoryRanges'] = pde_infos # Finally, add any errors and produce the JSON string. json_dict['errors'] = self.ErrorMsg js = json.dumps(json_dict) # # Open template and replace placeholder with json # f = open(OutputFilePath, "w") if self.Type == 'DXE': template = open(os.path.join(sp, "DxePaging_template.html"), "r") else: template = open(os.path.join(sp, "SmmPaging_template.html"), "r") for line in template.readlines(): if "%TO_BE_FILLED_IN_BY_PYTHON_SCRIPT%" in line: line = line.replace("%TO_BE_FILLED_IN_BY_PYTHON_SCRIPT%", js) f.write(line) template.close() f.close() return 0 # # Parse and Validate Args. Then run the tool # def main(): parser = argparse.ArgumentParser(description='Parse Paging information and generate HTML report') parser.add_argument('-i', "--InputFolderPath", dest="InputFolder", help="Path to folder containing the DAT files from the UEFI shell tool (default is CWD)", default=os.getcwd()) parser.add_argument('-o', "--OutputReport", dest="OutputReport", help="Path to output html report (default is report.html)", default=os.path.join(os.getcwd(), "report.html")) parser.add_argument('-p', "--PlatformName", dest="PlatformName", help="Name of Platform. Will show up on report", default="Test Platform") parser.add_argument('-t', "--type", choices=['SMM', 'DXE'], dest="Type", help="SMM or DXE Paging Report", required=True) parser.add_argument("--PlatformVersion", dest="PlatformVersion", help="Version of Platform. Will show up report", default="1.0.0") #Turn on dubug level logging parser.add_argument("--debug", action="store_true", dest="debug", help="turn on debug logging level for file log", default=False) #Output debug log parser.add_argument("-l", dest="OutputLog", help="Create an output log file: ie -l out.txt", default=None) options = parser.parse_args() #setup file based logging if outputReport specified if(options.OutputLog): if(len(options.OutputLog) < 2): logging.critical("the output log file parameter is invalid") return -2 else: #setup file based logging filelogger = logging.FileHandler(filename=options.OutputLog, mode='w') if(options.debug): filelogger.setLevel(logging.DEBUG) else: filelogger.setLevel(logging.INFO) filelogger.setFormatter(formatter) logging.getLogger('').addHandler(filelogger) logging.info("Log Started: " + datetime.datetime.strftime(datetime.datetime.now(), "%A, %B %d, %Y %I:%M%p" )) #Do parameter validation if(options.InputFolder is None or not os.path.isdir(options.InputFolder)): logging.critical("Invalid Input Folder Path to folder containing DAT files") return -5 if(options.OutputReport is None): logging.critical("No OutputReport Path") return -6 logging.debug("Input Folder Path is: %s" % options.InputFolder) logging.debug("Output Report is: %s" % options.OutputReport) spt = ParsingTool(options.InputFolder, options.PlatformName, options.PlatformVersion, options.Type) spt.Parse() return spt.OutputHtmlReport(VERSION, options.OutputReport) #-------------------------------- # Control starts here # #-------------------------------- if __name__ == '__main__': #setup main console as logger logger = logging.getLogger('') logger.setLevel(logging.DEBUG) formatter = logging.Formatter("%(levelname)s - %(message)s") console = logging.StreamHandler() console.setLevel(logging.CRITICAL) console.setFormatter(formatter) logger.addHandler(console) #call main worker function retcode = main() if retcode != 0: logging.critical("Failed. Return Code: %i" % retcode) #end logging logging.shutdown() sys.exit(retcode) ```
{ "source": "joschout/Multi-Directional-Rule-Set-Learning", "score": 3 }
#### File: experiments/dask_utils/dask_initialization.py ```python from typing import List from dask.distributed import Client, SSHCluster scheduler_host_name = 'scheduler_host_name' worker_hosts = [ 'worker1', 'worker2' ] def initialize_client_for_ssh_cluster( scheduler_host: str, worker_hosts: List[str] ) -> Client: ssh_hosts = [scheduler_host, *worker_hosts] try: cluster = SSHCluster( hosts=ssh_hosts, connect_options={"known_hosts": None}, worker_options={"nthreads": 1}, # scheduler_options={"port": 0, "dashboard_address": ":8787"} ) client = Client(cluster) except (KeyError, OSError): scheduler_address = f'{scheduler_host}:8786' client = Client(address=scheduler_address) return client def reconnect_client_to_ssh_cluster(scheduler_host: str) -> Client: scheduler_address = f'{scheduler_host}:8786' client = Client(address=scheduler_address) return client ``` #### File: e1_st_association_vs_tree_rules/model_evaluation/evaluate_single_target_mids_model.py ```python from typing import List, Dict import pandas as pd from experiments.utils.experiment_logging import create_logger, close_logger from experiments.arcbench_data_preparation.reworked_one_hot_encoding import get_original_data_fold_abs_file_name, \ TrainTestEnum from mdrsl.rule_models.mids.io_mids import ( store_mids_interpret_stats, store_mids_target_attr_to_score_info, load_mids_classifier) from mdrsl.evaluation.predictive_performance_metrics import ScoreInfo from mdrsl.rule_models.mids.model_evaluation.mids_interpretability_metrics import MIDSInterpretabilityStatistics, \ MIDSInterpretabilityStatisticsCalculator from mdrsl.rule_models.mids.mids_classifier import MIDSClassifier from mdrsl.rule_models.mids.mids_ruleset import MIDSRuleSet from mdrsl.rule_models.mids.model_evaluation.scoring_mids import score_MIDS_on_its_targets_without_nans from mdrsl.rule_models.mids.model_fitting.mids_with_value_reuse import MIDSValueReuse TargetAttr = str def evaluate_single_target_mids_model_for_dataset_fold( dataset_name: str, fold_i: int, logger_name: str, logger_file_name: str, mids_classifier_abs_file_name: str, mids_target_attr_to_score_info_abs_file_name: str, mids_interpret_stats_abs_file_name: str ): logger = create_logger( logger_name=logger_name, log_file_name=logger_file_name ) # --- load test data ---------------------------------------------------------------------------------------------- # read in original (discretized) training data original_test_data_fold_abs_file_name = get_original_data_fold_abs_file_name(dataset_name, fold_i, TrainTestEnum.test) df_test_original_column_order = pd.read_csv(original_test_data_fold_abs_file_name, delimiter=',') # --- load classifier --------------------------------------------------------------------------------------------- # mids_classifier_abs_file_name = get_mids_clf_abs_file_name(dataset_name, fold_i) logger.info(f"start loading MIDS model from {mids_classifier_abs_file_name}") mids_classifier: MIDSClassifier = load_mids_classifier(mids_classifier_abs_file_name) logger.info("finished loading MIDS model") logger.info(mids_classifier) reconstructed_mids = MIDSValueReuse() reconstructed_mids.classifier = mids_classifier # --- Evaluate and store interpretability statistics -------------------------------------------------------------- filter_nans: bool = True target_attr_to_score_info_map: Dict[str, ScoreInfo] = score_MIDS_on_its_targets_without_nans( reconstructed_mids, df_test_original_column_order, filter_nans=filter_nans) logger.info("Evaluated MIDS classifier on predictive performance") target_attrs: List[TargetAttr] = mids_classifier.target_attrs for target_attr in target_attrs: target_attr_score_info: ScoreInfo = target_attr_to_score_info_map[target_attr] logger.info(f"\t{target_attr}:\n {target_attr_score_info.to_str(' ')}") logger.info("\t---") store_mids_target_attr_to_score_info(mids_target_attr_to_score_info_abs_file_name, target_attr_to_score_info_map) logger.info(f"Wrote MIDS Dict[TargetAttr, ScoreInfo] to {mids_target_attr_to_score_info_abs_file_name}") # --- Evaluate and store interpretability statistics -------------------------------------------------------------- interpret_stats: MIDSInterpretabilityStatistics \ = MIDSInterpretabilityStatisticsCalculator.calculate_ruleset_statistics( MIDSRuleSet(mids_classifier.rules), df_test_original_column_order, target_attributes=target_attrs) logger.info("Evaluated MIDS classifier on interpretability") logger.info(interpret_stats.to_str("\n")) store_mids_interpret_stats(mids_interpret_stats_abs_file_name, interpret_stats) logger.info(f"Wrote MIDSInterpretabilityStatistics to {mids_interpret_stats_abs_file_name}") logger.info("---") close_logger(logger) ``` #### File: e1_st_association_vs_tree_rules/rule_mining/single_target_car_mining_ifo_confidence_level.py ```python import os from typing import List, Tuple, Dict from dask import delayed from dask.delayed import Delayed from distributed import Client from experiments.dask_utils.computations import compute_delayed_functions from experiments.dask_utils.dask_initialization import reconnect_client_to_ssh_cluster from experiments.utils.experiment_logging import create_logger, close_logger from experiments.utils.header_attributes import get_header_attributes from experiments.arcbench_data_preparation.arc_model_data_preparation import prepare_arc_data from experiments.arcbench_data_preparation.reworked_one_hot_encoding import get_original_data_fold_abs_file_name, \ TrainTestEnum from experiments.e1_st_association_vs_tree_rules.file_naming.rules.single_target_filtered_cars_naming import ( get_single_target_filtered_cars_abs_filename, get_single_target_filtered_cars_mining_timings_abs_filename, assoc_vs_tree_based_single_target_car_dir ) from experiments.io_timings import store_timings_dict from mdrsl.data_structures.rules.multi_target_class_association_rule import MCAR from mdrsl.rule_models.mids.io_mids import store_mcars from mdrsl.rule_generation.association_rule_mining.mlext_impl.mlext_interaction import mine_single_target_MCARs_mlext def mine_cars_for_dataset_fold_target_attribute( dataset_name: str, fold_i: int, target_attribute: str, min_support: float, min_confidence: float, max_length: int, ): """ 1. load the required training data of the dataset fold. 2. make sure the target attribute is the last attribute 3. mine rules using the parameters settings --> check the number of rules! 4. save the rules to file :return: """ relative_name: str = f'{dataset_name}{fold_i}_{target_attribute}_{min_confidence}' logger = create_logger( logger_name=f'mine_filtered_single_target_cars_' + relative_name, log_file_name=os.path.join(assoc_vs_tree_based_single_target_car_dir(), f'{relative_name}_single_target_filtered_car_mining.log') ) # logger.info(f"rule_cutoff={rule_cutoff}") # # load the required training data of the dataset fold. # original_train_data_fold_abs_file_name = get_original_data_fold_abs_file_name( # dataset_name, fold_i, TrainTestEnum.train) # df_train_original_column_order = pd.read_csv(original_train_data_fold_abs_file_name, delimiter=',') # # 2. make sure the target attribute is the last attribute # df_train_reordered = reorder_columns(df_train_original_column_order, target_attribute) # # # REMOVE INSTANCES WITH NAN AS TARGET VALUE: # df_train_reordered = remove_instances_with_nans_in_column(df_train_reordered, target_attribute) df_train_reordered = prepare_arc_data(dataset_name, fold_i, target_attribute, TrainTestEnum.train) logger.info(f"start mining CARs for " + relative_name) st_mcars: List[MCAR] timings_dict: Dict[str, float] filtered_st_mcars, timings_dict = mine_single_target_MCARs_mlext(df_train_reordered, target_attribute=target_attribute, min_support=min_support, min_confidence=min_confidence, max_length=max_length) logger.info(f"finished mining CARs for {dataset_name} {fold_i}_{min_support}supp_{min_confidence}conf") logger.info( f"found {len(filtered_st_mcars)} CARs for {dataset_name} {fold_i}_{min_support}supp_{min_confidence}conf") filtered_st_mcars_abs_file_name: str = get_single_target_filtered_cars_abs_filename( dataset_name=dataset_name, fold_i=fold_i, target_attribute=target_attribute, confidence_boundary_val=min_confidence ) store_mcars(filtered_st_mcars_abs_file_name, filtered_st_mcars) logger.info(f"finished writing CARs to file: {filtered_st_mcars_abs_file_name}") filtered_st_mcars_mining_timings_abs_file_name = get_single_target_filtered_cars_mining_timings_abs_filename( dataset_name=dataset_name, fold_i=fold_i, target_attribute=target_attribute, confidence_boundary_val=min_confidence ) store_timings_dict(filtered_st_mcars_mining_timings_abs_file_name, timings_dict) close_logger(logger) def main(): from experiments.arcbench_data_preparation.dataset_info import datasets datasets = [dict(filename="iris", targetvariablename="class", numerical=True)] from experiments.dask_utils.dask_initialization import scheduler_host_name scheduler_host: str = scheduler_host_name list_of_computations: List[Tuple[Delayed, Dict]] = [] min_support: float = 0.1 max_length: int = 7 confidence_boundary_values: List[float] = [0.75, 0.95] nb_of_folds: int = 10 use_dask = False if use_dask: client: Client = reconnect_client_to_ssh_cluster(scheduler_host) for dataset_info in datasets: dataset_name = dataset_info['filename'] for fold_i in range(nb_of_folds): original_train_data_fold_abs_file_name = get_original_data_fold_abs_file_name(dataset_name, fold_i, TrainTestEnum.train) target_columns: List[str] = get_header_attributes(original_train_data_fold_abs_file_name) for target_column in target_columns: target_attribute = str(target_column) for conf_boundary_val in confidence_boundary_values: if use_dask: func_args = dict( dataset_name=dataset_name, fold_i=fold_i, target_attribute=target_attribute, min_support=min_support, min_confidence=conf_boundary_val, max_length=max_length ) delayed_func = delayed(mine_cars_for_dataset_fold_target_attribute)( **func_args ) list_of_computations.append((delayed_func, func_args)) else: mine_cars_for_dataset_fold_target_attribute( dataset_name=dataset_name, fold_i=fold_i, target_attribute=target_attribute, min_support=min_support, min_confidence=conf_boundary_val, max_length=max_length ) if use_dask: log_file_dir = assoc_vs_tree_based_single_target_car_dir() logger_name: str = 'mine_single_target_cars_ifo_confidence_bound_ERROR_LOGGER' logger_file_name: str = os.path.join( log_file_dir, f'ERROR_LOG_mine_single_target_cars_ifo_confidence_bound.log' ) compute_delayed_functions( list_of_computations=list_of_computations, client=client, nb_of_retries_if_erred=5, error_logger_name=logger_name, error_logger_file_name=logger_file_name ) if __name__ == '__main__': main() ``` #### File: file_naming/rules/single_target_tree_rule_naming.py ```python import os from experiments.file_naming.single_target_classifier_indicator import SingleTargetClassifierIndicator from project_info import project_dir def get_single_target_tree_rule_dir() -> str: mcars_dir: str = os.path.join(project_dir, 'models', 'single_target_tree_rules') if not os.path.exists(mcars_dir): os.makedirs(mcars_dir) return mcars_dir def get_single_target_tree_rules_relative_file_name_without_extension( dataset_name: str, fold_i: int, target_attribute: str, classifier_indicator: SingleTargetClassifierIndicator, nb_of_trees_per_model: int, min_support: float, max_depth: int ) -> str: return ( f"{dataset_name}{fold_i}_{target_attribute}_{str(classifier_indicator.value)}" f"_{nb_of_trees_per_model}trees" f"_{min_support}supp_{max_depth}depth" ) def get_single_target_tree_rules_abs_file_name( dataset_name: str, fold_i: int, target_attribute: str, classifier_indicator: SingleTargetClassifierIndicator, nb_of_trees_per_model: int, min_support: float, max_depth: int, ): rules_dir = get_single_target_tree_rule_dir() relative_file_name: str = get_single_target_tree_rules_relative_file_name_without_extension( dataset_name=dataset_name, fold_i=fold_i, target_attribute=target_attribute, classifier_indicator=classifier_indicator, nb_of_trees_per_model=nb_of_trees_per_model, min_support=min_support, max_depth=max_depth ) tree_derived_rule_abs_file_name = os.path.join(rules_dir, f"{relative_file_name}.json.gz") return tree_derived_rule_abs_file_name def get_single_target_tree_rules_gen_timing_info_abs_file_name( dataset_name: str, fold_i: int, target_attribute: str, classifier_indicator: SingleTargetClassifierIndicator, nb_of_trees_per_model: int, min_support: float, max_depth: int, ): rules_dir = get_single_target_tree_rule_dir() relative_file_name: str = get_single_target_tree_rules_relative_file_name_without_extension( dataset_name=dataset_name, fold_i=fold_i, target_attribute=target_attribute, classifier_indicator=classifier_indicator, nb_of_trees_per_model=nb_of_trees_per_model, min_support=min_support, max_depth=max_depth ) tree_derived_rule_abs_file_name = os.path.join(rules_dir, f"{relative_file_name}_timings.json.gz") return tree_derived_rule_abs_file_name ``` #### File: e2_multi_directional_model_comparison/model_induction/round_robin_tree_based_model_induction.py ```python import os from typing import List, Tuple, Dict, Set import pandas as pd from dask import delayed from dask.delayed import Delayed from dask_utils.computations import compute_delayed_functions from dask_utils.dask_initialization import reconnect_client_to_ssh_cluster from experiments.arcbench_data_preparation.reworked_one_hot_encoding import get_original_data_fold_abs_file_name, \ TrainTestEnum from experiments.file_naming.car_naming import get_tree_derived_rules_abs_file_name from experiments.file_naming.single_target_classifier_indicator import SingleTargetClassifierIndicator from experiments.utils.experiment_logging import create_logger, close_logger from experiments.utils.file_creation import file_does_not_exist_or_has_been_created_earlier_than_ from experiments.e2_multi_directional_model_comparison.file_naming.round_robin_model_naming import ( get_tree_based_greedy_clf_abs_file_name, greedy_models_tree_based_dir) from mdrsl.data_structures.rules.multi_target_class_association_rule import MCAR from mdrsl.rule_models.mids.io_mids import load_mcars from mdrsl.rule_models.mids.mids_rule import MIDSRule from mdrsl.rule_models.rr.rr_rule_set_learner import GreedyRoundRobinTargetRuleClassifier from mdrsl.rule_models.rr.io_rr_rule_set_learner import store_greedy_naive_classifier TargetAttr = str def learn_tree_based_greedy_model_for_dataset_fold( dataset_name: str, fold_i: int, classifier_indicator: SingleTargetClassifierIndicator, nb_of_trees_per_model: int, nb_of_original_targets_to_predict: int, min_support: float, max_depth: int ): logger = create_logger( logger_name=f'learn_greedy_model_{dataset_name}{fold_i}_tree_derived_rules', log_file_name=os.path.join(greedy_models_tree_based_dir(), f'{dataset_name}{fold_i}_greedy_model_induction_tree_derived_rules.log') ) # --- load train data --------------------------------------------------------------------------------------------- # read in original (discretized) training data df_original_train = pd.read_csv(get_original_data_fold_abs_file_name(dataset_name, fold_i, TrainTestEnum.train), delimiter=',') # --- load association rules -------------------------------------------------------------------------------------- tree_clf_derived_rules_abs_file_name = get_tree_derived_rules_abs_file_name(dataset_name, fold_i, classifier_indicator, nb_of_trees_per_model, nb_of_original_targets_to_predict, min_support, max_depth) logger.info(f"Reading MCARs from file: {tree_clf_derived_rules_abs_file_name}") mcars: List[MCAR] = load_mcars(tree_clf_derived_rules_abs_file_name) mids_rules: Set[MIDSRule] = {MIDSRule(mcar) for mcar in mcars} logger.info(f"ground set size (nb of initial MCARs): {len(mids_rules)}") # --- Fit and save classifier ------------------------------------------------------------------------------------- greedy_clf = GreedyRoundRobinTargetRuleClassifier(df_original_train.columns, verbose=False) selected_set, selected_set_scores = greedy_clf.fit(ground_set=mids_rules, training_data=df_original_train) logger.info(f"Selected {len(selected_set)} out of {len(mcars)} rules " f"({(len(selected_set) / len(mcars) *100):.2f}%)") logger.info("start saving Naive greedy model") tree_based_greedy_clf_abs_file_name = get_tree_based_greedy_clf_abs_file_name( dataset_name=dataset_name, fold_i=fold_i, classifier_indicator=classifier_indicator, nb_of_trees_per_model=nb_of_trees_per_model, nb_of_original_targets_to_predict=nb_of_original_targets_to_predict, min_support=min_support, max_depth=max_depth ) store_greedy_naive_classifier(tree_based_greedy_clf_abs_file_name, greedy_clf) logger.info(f"finished saving greedy clf to file: {tree_based_greedy_clf_abs_file_name}") close_logger(logger) def main(): from experiments.arcbench_data_preparation.dataset_info import datasets datasets = [dict(filename="iris", targetvariablename="class", numerical=True)] from experiments.dask_utils.dask_initialization import scheduler_host_name scheduler_host: str = scheduler_host_name list_of_computations: List[Tuple[Delayed, Dict]] = [] nb_of_folds: int = 10 classifier_indicator = SingleTargetClassifierIndicator.random_forest nb_of_original_targets_to_predict: int = 2 nb_of_trees_per_model_list: List[int] = [5, 10] min_support: float = 0.1 # min_samples_leaf must be at least 1 or in (0, 0.5], got 0 max_depth: int = 7 - nb_of_original_targets_to_predict use_dask = False if use_dask: client = reconnect_client_to_ssh_cluster(scheduler_host) for dataset_info in datasets: dataset_name = dataset_info['filename'] for fold_i in range(nb_of_folds): for nb_of_trees_per_model in nb_of_trees_per_model_list: clf_abs_file_name = get_tree_based_greedy_clf_abs_file_name( dataset_name=dataset_name, fold_i=fold_i, classifier_indicator=classifier_indicator, nb_of_trees_per_model=nb_of_trees_per_model, nb_of_original_targets_to_predict=nb_of_original_targets_to_predict, min_support=min_support, max_depth=max_depth ) n_days_in_hours = 18 should_refit: bool = file_does_not_exist_or_has_been_created_earlier_than_( clf_abs_file_name, n_days_in_hours ) if should_refit: if use_dask: func_args = dict( dataset_name=dataset_name, fold_i=fold_i, classifier_indicator=classifier_indicator, nb_of_trees_per_model=nb_of_trees_per_model, nb_of_original_targets_to_predict=nb_of_original_targets_to_predict, min_support=min_support, max_depth=max_depth) delayed_func = \ delayed(learn_tree_based_greedy_model_for_dataset_fold)( **func_args ) list_of_computations.append((delayed_func, func_args)) else: learn_tree_based_greedy_model_for_dataset_fold( dataset_name=dataset_name, fold_i=fold_i, classifier_indicator=classifier_indicator, nb_of_trees_per_model=nb_of_trees_per_model, nb_of_original_targets_to_predict=nb_of_original_targets_to_predict, min_support=min_support, max_depth=max_depth ) if use_dask: log_file_dir: str = greedy_models_tree_based_dir() logger_name: str = 'greedy_model_induction_tree_derived_rules_ERROR_LOGGER' logger_file_name: str = os.path.join( log_file_dir, f'ERROR_LOG_greedy_model_induction_tree_derived_rules.log' ) compute_delayed_functions( list_of_computations=list_of_computations, client=client, nb_of_retries_if_erred=5, error_logger_name=logger_name, error_logger_file_name=logger_file_name ) if __name__ == '__main__': main() ``` #### File: experiments/file_naming/column_encodings.py ```python import os from project_info import project_dir def get_encodings_book_keeper_abs_file_name_for(dataset_name: str, fold_i: int) -> str: encodings_dir = os.path.join(project_dir, 'data/arcBench_processed/column_encodings') if not os.path.exists(encodings_dir): os.makedirs(encodings_dir) encoding_book_keeper_abs_file_name = os.path.join( encodings_dir, f'{dataset_name}{fold_i}.json.gz' ) return encoding_book_keeper_abs_file_name ``` #### File: mdrsl/data_handling/reorder_dataset_columns.py ```python import pandas as pd TargetAttr = str def reorder_columns(df: pd.DataFrame, target_column: TargetAttr) -> pd.DataFrame: """ Generates a dataframe with reordered columns, such that the given target column is the last column :param df: :param target_column: :return: """ if target_column not in df.columns: message = f"the given target column {target_column} is not a column of the given dataframe" raise Exception(message) columns = df.columns reordered_columns = [] for possibly_other_column in columns: if str(possibly_other_column) != str(target_column): reordered_columns.append(possibly_other_column) # reordered_columns = [other_col for other_col in columns if str(other_col) is not str(target_column)] reordered_columns.append(target_column) new_df = df[reordered_columns] return new_df ``` #### File: data_structures/transactions/transaction.py ```python from mdrsl.data_structures.comparable_itemset import ComparableItemSet from mdrsl.data_structures.item import Item class Transaction(ComparableItemSet): """Transaction represents one instance in a dataset. Transaction is hashed based on its items and class value. Parameters ---------- row: array of ints or strings header: array of strings Represents column labels. Attributes ---------- items: array of Items tid: int Transaction ID. string_items: two dimensional array of strings e.g. [["a:=:1", "b:=:2"]] """ id_ = 0 def __init__(self, row, header): self.items = [] self.tid = Transaction.id_ Transaction.id_ += 1 # eg. [pay=high, eyes=green] self.string_items = [] for idx, val in enumerate(row): header_label = header[idx] item = Item(header_label, val) self.string_items.append("{}:=:{}".format(header_label, val)) self.items.append(item) self.frozenset = frozenset(self) def __repr__(self): string = ", ".join(self.string_items) return "{" + string + "}" def __hash__(self): return hash(tuple(self.items)) # return hash((self.tid, tuple(self.items))) def __eq__(self, other): return hash(self) == hash(other) def __getitem__(self, idx): return self.items[idx] def getclass(self): return self.class_val class UniqueTransaction(Transaction): """Same as Transaction class except for hashing by Transaction id. """ def __hash__(self): return hash(self.tid) ``` #### File: evaluation/interpretability/basic_rule_set_stats.py ```python from mdrsl.utils.value_collection import ValueCollector def is_valid_fraction(val: float, lower: float = 0, higher: float = 1) -> bool: return lower <= val <= higher class AbstractModelStatistics: def __init__(self, model_abbreviation: str): self.model_abbreviation: str = model_abbreviation def get_model_size(self) -> int: raise NotImplementedError('Abstract method') class BasicRuleSetStatistics(AbstractModelStatistics): def __init__(self, rule_length_counter: ValueCollector, model_abbreviation: str): super().__init__(model_abbreviation) self.rule_length_counter: ValueCollector = rule_length_counter def ruleset_size(self) -> int: """ Returns the size of the rule set. :return: """ return self.rule_length_counter.count def total_nb_of_literals(self) -> int: """ Returns the total nb of __literals in the rule set. """ return self.rule_length_counter.sum def get_model_size(self) -> int: return self.total_nb_of_literals() def avg_nb_of_literals_per_rule(self) -> float: """ Returns the avg nb of __literals over the rules in the rule set. """ return self.rule_length_counter.get_avg() def min_nb_of_literals(self) -> float: """ Returns the nb of __literals in the shortest rule """ return self.rule_length_counter.min def max_nb_of_literals(self) -> float: """ Returns the nb of __literals in the longest rule """ return self.rule_length_counter.max class SingleTargetRuleSetStatistics(BasicRuleSetStatistics): def __init__(self, rule_length_collector: ValueCollector, model_abbreviation: str, fraction_bodily_overlap: float, fraction_uncovered_examples: float, frac_predicted_classes: float ): super().__init__(rule_length_collector, model_abbreviation=model_abbreviation) self.fraction_bodily_overlap: float = fraction_bodily_overlap self.fraction_uncovered_examples: float = fraction_uncovered_examples self.frac_predicted_classes: float = frac_predicted_classes def to_str(self, indentation: str = "") -> str: output_string = ( indentation + "Rule length stats: " + str(self.rule_length_counter) + "\n" + indentation + "Fraction bodily overlap: " + str(self.fraction_bodily_overlap) + "\n" + indentation + "Fraction uncovered examples: " + str(self.fraction_uncovered_examples) + "\n" + indentation + "Fraction predicted classes: " + str(self.frac_predicted_classes) + "\n" ) return output_string def __str__(self): return self.to_str() if __name__ == '__main__': value_collector = ValueCollector() stats = BasicRuleSetStatistics(value_collector, "test") print(stats.rule_length_counter) ``` #### File: association_rule_mining/fim_impl/mine_st_rules_with_fim.py ```python import random import time from typing import List, Optional, Dict import fim import pandas as pd from pyarc.data_structures.antecedent import Antecedent from pyarc.data_structures.consequent import Consequent from pyarc.data_structures.item import Item from pyarc.data_structures.car import ClassAssocationRule from pyarc.data_structures.transaction_db import TransactionDB def mine_CARs(df: pd.DataFrame, rule_cutoff: int, sample=False, random_seed=None, verbose: bool = True, **top_rules_kwargs) -> List[ClassAssocationRule]: """ :param df: the (training) data to mine rules on :param rule_cutoff: the maximum number of rules to return :param sample: bool - if the generate nb of rules is larger than the rule_cutoff and sample == True, a random sample of rules rule_cutoff rules is returned :param random_seed: :param verbose: :param top_rules_kwargs: :return: """ txns = TransactionDB.from_DataFrame(df) rules = top_rules(txns.string_representation, appearance=txns.appeardict, # NOTE: THIS IS VERY IMPORTANT; without this, any attribute can be # the target of the class association rule target_rule_count=rule_cutoff, verbose=verbose, **top_rules_kwargs) cars: List[ClassAssocationRule] = createCARs(rules) cars_subset: List[ClassAssocationRule] if len(cars) > rule_cutoff: if sample: if random_seed is not None: random.seed(random_seed) cars_subset = random.sample(cars, rule_cutoff) else: cars_subset = cars[:rule_cutoff] else: cars_subset = cars return cars_subset def mine_unrestricted_CARS(df: pd.DataFrame, min_support = 0.01, min_confidence = 0.5, max_length=7) -> List[ClassAssocationRule]: """ :param df: the (training) data to mine rules on :param rule_cutoff: the maximum number of rules to return :param sample: bool - if the generate nb of rules is larger than the rule_cutoff and sample == True, a random sample of rules rule_cutoff rules is returned :param random_seed: :param verbose: :param top_rules_kwargs: :return: """ txns = TransactionDB.from_DataFrame(df) min_support_percents = min_support * 100 min_confidence_percents = min_confidence * 100 CARs: List[ClassAssocationRule] = generateCARs(txns, support=min_support_percents, confidence=min_confidence_percents, maxlen=max_length) return CARs def createCARs(rules) -> List[ClassAssocationRule]: """Function for converting output from fim.arules or fim.apriori to a list of ClassAssociationRules Parameters ---------- rules : output from fim.arules or from generateCARs Returns ------- list of CARs """ CARs: List[ClassAssocationRule] = [] for rule in rules: con_tmp, ant_tmp, support, confidence = rule con = Consequent(*con_tmp.split(":=:")) ant_items = [Item(*i.split(":=:")) for i in ant_tmp] ant = Antecedent(ant_items) CAR = ClassAssocationRule(ant, con, support=support, confidence=confidence) CARs.append(CAR) CARs.sort(reverse=True) return CARs def generateCARs(transactionDB: TransactionDB, support: float = 1, confidence: float = 50, maxlen: int = 10, **kwargs): """Function for generating ClassAssociationRules from a TransactionDB Parameters ---------- :param transactionDB : TransactionDB support : float minimum support in percents if positive absolute minimum support if negative confidence : float minimum confidence in percents if positive absolute minimum confidence if negative maxlen : int maximum length of mined rules **kwargs : arbitrary number of arguments that will be provided to the fim.apriori function Returns ------- list of CARs """ appear = transactionDB.appeardict rules = fim.apriori(transactionDB.string_representation, supp=support, conf=confidence, mode="o", target="r", report="sc", appear=appear, **kwargs, zmax=maxlen) return createCARs(rules) def top_rules(transactions, appearance: Optional[Dict] = None, target_rule_count: int = 1000, init_support: float = 0.05, init_confidence: float = 0.5, confidence_step: float = 0.05, support_step: float = 0.05, min_length: int = 2, init_max_length: int = 3, total_timeout: float = 100.0, max_iterations: int = 30, verbose: bool = True): """ Function for finding the best n (target_rule_count) rules from transaction list Returns list of mined rules. The rules are not ordered. :param transactions : 2D array of strings, e.g. [["a:=:1", "b:=:3"], ["a:=:4", "b:=:2"]] :param appearance : dict - dictionary specifying rule appearance :param target_rule_count : int - target number of rules to mine :param init_support : float - support from which to start mining :param init_confidence : float - confidence from which to start mining :param confidence_step : float :param support_step : float :param min_length : int - minimum len of rules to mine :param init_max_length : int - maximum len from which to start mining :param total_timeout : float - maximum execution time of the function :param max_iterations : int - maximum iterations to try before stopping execution :param verbose: bool """ if appearance is None: appearance = {} start_time: float = time.time() # the length of a rule is at most the length of a transaction. (All transactions have the same length.) MAX_RULE_LEN: int = len(transactions[0]) current_support: float = init_support current_confidence: float = init_confidence current_max_length: int = init_max_length keep_mining: bool = True is_max_length_decreased_due_timeout: bool = False current_iteration: int = 0 last_rule_count = -1 rules: Optional[List] = None if verbose: print("STARTING top_rules") while keep_mining: current_iteration += 1 if current_iteration > max_iterations: if verbose: print("Max iterations reached") break if verbose: print(f"--- iteration {current_iteration} ---") print((f"Running apriori with setting: " f"confidence={current_confidence}, " f"support={current_support}, " f"min_length={min_length}, " f"max_length={current_max_length}, " f"MAX_RULE_LEN={MAX_RULE_LEN}" )) current_rules = fim.arules(transactions, supp=current_support, conf=current_confidence, mode="o", report="sc", appear=appearance, zmax=current_max_length, zmin=min_length) current_nb_of_rules = len(current_rules) # assign rules = current_rules if verbose: print(f"Rule count: {current_nb_of_rules}, Iteration: {current_iteration}") if current_nb_of_rules >= target_rule_count: keep_mining = False if verbose: print(f"\tTarget rule count satisfied: {target_rule_count}") else: current_execution_time = time.time() - start_time # if timeout limit exceeded if current_execution_time > total_timeout: if verbose: print(f"\tExecution time exceeded: {total_timeout}") keep_mining = False # if we can still increase our rule length AND # the number of rules found has changed (increased?) since last time AND # there has elif current_max_length < MAX_RULE_LEN and last_rule_count != current_nb_of_rules and not is_max_length_decreased_due_timeout: current_max_length += 1 last_rule_count = current_nb_of_rules if verbose: print(f"\tIncreasing max_length {current_max_length}") # if we can still increase our rule length AND # # we can still increase our support # THEN: # increase our support # increment our max length elif current_max_length < MAX_RULE_LEN and is_max_length_decreased_due_timeout and current_support <= 1 - support_step: current_support += support_step current_max_length += 1 last_rule_count = current_nb_of_rules is_max_length_decreased_due_timeout = False if verbose: print(f"\tIncreasing maxlen to {current_max_length}") print(f"\tIncreasing minsup to {current_support}") # IF we can still decrease our confidence # THEN decrease our confidence elif current_confidence > confidence_step: current_confidence -= confidence_step if verbose: print(f"\tDecreasing confidence to {current_confidence}") else: if verbose: print("\tAll options exhausted") keep_mining = False if verbose: end_of_current_iteration_message = f"--- end iteration {current_iteration} ---" print(end_of_current_iteration_message) print("-" * len(end_of_current_iteration_message)) if verbose: print(f"FINISHED top_rules after {current_iteration} iterations") return rules ``` #### File: rule_generation/association_rule_mining/frequent_itemset_mining.py ```python from typing import List, Optional, Union, Tuple # import fim import pandas as pd from bidict import bidict attribute_value_separator = ';=;' filter_missing_values = True Item = str ItemEncoding = int Transaction = Union[List[Item], List[ItemEncoding]] def attr_val_to_item(attr_name: str, val: object, separator=None) -> Item: if separator is None: separator = attribute_value_separator return attr_name + separator + str(val) def dataframe_to_list_of_transactions(df: pd.DataFrame) -> List[Transaction]: """ convert the dataframe to a list of transactions, with each transaction of the form [ 'col1=val1', 'col2=val2', ...] e.g. ['Passenger_Cat=3rd_class', 'Age_Cat=adult', 'Gender=male'] """ list_of_transactions: List[Transaction] = [] row_index: int for row_index in range(0, df.shape[0]): row_itemset: Transaction = [] for col_name in df.columns: try: column_series = df[col_name] row_value = column_series.iloc[row_index] is_value_na: bool = pd.isna(row_value) if (filter_missing_values and not is_value_na)\ or not filter_missing_values: item: Item = attr_val_to_item(col_name, row_value) row_itemset.append(item) except Exception as err: print(f"column {col_name} and index {row_index}") raise err list_of_transactions.append(row_itemset) return list_of_transactions class ItemEncoder: def __init__(self): self.encoding_bidict: bidict = bidict() self.next_encoding = 1 def encode_item(self, item: Item) -> int: optional_encoding: Optional[int] = self.encoding_bidict.get(item, None) if optional_encoding is not None: return optional_encoding else: item_encoding = self.next_encoding self.encoding_bidict[item] = item_encoding self.next_encoding += 1 return item_encoding def decode_item(self, encoding: int) -> Item: optional_item: Optional[Item] = self.encoding_bidict.inverse.get(encoding, None) if optional_item is not None: return optional_item else: raise Exception(f"No item for encoding {encoding}") def dataframe_to_list_of_transactions_with_encoding(df: pd.DataFrame) -> Tuple[List[Transaction], ItemEncoder]: """ convert the dataframe to a list of transactions, with each transaction of the form [ 'col1=val1', 'col2=val2', ...] e.g. ['Passenger_Cat=3rd_class', 'Age_Cat=adult', 'Gender=male'] """ item_encoder = ItemEncoder() list_of_transactions: List[Transaction] = [] for row_index in range(0, df.shape[0]): row_itemset: Transaction = [] for col_name in df.columns: try: column_series = df[col_name] row_value = column_series.iloc[row_index] is_value_na: bool = pd.isna(row_value) if (filter_missing_values and not is_value_na)\ or not filter_missing_values: item: Item = attr_val_to_item(col_name, row_value) item_encoding: int = item_encoder.encode_item(item) row_itemset.append(item_encoding) except Exception as err: print(f"column {col_name} and index {row_index}") raise err list_of_transactions.append(row_itemset) return list_of_transactions, item_encoder def run_fim_apriori(df: pd.DataFrame, min_suppport_thr: float) -> List[Transaction]: try: import fim except Exception as e: raise e print("running fim apriori function") dataset_transactions: List[Transaction] = dataframe_to_list_of_transactions(df) print("dataset processed") frequent_itemsets_raw = fim.apriori(dataset_transactions, supp=(min_suppport_thr*100)) # List[Tuple[]] print("apriori runned") frequent_itemsets: List[Transaction] = list(map(lambda i: list(i[0]), frequent_itemsets_raw)) # Li print("apriori results processed") return frequent_itemsets def run_apyori_apriori(df: pd.DataFrame, min_suppport_thr: float) -> List[Transaction]: """ Takes a data frame and a support threshold and returns itemsets which satisfy the threshold. The idea is to basically 1. make a list of strings out of the df 2. and run apriori api on it 3. return the frequent itemsets :param df: dataframe, where each row is a viewed as a transaction :param min_suppport_thr: :return: """ from mdrsl.rule_generation.association_rule_mining.apyori_impl.apyori import RelationRecord, apriori from mdrsl.rule_generation.association_rule_mining.apyori_impl.apyori_utils import print_relation_record dataset_transactions: List[Transaction] = dataframe_to_list_of_transactions(df) results: List[RelationRecord] = list(apriori(dataset_transactions, min_support=min_suppport_thr)) for relation_record in results: print_relation_record(relation_record) print("=====================================") list_of_frequent_itemsets: List[Transaction] = [] for relation_record in results: # type: RelationRecord itemset: Transaction = [] for pred in relation_record.items: itemset.append(pred) list_of_frequent_itemsets.append(itemset) return list_of_frequent_itemsets def run_apriori(implementation: str, df: pd.DataFrame, min_suppport_thr: float) -> List[Transaction]: if implementation == 'apyori': return run_apyori_apriori(df, min_suppport_thr) elif implementation == 'fim': return run_fim_apriori(df, min_suppport_thr) else: raise NotImplementedError('No Apriori implementation found for' + implementation) ``` #### File: rule_generation/decision_tree_conversion/attribute_id_to_name_conversion.py ```python from typing import List class DecisionTreeFeatureIDConverter: """ Converts an attribute id (as found in a scikit-learn decision tree) into the corresponding attribute name, as found in the training data fed into the decision tree. """ def __init__(self, dt_descriptive_atts: List[str]): self.dt_descriptive_atts = dt_descriptive_atts def convert(self, feature_id: int): # find the descriptive attr as used for input for the decision tree return self.dt_descriptive_atts[feature_id] ``` #### File: rule_generation/decision_tree_conversion/pretty_drawing_file.py ```python from typing import List from sklearn import tree from sklearn.tree import DecisionTreeClassifier import graphviz def render_decision_tree_classifier_to_file( clf: DecisionTreeClassifier, decision_tree_descriptive_attribute_names: List[str], image_absolute_file_path: str) -> None: # %% # classes_ : array of shape = [n_classes] or a list of such arrays # # The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). # class_labels = clf.classes_ class_labels: List[str] = list(map(str, class_labels)) dot_data = tree.export_graphviz(clf, feature_names=decision_tree_descriptive_attribute_names, class_names=class_labels) graph = graphviz.Source(dot_data) # this will create an .pdf file graph.render(image_absolute_file_path) ``` #### File: rule_generation/decision_tree_conversion/tree_to_paths_conversion.py ```python from typing import List, Optional import numpy as np from sklearn.tree import DecisionTreeClassifier from mdrsl.rule_generation.decision_tree_conversion.tree_branch import TreeBranch from mdrsl.rule_generation.decision_tree_conversion.tree_edge import TreeEdge from mdrsl.rule_generation.decision_tree_conversion.tree_path import TreePath NodeId = int class TreeToPathsConverter: """ Converts a single Scikit-learn DecisionTreeClassifier in a list of paths. NOTE: the paths will still use the information as was stored in the Scikit-learn decision tree. Any renaming should be done at a later point. """ def __init__(self, classifier: DecisionTreeClassifier): self.tree: DecisionTreeClassifier = classifier # The number of nodes (internal nodes + leaves) in the tree. self.n_nodes: int = classifier.tree_.node_count self.children_left: np.ndarray = classifier.tree_.children_left self.children_right: np.ndarray = classifier.tree_.children_right # feature : array of int, shape [node_count] # feature[i] holds the feature to split on, for the internal node i. self.feature: np.ndarray = classifier.tree_.feature self.threshold: np.ndarray = classifier.tree_.threshold # n_node_samples : array of int, shape [node_count] # n_node_samples[i] holds the number of training samples reaching node i. self.nb_training_samples_reaching_node: np.ndarray = classifier.tree_.n_node_samples self.total_nb_of_training_samples: int = 0 # counted when walking the tree # value : array of double, shape [node_count, n_outputs, max_n_classes] # Contains the constant prediction value of each node. self.value: np.array = classifier.tree_.value self.class_labels = classifier.classes_ self.nb_of_target_attributes = classifier.n_outputs_ self.list_of_paths: List[TreePath] = [] def convert(self) -> List[TreePath]: root_node_id: NodeId = 0 self.total_nb_of_training_samples: int = 0 self._recursive_convert(root_node_id, parent_tree_branch=None) return self.list_of_paths def _recursive_convert(self, node_id: NodeId, parent_tree_branch: Optional[TreeBranch]) -> None: # check if the tnode is a test node, i.e. whether it has both children: left_child_node_id: NodeId = self.children_left[node_id] right_child_node_id: NodeId = self.children_right[node_id] # If we have a test node if left_child_node_id != right_child_node_id: # do something with the test of this node node_feature_id = self.feature[node_id] node_threshold = self.threshold[node_id] left_extended_branch = TreeBranch(parent_tree_branch=parent_tree_branch, edge=TreeEdge( feature_id=node_feature_id, threshold=node_threshold, is_left=True)) right_extended_branch = TreeBranch(parent_tree_branch=parent_tree_branch, edge=TreeEdge( feature_id=node_feature_id, threshold=node_threshold, is_left=False)) self._recursive_convert(left_child_node_id, left_extended_branch) self._recursive_convert(right_child_node_id, right_extended_branch) else: class_label_counts: np.ndarray = self.value[node_id] nb_of_training_samples_reaching_leaf: int = self.nb_training_samples_reaching_node[node_id] self.total_nb_of_training_samples += nb_of_training_samples_reaching_leaf all_zeros: bool = not np.any(class_label_counts) if all_zeros: raise Exception("all labels have count 0") tree_path: TreePath = self._convert_to_tree_path(parent_tree_branch, nb_of_training_samples_reaching_leaf, class_label_counts) self.list_of_paths.append(tree_path) def _convert_to_tree_path(self, tree_branch: Optional[TreeBranch], leaf_nb_training_samples: int, leaf_class_label_counts: np.ndarray) -> TreePath: if tree_branch is None: raise NotImplementedError("Trees consisting of only the root as leaf are currently not supported") else: tree_branch_edges_as_list: List[TreeEdge] = tree_branch.to_list() return TreePath(edges=tree_branch_edges_as_list, nb_training_samples_in_leaf=leaf_nb_training_samples, leaf_class_label_counts=leaf_class_label_counts, class_labels=self.class_labels, nb_of_target_attributes=self.nb_of_target_attributes) ``` #### File: rule_models/eids/merged_model_io.py ```python import gzip import jsonpickle from mdrsl.rule_models.eids.st_to_mt_model_merging import MergedSTMIDSClassifier def store_merged_st_mids_model(merged_model_abs_file_name: str, merged_st_mids_classifier: MergedSTMIDSClassifier) -> None: frozen = jsonpickle.encode(merged_st_mids_classifier) with gzip.open(merged_model_abs_file_name, 'wt') as ofile: ofile.write(frozen) def load_merged_st_mids_model(merged_model_abs_file_name: str) -> MergedSTMIDSClassifier: mids_classifier: MergedSTMIDSClassifier with gzip.open(merged_model_abs_file_name, 'rt') as ifile: file_contents = ifile.read() mids_classifier = jsonpickle.decode(file_contents) return mids_classifier ``` #### File: ids/model_fitting/ids_without_value_reuse.py ```python from typing import Optional, Set from pyids.data_structures.ids_objective_function import ObjectiveFunctionParameters from pyids.data_structures.ids_rule import IDSRule from pyids.data_structures.ids_ruleset import IDSRuleSet from pyids.data_structures.ids_cacher import IDSCacher from mdrsl.rule_models.ids.model_fitting.ids_abstract_base import IDSAbstractBase from mdrsl.rule_models.ids.objective_function.ids_objective_function_without_value_reuse import IDSObjectiveFunction from submodmax.abstract_optimizer import AbstractOptimizer from submodmax.deterministic_double_greedy_search import DeterministicDoubleGreedySearch from submodmax.deterministic_local_search import DeterministicLocalSearch from submodmax.deterministic_local_search_pyids import DeterministicLocalSearchPyIDS from submodmax.randomized_double_greedy_search import RandomizedDoubleGreedySearch from submodmax.smooth_local_search import SmoothLocalSearch from submodmax.smooth_local_search_pyids import SmoothLocalSearchPyIDS class IDS(IDSAbstractBase): def __init__(self): super().__init__() self.algorithms = dict( SLS=SmoothLocalSearchPyIDS, DLS=DeterministicLocalSearchPyIDS, DLSRewrite=DeterministicLocalSearch, SLSRewrite=SmoothLocalSearch, DDGS=DeterministicDoubleGreedySearch, RDGS=RandomizedDoubleGreedySearch ) self.solution_set: Optional[Set[IDSRule]] = None self.objective_function_value: Optional[float] = None def _optimize(self, params: ObjectiveFunctionParameters, algorithm: str, ground_set: Set[IDSRule], cacher: IDSCacher, objective_scale_factor: float, debug: bool) -> Set[IDSRule]: objective_function = IDSObjectiveFunction( objective_func_params=params, cacher=cacher, scale_factor=objective_scale_factor, normalize=self.normalize) self.objective_function = objective_function optimizer: AbstractOptimizer = self.algorithms[algorithm]( objective_function=objective_function, ground_set=ground_set, debug=debug) solution_set: Set[IDSRule] = optimizer.optimize() objective_function_value: float = objective_function.evaluate(IDSRuleSet(solution_set)) self.solution_set = solution_set self.objective_function_value = objective_function_value return solution_set ``` #### File: ids/objective_function/ids_objective_function_without_value_reuse.py ```python import time from typing import TypeVar, Union, Set import numpy as np from rule_models.ids.objective_function.ids_objective_function_abstract import AbstractIDSObjectiveFunction from pyids.data_structures import IDSRuleSet from pyids.data_structures.ids_objective_function import ObjectiveFunctionParameters from submodmax.abstract_optimizer import AbstractSubmodularFunction E = TypeVar('E') class IDSObjectiveFunction(AbstractSubmodularFunction, AbstractIDSObjectiveFunction): def __init__(self, objective_func_params=ObjectiveFunctionParameters(), cacher=None, scale_factor=1, normalize=True): AbstractIDSObjectiveFunction.__init__(self, objective_func_params, cacher=cacher, scale_factor=scale_factor, normalize=normalize) def f1_minimize_total_nb_of_literals(self, solution_set): f1_unnormalized = self.f1_upper_bound_nb_of_literals - solution_set.sum_rule_length() if self.normalize: f1 = f1_unnormalized / self.f1_upper_bound_nb_of_literals else: f1 = f1_unnormalized self._f1_boundary_check(f1) return f1 def f2_minimize_overlap_predicting_the_same_class(self, solution_set): overlap_intraclass_sum = 0 for i, r1 in enumerate(solution_set.ruleset): for j, r2 in enumerate(solution_set.ruleset): if i >= j: continue if r1.car.consequent.value == r2.car.consequent.value: overlap_tmp = self.cacher.overlap(r1, r2) overlap_intraclass_sum += overlap_tmp f2_unnormalized = self.f2_f3_upper_bound - overlap_intraclass_sum if self.normalize: f2 = f2_unnormalized / self.f2_f3_upper_bound else: f2 = f2_unnormalized self._boundary_check(f2, 'f2') return f2 def f3_minimize_overlap_predicting_different_class(self, solution_set): overlap_interclass_sum = 0 for i, r1 in enumerate(solution_set.ruleset): for j, r2 in enumerate(solution_set.ruleset): if i >= j: continue if r1.car.consequent.value != r2.car.consequent.value: overlap_tmp = self.cacher.overlap(r1, r2) overlap_interclass_sum += overlap_tmp f3_unnormalized = self.f2_f3_upper_bound - overlap_interclass_sum if self.normalize: f3 = f3_unnormalized / self.f2_f3_upper_bound else: f3 = f3_unnormalized self._boundary_check(f3, 'f3') return f3 def f4_at_least_one_rule_per_target_value(self, solution_set): classes_covered = set() for rule in solution_set.ruleset: classes_covered.add(rule.car.consequent.value) f4_unnormalized = len(classes_covered) if self.normalize: f4 = f4_unnormalized / self.nb_of_target_values else: f4 = f4_unnormalized self._boundary_check(f4, 'f4') return f4 def f5_minimize_incorrect_cover(self, solution_set): sum_incorrect_cover = 0 for rule in solution_set.ruleset: incorrect_cover_size = np.sum(rule._incorrect_cover(self.quant_dataframe)) # incorrect_cover_size = np.sum(rule.incorrect_cover(self.quant_dataframe)) # print(f"IDS incorrect cover size: {incorrect_cover_size} for rule {rule}") sum_incorrect_cover += incorrect_cover_size # print(f"IDS f5 upper bound: {self.f5_upper_bound}") # print(f"IDS f5 sum incorrect cover: {sum_incorrect_cover}") f5_unnormalized = self.f5_upper_bound - sum_incorrect_cover if self.normalize: f5 = f5_unnormalized / self.f5_upper_bound else: f5 = f5_unnormalized self._boundary_check(f5, 'f5') return f5 def f6_cover_each_example(self, solution_set): correctly_covered = np.zeros(self.nb_of_training_examples).astype(bool) for rule in solution_set.ruleset: correctly_covered = correctly_covered | rule.correct_cover(self.quant_dataframe) f6_unnormalized = np.sum(correctly_covered) if self.normalize: f6 = f6_unnormalized / self.nb_of_training_examples else: f6 = f6_unnormalized self._boundary_check(f6, 'f6') return f6 def evaluate(self, solution_set: Union[IDSRuleSet, Set[E]]) -> float: if type(solution_set) == set: solution_set = IDSRuleSet(solution_set) if type(solution_set) != IDSRuleSet: raise Exception("Type of solution_set must be IDSRuleSet, but is ", type(solution_set)) self.call_counter += 1 self.call_set_sizes.append(len(solution_set)) start_time = time.time() l = self.objective_func_params.params["lambda_array"] f0 = self.f0_minimize_rule_set_size(self.ground_set_size, len(solution_set)) if l[0] != 0 else 0 f1 = self.f1_minimize_total_nb_of_literals(solution_set) if l[1] != 0 else 0 f2 = self.f2_minimize_overlap_predicting_the_same_class(solution_set) if l[2] != 0 else 0 f3 = self.f3_minimize_overlap_predicting_different_class(solution_set) if l[3] != 0 else 0 f4 = self.f4_at_least_one_rule_per_target_value(solution_set) if l[4] != 0 else 0 f5 = self.f5_minimize_incorrect_cover(solution_set) if l[5] != 0 else 0 f6 = self.f6_cover_each_example(solution_set) if l[6] != 0 else 0 self.f0_val = f0 self.f1_val = f1 self.f2_val = f2 self.f3_val = f3 self.f4_val = f4 self.f5_val = f5 self.f6_val = f6 # print(f"IDS f1:{f1}") # print() # print(tabulate([['value', f0, f1, f2, f3, f4, f5, f6], # ['l*val', f0 * l[0], f1 * l[1], f2 * l[2], f3 * l[3], f4 * l[4], f5 * l[5], f6 * l[6]] # ], # headers=['type', 'f0', 'f1', 'f2', 'f3', 'f4', 'f5', 'f6'])) # print() fs = np.array([ f0, f1, f2, f3, f4, f5, f6 ]) / self.scale_factor result = np.dot(l, fs) if self.stat_collector is not None: self.stat_collector.add_values(f0, f1, f2, f3, f4, f5, f6, result) end_time = time.time() elapsed_time = end_time - start_time self.call_run_times.append(elapsed_time) return result def f0(self, solution_set): current_nb_of_rules: int = len(solution_set) ground_set_size = len(self.objective_func_params.params['all_rules']) return self.f0_minimize_rule_set_size(ground_set_size=ground_set_size, current_nb_of_rules=current_nb_of_rules) def f1(self, solution_set): return self.f1_minimize_total_nb_of_literals(solution_set) def f2(self, solution_set): return self.f2_minimize_overlap_predicting_the_same_class(solution_set) def f3(self, solution_set): return self.f3_minimize_overlap_predicting_different_class(solution_set) def f4(self, solution_set): return self.f4_at_least_one_rule_per_target_value(solution_set) def f5(self, solution_set): return self.f5_minimize_incorrect_cover(solution_set) def f6(self, solution_set): return self.f6_cover_each_example(solution_set) ``` #### File: mids/cover/cover_metric.py ```python import pandas as pd from mdrsl.data_structures.rules.rule_part import Consequent from mdrsl.rule_models.mids.cover.cover_checker import CoverChecker from mdrsl.rule_models.mids.mids_rule import MIDSRule import numpy as np def get_avg_incorrect_cover_size(rule: MIDSRule, df: pd.DataFrame, cover_checker: CoverChecker, ) -> float: consequent: Consequent = rule.get_consequent() nb_of_attr_in_consequent: int = len(consequent) sum_of_incorrect_cover_sizes = 0 cover = cover_checker.get_cover(rule, df) covers_size = np.sum(cover) # print(f"MIDS cover: {covers_size}") if not np.any(cover): raise Exception() for attr in consequent.get_attributes(): incorrect_cover_size_for_attr: int = np.sum(cover_checker.get_incorrect_cover(rule, df, attr, cover=cover)) sum_of_incorrect_cover_sizes += incorrect_cover_size_for_attr weighted_sum = sum_of_incorrect_cover_sizes / nb_of_attr_in_consequent # print(f"MIDS incorrect cover size: {weighted_sum} for rule {rule}") return weighted_sum ``` #### File: rule_models/rr/io_rr_rule_set_learner.py ```python import gzip import jsonpickle from rule_models.rr.rr_rule_set_learner import GreedyRoundRobinTargetRuleClassifier def store_greedy_naive_classifier(greedy_naive_classifier_abs_file_name: str, greedy_naive_clf: GreedyRoundRobinTargetRuleClassifier) -> None: frozen = jsonpickle.encode(greedy_naive_clf) with gzip.open(greedy_naive_classifier_abs_file_name, 'wt') as ofile: ofile.write(frozen) def load_greedy_naive_classifier(greedy_naive_classifier_abs_file_name: str) -> GreedyRoundRobinTargetRuleClassifier: greedy_naive_clf: GreedyRoundRobinTargetRuleClassifier with gzip.open(greedy_naive_classifier_abs_file_name, 'rt') as ifile: file_contents = ifile.read() greedy_naive_clf = jsonpickle.decode(file_contents) return greedy_naive_clf ``` #### File: mdrsl/toy_data/titanic.py ```python import os from typing import Tuple import pandas as pd from mdrsl.data_handling.split_train_test import train_test_split_pd def get_total_df_titanic(data_dir: str) -> Tuple[pd.DataFrame, str]: df_det = pd.read_csv(os.path.join(data_dir, 'titanic_train.tab'), ' ', header=None, names=['Passenger_Cat', 'Age_Cat', 'Gender']) df_y = pd.read_csv(os.path.join(data_dir, 'titanic_train.Y'), ' ', header=None, names=['Died', 'Survived']) df_total = df_det.join(df_y['Survived']) dataset_name = 'titanic' return df_total, dataset_name def prepare_data_titanic(data_dir: str, prop=0.25) -> Tuple[pd.DataFrame, pd.DataFrame, str]: df_total, dataset_name = get_total_df_titanic(data_dir) # --------------------------- df_train, df_test = train_test_split_pd(df_total, prop=prop) return df_train, df_test, dataset_name ```
{ "source": "joschout/SubmodularMaximization", "score": 3 }
#### File: examples/max_cut/calculate_cut.py ```python from typing import List from itertools import combinations, chain import numpy as np from examples.max_cut.max_cut_objective_function import calculate_cut_value VIndex = int def has_correct_shape(matrix: np.ndarray): if len(matrix.shape) != 2: return False if matrix.shape[0] != matrix.shape[1]: return False return True def powerset(iterable): """ powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3) """ xs = list(iterable) # note we return an iterator rather than a list return chain.from_iterable(combinations(xs,n) for n in range(len(xs)+1)) def main(): adjacency_matrix_lol: List[List[int]] = [[1, 1, 0], [1, 0, 1], [0, 1, 1]] adjacency_matrix_np = np.array(adjacency_matrix_lol) print(adjacency_matrix_np) for subset in powerset(range(len(adjacency_matrix_lol))): if len(subset) != 0: subset = set(subset) cut_value = calculate_cut_value(subset, adjacency_matrix_np) print(f"cut {subset} has cut value {cut_value}") if __name__ == '__main__': main() ``` #### File: submodmax/value_reuse/abstract_double_greedy_search.py ```python import warnings from typing import Set, TypeVar, Tuple, Iterable from submodmax.value_reuse.abstract_optimizer import AbstractSubmodularFunctionValueReuse, AbstractOptimizerValueReuse, FuncInfo from submodmax.value_reuse.set_info import SetInfo E = TypeVar('E') class AbstractDoubleGreedySearchValueReuse(AbstractOptimizerValueReuse): """ Parent class for Deterministic and Randomized Unconstrained submodular maximization, by Buchbinder and Feldman See also: <NAME>., <NAME>., <NAME>., & <NAME>. (2015). A tight linear time (1/2)-approximation for unconstrained submodular maximization. SIAM Journal on Computing, 44(5), 1384–1402. https://doi.org/10.1137/130929205 """ def __init__(self, objective_function: AbstractSubmodularFunctionValueReuse, ground_set: Set[E], debug: bool = True): super().__init__(objective_function, ground_set, debug) self.class_name = 'submodmax.value_reuse.AbstractDoubleGreedySearch' def should_update_X(self, a: float, b: float) -> bool: raise NotImplementedError('abstract method') def ground_set_iterator(self) -> Iterable[E]: raise NotImplementedError('abstract method') def optimize(self) -> Tuple[SetInfo, FuncInfo]: if self.debug: print("=====================================================================") print("START", self.class_name, "optimizer") print("=====================================================================") ground_set_size = len(self.ground_set) empty_set = set() X_prev_set_info: SetInfo = SetInfo( ground_set_size=ground_set_size, current_set_size=0, added_elems=empty_set, deleted_elems=empty_set, intersection_previous_and_current_elems=empty_set ) X_prev_set_info.set_current_set(set()) Y_prev_set_info = SetInfo( ground_set_size=ground_set_size, current_set_size=ground_set_size, added_elems=self.ground_set, deleted_elems=empty_set, intersection_previous_and_current_elems=empty_set ) Y_prev_set_info.set_current_set(self.ground_set.copy()) func_info_X_prev: FuncInfo = self.objective_function.evaluate(X_prev_set_info, previous_func_info=None) func_info_Y_prev: FuncInfo = self.objective_function.evaluate(Y_prev_set_info, previous_func_info=None) if self.debug: print("initialization:") print("X0 : size: ", X_prev_set_info.current_set_size, "/", ground_set_size, ", f(S): ", func_info_X_prev.func_value) print("Y0: size: ", Y_prev_set_info.current_set_size, "/", ground_set_size, ", f(S): ", func_info_Y_prev.func_value) elem: E for i, elem in enumerate(self.ground_set_iterator(), 1): singleton_set: Set[E] = {elem} # X_prev_plus_elem: Set[E] = X_prev | {elem} X_prev_plus_elem_set_info = SetInfo( ground_set_size=ground_set_size, current_set_size=X_prev_set_info.current_set_size + 1, added_elems=singleton_set, deleted_elems=empty_set, intersection_previous_and_current_elems=X_prev_set_info.current_set ) func_info_X_prev_plus_elem: FuncInfo = self.objective_function.evaluate( X_prev_plus_elem_set_info, func_info_X_prev) a: float = func_info_X_prev_plus_elem.func_value - func_info_X_prev.func_value Y_prev_minus_elem_set: Set[E] = Y_prev_set_info.current_set - {elem} Y_prev_minus_elem_set_info = SetInfo( ground_set_size=ground_set_size, current_set_size=Y_prev_set_info.current_set_size - 1, added_elems=empty_set, deleted_elems=singleton_set, intersection_previous_and_current_elems=Y_prev_minus_elem_set ) Y_prev_minus_elem_set_info.set_current_set(Y_prev_minus_elem_set) func_info_Y_prev_minus_elem = self.objective_function.evaluate( Y_prev_minus_elem_set_info, func_info_Y_prev) b: float = func_info_Y_prev_minus_elem.func_value - func_info_Y_prev.func_value if self.debug: print() print("element ", i, "/", ground_set_size) print("\t X_prev --> size: ", X_prev_set_info.current_set_size, ", f(S):", func_info_X_prev.func_value) print("\t X" + str(i) + " + e" + str(i) + " --> size: ", X_prev_plus_elem_set_info.current_set_size, ", f(S):", func_info_X_prev_plus_elem.func_value) print() print("\t Y_prev --> size: ", Y_prev_set_info.current_set_size, ", f(S):", func_info_Y_prev.func_value) print("\t Y" + str(i) + " - e" + str(i) + " --> size: ", Y_prev_minus_elem_set_info.current_set_size, ", f(S):", func_info_Y_prev_minus_elem.func_value) if self.should_update_X(a, b): new_set = X_prev_set_info.current_set | singleton_set X_prev_plus_elem_set_info.set_current_set(new_set) X_prev_set_info = X_prev_plus_elem_set_info func_info_X_prev = func_info_X_prev_plus_elem # Y_prev stays the same if self.debug: print("\tX_prev --> size:", X_prev_set_info.current_set_size, ", f(X_prev):", func_info_X_prev.func_value) else: # X_prev stays the same Y_prev_set_info = Y_prev_minus_elem_set_info func_info_Y_prev = func_info_Y_prev_minus_elem if self.debug: print("\tY_prev --> size:", Y_prev_set_info.current_set_size, ", f(Y_prev):", func_info_Y_prev.func_value) warnings.warn("remove equality check") if not X_prev_set_info.current_set == Y_prev_set_info.current_set: raise Exception("both sets should be equal") if self.debug: print("-- finished iteration --") print("X_prev --> size:", X_prev_set_info.current_set_size, ", f(X_prev):", func_info_X_prev.func_value) print("Y_prev --> size:", Y_prev_set_info.current_set_size, ", f(Y_prev):", func_info_Y_prev.func_value) print("obj val local optimum:", str(func_info_X_prev.func_value)) return X_prev_set_info, func_info_X_prev ```
{ "source": "joschout/tilde", "score": 2 }
#### File: mai_experiments/run_experiments_refactor/example_preprocessing_refactor.py ```python from typing import Optional, List, Set from problog.engine import DefaultEngine from problog.logic import Term from problog.program import SimpleProgram from mai_experiments.experiment_settings import FileNameData, DebugPrintingOptions from mai_version.IO.input_format import KnowledgeBaseFormat from mai_version.IO.label_collector import LabelCollectorMapper from mai_version.IO.parsing_background_knowledge import parse_background_knowledge_keys from mai_version.IO.parsing_examples import KeysExampleBuilder from mai_version.IO.parsing_settings.setting_parser import SettingsParserMapper from mai_version.IO.parsing_settings.utils import KeysPredictionGoalHandler from mai_version.representation.background_knowledge import BackgroundKnowledgeWrapper from mai_version.representation.example import InternalExampleFormat, ClauseDBExampleWrapper, Label, \ SimpleProgramExampleWrapper from mai_version.representation.example_collection import ExampleCollection from mai_version.representation.language import TypeModeLanguage from mai_version.trees.TreeBuilder import TreeBuilderType class Experiment: """ NOTE: we store the examples in 2 ways: * 'usable for training': the examples containing the classification predicate * 'usable for testing': the examples with the classification predicate removed """ def __init__(self): self.training_examples_collection = None self.examples_usable_for_testing = None self.possible_labels = None self.language = None self.prediction_goal = None def preprocess_examples_and_background_knowledge(self, file_name_data: FileNameData, filter_out_unlabeled_examples: bool, debug_printing_options: DebugPrintingOptions): engine = DefaultEngine() engine.unknown = 1 settings_file_parser = SettingsParserMapper.get_settings_parser(KnowledgeBaseFormat.KEYS) parsed_settings = settings_file_parser.parse(file_name_data.fname_settings) self.language = parsed_settings.language # type: TypeModeLanguage kb_format = KnowledgeBaseFormat.KEYS internal_ex_format = InternalExampleFormat.CLAUSEDB treebuilder_type = TreeBuilderType.DETERMINISTIC prediction_goal_handler = parsed_settings.get_prediction_goal_handler() # type: KeysPredictionGoalHandler self.prediction_goal = prediction_goal_handler.get_prediction_goal() # type: Term # ------------------------------------------------ # --- BACKGROUND KNOWLEDGE ----------------------- # ------------------------------------------------ background_knowledge_wrapper \ = parse_background_knowledge_keys(file_name_data.fname_background, self.prediction_goal) # type: BackgroundKnowledgeWrapper full_background_knowledge_sp \ = background_knowledge_wrapper.get_full_background_knowledge_simple_program() # type: Optional[SimpleProgram] stripped_background_knowledge = background_knowledge_wrapper.get_stripped_background_knowledge() # type: Optional[SimpleProgram] # ------------------------------------------------ # EXAMPLES example_builder = KeysExampleBuilder(self.prediction_goal, debug_printing_options.example_parsing) self.training_examples_collection = example_builder.parse(internal_ex_format, file_name_data.fname_examples, full_background_knowledge_sp) # type: ExampleCollection # ------------------------------------------------ # --- LABELS ------------------------------------- index_of_label_var = prediction_goal_handler.get_predicate_goal_index_of_label_var() # type: int label_collector = LabelCollectorMapper.get_label_collector(internal_ex_format, self.prediction_goal, index_of_label_var, engine=engine) keys_of_unlabeled_examples = label_collector.extract_labels(self.training_examples_collection) nb_of_unlabeled_examples = len(keys_of_unlabeled_examples) possible_labels = label_collector.get_labels() # type: Set[Label] self.possible_labels = list(possible_labels) # type: List[Label] # ------------------------------------------------ # TODO: change this back if necessary if filter_out_unlabeled_examples and nb_of_unlabeled_examples > 0: total_nb_of_examples = len(self.training_examples_collection.example_wrappers_sp) self.training_examples_collection = self.training_examples_collection.filter_examples_not_in_key_set( keys_of_unlabeled_examples) print("DANGEROUS: FILTERED OUT UNLABELED EXAMPLES") # ------------------------------------------------ stripped_examples_simple_program = self.training_examples_collection.get_labeled_example_wrappers_sp() # type: List[SimpleProgramExampleWrapper] self.examples_usable_for_testing = stripped_examples_simple_program # type: List[SimpleProgramExampleWrapper] if internal_ex_format == InternalExampleFormat.CLAUSEDB: stripped_examples_clausedb = ClauseDBExampleWrapper.get_clause_db_examples(stripped_examples_simple_program, background_knowledge=stripped_background_knowledge) self.examples_usable_for_testing = stripped_examples_clausedb # type: List[ClauseDBExampleWrapper] ``` #### File: mai_version/classification/classification_helper.py ```python import warnings from typing import Iterable, List # from sklearn.metrics import confusion_matrix, accuracy_score, classification_report, precision_score, recall_score # python 3.6 import time from problog.engine import GenericEngine from mai_version.classification.classification_statistics_handler import ClassificationStatisticsHandler from mai_version.model_validation.model_validation import ClassifierMapper, Classifier from mai_version.representation.query_result_label_extractor import ModelsQueryResultLabelExtractor, \ KeysQueryResultLabelExtractor try: from typing import Collection except ImportError: Collection = Iterable from problog.logic import Term from problog.program import SimpleProgram, LogicProgram from mai_version.representation.example import ExampleWrapper, InternalExampleFormat, Label def print_cm(cm, labels, hide_zeroes=False, hide_diagonal=False, hide_threshold=None): """pretty print for confusion matrixes""" columnwidth = max([len(x) for x in labels] + [5]) # 5 is value length empty_cell = " " * columnwidth # Print header print(" " + empty_cell, end=" ") for label in labels: print("%{0}s".format(columnwidth) % label, end=" ") print() # Print rows for i, label1 in enumerate(labels): print(" %{0}s".format(columnwidth) % label1, end=" ") for j in range(len(labels)): cell = "%{0}.1f".format(columnwidth) % cm[i, j] if hide_zeroes: cell = cell if float(cm[i, j]) != 0 else empty_cell if hide_diagonal: cell = cell if i != j else empty_cell if hide_threshold: cell = cell if cm[i, j] > hide_threshold else empty_cell print(cell, end=" ") print() def get_models_classifier(internal_ex_format: InternalExampleFormat, model: SimpleProgram, possible_labels: Iterable[Label], background_knowledge: LogicProgram, debug_printing: bool = False, engine: GenericEngine = None) -> Classifier: query_terms = [Term('query')(label) for label in possible_labels] query_result_label_extractor = ModelsQueryResultLabelExtractor() classifier = ClassifierMapper.get_classifier(internal_ex_format, model, query_terms, query_result_label_extractor, background_knowledge, debug_printing=debug_printing, engine=engine) return classifier def get_keys_classifier(internal_ex_format: InternalExampleFormat, model: SimpleProgram, prediction_goal: Term, index_of_label_arg: int, background_knowledge: LogicProgram, debug_printing: bool = False, engine: GenericEngine = None): query_terms = [Term('query')(prediction_goal)] query_result_label_extractor = KeysQueryResultLabelExtractor() query_result_label_extractor.set_index_of_label_arg(index_of_label_arg) classifier = ClassifierMapper.get_classifier(internal_ex_format, model, query_terms, query_result_label_extractor, background_knowledge, debug_printing=debug_printing, engine=engine) return classifier def do_labeled_examples_get_correctly_classified(classifier: Classifier, examples: Collection[ExampleWrapper], possible_labels: List[Label], debug_printing: bool = False) -> ClassificationStatisticsHandler: warnings.warn("Model verification only supports deterministic models") if debug_printing: print('\n=== CHECKING MODEL ===') print("Model verification only supports deterministic models") statistics_handler = ClassificationStatisticsHandler(possible_labels) # classifier.debug_printing = True actual_labels = [] predicted_labels = [] for example in examples: actual_label = example.label found_labels = classifier.classify(example) if len(found_labels) > 1: print('actual label: ', actual_label) print('found labels: ', found_labels) a_predicted_label = found_labels[0] # TEST actual_labels.append(str(actual_label)) predicted_labels.append(str(a_predicted_label)) statistics_handler.update_statistics(actual_label, a_predicted_label) # ------------- # conf_matrix = confusion_matrix(actual_labels, predicted_labels) # accuracy = accuracy_score(actual_labels, predicted_labels) # # possible_labels_str = [str(label) for label in possible_labels] # print("sklearn confusion matrix:") # print(conf_matrix) # print("pretty print:") # print_cm(conf_matrix, labels=possible_labels_str) print("=== MODEL VERIFICATION STATISTICS ===") print(statistics_handler.get_accuracy()[1]) # precision = precision_score(actual_labels, predicted_labels) # recall = recall_score(actual_labels, predicted_labels) # print('precision:') # print('\t' + str(precision)) # print('recall:') # print('\t' + str(recall)) print(statistics_handler.get_classification_report_str()) print(statistics_handler.get_nb_of_examples_str_verbose() + '\n') print(statistics_handler.get_confusion_matrix_str()) # nb_of_examples = len(examples) # nb_of_correcty_labeled_examples = statistics_handler.nb_ex_correctly_classified # nb_of_incorrecty_labeled_examples = statistics_handler.nb_ex_incorrectly_classified # # if debug_printing: # print("total nb of examples: " + str(nb_of_examples)) # print( # "examples labeled correctly: " + str(nb_of_correcty_labeled_examples) + "/" + str( # nb_of_examples) + ", " + str( # nb_of_correcty_labeled_examples / nb_of_examples * 100) + "%") # print("examples labeled incorrectly: " + str(nb_of_incorrecty_labeled_examples) + "/" + str( # nb_of_examples) + ", " + str( # nb_of_incorrecty_labeled_examples / nb_of_examples * 100) + "%\n") # print("--- confusion matrix: true/predicted --- :") # print(statistics_handler.get_confusion_matrix_str()) return statistics_handler # def do_labeled_examples_get_correctly_classified_keys(labeled_examples, rules_as_program, prediction_goal: Term, # index_of_label_var: int, possible_labels: Iterable[str], # background_knowledge, debug_printing: bool = False) -> bool: # """ # Accepts both SimpleProgram Examples as ClauseDB examples. # # :param labeled_examples: # :param rules_as_program: # :param prediction_goal: # :param index_of_label_var: # :param possible_labels: # :param background_knowledge: # :param debug_printing: # :return: # """ # # if debug_printing: # print('\n=== Model validation ===') # # nb_of_examples = len(labeled_examples) # nb_of_correcty_labeled_examples = 0 # nb_of_incorrecty_labeled_examples = 0 # # all_training_examples_labeled_correctly = True # # for example in labeled_examples: # true_label = example.label # # # NOTE: we strip the statements from the example and put it into a new example. # # This is why this method works for both SimplePrograms and ClauseDBs # # # remove the labeling from the labeled example # example_without_label = SimpleProgram() # for statement in example: # type: Term # if statement.functor != prediction_goal.functor: # example_without_label += statement # # found_label = \ # get_labels_single_example_keys(example_without_label, rules_as_program, prediction_goal, index_of_label_var, # possible_labels, # background_knowledge)[0] # # label_is_correct = (true_label == found_label) # if label_is_correct: # nb_of_correcty_labeled_examples += 1 # # output = 'correct\treal label: ' + str(true_label) + '\tfound label: ' + str(found_label) # # print(output) # else: # all_training_examples_labeled_correctly = False # nb_of_incorrecty_labeled_examples += 1 # if debug_printing: # output = 'incorrect\n\treal label: ' + str(true_label) + '\n\tfound label: ' + str(found_label) # print(output) # print('\tincorrectly labeled example:') # for statement in example: # print('\t\t' + str(statement)) # get_labels_single_example_models(example, rules_as_program, possible_labels, background_knowledge, # debug_printing) # print('----------------') # # if debug_printing: # print("total nb of examples: " + str(nb_of_examples)) # print("examples labeled correctly: " + str(nb_of_correcty_labeled_examples) + "/" + str( # nb_of_examples) + ", " + str( # nb_of_correcty_labeled_examples / nb_of_examples * 100) + "%") # print("examples labeled incorrectly: " + str(nb_of_incorrecty_labeled_examples) + "/" + str( # nb_of_examples) + ", " + str( # nb_of_incorrecty_labeled_examples / nb_of_examples * 100) + "%") # # return all_training_examples_labeled_correctly ``` #### File: mai_version/IO/convert_to_interpretations.py ```python from typing import Dict from problog.logic import Constant from problog.program import PrologString, SimpleProgram from mai_version.IO.parsing_settings.setting_parser import KeysSettingsParser from mai_version.IO.parsing_settings.utils import FileSettings fname_kb = "D:\\KUL\\KUL MAI\\Masterproef\\TILDE\\tilde\\fold\\data\\sisya\\t-0-0-0\\sisy.kb" fname_s = "D:\\KUL\\KUL MAI\\Masterproef\\TILDE\\tilde\\fold\\data\\sisya\\t-0-0-0\\sisy.s" parsed_settings = KeysSettingsParser().parse(fname_s) # type: FileSettings language = parsed_settings.language kb_pstr = PrologString(fname_kb) example_key_type_name = "ptid" example_databases = {} # type: Dict[Constant, SimpleProgram] # for statement in kb_pstr: # # # def interpretations(database, example_key_set, foreign_key_set): # # # # for k in example_key_set: # for line in database: # if k in line: # example_databases[k].add(line) # # # # gathetr all tuples in database that contain # for line in database: # if line has example key: # example_databases[key] += line # ``` #### File: IO/parsing_settings/setting_parser.py ```python from mai_version.IO.input_format import KnowledgeBaseFormat, KnowledgeBaseFormatException from mai_version.IO.parsing_settings.token_parser import ClassesTokenParser, TypeTokenParser, RmodeTokenParser, \ PredictionTokenParser from mai_version.IO.parsing_settings.utils import FileSettings, SettingsParsingError class SettingParser: def __init__(self): self.first_setting_token_parser = None self.settings = FileSettings() def parse(self, file_path) -> FileSettings: if self.first_setting_token_parser is not None: with open(file_path, 'r') as f: for line in f: self.first_setting_token_parser.parse_line(line, self.settings) return self.settings else: raise SettingsParsingError("No SettingTokenParser set as first token parser") class ModelsSettingsParser(SettingParser): def __init__(self): super().__init__() # TODO: ACE also supports the use of the predict() predicate in the Models format! classes_token_parser = ClassesTokenParser() type_token_parser = TypeTokenParser() rmode_token_parser = RmodeTokenParser() self.first_setting_token_parser = classes_token_parser classes_token_parser.set_successor(type_token_parser) type_token_parser.set_successor(rmode_token_parser) class KeysSettingsParser(SettingParser): def __init__(self): super().__init__() prediction_token_parser = PredictionTokenParser() type_token_parser = TypeTokenParser() rmode_token_parser = RmodeTokenParser() self.first_setting_token_parser = prediction_token_parser prediction_token_parser.set_successor(type_token_parser) type_token_parser.set_successor(rmode_token_parser) class SettingsParserMapper: @staticmethod def get_settings_parser(kb_format: KnowledgeBaseFormat) -> SettingParser: if kb_format is KnowledgeBaseFormat.KEYS: return KeysSettingsParser() elif kb_format is KnowledgeBaseFormat.MODELS: return ModelsSettingsParser() else: raise KnowledgeBaseFormatException('Only the input formats Models and Key are supported.') # def get_rmode_from_query(): # settings_prolog = PrologFile(settings_file_path) # # for statement in settings_prolog: # # print(statement) # engine = DefaultEngine() # # try: # settings_db = engine.prepare(settings_prolog) # for statement in settings_db: # print(statement) # # except ParseError as perr: # # print('ParseError thrown') # print(engine.query(settings_db, Term('rmode', 'replaceable(+V_0)'))) ``` #### File: mai_version/representation/refinement_bag.py ```python from itertools import product from typing import Dict from typing import List from typing import Optional from typing import Tuple from mai_version.representation.language import TypeModeLanguage from mai_version.representation.TILDE_query import TILDEQuery class RefinementBag: def __init__(self, conjunction, nb_of_times_addable='inf',): self.nb_of_times_addable = nb_of_times_addable # type: Optional[int] self.conjunction = conjunction # type: RefinementConjunction class RefinementConjunction: def __init__(self): self.literal_list = [] # type: List[RefinementLiteral] def get_addable_conjunctions(self, variables_already_in_query): # a conjunction = 1+ literals # a literal = 1+ variables # we need all possible combinations of moded vars # dictionary: variable name to modes variables_in_conjunction = {} # type: Dict[str, RefinementVar] for literal in self.literal_list: for var in literal.refinement_var_list: if var.name not in variables_in_conjunction: variables_already_in_query[var.name] = var # list of list all_var_mode_combos = [] # type: List[List[Tuple[str, str]]] for var in variables_in_conjunction: var_mode_combos = [] # type: List[Tuple[str, str]] for mode_of_var in variables_in_conjunction[var].modes: var_mode_combos.append((var, mode_of_var)) all_var_mode_combos.append(var_mode_combos) for combo in product(*all_var_mode_combos): # TODO: types for unification # TODO: unification with variables in query class RefinementLiteral: def __init__(self, functor: str, vars: List[RefinementVar]): self.functor = functor # type: str self.refinement_var_list = vars # type: List[RefinementVar] class RefinementVar: def __init__(self, name: str, modes: List[str], type: str): self.name = name # type: str self.modes = modes # type: List[str] self.type = type def refine_conjunctions(query: TILDEQuery, language: TypeModeLanguage, refinement_bags: List[RefinementBag]): for refinement_bag in refinement_bags: possible_conjunction_generator = refinement_bag.conjunction.get_addable_conjunctions() ``` #### File: test_datasets/MLE_test/MLE_test.py ```python from typing import Optional from mai_version.trees.tree_converter import MLETreeToProgramConverter from mai_version.IO.input_format import KnowledgeBaseFormat from mai_version.IO.parsing_settings.setting_parser import SettingParser from mai_version.IO.label_collector import SimpleProgramLabelCollector from mai_version.IO.parsing_background_knowledge import parse_background_knowledge from mai_version.IO.parsing_examples_keys_format import parse_examples_key_format_with_key from mai_version.classification.example_partitioning import SimpleProgramExamplePartitioner from mai_version.run.run_keys import run_keys_clausedb from mai_version.trees.TreeBuilder import MLEDeterministicTreeBuilder file_name_labeled_examples = 'D:\\KUL\\KUL MAI\\Masterproef\\MLE test\\mle_test_3preds.kb' file_name_settings = 'D:\\KUL\\KUL MAI\\Masterproef\\MLE test\\mle_test_3preds.s' use_clausedb = False def run_keys_simpleprogram_MLE(fname_labeled_examples: str, fname_settings: str, fname_background_knowledge:Optional[str]=None): # SETTINGS settings = SettingParser.get_settings_keys_format(fname_settings) # type: Settings prediction_goal_handler = settings.get_prediction_goal_handler() # type: KeysPredictionGoalHandler prediction_goal = prediction_goal_handler.get_prediction_goal() # type: Term language = settings.language # type: TypeModeLanguage # BACKGROUND KNOWLEDGE if fname_background_knowledge is not None: background_knowledge = parse_background_knowledge(fname_background_knowledge) # type: PrologFile else: background_knowledge = None # EXAMPLES examples = parse_examples_key_format_with_key(fname_labeled_examples) # type: List[SimpleProgramExample] # LABELS index_of_label_var = prediction_goal_handler.get_predicate_goal_index_of_label_var() # type: int label_collector = SimpleProgramLabelCollector(prediction_goal, index_of_label_var) label_collector.extract_labels(examples) possible_labels = label_collector.get_labels() # ================================= tree_builder = MLEDeterministicTreeBuilder(language, possible_labels, SimpleProgramExamplePartitioner(background_knowledge)) tree_builder.debug_printing(True) tree_builder.build_tree(examples, prediction_goal) tree = tree_builder.get_tree() print(str(tree)) tree_to_program_converter = MLETreeToProgramConverter(KnowledgeBaseFormat.KEYS, debug_printing=True, prediction_goal=prediction_goal, index = index_of_label_var) program = tree_to_program_converter.convert_tree_to_simple_program(tree, language) # do_labeled_examples_get_correctly_classified_keys(examples, program, prediction_goal, index_of_label_var, # possible_labels, background_knowledge) if use_clausedb: run_keys_clausedb(file_name_labeled_examples, file_name_settings) else: run_keys_simpleprogram_MLE(file_name_labeled_examples, file_name_settings) ``` #### File: mai_version/test/test_bongard_examples.py ```python import unittest from mai_version.classification.classification_helper import do_labeled_examples_get_correctly_classified_models from mai_version.test.test_models import ModelsTestBase class BongardModelsTest(ModelsTestBase): def setUp(self): fname_settings = 'D:\\KUL\\KUL MAI\\Masterproef\\data\\ACE-examples-data\\ace\\bongard\\examples\\bongard.s' fname_labeled_examples = 'D:\\KUL\\KUL MAI\\Masterproef\\data\\ACE-examples-data\\ace\\bongard\\examples\\bongard.kb' self.general_setup(fname_labeled_examples, fname_settings) def test_training_examples_labeled_correctly_simpleprogram(self): program = self.simple_program_setup() are_training_examples_correctly_classified = do_labeled_examples_get_correctly_classified_models(self.examples, program, self.possible_targets, self.background_knowledge) self.assertEqual(are_training_examples_correctly_classified, True) def test_training_examples_labeled_correctly_clausedb(self): program = self.clausedb_setup() are_training_examples_correctly_classified = do_labeled_examples_get_correctly_classified_models(self.examples, program, self.possible_targets, self.background_knowledge) self.assertEqual(are_training_examples_correctly_classified, True) if __name__ == '__main__': unittest.main() ``` #### File: mai_version/trees/TreeBuilder_helper_probabilistic.py ```python from typing import Dict, Iterable from mai_version.representation.example import Probability, Label, ExampleWrapper from mai_version.trees import TreeNode class ProbabilisticTreeBuildingError(Exception): pass def print_set_statistics_prob(example_set, possible_targets, indent: str = ""): nb_of_ex = len(example_set) if nb_of_ex != 0: mean_label_prob = {} nb_times_label_is_max = {} for label in possible_targets: # type: Label mean_label_prob[label] = 0 nb_times_label_is_max[label] = 0 for example in example_set: true_example_labels = example.get_label_dict() # type: Dict[Label, Probability] label_max_prob = None max_prob = 0 for label in true_example_labels.keys(): label_prob = true_example_labels[label].value mean_label_prob[label] = mean_label_prob[label] + label_prob if label_prob > max_prob: label_max_prob = label max_prob = label_prob nb_times_label_is_max[label_max_prob] = nb_times_label_is_max[label_max_prob] + 1 for label in mean_label_prob.keys(): mean_label_prob[label] = mean_label_prob[label] / nb_of_ex # printing the statistics print(indent + "nb of examples: " + str(nb_of_ex)) print(indent + "nb of times a label has the highest probability:") for label in nb_times_label_is_max: print(indent + "\t" + str(label) + ": " + str(nb_times_label_is_max[label]) + "/" + str(nb_of_ex)) print(indent + "mean probability for each label:") for label in mean_label_prob.keys(): print(indent + "\t" + str(label) + ": " + str(mean_label_prob[label])) else: print(indent + "example set is empty") def print_partition_statistics_prob(examples_satisfying_best_query, examples_not_satisfying_best_query, possible_targets, indentation): print("examples satisfying query") print_set_statistics_prob(examples_satisfying_best_query, possible_targets, indentation) print("examples not satisfying query") print_set_statistics_prob(examples_not_satisfying_best_query, possible_targets, indentation) def create_probabilistic_leaf_node(node: TreeNode, examples: Iterable[ExampleWrapper], possible_targets): # TODO: this still uses deterministic labels nb_of_ex = len(examples) if nb_of_ex != 0: mean_label_prob = {} nb_times_label_is_max = {} for label in possible_targets: # type: Label mean_label_prob[label] = 0 nb_times_label_is_max[label] = 0 for example in examples: true_example_labels = example.get_label_dict() # type: Dict[Label, Probability] label_max_prob = None max_prob = 0 for label in true_example_labels.keys(): label_prob = true_example_labels[label].value mean_label_prob[label] = mean_label_prob[label] + label_prob if label_prob > max_prob: label_max_prob = label max_prob = label_prob nb_times_label_is_max[label_max_prob] = nb_times_label_is_max[label_max_prob] + 1 for label in mean_label_prob.keys(): mean_label_prob[label] = mean_label_prob[label] / nb_of_ex label_max_prob = None max_prob = 0 for label in mean_label_prob.keys(): mean_prob_of_this_label = mean_label_prob[label] if mean_prob_of_this_label > max_prob: max_prob = mean_prob_of_this_label label_max_prob = label # making a leaf node node.classification = label_max_prob else: raise ProbabilisticTreeBuildingError("there are no examples to make this node a leaf node") ``` #### File: mai_version/trees/tree_converter.py ```python from typing import Optional, Dict, Iterator from problog.logic import Term, And, Var, Constant, AnnotatedDisjunction from problog.program import SimpleProgram from mai_version.problog_helper.problog_helper import apply_substitution_to_term from mai_version.representation.language import TypeModeLanguage from mai_version.IO.input_format import KnowledgeBaseFormat from mai_version.representation.example import Label from mai_version.trees import TreeNode from mai_version.trees.TreeBuilder import TreeBuilderType from mai_version.trees.leaf_strategy import MLEDeterministicLeafStrategy def decision_tree_to_simple_program(node: TreeNode, simple_program: SimpleProgram, predicate_generator, previous_conjunction=Term('true'), debug_printing=False): if node.has_both_children(): # assign a new predicate to this node p = next(predicate_generator) # the following if-else is only necessary to remove an unnecessary 'true' term in the head if previous_conjunction.functor == 'true': conj_left = node.query.get_literal() conj_right = ~p else: conj_left = And(previous_conjunction, node.query.get_literal()) conj_right = And(previous_conjunction, ~p) clause = (p << conj_left) simple_program += clause # recurse on left subtree decision_tree_to_simple_program(node.left_subtree, simple_program, predicate_generator, conj_left) # recurse on right subtree decision_tree_to_simple_program(node.right_subtree, simple_program, predicate_generator, conj_right) else: if node.can_classify(): clause = (node.strategy.classification << previous_conjunction) simple_program += clause else: raise InvalidTreeNodeError() def convert_tree_to_simple_program(tree_root: TreeNode, language: TypeModeLanguage, debug_printing=False) -> SimpleProgram: if debug_printing: print('\n=== START conversion of tree to program ===') print('tree to be converted:') print(str(tree_root)) predicate_generator = get_predicate_generator(language) program = SimpleProgram() decision_tree_to_simple_program(tree_root, program, predicate_generator, debug_printing=debug_printing) if debug_printing: print('resulting program:') for statement in program: print(str(statement) + ".") print('=== END conversion of tree to program ===\n') return program class InvalidTreeNodeError(Exception): pass class TreeToProgramConverter: def __init__(self, kb_format: KnowledgeBaseFormat, debug_printing: bool = False): self.kb_format = kb_format # type: KnowledgeBaseFormat self.debug_printing = debug_printing # type: bool self.predicate_generator = None self.program = None def convert_tree_to_simple_program(self, tree_root: TreeNode, language: TypeModeLanguage) -> SimpleProgram: if self.debug_printing: print('\n=== START conversion of tree to program ===') print('tree to be converted:') print(str(tree_root)) self.predicate_generator = get_predicate_generator(language) self.program = SimpleProgram() self._decision_tree_to_simple_program(tree_root) if self.debug_printing: print('resulting program:') for statement in self.program: print(statement) print('=== END conversion of tree to program ===\n') return self.program def _decision_tree_to_simple_program(self, node: TreeNode, previous_conjunction=Term('true')): if node.has_both_children(): self._handle_inner_node(node, previous_conjunction) elif node.can_classify(): self._handle_leaf_node(node, previous_conjunction) else: raise InvalidTreeNodeError() def _handle_inner_node(self, node: TreeNode, previous_conjunction: Term): # assign a new predicate to this node p = next(self.predicate_generator) # the following if-else is only necessary to remove an unnecessary 'true' term in the head if previous_conjunction.functor == 'true': conj_left = node.query.get_literal() conj_right = ~p else: conj_left = And(previous_conjunction, node.query.get_literal()) conj_right = And(previous_conjunction, ~p) clause = (p << conj_left) self.program += clause # recurse on left subtree self._decision_tree_to_simple_program(node.left_subtree, conj_left) # recurse on right subtree self._decision_tree_to_simple_program(node.right_subtree, conj_right) def _handle_leaf_node(self, node: TreeNode, previous_conjunction: Term): clause = self.get_leaf_node_clause(node, previous_conjunction) self.program += clause def get_leaf_node_clause(self, node: TreeNode, previous_conjunction: Term) -> Term: raise NotImplementedError('abstract method') class DeterministicTreeToProgramConverter(TreeToProgramConverter): def __init__(self, kb_format: KnowledgeBaseFormat, debug_printing: bool = False, prediction_goal: Optional[Term] = None, index: Optional[int] = None): super().__init__(kb_format, debug_printing) if self.kb_format == KnowledgeBaseFormat.KEYS: if prediction_goal is None: raise ValueError('prediction_goal cannot be None when kb_format==KnowledgeBaseFormat.KEYS') else: self.prediction_goal = prediction_goal if index is None: raise ValueError('index cannot be None when kb_format==KnowledgeBaseFormat.KEYS') else: self.index = index def get_leaf_node_clause(self, node: TreeNode, previous_conjunction: Term) -> Term: if self.kb_format == KnowledgeBaseFormat.MODELS: return node.strategy.classification << previous_conjunction elif self.kb_format == KnowledgeBaseFormat.KEYS: var = self.prediction_goal.args[self.index] # type: Var label = node.strategy.classification # type: Term substitution = {var.name: label} goal_with_label = apply_substitution_to_term(self.prediction_goal, substitution) # type: Term return goal_with_label << previous_conjunction else: raise ValueError("Unexpected value of KnowledgeBaseFormat: " + str(self.kb_format)) # class ModelsTreeToProgramConverter(TreeToProgramConverter): # def get_leaf_node_clause(self, node, previous_conjunction): # return node.classification << previous_conjunction # # # class KeyTreeToProgramConverter(TreeToProgramConverter): # def __init__(self, prediction_goal, index, debug_printing=False): # super().__init__(debug_printing) # self.prediction_goal = prediction_goal # self.index = index # # def get_leaf_node_clause(self, node: TreeNode, previous_conjunction: Term): # var = self.prediction_goal.args[self.index] # type: Var # label = node.classification # type: Term # substitution = {var.name: label} # goal_with_label = apply_substitution_to_term(self.prediction_goal, substitution) # type: Term # return goal_with_label << previous_conjunction class MLETreeToProgramConverter(DeterministicTreeToProgramConverter): def __init__(self, kb_format: KnowledgeBaseFormat, debug_printing: bool = False, prediction_goal: Optional[Term] = None, index: Optional[int] = None): super().__init__(kb_format, debug_printing, prediction_goal=prediction_goal, index=index) def get_leaf_node_clause(self, node: TreeNode, previous_conjunction: Term) -> Term: if self.kb_format == KnowledgeBaseFormat.MODELS: # TODO: TEST THIS strategy = node.strategy # type: MLEDeterministicLeafStrategy label_frequencies = strategy.label_frequencies # type: Optional[Dict[Label, float]] goals_with_probabilities = [] for label in label_frequencies.keys(): goal = label.with_probability(label_frequencies[label]) goals_with_probabilities.append(goal) return AnnotatedDisjunction(goals_with_probabilities, previous_conjunction) elif self.kb_format == KnowledgeBaseFormat.KEYS: var = self.prediction_goal.args[self.index] # type: Var strategy = node.strategy # type: MLEDeterministicLeafStrategy label_frequencies = strategy.label_frequencies # type: Optional[Dict[Label, float]] goals_with_probabilities = [] for label in label_frequencies.keys(): substitution = {var.name: label} # type: Dict[str, Term] goal_with_label = apply_substitution_to_term(self.prediction_goal, substitution) # type: Term probability_of_goal = Constant(label_frequencies[label]) goal_with_label.probability = probability_of_goal goals_with_probabilities.append(goal_with_label) return AnnotatedDisjunction(goals_with_probabilities, previous_conjunction) else: raise ValueError("Unexpected value of KnowledgeBaseFormat: " + str(self.kb_format)) class TreeToProgramConverterMapper: @staticmethod def get_converter(tree_builder_type: TreeBuilderType, kb_format: KnowledgeBaseFormat, debug_printing: bool = False, prediction_goal: Optional[Term] = None, index: Optional[int] = None): if tree_builder_type is TreeBuilderType.DETERMINISTIC: return DeterministicTreeToProgramConverter(kb_format, debug_printing, prediction_goal, index) elif tree_builder_type.MLEDETERMINISTIC: return MLETreeToProgramConverter(kb_format, debug_printing, prediction_goal, index) elif tree_builder_type.PROBABILISITC: return NotImplementedError('No defined treebuilder choice for: ' + str(tree_builder_type)) else: raise NotImplementedError('No defined treebuilder choice for: ' + str(tree_builder_type)) def get_predicate_generator(language: TypeModeLanguage) -> Iterator[Term]: count = 0 # type: int while True: new_name_found = False while not new_name_found: name = 'pred%d' % count count += 1 if not language.does_predicate_exist(name, 1): new_name_found = True yield Term(name) ``` #### File: tilde/refactor/back_end_picking.py ```python from enum import Enum from refactor.default_interface import DefaultHandler class QueryBackEnd(Enum): SIMPLE_PROGRAM = 1 PROBLOG = 2 CLAUSEDB = 3 DJANGO = 4 SUBTLE = 5 FLGG = 6 class UnavailableBackEndException(Exception): pass def get_back_end_default(description) -> DefaultHandler: if description == QueryBackEnd.SIMPLE_PROGRAM: try: import refactor.query_testing_back_end.problog.defaults return refactor.query_testing_back_end.problog.defaults.ProblogDefaultHandler( QueryBackEnd.SIMPLE_PROGRAM.name) except ImportError as err: raise UnavailableBackEndException(description.name + " backend not available, " + str(err)) if description == QueryBackEnd.PROBLOG or \ description == QueryBackEnd.CLAUSEDB: return None if description == QueryBackEnd.DJANGO: try: import refactor.query_testing_back_end.django.defaults return refactor.query_testing_back_end.django.defaults.DjangoDefaultHandler(QueryBackEnd.DJANGO.name) except ImportError as err: raise UnavailableBackEndException(description.name + " backend not available, " + str(err)) if description == QueryBackEnd.FLGG: try: import refactor.query_testing_back_end.flgg_py4j.defaults return refactor.query_testing_back_end.flgg_py4j.defaults.FLGGDefaultHandler(QueryBackEnd.FLGG.name) except ImportError as err: raise UnavailableBackEndException(description.name + " backend not available, " + str(err)) if description == QueryBackEnd.SUBTLE: try: import refactor.query_testing_back_end.subtle.defaults return refactor.query_testing_back_end.subtle.defaults.SubtleDefaultHandler(QueryBackEnd.SUBTLE.name) except ImportError as err: raise UnavailableBackEndException(description.name + " backend not available, " + str(err)) else: return None if __name__ == '__main__': print(QueryBackEnd.SIMPLE_PROGRAM.name) ``` #### File: refactor/io/parsing_background_knowledge.py ```python from typing import Optional, Iterable, List from problog.logic import Term from problog.program import PrologFile, SimpleProgram from refactor.representation.background_knowledge import BackgroundKnowledgeWrapper # # def parse_background_knowledge(file_name: str)-> PrologFile: # return PrologFile(file_name) def parse_background_knowledge_models(file_name: Optional[str] = None, possible_labels: Optional[Iterable[Term]] = None) -> BackgroundKnowledgeWrapper: if file_name is None: return BackgroundKnowledgeWrapper() logic_program = PrologFile(file_name) if possible_labels is not None: possible_labels_str = [str(label) for label in possible_labels] # type: List[str] found_a_prediction_clause = False prediction_goal_clauses = SimpleProgram() stripped_logic_program = SimpleProgram() for prolog_statement in logic_program: is_prediction_clause = False for possible_label_str in possible_labels_str: if str(prolog_statement).startswith(possible_label_str): is_prediction_clause = True found_a_prediction_clause = True break if is_prediction_clause: prediction_goal_clauses += prolog_statement else: stripped_logic_program += prolog_statement if found_a_prediction_clause: return BackgroundKnowledgeWrapper(logic_program=stripped_logic_program, prediction_goal_clauses=prediction_goal_clauses) else: return BackgroundKnowledgeWrapper(logic_program=logic_program) else: return BackgroundKnowledgeWrapper(logic_program=logic_program) def parse_background_knowledge_keys(file_name: Optional[str] = None, prediction_goal: Optional[Term] = None) -> BackgroundKnowledgeWrapper: if file_name is None: return BackgroundKnowledgeWrapper() logic_program = PrologFile(file_name) if prediction_goal is not None: prediction_goal_functor = prediction_goal.functor # type: str found_a_prediction_goal_clause = False prediction_goal_clauses = SimpleProgram() stripped_logic_program = SimpleProgram() for prolog_statement in logic_program: if str(prolog_statement).startswith(prediction_goal_functor): found_a_prediction_goal_clause = True prediction_goal_clauses += prolog_statement else: stripped_logic_program += prolog_statement if found_a_prediction_goal_clause: return BackgroundKnowledgeWrapper(logic_program=stripped_logic_program, prediction_goal_clauses=prediction_goal_clauses) else: return BackgroundKnowledgeWrapper(logic_program=logic_program) else: return BackgroundKnowledgeWrapper(logic_program=logic_program) ``` #### File: django/django_wrapper/ClauseWrapper.py ```python import ctypes from problog.logic import Term from refactor.query_testing_back_end.django.django_wrapper.c_library import lib_django class ConversionException(Exception): pass class ClauseWrapper: __ajoute_tete = lib_django.AjouteTete __ajoute_clause = lib_django.AjouteClause __termine_clause = lib_django.TermineClause __libere_clause = lib_django.LibereClause __affice_clause_fol = lib_django.AfficheClauseFOL def __init__(self, clause_id=None): self.clause = lib_django.NewClause() self.is_destructed = False self.has_head = False self.is_locked = False self.clause_id = clause_id self._problog_representation = None def destruct(self): if not self.is_destructed: ClauseWrapper.__libere_clause(self.clause) self.is_destructed = True else: raise ConversionException("double destruct of clause") # def __del__(self): # """ # WARNING: don't rely on the garbage collector to call the object's destructor. # Cyclic dependencies can prevent the GC from ever calling this method. # ALWAYS call destruct EXPLICITLY. # # :return: # """ # self.destruct() def print_using_c(self): if not self.is_destructed: ClauseWrapper.__affice_clause_fol(self.clause) def lock_adding_to_clause(self): if not self.is_destructed: if not self.is_locked: ClauseWrapper.__termine_clause(self.clause) self.is_locked = True else: raise ConversionException("double lock/end of clause") else: raise ConversionException("tried locking a destructed clause") def add_literal_to_body(self, literal: Term): if not self.is_destructed: var_array_c = _get_variable_array(literal) functor = str(literal.functor).encode('utf-8') arity = int(literal.arity) ClauseWrapper.__ajoute_clause(self.clause, functor, arity, var_array_c) else: raise ConversionException("adding literal to body of desctructed clause") def add_literal_as_head(self, literal: Term): """ NOTE: not mandatory; can be without head. :param literal: :return: """ if not self.is_destructed: if not self.has_head: var_array_c = _get_variable_array(literal) functor = str(literal.functor).encode('utf-8') arity = int(literal.arity) ClauseWrapper.__ajoute_tete(self.clause, functor, arity, var_array_c) self.has_head = True else: raise ConversionException("clause already has a head") else: raise ConversionException("adding literal as head to destructed clause") def __str__(self): return str(self._problog_representation) def add_problog_clause(self, problog_representation: Term): self._problog_representation = problog_representation class HypothesisWrapper(): __new_hypothese_base = lib_django.NewHypotheseBase __libere_hypothese = lib_django.LibereHypothese def __init__(self, clause_wrapper: ClauseWrapper): if clause_wrapper.is_destructed: raise ConversionException("cannot turn destructed clause into a hypothesis") elif not clause_wrapper.is_locked: raise ConversionException("cannot turn an unclosed clause into a hypothesis") else: self.hypothesis = HypothesisWrapper.__new_hypothese_base(clause_wrapper.clause) self.is_destructed = False self._prolog_hypothesis = clause_wrapper._problog_representation def destruct(self): if not self.is_destructed: HypothesisWrapper.__libere_hypothese(self.hypothesis) self.is_destructed = True else: raise ConversionException("double destruct of hypothesis") # def __del__(self): # """ # WARNING: don't rely on the garbage collector to call the object's destructor. # Cyclic dependencies can prevent the GC from ever calling this method. # ALWAYS call destruct EXPLICITLY. # # :return: # """ # self.destruct() def __str__(self): return str(self._prolog_hypothesis) # # # # class HypothesisWrapper(ClauseWrapper): # __new_hypothese_base = lib_django.NewHypotheseBase # # __libere_hypothese = lib_django.LibereHypothese # # def __init__(self): # super().__init__() # self.is_set_to_hypothesis = False # # def convert_to_hypothesis(self): # if not self.is_destructed: # if not self.is_set_to_hypothesis: # HypothesisWrapper.__new_hypothese_base(self.clause, 0) # self.is_set_to_hypothesis = True # else: # raise ConversionException("double set to hypothesis") # else: # raise ConversionException("tried setting a destructed clause as a hypothesis") # # def destruct(self): # if not self.is_destructed: # HypothesisWrapper.__libere_hypothese(self.clause) # self.is_destructed = True # else: # raise ConversionException("double destruct") def _get_variable_array(literal: Term): VariableArray = ctypes.c_char_p * literal.arity var_array_c = VariableArray() for i in range(literal.arity): var_array_c[i] = str(literal.args[i]).encode('utf-8') return var_array_c ``` #### File: query_testing_back_end/django/splitter.py ```python from typing import Optional from refactor.tilde_essentials.split_criterion import SplitCriterionBuilder from refactor.tilde_essentials.splitter import Splitter, SplitInfo from refactor.tilde_essentials.tree_node import TreeNode class DjangoSplitter(Splitter): def get_split(self, examples, current_node: TreeNode) -> Optional[SplitInfo]: current_best_split_info = None split_criterion = SplitCriterionBuilder.get_split_criterion( self.split_criterion_str, examples, current_node.get_labels(examples)) generator = self.test_generator_builder.generate_possible_tests(examples, current_node) for candidate_test in generator: if self.verbose: print(candidate_test) examples_satisfying_test, examples_not_satisfying_test = self._split_examples(candidate_test, examples) candidate_test_score = split_criterion.calculate(examples_satisfying_test, examples_not_satisfying_test ) if current_best_split_info is None or candidate_test_score > current_best_split_info.score: current_best_split_info = SplitInfo(test=candidate_test, examples_left=examples_satisfying_test, examples_right=examples_not_satisfying_test, score=candidate_test_score, threshold=split_criterion.get_threshold(), split_criterion=split_criterion.get_name()) else: # if we do not keep the query, destruct it candidate_test.destruct() return current_best_split_info ``` #### File: query_testing_back_end/flgg_py4j/query_wrapping.py ```python from refactor.tilde_essentials.query_wrapping import QueryWrapper class FLGGQueryWrapper(QueryWrapper): def __str__(self): return self.external_representation ``` #### File: query_testing_back_end/problog/evaluation.py ```python from typing import Optional import problog from problog.engine import GenericEngine, DefaultEngine, ClauseDB from problog.logic import Term, Var from problog.program import LogicProgram, SimpleProgram, PrologString from refactor.tilde_essentials.evaluation import TestEvaluator from refactor.tilde_essentials.example import Example from refactor.representation.TILDE_query import TILDEQuery class ProbLogQueryEvaluator(TestEvaluator): def evaluate(self, instance, test) -> bool: raise NotImplementedError('abstract method') def __init__(self, engine: GenericEngine = None): if engine is None: self.engine = DefaultEngine() self.engine.unknown = 1 else: self.engine = engine self.to_query = Term('to_query') class SimpleProgramQueryEvaluator(ProbLogQueryEvaluator): def __init__(self, background_knowledge: Optional[LogicProgram] = None, engine: GenericEngine = None): super().__init__(engine=engine) if background_knowledge is None: self.db = self.engine.prepare(SimpleProgram()) # type: ClauseDB else: self.db = self.engine.prepare(background_knowledge) # type: ClauseDB self.db += Term('query')(self.to_query) def evaluate(self, instance: Example, test: TILDEQuery) -> bool: query_conj = test.to_conjunction() db_to_query = self.db.extend() for statement in instance.data: db_to_query += statement # TODO: remove ugly hack if hasattr(instance, 'classification_term'): db_to_query += instance.classification_term db_to_query += (self.to_query << query_conj) query_result = problog.get_evaluatable().create_from(db_to_query, engine=self.engine).evaluate() return query_result[self.to_query] > 0.5 if __name__ == '__main__': instance = PrologString(""" color(blue). taste(sweet). texture(fruity). """) query = TILDEQuery(None, Term('color')(Var('X'))) evaluator = SimpleProgramQueryEvaluator() result = evaluator.evaluate(instance, query) print(result) ``` #### File: query_testing_back_end/subtle/test_generation.py ```python from typing import Optional from problog.logic import Term from refactor.tilde_essentials.test_generation import FOLTestGeneratorBuilder from refactor.query_testing_back_end.subtle.clause_handling import build_hypothesis from refactor.query_testing_back_end.subtle.query_wrapping import SubtleQueryWrapper from refactor.representation.TILDE_query import TILDEQueryHiddenLiteral, TILDEQuery from refactor.representation.language import TypeModeLanguage from refactor.tilde_essentials.refinement_controller import RefinementController class SubtleTestGeneratorBuilder(FOLTestGeneratorBuilder): def __init__(self, language: TypeModeLanguage, query_head_if_keys_format: Optional[Term] = None): super().__init__(SubtleTestGeneratorBuilder.get_initial_query(query_head_if_keys_format)) self.language = language def generate_possible_tests(self, examples, current_node): query_wrapper = self._get_associated_query(current_node) # type: SubtleQueryWrapper query_to_refine = query_wrapper.tilde_query # type: TILDEQuery generator = RefinementController.get_refined_query_generator( query_to_refine, self.language) for tilde_query in generator: tilde_query_str = build_hypothesis(tilde_query) # type: str yield SubtleQueryWrapper(tilde_query, tilde_query_str) @staticmethod def get_initial_query(query_head_if_keys_format: Optional[Term] = None): if query_head_if_keys_format is not None: initial_tilde_query = TILDEQueryHiddenLiteral(query_head_if_keys_format) else: initial_tilde_query = TILDEQuery(None, None) wrapper_initial_tilde_query = SubtleQueryWrapper(initial_tilde_query, build_hypothesis(initial_tilde_query)) return wrapper_initial_tilde_query ``` #### File: refactor/representation/example_collection.py ```python import warnings from typing import List, Optional, Set from problog.logic import Constant from refactor.representation.example import SimpleProgramExampleWrapper, ClauseDBExampleWrapper, ExampleWrapper class UnlabeledExampleException(Exception): pass class EmptyExampleCollectionException(Exception): pass class ExampleCollection: def __init__(self): self.example_wrappers_sp = None # type: Optional[List[SimpleProgramExampleWrapper]] self.example_wrappers_clausedb = None # type: Optional[List[ClauseDBExampleWrapper]] self.are_sp_examples_labeled = False # type: bool self.are_clausedb_examples_labeled = False # type: bool def get_example_wrappers_sp(self) -> List[SimpleProgramExampleWrapper]: if self.example_wrappers_sp is None: raise EmptyExampleCollectionException("There are no SimpleProgram examples") if not self.are_sp_examples_labeled: warnings.warn("The SimpleProgram examples are not labeled") return self.example_wrappers_sp def get_example_wrappers_clausedb(self) -> List[ClauseDBExampleWrapper]: if self.example_wrappers_clausedb is None: raise EmptyExampleCollectionException("There are no ClauseDB examples") if not self.are_clausedb_examples_labeled: warnings.warn("The ClauseDB examples are not labeled") return self.example_wrappers_clausedb def get_labeled_example_wrappers_sp(self) -> List[SimpleProgramExampleWrapper]: if self.example_wrappers_sp is None: raise EmptyExampleCollectionException("There are no SimpleProgram examples") # if they are labeled: if self.are_sp_examples_labeled: return self.example_wrappers_sp else: # SimpleProgram examples are not labeled if self.are_clausedb_examples_labeled: if len(self.example_wrappers_sp) == len(self.example_wrappers_clausedb): # give the label of the clausedb to the corresponding simpleprogram for i in range(0, len(self.example_wrappers_sp)): self.example_wrappers_sp[i].label = self.example_wrappers_clausedb[i].label # set flag: now they are labeled self.are_sp_examples_labeled = True return self.example_wrappers_sp else: # both clausedb and simpleprograms not labeled raise UnlabeledExampleException("Both the ClauseDB and SimpleProgram examples are unlabeled") def get_labeled_example_wrappers_clausedb(self) -> List[ClauseDBExampleWrapper]: if self.example_wrappers_clausedb is None: raise EmptyExampleCollectionException("There are no ClauseDB examples") if self.are_clausedb_examples_labeled: return self.example_wrappers_clausedb else: # clausedb not labeled if self.are_sp_examples_labeled: if len(self.example_wrappers_sp) == len(self.example_wrappers_clausedb): # give the label of the simpleprogram to the corresponding clausedb for i in range(0, len(self.example_wrappers_sp)): self.example_wrappers_clausedb[i].label = self.example_wrappers_sp[i].label # now the clausedb are labeled! self.are_clausedb_examples_labeled = True return self.example_wrappers_clausedb else: # both clausedb and simpleprograms not labeled raise UnlabeledExampleException("Both the ClauseDB and SimpleProgram examples are unlabeled") def set_example_wrappers_sp(self, example_wrappers_sp: List[SimpleProgramExampleWrapper]): self.example_wrappers_sp = example_wrappers_sp # if the examples are labeled, set flag if example_wrappers_sp[0].label is not None: self.are_sp_examples_labeled = True def set_example_wrappers_clausedb(self, example_wrappers_clausedb: List[ClauseDBExampleWrapper]): self.example_wrappers_clausedb = example_wrappers_clausedb # if the examples are labeled, set flag if example_wrappers_clausedb[0].label is not None: self.are_clausedb_examples_labeled = True def get_examples(self) -> List[ExampleWrapper]: if self.example_wrappers_clausedb is not None: return self.get_example_wrappers_clausedb() if self.example_wrappers_sp is not None: return self.get_example_wrappers_sp() raise EmptyExampleCollectionException("The collection contains no SimpleProgram and no ClauseDB examples") def get_labeled_examples(self) -> List[ExampleWrapper]: if self.example_wrappers_clausedb is not None: return self.get_labeled_example_wrappers_clausedb() if self.example_wrappers_sp is not None: return self.get_labeled_example_wrappers_sp() raise EmptyExampleCollectionException("The collection contains no SimpleProgram and no ClauseDB examples") def filter_examples(self, key_set: Set[Constant]) -> 'ExampleCollection': """ Only KEEPS the examples IN the key_set :param key_set: :return: """ filtered_collection = ExampleCollection() example_wrappers_sp = self.example_wrappers_sp example_wrappers_clausedb = self.example_wrappers_clausedb if example_wrappers_sp is not None and example_wrappers_clausedb is not None: filtered_sp = [] filtered_clausedb = [] for ex_index, ex_sp in enumerate(example_wrappers_sp): if ex_sp.key in key_set: filtered_sp.append(ex_sp) filtered_clausedb.append(example_wrappers_clausedb[ex_index]) filtered_collection.set_example_wrappers_sp(filtered_sp) filtered_collection.set_example_wrappers_clausedb(filtered_clausedb) return filtered_collection elif example_wrappers_sp is not None: filtered_sp = [ex_sp for ex_sp in example_wrappers_sp if ex_sp.key in key_set] filtered_collection.set_example_wrappers_sp(filtered_sp) return filtered_collection elif example_wrappers_clausedb is not None: filtered_clausedb = [ex_clausedb for ex_clausedb in example_wrappers_clausedb if ex_clausedb.key in key_set] filtered_collection.set_example_wrappers_clausedb(filtered_clausedb) return filtered_collection return filtered_collection # TODO: merge with function above, they only differ in boolean check def filter_examples_not_in_key_set(self, key_set: Set[Constant]) -> 'ExampleCollection': """ Only KEEPS the examples IN the key_set :param key_set: :return: """ filtered_collection = ExampleCollection() example_wrappers_sp = self.example_wrappers_sp example_wrappers_clausedb = self.example_wrappers_clausedb if example_wrappers_sp is not None and example_wrappers_clausedb is not None: filtered_sp = [] filtered_clausedb = [] for ex_index, ex_sp in enumerate(example_wrappers_sp): if ex_sp.key not in key_set: filtered_sp.append(ex_sp) filtered_clausedb.append(example_wrappers_clausedb[ex_index]) filtered_collection.set_example_wrappers_sp(filtered_sp) filtered_collection.set_example_wrappers_clausedb(filtered_clausedb) return filtered_collection elif example_wrappers_sp is not None: filtered_sp = [ex_sp for ex_sp in example_wrappers_sp if ex_sp.key not in key_set] filtered_collection.set_example_wrappers_sp(filtered_sp) return filtered_collection elif example_wrappers_clausedb is not None: filtered_clausedb = [ex_clausedb for ex_clausedb in example_wrappers_clausedb if ex_clausedb.key not in key_set] filtered_collection.set_example_wrappers_clausedb(filtered_clausedb) return filtered_collection return filtered_collection ``` #### File: refactor/representation/problog_helper.py ```python from typing import Dict from problog.logic import Term, Var def apply_substitution_to_term(term: Term, substitution: Dict[str, Term]) -> Term: complete_substitution = {} # NOTE: all variables in the term need to be defined in the substitution for var in term.variables(): complete_substitution[var.name] = Var(var.name) complete_substitution.update(substitution) term_substitution = term.apply(complete_substitution) return term_substitution def get_probability(term: Term) -> float: if term.probability is None: return 1.0 else: return term.probability ``` #### File: refactor/representation/TILDE_query.py ```python from typing import Optional, List from problog.logic import Term, Clause, And from problog.util import OrderedSet from refactor.representation.rule import Rule class TILDEQuery(Rule): """Represents a query as used in tilde. """ def __init__(self, parent_query: Optional['TILDEQuery'], new_literal: Optional[Term]): Rule.__init__(self) self.parent = parent_query # type: Optional['TILDEQuery'] self.literal = new_literal # type: Optional[Term] def get_literals(self) -> List[Term]: """Get literals in the rule. :return: list of literals including target :rtype: list[Term] """ if self.parent is None: if self.literal is None: return [] else: return [self.literal] else: return self.parent.get_literals() + [self.literal] def has_head(self) -> bool: # TODO: what if the literal of the root is None? root = self._get_root() return isinstance(root, TILDEQueryHiddenLiteral) def get_literals_of_body(self) -> List[Term]: """Get literals in the body of the rule. :return: list of literals including target :rtype: list[Term] """ literals = self.get_literals() # if len(literals) > 0 and isinstance(literals[0], TILDEQueryHiddenLiteral): if self.has_head(): # there is a head: return literals[1:] else: return literals def get_literal(self) -> Term: """Get most recently added body literal. :return: None (the body is empty for this type of rule) :rtype: Term """ return self.literal def __and__(self, literal: Term) -> 'TILDEQuery': """Add a literal to the body of the rule. :param literal: literal to add :type literal: Term :return: new rule :rtype: TILDEQuery """ return TILDEQuery(self, literal) def to_conjunction(self, functor=None) -> And: """Transform query into ProbLog conjunction :param functor: override rule functor (set to None to keep original) :type functor: str | None :return: clause representation :rtype: list[Clause] """ literals = self.get_literals() def rename_recursive(lit, new_functor_of_recursive): if lit.functor == '_recursive': return Term(new_functor_of_recursive, *lit.args) else: return lit literals = [rename_recursive(lit, functor) for lit in literals] return And.from_list(literals) def has_new_variables(self) -> OrderedSet: # if I am the first query literal if self.parent is None: return self.get_literal().variables() else: return self.get_literal().variables() - self.parent.get_variables() def __str__(self) -> str: literals = self.get_literals() # if len(literals) > 0 and isinstance(literals[0], TILDEQueryHiddenLiteral): if len(literals) > 0 and self.has_head(): head = literals[0] if len(literals) == 1: return '%s :- true.' % (head,) else: return '%s :- %s' % (head, ', '.join(map(str, literals[1:]))) else: head = Term('false') if len(literals) == 0: return '%s :- true.' % (head,) else: return '%s :- %s' % (head, ', '.join(map(str, literals))) def get_literals_as_subsumption_list(self): if self.parent is None: if self.literal is None: return [] else: # if isinstance(self, TILDEQueryHiddenLiteral): # head = self.literal # return [~ head] # else: # return [self.literal] return [] else: return self.parent.get_literals_as_subsumption_list() + [self.literal] def __len__(self) -> int: if self.parent is not None: return len(self.parent) + 1 else: return 1 def _get_root(self): current_node = self root = self while current_node is not None: if current_node.parent is not None: root = current_node.parent current_node = current_node.parent return root class TILDEQueryHiddenLiteral(TILDEQuery): def __init__(self, literal: Optional[Term] = None): TILDEQuery.__init__(self, None, literal) def get_literals(self) -> List[Term]: """Get literals in the rule. :return: list of literals including target :rtype: list[Term] """ return [self.literal] def get_literal(self): """Get most recently added body literal. :return: None (the body is empty for this type of rule) :rtype: Term """ return None def __str__(self): return '%s :- true' % self.literal ``` #### File: refactor/tilde_essentials/example.py ```python from typing import Iterable from refactor.tilde_essentials.destuctable import Destructible class Example(Destructible): """ Container class for an example, storing its data and label (types undefined) """ def __init__(self, data, label): self.data = data self.label = label def destruct(self): destruct_method = getattr(self.data, 'destruct', None) if callable(destruct_method): self.data.destruct() def get_labels(examples: Iterable): labels = set() for current_example in examples: # for label in current_example.labels: labels.add(current_example.label) return labels def calculate_majority_class(examples): """Calculate the majority class label in the given set of examples. """ label_counts = calculate_label_counts(examples) label_with_max_count = max(label_counts, key=(lambda key: label_counts[key])) count = label_counts[label_with_max_count] # type: int return label_with_max_count, count def calculate_label_counts(examples): """Assumes that the examples each have ONE label, and not a distribution over labels""" label_counts = {} for example in examples: label = example.label label_counts[label] = label_counts.get(label, 0) + 1 return label_counts def calculate_label_frequencies(examples): """Assumes that the examples each have ONE label, and not a distribution over labels""" label_counts = calculate_label_counts(examples) for label in label_counts.keys(): label_counts[label] = label_counts[label] / len(examples) return label_counts def calculate_label_frequencies_and_absolute_counts(examples): """Assumes that the examples each have ONE label, and not a distribution over labels""" label_counts = calculate_label_counts(examples) label_frequencies = {} for label in label_counts.keys(): label_frequencies[label] = label_counts[label] / len(examples) return label_frequencies, label_counts ``` #### File: refactor/tilde_essentials/splitter.py ```python from typing import Optional from refactor.tilde_essentials.evaluation import TestEvaluator from refactor.tilde_essentials.split_criterion import SplitCriterionBuilder from refactor.tilde_essentials.test_generation import TestGeneratorBuilder from refactor.tilde_essentials.tree_node import TreeNode class SplitInfo: """ Contains the information about a split using a test on a set of training examples. """ def __init__(self, test, examples_left, examples_right, score, threshold, split_criterion): self.test = test self.examples_left = examples_left self.examples_right = examples_right self.score = score self.threshold = threshold self.split_criterion = split_criterion # def get_test(self): # return self.test # # @property # def get_examples_left(self): # return self.examples_left # # def get_examples_right(self): # raise NotImplementedError('abstract method') # # def get_score(self) -> float: # raise NotImplementedError('abstract method') def get_split_criterion(self) -> str: """ Returns 'gini' for Gini index, 'entropy' for information gain, 'MSE' for mean squared error and 'MSA' for Mean Absolute Error :return: """ raise NotImplementedError('abstract method') def passing_score(self) -> bool: return self.score >= self.threshold class Splitter: """ Finds the best test for splitting a node based on the node's training examples. It must be initialized with a SplitCriterion and TestEvaluator. Reports the split info using a SplitInfo object. """ def __init__(self, split_criterion_str, test_evaluator: TestEvaluator, test_generator_builder: TestGeneratorBuilder, verbose=False): self.split_criterion_str = split_criterion_str self.test_evaluator = test_evaluator self.test_generator_builder = test_generator_builder self.verbose=verbose def get_split(self, examples, current_node: TreeNode) -> Optional[SplitInfo]: current_best_split_info = None split_criterion = SplitCriterionBuilder.get_split_criterion( self.split_criterion_str, examples, current_node.get_labels(examples)) generator = self.test_generator_builder.generate_possible_tests(examples, current_node) for candidate_test in generator: if self.verbose: print(candidate_test) examples_satisfying_test, examples_not_satisfying_test = self._split_examples(candidate_test, examples) candidate_test_score = split_criterion.calculate(examples_satisfying_test, examples_not_satisfying_test ) if current_best_split_info is None or candidate_test_score > current_best_split_info.score: current_best_split_info = SplitInfo(test=candidate_test, examples_left=examples_satisfying_test, examples_right=examples_not_satisfying_test, score=candidate_test_score, threshold=split_criterion.get_threshold(), split_criterion=split_criterion.get_name()) # elif candidate_test_score > current_best_split_info.score: # current_best_split_info = SplitInfo(test=can) # current_best_split_info.test = candidate_test # current_best_split_info.examples_left = examples_satisfying_test # current_best_split_info.examples_right = examples_not_satisfying_test return current_best_split_info def _split_examples(self, test, examples): examples_satisfying_test = set() examples_not_satifying_test = set() for example in examples: succeeds_test = self.test_evaluator.evaluate(example, test) if succeeds_test: examples_satisfying_test.add(example) else: examples_not_satifying_test.add(example) return examples_satisfying_test, examples_not_satifying_test ``` #### File: refactor/tilde_essentials/stop_criterion.py ```python from refactor.tilde_essentials.splitter import SplitInfo import math class StopCriterion: """ Checks whether a the node should be split; i.e. whether a stop criterion is reached. """ # def should_investigate_node(self): # raise NotImplementedError('abstract method') def __init__(self, max_depth: int = math.inf, min_samples_split: int = 2, min_samples_leaf: int = 2 # 1 ): self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf def cannot_split_before_test(self, examples, depth): """ If we already know we cannot split without having to calculate possible tests, report True here. :param depth: :param examples: :return: """ if depth >= self.max_depth: return True if len(examples) < self.min_samples_split: return True def _not_enough_examples_in_leaves(self, split_info: SplitInfo) -> bool: """ Return true if the smallest of the two subsets has NOT enough examples to be acceptable as a leaf. # NOTE: I changed it back to min, this explanation isn't true anymore # REASON: setting: # minimal_cases(n). # the minimal nb of examples that a leaf in the tree should cover # # (De Raedt: a good heuristic: # stop expanding nodes # WHEN the number of examples in the nodes falls below a certain (user-defined threshold) # NOTE: # the nodes get split into two children # --> possible case: # only for 1 of the children, the nb of examples falls below the threshold # IF by splitting, # ONE of the nodes falls below a certain user-defined threshold # (i.e. the MIN of their nbs < threshold) # THEN we don't split this node :param split_info: :return: """ return min( len(split_info.examples_left), len(split_info.examples_right) ) < self.min_samples_leaf def cannot_split_on_test(self, split_info: SplitInfo): if split_info is None: return True if not split_info.passing_score(): return True if self._not_enough_examples_in_leaves(split_info): return True return False ``` #### File: refactor/tilde_essentials/tree_node.py ```python from typing import Optional from refactor.tilde_essentials.destuctable import Destructible from refactor.tilde_essentials.example import get_labels # # class TreeBuildInfo: # def __init__(self): # self.labels = None # self.n_examples = None # from refactor.tilde_essentials.tree_printer import TreeNodePrinter class TreeNode(Destructible): """ """ def __init__(self, parent=None, depth=0): self.parent = parent # type: Optional['TreeNode'] self.depth = depth # type: int self.left_child = None # type: Optional['TreeNode'] self.right_child = None # type: Optional['TreeNode'] self.test = None # the set of labels occurring in this node self.labels = None self.leaf_strategy = None def get_labels(self, examples): if self.labels is None: self.labels = get_labels(examples) return self.labels def is_leaf_node(self) -> bool: return self.left_child is None and self.right_child is None def __str__(self): return TreeNodePrinter.to_string(self) def destruct(self): destruct_method = getattr(self.test, 'destruct', None) if callable(destruct_method): self.test.destruct() if self.left_child is not None: self.left_child.destruct() if self.right_child is not None: self.right_child.destruct() def count_nb_of_nodes(node: Optional['TreeNode'] = None) -> int: if node is None: return 0 else: count = 1 # count the node itself count += count_nb_of_nodes(node.left_child) count += count_nb_of_nodes(node.right_child) return count def count_nb_of_inner_nodes(node: Optional['TreeNode'] = None) -> int: if node.is_leaf_node(): return 0 else: count = 1 count += count_nb_of_inner_nodes(node.left_child) count += count_nb_of_inner_nodes(node.right_child) return count class TreeNodePrinter: """ Pretty prints a TreeNode tree structure. """ setting = "full" @staticmethod def to_string(tree_node: TreeNode) -> str: if TreeNodePrinter.setting == "full": return TreeNodePrinter.to_string_full_query(tree_node) if TreeNodePrinter.setting == "compact": TreeNodePrinter.to_string_compact(tree_node) @staticmethod def to_string_full_query(tree_node: TreeNode, indentation='', current_node_number=0) -> str: """ Represents the tree as a string using some layouting :param tree_node: :param indentation: :param current_node_number: :return: """ node_indentation = indentation child_indentation = indentation if current_node_number == 0: child_indentation = '\t' elif current_node_number == 1: node_indentation += '|-' child_indentation += '|\t' else: node_indentation += '\-' child_indentation += '\t' if tree_node.is_leaf_node(): result = tree_node.leaf_strategy.to_string(node_indentation) # result = node_indentation + "Leaf, class label: " + str(self.classification) + ", [" + str( # self.nb_of_examples_with_label) + "/" + str(self.nb_of_examples_in_this_node) + "]" + '\n' return result else: result = node_indentation + 'INode, query: ' + str(tree_node.test) + '\n' if tree_node.left_child is not None: result = result + TreeNodePrinter.to_string_full_query(tree_node.left_child, child_indentation, 1) if tree_node.right_child is not None: result = result + TreeNodePrinter.to_string_full_query(tree_node.right_child, child_indentation, 2) return result @staticmethod def to_string_compact(tree_node: TreeNode, indentation='', current_node_number=0): """ Represents the tree as a string using some layouting :param tree_node: :param indentation: :param current_node_number: :return: """ node_indentation = indentation child_indentation = indentation if current_node_number == 0: # root node child_indentation = '' elif current_node_number == 1: # this node is the LEFT child node of its parent node_indentation += '+--' child_indentation += '| ' else: # this node is the RIGHT child node of its parent node_indentation += '+--' child_indentation += ' ' if tree_node.is_leaf_node(): if current_node_number == 0: result = tree_node.leaf_strategy.to_string_compact() elif current_node_number == 1: result = node_indentation + 'yes: ' + tree_node.leaf_strategy.to_string_compact() else: result = node_indentation + 'no: ' + tree_node.leaf_strategy.to_string_compact() # result = self.strategy.to_string(node_indentation) # result = node_indentation + "Leaf, class label: " + str(self.classification) + ", [" + str( # self.nb_of_examples_with_label) + "/" + str(self.nb_of_examples_in_this_node) + "]" + '\n' return result else: if current_node_number == 0: # TODO: remove dependency from TILDEQueryHiddenLiteral if tree_node.test.parent is not None: # if tree_node.test.parent is not None and isinstance(tree_node.test.parent, TILDEQueryHiddenLiteral): result = str(tree_node.test.parent.literal) + '\n' else: result = "" result = result + str(tree_node.test.get_literal()) + ' ?\n' elif current_node_number == 1: result = node_indentation + 'yes: ' + str(tree_node.test.get_literal()) + ' ?\n' else: result = node_indentation + 'no: ' + str(tree_node.test.get_literal()) + ' ?\n' # result = node_indentation + 'INode, query: ' + str(self.query) + '\n' if tree_node.left_child is not None: result = result + TreeNodePrinter.to_string_compact(tree_node.left_child, child_indentation, 1) if tree_node.right_child is not None: result = result + TreeNodePrinter.to_string_compact(tree_node.right_child, child_indentation, 2) return result ``` #### File: refactor/tilde_essentials/tree.py ```python from typing import Optional from refactor.tilde_essentials.destuctable import Destructible from refactor.tilde_essentials.evaluation import TestEvaluator from refactor.tilde_essentials.tree_builder import TreeBuilder from refactor.tilde_essentials.tree_node import TreeNode, count_nb_of_nodes, count_nb_of_inner_nodes class DecisionTree(Destructible): """ Decision tree used for making predictions. Initially empty. An internal TreeNode tree is fitted on training examples using a TreeBuilder. """ def __init__(self): self.tree = None # type: Optional[TreeNode] self.tree_builder = None # type: Optional[TreeBuilder] self.test_evaluator = None # type: Optional[TestEvaluator] self.tree_pruner = None def fit(self, examples, tree_builder: TreeBuilder): self.tree_builder = tree_builder self.tree_builder.build(examples) self.test_evaluator = self.tree_builder.splitter.test_evaluator self.tree = tree_builder.tree_root if self.tree_pruner is not None: self.tree = self.tree_pruner.prune(self.tree) def prune(self, pruning_function): pruning_function(self.tree) def predict(self, example): return self._predict_recursive(example, self.tree) def _predict_recursive(self, example, tree_node: TreeNode): if tree_node.is_leaf_node(): return tree_node.leaf_strategy.predict(example) else: succeeds_test = self.test_evaluator.evaluate(example, tree_node.test) if succeeds_test: return self._predict_recursive(example, tree_node.left_child) else: return self._predict_recursive(example, tree_node.right_child) def __str__(self): return self.tree.__str__() def destruct(self): self.tree.destruct() def get_nb_of_nodes(self) -> int: return count_nb_of_nodes(self.tree) def get_nb_of_inner_nodes(self): return count_nb_of_inner_nodes(self.tree) def write_out_tree(fname: str, tree: DecisionTree): # write out tree print('\t--- writing out tree to: ' + fname) with open(fname, 'w') as f: f.write(str(tree)) ```
{ "source": "JoschuaL/Stammtisch-Tool", "score": 3 }
#### File: Stammtisch-Tool/unittests/report.py ```python import unittest from db_models.report import Report from datetime import date from dateutil.parser import parse from main import app class TestReport(unittest.TestCase): def setUp(self): with app.app_context(): from main import get_db self.db = get_db() self.object_to_remove = [] # def tearDown(self): # # delete objects which have been created by the test # for obj in self.object_to_remove: # self.db.session.delete(obj) # self.db.session.commit() def test_create_report(self): report = Report() report.location = "Heidelberg" self.assertEqual(report.location, "Heidelberg") self.assertNotEqual(report.location, "") def test_save_object(self): report = Report() report.location = 'Heidelberg' report.date = date.today() report.start_time = parse("14:30").time() report.end_time = parse("16:30").time() self.object_to_remove.append(report) report.report_saved = date.today() self.db.session.add(report) self.db.session.commit() report2 = Report.get_by_date_and_location(date.today(), "Heidelberg") self.assertIsNotNone(report2) # self.assertEquals(report.id, report2.id) if __name__ == '__main__': unittest.main() ``` #### File: Stammtisch-Tool/unit_tests/report.py ```python import unittest from db_models.report import Report from datetime import date from dateutil.parser import parse from main import get_db db = get_db() # import mysql # import pymysql # pymysql.install_as_MySQLdb() # import MySQLdb # mysql://sql7315108:<EMAIL> # db = MySQLdb.connect(host="sql7.freemysqlhosting.net", # your host, usually localhost # user="sql7315108", # your username # passwd="<PASSWORD>", # your password # db="sql7315108") # # class TestReport(unittest.TestCase): # def setUp(self): # # self.db = g.db # # # self.db = mysql.connector.connect( # # host="sql7.freemysqlhosting.net", # # user="sql7315108", # # passwd="<PASSWORD>" # # # # ) # engine = create_engine( # "mysql://sql7315108:<EMAIL>/sql7319232.db", # # isolation_level="READ UNCOMMITTED" # ) # self.db = engine.connect() # self.object_to_remove = [] # # def tearDown(self): # for obj in self.object_to_remove: # self.db.session.delete(obj) # self.db.session.commit() # # def test_create_report(self): # report = Report() # report.location = "Heidelberg" # assert report.location == "Heidelberg" # assert report.location != "" # # def test_save_object(self): # report = Report() # report.location = 'Heidelberg' # report.date = date.today() # report.start_time = parse("14:30").time() # report.end_time = parse("16:30").time() # self.object_to_remove.append(report) # report.report_saved = date.today() # self.db.session.add(report) # self.db.session.commit() # # report2 = Report.get_by_date_and_location(date.today(), "Heidelberg") # assert report is report2 # # # if __name__ == '__main__': # unittest.main() # # # class TestReportObject(unittest.TestCase): # def test_assign_attributes(self): # report = Report() # # report.meetup_location = 'Heidelberg' # report.meetup_date = date.today() # report.male_organizers = 2 # report.female_organizers = 0 # report.other_organizers = 0 # # self.assertEqual(report.meetup_location, 'Heidelberg') # self.assertNotEqual(report.male_organizers, 20) # self.assertEqual(report.meetup_date, date.today()) # self.assertEqual(report.female_organizers, 0) # self.assertNotEqual(report.other_organizers, 4) # # if __name__ == '__main__': # unittest.main() ```
{ "source": "joschuck/OpenCV-with-Python-Series", "score": 3 }
#### File: src/01_thresholding/otsus_thresholding.py ```python import sys import cv2 import numpy as np from PySide2.QtCore import Qt from PySide2.QtGui import QImage, QPixmap from PySide2.QtWidgets import QApplication, QComboBox, QWidget, QLabel, QVBoxLayout, QSlider, QPushButton, QFileDialog class ThresholdingGui(QWidget): image: np.ndarray titles = [ 'Original Image', 'THRESH_BINARY + cv2.THRESH_OTSU' ] def __init__(self): super(ThresholdingGui, self).__init__() self.setWindowTitle('Otsu\'s Thresholding') open_image_btn = QPushButton('Open Image', self) open_image_btn.clicked.connect(self.open_image) self.method_combobox = QComboBox() for title in self.titles: self.method_combobox.addItem(title) self.method_combobox.currentIndexChanged.connect(self.update_preview) self.threshold_label = QLabel('Threshold calculated: -') self.image_label = QLabel() self.image = np.tile(np.arange(256, dtype=np.uint8).repeat(2), (512, 1)) q_img = QImage(self.image.data, 512, 512, 512, QImage.Format_Indexed8) self.image_label.setPixmap(QPixmap.fromImage(q_img)) # Create layout and add widgets layout = QVBoxLayout() layout.addWidget(open_image_btn) layout.addWidget(self.method_combobox) layout.addWidget(self.threshold_label) layout.addWidget(self.image_label) # Set dialog layout self.setLayout(layout) def open_image(self): image_path, _ = QFileDialog.getOpenFileName(self, "Load Image", filter="Image Files (*.tiff *.png *.jpeg *.jpg *.bmp)") if image_path: self.image = cv2.imread(image_path, 0) self.update_preview() def update_preview(self): method_idx = self.method_combobox.currentIndex() if method_idx == 0: ret, th = '-', self.image elif method_idx == 1: ret, th = cv2.threshold(self.image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) self.threshold_label.setText(f"Threshold calculated: {ret}") image_h, image_w = th.shape q_img = QImage(th.data, image_w, image_h, image_w, QImage.Format_Indexed8) self.image_label.setPixmap(QPixmap.fromImage(q_img)) if __name__ == '__main__': app = QApplication(sys.argv) ex = ThresholdingGui() ex.show() sys.exit(app.exec_()) ``` #### File: src/util/image.py ```python __author__ = '<NAME>' __email__ = '<EMAIL>' __all__ = ['to_q_image', 'to_q_pixmap'] from PySide2.QtGui import QImage, QPixmap import numpy as np def to_q_image(image: np.ndarray): """ Converts a OpenCV / NumPy array to a QImage. Expects the image to be 8 bit. Is able to convert Grayscale, BGR and ARGG images. Parameters ---------- image : np.ndarray Input Image Returns ------- QImage The converted image. If image is None, returns an empty QImage. """ if image is None: return QImage() if image.dtype == np.uint8: if len(image.shape) == 2: height, width = image.shape return QImage(image.data, width, height, width, QImage.Format_Indexed8) elif len(image.shape) == 3: height, width, ch = image.shape if image.shape[2] == 3: return QImage(image.data, width, height, width * 3, QImage.Format_BGR888) elif image.shape[2] == 4: return QImage(image.data, width, height, width * 3, QImage.Format_ARGB32) def to_q_pixmap(image: QPixmap): """ Converts a OpenCV / NumPy array to a QPixmap. Expects the image to be 8 bit. Is able to convert Grayscale, BGR and ARGG images. Parameters ---------- image : np.ndarray Input Image Returns ------- QPixmap The converted QPixmap. If image is None, returns an empty QPixmap. """ return QPixmap(to_q_image(image)) ```
{ "source": "JoschUniHD/BA-DeepFilter_Mixed", "score": 2 }
#### File: BA-DeepFilter_Mixed/Data_Preparation/Prepare_NSTDB.py ```python # Before running this section, download the QTdatabase, the Noise Stress database and add it to the current folder # and install the Physionet WFDB package # # QTdatabase: https://physionet.org/static/published-projects/qtdb/qt-database-1.0.0.zip # MIT-BIH Noise Stress Test Database: https://physionet.org/static/published-projects/nstdb/mit-bih-noise-stress-test-database-1.0.0.zip # Installing Physionet WFDB package run from your terminal: # $ pip install wfdb # # ============================================================ # # authors: <NAME>, <NAME> # email: <EMAIL>, <EMAIL> # github id: Dacapi91, fperdigon # # ============================================================ import numpy as np import wfdb import _pickle as pickle def prepare(NSTDBPath='data/mit-bih-noise-stress-test-database-1.0.0/'): bw_signals, bw_fields = wfdb.rdsamp(NSTDBPath + 'bw') em_signals, em_fields = wfdb.rdsamp(NSTDBPath + 'em') ma_signals, ma_fields = wfdb.rdsamp(NSTDBPath + 'ma') for key in bw_fields: print(key, bw_fields[key]) for key in em_fields: print(key, em_fields[key]) for key in ma_fields: print(key, ma_fields[key]) # Save Data with open('data/NoiseALL.pkl', 'wb') as output: # Overwrites any existing file. pickle.dump([bw_signals, em_signals, ma_signals], output) print('=========================================================') print('MIT BIH data noise stress test database (NSTDB) saved as pickle') ```
{ "source": "JoschUniHD/BA-Hagedorn", "score": 2 }
#### File: BA-Hagedorn/deepFilter/dl_pipeline_single.py ```python import keras from keras import backend as K from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, EarlyStopping, TensorBoard from keras import losses from sklearn.model_selection import train_test_split import deepFilter.dl_models_single as models # Custom loss SSD def ssd_loss(y_true, y_pred): return K.sum(K.square(y_pred - y_true), axis=-2) # Combined loss SSD + MSE def combined_ssd_mse_loss(y_true, y_pred): return K.mean(K.square(y_true - y_pred), axis=-2) * 500 + K.sum(K.square(y_true - y_pred), axis=-2) def combined_ssd_mad_loss(y_true, y_pred): return K.max(K.square(y_true - y_pred), axis=-2) * 50 + K.sum(K.square(y_true - y_pred), axis=-2) # Custom loss SAD def sad_loss(y_true, y_pred): return K.sum(K.sqrt(K.square(y_pred - y_true)), axis=-2) # Custom loss MAD def mad_loss(y_true, y_pred): return K.max(K.square(y_pred - y_true), axis=-2) def train_dl(Dataset, experiment, signal_size=512): print('Deep Learning pipeline: Training the model for exp ' + str(experiment)) [X_train, y_train, X_test, y_test] = Dataset X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.3, shuffle=True, random_state=1) # ================== # LOAD THE DL MODEL # ================== if experiment == 'FCN-DAE': # FCN_DAE model = models.FCN_DAE(signal_size=signal_size) model_label = 'FCN_DAE' if experiment == 'DRNN': # DRNN model = models.DRRN_denoising(signal_size=signal_size) model_label = 'DRNN' if experiment == 'Vanilla L': # Vanilla CNN linear model = models.deep_filter_vanilla_linear(signal_size=signal_size) model_label = 'Vanilla_L' if experiment == 'Vanilla NL': # Vanilla CNN non linear model = models.deep_filter_vanilla_Nlinear(signal_size=signal_size) model_label = 'Vanilla_NL' if experiment == 'Multibranch LANL': # Multibranch linear and non linear model = models.deep_filter_I_LANL(signal_size=signal_size) model_label = 'Multibranch_LANL' if experiment == 'Multibranch LANLD': # Inception-like linear and non linear dilated model = models.deep_filter_model_I_LANL_dilated(signal_size=signal_size) model_label = 'Multibranch_LANLD' print('\n ' + model_label + '\n ') model.summary() epochs = int(1e5) # 100000 # epochs = 100 batch_size = 128 lr = 1e-3 # lr = 1e-4 minimum_lr = 1e-10 # Loss function selection according to method implementation if experiment == 'DRNN': criterion = keras.losses.mean_squared_error elif experiment == 'FCN-DAE': criterion = ssd_loss else: criterion = combined_ssd_mad_loss model.compile(loss=criterion, optimizer=keras.optimizers.Adam(lr=lr), metrics=[losses.mean_squared_error, losses.mean_absolute_error, ssd_loss, mad_loss]) # Keras Callbacks # checkpoint model_filepath = model_label + '_weights.best.hdf5' checkpoint = ModelCheckpoint(model_filepath, monitor="val_loss", verbose=1, save_best_only=True, mode='min', # on acc has to go max save_weights_only=True) reduce_lr = ReduceLROnPlateau(monitor="val_loss", factor=0.5, min_delta=0.05, mode='min', # on acc has to go max patience=2, min_lr=minimum_lr, verbose=1) early_stop = EarlyStopping(monitor="val_loss", # "val_loss" min_delta=0.05, mode='min', # on acc has to go max patience=10, verbose=1) tb_log_dir = './runs/' + model_label tboard = TensorBoard(log_dir=tb_log_dir, histogram_freq=0, write_graph=False, write_grads=False, write_images=False, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None) # To run the tensor board # tensorboard --logdir=./runs # GPU model.fit(x=X_train, y=y_train, validation_data=(X_val, y_val), batch_size=batch_size, epochs=epochs, verbose=1, callbacks=[early_stop, reduce_lr, checkpoint, tboard]) K.clear_session() def test_dl(Dataset, experiment, signal_size=512): print('Deep Learning pipeline: Testing the model') [train_set, train_set_GT, X_test, y_test] = Dataset batch_size = 32 # ================== # LOAD THE DL MODEL # ================== if experiment == 'FCN-DAE': # FCN_DAE model = models.FCN_DAE(signal_size=signal_size) model_label = 'FCN_DAE' if experiment == 'DRNN': # DRNN model = models.DRRN_denoising(signal_size=signal_size) model_label = 'DRNN' if experiment == 'Vanilla L': # Vanilla CNN linear model = models.deep_filter_vanilla_linear(signal_size=signal_size) model_label = 'Vanilla_L' if experiment == 'Vanilla NL': # Vanilla CNN non linear model = models.deep_filter_vanilla_Nlinear(signal_size=signal_size) model_label = 'Vanilla_NL' if experiment == 'Multibranch LANL': # Multibranch linear and non linear model = models.deep_filter_I_LANL(signal_size=signal_size) model_label = 'Multibranch_LANL' if experiment == 'Multibranch LANLD': # Inception-like linear and non linear dilated model = models.deep_filter_model_I_LANL_dilated(signal_size=signal_size) model_label = 'Multibranch_LANLD' print('\n ' + model_label + '\n ') model.summary() # Loss function selection according to method implementation if experiment == 'DRNN': criterion = 'mse' elif experiment == 'FCN-DAE': criterion = ssd_loss else: criterion = combined_ssd_mad_loss model.compile(loss=criterion, optimizer=keras.optimizers.Adam(lr=0.01), metrics=[losses.mean_squared_error, losses.mean_absolute_error, ssd_loss, mad_loss]) # checkpoint model_filepath = model_label + '_weights.best.hdf5' # load weights model.load_weights(model_filepath) # Test score y_pred = model.predict(X_test, batch_size=batch_size, verbose=1) K.clear_session() return [X_test, y_test, y_pred] ```
{ "source": "joschu/Theano", "score": 2 }
#### File: cuda/tests/test_dnn.py ```python import logging import unittest from nose.plugins.skip import SkipTest import numpy import theano from theano.compat.six import StringIO from theano.gof.python25 import any import theano.tensor as T import theano.tests.unittest_tools as utt from theano.sandbox.neighbours import images2neibs, neibs2images from theano.tensor.signal.downsample import max_pool_2d from theano.tensor.signal.downsample import DownsampleFactorMaxGrad # Skip test if cuda_ndarray is not available. import theano.sandbox.cuda as cuda if not cuda.cuda_available: raise SkipTest('Optional package cuda disabled') if theano.config.mode == 'FAST_COMPILE': mode_with_gpu = theano.compile.mode.get_mode('FAST_RUN').including('gpu') mode_without_gpu = theano.compile.mode.get_mode( 'FAST_RUN').excluding('gpu') else: mode_with_gpu = theano.compile.mode.get_default_mode().including('gpu') mode_without_gpu = theano.compile.mode.get_default_mode().excluding('gpu') def pool_2d_i2n(input, ds=(2, 2), strides=None, pool_function=T.max, mode='ignore_borders'): if strides is None: strides = ds if strides[0] > ds[0] or strides[1] > ds[1]: raise RuntimeError( "strides should be smaller than or equal to ds," " strides=(%d, %d) and ds=(%d, %d)" % (strides + ds)) shape = input.shape neibs = images2neibs(input, ds, strides, mode=mode) pooled_neibs = pool_function(neibs, axis=1) output_width = (shape[2] - ds[0]) // strides[0] + 1 output_height = (shape[3] - ds[1]) // strides[1] + 1 pooled_output = pooled_neibs.reshape((shape[0], shape[1], output_width, output_height)) return pooled_output def test_pooling(): if not cuda.dnn.dnn_available(): raise SkipTest(cuda.dnn.dnn_available.msg) x = T.ftensor4() for func in (T.max, T.mean): for ws in (2, 4, 5): for stride in (2, 3): if stride > ws: continue if ws == stride and func is T.max: # We will check that the opt introduced it. out1 = max_pool_2d(x, (ws, ws), ignore_border=True) else: out1 = cuda.dnn.dnn_pool( x, ws=(ws, ws), stride=(stride, stride), mode='max' if func is T.max else "average") out2 = pool_2d_i2n(x, ds=(ws, ws), strides=(stride, stride), pool_function=func) f1 = theano.function([x], out1, mode=mode_with_gpu) assert any([isinstance(node.op, cuda.dnn.GpuDnnPool) for node in f1.maker.fgraph.apply_nodes]) f2 = theano.function([x], out2, mode=mode_with_gpu) assert not any([isinstance(node.op, cuda.dnn.GpuDnnPool) for node in f2.maker.fgraph.apply_nodes]) for shp in [(1, 10, 100, 100), (1, 3, 99, 99), (32, 1, 147, 197), ]: data = numpy.random.normal(0, 1, shp).astype("float32") a = f1(data).__array__() b = f2(data).__array__() assert numpy.allclose(a, b, atol=numpy.finfo(numpy.float32).eps) # Test the grad for shp in [(1, 1, 2, 2), (1, 1, 3, 3)]: data = numpy.random.normal(0, 1, shp).astype("float32")*10 ws = 2 strides = 2 # This test the CPU grad + opt + GPU implemtentation def fn(x): return max_pool_2d(x, (ws, ws), ignore_border=True) theano.tests.unittest_tools.verify_grad(fn, [data], cast_to_output_type=False, mode=mode_with_gpu) # Confirm that the opt would have inserted it. f = theano.function([x], theano.grad(fn(x).sum(), x), mode=mode_with_gpu) assert any([isinstance(node.op, cuda.dnn.GpuDnnPoolGrad) for node in f.maker.fgraph.toposort()]) # Test the GPU grad + GPU implementation def fn(x): dnn_op = cuda.dnn.dnn_pool( x, ws=(ws, ws), stride=(stride, stride), mode='max' if func is T.max else "average") return dnn_op theano.tests.unittest_tools.verify_grad(fn, [data], cast_to_output_type=False, mode=mode_with_gpu) # Confirm that we get the good op. f = theano.function([x], theano.grad(fn(x).sum(), x), mode=mode_with_gpu) assert any([isinstance(node.op, cuda.dnn.GpuDnnPoolGrad) for node in f.maker.fgraph.toposort()]) g_out = f(data) if func is T.max: # Compare again the CPU result out = max_pool_2d(x, (ws, ws), ignore_border=True) f = theano.function([x], theano.grad(out.sum(), x), mode=mode_without_gpu) assert any([isinstance(node.op, DownsampleFactorMaxGrad) for node in f.maker.fgraph.toposort()]) c_out = f(data) assert numpy.allclose(c_out, g_out) def test_pooling_opt(): if not cuda.dnn.dnn_available(): raise SkipTest(cuda.dnn.dnn_available.msg) x = T.ftensor4() f = theano.function( [x], max_pool_2d(x, ds=(2, 2), ignore_border=True), mode=mode_with_gpu) assert any([isinstance(n.op, cuda.dnn.GpuDnnPool) for n in f.maker.fgraph.toposort()]) f = theano.function( [x], T.grad(max_pool_2d(x, ds=(2, 2), ignore_border=True).sum(), x), mode=mode_with_gpu.including("cudnn")) assert any([isinstance(n.op, cuda.dnn.GpuDnnPoolGrad) for n in f.maker.fgraph.toposort()]) def test_dnn_tag(): """ We test that if cudnn isn't avail we crash and that if it is avail, we use it. """ x = T.ftensor4() old = theano.config.on_opt_error theano.config.on_opt_error = "raise" sio = StringIO() handler = logging.StreamHandler(sio) logging.getLogger('theano.compile.tests.test_dnn').addHandler(handler) # Silence original handler when intentionnally generating warning messages logging.getLogger('theano').removeHandler(theano.logging_default_handler) raised = False try: f = theano.function( [x], max_pool_2d(x, ds=(2, 2), ignore_border=True), mode=mode_with_gpu.including("cudnn")) except (AssertionError, RuntimeError), e: assert not cuda.dnn.dnn_available() raised = True finally: theano.config.on_opt_error = old logging.getLogger('theano.compile.tests.test_dnn').removeHandler(handler) logging.getLogger('theano').addHandler(theano.logging_default_handler) if not raised: assert cuda.dnn.dnn_available() assert any([isinstance(n.op, cuda.dnn.GpuDnnPool) for n in f.maker.fgraph.toposort()]) ```
{ "source": "JosCla/image-stego", "score": 4 }
#### File: JosCla/image-stego/lsb-stego.py ```python from PIL import Image # Converts a string to binary using ASCII encoding def textToBinary(text): return ''.join((format(ord(i), 'b')).zfill(8) for i in text) # Getting user input to find which file to open print('Enter image file to open:') imgIn = input() print('Enter text to encode:') textIn = input() print('Enter image file to write to:') imgOut = input() # Taking our message, converting to binary messageBin = textToBinary(textIn) # Loading an image's pixel data img_pre = Image.open(imgIn) width, height = img_pre.size pixels = img_pre.load() # Changing the least significant bit of each pixel to match each bit of our encoded message currBit = 0; for x in range(0, width): if (currBit >= len(messageBin)): break # Getting the current pixel currPix = pixels[x, 0] #print('[%d, %d]: [%d, %d, %d]'%(x, 0, currPix[0], currPix[1], currPix[2])) # Changing the r, g, and b values of the pixel newPix = list(currPix) for c in range(0, 3): if (currBit >= len(messageBin)): break colorBin = list(format(currPix[c], 'b').zfill(8)) colorBin[7] = messageBin[currBit] colorBin = ''.join(colorBin) newPix[c] = int(colorBin, 2) currBit += 1 # Overwriting old pixel currPix = tuple(newPix) pixels[x, 0] = currPix # Displaying the modified pixel #print(' -> [%d, %d, %d]'%(currPix[0], currPix[1], currPix[2])) #print(' (%c, %c, %c)'%(messageBin[currBit-3], messageBin[currBit-2], messageBin[currBit-1])) # Rewriting the image's pixel data to a new image img_pre.save(imgOut) ```
{ "source": "joscollin/teuthology", "score": 2 }
#### File: teuthology/teuthology/beanstalk.py ```python import beanstalkc import yaml import logging import pprint import sys from collections import OrderedDict from teuthology.config import config from teuthology import report log = logging.getLogger(__name__) def connect(): host = config.queue_host port = config.queue_port if host is None or port is None: raise RuntimeError( 'Beanstalk queue information not found in {conf_path}'.format( conf_path=config.teuthology_yaml)) return beanstalkc.Connection(host=host, port=port) def watch_tube(connection, tube_name): """ Watch a given tube, potentially correcting to 'multi' if necessary. Returns the tube_name that was actually used. """ if ',' in tube_name: log.debug("Correcting tube name to 'multi'") tube_name = 'multi' connection.watch(tube_name) connection.ignore('default') return tube_name def walk_jobs(connection, tube_name, processor, pattern=None): """ def callback(jobs_dict) """ log.info("Checking Beanstalk Queue...") job_count = connection.stats_tube(tube_name)['current-jobs-ready'] if job_count == 0: log.info('No jobs in Beanstalk Queue') return # Try to figure out a sane timeout based on how many jobs are in the queue timeout = job_count / 2000.0 * 60 for i in range(1, job_count + 1): print_progress(i, job_count, "Loading") job = connection.reserve(timeout=timeout) if job is None or job.body is None: continue job_config = yaml.safe_load(job.body) job_name = job_config['name'] job_id = job.stats()['id'] if pattern is not None and pattern not in job_name: continue processor.add_job(job_id, job_config, job) end_progress() processor.complete() def print_progress(index, total, message=None): msg = "{m} ".format(m=message) if message else '' sys.stderr.write("{msg}{i}/{total}\r".format( msg=msg, i=index, total=total)) sys.stderr.flush() def end_progress(): sys.stderr.write('\n') sys.stderr.flush() class JobProcessor(object): def __init__(self): self.jobs = OrderedDict() def add_job(self, job_id, job_config, job_obj=None): job_id = str(job_id) job_dict = dict( index=(len(self.jobs) + 1), job_config=job_config, ) if job_obj: job_dict['job_obj'] = job_obj self.jobs[job_id] = job_dict self.process_job(job_id) def process_job(self, job_id): pass def complete(self): pass class JobPrinter(JobProcessor): def __init__(self, show_desc=False, full=False): super(JobPrinter, self).__init__() self.show_desc = show_desc self.full = full def process_job(self, job_id): job_config = self.jobs[job_id]['job_config'] job_index = self.jobs[job_id]['index'] job_priority = job_config['priority'] job_name = job_config['name'] job_desc = job_config['description'] print 'Job: {i:>4} priority: {pri:>4} {job_name}/{job_id}'.format( i=job_index, pri=job_priority, job_id=job_id, job_name=job_name, ) if self.full: pprint.pprint(job_config) elif job_desc and self.show_desc: for desc in job_desc.split(): print '\t {desc}'.format(desc=desc) class RunPrinter(JobProcessor): def __init__(self): super(RunPrinter, self).__init__() self.runs = list() def process_job(self, job_id): run = self.jobs[job_id]['job_config']['name'] if run not in self.runs: self.runs.append(run) print run class JobDeleter(JobProcessor): def __init__(self, pattern): self.pattern = pattern super(JobDeleter, self).__init__() def add_job(self, job_id, job_config, job_obj=None): job_name = job_config['name'] if self.pattern in job_name: super(JobDeleter, self).add_job(job_id, job_config, job_obj) def process_job(self, job_id): job_config = self.jobs[job_id]['job_config'] job_name = job_config['name'] print 'Deleting {job_name}/{job_id}'.format( job_id=job_id, job_name=job_name, ) job_obj = self.jobs[job_id].get('job_obj') if job_obj: job_obj.delete() report.try_delete_jobs(job_name, job_id) def pause_tube(connection, tube, duration): duration = int(duration) if not tube: tubes = sorted(connection.tubes()) else: tubes = [tube] prefix = 'Unpausing' if duration == 0 else "Pausing for {dur}s" templ = prefix + ": {tubes}" log.info(templ.format(dur=duration, tubes=tubes)) for tube in tubes: connection.pause_tube(tube, duration) def stats_tube(connection, tube): stats = connection.stats_tube(tube) result = dict( name=tube, count=stats['current-jobs-ready'], paused=(stats['pause'] != 0), ) return result def main(args): machine_type = args['--machine_type'] status = args['--status'] delete = args['--delete'] runs = args['--runs'] show_desc = args['--description'] full = args['--full'] pause_duration = args['--pause'] try: connection = connect() if machine_type and not pause_duration: # watch_tube needs to be run before we inspect individual jobs; # it is not needed for pausing tubes watch_tube(connection, machine_type) if status: print stats_tube(connection, machine_type) elif pause_duration: pause_tube(connection, machine_type, pause_duration) elif delete: walk_jobs(connection, machine_type, JobDeleter(delete)) elif runs: walk_jobs(connection, machine_type, RunPrinter()) else: walk_jobs(connection, machine_type, JobPrinter(show_desc=show_desc, full=full)) except KeyboardInterrupt: log.info("Interrupted.") finally: connection.close() ``` #### File: teuthology/lock/query.py ```python import logging import os import urllib import requests from teuthology import misc from teuthology.config import config log = logging.getLogger(__name__) def get_status(name): name = misc.canonicalize_hostname(name, user=None) uri = os.path.join(config.lock_server, 'nodes', name, '') response = requests.get(uri) success = response.ok if success: return response.json() log.warning( "Failed to query lock server for status of {name}".format(name=name)) return None def get_statuses(machines): if machines: statuses = [] for machine in machines: machine = misc.canonicalize_hostname(machine) status = get_status(machine) if status: statuses.append(status) else: log.error("Lockserver doesn't know about machine: %s" % machine) else: statuses = list_locks() return statuses def is_vm(name=None, status=None): if status is None: if name is None: raise ValueError("Must provide either name or status, or both") name = misc.canonicalize_hostname(name) status = get_status(name) return status.get('is_vm', False) def list_locks(keyed_by_name=False, **kwargs): uri = os.path.join(config.lock_server, 'nodes', '') for key, value in kwargs.iteritems(): if kwargs[key] is False: kwargs[key] = '0' if kwargs[key] is True: kwargs[key] = '1' if kwargs: if 'machine_type' in kwargs: kwargs['machine_type'] = kwargs['machine_type'].replace(',','|') uri += '?' + urllib.urlencode(kwargs) try: response = requests.get(uri) except requests.ConnectionError: success = False log.exception("Could not contact lock server: %s", config.lock_server) else: success = response.ok if success: if not keyed_by_name: return response.json() else: return {node['name']: node for node in response.json()} return dict() def find_stale_locks(owner=None): """ Return a list of node dicts corresponding to nodes that were locked to run a job, but the job is no longer running. The purpose of this is to enable us to nuke nodes that were left locked due to e.g. infrastructure failures and return them to the pool. :param owner: If non-None, return nodes locked by owner. Default is None. """ def might_be_stale(node_dict): """ Answer the question: "might this be a stale lock?" The answer is yes if: It is locked It has a non-null description containing multiple '/' characters ... because we really want "nodes that were locked for a particular job and are still locked" and the above is currently the best way to guess. """ desc = node_dict['description'] if (node_dict['locked'] is True and desc is not None and desc.startswith('/') and desc.count('/') > 1): return True return False # Which nodes are locked for jobs? nodes = list_locks(locked=True) if owner is not None: nodes = [node for node in nodes if node['locked_by'] == owner] nodes = filter(might_be_stale, nodes) def node_job_is_active(node, cache): """ Is this node's job active (e.g. running or waiting)? :param node: The node dict as returned from the lock server :param cache: A set() used for caching results :returns: True or False """ description = node['description'] if description in cache: return True (name, job_id) = description.split('/')[-2:] url = os.path.join(config.results_server, 'runs', name, 'jobs', job_id, '') resp = requests.get(url) if not resp.ok: return False job_info = resp.json() if job_info['status'] in ('running', 'waiting'): cache.add(description) return True return False result = list() # Here we build the list of of nodes that are locked, for a job (as opposed # to being locked manually for random monkeying), where the job is not # running active_jobs = set() for node in nodes: if node_job_is_active(node, active_jobs): continue result.append(node) return result ``` #### File: teuthology/provision/openstack.py ```python import json import logging import os import random import re import subprocess import time import tempfile from subprocess import CalledProcessError from teuthology import misc from teuthology.openstack import OpenStack, OpenStackInstance from teuthology.config import config from teuthology.contextutil import safe_while from teuthology.exceptions import QuotaExceededError log = logging.getLogger(__name__) class ProvisionOpenStack(OpenStack): """ A class that provides methods for creating and destroying virtual machine instances using OpenStack """ def __init__(self): super(ProvisionOpenStack, self).__init__() self.user_data = tempfile.mktemp() log.debug("ProvisionOpenStack: " + str(config.openstack)) self.basename = 'target' self.up_string = 'The system is finally up' self.property = "%16x" % random.getrandbits(128) def __del__(self): if os.path.exists(self.user_data): os.unlink(self.user_data) def init_user_data(self, os_type, os_version): """ Get the user-data file that is fit for os_type and os_version. It is responsible for setting up enough for ansible to take over. """ template_path = config['openstack']['user-data'].format( os_type=os_type, os_version=os_version) nameserver = config['openstack'].get('nameserver', '8.8.8.8') user_data_template = open(template_path).read() user_data = user_data_template.format( up=self.up_string, nameserver=nameserver, username=self.username, lab_domain=config.lab_domain) open(self.user_data, 'w').write(user_data) def attach_volumes(self, name, volumes): """ Create and attach volumes to the named OpenStack instance. """ for i in range(volumes['count']): volume_name = name + '-' + str(i) try: self.run("volume show -f json " + volume_name) except subprocess.CalledProcessError as e: if 'No volume with a name or ID' not in e.output: raise e # do not use OpenStack().run because its # bugous for volume create as of openstackclient 3.2.0 # https://bugs.launchpad.net/python-openstackclient/+bug/1619726 misc.sh( "openstack volume create -f json " + config['openstack'].get('volume-create', '') + " " + " --property ownedby=" + config.openstack['ip'] + " --size " + str(volumes['size']) + " " + volume_name) with safe_while(sleep=2, tries=100, action="volume " + volume_name) as proceed: while proceed(): try: r = OpenStack().run("volume show -f json " + volume_name) status = self.get_value(json.loads(r), 'status') if status == 'available': break else: log.info("volume " + volume_name + " not available yet") except subprocess.CalledProcessError: log.info("volume " + volume_name + " not information available yet") # do not use OpenStack().run because its # bugous for volume misc.sh("openstack server add volume " + name + " " + volume_name) @staticmethod def ip2name(prefix, ip): """ return the instance name suffixed with the /16 part of the IP. """ digits = map(int, re.findall('.*\.(\d+)\.(\d+)', ip)[0]) return prefix + "%03d%03d" % tuple(digits) def create(self, num, os_type, os_version, arch, resources_hint): """ Create num OpenStack instances running os_type os_version and return their names. Each instance has at least the resources described in resources_hint. """ log.debug('ProvisionOpenStack:create') if arch is None: arch = self.get_default_arch() resources_hint = self.interpret_hints({ 'machine': config['openstack']['machine'], 'volumes': config['openstack']['volumes'], }, resources_hint) self.init_user_data(os_type, os_version) image = self.image(os_type, os_version, arch) if 'network' in config['openstack']: net = "--nic net-id=" + str(self.net_id(config['openstack']['network'])) else: net = '' flavor = self.flavor(resources_hint['machine'], arch, config['openstack'].get('flavor-select-regexp')) cmd = ("flock --close --timeout 28800 /tmp/teuthology-server-create.lock" + " openstack server create" + " " + config['openstack'].get('server-create', '') + " -f json " + " --image '" + str(image) + "'" + " --flavor '" + str(flavor) + "'" + " --key-name teuthology " + " --user-data " + str(self.user_data) + " " + net + " --min " + str(num) + " --max " + str(num) + " --security-group teuthology" + " --property teuthology=" + self.property + " --property ownedby=" + config.openstack['ip'] + " --wait " + " " + self.basename) try: self.run(cmd, type='compute') except CalledProcessError as exc: if "quota exceeded" in exc.output.lower(): raise QuotaExceededError(message=exc.output) raise instances = filter( lambda instance: self.property in instance['Properties'], self.list_instances()) instances = [OpenStackInstance(i['ID']) for i in instances] fqdns = [] try: network = config['openstack'].get('network', '') for instance in instances: ip = instance.get_ip(network) name = self.ip2name(self.basename, ip) self.run("server set " + "--name " + name + " " + instance['ID']) fqdn = name + '.' + config.lab_domain if not misc.ssh_keyscan_wait(fqdn): console_log = misc.sh("openstack console log show %s " "|| true" % instance['ID']) log.error(console_log) raise ValueError('ssh_keyscan_wait failed for ' + fqdn) time.sleep(15) if not self.cloud_init_wait(instance): raise ValueError('cloud_init_wait failed for ' + fqdn) self.attach_volumes(name, resources_hint['volumes']) fqdns.append(fqdn) except Exception as e: log.exception(str(e)) for id in [instance['ID'] for instance in instances]: self.destroy(id) raise e return fqdns def destroy(self, name_or_id): log.debug('ProvisionOpenStack:destroy ' + name_or_id) return OpenStackInstance(name_or_id).destroy() ``` #### File: teuthology/teuthology/run_tasks.py ```python import logging import os import sys import types from copy import deepcopy from teuthology.config import config as teuth_config from teuthology.exceptions import ConnectionLostError from teuthology.job_status import set_status from teuthology.misc import get_http_log_path from teuthology.sentry import get_client as get_sentry_client from teuthology.timer import Timer log = logging.getLogger(__name__) def get_task(name): if '.' in name: module_name, task_name = name.split('.') else: module_name, task_name = (name, 'task') # First look for the tasks's module inside teuthology module = _import('teuthology.task', module_name, task_name) # If it is not found, try qa/ directory (if it is in sys.path) if not module: module = _import('tasks', module_name, task_name, fail_on_import_error=True) try: # Attempt to locate the task object inside the module task = getattr(module, task_name) # If we get another module, we need to go deeper if isinstance(task, types.ModuleType): task = getattr(task, task_name) except AttributeError: log.error("No subtask of '{}' named '{}' was found".format( module_name, task_name, )) raise return task def _import(from_package, module_name, task_name, fail_on_import_error=False): full_module_name = '.'.join([from_package, module_name]) try: module = __import__( full_module_name, globals(), locals(), [task_name], 0, ) except ImportError: if fail_on_import_error: raise else: return None return module def run_one_task(taskname, **kwargs): taskname = taskname.replace('-', '_') task = get_task(taskname) return task(**kwargs) def run_tasks(tasks, ctx): archive_path = ctx.config.get('archive_path') if archive_path: timer = Timer( path=os.path.join(archive_path, 'timing.yaml'), sync=True, ) else: timer = Timer() stack = [] try: for taskdict in tasks: try: ((taskname, config),) = taskdict.iteritems() except (ValueError, AttributeError): raise RuntimeError('Invalid task definition: %s' % taskdict) log.info('Running task %s...', taskname) timer.mark('%s enter' % taskname) manager = run_one_task(taskname, ctx=ctx, config=config) if hasattr(manager, '__enter__'): stack.append((taskname, manager)) manager.__enter__() except BaseException as e: if isinstance(e, ConnectionLostError): # Prevent connection issues being flagged as failures set_status(ctx.summary, 'dead') else: # the status may have been set to dead, leave it as-is if so if not ctx.summary.get('status', '') == 'dead': set_status(ctx.summary, 'fail') if 'failure_reason' not in ctx.summary: ctx.summary['failure_reason'] = str(e) log.exception('Saw exception from tasks.') sentry = get_sentry_client() if sentry: config = deepcopy(ctx.config) tags = { 'task': taskname, 'owner': ctx.owner, } if 'teuthology_branch' in config: tags['teuthology_branch'] = config['teuthology_branch'] if 'branch' in config: tags['branch'] = config['branch'] # Remove ssh keys from reported config if 'targets' in config: targets = config['targets'] for host in targets.keys(): targets[host] = '<redacted>' job_id = ctx.config.get('job_id') archive_path = ctx.config.get('archive_path') extra = dict(config=config, ) if job_id: extra['logs'] = get_http_log_path(archive_path, job_id) exc_id = sentry.get_ident(sentry.captureException( tags=tags, extra=extra, )) event_url = "{server}/?q={id}".format( server=teuth_config.sentry_server.strip('/'), id=exc_id) log.exception(" Sentry event: %s" % event_url) ctx.summary['sentry_event'] = event_url if ctx.config.get('interactive-on-error'): ctx.config['interactive-on-error'] = False from teuthology.task import interactive log.warning('Saw failure during task execution, going into interactive mode...') interactive.task(ctx=ctx, config=None) # Throughout teuthology, (x,) = y has been used to assign values # from yaml files where only one entry of type y is correct. This # causes failures with 'too many values to unpack.' We want to # fail as before, but with easier to understand error indicators. if type(e) == ValueError: if e.message == 'too many values to unpack': emsg = 'Possible configuration error in yaml file' log.error(emsg) ctx.summary['failure_info'] = emsg finally: try: exc_info = sys.exc_info() while stack: taskname, manager = stack.pop() log.debug('Unwinding manager %s', taskname) timer.mark('%s exit' % taskname) try: suppress = manager.__exit__(*exc_info) except Exception as e: if isinstance(e, ConnectionLostError): # Prevent connection issues being flagged as failures set_status(ctx.summary, 'dead') else: set_status(ctx.summary, 'fail') if 'failure_reason' not in ctx.summary: ctx.summary['failure_reason'] = str(e) log.exception('Manager failed: %s', taskname) if exc_info == (None, None, None): # if first failure is in an __exit__, we don't # have exc_info set yet exc_info = sys.exc_info() if ctx.config.get('interactive-on-error'): from tuethology.task import interactive log.warning( 'Saw failure during task cleanup, going into interactive mode...') interactive.task(ctx=ctx, config=None) else: if suppress: sys.exc_clear() exc_info = (None, None, None) if exc_info != (None, None, None): log.debug('Exception was not quenched, exiting: %s: %s', exc_info[0].__name__, exc_info[1]) raise SystemExit(1) finally: # be careful about cyclic references del exc_info timer.mark("tasks complete") ``` #### File: teuthology/task/lockfile.py ```python import logging import os from teuthology.orchestra import run from teuthology import misc as teuthology import time import gevent log = logging.getLogger(__name__) def task(ctx, config): """ This task is designed to test locking. It runs an executable for each lock attempt you specify, at 0.01 second intervals (to preserve ordering of the locks). You can also introduce longer intervals by setting an entry as a number of seconds, rather than the lock dictionary. The config is a list of dictionaries. For each entry in the list, you must name the "client" to run on, the "file" to lock, and the "holdtime" to hold the lock. Optional entries are the "offset" and "length" of the lock. You can also specify a "maxwait" timeout period which fails if the executable takes longer to complete, and an "expectfail". An example:: tasks: - ceph: - ceph-fuse: [client.0, client.1] - lockfile: [{client:client.0, file:testfile, holdtime:10}, {client:client.1, file:testfile, holdtime:0, maxwait:0, expectfail:true}, {client:client.1, file:testfile, holdtime:0, maxwait:15, expectfail:false}, 10, {client: client.1, lockfile: testfile, holdtime: 5}, {client: client.2, lockfile: testfile, holdtime: 5, maxwait: 1, expectfail: True}] In the past this test would have failed; there was a bug where waitlocks weren't cleaned up if the process failed. More involved scenarios are also possible. :param ctx: Context :param config: Configuration """ log.info('Starting lockfile') try: assert isinstance(config, list), \ "task lockfile got invalid config" log.info("building executable on each host") buildprocs = list() # build the locker executable on each client clients = list() files = list() for op in config: if not isinstance(op, dict): continue log.info("got an op") log.info("op['client'] = %s", op['client']) clients.append(op['client']) files.append(op['lockfile']) if not "expectfail" in op: op["expectfail"] = False badconfig = False if not "client" in op: badconfig = True if not "lockfile" in op: badconfig = True if not "holdtime" in op: badconfig = True if badconfig: raise KeyError("bad config {op_}".format(op_=op)) testdir = teuthology.get_testdir(ctx) clients = set(clients) files = set(files) lock_procs = list() for client in clients: (client_remote,) = ctx.cluster.only(client).remotes.iterkeys() log.info("got a client remote") (_, _, client_id) = client.partition('.') filepath = os.path.join(testdir, 'mnt.{id}'.format(id=client_id), op["lockfile"]) proc = client_remote.run( args=[ 'mkdir', '-p', '{tdir}/archive/lockfile'.format(tdir=testdir), run.Raw('&&'), 'mkdir', '-p', '{tdir}/lockfile'.format(tdir=testdir), run.Raw('&&'), 'wget', '-nv', '--no-check-certificate', 'https://raw.github.com/gregsfortytwo/FileLocker/master/sclockandhold.cpp', '-O', '{tdir}/lockfile/sclockandhold.cpp'.format(tdir=testdir), run.Raw('&&'), 'g++', '{tdir}/lockfile/sclockandhold.cpp'.format(tdir=testdir), '-o', '{tdir}/lockfile/sclockandhold'.format(tdir=testdir) ], logger=log.getChild('lockfile_client.{id}'.format(id=client_id)), wait=False ) log.info('building sclockandhold on client{id}'.format(id=client_id)) buildprocs.append(proc) # wait for builds to finish run.wait(buildprocs) log.info('finished building sclockandhold on all clients') # create the files to run these locks on client = clients.pop() clients.add(client) (client_remote,) = ctx.cluster.only(client).remotes.iterkeys() (_, _, client_id) = client.partition('.') file_procs = list() for lockfile in files: filepath = os.path.join(testdir, 'mnt.{id}'.format(id=client_id), lockfile) proc = client_remote.run( args=[ 'sudo', 'touch', filepath, ], logger=log.getChild('lockfile_createfile'), wait=False ) file_procs.append(proc) run.wait(file_procs) file_procs = list() for lockfile in files: filepath = os.path.join(testdir, 'mnt.{id}'.format(id=client_id), lockfile) proc = client_remote.run( args=[ 'sudo', 'chown', 'ubuntu.ubuntu', filepath ], logger=log.getChild('lockfile_createfile'), wait=False ) file_procs.append(proc) run.wait(file_procs) log.debug('created files to lock') # now actually run the locktests for op in config: if not isinstance(op, dict): assert isinstance(op, int) or isinstance(op, float) log.info("sleeping for {sleep} seconds".format(sleep=op)) time.sleep(op) continue greenlet = gevent.spawn(lock_one, op, ctx) lock_procs.append((greenlet, op)) time.sleep(0.1) # to provide proper ordering #for op in config for (greenlet, op) in lock_procs: log.debug('checking lock for op {op_}'.format(op_=op)) result = greenlet.get() if not result: raise Exception("Got wrong result for op {op_}".format(op_=op)) # for (greenlet, op) in lock_procs finally: #cleanup! if lock_procs: for (greenlet, op) in lock_procs: log.debug('closing proc for op {op_}'.format(op_=op)) greenlet.kill(block=True) for client in clients: (client_remote,) = ctx.cluster.only(client).remotes.iterkeys() (_, _, client_id) = client.partition('.') filepath = os.path.join(testdir, 'mnt.{id}'.format(id=client_id), op["lockfile"]) proc = client_remote.run( args=[ 'rm', '-rf', '{tdir}/lockfile'.format(tdir=testdir), run.Raw(';'), 'sudo', 'rm', '-rf', filepath ], wait=True ) #proc #done! # task def lock_one(op, ctx): """ Perform the individual lock """ log.debug('spinning up locker with op={op_}'.format(op_=op)) timeout = None proc = None result = None (client_remote,) = ctx.cluster.only(op['client']).remotes.iterkeys() (_, _, client_id) = op['client'].partition('.') testdir = teuthology.get_testdir(ctx) filepath = os.path.join(testdir, 'mnt.{id}'.format(id=client_id), op["lockfile"]) if "maxwait" in op: timeout = gevent.Timeout(seconds=float(op["maxwait"])) timeout.start() try: proc = client_remote.run( args=[ 'adjust-ulimits', 'ceph-coverage', '{tdir}/archive/coverage'.format(tdir=testdir), 'daemon-helper', 'kill', '{tdir}/lockfile/sclockandhold'.format(tdir=testdir), filepath, '{holdtime}'.format(holdtime=op["holdtime"]), '{offset}'.format(offset=op.get("offset", '0')), '{length}'.format(length=op.get("length", '1')), ], logger=log.getChild('lockfile_client.{id}'.format(id=client_id)), wait=False, stdin=run.PIPE, check_status=False ) result = proc.wait() except gevent.Timeout as tout: if tout is not timeout: raise if bool(op["expectfail"]): result = 1 if result == 1: if bool(op["expectfail"]): log.info("failed as expected for op {op_}".format(op_=op)) else: raise Exception("Unexpectedly failed to lock {op_} within given timeout!".format(op_=op)) finally: #clean up proc if timeout is not None: timeout.cancel() if proc is not None: proc.stdin.close() ret = (result == 0 and not bool(op["expectfail"])) or (result == 1 and bool(op["expectfail"])) return ret #we made it through ``` #### File: test/task/test_pcp.py ```python import os import requests import urlparse from mock import patch, DEFAULT, Mock, MagicMock, call from pytest import raises from teuthology.config import config, FakeNamespace from teuthology.orchestra.cluster import Cluster from teuthology.orchestra.remote import Remote from teuthology.orchestra.run import Raw from teuthology.task.pcp import (PCPDataSource, PCPArchive, PCPGrapher, GrafanaGrapher, GraphiteGrapher, PCP) from teuthology.test.task import TestTask pcp_host = 'http://pcp.front.sepia.ceph.com:44323/' class TestPCPDataSource(object): klass = PCPDataSource def setup(self): config.pcp_host = pcp_host def test_init(self): hosts = ['host1', 'host2'] time_from = 'now-2h' time_until = 'now' obj = self.klass( hosts=hosts, time_from=time_from, time_until=time_until, ) assert obj.hosts == hosts assert obj.time_from == time_from assert obj.time_until == time_until class TestPCPArchive(TestPCPDataSource): klass = PCPArchive def test_get_archive_input_dir(self): hosts = ['host1', 'host2'] time_from = 'now-1d' obj = self.klass( hosts=hosts, time_from=time_from, ) assert obj.get_archive_input_dir('host1') == \ '/var/log/pcp/pmlogger/host1' def test_get_pmlogextract_cmd(self): obj = self.klass( hosts=['host1'], time_from='now-3h', time_until='now-1h', ) expected = [ 'pmlogextract', '-S', 'now-3h', '-T', 'now-1h', Raw('/var/log/pcp/pmlogger/host1/*.0'), ] assert obj.get_pmlogextract_cmd('host1') == expected def test_format_time(self): assert self.klass._format_time(1462893484) == \ '@ Tue May 10 15:18:04 2016' def test_format_time_now(self): assert self.klass._format_time('now-1h') == 'now-1h' class TestPCPGrapher(TestPCPDataSource): klass = PCPGrapher def test_init(self): hosts = ['host1', 'host2'] time_from = 'now-2h' time_until = 'now' obj = self.klass( hosts=hosts, time_from=time_from, time_until=time_until, ) assert obj.hosts == hosts assert obj.time_from == time_from assert obj.time_until == time_until expected_url = urlparse.urljoin(config.pcp_host, self.klass._endpoint) assert obj.base_url == expected_url class TestGrafanaGrapher(TestPCPGrapher): klass = GrafanaGrapher def test_build_graph_url(self): hosts = ['host1'] time_from = 'now-3h' time_until = 'now-1h' obj = self.klass( hosts=hosts, time_from=time_from, time_until=time_until, ) base_url = urlparse.urljoin( config.pcp_host, 'grafana/index.html#/dashboard/script/index.js', ) assert obj.base_url == base_url got_url = obj.build_graph_url() parsed_query = urlparse.parse_qs(got_url.split('?')[1]) assert parsed_query['hosts'] == hosts assert len(parsed_query['time_from']) == 1 assert parsed_query['time_from'][0] == time_from assert len(parsed_query['time_to']) == 1 assert parsed_query['time_to'][0] == time_until def test_format_time(self): assert self.klass._format_time(1462893484) == \ '2016-05-10T15:18:04' def test_format_time_now(self): assert self.klass._format_time('now-1h') == 'now-1h' class TestGraphiteGrapher(TestPCPGrapher): klass = GraphiteGrapher def test_build_graph_urls(self): obj = self.klass( hosts=['host1', 'host2'], time_from='now-3h', time_until='now-1h', ) expected_urls = [obj.get_graph_url(m) for m in obj.metrics] obj.build_graph_urls() built_urls = [] for metric in obj.graphs.keys(): built_urls.append(obj.graphs[metric]['url']) assert len(built_urls) == len(expected_urls) assert sorted(built_urls) == sorted(expected_urls) def test_check_dest_dir(self): obj = self.klass( hosts=['host1'], time_from='now-3h', ) assert obj.dest_dir is None with raises(RuntimeError): obj._check_dest_dir() def test_generate_html_dynamic(self): obj = self.klass( hosts=['host1'], time_from='now-3h', ) html = obj.generate_html() assert config.pcp_host in html def test_download_graphs(self): dest_dir = '/fake/path' obj = self.klass( hosts=['host1'], time_from='now-3h', dest_dir=dest_dir, ) _format = obj.graph_defaults.get('format') with patch('teuthology.task.pcp.requests.get', create=True) as m_get: m_resp = Mock() m_resp.ok = True m_get.return_value = m_resp with patch('teuthology.task.pcp.open', create=True) as m_open: m_open.return_value = MagicMock(spec=file) obj.download_graphs() expected_filenames = [] for metric in obj.metrics: expected_filenames.append( "{}.{}".format( os.path.join( dest_dir, obj._sanitize_metric_name(metric), ), _format, ) ) graph_filenames = [] for metric in obj.graphs.keys(): graph_filenames.append(obj.graphs[metric]['file']) assert sorted(graph_filenames) == sorted(expected_filenames) def test_generate_html_static(self): obj = self.klass( hosts=['host1'], time_from='now-3h', dest_dir='/fake/path', ) with patch('teuthology.task.pcp.requests.get', create=True) as m_get: m_resp = Mock() m_resp.ok = True m_get.return_value = m_resp with patch('teuthology.task.pcp.open', create=True) as m_open: m_open.return_value = MagicMock(spec=file) obj.download_graphs() html = obj.generate_html(mode='static') assert config.pcp_host not in html def test_sanitize_metric_name(self): sanitized_metrics = { 'foo.bar': 'foo.bar', 'foo.*': 'foo._all_', 'foo.bar baz': 'foo.bar_baz', 'foo.*.bar baz': 'foo._all_.bar_baz', } for in_, out in sanitized_metrics.iteritems(): assert self.klass._sanitize_metric_name(in_) == out def test_get_target_globs(self): obj = self.klass( hosts=['host1'], time_from='now-3h', ) assert obj.get_target_globs() == ['*host1*'] assert obj.get_target_globs('a.metric') == ['*host1*.a.metric'] obj.hosts.append('host2') assert obj.get_target_globs() == ['*host1*', '*host2*'] assert obj.get_target_globs('a.metric') == \ ['*host1*.a.metric', '*host2*.a.metric'] class TestPCPTask(TestTask): klass = PCP task_name = 'pcp' def setup(self): self.ctx = FakeNamespace() self.ctx.cluster = Cluster() self.ctx.cluster.add(Remote('user@remote1'), ['role1']) self.ctx.cluster.add(Remote('user@remote2'), ['role2']) self.ctx.config = dict() self.task_config = dict() config.pcp_host = pcp_host def test_init(self): task = self.klass(self.ctx, self.task_config) assert task.stop_time == 'now' def test_disabled(self): config.pcp_host = None with self.klass(self.ctx, self.task_config) as task: assert task.enabled is False assert not hasattr(task, 'grafana') assert not hasattr(task, 'graphite') assert not hasattr(task, 'archiver') def test_setup(self): with patch.multiple( self.klass, setup_collectors=DEFAULT, begin=DEFAULT, end=DEFAULT, ): with self.klass(self.ctx, self.task_config) as task: task.setup_collectors.assert_called_once_with() assert isinstance(task.start_time, int) def test_setup_collectors(self): with patch.multiple( self.klass, begin=DEFAULT, end=DEFAULT, ): with self.klass(self.ctx, self.task_config) as task: assert hasattr(task, 'grafana') assert not hasattr(task, 'graphite') assert not hasattr(task, 'archiver') self.task_config['grafana'] = False with self.klass(self.ctx, self.task_config) as task: assert not hasattr(task, 'grafana') @patch('os.makedirs') def test_setup_grafana(self, m_makedirs): with patch.multiple( self.klass, begin=DEFAULT, end=DEFAULT, ): self.ctx.archive = '/fake/path' with self.klass(self.ctx, self.task_config) as task: assert hasattr(task, 'grafana') self.task_config['grafana'] = False with self.klass(self.ctx, self.task_config) as task: assert not hasattr(task, 'grafana') @patch('os.makedirs') @patch('teuthology.task.pcp.GraphiteGrapher') def test_setup_graphite(self, m_graphite_grapher, m_makedirs): with patch.multiple( self.klass, begin=DEFAULT, end=DEFAULT, ): with self.klass(self.ctx, self.task_config) as task: assert not hasattr(task, 'graphite') self.task_config['graphite'] = False with self.klass(self.ctx, self.task_config) as task: assert not hasattr(task, 'graphite') self.ctx.archive = '/fake/path' self.task_config['graphite'] = True with self.klass(self.ctx, self.task_config) as task: assert hasattr(task, 'graphite') self.task_config['graphite'] = False with self.klass(self.ctx, self.task_config) as task: assert not hasattr(task, 'graphite') @patch('os.makedirs') @patch('teuthology.task.pcp.PCPArchive') def test_setup_archiver(self, m_archive, m_makedirs): with patch.multiple( self.klass, begin=DEFAULT, end=DEFAULT, ): self.task_config['fetch_archives'] = True with self.klass(self.ctx, self.task_config) as task: assert not hasattr(task, 'archiver') self.task_config['fetch_archives'] = False with self.klass(self.ctx, self.task_config) as task: assert not hasattr(task, 'archiver') self.ctx.archive = '/fake/path' self.task_config['fetch_archives'] = True with self.klass(self.ctx, self.task_config) as task: assert hasattr(task, 'archiver') self.task_config['fetch_archives'] = False with self.klass(self.ctx, self.task_config) as task: assert not hasattr(task, 'archiver') @patch('os.makedirs') @patch('teuthology.task.pcp.GrafanaGrapher') @patch('teuthology.task.pcp.GraphiteGrapher') def test_begin(self, m_grafana, m_graphite, m_makedirs): with patch.multiple( self.klass, end=DEFAULT, ): with self.klass(self.ctx, self.task_config) as task: task.grafana.build_graph_url.assert_called_once_with() self.task_config['graphite'] = True self.ctx.archive = '/fake/path' with self.klass(self.ctx, self.task_config) as task: task.graphite.write_html.assert_called_once_with() @patch('os.makedirs') @patch('teuthology.task.pcp.GrafanaGrapher') @patch('teuthology.task.pcp.GraphiteGrapher') def test_end(self, m_grafana, m_graphite, m_makedirs): self.ctx.archive = '/fake/path' with self.klass(self.ctx, self.task_config) as task: # begin() should have called write_html() once by now, with no args task.graphite.write_html.assert_called_once_with() # end() should have called write_html() a second time by now, with # mode=static second_call = task.graphite.write_html.call_args_list[1] assert second_call[1]['mode'] == 'static' assert isinstance(task.stop_time, int) @patch('os.makedirs') @patch('teuthology.task.pcp.GrafanaGrapher') @patch('teuthology.task.pcp.GraphiteGrapher') def test_end_16049(self, m_grafana, m_graphite, m_makedirs): # http://tracker.ceph.com/issues/16049 # Jobs were failing if graph downloading failed. We don't want that. self.ctx.archive = '/fake/path' with self.klass(self.ctx, self.task_config) as task: task.graphite.download_graphs.side_effect = \ requests.ConnectionError # Even though downloading graphs failed, we should have called # write_html() a second time, again with no args assert task.graphite.write_html.call_args_list == [call(), call()] assert isinstance(task.stop_time, int) ```
{ "source": "josdan/pluradl.py", "score": 3 }
#### File: pluradl.py/scrapeutils/autoscrape_pluralsight_regex.py ```python try: from utils import * except ImportError: from scrapeutils.utils import * SCRIPTPATH=os.path.dirname(os.path.abspath(sys.argv[0])) JSON_OUTPUT_FILE = os.path.abspath(os.path.join(SCRIPTPATH, '..', "data", "courses.json")) SEARCH_URL = r'https://www.pluralsight.com/search?categories=course&sort=title' def main(): course_dict = load_stored_json(JSON_OUTPUT_FILE) source_data = get_courselist_source(SEARCH_URL, n_pages=500) class_name = r'search-result columns' search_snippets = outer_search_html(source_data, class_name) title_tag=r'<div class="search-result__title">' author_tag=r'<div class="search-result__author">' level_tag=r'<div class="search-result__level">' date_tag=r'<div class="search-result__date">' length_tag=r'<div class="search-result__length show-for-large-up">' div_tag=r'</div>'; quote = r'"'; gt = r'>'; a_tag = r'</a>'; href=r'href="' title_lookaround = lookaround_tags(title_tag, div_tag) author_lookaround = lookaround_tags(author_tag, div_tag) level_lookaround = lookaround_tags(level_tag, div_tag) date_lookaround = lookaround_tags(date_tag, div_tag) length_lookaround = lookaround_tags(length_tag, div_tag) href_lookaround = lookaround_tags(href, quote) gt_a_lookaround = lookaround_tags(gt, a_tag) for html_input in search_snippets: thiscourse = {} title_outer_text = return_lookaround_text(title_lookaround.search(html_input)) if title_outer_text: url_text = return_lookaround_text(href_lookaround.search(title_outer_text)) name_text = return_lookaround_text(gt_a_lookaround.search(title_outer_text)) course_id = url_text.split('/')[-1] author_text = return_lookaround_text(author_lookaround.search(html_input)) level_text = return_lookaround_text(level_lookaround.search(html_input)) date_text = return_lookaround_text(date_lookaround.search(html_input)) length_text = return_lookaround_text(length_lookaround.search(html_input)) lenght = get_length(length_text) rating_snippet = outer_search_snippet(html_input, r'search-result__rating') rating = return_rating(rating_snippet) if author_text and not '{' in author_text: thiscourse['url'] = url_text.strip() thiscourse['title'] = name_text.strip() thiscourse['author'] = author_text.strip().split('by ')[-1] thiscourse['level'] = level_text.strip() thiscourse['date'] = date_text.strip() thiscourse['length'] = lenght thiscourse['rating'] = rating course_dict[course_id] = thiscourse print('') print('Loaded', len(course_dict), 'courses.', 'Saving results to', JSON_OUTPUT_FILE) store_dict_as_json(course_dict, JSON_OUTPUT_FILE) print('Done.') if __name__ == "__main__": main() ``` #### File: pluradl.py/scrapeutils/scrape_html_to_sqlite.py ```python from __future__ import unicode_literals import os, re,sqlite3 import pandas as pd import numpy as np from sqlite3 import Error from html.parser import HTMLParser HTML_DATA = os.path.join("...", "data", "search_results.html") DB_FILE = os.path.join("...", "data", "courses.db") course_params = [] course_id = ""; class SearchHTMLParser(HTMLParser): def handle_starttag(self, tag, attrs): for attr in attrs: value = attr[1] if re.search(r'courses', value): global course_id course_id = value.split(r'/')[-1] course_params.append(value) def handle_data(self, data): data = str(data).strip() if data: course_params.append(data) def outer_search_result(HTML_DATA): read_state=False; track=0; search_snippets=[] with open(HTML_DATA, 'rt') as f: for line in f.readlines(): if re.search(r'class="search-result columns"', line): read_state = True search_result = [] if read_state: search_result.append(line) n_open = len(re.findall(r'<div', line)) n_close = len(re.findall(r'/div>', line)) track+=n_open; track-=n_close if track == 0: read_state = False search_snippets.append(''.join(search_result)) return search_snippets def populate_dictionary(parser, search_snippets): global course_params global course_id search_dictionary = {} for snippet in search_snippets: course_id = ""; course_params = [] parser.feed(snippet) search_dictionary[course_id] = course_params return search_dictionary def create_connection(db_file): conn = None try: conn = sqlite3.connect(db_file) return conn except Error as e: print(e) return conn if __name__ == '__main__': search_snippets = outer_search_result(HTML_DATA) parser = SearchHTMLParser() search_dictionary = populate_dictionary(parser, search_snippets) column_data = [] for key, values in search_dictionary.items(): this_entry = [] this_entry.append(key) for val in values: this_entry.append(val) if len(this_entry) < 8: this_entry.append("None") this_array = np.array(this_entry) column_data.append(this_array) elif len(this_entry) == 8: this_array = np.array(this_entry) column_data.append(this_array) data = pd.DataFrame(data=column_data, columns=['id','url','title','author','level','date','length', 'rating']).set_index('id') con = create_connection(DB_FILE) data.to_sql('courses', con=con, if_exists='replace') con.close ``` #### File: pluradl.py/test/test_cache.py ```python from __future__ import unicode_literals import shutil # Allow direct execution import os import sys import unittest sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from test.helper import FakePDL from plura_dl.cache import Cache def _is_empty(d): return not bool(os.listdir(d)) def _mkdir(d): if not os.path.exists(d): os.mkdir(d) class TestCache(unittest.TestCase): def setUp(self): TEST_DIR = os.path.dirname(os.path.abspath(__file__)) TESTDATA_DIR = os.path.join(TEST_DIR, 'testdata') _mkdir(TESTDATA_DIR) self.test_dir = os.path.join(TESTDATA_DIR, 'cache_test') self.tearDown() def tearDown(self): if os.path.exists(self.test_dir): shutil.rmtree(self.test_dir) def test_cache(self): pdl = FakePDL({ 'cachedir': self.test_dir, }) c = Cache(pdl) obj = {'x': 1, 'y': ['ä', '\\a', True]} self.assertEqual(c.load('test_cache', 'k.'), None) c.store('test_cache', 'k.', obj) self.assertEqual(c.load('test_cache', 'k2'), None) self.assertFalse(_is_empty(self.test_dir)) self.assertEqual(c.load('test_cache', 'k.'), obj) self.assertEqual(c.load('test_cache', 'y'), None) self.assertEqual(c.load('test_cache2', 'k.'), None) c.remove() self.assertFalse(os.path.exists(self.test_dir)) self.assertEqual(c.load('test_cache', 'k.'), None) if __name__ == '__main__': unittest.main() ```
{ "source": "josdas/Game-theory", "score": 3 }
#### File: Game-theory/non-zero-sum-games/nonzero_sum_game.py ```python import numpy as np import scipy.optimize class NonZeroSumGame: def __init__(self, get_score, first_actions, second_actions): """ Calculate Nash equilibrium in mixed strategies for non-zero-sum games. :param get_score: get_score(first_action, second_action) is a function that returns pair of scores for the game. :param first_actions: first_actions is a list of possible actions for the first player. :param second_actions: second_actions is a list of possible actions for the second player. """ self._get_score = get_score self._actions = [first_actions, second_actions] self.optimal_policy = None self.game_price = self.calc_optimal_policy() def calc_optimal_policy(self): n = len(self._actions[0]) m = len(self._actions[1]) price_matrix = np.array( [[self._get_score(f_act, s_act) for s_act in self._actions[1]] for f_act in self._actions[0]]).transpose((2, 0, 1)) total_price = price_matrix[0] + price_matrix[1] vars_count = n + m + 2 def loss(x): first, second = x[:n], x[n:n + m] alpha, betta = x[n + m], x[n + m + 1] return -first @ total_price @ second + alpha + betta def jac(x): first, second = x[:n], x[n:n + m] first_jac = -total_price @ second second_jac = -first @ total_price alpha_jac = [1] betta_jac = [1] return np.concatenate((first_jac, second_jac, alpha_jac, betta_jac)) # Gx >= 0 G = np.zeros((n + m, vars_count)) for i in range(n): G[i][n:n + m] = -price_matrix[0][i] G[i][n + m] = 1 for i in range(m): G[n + i][:n] = -price_matrix[1][:, i] G[n + i][n + m + 1] = 1 # Ax - b = 0 A = np.zeros((2, vars_count)) A[0][:n] = 1 A[1][n:n + m] = 1 b = np.ones(2) constraints = [ { 'type': 'ineq', 'fun': lambda x: G @ x, 'jac': lambda x: G, }, { 'type': 'eq', 'fun': lambda x: A @ x - b, 'jac': lambda x: A } ] bounds = [(0, None) for _ in range(n + m)] bounds += [(None, None), (None, None)] x0 = np.random.random(vars_count) x0[:n] /= x0[:n].sum() x0[n:n + m] /= x0[n:n + m].sum() x0[n + m:n + m + 2] *= total_price.sum() res = scipy.optimize.minimize(x0=x0, fun=loss, jac=jac, method='SLSQP', constraints=constraints, bounds=bounds) # Policy is a distribution over actions for the each players. self.optimal_policy = res.x[:n], res.x[n:n + m] game_price = [self.optimal_policy[0] @ price_matrix[player] @ self.optimal_policy[1] for player in (0, 1)] return game_price def gen_action(self, player): assert player in {1, 2} player -= 1 return np.random.choice(self._actions[player], p=self.optimal_policy[player]) ``` #### File: Game-theory/non-zero-sum-games/test_nonzero.py ```python import numpy as np from nonzero_sum_game import NonZeroSumGame SEED = 1337 def simulate_game(get_score, first_actions, second_actions, iters=10 ** 4, comments=None, verbosity=1): game = NonZeroSumGame(get_score, first_actions, second_actions) score_first, score_second = 0, 0 for it in range(iters): f_act = game.gen_action(1) s_act = game.gen_action(2) f_score, s_score = get_score(f_act, s_act) score_first += f_score score_second += s_score if verbosity >= 1: if comments is not None: print(comments) print(game.optimal_policy[0]) print(f'Game price first: {game.game_price[0]}') print(f'Average score first: {score_first / iters}') print() print(game.optimal_policy[1]) print(f'Game price second: {game.game_price[1]}') print(f'Average score second: {score_second / iters}') print('-' * 80) return game.optimal_policy, game.game_price def rock_paper_scissors(first_act, second_act): FIGHTS = { ('rock', 'scissors'), ('paper', 'rock'), ('scissors', 'paper') } ACTIONS = ('rock', 'paper', 'scissors') assert first_act in ACTIONS and second_act in ACTIONS if (first_act, second_act) in FIGHTS: return 1, -1 if (second_act, first_act) in FIGHTS: return -1, 1 return 0, 0 def prisoners_dilemma(first_act, second_act): ACTIONS = ['silent', 'betray'] assert first_act in ACTIONS and second_act in ACTIONS if first_act == 'silent' and second_act == 'silent': return -1, -1 if first_act == 'silent' and second_act == 'betray': return -3, 0 if first_act == 'betray' and second_act == 'betray': return -2, -2, if first_act == 'betray' and second_act == 'silent': return 0, -3 def battle_of_the_sexes(first_act, second_act): ACTIONS = ['opera', 'football'] assert first_act in ACTIONS and second_act in ACTIONS if first_act == 'opera' and second_act == 'opera': return 2, 1 if first_act == 'opera' and second_act == 'football': return -1, -1 if first_act == 'football' and second_act == 'football': return 1, 2 if first_act == 'football' and second_act == 'opera': return -1, -1 if __name__ == '__main__': np.random.seed(SEED) simulate_game(rock_paper_scissors, ['rock', 'paper', 'scissors'], ['rock', 'paper', 'scissors'], comments="Fair rock paper scissors with zero price") simulate_game(rock_paper_scissors, ['rock', 'paper', 'scissors'], ['rock', 'paper'], comments="Unfair rock paper scissors where the second player can't use 'scissors'") simulate_game(rock_paper_scissors, ['rock', 'paper', 'scissors'], ['rock'], comments="Unfair rock paper scissors where the second player can't use 'scissors' and 'paper'") simulate_game(prisoners_dilemma, ['silent', 'betray'], ['silent', 'betray'], comments="Prisoner's dilemma") for i in range(10): simulate_game(battle_of_the_sexes, ['opera', 'football'], ['opera', 'football'], comments="Battle of the Sexes #{}".format(i)) ```
{ "source": "josdavidmo/clinical_records", "score": 2 }
#### File: clinical_records/patients/filters.py ```python from dateutil.relativedelta import relativedelta from django.db.models import Q from django.utils import timezone from patients.models import CIE10 from patients.models import Patient from patients.models import Paraclinical from patients.models import MedicalHistory from patients.models import Medicine import datetime import django_filters class PatientFilter(django_filters.FilterSet): full_name_auto = django_filters.CharFilter(method='filter_full_name_auto', label='Nombre') age = django_filters.RangeFilter(method='filter_age', label='Edad') class Meta: model = Patient exclude = ('birth_date', 'phone', 'email', 'names', 'last_names', 'address', 'scholarship', 'profesion', 'civil_status', 'origin') def filter_age(self, queryset, name, value): current = datetime.datetime.now() if value.start < value.stop: min_date = datetime.date( current.year - value.start, current.month, current.day) max_date = datetime.date( current.year - (value.stop + 1), current.month, current.day + 1) else: min_date = datetime.date( current.year - (value.stop + 1), current.month, current.day + 1) max_date = datetime.date( current.year - value.start, current.month, current.day) return queryset.filter(birth_date__range=(max_date, min_date)) def filter_full_name_auto(self, queryset, name, value): return queryset.filter(Q(names__contains=value) | Q(last_names__contains=value)) class CIE10Filter(django_filters.FilterSet): class Meta: model = CIE10 fields = { 'code': ['contains'], 'name': ['contains'] } class MedicineFilter(django_filters.FilterSet): class Meta: model = Medicine fields = { 'name': ['contains'], 'medicine_type': ['exact'] } class ParaclinicalFilter(django_filters.FilterSet): class Meta: model = Paraclinical fields = { 'name': ['contains'] } class ClinicalHistoryFilter(django_filters.FilterSet): diagnostic = django_filters.MultipleChoiceFilter( method="filter_diagnostic",label="Diágnostico") def filter_diagnostic(self, queryset, name, value): return queryset.filter(physical_exam__diagnostics_images__id__in=value) class Meta: model = MedicalHistory fields = ['created_at_date', 'patient', 'diagnostic'] exclude = ('clinical_history', 'physical_exam', 'systems_review', 'created_hour', 'city', 'phone_companion', 'referred_by', 'reason_consultation', 'sgss', 'companion', 'current_illness', 'formulas', 'created_at_hour') ```
{ "source": "josdavidmo/meiko_etl_challenge_back", "score": 2 }
#### File: meiko_etl_challenge_back/movies/admin.py ```python from django.contrib import admin from django.db.models import Sum, Func, F from django.utils.translation import gettext_lazy as _ from movies.models import Movie class MoviesFilter(admin.SimpleListFilter): # Human-readable title which will be displayed in the # right admin sidebar just above the filter options. title = _("Top Filters") # Parameter for the filter that will be used in the URL query. parameter_name = "tops" def lookups(self, request, model_admin): if request.user.is_superuser: return (("raised_most_money", _("Which are the 10 movies that raised the most money?")), ("raised_least_money", _("Which are the 10 movies that least the most money?")), ("spent_most_produce_money", _("Which are the 7 films that spent the most money to " "produce?")), ("spent_lest_produce_money", _("What are the 7 films that spent the least money to " "produce?")), ("raised_most_money_year", _( "Which movie genre raised the most money for each year?")), ("top_genre", _("Which genre do people like best?")), ("top_directors", _("Which 5 directors have the best reputation?")), ) def queryset(self, request, queryset): """ Returns the filtered queryset based on the value provided in the query string and retrievable via `self.value()`. """ return queryset @admin.register(Movie) class MovieAdmin(admin.ModelAdmin): list_display = ("id",) + Movie.HEADERS list_filter = (MoviesFilter,) change_list_template = "movies/movies_changelist.html" list_per_page = 10 def changelist_view(self, request, extra_context=None): extra_context = extra_context or {} if request.GET.get("tops") == "raised_most_money": extra_context["list"] = Movie.objects.exclude( gross__isnull=True).values_list( "movie_title", flat=True).order_by("-gross")[:10] if request.GET.get("tops") == "raised_least_money": extra_context["list"] = Movie.objects.exclude( gross__isnull=True).values_list( "movie_title", flat=True).order_by("gross")[:10] if request.GET.get("tops") == "spent_most_produce_money": extra_context["list"] = Movie.objects.exclude( budget__isnull=True).values_list( "movie_title", flat=True).order_by("-budget")[:7] if request.GET.get("tops") == "spent_lest_produce_money": extra_context["list"] = Movie.objects.exclude( budget__isnull=True).values_list( "movie_title", flat=True).order_by("budget")[:7] if request.GET.get("tops") == "raised_most_money_year": extra_context["list"] = Movie.objects.annotate( genre=Func(F("genres"), function="unnest")).values( "genre").values_list("genre", flat=True).annotate( total=Sum("gross")).order_by( "-total")[:1] if request.GET.get("tops") == "top_genre": extra_context["list"] = Movie.objects.annotate( genre=Func(F("genres"), function="unnest")).values( "genre").values_list("genre", flat=True).annotate( total=Sum("cast_total_facebook_likes")).order_by( "-total")[:1] if request.GET.get("tops") == "top_directors": extra_context["list"] = Movie.objects.exclude( director_name="").values_list("director_name", flat=True).annotate(total=Sum( "director_facebook_likes")).order_by("-total")[:5] return super(MovieAdmin, self).changelist_view(request, extra_context=extra_context) ```
{ "source": "josdavidmo/zinobe", "score": 2 }
#### File: josdavidmo/zinobe/manage.py ```python import os import sys def test(): """ run unittest """ import unittest from users import test suite = unittest.TestLoader().loadTestsFromModule(test) unittest.TextTestRunner().run(suite) def run(): """ run server """ from users import urls if os.environ.get("REQUEST_METHOD", ""): from wsgiref.handlers import BaseCGIHandler BaseCGIHandler(sys.stdin, sys.stdout, sys.stderr, os.environ).run(urls.urls) else: from wsgiref.simple_server import WSGIServer, WSGIRequestHandler from beaker.middleware import SessionMiddleware session_opts = { 'session.type': 'file', 'session.cookie_expires': True, 'session.data_dir': 'var', } app = SessionMiddleware(urls.urls, session_opts) httpd = WSGIServer(('', 8080), WSGIRequestHandler) httpd.set_app(app) print "Serving HTTP on %s port %s ..." % httpd.socket.getsockname() httpd.serve_forever() def create(): """ create database """ from users.model import Base from dbconfig import engine print "Creating data base..." Base.metadata.create_all(engine) print "Ok" if __name__ == "__main__": if 'create' in sys.argv: create() if 'run' in sys.argv: test() run() if 'test' in sys.argv: test() ``` #### File: zinobe/users/view.py ```python import hashlib from sqlalchemy import func, or_ from sqlalchemy.orm import sessionmaker from core.renders import JsonResponse, redirect, render from core.request import GET, POST from dbconfig import engine from users.model import User def sign_in_user_get(environ, start_response): """ Used to render sign in user. Renders sign_in.html . Parameters ---------- start_response : start_response WSGI start_response environ : environ WSGI python environ Returns ------- list sign in view """ usr_session = environ['beaker.session'] usr_session.delete() return render(start_response, 'sign_in.html') def sign_in_user_post(environ, start_response): """ Used to manage sign in user request. Manage sign_in.html request. Parameters ---------- start_response : start_response WSGI start_response environ : environ WSGI python environ Returns ------- list sign in view """ request = POST(environ) Session = sessionmaker() Session.configure(bind=engine) session = Session() password = <PASSWORD>(request['password'].encode()).<PASSWORD>() query = session.query(User).filter( User.email == request['email'], User.password == password) exists = query.count() == 1 if exists: usr = query[0] usr_session = environ['beaker.session'] usr_session['usr_id'] = usr.id usr_session.save() return redirect(start_response, '/list/') else: return redirect(start_response, '/') def sign_up_user_get(environ, start_response): """ Used to render sign up user. Renders sign_up.html . Parameters ---------- start_response : start_response WSGI start_response environ : environ WSGI python environ Returns ------- list sign up view """ return render(start_response, 'sign_up.html') def sign_up_user_post(environ, start_response): """ Used to manage sign up user request. Manage sign_up.html request. Parameters ---------- start_response : start_response WSGI start_response environ : environ WSGI python environ Returns ------- list sign up view """ request = POST(environ) fields = set(field for field in User.__dict__) dct = {key: value for key, value in request.items() if key in fields} user = User(**dct) user.password = hashlib.sha256(user.password.encode()).hexdigest() try: Session = sessionmaker() Session.configure(bind=engine) session = Session() session.add(user) session.commit() return redirect(start_response, '/') except Exception as e: return redirect(start_response, '/') def list_get(environ, start_response): """ Used to render list user. Renders list.html . Parameters ---------- start_response : start_response WSGI start_response environ : environ WSGI python environ Returns ------- list list view """ usr_session = environ['beaker.session'] if usr_session.get('usr_id'): Session = sessionmaker() Session.configure(bind=engine) session = Session() usr = session.query(User).get(usr_session.get('usr_id')) context = {'usr': usr} return render(start_response, 'list.html', context) else: return redirect(start_response, '/') def list_post(environ, start_response): """ Used to manage list user request. Manage list.html request. Parameters ---------- start_response : start_response WSGI start_response environ : environ WSGI python environ Returns ------- list list view """ usr_session = environ['beaker.session'] if usr_session.get('usr_id'): Session = sessionmaker() Session.configure(bind=engine) session = Session() request = POST(environ) if request.get("search[value]"): query = session.query(User.name, User.email, User.country).filter(or_( User.email.contains(request.get("search[value]")), User.name.contains(request.get("search[value]")))) else: query = session.query(User.name, User.email, User.country) users = [[str(user.name), str(user.email), str(user.country)] for user in query] response = { "draw": int(request["draw"]), "recordsTotal": len(users), "recordsFiltered": len(users), "data": users } return JsonResponse(start_response, str(response)) else: return redirect(start_response, '/') ```
{ "source": "JosDenysGitHub/iknow", "score": 3 }
#### File: iknow/actions/update_python.py ```python import updatelib import json import os import re import subprocess import sys import urllib.request def get_first_numeric(s): """Return the index of the first numeric character in s, -1 if none exists.""" for i in range(len(s)): if s[i] in '0123456789': return i return -1 def get_first_nonnumeric(s): """Return the index of the first non-numeric character in s, -1 if all characters are numeric.""" for i in range(len(s)): if s[i] not in '0123456789': return i return -1 def compare_versions(a, b): """Compare 2 Python version strings. Return -1 if a < b, 0 if a == b, and 1 if a > b. Version string must match the regex VERSION_REGEX.""" a = a.split('.') b = b.split('.') a[0] = int(a[0]) b[0] = int(b[0]) a[1] = int(a[1]) b[1] = int(b[1]) nonnumeric_i = get_first_nonnumeric(a[2]) if nonnumeric_i == -1: a[2] = int(a[2]) a.append('zz') else: micro = a[2] a[2] = int(micro[:nonnumeric_i]) nonnumeric_i += micro[nonnumeric_i] == '-' after_micro = micro[nonnumeric_i:] numeric_i = get_first_numeric(after_micro) a.append(after_micro[:numeric_i]) a.append(int(after_micro[numeric_i:])) nonnumeric_i = get_first_nonnumeric(b[2]) if nonnumeric_i == -1: b[2] = int(b[2]) b.append('zz') else: micro = b[2] b[2] = int(micro[:nonnumeric_i]) nonnumeric_i += micro[nonnumeric_i] == '-' after_micro = micro[nonnumeric_i:] numeric_i = get_first_numeric(after_micro) b.append(after_micro[:numeric_i]) b.append(int(after_micro[numeric_i:])) if a < b: return -1 elif a == b: return 0 return 1 ALLOW_PRERELEASE = False # flag for whether to allow updates to prerelease Python versions platform = sys.argv[1] assert platform in ('win64', 'osx'), f'{platform} is not supported' if platform == 'win64' and ALLOW_PRERELEASE: VERSION_REGEX = r'^([0-9]+\.){2}[0-9]+(-(a|b|rc)[0-9]+)?$' elif platform == 'osx' and ALLOW_PRERELEASE: VERSION_REGEX = r'^([0-9]+\.){2}[0-9]+((a|b|rc)[0-9]+)?$' else: VERSION_REGEX = r'^([0-9]+\.){2}[0-9]+$' vars = updatelib.get_vars() if platform == 'win64': current_versions = vars['PYVERSIONS_WIN'].split() else: current_versions = vars['PYVERSIONS_OSX'].split() # Get list of available Python versions. if platform == 'win64': url_data = urllib.request.urlopen('https://api.nuget.org/v3/index.json') json_data = json.load(url_data) for item in json_data['resources']: if item['@type'] == 'PackageBaseAddress/3.0.0': base_url = item['@id'] break else: raise ValueError('PackageBaseAddress/3.0.0 not found') url_data = urllib.request.urlopen(f'{base_url}python/index.json') json_data = json.load(url_data) available_versions = [version for version in json_data['versions'] if re.match(VERSION_REGEX, version)] else: # platform == 'osx' if sys.platform != 'darwin': raise EnvironmentError('Must be run on Mac OS X') subprocess.run(['brew', 'update'], check=True) subprocess.run(['brew', 'install', 'pyenv'], check=True) p = subprocess.run(['pyenv', 'install', '--list'], stdout=subprocess.PIPE, universal_newlines=True, check=True) available_versions = [version for version in p.stdout.split() if re.match(VERSION_REGEX, version)] # find updates to current versions update_info = [] latest_versions = [] for current_version in current_versions: latest_version_found = current_version for available_version in available_versions: if current_version.split('.')[:2] == available_version.split('.')[:2] and \ compare_versions(latest_version_found, available_version) == -1: latest_version_found = available_version latest_versions.append(latest_version_found) if current_version != latest_version_found: update_info.append([current_version, latest_version_found]) # set variables if platform == 'win64': vars['PYVERSIONS_WIN'] = ' '.join(latest_versions) else: vars['PYVERSIONS_OSX'] = ' '.join(latest_versions) updatelib.set_vars(vars) # set environment variables for next GitHub actions step updatelib.setenv('PYTHON_UPDATE_INFO_ONELINE', ', '.join('→'.join(x) for x in update_info)) for i in range(len(update_info)): update_info[i] = ' can be updated to '.join(update_info[i]) update_info[i] = f'- {update_info[i]}' updatelib.setenv('PYTHON_UPDATE_INFO_MULTILINE', '\n'.join(update_info)) if platform == 'osx': p = subprocess.run(['brew', 'list', '--versions', 'pyenv'], stdout=subprocess.PIPE, universal_newlines=True, check=True) pyenv_tool_version = p.stdout.split()[1] updatelib.setenv('PYENV_TOOL_VERSION', pyenv_tool_version) ``` #### File: iknow/language_development/handleCSV.py ```python # This Python file uses the following encoding: utf-8 ''' handleCSV.py : generic script for automating CSV file operations. - task1 : filter Literal labels from lexrep.csv ''' import os,sys,time,shutil,pprint from os import walk from shutil import copyfile pp = pprint.PrettyPrinter() language_par='*' # '*' # default to all languages if (len(sys.argv)>1): language_par = sys.argv[1] def filter_doubles_from_lexreps(full_path_name): print("filtering doubles from \"" + full_path_name + "\"") lexreps_csv = [] # filtered collection lexreps_map = {} # dictionary to filter doubles f_lexreps = open(full_path_name,"r",True,"utf8") for txt_line in f_lexreps: if (txt_line.find("/*") != -1) or (len(txt_line.split(';'))<4): # comment or empty lexreps_csv.append(txt_line) continue line_split = txt_line.split(';') lexrep = line_split[2] if lexrep in lexreps_map: # this is a double print("found double : " + txt_line) print("*** removed from lexreps collection ***") else: lexreps_map[lexrep]=txt_line lexreps_csv.append(txt_line) f_lexreps.close() f_lexreps = open(full_path_name,"w",True,"utf8") for txt_line in lexreps_csv: f_lexreps.write(txt_line) f_lexreps.close() pass def filter_literal_label_from_lexreps(full_path_name): print("filtering: \"" + full_path_name + "\"") lexreps_csv = [] # filtered collection copyfile(full_path_name, full_path_name+".bak") # one backup file should do, use local git for original file f_lexreps = open(full_path_name,"r",True,"utf8") for txt_line in f_lexreps: if txt_line.find("/**** Rewritten by DELVE") != -1: line_split = txt_line.split(';') meta = line_split[1] lexrep = line_split[2] line_reconstruct = ";" + meta + ";" + lexrep + ";;" for i in range(4,len(line_split),1): if (line_split[i]=="\n"): continue if (len(line_split[i])): # skip in the (exception) case of emptiness line_reconstruct += line_split[i] + ";" line_reconstruct += "\n" lexreps_csv.append(line_reconstruct) # add modified line # pp.pprint(line_split) txt_lit = f_lexreps.readline() # line containing literal, exclude ! if txt_lit.find("Lit_") == -1: raise ValueError('Lexrep line {} must have a literal label.'.format(txt_lit)) else: lexreps_csv.append(txt_line) f_lexreps.close # pp.pprint(lexreps_csv) f_lexreps = open(full_path_name,"w",True,"utf8") for txt_line in lexreps_csv: f_lexreps.write(txt_line) f_lexreps.close() pass def filter_DELVE_rewrites_from_lexreps(full_path_name): print("removing DELVE rewrites from:\"" + full_path_name + "\"") lexreps_csv = [] # filtered collection f_lexreps = open(full_path_name,'r',True,"utf8") for txt_line in f_lexreps: if txt_line.find("/* Expanded previously by DELVE") != -1: # print(txt_line) # /* Expanded previously by DELVE....;;(く|ぐ|す|た|ぶ|む|る|う)のが大変;;JPVerbEndOther;JPEndRelation;-;JPno;-;JPga;-;JPCon;Join; line_split = txt_line.split(';') meta = line_split[1] lexrep = line_split[2] line_reconstruct = ";" + meta + ";" + lexrep + ";;" for i in range(4,len(line_split),1): if (line_split[i]=="\n"): continue if (len(line_split[i])): # skip in the (exception) case of emptiness line_reconstruct += line_split[i] + ";" line_reconstruct += "\n" lexrep_splits = lexrep.split('|') # line_reconstruct += "ACTION:"+str(len(lexrep_splits)) + "\n" for i in range(len(lexrep_splits)): lexreps_csv.pop() # remove the last one lexreps_csv.append(line_reconstruct) # add modified line # pp.pprint(line_split) else: lexreps_csv.append(txt_line) f_lexreps.close() # # rewrite # f_lexreps = open(full_path_name,"w",True,"utf8") for txt_line in lexreps_csv: f_lexreps.write(txt_line) f_lexreps.close() pass def task1(language,path): print("Processing language=\"" + language + "\" in path=\"" + path + "\"\n") for (dirpath, dirnames, filenames) in walk(path): for single_file in filenames: if (single_file.endswith('.csv')): if single_file == "lexreps.csv": filter_literal_label_from_lexreps(os.path.join(dirpath, single_file)) # filter_doubles_from_lexreps(dirpath + single_file) filter_DELVE_rewrites_from_lexreps(os.path.join(dirpath, single_file)) pass def main(): currentDirectory = os.getcwd() # Get Current working Directory if currentDirectory.find("language_development") == -1: # run from top "iknow" directory os.chdir(currentDirectory+'/language_models') else: # run from "language_development" directory os.chdir(currentDirectory+'/../language_models') # Change the Current working Directory to the language_models currentDirectory = os.getcwd() for (dirpath, dirnames, filenames) in walk(currentDirectory): if language_par == '*': # process them all for single_dir in dirnames: full_dir = os.path.join(dirpath, single_dir) task1(single_dir, full_dir) else: full_dir = os.path.join(dirpath, language_par) task1(language_par, full_dir) break if __name__ == '__main__': main() ```
{ "source": "JosDuran/showfullscr", "score": 2 }
#### File: JosDuran/showfullscr/app.py ```python from flask import Flask, send_file, flash, redirect, session, render_template, request, url_for, jsonify,json, make_response from werkzeug import secure_filename import sqlite3, base64 import os, io, subprocess app = Flask(__name__) app.secret_key = 'super secret key' DEFAULT_PATH = os.path.dirname(os.path.realpath(__file__)) @app.route('/') def home(): return render_template('index.html') @app.route('/showfs', methods = ['POST']) def shofs(): afile = request.files['selectfile'] asecure = secure_filename(afile.filename) afile.save(asecure) print(asecure); image = subprocess.Popen(["feh", "--hide-pointer", "-x", "-q", "-B", "black", "-g", "1280x800", asecure]) return ('image displayed'); if __name__ == "__main__" : app.run(debug = True, host='0.0.0.0') ```
{ "source": "jose-121/RECTANGULO", "score": 2 }
#### File: jose-121/RECTANGULO/Andres_Suarez.py ```python def promedio (nota1, nota2, nota3, nota4): return (nota1+nota2+nota3+nota4) / 4 ```
{ "source": "jose1711/osm-mapper-tools", "score": 3 }
#### File: osm-mapper-tools/avnotes/avnotes.py ```python import math import sys import os import re import datetime import argparse # ARRAY = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_~' ARRAY = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_@' def string2geo(s): """ converts string into (lat,lon) tuple """ code = 0 for i in range(len(s)): try: digit = ARRAY.index(s[i]) except: # not sure where the ~ vs @ came from but this is to accept both if s[i] == "~": digit = 63 else: raise ValueError code = (code << 6) | digit # align to 64bit integer code = (code << (62 - (6 * len(s)))) x = y = 0 # deinterleaving for i in range(61, -1, -2): x = (x << 1) | ((code >> i) & 1) y = (y << 1) | ((code >> (i - 1)) & 1) lat = (y << 1) / (2 ** 32 / 180.0) - 90 lon = (x << 1) / (2 ** 32 / 360.0) - 180 return (lat, lon) aparser = argparse.ArgumentParser() aparser.add_argument('-s', nargs=1, help='Only convert STRING and output to stdout', metavar='STRING') args = aparser.parse_args() if args.s: print string2geo(args.s[0]) sys.exit() # process files in current directory files = [] waypoints = [] for (dirpath, dirnames, filenames) in os.walk('.'): files.extend(filenames) break files.sort(key=lambda x: os.stat(x).st_mtime) # init. counter c = 0 # grep for files matching 3gp extension audiofiles = filter(lambda x: re.search(r'\.3gp$', x), files) if not audiofiles: sys.exit(0) print "<?xml version='1.0' encoding='UTF-8'?>" print "<gpx version='1.1' creator='osmand2gpx.py' xmlns='http://www.topografix.com/GPX/1/1'>" for string in map(lambda x: re.sub("(.*)\.3gp", r"\1", x), audiofiles): basename = string # string=re.sub("-","",string) string = re.sub("-.*", "", string) lat, lon = string2geo(string) c += 1 os.system('ffmpeg -y -i ' + basename + '.3gp ' + basename + '.3gp.wav') times = (os.stat(basename + '.3gp').st_mtime, os.stat(basename + '.3gp').st_mtime) os.utime(basename + '.3gp.wav', times) waypoints.append([lon, lat, basename, c, times[0]]) if len(waypoints) < 1: sys.exit(0) for wpt in waypoints: lon = wpt[0] lat = wpt[1] basename = wpt[2] name = wpt[3] time = wpt[4] print "<wpt lon='" + repr(lon) + "' lat='" + repr(lat) + "'>" print "<time>" + str(datetime.datetime.fromtimestamp(time)).replace(' ', 'T') + 'Z' + "</time>" print "<name>" + repr(name) + "</name>" print "<link href='" + basename + ".3gp.wav'/>" print "</wpt>" print "<trk><trkseg>" for wpt in waypoints: lon = wpt[0] lat = wpt[1] basename = wpt[2] name = wpt[3] time = wpt[4] print "<trkpt lon='" + repr(lon) + "' lat='" + repr(lat) + "'>" print "<time>" + str(datetime.datetime.fromtimestamp(time)).replace(' ', 'T') + 'Z' + "</time>" print "</trkpt>" print "</trkseg></trk>" print "</gpx>" ``` #### File: osm-mapper-tools/regadr2osm/regadr2osm.py ```python import xml.etree.ElementTree as ET from xml.dom import minidom import sys, os def prettify(elem): """Return a pretty-printed XML string for the Element. """ rough_string = ET.tostring(elem, 'utf-8') reparsed = minidom.parseString(rough_string) return reparsed.toprettyxml(indent=" ") inputfile = sys.argv[1] tree = ET.parse(inputfile) root = tree.getroot() newroot = ET.fromstring('''<osm generator="Python 2.x" version="0.6"></osm>''') ns='http://www.egov.sk/mvsr/RA/Odpis/Ext/ObjednanieDatasetuAdresnychBodovBezZepUI.1.0' counter = 0 for i in root.iter(): if i.tag.endswith('item') and '{{{0}}}addressPoint'.format(ns) in [x.tag for x in i.iter()]: counter += 1 street=i.findall('./{{{0}}}streetName/{{{0}}}name'.format(ns))[0].text streetn = i.findall('./{{{0}}}buildingNumber'.format(ns))[0].text conscrn = i.findall('./{{{0}}}propertyRegistrationNumber'.format(ns))[0].text city = i.findall('./{{{0}}}district/{{{0}}}itemName'.format(ns))[0].text lat = i.findall('./{{{0}}}addressPoint/{{{0}}}BLH/{{{0}}}axisB'.format(ns))[0].text lon = i.findall('./{{{0}}}addressPoint/{{{0}}}BLH/{{{0}}}axisL'.format(ns))[0].text node = ET.SubElement(newroot, 'node') node.set("id",str(counter*-1)) node.set("visible",'true') node.set("lat",lat) node.set("lon",lon) citytag = ET.SubElement(node, 'tag') streettag = ET.SubElement(node, 'tag') streetntag = ET.SubElement(node, 'tag') conscrntag = ET.SubElement(node, 'tag') housenutag = ET.SubElement(node, 'tag') citytag.set("k","addr:city") citytag.set("v",city) streettag.set("k","addr:street") streettag.set("v",street) streetntag.set("k","addr:streetnumber") streetntag.set("v",streetn) conscrntag.set("k","addr:conscriptionnumber") conscrntag.set("v",conscrn) housenutag.set("k","addr:housenumber") housenutag.set("v",u'{}/{}'.format(conscrn,streetn)) print u'{0} {2}/{1}: {3} {4}'.format(street,streetn, conscrn, lat, lon).encode('utf-8') newtree = ET.ElementTree(newroot) with open(os.path.splitext(inputfile)[0]+'.osm', 'w') as outfile: outfile.write(prettify(newroot).encode('utf-8')) ```
{ "source": "Jose-30/Kien-Bot-Discord-Bot-", "score": 3 }
#### File: Kien-Bot-Discord-Bot-/bot_tools/music.py ```python import discord, os, youtube_dl, re from urllib import parse, request from discord.ext import commands #song_list = [] #global_index = 0 class Music(commands.Cog): def __init__(self,client): self.client = client @commands.command() async def play(self, ctx, *query): #check if user and bot is in voice channel voiceTrue = ctx.author.voice bot = discord.utils.get(self.client.voice_clients, guild=ctx.guild) try: await ctx.author.voice.channel.connect() except: if voiceTrue is None: return await ctx.send("You are not in a voice channel") if bot.is_connected(): return await ctx.send("Bot is already connected to a voice channel") #check if mp3 file exists and delete it song_there = os.path.isfile("song.mp3") try: if song_there: os.remove("song.mp3") except PermissionError: await ctx.send("Wait for the current playing music to end or use the 'stop' command") return #modify the user's query so that youtube understands it search = ' '.join(list(query)) print(search) search = search.replace(' ','+') query_string = parse.urlencode({'search_query': search}) html = request.urlopen('http://www.youtube.com/results?' + query_string) search_results = re.findall('watch\?v=(.{11})',html.read().decode('utf-8')) audio = "https://www.youtube.com/watch?v=" + search_results[0] #song_list.append(audio) #download the video vc = ctx.voice_client ydl_opts = { 'format': 'bestaudio/best', 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192', }], } #the video is converted to mp3 file with youtube_dl.YoutubeDL(ydl_opts) as ydl: ydl.download([audio]) for file in os.listdir("./"): if file.endswith(".mp3"): os.rename(file, "song.mp3") #the mp3 file is played vc.play(discord.FFmpegPCMAudio("song.mp3")) @commands.command() async def leave(self, ctx): bot = discord.utils.get(self.client.voice_clients, guild=ctx.guild) if bot.is_connected(): await bot.disconnect() else: return await ctx.send("Bot is not connected to a voice channel") @commands.command() async def pause(self, ctx): bot = discord.utils.get(self.client.voice_clients, guild=ctx.guild) if bot.is_playing(): bot.pause() await ctx.send("Music paused") else: return await ctx.send("Im not playing anything") @commands.command() async def resume(self, ctx): bot = discord.utils.get(self.client.voice_clients, guild=ctx.guild) if bot.is_paused(): bot.resume() await ctx.send("Music resumed") else: return await ctx.send("Im not paused") @commands.command() async def stop(self, ctx): bot = discord.utils.get(self.client.voice_clients, guild=ctx.guild) if bot.is_playing(): bot.stop() await ctx.send("Music stopped") else: await ctx.send("Im not playing anything") def setup(client): client.add_cog(Music(client)) ```
{ "source": "Jose-30/PyEmailSpamer", "score": 4 }
#### File: Jose-30/PyEmailSpamer/main.py ```python from modules import gmailSPAMMER from modules import hotmailSPAMMER from modules import yahooSPAMMER def main(): print("What email service do you want to use?") print("1. Gmail") print("2. Yahoo") print("3. Hotmail") choice = int(input("Enter your choice: ")) if choice == 1: print("You chose Gmail") username = input("Enter your username: ") password = input("Enter your password: ") gmail = gmailSPAMMER.Gmail(username, password) to = input("To: ") content = input("Content: ") count = 0 i = int(input("How many times do you want to send this email? ")) while count < i: gmail.send(to, content) count += 1 gmail.send(to, content) print("Email sent!") elif choice == 2: print("You chose Yahoo") username = input("Enter your username: ") password = input("Enter your password: ") yahoo = yahooSPAMMER.Yahoo(username, password) to = input("To: ") content = input("Content: ") count = 0 i = int(input("How many times do you want to send this email? ")) while count < i: yahoo.send(to, content) count += 1 yahoo.send(to, content) print("Email sent!") elif choice == 3: print("You chose Hotmail") username = input("Enter your username: ") password = input("Enter your password: ") hotmail = hotmailSPAMMER.Hotmail(username, password) to = input("To: ") content = input("Content: ") count = 0 i = int(input("How many times do you want to send this email? ")) while count < i: hotmail.send(to, content) count += 1 hotmail.send(to, content) print("Email sent!") else: print("Invalid choice!") main() ```
{ "source": "jose-92/challenge-prework-backend-python", "score": 4 }
#### File: jose-92/challenge-prework-backend-python/index.py ```python import random def password_generator(): capitalize = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'I', 'J', 'K', 'L', 'N', 'M', 'R', 'T', 'S' 'U', 'W', 'X', 'Y', 'Z' ] lower_case = ['a', 'b', 'd', 'e', 'f', 'g', 'i', 'j', 'k' 'l', 'n', 'm', 'r', 't', 's', 'u', 'w', 'x', 'y', 'z' ] symbols = ['#', '[', ')', '$', '!', '/', '&', '%'] numbers = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '0'] characters = capitalize + lower_case + numbers + symbols password = [] for i in range(10): random_characters = random.choice(characters) password.append(random_characters) password = ''.join(password) return password def main(): password = password_generator(); print('Your new password is: ' + password) if _name_ == '_main_': main() ```
{ "source": "jose96043/ThreatExchange", "score": 2 }
#### File: hmalib/common/image_sources.py ```python import functools import boto3 import requests import typing as t class ImageSource: """ An interface that is used during hashing to get an image's bytes. Subclasses may be potentially used to store the image bytes at submission. """ def get_image_bytes(self, identifier: str) -> bytes: """ Get bytes for the image. """ raise NotImplementedError @functools.lru_cache(maxsize=None) def _get_s3_client(): # memoized so that we don't create a boto3 client unless needed. return boto3.client("s3") class S3BucketImageSource(ImageSource): """ Get images from a single S3 bucket. Formalizes the convention of including the content_id in the S3 key. If you find yourself relying on the structure of the s3 key to do any inference, consider moving that piece of code here. Potential enhancements: - Customize retry behavior, with backoff - Parameterized credentials rather than relying on boto inference """ def __init__(self, bucket: str, image_prefix: str) -> None: self.bucket = bucket self.image_prefix = image_prefix def get_image_bytes(self, content_id: str) -> bytes: return ( _get_s3_client() .get_object(Bucket=self.bucket, Key=self.get_s3_key(content_id))["Body"] .read() ) @staticmethod def get_content_id_from_s3_key(s3_key: str, image_prefix: str) -> str: """ Useful when you have received an s3 event, so you don't have content_id, but need to infer it. """ return s3_key[len(image_prefix) :] def get_s3_key(self, content_id) -> str: return f"{self.image_prefix}{content_id}" def put_image_bytes(self, content_id: str, contents: bytes): """ This is not part of the ImageSource interface. But S3 keys have some built in structure that must be formalized. See class docstring for more. """ _get_s3_client().put_object( Body=contents, Bucket=self.bucket, Key=self.get_s3_key(content_id) ) class URLImageSource(ImageSource): """ Simple GET request to get bytes of a URL. Potential enhancements: - HTTP Retry configuration with backoff - HTTP Authorization, Headers - Customizable Keep-Alive handling (presently defaults to requests.Session defaults) """ def get_image_bytes(self, identifier: str) -> bytes: r = requests.get(identifier) r.raise_for_status() return r.content ```
{ "source": "jose9701/docker-pirate", "score": 3 }
#### File: flask-mysql/app/developers_orm.py ```python import os import peewee import json from playhouse.shortcuts import model_to_dict database = peewee.MySQLDatabase( "employees", host=os.getenv("DB_HOST", "localhost"), port=int(os.getenv("DB_PORT", 3306)), user="root", password="<PASSWORD>" ) class DevelopersORM(peewee.Model): name = peewee.CharField(255) lastname = peewee.CharField(255) id_type = peewee.CharField(255) id_value = peewee.CharField(255) area = peewee.CharField(255) age = peewee.IntegerField() class Meta: database = database db_table = "developers" def developer_exists(self, id_type, id_value): return DevelopersORM.select().where( DevelopersORM.id_type == id_type, DevelopersORM.id_value == id_value ).exists() def create_developer(self, args): return DevelopersORM.insert( name=args["name"], lastname=args["lastname"], id_type=args["id_type"], id_value=args["id_value"], area=args["area"], age=args["age"] ).execute() def get_all_developers(self): query = DevelopersORM.select() results = [] for dev in query: results.append(model_to_dict(dev)) return results def get_developer_by_id_params(self, id_type, id_value): results = DevelopersORM.select().where( DevelopersORM.id_type == id_type, DevelopersORM.id_value == id_value ).get() return model_to_dict(results) def update_developer(self, args): dev = DevelopersORM.select().where( DevelopersORM.id_type == args["id_type"], DevelopersORM.id_value == args["id_value"] ).get() dev.name = args["name"] dev.lastname = args["lastname"] dev.id_type = args["id_type"] dev.id_value = args["id_value"] dev.area = args["area"] dev.age = args["age"] return dev.save() def delete_developer_by_id_params(self, id_type, id_value): query = DevelopersORM.delete().where( DevelopersORM.id_type == id_type, DevelopersORM.id_value == id_value ) return query.execute() if __name__ == "__main__": if database.table_exists("developers"): print("Table already exists") else: print("Table does NOT exists") # DevelopersORM.create_table() devs = DevelopersORM() args = {} args["name"] = "Santiago" args["lastname"] = "Garcia" args["id_type"] = "cc" args["id_value"] = "1234" args["area"] = "SuperDevOps" args["age"] = 50 print("create(cc, 1234): ", devs.create_developer(args)) print("exists(cc, 1234): ", devs.developer_exists("cc", "1234")) print("get(cc, 1234): ", devs.get_developer_by_id_params("cc", "1234")) args = {} args["name"] = "Santi" args["lastname"] = "Garci" args["id_type"] = "cc" args["id_value"] = "1234" args["area"] = "DevOps" args["age"] = 21 print("update(cc, 1234, args): ", devs.update_developer(args)) print("get(cc, 1234): ", devs.get_developer_by_id_params("cc", "1234")) print("delete(cc, 1234): ", devs.delete_developer_by_id_params("cc", "1234")) print("exists(cc, 1234): ", devs.developer_exists("cc", "1234")) ```
{ "source": "JoseAAManzano/polychar", "score": 3 }
#### File: src/scripts/data_processing.py ```python import os import re import random import unicodedata import pandas as pd from itertools import product random.seed(404) path = os.getcwd() os.chdir(path) file_path = "../../data/" target_path = "../../processed_data/" esp = pd.read_csv(os.path.join(file_path, 'ESP.csv'), encoding='utf-8') eng = pd.read_csv(os.path.join(file_path, 'ENG.csv'), sep=',', encoding='utf-8') eus = pd.read_csv(os.path.join(file_path, 'EUS.txt'), sep='\t', header=None) eus.columns = ['spelling', 'freq'] eus['len'] = eus['spelling'].apply(len) # %% Normalizing eus data eus = eus[(eus.freq > eus.freq.quantile(q=0.5))] esp = esp[(esp.zipf > esp.zipf.quantile(q=0.5))] eng = eng[(eng.ZipfUS > eng.ZipfUS.quantile(q=0.5))] esp = esp[(esp.len >= 3) & (esp.len <= 10)] eng = eng[(eng.Length >= 3) & (eng.Length <= 10)] eus = eus[(eus.len >= 3) & (eus.len <= 10)] def preprocess(st): st = ''.join(c for c in unicodedata.normalize('NFD', st) if unicodedata.category(c) != 'Mn') st = re.sub(r"[^a-zA-Z]", r"", st) return st.lower() esp_words = list(set([preprocess(st) for st in esp.spelling])) eng_words = list(set([preprocess(st) for st in eng.spelling])) eus_words = list(set([preprocess(st) for st in eus.spelling])) def editDistance(word1, word2): ''' Return minimum number of edits required to transform word1 into word2 Edits include: deletion, insertion, replacement Uses memoization to speed up the process ''' n1, n2 = len(word1), len(word2) memo = [[0]*(n2) for _ in range(n1)] def minDist(i, j): if i < 0: return j+1 if j < 0: return i+1 if memo[i][j]: return memo[i][j] if word1[i] == word2[j]: memo[i][j] = minDist(i-1, j-1) return memo[i][j] memo[i][j] = 1 + min(minDist(i, j-1), minDist(i-1, j), minDist(i-1, j-1)) return memo[i][j] return minDist(n1-1, n2-1) def get_num_cognates(vocab1, vocab2): cognates = 0 for w1, w2 in product(vocab1, vocab2): if editDistance(w1, w2) == 1: cognates += 1 return cognates # print(get_num_cognates(esp_words, eng_words)) # print(get_num_cognates(esp_words, eus_words)) # print(get_num_cognates(eus_words, eng_words)) random.shuffle(esp_words) random.shuffle(eng_words) random.shuffle(eus_words) esp_words = esp_words[:min(len(esp_words), len(eng_words), len(eus_words))] eng_words = eng_words[:min(len(esp_words), len(eng_words), len(eus_words))] eus_words = eus_words[:min(len(esp_words), len(eng_words), len(eus_words))] idx1 = int(len(esp_words)*0.8) idx2 = int(len(esp_words)*0.1) idx3 = int(len(esp_words)*0.1) idx1 += len(esp_words) - idx1 - idx2 - idx3 assert idx1 + idx2 + idx3 == len(esp_words) # %% First dataset data = pd.DataFrame(columns=['data', 'label', 'split']) data['data'] = esp_words + eng_words data['label'] = ['ESP'] * len(esp_words) + ['ENG'] * len(eng_words) splits = ['train']*idx1 + ['val']*idx2 + ['test'] * \ idx3 + ['train']*idx1 + ['val']*idx2 + ['test']*idx3 data['split'] = splits data.to_csv(os.path.join(target_path, 'ESP-ENG.csv'), index=False, encoding='utf-8') # %% Second dataset data = pd.DataFrame(columns=['data', 'label', 'split']) data['data'] = esp_words + eus_words data['label'] = ['ESP'] * len(esp_words) + ['EUS'] * len(eus_words) splits = ['train']*idx1 + ['val']*idx2 + ['test'] * \ idx3 + ['train']*idx1 + ['val']*idx2 + ['test']*idx3 data['split'] = splits data.to_csv(os.path.join(target_path, 'ESP-EUS.csv'), index=False, encoding='utf-8') ```
{ "source": "joseaccruz/pybireport", "score": 2 }
#### File: pybireport/pybireport/report.py ```python import xlsxwriter from pybireport.styles import Style, DefaultStyleSheet class Report: def __init__(self, fname): self._fname = fname self._pages = [] self._ss = DefaultStyleSheet() def add(self, page): # TBD: check if a page w/ the same name exists self._pages.append(page) return page def style_sheet(self, ss): self._ss = ss return report def generate(self): # Create a workbook and add a worksheet. wb = xlsxwriter.Workbook(self._fname) for page in self._pages: page.generate(wb, self._ss) wb.close() class Page: def __init__(self, name): self._name = name self._vizs = [] def add(self, viz): self._vizs.append(viz) return viz def generate(self, wb, ss): ws = wb.add_worksheet(self._name) for viz in self._vizs: viz.reset() for (i, viz) in enumerate(self._vizs): viz.generate(wb, ws, ss) class Viz: PLACE_ABSOLUTE = 1 PLACE_BELLOW = 2 PLACE_ABOVE = 3 PLACE_LEFT = 4 PLACE_RIGHT = 5 def __init__(self): # how to place the Viz self._placement = Viz.PLACE_ABSOLUTE self._pcol, self._prow = (1, 1) # reference Viz self._ref = None self._spacer_rows = 0 self._spacer_cols = 0 self._generated = False self._tl_col, self._tl_row = (1, 1) self._br_col, self._br_row = (1, 1) # format & style self._style = {} def format(self, component, value): if component not in self._style.keys(): # [TBD] make it a gracefull error exception print("Error - Component '%s' not found. Choose one of %s" % (component, self._style.keys())) self._style[component].format(value) return self def reset(self): self._generated = False def place_at(self, pcol, prow): self._placement = Viz.PLACE_ABSOLUTE self._pcol = pcol self._prow = prow return self def place_bellow(self, viz, rows=1, align="left"): self._placement = Viz.PLACE_BELLOW self._ref = viz self._spacer_rows = rows return self def place_left(self, viz, cols=1, align="top"): self._placement = Viz.PLACE_LEFT self._ref = viz self._spacer_cols = cols return self def _generate(self, wb, ws, ss): # [TBD] Raise an error here print("Abstract class error") quit() def generate(self, wb, ws, ss): if not self._generated: self._generated = True # compute the relative positioning if self._placement != Viz.PLACE_ABSOLUTE: # generate the reference viz (if not already) self._ref.generate(wb, ws, ss) (ul_col, ul_row, br_col, br_row) = self._ref.get_coords() if self._placement == Viz.PLACE_BELLOW: # TBD: honor the align parameter to compute the _pcol self._pcol = ul_col self._prow = br_row + 1 + self._spacer_rows elif self._placement == Viz.PLACE_LEFT: # TBD: honor the align parameter to compute the _pcol self._pcol = br_col + 1 + self._spacer_cols self._prow = br_row # generate it's own print("Viz: Create the viz on (%d, %d)" % (self._pcol, self._prow)) self._generate(wb, ws, ss) else: print("Done") def get_coords(self): return self._tl_col, self._tl_row, self._br_col, self._br_row class Text(Viz): def __init__(self, text): super().__init__() self._text = text # format & style self._style["text"] = Style("text") # merge info self._merge_rows = 1 self._merge_cols = 1 def merge_cols(self, cols=1): self._merge_cols = cols return self def merge_rows(self, rows=1): self._merge_rows = rows return self def format(self, value): return super().format("text", value) def _generate(self, wb, ws, ss): # prepare the format self._fmt_text = wb.add_format(ss.get(self._style["text"])) # write the text if self._merge_cols > 1 or self._merge_rows > 1: ws.merge_range(self._prow, self._pcol, self._prow + self._merge_rows - 1, self._pcol + self._merge_cols - 1, self._text, self._fmt_text) else: ws.write_string(self._prow, self._pcol, self._text, self._fmt_text) # compute the occupied area self._tl_col, self._tl_row = self._pcol, self._prow self._br_col, self._br_row = self._pcol + self._merge_cols, self._prow + self._merge_rows class Table(Viz): def __init__(self, data): super().__init__() self._data = data self._title = "" self._description = "" self._legend = "" # default parameters self._merge_title = True self._zebra = False # format & style self._style = { "title": Style("table_title"), "description": Style("table_description"), "legend": Style("table_legend"), "header": Style("table_header"), "row": Style("table_row"), "row_odd": Style("table_row_odd"), "row_even": Style("table_row_even") } # [TBD] allow a specific format for each column (inherit from row, row_odd, row_even) def title(self, title, style={}): self._title = title self.format("title", style) return self def description(self, description, style={}): self._description = description self.format("description", style) return self def legend(self, legend, style={}): self._legend = legend self.format("legend", style) return self def zebra(self, on): self._zebra = on return self def _generate(self, wb, ws, ss): # [TBD] add description and legend # setup all formats self._fmt = {} for k, v in self._style.items(): self._fmt[k] = wb.add_format(ss.get(v)) # start cell (r, c) = self._prow, self._pcol # write the title if self._merge_title: ws.merge_range(r, c, r, c + len(self._data.columns) - 1, self._title, self._fmt["title"]) else: ws.write_string(r, c, self._title, self._fmt["title"]) # [TBD] this spacer should be configured in the future r += 2 # write the header for (i, col) in enumerate(self._data.columns): # [TBD] allow a specific format for each header column ws.write_string(r, c + i, col, self._fmt["header"]) r += 1 # write the data for (i, values) in enumerate(self._data.values): if self._zebra: if i % 2 == 0: fmt_cell = self._fmt["row_odd"] else: fmt_cell = self._fmt["row_even"] else: fmt_cell = self._fmt["row"] for (j, value) in enumerate(values): # Convert the date string into a datetime object. # date = datetime.strptime(date_str, "%Y-%m-%d") # [TBD] use a class parameter "col_type" ws.write_string(r + i, c + j, str(value), fmt_cell) #worksheet.write_datetime(row, col + 1, date, date_format ) #worksheet.write_number (row, col + 2, cost, money_format) #row += 1 # compute the occupied area self._tl_col, self._tl_row = self._pcol, self._prow self._br_col, self._br_row = self._pcol + len(self._data.columns), self._prow + len(self._data) + 3 class Form(Viz): # [TBD] finish form def __init__(self, title, data): super().__init__() self._title = title self._data = _data def _generate(self, wb, ws): print("Generate Label") print("\t'%s'" % self._title) for (k, v) in self._data.items(): print("\t%s: %s" % (k, str(v))) # compute the occupied area self._tl_col, self._tl_row = self._pcol, self._prow self._br_col, self._br_row = self._pcol + 2, self._prow + len(self._data.keys()) + 2 ```
{ "source": "joseafga/thanos-python", "score": 3 }
#### File: joseafga/thanos-python/btconnection.py ```python import bluetooth def find_devices(): print('Looking for nearby devices...') devices_list = [] devices = bluetooth.discover_devices(duration=5, lookup_names=True) for d in devices: devices_list.append(d + (1,)) return devices_list def find_services(): print('Looking for nearby services...') services = bluetooth.find_service() services_list = [] for s in services: services_list.append((s['host'], str(s['name']), s['port'])) return services_list def print_table(*args): # table header print("\n{:2} {:<18} {:<4} {}".format('ID', 'ADDRESS', 'PORT', 'NAME')) # create a table with all devices i = 0 # counter for devices in args: if len(devices): for device in devices: i += 1 # increment addr, name, port = device print('{:>2} {:<18} {:<4} {}'.format(i, addr, port, name)) print(' ------------------------------ ') # separator else: print(' ----------- EMPTY ------------ ') else: print('{:2} Find Devices'.format(i + 1)) print('{:2} Find Services'.format(i + 2)) print(' ------------------------------ ') def choose(devices): print("\nType device ID or action:", end=" ") choice = int(input().lower()) diff = choice - len(devices) if diff > 0: if diff == 1: devices_nearby = find_devices() print_table(devices_nearby) return choose(devices_nearby) else: services_nearby = find_services() print_table(services_nearby) return choose(services_nearby) return devices[choice - 1] def do_connection(addr, name, port): # show message print("Connecting to {} on {} port {}".format(name, addr, port)) # Create the client socket sock = bluetooth.BluetoothSocket(bluetooth.RFCOMM) sock.connect((addr, port)) # connection ok print("Connected.\n") return sock ```
{ "source": "joseafilho/aws-cdk-python-builders", "score": 2 }
#### File: databases/beer_application/beer_database_rds.py ```python from aws_cdk import ( aws_ec2 as ec2, core as cdk ) from aws_cdk.core import ( SecretValue, Tags ) import aws_cdk.aws_logs as logs import aws_cdk.aws_rds as rds from aws_cdk.aws_ec2 import ISecurityGroup from aws_cdk.aws_ec2 import IVpc from libraries.security_group.security_group_builder import SecurityGroupBuilder class BeerRDSResources(cdk.Construct): def __init__(self, scope: cdk.Construct, id: str, vpc: IVpc, sg_beer_backend: ISecurityGroup, **kwargs): super().__init__(scope, id, **kwargs) self.__id = id self.__vpc = vpc self.__sg_beer_backend = sg_beer_backend self.__create_sg() self.__create_rds_instance() def __create_sg(self): self.__sg_rds = SecurityGroupBuilder( self, 'beer-rds-postgres-sg', vpc = self.__vpc, sg_description = 'Access RDS Postgres' ) self.__sg_rds.add_role( port = 5432, sg_parent = self.__sg_beer_backend, rule_description = 'Beer backend.' ) def __create_rds_instance(self): instance_name = 'beer-db' instance_type = ec2.InstanceType.of( ec2.InstanceClass.BURSTABLE4_GRAVITON, ec2.InstanceSize.SMALL ) instance = rds.DatabaseInstance(self, instance_name, engine = rds.DatabaseInstanceEngine.postgres( version = rds.PostgresEngineVersion.VER_12_7 ), instance_type = instance_type, credentials = rds.Credentials.from_password( username = 'postgres_admin', password = SecretValue.plain_text('<PASSWORD>') ), vpc = self.__vpc, vpc_subnets = { 'subnet_type': ec2.SubnetType.PUBLIC }, security_groups = [self.__sg_rds.sg], allocated_storage = 50, max_allocated_storage = 1000, publicly_accessible = False, instance_identifier = instance_name, backup_retention = cdk.Duration.days(7), monitoring_interval = cdk.Duration.seconds(60), enable_performance_insights = True, cloudwatch_logs_exports = ['postgresql'], cloudwatch_logs_retention = logs.RetentionDays.ONE_WEEK, deletion_protection = True, auto_minor_version_upgrade = False ) Tags.of(instance).add('Name', instance_name) ``` #### File: libraries/certificate_manager/certificate_builder.py ```python from aws_cdk import ( aws_certificatemanager as cert, core as cdk ) from aws_cdk.core import Tags class CertificateBuilder(cdk.Construct): @property def certificate(self): return self.__certificate def __init__(self, scope: cdk.Construct, id: str, domain: str, **kwargs): super().__init__(scope, id, **kwargs) self.__id = id self.__domain_name = domain self.__create_certificate() def __create_certificate(self): self.__certificate = cert.Certificate( self, self.__id, domain_name = self.__domain_name, validation = cert.CertificateValidation.from_dns() ) Tags.of(self.__certificate).add('Name', self.__id) class CertificateFromArnBuilder(cdk.Construct): @property def certificate(self): return self.__certificate def __init__(self, scope: cdk.Construct, id: str, arn: str, **kwargs): super().__init__(scope, id, **kwargs) self.__id = id self.__arn = arn self.__create_certificate() def __create_certificate(self): self.__certificate = cert.Certificate.from_certificate_arn( self, self.__id, certificate_arn = self.__arn ) ``` #### File: project-base/storages/bucket_private_ecs.py ```python from aws_cdk import ( core as cdk, aws_iam as iam ) from libraries.s3.bucket_private_builder import BucketPrivateBuilder class BucketPrivateECS(cdk.Construct): def __init__(self, scope: cdk.Construct, id: str, **kwargs) -> None: super().__init__(scope, id, **kwargs) self.__bucket_uploads = BucketPrivateBuilder( self, 'company-uploads-bk' ) bucket_uploads_arn = self.__bucket_uploads.bucket.bucket_arn + '/*' self.__bucket_uploads.bucket.add_to_resource_policy( iam.PolicyStatement( principals = [ iam.ServicePrincipal('ecs-tasks.amazonaws.com') ], actions = ['*'], resources = [bucket_uploads_arn] ) ) ```
{ "source": "joseahr/image-rectification-app", "score": 2 }
#### File: opencv/mosaic/matchers.py ```python import cv2 import numpy as np class matchers: def __init__(self): self.surf = cv2.xfeatures2d.SURF_create() FLANN_INDEX_KDTREE = 0 index_params = dict(algorithm=0, trees=5) search_params = dict(checks=50) self.flann = cv2.FlannBasedMatcher(index_params, search_params) def match(self, i1, i2, direction=None): imageSet1 = self.getSURFFeatures(i1) imageSet2 = self.getSURFFeatures(i2) print "Direction : ", direction matches = self.flann.knnMatch( imageSet2['des'], imageSet1['des'], k=2 ) good = [] for i , (m, n) in enumerate(matches): if m.distance < 0.7*n.distance: good.append((m.trainIdx, m.queryIdx)) if len(good) > 4: pointsCurrent = imageSet2['kp'] pointsPrevious = imageSet1['kp'] matchedPointsCurrent = np.float32( [pointsCurrent[i].pt for (__, i) in good] ) matchedPointsPrev = np.float32( [pointsPrevious[i].pt for (i, __) in good] ) H, s = cv2.findHomography(matchedPointsCurrent, matchedPointsPrev, cv2.RANSAC, 4) return H return None def getSURFFeatures(self, im): gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) kp, des = self.surf.detectAndCompute(gray, None) return {'kp':kp, 'des':des} ```