metadata
dict
text
stringlengths
60
3.49M
{ "source": "josejorgers/bobo-script", "score": 3 }
#### File: src/utils/movements.py ```python from robobo.movement.simple_movements import * from constants.sensors_config import DISTANCE_CLOSE, DISTANCE_MEDIUM, DISTANCE_FAR, EDGE_DISTANCE, DISTANCE_TOO_CLOSE, DISTANCE_GOAL_CLOSE from robobopy.utils.IR import IR DIRECTIONS = { 'forward': move_forward, 'right': turn_right, 'left': turn_left, 'backward': move_backward, 'custom': diagonal_movement } def is_obstacle_far(robot): return robot.readIRSensor(IR.FrontC) < DISTANCE_FAR and\ robot.readIRSensor(IR.FrontRR) < DISTANCE_FAR and\ robot.readIRSensor(IR.FrontLL) < DISTANCE_FAR def is_obstacle_medium(robot): return robot.readIRSensor(IR.FrontC) < DISTANCE_MEDIUM and\ robot.readIRSensor(IR.FrontRR) < DISTANCE_MEDIUM and\ robot.readIRSensor(IR.FrontLL) < DISTANCE_MEDIUM def is_obstacle_close(robot): return robot.readIRSensor(IR.FrontC) > DISTANCE_CLOSE or\ robot.readIRSensor(IR.FrontRR) > DISTANCE_TOO_CLOSE or\ robot.readIRSensor(IR.FrontLL) > DISTANCE_TOO_CLOSE def is_far_from_edge(robot): return robot.readIRSensor(IR.FrontL) > EDGE_DISTANCE or\ robot.readIRSensor(IR.FrontR) > EDGE_DISTANCE or\ robot.readIRSensor(IR.BackL) > EDGE_DISTANCE or\ robot.readIRSensor(IR.BackR) > EDGE_DISTANCE def is_goal_close(robot): return robot.readIRSensor(IR.FrontC) > DISTANCE_GOAL_CLOSE ```
{ "source": "josejorgers/gimme-the-code", "score": 3 }
#### File: tests/scrapper/test_google_search.py ```python import sys sys.path.insert(0, 'C:\\Users\\JJ\\Desktop\\gimme-the-code\\') from gtcode.scrapper.google_search import search, get_code_from_results def test_google_search(): query = "create a class in python" results = search(query) prefix = [True for r in results if r[:4] == 'http'] assert len(results) > 0 and len(prefix) == len(results) def test_get_code_from_results(): links = [ 'https://stackoverflow.com/questions/5041008/how-to-find-elements-by-class', 'https://www.kite.com/python/answers/how-to-find-html-elements-by-class-with-beautifulsoup-in-python' ] code = get_code_from_results(links) assert len(code) > 0 ```
{ "source": "JoseJorgeXL/CoolPyler", "score": 3 }
#### File: CoolPyler/checksemantic/scope.py ```python from parsing import cool_ast class Scope: def __init__(self, parent=None, inside=None): self.inside = inside self.locals = {} self.methods = [] self.parent = parent self.children = [] self.self_type = [] self.types = [] if not parent: self.basic_types() def basic_types(self): self.types.append(('Object', None, [])) self.types.append(('Int', 'Object', [])) self.types.append(('Void', 'Object', [])) self.types.append(('Bool', 'Object', [])) self.types.append(('String', 'Object', [])) io_methods = [ cool_ast.MethodNode('out_string',[cool_ast.ParamNode('x','String')],'SELF_TYPE',None), cool_ast.MethodNode('out_int', [cool_ast.ParamNode('x','Int')], 'SELF_TYPE',None), cool_ast.MethodNode('in_string', [], 'String', None), cool_ast.MethodNode('in_int', [], 'Int', None) ] self.types.append(('IO', 'Object', io_methods)) def add_type(self, type_name, methods, parent = 'Object'): if not self.check_type(type_name) and self.check_type(parent): self.types.append((type_name, parent, [])) for m in methods: if not self.define_method(type_name, m): return False return True return False def define_method(self, type_name, method): curr = self.look_for_type(type_name) for tp in curr.types: if tp[0] == type_name and not curr.look_for_method(type_name, method.name) and not self.is_defined(method.name): tp[2].append(method) if method.return_type == 'SELF_TYPE': self.self_type.append(method.name) return True return False def add_method(self, method): self.methods.append(method) def get_type(self, vname): if vname == 'self': return self.inside if not self.is_defined(vname): return False curr = self while curr != None: if curr.is_local(vname): return curr.locals[vname] curr = curr.parent return False def local_type(self, type_name): for t in self.types: if t[0] == type_name: return t return False def check_type(self, type_name): if type_name == 'SELF_TYPE': return self.inside curr = self while curr: t = curr.local_type(type_name) if t: return t curr = curr.parent return False def define_variable(self, vname, vtype): if vtype == 'SELF_TYPE' or self.check_type(vtype): self.locals[vname] = vtype if vtype == 'SELF_TYPE': self.self_type.append(vname) return True return False def create_child_scope(self, inside=None): child_scope = Scope(self, inside=self.inside) if not inside else Scope(self, inside) self.children.append(child_scope) return child_scope def is_defined(self, vname): if vname == 'self': return True current = self while current: if vname in [v for v in self.locals.keys()]: return True current = current.parent return False def is_local(self, vname): return vname in self.locals.keys() def is_local_feature(self, mname): return mname in [m.name.value for m in self.methods] def is_defined_in_type(self, t, mname): curr = self while curr: for _type in curr.types: if _type[0] == t: for m in _type[2]: if m.name.value == mname: return m if _type[1]: return self.is_defined_in_type(_type[1], mname) curr = curr.parent return False def get_local_method(self, mname): for f in self.methods: if f.name.value == mname: return f return False def get_method_by_name(self, mname): curr = self while curr and not curr.get_local_method(mname): curr = curr.parent return False if not curr else curr.get_local_method(mname) def get_method(self, tp, mname): curr = self while curr and not curr.is_local_feature(mname): curr = curr.parent if not curr: return False return False def look_for_method(self, t, mname): currt = t curr = self while currt: tp = curr.check_type(currt) if not tp: return False for mn in tp[2]: if mn.name.value == mname: return mn currt = tp[1] return False def look_for_type(self, t): curr = self while curr and not curr.local_type(t): curr = curr.parent return curr def inherits(self, t1, t2, level): curr = self.look_for_type(t1) if not curr: return False, -1 if t1 == t2: return True, level p = [t[1] for t in curr.types if t[0] == t1] if not p: return False, -1 return curr.inherits(p[0], t2, level + 1), level + 1 def join(self, t1, t2): if self.inherits(t1,t2,0)[0]: return t2 if self.inherits(t2, t1,0)[0]: return t1 curr = self.look_for_type(t1) p = [t[1] for t in curr.types if t[0] == t1][0] return self.join(p, t2) ```
{ "source": "jose-jvmas/sota-music-tagging-models", "score": 3 }
#### File: sota-music-tagging-models/training/corpora.py ```python import os import numpy as np class SingleCorpus(): def read_partition(self, config, partition): # Source path: read_path = os.path.join('embeddings', config.dataset, config.model_type) # Embeddings: with open(os.path.join(read_path, partition + '_emb.csv')) as fin: FileIn = fin.readlines() x = np.array([[float(u) for u in line.split(",")] for line in FileIn]) # GT: with open(os.path.join(read_path, partition + '_gt.csv')) as fin: FileIn = fin.readlines() y = np.array([[float(u) for u in line.split(",")] for line in FileIn]) return x, y def __init__(self, config): self.x_train_NC, self.y_train_onehot = self.read_partition(config, partition = 'train') self.train_indexes = list(range(len(self.x_train_NC))) self.x_valid_NC, self.y_valid_onehot = self.read_partition(config, partition = 'valid') self.valid_indexes = list(range(len(self.x_valid_NC))) self.x_test_NC, self.y_test_onehot = self.read_partition(config, partition = 'test') self.test_indexes = list(range(len(self.x_test_NC))) ```
{ "source": "josekang/prfile-django-api", "score": 2 }
#### File: prfile-django-api/profiles_api/views.py ```python from django.shortcuts import render from rest_framework import status, viewsets, filters from rest_framework.permissions import IsAuthenticated from rest_framework.views import APIView from rest_framework.response import Response from rest_framework.authentication import TokenAuthentication from rest_framework.authtoken.views import ObtainAuthToken from rest_framework.settings import api_settings from profiles_api import serializers from profiles_api.models import UserProfile, ProfileFeedItem from profiles_api import permissions # Create your views here. class HelloAPIView(APIView): """ Return features of an API """ serializer_class = serializers.HelloSerializer def get(self, request, formart=None): """ Shows the methods used """ api_views = [ "Similar to traditional django mehods", "Methods are GET, POST, PUT, PATCH, DELETE" ] response = { "status": status.HTTP_200_OK, "message": "Shows the output as a dictionary, power of API", "data": api_views } return Response(response) def post(self, request, format=None): serializer = self.serializer_class(data=request.data) if serializer.is_valid(): name = serializer.validated_data.get('name') message = f"hello {name}" response = { "status": status.HTTP_200_OK, "message": message } return Response(response) return Response( serializer.errors, status=status.HTTP_400_BAD_REQUEST, ) def put(self, request, pk=None): response = { "status": status.HTTP_200_OK, "message": "Updated successfully" } return Response(response) def patch(self, request, pk=None): response = { "status": status.HTTP_200_OK, "message": "Patched successfully" } return Response(response) def delete(self, request, pk=None): response = { "status": status.HTTP_200_OK, "message": "Deleted successfully" } return Response(response) class HelloViewSet(viewsets.ModelViewSet): serializer_class = serializers.HelloSerializer def list(self, request): a_viewset = [ "This is a vieset", "Provides more functionality with less code" ] response = { "status":status.HTTP_200_OK, "mesage": "A list of all viewset", "data": a_viewset } return Response(response) def create(self, request, format=None): serializer = self.serializer_class(data=request.data) if serializer.is_valid(): name = serializer.validated_data.get('name') message = f"hello {name}" response = { "status": status.HTTP_200_OK, "message": message } return Response(response) return Response( serializer.errors, status=status.HTTP_400_BAD_REQUEST, ) def retrieve(self, request, pk=None): return Response({"Method": "RETRIEVE"}) def update(self, request, pk=None): return Response({"Method": "PUT"}) def partial_updates(self, request, pk=None): return Response({"Method": "PATCH"}) def destroy(self, request, pk=None): return Response({"Method": "delete"}) class UserProfileViewSet(viewsets.ModelViewSet): queryset = UserProfile.objects.all() serializer_class = serializers.UserProfileSerializer authentication_classes = (TokenAuthentication,) permission_classes = (permissions.UpdateOwnPermission,) filter_backends = (filters.SearchFilter,) search_fields = ('name', 'email',) class UserLoginViewSet(ObtainAuthToken): renderer_classes = api_settings.DEFAULT_RENDERER_CLASSES class ProfileFeedItemViewSet(viewsets.ModelViewSet): queryset = ProfileFeedItem.objects.all() serializer_class = serializers.ProfileFeedItemSerializer authentication_classes = (TokenAuthentication,) permission_classes = (permissions.UpdateOwnPermission, IsAuthenticated) filter_backends = (filters.SearchFilter,) search_fields = ('user_profile', 'status_text',) def perform_create(self, serializer): serializer.save(user_profile=self.request.user) ```
{ "source": "josekang/recipe-app-api", "score": 3 }
#### File: app/app/tests.py ```python from django.test import TestCase from app.calc import add, subtract class CalcTest(TestCase): def test_add_numbers(self): """ Add two numbers """ self.assertEqual(add(5,5), 10) def test_subtract_numbers(self): """ Minus """ self.assertEqual(subtract(10, 5), 5) ```
{ "source": "JoseKilo/click-plugins", "score": 2 }
#### File: click-plugins/tests/test_plugins.py ```python from pkg_resources import EntryPoint from pkg_resources import iter_entry_points from pkg_resources import working_set import click from click_plugins import with_plugins import pytest # Create a few CLI commands for testing @click.command() @click.argument('arg') def cmd1(arg): """Test command 1""" click.echo('passed') @click.command() @click.argument('arg') def cmd2(arg): """Test command 2""" click.echo('passed') # Manually register plugins in an entry point and put broken plugins in a # different entry point. # The `DistStub()` class gets around an exception that is raised when # `entry_point.load()` is called. By default `load()` has `requires=True` # which calls `dist.requires()` and the `click.group()` decorator # doesn't allow us to change this. Because we are manually registering these # plugins the `dist` attribute is `None` so we can just create a stub that # always returns an empty list since we don't have any requirements. A full # `pkg_resources.Distribution()` instance is not needed because there isn't # a package installed anywhere. class DistStub(object): def requires(self, *args): return [] working_set.by_key['click']._ep_map = { '_test_click_plugins.test_plugins': { 'cmd1': EntryPoint.parse( 'cmd1=tests.test_plugins:cmd1', dist=DistStub()), 'cmd2': EntryPoint.parse( 'cmd2=tests.test_plugins:cmd2', dist=DistStub()) }, '_test_click_plugins.broken_plugins': { 'before': EntryPoint.parse( 'before=tests.broken_plugins:before', dist=DistStub()), 'after': EntryPoint.parse( 'after=tests.broken_plugins:after', dist=DistStub()), 'do_not_exist': EntryPoint.parse( 'do_not_exist=tests.broken_plugins:do_not_exist', dist=DistStub()) } } # Main CLI groups - one with good plugins attached and the other broken @with_plugins(iter_entry_points('_test_click_plugins.test_plugins')) @click.group() def good_cli(): """Good CLI group.""" pass @with_plugins(iter_entry_points('_test_click_plugins.broken_plugins')) @click.group() def broken_cli(): """Broken CLI group.""" pass def test_registered(): # Make sure the plugins are properly registered. If this test fails it # means that some of the for loops in other tests may not be executing. assert len([ep for ep in iter_entry_points('_test_click_plugins.test_plugins')]) > 1 assert len([ep for ep in iter_entry_points('_test_click_plugins.broken_plugins')]) > 1 def test_register_and_run(runner): result = runner.invoke(good_cli) assert result.exit_code is 0 for ep in iter_entry_points('_test_click_plugins.test_plugins'): cmd_result = runner.invoke(good_cli, [ep.name, 'something']) assert cmd_result.exit_code is 0 assert cmd_result.output.strip() == 'passed' def test_broken_register_and_run(runner): result = runner.invoke(broken_cli) assert result.exit_code is 0 assert u'\U0001F4A9' in result.output or u'\u2020' in result.output for ep in iter_entry_points('_test_click_plugins.broken_plugins'): cmd_result = runner.invoke(broken_cli, [ep.name]) assert cmd_result.exit_code is not 0 assert 'Traceback' in cmd_result.output def test_group_chain(runner): # Attach a sub-group to a CLI and get execute it without arguments to make # sure both the sub-group and all the parent group's commands are present @good_cli.group() def sub_cli(): """Sub CLI.""" pass result = runner.invoke(good_cli) assert result.exit_code is 0 assert sub_cli.name in result.output for ep in iter_entry_points('_test_click_plugins.test_plugins'): assert ep.name in result.output # Same as above but the sub-group has plugins @with_plugins(plugins=iter_entry_points('_test_click_plugins.test_plugins')) @good_cli.group(name='sub-cli-plugins') def sub_cli_plugins(): """Sub CLI with plugins.""" pass result = runner.invoke(good_cli, ['sub-cli-plugins']) assert result.exit_code is 0 for ep in iter_entry_points('_test_click_plugins.test_plugins'): assert ep.name in result.output # Execute one of the sub-group's commands result = runner.invoke(good_cli, ['sub-cli-plugins', 'cmd1', 'something']) assert result.exit_code is 0 assert result.output.strip() == 'passed' def test_exception(): # Decorating something that isn't a click.Group() should fail with pytest.raises(TypeError): @with_plugins([]) @click.command() def cli(): """Whatever""" ```
{ "source": "JoseKilo/week_parser", "score": 3 }
#### File: tests/functional/test_week_parser.py ```python from __future__ import unicode_literals import os from argparse import Namespace import pytest from week_parser.main import get_options, main expected_output_1 = ( """[{'day': 'mon', 'description': 'first_desc 1', 'square': 1, 'value': 1}, {'day': 'tue', 'description': 'first_desc 25', 'square': 25, 'value': 5}, {'day': 'wed', 'description': 'first_desc 4', 'square': 4, 'value': 2}, {'day': 'thu', 'description': 'first_desc 6', 'double': 6, 'value': 3}, {'day': 'fri', 'description': 'first_desc 6', 'double': 6, 'value': 3}] """ ) expected_output_2 = ( """[{'day': 'mon', 'description': 'second_desc 4', 'square': 4, 'value': 2}, {'day': 'tue', 'description': 'second_desc 4', 'square': 4, 'value': 2}, {'day': 'wed', 'description': 'second_desc 4', 'square': 4, 'value': 2}, {'day': 'thu', 'description': 'second_desc 4', 'double': 4, 'value': 2}, {'day': 'fri', 'description': 'second_desc 6', 'double': 6, 'value': 3}] """ ) expected_output_3 = ( """[{'day': 'mon', 'description': 'third_desc 9', 'square': 9, 'value': 3}, {'day': 'tue', 'description': 'third_desc 9', 'square': 9, 'value': 3}, {'day': 'wed', 'description': 'third_desc 4', 'square': 4, 'value': 2}, {'day': 'thu', 'description': 'third_desc 4', 'double': 4, 'value': 2}, {'day': 'fri', 'description': 'third_desc 2', 'double': 2, 'value': 1}] """ ) missing_days_output = ( """[{'day': 'mon', 'description': 'third_desc 9', 'square': 9, 'value': 3}, {'day': 'tue', 'description': 'third_desc 9', 'square': 9, 'value': 3}, {'day': 'wed', 'description': 'third_desc 4', 'square': 4, 'value': 2}, {'day': 'fri', 'description': 'third_desc 2', 'double': 2, 'value': 1}] """ ) non_ascii_output = ( """[{'day': 'mon', 'description': 'café 9', 'square': 9, 'value': 3}, {'day': 'tue', 'description': 'café 9', 'square': 9, 'value': 3}, {'day': 'wed', 'description': 'café 4', 'square': 4, 'value': 2}, {'day': 'thu', 'description': 'café 4', 'double': 4, 'value': 2}, {'day': 'fri', 'description': 'café 2', 'double': 2, 'value': 1}] """ ) escaped_chars_output = ( """[{'day': 'mon', 'description': '\\'A\\', "b" 9', 'square': 9, 'value': 3}, {'day': 'tue', 'description': '\\'A\\', "b" 9', 'square': 9, 'value': 3}, {'day': 'wed', 'description': '\\'A\\', "b" 4', 'square': 4, 'value': 2}, {'day': 'thu', 'description': '\\'A\\', "b" 4', 'double': 4, 'value': 2}, {'day': 'fri', 'description': '\\'A\\', "b" 2', 'double': 2, 'value': 1}] """ ) test_files = { os.path.join('csv_files', '1.csv'): expected_output_1, os.path.join('csv_files', '2.csv'): expected_output_2, os.path.join('csv_files', '3.csv'): expected_output_3, os.path.join('csv_files', 'column_no_name.csv'): expected_output_3, os.path.join('csv_files', 'multiple_rows.csv'): expected_output_3, os.path.join('csv_files', 'missing_days.csv'): missing_days_output, os.path.join('csv_files', 'empty.csv'): '[]\n', os.path.join('csv_files', 'only_headers.csv'): '[]\n', os.path.join('csv_files', 'non_ascii.csv'): non_ascii_output, os.path.join('csv_files', 'escaped_chars.csv'): escaped_chars_output, } def test_main(capsys): """ All the example input files produce the expected output """ for filename, expected_output in test_files.items(): main([filename]) out, err = capsys.readouterr() assert err == '' assert out == expected_output def test_main_file_does_not_exist(capsys): """ If the input file doesn't exist, we get an error message """ filename = 'does_not_exist.csv' main([filename]) out, err = capsys.readouterr() assert out == '' assert err == 'No such file or directory\n' def test_main_not_int_value(capsys): """ If the day value is not an integer, we get an error message """ filename = os.path.join('csv_files', 'not_int_value.csv') main([filename]) out, err = capsys.readouterr() assert out == '' assert err == ("Invalid file format: " "invalid literal for int() with base 10: 'not an int'\n") def test_get_options(): """ A valid path argument will produce a valid argparse object """ filename = 'anything.csv' options = get_options([filename]) assert options == Namespace(filename=filename) def test_get_options_help(capsys): """ A '--help' flag shows some usage help """ with pytest.raises(SystemExit): get_options(['--help']) out, err = capsys.readouterr() assert err == '' assert out.startswith('usage:') assert 'WeekParser' in out def test_get_options_invalid(capsys): """ An invalid sequence of arguments will produce some usage help """ with pytest.raises(SystemExit): get_options(['one_file.csv', 'another_file.csv']) out, err = capsys.readouterr() assert out == '' assert err.startswith('usage:') assert 'unrecognized argument' in err ``` #### File: week_parser/tests/utils.py ```python from contextlib import contextmanager from mock import mock_open as original_mock_open from mock import patch @contextmanager def mock_open(file_content): """ Mock '__builtin__.open' with the content provided Bug work-around: https://bugs.python.org/issue21258 """ mock = original_mock_open(read_data=file_content) with patch('six.moves.builtins.open', mock) as mocked_open: mock.return_value.__iter__ = lambda self: iter(self.readline, '') yield mocked_open ``` #### File: week_parser/week_parser/base.py ```python import csv import six DAYS = ('mon', 'tue', 'wed', 'thu', 'fri') SQUARE_DAYS = ('mon', 'tue', 'wed') DOUBLE_DAYS = ('thu', 'fri') DAY_TO_NUMBER = {day: i for i, day in enumerate(DAYS)} NUMBER_TO_DAY = {i: day for i, day in enumerate(DAYS)} def parse_week(filename): """ We open an input filename, parse it and return its data. """ week_data = {} with open(filename) as csv_file: reader = csv.DictReader(csv_file) for row in reader: week_data = parse_row(row) return [week_data[day] for day in DAYS if week_data.get(day) is not None] def parse_row(row): """ Parse a row from an input CSV file and return its data. The expected input format is a dictionary of column_names -> column_values. """ week_data = {} description = None for column, value in six.iteritems(row): if column == 'description': description = value elif column in DAYS: week_data[column] = {'day': column, 'value': int(value)} elif column is not None and '-' in column: start, end = column.split('-') start, end = DAY_TO_NUMBER.get(start), DAY_TO_NUMBER.get(end) if start is not None and end is not None: for number in six.moves.xrange(start, end + 1): day = NUMBER_TO_DAY[number] week_data[day] = {'day': day, 'value': int(value)} populate_extra_data(week_data, description) return week_data def populate_extra_data(week_data, description): """ Once the daily data has been collected, we need to append the extra value and the description to every day. """ for day, day_week_data in six.iteritems(week_data): value = day_week_data['value'] if day in SQUARE_DAYS: extra_value = value ** 2 day_week_data['square'] = extra_value elif day in DOUBLE_DAYS: extra_value = value * 2 day_week_data['double'] = extra_value day_week_data['description'] = '{} {}'.format(description, extra_value) ```
{ "source": "josekudiyirippil/queue-management", "score": 2 }
#### File: bookings/exam/exam_download.py ```python from flask import g, Response from flask_restx import Resource import io import logging import urllib from werkzeug.wsgi import FileWrapper from sqlalchemy import exc from app.models.theq import CSR from app.models.bookings import Exam from app.utilities.bcmp_service import BCMPService from qsystem import api, my_print from app.auth.auth import jwt @api.route("/exams/<int:exam_id>/download/", methods=["GET"]) class ExamStatus(Resource): bcmp_service = BCMPService() @jwt.requires_auth def get(self, exam_id): csr = CSR.find_by_username(g.jwt_oidc_token_info['username']) try: exam = Exam.query.filter_by(exam_id=exam_id).first() if not (exam.office_id == csr.office_id or csr.ita2_designate == 1): return {"The Exam Office ID and CSR Office ID do not match!"}, 403 job = self.bcmp_service.check_exam_status(exam) my_print(job) if job['jobStatus'] == 'PACKAGE_GENERATED': package_url = job["jobProperties"]["EXAM_PACKAGE_URL"] req = urllib.request.Request(package_url) response = urllib.request.urlopen(req).read() exam_file = io.BytesIO(response) file_wrapper = FileWrapper(exam_file) return Response(file_wrapper, mimetype="application/pdf", direct_passthrough=True, headers={ "Content-Disposition": 'attachment; filename="%s.csv"' % exam.exam_id, "Content-Type": "application/pdf" }) else: return {'message': 'Package not yet generated', 'status': job['jobStatus']}, 400 except exc.SQLAlchemyError as error: logging.error(error, exc_info=True) return {'message': 'API is down'}, 500 ``` #### File: services/feedback/feedback_camunda_service.py ```python import os, requests, json from typing import Dict from jinja2 import Environment, FileSystemLoader from .feedback_base_service import FeedbackBaseService from flask import jsonify class FeedbackCamundaService(FeedbackBaseService): """Implementation from FeedbackService.""" def submit(self, payload): """Submit feedback to Camunda API""" camunda_service_endpoint = os.getenv('FEEDBACK_CAMUNDA_URL') keycloak_endpoint = os.getenv('FEEDBACK_AUTH_URL') keycloak_client_id = os.getenv('FEEDBACK_AUTH_CLIENT_ID') keycloak_client_secret = os.getenv('FEEDBACK_AUTH_CLIENT_SECRET') auth_payload = {"grant_type":"client_credentials", "client_id":keycloak_client_id, "client_secret":keycloak_client_secret} try: auth_response = requests.post(keycloak_endpoint,data=auth_payload) access_token = auth_response.json()['access_token'] headers = {'Content-Type': 'application/json', 'Authorization': f'Bearer {access_token}'} feedback_response = requests.post(camunda_service_endpoint, headers=headers, data=json.dumps(payload), timeout=10.0) response_code = feedback_response.status_code if (response_code != 200 and response_code != 201 and response_code != 202) : raise Exception('Camunda API Failure') return feedback_response.status_code except Exception as e: feedback_type = payload['variables']['engagement']['value'] feedback_message = payload['variables']['citizen_comments']['value'] response_required = payload['variables']['response']['value'] citizen_name = payload['variables']['citizen_name']['value'] citizen_contact = payload['variables']['citizen_contact']['value'] citizen_email = payload['variables']['citizen_email']['value'] service_date = payload['variables']['service_date']['value'] submit_date_time = payload['variables']['submit_date_time']['value'] ENV = Environment(loader=FileSystemLoader('.'), autoescape=True) template = ENV.get_template('camunda_email_template.template') body = template.render(feedback_type =feedback_type, feedback_message =feedback_message, response_required =response_required, citizen_name =citizen_name, citizen_contact =citizen_contact, citizen_email =citizen_email, service_date =service_date, submit_date_time =submit_date_time) application_auth_url = os.getenv('APP_AUTH_URL') application_client_id = os.getenv('APP_AUTH_CLIENT_ID') application_client_secret = os.getenv('APP_AUTH_CLIENT_SECRET') notification_email_url = os.getenv('NOTIFICATION_EMAIL_URL') email_to = (os.getenv('NOTIFICATION_EMAIL_TO')).split(",") app_auth_payload = {"grant_type":"client_credentials", "client_id":application_client_id, "client_secret":application_client_secret} email_payload = { 'bodyType': 'text', 'body': body, 'subject': 'Citizen Feedback - Camunda API failure', 'to': email_to } app_auth_response = requests.post(application_auth_url,data=app_auth_payload) app_access_token = app_auth_response.json()['access_token'] email_headers = {'Content-Type': 'application/json', 'Authorization': f'Bearer {app_access_token}'} email_response = requests.post(notification_email_url, headers=email_headers, data=json.dumps(email_payload)) print(email_response) print(e) return email_response.status_code ``` #### File: jobs/appointment_reminder/flush_expired_draft_appointments.py ```python from utils.logging import setup_logging import os import sys from flask import Flask import config def create_app(run_mode=os.getenv('FLASK_ENV', 'production')): """Return a configured Flask App using the Factory method.""" from qsystem import db app = Flask(__name__) app.config.from_object(config.CONFIGURATION[run_mode]) app.logger.info(f'<<<< Starting Flush Expired Drafts Jobs >>>>') db.init_app(app) register_shellcontext(app) return app def register_shellcontext(app): """Register shell context objects.""" def shell_context(): """Shell context objects.""" return { 'app': app } # pragma: no cover app.shell_context_processor(shell_context) def run(): application = create_app() application.app_context().push() flush_drafts(application) def flush_drafts(app): app.logger.debug('<<< Starting flush_drafts job') # todo - get appointment query, for now just select * return 'todo' if __name__ == "__main__": run() ```
{ "source": "Joselacerdajunior/digital-processing-of-automotive-plates", "score": 3 }
#### File: digital-processing-of-automotive-plates/src/main.py ```python from lib.myLib import * import os nameImages = [ 'img1.jpg', 'img2.jpg', 'img3.jpg', 'img4.jpg' ] platesInDataBase = ["EWK-7037", "RIO2A18"] plates = ["", "", "", ""] authorization = ["", "", "", ""] image = "" height = [ 0, 0, 0, 0] width = [ 0, 0, 0, 0] channels = [ 0, 0, 0, 0] red = '\033[91m' green = '\033[92m' yellow = '\033[93m' default = '\033[0m' bold = '\033[1m' def showInfo(): os.system('cls' if os.name == 'nt' else 'clear') print('\033[95m' + "{:#^92}".format(" START ") + '\033[0m') print("") print("List of authorized plates:") for index, plate in enumerate(platesInDataBase): print(" - Plate %d -> %s%s%s" % (index+1, bold, platesInDataBase[index], default)) print("") print( ".------------------------------------------------------------------------------------------.") print(f"|" + yellow + "{:^15}".format("Image") + "{:^15}".format("Plate") + "{:^15}".format("Status") + "{:^15}".format("Width") + "{:^15}".format("Height") + "{:^15}".format("Channels") + default + "|") print( "|------------------------------------------------------------------------------------------|") print(f"|" + "{:^15}".format(nameImages[0]) + bold + "{:^15}".format(plates[0]) + default + (red if authorization[0] == "Refused" else green) + "{:^15}".format(authorization[0]) + default + "{:^15}".format("%d%s" % (width[0], " px")) + "{:^15}".format("%d%s" % (height[0], " px")) + "{:^15}".format(channels[0]) + "|") print(f"|" + "{:^15}".format(nameImages[1]) + bold + "{:^15}".format(plates[1]) + default + (red if authorization[1] == "Refused" else green) + "{:^15}".format(authorization[1]) + default + "{:^15}".format("%d%s" % (width[1], " px")) + "{:^15}".format("%d%s" % (height[1], " px")) + "{:^15}".format(channels[1]) + "|") print(f"|" + "{:^15}".format(nameImages[2]) + bold + "{:^15}".format(plates[2]) + default + (red if authorization[2] == "Refused" else green) + "{:^15}".format(authorization[2]) + default + "{:^15}".format("%d%s" % (width[2], " px")) + "{:^15}".format("%d%s" % (height[2], " px")) + "{:^15}".format(channels[2]) + "|") print(f"|" + "{:^15}".format(nameImages[3]) + bold + "{:^15}".format(plates[3]) + default + (red if authorization[3] == "Refused" else green) + "{:^15}".format(authorization[3]) + default + "{:^15}".format("%d%s" % (width[3], " px")) + "{:^15}".format("%d%s" % (height[3], " px")) + "{:^15}".format(channels[3]) + "|") print( "'------------------------------------------------------------------------------------------'") print() print('\033[95m' + "{:#^92}".format(" STOP ") + '\033[0m') for x in range(0, len(nameImages)): image = cv2.imread('./img/%s' % nameImages[x]) height[x] = image.shape[0] width[x] = image.shape[1] channels[x] = image.shape[2] image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) threshImage = thresholding(image) noiseImage = remove_noise(threshImage) #cv2.imshow("IMG-%d"%x, noiseImage) cv2.imwrite("imageToConvert.jpg", noiseImage) custom_config = r'-c tessedit_char_blacklist=abcdefghijklmnopqrstuvwxyz%#@$“‘\|/ --psm 6' plateText = pytesseract.image_to_string('imageToConvert.jpg', config=custom_config).replace(" ", "").replace("“", "").replace("\n","") if (len(plateText) > 8): plates[x] = plateText[:8] elif (len(plateText) > 7): plates[x] = plateText[:7] else: print ("Não identificado") if (plates[x].replace(" ", "") in platesInDataBase): authorization[x] = "Authorized" else: authorization[x] = "Refused" showInfo() ```
{ "source": "joselejinpj/Algorithm", "score": 4 }
#### File: Algorithm/Python/RomanToInteger.py ```python class Solution(object): def value(self, roman): if (roman == 'I'): return 1 if (roman == 'V'): return 5 if (roman == 'X'): return 10 if (roman == 'L'): return 50 if (roman == 'C'): return 100 if (roman == 'D'): return 500 if (roman == 'M'): return 1000 return -1 def romanToInt(self, str): result = 0 i = 0 while (i < len(str)): s1 = self.value(str[i]) if (i + 1 < len(str)): s2 = self.value(str[i + 1]) if (s1 >= s2): result = result + s1 i = i + 1 else: result = result + s2 - s1 i = i + 2 else: result = result + s1 i = i + 1 return result ```
{ "source": "JoseleSolis/Proceso-de-aprendizaje", "score": 3 }
#### File: Proceso-de-aprendizaje/Agents/adviser.py ```python from random import * class Adviser: def stop(self, count): if count > 7: r = random() if r < 0.5: return True if count > 5: r = random() if r < 0.35: return True return False ``` #### File: Compilation/AST/Evaluate.py ```python from Parser.ShiftReduce import ShiftReduce def evaluate_reverse_parse(parser_lr1, operations, tokens): if not parser_lr1 or not operations or not tokens: return # Nada que eval!!!! right_parse = iter(parser_lr1) tokens = iter(tokens) stack = [] for operation in operations: if operation == ShiftReduce.SHIFT: token = next(tokens) stack.append(token.value) elif operation == ShiftReduce.REDUCE: production = next(right_parse) head, body = production attributes = production.attributes assert all(rule is None for rule in attributes[1:]), 'There must be only synteticed attributes.' rule = attributes[0] if len(body): synteticed = [None] + stack[-len(body):] value = rule(None, synteticed) stack[-len(body):] = [value] else: stack.append(rule(None, None)) else: raise Exception('error') assert len(stack) == 1 and next(tokens).type == 'eof', 'el token final no es eof' return stack[0] ``` #### File: Compilation/Parser/State.py ```python class State: def __init__(self, state, final=False, formatter=lambda x: str(x)): self.state = state self.final = final self.transitions = {} self.epsilon_transitions = set() self.tag = None self.formatter = formatter def set_formatter(self, value, attr='formatter', visited=None): if visited is None: visited = set() elif self in visited: return visited.add(self) self.__setattr__(attr, value) for destinations in self.transitions.values(): for node in destinations: node.set_formatter(value, attr, visited) for node in self.epsilon_transitions: node.set_formatter(value, attr, visited) return self def add_transition(self, symbol, state): try: self.transitions[symbol].append(state) except KeyError: self.transitions[symbol] = [state] return self def __getitem__(self, symbol): if symbol == '': return self.epsilon_transitions try: return self.transitions[symbol] except KeyError: return None def __iter__(self): yield from self._visit() def _visit(self, visited=None): if visited is None: visited = set() elif self in visited: return visited.add(self) yield self for destinations in self.transitions.values(): for node in destinations: yield from node._visit(visited) for node in self.epsilon_transitions: yield from node._visit(visited) def multiline_formatter(state): return '\n'.join(str(item) for item in state) ``` #### File: Proceso-de-aprendizaje/Entities/activity.py ```python class Activity: def __init__(self, name, estimated_time): self.name = name self.elements = dict() self.estimated_time = estimated_time def add_element(self, element, points): if not self.elements.keys().__contains__(element): self.elements.__setitem__(element, points) return True return False ``` #### File: Proceso-de-aprendizaje/Entities/element.py ```python class Element: dependencies = [] def __init__(self, name): self.name = name def add_dependencies(self, *elements): for element in elements: if not self.dependencies.__contains__(element): self.dependencies.append(element) def remove_dependencies(self, *elements): for element in elements: if self.dependencies.__contains__(element): self.dependencies.remove(element) ```
{ "source": "JoseLGomez/detectron2", "score": 3 }
#### File: data/transforms/sem_seg_augmentations.py ```python import numpy as np import torch import random import cv2 from detectron2.data import transforms as T from fvcore.transforms.transform import Transform class CutMix(T.Augmentation): def get_transform(self, image1, image2, label1, label2): pass class CutOutPolicy(T.Augmentation): """Randomly mask out one or more patches from an image. Args: n_holes (int): Number of patches to cut out of each image. length (int): The length (in pixels) of each square patch. """ def __init__(self, n_holes, length): self.min_holes, self.max_holes = n_holes self.min_length, self.max_length = length def get_transform(self, image): """ Args: img (Tensor): Tensor image of size (C, H, W). Returns: Tensor: Image with n_holes of dimension length x length cut out of it. """ h = image.shape[0] w = image.shape[1] holes = np.random.randint(self.min_holes, high=self.max_holes) mask = np.ones(image.shape, np.float32) for n in range(holes): xlength = np.random.randint(self.min_length, high=self.max_length) ylength = np.random.randint(self.min_length, high=self.max_length) y = np.random.randint(h) x = np.random.randint(w) y1 = np.clip(y - ylength // 2, 0, h) y2 = np.clip(y + ylength // 2, 0, h) x1 = np.clip(x - xlength // 2, 0, w) x2 = np.clip(x + xlength // 2, 0, w) mask[y1: y2, x1: x2] = 0. return CutOut(mask) class CutOut(Transform): def __init__(self, mask): self.mask = mask def apply_image(self, img, seg_mode=False): if seg_mode: img = img * self.mask[:,:,0] img = img + ((1-self.mask[:,:,0])*200) # CutOut pixels set to 200 to detect them later and create a mask for the loss else: img = img * self.mask return img def apply_segmentation(self, segmentation): return segmentation #self.apply_image(segmentation, seg_mode=True) def apply_coords(self, coords): return coords class TrainScalePolicy(T.Augmentation): def __init__(self, train_scale): self.lscale, self.hscale = train_scale def get_transform(self, image): f_scale = self.lscale + random.randint(0, int((self.hscale-self.lscale)*10)) / 10.0 return TrainScale(f_scale) class TrainScale(Transform): def __init__(self, f_scale): self.f_scale = f_scale def apply_image(self, image): image = cv2.resize(image, None, fx=self.f_scale, fy=self.f_scale, interpolation = cv2.INTER_LINEAR) return image def apply_segmentation(self, segmentation): segmentation = cv2.resize(segmentation, None, fx=self.f_scale, fy=self.f_scale, interpolation = cv2.INTER_NEAREST) return segmentation def apply_coords(self, coords): return coords ``` #### File: detectron2/evaluation/sem_seg_evaluation.py ```python import itertools import json import logging import numpy as np import os from collections import OrderedDict import PIL.Image as Image import pycocotools.mask as mask_util import torch from detectron2.data import DatasetCatalog, MetadataCatalog from detectron2.utils.comm import all_gather, is_main_process, synchronize from detectron2.utils.file_io import PathManager from .evaluator import DatasetEvaluator class SemSegEvaluator(DatasetEvaluator): """ Evaluate semantic segmentation metrics. """ def __init__(self, dataset_name, distributed=True, output_dir=None, *, num_classes=None, ignore_label=None, write_outputs=False): """ Args: dataset_name (str): name of the dataset to be evaluated. distributed (bool): if True, will collect results from all ranks for evaluation. Otherwise, will evaluate the results in the current process. output_dir (str): an output directory to dump results. num_classes, ignore_label: deprecated argument """ self._logger = logging.getLogger(__name__) if num_classes is not None: self._logger.warn( "SemSegEvaluator(num_classes) is deprecated! It should be obtained from metadata." ) if ignore_label is not None: self._logger.warn( "SemSegEvaluator(ignore_label) is deprecated! It should be obtained from metadata." ) self._dataset_name = dataset_name self._distributed = distributed self._output_dir = output_dir self._write_outputs = write_outputs self._cpu_device = torch.device("cpu") self.input_file_to_gt_file = { dataset_record["file_name"]: dataset_record["sem_seg_file_name"] for dataset_record in DatasetCatalog.get(dataset_name) } meta = MetadataCatalog.get(dataset_name) # Dict that maps contiguous training ids to COCO category ids try: c2d = meta.stuff_dataset_id_to_contiguous_id self._contiguous_id_to_dataset_id = {v: k for k, v in c2d.items()} except AttributeError: self._contiguous_id_to_dataset_id = None self._class_names = meta.stuff_classes self._num_classes = len(meta.stuff_classes) if num_classes is not None: assert self._num_classes == num_classes, f"{self._num_classes} != {num_classes}" self._ignore_label = ignore_label if ignore_label is not None else meta.ignore_label def reset(self): self._conf_matrix = np.zeros((self._num_classes + 1, self._num_classes + 1), dtype=np.int64) self._predictions = [] def process(self, inputs, outputs): """ Args: inputs: the inputs to a model. It is a list of dicts. Each dict corresponds to an image and contains keys like "height", "width", "file_name". outputs: the outputs of a model. It is either list of semantic segmentation predictions (Tensor [H, W]) or list of dicts with key "sem_seg" that contains semantic segmentation prediction in the same format. """ from cityscapesscripts.helpers.labels import trainId2label pred_output = os.path.join(self._output_dir, 'predictions') if not os.path.exists(pred_output): os.makedirs(pred_output) pred_colour_output = os.path.join(self._output_dir, 'colour_predictions') if not os.path.exists(pred_colour_output): os.makedirs(pred_colour_output) for input, output in zip(inputs, outputs): output = output["sem_seg"].argmax(dim=0).to(self._cpu_device) pred = np.array(output, dtype=np.uint8) pred64 = np.array(output, dtype=np.int64) # to use it on bitcount for conf matrix with PathManager.open(self.input_file_to_gt_file[input["file_name"]], "rb") as f: gt = np.array(Image.open(f), dtype=np.int64) gt[gt == self._ignore_label] = self._num_classes self._conf_matrix += np.bincount( (self._num_classes + 1) * pred64.reshape(-1) + gt.reshape(-1), minlength=self._conf_matrix.size, ).reshape(self._conf_matrix.shape) if self._write_outputs: file_name = input["file_name"] basename = os.path.splitext(os.path.basename(file_name))[0] pred_filename = os.path.join(pred_output, basename + '.png') Image.fromarray(pred).save(pred_filename) # colour prediction output = output.numpy() pred_colour_filename = os.path.join(pred_colour_output, basename + '.png') pred_colour = 255 * np.ones([output.shape[0],output.shape[1],3], dtype=np.uint8) for train_id, label in trainId2label.items(): #if label.ignoreInEval: # continue #pred_colour[np.broadcast_to(output == train_id, pred_colour.shape)] = 0 #label.color pred_colour[(output == train_id),0] = label.color[0] pred_colour[(output == train_id),1] = label.color[1] pred_colour[(output == train_id),2] = label.color[2] Image.fromarray(pred_colour).save(pred_colour_filename) #self._predictions.extend(self.encode_json_sem_seg(pred, input["file_name"])) def evaluate(self): """ Evaluates standard semantic segmentation metrics (http://cocodataset.org/#stuff-eval): * Mean intersection-over-union averaged across classes (mIoU) * Frequency Weighted IoU (fwIoU) * Mean pixel accuracy averaged across classes (mACC) * Pixel Accuracy (pACC) """ if self._distributed: synchronize() conf_matrix_list = all_gather(self._conf_matrix) self._predictions = all_gather(self._predictions) self._predictions = list(itertools.chain(*self._predictions)) if not is_main_process(): return self._conf_matrix = np.zeros_like(self._conf_matrix) for conf_matrix in conf_matrix_list: self._conf_matrix += conf_matrix '''if self._output_dir: PathManager.mkdirs(self._output_dir) file_path = os.path.join(self._output_dir, "sem_seg_predictions.json") with PathManager.open(file_path, "w") as f: f.write(json.dumps(self._predictions))''' print(self._conf_matrix) acc = np.full(self._num_classes, np.nan, dtype=np.float) iou = np.full(self._num_classes, np.nan, dtype=np.float) tp = self._conf_matrix.diagonal()[:-1].astype(np.float) pos_gt = np.sum(self._conf_matrix[:-1, :-1], axis=0).astype(np.float) class_weights = pos_gt / np.sum(pos_gt) pos_pred = np.sum(self._conf_matrix[:-1, :-1], axis=1).astype(np.float) acc_valid = pos_gt > 0 acc[acc_valid] = tp[acc_valid] / pos_gt[acc_valid] iou_valid = (pos_gt + pos_pred) > 0 union = pos_gt + pos_pred - tp iou[acc_valid] = tp[acc_valid] / union[acc_valid] macc = np.sum(acc[acc_valid]) / np.sum(acc_valid) miou = np.sum(iou[acc_valid]) / np.sum(iou_valid) fiou = np.sum(iou[acc_valid] * class_weights[acc_valid]) pacc = np.sum(tp) / np.sum(pos_gt) res = {} res["mIoU"] = 100 * miou res["fwIoU"] = 100 * fiou for i, name in enumerate(self._class_names): res["IoU-{}".format(name)] = 100 * iou[i] res["mACC"] = 100 * macc res["pACC"] = 100 * pacc for i, name in enumerate(self._class_names): res["ACC-{}".format(name)] = 100 * acc[i] '''if self._output_dir: file_path = os.path.join(self._output_dir, "sem_seg_evaluation.pth") with PathManager.open(file_path, "wb") as f: torch.save(res, f)''' results = OrderedDict({"sem_seg": res}) self._logger.info(results) return results def encode_json_sem_seg(self, sem_seg, input_file_name): """ Convert semantic segmentation to COCO stuff format with segments encoded as RLEs. See http://cocodataset.org/#format-results """ json_list = [] for label in np.unique(sem_seg): if self._contiguous_id_to_dataset_id is not None: assert ( label in self._contiguous_id_to_dataset_id ), "Label {} is not in the metadata info for {}".format(label, self._dataset_name) dataset_id = self._contiguous_id_to_dataset_id[label] else: dataset_id = int(label) mask = (sem_seg == label).astype(np.uint8) mask_rle = mask_util.encode(np.array(mask[:, :, None], order="F"))[0] mask_rle["counts"] = mask_rle["counts"].decode("utf-8") json_list.append( {"file_name": input_file_name, "category_id": dataset_id, "segmentation": mask_rle} ) return json_list ``` #### File: modeling/custom_models/deeplabV2_bis.py ```python from __future__ import absolute_import, print_function import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from typing import Callable, Dict, Optional, Tuple, Union from PIL import Image from .resnet_deeplabV2_bis import _ConvBnReLU, _ResLayer, _Stem from ..backbone import (Backbone, BACKBONE_REGISTRY) from ..meta_arch import SEM_SEG_HEADS_REGISTRY from detectron2.layers import ShapeSpec class _ASPP(nn.Module): """ Atrous spatial pyramid pooling (ASPP) """ def __init__(self, in_ch, out_ch, rates): super(_ASPP, self).__init__() for i, rate in enumerate(rates): self.add_module( "c{}".format(i), nn.Conv2d(in_ch, out_ch, 3, 1, padding=rate, dilation=rate, bias=True), ) for m in self.children(): nn.init.normal_(m.weight, mean=0, std=0.01) nn.init.constant_(m.bias, 0) def forward(self, x): return sum([stage(x) for stage in self.children()]) @BACKBONE_REGISTRY.register() class DeepLabV2_backbone(nn.Sequential): """ DeepLab v2: Dilated ResNet + ASPP Output stride is fixed at 8 """ def __init__(self, cfg, input_shape): super(DeepLabV2_backbone, self).__init__() n_classes = cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES n_blocks = [3, 4, 23, 3] atrous_rates = [6, 12, 18, 24] self.ch = [64 * 2 ** p for p in range(6)] self.size_divisibility = 0 self.add_module("layer1", _Stem(self.ch[0])) self.add_module("layer2", _ResLayer(n_blocks[0], self.ch[0], self.ch[2], 1, 1)) self.add_module("layer3", _ResLayer(n_blocks[1], self.ch[2], self.ch[3], 2, 1)) self.add_module("layer4", _ResLayer(n_blocks[2], self.ch[3], self.ch[4], 1, 2)) self.add_module("layer5", _ResLayer(n_blocks[3], self.ch[4], self.ch[5], 1, 4)) self.add_module("aspp", _ASPP(self.ch[5], n_classes, atrous_rates)) def output_shape(self): return {"aspp": ShapeSpec(channels=self.ch[5], stride=1)} '''def freeze_bn(self): for m in self.modules(): if isinstance(m, _ConvBnReLU.BATCH_NORM): m.eval()''' @SEM_SEG_HEADS_REGISTRY.register() class DeepLabV2_head(nn.Module): def __init__(self, cfg, input_shape: Dict[str, ShapeSpec]): super().__init__() self.ignore_value = cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE self.loss_weight = cfg.MODEL.SEM_SEG_HEAD.LOSS_WEIGHT def forward(self, logits, targets=None, masks=None): iter_loss = 0 print(logits.shape) for logit in logits: # Resize labels for {100%, 75%, 50%, Max} logits _, H, W = logit.shape print(H) print(W) labels_ = self.resize_labels(targets, size=(W, H)) iter_loss += self.losses(logit, labels_) def losses(self, predictions, targets, masks=None): print(predictions.shape) print(targets.shape) if masks is not None: for idx in range(len(predictions)): aux_mask = masks[idx].unsqueeze(0).expand(predictions[idx].size()) predictions[idx] = predictions[idx] * aux_mask loss = F.cross_entropy( predictions, targets, reduction="mean", ignore_index=self.ignore_value ) losses = {"loss_sem_seg": loss * self.loss_weight} return losses def resize_labels(self, labels, size): """ Downsample labels for 0.5x and 0.75x logits by nearest interpolation. Other nearest methods result in misaligned labels. -> F.interpolate(labels, shape, mode='nearest') -> cv2.resize(labels, shape, interpolation=cv2.INTER_NEAREST) """ new_labels = [] for label in labels: label = label.cpu().float().numpy() label = Image.fromarray(label).resize(size, resample=Image.NEAREST) new_labels.append(np.asarray(label)) new_labels = torch.LongTensor(new_labels) return new_labels if __name__ == "__main__": model = DeepLabV2( n_classes=21, n_blocks=[3, 4, 23, 3], atrous_rates=[6, 12, 18, 24] ) model.eval() image = torch.randn(1, 3, 513, 513) print(model) print("input:", image.shape) print("output:", model(image).shape) ``` #### File: detectron2/tools/sem_seg_selftraining.py ```python import sys import glob import random import logging import os from collections import OrderedDict import torch from torch.nn.parallel import DistributedDataParallel import numpy as np import time import math import PIL.Image as Image import datetime import itertools import gc import torch.multiprocessing torch.multiprocessing.set_sharing_strategy('file_system') import detectron2.data.transforms as T import detectron2.utils.comm as comm from detectron2.checkpoint import DetectionCheckpointer, PeriodicCheckpointer from detectron2.config import get_cfg from detectron2.data import ( MetadataCatalog, build_detection_test_loader, build_detection_train_loader, DatasetMapper, ) from detectron2.engine import default_argument_parser, default_setup, default_writers, launch from detectron2.evaluation import ( CityscapesInstanceEvaluator, CityscapesSemSegEvaluator, COCOEvaluator, COCOPanopticEvaluator, DatasetEvaluators, LVISEvaluator, PascalVOCDetectionEvaluator, SemSegEvaluator, inference_on_dataset, print_csv_format, ) from detectron2.modeling import build_model from detectron2.solver import build_lr_scheduler, build_optimizer from detectron2.utils.events import EventStorage from detectron2.data import DatasetCatalog, MetadataCatalog from detectron2.data.datasets.generic_sem_seg_dataset import load_dataset_from_txt, load_dataset_to_inference, load_dataset_from_txt_and_merge from torch import nn import torch from contextlib import ExitStack, contextmanager from cityscapesscripts.helpers.labels import trainId2label, labels from detectron2.utils.logger import log_every_n_seconds from detectron2.projects.deeplab import add_deeplab_config, build_lr_scheduler logger = logging.getLogger("detectron2") INIT_TGT_PORT = 0.2 MAX_TGT_PORT = 0.5 TGT_PORT_STEP = 0.05 DS_RATE = 4 softmax2d = nn.Softmax2d() def cotraining_argument_parser(parser): # Adds cotrainig arguments to the detectron2 base parser parser.add_argument( '--unlabeled_dataset_A', dest='unlabeled_dataset_A', help='File with Data A images', default=None, type=str ) parser.add_argument( '--unlabeled_dataset_A_name', dest='unlabeled_dataset_A_name', help='Unlabeled dataset name to call dataloader function', default=None, type=str ) parser.add_argument( '--weights_branchA', dest='weights_branchA', help='Weights File of branch1', default=None, type=str ) parser.add_argument( '--num-epochs', dest='epochs', help='Number of selftraining rounds', default=20, type=int ) parser.add_argument( '--max_unlabeled_samples', dest='max_unlabeled_samples', help='Number of maximum unlabeled samples', default=500, type=int ) parser.add_argument( '--samples', dest='samples', help='Number of top images to be sampled after each iteration', default=40, type=int ) parser.add_argument( '--step_inc', dest='step_inc', help='Fix a image step to avoid consecutive images in secuences', default=1, type=int ) parser.add_argument( '--continue_epoch', dest='continue_epoch', help='Continue co-training at the begining of the specified epoch', default=0, type=int ) parser.add_argument( '--continue_training', action='store_true' ) parser.add_argument( '--scratch_training', help='Use pretrained model for training in each epoch', action='store_true' ) parser.add_argument( '--best_model', help='Use the best model obtained during the epochs', action='store_true' ) parser.add_argument( '--fp_annot', action='store_true' ) parser.add_argument( '--initial_score_A', dest='initial_score_A', help='Initial score to reach to propagate weights to the next epoch', default=0, type=float ) parser.add_argument( '--seed', dest='seed', help='Set a prefixed seed to random select the unlabeled data. Useful to replicate experiments', default=None, type=int ) return parser def print_txt_format(results_dict, iter_name, epoch, output, model_id): with open(os.path.join(output,'results.txt'),"a+") as f: print('----- Epoch: %s iteration: %s Model: %s -----' % (epoch,iter_name,model_id)) f.write('----- Epoch: %s iteration: %s Model: %s ----- \n' % (epoch,iter_name,model_id)) for k, v in results_dict['sem_seg'].items(): if 'IoU' in k: print('%s: %.4f' % (k, v)) f.write('%s: %.4f \n' % (k, v)) print('\n') f.write('\n') def built_custom_dataset(cfg, image_dir, gt_dir, dataset_name, add_pseudolabels=False, pseudo_img_dir=None, pseudo_dir=None, test=False): if add_pseudolabels and pseudo_img_dir is not None and pseudo_dir is not None: DatasetCatalog.register( dataset_name, lambda x1=image_dir, x2=pseudo_img_dir, y1=gt_dir, y2=pseudo_dir: load_dataset_from_txt_and_merge(x1, x2, y1, y2, num_samples=cfg.DATASETS.TRAIN_SAMPLES) ) else: if test: DatasetCatalog.register( dataset_name, lambda x=image_dir, y=gt_dir: load_dataset_from_txt(x, y) ) else: DatasetCatalog.register( dataset_name, lambda x=image_dir, y=gt_dir: load_dataset_from_txt(x, y, num_samples=cfg.DATASETS.TRAIN_SAMPLES) ) if cfg.DATASETS.LABELS == 'cityscapes': MetadataCatalog.get(dataset_name).stuff_classes = [k.name for k in labels if k.trainId < 19 and k.trainId > -1] MetadataCatalog.get(dataset_name).stuff_colors = [k.color for k in labels if k.trainId < 19 and k.trainId > -1] else: raise Exception('Unsupported label set') MetadataCatalog.get(dataset_name).set( image_dir=image_dir, gt_dir=gt_dir, evaluator_type="generic_sem_seg", ignore_label=255, ) def built_inference_dataset(cfg, im_list, dataset_name): DatasetCatalog.register( dataset_name, lambda x=im_list: load_dataset_to_inference(x) ) MetadataCatalog.get(dataset_name).set( image_dir=im_list, evaluator_type="generic_sem_seg", ignore_label=255, ) def build_sem_seg_train_aug(cfg, augmentation): augs = [] if cfg.INPUT.ACTIVATE_MIN_SIZE_TRAIN: augs.append(T.ResizeShortestEdge( cfg.INPUT.MIN_SIZE_TRAIN, cfg.INPUT.MAX_SIZE_TRAIN, cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING)) if cfg.INPUT.RESIZED: augs.append(T.Resize(cfg.INPUT.RESIZE_SIZE)) if cfg.INPUT.CROP.ENABLED: augs.append(T.RandomCrop_CategoryAreaConstraint( cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE, cfg.INPUT.CROP.SINGLE_CATEGORY_MAX_AREA, cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE)) if augmentation['hflip']: augs.append(T.RandomFlip(prob=augmentation['hflip_prob'], horizontal=True, vertical=False)) if augmentation['vflip']: augs.append(T.RandomFlip(prob=augmentation['vflip_prob'], horizontal=False, vertical=True)) if augmentation['cutout']: augs.append(T.CutOutPolicy(augmentation['cutout_n_holes'], augmentation['cutout_length'])) if augmentation['random_resize']: augs.append(T.TrainScalePolicy(augmentation['resize_range'])) return augs def get_evaluator(cfg, dataset_name, output_folder=None): """ Create evaluator(s) for a given dataset. This uses the special metadata "evaluator_type" associated with each builtin dataset. For your own dataset, you can simply create an evaluator manually in your script and do not have to worry about the hacky if-else logic here. """ if output_folder is None: output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") evaluator_list = [] evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type if evaluator_type in ["sem_seg", "coco_panoptic_seg"]: evaluator_list.append( SemSegEvaluator( dataset_name, distributed=True, output_dir=output_folder, ) ) if evaluator_type in ["coco", "coco_panoptic_seg"]: evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder)) if evaluator_type == "coco_panoptic_seg": evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder)) if evaluator_type == "cityscapes_instance": assert ( torch.cuda.device_count() >= comm.get_rank() ), "CityscapesEvaluator currently do not work with multiple machines." return CityscapesInstanceEvaluator(dataset_name) if evaluator_type == "cityscapes_sem_seg": assert ( torch.cuda.device_count() >= comm.get_rank() ), "CityscapesEvaluator currently do not work with multiple machines." return CityscapesSemSegEvaluator(dataset_name, output_folder=output_folder) if evaluator_type == "pascal_voc": return PascalVOCDetectionEvaluator(dataset_name) if evaluator_type == "lvis": return LVISEvaluator(dataset_name, cfg, True, output_folder) if evaluator_type == "generic_sem_seg": return SemSegEvaluator(dataset_name, distributed=True, output_dir=output_folder, write_outputs=False) if len(evaluator_list) == 0: raise NotImplementedError( "no Evaluator for the dataset {} with the type {}".format(dataset_name, evaluator_type) ) if len(evaluator_list) == 1: return evaluator_list[0] return DatasetEvaluators(evaluator_list) def do_test_txt(cfg, model, dataset_name, step_iter, epoch, model_id): results = OrderedDict() dataset: List[Dict] = DatasetCatalog.get(dataset_name) data_loader = build_detection_test_loader(cfg, dataset_name) evaluator = get_evaluator( cfg, dataset_name, os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name, str(step_iter)) ) results_i = inference_on_dataset(model, data_loader, evaluator) results[dataset_name] = results_i print_txt_format(results_i, step_iter, epoch, cfg.OUTPUT_DIR, model_id) '''if comm.is_main_process(): logger.info("Evaluation results for {} in csv format:".format(dataset_name)) print_csv_format(results_i)''' if len(results) == 1: results = list(results.values())[0] return results @contextmanager def inference_context(model): """ A context where the model is temporarily changed to eval mode, and restored to previous mode afterwards. Args: model: a torch Module """ training_mode = model.training model.eval() yield model.train(training_mode) def inference_on_imlist(cfg, model, weights, dataset_name): # Following the same detectron2.evaluation.inference_on_dataset function DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).load(weights) data_loader = build_detection_test_loader(cfg, dataset_name) total = len(data_loader) num_warmup = min(5, total - 1) start_time = time.perf_counter() total_compute_time = 0 num_classes = cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES with ExitStack() as stack: if isinstance(model, nn.Module): stack.enter_context(inference_context(model)) stack.enter_context(torch.no_grad()) outputs = [] pred_cls_num = np.zeros(num_classes) for idx, inputs in enumerate(data_loader): if idx == num_warmup: start_time = time.perf_counter() total_compute_time = 0 start_compute_time = time.perf_counter() batch_outputs = model(inputs) for output in batch_outputs: # Saving indexes and values of maximums instead the 20 channels scores to save memory output = output['sem_seg'] output = torch.unsqueeze(output, 0) output = softmax2d(output) output = torch.squeeze(output) output = output.cpu().numpy() amax_output = np.asarray(np.argmax(output, axis=0), dtype=np.uint8) conf = np.amax(output,axis=0) outputs.append([amax_output, conf]) if torch.cuda.is_available(): torch.cuda.synchronize() total_compute_time += time.perf_counter() - start_compute_time iters_after_start = idx + 1 - num_warmup * int(idx >= num_warmup) seconds_per_img = total_compute_time / iters_after_start if idx >= num_warmup * 2 or seconds_per_img > 5: total_seconds_per_img = (time.perf_counter() - start_time) / iters_after_start eta = datetime.timedelta(seconds=int(total_seconds_per_img * (total - idx - 1))) log_every_n_seconds( logging.INFO, "Inference done {}/{}. {:.4f} s / img. ETA={}".format( idx + 1, total, seconds_per_img, str(eta) ), n=5, ) return outputs def do_train(cfg, model, weights, train_dataset_name, test_dataset_name, model_id, save_checkpoints_path, epoch, continue_epoch, resume=False, dataset_pseudolabels=None): model.train() optimizer = build_optimizer(cfg, model) scheduler = build_lr_scheduler(cfg, optimizer) checkpointer = DetectionCheckpointer( model, save_checkpoints_path, optimizer=optimizer, scheduler=scheduler ) max_iter = cfg.SOLVER.MAX_ITER if resume: start_iter = ( checkpointer.resume_or_load(weights, resume=resume).get("iteration", -1) + 1 ) else: checkpointer.resume_or_load(weights) start_iter = 0 periodic_checkpointer = PeriodicCheckpointer( checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter ) writers = default_writers(cfg.OUTPUT_DIR, max_iter) if comm.is_main_process() else [] #Data aug mapper augmentations = {} if model_id.lower() == 'a': augmentations = {'cutout': cfg.AUGMENTATION_A.CUTOUT, 'cutout_n_holes': cfg.AUGMENTATION_A.CUTOUT_N_HOLES, 'cutout_length': cfg.AUGMENTATION_A.CUTOUT_LENGTH, 'hflip': cfg.AUGMENTATION_A.HFLIP, 'hflip_prob': cfg.AUGMENTATION_A.HFLIP_PROB, 'vflip': cfg.AUGMENTATION_A.VFLIP, 'vflip_prob': cfg.AUGMENTATION_A.VFLIP_PROB, 'random_resize': cfg.AUGMENTATION_A.RANDOM_RESIZE, 'resize_range': cfg.AUGMENTATION_A.RESIZE_RANGE} elif model_id.lower() == 'b': augmentations = {'cutout': cfg.AUGMENTATION_B.CUTOUT, 'cutout_n_holes': cfg.AUGMENTATION_B.CUTOUT_N_HOLES, 'cutout_length': cfg.AUGMENTATION_B.CUTOUT_LENGTH, 'hflip': cfg.AUGMENTATION_B.HFLIP, 'hflip_prob': cfg.AUGMENTATION_B.HFLIP_PROB, 'vflip': cfg.AUGMENTATION_B.VFLIP, 'vflip_prob': cfg.AUGMENTATION_B.VFLIP_PROB, 'random_resize': cfg.AUGMENTATION_B.RANDOM_RESIZE, 'resize_range': cfg.AUGMENTATION_B.RESIZE_RANGE} else: raise NotImplementedError('Unknown model id for data augmentation') if "SemanticSegmentor" in cfg.MODEL.META_ARCHITECTURE: mapper = DatasetMapper(cfg, is_train=True, augmentations=build_sem_seg_train_aug(cfg, augmentations)) else: mapper = None # compared to "train_net.py", we do not support accurate timing and # precise BN here, because they are not trivial to implement in a small training loop logger.info("Starting training from iteration {}".format(start_iter)) with EventStorage(start_iter) as storage: results_list = [] if cfg.SOLVER.ALTERNATE_SOURCE_PSEUDOLABELS and dataset_pseudolabels is not None: dataset: List[Dict] = DatasetCatalog.get(train_dataset_name) data_loader = build_detection_train_loader(cfg, dataset=dataset, mapper=mapper, total_batch_size=cfg.SOLVER.SOURCE_PSEUDOLABELS_BATCH_RATIO[0]) dataset_pseudo: List[Dict] = DatasetCatalog.get(dataset_pseudolabels) data_loader_pseudo = build_detection_train_loader(cfg, dataset=dataset_pseudo, mapper=mapper, total_batch_size=cfg.SOLVER.SOURCE_PSEUDOLABELS_BATCH_RATIO[1]) results_list = training_loop_mixdatasets(cfg, model, start_iter, max_iter, data_loader, data_loader_pseudo, storage, optimizer, scheduler, periodic_checkpointer, writers, test_dataset_name, epoch, model_id) else: dataset: List[Dict] = DatasetCatalog.get(train_dataset_name) data_loader = build_detection_train_loader(cfg, dataset=dataset, mapper=mapper, total_batch_size=cfg.SOLVER.IMS_PER_BATCH) results_list = training_loop(cfg, model, start_iter, max_iter, data_loader, storage, optimizer, scheduler, periodic_checkpointer, writers, test_dataset_name, epoch, model_id) return results_list def training_loop(cfg, model, start_iter, max_iter, data_loader, storage, optimizer, scheduler, periodic_checkpointer, writers, test_dataset_name, epoch, model_id): results_list = [] for data, iteration in zip(data_loader, range(start_iter, max_iter)): #print(data[0]['file_name']) #print('%s x %s' % (data[0]['height'], data[0]['width'])) storage.iter = iteration loss_dict = model(data) losses = sum(loss_dict.values()) assert torch.isfinite(losses).all(), loss_dict loss_dict_reduced = {k: v.item() for k, v in comm.reduce_dict(loss_dict).items()} losses_reduced = sum(loss for loss in loss_dict_reduced.values()) if comm.is_main_process(): storage.put_scalars(total_loss=losses_reduced, **loss_dict_reduced) optimizer.zero_grad() losses.backward() optimizer.step() storage.put_scalar("lr", optimizer.param_groups[0]["lr"], smoothing_hint=False) scheduler.step() if ( cfg.TEST.EVAL_PERIOD > 0 and (iteration + 1) % cfg.TEST.EVAL_PERIOD == 0 ): results = do_test_txt(cfg, model, test_dataset_name, iteration+1, epoch, model_id) results_list.append([results['sem_seg']['mIoU'],iteration]) # Compared to "train_net.py", the test results are not dumped to EventStorage comm.synchronize() if iteration - start_iter > 5 and ( (iteration + 1) % 20 == 0 or iteration == max_iter - 1 ): for writer in writers: writer.write() periodic_checkpointer.step(iteration) return results_list def training_loop_mixdatasets(cfg, model, start_iter, max_iter, data_loader, data_loader_pseudo, storage, optimizer, scheduler, periodic_checkpointer, writers, test_dataset_name, epoch, model_id): ''' Training loop that mixes two dataloaders to compose the final batch with the proportion specified''' results_list = [] for data1, data2, iteration in zip(data_loader, data_loader_pseudo, range(start_iter, max_iter)): #print(data[0]['file_name']) #print('%s x %s' % (data[0]['height'], data[0]['width'])) storage.iter = iteration data = data1+data2 loss_dict = model(data) del data gc.collect() losses = sum(loss_dict.values()) assert torch.isfinite(losses).all(), loss_dict loss_dict_reduced = {k: v.item() for k, v in comm.reduce_dict(loss_dict).items()} losses_reduced = sum(loss for loss in loss_dict_reduced.values()) if comm.is_main_process(): storage.put_scalars(total_loss=losses_reduced, **loss_dict_reduced) optimizer.zero_grad() losses.backward() optimizer.step() storage.put_scalar("lr", optimizer.param_groups[0]["lr"], smoothing_hint=False) scheduler.step() if ( cfg.TEST.EVAL_PERIOD > 0 and (iteration + 1) % cfg.TEST.EVAL_PERIOD == 0 ): results = do_test_txt(cfg, model, test_dataset_name, iteration+1, epoch, model_id) results_list.append([results['sem_seg']['mIoU'],iteration]) # Compared to "train_net.py", the test results are not dumped to EventStorage comm.synchronize() if iteration - start_iter > 5 and ( (iteration + 1) % 20 == 0 or iteration == max_iter - 1 ): for writer in writers: writer.write() periodic_checkpointer.step(iteration) return results_list def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg() add_deeplab_config(cfg) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) if args.unlabeled_dataset_A is not None: cfg.DATASETS.UNLABELED_DATASET_A = args.unlabeled_dataset_A if args.weights_branchA is not None: cfg.MODEL.WEIGHTS_BRANCH_A = args.weights_branchA if args.max_unlabeled_samples is not None: cfg.DATASETS.MAX_UNLABELED_SAMPLES = args.max_unlabeled_samples cfg.freeze() default_setup( cfg, args ) return cfg def get_unlabeled_data(unlabeled_dataset, step_inc, seed, samples): with open(unlabeled_dataset,'r') as f: im_list = [line.rstrip().split(' ') for line in f.readlines()] im_list.sort() init_indx = random.randrange(0, step_inc) indx_sampled = np.asarray(range(init_indx, len(im_list), step_inc), dtype=int) im_list = np.asarray(im_list)[indx_sampled] random.seed(seed) im_list = random.sample(im_list.tolist(), min(len(im_list), samples)) return im_list def prepare_confidence_maps(outputs, num_classes): conf_dict = {k: [] for k in range(num_classes)} pred_cls_num = np.zeros(num_classes) for idx, output in enumerate(outputs): amax_output = output[0] conf = output[1] pred_label = amax_output.copy() for idx_cls in range(num_classes): idx_temp = pred_label == idx_cls pred_cls_num[idx_cls] = pred_cls_num[idx_cls] + np.sum(idx_temp) if idx_temp.any(): conf_cls_temp = conf[idx_temp].astype(np.float32) len_cls_temp = conf_cls_temp.size # downsampling by ds_rate conf_cls = conf_cls_temp[0:len_cls_temp:DS_RATE] conf_dict[idx_cls].extend(conf_cls) return conf_dict, pred_cls_num def compute_kc_thresholds(conf_dict, pred_cls_num, tgt_portion, num_classes): # threshold for each class cls_thresh = np.ones(num_classes,dtype = np.float32) cls_sel_size = np.zeros(num_classes, dtype=np.float32) cls_size = np.zeros(num_classes, dtype=np.float32) for idx_cls in np.arange(0, num_classes): cls_size[idx_cls] = pred_cls_num[idx_cls] if conf_dict[idx_cls] != None: conf_dict[idx_cls].sort(reverse=True) # sort in descending order len_cls = len(conf_dict[idx_cls]) cls_sel_size[idx_cls] = int(math.floor(len_cls * tgt_portion)) len_cls_thresh = int(cls_sel_size[idx_cls]) if len_cls_thresh != 0: cls_thresh[idx_cls] = conf_dict[idx_cls][len_cls_thresh-1] conf_dict[idx_cls] = None logger.info("CBST thresholds: {}".format(cls_thresh)) return cls_thresh def generate_pseudolabels(outputs, cls_thresh, tgt_num, num_classes): pseudolabels = [] pseudolabels_not_filtered = [] scores_list = [] '''print(tgt_num) print(cls_thresh) exit(-1)''' for idx in range(tgt_num): pseudolabels_not_filtered.append(outputs[idx][0]) pseudolabel = outputs[idx][0].copy() pred_conf = outputs[idx][1] weighted_conf = np.zeros(pred_conf.shape,dtype=np.float32) for idx in range(len(cls_thresh)): weighted_conf = weighted_conf + (pred_conf*(pseudolabel == idx)/cls_thresh[idx]) pseudolabel[weighted_conf <= 1] = 19 # '255' in cityscapes indicates 'unlabaled' for trainIDs pseudolabels.append(pseudolabel) #Compute image score using the mean of the weighted confidence pixels values higher than the threshold cls_thresh classes_id, pixel_count = np.unique(pseudolabel, return_counts=True) weighted_conf[weighted_conf <= 1] = np.nan score = np.nanmean(weighted_conf) # create aux array for scores and pixel per class count aux_scores = np.zeros((num_classes+1), dtype=np.float32) aux_scores[-1] = score for idx, class_id in enumerate(classes_id): aux_scores[class_id] = pixel_count[idx] scores_list.append(aux_scores) return pseudolabels, scores_list, pseudolabels_not_filtered def apply_cbst(outputs, num_classes, tgt_num, tgt_portion): conf_dict, pred_cls_num = prepare_confidence_maps(outputs, num_classes) cls_thresh = compute_kc_thresholds(conf_dict, pred_cls_num, tgt_portion, num_classes) pseudolabels, scores_list, pseudolabels_not_filtered = generate_pseudolabels(outputs, cls_thresh, tgt_num, num_classes) return pseudolabels, scores_list, pseudolabels_not_filtered def compute_mtp_thresholds(pred_conf, pred_cls_num, tgt_portion, num_classes): thres = [] for i in range(num_classes): x = pred_conf[pred_cls_num==i] if len(x) == 0: thres.append(0) continue x = np.sort(x) thres.append(x[np.int(np.round(len(x)*tgt_portion))]) thres = np.array(thres) thres[thres>0.90]=0.90 return thres def apply_mtp(outputs, num_classes, tgt_num, tgt_portion): pred_cls_num = np.zeros((tgt_num, outputs[0][0].shape[0], outputs[0][0].shape[1]), dtype=np.uint8) pred_conf = np.zeros((tgt_num, outputs[0][0].shape[0], outputs[0][0].shape[1]), dtype=np.float32) for index, output in enumerate(outputs): pred_cls_num[index] = output[0] pred_conf[index] = output[1] thres = compute_mtp_thresholds(pred_conf, pred_cls_num, tgt_portion, num_classes) logger.info("MPT thresholds: {}".format(thres)) pseudolabels = [] pseudolabels_not_filtered = [] scores_list = [] for index in range(tgt_num): pseudolabels_not_filtered.append(pred_cls_num[index]) label = pred_cls_num[index].copy() prob = pred_conf[index] for i in range(num_classes): label[(prob<thres[i])*(label==i)] = 19 # '255' in cityscapes indicates 'unlabaled' for trainIDs prob[(prob<thres[i])*(label==i)] = np.nan pseudolabels.append(label) score = np.nanmean(prob) scores_list.append(score) return pseudolabels, scores_list, pseudolabels_not_filtered def create_folder(folder): if not os.path.exists(folder): os.makedirs(folder) def save_pseudolabels(images, pseudolabels, scores, pseudolabels_path, coloured_pseudolabels_path, pseudolabels_not_filtered=None, coloured_pseudolabels_not_filtered_path=None): filenames_and_scores = os.path.join('/'.join(pseudolabels_path.split('/')[:-1]),'filenames_and_scores.txt') images_txt = os.path.join('/'.join(pseudolabels_path.split('/')[:-1]),'selected_images_path.txt') psedolabels_txt = os.path.join('/'.join(pseudolabels_path.split('/')[:-1]),'selected_pseudolabels_path.txt') with open(filenames_and_scores,'w') as f: with open(images_txt,'w') as g: with open(psedolabels_txt,'w') as h: for idx, image in enumerate(images): filename = image[0].split('/')[-1] Image.fromarray(pseudolabels[idx]).save(os.path.join(pseudolabels_path,filename)) pred_colour = 255 * np.ones([pseudolabels[idx].shape[0],pseudolabels[idx].shape[1],3], dtype=np.uint8) for train_id, label in trainId2label.items(): pred_colour[(pseudolabels[idx] == train_id),0] = label.color[0] pred_colour[(pseudolabels[idx] == train_id),1] = label.color[1] pred_colour[(pseudolabels[idx] == train_id),2] = label.color[2] Image.fromarray(pred_colour).save(os.path.join(coloured_pseudolabels_path,filename)) if pseudolabels_not_filtered is not None and coloured_pseudolabels_not_filtered_path is not None: pred_colour = 255 * np.ones([pseudolabels_not_filtered[idx].shape[0],pseudolabels_not_filtered[idx].shape[1],3], dtype=np.uint8) for train_id, label in trainId2label.items(): pred_colour[(pseudolabels_not_filtered[idx] == train_id),0] = label.color[0] pred_colour[(pseudolabels_not_filtered[idx] == train_id),1] = label.color[1] pred_colour[(pseudolabels_not_filtered[idx] == train_id),2] = label.color[2] Image.fromarray(pred_colour).save(os.path.join(coloured_pseudolabels_not_filtered_path,filename)) #Create txt with files names and scores f.write('%s %s %s %s\n' % (filename, str(scores[idx][-1]), str(scores[idx][-2]), str(np.count_nonzero(scores[idx][:19])))) g.write('%s\n' % (image[0])) h.write('%s\n' % (os.path.join(pseudolabels_path,filename))) return images_txt, psedolabels_txt, filenames_and_scores def merge_txts_and_save(new_txt, txt1, txt2=None): if txt2 is not None: files = [txt1, txt2] else: files = [txt1] with open(new_txt, 'w') as f: for file in files: with open(file) as infile: for line in infile: f.write(line) return new_txt def update_best_score_txts_and_save(accum_scores_txt, accum_images_txt, accum_labels_txt, new_scores_txt, new_images_txt, new_labels_txt, save_img_txt, save_labels_txt, save_scores_txt, sorting_method): with open(accum_scores_txt,'r') as f: accum_scores = [line.rstrip().split(' ') for line in f.readlines()] with open(new_scores_txt,'r') as f: new_scores_txt = [line.rstrip().split(' ') for line in f.readlines()] with open(accum_images_txt,'r') as f: accum_images = [line.rstrip().split(' ') for line in f.readlines()] with open(new_images_txt,'r') as f: new_images = [line.rstrip().split(' ') for line in f.readlines()] with open(accum_labels_txt,'r') as f: accum_labels = [line.rstrip().split(' ') for line in f.readlines()] with open(new_labels_txt,'r') as f: new_labels = [line.rstrip().split(' ') for line in f.readlines()] ignore_list = [] # Check for repeated images for idx, score in enumerate(new_scores_txt): for idx2, score2 in enumerate(accum_scores): if score[0] == score2[0]: # Depending of the sorting method we use scores or number of void pixel to update if sorting_method == 'per_class' or sorting_method == 'per_void_pixels': check = score[2] < score2[2] else: check = score[1] > score2[1] if check: # If we found the same image with better score we updated values in all the acumulated lists accum_scores[idx2][1] = score[1] accum_scores[idx2][2] = score[2] accum_scores[idx2][3] = score[3] accum_labels[idx2] = new_labels[idx] # we store the index to do not add it again later ignore_list.append(idx) break # add new images into the accumulated ones for idx, score in enumerate(new_scores_txt): if idx not in ignore_list: accum_scores.append(score) accum_labels.append(new_labels[idx]) accum_images.append(new_images[idx]) # save each data in its respective txt new_img_dataset = open(save_img_txt,'w') new_labels_dataset = open(save_labels_txt,'w') new_scores_dataset = open(save_scores_txt,'w') for idx, _ in enumerate(accum_scores): new_img_dataset.write(accum_images[idx][0] + '\n') new_labels_dataset.write(accum_labels[idx][0] + '\n') new_scores_dataset.write(accum_scores[idx][0] + ' ' + accum_scores[idx][1] + '\n') new_img_dataset.close() new_labels_dataset.close() new_scores_dataset.close() return save_img_txt, save_labels_txt, save_scores_txt def sorting_scores(scores, sorting_method, selftraining=False): if sorting_method == 'per_class': sorted_idx = np.lexsort((scores[:,20],np.count_nonzero(scores[:,:19], axis=1)))[::-1] elif sorting_method == 'per_void_pixels': # Sorting by number of void pixels (lower to higher) sorted_idx = np.argsort(scores[:,-2]) else: # Sorting by confidence (lower to higher for cotraining) sorted_idx = np.argsort(scores[:,-1]) if selftraining: # (higher to lower for selftraining) sorted_idx = sorted_idx[::-1][:len(scores_listA)] return sorted_idx def main(args): cfg = setup(args) continue_epoch = args.continue_epoch accumulated_selection_imgA = [] accumulated_selection_pseudoA = [] accumulated_acores_A = [] pseudolabeling = cfg.PSEUDOLABELING.MODE collaboration = cfg.PSEUDOLABELING.COLLABORATION accumulation_mode = cfg.PSEUDOLABELING.ACCUMULATION num_selected = cfg.PSEUDOLABELING.NUMBER weights_inference_branchA = cfg.MODEL.WEIGHTS_BRANCH_A weights_train_branchA = cfg.MODEL.WEIGHTS_BRANCH_A if pseudolabeling == 'cbst': tgt_portion = INIT_TGT_PORT # Set initial scores to surpass during an epoch to propagate weghts to the next one best_score_A = args.initial_score_A # Build test dataset built_custom_dataset(cfg, cfg.DATASETS.TEST_IMG_TXT, cfg.DATASETS.TEST_GT_TXT, cfg.DATASETS.TEST_NAME, test=True) # set a seed for the unlabeled data selection if args.seed is not None: seed = args.seed else: seed = random.randrange(sys.maxsize) # Start self-training for epoch in range(args.continue_epoch,args.epochs): logger.info("Starting training from iteration {}".format(epoch)) # prepare unlabeled data logger.info("prepare unlabeled data") seed = seed + epoch logger.info("Seed for unlabeled data {}".format(seed)) # Read unlabeled data from the txt specified and select randomly X samples defined on max_unlabeled_samples unlabeled_datasetA = get_unlabeled_data(cfg.DATASETS.UNLABELED_DATASET_A, args.step_inc, seed, cfg.DATASETS.MAX_UNLABELED_SAMPLES) logger.info("Unlabeled data selected from {}: {}".format(cfg.DATASETS.UNLABELED_DATASET_A,len(unlabeled_datasetA))) # Regiter unlabeled dataset on detectron 2 built_inference_dataset(cfg, unlabeled_datasetA, args.unlabeled_dataset_A_name) # Compute inference on unlabeled datasets model = build_model(cfg) logger.info("Compute inference on unlabeled datasets") start_time = time.perf_counter() # Inference return a tuple of labels and confidences inference_A = inference_on_imlist(cfg, model, weights_inference_branchA, args.unlabeled_dataset_A_name) total_time = time.perf_counter() - start_time logger.info("Compute inference on unlabeled dataset A: {:.2f} s".format(total_time)) logger.info("Pseudolabeling mode: {}".format(pseudolabeling)) if pseudolabeling == 'cbst': start_time = time.perf_counter() pseudolabels_A, scores_listA, pseudolabels_A_not_filtered = apply_cbst(inference_A, cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES,len(unlabeled_datasetA),tgt_portion) total_time = time.perf_counter() - start_time logger.info("CBST on unlabeled dataset A: {:.2f} s".format(total_time)) tgt_portion = min(tgt_portion + TGT_PORT_STEP, MAX_TGT_PORT) elif pseudolabeling == 'mpt': start_time = time.perf_counter() pseudolabels_A, scores_listA, pseudolabels_A_not_filtered = apply_mtp(inference_A, cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES,len(unlabeled_datasetA), 0.5) total_time = time.perf_counter() - start_time logger.info("MPT on unlabeled dataset A: {:.2f} s".format(total_time)) else: raise Exception('unknown pseudolabeling method defined') #save pseudolabels pseudolabels_path_model_A = os.path.join(cfg.OUTPUT_DIR,'model_A',str(epoch),'pseudolabeling/pseudolabels') create_folder(pseudolabels_path_model_A) coloured_pseudolabels_path_model_A = os.path.join(cfg.OUTPUT_DIR,'model_A',str(epoch),'pseudolabeling/coloured_pseudolabels') create_folder(coloured_pseudolabels_path_model_A) coloured_pseudolabels_not_filtered_path_model_A = os.path.join(cfg.OUTPUT_DIR,'model_A',str(epoch),'pseudolabeling/coloured_pseudolabels_not_filtered') create_folder(coloured_pseudolabels_not_filtered_path_model_A) dataset_A_path = os.path.join(cfg.OUTPUT_DIR,'model_A',str(epoch),'unlabeled_data_selected') create_folder(dataset_A_path) checkpoints_A_path = os.path.join(cfg.OUTPUT_DIR,'model_A',str(epoch),'checkpoints') create_folder(checkpoints_A_path) # Continue cotraining on the specified epoch if continue_epoch > 0: accumulated_selection_imgA = os.path.join(cfg.OUTPUT_DIR,'model_A',str(epoch-1),'unlabeled_data_selected/dataset_img.txt') accumulated_selection_pseudoA = os.path.join(cfg.OUTPUT_DIR,'model_A',str(epoch-1),'unlabeled_data_selected/dataset_pseudolabels.txt') accumulated_scores_A = os.path.join(cfg.OUTPUT_DIR,'model_A',str(epoch-1),'unlabeled_data_selected/filenames_and_scores.txt') continue_epoch = 0 scores_listA = np.asarray(scores_listA) pseudolabels_A = np.asarray(pseudolabels_A) unlabeled_datasetA = np.asarray(unlabeled_datasetA) pseudolabels_A_not_filtered = np.asarray(pseudolabels_A_not_filtered) # Order pseudolabels by method selected on config file logger.info("Sorting mode: {}".format(cfg.PSEUDOLABELING.SORTING)) sorted_idx = sorting_scores(scores_listA, cfg.PSEUDOLABELING.SORTING, selftraining=True) sorted_scores_listA = scores_listA[sorted_idx] sorted_pseudolabels_A = pseudolabels_A[sorted_idx] sorted_unlabeled_datasetA = unlabeled_datasetA[sorted_idx] sorted_pseudolabels_A_not_filtered = pseudolabels_A_not_filtered[sorted_idx] # free memory del scores_listA del pseudolabels_A del unlabeled_datasetA del pseudolabels_A_not_filtered gc.collect() logger.info("Select candidates and Save on disk") # select candidates and save them to add them to the source data if len(sorted_unlabeled_datasetA) > cfg.PSEUDOLABELING.NUMBER: images_txt_A, psedolabels_txt_A, filenames_and_scoresA = save_pseudolabels(sorted_unlabeled_datasetA[:num_selected], sorted_pseudolabels_A[:num_selected], sorted_scores_listA[:num_selected], pseudolabels_path_model_A, coloured_pseudolabels_path_model_A, sorted_pseudolabels_A_not_filtered[:num_selected], coloured_pseudolabels_not_filtered_path_model_A) else: images_txt_A, psedolabels_txt_A, filenames_and_scoresA = save_pseudolabels(sorted_unlabeled_datasetA, sorted_pseudolabels_A, sorted_scores_listA, pseudolabels_path_model_A, coloured_pseudolabels_path_model_A, sorted_pseudolabels_A_not_filtered, coloured_pseudolabels_not_filtered_path_model_A) # free memory del sorted_unlabeled_datasetA del sorted_pseudolabels_A del sorted_scores_listA del sorted_pseudolabels_A_not_filtered gc.collect() # Compute data accumulation procedure logger.info("Compute data accumulation procedure selected: {}".format(accumulation_mode)) if accumulation_mode is not None and len(accumulated_selection_imgA) > 0: if accumulation_mode.lower() == 'all': accumulated_selection_imgA = merge_txts_and_save(os.path.join(dataset_A_path,'dataset_img.txt'), accumulated_selection_imgA, images_txt_A) accumulated_selection_pseudoA = merge_txts_and_save(os.path.join(dataset_A_path,'dataset_pseudolabels.txt'), accumulated_selection_pseudoA, psedolabels_txt_A) accumulated_scores_A = merge_txts_and_save(os.path.join(dataset_A_path,'filenames_and_scores.txt'), accumulated_scores_A, filenames_and_scoresA) if accumulation_mode.lower() == 'update_best_score': accumulated_selection_imgA, accumulated_selection_pseudoA, accumulated_scores_A = update_best_score_txts_and_save( accumulated_scores_A, accumulated_selection_imgA, accumulated_selection_pseudoA, filenames_and_scoresA, images_txt_A, psedolabels_txt_A, os.path.join(dataset_A_path,'dataset_img.txt'), os.path.join(dataset_A_path,'dataset_pseudolabels.txt'), os.path.join(dataset_A_path,'filenames_and_scores.txt'), cfg.PSEUDOLABELING.SORTING) else: #No accumulation, only training with new pseudolabels accumulated_selection_imgA = merge_txts_and_save(os.path.join(dataset_A_path,'dataset_img.txt'), images_txt_A) accumulated_selection_pseudoA = merge_txts_and_save(os.path.join(dataset_A_path,'dataset_pseudolabels.txt'), psedolabels_txt_A) accumulated_scores_A = merge_txts_and_save(os.path.join(dataset_A_path,'filenames_and_scores.txt'), filenames_and_scoresA) if cfg.SOLVER.ALTERNATE_SOURCE_PSEUDOLABELS: # create one dataloader for the source data and another for target pseudolabels dataset_A_source = cfg.DATASETS.TRAIN_NAME + '_A_source' + str(epoch) dataset_A_target = cfg.DATASETS.TRAIN_NAME + '_A_target' + str(epoch) built_custom_dataset(cfg, cfg.DATASETS.TRAIN_IMG_TXT, cfg.DATASETS.TRAIN_GT_TXT, dataset_A_source) built_custom_dataset(cfg, accumulated_selection_imgA, accumulated_selection_pseudoA, dataset_A_target) # Train model A logger.info("Training Model A") results_A = do_train(cfg, model, weights_train_branchA, dataset_A_source, cfg.DATASETS.TEST_NAME,'a', checkpoints_A_path, epoch, args.continue_epoch, resume=False, dataset_pseudolabels=dataset_A_target) DatasetCatalog.remove(dataset_A_source) MetadataCatalog.remove(dataset_A_source) DatasetCatalog.remove(dataset_A_target) MetadataCatalog.remove(dataset_A_target) else: # create dataloader adding psedolabels to source dataset dataset_A_name = cfg.DATASETS.TRAIN_NAME + '_A_' + str(epoch) built_custom_dataset(cfg, cfg.DATASETS.TRAIN_IMG_TXT, cfg.DATASETS.TRAIN_GT_TXT, dataset_A_name, True, accumulated_selection_imgA, accumulated_selection_pseudoA) # Train model A logger.info("Training Model A") results_A = do_train(cfg, model, weights_train_branchA, dataset_A_name, cfg.DATASETS.TEST_NAME,'a', checkpoints_A_path, epoch, args.continue_epoch, resume=False) # delete all datasets registered during epoch DatasetCatalog.remove(dataset_A_name) MetadataCatalog.remove(dataset_A_name) DatasetCatalog.remove(args.unlabeled_dataset_A_name) MetadataCatalog.remove(args.unlabeled_dataset_A_name) # refresh weight file pointers after iteration for initial inference if there is improvement if args.best_model: # Assign best model obtained until now to generate the pseudolabels in the next cycle # Model only used for inference for score, iteration in results_A: if score > best_score_A: best_score_A = score weights_inference_branchA = os.path.join(cfg.OUTPUT_DIR,'model_A',str(epoch),'checkpoints/model_%s.pth' % (str(iteration).zfill(7))) if not args.scratch_training: weights_inference_branchA = weights_train_branchA logger.info("Best model A until now: {}".format(weights_inference_branchA)) logger.info("Best mIoU: {}".format(best_score_A)) else: # The model for the next inference and training cycle is the last one obtained weights_train_branchA = os.path.join(cfg.OUTPUT_DIR,'model_A',str(epoch),'checkpoints/model_final.pth') weights_inference_branchA = weights_train_branchA if __name__ == "__main__": default_parser = default_argument_parser() args = cotraining_argument_parser(default_parser).parse_args() print("Command Line Args:", args) launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), ) ```
{ "source": "JOSELIN-CONDORI/Tarea-01-Sistemas", "score": 4 }
#### File: JOSELIN-CONDORI/Tarea-01-Sistemas/tarea4.py ```python def estacionamiento1(): #definir variable y otros estacionamiento=0 #datos de entrada cantidadx=int(input("cuanto tiempo se quedara:")) #Proceso if cantidadx<=2: estacionamiento=5*cantidadx if cantidadx<=5: estacionamiento=(-4*(2-cantidadx))+10 if cantidadx<=10: estacionamiento=(3*(cantidadx-5))+22 if cantidadx>=11: estacionamiento=(2*(cantidadx-10))+37 #Datos de Salida print("pagara en total:",estacionamiento) estacionamiento1() ``` #### File: JOSELIN-CONDORI/Tarea-01-Sistemas/tarea5.py ```python def muestraMenorEdad(): #Definir Variables y otros pnombre="" pedad=0 #Datos de entrada p1nombre=input("Ingrese Nombre 1ra Persona:") p1edad=int(input("Ingrese edad 1ra Persona:")) p2nombre=input("Ingrese Nombre 2da Persona:") p2edad=int(input("Ingrese edad 2da Persona:")) p3nombre=input("Ingrese Nombre 3ra Persona:") p3edad=int(input("Ingrese edad 3ra Persona:")) #Proceso if p1edad<p2edad and p1edad<p3edad: pnombre=p1nombre pedad=p1edad elif p2edad<p1edad and p2edad<p3edad: pnombre=p2nombre pedad=p2edad elif p3edad<p1edad and p3edad<p2edad: pnombre=p3nombre pedad=p3edad elif p1edad==p2edad and p2edad==p3edad: pnombre=p1nombre+", "+p2nombre+" y "+p3nombre pedad=p1edad elif p1edad==p2edad: pnombre=p1nombre+" y "+p2nombre pedad=p1edad elif p2edad==p3edad: pnombre=p2nombre+" y "+p3nombre pedad=p2edad else: pnombre=p1nombre+" y "+p3nombre pedad=p3edad #Datos de Salida print("La(a) persona(s)", pnombre, " tiene(n):", pedad) muestraMenorEdad() ```
{ "source": "JoselineHouwman/helpdesk_klimaat", "score": 2 }
#### File: klimaat_helpdesk/core/views.py ```python from django.urls import reverse_lazy from django.views.generic import TemplateView, FormView from klimaat_helpdesk.cms.models import Answer, AnswerCategory from klimaat_helpdesk.core.forms import AskQuestion from klimaat_helpdesk.core.models import Question from klimaat_helpdesk.experts.models import Expert class HomePage(TemplateView): template_name = 'core/home_page.html' def get_context_data(self, **kwargs): latest_answers = Answer.objects.live()[:10] categories = AnswerCategory.objects.all() expert_profile = Expert.objects.first() context = super(HomePage, self).get_context_data(**kwargs) context.update({ 'answers': latest_answers, 'categories': categories, 'expert_profile': expert_profile, }) return context home_page = HomePage.as_view() class NewQuestion(FormView): form_class = AskQuestion template_name = 'core/new_question.html' success_url = reverse_lazy('core:new-question-thanks') def form_valid(self, form): Question.objects.create( question=form.cleaned_data['question'], user_email=form.cleaned_data.get('user_email', None), asked_by_ip=self.request.META.get('REMOTE_ADDR') ) return super(NewQuestion, self).form_valid(form) new_question = NewQuestion.as_view() ```
{ "source": "joselito-coder/Hacktoberfest2021", "score": 4 }
#### File: Program's_Contributed_By_Contributors/Python_Programs/factorial_generator.py ```python def factorial(n): if n == 0: return 1 return n*factorial(n-1) ```
{ "source": "joselitomedi/Introduction-to-Algorithms", "score": 4 }
#### File: Insertion Sort/Python/insertion_sort.py ```python list = [5,2,4,6,1,3] def insertion_sort(sequence,steps=False): for j in range(1,len(sequence)): item = sequence[j] i = j - 1 # Insert item (element j) in the sorted sequence sequence[0...j-1] while i >= 0 and sequence[i] > item: sequence[i + 1] = sequence[i] i = i - 1 sequence[i + 1] = item # sorting steps (optional parameter) if steps == True: print("step ",j,sequence) return sequence print(insertion_sort(list,True)) ```
{ "source": "JoseLlarena/autoclean", "score": 2 }
#### File: autoclean/filtering/cli.py ```python from click import argument, group from autoclean import global_config from autoclean.filtering.api import filter_out, evaluate @group() def cli(): pass @cli.command(help='path to text to segment type of lm to use to score segmentations') @argument('in_path', type=str) @argument('out_path', type=str) @argument('threshold', type=float) def filter(in_path: str, out_path: str, threshold: float): filter_out(in_path, out_path, threshold) @cli.command(help='path to text to segment type of lm to use to score segmentations') @argument('in_domain_path', type=str) @argument('out_domain_path', type=str) def eval(in_domain_path: str, out_domain_path: str): evaluate(in_domain_path, out_domain_path) if __name__ == '__main__': global_config() cli() ``` #### File: autoclean/segmentation/segmenters.py ```python from functools import lru_cache from typing import Callable as Fn from autoclean import Seq from autoclean.segmentation import CACHE @lru_cache(maxsize=CACHE) def viterbi(seq: Seq, cost_of: Fn, splits_of: Fn) -> Seq: """ Segments the given sequence using the Viterbi algorithm, parameterised by a splitting function to generate the splits, and a cost function to score those splits. Based on <NAME>'s chapter 14 of "Beautiful Data" by <NAME> Hammerbacher. It uses recursion heavily and so it can only handle reasonably long sentences. It may require increasing the default Python recursion depth limit. The algorithm proceeds by splitting the input sequence into a head of starting words and a tail of joined up end words. This is done recursively for each head until the only head left is the empty sequence, at which point, the recursion ends and then the cost of each segmentation of a given head is evaluated and the one with the lowest cost is returned, the rest discarded and not recursed into. The segmentations are created by joining the segmentation of a head with its tail, for each head-tail split. :param seq: the sequence to segment :param cost_of: the cost function to score segmentations :param splits_of: the function to generate segmentations :return: a segmented sequence """ if len(seq) < 2: return seq segmentations = (viterbi(head, cost_of, splits_of) + tail for head, tail in splits_of(seq)) return min(segmentations, key=cost_of, default=seq) ``` #### File: autoclean/segmentation/splitters.py ```python from functools import lru_cache from typing import Tuple, Callable as Fn, Iterable from autoclean import Seq, require from autoclean.segmentation import CACHE @lru_cache(maxsize=CACHE) def string_splits(seq: Seq, is_valid: Fn[[str], bool] = lambda split: True) -> Iterable[Tuple[Seq, Seq]]: """ Returns all possible splits of the given sequence that are allowed according to the given predicate :param seq: the sequence to generate splits for :param is_valid: whether the tail split is a valid sequence :return: a collection of splits, in the form of a head and a joined-up tail of tokens """ require(len(seq) > 0, 'sequence should have at least 1 element') return tuple((head := seq[:idx], tail := (tail_split,)) for idx in reversed(range(len(seq))) if is_valid(tail_split := ''.join(seq[idx:]))) ``` #### File: autoclean/unittests/test_segmentation.py ```python from autoclean.segmentation.segmenters import viterbi from autoclean.segmentation.splitters import string_splits def test_splitting(): output = list(string_splits(tuple('funday'))) assert output == [(('f', 'u', 'n', 'd', 'a'), ('y',)), (('f', 'u', 'n', 'd'), ('ay',)), (('f', 'u', 'n'), ('day',)), (('f', 'u'), ('nday',)), (('f',), ('unday',)), ((), ('funday',))] def test_segmentation(): def cost_fn(chunk): return 0 if chunk in {('fun',), ('fun', 'day'), ('day',)} else 1 assert tuple(viterbi(tuple('funday'), cost_fn, string_splits)) == ('fun', 'day') ```
{ "source": "JoseLlarena/pypey", "score": 4 }
#### File: pypey/pypey/func.py ```python from functools import partial from typing import Any, Callable as Fn, TypeVar, Iterable, Type, Tuple __all__ = ['Fn', 'H', 'I', 'K', 'T', 'V', 'X', 'Y', 'px', 'ident', 'pipe', 'require', 'require_val', 'throw'] H = TypeVar('H', Any, Any) I = TypeVar('I', bound=Iterable) K = TypeVar('K') T = TypeVar('T') V = TypeVar('V') X = TypeVar('X') Y = TypeVar('Y') #: Concise alias of ``functools.partial`` px: Fn[..., Fn] = partial def ident(item: T) -> T: """ Identity function, returns the argument passed to it. :param item: any argument :return: the argument passed in """ return item def pipe(*functions: Fn) -> Fn: """ Chains given functions. :: >>> from pypey import pipe >>> from math import sqrt >>> [pipe(len, sqrt)(w) for w in ('a', 'fun','day')] [1.0, 1.7320508075688772, 1.7320508075688772] For functions taking multiple arguments, the return of the previous function in the chain will be unpacked only if it's a ``tuple``: :: >>> from pypey import pipe >>> pipe(divmod, lambda quotient, remainder: quotient + remainder)(10, 3) 4 If a function returns an ``Iterable`` that it's not a tuple but unpacking in the next function is still needed, built-in ``tuple`` can be inserted in between to achieve the desired effect: :: >>> from pypey import pipe >>> pipe(range, tuple, lambda _1, _2_, _3: sum([_1, _3]))(3) 2 Conversely, if a function returns a ``tuple`` but unpacking is not required in the next function, built-in ``list`` can be used to achieve the desired effect: :: >>> from pypey import pipe >>> pipe(divmod, list, sum)(10, 3) 4 Note that ``list`` is the only exception to the rule that ``tuple`` returns will be unpacked. :param functions: a variable number of functions :return: a combined function """ if len(functions) == 1: return functions[0] return px(_pipe_functions, functions=functions) def require(cond: bool, message: str, exception: Type[Exception] = TypeError): """ Guard clause, useful for implementing exception-raising checks concisely, especially useful in lambdas. >>> from pypey import require, pype >>> pype([1,2,'3']).do(lambda n: require(isinstance(n, int), 'not an int'), now=True) Traceback (most recent call last): ... TypeError: not an int :param cond: if ``False`` the given exception will be thrown, otherwise this function is a no-op :param message: exception message :param exception: exception to throw if ``cond`` is ``False``, defaults to ``TypeError`` :return: nothing """ if not cond: raise exception(message) def require_val(cond: bool, message: str): """ Throws ``ValueError`` exception if ``cond`` is ``False``, equivalent to :func:`require` with ``exception=ValueError``. >>> from pypey import require_val, pype >>> pype([1,2,-3]).do(lambda n: require_val(n>0, 'not a positive number'), now=True) Traceback (most recent call last): ... ValueError: not a positive number :param cond: if ``False`` the a ValueError will be thrown, otherwise this function is a no-op :param message: the exception message :return: nothing """ require(cond, message, ValueError) def throw(exception: Type[Exception], message: str): """ Throws given exception with given message, equivalent to built-in ``raise``. This function is useful for raising exceptions inside lambdas as ``raise`` is syntactically invalid in them. >>> from pypey import throw, pype >>> pype([1,2,3]).do(lambda n: throw(ValueError, 'test'), now=True) Traceback (most recent call last): ... ValueError: test :param exception: the exception to throw :param message: the exception message :return: nothing """ raise exception(message) def _pipe_functions(*arg: Any, functions: Tuple[Fn[..., Any], Any]) -> Any: # created as global function to avoid issues with multiprocessing result = arg for idx, fn in enumerate(functions): result = fn(*result) if idx == 0 or (idx > 0 and fn != list and isinstance(result, tuple)) else fn(result) return result ``` #### File: pypey/unittests/__init__.py ```python from typing import Tuple from pypey import Pype, Fn from random import seed, setstate, getstate _123 = 1, 2, 3 _23 = _123[1:] _654 = 6, 5, 4 _aba = 'a', 'b', 'a' _ab = _aba[:-1] _a_fun_day = 'a', 'fun', 'day' _fun_day = _a_fun_day[1:] _112233 = (1, 1), (2, 2), (3, 3) _2233 = _112233[1:] _aAfunFUNdayDAY = ('a', 'A'), ('fun', 'FUN'), ('day', 'DAY') def _empty_pype() -> Pype: return Pype(iter(())) def _123_pype() -> Pype[int]: return Pype(iter(_123)) def _654_pype() -> Pype[int]: return Pype(iter(_654)) def _a_fun_day_pype() -> Pype[str]: return Pype(iter(_a_fun_day)) def _112233_pype() -> Pype[Tuple[int, int]]: return Pype((n, n) for n in _123) def _aAfunFUNdayDAY_pype() -> Pype[Tuple[str, str]]: return Pype((w, w.upper()) for w in _a_fun_day) def _aba_pype() -> Pype[str]: return Pype(iter('aba')) def with_seed(seed_: int) -> Fn: def decorator(function: Fn) -> Fn: def wrapper(*args, **kwargs): s = getstate() seed(seed_) ret = function(*args, **kwargs) setstate(s) return ret return wrapper return decorator ``` #### File: pypey/unittests/test_execution_laziness.py ```python from collections import namedtuple from operator import add from os.path import join from pytest import raises, mark from pypey import Pype from pypey.pype import SPLIT_MODES from unittests import _23, _123, _fun_day, _aba_pype, _112233_pype, _112233, _123_pype, _a_fun_day_pype, \ _aAfunFUNdayDAY_pype, _654_pype, _654 def test_accumulation_does_not_consume_whole_pipe(): pipe = _123_pype() next(iter(pipe.accum(add))) assert tuple(pipe) == _23 def test_accumulation_with_initial_value_does_not_consume_whole_pipe(): pipe = _123_pype() next(iter(pipe.accum(add, 0))) assert tuple(pipe) == _123 def test_broadcasting_does_not_consume_whole_pipe(): pipe = _123_pype() next(iter(pipe.broadcast(range))) assert tuple(pipe) == _23 def test_concatenation_does_not_consume_either_iterable(): pipe = _123_pype() other = _654_pype() next(iter(pipe.cat(other))) assert tuple(pipe) == _23 assert tuple(other) == _654 def test_chunking_does_not_consume_pipe(): pipe = _123_pype() next(iter(pipe.chunk(2))) assert tuple(pipe) == _23 def test_chunking_with_multiple_sizes_does_not_consume_pipe(): pipe = _123_pype() next(iter(pipe.chunk([1, 2]))) assert tuple(pipe) == _23 def test_cloning_does_not_consume_pipe(): pipe = _123_pype() next(iter(pipe.clone())) assert tuple(pipe) == _123 def test_finite_cycling_does_not_consume_pipe(): pipe = _123_pype() next(iter(pipe.cycle(2))) assert tuple(pipe) == _23 def test_infinite_cycling_does_not_consume_pipe(): pipe = _123_pype() next(iter(pipe.cycle())) assert tuple(pipe) == _23 def test_distributing_items_does_not_consume_pipe(): pipe = _123_pype() next(iter(next(iter(pipe.dist(2))))) assert tuple(pipe) == _23 def test_dividing_pipe_consumes_it(): pipe = _123_pype() next(iter(pipe.divide(2))) assert tuple(pipe) == () def test_side_effect_does_not_consume_pipe(): pipe = _123_pype() next(iter(pipe.do(print))) assert tuple(pipe) == _23 def test_side_effect_fully_consumes_pipe_if_immediate(): pipe = _123_pype() with raises(StopIteration): next(iter(pipe.do(print, now=True))) def test_parallel_lazy_side_effect_consumes_pipe(): pipe = _123_pype() next(iter(pipe.do(print, workers=2))) assert tuple(pipe) == () def test_parallel_eager_side_effect_fully_consumes_pipe(): pipe = _123_pype() with raises(StopIteration): next(iter(pipe.do(print, workers=2, now=True))) def test_dropping_the_first_items_does_not_consume_pipe(): pipe = _123_pype() next(iter(pipe.drop(1))) assert tuple(pipe) == (3,) def test_dropping_the_last_items_does_not_consume_pipe(): pipe = _123_pype() next(iter(pipe.drop(-1))) assert tuple(pipe) == (3,) def test_dropping_items_while_predicate_is_false_does_not_consume_pipe(): pipe = _123_pype() next(iter(pipe.drop_while(lambda n: n > 2))) assert tuple(pipe) == _23 def test_eager_making_consumes_pipe(): pipe = _123_pype() next(iter(pipe.eager())) assert tuple(pipe) == () def test_enumeration_does_not_consume_pipe(): pipe = _123_pype() next(iter(pipe.enum())) assert tuple(pipe) == _23 def test_enumeration_with_swapped_index_does_not_consume_pipe(): pipe = _123_pype() next(iter(pipe.enum(swap=True))) assert tuple(pipe) == _23 def test_flattening_does_not_consume_pipe(): pipe = _a_fun_day_pype() next(iter(pipe.flat())) assert tuple(pipe) == _fun_day def test_flatmapping_does_not_consume_pipe(): pipe = _a_fun_day_pype() next(iter(pipe.flatmap(str.upper))) assert tuple(pipe) == _fun_day def test_computing_item_frequencies_consumes_pipe(): pipe = _a_fun_day_pype() next(iter(pipe.freqs())) assert tuple(pipe) == () def test_grouping_by_key_consumes_pipe(): pipe = _a_fun_day_pype() next(iter(pipe.group_by(len))) assert tuple(pipe) == () def test_interleaves_items_with_other_iterable_does_not_consume_pipe(): pipe = _123_pype() next(iter(pipe.interleave(_a_fun_day_pype()))) assert tuple(pipe) == _23 def test_concise_iteration_does_not_consume_pipe(): pipe = _123_pype() next(pipe.it()) assert tuple(pipe) == _23 def test_mapping_does_not_consume_pipe(): pipe = _123_pype() next(iter(pipe.map(lambda n: n * 2))) assert tuple(pipe) == _23 def test_parallel_mapping_consumes_pipe(): pipe = _123_pype() next(iter(pipe.map(x2, workers=2))) assert tuple(pipe) == () def test_partitioning_does_not_consume_pipe(): pipe = _123_pype() next(iter(pipe.partition(lambda n: n > 2)[0])) assert tuple(pipe) == _23 def test_picking_a_property_does_not_consume_pipe(): Person = namedtuple('Person', ['age']) pipe = Pype((Person(n) for n in _123)) next(iter(pipe.pick(Person.age))) assert tuple(pipe) == (Person(2), Person(3)) def test_picking_a_key_does_not_consume_pipe(): pipe = Pype(str(n) for n in _123) next(iter(pipe.pick(0))) assert tuple(pipe) == ('2', '3') def test_eager_printing_fully_consumes_pipe(): pipe = _123_pype() with raises(StopIteration): next(iter(pipe.print())) def test_lazy_printing_does_not_consume_pipe(): pipe = _123_pype() next(iter(pipe.print(now=False))) assert tuple(pipe) == _23 def test_reducing_consumes_pipe(): pipe = _123_pype() pipe.reduce(add) assert tuple(pipe) == () def test_rejecting_items_does_not_consume_pipe(): pipe = _123_pype() next(iter(pipe.reject(lambda n: n > 1))) assert tuple(pipe) == _23 def test_reversing_consumes_pipe(): pipe = _123_pype() next(iter(pipe.reverse())) assert tuple(pipe) == () def test_roundrobin_distribution_consumes_pipe(): pipe = _a_fun_day_pype() next(iter(pipe.roundrobin())) assert tuple(pipe) == () def test_sampling_consumes_pipe(): pipe = _123_pype() next(iter(pipe.sample(2))) assert tuple(pipe) == () def test_selecting_does_not_consume_pipe(): pipe = _123_pype() next(iter(pipe.select(lambda n: n > 0))) assert tuple(pipe) == _23 def test_shuffling_consumes_pipe(): pipe = _123_pype() next(iter(pipe.shuffle())) assert tuple(pipe) == () def test_asking_for_size_consumes_pipe(): pipe = _123_pype() pipe.size() assert tuple(pipe) == () def test_slicing_does_not_consume_pipe(): pipe = _123_pype() next(iter(pipe.slice(0, 3))) assert tuple(pipe) == _23 def test_sorting_consumes_pipe(): pipe = _123_pype() next(iter(pipe.sort())) assert tuple(pipe) == () @mark.parametrize('mode', SPLIT_MODES) def test_splitting_does_not_consume_pipe(mode): pipe = _123_pype() next(iter(pipe.split(lambda n: n == 2, mode=mode))) assert tuple(pipe) == (3,) def test_asking_for_first_n_items_does_not_consume_pipe(): pipe = _123_pype() next(iter(pipe.take(1))) assert tuple(pipe) == _23 def test_asking_for_last_n_items_consumes_pipe(): pipe = _123_pype() next(iter(pipe.take(-3))) assert tuple(pipe) == () def test_selecting_items_while_condition_is_met_does_not_consume_pipe(): pipe = _123_pype() next(iter(pipe.take_while(lambda n: n < 2))) assert tuple(pipe) == _23 def test_teeing_does_not_consume_pipe(): pipe = _123_pype() next(iter(next(iter(pipe.tee(3))))) assert tuple(pipe) == _23 def test_applying_function_to_pipe_consumes_pipe_when_function_is_eager(): pipe = _123_pype() next(iter(pipe.to(list))) assert tuple(pipe) == () def test_applying_function_to_pipe_does_not_consume_pipe_when_function_is_lazy(): pipe = _123_pype() next(pipe.to(enumerate)) assert tuple(pipe) == _23 def test_applying_functions_to_pipe_consumes_pipe_when_at_least_one_function_is_eager(): pipe = _123_pype() next(iter(pipe.to(enumerate, zip, list))) assert tuple(pipe) == () def test_eager_writing_to_file_fully_consumes_pipe(tmpdir): pipe = _123_pype() with raises(StopIteration): next(iter(pipe.to_file(join(tmpdir, 'zip.txt')))) def test_lazy_writing_to_file_does_not_consume_pipe(tmpdir): pipe = _123_pype() next(iter(pipe.to_file(join(tmpdir, 'zip.txt'), now=False))) assert tuple(pipe) == _23 def test_writing_to_json_file_consumes_pipe(tmpdir): target = join(tmpdir, 'object.json') pipe = Pype((k, v) for k, v in [('a', 1), ('fun', 2), ('day', 3)]) with raises(StopIteration): next(iter(pipe.to_json(target))) def test_asking_for_top_n_items_consumes_pipe(): pipe = _123_pype() next(iter(pipe.top(2))) assert tuple(pipe) == () def test_asking_for_the_unique_items_does_not_consume_pipe(): pipe = _aba_pype() next(iter(pipe.uniq())) assert tuple(pipe) == ('b', 'a') def test_unzipping_does_not_consume_pipe(): pipe = _112233_pype() next(iter(tuple(pipe.unzip())[0])) assert tuple(pipe) == _112233[1:] def test_sliding_a_window_over_items_does_not_consume_pipe(): pipe = _123_pype() next(iter(pipe.window(1))) assert tuple(pipe) == (2, 3) def test_zipping_does_not_consume_pipe(): pipe = _123_pype() other = _123_pype() next(iter(pipe.zip(other))) assert tuple(pipe) == _23 assert tuple(other) == _23 def test_self_zipping_consumes_pipe(): pipe = _aAfunFUNdayDAY_pype() next(iter(pipe.zip())) assert tuple(pipe) == () def test_zipping_with_a_function_does_not_consume_pipe(): pipe = _a_fun_day_pype() next(iter(pipe.zip_with(len))) assert tuple(pipe) == _fun_day def x2(n: float) -> float: return n * 2 ``` #### File: pypey/unittests/test_input_function_invocation.py ```python from pytest import mark from pypey import px from pypey.pype import _unpack_fn, UNARY_WITHOUT_SIGNATURE, N_ARY_WITHOUT_SIGNATURE class TestClass: def __init__(self, param='param'): self.param = param def an_instance_method(self, first: str = 'first', *rest: str): return first, rest @classmethod def a_class_method(cls, first: str = 'first', *rest: str): return first, rest @staticmethod def a_static_method(first: str = 'first', *rest: str): return first, rest def __eq__(self, other): return isinstance(other, type(self)) and self.param == other.param unary_funcs = (lambda n, /: n, lambda n=4, /: n, lambda n: n, lambda n=4: n) keyword_only_unary_funcs = (lambda *, n: n, lambda *, n=4: n) dyadic_funcs = (lambda n, m, /: [n, m], lambda n, m: [n, m]) keyword_only_dyadic_funcs = (lambda *, n, m: (n, m), lambda *, n=4, m=5: (n, m)) effectively_unary_funcs = ( lambda n=4, m=5, /: [n, m], lambda n=4, m=5: [n, m], lambda n, **kwargs: [n, kwargs], lambda n=8, **kwargs: [n, kwargs], px(lambda n, m, /: [n, m], 6), px(lambda n=4, m=5, /: [n, m], 6), px(lambda n, m: [n, m], 6), px(lambda n, m: [n, m], m=7), px(lambda n=4, m=5: [n, m], 6), px(lambda n=4, m=5: [n, m], m=7) ) variadic_funcs = ( lambda n, *args: [n, args], lambda n=8, *args: [n, args], lambda *args, n=8: [args, n], lambda *args: args, lambda n, *args, **kwargs: [n, args, kwargs], lambda n=8, *args, **kwargs: [n, args, kwargs], lambda *args, n=8, **kwargs: [args, n, kwargs], lambda *args, **kwargs: [args, kwargs], px(lambda n, *args: [n, args], 6), px(lambda n, *args: [n, args], 6, 7), px(lambda n=8, *args: [n, args], 6), px(lambda n=8, *args: [n, args], 6, 7), px(lambda *args: args, 4), px(lambda *args: args, 4, 5), px(lambda *args, n: [args, n], n=6), px(lambda *args, n: [args, n], 6, n=7), px(lambda *args, n=8: [args, n], 6), px(lambda *args, n=8: [args, n], n=6), px(lambda *args, n=8: [args, n], 6, 7), px(lambda *args, n=8: [args, n], 6, n=7), px(lambda *args, **kwargs: [args, kwargs], 4), px(lambda *args, **kwargs: [args, kwargs], n=4), px(lambda *args, **kwargs: [args, kwargs], 4, 5), px(lambda *args, **kwargs: [args, kwargs], 4, m=5), px(lambda *args, **kwargs: [args, kwargs], n=4, m=5), px(lambda *args, n, **kwargs: [args, n, kwargs], n=4), px(lambda *args, n, **kwargs: [args, n, kwargs], n=4, m=5), px(lambda *args, n=8, **kwargs: [args, n, kwargs], 4), px(lambda *args, n=8, **kwargs: [args, n, kwargs], n=4), px(lambda *args, n=8, **kwargs: [args, n, kwargs], 4, 5), px(lambda *args, n=8, **kwargs: [args, n, kwargs], 4, m=5), px(lambda *args, n=8, **kwargs: [args, n, kwargs], n=4, m=5)) keyword_only_variadic_funcs = (lambda **kwargs: kwargs, px(lambda **kwargs: kwargs, n=4), px(lambda **kwargs: kwargs, n=4, m=5), lambda *args, n: [args, n], lambda *args, n, **kwargs: [args, n, kwargs], lambda *args, n, **kwargs: [args, n, kwargs], px(lambda *args, n: [args, n], 6), px(lambda *args, n: [args, n], 6, 7)) methods = (TestClass.an_instance_method, TestClass().an_instance_method, TestClass.a_class_method, TestClass.a_static_method, TestClass) all_fns = (unary_funcs + keyword_only_unary_funcs + dyadic_funcs + keyword_only_dyadic_funcs + effectively_unary_funcs + variadic_funcs + keyword_only_variadic_funcs + methods + tuple(UNARY_WITHOUT_SIGNATURE) + tuple(N_ARY_WITHOUT_SIGNATURE - {breakpoint})) non_spreading_fns = (unary_funcs + keyword_only_unary_funcs + keyword_only_dyadic_funcs + effectively_unary_funcs + keyword_only_variadic_funcs + methods[:1] + methods[-1:] + tuple(UNARY_WITHOUT_SIGNATURE) + tuple(N_ARY_WITHOUT_SIGNATURE - {filter, range, slice, zip, breakpoint})) spreading_fns = (dyadic_funcs + variadic_funcs + methods[1:-1] + (filter, range, slice, zip)) @mark.parametrize('fn', all_fns) def test_function_is_invoked_normally_with_non_iterable_item(fn): iterable = [1, 2] unpacked_fn = _unpack_fn(fn, iterable[0]) item = iterable[-1] fn_output = '<NO FN OUTPUT>' fn_exception = '<NO FN EXCEPTION>' try: fn_output = fn(item) except Exception as python_exception: fn_exception = python_exception unpacked_fn_output = '<NO UNPACKED FN OUTPUT>' unpacked_fn_exception = '<NO UNPACKED FN EXCEPTION>' try: unpacked_fn_output = unpacked_fn(item) except Exception as unpacked_exception: unpacked_fn_exception = unpacked_exception if fn_output != '<NO FN OUTPUT>': if isinstance(fn_output, staticmethod) and isinstance(unpacked_fn_output, staticmethod) or \ isinstance(fn_output, classmethod) and isinstance(unpacked_fn_output, classmethod): assert type(unpacked_fn_output) == type(fn_output) else: assert unpacked_fn_output == fn_output else: assert unpacked_fn_exception.__str__() == fn_exception.__str__() @mark.parametrize('fn', non_spreading_fns) def test_function_is_invoked_normally_with_iterable_item_when_it_is_effectively_unary(fn): iterable = [[1, 2], [3, 4]] unpacked_fn = _unpack_fn(fn, iterable[0]) item = iterable[-1] fn_output = '<NO FN OUTPUT>' fn_exception = '<NO FN EXCEPTION>' try: fn_output = fn(item) except Exception as python_exception: fn_exception = python_exception unpacked_fn_output = '<NO UNPACKED FN OUTPUT>' unpacked_fn_exception = '<NO UNPACKED FN EXCEPTION>' try: unpacked_fn_output = unpacked_fn(item) except Exception as unpacked_exception: unpacked_fn_exception = unpacked_exception if fn_output != '<NO FN OUTPUT>': if isinstance(fn_output, staticmethod) and isinstance(unpacked_fn_output, staticmethod) or \ isinstance(fn_output, classmethod) and isinstance(unpacked_fn_output, classmethod) or \ isinstance(fn_output, type(iter([]))) and isinstance(unpacked_fn_output, type(iter([]))): assert type(unpacked_fn_output) == type(fn_output) else: assert unpacked_fn_output == fn_output, f'{unpacked_fn_exception}|{fn} -> {unpacked_fn}' else: assert unpacked_fn_exception.__str__() == fn_exception.__str__(), f'{unpacked_fn_output} |{fn} -> {unpacked_fn}' @mark.parametrize('fn', spreading_fns) def test_function_is_invoked_with_argument_unpacking_with_iterable_item_when_it_is_nary(fn): iterable = [[1, 2], [3, 4]] unpacked_fn = _unpack_fn(fn, iterable[0]) item = iterable[-1] fn_output = '<NO FN OUTPUT>' fn_exception = '<NO FN EXCEPTION>' try: fn_output = fn(*item) except Exception as python_exception: fn_exception = python_exception unpacked_fn_output = '<NO UNPACKED FN OUTPUT>' unpacked_fn_exception = '<NO UNPACKED FN EXCEPTION>' try: unpacked_fn_output = unpacked_fn(item) except Exception as unpacked_exception: unpacked_fn_exception = unpacked_exception if fn_output != '<NO FN OUTPUT>': if isinstance(fn_output, staticmethod) and isinstance(unpacked_fn_output, staticmethod) or \ isinstance(fn_output, classmethod) and isinstance(unpacked_fn_output, classmethod) or \ isinstance(fn_output, zip) and isinstance(unpacked_fn_output, zip): assert type(unpacked_fn_output) == type(fn_output) else: assert unpacked_fn_output == fn_output, f'{unpacked_fn_exception}|{fn} -> {unpacked_fn}' else: assert unpacked_fn_exception.__str__() == fn_exception.__str__(), f'{unpacked_fn_output} |{fn} -> {unpacked_fn}' ``` #### File: pypey/unittests/test_non_empty_pipe.py ```python import json from collections import namedtuple from multiprocessing import Value from operator import add, neg from os.path import join from unittest.mock import Mock, call, create_autospec import sys from pypey import Pype, px, pype, TOTAL from unittests import _123_pype, _123, _654_pype, _654, _empty_pype, _a_fun_day_pype, _23, _aba_pype, _ab, \ _aAfunFUNdayDAY_pype, with_seed def test_can_be_iterated_through(): pipe = iter(_123_pype()) assert next(pipe) == _123[0] assert next(pipe) == _123[1] assert next(pipe) == _123[2] def test_accumulates_values_across_items(): assert tuple(_123_pype().accum(add)) == (1, 3, 6) def test_accumulates_values_across_items_with_initial_value(): assert tuple(_123_pype().accum(add, -1)) == (-1, 0, 2, 5) def test_broadcasts_items_to_iterables(): assert tuple(_123_pype().broadcast(range)) == ((1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2)) def test_concatenates_with_another_iterable(): assert tuple(_123_pype().cat(_654_pype())) == _123 + _654 def test_concatenation_with_an_empty_iterable_returns_this_pipe(): assert tuple(_123_pype().cat(_empty_pype())) == _123 def test_breaks_pipe_into_subpipes_of_at_most_the_given_number_of_items_if_pipe_is_no_smaller_than_number(): chunks = tuple(_123_pype().chunk(2)) assert tuple(map(tuple, chunks)) == ((1, 2), (3,)) def test_breaks_pipe_into_subpipe_of_the_same_size_as_the_pipe_if_given_number_is_larger_than_pipe(): chunks = tuple(_123_pype().chunk(4)) assert tuple(map(tuple, chunks)) == ((1, 2, 3),) def test_breaks_pipe_into_subpipes_of_the_given_sizes(): chunks = tuple(_123_pype().chunk([1, 2])) assert tuple(map(tuple, chunks)) == ((1,), (2, 3)) def test_breaks_pipe_into_subpipes_of_the_given_sizes_dropping_items_if_sum_of_sizes_is_smaller_than_length(): chunks = tuple(_123_pype().chunk([1, 1])) assert tuple(map(tuple, chunks)) == ((1,), (2,)) def test_breaks_pipe_into_subpipes_of_the_given_sizes_or_smaller_if_sum_of_sizes_is_greater_than_length(): chunks = tuple(_123_pype().chunk([1, 2, 3])) assert tuple(map(tuple, chunks)) == ((1,), (2, 3), ()) def test_clones_pipe(): pipe = _123_pype() assert tuple(pipe.clone()) == tuple(pipe) def test_cycles_through_pipe_for_the_given_number_of_times(): assert tuple(_123_pype().cycle(n=3)) == _123 + _123 + _123 def test_cycles_through_pipe_forever_if_not_given_number_of_times(): assert tuple(_123_pype().cycle().take(9)) == _123 + _123 + _123 def test_cycling_with_zero_number_of_times_returns_an_empty_pipe(): # FIXME SHOULD THIS BE ALLOWED? assert tuple(_123_pype().cycle(n=0)) == () def test_distributes_items_in_pipe_into_n_subpipes(): segments = tuple(_123_pype().dist(2)) assert tuple(map(tuple, segments)) == ((1, 3), (2,)) def test_distributing_items_into_more_subpipes_than_there_are_items_returns_empty_subpipes(): segments = tuple(_123_pype().dist(4)) assert tuple(map(tuple, segments)) == ((1,), (2,), (3,), ()) def test_divides_pipe_into_n_equal_sized_subpipes_when_n_is_multiple_of_size(): segments = tuple(_123_pype().cat(_654_pype()).divide(3)) assert tuple(map(tuple, segments)) == ((1, 2), (3, 6), (5, 4)) def test_divides_pipe_into_as_single_item_subpipes_followed_by_empty_pipes_when_n_is_larger_than_size(): segments = tuple(_123_pype().divide(4)) assert tuple(map(tuple, segments)) == ((1,), (2,), (3,), ()) def test_divides_pipe_into_same_size_subpipes_plus_excess_subpipe_when_n_is_smaller_than_size_but_not_multiple(): segments = tuple(_123_pype().cat(_654_pype()).divide(4)) assert tuple(map(tuple, segments)) == ((1,), (2,), (3,), _654) def test_produces_a_side_effect_per_item(): side_effect = create_autospec(lambda n: n) assert tuple(_123_pype().do(side_effect)) == _123 side_effect.assert_has_calls([call(1), call(2), call(3)]) PARALLEL_SUM = Value('i', 0) def test_produces_a_side_effect_per_item_in_parallel(): """ Mocks can't be pickled and only memory-shared objects which are global can be used in multiprocessing """ _123_pype().do(side_effect, now=True, workers=2) assert PARALLEL_SUM.value == sum(_123) def side_effect(n: int): with PARALLEL_SUM.get_lock(): PARALLEL_SUM.value += n def test_drops_the_given_number_of_first_items(): assert tuple(_123_pype().drop(1)) == (2, 3) def test_dropping_zero_items_returns_the_same_pipe(): # FIXME SHOULD THIS BE ALLOWED? assert tuple(_123_pype().drop(0)) == (1, 2, 3) def test_dropping_more_first_items_than_there_are_in_pipe_is_the_same_as_dropping_as_many_as_there_are_in_it(): assert tuple(_123_pype().drop(10)) == () def test_drops_the_given_number_of_last_items(): assert tuple(_123_pype().drop(-2)) == (1,) def test_dropping_more_last_items_than_there_are_in_pipe_is_the_same_as_dropping_as_many_as_there_are_in_it(): assert tuple(_123_pype().drop(-10)) == () def test_rejects_items_until_condition_is_true(): assert tuple(_123_pype().drop_while(lambda n: n != 2)) == _23 def test_makes_pipe_eager(): pipe = _123_pype().eager() pipe.size() assert pipe.size() == 3 def test_enumerates_items(): assert tuple(_a_fun_day_pype().enum(start=1)) == ((1, 'a'), (2, 'fun'), (3, 'day')) def test_enumerates_items_with_a_swapped_index(): assert tuple(_a_fun_day_pype().enum(start=1, swap=True)) == (('a', 1), ('fun', 2), ('day', 3)) def test_flattens_pipe_of_iterables_into_a_single_iterable(): assert tuple(_a_fun_day_pype().flat()) == ('a', 'f', 'u', 'n', 'd', 'a', 'y') def test_transforms_iterable_items_and_flattens_them_into_a_pipe_of_elements(): assert tuple(_a_fun_day_pype().flatmap(str.upper)) == ('A', 'F', 'U', 'N', 'D', 'A', 'Y') def test_computes_item_frequencies_with_total(): pipe = pype('AFUNDAY') assert tuple(pipe.freqs()) == (('A', 2, 2 / 7),) + tuple((char, 1, 1 / 7) for char in 'FUNDY') + ((TOTAL, 7, 1.),) def test_computes_item_frequencies_without_total(): pipe = pype('AFUNDAY') assert tuple(pipe.freqs(total=False)) == (('A', 2, 2 / 7),) + tuple((char, 1, 1 / 7) for char in 'FUNDY') def test_groups_items_by_given_key(): assert tuple(_a_fun_day_pype().group_by(len)) == ((1, ['a']), (3, ['fun', 'day'])) def test_interleaves_items_with_other_iterable(): assert tuple(_123_pype().interleave(_a_fun_day_pype())) == (1, 'a', 2, 'fun', 3, 'day') def test_interleaves_items_with_other_iterable_truncating_to_shortest(): assert tuple(_123_pype().interleave(_a_fun_day_pype(), n=2)) == (1, 2, 'a', 3, 'fun') def test_interleaves_items_with_other_iterable_skipping_items_if_other_pipe_is_exhausted(): assert tuple(_123_pype().interleave(_a_fun_day_pype(), n=2, trunc=False)) == (1, 2, 'a', 3, 'fun', 'day') def test_interleaves_items_with_other_iterable_skipping_items_this_pipe_is_exhausted(): assert tuple(_123_pype().interleave(['a', 'fun', 'fun', 'day'], trunc=False)) == (1, 'a', 2, 'fun', 3, 'fun', 'day') def test_interleaving_with_an_empty_iterable_skipping_items_returns_this_pipe(): assert tuple(_123_pype().interleave(_empty_pype(), trunc=False)) == _123 def test_interleaving_with_an_empty_iterable_with_truncation_returns_an_empty_pipe(): assert tuple(_123_pype().interleave(_empty_pype(), trunc=True)) == () def test_can_be_iterated_through_concisely(): pipe = _123_pype().it() assert next(pipe) == _123[0] assert next(pipe) == _123[1] assert next(pipe) == _123[2] def test_transforms_items(): assert tuple(_123_pype().map(px(pow, 2), round)) == (2, 4, 8) def test_transforms_items_in_parallel(): assert tuple(_123_pype().map(px(pow, 2), workers=2)) == (2, 4, 8) def test_partitions_items_according_to_predicate_into_a_tuple_of_pipes(): assert tuple(map(tuple, _123_pype().partition(lambda n: n < 2))) == ((2, 3), (1,)) def test_picks_items_property(): Person = namedtuple('Person', ['age']) pipe = Pype((Person(11), Person(22), Person(33))) assert tuple(pipe.pick(Person.age)) == (11, 22, 33) def test_picks_items_elements_at_the_given_key(): pipe = Pype(str(n) for n in _123) assert tuple(pipe.pick(0)) == ('1', '2', '3') def test_prints_each_item_using_str(): mock_stdout = Mock(spec_set=sys.stdout) _a_fun_day_pype().print(file=mock_stdout) mock_stdout.write.assert_has_calls([call('a'), call('\n'), call('fun'), call('\n'), call('day'), call('\n')]) def test_prints_each_item_as_per_the_given_function(): mock_stdout = Mock(spec_set=sys.stdout) _123_pype().print(lambda n: f'n:{n}', file=mock_stdout) mock_stdout.write.assert_has_calls([call('n:1'), call('\n'), call('n:2'), call('\n'), call('n:3'), call('\n')]) def test_reduces_items_to_single_value(): assert _123_pype().reduce(lambda summation, n: summation + n) == sum(_123) def test_reduces_items_to_single_value_starting_with_a_initial_item(): assert _123_pype().reduce(lambda summation, n: summation + n, init=-1) == sum(_23) def test_rejects_items_that_fulfill_predicate(): assert tuple(_123_pype().reject(lambda n: n < 2)) == _23 def test_reverses_pipe(): assert tuple(_123_pype().reverse()) == (3, 2, 1) def test_returns_iterable_items_elements_in_a_roundrobin_fashion(): assert tuple(_a_fun_day_pype().roundrobin()) == ('a', 'f', 'd', 'u', 'a', 'n', 'y') @with_seed(42) def test_samples_items_with_current_seed(): assert tuple(_123_pype().sample(2)) == (3, 1) def test_samples_items_with_given_seed(): assert tuple(_123_pype().sample(2, seed_=42)) == (3, 1) def test_selects_items_that_fulfill_predicate(): assert tuple(_123_pype().select(lambda n: n < 2)) == (1,) @with_seed(42) def test_shuffles_items_with_current_seed(): assert tuple(_123_pype().shuffle()) == (2, 1, 3) def test_shuffles_items_with_given_seed(): assert tuple(_123_pype().shuffle(seed_=42)) == (2, 1, 3) def test_returns_the_size_of_the_pipe(): assert _123_pype().size() == len(_123) def test_produces_a_slice_of_the_pipe(): assert tuple(_123_pype().slice(1, 2)) == (2,) def test_slicing_with_end_larger_than_the_size_is_the_same_as_slicing_with_end_equal_to_the_size(): assert tuple(_123_pype().slice(1, 3)) == tuple(_123_pype().slice(1, 4)) def test_slicing_with_start_larger_than_the_size_returns_an_empty_pipe(): assert tuple(_123_pype().slice(6, 7)) == () def test_sorts_items(): assert tuple(_a_fun_day_pype().sort()) == ('a', 'day', 'fun') def test_sorts_items_in_reverse_order(): assert tuple(_a_fun_day_pype().sort(rev=True)) == ('fun', 'day', 'a') def test_sorts_items_with_key(): assert tuple(_123_pype().sort(lambda n: -n)) == (3, 2, 1) def test_splits_pipeline_after_predicate_is_true(): assert tuple(map(tuple, _123_pype().split(lambda n: n == 2))) == ((1, 2), (3,)) def test_splits_pipeline_before_predicate_is_true(): assert tuple(map(tuple, _123_pype().split(lambda n: n == 2, mode='before'))) == ((1,), (2, 3,)) def test_splits_pipeline_before_and_after_predicate_is_true_leaving_true_items_out(): assert tuple(map(tuple, _123_pype().split(lambda n: n == 2, mode='at'))) == ((1,), (3,)) def test_produces_the_first_n_items(): assert tuple(_123_pype().take(1)) == (1,) def test_produces_empty_pipe_when_asked_for_first_0_items(): assert tuple(_123_pype().take(0)) == () def test_asking_for_more_first_items_than_the_size_is_the_same_as_asking_for_as_many_first_items_as_the_size(): assert tuple(_123_pype().take(10)) == tuple(_123_pype().take(3)) def test_produces_the_last_n_items(): assert tuple(_123_pype().take(-2)) == _23 def test_asking_for_more_last_items_than_the_size_is_the_same_as_asking_for_as_many_last_items_as_the_size(): assert tuple(_123_pype().take(-10)) == tuple(_123_pype().take(-3)) def test_selects_items_until_condition_is_true(): assert tuple(_123_pype().take_while(lambda n: n < 3)) == (1, 2) def test_produces_multiple_copies_of_itself(): copy1, copy2, copy3 = _123_pype().tee(3) assert (tuple(copy1), tuple(copy2), tuple(copy3)) == (_123, _123, _123) def test_applies_function_to_itself(): assert _123_pype().to(tuple) == _123 def test_applies_several_functions_to_itself(): assert _123_pype().to(tuple, pype, Pype.size) == len(_123) def test_lazily_writes_items_to_file(tmpdir): target = join(tmpdir, '123.txt') assert tuple(_123_pype().to_file(target, now=False)) == _123 with open(target) as target: assert target.readlines() == ['1\n', '2\n', '3\n'] def test_eagerly_writes_items_to_file(tmpdir): target = join(tmpdir, '123.txt') pipe = _123_pype().to_file(target) with open(target) as target: assert target.readlines() == ['1\n', '2\n', '3\n'] assert tuple(pipe) == () def test_writes_items_to_file_without_line_terminator(tmpdir): target = join(tmpdir, '123.txt') _123_pype().map(str).to_file(target, eol=False, now=True) with open(target) as target: assert target.readlines() == ['123'] def test_writes_pairs_to_json_file_as_object(tmpdir): target = join(tmpdir, 'object.json') Pype([('a', 1), ('fun', 2), ('day', 3)]).to_json(target) with open(target) as file: assert json.load(file) == {'a': 1, 'fun': 2, 'day': 3} def test_writes_pairs_to_json_file_as_list(tmpdir): target = join(tmpdir, 'list.json') Pype([('a', 1), ('fun', 2), ('day', 3)]).to_json(target, as_dict=False) with open(target) as file: assert json.load(file) == [['a', 1], ['fun', 2], ['day', 3]] def test_writes_items_to_json_file_as_list(tmpdir): target = join(tmpdir, 'list.json') Pype(['a', 'fun', 'day']).to_json(target, as_dict=False) with open(target) as file: assert json.load(file) == ['a', 'fun', 'day'] def test_finds_top_items(): assert tuple(_123_pype().top(1)) == (3,) def test_finds_top_items_with_key(): assert tuple(_123_pype().top(1, neg)) == (1,) def test_produces_unique_items(): assert tuple(_aba_pype().uniq()) == _ab def test_creates_multiple_pipes_from_iterable_items_own_items(): pairs = Pype(((1, -1), (2, -2), (3, -3))) lefts = 1, 2, 3 rights = -1, -2, -3 assert tuple(map(tuple, pairs.unzip())) == (lefts, rights) def test_sliding_window_of_size_0_returns_a_pipe_with_a_single_empty_window(): # FIXME SHOULD THIS BE ALLOWED? assert tuple(map(tuple, _123_pype().window(0))) == ((),) def test_produces_windows_slid_over_items(): assert tuple(map(tuple, _123_pype().window(2))) == ((1, 2), (2, 3)) def test_produces_windows_slid_over_items_with_given_shift_and_padding_value(): assert tuple(map(tuple, _123_pype().window(2, shift=2, pad='filler'))) == ((1, 2), (3, 'filler')) def test_zipping_with_a_pipe_of_the_same_size_returns_a_pipe_of_the_same_size_with_paired_items(): assert tuple(_123_pype().zip(_654_pype())) == ((1, 6), (2, 5), (3, 4)) def test_zipping_with_a_pipe_of_different_size_returns_a_pipe_the_size_of_the_longer_one_with_missing_items_padded(): assert tuple(_123_pype().zip(Pype('funny'), trunc=False, pad=4)) \ == ((1, 'f'), (2, 'u'), (3, 'n'), (4, 'n'), (4, 'y')) def test_self_zipping_when_items_have_the_same_size_returns_pipe_with_the_paired_items_elements(): assert tuple(_aAfunFUNdayDAY_pype().zip()) == (('a', 'fun', 'day'), ('A', 'FUN', 'DAY')) def test_self_zipping_with_different_sized_items_gives_pipe_with_items_the_size_of_the_longest_one_with_padding(): assert tuple(_a_fun_day_pype().zip(trunc=False, pad='?')) == (('a', 'f', 'd'), ('?', 'u', 'a'), ('?', 'n', 'y')) def test_self_zipping_with_a_function_pairs_items_with_output_of_said_function(): assert tuple(_a_fun_day_pype().zip_with(len)) == (('a', 1), ('fun', 3), ('day', 3)) ```
{ "source": "joselluis7/virtual-store", "score": 2 }
#### File: virtual-store/app/models.py ```python from datetime import datetime from enum import unique from operator import index from sqlalchemy.orm import backref from app.enums.EStatus import EStatus from app.extension import db class User(db.Model): __tablename__ = "users" id = db.Column(db.Integer, primary_key=True) email = db.Column(db.String(100), nullable=False, unique=True, index=True) password = db.Column(db.String(255), nullable=False) item = db.relationship("Item", backref="user", uselist=True) profile = db.relationship("Profile", backref="user", uselist=False) def __repr__(self): return self.email class Profile(db.Model): __tablename__ = "profiles" id = db.Column(db.Integer, primary_key=True) first_name = db.Column(db.String(30), nullable=False) last_name = db.Column(db.String(30), nullable=False) document_id = db.Column(db.String(20), nullable=False, unique=True, index=True) phone = db.Column(db.String(20), nullable=False, unique=True, index=True) user_id = db.Column(db.Integer, db.ForeignKey("users.id"), nullable=False) def __repr__(self): return self.first_name + self.last_name class Product(db.Model): __tablename__ = "products" id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(150), nullable=False) slug = db.Column(db.String(150), nullable=False, unique=True, index=True) price = db.Column(db.Float, nullable=False) image = db.Column(db.LargeBinary, nullable=False) quantity = db.Column(db.Integer, nullable=False) description = db.Column(db.Text, nullable=False) category = db.Column(db.Integer, db.ForeignKey("categories.id")) created_at = db.Column(db.DateTime, default=datetime.now()) item = db.relationship("Item", backref="product", uselist=True) def __repr__(self): return self.name class Category(db.Model): __tablename__ = "categories" id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(150), nullable=False) slug = db.Column(db.String(150), nullable=False, unique=True, index=True) products = db.relationship("Product", backref="categories", uselist=True) def __repr__(self): return self.name class Order(db.Model): __tablename__ = "orders" id = db.Column(db.Integer, primary_key=True) order_number = db.Column(db.String(20), unique=True, nullable=False) status = db.Column(db.String(30), default=EStatus.CREATED.value, nullable=False) item = db.relationship("Item", backref="order", uselist=True) created_at = db.Column(db.DateTime, default=datetime.now()) def __repr__(self): return f"order number: {self.order_number}" class Item(db.Model): __tablename__ = "items" id = db.Column(db.Integer, primary_key=True) product_id = db.Column(db.Integer, db.ForeignKey("products.id"), nullable=False) user_id = db.Column(db.Integer, db.ForeignKey("users.id"), nullable=False) order_id = db.Column(db.Integer, db.ForeignKey("orders.id"), nullable=False) quantity = db.Column(db.Integer, nullable=False) price = db.Column(db.Float, nullable=False) def __repr__(self): return ( f"order number: ${self.order_number} quantity: {self.quantity} user: {self.user.profile.first_name} {self.user.profile.last_name}" ) ``` #### File: app/resources/auth.py ```python import logging import secrets from base64 import b64decode from datetime import timedelta from flask import jsonify, request from flask_jwt_extended import create_access_token from flask_restful import Resource, reqparse from werkzeug.security import check_password_hash, generate_password_hash from app.extension import db from app.models import User from app.services.mail import send_mail class Login(Resource): def get(self): if not request.headers.get("Authorization"): return {"error": "authorization not found"}, 400 basic, code = request.headers["Authorization"].split(" ") print(code) if not basic.lower() == "basic": return {"error": "bad authorization"}, 400 email, password = b64decode(code).decode().split(":") print("email", email) print("password", password) user = User.query.filter_by(email=email).first() if not user or not check_password_hash(user.password, password): return { "error": "authentication fails! user or password are incorrect" }, 400 token = create_access_token( {"id": user.id}, expires_delta=timedelta(minutes=50) ) return {"encoded_token": token} class Signup(Resource): def post(self): parser = reqparse.RequestParser() parser.add_argument("email", required=True, help="email field is required") parser.add_argument( "password", required=True, help="password field is required" ) args = parser.parse_args() user = User.query.filter_by(email=args.email).first() if not user: user = User( email=args.email, password=generate_password_hash(args.password) ) db.session.add(user) print(f"{user.id, user.password, user.email}") try: db.session.commit() send_mail( "virtual store", "<EMAIL>", "welcome", email=user.email, ) except Exception as e: db.session.rollback() logging.critical(str(e)) return {"error": "something went wrong"}, 500 return {"message": "user added successfully"}, 200 return {"mesage": "user already exists"}, 201 class ForgotPassword(Resource): def post(self): parser = reqparse.RequestParser(trim=True) parser.add_argument("email", required=True) args = parser.parse_args() user = User.query.filter_by(email=args.email).first() if not user: return {"error": "user does not exists"}, 400 generate_password = secrets.token_hex(4) user.password = <PASSWORD>_password_hash(generate_password) db.session.add(user) db.session.commit() send_mail( "Account Recovery", "<EMAIL>", "forgot-password", generate_password=<PASSWORD>, ) return {"message": "Email successfully sended"} ``` #### File: app/resources/categories.py ```python import logging from flask_restful import Resource, marshal_with, reqparse from app.response_template import categories_fields from app.models import Category from app.extension import db class Create(Resource): def post(self): parser = reqparse.RequestParser(trim=True) parser.add_argument("name", required=True, help="required field") parser.add_argument("slug", required=True, help="required field") args = parser.parse_args() print("FFFF: ", args.name) category = Category.query.filter_by(slug=args.slug).first() print(category) if not category: category = Category(name=args.name, slug=args.slug) db.session.add(category) try: db.session.commit() except Exception as e: db.session.rollback() logging.critical(str(e)) return {"error": "something went wrong"}, 500 logging.info(f"Category {args.name} created successfully") return {"message": "category added successfully "}, 200 return {"mesage": "category already exists"}, 201 class ListCategory(Resource): @marshal_with(categories_fields, envelope="categories") def get(self): category = Category.query.all() return category ``` #### File: app/resources/order.py ```python import logging from datetime import datetime from flask_jwt_extended import get_jwt_identity, jwt_required from flask_restful import Resource, marshal, reqparse from app.extension import db from app.models import Item, Order, Product from app.response_template import order_fields class Create(Resource): @jwt_required def post(self): current_user = get_jwt_identity() parser = reqparse.RequestParser() parser.add_argument( "product_id", type=int, required=True, help="required field" ) parser.add_argument("quantity", type=int, required=True, help="required field") args = parser.parse_args() product = Product.query.get(args.product_id) print(f"ID {product.id} NAME: {product.name} USER: {current_user['id']} EPERA ") if not product: return {"error": "product does not exists"}, 400 if args.quantity > product.quantity: return {"error": "invalid quantity"}, 400 try: order = Order() # remove 4 digits from miliseconds order.order_number = datetime.utcnow().strftime("%Y%m%d%H%M%S%f")[:-4] db.session.add(order) db.session.commit() item = Item() item.order_id = order.id item.product_id = product.id item.user_id = current_user["id"] item.quantity = args.quantity item.price = product.price * item.quantity db.session.add(item) db.session.commit() except Exception as e: logging.critical(str(e)) db.session.rollback() return {"error": "unable to create order"}, 500 return marshal(order, order_fields, "order") class OrderGet(Resource): def get(self, number): order = Order.query.filter_by(order_number=number).first() return marshal(order, order_fields, "order") class Pay(Resource): pass class Notification(Resource): pass ```
{ "source": "joseloc300/AutoParSelector", "score": 3 }
#### File: AutoParSelector/python/tf_models.py ```python import tensorflow as tf import numpy as np def run_tf_regression(x_train, x_test, y_train, y_test): print("\ntensorflow regression") # print(tf.__version__) tf.keras.backend.set_floatx('float64') tf_x_train = np.asarray(x_train[:]) tf_y_train = np.asarray(y_train[:]) tf_x_test = np.asarray(x_test[:]) tf_y_test = np.asarray(y_test[:]) tf_x_train = tf.keras.utils.normalize(tf_x_train, axis=1) tf_x_test = tf.keras.utils.normalize(tf_x_test, axis=1) model = tf.keras.Sequential([ # tf.keras.layers.Dense(6200, activation='relu', kernel_initializer='normal', input_shape=tf_x_test[0].shape), tf.keras.layers.Dense(62, activation='relu', kernel_initializer='normal', input_shape=tf_x_test[0].shape), tf.keras.layers.Dense(62, activation='relu', kernel_initializer='normal'), tf.keras.layers.Dense(62, activation='relu', kernel_initializer='normal'), tf.keras.layers.Dense(62, activation='relu', kernel_initializer='normal'), tf.keras.layers.Dense(62, activation='relu', kernel_initializer='normal'), tf.keras.layers.Dense(62, activation='relu', kernel_initializer='normal'), tf.keras.layers.Dense(1, activation='linear', kernel_initializer='normal') ]) # optimizer = tf.keras.optimizers.RMSprop(0.001) model.compile(loss='mse', optimizer='adam', metrics=['mae', 'mse']) # model.fit(tf_x_train, tf_y_train, epochs=500, batch_size=8, validation_data=(tf_x_test, tf_y_test)) model.fit(tf_x_train, tf_y_train, epochs=10, batch_size=1) model.evaluate(tf_x_test, tf_y_test, verbose=1) def run_tf_classification(x_train, x_test, y_train, y_test): print("\ntensorflow classification") # print(tf.__version__) tf.keras.backend.set_floatx('float64') tf_x_train = np.asarray(x_train[:]) tf_y_train = np.asarray(y_train[:]) tf_x_test = np.asarray(x_test[:]) tf_y_test = np.asarray(y_test[:]) tf_x_train = tf.keras.utils.normalize(tf_x_train, axis=1) tf_x_test = tf.keras.utils.normalize(tf_x_test, axis=1) model = tf.keras.Sequential([ # tf.keras.layers.Dense(6200, activation='relu', kernel_initializer='normal', input_shape=tf_x_test[0].shape), tf.keras.layers.Dense(200, activation='relu', kernel_initializer='normal', input_shape=tf_x_test[0].shape), tf.keras.layers.Dense(200, activation='relu', kernel_initializer='normal'), tf.keras.layers.Dense(1, activation='linear', kernel_initializer='normal') ]) # optimizer = tf.keras.optimizers.RMSprop(0.001) model.compile(loss='mse', optimizer='adam', metrics=['mae', 'mse']) # model.fit(tf_x_train, tf_y_train, epochs=500, batch_size=8, validation_data=(tf_x_test, tf_y_test)) model.fit(tf_x_train, tf_y_train, epochs=10, batch_size=1) model.evaluate(tf_x_test, tf_y_test, verbose=1) ```
{ "source": "jose-log/playlistCreator", "score": 3 }
#### File: jose-log/playlistCreator/database.py ```python import sqlite3 import youtube_dl import json import re import os import spotify #****************************************************************************** # Table structure: # 1. The whole title text of the video # - id --> primary key # - title # - length # - youtubeID # - id_track --> foreing key # 2. Track names # - id --> primary key # - name # - spotifyID # - id_artist --> foreing key # 3. Artists # - id --> primary key # - name # - spotifyID # class db(object): name = None def __init__(self, name): self.name = name if os.path.exists(self.name) is True: print(' - Opening database file \"' + self.name + '\"') else: print(' - Creating database file \"' + self.name + '\"') conn = sqlite3.connect(self.name) # Connect to the database. If non-existent, create it. cur = conn.cursor() # database handler object # Video Names table x = cur.execute(''' CREATE TABLE IF NOT EXISTS videos ( id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT UNIQUE, title TEXT UNIQUE, length INTEGER, youtubeID TEXT UNIQUE, id_tracks INTEGER )''') # Tracks table cur.execute(''' CREATE TABLE IF NOT EXISTS tracks ( id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT UNIQUE, name TEXT UNIQUE, spotifyID TEXT UNIQUE, id_artists INTEGER )''') # Artists table cur.execute(''' CREATE TABLE IF NOT EXISTS artists ( id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT UNIQUE, name TEXT UNIQUE, spotifyID TEXT UNIQUE )''') conn.commit() # Save changes conn.close() # Close database #************************************************************************** def insert_single_video(self, title, duration, youtubeID): conn = sqlite3.connect(self.name) # Connect to the database. cur = conn.cursor() # database handler object new_entries = [] try: cur.execute('INSERT OR IGNORE INTO videos (title, length, youtubeID) VALUES (?, ?, ?)',(title, duration, youtubeID)) new_entries.append(youtubeID) except: print(' - WARNING: Already exists: ' + title + ' | ' + youtubeID) conn.commit() # Save changes conn.close() # Close database return new_entries #************************************************************************** def insert_multiple_videos(self, videos): conn = sqlite3.connect(self.name) # Connect to the database. cur = conn.cursor() # database handler object new_entries = [] for i in videos: try: cur.execute(''' INSERT OR FAIL INTO videos (title, length, youtubeID) VALUES (?, ?, ?)''',(i['title'], i['duration'], i['youtubeID']) ) new_entries.append(i['youtubeID']) except: print(' - MESSAGE: Already exists: ' + i['title'] + ' | ' + i['youtubeID']) conn.commit() # Save changes conn.close() # Close database # returns list of YoutubeIDs newly added to Database return new_entries #************************************************************************** def filter_tracks(self, new_videos): print(' - Filtering Songs Using YoutubeDL') new_track_id = [] if len(new_videos) is 0: print(' - MESSAGE: No videos to search for') return new_track_id conn = sqlite3.connect(self.name) # Connect to the database. cur = conn.cursor() # database handler object for video_id in new_videos: youtube_url = 'https://www.youtube.com/watch?v={}'.format(video_id) try: # use youtube_dl to collect the song name & artist name info = youtube_dl.YoutubeDL({}).extract_info(youtube_url, download=False) track_name = info.get('track', None) artist_name = info.get('artist', None) except: print('WARNING: Video not available. Youtube ID:', video_id) track_name = None artist_name = None # save all important info and skip any missing song and artist if track_name is not None and artist_name is not None: print(' > found: Artist: ' + artist_name + ', Song: ' + track_name) try: cur.execute('INSERT OR IGNORE INTO artists (name) VALUES (?)', (artist_name,)) cur.execute('SELECT id FROM artists WHERE name = ?', (artist_name,)) artist_id = cur.fetchone() cur.execute('INSERT OR IGNORE INTO tracks (name, id_artists) VALUES (?, ?)', (track_name, artist_id[0])) cur.execute('SELECT id FROM tracks WHERE name = ?', (track_name,)) track_id = cur.fetchone() cur.execute('UPDATE videos SET id_tracks = ? WHERE youtubeID = ?', (track_id[0], video_id)) # Keep track of new tracks added new_track_id.append(track_id[0]) except: print('ERROR when adding to database: ' + track_name + ', ' + artist_name + 'NOT ADDED') conn.commit() # Save changes conn.close() # Close database # Return the track_id (in database) of the newly added tracks return new_track_id #************************************************************************** def filter_single_track(self, youtubeID): if youtubeID is None: return conn = sqlite3.connect(self.name) # Connect to the database. cur = conn.cursor() # database handler object cur.execute('SELECT youtubeID FROM videos WHERE youtubeID = ?', (youtubeID,)) item = cur.fetchone() # returns tuples item = item[0] youtube_url = 'https://www.youtube.com/watch?v={}'.format(item) try: # use youtube_dl to collect the song name & artist name info = youtube_dl.YoutubeDL({}).extract_info(youtube_url, download=False) track_name = info['track'] artist_name = info['artist'] except: print('ERROR: Video not available. Youtube ID:', item) track_name = None artist_name = None if track_name is not None and artist_name is not None: if (isinstance(track_name, str)): print(' - Track Name:', track_name) else: print(' - WARNING: Track name not a string.') print(track_name) if (isinstance(artist_name, str)): print(' - Artist Name:', artist_name) else: print(' - WARNING: Artist name not a string.') print(artist_name) else: print(' - SORRY, no track & artist found') conn.commit() # Save changes conn.close() # Close database #************************************************************************** def search_spotify_catalog(self, new_tracks): if len(new_tracks) is 0: print(' - MESSAGE: Nothing to search for') return conn = sqlite3.connect(self.name) # Connect to the database. cur = conn.cursor() # database handler object cur.execute('SELECT tracks.id, tracks.name, artists.name FROM tracks JOIN artists ON tracks.id_artists = artists.id') items = cur.fetchall() print('\n - Total # of NEW Tracks: ' + str(len(new_tracks))) print(' - Searching in Spotify Catalog') for i in items: track_id = i[0] track_name = i[1] artist_name = i[2] if track_id in new_tracks: print(' > Search: ' + track_name + ', ' + artist_name) uri = spotify.search_catalog(track_name, artist_name) if uri is not None: cur.execute('UPDATE tracks SET spotifyID = ? WHERE id = ?', (uri, track_id)) else: print('WARNING: not found') conn.commit() # Save changes conn.close() # Close database #************************************************************************** def append_tracks_to_playlist(self, playlist_id, new_tracks): conn = sqlite3.connect(self.name) # Connect to the database. cur = conn.cursor() # database handler object cur.execute('SELECT tracks.id, tracks.spotifyID FROM tracks WHERE spotifyID IS NOT NULL') items = cur.fetchall() conn.commit() # Save changes conn.close() # Close database tracks = [] for i in items: # choose only the newly added ones if i[0] in new_tracks: tracks.append(i[1]) if len(tracks) is not 0: spotify.insert_into_playlist(playlist_id, tracks) else: print(' - WARNING: No tracks to be added') #****************************************************************************** def store_in_database(files, db_obj): n = 0 new_videos = [] # Extract info from files for f in files: if os.path.exists(f): fh = open(f) js = json.load(fh) fh.close() else: print('ERROR. File ' + f + ' not found') exit() try: print('\n' + f + ': {} items\n'.format(len(js['items']))) except: print('ERROR. JSON file not properly formatted') exit() n += len(js['items']) videos = [] item = {} c = 1 try: for i in js['items']: item['title'] = i['snippet']['title'] item['duration'] = __get_time(i['contentDetails']['duration']) item['youtubeID'] = i['id'] videos.append(item.copy()) print(' > Video {}: {} | id = {}'.format(c, i['snippet']['title'], i['id'])) c += 1 except: print('ERROR. JSON file not properly formatted') exit() # Concatenate videos' IDs newly added to database new_videos.extend(db_obj.insert_multiple_videos(videos)) print('\n >> TOTAL ITEMS: ' + str(n) + '\n') return new_videos #****************************************************************************** def __get_time(time): # ISO8601 Time format conversion RE_SEC = r'^P.*[TM](\d+)S$' RE_MIN = r'^P.*[TH](\d+)M.*S$' RE_H = r'^P.*[T](\d+)H.*M.*S$' RE_DAY = r'^P(\d+)DT.*H.*M.*S$' seconds = re.search(RE_SEC, time) minutes = re.search(RE_MIN, time) hours = re.search(RE_H, time) days = re.search(RE_DAY, time) s = 0 if seconds is not None: s += int(seconds[1]) if minutes is not None: s += int(minutes[1]) * 60 if hours is not None: s += int(hours[1]) * 3600 if days is not None: s += int(days[1]) * 86400 return s ``` #### File: jose-log/playlistCreator/spotifyOAuth.py ```python import requests import urllib.request import urllib.parse # Browser and server modules import webbrowser from http.server import HTTPServer from http.server import BaseHTTPRequestHandler # Utility modules import json import base64 import time import random # Secrets modules from secrets_spotify import client_id from secrets_spotify import client_secret # Authorization endpoints: AUTH_URL = 'https://accounts.spotify.com/authorize' TOKEN_URL = 'https://accounts.spotify.com/api/token' REDIRECT_URI = 'http://localhost:9090' CACHE_PATH = './.cache-token' SCOPES = 'user-read-private playlist-read-private playlist-modify-public playlist-modify-private' #****************************************************************************** # RequestHandler # Extended class from BaseHTTPRequestHandler used to handle the spotify # authorization response and get the authorization code. # # https://docs.python.org/3/library/http.server.html#http.server.BaseHTTPRequestHandler.handle_one_request # class RequestHandler(BaseHTTPRequestHandler): # GET method handler: def do_GET(self): query_s = urllib.parse.urlparse(self.path).query form = dict(urllib.parse.parse_qsl(query_s)) self.send_response(200) self.send_header("Content-Type", "text/html") self.end_headers() if "code" in form: self.server.auth_code = form["code"] self.server.state = form["state"] self.server.error = None status = "successful" elif "error" in form: self.server.error = form["error"] self.server.auth_code = None status = "failed ({})".format(form["error"]) else: self._write("<html><body><h1>Invalid request</h1></body></html>") return self._write(""" <html> <body> <h1>Authentication status: {}</h1> This window can be closed. <script> window.close() </script> </body> </html>""".format(status)) def _write(self, text): return self.wfile.write(text.encode("utf-8")) #****************************************************************************** # Request authorization to access data # The requests module could be used to send a GET request to the authoriza- # tion server, nevertheless, user authentication is required, thus, the # web browser must be used to ask the user for login and authorization # def get_authorization_code(): code = None redirect_port = 9090 print(' > Creating Local Server in port:', str(redirect_port)) server = start_local_http_server(redirect_port) state = generate_random_string(20) print(' - Random state string: ' + state) url = build_authorize_url(state) print(' > OAuth Authorization URL:', url) try: webbrowser.open(url) print(' - Authentication URL opened in your browser:', AUTH_URL) except webbrowser.Error: print(' - Please navigate here:', url) print(' >> Handling request') server.handle_request() # wait for authorization endpoint response if server.auth_code is not None: code = server.auth_code if server.state.strip() != state: print('ERROR: response state don\'t match') print(server.state) elif server.error is not None: print(' - Received error from OAuth server: {}'.format(server.error)) exit() else: print(' - Server listening on localhost has not been accessed') exit() return code #****************************************************************************** # Request refresh and access tokens # This time, no user interaction through the browser is needed, thus, the # POST request is handled using Requests module # def request_access_token(code): token = None payload = { 'redirect_uri': REDIRECT_URI, 'code': code, 'grant_type': 'authorization_code', } headers = make_authorization_headers() response = requests.post(TOKEN_URL, data=payload, headers=headers) if response.status_code != 200: print('ERROR. Token request failed') print(response) exit() token_info = response.json() # Compute time value for token expiration date token_info['expires_at'] = int(time.time()) + token_info.get('expires_in') save_token_info(token_info) return token_info.get('access_token') #****************************************************************************** def generate_random_string(length): rand = '' universe = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789' for i in range(length): rand += universe[random.randint(0, len(universe) - 1)] return rand #****************************************************************************** def start_local_http_server(port, handler=RequestHandler): server = HTTPServer(("127.0.0.1", port), handler) server.allow_reuse_address = True server.auth_code = None server.error = None return server #****************************************************************************** def build_authorize_url(state): # Gets the URL to use to authorize this app payload = { 'response_type':'code', 'client_id':client_id, 'state':state, 'scope':SCOPES, 'redirect_uri':REDIRECT_URI, } urlparams = urllib.parse.urlencode(payload) return '{}?{}'.format(AUTH_URL, urlparams) #****************************************************************************** def make_authorization_headers(): # This method encodes the header, nevertheless the API allows to send these # parameters as part of the POST request body. auth_header = (client_id + ':' + client_secret).encode('ascii') auth_header = base64.b64encode(auth_header) return {'Authorization': 'Basic {}'.format(auth_header.decode('ascii'))} #****************************************************************************** def save_token_info(token_info): try: f = open(CACHE_PATH, 'w') f.write(json.dumps(token_info)) f.close() return True except: print('Couldn\'t write token to cache at: {}'.format(CACHE_PATH)) return False #****************************************************************************** def get_cached_token(): token_info = None print(' - Extracting Spotify cached token') try: f = open(CACHE_PATH) token_info_string = f.read() f.close() token_info = json.loads(token_info_string) except: print('ERROR. Opening {} failed'.format(CACHE_PATH)) return token_info #****************************************************************************** def is_token_expired(token_info): now = int(time.time()) # if expiration time is less than a minute return token_info['expires_at'] - now < 60 #****************************************************************************** def refresh_access_token(refresh_token): if refresh_token is None: print(' - WARNING: Invalid refresh token') return None payload = { 'refresh_token': refresh_token, 'grant_type': 'refresh_token', } headers = make_authorization_headers() response = requests.post(TOKEN_URL, data=payload, headers=headers) if response.status_code != 200: print('ERROR. Refresh token request failed') exit() token_info = response.json() # Compute time value for token expiration date token_info['expires_at'] = int(time.time()) + token_info.get('expires_in') if 'refresh_token' not in token_info: token_info['refresh_token'] = refresh_token save_token_info(token_info) return token_info.get('access_token') #****************************************************************************** def request_valid_token(): token = None token_info = get_cached_token() if token_info is None: print('WARNING. No cached token was found') else: if is_token_expired(token_info): print(' - Cached token expired. Refreshing access token') token = refresh_access_token(token_info.get('refresh_token')) else: print(' - Cached token VALID') token = token_info.get('access_token') return token ``` #### File: playlistCreator/spotify/spotify_scamToken.py ```python import requests import json from spotify_secrets import spotify_oauth_token as oauth_token from spotify_secrets import spotify_user_id as usr_id from spotify_secrets import client_app_id as app_id from spotify_secrets import client_app_secret as app_secret serviceurl = 'https://api.spotify.com/v1' authurl = 'https://accounts.spotify.com/authorize' ############################################################################### # POST REQUESTS ############################################################################### def create_new_playlist(pl_name): endpoint = 'https://api.spotify.com/v1/users/{}/playlists'.format(usr_id) parameters = { "name": pl_name, "description": "Liked Youtube Videos", "public": True } head = { 'Accept':'application/json', "Content-Type": "application/json", "Authorization": "Bearer {}".format(oauth_token) } payload = json.dumps(parameters) print('Creating new playlist...') response = requests.post(endpoint, data=payload, headers=head) response_json = response.json() try: # playlist id out = response_json['id'] print('>>New playlist \"' + pl_name + '\" created:') except: print(json.dumps(response_json, sort_keys=True, indent=4)) print('ERROR:', response_json['error']['status']) print('message:', response_json['error']['message']) out = response_json['error']['status'] return out def insert_into_playlist(pl_id, song_uri): endpoint = 'https://api.spotify.com/v1/playlists/{}/tracks'.format(pl_id) parameters = { 'uris':['{}'.format(song_uri)] } head = { 'Accept':'application/json', 'Content-Type': 'application/json', 'Authorization': 'Bearer {}'.format(oauth_token) } payload = json.dumps(parameters) print('Adding item to playlist...') response = requests.post(endpoint, data=payload, headers=head) response_json = response.json() try: # playlist id out = response_json['snapshot_id'] print('>>Track \"' + song_uri + '\" added to \"' + pl_id + '\" playlist') except: print(json.dumps(response_json, sort_keys=True, indent=4)) print('ERROR:', response_json['error']['status']) print('message:', response_json['error']['message']) out = response_json['error']['status'] return 0 ############################################################################### # GET REQUESTS ############################################################################### def retrieve_user_playlists(): endpoint = 'https://api.spotify.com/v1/me/playlists' parameters = { 'limit':'50', 'offset':'0' } head = { 'Accept':'application/json', 'Content-Type':'application/json', 'Authorization':'Bearer {}'.format(oauth_token) } print('Retrieving user playlists...') response = requests.get(endpoint, params=parameters, headers=head) response_json = response.json() try: print('>> Playlists Count: ', response_json['total']) except: # Dump JSON response to screen print(json.dumps(response_json, sort_keys=True, indent=4)) print('ERROR:', response_json['error']['status']) print('message:', response_json['error']['message']) exit() c = 0 pl = {} for i in response_json['items']: # Store data into the data base print(' > Playlist {}: {} | Songs = {} | ID: {}'.format(c + 1, i['name'], i['tracks']['total'], i['id'])) pl[i['name']] = i['id'] c += 1 # Back up json response fh = open('spotify_pl.json', 'w') json.dump(response_json, fh, sort_keys=True, indent=4) fh.close() # Back up the filtered playlist names fh = open('spotify_pl.txt', 'w') for i,j in pl.items(): fh.write(i + ',' + j + '\n') fh.close() return pl def search_catalog(track, artist): endpoint = 'https://api.spotify.com/v1/search' parameters = { 'q':'track:{} artist:{}'.format(track, artist), 'type':'track', 'limit':'3' } head = { 'Accept':'application/json', 'Content-Type':'application/json', 'Authorization':'Bearer {}'.format(oauth_token) } print('Searching in spotify catalog...') response = requests.get(endpoint, params=parameters, headers=head) response_json = response.json() try: songs = response_json["tracks"]["items"] # only use the first song out = songs[0]["uri"] print('Search FINISHED!') except: print(json.dumps(response_json, sort_keys=True, indent=4)) print('ERROR:', response_json['error']['status']) print('message:', response_json['error']['message']) out = response_json['error']['status'] return out ############################################################################### # MISC ############################################################################### def read_user_playlists(): pl = {} fh = open('spotify_pl.txt') for line in fh: line = line.rstrip('\n') x = line.split(',') pl[x[0]] = x[1] fh.close() return pl ############################################################################### # MAIN PROGRAM ############################################################################### if __name__ == '__main__': # print(create_playlist()) #j = get_spotify_uri('hallelujah','hillsong') #print(j) print('\n\rHello World!\n\r< SPOTIFY API INTERACTION >') download = None while download is None: x = input('Do you want to download your playlists? (Y/n)') if x in 'yY ': download = True break elif x in 'nN': download = False break elif x in 'qQ': exit() else: print('INVALID!') if download is True: pl = retrieve_user_playlists() else: pl = read_user_playlists() new_playlist = 'Youtube Liked Vids' if new_playlist not in pl.keys(): print('Creating new Youtube playlist') pl_id = create_new_playlist(new_playlist) else: print('Youtube playlist already exists') pl_id = pl[new_playlist] track_uri = (search_catalog('Oceans','Hillsong')) insert_into_playlist(pl_id, track_uri) ``` #### File: playlistCreator/spotify/spotipy_lib.py ```python import json # SPOTIPY-related import spotipy import spotipy.util as util from spotipy.oauth2 import SpotifyClientCredentials # Secrets-related from spotify_secrets import client_app_id as client_id from spotify_secrets import client_app_secret as client_secret from spotify_secrets import spotify_user_id as username ############################################################# # # Steps: # 1. Retrieve all user playlists: current_user_playlists(limit=50, offset=0 # 2. Look for the Youtube like vids playlist # 3. If non-existent, create it. If existent, get the ID. # 4. Based on the videos_dump.json files, read them and look for the songs in spotify # 5. If songs exist, add them to the playlist. def get_authentication(scope=None): redirect_uri = 'http://localhost:9090' print('> Getting OAuth authentication') token = util.prompt_for_user_token(redirect_uri=redirect_uri, scope=scope) if token is None: print('Can\'t get token for', username) exit() print(' Authentication successful') sp = spotipy.Spotify(auth=token) return sp def download_user_playlists(sp): print('> Downloading playlists') playlists = sp.user_playlists(username) usr_pl = {} for playlist in playlists['items']: print(playlist['name'], playlist['id']) usr_pl[playlist['name']] = playlist['id'] print(username, 'playlists retrieved') return usr_pl def create_new_playlist(playlist): scope = 'playlist-modify-public' sp = get_authentication(scope) sp.user_playlist_create(username, playlist) def add_tracks_to_playlist(playlist, tracks): scope = 'playlist-modify-public' sp = get_authentication(scope) sp.user_playlist_add_tracks(username, playlist, tracks) ############################################################################### # M A I N P R O G R A M ############################################################################### if __name__ == '__main__': sp = get_authentication() usr_pl = download_user_playlists(sp) new_playlist = 'Youtube Liked Vids' if new_playlist not in usr_pl.keys(): print('WARNING!: Youtube playlist non-existent') print('> Creating Spotify playlist') create_new_playlist(new_playlist) # Downolad again playlists to get New Playlist URI usr_pl = download_user_playlists(sp) else: print('WARNING!: Youtube playlist already exists') print(' ', new_playlist, 'ID:', usr_pl[new_playlist]) test_array = [] test_array.append(('Hillsong','Another in the fire')) test_array.append(('<NAME>','B Collision')) test_array.append(('<NAME>','<NAME>')) test_array.append(('Un Corazón','la calle')) test_array.append(('Ecclesia','Excellence')) track_ids = [] # shows related artists for the given seed artist for item in test_array: result = sp.search(q='track:' + item[1] + ' artist:' + item[0], type='track') try: name = result['tracks']['items'][0]['name'] uri = result['tracks']['items'][0]['uri'] artist = result['tracks']['items'][0]['artists'][0]['name'] print(name + ' | ' + artist + ' | ' + uri) track_ids.append(uri) except: print("No results retrieved") print(result) exit() print('> Adding songs to playlist') add_tracks_to_playlist(usr_pl[new_playlist], track_ids) print(' > FINISHED!') ``` #### File: jose-log/playlistCreator/youtube.py ```python import json import os import google_auth_oauthlib.flow import googleapiclient.discovery import googleapiclient.errors # This file is downloaded from the Youtube API Dashboard, once the application # is registered and activated CLIENT_SECRETS_FILE = 'secrets_youtube.json' # Scopse are the type of permissions that the application needs to access user # data while interacting with the API SCOPES = ['https://www.googleapis.com/auth/youtube.readonly'] # API-specific macros API_SERVICE_NAME = 'youtube' API_VERSION = 'v3' # Files' Names INDEX_FILE = 'videos_index.txt' VIDEOS_BASENAME = 'videos_dump' # Disable OAuthlib's HTTPS verification when running locally. # *DO NOT* leave this option enabled in production. os.environ["OAUTHLIB_INSECURE_TRANSPORT"] = "1" def __get_authentincated_service(): print(' - Building the authenticated service...') # Get OAuth credentials # Google OAuth entirely handled by the Google Python Client libraries flow = google_auth_oauthlib.flow.InstalledAppFlow.from_client_secrets_file(CLIENT_SECRETS_FILE, SCOPES) # Create local server to interact with OAuth server. # User is required to grant access to the application. credentials = flow.run_local_server( host = 'localhost', port = 8080, authorization_prompt_message = 'Please visit this URL: \n\r{url}', success_message = 'The auth flow is complete; you may close this window.', open_browser = True) # Build the Service object: service = googleapiclient.discovery.build(API_SERVICE_NAME, API_VERSION, credentials=credentials) return service def __request_service(service, **kwargs): collection = service.videos() # Extract collection of videos request = collection.list(**kwargs) # HTTP Request object return request.execute() def request_liked_playlist(n_videos): if os.path.exists(INDEX_FILE) is True: os.remove(INDEX_FILE) service = __get_authentincated_service() # No of response results is limited!, thus, multiple queries must be # performed in order to get the entire list of videos. Using page pointers # (available in the json response) the subsequent requests ask for the next # block of videos to be downloaded i = 1 files = [] nxtPage = None while True: if n_videos is None: n = 50 elif n_videos >= 50: n = 50 n_videos -= 50 else: n = n_videos n_videos = 0 try: print(' - Requesting query No {} to Youtube Data API'.format(i)) response = __request_service( service, part = 'id,snippet,contentDetails', myRating = 'like', maxResults = n, pageToken = nxtPage, fields = 'items(id,snippet(title),contentDetails(duration)),pageInfo,nextPageToken' ) except: print('ERROR Requesting Youtube Data API.') print(response) quit() # save response to files outfile = VIDEOS_BASENAME + str(i) + '.json' fh = open(outfile, 'w') json.dump(response, fh, sort_keys=True, indent=4) fh.close() files.append(outfile) # index file fh = open(INDEX_FILE, 'a') fh.write(outfile + '\n') fh.close() if n_videos is None or n_videos > 0: nxtPage = response.get('nextPageToken', None) else: nxtPage = None if nxtPage is None: try: total = response['pageInfo']['totalResults'] except: print('ERROR. JSON response not properly formatted') quit() print(' > Total No of results: {}'.format(total)) print(' > No of request iterations: {}'.format(i)) break i += 1 return files def request_youtube_files(): files = [] path = None while True: x = input('Enter the index file name: ') if len(x) is 0: path = 'videos_index.txt' if os.path.exists(path) is True: break else: print('WARNING: No files added. Try Again') elif os.path.exists(x) is False: print('ERROR. File does NOT exists. Please try again') else: path = x break fh = open(path) print(' - Files Added:') for line in fh: files.append(line.strip()) print(' * ' + line.strip()) return files ``` #### File: playlistCreator/youtube/youtube_test1.py ```python import os import google_auth_oauthlib.flow import googleapiclient.discovery import googleapiclient.errors import json scopes = ["https://www.googleapis.com/auth/youtube.readonly"] def main(): # Disable OAuthlib's HTTPS verification when running locally. # *DO NOT* leave this option enabled in production. os.environ["OAUTHLIB_INSECURE_TRANSPORT"] = "0" # Clarification: https://github.com/singingwolfboy/flask-dance/issues/129 # Flask-Dance is built on top of oauthlib, a Python toolkit that implements # the OAuth specifications. The specification for OAuth 2 requires that all # communication must occur over secure HTTPS -- if any communication occurs # over insecure HTTP, it's vulnerable to attack. As a result, oauthlib raises # an error if you use insecure HTTP. However, most people don't want to spend # the time and effort to configure secure HTTPS for doing local testing -- it's # only a problem for production, not for development. # As a result, oauthlib allows you to disable this check. If you set the # OAUTHLIB_INSECURE_TRANSPORT environment variable, it will not check for secure # HTTPS, and allow the OAuth dance to continue whether or not it is secure. # Disabling this check is intended only for development, not for production -- # in production, you must configure secure HTTPS to make sure communication happen # securely. api_service_name = "youtube" api_version = "v3" client_secrets_file = "youtube_oauth.json" #******************************************* # Get credentials and create an API client #******************************************* flow = google_auth_oauthlib.flow.InstalledAppFlow.from_client_secrets_file(client_secrets_file, scopes) credentials = flow.run_local_server( host='localhost', port=8080, authorization_prompt_message='Please visit this URL: {url}', success_message='The auth flow is complete; you may close this window.', open_browser=True) # Build the Service object: youtube = googleapiclient.discovery.build(api_service_name, api_version, credentials=credentials) #******************************************* # Request structure #******************************************* # channels(): function for the Channels collection collection = youtube.channels() # list(): method of the given collection request = collection.list( part="id,status,contentDetails", id="UCR9ay2jZLzQLw_E743NO-tQ") # HTTP Request object # Execute the request and get a response response = request.execute() # Dump JSON response to screen print(json.dumps(response, sort_keys=True, indent=4)) print('\n\n\n\n\n***********************************') print('flow:') print(flow) print('credentials:') print(credentials) print('youtube:') print(youtube) print('collection:') print(collection) print('request:') print(request) print('response:') print(response) if __name__ == "__main__": main() ''' HTTP Requests: http://googleapis.github.io/google-api-python-client/docs/epy/googleapiclient.http.HttpRequest-class.html Accessing the JSON data: print('Num 5 cent stamps: %d'.format(response['count'])) print('First stamp name: %s'.format(response['items'][0]['name'])) ''' ```
{ "source": "joselpadronc/CRUD_Persons", "score": 2 }
#### File: CRUD_Persons/persons/views.py ```python import json # Imports of framework from django.shortcuts import render, redirect from django.core.paginator import Paginator from django.http import HttpRequest, HttpResponse # Imports of local from persons.forms import PersonForm from persons.models import Person from django.contrib.auth.decorators import login_required # Create your views here. def home_page(request): persons = Person.objects.all() data = { 'persons':persons } template_name = 'index.html' return render(request, template_name, data) def list_persons_view(request): persons = Person.objects.all() list_persons = [] for person in persons: data_person = {} data_person['id'] = person.id data_person['name'] = person.name data_person['id_card'] = person.id_card data_person['nationality'] = person.nationality data_person['age'] = person.age list_persons.append(data_person) data = json.dumps(list_persons) print (type(data)) return HttpResponse(data, 'application/json') @login_required def register_person_view(request): data = { 'form':PersonForm() } if request.method == 'POST': form = PersonForm(request.POST) if form.is_valid(): form.save() data ['message'] = "Persona guardada correctamente" return render(request, 'register.html', data) @login_required def edit_person_view(request, id): person = Person.objects.get(id=id) data = { 'form':PersonForm(instance=person) } if request.method == 'POST': form = PersonForm(request.POST, instance=person) if form.is_valid(): form.save() data['message'] = 'Persona modificada correctamente' data['form'] = form return render(request, 'edit.html', data) @login_required def delete_person_view(request, id): person = Person.objects.get(id=id) person.delete() return redirect(to='home_page') ```
{ "source": "joselrodrigues/TMC-app", "score": 3 }
#### File: TMC-app/tmc/forms.py ```python from django import forms from tmc.models import Tmc class TmcForm(forms.ModelForm): """Formulario para la TMC Arguments: forms {Object} """ class Meta: model = Tmc fields = ('plazo', 'monto', 'fecha_tmc') def __init__(self, *args, **kwargs): super(TmcForm, self).__init__(*args, **kwargs) for field in iter(self.fields): self.fields[field].widget.attrs.update({ 'class': 'form-control', 'placeholder': self.fields[field].label }) self.fields[field].label = '' ``` #### File: TMC-app/tmc/utils.py ```python def get_tmc(args, **kwargs): plazo = kwargs.get('plazo') uf = kwargs.get('monto') tmc = '' if plazo < 90: if uf <= 5000: tmc = over_tmc('26', args) else: tmc = over_tmc('25', args) elif plazo >= 90: if uf <= 50: tmc = over_tmc('45', args) elif 200 >= uf > 50: tmc = over_tmc('44', args) elif 5000 >= uf > 200: tmc = over_tmc('35', args) else: tmc = over_tmc('34', args) return tmc def over_tmc(tipo, args): tmc_values = '' for tmc in args: if tmc['Tipo'] == tipo: tmc_values = tmc return tmc_values ```
{ "source": "joseluan/ifnaroca", "score": 2 }
#### File: ifnaroca/lista/views.py ```python from django.contrib.auth.models import User from django.shortcuts import render,render_to_response from django.template import RequestContext from django.http import HttpResponseRedirect from django.core.urlresolvers import reverse from django.views.decorators.csrf import csrf_exempt from django.contrib.auth.decorators import login_required, user_passes_test from django.contrib.auth import authenticate, logout, login from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from lista.models import * def lista(request): cadastro = False Nparticipantes = len(Participante.objects.all()) if request.method=='POST': try: Participante.objects.get(rg=request.POST.get("RG")) except Exception, e: cadastro = True Participante.objects.create(nome=request.POST.get("nome"),rg=request.POST.get("RG")).save() Nparticipantes = len(Participante.objects.all()) return render(request,'lista.html',{'cadastro': True,'Nparticipantes':Nparticipantes}) return render(request,'lista.html',{'cadastro': True,'Nparticipantes':Nparticipantes}) else: return render(request,'lista.html',{'cadastro': cadastro,'Nparticipantes':Nparticipantes}) def index(request): return render(request,'index.html',{}) ```
{ "source": "joselucas77/Python", "score": 3 }
#### File: intensivao_python/aula01/auto_sistema.py ```python import pyautogui import pyperclip import time import pandas as pd def abrir_chrome(): pyautogui.press('win') pyautogui.write('chrome') pyautogui.press('enter') def entrar_driver(): pyautogui.write("https://drive.google.com/drive/folders/149xknr9JvrlEnhNWO49zPcw0PW5icxga") pyautogui.press('enter') def baixar_arquivo(): pyautogui.click(x=292, y=267, clicks=2) time.sleep(3) pyautogui.click(x=331, y=450, button='right') time.sleep(3) pyautogui.click(x=457, y=676) time.sleep(3) def abrir_email(): # Abrir o app do email pyautogui.hotkey('win') pyautogui.write('email') pyautogui.press('enter') def enviar_email(): # Base de dados tabela = pd.read_excel(r'C:\Users\jose_\OneDrive\Documentos\Estudos\arquivos_pyton\Vendas - Dez.xlsx') faturamento = tabela['Valor Final'].sum() quantidade = tabela['Quantidade'].sum() time.sleep(5) # Abri a janela de escrever o email pyautogui.click(x=81, y=106) time.sleep(5) # Escreve o destinatário pyautogui.write('<EMAIL>') pyautogui.press('enter') time.sleep(2) pyautogui.press('tab') pyautogui.press('tab') pyautogui.press('tab') time.sleep(2) # Escreve o assunto pyautogui.write("Relatorio de vendas") time.sleep(2) pyautogui.press('tab') time.sleep(2) # Escrever o corpo do email texto = f''' Prezados, bom dia O faturamento de ontem foi de: R$ {faturamento} A quantidade de produtos foi de: R$ {quantidade} Abs JoseLucas ''' pyperclip.copy(texto) pyautogui.hotkey('ctrl', 'v') time.sleep(2) # Enviando o email pyautogui.hotkey('ctrl', 'enter') time.sleep(2) pyautogui.POUSE = 2 abrir_chrome() time.sleep(5) entrar_driver() time.sleep(5) baixar_arquivo() time.sleep(5) abrir_email() time.sleep(5) enviar_email() time.sleep(5) ```
{ "source": "JoseLucasASilva/backend-train-station", "score": 2 }
#### File: backend-train-station/utils/train_requests.py ```python import requests from utils.config import OCP_API_KEY BASE_ENDPOINT = "https://gateway.apiportal.ns.nl/reisinformatie-api/api/v2" def get_headers(): headers = { "content-type": "application/json", "Ocp-Apim-Subscription-Key": OCP_API_KEY } return headers def get_stations(headers=None): if not headers: headers = get_headers() result = requests.get(f"{BASE_ENDPOINT}/stations", headers=headers) return result def get_departures(stations_code, headers=None): if not headers: headers = get_headers() result = requests.get(f"{BASE_ENDPOINT}/departures?station={stations_code}", headers=headers) return result ```
{ "source": "joseluis031/Ejercicios-de-Clases-de-POO", "score": 3 }
#### File: Ejercicios-de-Clases-de-POO/Clases/puzzle.py ```python class A: #A continuación define los métodos de la clase def z(self): return self #Aquí devuelve una referencia al objeto de instancia que fue llamado. def y(self, t): return len(t) ```
{ "source": "joseluis031/Introducci-n-a-la-algor-tmica", "score": 4 }
#### File: joseluis031/Introducci-n-a-la-algor-tmica/ej12.py ```python cuenta = input("¿Quiere abrir una cuenta en el banco?:") saldo = 0 class banco: def __init__(self,cuenta,saldo): #defino el constructor self.cuenta = cuenta self.saldo = saldo def respuesta(self): if self.cuenta == "no": print("De acuerdo, gracias") if self.cuenta == "si": self.saldo = 0 abono = int(input("Introduzca el dinero que desea:")) self.saldo = abono print("Tu saldo es:" , self.saldo) def actividad(self): act = input("¿Quiere consultar,retirar o abonar dinero?") if act == "no": print("De acuerdo, gracias") if act == "consultar": print("Su saldo es: ", self.saldo , "€") if act == "retirar": retiro = float(input("Dinero a retirar:")) self.saldo = self.saldo - retiro print("Su saldo actual es: ",self.saldo) if act == "abonar": ingreso = float(input("Dinero a ingresar")) self.saldo = self.saldo + ingreso print("Su saldo es: ", self.saldo, "€") total = banco(cuenta,saldo) print(total.respuesta()) print(total.actividad()) ```
{ "source": "joseluis031/Iteracion", "score": 4 }
#### File: joseluis031/Iteracion/ejercicio11.py ```python elegir = input("Elige: euclides o sumas y rectas ") x= int(input("Introduce el valor del divisor: ")) y= int(input("Introduce el valor del divisor: ")) if elegir == "euclides": def mcd(x, y): if y == 0: return x return mcd(y, x%y) final = mcd(x, y) print(final) elif elegir == "sumas y rectas": def mcd(x, y): if x ==0 : return y elif y == 0: return x elif x == y: return x elif x > y: return mcd(x-y, y) return mcd(x, y-x) if(mcd(x, y)): final = mcd(x, y) print(final) else: print("No existe m.c.d") ```
{ "source": "joseluis031/laberinto", "score": 4 }
#### File: joseluis031/laberinto/laberinto.py ```python laberinto = [] #defino mi lista del laberinto muro = ((0,1), (0,2), (0,3), (0,4), (1,1), (2,1), (2,3), (3,3), (4,0), (4,1), (4,2), (4,3)) #defino las casillas de los muros for _ in range (5): laberinto.append(([' ']*5)) for i in muro: laberinto[int(i[0])][int(i[1])] = 'X' laberinto [4] [4] = "Salida" for i in range (5): print (laberinto[i]) #Consigo crear el laberinto def recorrido(): movimientos = [] a = 0 #eje Y b = 0 #eje X c = 0 #'contrario' de a d = 0 #'contrario' de b while laberinto [a][b] != "Salida": #Genero un bucle que me va a recorrer el laberinto mientras no este en la casilla de salida, es decir, hasta que llegue a la salida, el bucle ira desarrollandose if d <= a and laberinto[a+1][b] != 'X': #Cuando esas condiciones den como resultado una casilla diferente de 'X', añado a los movimientos "Abajo" movimientos.append("Abajo") a += 1 elif c <= b < 4 and laberinto[a][b+1] != 'X': #Cuando esas condiciones den como resultado una casilla diferente de 'X', añado a los movimientos "Derecha" movimientos.append("Derecha") b += 1 c = b-1 d = a elif b < c and laberinto[a][b-1] != 'X': #Cuando esas condiciones den como resultado una casilla diferente de 'X', añado a los movimientos "Izquierda" movimientos.append("Izquierda") b -= 1 else: movimientos.append("Arriba") #Cuando no ocurra ninguna de las condiciones anteriores, añado a los movimientos "Arriba" a -= 1 return movimientos print("Los movimientos son:\n{}".format(recorrido())) #Le doy formato a la funcion ```
{ "source": "joseluis031/parcial", "score": 4 }
#### File: parcial/Clases/ejercicio2.py ```python class animal: def __init__(self, tipo): self.tipo = tipo class mamifero(animal): #utilizo la herencia multiple def __init__(self,tipo,mamiferoo): self.mamiferoo = mamiferoo animal.__init__(self, tipo) class oviparo(mamifero,animal): def __init__(self,tipo,mamiferoo,oviparo): self.oviparo = oviparo mamifero.__init__(self, tipo, mamiferoo) pollo = gato = ornitorrinco = print(pollo.animal) print(gato.mamifero) print(ornitorrinco.oviparo) ```
{ "source": "joseluis031/Ping-Pong", "score": 3 }
#### File: joseluis031/Ping-Pong/pingpong.py ```python import random import pygame from pygame.locals import QUIT # Constantes para la inicialización de la superficie de dibujo VENTANA_HORI = 800 # Ancho de la ventana VENTANA_VERT = 600 # Alto de la ventana FPS = 60 # Fotogramas por segundo BLANCO = (255, 255, 255) # Color del fondo de la ventana (RGB) NEGRO = (0, 0, 0) # Color del texto (RGB) class PelotaPong: def __init__(self, fichero_imagen): # --- Atributos de la Clase --- # Imagen de la Pelota self.imagen = pygame.image.load(fichero_imagen).convert_alpha() # Dimensiones de la Pelota self.ancho, self.alto = self.imagen.get_size() # Posición de la Pelota self.x = VENTANA_HORI / 2 - self.ancho / 2 self.y = VENTANA_VERT / 2 - self.alto / 2 # Dirección de movimiento de la Pelota self.dir_x = random.choice([-5, 5]) self.dir_y = random.choice([-5, 5]) # Puntuación de la pelota self.puntuacion = 0 self.puntuacion_ia = 0 def mover(self): self.x += self.dir_x self.y += self.dir_y def rebotar(self): if self.x <= -self.ancho: self.reiniciar() self.puntuacion_ia += 1 if self.x >= VENTANA_HORI: self.reiniciar() self.puntuacion += 1 if self.y <= 0: self.dir_y = -self.dir_y if self.y + self.alto >= VENTANA_VERT: self.dir_y = -self.dir_y def reiniciar(self): self.x = VENTANA_HORI / 2 - self.ancho / 2 self.y = VENTANA_VERT / 2 - self.alto / 2 self.dir_x = -self.dir_x self.dir_y = random.choice([-5, 5]) class RaquetaPong: def __init__(self): self.imagen = pygame.image.load("raqueta.png").convert_alpha() # --- Atributos de la Clase --- # Dimensiones de la Raqueta self.ancho, self.alto = self.imagen.get_size() # Posición de la Raqueta self.x = 0 self.y = VENTANA_VERT / 2 - self.alto / 2 # Dirección de movimiento de la Raqueta self.dir_y = 0 def mover(self): self.y += self.dir_y if self.y <= 0: self.y = 0 if self.y + self.alto >= VENTANA_VERT: self.y = VENTANA_VERT - self.alto def mover_ia(self, pelota): if self.y > pelota.y: self.dir_y = -3 elif self.y < pelota.y: self.dir_y = 3 else: self.dir_y = 0 self.y += self.dir_y def golpear(self, pelota): if ( pelota.x < self.x + self.ancho and pelota.x > self.x and pelota.y + pelota.alto > self.y and pelota.y < self.y + self.alto ): pelota.dir_x = -pelota.dir_x pelota.x = self.x + self.ancho def golpear_ia(self, pelota): if ( pelota.x + pelota.ancho > self.x and pelota.x < self.x + self.ancho and pelota.y + pelota.alto > self.y and pelota.y < self.y + self.alto ): pelota.dir_x = -pelota.dir_x pelota.x = self.x - pelota.ancho def main(): # Inicialización de Pygame pygame.init() # Inicialización de la superficie de dibujo (display surface) ventana = pygame.display.set_mode((VENTANA_HORI, VENTANA_VERT)) pygame.display.set_caption("Pong 9") # Inicialización de la fuente fuente = pygame.font.Font(None, 60) pelota = PelotaPong("bola_roja.png") raqueta_1 = RaquetaPong() raqueta_1.x = 60 raqueta_2 = RaquetaPong() raqueta_2.x = VENTANA_HORI - 60 - raqueta_2.ancho # Bucle principal jugando = True while jugando: pelota.mover() pelota.rebotar() raqueta_1.mover() raqueta_2.mover_ia(pelota) raqueta_1.golpear(pelota) raqueta_2.golpear_ia(pelota) ventana.fill(BLANCO) ventana.blit(pelota.imagen, (pelota.x, pelota.y)) ventana.blit(raqueta_1.imagen, (raqueta_1.x, raqueta_1.y)) ventana.blit(raqueta_2.imagen, (raqueta_2.x, raqueta_2.y)) texto = f"{pelota.puntuacion} : {pelota.puntuacion_ia}" letrero = fuente.render(texto, False, NEGRO) ventana.blit(letrero, (VENTANA_HORI / 2 - fuente.size(texto)[0] / 2, 50)) for event in pygame.event.get(): if event.type == QUIT: jugando = False # Detecta que se ha pulsado una tecla if event.type == pygame.KEYDOWN: if event.key == pygame.K_w: raqueta_1.dir_y = -5 if event.key == pygame.K_s: raqueta_1.dir_y = 5 # Detecta que se ha soltado la tecla if event.type == pygame.KEYUP: if event.key == pygame.K_w: raqueta_1.dir_y = 0 if event.key == pygame.K_s: raqueta_1.dir_y = 0 pygame.display.flip() pygame.time.Clock().tick(FPS) pygame.quit() if __name__ == "__main__": main() ```
{ "source": "joseluis031/Recursividad", "score": 4 }
#### File: joseluis031/Recursividad/ej5dicotonomia.py ```python dicoto = input("¿Que numero quieres buscar en la tabla?") def buscar(tabla,dicoto,indice): if dicoto == str(tabla[indice]): print("el numero se encuentra en la tabla") else: if indice < (len(tabla)-1): indice += 1 buscar(tabla, dicoto, indice) buscar([0,1,2,3,4,5,7,8,10,11,12,14,15,16,18,19,20], dicoto, 0) ``` #### File: joseluis031/Recursividad/ej7bandera.py ```python bandera = ["N","B","B","N","A","B","B","N","B","N","N","A","N","N","B","A","A"] print(bandera) negro = [] blanco = [] azul = [] def ordenada(bandera): if len(bandera) > 0: color = bandera.pop(0) if color =="N": negro.append(color) ordenada(bandera) elif color == "B": blanco.append(color) ordenada(bandera) elif color == "A": azul.append(color) ordenada(bandera) else: ordenada = negro + blanco + azul print(ordenada) else: ordenada = negro + blanco + azul print(ordenada) ordenada(bandera) ```
{ "source": "joseluis031/tarea-grupal", "score": 3 }
#### File: joseluis031/tarea-grupal/ranalaberinto.py ```python import math import os import random import re import sys # Definimos coordenadas class Coordenadas: def __init__(self, x, y): self.x = x self.y = y def comparate(self,x,y): if(self.x==x and self.y==y): return True else: return False # Definimos las coordenadas del tunel class Tunel: def __init__(self, x1, y1, x2, y2): self.extremo1 = Coordenadas(x1, y1) self.extremo2 = Coordenadas(x2, y2) # Le decimos a la rana que busque el tunel para poder llegar al final del laberinto def buscaTunel(Casillax,Casillay,tuneles): coordenadas = Coordenadas(Casillax, Casillay) for t in tuneles: if(t.extremo1.comparate(Casillax,Casillay)==True): coordenadas.x=t.extremo2.x coordenadas.y=t.extremo2.y break elif(t.extremo2.comparate(Casillax,Casillay)==True): coordenadas.x=t.extremo1.x coordenadas.y=t.extremo1.y break return coordenadas # definimos la exploracion de la rana y por donde tiene que ir para llegar hasta el final, siem pre sabiendo que tiene la misma probabilidad de hacer cualquier movimiento def exploracion(Casillax, Casillay, laberinto, n , m, tuneles): num=0 den=0 probabilidad=0.0 if(Casillax>0 and laberinto[Casillax-1][Casillay]!="#"): den +=1 if(laberinto[Casillax-1][Casillay]=="%"): num+=1 if(Casillax<n-1 and laberinto[Casillax+1][Casillay]!="#"): den +=1 if(laberinto[Casillax+1][Casillay]=="%"): num+=1 if(Casillay<m-1 and laberinto[Casillax][Casillay+1]!="#"): den +=1 if(laberinto[Casillax][Casillay+1]=="%"): num+=1 if(Casillay>0 and laberinto[Casillax][Casillay-1]!="#"): den +=1 if(laberinto[Casillax][Casillay-1]=="%"): num+=1 if(den==0): return probabilidad probabilidad=num/den if(Casillax>0 and laberinto[Casillax-1][Casillay]=="$"): laberintocopia=laberinto coordenadas= buscaTunel(Casillax-1,Casillay,tuneles) laberintocopia[Casillax][Casillay]="#" probabilidad+=exploracion(coordenadas.x,coordenadas.y, laberintocopia, n , m, tuneles)/den if(Casillax<n-1 and laberinto[Casillax+1][Casillay]=="$"): laberintocopia=laberinto coordenadas= buscaTunel(Casillax+1,Casillay,tuneles) laberintocopia[Casillax][Casillay]="#" probabilidad+=exploracion(coordenadas.x,coordenadas.y, laberintocopia, n , m, tuneles)/den if(Casillay<m-1 and laberinto[Casillax][Casillay+1]=="$"): laberintocopia=laberinto coordenadas= buscaTunel(Casillax,Casillay+1,tuneles) laberintocopia[Casillax][Casillay]="#" probabilidad+=exploracion(coordenadas.x,coordenadas.y, laberintocopia, n , m, tuneles)/den if(Casillay>0 and laberinto[Casillax][Casillay-1]=="$"): laberintocopia=laberinto coordenadas= buscaTunel(Casillax,Casillay-1,tuneles) laberintocopia[Casillax][Casillay]="#" probabilidad+=(exploracion(coordenadas.x,coordenadas.y, laberintocopia, n , m, tuneles)/den) return probabilidad #rellenamos lo que queda con nuestro código lotro ya estaba hecho if __name__ == '__main__': print("Dimensiones del laberinto y número de tuneles:(filas columnas tuneles)") first_multiple_input = input().rstrip().split() n = int(first_multiple_input[0]) m = int(first_multiple_input[1]) k = int(first_multiple_input[2]) laberinto=[] for n_itr in range(n): print("Fila " + str(n_itr) + " del laberinto:(# muro,porcentaje salida, * bomba, $ vacia o tunel") row = input() laberinto.append(list(row)) # Write your code here tuneles=[] for k_itr in range(k): print("Coordenadas(i1 j1 i2 j2) del tunel " +str(k_itr)) second_multiple_input = input().rstrip().split() i1 = int(second_multiple_input[0]) j1 = int(second_multiple_input[1]) i2 = int(second_multiple_input[2]) j2 = int(second_multiple_input[3]) tuneles.append(Tunel(i1,j1,i2,j2)) # Write your code here # Write your code here print("Coordenadas iniciales de la rana:") third_multiple_input = input().rstrip().split() pos1= int(third_multiple_input[0]) pos2= int(third_multiple_input[1]) probabilidad= exploracion(pos1,pos2,laberinto,n,m,tuneles) print(probabilidad) ```
{ "source": "joseluis1061/neuralnilm", "score": 3 }
#### File: neuralnilm/data/activationssource.py ```python from __future__ import print_function, division from copy import copy from datetime import timedelta import numpy as np import pandas as pd from neuralnilm.data.source import Source from neuralnilm.consts import DATA_FOLD_NAMES import logging logger = logging.getLogger(__name__) class ActivationsSource(Source): """Abstract base class for holding common behaviour across subclasses. Attributes ---------- activations: dict: Structure example: {<train | unseen_appliances | unseen_activations_of_seen_appliances>: { <appliance>: { <building_name>: [<activations>] }}} Each activation is a pd.Series with DatetimeIndex and the following metadata attributes: building, appliance, fold. """ def __init__(self, **kwargs): if not self.allow_incomplete_target: self._remove_over_long_activations(self.target_appliance) super(ActivationsSource, self).__init__(**kwargs) def report(self): report = super(ActivationsSource, self).report() report['num_activations'] = self.get_num_activations() return report def get_num_activations(self): num_activations = {} for fold, appliances in self.activations.items(): for appliance, buildings in appliances.items(): for building_name, activations in buildings.items(): num_activations.setdefault(fold, {}).setdefault( appliance, {})[building_name] = len(activations) return num_activations def get_sequence(self, fold='train', enable_all_appliances=False): while True: yield self._get_sequence( fold=fold, enable_all_appliances=enable_all_appliances) def _distractor_appliances(self, fold): all_appliances = set(self.activations[fold].keys()) distractor_appliances = all_appliances - set([self.target_appliance]) return list(distractor_appliances) def _remove_over_long_activations(self, appliance_to_filter): new_activations = {} for fold, appliances in self.activations.items(): new_activations[fold] = {} for appliance, buildings in appliances.items(): new_activations[fold][appliance] = {} if appliance == appliance_to_filter: for building, activations in buildings.items(): new_activations[fold][appliance][building] = [ activation for activation in activations if len(activation) < self.seq_length] else: new_activations[fold][appliance] = buildings self.activations = new_activations def _select_building(self, fold, appliance): """ Parameters ---------- fold : str appliance : str Returns ------- building_name : str """ if fold not in DATA_FOLD_NAMES: raise ValueError("`fold` must be one of '{}' not '{}'." .format(DATA_FOLD_NAMES, fold)) activations_per_building = self.activations[fold][appliance] # select `p` for np.random.choice if self.uniform_prob_of_selecting_each_building: p = None # uniform distribution over all buildings else: num_activations_per_building = np.array([ len(activations) for activations in activations_per_building.values()]) p = (num_activations_per_building / num_activations_per_building.sum()) num_buildings = len(activations_per_building) building_i = self.rng.choice(num_buildings, p=p) #building_name = activations_per_building.keys()[building_i] #Nuevas activations_per_building = list(activations_per_building.keys()) #Los convierto en lista building_name = activations_per_building[building_i] #Selecciono de la lista return building_name def _select_activation(self, activations): num_activations = len(activations) if num_activations == 0: raise RuntimeError("No appliance activations.") activation_i = self.rng.randint(low=0, high=num_activations) return activation_i def _position_activation(self, activation, is_target_appliance): """ Parameters ---------- activation : pd.Series is_target_appliance : bool Returns ------- pd.Series """ if is_target_appliance: allow_incomplete = self.allow_incomplete_target else: allow_incomplete = self.allow_incomplete_distractors # Select a start index if allow_incomplete: earliest_start_i = -len(activation) latest_start_i = self.seq_length else: if len(activation) > self.seq_length: raise RuntimeError("Activation too long to fit into sequence" " and incomplete activations not allowed.") earliest_start_i = 0 latest_start_i = self.seq_length - len(activation) start_i = self.rng.randint(low=earliest_start_i, high=latest_start_i) # Clip or pad head of sequence if start_i < 0: positioned_activation = activation.values[-start_i:] else: positioned_activation = np.pad( activation.values, pad_width=(start_i, 0), mode='constant') # Clip or pad tail to produce a sequence which is seq_length long if len(positioned_activation) <= self.seq_length: n_zeros_to_pad = self.seq_length - len(positioned_activation) positioned_activation = np.pad( positioned_activation, pad_width=(0, n_zeros_to_pad), mode='constant') else: positioned_activation = positioned_activation[:self.seq_length] if len(activation) > self.seq_length: is_complete = False else: space_after_activation = self.seq_length - len(activation) is_complete = 0 <= start_i <= space_after_activation seq_start_time = activation.index[0] - timedelta( seconds=start_i * self.sample_period) index = pd.date_range(seq_start_time, periods=self.seq_length, freq="{:d}S".format(self.sample_period)) positioned_activation_series = pd.Series( positioned_activation, index=index) return positioned_activation_series, is_complete ``` #### File: neuralnilm/data/datapipeline.py ```python from __future__ import print_function, division from copy import copy import numpy as np from neuralnilm.utils import none_to_list class DataPipeline(object): def __init__(self, sources, num_seq_per_batch, input_processing=None, target_processing=None, source_probabilities=None, rng_seed=None): self.sources = sources self.num_seq_per_batch = num_seq_per_batch self.input_processing = none_to_list(input_processing) self.target_processing = none_to_list(target_processing) num_sources = len(self.sources) if source_probabilities is None: self.source_probabilities = [1 / num_sources] * num_sources else: self.source_probabilities = source_probabilities self.rng_seed = rng_seed self.rng = np.random.RandomState(self.rng_seed) self._source_iterators = [None] * num_sources def get_batch(self, fold='train', enable_all_appliances=False, source_id=None, reset_iterator=False, validation=False): """ Returns ------- A Batch object or None if source iterator has hit a StopIteration. """ if source_id is None: n = len(self.sources) source_id = self.rng.choice(n, p=self.source_probabilities) if reset_iterator or self._source_iterators[source_id] is None: self._source_iterators[source_id] = ( self.sources[source_id].get_batch( num_seq_per_batch=self.num_seq_per_batch, fold=fold, enable_all_appliances=enable_all_appliances, validation=validation)) try: batch = self._source_iterators[source_id].__next__() except StopIteration: self._source_iterators[source_id] = None return None else: batch.after_processing.input, i_metadata = self.apply_processing( batch.before_processing.input, 'input') batch.after_processing.target, t_metadata = self.apply_processing( batch.before_processing.target, 'target') batch.metadata.update({ 'source_id': source_id, 'processing': { 'input': i_metadata, 'target': t_metadata } }) return batch def apply_processing(self, data, net_input_or_target): """Applies `<input, target>_processing` to `data`. Parameters ---------- data : np.ndarray shape = (num_seq_per_batch, seq_length, num_features) net_input_or_target : {'target', 'input} Returns ------- processed_data, metadata processed_data : np.ndarray shape = (num_seq_per_batch, seq_length, num_features) metadata : dict """ processing_steps = self._get_processing_steps(net_input_or_target) metadata = {} for step in processing_steps: data = step(data) if hasattr(step, 'metadata'): metadata.update(step.metadata) return data, metadata def apply_inverse_processing(self, data, net_input_or_target): """Applies the inverse of `<input, target>_processing` to `data`. Parameters ---------- data : np.ndarray shape = (num_seq_per_batch, seq_length, num_features) net_input_or_target : {'target', 'input} Returns ------- processed_data : np.ndarray shape = (num_seq_per_batch, seq_length, num_features) """ processing_steps = self._get_processing_steps(net_input_or_target) reversed_processing_steps = processing_steps[::-1] for step in reversed_processing_steps: try: data = step.inverse(data) except AttributeError: pass return data def _get_processing_steps(self, net_input_or_target): assert net_input_or_target in ['input', 'target'] attribute = net_input_or_target + '_processing' processing_steps = getattr(self, attribute) assert isinstance(processing_steps, list) return processing_steps def report(self): report = copy(self.__dict__) for attr in ['sources', 'rng', '_source_iterators']: report.pop(attr) report['sources'] = { i: source.report() for i, source in enumerate(self.sources)} report['input_processing'] = [ processor.report() for processor in self.input_processing] report['target_processing'] = [ processor.report() for processor in self.target_processing] return {'pipeline': report} def _get_output_neurons(self, new_batch): batch_size = new_batch.target.shape[0] neural_net_output = np.empty((batch_size, 3)) for b in range(batch_size): seq = new_batch.target[b] # case 1 and 2: if the signal start at 0 if seq[0] > 0: start = 0 stop_array = np.where(seq > 0)[0] # case 2: signal stops after 1 # set stop to the last element if len(stop_array) == 0: stop = seq[-1] # case 1: signal stops before 1 else: stop = stop_array[-1] # calculate avg power avg_power = np.mean(seq[start:stop + 1]) # case 3: signal starts after 0 and before 1 else: start_array = np.where(seq > 0)[0] if len(start_array) == 0: # case 5: there is no signal in the window start = 0 stop = 0 avg_power = 0 else: start = start_array[0] # find stop stop_array = np.where(seq > 0)[0] # case 4: signal stops after 1 # set to the last element if len(stop_array) == 0: stop = seq[-1] else: stop = stop_array[-1] avg_power = np.mean(seq[start:stop + 1]) start = start / float(new_batch.target.shape[1] - 1) stop = stop / float(new_batch.target.shape[1] - 1) if stop < start: raise ValueError("start must be before stop in sequence {}".format(b)) neural_net_output[b, :] = np.array([start, stop, avg_power]) return neural_net_output def train_generator(self, fold='train', enable_all_appliances=False, source_id=None, reset_iterator=False, validation=False ): while 1: batch_iter = self.get_batch(fold, enable_all_appliances, source_id, reset_iterator,validation) X_train = batch_iter.input input_dim = X_train.shape[1] Y_train = self._get_output_neurons(batch_iter) yield (np.reshape(X_train, [self.num_seq_per_batch, input_dim, 1]), Y_train.astype(np.float32)) ```
{ "source": "joseluis8906/acme_bank", "score": 2 }
#### File: acme_bank/src/application_test.py ```python import unittest from dto import Transaction, Step, Trigger from infra import AccountInMemoryRepo, DollarFakeFetcher from domain import Account from application import Workflow, StepActionError class TestWorkflow(unittest.TestCase): def test_exec_without_errors(self): trigger = Trigger({'user_id': '10', 'pin': '1234'}, None, None) steps = [ Step(None, None, 'validate_account', None), Step(None, None, 'get_account_balance', None), Step(None, {'money': { 'value': 10000 }}, 'withdraw_in_pesos', None), Step(None, {'money': { 'value': 3 }}, 'withdraw_in_dollars', None), ] transaction = Transaction(steps, trigger) account_repo = AccountInMemoryRepo() account_repo.save(Account('10', '1234', 50000)) dollar_fetcher = DollarFakeFetcher() workflow = Workflow(account_repo, account_repo, dollar_fetcher) workflow.run(transaction) account = account_repo.get_by_id('10') self.assertEqual(account.balance(), 29623) def test_exec_return_error(self): with self.assertRaises(StepActionError): trigger = Trigger({'user_id': '11', 'pin': '4321'}, None, None) steps = [ Step(None, None, 'validate_account', None), Step(None, None, 'get_account_balance', None), Step(None, {'money': { 'value': 10000 }}, 'withdraw_in_pesos', None), Step(None, {'money': { 'value': 3 }}, 'withdraw_in_euros', None), ] transaction = Transaction(steps, trigger) account_repo = AccountInMemoryRepo() account_repo.save(Account('11', '4321', 50000)) dollar_fetcher = DollarFakeFetcher() workflow = Workflow(account_repo, account_repo, dollar_fetcher) workflow.run(transaction) account = account_repo.get_by_id('10') self.assertEqual(account.balance(), 29623) ``` #### File: acme_bank/src/domain.py ```python class PinValidationError(Exception): pass class PinChangingError(Exception): pass class AccountWithoutBalanceError(Exception): pass class Account: def __init__(self, id: str, pin: str, balance: float): self.__id = id self.__pin = pin self.__balance = balance def id(self) -> str: return self.__id def verify_pin(self, pin) -> bool: if not isinstance(pin, str): pin = str(pin) if self.__pin != pin: raise PinValidationError('invalid pin') return True def update_pin(self, pin: str) -> None: if self.__pin == pin: raise PinChangingError('old and new pin are the same') self.__pin = pin def balance(self) -> float: return self.__balance def add_balance(self, amount: float) -> None: self.__balance += amount def sub_balance(self, amount: float) -> None: if self.__balance < amount: raise AccountWithoutBalanceError('insufficient balance') self.__balance -= amount def to_dict(self): return dict(user_id=self.__id, pin=self.__pin, balance=self.__balance) @classmethod def from_dict(cls, raw: dict): return cls(raw['user_id'], raw['pin'], int(raw['balance'])) ```
{ "source": "joseluis8906/fancychat", "score": 2 }
#### File: fancychat/bin/FancyChat.py ```python import gi gi.require_version("Gtk", "3.0") import gi.repository.Gtk as Gtk import gi.repository.Gdk as Gdk from fancychat.TitleBar import TitleBar from fancychat.ScrollView import ScrollView from fancychat.MsgArrive import MsgArrive from fancychat.MsgSend import MsgSend from fancychat.Editor import Editor class Restaurantic(Gtk.Window): def __init__(self): Gtk.Window.__init__(self, title="Fancy Chat") self.set_resizable(False) self.set_default_size(360, 512) self._container = Gtk.Box(orientation=Gtk.Orientation.VERTICAL) self.add(self._container) self.title_bar = TitleBar() self._container.pack_start(self.title_bar, False, True, 0) self.scroll_view = ScrollView() self._container.pack_start(self.scroll_view, True, True, 0) self.scroll_view.append(MsgArrive("Message arrive...")) self.scroll_view.append(MsgSend("Message send...")) self.editor = Editor() self._container.pack_start(self.editor, False, False, 0) if __name__ == '__main__': style_provider = Gtk.CssProvider() style_provider.load_from_path("share/fancychat/styles.css") Gtk.StyleContext.add_provider_for_screen( Gdk.Screen.get_default(), style_provider, Gtk.STYLE_PROVIDER_PRIORITY_APPLICATION ) window = Restaurantic() window.connect("delete-event", Gtk.main_quit) window.show_all() Gtk.main() ```
{ "source": "joseluis8906/tests", "score": 2 }
#### File: python/arbol/arbol.py ```python import gi gi.require_version ("Gtk", "3.0") from gi.repository import Gtk from page1 import Page1 from page2 import Page2 from page3 import Page3 class ArbolDecision(Gtk.Window): def __init__(self): Gtk.Window.__init__(self, title="Árbol De Decisión") self.set_default_size(256, 600) self.notebook = Gtk.Notebook() self.add(self.notebook) self.page1 = Page1() self.notebook.append_page(self.page1, Gtk.Label('Tablas')) self.page2 = Page2() self.notebook.append_page(self.page2, Gtk.Label('Gráfico')) self.page3 = Page3() self.notebook.append_page(self.page3, Gtk.Label('Solución')) self.page1.btn_update.connect("clicked", self.Guardar) def Guardar(self, ev): val_list = self.page1.GetText() t1c1 = val_list[0][0]+" ("+val_list[0][1]+")" t2c1 = val_list[0][2]+" ("+val_list[0][3]+")" t3c1 = val_list[0][4]+" ("+val_list[0][5]+")" t1c2 = val_list[0][6]+" ("+val_list[0][7]+")" t2c2 = val_list[0][8]+" ("+val_list[0][9]+")" t3c2 = val_list[0][10]+" ("+val_list[0][11]+")" t1c3 = val_list[0][6]+" ("+val_list[0][7]+")" t2c3 = val_list[0][8]+" ("+val_list[0][9]+")" t3c3 = val_list[0][10]+" ("+val_list[0][11]+")" self.page2.UpdateData(t1c1,t2c1,t3c1,t1c2,t2c2,t3c2,t1c3,t2c3,t3c3) value_list = self.page1.GetValue() self.page3.UpdateData(value_list[0][0],value_list[0][1],value_list[0][2],value_list[0][3],value_list[0][4],value_list[0][5],value_list[0][6],value_list[0][7],value_list[0][8],value_list[0][9],value_list[0][10],value_list[0][11],value_list[1][0],value_list[1][1],value_list[1][2],value_list[1][3]) self.page3.Renderize() def main(): win = ArbolDecision() win.connect("delete-event", Gtk.main_quit) win.show_all() Gtk.main() if __name__ == "__main__": main() ``` #### File: python/arbol/tblcifven.py ```python import gi gi.require_version ("Gtk", "3.0") from gi.repository import Gtk, Gio, Gdk from probentry import ProbEntry from costoentry import CostoEntry class TblCifVen(Gtk.Grid): def __init__(self): Gtk.Grid.__init__(self) self.set_column_spacing (1) self.set_row_spacing (1) self.set_column_homogeneous (False) self.insert_column(1) self.insert_column(2) self.insert_column(3) self.insert_row(1) self.insert_row(2) self.insert_row(3) self.insert_row(4) self.lbl_cifra_de_ventas = Gtk.Label('Tabla Cifra De Ventas') self.attach(self.lbl_cifra_de_ventas, 0, 0, 4, 1) ####### sin servicio self.lbl_sin_servicio = Gtk.Label('Sin Servicio') self.attach(self.lbl_sin_servicio, 0, 1, 2, 1) self.lbl_ingresos1 = Gtk.Label('Ingresos') self.attach(self.lbl_ingresos1, 0, 2, 1, 1) self.lbl_prob1 = Gtk.Label('Probabilidad') self.attach(self.lbl_prob1, 1, 2, 1, 1) self.txt_ingreso1_sin = CostoEntry() self.attach(self.txt_ingreso1_sin, 0, 3, 1, 1) self.txt_ingreso2_sin = CostoEntry() self.attach(self.txt_ingreso2_sin, 0, 4, 1, 1) self.txt_ingreso3_sin = CostoEntry() self.attach(self.txt_ingreso3_sin, 0, 5, 1, 1) self.txt_prob1_sin = ProbEntry() self.attach(self.txt_prob1_sin, 1, 3, 1, 1) self.txt_prob2_sin = ProbEntry() self.attach(self.txt_prob2_sin, 1, 4, 1, 1) self.txt_prob3_sin = ProbEntry() self.attach(self.txt_prob3_sin, 1, 5, 1, 1) ##### con servicio self.lbl_con_servicio = Gtk.Label('Con Servicio') self.attach(self.lbl_con_servicio, 2, 1, 2, 1) self.lbl_ingresos2 = Gtk.Label('Ingresos') self.attach(self.lbl_ingresos2, 2, 2, 1, 1) self.lbl_prob2 = Gtk.Label('Probabilidad') self.attach(self.lbl_prob2, 3, 2, 1, 1) self.txt_ingreso1_con = CostoEntry() self.attach(self.txt_ingreso1_con, 2, 3, 1, 1) self.txt_ingreso2_con = CostoEntry() self.attach(self.txt_ingreso2_con, 2, 4, 1, 1) self.txt_ingreso3_con = CostoEntry() self.attach(self.txt_ingreso3_con, 2, 5, 1, 1) self.txt_prob1_con = ProbEntry() self.attach(self.txt_prob1_con, 3, 3, 1, 1) self.txt_prob2_con = ProbEntry() self.attach(self.txt_prob2_con, 3, 4, 1, 1) self.txt_prob3_con = ProbEntry() self.attach(self.txt_prob3_con, 3, 5, 1, 1) def GetText(self): return([self.txt_ingreso1_sin.get_text(), self.txt_prob1_sin.get_text(), self.txt_ingreso2_sin.get_text(), self.txt_prob2_sin.get_text(), self.txt_ingreso3_sin.get_text(), self.txt_prob3_sin.get_text(), self.txt_ingreso1_con.get_text(), self.txt_prob1_con.get_text(), self.txt_ingreso2_con.get_text(), self.txt_prob2_con.get_text(), self.txt_ingreso3_con.get_text(), self.txt_prob3_con.get_text()]) def GetValue(self): return([self.txt_ingreso1_sin.GetIntValue(), self.txt_prob1_sin.GetPercentValue(), self.txt_ingreso2_sin.GetIntValue(), self.txt_prob2_sin.GetPercentValue(), self.txt_ingreso3_sin.GetIntValue(), self.txt_prob3_sin.GetPercentValue(), self.txt_ingreso1_con.GetIntValue(), self.txt_prob1_con.GetPercentValue(), self.txt_ingreso2_con.GetIntValue(), self.txt_prob2_con.GetPercentValue(), self.txt_ingreso3_con.GetIntValue(), self.txt_prob3_con.GetPercentValue()]) ``` #### File: pagord/controllers/certificado_disponibilidad_controller.py ```python import datetime from PyQt4 import QtGui from models.models import session from models.cerdisp_model import CerdispModel def initData(self, query_orden): self.text_num_certi_disp1.setText(QtGui.QApplication.translate('Orden', u"", None, QtGui.QApplication.UnicodeUTF8)) self.text_num_certi_disp2.setText(QtGui.QApplication.translate('Orden', u"", None, QtGui.QApplication.UnicodeUTF8)) self.text_num_certi_disp3.setText(QtGui.QApplication.translate('Orden', u"", None, QtGui.QApplication.UnicodeUTF8)) self.date_fecha_certi_disp1.setDate(datetime.date.today()) self.date_fecha_certi_disp2.setDate(datetime.date.today()) self.date_fecha_certi_disp3.setDate(datetime.date.today()) def translateView(self): self.setTitle(QtGui.QApplication.translate('Orden', 'Certificados de disponibilidad', None, QtGui.QApplication.UnicodeUTF8)) self.label_num_certi_disp.setText(QtGui.QApplication.translate('Orden', 'Número', None, QtGui.QApplication.UnicodeUTF8)) self.label_fecha_certi_disp.setText(QtGui.QApplication.translate('Orden', 'Fecha', None, QtGui.QApplication.UnicodeUTF8)) self.text_num_certi_disp1.setMinimumWidth(120) self.text_num_certi_disp2.setMinimumWidth(120) self.text_num_certi_disp3.setMinimumWidth(120) self.date_fecha_certi_disp1.setCalendarPopup(True) self.date_fecha_certi_disp2.setCalendarPopup(True) self.date_fecha_certi_disp3.setCalendarPopup(True) def updateData(self, query_orden): if(len(query_orden)==0): self.init_data(query_orden) else: orden = query_orden[0] try: self.text_num_certi_disp1.setText(QtGui.QApplication.translate('Orden', u"%s"%(orden.cerdisp[0].get_numero()), None, QtGui.QApplication.UnicodeUTF8)) self.date_fecha_certi_disp1.setDate(datetime.date(orden.cerdisp[0].get_year(), orden.cerdisp[0].get_month(), orden.cerdisp[0].get_day())) self.text_num_certi_disp2.setText(QtGui.QApplication.translate('Orden', u"%s"%(orden.cerdisp[1].get_numero()), None, QtGui.QApplication.UnicodeUTF8)) self.date_fecha_certi_disp2.setDate(datetime.date(orden.cerdisp[1].get_year(), orden.cerdisp[1].get_month(), orden.cerdisp[1].get_day())) self.text_num_certi_disp3.setText(QtGui.QApplication.translate('Orden', u"%s"%(orden.cerdisp[2].get_numero()), None, QtGui.QApplication.UnicodeUTF8)) self.date_fecha_certi_disp3.setDate(datetime.date(orden.cerdisp[2].get_year(), orden.cerdisp[2].get_month(), orden.cerdisp[2].get_day())) except: pass def checkValidacion(self): if self.text_num_certi_disp1.validacion(): if self.text_num_certi_disp2.validacion(): if self.text_num_certi_disp3.validacion(): fechas_app_cerdisp = [self.date_fecha_certi_disp1, self.date_fecha_certi_disp2, self.date_fecha_certi_disp3] for index, cerdisp in enumerate([self.text_num_certi_disp1, self.text_num_certi_disp2, self.text_num_certi_disp3]): if len(cerdisp.text()) > 0: fecha_app_cerdisp = datetime.date(fechas_app_cerdisp[index].date().year(), fechas_app_cerdisp[index].date().month(), fechas_app_cerdisp[index].date().day()) if len(self.parent().parent().OrdenModel.get_cerdisp()) > index: fecha_query = self.parent().parent().OrdenModel.cerdisp[index].get_fecha() if self.parent().parent().OrdenModel.cerdisp[index].get_numero() != u"%s"%(cerdisp.text()) or fecha_query != fecha_app_cerdisp: self.parent().parent().OrdenModel.cerdisp[index].set_numero(u"%s"%(cerdisp.text())) self.parent().parent().OrdenModel.cerdisp[index].set_fecha(fecha_app_cerdisp) else: self.parent().parent().OrdenModel.cerdisp.append(CerdispModel(u"%s"%(cerdisp.text()), fecha_app_cerdisp)) else: if len(self.parent().parent().OrdenModel.get_cerdisp()) > index: session.delete(self.parent().parent().OrdenModel.cerdisp[index]) return True return False def Save(self): if self.check_validacion(): return True return False ``` #### File: pagord/controllers/descuentos_adiciones_controller.py ```python from PyQt4 import QtGui from models.discriminacion_model import DiscriminacionModel def initData(self, query_orden): self.text_iva.setText(QtGui.QApplication.translate('Orden', u"", None, QtGui.QApplication.UnicodeUTF8)) self.text_ret_fuente.setText(QtGui.QApplication.translate('Orden', u"", None, QtGui.QApplication.UnicodeUTF8)) self.text_ret_iva.setText(QtGui.QApplication.translate('Orden', u"", None, QtGui.QApplication.UnicodeUTF8)) self.checkbox_imp_municipales.setChecked(False) self.checkbox_auto_retenedor.setChecked(False) self.text_otros_concepto.setText(QtGui.QApplication.translate('Orden', u"", None, QtGui.QApplication.UnicodeUTF8)) self.text_otros_valor.setText(QtGui.QApplication.translate('Orden', u"", None, QtGui.QApplication.UnicodeUTF8)) def translateView(self): self.setTitle(QtGui.QApplication.translate('Orden', 'Descuentos y adiciones', None, QtGui.QApplication.UnicodeUTF8)) self.label_iva.setText(QtGui.QApplication.translate('Orden', 'Iva $', None, QtGui.QApplication.UnicodeUTF8)) self.label_ret_iva.setText(QtGui.QApplication.translate('Orden', 'Reteiva %', None, QtGui.QApplication.UnicodeUTF8)) self.label_auto_retenedor.setText(QtGui.QApplication.translate('Orden', 'Autorretenedor', None, QtGui.QApplication.UnicodeUTF8)) self.label_imp_municipales.setText(QtGui.QApplication.translate('Orden', 'Impuestos municipales', None, QtGui.QApplication.UnicodeUTF8)) self.label_ret_fuente.setText(QtGui.QApplication.translate('Orden', 'Retefuente % ', None, QtGui.QApplication.UnicodeUTF8)) self.label_otros_concepto.setText(QtGui.QApplication.translate('Orden', 'Concepto otros (item1,item2,...) ', None, QtGui.QApplication.UnicodeUTF8)) self.label_otros.setText(QtGui.QApplication.translate('Orden', 'Valor otros (item1+item2+...) ', None, QtGui.QApplication.UnicodeUTF8)) def updateData(self, query_orden): if(len(query_orden)==0): self.init_data(query_orden) else: discriminacion = query_orden[0].discriminacion[0] self.text_iva.setText(QtGui.QApplication.translate('Orden', u"%s"%(discriminacion.get_iva()), None, QtGui.QApplication.UnicodeUTF8)) self.text_ret_fuente.setText(QtGui.QApplication.translate('Orden', u"%s"%(discriminacion.get_ret_fuente()), None, QtGui.QApplication.UnicodeUTF8)) self.text_ret_iva.setText(QtGui.QApplication.translate('Orden', u"%s"%(discriminacion.get_ret_iva()), None, QtGui.QApplication.UnicodeUTF8)) self.checkbox_auto_retenedor.setChecked(bool(discriminacion.get_auto_retenedor())) self.checkbox_imp_municipales.setChecked(bool(discriminacion.get_imp_municipales())) self.text_otros_concepto.setText(QtGui.QApplication.translate('Orden', u"%s"%(discriminacion.get_otros_concepto()), None, QtGui.QApplication.UnicodeUTF8)) self.text_otros_valor.setText(QtGui.QApplication.translate('Orden', u"%s"%(discriminacion.get_otros_valor()), None, QtGui.QApplication.UnicodeUTF8)) def checkValidacion(self): if self.text_iva.validacion(): if self.text_ret_fuente.validacion(): if self.text_ret_iva.validacion(): if self.text_otros_concepto.validacion(): if self.text_otros_valor.validacion(): if len(self.parent().OrdenModel.get_discriminacion()) > 0: self.parent().OrdenModel.discriminacion[0].set_iva(u"%s"%(self.text_iva.text())) self.parent().OrdenModel.discriminacion[0].set_ret_fuente(u"%s"%(self.text_ret_fuente.text())) self.parent().OrdenModel.discriminacion[0].set_ret_iva(u"%s"%(self.text_ret_iva.text())) self.parent().OrdenModel.discriminacion[0].set_auto_retenedor(bool(self.checkbox_auto_retenedor.checkState())) self.parent().OrdenModel.discriminacion[0].set_imp_municipales(bool(self.checkbox_imp_municipales.checkState())) self.parent().OrdenModel.discriminacion[0].set_otros_concepto(u"%s"%(self.text_otros_concepto.text())) self.parent().OrdenModel.discriminacion[0].set_otros_valor(u"%s"%(self.text_otros_valor.text())) else: self.parent().OrdenModel.discriminacion.append(DiscriminacionModel(u"%s"%(self.text_iva.text()), u"%s"%(self.text_ret_fuente.text()), u"%s"%(self.text_ret_iva.text()), bool(self.checkbox_auto_retenedor.checkState()), bool(self.checkbox_imp_municipales.checkState()), u"%s"%(self.text_otros_concepto.text()), u"%s"%(self.text_otros_valor.text()))) return True return False def Save(self): if self.check_validacion(): return True return False ``` #### File: pagord/views/barra_menu_view.py ```python from PyQt4 import QtGui class BarraMenuView(QtGui.QMenuBar): def __init__(self, parent): super(BarraMenuView, self).__init__(parent) accion_salir = QtGui.QAction(QtGui.QIcon('exit.png'), '&Salir', self) accion_salir.setStatusTip(u'Salir') accion_salir.triggered.connect(QtGui.qApp.quit) self.archivo = self.addMenu(u'&Archivo') self.archivo.addAction(accion_salir) accion_dialogo = QtGui.QAction(QtGui.QIcon('configuracion.png'), u'&Búsqueda', self) accion_dialogo.setStatusTip(u'Búsqueda') accion_dialogo.triggered.connect(self.parent().dialogo_busqueda) self.opciones = self.addMenu(u'&Opciones') self.opciones.addAction(accion_dialogo) def configuracion(self): print("llamando a configuración") ``` #### File: pagord/views/certificado_registro_presupuestal_view.py ```python from PyQt4 import QtGui from campos import CampoCad from controllers.certificado_registro_presupuestal_controller import initData, translateView, updateData, checkValidacion, Save class CertificadoRegistroPresupuestalView(QtGui.QGroupBox): def __init__(self, parent=None): super(CertificadoRegistroPresupuestalView, self).__init__(parent) self.conten_colum_certi_reg = QtGui.QHBoxLayout() self.columna_num_certi_reg = QtGui.QVBoxLayout() self.columna_fechas_certi_reg = QtGui.QVBoxLayout() self.label_num_certi_reg = QtGui.QLabel(self) self.label_fecha_certi_reg = QtGui.QLabel(self) self.text_num_certi_reg1 = CampoCad(self, u"Certificado Registro Presupuestal 1") self.date_fecha_certi_reg1 = QtGui.QDateEdit(self) self.text_num_certi_reg2 = CampoCad(self, u"Certificado Registro Presupuestal 2") self.date_fecha_certi_reg2 = QtGui.QDateEdit(self) self.text_num_certi_reg3 = CampoCad(self, u"Certificado Registro Presupuestal 3") self.date_fecha_certi_reg3 = QtGui.QDateEdit(self) self.conten_colum_certi_reg.addLayout(self.columna_num_certi_reg) self.conten_colum_certi_reg.addLayout(self.columna_fechas_certi_reg) self.columna_num_certi_reg.addWidget(self.label_num_certi_reg) self.columna_fechas_certi_reg.addWidget(self.label_fecha_certi_reg) self.columna_num_certi_reg.addWidget(self.text_num_certi_reg1) self.columna_fechas_certi_reg.addWidget(self.date_fecha_certi_reg1) self.columna_num_certi_reg.addWidget(self.text_num_certi_reg2) self.columna_fechas_certi_reg.addWidget(self.date_fecha_certi_reg2) self.columna_num_certi_reg.addWidget(self.text_num_certi_reg3) self.columna_fechas_certi_reg.addWidget(self.date_fecha_certi_reg3) self.setLayout(self.conten_colum_certi_reg) self.translate_view() init_data = initData translate_view = translateView update_data = updateData check_validacion = checkValidacion save = Save ``` #### File: pagord/views/descuentos_adiciones_view.py ```python from PyQt4 import QtGui from campos import CampoNum, CampoCad, CampoDec, ConceptoOtros, ValorOtros from controllers.descuentos_adiciones_controller import initData, translateView, updateData, checkValidacion, Save class DescuentosAdicionesView(QtGui.QGroupBox): def __init__(self, parent=None): super(DescuentosAdicionesView, self).__init__(parent) self.contenedor_descuentos = QtGui.QHBoxLayout() self.columna1 = QtGui.QVBoxLayout() self.columna2 = QtGui.QVBoxLayout() self.columna3 = QtGui.QVBoxLayout() self.columna_auto_retenedor = QtGui.QVBoxLayout() self.columna_imp_municipales = QtGui.QVBoxLayout() self.fila_columnas_checkbox = QtGui.QHBoxLayout() self.label_iva = QtGui.QLabel(self) self.text_iva = CampoNum(self, u"Iva") self.label_ret_iva = QtGui.QLabel(self) self.text_ret_iva = CampoDec(self, u"Reteiva") self.label_imp_municipales = QtGui.QLabel(self) self.checkbox_imp_municipales = QtGui.QCheckBox(self) self.label_auto_retenedor = QtGui.QLabel(self) self.checkbox_auto_retenedor = QtGui.QCheckBox(self) self.label_ret_fuente = QtGui.QLabel(self) self.text_ret_fuente = CampoDec(self, u"Retefuente") self.label_otros_concepto = QtGui.QLabel(self) self.text_otros_concepto = ConceptoOtros(self, u"Concepto Otros") self.label_otros = QtGui.QLabel(self) self.text_otros_valor = ValorOtros(self, u"Valor Otros") self.contenedor_descuentos.addLayout(self.columna1) self.contenedor_descuentos.addLayout(self.columna2) self.contenedor_descuentos.addLayout(self.columna3) self.columna1.addWidget(self.label_iva) self.columna1.addWidget(self.text_iva) self.columna1.addWidget(self.label_ret_iva) self.columna1.addWidget(self.text_ret_iva) self.columna2.addWidget(self.label_ret_fuente) self.columna2.addWidget(self.text_ret_fuente) self.columna2.addLayout(self.fila_columnas_checkbox) self.fila_columnas_checkbox.addLayout(self.columna_auto_retenedor) self.fila_columnas_checkbox.addLayout(self.columna_imp_municipales) self.columna_auto_retenedor.addWidget(self.label_auto_retenedor) self.columna_auto_retenedor.addWidget(self.checkbox_auto_retenedor) self.columna_imp_municipales.addWidget(self.label_imp_municipales) self.columna_imp_municipales.addWidget(self.checkbox_imp_municipales) self.columna3.addWidget(self.label_otros_concepto) self.columna3.addWidget(self.text_otros_concepto) self.columna3.addWidget(self.label_otros) self.columna3.addWidget(self.text_otros_valor) self.setLayout(self.contenedor_descuentos) self.translate_view() init_data = initData translate_view = translateView update_data = updateData check_validacion = checkValidacion save = Save ```
{ "source": "joseluisbezerra/recipe-api", "score": 3 }
#### File: core/tests/test_admin.py ```python from rest_framework import status from django.contrib.auth import get_user_model from django.urls import reverse from django.test import ( TestCase, Client ) User = get_user_model() class AdminSiteTests(TestCase): def setUp(self): self.client = Client() admin_user = User.objects.create_superuser( email='<EMAIL>', password='<PASSWORD>' ) self.client.force_login(admin_user) self.user = User.objects.create_user( email='<EMAIL>', password='<PASSWORD>', name='Foo bar', ) def test_users_listed(self): """Test that users are listed on the user page""" url = reverse('admin:core_user_changelist') response = self.client.get(url) self.assertContains(response, self.user.name) self.assertContains(response, self.user.email) def test_user_page_change(self): """Test that the user edit page works""" url = reverse( 'admin:core_user_change', args=[self.user.id] ) response = self.client.get(url) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_create_user_page(self): """Test that the create user page works""" url = reverse('admin:core_user_add') response = self.client.get(url) self.assertEqual(response.status_code, status.HTTP_200_OK) ```
{ "source": "joseluisbn/PythonLearningProject", "score": 4 }
#### File: PythonLearningProject/src/class_create.py ```python class Human: # Attributes def __init__(self, name, surname, genre): # __init__ is the constructor self.name = name self.surname = surname self.genre = genre # Methods def develop(self, hours): self.hours = 0 print(f"is developing for {hours} hours") def sleep(self): print("Zzzzzzzz") # Object my_human = Human("Hironobu", "Sakaguchi", "male") print(my_human.name, my_human.surname) ``` #### File: PythonLearningProject/src/functions.py ```python def user(): name = input("What's your name?") age = input("How old are you?") print(name + age) # Functions with parameters user() def another_user(name, age): print(f"Your name is {name} and your age is {age}") another_user("Luis", 34) # With return def multiply(num1, num2): total = num1 * num2 return total ```
{ "source": "joseluisdiaz/vamonostro-IoT", "score": 3 }
#### File: joseluisdiaz/vamonostro-IoT/mqtt_client.py ```python import paho.mqtt.client as mqtt import requests IFTTT_URL = "https://maker.ifttt.com/trigger/" IFTTT_EVENT = "motion_detected" IFTTT_KEY = "<KEY>" MQTT_URL = "iot.eclipse.org" MQTT_TOPIC = "v2/zolertia/tutorialthings/66" def on_connect(client, userdata, flags, rc): print("Connected with result code " + str(rc)) print("Subscribed to " + MQTT_TOPIC) client.subscribe(MQTT_TOPIC) # The callback for when a PUBLISH message is received from the server. def on_message(client, userdata, msg): print(msg.topic + " " + str(msg.payload)) requests.post(IFTTT_URL + IFTTT_EVENT + "/with/key/" + IFTTT_KEY) client = mqtt.Client() client.on_connect = on_connect client.on_message = on_message print("connecting to " + MQTT_URL) client.connect(MQTT_URL, 1883, 60) client.loop_forever() ```
{ "source": "joseluisGA/videojuegos", "score": 3 }
#### File: videojuegos/arcanoid/ball.py ```python import pygame from settings import * from pygame import Vector2 import random from brick import Brick class Ball(pygame.sprite.Sprite): def __init__(self, x, y, groups, ball_image, bounce_fx): pygame.sprite.Sprite.__init__(self, groups) #self.image = pygame.Surface((BALL_WIDTH, BALL_HEIGHT)) #self.image.fill(BLUISHGREY) self.image = ball_image self.rect = self.image.get_rect() self.rect.center = Vector2(x, y) self.velocity = Vector2(0, 0) self.bounce_fx = bounce_fx self.asleep = True def update(self, bricks, pad, ball_lost_callback): if self.asleep: if pad.velocity != 0: self.velocity = Vector2(pad.velocity, -5).normalize() self.asleep = False return position = self.rect.center + self.velocity.normalize() * BALL_SPEED self.rect.centerx = position.x self.collide_with('x', bricks) self.rect.centery = position.y self.collide_with('y', bricks) if self.rect.centerx < 0: self.rect.centerx = 0 self.velocity.x *= -1 self.bounce_fx.play() if self.rect.centerx > WIDTH-1: self.rect.centerx = WIDTH-1 self.velocity.x *= -1 self.bounce_fx.play() if self.rect.centery < 0: self.rect.centery = 0 self.velocity.y *= -1 self.bounce_fx.play() if self.rect.centery > HEIGHT-1: self.kill() ball_lost_callback() def collide_with(self, dir, groups): hits = pygame.sprite.spritecollide(self, groups, False) if len(hits) == 0: return if dir == 'x': if self.velocity.x > 0: self.rect.right = hits[0].rect.left if self.velocity.x < 0: self.rect.left = hits[0].rect.right self.velocity.x *= -1 if dir == 'y': if self.velocity.y > 0: self.rect.bottom = hits[0].rect.top if self.velocity.y < 0: self.rect.top = hits[0].rect.bottom self.velocity.y *= -1 if type(hits[0]) == Brick: hits[0].breakIt() ``` #### File: videojuegos/arcanoid/game.py ```python import pygame from settings import * from pygame import Vector2 import math from ball import Ball from pad import Pad from brick import Brick import random from os import path # El jugador controla una PALA que mueve en horizontal, con incercia # Debe evitar que la/s BOLAS caigan por la parte inferior de la pantalla # Las BOLAS van rebotando por el espacio de juego contra los laterales, # contra la pala del jugador y los LADRILLOS # En cada FASE hay un conjunto de LADRILLOS que deben ser DESTRUIDOS, # haciendo chocar la bola con ellos. # La fase termina si todos los LADRILLOS son DESTRUIDOS # Si una bola cae por la parte inferior de la pantalla se retira de la partida # La partida termina si no hay ninguna bola en pantalla # AÑADIDO: Muros de ladrillos con distintas formas class Game: def __init__(self): pygame.mixer.pre_init(44100, -16, 2, 1024) pygame.init() pygame.mixer.init() self.screen = pygame.display.set_mode([WIDTH, HEIGHT]) pygame.display.set_caption(TITLE) self.clock = pygame.time.Clock() self.load_data() def load_data(self): root_folder = path.dirname(__file__) sound_folder = path.join(root_folder, "sound") img_folder = path.join(root_folder, "img") self.load_images(img_folder) self.load_sounds(sound_folder) def load_images(self, img_folder): self.ball_image = pygame.image.load(path.join(img_folder, "ballBlue.png")).convert_alpha() self.pad_image = pygame.image.load(path.join(img_folder, "paddleRed.png")).convert_alpha() brick_colors=["blue", "green", "grey", "purple", "yellow", "red"] self.brick_images = [] for color in brick_colors: filename= f"element_{color}_rectangle.png" img = pygame.image.load(path.join(img_folder, filename)) self.brick_images.append(img) def load_sounds(self, sound_folder): self.bounce_fx = pygame.mixer.Sound(path.join(sound_folder, "bounce.wav")) self.break_fx = pygame.mixer.Sound(path.join(sound_folder, "break.wav")) self.break_fx.set_volume(0.1) def start(self): self.all_sprites = pygame.sprite.Group() self.balls = pygame.sprite.Group() self.bricks = pygame.sprite.Group() self.lifes = 3 self.pad = Pad(WIDTH//2, HEIGHT - PAD_HEIGHT*2, (self.all_sprites), self.pad_image, self.bounce_fx) #self.ball = Ball(self.pad.rect.centerx, self.pad.rect.top - PAD_HEIGHT*2, (self.balls), self.ball_image, self.bounce_fx) self.ball = self.create_ball_at(self.pad.rect.centerx, self.pad.rect.top - PAD_HEIGHT * 2) self.brick_wall() self.lifes = 5 self.score = 0 self.run() def brick_wall(self): for x in range(10): for y in range(7): brick_x = BRICK_WIDTH + x * BRICK_WIDTH + x * 5 brick_y = BRICK_HEIGHT * 2 + y * BRICK_HEIGHT + y * 5 Brick(brick_x, brick_y, (self.all_sprites, self.bricks), self.brick_images, self.break_fx) def create_ball_at(self, x, y): return Ball(x, y , (self.balls), self.ball_image, self.bounce_fx) def run(self): self.playing = True while (self.playing): self.dt = self.clock.tick(FPS) self.events() self.update() self.draw() def events(self): for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() quit() if event.type == pygame.KEYDOWN: if event.key == pygame.K_SPACE: self.powerup_multiball() def update(self): self.pad.update() self.balls.update(self.bricks, self.pad, self.ball_lost) hits = pygame.sprite.spritecollide(self.pad, self.balls, False) for ball in hits: self.pad.hit(ball) def ball_lost(self): if len(self.balls.sprites())>0: return self.pad.velocity = 0 self.lifes-=1 if self.lifes >0: self.create_ball_at(self.pad.rect.centerx, self.pad.rect.top - PAD_HEIGHT *2) else: print("Game Over") def powerup_multiball(self): for _ in range(5): reference_ball = self.balls.sprites()[0] ball = self.create_ball_at(reference_ball.rect.centerx, reference_ball.rect.centery) ball.asleep = False ball.velocity = Vector2(ball.velocity.x + random.uniform(-0.5, 0.5), reference_ball.velocity.y) def draw(self): self.screen.fill(BLACK) self.all_sprites.draw(self.screen) self.balls.draw(self.screen) pygame.display.flip() game = Game() game.start() ``` #### File: videojuegos/Lunar Lander/moon.py ```python import pygame from settings import * import random import math class Moon(): def __init__(self, max_heights, min_heights): self.max_heights = math.floor(max_heights) self.min_heights = math.floor(min_heights) self.heights = [] self.landing_spot_x = 0 self.landing_spot_width = 0 def generate_terrain(self): last_height = random.randrange(self.min_heights, self.max_heights) mid_height = (self.min_heights + self.max_heights)//2 for _ in range(0, WIDTH): rnd = random.randrange(self.min_heights, self.max_heights) go_up = rnd > mid_height if go_up: last_height += random.randrange(1,5) else: last_height -= random.randrange(1,5) last_height = max(self.min_heights, min(self.max_heights, last_height)) self.heights.append(last_height) landing_spot_x = random.randrange(WIDTH * 0.15, WIDTH * 0.85) landing_spot_width = random.randrange(20,30) landing_spot_height = self.heights[landing_spot_x] for x in range(landing_spot_x-landing_spot_width, landing_spot_x+landing_spot_width): self.heights[x] = landing_spot_height self.landing_spot_x = landing_spot_x self.landing_spot_width = landing_spot_width def draw(self, surface): for x in range(0, WIDTH): pygame.draw.line(surface, RED, (x, HEIGHT), (x, HEIGHT-self.heights[x])) landing_spot_height = HEIGHT - self.heights[self.landing_spot_x] start_pos = (self.landing_spot_x - self.landing_spot_width, landing_spot_height) end_pos = (self.landing_spot_x + self.landing_spot_width, landing_spot_height) pygame.draw.line(surface, LIGHTGREY,start_pos,end_pos, 3) ``` #### File: videojuegos/Lunar Lander/rocket.py ```python import pygame from settings import * from pygame import Vector2 from moon import Moon import random class Rocket(pygame.sprite.Sprite): def __init__(self, x, y): pygame.sprite.Sprite.__init__(self) self.image = pygame.Surface((ROCKET_WIDTH, ROCKET_HEIGHT)) self.image.fill(BLUISHGREY) self.rect = self.image.get_rect() self.rect.center = Vector2(x, y) self.velocity = Vector2(0,0) self.engine = ROCKET_ENGINE self.fuel = 1 self.alive = True self.landed = False #nos permite ir moviendo cosas por el espacio def update(self, moon): if not self.alive: return if self.landed: return if self.fuel > 0: self.keyboard_input() self.velocity.y += GRAVITY self.rect.center += self.velocity if self.rect.centerx < 0: self.rect.centerx = WIDTH-1 # pasa de un lado a otro de la pantalla # self.rect.centerx = 0 # self.velocity.x *=-1 if self.rect.centerx > WIDTH-1: self.rect.centerx = 0 # self.rect.centerx = WIDTH-1 # self.velocity.x *= -1 is_grounded = self.check_landing(moon) if is_grounded: landing_velocity_ok = self.velocity.magnitude() < 3 landing_left = moon.landing_spot_x - moon.landing_spot_width landing_right = moon.landing_spot_x + moon.landing_spot_width landing_on_platform_ok = landing_left < self.rect.centerx < landing_right print(self.velocity.magnitude()) if landing_on_platform_ok and landing_velocity_ok: self.landed = True else: self.alive = False def check_landing(self, moon): x, y = self.rect.midbottom terrain_height = HEIGHT - moon.heights[x] is_grounded = y > terrain_height return is_grounded def keyboard_input(self): keystate = pygame.key.get_pressed() delta = Vector2(0, 0) if keystate[pygame.K_UP]: delta.y -= self.engine if keystate[pygame.K_LEFT]: delta.x -= self.engine if keystate[pygame.K_RIGHT]: delta.x += self.engine if not delta.magnitude() == 0: self.fuel -= ROCKET_CONSUMPTION self.fuel = max(0, min(1, self.fuel)) self.velocity += delta def draw(self, surface): surface.blit(self.image, self.rect) if not self.alive: pygame.draw.circle(surface, RED, self.rect.center, random.randrange(5,25)) ``` #### File: videojuegos/snake/fruit.py ```python import pygame from pygame.math import Vector2 from settings import * import random class Fruit(pygame.sprite.Sprite): def __init__(self, groups): pygame.sprite.Sprite.__init__(self, groups) self.image = pygame.Surface((TILESIZE, TILESIZE)) self.colors = [RED, PINK, BLUE, YELLOW] self.rect = self.image.get_rect() self.teleport() def teleport(self): x = random.randrange(0, GRID_WIDTH) y = random.randrange(0, GRID_HEIGHT) self.rect.topleft = Vector2(x, y) * TILESIZE self.image.fill(random.choice(self.colors)) ```
{ "source": "joseluismarin/python-kw-ahref", "score": 2 }
#### File: joseluismarin/python-kw-ahref/Procesar KW Explorer Ahref.py ```python import argparse import sys import pandas as pd from nltk import SnowballStemmer import spacy import es_core_news_sm from tqdm import tqdm from unidecode import unidecode import glob import re parser = argparse.ArgumentParser() parser.add_argument('-s', '--save', help='Nombre del archivo al guardar') parser.add_argument('-c', '--clean', nargs='?', const=1, type=bool, default=True, help='Elimina todos los duplicados del listado') parser.add_argument('-i', '--intent', nargs='?', const=1, type=bool, default=True, help='Activa el procesado de las intenciones de busqueda') parser.add_argument('-l', '--location', nargs='?', const=1, type=bool, default=True, help='Nombre del archivo con la base de datos de las localizaciones') args = parser.parse_args() pd.options.mode.chained_assignment = None nlp = es_core_news_sm.load() spanishstemmer=SnowballStemmer('spanish') def normalize(text): text = unidecode(str(text)) doc = nlp(text) words = [t.orth_ for t in doc if not t.is_punct | t.is_stop] lexical_tokens = [t.lower() for t in words if len(t) > 3 and t.isalpha()] return lexical_tokens def raiz(kw): #Calculamos la raiz semantica stems = [spanishstemmer.stem(wd) for wd in kw] raiz = " ".join(sorted(stems)) return raiz # Abrimos todos los archivos CSV y los agregamos a un dataframe archivos=[] files = glob.glob("entrada/*.csv") loop = tqdm(total = len(files), position = 0, leave = False) for f in files: loop.set_description("Unificando archivos...".format(f)) archivos.append(pd.read_csv(f)) loop.update(1) df=pd.concat(archivos,ignore_index='True') loop.close() print('Archivos cargados... OK') # Eliminamos duplicados if args.clean: df = df.drop_duplicates() print('Duplicados eliminados... OK') # Bucle principal de procesado loop = tqdm(total = len(df.index), position = 0, leave = False) df['Raiz semantica'] = '' print(df) for i in df.index: loop.set_description("Calculando raices...".format(i)) kw_a = normalize(df.loc[i,'Keyword']) #Calculamos la raiz semantica df.loc[i,'Raiz semantica'] = raiz(kw_a) loop.update(1) #print('Kw ' + str(index) + ' de ' + str(len(df.index))) loop.close() print('Calculado raices semanticas... OK') df = df.sort_values(by=['Raiz semantica', 'Volume'], ascending=[True,False]) df = df.reset_index(drop=True) # Agrupamos las keywords segun su raiz semantica y el volumen de busquedas loop = tqdm(total = len(df.index), position = 0, leave = False) df['Grupo'] = '' for i in df.index: loop.set_description("Agrupando...".format(i)) if i == 0: df.loc[i,'Grupo'] = df.loc[i,'Keyword'] elif df.loc[i,'Raiz semantica'] == df.loc[i-1,'Raiz semantica']: df.loc[i,'Grupo'] = df.loc[i-1,'Grupo'] else: df.loc[i,'Grupo'] = df.loc[i,'Keyword'] loop.update(1) loop.close() print('Agrupado... OK') df.to_csv('kw_procesado.csv', index=False) print('Archivo kw_procesado.csv creado... OK') gdf = (df.groupby('Grupo', as_index=False) .agg({'Volume':'sum','Clicks':'sum','Difficulty':'mean','CPC':'mean','CPS':'mean','Return Rate':'mean','Keyword':' | '.join})) # Detectamos la intencion de busqueda de la kw: Informacional, transacional, navegacional if args.intent: intenciones = pd.read_csv('Data/intenciones.csv') loop = tqdm(total = len(intenciones.index), position = 0, leave = False) gdf['Intencion'] = '' for i in intenciones.index: loop.set_description("Detectando intenciones de busqueda...".format(i)) row = gdf[gdf['Grupo'].str.match(str(intenciones.loc[i,'Patron']))] if row is not None: gdf.loc[row.index,'Intencion'] = intenciones.loc[i,'Tipo'] loop.update(1) loop.close() print('Intenciones de busqueda... OK') # Detectamos la ubicacion de la palabra clave. if args.location: ubicaciones = pd.read_csv('Data/ubicaciones.csv') loop = tqdm(total = len(ubicaciones.index), position = 0, leave = False) gdf['Ubicacion'] = '' gdf['Tipo ubicacion'] = '' for i in ubicaciones.index: loop.set_description("Detectando ubicaciones...".format(i)) row = gdf[gdf['Grupo'].str.match(str(ubicaciones.loc[i,'Ubicacion']))] if row is not None: gdf.loc[row.index,'Ubicacion'] = ubicaciones.loc[i,'Ubicacion'] gdf.loc[row.index,'Tipo ubicacion'] = ubicaciones.loc[i,'Tipo'] loop.update(1) loop.close() print('Ubicaciones... OK') gdf.to_csv('kw_agrupado.csv',index=False) print('Archivo kw_agrupado.csv creado... OK') print('Proceso finalizado... OK') ```
{ "source": "joseluis-max/AirBnB_clone", "score": 3 }
#### File: tests/test_models/test_amenity.py ```python import unittest import os import models from models.amenity import Amenity from models.base_model import BaseModel class TestAmenity(unittest.TestCase): """Amenity testing """ # testing types attributes def test_01_name_type(self): amenity = Amenity() self.assertEqual(type(amenity.name), str) # testing instance of amenity def test_02_instace_amenity(self): amenity = Amenity() self.assertIsInstance(amenity, Amenity) def test_class(self): """Test class""" self.assertEqual(Amenity.name, "") self.assertTrue(issubclass(Amenity, BaseModel)) def test_docstring(self): """ function test_docstring """ msj = "Module doesnt have docstring" obj = models.amenity.__doc__ self.assertIsNotNone(obj, msj) msj = "Classes doesnt have docstring" self.assertIsNotNone(obj, msj) def test_executable_file(self): """ function test_executable_file """ is_read_true = os.access("models/engine/file_storage.py", os.R_OK) self.assertTrue(is_read_true) is_write_true = os.access("models/engine/file_storage.py", os.W_OK) self.assertTrue(is_write_true) is_exec_true = os.access("models/engine/file_storage.py", os.X_OK) self.assertTrue(is_exec_true) ``` #### File: tests/test_models/test_review.py ```python import unittest import os import models from models.review import Review class TestReview(unittest.TestCase): """Review testing """ # testing types attributes def test_01_place_id_type(self): review = Review() self.assertEqual(type(review.place_id), str) def test_02_user_id_type(self): review = Review() self.assertEqual(type(review.user_id), str) def test_03_text_type(self): review = Review() self.assertEqual(type(review.text), str) # testing instance of review def test_04_instace_amenity(self): review = Review() self.assertIsInstance(review, Review) def test_docstring(self): """ function test_docstring """ msj = "Module doesnt have docstring" obj = models.review.__doc__ self.assertIsNotNone(obj, msj) msj = "Classes doesnt have docstring" self.assertIsNotNone(obj, msj) def test_executable_file(self): """ function test_executable_file """ is_read_true = os.access("models/engine/file_storage.py", os.R_OK) self.assertTrue(is_read_true) is_write_true = os.access("models/engine/file_storage.py", os.W_OK) self.assertTrue(is_write_true) is_exec_true = os.access("models/engine/file_storage.py", os.X_OK) self.assertTrue(is_exec_true) ```
{ "source": "joseluis-max/AirBnB_clone_v2", "score": 3 }
#### File: joseluis-max/AirBnB_clone_v2/100-clean_web_static.py ```python from fabric.api import run, local, env env.hosts = ['192.168.3.11', '172.16.31.10'] def do_clean(number=0): """ Clean files oldest """ if number == 0 or number == 1: number = 2 else: number = int(number) + 1 local("""ls -t versions | tail +{} | sed 's/^/versions\//' | xargs -d '\n' rm -rf""" .format(number)) run("""ls -t /data/web_static/releases | tail +{} | sed 's/^/data/web_static/releases\//' | xargs -d '\n' rm -rf""" .format(number)) ``` #### File: AirBnB_clone_v2/models/base_model.py ```python import uuid from datetime import datetime from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, DateTime from datetime import datetime Base = declarative_base() class BaseModel: """A base class for all hbnb models""" id = Column(String(60), unique=True, nullable=False, primary_key=True) create_at = Column(DateTime, default=datetime.utcnow, nullable=False) updated_at = Column(DateTime, default=datetime.utcnow, nullable=False) def __init__(self, *args, **kwargs): """Instatntiates a new model""" if not kwargs: self.id = str(uuid.uuid4()) self.created_at = datetime.now() self.updated_at = datetime.now() else: try: kwargs['updated_at'] = datetime\ .strptime(kwargs['updated_at'], '%Y-%m-%dT%H:%M:%S.%f') kwargs['created_at'] = \ datetime.strptime(kwargs['created_at'], '%Y-%m-%dT%H:%M:%S.%f') del kwargs['__class__'] except KeyError: kwargs['id'] = str(uuid.uuid4()) kwargs['updated_at'] = datetime.now() kwargs['created_at'] = datetime.now() self.__dict__.update(kwargs) def __str__(self): """Returns a string representation of the instance""" cls = (str(type(self)).split('.')[-1]).split('\'')[0] return '[{}] ({}) {}'.format(cls, self.id, self.__dict__) def save(self): """Updates updated_at with current time when instance is changed""" from models import storage self.updated_at = datetime.now() storage.new(self) storage.save() def to_dict(self): """Convert instance into dict format""" dictionary = {} dictionary.update(self.__dict__) dictionary.update({'__class__': (str(type(self)).split('.')[-1]).split('\'')[0]}) dictionary['created_at'] = self.created_at.isoformat() dictionary['updated_at'] = self.updated_at.isoformat() if '_sa_instance_state' in dictionary: del dictionary['_sa_instance_state'] return dictionary def delete(self): """Delete the current instance from the storage by calling the method delete """ from models import storage storage.delete(self) ``` #### File: models/engine/file_storage.py ```python import json class FileStorage: """This class manages storage of hbnb models in JSON format""" __file_path = 'file.json' __objects = {} def delete(self, obj=None): """Delete a object of __objects""" if obj is not None: for key, value in self.__objects.items(): if value == obj: del self.__objects[key] break def all(self, cls=None): """Returns a dictionary of models currently in storage""" if cls is not None: instances = {} for key, value in self.__objects.items(): if value.__class__ == cls: instances[key] = value return instances return self.__objects def new(self, obj): """Adds new object to storage dictionary""" self.all().update({obj.to_dict()['__class__'] + '.' + obj.id: obj}) def save(self): """Saves storage dictionary to file""" with open(FileStorage.__file_path, 'w') as f: temp = {} temp.update(FileStorage.__objects) for key, val in temp.items(): temp[key] = val.to_dict() json.dump(temp, f) def reload(self): """Loads storage dictionary from file""" from models.base_model import BaseModel from models.user import User from models.place import Place from models.state import State from models.city import City from models.amenity import Amenity from models.review import Review classes = { 'BaseModel': BaseModel, 'User': User, 'Place': Place, 'State': State, 'City': City, 'Amenity': Amenity, 'Review': Review } try: temp = {} with open(FileStorage.__file_path, 'r') as f: temp = json.load(f) for key, val in temp.items(): self.all()[key] = classes[val['__class__']](**val) except FileNotFoundError: pass def close(self): """ call reload() method for deserializing the JSON file to objects """ self.reload() ```
{ "source": "JoseLuisRojasAranda/coco-category-cpy", "score": 3 }
#### File: JoseLuisRojasAranda/coco-category-cpy/tests.py ```python import sys import cv2 import json def main(): render_image("../copied_images/000000434201.jpg") def render_image(img_path): image = cv2.imread(img_path) with open(img_path + ".json") as json_file: data = json.load(json_file) for box in data["bboxes"]: x = int(box["center_x"]) y = int(box["center_y"]) w = int(box["width"]) h = int(box["height"]) cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 1) cv2.imshow("test_ssd", image) cv2.waitKey(0) main() ```
{ "source": "JoseLuisRojasAranda/Sorting-ComplexityGraph", "score": 4 }
#### File: Sorting-ComplexityGraph/code/Graficador.py ```python import datetime as time import numpy as np from matplotlib import pyplot as plt import AlgoritmosOrdenacion as sort # Configuaracion inicio = 0 # Tamano inicial del arreglo aumento = 1 # Aumento del tamano del arreglo tamMax = 1000001 # Tamano maximo del arreglo #arr = [] # Arreglo generado aleatoriamente bubbleT = [] # Tiempo del bubble sort insertionT = [] # Tiempo del insertion sort mergeT = [] # Tiempo del merge sort tamX = [] # Valores de la grafica en X # Prueba los algoritmos de ordenacion y regresa un arreglo con los tiempos de ejecucion def ProbarOrdenacion(n): res = [] arr = [] # Bubble sort arr = np.random.randint(1, 1000, size=n) a = time.datetime.now() sort.BubbleSort(arr) b = time.datetime.now() res.append(int((b-a).total_seconds() * 1000000)) # Insertion sort arr = np.random.randint(1, 1000, size=n) a = time.datetime.now() sort.InsertionSort(arr) b = time.datetime.now() res.append(int((b-a).total_seconds() * 1000000)) # Merge sort arr = np.random.randint(1, 1000, size=n) a = time.datetime.now() sort.MergeSort(arr, 0, n-1) b = time.datetime.now() res.append(int((b-a).total_seconds() * 1000000)) return res # Dibuja la grafica def dibujar(): # plt.scatter(i, y) plt.plot(tamX, bubbleT, 'b') plt.plot(tamX, insertionT, 'r') plt.plot(tamX, mergeT, 'g') plt.title("Algoritmos de ordenacion") plt.xlabel("Tamano del arreglo") plt.ylabel("Tiempo") plt.legend(["bubble sort", "insertion sort", "merge sort"]) # Funcion main def main(): tam = inicio while tam < tamMax: res = ProbarOrdenacion(tam) bubbleT.append(res[0]) insertionT.append(res[1]) mergeT.append(res[2]) tamX.append(tam) tam += aumento dibujar() plt.pause(0.05) print("----------------------------------") print("Tiempos:") print(tamX) print("Bubble Sort:") print(bubbleT) print("Insertion Sort:") print(insertionT) print("Merge Sort:") print(mergeT) main() dibujar() plt.show() ```
{ "source": "JoseLuisRojasAranda/tfmodels", "score": 2 }
#### File: datasets/coco/coco_for_SSD.py ```python import tensorflow as tf import cv2 # Regresar un directoria para poder acceder modulo de otra carpeta import sys sys.path.append("..") from ops.SSD import SSD_data_pipeline, SSD_load_dataset import mobilenetv2 sys.path.append("datasets/") print(sys.path) def main(): model = mobilenetv2.MobileNetV2_SSD fmaps_arr = model.get_fmaps_array() cats = ["orange", "apple", "banana"] aspect_ratios = [1, 2, 3, 1/2, 1/3] img_size = model.get_input_size() process_for_ssd(fmaps_arr, cats, img_size, aspect_ratios) def process_for_ssd(fmaps_array, categories_array, img_size, aspect_ratios): pipeline = SSD_data_pipeline(feature_maps=fmaps_array, categories_arr=categories_array, img_size=img_size, aspect_ratios=aspect_ratios) pipeline.preprocess_tfrecord_coco("cocofruits.tfrecord", "ssd_preprocess.tfrecord") dataset = SSD_load_dataset("ssd_preprocess.tfrecord") main() ``` #### File: src/models/mobilenetv1.py ```python import tensorflow as tf from tensorflow.keras import Model from ops.conv_ops import normal_conv from ops.conv_blocks import D1x1Block # # Implementacion de MobilenetV1, suponiendo un input size de 224x224x3 # class MobileNetV1(Model): def __init__(self, classes, width_multiplier=1): super(MobileNetV1, self).__init__() self.m_layers = [] a = width_multiplier self.m_layers.append(normal_conv(int(a*32), (3, 3), strides=[1, 2, 2, 1])) self.m_layers.append(tf.keras.layers.BatchNormalization()) self.m_layers.append(tf.keras.layers.Activation("relu")) self.m_layers.append(D1x1Block(int(a*64), 1)) self.m_layers.append(D1x1Block(int(a*128), 2)) self.m_layers.append(D1x1Block(int(a*128), 1)) self.m_layers.append(D1x1Block(int(a*256), 2)) self.m_layers.append(D1x1Block(int(a*256), 1)) self.m_layers.append(D1x1Block(int(a*512), 2)) for _ in range(5): self.m_layers.append(D1x1Block(int(a*512), 1)) self.m_layers.append(D1x1Block(int(a*1024), 2)) self.m_layers.append(D1x1Block(int(a*1024), 1)) self.m_layers.append(tf.keras.layers.AveragePooling2D(pool_size=(7,7), strides=(1,1))) self.m_layers.append(tf.keras.layers.Flatten()) self.m_layers.append(tf.keras.layers.Dense(1024)) self.m_layers.append(tf.keras.layers.Dropout(0.5, name="dropout")) self.m_layers.append(tf.keras.layers.Dense(classes)) self.m_layers.append(tf.keras.layers.Activation("softmax")) def call(self, inputs, training=False): x = inputs for l in self.m_layers: # print(x.get_shape().as_list()) if (l.name == "dropout" and training == False) == False: x = l(x) return x ``` #### File: src/models/mobilenetv2.py ```python import tensorflow as tf from tensorflow.keras import Model, Sequential from tensorflow.keras import layers from models.ops.conv_ops import normal_conv, ReLU6, pointwise_conv from models.ops.conv_blocks import BottleneckResidualBlock, basic_conv_block from models.ops.conv_blocks import pwise_conv_block, separable_conv_block from models.ops.model_layers import LayerList from models.ops.SSD import SSD_layer # # Implementacion de MobilenetV2, suponiendo un input size de 224x224x3 # class MobileNetV2(Model): @staticmethod def build_model(classes, width_multiplier=1): a = width_multiplier model = Sequential() def crearBloques2(input_channels, t, c, n, s): for i in range(n): # Solo el primer bloque tiene stride 2 # a partir del segundo bottleneck el numero de input_channels es igual al output_channels if i > 0: s = 1 input_channels = c l_num = 1 l_res = BottleneckResidualBlock(input_channels, int(c), stride=s, t=t, name="layer_{}_BottleneckResidualBlock".format(l_num)) model.add(l_res) l = basic_conv_block(int(a*32), (3, 3), stride=2, dropout=0.25, activation="ReLU6", name="layer_0") model.add(l) # los bloques de bottleneck intermedios crearBloques2(32, 1, a*16, 1, 1) crearBloques2(16, 6, a*24, 2, 2) crearBloques2(24, 6, a*32, 3, 2) crearBloques2(32, 6, a*64, 4, 2) crearBloques2(69, 6, a*96, 3, 1) crearBloques2(96, 6, a*160, 3, 2) crearBloques2(160, 6, a*320, 1, 1) # ultima convolucion l = pwise_conv_block(int(a*1280), dropout=0.25, activation="ReLU6", name="layer_conv1x1") model.add(l) # Average Pooling y Fully Connected model.add(layers.AveragePooling2D(pool_size=(7,7), strides=(1,1))) model.add(layers.Flatten()) model.add(layers.Dense(1280)) model.add(layers.Dropout(0.5, name="dropout")) model.add(layers.Dense(classes)) model.add(layers.Activation("softmax")) return model # # Args: # classes: el numero de classes que realizara predicciones # width_multiplier: numero para controlar la complejidad del modelo # def __init__(self, classes, width_multiplier=1): super(MobileNetV2, self).__init__() a = width_multiplier self.classes = classes self.m_layers = LayerList() # convolucion inicial l = basic_conv_block(int(a*32), (3, 3), stride=2, dropout=0.25, activation="ReLU6", name="layer_0") self.m_layers.add(l) # los bloques de bottleneck intermedios self.crearBloques(32, 1, a*16, 1, 1) self.crearBloques(16, 6, a*24, 2, 2) self.crearBloques(24, 6, a*32, 3, 2) self.crearBloques(32, 6, a*64, 4, 2) self.crearBloques(69, 6, a*96, 3, 1) self.crearBloques(96, 6, a*160, 3, 2) self.crearBloques(160, 6, a*320, 1, 1) # ultima convolucion l = pwise_conv_block(int(a*1280), dropout=0.25, activation="ReLU6", name="layer_{}_conv1x1".format(len(self.m_layers))) self.m_layers.add(l) # Average Pooling y Fully Connected self.m_layers.add(layers.AveragePooling2D(pool_size=(7,7), strides=(1,1)), training_arg=False) self.m_layers.add(layers.Flatten(), training_arg=False) self.m_layers.add(layers.Dense(1280)) self.m_layers.add(layers.Dropout(0.5, name="dropout"), only_training=True) self.m_layers.add(layers.Dense(classes)) self.m_layers.add(layers.Activation("softmax")) # Crea BottleneckResidualBlock n veces def crearBloques(self, input_channels, t, c, n, s): for i in range(n): # Solo el primer bloque tiene stride 2 # a partir del segundo bottleneck el numero de input_channels es igual al output_channels if i > 0: s = 1 input_channels = c l_num = len(self.m_layers) l = BottleneckResidualBlock(input_channels, int(c), stride=s, t=t, name="layer_{}_BottleneckResidualBlock".format(l_num)) self.m_layers.add(l) def call(self, inputs, training=False): x = self.m_layers.feed_forward(inputs, training) return x @staticmethod def get_input_size(): return 224 # Implementacion de SSD framework para object detection con arquitectura # de MobileNetV2, SSD esta configurado de la siguiente manera segun paper: # - first SSD layer: expansion de layer 15 stride=16 # - second and rest SSD layer: ultima layer stride=32 class MobileNetV2_SSD(Model): def __init__(self, classes, width_multiplier=1): super(MobileNetV2_SSD, self).__init__() #self.classes = classes a = width_multiplier self.classes = classes self.m_layers = LayerList() self.saved_block = 13 # output que guarda para ssd_lite # convolucion inicial l = basic_conv_block(int(a*32), (3, 3), stride=2, dropout=0.25, activation="ReLU6", name="layer_0") self.m_layers.add(l) # los bloques de bottleneck intermedios self.crearBloques(32, 1, a*16, 1, 1) self.crearBloques(16, 6, a*24, 2, 2) self.crearBloques(24, 6, a*32, 3, 2) self.crearBloques(32, 6, a*64, 4, 2) self.crearBloques(69, 6, a*96, 3, 1) self.crearBloques(96, 6, a*160, 3, 2) self.crearBloques(160, 6, a*320, 1, 1) # ultima convolucion l_num = len(self.m_layers) l = pwise_conv_block(int(a*1280), dropout=0.25, activation="ReLU6", name="layer_{}_conv1x1".format(l_num)) self.m_layers.add(l, save_as="last_layer") # SSD extra feature layers l = separable_conv_block(512, 2, name="ssd_feature_layer_1") self.m_layers.add(l, save_as=l.name) l = separable_conv_block(256, 2, name="ssd_feature_layer_2") self.m_layers.add(l, save_as=l.name) l = separable_conv_block(256, 2, name="ssd_feature_layer_3") self.m_layers.add(l, save_as=l.name) l = separable_conv_block(128, 2, name="ssd_feature_layer_4") self.m_layers.add(l, save_as=l.name) # SSD classifier l = SSD_layer(classes=self.classes, num_fmap=1, total_fmaps=5, img_size=320, name="ssd_layer_1") self.m_layers.add(l, save_as=l.name, custom_input="layer_13", custom_input_index=0) l = SSD_layer(classes=self.classes, num_fmap=2, total_fmaps=5, img_size=320, name="ssd_layer_2") self.m_layers.add(l, save_as=l.name, custom_input="last_layer") l = SSD_layer(classes=self.classes, num_fmap=3, total_fmaps=5, img_size=320, name="ssd_layer_3") self.m_layers.add(l, save_as=l.name, custom_input="ssd_feature_layer_1") l = SSD_layer(classes=self.classes, num_fmap=4, total_fmaps=5, img_size=320, name="ssd_layer_4") self.m_layers.add(l, save_as=l.name, custom_input="ssd_feature_layer_2") l = SSD_layer(classes=self.classes, num_fmap=5, total_fmaps=5, img_size=320, name="ssd_layer_5") self.m_layers.add(l, save_as=l.name, custom_input="ssd_feature_layer_4") # Crea BottleneckResidualBlock n veces def crearBloques(self, input_channels, t, c, n, s): for i in range(n): # Solo el primer bloque tiene stride 2 # a partir del segundo bottleneck el numero de input_channels es igual al output_channels if i > 0: s = 1 input_channels = c l_num = len(self.m_layers) l = BottleneckResidualBlock(input_channels, int(c), stride=s, t=t, name="layer_{}_BottleneckResidualBlock".format(l_num)) save_as = None if l_num == self.saved_block: save_as = "layer_{}".format(l_num) self.m_layers.add(l, save_as=save_as) def call(self, inputs, training=False): x = self.m_layers.feed_forward(inputs, training) return x @staticmethod def get_fmaps_array(): return [(20, 20), (10, 10), (5, 5), (3, 3), (1, 1)] @staticmethod def get_input_size(): return 320 ``` #### File: models/ops/conv_blocks.py ```python import tensorflow as tf from tensorflow.keras import layers from tensorflow.nn import relu6 from models.ops import conv_ops as ops # Bloque comun de convolucion que consiste: # > conv2d # > batch normalization # > activation # > dropout class basic_conv_block(layers.Layer): # Args: # filters: entero con el numero de filtros de la convolucion # kernel: par de numeros con tamaño del kernel # strides: arreglo de strides # dropout: fraccion a la cual se le va aplicar dropout # activation: el topo de activacion de la capa def __init__(self, filters, kernel, stride=1, dropout=0.25, activation="ReLU", name="conv_block", **kwargs): super(basic_conv_block, self).__init__(name=name, **kwargs) self.filters = filters self.kernel = kernel self.strides = [1, stride, stride, 1] self.dropout = dropout self.activation = activation self.conv = ops.normal_conv(filters, kernel, strides=self.strides, name=name+"_conv2d") self.bn = layers.BatchNormalization(name=name+"_bn") if self.activation == "ReLU": self.activation = layers.Activation("relu", name=name+"_relu") if self.activation == "ReLU6": self.activation = ops.ReLU6(name=name+"_relu6") self.dropout = layers.Dropout(dropout, name=name+"_dropout") # # serializa la configuracion de la capa def get_config(self): config = super(basic_conv_block, self).get_config() config.update({ "filters": self.filters, "kernel": self.kernel, "stride": self.strides[1], "dropout": self.dropout, "activation": self.activation }) return config def call(self, inputs, training=None): # Operacion depth wise x = self.conv(inputs) x = self.bn(x) x = self.activation(x) if training == True: x = self.dropout(x) return x # Bloque de pointwise convolution # > pointwise # > batch normalization # > activation # > dropout class pwise_conv_block(layers.Layer): # Args: # filters: entero con el numero de filtros de la convolucion # strides: arreglo de strides # dropout: fraccion a la cual se le va aplicar dropout # activation: el topo de activacion de la capa def __init__(self, filters, stride=1, dropout=0.25, activation="ReLU", name="pwise_conv_block", **kwargs): super(pwise_conv_block, self).__init__(name=name, **kwargs) self.filters = filters self.strides = [1, stride, stride, 1] self.dropout = dropout self.activation = activation self.conv = ops.pointwise_conv(filters, strides=self.strides, name=name+"_pwise_conv") self.bn = layers.BatchNormalization(name=name+"_bn") if self.activation == "ReLU": self.activation = layers.Activation("relu", name=name+"_relu") if self.activation == "ReLU6": self.activation = ops.ReLU6(name=name+"_relu6") self.dropout = layers.Dropout(dropout, name=name+"_dropout") # # serializa la configuracion de la capa def get_config(self): config = super(pwise_conv_block, self).get_config() config.update({ "filters": self.filters, "stride": self.strides[1], "dropout": self.dropout, "activation": self.activation }) return config def call(self, inputs, training=None): # Operacion depth wise x = self.conv(inputs) x = self.bn(x) x = self.activation(x) if training == True: x = self.dropout(x) return x # # Bloque de capas de mobilenetV1 que realiza lo siguiente # > 3x3 Depthwise conv, stride=(1|2) # > Batch Normalization # > ReLU Activation # > 1x1xfilters Conv (Pointwise conv) # > Batch Normalization # > ReLU Activations # class separable_conv_block(layers.Layer): # # Crea el bloque segun los argumentos # Args: # filters: numero de filtros que realizara la Pointwise Conv # stride: stride de la layer Depthwise Conv, 1 o 2 # name: nombre del bloque # def __init__(self, filters, stride, dropout=0.25, name="separable_conv_block", **kwargs): super(separable_conv_block, self).__init__(name=name, **kwargs) self.filters = filters self.stride = stride self.dropout = dropout # Asegura de que el filters sea un entero if type(filters) is float: filters = int(filters) # deptwise operation self.dwise = ops.depthwise_conv((3,3), strides=[1, stride, stride, 1]) self.dwbn = layers.BatchNormalization() self.dwrelu = layers.Activation("relu") self.dwdo = layers.Dropout(dropout) #point wise operation self.pwise = ops.pointwise_conv(filters) self.pwbn = layers.BatchNormalization() self.pwrelu = layers.Activation("relu") self.pwdo = layers.Dropout(dropout) # # serializa la configuracion de la capa def get_config(self): config = super(separable_conv_block, self).get_config() config.update({ "filters": self.filters, "stride": self.stride, "dropout": self.dropout }) return config def call(self, inputs, training=None): # Operacion depth wise x = self.dwise(inputs) x = self.dwbn(x) x = self.dwrelu(x) if training == True: x = self.dwdo(x) # Luego point wise convolution x = self.pwise(x) x = self.pwbn(x) x = self.pwrelu(x) if training == True: x = self.pwdo(x) return x # # Bloque basico para MobileNetV2, realiza lo siguiente: # > (1x1xinput_channels*t) conv # > Batch Normalization # > ReLU6 # > 3x3 Depthwise conv, stride=(1|2) # > Batch Normalization # > ReLU6 # > (1x1xoutput_channels) conv # > Si stride == 1 entonces residual = output + input # class BottleneckResidualBlock(layers.Layer): # # Crea el bloque segun los argumentos # Args: # input_channels: numero de channels que entraran al bloque # filters: numero de filtros del volumen final # stride: stride de la layer Depthwise Conv, 1 o 2 # t: expansion factor, por defecto 6 # dropout: cantidad de dropout que se realizara # name: nombre del bloque # def __init__(self, input_channels, filters, stride=1, t=6, dropout=0.25, store_output=False, name="BottleneckResidualBlock", **kwargs): super(BottleneckResidualBlock, self).__init__(name=name, **kwargs) # Asegura de que el input_channels sea un entero if type(input_channels) is float: input_channels = int(input_channels) # Asegura de que el filters sea un entero if type(filters) is float: filters = int(filters) self.input_channels = input_channels self.output_channels = filters self.stride = stride self.t = t self.dropout = dropout self.store_output = store_output self.expansion_output = None self.block_output = None self.pw_exp = ops.pointwise_conv(input_channels * t, name=name + "_expansion_conv") self.bn_exp = layers.BatchNormalization(name=name+"_expansion_bn") self.do_exp = layers.Dropout(self.dropout, name=name+"_expansion_do") self.dwise = ops.depthwise_conv((3,3), strides=[1, stride, stride, 1], name=name+"_depthwise_conv") self.bn_dwise = layers.BatchNormalization(name=name+"_depthwise_bn") self.do_dwise = layers.Dropout(self.dropout, name=name+"_depthwise_do") self.pw_bottleneck = ops.pointwise_conv(self.output_channels, name=name+"_bottleneck_conv") self.bn_bottleneck = layers.BatchNormalization(name=name+"_bottleneck_bn") self.do_bottleneck = layers.Dropout(self.dropout, name=name+"_bottleneck_do") # En caso de que el input y output no concuerden, # se realiza un 1x1 conv para que concuerdes # if self.input_channels != self.output_channels: # self.pw_residual = ops.pointwise_conv(self.output_channels) # # serializa la configuracion de la capa def get_config(self): config = super(BottleneckResidualBlock, self).get_config() config.update({ "input_channels": self.input_channels, "filters": self.output_channels, "stride": self.stride, "t": self.t, "dropout": self.dropout, "store_output": self.store_output }) return config def call(self, inputs, training=None): residual = inputs # Expansion de los channels de entrada x = self.pw_exp(inputs) x = self.bn_exp(x) x = relu6(x) if training == True: x = self.do_exp(x) res_expansion = x # Realisamos la depthwise convolution x = self.dwise(x) x = self.bn_dwise(x) x = relu6(x) if training == True: x = self.do_dwise(x) res_depthwise = x # Bottleneck para reducir los channels de salida x = self.pw_bottleneck(x) x = self.bn_bottleneck(x) # checa si hay que sumar el residual if self.stride == 1: if self.input_channels == self.output_channels: x = x + residual #residual = self.pw_residual(residual) #x = x + residual if training == True: x = self.do_bottleneck(x) res_bottleneck = x return res_bottleneck ``` #### File: models/ops/conv_ops.py ```python import tensorflow as tf from tensorflow.nn import depthwise_conv2d, conv2d, bias_add, relu6 from tensorflow.keras import layers from tensorflow.keras.initializers import GlorotNormal from tensorflow.keras.regularizers import l2 # # Layer que realiza activacion ReLU6 # class ReLU6(layers.Layer): def __init__(self, name="ReLU6", **kwargs): super(ReLU6, self).__init__(name=name, **kwargs) def call(self, inputs): return relu6(inputs) # # Layer que realiza una convulucion estandar # class normal_conv(layers.Layer): # # Asigna los parametros de layer para realizar la convulucion # Args: # name: nombre de la layer # f_kernel: tamaño del kernel que realiza la convulucion # num_filters: el numero de filtros de la convulucion # strides: el stride de la convolucion # padding: el padding que se aplicara, por defecto 'SAME' # intializer: para los pesos, por defecto GlorotNormal (Xavier) # regularizer: para los pesos, por defecto L2 # use_bias: si se aplica bias despues de la convulucion # weight_decay: hyperparametro para regularizacion # def __init__(self, num_filters, f_kernel, name="normal_conv", strides=[1,1,1,1], padding="SAME", initializer=None, regularizer=None, use_bias=False, weight_decay=1e-4, **kwargs): super(normal_conv, self).__init__(name=name, **kwargs) # Asegura de que el num_filters sea un entero if type(num_filters) is float: num_filters = int(num_filters) self.f_kernel = f_kernel self.num_filters = num_filters self.strides = strides self.padding = padding self.use_bias = use_bias if initializer == None: self.w_initializer = GlorotNormal() else: self.w_initializer = initializer if regularizer == None: self.w_regularizer = l2(weight_decay) else: selw.w_regularizer = regularizer # # Serializa las propiedades de la capa def get_config(self): config = super(normal_conv, self).get_config() config.update({ "num_filters": self.num_filters, "f_kernel": self.f_kernel, "strides": self.strides, "padding": self.padding, "use_bias": self.use_bias }) return config # # Crea weights y biases dependiendo del input_shape de call() # def build(self, input_shape): # dimensiones de la convulucion nc_h, nc_w = self.f_kernel in_channels = input_shape[-1] self.w = self.add_weight(shape=[nc_h, nc_w, in_channels, self.num_filters], initializer=self.w_initializer, regularizer=self.w_regularizer, trainable=True, name=self.name + "_w") if self.use_bias: self.b = self.add_weight(shape=[self.num_filters], initializer="zeros", trainable=True, name=self.name+"_b") # # Realiza la operacion al argumento inputs # Args: # inputs: tensor de shape (batch, heigh, width, channels) # def call(self, inputs, training=None): conv = conv2d(inputs, self.w, self.strides, self.padding) if self.use_bias: return bias_add(conv, self.b) return conv # # Layer que realiza una depthwise convolution, a la # cual solo se le aplica un filtro a cada channel del input # class depthwise_conv(layers.Layer): # # Asigna los parametros de layer para realizar la depthwsie convulution # Args: # name: nombre de la layer # f_kernel: tamaño del kernel que realiza la convulucion # channel_multiplier: el numero de filtros por channel del input # strides: el stride de la convolucion # padding: el padding que se aplicara, por defecto 'SAME' # intializer: para los pesos, por defecto GlorotNormal (Xavier) # regularizer: para los pesos, por defecto L2 # use_bias: si se aplica bias despues de la convulucion # weight_decay: hyperparametro para regularizacion # def __init__(self, f_kernel, name="depthwise_conv", channel_multiplier=1, strides=[1,1,1,1], padding="SAME", initializer=None, regularizer=None, use_bias=False, weight_decay=1e-4, **kwargs): super(depthwise_conv, self).__init__(name=name, **kwargs) self.f_kernel = f_kernel self.channel_multiplier = channel_multiplier self.strides = strides self.padding = padding self.use_bias = use_bias self.weight_decay = weight_decay if initializer == None: self.w_initializer = GlorotNormal() else: self.w_initializer = initializer if regularizer == None: self.w_regularizer = l2(weight_decay) else: self.w_regularizer = regularizer # # Serializa las propiedades de la capa def get_config(self): config = super(depthwise_conv, self).get_config() config.update({ "f_kernel": self.f_kernel, "channel_multiplier": self.channel_multiplier, "strides": self.strides, "padding": self.padding, "use_bias": self.use_bias, "weight_decay": self.weight_decay }) # # Crea weights y biases dependiendo del input_shape de call() # def build(self, input_shape): # print("Input shape: {}".format(input_shape.as_list())) in_channels = input_shape[-1] nc_h, nc_w = self.f_kernel self.w = self.add_weight(shape=[nc_h, nc_w, in_channels, self.channel_multiplier], initializer=self.w_initializer, regularizer=self.w_regularizer, trainable=True, name=self.name+"_w") if self.use_bias: self.b = self.add_weight(shape=[in_channels * self.channel_multiplier], initializer="zeros", trainable=True, name=self.name+"_b") # # Realiza la operacion al argumento inputs # Args: # inputs: tensor de shape (batch, heigh, width, channels) # def call(self, inputs, training=None): conv = depthwise_conv2d(inputs, self.w, self.strides, self.padding) if self.use_bias: return bias_add(conv, self.b) return conv # # Layer que realiza una pointwise convolution, a la # cual solo se le convolutions de 1x1 # class pointwise_conv(layers.Layer): # # Asigna los parametros de layer para realizar la pointwise convulution # Args: # name: nombre de la layer # num_filters: numero de filtros del volumen final # strides: el stride de la convolucion # padding: el padding que se aplicara, por defecto 'SAME' # intializer: para los pesos, por defecto GlorotNormal (Xavier) # regularizer: para los pesos, por defecto L2 # use_bias: si se aplica bias despues de la convulucion # weight_decay: hyperparametro para regularizacion # def __init__(self, num_filters, name="pointwise_conv", strides=[1,1,1,1], padding="VALID", initializer=None, regularizer=None, use_bias=False, weight_decay=1e-4, **kwargs): super(pointwise_conv, self).__init__(name=name, **kwargs) # Asegura de que el num_filters sea un entero if type(num_filters) is float: num_filters = int(num_filters) self.f_kernel = (1, 1) self.num_filters = num_filters self.strides = strides self.padding = padding self.use_bias = use_bias self.weight_decay = weight_decay if initializer == None: self.w_initializer = GlorotNormal() else: self.w_initializer = initializer if regularizer == None: self.w_regularizer = l2(weight_decay) else: self.w_regularizer = regularizer # # Serializa las propiedades de la capa def get_config(self): config = super(pointwise_conv, self).get_config() config.update({ "num_filters": self.num_filters, "strides": self.strides, "padding": self.padding, "use_bias": self.use_bias, "weight_deacay": self.weight_decay }) def build(self, input_shape): in_channels = input_shape[-1] nc_h, nc_w = self.f_kernel self.w = self.add_weight(shape=[nc_h, nc_w, in_channels, self.num_filters], initializer=self.w_initializer, regularizer=self.w_regularizer, trainable=True, name=self.name+"_w") if self.use_bias: self.b = self.add_weight(shape=[self.num_filters], initializer="zeros", trainable=True, name=self.name+"_b") def call(self, inputs, training=None): conv = conv2d(inputs, self.w, self.strides, self.padding) if self.use_bias: return bias_add(conv, self.b) return conv ``` #### File: models/ops/SSD.py ```python import math import random import cv2 import numpy as np import tensorflow as tf from tensorflow.keras import layers from tensorflow.keras.initializers import GlorotNormal from tensorflow.keras.regularizers import l2 from models.ops.conv_ops import normal_conv, depthwise_conv, pointwise_conv, ReLU6 # Regresar un directoria para poder acceder modulo de otra carpeta import sys sys.path.append("..") from datasets.coco import tfrecord_coco from datasets.datasets_features import bytes_feature from models.tests.test_bboxes import draw_bbox sys.path.append("ops/") """ ATENCION: Ahorita el desarrollo de SSD para FrutAI esta en standby, para poder mejor probar la idea con un dataset mas simple, ya despues se continuara con el desarrollo. Los pendientes para terminar SSD: - Agregar la categiria de fondo al preprocesamiento de img - Corregir data augmentation cuando se realiza expand - Generar dataset preprocesado - Crear loss function de ssd - Entrenar modelo - Metodos para decodificacion de output, como: - Non-max supression - Resize de bboxes, etc. """ class ssd_lite_conv(layers.Layer): # Args: # filters: numero de filtros que se aplica en total # kernel: tamaño del kernel def __init__(self, filters, kernel=(3, 3), name="ssd_lite_conv", **kwargs): super(ssd_lite_conv, self).__init__(name=name, **kwargs) self.filters = filters self.kernel = kernel self.dwise = depthwise_conv(self.kernel, strides=[1, 1, 1, 1], padding="SAME", name=name+"_dwise_conv") self.dwbn = layers.BatchNormalization(name=name+"_dwise_bn") self.dwrelu6 = ReLU6(name=name+"_dwise_relu6") self.pwise = pointwise_conv(self.filters) def get_config(self): config = super(ssd_lite_conv, self).get_config() config.update({ "filters": self.filters, "kernel": self.kernel}) return config def call(self, inputs, training=None): x = self.dwise(inputs) x = self.dwbn(inputs) x = self.dwrelu6(inputs) x = self.pwise(inputs) return x class SSD_layer(layers.Layer): # # Constructor de la layer # Args: # classes: cantidad de categorias a clasificar # priors: el numero de priors de cada feature def __init__(self, classes=3, aspect_ratios=[1, 2, 3, 1/2, 1/3], num_fmap=1, total_fmaps=3, img_size=224, initializer=None, regularizer=None, weight_decay=1e-4, name="SSD_layer", **kwargs): super(SSD_layer, self).__init__(name=name, **kwargs) self.classes = classes self.aspect_ratios = aspect_ratios # calcula el numero de priors dependiendo de los aspect ratios # siguiendo la implemetacion del paper self.priors = compute_num_priors(aspect_ratios) self.num_fmap = num_fmap self.total_fmaps = total_fmaps self.img_size = img_size if initializer == None: self.w_initializer = GlorotNormal() else: self.w_initializer = initializer if regularizer == None: self.w_regularizer = l2(weight_decay) else: selw.w_regularizer = regularizer # Realiza la prediccion de la seguriada de la clase y del tipo # de bounding box self.conv_conf = ssd_lite_conv(self.priors*self.classes) """ self.conv_conf = normal_conv(self.priors*self.classes, (3, 3), name=name+"_conv_conf", padding="SAME") """ # Realiza la prediccion del offset de las default box, # el numero de filtros es de num_priors * 4(dx,dy,dw,dh) self.conv_loc = ssd_lite_conv(self.priors*4) """ self.conv_loc = normal_conv(self.priors*4, (3, 3), name=name+"_conv_loc", padding="SAME") """ def get_config(self): config = super(SSD_layer, self).get_config() config.update({ "classes": self.classes, "aspect_ratios": self.aspect_ratios, "num_fmap": self.num_fmap, "total_fmaps": self.total_fmaps, "img_size": self.img_size }) return config # Recive el feature map y calcula lo siguiente: # conf: tensor shape (batch, features, features, priors, classes) # loc: tensor shape (batch, features, features, priors, 4(dx,dy,dw,dh) # priors: tensor shape (features, features, priors, 4(cx, cy, w, h)) # con eso se puede obtener, una version con todo junto para el loss # shape[batch, features*features, priors, classes+4(dx, dy, dw, dh)+4(cx, cy, w h)] def call(self, inputs, training=None): b_size = inputs.get_shape().as_list()[0] features = inputs.get_shape().as_list()[1] conf = self.conv_conf(inputs) loc = self.conv_loc(inputs) bpriors = PriorsBoxes(batch_size=b_size, features=features, num_fmap=self.num_fmap, total_fmaps=self.total_fmaps, aspect_ratios=self.aspect_ratios, img_size=self.img_size) # reshape clasification de las convoluciones conf = tf.reshape(conf, [b_size, features*features, self.priors, self.classes]) loc = tf.reshape(loc, [b_size, features*features, self.priors, 4]) bpriors = tf.cast(bpriors, tf.float32) prediction = tf.concat([conf, loc, bpriors], -1) return prediction # # Metodo que calcula el numero de priors dependiendo de cuantos aspect ratios # se usen # Args: # aspect_ratios: arreglo de proporciones # Returns: # priors: entero que representa el numero de default boxes def compute_num_priors(aspect_ratios): priors = 0 for ratio in aspect_ratios: priors += 1 # en caso de ratio == 1, se agrega otro ratio if ratio == 1: priors += 1 return priors # Metodo que calcula los priorboxes de un feature map # Args: # features: entero mxm de un feature map # num_fmap: number of feature map of m feature maps # total_fmaps: the total number of feature maps of the network # aspect_ratios: arreglo de proporciones # img_size: tamaño de la imagen original # Returns: # Tensor with boxes loc of shape (features, features, priors, 4(cx, cy, w, h)) def PriorsBoxes(batch_size=None, features=None, num_fmap=None, total_fmaps=None, aspect_ratios=None, img_size=None): # metodo de calcula la escala de las cajas def compute_scale(k, m): s_min = 0.15 s_max = 0.9 s_k = s_min + (((s_max - s_min)/(m - 1))*(k - 1)) return s_k # calcula el ancho y alto de una caja segun su escala y proporcion def box_size(scale, aspect_ratio): h = scale/math.sqrt(aspect_ratio) w = scale*math.sqrt(aspect_ratio) return h, w s_k = compute_scale(num_fmap, total_fmaps) priors = 0 heights = [] widths = [] # Calcula los tamaños de las bounding boxes for ar in aspect_ratios: priors += 1 bh, bw = box_size(s_k, ar) heights.append(bh) widths.append(bw) # cuando el ratio es 1, se calcual otro segun el paper if ar == 1: priors += 1 s_k_p = compute_scale(num_fmap+1, total_fmaps) bh, bw = box_size(s_k_p, ar) heights.append(bh) widths.append(bw) default_boxes = np.zeros((features, features, priors, 4)) cell_size = 1 / features cell_center = cell_size / 2 for i in range(features): for j in range(features): for p in range(priors): h, w = heights[p], widths[p] x = j*cell_size + cell_center y = i*cell_size + cell_center default_boxes[i, j, p, 0] = x default_boxes[i, j, p, 1] = y default_boxes[i, j, p, 2] = w default_boxes[i, j, p, 3] = h default_boxes *= img_size default_boxes = tf.convert_to_tensor(default_boxes) # Checa si se especifico un batch_size en los parametros # si si, agrega una dimension y duplica las otras mediante tiling if batch_size == None: return default_boxes else: default_boxes = tf.reshape(default_boxes, [features*features, priors, 4]) default_boxes = tf.expand_dims(default_boxes, 0) default_boxes = tf.tile(default_boxes, [batch_size, 1, 1, 1]) return default_boxes # # Convirte cordenadas (cx,cy,w,h) a (x,y,w,h) # Args: # loc: tensorf of shape [4] # Returns: # x, y, w, h: posicion y tamaño como enteros def bbox_center_to_rect(loc): w = loc[2] h = loc[3] x = loc[0] - (w/2) y = loc[1] - (h/2) return int(x), int(y), int(w), int(h) # # Converte cordenadas (x, y, w, h) a (cx, cy, w, h) # Args: # loc: tensor of shape [4] # Returns: # cx, cy, w, h: posicion y tamaño como enteros def bbox_rect_to_center(loc): w = loc[2] h = loc[3] cx = loc[0] + (w/2) cy = loc[1] + (h/2) return int(x), int(y), int(w), int(h) # # Converte cordenadas (x, y, w, h) a (cx, cy, w, h) # Args: # loc: tensor of shape [4] # Returns: # tensor of shape [4] (cx, cy, w, h) def tbbox_rect_to_center(loc): w = loc[2] h = loc[3] cx = loc[0] + (w/2) cy = loc[1] + (h/2) return tf.convert_to_tensor(np.array([cx, cy, w, h])) def rect_to_coord(box): _box = np.copy(box) box[0] = _box[0] box[1] = _box[1] box[2] = box[0] + _box[2] box[3] = box[1] + _box[3] return box # # Calcula el jaccard overlap o intesection over union IOU # entre dos bounding boxes # Args: # t_boxA: tensor of shape [4] de (x, y, w, h) # t_boxB: tensor of shape [4] de (x, y, w, h) # Returns: # iou = float de 0.0 a 1.0 def intersection_over_union(t_boxA, t_boxB): # Se convierte los tensores a numpy arrays boxA = np.array(t_boxA) boxB = np.array(t_boxB) boxA = rect_to_coord(boxA) boxB = rect_to_coord(boxB) xA = max(boxA[0], boxB[0]) yA = max(boxA[1], boxB[1]) xB = min(boxA[2], boxB[2]) yB = min(boxA[3], boxB[3]) interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1) boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1) boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1) iou = interArea / float(boxAArea + boxBArea - interArea) return iou # Pipeline encargada de procesar un batch de training set, para # realizar la estrategia de matching para crear la informacion de # ground truth class SSD_data_pipeline(object): # Metodos del objeto # init: iniicalizacion con los parametros de la arquitectura # process: procesa un batch de imagenes # Inicializacion de los parametros acerca de la arquitectura de la red # Argumentos: # aspect_ratios: arreglo conteniendo los aspect ratios segun el paper # feature_maps: arreglo conteniendo pares con los tamaños de los f maps # categories_arr: arreglo de strings con los nombre de las categorias # img_size: entero que contiene el numero de pixeles de un lado de la img def __init__(self, aspect_ratios=[1, 2, 3, 1/2, 1/3], feature_maps=None, categories_arr=None, img_size=None): self.aspect_ratios = aspect_ratios self.feature_maps = feature_maps self.categories_arr = categories_arr self.num_categories = len(self.categories_arr) self.img_size = img_size self.num_priors = compute_num_priors(aspect_ratios) self.categories_index = {} # Creacion de indices de las categorias for i in range(len(self.categories_arr)): self.categories_index[self.categories_arr[i]] = i # Procesa un batch de imagenes del data set de coco para convertirlos a training data # Argumentos: # path_to_tfrecord: string al dataset de coco en formato tfrecord def preprocess_tfrecord_coco(self, path_to_tfrecord, res_path): total_fmaps = len(self.feature_maps) dataset_tfrecord_coco = tfrecord_coco.parse_dataset(path_to_tfrecord) def gen_match(img_cats, img_locs, debugging=False, debug_image=None): y_true = None num_bboxes = locs.get_shape().as_list()[0] num_matches = 0 if debugging: for loc in locs: draw_bbox(img=debug_image, bbox=loc) for f in range(total_fmaps): m = self.feature_maps[f][0] priors = PriorsBoxes(features=m, num_fmap=f+1, total_fmaps=total_fmaps, aspect_ratios=self.aspect_ratios, img_size=self.img_size) feature_y = np.zeros((m, m, self.num_priors, 1 + self.num_categories + 4)) for i in range(m): for j in range(m): for p in range(self.num_priors): prior = priors[i][j][p] prior = bbox_center_to_rect(prior) for b in range(num_bboxes): iou = intersection_over_union(prior, img_locs[b]) if iou > 0.5: num_matches += 1 match = tf.ones([1, 1]) # Se obtiene la categoria y se convierte a one hot cat = img_cats[b].numpy().decode("UTF-8") cat_one_hot = [self.categories_index[cat]] cat_one_hot = tf.one_hot(cat_one_hot, self.num_categories) # se calcula la diferencia del prior al ground truth prior = tbbox_rect_to_center(prior) loc = tbbox_rect_to_center(img_locs[b]) diff = tf.cast(tf.abs(prior - loc), tf.float32) diff = tf.expand_dims(diff, 0) match_y = tf.concat([match, cat_one_hot, diff], -1) feature_y[i][j][p] = match_y if debugging: draw_bbox(img=debug_image, bbox=prior, color=(255, 0, 0)) feature_y = tf.convert_to_tensor(feature_y) if f == 0: y_true = tf.identity(tf.reshape(feature_y, [m*m, self.num_priors, 1 + self.num_categories + 4])) else: feature_y = tf.reshape(feature_y, [m*m, self.num_priors, 1 + self.num_categories + 4]) y_true = tf.concat([y_true, tf.identity(feature_y)], 0) if num_matches > 0: y_true = tf.cast(y_true, tf.float32) if num_matches == 0: return None return y_true it = iter(dataset_tfrecord_coco) writer = tf.io.TFRecordWriter(res_path) def write_img_to_file(x_data, y_data): x_data = tf.cast(x_data, tf.float32) data = { "x": bytes_feature(tf.io.serialize_tensor(x_data)), "y": bytes_feature(tf.io.serialize_tensor(y_data)) } example = tf.train.Example(features=tf.train.Features(feature=data)) writer.write(example.SerializeToString()) i = 0 for img_data in dataset_tfrecord_coco.take(1): print("Processing image {}".format(i+1)) i += 1 # Decodificacion de imagen image_string = np.frombuffer(img_data["img/str"].numpy(), np.uint8) decoded_image = cv2.imdecode(image_string, cv2.IMREAD_COLOR) # tamaños original de la imagen y_, x_ = decoded_image.shape[0], decoded_image.shape[1] # rescale de bbounding box x_scalar = self.img_size / x_ y_scalar = self.img_size / y_ # Decodificacion de anotaciones cats, locs = self.decode_bboxes(img_data["img/bboxes/category"], img_data["img/bboxes/x"], img_data["img/bboxes/y"], img_data["img/bboxes/width"], img_data["img/bboxes/height"], x_scalar, y_scalar) # Crea mask de los indices correctos mask = self.mask_indices(img_data["img/bboxes/category"]) # Aplica mask cats = tf.boolean_mask(cats, mask) locs = tf.boolean_mask(locs, mask) # Crea un patch para data augmentation aug_image, locs, cats = ssd_sample_patch(decoded_image, locs, cats) locs_cp = locs.copy() # resize de la imagen y la convierte a un tensor resized_img = cv2.resize(aug_image, (self.img_size, self.img_size)) aug_image_cp = resized_img.copy() image_tensor = tf.convert_to_tensor(resized_img) image_tensor /= 255 # normaliza entre 0-1 locs = tf.convert_to_tensor(locs) cats = tf.convert_to_tensor(cats) y = gen_match(cats, locs, debugging=True, debug_image=resized_img) cv2.imshow("matching strategy", resized_img) cv2.waitKey(0) if y != None: write_img_to_file(image_tensor, y) # obtiene la imagen y localizaciones expandidas ex_img, ex_locs = ssd_expand_image(aug_image_cp, locs_cp) ex_img = cv2.resize(ex_img, (self.img_size, self.img_size)) image_tensor = tf.convert_to_tensor(ex_img) image_tensor /= 255 # normaliza entre 0-1 ex_locs = tf.convert_to_tensor(ex_locs) ex_y = gen_match(cats, ex_locs, debugging=True, debug_image=ex_img) print("Expanded image") cv2.imshow("matching strategy expanded", ex_img) cv2.waitKey(0) if ex_y != None: write_img_to_file(image_tensor, ex_y) writer.close() # proces y cambia el formato de las annotacions de las images de tfrecord # Args: # cats: sparse tensor de strings con las categorias # x: sparse tensor con las coordenadas x del bbox # y: sparse tensor con las coordenadas y del bbox # width: sparse tensor con en ancho del bbox # height: sparse tensor con la altura del bbox # x_scalar: scalar horizontal que se le aplica al bbox por el resize de la img # y_scalar: scalar vertical que se le aplica al bbox por el resize de la img def decode_bboxes(self, cats, x, y, width, height, x_scalar, y_scalar): cats_tensor = [] loc_tensor = [] for i in cats.indices: cat = cats.values[i[0]].numpy().decode("UTF-8") _x = x.values[i[0]].numpy() * x_scalar _y = y.values[i[0]].numpy() * y_scalar _w = width.values[i[0]].numpy() * x_scalar _h = height.values[i[0]].numpy() * y_scalar cats_tensor.append(cat) loc_tensor.append([_x, _y, _w, _h]) return tf.convert_to_tensor(cats_tensor), tf.convert_to_tensor(loc_tensor) # Funcion que regresa un mask booleano de los bbox que se van usar para el # modelo, segun las categirias a clasificar # Args: # sparse_tensor: sparse tensor con las cadenas de las categorias def mask_indices(self, sparse_tensor): indices = sparse_tensor.indices mask = [] for i in indices: index = i.numpy()[0] cat = sparse_tensor.values[index] cat = cat.numpy().decode("UTF-8") mask.append(cat in self.categories_arr) return mask # Metodo que carga dataset ya preprocesado de un tfrecord # Args: # path_to_tfrecord: string con el path al archivo tfrecord # Returns # tensor_data: tensorflow Dataset object. def SSD_load_dataset(path_to_tfrecord): raw_data = tf.data.TFRecordDataset(path_to_tfrecord) format_ = { "x": tf.io.FixedLenFeature([], tf.string), "y": tf.io.FixedLenFeature([], tf.string) } def _parse_function(example): return tf.io.parse_single_example(example, format_) data = raw_data.map(_parse_function) def _parse_tensors(example): x = tf.io.parse_tensor(example["x"], tf.float32) y_true = tf.io.parse_tensor(example["y"], tf.float32) return x, y_true tensor_data = data.map(_parse_tensors) return tensor_data # # Metodos para SSD data augmentation # Metodo que calcula IOU entre 2 batchs de bboxes # Args: # boxA: tensor of shape [?, 4] (x, y, w, h) # boxB: tensor of shape [?, 4] (x, y, w, h) def iou_batch(_boxA, _boxB): boxA = np.copy(_boxA) boxB = np.copy(_boxB) # Convierte a (x, y, w+x, h+y) boxA[:, 2:] = boxA[:, :2] + _boxA[:, 2:] boxB[:, 2:] = boxB[:, :2] + _boxB[:, 2:] # Calcula la interseccion xA = tf.math.maximum(boxA[:, 0], boxB[:, 0]) yA = tf.math.maximum(boxA[:, 1], boxB[:, 1]) xB = tf.math.minimum(boxA[:, 2], boxB[:, 2]) yB = tf.math.minimum(boxA[:, 3], boxB[:, 3]) interArea = tf.math.maximum(0, xB - xA + 1) * tf.math.maximum(0, yB - yA + 1) boxAArea = (boxA[:,2] - boxA[:,0] + 1) * (boxA[:,3] - boxA[:,1] + 1) boxBArea = (boxB[:,2] - boxB[:,0] + 1) * (boxB[:,3] - boxB[:,1] + 1) iou = interArea / (boxAArea + boxBArea - interArea) return iou # Metodo que genera un patch a la imagen, segun paper de ssd # Args: # image: tensor of shape (height, width, 3) # locs: tensor con localizacion de bbox de shape [?, 4] # cats: tensor con las categorias de los bbox, de shape [?] # Returns: # igual que args pero con el patch aplicado a la imagen def ssd_sample_patch(image, locs, cats): image = np.array(image) locs = np.array(locs) cats = np.array(cats) sample_options = ( # Original input image None, # patch con min iou .1, .3, .7, .9 (0.1, None), (0.3, None), (0.7, None), (0.9, None), # random patch (None, None) ) height, width, _ = image.shape while(True): # Escoger un modo de forma aleatoria mode = random.choice(sample_options) if mode is None: return image, locs, cats min_iou, max_iou = mode if min_iou is None: min_iou = float("-inf") if max_iou is None: max_iou = float("inf") # Maximos intentos (50) for _ in range(50): current_image = image w = random.uniform(0.3*width, width) h = random.uniform(0.3*height, height) # aspcect ratio esta entre .5 y 2 if h / w < 0.5 or h / w > 2: continue left = random.uniform(0, width - w) top = random.uniform(0, height - h) # convert to rect rect = np.array([int(left), int(top), int(w), int(h)]) # calcular iou overlap = iou_batch(locs, np.array([rect])) overlap = np.array(overlap) # si se satisface las restricciones del iou if overlap.min() < min_iou and max_iou > overlap.max(): continue # Obtiene crop de la imagen current_image = current_image[rect[1]:rect[1]+rect[3], rect[0]:rect[0]+rect[2], :] centers = locs[:, :2] + (locs[:, 2:] / 2.0) # mask locs m1 = (rect[0] < centers[:, 0]) * (rect[1] < centers[:, 1]) m2 = (rect[0]+rect[2] > centers[:, 0]) * (rect[1]+rect[3] > centers[:, 1]) mask = m1 * m2 # si se tiene boxes validas if not mask.any(): continue # aplica mask a bboxes y cats current_locs = locs[mask, :].copy() current_cats = cats[mask].copy() # cambia dataformat para corregir coordenadas de bboxes rect[2:] = rect[:2] + rect[2:] current_locs[:, 2:] = current_locs[:,:2] + current_locs[:, 2:] # should we use the box left and top corner or the crop's current_locs[:, :2] = np.maximum(current_locs[:, :2], rect[:2]) # adjust to crop (by substracting crop's left,top) current_locs[:, :2] -= rect[:2] current_locs[:, 2:] = np.minimum(current_locs[:, 2:], rect[2:]) # adjust to crop (by substracting crop's left,top) current_locs[:, 2:] -= rect[:2] # regreisa al formato correcto (x,y,w,h) current_locs[:, 2:] = current_locs[:, 2:] - current_locs[:, :2] return current_image, current_locs, current_cats # Metodo que expande una imagen, rellena lo demas con el mean # esto segun la implementacion descrita en el paper SSD # Args: # image: tensor con la imagen de shape [width, height, 3] # locs: tensor con los bboxes de la img [?, 4] # Returns: # same as input, but expanded def ssd_expand_image(image, locs): image = np.array(image) locs = np.array(locs) height, width, depth = image.shape ratio = random.uniform(2, 4) left = random.uniform(0, width*ratio - width) top = random.uniform(0, height*ratio - height) expand_image = np.zeros((int(height*ratio), int(width*ratio), depth), dtype=image.dtype) expand_image[:, :, :] = np.mean(image) expand_image[int(top):int(top+height), int(left):int(left+width)] = image image = expand_image locs = locs.copy() locs[:, :2] += (int(left), int(top)) return image, locs ``` #### File: models/tests/test_ssd_dataaug.py ```python import tensorflow as tf import numpy as np import cv2 import json import random # Regresar un directoria para poder acceder modulo de otra carpeta import sys sys.path.append("..") from ops.SSD import iou_batch, intersection_over_union, ssd_sample_patch from ops.SSD import ssd_expand_image sys.path.append("tests/") from test_bboxes import draw_bbox def main(): path_to_image = "test_images/000000000670.jpg" path_to_ann = "test_images/000000000670.jpg.json" with open(path_to_ann) as json_text: ann = json.loads(json_text.read()) image = cv2.imread(path_to_image) bboxes_numpy = np.ones((len(ann["bboxes"]), 4)) cats = [] for i in range(len(ann["bboxes"])): bbox = ann["bboxes"][i] x = bbox["center_x"] y = bbox["center_y"] w = bbox["width"] h = bbox["height"] bboxes_numpy[i, :] = [x, y, w, h] cats.append(bbox["category_id"]) #bboxes_tensor[i, 0] = x #draw_bbox(img=image, bbox=(x, y, w, h)) aug_image, aug_bboxes = ssd_expand_image(image, bboxes_numpy) aug_image, aug_bboxes, aug_cats = ssd_sample_patch(aug_image, aug_bboxes, cats) for box in aug_bboxes: draw_bbox(img=aug_image, bbox=(box[0], box[1], box[2], box[3])) cv2.imshow("aug_image", aug_image) cv2.waitKey(0) main() ``` #### File: tfmodels/src/test_f360.py ```python import os import glob import json import cv2 import tensorflow as tf import numpy as np def main(): #path_to_model = "trained_models/f360_vgg_01/" path_to_model = "trained_models/f360_MobileNetV2_04/" path_to_imgs = "datasets/test-report/" with open(path_to_model+"setup.json", "r") as data: setup = json.load(data) #w, h, _ = 100, 100, 3 #setup["input_shape"] w, h, _ = setup["input_shape"] classes = setup["classes"] print("[INFO] Loading model...") model = tf.keras.models.load_model(path_to_model+"model.h5") _ = input("[INFO] Click to continue") #model = tf.keras.models.load_model(path_to_model+"checkpoints/model_checkpoint_5.h5") img_folders = glob.glob(path_to_imgs + "*") img_paths = [] for folder in img_folders: for i in glob.glob(folder + "/*"): img_paths.append(i) img_paths = glob.glob(path_to_imgs+"*") img_paths = sorted(img_paths) print(img_paths) i = 0 for img_path in img_paths: image = cv2.imread(img_path) original_image = np.copy(image) image = tf.convert_to_tensor(image) image /= 255 image = tf.image.resize(image, [w, h]) image = tf.expand_dims(image, 0) prediction = model.predict(image) prediction *= 100.0 prediction = tf.cast(prediction, tf.int8) print(prediction) index = tf.math.argmax(prediction, axis=1) index = tf.keras.backend.get_value(index)[0] cat = classes[index] print(cat) cv2.putText(original_image, cat , (10, 45), cv2.FONT_HERSHEY_SIMPLEX, 1.8, (0, 255, 0), 4) cv2.imshow("Test images", original_image) cv2.waitKey(0) cv2.imwrite(path_to_imgs+"res_{}.png".format(i), original_image) i += 1 main() ``` #### File: tfmodels/src/train_f360.py ```python import os #os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # ERROR import shutil from os import path import json import tensorflow as tf import cv2 import numpy as np # Importa datasets from datasets.Fruits360.f360_dataset import f360_load_dataset from datasets.mnist.mnist_dataset import load_mnist_dataset_resize, load_mnist_dataset # Importa modelos from models.mobilenetv2 import MobileNetV2 from models.test_models import mnist_model from models.smallervggnet import SmallerVGGNet from tensorflow.keras.models import Sequential # Import funciones para entrenameinto from training_utils.training import continue_training from training_utils.training import train_model def main(): train_f360() #train_mnist() def f360_train_setup(): setup = { "info": """Entrenando Fruits 360 dataset con MobileNetV2 con weights de imagnet y RMSprop, input shape de [96, 96, 3], se esta entrenando el modelo completo. El dataset es un subdataset del dataset completo""", "path": "trained_models/f360_MobileNetV2_d15/", "dataset_path": "datasets/Fruits360/F360-3-18-O0/", "num_classes": 0, "classes": [], "input_shape": (96, 96, 3), "epochs": 400, "batch_size": 6, "loss": "categorical_crossentropy", "metrics": ["accuracy"], "learning_rate": 0.0001, "seed": 123321, "dataset_info": " " } return setup def train_f360(): setup = f360_train_setup() tf.random.set_seed(setup["seed"]) np.random.seed(setup["seed"]) w, h, _ = setup["input_shape"] train, test, info = f360_load_dataset(path=setup["dataset_path"], resize=w, num_classes=setup["num_classes"]) train = train.shuffle(int(info["train_size"] / info["num_classes"])).batch(setup["batch_size"]) test = test.batch(setup["batch_size"]) setup["dataset_info"] = info setup["classes"] = info["categories"] setup["num_classes"] = info["num_classes"] #model = SmallerVGGNet.build(input_shape=(100, 100, 3), classes=3) #model = tf.keras.applications.MobileNetV2(include_top=True, # weights="imagenet",classes=3, input_shape=(100, 100, 3)) model = mnv2_transfer_model(num_classes=setup["num_classes"], input_shape=setup["input_shape"]) #model = mnv2_finetune_model(num_classes=3, input_shape=(96, 96, 3)) train_model(setup, model, (train, test)) def mnv2_transfer_model(num_classes=None, input_shape=None): # Obtiene el modelo base que proporciona keras # este no incluye el top, porque es custom base_model = tf.keras.applications.MobileNetV2(include_top=False, weights="imagenet", input_shape=input_shape) base_model.trainable = True # Agrega un classficador al final del modelo global_average_layer = tf.keras.layers.GlobalAveragePooling2D(name="gap") prediction_layer = tf.keras.layers.Dense(num_classes, name="dense") activation_layer = tf.keras.layers.Activation("softmax", name="activation") # Crea un nuevo modelo con el base_model y clasficador model = tf.keras.Sequential([ base_model, global_average_layer, prediction_layer, activation_layer]) return model def mnv2_finetune_model(num_classes=None, input_shape=None): # Obtiene el modelo de MobileNetV2 con transfer learning base_model = mnv2_transfer_model(num_classes=num_classes, input_shape=input_shape) # El numero de layers que se van a congelar fine_tune_at = 50 # Congela las layers for layer in base_model.layers[:fine_tune_at]: layer.trainable = False return base_model main() ``` #### File: src/training_utils/training.py ```python import os from os import path import json import shutil import tensorflow as tf import numpy as np # Importa cosas de Keras API from tensorflow.keras.optimizers import Adam, RMSprop from tensorflow.keras.models import Sequential from tensorflow.keras.utils import plot_model # Importa callbacks del modelo from training_utils.callbacks import TrainingCheckPoints from tensorflow.keras.callbacks import CSVLogger, TensorBoard # Importa cosas para graficar el entrenameinto from training_utils.training_graphs import graph_confusion_matrix from training_utils.training_graphs import graph_model_metrics # Function that continues the training of a model # Args: # path_to_model: path were to find the model and setup # dataset: tuple of tensorflow dataset of (train, test) def continue_training(path_to_model, dataset): if not path.exists(path_to_model): print("[ERROR] El path a la carpeta del modelo no existe") return # carga el setup del modelo setup = None with open(path_to_model+"setup.json", "r") as data: setup = json.load(data) # carga el estado de entrenamiento state = None with open(path_to_model+"checkpoints/"+"training_state.json", "r") as data: state = json.load(data) print("[INFO] Continuando entrenameinto de modelo.") # carga el modelo model_name = "model_checkpoint_{}.h5".format(state["epoch"]-1) model = tf.keras.models.load_model(path_to_model+"checkpoints/"+model_name) # vuelve a compilar el modelo opt = Adam(lr=state["learning_rate"]) model.compile(loss=setup["loss"], optimizer=opt, metrics=setup["metrics"]) fit_model(compiled_model=model, dataset=dataset, opt=opt, epochs=setup["epochs"], initial_epoch=state["epoch"], path=setup["path"], continue_train=True, classes=setup["classes"]) # Method that starts the model training # Args: # setup: Dictionary with the model setup # model: the keras.Model architecture to train # dataset: tuple of tensorflow dataset of (train, test) def train_model(setup, model, dataset): # Asegura que el path sea el correcto if not path.exists(setup["path"]): os.makedirs(setup["path"]) else: # Borra las carpetas si ya existen if path.exists(setup["path"]+"checkpoints"): shutil.rmtree(setup["path"]+"checkpoints") if path.exists(setup["path"]+"logs"): shutil.rmtree(setup["path"]+"logs") # crea carpeta donde se van a guardar los checkpoints if not path.exists(setup["path"]+"checkpoints"): os.mkdir(setup["path"] + "checkpoints") # Escribe el setup del entrenamiento with open(setup["path"]+"setup.json", "w") as writer: json.dump(setup, writer, indent=4) print("[INFO] Entrenando modelo.") # Dibuja la arquitectura del modelo plot_model(model, to_file=setup["path"]+"model_architecture.png", show_shapes=True, show_layer_names=True, expand_nested=False) # Crea optimizador, por defecto Adam opt = Adam(lr=setup["learning_rate"]) #opt = RMSprop(lr=setup["learning_rate"]) # Compila el modelo model.compile(loss=setup["loss"], optimizer=opt, metrics=setup["metrics"]) fit_model(compiled_model=model, dataset=dataset, opt=opt, epochs=setup["epochs"], path=setup["path"], classes=setup["classes"]) # Metodo, que entrena un modelo ya compilado, implementa callbacks de # tensorboard, log a un archivo CSV y creacion de checkpoints cuando ocurre # mejoras en el loss, tambien grafica y crea matriz de confusion # Args: # compiled_model: keras.Model ya compilado # dataset: tuple of tensorflow dataset of (train, test) # opt: keras.Optimizer used in training # epochs: The number of epochs to train # initial_epoch: Epoch to start training, 0 for normal training # continue_train: if the model is continuing training # classes: array of classes that the model predict def fit_model(compiled_model=None, # El modelo debe de estar complicado dataset=None, opt=None, epochs=None, initial_epoch=0, path=None, continue_train=False, classes=None): # obtiene el dataset train, test = dataset # Callbacks durante entrenamiento relative = 0 if initial_epoch >= 1: relative = initial_epoch callbacks = [ #TrainingCheckPoints(path+"checkpoints/", relative_epoch=relative), CSVLogger(path+"training_log.csv", append=continue_train), TensorBoard(log_dir=path+"logs") ] # Entrena el modelo history = compiled_model.fit(train, initial_epoch=initial_epoch, epochs=epochs, callbacks=callbacks, validation_data=test) # Guarda el modelo print("[INFO] Serializing model.") compiled_model.save(path + "model.h5") # Crea grafica del entrenamiento graph_model_metrics(csv_path=path+"training_log.csv", img_path=path+"metrics_graph.png") # Crea confusion matrix if test != None: print("[INFO] Creando matriz de confusion") graph_confusion_matrix(model=compiled_model, test_dataset=test, classes=classes, path=path+"confusion_matrix.png") def load_model(path): model = tf.keras.models.load_model(path + "model.h5") with open(path + "setup.json", "r") as data: setup = json.load(data) return model, setup["classes"] ``` #### File: tfmodels/src/train.py ```python import os import shutil from os import path import json import tensorflow as tf import numpy as np import cv2 # Importa datasets from datasets.AOBDataset.aob_dataset import load_dataset from datasets.data_aug import * # Import model stuff from models.mobilenetv2 import MobileNetV2 from models.custom_layers import ColorExtractor from tensorflow.keras.layers import Lambda from tensorflow.keras.models import Sequential from tensorflow.keras.optimizers import Adam, RMSprop from tensorflow.keras.utils import plot_model from tensorflow.keras.callbacks import CSVLogger, TensorBoard # Import training utils from training_utils.training_graphs import graph_confusion_matrix from training_utils.training_graphs import graph_model_metrics def main(): setup = train_setup() train, test = dataset_pipeline(setup) save_setup(setup) train_model(setup=setup, dataset=(train, test)) def train_setup(): setup = { "info": """ Training MobileNetV2 with ImageNet weights and RMSprop optimizer. first training the last fully connected layer, then using fine tunning from the 100th layer. """, #"path": "trained_modelsMCPR/KMeans/MNV2_bag/", "path": "trained_modelsMCPR/KMeans/MNV2_bag5/", "include_bag": False, "color_data": True, "color_type": "KMeans", # KMeans, RGB, HIST "dataset_path": "datasets/AOBDataset/", "num_classes": 3, "classes": [], "input_shape": (224, 224, 3), "epochs": 20, "ft_epochs": 20, "batch_size": 50, "loss": "categorical_crossentropy", "metrics": ["accuracy"], "learning_rates": [ 0.0001, 0.0001/10], "fine_tune_at": 100, "seed": 123321, "dataset_info": " " } setup["dataset_path"] += "aob" if setup["include_bag"] == True: setup["dataset_path"] += "_bag" else: setup["dataset_path"] += "_nobag" if setup["color_data"] == True: if setup["color_type"] == "RGB": setup["dataset_path"] += "_RGB/" elif setup["color_type"] == "HIST": setup["dataset_path"] += "_HIST/" elif setup["color_type"] == "KMeans": setup["dataset_path"] += "_IMG/" else: setup["dataset_path"] += "_IMG/" return setup # Creates the enviroment for training # Args: # setup: dictionary with the training setup of the model def save_setup(setup): # Creates the training directory if not path.exists(setup["path"]): os.makedirs(setup["path"]) else: # Erase the logs dir if path.exists(setup["path"]+"logs"): shutil.rmtree(setup["path"]+"logs") # Saves the setup in JSON file with open(setup["path"]+"setup.json", "w") as writer: json.dump(setup, writer, indent=4) # Function for the dataset pipeline # Args: # setup: dictionary with the training setup of the model def dataset_pipeline(setup): # loads the dataset from AOB train, test, info = load_dataset(path=setup["dataset_path"], color_data=setup["color_data"], color_type=setup["color_type"]) # adds ifnormation of the dataset to the training setup setup["dataset_info"] = info setup["classes"] = info["categories"] setup["num_classes"] = info["num_classes"] # Checks if there is color data to extract it if setup["color_data"] == True and not setup["color_type"] == "KMeans": def _join_inputs(x, c, y): return (x, c), y train = train.map(_join_inputs) test = test.map(_join_inputs) #train = train.map(color_aug) train = train.shuffle(int(info["train_size"] / info["num_classes"])).batch(setup["batch_size"]) test = test.batch(setup["batch_size"]) return train, test # Function that creates the multi input model def k_model(setup): input_img = tf.keras.Input(shape=setup["input_shape"]) base_model = tf.keras.applications.MobileNetV2(include_top=False, alpha=1.0, weights="imagenet", input_shape=setup["input_shape"]) base_model.trainable = False # Adds classifer head at the end of the model global_average_layer = tf.keras.layers.GlobalAveragePooling2D(name="gap") conv_dense = tf.keras.layers.Dense(64, activation="relu", name="conv_dense") x = base_model(input_img) x = global_average_layer(x) x = conv_dense(x) # Color data layers resize_images = Lambda(lambda b: tf.image.resize(b, [100, 100]), name="resize") color_extractor = ColorExtractor(3, 20, trainable=False) num_dense1 = tf.keras.layers.Dense(32, activation="relu", name="color_dense1") num_dense2 = tf.keras.layers.Dense(64, activation="relu", name="color_dense2") y = resize_images(input_img) y = color_extractor(y) y = num_dense1(y) y = num_dense2(y) combined = tf.keras.layers.Concatenate()([x, y]) prediction_layer = tf.keras.layers.Dense(setup["num_classes"], activation="relu", name="dense") activation_layer = tf.keras.layers.Activation("softmax", name="activation") z = prediction_layer(combined) z = activation_layer(z) # Creates the new model model = tf.keras.Model(inputs=[input_img], outputs=z) # Creates layers dictionaire layers_dict = { "base_cnn": base_model, "global_average": global_average_layer, "conv_dense": conv_dense, "color_extractor": color_extractor, "num_dense1": num_dense1, "concat": combined, "prediction": prediction_layer, "activation": activation_layer } return model, layers_dict # Function that creates the multi input model def multi_input_model(setup): input_img = tf.keras.Input(shape=setup["input_shape"]) if setup["color_type"] == "RGB": input_col = tf.keras.Input(shape=(3,)) elif setup["color_type"] == "HIST": input_col = tf.keras.Input(shape=(765,)) base_model = tf.keras.applications.MobileNetV2(include_top=False, alpha=1.0, weights="imagenet", input_shape=setup["input_shape"]) base_model.trainable = False # Adds classifer head at the end of the model global_average_layer = tf.keras.layers.GlobalAveragePooling2D(name="gap") #conv_dense = tf.keras.layers.Dense(3, activation="relu", name="conv_dense") conv_dense = tf.keras.layers.Dense(64, activation="relu", name="conv_dense") x = base_model(input_img) x = global_average_layer(x) x = conv_dense(x) # Numerical data layers #num_dense1 = tf.keras.layers.Dense(500, activation="relu", name="color_dense1") num_dense1 = tf.keras.layers.Dense(256, activation="relu", name="color_dense1") num_dense2 = tf.keras.layers.Dense(64, activation="relu", name="color_dense2") #num_dense3 = tf.keras.layers.Dense(64, activation="relu", name="color_dense3") y = num_dense1(input_col) y = num_dense2(y) #y = num_dense3(y) combined = tf.keras.layers.Concatenate()([x, y]) prediction_layer = tf.keras.layers.Dense(setup["num_classes"], name="dense") activation_layer = tf.keras.layers.Activation("softmax", name="activation") z = prediction_layer(combined) z = activation_layer(z) # Creates the new model model = tf.keras.Model(inputs=[input_img, input_col], outputs=z) # Creates layers dictionaire layers_dict = { "base_cnn": base_model, "global_average": global_average_layer, "conv_dense": conv_dense, "num_dense1": num_dense1, #"num_dense2": num_dense2, "concat": combined, "prediction": prediction_layer, "activation": activation_layer } return model, layers_dict # Function that creates the standard model def std_model(setup): base_model = tf.keras.applications.MobileNetV2(include_top=False, alpha=1.0, weights="imagenet", input_shape=setup["input_shape"]) base_model.trainable = False # Adds classifer head at the end of the model global_average_layer = tf.keras.layers.GlobalAveragePooling2D(name="gap") prediction_layer = tf.keras.layers.Dense(setup["num_classes"], name="dense") activation_layer = tf.keras.layers.Activation("softmax", name="activation") # Creates the new model model = tf.keras.Sequential([ base_model, global_average_layer, prediction_layer, activation_layer]) # Creates layer dictionaire layers_dict = { "base_cnn": base_model, "global_average": global_average_layer, "prediction": prediction_layer, "activation": activation_layer } return model, layers_dict # Function that trains the model def train_model(setup=None, dataset=None): tf.random.set_seed(setup["seed"]) np.random.seed(setup["seed"]) train, test = dataset if setup["color_data"] == True: if setup["color_type"] == "KMeans": model, l_dict = k_model(setup) else: model, l_dict = multi_input_model(setup) else: model, l_dict = std_model(setup) base_model = l_dict["base_cnn"] # Plots the model plot_model(model, to_file=setup["path"]+"model_architecture.png", show_shapes=True, show_layer_names=True, expand_nested=False) # Compiles the model opt = RMSprop(lr=setup["learning_rates"][0]) model.compile(loss=setup["loss"], optimizer=opt, metrics=setup["metrics"]) # Model callbacks callbacks = [ CSVLogger(setup["path"]+"training_log.csv", append=False), TensorBoard(log_dir=setup["path"]+"logs") ] # Trains the model print("[INFO] Training model") _ = model.fit(train, epochs=setup["epochs"], callbacks=callbacks, validation_data=test) # Fine tunning the mode base_model.trainable = True # Num of layers in the base model: 155 fine_tune_at = setup["fine_tune_at"] for layer in base_model.layers[:fine_tune_at]: layer.trainable = False opt = RMSprop(lr=setup["learning_rates"][1]) model.compile(loss=setup["loss"], optimizer=opt, metrics=setup["metrics"]) # Model callbacks callbacks = [ CSVLogger(setup["path"]+"training_log.csv", append=True), TensorBoard(log_dir=setup["path"]+"logs") ] # Trains the model print("[INFO] Fine tune phase") total_epochs = setup["epochs"] + setup["ft_epochs"] _ = model.fit(train, initial_epoch=setup["epochs"], epochs=total_epochs, callbacks=callbacks, validation_data=test) # Saves model """ print("[INFO] Serializing model") model.save(setup["path"] + "model.h5") """ # Graph model metrics print("[INFO] Graphing metrics") graph_model_metrics(csv_path=setup["path"] + "training_log.csv", img_path=setup["path"]+"metrics_graph.png") main() ```
{ "source": "joseluisvelasco/STELLOPT", "score": 2 }
#### File: STELLOPT/pySTEL/VMECplot.py ```python import sys, os os.environ['ETS_TOOLKIT'] = 'qt4' import matplotlib matplotlib.use("Qt4Agg") import matplotlib.pyplot as _plt import numpy as np #For Arrays from math import pi #QT4 from PyQt4 import uic, QtGui from PyQt4.QtGui import QMainWindow, QApplication, qApp, QVBoxLayout, QSizePolicy,QIcon from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas #QT5 #from PyQt5 import uic, QtGui, QtWidgets #from PyQt5.QtWidgets import QMainWindow, QApplication, QVBoxLayout, QSizePolicy #from PyQt5.QtGui import QIcon #from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from libstell.libstell import read_vmec, cfunct, sfunct, torocont, isotoro, calc_jll from matplotlib.figure import Figure from mpl_toolkits import mplot3d try: qtCreatorPath=os.environ["STELLOPT_PATH"] except KeyError: print("Please set environment variable STELLOPT_PATH") sys.exit(1) #qtCreatorFile = "/u/slazerso/src/STELLOPT_GCC/pySTEL/VMECplot.ui" # Enter file here. qtCreatorFile = qtCreatorPath+"/pySTEL/VMECplot.ui" # Enter file here. Ui_MainWindow, QtBaseClass = uic.loadUiType(qtCreatorFile) class MyApp(QMainWindow): def __init__(self): super(MyApp, self).__init__() self.ui = Ui_MainWindow() self.ui.setupUi(self) self.setStyleSheet("background-color: white;"); #self.ui.PlotButtons.setStyleSheet("background-color: white;"); self.statusBar().showMessage('Ready') self.ui.plot_list = ['Summary','-----1D-----','Iota','q','Pressure',\ '<Buco>','<Bvco>','<jcuru>','<jcurv>','<j.B>', '-----3D------','|B|','sqrt(g)',\ 'B^u','B^v','B_s','B_u','B_v','j^u','j^v', 'jll', 'j.B','---Special---','LPK'] files = sorted(os.listdir('.')) for name in files: if(name[0:4]=='wout'): self.ui.FileName.addItem(name) # Init self.vmec_data=read_vmec(self.ui.FileName.currentText()) self.ui.PlotList.addItems(self.ui.plot_list) self.ui.PlotButtons.setEnabled(0) self.ns = self.vmec_data['ns'] self.nu = self.vmec_data['mpol']*4 self.nv = self.vmec_data['ntor']*4*self.vmec_data['nfp'] self.nv2 = self.vmec_data['ntor']*4 if self.nu < 128: self.nu = 128 if self.nv < 64: self.nv = 64 self.TransformVMEC(self) self.s=0 self.u=0 self.v=0 self.ui.rhoslider.setMaximum(self.ns-1) self.ui.uslider.setMaximum(self.nu-1) self.ui.vslider.setMaximum((self.nv/self.vmec_data['nfp'])) # Plot figure self.fig = Figure(figsize=(2,2),dpi=100) self.ax = self.fig.add_subplot(111) self.canvas = FigureCanvas(self.fig) self.ui.plot_widget.addWidget(self.canvas) #self.canvas.draw() # Callbacks self.ui.FileName.currentIndexChanged.connect(self.FileSelect) self.ui.PlotList.currentIndexChanged.connect(self.PlotSelect) self.ui.rho_button.toggled.connect(self.CutSelect) self.ui.pol_button.toggled.connect(self.CutSelect) self.ui.tor_button.toggled.connect(self.CutSelect) self.ui.flux_button.toggled.connect(self.CutSelect) self.ui.poltor_button.toggled.connect(self.CutSelect) self.ui.RZ_button.toggled.connect(self.CutSelect) self.ui.ThreeD_button.toggled.connect(self.CutSelect) self.ui.rhoslider.valueChanged.connect(self.CutSelect) self.ui.uslider.valueChanged.connect(self.CutSelect) self.ui.vslider.valueChanged.connect(self.CutSelect) self.ui.savebutton.clicked.connect(self.plot_to_file) def FileSelect(self,i): self.vmec_data=read_vmec(self.ui.FileName.currentText()) #self.ui.PlotList.addItems(self.ui.plot_list) self.ns = self.vmec_data['ns'] self.nu = self.vmec_data['mpol']*4 self.nv = self.vmec_data['ntor']*4*self.vmec_data['nfp'] self.nv2 = self.vmec_data['ntor']*4 if self.nu < 32: self.nu = 32 if self.nv < 16: self.nv = 16 self.TransformVMEC(self) self.s=0 self.u=0 self.v=0 self.ui.rhoslider.setMaximum(self.ns-1) self.ui.uslider.setMaximum(self.nu-1) self.ui.vslider.setMaximum(self.nv-1) self.ui.PlotButtons.setEnabled(0) self.ui.PlotList.setCurrentIndex(0) self.update_plot(self) def PlotSelect(self,i): plot_name = self.ui.PlotList.currentText() # Handle Enable/Disable self.ui.PlotButtons.setEnabled(1) self.ui.rho_button.setEnabled(1) self.ui.pol_button.setEnabled(1) self.ui.tor_button.setEnabled(1) self.ui.flux_button.setEnabled(1) self.ui.poltor_button.setEnabled(1) self.ui.RZ_button.setEnabled(1) self.ui.ThreeD_button.setEnabled(1) self.ui.rhoslider.setEnabled(1) self.ui.uslider.setEnabled(1) self.ui.vslider.setEnabled(1) if (i==0): self.ui.PlotButtons.setEnabled(0) self.ui.rhoslider.setEnabled(0) self.ui.uslider.setEnabled(0) self.ui.vslider.setEnabled(0) elif (i<10): self.ui.rho_button.setChecked(1) self.ui.pol_button.setEnabled(0) self.ui.tor_button.setEnabled(0) self.ui.flux_button.setEnabled(0) self.ui.poltor_button.setEnabled(0) self.ui.RZ_button.setEnabled(0) self.ui.ThreeD_button.setEnabled(0) self.ui.rhoslider.setEnabled(0) self.ui.uslider.setEnabled(0) self.ui.vslider.setEnabled(0) self.s=0; self.u=0; self.v=0; self.update_plot(self) else: self.ui.rho_button.setChecked(1) self.CutSelect(self) def CutSelect(self,i): self.ui.rhoslider.setEnabled(1) self.ui.uslider.setEnabled(1) self.ui.vslider.setEnabled(1) #print(self.ui.rho_button.isChecked()) if (self.ui.rho_button.isChecked()): self.ui.rhoslider.setEnabled(0) self.u = self.ui.uslider.value() self.v = self.ui.vslider.value() elif (self.ui.pol_button.isChecked()): self.ui.uslider.setEnabled(0) self.s = self.ui.rhoslider.value() self.v = self.ui.vslider.value() elif (self.ui.tor_button.isChecked()): self.ui.vslider.setEnabled(0) self.s = self.ui.rhoslider.value() self.u = self.ui.uslider.value() elif (self.ui.flux_button.isChecked()): self.ui.uslider.setEnabled(0) self.ui.vslider.setEnabled(0) self.s = self.ui.rhoslider.value() elif (self.ui.poltor_button.isChecked()): self.ui.rhoslider.setEnabled(0) self.ui.vslider.setEnabled(0) self.u = self.ui.uslider.value() elif (self.ui.RZ_button.isChecked()): self.ui.rhoslider.setEnabled(0) self.ui.uslider.setEnabled(0) self.v = self.ui.vslider.value() elif (self.ui.ThreeD_button.isChecked()): self.ui.uslider.setEnabled(0) self.ui.vslider.setEnabled(0) self.s = self.ui.rhoslider.value() self.update_plot(self) def update_plot(self,i): #self.ui.plot_widget.addWidget(self.canvas) plot_name = self.ui.PlotList.currentText(); self.fig.clf() #self.fig.delaxes(self.ax) self.ax = self.fig.add_subplot(111) if (plot_name == 'Summary'): print(plot_name) elif (plot_name == 'Iota'): self.ax.plot(self.nflux,self.vmec_data['iotaf']) self.ax.set_xlabel('Normalized Flux') self.ax.set_ylabel('iota') self.ax.set_title('Rotational Transform') #self.ax.set(xlabel='s',ylabel='iota',aspect='square') elif (plot_name == 'q'): self.ax.plot(self.nflux,1.0/self.vmec_data['iotaf']) self.ax.set_xlabel('Normalized Flux') self.ax.set_ylabel('q') self.ax.set_title('Safety Factor') elif (plot_name == 'Pressure'): self.ax.plot(self.nflux,self.vmec_data['presf']/1000) self.ax.set_xlabel('Normalized Flux') self.ax.set_ylabel('Pressure [kPa]') self.ax.set_title('Pressure Profile') elif (plot_name == '<Buco>'): self.ax.plot(self.nflux,self.vmec_data['buco']) self.ax.set_xlabel('Normalized Flux') self.ax.set_ylabel('<B^u> [T]') self.ax.set_title('Flux surface Averaged B^u') elif (plot_name == '<Bvco>'): self.ax.plot(self.nflux,self.vmec_data['bvco']) self.ax.set_xlabel('Normalized Flux') self.ax.set_ylabel('<B^v> [T]') self.ax.set_title('Flux surface Averaged B^v') elif (plot_name == '<jcuru>'): self.ax.plot(self.nflux,self.vmec_data['jcuru']/1000) self.ax.set_xlabel('Normalized Flux') self.ax.set_ylabel('<j^u> [kA/m^2]') self.ax.set_title('Flux surface Averaged j^u') elif (plot_name == '<jcurv>'): self.ax.plot(self.nflux,self.vmec_data['jcurv']/1000) self.ax.set_xlabel('Normalized Flux') self.ax.set_ylabel('<j^v> [kA/m^2]') self.ax.set_title('Flux surface Averaged j^v') elif (plot_name == '<j.B>'): self.ax.plot(self.nflux,self.vmec_data['jdotb']/1000) self.ax.set_xlabel('Normalized Flux') self.ax.set_ylabel('<j.B> [T*kA/m^2]') self.ax.set_title('Flux surface Averaged j.B') elif (plot_name == 'LPK'): self.ax.plot(self.r[self.ns-1,:,0],self.z[self.ns-1,:,0],color='red') self.ax.plot(self.r[0,0,0],self.z[0,0,0],'+',color='red') self.ax.plot(self.r[self.ns-1,:,int(self.nv2/4)],self.z[self.ns-1,:,int(self.nv2/4)],color='green') self.ax.plot(self.r[0,0,int(self.nv2/4)],self.z[0,0,int(self.nv2/4)],'+',color='green') self.ax.plot(self.r[self.ns-1,:,int(self.nv2/2)],self.z[self.ns-1,:,int(self.nv2/2)],color='blue') self.ax.plot(self.r[0,0,int(self.nv2/2)],self.z[0,0,int(self.nv2/2)],'+',color='blue') self.ax.set_xlabel('R [m]') self.ax.set_ylabel('Z [m]') self.ax.set_title('LPK Plot') self.ax.set_aspect('equal') elif (plot_name[0] == '-'): print(plot_name) else: # First load the value based on plot if (plot_name=='|B|'): val = self.b elif (plot_name=='sqrt(g)'): val = self.g elif (plot_name=='B^u'): val = self.bu elif (plot_name=='B^v'): val = self.bv elif (plot_name=='B_s'): val = self.b_s elif (plot_name=='B_u'): val = self.b_u elif (plot_name=='B_v'): val = self.b_v elif (plot_name=='j^u'): val = self.cu/self.g elif (plot_name=='j^v'): val = self.cv/self.g elif (plot_name=='jll'): val = calc_jll(self.vmec_data, self.theta, self.zeta) elif (plot_name=='j.B'): val = (self.cu*self.bu+self.cv*self.bv)/self.g # Now handle the type of plot if (self.ui.rho_button.isChecked()): self.ax.plot(self.nflux,val[:,self.u,self.v]) self.ax.set_xlabel('Normalized Flux') elif (self.ui.pol_button.isChecked()): self.ax.plot(self.theta,val[self.s,:,self.v]) self.ax.set_xlabel('Poloidal Angle [rad]') elif (self.ui.tor_button.isChecked()): self.ax.plot(self.zeta2,val[self.s,self.u,0:self.nv2+1]) self.ax.set_xlabel('Toroidal Angle [rad]') elif (self.ui.flux_button.isChecked()): self.ax.pcolormesh(np.squeeze(val[self.s,:,0:self.nv2+1]),cmap='jet',shading='gouraud') self.ax.set_xlabel('Toroidal Angle [rad]') self.ax.set_ylabel('Poloidal Angle [rad]') elif (self.ui.poltor_button.isChecked()): self.ax.pcolormesh(np.squeeze(val[:,self.u,0:self.nv2+1]),cmap='jet',shading='gouraud') self.ax.set_xlabel('Toroidal Angle [rad]') self.ax.set_ylabel('Normalized Flux') elif (self.ui.RZ_button.isChecked()): #self.ax.pcolormesh(self.r[:,:,self.v],self.z[:,:,self.v],val[:,:,self.v],cmap='jet',shading='gouraud') cax = self.ax.pcolor(self.r[:,:,self.v],self.z[:,:,self.v],val[:,:,self.v],cmap='jet') self.fig.colorbar(cax) self.ax.set_xlabel('R [m]') self.ax.set_ylabel('Z [m]') self.ax.set_aspect('equal') elif (self.ui.ThreeD_button.isChecked()): self.fig.delaxes(self.ax) self.ax = isotoro(self.r,self.z,self.zeta,self.s,val,fig=self.fig) self.ax.grid(False) self.ax.set_axis_off() self.canvas.draw() def TransformVMEC(self, i): self.nflux = np.ndarray((self.ns,1)) self.theta = np.ndarray((self.nu,1)) self.zeta = np.ndarray((self.nv,1)) self.zeta2 = np.ndarray((self.nv2+1,1)) for j in range(self.ns): self.nflux[j]=j/(self.ns-1) for j in range(self.nu): self.theta[j]=2*pi*j/(self.nu-1) for j in range(self.nv): self.zeta[j]=2*pi*j/((self.nv-1)) self.zeta2=self.zeta[0:self.nv2+1] self.r=cfunct(self.theta,self.zeta,self.vmec_data['rmnc'],self.vmec_data['xm'],self.vmec_data['xn']) self.z=sfunct(self.theta,self.zeta,self.vmec_data['zmns'],self.vmec_data['xm'],self.vmec_data['xn']) self.b=cfunct(self.theta,self.zeta,self.vmec_data['bmnc'],self.vmec_data['xm_nyq'],self.vmec_data['xn_nyq']) self.g=cfunct(self.theta,self.zeta,self.vmec_data['gmnc'],self.vmec_data['xm_nyq'],self.vmec_data['xn_nyq']) self.bu=cfunct(self.theta,self.zeta,self.vmec_data['bsupumnc'],self.vmec_data['xm_nyq'],self.vmec_data['xn_nyq']) self.bv=cfunct(self.theta,self.zeta,self.vmec_data['bsupvmnc'],self.vmec_data['xm_nyq'],self.vmec_data['xn_nyq']) self.cu=cfunct(self.theta,self.zeta,self.vmec_data['currumnc'],self.vmec_data['xm_nyq'],self.vmec_data['xn_nyq']) self.cv=cfunct(self.theta,self.zeta,self.vmec_data['currvmnc'],self.vmec_data['xm_nyq'],self.vmec_data['xn_nyq']) self.b_s=sfunct(self.theta,self.zeta,self.vmec_data['bsubsmns'],self.vmec_data['xm_nyq'],self.vmec_data['xn_nyq']) self.b_u=cfunct(self.theta,self.zeta,self.vmec_data['bsubumnc'],self.vmec_data['xm_nyq'],self.vmec_data['xn_nyq']) self.b_v=cfunct(self.theta,self.zeta,self.vmec_data['bsubvmnc'],self.vmec_data['xm_nyq'],self.vmec_data['xn_nyq']) def plot_to_file(self,i): text = self.ui.saveas_filename.toPlainText(); self.fig.savefig('./'+text, dpi=300) if __name__ == "__main__": app = QApplication(sys.argv) window = MyApp() window.show() sys.exit(app.exec_()) ```
{ "source": "joseluizbrits/sobre-python", "score": 3 }
#### File: cfb-cursos/agenda/__init__.py ```python import sqlite3 from sqlite3 import Error from os import system def ConexaoBanco(): caminho = "C:\\Users\\VITOR\\Documents\\BRITS\\Programação\\agenda.db" con = None try: con = sqlite3.connect(caminho) except Error as ex: print(ex) return con def query(conexao, sql): try: c = conexao.cursor() c.execute(sql) conexao.commit() except Error as ex: print(ex) else: print('\033[32m''Operação realizada com sucesso''\033[m') def consultar(conexao, sql): c = conexao.cursor() c.execute(sql) res = c.fetchall() return res def menuPrincipal(): print('1 - Inserir novos registros') print('2 - Deletar Registro') print('3 - Atualizar Registro') print('4 - Consultar ID') print('5 - Consultar nomes') print('6 - Sair') def menuInserir(): vnome = str(input('Digite o nome: ')) vtelefone = str(input('Digite o telefone: ')) vemail = str(input('Digite o e-mail: ')) vsql = f"SELECT INTO tb_contatos (T_NOMECONTATO, T_TELEFONECONTATO, T_EMAILCONTATO) VALUES ('{vnome}', '{vtelefone}', '{vemail}')" vcon = ConexaoBanco() query(vcon, vsql) vcon.close() def menuDeletar(): vid = str(input('Digite o ID do registro a ser deletado: ')) vsql = f"DELETE FROM tb_contatos WHERE N_IDCONTATO = {vid}" vcon = ConexaoBanco() query(vcon, vsql) vcon.close() def menuAtualizar(): vid = str(input('Digite o ID do registro a ser alterado: ')) vcon = ConexaoBanco() r = consultar(vcon, f"SELECT * FROM tb_contatos WHERE N_IDCONTATO = {vid}") rnome = r[0][1] rtelefone = r[0][2] remail = r[0][3] vnome = str(input('Digite o nome: ')) vtelefone = str(input('Digite o telefone: ')) vemail = str(input('Digite o e-mail: ')) if len(rnome) == 0: vnome = rnome if len(rtelefone) == 0: vtelefone = rtelefone if len(remail) == 0: vemail = remail vsql = f"UPDATE tb_contatos SET T_NOMECONTATO = '{vnome}', T_TELEFONECONTATO = '{vtelefone}', T_EMAILCONTATO = '{vemail}' WHERE N_IDCONTATO = {vid}" query(vcon, vsql) vcon.close() def menuConsultarID(): vsql = "SELECT * FROM tb_contatos" vcon = ConexaoBanco() res = consultar(vcon, vsql) vlim = 10 vcont = 0 for r in res: print(f'ID:{r[0]:_<3} Nome:{r[1]:_<30} Telefone:{r[2]:_<14} E-mail:{r[3]:_<30}') vcont += 1 if vcont >= vlim: vcont = 0 system('pause') print('Fim da lista') vcon.close() system('pause') def menuConsultarNomes(): vnome = str(input('Digite o nome: ')) vsql = f"SELECT * FROM tb_contatos WHERE T_NOMECONTATO LIKE '%{vnome}%'" vcon = ConexaoBanco() res = consultar(vcon, vsql) vlim = 10 vcont = 0 for r in res: print(f'ID:{r[0]:_<3} Nome:{r[1]:_<30} Telefone:{r[2]:_<14} E-mail:{r[3]:_<30}') vcont += 1 if vcont >= vlim: vcont = 0 system('pause') print('Fim da lista') vcon.close() system('pause') opc = 0 while opc != 6: menuPrincipal() opc = int(input('Digite um opção: ')) if opc == 1: menuInserir() elif opc == 2: menuDeletar() elif opc == 3: menuAtualizar() elif opc == 4: menuConsultarID() elif opc == 5: menuConsultarNomes() elif opc == 6: print('\033[1m''PROGRAMA FINALIZADO''\033[m') else: print('\033[31m''Opção inválida''\033[m') system('pause') ``` #### File: sobre-python/cfb-cursos/combobox.py ```python from tkinter import * from tkinter import ttk def imprimirEsporte(): ve = cb_esportes.get() print(f'Esporte: {ve}') app = Tk() app.title('BLOCO') app.geometry('500x300') listaEsportes = ['Futebol', 'Vôlei', 'Basquete'] lb_esportes = Label(app, text='Esportes') lb_esportes.pack() cb_esportes = ttk.Combobox(app, values=listaEsportes) cb_esportes.set('Futebol') # set('Futebol') para definir o Futebol como padrão cb_esportes.pack() btn_esportes = Button(app, text='Esporte selecionado', command=imprimirEsporte) btn_esportes.pack() app.mainloop() ``` #### File: sobre-python/cfb-cursos/radiobutton.py ```python from tkinter import * def imprimirEsporte(): ve = vesporte.get() if ve == 'f': print('Esporte Futebol') elif ve == 'v': print('Esporte Vôlei') elif ve == 'b': print('Esporte Basquete') else: print('Selecione um esporte') app = Tk() app.title('BLOCO') app.geometry('500x300') vesporte = StringVar() lb_esportes = Label(app, text='Esportes') lb_esportes.pack() rb_futebol = Radiobutton(app, text='Futebol', value='f', variable=vesporte) rb_futebol.pack() rb_volei = Radiobutton(app, text='Vôlei', value='v', variable=vesporte) rb_volei.pack() rb_basquete = Radiobutton(app, text='Basquete', value='b', variable=vesporte) rb_basquete.pack() btn_esporte = Button(app, text='Esporte selecionado', command=imprimirEsporte) btn_esporte.pack() app.mainloop() ``` #### File: sobre-python/curso-em-video/ex098.2.py ```python from time import sleep def contador(i, f, p): if p < 0: p *= -1 if p == 0: p = 1 print('-=' * 20) print('\033[1m'f'Contagem de {i} até {f} de {p} em {p}''\033[m') sleep(2.5) if i < f: cont = i while cont <= f : print(f'{cont} ', end='', flush=True) sleep(0.5) cont += p print('FIM!') else: cont = i while cont >= f: print(f'{cont} ', end='', flush=True) sleep(0.5) cont += p print('FIM!') # Programa Principal contador(1, 10, 1) contador(10, 0, 2) print('-=' * 20) print('\033[1m''Agora é sua vez de personalizar a contagem!''\033[1m') ini = int(input('Início: ')) fim = int(input('Fim: ')) pas = int(input('Passo: ')) contador(ini, fim, pas) ``` #### File: lib/arquivo/__init__.py ```python from ex115.lib.interface import * def arquivoExiste(nome): try: a = open(nome, 'rt') # open é para abrir um arquivo e 'rt' a.close() # significa read (ler) um text (texto) except FileNotFoundError: return False else: return True def criarArquivo(nome): try: a = open(nome, 'wt+') # 'wt+' significa write (escrever) um text (texto) e o a.close() # + é para criar um arquivo de texo, caso ele não exista except: print('\033[31m''Houve um erro na criação do arquivo!\033[m') else: print('\033[32m'f'Arquivo {nome} criado com sucesso!\033[m') def lerArquivo(nome): try: a = open(nome, 'rt') except: print('\033[31m''Erro ao ler o arquivo!') else: cabeçalho('PESSOAS CADASTRADAS') for linha in a: dado = linha.split(';') dado[1] = dado[1].replace('\n', '') print(f'{dado[0]:<30}{dado[1]:>3} anos') finally: a.close() def cadastrar(arq, nome='desconhecido', idade=0): try: a = open(arq, 'at') # 'at' significa append (anexar) text (texto) num arquivo de texto except: print('\033[31m''Houve um ERRO na abertura do arquivo!\033[m') else: try: a.write(f'{nome}; {idade}\n') except: print('\033[31m''Houve um erro na hora de escrever os dados!') else: print('\033[32m'f'Novo registro de {nome} adicionado') a.close() ```
{ "source": "joselupy/ap-latam", "score": 2 }
#### File: aplatam/old/_2_balance_classes.py ```python import os import sys import numpy as np import glob from shutil import copyfile import shutil #train_dir = 'data/hires/256_256_0/all/' aug = 2 def cnn_training_dir_structure(train_dir): np.random.seed(33) pos_files = glob.glob(os.path.join(train_dir, 't', '*.jpg')) neg_files = glob.glob(os.path.join(train_dir, 'f', '*.jpg')) training_pos_files = set( np.random.choice( pos_files, int(round(len(pos_files) * 0.75)), replace=False)) training_neg_files = set( np.random.choice( neg_files, int(round(len(pos_files) * aug * 0.75)), replace=False)) testing_pos_files = set(pos_files) - set(training_pos_files) testing_neg_files = set( np.random.choice( list(set(neg_files) - set(training_neg_files)), len(testing_pos_files), replace=False)) #testing_pos_files = [pos_file for pos_file in pos_files if not (pos_file in training_pos_files)] #testing_neg_files = [neg_file for neg_file in neg_files if not (neg_file in training_neg_files)] print(len(training_pos_files), len(training_neg_files)) shutil.rmtree('data_keras/train_hires_balanced/') shutil.rmtree('data_keras/validation_hires_balanced/') labels = { 'training_pos_files': training_pos_files, 'training_neg_files': training_neg_files, 'testing_pos_files': testing_pos_files, 'testing_neg_files': testing_neg_files } for label in list(labels.keys()): for fname in labels[label]: base_fname = os.path.basename(fname) splitted_label = label.split("_") if splitted_label[0] == 'training' and splitted_label[1] == 'pos': if not os.path.exists('data_keras/train_hires_balanced/vya/'): os.makedirs('data_keras/train_hires_balanced/vya/') copyfile( fname, os.path.join( 'data_keras/train_hires_balanced/vya/{0}'.format( base_fname))) if splitted_label[0] == 'training' and splitted_label[1] == 'neg': if not os.path.exists( 'data_keras/train_hires_balanced/no_vya/'): os.makedirs('data_keras/train_hires_balanced/no_vya/') copyfile( fname, os.path.join( 'data_keras/train_hires_balanced/no_vya/{0}'.format( base_fname))) if splitted_label[0] == 'testing' and splitted_label[1] == 'pos': if not os.path.exists( 'data_keras/validation_hires_balanced/vya/'): os.makedirs('data_keras/validation_hires_balanced/vya/') copyfile( fname, os.path.join( 'data_keras/validation_hires_balanced/vya/{0}'.format( base_fname))) if splitted_label[0] == 'testing' and splitted_label[1] == 'neg': if not os.path.exists( 'data_keras/validation_hires_balanced/no_vya/'): os.makedirs('data_keras/validation_hires_balanced/no_vya/') copyfile( fname, os.path.join( 'data_keras/validation_hires_balanced/no_vya/{0}'. format(base_fname))) print('Done') def main(args): cnn_training_dir_structure(args.input_dir) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser( description='Creates directory structure for cnn training', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('input_dir', help='Path where jpg tiles are stored') args = parser.parse_args() main(args) ``` #### File: aplatam/old/_4_predict.py ```python import glob import os import sys from functools import partial import keras.models import numpy as np import pyproj import rasterio as rio import tqdm from keras.preprocessing.image import ImageDataGenerator from shapely.geometry import box, mapping, shape from shapely.ops import transform from skimage import exposure from .util import sliding_windows, window_to_bounds def write_geojson(shapes_and_probs, output_path): import json from shapely.geometry import mapping d = {'type': 'FeatureCollection', 'features': []} for shape, prob in shapes_and_probs: project = partial( pyproj.transform, pyproj.Proj(init='epsg:3857'), pyproj.Proj(init='epsg:4326')) shape_wgs = transform(project, shape) feat = { 'type': 'Feature', 'geometry': mapping(shape_wgs), 'properties': { 'prob': prob } } d['features'].append(feat) with open(output_path, 'w') as f: f.write(json.dumps(d)) def predict_image(fname, model, size, step_size=None, rescale_intensity=False): if not step_size: step_size = size with rio.open(fname) as src: imgs = [] windows = [] for window in sliding_windows(size, step_size, src.shape): window_box = box(*window_to_bounds(window, src.transform)) img = np.dstack([src.read(b, window=window) for b in range(1, 4)]) if rescale_intensity: low, high = np.percentile(img, (2, 98)) img = exposure.rescale_intensity(img, in_range=(low, high)) img = img / 255. preds = model.predict(np.array([img])) preds_b = preds[:, 0] for i in np.nonzero(preds_b > 0.3)[0]: print((window, float(preds_b[i]))) windows.append((window_box, float(preds_b[i]))) #if cur_windows: # name, _ = os.path.splitext(os.path.basename(fname)) # output = '/tmp/{}_windows.geojson'.format(name) # write_geojson(cur_windows, output) return windows def predict_images(input_dir, output, model, size, **kwargs): all_windows = [] files = glob.glob(os.path.join(input_dir, '**/*.tif'), recursive=True) print(files) for fname in tqdm.tqdm(files): all_windows.extend(predict_image(fname, model, size, **kwargs)) print('Done! Found {} matching windows on all files'.format( len(all_windows))) write_geojson(all_windows, output) print('{} written'.format(output)) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser( description='Classify a set of hi-res images', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('model_file', help='HDF5 Keras model file path') parser.add_argument( 'input_dir', help='Path where test hi-res images are stored') parser.add_argument( '--step-size', default=None, help='Step size of sliding windows (if none, same as size)') parser.add_argument( '--rescale-intensity', action='store_true', default=False, help='Rescale intensity with 2-98 percentiles') parser.add_argument('output', help='GeoJSON output file') args = parser.parse_args() datagen = ImageDataGenerator(rescale=1. / 255) model = keras.models.load_model(args.model_file) img_size = model.input_shape[1] step_size = None if args.step_size: step_size = int(args.step_size) predict_images( args.input_dir, args.output, model, img_size, step_size=step_size, rescale_intensity=args.rescale_intensity) ```
{ "source": "joseLus007/final_pro", "score": 2 }
#### File: Projeto_Joaninha/pedidos/models.py ```python from django.db import models from django.urls import reverse_lazy class Pedidos(models.Model): nome_cliente=models.CharField('nome_cliente',max_length=100) email=models.CharField('E-mail',max_length=200,unique=True) lista_pedidos=models.CharField('pedidos',max_length=500) forma_de_pagamento=models.CharField('forma_de_pagamento', max_length=100) endereco=models.CharField('endereço',max_length=2000) numero_contato=models.CharField('contato',max_length=12) class Meta: ordering=("lista_pedidos",) def __str__(self): return self.lista_pedidos def get_absolute_url(self): return reverse_lazy("pedidos:pedidos_detail",kwargs={'pk':self.pk}) ``` #### File: Projeto_Joaninha/produto/views.py ```python from django.contrib.auth.decorators import login_required from django.shortcuts import render from django.views.generic import CreateView,UpdateView from .models import Produto from .forms import ProdutoForm @login_required def Produto_list(request): template_name='produto_list.html' objects=Produto.objects.all() context={'object_list':objects} return render(request, template_name, context) def Produto_detail(request,pk): template_name='produto_detail.html' obj=Produto.objects.get(pk=pk) context={'object':obj} return render(request, template_name, context) def Produto_add(request): template_name='produto_form.html' return render(request,template_name) class ProdutoCreate(CreateView): model=Produto template_name='produto_form.html' form_class=ProdutoForm class ProdutoUpdate(UpdateView): model=Produto template_name='produto_form.html' form_class=ProdutoForm ```
{ "source": "joseLus007/Repositorio_projeto", "score": 2 }
#### File: Ambiente_PRO/Projeto/create_data_pedidos.py ```python import os import django from Projeto_Joaninha.pedidos.models import Pedidos os.environ.setdefault("DJANGO_SETTINGS_MODULE", "Projeto_Joaninha.settings") django.setup() def main (): t=Pedidos() t.nome_cliente='<NAME>' t.email='<EMAIL>' t.prato='bife' t.acompanhamentos='batata' t.saladas='Sem Salada' t.forma_de_pagamento='Cartão' t.endereco='rua nao sei' t.numero_contato='9121222' main() ``` #### File: Ambiente_PRO/Projeto/create_data.py ```python import os import django os.environ.setdefault("DJANGO_SETTINGS_MODULE", "Projeto_Joaninha.settings") django.setup() import string import timeit from random import choice, random, randint from Projeto_Joaninha.produto.models import Produto class Utils: ''' Métodos genéricos. ''' 'para gerar numeros aleatorios' @staticmethod def gen_digits(max_length): return str(''.join(choice(string.digits) for i in range(max_length))) class ProdutoClass: @staticmethod def criar_produtos(produtos): Produto.objects.all().delete() aux = [] for produto in produtos: data = dict( produto=produto, ncm=Utils.gen_digits(8), preco=random() * randint(10, 50), estoque=randint(10, 200), ) obj =Produto(**data) aux.append(obj) Produto.objects.bulk_create(aux) produtos = ( 'Arroz', 'feijâo', 'Batata palha', 'Batata', 'farinha de milho', 'sal', 'tomate', 'leite', 'mostada', 'peixe', 'Frango', 'Porco', 'Bovina', 'Manteiga', 'Hamburguer', 'salame', ) tic = timeit.default_timer() ProdutoClass.criar_produtos(produtos) toc = timeit.default_timer() print('Tempo:', toc - tic) ``` #### File: Projeto_Joaninha/estoque/models.py ```python from django.contrib.auth.models import User from django.db import models from Projeto_Joaninha.core.models import TimeStampedModel from Projeto_Joaninha.produto.models import Produto MOVIMENTO = ( ('e', 'entrada'), ('s', 'saida'), ) class Estoque(TimeStampedModel): funcionario=models.ForeignKey(User,on_delete=models.CASCADE) nf=models.PositiveIntegerField('nota fiscal', null=True, blank=True) movimento=models.CharField(max_length=1, choices=MOVIMENTO) class Meta: ordering = ('-created',) def __str__(self): return str(self.pk) class EstoqueItens(models.Model): estoque=models.ForeignKey(Estoque,on_delete=models.CASCADE) produto=models.ForeignKey(Produto,on_delete=models.CASCADE) quantidade=models.PositiveIntegerField() saldo=models.PositiveIntegerField() class Meta: ordering = ('pk',) def __str__(self): return '{} - {} - {}'.format(self.pk, self.estoque.pk, self.produto) ```
{ "source": "joselusl/ars_lib_helpers", "score": 3 }
#### File: ars_lib_helpers/source/ars_lib_helpers.py ```python import numpy as np from numpy import * import os # ROS import rospy import tf_conversions as tf def normalize(v): norm = np.linalg.norm(v) if norm < 0.00001: return v return v / norm class Quaternion: @staticmethod def normalize(v): return normalize(v) @staticmethod def zerosQuat(): return Quaternion.normalize(np.array([1.0, 0.0, 0.0, 0.0], dtype=float)) @staticmethod def zerosQuatSimp(): return Quaternion.normalize(np.array([1.0, 0.0], dtype=float)) @staticmethod def setQuatSimp(v): return Quaternion.normalize(v) @staticmethod def checkConsistencyQuat(v): tol=0.2 norm = np.linalg.norm(v) if(abs(1.0-norm)>=tol): vout = Quaternion.zerosQuat() else: vout = Quaternion.normalize(v) return vout @staticmethod def getSimplifiedQuatRobotAtti(robot_atti_quat): robot_atti_quat_tf = np.roll(robot_atti_quat, -1) robot_atti_ang = tf.transformations.euler_from_quaternion(robot_atti_quat_tf, axes='sxyz') robot_atti_ang_yaw = robot_atti_ang[2] robot_atti_hor_quat_tf = tf.transformations.quaternion_from_euler(0, 0, robot_atti_ang_yaw, axes='sxyz') robot_atti_hor_quat = np.roll(robot_atti_hor_quat_tf, 1) robot_atti_quat_simp = Quaternion.zerosQuatSimp() robot_atti_quat_simp[0] = robot_atti_hor_quat[0] robot_atti_quat_simp[1] = robot_atti_hor_quat[3] robot_atti_quat_simp = Quaternion.normalize(robot_atti_quat_simp) return robot_atti_quat_simp @staticmethod def quatProd(p, q): prod = Quaternion.zerosQuat() prod[0] = p[0]*q[0] - p[1]*q[1] - p[2]*q[2] - p[3]*q[3] prod[1] = p[0]*q[1] + p[1]*q[0] + p[2]*q[3] - p[3]*q[2] prod[2] = p[0]*q[2] - p[1]*q[3] + p[2]*q[0] + p[3]*q[1] prod[3] = p[0]*q[3] + p[1]*q[2] - p[2]*q[1] + p[3]*q[0] return prod @staticmethod def quatConj(p): conj = Quaternion.zerosQuat() conj[0] = p[0] conj[1] = -p[1] conj[2] = -p[2] conj[3] = -p[3] return conj @staticmethod def quatSimpProd(q1, q2): qr = Quaternion.zerosQuatSimp() qr[0] = q1[0]*q2[0]-q1[1]*q2[1] qr[1] = q1[0]*q2[1]+q1[1]*q2[0] return qr @staticmethod def quatSimpConj(p): conj = Quaternion.zerosQuatSimp() conj[0] = p[0] conj[1] = -p[1] return conj @staticmethod def computeDiffQuatSimp(atti_quat_simp_1, atti_quat_simp_2): error_quat_simp = Quaternion.zerosQuatSimp() error_quat_simp[0] = atti_quat_simp_1[0]*atti_quat_simp_2[0]+atti_quat_simp_1[1]*atti_quat_simp_2[1] error_quat_simp[1] = atti_quat_simp_1[1]*atti_quat_simp_2[0]-atti_quat_simp_1[0]*atti_quat_simp_2[1] if(error_quat_simp[0] < 0): error_quat_simp = -1 * error_quat_simp return error_quat_simp @staticmethod def quatSimpFromAngle(angle): quatSimp = Quaternion.zerosQuatSimp() quatSimp[0] = math.cos(0.5*angle) quatSimp[1] = math.sin(0.5*angle) if(quatSimp[0] < 0): quatSimp = -1 * quatSimp return quatSimp @staticmethod def angleFromQuatSimp(quatSimp): angle = 0.0 if(quatSimp[0] < 0): quatSimp = -1 * quatSimp angle = 2.0 * math.atan(quatSimp[1]/quatSimp[0]) return angle @staticmethod def angleDiffFromQuatSimp(atti_quat_simp_1, atti_quat_simp_2): return Quaternion.angleFromQuatSimp(Quaternion.computeDiffQuatSimp(atti_quat_simp_1, atti_quat_simp_2)) @staticmethod def errorFromQuatSimp(quatSimp): error = 0.0 if(quatSimp[0] < 0): quatSimp = -1 * quatSimp error = 2.0 * quatSimp[1].item() return error @staticmethod def errorDiffFromQuatSimp(atti_quat_simp_1, atti_quat_simp_2): return Quaternion.errorFromQuatSimp(Quaternion.computeDiffQuatSimp(atti_quat_simp_1, atti_quat_simp_2)) @staticmethod def rotMat2dFromAngle(angle): rotMat = np.zeros((2,2), dtype=float) rotMat[0,0] = math.cos(angle) rotMat[0,1] = -math.sin(angle) rotMat[1,0] = math.sin(angle) rotMat[1,1] = math.cos(angle) return rotMat @staticmethod def rotMat3dFromAngle(angle): rotMat = np.zeros((3,3), dtype=float) rotMat[0:2, 0:2] = Quaternion.rotMat2dFromAngle(angle) rotMat[2,2] = 1.0 return rotMat @staticmethod def rotMat2dFromQuatSimp(quatSimp): rotMat = Quaternion.rotMat2dFromAngle(Quaternion.angleFromQuatSimp(quatSimp)) return rotMat @staticmethod def rotMat3dFromQuatSimp(quatSimp): rotMat = Quaternion.rotMat3dFromAngle(Quaternion.angleFromQuatSimp(quatSimp)) return rotMat @staticmethod def diffRotMat3dWrtAngleFromAngle(angle): diffRotMat = np.zeros((3,3), dtype=float) diffRotMat[0,0] = -math.sin(angle) diffRotMat[0,1] = -math.cos(angle) diffRotMat[1,0] = math.cos(angle) diffRotMat[1,1] = -math.sin(angle) diffRotMat[2,2] = 0.0 return diffRotMat class Pose: position = np.zeros((3,), dtype=float) attitude_quat = np.array([1.0, 0.0, 0.0, 0.0], dtype=float) def __init__(self): self.position = np.zeros((3,), dtype=float) self.attitude_quat = np.array([1.0, 0.0, 0.0, 0.0], dtype=float) return class PoseSimp: parent_frame = '' child_frame = '' position = np.zeros((3,), dtype=float) attitude_quat_simp = np.array([1.0, 0.0], dtype=float) def __init__(self): parent_frame = '' child_frame = '' self.position = np.zeros((3,), dtype=float) self.attitude_quat_simp = np.array([1.0, 0.0], dtype=float) return class PoseAlgebra: @staticmethod def computeDiffQuatSimp(atti_quat_simp_1, atti_quat_simp_2): return Quaternion.computeDiffQuatSimp(atti_quat_simp_1, atti_quat_simp_2) @staticmethod def computeScalarDiffFromDiffQuatSimp(delta_atti_quat_simp): if(delta_atti_quat_simp[0] < 0): delta_atti_quat_simp = -1 * delta_atti_quat_simp error_att = 2.0 * delta_atti_quat_simp[1].item() return error_att @staticmethod def computeAngleDiffFromDiffQuatSimp(delta_atti_quat_simp): if(delta_atti_quat_simp[0] < 0): delta_atti_quat_simp = -1 * delta_atti_quat_simp error_att = 2.0 * math.atan(delta_atti_quat_simp[1]/delta_atti_quat_simp[0]) return error_att @staticmethod def computePoseSimpDifference(posi_1, atti_quat_simp_1, posi_2, atti_quat_simp_2): # Position delta_posi = posi_1 - posi_2 # Attitude delta_atti_quat_simp = PoseAlgebra.computeDiffQuatSimp(atti_quat_simp_1, atti_quat_simp_2) # End return delta_posi, delta_atti_quat_simp @staticmethod # pc = p1 + p2 def computePoseSimpComposition(posi_1, atti_quat_simp_1, posi_2, atti_quat_simp_2): # Position posi_comp = np.matmul(Quaternion.rotMat3dFromQuatSimp(atti_quat_simp_1), posi_2) + posi_1 # Attitude atti_quat_simp_comp = Quaternion.quatSimpProd(atti_quat_simp_1, atti_quat_simp_2) # End return posi_comp, atti_quat_simp_comp @staticmethod # pc = -p1 def computePoseSimpInversion(posi_1, atti_quat_simp_1): # Position posi_inv = -np.matmul(np.transpose(Quaternion.rotMat3dFromQuatSimp(atti_quat_simp_1)), posi_1) # Attitude atti_quat_simp_inv = Quaternion.quatSimpConj(atti_quat_simp_1) # End return posi_inv, atti_quat_simp_inv @staticmethod # pc = p1 - p2 def computePoseSimpPostSubstraction(posi_1, atti_quat_simp_1, posi_2, atti_quat_simp_2): # posi_2_inv, atti_quat_simp_2_inv = PoseAlgebra.computePoseSimpInversion(posi_2, atti_quat_simp_2) # posi_subs, atti_quat_simp_subs = PoseAlgebra.computePoseSimpComposition(posi_1, atti_quat_simp_1, posi_2_inv, atti_quat_simp_2_inv) # End return posi_subs, atti_quat_simp_subs @staticmethod # pc = - p1 + p2 def computePoseSimpPreSubstraction(posi_1, atti_quat_simp_1, posi_2, atti_quat_simp_2): # posi_1_inv, atti_quat_simp_1_inv = PoseAlgebra.computePoseSimpInversion(posi_1, atti_quat_simp_1) # posi_subs, atti_quat_simp_subs = PoseAlgebra.computePoseSimpComposition(posi_1_inv, atti_quat_simp_1_inv, posi_2, atti_quat_simp_2) # End return posi_subs, atti_quat_simp_subs class Conversions: @staticmethod def convertVelLinFromRobotToWorld(robot_velo_lin_robot, robot_atti_quat_in, flag_quat_simp=True): robot_atti_quat = np.zeros((4,), dtype=float) if(flag_quat_simp): robot_atti_quat[0] = robot_atti_quat_in[0] robot_atti_quat[3] = robot_atti_quat_in[1] else: robot_atti_quat = robot_atti_quat_in robot_atti_quat = Quaternion.normalize(robot_atti_quat) robot_atti_quat_tf = np.roll(robot_atti_quat, -1) robot_atti_ang = tf.transformations.euler_from_quaternion(robot_atti_quat_tf, axes='sxyz') robot_atti_ang_yaw = robot_atti_ang[2] robot_velo_lin_world = np.zeros((3,), dtype=float) robot_velo_lin_world[0] = math.cos(robot_atti_ang_yaw)*robot_velo_lin_robot[0]-math.sin(robot_atti_ang_yaw)*robot_velo_lin_robot[1] robot_velo_lin_world[1] = math.sin(robot_atti_ang_yaw)*robot_velo_lin_robot[0]+math.cos(robot_atti_ang_yaw)*robot_velo_lin_robot[1] robot_velo_lin_world[2] = robot_velo_lin_robot[2] return robot_velo_lin_world @staticmethod def convertVelAngFromRobotToWorld(robot_velo_ang_robot, robot_atti_quat_in, flag_quat_simp=True): return robot_velo_ang_robot @staticmethod def convertVelLinFromWorldToRobot(robot_velo_lin_world, robot_atti_quat_in, flag_quat_simp=True): robot_atti_quat = np.zeros((4,), dtype=float) if(flag_quat_simp): robot_atti_quat[0] = robot_atti_quat_in[0] robot_atti_quat[3] = robot_atti_quat_in[1] else: robot_atti_quat = robot_atti_quat_in robot_atti_quat = Quaternion.normalize(robot_atti_quat) robot_atti_quat_tf = np.roll(robot_atti_quat, -1) robot_atti_ang = tf.transformations.euler_from_quaternion(robot_atti_quat_tf, axes='sxyz') robot_atti_ang_yaw = robot_atti_ang[2] robot_velo_lin_robot = np.zeros((3,), dtype=float) robot_velo_lin_robot[0] = math.cos(robot_atti_ang_yaw)*robot_velo_lin_world[0]+math.sin(robot_atti_ang_yaw)*robot_velo_lin_world[1] robot_velo_lin_robot[1] = -math.sin(robot_atti_ang_yaw)*robot_velo_lin_world[0]+math.cos(robot_atti_ang_yaw)*robot_velo_lin_world[1] robot_velo_lin_robot[2] = robot_velo_lin_world[2] return robot_velo_lin_robot @staticmethod def convertVelAngFromWorldToRobot(robot_velo_ang_world, robot_atti_quat_in, flag_quat_simp=True): return robot_velo_ang_world class Circle3D: id_lab = None position = None attitude_quat_simp = None parent_frame = None circle_radius = None def __init__(self): self.id_lab = -1 self.position = np.zeros((3,), dtype=float) self.attitude_quat_simp = Quaternion.zerosQuatSimp() self.parent_frame = '' self.circle_radius = 0.0 return def isPointInCircle(point, circle_center, circle_radius): circle_impl_equ = (point[0]-circle_center[0])**2 + (point[1]-circle_center[1])**2 - circle_radius**2 if(circle_impl_equ < 1.0): return True else: return False def distancePointCircle(point_2d, circle_center_2d, circle_radius): distance_circle = 0.0 distance_center = np.linalg.norm(circle_center_2d-point_2d) if(distance_center <= circle_radius): distance_circle = 0.0 else: distance_circle = distance_center - circle_radius return distance_circle def distanceSegmentCircle(point_2d_segment_1, point_2d_segment_2, circle_center_2d, circle_radius): # LINE v_s1 = np.zeros((2,), dtype=float) v_s1 = point_2d_segment_2 - point_2d_segment_1 v_s1 = normalize(v_s1) # The two waypoints are the same! if(np.linalg.norm(v_s1) < 0.00001): return distancePointCircle(point_2d_segment_1, circle_center_2d, circle_radius) v_s2 = np.zeros((2,), dtype=float) v_s2[0] = v_s1[1] v_s2[1] = -v_s1[0] mat_int_s1_s2 = np.array([v_s1, -v_s2]).T sol_int_s1_s2 = np.matmul(np.linalg.inv(mat_int_s1_s2), (circle_center_2d - point_2d_segment_1)) point_int_l = sol_int_s1_s2[1] * v_s2 + circle_center_2d dist_pi_c = abs(sol_int_s1_s2[1].item()) # SEGMENT dist_p1_pi = np.linalg.norm(point_2d_segment_1-point_int_l) dist_p1_p2 = np.linalg.norm(point_2d_segment_1-point_2d_segment_2) dist_p2_pi = np.linalg.norm(point_2d_segment_2-point_int_l) distance_circle = 0.0 if(dist_p1_pi<=dist_p1_p2 and dist_p2_pi<=dist_p1_p2): # Case easy if(dist_pi_c<circle_radius): distance_circle = 0.0 elif(dist_pi_c==circle_radius): distance_circle = 0.0 else: distance_circle = dist_pi_c - circle_radius else: dist_p1_c = np.linalg.norm(point_2d_segment_1-circle_center_2d) if(dist_p1_c<=circle_radius): dist_p1_circ = 0.0 else: dist_p1_circ = dist_p1_c-circle_radius dist_p2_c = np.linalg.norm(point_2d_segment_2-circle_center_2d) if(dist_p2_c<=circle_radius): dist_p2_circ = 0.0 else: dist_p2_circ = dist_p2_c-circle_radius distance_circle = min(dist_p1_circ, dist_p2_circ) return distance_circle def pointOverSegment(point, point_segment_1, point_segment_2): flag_degradated = False point_over_segment = np.zeros((3,), dtype=float) v_s1 = np.zeros((3,), dtype=float) v_s1 = point_segment_2 - point_segment_1 v_s1 = normalize(v_s1) v_1_0 = point - point_segment_1 dot_prod = np.dot(v_s1, v_1_0) point_over_segment = dot_prod * v_s1 + point_segment_1 dist_p1_ps = np.linalg.norm(point_over_segment - point_segment_1) dist_p2_ps = np.linalg.norm(point_over_segment - point_segment_2) dist_p1_p2 = np.linalg.norm(point_segment_2 - point_segment_1) if(dist_p1_ps<=dist_p1_p2 and dist_p2_ps<=dist_p1_p2): pass else: flag_degradated = True if(dist_p1_ps < dist_p2_ps): point_over_segment = point_segment_1 else: point_over_segment = point_segment_2 return point_over_segment, flag_degradated ```
{ "source": "joselusl/ars_obstacle_avoidance_student", "score": 2 }
#### File: ars_obstacle_avoidance_student/source/ars_obstacle_avoidance_ros_node.py ```python import numpy as np from numpy import * import os import rospy from ars_obstacle_avoidance_ros import * def main(): ars_obstacle_avoidance_ros = ArsObstacleAvoidanceRos() ars_obstacle_avoidance_ros.init() ars_obstacle_avoidance_ros.open() try: ars_obstacle_avoidance_ros.run() except rospy.ROSInterruptException: pass return 0 ''' MAIN ''' if __name__ == '__main__': main() ```
{ "source": "joselusl/ars_sim_collision_detection", "score": 2 }
#### File: ars_sim_collision_detection/source/ars_sim_collision_detection_ros.py ```python import numpy as np from numpy import * import os # ROS import rospy import rospkg import std_msgs.msg from std_msgs.msg import Bool from std_msgs.msg import Header import geometry_msgs.msg from geometry_msgs.msg import Twist from geometry_msgs.msg import PoseStamped from geometry_msgs.msg import TwistStamped import visualization_msgs.msg from visualization_msgs.msg import MarkerArray from visualization_msgs.msg import Marker import tf_conversions import tf2_ros # import ars_lib_helpers class ArsSimCollisionDetectionRos: ####### # Robot size radius robot_size_radius = 0.3 # Robot pose subscriber robot_pose_sub = None # Obstacles static sub obstacles_static_sub = None # Obstacles dynamic sub obstacles_dynamic_sub = None # Robot collision pub robot_collision_pub = None # Robot Pose flag_robot_pose_set = False robot_posi = None robot_atti_quat_simp = None # Obstacles static obstacles_static_msg = None # Obstacles dynamic obstacles_dynamic_msg = None ######### def __init__(self): # Robot size radius self.robot_size_radius = 0.3 # self.flag_robot_pose_set = False self.robot_posi = np.zeros((3,), dtype=float) self.robot_atti_quat_simp = ars_lib_helpers.Quaternion.zerosQuatSimp() # self.obstacles_static_msg = MarkerArray() # self.obstacles_dynamic_msg = MarkerArray() # end return def init(self, node_name='ars_sim_collision_detection_node'): # # Init ROS rospy.init_node(node_name, anonymous=True) # Package path pkg_path = rospkg.RosPack().get_path('ars_sim_collision_detection') #### READING PARAMETERS ### # TODO ### # End return def open(self): # Subscribers # self.robot_pose_sub = rospy.Subscriber('robot_pose', PoseStamped, self.robotPoseCallback) # self.obstacles_static_sub = rospy.Subscriber('obstacles_static', MarkerArray, self.obstaclesStaticCallback) # self.obstacles_dynamic_sub = rospy.Subscriber('obstacles_dynamic', MarkerArray, self.obstaclesDynamicCallback) # Publishers # self.robot_collision_pub = rospy.Publisher('robot_collision', Bool, queue_size=1) # End return def run(self): rospy.spin() return def robotPoseCallback(self, robot_pose_msg): # self.flag_robot_pose_set = True # Position self.robot_posi[0] = robot_pose_msg.pose.position.x self.robot_posi[1] = robot_pose_msg.pose.position.y self.robot_posi[2] = robot_pose_msg.pose.position.z # Attitude quat simp robot_atti_quat = ars_lib_helpers.Quaternion.zerosQuat() robot_atti_quat[0] = robot_pose_msg.pose.orientation.w robot_atti_quat[1] = robot_pose_msg.pose.orientation.x robot_atti_quat[2] = robot_pose_msg.pose.orientation.y robot_atti_quat[3] = robot_pose_msg.pose.orientation.z self.robot_atti_quat_simp = ars_lib_helpers.Quaternion.getSimplifiedQuatRobotAtti(robot_atti_quat) # self.checkCollisionRobotObstacles() # return def obstaclesStaticCallback(self, obstacles_static_msg): self.obstacles_static_msg = obstacles_static_msg # return def obstaclesDynamicCallback(self, obstacles_dynamic_msg): self.obstacles_dynamic_msg = obstacles_dynamic_msg # return def checkCollisionRobotObstacles(self): flag_collision_detected = False # Check if(self.flag_robot_pose_set): # Obstacles static for obst_i_msg in self.obstacles_static_msg.markers: if(obst_i_msg.action == 0): # Check distance if(obst_i_msg.type == 3): obst_i_posi = np.zeros((3,), dtype=float) obst_i_posi[0] = obst_i_msg.pose.position.x obst_i_posi[1] = obst_i_msg.pose.position.y obst_i_posi[2] = obst_i_msg.pose.position.z obst_i_rad = obst_i_msg.scale.x/2.0 distance = np.linalg.norm(obst_i_posi-self.robot_posi) if(distance <= obst_i_rad+self.robot_size_radius): flag_collision_detected = True else: print("Unknown obstacle type:"+obst_i_msg.type) # Obstacles dynamic for obst_i_msg in self.obstacles_dynamic_msg.markers: if(obst_i_msg.action == 0): # Check distance if(obst_i_msg.type == 3): obst_i_posi = np.zeros((3,), dtype=float) obst_i_posi[0] = obst_i_msg.pose.position.x obst_i_posi[1] = obst_i_msg.pose.position.y obst_i_posi[2] = obst_i_msg.pose.position.z obst_i_rad = obst_i_msg.scale.x/2.0 distance = np.linalg.norm(obst_i_posi-self.robot_posi) if(distance <= obst_i_rad+self.robot_size_radius): flag_collision_detected = True else: print("Unknown obstacle type!!") # Publish flag_collision_detected_msg = Bool() flag_collision_detected_msg.data = flag_collision_detected self.robot_collision_pub.publish(flag_collision_detected_msg) # return ```
{ "source": "joselusl/ars_sim_mapper", "score": 2 }
#### File: ars_sim_mapper/source/ars_sim_mapper_ros.py ```python import numpy as np from numpy import * import os import copy # ROS import rospy import rospkg import std_msgs.msg from std_msgs.msg import Header import geometry_msgs.msg from geometry_msgs.msg import PoseStamped import visualization_msgs.msg from visualization_msgs.msg import Marker from visualization_msgs.msg import MarkerArray import tf_conversions import tf2_ros # import ars_lib_helpers class ArsSimMapperRos: ####### # Robot frame world_frame = None # Covariance on mapping of position cov_map_stat_pos = None cov_map_dyna_pos = None # Covariance on mapping of sizes cov_map_stat_siz = None cov_map_dyna_siz = None # Robot pose subscriber robot_pose_sub = None # Obstacles static sub obstacles_static_sub = None # Obstacles dynamic sub obstacles_dynamic_sub = None # Obstacles detected pub flag_pub_obstacles_detected_world = False obstacles_detected_world_pub = None # Obstacles static obstacles_static_msg = None # Obstacles dynamic obstacles_dynamic_msg = None # Obstacles detected obstacles_detected_world_msg = None # Obstacle Detection loop # freq obstacle_detect_loop_freq = None # Timer obstacle_detect_loop_timer = None ######### def __init__(self): # Robot frame self.world_frame = 'world' # Covariance on mapping of position self.cov_map_stat_pos = {'x': 0.0001, 'y': 0.0001, 'z': 0.000001} self.cov_map_dyna_pos = {'x': 0.01, 'y': 0.01, 'z': 0.00001} # Covariance on mapping of sizes self.cov_map_stat_siz = {'R': 0.0001, 'h': 0.000001} self.cov_map_dyna_siz = {'R': 0.01, 'h': 0.0001} # self.obstacles_static_msg = MarkerArray() # self.obstacles_dynamic_msg = MarkerArray() # self.obstacles_detected_world_msg = MarkerArray() # Obstacle Detection loop # freq self.obstacle_detect_loop_freq = 0.1 # Timer self.obstacle_detect_loop_timer = None # end return def init(self, node_name='ars_sim_mapper_node'): # # Init ROS rospy.init_node(node_name, anonymous=True) # Package path pkg_path = rospkg.RosPack().get_path('ars_sim_mapper') #### READING PARAMETERS ### # TODO ### # End return def open(self): # Subscribers # self.obstacles_static_sub = rospy.Subscriber('obstacles_static', MarkerArray, self.obstaclesStaticCallback, queue_size=1) # self.obstacles_dynamic_sub = rospy.Subscriber('obstacles_dynamic', MarkerArray, self.obstaclesDynamicCallback, queue_size=1) # Publishers # self.obstacles_detected_world_pub = rospy.Publisher('estim_map_world', MarkerArray, queue_size=1, latch=True) # Timers # self.obstacle_detect_loop_timer = rospy.Timer(rospy.Duration(1.0/self.obstacle_detect_loop_freq), self.obstacleDetectorLoopTimerCallback) # End return def run(self): rospy.spin() return def obstaclesStaticCallback(self, obstacles_static_msg): self.obstacles_static_msg = obstacles_static_msg # return def obstaclesDynamicCallback(self, obstacles_dynamic_msg): self.obstacles_dynamic_msg = obstacles_dynamic_msg # return def detectObstacles(self): # self.obstacles_detected_world_msg = MarkerArray() self.obstacles_detected_world_msg.markers = [] # Obstacles static for obst_i_msg in self.obstacles_static_msg.markers: if(obst_i_msg.action == 0): # Check distance if(obst_i_msg.type == 3): obst_i_posi_world = np.zeros((3,), dtype=float) obst_i_posi_world[0] = obst_i_msg.pose.position.x obst_i_posi_world[1] = obst_i_msg.pose.position.y obst_i_posi_world[2] = obst_i_msg.pose.position.z obst_i_rad = obst_i_msg.scale.x/2.0 # Noises # posi_noise = np.zeros((3,), dtype=float) posi_noise[0] = np.random.normal(loc = 0.0, scale = math.sqrt(self.cov_map_stat_pos['x'])) posi_noise[1] = np.random.normal(loc = 0.0, scale = math.sqrt(self.cov_map_stat_pos['y'])) posi_noise[2] = np.random.normal(loc = 0.0, scale = math.sqrt(self.cov_map_stat_pos['z'])) # radius_noise = np.random.normal(loc = 0.0, scale = math.sqrt(self.cov_map_stat_siz['R'])) height_noise = np.random.normal(loc = 0.0, scale = math.sqrt(self.cov_map_stat_siz['h'])) ############ # obstacle wrt World obst_i_world_msg = [] obst_i_world_msg = copy.deepcopy(obst_i_msg) # Change color obst_i_world_msg.color.r = 0.0 obst_i_world_msg.color.g = 0.0 obst_i_world_msg.color.b = 1.0 obst_i_world_msg.color.a = 0.6 # Lifetime obst_i_world_msg.lifetime = rospy.Duration(2.0*1.0/self.obstacle_detect_loop_freq) # obst_i_world_msg.pose.position.x = obst_i_posi_world[0] + posi_noise[0] obst_i_world_msg.pose.position.y = obst_i_posi_world[1] + posi_noise[1] obst_i_world_msg.pose.position.z = obst_i_posi_world[2] + posi_noise[2] # Sizes with noise obst_i_world_msg.scale.x += 2.0*radius_noise obst_i_world_msg.scale.y += 2.0*radius_noise obst_i_world_msg.scale.z += height_noise # Append world self.obstacles_detected_world_msg.markers.append(obst_i_world_msg) else: print("Unknown obstacle type:"+obst_i_msg.type) # Obstacles dynamic for obst_i_msg in self.obstacles_dynamic_msg.markers: if(obst_i_msg.action == 0): # Check distance if(obst_i_msg.type == 3): obst_i_posi_world = np.zeros((3,), dtype=float) obst_i_posi_world[0] = obst_i_msg.pose.position.x obst_i_posi_world[1] = obst_i_msg.pose.position.y obst_i_posi_world[2] = obst_i_msg.pose.position.z obst_i_rad = obst_i_msg.scale.x/2.0 # Noises # posi_noise = np.zeros((3,), dtype=float) posi_noise[0] = np.random.normal(loc = 0.0, scale = math.sqrt(self.cov_map_dyna_pos['x'])) posi_noise[1] = np.random.normal(loc = 0.0, scale = math.sqrt(self.cov_map_dyna_pos['y'])) posi_noise[2] = np.random.normal(loc = 0.0, scale = math.sqrt(self.cov_map_dyna_pos['z'])) # radius_noise = np.random.normal(loc = 0.0, scale = math.sqrt(self.cov_map_dyna_siz['R'])) height_noise = np.random.normal(loc = 0.0, scale = math.sqrt(self.cov_map_dyna_siz['h'])) ############ # obstacle wrt World obst_i_world_msg = [] obst_i_world_msg = copy.deepcopy(obst_i_msg) # Change color obst_i_world_msg.color.r = 0.0 obst_i_world_msg.color.g = 0.0 obst_i_world_msg.color.b = 1.0 obst_i_world_msg.color.a = 0.6 # Lifetime obst_i_world_msg.lifetime = rospy.Duration(2.0*1.0/self.obstacle_detect_loop_freq) # obst_i_world_msg.pose.position.x = obst_i_posi_world[0] + posi_noise[0] obst_i_world_msg.pose.position.y = obst_i_posi_world[1] + posi_noise[1] obst_i_world_msg.pose.position.z = obst_i_posi_world[2] + posi_noise[2] # Sizes with noise obst_i_world_msg.scale.x += 2.0*radius_noise obst_i_world_msg.scale.y += 2.0*radius_noise obst_i_world_msg.scale.z += height_noise # Append world self.obstacles_detected_world_msg.markers.append(obst_i_world_msg) else: print("Unknown obstacle type!!") # Publish self.obstacles_detected_world_pub.publish(self.obstacles_detected_world_msg) # return def obstacleDetectorLoopTimerCallback(self, timer_msg): # Get time time_stamp_current = rospy.Time.now() # self.detectObstacles() # return ```
{ "source": "joselusl/ars_sim_sensor_pos_robot", "score": 2 }
#### File: ars_sim_sensor_pos_robot/source/ars_sim_sensor_pos_robot_ros_node.py ```python import numpy as np from numpy import * import os import rospy from ars_sim_sensor_pos_robot_ros import * def main(): ars_sim_sensor_pos_robot_ros = ArsSimSensorPosRobotRos() ars_sim_sensor_pos_robot_ros.init() ars_sim_sensor_pos_robot_ros.open() try: ars_sim_sensor_pos_robot_ros.run() except rospy.ROSInterruptException: pass return 0 ''' MAIN ''' if __name__ == '__main__': main() ```
{ "source": "joselvira/BiomecanicaPython", "score": 3 }
#### File: BiomecanicaPython/Funciones/Bland_AltmanPlot.py ```python from __future__ import division, print_function #division #Ensure division returns float import matplotlib.pyplot as plt import numpy as np from scipy import stats import pandas as pd __author__ = '<NAME>' __version__ = '1.1.4' __date__ = '18/03/2021' #%% def bland_altman_plot(data1, data2, unidad='', etiquetaCasos=False, regr=0, tcrit_Exacto=False, n_decimales=1, ax=None, show_text=None, show_bias_LOA=False, color_lin=None, *args, **kwargs): """Realiza gráfico de Bland-Altman para dos variables con medidas similares. Ejemplo de explicación en: https://www.medcalc.org/manual/blandaltman.php Parameters ---------- data1 : 1D array_like data pandas DataFrame. data2 : 1D array_like data pandas DataFrame. unidad: opcional, incluye la unidad de medida en las etiquetas de los ejes etiquetaCasos: opcional, pone un número al lado de cada caso regr: si es mayor que cero, incluye en el gráfico la línea de regresión con el exponente indicado. También presenta el valor de la correlación con su p, de R2 y del error medio cuadrático. tcrit_Exacto : con False toma el valor t crítico = 1.96; con True lo calcula a partir de n (#stats.t.ppf(q=0.975, df=n1 + n2-2)) n_decimales : especifica el número de decimales a mostrar en BIAS y LOA. ax : ejes para el grafico resultante. show_text : indica si muestra texto informativo. Puede ser 'bias_loa', 'regr', 'publication', 'all'. defoult=None. show_bias_LOA : True/False. Muestra el valor del bias y limits of agreement en el gráfico. color_lin: Si se quiere controlar el color de las líneas bias y LOA. Por defecto (None), mantiene color negro para bias y gris para LOA. Útil cuando se quieren solapar varios grupos de datos en la misma gráfica. *args y **kwargs especificaciones de formato para los puntos del grafico. Returns ------- grafico Bland-Altman Bias, media de las diferencias LOA, limits of agreement. Example ------- bland_altman_plot(s1, s2, lw=0, color='k', s=40) bias, LOA = bland_altman_plot(s1, s2, etiquetaCasos= True, regr=2, unidad='m', tcrit_Exacto=True, show_bias_LOA=True, lw=1, color='b', s=20, ax=ax) Version history --------------- '1.1.4': Añadido el argumento n_decimales para poder especificar el número de decimales cuando muesra el BIAS y LOA. '1.1.3': Exporta los LOA sin multiplicar por 2. Representa el texto del bias y LOA en las líneas correspondientes. color_lin controla el color del texto de bias_loa. Introducido parámetro show_text, que puede ser 'bias_loa', 'regr', 'publication' o 'all'. El parámetro show_bias_LOA '1.1.2': Corregidas las gráficas, con ax en lugar de plt. Antes no funcionaba con varios subplots. Con color_lin se puede controlar el color de las líneas bias y LOA. Útil cuando se quieren solapar gráficas de varios conjuntos de datos. '1.1.1': Cálculo R2 con sklearn, con statsmodels falla por la versión de scikit. Quita las filas con valores nulos. '1.1.0': Quitados adaptadores para etiquetas. Se puede elegir el tcrit 1.96 o ajustarlo a la n. """ if len(data1) != len(data2): raise ValueError('Los dos grupos de datos no tienen la misma longitud.') #primero agrupa las dos variables en un dataframe para quitar los casos nulos de cualquiera de los dos. data= pd.concat([pd.DataFrame(data1), pd.DataFrame(data2)], axis=1).dropna() data1 = data.iloc[:,0] data2 = data.iloc[:,1] n1 = data1.notnull().sum() #pd.notnull(data1).count() #asi para que no cuente los NaN #np.isfinite(data1).count() n2 = data2.notnull().sum() #pd.notnull(data2).count() mean = np.mean([data1, data2], axis=0) diff = np.array(data1 - data2) # Difference between data1 and data2 md = np.mean(diff) # Mean of the difference sd = np.std(diff, axis=0, ddof=1) # Standard deviation of the difference t_crit = 1.96 if tcrit_Exacto==False else stats.t.ppf(q=0.975, df=n1 + n2-2) #por defecto 1.96, de esta forma se ajusta a la n if unidad!='': unidad= ' ('+unidad+ ')' # make plot if not axis was provided if ax is None: fig, ax = plt.subplots(1, 1) #dibuja los puntos ax.scatter(mean, diff, zorder=2, *args, **kwargs) if regr!=0: import seaborn as sns #linear regresion slope, intercept, r_value, p_value, std_err = stats.linregress(mean, diff) #plt.plot(mean, slope*mean + intercept , 'r', alpha=.5, lw = 1) #con cualquier exponente de regresión orden=regr #import statsmodels.api as sm #para las regresiones #FALLA POR versión de SCIKIT... #R2 = sm.OLS(diff, xpoly).fit().rsquared #Calcula el modelo de regresión para obtener R2 from sklearn.pipeline import Pipeline #estos para calcular las regresiones from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score, mean_squared_error X=mean y=diff polynomial_features = PolynomialFeatures(degree=orden, include_bias=False) linear_regression = LinearRegression() pipeline = Pipeline([('polynomial_features', polynomial_features), ('linear_regression', linear_regression)]) pipeline.fit(X[:, np.newaxis], y) y_predict = pipeline.predict(X[:, np.newaxis]) R2 = r2_score(y, y_predict) MSE = mean_squared_error(y, y_predict) #Gráfica de least squares fit line if color_lin==None: col='black' else: col=color_lin sns.regplot(x=mean, y=diff, scatter=False, order=orden, ax=ax, line_kws={'color':col, 'alpha':0.6, 'lw':2}) cuadroTexto=dict(facecolor='white', alpha=0.4, edgecolor='none', boxstyle='round,pad=0.1,rounding_size=.5') if show_text in ['regr', 'all']: ax.text(0.02, 0.01, 'r= {0:.3f}, p= {1:.3f}, $R^2$= {2:.3f} MSE= {3:.3f}'.format(r_value, p_value, R2, MSE), fontsize=10, horizontalalignment='left', verticalalignment='bottom', color=col, bbox=cuadroTexto, transform=ax.transAxes, zorder=2) elif show_text in ['publication']: ax.text(0.02, 0.01, 'r= {0:.3f}'.format(r_value), fontsize=10, horizontalalignment='left', verticalalignment='bottom', color=col, bbox=cuadroTexto, transform=ax.transAxes, zorder=2) #dibuja la línea horizontal del cero ax.axhline(0.0, color='grey', linestyle='-', zorder=1, linewidth=1.0, solid_capstyle='round') if color_lin==None: #dibuja la línea horizontal de la media ax.axhline(md, color='black', linestyle='-', zorder=1, linewidth=2.0, solid_capstyle='round') #dibuja las líneas horizontales de los límites de acuerdo ax.axhline(md + t_crit*sd, color='gray', zorder=1, linestyle='--', dashes=(5, 2), dash_capstyle='round', linewidth=1.5) ax.axhline(md - t_crit*sd, color='gray', zorder=1, linestyle='--', dashes=(5, 2), dash_capstyle='round', linewidth=1.5) else: #dibuja la línea horizontal de la media ax.axhline(md, color=color_lin, linestyle='-', zorder=1, linewidth=2.0, solid_capstyle='round') #dibuja las líneas horizontales de los límites de confianza ax.axhline(md + t_crit*sd, color=color_lin, zorder=1, linestyle='--', dashes=(5, 2), dash_capstyle='round', linewidth=1.5) ax.axhline(md - t_crit*sd, color=color_lin, zorder=1, linestyle='--', dashes=(5, 2), dash_capstyle='round', linewidth=1.5) if etiquetaCasos: font = {'family': 'sans', 'color': 'red', 'weight': 'normal', 'size': 8, 'alpha': 0.7, } for num in range(len(data1)): if ~np.isnan(mean[num]) and ~np.isnan(diff[num]): plt.text(mean[num], diff[num], str(num), fontdict=font) etiquetaY='Difference' etiquetaY=etiquetaY + unidad etiquetaX='Mean' etiquetaX=etiquetaX + unidad ax.set_xlabel(etiquetaX) ax.set_ylabel(etiquetaY) if show_text in ['bias_loa', 'publication', 'all'] or show_bias_LOA: if color_lin==None: color_lin='black' cuadroTexto=dict(facecolor='white', alpha=0.4, edgecolor='none', boxstyle='round,pad=0.1,rounding_size=.5') ax.text(ax.get_xlim()[1], md+(ax.get_ylim()[1]-ax.get_ylim()[0])/1000, 'Bias {0:.{dec}f}'.format(md, dec=n_decimales), fontsize=12, color=color_lin, horizontalalignment='right', verticalalignment='bottom', bbox=cuadroTexto, transform=ax.transData, zorder=2) ax.text(ax.get_xlim()[1], (md+t_crit*sd)+(ax.get_ylim()[1]-ax.get_ylim()[0])/1000, 'LOA {0:.{dec}f}'.format(md+t_crit*sd, dec=n_decimales), fontsize=10, color=color_lin, horizontalalignment='right', verticalalignment='bottom', bbox=cuadroTexto, transform=ax.transData) ax.text(ax.get_xlim()[1], (md-t_crit*sd)+(ax.get_ylim()[1]-ax.get_ylim()[0])/1000, 'LOA {0:.{dec}f}'.format(md-t_crit*sd, dec=n_decimales), fontsize=10, color=color_lin, horizontalalignment='right', verticalalignment='bottom', bbox=cuadroTexto, transform=ax.transData) plt.tight_layout() return(md, t_crit*sd) #%% if __name__ == '__main__': import pandas as pd #%% Comprobar con los datos de la web https://rpubs.com/Cristina_Gil/B-A_analysis metodo_A = np.array([1, 5, 10, 20, 50, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000]) metodo_B = np.array([8, 16, 30, 24, 39, 54, 40, 68, 72, 62, 122, 80, 181, 259, 275, 380, 320, 434, 479, 587, 626, 648, 738, 766, 793, 851, 871, 957, 1001, 960]) bland_altman_plot(metodo_A, metodo_B, regr=2, tcrit_Exacto=True) plt.show() #%% #Crea un conjunto de medidas con dos instrumentos. El 2º es como el 1º pero con un error gausiano np.random.seed(1) mu1, sigma1 = 0, 10.5 # media y SD del instrumento 1 instr1 = np.random.normal(mu1, sigma1, 10) mu2, sigma2 = 3.1, 10.1 # # media y SD que se añade al instrumento 1 instr2 = instr1+np.random.normal(mu2, sigma2, 10) #instr1=pd.DataFrame(instr1) #instr2=pd.DataFrame(instr2) #Muestra los datos plt.plot(instr1, 'bo') plt.plot(instr2, 'ro') plt.show() #y un scatter plot plt.plot(instr1, instr2, 'ro') plt.show() #%% #Crea el Bland-Altman plot básico bland_altman_plot(instr1, instr2) plt.show() #puede devolver los valores de bias (media de las diferencias) y limits of agreement, y también presentarlos en la gráfica bias, LOA = bland_altman_plot(instr1, instr2, show_bias_LOA=True) print('Bias = {:.2f}, LOA ={:.2f}'.format(bias, LOA)) #Se puede controlar el color de los puntos (color), su tamaño (s) bland_altman_plot(instr1, instr2, color='r', s=80, show_bias_LOA=True) #Se puede pedir que etiquete cada caso para poder identificarlos bland_altman_plot(instr1, instr2, etiquetaCasos=True, color='b', show_bias_LOA=True) #También puede calcular si existe tendendia en los datos. Presenta la R2 y Pearson bland_altman_plot(instr1, instr2, regr=1, color='b', show_bias_LOA=True) #para poder controlar el aspecto de los ejes, etiquetas, etc. incluirlo en una figura fig, ax = plt.subplots() bland_altman_plot(instr1, instr2, etiquetaCasos=False, ax=ax, color='k', s=40) plt.title('Bland-Altman plot') ax.set_ylabel('Bias') ax.set_xlabel('Media entre instrumento 1 e instrumento 2') ax.set_xlim([-30,30]) ax.set_ylim([-30,30]) plt.show() #También puede calcular si existe tendendia en los datos. El número pasado en regs se utiliza como exponente de la línea de regresión utilizada. #Presenta Pearson y p de la correlación lineal y la R2 de la regresión del polinomio con exponente indicado bland_altman_plot(instr1, instr2, regr=1, color='b', show_bias_LOA=True) bland_altman_plot(instr1, instr2, regr=2, color='b', show_bias_LOA=True) #%% np.random.seed(9999) m1 = np.random.random(500) m2 = np.random.random(500) mediadif, LOA= bland_altman_plot(m1, m2, lw=0, color='k', s=40, show_text='all', regr=1, color_lin='grey') plt.title('Bland-Altman Plot') plt.show() #%% Datos = pd.read_excel(r"F:\Programacion\Python\Mios\Estadistica\EjemploDatos-Bland-AltmanPlot.xlsx", 'Hoja1', index_col=None, na_values=[" "]) bland_altman_plot(Datos.iloc[:,0], Datos.iloc[:,1], lw=0, color='k', s=40, show_text='bias_loa') plt.title('Bland-Altman Plot') plt.show() #%%############################################### Data1 = np.array([10.3, 5.1, 3.2, 19.1, 8.1, 11.7, 7.1, 13.9, 4.0, 20.1, 27.5, 6.4, 30.1, 13.0, 10.0, 16.8, 17.3, 3.0, 25.6, 19.3, 15.0, 27.3, 14.2, 13.0,14.4, 22.1, 19.0, 18.0, 13.0, 25.6, 18.4, 12.6, 25.5, 15.7, 20.2, 16.5, 19.3, 10.0, 18.8, 24.0, 22.8]) #Create an array with the second data set of group 1 Data2 = np.array([8.9, 4.0, 8.1, 21.2, 8.1, 12.0, 4.5, 13.9, 4.0, 20.1, 27.5, 6.4, 40.3, 13.0, 10.0, 32.2, 17.1, 9.4, 25.2, 18.8, 15.0, 27.3, 21.3, 13.0, 14.4,22.1, 17.9, 3.0, 13.0, 19.0, 18.4, 12.6, 25.5, 15.7, 21.2, 16.5, 19.3, 10.0, 30.8, 9.0, 22.8]) Data1=pd.Series(Data1) Data2=pd.Series(Data2) bland_altman_plot(Data2, Data1, unidad='cm') plt.title('Bland-Altman Plot') plt.show() #%%############################################### #cuando las muestras vienen de la misma población normal, cabe esperar que se salga de los límites 5 de cada 100 mu1, sigma1 = 0, 0.9 # mean and standard deviation s1 = np.random.normal(mu1, sigma1, 100) mu2, sigma2 = 0, 0.9 # mean and standard deviation s2 = np.random.normal(mu2, sigma2, 100) s1=pd.Series(s1) s2=pd.Series(s2) fig, ax = plt.subplots(1, 1, figsize=(4,3), dpi=150) bland_altman_plot(s1, s2, ax=ax, lw=0, color='k', s=40) plt.title('Dos muestras normales') plt.show() #%%############################################### #Cuando son proporcionales sale una línea con pendiente mu1, sigma1 = 0, 0.5 # mean and standard deviation s1 = np.random.normal(mu1, sigma1, 1000) s2 = s1*1.5 s1=pd.Series(s1) s2=pd.Series(s2) fig, ax = plt.subplots(1, 1, figsize=(4,3), dpi=150) bland_altman_plot(s1, s2, ax=ax, lw=0, color='k', s=40, regr=1, show_text='publication') plt.title('proporcionales') plt.show() #%%############################################### #Cuando son exponenciales sale una curva rara mu1, sigma1 = 0, 0.5 # mean and standard deviation s1 = np.random.normal(mu1, sigma1, 100) s2 = s1**3 s1=pd.Series(s1) s2=pd.Series(s2) fig, ax = plt.subplots(1, 1, figsize=(4,3), dpi=150) bland_altman_plot(s1, s2, ax=ax, lw=0, color='k', s=40, regr=3, show_text='all') plt.title('proporcionales') plt.show() #%%############################################### #Cuando son iguales sale una línea horizontal=0 mu1, sigma1 = 0, 0.5 # mean and standard deviation s1 = np.random.normal(mu1, sigma1, 100) s2 = s1 s1=pd.Series(s1) s2=pd.Series(s2) fig, ax = plt.subplots(1, 1, figsize=(4,3), dpi=150) bland_altman_plot(s1, s2, ax=ax, lw=0, color='k', s=40) plt.title('iguales') plt.show() #%%############################################### #Cuando son iguales + una diferencia aleatoria normal sale una nube que tiende hacia abajo mu1, sigma1 = 0, 0.5 # mean and standard deviation s1 = np.random.normal(mu1, sigma1, 100) mu2, sigma2 = 0.1, 0.9 # mean and standard deviation s2 = s1+np.random.normal(mu2, sigma2, 100) s1=pd.Series(s1) s2=pd.Series(s2) fig, ax = plt.subplots(1, 1, figsize=(4,3), dpi=150) kargs={'lw':0, 'color':'b','s':40, 'alpha':0.5} #bland_altman_plot(s1, s2, etiquetaCasos=True, ax=ax, **kargs, idioma='esp')#en python 2 no funciona bland_altman_plot(s1, s2, etiquetaCasos=True, ax=ax, lw=0, color='b', regr=1, alpha=0.5, s=40) plt.title('iguales + una diferencia aleatoria normal') plt.show() ################################################ #%% #Cuando son iguales + una diferencia constante sale una línea horizontal= a la diferencia cte. mu1, sigma1 = 0, 0.5 # mean and standard deviation s1 = np.random.normal(mu1, sigma1, 100) mu2, sigma2 = 0.1, 0.9 # mean and standard deviation s2 = s1+10 s1=pd.Series(s1) s2=pd.Series(s2) fig, ax = plt.subplots(1, 1, figsize=(4,3), dpi=150) bland_altman_plot(s1, s2, etiquetaCasos=True, ax=ax, lw=0, color='k', s=40) plt.title('iguales + una diferencia constante') plt.show() ################################################ #%% #Prueba cuando hay algún nan entre datos mu1, sigma1 = 0, 0.5 # mean and standard deviation s1 = np.random.normal(mu1, sigma1, 10) mu2, sigma2 = 0.1, 0.9 # mean and standard deviation s2 = s1+np.random.normal(mu2, sigma2, 10) s1=pd.Series(s1) s2=pd.Series(s2) s1[4]=np.nan s2[4]=np.nan #s2[6]=np.nan fig, ax = plt.subplots(1, 1, figsize=(4,3), dpi=150) bland_altman_plot(s1, s2, etiquetaCasos=True, ax=ax, lw=0, color='k', s=40) plt.title('iguales + una diferencia aleatoria normal') plt.show() ################################################ #%% Calcula con correlación #Cuando son iguales + una diferencia aleatoria normal sale una nube que tiende hacia abajo #np.random.seed(1) mu1, sigma1 = 0, 10.5 # mean and standard deviation s1 = np.random.normal(mu1, sigma1, 50) mu2, sigma2 = 3.1, 10.1 # mean and standard deviation s2 = s1+np.random.normal(mu2, sigma2, 50) s1=pd.Series(s1) s2=pd.Series(s2) fig, ax = plt.subplots(1, 1, figsize=(4,3), dpi=150) bland_altman_plot(s1, s2, etiquetaCasos=False, ax=ax, lw=0, color='k', regr=1, s=40) plt.title('iguales + una diferencia aleatoria normal') plt.show() #%% con varios subplots mu1, sigma1 = 0, 10.5 # mean and standard deviation s1 = np.random.normal(mu1, sigma1, 50) mu2, sigma2 = 3.1, 10.1 # mean and standard deviation s2 = s1+np.random.normal(mu2, sigma2, 50) s1=pd.Series(s1) s2=pd.Series(s2) mu12, sigma12 = 10, 25.5 # mean and standard deviation s12 = np.random.normal(mu12, sigma12, 30) mu22, sigma22 = 15.1, 20.1 # mean and standard deviation s22 = s12+np.random.normal(mu22, sigma22, 30) s12=pd.Series(s12) s22=pd.Series(s22) fig, ax = plt.subplots(1, 2, figsize=(10,5), dpi=150) #, constrained_layout=True bland_altman_plot(s1, s2, etiquetaCasos=False, ax=ax[0], lw=0, color='k', regr=1, s=40, show_text='bias_loa', n_decimales=3) #plt.xlim(0.244, 0.252) ax[0].set_title('Gráfica1') bland_altman_plot(s12, s22, etiquetaCasos=False, ax=ax[1], lw=0, color='k', regr=1, s=40) #plt.xlim(0.244, 0.252) ax[1].set_title('Gráfica2') #%% Con color uniforme para cada conjunto de datos fig, ax = plt.subplots(figsize=(5,5), dpi=150) #, constrained_layout=True bland_altman_plot(s1, s2, etiquetaCasos=False, ax=ax, regr=1, s=70, lw=0, color='b', alpha=0.6, color_lin='b', show_text='bias_loa') #plt.xlim(0.244, 0.252) bland_altman_plot(s12, s22, etiquetaCasos=False, ax=ax, regr=1, s=70, lw=0, color='r', alpha=0.6, color_lin='r', show_text='bias_loa') #plt.xlim(0.244, 0.252) ax.set_title('Gráfica2') # %% ``` #### File: BiomecanicaPython/Funciones/effectSize.py ```python from __future__ import division, print_function #division #Ensure division returns float # ============================================================================= # TAMAÑO EFECTO # ============================================================================= import numpy as np from scipy import stats import pandas as pd __author__ = '<NAME>' __version__ = 'v.1.0.0' __date__ = '15/05/2021' """ Modificaciones: 15/05/2021, v1.0.0 - Eliminado error por solid_capstyle='round' en la instrucción de crear las barras. """ # ============================================================================= # Funciones de ayuda, para quitar el cero inicial # ============================================================================= def _remove_leading_zero(value, string): if 1 > value > -1: string = string.replace('0', '', 1) return string class MyFloat(float): def __format__(self, format_string): if format_string.endswith('z'): # 'fz' is format sting for floats without leading the zero format_string = format_string[:-1] remove_leading_zero = True else: remove_leading_zero = False string = super(MyFloat, self).__format__(format_string) return _remove_leading_zero(self, string) if remove_leading_zero else string # `_remove_leading_zero` function is same as in the first example #Ejemplos #print('some text {:.3f} some more text'.format(MyFloat(.4444))) #print('some text {:.3fz} some more text'.format(MyFloat(.4444))) # ============================================================================= #Comprobada con el archivo Excel F:\Biomec\HerramientasCalculo\LimitesConfianza.xlsx def Hedges_g(group1, group2, grouplabels=['Grupo1', 'Grupo2'], varlabels=[], muestras_dep=False, pctcl = 95, sdpooled= True, tipose='Nakagawa', leadingZero=False, decVariable=2, decES=3, decP=3, borders=False, grid=False, numbers=False, show=False, ax=None): """Calcula la g de Hedges. Parameters ---------- group1 : 1D array_like data or 2D pandas DataFrame. Este es el de referencia, si es mayor, la diferencia es positiva. group2 : 1D array_like data or 2D pandas DataFrame. grouplabels : etiquetas de los dos grupos varlabels : etiquetas de las variables o columnas. Si no se ponen las etiquetas son numeros correlativos muestras_dep : si las muestras son dependientes (medidas repetidas) = True. si las muestras son independientes = False (por defecto). pctcl : porcentaje para los límites de confianza (por defecto 95%). sdpooled : True calcula g con la desviación típica agrupada; con False utiliza la del primer grupo. Con comparación para muestras independientes mejor usar la pooled (por defecto). tipose : tipo de Standard Error para calcular los CL: 'Nakagawa', según Nakagawa y Cuthill (2007) (por defecto) 'Otro' según curso metaanalisis (sin referencia). leadingZero: False quita el cero inicial en p y ES decVariable : número de decimales para la variable. Por defecto 2. decP : número de decimales para la P. Por defecto 3. decES : número de decimales para el ES. Por defecto 3. borders: True muestra los bordes del grafico y los ticks. Por defecto False. grid: True muestra la línea horizontal de cada variable (útil cualdo hay muchas variables). Por defecto False. numbers: True incluye como etiqueta encima de cada barra su valor g y limites. Por defecto False. show: True muestra la grafica o no. Por defecto False. ax : axis para incluir el gráficos en una figura hecha de antemano Returns ------- DataFrame con los datos formateados para imprimir en Excel. tabla con los datos x+-SD, p, g, g_inf y g_sup. g : tamaño del efecto (Hedge's g). g_inf : X% límite inferior. g_sup : X% límite superior. p : probabilidad del factor p del t test Example ------- Hedges_g(dfx, dfy) ESCI, tabla=Hedges_g(dfx, dfy, grouplabels=['G1', 'G2'], varlabels=dfx.columns, muestras_dep=0, pctcl = 95, sdpooled= True, tipose='Nakagawa', decVariable=3, decP=3, decES=3, numbers=True, show=True, ax=ax) """ if len(group1.shape) == 1: numCols=1 else: numCols=group1.shape[1] ESCL = np.full((numCols, 3), np.nan) #Para tabla pandas var1=[] var2=[] p=[] es = []#np.full(len(ESCL[:,0]), np.nan) dfTablaResumen=pd.DataFrame({'':varlabels, }) for col in range(numCols): # x=np.array(var1[var1.iloc[:,col].name]) # y=np.array(var2[var2.iloc[:,col].name]) """ Probar sustituir las siguientes lineas con esto: if len(data.shape) == 1: data = data.reshape(data.shape[0], 1) """ if len(group1.shape) == 1: x=group1 y=group2 else: x=group1[group1.iloc[:,col].name] y=group2[group2.iloc[:,col].name] #determina la n de cada variable, no vale len() por si hay valores NaN nx= int(x.notnull().sum())#pd.notnull(x).count() ny= int(y.notnull().sum())#pd.notnull(y).count() pct = (100-float(100-pctcl)/2)/100 if muestras_dep == 1: #muestras dependientes if sdpooled == True: S=np.sqrt((((nx-1) * x.std()**2) + ((ny-1) * y.std()**2)) / (nx+ny-2.0)) else: S= x.std() #np.std(x, ddof=1) c_n_1 = 1-(3/float(4*nx-5)) #factor de corrección g = c_n_1*((y.mean() - x.mean()) / S) t_crit = stats.t.ppf(q=pct, df=nx-1) if tipose=='Nakagawa': SE = np.sqrt((2*(1-stats.pearsonr(x,y)[0])/nx) + g**2/(2*(nx-1))) else: SE = np.sqrt(((nx-1) / float(nx*(nx-3))) * (1+nx*g**2)-(g**2/c_n_1**2)) g_inf = g - t_crit * SE g_sup = g + t_crit * SE # ttestrel=[x,y] # dfTtestrel=pd.concat(ttestrel, axis=1).dropna() # t, p_val = stats.ttest_rel(dfTtestrel.iloc[:,0], dfTtestrel.iloc[:,1], axis=0, nan_policy='omit') t, p_val = stats.ttest_rel(x, y, axis=0, nan_policy='omit') else: #muestras independientes if sdpooled == True: S=np.sqrt((((nx-1) * x.std()**2) + ((ny-1) * y.std()**2)) / float(nx+ny-2)) else: S= x.std() #np.std(x, ddof=1) c_m = 1-(3/float(4*(nx + ny)-9)) #factor de corrección g = c_m*((x.mean() - y.mean()) / S) t_crit=stats.t.ppf(q=pct, df=nx+ny-2) #t_crit=stats.t.interval(alpha=0.95, df=100-1, loc=0, scale=1) * np.sqrt(1+1/float(len(x)+len(y))) # stats.t.interval(alpha=0.95, df=100-1, loc=0, scale=1) * np.sqrt(1+1/100) # stats.t.ppf(q=0.975, df=100-1) if tipose=='Nakagawa': SE = np.sqrt(((nx+ny) / float(nx*ny)) + (g**2/float(2*(nx+ny-2)))) else: SE = np.sqrt(((nx+ny) / float(nx*ny)) + (g**2/float(2*(nx+ny)))) #intervalo = t_crit*(np.sqrt(((len(x)+len(y)) / float(len(x)*len(y))) + (((np.mean(x)-np.mean(y)) / float(np.sqrt((((len(x)-1)*np.std(x, ddof=1)**2) + ((len(y)-1)*np.std(y, ddof=1)**2)) / float(len(x)+len(y)-2))))**2 / float(2*(len(x)+len(y)))))) g_inf = g - t_crit * SE g_sup = g + t_crit * SE ######## #comprueba igualdad varianzas w, p_lev=stats.levene(x.dropna(), y.dropna()) #CUANDO HAY ALGÚN NAN SALE NAN REVISAR igualVarianzas=True #por defecto if p_lev<0.05: igualVarianzas=False ######## t, p_val = stats.ttest_ind(x, y, equal_var=igualVarianzas, nan_policy='omit')#CUANDO HAY ALGÚN NAN SALE NAN REVISAR ESCL[col] = [g, g_inf, g_sup] var1.append(('{0:.{dec}f} {1} {2:.{dec}f}').format(x.mean(), r'±', x.std(), dec=decVariable))#± var2.append('{0:.{dec}f} {1} {2:.{dec}f}'.format(y.mean(), r'±', y.std(), dec=decVariable)) if(leadingZero==False): p.append('{:.{dec}fz}'.format(MyFloat(p_val), dec=decP)) es.append('{:.{dec}fz} [{:.{dec}fz}, {:.{dec}fz}]'.format(MyFloat(ESCL[col,0]), MyFloat(ESCL[col,1]), MyFloat(ESCL[col,2]), dec=decES)) else: p.append('{:.{dec}f}'.format(p_val, dec=decP)) es.append('{:.{dec}f} [{:.{dec}f}, {:.{dec}f}]'.format(ESCL[col,0], ESCL[col,1], ESCL[col,2], dec=decES)) ########################################### #Crea la tabla con los resultados en Pandas ########################################### """ #SEGUIR AQUÍIIIIIIIIIII for i in range(len(ESCL[:,0])): if numCols>1:#PROBAR METER TODO ESTO EN LA PARTE ANTERIOR var1.append(('{0:.2f} {1} {2:.2f}').format(group1.iloc[:,i].mean(), '±', group1.iloc[:,i].std())) var2.append('%.2f ± %.2f'%(group2.iloc[:,i].mean(), group2.iloc[:,i].std())) else: #cuando solo hay una variable var1.append(('{0:.2f} {1} {2:.2f}').format(x.mean(), '±', x.std())) #var1.append(('%.2f '+u'±'+' %.2f').format(x.mean(), x.std())) var2.append('%.2f ± %.2f'%(group2.mean(), y.std())) #prueba t muestras relacionadas #para muestras independientes ttest_ind(a, b[, axis, equal_var]) if muestras_dep==1: t, p_val = stats.ttest_rel(x, y, axis=0) else: #para muestras indep ######## #comprueba igualdad varianzas w, p_lev=stats.levene(group1.iloc[:,i], group2.iloc[:,i]) igualVarianzas=True #por defecto if p_lev<0.05: igualVarianzas=False ######## t, p_val = stats.ttest_ind(group1.iloc[:,i], group2.iloc[:,i], equal_var=igualVarianzas) p.append('%.3f'%p_val) es.append('%.2f [%.2f, %.2f]'%(ESCL[i,0], ESCL[i,1], ESCL[i,2])) """ dfTablaResumen[grouplabels[0]] = var1 dfTablaResumen[grouplabels[1]] = var2 dfTablaResumen['p'] = p dfTablaResumen['ES [95% CI]'] = es dfTablaResumen.reindex(columns = ['', 'Var1', 'Var2', 'p' 'ES [95% CI]']) #transforma el mas menos para que se pueda excribir en Excel dfTablaResumen=dfTablaResumen.replace({'±': u'±'}, regex=True) ########################################### if show: _plot(ESCL, varlabels, decES, borders, numbers, grid, ax) return ESCL, dfTablaResumen def cohen_d(x,y): from numpy import mean, std # version >= 1.7.1 && <= 1.9.1 from math import sqrt return (mean(x) - mean(y)) / sqrt((std(x, ddof=1) ** 2 + std(y, ddof=1) ** 2) / 2.0) def _plot(ESCL, varlabels, decES, borders, numbers, grid, axx): """Grafica de tamaños efecto.""" try: import matplotlib.pyplot as plt except ImportError: print('matplotlib is not available.') else: if axx is None: fig, ax = plt.subplots(1, 1, figsize=(6, len(ESCL)*0.5)) else: ax=axx #plt.rcParams.update(plt.rcParamsDefault) #fig.subplots_adjust(top=.9, bottom=0.1, left=0.52, right=0.99) out = ESCL[:, 1]*ESCL[:, 2] > 0 # CIs that don't contain the true mean ind = np.arange(0, len(ESCL)) ind = ind[::-1]#les da la vuelta para que los ponga del primero al último ax.axvline(x=0, color=[0, 0, 0], zorder=0) #linea vertical en el cero # ax.spines['left'].set_position(('data', 1)) #ax.plot([ESCL[np.logical_not(out), 1], ESCL[np.logical_not(out), 2]], [ind[np.logical_not(out)], ind[np.logical_not(out)]], color=[0.4, 0.4, 0.4, 1], marker='', ms=10, linewidth=2) #barra solo para los no significativos # ax.plot([ESCL[out, 1], ESCL[out, 2]], [ind[out], ind[out]], color=[1, 0, 0, 1], marker='', ms=10, linewidth=2) #barra solo para los significativos # ax.plot(ESCL[:,0], ind, color=[0, 1, 0, 1], marker='.', ms=10, linestyle='')#marcador para el valor g # ax.errorbar(ESCL[:,0], ind, xerr= [ESCL[:,0]-ESCL[:, 1], ESCL[:, 2]-ESCL[:,0]], # fmt='o', ms=7, color='b', ecolor='r', capthick=2) #barra solo para los no significativos plotline, caps, barlinecols = ax.errorbar(ESCL[np.logical_not(out),0], ind[np.logical_not(out)], xerr= [ESCL[np.logical_not(out),0]-ESCL[np.logical_not(out), 1], ESCL[np.logical_not(out), 2]-ESCL[np.logical_not(out),0]], fmt='o', ms=5, color='0.6', elinewidth=1.5, capsize=3, capthick=2, zorder=2) for cap in caps: #como no funciona el solid_capstyle='round', hace los caps redondeados uno a uno cap._marker._capstyle = 'round' #barra solo para los significativos plotline, caps, barlinecols = ax.errorbar(ESCL[out,0], ind[out], xerr= [ESCL[out,0]-ESCL[out, 1], ESCL[out, 2]-ESCL[out,0]], fmt='o', ms=6, color='0', elinewidth=1.5, capsize=3, capthick=2, zorder=2) for cap in caps: cap._marker._capstyle = 'round' #ax.set_xlim(-2, 2) #Ajusta el eje vertical para dejar un poco de espacio por encima y por debajo ax.set_ylim(-0.5, len(ESCL)-0.5) if numbers==True: for i in range(len(ESCL)): #ax.annotate(str(ESCL[:,0]), xy=([1,1],[1.3,2.5]), zorder=10, ha='center', va='bottom') if np.isnan(ESCL[i,0]): plt.text(0.0, ind[i]+.25, 'nan', ha = 'center',va='bottom', bbox=dict(facecolor='white', alpha=0.9, edgecolor='none', boxstyle='round,pad=0.3'+',rounding_size=.5'), size = 10, zorder=1) else: plt.text(ESCL[i,0], ind[i]+.25, '{0:.{dec}f} [{1:.{dec}f}, {2:.{dec}f}]'.format(ESCL[i,0],ESCL[i,1],ESCL[i,2], dec=decES), ha = 'center',va='bottom', bbox=dict(facecolor='white', alpha=0.9, edgecolor='none', boxstyle='round,pad=0.3'+',rounding_size=.5'), size = 10, zorder=1) if borders==False: #quita los ticks de la derecha e izquierda ax.tick_params(left=False)#quita los ticks del lado izquierdo #labelbottom='off', bottom=False, labelleft='off', #quita las líneas de los bordes excepto la de abajo ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_visible(False) #ax.spines['bottom'].set_visible(False) #pinta líneas horizontales # if grid: # ax.grid(b=None, axis='y') #el vertical siempre desactivado ax.yaxis.grid(grid) ax.set_xlabel('Effect size', fontsize=11) if(len(varlabels)>0): #escribe las etiquetas en el eje vertical #plt.yticks(ind, varlabels, fontsize=12, ha = 'right') #ha es akineación horizontal; rotation='horizontal', ax.set_yticks(ind) ax.set_yticklabels(varlabels, fontsize=12, ha = 'right') plt.xticks(fontsize=12) #plt.margins(.1) plt.tight_layout(rect=[0,0,1,0.95]) if axx is None: plt.show() # ============================================================================= # %% Pruebas # ============================================================================= if __name__ == '__main__': help(Hedges_g) """ x = np.vstack((x, x+np.random.rand(1)/5, x+np.random.rand(1)/2)) # simulate two instants (two rows) y = np.vstack((y, y+np.random.rand(1)/5, y+np.random.rand(1)/2))""" """ mu1, sigma1 = 0, 0.5 # mean and standard deviation s1 = np.random.normal(mu1, sigma1, 500) mu2, sigma2 = 0.7, 0.3 # mean and standard deviation s2 = np.random.normal(mu2, sigma2, 500) mu3, sigma3 = 1.2, 0.7 # mean and standard deviation s3 = np.random.normal(mu3, sigma3, 500) x = np.vstack((s1, s2, s3)) y = x+np.random.rand(1)/5 dfx=pd.DataFrame(x, columns=['var1', 'var2', 'var3']) dfy=pd.DataFrame(y, columns=['var1', 'var2', 'var3']) """ import pandas as pd #nomVars=[] numVars = 5 numDat = 50 # ############################################### # #crea medias y sd aleatorias for i in range(numVars): mux=2 + np.random.rand(numVars)*10 muy=mux + np.random.rand(numVars)*1.1 sdx=np.random.rand(numVars) sdy=sdx + np.random.rand(numVars)/4.2 x = np.random.normal(mux, sdx, (numDat, numVars)) y = np.random.normal(muy, sdy, (numDat, numVars)) # x = sdx * np.random.randn(numDat, numVars) + mux # y = sdy * np.random.randn(numDat, numVars) + muy nomVars= ["Var{0}".format(nom) for nom in range(numVars)] dfx=pd.DataFrame(x, columns=nomVars) dfy=pd.DataFrame(y, columns=nomVars) dfx.hist() dfy.hist() # ############################################### import matplotlib.pyplot as plt plt.rcParams.update(plt.rcParamsDefault) #para el fondo blanco, etc plt.figure() plt.subplot() #plt.plot(xx[:,0], 'bo') #plt.plot(xx[:,1], 'ro') plt.plot(dfx, 'bo', label='x') plt.plot(dfy, 'r^', label='y') #plt.legend(loc='best') plt.title('todas las variables') plt.show() plt.figure() plt.subplot() #plt.plot(xx[:,0], 'bo') #plt.plot(xx[:,1], 'ro') plt.plot(dfx, dfy, 'o') plt.title('por grupos') plt.show() print("Hedges g muestras relacionadas (medidas repetidas) [g_inf, g_sup]: ", Hedges_g(dfx, dfy, muestras_dep=1)) Hedges_g(dfx, dfy, muestras_dep=True, borders=True, show=True) Hedges_g(dfx, dfy, varlabels=dfx.columns, muestras_dep=True, show=True) fig, ax = plt.subplots(1, 1, figsize=(4, numVars*0.55)) fig.suptitle("Hedges' g effect size", fontsize=14, fontweight='bold', y=1.06) ax.set_title('(independent samples)', y=1.03) Hedges_g(dfx, dfy, varlabels=dfx.columns, muestras_dep=False, numbers=True, ax=ax, show=True) plt.show() fig, ax = plt.subplots(1, 1, figsize=(4, numVars*0.85)) fig.suptitle("Hedges' g effect size", fontsize=14, fontweight='bold', y=1.06) ax.set_title('(related samples)', y=1.03) ESCI, tabla=Hedges_g(dfx, dfy, varlabels=dfx.columns, muestras_dep=False, numbers=True, show=True, grid=True, ax=ax) print(tabla) ESCI, tabla = Hedges_g(dfx, dfy, grouplabels=['G1', 'G2'], varlabels=dfx.columns, muestras_dep=0, leadingZero=True, numbers=True, show=True) print(tabla) fig, ax = plt.subplots(1, 1, figsize=(4, numVars*0.75)) fig.suptitle("Hedges' g effect size", fontsize=14, fontweight='bold', y=1.06) ax.set_title('(related samples)', y=1.03) ESCI, tabla=Hedges_g(dfx.iloc[:,0:1], dfy.iloc[:,0:1], decVariable=3, decP=3, decES=3, varlabels=dfx.columns[0:1], muestras_dep=False, numbers=True, show=True, ax=ax) fig, ax = plt.subplots(1, 1, figsize=(4, numVars*0.75)) fig.suptitle("Hedges' g effect size", fontsize=14, fontweight='bold', y=1.06) ax.set_title('(related samples)', y=1.03) ESCI, tabla=Hedges_g(dfx.iloc[:,0:1], dfy.iloc[:,0:1], decVariable=3, decP=3, decES=3, varlabels=dfx.columns[0:1], muestras_dep=False, grid=True, numbers=True, show=True, ax=ax) fig, ax = plt.subplots(1, 1, figsize=(4, numVars*0.75)) ESCI, tabla = Hedges_g(dfx, dfy, grouplabels=['G1', 'G2'], muestras_dep=False, leadingZero=True, numbers=True, show=True, ax=ax) print(tabla) #%% #para comprobar con nans x=np.array([100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0]) y=np.array([100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0]) dfx=pd.DataFrame(x, columns=['var1']) dfy=pd.DataFrame(y, columns=['var2']) fig, ax = plt.subplots(1, 1, figsize=(4, numVars*0.25))#apiñado fig.suptitle("Hedges' g effect size", fontsize=14, fontweight='bold') ax.set_title('(related samples)', y=1.03) ESCI, tabla=Hedges_g(dfx, dfy, varlabels=dfx.columns, muestras_dep=False, decVariable=4, decP=2, decES=3, numbers=True, show=True, ax=ax) #%% x=np.array([0.892, 0.903, 0.898, 0.878, 0.908, 0.945, 0.926, 0.932, 0.932, 0.879, 0.920, 0.882]) y=np.array([0.889, 0.908, 0.891, 0.864, 0.929, 0.939, 0.934, 0.928, 0.965, 0.872 ,0.918, 0.872]) dfx=pd.DataFrame(x, columns=['Tgs_NQ']) dfy=pd.DataFrame(y, columns=['Tgs_Q']) fig, ax = plt.subplots(1, 1, figsize=(4, numVars*0.75), dpi=200) fig.suptitle("Hedges' g effect size", fontsize=14, fontweight='bold', y=1.06) ax.set_title('(related samples)', y=1.07) ESCI, tabla=Hedges_g(dfx, dfy, grouplabels=['G1', 'G2'], varlabels=dfx.columns, muestras_dep=False, pctcl = 95, sdpooled= True, tipose='Nakagawa', decVariable=3, decP=3, decES=3, numbers=True, show=True, ax=ax) ax.set_xlim(-2,2) plt.show() ``` #### File: BiomecanicaPython/Funciones/filtrar_Butter.py ```python from __future__ import division, print_function import numpy as np import pandas as pd import xarray as xr import scipy.signal __author__ = '<NAME>' __version__ = 'v.1.5.0' __date__ = '08/05/2021' """ Modificaciones: 08/05/2021, v1.5.0 - Arraglado con xarray. Si tiene nan los rellena interpolando y después los elimina - Si no se pide el RMS o hacer la gráfica, no lo calcula. - Cambiados nombres de argumentos a más pythonics. """ # ============================================================================= # %% Función filtrar low o High pass # ============================================================================= def filtrar_Butter(dat_orig, fr, fc, order=2.0, kind='low', returnRMS=False, show=False, ax=None): """ Parameters ---------- dat_orig : array 1D o dataframe de pandas en 2D o xarray. Datos originales a filtrar. fr : frecuencia de registro. fc : frecuencia de corte del filtro. order : 'agudeza' del filtro. 2 por defecto. kind : 'low' o 'high' low por defecto. returnRMS: True o False (False por defecto). Devuelve o no el RMS de la diferencia entre filtrado y original. show : muestra o no el gráfico con datos originales y filtrados con el RMSE. ax : ejes de una figura creada previamente. Returns ------- filtData : array de datos filtrados. RMS: root mean square de la diferencia entre los datos originales y los filtrados. Notes ----- Describir filtro de 2º orden y 2 pasadas como "double 2nd order Butterworth filter" (<NAME>) http://biomch-l.isbweb.org/threads/26625-Matlab-Code-for-EMG-processing-(negative-deflection-after-normalization!!!)?p=32073#post32073 Examples -------- >>> import numpy as np >>> from filtrar_Butter import filtrar_Butter >>> y = np.cumsum(np.random.randn(1000)) >>> fy = filtrar_Butter(y, fr=1000, fc=10, order=2, show=True) >>> >>> dfCaminos = pd.DataFrame((np.random.random([100, 4])-0.5).cumsum(axis=0), columns=['A','B','C','D']) >>> dfCaminosFilt, RMS = filtrar_Butter(dfCaminos, 1000, 50, 2, show=True, returnRMS=True) """ RMS=[] #orden = 2 #orden 2 para que al hacer el doble paso sea de 4th orden passes = 2.0 #nº de pasadas del filtro adelante y atrás #fc = 15 Cf = (2**(1/passes)-1)**(1/(2*order)) #correction factor. Para 2nd order = 0.802 Wn = 2*fc/fr/Cf b, a = scipy.signal.butter(order, Wn, btype = kind) if isinstance(dat_orig, pd.DataFrame): #Si los datos son pandas dataframe DatFilt=pd.DataFrame() for i in range(dat_orig.shape[1]): DatFilt[dat_orig.columns[i]] = scipy.signal.filtfilt(b, a, dat_orig.iloc[:, i]) DatFilt.index=dat_orig.index #esto es necesario por si se pasa un slice del dataframe if returnRMS or show==True: RMS=pd.DataFrame() for i in range(dat_orig.shape[1]): RMS.at[0, dat_orig.columns[i]] = np.linalg.norm(DatFilt.iloc[:,i].values-dat_orig.iloc[:,i].values) / np.sqrt(len(dat_orig.iloc[:,i])) elif isinstance(dat_orig, pd.Series): DatFilt = pd.Series(scipy.signal.filtfilt(b, a, dat_orig), index=dat_orig.index, name=dat_orig.name) if returnRMS or show==True: RMS = np.linalg.norm(DatFilt-dat_orig) / np.sqrt(len(dat_orig)) elif isinstance(dat_orig, xr.DataArray): #DatFilt = xr.apply_ufunc(scipy.signal.filtfilt, b, a, dat_orig.dropna(dim='time')) #se asume que hay una dimensión tiempo DatFilt = xr.apply_ufunc(scipy.signal.filtfilt, b, a, dat_orig.interpolate_na(dim='time', method='linear', fill_value='extrapolate')) #rellena los nan con datos interpolados DatFilt = DatFilt.where(xr.where(np.isnan(dat_orig), False, True), np.nan) #recupera el nº de datos original rellenando con nan los finales como el original if returnRMS or show==True: RMS=pd.DataFrame() for i in range(dat_orig.shape[0]): RMS.at[0, i]=np.linalg.norm(DatFilt[i,:]-dat_orig[i,:]) / np.sqrt(len(dat_orig[i,:])) #xr.apply_ufunc(np.linalg.norm, DatFilt[0,:], dat_orig[0,:]) #pip install xskillscore #import xskillscore as xs #RMS = xs.rmse(DatFilt, dat_orig, dim='time') #Investigar para hacer el RMSE directamente sin necesitar la librería xskillscore #CON XARRAY NO FUNCIONAN LOS GRÁFICOS else: #si los datos no son pandas dataframe DatFilt = scipy.signal.filtfilt(b, a, dat_orig) if returnRMS or show==True: RMS = np.linalg.norm(DatFilt-dat_orig) / np.sqrt(len(dat_orig)) if show: _plot(dat_orig, DatFilt, RMS, fc, ax) if returnRMS: return DatFilt, RMS else: return DatFilt # ============================================================================= # ============================================================================= # Presenta la gráfica # ============================================================================= def _plot(dat_orig, DatFilt, RMS, fc, ax): import matplotlib.pyplot as plt bNecesarioCerrarFigura = False if ax is None: bNecesarioCerrarFigura = True fig, ax = plt.subplots(1, 1, figsize=(10, 4)) if isinstance(dat_orig, pd.DataFrame): #Si los datos son pandas dataframe import seaborn as sns cmap = sns.color_palette('bright', n_colors=dat_orig.shape[1]) DatFilt.plot(color=cmap, legend=False, ax=ax) dat_orig.plot(color=cmap, alpha=0.6, linestyle=':', legend=False, ax=ax) labels=[dat_orig.columns[x]+', RMSE='+'{:.3f}'.format(RMS.iloc[0,x]) for x in range(dat_orig.shape[1])] plt.legend(labels) else: #cuando no son dataframe, incluso si son pandas series ax.plot(dat_orig, 'b:', label='Original') ax.plot(DatFilt, 'b-', label='Filt (RMSE={:.3f})'.format(RMS)) plt.legend(loc='best') ax.set_xlabel('Num. datos') ax.set_ylabel('Variable') ax.set_title('Filtrado Butterworth {0:3g} Hz'.format(fc)) if bNecesarioCerrarFigura: plt.show() # ============================================================================= # ============================================================================= # %% Función filtrar low o High pass # ============================================================================= def filtrar_Butter_bandpass(dat_orig, fr, fclow, fchigh, order=2.0, show=False, ax=None): """ Parameters ---------- dat_orig : array 1D o dataframe de pandas en 2D. Datos originales a filtrar. fr : frecuencia de registro. fclow, fchigh : frecuencias de corte del filtro. order : 'agudeza' del filtro. 2 por defecto. show : muestra o no el gráfico con datos originales y filtrados con el RMSE. ax : ejes de una figura creada previamente. Returns ------- filtData : array de datos filtrados. Notes ----- Información sobre el filtro Butterworth de bandpass en https://scipy-cookbook.readthedocs.io/items/ButterworthBandpass.html Examples -------- >>> import numpy as np >>> from filtrar_Butter import filtrar_Butter >>> y = np.cumsum(np.random.randn(1000)) >>> fy = filtrar_Butter(y, fr=1000, fc=10, order=2, show=True) >>> >>> dfCaminos = pd.DataFrame((np.random.random([100, 4])-0.5).cumsum(axis=0), columns=['A','B','C','D']) >>> dfCaminosFilt, RMS = filtrar_Butter(dfCaminos, 1000, 50, 2, show=True, returnRMS=True) """ nyq = 0.5 * fr low = fclow / nyq high = fchigh / nyq b, a = scipy.signal.butter(order, [low, high], btype='band') if isinstance(dat_orig, pd.DataFrame): #Si los datos son pandas dataframe DatFilt=pd.DataFrame() RMS=pd.DataFrame() for i in range(dat_orig.shape[1]): DatFilt[dat_orig.columns[i]] = scipy.signal.lfilter(b, a, dat_orig.iloc[:, i]) DatFilt.index=dat_orig.index #esto es necesario por si se pasa un slice del dataframe elif isinstance(dat_orig, pd.Series): DatFilt = pd.Series(scipy.signal.lfilter(b, a, dat_orig), index=dat_orig.index, name=dat_orig.name) else: #si los datos no son pandas dataframe DatFilt = scipy.signal.lfilter(b, a, dat_orig) if show: _plot(dat_orig, DatFilt, RMS, fclow, ax) return DatFilt # ============================================================================= # ============================================================================= # %% PRUEBAS # ============================================================================= if __name__ == '__main__': np.random.seed(2) y = np.cumsum(np.random.randn(1000)) fy, rms = filtrar_Butter(y, 1000, 10, 2, show=True, returnRMS=True) fy2, rms2 = filtrar_Butter(y[100:300], 1000, 10, 2, show=True, returnRMS=True) import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(8, 4)) fig.suptitle('Título grande', y=1.03) fy = filtrar_Butter(y, 1000, 50, 2, show=True, ax=ax) ax.set_title('Superpone el Título pequeno', y=1.0) plt.show() #Con dataframe de varias columnas num=1000 colNames=['A','B','C','D'] dfCaminos = pd.DataFrame((np.random.random([num, 4])-0.5).cumsum(axis=0), columns=colNames) dfCaminosFilt = filtrar_Butter(dfCaminos, 1000, 5, 2, show=True) dfCaminosFilt, RMS = filtrar_Butter(dfCaminos, 1000, 50, 2, show=True, returnRMS=True) #con pd series dfCaminosFilt, RMS = filtrar_Butter(dfCaminos.iloc[:,0], 1000, 5, 2, show=True, returnRMS=True) dfCaminosFilt, RMS = filtrar_Butter(dfCaminos['A'], 1000, 50, 2, show=True, returnRMS=True) #%%Onda con ruido t = np.arange(0, 2, 1/1000) #offset vertical of=[0,0, 0,0] #ampitudes a=[3,0.5, 5,0.3] #frecuencias f=[1,60, 3,40] #phase angle, ángulo al inicio del tiempo pa=[0,0, 0,0] ondas = pd.DataFrame(np.array([of[i] + a[i]*np.sin(2*np.pi*f[i]*t + pa[i]) for i in range(len(a))]).T) Onda=pd.DataFrame({'Onda1':ondas[0]+ondas[1], 'Onda2':ondas[2]+ondas[3]}) dfOndaFilt = filtrar_Butter(Onda, 1000, 10, 2, show=True) # con cambio de index dfOndaFiltCacho = filtrar_Butter(Onda[100:300], 1000, 20, 2, show=True) dfOndaFiltCacho, RMS = filtrar_Butter(Onda.iloc[100:300, 0], 1000, 20, 2, show=True, returnRMS=True) fig, ax = plt.subplots(figsize=(8, 4)) fy = filtrar_Butter(Onda.iloc[400:600, 0], 1000, 50, 2, show=True, ax=ax) ax.set_title('(Superpone el Título pequeño)', y=1.0) plt.suptitle('Título grande', y=1.03) plt.show() #%%prueba bandpass # Filter a noisy signal. fs = 5000.0 lowcut = 500.0 highcut = 1250.0 T = 0.05 nsamples = T * fs t = np.linspace(0, T, int(nsamples), endpoint=False) a = 0.02 #amplitud de la señal f0 = 600.0 #frecuencia principal a extraer de la señal x = 0.1 * np.sin(2 * np.pi * 1.2 * np.sqrt(t)) x += 0.01 * np.cos(2 * np.pi * 312 * t + 0.1) x += a * np.cos(2 * np.pi * f0 * t + .11) x += 0.03 * np.cos(2 * np.pi * 2000 * t) xFiltBand= filtrar_Butter_bandpass(x, fs, lowcut, highcut, order=6, show=False, ax=None) fig, ax = plt.subplots(figsize=(8, 4)) ax.plot(t, x,'b--') ax.plot(t, xFiltBand, 'r') plt.hlines([-a, a], 0, T, 'r', linestyles='--') plt.title('Filtro bandpass') plt.show() ############################### #%%prueba con xarray t = np.arange(0, 2, 1/1000) #offset vertical of=[0,0, 0,0] #ampitudes a=[3,0.5, 5,0.3] #frecuencias f=[1,60, 3,40] #phase angle, ángulo al inicio del tiempo pa=[0,0, 0,0] ondas = pd.DataFrame(np.array([of[i] + a[i]*np.sin(2*np.pi*f[i]*t + pa[i]) for i in range(len(a))]).T) Onda=pd.DataFrame({'Onda1':ondas[0]+ondas[1], 'Onda2':ondas[2]+ondas[3]}) da = xr.DataArray(data=np.array(Onda).T, dims=['channel', 'time'], coords={'channel': Onda.columns, 'time': np.arange(0, len(Onda)/1000, 1/1000), }, ) o = da.isel(channel=-1) da.plot.line(x='time') #sin filtrar da.isel(channel=1).plot() plt.show() np.linalg.norm(da.isel(channel=1)-da.isel(channel=0)) / np.sqrt(len(da.isel(channel=0))) o_filt, RMSEda = filtrar_Butter(da, 1000, 10, 2, returnRMS=True, show=False) da.plot.line(x='time')#sin filtrar o_filt.plot.line(x='time') #filtrado plt.show() #Al compararlo con el pandas sale igual dfOndaFilt, RMSEdf = filtrar_Butter(Onda, 1000, 10, 2, returnRMS=True, show=True) #%% Con xarray con varias dimensiones from pathlib import Path #para gestión de archivos y carpetas #Carga un archivo con datos aleatorios ruta_trabajo = Path('F:\Programacion\Python\Mios\TratamientoDatos\BasesDatosCreadas\ArchivosPorFactoresCinematicaFake') da2 = xr.load_dataset(ruta_trabajo / 'DataArrayPruebas.nc').to_array() del da2['variable'] #la quita de coordenadas da2 = da2.squeeze('variable') #la quita de dimensiones da_filt = filtrar_Butter(da2, fr=100, fc=2, order=2, kind='low') da2.plot.line(x='time', col='partID', col_wrap=4) da2.sel(partID='s04').plot.line(x='time') da_filt.sel(partID='s04').plot.line(x='time') ``` #### File: BiomecanicaPython/Funciones/readViconCsv.py ```python from __future__ import division, print_function """Lee archivos de datos exportados del Vicon Nexus""" import numpy as np import pandas as pd import xarray as xr #import scipy.signal __author__ = '<NAME>' __version__ = 'v.2.2.0' __date__ = '29/03/2021' """ Modificaciones: 29/03/2021, v2.1.1 - Incluido parámetro 'header_format' para que devuelva el encabezado como 'flat' en una sola línea (variable_x, variable_y, ...) o en dos líneas ((variable,x), (variable,y), ...). 28/03/2021, v2.1.1 - Mejorada lectura con Pandas. Ahora puede cargar archivos que empiezan sin datos en las primeras líneas. 21/03/2021, v2.1.0 - Cambiado lector del bloque de archivos por pd.read_csv con número de columnas delimitado a los que carga en las variables (quitando los de velocidad y aceleración) - Solucionado fallo al leer frecuencia cuando terminaba la línea rellenando con separadores (como al exportar en Excel) 10/01/2021, v2.0.1 - Ajustado para que pueda devolver xArray con Model Outputs 13/12/2020, v2.0.0 - Con el argumento formatoxArray se puede pedir que devuelva los datos en formato xArray """ def read_vicon_csv(nombreArchivo, nomBloque='Model Outputs', separador=',', returnFrec=False, formatoxArray=False, header_format='flat'): """ Parameters ---------- versión : v2.2.0 nombreArchivo : string ruta del archivo a abrir nomBloque : string tipo de datos a leer en el archivo original. 'Model Outputs', 'Trajectories' o 'Devices' separador : string caracter separador de los datos returnFrec : bool si es True devuelve un int con la frecuencia de muestreo formatoxArray : bool si es true devuelve los datos en formato xArray header_format : str 'flat': devuelve el encabezado en una línea (por defecto) otra cosa: devuelve el encabezaco en dos líneas (var y coord) Returns ------- data : datos leidos en formato DataFrame de Pandas o DataArray de xArray. frec: frecuencia de registro de los datos. Examples -------- >>> dfDatos = read_vicon_csv(nombreArchivo, nomBloque='Model Outputs') >>> dfDatos, frecuencia = read_vicon_csv(nombreArchivo, nomBloque='Trajectories', returnFrec=True) >>> #Con formato dataarray de xArray >>> daDatos = read_vicon_csv(nombreArchivo, nomBloque='Trajectories', formatoxArray=True) """ with open(nombreArchivo, mode='rt') as f: numLinea=0 #busca etiqueta del inicio del bloque linea = f.readline() while nomBloque not in linea: if linea == '': raise Exception('No se ha encontrado el encabezado') numLinea+=1 linea = f.readline() inicioBloque = numLinea #Lo que viene detrás de la etiqueta es la frecuencia linea = f.readline() frecuencia = int(linea.replace(separador,'')) #quita el separador para los casos en los que el archivo ha sido guardado con Excel (completa línea con separador) #Carga el nombre de las columnas #linea = f.readline() nomColsVar = str(f.readline()[:-1]).split(separador) #nombreVariables nomCols = str(f.readline()[:-1]).split(separador) #nombre coordenadas X,Y,Z. #nomCols = [s.lower() for s in nomCols] # Lo fuerza a minúsculas #busca etiqueta del final del bloque while linea!='\n': if linea == '': raise Exception('No se ha encontrado el final del bloque') numLinea+=1 #print('Linea '+ str(numLinea)) linea = f.readline() finBloque = numLinea-1 #quita 1 para descontar la línea vacía #Cuenta el nº de líneas totales finArchivo=0 with open(nombreArchivo, mode='rt') as f: for i in f: finArchivo+=1 #primero asigna los nombres según el propio archivo nomVars=['Frame', 'Sub Frame'] for i in range(2,len(nomCols),3): if "'" not in nomCols[i] and "''" not in nomCols[i]: #elimina las posibles columnas de velocidad y aceleración nomVars.append(nomColsVar[i].split(':')[1]+'_' + nomCols[i])#X nomVars.append(nomColsVar[i].split(':')[1]+'_' + nomCols[i+1])#Y nomVars.append(nomColsVar[i].split(':')[1]+'_' + nomCols[i+2])#Z # [i for i in nomColsVar if "'" in i] # nomColsVar = [i for i in nomColsVar if "'" not in i] #carga todos los datos #CON GENFROMTXT FALLA SI NO EMPIEZA LA PRIMERA LÍNEA CON DATOS #provisional= np.genfromtxt(nombreArchivo, skip_header= inicioBloque+5, max_rows=finBloque-inicioBloque-1, delimiter=separador, missing_values='', filling_values=np.nan, invalid_raise=True) #provisional=provisional[:, :len(nomVars)] #recorta solo hasta las variables #Convierte los datos en pandas dataframe. Pasa solo los que no son de velocidad o aceleración #dfReturn = pd.DataFrame(provisional[:, :len(nomVars)], columns=nomVars) #dfReturn = dfReturn.iloc[:, :len(nomVars)] #se queda solo con las columnas de las variables, quita las de velocidad si las hay #Con pandas directamente funciona (para evitar error si primera línea no son datos, lee la fina de las unidades y luego la quita) dfReturn = pd.read_csv(nombreArchivo, delimiter=separador, header=None, skiprows=inicioBloque+4, skipfooter=finArchivo-finBloque-5, usecols=range(len(nomVars)), engine='python') dfReturn = dfReturn.drop(index=0).reset_index(drop=True).astype(float) #borra la primera fila, que contiene las unidades #Nombra encabezado var=['_'.join(s.split('_')[:-1]) for s in nomVars[:len(nomVars)]] #gestiona si la variable tiene separador '_', lo mantiene coord=[s.split(':')[-1] for s in nomCols[:len(nomVars)]] dfReturn.columns=pd.MultiIndex.from_tuples(list(zip(*[var,coord])), names=['Variable', 'Coord']) #dfReturn.columns=[var, coord] #dfReturn.columns.set_names(names=['Variable', 'Coord'], level=[0,1], inplace=True) if header_format=='flat': dfReturn.columns = dfReturn.columns.map('_'.join).str.strip() # #Elimina las columnas de velocidad y aceleración, si las hay # borrarColsVA = dfReturn.filter(regex='|'.join(["'", "''"])).columns # dfReturn = dfReturn.drop(columns=borrarColsVA) #Si hace falta lo pasa a xArray if formatoxArray: daReturn=xr.DataArray() #transforma los datos en xarray x=dfReturn.filter(regex='|'.join(['_x','_X'])).to_numpy().T y=dfReturn.filter(regex='|'.join(['_y','_Y'])).to_numpy().T z=dfReturn.filter(regex='|'.join(['_z','_Z'])).to_numpy().T data=np.stack([x,y,z]) #Quita el identificador de la coordenada del final canales = dfReturn.filter(regex='|'.join(['_x','_X'])).columns.str.rstrip('|'.join(['_x','_X'])) n_frames = x.shape[1] channels = canales time = np.arange(start=0, stop=n_frames / frecuencia, step=1 / frecuencia) coords = {} coords['axis'] = ['x', 'y', 'z'] coords['channel'] = channels coords['time'] = time daReturn=xr.DataArray( data=data, dims=('axis', 'channel', 'time'), coords=coords, name=nomBloque, attrs={'Frec':frecuencia} #**kwargs, ) if formatoxArray and returnFrec: return dfReturn, daReturn, frecuencia elif formatoxArray: return dfReturn, daReturn elif returnFrec: return dfReturn, frecuencia else: return dfReturn # ============================================================================= # %% # ============================================================================= if __name__ == '__main__': from pathlib import Path ruta_Archivo = r'F:\Programacion\Python\Mios\TratamientoDatos\EjemploViconSinHuecos_01_Carrillo_FIN.csv' nombreArchivo = Path(ruta_Archivo) dfDatos = read_vicon_csv(nombreArchivo, nomBloque='Model Outputs') dfDatos, frecuencia = read_vicon_csv(nombreArchivo, nomBloque='Trajectories', returnFrec=True) #Con Models al final ruta_Archivo = r'F:\Programacion\Python\Mios\TratamientoDatos\EjemploViconSinHuecos_01_Carrillo_FIN_ModeloAlFinal.csv' nombreArchivo = Path(ruta_Archivo) dfDatos = read_vicon_csv(nombreArchivo, nomBloque='Model Outputs') dfDatos, frecuencia = read_vicon_csv(nombreArchivo, nomBloque='Trajectories', returnFrec=True) #Sin fila inicial en blanco ruta_Archivo = r'F:\Programacion\Python\Mios\TratamientoDatos\EjemploViconSinHuecos_01_Carrillo_FIN_SinFilaBlancoInicial.csv' nombreArchivo = Path(ruta_Archivo) dfDatos = read_vicon_csv(nombreArchivo, nomBloque='Model Outputs') dfDatos, frecuencia = read_vicon_csv(nombreArchivo, nomBloque='Trajectories', returnFrec=True) #Solo bloque modelos ruta_Archivo = r'F:\Programacion\Python\Mios\TratamientoDatos\EjemploViconSinHuecos_01_Carrillo_FIN_2.csv' nombreArchivo = Path(ruta_Archivo) dfDatos = read_vicon_csv(nombreArchivo, nomBloque='Model Outputs') dfDatos, frecuencia = read_vicon_csv(nombreArchivo, nomBloque='Trajectories', returnFrec=True) #Con hueco muy grande al inicio ruta_Archivo = r'F:\Programacion\Python\Mios\TratamientoDatos\EjemploViconConHuecoInicio_S27_WHT_T2_L01.csv' nombreArchivo = Path(ruta_Archivo) dfDatos, frecuencia = read_vicon_csv(nombreArchivo, nomBloque='Trajectories', returnFrec=True) dfDatos['R5Meta_Z'].plot() #Con formato dataarray de xArray ruta_Archivo = r'F:\Programacion\Python\Mios\TratamientoDatos\EjemploViconSinHuecos_01_Carrillo_FIN.csv' nombreArchivo = Path(ruta_Archivo) dfDatos, daDatos = read_vicon_csv(nombreArchivo, nomBloque='Trajectories', formatoxArray=True) dfDatos['Right_Toe_Z'].plot() daDatos.sel(channel='Right_Toe', axis='z').plot.line() dfDatos, daDatos = read_vicon_csv(nombreArchivo, nomBloque='Model Outputs', formatoxArray=True) dfDatos['AngArtLKnee_x'].plot() daDatos.sel(channel='AngArtLKnee', axis='x').plot.line() #Archivo con huecos ruta_Archivo = r'F:\Programacion\Python\Mios\TratamientoDatos\EjemploViconConHuecos_S01_WHF_T1_L04.csv' nombreArchivo = Path(ruta_Archivo) dfDatos, frecuencia = read_vicon_csv(nombreArchivo, nomBloque='Trajectories', returnFrec=True) dfDatos.plot() #prueba con encabezado multiindex ruta_Archivo = r'F:\Programacion\Python\Mios\TratamientoDatos\EjemploViconSinHuecos_01_Carrillo_FIN.csv' nombreArchivo = Path(ruta_Archivo) dfDatosFlat = read_vicon_csv(nombreArchivo, nomBloque='Model Outputs') dfDatosMulti = read_vicon_csv(nombreArchivo, nomBloque='Model Outputs', header_format='multi') dfDatosFlat[['AngArtLKnee_x','AngArtLKnee_y','AngArtLKnee_z']].plot() dfDatosMulti['AngArtLKnee'].plot() dfDatosMulti.loc[:, (slice(None), 'x')].plot() #todas las variables de una misma coordenada dfDatosFlat = read_vicon_csv(nombreArchivo, nomBloque='Trajectories') dfDatosMulti = read_vicon_csv(nombreArchivo, nomBloque='Trajectories', header_format='multi') dfDatosFlat[['Right_Toe_X','Right_Toe_Y','Right_Toe_Z']].plot() dfDatosMulti['Right_Toe'].plot() dfDatosMulti.loc[:, (slice(None), 'Z')].plot() #todas las variables de una misma coordenada ```
{ "source": "Joselyne97/Books-app", "score": 3 }
#### File: Books-app/app/models.py ```python from . import db from werkzeug.security import generate_password_hash,check_password_hash from flask_login import UserMixin from . import login_manager class User(UserMixin,db.Model): __tablename__ = 'users' id = db.Column(db.Integer,primary_key = True) username = db.Column(db.String(255),index = True) email_address= db.Column(db.String(255),unique = True,index = True) email = db.Column(db.String(255),unique = True,index = True) bio = db.Column(db.String(255)) profile_pic_path = db.Column(db.String()) fullname=db.Column(db.String(255)) mobile_phone=db.Column(db.Integer()) office_phone=db.Column(db.Integer()) password_secure = db.Column(db.String(255)) book = db.relationship('Book', backref='user', lazy='dynamic') comment = db.relationship('Comment', backref = 'user', lazy = 'dynamic') upvotes = db.relationship('Upvote', backref = 'user', lazy = 'dynamic') @login_manager.user_loader def load_user(user_id): return User.query.get(int(user_id)) @property def password(self): raise AttributeError('You cannot read the password attribute') @password.setter def password(self, password): self.password_secure = generate_password_hash(password) def verify_password(self,password): return check_password_hash(self.password_secure,password) def __repr__(self): return f'User {self.username}' class Book(db.Model): ''' ''' __tablename__ = 'book' id = db.Column(db.Integer, primary_key = True) user_id = db.Column(db.Integer, db.ForeignKey('users.id'), nullable = False) title = db.Column(db.String()) summary = db.Column(db.String(), index = True) category = db.Column(db.String(255), nullable=False) poster = db.Column(db.String()) location =db.Column(db.String()) comments = db.relationship('Comment',backref='book',lazy='dynamic') upvotes = db.relationship('Upvote', backref = 'book', lazy = 'dynamic') @classmethod def get_books(cls, id): books = Pitch.query.order_by(pitch_id=id).desc().all() return books def __repr__(self): return f'Pitch {self.description}' class Comment(db.Model): __tablename__='comments' id = db.Column(db.Integer,primary_key=True) book_id = db.Column(db.Integer, db.ForeignKey('book.id'), nullable=False) user_id = db.Column(db.Integer, db.ForeignKey('users.id'), nullable= False) description = db.Column(db.Text) def __repr__(self): return f"Comment : id: {self.id} comment: {self.description}" class Upvote(db.Model): __tablename__ = 'upvotes' id = db.Column(db.Integer,primary_key=True) upvote = db.Column(db.Integer,default=1) book_id = db.Column(db.Integer,db.ForeignKey('book.id')) user_id = db.Column(db.Integer,db.ForeignKey('users.id')) def save_upvotes(self): db.session.add(self) db.session.commit() def add_upvotes(cls,id): upvote_book = Upvote(user = current_user, book_id=id) upvote_book.save_upvotes() @classmethod def get_upvotes(cls,id): upvote = Upvote.query.filter_by(book_id=id).all() return upvote @classmethod def get_all_upvotes(cls,book_id): upvotes = Upvote.query.order_by('id').all() return upvotes def __repr__(self): return f'{self.user_id}:{self.book_id}' ```
{ "source": "joselynzhao/ATM", "score": 3 }
#### File: joselynzhao/ATM/drawer01.py ```python import os import codecs import os.path as osp import math import matplotlib.pyplot as plt import numpy as np class drawer01(): def __init__(self,dataset = 'DukeMTMC-VideoReID', exp_name = 'atm'): self.dataset =dataset self.exp_name = exp_name self.exp_path = osp.join('logs',self.dataset,self.exp_name) def __get_time_info(self,file_path,is_baseline=0): try: time_file = codecs.open(osp.join(file_path,'time.txt'),'r','utf-8') except FileNotFoundError: print('Time.txt in {} is not fond'.format(file_path)) time_info = time_file.readlines() step_time_list = [] for line in time_info: line = line.split() line = [float(i.split(':')[1]) for i in line] step_time_out = line[1] + line[2] if not is_baseline else line[1]+line[2]+line[3] step_time_list.append(step_time_out) return step_time_list def compare_train_lits_time(self,train_list,unit_size=2,dpi=100): train_time = [] for train in train_list: step_time_list = self.__get_time_info(osp.join(self.exp_path,str(train))) train_time.append(step_time_list) # 添加baseline baseline_EF10 = self.__get_time_info(osp.join('logs',self.dataset,'baseline','EF10'),is_baseline=1) baseline_EF15 = self.__get_time_info(osp.join('logs',self.dataset,'baseline','EF15'),is_baseline=1) train_time.append(baseline_EF10) train_time.append(baseline_EF15) # 下面开始绘图 plt.figure(figsize=(4*unit_size,2*unit_size),dpi=dpi) for index,train in enumerate(train_time): step = len(train) x = np.linspace(1,step,step) sum_time = sum(train) plt.plot(x,train,label='{}:{}'.format(train_list[index] if index<len(train_list) else 'baseline',round(sum_time,2))) plt.xlabel='steps' plt.ylabel='time(s)' plt.title = 'time costed of {}'.format(train_list) plt.legend(loc='best') plt.savefig(osp.join(self.exp_path,'time_costed_{}'.format(train_list)),bbox_inches='tight') plt.show() def generate_formdata_for_group_list(self,group_list): for group in group_list: group = str(group) data_file = osp.join(self.exp_path, group, 'data.txt') self.__for_generate_formdata(data_file,group,'format_data.txt') tagper_file = osp.join(self.exp_path, group, 'tagper_data.txt') self.__for_generate_formdata(tagper_file, group, 'format_tagper.txt') def compare_reid_and_tagper(self,group_list,compare_item=['mAP','Rank-1','Rank-5','Rank-10','Rank-20','num_selected','label_pre','select_pre'],unit_size =4,dpi=100,hspace=0.3): for group in group_list: try: reid_file = codecs.open(osp.join(self.exp_path,str(group),'format_data.txt'),'r','utf-8') tagper_file = codecs.open(osp.join(self.exp_path,str(group),'format_tagper.txt'),'r','utf-8') except FileNotFoundError: self.generate_formdata_for_group_list([group]) reid_file = codecs.open(osp.join(self.exp_path, str(group), 'format_data.txt'), 'r', 'utf-8') tagper_file = codecs.open(osp.join(self.exp_path, str(group), 'format_tagper.txt'), 'r', 'utf-8') reid_data = eval('{' + reid_file.read() + '}') tagper_data = eval('{' + tagper_file.read() + '}') compare_list = [reid_data, tagper_data] out_name ='reidvstagper_{}'.format(group) self.__draw_compre_for_list(compare_list,compare_item,out_name,unit_size,dpi,hspace,is_reidvstagper=1) def compare_train_list(self,train_list,is_tagper=0,compare_item=['mAP','Rank-1','Rank-5','Rank-10','Rank-20','num_selected','label_pre','select_pre'],unit_size =4,dpi=100,hspace=0.3): file_name = 'format_tagper.txt' if is_tagper else 'format_data.txt' compare_list = [] for train in train_list: try: file_info = codecs.open(osp.join(self.exp_path,str(train),file_name),'r','utf-8') except FileNotFoundError: self.generate_formdata_for_group_list([train]) file_info = codecs.open(osp.join(self.exp_path, str(train), file_name), 'r', 'utf-8') file_data = eval('{' + file_info.read() + '}') compare_list.append(file_data) baseline10 = codecs.open(osp.join('logs',self.dataset,'baseline','EF10','format_data.txt'),'r','utf-8') baseline15 = codecs.open(osp.join('logs',self.dataset,'baseline','EF15','format_data.txt'),'r','utf-8') baseline10 = eval('{' + baseline10.read() + '}') baseline15 = eval('{' + baseline15.read() + '}') compare_list.extend([baseline10,baseline15]) out_name = 'comparetrains_tagper_{}'.format(train_list) if is_tagper else 'comparetrains_reid_{}'.format(train_list) self.__draw_compre_for_list(compare_list,compare_item,out_name,unit_size,dpi,hspace) def get_top_value_for_all(self,is_tagper=0): #自动捕捉所有的训练 dictionary = os.listdir(self.exp_path) group_list = [one for one in dictionary if not os.path.isfile(osp.join(self.exp_path,one))] group_list.sort() file_name = 'format_data.txt' if not is_tagper else 'format_tagper.txt' out_name = 'reid_topvalue.txt' if not is_tagper else 'tagper_topvalue.txt' items = ['step','mAP','Rank-1','Rank-5','Rank-10','Rank-20','label_pre','select_pre'] out_file = codecs.open(osp.join(self.exp_path,out_name), 'w') out_file.write('group') for item in items: out_file.write('\t{}'.format(item)) out_file.write('\n') for group in group_list: try: file_info = codecs.open(osp.join(self.exp_path,str(group),file_name),'r','utf-8') except FileNotFoundError: self.generate_formdata_for_group_list([group]) file_info = codecs.open(osp.join(self.exp_path, str(group), file_name), 'r', 'utf-8') file_data = eval('{' + file_info.read() + '}') max_data =[max(file_data[item]) for item in items] out_file.write(group) for data in max_data: out_file.write('\t{}'.format(data)) out_file.write('\n') out_file.close() def __draw_compre_for_list(self,compare_list,compare_item,out_name,unit_size,dpi,hspace,is_reidvstagper=0): item_num = len(compare_item) raw = math.floor(pow(item_num,0.5)) #为了让图尽可能方正 col = math.ceil(item_num/raw) plt.figure(figsize=(4*unit_size,2*unit_size),dpi=dpi) plt.subplots_adjust(hspace=hspace) for i in range(item_num): plt.subplot(raw,col,i+1) item = compare_item[i] max_len = max([train['length'] for train in compare_list]) # 求这个max_len来做什么呢,好像没有用呀 for train in compare_list: max_point = np.argmax(train[item]) plt.annotate(str(train[item][max_point]),xy=(max_point+1,train[item][max_point])) x = np.linspace(1,train['length'],train['length']) plt.plot(x,train[item],label=train['title'],marker='o') plt.xlabel('steps') plt.ylabel('value(%)') plt.title(item) if i==1: if is_reidvstagper: plt.legend(['reid','tagper'],loc='center', bbox_to_anchor=(0.5, 1.2), ncol=len(compare_list)) # 1 else: plt.legend(loc='center', bbox_to_anchor=(0.5, 1.2), ncol=len(compare_list)) # 1 plt.savefig(osp.join(self.exp_path,out_name),bbox_inches='tight') plt.show() def __for_generate_formdata(self,data_file,group,out_name): file = codecs.open(data_file,'r','utf-8') save_path = osp.join(self.exp_path,group,out_name) format_file = codecs.open(save_path,'w') datas = file.readlines() for i in range(len(datas)): datas[i] = datas[i].strip().split(' ') datas[i] =[k.split(':')[-1].strip('%') for k in datas[i]] #只取数值 # datas = np.aray(datas) print(datas) name_list = ['step','mAP','Rank-1','Rank-5','Rank-10','Rank-20','num_selected','label_pre','select_pre'] format_file.write("\"length\":{},".format(len(datas))) format_file.write("\"title\":\"{}\"".format(self.exp_name + '_' + group)) for i in range(len(name_list)): data = [float(datas[k][i]) for k in range(len(datas))] format_file.write(",\"{}\":{}".format(name_list[i],data)) if __name__ =='__main__': drawer = drawer01(exp_name='atm') # drawer.init() # drawer.generate_formdata_for_group_list([0,1,2,3]) # drawer.compare_reid_and_tagper([4,5]) # drawer.compare_train_list([1,4]) # drawer.get_top_value_for_all(is_tagper=0) drawer.compare_train_lits_time([0,1,2,3,4,5]) ```
{ "source": "joselynzhao/Cross-Study-in-Neuroscience", "score": 3 }
#### File: joselynzhao/Cross-Study-in-Neuroscience/bandpower02.py ```python import numpy as np data = np.loadtxt('data.txt') import matplotlib.pyplot as plt import seaborn as sns sns.set(font_scale=1.2) # Define sampling frequency and time vector sf = 100. #采样频率 def bandpower(data, sf, band, window_sec=None, relative=False): """Compute the average power of the signal x in a specific frequency band. Parameters ---------- data : 1d-array Input signal in the time-domain. sf : float Sampling frequency of the data. band : list Lower and upper frequencies of the band of interest. window_sec : float Length of each window in seconds. If None, window_sec = (1 / min(band)) * 2 relative : boolean If True, return the relative power (= divided by the total power of the signal). If False (default), return the absolute power. Return ------ bp : float Absolute or relative band power. """ from scipy.signal import welch from scipy.integrate import simps band = np.asarray(band) low, high = band # Define window length if window_sec is not None: nperseg = window_sec * sf else: nperseg = (2 / low) * sf # Compute the modified periodogram (Welch) freqs, psd = welch(data, sf, nperseg=nperseg) # Frequency resolution freq_res = freqs[1] - freqs[0] # Find closest indices of band in frequency vector idx_band = np.logical_and(freqs >= low, freqs <= high) # Integral approximation of the spectrum using Simpson's rule. bp = simps(psd[idx_band], dx=freq_res) if relative: bp /= simps(psd, dx=freq_res) return bp if __name__ =='__main__': print(bandpower(data,sf,[0.5,4])) ``` #### File: Cross-Study-in-Neuroscience/exam/3.py ```python import numpy as np num_book = 5 num_reader = 3 requeir_list = [[1, 2], [2], [3, 4]] def get_max_index(l): index = 0 max = l[0] for i in range(1,len(l)): if l[i]>max: index = i max = l[i] return index def updata_remain(num_book,requeir_list): temp = [] for i in range(num_book): temp.append(sum(requeir_list[:,i])) return temp # ag_requeir_list = [] for requeir in requeir_list: for i in range(1,num_book+1): if i not in requeir: requeir.insert(i-1,0) else: requeir[i-1]=1 # print(requeir) # print(requeir_list) requeir_list = np.array(requeir_list) remain_req = updata_remain(num_book,requeir_list) satifi_list = np.ones(num_reader) buy_book = [] while(sum(satifi_list)!=0): # print('-----------------') # print(requeir_list) # print(remain_req) # print(satifi_list) # print(remain_req) index = get_max_index(remain_req) buy_book.append(index+1) for i in range(num_reader): if requeir_list[i][index]==1: #需求已满足 satifi_list[i]=0 requeir_list[i]= 0 remain_req = updata_remain(num_book,requeir_list) # print(requeir_list) # print('-----------------') print(len(buy_book)) ```
{ "source": "joselynzhao/Feature-Similarity-Memory-in-Progressive-Learning", "score": 2 }
#### File: joselynzhao/Feature-Similarity-Memory-in-Progressive-Learning/main.py ```python from __future__ import print_function, absolute_import from reid.REID import * from reid import datasets from reid import models import numpy as np import torch import argparse import os from reid.utils.logging import Logger import os.path as osp import sys from torch.backends import cudnn from reid.utils.serialization import load_checkpoint from torch import nn import time import math import pickle import time import matplotlib.pyplot as plt import os import codecs from common_tools import * def main(args): cudnn.benchmark = True cudnn.enabled = True # get all the labeled and unlabeled data for training dataset_all = datasets.create(args.dataset, osp.join(args.data_dir, args.dataset)) l_data, u_data = get_one_shot_in_cam1(dataset_all, load_path="./examples/oneshot_{}_used_in_paper.pickle".format( dataset_all.name)) mv_num = math.ceil(len(u_data)/args.total_step) #最后一轮没有mv_num的量 # 总的训练step数的计算 # total_step = math.ceil(math.pow((100 / args.EF), (1 / args.q))) # 这里应该取上限或者 +2 多一轮进行one-shot训练的 # EUG base 采样策略 # total_step = math.ceil((2 * NN * args.step_s + args.yita + len(u_data)) / (args.yita + NN + len(l_data))) + 2 # big start 策略 #实验信息 print("{}/{} is training with {}, the max_frames is {}, and will be saved to {}".format(args.exp_name,args.exp_order,args.dataset,args.max_frames,args.logs_dir)) # 参数信息 print("parameters are setted as follows:") print("\ttotal_step:\t{}".format(args.total_step)) # print("\tEF:\t{}".format(args.EF)) # print("\tq:\t{}".format(args.q)) # print("\ttrain_tagper_step:\t{}".format(args.train_tagper_step)) print("\tepoch:\t{}".format(args.epoch)) print("\tstep_size:\t{}".format(args.step_size)) print("\tbatch_size:\t{}".format(args.batch_size)) print("\tmv_num:\t{}".format(mv_num)) # 指定输出文件 # 第三部分要说明关键参数的设定 sys.stdout = Logger(osp.join(args.logs_dir, args.dataset,args.exp_name,args.exp_order,'log'+time.strftime(".%m_%d_%H-%M-%S")+'.txt')) data_file =codecs.open(osp.join(args.logs_dir, args.dataset,args.exp_name,args.exp_order,'data.txt'),mode='a') time_file =codecs.open(osp.join(args.logs_dir, args.dataset,args.exp_name,args.exp_order,'time.txt'),mode='a') save_path = osp.join(args.logs_dir, args.dataset,args.exp_name,args.exp_order) resume_step, ckpt_file = -1, '' if args.resume: # 重新训练的时候用 resume_step, ckpt_file = resume(args) # initial the EUG algorithm reid = REID(model_name=args.arch, batch_size=args.batch_size,mode = args.mode, num_classes=dataset_all.num_train_ids, data_dir=dataset_all.images_dir, l_data=l_data, u_data=u_data, save_path=save_path, max_frames=args.max_frames) select_data = [] # 开始的时间记录 exp_start = time.time() for step in range(args.total_step+1): # while(not isout): print('-'*20+'training step:{}/{}'.format(step+1,args.total_step+1)+'-'*20) # 开始训练 train_start = time.time() train_data = l_data+select_data reid.train(train_data, step, epochs=args.epoch, step_size=args.step_size, init_lr=0.1) # 开始评估 evaluate_start = time.time() # mAP, top1, top5, top10, top20 = 0,0,0,0,0 mAP,top1,top5,top10,top20 = reid.evaluate(dataset_all.query, dataset_all.gallery) # 标签估计 estimate_start = time.time() # pred_y, pred_score, label_pre, id_num = 0,0,0,0 pred_y, pred_score, label_pre = reid.estimate_label_FSM(step) # step \in [0,total_step] estimate_end = time.time() selected_idx = reid.select_top_data(pred_score, min(mv_num*(step+1),len(u_data))) select_data, select_pre = reid.generate_new_train_data(selected_idx, pred_y) # 输出该epoch的信息 data_file.write( "step:{} mAP:{:.2%} top1:{:.2%} top5:{:.2%} top10:{:.2%} top20:{:.2%} len(l_data):{} label_pre:{:.2%} select_pre:{:.2%}\n".format( int(step + 1), mAP, top1, top5, top10, top20, len(select_data), label_pre, select_pre)) print( "reid step:{} mAP:{:.2%} top1:{:.2%} top5:{:.2%} top10:{:.2%} top20:{:.2%} len(l_data):{} label_pre:{:.2%} select_pre:{:.2%} \n".format( int(step + 1), mAP, top1, top5, top10, top20, len(select_data), label_pre, select_pre)) if args.clock: train_time = evaluate_start-train_start evaluate_time = estimate_start - evaluate_start estimate_time = estimate_end-estimate_start epoch_time = train_time-estimate_time time_file.write("step:{} train:{} evaluate:{} estimate:{} epoch:{}\n".format(int(step+1),train_time,evaluate_time,estimate_time,epoch_time)) data_file.close() if (args.clock): exp_end = time.time() exp_time = exp_end - exp_start h, m, s = changetoHSM(exp_time) print("experiment is over, cost %02d:%02d:%02.6f" % ( h, m, s)) time_file.close() if __name__ == '__main__': parser = argparse.ArgumentParser(description='FSM') parser.add_argument('-d', '--dataset', type=str, default='DukeMTMC-VideoReID',choices=datasets.names()) #s parser.add_argument('-b', '--batch-size', type=int, default=16) parser.add_argument('--epoch',type=int,default=70) parser.add_argument('--step_size',type=int,default=55) parser.add_argument('--total_step',type=int,default=10) parser.add_argument('--EF', type=float, default=5) # 渐进采样系数 parser.add_argument('--q', type=float, default=1) # 渐进采样指数 working_dir = os.path.dirname(os.path.abspath(__file__)) parser.add_argument('--data_dir', type=str, metavar='PATH',default=os.path.join(working_dir, 'data')) # 加载数据集的根目录 parser.add_argument('--logs_dir', type=str, metavar='PATH',default=os.path.join(working_dir, 'logs')) # 保持日志根目录 parser.add_argument('--exp_name',type=str,default="fsm") parser.add_argument('--exp_order',type=str,default="0") parser.add_argument('--resume', type=bool, default=False) parser.add_argument('--mode', type=str, choices=["Classification", "Dissimilarity"], default="Dissimilarity") #这个考虑要不要取消掉 parser.add_argument('--max_frames', type=int, default= 400) parser.add_argument('--clock',type=bool, default=True) #是否记时 parser.add_argument('--gdraw',type=bool, default=False) #是否实时绘图 #下面是暂时不知道用来做什么的参数 parser.add_argument('-a', '--arch', type=str, default='avg_pool',choices=models.names()) #eug model_name parser.add_argument('-i', '--iter-step', type=int, default=5) parser.add_argument('-g', '--gamma', type=float, default=0.3) parser.add_argument('-l', '--l', type=float) parser.add_argument('--continuous', action="store_true") main(parser.parse_args()) ''' python3.6 main.py --total_step 10 ''' ```
{ "source": "joselynzhao/One-shot-Person-Re-ID-ATM", "score": 2 }
#### File: joselynzhao/One-shot-Person-Re-ID-ATM/atmpro1_vsm2.py ```python from my_reid.eug import * from my_reid import datasets from my_reid import models import numpy as np import torch import argparse import os import warnings warnings.filterwarnings("ignore") from my_reid.utils.logging import Logger import os.path as osp import sys from torch.backends import cudnn from my_reid.utils.serialization import load_checkpoint from torch import nn import time import pickle import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DDP from torch.utils.data.distributed import DistributedSampler from pathlib import Path def resume(savepath): import re pattern = re.compile(r'step_(\d+)\.ckpt') start_step = -1 ckpt_file = "" # find start step files = os.listdir(savepath) files.sort() for filename in files: try: iter_ = int(pattern.search(filename).groups()[0]) print(iter_) if iter_ > start_step: start_step = iter_ ckpt_file = osp.join(savepath, filename) except: continue # if need resume if start_step >= 0: print("continued from iter step", start_step) else: print("resume failed", start_step, files) return start_step, ckpt_file def main(args): father = Path('/mnt/') if father.exists(): # 是在服务器上 data_dir = Path('/mnt/share/datasets/RE-ID/data') # 服务器 logs_dir = Path('/mnt/home/{}'.format(args.log_name)) # 服务器 else: #本地 data_dir = Path('/home/joselyn/workspace/ATM_SERIES/data') # 本地跑用这个 logs_dir = Path('/home/joselyn/workspace/ATM_SERIES/{}'.format(args.log_name)) # 本地跑用这个 cudnn.benchmark = True cudnn.enabled = True save_path = os.path.join(logs_dir, args.dataset, args.exp_name, args.exp_order) # 到编号位置. total_step = 100 // args.EF + 1 sys.stdout = Logger(osp.join(save_path, 'log' + str(args.EF) + time.strftime(".%m_%d_%H:%M:%S") + '.txt')) dataf_file = open(osp.join(save_path, 'dataf.txt'), 'a') # 保存性能数据. #特征空间中的性能问题. data_file = open(osp.join(save_path, 'data.txt'), 'a') # 保存性能数据. #特征空间中的性能问题. kf_file = open(osp.join(save_path,'kf.txt'),'a') # 数据格式为 label_pre_r, select_pre_r,label_pre_t, select_pre_t ,加上了了tagper的数据. tagper_path = osp.join(save_path,'tagper') #tagper存储路径. if not Path(tagper_path).exists(): os.mkdir(tagper_path) '''# 记录配置信息 和路径''' print('-'*20+'config_info'+'-'*20) config_file = open(osp.join(save_path, 'config.txt'), 'w') config_info = str(args).split('(')[1].strip(')').split(',') config_info.sort() for one in config_info: key,value=map(str,one.split('=')) config_file.write(key.strip()+'='+value.strip('\'')+'\n') print(key.strip()+'='+value.strip('\'')) config_file.write('save_path='+save_path) print('save_path='+save_path) print('-' * 20 + 'config_info' + '-' * 20) config_file.close() train_time_file = open(osp.join(save_path, 'time.txt'), 'a') # 只记录训练所需要的时间. # 数据格式为 step_time total_time. total_time = 0 # get all the labeled and unlabeled data for training dataset_all = datasets.create(args.dataset, osp.join(data_dir, args.dataset)) num_all_examples = len(dataset_all.train) l_data, u_data = get_init_shot_in_cam1(dataset_all, load_path="./examples/{}_init_{}.pickle".format(dataset_all.name, args.init), init=args.init) resume_step, ckpt_file = -1, '' if args.resume: resume_step, ckpt_file = resume(save_path) # initial the EUG algorithm eug = EUG(batch_size=args.batch_size, num_classes=dataset_all.num_train_ids, dataset=dataset_all, l_data=l_data, u_data=u_data, save_path=save_path, max_frames=args.max_frames, embeding_fea_size=args.fea, momentum=args.momentum, lamda=args.lamda) tagper = EUG(batch_size=args.batch_size, num_classes=dataset_all.num_train_ids, dataset=dataset_all, l_data=l_data, u_data=u_data, save_path=tagper_path, max_frames=args.max_frames, embeding_fea_size=args.fea, momentum=args.momentum, lamda=args.lamda) new_train_data = l_data unselected_data = u_data iter_mode = 2 #迭代模式,确定是否训练tagper for step in range(total_step): # for resume if step < resume_step: continue ratio = (step + 1) * args.EF / 100 ratio_t = (step+1+args.t) * args.EF /100 nums_to_select = int(len(u_data) * ratio) nums_to_select_tagper = int(len(u_data) * ratio_t) if nums_to_select >= len(u_data): break #args.vsm_lambda的衰减 0.5 - 0 vsm_lambda = args.vsm_lambda*step/(1-(total_step/2)) +args.vsm_lambda vsm_lambda +=1 print("Runing: EF={}%, step {}:\t Nums_to_be_select {} \t Ritio \t Logs-dir {}".format( args.EF, step, nums_to_select, ratio, save_path)) # train the model or load ckpt start_time = time.time() print("training reid model") eug.train(new_train_data, unselected_data, step, loss=args.loss, epochs=args.epochs, step_size=args.step_size, init_lr=0.1) if step != resume_step else eug.resume(ckpt_file, step) # 只对eug进行性能评估 # mAP, rank1, rank5, rank10, rank20 = 0, 0, 0, 0, 0 mAP, rank1, rank5, rank10, rank20 = eug.evaluate(dataset_all.query, dataset_all.gallery) # 把数据写到data文件里. data_file.write('{} {:.2%} {:.2%} {:.2%} {:.2%} {:.2%}\n'.format(step, mAP, rank1, rank5, rank10, rank20)) pred_y, pred_score,label_pre,dists= eug.estimate_label_vsm() selected_idx = eug.select_top_data_vsm2(pred_score, dists,args.topk,vsm_lambda,min(nums_to_select_tagper,len(u_data)-50) if iter_mode==2 else min(nums_to_select,len(u_data))) #直接翻两倍取数据. -50个样本,保证unselected_data数量不为0 new_train_data, unselected_data, select_pre= eug.generate_new_train_data(selected_idx, pred_y) raw_label_pre, raw_select_pre = label_pre,select_pre t_label_pre,t_select_pre = 0,0 raw_select_pre_t = 0 # label_pre_t,select_pre_t=0,0 if iter_mode==2: raw_select_pre_t = raw_select_pre print("training tagper model") selected_idx = eug.select_top_data_vsm2(pred_score,dists,args.topk,vsm_lambda, min(nums_to_select, len(u_data))) _, _, raw_select_pre = eug.generate_new_train_data(selected_idx, pred_y) # kf_file.write('{} {:.2%} {:.2%}'.format(step, label_pre, select_pre)) tagper.resume(osp.join(save_path,'step_{}.ckpt'.format(step)),step) tagper.train(new_train_data, unselected_data, step, loss=args.loss, epochs=args.epochs, step_size=args.step_size, init_lr=0.1) pred_y, pred_score, label_pre,dists= tagper.estimate_label_vsm() selected_idx = tagper.select_top_data_vsm2(pred_score,dists,args.topk,vsm_lambda,min(nums_to_select,len(u_data))) # 采样目标数量 new_train_data, unselected_data, select_pre= tagper.generate_new_train_data(selected_idx, pred_y) t_label_pre,t_select_pre = label_pre,select_pre label_pre,select_pre = t_label_pre,t_select_pre if nums_to_select_tagper >=len(u_data): iter_mode=1 #切换模式 print('tagper is stop') else: #mode = 1 # raw_select_pre = raw_select_pre_t # raw_select_pre_t = 0 label_pre,select_pre = raw_label_pre,raw_select_pre end_time = time.time() step_time = end_time - start_time total_time = step_time + total_time train_time_file.write('{} {:.6} {:.6}\n'.format(step, step_time, total_time)) kf_file.write('{} {} {} {:.2%} {:.2%} {:.2%} {:.2%} {:.2%}\n'.format(step,nums_to_select,nums_to_select_tagper,raw_label_pre,raw_select_pre,raw_select_pre_t,t_label_pre,t_select_pre)) dataf_file.write( '{} {:.2%} {:.2%}\n'.format(step, label_pre, select_pre)) dataf_file.close() train_time_file.close() if __name__ == '__main__': parser = argparse.ArgumentParser(description='Progressive Learning for One-Example re-ID') parser.add_argument('-d', '--dataset', type=str, default='mars', choices=datasets.names()) parser.add_argument('-b', '--batch-size', type=int, default=16) parser.add_argument('-f', '--fea', type=int, default=1024) parser.add_argument('--EF', type=int, default=10) parser.add_argument('--t', type=float, default=2) #不再tagper采样的倍率, 而是表示跨多少个step采样. parser.add_argument('--exp_order', type=str, default='0') parser.add_argument('--exp_name', type=str, default='atm') parser.add_argument('--exp_aim', type=str, default='for paper') parser.add_argument('--run_file',type=str,default='train.py') parser.add_argument('--log_name',type=str,default='pl_logs') parser.add_argument('--topk',type=int,default=2) parser.add_argument('--vsm_lambda',type=float,default=0.5) parser.add_argument('--resume', type=str, default='Yes') parser.add_argument('--max_frames', type=int, default=900) parser.add_argument('--loss', type=str, default='ExLoss', choices=['CrossEntropyLoss', 'ExLoss']) parser.add_argument('--init', type=float, default=-1) parser.add_argument('-m', '--momentum', type=float, default=0.5) parser.add_argument('-e', '--epochs', type=int, default=70) parser.add_argument('-s', '--step_size', type=int, default=55) parser.add_argument('--lamda', type=float, default=0.5) main(parser.parse_args()) ``` #### File: reid/models/end2end.py ```python from __future__ import absolute_import from torch import nn from torch.autograd import Variable from torch.nn import functional as F from torch.nn import init import torch import torchvision import math from .resnet import * __all__ = ["End2End_AvgPooling"] def conv1_1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class AvgPooling(nn.Module): def __init__(self, input_feature_size, num_classes, is_output_feature, embeding_fea_size=1024, dropout=0.5, classifier="CrossEntropyLoss"): super(self.__class__, self).__init__() self.is_output_feature = is_output_feature # embeding self.embeding_fea_size = embeding_fea_size IDE_fea_size = 2048 Ex_fea_size = 2048 self.middel_conv = conv1_1(2048,2048,1) init.kaiming_normal_(self.middel_conv.weight,mode='fan_out') self.middle_norm = nn.BatchNorm2d(2048) init.constant_(self.middle_norm.weight,1) init.constant_(self.middle_norm.bias, 0) self.middle_relu = nn.ReLU(inplace=True) self.IDE_embeding = nn.Linear(input_feature_size, IDE_fea_size) self.IDE_embeding_bn = nn.BatchNorm1d(IDE_fea_size) self.Ex_embeding = nn.Linear(input_feature_size, Ex_fea_size) self.Ex_embeding_bn = nn.BatchNorm1d(Ex_fea_size) init.kaiming_normal_(self.IDE_embeding.weight, mode='fan_out') init.constant_(self.IDE_embeding.bias, 0) init.constant_(self.IDE_embeding_bn.weight, 1) init.constant_(self.IDE_embeding_bn.bias, 0) init.kaiming_normal_(self.Ex_embeding.weight, mode='fan_out') init.constant_(self.Ex_embeding.bias, 0) init.constant_(self.Ex_embeding_bn.weight, 1) init.constant_(self.Ex_embeding_bn.bias, 0) self.drop = nn.Dropout(dropout) self.classify_fc = nn.Linear(IDE_fea_size, num_classes, bias=True) init.normal_(self.classify_fc.weight, std = 0.001) init.constant_(self.classify_fc.bias, 0) self.cls = classifier def forward(self, inputs): pool5 = inputs.mean(dim = 1) #pool5 = inputs if (not self.training) and self.is_output_feature: pool5 = pool5.view(pool5.size(0),-1) return F.normalize(pool5, p=2, dim=1) pool5 = self.middel_conv(pool5) pool5 = self.middle_norm(pool5) #pool5 = self.middle_relu(pool5) pool5 = pool5.view(pool5.size(0),-1) metric_feature = F.normalize(pool5, p=2, dim=1) """ IDE """ # embeding net = self.drop(pool5) net = self.IDE_embeding(net) net = self.IDE_embeding_bn(net) net = F.relu(net) net = self.drop(net) # classifier predict = self.classify_fc(net) if (not self.training) and (not self.is_output_feature): return predict """ Exclusive """ net = self.Ex_embeding(pool5) net = self.Ex_embeding_bn(net) net = F.normalize(net, p=2, dim=1) Ex_feat = self.drop(net) return predict, Ex_feat,metric_feature class End2End_AvgPooling(nn.Module): def __init__(self, pretrained=True, dropout=0, num_classes=0, is_output_feature=True, embeding_fea_size=1024, classifier="CrossEntropyLoss", fixed_layer=True): super(self.__class__, self).__init__() self.CNN = resnet50(dropout=dropout, fixed_layer=fixed_layer) self.avg_pooling = AvgPooling(input_feature_size=2048, num_classes=num_classes, dropout=dropout, is_output_feature=is_output_feature, classifier=classifier, embeding_fea_size = embeding_fea_size) def forward(self, x): assert len(x.data.shape) == 5 # reshape (batch, samples, ...) ==> (batch * samples, ...) oriShape = x.data.shape x = x.view(-1, oriShape[2], oriShape[3], oriShape[4]) # resnet encoding resnet_feature = self.CNN(x) # reshape back into (batch, samples, ...) #resnet_feature = resnet_feature.view(oriShape[0], oriShape[1], -1) feature_size = resnet_feature.data.shape # reshape back into (batch, samples, ...) resnet_feature = resnet_feature.view(oriShape[0], oriShape[1], feature_size[1],feature_size[2],feature_size[3]) # avg pooling # if eval and cut_off_before_logits, return predict; else return avg pooling feature predict = self.avg_pooling(resnet_feature) return predict ``` #### File: One-shot-Person-Re-ID-ATM/reid/trainers.py ```python from __future__ import print_function, absolute_import import time import torch from torch import nn from torch.autograd import Variable from .evaluation_metrics import accuracy from .utils.meters import AverageMeter from .dist_regularization_loss import DistRegularizeLoss def cycle(iterable): while True: for x in iterable: yield x class BaseTrainer(object): def __init__(self, model, criterion, lamda, fixed_layer=True): super(BaseTrainer, self).__init__() self.model = model self.ide_criterion = nn.CrossEntropyLoss().cuda() self.u_criterion = criterion self.fixed_layer = fixed_layer self.label_ratio = lamda self.u_re_ratio = 0.8 self.regularize_loss = DistRegularizeLoss() def train(self, epoch, ide_data_loader, u_loader, optimizer, use_unselcted_data, print_freq=30): self.model.train() if self.fixed_layer: # The following code is used to keep the BN on the first three block fixed fixed_bns = [] for idx, (name, module) in enumerate(self.model.module.named_modules()): if name.find("layer3") != -1: assert len(fixed_bns) == 22 break if name.find("bn") != -1: fixed_bns.append(name) module.eval() batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() precisions = AverageMeter() end = time.time() u_loader = iter(cycle(u_loader)) trainlog = TrainingLog(epoch, print_freq, len(ide_data_loader)) for i, ide_inputs in enumerate(ide_data_loader): data_time.update(time.time() - end) # ide forward ide_inputs, ide_targets = self._parse_data(ide_inputs, 'ide') ide_loss, ide_prec1,ide_feats = self._forward(ide_inputs, ide_targets, 'ide') weighted_loss = ide_loss u_loss, u_prec1 = ide_loss, ide_prec1 regular_loss = ide_loss # unselcted part forward if use_unselcted_data: u_inputs = next(u_loader) u_inputs, u_targets = self._parse_data(u_inputs, 'u') u_loss, u_prec1 ,u_feats= self._forward(u_inputs, u_targets, 'u') regular_loss = self.regularize_loss(ide_feats,u_feats) weighted_loss = self.get_weighted_loss(ide_loss, u_loss,regular_loss) # update weighted loss and bp optimizer.zero_grad() weighted_loss.backward() optimizer.step() trainlog.update(i, weighted_loss, ide_loss, u_loss,regular_loss,ide_prec1, u_prec1, ide_targets) def get_weighted_loss(self, ide_loss, u_loss,regular_loss): weighted_loss = ide_loss * self.label_ratio + (1 - self.label_ratio)*(u_loss *self.u_re_ratio+ (1-self.u_re_ratio) * regular_loss) return weighted_loss def _parse_data(self, inputs): raise NotImplementedError def _forward(self, inputs, targets): raise NotImplementedError class Trainer(BaseTrainer): def _parse_data(self, inputs, mode): imgs, _, pids, indexs, _ = inputs inputs = Variable(imgs, requires_grad=False) if mode == "u": targets = Variable(indexs.cuda()) elif mode == "ide": targets = Variable(pids.cuda()) else: raise KeyError return inputs, targets def _forward(self, inputs, targets, mode): ide_preds, u_feats ,metric_feats= self.model(inputs) if mode == "ide": # id predictions ide_loss = self.ide_criterion(ide_preds, targets) ide_prec, = accuracy(ide_preds.data, targets.data) ide_prec = ide_prec[0] return ide_loss, ide_prec,metric_feats elif mode == 'u': # u predictions u_loss, outputs = self.u_criterion(u_feats, targets) u_prec, = accuracy(outputs.data, targets.data) u_prec = u_prec[0] return u_loss, u_prec,metric_feats else: raise KeyError class TrainingLog(): def __init__(self, epoch, print_freq, data_len): self.batch_time = AverageMeter() self.losses = AverageMeter() self.ide_losses = AverageMeter() self.u_losses = AverageMeter() self.regular_loss = AverageMeter() self.ide_precisions = AverageMeter() self.u_precisions = AverageMeter() self.time = time.time() self.epoch = epoch self.print_freq = print_freq self.data_len = data_len def update(self, step, weighted_loss, ide_loss, u_loss,regular_loss,ide_prec, u_prec, targets): # update time t = time.time() self.batch_time.update(t - self.time) self.time = t # weighted loss self.losses.update(weighted_loss.item(), targets.size(0)) self.ide_losses.update(ide_loss.item(), targets.size(0)) self.u_losses.update(u_loss.item()) self.regular_loss.update(regular_loss.item()) # id precision self.ide_precisions.update(ide_prec, targets.size(0)) self.u_precisions.update(u_prec, targets.size(0)) if (step + 1) % self.print_freq == 0: print('Epoch: [{}][{}/{}]\t' 'Time {:.3f} ({:.3f})\t' 'Loss {:.3f} ({:.3f})\t' 'IDE_Loss {:.3f} ({:.3f})\t' 'Re_Loss {:.3f} ({:.3f})\t' 'ExLoss {:.3f} ({:.3f})\t' 'IDE_Prec {:.1%} ({:.1%})\t' 'ExPrec {:.1%} ({:.1%})\t' .format(self.epoch, step + 1, self.data_len, self.batch_time.val, self.batch_time.avg, self.losses.val, self.losses.avg, self.ide_losses.val, self.ide_losses.avg, self.regular_loss.val, self.regular_loss.avg, self.u_losses.val, self.u_losses.avg, self.ide_precisions.val, self.ide_precisions.avg, self.u_precisions.val, self.u_precisions.avg)) ```
{ "source": "joselynzhao/One-shot-Person-Re-ID-with-Variance-Subsampling-Method", "score": 2 }
#### File: utils/data/sampler.py ```python from __future__ import absolute_import from collections import defaultdict import numpy as np import torch from torch.utils.data.sampler import ( Sampler, SequentialSampler, RandomSampler, SubsetRandomSampler, WeightedRandomSampler) class RandomIdentitySampler(Sampler): def __init__(self, data_source, num_instances=1): self.data_source = data_source self.num_instances = num_instances self.index_dic = defaultdict(list) for index, (_, pid, _) in enumerate(data_source): self.index_dic[pid].append(index) self.pids = list(self.index_dic.keys()) self.num_samples = len(self.pids) def __len__(self): return self.num_samples * self.num_instances def __iter__(self): indices = torch.randperm(self.num_samples) ret = [] for i in indices: pid = self.pids[i] t = self.index_dic[pid] if len(t) >= self.num_instances: t = np.random.choice(t, size=self.num_instances, replace=False) else: t = np.random.choice(t, size=self.num_instances, replace=True) ret.extend(t) return iter(ret) ```
{ "source": "joselynzhao/plt_draw", "score": 3 }
#### File: joselynzhao/plt_draw/data_prehandle.py ```python from data import * import numpy as np import math def get_len(train_name): return len(train_name["mAP"]) def percent_gradually_5_k15(): Nu = 1494.0 k = 15 x = np.linspace(1,gradually_5_k15["length"],gradually_5_k15["length"]) def fun(x): num = min(math.ceil(-(Nu/2) * np.cos((k/100) * (x-1))+(Nu/2)),Nu) return round(num) xx = list(map(fun,x)) print("percent_gradually_5_k15",xx) return xx def percent_gradually_5_10(): Nu = 1494.0 q = 1.0 ef = 5 x = np.linspace(1,gradually_5_10["length"],gradually_5_10["length"]) def fun(x): num = min(math.ceil(Nu * math.pow(x-1,q)*(ef/100)),Nu) return round(num) xx = list(map(fun,x)) print("percent_gradually_5_10",xx) return xx def percent_gradually_5_13(): Nu = 1494.0 q = 1.3 ef = 5 x = np.linspace(1,gradually_5_13["length"],gradually_5_13["length"]) def fun(x): num = min(math.ceil(Nu * math.pow(x-1,q)*(ef/100)),Nu) return round(num) xx = list(map(fun,x)) print("percent_gradually_5_13",xx) return xx def percent_gradually_5_15(): Nu = 1494.0 q = 1.5 ef = 5 x = np.linspace(1,gradually_5_15["length"],gradually_5_15["length"]) def fun(x): num = min(math.ceil(Nu * math.pow(x-1,q)*(ef/100)),Nu) return round(num) xx = list(map(fun,x)) print("percent_gradually_5_15",xx) return xx def percent_gradually_11_15(): Nu = 1494.0 q = 1.5 ef = 1.1 x = np.linspace(1,gradually_11_15["length"],gradually_11_15["length"]) def fun(x): num = min(math.ceil(Nu * math.pow(x-1,q)*(ef/100)),Nu) return round(num) xx = list(map(fun,x)) print("percent_gradually_11_15",xx) return xx def percent_gradually_55_25(): Nu = 1494.0 q = 2.5 ef = 0.055 x = np.linspace(1,gradually_11_15["length"],gradually_11_15["length"]) def fun(x): num = min(math.ceil(Nu * math.pow(x-1,q)*(ef/100)),Nu) return round(num) xx = list(map(fun,x)) print("percent_gradually_55_25",xx) return xx def percent_gradually_223_05(): Nu = 1494.0 q = 0.5 ef = 22.3 x = np.linspace(1,gradually_223_05["length"],gradually_223_05["length"]) def fun(x): num = min(math.ceil(Nu * math.pow(x-1,q)*(ef/100)),Nu) return round(num*100/Nu,2) xx = list(map(fun,x)) print("percent_gradually_55_25",xx) return xx def percent_gradually_30_04(): Nu = 1494.0 q = 0.4 ef = 30 x = np.linspace(1,gradually_30_04["length"],gradually_30_04["length"]) def fun(x): num = min(math.ceil(Nu * math.pow(x-1,q)*(ef/100)),Nu) return round(num*100/Nu,2) # return round(num) xx = list(map(fun,x)) print("percent_gradually_30_04",xx) return xx def get_train_pre(train_name): Ln=702 select_pre = train_name["select_pre"] select_num = train_name["select_num"] def fun(pre,num): return round((math.floor(pre*num/100)+Ln)*100/(num+Ln),2) train_pre = list(map(fun,select_pre,select_num)) print(train_name["title"],train_pre) def get_train_pre_all(): train_list = [EFnorm_50_10] for train_name in train_list: get_train_pre(train_name) if __name__=="__main__": # print(get_len(gradually_5_15)) # percent_gradually_5_k15() # get_train_pre(gradually_223_05) # percent_gradually_30_04() get_train_pre_all() ```
{ "source": "joselynzhao/Python-data-structure-and-algorithm", "score": 4 }
#### File: algorithm/Divide/zuida.py ```python def get_max(max_list): if len(max_list)==2: return max(max_list[0],max_list[1]) else: return max_list[0] def get_max_list(init_list): n = len(init_list) if n<=2: return get_max(init_list) left_list,right_list = init_list[:n//2],init_list[n//2:] #" // "表示整数除法。 left_max,right_max = get_max_list(left_list),get_max_list(right_list) return get_max([left_max,right_max]) # 组合为list再传进去 test_list = [12,2,34,34,454,2,34,64,43] print(get_max_list(test_list)) ``` #### File: algorithm/enumerate/gui.py ```python def jiecheng(n): if n == 1: return 1 else: return n*jiecheng(n-1) print(jiecheng(10)) ``` #### File: algorithm/xianxingbiao/cha.py ```python def insert_list(L,i,element): L_length = len(L) if i< 1 or i>L_length: # 我感觉应该允许L_length加1 return False if i <= L_length: # 全部往后移 for k in range(i-1,L_length)[::-1]: # 这个地方看不懂 # 这个的意思是倒着 print(k) x = [L[k]] print(x) # L[k+1] = L[k] L[k+1:k+2] = [L[k]] L[i-1] = element print(L) return True L = [1,2,3,4] insert_list(L,2,0) L[2:3] =[L[0]] print(L) ``` #### File: data_structure/list/yield.py ```python def foo(num): print("starting...") while num<10: num=num+1 yield num for n in foo(0): print(n) print(list(foo(0))) # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] ``` #### File: data_structure/tuple/lishi.py ```python from _collections import deque def search(lines, pattern,history = 5): previous_lines = deque(maxlen=history) for line in lines: if pattern in line: yield line, previous_lines #编写搜索某项记录的代码时,通常会用到含有yield关键字的生成器函数,它能够将处理搜索过程的代码和使用搜索结果的代码成功解耦开来。 previous_lines.append(line) # Example use on a file if __name__ =="__main__": with open('123.txt') as f: for line,prevlines in search(f,'python',5): for pline in prevlines: print(pline) print(line) print('-'*20) q = deque(maxlen=3) #创建一个固定长度的队列 q.append(1) q.append(2) q.append(3) print(q) q.append(4) print(q) ``` #### File: Python-data-structure-and-algorithm/leecode/20060801.py ```python def maxArea(height): '''暴力循环''' # max = 0 # # print(index) # for i in range(len(height)): # for j in range(i,len(height)): # area = min(height[i],height[j])*abs(i-j) # if area>max: # max = area # print(max) '''双指针''' i,j = 0,len(height)-1 max = 0 while(i!=j): # 计算当前面积 area = min(height[j],height[i])*(j-i) # j-i非负 if area>max: max = area if height[i]>=height[j]: j-=1 else: i+=1 print(max) maxArea([1,8,6,2,5,4,8,3,7]) ``` #### File: Python-data-structure-and-algorithm/leecode/55.py ```python def canJump( nums) : if len(nums)==1: return True flag = [1 if len(nums) - 1 - i <= nums[i] else 0 for i in range(len(nums) - 1)] # 先考虑递归终止条件 if sum(flag)==0: return False if flag[0]==1: return True # 进入子问题 is_out = 0 for i in range(len(flag)-1,0,-1): if is_out: break if flag[i]==1: is_out = 1 return canJump(nums[:i+1]) # return False # 别人的答案 class Solution: def canJump(self, nums) : max_i = 0 #初始化当前能到达最远的位置 for i, jump in enumerate(nums): #i为当前位置,jump是当前位置的跳数 if max_i>=i and i+jump>max_i: #如果当前位置能到达,并且当前位置+跳数>最远位置 max_i = i+jump #更新最远能到达位置 return max_i>=i new_nums = [2,3,1,1,4] c = canJump(new_nums) print(c) ``` #### File: Python-data-structure-and-algorithm/leecode/84.py ```python def get_neighbor(index): # index = [3,2,5,0,4,1] neighbor = [1]*len(index) for i,e in enumerate(index): pre = index[:i] cur = e while(cur+1 in pre): neighbor[i]+=1 cur+=1 cur = e while(cur-1 in pre): neighbor[i]+=1 cur-=1 return neighbor def largestRectangleArea(heights): #超出时间限制了。 if len(heights) == 0: return 0 import numpy as np heights = np.array(heights) index = np.argsort(-heights) neighbor = [1] * len(index) for i, e in enumerate(index): pre = index[:i] cur = e while (cur + 1 in pre): neighbor[i] += 1 cur += 1 cur = e while (cur - 1 in pre): neighbor[i] += 1 cur -= 1 max = heights[index[0]] # print(max) for i,e in enumerate(index): cur = heights[e]*neighbor[i] if cur>max: max = cur return max heights = [2,1,5,6,2,3] print(largestRectangleArea(heights)) # get_neighbor() ``` #### File: joselynzhao/Python-data-structure-and-algorithm/pachong3.py ```python import time from bs4 import BeautifulSoup # 处理抓到的页面 import sys import requests import re import importlib importlib.reload(sys) # 编码转换,python3默认utf-8,一般不用加 # ff = open('test.txt', 'w') headers = { 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Encoding': 'gzip, deflate, compress', 'Accept-Language': 'en-us;q=0.5,en;q=0.3', 'Cache-Control': 'max-age=0', 'Connection': 'keep-alive', 'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:22.0) Gecko/20100101 Firefox/22.0' } # 定义头文件 ff = open('result.txt','w') def getfromBaidu(): start = time.clock() global order order = 0 for k in range(1, 50): geturl(k) end = time.clock() print(end - start) def geturl(k): number = str((k - 1) * 10) path = 'https://www.baidu.com/s?wd=%E6%B6%82%E4%BA%9A%E5%BA%86&pn='+number+'&oq=%E6%B6%82%E4%BA%9A%E5%BA%86&ie=utf-8&usm=1&rsv_pq=cfb1f9ec00028b62&rsv_t=1bf8iGvhHo%2FmOTo4xluWlPdIN4Nnp1CaUvtAHCfY%2F2RIoqOECLttdDT5xqU&rsv_page=1' # path = 'https://www.baidu.com/s?wd=%E5%92%96%E5%95%A1&pn=' + number + '&oq=%E5%92%96%E5%95%A1&ie=utf-8&usm=1&rsv_pq=9ccd7f6500120ebb&rsv_t=d92fDeHr8TAXzN%2FuqzNW3xd3BcU3lunThKY2lkUUobFc3Ihjx46MPW4iNbc' # print(path) content = requests.get(path, headers=headers) # 使用BeautifulSoup解析html soup = BeautifulSoup(content.text, 'html.parser') tagh3 = soup.find_all('div', {'class', 'result c-container '}) # print(tagh3) for h3 in tagh3: try: global order order +=1 title = h3.find(name="h3", attrs={"class": re.compile("t")}).find('a').text.replace("\"", "") print(title) # print(n) ff.write('\n'+str(order)+'~ ') ff.write(title+' ~ ') except: title = ' ~ ' try: url = h3.find(name="a", attrs={"class": re.compile("c-showurl")}).get('href') print(url + '\n') ff.write(url+' ~ ') # print('\n') except: url = ' ~ ' try: abstract = h3.find(name="div", attrs={"class": re.compile("c-abstract")}).text.replace("\"", "") print(abstract) ff.write(abstract) except: abstract = '' # ff.write('\n') if __name__ == '__main__': getfromBaidu() ff.close() ``` #### File: joselynzhao/Python-data-structure-and-algorithm/pachong4.py ```python import urllib.request as ure import urllib.parse import string import urllib import re import random # 设置多个user_agents,防止百度限制IP user_agents = ['Mozilla/5.0 (Windows NT 6.1; WOW64; rv:23.0) Gecko/20130406 Firefox/23.0', \ 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:18.0) Gecko/20100101 Firefox/18.0', \ 'Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/533+ \ (KHTML, like Gecko) Element Browser 5.0', \ 'IBM WebExplorer /v0.94', 'Galaxy/1.0 [en] (Mac OS X 10.5.6; U; en)', \ 'Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; WOW64; Trident/6.0)', \ 'Opera/9.80 (Windows NT 6.0) Presto/2.12.388 Version/12.14', \ 'Mozilla/5.0 (iPad; CPU OS 6_0 like Mac OS X) AppleWebKit/536.26 (KHTML, like Gecko) \ Version/6.0 Mobile/10A5355d Safari/8536.25', \ 'Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) \ Chrome/28.0.1468.0 Safari/537.36', \ 'Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.0; Trident/5.0; TheWorld)'] def baidu_search(keyword, pn): p = {'wd': keyword} res = ure.urlopen(("https://www.baidu.com/s?" + urllib.parse.urlencode(p) + "&pn={0}&cl=3&rn=100").format(pn)) html = res.read() return html def getList(regex, text): arr = [] res = re.findall(regex, text) if res: for r in res: arr.append(r) return arr def getMatch(regex, text): res = re.findall(regex, text) if res: return res[0] return "" def clearTag(text): p = re.compile(u'<[^>]+>') retval = p.sub("", text) return retval def geturl(keyword): for page in range(10): pn = page * 100 + 1 html = baidu_search(keyword, pn) content = str(html) arrList = getList(u"<table.*?class=\"result\".*?>.*?<\/a>", content) for item in arrList: regex = u"<h3.*?class=\"t\".*?><a.*?href=\"(.*?)\".*?>(.*?)<\/a>" link = getMatch(regex, item) url = link[0] # 获取标题 # title = clearTag(link[1]).encode('utf8') try: domain = ure.Request(url) r = random.randint(0, 11) domain.add_header('User-agent', user_agents[r]) domain.add_header('connection', 'keep-alive') response = ure.urlopen(domain) uri = response.geturl() print(uri) except: continue if __name__ == '__main__': geturl('python') ``` #### File: joselynzhao/Python-data-structure-and-algorithm/pachong.py ```python import requests from lxml import etree # import BeautifulSoup # import sys # reload(sys) # sys.setdefaultencoding("utf-8") import importlib,sys importlib.reload(sys) import re def get_page(url): url_num = re.search('(?<=\/)[0-9]+(?=\.)',url) url_num = url_num.group() url_num_1 = int(url_num) + 1 url = url.replace(url_num,str(url_num_1)) return url def getfromBaidu(word): list=[] headers = { 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Encoding': 'gzip, deflate, compress', 'Accept-Language': 'en-us;q=0.5,en;q=0.3', 'Cache-Control': 'max-age=0', 'Connection': 'keep-alive', 'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:22.0) Gecko/20100101 Firefox/22.0' } baiduurl = 'http://www.baidu.com' url = 'http://www.baidu.com.cn/s?wd=' + word + '&cl=3' html = requests.get(url=url,headers=headers) path = etree.HTML(html.content) #用k来控制爬取的页码范围 for k in range(1, 20): print(url) # 取出内容 path = etree.HTML(requests.get(url, headers).content) print(path) flag = 10 if k == 1: flag = 10 for i in range(1, flag): # 获取标题 sentence = "" for j in path.xpath('//*[@id="%d"]/h3/a//text()'%((k-1)*10+i)): sentence+=j print(sentence) # 打印标题 # 获取真实URL try: url_href = path.xpath('//*[@id="%d"]/h3/a/@href'%((k-1)*10+i)) url_href = ''.join(url_href) baidu_url = requests.get(url=url_href, headers=headers, allow_redirects=False) real_url = baidu_url.headers['Location'] # 得到网页原始地址 print(real_url) # 打印URL except: print("error",sentence,url_href) # 获取描述 # res_abstract = path.xpath('//*[@id="%d"]/div[@class="c-abstract"]'%((k-1)*10+i)) # if res_abstract: # abstract = res_abstract[0].xpath('string(.)') # else: # res_abstract = path.xpath('//*[@id="%d"]/div/div[2]/div[@class="c-abstract"]' % ((k - 1) * 10 + i)) # if res_abstract: # abstract = res_abstract[0].xpath('string(.)') # print(abstract) # 打印描述 zj_info = path.xpath('//*[@id="page"]/h3/a[%d]/@href'%(flag)) print(len(zj_info)) # url = baiduurl+zj_info[0] if zj_info else None # url = get_page(url) return #主程序测试函数 if __name__ == '__main__': print(getfromBaidu('涂亚庆')) ```
{ "source": "joselynzhao/Pytorch_advance", "score": 2 }
#### File: Pytorch_advance/Define/04.py ```python ''' 特别是对于视觉,我们已经创建了一个叫做 totchvision 的包, 该包含有支持加载类似Imagenet,CIFAR10,MNIST 等公共数据集 的数据加载模块 torchvision.datasets 和支持加载图像数据数据转换模块 torch.utils.data.DataLoader。 ''' ''' 对于本教程,我们将使用CIFAR10数据集, 它包含十个类别:‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’。 CIFAR-10 中的图像尺寸为33232,也就是RGB的3层颜色通道,每层通道内的尺寸为32*32。 ''' ''' 训练一个图像分类器 我们将按次序的做如下几步: 1. 使用torchvision加载并且归一化CIFAR10的训练和测试数据集 2. 定义一个卷积神经网络 3. 定义一个损失函数 4. 在训练样本数据上训练网络 5. 在测试样本数据上测试网络 ''' '''加载并归一化 CIFAR10 使用 torchvision ,用它来加载 CIFAR10 数据非常简单。''' import torch import torchvision import torchvision.transforms as transforms '''torchvision 数据集的输出是范围在[0,1]之间的 PILImage,我们将他们转换成归一化范围为[-1,1]之间的张量 Tensors。''' transform = transforms.Compose( [transforms.ToTensor(),transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))] ) trainset = torchvision.datasets.CIFAR10(root='./data',train = True,download=True,transform=transform) # 数据集会自动下载. trainloader = torch.utils.data.DataLoader(trainset,batch_size = 4,shuffle = True,num_workers = 2) # 注意这个batch_size testset = torchvision.datasets.CIFAR10(root='./data',train = False, download=True,transform= transform) testloader = torch.utils.data.DataLoader(testset,batch_size = 4, shuffle = False, num_workers = 2) # shuffle 是什么含义呢 classes= ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') # 这是一个元组. # 让我们来展示其中的一些训练图片。 import matplotlib.pyplot as plt import numpy as np def imshow(img): img = img /2 +0.5 # unnormalize npimg = img.numpy() plt.imshow(np.transpose(npimg,(1,2,0))) #这些函数是什么意思都不清楚. plt.show() dataiter = iter(trainloader) #了解一下迭代器这个函数 images,labels = dataiter.next() # 我怎么知道这个迭代器返回的数据格式 # show image imshow(torchvision.utils.make_grid(images)) #make_grid函数??? print(''.join('%5s'% classes[labels[j]] for j in range(4))) #为什么是4呢? batch_size = 4 '''定义一个卷积神经网络 在这之前先 从神经网络章节 复制神经网络,并修改它为3通道的图片(在此之前它被定义为1通道)''' import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net,self).__init__() self.conv1 = nn.Conv2d(3,6,5) self.pool = nn.MaxPool2d(2,2) # 卷积核大小吗? self.conv2 = nn.Conv2d(6,16,5) # 最后一位是卷积核大小 self.fc1 = nn.Linear(16 * 5*5,120) self.fc2 = nn.Linear(120,84) self.fc3 = nn.Linear(84,10) def forward(self,x): # 前向计算的过程 x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1,16*5*5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() '''定义一个损失函数和优化器 让我们使用分类交叉熵Cross-Entropy 作损失函数,动量SGD做优化器。''' import torch.optim as optim criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(),lr = 0.001, momentum = 0.9) #决定了反向传播的过程 '''训练网络 这里事情开始变得有趣, 我们只需要在数据迭代器上循环传给网络和优化器 输入就可以。''' # for epoch in range(2): # running_loss = 0.0 # for i, data in enumerate(trainloader,0): # inputs,labels = data # optimizer.zero_grad() # output = net(inputs) # loss = criterion(output,labels) # loss.backward() # optimizer.step() # # running_loss +=loss.item() # if i%2000 == 1999: # print('[%d, %5d] loss: %.3f' % # (epoch + 1, i + 1, running_loss / 2000)) # running_loss = 0.0 print('Finished Training') '''好的,第一步,让我们从测试集中显示一张图像来熟悉它。''' outputs = net(images) '''输出是预测与十个类的近似程度,与某一个类的近似程度越高, 网络就越认为图像是属于这一类别。所以让我们打印其中最相似类别类标:''' _, predicted = torch.max(outputs, 1) print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]for j in range(4))) # 结果看起开非常好,让我们看看网络在整个数据集上的表现。 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) '''这看起来比随机预测要好,随机预测的准确率为10%(随机预测出为10类中的哪一类)。看来网络学到了东西。''' # class_correct = list(0. for i in range(10)) # class_total = list(0. for i in range(10)) # with torch.no_grad(): # for data in testloader: # images,labels = data # outputs = net(images) # _,predicted = torch.max(outputs,1) # c = (predicted == labels).squeeze() # for i in range(4): # label = labels[i] # class_correct[label] +=c[i].item() # class_correct[label] +=1 # # for i in range(10): # print('Accuracy of %5s : %2d %%' % ( # classes[i], 100 * class_correct[i] / class_total[i])) '''所以接下来呢? 我们怎么在GPU上跑这些神经网络? 在GPU上训练 就像你怎么把一个张量转移到GPU上一样,你要将神经网络转到GPU上。 如果CUDA可以用,让我们首先定义下我们的设备为第一个可见的cuda设备。''' device = torch.device('cuda:0' if torch.cuda.is_available() else "cpu") print(device) '''接着这些方法会递归地遍历所有模块,并将它们的参数和缓冲器转换为CUDA张量。''' net.to(device) '''记住你也必须在每一个步骤向GPU发送输入和目标:''' inputs, labels = inputs.to(device), labels.to(device) ``` #### File: Pytorch_advance/Define/07.py ```python '''下面我们使用PyTorch的Tensors和autograd来实现我们的两层的神经网络;我们不再需要手动执行网络的反向传播:''' import torch # dtype = torch.float # device = torch.device('cpu') # # device = torch.device("cuda") # # N是批量大小; D_in是输入维度; # # H是隐藏的维度; D_out是输出维度。 # N, D_in, H, D_out = 64, 1000, 100, 10 # # # 创建随机Tensors以保持输入和输出。 # # 设置requires_grad = False表示我们不需要计算渐变 # # 在向后传球期间对于这些Tensors。 # x = torch.randn(N, D_in, device=device, dtype=dtype) # y = torch.randn(N, D_out, device=device, dtype=dtype) # # # 为权重创建随机Tensors。 # # 设置requires_grad = True表示我们想要计算渐变 # # 在向后传球期间尊重这些张贴。 # w1 = torch.randn(D_in, H, device=device, dtype=dtype, requires_grad=True) # w2 = torch.randn(H, D_out, device=device, dtype=dtype, requires_grad=True) # # learning_rate = 1e-6 # for t in range(500): # # 前向传播:使用tensors上的操作计算预测值y; # # 由于w1和w2有requires_grad=True,涉及这些张量的操作将让PyTorch构建计算图, # # 从而允许自动计算梯度。由于我们不再手工实现反向传播,所以不需要保留中间值的引用。 # y_pred = x.mm(w1).clamp(min=0).mm(w2) # # # 使用Tensors上的操作计算和打印丢失。 # # loss是一个形状为()的张量 # # loss.item() 得到这个张量对应的python数值 # loss = (y_pred - y).pow(2).sum() # print(t, loss.item()) # # # 使用autograd计算反向传播。这个调用将计算loss对所有requires_grad=True的tensor的梯度。 # # 这次调用后,w1.grad和w2.grad将分别是loss对w1和w2的梯度张量。 # loss.backward() # with torch.no_grad(): # w1 -= learning_rate * w1.grad # w2 -= learning_rate * w2.grad # # # 反向传播后手动将梯度设置为零 # w1.grad.zero_() # w2.grad.zero_() # 这个例子中,我们自定义一个自动求导函数来展示ReLU的非线性。并用它实现我们的两层网络: class MyReLU(torch.autograd.Function): """ 我们可以通过建立torch.autograd的子类来实现我们自定义的autograd函数, 并完成张量的正向和反向传播。 """ @staticmethod def forward(ctx, x): """ 在正向传播中,我们接收到一个上下文对象和一个包含输入的张量; 我们必须返回一个包含输出的张量, 并且我们可以使用上下文对象来缓存对象,以便在反向传播中使用。 """ ctx.save_for_backward(x) return x.clamp(min=0) @staticmethod def backward(ctx, grad_output): """ 在反向传播中,我们接收到上下文对象和一个张量, 其包含了相对于正向传播过程中产生的输出的损失的梯度。 我们可以从上下文对象中检索缓存的数据, 并且必须计算并返回与正向传播的输入相关的损失的梯度。 """ x, = ctx.saved_tensors grad_x = grad_output.clone() grad_x[x < 0] = 0 return grad_x device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # N是批大小; D_in 是输入维度; # H 是隐藏层维度; D_out 是输出维度 N, D_in, H, D_out = 64, 1000, 100, 10 # 产生输入和输出的随机张量 x = torch.randn(N, D_in, device=device) y = torch.randn(N, D_out, device=device) # 产生随机权重的张量 w1 = torch.randn(D_in, H, device=device, requires_grad=True) w2 = torch.randn(H, D_out, device=device, requires_grad=True) learning_rate = 1e-6 for t in range(500): # 正向传播:使用张量上的操作来计算输出值y; # 我们通过调用 MyReLU.apply 函数来使用自定义的ReLU y_pred = MyReLU.apply(x.mm(w1)).mm(w2) # 计算并输出loss loss = (y_pred - y).pow(2).sum() print(t, loss.item()) # 使用autograd计算反向传播过程。 loss.backward() with torch.no_grad(): # 用梯度下降更新权重 w1 -= learning_rate * w1.grad w2 -= learning_rate * w2.grad # 在反向传播之后手动清零梯度 w1.grad.zero_() w2.grad.zero_() # 为了与上面的PyTorch自动梯度实例做对比,我们使用TensorFlow来拟合一个简单的2层网络: import tensorflow as tf import numpy as np # 首先我们建立计算图(computational graph) # N是批大小;D是输入维度; # H是隐藏层维度;D_out是输出维度。 N, D_in, H, D_out = 64, 1000, 100, 10 # 为输入和目标数据创建placeholder; # 当执行计算图时,他们将会被真实的数据填充 x = tf.placeholder(tf.float32, shape=(None, D_in)) y = tf.placeholder(tf.float32, shape=(None, D_out)) # 为权重创建Variable并用随机数据初始化 # TensorFlow的Variable在执行计算图时不会改变 w1 = tf.Variable(tf.random_normal((D_in, H))) w2 = tf.Variable(tf.random_normal((H, D_out))) # 前向传播:使用TensorFlow的张量运算计算预测值y。 # 注意这段代码实际上不执行任何数值运算; # 它只是建立了我们稍后将执行的计算图。 h = tf.matmul(x, w1) h_relu = tf.maximum(h, tf.zeros(1)) y_pred = tf.matmul(h_relu, w2) # 使用TensorFlow的张量运算损失(loss) loss = tf.reduce_sum((y - y_pred) ** 2.0) # 计算loss对于w1和w2的导数 grad_w1, grad_w2 = tf.gradients(loss, [w1, w2]) # 使用梯度下降更新权重。为了实际更新权重,我们需要在执行计算图时计算new_w1和new_w2。 # 注意,在TensorFlow中,更新权重值的行为是计算图的一部分; # 但在PyTorch中,这发生在计算图形之外。 learning_rate = 1e-6 new_w1 = w1.assign(w1 - learning_rate * grad_w1) new_w2 = w2.assign(w2 - learning_rate * grad_w2) # 现在我们搭建好了计算图,所以我们开始一个TensorFlow的会话(session)来实际执行计算图。 with tf.Session() as sess: # 运行一次计算图来初始化Variable w1和w2 sess.run(tf.global_variables_initializer()) # 创建numpy数组来存储输入x和目标y的实际数据 x_value = np.random.randn(N, D_in) y_value = np.random.randn(N, D_out) for _ in range(500): # 多次运行计算图。每次执行时,我们都用feed_dict参数, # 将x_value绑定到x,将y_value绑定到y, # 每次执行图形时我们都要计算损失、new_w1和new_w2; # 这些张量的值以numpy数组的形式返回。 loss_value, _, _ = sess.run([loss, new_w1, new_w2], feed_dict={x: x_value, y: y_value}) print(loss_value) # 这个例子中,我们用nn包实现两层的网络: import torch # N是批大小;D是输入维度 # H是隐藏层维度;D_out是输出维度 N, D_in, H, D_out = 64, 1000, 100, 10 #创建输入和输出随机张量 x = torch.randn(N, D_in) y = torch.randn(N, D_out) # 使用nn包将我们的模型定义为一系列的层。 # nn.Sequential是包含其他模块的模块,并按顺序应用这些模块来产生其输出。 # 每个线性模块使用线性函数从输入计算输出,并保存其内部的权重和偏差张量。 # 在构造模型之后,我们使用.to()方法将其移动到所需的设备。 model = torch.nn.Sequential( torch.nn.Linear(D_in, H), torch.nn.ReLU(), torch.nn.Linear(H, D_out), ) # nn包还包含常用的损失函数的定义; # 在这种情况下,我们将使用平均平方误差(MSE)作为我们的损失函数。 # 设置reduction='sum',表示我们计算的是平方误差的“和”,而不是平均值; # 这是为了与前面我们手工计算损失的例子保持一致, # 但是在实践中,通过设置reduction='elementwise_mean'来使用均方误差作为损失更为常见 loss_fn = torch.nn.MSELoss(reduction='sum') learning_rate = 1e-6 for t in range(500): # 前向传播:通过向模型传入x计算预测的y。 # 模块对象重载了__call__运算符,所以可以像函数那样调用它们。 # 这么做相当于向模块传入了一个张量,然后它返回了一个输出张量。 y_pred = model(x) # 计算并打印损失。 # 传递包含y的预测值和真实值的张量,损失函数返回包含损失的张量。 loss = loss_fn(y_pred, y) print(t, loss.item()) # 反向传播之前清零梯度 model.zero_grad() # 反向传播:计算模型的损失对所有可学习参数的导数(梯度)。 # 在内部,每个模块的参数存储在requires_grad=True的张量中, # 因此这个调用将计算模型中所有可学习参数的梯度。 loss.backward() # 使用梯度下降更新权重。 # 每个参数都是张量,所以我们可以像我们以前那样可以得到它的数值和梯度 with torch.no_grad(): for param in model.parameters(): param -= learning_rate * param.grad # 但在实践中,我们经常使用AdaGrad、RMSProp、Adam等更复杂的优化器来训练神经网络。 import torch # N是批大小;D是输入维度 # H是隐藏层维度;D_out是输出维度 N, D_in, H, D_out = 64, 1000, 100, 10 # 产生随机输入和输出张量 x = torch.randn(N, D_in) y = torch.randn(N, D_out) # 使用nn包定义模型和损失函数 model = torch.nn.Sequential( torch.nn.Linear(D_in, H), torch.nn.ReLU(), torch.nn.Linear(H, D_out), ) loss_fn = torch.nn.MSELoss(reduction='sum') # 使用optim包定义优化器(Optimizer)。Optimizer将会为我们更新模型的权重。 # 这里我们使用Adam优化方法;optim包还包含了许多别的优化算法。 # Adam构造函数的第一个参数告诉优化器应该更新哪些张量。 learning_rate = 1e-4 optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) for t in range(500): y_pred = model(x) loss = loss_fn(y_pred,y) print(t,loss.item()) # 在反向传播之前,使用optimizer将它要更新的所有张量的梯度清零(这些张量是模型可学习的权重) optimizer.zero_grad() # 反向传播:根据模型的参数计算loss的梯度 loss.backward() # 调用Optimizer的step函数使它所有参数更新 optimizer.step() # 自定义nn模块 # 在这个例子中,我们用自定义Module的子类构建两层网络: import torch class TwoLayerNet(torch.nn.Module): def __init__(self,D_in,H,D_out): """ 在构造函数中,我们实例化了两个nn.Linear模块,并将它们作为成员变量。 """ super(TwoLayerNet,self).__init__() self.linear1 = torch.nn.Linear(D_in,H) self.linear2 = torch.nn.Linear(H,D_out) def forward(self,x): """ 在前向传播的函数中,我们接收一个输入的张量,也必须返回一个输出张量。 我们可以使用构造函数中定义的模块以及张量上的任意的(可微分的)操作。 """ h_relu = self.linear1(x).clamp(min=0) y_pred = self.linear2(h_relu) return y_pred # N是批大小; D_in 是输入维度; # H 是隐藏层维度; D_out 是输出维度 N, D_in, H, D_out = 64, 1000, 100, 10 # 产生输入和输出的随机张量 x = torch.randn(N, D_in) y = torch.randn(N, D_out) # 通过实例化上面定义的类来构建我们的模型。 model = TwoLayerNet(D_in, H, D_out) # 构造损失函数和优化器。 # SGD构造函数中对model.parameters()的调用, # 将包含模型的一部分,即两个nn.Linear模块的可学习参数。 loss_fn = torch.nn.MSELoss(reduction='sum') optimizer = torch.optim.SGD(model.parameters(), lr=1e-4) for t in range(500): y_pred = model(x) #自动会调用forward函数 # 计算并输出loss loss = loss_fn(y_pred, y) print(t, loss.item()) # 清零梯度,反向传播,更新权重 optimizer.zero_grad() loss.backward() optimizer.step() #我们实现了一个非常奇怪的模型:一个全连接的ReLU网络,在每一次前向传播时,它的隐藏层的层数为随机1到4之间的数,这样可以多次重用相同的权重来计算。 import random import torch class DynamicNet(torch.nn.Module): def __init__(self,D_in,H,D_out): """ 在构造函数中,我们构造了三个nn.Linear实例,它们将在前向传播时被使用。 """ super(DynamicNet, self).__init__() self.input_linear = torch.nn.Linear(D_in,H) self.middle_linear = torch.nn.Linear(H,H) self.output_linear = torch.nn.Linear(H,D_out) def forward(self,x): """ 对于模型的前向传播,我们随机选择0、1、2、3, 并重用了多次计算隐藏层的middle_linear模块。 由于每个前向传播构建一个动态计算图, 我们可以在定义模型的前向传播时使用常规Python控制流运算符,如循环或条件语句。 在这里,我们还看到,在定义计算图形时多次重用同一个模块是完全安全的。 这是Lua Torch的一大改进,因为Lua Torch中每个模块只能使用一次。 """ h_relu = self.input_linear(x).clamp(min= 0) for _ in range(random.randint(0,3)): h_relu = self.middle_linear(h_relu).clamp(min=0) y_pred = self.output_linear(h_relu) return y_pred '''搞不懂这种情况该如何更新参数 ''' # N是批大小;D是输入维度 # H是隐藏层维度;D_out是输出维度 N, D_in, H, D_out = 64, 1000, 100, 10 # 产生输入和输出随机张量 x = torch.randn(N, D_in) y = torch.randn(N, D_out) # 实例化上面定义的类来构造我们的模型 model = DynamicNet(D_in, H, D_out) # 构造我们的损失函数(loss function)和优化器(Optimizer)。 # 用平凡的随机梯度下降训练这个奇怪的模型是困难的,所以我们使用了momentum方法。 criterion = torch.nn.MSELoss(reduction='sum') optimizer = torch.optim.SGD(model.parameters(), lr=1e-4, momentum=0.9) for t in range(500): y_pred = model(x) # 计算并打印损失 loss = criterion(y_pred, y) #之前成为loss_fn print(t, loss.item()) # 清零梯度,反向传播,更新权重 optimizer.zero_grad() loss.backward() optimizer.step() ```
{ "source": "joselynzhao/wardrobe", "score": 3 }
#### File: wardrobe/draft/main.py ```python import os import os.path as osp import codecs item_id = 0 # global item_id class ITEM(): def __init__(self,attr_list,attr_value): # global item_id # self.item_id = item_id # item_id+=1 #(在这里变化id) self.attr_list = attr_list self.attr_value = attr_value def get_attr_value(self): return self.attr_value class GROUP(): def __init__(self,group_name,group_attr): self.group_name = group_name self.attributes = group_attr self.item_list = [] self.__load_data__() #回复item_list的数据 def __update_len_item(self): self.num_item = len(self.item_list) return self.num_item def __storage_items__(self): if not os.path.exists(osp.join('database', self.group_name)): os.mkdir(osp.join('database', self.group_name)) try: with open(osp.join('database', self.group_name,'group_data.txt'),'w') as file: for item in self.item_list: file.write('^'.join(item.attr_value)) file.write('\n') print("the update of items is finished") except: print("创建文件失败!") def __load_data__(self): try: with open(osp.join('database',self.group_name,'group_data.txt'),'r') as group_data_file: group_data =group_data_file.readlines() for line in group_data: attr_values = line.strip().split('^') #指定一个特殊的分割符号。 if len(self.attributes) != len(attr_values): print("the item and values of the attribute are not matched, creating item failed!") else: self.item_list.append(ITEM(self.attributes,attr_values)) self.__update_len_item() except: print("the database of {} is empty!".format(self.group_name)) def add_item(self): print("please raw_input the value one by one, if not value, enter ' '") attr_value = [] for attr in self.attributes: value = raw_input(str(attr)+':') attr_value.append(value) self.item_list.append(ITEM(self.attributes,attr_value)) self.__storage_items__() def show_info(self): print('-'*10+self.group_name+'-'*10) print("\t\t".join(self.attributes)) for item in self.item_list: print('\t\t'.join(item.attr_value)) class WARDROBE(): def __init__(self): self.group_list = [] self.__load_groups__() def __update_len_group__(self): self.num_group = len(self.group_list) return self.num_group def __storage_group_(self): with open(osp.join('database','group_info.txt'),'w') as file: for group in self.group_list: file.write(group.group_name+'^') file.write('^'.join(group.attributes)) file.write('\n') print("the update of group is finished") def __load_groups__(self): try: group_file = open(osp.join('database','group_info.txt'),'r') group_info = group_file.readlines() #第一项是 group_name ,后面是属性 for line in group_info: data = line.strip().split('^') group_name = data[0] group_attr = data[1:] self.group_list.append(GROUP(group_name,group_attr)) self.__update_len_group__() except: print("the database is empty!") def get_group_name_list(self): return [group.group_name for group in self.group_list] def __add_group__(self,group_name,group_attr): self.group_list.append(GROUP(group_name, group_attr)) self.__update_len_group__() self.__storage_group_() print('group {} is created successfully'.format(group_name)) def F_add_group(self): group_name = raw_input('please raw_input group name:') group_attr = raw_input('please raw_input group attribute with " " as division:').split() if group_name in self.get_group_name_list(): print('the group named {} is exsisted.'.format(group_name)) else: self.__add_group__(group_name,group_attr) order = raw_input('would you want add items for it? [y/n]') if order == 'y': self.F_add_item_for_group(group_name) def __add_item__(self,group_name): group = [group for group in self.group_list if group.group_name == group_name][0] group.add_item() def F_add_item_for_group(self,group_name=None): group_name = raw_input('please raw_input group name:') if group_name==None else group_name if group_name not in self.get_group_name_list(): print('the group named {} is not exsisted'.format(group_name)) while(True): self.__add_item__(group_name) order = raw_input('would you want add item continue? [y/n]:') if order == 'n': break def F_show_info(self): for group in self.group_list: group.show_info() if __name__=='__main__': wardrobe = WARDROBE() while(True): order = raw_input('raw_input 1 for show, 2 for add group, 3 for get item, 0 to exit:') if order == '1': wardrobe.F_show_info() elif order == '2': wardrobe.F_add_group() elif order == '3': wardrobe.F_add_item_for_group() elif order == '0': break else: print('raw_input error!') # 主要考虑增加和查看功能 ```
{ "source": "JoseM1101/web-empresa", "score": 2 }
#### File: webempresa/contact/views.py ```python from django.shortcuts import render, redirect from django.urls import reverse from django.core.mail import EmailMessage from .forms import ContactForm # Create your views here. def contact(request): contact_form = ContactForm() if request.method == 'POST': contact_form = ContactForm(data=request.POST) if contact_form.is_valid(): name = request.POST.get('name', '') email = request.POST.get('email', '') content = request.POST.get('content', '') email = EmailMessage( 'La cafettiera: nuevo mensaje', 'de {} <{}>\n\nEscribio:\n\n{}'.format(name,email,content), '<EMAIL>', ['<EMAIL>'], reply_to=[email] ) try: email.send() return redirect(reverse('contact')+'?ok') except: return redirect(reverse('contact')+'?fail') return render(request,'contact/contact.html', {'form':contact_form}) ```
{ "source": "josema62/Memoria", "score": 3 }
#### File: public/scripts/csv_main_dev_as_knowledge_json.py ```python import argparse import csv import json import sys ###################################################################### ## Parse input ###################################################################### def validate_content_by(heading, expected): if not expected: return # no validation comparison = expected.split(',') stripped = heading[0:len(comparison)] # allow extra fields if stripped != comparison: raise MergeError('Erroneous content. Expected = ' + expected + ', got = ' + ','.join(heading)) def parse_csv(filename, parse_action, expected_format=None): def read_heading_from(r): p = r.next() while p == []: p = r.next() return p with open(filename, 'rb') as csvfile: r = csv.reader(csvfile, delimiter=',') heading = read_heading_from(r) validate_content_by(heading, expected_format) return [parse_action(row) for row in r] class StructuralElement(object): def __init__(self, name, complexity): self.name = name self.complexity = complexity def parts(self): return self.name.split('/') def parse_structural_element(csv_row): name = csv_row[1][2:] complexity = csv_row[4] return StructuralElement(name, complexity) def parse_author_color(csv_row): author = csv_row[0] color = csv_row[1] return author,color class Ownership(object): def __init__(self, module, main_author, ownership): self.module = module self.main_author = main_author self.ownership = ownership def parse_ownership(csv_row): module = csv_row[0] main_author = csv_row[1] ownership = csv_row[4] return Ownership(module, main_author,ownership) ###################################################################### ## Organizational information to augment the structure ###################################################################### class Knowledge(object): DEFAULT_COLOR = "black" def __init__(self, authors_colors, ownerships): self._authors_colors = authors_colors self._ownership = dict([(o.module, o) for o in ownerships]) def color_of(self, author): if author in self._authors_colors: return self._authors_colors[author] return self.DEFAULT_COLOR def owner_of(self, module_name): if module_name in self._ownership: o = self._ownership[module_name] return o.main_author return None def degree_of_ownership_for(self, module_name): if module_name in self._ownership: o = self._ownership[module_name] return o.ownership return 0.0 ###################################################################### ## Building the structure of the system ###################################################################### def _matching_part_in(hierarchy, part): return next((x for x in hierarchy if x['name']==part), None) def _ensure_branch_exists(hierarchy, branch): existing = _matching_part_in(hierarchy, branch) if not existing: new_branch = {'name':branch, 'children':[]} hierarchy.append(new_branch) existing = new_branch return existing def _add_leaf(hierarchy, module, knowledge, name): owner = knowledge.owner_of(module.name) new_leaf = {'name':name, 'children':[], 'size':module.complexity, 'weight':knowledge.degree_of_ownership_for(module.name), 'author_color':knowledge.color_of(owner)} hierarchy.append(new_leaf) return hierarchy def _insert_parts_into(hierarchy, module, knowledge, parts): """ Recursively traverse the hierarchy and insert the individual parts of the module, one by one. The parts specify branches. If any branch is missing, it's created during the traversal. The final part specifies a module name (sans its path, of course). This is where we add size and weight to the leaf. """ if len(parts) == 1: return _add_leaf(hierarchy, module, knowledge, name=parts[0]) next_branch = parts[0] existing_branch = _ensure_branch_exists(hierarchy, next_branch) return _insert_parts_into(existing_branch['children'], module, knowledge, parts=parts[1:]) def generate_structure_from(modules, knowledge): hierarchy = [] for module in modules: parts = module.parts() _insert_parts_into(hierarchy, module, knowledge, parts) structure = {'name':'root', 'children':hierarchy} return structure ###################################################################### ## Output ###################################################################### def write_json(result): print json.dumps(result) ###################################################################### ## Main ###################################################################### def run(args): authors_colors = dict(parse_csv(args.authors, expected_format='author,color', parse_action=parse_author_color)) module_ownership = parse_csv(args.owners, expected_format='entity,main-dev,added,total-added,ownership', parse_action=parse_ownership) structure_input = parse_csv(args.structure, expected_format='language,filename,blank,comment,code', parse_action=parse_structural_element) knowledge = Knowledge(authors_colors, module_ownership) knowledge_structure = generate_structure_from(structure_input, knowledge) write_json(knowledge_structure) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Generates a JSON document suitable for knowledge diagrams.') parser.add_argument('--structure', required=True, help='A CSV file generated by cloc') parser.add_argument('--owners', required=True, help='A CSV file generated by a Code Maat main-dev analysis') parser.add_argument('--authors', required=True, help='A CSV file specifying the color to use for each author') args = parser.parse_args() run(args) ``` #### File: public/scripts/git_interactions.py ```python import subprocess import re def _as_rev_range(start, end): return start + '..' + end def _run_git_cmd(git_arguments): return subprocess.Popen(git_arguments, stdout=subprocess.PIPE).communicate()[0] def _read_revisions_matching(git_arguments): git_log = _run_git_cmd(git_arguments) revs = [] # match a line like: d804759 Documented tree map visualizations # ignore everything except the commit number: rev_expr = re.compile(r'([^\s]+)') for line in git_log.split("\n"): m = rev_expr.search(line) if m: revs.append(m.group(1)) return revs[::-1] def _git_cmd_for(rev_start, rev_end): rev_range = rev_start + '..' + rev_end return ['git', 'log', rev_range, '--oneline'] def read_revs(rev_start, rev_end): """ Returns a list of all commits in the given range. """ return _read_revisions_matching(git_arguments=_git_cmd_for(rev_start, rev_end)) def read_revs_for(file_name, rev_start, rev_end): return _read_revisions_matching(git_arguments=_git_cmd_for(rev_start, rev_end) + [file_name]) def read_diff_for(rev1, rev2): return _run_git_cmd(['git', 'diff', rev1, rev2]) def read_file_diff_for(file_name, rev1, rev2): return _run_git_cmd(['git', 'diff', rev1, rev2, file_name]) def read_version_matching(file_name, rev): return _run_git_cmd(['git', 'show', rev + ':' + file_name]) ``` #### File: public/scripts/proximity.py ```python import collections from operator import itemgetter import desc_stats ## Functions for calculating proximity/distance def _pdistance(positions): return sum([j-i for i,j in zip(positions[:-1], positions[1:])]) def calc_proximity(changes): return dict([(name, _pdistance(change)) for name, change in changes.iteritems()]) def record_change_to(file_name, change, acc): if not change: return existing = [] if file_name in acc: existing = acc[file_name] existing.append(change) acc[file_name]=existing def _as_stats(all_proximities): return [desc_stats.DescriptiveStats(name, proximities_for_one) for name, proximities_for_one in all_proximities.iteritems()] def _group_by(one_file, proximity, all_grouped): existing = [] if one_file in all_grouped: existing = all_grouped[one_file] existing.append(proximity) return existing def sum_proximity_stats(all_proximities): """ Received all proximities as a list of dictionaries. Each dictionary represents the proximities in the changed in one revision. Take this list and group all changes per item. """ all_grouped = {} for one_rev_proximity in all_proximities: for (one_file, proximity) in one_rev_proximity.iteritems(): all_grouped[one_file] = _group_by(one_file, proximity, all_grouped) return _as_stats(all_grouped) def sorted_on_proximity(proximity_stats): return sorted(proximity_stats, key=lambda p: p.total, reverse=True) ```
{ "source": "JosemaAlvarez/MoSQITo", "score": 3 }
#### File: functions/oct3filter/square_and_smooth.py ```python import numpy as np from scipy import signal def square_and_smooth(sig, center_freq, fs): """3rd order low-pass filtering (See ISO 532-1 section 6.3) Parameters ---------- sig : numpy.ndarray time signal sampled at 48 kHz [pa] coeff : numpy.ndarray filter coeeficients gain : float filter gain Outputs ------- signal_filt : numpy.ndarray filtered time signal """ # Frequency dependent time constant if center_freq <= 1000: tau = 2 / (3 * center_freq) else: tau = 2 / (3 * 1000) # Squaring sig = sig**2 # Three smoothing low-pass filters a1 = np.exp(-1 / (fs * tau)) b0 = 1 -a1 # zi = signal.lfilter_zi([b0], [1 -a1]) for i in range(3): sig = signal.lfilter([b0], [1, -a1], sig) return sig ``` #### File: functions/roughness_danielweber/a0_zwicker.py ```python import numpy as np def a0tab(bark_axis): """ Zwicker coefficient for the transmission between outer and inner ear See <NAME>, <NAME>: Psychoacoustics. Springer,Berlin, Heidelberg, 1990. The coefficients are linearly interpolated from the values given in figure 8.18 Parameter --------- bark_axis: numpy.array frequency axis in Bark Output ------ a0tab: numpy.array coefficients a0 along the given bark axis """ xp = [0, 10, 12, 13, 14, 15, 16, 16.5, 17, 18, 18.5, 19, 20, 21, 21.5, 22, 22.5, 23, 23.5, 24, 25, 26] yp = [0, 0, 1.15, 2.31, 3.85, 5.62, 6.92, 7.38, 6.92,4.23,2.31,0,-1.43, -2.59,-3.57,-5.19, -7.41,-11.3,-20, -40, -130, -999] a0tab = np.interp(bark_axis,xp,yp) return a0tab ``` #### File: functions/sharpness/comp_sharpness.py ```python import sys sys.path.append('../..') # Standard library import import numpy as np # Local imports from mosqito.functions.loudness_zwicker.comp_loudness import comp_loudness from mosqito.functions.sharpness.sharpness_aures import comp_sharpness_aures from mosqito.functions.sharpness.sharpness_din import comp_sharpness_din from mosqito.functions.sharpness.sharpness_bismarck import comp_sharpness_bismarck from mosqito.functions.sharpness.sharpness_fastl import comp_sharpness_fastl def comp_sharpness(is_stationary, signal, fs, method='din', skip=0): """ Acoustic sharpness calculation according to different methods: Aures, <NAME>, DIN 45692, Fastl Parameters: ---------- is_stationary: boolean True if the signal is stationary, false if it is time varying signal: numpy.array time history values fs: integer sampling frequency method: string 'din' by default,'aures', 'bismarck','fastl' skip : float number of second to be cut at the beginning of the analysis Outputs ------ S : float sharpness value """ if method!= 'din' and method!='aures' and method !='fastl' and method != 'bismarck' : raise ValueError("ERROR: method must be 'din', 'aures', 'bismarck', 'fastl'") loudness = comp_loudness(is_stationary, signal, fs) if method == 'din': S = comp_sharpness_din(loudness['values'], loudness['specific values'], is_stationary ) elif method == 'aures': S = comp_sharpness_aures(loudness['values'], loudness['specific values'], is_stationary ) elif method == 'bismarck': S = comp_sharpness_bismarck(loudness['values'], loudness['specific values'], is_stationary ) elif method == 'fastl': S = comp_sharpness_fastl(loudness['values'], loudness['specific values'], is_stationary ) if is_stationary == False: # Cut transient effect time = np.linspace(0, len(signal/fs, len(S))) cut_index = np.argmin(np.abs(time - skip)) S = S[cut_index:] output = { "name" : "sharpness", "method" : method, "values" : S, "skip" : skip } return output ```
{ "source": "josemac95/umucv", "score": 3 }
#### File: code/bot/bot3.py ```python from telegram.ext import Updater, CommandHandler, MessageHandler, Filters from io import BytesIO from PIL import Image import cv2 as cv import skimage.io as io updater = Updater('api token del bot') def sendImage(bot, cid, frame): frame = cv.cvtColor(frame, cv.COLOR_BGR2RGB) image = Image.fromarray(frame, mode = 'RGB') byte_io = BytesIO() image.save(byte_io, 'PNG') byte_io.seek(0) bot.sendPhoto(chat_id=cid, photo=byte_io) def hello(bot, update): update.message.reply_text('Hello {}'.format(update.message.from_user.first_name)) def argu(bot, update, args): print('arguments:') for arg in args: print(arg) def work(bot, update): file_id = update.message.photo[-1].file_id path = bot.get_file(file_id)['file_path'] img = io.imread(path) print(img.shape) update.message.reply_text('{}x{}'.format(img.shape[1],img.shape[0])) r = cv.cvtColor(cv.cvtColor(img, cv.COLOR_RGB2GRAY), cv.COLOR_GRAY2RGB) sendImage(bot, update.message.chat_id, r) updater.dispatcher.add_handler(CommandHandler('hello', hello)) updater.dispatcher.add_handler(CommandHandler('argu' , argu, pass_args=True)) updater.dispatcher.add_handler(MessageHandler(Filters.photo, work)) updater.start_polling() updater.idle() ``` #### File: umucv/code/pose3D.py ```python import pyqtgraph as pg import pyqtgraph.opengl as gl from pyqtgraph.Qt import QtCore, QtGui import cv2 as cv import numpy as np import numpy.linalg as la from umucv.stream import autoStream from umucv.htrans import htrans, Pose, kgen, rotation, desp, sepcam, jc, jr, col, row from umucv.contours import extractContours, redu def cameraTransf(M): K,R,C = sepcam(M) rt = jr(jc(R, -R @ col(C)), row(0,0,0,1)) return la.inv(rt) # esquema en 3d de una cámara def cameraOutline2(f, sc=0.3): x = 1 y = x z = f ps = [ x, y, z, -x, y, z, -x,-y, z, x,-y, z, x, y, z, 0, 0, 0, -x, y, z, -x,-y, z, 0, 0, 0, x, -y, z ] ps = np.array(ps).reshape(-1,3) return sc*ps def polygons(cs,n,prec=2): rs = [ redu(c,prec) for c in cs ] return [ r for r in rs if len(r) == n ] def rots(c): return [np.roll(c,k,0) for k in range(len(c))] def bestPose(K,view,model): poses = [ Pose(K, v.astype(float), model) for v in rots(view) ] sp = sorted(poses,key=lambda p: p.rms) return sp[0] marker = np.array( [[0, 0, 0], [0, 1, 0], [0.5, 1, 0], [0.5, 0.5, 0], [1, 0.5, 0], [1, 0, 0]]) stream = autoStream() HEIGHT, WIDTH = next(stream)[1].shape[:2] size = WIDTH,HEIGHT print(size) f = 1.7 K = kgen(size,f) # fov aprox 60 degree print(K) ## Create a GL View widget to display data app = QtGui.QApplication([]) win = gl.GLViewWidget() win.show() win.setWindowTitle('pose') win.setCameraPosition(distance=20) ## grid g = gl.GLGridItem() win.addItem(g) ax = gl.GLAxisItem(glOptions='opaque') ax.setSize(2,2,2) win.addItem(ax) ax.setTransform(QtGui.QMatrix4x4(*(rotation((1,0,0),0.0001,homog=True).flatten()))) ax.translate(0,0,-0.02) axc = gl.GLAxisItem(glOptions='opaque') axc.setSize(1,1,1) #axc.translate(0,0,0.02) win.addItem(axc) # imagen view = gl.GLImageItem(data=np.zeros([100,100,4])) win.addItem(view) # marker gmark = gl.GLLinePlotItem(pos=np.vstack([marker,marker[0]]),color=(255,0,0,1),antialias=True,width=3) gmark.setGLOptions('opaque') gmark.translate(0,0,0.01) win.addItem(gmark) # camera cam = gl.GLLinePlotItem(pos=np.array([[0,0,0]]),color=(255,255,255,1),antialias=True,width=2) cam.setGLOptions('opaque') win.addItem(cam) camsize = 0.5 drawCam = cameraOutline2(f,camsize) W2 = WIDTH/2 H2 = HEIGHT/2 A = desp((0,0,f*camsize)) @ np.diag([1,1,1,W2/camsize]) @ desp((-W2,-H2,0)) def img2tex(image): x = image.transpose(1,0,2) texture,_ = pg.makeARGB(x, useRGBA=True) return texture def update(): key, img = next(stream) g = cv.cvtColor(img,cv.COLOR_BGR2GRAY) cs = extractContours(g, minarea=5, reduprec=2) good = polygons(cs,6,3) poses = [] for c in good: p = bestPose(K,c,marker) if p.rms < 2: poses += [p.M] cv.polylines(img,[c],True,(255,255,0),3) if poses: p = poses[0] T = cameraTransf(p) cam.setData(pos= htrans(T, drawCam ) ) view.setData(data=img2tex(img)) m = T @ A view.setTransform(QtGui.QMatrix4x4(*(m.flatten()))) axc.setTransform(QtGui.QMatrix4x4(*(T.flatten()))) #print(p) cv.imshow('input', img) #key = cv.waitKey(1); timer = QtCore.QTimer() timer.timeout.connect(update) timer.start(10) QtGui.QApplication.instance().exec_() ```
{ "source": "josemagalan/UBU-TFG-IG-Study", "score": 2 }
#### File: ProyectoUBU/flaskr/views.py ```python from flask import Blueprint, render_template,request main = Blueprint('main', __name__) @main.route('/') def index(): return render_template('index.html') @main.route('/sign') def sign(): return render_template('sign.html') @main.route('/sign', methods=['POST']) def sign_post(): name = request.form.get('name') comment = request.form.get('comment') return 'Name:{name} Comment:{comment}' ```
{ "source": "JoseMan90/sentence-clustering", "score": 3 }
#### File: sentence-clustering/scripts/SentenceClusterizer.py ```python import nltk from sklearn.feature_extraction.text import TfidfVectorizer import string from sklearn.decomposition import TruncatedSVD from hdbscan.hdbscan_ import HDBSCAN import pandas as pd from sklearn.model_selection import ShuffleSplit from sklearn.model_selection import RandomizedSearchCV from scripts.DisableCV import DisabledCV def normalized_tokenizer(text): """ Returns the normalized (proprocessed and stemmed) tokens :param text: sentence :return: list of tokens """ punctuations = dict((ord(char), None) for char in string.punctuation) stemmer = nltk.stem.snowball.SnowballStemmer("english") tokens = nltk.word_tokenize(text.lower().translate(punctuations)) tokens = [stemmer.stem(item) for item in tokens] return tokens def get_word_vector_matrix(texts, dimensions=10): """ Calculates and returns the reduced words vector matrix :param texts: list of sentences :param dimensions: dimensions to which the word matrix will be reduced into :return: Work vector matrix """ print("Vectorizing sentences into TF-IDF vectors...") vectorizer = TfidfVectorizer(tokenizer=normalized_tokenizer) matrix = vectorizer.fit_transform(texts) print("Word Vector Matrix : " + str(matrix.shape)) decomposer = TruncatedSVD(n_components=dimensions, n_iter=50, random_state=20) reduced_matrix = decomposer.fit_transform(matrix) print(decomposer.explained_variance_ratio_) return reduced_matrix def hdb_segment(vector_matrix, min_cluster_size=5, min_samples=2, metric="euclidean", cluster_selection_method="eom"): """ Segments the given data using the HDB clustering algorithm :param vector_matrix: :param min_cluster_size: :param min_samples: :param metric: :param cluster_seletion_method: :return: cluster labels """ print("Running HDB clustering...") hdb_algo = HDBSCAN(min_cluster_size=min_cluster_size, min_samples=min_samples, metric=metric, cluster_selection_method=cluster_selection_method) hdb_algo.fit(vector_matrix) scores = pd.DataFrame({"label":hdb_algo.labels_, "probability":hdb_algo.probabilities_}) scores["confident"] = 0 scores.loc[scores["probability"]<0.05, "confident"] = 1 print(scores) print(scores["confident"].mean()) return hdb_algo.labels_ def hdb_scorer(hdb_algo, X): """ Segments the given data using the HDB clustering algorithm """ hdb_algo.fit(X) scores = pd.DataFrame({"label":hdb_algo.labels_, "probability":hdb_algo.probabilities_}) scores["confident"] = 0 scores.loc[scores["probability"]>=0.05, "confident"] = 1 scores.loc[scores["label"] == -1, "confident"] = 0 score = scores["confident"].sum()/scores["label"].count() print("Returning Score : " + str(score)) return score def hdb_segment_generalized(matrix, iterations=50): parameter_grid = { "min_cluster_size": range(5, 100), "min_samples": range(2, 10), "metric": ["euclidean"], "cluster_selection_method": ["eom", "leaf"], "allow_single_cluster": [True, False] } random_search = RandomizedSearchCV(estimator=HDBSCAN(), param_distributions=parameter_grid, scoring=hdb_scorer, cv=DisabledCV(), n_jobs=-2, random_state=45, n_iter=iterations, refit=True) random_search.fit(matrix) print(random_search.best_score_) hdb = random_search.best_estimator_ print(pd.Series(hdb.labels_).value_counts(normalize=True)) return hdb.labels_ ```
{ "source": "josemanimala/lint-review", "score": 2 }
#### File: lintreview/tools/checkstyle.py ```python from __future__ import absolute_import import logging import os import jprops import lintreview.docker as docker from lintreview.review import IssueComment from lintreview.tools import Tool, process_checkstyle log = logging.getLogger(__name__) class Checkstyle(Tool): """ Integrates with checkstyle. When checkstyle is run a properties file will be generated, that defines the following keys: - config_loc - samedir - project_loc - basedir All of these keys will resolve to your repository's root directory. """ name = 'checkstyle' def check_dependencies(self): """ See if checkstyle image exists """ return docker.image_exists('checkstyle') def match_file(self, filename): base = os.path.basename(filename) name, ext = os.path.splitext(base) return ext == '.java' def process_files(self, files): """ Run code checks with checkstyle. Only a single process is made for all files to save resources. """ log.debug('Processing %s files with %s', files, self.name) if 'config' not in self.options: msg = ("We could not run `checkstyle` you did not set " "the `config` option to a valid checkstyle XML file.") return self.problems.add(IssueComment(msg)) props_path = os.path.join(self.base_path, '_lintreview.properties') # Close the file before trying to read. # There have been problems with reading properties while # the file handle is still open. with open(props_path, 'w+') as f: self.setup_properties(f) properties_filename = os.path.basename(f.name) command = self.create_command(properties_filename, files) output = docker.run('checkstyle', command, self.base_path) # Cleanup the generated properties file. os.remove(props_path) # Only one line is generally a config error. Replay the error # to the user. lines = output.strip().split('\n') # Checkstyle >=8.28 outputs non-xml summary data at the beginning. if lines[0].startswith('Checkstyle ends with'): lines = lines[1:] if not lines[0].startswith('<'): msg = ("Running `checkstyle` failed with:\n" "```\n" "%s\n" "```\n" "Ensure your config file exists and is valid XML.") return self.problems.add(IssueComment(msg % (lines[0],))) # Remove the last line if it is not XML # Checkstyle may output text after the XML if there are errors. if not lines[-1].strip().startswith('<'): lines = lines[0:-1] output = ''.join(lines) process_checkstyle(self.problems, output, docker.strip_base) def setup_properties(self, properties_file): config_loc = os.path.dirname(docker.apply_base(self.options['config'])) project_loc = docker.apply_base('/') properties = { 'config_loc': config_loc, 'samedir': config_loc, 'project_loc': project_loc, 'basedir': project_loc, } jprops.store_properties(properties_file, properties) def create_command(self, properties_filename, files): command = [ 'checkstyle', '-f', 'xml', '-p', docker.apply_base(properties_filename), '-c', docker.apply_base(self.options['config']) ] command += files return command ``` #### File: lintreview/tools/remarklint.py ```python from __future__ import absolute_import import logging import os import re import lintreview.docker as docker from lintreview.tools import Tool log = logging.getLogger(__name__) # matches: ' 1:4 warning Incorrect list-item indent: add 1 space list-item-indent remark-lint' # matches: ' 18:71-19:1 error Missing new line after list item list-item-spacing remark-lint', warning_pattern = re.compile(r'^ +(?P<line>\d+):(\d+)(-(\d+):(\d+))? (?P<text>.+)$') filename_pattern = re.compile(r'^[\S]+.*$') class Remarklint(Tool): name = 'remarklint' def check_dependencies(self): """See if the node image exists """ return docker.image_exists('nodejs') def match_file(self, filename): base = os.path.basename(filename) name, ext = os.path.splitext(base) return ext in ('.md', '.markdown') def process_files(self, files): """ Run code checks with pep8. Only a single process is made for all files to save resources. """ log.debug('Processing %s files with %s', files, self.name) command = self.create_command() command += map(lambda f: docker.apply_base(f), files) output = docker.run('nodejs', command, source_dir=self.base_path) if not output: return False output = output.split("\n") filename = None # The output from remarklint is a unique format that looks like: # # >>> file.md # >>> 1:1-1:8 warning Some warning # # We inspect each line to determine if it is a file or warning. for line in output: if filename_pattern.match(line): # Remove the base path as remarklint is fed absolute paths. filename = docker.strip_base(line) else: match = warning_pattern.match(line) if match: line = match.group('line') text = match.group('text') self.problems.add(filename, line, text) def has_fixer(self): """ remarklint has a fixer that can be enabled through configuration. """ return bool(self.options.get('fixer', False)) def process_fixer(self, files): """Run remarklint, in fixer mode. """ command = self.create_fixer_command(files) docker.run('nodejs', command, source_dir=self.base_path) def create_command(self): # Use the wrapper script for remarklint. See docker/run-remark.sh # for more information. return ['run-remark', '--no-stdout', '--no-color'] def create_fixer_command(self, files): command = self.create_command() command += map(lambda f: docker.apply_base(f), files) command.append('-o') return command ``` #### File: fixtures/flake8/no_errors.py ```python def does_something(thing): """Do a thing and then return.""" return thing.buzz() ``` #### File: fixtures/pytype/has_errors.py ```python import re def get_username(email_address): match = re.match(r'([^@]+)@example\.com', email_address) return match.group(1) class Foo(object): __slots__ = (1, 2, 3) def error(self): x = {} y = x["y"] return y ``` #### File: lint-review/tests/test_config.py ```python from __future__ import absolute_import from unittest import TestCase from lintreview.config import build_review_config, get_lintrc_defaults from lintreview.config import load_config, ReviewConfig sample_ini = """ [files] ignore = test/CodeStandards/test/** vendor/** [tools] linters = phpcs, pep8, jshint [tool_jshint] config = ./jshint.json [tool_phpcs] standard = test/CodeStandards config = test/phpcs.xml """ defaults_ini = """ [tool_jshint] config = /etc/jshint.json """ simple_ini = """ [tools] linters = jshint """ review_ini = """ [tools] linters = jshint [review] summary_comment_threshold = 25 fail_on_comments = False apply_label_on_pass = lint ok """ fixer_ini = """ [tools] linters = phps [fixers] enable = True workflow = pull_request """ bad_ini = """ [herp] derp=derplily """ # Simulate the application config app_config = { 'SUMMARY_THRESHOLD': 100, 'OK_LABEL': 'no lint', 'PULLREQUEST_STATUS': True } class ReviewConfigTest(TestCase): @staticmethod def test_load_config(): res = load_config() assert res['GITHUB_URL'].endswith, 'Exists and is stringy' @staticmethod def test_get_lintrc_defaults(): config = load_config() res = get_lintrc_defaults(config) assert res is None def test_build_review_config(self): config = build_review_config(sample_ini, {}) assert isinstance(config, ReviewConfig) self.assertEqual(3, len(config.linters())) def test_linter_listing_bad(self): config = build_review_config(bad_ini) res = config.linters() self.assertEqual(res, []) def test_linter_listing(self): config = build_review_config(sample_ini) res = config.linters() expected = ['phpcs', 'pep8', 'jshint'] self.assertEqual(sorted(res), sorted(expected)) def test_linter_config_bad(self): config = build_review_config(bad_ini) res = config.linter_config('phpcs') self.assertEqual(res, {}) def test_linter_config(self): config = build_review_config(sample_ini) res = config.linter_config('phpcs') expected = { 'standard': 'test/CodeStandards', 'config': 'test/phpcs.xml' } self.assertEqual(res, expected) res = config.linter_config('not there') self.assertEqual(res, {}) def test_ignore_patterns(self): config = build_review_config(sample_ini) res = config.ignore_patterns() expected = ['test/CodeStandards/test/**', 'vendor/**'] self.assertEqual(res, expected) def test_ignore_patterns_missing(self): config = ReviewConfig() res = config.ignore_patterns() self.assertEqual(res, []) def test_load_ini__override(self): config = ReviewConfig() config.load_ini(defaults_ini) config.load_ini(sample_ini) res = config.linter_config('jshint') expected = { 'config': './jshint.json', } self.assertEqual(res, expected) def test_load_ini__multiple_merges_settings(self): config = ReviewConfig() config.load_ini(defaults_ini) config.load_ini(simple_ini) res = config.linter_config('jshint') expected = { 'config': '/etc/jshint.json', } self.assertEqual(res, expected) def test_fixers_enabled(self): config = build_review_config(sample_ini) self.assertEqual(False, config.fixers_enabled()) config = build_review_config(fixer_ini) self.assertEqual(True, config.fixers_enabled()) def test_fixer_workflow(self): config = build_review_config(sample_ini) self.assertEqual('commit', config.fixer_workflow()) config = build_review_config(fixer_ini) self.assertEqual('pull_request', config.fixer_workflow()) def test_getitem(self): config = build_review_config(simple_ini, app_config) self.assertEqual(app_config['SUMMARY_THRESHOLD'], config['SUMMARY_THRESHOLD']) def test_getitem__error(self): config = build_review_config(simple_ini, app_config) with self.assertRaises(KeyError): config['UNKNOWN'] def test_get(self): config = build_review_config(simple_ini, app_config) self.assertEqual(app_config['SUMMARY_THRESHOLD'], config.get('SUMMARY_THRESHOLD')) self.assertEqual(None, config.get('unknown')) self.assertEqual('default', config.get('unknown', 'default')) def test_summary_threshold__undefined(self): config = build_review_config(simple_ini) self.assertEqual(None, config.summary_threshold()) def test_summary_threshold__app_config(self): config = build_review_config(simple_ini, app_config) self.assertEqual(app_config['SUMMARY_THRESHOLD'], config.summary_threshold()) def test_summary_threshold__job_config(self): config = build_review_config(review_ini, app_config) self.assertEqual(25, config.summary_threshold()) def test_passed_review_label__undefined(self): config = build_review_config(simple_ini) self.assertEqual(None, config.passed_review_label()) def test_passed_review_label__app_config(self): config = build_review_config(simple_ini, app_config) self.assertEqual('no lint', config.passed_review_label()) def test_passed_review_label__job_config(self): config = build_review_config(review_ini, app_config) self.assertEqual('lint ok', config.passed_review_label()) def test_failed_review_status__undefined(self): config = build_review_config(simple_ini) self.assertEqual('failure', config.failed_review_status()) def test_failed_review_status__app_config(self): config = build_review_config(simple_ini, {'PULLREQUEST_STATUS': True}) self.assertEqual('failure', config.failed_review_status()) config = build_review_config(simple_ini, {'PULLREQUEST_STATUS': False}) self.assertEqual('success', config.failed_review_status()) def test_failed_review_status__job_config(self): config = build_review_config(review_ini, app_config) self.assertEqual('success', config.failed_review_status()) ini = "[review]\nfail_on_comments = true" config = build_review_config(ini, app_config) self.assertEqual('failure', config.failed_review_status()) ``` #### File: tests/tools/test_rubocop.py ```python from __future__ import absolute_import from unittest import TestCase from lintreview.review import Comment, Problems from lintreview.tools.rubocop import Rubocop from tests import ( root_dir, read_file, read_and_restore_file, requires_image ) class TestRubocop(TestCase): fixtures = [ 'tests/fixtures/rubocop/no_errors.rb', 'tests/fixtures/rubocop/has_errors.rb', ] def setUp(self): self.problems = Problems() self.tool = Rubocop(self.problems, {}, root_dir) def test_match_file(self): self.assertFalse(self.tool.match_file('test.py')) self.assertFalse(self.tool.match_file('dir/name/test.py')) self.assertTrue(self.tool.match_file('test.rb')) self.assertTrue(self.tool.match_file('dir/name/test.rb')) @requires_image('ruby2') def test_process_files__one_file_pass(self): self.tool.process_files([self.fixtures[0]]) self.assertEqual([], self.problems.all(self.fixtures[0])) @requires_image('ruby2') def test_process_files__one_file_fail(self): self.tool.process_files([self.fixtures[1]]) problems = self.problems.all(self.fixtures[1]) long_line = problems[1] assert long_line.filename == self.fixtures[1] assert long_line.line == 3 assert long_line.position == 3 assert 'C: Line is too long. [82/80]' in long_line.body @requires_image('ruby2') def test_process_files_two_files(self): self.tool.process_files(self.fixtures) linty_filename = self.fixtures[1] self.assertEqual(3, len(self.problems.all(linty_filename))) freshly_laundered_filename = self.fixtures[0] self.assertEqual([], self.problems.all(freshly_laundered_filename)) @requires_image('ruby2') def test_process_files_one_file_fail_display_cop_names(self): options = { 'display_cop_names': 'True', } self.tool = Rubocop(self.problems, options, root_dir) linty_filename = self.fixtures[1] self.tool.process_files([linty_filename]) problems = self.problems.all(linty_filename) long_line = problems[1] assert long_line.filename == linty_filename assert long_line.line == 3 assert long_line.position == 3 assert 'C: Layout/LineLength: Line is too long. [82/80]' in long_line.body @requires_image('ruby2') def test_process_files_one_file_fail_display_cop_names__bool(self): options = { 'display_cop_names': True, } self.tool = Rubocop(self.problems, options, root_dir) linty_filename = self.fixtures[1] self.tool.process_files([linty_filename]) problems = self.problems.all(linty_filename) long_line = problems[1] assert long_line.filename == linty_filename assert long_line.line == 3 assert long_line.position == 3 assert 'C: Layout/LineLength: Line is too long. [82/80]' in long_line.body @requires_image('ruby2') def test_process_files__invalid_rubocop_yml(self): self.tool.process_files(['tests/fixtures/rubocop/badconfig/has_errors.rb']) problems = self.problems.all() assert 1 == len(problems) assert 'Your rubocop configuration' in problems[0].body assert 'expected key while parsing' in problems[0].body def test_has_fixer__not_enabled(self): tool = Rubocop(self.problems, {}, root_dir) self.assertEqual(False, tool.has_fixer()) def test_has_fixer__enabled(self): tool = Rubocop(self.problems, {'fixer': True}, root_dir) self.assertEqual(True, tool.has_fixer()) @requires_image('ruby2') def test_execute_fixer(self): tool = Rubocop(self.problems, {'fixer': True}, root_dir) original = read_file(self.fixtures[1]) tool.execute_fixer(self.fixtures) updated = read_and_restore_file(self.fixtures[1], original) assert original != updated, 'File content should change.' self.assertEqual(0, len(self.problems.all()), 'No errors should be recorded') @requires_image('ruby2') def test_execute_fixer__fewer_problems_remain(self): tool = Rubocop(self.problems, {'fixer': True}, root_dir) # The fixture file can have all problems fixed by rubocop original = read_file(self.fixtures[1]) tool.execute_fixer(self.fixtures) tool.process_files(self.fixtures) read_and_restore_file(self.fixtures[1], original) self.assertEqual(1, len(self.problems.all()), 'Most errors should be fixed') self.assertIn('too long', self.problems.all()[0].body) ``` #### File: tests/tools/test_shellcheck.py ```python from __future__ import absolute_import from unittest import TestCase from lintreview.review import Problems, Comment from lintreview.tools.shellcheck import Shellcheck from tests import root_dir, requires_image class Testshellcheck(TestCase): fixtures = [ 'tests/fixtures/shellcheck/no_errors.sh', 'tests/fixtures/shellcheck/has_errors.sh', ] def setUp(self): self.problems = Problems() self.tool = Shellcheck(self.problems, {}, root_dir) def test_match_file(self): self.assertTrue(self.tool.match_file('test.bash')) self.assertTrue(self.tool.match_file('test.zsh')) self.assertTrue(self.tool.match_file('test.ksh')) self.assertTrue(self.tool.match_file('test.sh')) self.assertTrue(self.tool.match_file('dir/name/test.sh')) self.assertFalse(self.tool.match_file('dir/name/test.py')) self.assertFalse(self.tool.match_file('test.py')) self.assertFalse(self.tool.match_file('test.js')) def test_match_file__executable(self): res = self.tool.match_file('tests/fixtures/shellcheck/tool') self.assertTrue(res) @requires_image('shellcheck') def test_check_dependencies(self): self.assertTrue(self.tool.check_dependencies()) @requires_image('shellcheck') def test_process_files__one_file_pass(self): self.tool.process_files([self.fixtures[0]]) self.assertEqual([], self.problems.all(self.fixtures[0])) @requires_image('shellcheck') def test_process_files__one_file_fail(self): self.tool.process_files([self.fixtures[1]]) problems = self.problems.all(self.fixtures[1]) self.assertEqual(3, len(problems)) fname = self.fixtures[1] expected = Comment( fname, 3, 3, 'a is referenced but not assigned.\nDouble quote to prevent ' 'globbing and word splitting.') self.assertEqual(expected, problems[0]) expected = Comment( fname, 4, 4, 'BASE appears unused. Verify it or export it.\n' 'Use $(..) instead of legacy \`..\`.') self.assertEqual(expected, problems[1]) expected = Comment( fname, 6, 6, ("The order of the 2>&1 and the redirect matters. " "The 2>&1 has to be last.")) self.assertEqual(expected, problems[2]) @requires_image('shellcheck') def test_process_files_two_files(self): self.tool.process_files(self.fixtures) self.assertEqual([], self.problems.all(self.fixtures[0])) problems = self.problems.all(self.fixtures[1]) self.assertEqual(3, len(problems)) @requires_image('shellcheck') def test_process_files_with_config(self): config = { 'shell': 'bash', 'exclude': 'SC2154,SC2069' } tool = Shellcheck(self.problems, config, root_dir) tool.process_files([self.fixtures[1]]) problems = self.problems.all(self.fixtures[1]) self.assertEqual(2, len(problems), 'Changing standards changes error counts') ```
{ "source": "josemanuel179/practica3IA", "score": 3 }
#### File: src/dominio/transformacion_fichero.py ```python import shutil import os def copiar_file_str(file_name, string): try: f = open(file_name, "a") f.write(string) except: print("Error al copiar string en el fichero") def copiar_file(file_name): try: shutil.copyfile(file_name, "../test_data/test.arff") except: print("Error al copiar el fichero en './test_data/test.arff'") def borrar_file(file_name): try: os.remove(file_name) except: print("Error al eliminar fichero") ``` #### File: src/interfaz/interfaz.py ```python class Interfaz(): def __init__(self): raiz = Tk() raiz.geometry('300x200') raiz.configure(bg = 'white') raiz.title('Weka') ttk.Button(raiz, text='Salir', command=raiz.destroy).pack(side=BOTTOM) raiz.mainloop() ```
{ "source": "jose-manuel/npfc", "score": 2 }
#### File: lib/npfc/standardize.py ```python import logging from collections import Counter from copy import deepcopy from more_itertools import intersperse import pkg_resources # data handling import json import pandas as pd from pandas import DataFrame # chemoinformatics from rdkit.Chem import AllChem as Chem from rdkit.Chem import Mol from rdkit.Chem import rdinchi from rdkit.Chem import Descriptors from rdkit.Chem import rdmolops from rdkit.Chem.MolStandardize.metal import MetalDisconnector from rdkit.Chem.MolStandardize.charge import Uncharger from rdkit.Chem.MolStandardize.normalize import Normalizer from rdkit.Chem.MolStandardize.tautomer import TautomerCanonicalizer from rdkit.Chem.Scaffolds import MurckoScaffold # graph from networkx import Graph # docs from typing import Union from typing import List # dev library from npfc.draw import depict_mol from npfc import utils from npfc.filter import Filter # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ GLOBALS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # DEFAULT_ELEMENTS = {'H', 'B', 'C', 'N', 'O', 'F', 'P', 'S', 'Cl', 'Br', 'I'} # DEFAULT_PROTOCOL = {'tasks': ['filter_empty', # 'disconnect_metal', # 'clear_mixtures', # 'deglycosylate', # 'filter_num_heavy_atom', # 'filter_molecular_weight', # 'filter_num_ring', # 'filter_elements', # 'clear_isotopes', # 'normalize', # 'uncharge', # 'canonicalize', # 'clear_stereo', # ], # 'filter_num_heavy_atom': 'num_heavy_atom > 3', # 'filter_molecular_weight': 'molecular_weight <= 1000.0', # 'filter_num_ring': 'num_ring > 0', # 'filter_elements': f'elements in {", ".join(str(x) for x in DEFAULT_ELEMENTS)}', # 'filter_unwanted: c1ccccc1', # } # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CLASSES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # class FullUncharger(Uncharger): """A class derived from rdkit.Chem.MolStandardize.charge.Uncharger, so instead of attempting to create zwitterions all possible charges are removed from the molecule. For instance: >>> # Uncharger: >>> [O-][N+](C)(C)C[O-] -> [O-][N+](C)(C)CO >>> # FullUncharger: >>> [O-][N+](C)(C)C[O-] -> O[N+](C)(C)CO """ def __init__(self): """Create an instance of FullUncharger. .. todo:: This will remove charges from -2 to +2 only. This could be improved using more general smarts? """ # some smarts to use to find charges self.q_pos_1 = Chem.MolFromSmarts("[*;+]") self.q_pos_2 = Chem.MolFromSmarts("[*;+2]") self.q_neg_1 = Chem.MolFromSmarts("[*;-]") self.q_neg_2 = Chem.MolFromSmarts("[*;-2]") logging.debug("Initialized a new FullUncharger object") def full_uncharge(self, mol: Mol) -> Mol: """Neutralize molecule by adding/removing hydrogens. Does not attempt to preserve zwitterions. For now takes into account only charges of -2 and +2. :param mol: the input molecule :return: the uncharged molecule """ logging.debug("Uncharging a molecule") mol = deepcopy(mol) # Get atom ids for matches p = [x[0] for x in mol.GetSubstructMatches(self.q_pos_1)] # +1 p += [x[0] for x in mol.GetSubstructMatches(self.q_pos_2)] # +2 n = [x[0] for x in mol.GetSubstructMatches(self.q_neg_1)] # -1 n += [x[0] for x in mol.GetSubstructMatches(self.q_neg_2)] # -2 # remove positive charges for atom in [mol.GetAtomWithIdx(x) for x in p]: # Remove hydrogen and reduce formal change until neutral or no more hydrogens while atom.GetFormalCharge() > 0 and atom.GetNumExplicitHs() > 0: atom.SetNumExplicitHs(atom.GetNumExplicitHs() - 1) atom.SetFormalCharge(atom.GetFormalCharge() - 1) # remove negative charges for atom in [mol.GetAtomWithIdx(x) for x in n]: # Add hydrogen and increase formal change until neutral while atom.GetFormalCharge() < 0: atom.SetNumExplicitHs(atom.GetNumExplicitHs() + 1) atom.SetFormalCharge(atom.GetFormalCharge() + 1) # clean-up mol.ClearComputedProps() mol.UpdatePropertyCache() Chem.GetSymmSSSR(mol) # mol.ClearComputedProps() # not testes but might solved the -O-H2 issue # mol.UpdatePropertyCache() return mol class Standardizer(Filter): """A class for standardizing molecular structures. The standardization itself is based on a protocol that the user can modify. By default this protocol consists in 15 tasks applied to each molecule invidually: 1) **initiate_mol**: check if the molecule passed the RDKit conversion 2) **filter_empty**: filter molecules with empty structures 3) **disconnect_metal**: break bonds involving metallic atoms, resulting in potentially several molecules per structure. 4) **clear_mixtures**: retrieve only the "best" molecule from a mixture, which might not always be the largest one. 5) **deglycosylate**: remove all external sugars-like rings from the molecule and return the remaining non-linear entity. 6) **filter_num_heavy_atom**: filter molecules with a heavy atom count not in the accepted range. By default: num_heavy_atom > 3. 7) **filter_molecular_weight**: filter molecules with a molecular weight not in the accepted range. By default: molecular_weight <= 1000.0. 8) **filter_num_ring**: filter molecules with a number of rings (Smallest Sets of Smallest Rings or SSSR) not in the accepted range. By default: num_ring > 0. 9) **filter_elements**: filter molecules with elements not considered as medchem. By default: elements in H, B, C, N, O, F, P, S, Cl, Br, I. 10) **clear_isotopes**: set all atoms to their most common isotope (i.e. 14C becomes 12C which is C). 11) **normalize**: always write the same functional groups in the same manner. 12) **uncharge**: remove all charges on a molecule when it is possible. This is different from rdkit.Chem.MolStandardize.charge module as there is no attempt for reaching the zwitterion. 13) **canonicalize**: enumerate the canonical tautomer. 14) **clear_stereo**: remove all remaining stereochemistry flags on the molecule. 15) **reset_mol**: convert forth and back to SMILES format to discard potential residual outdated flags on atoms and bonds. Other steps are not part of this protocol but can be executed as well for convenience: - **depict**: find the "best" possible 2D depiction of the molecule among Input/rdDepictor/Avalon/CoordGen methods - **extract_murcko**: return the Murcko Scaffold from the molecule - **clear_side_chains**: remove any exocyclic atom that is not part of a linker - **reset_mol**: reset the molecule by converting to and then from smiles This results in new columns in the input DataFrame: - the 'mol' column: updated structure (only for the protocol) - the 'status' column: either passed, filtered or error. - the 'task' column: the latest task that was applied to the molecule. The standardizer works either on a molecule (method: 'run') or on a DataFrame containing molecules ('run_df'). In the latter case, the inchikey is computed and can be used for identifying duplicate entries. A timeout value is set by default and will be applied to each molecule individually to avoid the process being stuck on marginally difficult cases. This value can be set either during the Standardizer object initialization or by defining as an option in the protocol (priority is given to the latter if defined). """ def __init__(self, protocol: str = None, col_mol: str = 'mol', col_id: str = 'idm', elements_medchem: set = DEFAULT_ELEMENTS, timeout: int = 10, ): """Create a Standardizer object. :param protocol: Either a JSON file or a dictionary. The resultung dictinary needs a 'tasks' key that lists all tasks to be excuted as a list. :param col_mol: the column with the molecule for when running the run_df method :param col_id: the column with the id for when running the run_df method :param filter_duplicates: """ # filter super(Standardizer, self).__init__() # standardizer self._elements_medchem = elements_medchem self._col_id = col_id self._col_mol = col_mol if protocol is None: self._protocol = json.load(open(pkg_resources.resource_filename('npfc', 'data/std_mols.json'), 'r')) else: if isinstance(protocol, str): self._protocol = json.load(open(protocol, 'r')) else: self._protocol = protocol # workers self.metal_disconnector = MetalDisconnector() self.normalizer = Normalizer() self.full_uncharger = FullUncharger() self.canonicalizer = TautomerCanonicalizer() # display information on protocol if logging.getLogger().level == logging.DEBUG: logging.debug("Successfully instanciated a Standardizer object with protocol:") [logging.debug("Task #%s: %s", str(i+1).zfill(2), task) for i, task in enumerate(self._protocol['tasks'])] [logging.debug("Option %s %s", opt, value) for opt, value in self._protocol.items() if opt != 'tasks'] def __repr__(self): return f"Standardizer ({len(self._protocol['tasks'])} tasks)" def describe(self): # init pad = max(len(x) for x in self._protocol['tasks']) head = 'STANDARIDZER={\n' tail = '\n}' # define a list of tasks with options in parenthesis tasks = list(self._protocol['tasks']) for i, task in enumerate(tasks): if task in self._protocol.keys(): opt = self._protocol[task].replace(task.replace('filter_', ''), 'x') tasks[i] = f"{task} ({opt})" # concatenate all parts and intersperse the tasks with bottow arrows, with step index on the left return head + '\n'.join(intersperse('↓'.center(pad+10), [str(i+1).zfill(2).ljust(5) + x.center(pad) for i, x in enumerate(tasks)])) + tail @property def protocol(self): return self._protocol @protocol.setter def protocol(self, protocol: str): # input is a json file => convert it to a dict if isinstance(protocol, str): utils.check_arg_config_file(protocol) with open(protocol) as f: protocol = json.load(f) # input is a dict if isinstance(protocol, dict): if 'tasks' not in protocol.keys(): raise ValueError("invalid protocol format (no 'tasks' key found)") elif not isinstance(protocol['tasks'], list) and not isinstance(protocol['tasks'], tuple): raise ValueError("invalid protocol format ('tasks' key is neither list or tuple)") # update default protocol self._protocol.update(protocol) @property def timeout(self) -> str: return self._timeout @timeout.setter def timeout(self, value: int) -> None: if not isinstance(value, int): raise ValueError(f"Error! timeout should be a positive int (>1), not '{type(value)}'.") elif value < 1: raise ValueError(f"Error! timeout should be superior to 1 ({value})") self._col_id = value @property def col_id(self) -> str: return self._col_id @col_id.setter def col_id(self, value: str) -> None: if value is None: raise ValueError(f"Error! col_id cannot be '{value}'.") self._col_id = value @property def col_mol(self) -> str: return self._col_mol @col_mol.setter def col_mol(self, value: str) -> None: if value is None: raise ValueError(f"Error! col_mol cannot be '{value}'.") self._col_mol = value @property def elements_medchem(self) -> set: return self._elements_medchem @elements_medchem.setter def elements_medchem(self, value: set) -> None: if not isinstance(value, set): raise ValueError(f"Error! elements_medchem should be a set of strings, not '{value}' ({type(value)}).") elif not all([isinstance(v, str) for v in value]): raise ValueError(f"Error! elements_medchem should be a set of strings, not '{value}' ({type(value)}).") self._elements_medchem = value def clear_isotopes(self, mol: Mol) -> Mol: """Return a molecule without any isotopes. :param mol: the input molecule :return: the molecule without isotope """ mol = Mol(mol) for a in mol.GetAtoms(): a.SetIsotope(0) return mol def clear_mixtures(self, mol: Mol) -> Mol: """Return the "best" molecule found in a molecular structure. The "best" molecule is determined by the following criteria, sorted by priority: 1) contains only medchem elements 2) contains at least one ring 3) has the largest molecular weight of the mixture To summarize: .. math:: medchem > non linear > molecular weight So the largest molecule of a mixture might not always be selected, for instance a very long aliphatic chain would be dismissed to keep a benzene molecule instead. This is implemented in such a way because our fragments used for substructure search contain at least one ring. On the contrary, this long aliphatic chain would be kept in a mixture with a non-medchem molecule. :param mol: the input molecule(s) :return: the best molecule """ submols = Chem.GetMolFrags(mol, asMols=True, sanitizeFrags=True) # no need to look further if we have only one submol! if len(submols) < 2: return mol # otherwise, we have to compare the submols # init logging.debug("found %s submols", len(submols)) best_molecular_weight = -1.0 # so we are sure to update this on the first iteration best_submol = None best_is_medchem = False best_is_non_linear = False # begin for i, submol in enumerate(submols): # is_medchem is_medchem = self.filter_mol(submol, f'elements in {", ".join(str(x) for x in self.elements_medchem)}') is_non_linear = self.filter_mol(submol, "num_rings > 0") # molecular_weight molecular_weight = Descriptors.ExactMolWt(submol) logging.debug("submol #%s: IM=%s, INL=%s, MW=%s", i, is_medchem, is_non_linear, molecular_weight) # compare to the current best fragment update_best = False compute_diff = False # check which # 2 criteria more important than molecular weight: is_medchem > is_non_linear if not best_is_medchem and is_medchem: update_best = True elif best_is_medchem and not is_medchem: continue elif not best_is_medchem and not is_medchem: if not best_is_non_linear and is_non_linear: update_best = True elif best_is_non_linear and not is_non_linear: continue else: compute_diff = True else: # best_is_medchem and is_medchem if not best_is_non_linear and is_non_linear: update_best = True elif best_is_non_linear and not is_non_linear: continue else: compute_diff = True # check molecular_weights only in case of doubt if not update_best and compute_diff and molecular_weight > best_molecular_weight: update_best = True # update best with the properties of the current mol if update_best: best_is_medchem = is_medchem best_is_non_linear = is_non_linear best_submol = submol best_molecular_weight = molecular_weight return best_submol def clear_side_chains(self, mol: Mol, debug: bool = False) -> Mol: """Clear the side chains of a molecule. This method operates in 3 steps: 1. Remove quickly all atoms in side chains but the one attached to a ring, starting from the terminal atom. (would certainly fail in case of linear molecules) 2. Iterate over each remaining exocyclic atoms to remove only atoms when it does not break the ring aromaticity. Simple and double bonds can be broken and the atoms in rings which were attached to removed atoms are neutralized. 3. Remove eventual nitrogen radicals by Smiles editing. .. warning:: I found only nitrogen radicals in my dataset, this might be insufficient on a larger scale. .. warning:: I found a bug for this molecule 'O=C(O)C1OC(OCC2OC(O)C(O)C(O)C2O)C(O)C(O)C1O', where a methyl remains after processing. :param mol: the molecule to simplify :return: a simplified copy of the molecule """ # 1st peeling: fast, chunks of terminal chains smarts = Chem.MolFromSmarts('[!#1;R0;D1]~[!#1;R0;D{1-2}]') # terminal exocyclic atom linked to another exocyclic atom, neighbour atom is not allowed more than 2 degrees, so branches (i.e. CC(=O)C) are not cut out while mol.HasSubstructMatch(smarts): mol = Chem.DeleteSubstructs(mol, smarts) mol.ClearComputedProps() mol.UpdatePropertyCache() Chem.GetSymmSSSR(mol) # 2nd peeling: slow, atom per atom of the remaining termninal atoms rwmol = Chem.RWMol(mol) smarts = Chem.MolFromSmarts('[!#1;R0;D1]') # remaining terminal exocyclic atoms require cautious handling matches = sorted([item for sublist in rwmol.GetSubstructMatches(smarts) for item in sublist], reverse=True) # reverse order so that remaining atom indices from matches are still valid after removing an atom for m in matches: try: m = m[0] # should be only single atoms rwmol_tmp = deepcopy(rwmol) neighbor = rwmol_tmp.GetAtomWithIdx(m).GetNeighbors()[0] # terminal atom so only 1 neighbor rwmol_tmp.RemoveAtom(m) neighbor.SetFormalCharge(0) # neutralize in case of previously quaternary nitrogens neighbor.SetNumRadicalElectrons(0) # remove radicals,this does not work as expected Chem.SanitizeMol(rwmol_tmp) # will fail in case of break in aromaticity rwmol = rwmol_tmp # if it went ok except Chem.rdchem.KekulizeException: pass # we should not have tried to remove this atom, so just leave it be # I could not figure out how to remove radicals, so I just convert the mol to Smiles and edit the string return Chem.MolFromSmiles(Chem.MolToSmiles(rwmol).replace('[N]', 'N').replace('[n]', 'n')) def _is_sugar_like(self, ring_aidx: list, mol: Mol): """Indicate whether a ring (defined by its atom indices) in a molecule is sugar-like or not. Several conditions are to be met for a ring to be considered sugar-like: 1. size: either 5 or 6 atoms 2. elements: 1 oxygen and the rest carbons 3. hybridization: ring atoms need have single bonds only 4. connection points (next to the ring oxygen): at least 1 has an oxygen as neighbor 5. subsituents (not next tot the ring oxygen): at least 1/2 (for 5-6-membered rings) have an oxygen as neighbor :param ring_aidx: the molecule indices of the ring to investigate :param mol: the molecule that contain the ring :return: True if the ring complies to the 5 conditions above, False otherwise. """ # ring size: only 5-6 membered rings, rings are already fused when this function is called ring_size = len(ring_aidx) if ring_size != 5 and ring_size != 6: return False # access the actual atom objects quickier ring_atoms = [mol.GetAtomWithIdx(x) for x in ring_aidx] # ring atoms are in the same order as ring_aidx # atom composition elements = [x.GetAtomicNum() for x in ring_atoms] element_counter = Counter(elements) if not ((ring_size == 5 and element_counter[6] == 4 and element_counter[8] == 1) or (ring_size == 6 and element_counter[6] == 5 and element_counter[8] == 1)): return False # hybridization of carbon atoms (check if only single bonds attached to the ring) carbon_atoms = [x for x in ring_atoms if x.GetAtomicNum() == 6] if any([x for x in carbon_atoms if x.GetHybridization() != 4]): # to check if no H attached in case of the * position return False # to define connection points and substituents, we first need to identify the position of the ring oxygen oxygen_aidx = [x for x in ring_atoms if x not in carbon_atoms][0].GetIdx() # only 1 oxygen in ring # connection points: 1 need at least 1 oxygen as neighbor cps = [] cps_ok = False for carbon_atom in carbon_atoms: neighbors = carbon_atom.GetNeighbors() # if the ring oxygen is next to this atom, this atom is a connection point if any([n.GetIdx() == oxygen_aidx for n in neighbors]): cps.append(carbon_atom) # at least 1 of the connection points has to have an oxygen as side chain if any([n.GetAtomicNum() == 8 and n.GetIdx() != oxygen_aidx for n in neighbors]): cps_ok = True if not cps_ok: return False # substituents substituents = [x for x in carbon_atoms if x.GetIdx() not in [y.GetIdx() for y in cps]] count_oxygens = 0 for substituent in substituents: side_chain_atoms = [x for x in substituent.GetNeighbors() if x.GetIdx() not in ring_aidx] if len(side_chain_atoms) > 0: if not side_chain_atoms[0].GetAtomicNum() == 8: # do not check for the degree here because there are connections on substituents too! return False count_oxygens += 1 # at least 1 oxygen for 5-membered rigns and 2 for 6-membered rings if (ring_size == 6 and count_oxygens < 2) or (ring_size == 5 and count_oxygens < 1): return False return True def deglycosylate(self, mol: Mol, mode: str = 'run') -> Union[Mol, Graph]: """Function to deglycosylate molecules. Several rules are applied for removing Sugar-Like Rings (SLRs) from molecules: 1. Only external SLRs are removed, so a molecule with aglycan-SLR-aglycan is not modified 2. Only molecules with both aglycans and SLRs are modified (so only SLRs or none are left untouched) 3. Linear aglycans are considered to be part of linkers and are thus never returned as results 4. Glycosidic bonds are defined as either O or CO and can be linked to larger linear linker. So from a SLR side, either nothing or only 1 C are allowed before the glycosidic bond oxygen 5. Linker atoms until the glycosidic bond oxygen atom are appended to the definition of the SLR, so that any extra methyl is also removed. .. image:: _images/std_deglyco_algo.svg :align: center :param mol: the input molecule :param mode: either 'run' for actually deglycosylating the molecule or 'graph' for returning a graph of rings instead (useful for presentations or debugging) :return: the deglycosylated molecule or a graph of rings """ if len(Chem.GetMolFrags(mol)) > 1: raise ValueError("Error! Deglycosylation is designed to work on single molecules, not mixtures!") if mode not in ('run', 'graph'): raise AttributeError(f"Error! Unauthorized value for parameter 'mode'! ('{mode}')") # avoid inplace modifications mol = Chem.Mol(mol) # define rings rings = mol.GetRingInfo().AtomRings() rings = utils.fuse_rings(rings) # try to deglycosylate only if the molecule has at least 2 rings: # - leave linear compounds out # - leave sugars in case they are the only ring on the molecule if len(rings) < 2: return mol # annotate sugar-like rings are_sugar_like = [self._is_sugar_like(x, mol) for x in rings] logging.debug('RINGS: %s', [(rings[i], are_sugar_like[i]) for i in range(len(rings))]) # remove sugars only when the molecule has some sugar rings and is not entirely composed of sugars if not any(are_sugar_like) or all(are_sugar_like): return mol ring_atoms = set([item for sublist in rings for item in sublist]) # init sugar graph G = Graph() # init linkers parts from left and right the glycosidic bond oxygen: one of the side is required to have either C or nothing authorized_linker_parts = [[], ['C']] # R1-OxxxxR2 or R1-COxxxxR2 with xxxx being any sequence of linear atoms (same for R2->R1) # define linker atoms as shortest path between 2 rings that do not include other rings for i in range(len(rings)): ring1 = rings[i] for j in range(i+1, len(rings)): ring2 = rings[j] logging.debug('NEW RING PAIR -- R1: %s; R2: %s', ring1, ring2) # shortest path between the two rings that do not include the current rings themselves shortest_path = [x for x in Chem.GetShortestPath(mol, ring1[0], ring2[0]) if x not in ring1 + ring2] # define the other ring atoms other_ring_atoms = ring_atoms.symmetric_difference(set(ring1 + ring2)) # shortest path for going from the left (ring1) to the right (ring2) shortest_path_elements = [mol.GetAtomWithIdx(x).GetSymbol() for x in shortest_path] # in case ring1 (left) or/and ring2 (right) is sugar-like, append the side chains left and right # to the oxygen to the corresponding ring atoms to avoid left-overs (the O remains is not removed) glycosidic_bond = False if 'O' in shortest_path_elements: # not expected to be common enough for a try/catch statement # from the left side aidx_oxygen_left = shortest_path_elements.index('O') # first O found in list logging.debug('R1 -> R2 -- pos of O: %s; R1 is sugar_like: %s; linker part from R1: %s', aidx_oxygen_left, are_sugar_like[i], shortest_path_elements[:aidx_oxygen_left]) if are_sugar_like[i] and shortest_path_elements[:aidx_oxygen_left] in authorized_linker_parts: glycosidic_bond = True ring1 += shortest_path[:aidx_oxygen_left] # from the right side shortest_path_elements.reverse() shortest_path.reverse() aidx_oxygen_right = shortest_path_elements.index('O') # first O found in list logging.debug('R2 -> R1 -- pos of O: %s; R2 is sugar_like: %s; linker part from R2: %s', aidx_oxygen_right, are_sugar_like[j], shortest_path_elements[:aidx_oxygen_right]) if are_sugar_like[j] and shortest_path_elements[:aidx_oxygen_right] in authorized_linker_parts: glycosidic_bond = True ring2 += shortest_path[:aidx_oxygen_right] logging.debug('R1 and R2 are linked through a glycosidic bond: %s', glycosidic_bond) # in case the 2 rings are directly connected, append a new edge to G if not set(shortest_path).intersection(other_ring_atoms): G.add_edge(i, j, atoms=''.join(shortest_path_elements), glycosidic_bond=glycosidic_bond) # annotate nodes with the ring atoms (+ relevent linker atoms) and if they are sugar-like G.nodes[i]['atoms'] = ring1 G.nodes[i]['sugar_like'] = are_sugar_like[i] G.nodes[j]['atoms'] = ring2 G.nodes[j]['sugar_like'] = are_sugar_like[j] # draw the graph if mode == 'graph': # colormap_nodes = [(0.7,0.7,0.7) if x['sugar_like'] else (1,0,0) for i, x in G.nodes(data=True)] # return draw.fc_graph(G, colormap_nodes=colormap_nodes) return G # iterative recording of terminal sugar rings (atoms) that are linked with a glycosidic bond ring_atoms_to_remove = [] nodes_to_remove = [node for node in G.nodes(data=True) if node[1]['sugar_like'] and G.degree(node[0]) == 1 and list(G.edges(node[0], data=True))[0][2]['glycosidic_bond']] while len(nodes_to_remove) > 0: # record atoms indices to remove from the molecule [ring_atoms_to_remove.append(n[1]['atoms']) for n in nodes_to_remove] # remove nodes from current layer for next iteration [G.remove_node(n[0]) for n in nodes_to_remove] nodes_to_remove = [node for node in G.nodes(data=True) if node[1]['sugar_like'] and G.degree(node[0]) == 1 and list(G.edges(node[0], data=True))[0][2]['glycosidic_bond']] logging.debug('Ring atoms to remove: %s', ring_atoms_to_remove) # edit the molecule if ring_atoms_to_remove: # flatten the atom indices of each ring to remove in reverse order so that atom indices do not change when removing atoms ring_atoms_to_remove = sorted([item for sublist in ring_atoms_to_remove for item in sublist], reverse=True) emol = Chem.EditableMol(mol) [emol.RemoveAtom(x) for x in ring_atoms_to_remove] mol = emol.GetMol() logging.debug('Obtained fragments: %s', Chem.MolToSmiles(mol)) # clean-up frags = Chem.GetMolFrags(mol, asMols=True) # avoid counting the number of rings in each fragment if only 1 fragment left anyway if len(frags) == 1: logging.debug('Only one fragment obtained, returning it') return frags[0] # the substituents of the deleted terminal sugar-like rings remain in the structure, # these are obligatory linear because they were not in the graph, # so we just have to retrieve the one fragment that is not linear logging.debug('Returning only the non-linear obtained fragment') return [x for x in frags if Descriptors.rdMolDescriptors.CalcNumRings(x) > 0][0] def _run(self, mol: Mol) -> tuple: """Helper function for run. Contains all tasks defined within the protocol. Since some operations are expansive and could last a very long time for complex molecules (normalize, canonicalize), a timeout value is set globally. The run function is the one that can catch the exception raised by timeouts. :param mol: the input molecule :return: a tuple containing the molecule, its status and the further task name it reached """ # initiate_mol if mol is None: return (mol, 'error', 'initiate_mol') # begin protocol mol = deepcopy(mol) # do not modify the molecule in place for task in self._protocol['tasks']: # filter_empty if task == 'filter_empty': try: if not mol.GetNumAtoms(): return ('', 'filtered', task) except ValueError: return ('', 'error', task) # disconnect_metal elif task == 'disconnect_metal': try: mol = self.metal_disconnector.disconnect(mol) except ValueError: return (mol, 'error', 'disconnect_metal') # clear_mixtures elif task == 'clear_mixtures': try: mol = self.clear_mixtures(mol) except ValueError: return (mol, 'error', task) # deglycosylate elif task == 'deglycosylate': try: mol = self.deglycosylate(mol) except ValueError: return (mol, 'error', task) # filters elif task.startswith('filter_'): # filter empty is tried before try: if not self.filter_mol(mol, self._protocol[task]): return (mol, 'filtered', task) except ValueError: return (mol, 'error', task) # sanitize elif task == 'sanitize': try: Chem.SanitizeMol(mol) except ValueError: return (mol, 'error', task) # clear_isotopes elif task == 'clear_isotopes': try: mol = self.clear_isotopes(mol) except ValueError: return (mol, 'error', task) # normalize elif task == 'normalize': try: mol = self.normalizer.normalize(mol) except ValueError: return (mol, 'error', task) # uncharge elif task == 'uncharge': try: mol = self.full_uncharger.full_uncharge(mol) except ValueError: return (mol, 'error', task) # canonicalize elif task == 'canonicalize': # canonicalize try: mol = self.canonicalizer.canonicalize(mol) except (ValueError, RuntimeError): return (mol, 'error', task) # clear_stereo elif task == 'clear_stereo': try: rdmolops.RemoveStereochemistry(mol) except ValueError: return (mol, 'error', task) # extract Murcko Scaffolds elif task == 'extract_murcko': try: mol = MurckoScaffold.GetScaffoldForMol(mol) except ValueError: return (mol, 'error', task) # clear side chains elif task == 'clear_side_chains': try: mol = self.clear_side_chains(mol) except ValueError: return (mol, 'error', task) elif task == 'depict': try: mol = depict_mol(mol) except ValueError: return (mol, 'error', task) elif task == 'reset_mol': try: mol = Chem.MolFromSmiles(Chem.MolToSmiles(mol)) except ValueError: return (mol, 'error', task) # something else? else: raise ValueError(f"Unknown task: {task}") # a molecule that passed all the protocole! return (mol, 'passed', 'standardize') def run(self, mol: Mol, timeout: int = 10) -> tuple: """Execute the standardization protocol on a molecule. Molecule that exceed the timeout value are filtered with a task='timeout'. As a final step of the protocol, InChiKeys ('inchikey') are computed for identifying molecules. :param mol: the input molecule :param timeout: the maximum number of seconds for processing a molecule :return: a tuple containing the molecule, its status and the further task name it reached """ with utils.timeout(timeout): return self._run(mol) # in case of timeout return (mol, 'filtered', 'timeout') def run_df(self, df: DataFrame, filter_unwanted: List[str] = []) -> tuple: """Apply the standardization protocol on a DataFrame, with the possibility of directly filtering duplicate entries as well. This can be very useful as the standardization process can expose duplicate entries due to salts removal, neutralization, canonical tautomer enumeration, and stereochemistry centers unlabelling If a reference file is specified, duplicate removals becomes possible accross chunks. :param df: the input DataFrame :param timeout: the maximum number of seconds for processing a molecule :param filter_unwanted: a list of molecules in SMILES format that should be filtered out at the end of the standardization :return: three DataFrames separated by status: - passed - filtered - error .. note:: As a side effect, the output DataFrames get indexed by idm. :param df: The DataFrame with molecules to standardize :param return: a tuple of 3 DataFrames: standardized, filtered and error. """ df = df.copy() # do not modify df in place # check filter_unwanted data (if any error, crash before running the protocol) if len(filter_unwanted) > 0: unwanted_molecules = [Chem.MolFromSmiles(x) for x in filter_unwanted] num_errors = 0 for i, m in enumerate(unwanted_molecules): if m is None: logging.error('Error in unwanted structure #%s! (%s)', i, filter_unwanted[i]) num_errors += 1 if num_errors > 0: raise ValueError('Some errors were found in the unwanted molecules, aborting standardization!') unwanted_inchikeys = [rdinchi.MolToInchiKey(x) for x in unwanted_molecules] logging.debug('Unwanted Structure List:\n\n%s\n', DataFrame({'smiles': filter_unwanted, 'inchikey': unwanted_inchikeys})) # run standardization protocol df.index = df[self.col_id] df.loc[:, self.col_mol], df.loc[:, 'status'], df.loc[:, 'task'] = zip(*df[self.col_mol].map(self.run)) # flag eventual None molecules at the end of the pipeline for filtering out df.loc[:, 'status'] = df.apply(lambda x: x['status'] if x['mol'] is not None else 'error', axis=1) df.loc[:, 'task'] = df.apply(lambda x: x['task'] if x['mol'] is not None else 'filter_empty_final', axis=1) df.loc[:, 'mol'] = df['mol'].map(lambda x: x if x is not None else '') # do not apply filter duplicates on molecules with errors or that were already filtered for x reasons df_error = df[df['status'] == 'error'] df_filtered = df[df['status'] == 'filtered'] df = df[df['status'].str.contains('passed')] # compute InChiKeys logging.debug('Computing InChI Keys for standardized structures') df.loc[:, 'inchikey'] = df.loc[:, self.col_mol].map(rdinchi.MolToInchiKey) # filter unwanted compounds using InChI Keys if len(filter_unwanted) > 0: logging.debug('Filtered out unwanted structures using InChI Keys') # identify unwanted compounds df_unwanted = df[df['inchikey'].isin(unwanted_inchikeys)] if len(df_unwanted) > 0: # remove these from passed compounds df = df[~df['idm'].isin(df_unwanted['idm'])] # annotate unwanted and add them to filtered compounds df.loc[:, 'task'] = 'standardize' df.loc[:, 'status'] = 'filter_unwanted' df_filtered = pd.concat([df_filtered, df_unwanted]) logging.debug('Number of structures filtered out by identity: %s', len(df_unwanted.index)) # tuple of dataframes return (df, df_filtered, df_error) ```
{ "source": "JoseManuelVargas/arandasoft-cpp-prueba-tecnica", "score": 3 }
#### File: arandasoft-cpp-prueba-tecnica/www/pruebas.py ```python import unittest import requests class Pruebas(unittest.TestCase): def setUp(self): self.url = "http://localhost:5000/arbolbinario" def test_error_creacion(self): datos = {"nombre": "Arbol1 Py", "erroneo": [5, 3, 8, 4, 12, 3]} respuesta = requests.post(self.url + "/crear", json=datos) self.assertEqual(respuesta.status_code, 400) r_json = respuesta.json() self.assertTrue("error" in r_json) self.assertTrue("mensaje" in r_json) datos = {"nombre": "Arbol1", "valores": [5, 3, 8, 4, 12, 3]} respuesta = requests.post(self.url + "/crearfalso", json=datos) self.assertEqual(respuesta.status_code, 404) def test_creacion_arbol(self): datos = {"nombre": "Arbol1 Py", "valores": [5, 3, 8, 4, 12, 3]} respuesta = requests.post(self.url + "/crear", json=datos) self.assertEqual(respuesta.status_code, 200) r_json = respuesta.json() self.assertTrue("error" not in r_json) self.assertTrue("nombre" in r_json) self.assertEqual(r_json["nombre"], datos["nombre"]) self.assertTrue("id" in r_json) self.assertGreater(r_json["id"], 0) def test_ancestro(self): datos = {"nombre": "Arbol2 Py", "valores": [5, 3, 8, 4, 12, 3]} respuesta = requests.post(self.url + "/crear", json=datos) self.assertEqual(respuesta.status_code, 200) r_json = respuesta.json() self.assertTrue("error" not in r_json) self.assertTrue("nombre" in r_json) self.assertEqual(r_json["nombre"], datos["nombre"]) self.assertTrue("id" in r_json) self.assertGreater(r_json["id"], 0) id_arbol = r_json["id"] datos = {"id": id_arbol, "nodo1": 3, "nodo2": 5} respuesta = requests.post(self.url + "/ancestrocomun", json=datos) self.assertEqual(respuesta.status_code, 200) r_json = respuesta.json() self.assertTrue("error" not in r_json) self.assertTrue("ancestro" in r_json) self.assertGreater(r_json["ancestro"], 0) if __name__ == "__main__": unittest.main() ```
{ "source": "JoseManuelVasquez/Leaf", "score": 3 }
#### File: backend/services/receipt.py ```python from abc import ABC, abstractmethod class Strategy(ABC): @abstractmethod def get_blocks(self, lines): pass class DefaultStrategy(Strategy): def get_blocks(self, lines): blocks = [] row = 0 column = 0 begin_row = 0 while len(lines) - 2 > row: # Check end_col col_pos = len(lines[row]) column = col_pos if column < col_pos else column # If the length of repeated characters is not greater than 1 + '-' or 1 # or there's a line space, creates a new block # I have considered repeated characters and spaces as a separator as it # doesn't contain useful data condition = lines[row + 1] == '' or len("".join(set(lines[row + 1])).strip()) <= 2 while condition and len(lines) - 2 > row: row += 1 # START Check end_col col_pos = len(lines[row]) column = col_pos if column < col_pos else column # END Check end_col condition = lines[row + 1] == '' or len("".join(set(lines[row + 1])).strip()) <= 2 if not condition: # The indexes start from 0 blocks.append({"begin_row": begin_row, "begin_col": 0, "end_row": row, "end_col": column - 1}) begin_row = row + 1 column = 0 row += 1 # Check end_col col_pos = len(lines[row]) column = col_pos if column < col_pos else column blocks.append({"begin_row": begin_row, "begin_col": 0, "end_row": row, "end_col": column - 1}) return blocks # Change the name of the class if needed class SomeStrategy(Strategy): def get_blocks(self, data): return data class ReceiptService(): def __init__(self): self._strategy = DefaultStrategy() def set_strategy(self, strategy: Strategy): self._strategy = strategy def get_blocks(self, lines): return self._strategy.get_blocks(lines) ```
{ "source": "josemarcaetano/whatsapp-attention-cascades", "score": 2 }
#### File: whatsapp-attention-cascades/attention_cascades/attention_cascades.py ```python import sys import os from datetime import datetime import json from operator import itemgetter import networkx as nx import operator from collections import OrderedDict import re, math from collections import Counter import itertools class AttentionCascades: def __init__(self): pass def getDateFormatted(self, string_datetime): a_datetime = None string_datetime = string_datetime.replace("\"","") string_datetime = string_datetime.replace("'", "") try: a_datetime = datetime.strptime(string_datetime, '%Y-%m-%d %H:%M:%S') except Exception as e: try: a_datetime = datetime.strptime(string_datetime, '%Y-%m-%dT%H:%M:%SZ') except Exception as e: print("ERROR on formattring datetime:",a_datetime, flush=True) return(a_datetime) def buildDialoguesCollection(self, filename_messages_dialogues, filename_messages, filename_quote_messages, filename_messages_quotes_references): total_users_messages_quotes = 0 all_total_messages_quotes = 0 print("\t>>>>> Loading already inserted messages quotes ids", flush=True) messages_dialogues_inserted_set = set() if (os.path.exists(filename_messages_dialogues) is True): with open(filename_messages_dialogues, 'r', encoding='utf-8') as file_groups: for group in file_groups: group = json.loads(group) messages_dialogues_inserted_set.add(group["_id"]) print("\t>>>>> Building reference hash of messages", flush=True) original_messages_hash = {} line_number = 0 with open(filename_messages, 'r', encoding='utf-8') as file_messages: for message in file_messages: message = json.loads(message) line_number += 1 if (line_number % 100000 == 0): print("\t\tOriginal messages hashed so far", line_number, '\tDatetime: ', datetime.now(), flush=True) original_messages_hash[message['_id']] = message print("\t>>>>> Building reference hash of quote_messages", flush=True) quote_messages_hash = {} line_number = 0 with open(filename_quote_messages, 'r', encoding='utf-8') as file_quote_messages: for quote_message in file_quote_messages: quote_message = json.loads(quote_message) line_number += 1 if (line_number % 100000 == 0): print("\t\tQuote messages hashed so far", line_number, '\tDatetime: ', datetime.now(), flush=True) if (quote_message['DEVICE'] not in quote_messages_hash): quote_messages_hash[quote_message['DEVICE']] = {} if (quote_message['IMPORT_DATE'] not in quote_messages_hash[quote_message['DEVICE']]): quote_messages_hash[quote_message['DEVICE']][quote_message['IMPORT_DATE']] = {} if (quote_message['group']['_id'] not in quote_messages_hash[quote_message['DEVICE']][quote_message['IMPORT_DATE']]): quote_messages_hash[quote_message['DEVICE']][quote_message['IMPORT_DATE']][quote_message['group']['_id']] = {} if (quote_message['quoted_row_id'] not in quote_messages_hash[quote_message['DEVICE']][quote_message['IMPORT_DATE']][quote_message['group']['_id']]): quote_messages_hash[quote_message['DEVICE']][quote_message['IMPORT_DATE']][ quote_message['group']['_id']][quote_message['quoted_row_id']] = [] # Get complete message if(quote_message['_id'] in original_messages_hash): complete_quote_message = original_messages_hash[quote_message['_id']] complete_quote_message['quoted_row_id'] = quote_message['quoted_row_id'] quote_messages_hash[quote_message['DEVICE']][quote_message['IMPORT_DATE']][quote_message['group']['_id']][quote_message['quoted_row_id']].append(complete_quote_message) print("\t>>>>> Initiating insertion process", flush=True) try: with open(filename_messages_dialogues, 'a', encoding='utf-8') as file_messages_dialogues: with open(filename_messages_quotes_references, 'r', encoding='utf-8') as file_messages_quotes_references: for message_quoted_reference in file_messages_quotes_references: message_quoted_reference = json.loads(message_quoted_reference) all_total_messages_quotes += 1 if (all_total_messages_quotes % 100000 == 0): print("Dialogues processed so far", all_total_messages_quotes, '\tDatetime: ', datetime.now(), flush=True) if (message_quoted_reference['DEVICE'] in quote_messages_hash and message_quoted_reference['IMPORT_DATE'] in quote_messages_hash[message_quoted_reference['DEVICE']] and message_quoted_reference['group']['_id'] in quote_messages_hash[message_quoted_reference['DEVICE']][ message_quoted_reference['IMPORT_DATE']]): quote_info = quote_messages_hash[message_quoted_reference['DEVICE']][message_quoted_reference['IMPORT_DATE']][message_quoted_reference['group']['_id']] found_quote_message = False quote_message = None if (message_quoted_reference['quoted_row_id'] in quote_info): for quote_message in quote_info[message_quoted_reference['quoted_row_id']]: if (quote_message['quoted_row_id'] == message_quoted_reference['quoted_row_id']): found_quote_message = True break if (found_quote_message is True and quote_message is not None and message_quoted_reference['quoted_message_id'] in original_messages_hash): # Check if the quote message was published after the original message (SANITY TEST) publication_date_quoted_message = self.getDateFormatted(string_datetime=original_messages_hash[message_quoted_reference['quoted_message_id']]['publication_date']) publication_date_quote_message = self.getDateFormatted(string_datetime=quote_message['publication_date']) if(publication_date_quote_message > publication_date_quoted_message): message_dialogue_id = str(message_quoted_reference['quoted_message_id'] + "/" +quote_message['_id']) if(message_dialogue_id not in messages_dialogues_inserted_set): original_message = original_messages_hash[ message_quoted_reference['quoted_message_id']] messages_dialogue = {} messages_dialogue['DEVICE'] = message_quoted_reference['DEVICE'] messages_dialogue['IMPORT_DATE'] = message_quoted_reference['IMPORT_DATE'] messages_dialogue['_id'] = message_dialogue_id messages_dialogue['group'] = original_message['group'] messages_dialogue['original_message'] = original_message messages_dialogue['quote_message'] = quote_message json.dump(messages_dialogue, file_messages_dialogues) file_messages_dialogues.write('\n') messages_dialogues_inserted_set.add(messages_dialogue['_id']) total_users_messages_quotes += 1 except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] print('\nError: ', e, '\tDetails: ', exc_type, fname, exc_tb.tb_lineno, '\tDatetime: ', datetime.now(), flush=True) finally: print("Total messages:", all_total_messages_quotes, "\tTotal quote messages:", total_users_messages_quotes) def getPredecessors(self, graph, node, node_list): if (len(list(graph.predecessors(node))) == 0): return (node_list) else: for a_node in graph.predecessors(node): if(a_node is not None): node_list.append(a_node) node_list = self.getPredecessors(graph=graph, node=a_node, node_list=node_list) return(node_list) def getSuccessors(self, graph, node, node_list): if (len(list(graph.successors(node))) == 0): return (node_list) else: for a_node in graph.successors(node): if(a_node is not None): node_list.append(a_node) node_list = self.getSuccessors(graph=graph, node=a_node, node_list=node_list) return(node_list) def buildCascadesFiles(self, filename_messages_dialogues, path_graph_sources): total_cascades = 0 import networkx as nx # and the following code block is not needed # but we want to see which module is used and # if and why it fails try: import pygraphviz from networkx.drawing.nx_agraph import write_dot print("using package pygraphviz") except ImportError: try: import pydot from networkx.drawing.nx_pydot import write_dot print("using package pydot") except ImportError: print() print("Both pygraphviz and pydot were not found ") print("see https://networkx.github.io/documentation/latest/reference/drawing.html") print() raise try: messages_originals_publications = {} messages_originals_quotes = {} messages_originals_list_id = set() line_number = 0 # Create and populate auxiliary dictionaries print("\tCreating and populating auxiliary dictionaries", '\tDatetime: ', datetime.now(), flush=True) with open(filename_messages_dialogues, 'r', encoding='utf-8') as file_dialogues: for dialogue in file_dialogues: dialogue = json.loads(dialogue) line_number += 1 if (line_number % 100000 == 0): print("\t\tDialogues processed so far", line_number, '\tDatetime: ', datetime.now(), flush=True) if (dialogue['group']['_id'] not in messages_originals_publications): messages_originals_publications[dialogue['group']['_id']] = [] if(dialogue['original_message']['_id'] not in messages_originals_list_id): #document = {"_id":dialogue['original_message']['_id'], "publication_date":dialogue['original_message']['publication_date']} messages_originals_publications[dialogue['group']['_id']].append(dialogue['original_message']) messages_originals_list_id.add(dialogue['original_message']['_id']) if(dialogue['original_message']['_id'] not in messages_originals_quotes): messages_originals_quotes[dialogue['original_message']['_id']] = [] # document = {"_id": dialogue['quote_message']['_id'], # "publication_date": dialogue['quote_message']['publication_date']} messages_originals_quotes[dialogue['original_message']['_id']].append(dialogue['quote_message']) print("\tOrdering quote_message_lists", '\tDatetime: ', datetime.now(), flush=True) # Order quote_message_lists line_number = 0 messages_originals_quotes_copy = messages_originals_quotes for message_original_id, quote_messages_list in messages_originals_quotes_copy.items(): line_number += 1 if (line_number % 100000 == 0): print("\t\tQuote messages sorted so far", line_number, "\tTotal to process: ", len(messages_originals_quotes), '\tDatetime: ', datetime.now(), flush=True) if(len(quote_messages_list) > 1): result = sorted(quote_messages_list, key=itemgetter('publication_date'), reverse=True) messages_originals_quotes[message_original_id] = result # Get oldest original_messages of each group print("\tProcessing cascades", '\tDatetime: ', datetime.now(), flush=True) group_index = 0 for group_id, values in messages_originals_publications.items(): DG = nx.DiGraph() cascades_roots = {} group_index +=1 print("\t>>>>>>>>> Processing group [", group_index,"]\tID:", group_id, '\tDatetime: ', datetime.now(), flush=True) #print("Ordering a message_list of group of len", len(values), flush=True) messages_original_ordered = sorted(values, key=itemgetter('publication_date'), reverse=True) #print("Now processing ordered message_list", flush=True) # Process cascades of each group line_number = 0 for message_original in messages_original_ordered: cascades_roots[message_original['_id']] = True line_number += 1 if (line_number % 10000 == 0): print("\t\tMessages processed so far", line_number, "\tTotal to process: ", len(messages_original_ordered), '\tDatetime: ', datetime.now(), flush=True) DG.add_node(message_original['_id'], publication_date=message_original['publication_date'], type = message_original['type'], group_id = message_original['group']['_id'], group_category=message_original['group']['category'], user_id = message_original['user']['_id'] ) #print("Getting messages_quote_list", flush=True) messages_quote_list = messages_originals_quotes[message_original['_id']] other_line_number = 0 for message_quote in messages_quote_list: other_line_number += 1 if (other_line_number % 100 == 0): print("\t\t>>>>Messages quotes processed so far", other_line_number, "\tTotal to process: ", len(messages_quote_list), '\tDatetime: ', datetime.now(), flush=True) if(DG.has_node(message_quote['_id']) is False): DG.add_node(message_quote['_id'], publication_date=message_quote['publication_date'], type=message_quote['type'], group_id=message_quote['group']['_id'], group_category=message_quote['group']['category'], user_id=message_quote['user']['_id'] ) DG.add_edge(message_original['_id'],message_quote['_id']) if(message_quote['_id'] in cascades_roots): cascades_roots[message_quote['_id']] = False print("\t\t>>>>Writing DOT files\tDatetime:", datetime.now(),flush=True) index_line = 0 cascade_index = 1 for message_id, is_root in cascades_roots.items(): index_line += 1 if (index_line % 1000 == 0): print("\t\t>>>>Cascades processed so far", index_line, "\tTotal to process: ", len(cascades_roots), '\tDatetime: ', datetime.now(), flush=True) if(is_root is True and DG.has_node(message_id) is True): node_list = self.getSuccessors(graph=DG, node=message_id, node_list=[message_id]) #print(node_list) H = DG.subgraph(node_list) dot_filename = str(path_graph_sources+group_id+"_"+message_id+".dot") write_dot(H, dot_filename) total_cascades += 1 cascade_index +=1 print("\t>>>>>>>>> Group [",group_id,'] had', str(cascade_index),'cascades\tDatetime: ', datetime.now(), flush=True) except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] print('\nError: ', e, '\tDetails: ', exc_type, fname, exc_tb.tb_lineno, '\tDatetime: ', datetime.now(), flush=True) # finally: # print("Total messages:", all_total_messages_quotes, "\tTotal quote messages:", total_users_messages_quotes) # Function to get the maximum width of a binary tree def getMaxWidth(self, graph, root, maximum_depth): maxWidth = 0 h = maximum_depth width_by_depth_dict = {} # Get width of each level and compare the width with maximum width so far for i in range(0, h + 1): width = self.getWidth(graph, root, i) width_by_depth_dict[str(i)] = width if (width > maxWidth): maxWidth = width return maxWidth, width_by_depth_dict def getWidth(self, graph, root, level): if root is None: return 0 if level == 0: return 1 elif level >= 1: neighbors = graph.successors(root) local_width = 0 for neighbor in neighbors: local_width = self.getWidth(graph, neighbor, level - 1) + local_width return(local_width) def bfs(self,graph, start): queue_sizes, visited, queue = set(), set(), [start] while queue: vertex = queue.pop(0) if vertex not in visited: visited.add(vertex) queue.extend(list(set(list(graph[vertex])) - set(visited))) else: queue_sizes.add(len(queue)) return queue_sizes def buildCascadesAttributesFiles(self, filename_cascades_static_attributes, filename_cascades_depth_oriented_attributes, filename_cascades_unique_users_over_time, path_graph_sources, filename_fake_news_messages_manual_final,filename_messages_in_cascades_mapping, filename_messages_in_cascades_mapping_tsv,filename_text_messages_info): try: text_messages_info_dict = {} print("\t>>>> Building dictionary of text messages info\tDatetime: ", datetime.now(), flush=True) #{"_id":message['_id'], "total_urls":len(urls),"total_emojis":len(emojis), "total_words":len(words),"sentiment":sentiment} with open(filename_text_messages_info, 'r', encoding='utf-8') as file_input: for text_message_info in file_input: text_message_info = json.loads(text_message_info) text_messages_info_dict[text_message_info['_id']] = {"sentiment":text_message_info["sentiment"], "total_urls":text_message_info["total_urls"], "total_emojis": text_message_info["total_emojis"], "total_words": text_message_info["total_words"]} messages_with_fake_news = set() messages_with_fake_news_dict = {} print("\t>>>> Building dictionary of messages falsehood verdict\tDatetime: ", datetime.now(), flush=True) # "document_id" "fact_check_url" "cosine_similarity" "length_message" "length_fake_news_text" "my_verdict_has_verdict" "cosine_similarity_str" "has_falsehood_str" "cosine_similarity_interval_str" with open(filename_fake_news_messages_manual_final, 'r', encoding='utf-8') as file_input: header = file_input.readline() for info in file_input: info = info.replace("\n", "").split("\t") if(str(info[5].replace("\"","")) == "True"): messages_with_fake_news.add(info[0].replace("\"","")) messages_with_fake_news_dict[info[0]] = info[1].replace("\"","") print("\t>>>> Creating cascades attributes files\tDatetime: ", datetime.now(), flush=True) total_cascades = 0 with open(filename_cascades_static_attributes, 'w', encoding='utf-8') as file_cascades_static_attributes: file_cascades_static_attributes.write(str("cascade_id\tgroup_id\tgroup_category\troot_message\t" "total_messages\ttotal_users\thas_falsehood\tmaximum_depth\t" "unique_users\tstructural_virality\tbreadth\tfact_check_url\n")) with open(filename_cascades_depth_oriented_attributes, 'w', encoding='utf-8') as file_cascades_depth_oriented_attributes: file_cascades_depth_oriented_attributes.write(str( "cascade_id\tgroup_id\tgroup_category\troot_message\ttotal_messages\ttotal_users\thas_falsehood\t" "depth\ttime_passed\tbreadth\tunique_users\tfact_check_url\n")) with open(filename_cascades_unique_users_over_time, 'w', encoding='utf-8') as file_cascades_unique_users_over_time: file_cascades_unique_users_over_time.write(str( "cascade_id\tgroup_id\tgroup_category\troot_message\ttotal_messages\ttotal_users\t" "has_falsehood\tunique_users\ttime_passed\tfact_check_url\n")) with open(filename_messages_in_cascades_mapping_tsv, 'w', encoding='utf-8') as file_messages_in_cascades_mapping_tsv: file_messages_in_cascades_mapping_tsv.write(str( "cascade_id\tmessage_id\tuser_id\tgroup_id\tgroup_category\tmessage_type\troot_message\tmessage_depth\ttime_passed_since_root\t" "publication_date\tcascade_has_falsehood\tmessage_has_falsehood\turl_fact_checking_news\tsentiment\ttotal_words\ttotal_emojis\t" "total_urls\n")) with open(filename_messages_in_cascades_mapping, 'w', encoding='utf-8') as file_messages_in_cascades_mapping: for dirname, dirnames, filenames in os.walk(path_graph_sources): cascade_index = 0 for graph_filename in filenames: # print("\t\t\tCascade ", graph_filename, '\tDatetime: ', datetime.now(), # flush=True) # if (graph_filename == graph_example): try: cascade_index +=1 cascade_id = str(str(graph_filename.split(".dot")[0])) total_cascades += 1 if (total_cascades % 10000 == 0): print("\t\t\tCascades processed so far", total_cascades, '\tDatetime: ', datetime.now(), flush=True) DG = nx.DiGraph(nx.nx_pydot.read_dot(str(str(dirname)+str(graph_filename)))) # (1) >>>>>>>>>> Depth first_node = list(nx.topological_sort(DG))[0] depths = nx.shortest_path_length(DG, first_node) maximum_depth = sorted(depths.items(), key=operator.itemgetter(1), reverse=True)[0][1] # Getting cascade credentials group_id = DG.node[first_node]['group_id'] root_message = first_node group_category = DG.node[first_node]['group_category'] # (2) >>>>>>>>>> Structural Virality G = DG.to_undirected() structural_virality = nx.average_shortest_path_length(G) first_cascade_message_datetime = self.getDateFormatted( DG.node[first_node]['publication_date']) # (3) >>>>>>>>>> Size/Unique Users users_in_cascade = set() graph_nodes = DG.nodes() for a_node in graph_nodes: users_in_cascade.add(DG.node[a_node]['user_id']) unique_users = len(users_in_cascade) # Check if cascade has falsehood has_falsehood = not set(messages_with_fake_news).isdisjoint(graph_nodes) # Get fact checking URL fact_check_url = "" if(has_falsehood): for a_node in graph_nodes: if(a_node in messages_with_fake_news_dict): fact_check_url = messages_with_fake_news_dict[a_node] break total_cascade_messages = len(graph_nodes) total_cascade_users = unique_users # @@@@@@@@@@@@@@@ Unique users over time graph_nodes_publication_date_dict = {} for a_node in graph_nodes: if(DG.node[a_node]['publication_date'] not in graph_nodes_publication_date_dict): graph_nodes_publication_date_dict[DG.node[a_node]['publication_date']] = [] graph_nodes_publication_date_dict[DG.node[a_node]['publication_date']].append(DG.node[a_node]['user_id']) messages_sorted_by_publication_date = OrderedDict(sorted(graph_nodes_publication_date_dict.items())) unique_users_over_time_list = [] for message_datetime_info, user_id_list in messages_sorted_by_publication_date.items(): for user_id in user_id_list: if (user_id not in unique_users_over_time_list): unique_users_over_time_list.append(user_id) difference = self.getDateFormatted(message_datetime_info) - first_cascade_message_datetime minutes = difference.total_seconds() / 60 # ######## WRITING UNIQUE USERS OVER TIME file_cascades_unique_users_over_time.write(str( str(cascade_id) + "\t" + str(group_id) + "\t" + str( group_category) + "\t" + str(root_message) + "\t" + str(total_cascade_messages) + "\t" + str( total_cascade_users) + "\t" + str(has_falsehood) + "\t" + str(len(unique_users_over_time_list)) + "\t" + str(minutes) + "\t" + str(fact_check_url)+"\n")) # (4) >>>>>>>>>> Breadth max_breadth, breadth_by_depth_dict = self.getMaxWidth(graph=DG, root=first_node, maximum_depth=maximum_depth) # ######## WRITING STATIC FEATURES file_cascades_static_attributes.write(str( str(cascade_id)+"\t"+str(group_id)+"\t"+str(group_category)+"\t"+str(root_message)+ "\t"+str(total_cascade_messages)+"\t"+str(total_cascade_users)+"\t"+str(has_falsehood)+"\t"+ str(maximum_depth)+"\t"+str(unique_users)+"\t"+ str(structural_virality)+"\t"+str(max_breadth)+ "\t" + str(fact_check_url)+"\n")) # *********** DEPTH ORIENTED FEATURES # depths_info = sorted(depths.items(), key=operator.itemgetter(1), reverse=True) depths_info = sorted(depths.items(), key=operator.itemgetter(1)) depth_datetimes = {} unique_users_by_depth_dict = {} for a_node, depth in depths_info: # if(int(depth) >= 0 and int(depth) <= 4): # a = 10 if(str(depth) not in depth_datetimes): depth_datetimes[str(depth)] = [] if (str(depth) not in unique_users_by_depth_dict): unique_users_by_depth_dict[str(depth)] = set() depth_datetimes[str(depth)].append(self.getDateFormatted(DG.node[a_node]['publication_date'])) unique_users_by_depth_dict[str(depth)].add(DG.node[a_node]['user_id']) for depth, publication_date_list in depth_datetimes.items(): first_message_at_depth = sorted(publication_date_list, reverse=False)[0] difference = first_message_at_depth - first_cascade_message_datetime minutes = difference.total_seconds() / 60 unique_users_at_depth = len(unique_users_by_depth_dict[depth]) breadth_at_depth = breadth_by_depth_dict[depth] # ######## WRITING DEPTH ORIENTED FEATURES file_cascades_depth_oriented_attributes.write(str( str(cascade_id) + "\t" + str(group_id) + "\t" + str( group_category) + "\t" + str(root_message) + "\t" + str(total_cascade_messages) + "\t" + str( total_cascade_users) + "\t" + str(has_falsehood) + "\t" + str(depth) + "\t" + str(minutes) + "\t" + str(breadth_at_depth) + "\t" + str(unique_users_at_depth) +"\t"+ fact_check_url+"\n")) # ######## WRITING MAPPING FILE for a_node in graph_nodes: message_id = a_node user_id = DG.node[a_node]['user_id'].replace("\"", "") group_id = DG.node[a_node]['group_id'].replace("\"", "") group_category = DG.node[a_node]['group_category'].replace("\"", "") publication_date = DG.node[a_node]['publication_date'].replace("\"", "") message_type = DG.node[a_node]['type'].replace("\"", "") message_depth = 0 for another_node, depth in depths_info: if(a_node == another_node): message_depth = str(depth) break time_passed_since_root = 0 for depth, publication_date_list in depth_datetimes.items(): if(depth == message_depth): first_message_at_depth = \ sorted(publication_date_list, reverse=False)[0] difference = first_message_at_depth - first_cascade_message_datetime minutes = difference.total_seconds() / 60 time_passed_since_root = minutes break document = {} document["_id"] = message_id document["cascade_id"] = cascade_id document["message_id"] = message_id document["user_id"] = user_id document["group_id"] = group_id document["group_category"] = group_category document["message_type"] = message_type document["root_message"] = (first_node == a_node) document["message_depth"] = message_depth document["time_passed_since_root"] = time_passed_since_root document["publication_date"] = publication_date document['cascade_has_falsehood'] = has_falsehood document['message_has_falsehood'] = (a_node in messages_with_fake_news) document["url_fact_checking_news"] = fact_check_url sentiment = None total_words = None total_emojis = None total_urls = None if(message_id in text_messages_info_dict): sentiment = text_messages_info_dict[message_id]["sentiment"] total_words = text_messages_info_dict[message_id]["total_words"] total_emojis = text_messages_info_dict[message_id]["total_emojis"] total_urls = text_messages_info_dict[message_id]["total_urls"] document["sentiment"] = sentiment document["total_words"] = total_words document["total_emojis"] = total_emojis document["total_urls"] = total_urls json.dump(document, file_messages_in_cascades_mapping) file_messages_in_cascades_mapping.write("\n") file_messages_in_cascades_mapping_tsv.write(str( cascade_id+"\t"+message_id+"\t"+user_id+"\t"+group_id+"\t"+group_category+"\t"+ message_type+"\t"+str((first_node == a_node))+"\t"+str(message_depth)+"\t"+str(time_passed_since_root)+"\t"+ str(publication_date)+"\t"+str(has_falsehood)+"\t"+str((a_node in messages_with_fake_news))+"\t"+ str(fact_check_url)+"\t"+str(sentiment)+"\t"+str(total_words)+"\t"+str(total_emojis)+"\t"+ str(total_urls)+"\n")) except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] print('\nError: ', e, '\tDetails: ', exc_type, fname, exc_tb.tb_lineno, '\tDatetime: ', datetime.now(), flush=True) print("ERROR PROCESSING CASCADE FILE:",str(str(dirname)+str(graph_filename)), flush=True) except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] print('\nError: ', e, '\tDetails: ', exc_type, fname, exc_tb.tb_lineno, '\tDatetime: ', datetime.now(), flush=True) def getIncomingMotifTemplateListByNodeTotal(self, total_nodes): motif_incoming_star_edge_list = [] for i in range(2, total_nodes + 1): motif_incoming_star_edge_list.extend([(i, 1)]) return (motif_incoming_star_edge_list) def getOutgoingMotifTemplateListByNodeTotal(self, total_nodes): motif_outgoing_star_edge_list = [] for i in range(2, total_nodes + 1): motif_outgoing_star_edge_list.extend([(1, i)]) return (motif_outgoing_star_edge_list) def getChainMotifTemplateListByNodeTotal(self, total_nodes): motif_chain_edge_list = [] for i in range(1, total_nodes + 1): motif_chain_edge_list.extend([(i, (i + 1))]) return (motif_chain_edge_list) def getLoopMotifTemplateListByNodeTotal(self, total_nodes): motif_loop_edge_list = [] initial_node = 1 for i in range(1, total_nodes): motif_loop_edge_list.extend([(i, (i + 1))]) motif_loop_edge_list.extend([(total_nodes, (initial_node))]) return (motif_loop_edge_list) def buildUserRelationCascadeMotifsFile(self, filename_cascades_static_attributes, path_graph_sources, filename_user_relations_motifs, is_user_cascades_by_cascades): try: cascade_info_dict = {} with open(filename_cascades_static_attributes, 'r', encoding='utf-8') as file_cascades_static_attributes: #cascade_id group_id group_category root_message total_messages total_users has_falsehood maximum_depth unique_users structural_virality breadth fact_check_url header = file_cascades_static_attributes.readline() for cascade_info_line in file_cascades_static_attributes: cascade_info = cascade_info_line.replace("\n", "").split("\t") if(cascade_info[0] not in cascade_info_dict): cascade_info_dict[cascade_info[0]] = {"group_id":cascade_info[1], "group_category":cascade_info[2], "root_message": cascade_info[3], "total_messages": cascade_info[4], "total_users":cascade_info[5], "has_falsehood":cascade_info[6]} total_cascades = 0 motif_dyadic_edge_list = [(1, 2), (2, 1)] motif_self_loop_edge_list = [(1, 1)] with open(filename_user_relations_motifs, 'w', encoding='utf-8') as file_user_relations_motifs: if(is_user_cascades_by_cascades is True): file_user_relations_motifs.write(str("cascade_id\tgroup_id\tgroup_category\troot_message\t" "total_messages\ttotal_users\tcascade_has_falsehood\tmotif_name\ttotal_nodes\ttotal_edges\ttotal_edge_weight_on_motifs\ttotal_motifs\n")) else: file_user_relations_motifs.write(str("group_id\tgroup_category\tmotif_name\ttotal_nodes\ttotal_edges\ttotal_edge_weight_on_motifs\ttotal_motifs\n")) for dirname, dirnames, filenames in os.walk(path_graph_sources): cascade_index = 0 for graph_filename in filenames: try: cascade_index +=1 cascade_id = str(str(graph_filename.split(".dot")[0])) total_cascades += 1 if (total_cascades % 1000 == 0): print("\t\t\tCascades processed so far", total_cascades, '\tDatetime: ', datetime.now(), flush=True) DG = nx.DiGraph(nx.nx_pydot.read_dot(str(str(dirname)+str(graph_filename)))) motif_totals_dict = {"dyadic": {}, "self_loop": {}, "chain":{}, "loop":{}, "incoming_star":{}, "outgoing_star":{}} V = DG.nodes() # ------ DYADIC motif_dyadic = nx.DiGraph(motif_dyadic_edge_list) motif_name = "dyadic" total_nodes = 2 motif_totals_dict[motif_name][str(total_nodes)] = {"total_edges":0, "total_edge_weight_on_motifs":0, "total_motifs":0} for subV in itertools.combinations(V, total_nodes): subG = nx.subgraph(DG, subV) if nx.is_isomorphic(subG, motif_dyadic): motif_totals_dict[motif_name][str(total_nodes)]['total_motifs']+=1 for node, edge_info in subG.adj.items(): for node_to, weight in edge_info.items(): #print(node_to, weight, flush=True) motif_totals_dict[motif_name][str(total_nodes)]['total_edges'] += 1 motif_totals_dict[motif_name][str(total_nodes)]['total_edge_weight_on_motifs'] += int(weight['weight']) # ------ SELF-LOOP motif_self_loop = nx.DiGraph(motif_self_loop_edge_list) motif_name = "self_loop" total_nodes = 1 motif_totals_dict[motif_name][str(total_nodes)] = {"total_edges": 0, "total_edge_weight_on_motifs": 0, "total_motifs": 0} for subV in itertools.combinations(V, total_nodes): subG = nx.subgraph(DG, subV) if nx.is_isomorphic(subG, motif_self_loop): motif_totals_dict[motif_name][str(total_nodes)]['total_motifs'] += 1 for node, edge_info in subG.adj.items(): for node_to, weight in edge_info.items(): motif_totals_dict[motif_name][str(total_nodes)][ 'total_edges'] += 1 motif_totals_dict[motif_name][str(total_nodes)][ 'total_edge_weight_on_motifs'] += int(weight['weight']) for i in range(1,len(DG.nodes())): motif_chain_edge_list = self.getChainMotifTemplateListByNodeTotal(total_nodes=i) # ------ CHAIN motif_chain = nx.DiGraph(motif_chain_edge_list) motif_name = "chain" total_nodes = i+1 motif_totals_dict[motif_name][str(total_nodes)] = {"total_edges": 0, "total_edge_weight_on_motifs": 0, "total_motifs": 0} for subV in itertools.combinations(V, total_nodes): subG = nx.subgraph(DG, subV) if nx.is_isomorphic(subG, motif_chain): motif_totals_dict[motif_name][str(total_nodes)]['total_motifs'] += 1 for node, edge_info in subG.adj.items(): for node_to, weight in edge_info.items(): motif_totals_dict[motif_name][str(total_nodes)]['total_edges'] += 1 motif_totals_dict[motif_name][str(total_nodes)][ 'total_edge_weight_on_motifs'] += int(weight['weight']) if(i >= 3): motif_loop_edge_list = self.getLoopMotifTemplateListByNodeTotal(total_nodes=i) # ------ LOOP motif_loop = nx.DiGraph(motif_loop_edge_list) motif_name = "loop" total_nodes = i motif_totals_dict[motif_name][str(total_nodes)] = {"total_edges": 0, "total_edge_weight_on_motifs": 0, "total_motifs": 0} for subV in itertools.combinations(V, total_nodes): subG = nx.subgraph(DG, subV) if nx.is_isomorphic(subG, motif_loop): motif_totals_dict[motif_name][str(total_nodes)]['total_motifs'] += 1 for node, edge_info in subG.adj.items(): for node_to, weight in edge_info.items(): motif_totals_dict[motif_name][str(total_nodes)]['total_edges'] += 1 motif_totals_dict[motif_name][str(total_nodes)][ 'total_edge_weight_on_motifs'] += int(weight['weight']) motif_incoming_star_edge_list = self.getIncomingMotifTemplateListByNodeTotal( total_nodes=i) motif_outgoing_star_edge_list = self.getOutgoingMotifTemplateListByNodeTotal( total_nodes=i) # ------ INCOMING STAR motif_incoming_star = nx.DiGraph(motif_incoming_star_edge_list) motif_name = "incoming_star" total_nodes = i motif_totals_dict[motif_name][str(total_nodes)] = {"total_edges": 0, "total_edge_weight_on_motifs": 0, "total_motifs": 0} for subV in itertools.combinations(V, total_nodes): subG = nx.subgraph(DG, subV) if nx.is_isomorphic(subG, motif_incoming_star): motif_totals_dict[motif_name][str(total_nodes)]['total_motifs'] += 1 for node, edge_info in subG.adj.items(): for node_to, weight in edge_info.items(): motif_totals_dict[motif_name][str(total_nodes)]['total_edges'] += 1 motif_totals_dict[motif_name][str(total_nodes)][ 'total_edge_weight_on_motifs'] += int(weight['weight']) # ------ OUTGOING STAR motif_outcoming_star = nx.DiGraph(motif_outgoing_star_edge_list) motif_name = "outgoing_star" total_nodes = i motif_totals_dict[motif_name][str(total_nodes)] = {"total_edges": 0, "total_edge_weight_on_motifs": 0, "total_motifs": 0} for subV in itertools.combinations(V, total_nodes): subG = nx.subgraph(DG, subV) if nx.is_isomorphic(subG, motif_outcoming_star): motif_totals_dict[motif_name][str(total_nodes)]['total_motifs'] += 1 for node, edge_info in subG.adj.items(): for node_to, weight in edge_info.items(): motif_totals_dict[motif_name][str(total_nodes)]['total_edges'] += 1 motif_totals_dict[motif_name][str(total_nodes)][ 'total_edge_weight_on_motifs'] += int(weight['weight']) #print('Writing motif file\tDatetime: ', datetime.now(), flush=True) for motif_name, motif_nodes_info in motif_totals_dict.items(): for motif_nodes, motif_info in motif_nodes_info.items(): if motif_info['total_motifs'] > 0: group_id = cascade_info_dict[cascade_id]["group_id"] group_category = cascade_info_dict[cascade_id]["group_category"] if(is_user_cascades_by_cascades is True): root_message = cascade_info_dict[cascade_id]["root_message"] total_cascade_messages = cascade_info_dict[cascade_id]["total_messages"] total_cascade_users = cascade_info_dict[cascade_id]["total_users"] has_falsehood = cascade_info_dict[cascade_id]["has_falsehood"] file_user_relations_motifs.write(str( str(cascade_id) + "\t" + str(group_id) + "\t" + str(group_category) + "\t" + str( root_message) + "\t" + str(total_cascade_messages) + "\t" + str(total_cascade_users) + "\t" + str( has_falsehood) + "\t" + str(motif_name) + "\t" + str(motif_nodes) + "\t" + str(motif_info['total_edges']) + "\t" + str(motif_info['total_edge_weight_on_motifs'])+ "\t" + str(motif_info['total_motifs']) + "\n")) else: file_user_relations_motifs.write(str(str(group_id) + "\t" + str( group_category) + "\t" + str(motif_name) + "\t" + str(motif_nodes) + "\t" + str( motif_info['total_edges']) + "\t" + str(motif_info['total_edge_weight_on_motifs']) + "\t" + str( motif_info['total_motifs']) + "\n")) except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] print('\nError: ', e, '\tDetails: ', exc_type, fname, exc_tb.tb_lineno, '\tDatetime: ', datetime.now(), flush=True) print("ERROR PROCESSING CASCADE FILE:",str(str(dirname)+str(graph_filename)), flush=True) #sys.exit(1) except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] print('\nError: ', e, '\tDetails: ', exc_type, fname, exc_tb.tb_lineno, '\tDatetime: ', datetime.now(), flush=True) def buildSimilarTextsFromFactCheckingSitesFile(self, filename_clean_verifiable_texts, filename_clean_fake_news_texts_from_fact_checking, filename_similar_texts_with_fact_checking_texts_primary, filename_text_from_url_messages_dialogues): try: from fuzzywuzzy import fuzz from fuzzywuzzy import process message_id_url_dict = {} with open(filename_text_from_url_messages_dialogues, 'r', encoding='utf-8') as file_text_from_url_messages_dialogues: for message in file_text_from_url_messages_dialogues: try: message = json.loads(message) message_id_url_dict[message['_id']] = message["message_id"] except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] print('\nError (DID NOT STOP): ', e, '\tDetails: ', exc_type, fname, exc_tb.tb_lineno, '\tDatetime: ', datetime.now(), flush=True) from itertools import combinations # Get all possible variations from fake news texts fake_news_texts_list_dict = {} with open(filename_clean_fake_news_texts_from_fact_checking, 'r', encoding='utf-8') as file_clean_fake_news_texts_from_fact_checking: for message in file_clean_fake_news_texts_from_fact_checking: try: message = json.loads(message) fact_check_url = message["url"].split("_")[len(message["url"].split("_")) - 2] if(fact_check_url not in fake_news_texts_list_dict): fake_news_texts_list_dict[fact_check_url] = [] fake_news_texts_list_dict[fact_check_url].append(message['text']) except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] print('\nError (DID NOT STOP) on message:', message, '\tThe error:', e, '\tDetails: ', exc_type, fname, exc_tb.tb_lineno, '\tDatetime: ', datetime.now(), flush=True) fake_news_texts_dict = {} real_total_fake_news_texts = 0 for url, text_list in fake_news_texts_list_dict.items(): all_forward_combinations = [' '.join(text_list[i:j]) for i, j in combinations(range(len(text_list) + 1), 2)] fake_news_texts_dict[url] = [] for text in all_forward_combinations: fake_news_texts_dict[url].append(text) real_total_fake_news_texts +=1 WORD = re.compile(r'\w+') def get_cosine(vec1, vec2): intersection = set(vec1.keys()) & set(vec2.keys()) numerator = sum([vec1[x] * vec2[x] for x in intersection]) sum1 = sum([vec1[x] ** 2 for x in vec1.keys()]) sum2 = sum([vec2[x] ** 2 for x in vec2.keys()]) denominator = math.sqrt(sum1) * math.sqrt(sum2) if not denominator: return 0.0 else: return float(numerator) / denominator def text_to_vector(text): words = WORD.findall(text) return Counter(words) messages_dict = {} total_documents_without_message_id = 0 real_total_verifiable_texts = 0 with open(filename_clean_verifiable_texts, 'r', encoding='utf-8') as file_clean_verifiable_texts: for message in file_clean_verifiable_texts: message = json.loads(message) message_id = message['message_id'] if (message_id == "" and message["source_text_type"] == "URL" and message['url'] in message_id_url_dict): message_id = message_id_url_dict[message['url']] if(message_id != ""): if(message_id not in messages_dict): messages_dict[message_id] = [] messages_dict[message_id].append(message['text']) real_total_verifiable_texts +=1 else: total_documents_without_message_id +=1 print("Total URL document without message_id:",total_documents_without_message_id, flush=True) print("$$$$$$$$$$$$ Checking", real_total_verifiable_texts ,"messages/URLs from dialogues in",real_total_fake_news_texts,"fake news texts.\tDatetime: ", datetime.now(), flush=True) line_number = 0 total_found = 0 with open(filename_similar_texts_with_fact_checking_texts_primary, 'w', encoding='utf-8') as file_similar_texts_with_fact_checking_texts_primary: file_similar_texts_with_fact_checking_texts_primary.write(str("document_id\tfact_check_url\tcosine_similarity\tlength_message\tlength_fake_news_text\n")) for message_id, message_text_list in messages_dict.items(): line_number += 1 if(line_number % 1000 == 0): print("\t>>> Processing message index", line_number, '\tDatetime: ', datetime.now(), flush=True) found_similar_text = False for message_text in message_text_list: if (found_similar_text is False): vector2 = text_to_vector(message_text) if (len(vector2) >= 5): for fake_news_url, fake_news_text_list in fake_news_texts_dict.items(): if(found_similar_text is False): for fake_news_text in fake_news_text_list: vector1 = text_to_vector(fake_news_text) if (len(vector1) >= 5): cosine_similarity = get_cosine(vector1, vector2) if (cosine_similarity >= 0.5): file_similar_texts_with_fact_checking_texts_primary.write( str(str(message_id) + "\t" + str(fake_news_url) + "\t" + str( cosine_similarity) + "\t" + str(len(vector2)) + "\t" + str( len(vector1)) + "\n")) total_found += 1 print("\t\t>>> Writing similar text", cosine_similarity, "\tTotal found so far: ", total_found, "\tProcessing text index:", line_number, '\tDatetime: ', datetime.now(), flush=True) if (cosine_similarity >= 0.9): found_similar_text = True print( "\t\t\t>>> Found similarity >=0.9... stopping iteration\tDatetime: ", datetime.now(), flush=True) break levenshtein_distance = fuzz.ratio(message_text, fake_news_text) if (levenshtein_distance >= 50): file_similar_texts_with_fact_checking_texts_primary.write(str(str(message_id)+ "\t"+str(fake_news_url)+"\t"+str(levenshtein_distance)+"\t"+str(len(vector2))+"\t"+str(len(vector1))+"\n")) total_found +=1 print("\t\t>>> Writing similar text", levenshtein_distance, "\tTotal found so far: ", total_found, "\tProcessing text index:", line_number , '\tDatetime: ',datetime.now(),flush=True) if(levenshtein_distance >= 90): found_similar_text = True print("\t\t\t>>> Found similarity >=0.9... stopping iteration\tDatetime: ",datetime.now(), flush=True) break else: break else: break except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] print('\nError: ', e, '\tDetails: ', exc_type, fname, exc_tb.tb_lineno, '\tDatetime: ', datetime.now(), flush=True) def lemmatize_text_portuguese(self, nlp_pt, text): return " ".join(token.lemma_ for token in nlp_pt(text)) def getWordsLematizedWithoutStopWords(self, text, nlp_pt, stopwords_list=None): text = self.lemmatize_text_portuguese(text=text, nlp_pt=nlp_pt) text = re.sub(r"https?://\S+", "", text) text = re.sub(r"\b\d+\b", "", text) words = [word.lower() for word in re.findall("\w+", text)] words = [word for word in words if word not in stopwords_list] if stopwords_list else words words = [word for word in words if len(word) > 2] return words def getURLs(self, text): urls = re.findall('http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', text) return urls def buildCleanTextFromMessagesOnCascadesFile(self, filename_portuguese_stopwords, filename_messages_dialogues, filename_text_from_url_messages_dialogues, filename_fake_news_texts_from_fact_checking, filename_clean_verifiable_texts, filename_clean_fake_news_texts_from_fact_checking): try: # Lemmatizers import spacy nlp_pt = spacy.load("pt") from langid.langid import LanguageIdentifier, model identifier = LanguageIdentifier.from_modelstring(model, norm_probs=True) messages_processed_ids = set() messages_urls_dict = {} line_number = 0 # Stopwords stopwords_portuguese = set([line.rstrip() for line in open(filename_portuguese_stopwords, encoding="utf-8")]) print("\t>>>> Building clean verifiable texts file\tDatetime: ", datetime.now(), flush=True) with open(filename_clean_verifiable_texts, 'w', encoding='utf-8') as file_clean_verifiable_texts: with open(filename_messages_dialogues, 'r', encoding='utf-8') as file_messages_dialogues: for message_dialogue in file_messages_dialogues: message_dialogue = json.loads(message_dialogue) line_number += 1 if (line_number % 10000 == 0): print("\t>>> Processing dialogue index", line_number, '\tDatetime: ', datetime.now(), flush=True) for message_source in ['original_message', 'quote_message']: if message_dialogue[message_source]['_id'] not in messages_processed_ids and message_dialogue[message_source]['type'] == 'text': new_text = message_dialogue[message_source]['text'].lower() my_val = str(new_text).rstrip("\n").rstrip("\t").rstrip("\r") my_val = str(my_val).replace('\r', " ").replace('\n', " ").replace('\t', " ") new_text = my_val.strip() messages_urls_dict[message_dialogue[message_source]['_id']] = self.getURLs(text=new_text) langid_language_detected_result = identifier.classify(new_text) langid_language_detected = langid_language_detected_result[0] language_probability = langid_language_detected_result[1] if(langid_language_detected == 'pt' and float(language_probability) >= 0.9): text = new_text words = self.getWordsLematizedWithoutStopWords(text=text, stopwords_list=stopwords_portuguese, nlp_pt = nlp_pt) #words = self.get_words(text, stopwords_portuguese, None) fullStr = ' '.join(words) document = {"message_id":message_dialogue[message_source]['_id'], "text":fullStr, "source_text_type":"MESSAGE", "url":""} json.dump(document, file_clean_verifiable_texts) file_clean_verifiable_texts.write("\n") with open(filename_text_from_url_messages_dialogues, 'r', encoding='utf-8') as file_text_from_url_messages_dialogues: for text_url_info in file_text_from_url_messages_dialogues: try: text_url_info = json.loads(text_url_info) new_text = text_url_info['text'].lower() my_val = str(new_text).rstrip("\n").rstrip("\t").rstrip("\r") my_val = str(my_val).replace('\r', " ").replace('\n', " ").replace('\t', " ") new_text = my_val.strip() text = new_text words = self.getWordsLematizedWithoutStopWords(text=text, stopwords_list=stopwords_portuguese, nlp_pt=nlp_pt) # words = self.get_words(text, stopwords_portuguese, None) fullStr = ' '.join(words) my_message_id = "" for message_id, url_list in messages_urls_dict.items(): for url in url_list: if (url == text_url_info['_id']): my_message_id = message_id break document = {"message_id": my_message_id, "text": fullStr, "source_text_type": "URL", "url": text_url_info['_id']} json.dump(document, file_clean_verifiable_texts) file_clean_verifiable_texts.write("\n") except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] print('\nError DID NOT STOP: ', e, '\tDetails: ', exc_type, fname, exc_tb.tb_lineno, '\tDatetime: ', datetime.now(), flush=True) print("\t>>>> Building clean texts from fact checking sites file\tDatetime: ", datetime.now(), flush=True) with open(filename_clean_fake_news_texts_from_fact_checking, 'w', encoding='utf-8') as file_clean_fake_news_texts_from_fact_checking: with open(filename_fake_news_texts_from_fact_checking, 'r', encoding='utf-8') as file_fake_news_texts_from_fact_checking: all_documents = json.load(file_fake_news_texts_from_fact_checking) for text_url_info in all_documents: new_text = text_url_info['text'].lower() my_val = str(new_text).rstrip("\n").rstrip("\t").rstrip("\r") my_val = str(my_val).replace('\r', " ").replace('\n', " ").replace('\t', " ") new_text = my_val.strip() text = new_text words = self.getWordsLematizedWithoutStopWords(text=text, stopwords_list=stopwords_portuguese, nlp_pt=nlp_pt) # words = self.get_words(text, stopwords_portuguese, None) fullStr = ' '.join(words) document = {"text": fullStr, "url": text_url_info['_id']} json.dump(document, file_clean_fake_news_texts_from_fact_checking) file_clean_fake_news_texts_from_fact_checking.write("\n") except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] print('\nError: ', e, '\tDetails: ', exc_type, fname, exc_tb.tb_lineno, '\tDatetime: ', datetime.now(), flush=True) def main(): try: start_time = datetime.now() attentionCascades = AttentionCascades() DATA_DIRECTORY = "/home/<<user>>/data/" path_graph_sources = str(DATA_DIRECTORY+"attention_cascades/cascades/dot/") filename_messages_dialogues=str(DATA_DIRECTORY+"attention_cascades/dialogues.jsonl") filename_messages =str(DATA_DIRECTORY+"attention_cascades/messages.jsonl") filename_quote_messages = str(DATA_DIRECTORY+"attention_cascades/quote_messages.jsonl") filename_messages_quotes_references =str(DATA_DIRECTORY+"attention_cascades/messages_quotes_references.jsonl") filename_cascades_static_attributes = str(DATA_DIRECTORY+"attention_cascades/cascades_static_attributes.tsv") filename_cascades_depth_oriented_attributes = str(DATA_DIRECTORY+"attention_cascades/cascades_depth_oriented_attributes.tsv") filename_cascades_unique_users_over_time = str(DATA_DIRECTORY+"attention_cascades/cascades_unique_users_over_time_attributes.tsv") filename_messages_in_cascades_mapping = str(DATA_DIRECTORY+"attention_cascades/messages_in_cascades_mapping.jsonl") filename_messages_in_cascades_mapping_tsv = str(DATA_DIRECTORY+"attention_cascades/messages_in_cascades_mapping.tsv") filename_text_messages_info= str(DATA_DIRECTORY+"attention_cascades/text_messages_info.jsonl") path_user_relations_individual_graph_sources = str(DATA_DIRECTORY+"attention_cascades/user_relations_by_cascade_cascades/dot/") filename_clean_verifiable_texts = str(DATA_DIRECTORY+"attention_cascades/clean_verifiable_texts_from_cascades.jsonl") filename_clean_fake_news_texts_from_fact_checking = str(DATA_DIRECTORY+"attention_cascades/clean_texts_from_urls_from_fact_checking_sites.json") filename_similar_texts_with_fact_checking_texts_primary = str(DATA_DIRECTORY+"attention_cascades/similar_texts_with_fact_checking_texts_primary.tsv") filename_text_from_url_messages_dialogues = str(DATA_DIRECTORY+"attention_cascades/dialogues_text_from_url_messages_new.jsonl") filename_fake_news_texts_from_fact_checking = str(DATA_DIRECTORY+"attention_cascades/texts_from_urls_from_fact_checking_sites.json") filename_portuguese_stopwords = str(DATA_DIRECTORY+"attention_cascades/stopwords-portuguese.txt") print(">>>>>>>> Running attentionCascades.buildDialoguesCollection method", flush=True) attentionCascades.buildDialoguesCollection(filename_messages_dialogues=filename_messages_dialogues, filename_messages=filename_messages, filename_quote_messages=filename_quote_messages, filename_messages_quotes_references=filename_messages_quotes_references) print(">>>>>>>> Running attentionCascades.buildCascadesFiles method", flush=True) attentionCascades.buildCascadesFiles(filename_messages_dialogues=filename_messages_dialogues, path_graph_sources=path_graph_sources) print(">>>>>>>> Running attentionCascades.buildCleanTextFromMessagesOnCascadesFile method", flush=True) attentionCascades.buildCleanTextFromMessagesOnCascadesFile(filename_portuguese_stopwords=filename_portuguese_stopwords, filename_messages_dialogues=filename_messages_dialogues, filename_text_from_url_messages_dialogues=filename_text_from_url_messages_dialogues, filename_fake_news_texts_from_fact_checking=filename_fake_news_texts_from_fact_checking, filename_clean_verifiable_texts=filename_clean_verifiable_texts, filename_clean_fake_news_texts_from_fact_checking=filename_clean_fake_news_texts_from_fact_checking) print(">>>>>>>> Running attentionCascades.buildCascadesAttributesFiles method", flush=True) attentionCascades.buildSimilarTextsFromFactCheckingSitesFile(filename_clean_verifiable_texts=filename_clean_verifiable_texts, filename_clean_fake_news_texts_from_fact_checking=filename_clean_fake_news_texts_from_fact_checking, filename_similar_texts_with_fact_checking_texts_primary=filename_similar_texts_with_fact_checking_texts_primary, filename_text_from_url_messages_dialogues=filename_text_from_url_messages_dialogues) print(">>>>>>>> Running attentionCascades.buildCascadesAttributesFiles method", flush=True) filename_fake_news_messages_manual_final = str(DATA_DIRECTORY+"attention_cascades/fake_news_messages_manual_final.tsv") attentionCascades.buildCascadesAttributesFiles(filename_cascades_static_attributes=filename_cascades_static_attributes, filename_cascades_depth_oriented_attributes=filename_cascades_depth_oriented_attributes, filename_cascades_unique_users_over_time=filename_cascades_unique_users_over_time, path_graph_sources=path_graph_sources, filename_fake_news_messages_manual_final=filename_fake_news_messages_manual_final, filename_messages_in_cascades_mapping=filename_messages_in_cascades_mapping, filename_messages_in_cascades_mapping_tsv=filename_messages_in_cascades_mapping_tsv, filename_text_messages_info=filename_text_messages_info) print(">>>>>>>> Running attentionCascades.buildUserRelationCascadeMotifsFile method", flush=True) filename_user_relations_motifs=str(DATA_DIRECTORY+"attention_cascades/user_cascades_motifs_by_cascade.tsv") is_user_cascades_by_cascades = True attentionCascades.buildUserRelationCascadeMotifsFile(filename_cascades_static_attributes=filename_cascades_static_attributes, path_graph_sources=path_user_relations_individual_graph_sources, filename_user_relations_motifs=filename_user_relations_motifs, is_user_cascades_by_cascades=is_user_cascades_by_cascades) end_time = datetime.now() print("\nStart time: %s\nFinal time: %s\nTime elapsed (seconds): %s\n" % ( start_time, end_time, (end_time - start_time).seconds)) print("\n\n###########################################################\tSCRIPT FINISHED.", flush=True) except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] print('\nError: ', e, '\tDetails: ', exc_type, fname, exc_tb.tb_lineno, '\tDatetime: ', datetime.now(), flush=True) if __name__ == '__main__': # pass main() ```
{ "source": "josemariamoreira/BrainSpace", "score": 2 }
#### File: brainspace/mesh/mesh_io.py ```python from vtk import (vtkPLYReader, vtkPLYWriter, vtkXMLPolyDataReader, vtkXMLPolyDataWriter, vtkPolyDataReader, vtkPolyDataWriter) from .io_support import (vtkFSReader, vtkFSWriter, vtkGIFTIReader, vtkGIFTIWriter) from ..vtk_interface.pipeline import serial_connect, get_output from ..vtk_interface.decorators import wrap_output # 'fs' type for FreeSurfer geometry data (also read FreeSurfer ascii as .asc) supported_types = ['ply', 'obj', 'vtp', 'vtk', 'asc', 'fs', 'gii'] supported_formats = ['binary', 'ascii'] @wrap_output def _select_reader(itype): if itype == 'ply': reader = vtkPLYReader() # elif itype == 'obj': # reader = vtkOBJReader() elif itype == 'vtp': reader = vtkXMLPolyDataReader() elif itype == 'vtk': reader = vtkPolyDataReader() elif itype in ['asc', 'fs']: reader = vtkFSReader() if itype == 'asc': reader.SetFileTypeToASCII() elif itype == 'gii': reader = vtkGIFTIReader() else: raise TypeError('Unknown input type \'{0}\'.'.format(itype)) return reader @wrap_output def _select_writer(otype): if otype == 'ply': writer = vtkPLYWriter() # elif otype == 'obj': # writer = vtkOBJWriter() elif otype == 'vtp': writer = vtkXMLPolyDataWriter() elif otype == 'vtk': writer = vtkPolyDataWriter() elif otype in ['asc', 'fs']: writer = vtkFSWriter() elif otype == 'gii': writer = vtkGIFTIWriter() else: raise TypeError('Unknown output type \'{0}\'.'.format(otype)) return writer def read_surface(ipth, itype=None, return_data=True, update=True): """Read surface data. See `itype` for supported file types. Parameters ---------- ipth : str Input filename. itype : {'ply', 'obj', 'vtp', 'vtk', 'fs', 'asc', 'gii'}, optional Input file type. If None, it is deduced from `ipth`. Default is None. return_data : bool, optional Whether to return data instead of filter. Default is False update : bool, optional Whether to update filter When return_data=True, filter is automatically updated. Default is True. Returns ------- output : BSAlgorithm or BSPolyData Surface as a filter or BSPolyData. Notes ----- Function can read FreeSurfer geometry data in binary ('fs') and ascii ('asc') format. Gifti surfaces can also be loaded if nibabel is installed. See Also -------- :func:`write_surface` """ if itype is None: itype = ipth.split('.')[-1] reader = _select_reader(itype) reader.filename = ipth return get_output(reader, update=update, as_data=return_data) def write_surface(ifilter, opth, oformat=None, otype=None): """Write surface data. See `otype` for supported file types. Parameters ---------- ifilter : BSAlgorithm or BSDataObject Input filter or data. opth : str Output filename. oformat : {'ascii', 'binary'}, optional File format. Defaults to writer's default format. Only used when writer accepts format. Default is None. otype : {'ply', 'obj', 'vtp', 'vtk', 'fs', 'asc', 'gii'}, optional File type. If None, type is deduced from `opth`. Default is None. Notes ----- Function can save data in FreeSurfer binary ('fs') and ascii ('asc') format. Gifti surfaces can also be saved if nibabel is installed. See Also -------- :func:`read_surface` """ if otype is None: otype = opth.split('.')[-1] writer = _select_writer(otype) writer.filename = opth if otype not in ['vtp', 'tri', 'gii', 'obj']: if oformat == 'ascii' or otype == 'asc': writer.SetFileTypeToASCII() else: writer.SetFileTypeToBinary() serial_connect(ifilter, writer, update=True, as_data=False, port=None) def convert_surface(ipth, opth, itype=None, otype=None, oformat=None): """Convert between file types. Parameters ---------- ipth : str Input filename. opth : str Output filename. itype : str, optional Input file type. If None, type is deduced from input filename's extension. Default is None. otype : str, optional Output file type. If None, type is deduced from output filename's extension. Default is None. oformat : {'ascii', 'binary'} Output file format. Defaults to writer's default format. Only used when writer accepts format. Default is None. """ reader = read_surface(ipth, itype=itype, return_data=False, update=False) write_surface(reader, opth, oformat=oformat, otype=otype) ```
{ "source": "josemariamoreira/NiftyNet", "score": 2 }
#### File: NiftyNet/tests/sampler_weighted_test.py ```python from __future__ import absolute_import, division, print_function import os import numpy as np import tensorflow as tf from niftynet.engine.image_window import N_SPATIAL from niftynet.engine.sampler_weighted import WeightedSampler from niftynet.engine.sampler_weighted import weighted_spatial_coordinates from niftynet.io.image_reader import ImageReader from niftynet.io.image_sets_partitioner import ImageSetsPartitioner from niftynet.utilities.util_common import ParserNamespace MULTI_MOD_DATA = { 'T1': ParserNamespace( csv_file=os.path.join('testing_data', 'T1sampler.csv'), path_to_search='testing_data', filename_contains=('_o_T1_time',), filename_not_contains=('Parcellation',), interp_order=3, pixdim=None, axcodes=None, spatial_window_size=(7, 10, 2), loader=None ), 'FLAIR': ParserNamespace( csv_file=os.path.join('testing_data', 'FLAIRsampler.csv'), path_to_search='testing_data', filename_contains=('FLAIR_',), filename_not_contains=('Parcellation',), interp_order=3, pixdim=None, axcodes=None, spatial_window_size=(7, 10, 2), loader=None ) } MULTI_MOD_TASK = ParserNamespace(image=('T1', 'FLAIR'), sampler=('T1',)) MOD_2D_DATA = { 'ultrasound': ParserNamespace( csv_file=os.path.join('testing_data', 'T1sampler2d.csv'), path_to_search='testing_data', filename_contains=('2d_',), filename_not_contains=('Parcellation',), interp_order=3, pixdim=None, axcodes=None, spatial_window_size=(10, 9, 1), loader=None ), } MOD_2D_TASK = ParserNamespace(image=('ultrasound',), sampler=('ultrasound',)) DYNAMIC_MOD_DATA = { 'T1': ParserNamespace( csv_file=os.path.join('testing_data', 'T1sampler.csv'), path_to_search='testing_data', filename_contains=('_o_T1_time',), filename_not_contains=('Parcellation',), interp_order=3, pixdim=None, axcodes=None, spatial_window_size=(8, 2), loader=None ), 'FLAIR': ParserNamespace( csv_file=os.path.join('testing_data', 'FLAIRsampler.csv'), path_to_search='testing_data', filename_contains=('FLAIR_',), filename_not_contains=('Parcellation',), interp_order=3, pixdim=None, axcodes=None, spatial_window_size=(8, 2), loader=None ) } DYNAMIC_MOD_TASK = ParserNamespace(image=('T1', 'FLAIR'), sampler=('FLAIR',)) data_partitioner = ImageSetsPartitioner() multi_mod_list = data_partitioner.initialise(MULTI_MOD_DATA).get_file_list() mod_2d_list = data_partitioner.initialise(MOD_2D_DATA).get_file_list() dynamic_list = data_partitioner.initialise(DYNAMIC_MOD_DATA).get_file_list() def get_3d_reader(): reader = ImageReader(['image', 'sampler']) reader.initialise(MULTI_MOD_DATA, MULTI_MOD_TASK, multi_mod_list) return reader def get_2d_reader(): reader = ImageReader(['image', 'sampler']) reader.initialise(MOD_2D_DATA, MOD_2D_TASK, mod_2d_list) return reader def get_dynamic_window_reader(): reader = ImageReader(['image', 'sampler']) reader.initialise(DYNAMIC_MOD_DATA, DYNAMIC_MOD_TASK, dynamic_list) return reader class WeightedSamplerTest(tf.test.TestCase): def test_3d_init(self): sampler = WeightedSampler(reader=get_3d_reader(), data_param=MULTI_MOD_DATA, batch_size=2, windows_per_image=10, queue_length=10) with self.test_session() as sess: coordinator = tf.train.Coordinator() sampler.run_threads(sess, coordinator, num_threads=2) out = sess.run(sampler.pop_batch_op()) self.assertAllClose(out['image'].shape, (2, 7, 10, 2, 2)) sampler.close_all() def test_2d_init(self): sampler = WeightedSampler(reader=get_2d_reader(), data_param=MOD_2D_DATA, batch_size=2, windows_per_image=10, queue_length=10) with self.test_session() as sess: coordinator = tf.train.Coordinator() sampler.run_threads(sess, coordinator, num_threads=2) out = sess.run(sampler.pop_batch_op()) self.assertAllClose(out['image'].shape, (2, 10, 9, 1)) sampler.close_all() def test_dynamic_init(self): sampler = WeightedSampler(reader=get_dynamic_window_reader(), data_param=DYNAMIC_MOD_DATA, batch_size=2, windows_per_image=10, queue_length=10) with self.test_session() as sess: coordinator = tf.train.Coordinator() sampler.run_threads(sess, coordinator, num_threads=2) out = sess.run(sampler.pop_batch_op()) self.assertAllClose(out['image'].shape, (1, 8, 2, 256, 2)) def test_ill_init(self): with self.assertRaisesRegexp(KeyError, ""): sampler = WeightedSampler(reader=get_3d_reader(), data_param=MOD_2D_DATA, batch_size=2, windows_per_image=10, queue_length=10) def test_close_early(self): sampler = WeightedSampler(reader=get_2d_reader(), data_param=MOD_2D_DATA, batch_size=2, windows_per_image=10, queue_length=10) sampler.close_all() class WeightedCoordinatesTest(tf.test.TestCase): def assertCoordinatesAreValid(self, coords, sampling_map): for coord in coords: for i in range(len(coord.shape)): self.assertTrue(coord[i] >= 0) self.assertTrue(coord[i] < sampling_map.shape[i]) def test_3d_coordinates(self): img_size = (32, 16, 17, 1, 1) win_size = (10, 16, 15) sampling_map = np.zeros(img_size) coords = weighted_spatial_coordinates( 32, img_size, win_size, sampling_map) self.assertAllEqual(coords.shape, (32, N_SPATIAL)) self.assertCoordinatesAreValid(coords, sampling_map) # testing high weight location (10, 8, 7, 0, 0) sampling_map[10, 8, 7, 0, 0] = 1.0 coords = weighted_spatial_coordinates( 32, img_size, win_size, sampling_map) self.assertAllEqual(coords.shape, (32, N_SPATIAL)) self.assertTrue(np.all(coords == [10, 8, 7])) def test_2d_coordinates(self): img_size = (32, 17, 1, 1, 1) win_size = (31, 3, 1) sampling_map = np.zeros(img_size) coords = weighted_spatial_coordinates( 64, img_size, win_size, sampling_map) self.assertAllEqual(coords.shape, (64, N_SPATIAL)) self.assertCoordinatesAreValid(coords, sampling_map) # testing high weight location (15, 1, 1, 0, 0) sampling_map[15, 1, 0, 0, 0] = 1.0 coords = weighted_spatial_coordinates( 64, img_size, win_size, sampling_map) self.assertAllEqual(coords.shape, (64, N_SPATIAL)) self.assertTrue(np.all(coords == [15, 1, 0])) def test_1d_coordinates(self): img_size = (32, 1, 1, 1, 1) win_size = (15, 1, 1) sampling_map = np.zeros(img_size) coords = weighted_spatial_coordinates( 10, img_size, win_size, sampling_map) self.assertAllEqual(coords.shape, (10, N_SPATIAL)) self.assertCoordinatesAreValid(coords, sampling_map) sampling_map[20, 0, 0] = 0.1 coords = weighted_spatial_coordinates( 10, img_size, win_size, sampling_map) self.assertAllEqual(coords.shape, (10, N_SPATIAL)) self.assertTrue(np.all(coords == [20, 0, 0])) sampling_map[9, 0, 0] = 0.1 coords = weighted_spatial_coordinates( 10, img_size, win_size, sampling_map) self.assertAllEqual(coords.shape, (10, N_SPATIAL)) self.assertTrue(np.all((coords == [20, 0, 0]) | (coords == [9, 0, 0]))) if __name__ == "__main__": tf.test.main() ```
{ "source": "jose-mariano/cadastro-de-pessoas", "score": 2 }
#### File: src/views/__init__.py ```python from src.views.CLI import CLI from src.views.GUI import GUI def getInterface(interfaceType, controller): types = { "CLI": CLI, "GUI": GUI, "default": GUI } if (interfaceType not in types.keys()): return types["default"](controller) return types[interfaceType](controller) ```
{ "source": "jose-mariano/jogo-da-forca-web", "score": 2 }
#### File: jose-mariano/jogo-da-forca-web/root.py ```python from flask import Blueprint, render_template, redirect, url_for, request from datas import * root_pages = Blueprint('root_pages', __name__, template_folder='templates') createDatabase() @root_pages.route('/viewWords') def viewWords(): words = selectAllJoin() return render_template('view-words.html', words=words) @root_pages.route('/addWords') def addWords(): category_words = select('SELECT * FROM tbl_category_words') return render_template('add-items.html', categoryWords=category_words) @root_pages.route('/viewNewItems', methods=["GET", "POST"]) def viewNewItems(): if request.method == "POST": newCategory = request.form['newCategory'] newWord = request.form['newWords'] categories = validateAndAddNewCategories(newCategory) words = validateAndAddNewWords(newWord) return render_template('view-new-items.html', addWords=words["add"], notAddWords=words["notAdd"], addCategories=categories["add"], notAddCategories=categories["notAdd"]) else: return redirect(url_for('root_pages.addWords')) ```
{ "source": "jose-mariano/sistema-de-cadastro-com-python", "score": 3 }
#### File: sistema-de-cadastro-com-python/manipulationData/database.py ```python import sqlite3 as sql # Database functions def addExtension(name, extension): nameCopy = name[:].replace('.', ' .').split() lenNameCopy = len(nameCopy) if lenNameCopy < 2 or nameCopy[lenNameCopy - 1] != extension: name += extension return name def loadDatabase(name): nameDb = addExtension(name, '.db') db = sql.connect(nameDb) return db class Database: def __init__(self, name): self.name = name self.database = loadDatabase(name) self.console = self.database.cursor() self.console.execute("CREATE TABLE IF NOT EXISTS tbl_people (id integer PRIMARY KEY AUTOINCREMENT, name text, date_birth text, gender text, marital_status text)") self.save() def insertInto(self, name, dateOfBirth, gender, maritalStatus): data = (name, dateOfBirth, gender, maritalStatus) self.console.execute("INSERT INTO tbl_people (name, date_birth, gender, marital_status) VALUES (?,?,?,?)", data) self.save() def select(self, command=None): if command == None: self.console.execute("SELECT * FROM tbl_people") else: try: self.console.execute(command) except: return self.select() return self.console.fetchall() def save(self): self.database.commit() def close(self): self.database.close() ``` #### File: sistema-de-cadastro-com-python/manipulationData/__init__.py ```python def modifyDate(date): oldDate = date[:].split('-') return '{}/{}/{}'.format(oldDate[2], oldDate[1], oldDate[0]) def removeSpaces(string): return string.replace(' ', '') def leapYear(year): year = int(year) if year % 4 == 0 and year % 100 != 0: return True elif year % 100 == 0 and year % 400 == 0: return True else: return False def validateDateOfBirth(dateOfBirth): from datetime import date # date -> year/month/day dateOfBirth = dateOfBirth.split('-') if len(dateOfBirth) != 3: return False else: if len(removeSpaces(dateOfBirth[0])) == 0 or len(removeSpaces(dateOfBirth[1])) == 0 or len(removeSpaces(dateOfBirth[2])) == 0: return False dateOfBirth = [int(item) for item in dateOfBirth] currentYear = date.today().year if dateOfBirth[0] > currentYear: return False elif dateOfBirth[1] < 1 or dateOfBirth[1] > 12: return False else: totalDaysOfTheMonth = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] if leapYear(dateOfBirth[0]): totalDaysOfTheMonth[1] = 29 if dateOfBirth[2] < 1 or dateOfBirth[2] > totalDaysOfTheMonth[dateOfBirth[1] - 1]: return False return True def validateName(name): nameWithoutSpaces = name[:].replace(' ', '') if name.strip() != '' and nameWithoutSpaces.isalpha() and len(nameWithoutSpaces) >= 3: return True else: return False # Erros def errors(data): if not validateName(data[0]): return 'name' elif not validateDateOfBirth(data[1]): return 'dateOfBirth' elif data[2] == '': return 'gender' elif data[3] == '': return 'maritalStatus' else: return None # Treatment of data def treatData(data): birthYear = removeSpaces(data['birthYear']) birthMonth = removeSpaces(data['birthMonth']) birthday = removeSpaces(data['birthday']) dateOfBirth = '{}-{}-{}'.format(birthYear, birthMonth, birthday) return (data['name'].strip(), dateOfBirth, data['gender'], data['maritalStatus']) ```
{ "source": "JoseMariaRomeroARK/Movil-Music-Mananger-M3", "score": 3 }
#### File: JoseMariaRomeroARK/Movil-Music-Mananger-M3/ManejoArchivos.py ```python def buscarDirectorio(): from tkinter import Tk, filedialog Tk().withdraw() direc = filedialog.askdirectory() return direc def buscarArchivo(): from tkinter import Tk, filedialog Tk().withdraw() filename = filedialog.askopenfile() return filename.name ```
{ "source": "josemariasosa/music-theory", "score": 2 }
#### File: josemariasosa/music-theory/root.py ```python import json import inspect import numpy as np class RootNote(object): """ Available scales: aeolian_dominant algerian arabic balinese_pelog byzantine chinese diminished dominant_diminished egyptian eight_tones_spanish enigmatic geez harmonic_major harmonic_minor hirajoshi hungarian_gypsy japanese lydian_dominant major major_bebop major_pentatonic major_pentatonic_blues melodic_major melodic_minor minor minor_bebop minor_pentatonic minor_pentatonic_blues natural_major natural_minor neapolitan_minor nine_tone octatonic_half_whole octatonic_whole_half oriental romanian_minor spanish_gypsy super_locrian symmetrical_augmented whole_tone yo """ def __init__(self, root): # 1. Define the list of 12 notes. self.notes = self.getNotes() self.num_notes = list(range(12)) # 2. Define the root position. self.root = root.lower() self.root_position = self.getRootPosition(self.root) # 3. Import the patterns. self.pats = self.importPatterns() # 4. Default output notation. self.default_notation = self.setDefaultNotation() # -------------------------------------------------------------------------- def __str__(self): message = "The root note is {}!".format(self.root.title()) return message # -------------------------------------------------------------------------- def getNotes(self): file_name = "files/notes.json" with open(file_name, 'r') as f: notes = json.load(f)['notes'] return notes # -------------------------------------------------------------------------- def getRootPosition(self, root): position = [x["position"] for x in self.notes if root in x['match']] if len(position) == 1: return position[0] else: print("Given note was not found, try again!") exit() # -------------------------------------------------------------------------- def importPatterns(self): file_name = "files/patterns.json" with open(file_name, 'r') as f: patterns = json.load(f)['patterns'] return patterns # -------------------------------------------------------------------------- def setDefaultNotation(self): if len(self.root) == 1: default_notation = 'sharp' elif self.root[-1] == 'b': default_notation = 'flat' elif '#' in self.root: default_notation = 'sharp' else: default_notation = 'sharp' return default_notation # -------------------------------------------------------------------------- def positionPattern(self, scale_name): # Define the steps pattern. step_pattern = self.pats['scales'][scale_name] # 2. Resort the 12 notes into a basic pattern. basic = (self.num_notes[self.root_position:] + self.num_notes[:self.root_position]) basic = basic + [basic[0]] # 3. Get the cumulative steps. step_pattern = [int(x * 2) for x in step_pattern] accum_steps = list(np.cumsum(step_pattern)) # 4. Calculate the scale values. scale = [] for index, value in enumerate(basic): if index == 0: scale.append(value) elif index in accum_steps: scale.append(value) return scale # -------------------------------------------------------------------------- def replacePositionNotes(self, scale): return [self.notes[x][self.default_notation] for x in scale] # -------------------------------------------------------------------------- @property def aeolian_dominant(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def algerian(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def arabic(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def balinese_pelog(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def byzantine(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def chinese(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def diminished(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def dominant_diminished(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def egyptian(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def eight_tones_spanish(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def enigmatic(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def geez(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def harmonic_major(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def harmonic_minor(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def hirajoshi(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def hungarian_gypsy(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def japanese(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def lydian_dominant(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def major(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def major_bebop(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def major_pentatonic(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def major_pentatonic_blues(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def melodic_major(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def melodic_minor(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def minor(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def minor_bebop(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def minor_pentatonic(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def minor_pentatonic_blues(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def natural_major(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def natural_minor(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def neapolitan_minor(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def nine_tone(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def octatonic_half_whole(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def octatonic_whole_half(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def oriental(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def romanian_minor(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def spanish_gypsy(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def super_locrian(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def symmetrical_augmented(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def whole_tone(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- @property def yo(self): scale_name = inspect.stack()[0][3] positions = self.positionPattern(scale_name) return { 'positions': positions, 'notes': self.replacePositionNotes(positions), 'root': self.root, 'scale_name': scale_name } # -------------------------------------------------------------------------- # ------------------------------------------------------------------------------ def main(): note = RootNote("G") print(note) print('\nThe major scale is: ') print(note.major['notes']) print('\nThe symmetrical augmented scale is: ') print(note.symmetrical_augmented['notes']) print('\nThe japanese scale is: ') print(note.japanese['notes']) # ------------------------------------------------------------------------------ if __name__ == '__main__': main() ``` #### File: josemariasosa/music-theory/tabs.py ```python import json class RootNote(object): def __init__(self): # 1. Define the list of 12 notes. self.notes = self.getNotes() self.num_notes = list(range(12)) # 2. Define the root position. # self.root = root.lower() # self.root_position = self.getRootPosition(self.root) # 3. Import the patterns. self.pats = self.importPatterns() # 4. Default output notation. self.default_notation = self.setDefaultNotation() # -------------------------------------------------------------------------- def __str__(self): message = "The root note is {}!".format(self.root.title()) return message # -------------------------------------------------------------------------- def getNotes(self): file_name = "files/notes.json" with open(file_name, 'r') as f: notes = json.load(f)['notes'] return notes # -------------------------------------------------------------------------- def getRootPosition(self, root): position = [x["position"] for x in self.notes if root in x['match']] if len(position) == 1: return position[0] else: print("Given note was not found, try again!") exit() # -------------------------------------------------------------------------- def importPatterns(self): file_name = "files/patterns.json" with open(file_name, 'r') as f: patterns = json.load(f)['patterns'] return patterns # -------------------------------------------------------------------------- def setDefaultNotation(self): return 'sharp' if len(self.root) == 1: default_notation = 'sharp' elif self.root[-1] == 'b': default_notation = 'flat' elif '#' in self.root: default_notation = 'sharp' else: default_notation = 'sharp' return default_notation # -------------------------------------------------------------------------- def positionPattern(self, scale_name): # Define the steps pattern. step_pattern = self.pats['scales'][scale_name] # 2. Resort the 12 notes into a basic pattern. basic = (self.num_notes[self.root_position:] + self.num_notes[:self.root_position]) basic = basic + [basic[0]] # 3. Get the cumulative steps. step_pattern = [int(x * 2) for x in step_pattern] accum_steps = list(np.cumsum(step_pattern)) # 4. Calculate the scale values. scale = [] for index, value in enumerate(basic): if index == 0: scale.append(value) elif index in accum_steps: scale.append(value) return scale # -------------------------------------------------------------------------- def replacePositionNotes(self, scale): return [self.notes[x][self.default_notation] for x in scale] # -------------------------------------------------------------------------- # ------------------------------------------------------------------------------ def stepDistance(from_note, to_note): if to_note > from_note: semitone = to_note - from_note elif to_note < from_note: semitone = (to_note + 12) - from_note else: semitone = 0 if semitone % 2 == 0: return int(semitone / 2) else: return semitone / 2 def stepOperations(given_note, tones): semitone = int(tones * 2) results = given_note + semitone if results > 11: while results > 11: results -= 12 elif results < 0: while results < 0: results += 12 return results def buildString(numeric_open_note, frets=20): frets = frets + 1 # Adding the open note. string = [] for fret in range(frets): string.append(stepOperations(numeric_open_note, fret/2)) # string.extend(RootNote().replacePositionNotes([stepOperations(numeric_open_note, fret/2)])) return string e_string = buildString(4) a_string = buildString(9) d_string = buildString(2) g_string = buildString(7) strings = [ e_string, a_string, d_string, g_string ] def findFretPosition(string, note): return [x[0] for x in enumerate(string) if x[1] == 0] for string in strings: fret_positions = findFretPosition(string, 0) print(string) print(fret_positions) print('--------------------') def majorChordTab(note): text = "G |-----0------|\nD |-----2------|\nA |-----3------|\nE |------------|" return text # eS = # text = """ # G |-----0------| # D |-----2------| # A |-----3------| # E |------------| # """ G |------------| D |--------5---| A |-----7------| E |--8---------| [12, 10, 8, 7, ] # print (text) # import json # import math # import numpy as np # from root import RootNote # from pprint import pprint # class TabGenerator(object): # """ Generate Tabs. # """ # def __init__(self): # # -------------------------------------------------------------------------- # # ------------------------------------------------------------------------------ # def main(): # D_minor = RootNote("c#").major # TabGenerator(D_minor).simple() # # ------------------------------------------------------------------------------ # if __name__ == '__main__': # main() ```
{ "source": "josemarimanio/django-adminlte2-templates", "score": 2 }
#### File: django-adminlte2-templates/adminlte2_templates/core.py ```python from django.conf import settings from adminlte2_templates import constants try: # Python 3 from urllib.parse import urlencode except ImportError: # Python 2.7 from urllib import urlencode try: # Supports >=Django 2.0 from django.shortcuts import reverse except ImportError: # Supports <=Django 1.1 from django.core.urlresolvers import reverse def get_settings(variable, django_setting=None): """ Get the settings variable from Django ``settings``. If no settings variable is found, get the default value from the adminlte2_templates ``constants`` module. :param variable: Settings variable name :type variable: str :param django_setting: Django settings variable to look for before trying to get ``variable`` :type django_setting: str, optional :return: Settings value """ return getattr(settings, django_setting if django_setting else variable, getattr(constants, variable, None)) ``` #### File: tests/paginator/tests.py ```python from django.contrib.sites.models import Site from django.template.exceptions import TemplateSyntaxError from django.test import Client from django.test import TestCase from adminlte2_templates import constants as const from adminlte2_templates.core import reverse class PaginatorTestCase(TestCase): """ Test cases for {% paginator %} template tag Testing these cases: * Sanity check * 'adjacent_pages', 'align', 'no_margin' params * Invalid 'adjacent_pages', 'align' param values """ URL_PATTERN_INDEX = 'paginator:index' URL_PATTERN_INVALID_ADJACENT_PAGES = 'paginator:invalid_adjacent_pages' URL_PATTERN_INVALID_ALIGN = 'paginator:invalid_align' def setUp(self): self.client = Client() for n in range(5): n = str(n) Site.objects.create(domain=n, name=n) def get_response_page(self, page): return self.client.get(reverse(self.URL_PATTERN_INDEX) + '?page=' + str(page)) def get_response_invalid_adjacent_pages(self): return self.client.get(reverse(self.URL_PATTERN_INVALID_ADJACENT_PAGES)) def get_response_invalid_align(self): return self.client.get(reverse(self.URL_PATTERN_INVALID_ALIGN)) # # Sanity check # def test_template_used(self): self.assertTemplateUsed(self.get_response_page(1), const.PAGINATOR_TEMPLATE_NAME) def test_response_page_1(self): self.assertContains(self.get_response_page(1), '''<div id="check"><nav> <ul id="pagination" class="pagination"> <li class="active"><a href="?page=1">1</a></li> <li><a href="?page=2">2</a></li> <li><a href="?page=3">3</a></li> <li><a href="?page=2"><i class="fa fa-caret-right"></i></a></li> <li><a href="?page=last"><small>Last</small></a></li> </ul> </nav></div>''', html=True) def test_response_page_2(self): self.assertContains(self.get_response_page(2), '''<div id="check"><nav> <ul id="pagination" class="pagination"> <li><a href="?page=1"><small>First</small></a></li> <li><a href="?page=1"><i class="fa fa-caret-left"></i></a></li> <li><a href="?page=1">1</a></li> <li class="active"><a href="?page=2">2</a></li> <li><a href="?page=3">3</a></li> <li><a href="?page=4">4</a></li> <li><a href="?page=3"><i class="fa fa-caret-right"></i></a></li> <li><a href="?page=last"><small>Last</small></a></li> </ul> </nav></div>''', html=True) def test_response_page_3(self): self.assertContains(self.get_response_page(3), '''<div id="check"><nav> <ul id="pagination" class="pagination"> <li><a href="?page=1"><small>First</small></a></li> <li><a href="?page=2"><i class="fa fa-caret-left"></i></a></li> <li><a href="?page=1">1</a></li> <li><a href="?page=2">2</a></li> <li class="active"><a href="?page=3">3</a></li> <li><a href="?page=4">4</a></li> <li><a href="?page=5">5</a></li> <li><a href="?page=4"><i class="fa fa-caret-right"></i></a></li> <li><a href="?page=last"><small>Last</small></a></li> </ul> </nav></div>''', html=True) def test_response_page_4(self): self.assertContains(self.get_response_page(4), '''<div id="check"><nav> <ul id="pagination" class="pagination"> <li><a href="?page=1"><small>First</small></a></li> <li><a href="?page=3"><i class="fa fa-caret-left"></i></a></li> <li><a href="?page=2">2</a></li> <li><a href="?page=3">3</a></li> <li class="active"><a href="?page=4">4</a></li> <li><a href="?page=5">5</a></li> <li><a href="?page=6">6</a></li> <li><a href="?page=5"><i class="fa fa-caret-right"></i></a></li> <li><a href="?page=last"><small>Last</small></a></li> </ul> </nav></div>''', html=True) def test_response_page_last(self): self.assertContains(self.get_response_page('last'), '''<div id="check"><nav> <ul id="pagination" class="pagination"> <li><a href="?page=1"><small>First</small></a></li> <li><a href="?page=5"><i class="fa fa-caret-left"></i></a></li> <li><a href="?page=4">4</a></li> <li><a href="?page=5">5</a></li> <li class="active"><a href="?page=6">6</a></li> </ul> </nav></div>''', html=True) # # 'adjacent_pages' parameter to 3 # def test_param_adjacent_pages_page_1(self): self.assertContains(self.get_response_page(1), '''<div id="param-adjacent-pages"><nav> <ul id="pagination" class="pagination"> <li class="active"><a href="?page=1">1</a></li> <li><a href="?page=2">2</a></li> <li><a href="?page=3">3</a></li> <li><a href="?page=4">4</a></li> <li><a href="?page=2"><i class="fa fa-caret-right"></i></a></li> <li><a href="?page=last"><small>Last</small></a></li> </ul> </nav></div>''', html=True) def test_param_adjacent_pages_page_2(self): self.assertContains(self.get_response_page(2), '''<div id="param-adjacent-pages"><nav> <ul id="pagination" class="pagination"> <li><a href="?page=1"><small>First</small></a></li> <li><a href="?page=1"><i class="fa fa-caret-left"></i></a></li> <li><a href="?page=1">1</a></li> <li class="active"><a href="?page=2">2</a></li> <li><a href="?page=3">3</a></li> <li><a href="?page=4">4</a></li> <li><a href="?page=5">5</a></li> <li><a href="?page=3"><i class="fa fa-caret-right"></i></a></li> <li><a href="?page=last"><small>Last</small></a></li> </ul> </nav></div>''', html=True) def test_param_adjacent_pages_page_3(self): self.assertContains(self.get_response_page(3), '''<div id="param-adjacent-pages"><nav> <ul id="pagination" class="pagination"> <li><a href="?page=1"><small>First</small></a></li> <li><a href="?page=2"><i class="fa fa-caret-left"></i></a></li> <li><a href="?page=1">1</a></li> <li><a href="?page=2">2</a></li> <li class="active"><a href="?page=3">3</a></li> <li><a href="?page=4">4</a></li> <li><a href="?page=5">5</a></li> <li><a href="?page=6">6</a></li> <li><a href="?page=4"><i class="fa fa-caret-right"></i></a></li> <li><a href="?page=last"><small>Last</small></a></li> </ul> </nav></div>''', html=True) def test_param_adjacent_pages_page_4(self): self.assertContains(self.get_response_page(4), '''<div id="param-adjacent-pages"><nav> <ul id="pagination" class="pagination"> <li><a href="?page=1"><small>First</small></a></li> <li><a href="?page=3"><i class="fa fa-caret-left"></i></a></li> <li><a href="?page=1">1</a></li> <li><a href="?page=2">2</a></li> <li><a href="?page=3">3</a></li> <li class="active"><a href="?page=4">4</a></li> <li><a href="?page=5">5</a></li> <li><a href="?page=6">6</a></li> <li><a href="?page=5"><i class="fa fa-caret-right"></i></a></li> <li><a href="?page=last"><small>Last</small></a></li> </ul> </nav></div>''', html=True) def test_param_adjacent_pages_last(self): self.assertContains(self.get_response_page('last'), '''<div id="param-adjacent-pages"><nav> <ul id="pagination" class="pagination"> <li><a href="?page=1"><small>First</small></a></li> <li><a href="?page=5"><i class="fa fa-caret-left"></i></a></li> <li><a href="?page=3">3</a></li> <li><a href="?page=4">4</a></li> <li><a href="?page=5">5</a></li> <li class="active"><a href="?page=6">6</a></li> </ul> </nav></div>''', html=True) # # 'align' parameter choices # def test_param_align_initial(self): self.assertContains(self.get_response_page(1), '''<div id="param-align-initial"><nav> <ul id="pagination" class="pagination"> <li class="active"><a href="?page=1">1</a></li> <li><a href="?page=2">2</a></li> <li><a href="?page=3">3</a></li> <li><a href="?page=2"><i class="fa fa-caret-right"></i></a></li> <li><a href="?page=last"><small>Last</small></a></li> </ul> </nav></div>''', html=True) def test_param_align_center(self): self.assertContains(self.get_response_page(1), '''<div id="param-align-center"><nav class="text-center"> <ul id="pagination" class="pagination"> <li class="active"><a href="?page=1">1</a></li> <li><a href="?page=2">2</a></li> <li><a href="?page=3">3</a></li> <li><a href="?page=2"><i class="fa fa-caret-right"></i></a></li> <li><a href="?page=last"><small>Last</small></a></li> </ul> </nav></div>''', html=True) def test_param_align_left(self): self.assertContains(self.get_response_page(1), '''<div id="param-align-left"><nav class="pull-left"> <ul id="pagination" class="pagination"> <li class="active"><a href="?page=1">1</a></li> <li><a href="?page=2">2</a></li> <li><a href="?page=3">3</a></li> <li><a href="?page=2"><i class="fa fa-caret-right"></i></a></li> <li><a href="?page=last"><small>Last</small></a></li> </ul> </nav></div>''', html=True) def test_param_align_right(self): self.assertContains(self.get_response_page(1), '''<div id="param-align-right"><nav class="pull-right"> <ul id="pagination" class="pagination"> <li class="active"><a href="?page=1">1</a></li> <li><a href="?page=2">2</a></li> <li><a href="?page=3">3</a></li> <li><a href="?page=2"><i class="fa fa-caret-right"></i></a></li> <li><a href="?page=last"><small>Last</small></a></li> </ul> </nav></div>''', html=True) # # 'no_margin' parameter # def test_param_no_margin_false(self): self.assertContains(self.get_response_page(1), '''<div id="param-no-margin-false"><nav> <ul id="pagination" class="pagination"> <li class="active"><a href="?page=1">1</a></li> <li><a href="?page=2">2</a></li> <li><a href="?page=3">3</a></li> <li><a href="?page=2"><i class="fa fa-caret-right"></i></a></li> <li><a href="?page=last"><small>Last</small></a></li> </ul> </nav></div>''', html=True) def test_param_no_margin_true(self): self.assertContains(self.get_response_page(1), '''<div id="param-no-margin-true"><nav> <ul id="pagination" class="pagination no-margin"> <li class="active"><a href="?page=1">1</a></li> <li><a href="?page=2">2</a></li> <li><a href="?page=3">3</a></li> <li><a href="?page=2"><i class="fa fa-caret-right"></i></a></li> <li><a href="?page=last"><small>Last</small></a></li> </ul> </nav></div>''', html=True) # # Test all parameters # def test_param_all(self): self.assertContains(self.get_response_page(1), '''<div id="all-params"><nav> <ul id="pagination" class="pagination"> <li class="active"><a href="?page=1">1</a></li> <li><a href="?page=2">2</a></li> <li><a href="?page=3">3</a></li> <li><a href="?page=2"><i class="fa fa-caret-right"></i></a></li> <li><a href="?page=last"><small>Last</small></a></li> </ul> </nav></div>''', html=True) # # Invalid parameter # def test_invalid_param_adjacent_pages(self): self.assertRaises(TypeError, self.get_response_invalid_adjacent_pages) def test_invalid_param_align(self): self.assertRaises(TemplateSyntaxError, self.get_response_invalid_align) ```
{ "source": "josemarin7/Python-OpenCV-Recognition-via-Camera", "score": 3 }
#### File: camera-opencv/02-image_process/canny_edge_detect.py ```python import cv2 import sys import numpy as np def nothing(x): pass cv2.namedWindow('canny_demo') cv2.createTrackbar('threshold', 'canny_demo', 0, 100, nothing) cv2.createTrackbar('increase_ratio', 'canny_demo', 0, 5, nothing) try: imagePath = sys.argv[1] image = cv2.imread(imagePath) except: image = cv2.imread("lena512rgb.png") while True: threshold = cv2.getTrackbarPos('threshold', 'canny_demo') ratio = cv2.getTrackbarPos('increase_ratio', 'canny_demo') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) edges = cv2.GaussianBlur(gray, (5, 5), 0) edges = cv2.Canny(edges, threshold, threshold * ratio, apertureSize=3) cv2.imshow('canny_demo', edges) if cv2.waitKey(1) & 0xFF == ord("q"): cv2.imwrite("canny_demo.png", edges) break cv2.destroyAllWindows() ``` #### File: camera-python/05-streaming/app-route.py ```python from flask import Flask, render_template, Response app = Flask(__name__) @app.route("/") def index(): return render_template('link.html') @app.route("/foo") def foo(): extns = ['Flask', 'Jinja2', 'Awesome'] return render_template('bar.html', extns=extns) if __name__ == "__main__": app.run(host='0.0.0.0', port=80, debug=True) ``` #### File: camera-python/05-streaming/camera_pi.py ```python import cv2 class Camera(object): def __init__(self): if cv2.__version__.startswith('2'): PROP_FRAME_WIDTH = cv2.cv.CV_CAP_PROP_FRAME_WIDTH PROP_FRAME_HEIGHT = cv2.cv.CV_CAP_PROP_FRAME_HEIGHT elif cv2.__version__.startswith('3'): PROP_FRAME_WIDTH = cv2.CAP_PROP_FRAME_WIDTH PROP_FRAME_HEIGHT = cv2.CAP_PROP_FRAME_HEIGHT self.video = cv2.VideoCapture(0) #self.video = cv2.VideoCapture(1) #self.video.set(PROP_FRAME_WIDTH, 640) #self.video.set(PROP_FRAME_HEIGHT, 480) self.video.set(PROP_FRAME_WIDTH, 320) self.video.set(PROP_FRAME_HEIGHT, 240) def __del__(self): self.video.release() def get_frame(self): success, image = self.video.read() ret, jpeg = cv2.imencode('.jpg', image) return jpeg.tostring() ```
{ "source": "josemarioqv/FS0741-DynamicalSystems-FractalGeometry", "score": 3 }
#### File: FS0741-DynamicalSystems-FractalGeometry/Homework#2/script.py ```python import pandas as pd # Functions Definitions def F(x): return x**2 - 2 def G(x): return x**2 - 2.0001 def D(x): return (2*x) % 1 # Dict with functions function = {'F': F, 'G': G, 'D': D} # Main script seeds = pd.read_csv('seeds.csv') columns = list(seeds) for column in columns: orbit = pd.DataFrame(columns=seeds[column]) for seed in seeds[column]: this_orbit = [seed] for iteration in range(99): this_orbit.append(function[column](this_orbit[-1])) orbit[seed] = pd.Series(this_orbit).values orbit.to_csv(column+'.csv') ``` #### File: FS0741-DynamicalSystems-FractalGeometry/Second_Exam/fern.py ```python import numpy as np import random import pyglet class Fern(): def __init__(self): self.W = np.array([[[0., 0.], [0., 0.4]], [[0.85, 0.04], [-0.04, 0.85]], [[0.2, -0.26], [0.23, 0.22]], [[-0.15, 0.28], [0.25, 0.24]]]) self.B = np.array([[0., 0.01], [1.6, 0.85], [1.6, 0.07], [0.44, 0.07]]) self.X = np.array([0.5, 0.6]) def update(self): i = random.choices(population=[0, 1, 2, 3], weights=[0.01, 0.85, 0.07, 0.07])[0] self.X = np.dot(self.W[i], self.X) + self.B[i] def draw(self): point = self.X*35 point = tuple(point.astype(int)) print(point) pyglet.graphics.draw(1, pyglet.gl.GL_POINTS, ('v2i', point), ('c3B', (40, 200, 40))) class Window(pyglet.window.Window): def __init__(self): # pyglet window initialization super().__init__() self.set_size(400, 400) pyglet.clock.schedule_interval(self.update, 0.001) # initialization self.fern = Fern() def on_draw(self): self.fern.draw() def update(self, dt): self.fern.update() pass if __name__ == '__main__': window = Window() pyglet.app.run() ``` #### File: FS0741-DynamicalSystems-FractalGeometry/Second_Exam/tree.py ```python import numpy as np import random import pyglet class Tree(): def __init__(self): self.W = np.array([[[0., 0.], [0., 0.5]], [[0.42, -0.42], [0.42, 0.42]], [[0.42, 0.42], [-0.42, 0.42]]]) self.B = np.array([[0., 0.], [0., 0.2], [0., 0.2]]) self.X = np.array([2, 2]) def update(self): i = random.choices(population=[0, 1, 2], weights=[0.05, 0.4, 0.4])[0] self.X = np.dot(self.W[i], self.X) + self.B[i] def draw(self): point = self.X*800 point = tuple(point.astype(int)) print(point) pyglet.graphics.draw(1, pyglet.gl.GL_POINTS, ('v2i', point), ('c3B', (40, 200, 40))) class Window(pyglet.window.Window): def __init__(self): # pyglet window initialization super().__init__() self.set_size(400, 400) pyglet.clock.schedule_interval(self.update, 0.001) # initialization self.tree = Tree() def on_draw(self): self.tree.draw() def update(self, dt): self.tree.update() pass if __name__ == '__main__': window = Window() pyglet.app.run() ```
{ "source": "jose-marquez89/cryptovest", "score": 3 }
#### File: jose-marquez89/cryptovest/db_model.py ```python import os import pymysql from dotenv import load_dotenv from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import relationship from sqlalchemy import Column, BigInteger, String, Float, ForeignKey def load_engine(): """Create the database engine""" load_dotenv() DB_UNAME = os.environ["DB_UNAME"] DB_PWORD = os.environ["DB_PWORD"] DB_HOST = os.environ["DB_HOST"] DB_NAME = os.environ["DB_NAME"] engine = create_engine(f'mysql+pymysql://{DB_UNAME}:{DB_PWORD}@{DB_HOST}/{DB_NAME}') return engine Base = declarative_base() class User(Base): __tablename__ = 'user' id = Column(BigInteger, primary_key=True, nullable=False) name = Column(String(32), unique=True) password = Column(String(32)) transaction = relationship("Ledger") def __repr__(self): return "<User(name={}, password={}>".format(self.name, self.password) class Ledger(Base): __tablename__ = 'ledger' # TODO: add standardized columns based on coinbase csv id = Column(BigInteger, primary_key=True, nullable=False) source = Column(String(20)) asset = Column(String(20)) txn_type = Column(String(20)) amount = Column(Float) price_at_txn = Column(Float) user_id = Column(BigInteger, ForeignKey('user.id'), nullable=False) def __repr__(self): return "<Ledger(asset={}, amount={}, user_id={})>".format(self.asset, self.amount,self.user_id) if __name__ == "__main__": engine = load_engine() Base.metadata.create_all(engine) ``` #### File: cryptovest/pages/index.py ```python import flask import dash_bootstrap_components as dbc import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output from app import app from db_users import get_user_id details = dbc.Col( id='index-action-call', md=4 ) photo = dbc.Col( [ html.Img(src='assets/nick-chong-charts.jpg', className='img-fluid'), html.P( children=[ "Photo Credit: ", html.A("<NAME>", href="https://twitter.com/n1ckchong?utm_medium=referral&utm_source=unsplash") ] ) ], md=8 ) layout = dbc.Row([details, photo]) @app.callback(Output('index-action-call', 'children'), Input('index-action-call', 'children')) def set_link(_): user = flask.request.cookies.get('logged-in-user') if user: action = [ html.H3("Keep Track Of Your Crypto Investments"), html.P("Update your ledger to get your latest portfolio analysis."), dcc.Link(dbc.Button('Get Started', color='primary'), href="#") ] else: action = [ html.H3("Keep Track Of Your Crypto Investments"), html.P("Create an account and start tracking your crypto transactions free of charge."), dcc.Link(dbc.Button('Create Account', color='primary'), href="/new-account") ] return action ```
{ "source": "jose-marquez89/DS-Unit-3-Sprint-2-SQL-and-Databases", "score": 3 }
#### File: module3-nosql-and-document-oriented-databases/mongodb/rpgsql_to_mongo.py ```python import os import urllib import sqlite3 import pprint import logging import pymongo from dotenv import load_dotenv log_format = "%(asctime)s - %(levelname)s %(message)s" logging.basicConfig(level=logging.DEBUG, format=log_format) logging.disable(logging.CRITICAL) load_dotenv() escape = urllib.parse.quote_plus MONGO_USER = os.getenv("MONGO_USER", default="OOPS") MONGO_PASSWORD = os.getenv("MONGO_PASSWORD", default="<PASSWORD>") MONGO_CLUSTER = os.getenv("MONGO_CLUSTER_NAME", default="OOPS") # Mongo connection_uri = f"mongodb+srv://{MONGO_USER}:{escape(MONGO_PASSWORD)}"\ f"@{MONGO_CLUSTER}.mongodb.net/test?retryWrites=true"\ "&w=majority" client = pymongo.MongoClient(connection_uri) mongoDB = client.rpg logging.info("Connection @: " + connection_uri) # SQLite db_dirname = "module1-introduction-to-sql" db_filename = 'rpg_db.sqlite3' db_path = os.path.join(os.path.dirname(__file__), "..", "..", db_dirname, db_filename) logging.info(os.path.abspath(db_path)) sqlite_connection = sqlite3.connect(db_path) cursor = sqlite_connection.cursor() def table_to_list(table_name, engine): """ Take sqlite table and return a mongoDB bulk insertable list table_name: name of table to acquire from sqlite db engine: cursor from sqlite3 connection """ query = f""" SELECT * FROM {table_name} """ result = engine.execute(query).fetchall() column_headers = list(map(lambda x: x[0], engine.description)) insertable_list = [] for tup in result: document = {} for i in range(len(tup)): document[column_headers[i]] = tup[i] insertable_list.append(document) return insertable_list table_query = """ SELECT name FROM sqlite_master WHERE type ='table' AND name NOT LIKE 'sqlite_%'; """ tables = cursor.execute(table_query).fetchall() sqlite_tables = [] for name in tables: sqlite_tables.append(name[0]) if __name__ == "__main__": for table in sqlite_tables: if table_to_list(table, cursor) == []: logging.info(f"Empty list @ table {table}") else: logging.info(f"Inserting {table}...") collection = mongoDB[table] collection.insert_many(table_to_list(table, cursor)) logging.info("Complete.") ```
{ "source": "jose-marquez89/lambdata-josemarquez89", "score": 3 }
#### File: lambdata-josemarquez89/jose_lambdata/dftools.py ```python import pandas as pd from sklearn.model_selection import train_test_split from scipy.stats import chi2_contingency as csc from IPython.display import display class DataFrameOperator: """Perform pandas.DataFrame operations""" def __init__(self, dataframe): self.dataframe = dataframe def decompose_time(self, feature): """Splits a datetime column into year, month and day, adds these columns directly to dataframe""" if self.dataframe[feature].dtype != '<M8[ns]': try: self.dataframe[feature] = pd.to_datetime( self.dataframe[feature] ) except TypeError: print("Error: Not a recognized datetime type") self.dataframe['year'] = self.dataframe[feature].dt.year self.dataframe['month'] = self.dataframe[feature].dt.month self.dataframe['day'] = self.dataframe[feature].dt.day return self.dataframe def auto_split(self): """ Automatically splits into a 64% train, 16% validate and 20% test set, returns train, val, test """ df = self.dataframe.copy() train, test = train_test_split(df, test_size=0.2, random_state=42) train, val = train_test_split(train, test_size=0.2, random_state=42) return train, val, test def get_chi2(dataframe, f1, f2): """Displays a contingency table and prints a chi square report""" observed = pd.crosstab(dataframe[f1], dataframe[f2]) cs, pv, dof, expected = csc(observed) display(observed) print(f"chi^2: {cs}") print(f"p-value: {pv}") print(f"dof: {dof}") if __name__ == "__main__": test_df = pd.read_csv('test_data.csv') op = DataFrameOperator(test_df) train, val, test = op.auto_split() print(train.shape, val.shape, test.shape, '\n') print("DATAFRAME BEFORE DECOMPOSE:\n") print(test_df.head(), '\n') print("DATAFRAME AFTER DECOMPOSE:\n") test_df = op.decompose_time('date_recorded') print(test_df.head()) ```
{ "source": "jose-marquez89/naive-bayes-from-scratch", "score": 3 }
#### File: naive-bayes-from-scratch/nayes/nayes.py ```python import numpy as np class MultiNayes: """ Multinomial Naive Bayes algorithm. Paramaters ---------- alpha : float, default=1.0 Smoothing paramater, can be set to smaller values (0 for no smoothing) """ def __init__(self, alpha=1.0): self.alpha = alpha self.fitted = False def label_binarizer(self, y, classes=None, bin_labels=None): """convert labels into an array of shape (length of y, number of classes). This will assist in getting the log priors and probabilities""" if classes is None: classes = np.unique(y) bin_labels = np.zeros((y.shape[0], classes.shape[0])) self.classes = classes self.bin_labels = bin_labels if bin_labels.shape[0] < 1: return None x = np.where(classes == y[0]) bin_labels[0][x] = 1 return self.label_binarizer(y[1:], classes, bin_labels[1:]) def fit(self, X, y): # if X is not np.ndarray, convert from csr with `toarray()` if type(X) is not np.ndarray: X = X.toarray() self.label_binarizer(y) n_classes = self.classes.shape[0] n_features = X.shape[1] # initialize counter arrays self.class_count = np.zeros(n_classes) self.feature_count = np.zeros((n_classes, n_features)) # count classes and features by getting # dot product of transposed binary labels # they are automatically separated into their # appropriate arrays self.feature_count += np.dot(self.bin_labels.T, X) self.class_count += self.bin_labels.sum(axis=0) # add smoothing if self.alpha > 0.0: self.feature_count += self.alpha smoothed_class_count = self.feature_count.sum(axis=1) # get conditional log probabilities self.feat_log_probs = (np.log(self.feature_count) - np.log(smoothed_class_count.reshape(-1, 1))) else: print( f"Alpha is {self.alpha}. A value this small will cause " "result in errors when feature count is 0" ) self.feat_log_probs = np.log( self.feature_count / self.feature_count .sum(axis=1) .reshape(-1, 1) ) # get log priors self.class_log_priors = (np.log(self.class_count) - np.log(self.class_count .sum(axis=0) .reshape(-1, 1))) self.fitted = True def predict(self, X): """Predict target from features of X""" # check if model has fit data if not self.fitted: print("The classifier has not yet " "been fit. Not executing predict") if type(X) is not np.ndarray: X = X.toarray() scores = np.dot(X, self.feat_log_probs.T) + self.class_log_priors predictions = self.classes[np.argmax(scores, axis=1)] return predictions def accuracy(self, y_pred, y): points = (y_pred == y).astype(int) score = points.sum() / points.shape[0] return score if __name__ == "__main__": clf = MultiNayes() X_train = np.array([[1, 2, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0], [0, 0, 2, 1, 0, 0], [2, 3, 0, 0, 0, 0], [0, 0, 0, 0, 3, 1], [0, 0, 0, 0, 1, 2]]) y_train = np.array([1, 2, 2, 1, 3, 3]) X_test = np.array([[1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 2, 3]]) clf = MultiNayes() clf.fit(X_train, y_train) y_pred = clf.predict(X_test) print(y_pred) ```
{ "source": "jose-marquez89/pbi-transplant", "score": 3 }
#### File: jose-marquez89/pbi-transplant/tools.py ```python import os import json import sys def transplant_bookmarks(source, target): """Copy over bookmarks""" source_config = json.loads(source['config']) target_config = json.loads(target['config']) source_bookmarks = source_config['bookmarks'] target_config['bookmarks'] = source_bookmarks target['config'] = json.dumps(target_config) return target # TODO: Zip functionality if __name__ == "__main__": with open(source, 'rb') as s: source_json = json.load(s) with open(target, 'rb') as t: target_json = json.load(s) output = transplant_bookmarks(source_json, target_json) with open("CopiedLayouy", "wb") as f: json.dump(output, f) ```
{ "source": "jose-marquez89/sftp-azure-poc", "score": 3 }
#### File: jose-marquez89/sftp-azure-poc/connection.py ```python import os import pysftp from azure.storage.blob import BlobClient CONTAINER_NAME = os.environ["CONTAINER"] CONNECTION = os.environ["AzureWebJobsStorage"] HOST_NAME = os.environ["HOST_NAME"] USER_NAME = os.environ["USER_NAME"] PASSWORD = os.environ["PASSWORD"] cnopts = pysftp.CnOpts() cnopts.hostkeys = None def read_and_upload(): with pysftp.Connection(HOST_NAME, username=USER_NAME, password=PASSWORD, cnopts=cnopts) as sftp: with sftp.open("readme.txt", "r") as readme: # upload blob blob_conn = BlobClient.from_connection_string( conn_str=CONNECTION, container_name=CONTAINER_NAME, blob_name="demo-sftp/sftp_readme.txt" ) blob_conn.upload_blob(readme, overwrite=True) with sftp.cd('pub/example'): for file in sftp.listdir(): blob_conn = BlobClient.from_connection_string( conn_str=CONNECTION, container_name=CONTAINER_NAME, blob_name=f"demo-sftp-images/{file}" ) with sftp.open(file) as image_file: blob_conn.upload_blob(image_file, overwrite=True) ```
{ "source": "jose-marquez89/tech-job-landscape", "score": 3 }
#### File: tech-job-landscape/python_scrape/test_functions.py ```python import unittest import scrape class TestScrapeFunctions(unittest.TestCase): def test_build_url(self): url = scrape.build_url("indeed", "/jobs?q=Data+Scientist&l=Texas&start=10", join_next=True) expected = ("https://www.indeed.com/" "jobs?q=Data+Scientist&l=Texas&start=10") url2 = scrape.build_url("indeed", job="Data Scientist", state="Texas") expected2 = ("https://www.indeed.com/" "jobs?q=Data%20Scientist&l=Texas&start=0") self.assertEqual(url, expected) self.assertEqual(url2, expected2) def test_fetch_page(self): fpl = scrape.fetch_page_listings job_data = fpl("indeed", job="Data Scientist", state="Texas") self.assertNotEqual(len(job_data), 0) self.assertIsInstance(job_data, tuple) self.assertIsInstance(job_data[0][0], dict) self.assertIsInstance(job_data[1], str) job_data = fpl("indeed", next_page="/jobs?q=Data+Scientist" "&l=Texas&start=10") if __name__ == '__main__': unittest.main() ```
{ "source": "jose-marquez89/twitoff", "score": 3 }
#### File: twitoff/TwitOff/basilica_service.py ```python import os import basilica from dotenv import load_dotenv load_dotenv() BASILICA_KEY = os.getenv("BASILICA_KEY") def basiliconn(): connection = basilica.Connection(BASILICA_KEY) return connection if __name__ == "__main__": sentences = ["Hello world", "What's up"] embeddings = [ i for i in basiliconn().embed_sentences(sentences, model="twitter") ] both = list(zip(sentences, embeddings)) def to_dict(zipped): new = {} for s, e in zipped: new[s] = e return new print(to_dict(both)) ``` #### File: TwitOff/routes/home_routes.py ```python from flask import Blueprint, render_template, jsonify from TwitOff.models import db home_routes = Blueprint("home_routes", __name__) @home_routes.route("/") def index(): return render_template("home.html") @home_routes.route("/reset") def reset_db(): db.drop_all() db.create_all() return jsonify({"message": "DB RESET OK"}) ``` #### File: twitoff/TwitOff/twitter_service.py ```python import os from dotenv import load_dotenv import tweepy load_dotenv() TWITTER_API_KEY = os.getenv("TWITTER_API_KEY") TWITTER_API_SECRET = os.getenv("TWITTER_API_SECRET") TWITTER_ACCESS_TOKEN = os.getenv("TWITTER_ACCESS_TOKEN") TWITTER_ACCESS_TOKEN_SECRET = os.getenv("TWITTER_ACCESS_TOKEN_SECRET") def twitter_api(): auth = tweepy.OAuthHandler(TWITTER_API_KEY, TWITTER_API_SECRET) auth.set_access_token(TWITTER_ACCESS_TOKEN, TWITTER_ACCESS_TOKEN_SECRET) api = tweepy.API(auth) return api if __name__ == "__main__": api = twitter_api() user = api.get_user("tferriss") print("USER", user) print(user.screen_name) print(user.name) print(user.followers_count) ```