metadata
dict
text
stringlengths
60
3.49M
{ "source": "JPFrancoia/tpb-lite", "score": 3 }
#### File: tpblite/models/torrents.py ```python from typing import Optional import re import unicodedata import bs4 as BeautifulSoup import requests from .utils import headers # TODO: write better comments def fileSizeStrToInt(size_str: str) -> int: """Converts file size given in *iB format to bytes integer""" unit_dict = {"KiB": (2 ** 10), "MiB": (2 ** 20), "GiB": (2 ** 30), "TiB": (2 ** 40)} try: num = float(size_str[:-3]) unit = size_str[-3:] return int(num * unit_dict[unit]) except Exception as e: raise AttributeError( "Cannot determine filesize: {0}, error: {1}".format(size_str, e) ) class Torrent: """ Abstract class to contain info about torrent magnet link, file size, number of seeds, number of leeches etc. """ # TODO: type hint html_row, it's a BeautifulSoup object def __init__(self, html_row): self._html_row = html_row self.upload_date, self.filesize, self.byte_size, self.uploader = ( self._getFileInfo() ) # TODO: type hint self._info: Optional[str] = None def __str__(self) -> str: return "{0}, S: {1}, L: {2}, {3}".format( self.title, self.seeds, self.leeches, self.filesize ) def __repr__(self) -> str: return "<Torrent object: {}>".format(self.title) @property def url(self) -> str: return self._html_row.find("a", class_="detLink")["href"] @property def title(self) -> str: return self._html_row.find("a", class_="detLink").string @property def magnetlink(self) -> str: tag = self._html_row.find("a", href=(re.compile("magnet"))) link = tag.get("href") return link @property def seeds(self) -> int: taglist = self._html_row.find_all("td", align="right") return int(taglist[0].string) @property def leeches(self) -> int: taglist = self._html_row.find_all("td", align="right") return int(taglist[1].string) # TODO: handle exceptions if request fails @property def info(self) -> str: if self._info is None: request = requests.get(str(self.url), headers=headers()) soup = BeautifulSoup.BeautifulSoup(request.text, features="html.parser") self._info = soup.find("div", {"class": "nfo"}).text return self._info def _getFileInfo(self): text = self._html_row.find("font", class_="detDesc").get_text() t = text.split(",") uptime = unicodedata.normalize("NFKD", t[0].replace("Uploaded ", "").strip()) size = unicodedata.normalize("NFKD", t[1].replace("Size ", "").strip()) byte_size = fileSizeStrToInt(size) uploader = unicodedata.normalize("NFKD", t[2].replace("ULed by ", "").strip()) return uptime, size, byte_size, uploader class Torrents: """ Torrent object, takes query response and parses into torrent list or dict. Has methods to select items from torrent list. """ def __init__(self, html_source): self._html_source = html_source self.list = self._createTorrentList() def __str__(self): return "Torrents object: {} torrents".format(len(self.list)) def __repr__(self): return "<Torrents object: {} torrents>".format(len(self.list)) def __iter__(self): return iter(self.list) def __len__(self): return len(self.list) def __getitem__(self, index): return self.list[index] def _createTorrentList(self): soup = BeautifulSoup.BeautifulSoup(self._html_source, features="html.parser") if soup.body is None: raise ConnectionError("Could not determine torrents (empty html body)") rows = soup.body.find_all("tr") torrents = [] for row in rows: if len(row.find_all("td", {"class": "vertTh"})) == 1: torrents.append(Torrent(row)) return torrents def getBestTorrent(self, min_seeds=30, min_filesize="1 GiB", max_filesize="4 GiB"): """Filters torrent list based on some constraints, then returns highest seeded torrent :param min_seeds (int): minimum seed number filter :param min_filesize (str): minimum filesize in XiB form, eg. GiB :param max_filesize (str): maximum filesize in XiB form, eg. GiB :return Torrent Object: Torrent with highest seed number, will return None if all are filtered out""" if not isinstance(min_filesize, int): min_filesize = fileSizeStrToInt(min_filesize) if not isinstance(max_filesize, int): max_filesize = fileSizeStrToInt(max_filesize) filtered_list = filter( lambda x: self._filterTorrent(x, min_seeds, min_filesize, max_filesize), self.list, ) sorted_list = sorted(filtered_list, key=lambda x: x.seeds, reverse=True) if len(sorted_list) > 0: return sorted_list[0] else: print("No torrents found given criteria") return None def _filterTorrent(self, torrent, min_seeds, min_filesize, max_filesize): if ( (torrent.seeds < min_seeds) or (torrent.byte_size < min_filesize) or (torrent.byte_size > max_filesize) ): return False else: return True ```
{ "source": "jpfreeley/performance_email_notification", "score": 2 }
#### File: jpfreeley/performance_email_notification/email_notifications.py ```python import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from perfreporter.data_manager import DataManager from report_builder import ReportBuilder class EmailNotification: def __init__(self, arguments): self.args = arguments self.data_manager = DataManager(arguments) self.report_builder = ReportBuilder() self.smtp_config = {'host': arguments['smpt_host'], 'port': arguments['smpt_port'], 'user': arguments['smpt_user'], 'password': arguments['<PASSWORD>']} def email_notification(self): tests_data, last_test_data, baseline, violation, compare_with_thresholds = self.data_manager.get_api_test_info() email_body, charts, date = self.report_builder.create_api_email_body(tests_data, last_test_data, baseline, self.args['comparison_metric'], violation, compare_with_thresholds) self.send_email(self.smtp_config, self.args['user_list'], email_body, charts, date) def ui_email_notification(self): tests_data, last_test_data = self.data_manager.get_ui_test_info() email_body, charts, date = self.report_builder.create_ui_email_body(tests_data, last_test_data) self.send_email(self.smtp_config, self.args['user_list'], email_body, charts, date) def send_email(self, smtp_config, user_list, email_body, charts, date): s = smtplib.SMTP_SSL(host=smtp_config['host'], port=int(smtp_config['port'])) s.ehlo() s.login(smtp_config['user'], smtp_config['password']) subject = "[" + str(self.args['notification_type']) + "] " subject += "Test results for \"" + str(self.args['test']) subject += "\". Users count: " + str(self.args['users']) + ". From " + str(date) + "." for user in user_list: if all(i in user for i in ["<mailto:", "|"]): user = user.split("|")[1].replace(">", "").replace("<", "") msg_root = MIMEMultipart('related') msg_root['Subject'] = subject msg_root['From'] = smtp_config['user'] msg_root['To'] = user msg_alternative = MIMEMultipart('alternative') msg_alternative.attach(MIMEText(email_body, 'html')) msg_root.attach(msg_alternative) for chart in charts: msg_root.attach(chart) s.sendmail(smtp_config['user'], user, msg_root.as_string()) s.quit() ```
{ "source": "jpfr/oss-fuzz", "score": 2 }
#### File: infra/cifuzz/docker.py ```python import os import sys # pylint: disable=wrong-import-position,import-error sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import utils BASE_BUILDER_TAG = 'gcr.io/oss-fuzz-base/base-builder' BASE_RUNNER_TAG = 'gcr.io/oss-fuzz-base/base-runner' MSAN_LIBS_BUILDER_TAG = 'gcr.io/oss-fuzz-base/msan-libs-builder' PROJECT_TAG_PREFIX = 'gcr.io/oss-fuzz/' # Default fuzz configuration. DEFAULT_ENGINE = 'libfuzzer' DEFAULT_ARCHITECTURE = 'x86_64' _DEFAULT_DOCKER_RUN_ARGS = [ '--cap-add', 'SYS_PTRACE', '-e', 'FUZZING_ENGINE=' + DEFAULT_ENGINE, '-e', 'ARCHITECTURE=' + DEFAULT_ARCHITECTURE, '-e', 'CIFUZZ=True' ] EXTERNAL_PROJECT_IMAGE = 'external-project' _DEFAULT_DOCKER_RUN_COMMAND = [ 'docker', 'run', '--rm', '--privileged', ] def get_project_image_name(project): """Returns the name of the project builder image for |project_name|.""" # TODO(ochang): We may need unique names to support parallel fuzzing. if project: return PROJECT_TAG_PREFIX + project return EXTERNAL_PROJECT_IMAGE def delete_images(images): """Deletes |images|.""" command = ['docker', 'rmi', '-f'] + images utils.execute(command) utils.execute(['docker', 'builder', 'prune', '-f']) def get_base_docker_run_args(workspace, sanitizer='address', language='c++'): """Returns arguments that should be passed to every invocation of 'docker run'.""" docker_args = _DEFAULT_DOCKER_RUN_ARGS.copy() docker_args += [ '-e', f'SANITIZER={sanitizer}', '-e', f'FUZZING_LANGUAGE={language}', '-e', 'OUT=' + workspace.out ] docker_container = utils.get_container_name() if docker_container: # Don't map specific volumes if in a docker container, it breaks when # running a sibling container. docker_args += ['--volumes-from', docker_container] else: docker_args += _get_args_mapping_host_path_to_container(workspace.workspace) return docker_args, docker_container def get_base_docker_run_command(workspace, sanitizer='address', language='c++'): """Returns part of the command that should be used everytime 'docker run' is invoked.""" docker_args, docker_container = get_base_docker_run_args( workspace, sanitizer, language) command = _DEFAULT_DOCKER_RUN_COMMAND.copy() + docker_args return command, docker_container def _get_args_mapping_host_path_to_container(host_path, container_path=None): """Get arguments to docker run that will map |host_path| a path on the host to a path in the container. If |container_path| is specified, that path is mapped to. If not, then |host_path| is mapped to itself in the container.""" # WARNING: Do not use this function when running in production (and # --volumes-from) is used for mapping volumes. It will break production. container_path = host_path if container_path is None else container_path return ['-v', f'{host_path}:{container_path}'] class Workspace: """Class representing the workspace directory.""" def __init__(self, config): self.workspace = config.workspace def initialize_dir(self, directory): # pylint: disable=no-self-use """Creates directory if it doesn't already exist, otherwise does nothing.""" os.makedirs(directory, exist_ok=True) @property def out(self): """The out directory used for storing the fuzzer build built by build_fuzzers.""" # Don't use 'out' because it needs to be used by artifacts. return os.path.join(self.workspace, 'build-out') @property def work(self): """The directory used as the work directory for the fuzzer build/run.""" return os.path.join(self.workspace, 'work') @property def artifacts(self): """The directory used to store artifacts for download by CI-system users.""" # This is hardcoded by a lot of clients, so we need to use this. return os.path.join(self.workspace, 'out', 'artifacts') @property def clusterfuzz_build(self): """The directory where builds from ClusterFuzz are stored.""" return os.path.join(self.workspace, 'cifuzz-prev-build') @property def clusterfuzz_coverage(self): """The directory where builds from ClusterFuzz are stored.""" return os.path.join(self.workspace, 'cifuzz-prev-coverage') @property def coverage_report(self): """The directory where coverage reports generated by cifuzz are put.""" return os.path.join(self.workspace, 'cifuzz-coverage') @property def corpora(self): """The directory where corpora from ClusterFuzz are stored.""" return os.path.join(self.workspace, 'cifuzz-corpus') ```
{ "source": "jpf/tmnt_wikipedia_bot", "score": 3 }
#### File: tmnt_wikipedia_bot/lib/images.py ```python import subprocess import sys from lib.constants import LOGO_PATH from lib.constants import CHROME_PATH from PIL import Image, ImageChops def getLogo(title: str, chrome=CHROME_PATH): title = title.replace(" ", "_") # TODO: Generate logo locally, stop hitting glench.com (sorry glench) chrome_cmd = ( f"{chrome} " "--headless " "--disable-gpu " "--screenshot " "--window-size=1280,600 " f'"http://glench.com/tmnt/#{title}"' ) retcode = subprocess.run(chrome_cmd, shell=True).returncode if retcode != 0: sys.stderr.write(f"Chrome subprocess exited with code {retcode}") sys.exit(1) screesnhot_path = "screenshot.png" logo_path = _cropLogo(screesnhot_path) return logo_path def _trimWhitespace(im): # calculate bbox of image area bg = Image.new(im.mode, im.size, im.getpixel((0, 0))) diff = ImageChops.difference(im, bg) diff = ImageChops.add(diff, diff, 2.0, -100) bbox = diff.getbbox() if bbox: # crop the image and store sizes as variables croppedImage = im.crop(bbox) croppedImageWidth = croppedImage.size[0] croppedImageHeight = croppedImage.size[1] # calculate size of output image based on width of cropped image, # 1:1.9 aspect ratio, and side margin pixels SIDE_MARGIN = 30 outputImageWidth = croppedImageWidth + (SIDE_MARGIN * 2) outputImageHeight = int(outputImageWidth * 0.52632) outputImageSize = tuple([outputImageWidth, outputImageHeight]) # create empty image outputImage = Image.new(im.mode, outputImageSize, im.getpixel((0, 0))) # calculate positioning of cropped image on empty background, paste x = SIDE_MARGIN y = int((outputImageHeight - croppedImageHeight) / 2) outputImage.paste(croppedImage, (x, y)) return outputImage def _cropOffTopAndBottom(image_path: str): im = Image.open(image_path) w, h = im.size return im.crop((0, 175, w, h - 100)) def _cropLogo(im): logo_path = LOGO_PATH im = _cropOffTopAndBottom(im) im = _trimWhitespace(im) im.save(logo_path) return logo_path ```
{ "source": "jpfxgood/bkp", "score": 2 }
#### File: bkp/bkp_core/bkp_conf.py ```python import os import sys def save_config( bkp_config, config_file, for_restart = False ): """ save the configuration to the file object passed as a parameter """ print("bucket =", bkp_config["bucket"], file=config_file) print("dirs = ", ";".join(bkp_config["dirs"]), file=config_file) print("exclude_files = ", bkp_config["exclude_files"], file=config_file) print("exclude_dirs = ",";".join(bkp_config["exclude_dirs"]), file=config_file) print("log_email = ",bkp_config["log_email"], file=config_file) print("error_email = ",bkp_config["error_email"], file=config_file) print("threads = ",bkp_config["threads"], file=config_file) print("ssh_username = ",bkp_config["ssh_username"], file=config_file) print("ssh_password = ",bkp_config["ssh_password"], file=config_file) if for_restart: print("start_time = ",bkp_config["start_time"], file=config_file) print("end_time = ",bkp_config["end_time"], file=config_file) print("end_config = True", file=config_file) return 0 def configure (): bkp_config = {} """ prompt for configuration parameters to build initial ~/.bkp/bkp_config """ bkp_config["bucket"] = input("Enter the name of your Amazon S3 bucket, file path, or ssh path:") bkp_config["dirs"] = input("Enter a semicolon (;) delimited list of directories to backup (will include subdirectories):").split(";") bkp_config["exclude_files"] = input("Enter a python regular expression to exclude matching file names:") bkp_config["exclude_dirs"] = input("Enter a semicolon (;) delimited list of directories to exclude (including subdirectories):").split(";") bkp_config["log_email"] = input("Enter an e-mail address to send log files to:") bkp_config["error_email"] = input("Enter an e-mail address to send errors to:") bkp_config["ssh_username"] = input("Enter your ssh user name:") bkp_config["ssh_password"] = input("Enter your ssh password:") bkp_config["threads"] = input("Enter the number of threads to use for transfers:") bkp_dir = os.path.expanduser("~/.bkp") if not os.path.exists(bkp_dir): os.mkdir(bkp_dir) save_config(bkp_config,open(os.path.join(bkp_dir,"bkp_config"), "w")) return 0 def config( config_file, verbose = False ): """ load configuration for a backup from a config file """ bkp_config = {} config_path = os.path.expanduser(config_file) for l in open(config_path,"r"): l = l.strip() if l : key, value = l.split("=",1) key = key.strip().lower() if key == "end_config": break value = value.strip() if key in ["dirs","exclude_dirs"]: value = [f.strip() for f in value.split(";")] if verbose: print("config key =",key,"value =", value, file=sys.stderr) bkp_config[key] = value bucket = bkp_config["bucket"] if not (bucket.startswith("ssh://") or bucket.startswith("file://") or bucket.startswith("s3://")): bkp_config["bucket"] = "s3://"+bucket return bkp_config ``` #### File: bkp/bkp_core/fs_mod.py ```python from bkp_core import s3_mod from bkp_core import ssh_mod from bkp_core import file_mod from bkp_core import bkp_conf import re def fs_utime( remote_path, times, get_config = lambda: {} ): """ use the appropriate function to set the access and modified times on a file """ if remote_path.startswith("ssh://"): return ssh_mod.ssh_utime( remote_path, times, get_config ) elif remote_path.startswith("s3://"): # Not implemented for s3, however s3 defaults to copying all # file attributes so we don't have to do it for our use cases return elif remote_path.startswith("file://"): return file_mod.file_utime( remote_path, times ) elif re.match(r"\w*://.*",remote_path): raise Exception("fs_utime: Unknown remote file system",remote_path) else: return file_mod.file_utime( remote_path, times ) def fs_get( remote_path, local_path, get_config = lambda: {} ): """ use the appropriate function to copy a file from the remote_path to the local_path """ if remote_path.startswith("ssh://"): return ssh_mod.ssh_get( remote_path, local_path, get_config ) elif remote_path.startswith("s3://"): return s3_mod.s3_get( remote_path, local_path ) elif remote_path.startswith("file://"): return file_mod.file_get( remote_path, local_path ) elif re.match(r"\w*://.*",remote_path): raise Exception("fs_get: Unknown remote file system",remote_path) else: return file_mod.file_get( remote_path, local_path ) def fs_put( local_path, remote_path, get_config = lambda: {}, verbose = False ): """ use the appropriate function to copy a file from the local_path to the remote_path """ if remote_path.startswith("ssh://"): return ssh_mod.ssh_put( local_path, remote_path, get_config, verbose) elif remote_path.startswith("s3://"): return s3_mod.s3_put( local_path, remote_path) elif remote_path.startswith("file://"): return file_mod.file_put( local_path, remote_path ) elif re.match(r"\w*://.*",remote_path): raise Exception("fs_put: Unknown remote file system",remote_path) else: return file_mod.file_put( local_path, remote_path ) def fs_ls( remote_path, recurse=False, get_config = lambda: {} ): """ use the appropriate function to get a file listing of the path """ if remote_path.startswith("ssh://"): return ssh_mod.ssh_ls( remote_path, recurse, get_config) elif remote_path.startswith("s3://"): return s3_mod.s3_ls( remote_path, recurse) elif remote_path.startswith("file://"): return file_mod.file_ls( remote_path, recurse ) elif re.match(r"\w*://.*",remote_path): raise Exception("fs_ls: Unknown remote file system",remote_path) else: return file_mod.file_ls( remote_path, recurse ) def fs_del( remote_path, recurse=False, get_config = lambda: {} ): """ use the appropriate function to delete a file or directory at the path """ if remote_path.startswith("ssh://"): return ssh_mod.ssh_del( remote_path, recurse, get_config) elif remote_path.startswith("s3://"): return s3_mod.s3_del( remote_path, recurse) elif remote_path.startswith("file://"): return file_mod.file_del( remote_path, recurse ) elif re.match(r"\w*://.*",remote_path): raise Exception("fs_del: Unknown remote file system",remote_path) else: return file_mod.file_del( remote_path, recurse ) def fs_stat( remote_path, get_config = lambda: {} ): """ return tuple ( mtime, size ) for a path to a file, returns (-1,-1) if doesn't exist resolution of mtime is seconds """ if remote_path.startswith("ssh://"): return ssh_mod.ssh_stat( remote_path, get_config ) elif remote_path.startswith("file://"): return file_mod.file_stat( remote_path ) elif remote_path.startswith("s3://"): return s3_mod.s3_stat( remote_path ) elif re.match(r"\w*://.*",remote_path): raise Exception("fs_stat: Unknown remote file system", remote_path ) else: return file_mod.file_stat( remote_path ) def fs_test( remote_path, verbose = False, get_config = lambda: {} ): """ use the appropriate function to test if file system is accessable, does NOT mean the path exists just that a host is listening """ if remote_path.startswith("ssh://"): return ssh_mod.ssh_test( remote_path, verbose, get_config) elif remote_path.startswith("s3://"): return s3_mod.s3_test( remote_path, verbose ) else: # We assume the filesystem is always available return True ``` #### File: bkp/bkp_core/logger.py ```python import sys import os import traceback import queue import threading class Logger: def __init__( self ): self.logger_thread = None self.logger_stop = False self.logger_queue = queue.Queue() def perform_log( self ): """ read from the restore logging queue and print messages to stderr """ while not self.stopped(): line = self.get() if line: try: print(line, file=sys.stderr) except: print("Invalid Log Line!", file=sys.stderr) def start_logger( self, action = None ): """ start the restore logger thread """ if not action: action = self.perform_log self.logger_thread = threading.Thread(target=action) self.logger_thread.start() def stop_logger( self ): """ stop the restore logger """ self.logger_stop = True def wait_for_logger( self ): """ wait until the restore log queue is empty """ if not self.logger_queue.empty(): self.logger_queue.join() self.stop_logger() if self.logger_thread and self.logger_thread.is_alive(): self.logger_thread.join() self.logger_thread = None self.logger_stop = False self.logger_queue = queue.Queue() def log( self, msg ): """ log a message to the restore logger """ self.logger_queue.put(msg) def get( self ): """ get a message off the queue """ try: line = self.logger_queue.get(True,1) self.logger_queue.task_done() except queue.Empty: line = None return line def stopped( self ): """ test to see if we need to stop """ return self.logger_stop ``` #### File: bkp/bkp_core/sync_mod.py ```python import sys import os import re import traceback import queue import threading import platform import time import io from bkp_core.fs_mod import fs_get,fs_put,fs_ls,fs_stat,fs_test,fs_utime from bkp_core.util import put_contents from bkp_core.logger import Logger class WorkerParams: """ worker params """ def __init__(self, method, from_path, to_path, mtime = 0.0): """ set up the copy from and to paths for the worker """ self.from_path = from_path self.to_path = to_path self.method = method self.mtime = mtime class SyncJob: def __init__( self, config ): self.dryrun = False self.verbose = False self.init( config ) def init( self, config ): """ initialize our internal state for a new run """ self.config = config self.work_queue = queue.Queue() self.machine_path = "" self.errors_count = 0 self.worker_thread_pool = [] self.processed_files = {} self.processed_dirs = {} self.pending_markers = [] self.worker_stop = False self.remote_processed_files = {} if not os.path.exists(os.path.expanduser("~/.sync")): os.mkdir(os.path.expanduser("~/.sync")) self.remote_processed_files_name = os.path.expanduser("~/.sync/.sync.processed") self.logger = Logger() def set_dryrun( self, dr ): """ set the dryrun flag to true to prevent real actions in s3 """ self.dryrun = dr def set_verbose( self, vb ): """ set the verbose flag to true to enable extended output """ self.verbose = vb def process_sync( self ): """ thread body for worker thread, loop processing the queue until killed """ start_time = time.time() while not self.worker_stop: try: # every 5 minutes dump a stack trace if verbose if time.time() - start_time > 300: start_time = time.time() params = self.work_queue.get(True,1) try: if not self.dryrun: if self.verbose: self.logger.log( "Starting transfer: %s to %s"%(params.from_path, params.to_path) ) if params.method == fs_put: params.method( params.from_path, params.to_path, lambda: self.config, self.verbose) fs_utime( params.to_path, (params.mtime, params.mtime), lambda: self.config) else: params.method( params.from_path, params.to_path, lambda: self.config ) os.utime( params.to_path, (params.mtime, params.mtime)) if self.verbose: self.logger.log( "Transferred: %s to %s"%(params.from_path, params.to_path) ) self.work_queue.task_done() except: tb = traceback.format_exc() self.logger.log( "Failed Transfer: %s to %s error %s"%(params.from_path, params.to_path, tb) ) self.errors_count += 1 self.work_queue.task_done() except queue.Empty: continue except: self.work_queue.task_done() self.logger.log(traceback.format_exc()) continue def start_workers(self): """ start the workers in the pool """ num_threads = int(self.config["threads"]) while num_threads: t = threading.Thread(target=self.process_sync) t.start() self.worker_thread_pool.append(t) num_threads = num_threads - 1 def stop_workers(self): """ stop the workers """ self.worker_stop = True def wait_for_workers(self): """ wait for the worker queue to be empty """ if not self.work_queue.empty(): self.work_queue.join() self.stop_workers() for t in self.worker_thread_pool: if t.is_alive(): t.join() self.worker_stop = False self.worker_thread_pool = [] self.work_queue = queue.Queue() def sync_directory( self, path ): """ enqueue the files to be synced for a given directory path, apply filters on datetime, pattern, non-hidden files only, recurse visible subdirs """ # save off remote directory recursive listing remote_files = fs_ls(self.machine_path+path,True, lambda: self.config) for (dirpath, dirnames, filenames) in os.walk(path): if self.verbose: self.logger.log("Scanning dirpath= %s"%(dirpath)) # if exclude_dirs is contained in any of the paths then return exclude_dir = False for e in self.config["exclude_dirs"]: if e and re.search(e,dirpath): exclude_dir = True break if exclude_dir: if self.verbose: self.logger.log("Excluding dirpath= %s because of e= %s"%(dirpath,e)) continue # get rid of hidden directories while True: deleted = False didx = 0 for d in dirnames: if d[0] == ".": if self.verbose: self.logger.log("Deleting hidden directory = %s"%(d)) del dirnames[didx] deleted = True break didx = didx + 1 if not deleted: break # stat the sentinel file .sync to avoid sloshing files around sync_marker_path = self.machine_path + os.path.abspath(dirpath) sync_marker_node = ".sync."+ platform.node() sync_marker = os.path.join( sync_marker_path, sync_marker_node ) sync_mtime,sync_size = fs_stat(sync_marker,lambda: self.config) # process files in the directory enqueueing included files for sync for f in filenames: # if it is a hidden file skip it if f[0] == ".": if self.verbose: self.logger.log("Skipping hidden file = %s"%(f)) continue # if it is excluded file skip it if self.config["exclude_files"] and re.match(self.config["exclude_files"],f): if self.verbose: self.logger.log("Excluding file = %s Because of pattern= %s"%(f,self.config["exclude_files"])) continue # build the absolute path for the file and it's sync path local_path = os.path.join(os.path.abspath(dirpath),f) remote_path = self.machine_path + local_path # if the file is in the time range for this sync then queue it for sync s = os.lstat(local_path) mtime, size = fs_stat(remote_path,lambda: self.config) self.processed_files[remote_path] = True if s.st_mtime < mtime and (mtime - s.st_mtime) >= 1.0: if self.verbose: self.logger.log("Enqueuing get for %s,%s timediff %f"%(remote_path,local_path, mtime - s.st_mtime)) self.work_queue.put(WorkerParams( fs_get, remote_path, local_path, mtime )) elif s.st_mtime > mtime and (s.st_mtime - mtime) >= 1.0: if self.verbose: self.logger.log("Enqueuing put for %s,%s timediff %f"%(local_path,remote_path,s.st_mtime - mtime)) self.work_queue.put(WorkerParams( fs_put, local_path, remote_path, s.st_mtime )) else: if self.verbose: self.logger.log("Not Enqueuing copy work for %s because time is the same or not greater than last sync"%(local_path)) # drop a marker file on the remote host self.pending_markers.append((sync_marker_path,sync_marker_node)) self.processed_dirs[sync_marker_path] = True if self.verbose: self.logger.log("Checking for files only present on the server") self.logger.log(remote_files) #loop over remote files and handle any that haven't already been synced for line in io.StringIO(remote_files): fdate,ftime,size,fpath = re.split("\s+",line,3) fpath = fpath.strip() if not fpath in self.processed_files: lpath = fpath[len(self.machine_path):] ldir,lnode = os.path.split(lpath) fdir,fnode = os.path.split(fpath) # if exclude_dirs is contained in any of the paths then return exclude_dir = False for e in self.config["exclude_dirs"]: if (e and re.search(e,ldir)) or re.match(".*/\..*",ldir): exclude_dir = True break if exclude_dir: if self.verbose: self.logger.log("Excluding dirpath= %s because of e= %s"%(ldir,e)) continue # if it is a hidden file skip it if lnode[0] == ".": if self.verbose: self.logger.log("Skipping hidden file = %s"%(lnode)) continue # if it is excluded file skip it if self.config["exclude_files"] and re.match(self.config["exclude_files"],lnode): if self.verbose: self.logger.log("Excluding file = %s Because of pattern= %s"%(lnode,self.config["exclude_files"])) continue # if it was processed in the past don't fetch it just mark it as processed # it was deleted on the client otherwise enqueue a get if not fpath in self.remote_processed_files: if self.verbose: self.logger.log("Enqueuing get for %s,%s"%(fpath,lpath)) mtime, size = fs_stat(fpath,lambda: self.config) self.work_queue.put(WorkerParams( fs_get, fpath, lpath, mtime)) else: if self.verbose: self.logger.log("Not enqueuing get for %s becase it was deleted on client"%(fpath)) self.processed_files[fpath] = True if not fdir in self.processed_dirs: self.processed_dirs[fdir] = True self.pending_markers.append((fdir,".sync."+platform.node())) return def synchronize(self): """ driver to perform syncrhonize """ try: # initialize our internal state for a new run self.init( self.config ) # the sync target a given machine will be target self.machine_path = self.config["target"] # if there is no connection to the target then exit if not fs_test( self.machine_path, self.verbose, lambda: self.config ): return 0 # get the remote processed files so we can check for deletes if os.path.exists(self.remote_processed_files_name): for line in open(self.remote_processed_files_name): self.remote_processed_files[line.strip()] = True # start the logger thread self.logger.start_logger() # fire up the worker threads self.start_workers() # loop over the paths provided and add them to the work queue for d in self.config["dirs"]: self.sync_directory( d ) # wait for queue to empty self.wait_for_workers() # drop all our sync markers after any copies complete for sync_marker_path,sync_marker_node in self.pending_markers: put_contents(sync_marker_path,sync_marker_node, "syncrhonized %s"%time.ctime(),self.dryrun,lambda: self.config, self.verbose) # write out the processed files if not self.dryrun: processed_out = open(self.remote_processed_files_name,"w") for fpath in self.processed_files.keys(): print(fpath, file=processed_out) processed_out.close() # wait for the logger to finish self.logger.wait_for_logger() except: self.stop_workers() self.logger.stop_logger() raise if self.errors_count: return 1 else: return 0 ``` #### File: bkp/bkp_core/util.py ```python from email.mime.text import MIMEText from bkp_core import fs_mod import sys import os import tempfile import re import traceback import platform import datetime import subprocess import time def get_contents( path, name, verbose = False, get_config=lambda: {} ): """ fetch the contents of an s3 file and return it's contents as a string """ t_file_fh, t_file_name = tempfile.mkstemp() os.close(t_file_fh) try: fs_mod.fs_get( path+"/"+name, t_file_name, get_config ) except: if verbose: print("get_contents exception:",traceback.format_exc(), file=sys.stderr) return "" contents = open(t_file_name,"r").read() os.remove(t_file_name) return contents def put_contents( path, name, contents, dryrun = False, get_config=lambda: {}, verbose=False ): """ put the contents string to the s3 file at path, name """ t_file_fh, t_file_name = tempfile.mkstemp() os.close(t_file_fh) print(contents, file=open(t_file_name,"w")) if not dryrun: fs_mod.fs_put( t_file_name, path+"/"+name, get_config, verbose ) if not path.startswith("s3://"): t = time.time() fs_mod.fs_utime( path+"/"+name, (t,t), get_config ) os.remove(t_file_name) return def send_email( mime_msg ): """ given a mime message with From: To: Subject: headers """ cmd = "/usr/sbin/ssmtp %s"%mime_msg['To'] p = subprocess.Popen(cmd, shell=True, bufsize=1024, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, stdin=subprocess.PIPE, universal_newlines=True) output = p.communicate(input=mime_msg.as_string())[0] result = p.wait() if result: raise Exception(cmd,output,result) return output def mail_error( error, log_file=None, verbose = False, get_config=lambda: {} ): """ e-mail an error report to the error e-mail account """ return mail_log( error, log_file, True, verbose, get_config=get_config ) def mail_log( log, log_file=None, is_error = False, verbose = False, get_config=lambda: {} ): """ e-mail a log file to the log e-mail account """ tries = 3 log_text = "" while tries: try: if log != None: msg = MIMEText(log) elif log_file != None: log_text = re.sub("^smtp_.*$|^ssh_.*$","",log_file.read(),flags=re.M) msg = MIMEText(log_text[:2*pow(2,20)]) else: return 0 if is_error: if verbose: print("E-mailing log file with errors", file=sys.stderr) msg['Subject'] = "bkp error: %s "%(platform.node()) msg['From'] = get_config()["error_email"] msg['To'] = get_config()["error_email"] else: if verbose: print("E-mailing log file with no errors", file=sys.stderr) msg['Subject'] = "bkp complete: %s"%(platform.node()) msg['From'] = get_config()["log_email"] msg['To'] = get_config()["log_email"] msg['Date'] = datetime.datetime.now().strftime( "%m/%d/%Y %H:%M" ) send_email(msg) return 0 except: time.sleep(tries*10.0) tries = tries - 1 if not tries: if is_error: print("Error couldn't send via e-mail", file=sys.stderr) else: print("Success couldn't send via e-mail", file=sys.stderr) if log: print(log, file=sys.stderr) if log_text: print(log_text, file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) raise ``` #### File: bkp/tests/test_bkp_mod.py ```python from bkp_core import bkp_mod from bkp_core import bkp_conf from bkp_core import fs_mod from bkp_core import util from bkp_test_util import bkp_testdir import platform import os import sys import time from io import StringIO import math def do_bkp_test( t_dir, base_path ): """ driver to test backup on different targets """ bkp_config = {} bkp_config["bucket"] = base_path bkp_config["dirs"] = [t_dir["local_path"]] bkp_config["exclude_files"] = r"local_3\.txt" bkp_config["exclude_dirs"] = ["not_subdir_path"] bkp_config["log_email"] = t_dir["test_email"] bkp_config["error_email"] = t_dir["test_email"] bkp_config["ssh_username"] = t_dir["ssh_username"] bkp_config["ssh_password"] = t_dir["ssh_password"] bkp_config["threads"] = "5" end_time = time.time() bkp_job = bkp_mod.BackupJob(bkp_config) bkp_job.set_verbose(True) assert(not bkp_job.backup()) machine_path = bkp_config["bucket"]+"/bkp/"+platform.node() next = util.get_contents( machine_path, "next", False, lambda: bkp_config ) if next: bkp_time = float(next) else: bkp_time = 0.0 assert(math.floor(bkp_time) >= math.floor(end_time)) backed_up_count = 0 backedup = bkp_mod.get_backedup_files(machine_path, bkp_config) for lpath,dates in list(backedup.items()): date_count = 0 for d in dates: assert(os.path.basename(lpath) in t_dir["local_files"]) assert("local_3.txt" not in lpath) assert("not_subdir_path" not in lpath) date_count += 1 backed_up_count += 1 assert(date_count == 1) assert(backed_up_count == len(t_dir["local_files"])-1) backups = bkp_mod.get_backups( machine_path, bkp_config ) backed_up_count = 0 backup_count = 0 for bkp in backups: assert(math.floor(bkp.time) >= math.floor(end_time)) bkp_log = util.get_contents(machine_path,bkp.timestamp+"/bkp/bkp."+bkp.timestamp+".log",False, lambda: bkp_config) backup_count += 1 past_config = False for l in StringIO(bkp_log): if not past_config: name,value = l.strip().split("=",1) name = name.strip() value = value.strip() if name == "end_config" and value == "True": past_config = True continue if name in ["dirs","exclude_dirs"]: value = [f.strip() for f in value.split(";")] if name not in ["start_time","end_time"]: assert(bkp_config[name] == value) else: local_path,remote_path,status,msg = l.split(";",3) assert(status != "error") assert(os.path.basename(local_path) in t_dir["local_files"]) assert("local_3.txt" not in local_path) assert("not_subdir_path" not in local_path) backed_up_count += 1 assert(backed_up_count == len(t_dir["local_files"])-1) assert(backup_count == 1) print("Overwrite the first local file!",file=open(os.path.join(t_dir["local_path"],t_dir["local_files"][0]),"w")) end_time = time.time() bkp_job_1 = bkp_mod.BackupJob(bkp_config) bkp_job_1.set_verbose(True) time.sleep(1) # guarantee at least 1 second between backup jobs assert(not bkp_job_1.backup()) next = util.get_contents( machine_path, "next", False, lambda: bkp_config ) if next: second_bkp_time = float(next) else: second_bkp_time = 0.0 assert(math.floor(second_bkp_time) >= math.floor(end_time)) assert(math.floor(second_bkp_time) > math.floor(bkp_time)) backed_up_count = 0 backedup = bkp_mod.get_backedup_files(machine_path, bkp_config) for lpath,dates in list(backedup.items()): date_count = 0 for d in dates: assert(os.path.basename(lpath) in t_dir["local_files"]) assert("local_3.txt" not in lpath) assert("not_subdir_path" not in lpath) date_count += 1 backed_up_count += 1 assert(date_count == 1 or os.path.basename(lpath) == t_dir["local_files"][0]) assert(backed_up_count == len(t_dir["local_files"])) backups = bkp_mod.get_backups( machine_path, bkp_config ) backed_up_count = 0 backup_count = 0 for bkp in backups: assert(math.floor(bkp.time) >= math.floor(bkp_time) or math.floor(bkp.time) >= math.floor(second_bkp_time)) bkp_log = util.get_contents(machine_path,bkp.timestamp+"/bkp/bkp."+bkp.timestamp+".log",False, lambda: bkp_config ) backup_count += 1 past_config = False for l in StringIO(bkp_log): if not past_config: name,value = l.strip().split("=",1) name = name.strip() value = value.strip() if name == "end_config" and value == "True": past_config = True continue if name in ["dirs","exclude_dirs"]: value = [f.strip() for f in value.split(";")] if name not in ["start_time","end_time"]: assert(bkp_config[name] == value) else: local_path,remote_path,status,msg = l.split(";",3) assert(status != "error") assert(os.path.basename(local_path) in t_dir["local_files"]) assert("local_3.txt" not in local_path) assert("not_subdir_path" not in local_path) backed_up_count += 1 assert(backed_up_count == len(t_dir["local_files"])) assert(backup_count == 2) time.sleep(1) # guarantee at least 1 second between backup jobs assert(not bkp_job_1.backup()) backups = bkp_mod.get_backups( machine_path, bkp_config ) assert(len(backups) == 3) old_stdout = sys.stdout file_list = StringIO() sys.stdout = file_list try: bkp_mod.list( bkp_config, True ) sys.stdout = old_stdout finally: sys.stdout = old_stdout for l in file_list: parts = l.strip().split(" ",5) assert(os.path.basename(parts[-1]) in t_dir["local_files"]) bkp_mod.compact(bkp_config,False, True ) backups = bkp_mod.get_backups( machine_path, bkp_config ) assert(len(backups) == 2) def test_bkp_mod_fs(bkp_testdir): """ test suite for the bkp_mod module covering file system functionality """ do_bkp_test(bkp_testdir, bkp_testdir["file_basepath"]) def test_bkp_mod_ssh(bkp_testdir): """ test suite for the bkp_mod module covering ssh functionality """ do_bkp_test(bkp_testdir, bkp_testdir["ssh_basepath"]) def test_bkp_mod_s3(bkp_testdir): """ test suite for the bkp_mod module covering s3 functionality """ do_bkp_test(bkp_testdir, bkp_testdir["s3_basepath"]) ```
{ "source": "jpfxgood/dashboard", "score": 3 }
#### File: dashboard/data_sources/odbc_data.py ```python import locale locale.setlocale(locale.LC_ALL,'') import sys import os import glob import gzip import re import pyodbc import keyring from datetime import datetime,timedelta from data_sources.data_table import DataTable,Column,Cell,blank_type,string_type,float_type,int_type,date_type,format_string,format_float,format_date,format_int,synchronized class ODBCDataTable( DataTable ): """ class that collects data from the response to a specific sql query on an odbc connected database and populates tables based on a field map """ def __init__(self,refresh_minutes=1,sql_spec=None,sql_query=None,sql_map=None): """ Initalize the ODBCDataTable object pass in a sql_spec to connect to the database of the form odbc://user@server/driver/database:port, a sql_query to be executed, and a field map of the form [[sql_column_name, data_table_column_name],..] indicating the columns to collect from the result """ self.sql_spec = sql_spec self.sql_query = sql_query self.sql_map = sql_map DataTable.__init__(self,None, "ODBCDataTable query:%s,database:%s,fieldmap:%s,refreshed every %d minutes"%( sql_query,sql_spec,sql_map,refresh_minutes), refresh_minutes) self.refresh() @synchronized def refresh( self ): """ refresh the table from the query """ username,server,driver,database,port = re.match(r"odbc://([a-z_][a-z0-9_-]*\${0,1})@([^/]*)/([^/]*)/([^:]*):{0,1}(\d*){0,1}",self.sql_spec).groups() password = keyring.get_password(self.sql_spec, username) if not password: return conn = pyodbc.connect("DRIVER={%s};DATABASE=%s;UID=%s;PWD=%s;SERVER=%s;PORT=%s;"%(driver,database,username,password,server,port)) if not conn: return result = conn.execute(self.sql_query) for row in result: for sql_column,data_column in self.sql_map: value = getattr(row,sql_column) if not self.has_column(data_column): self.add_column(Column(name=data_column)) c = self.get_column(data_column) if isinstance(value,datetime): cc = Cell(date_type,value,format_date) elif isinstance(value,int): cc = Cell(int_type,value,format_int) elif isinstance(value,float): cc = Cell(float_type,value,format_float) elif isinstance(value,str): cc = Cell(string_type,value,format_string) else: cc = Cell(string_type,str(value),format_string) c.put(c.size(),cc) self.changed() DataTable.refresh(self) ``` #### File: dashboard/data_sources/remote_data.py ```python import sys import os import re from datetime import datetime import threading import time import csv import json from io import StringIO from paramiko.client import SSHClient import keyring from functools import wraps from data_sources.data_table import DataTable,Cell,Column,from_json,to_json,synchronized from dashboard.version import __version__ def sync_connection(method): @wraps(method) def wrapper(self, *args, **kwargs): with self.connection_lock: return method(self, *args, **kwargs) return wrapper def sync_manager(method): @wraps(method) def wrapper(self, *args, **kwargs): with self.manager_lock: return method(self, *args, **kwargs) return wrapper class Connection(): def __init__(self, owner=None, ssh_client=None, session=None, stdin=None, stdout=None, stderr=None ): """ provides protocol to the table server """ self.ssh_client = ssh_client self.session = session self.clients = [] self.stdout_lines = [] self.stderr_lines = [] self.owner = owner self.stdin = stdin self.stdout = stdout self.stderr = stderr self.connection_lock = threading.RLock() self.reader_lock = threading.RLock() self.stdout_reader_thread = threading.Thread(target=self.reader,args=(self.stdout,self.stdout_lines)) self.stdout_reader_thread.start() self.stderr_reader_thread = threading.Thread(target=self.reader,args=(self.stderr,self.stderr_lines)) self.stderr_reader_thread.start() def reader( self, stream, lines ): """ worker thread that reads from stdout and pushes data onto stdout_lines and stderr_lines """ while not self.session.exit_status_ready(): line = stream.readline() with self.reader_lock: lines.append(line) with self.reader_lock: lines += stream.readlines() @sync_connection def get_stdout_line( self ): """ fetch a line from the queue of stdout_lines """ while True: with self.reader_lock: if len(self.stdout_lines): return self.stdout_lines.pop(0) time.sleep(1) @sync_connection def get_stderr_line( self ): """ fetch a line from the queue of stderr_lines """ while True: with self.reader_lock: if len(self.stderr_lines): return self.stderr_lines.pop(0) time.sleep(1) @sync_connection def open( self, client ): """ register this client as a user of this connection """ if client not in self.clients: self.clients.append(client) @sync_connection def table(self, table_def): """ send request to create a new remote table, returns loaded response """ print("table:%s"%table_def,file=self.stdin,flush=True) return self.get_stdout_line() @sync_connection def refresh(self, table_name): """ send request to refresh a remote table named table_name and return response """ print("refresh:%s"%table_name,file=self.stdin,flush=True) return self.get_stdout_line() @sync_connection def get(self, table_name): """ send request to fetch table_name and return response """ print("get:%s"%table_name,file=self.stdin,flush=True) return self.get_stdout_line() @sync_connection def exit(self): """ terminate the server and clean up this connection """ print("exit",file=self.stdin,flush=True) return "" @sync_connection def close(self,client): """ close this client's use of this connection """ if client in self.clients: self.clients.remove(client) class ConnectionManager(): def __init__(self): """ manages connections to servers and their initial setup """ self.connections = {} self.manager_lock = threading.RLock() def __del__(self): """ just in case clean up any connections """ self.shutdown() @sync_manager def shutdown( self ): """ shut down the connection manager and close all the pooled connections """ for cn in self.connections: self.connections[cn].exit() self.connections[cn].ssh_client.close() self.connections = {} @sync_manager def connect(self,ssh_spec,client): """ create a connection to a server """ if ssh_spec in self.connections: connection = self.connections[ssh_spec] connection.open(client) return connection username,server,port = re.match(r"ssh://([a-z_][a-z0-9_-]*\${0,1})@([^:]*):{0,1}(\d*){0,1}",ssh_spec).groups() password = keyring.get_password(server,username) if not password: return None ssh_client = SSHClient() ssh_client.load_system_host_keys() local_keys = os.path.expanduser('~/.ssh/known_hosts') if os.path.exists(local_keys): try: ssh_client.load_host_keys(local_keys) except: pass ssh_client.connect( hostname=server, port=int(port if port else 22), username=username, password=password) if self.setup( ssh_client ): session,stdin,stdout,stderror = self.start_command(ssh_client,"~/.local/bin/dashboard --server") connection = Connection(self,ssh_client,session,stdin,stdout,stderror) connection.open(client) self.connections[ssh_spec] = connection return connection raise Exception("Setup of remote dashboard failed") @sync_manager def start_command(self, ssh_client, command ): """ start a command and return a tuple with (channel,stdin,stdout,stderr) for running process """ transport = ssh_client.get_transport() session = transport.open_session() session.exec_command(command) stdout = session.makefile("r",1) stderr = session.makefile_stderr("r",1) stdin = session.makefile_stdin("w",1) return (session,stdin,stdout,stderr) @sync_manager def run_command(self, ssh_client, command ): """ run a command wait for it to exit and return the output (retcode,stdout_str,stderr_str) """ session,stdin,stdout,stderr = self.start_command(ssh_client,command) stderr_output = StringIO() stdout_output = StringIO() while not session.exit_status_ready(): stdout_output.write(stdout.readline()) stderr_output.write(stderr.readline()) stdout_output.write("".join(stdout.readlines())) stderr_output.write("".join(stderr.readlines())) exit_status = session.recv_exit_status() return (exit_status,stdout_output.getvalue(),stderr_output.getvalue()) @sync_manager def setup(self, ssh_client ): """ check to see that dashboard is installed and install it if needed """ exit_status,stdout_str,stderr_str = self.run_command(ssh_client,"~/.local/bin/dashboard --version") stdout_str = stdout_str.strip() if stdout_str.startswith("dashboard version"): if stdout_str.endswith(__version__): return True exit_status,stdout_str,stderr_str = self.run_command(ssh_client,'python3 -m pip install --upgrade "terminal-dashboard==%s"'%(__version__)) if exit_status: raise Exception(exit_status,stdout_str,stderr_str) return True _connection_manager = None def get_connection_manager(): """ return the connection manager create one if it doesn't exit """ global _connection_manager if not _connection_manager: _connection_manager = ConnectionManager() return _connection_manager def shutdown_connection_manager(): """ shut down the connection manager if it was ever started """ global _connection_manager if _connection_manager: _connection_manager.shutdown() _connection_manager = None class RemoteDataTable( DataTable ): def __init__(self,ssh_spec=None,table_def=None,name=None,refresh_minutes=1): """ accepts an ssh_spec to connect to of the form ssh://username@server_name:port_number, a json string with the definition for the remote table, the local name for this table, and the number of minutes for refresh """ DataTable.__init__(self,None,name,refresh_minutes) self.ssh_spec = ssh_spec self.table_def = table_def self.connection = None self.refresh() @synchronized def refresh(self): """ create a connection to the remote dashboard table server and refresh our internal state """ if not self.connection: cm = get_connection_manager() connection = cm.connect(self.ssh_spec,self) if not connection: return self.connection = connection response = self.connection.table(json.dumps(self.table_def)) if not response.startswith("loaded:%s"%self.table_def["name"]): return table_data = self.connection.get(self.table_def["name"]) name,json_blob = table_data.split(":",1) dt = from_json(StringIO(json_blob)) rows,cols = dt.get_bounds() for idx in range(cols): self.replace_column(idx,dt.get_column(idx)) self.changed() DataTable.refresh(self) ``` #### File: dashboard/data_sources/syslog_data.py ```python import locale locale.setlocale(locale.LC_ALL,'') import sys import os import glob import gzip import re from datetime import datetime,timedelta from data_sources.data_table import DataTable,Column,Cell,blank_type,string_type,float_type,int_type,date_type,format_string,format_float,format_date,format_int,synchronized class SyslogDataTable( DataTable ): """ class that collects a time based aggregation of data from the syslog into a data_table """ def __init__(self,syslog_glob="/var/log/syslog*",num_hours=24,bucket_hours=1,refresh_minutes=10,start_time=None): """ Initialize the SyslogDataTable with a file glob pattern to collect the syslogs on this machine, a timespan to aggregate for, aggregation bucket in hours, a refresh interval for updating in minutes """ self.syslog_glob = syslog_glob self.num_hours = num_hours self.bucket_hours = bucket_hours self.start_time = start_time DataTable.__init__(self,None, "Syslog Data: %s for the last %d hours in %d hour buckets, refreshed every %d minutes"%( self.syslog_glob, self.num_hours, self.bucket_hours, refresh_minutes),refresh_minutes) self.refresh() @synchronized def refresh( self ): """ refresh or rebuild tables """ if self.start_time: year,month,day,hour,minute,second = self.start_time current_time = datetime(year,month,day,hour,minute,second) else: current_time = datetime.now() start_time = current_time - timedelta( hours = self.num_hours ) syslog_files = glob.glob(self.syslog_glob) time_column = Column(name="Time Stamps") bucket_time = start_time idx = 0 while bucket_time < current_time: time_column.put(idx,Cell(date_type,bucket_time,format_date)) bucket_time = bucket_time + timedelta( hours = self.bucket_hours ) idx += 1 time_column.put(idx,Cell(date_type,current_time,format_date)) def bucket_idx( timestamp ): if timestamp < start_time or timestamp > current_time: return -1 for idx in range(time_column.size()): if time_column.get(idx).get_value() >= timestamp: return idx else: return -1 errors_column = Column(name="Errors by Time") warnings_column = Column(name="Warnings by Time") messages_column = Column(name="Messages by Time") services_column = Column(name="Services") errors_service_column = Column(name="Errors by Service") warnings_service_column = Column(name="Warnings by Service") messages_service_column = Column(name="Messages by Service") def service_idx( service ): for idx in range(services_column.size()): if services_column.get(idx).get_value() == service: return idx else: return -1 def put_or_sum( column, idx, value ): current_value = 0 if idx < column.size(): c = column.get(idx) if c.get_type() != blank_type: current_value = int(c.get_value()) column.put(idx,Cell(int_type,current_value+value,format_int)) for slf in syslog_files: if slf.endswith(".gz"): slf_f = gzip.open(slf,"rt",encoding="utf-8") else: slf_f = open(slf,"r",encoding="utf-8") for line in slf_f: line = line.strip() m = re.match(r"(\w\w\w\s+\d+\s\d\d:\d\d:\d\d)\s[a-z0-9\-]*\s([a-zA-Z0-9\-\_\.]*)[\[\]0-9]*:\s*(.*)",line) if m: log_date = re.sub(r"\s+"," ","%d "%current_time.year + m.group(1)) log_process = m.group(2) log_message = m.group(3) log_datetime = datetime.strptime(log_date,"%Y %b %d %H:%M:%S") b_idx = bucket_idx( log_datetime ) if b_idx >= 0: s_idx = service_idx( log_process ) if s_idx < 0: s_idx = services_column.size() services_column.put(s_idx,Cell(string_type,log_process,format_string)) put_or_sum(messages_column,b_idx,1) put_or_sum(messages_service_column,s_idx,1) is_error = re.search(r"[Ee]rror|ERROR",log_message) is_warning = re.search(r"[Ww]arning|WARNING",log_message) error_count = 0 warning_count = 0 if is_error and not is_warning: error_count = 1 elif is_warning: warning_count = 1 put_or_sum(errors_column,b_idx,error_count) put_or_sum(errors_service_column,s_idx,error_count) put_or_sum(warnings_column,b_idx,warning_count) put_or_sum(warnings_service_column,s_idx,warning_count) columns = [time_column,errors_column,warnings_column,messages_column,services_column, errors_service_column,warnings_service_column,messages_service_column] for c in columns: if self.has_column(c.get_name()): self.replace_column(self.map_column(c.get_name()),c) else: self.add_column(c) self.changed() DataTable.refresh(self) ``` #### File: dashboard/tests/test_canvas.py ```python from char_draw import canvas import curses import curses.ascii import os import time from dashboard_test_util import screen_size,dashboard_test_case def test_Canvas(request,capsys): with capsys.disabled(): def main(stdscr): screen_size(40,100) stdscr.clear() stdscr.refresh() python_path = os.path.dirname(os.path.dirname(request.fspath)) c = canvas.Canvas(stdscr) max_x,max_y = c.get_maxxy() iy = 0 for ix in range(8,max_x): c.put_pixel(ix,iy,c.red) iy = (iy + 1)%max_y dashboard_test_case(stdscr,"put_pixel",python_path) c.clear() ix = 0 iy = 0 for ic in range(0,min(max_x,max_y)//10): c.line(max_x//2,0,ix,iy,c.cyan) ix = (ix+15)%max_x iy = (iy+10)%max_y dashboard_test_case(stdscr,"line",python_path) c.clear() c.circle(max_x//2,max_y//2,min(max_x,max_y)//3,c.white,False) dashboard_test_case(stdscr,"circle_not_filled",python_path) c.clear() c.circle(max_x//2,max_y//2,min(max_x,max_y)//3,curses.color_pair(20),True) dashboard_test_case(stdscr,"circle_filled",python_path) c.clear() a = 0 a1 = 23 for ac in range(20): c.arc(max_x//2,max_y//2,min(max_x,max_y)//3,a,a1,c.white,False) a = a1 a1 = a1 + ac*5 if a1 > 360: break dashboard_test_case(stdscr,"arc_not_filled",python_path) c.clear() a = 0 a1 = 23 for ac in range(20): c.arc(max_x//2,max_y//2,min(max_x,max_y)//3,a,a1,c.white,True) a = a1 a1 = a1 + ac*5 if a1 > 360: break dashboard_test_case(stdscr,"arc_filled",python_path) c.clear() ix = 0 iy = 0 for ic in range(0,5): x = ix + ic*5 y = iy + ic*5 c.rect(x,y,x+5,y+5,curses.color_pair(9+(ic*10)),False) dashboard_test_case(stdscr,"rect_not_filled",python_path) c.clear() ix = 0 iy = 0 for ic in range(0,5): x = ix + ic*5 y = iy + ic*5 c.rect(x,y,x+5,y+5,curses.color_pair(9+(ic*10)),True) dashboard_test_case(stdscr,"rect_filled",python_path) c.clear() ix = 0 iy = 0 for ic in range(0,5): x = ix + ic*5 y = iy + ic*5 c.textat(x,y,curses.color_pair(9+(ic*10)),"Test message %d"%ic) dashboard_test_case(stdscr,"textat",python_path) c.clear() ix = 0 iy = 0 for ic in range(0,5): x = ix + ic*16 y = iy + ic*10 c.polyline([(x,y),(x+16,y+16),(x+8,y),(x,y+16),(x+16,y+8),(x,y+8),(x+8,y+16)],curses.color_pair(9+(ic*10))) dashboard_test_case(stdscr,"polyline",python_path) ix = 0 iy = 0 for ic in range(0,5): x = ix + ic*16 y = iy + ic*10 c.polygon([(x,y),(x+16,y+8),(x+16,y+16),(x+8,y+16),(x,y+8)],curses.color_pair(9+(ic*10)),False) dashboard_test_case(stdscr,"polygon_not_filled",python_path) ix = 0 iy = 0 for ic in range(0,5): x = ix + ic*16 y = iy + ic*10 c.polygon([(x,y),(x+16,y+8),(x+16,y+16),(x+8,y+16),(x,y+8)],curses.color_pair(9+(ic*10)),True) dashboard_test_case(stdscr,"polygon_filled",python_path) ix = 0 iy = 0 for ic in range(0,5): x = ix + ic*16 y = iy + ic*10 c.polygon([(x,y),(x+16,y+8),(x+8,y+8),(x+8,y+16),(x,y+8)],curses.color_pair(9+(ic*10)),True) dashboard_test_case(stdscr,"polygon_concave_filled",python_path) curses.wrapper(main) ``` #### File: dashboard/tests/test_dashboard.py ```python from char_draw import canvas,display_list,graph from data_sources.data_table import DataTable,Column,Cell,string_type,float_type,int_type,date_type,blank_type,format_string,format_date,format_float,format_int from dashboard import dashboard import curses import curses.ascii import os import time from datetime import datetime,timedelta from dashboard_test_util import screen_size,dashboard_test_case def test_Dashboard(request,capsys): with capsys.disabled(): def main(stdscr): screen_size(40,100) stdscr.clear() stdscr.refresh() python_path = os.path.dirname(os.path.dirname(request.fspath)) c_names = ["X-Series","Pie Labels","Metric 1","Metric 2","Metric 3","Metric 4","Metric 5","Metric 6"] d = DataTable() for c in c_names: d.add_column(Column(name=c)) for idx in range(0,10): d.put(idx,"X-Series",Cell(int_type,idx*10,format_int)) d.put(idx,"Pie Labels",Cell(string_type,"Group %d"%idx,format_string)) d.put(idx,"Metric 1",Cell(float_type,50.0+(idx*20),format_float)) d.put(idx,"Metric 2",Cell(float_type,75.0+(idx*30),format_float)) d.put(idx,"Metric 3",Cell(float_type,100.0+(idx*40),format_float)) d.put(idx,"Metric 4",Cell(float_type,123.0+(idx*23),format_float)) d.put(idx,"Metric 5",Cell(float_type,143+(idx*33),format_float)) d.put(idx,"Metric 6",Cell(float_type,171+(idx*51),format_float)) c = canvas.Canvas(stdscr) max_x,max_y = c.get_maxxy() db = dashboard.Dashboard(stdscr,None,0) p = dashboard.Page(stdscr) pp = dashboard.Panel() g = graph.BarGraph(d,"X-Series",["Metric 1","Metric 3","Metric 5"],"Metric Units",None,c,0,"Basic Bar Graph") pp.add_graph(g) g = graph.LineGraph(d,"X-Series",["Metric 2","Metric 4","Metric 6"],"Metric Units",None,c,False,"Basic Line Graph") pp.add_graph(g) p.add_panel(pp) db.add_page(p) p = dashboard.Page(stdscr) pp = dashboard.Panel() g = graph.PieGraph(d,"Pie Labels",["Metric 3"],None,c,"Basic Pie Graph") pp.add_graph(g) g = graph.TableGraph(d,"Pie Labels",["Metric 1","Metric 2","Metric 3","Metric 4","Metric 5","Metric 6"],None,c,"Basic Table") pp.add_graph(g) p.add_panel(pp) db.add_page(p) # force the timestamp to be the same so the screen diffs will match d.refresh_timestamp = datetime(2020,8,24,9,49,0,0).timestamp() d.changed() db.main([]) dashboard_test_case(stdscr,"db_basic_dashboard",python_path) db.main([curses.KEY_NPAGE]) dashboard_test_case(stdscr,"db_basic_dashboard_1",python_path) db.main([9]) # tab dashboard_test_case(stdscr,"db_basic_dashboard_2",python_path) db.main([curses.KEY_HOME]) dashboard_test_case(stdscr,"db_basic_dashboard_3",python_path) db.main([curses.KEY_ENTER]) dashboard_test_case(stdscr,"db_basic_dashboard_4",python_path) db.main([27,-1]) # esc to exit zoom and redraw dashboard_test_case(stdscr,"db_basic_dashboard_5",python_path) curses.wrapper(main) ```
{ "source": "jpfxgood/my_radio", "score": 3 }
#### File: jpfxgood/my_radio/voice.py ```python import sys import os import urllib2 import urllib import time import hashlib cached_words = 0 tts_words = 0 def wavcache_hash( text, voice ): h = hashlib.md5() h.update(voice) h.update(text.encode('utf-8','ignore')) return os.path.join("wavcache",h.hexdigest()+".wav") def wavcache_get( text, voice ): hname = wavcache_hash( text, voice ) if not os.path.exists("wavcache"): os.mkdir("wavcache") return "" if os.path.exists(hname): return hname else: return "" def wavcache_put( text, voice, wavfile ): hname = wavcache_hash( text, voice ) open(hname, "wb").write(open(wavfile,"rb").read()) remote = False local = "text2wave" if remote: accountId = None password = <PASSWORD> def parse_response( response ): retvals = {} parts = response.split() for p in parts: if "=" in p: namevalue = p.split("=",1) retvals[namevalue[0]] = namevalue[1][1:-1] return retvals def try_request( url, args=None, tries = 3): while tries: try: if args: r = urllib2.urlopen(url, urllib.urlencode (args)) else: r = urllib2.urlopen(url) response = r.read() r.close() return response except: time.sleep(0.1) tries -= 1 raise Exception("Failed after 3 attempts! ") def neospeech_request ( args ): return parse_response(try_request('https://tts.neospeech.com/rest_1_1.php',args)) def text2wav( text, wavfile, verbose = False, voice="julie" ): global tts_words global cached_words wc = len(text.split(" ")) cache_name = wavcache_get( text, voice ) if cache_name: cached_words = cached_words + wc open(wavfile,"wb").write(open(cache_name,"rb").read()) if verbose: print "cached_words, tts_words:",cached_words,tts_words return tts_words = tts_words + wc if verbose: print "cached_words, tts_words:",cached_words,tts_words voicemap = { "kate":"TTS_KATE_DB", "julie":"TTS_JULIE_DB", "paul":"TTS_PAUL_DB", "bridget":"TTS_KATE_DB" } ret = neospeech_request((( 'method','ConvertSimple'), ('email','<EMAIL>'), ('accountId',accountId), ('loginKey','LoginKey'), ('loginPassword',password), ('voice',voicemap[voice]), ('outputFormat','FORMAT_WAV'), ('sampleRate','16'), ('text',text.encode('utf-8','ignore')))) if verbose: print ret if ret['resultCode'] != '0': raise Exception("ConvertSimple failed! "+str(ret)+" "+voice+" "+text) url = None conversionNumber = ret['conversionNumber'] while not url: ret = neospeech_request((( 'method','GetConversionStatus'), ('email','<EMAIL>'), ('accountId',accountId), ('conversionNumber',conversionNumber))) if verbose: print ret if ret['resultCode'] != '0': raise Exception("GetConversionStatus failed! "+str(ret)+" "+voice+" "+text) if ret['statusCode'] == '5': raise Exception("Conversion failed! "+str(ret)+" "+voice+" "+text) if ret['statusCode'] == '4': url = ret['downloadUrl'] else: time.sleep(0.1) if verbose: print url open(wavfile,"wb").write(try_request(url)) wavcache_put(text,voice,wavfile) else: if local == "text2wave": import subprocess def text2wav( text, wavfile, verbose = False, voice="julie" ): global tts_words global cached_words wc = len(text.split(" ")) voicemap = { "kate":"voice_rab_diphone", "julie":"voice_ked_diphone", "paul":"voice_kal_diphone", "bridget":"voice_kal_diphone" } cache_name = wavcache_get( text, voice ) if cache_name: cached_words = cached_words + wc open(wavfile,"wb").write(open(cache_name,"rb").read()) if verbose: print "cached_words, tts_words:",cached_words,tts_words return tts_words = tts_words + wc if verbose: print "cached_words, tts_words:",cached_words,tts_words open(wavfile+".txt","w").write(text.encode('utf-8','ignore')) cmd = ["/bin/bash","-c","text2wave -o '%s' -eval '(%s)'< '%s.txt'" % (wavfile, voicemap[voice], wavfile)] if verbose: ret = subprocess.call(cmd) else: ret = subprocess.call(cmd, stdin = open("/dev/null","r"), stdout = open("/dev/null","w"), stderr = open("/dev/null","w"), close_fds = True) # ret = ttsapi.toSpeech( "james-mediacenter", text.encode('utf-8','ignore'), voicemap[voice], wavfile ) if verbose: print ret, voicemap[voice], voice, wavfile wavcache_put(text,voice,wavfile) else: import ttsapi def text2wav( text, wavfile, verbose = False, voice="julie" ): global tts_words global cached_words wc = len(text.split(" ")) voicemap = { "kate":100, "julie":100, "paul":101, "bridget":500 } cache_name = wavcache_get( text, voice ) if cache_name: cached_words = cached_words + wc open(wavfile,"wb").write(open(cache_name,"rb").read()) if verbose: print "cached_words, tts_words:",cached_words,tts_words return tts_words = tts_words + wc if verbose: print "cached_words, tts_words:",cached_words,tts_words ret = ttsapi.toSpeech( "james-mediacenter", text.encode('utf-8','ignore'), voicemap[voice], wavfile ) if verbose: print ret, voicemap[voice], voice, wavfile wavcache_put(text,voice,wavfile) if __name__ == '__main__': text2wav("This is a my radio test output!", "bridget_test.wav", True, "bridget") text2wav("This is a my radio test output!", "paul_test.wav", True, "paul") text2wav("This is a my radio test output!", "julie_test.wav", True, "julie") text2wav("This is a my radio test output!", "kate_test.wav", True, "kate") ```
{ "source": "jpfxgood/ped", "score": 3 }
#### File: ped/ped_core/editor_common.py ```python import curses import curses.ascii import sys import os import shutil import tempfile import re import gc from ped_dialog.prompt_dialog import prompt from ped_dialog.message_dialog import message from ped_dialog.replace_dialog import replace,confirm_replace from ped_dialog.confirm_dialog import confirm from ped_dialog import file_dialog from ped_core import undo from ped_core import python_mode from ped_core import java_mode from ped_core import cpp_mode from ped_core import guess_mode import copy from ped_core import clipboard import subprocess from ped_core import cmd_names from ped_core import keytab from ped_core import keymap from ped_core import extension_manager from ped_core import changes import traceback import locale import codecs import tempfile import threading import logging import time locale.setlocale(locale.LC_ALL,'') def_encoding = locale.getpreferredencoding() class EditLine: """ Interface for each editable line in a file, a fly-weight object """ def __init__(self): """ should initialize any content or references to external objects """ pass def length(self): """ return the length of the line """ pass def flush(self): """ flush cached length if you have one """ pass def getContent(self): """ should return line representing this line in the source file """ pass class FileLine(EditLine): """ Instance of a line in a file that hasn't been changed, stored on disk """ def __init__(self, parent, pos, len = -1 ): """ FileLine(s) are pointers to a line on disk the EditFile reference and offset are stored """ EditLine.__init__(self) self.parent = parent self.pos = pos self.len = len def length(self): """ return length of line """ if self.len < 0: self.len = len(self.parent.expand_tabs(self.getContent())) return self.len def flush(self): """ flush cached length """ self.len = -1 def getContent(self): """ gets the file from its parent, seeks to position, reads line and returns it """ working = self.parent.getWorking() working.seek(self.pos,0) txt = working.readline().rstrip() return txt def __del__(self): self.parent = None class MemLine(EditLine): """ Instance of a line in memory that has been edited """ def __init__(self, content ): """ MemLine(s) are in memory strings that represent a line that has been edited, it is initialized from the original file content""" EditLine.__init__(self) self.content = content def length(self): """ return the length of the content """ return len(self.content) def flush(self): """ flush cached length """ pass def getContent(self): """ just return the string reference """ return self.content class ReadOnlyError(Exception): """ Exception when modification to readonly file attempted """ pass class EditFile: """ Object that manages one file that is open for editing, lines are either pointers to lines on disk, or in-memory copies for edited lines """ default_readonly = False default_backuproot = "~" def __init__(self, filename=None ): """ takes an optional filename to either load or create """ # store the filename self.filename = filename # the root of the backup directory self.backuproot = EditFile.default_backuproot # set the default tab stops self.tabs = [ 4, 8 ] # set the changed flag to false self.changed = False # read only flag self.readonly = EditFile.default_readonly # undo manager self.undo_mgr = undo.UndoManager() # change manager self.change_mgr = changes.ChangeManager() # modification reference incremented for each change self.modref = 0 # the file object self.working = None # the lines in this file self.lines = [] # load the file if filename: self.load() def __copy__(self): """ override copy so that copying manages file handles and intelligently copies the lists """ result = EditFile() result.filename = self.filename result.tabs = self.tabs result.changed = self.changed result.readonly = True result.undo_mgr = copy.copy(self.undo_mgr) result.change_mgr = copy.copy(self.change_mgr) result.modref = self.modref result.lines = [] for l in self.lines: if isinstance(l,MemLine): result.lines.append(copy.deepcopy(l)) elif isinstance(l,FileLine): result.lines.append(FileLine(result,l.pos,l.len)) result.working = None if self.working: result.working = open(self.working.name,"r",buffering=1,encoding="utf-8") return result def __del__(self): """ make sure we close file when we are destroyed """ self.undo_mgr = None self.change_mgr = None self.close() def set_tabs(self, tabs ): """ set the tab stops for this file to something new """ if tabs != self.tabs: self.tabs = tabs for l in self.lines: l.flush() def get_tabs(self): """ return the list of tab stops """ return self.tabs def getWorking(self): """ return the file object """ return self.working def getModref(self): """ modref is a serial number that is incremented for each change to a file, used to detect changes externally """ return self.modref def setUndoMgr(self,undo_mgr): """ sets the undo manager object for this EditFile, undo manager is used to record undo records to enable undo in the editor """ self.undo_mgr = undo_mgr def getUndoMgr(self): """ returns our undo_manager """ return self.undo_mgr def isChanged(self): """ true if there are unsaved changes, false otherwise """ return self.changed def isReadOnly(self): """ true if the file is read only, false otherwise """ return self.readonly def setReadOnly(self,flag = True): """ mark this file as read only """ self.readonly = flag def getFilename(self): """ get the filename for this file """ return self.filename def setFilename(self,filename): """ set the filename for this object """ self.filename = filename def numLines(self): """ get the number of lines in this file """ return len(self.lines) def open(self): """ open the file or create it if it doesn't exist """ abs_name = os.path.abspath(self.filename) abs_path = os.path.dirname(abs_name) if os.path.exists(abs_name): self.working = tempfile.NamedTemporaryFile(mode="w+",buffering=1,encoding="utf-8",prefix="ped_",dir=EditFile.get_backup_dir(self.backuproot)) shutil.copyfile(abs_name,self.working.name) if not self.readonly: self.setReadOnly(not os.access(abs_name,os.W_OK)) elif not self.readonly: self.working = tempfile.NamedTemporaryFile(mode="w+",buffering=1,encoding="utf-8",prefix="ped_",dir=EditFile.get_backup_dir(self.backuproot)) else: raise Exception("File %s does not exist!"%(self.filename)) self.filename = abs_name self.working.seek(0,0) def isModifiedOnDisk(self): """ return true if the file we're editing has been modified since we started """ if os.path.exists(self.filename): disk_stat = os.stat(self.filename) temp_stat = os.stat(self.working.name) return disk_stat.st_mtime > temp_stat.st_mtime else: return False def close(self): """ close the file """ if self.working: self.working.close() self.working = None self.lines = None def load(self): """ open the file and load the lines into the array """ self.open() self.lines = [] pos = 0 lidx = 0 while True: line = self.working.readline() if not line: break line = line.rstrip() lidx = lidx + 1 self.lines.append(FileLine(self,pos,len(self.expand_tabs(line)))) pos = self.working.tell() while len(self.lines) and not self.lines[-1].getContent().strip(): del self.lines[-1] if not len(self.lines): self.lines.append(MemLine("")) self.changed = False self.modref = 0 def hasChanges(self,view): """ return true if there are pending screen updates """ return self.change_mgr.has_changes(view) def isLineChanged(self,view,line): """ return true if a particular line is changed """ if self.change_mgr and line < len(self.lines): return self.change_mgr.is_changed(view,line) else: return True def flushChanges(self,view): """ reset the change tracking for full screen redraw events """ if self.change_mgr: self.change_mgr.flush(view) def _deleteLine(self,line,changed = True): """ delete a line """ if self.undo_mgr: self.undo_mgr.get_transaction().push(self._insertLine,(line,self.lines[line],self.changed)) del self.lines[line] self.changed = changed self.modref += 1 if self.change_mgr: self.change_mgr.changed(line,len(self.lines)) def _insertLine(self,line,lineObj,changed = True): """ insert a line """ if self.undo_mgr: self.undo_mgr.get_transaction().push(self._deleteLine,(line,self.changed)) self.lines.insert(line,lineObj) self.changed = changed self.modref += 1 if self.change_mgr: self.change_mgr.changed(line,len(self.lines)) def _replaceLine(self,line,lineObj,changed = True): """ replace a line """ if self.undo_mgr: self.undo_mgr.get_transaction().push(self._replaceLine,(line,self.lines[line],self.changed)) self.lines[line] = lineObj self.changed = changed self.modref += 1 if self.change_mgr: self.change_mgr.changed(line,line) def _appendLine(self,lineObj,changed = True): """ add a line """ if self.undo_mgr: self.undo_mgr.get_transaction().push(self._deleteLine,(len(self.lines),self.changed)) self.lines.append(lineObj) self.changed = changed self.modref += 1 if self.change_mgr: self.change_mgr.changed(len(self.lines)-1,len(self.lines)-1) def touchLine(self, line_start, line_end): """ touch a line so it will redraw""" if self.change_mgr: self.change_mgr.changed(min(line_start,line_end),max(line_start,line_end)) def length(self, line ): """ return the length of the line """ if line < len(self.lines): return self.lines[line].length() else: return 0 def getLine( self, line, pad = 0, trim = False ): """ get a line """ if line < len(self.lines): orig = self.lines[line].getContent() else: orig = "" if trim: orig = orig.rstrip() if pad > len(orig): orig = orig + ' '*(pad-len(orig)) return self.expand_tabs(orig) def getLines( self, line_start = 0, line_end = -1): """ get a list of a range of lines """ if line_end < 0: line_end = len(self.lines) if line_end > len(self.lines): line_end = len(self.lines) lines = [] while line_start < line_end: lines.append(self.expand_tabs(self.lines[line_start].getContent())) line_start += 1 return lines def deleteLine( self, line ): """ delete a line, high level interface """ if self.isReadOnly(): raise ReadOnlyError() if line < len(self.lines): self._deleteLine(line) def insertLine( self, line, content ): """ insert a line, high level interface """ if self.isReadOnly(): raise ReadOnlyError() if line >= len(self.lines): lidx = len(self.lines) while lidx <= line: self._appendLine(MemLine("")) lidx += 1 self._insertLine(line,MemLine(content)) def replaceLine( self, line, content ): """ replace a line, high level interface """ if self.isReadOnly(): raise ReadOnlyError() if line >= len(self.lines): lidx = len(self.lines) while lidx <= line: self._appendLine(MemLine("")) lidx += 1 self._replaceLine(line, MemLine(content)) @staticmethod def get_backup_dir( base = "~" ): """ get the backup directory, create it if it doesn't exist """ base = os.path.expanduser(base) if not os.path.exists(base): base = os.path.expanduser("~") pedbackup = os.path.join(base,".pedbackup") if not os.path.exists(pedbackup): os.mkdir(pedbackup) return pedbackup @staticmethod def make_backup_dir( filename, base = "~" ): """ make a backup directory under ~/.pedbackup for filename and return it's name """ pedbackup = EditFile.get_backup_dir( base ) (filepath,rest) = os.path.split(os.path.abspath(filename)) for part in filepath.split("/"): if part: pedbackup = os.path.join(pedbackup,part) if not os.path.exists(pedbackup): os.mkdir(pedbackup) return os.path.join(pedbackup,rest) def save( self, filename = None ): """ save the file, if filename is passed it'll be saved to that filename and reopened """ if filename: if filename == self.filename and self.isReadOnly(): raise ReadOnlyError() o = open(filename,"w",buffering=1,encoding="utf-8") for l in self.lines: txt = l.getContent()+'\n' o.write(txt) o.close() self.close() self.filename = filename self.load() else: if self.isReadOnly(): raise ReadOnlyError() if not self.changed: return o = open(self.filename+".sav","w",buffering=1,encoding="utf-8") for l in self.lines: txt = l.getContent()+'\n' o.write(txt) o.close() self.working.close() if os.path.exists(self.filename): fstat = os.stat(self.filename) backup_path = EditFile.make_backup_dir(self.filename,self.backuproot) retval = shutil.move(self.filename,backup_path) os.rename(self.filename+".sav",self.filename) os.chmod(self.filename,fstat.st_mode) else: os.rename(self.filename+".sav",self.filename) self.load() def get_tab_stop(self, idx, before=False ): """ return the next tab stop before or after a given offset """ prev = 0 for stop in self.tabs: if stop > idx: if before: return prev else: return stop prev = stop incr = self.tabs[-1]-self.tabs[-2] while stop <= idx: prev = stop stop += incr if before: return prev else: return stop def expand_tabs(self, content ): """ expand tabs in a line """ idx = 0 while idx < len(content): if content[idx] == '\t': stop = self.get_tab_stop(idx) content = content[0:idx] + ' '*(stop-idx) + content[idx+1:] idx += (stop-idx) else: idx += 1 return content class Editor: """ class that implements the text editor, operates on a file abstraction EditFile """ modes = [python_mode,cpp_mode,java_mode,guess_mode] def __init__(self, parent, scr, filename, workfile = None, showname = True, wrap = False ): """ takes parent curses screen we're popped up over, scr our curses window, filename we should edit, optionally an already open EditFile """ if workfile: self.workfile = workfile else: self.workfile = EditFile(filename) self.workfile.change_mgr.add_view(self) self.undo_mgr = self.workfile.getUndoMgr() self.parent = parent self.scr = scr if scr: self.max_y,self.max_x = self.scr.getmaxyx() else: self.max_y = 0 self.max_x = 0 self.line = 0 self.pos = 0 self.vpos = 0 self.left = 0 self.prev_cmd = cmd_names.CMD_NOP self.cmd_id = cmd_names.CMD_NOP self.home_count = 0 self.end_count = 0 self.line_mark = False self.span_mark = False self.rect_mark = False self.search_mark = False self.mark_pos_start = 0 self.mark_line_start = 0 self.last_search = None self.last_search_dir = True self.mode = None self.showname = showname self.wrap = wrap self.wrap_lines = [] self.unwrap_lines = [] self.wrap_modref = -1 self.wrap_width = -1 self.show_cursor = True self.prev_pos = (0,0) self.focus = True self.invalidate_all() curses.raw() curses.meta(1) def __copy__(self): """ override to just copy the editor state and not the underlying file object """ result = Editor(self.parent,self.scr,None,self.workfile,self.showname,self.wrap) result.line = self.line result.pos = self.pos result.vpos = self.vpos result.left = self.left result.prev_cmd = self.prev_cmd result.cmd_id = self.cmd_id result.home_count = self.home_count result.end_count = self.end_count result.line_mark = self.line_mark result.span_mark = self.span_mark result.rect_mark = self.rect_mark result.search_mark = self.search_mark result.mark_pos_start = self.mark_pos_start result.mark_line_start = self.mark_line_start result.last_search = self.last_search result.last_search_dir = self.last_search_dir result.mode = self.mode result.wrap_lines = copy.copy(self.wrap_lines) result.unwrap_lines = copy.copy(self.unwrap_lines) result.wrap_modref = self.wrap_modref result.wrap_width = self.wrap_width result.show_cursor = self.show_cursor result.focus = self.focus result.prev_pos = copy.copy(self.prev_pos) return result def __del__(self): """ if we're closing then clean some stuff up """ # let the mode clean up if it needs to if self.workfile and self.workfile.change_mgr: self.workfile.change_mgr.remove_view(self) if self.mode: self.mode.finish(self) self.mode = None self.workfile = None self.undo_mgr = None def close(self): """ by default it is a no-op but editors overriding this can hook the close to clean things up """ pass def pushUndo(self): """ push an undo action onto the current transaction """ self.undo_mgr.get_transaction().push(self.applyUndo,(self.line, self.pos, self.vpos, self.left, self.prev_cmd, self.cmd_id, self.home_count, self.end_count, self.line_mark, self.span_mark, self.rect_mark, self.search_mark, self.mark_pos_start, self.mark_line_start, self.last_search, self.last_search_dir, clipboard.clip, clipboard.clip_type, self.show_cursor, self.focus, self.wrap)) def applyUndo(self,*args): """ called by undo to unwind one undo action """ ( self.line, self.pos, self.vpos, self.left, self.prev_cmd, self.cmd_id, self.home_count, self.end_count, self.line_mark, self.span_mark, self.rect_mark, self.search_mark, self.mark_pos_start, self.mark_line_start, self.last_search, self.last_search_dir, clipboard.clip, clipboard.clip_type, self.show_cursor, self.focus, self.wrap ) = args self.invalidate_screen() self.invalidate_mark() def undo(self): """ undo the last transaction, actually undoes the open transaction and the prior closed one """ line = self.line left = self.left self.undo_mgr.undo_transaction() # undo the one we're in... probably empty self.undo_mgr.undo_transaction() # undo the previous one... probably not empty if self.line != line or self.left != left: self.invalidate_screen() def setWin(self,win): """ install a new window to render to """ self.scr = win def getModref(self): """ return the current modref of this editor """ return self.workfile.getModref() def getWorkfile(self): """ return the workfile that this editor is attached to """ return self.workfile def getFilename(self): """ return the filename for this editor """ return self.workfile.getFilename() def getUndoMgr(self): """ get the undo manager that we're using """ return self.undo_mgr def isChanged(self): """ returns true if the file we're working on has unsaved changes """ return self.workfile.isChanged() def isLineChanged(self, line, display=True ): """ return true if line is changed for the current revisions """ if self.workfile: if display: return self.workfile.isLineChanged( self, self.filePos(line,0)[0]) else: return self.workfile.isLineChanged( self, line ) else: return True def flushChanges( self ): """ flush change tracking to show we're done updating """ if self.workfile: self.workfile.flushChanges(self) def isMark(self): """ returns true if there is a mark set """ return (self.line_mark or self.span_mark or self.rect_mark or self.search_mark) def getCurrentLine(self,display=False): """ returns the current line in the file """ return self.getContent(self.getLine(display),display) def getPos(self,display=False): """ get the character position in the current line that we're at """ if self.wrap: if not display: r_line,r_pos = self.filePos(self.line+self.vpos,self.left+self.pos) return r_pos return self.left+self.pos def getLine(self,display=False): """ get the line that we're on in the current file """ if self.wrap: if not display: r_line,r_pos = self.filePos(self.line+self.vpos,0) return r_line return self.line+self.vpos def filePos(self, line, pos ): """ translate display line, pos to file line, pos """ if self.wrap: if line < len(self.wrap_lines): return (self.wrap_lines[line][0],self.wrap_lines[line][1]+pos) else: return (self.numLines()+(line-len(self.wrap_lines)),pos) else: return (line,pos) def scrPos(self, line, pos ): """ translate file pos to screen pos """ if self.wrap: nlines = len(self.unwrap_lines) if line >= nlines: r_line,r_pos = self.scrPos(self.numLines()-1,self.getLength(self.numLines()-1)-1) return (r_line+(line-self.numLines())+1,pos) sline = self.unwrap_lines[line] while sline < len(self.wrap_lines) and self.wrap_lines[sline][0] == line: if pos >= self.wrap_lines[sline][1] and pos < self.wrap_lines[sline][2]: return (sline,pos-self.wrap_lines[sline][1]) sline = sline + 1 else: return (sline-1,pos - self.wrap_lines[sline-1][1]) else: return (line,pos) def getContent(self, line, pad = 0, trim= False, display=False ): """ get a line from the file """ if self.wrap: if display: orig = "" if line < len(self.wrap_lines): orig = self.workfile.getLine(self.wrap_lines[line][0])[self.wrap_lines[line][1]:self.wrap_lines[line][2]] if trim: orig = orig.rstrip() if pad > len(orig): orig = orig + ' '*(pad-len(orig)) return orig orig = self.workfile.getLine(line,pad,trim) return orig def getLength(self, line, display=False ): """ get the length of a line """ length = 0 if self.wrap and display: if line < len(self.wrap_lines): length = self.workfile.length(self.wrap_lines[line][0]) else: length = self.workfile.length(line) return length def numLines(self,display=False): """ get the number of lines in the editor """ if self.wrap and display: return len(self.wrap_lines) return self.workfile.numLines() def rewrap(self, force = False): """ compute the wrapped line array """ if self.wrap and (force or self.workfile.getModref() != self.wrap_modref or self.wrap_width != self.max_x): self.wrap_modref = self.workfile.getModref() self.wrap_width = self.max_x self.wrap_lines = [] self.unwrap_lines = [] for l in range(0,self.workfile.numLines()): line_len = self.workfile.length(l) start = 0 self.unwrap_lines.append(len(self.wrap_lines)) if not line_len: self.wrap_lines.append((l,0,0)) else: while start < line_len: self.wrap_lines.append((l,start,min(line_len,start+self.wrap_width))) start += self.wrap_width self.invalidate_after_cursor() def addstr(self,row,col,str,attr = curses.A_NORMAL): """ write properly encoded string to screen location """ try: return self.scr.addstr(row,col,codecs.encode(str,"utf-8"),attr) except: return 0 def window_pos(self,line,pos): sc_line,sc_pos = self.scrPos(line,pos) return((sc_line-self.line)+1,sc_pos-self.left) def showcursor(self,state): """ set flag to turn cursor on or off """ old_cursor_state = self.show_cursor self.show_cursor = state return old_cursor_state def setfocus(self,state): """ set this editor to have focus or not """ old_focus_state = self.focus self.focus = state return old_focus_state def draw_cursor(self): """ worker function to draw the current cursor position """ if self.show_cursor: line = self.getLine() pos = self.getPos() if pos < self.getLength(line): cursor_ch = self.getContent(line)[pos] else: cursor_ch = ' ' sc_line,sc_pos = self.window_pos(line,pos) self.addstr(sc_line,sc_pos,cursor_ch,curses.A_REVERSE) def draw_mark(self): """ worker function to draw the marked section of the file """ if not self.isMark(): return (mark_top,mark_left) = self.scrPos(self.mark_line_start,self.mark_pos_start) mark_line_start = mark_top mark_pos_start = mark_left mark_right = self.getPos(True) mark_bottom = self.getLine(True) if (self.rect_mark or self.line_mark or (self.span_mark and mark_top == mark_bottom)) and mark_left > mark_right: mark = mark_left mark_left = mark_right mark_right = mark if mark_top > mark_bottom: mark = mark_bottom mark_bottom = mark_top mark_top = mark if mark_top < self.line: mark_top = self.line if self.span_mark: mark_left = 0 mark_right = mark_right + 1 s_left = mark_left - self.left s_left = max(0,s_left) s_right = mark_right - self.left s_right = min(self.max_x,s_right) s_top = (mark_top - self.line)+1 s_top = max(1,s_top) s_bottom = (mark_bottom - self.line)+1 s_bottom = min(self.max_y-1,s_bottom) mark_left = max(mark_left,self.left) mark_right = min(mark_right,self.left+self.max_x) if self.line_mark: s_right = self.max_x mark_right = self.left+s_right mark_left = max(mark_left,self.left) if s_top == s_bottom: if s_right > s_left: self.addstr(s_top, s_left, self.getContent(mark_top, mark_right, True, True)[mark_left:mark_right], curses.A_REVERSE) elif self.rect_mark: if mark_top < self.line: mark_top = self.line while s_top <= s_bottom: self.addstr(s_top, s_left, self.getContent(mark_top, mark_right, True, True)[mark_left:mark_right], curses.A_REVERSE) s_top += 1 mark_top += 1 elif self.span_mark: cur_line = mark_top while s_top <= s_bottom: if cur_line == mark_top: offset = s_left width = self.max_x-offset self.addstr(s_top, offset, self.getContent(cur_line, self.left+offset+width, True, True)[self.left+offset:self.left+offset+width], curses.A_REVERSE) elif cur_line == mark_bottom: self.addstr(s_top, 0, self.getContent(cur_line, self.getPos(True), True, True)[self.left:self.getPos(True)+1], curses.A_REVERSE) else: self.addstr(s_top, 0, self.getContent(cur_line, self.left+self.max_x, True, True)[self.left:self.left+self.max_x], curses.A_REVERSE) s_top += 1 cur_line += 1 elif self.line_mark: cur_line = mark_top while s_top <= s_bottom: self.addstr(s_top, 0, self.getContent(cur_line, self.left+self.max_x, True, True)[self.left:self.left+self.max_x], curses.A_REVERSE) s_top += 1 cur_line += 1 def resize(self): """ resize the editor to fill the window """ if self.scr: self.max_y,self.max_x = self.scr.getmaxyx() self.rewrap() bottom_y = max(min((self.numLines(True)-1)-self.line,(self.max_y-2)),0) if self.vpos > bottom_y: self.vpos = bottom_y right_x = self.max_x-1 if self.pos > right_x: self.left += self.pos-right_x self.pos = right_x self.invalidate_screen() def move(self): """ update the previous cursor position from the current """ self.prev_pos = (self.getLine(),self.getPos()) def prevPos(self): """ get the previous cursor position """ return self.prev_pos def redraw(self): """ redraw the editor as needed """ try: if not self.scr or keymap.is_playback(): return self.max_y,self.max_x = self.scr.getmaxyx() self.scr.keypad(1) if self.workfile.isChanged(): changed = "*" elif self.workfile.isReadOnly(): changed = "R" else: changed = " " if self.mode: changed = changed + " " + self.mode.name() filename = self.workfile.getFilename() if not self.showname: filename = "" status = "%d : %d : %d : %s : %s : %s"%(self.numLines(),self.getLine(),self.getPos(),changed,filename, "REC" if keymap.is_recording() else "PBK" if keymap.is_playback() else " " ) if len(status) < self.max_x: status += (self.max_x-len(status))*' ' if self.focus: self.addstr(0,0,status[0:self.max_x],curses.A_REVERSE|curses.A_BOLD) else: self.addstr(0,0,status[0:self.max_x],curses.A_REVERSE) # if the mode is rendering then don't do the default rendering as well mode_redraw = False if self.mode: mode_redraw = self.mode.redraw(self) if not mode_redraw: cursor_line,cursor_pos = self.window_pos(*self.prevPos()) y = 1 lidx = self.line while lidx < self.line+(self.max_y-1): try: line_changed = self.isLineChanged(lidx) is_cursor_line = (y == cursor_line) if line_changed or is_cursor_line: l = self.getContent(lidx,self.left+self.max_x,True,True) if line_changed: self.addstr(y,0,l[self.left:self.left+self.max_x]) else: self.addstr(y,cursor_pos,l[self.left+cursor_pos]) except Exception as e: pass y = y + 1 lidx = lidx + 1 self.draw_mark() self.move() self.draw_cursor() if mode_redraw: self.flushChanges() except: raise def insert(self, c ): """ insert a character or string at the cursor position """ self.pushUndo() if self.isMark(): self.copy_marked(True,True) # delete the marked block first then insert orig = self.getContent(self.getLine()).rstrip() offset = self.getPos() pad = "" if offset > len(orig): pad = " "*(offset - len(orig)) orig = orig[0:offset] + pad + c + orig[offset:] insert_line = self.getLine() self.workfile.replaceLine(insert_line,orig) self.rewrap() self.goto(insert_line,offset+len(c)) def delc(self): """ deletes one character at the cursor position """ self.pushUndo() if self.isMark(): self.copy_marked(True,True) # delete the marked block instead and return return orig = self.getContent(self.getLine()) offset = self.getPos() if offset > len(orig): return elif offset == len(orig): next_idx = self.getLine()+1 if next_idx > self.numLines(): return next = self.getContent(next_idx) orig = orig[0:offset] + next self.workfile.replaceLine(self.getLine(),orig) self.workfile.deleteLine(next_idx) else: orig = orig[0:offset]+orig[offset+1:] self.workfile.replaceLine(self.getLine(),orig) self.rewrap() def backspace(self): """ delete a character at the cursor and move back one character """ self.pushUndo() if self.isMark(): self.copy_marked(True,True) # delete the marked block instead and return return line = self.getLine() pos = self.getPos() if pos: if pos <= self.getLength(line): self.goto(line,pos-1) self.delc() else: self.goto(line,pos-1) elif line: pos = self.getLength(line-1)-1 self.goto(line-1,pos) self.delc() def goto(self,line, pos ): """ goto a line in the file and position the cursor to pos offset in the line """ self.pushUndo() self.invalidate_mark() if line < 0: line = 0 if pos < 0: pos = 0 (line,pos) = self.scrPos(line,pos) if line >= self.line and line <= self.line+(self.max_y-2): self.vpos = line - self.line elif line < self.line: self.line = line self.vpos = 0 self.invalidate_screen() elif line > self.line+(self.max_y-2): self.line = line - (self.max_y-2) self.vpos = (self.max_y-2) self.invalidate_screen() if pos >= self.left and pos < self.left+(self.max_x-1): self.pos = pos - self.left elif pos >= self.left+(self.max_x-1): self.left = pos-(self.max_x-1) self.pos = self.max_x-1 self.invalidate_screen() else: self.left = pos self.pos = 0 self.invalidate_screen() def endln(self): """ go to the end of a line """ self.pushUndo() self.invalidate_mark() orig = self.getContent(self.getLine()) offset = len(orig) self.goto(self.getLine(),offset) def endpg(self): """ go to the end of a page """ self.pushUndo() self.invalidate_mark() ldisp = (self.numLines(True)-1)-self.line self.vpos = min(self.max_y-2,ldisp) def endfile(self): """ go to the end of the file """ self.pushUndo() ldisp = (self.numLines(True)-1)-self.line if ldisp < self.max_y-2: return self.line = (self.numLines(True)-1) - (self.max_y-2) self.vpos = min(self.max_y-2,ldisp) self.invalidate_screen() def end(self): """ once go to end of line, twice end of page, thrice end of file """ self.pushUndo() if self.cmd_id == cmd_names.CMD_END and self.prev_cmd == cmd_names.CMD_END: self.end_count += 1 self.end_count = self.end_count % 3 else: self.end_count = 0 if self.end_count == 0: self.endln() elif self.end_count == 1: self.endpg() self.endln() elif self.end_count == 2: self.endfile() self.endln() def home(self): """ once to to start of line, twice start of page, thrice start of file """ self.pushUndo() self.invalidate_mark() if self.cmd_id == cmd_names.CMD_HOME and self.prev_cmd == cmd_names.CMD_HOME: self.home_count += 1 self.home_count = self.home_count % 3 else: self.home_count = 0 if self.home_count == 0: self.goto(self.getLine(),0) elif self.home_count == 1: self.vpos = 0 elif self.home_count == 2: self.line = 0 self.invalidate_screen() def pageup(self): """ go back one page in the file """ self.pushUndo() self.invalidate_mark() offset = self.line - (self.max_y-2) if offset < 0: offset = 0 self.line = offset self.invalidate_screen() def pagedown(self): """ go forward one page in the file """ self.pushUndo() self.invalidate_mark() offset = self.line + (self.max_y-2) if offset > self.numLines(True)-1: return self.line = offset ldisp = (self.numLines(True)-1)-self.line if self.vpos > ldisp: self.vpos = ldisp self.invalidate_screen() def cup(self): """ go back one line in the file """ self.pushUndo() self.invalidate_mark() if self.vpos: self.vpos -= 1 elif self.line: self.line -= 1 self.invalidate_screen() self.goto(self.getLine(),self.getPos()) def cdown(self,rept = 1): """ go forward one or rept lines in the file """ self.pushUndo() self.invalidate_mark() while rept: if self.vpos < min((self.numLines(True)-1)-self.line,(self.max_y-2)): self.vpos += 1 elif self.line <= self.numLines(True)-self.max_y: self.line += 1 self.invalidate_screen() rept = rept - 1 self.goto(self.getLine(),self.getPos()) def prev_word( self ): """ scan left until you get to the previous word """ self.pushUndo() orig = self.getContent(self.getLine()).rstrip() pos = self.getPos() if pos >= len(orig): pos = len(orig)-1 if pos and pos < len(orig): pos -= 1 while pos and orig[pos] == ' ': pos -= 1 while pos and orig[pos-1] != ' ': pos -= 1 elif pos >= len(orig): pos = len(orig) else: pos = 0 self.goto(self.getLine(),pos) def next_word( self ): """ scan left until you get to the previous word """ self.pushUndo() orig = self.getContent(self.getLine()).rstrip() pos = self.getPos() if pos < len(orig): if orig[pos] == ' ': while pos < len(orig) and orig[pos] == ' ': pos += 1 else: while pos < len(orig) and orig[pos] != ' ': pos += 1 while pos < len(orig) and orig[pos] == ' ': pos += 1 else: pos = len(orig) self.goto(self.getLine(),pos) def cleft(self,rept = 1): """ go back one or rept characters in the current line """ self.pushUndo() pos = self.getPos() line = self.getLine() if pos >= rept: self.goto(line,pos-rept) return if self.wrap: if line: offset = self.getLength(line-1)-(rept-pos) self.goto(line-1,offset) else: self.goto(line,0) def cright(self,rept = 1): """ go forward one or rept characters in the current line """ self.pushUndo() pos = self.getPos() line = self.getLine() if self.wrap: llen = self.getLength(line) if pos + rept < llen: self.goto(line,pos+rept) return if line < self.numLines()-1: self.goto(line+1,llen-(pos+rept)) return self.goto(line,llen) else: self.goto(line,pos+rept) def scroll_left(self): """ scroll the page left without moving the current cursor position """ self.pushUndo() if self.left: self.left -= 1 self.invalidate_screen() def scroll_right(self): """ scroll the page right without moving the current cursor position """ self.pushUndo() self.left += 1 self.invalidate_screen() def searchagain(self): """ repeat the previous search if any """ self.pushUndo() self.invalidate_mark() if self.isMark(): if not self.last_search_dir: self.goto(self.mark_line_start,self.mark_pos_start) self.mark_span() if self.last_search: return self.search(self.last_search,self.last_search_dir,True) else: return False def search(self, pattern, down = True, next = True): """ search for a regular expression forward or back if next is set then skip one before matching """ self.pushUndo() self.invalidate_mark() self.last_search = pattern self.last_search_dir = down first_line = self.getLine() line = first_line if down: while line < self.numLines(): content = self.getContent(line) if line == first_line: content = content[self.getPos():] offset = self.getPos() else: offset = 0 match = None try: match = re.search(pattern,content) except: pass if match: if self.isMark(): self.mark_span() self.goto(line,match.start()+offset) self.mark_span() self.goto(line,match.end()+offset-1) self.search_mark = True return True line += 1 else: while line >= 0: content = self.getContent(line) if line == first_line: content = content[:self.getPos()] match = None try: match = re.search(pattern,content) except: pass last_match = None offset = 0 while match: last_match = match last_offset = offset offset += match.end() match = re.search(pattern,content[offset:]) if last_match: if self.isMark(): self.mark_span() self.goto(line,last_match.start()+last_offset) self.mark_span() self.goto(line,last_match.end()+last_offset-1) self.search_mark = True return True line -= 1 return False def invalidate_mark(self): """ touch the marked lines so that they'll redraw when we change the shape of the mark or do a copy or paste """ if self.isMark(): self.workfile.touchLine(self.mark_line_start, self.getLine()) if self.search_mark: self.span_mark = False self.search_mark = False def invalidate_all(self): """ touch all the lines in the file so everything will redraw """ self.workfile.touchLine(0,self.workfile.numLines()) def invalidate_screen(self): """ touch all the lines on the screen so everything will redraw """ line,pos = self.filePos(self.line,self.left) self.workfile.touchLine(line,line+self.max_y) def invalidate_after_cursor(self): """ touch all the lines from the current position to the end of the screen """ line,pos = self.filePos(self.line,self.left) self.workfile.touchLine(self.getLine(),line+self.max_y) def has_changes(self): """ return true if there are any pending changes """ return self.workfile.hasChanges(self) def mark_span(self): """ mark a span of characters that can start and end in the middle of a line """ self.pushUndo() self.invalidate_mark() if not self.span_mark: self.span_mark = True self.rect_mark = False self.line_mark = False self.mark_pos_start = self.getPos() self.mark_line_start = self.getLine() else: self.span_mark = False def mark_rect(self): """ mark a rectangular or column selection across lines """ # no column cut in wrapped mode, it doesn't make sense if self.wrap: return self.pushUndo() self.invalidate_mark() if not self.rect_mark: self.rect_mark = True self.span_mark = False self.line_mark = False self.mark_pos_start = self.getPos() self.mark_line_start = self.getLine() else: self.rect_mark = False def mark_lines(self): """ mark whole lines """ self.pushUndo() self.invalidate_mark() if not self.line_mark: self.line_mark = True self.span_mark = False self.rect_mark = False self.mark_pos_start = 0 self.mark_line_start = self.getLine() else: self.line_mark = False def get_marked(self, delete=False, nocopy = False): """ returns marked text as tuple ( cliptype, [list of clipped] ) returns () if no mark """ if not self.isMark(): return () self.pushUndo() if delete: self.invalidate_screen() mark_pos_start = self.mark_pos_start mark_line_start = self.mark_line_start mark_pos_end = self.getPos() mark_line_end = self.getLine() if mark_line_start > mark_line_end: mark = mark_line_start mark_line_start = mark_line_end mark_line_end = mark mark = mark_pos_start mark_pos_start = mark_pos_end mark_pos_end = mark elif mark_line_start == mark_line_end and mark_pos_start > mark_pos_end: mark = mark_pos_start mark_pos_start = mark_pos_end mark_pos_end = mark clip = [] clip_type = clipboard.LINE_CLIP line_idx = mark_line_start if self.line_mark: if not nocopy: clip_type = clipboard.LINE_CLIP while line_idx <= mark_line_end: clip.append(self.getContent(line_idx)) line_idx += 1 if delete: line_idx = mark_line_start while line_idx <= mark_line_end: self.workfile.deleteLine(mark_line_start) line_idx += 1 self.rewrap() elif self.span_mark: if not nocopy: clip_type = clipboard.SPAN_CLIP if line_idx == mark_line_end: clip.append(self.getContent(line_idx)[mark_pos_start:mark_pos_end+1]) else: clip.append(self.getContent(line_idx)[mark_pos_start:]+'\n') line_idx += 1 while line_idx < mark_line_end: clip.append(self.getContent(line_idx)+'\n') line_idx += 1 clip.append(self.getContent(line_idx)[0:mark_pos_end+1]) if delete: line_idx = mark_line_start if line_idx == mark_line_end: orig = self.getContent(line_idx) orig = orig[0:mark_pos_start] + orig[mark_pos_end+1:] self.workfile.replaceLine(line_idx,orig) self.rewrap() else: first_line = self.getContent(mark_line_start) last_line = self.getContent(mark_line_end) while line_idx <= mark_line_end: self.workfile.deleteLine(mark_line_start) line_idx += 1 self.workfile.insertLine(mark_line_start,first_line[0:mark_pos_start] + last_line[mark_pos_end+1:]) self.rewrap() elif self.rect_mark: if not nocopy: clip_type = clipboard.RECT_CLIP while line_idx <= mark_line_end: clip.append(self.getContent(line_idx,mark_pos_end,True)[mark_pos_start:mark_pos_end+1]) line_idx += 1 if delete: line_idx = mark_line_start while line_idx <= mark_line_end: orig = self.getContent(line_idx,mark_pos_end,True) self.workfile.replaceLine(line_idx,orig[0:mark_pos_start]+orig[mark_pos_end+1:]) line_idx += 1 # sync the x clipboard self.transfer_clipboard() if self.line_mark: self.line_mark = False if self.rect_mark: self.rect_mark = False if self.span_mark: self.span_mark = False if delete: self.goto(mark_line_start,mark_pos_start) self.invalidate_screen() return (clip_type, clip) def copy_marked(self,delete=False,nocopy = False): """ copy the marked text to the clipboard, delete== True means cut, nocopy == True will just delete """ if not self.isMark(): return self.pushUndo() cp = self.get_marked(delete,nocopy) if cp and not (delete and nocopy): clipboard.clip_type = cp[0] clipboard.clip = cp[1] def paste(self): """ paste the current clip at the cursor position """ if clipboard.clip: # no column cut or paste when in wrap mode if self.wrap and clipboard.clip_type == clipboard.RECT_CLIP: return self.pushUndo() if self.isMark(): self.copy_marked(True,True) # delete the marked block first then insert if clipboard.clip_type == clipboard.LINE_CLIP: target = self.getLine() pos = self.getPos() for line in clipboard.clip: self.workfile.insertLine(target,line) target += 1 self.rewrap() self.goto(target,pos) elif clipboard.clip_type == clipboard.SPAN_CLIP: target = self.getLine() pos = self.getPos() idx = 0 for line in clipboard.clip: orig = self.getContent(target,pos,True) if (not line) or line[-1] == '\n': line = line.rstrip() if not idx: self.workfile.replaceLine(target,orig[0:pos]+line) self.workfile.insertLine(target+1,orig[pos:]) self.rewrap() self.goto(target, pos+len(line)) target += 1 else: self.workfile.insertLine(target,line) self.rewrap() self.goto(target, len(line)) target += 1 else: if not idx: self.workfile.replaceLine(target,orig[0:pos]+line+orig[pos:]) self.rewrap() self.goto(target, pos+len(line)) else: self.workfile.replaceLine(target,line+orig) self.rewrap() self.goto(target, len(line)) idx += 1 elif clipboard.clip_type == clipboard.RECT_CLIP: target = self.getLine() pos = self.getPos() for line in clipboard.clip: orig = self.getContent(target,self.getPos(),True) self.workfile.replaceLine(target,orig[0:self.getPos()]+line+orig[self.getPos():]) target += 1 self.rewrap() self.goto(target,pos) def cr(self): """ insert a carriage return, split the current line at cursor """ self.pushUndo() orig = self.getContent(self.getLine(),self.getPos(),True) self.workfile.replaceLine(self.getLine(),orig[0:self.getPos()]) self.workfile.insertLine(self.getLine()+1,orig[self.getPos():]) self.rewrap() self.goto(self.getLine()+1,0) def instab(self, line, pos, move_cursor = True ): """ insert a tab at a line and position """ orig = self.getContent(line,pos,True) stop = self.workfile.get_tab_stop(pos) orig = orig[0:pos] + ' '*(stop-(pos)) + orig[pos:] self.workfile.replaceLine(line,orig) self.rewrap() if move_cursor: self.goto(line,stop) def tab(self): """ tab in the correct distance to the next tab stop """ self.pushUndo() if self.isMark() and self.line_mark: oline = self.getLine() opos = self.getPos() mark_line_start = self.mark_line_start mark_line_end = oline if mark_line_start > mark_line_end: mark = mark_line_start mark_line_start = mark_line_end mark_line_end = mark while mark_line_start <= mark_line_end: self.instab( mark_line_start, 0, False ) mark_line_start += 1 self.goto(oline,opos) else: self.instab( self.getLine(), self.getPos() ) def deltab(self, line, pos, move_cursor = True ): """ remove a tab from the line at position provided optionally move the cursor """ orig = self.getContent(line,pos+1,True) idx = pos start = 0 stop = 0 while idx: while idx and orig[idx] != ' ': idx -= 1 start = idx stop = self.workfile.get_tab_stop(idx,True) while idx and idx >= stop: if orig[idx] != ' ': break idx -= 1 else: if start > stop: break if start > stop: orig = orig[0:stop]+orig[start+1:] self.workfile.replaceLine(line,orig) self.rewrap() if move_cursor: self.goto(line,stop) def btab(self): """ remove white space to the previous tab stop, or shift the line back to the previous tab stop """ self.pushUndo() if self.isMark() and self.line_mark: mark_line_start = self.mark_line_start mark_line_end = self.getLine() if mark_line_start > mark_line_end: mark = mark_line_start mark_line_start = mark_line_end mark_line_end = mark while mark_line_start <= mark_line_end: self.deltab( mark_line_start, self.workfile.get_tab_stop(0), False ) mark_line_start += 1 else: self.deltab( self.getLine(), self.getPos() ) def prmt_goto(self): """ prompt for a line to go to and go there """ self.invalidate_screen() goto_line = prompt(self.parent,"Goto","Enter line number 0-%d :"%(self.numLines()-1),10,name="goto") if goto_line: self.goto(int(goto_line),self.getPos()) def saveas(self): """ open the file dialog and enter or point to a file and then save this buffer to that path """ f = file_dialog.FileDialog(self.parent,"Save file as") choices = f.main() if choices and choices["file"]: self.workfile.save(os.path.join(choices["dir"],choices["file"])) self.undo_mgr.flush_undo() self.invalidate_all() gc.collect() def save(self): """ save the current buffer """ if self.workfile.isModifiedOnDisk(): if not confirm(self.parent, "File has changed on disk, overwrite?"): self.invalidate_screen() self.redraw() return self.workfile.save() self.undo_mgr.flush_undo() self.goto(self.getLine(),self.getPos()) self.invalidate_all() self.redraw() gc.collect() def prmt_search(self,down=True): """ prompt for a search string then search for it and either put up a message that it was not found or position the cursor to the occurrance """ self.invalidate_screen() if down: title = "Search Forward" else: title = "Search Backward" pattern = prompt(self.parent,title,"Pattern: ",-1,name="search") if pattern: if not self.search(pattern,down): message(self.parent,"Search","Pattern not found.") def prmt_replace(self): """ prompt for search pattern and replacement string, then confirm replacment or replace all for the occurrences until no more are found """ (pattern,rep) = replace(self.parent) if pattern and rep: found = self.search(pattern) replace_all = False do_replace = False while found: self.redraw() self.scr.refresh() if not replace_all: answer = confirm_replace(self.parent) self.invalidate_screen() if answer == 1: do_replace = True elif answer == 2: do_replace = False elif answer == 3: replace_all = True elif answer == 4: message(self.parent,"Canceled","Replace canceled.") return if do_replace or replace_all: self.insert(rep) found = self.searchagain() else: message(self.parent,"Replace","Pattern not found.") self.invalidate_screen() def prmt_searchagain(self): """ search again and put up a message if no more are found """ self.invalidate_screen() if not self.searchagain(): if self.isMark(): self.mark_span() message(self.parent,"Search","Pattern not found.") def transfer_clipboard(self, from_xclip = False): """ use xclip to transfer out clipboard to x or vice/versa """ if os.path.exists("/dev/clipboard"): if from_xclip: clipboard.clip = [] clipboard.clip_type = clipboard.SPAN_CLIP for line in open("/dev/clipboard","r",buffering=1,encoding="utf-8"): clipboard.clip.append(line) else: cld = open("/dev/clipboard","w",buffering=0,encoding="utf-8") for line in clipboard.clip: cld.write(line) cld.close() elif os.path.exists("/usr/bin/xclip"): cmd = [ "xclip", ] if from_xclip: cmd += ["-out","-selection","clipboard"] else: cmd += ["-in","-selection","clipboard"] try: proc = subprocess.Popen( cmd, encoding="utf-8", stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) if from_xclip: clipboard.clip = [] clipboard.clip_type = clipboard.SPAN_CLIP for l in proc.stdout: clipboard.clip.append(l) else: for l in clipboard.clip: print(l.rstrip(), file=proc.stdin) proc.stdout.close() proc.stdin.close() proc.stderr.close() proc.wait() except: pass def toggle_wrap(self): """ toggle wrapping for this editor """ # don't toggle wrapping while we're marking a rectangle if self.rect_mark: return self.pushUndo() oline = self.getLine() opos = self.getPos() self.wrap = not self.wrap self.rewrap(True) self.invalidate_all() self.goto(oline,opos) def handle(self,ch): """ main character handler dispatches keystrokes to execute editor commands returns characters meant to be processed by containing manager or dialog """ self.prev_cmd = self.cmd_id if isinstance(ch,int): self.cmd_id, ret = keymap.mapkey( self.scr, keymap.keymap_editor, ch ) else: self.cmd_id, ret = keymap.mapseq( keymap.keymap_editor, ch ) if extension_manager.is_extension(self.cmd_id): if not extension_manager.invoke_extension( self.cmd_id, self, ch ): return ret if self.cmd_id == cmd_names.CMD_RETURNKEY: if ret in [keytab.KEYTAB_NOKEY,keytab.KEYTAB_REFRESH,keytab.KEYTAB_RESIZE]: self.cmd_id = self.prev_cmd elif self.cmd_id == cmd_names.CMD_INSERT: self.insert(chr(ret)) ret = keytab.KEYTAB_NOKEY elif self.cmd_id == cmd_names.CMD_MARKSPAN: self.mark_span() elif self.cmd_id == cmd_names.CMD_MARKRECT: self.mark_rect() elif self.cmd_id == cmd_names.CMD_COPYMARKED: self.copy_marked() elif self.cmd_id == cmd_names.CMD_PRMTGOTO: self.prmt_goto() elif self.cmd_id == cmd_names.CMD_BACKSPACE: self.backspace() elif self.cmd_id == cmd_names.CMD_FILENAME: if self.getFilename(): message(self.parent,"Filename",self.getFilename()) elif self.cmd_id == cmd_names.CMD_CUTMARKED: self.copy_marked(True) elif self.cmd_id == cmd_names.CMD_PASTE: self.paste() elif self.cmd_id == cmd_names.CMD_MARKLINES: self.mark_lines() elif self.cmd_id == cmd_names.CMD_CR: self.cr() elif self.cmd_id == cmd_names.CMD_TAB: self.tab() elif self.cmd_id == cmd_names.CMD_SAVE: self.save() elif self.cmd_id == cmd_names.CMD_SAVEAS: self.saveas() elif self.cmd_id == cmd_names.CMD_UNDO: self.undo() elif self.cmd_id == cmd_names.CMD_TOGGLEWRAP: self.toggle_wrap() elif self.cmd_id == cmd_names.CMD_MARKCOPYLINE: if not self.isMark(): self.mark_lines() self.copy_marked() elif self.cmd_id == cmd_names.CMD_MARKCUTLINE: if not self.isMark(): self.mark_lines() self.copy_marked(True) elif self.cmd_id == cmd_names.CMD_BTAB: self.btab() elif self.cmd_id == cmd_names.CMD_PREVWORD: self.prev_word() elif self.cmd_id == cmd_names.CMD_NEXTWORD: self.next_word() elif self.cmd_id == cmd_names.CMD_HOME1: self.pushUndo() self.prev_cmd = cmd_names.CMD_HOME self.cmd_id = cmd_names.CMD_HOME self.home_count = 0 self.home() self.home() self.home() elif self.cmd_id == cmd_names.CMD_END1: self.pushUndo() self.prev_cmd = cmd_names.CMD_END self.cmd_id = cmd_names.CMD_END self.end_count = 0 self.end() self.end() self.end() elif self.cmd_id == cmd_names.CMD_UP: self.cup() elif self.cmd_id == cmd_names.CMD_DOWN: self.cdown() elif self.cmd_id == cmd_names.CMD_LEFT: self.cleft() elif self.cmd_id == cmd_names.CMD_RIGHT: self.cright() elif self.cmd_id == cmd_names.CMD_DELC: self.delc() elif self.cmd_id == cmd_names.CMD_HOME: self.home() elif self.cmd_id == cmd_names.CMD_END: self.end() elif self.cmd_id == cmd_names.CMD_PAGEUP: self.pageup() elif self.cmd_id == cmd_names.CMD_PAGEDOWN: self.pagedown() elif self.cmd_id == cmd_names.CMD_PRMTSEARCH: self.prmt_search() elif self.cmd_id == cmd_names.CMD_PRMTREPLACE: self.prmt_replace() elif self.cmd_id == cmd_names.CMD_TRANSFERCLIPIN: self.transfer_clipboard(False) elif self.cmd_id == cmd_names.CMD_TRANSFERCLIPOUT: self.transfer_clipboard(True) elif self.cmd_id == cmd_names.CMD_PRMTSEARCHBACK: self.prmt_search(False) elif self.cmd_id == cmd_names.CMD_SEARCHAGAIN: self.prmt_searchagain() elif self.cmd_id == cmd_names.CMD_TOGGLERECORD: keymap.toggle_recording() elif self.cmd_id == cmd_names.CMD_PLAYBACK: keymap.start_playback() return ret def main(self,blocking = True, start_ch = None): """ main driver loop for editor, if blocking = False exits on each keystroke to allow embedding, start_ch is a character read externally that hould be processed on startup """ curses.curs_set(0) self.rewrap() self.scr.nodelay(1) self.scr.notimeout(0) self.scr.timeout(0) while (1): if not self.scr: return 27 if not self.mode: for m in Editor.modes: if m.detect_mode(self): self.mode = m self.getWorkfile().set_tabs(m.get_tabs(self)) break else: self.mode = None self.redraw() if start_ch: ch = start_ch start_ch = None else: ch = keymap.getch(self.scr) try: self.undo_mgr.new_transaction() if self.mode: ch = self.mode.handle(self,ch) modref = self.workfile.getModref() ret_seq = self.handle(ch) if self.wrap and modref != self.workfile.getModref(): self.rewrap() if ret_seq or not blocking: return ret_seq except ReadOnlyError as e: message(self.parent,"Read Only File Error","Changes not allowed.") if not blocking: return keytab.KEYTAB_REFRESH class StreamThread: """ Thread to read from a stream blocking as needed adding lines to the owning EditFile object """ def __init__(self, ef, stream ): self.ef = ef self.stream = stream self.thread = None self.read_worker_stop = False def __del__( self ): self.stop_stream() def start_stream( self ): self.thread = threading.Thread(target = self.read_worker) self.thread.start() def wait(self): if self.thread: self.thread.join() def stop_stream( self ): self.read_worker_stop = True if self.thread and self.thread.is_alive(): self.thread.join() if self.stream: self.stream.close() self.stream = None self.thread = None self.read_worker_stop = False def read_worker( self ): pos = 0 lidx = 0 while not self.read_worker_stop: line = self.stream.readline() if not line: break try: self.ef.lines_lock.acquire() self.ef.modref += 1 self.ef.working.seek(0,2) self.ef.working.write(line) line = line.rstrip() self.ef.lines.append(FileLine(self.ef,pos,len(self.ef.expand_tabs(line)))) if self.ef.change_mgr: self.ef.change_mgr.changed(lidx,lidx) pos = self.ef.working.tell() lidx += 1 finally: self.ef.lines_lock.release() time.sleep( 0 ) try: self.ef.lines_lock.acquire() while len(self.ef.lines) and not self.ef.lines[-1].getContent().strip(): del self.ef.lines[-1] if not len(self.ef.lines): self.ef.lines.append(MemLine("")) finally: self.ef.lines_lock.release() self.ef.changed = False self.ef.modref = 0 if self.stream: self.stream.close() self.stream = None self.thread = None self.read_worker_stop = False class StreamFile(EditFile): """ Class reads a stream to the end and writes it to a temp file which is opened and loaded read only, used for capturing the output of shell commands to a read-only editor """ def __init__(self,name,stream,wait=False): """ takes name which is a display name for this stream, stream is the input stream to read """ self.stream = stream self.stream_thread = None self.lines_lock = threading.Lock() self.wait = wait # store the filename self.filename = name # the root of the backup directory self.backuproot = EditFile.default_backuproot # set the default tab stops self.tabs = [ 4, 8 ] # set the changed flag to false self.changed = False # read only flag self.readonly = EditFile.default_readonly # undo manager self.undo_mgr = undo.UndoManager() # change manager self.change_mgr = changes.ChangeManager() # modification reference incremented for each change self.modref = 0 # the file object self.working = None # the lines in this file self.lines = [] # load the file self.load() def __del__(self): """ clean up stream thread and stream """ self.stream_thread = None EditFile.__del__(self) def open(self): """ override of the open method, starts a thread that reads the stream into a tempfile which then becomes the file for the editor """ if self.stream and not self.working: self.working = tempfile.NamedTemporaryFile(mode="w+") self.setReadOnly(True) self.stream_thread = StreamThread(self,self.stream) self.stream_thread.start_stream() if self.wait: self.stream_thread.wait() self.stream_thread = None return else: EditFile.open(self) def load(self): if self.stream and not self.working: self.open() return else: EditFile.load(self) def close(self): """ override of close method, make sure the stream gets closed """ if self.stream_thread: self.stream_thread.stop_stream() self.stream = None self.stream_thread = None elif self.stream: self.stream.close() self.stream = None EditFile.close(self) def save( self, filename = None ): """ save the file, if filename is passed it'll be saved to that filename and reopened """ if filename: if filename == self.filename and self.isReadOnly(): raise ReadOnlyError() try: self.lines_lock.acquire() o = open(filename,"w",buffering=1,encoding="utf-8") for l in self.lines: txt = l.getContent()+'\n' o.write(txt) o.close() finally: self.lines_lock.release() self.close() self.filename = filename self.load() else: if self.isReadOnly(): raise ReadOnlyError() def set_tabs(self, tabs): try: self.lines_lock.acquire() EditFile.set_tabs(self, tabs) finally: self.lines_lock.release() def numLines(self): try: self.lines_lock.acquire() return EditFile.numLines(self) finally: self.lines_lock.release() def length(self,line): try: self.lines_lock.acquire() return EditFile.length(self,line) finally: self.lines_lock.release() def getLine(self, line, pad = 0, trim = False ): try: self.lines_lock.acquire() return EditFile.getLine(self,line,pad,trim) finally: self.lines_lock.release() def getLines(self, line_start = 0, line_end = -1 ): try: self.lines_lock.acquire() return EditFile.getLines(self,line_start,line_end) finally: self.lines_lock.release() class StreamEditor(Editor): """ this is a read only editor that wraps a stream it has a select option for use when embedding in a control to select lines from the stream """ def __init__(self, par, scr, name, stream, select = False, line_re = None, follow = False, wait = False, workfile=None ): """ takes parent curses screen, screen to render to, name for stream, stream to read in, and select to indicate if line selection is requested """ self.select = select self.line_re = line_re self.follow = follow self.wait = wait self.o_nlines = 0 if workfile: self.sfile = workfile else: self.sfile = StreamFile(name,stream,self.wait) Editor.__init__(self, par, scr, self.sfile.getFilename(), self.sfile) def __copy__(self): """ override to just copy the editor state and not the underlying file object """ result = StreamEditor(self.parent,self.scr,None,None,self.select, self.line_re, self.follow, self.wait, self.workfile) result.o_nlines = 0 result.line = self.line result.pos = self.pos result.vpos = self.vpos result.left = self.left result.prev_cmd = self.prev_cmd result.cmd_id = self.cmd_id result.home_count = self.home_count result.end_count = self.end_count result.line_mark = self.line_mark result.span_mark = self.span_mark result.rect_mark = self.rect_mark result.search_mark = self.search_mark result.mark_pos_start = self.mark_pos_start result.mark_line_start = self.mark_line_start result.last_search = self.last_search result.last_search_dir = self.last_search_dir result.mode = self.mode result.wrap_lines = copy.copy(self.wrap_lines) result.unwrap_lines = copy.copy(self.unwrap_lines) result.wrap_modref = self.wrap_modref result.wrap_width = self.wrap_width result.show_cursor = self.show_cursor result.focus = self.focus result.prev_pos = copy.copy(self.prev_pos) return result def __del__(self): """ clean up the StreamFile """ self.sfile = None def close(self): """ close and shut down the stream file """ if self.sfile: self.sfile.close() self.sfile = None def handle(self,ch): """ override normal keystroke handling if in select mode and move about doing selection and return on enter """ if self.follow: nlines = self.numLines() if self.o_nlines != nlines: self.endfile() self.o_nlines = nlines if ch in keymap.keydef_map and keymap.keydef_map[ch][-1] == keytab.KEYTAB_CTRLF: self.follow = not self.follow return keytab.KEYTAB_NOKEY elif not self.select: return Editor.handle(self,ch) o_line = self.getLine() if isinstance(ch,int): ch = keymap.get_keyseq( self.scr, ch ) ret_ch = keytab.KEYTAB_NOKEY direction = 0 if ch in [keytab.KEYTAB_F02,keytab.KEYTAB_F04,keytab.KEYTAB_F10,keytab.KEYTAB_F01,keytab.KEYTAB_RESIZE, keytab.KEYTAB_CR, keytab.KEYTAB_BTAB, keytab.KEYTAB_TAB, keytab.KEYTAB_ESC]: ret_ch = ch elif ch == keytab.KEYTAB_UP: self.cup() direction = -1 elif ch == keytab.KEYTAB_DOWN: self.cdown() direction = 1 elif ch == keytab.KEYTAB_LEFT: self.scroll_left() elif ch == keytab.KEYTAB_RIGHT: self.scroll_right() elif ch == keytab.KEYTAB_BACKSPACE: direction = -1 self.cup() elif ch == keytab.KEYTAB_HOME: self.pushUndo() self.left = 0 self.pos = 0 self.line = 0 self.vpos = 0 direction = 1 elif ch == keytab.KEYTAB_END: self.endfile() direction = -1 elif ch == keytab.KEYTAB_PAGEUP: self.pageup() direction = -1 elif ch == keytab.KEYTAB_PAGEDOWN: self.pagedown() direction = 1 elif ch == keytab.KEYTAB_F05: self.prmt_search() direction = 1 elif ch == keytab.KEYTAB_F17: # shift f5: self.prmt_search(False) direction = -1 elif ch == keytab.KEYTAB_F03: self.prmt_searchagain() if self.last_search_dir: direction = 1 else: direction = -1 if self.line_re and direction: if direction > 0: while True: if re.search(self.line_re, self.getCurrentLine()): self.line = self.getLine() self.vpos = 0 break line = self.getLine() self.cdown() if line == self.getLine(): self.undo_mgr.undo_transaction() break elif direction < 0: while True: if re.search(self.line_re, self.getCurrentLine()): self.line = self.getLine() self.vpos = 0 break line = self.getLine() self.cup() if line == self.getLine(): self.undo_mgr.undo_transaction() break if self.getLine() != o_line or not self.isMark(): if self.isMark(): self.mark_lines() self.mark_lines() return ret_ch class ReadonlyEditor(Editor): """ editor subclass implements read only editor for viewing files """ def __init__(self, par, scr, name, showname = True): """ parent curses screen, screen to render to, filename to open """ self.showname = showname sfile = EditFile(name) sfile.setReadOnly() Editor.__init__(self, par, scr, name, sfile, showname) def getFilename(self): """ override getFilename so we can return None to indicate no file stuff should be done """ if self.showname: return Editor.getFilename(self) else: return None def handle(self,ch): """ handle override to only do read only actions to the file """ o_line = self.getLine() if isinstance(ch,int): ch = keymap.get_keyseq( self.scr, ch ) ret_ch = keytab.KEYTAB_NOKEY if ch in [keytab.KEYTAB_F02,keytab.KEYTAB_F04,keytab.KEYTAB_F10,keytab.KEYTAB_F01,keytab.KEYTAB_RESIZE, keytab.KEYTAB_CR, keytab.KEYTAB_BTAB, keytab.KEYTAB_TAB, keytab.KEYTAB_ESC]: ret_ch = ch elif ch == keytab.KEYTAB_CTRLW: # ctrl-w (toggle wrap in readonly editor) self.toggle_wrap() elif ch == keytab.KEYTAB_UP: self.cup() elif ch == keytab.KEYTAB_DOWN: self.cdown() elif ch == keytab.KEYTAB_LEFT: self.scroll_left() elif ch == keytab.KEYTAB_RIGHT: self.scroll_right() elif ch == keytab.KEYTAB_BACKSPACE: self.cup() elif ch == keytab.KEYTAB_HOME: self.home() elif ch == keytab.KEYTAB_END: self.end() elif ch == keytab.KEYTAB_PAGEUP: self.pageup() elif ch == keytab.KEYTAB_PAGEDOWN: self.pagedown() elif ch == keytab.KEYTAB_F05: self.prmt_search() elif ch == keytab.KEYTAB_F17: # shift f5: self.prmt_search(False) elif ch == keytab.KEYTAB_F03: self.prmt_searchagain() if self.getLine() != o_line or not self.isMark(): if self.isMark(): self.mark_lines() self.mark_lines() return ret_ch def main(stdscr): """ test driver for the editor """ open("test.txt","w").write("""This is line one This is line two \tThis is line three \t\tThis is line four This is line five aaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbb cccccccccccccccc dddddddddddddddd eeeeeeeeeeeeeeee ffffffffffffffff gggggggggggggggg hhhhhhhhhhhhhhhh iiiiiiiiiiiiiiii jjjjjjjjjjjjjjjj kkkkkkkkkkkkkkkk llllllllllllllll mmmmmmmmmmmmmmmm Aa23456789b23456789c23456789d23456789d23456789e23456789f23456789g23456789h23456789A Ba23456789b23456789c23456789d23456789d23456789e23456789f23456789g23456789h23456789B Ca23456789b23456789c23456789d23456789d23456789e23456789f23456789g23456789h23456789C Da23456789b23456789c23456789d23456789d23456789e23456789f23456789g23456789h23456789D Ea23456789b23456789c23456789d23456789d23456789e23456789f23456789g23456789h23456789E Fa23456789b23456789c23456789d23456789d23456789e23456789f23456789g23456789h23456789F Ga23456789b23456789c23456789d23456789d23456789e23456789f23456789g23456789h23456789G asdkfjlkjaslkfjj asfdkljsa;dfkljas;dflksajdf;laskdfjas;kfdljas;dlkfjas safkjsf;kljsf askdfj;sa asdkfj as;lkfjs fksadfjs;lkfj asdjdfkljsaf al;slkfdj asdlkfj asdlfkj asldkfj asdf;lkj as;lkdfj as;ldkfj adsflk asdlfkj aslfkj aslfj adflkj alkjasdflk aksdfj asdflj asldkfj asdflkj asldkfj aslkfj aslfdkjalksfjd aslfjd asdlfkj ;askfdj alskdfj asldfkj ksaldfj slkdfj kasdfj asdflkja aljkjjlk asdkfljlaksfjd aslkdjf alskdjf alskdfj aslfkj alkjdfslkj aldkfj alskdfj asldkfj asldfj aslkdfj alskdfj alkdfj aslkdfj aslkdfj""") e1 = Editor(stdscr, curses.newwin(0,0),"test.txt",None,True,True) e1.main() if __name__ == '__main__': curses.wrapper(main) ``` #### File: ped/ped_core/extension_manager.py ```python import sys import os from ped_core import cmd_names from ped_core import keymap from ped_core import keytab extensions = {} # extension modules are python modules with the following two entry points # ped_ext_info which takes no arguments and returns a tuple ( cmd_name, keymap_name {"EDITOR","DIALOG","MANAGER"}, keytab_key_name, keytab_key_name_ret, ext_name ) # cmd_name can be the same as an existing name which will be an override or it can be a new name # keymap_name and keytab_key_name should be None if it is an override, if not it needs to be specified # ped_ext_invoke which takes arguments ( Dialog or EditorManager or Editor, key ordinal we entered on ) # returns True to continue cmd processing or False to exit cmd processing allows for augmenting commands # with a prior action def register_extensions(): """ search the directory ~/.pedextension for python modules that implement ped_ext_info, ped_ext_invoke methods """ ped_extension_path = "~/.pedextension" if "PED_EXTENSION_PATH" in os.environ: ped_extension_path = os.environ["PED_EXTENSION_PATH"] ext_dir = os.path.expanduser( ped_extension_path ) if os.path.exists(ext_dir) and os.path.isdir(ext_dir): pwd = os.getcwd() os.chdir(ext_dir) sys_path = list(sys.path) sys.path.append(ext_dir) for f in os.listdir(ext_dir): if f.endswith(".py"): ext_mod = __import__(f[:-3]) if hasattr(ext_mod,"ped_ext_info") and hasattr(ext_mod,"ped_ext_invoke"): cm_name, km_name, km_key, km_ret_key, ex_name = ext_mod.ped_ext_info() if cm_name in cmd_names.name_to_cmd: extensions[cm_name] = ext_mod else: new_cmd = max(cmd_names.name_to_cmd.values())+1 cmd_names.cmd_to_name[new_cmd] = cm_name cmd_names.name_to_cmd[cm_name] = new_cmd if km_name == "EDITOR": keymap.keymap_editor[keytab.name_to_key[km_key]] = ( new_cmd, keytab.name_to_key[km_ret_key] ) elif km_name == "MANAGER": keymap.keymap_manager[keytab.name_to_key[km_key]] = ( new_cmd, keytab.name_to_key[km_ret_key] ) elif km_name == "DIALOG": keymap.keymap_dialog[keytab.name_to_key[km_key]] = ( new_cmd, keytab.name_to_key[km_ret_key] ) extensions[cm_name] = ext_mod os.chdir(pwd) sys.path = sys_path def is_extension( cmd_id ): """ test to see if there is an extension for a command id """ return (cmd_names.cmd_to_name[cmd_id] in extensions) def invoke_extension( cmd_id, target, ch ): """ invoke the extension returns true if processing should continue for augmenting or false if processing should exit for overrides """ # target could be Editor, EditorManager, or Dialog object, plugin needs to know return extensions[cmd_names.cmd_to_name[cmd_id]].ped_ext_invoke( cmd_id, target, ch ) ``` #### File: ped/ped_core/keytab.py ```python import curses KEYTAB_NOKEY=chr(0) KEYTAB_ALTA=chr(27)+'a' KEYTAB_ALTB=chr(27)+'b' KEYTAB_ALTC=chr(27)+'c' KEYTAB_ALTD=chr(27)+'d' KEYTAB_ALTE=chr(27)+'e' KEYTAB_ALTF=chr(27)+'f' KEYTAB_ALTG=chr(27)+'g' KEYTAB_ALTH=chr(27)+'h' KEYTAB_ALTI=chr(27)+'i' KEYTAB_ALTJ=chr(27)+'j' KEYTAB_ALTK=chr(27)+'k' KEYTAB_ALTL=chr(27)+'l' KEYTAB_ALTM=chr(27)+'m' KEYTAB_ALTN=chr(27)+'n' KEYTAB_ALTo=chr(27)+'o' KEYTAB_ALTO=chr(27)+'O' KEYTAB_ALTP=chr(27)+'p' KEYTAB_ALTQ=chr(27)+'q' KEYTAB_ALTR=chr(27)+'r' KEYTAB_ALTS=chr(27)+'s' KEYTAB_ALTT=chr(27)+'t' KEYTAB_ALTU=chr(27)+'u' KEYTAB_ALTV=chr(27)+'v' KEYTAB_ALTW=chr(27)+'w' KEYTAB_ALTX=chr(27)+'x' KEYTAB_ALTY=chr(27)+'y' KEYTAB_ALTZ=chr(27)+'z' KEYTAB_BACKSPACE="backspace" KEYTAB_BACKSPACE=chr(8) KEYTAB_BACKTAB=chr(27)+'[Z' KEYTAB_BTAB="btab" KEYTAB_CR=chr(10) KEYTAB_CTRLA=chr(1) KEYTAB_CTRLB=chr(2) KEYTAB_CTRLC=chr(3) KEYTAB_CTRLD=chr(4) KEYTAB_CTRLE=chr(5) KEYTAB_CTRLF=chr(6) KEYTAB_CTRLG=chr(7) KEYTAB_CTRLH=chr(8) KEYTAB_CTRLI=chr(9) KEYTAB_CTRLJ=chr(10) KEYTAB_CTRLK=chr(11) KEYTAB_CTRLL=chr(12) KEYTAB_CTRLM=chr(13) KEYTAB_CTRLN=chr(14) KEYTAB_CTRLO=chr(15) KEYTAB_CTRLP=chr(16) KEYTAB_CTRLQ=chr(17) KEYTAB_CTRLR=chr(18) KEYTAB_CTRLS=chr(19) KEYTAB_CTRLT=chr(20) KEYTAB_CTRLU=chr(21) KEYTAB_CTRLV=chr(22) KEYTAB_CTRLW=chr(23) KEYTAB_CTRLX=chr(24) KEYTAB_CTRLY=chr(25) KEYTAB_CTRLZ=chr(26) KEYTAB_CTRLLEFT='ctrl-left' KEYTAB_CTRLRIGHT='ctrl-right' KEYTAB_CTRLHOME='ctrl-home' KEYTAB_CTRLEND='ctrl-end' KEYTAB_DELC="delc" KEYTAB_DLGCANCEL="cancel" KEYTAB_DLGNOP=KEYTAB_NOKEY KEYTAB_DLGOK="ok" KEYTAB_DOWN="down" KEYTAB_END="end" KEYTAB_ESC=chr(27) KEYTAB_F00="fk00" KEYTAB_F01="fk01" KEYTAB_F02="fk02" KEYTAB_F03="fk03" KEYTAB_F04="fk04" KEYTAB_F05="fk05" KEYTAB_F06="fk06" KEYTAB_F07="fk07" KEYTAB_F08="fk08" KEYTAB_F09="fk09" KEYTAB_F10="fk10" KEYTAB_F11="fk11" KEYTAB_F12="fk12" KEYTAB_F13="fk13" KEYTAB_F14="fk14" KEYTAB_F15="fk15" KEYTAB_F16="fk16" KEYTAB_F17="fk17" KEYTAB_F18="fk18" KEYTAB_F19="fk19" KEYTAB_F20="fk20" KEYTAB_F21="fk21" KEYTAB_F22="fk22" KEYTAB_F23="fk23" KEYTAB_F24="fk24" KEYTAB_F25="fk25" KEYTAB_F26="fk26" KEYTAB_F27="fk27" KEYTAB_F28="fk28" KEYTAB_F29="fk29" KEYTAB_F30="fk30" KEYTAB_F31="fk31" KEYTAB_F32="fk32" KEYTAB_F33="fk33" KEYTAB_F34="fk34" KEYTAB_F35="fk35" KEYTAB_F36="fk36" KEYTAB_F37="fk37" KEYTAB_F38="fk38" KEYTAB_F39="fk39" KEYTAB_F40="fk40" KEYTAB_F41="fk41" KEYTAB_F42="fk42" KEYTAB_F43="fk43" KEYTAB_F44="fk44" KEYTAB_F45="fk45" KEYTAB_F46="fk46" KEYTAB_F47="fk47" KEYTAB_F48="fk48" KEYTAB_F49="fk49" KEYTAB_F50="fk50" KEYTAB_F51="fk51" KEYTAB_F52="fk52" KEYTAB_F53="fk53" KEYTAB_F54="fk54" KEYTAB_F55="fk55" KEYTAB_F56="fk56" KEYTAB_F57="fk57" KEYTAB_F58="fk58" KEYTAB_F59="fk59" KEYTAB_F60="fk60" KEYTAB_F61="fk61" KEYTAB_F62="fk62" KEYTAB_F63="fk63" KEYTAB_HOME="home" KEYTAB_INSERT="insert" KEYTAB_KEYPADPLUS=chr(27)+'Ok' KEYTAB_KEYTPADMINUS=chr(27)+'Om' KEYTAB_LEFT="left" KEYTAB_PAGEDOWN="pagedown" KEYTAB_PAGEUP="pageup" KEYTAB_REFRESH="refresh" KEYTAB_RESIZE="resize" KEYTAB_RIGHT="right" KEYTAB_SPACE=' ' KEYTAB_TAB=chr(9) KEYTAB_UP="up" KEYTAB_MOUSE="mouse" name_to_key = { "KEYTAB_ALTA" : KEYTAB_ALTA, "KEYTAB_ALTB" : KEYTAB_ALTB, "KEYTAB_ALTC" : KEYTAB_ALTC, "KEYTAB_ALTD" : KEYTAB_ALTD, "KEYTAB_ALTE" : KEYTAB_ALTE, "KEYTAB_ALTF" : KEYTAB_ALTF, "KEYTAB_ALTG" : KEYTAB_ALTG, "KEYTAB_ALTH" : KEYTAB_ALTH, "KEYTAB_ALTI" : KEYTAB_ALTI, "KEYTAB_ALTJ" : KEYTAB_ALTJ, "KEYTAB_ALTK" : KEYTAB_ALTK, "KEYTAB_ALTL" : KEYTAB_ALTL, "KEYTAB_ALTM" : KEYTAB_ALTM, "KEYTAB_ALTN" : KEYTAB_ALTN, "KEYTAB_ALTo" : KEYTAB_ALTo, "KEYTAB_ALTO" : KEYTAB_ALTO, "KEYTAB_ALTP" : KEYTAB_ALTP, "KEYTAB_ALTQ" : KEYTAB_ALTQ, "KEYTAB_ALTR" : KEYTAB_ALTR, "KEYTAB_ALTS" : KEYTAB_ALTS, "KEYTAB_ALTT" : KEYTAB_ALTT, "KEYTAB_ALTU" : KEYTAB_ALTU, "KEYTAB_ALTV" : KEYTAB_ALTV, "KEYTAB_ALTW" : KEYTAB_ALTW, "KEYTAB_ALTX" : KEYTAB_ALTX, "KEYTAB_ALTY" : KEYTAB_ALTY, "KEYTAB_ALTZ" : KEYTAB_ALTZ, "KEYTAB_BACKSPACE" : KEYTAB_BACKSPACE, "KEYTAB_BACKSPACE" : KEYTAB_BACKSPACE, "KEYTAB_BACKTAB" : KEYTAB_BACKTAB, "KEYTAB_BTAB" : KEYTAB_BTAB, "KEYTAB_CR" : KEYTAB_CR, "KEYTAB_CTRLA" : KEYTAB_CTRLA, "KEYTAB_CTRLB" : KEYTAB_CTRLB, "KEYTAB_CTRLC" : KEYTAB_CTRLC, "KEYTAB_CTRLD" : KEYTAB_CTRLD, "KEYTAB_CTRLE" : KEYTAB_CTRLE, "KEYTAB_CTRLF" : KEYTAB_CTRLF, "KEYTAB_CTRLG" : KEYTAB_CTRLG, "KEYTAB_CTRLH" : KEYTAB_CTRLH, "KEYTAB_CTRLI" : KEYTAB_CTRLI, "KEYTAB_CTRLJ" : KEYTAB_CTRLJ, "KEYTAB_CTRLK" : KEYTAB_CTRLK, "KEYTAB_CTRLL" : KEYTAB_CTRLL, "KEYTAB_CTRLM" : KEYTAB_CTRLM, "KEYTAB_CTRLN" : KEYTAB_CTRLN, "KEYTAB_CTRLO" : KEYTAB_CTRLO, "KEYTAB_CTRLP" : KEYTAB_CTRLP, "KEYTAB_CTRLQ" : KEYTAB_CTRLQ, "KEYTAB_CTRLR" : KEYTAB_CTRLR, "KEYTAB_CTRLS" : KEYTAB_CTRLS, "KEYTAB_CTRLT" : KEYTAB_CTRLT, "KEYTAB_CTRLU" : KEYTAB_CTRLU, "KEYTAB_CTRLV" : KEYTAB_CTRLV, "KEYTAB_CTRLW" : KEYTAB_CTRLW, "KEYTAB_CTRLX" : KEYTAB_CTRLX, "KEYTAB_CTRLY" : KEYTAB_CTRLY, "KEYTAB_CTRLZ" : KEYTAB_CTRLZ, "KEYTAB_CTRLLEFT" : KEYTAB_CTRLLEFT, "KEYTAB_CTRLRIGHT" : KEYTAB_CTRLRIGHT, "KEYTAB_CTRLHOME" : KEYTAB_CTRLHOME, "KEYTAB_CTRLEND" : KEYTAB_CTRLEND, "KEYTAB_DELC" : KEYTAB_DELC, "KEYTAB_DLGCANCEL" : KEYTAB_DLGCANCEL, "KEYTAB_DLGNOP" : KEYTAB_DLGNOP, "KEYTAB_DLGOK" : KEYTAB_DLGOK, "KEYTAB_DOWN" : KEYTAB_DOWN, "KEYTAB_END" : KEYTAB_END, "KEYTAB_ESC" : KEYTAB_ESC, "KEYTAB_F00" : KEYTAB_F00, "KEYTAB_F01" : KEYTAB_F01, "KEYTAB_F02" : KEYTAB_F02, "KEYTAB_F03" : KEYTAB_F03, "KEYTAB_F04" : KEYTAB_F04, "KEYTAB_F05" : KEYTAB_F05, "KEYTAB_F06" : KEYTAB_F06, "KEYTAB_F07" : KEYTAB_F07, "KEYTAB_F08" : KEYTAB_F08, "KEYTAB_F09" : KEYTAB_F09, "KEYTAB_F10" : KEYTAB_F10, "KEYTAB_F11" : KEYTAB_F11, "KEYTAB_F12" : KEYTAB_F12, "KEYTAB_F13" : KEYTAB_F13, "KEYTAB_F14" : KEYTAB_F14, "KEYTAB_F15" : KEYTAB_F15, "KEYTAB_F16" : KEYTAB_F16, "KEYTAB_F17" : KEYTAB_F17, "KEYTAB_F18" : KEYTAB_F18, "KEYTAB_F19" : KEYTAB_F19, "KEYTAB_F20" : KEYTAB_F20, "KEYTAB_F21" : KEYTAB_F21, "KEYTAB_F22" : KEYTAB_F22, "KEYTAB_F23" : KEYTAB_F23, "KEYTAB_F24" : KEYTAB_F24, "KEYTAB_F25" : KEYTAB_F25, "KEYTAB_F26" : KEYTAB_F26, "KEYTAB_F27" : KEYTAB_F27, "KEYTAB_F28" : KEYTAB_F28, "KEYTAB_F29" : KEYTAB_F29, "KEYTAB_F30" : KEYTAB_F30, "KEYTAB_F31" : KEYTAB_F31, "KEYTAB_F32" : KEYTAB_F32, "KEYTAB_F33" : KEYTAB_F33, "KEYTAB_F34" : KEYTAB_F34, "KEYTAB_F35" : KEYTAB_F35, "KEYTAB_F36" : KEYTAB_F36, "KEYTAB_F37" : KEYTAB_F37, "KEYTAB_F38" : KEYTAB_F38, "KEYTAB_F39" : KEYTAB_F39, "KEYTAB_F40" : KEYTAB_F40, "KEYTAB_F41" : KEYTAB_F41, "KEYTAB_F42" : KEYTAB_F42, "KEYTAB_F43" : KEYTAB_F43, "KEYTAB_F44" : KEYTAB_F44, "KEYTAB_F45" : KEYTAB_F45, "KEYTAB_F46" : KEYTAB_F46, "KEYTAB_F47" : KEYTAB_F47, "KEYTAB_F48" : KEYTAB_F48, "KEYTAB_F49" : KEYTAB_F49, "KEYTAB_F50" : KEYTAB_F50, "KEYTAB_F51" : KEYTAB_F51, "KEYTAB_F52" : KEYTAB_F52, "KEYTAB_F53" : KEYTAB_F53, "KEYTAB_F54" : KEYTAB_F54, "KEYTAB_F55" : KEYTAB_F55, "KEYTAB_F56" : KEYTAB_F56, "KEYTAB_F57" : KEYTAB_F57, "KEYTAB_F58" : KEYTAB_F58, "KEYTAB_F59" : KEYTAB_F59, "KEYTAB_F60" : KEYTAB_F60, "KEYTAB_F61" : KEYTAB_F61, "KEYTAB_F62" : KEYTAB_F62, "KEYTAB_F63" : KEYTAB_F63, "KEYTAB_HOME" : KEYTAB_HOME, "KEYTAB_INSERT" : KEYTAB_INSERT, "KEYTAB_KEYPADPLUS" : KEYTAB_KEYPADPLUS, "KEYTAB_KEYTPADMINUS" : KEYTAB_KEYTPADMINUS, "KEYTAB_LEFT" : KEYTAB_LEFT, "KEYTAB_NOKEY" : KEYTAB_NOKEY, "KEYTAB_PAGEDOWN" : KEYTAB_PAGEDOWN, "KEYTAB_PAGEUP" : KEYTAB_PAGEUP, "KEYTAB_REFRESH" : KEYTAB_REFRESH, "KEYTAB_RESIZE" : KEYTAB_RESIZE, "KEYTAB_RIGHT" : KEYTAB_RIGHT, "KEYTAB_SPACE" : KEYTAB_SPACE, "KEYTAB_TAB" : KEYTAB_TAB, "KEYTAB_UP" : KEYTAB_UP, "KEYTAB_MOUSE" : KEYTAB_MOUSE, } key_to_name = {} for name,key in list(name_to_key.items()): key_to_name[key] = name keydef = [ ((0,),KEYTAB_NOKEY), ((27,-1,),KEYTAB_ESC), ((27,ord('a'),-1),KEYTAB_ALTA), ((27,ord('b'),-1),KEYTAB_ALTB), ((27,ord('c'),-1),KEYTAB_ALTC), ((27,ord('d'),-1),KEYTAB_ALTD), ((27,ord('e'),-1),KEYTAB_ALTE), ((27,ord('f'),-1),KEYTAB_ALTF), ((27,ord('g'),-1),KEYTAB_ALTG), ((27,ord('h'),-1),KEYTAB_ALTH), ((27,ord('i'),-1),KEYTAB_ALTI), ((27,ord('j'),-1),KEYTAB_ALTJ), ((27,ord('k'),-1),KEYTAB_ALTK), ((27,ord('l'),-1),KEYTAB_ALTL), ((27,ord('m'),-1),KEYTAB_ALTM), ((27,ord('n'),-1),KEYTAB_ALTN), ((27,ord('o'),-1),KEYTAB_ALTo), ((27,ord('p'),-1),KEYTAB_ALTP), ((27,ord('q'),-1),KEYTAB_ALTQ), ((27,ord('r'),-1),KEYTAB_ALTR), ((27,ord('s'),-1),KEYTAB_ALTS), ((27,ord('t'),-1),KEYTAB_ALTT), ((27,ord('u'),-1),KEYTAB_ALTU), ((27,ord('v'),-1),KEYTAB_ALTV), ((27,ord('w'),-1),KEYTAB_ALTW), ((27,ord('x'),-1),KEYTAB_ALTX), ((27,ord('y'),-1),KEYTAB_ALTY), ((27,ord('z'),-1),KEYTAB_ALTZ), ((27,ord('A'),-1),KEYTAB_ALTA), ((27,ord('B'),-1),KEYTAB_ALTB), ((27,ord('C'),-1),KEYTAB_ALTC), ((27,ord('D'),-1),KEYTAB_ALTD), ((27,ord('E'),-1),KEYTAB_ALTE), ((27,ord('F'),-1),KEYTAB_ALTF), ((27,ord('G'),-1),KEYTAB_ALTG), ((27,ord('H'),-1),KEYTAB_ALTH), ((27,ord('I'),-1),KEYTAB_ALTI), ((27,ord('J'),-1),KEYTAB_ALTJ), ((27,ord('K'),-1),KEYTAB_ALTK), ((27,ord('L'),-1),KEYTAB_ALTL), ((27,ord('M'),-1),KEYTAB_ALTM), ((27,ord('N'),-1),KEYTAB_ALTN), ((27,ord('O'),-1),KEYTAB_ALTO), ((27,ord('P'),-1),KEYTAB_ALTP), ((27,ord('Q'),-1),KEYTAB_ALTQ), ((27,ord('R'),-1),KEYTAB_ALTR), ((27,ord('S'),-1),KEYTAB_ALTS), ((27,ord('T'),-1),KEYTAB_ALTT), ((27,ord('U'),-1),KEYTAB_ALTU), ((27,ord('V'),-1),KEYTAB_ALTV), ((27,ord('W'),-1),KEYTAB_ALTW), ((27,ord('X'),-1),KEYTAB_ALTX), ((27,ord('Y'),-1),KEYTAB_ALTY), ((27,ord('Z'),-1),KEYTAB_ALTZ), ((curses.KEY_BACKSPACE,-1),KEYTAB_BACKSPACE), ((8,-1),KEYTAB_BACKSPACE), ((127,-1),KEYTAB_BACKSPACE), ((27,ord('['),ord('Z'),-1),KEYTAB_BACKTAB), ((curses.KEY_BTAB,-1),KEYTAB_BTAB), ((10,-1),KEYTAB_CR), ((1,-1),KEYTAB_CTRLA), ((2,-1),KEYTAB_CTRLB), ((3,-1),KEYTAB_CTRLC), ((4,-1),KEYTAB_CTRLD), ((5,-1),KEYTAB_CTRLE), ((6,-1),KEYTAB_CTRLF), ((7,-1),KEYTAB_CTRLG), ((8,-1),KEYTAB_CTRLH), ((9,-1),KEYTAB_CTRLI), ((10,-1),KEYTAB_CTRLJ), ((11,-1),KEYTAB_CTRLK), ((12,-1),KEYTAB_CTRLL), ((13,-1),KEYTAB_CTRLM), ((14,-1),KEYTAB_CTRLN), ((15,-1),KEYTAB_CTRLO), ((16,-1),KEYTAB_CTRLP), ((17,-1),KEYTAB_CTRLQ), ((18,-1),KEYTAB_CTRLR), ((19,-1),KEYTAB_CTRLS), ((20,-1),KEYTAB_CTRLT), ((21,-1),KEYTAB_CTRLU), ((22,-1),KEYTAB_CTRLV), ((23,-1),KEYTAB_CTRLW), ((24,-1),KEYTAB_CTRLX), ((25,-1),KEYTAB_CTRLY), ((26,-1),KEYTAB_CTRLZ), ((545,-1),KEYTAB_CTRLLEFT), ((560,-1),KEYTAB_CTRLRIGHT), ((530,-1),KEYTAB_CTRLHOME), ((525,-1),KEYTAB_CTRLEND), ((curses.KEY_DC,-1),KEYTAB_DELC), ((curses.KEY_DOWN,-1),KEYTAB_DOWN), ((curses.KEY_END,-1),KEYTAB_END), ((curses.KEY_F0,-1),KEYTAB_F00), ((curses.KEY_F1,-1),KEYTAB_F01), ((curses.KEY_F2,-1),KEYTAB_F02), ((curses.KEY_F3,-1),KEYTAB_F03), ((curses.KEY_F4,-1),KEYTAB_F04), ((curses.KEY_F5,-1),KEYTAB_F05), ((curses.KEY_F6,-1),KEYTAB_F06), ((curses.KEY_F7,-1),KEYTAB_F07), ((curses.KEY_F8,-1),KEYTAB_F08), ((curses.KEY_F9,-1),KEYTAB_F09), ((curses.KEY_F10,-1),KEYTAB_F10), ((curses.KEY_F11,-1),KEYTAB_F11), ((curses.KEY_F12,-1),KEYTAB_F12), ((curses.KEY_F13,-1),KEYTAB_F13), ((curses.KEY_F14,-1),KEYTAB_F14), ((curses.KEY_F15,-1),KEYTAB_F15), ((curses.KEY_F16,-1),KEYTAB_F16), ((curses.KEY_F17,-1),KEYTAB_F17), ((curses.KEY_F18,-1),KEYTAB_F18), ((curses.KEY_F19,-1),KEYTAB_F19), ((curses.KEY_F20,-1),KEYTAB_F20), ((curses.KEY_F21,-1),KEYTAB_F21), ((curses.KEY_F22,-1),KEYTAB_F22), ((curses.KEY_F23,-1),KEYTAB_F23), ((curses.KEY_F24,-1),KEYTAB_F24), ((curses.KEY_F25,-1),KEYTAB_F25), ((curses.KEY_F26,-1),KEYTAB_F26), ((curses.KEY_F27,-1),KEYTAB_F27), ((curses.KEY_F28,-1),KEYTAB_F28), ((curses.KEY_F29,-1),KEYTAB_F29), ((curses.KEY_F30,-1),KEYTAB_F30), ((curses.KEY_F31,-1),KEYTAB_F31), ((curses.KEY_F32,-1),KEYTAB_F32), ((curses.KEY_F33,-1),KEYTAB_F33), ((curses.KEY_F34,-1),KEYTAB_F34), ((curses.KEY_F35,-1),KEYTAB_F35), ((curses.KEY_F36,-1),KEYTAB_F36), ((curses.KEY_F37,-1),KEYTAB_F37), ((curses.KEY_F38,-1),KEYTAB_F38), ((curses.KEY_F39,-1),KEYTAB_F39), ((curses.KEY_F40,-1),KEYTAB_F40), ((curses.KEY_F41,-1),KEYTAB_F41), ((curses.KEY_F42,-1),KEYTAB_F42), ((curses.KEY_F43,-1),KEYTAB_F43), ((curses.KEY_F44,-1),KEYTAB_F44), ((curses.KEY_F45,-1),KEYTAB_F45), ((curses.KEY_F46,-1),KEYTAB_F46), ((curses.KEY_F47,-1),KEYTAB_F47), ((curses.KEY_F48,-1),KEYTAB_F48), ((curses.KEY_F49,-1),KEYTAB_F49), ((curses.KEY_F50,-1),KEYTAB_F50), ((curses.KEY_F51,-1),KEYTAB_F51), ((curses.KEY_F52,-1),KEYTAB_F52), ((curses.KEY_F53,-1),KEYTAB_F53), ((curses.KEY_F54,-1),KEYTAB_F54), ((curses.KEY_F55,-1),KEYTAB_F55), ((curses.KEY_F56,-1),KEYTAB_F56), ((curses.KEY_F57,-1),KEYTAB_F57), ((curses.KEY_F58,-1),KEYTAB_F58), ((curses.KEY_F59,-1),KEYTAB_F59), ((curses.KEY_F60,-1),KEYTAB_F60), ((curses.KEY_F61,-1),KEYTAB_F61), ((curses.KEY_F62,-1),KEYTAB_F62), ((curses.KEY_F63,-1),KEYTAB_F63), ((curses.KEY_HOME,-1),KEYTAB_HOME), ((curses.KEY_IC,-1),KEYTAB_INSERT), ((27,ord('O'),ord('k'),-1),KEYTAB_KEYPADPLUS), ((27,ord('O'),ord('m'),-1),KEYTAB_KEYTPADMINUS), ((curses.KEY_LEFT,-1),KEYTAB_LEFT), ((curses.KEY_NPAGE,-1),KEYTAB_PAGEDOWN), ((curses.KEY_PPAGE,-1),KEYTAB_PAGEUP), ((curses.KEY_RESIZE,-1),KEYTAB_RESIZE), ((curses.KEY_RIGHT,-1),KEYTAB_RIGHT), ((ord(' '),-1),KEYTAB_SPACE), ((9,-1),KEYTAB_TAB), ((curses.KEY_UP,-1),KEYTAB_UP), ((curses.KEY_MOUSE,-1),KEYTAB_MOUSE), ] ``` #### File: ped/ped_core/undo.py ```python import copy class UndoAction: """ represents one undoable action """ def __init__(self, func, tpl ): """ constructed with an undo func which is a function to call on undo and tpl which is a tuple of arguments to pass to the function a shallow copy of the tuple is made preserving the state """ self.func = func self.tpl = copy.copy(tpl) def __del__(self): self.func = None self.tpl = None def undo(self): """ undo this action by invoking the function and passing the tuple to it """ self.func(*self.tpl) class UndoTransaction: """ represents a collection of undo actions that should be undone together as one transaction """ def __init__(self, manager): """ constructed with a reference to the UndoManager that this transaction belongs to """ self.manager = manager self.list = [] def __del__(self): self.manager = None self.list = None def isEmpty(self): """ tests to see if this transaction has no actions in it """ return not self.list def push(self, func, tpl ): """ pushes a new undo action onto this transaction """ if not self.manager.inUndo(): self.list.append(UndoAction(func,tpl)) def undo(self): """ undoes all of the actions in this transaction """ while self.list: self.list[-1].undo() del self.list[-1] self.list = [] class UndoManager: """ manager for a list of undo transactions for a given context """ def __init__(self): """ construct an UndoManager, no arguments """ self.transactions = [] self.inundo = False def __del__(self): self.transactions = None def inUndo(self): """ returns true if currently executing an undo, used to prevent recursion during undo """ return self.inundo def new_transaction(self): """ start a new transaction or return the current empty transaction """ if not self.transactions or not self.transactions[-1].isEmpty(): self.transactions.append(UndoTransaction(self)) return self.transactions[-1] def get_transaction(self): """ return the current transaction if any """ if self.transactions: return self.transactions[-1] else: return self.new_transaction() def undo_transaction(self): """ undo the current transaction """ if self.transactions: self.inundo = True self.transactions[-1].undo() del self.transactions[-1] self.inundo = False return not self.transactions def flush_undo(self): """ free the transactions and forget all the undo information """ self.transactions = [] ``` #### File: ped/ped_extensions/dummy_extension.py ```python from ped_core.editor_common import Editor from ped_dialog.message_dialog import message import time def ped_ext_info(): """ return registration information for extension_manager """ return ( "CMD_HELP", None, None, None, "test_extension" ) def ped_ext_invoke( cmd_id, target, ch ): """ do our thing with the target object """ message( target.scr, "Help Extension", "On our way to help!",False ) time.sleep(5) return True ``` #### File: ped/tests/test_editor_common.py ```python from ped_core import editor_common import io import pprint import os import curses import curses.ascii import time import re from ped_core import keymap from ped_core import keytab from ped_core import clipboard from ped_test_util import read_str, match_attr, undo_all, window_pos, play_macro, validate_mark, validate_screen, editor_test_suite import subprocess def test_memline(): m = editor_common.MemLine( "01234567890123456789" ) assert( m.length() == 20 ) assert( m.getContent() == "01234567890123456789" ) def test_EditFile(testdir): lines_to_test = ["This is the first line","This is the second line","This is the third line","This is the last line"] testfile = testdir.makefile(".txt",lines_to_test[0],lines_to_test[1],lines_to_test[2],lines_to_test[3]) fn = str(testfile) ef = editor_common.EditFile( fn ) assert(ef.get_tabs() == [ 4, 8 ] ) ef.set_tabs( [ 8, 16] ) assert(ef.get_tabs() == [ 8, 16 ] ) w = ef.getWorking() assert( not w.closed ) assert( ef.getModref() == 0) assert( isinstance(ef.getUndoMgr(), editor_common.undo.UndoManager )) assert( not ef.isChanged() ) assert( not ef.isReadOnly() ) ef.setReadOnly( True ) assert( ef.isReadOnly() ) ef.setReadOnly( False ) assert( not ef.isReadOnly() ) assert( ef.getFilename() == fn ) ef.setFilename( "bogus.txt" ) assert( ef.getFilename() == "bogus.txt" ) ef.setFilename( fn ) assert( ef.getFilename() == fn ) fls = ef.getLines() assert( ef.numLines() == 4 ) ef.close() assert( ef.getWorking() == None ) ef.load() w = ef.getWorking() assert( not w.closed ) for line in range(0,len(lines_to_test)): assert(ef.length(line) == len(lines_to_test[line])) fl = ef.getLine(line) assert(fl.rstrip() == lines_to_test[line]) assert(fls[line].rstrip() == lines_to_test[line]) fls = ef.getLines(1,3) assert(len(fls) == 2 ) assert(fls[0].rstrip() == lines_to_test[1] and fls[1].rstrip() == lines_to_test[2]) ef.deleteLine(1) fls = ef.getLines() assert(fls[0].rstrip() == lines_to_test[0] and fls[1].rstrip() == lines_to_test[2] and fls[2].rstrip() == lines_to_test[3] ) assert(ef.numLines() == 3 ) assert(ef.getModref() == 1 ) assert(ef.isChanged() ) um = ef.getUndoMgr() um.undo_transaction() fls = ef.getLines() for line in range(0,len(lines_to_test)): assert(fls[line].rstrip() == lines_to_test[line]) assert(ef.numLines() == 4) assert(ef.getModref() == 2) assert(not ef.isChanged() ) new_test_line = "This is the line for insert" ef.insertLine(2,new_test_line) fls = ef.getLines() assert(fls[0].rstrip() == lines_to_test[0] and fls[1].rstrip() == lines_to_test[1] and fls[2].rstrip() == new_test_line and fls[3].rstrip() == lines_to_test[2] and fls[4].rstrip() == lines_to_test[3] ) assert(ef.numLines() == 5 ) assert(ef.getModref() == 3 ) assert(ef.isChanged() ) um = ef.getUndoMgr() um.undo_transaction() fls = ef.getLines() for line in range(0,len(lines_to_test)): assert(fls[line].rstrip() == lines_to_test[line]) assert(ef.numLines() == 4) assert(ef.getModref() == 4) assert(not ef.isChanged() ) ef.replaceLine(3,new_test_line) fls = ef.getLines() assert(fls[0].rstrip() == lines_to_test[0] and fls[1].rstrip() == lines_to_test[1] and fls[2].rstrip() == lines_to_test[2] and fls[3].rstrip() == new_test_line ) assert(ef.numLines() == 4 ) assert(ef.getModref() == 5 ) assert(ef.isChanged() ) um = ef.getUndoMgr() um.undo_transaction() fls = ef.getLines() for line in range(0,len(lines_to_test)): assert(fls[line].rstrip() == lines_to_test[line]) assert(ef.numLines() == 4) assert(ef.getModref() == 6) assert(not ef.isChanged() ) fd = str(testdir.tmpdir) backup_filepath = ef.make_backup_dir( fn, fd ) assert(os.path.exists(os.path.dirname(backup_filepath))) ef.insertLine(10,new_test_line) ef.backuproot = fd ef.save() assert(os.path.exists(backup_filepath)) fls = ef.getLines() for line in range(0,len(lines_to_test)): assert(fls[line].rstrip() == lines_to_test[line]) assert(fls[10].rstrip() == new_test_line) newname = os.path.join(fd,"1_"+os.path.basename(fn)) ef.save(newname) assert(os.path.exists(newname)) ef.close() ef.load() assert(ef.getFilename() == newname) fls = ef.getLines() for line in range(0,len(lines_to_test)): assert(fls[line].rstrip() == lines_to_test[line]) assert(fls[10].rstrip() == new_test_line) assert(ef.get_tab_stop(4) == 8) assert(ef.get_tab_stop(10) == 16 ) assert(ef.get_tab_stop(10,True) == 8) tabby_string = "01234\t56789012\t3456789" expanded_string = "01234 56789012 3456789" assert(ef.expand_tabs(tabby_string) == expanded_string) def test_Editor_unwrapped(testdir,capsys): with capsys.disabled(): curses.wrapper(editor_test_suite,testdir,False,None) def test_Editor_wrapped(testdir,capsys): with capsys.disabled(): curses.wrapper(editor_test_suite,testdir,True,None) def test_StreamEditor(testdir,capsys): with capsys.disabled(): def main(stdscr,testdir): max_y,max_x = stdscr.getmaxyx() generator_lines = [ "for i in range(0,1000000):", " print('Line %d of test file'%i)", ] generator_script = testdir.makepyfile(**{ "generator": "\n".join(generator_lines)}) cmd = 'python3 %s'%str(generator_script) se = editor_common.StreamEditor(stdscr,stdscr.subwin(max_y,max_x,0,0),"Test Stream",subprocess.Popen(cmd, shell=True, bufsize=1024, encoding="utf-8", stdout=subprocess.PIPE, stderr=subprocess.STDOUT).stdout) starting_num_lines = se.numLines() time.sleep(1) for i in range(0,100): se.main(False) assert(se.getContent(i) == 'Line %d of test file'%i) current_line = se.getLine() se.main(False,6) # ctrl-f for i in range(0,200): se.main(False) assert(se.follow == True and se.getLine() > current_line) se.main(False,6) # ctrl-f current_line = se.getLine() for i in range(0,200): se.main(False) assert(se.follow == False and se.getLine() == current_line) play_macro(se, [keytab.KEYTAB_ALTO,keytab.KEYTAB_TAB,keytab.KEYTAB_DOWN]+list("testout.out")+[keytab.KEYTAB_CR,keytab.KEYTAB_CR]) assert(se.getFilename().endswith("testout.out") and os.path.exists(se.getFilename())) se.close() curses.wrapper(main,testdir) ``` #### File: ped/tests/test_python_mode.py ```python from ped_core import editor_manager from ped_core import editor_common import curses import curses.ascii from ped_core import keytab from ped_test_util import read_str,validate_screen,editor_test_suite,play_macro,screen_size,match_attr,wait_for_screen def test_python_mode(testdir,capsys): with capsys.disabled(): def main(stdscr): lines_to_test = [ "import editor_manager", "import editor_common", "import sys", "", "# This is a comment", "def main( args ):", " if args[0] == 'test':", " print( 'This is a test' )", " return args[1]", "", "if __name__ == '__main__':", " main(sys.argv) # This line ends with a comment" ] args = { "python_test":"\n".join(lines_to_test)} testfile = testdir.makefile(".py", **args) green = curses.color_pair(1) red = curses.color_pair(2) cyan = curses.color_pair(3) white = curses.color_pair(4) ed = editor_common.Editor(stdscr,None,str(testfile)) ed.setWin(stdscr.subwin(ed.max_y,ed.max_x,0,0)) validate_screen(ed) assert(ed.mode and ed.mode.name() == "python_mode") match_list = [(0,0,6,cyan),(4,0,19,red),(6,18,5,green),(11,19,31,red)] for line,pos,width,attr in match_list: assert(match_attr(ed.scr,line+1,pos,1,width,attr)) ed.goto(6,0) ed.endln() ed.main(False,10) assert(ed.getLine() == 7 and ed.getPos() == 8) ed.insert('foo = "A double quoted string"') wait_for_screen(ed) assert(match_attr(ed.scr,8,8,1,3,white)) assert(match_attr(ed.scr,8,14,1,24,green)) curses.wrapper(main) ``` #### File: ped/tests/test_ssh_dialog.py ```python import curses import curses.ascii from ped_core import keytab from ped_test_util import read_str,validate_dialog,editor_test_suite,play_macro,screen_size,match_attr from ped_ssh_dialog.ssh_dialog import SSHFileDialog from ped_ssh_dialog.ssh_mod import ssh_put, ssh_del, ssh_stat from ped_dialog import dialog import pytest import os import time @pytest.fixture(scope="function") def sftp_testdir(request,testdir): sftp_basepath = os.environ.get("SSH_DIALOG_BASEPATH",None) sftp_username = os.environ.get("SSH_DIALOG_USERNAME",None) sftp_password = os.environ.get("SSH_DIALOG_PASSWORD",None) assert sftp_basepath and sftp_username and sftp_password,"SSH_DIALOG environment not set" local_files = [] remote_files = [] local_file_names = [] remote_file_names = [] for i in range(0,5): args = { "local_%d"%(i):"\n".join(["local_%d test line %d"%(i,j) for j in range(0,200)])} local_files.append(testdir.makefile(".txt",**args)) args = { "remote_%d"%(i):"\n".join(["local_%d test line %d"%(i,j) for j in range(0,200)])} remote_files.append(testdir.makefile(".txt",**args)) for f in remote_files: ssh_put( str(f), sftp_basepath+str(f),lambda : { "ssh_username" : sftp_username, "ssh_password" : sftp_password}, False ) remote_file_names.append(f.basename) f.remove() for f in local_files: local_file_names.append(f.basename) def cleanup_sftp_testdir(): ssh_del( sftp_basepath+str(testdir.tmpdir.parts()[1]),True, lambda : { "ssh_username" : sftp_username, "ssh_password" : <PASSWORD> }) request.addfinalizer(cleanup_sftp_testdir) return {"ssh_username" : sftp_username, "ssh_password" : <PASSWORD>, "ssh_basepath": sftp_basepath+str(testdir.tmpdir), "local_path": str(testdir.tmpdir), "local_files" : local_file_names, "remote_files" : remote_file_names, "testdir" : testdir } def test_ssh_dialog(sftp_testdir,capsys): with capsys.disabled(): def main(stdscr): screen_size( 30, 100 ) d = SSHFileDialog(stdscr, title = "SFTP File Manager", remote_path=sftp_testdir["ssh_basepath"], ssh_username=sftp_testdir["ssh_username"], ssh_password=<PASSWORD>dir["ssh_password"], local_path=sftp_testdir["local_path"]) d.main(False,True) validate_dialog(d) d.main(False,True,keytab.KEYTAB_TAB) d.main(False,True,keytab.KEYTAB_TAB) d.main(False,True,keytab.KEYTAB_TAB) assert(d.focus_list[d.current][1].name == "ssh_files") d.main(False,True,keytab.KEYTAB_DOWN) d.main(False,True,keytab.KEYTAB_DOWN) d.main(False,True,keytab.KEYTAB_DOWN) (ch,values) = d.main(False,True,keytab.KEYTAB_CR) selection,file_list = values["ssh_files"] assert(file_list[selection] == sftp_testdir["remote_files"][2] and values["ssh_file"] == sftp_testdir["remote_files"][2] and values["local_file"] == sftp_testdir["remote_files"][2]) d.goto(d.get_button) (ch,values) = d.main(False,True,keytab.KEYTAB_SPACE) assert(os.path.exists(os.path.join(str(sftp_testdir["testdir"].tmpdir),sftp_testdir["remote_files"][2]))) d.goto(d.file_list) assert(d.focus_list[d.current][1].name == "local_files") d.main(False,True,keytab.KEYTAB_DOWN) d.main(False,True,keytab.KEYTAB_DOWN) d.main(False,True,keytab.KEYTAB_DOWN) (ch,values) = d.main(False,True,keytab.KEYTAB_CR) selection,file_list = values["local_files"] assert(file_list[selection] == sftp_testdir["local_files"][2] and values["ssh_file"] == sftp_testdir["local_files"][2] and values["local_file"] == sftp_testdir["local_files"][2]) d.goto(d.put_button) (ch,values) = d.main(False,True,keytab.KEYTAB_SPACE) assert(ssh_stat( values["ssh_dir"]+"/"+values["ssh_file"],lambda : { 'ssh_username':sftp_testdir['ssh_username'], 'ssh_password':sftp_testdir['ssh_password'] }) != (-1,-1)) d.goto(d.open_button) (ch,values) = d.main(False,True,keytab.KEYTAB_SPACE) assert(ch == dialog.Component.CMP_KEY_OK) d.goto(d.cancel_button) (ch,values) = d.main(False,True,keytab.KEYTAB_SPACE) assert(ch == dialog.Component.CMP_KEY_CANCEL) curses.wrapper(main) ```
{ "source": "jpg013/CS5570-project", "score": 2 }
#### File: jpg013/CS5570-project/build_graphs.py ```python from history import History from history_query_builder import HistoryQueryBuilder from data_generation import DataGeneration from recovery_engine import RecoveryEngine from serializable_or_not import serializable_or_not from app_config import AppConfig def build_graphs(): data_graph = build_data_graph() tx_graph = build_transaction_graph() return { 'transaction_graph': tx_graph, 'data_set_graph': data_graph } def build_data_graph(): iter_count = 100 results = [] data_items = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'] for idx in range(10): AppConfig.set('data_set', set(data_items[0:idx+1])) not_recoverable_count = 0 not_aca_count = 0 not_strict_count = 0 for x in range(iter_count): data_generation = DataGeneration() history = History(data_generation.generate_transactions()) history.interleave_transaction_schedule() recovery_engine = RecoveryEngine(history) report = recovery_engine.get_report() if report.is_not_recoverable(): not_recoverable_count += 1 if report.is_not_aca(): not_aca_count += 1 if report.is_not_strict(): not_strict_count += 1 results.append({ 'not_recoverable_percent': (not_recoverable_count/iter_count) * 100, 'not_cacadeless_percent': (not_aca_count/iter_count) * 100, 'not_strict_percent': (not_strict_count/iter_count) * 100, }) AppConfig.restore_defaults() return results def build_transaction_graph(): iter_count = 100 results = [] for idx in range(10): AppConfig.set('transaction_count', { 'min': 1, 'max': idx+1 }) not_recoverable_count = 0 not_aca_count = 0 not_strict_count = 0 for x in range(iter_count): data_generation = DataGeneration() history = History(data_generation.generate_transactions()) history.interleave_transaction_schedule() recovery_engine = RecoveryEngine(history) report = recovery_engine.get_report() if report.is_not_recoverable(): not_recoverable_count += 1 if report.is_not_aca(): not_aca_count += 1 if report.is_not_strict(): not_strict_count += 1 results.append({ 'not_recoverable_percent': (not_recoverable_count/iter_count) * 100, 'not_cacadeless_percent': (not_aca_count/iter_count) * 100, 'not_strict_percent': (not_strict_count/iter_count) * 100, }) AppConfig.restore_defaults() return results ``` #### File: jpg013/CS5570-project/data_generation.py ```python import random from app_config import AppConfig import sys from transaction import Transaction from data_operation import DataOperation, type_switcher, OperationType class DataGeneration(): """DataGeneration is a helper class with several utility methods for generating random data sets for transactions and data operations""" def __init__(self): self.transaction_count = AppConfig.get('transaction_count') self.data_set = AppConfig.get('data_set') def get_transaction_data_cardinality(self): # Return the number of transaction data items for the history return random.randint(1, len(self.data_set)) def generate_data_item(self): # Return data item value return random.sample(self.data_set, 1)[0] def make_transaction_data_sample(self): # returns list of data_items data_sample = [] data_cardinality = self.get_transaction_data_cardinality() while len(data_sample) < data_cardinality: data = self.generate_data_item() if data not in data_sample: data_sample.append(data) return data_sample def generate_transactions(self): # Generate random number of transactions with data items transaction_cardinality = self.get_transaction_cardinality() transactions = [] for idx in range(transaction_cardinality): tx = Transaction(idx+1) for x in self.generate_tx_data_operations(tx, self.make_transaction_data_sample()): tx.add_data_operation(x) transactions.append(tx) return transactions def get_transaction_cardinality(self): # Return the number of transactions for the history return random.randint( self.transaction_count.get("min"), self.transaction_count.get("max") ) def generate_tx_data_operations(self, transaction, data_items): if len(data_items) < 1: raise ValueError('data_items list must have at least one item') data_operations = [] for item in data_items: # Generate random data Operations data_operations = data_operations + list(map(lambda type: DataOperation(type, transaction, item), self.generate_read_writes_types())) # Randomly shuffle all the data operations. random.shuffle(data_operations) # Add a commit / abort data operation at the end data_operations.append(DataOperation(self.generate_commit_abort_type(), transaction, None)) return data_operations # Helper method to randomly generate list of read/write data operations def generate_read_writes_types(self): # Each data item may have a read, write, or both count = random.randint(1, 2) if count is 1: return [type_switcher.get(random.randint(0,1))] else: return [OperationType.READ, OperationType.WRITE] def generate_commit_abort_type(self): return type_switcher.get(random.randint(2,3)) ```
{ "source": "jpgacrama/DeepLearning", "score": 2 }
#### File: DeepLearning/pt_framework/c14e1_seq2seq_translate.py ```python import torch import torch.nn as nn from sklearn.model_selection import train_test_split from torch.utils.data import TensorDataset, DataLoader from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.text \ import text_to_word_sequence from tensorflow.keras.preprocessing.sequence \ import pad_sequences import numpy as np import random device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") EPOCHS = 20 BATCH_SIZE = 128 MAX_WORDS = 10000 READ_LINES = 60000 LAYER_SIZE = 256 EMBEDDING_WIDTH = 128 TEST_PERCENT = 0.2 SAMPLE_SIZE = 20 OOV_WORD = 'UNK' PAD_INDEX = 0 OOV_INDEX = 1 START_INDEX = MAX_WORDS - 2 STOP_INDEX = MAX_WORDS - 1 MAX_LENGTH = 60 SRC_DEST_FILE_NAME = '../data/fra.txt' # Function to read file. def read_file_combined(file_name, max_len): file = open(file_name, 'r', encoding='utf-8') src_word_sequences = [] dest_word_sequences = [] for i, line in enumerate(file): if i == READ_LINES: break pair = line.split('\t') word_sequence = text_to_word_sequence(pair[1]) src_word_sequence = word_sequence[0:max_len] src_word_sequences.append(src_word_sequence) word_sequence = text_to_word_sequence(pair[0]) dest_word_sequence = word_sequence[0:max_len] dest_word_sequences.append(dest_word_sequence) file.close() return src_word_sequences, dest_word_sequences # Functions to tokenize and un-tokenize sequences. def tokenize(sequences): # "MAX_WORDS-2" used to reserve two indices # for START and STOP. tokenizer = Tokenizer(num_words=MAX_WORDS-2, oov_token=OOV_WORD) tokenizer.fit_on_texts(sequences) token_sequences = tokenizer.texts_to_sequences(sequences) return tokenizer, token_sequences def tokens_to_words(tokenizer, seq): word_seq = [] for index in seq: if index == PAD_INDEX: word_seq.append('PAD') elif index == OOV_INDEX: word_seq.append(OOV_WORD) elif index == START_INDEX: word_seq.append('START') elif index == STOP_INDEX: word_seq.append('STOP') else: word_seq.append(tokenizer.sequences_to_texts( [[index]])[0]) print(word_seq) # Read file and tokenize. src_seq, dest_seq = read_file_combined(SRC_DEST_FILE_NAME, MAX_LENGTH) src_tokenizer, src_token_seq = tokenize(src_seq) dest_tokenizer, dest_token_seq = tokenize(dest_seq) # Prepare training data. dest_target_token_seq = [x + [STOP_INDEX] for x in dest_token_seq] dest_input_token_seq = [[START_INDEX] + x for x in dest_target_token_seq] src_input_data = pad_sequences(src_token_seq) dest_input_data = pad_sequences(dest_input_token_seq, padding='post') dest_target_data = pad_sequences( dest_target_token_seq, padding='post', maxlen = len(dest_input_data[0])) # Convert to same precision as model. src_input_data = src_input_data.astype(np.int64) dest_input_data = dest_input_data.astype(np.int64) dest_target_data = dest_target_data.astype(np.int64) # Split into training and test set. rows = len(src_input_data[:,0]) all_indices = list(range(rows)) test_rows = int(rows * TEST_PERCENT) test_indices = random.sample(all_indices, test_rows) train_indices = [x for x in all_indices if x not in test_indices] train_src_input_data = src_input_data[train_indices] train_dest_input_data = dest_input_data[train_indices] train_dest_target_data = dest_target_data[train_indices] test_src_input_data = src_input_data[test_indices] test_dest_input_data = dest_input_data[test_indices] test_dest_target_data = dest_target_data[test_indices] # Create a sample of the test set that we will inspect in detail. test_indices = list(range(test_rows)) sample_indices = random.sample(test_indices, SAMPLE_SIZE) sample_input_data = test_src_input_data[sample_indices] sample_target_data = test_dest_target_data[sample_indices] # Create Dataset objects. trainset = TensorDataset(torch.from_numpy(train_src_input_data), torch.from_numpy(train_dest_input_data), torch.from_numpy(train_dest_target_data)) testset = TensorDataset(torch.from_numpy(test_src_input_data), torch.from_numpy(test_dest_input_data), torch.from_numpy(test_dest_target_data)) # Define models. class EncoderModel(nn.Module): def __init__(self): super().__init__() self.embedding_layer = nn.Embedding(MAX_WORDS, EMBEDDING_WIDTH) nn.init.uniform_(self.embedding_layer.weight, -0.05, 0.05) # Default is -1, 1. self.lstm_layers = nn.LSTM(EMBEDDING_WIDTH, LAYER_SIZE, num_layers=2, batch_first=True) def forward(self, inputs): x = self.embedding_layer(inputs) x = self.lstm_layers(x) return x[1] class DecoderModel(nn.Module): def __init__(self): super().__init__() self.state = None self.use_state = False self.embedding_layer = nn.Embedding(MAX_WORDS, EMBEDDING_WIDTH) nn.init.uniform_(self.embedding_layer.weight, -0.05, 0.05) # Default is -1, 1. self.lstm_layers = nn.LSTM(EMBEDDING_WIDTH, LAYER_SIZE, num_layers=2, batch_first=True) self.output_layer = nn.Linear(LAYER_SIZE, MAX_WORDS) def forward(self, inputs): x = self.embedding_layer(inputs) if(self.use_state): x = self.lstm_layers(x, self.state) else: x = self.lstm_layers(x) self.state = (x[1][0].detach().clone(), x[1][1].detach().clone()) # Store most recent internal state. x = self.output_layer(x[0]) return x # Functions to provide explicit control of LSTM state. def set_state(self, state): self.state = state self.use_state = True return def get_state(self): return self.state def clear_state(self): self.use_state = False return encoder_model = EncoderModel() decoder_model = DecoderModel() # Loss functions and optimizer. encoder_optimizer = torch.optim.RMSprop(encoder_model.parameters(), lr=0.001) decoder_optimizer = torch.optim.RMSprop(decoder_model.parameters(), lr=0.001) loss_function = nn.CrossEntropyLoss() # Using a custom training loop instead of our standard training function. # Transfer model to GPU. encoder_model.to(device) decoder_model.to(device) trainloader = DataLoader(dataset=trainset, batch_size=BATCH_SIZE, shuffle=True) testloader = DataLoader(dataset=testset, batch_size=BATCH_SIZE, shuffle=False) # Train and test repeatedly. for i in range(EPOCHS): encoder_model.train() # Set model in training mode. decoder_model.train() # Set model in training mode. train_loss = 0.0 train_correct = 0 train_batches = 0 train_elems = 0 for src_inputs, dest_inputs, dest_targets in trainloader: # Move data to GPU. src_inputs, dest_inputs, dest_targets = src_inputs.to( device), dest_inputs.to(device), dest_targets.to(device) # Zero the parameter gradients. encoder_optimizer.zero_grad() decoder_optimizer.zero_grad() # Forward pass. encoder_state = encoder_model(src_inputs) decoder_model.set_state(encoder_state) outputs = decoder_model(dest_inputs) loss = loss_function(outputs.view(-1, MAX_WORDS), dest_targets.view(-1)) # Accumulate metrics. _, indices = torch.max(outputs.data, 2) train_correct += (indices == dest_targets).sum().item() train_elems += indices.numel() train_batches += 1 train_loss += loss.item() # Backward pass and update. loss.backward() encoder_optimizer.step() decoder_optimizer.step() train_loss = train_loss / train_batches train_acc = train_correct / train_elems # Evaluate the model on the test dataset. encoder_model.eval() # Set model in inference mode. decoder_model.eval() # Set model in inference mode. test_loss = 0.0 test_correct = 0 test_batches = 0 test_elems = 0 for src_inputs, dest_inputs, dest_targets in testloader: # Move data to GPU. src_inputs, dest_inputs, dest_targets = src_inputs.to( device), dest_inputs.to(device), dest_targets.to(device) encoder_state = encoder_model(src_inputs) decoder_model.set_state(encoder_state) outputs = decoder_model(dest_inputs) loss = loss_function(outputs.view(-1, MAX_WORDS), dest_targets.view(-1)) _, indices = torch.max(outputs, 2) test_correct += (indices == dest_targets).sum().item() test_elems += indices.numel() test_batches += 1 test_loss += loss.item() test_loss = test_loss / test_batches test_acc = test_correct / test_elems print(f'Epoch {i+1}/{EPOCHS} loss: {train_loss:.4f} - acc: {train_acc:0.4f} - val_loss: {test_loss:.4f} - val_acc: {test_acc:0.4f}') # Loop through samples to see result for (test_input, test_target) in zip(sample_input_data, sample_target_data): # Run a single sentence through encoder model. x = np.reshape(test_input, (1, -1)) inputs = torch.from_numpy(x) inputs = inputs.to(device) last_states = encoder_model(inputs) # Provide resulting state and START_INDEX as input # to decoder model. decoder_model.set_state(last_states) prev_word_index = START_INDEX produced_string = '' pred_seq = [] for j in range(MAX_LENGTH): x = np.reshape(np.array(prev_word_index), (1, 1)) # Predict next word and capture internal state. inputs = torch.from_numpy(x) inputs = inputs.to(device) outputs = decoder_model(inputs) preds = outputs.cpu().detach().numpy()[0][0] state = decoder_model.get_state() decoder_model.set_state(state) # Find the most probable word. prev_word_index = preds.argmax() pred_seq.append(prev_word_index) if prev_word_index == STOP_INDEX: break tokens_to_words(src_tokenizer, test_input) tokens_to_words(dest_tokenizer, test_target) tokens_to_words(dest_tokenizer, pred_seq) print('\n\n') ``` #### File: DeepLearning/stand_alone/c1e2_perceptron_learning_plot.py ```python import matplotlib.pyplot as plt import random # Define variables needed for plotting. color_list = ['r-', 'm-', 'y-', 'c-', 'b-', 'g-'] color_index = 0 def show_learning(w): global color_index print('w0 =', '%5.2f' % w[0], ', w1 =', '%5.2f' % w[1], ', w2 =', '%5.2f' % w[2]) if color_index == 0: plt.plot([1.0], [1.0], 'b_', markersize=12) plt.plot([-1.0, 1.0, -1.0], [1.0, -1.0, -1.0], 'r+', markersize=12) plt.axis([-2, 2, -2, 2]) plt.xlabel('x1') plt.ylabel('x2') x = [-2.0, 2.0] if abs(w[2]) < 1e-5: y = [-w[1]/(1e-5)*(-2.0)+(-w[0]/(1e-5)), -w[1]/(1e-5)*(2.0)+(-w[0]/(1e-5))] else: y = [-w[1]/w[2]*(-2.0)+(-w[0]/w[2]), -w[1]/w[2]*(2.0)+(-w[0]/w[2])] plt.plot(x, y, color_list[color_index]) if color_index < (len(color_list) - 1): color_index += 1 # Define variables needed to control training process. random.seed(7) # To make repeatable LEARNING_RATE = 0.1 index_list = [0, 1, 2, 3] # Used to randomize order # Define training examples. x_train = [(1.0, -1.0, -1.0), (1.0, -1.0, 1.0), (1.0, 1.0, -1.0), (1.0, 1.0, 1.0)] # Inputs y_train = [1.0, 1.0, 1.0, -1.0] # Output (ground truth) # Define perceptron weights. w = [0.2, -0.6, 0.25] # Initialize to some "random" numbers # Print initial weights. show_learning(w) # First element in vector x must be 1. # Length of w and x must be n+1 for neuron with n inputs. def compute_output(w, x): z = 0.0 for i in range(len(w)): z += x[i] * w[i] # Compute sum of weighted inputs if z < 0: # Apply sign function return -1 else: return 1 # Perceptron training loop. all_correct = False while not all_correct: all_correct = True random.shuffle(index_list) # Randomize order for i in index_list: x = x_train[i] y = y_train[i] p_out = compute_output(w, x) # Perceptron function if y != p_out: # Update weights when wrong for j in range(0, len(w)): w[j] += (y * LEARNING_RATE * x[j]) all_correct = False show_learning(w) # Show updated weights plt.show() ```
{ "source": "jpgacrama/Deep-Learning-with-TensorFlow-2-and-Keras", "score": 3 }
#### File: Deep-Learning-with-TensorFlow-2-and-Keras/Chapter 6/DCGAN.py ```python from tensorflow.keras.datasets import mnist from tensorflow.keras.layers import Input, Dense, Reshape, Flatten, Dropout from tensorflow.keras.layers import BatchNormalization, Activation, ZeroPadding2D from tensorflow.keras.layers import LeakyReLU from tensorflow.keras.layers import UpSampling2D, Conv2D from tensorflow.keras.models import Sequential, Model from tensorflow.keras.optimizers import Adam import matplotlib.pyplot as plt import os import numpy as np import shutil os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" # In[]: FOLDER = 'DCGAN_images' # In[2]: class DCGAN(): def __init__(self, rows, cols, channels, z = 10): # Input shape self.img_rows = rows self.img_cols = cols self.channels = channels self.img_shape = (self.img_rows, self.img_cols, self.channels) self.latent_dim = z optimizer = Adam(0.0003, 0.5) # Build and compile the discriminator self.discriminator = self.build_discriminator() self.discriminator.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) # Build the generator self.generator = self.build_generator() # The generator takes noise as input and generates imgs z = Input(shape=(self.latent_dim,)) img = self.generator(z) # For the combined model we will only train the generator self.discriminator.trainable = False # The discriminator takes generated images as input and determines validity valid = self.discriminator(img) # The combined model (stacked generator and discriminator) # Trains the generator to fool the discriminator self.combined = Model(z, valid) self.combined.compile(loss='binary_crossentropy', optimizer=optimizer) def build_generator(self): model = Sequential() model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim)) model.add(Reshape((7, 7, 128))) model.add(UpSampling2D()) model.add(Conv2D(128, kernel_size=3, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(Activation("relu")) model.add(UpSampling2D()) model.add(Conv2D(64, kernel_size=3, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(Activation("relu")) model.add(Conv2D(self.channels, kernel_size=3, padding="same")) model.add(Activation("tanh")) model.summary() noise = Input(shape=(self.latent_dim,)) img = model(noise) return Model(noise, img) def build_discriminator(self): model = Sequential() model.add(Conv2D(32, kernel_size=3, strides=2, input_shape=self.img_shape, padding="same")) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.25)) model.add(Conv2D(64, kernel_size=3, strides=2, padding="same")) model.add(ZeroPadding2D(padding=((0,1),(0,1)))) model.add(BatchNormalization(momentum=0.8)) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.25)) model.add(Conv2D(128, kernel_size=3, strides=2, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.25)) model.add(Conv2D(256, kernel_size=3, strides=1, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(1, activation='sigmoid')) model.summary() img = Input(shape=self.img_shape) validity = model(img) return Model(img, validity) def train(self, epochs, batch_size=256, save_interval=50): # Load the dataset (X_train, _), (_, _) = mnist.load_data() # Rescale -1 to 1 X_train = X_train / 127.5 - 1. X_train = np.expand_dims(X_train, axis=3) # Adversarial ground truths valid = np.ones((batch_size, 1)) fake = np.zeros((batch_size, 1)) # Prepare list for storing the historical values d_loss_real_hist, d_loss_fake_hist, g_loss_hist, d_accuracy_real_hist, d_accuracy_fake_hist = list(), list(), list(), list(), list() for epoch in range(epochs): # --------------------- # Train Discriminator # --------------------- # Select a random half of images idx = np.random.randint(0, X_train.shape[0], batch_size) imgs = X_train[idx] # Sample noise and generate a batch of new images noise = np.random.normal(0, 1, (batch_size, self.latent_dim)) gen_imgs = self.generator.predict(noise) # Train the discriminator (real classified as ones and generated as zeros) d_loss_real, d_accuracy_real = self.discriminator.train_on_batch(imgs, valid) d_loss_fake, d_accuracy_fake = self.discriminator.train_on_batch(gen_imgs, fake) d_loss = 0.5 * np.add(d_loss_real, d_loss_fake) # --------------------- # Train Generator # --------------------- # Train the generator (wants discriminator to mistake images as real) g_loss = self.combined.train_on_batch(noise, valid) # Append losses for plotting later d_loss_real_hist.append(d_loss_real) d_loss_fake_hist.append(d_loss_fake) g_loss_hist.append(g_loss) d_accuracy_real_hist.append(d_accuracy_real) d_accuracy_fake_hist.append(d_accuracy_fake) # Plot the progress print ("%d [D loss Real: %f, D loss Fake: %f] [G loss: %f] [Acc Real: %.2f%%, Acc Fake: %.2f%%]" % (epoch, d_loss_real, d_loss_fake, g_loss, 100 * d_accuracy_real, 100 * d_accuracy_fake)) # If at save interval => save generated image samples if epoch % save_interval == 0: self.save_imgs(epoch) self.plot_history(d_loss_real_hist, d_loss_fake_hist, g_loss_hist, d_accuracy_real_hist, d_accuracy_fake_hist) def save_imgs(self, epoch): r, c = 5, 5 noise = np.random.normal(0, 1, (r * c, self.latent_dim)) gen_imgs = self.generator.predict(noise) # Rescale images 0 - 1 gen_imgs = 0.5 * gen_imgs + 0.5 fig, axs = plt.subplots(r, c) cnt = 0 for i in range(r): for j in range(c): axs[i,j].imshow(gen_imgs[cnt, :,:,0], cmap='gray') axs[i,j].axis('off') cnt += 1 fig.savefig("DCGAN_images/dcgan_mnist_%d.png" % epoch) plt.close() # create a line plot of loss for the gan and save to file def plot_history(self, d_hist_real, d_hist_fake, g_hist, d_acc_real, d_acc_fake): # plot loss plt.subplot(2, 1, 1) plt.plot(d_hist_real, label='d-real') plt.plot(d_hist_fake, label='d-fake') plt.plot(g_hist, label='gen') plt.legend() # plot discriminator accuracy plt.subplot(2, 1, 2) plt.plot(d_acc_real, label='acc-real') plt.plot(d_acc_fake, label='acc-fake') plt.legend() # save plot to file plt.savefig(f'{FOLDER}/plot_line_plot_loss.png') plt.close() # In[3]: # make folder for results shutil.rmtree(f'{FOLDER}', ignore_errors=True) os.makedirs(f'{FOLDER}', exist_ok=True) dcgan = DCGAN(28,28,1,100) dcgan.train(epochs=400, batch_size=256, save_interval=50) ``` #### File: Deep-Learning-with-TensorFlow-2-and-Keras/Chapter 6/GAN_with_Adam_defaults.py ```python import os from os import makedirs from numpy import expand_dims from numpy import zeros from numpy import ones from numpy.random import randn from numpy.random import randint from keras.datasets.mnist import load_data from keras.models import Sequential from keras.layers import Dense from keras.layers import Reshape from keras.layers import Flatten from keras.layers import Conv2D from keras.layers import Conv2DTranspose from keras.layers import LeakyReLU from tensorflow.keras.initializers import RandomNormal from matplotlib import pyplot os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" # define the standalone discriminator model def define_discriminator(in_shape=(28,28,1)): # weight initialization init = RandomNormal(stddev=0.02) # define model model = Sequential() # downsample to 14x14 model.add(Conv2D(64, (4,4), strides=(2,2), padding='same', kernel_initializer=init, input_shape=in_shape)) model.add(LeakyReLU(alpha=0.2)) # downsample to 7x7 model.add(Conv2D(64, (4,4), strides=(2,2), padding='same', kernel_initializer=init)) model.add(LeakyReLU(alpha=0.2)) # classifier model.add(Flatten()) model.add(Dense(1, activation='sigmoid')) # compile model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) return model # define the standalone generator model def define_generator(latent_dim): # weight initialization init = RandomNormal(stddev=0.02) # define model model = Sequential() # foundation for 7x7 image n_nodes = 128 * 7 * 7 model.add(Dense(n_nodes, kernel_initializer=init, input_dim=latent_dim)) model.add(LeakyReLU(alpha=0.2)) model.add(Reshape((7, 7, 128))) # upsample to 14x14 model.add(Conv2DTranspose(128, (4,4), strides=(2,2), padding='same', kernel_initializer=init)) model.add(LeakyReLU(alpha=0.2)) # upsample to 28x28 model.add(Conv2DTranspose(128, (4,4), strides=(2,2), padding='same', kernel_initializer=init)) model.add(LeakyReLU(alpha=0.2)) # output 28x28x1 model.add(Conv2D(1, (7,7), activation='tanh', padding='same', kernel_initializer=init)) return model # define the combined generator and discriminator model, for updating the generator def define_gan(generator, discriminator): # make weights in the discriminator not trainable discriminator.trainable = False # connect them model = Sequential() # add generator model.add(generator) # add the discriminator model.add(discriminator) # compile model model.compile(loss='binary_crossentropy', optimizer='adam') return model # load mnist images def load_real_samples(): # load dataset (trainX, trainy), (_, _) = load_data() # expand to 3d, e.g. add channels X = expand_dims(trainX, axis=-1) # select all of the examples for a given class selected_ix = trainy == 8 X = X[selected_ix] # convert from ints to floats X = X.astype('float32') # scale from [0,255] to [-1,1] X = (X - 127.5) / 127.5 return X # select real samples def generate_real_samples(dataset, n_samples): # choose random instances ix = randint(0, dataset.shape[0], n_samples) # select images X = dataset[ix] # generate class labels y = ones((n_samples, 1)) return X, y # generate points in latent space as input for the generator def generate_latent_points(latent_dim, n_samples): # generate points in the latent space x_input = randn(latent_dim * n_samples) # reshape into a batch of inputs for the network x_input = x_input.reshape(n_samples, latent_dim) return x_input # use the generator to generate n fake examples, with class labels def generate_fake_samples(generator, latent_dim, n_samples): # generate points in latent space x_input = generate_latent_points(latent_dim, n_samples) # predict outputs X = generator.predict(x_input) # create class labels y = zeros((n_samples, 1)) return X, y # generate samples and save as a plot and save the model def summarize_performance(step, g_model, latent_dim, n_samples=100): # prepare fake examples X, _ = generate_fake_samples(g_model, latent_dim, n_samples) # scale from [-1,1] to [0,1] X = (X + 1) / 2.0 # plot images for i in range(10 * 10): # define subplot pyplot.subplot(10, 10, 1 + i) # turn off axis pyplot.axis('off') # plot raw pixel data pyplot.imshow(X[i, :, :, 0], cmap='gray_r') # save plot to file pyplot.savefig('results_opt/generated_plot_%03d.png' % (step+1)) pyplot.close() # save the generator model g_model.save('results_opt/model_%03d.h5' % (step+1)) # create a line plot of loss for the gan and save to file def plot_history(d1_hist, d2_hist, g_hist, a1_hist, a2_hist): # plot loss pyplot.subplot(2, 1, 1) pyplot.plot(d1_hist, label='d-real') pyplot.plot(d2_hist, label='d-fake') pyplot.plot(g_hist, label='gen') pyplot.legend() # plot discriminator accuracy pyplot.subplot(2, 1, 2) pyplot.plot(a1_hist, label='acc-real') pyplot.plot(a2_hist, label='acc-fake') pyplot.legend() # save plot to file pyplot.savefig('results_opt/plot_line_plot_loss.png') pyplot.close() # train the generator and discriminator def train(g_model, d_model, gan_model, dataset, latent_dim, n_epochs=10, n_batch=128): # calculate the number of batches per epoch bat_per_epo = int(dataset.shape[0] / n_batch) # calculate the total iterations based on batch and epoch n_steps = bat_per_epo * n_epochs # calculate the number of samples in half a batch half_batch = int(n_batch / 2) # prepare lists for storing stats each iteration d1_hist, d2_hist, g_hist, a1_hist, a2_hist = list(), list(), list(), list(), list() # manually enumerate epochs for i in range(n_steps): # get randomly selected 'real' samples X_real, y_real = generate_real_samples(dataset, half_batch) # update discriminator model weights d_loss1, d_acc1 = d_model.train_on_batch(X_real, y_real) # generate 'fake' examples X_fake, y_fake = generate_fake_samples(g_model, latent_dim, half_batch) # update discriminator model weights d_loss2, d_acc2 = d_model.train_on_batch(X_fake, y_fake) # prepare points in latent space as input for the generator X_gan = generate_latent_points(latent_dim, n_batch) # create inverted labels for the fake samples y_gan = ones((n_batch, 1)) # update the generator via the discriminator's error g_loss = gan_model.train_on_batch(X_gan, y_gan) # summarize loss on this batch print('>%d, d1=%.3f, d2=%.3f g=%.3f, a1=%d, a2=%d' % (i+1, d_loss1, d_loss2, g_loss, int(100*d_acc1), int(100*d_acc2))) # record history d1_hist.append(d_loss1) d2_hist.append(d_loss2) g_hist.append(g_loss) a1_hist.append(d_acc1) a2_hist.append(d_acc2) # evaluate the model performance every 'epoch' if (i+1) % bat_per_epo == 0: summarize_performance(i, g_model, latent_dim) plot_history(d1_hist, d2_hist, g_hist, a1_hist, a2_hist) # make folder for results makedirs('results_opt', exist_ok=True) # size of the latent space latent_dim = 50 # create the discriminator discriminator = define_discriminator() # create the generator generator = define_generator(latent_dim) # create the gan gan_model = define_gan(generator, discriminator) # load image data dataset = load_real_samples() print(dataset.shape) # train model train(generator, discriminator, gan_model, dataset, latent_dim) ```
{ "source": "jpgacrama/Mastering-Concurrency-in-Python", "score": 3 }
#### File: Mastering-Concurrency-in-Python/Chapter04/example1.py ```python from os import system, name n_files = 254 files = [] # define our clear function def clear(): # for windows if name == 'nt': _ = system('cls') # for mac and linux(here, os.name is 'posix') else: _ = system('clear') # method 1 # for i in range(n_files): # files.append(open('output1/sample%i.txt' % i, 'w')) # method 2 '''for i in range(n_files): f = open('output1/sample%i.txt' % i, 'w') files.append(f) f.close()''' # method 3 if __name__ == '__main__': clear() for i in range(n_files): with open(f'output1/sample{i}.txt', 'w') as f: files.append(f) ``` #### File: Mastering-Concurrency-in-Python/Chapter05/example1.py ```python import requests from os import system, name # define our clear function def clear(): # for windows if name == 'nt': _ = system('cls') # for mac and linux(here, os.name is 'posix') else: _ = system('clear') if __name__ == '__main__': clear() url = 'http://www.google.com' res = requests.get(url) print(res.status_code) print(res.headers) with open('google.html', 'w') as f: f.write(res.text) print('Done.') ``` #### File: Mastering-Concurrency-in-Python/Chapter08/example1.py ```python import cv2 import os # define our clear function def clear(): # for windows if os.name == 'nt': _ = os.system('cls') # for mac and linux(here, os.name is 'posix') else: _ = os.system('clear') if __name__ == '__main__': clear() cwd = os.getcwd() if os.name == 'nt': im = cv2.imread(os.path.join(cwd, 'Chapter08\input\ship.jpg')) else: im = cv2.imread(os.path.join(cwd, 'Chapter08/input/ship.jpg')) cv2.imshow('Test', im) cv2.waitKey(0) # press any key to move forward here print(im) print('Type:', type(im)) print('Shape:', im.shape) print('Top-left pixel:', im[0, 0]) print('Done.') ``` #### File: Mastering-Concurrency-in-Python/Chapter19/example3.py ```python from datetime import datetime import time import os from apscheduler.schedulers.background import BackgroundScheduler def task(): print(f'From process {os.getpid()}: The time is {datetime.now()}') print(f'Starting job inside {os.getpid()}') time.sleep(4) print(f'Ending job inside {os.getpid()}') if __name__ == '__main__': scheduler = BackgroundScheduler() scheduler.add_executor('processpool') scheduler.add_job(task, 'interval', seconds=3, max_instances=3) scheduler.start() try: while True: time.sleep(1) except KeyboardInterrupt: pass scheduler.shutdown() ```
{ "source": "JPGarCar/HORS", "score": 3 }
#### File: HORS/Extra_python/assignment.py ```python from helpers import * from delegate import * from teacher import * # flask for web service from flask import Flask, redirect, render_template, request, url_for, session, flash, send_file from flask_sqlalchemy import SQLAlchemy app = Flask(__name__) # assigns variable 'db' to the SQL database immuns.db app.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False app.config["SQLALCHEMY_DATABASE_URI"] = "sqlite:///immuns.db" app.config["SQLALCHEMY_ECHO"] = True db = SQLAlchemy(app) class Assignment(db.Model): __tablename__ = "generalList" id = db.Column(db.Integer, primary_key=True) committee = db.Column(db.Text) country = db.Column(db.Text) country_id = db.Column(db.Integer) #delegate_name = db.Column(db.Text) #delegate_school = db.Column(db.Text) typeOfCom = db.Column(db.Text) room = db.Column(db.Text) important = db.Column(db.Text) delegate = db.relationship("Delegate", backref="assignment", uselist=False) def __init__(self, committee, country, country_id, typeOfCom, room, important): self.committee = committee self.country = country self.country_id = country_id # self.delegate_name = delegate_name # self.delegate_school = delegate_school self.typeOfCom = typeOfCom self.room = room self.important = important ### randomCountry (Number String String Teacher -> Void) ### Randomly assigns assignments to current user's table as specified def randomCountry(number, typeOfCom, Important, teacher): # used to have different iterations of the random function to be more random ranNum = 1 numAssign = number # iterates until all the assignments pending are assigned while numAssign > 0: # number of countries as specified in generalList maxNumInDBNow = maxTypeInGen(typeOfCom, Important) # assigns a random number to "codeID", -1 because list starts at 0 for i in range(0,ranNum): codeID = randint(1, maxNumInDBNow) - 1 # all assignments of type of committee and importance on generalList assignments = Assignment.querry.filter(Assignment.delegate == None and Assignment.typeOfCom == typeOfCom and Assignment.important == Important).all() # assignment from assignemnts in index "codeID" assignment = assignments[codeID] # assignment assigned to current user and its table updated #if not assignment["room"] == "": delegate = Delegate(" ", assignment, teacher) db.session.add(delegate) db.session.commit() #db.execute("INSERT INTO :tableName (committee, country, delegateName, room, important) VALUES(:committee, :country, :delNam, :room, :imp)", #tableName=session["currentUser"], committee=assignment["committee"], country=assignment["country"], delNam="", room=assignment["room"], imp=assignment["Important"]) # else: # delegate = Delegate(teacher.dataBaseName, assignment.committee, assignment.country, "", "", assignment.important) # db.session.add(delegate) # db.session.commit() #db.execute("INSERT INTO :tableName (committee, country, delegateName, room, important) VALUES(:committee, :country, :delNam, :room, :imp)", #tableName=session["currentUser"], committee=assignment["committee"], country=assignment["country"], delNam="", room="", imp=assignment["Important"]) # updates the generalList # assignment.delegate_name = "taken" # assignment.delegate_school = teacher.school # db.session.commit() #db.execute("UPDATE generalList SET delegate_name='taken', delegate_school =:school WHERE committee=:com AND country=:con", #school=session["currentUser"], com=assignment["committee"] ,con=assignment["country"]) # reduces number of pedning assignments by one numAssign = numAssign - 1 # increase the numer of iterations of random ranNum = ranNum + 1 ``` #### File: HORS/Extra_python/delegate.py ```python from helpers import * from assignment import * from teacher import * # flask for web service from flask import Flask, redirect, render_template, request, url_for, session, flash, send_file from flask_sqlalchemy import SQLAlchemy app = Flask(__name__) # assigns variable 'db' to the SQL database immuns.db app.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False app.config["SQLALCHEMY_DATABASE_URI"] = "sqlite:///immuns.db" app.config["SQLALCHEMY_ECHO"] = True db = SQLAlchemy(app) class Delegate(db.Model): __tablename__ = "delegates" id = db.Column(db.Integer, primary_key=True) name = db.Column(db.Text) assignment_id = db.Column(db.Integer, db.ForeignKey("assignment.id")) teacher_id = db.Column(db.Integer, db.ForeignKey("teacher.id")) #committee = db.Column(db.Text) #country = db.Column(db.Text) #room = db.Column(db.Text) #important = db.Column(db.Text) def __init__(self, name, assignment, teacher): self.name = name self.assignment_id = assignment self.teacher_id = teacher ``` #### File: Extra_python/Scripts/changeManual.py ```python from cs50 import SQL from IDArange import idArange db = SQL("sqlite:///immuns.db") def changeMan(dataBase, user): for pair in changeList: db.execute("UPDATE :dataBase SET delegate_name = '' WHERE committee=:com AND country=:con", dataBase=dataBase, com=pair[0], con=pair[1]) db.execute("UPDATE generalList SET delegate_name = '' WHERE committee=:com AND country=:con", com=pair[0], con=pair[1]) db.execute("DELETE FROM :user WHERE committee=:com AND country=:con", user=user, com=pair[0], con=pair[1]) idArange(user) changeList = [("European Council MS", "Austria"), ("World Health Organization MS", "Mexico"), ("Organization of American States MS", "Brazil"), ("Security Council MS", "United Kingdom"), ("European Council MS", "Croatia"), ("European Council MS", "United Kingdom"), ("World Health Organization MS", "Saudi Arabia"), ("ECOSOC MS", "Sweden"), ("ECOSOC MS", "Finland"), ("World Health Organization MS", "Afghanistan"), ("ECOSOC MS", "Japan"), ("Security Council MS", "Syria")] changeMan("msen", "<NAME>") ``` #### File: Extra_python/Scripts/IDArange.py ```python from cs50 import SQL db = SQL("sqlite:///immuns.db") def idArange(user): countries = db.execute("SELECT * FROM :user", user=user) x = 1 for country in countries: db.execute("UPDATE :user SET id=:idx WHERE id=:firstID", user=user, idx=x, firstID=country["id"]) x = x + 1 #idArange("msen") #idArange("mssp") #idArange("hsen") #idArange("hssp") #idArange("generalList") #idArange("<NAME>_ASFM") ``` #### File: Extra_python/Scripts/manualRegister.py ```python from cs50 import SQL db = SQL("sqlite:///immuns.db") global currentUser def randomCountry(number, dataBase, school): stem = db.execute("SELECT * FROM :dataBase WHERE id = :ids", dataBase=dataBase, ids=number) for stoop in stem: if stoop["delegate_name"] == "": db.execute("INSERT INTO :tableName (committee, country, delegateName) VALUES(:committee, :country, :delNam)", tableName=currentUser, committee=stoop["committee"], country=stoop["country"], delNam="") db.execute("UPDATE :dataBase SET delegate_name = 'taken' WHERE id=:id", dataBase=dataBase, id=number) db.execute("UPDATE generalList SET delegate_name = 'taken' WHERE committee=:com AND country=:con", com=stoop["committee"] ,con=stoop["country"]) db.execute("UPDATE :dataBase SET delegate_school = :school WHERE id=:id", dataBase=dataBase, school=school, id=number) db.execute("UPDATE generalList SET delegate_school = :school WHERE committee=:com AND country=:con", school=school, com=stoop["committee"] ,con=stoop["country"]) currentUser = "DianaRubioColegioAmericanoSaltillo" numberList = [148,156,157] subList = "hsen" for number in numberList: randomCountry(number, subList, currentUser) ``` #### File: JPGarCar/HORS/models.py ```python from flask import Flask, redirect, render_template, request, url_for, session, flash, send_file from flask_sqlalchemy import SQLAlchemy import helpers from typeOfCommittee import TypeOfCom from Important import Important from advanced import Advanced from grades import Grades from application import db from passlib.apps import custom_app_context as pwd_context class Teacher(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.Text) email = db.Column(db.Text) school = db.Column(db.Text) password = db.Column(db.Text) confirmationCode = db.Column(db.Text) delegates = db.relationship('Delegate', backref='teacher', lazy=True) ### chagnePassword() (String -> void) ### change the teacher's password, hashed and all def changePassword(self, newPassword): self.password = pwd_context.hash(newPassword); ### canAddDelegate() ( -> bool) ### return true if teacher has space for more delegates, else false def canAddDelegate(self): if self.getNumOfStudents() < self.getNumOfMaxStudents(): return True else: return False ### getNumOfStudents (String -> Number) ### return number of students in teacher def getNumOfStudents(self): num = 0 # grabs all assignments of user assignments = self.delegates # iterates over all the assignments in the table adding one to the variable num for assignment in assignments: num = num + 1 return num ### returnUserPageOld (Void -> templateRendered) ### returns the rendered template user_oldTeacherPage.html with corresponding data from current user's table def returnUserPageOld(self): delegates = self.delegates grades = helpers.getGrades() return render_template("user_oldTeacherPage.html", delegates=delegates, grades=grades) ### makeUser (String String -> String) ### produces unique user id from its name and school without any special characters def getTeacherSession(self): return helpers.replaceSpecial(self.name) + helpers.replaceSpecial(self.school) ### recheck the number of students available def getNumOfMaxStudents(self): return helpers.getSpecial(self.confirmationCode) def __init__(self, name, email, password, school, code): self.name = name self.email = email self.password = password self.school = school self.confirmationCode = code # Flask-Login stuff self.is_authenticaded = False self.is_active = True self.is_anonymous = False ###### Flask-Login stuff ####### def get_id(self): return chr(Teacher.query.filter(Teacher.name == self.name, Teacher.email == self.email).first().id) class Assignment(db.Model): id = db.Column(db.Integer, primary_key=True) country = db.Column(db.Text) country_id = db.Column(db.Integer) important = db.Column(db.Text) delegate = db.relationship('Delegate', backref='assignment', uselist=False) committee_id = db.Column(db.Integer, db.ForeignKey("committee.id"), nullable=False) def __init__(self, committeeID, country, country_id, important : Important): self.country = country self.country_id = country_id self.important = important self.committee_id = committeeID class Delegate(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.Text) grade = db.Column(db.Text) assignment_id = db.Column(db.Integer, db.ForeignKey('assignment.id'), nullable=False) teacher_id = db.Column(db.Integer, db.ForeignKey('teacher.id'), nullable=False) def __init__(self, name, assignment, teacher, grade : Grades): self.name = name self.assignment_id = assignment self.teacher_id = teacher self.grade = grade class Committee(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.Text) typeOfCom = db.Column(db.Text) room = db.Column(db.Text) advanced = db.Column(db.Text) assignments = db.relationship("Assignment", backref="committee") def __init__(self, name, typeOfCom : TypeOfCom, room, advanced): self.name = name self.typeOfCom = typeOfCom self.room = room self.advanced = advanced self.assignments ### return number of assignments in this committee def numOfAssignments(self): num = 0 for assignment in self.assignments: if assignment.important == Important.NO.value: num = num + 1 return num ### return number of important assignments in this committee def numOfImportantAssignments(self): num = 0 for assignment in self.assignments: if assignment.important == Important.YES.value: num = num + 1 return num ### return number of assignments with a delegate in this committee def numOfDelegates(self): num = 0 for assignment in self.assignments: if assignment.important == Important.NO.value and assignment.delegate is not None: num = num + 1 return num ### return number of important assignments with a delegate in this committee def numOfImportantDelegates(self): num = 0 for assignment in self.assignments: if assignment.important == Important.YES.value and assignment.delegate is not None: num = num + 1 return num ### return true if there are more assignments available than delegates in the committee by half def codeYellow(self, isImportant): print("inside code yellow") if isImportant: if self.numOfImportantAssignments() - self.numOfImportantDelegates() >= self.numOfImportantAssignments() / 2: return True else: return False else: if self.numOfAssignments() - self.numOfDelegates() >= self.numOfAssignments() / 2: print("inside true for code yellow") return True else: return False ### return true if there are more assignments available than delegates in the committe by two thirds def codeRed(self, isImportant): print("inside code red") if isImportant: if self.numOfImportantAssignments() - self.numOfImportantDelegates() >= self.numOfImportantAssignments() * 0.6: return True else: return False else: if self.numOfAssignments() - self.numOfDelegates() >= self.numOfAssignments() * 0.6: print("inside true for code red") return True else: return False ```
{ "source": "jpgard/bostonScrape", "score": 3 }
#### File: jpgard/bostonScrape/main_2016.py ```python import csv import errno import itertools import os import time from bs4 import BeautifulSoup import click import dataset import funcy as fy import requests HTML_DB_FILENAME = 'scrape_test.db' DATASET = dataset.connect('sqlite:///' + HTML_DB_FILENAME) TABLE = DATASET['raw_html'] def mkdir_p(path): """ Makes directories. Taken from: http://stackoverflow.com/a/600612 """ try: os.makedirs(path) except OSError as exc: # Python >2.5 if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise @click.group() def cli(): """Pile of commands to scrape the boston marathon results.""" pass def extract_entrants(html): """Generator yielding entrant info dicts given an HTML file.""" soup = BeautifulSoup(html, 'lxml') trs = soup.select('.tablegrid_list_item > .tablegrid_table > tbody > tr') # Two rows per entrant, so we group them in pairs, omitting the extra end # row. user_rows = fy.ipartition(2, trs) for tr_header, tr_data in user_rows: header_strings = [td.get_text(strip=True) for td in tr_header.find_all('td', recursive=False)] assert len(header_strings) == 9 data_strings = [td.get_text(strip=True) for td in tr_data.select('td')[0].select('td')] assert len(data_strings) == 15 yield { 'bib_number': header_strings[0], 'name': header_strings[1], 'age': header_strings[2], 'gender': header_strings[3], 'city': header_strings[4], 'state': header_strings[5], 'county': header_strings[6], 'origin': header_strings[7], #new items added by JG '5k': data_strings[0], '10k': data_strings[1], '15k': data_strings[2], '20k': data_strings[3], 'half': data_strings[4], '25k': data_strings[5], '30k': data_strings[6], '35k': data_strings[7], '40k': data_strings[8], 'pace' : data_strings[9], 'projected_time' : data_strings[10], 'official_time' : data_strings[11], 'overall_place' : data_strings[12], 'gender_place' : data_strings[13], 'division_place' : data_strings[14] } @cli.command() @click.argument('output_csv', type=click.File('wb')) def output_csv(output_csv): """Write a csv listing of all entrants.""" entrants = fy.cat(extract_entrants(row['page_html']) for row in TABLE.all()) # We could technically use the first entry's keys, but I like this column order. keys = [ 'bib_number', 'name', 'age', 'gender', 'city', 'state', 'county', 'origin', #new items added by JG '5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'pace', 'projected_time', 'official_time', 'overall_place', 'gender_place', 'division_place' ] writer = csv.DictWriter(output_csv, keys) writer.writeheader() for row in entrants: writer.writerow({k.encode('utf8'):v.encode('utf8') for k,v in row.items()}) click.echo('Wrote %d entrants.' % len(entrants)) @cli.command() def output_html(): """Write all pages in the database into HTML files.""" mkdir_p('output') for row in TABLE.all(): #TODO:COUNTRY filename = 'output/country_%s_state_%s_page_%s.html' % (row['country_id'], row['state_id'], row['page_number']) click.echo('Writing ' + filename) with file(filename, 'w') as f: f.write(row['page_html']) def scrape_state(country_id=0, state_id=0): """ Generator yielding pages of HTML for a particular state. Returns tuples of (page_number, html_text). """ # Fuckton of random shit in here, but whatever, don't fuck with whatever the # server is doing if it works. headers = { 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8', 'Accept-Encoding': 'gzip, deflate', 'Accept-Language': 'en-US,en;q=0.8', 'Cache-Control': 'max-age=0', 'Content-Type': 'application/x-www-form-urlencoded', 'Origin': 'http://registration.baa.org', 'Referer': 'http://registration.baa.org/2016/cf/Public/iframe_ResultsSearch.cfm?mode=results', } #TODO: COUNTRY params = { 'mode': 'results', 'criteria': '', 'StoredProcParamsOn': 'yes', 'VarGenderID': 0, 'VarBibNumber': '', 'VarLastName': '', 'VarFirstName': '', 'VarStateID': state_id, 'VarCountryOfResID': country_id, 'VarCountryOfCtzID': 0, 'VarReportingSegID': 1, 'VarAwardsDivID': 0, 'VarQualClassID': 0, 'VarCity': '', 'VarTargetCount': 1000, 'records': 25, 'headerexists': 'Yes', 'bordersize': 0, 'bordercolor': '#ffffff', 'rowcolorone': '#FFCC33', 'rowcolortwo': '#FFCC33', 'headercolor': '#ffffff', 'headerfontface': 'Verdana,Arial,Helvetica,sans-serif', 'headerfontcolor': '#004080', 'headerfontsize': '12px', 'fontface': 'Verdana,Arial,Helvetica,sans-serif', 'fontcolor': '#000099', 'fontsize': '10px', 'linkfield': 'FormattedSortName', 'linkurl': 'OpenDetailsWindow', 'linkparams': 'RaceAppID', 'queryname': 'SearchResults', 'tablefields': 'FullBibNumber,FormattedSortName,AgeOnRaceDay,GenderCode,' 'City,StateAbbrev,CountryOfResAbbrev,CountryOfCtzAbbrev,' 'DisabilityGroup', } for page_number, start in enumerate(itertools.count(1, 25)): # Don't hammer the server. Give it a sec between requests. time.sleep(1.0) #TODO: country click.echo('Requesting country %d state %d - page %d' % (country_id, state_id, page_number)) response = requests.post( 'http://registration.baa.org/2016/cf/Public/iframe_ResultsSearch.cfm', headers=headers, params=params, data={'start': start, 'next': 'Next 25 Records'}, ) response.raise_for_status() # Only yield if there actually are results. Just found this random # tr_header thing in the HTML of the pages that have results, but not # empty results pages. if 'tr_header' in response.text: yield page_number, response.text else: assert 'Next 25 Records' not in response.text click.echo(' No results found.') break # No more pages! if 'Next 25 Records' not in response.text: break @cli.command() def scrape(): """Pull down HTML from the server into dataset.""" # Bullshit, I know right? But no, go look at the search page. state_ids = range(2, 78) country_ids = range(0,203) for country_id in country_ids: if country_id in (36, 193): #if US or canada, need to scrape by state, otherwise, can just scrape by country for state_id in state_ids: for page_number, page_html in scrape_state(country_id, state_id): #TODO: scrape_state needs country id and state id as parameters TABLE.upsert(dict( state_id=state_id, page_number=page_number, page_html=page_html, ), ['country_id', 'state_id', 'page_number']) else: for page_number, page_html in scrape_state(country_id, state_id=0): #TODO: scrape_state needs country id and state id as parameters TABLE.upsert(dict( country_id =country_id, page_number=page_number, page_html=page_html, ), ['country_id','state_id', 'page_number']) if __name__ == '__main__': cli() ```
{ "source": "jpgard/federated", "score": 2 }
#### File: feded/preprocessing/larc.py ```python import pandas as pd SID_COLNAME = "STDNT_ID" TERM_COLNAME = "TERM_CD" SNAPSHT_COLNAME = "SNPSHT_RPT_DT" def make_prev_term_gpa_column(df): return df ``` #### File: feded/training/model.py ```python import tensorflow as tf class ModelConfig: def __init__(self, learning_rate: float, loss): """ A set of configurations to represent a unique model. :param learning_rate: learning rate. :param loss: callable to be used as the loss function for the model. """ self.learning_rate = learning_rate self.loss = loss # create a simple keras model def create_compiled_keras_model(input_shape, model_config: ModelConfig): """Create and compile a simple fully-connected Keras model.""" model = tf.keras.models.Sequential([ # preprocessing_layer, tf.keras.layers.BatchNormalization(center=True, scale=True, input_shape=input_shape), tf.keras.layers.Dense(16, activation='relu', kernel_initializer='zeros'), tf.keras.layers.Dense(8, activation='relu', kernel_initializer='zeros'), tf.keras.layers.Dense(1, activation='sigmoid', kernel_initializer='zeros') ]) # compile the model model.compile( loss=model_config.loss(), optimizer=tf.keras.optimizers.SGD(learning_rate=model_config.learning_rate), metrics=[ tf.keras.metrics.BinaryCrossentropy(), tf.keras.metrics.BinaryAccuracy(), tf.keras.metrics.AUC(), tf.keras.metrics.Precision(), tf.keras.metrics.Recall() ]) return model ```
{ "source": "jpgard/mooc-peer-grading", "score": 3 }
#### File: docker/feature_extraction/sql_utils.py ```python import os import subprocess import shutil import pandas as pd DATABASE_NAME = "course" def execute_mysql_query_into_csv(query, file, database_name=DATABASE_NAME, delimiter=","): """ Execute a mysql query into a file. :param query: valid mySQL query as string. :param file: csv filename to write to. :param database_name: name of database to use. :param delimiter: type of delimiter to use in file. :param escape_char: escape character to use. :return: None """ formatted_query = """{} INTO OUTFILE '{}' FIELDS TERMINATED BY '{}';""".format(query, file, delimiter) command = '''mysql -u root -proot {} -e"{}"'''.format(database_name, formatted_query) subprocess.call(command, shell=True) return def load_mysql_dump(dumpfile, database_name=DATABASE_NAME): """ Load a mySQL data dump into DATABASE_NAME. :param file: path to mysql database dump :return: """ command = '''mysql -u root -proot {} < {}'''.format(database_name, dumpfile) subprocess.call(command, shell=True) return def initialize_database(database_name=DATABASE_NAME): """ Start mySQL service and initialize mySQL database with database_name. :param database_name: name of database. :return: None """ # start mysql server subprocess.call("service mysql start", shell=True) # create database subprocess.call('''mysql -u root -proot -e "CREATE DATABASE {}"'''.format(database_name), shell=True) return def extract_coursera_sql_data(course, session): """ Initialize the mySQL database, load files, and execute queries to deposit csv files of data into /input/course/session directory. :param course: course name. :param session: session. :param outfile: name of csv file to write to. :return: """ # paths for reading and writing results course_session_dir = os.path.join("/input", course, session) mysql_default_output_dir = "/var/lib/mysql/{}/".format( DATABASE_NAME) # this is the only location mysql can write to hash_mapping_sql_dump = \ [x for x in os.listdir(course_session_dir) if "anonymized_general" in x and session in x][ 0] # contains users table initialize_database() load_mysql_dump(os.path.join(course_session_dir, hash_mapping_sql_dump)) # execute forum comment query and send to csv for tablename in ["hg_assessment_metadata", "hg_assessment_submission_metadata", "hg_assessment_overall_evaluation_metadata", "hg_assessment_evaluation_metadata", "hg_assessment_calibration_gradings", "hg_assessment_peer_grading_metadata", "hg_assessment_peer_grading_set_metadata", "hg_assessment_self_grading_set_metadata", "hg_assessment_training_metadata", "hg_assessment_training_set_metadata" ]: query = """SELECT * FROM {}""".format(tablename) outfile = tablename + ".csv" outfile_temp_fp = os.path.join(mysql_default_output_dir, outfile) outfile_fp = os.path.join("/output", outfile) execute_mysql_query_into_csv(query, file=outfile_temp_fp) shutil.move(outfile_temp_fp, outfile_fp) return ```
{ "source": "jpgard/morf", "score": 2 }
#### File: morf/utils/caching.py ```python import os import subprocess import shutil from urllib.parse import urlparse import logging from morf.utils.docker import load_docker_image from morf.utils.log import set_logger_handlers, execute_and_log_output from morf.utils.s3interface import sync_s3_bucket_cache module_logger = logging.getLogger(__name__) def make_course_session_cache_dir_fp(job_config, bucket, data_dir, course, session): fp = os.path.join(job_config.cache_dir, bucket, data_dir, course, session) return fp def update_raw_data_cache(job_config): """ Update the raw data cache using the parameters in job_config; if job_config contains multiple raw data buckets, cache all of them. :param job_config: MorfJobConfig object. :return: """ # cache each bucket in a named directory within job_cache_dir for raw_data_bucket in job_config.raw_data_buckets: sync_s3_bucket_cache(job_config, raw_data_bucket) return def update_proc_data_cache(job_config): """ Update the processed data cache using the parameters in job_config. Assumes job_config contains only a single proc_data_bucket. :param job_config: MorfJobConfig object. :return: """ proc_data_bucket = getattr(job_config, "proc_data_bucket", None) sync_s3_bucket_cache(job_config, proc_data_bucket) return def fetch_from_cache(job_config, cache_file_path, dest_dir): """ Fetch a file from the cache for job_config into dest_dir, if it exists. :param job_config: :param cache_file_path: string, relative path to file in cache (this is identical to the directory path in s3; e.g. "/bucket/path/to/somefile.csv" :param dest_dir: absolute path of directory to fetch file into (will be created if not exists) :return: path to fetched file (string); return None if cache is not used. """ logger = set_logger_handlers(module_logger, job_config) logger.info("fetching file {} from cache".format(cache_file_path)) abs_cache_file_path = os.path.join(getattr(job_config, "cache_dir", None), cache_file_path) if hasattr(job_config, "cache_dir") and os.path.exists(abs_cache_file_path): if not os.path.exists(dest_dir): os.makedirs(dest_dir) dest_fp = shutil.copy(abs_cache_file_path, dest_dir) else: logger.warning("file {} does not exist in cache".format(abs_cache_file_path)) dest_fp = None return dest_fp def docker_cloud_login(job_config): """ Log into docker cloud using creds in job_config. :param job_config: MorfJobConfig object. :return: None """ cmd = "docker login --username={} --password={}".format(job_config.docker_cloud_username, job_config.docker_cloud_password) logger = set_logger_handlers(module_logger, job_config) execute_and_log_output(cmd, logger) return def docker_cloud_push(job_config, image_uuid): """ Push image to Docker Cloud repo in job_config; tagging the image with its morf_id. :param job_config: MorfJobConfig object :param image_uuid: Docker image uuid :return: None """ logger = set_logger_handlers(module_logger, job_config) docker_cloud_repo_and_tag_path = "{}:{}".format(job_config.docker_cloud_repo, job_config.morf_id) # tag the docker image using the morf_id tag_cmd = "docker tag {} {}".format(image_uuid, docker_cloud_repo_and_tag_path) execute_and_log_output(tag_cmd, logger) # push the image to docker cloud push_cmd = "docker push {}".format(docker_cloud_repo_and_tag_path) execute_and_log_output(push_cmd, logger) return docker_cloud_repo_and_tag_path def cache_to_docker_hub(job_config, dir, image_name): """ Push image to MORF repo in Docker Hub. :param job_config: MorfJobConfig object. :return: None """ logger = set_logger_handlers(module_logger, job_config) image_uuid = load_docker_image(dir, job_config, logger, image_name) docker_cloud_login(job_config) docker_cloud_repo_and_tag_path = docker_cloud_push(job_config, image_uuid) return docker_cloud_repo_and_tag_path ``` #### File: morf/tests/test_s3_utils.py ```python import pytest from morf.utils import get_bucket_from_url, get_key_from_url def test_get_bucket_from_url(): assert get_bucket_from_url("s3://my-bucket/some/file.txt") == "my-bucket" assert get_bucket_from_url("s3://anotherbucket/some/file.txt") == "anotherbucket" def test_get_key_from_url(): assert get_key_from_url("s3://my-bucket/some/file.txt") == "some/file.txt" with pytest.raises(AttributeError): get_key_from_url("s3://my-bucket/") # tests case of path without a key ``` #### File: morf/utils/config.py ```python import boto3 import configparser import fileinput import json import logging import multiprocessing import os import re from morf.utils import get_bucket_from_url, get_key_from_url from morf.utils.security import generate_md5 def get_config_properties(config_file="config.properties", sections_to_fetch = None): """ Returns the list of properties as a dict of key/value pairs in the file config.properties. :param config_file: filename (string). :param section: name of section to fetch properties from (if specified); all sections are returned by default (iterable). :return: A flat (no sections) Python dictionary of properties. """ cf = configparser.ConfigParser() try: cf.read(config_file) except Exception as e: print("[ERROR] exception {} reading configurations from file {}".format(e, config_file)) properties = {} for section in cf.sections(): # only include args section if requested if (not sections_to_fetch or (section in sections_to_fetch)): for item in cf.items(section): properties[item[0]] = item[1] return properties def combine_config_files(*args, outfile="config.properties"): """ Combine multiple config files into single config file located at outfile. :param args: names of config files to combine. :param outfile: pathname to write to. :return: None """ with open(outfile, "w") as fout, fileinput.input(args) as fin: for line in fin: fout.write(line) return def update_config_fields_in_section(section, config_file="config.properties", **kwargs): """ Overwrite (or create, if not exists) fields in section of config_file with values provided according to kwargs. :param section: section header within config file which contains the field to be modified. :param kwargs: named parameters, with values, to overwrite. :param config_file: path to config properties; should be valid ConfigParser file :return: """ cf = configparser.ConfigParser() try: cf.read(config_file) except Exception as e: print("[ERROR] exception {} reading configurations from file {}".format(e, config_file)) cf_new = configparser.ConfigParser() for section in cf.sections(): for item in cf.items(section): try: cf_new[section][item[0]] = item[1] except KeyError: # section doesn't exist yet cf_new[section] = {} cf_new[section][item[0]] = item[1] for key, value in kwargs.items(): try: cf_new[section][key] = value except KeyError: print( "[ERROR] error updating config file: {}; possibly attempted to update a section that does not exist".format( e)) try: os.remove(config_file) with open(config_file, "w") as cfwrite: cf_new.write(cfwrite) except Exception as e: print("[ERROR] error updating config file: {}".format(e)) return def fetch_data_buckets_from_config(config_file="config.properties", data_section="data", required_bucket_dir_name='morf-data/'): """ Fetch the buckets from data_section of config_file; warn if key does not exactle match directory_name. :param config_file: path to config file. :param data_section: section of config file with key-value pairs representing institution names and s3 paths. :param required_bucket_dir_name: directory or path that should match ALL values in data_section; if not, throws warning. :return: list of buckets to iterate over; no directories are returned because these should be uniform across all of the buckets. """ cf = configparser.ConfigParser() cf.read(config_file) buckets = [] for item in cf.items(data_section): item_url = item[1] bucket = get_bucket_from_url(item_url) dir = get_key_from_url(item_url) if dir != required_bucket_dir_name: msg = "[ERROR]: specified path {} does not match required directory name {}; change name of directories to be consistent or specify the correct directory to check for.".format( item_url, required_bucket_dir_name) print(msg) raise else: buckets.append(bucket) assert len(buckets) >= 1 return tuple(buckets) class MorfJobConfig: """ Job-level configurations; these should remain consistent across entire workflow of a job. """ def __init__(self, config_file): self.type = "morf" # todo: delete this self.mode = None self.status = "START" properties = get_config_properties(config_file) self.client_args = get_config_properties(config_file, sections_to_fetch="args") # add properties to class as attributes for prop in properties.items(): setattr(self, prop[0], prop[1]) # if client_args are specified, add these to job_id to ensure unique if self.client_args: self.generate_job_id() # fetch raw data buckets as list self.raw_data_buckets = fetch_data_buckets_from_config() self.generate_morf_id(config_file) # if maximum number of cores is not specified, set to one less than half of current machine's cores; otherwise cast to int self.setcores() def generate_job_id(self): """ Generate and set a unique job_id by appending client-supplied arg names and values. This makes submitting multiple jobs by simply altering the 'args' field much easier for users. :return: None """ new_job_id = self.job_id for arg_name, arg_value in sorted(self.client_args.items()): name = re.sub("[./]", "", arg_name) value = re.sub("[./]", "", arg_value) new_job_id += '_'.join([name, value]) setattr(self, "job_id", new_job_id) return def generate_morf_id(self, config_file): """ Generate a unique MORF identifier via hashing of the config file. :param config_file: :return: """ self.morf_id = generate_md5(config_file) def check_configurations(self): # todo: check that all arguments are valid/acceptable pass def update_status(self, status): # todo: check whether status is valid by comparing with allowed values self.status = status def update_email_to(self, email_to): # todo: check if email is valid self.email_to = email_to def update_mode(self, mode): # todo: check whether mode is valid by comparing with allowed values self.mode = mode def initialize_s3(self): # create s3 connection object for communicating with s3 s3obj = boto3.client("s3", aws_access_key_id=self.aws_access_key_id, aws_secret_access_key=self.aws_secret_access_key) return s3obj def setcores(self): if not hasattr(self, "max_num_cores"): n_cores = multiprocessing.cpu_count() self.max_num_cores = max(n_cores//2 - 1, 1) else: n_cores = int(self.max_num_cores) self.max_num_cores = n_cores return ``` #### File: morf/mwe-prule/morf-prule.py ```python import argparse import subprocess import os import tarfile import gzip import shutil import re from feature_extraction.sql_utils import extract_grade_sql_data def unarchive_file(src, dest): """ Untar or un-gzip a file from src into dest. Supports file extensions: .zip, .tgz, .gz. Taken from MORF API. :param src: path to source file to unarchive (string). :param dest: directory to unarchive result into (string). :return: None """ if src.endswith(".zip") or src.endswith(".tgz"): tar = tarfile.open(src) tar.extractall(dest) tar.close() outpath = os.path.join(dest, os.path.basename(src)) elif src.endswith(".gz"): with gzip.open(src, "rb") as f_in: destfile = os.path.basename(src)[:-3] # source file without '.gz' extension destpath = os.path.join(dest, destfile) with open(destpath, "wb") as f_out: shutil.copyfileobj(f_in, f_out) os.remove(src) outpath = destpath else: raise NotImplementedError("Passed in a file with an extension not supported by unarchive_file: {}".format(src)) return outpath def clean_filename(src): """ Rename file, removing any non-alphanumeric characters. :param src: file to rename. :return: None """ src_dir, src_file = os.path.split(src) clean_src_file = re.sub('[\(\)\s]', '', src_file) clean_src_path = os.path.join(src_dir, clean_src_file) try: os.rename(src, clean_src_path) except Exception as e: print("[ERROR] error renaming file: {}".format(e)) return clean_src_path if __name__ == "__main__": parser = argparse.ArgumentParser(description="execute feature extraction, training, or testing.") parser.add_argument("-c", "--course", required=True, help="an s3 pointer to a course") parser.add_argument("-r", "--session", required=True, help="3-digit course run number") parser.add_argument("-m", "--mode", required=True, help="mode to run image in; {extract, train, test}") args = parser.parse_args() if args.mode == "extract": # this block expects individual session-level data mounted by extract_session() and outputs one CSV file per session in /output # unzip files and clean names session_input_dir = os.path.join("/input", args.course, args.session) # fetch/create path names for various input and output files clickstream = [x for x in os.listdir(session_input_dir) if x.endswith("clickstream_export.gz")][0] clickstream_fp = os.path.join(session_input_dir, clickstream) clickstream_fp = unarchive_file(clickstream_fp, session_input_dir) clickstream_fp = clean_filename(clickstream_fp) outfile = "{}-{}-extract.csv".format(args.course, args.session) output_fp = os.path.join("/output", outfile) # run grade extraction script grade_file = extract_grade_sql_data(args.course, args.session) grade_fp = os.path.join(session_input_dir, grade_file) # compile the java code; ideally this should happen in dockerfile, not here! cmd = "javac -cp MORF1.4/jars/*: -d /MORF1.4/bin/ /MORF1.4/src/Extract.java" subprocess.call(cmd, shell=True) # run feature extraction os.chdir("/MORF1.4/bin/") cmd = "java -cp /MORF1.4/jars/*: Extract {} {} {}".format(clickstream_fp, grade_fp, output_fp) subprocess.call(cmd, shell=True) ```
{ "source": "jpgard/pytorch-CycleGAN-and-pix2pix", "score": 2 }
#### File: pytorch-CycleGAN-and-pix2pix/models/networks_3d.py ```python import torch import torch.nn as nn from torch.nn import init import functools from torch.optim import lr_scheduler from models.networks import Identity, init_net ############################################################################### # Helper Functions ############################################################################### def get_norm_layer(norm_type='instance'): """Return a 3D normalization layer Parameters: norm_type (str) -- the name of the normalization layer: batch | instance | none For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev). For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics. """ if norm_type == 'batch': norm_layer = functools.partial(nn.BatchNorm3d, affine=True, track_running_stats=True) elif norm_type == 'instance': norm_layer = functools.partial(nn.InstanceNorm3d, affine=False, track_running_stats=False) elif norm_type == 'none': norm_layer = lambda x: Identity() else: raise NotImplementedError('normalization layer [%s] is not found' % norm_type) return norm_layer def define_G(input_nc, output_nc, ngf, netG, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02, gpu_ids=[]): """Create a 3D generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images ngf (int) -- the number of filters in the last conv layer netG (str) -- the architecture's name: resnet_9blocks | resnet_6blocks | unet_256 | unet_128 norm (str) -- the name of normalization layers used in the network: batch | instance | none use_dropout (bool) -- if use dropout layers. init_type (str) -- the name of our initialization method. init_gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Returns a generator Our current implementation provides two types of generators: U-Net: [unet_128] (for 128x128 input images) and [unet_256] (for 256x256 input images) The original U-Net paper: https://arxiv.org/abs/1505.04597 Resnet-based generator: [resnet_6blocks] (with 6 Resnet blocks) and [resnet_9blocks] (with 9 Resnet blocks) Resnet-based generator consists of several Resnet blocks between a few downsampling/upsampling operations. We adapt Torch code from <NAME>'s neural style transfer project (https://github.com/jcjohnson/fast-neural-style). The generator has been initialized by <init_net>. It uses RELU for non-linearity. """ net = None norm_layer = get_norm_layer(norm_type=norm) if netG == 'resnet_9blocks': raise NotImplementedError # net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=9) elif netG == 'resnet_6blocks': raise NotImplementedError # net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=6) elif netG == 'unet_128': raise NotImplementedError # net = UnetGenerator(input_nc, output_nc, 7, ngf, norm_layer=norm_layer, use_dropout=use_dropout) elif netG == 'unet_256': net = UnetGenerator3d(input_nc, output_nc, 8, ngf, norm_layer=norm_layer, use_dropout=use_dropout) else: raise NotImplementedError('Generator model name [%s] is not recognized' % netG) return init_net(net, init_type, init_gain, gpu_ids) def define_D(input_nc, ndf, netD, n_layers_D=3, norm='batch', init_type='normal', init_gain=0.02, gpu_ids=[]): """Create a discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the first conv layer netD (str) -- the architecture's name: basic | n_layers | pixel n_layers_D (int) -- the number of conv layers in the discriminator; effective when netD=='n_layers' norm (str) -- the type of normalization layers used in the network. init_type (str) -- the name of the initialization method. init_gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Returns a discriminator Our current implementation provides three types of discriminators: [basic]: 'PatchGAN' classifier described in the original pix2pix paper. It can classify whether 70×70 overlapping patches are real or fake. Such a patch-level discriminator architecture has fewer parameters than a full-image discriminator and can work on arbitrarily-sized images in a fully convolutional fashion. [n_layers]: With this mode, you cna specify the number of conv layers in the discriminator with the parameter <n_layers_D> (default=3 as used in [basic] (PatchGAN).) [pixel]: 1x1 PixelGAN discriminator can classify whether a pixel is real or not. It encourages greater color diversity but has no effect on spatial statistics. The discriminator has been initialized by <init_net>. It uses Leakly RELU for non-linearity. """ net = None norm_layer = get_norm_layer(norm_type=norm) if netD == 'basic': # default PatchGAN classifier net = NLayerDiscriminator3d(input_nc, ndf, n_layers=3, norm_layer=norm_layer) elif netD == 'n_layers': # more options net = NLayerDiscriminator3d(input_nc, ndf, n_layers_D, norm_layer=norm_layer) elif netD == 'pixel': # classify if each pixel is real or fake raise NotImplementedError # net = PixelDiscriminator(input_nc, ndf, norm_layer=norm_layer) else: raise NotImplementedError('Discriminator model name [%s] is not recognized' % net) return init_net(net, init_type, init_gain, gpu_ids) ############################################################################## # Classes ############################################################################## class UnetGenerator3d(nn.Module): """Create a 3D Unet-based generator""" def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False): """Construct a Unet generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7, image of size 128x128 will become of size 1x1 # at the bottleneck ngf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer We construct the U-Net from the innermost layer to the outermost layer. It is a recursive process. """ super(UnetGenerator3d, self).__init__() # construct unet structure unet_block = UnetSkipConnectionBlock3d(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) # add the innermost layer for i in range(num_downs - 5): # add intermediate layers with ngf * 8 filters unet_block = UnetSkipConnectionBlock3d(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout) # gradually reduce the number of filters from ngf * 8 to ngf unet_block = UnetSkipConnectionBlock3d(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer) unet_block = UnetSkipConnectionBlock3d(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer) unet_block = UnetSkipConnectionBlock3d(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer) self.model = UnetSkipConnectionBlock3d(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) # add the outermost layer def forward(self, input): """Standard forward""" return self.model(input) class UnetSkipConnectionBlock3d(nn.Module): """Defines the 3D Unet submodule with skip connection. X -------------------identity---------------------- |-- downsampling -- |submodule| -- upsampling --| """ def __init__(self, outer_nc, inner_nc, input_nc=None, submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm3d, use_dropout=False): """Construct a Unet submodule with skip connections. Parameters: outer_nc (int) -- the number of filters in the outer conv layer inner_nc (int) -- the number of filters in the inner conv layer input_nc (int) -- the number of channels in input images/features submodule (UnetSkipConnectionBlock3d) -- previously defined submodules outermost (bool) -- if this module is the outermost module innermost (bool) -- if this module is the innermost module norm_layer -- normalization layer user_dropout (bool) -- if use dropout layers. """ super(UnetSkipConnectionBlock3d, self).__init__() self.outermost = outermost if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm3d else: use_bias = norm_layer == nn.InstanceNorm3d if input_nc is None: input_nc = outer_nc downconv = nn.Conv3d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) downrelu = nn.LeakyReLU(0.2, True) downnorm = norm_layer(inner_nc) uprelu = nn.ReLU(True) upnorm = norm_layer(outer_nc) if outermost: upconv = nn.ConvTranspose3d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1) down = [downconv] up = [uprelu, upconv, nn.Tanh()] model = down + [submodule] + up elif innermost: upconv = nn.ConvTranspose3d(inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) down = [downrelu, downconv] up = [uprelu, upconv, upnorm] model = down + up else: upconv = nn.ConvTranspose3d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) down = [downrelu, downconv, downnorm] up = [uprelu, upconv, upnorm] if use_dropout: model = down + [submodule] + up + [nn.Dropout(0.5)] else: model = down + [submodule] + up self.model = nn.Sequential(*model) def forward(self, x): if self.outermost: return self.model(x) else: # add skip connections return torch.cat([x, self.model(x)], 1) class NLayerDiscriminator3d(nn.Module): """Defines a PatchGAN discriminator""" def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm3d): """Construct a PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer n_layers (int) -- the number of conv layers in the discriminator norm_layer -- normalization layer """ super(NLayerDiscriminator3d, self).__init__() if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm3d has affine parameters use_bias = norm_layer.func != nn.BatchNorm3d else: use_bias = norm_layer != nn.BatchNorm3d kw = 4 padw = 1 sequence = [nn.Conv3d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] nf_mult = 1 nf_mult_prev = 1 for n in range(1, n_layers): # gradually increase the number of filters nf_mult_prev = nf_mult nf_mult = min(2 ** n, 8) sequence += [ nn.Conv3d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2 ** n_layers, 8) sequence += [ nn.Conv3d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] sequence += [nn.Conv3d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map self.model = nn.Sequential(*sequence) def forward(self, input): """Standard forward.""" return self.model(input) ``` #### File: pytorch-CycleGAN-and-pix2pix/models/vox2vox_model.py ```python from models.pix2pix_model import Pix2PixModel from models.base_model import BaseModel import models.networks_3d as networks_3d import models.networks as networks import torch class Vox2VoxModel(BaseModel): """ This class implements the vox2vox model, for learning a mapping from input volumes to output volumes given paired data. This is designed to mostly follow the default architecture of the pix2pix model, with appropriate modifications for the 3D case. The model training requires '--dataset_mode aligned_volume' dataset. By default, it uses a '--netG unet256' U-Net generator, a '--netD basic' discriminator (PatchGAN), and a '--gan_mode' vanilla GAN loss (the cross-entropy objective used in the orignal GAN paper). pix2pix paper: https://arxiv.org/pdf/1611.07004.pdf see also models.pix2pix_model.py """ @staticmethod def modify_commandline_options(parser, is_train=True): """Add new dataset-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. For pix2pix, we do not use image buffer The training objective is: GAN Loss + lambda_L1 * ||G(A)-B||_1 By default, we use vanilla GAN loss, UNet with batchnorm, and aligned datasets. """ # changing the default values to match the pix2pix paper (https://phillipi.github.io/pix2pix/) parser.set_defaults(norm='batch', netG='unet_256', dataset_mode='aligned_volume') if is_train: parser.set_defaults(pool_size=0, gan_mode='vanilla') parser.add_argument('--lambda_l', type=float, default=100.0, help='lambda weight for L1 or L2 loss') parser.add_argument('--loss_norm', type=str, default="L1", help='type of loss (L1 or L2)') return parser def __init__(self, opt): """Initialize the vox2vox class. Modified from models.pix2pix_model . Parameters: opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions """ BaseModel.__init__(self, opt) # specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses> self.loss_names = ['G_GAN', 'G_L1L2', 'D_real', 'D_fake'] # specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals> self.visual_names = ['real_A', 'fake_B', 'real_B'] # specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks> if self.isTrain: self.model_names = ['G', 'D'] else: # during test time, only load G self.model_names = ['G'] # define networks (both generator and discriminator) self.netG = networks_3d.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) if self.isTrain: # define a discriminator; conditional GANs need to take both input and output images; Therefore, #channels for D is input_nc + output_nc self.netD = networks_3d.define_D(opt.input_nc + opt.output_nc, opt.ndf, opt.netD, opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids) if self.isTrain: # define loss functions self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device) if opt.loss_norm == "L1": self.criterionL1L2 = torch.nn.L1Loss() elif opt.loss_norm == "L2": self.criterionL1L2 = torch.nn.MSELoss() else: raise NotImplementedError("specify either an L1 or L2 as the loss_norm") # initialize optimizers; schedulers will be automatically created by function <BaseModel.setup>. self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) self.optimizer_D = torch.optim.Adam(self.netD.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) self.optimizers.append(self.optimizer_G) self.optimizers.append(self.optimizer_D) def set_input(self, input): # todo raise NotImplementedError def optimize_parameters(self): # todo raise NotImplementedError def forward(self): # todo raise NotImplementedError ```
{ "source": "JPGarzonE/curso-de-python", "score": 4 }
#### File: curso-de-python/estructuras_de_datos/repite_letra_con_tuplas.py ```python def first_not_repeating_char_my_method(char_sequence): sequence_tuple = tuple(char_sequence) not_repeating_char = '_*' for idx in range( len(sequence_tuple) ): if sequence_tuple.count( sequence_tuple[idx] ) == 1: not_repeating_char = sequence_tuple[idx] break return not_repeating_char # Metodo hecho por el profe def first_not_repeating_char_teachers_method(char_sequence): seen_letters = {} for idx, letter in enumerate(char_sequence): if letter not in seen_letters: seen_letters[letter] = (idx, 1) else: seen_letters[letter] = (seen_letters[letter][0], seen_letters[letter][1] + 1) final_letters = [] for key, value in seen_letters.iteritems(): if value[1] == 1: final_letters.append( (key, value[0]) ) not_repeated_letters = sorted(final_letters, key=lambda value: value[1]) if not_repeated_letters: return not_repeated_letters[0][0] else: return '_' if __name__ == '__main__': char_sequence = str(input('Escribe una secuencia de caracteres: ')) result = first_not_repeating_char_my_method(char_sequence) if result == '_*': print('Todos los caracteres se repiten.') else: print('El primer caracter no repetido es: {}'.format(result)) ``` #### File: curso-de-python/proyecto_directorio_contactos/contact.py ```python class Contact: def __init__(self, name, phone, email): self._name = name; self._phone = phone; self._email = email; ``` #### File: curso-de-python/recursividad/busqueda_binaria.py ```python import math def binarySearch(numbers, numberToSearch, idxBottom, idxTop): if idxBottom > idxTop: return False idxMiddle = math.floor( (idxTop + idxBottom) / 2 ) if numbers[idxMiddle] == numberToSearch: return True elif numbers[idxMiddle] > numberToSearch: return binarySearch( numbers, numberToSearch, idxBottom, idxMiddle - 1 ) else: return binarySearch( numbers, numberToSearch, idxMiddle + 1, idxTop ) def main(): numbers = [2,4,8,13,14,15,19,20,22,23,24,28] numberToSearch = int( input("Ingresa un número: ") ) result = binarySearch( numbers, numberToSearch, 0, len( numbers ) - 1 ) if result is True: print('El numero si está en la lista') else: print('El numero NO se encuentra') if __name__ == '__main__': main() ``` #### File: curso-de-python/recursividad/factorial.py ```python def main(): print("C A L C U L A D O R A D E F A C T O R I A L") numero = int( input("¿Cuál es tu numero? ") ) resultado = factorial(numero) print("El factorial de {} es {}".format(numero, resultado)) def factorial(numero): if numero == 1 : return 1 else: return numero * factorial(numero-1) if __name__ == "__main__": main() ```
{ "source": "jpgill86/analysis", "score": 2 }
#### File: notebooks/modules/r_stats.py ```python from rpy2.robjects.packages import importr from rpy2.robjects import numpy2ri numpy2ri.activate() stats = importr('stats') rrcov = importr('rrcov') effsize = importr('effsize') def t_test(*args, **kwargs): ''' Utilizes R's implementation of Student's t-test For arguments, see https://stat.ethz.ch/R-manual/R-patched/library/stats/html/t.test.html ''' result = stats.t_test(*args, **kwargs) return { 't': result.rx2('statistic')[0], 'df': result.rx2('parameter')[0], 'p': result.rx2('p.value')[0], } def wilcox_test(*args, **kwargs): ''' Utilizes R's implementation of the Wilcoxon signed-rank test For arguments, see https://stat.ethz.ch/R-manual/R-patched/library/stats/html/wilcox.test.html ''' result = stats.wilcox_test(*args, **kwargs) return { 'W': result.rx2('statistic')[0], 'p': result.rx2('p.value')[0], } def T2_test(*args, **kwargs): ''' Utilizes the R package rrcov's implementation of Hotelling's T-squared test For arguments, see https://rdrr.io/cran/rrcov/man/T2.test.html ''' result = rrcov.T2_test(*args, **kwargs) return { 'T2': result.rx2('statistic')[0], 'F': result.rx2('statistic')[1], 'df_num': result.rx2('parameter')[0], 'df_den': result.rx2('parameter')[1], 'p': result.rx2('p.value')[0], } def shapiro_test(*args, **kwargs): ''' Utilizes R's implementation of the Shapiro-Wilk normality test For arguments, see https://stat.ethz.ch/R-manual/R-patched/library/stats/html/shapiro.test.html ''' result = stats.shapiro_test(*args, **kwargs) return { 'W': result.rx2('statistic')[0], 'p': result.rx2('p.value')[0], } def cohen_d(*args, **kwargs): ''' Utilizes the R package effsize's implementation of Cohen's d and Hedges's g effect size For arguments, see https://rdrr.io/cran/effsize/man/cohen.d.html ''' result = effsize.cohen_d(*args, **kwargs) return { 'method': result.rx2('method')[0], 'estimate': result.rx2('estimate')[0], } ```
{ "source": "jpgill86/elephant", "score": 3 }
#### File: elephant/elephant/spike_train_synchrony.py ```python from __future__ import division, print_function, unicode_literals from collections import namedtuple import neo import numpy as np import quantities as pq from elephant.utils import is_time_quantity SpikeContrastTrace = namedtuple("SpikeContrastTrace", ( "contrast", "active_spiketrains", "synchrony")) def _get_theta_and_n_per_bin(spiketrains, t_start, t_stop, bin_size): """ Calculates theta (amount of spikes per bin) and the amount of active spike trains per bin of one spike train. """ bin_step = bin_size / 2 edges = np.arange(t_start, t_stop + bin_step, bin_step) # Calculate histogram for every spike train histogram = np.vstack([ _binning_half_overlap(st, edges=edges) for st in spiketrains ]) # Amount of spikes per bin theta = histogram.sum(axis=0) # Amount of active spike trains per bin n_active_per_bin = np.count_nonzero(histogram, axis=0) return theta, n_active_per_bin def _binning_half_overlap(spiketrain, edges): """ Referring to [1] overlapping the bins creates a better result. """ histogram, bin_edges = np.histogram(spiketrain, bins=edges) histogram = histogram[:-1] + histogram[1:] return histogram def spike_contrast(spiketrains, t_start=None, t_stop=None, min_bin=10 * pq.ms, bin_shrink_factor=0.9, return_trace=False): """ Calculates the synchrony of spike trains, according to :cite:`synchrony-Ciba18_136`. The spike trains can have different lengths. Original implementation by: <NAME> [<EMAIL>] Parameters ---------- spiketrains : list of neo.SpikeTrain A list of input spike trains to calculate the synchrony from. t_start : pq.Quantity, optional The beginning of the spike train. If None, it's taken as the minimum value of `t_start`s of the input spike trains. Default: None t_stop : pq.Quantity, optional The end of the spike train. If None, it's taken as the maximum value of `t_stop` of the input spike trains. Default: None min_bin : pq.Quantity, optional Sets the minimum value for the `bin_min` that is calculated by the algorithm and defines the smallest bin size to compute the histogram of the input `spiketrains`. Default: 0.01 ms bin_shrink_factor : float, optional A multiplier to shrink the bin size on each iteration. The value must be in range `(0, 1)`. Default: 0.9 return_trace : bool, optional If set to True, returns a history of spike-contrast synchrony, computed for a range of different bin sizes, alongside with the maximum value of the synchrony. Default: False Returns ------- synchrony : float Returns the synchrony of the input spike trains. spike_contrast_trace : namedtuple If `return_trace` is set to True, a `SpikeContrastTrace` namedtuple is returned with the following attributes: `.contrast` - the average sum of differences of the number of spikes in subsuequent bins; `.active_spiketrains` - the average number of spikes per bin, weighted by the number of spike trains containing at least one spike inside the bin; `.synchrony` - the product of `contrast` and `active_spiketrains`. Raises ------ ValueError If `bin_shrink_factor` is not in (0, 1) range. If the input spike trains constist of a single spiketrain. If all input spike trains contain no more than 1 spike. TypeError If the input spike trains is not a list of `neo.SpikeTrain` objects. If `t_start`, `t_stop`, or `min_bin` are not time quantities. Examples -------- >>> import quantities as pq >>> from elephant.spike_train_generation import homogeneous_poisson_process >>> from elephant.spike_train_synchrony import spike_contrast >>> spiketrain_1 = homogeneous_poisson_process(rate=20*pq.Hz, ... t_stop=1000*pq.ms) >>> spiketrain_2 = homogeneous_poisson_process(rate=20*pq.Hz, ... t_stop=1000*pq.ms) >>> spike_contrast([spiketrain_1, spiketrain_2]) 0.4192546583850932 """ if not 0. < bin_shrink_factor < 1.: raise ValueError("'bin_shrink_factor' ({}) must be in range (0, 1)." .format(bin_shrink_factor)) if not len(spiketrains) > 1: raise ValueError("Spike contrast measure requires more than 1 input " "spiketrain.") if not all(isinstance(st, neo.SpikeTrain) for st in spiketrains): raise TypeError("Input spike trains must be a list of neo.SpikeTrain.") if not is_time_quantity(t_start, allow_none=True) \ or not is_time_quantity(t_stop, allow_none=True): raise TypeError("'t_start' and 't_stop' must be time quantities.") if not is_time_quantity(min_bin): raise TypeError("'min_bin' must be a time quantity.") if t_start is None: t_start = min(st.t_start for st in spiketrains) if t_stop is None: t_stop = max(st.t_stop for st in spiketrains) # convert everything to seconds spiketrains = [st.simplified.magnitude for st in spiketrains] t_start = t_start.simplified.item() t_stop = t_stop.simplified.item() min_bin = min_bin.simplified.item() spiketrains = [times[(times >= t_start) & (times <= t_stop)] for times in spiketrains] n_spiketrains = len(spiketrains) n_spikes_total = sum(map(len, spiketrains)) duration = t_stop - t_start bin_max = duration / 2 try: isi_min = min(np.diff(st).min() for st in spiketrains if len(st) > 1) except TypeError: raise ValueError("All input spiketrains contain no more than 1 spike.") bin_min = max(isi_min / 2, min_bin) contrast_list = [] active_spiketrains = [] synchrony_curve = [] # Set new time boundaries t_start = t_start - isi_min t_stop = t_stop + isi_min bin_size = bin_max while bin_size >= bin_min: # Calculate Theta and n theta_k, n_k = _get_theta_and_n_per_bin(spiketrains, t_start=t_start, t_stop=t_stop, bin_size=bin_size) # calculate synchrony_curve = contrast * active_st active_st = (np.sum(n_k * theta_k) / np.sum(theta_k) - 1) / ( n_spiketrains - 1) contrast = np.sum(np.abs(np.diff(theta_k))) / (2 * n_spikes_total) # Contrast: sum(|derivation|) / (2*#Spikes) synchrony = contrast * active_st contrast_list.append(contrast) active_spiketrains.append(active_st) synchrony_curve.append(synchrony) # New bin size bin_size *= bin_shrink_factor # Sync value is maximum of the cost function C synchrony = max(synchrony_curve) if return_trace: spike_contrast_trace = SpikeContrastTrace( contrast=contrast_list, active_spiketrains=active_spiketrains, synchrony=synchrony_curve ) return synchrony, spike_contrast_trace return synchrony ``` #### File: elephant/test/test_spike_train_correlation.py ```python import sys import unittest import neo import numpy as np import quantities as pq from numpy.testing.utils import assert_array_equal, assert_array_almost_equal import elephant.conversion as conv import elephant.spike_train_correlation as sc from elephant.spike_train_generation import homogeneous_poisson_process,\ homogeneous_gamma_process import math python_version_major = sys.version_info.major class CovarianceTestCase(unittest.TestCase): def setUp(self): # These two arrays must be such that they do not have coincidences # spanning across two neighbor bins assuming ms bins [0,1),[1,2),... self.test_array_1d_0 = [ 1.3, 7.56, 15.87, 28.23, 30.9, 34.2, 38.2, 43.2] self.test_array_1d_1 = [ 1.02, 2.71, 18.82, 28.46, 28.79, 43.6] # Build spike trains self.st_0 = neo.SpikeTrain( self.test_array_1d_0, units='ms', t_stop=50.) self.st_1 = neo.SpikeTrain( self.test_array_1d_1, units='ms', t_stop=50.) # And binned counterparts self.binned_st = conv.BinnedSpikeTrain( [self.st_0, self.st_1], t_start=0 * pq.ms, t_stop=50. * pq.ms, bin_size=1 * pq.ms) def test_covariance_binned(self): ''' Test covariance between two binned spike trains. ''' # Calculate clipped and unclipped res_clipped = sc.covariance( self.binned_st, binary=True, fast=False) res_unclipped = sc.covariance( self.binned_st, binary=False, fast=False) # Check dimensions self.assertEqual(len(res_clipped), 2) self.assertEqual(len(res_unclipped), 2) # Check result unclipped against result calculated from scratch for # the off-diagonal element mat = self.binned_st.to_array() mean_0 = np.mean(mat[0]) mean_1 = np.mean(mat[1]) target_from_scratch = \ np.dot(mat[0] - mean_0, mat[1] - mean_1) / (len(mat[0]) - 1) # Check result unclipped against result calculated by numpy.corrcoef target_numpy = np.cov(mat) self.assertAlmostEqual(target_from_scratch, target_numpy[0][1]) self.assertAlmostEqual(res_unclipped[0][1], target_from_scratch) self.assertAlmostEqual(res_unclipped[1][0], target_from_scratch) # Check result clipped against result calculated from scratch for # the off-diagonal elemant mat = self.binned_st.to_bool_array() mean_0 = np.mean(mat[0]) mean_1 = np.mean(mat[1]) target_from_scratch = \ np.dot(mat[0] - mean_0, mat[1] - mean_1) / (len(mat[0]) - 1) # Check result unclipped against result calculated by numpy.corrcoef target_numpy = np.cov(mat) self.assertAlmostEqual(target_from_scratch, target_numpy[0][1]) self.assertAlmostEqual(res_clipped[0][1], target_from_scratch) self.assertAlmostEqual(res_clipped[1][0], target_from_scratch) def test_covariance_binned_same_spiketrains(self): ''' Test if the covariation between two identical binned spike trains evaluates to the expected 2x2 matrix. ''' # Calculate correlation binned_st = conv.BinnedSpikeTrain( [self.st_0, self.st_0], t_start=0 * pq.ms, t_stop=50. * pq.ms, bin_size=1 * pq.ms) result = sc.covariance(binned_st, fast=False) # Check dimensions self.assertEqual(len(result), 2) # Check result assert_array_equal(result[0][0], result[1][1]) def test_covariance_binned_short_input(self): ''' Test if input list of only one binned spike train yields correct result that matches numpy.cov (covariance with itself) ''' # Calculate correlation binned_st = conv.BinnedSpikeTrain( self.st_0, t_start=0 * pq.ms, t_stop=50. * pq.ms, bin_size=1 * pq.ms) result = sc.covariance(binned_st, binary=True, fast=False) # Check result unclipped against result calculated by numpy.corrcoef mat = binned_st.to_bool_array() target = np.cov(mat) # Check result and dimensionality of result self.assertEqual(result.ndim, target.ndim) assert_array_almost_equal(result, target) assert_array_almost_equal(target, sc.covariance(binned_st, binary=True, fast=True)) def test_covariance_fast_mode(self): np.random.seed(27) st = homogeneous_poisson_process(rate=10 * pq.Hz, t_stop=10 * pq.s) binned_st = conv.BinnedSpikeTrain(st, n_bins=10) assert_array_almost_equal(sc.covariance(binned_st, fast=False), sc.covariance(binned_st, fast=True)) class CorrCoefTestCase(unittest.TestCase): def setUp(self): # These two arrays must be such that they do not have coincidences # spanning across two neighbor bins assuming ms bins [0,1),[1,2),... self.test_array_1d_0 = [ 1.3, 7.56, 15.87, 28.23, 30.9, 34.2, 38.2, 43.2] self.test_array_1d_1 = [ 1.02, 2.71, 18.82, 28.46, 28.79, 43.6] self.test_array_1d_2 = [] # Build spike trains self.st_0 = neo.SpikeTrain( self.test_array_1d_0, units='ms', t_stop=50.) self.st_1 = neo.SpikeTrain( self.test_array_1d_1, units='ms', t_stop=50.) self.st_2 = neo.SpikeTrain( self.test_array_1d_2, units='ms', t_stop=50.) # And binned counterparts self.binned_st = conv.BinnedSpikeTrain( [self.st_0, self.st_1], t_start=0 * pq.ms, t_stop=50. * pq.ms, bin_size=1 * pq.ms) def test_corrcoef_binned(self): ''' Test the correlation coefficient between two binned spike trains. ''' # Calculate clipped and unclipped res_clipped = sc.correlation_coefficient( self.binned_st, binary=True) res_unclipped = sc.correlation_coefficient( self.binned_st, binary=False) # Check dimensions self.assertEqual(len(res_clipped), 2) self.assertEqual(len(res_unclipped), 2) # Check result unclipped against result calculated from scratch for # the off-diagonal element mat = self.binned_st.to_array() mean_0 = np.mean(mat[0]) mean_1 = np.mean(mat[1]) target_from_scratch = \ np.dot(mat[0] - mean_0, mat[1] - mean_1) / \ np.sqrt( np.dot(mat[0] - mean_0, mat[0] - mean_0) * np.dot(mat[1] - mean_1, mat[1] - mean_1)) # Check result unclipped against result calculated by numpy.corrcoef target_numpy = np.corrcoef(mat) self.assertAlmostEqual(target_from_scratch, target_numpy[0][1]) self.assertAlmostEqual(res_unclipped[0][1], target_from_scratch) self.assertAlmostEqual(res_unclipped[1][0], target_from_scratch) # Check result clipped against result calculated from scratch for # the off-diagonal elemant mat = self.binned_st.to_bool_array() mean_0 = np.mean(mat[0]) mean_1 = np.mean(mat[1]) target_from_scratch = \ np.dot(mat[0] - mean_0, mat[1] - mean_1) / \ np.sqrt( np.dot(mat[0] - mean_0, mat[0] - mean_0) * np.dot(mat[1] - mean_1, mat[1] - mean_1)) # Check result unclipped against result calculated by numpy.corrcoef target_numpy = np.corrcoef(mat) self.assertAlmostEqual(target_from_scratch, target_numpy[0][1]) self.assertAlmostEqual(res_clipped[0][1], target_from_scratch) self.assertAlmostEqual(res_clipped[1][0], target_from_scratch) def test_corrcoef_binned_same_spiketrains(self): ''' Test if the correlation coefficient between two identical binned spike trains evaluates to a 2x2 matrix of ones. ''' # Calculate correlation binned_st = conv.BinnedSpikeTrain( [self.st_0, self.st_0], t_start=0 * pq.ms, t_stop=50. * pq.ms, bin_size=1 * pq.ms) result = sc.correlation_coefficient(binned_st, fast=False) target = np.ones((2, 2)) # Check dimensions self.assertEqual(len(result), 2) # Check result assert_array_almost_equal(result, target) assert_array_almost_equal( result, sc.correlation_coefficient( binned_st, fast=True)) def test_corrcoef_binned_short_input(self): ''' Test if input list of one binned spike train yields 1.0. ''' # Calculate correlation binned_st = conv.BinnedSpikeTrain( self.st_0, t_start=0 * pq.ms, t_stop=50. * pq.ms, bin_size=1 * pq.ms) result = sc.correlation_coefficient(binned_st, fast=False) target = np.array(1.) # Check result and dimensionality of result self.assertEqual(result.ndim, 0) assert_array_almost_equal(result, target) assert_array_almost_equal( result, sc.correlation_coefficient( binned_st, fast=True)) @unittest.skipUnless(python_version_major == 3, "assertWarns requires 3.2") def test_empty_spike_train(self): ''' Test whether a warning is yielded in case of empty spike train. Also check correctness of the output array. ''' # st_2 is empty binned_12 = conv.BinnedSpikeTrain([self.st_1, self.st_2], bin_size=1 * pq.ms) with self.assertWarns(UserWarning): result = sc.correlation_coefficient(binned_12, fast=False) # test for NaNs in the output array target = np.zeros((2, 2)) * np.NaN target[0, 0] = 1.0 assert_array_almost_equal(result, target) def test_corrcoef_fast_mode(self): np.random.seed(27) st = homogeneous_poisson_process(rate=10 * pq.Hz, t_stop=10 * pq.s) binned_st = conv.BinnedSpikeTrain(st, n_bins=10) assert_array_almost_equal( sc.correlation_coefficient( binned_st, fast=False), sc.correlation_coefficient( binned_st, fast=True)) class CrossCorrelationHistogramTest(unittest.TestCase): def setUp(self): # These two arrays must be such that they do not have coincidences # spanning across two neighbor bins assuming ms bins [0,1),[1,2),... self.test_array_1d_1 = [ 1.3, 7.56, 15.87, 28.23, 30.9, 34.2, 38.2, 43.2] self.test_array_1d_2 = [ 1.02, 2.71, 18.82, 28.46, 28.79, 43.6] # Build spike trains self.st_1 = neo.SpikeTrain( self.test_array_1d_1, units='ms', t_stop=50.) self.st_2 = neo.SpikeTrain( self.test_array_1d_2, units='ms', t_stop=50.) # And binned counterparts self.binned_st1 = conv.BinnedSpikeTrain( [self.st_1], t_start=0 * pq.ms, t_stop=50. * pq.ms, bin_size=1 * pq.ms) self.binned_st2 = conv.BinnedSpikeTrain( [self.st_2], t_start=0 * pq.ms, t_stop=50. * pq.ms, bin_size=1 * pq.ms) self.binned_sts = conv.BinnedSpikeTrain( [self.st_1, self.st_2], t_start=0 * pq.ms, t_stop=50. * pq.ms, bin_size=1 * pq.ms) # Binned sts to check errors raising self.st_check_bin_size = conv.BinnedSpikeTrain( [self.st_1], t_start=0 * pq.ms, t_stop=50. * pq.ms, bin_size=5 * pq.ms) self.st_check_t_start = conv.BinnedSpikeTrain( [self.st_1], t_start=1 * pq.ms, t_stop=50. * pq.ms, bin_size=1 * pq.ms) self.st_check_t_stop = conv.BinnedSpikeTrain( [self.st_1], t_start=0 * pq.ms, t_stop=40. * pq.ms, bin_size=1 * pq.ms) self.st_check_dimension = conv.BinnedSpikeTrain( [self.st_1, self.st_2], t_start=0 * pq.ms, t_stop=50. * pq.ms, bin_size=1 * pq.ms) def test_cross_correlation_histogram(self): ''' Test generic result of a cross-correlation histogram between two binned spike trains. ''' # Calculate CCH using Elephant (normal and binary version) with # mode equal to 'full' (whole spike trains are correlated) cch_clipped, bin_ids_clipped = sc.cross_correlation_histogram( self.binned_st1, self.binned_st2, window='full', binary=True) cch_unclipped, bin_ids_unclipped = sc.cross_correlation_histogram( self.binned_st1, self.binned_st2, window='full', binary=False) cch_clipped_mem, bin_ids_clipped_mem = sc.cross_correlation_histogram( self.binned_st1, self.binned_st2, window='full', binary=True, method='memory') cch_unclipped_mem, bin_ids_unclipped_mem = \ sc.cross_correlation_histogram( self.binned_st1, self.binned_st2, window='full', binary=False, method='memory') # Check consistency two methods assert_array_equal( np.squeeze(cch_clipped.magnitude), np.squeeze( cch_clipped_mem.magnitude)) assert_array_equal( np.squeeze(cch_clipped.times), np.squeeze( cch_clipped_mem.times)) assert_array_equal( np.squeeze(cch_unclipped.magnitude), np.squeeze( cch_unclipped_mem.magnitude)) assert_array_equal( np.squeeze(cch_unclipped.times), np.squeeze( cch_unclipped_mem.times)) assert_array_almost_equal(bin_ids_clipped, bin_ids_clipped_mem) assert_array_almost_equal(bin_ids_unclipped, bin_ids_unclipped_mem) # Check normal correlation Note: Use numpy correlate to verify result. # Note: numpy conventions for input array 1 and input array 2 are # swapped compared to Elephant! mat1 = self.binned_st1.to_array()[0] mat2 = self.binned_st2.to_array()[0] target_numpy = np.correlate(mat2, mat1, mode='full') assert_array_equal( target_numpy, np.squeeze(cch_unclipped.magnitude)) # Check cross correlation function for several displacements tau # Note: Use Elephant corrcoeff to verify result tau = [-25.0, 0.0, 13.0] # in ms for t in tau: # adjust t_start, t_stop to shift by tau t0 = np.min([self.st_1.t_start + t * pq.ms, self.st_2.t_start]) t1 = np.max([self.st_1.t_stop + t * pq.ms, self.st_2.t_stop]) st1 = neo.SpikeTrain(self.st_1.magnitude + t, units='ms', t_start=t0 * pq.ms, t_stop=t1 * pq.ms) st2 = neo.SpikeTrain(self.st_2.magnitude, units='ms', t_start=t0 * pq.ms, t_stop=t1 * pq.ms) binned_sts = conv.BinnedSpikeTrain([st1, st2], bin_size=1 * pq.ms, t_start=t0 * pq.ms, t_stop=t1 * pq.ms) # caluclate corrcoef corrcoef = sc.correlation_coefficient(binned_sts)[1, 0] # expand t_stop to have two spike trains with same length as st1, # st2 st1 = neo.SpikeTrain(self.st_1.magnitude, units='ms', t_start=self.st_1.t_start, t_stop=self.st_1.t_stop + np.abs(t) * pq.ms) st2 = neo.SpikeTrain(self.st_2.magnitude, units='ms', t_start=self.st_2.t_start, t_stop=self.st_2.t_stop + np.abs(t) * pq.ms) binned_st1 = conv.BinnedSpikeTrain( st1, t_start=0 * pq.ms, t_stop=(50 + np.abs(t)) * pq.ms, bin_size=1 * pq.ms) binned_st2 = conv.BinnedSpikeTrain( st2, t_start=0 * pq.ms, t_stop=(50 + np.abs(t)) * pq.ms, bin_size=1 * pq.ms) # calculate CCHcoef and take value at t=tau CCHcoef, _ = sc.cch(binned_st1, binned_st2, cross_correlation_coefficient=True) left_edge = - binned_st1.n_bins + 1 tau_bin = int(t / float(binned_st1.bin_size.magnitude)) assert_array_almost_equal( corrcoef, CCHcoef[tau_bin - left_edge].magnitude) # Check correlation using binary spike trains mat1 = np.array(self.binned_st1.to_bool_array()[0], dtype=int) mat2 = np.array(self.binned_st2.to_bool_array()[0], dtype=int) target_numpy = np.correlate(mat2, mat1, mode='full') assert_array_equal( target_numpy, np.squeeze(cch_clipped.magnitude)) # Check the time axis and bin IDs of the resulting AnalogSignal assert_array_almost_equal( (bin_ids_clipped - 0.5) * self.binned_st1.bin_size, cch_unclipped.times) assert_array_almost_equal( (bin_ids_clipped - 0.5) * self.binned_st1.bin_size, cch_clipped.times) # Calculate CCH using Elephant (normal and binary version) with # mode equal to 'valid' (only completely overlapping intervals of the # spike trains are correlated) cch_clipped, bin_ids_clipped = sc.cross_correlation_histogram( self.binned_st1, self.binned_st2, window='valid', binary=True) cch_unclipped, bin_ids_unclipped = sc.cross_correlation_histogram( self.binned_st1, self.binned_st2, window='valid', binary=False) cch_clipped_mem, bin_ids_clipped_mem = sc.cross_correlation_histogram( self.binned_st1, self.binned_st2, window='valid', binary=True, method='memory') cch_unclipped_mem, bin_ids_unclipped_mem = \ sc.cross_correlation_histogram( self.binned_st1, self.binned_st2, window='valid', binary=False, method='memory') # Check consistency two methods assert_array_equal( np.squeeze(cch_clipped.magnitude), np.squeeze( cch_clipped_mem.magnitude)) assert_array_equal( np.squeeze(cch_clipped.times), np.squeeze( cch_clipped_mem.times)) assert_array_equal( np.squeeze(cch_unclipped.magnitude), np.squeeze( cch_unclipped_mem.magnitude)) assert_array_equal( np.squeeze(cch_unclipped.times), np.squeeze( cch_unclipped_mem.times)) assert_array_equal(bin_ids_clipped, bin_ids_clipped_mem) assert_array_equal(bin_ids_unclipped, bin_ids_unclipped_mem) # Check normal correlation Note: Use numpy correlate to verify result. # Note: numpy conventions for input array 1 and input array 2 are # swapped compared to Elephant! mat1 = self.binned_st1.to_array()[0] mat2 = self.binned_st2.to_array()[0] target_numpy = np.correlate(mat2, mat1, mode='valid') assert_array_equal( target_numpy, np.squeeze(cch_unclipped.magnitude)) # Check correlation using binary spike trains mat1 = np.array(self.binned_st1.to_bool_array()[0], dtype=int) mat2 = np.array(self.binned_st2.to_bool_array()[0], dtype=int) target_numpy = np.correlate(mat2, mat1, mode='valid') assert_array_equal( target_numpy, np.squeeze(cch_clipped.magnitude)) # Check the time axis and bin IDs of the resulting AnalogSignal assert_array_equal( (bin_ids_clipped - 0.5) * self.binned_st1.bin_size, cch_unclipped.times) assert_array_equal( (bin_ids_clipped - 0.5) * self.binned_st1.bin_size, cch_clipped.times) # Check for wrong window parameter setting self.assertRaises( ValueError, sc.cross_correlation_histogram, self.binned_st1, self.binned_st2, window='dsaij') self.assertRaises( ValueError, sc.cross_correlation_histogram, self.binned_st1, self.binned_st2, window='dsaij', method='memory') def test_raising_error_wrong_inputs(self): '''Check that an exception is thrown if the two spike trains are not fullfilling the requirement of the function''' # Check the bin_sizes are the same self.assertRaises( ValueError, sc.cross_correlation_histogram, self.binned_st1, self.st_check_bin_size) # Check input are one dimensional self.assertRaises( ValueError, sc.cross_correlation_histogram, self.st_check_dimension, self.binned_st2) self.assertRaises( ValueError, sc.cross_correlation_histogram, self.binned_st2, self.st_check_dimension) def test_window(self): '''Test if the window parameter is correctly interpreted.''' cch_win, bin_ids = sc.cch( self.binned_st1, self.binned_st2, window=[-30, 30]) cch_win_mem, bin_ids_mem = sc.cch( self.binned_st1, self.binned_st2, window=[-30, 30], method='memory') self.assertEqual(len(bin_ids), cch_win.shape[0]) assert_array_equal(bin_ids, np.arange(-30, 31, 1)) assert_array_equal( (bin_ids - 0.5) * self.binned_st1.bin_size, cch_win.times) assert_array_equal(bin_ids_mem, np.arange(-30, 31, 1)) assert_array_equal( (bin_ids_mem - 0.5) * self.binned_st1.bin_size, cch_win.times) assert_array_equal(cch_win, cch_win_mem) cch_unclipped, _ = sc.cross_correlation_histogram( self.binned_st1, self.binned_st2, window='full', binary=False) assert_array_equal(cch_win, cch_unclipped[19:80]) _, bin_ids = sc.cch( self.binned_st1, self.binned_st2, window=[20, 30]) _, bin_ids_mem = sc.cch( self.binned_st1, self.binned_st2, window=[20, 30], method='memory') assert_array_equal(bin_ids, np.arange(20, 31, 1)) assert_array_equal(bin_ids_mem, np.arange(20, 31, 1)) _, bin_ids = sc.cch( self.binned_st1, self.binned_st2, window=[-30, -20]) _, bin_ids_mem = sc.cch( self.binned_st1, self.binned_st2, window=[-30, -20], method='memory') assert_array_equal(bin_ids, np.arange(-30, -19, 1)) assert_array_equal(bin_ids_mem, np.arange(-30, -19, 1)) # Check for wrong assignments to the window parameter # Test for window longer than the total length of the spike trains self.assertRaises( ValueError, sc.cross_correlation_histogram, self.binned_st1, self.binned_st2, window=[-60, 50]) self.assertRaises( ValueError, sc.cross_correlation_histogram, self.binned_st1, self.binned_st2, window=[-50, 60]) # Test for no integer or wrong string in input self.assertRaises( ValueError, sc.cross_correlation_histogram, self.binned_st1, self.binned_st2, window=[-25.5, 25.5]) self.assertRaises( ValueError, sc.cross_correlation_histogram, self.binned_st1, self.binned_st2, window='test') def test_border_correction(self): '''Test if the border correction for bins at the edges is correctly performed''' # check that nothing changes for valid lags cch_valid, _ = sc.cross_correlation_histogram( self.binned_st1, self.binned_st2, window='full', border_correction=True, binary=False, kernel=None) valid_lags = sc._CrossCorrHist.get_valid_lags(self.binned_st1, self.binned_st2) left_edge, right_edge = valid_lags[(0, -1), ] cch_builder = sc._CrossCorrHist(self.binned_st1, self.binned_st2, window=(left_edge, right_edge)) cch_valid = cch_builder.correlate_speed(cch_mode='valid') cch_corrected = cch_builder.border_correction(cch_valid) np.testing.assert_array_equal(cch_valid, cch_corrected) # test the border correction for lags without full overlap cch_full, lags_full = sc.cross_correlation_histogram( self.binned_st1, self.binned_st2, window='full') cch_full_corrected, _ = sc.cross_correlation_histogram( self.binned_st1, self.binned_st2, window='full', border_correction=True) n_bins_outside_window = np.min(np.abs( np.subtract.outer(lags_full, valid_lags)), axis=1) min_n_bins = min(self.binned_st1.n_bins, self.binned_st2.n_bins) border_correction = (cch_full_corrected / cch_full).magnitude.flatten() # exclude NaNs caused by zeros in the cch mask = np.logical_not(np.isnan(border_correction)) np.testing.assert_array_almost_equal( border_correction[mask], (float(min_n_bins) / (min_n_bins - n_bins_outside_window))[mask]) def test_kernel(self): '''Test if the smoothing kernel is correctly defined, and wheter it is applied properly.''' smoothed_cch, _ = sc.cross_correlation_histogram( self.binned_st1, self.binned_st2, kernel=np.ones(3)) smoothed_cch_mem, _ = sc.cross_correlation_histogram( self.binned_st1, self.binned_st2, kernel=np.ones(3), method='memory') cch, _ = sc.cross_correlation_histogram( self.binned_st1, self.binned_st2, kernel=None) cch_mem, _ = sc.cross_correlation_histogram( self.binned_st1, self.binned_st2, kernel=None, method='memory') self.assertNotEqual(smoothed_cch.all, cch.all) self.assertNotEqual(smoothed_cch_mem.all, cch_mem.all) self.assertRaises( ValueError, sc.cch, self.binned_st1, self.binned_st2, kernel=np.ones(100)) self.assertRaises( ValueError, sc.cch, self.binned_st1, self.binned_st2, kernel=np.ones(100), method='memory') def test_exist_alias(self): ''' Test if alias cch still exists. ''' self.assertEqual(sc.cross_correlation_histogram, sc.cch) def test_annotations(self): cch, _ = sc.cross_correlation_histogram( self.binned_st1, self.binned_st2, kernel=np.ones(3)) target_dict = dict(window='full', border_correction=False, binary=False, kernel=True, normalization='counts') self.assertIn('cch_parameters', cch.annotations) self.assertEqual(cch.annotations['cch_parameters'], target_dict) @unittest.skipUnless(python_version_major == 3, "subTest requires 3.4") class CrossCorrelationHistDifferentTStartTStopTest(unittest.TestCase): def _run_sub_tests(self, st1, st2, lags_true): for window in ('valid', 'full'): for method in ('speed', 'memory'): with self.subTest(window=window, method=method): bin_size = 1 * pq.s st1_binned = conv.BinnedSpikeTrain(st1, bin_size=bin_size) st2_binned = conv.BinnedSpikeTrain(st2, bin_size=bin_size) left, right = lags_true[window][(0, -1), ] cch_window, lags_window = sc.cross_correlation_histogram( st1_binned, st2_binned, window=(left, right), method=method, ) cch, lags = sc.cross_correlation_histogram( st1_binned, st2_binned, window=window) # target cross correlation cch_target = np.correlate(st1_binned.to_array()[0], st2_binned.to_array()[0], mode=window) self.assertEqual(len(lags_window), cch_window.shape[0]) assert_array_almost_equal(cch.magnitude, cch_window.magnitude) # the output is reversed since we cross-correlate # st2 with st1 rather than st1 with st2 (numpy behavior) assert_array_almost_equal(np.ravel(cch.magnitude), cch_target[::-1]) assert_array_equal(lags, lags_true[window]) assert_array_equal(lags, lags_window) def test_cross_correlation_histogram_valid_full_overlap(self): # ex. 1 in the source code st1 = neo.SpikeTrain([3.5, 4.5, 7.5] * pq.s, t_start=3 * pq.s, t_stop=8 * pq.s) st2 = neo.SpikeTrain([1.5, 2.5, 4.5, 8.5, 9.5, 10.5] * pq.s, t_start=1 * pq.s, t_stop=13 * pq.s) lags_true = { 'valid': np.arange(-2, 6, dtype=np.int32), 'full': np.arange(-6, 10, dtype=np.int32) } self._run_sub_tests(st1, st2, lags_true) def test_cross_correlation_histogram_valid_partial_overlap(self): # ex. 2 in the source code st1 = neo.SpikeTrain([2.5, 3.5, 4.5, 6.5] * pq.s, t_start=1 * pq.s, t_stop=7 * pq.s) st2 = neo.SpikeTrain([3.5, 5.5, 6.5, 7.5, 8.5] * pq.s, t_start=2 * pq.s, t_stop=9 * pq.s) lags_true = { 'valid': np.arange(1, 3, dtype=np.int32), 'full': np.arange(-4, 8, dtype=np.int32) } self._run_sub_tests(st1, st2, lags_true) def test_cross_correlation_histogram_valid_no_overlap(self): st1 = neo.SpikeTrain([2.5, 3.5, 4.5, 6.5] * pq.s, t_start=1 * pq.s, t_stop=7 * pq.s) st2 = neo.SpikeTrain([3.5, 5.5, 6.5, 7.5, 8.5] * pq.s + 6 * pq.s, t_start=8 * pq.s, t_stop=15 * pq.s) lags_true = { 'valid': np.arange(7, 9, dtype=np.int32), 'full': np.arange(2, 14, dtype=np.int32) } self._run_sub_tests(st1, st2, lags_true) def test_invalid_time_shift(self): # time shift of 0.4 s is not multiple of bin_size=1 s st1 = neo.SpikeTrain([2.5, 3.5] * pq.s, t_start=1 * pq.s, t_stop=7 * pq.s) st2 = neo.SpikeTrain([3.5, 5.5] * pq.s, t_start=1.4 * pq.s, t_stop=7.4 * pq.s) bin_size = 1 * pq.s st1_binned = conv.BinnedSpikeTrain(st1, bin_size=bin_size) st2_binned = conv.BinnedSpikeTrain(st2, bin_size=bin_size) self.assertRaises(ValueError, sc.cross_correlation_histogram, st1_binned, st2_binned) class SpikeTimeTilingCoefficientTestCase(unittest.TestCase): def setUp(self): # These two arrays must be such that they do not have coincidences # spanning across two neighbor bins assuming ms bins [0,1),[1,2),... self.test_array_1d_1 = [ 1.3, 7.56, 15.87, 28.23, 30.9, 34.2, 38.2, 43.2] self.test_array_1d_2 = [ 1.02, 2.71, 18.82, 28.46, 28.79, 43.6] # Build spike trains self.st_1 = neo.SpikeTrain( self.test_array_1d_1, units='ms', t_stop=50.) self.st_2 = neo.SpikeTrain( self.test_array_1d_2, units='ms', t_stop=50.) def test_sttc(self): # test for result target = 0.495860165593 self.assertAlmostEqual(target, sc.sttc(self.st_1, self.st_2, 0.005 * pq.s)) # test for same result with dt given in ms self.assertAlmostEqual(target, sc.sttc(self.st_1, self.st_2, 5.0 * pq.ms)) # test no spiketrains self.assertTrue(np.isnan(sc.sttc([], []))) # test one spiketrain self.assertTrue(np.isnan(sc.sttc(self.st_1, []))) # test for one spike in a spiketrain st1 = neo.SpikeTrain([1], units='ms', t_stop=1.) st2 = neo.SpikeTrain([5], units='ms', t_stop=10.) self.assertEqual(sc.sttc(st1, st2), 1.0) self.assertTrue(bool(sc.sttc(st1, st2, 0.1 * pq.ms) < 0)) # test for high value of dt self.assertEqual(sc.sttc(self.st_1, self.st_2, dt=5 * pq.s), 1.0) # test for TA = PB = 1 but TB /= PA /= 1 and vice versa st3 = neo.SpikeTrain([1, 5, 9], units='ms', t_stop=10.) target2 = 1. / 3. self.assertAlmostEqual(target2, sc.sttc(st3, st2, 0.003 * pq.s)) self.assertAlmostEqual(target2, sc.sttc(st2, st3, 0.003 * pq.s)) def test_exist_alias(self): # Test if alias cch still exists. self.assertEqual(sc.spike_time_tiling_coefficient, sc.sttc) class SpikeTrainTimescaleTestCase(unittest.TestCase): def test_timescale_calculation(self): ''' Test the timescale generation using an alpha-shaped ISI distribution, see [1, eq. 1.68]. This is equivalent to a homogeneous gamma process with alpha=2 and beta=2*nu where nu is the rate. For this process, the autocorrelation function is given by a sum of a delta peak and a (negative) exponential, see [1, eq. 1.69]. The exponential decays with \tau_corr = 1 / (4*nu), thus this fixes timescale. [1] <NAME>. (2009). A brief introduction to some simple stochastic processes. Stochastic Methods in Neuroscience, 1. ''' nu = 25 / pq.s T = 15 * pq.min bin_size = 1 * pq.ms timescale = 1 / (4 * nu) np.random.seed(35) for _ in range(10): spikes = homogeneous_gamma_process(2, 2 * nu, 0 * pq.ms, T) spikes_bin = conv.BinnedSpikeTrain(spikes, bin_size) timescale_i = sc.spike_train_timescale(spikes_bin, 10 * timescale) assert_array_almost_equal(timescale, timescale_i, decimal=3) def test_timescale_errors(self): spikes = neo.SpikeTrain([1, 5, 7, 8] * pq.ms, t_stop=10 * pq.ms) binsize = 1 * pq.ms spikes_bin = conv.BinnedSpikeTrain(spikes, binsize) # Tau max with no units tau_max = 1 self.assertRaises(ValueError, sc.spike_train_timescale, spikes_bin, tau_max) # Tau max that is not a multiple of the binsize tau_max = 1.1 * pq.ms self.assertRaises(ValueError, sc.spike_train_timescale, spikes_bin, tau_max) @unittest.skipUnless(python_version_major == 3, "assertWarns requires python 3.2") def test_timescale_nan(self): st0 = neo.SpikeTrain([] * pq.ms, t_stop=10 * pq.ms) st1 = neo.SpikeTrain([1] * pq.ms, t_stop=10 * pq.ms) st2 = neo.SpikeTrain([1, 5] * pq.ms, t_stop=10 * pq.ms) st3 = neo.SpikeTrain([1, 5, 6] * pq.ms, t_stop=10 * pq.ms) st4 = neo.SpikeTrain([1, 5, 6, 9] * pq.ms, t_stop=10 * pq.ms) binsize = 1 * pq.ms tau_max = 1 * pq.ms for st in [st0, st1]: bst = conv.BinnedSpikeTrain(st, binsize) with self.assertWarns(UserWarning): timescale = sc.spike_train_timescale(bst, tau_max) self.assertTrue(math.isnan(timescale)) for st in [st2, st3, st4]: bst = conv.BinnedSpikeTrain(st, binsize) timescale = sc.spike_train_timescale(bst, tau_max) self.assertFalse(math.isnan(timescale)) if __name__ == '__main__': unittest.main() ``` #### File: elephant/test/test_statistics.py ```python from __future__ import division import itertools import math import sys import unittest import neo import numpy as np import quantities as pq import scipy.integrate as spint from numpy.testing import assert_array_almost_equal, assert_array_equal, \ assert_array_less import elephant.kernels as kernels from elephant import statistics from elephant.spike_train_generation import homogeneous_poisson_process if sys.version_info.major == 2: import unittest2 as unittest class isi_TestCase(unittest.TestCase): def setUp(self): self.test_array_2d = np.array([[0.3, 0.56, 0.87, 1.23], [0.02, 0.71, 1.82, 8.46], [0.03, 0.14, 0.15, 0.92]]) self.targ_array_2d_0 = np.array([[-0.28, 0.15, 0.95, 7.23], [0.01, -0.57, -1.67, -7.54]]) self.targ_array_2d_1 = np.array([[0.26, 0.31, 0.36], [0.69, 1.11, 6.64], [0.11, 0.01, 0.77]]) self.targ_array_2d_default = self.targ_array_2d_1 self.test_array_1d = self.test_array_2d[0, :] self.targ_array_1d = self.targ_array_2d_1[0, :] def test_isi_with_spiketrain(self): st = neo.SpikeTrain( self.test_array_1d, units='ms', t_stop=10.0, t_start=0.29) target = pq.Quantity(self.targ_array_1d, 'ms') res = statistics.isi(st) assert_array_almost_equal(res, target, decimal=9) def test_isi_with_quantities_1d(self): st = pq.Quantity(self.test_array_1d, units='ms') target = pq.Quantity(self.targ_array_1d, 'ms') res = statistics.isi(st) assert_array_almost_equal(res, target, decimal=9) def test_isi_with_plain_array_1d(self): st = self.test_array_1d target = self.targ_array_1d res = statistics.isi(st) assert not isinstance(res, pq.Quantity) assert_array_almost_equal(res, target, decimal=9) def test_isi_with_plain_array_2d_default(self): st = self.test_array_2d target = self.targ_array_2d_default res = statistics.isi(st) assert not isinstance(res, pq.Quantity) assert_array_almost_equal(res, target, decimal=9) def test_isi_with_plain_array_2d_0(self): st = self.test_array_2d target = self.targ_array_2d_0 res = statistics.isi(st, axis=0) assert not isinstance(res, pq.Quantity) assert_array_almost_equal(res, target, decimal=9) def test_isi_with_plain_array_2d_1(self): st = self.test_array_2d target = self.targ_array_2d_1 res = statistics.isi(st, axis=1) assert not isinstance(res, pq.Quantity) assert_array_almost_equal(res, target, decimal=9) def test_unsorted_array(self): np.random.seed(0) array = np.random.rand(100) with self.assertWarns(UserWarning): isi = statistics.isi(array) class isi_cv_TestCase(unittest.TestCase): def setUp(self): self.test_array_regular = np.arange(1, 6) def test_cv_isi_regular_spiketrain_is_zero(self): st = neo.SpikeTrain(self.test_array_regular, units='ms', t_stop=10.0) targ = 0.0 res = statistics.cv(statistics.isi(st)) self.assertEqual(res, targ) def test_cv_isi_regular_array_is_zero(self): st = self.test_array_regular targ = 0.0 res = statistics.cv(statistics.isi(st)) self.assertEqual(res, targ) class mean_firing_rate_TestCase(unittest.TestCase): def setUp(self): self.test_array_3d = np.ones([5, 7, 13]) self.test_array_2d = np.array([[0.3, 0.56, 0.87, 1.23], [0.02, 0.71, 1.82, 8.46], [0.03, 0.14, 0.15, 0.92]]) self.targ_array_2d_0 = np.array([3, 3, 3, 3]) self.targ_array_2d_1 = np.array([4, 4, 4]) self.targ_array_2d_None = 12 self.targ_array_2d_default = self.targ_array_2d_None self.max_array_2d_0 = np.array([0.3, 0.71, 1.82, 8.46]) self.max_array_2d_1 = np.array([1.23, 8.46, 0.92]) self.max_array_2d_None = 8.46 self.max_array_2d_default = self.max_array_2d_None self.test_array_1d = self.test_array_2d[0, :] self.targ_array_1d = self.targ_array_2d_1[0] self.max_array_1d = self.max_array_2d_1[0] def test_invalid_input_spiketrain(self): # empty spiketrain self.assertRaises(ValueError, statistics.mean_firing_rate, []) for st_invalid in (None, 0.1): self.assertRaises(TypeError, statistics.mean_firing_rate, st_invalid) def test_mean_firing_rate_with_spiketrain(self): st = neo.SpikeTrain(self.test_array_1d, units='ms', t_stop=10.0) target = pq.Quantity(self.targ_array_1d / 10., '1/ms') res = statistics.mean_firing_rate(st) assert_array_almost_equal(res, target, decimal=9) def test_mean_firing_rate_typical_use_case(self): np.random.seed(92) st = homogeneous_poisson_process(rate=100 * pq.Hz, t_stop=100 * pq.s) rate1 = statistics.mean_firing_rate(st) rate2 = statistics.mean_firing_rate(st, t_start=st.t_start, t_stop=st.t_stop) self.assertEqual(rate1.units, rate2.units) self.assertAlmostEqual(rate1.item(), rate2.item()) def test_mean_firing_rate_with_spiketrain_set_ends(self): st = neo.SpikeTrain(self.test_array_1d, units='ms', t_stop=10.0) target = pq.Quantity(2 / 0.5, '1/ms') res = statistics.mean_firing_rate(st, t_start=0.4 * pq.ms, t_stop=0.9 * pq.ms) assert_array_almost_equal(res, target, decimal=9) def test_mean_firing_rate_with_quantities_1d(self): st = pq.Quantity(self.test_array_1d, units='ms') target = pq.Quantity(self.targ_array_1d / self.max_array_1d, '1/ms') res = statistics.mean_firing_rate(st) assert_array_almost_equal(res, target, decimal=9) def test_mean_firing_rate_with_quantities_1d_set_ends(self): st = pq.Quantity(self.test_array_1d, units='ms') # t_stop is not a Quantity self.assertRaises(TypeError, statistics.mean_firing_rate, st, t_start=400 * pq.us, t_stop=1.) # t_start is not a Quantity self.assertRaises(TypeError, statistics.mean_firing_rate, st, t_start=0.4, t_stop=1. * pq.ms) def test_mean_firing_rate_with_plain_array_1d(self): st = self.test_array_1d target = self.targ_array_1d / self.max_array_1d res = statistics.mean_firing_rate(st) assert not isinstance(res, pq.Quantity) assert_array_almost_equal(res, target, decimal=9) def test_mean_firing_rate_with_plain_array_1d_set_ends(self): st = self.test_array_1d target = self.targ_array_1d / (1.23 - 0.3) res = statistics.mean_firing_rate(st, t_start=0.3, t_stop=1.23) assert not isinstance(res, pq.Quantity) assert_array_almost_equal(res, target, decimal=9) def test_mean_firing_rate_with_plain_array_2d_default(self): st = self.test_array_2d target = self.targ_array_2d_default / self.max_array_2d_default res = statistics.mean_firing_rate(st) assert not isinstance(res, pq.Quantity) assert_array_almost_equal(res, target, decimal=9) def test_mean_firing_rate_with_plain_array_2d_0(self): st = self.test_array_2d target = self.targ_array_2d_0 / self.max_array_2d_0 res = statistics.mean_firing_rate(st, axis=0) assert not isinstance(res, pq.Quantity) assert_array_almost_equal(res, target, decimal=9) def test_mean_firing_rate_with_plain_array_2d_1(self): st = self.test_array_2d target = self.targ_array_2d_1 / self.max_array_2d_1 res = statistics.mean_firing_rate(st, axis=1) assert not isinstance(res, pq.Quantity) assert_array_almost_equal(res, target, decimal=9) def test_mean_firing_rate_with_plain_array_3d_None(self): st = self.test_array_3d target = np.sum(self.test_array_3d, None) / 5. res = statistics.mean_firing_rate(st, axis=None, t_stop=5.) assert not isinstance(res, pq.Quantity) assert_array_almost_equal(res, target, decimal=9) def test_mean_firing_rate_with_plain_array_3d_0(self): st = self.test_array_3d target = np.sum(self.test_array_3d, 0) / 5. res = statistics.mean_firing_rate(st, axis=0, t_stop=5.) assert not isinstance(res, pq.Quantity) assert_array_almost_equal(res, target, decimal=9) def test_mean_firing_rate_with_plain_array_3d_1(self): st = self.test_array_3d target = np.sum(self.test_array_3d, 1) / 5. res = statistics.mean_firing_rate(st, axis=1, t_stop=5.) assert not isinstance(res, pq.Quantity) assert_array_almost_equal(res, target, decimal=9) def test_mean_firing_rate_with_plain_array_3d_2(self): st = self.test_array_3d target = np.sum(self.test_array_3d, 2) / 5. res = statistics.mean_firing_rate(st, axis=2, t_stop=5.) assert not isinstance(res, pq.Quantity) assert_array_almost_equal(res, target, decimal=9) def test_mean_firing_rate_with_plain_array_2d_1_set_ends(self): st = self.test_array_2d target = np.array([4, 1, 3]) / (1.23 - 0.14) res = statistics.mean_firing_rate(st, axis=1, t_start=0.14, t_stop=1.23) assert not isinstance(res, pq.Quantity) assert_array_almost_equal(res, target, decimal=9) def test_mean_firing_rate_with_plain_array_2d_None(self): st = self.test_array_2d target = self.targ_array_2d_None / self.max_array_2d_None res = statistics.mean_firing_rate(st, axis=None) assert not isinstance(res, pq.Quantity) assert_array_almost_equal(res, target, decimal=9) def test_mean_firing_rate_with_plain_array_and_units_start_stop_typeerror( self): st = self.test_array_2d self.assertRaises(TypeError, statistics.mean_firing_rate, st, t_start=pq.Quantity(0, 'ms')) self.assertRaises(TypeError, statistics.mean_firing_rate, st, t_stop=pq.Quantity(10, 'ms')) self.assertRaises(TypeError, statistics.mean_firing_rate, st, t_start=pq.Quantity(0, 'ms'), t_stop=pq.Quantity(10, 'ms')) self.assertRaises(TypeError, statistics.mean_firing_rate, st, t_start=pq.Quantity(0, 'ms'), t_stop=10.) self.assertRaises(TypeError, statistics.mean_firing_rate, st, t_start=0., t_stop=pq.Quantity(10, 'ms')) class FanoFactorTestCase(unittest.TestCase): def setUp(self): np.random.seed(100) num_st = 300 self.test_spiketrains = [] self.test_array = [] self.test_quantity = [] self.test_list = [] self.sp_counts = np.zeros(num_st) for i in range(num_st): r = np.random.rand(np.random.randint(20) + 1) st = neo.core.SpikeTrain(r * pq.ms, t_start=0.0 * pq.ms, t_stop=20.0 * pq.ms) self.test_spiketrains.append(st) self.test_array.append(r) self.test_quantity.append(r * pq.ms) self.test_list.append(list(r)) # for cross-validation self.sp_counts[i] = len(st) def test_fanofactor_spiketrains(self): # Test with list of spiketrains self.assertEqual( np.var(self.sp_counts) / np.mean(self.sp_counts), statistics.fanofactor(self.test_spiketrains)) # One spiketrain in list st = self.test_spiketrains[0] self.assertEqual(statistics.fanofactor([st]), 0.0) def test_fanofactor_empty(self): # Test with empty list self.assertTrue(np.isnan(statistics.fanofactor([]))) self.assertTrue(np.isnan(statistics.fanofactor([[]]))) # Test with empty quantity self.assertTrue(np.isnan(statistics.fanofactor([] * pq.ms))) # Empty spiketrain st = neo.core.SpikeTrain([] * pq.ms, t_start=0 * pq.ms, t_stop=1.5 * pq.ms) self.assertTrue(np.isnan(statistics.fanofactor(st))) def test_fanofactor_spiketrains_same(self): # Test with same spiketrains in list sts = [self.test_spiketrains[0]] * 3 self.assertEqual(statistics.fanofactor(sts), 0.0) def test_fanofactor_array(self): self.assertEqual(statistics.fanofactor(self.test_array), np.var(self.sp_counts) / np.mean(self.sp_counts)) def test_fanofactor_array_same(self): lst = [self.test_array[0]] * 3 self.assertEqual(statistics.fanofactor(lst), 0.0) def test_fanofactor_quantity(self): self.assertEqual(statistics.fanofactor(self.test_quantity), np.var(self.sp_counts) / np.mean(self.sp_counts)) def test_fanofactor_quantity_same(self): lst = [self.test_quantity[0]] * 3 self.assertEqual(statistics.fanofactor(lst), 0.0) def test_fanofactor_list(self): self.assertEqual(statistics.fanofactor(self.test_list), np.var(self.sp_counts) / np.mean(self.sp_counts)) def test_fanofactor_list_same(self): lst = [self.test_list[0]] * 3 self.assertEqual(statistics.fanofactor(lst), 0.0) def test_fanofactor_different_durations(self): st1 = neo.SpikeTrain([1, 2, 3] * pq.s, t_stop=4 * pq.s) st2 = neo.SpikeTrain([1, 2, 3] * pq.s, t_stop=4.5 * pq.s) self.assertWarns(UserWarning, statistics.fanofactor, (st1, st2)) def test_fanofactor_wrong_type(self): # warn_tolerance is not a quantity st1 = neo.SpikeTrain([1, 2, 3] * pq.s, t_stop=4 * pq.s) self.assertRaises(TypeError, statistics.fanofactor, [st1], warn_tolerance=1e-4) class LVTestCase(unittest.TestCase): def setUp(self): self.test_seq = [1, 28, 4, 47, 5, 16, 2, 5, 21, 12, 4, 12, 59, 2, 4, 18, 33, 25, 2, 34, 4, 1, 1, 14, 8, 1, 10, 1, 8, 20, 5, 1, 6, 5, 12, 2, 8, 8, 2, 8, 2, 10, 2, 1, 1, 2, 15, 3, 20, 6, 11, 6, 18, 2, 5, 17, 4, 3, 13, 6, 1, 18, 1, 16, 12, 2, 52, 2, 5, 7, 6, 25, 6, 5, 3, 15, 4, 3, 16, 3, 6, 5, 24, 21, 3, 3, 4, 8, 4, 11, 5, 7, 5, 6, 8, 11, 33, 10, 7, 4] self.target = 0.971826029994 def test_lv_with_quantities(self): seq = pq.Quantity(self.test_seq, units='ms') assert_array_almost_equal(statistics.lv(seq), self.target, decimal=9) def test_lv_with_plain_array(self): seq = np.array(self.test_seq) assert_array_almost_equal(statistics.lv(seq), self.target, decimal=9) def test_lv_with_list(self): seq = self.test_seq assert_array_almost_equal(statistics.lv(seq), self.target, decimal=9) def test_lv_raise_error(self): seq = self.test_seq self.assertRaises(ValueError, statistics.lv, []) self.assertRaises(ValueError, statistics.lv, 1) self.assertRaises(ValueError, statistics.lv, np.array([seq, seq])) def test_2short_spike_train(self): seq = [1] with self.assertWarns(UserWarning): """ Catches UserWarning: Input size is too small. Please provide an input with more than 1 entry. """ self.assertTrue(math.isnan(statistics.lv(seq, with_nan=True))) class LVRTestCase(unittest.TestCase): def setUp(self): self.test_seq = [1, 28, 4, 47, 5, 16, 2, 5, 21, 12, 4, 12, 59, 2, 4, 18, 33, 25, 2, 34, 4, 1, 1, 14, 8, 1, 10, 1, 8, 20, 5, 1, 6, 5, 12, 2, 8, 8, 2, 8, 2, 10, 2, 1, 1, 2, 15, 3, 20, 6, 11, 6, 18, 2, 5, 17, 4, 3, 13, 6, 1, 18, 1, 16, 12, 2, 52, 2, 5, 7, 6, 25, 6, 5, 3, 15, 4, 3, 16, 3, 6, 5, 24, 21, 3, 3, 4, 8, 4, 11, 5, 7, 5, 6, 8, 11, 33, 10, 7, 4] self.target = 2.1845363464753134 def test_lvr_with_quantities(self): seq = pq.Quantity(self.test_seq, units='ms') assert_array_almost_equal(statistics.lvr(seq), self.target, decimal=9) def test_lvr_with_plain_array(self): seq = np.array(self.test_seq) assert_array_almost_equal(statistics.lvr(seq), self.target, decimal=9) def test_lvr_with_list(self): seq = self.test_seq assert_array_almost_equal(statistics.lvr(seq), self.target, decimal=9) def test_lvr_raise_error(self): seq = self.test_seq self.assertRaises(ValueError, statistics.lvr, []) self.assertRaises(ValueError, statistics.lvr, 1) self.assertRaises(ValueError, statistics.lvr, np.array([seq, seq])) self.assertRaises(ValueError, statistics.lvr, seq, -1 * pq.ms) def test_lvr_refractoriness_kwarg(self): seq = np.array(self.test_seq) with self.assertWarns(UserWarning): assert_array_almost_equal(statistics.lvr(seq, R=5), self.target, decimal=9) def test_2short_spike_train(self): seq = [1] with self.assertWarns(UserWarning): """ Catches UserWarning: Input size is too small. Please provide an input with more than 1 entry. """ self.assertTrue(math.isnan(statistics.lvr(seq, with_nan=True))) class CV2TestCase(unittest.TestCase): def setUp(self): self.test_seq = [1, 28, 4, 47, 5, 16, 2, 5, 21, 12, 4, 12, 59, 2, 4, 18, 33, 25, 2, 34, 4, 1, 1, 14, 8, 1, 10, 1, 8, 20, 5, 1, 6, 5, 12, 2, 8, 8, 2, 8, 2, 10, 2, 1, 1, 2, 15, 3, 20, 6, 11, 6, 18, 2, 5, 17, 4, 3, 13, 6, 1, 18, 1, 16, 12, 2, 52, 2, 5, 7, 6, 25, 6, 5, 3, 15, 4, 3, 16, 3, 6, 5, 24, 21, 3, 3, 4, 8, 4, 11, 5, 7, 5, 6, 8, 11, 33, 10, 7, 4] self.target = 1.0022235296529176 def test_cv2_with_quantities(self): seq = pq.Quantity(self.test_seq, units='ms') assert_array_almost_equal(statistics.cv2(seq), self.target, decimal=9) def test_cv2_with_plain_array(self): seq = np.array(self.test_seq) assert_array_almost_equal(statistics.cv2(seq), self.target, decimal=9) def test_cv2_with_list(self): seq = self.test_seq assert_array_almost_equal(statistics.cv2(seq), self.target, decimal=9) def test_cv2_raise_error(self): seq = self.test_seq self.assertRaises(ValueError, statistics.cv2, []) self.assertRaises(ValueError, statistics.cv2, 1) self.assertRaises(ValueError, statistics.cv2, np.array([seq, seq])) class InstantaneousRateTest(unittest.TestCase): def setUp(self): # create a poisson spike train: self.st_tr = (0, 20.0) # seconds self.st_dur = self.st_tr[1] - self.st_tr[0] # seconds self.st_margin = 5.0 # seconds self.st_rate = 10.0 # Hertz np.random.seed(19) duration_effective = self.st_dur - 2 * self.st_margin st_num_spikes = np.random.poisson(self.st_rate * duration_effective) spike_train = sorted( np.random.rand(st_num_spikes) * duration_effective + self.st_margin) # convert spike train into neo objects self.spike_train = neo.SpikeTrain(spike_train * pq.s, t_start=self.st_tr[0] * pq.s, t_stop=self.st_tr[1] * pq.s) # generation of a multiply used specific kernel self.kernel = kernels.TriangularKernel(sigma=0.03 * pq.s) def test_instantaneous_rate_and_warnings(self): st = self.spike_train sampling_period = 0.01 * pq.s with self.assertWarns(UserWarning): # Catches warning: The width of the kernel was adjusted to a # minimally allowed width. inst_rate = statistics.instantaneous_rate( st, sampling_period, self.kernel, cutoff=0) self.assertIsInstance(inst_rate, neo.core.AnalogSignal) self.assertEqual( inst_rate.sampling_period.simplified, sampling_period.simplified) self.assertEqual(inst_rate.simplified.units, pq.Hz) self.assertEqual(inst_rate.t_stop.simplified, st.t_stop.simplified) self.assertEqual(inst_rate.t_start.simplified, st.t_start.simplified) def test_error_instantaneous_rate(self): self.assertRaises( TypeError, statistics.instantaneous_rate, spiketrains=[1, 2, 3] * pq.s, sampling_period=0.01 * pq.ms, kernel=self.kernel) self.assertRaises( TypeError, statistics.instantaneous_rate, spiketrains=[1, 2, 3], sampling_period=0.01 * pq.ms, kernel=self.kernel) st = self.spike_train self.assertRaises( TypeError, statistics.instantaneous_rate, spiketrains=st, sampling_period=0.01, kernel=self.kernel) self.assertRaises( ValueError, statistics.instantaneous_rate, spiketrains=st, sampling_period=-0.01 * pq.ms, kernel=self.kernel) self.assertRaises( TypeError, statistics.instantaneous_rate, spiketrains=st, sampling_period=0.01 * pq.ms, kernel='NONE') self.assertRaises(TypeError, statistics.instantaneous_rate, self.spike_train, sampling_period=0.01 * pq.s, kernel='wrong_string', t_start=self.st_tr[0] * pq.s, t_stop=self.st_tr[1] * pq.s, trim=False) self.assertRaises( TypeError, statistics.instantaneous_rate, spiketrains=st, sampling_period=0.01 * pq.ms, kernel=self.kernel, cutoff=20 * pq.ms) self.assertRaises( TypeError, statistics.instantaneous_rate, spiketrains=st, sampling_period=0.01 * pq.ms, kernel=self.kernel, t_start=2) self.assertRaises( TypeError, statistics.instantaneous_rate, spiketrains=st, sampling_period=0.01 * pq.ms, kernel=self.kernel, t_stop=20 * pq.mV) self.assertRaises( TypeError, statistics.instantaneous_rate, spiketrains=st, sampling_period=0.01 * pq.ms, kernel=self.kernel, trim=1) # cannot estimate a kernel for a list of spiketrains self.assertRaises(ValueError, statistics.instantaneous_rate, spiketrains=[st, st], sampling_period=10 * pq.ms, kernel='auto') def test_rate_estimation_consistency(self): """ Test, whether the integral of the rate estimation curve is (almost) equal to the number of spikes of the spike train. """ kernel_types = tuple( kern_cls for kern_cls in kernels.__dict__.values() if isinstance(kern_cls, type) and issubclass(kern_cls, kernels.Kernel) and kern_cls is not kernels.Kernel and kern_cls is not kernels.SymmetricKernel) kernels_available = [kern_cls(sigma=0.5 * pq.s, invert=False) for kern_cls in kernel_types] kernels_available.append('auto') kernel_resolution = 0.01 * pq.s for kernel in kernels_available: for center_kernel in (False, True): rate_estimate = statistics.instantaneous_rate( self.spike_train, sampling_period=kernel_resolution, kernel=kernel, t_start=self.st_tr[0] * pq.s, t_stop=self.st_tr[1] * pq.s, trim=False, center_kernel=center_kernel) num_spikes = len(self.spike_train) auc = spint.cumtrapz( y=rate_estimate.magnitude.squeeze(), x=rate_estimate.times.simplified.magnitude)[-1] self.assertAlmostEqual(num_spikes, auc, delta=0.01 * num_spikes) def test_not_center_kernel(self): # issue 107 t_spike = 1 * pq.s st = neo.SpikeTrain([t_spike], t_start=0 * pq.s, t_stop=2 * pq.s, units=pq.s) kernel = kernels.AlphaKernel(200 * pq.ms) fs = 0.1 * pq.ms rate = statistics.instantaneous_rate(st, sampling_period=fs, kernel=kernel, center_kernel=False) rate_nonzero_index = np.nonzero(rate > 1e-6)[0] # where the mass is concentrated rate_mass = rate.times.rescale(t_spike.units)[rate_nonzero_index] all_after_response_onset = (rate_mass >= t_spike).all() self.assertTrue(all_after_response_onset) def test_regression_288(self): np.random.seed(9) sampling_period = 200 * pq.ms spiketrain = homogeneous_poisson_process(10 * pq.Hz, t_start=0 * pq.s, t_stop=10 * pq.s) kernel = kernels.AlphaKernel(sigma=5 * pq.ms, invert=True) # check that instantaneous_rate "works" for kernels with small sigma # without triggering an incomprehensible error rate = statistics.instantaneous_rate(spiketrain, sampling_period=sampling_period, kernel=kernel) self.assertEqual( len(rate), (spiketrain.t_stop / sampling_period).simplified.item()) def test_small_kernel_sigma(self): # Test that the instantaneous rate is overestimated when # kernel.sigma << sampling_period and center_kernel is True. # The setup is set to match the issue 288. np.random.seed(9) sampling_period = 200 * pq.ms sigma = 5 * pq.ms rate_expected = 10 * pq.Hz spiketrain = homogeneous_poisson_process(rate_expected, t_start=0 * pq.s, t_stop=10 * pq.s) kernel_types = tuple( kern_cls for kern_cls in kernels.__dict__.values() if isinstance(kern_cls, type) and issubclass(kern_cls, kernels.Kernel) and kern_cls is not kernels.Kernel and kern_cls is not kernels.SymmetricKernel) for kern_cls, invert in itertools.product(kernel_types, (False, True)): kernel = kern_cls(sigma=sigma, invert=invert) with self.subTest(kernel=kernel): rate = statistics.instantaneous_rate( spiketrain, sampling_period=sampling_period, kernel=kernel, center_kernel=True) self.assertGreater(rate.mean(), rate_expected) def test_spikes_on_edges(self): # this test demonstrates that the trimming (convolve valid mode) # removes the edge spikes, underestimating the true firing rate and # thus is not able to reconstruct the number of spikes in a # spiketrain (see test_rate_estimation_consistency) cutoff = 5 sampling_period = 0.01 * pq.s t_spikes = np.array([-cutoff, cutoff]) * pq.s spiketrain = neo.SpikeTrain(t_spikes, t_start=t_spikes[0], t_stop=t_spikes[-1]) kernel_types = tuple( kern_cls for kern_cls in kernels.__dict__.values() if isinstance(kern_cls, type) and issubclass(kern_cls, kernels.Kernel) and kern_cls is not kernels.Kernel and kern_cls is not kernels.SymmetricKernel) kernels_available = [kern_cls(sigma=1 * pq.s, invert=False) for kern_cls in kernel_types] for kernel in kernels_available: for center_kernel in (False, True): rate = statistics.instantaneous_rate( spiketrain, sampling_period=sampling_period, kernel=kernel, cutoff=cutoff, trim=True, center_kernel=center_kernel) assert_array_almost_equal(rate.magnitude, 0, decimal=3) def test_trim_as_convolve_mode(self): cutoff = 5 sampling_period = 0.01 * pq.s t_spikes = np.linspace(-cutoff, cutoff, num=(2 * cutoff + 1)) * pq.s spiketrain = neo.SpikeTrain(t_spikes, t_start=t_spikes[0], t_stop=t_spikes[-1]) kernel = kernels.RectangularKernel(sigma=1 * pq.s) assert cutoff > kernel.min_cutoff, "Choose larger cutoff" kernel_types = tuple( kern_cls for kern_cls in kernels.__dict__.values() if isinstance(kern_cls, type) and issubclass(kern_cls, kernels.SymmetricKernel) and kern_cls is not kernels.SymmetricKernel) kernels_symmetric = [kern_cls(sigma=1 * pq.s, invert=False) for kern_cls in kernel_types] for kernel in kernels_symmetric: for trim in (False, True): rate_centered = statistics.instantaneous_rate( spiketrain, sampling_period=sampling_period, kernel=kernel, cutoff=cutoff, trim=trim) rate_convolve = statistics.instantaneous_rate( spiketrain, sampling_period=sampling_period, kernel=kernel, cutoff=cutoff, trim=trim, center_kernel=False) assert_array_almost_equal(rate_centered, rate_convolve) def test_instantaneous_rate_spiketrainlist(self): np.random.seed(19) duration_effective = self.st_dur - 2 * self.st_margin st_num_spikes = np.random.poisson(self.st_rate * duration_effective) spike_train2 = sorted( np.random.rand(st_num_spikes) * duration_effective + self.st_margin) spike_train2 = neo.SpikeTrain(spike_train2 * pq.s, t_start=self.st_tr[0] * pq.s, t_stop=self.st_tr[1] * pq.s) st_rate_1 = statistics.instantaneous_rate(self.spike_train, sampling_period=0.01 * pq.s, kernel=self.kernel) st_rate_2 = statistics.instantaneous_rate(spike_train2, sampling_period=0.01 * pq.s, kernel=self.kernel) combined_rate = statistics.instantaneous_rate( [self.spike_train, spike_train2], sampling_period=0.01 * pq.s, kernel=self.kernel) rate_concat = np.c_[st_rate_1, st_rate_2] # 'time_vector.dtype' in instantaneous_rate() is changed from float64 # to float32 which results in 3e-6 abs difference assert_array_almost_equal(combined_rate.magnitude, rate_concat.magnitude, decimal=5) # Regression test for #144 def test_instantaneous_rate_regression_144(self): # The following spike train contains spikes that are so close to each # other, that the optimal kernel cannot be detected. Therefore, the # function should react with a ValueError. st = neo.SpikeTrain([2.12, 2.13, 2.15] * pq.s, t_stop=10 * pq.s) self.assertRaises(ValueError, statistics.instantaneous_rate, st, 1 * pq.ms) # Regression test for #245 def test_instantaneous_rate_regression_245(self): # This test makes sure that the correct kernel width is chosen when # selecting 'auto' as kernel spiketrain = neo.SpikeTrain( range(1, 30) * pq.ms, t_start=0 * pq.ms, t_stop=30 * pq.ms) # This is the correct procedure to attain the kernel: first, the result # of sskernel retrieves the kernel bandwidth of an optimal Gaussian # kernel in terms of its standard deviation sigma, then uses this value # directly in the function for creating the Gaussian kernel kernel_width_sigma = statistics.optimal_kernel_bandwidth( spiketrain.magnitude, times=None, bootstrap=False)['optw'] kernel = kernels.GaussianKernel(kernel_width_sigma * spiketrain.units) result_target = statistics.instantaneous_rate( spiketrain, 10 * pq.ms, kernel=kernel) # Here, we check if the 'auto' argument leads to the same operation. In # the regression, it was incorrectly assumed that the sskernel() # function returns the actual bandwidth of the kernel, which is defined # as approximately bandwidth = sigma * 5.5 = sigma * (2 * 2.75). # factor 2.0 connects kernel width with its half width, # factor 2.7 connects half width of Gaussian distribution with # 99% probability mass with its standard deviation. result_automatic = statistics.instantaneous_rate( spiketrain, 10 * pq.ms, kernel='auto') assert_array_almost_equal(result_target, result_automatic) def test_instantaneous_rate_grows_with_sampling_period(self): np.random.seed(0) rate_expected = 10 * pq.Hz spiketrain = homogeneous_poisson_process(rate=rate_expected, t_stop=10 * pq.s) kernel = kernels.GaussianKernel(sigma=100 * pq.ms) rates_mean = [] for sampling_period in np.linspace(1, 1000, num=10) * pq.ms: with self.subTest(sampling_period=sampling_period): rate = statistics.instantaneous_rate( spiketrain, sampling_period=sampling_period, kernel=kernel) rates_mean.append(rate.mean()) # rate means are greater or equal the expected rate assert_array_less(rate_expected, rates_mean) # check sorted self.assertTrue(np.all(rates_mean[:-1] < rates_mean[1:])) # Regression test for #360 def test_centered_at_origin(self): # Skip RectangularKernel because it doesn't have a strong peak. kernel_types = tuple( kern_cls for kern_cls in kernels.__dict__.values() if isinstance(kern_cls, type) and issubclass(kern_cls, kernels.SymmetricKernel) and kern_cls not in (kernels.SymmetricKernel, kernels.RectangularKernel)) kernels_symmetric = [kern_cls(sigma=50 * pq.ms, invert=False) for kern_cls in kernel_types] # first part: a symmetric spiketrain with a symmetric kernel spiketrain = neo.SpikeTrain(np.array([-0.0001, 0, 0.0001]) * pq.s, t_start=-1, t_stop=1) for kernel in kernels_symmetric: rate = statistics.instantaneous_rate(spiketrain, sampling_period=20 * pq.ms, kernel=kernel) # the peak time must be centered at origin self.assertEqual(rate.times[np.argmax(rate)], 0) # second part: a single spike at t=0 periods = [2 ** c for c in range(-3, 6)] for period in periods: with self.subTest(period=period): spiketrain = neo.SpikeTrain(np.array([0]) * pq.s, t_start=-period * 10 * pq.ms, t_stop=period * 10 * pq.ms) for kernel in kernels_symmetric: rate = statistics.instantaneous_rate( spiketrain, sampling_period=period * pq.ms, kernel=kernel) self.assertEqual(rate.times[np.argmax(rate)], 0) def test_annotations(self): spiketrain = neo.SpikeTrain([1, 2], t_stop=2 * pq.s, units=pq.s) kernel = kernels.AlphaKernel(sigma=100 * pq.ms) rate = statistics.instantaneous_rate(spiketrain, sampling_period=10 * pq.ms, kernel=kernel) kernel_annotation = dict(type=type(kernel).__name__, sigma=str(kernel.sigma), invert=kernel.invert) self.assertIn('kernel', rate.annotations) self.assertEqual(rate.annotations['kernel'], kernel_annotation) class TimeHistogramTestCase(unittest.TestCase): def setUp(self): self.spiketrain_a = neo.SpikeTrain( [0.5, 0.7, 1.2, 3.1, 4.3, 5.5, 6.7] * pq.s, t_stop=10.0 * pq.s) self.spiketrain_b = neo.SpikeTrain( [0.1, 0.7, 1.2, 2.2, 4.3, 5.5, 8.0] * pq.s, t_stop=10.0 * pq.s) self.spiketrains = [self.spiketrain_a, self.spiketrain_b] def tearDown(self): del self.spiketrain_a self.spiketrain_a = None del self.spiketrain_b self.spiketrain_b = None def test_time_histogram(self): targ = np.array([4, 2, 1, 1, 2, 2, 1, 0, 1, 0]) histogram = statistics.time_histogram(self.spiketrains, bin_size=pq.s) assert_array_equal(targ, histogram.magnitude[:, 0]) def test_time_histogram_binary(self): targ = np.array([2, 2, 1, 1, 2, 2, 1, 0, 1, 0]) histogram = statistics.time_histogram(self.spiketrains, bin_size=pq.s, binary=True) assert_array_equal(targ, histogram.magnitude[:, 0]) def test_time_histogram_tstart_tstop(self): # Start, stop short range targ = np.array([2, 1]) histogram = statistics.time_histogram(self.spiketrains, bin_size=pq.s, t_start=5 * pq.s, t_stop=7 * pq.s) assert_array_equal(targ, histogram.magnitude[:, 0]) # Test without t_stop targ = np.array([4, 2, 1, 1, 2, 2, 1, 0, 1, 0]) histogram = statistics.time_histogram(self.spiketrains, bin_size=1 * pq.s, t_start=0 * pq.s) assert_array_equal(targ, histogram.magnitude[:, 0]) # Test without t_start histogram = statistics.time_histogram(self.spiketrains, bin_size=1 * pq.s, t_stop=10 * pq.s) assert_array_equal(targ, histogram.magnitude[:, 0]) def test_time_histogram_output(self): # Normalization mean histogram = statistics.time_histogram(self.spiketrains, bin_size=pq.s, output='mean') targ = np.array([4, 2, 1, 1, 2, 2, 1, 0, 1, 0], dtype=float) / 2 assert_array_equal(targ.reshape(targ.size, 1), histogram.magnitude) # Normalization rate histogram = statistics.time_histogram(self.spiketrains, bin_size=pq.s, output='rate') assert_array_equal(histogram.view(pq.Quantity), targ.reshape(targ.size, 1) * 1 / pq.s) # Normalization unspecified, raises error self.assertRaises(ValueError, statistics.time_histogram, self.spiketrains, bin_size=pq.s, output=' ') def test_annotations(self): np.random.seed(1) spiketrains = [homogeneous_poisson_process( rate=10 * pq.Hz, t_stop=10 * pq.s) for _ in range(10)] for output in ("counts", "mean", "rate"): histogram = statistics.time_histogram(spiketrains, bin_size=3 * pq.ms, output=output) self.assertIn('normalization', histogram.annotations) self.assertEqual(histogram.annotations['normalization'], output) class ComplexityPdfTestCase(unittest.TestCase): def setUp(self): self.spiketrain_a = neo.SpikeTrain( [0.5, 0.7, 1.2, 2.3, 4.3, 5.5, 6.7] * pq.s, t_stop=10.0 * pq.s) self.spiketrain_b = neo.SpikeTrain( [0.5, 0.7, 1.2, 2.3, 4.3, 5.5, 8.0] * pq.s, t_stop=10.0 * pq.s) self.spiketrain_c = neo.SpikeTrain( [0.5, 0.7, 1.2, 2.3, 4.3, 5.5, 8.0] * pq.s, t_stop=10.0 * pq.s) self.spiketrains = [ self.spiketrain_a, self.spiketrain_b, self.spiketrain_c] def tearDown(self): del self.spiketrain_a self.spiketrain_a = None del self.spiketrain_b self.spiketrain_b = None def test_complexity_pdf(self): targ = np.array([0.92, 0.01, 0.01, 0.06]) complexity = statistics.complexity_pdf(self.spiketrains, bin_size=0.1 * pq.s) assert_array_equal(targ, complexity.magnitude[:, 0]) self.assertEqual(1, complexity.magnitude[:, 0].sum()) self.assertEqual(len(self.spiketrains) + 1, len(complexity)) self.assertIsInstance(complexity, neo.AnalogSignal) self.assertEqual(complexity.units, 1 * pq.dimensionless) if __name__ == '__main__': unittest.main() ```
{ "source": "jpgill86/ephyviewer", "score": 2 }
#### File: ephyviewer/datasource/spikeinterfacesources.py ```python from .sourcebase import BaseDataSource import sys import logging import numpy as np try: from distutils.version import LooseVersion as V import spikeinterface if V(spikeinterface.__version__)>='0.90.1': HAVE_SI = True else: HAVE_SI = False except ImportError: HAVE_SI = False from .signals import BaseAnalogSignalSource from .spikes import BaseSpikeSource class SpikeInterfaceRecordingSource(BaseAnalogSignalSource): def __init__(self, recording, segment_index=0): BaseAnalogSignalSource.__init__(self) self.recording = recording self.segment_index = segment_index self._nb_channel = self.recording.get_num_channels() self.sample_rate = self.recording.get_sampling_frequency() @property def nb_channel(self): return self._nb_channel def get_channel_name(self, chan=0): return str(self.recording.channel_ids[chan]) @property def t_start(self): return 0. @property def t_stop(self): return self.get_length() / self.sample_rate def get_length(self): return self.recording.get_num_samples(segment_index=self.segment_index) def get_shape(self): return (self.get_length(),self.nb_channel) def get_chunk(self, i_start=None, i_stop=None): traces = self.recording.get_traces(segment_index=self.segment_index, start_frame=i_start, end_frame=i_stop) return traces def time_to_index(self, t): return int(t * self.sample_rate) def index_to_time(self, ind): return float(ind / self.sample_rate) class SpikeInterfaceSortingSource(BaseSpikeSource): def __init__(self, sorting, segment_index=0): BaseSpikeSource.__init__(self) self.sorting = sorting self.segment_index = segment_index #TODO self._t_stop = 10. @property def nb_channel(self): return len(self.sorting.unit_ids) def get_channel_name(self, chan=0): return str(self.sorting.unit_ids[chan]) @property def t_start(self): return 0. @property def t_stop(self): return self._t_stop def get_chunk(self, chan=0, i_start=None, i_stop=None): unit_id = self.sorting.unit_ids[chan] spike_frames = self.sorting.get_unit_spike_train(unit_id, segment_index=self.segment_index, start_frame=i_start, end_frame=i_stop) spike_frames = spike_frames[i_start:i_stop] spike_times = spike_frames / self.sorting.get_sampling_frequency() return spike_times def get_chunk_by_time(self, chan=0, t_start=None, t_stop=None): spike_times = self.get_chunk(chan=chan) i1 = np.searchsorted(spike_times, t_start, side='left') i2 = np.searchsorted(spike_times, t_stop, side='left') sl = slice(i1, i2+1) return spike_times[sl] ``` #### File: ephyviewer/tests/test_spikeinterfaceviewer.py ```python import ephyviewer import numpy as np import os def test_spikeinterface_viewer(interactive=False): import spikeinterface as si from spikeinterface.core.testing_tools import generate_recording, generate_sorting recording = generate_recording() sig_source = ephyviewer.SpikeInterfaceRecordingSource(recording=recording) sorting = generate_sorting() spike_source = ephyviewer.SpikeInterfaceSortingSource(sorting=sorting) app = ephyviewer.mkQApp() win = ephyviewer.MainViewer(debug=True, show_auto_scale=True) view = ephyviewer.TraceViewer(source=sig_source, name='signals') win.add_view(view) view = ephyviewer.SpikeTrainViewer(source=spike_source, name='spikes') win.add_view(view) if interactive: win.show() app.exec_() else: # close thread properly win.close() if __name__=='__main__': test_spikeinterface_viewer(interactive=True) ```
{ "source": "jpgill86/ModularSlug", "score": 3 }
#### File: ModularSlug/ModularSlug/aplysia.py ```python import numpy as np from .neuralmodels import GenericNeuralModel from .musclemodels import GenericMuscleModel class Aplysia: def __init__(self, n_steps, neural_model, muscle_model): self._neural_model = None self._muscle_model = None self.n_steps = n_steps self.neural_model = neural_model self.muscle_model = muscle_model @property def neural_model(self): # defining this property is required for creating its custom setter return self._neural_model @neural_model.setter def neural_model(self, obj): # ensure neural_model can only be set to an instance of a subclass of GenericNeuralModel or to None if not isinstance(obj, (GenericNeuralModel, type(None))): raise TypeError('tried to set neural_model to an incompatible ' f'object type: {obj.__class__.__name__}') # if there is an old neural_model, first unset its parent if self._neural_model is not None: self._neural_model.parent = None self._neural_model = obj self._neural_model.parent = self @property def muscle_model(self): # defining this property is required for creating its custom setter return self._muscle_model @muscle_model.setter def muscle_model(self, obj): # ensure muscle_model can only be set to an instance of a subclass of GenericMuscleModel or to None if not isinstance(obj, (GenericMuscleModel, type(None))): raise TypeError('tried to set muscle_model to an incompatible ' f'object type: {obj.__class__.__name__}') # if there is an old muscle_model, first unset its parent if self._muscle_model is not None: self._muscle_model.parent = None self._muscle_model = obj self._muscle_model.parent = self @property def neural_outputs(self): '''The current values of the neural outputs''' return self.neural_model.neural_outputs @property def muscle_outputs(self): '''The current values of the muscle outputs''' return self.muscle_model.muscle_outputs def run(self): for i in range(self.n_steps): self.neural_model.step() self.muscle_model.step() def summarize(self): print('-- Neural Model --') print('params:', self.neural_model.params) print('x:', self.neural_model.x) print() print('-- Muscle Model --') print('params:', self.muscle_model.params) print('x:', self.muscle_model.x) ```
{ "source": "jpgill86/neurotic", "score": 3 }
#### File: neurotic/datasets/ftpauth.py ```python import ftplib import urllib from urllib.request import FTPHandler, HTTPPasswordMgr from urllib.parse import splitport, splituser, unquote import logging logger = logging.getLogger(__name__) class FTPBasicAuthHandler(FTPHandler): """ This subclass of :class:`urllib.request.FTPHandler` implements basic authentication management for FTP connections. Like :class:`urllib.request.HTTPBasicAuthHandler`, this handler for FTP connections has a password manager that it checks for login credentials before connecting to a server. This subclass also ensures that file size is included in the response header, which can fail for some FTP servers if the original :class:`FTPHandler <urllib.request.FTPHandler>` is used. This handler can be installed globally in a Python session so that calls to :func:`urllib.request.urlopen('ftp://...') <urllib.request.urlopen>` will use it automatically: >>> handler = FTPBasicAuthHandler() >>> handler.add_password(None, uri, user, passwd) # realm must be None >>> opener = urllib.request.build_opener(handler) >>> urllib.request.install_opener(opener) """ def __init__(self, password_mgr=None): """ Initialize a new FTPBasicAuthHandler. """ if password_mgr is None: password_mgr = HTTPPasswordMgr() self.passwd = password_mgr self.add_password = self.passwd.add_password return super().__init__() def ftp_open(self, req): """ When ftp requests are made using this handler, this function gets called at some point, and it in turn calls the ``connect_ftp`` method. In this subclass's reimplementation of ``connect_ftp``, the FQDN of the request's host is needed for looking up login credentials in the password manager. However, by the time ``connect_ftp`` is called, that information has been stripped away, and the host argument passed to ``connect_ftp`` contains only the host's IP address instead of the FQDN. This reimplementation of ``ftp_open``, which is little more than a copy-and-paste from the superclass's implementation, captures the original host FQDN before it is replaced with the IP address and saves it for later use. This reimplementation also ensures that the file size appears in the response header by querying for it directly. For some FTP servers the original implementation should handle this (``retrlen`` should contain the file size). However, for others this can fail silently due to the server response not matching an anticipated regular expression. """ import sys import email import socket from urllib.error import URLError from urllib.parse import splitattr, splitpasswd, splitvalue from urllib.response import addinfourl #################################################### # COPIED FROM FTPHandler.ftp_open (PYTHON 3.6.6) # # WITH JUST A FEW ADDITIONS # #################################################### import ftplib import mimetypes host = req.host if not host: raise URLError('ftp error: no host given') host, port = splitport(host) if port is None: port = ftplib.FTP_PORT else: port = int(port) # username/password handling user, host = splituser(host) if user: user, passwd = splitpasswd(user) else: passwd = None host = unquote(host) user = user or '' passwd = passwd or '' ############################################ # DIFFERENT FROM FTPHandler.ftp_open # save the host FQDN for later self.last_req_host = host ############################################ try: host = socket.gethostbyname(host) except OSError as msg: raise URLError(msg) path, attrs = splitattr(req.selector) dirs = path.split('/') dirs = list(map(unquote, dirs)) dirs, file = dirs[:-1], dirs[-1] if dirs and not dirs[0]: dirs = dirs[1:] try: fw = self.connect_ftp(user, passwd, host, port, dirs, req.timeout) type = file and 'I' or 'D' for attr in attrs: attr, value = splitvalue(attr) if attr.lower() == 'type' and \ value in ('a', 'A', 'i', 'I', 'd', 'D'): type = value.upper() ############################################ # DIFFERENT FROM FTPHandler.ftp_open size = fw.ftp.size(file) ############################################ fp, retrlen = fw.retrfile(file, type) headers = "" mtype = mimetypes.guess_type(req.full_url)[0] if mtype: headers += "Content-type: %s\n" % mtype if retrlen is not None and retrlen >= 0: headers += "Content-length: %d\n" % retrlen ############################################ # DIFFERENT FROM FTPHandler.ftp_open elif size is not None and size >= 0: headers += "Content-length: %d\n" % size ############################################ headers = email.message_from_string(headers) return addinfourl(fp, headers, req.full_url) except ftplib.all_errors as exp: exc = URLError('ftp error: %r' % exp) raise exc.with_traceback(sys.exc_info()[2]) def connect_ftp(self, user, passwd, host, port, dirs, timeout): """ Unless authentication credentials are provided in the request URL (``ftp://user:passwd@host/path``), this method will be called with empty user and passwd arguments. In that case, this reimplementation of ``connect_ftp`` checks the password manager for credentials matching the ``last_req_host`` (the host argument will be an IP address instead of the FQDN and is thereby useless if the password manager is keyed by FQDN). """ if not user and not passwd: user, passwd = self.passwd.find_user_password(None, self.last_req_host) return super().connect_ftp(user, passwd, host, port, dirs, timeout) def setup_ftpauth(): """ Install :class:`neurotic.datasets.ftpauth.FTPBasicAuthHandler` as the global default FTP handler. Note that :func:`urllib.request.install_opener` used here will remove all other non-default handlers installed in a different opener, such as an :class:`urllib.request.HTTPBasicAuthHandler`. """ handler = FTPBasicAuthHandler() opener = urllib.request.build_opener(handler) urllib.request.install_opener(opener) return handler ``` #### File: neurotic/datasets/metadata.py ```python import os import urllib import yaml from packaging.specifiers import SpecifierSet from packaging import version from .. import __version__ from ..datasets.download import download import logging logger = logging.getLogger(__name__) class MetadataSelector(): """ A class for managing metadata. A metadata file can be specified at initialization, in which case it is read immediately. The file contents are stored as a dictionary in :attr:`all_metadata`. >>> metadata = MetadataSelector(file='metadata.yml') >>> print(metadata.all_metadata) File contents can be reloaded after they have been changed, or after changing ``file``, using the :meth:`load` method. >>> metadata = MetadataSelector() >>> metadata.file = 'metadata.yml' >>> metadata.load() A particular metadata set contained within the file can be selected at initialization with ``initial_selection`` or later using the :meth:`select` method. After making a selection, the selected metadata set is accessible at :meth:`metadata.selected_metadata <selected_metadata>`, e.g. >>> metadata = MetadataSelector(file='metadata.yml') >>> metadata.select('Data Set 5') >>> print(metadata.selected_metadata['data_file']) A compact indexing method is implemented that allows the selected metadata set to be accessed directly, e.g. >>> print(metadata['data_file']) This allows the MetadataSelector to be passed to functions expecting a simple dictionary corresponding to a single metadata set, and the selected metadata set will be used automatically. Files associated with the selected metadata set can be downloaded individually or all together, e.g. >>> metadata.download('video_file') or >>> metadata.download_all_data_files() The absolute path to a local file or the full URL to a remote file associated with the selected metadata set can be resolved with the :meth:`abs_path` and :meth:`abs_url` methods, e.g. >>> print(metadata.abs_path('data_file')) >>> print(metadata.abs_url('data_file')) """ def __init__(self, file=None, local_data_root=None, remote_data_root=None, initial_selection=None): """ Initialize a new MetadataSelector. """ self.file = file self.local_data_root = local_data_root self.remote_data_root = remote_data_root self.all_metadata = None #: A dictionary containing the entire file contents, set by :meth:`load`. self._selection = None if self.file is not None: self.load() if initial_selection is not None: self.select(initial_selection) def load(self): """ Read the metadata file. """ self.all_metadata = _load_metadata(self.file, self.local_data_root, self.remote_data_root) if self._selection not in self.all_metadata: self._selection = None def select(self, selection): """ Select a metadata set. """ if self.all_metadata is None: logger.error('Load metadata before selecting') elif selection not in self.all_metadata: raise ValueError('{} was not found in {}'.format(selection, self.file)) else: self._selection = selection @property def keys(self): """ The available metadata keys. """ if self.all_metadata is None: return None else: return list(self.all_metadata.keys()) @property def selected_metadata(self): """ The access point for the selected metadata set. """ if self._selection is None: return None else: return self.all_metadata[self._selection] def abs_path(self, file): """ Convert the relative path of ``file`` to an absolute path using ``data_dir``. """ return _abs_path(self.selected_metadata, file) def abs_url(self, file): """ Convert the relative path of ``file`` to a full URL using ``remote_data_dir``. """ return _abs_url(self.selected_metadata, file) def download(self, file, **kwargs): """ Download a file associated with the selected metadata set. See :func:`neurotic.datasets.download.download` for possible keyword arguments. """ _download_file(self.selected_metadata, file, **kwargs) def download_all_data_files(self, **kwargs): """ Download all files associated with the selected metadata set. See :func:`neurotic.datasets.download.download` for possible keyword arguments. """ _download_all_data_files(self.selected_metadata, **kwargs) def __iter__(self, *args): if self.selected_metadata is None: logger.error('No metadata set is selected. Use the select() method first.') else: return self.selected_metadata.__iter__(*args) def __getitem__(self, *args): if self.selected_metadata is None: logger.error('No metadata set is selected. Use the select() method first.') else: return self.selected_metadata.__getitem__(*args) def __setitem__(self, *args): if self.selected_metadata is None: logger.error('No metadata set is selected. Use the select() method first.') else: return self.selected_metadata.__setitem__(*args) def __delitem__(self, *args): if self.selected_metadata is None: logger.error('No metadata set is selected. Use the select() method first.') else: return self.selected_metadata.__delitem__(*args) def get(self, *args): if self.selected_metadata is None: logger.error('No metadata set is selected. Use the select() method first.') else: return self.selected_metadata.get(*args) def setdefault(self, *args): if self.selected_metadata is None: logger.error('No metadata set is selected. Use the select() method first.') else: return self.selected_metadata.setdefault(*args) def _load_metadata(file = 'metadata.yml', local_data_root = None, remote_data_root = None): """ Read metadata stored in a YAML file about available collections of data, assign defaults to missing parameters, and resolve absolute paths for local data stores and full URLs for remote data stores. ``local_data_root`` must be an absolute or relative path on the local system, or None. If it is a relative path, it is relative to the current working directory. If it is None, its value defaults to the directory containing ``file``. ``remote_data_root`` must be a full URL or None. If it is None, ``file`` will be checked for a fallback value. "remote_data_root" may be provided in the YAML file under the reserved keyword "neurotic_config". Any non-None value passed to this function will override the value provided in the file. If both are unspecified, it is assumed that no remote data store exists. The "data_dir" property is optional for every data set in ``file`` and specifies the directory on the local system containing the data files. "data_dir" may be an absolute path or a relative path with respect to ``local_data_root``. If it is a relative path, it will be converted to an absolute path. The "remote_data_dir" property is optional for every data set in ``file`` and specifies the directory on a remote server containing the data files. "remote_data_dir" may be a full URL or a relative path with respect to ``remote_data_root``. If it is a relative path, it will be converted to a full URL. File paths (e.g., "data_file", "video_file") are assumed to be relative to both "data_dir" and "remote_data_dir" (i.e., the local and remote data stores mirror one another) and can be resolved with ``_abs_path`` or ``_abs_url``. """ assert file is not None, 'metadata file must be specified' assert os.path.exists(file), 'metadata file "{}" cannot be found'.format(file) # local_data_root defaults to the directory containing file if local_data_root is None: local_data_root = os.path.dirname(file) # load metadata from file with open(file) as f: md = yaml.safe_load(f) # remove special entry "neurotic_config" from the dict if it exists config = md.pop('neurotic_config', None) if isinstance(config, dict): # process global settings neurotic_version = config.get('neurotic_version', None) remote_data_root_from_file = config.get('remote_data_root', None) else: # use defaults for all global settings neurotic_version = None remote_data_root_from_file = None # check neurotic version requirements if neurotic_version is not None: version_spec = SpecifierSet(str(neurotic_version), prereleases=True) if version.parse(__version__) not in version_spec: logger.warning('the installed version of neurotic ' f'({__version__}) does not meet version ' 'requirements specified in the metadata file: ' f'{version_spec}') # use remote_data_root passed to function preferentially if remote_data_root is not None: if not _is_url(remote_data_root): raise ValueError('"remote_data_root" passed to function is not a full URL: "{}"'.format(remote_data_root)) else: # use the value passed to the function pass elif remote_data_root_from_file is not None: if not _is_url(remote_data_root_from_file): raise ValueError('"remote_data_root" provided in file is not a full URL: "{}"'.format(remote_data_root_from_file)) else: # use the value provided in the file remote_data_root = remote_data_root_from_file else: # both potential sources of remote_data_root are None pass # iterate over all data sets for key in md: assert type(md[key]) is dict, 'File "{}" may be formatted incorrectly, especially beginning with entry "{}"'.format(file, key) # fill in missing metadata with default values defaults = _defaults_for_key(key) for k in defaults: md[key].setdefault(k, defaults[k]) # determine the absolute path of the local data directory if md[key]['data_dir'] is not None: # data_dir is either an absolute path already or is specified # relative to local_data_root if os.path.isabs(md[key]['data_dir']): dir = md[key]['data_dir'] else: dir = os.path.abspath(os.path.join(local_data_root, md[key]['data_dir'])) else: # data_dir is a required property raise ValueError('"data_dir" missing for "{}"'.format(key)) md[key]['data_dir'] = os.path.normpath(dir) # determine the full URL to the remote data directory if md[key]['remote_data_dir'] is not None: # remote_data_dir is either a full URL already or is specified # relative to remote_data_root if _is_url(md[key]['remote_data_dir']): url = md[key]['remote_data_dir'] elif _is_url(remote_data_root): url = '/'.join([remote_data_root, md[key]['remote_data_dir']]) else: url = None else: # there is no remote data store url = None md[key]['remote_data_dir'] = url return md def _defaults_for_key(key): """ Default values for metadata. """ defaults = { # store the key with the metadata 'key': key, # description of data set 'description': None, # the path of the directory containing the data on the local system # - this may be an absolute or relative path, but not None since data # must be located locally # - if it is a relative path, it will be interpreted by _load_metadata # as relative to local_data_root and will be converted to an absolute # path 'data_dir': '.', # the path of the directory containing the data on a remote server # - this may be a full URL or a relative path, or None if there exists # no remote data store # - if it is a relative path, it will be interpreted by _load_metadata # as relative to remote_data_root and will be converted to a full URL 'remote_data_dir': None, # the ephys data file # - path relative to data_dir and remote_data_dir 'data_file': None, # the name of a Neo IO class # - this parameter is optional and exists for overriding the IO class # determined automatically from the data file's extension 'io_class': None, # arguments for the Neo IO class # - e.g. for AsciiSignalIO, {'delimiter': ',', 'sampling_rate': 1000, 'units': 'mV'} 'io_args': None, # a real-world start time for the data_file, which overrides the value # that may be stored in the data_file # - e.g. '2020-01-01 13:14:15' 'rec_datetime': None, # digital filters to apply before analysis and plotting # 0 <= highpass <= lowpass < sample_rate/2 # - e.g. [{'channel': 'Channel A', 'highpass': 0, 'lowpass': 50}, ...] 'filters': None, # the annotations file # - path relative to data_dir and remote_data_dir 'annotations_file': None, # the epoch encoder file # - path relative to data_dir and remote_data_dir 'epoch_encoder_file': None, # list of labels for epoch encoder 'epoch_encoder_possible_labels': [], # list of dicts giving name, channel, units, amplitude window, epoch window, color for each unit # - e.g. [{'name': 'Unit X', 'channel': 'Channel A', 'units': 'uV', 'amplitude': [75, 150], 'epoch': 'Type 1', 'color': 'ff0000'}, ...] 'amplitude_discriminators': None, # list of dicts giving name of a spiketrain, start and stop firing rate # thresholds in Hz for each burst # - 'spiketrain' is required and used to find the appropriate spike # train by name, whereas 'name' is option and is used to name the # Epoch generated by load_dataset, defaults to the spiketrain's name # with ' burst' appended # - e.g. [{'spiketrain': 'Unit X', 'name': 'Unit X burst', 'thresholds': [10, 8]}, ...] 'burst_detectors': None, # the output file of a tridesclous spike sorting analysis # - path relative to data_dir and remote_data_dir 'tridesclous_file': None, # dict mapping spike ids to lists of channel indices # - e.g. {0: ['Channel A'], 1: ['Channel A'], ...} to indicate clusters 0 and 1 are both on channel A # - e.g. {0: ['Channel A', 'Channel B'], ...} to indicate cluster 0 is on both channels A and B 'tridesclous_channels': None, # list of lists of spike ids specifying how to merge clusters # - e.g. [[0, 1, 2], [3, 4]] to merge clusters 1 and 2 into 0, merge 4 into 3, and discard all others # - e.g. [[0], [1], [2], [3], [4]] to keep clusters 0-4 as they are and discard all others 'tridesclous_merge': None, # list of dicts giving name of a spiketrain, name of a kernel to be # convolved with the spiketrain, and the sigma parameter of the kernel # in seconds # - e.g. [{'name': 'Unit X', 'kernel': 'CausalAlphaKernel', 'sigma': 0.5}, ...] 'firing_rates': None, # the video file # - path relative to data_dir and remote_data_dir 'video_file': None, # the video time offset in seconds 'video_offset': None, # list of ordered pairs specifying times and durations that the ephys # data collection was paused while the video continued recording # - e.g. [[60, 10], [120, 10], [240, 10]] for three 10-second pauses # occurring at times 1:00, 2:00, 3:00 according to the daq, which # would correspond to times 1:00, 2:10, 3:20 according to the video 'video_jumps': None, # a factor to multiply the video frame rate by to correct for async # error that accumulates over time at a constant rate # - a value less than 1 will decrease the frame rate and shift video # events to later times # - a value greater than 1 will increase the frame rate and shift video # events to earlier times # - a good estimate can be obtained by taking the amount of time # between two events in the video and dividing by the amount of time # between the same two events in the data 'video_rate_correction': None, # list the channels in the order they should be plotted # - e.g. [{'channel': 'Channel A', 'ylabel': 'My channel', 'ylim': [-120, 120], 'units': 'uV', 'color': 'ff0000'}, ...] 'plots': None, # amount of time in seconds to plot initially 't_width': 40, # proportion of the plot range, between 0 and 1, to the left of the # current time (in the "past"), indicated by the position of the # vertical line 'past_fraction': 0.3, # factor to subtract from each signal before rectification when # calculating rectified area under the curve (RAUC) # - can be None, 'mean', or 'median' 'rauc_baseline': None, # width of bins in seconds used for calculating rectified area under # the curve (RAUC) for signals 'rauc_bin_duration': None, } return defaults def _abs_path(metadata, file): """ Convert the relative path of file to an absolute path using data_dir """ if metadata.get(file, None) is None: return None else: return os.path.normpath(os.path.join(metadata.get('data_dir', '.'), metadata[file])) def _abs_url(metadata, file): """ Convert the relative path of file to a full URL using remote_data_dir """ if metadata.get(file, None) is None or metadata.get('remote_data_dir', None) is None: return None else: file_path = metadata[file].replace(os.sep, '/') url = '/'.join([metadata['remote_data_dir'], file_path]) # url = urllib.parse.unquote(url) # url = urllib.parse.quote(url, safe='/:') return url def _is_url(url): """ Returns True only if the parameter begins with the form <scheme>://<netloc> """ try: result = urllib.parse.urlparse(url) return all([result.scheme, result.netloc]) except Exception: return False def _download_file(metadata, file, **kwargs): """ Download a file. See :func:`neurotic.datasets.download.download` for possible keyword arguments. """ if not _is_url(metadata.get('remote_data_dir', None)): logger.error('metadata[remote_data_dir] is not a full URL') return if metadata.get(file, None): # create directories if necessary if not os.path.exists(os.path.dirname(_abs_path(metadata, file))): os.makedirs(os.path.dirname(_abs_path(metadata, file))) # download the file only if it does not already exist download(_abs_url(metadata, file), _abs_path(metadata, file), **kwargs) def _download_all_data_files(metadata, **kwargs): """ Download all files associated with metadata. See :func:`neurotic.datasets.download.download` for possible keyword arguments. """ if not _is_url(metadata.get('remote_data_dir', None)): logger.error('metadata[remote_data_dir] is not a full URL') return for file in [k for k in metadata if k.endswith('_file')]: _download_file(metadata, file, **kwargs) logger.info('Downloads complete') def _selector_labels(all_metadata): """ """ # indicate presence of local data files with symbols has_local_data = {} for key, metadata in all_metadata.items(): filenames = [k for k in metadata if k.endswith('_file') and metadata[k] is not None] files_exist = [os.path.exists(_abs_path(metadata, file)) for file in filenames] if all(files_exist): has_local_data[key] = '◆' elif any(files_exist): has_local_data[key] = '⬖' else: has_local_data[key] = '◇' # indicate lack of video_offset with an exclamation point unless there is # no video_file has_video_offset = {} for key, metadata in all_metadata.items(): if metadata.get('video_offset', None) is None and metadata.get('video_file', None) is not None: has_video_offset[key] = '!' else: has_video_offset[key] = ' ' # create display text for the selector from keys and descriptions longest_key_length = max([len(k) for k in all_metadata.keys()]) labels = [ has_local_data[k] + has_video_offset[k] + ' ' + k.ljust(longest_key_length + 4) + str(all_metadata[k]['description'] if all_metadata[k]['description'] else '') for k in all_metadata.keys()] return labels ``` #### File: neurotic/gui/config.py ```python import re import numpy as np import pandas as pd import quantities as pq import neo import ephyviewer from ..datasets.metadata import _abs_path from ..gui.epochencoder import NeuroticWritableEpochSource import logging logger = logging.getLogger(__name__) # raise the threshold for PyAV messages printed to the console from # warning to critical logging.getLogger('libav').setLevel(logging.CRITICAL) pq.mN = pq.UnitQuantity('millinewton', pq.N/1e3, symbol = 'mN'); # define millinewton available_themes = ['light', 'dark', 'original', 'printer-friendly'] available_ui_scales = ['tiny', 'small', 'medium', 'large', 'huge'] class EphyviewerConfigurator(): """ A class for launching ephyviewer for a dataset with configurable viewers. At initialization, invalid viewers are automatically disabled (e.g., the video viewer is disabled if ``video_file`` is not given in ``metadata``). Viewers can be hidden or shown before launch using the built-in methods. Valid viewer names are: * ``traces`` * ``traces_rauc`` * ``freqs`` * ``spike_trains`` * ``traces_rates`` * ``epochs`` * ``epoch_encoder`` * ``video`` * ``event_list`` * ``data_frame`` :meth:`launch_ephyviewer` is provided for starting a new Qt app and launching the ephyviewer main window all at once. :meth:`create_ephyviewer_window` generates just the ephyviewer window and should be used if there is already a Qt app running. """ def __init__(self, metadata, blk, lazy = False): """ Initialize a new EphyviewerConfigurator. """ self.metadata = metadata self.blk = blk self.lazy = lazy self.viewer_settings = { 'traces': {'show': True, 'disabled': False, 'reason': ''}, 'traces_rauc': {'show': False, 'disabled': False, 'reason': ''}, 'freqs': {'show': False, 'disabled': True, 'reason': 'Disabled because feature is experimental and computationally expensive'}, 'spike_trains': {'show': True, 'disabled': False, 'reason': ''}, 'traces_rates': {'show': True, 'disabled': False, 'reason': ''}, 'epochs': {'show': True, 'disabled': False, 'reason': ''}, 'epoch_encoder': {'show': True, 'disabled': False, 'reason': ''}, 'video': {'show': True, 'disabled': False, 'reason': ''}, 'event_list': {'show': True, 'disabled': False, 'reason': ''}, 'data_frame': {'show': False, 'disabled': False, 'reason': ''}, } self.themes = {} self.themes['original'] = None # special keyword to use ephyviewer's defaults self.themes['light'] = { 'cmap': 'Dark2', # dark traces 'background_color': '#F0F0F0', # light gray 'vline_color': '#000000AA', # transparent black 'label_fill_color': '#DDDDDDDD', # transparent light gray } self.themes['dark'] = { 'cmap': 'Accent', # light traces 'background_color': 'k', # black 'vline_color': '#FFFFFFAA', # transparent white 'label_fill_color': '#222222DD', # transparent dark gray } self.themes['printer-friendly'] = { 'cmap': 'Dark2', # dark traces 'background_color': '#FFFFFF', # white 'vline_color': '#000000AA', # transparent black 'label_fill_color': '#DDDDDDDD', # transparent light gray } # hide and disable viewers for which inputs are missing if not self.blk.segments[0].analogsignals: self.viewer_settings['traces']['show'] = False self.viewer_settings['traces']['disabled'] = True self.viewer_settings['traces']['reason'] = 'Cannot enable because there are no signals' if not [sig.annotations['rauc_sig'] for sig in blk.segments[0].analogsignals if 'rauc_sig' in sig.annotations]: self.viewer_settings['traces_rauc']['show'] = False self.viewer_settings['traces_rauc']['disabled'] = True self.viewer_settings['traces_rauc']['reason'] = 'Cannot enable because there are no RAUC signals' if not self.blk.segments[0].spiketrains: self.viewer_settings['spike_trains']['show'] = False self.viewer_settings['spike_trains']['disabled'] = True self.viewer_settings['spike_trains']['reason'] = 'Cannot enable because there are no spike trains' if not [st.annotations['firing_rate_sig'] for st in blk.segments[0].spiketrains if 'firing_rate_sig' in st.annotations]: self.viewer_settings['traces_rates']['show'] = False self.viewer_settings['traces_rates']['disabled'] = True self.viewer_settings['traces_rates']['reason'] = 'Cannot enable because there are no firing rate signals' if not [ep for ep in self.blk.segments[0].epochs if ep.size > 0 and '(from epoch encoder file)' not in ep.labels]: self.viewer_settings['epochs']['show'] = False self.viewer_settings['epochs']['disabled'] = True self.viewer_settings['epochs']['reason'] = 'Cannot enable because there are no read-only epochs' self.viewer_settings['data_frame']['show'] = False self.viewer_settings['data_frame']['disabled'] = True self.viewer_settings['data_frame']['reason'] = 'Cannot enable because there are no read-only epochs' if not [ev for ev in self.blk.segments[0].events if ev.size > 0]: self.viewer_settings['event_list']['show'] = False self.viewer_settings['event_list']['disabled'] = True self.viewer_settings['event_list']['reason'] = 'Cannot enable because there are no read-only epochs or events' if not self.metadata.get('epoch_encoder_file', None): self.viewer_settings['epoch_encoder']['show'] = False self.viewer_settings['epoch_encoder']['disabled'] = True self.viewer_settings['epoch_encoder']['reason'] = 'Cannot enable because epoch_encoder_file is not set' if not ephyviewer.HAVE_AV: self.viewer_settings['video']['show'] = False self.viewer_settings['video']['disabled'] = True self.viewer_settings['video']['reason'] = 'Cannot enable because PyAV is not installed' if not self.metadata.get('video_file', None): self.viewer_settings['video']['show'] = False self.viewer_settings['video']['disabled'] = True self.viewer_settings['video']['reason'] = 'Cannot enable because video_file is not set' if not ephyviewer.HAVE_AV and self.metadata.get('video_file', None): logger.warning('Ignoring video_file because PyAV is not installed') # warn about potential video sync problems if metadata.get('video_file', None) is not None and metadata.get('video_offset', None) is None: logger.warning('Your video will likely be out of sync with your ' 'data because video_offset is unspecified! ' 'Consider adding it to your metadata.') if metadata.get('video_file', None) is not None and metadata.get('video_jumps', None) is None: approx_video_jumps = _estimate_video_jump_times(blk) if approx_video_jumps: approx_video_jumps_recommendation = ' video_jumps:\n' + \ '\n'.join([f' - [{t}, {dur}]' for t, dur in approx_video_jumps]) logger.warning('It seems that AxoGraph was paused at least ' 'once during data acquisition, but video_jumps ' 'is unspecified. This will cause your video ' 'and data to get out of sync. Consider adding ' 'the following to your metadata:' f'\n{approx_video_jumps_recommendation}\n' 'Each ordered pair specifies the timing of a ' 'pause and approximately how long the pause ' 'lasted in seconds. The pause durations are ' 'only rough estimates +/- a second! You should ' 'refine them by inspecting the video to make ' 'sure your sync is accurate!') def is_enabled(self, name): """ Return whether the viewer ``name`` is enabled. """ if name in self.viewer_settings: return not self.viewer_settings[name]['disabled'] else: return False def enable(self, name): """ Enable the viewer ``name``. """ if name in self.viewer_settings: self.viewer_settings[name]['disabled'] = False def disable(self, name): """ Disable the viewer ``name``. """ if name in self.viewer_settings: self.viewer_settings[name]['disabled'] = True def is_shown(self, name): """ Return whether the viewer ``name`` is shown. """ if name in self.viewer_settings: return self.viewer_settings[name]['show'] else: return False def show(self, name): """ Show the viewer ``name``. """ if name in self.viewer_settings: if not self.viewer_settings[name]['disabled']: self.viewer_settings[name]['show'] = True else: logger.warning(self.viewer_settings[name]['reason']) else: logger.error(f'"{name}" is not a viewer in viewer_settings') def hide(self, name): """ Hide the viewer ``name``. """ if name in self.viewer_settings: self.viewer_settings[name]['show'] = False else: logger.error(f'"{name}" is not a viewer in viewer_settings') def show_all(self): """ Show all viewers. """ for name in self.viewer_settings: if not self.viewer_settings[name]['disabled']: self.show(name) def hide_all(self): """ Hide all viewers. """ for name in self.viewer_settings: self.hide(name) def launch_ephyviewer(self, theme='light', ui_scale='medium', support_increased_line_width=False, show_datetime=False, datetime_format='%Y-%m-%d %H:%M:%S'): """ Start a Qt app and create an ephyviewer window. """ app = ephyviewer.mkQApp() win = self.create_ephyviewer_window(theme=theme, ui_scale=ui_scale, support_increased_line_width=support_increased_line_width, show_datetime=show_datetime, datetime_format=datetime_format) win.show() app.exec_() def create_ephyviewer_window(self, theme='light', ui_scale='medium', support_increased_line_width=False, show_datetime=False, datetime_format='%Y-%m-%d %H:%M:%S'): """ Load data into each ephyviewer viewer and return the main window. """ ######################################################################## # DATA SOURCES seg = self.blk.segments[0] sigs = seg.analogsignals sources = {'signal': [], 'epoch': [], 'event': [], 'spike': []} sources['epoch'].append(ephyviewer.NeoEpochSource(seg.epochs)) sources['event'].append(ephyviewer.NeoEventSource(seg.events)) sources['spike'].append(ephyviewer.NeoSpikeTrainSource(seg.spiketrains)) # filter epoch encoder data out of read-only epoch and event lists # so they are not presented multiple times, and remove empty channels sources['epoch'][0].all = [ep for ep in sources['epoch'][0].all if len(ep['time']) > 0 and '(from epoch encoder file)' not in ep['label']] sources['event'][0].all = [ev for ev in sources['event'][0].all if len(ev['time']) > 0 and '(from epoch encoder file)' not in ev['label']] ######################################################################## # WINDOW # optionally display the real-world date and time if show_datetime and self.blk.rec_datetime is not None: show_label_datetime = True datetime0 = self.blk.rec_datetime else: show_label_datetime = False datetime0 = None # create a window that will be populated with viewers win = ephyviewer.MainViewer( # settings_name='test2', # remember settings (e.g. xsize) between sessions show_auto_scale = True, global_xsize_zoom = True, play_interval = 0.1, # refresh period in seconds show_label_datetime = show_label_datetime, datetime0 = datetime0, datetime_format = datetime_format, ) win.setWindowTitle(self.metadata.get('key', 'neurotic')) win.setWindowIcon(ephyviewer.QT.QIcon(':/neurotic-logo-150.png')) # delete on close so that memory and file resources are released win.setAttribute(ephyviewer.QT.WA_DeleteOnClose, True) # determine ui_scale parameters default_font_size = ephyviewer.QT.QFont().pointSize() ui_scales = { 'tiny': {'app_font_size': default_font_size-4, 'channel_label_size': default_font_size-4, 'scatter_size': 4}, 'small': {'app_font_size': default_font_size-2, 'channel_label_size': default_font_size-2, 'scatter_size': 6}, 'medium': {'app_font_size': default_font_size, 'channel_label_size': default_font_size, 'scatter_size': 8}, 'large': {'app_font_size': default_font_size+4, 'channel_label_size': default_font_size+4, 'scatter_size': 10}, 'huge': {'app_font_size': default_font_size+8, 'channel_label_size': default_font_size+8, 'scatter_size': 12}, } # set the font size for most text font = win.font() font.setPointSize(ui_scales[ui_scale]['app_font_size']) win.setFont(font) ######################################################################## # COLORS # colors for signals given explicitly in plots, used for raw signals # and RAUC sig_colors = {} if self.metadata.get('plots', None) is not None: sig_colors = {p['channel']: p['color'] for p in self.metadata['plots'] if 'color' in p} # colors for units given explicitly in amplitude_discriminators, used # for scatter markers, spike trains, and burst epochs unit_colors = {} if self.metadata.get('amplitude_discriminators', None) is not None: unit_colors = {d['name']: d['color'] for d in self.metadata['amplitude_discriminators'] if 'color' in d} ######################################################################## # TRACES WITH SCATTER PLOTS _set_defaults_for_plots(self.metadata, self.blk) if self.is_shown('traces') and self.metadata['plots']: lazy_load_signals = False if self.lazy: # check whether blk contains a rawio, which would have been put # there by _read_data_file if lazy=True and if Neo has a RawIO # that supports the file format if hasattr(self.blk, 'rawio') and isinstance(self.blk.rawio, neo.rawio.baserawio.BaseRawIO): io = self.blk.rawio if io.support_lazy: lazy_load_signals = True if lazy_load_signals: # Intan-specific tricks if isinstance(io, neo.io.IntanIO): # dirty trick for getting ungrouped channels into a single source io.header['signal_channels']['group_id'] = 0 # prepare to append custom channel names stored in data file to ylabels custom_channel_names = {c['native_channel_name']: c['custom_channel_name'] for c in io._ordered_channels} channel_indexes = [p['index'] for p in self.metadata['plots']] sources['signal'].append(ephyviewer.AnalogSignalFromNeoRawIOSource(io, channel_indexes)) # modify loaded channel names to use ylabels for i, p in enumerate(self.metadata['plots']): ylabel = p['ylabel'] # Intan-specific tricks if isinstance(io, neo.io.IntanIO): # append custom channel names stored in data file to ylabels if custom_channel_names[p['channel']] != ylabel: ylabel += ' ({})'.format(custom_channel_names[p['channel']]) sources['signal'][-1].channels['name'][i] = ylabel # TODO support scatter from tridesclous_file else: # lazy==False or io.support_lazy==False # even if lazy==True, signals do not need to be loaded now # because load_dataset will have already taken care of that and # saved them in blk when it detected that Neo did not support # lazy loading for the given file reader # prepare scatter plot parameters plotNameToIndex = {p['channel']:i for i, p in enumerate(self.metadata['plots'])} all_times = sigs[0].times.rescale('s').magnitude # assuming all AnalogSignals have the same sampling rate and start time spike_indices = {} spike_channels = {} for st in seg.spiketrains: if 'channels' in st.annotations: c = [] for channel in st.annotations['channels']: index = plotNameToIndex.get(channel, None) if index is None: logger.warning('Spike train {} will not be plotted on channel {} because that channel isn\'t being plotted'.format(st.name, channel)) else: c.append(index) if c: spike_channels[st.name] = c spike_indices[st.name] = np.where(np.isin(all_times, st.times.magnitude))[0] sources['signal'].append(ephyviewer.AnalogSignalSourceWithScatter( signals = np.concatenate([sigs[p['index']].magnitude for p in self.metadata['plots']], axis = 1), sample_rate = sigs[0].sampling_rate.rescale('Hz'), # assuming all AnalogSignals have the same sampling rate t_start = sigs[0].t_start.rescale('s'), # assuming all AnalogSignals start at the same time channel_names = [p['ylabel'] for p in self.metadata['plots']], scatter_indexes = spike_indices, scatter_channels = spike_channels, )) # instead of passing colors into AnalogSignalSourceWithScatter # constructor with scatter_colors, first let the constructor # choose reasonable default colors (done above), and only then # override colors for units that have been explicitly set in # amplitude_discriminators (done here) sources['signal'][-1].scatter_colors.update(unit_colors) # useOpenGL=True eliminates the extremely poor performance associated # with TraceViewer's line_width > 1.0, but it also degrades overall # performance somewhat and is reportedly unstable if support_increased_line_width: useOpenGL = True line_width = 2.0 else: useOpenGL = None line_width = 1.0 trace_view = ephyviewer.TraceViewer(source = sources['signal'][0], name = 'Signals', useOpenGL = useOpenGL) win.add_view(trace_view) trace_view.params['xratio'] = self.metadata.get('past_fraction', 0.3) trace_view.params['auto_scale_factor'] = 0.02 trace_view.params['scatter_size'] = ui_scales[ui_scale]['scatter_size'] trace_view.params['line_width'] = line_width trace_view.params['label_size'] = ui_scales[ui_scale]['channel_label_size'] trace_view.params['display_labels'] = True trace_view.params['antialias'] = True # set the theme if theme != 'original': trace_view.params['background_color'] = self.themes[theme]['background_color'] trace_view.params['vline_color'] = self.themes[theme]['vline_color'] trace_view.params['label_fill_color'] = self.themes[theme]['label_fill_color'] trace_view.params_controller.combo_cmap.setCurrentText(self.themes[theme]['cmap']) trace_view.params_controller.on_automatic_color() # set explicitly assigned signal colors for name, color in sig_colors.items(): try: index = [p['channel'] for p in self.metadata['plots']].index(name) trace_view.by_channel_params['ch{}'.format(index), 'color'] = color except ValueError: # sig name may not have been found in the trace list pass # adjust plot range, scaling, and positioning trace_view.params['ylim_max'] = 0.5 trace_view.params['ylim_min'] = -trace_view.source.nb_channel + 0.5 trace_view.params['scale_mode'] = 'by_channel' for i, p in enumerate(self.metadata['plots']): sig_units = sigs[p['index']].units units_ratio = (pq.Quantity(1, p['units'])/pq.Quantity(1, sig_units)).simplified assert units_ratio.dimensionality.string == 'dimensionless', f"Channel \"{p['channel']}\" has units {sig_units} and cannot be converted to {p['units']}" ylim_span = np.ptp(p['ylim'] * units_ratio.magnitude) ylim_center = np.mean(p['ylim'] * units_ratio.magnitude) trace_view.by_channel_params['ch{}'.format(i), 'gain'] = 1/ylim_span # rescale [ymin,ymax] across a unit trace_view.by_channel_params['ch{}'.format(i), 'offset'] = -i - ylim_center/ylim_span # center [ymin,ymax] within the unit ######################################################################## # TRACES OF RAUC if self.is_shown('traces_rauc'): rauc_sigs = [sig.annotations['rauc_sig'] for sig in sigs if 'rauc_sig' in sig.annotations] if rauc_sigs: sig_rauc_source = ephyviewer.InMemoryAnalogSignalSource( signals = np.concatenate([rauc_sigs[p['index']].as_array() for p in self.metadata['plots']], axis = 1), sample_rate = rauc_sigs[0].sampling_rate.rescale('Hz'), # assuming all AnalogSignals have the same sampling rate t_start = rauc_sigs[0].t_start.rescale('s'), # assuming all AnalogSignals start at the same time channel_names = [p['ylabel'] + ' RAUC' for p in self.metadata['plots']], ) sources['signal_rauc'] = [sig_rauc_source] trace_rauc_view = ephyviewer.TraceViewer(source = sources['signal_rauc'][0], name = 'Integrated signals (RAUC)') if 'Signals' in win.viewers: win.add_view(trace_rauc_view, tabify_with = 'Signals') else: win.add_view(trace_rauc_view) trace_rauc_view.params['xratio'] = self.metadata.get('past_fraction', 0.3) trace_rauc_view.params['line_width'] = line_width trace_rauc_view.params['label_size'] = ui_scales[ui_scale]['channel_label_size'] trace_rauc_view.params['display_labels'] = True trace_rauc_view.params['display_offset'] = True trace_rauc_view.params['antialias'] = True # set the theme if theme != 'original': trace_rauc_view.params['background_color'] = self.themes[theme]['background_color'] trace_rauc_view.params['vline_color'] = self.themes[theme]['vline_color'] trace_rauc_view.params['label_fill_color'] = self.themes[theme]['label_fill_color'] trace_rauc_view.params_controller.combo_cmap.setCurrentText(self.themes[theme]['cmap']) trace_rauc_view.params_controller.on_automatic_color() # set explicitly assigned signal colors for name, color in sig_colors.items(): try: index = [p['channel'] for p in self.metadata['plots']].index(name) trace_rauc_view.by_channel_params['ch{}'.format(index), 'color'] = color except ValueError: # sig name may not have been found in the rauc trace list pass # adjust plot range trace_rauc_view.params['ylim_max'] = 0.5 trace_rauc_view.params['ylim_min'] = -trace_rauc_view.source.nb_channel + 0.5 trace_rauc_view.params['scale_mode'] = 'by_channel' for i, p in enumerate(self.metadata['plots']): ylim_span = np.median(rauc_sigs[p['index']].magnitude) * 10 ylim_center = ylim_span / 2 trace_rauc_view.by_channel_params['ch{}'.format(i), 'gain'] = 1/ylim_span # rescale [ymin,ymax] across a unit trace_rauc_view.by_channel_params['ch{}'.format(i), 'offset'] = -i - ylim_center/ylim_span # center [ymin,ymax] within the unit ######################################################################## # FREQUENCY (EXPERIMENTAL AND COMPUTATIONALLY EXPENSIVE!) if self.is_shown('freqs'): freq_view = ephyviewer.TimeFreqViewer(source = trace_view.source, name = 'Time-Frequency') freq_view.params['xratio'] = self.metadata.get('past_fraction', 0.3) freq_view.params['scale_mode'] = 'by_channel' freq_view.params['nb_column'] = 1 freq_view.params['colormap'] = 'gray' freq_view.params.param('timefreq')['deltafreq'] = 100 freq_view.params.param('timefreq')['f_start'] = 1 freq_view.params.param('timefreq')['f_stop'] = 1500 freq_view.by_channel_params['ch0', 'visible'] = False freq_view.by_channel_params['ch1', 'visible'] = True freq_view.by_channel_params['ch2', 'visible'] = True freq_view.by_channel_params['ch3', 'visible'] = True freq_view.by_channel_params['ch4', 'visible'] = False # freq_view.params.param('timefreq')['normalisation'] = 1.5 freq_view.by_channel_params['ch1', 'clim'] = 3 freq_view.by_channel_params['ch2', 'clim'] = 5 freq_view.by_channel_params['ch3', 'clim'] = 10 if 'Signals' in win.viewers: win.add_view(freq_view, tabify_with = 'Signals') elif 'Integrated signals (RAUC)' in win.viewers: win.add_view(freq_view, tabify_with = 'Integrated signals (RAUC)') else: win.add_view(freq_view) ######################################################################## # SPIKE TRAINS if self.is_shown('spike_trains') and sources['spike'][0].nb_channel > 0: spike_train_view = ephyviewer.SpikeTrainViewer(source = sources['spike'][0], name = 'Spike trains') win.add_view(spike_train_view) # set the theme if theme != 'original': spike_train_view.params['background_color'] = self.themes[theme]['background_color'] spike_train_view.params['vline_color'] = self.themes[theme]['vline_color'] spike_train_view.params['label_fill_color'] = self.themes[theme]['label_fill_color'] spike_train_view.params_controller.combo_cmap.setCurrentText(self.themes[theme]['cmap']) spike_train_view.params_controller.on_automatic_color() # set explicitly assigned unit colors for name, color in unit_colors.items(): try: index = [st.name for st in seg.spiketrains].index(name) spike_train_view.by_channel_params['ch{}'.format(index), 'color'] = color except ValueError: # unit name may not have been found in the spike train list pass spike_train_view.params['xratio'] = self.metadata.get('past_fraction', 0.3) spike_train_view.params['label_size'] = ui_scales[ui_scale]['channel_label_size'] ######################################################################## # TRACES OF FIRING RATES if self.is_shown('traces_rates'): firing_rate_sigs = [st.annotations['firing_rate_sig'] for st in seg.spiketrains if 'firing_rate_sig' in st.annotations] if firing_rate_sigs: sig_rates_source = ephyviewer.InMemoryAnalogSignalSource( signals = np.concatenate([sig.as_array() for sig in firing_rate_sigs], axis = 1), sample_rate = firing_rate_sigs[0].sampling_rate.rescale('Hz'), # assuming all AnalogSignals have the same sampling rate t_start = firing_rate_sigs[0].t_start.rescale('s'), # assuming all AnalogSignals start at the same time channel_names = [sig.name for sig in firing_rate_sigs], ) sources['signal_rates'] = [sig_rates_source] trace_rates_view = ephyviewer.TraceViewer(source = sources['signal_rates'][0], name = 'Firing rates') if 'Spike trains' in win.viewers: win.add_view(trace_rates_view, tabify_with = 'Spike trains') else: win.add_view(trace_rates_view) trace_rates_view.params['xratio'] = self.metadata.get('past_fraction', 0.3) trace_rates_view.params['line_width'] = line_width trace_rates_view.params['label_size'] = ui_scales[ui_scale]['channel_label_size'] trace_rates_view.params['display_labels'] = True trace_rates_view.params['display_offset'] = True trace_rates_view.params['antialias'] = True # set the theme if theme != 'original': trace_rates_view.params['background_color'] = self.themes[theme]['background_color'] trace_rates_view.params['vline_color'] = self.themes[theme]['vline_color'] trace_rates_view.params['label_fill_color'] = self.themes[theme]['label_fill_color'] trace_rates_view.params_controller.combo_cmap.setCurrentText(self.themes[theme]['cmap']) trace_rates_view.params_controller.on_automatic_color() # set explicitly assigned firing rate sig colors for name, color in unit_colors.items(): try: index = [sig.name for sig in firing_rate_sigs].index(name) trace_rates_view.by_channel_params['ch{}'.format(index), 'color'] = color except ValueError: # unit name may not have been found in the firing rate sig list pass # adjust plot range trace_rates_view.params['ylim_max'] = 0.5 trace_rates_view.params['ylim_min'] = -trace_rates_view.source.nb_channel + 0.5 trace_rates_view.params['scale_mode'] = 'by_channel' for i, sig in enumerate(firing_rate_sigs): ylim_span = 10 ylim_center = ylim_span / 2 trace_rates_view.by_channel_params['ch{}'.format(i), 'gain'] = 1/ylim_span # rescale [ymin,ymax] across a unit trace_rates_view.by_channel_params['ch{}'.format(i), 'offset'] = -i - ylim_center/ylim_span # center [ymin,ymax] within the unit ######################################################################## # EPOCHS if self.is_shown('epochs') and sources['epoch'][0].nb_channel > 0: epoch_view = ephyviewer.EpochViewer(source = sources['epoch'][0], name = 'Epochs') win.add_view(epoch_view) # set the theme if theme != 'original': epoch_view.params['background_color'] = self.themes[theme]['background_color'] epoch_view.params['vline_color'] = self.themes[theme]['vline_color'] epoch_view.params['label_fill_color'] = self.themes[theme]['label_fill_color'] epoch_view.params_controller.combo_cmap.setCurrentText(self.themes[theme]['cmap']) epoch_view.params_controller.on_automatic_color() # set explicitly assigned unit colors for name, color in unit_colors.items(): try: index = [ep['name'] for ep in sources['epoch'][0].all].index(name + ' burst') epoch_view.by_channel_params['ch{}'.format(index), 'color'] = color except ValueError: # unit burst name may not have been found in the epoch list pass epoch_view.params['xratio'] = self.metadata.get('past_fraction', 0.3) epoch_view.params['label_size'] = ui_scales[ui_scale]['channel_label_size'] ######################################################################## # EPOCH ENCODER if self.is_shown('epoch_encoder') and self.metadata.get('epoch_encoder_file', None) is not None: possible_labels = self.metadata.get('epoch_encoder_possible_labels', []) # append labels found in the epoch encoder file but not in the # epoch_encoder_possible_labels list, preserving the original # ordering of epoch_encoder_possible_labels labels_from_file = [ep.name for ep in seg.epochs if len(ep.times) > 0 and '(from epoch encoder file)' in ep.labels] for label in labels_from_file: if label not in possible_labels: possible_labels.append(label) if not possible_labels: # an empty epoch encoder file and an empty list of possible # labels were provided logger.warning('Ignoring epoch_encoder_file because epoch_encoder_possible_labels was unspecified') else: writable_epoch_source = NeuroticWritableEpochSource( filename = _abs_path(self.metadata, 'epoch_encoder_file'), possible_labels = possible_labels, ) epoch_encoder = ephyviewer.EpochEncoder(source = writable_epoch_source, name = 'Epoch encoder') epoch_encoder.params['exclusive_mode'] = False win.add_view(epoch_encoder) # set the theme if theme != 'original': epoch_encoder.params['background_color'] = self.themes[theme]['background_color'] epoch_encoder.params['vline_color'] = self.themes[theme]['vline_color'] epoch_encoder.params['label_fill_color'] = self.themes[theme]['label_fill_color'] # TODO add support for combo_cmap epoch_encoder.params['xratio'] = self.metadata.get('past_fraction', 0.3) epoch_encoder.params['label_size'] = ui_scales[ui_scale]['channel_label_size'] ######################################################################## # VIDEO if self.is_shown('video') and self.metadata.get('video_file', None) is not None: video_source = ephyviewer.MultiVideoFileSource(video_filenames = [_abs_path(self.metadata, 'video_file')]) # some video files are loaded with an incorrect start time, so # reset video start to zero video_source.t_stops[0] -= video_source.t_starts[0] video_source.t_starts[0] = 0 # apply the video_offset if self.metadata.get('video_offset', None) is not None: video_source.t_starts[0] += self.metadata['video_offset'] video_source.t_stops[0] += self.metadata['video_offset'] # correct for videos that report frame rates that are too fast or # too slow compared to the clock on the data acquisition system if self.metadata.get('video_rate_correction', None) is not None: video_source.rates[0] *= self.metadata['video_rate_correction'] if self.metadata.get('video_jumps', None) is not None: # create an unmodified video_times vector with evenly spaced times video_times = np.arange(video_source.nb_frames[0])/video_source.rates[0] + video_source.t_starts[0] # insert repeating times at pause_start to fill pause_duration # so that that section of the video is skipped over for pause_start, pause_duration in self.metadata['video_jumps']: pause_start_index = np.searchsorted(video_times, pause_start) pause_fill = video_times[pause_start_index] * np.ones(int(np.round(pause_duration*video_source.rates[0]))) video_times = np.insert(video_times, pause_start_index, pause_fill) video_times = video_times[:video_source.nb_frames[0]] # add the modified video_times to the video_source video_source.video_times = [video_times] video_source.t_starts[0] = min(video_times) video_source.t_stops[0] = max(video_times) # update the source-level times from the modified file-level times video_source._t_start = max(min(video_source.t_starts), 0) video_source._t_stop = max(video_source.t_stops) video_view = ephyviewer.VideoViewer(source = video_source, name = 'Video') if theme != 'original': video_view.graphiclayout.setBackground(self.themes[theme]['background_color']) win.add_view(video_view, location = 'bottom', orientation = 'horizontal') ######################################################################## # EVENTS if self.is_shown('event_list') and sources['event'][0].nb_channel > 0: event_list = ephyviewer.EventList(source = sources['event'][0], name = 'Events') if 'Video' in win.viewers: win.add_view(event_list, split_with = 'Video') else: win.add_view(event_list, location = 'bottom', orientation = 'horizontal') ######################################################################## # DATAFRAME annotations_dataframe = _neo_epoch_to_dataframe(seg.epochs, exclude_epoch_encoder_epochs=True) if self.is_shown('data_frame') and len(annotations_dataframe) > 0: data_frame_view = ephyviewer.DataFrameView(source = annotations_dataframe, name = 'Table') if 'Events' in win.viewers: win.add_view(data_frame_view, tabify_with = 'Events') elif 'Video' in win.viewers: win.add_view(data_frame_view, split_with = 'Video') else: win.add_view(data_frame_view, location = 'bottom', orientation = 'horizontal') ######################################################################## # FINAL TOUCHES # select first tabs for widget in win.children(): if isinstance(widget, ephyviewer.PyQt5.QtWidgets.QTabBar): widget.setCurrentIndex(0) # set amount of time shown initially win.set_xsize(self.metadata.get('t_width', 40)) # seconds return win def _set_defaults_for_plots(metadata, blk): """ Set defaults for plot channels, units, ylim, and ylabel if these parameters are missing from ``metadata``. """ sigs = blk.segments[0].analogsignals signalNameToIndex = {sig.name:i for i, sig in enumerate(sigs)} if metadata.get('plots', None) is None: metadata['plots'] = [{'channel': sig.name} for sig in sigs if _default_keep_signal(sig)] plots = [] for plot in metadata['plots']: index = signalNameToIndex.get(plot['channel'], None) if index is None: logger.warning('Removing plot with channel name "{}" because channel was not found in blk!'.format(plot['channel'])) else: plot['index'] = index plot.setdefault('units', _default_units(sigs[index])) plot.setdefault('ylim', _default_ylim(sigs[index])) plot.setdefault('ylabel', sigs[index].name) plots.append(plot) metadata['plots'] = plots return metadata['plots'] def _default_keep_signal(sig): """ If ``plots`` is not specified in ``metadata``, this function determines which channels are plotted by default. """ return (not sig.name.startswith('Analog Input #')) and (sig.name != 'Clock') def _default_units(sig): """ If ``plots`` is missing ``units`` in ``metadata``, this function determines default units. """ mapping = { 'V': 'uV', # convert voltages to microvolts 'N': 'mN', # convert forces to millinewtons } mapping = {pq.Quantity(1, k).dimensionality.simplified: v for k, v in mapping.items()} return mapping.get(sig.units.dimensionality.simplified, sig.units) def _default_ylim(sig): """ If ``plots`` is missing ``ylim`` in ``metadata``, this function determines default plot ranges. """ mapping = { 'V': [-120, 120], # plot range for voltages 'N': [ -10, 300], # plot range for forces } mapping = {pq.Quantity(1, k).dimensionality.simplified: v for k, v in mapping.items()} return mapping.get(sig.units.dimensionality.simplified, [-1, 1]) def _neo_epoch_to_dataframe(neo_epochs, exclude_epoch_encoder_epochs=False): """ Convert a list of Neo Epochs into a dataframe. """ dtypes = { 'Start (s)': float, 'End (s)': float, 'Duration (s)': float, 'Type': str, 'Label': str, } columns = list(dtypes.keys()) df = pd.DataFrame(columns=columns) for ep in neo_epochs: if len(ep.times) > 0 and (not exclude_epoch_encoder_epochs or '(from epoch encoder file)' not in ep.labels): data = np.array([ep.times, ep.times+ep.durations, ep.durations, [ep.name]*len(ep), ep.labels]).T df = df.append(pd.DataFrame(data, columns=columns), ignore_index=True) return df.astype(dtype=dtypes).sort_values(['Start (s)', 'End (s)', 'Type', 'Label']).reset_index(drop=True) def _estimate_video_jump_times(blk): """ Estimate how much time to skip in video playback if AxoGraph was temporarily paused during data acquisition while the video continued to record. Returns a list of ordered pairs suitable for the video_jumps metadata parameter. The returned stop times are exact, but pause durations have only whole-second precision and should be manually refined by inspecting the video before using. """ if 'notes' not in blk.annotations: return None else: # obtain approximate start and stop times according to AxoGraph notes note_start_times = np.array([0], dtype=np.int) note_stop_times = np.array([], dtype=np.int) for note_line in blk.annotations['notes'].split('\n'): m = re.match('\d\d\d: Start at (\d*) s', note_line) if m: note_start_times = np.append(note_start_times, int(m.group(1))) m = re.match('\d\d\d: Stop at (\d*) s', note_line) if m: note_stop_times = np.append(note_stop_times, int(m.group(1))) # calculate approximate pause durations pause_durations = note_start_times[1:]-note_stop_times[:-1] # obtain exact stop times (AxoGraph time, not video time) event_stop_times = np.array([], dtype=np.float) ev = next((ev for ev in blk.segments[0].events if ev.name == 'AxoGraph Tags'), None) if ev is not None: for time, label in zip(ev.times, ev.labels): if label == 'Stop': event_stop_times = np.append(event_stop_times, time.magnitude) # pair stop times with pause durations video_jumps = [] for t, dur in zip(event_stop_times[:-1], pause_durations): video_jumps.append([t, dur]) return video_jumps ```
{ "source": "jpgill86/tdms2axg", "score": 3 }
#### File: tdms2axg/tdms2axg/scripts.py ```python from __future__ import print_function import os import sys import argparse import numpy as np import quantities as pq import nptdms import axographio def tdms2axg(filename, force=False, verbose=True): """ Convert a TDMS file to an AxoGraph (AXGX) file """ if not os.path.isfile(filename): raise ValueError('error: file not found: ' + filename) if filename.split('.')[-1] != 'tdms': raise ValueError('error: file does not appear to be a TDMS file (does not end in ".tdms"): ' + filename) output_filename = '.'.join(filename.split('.')[:-1]) + '.axgx' if os.path.isfile(output_filename) and not force: raise OSError('error: output file exists, use force flag to overwrite: ' + output_filename) # read the TDMS file tdms_file = nptdms.TdmsFile.read(filename) group = tdms_file.groups()[0] # use only first group channels = group.channels() if verbose: print() print('Properties of "' + filename + '":') print() for name, value in tdms_file.properties.items(): print(str(name) + ': ' + str(value)) print() # collect the data for writing to AxoGraph format names = ['Time (s)'] columns = [axographio.aslinearsequence(channels[0].time_track())] # assume time is same for all columns for c in channels: # try to determine channel units unit_string = None if 'unit_string' in c.properties: u = c.properties['unit_string'] try: # test whether the unit is recognizable q = pq.Quantity(1, u) unit_string = u except LookupError: try: # try assuming its a simple compound unit (e.g., Nm = N*m) u = '*'.join(u) q = pq.Quantity(1, u) unit_string = u except LookupError: # unit string cannot be interpreted pass if unit_string: name = c.name + ' (' + unit_string + ')' else: name = c.name names += [name] columns += [c[:]] if verbose: print('Channel names:', names[1:]) print() # write the AxoGraph file if verbose: print('Writing contents to AxoGraph file "' + output_filename + '"...') f = axographio.file_contents(names, columns) f.write(output_filename) if verbose: print('Done!') return output_filename def parse_args(argv): description = """ A simple script for converting LabVIEW TDMS files to AxoGraph files. The AxoGraph (AXGX) file is saved with the same name and in the same directory as the TDMS file. By default, an existing AxoGraph file will not be overwritten; use --force to overwrite it. """ parser = argparse.ArgumentParser(description=description) parser.add_argument('file', help='the path to a TDMS file') parser.add_argument('-f', '--force', action='store_true', dest='force', help='overwrite the output file if it already exists') parser.add_argument('-q', '--quiet', action='store_false', dest='verbose', help='run silently') args = parser.parse_args(argv[1:]) return args def main(): args = parse_args(sys.argv) try: tdms2axg(args.file, args.force, args.verbose) except Exception as e: # skip the traceback when run from the command line print(e) ```
{ "source": "jpgil/logdelay", "score": 3 }
#### File: notebooks/2-structures/helpers.py ```python import networkx as nx import scipy import matplotlib.pyplot as plt from networkx.drawing.nx_agraph import write_dot from networkx.drawing.nx_agraph import to_agraph from IPython.display import Image import pygraphviz as pgv def graph(G, color="#cccccc", filename="/tmp/simple.png"): for u, v in G.edges: if "weight" in G[u][v]: G[u][v]["label"] = G[u][v]["weight"] G.graph['graph']={'rankdir':'TD'} G.graph['node']={'shape':'circle'} G.graph['edges']={'arrowsize':'1.0'} A = to_agraph(G) A.layout('dot') A.draw(filename) display(Image(filename)) # Stolen from https://stackoverflow.com/questions/12836385/how-can-i-interleave-or-create-unique-permutations-of-two-strings-without-recur/12837695 # More doc at http://www.cs.utsa.edu/~wagner/knuth/fasc2b.pdf class Interleave(): def __init__(self, A, B): self.A = A self.B = B self.results = list(self.__interleave()) # from https://stackoverflow.com/a/104436/1561176 def __all_perms(self, elements): if len(elements) <=1: yield elements else: for perm in self.__all_perms(elements[1:]): for i in range(len(elements)): #nb elements[0:1] works in both string and list contexts yield perm[:i] + elements[0:1] + perm[i:] def __sequences(self): return list( sorted( set( ["".join(x) for x in self.__all_perms(['a'] * len(self.A) + ['b'] * len(self.B))] ) ) ) def __interleave(self): for sequence in self.__sequences(): result = "" a = 0 b = 0 for item in sequence: if item == 'a': result+=self.A[a] a+=1 else: result+=self.B[b] b+=1 yield result def __str__(self): return str(self.results) def __repr__(self): return repr(self.results) # # Function to calculate the cliques and GRAPH in one single line. # def nice_graph( weighted_paths ): # def append_path(G, path, weight): # previous = path[0] # for node in path[1:]: # edges.append( (previous, node, {"weight":weight} ) ) # previous = node # G.add_edges_from(edges) # # weighted_paths = clique_discovery.infer_paths_from_traces( T ) # print(weighted_paths) # found_paths = {} # edges = [] # G = nx.DiGraph() # # Check serial: solo disjuntos del mismo largo # for w in sorted(weighted_paths, reverse=True): # for path_w in weighted_paths[w]: # if w not in found_paths.keys(): # found_paths[w] = [] # if all( [ not set(path_w).intersection(set(z)) for z in found_paths[w] ] ): # append_path( G, path_w, w ) # weights = { (str(u), str(v)): G[u][v]['weight'] for u,v in G.edges() } # pos = nx.spring_layout(G) # plt.rcParams['figure.figsize'] = [14, 6] # plt.subplot(111) # nx.draw_networkx (G, pos, width=1, node_color="#cccccc", with_labels=True, connectionstyle='arc3, rad=0.5' ) # nx.draw_networkx_edge_labels(G, pos=pos, edge_labels=weights) # plt.show() def created_auxiliary_grap( weighted_paths ): def append_path(G, path, weight): edges = [] previous = path[0] for node in path[1:]: edges.append( (previous, node, {"weight":weight} ) ) previous = node G.add_edges_from(edges) G = nx.DiGraph() # Check serial: solo disjuntos del mismo largo for w in sorted(weighted_paths, reverse=True): for path_w in weighted_paths[w]: append_path( G, path_w, w ) return G # Function to calculate the cliques and GRAPH in one single line. def nice_graph( weighted_paths, with_weigths=True ): print(weighted_paths) G = created_auxiliary_grap( weighted_paths ) try: G.remove_node("_START_") G.remove_node("_END_") except: pass weights = { (str(u), str(v)): round(G[u][v]['weight'], 2) for u,v in G.edges() } pos = nx.spring_layout(G) pos = nx.circular_layout(G) plt.rcParams['figure.figsize'] = [8, 4] plt.subplot(111) nx.draw_networkx (G, pos, width=1, node_color="#cccccc", with_labels=True, connectionstyle='arc3, rad=0.05' ) if with_weigths: nx.draw_networkx_edge_labels(G, pos=pos, edge_labels=weights) plt.show() def untangled_graph(G, with_weigths=True): weights = { (str(u), str(v)): G[u][v]['weight'] for u,v in G.edges() } pos = nx.spring_layout(G) pos = nx.circular_layout(G) plt.rcParams['figure.figsize'] = [10, 4] plt.subplot(111) nx.draw_networkx (G, pos, width=1, node_color="#cccccc", with_labels=True, connectionstyle='arc3, rad=0.05' ) if with_weigths: nx.draw_networkx_edge_labels(G, pos=pos, edge_labels=weights) plt.show() ```
{ "source": "jpgil/procdelay", "score": 3 }
#### File: procdelay/src/CaseManagerBase.py ```python import doctest import logging class CaseManagerBase: """ Base case for case manager This class splits logs in two dimensions: 1) Detects parallel executions of cases 2) Detects start / stop events for cases. Basic example: >>> CaseManagerBase.newCase( basedOn="sample event" ) ('ID', <__main__.CaseManagerBase instance at ... """ def __init__(self): self.history = [] self.uniques = {} self.myName = str(self.__class__).split(".")[-1] # The very first event is special. If you use the same marker for start/end , then the second instance is the one that must stop this machine. self.isFirstEvent = True self._processingEngines = self.processingEngines() self.log = logging.getLogger( self.myName ) # Validate processing engines? @staticmethod def isStartEvent(event): raise NotImplementedError @staticmethod def newCase(basedOn): """Factory method. It returns also an ID to be used as case identifier. :returns: (string, object) -- caseID and case instance """ return "ID", CaseManagerBase() def isEndEvent(self, event): if self.isFirstEvent: return False else: return self.conditionForEndEvent(event) def isValidEvent(self, event): """ Override if you need to filter events based on some criteria. True by default """ return True def conditionForEndEvent(self, event): """ Condition based on event that must trigger the end of execution of the case. You can also choose the same start condition, the first event is indeed recognized as different than any other event specifically for this case. :returns: bool """ raise NotImplementedError def processingEngines(self): """ List instances of case processing engines. They must be inherited from CaseProcessingEngineBase and being initialized here. """ return [] # Some magic here.... def appendActivity(self, ts, activity): self.history.append( (ts, activity) ) if activity not in self.uniques.keys(): self.uniques[activity] = 1 else: self.uniques[activity] = self.uniques[activity] + 1 self.isFirstEvent = False for engine in self._processingEngines: if engine.isEnabled: engine.streamProcess(ts, activity) def getTotalEvents(self): return len(self.history) def getUniqueActivities(self): return self.uniques.keys() def finish(self): # Do whatever you need to do here # For example... count the delays and send to PairsDB for engine in self._processingEngines: if engine.isEnabled: engine.postProcess() def stats(self): return { 'TOTAL_EVENTS': self.getTotalEvents() , 'UNIQUE_ACTIVITIES': self.getUniqueActivities(), 'TRACE': ["C%s" % event[1] for event in self.history] } def worldStats(self): stats = self.stats() gentle = stats["TRACE"][:50] if len(gentle) == len(stats["TRACE"]): gentleTrace = " ".join(gentle) else: gentleTrace = " ".join(gentle) + " ...(%s more)" % ( len(stats["TRACE"])-len(gentle) ) returnTxt = "EVENTS=%s UNIQUES=%s " % (stats["TOTAL_EVENTS"], len(stats["UNIQUE_ACTIVITIES"]) ) returnTxt = returnTxt + " ".join ([eng.worldStats() for eng in self._processingEngines if eng.isEnabled] ) # returnTxt = returnTxt + " TRACE=%s" % gentleTrace return returnTxt # Move elsewhere class CaseProcessingEngineBase: def __init__(self, parent=None, enabled=True): self.isEnabled = enabled self.parent = parent self.myName = str(self.__class__).split(".")[-1] self.log = logging.getLogger( "%s.%s" % (self.parent.myName, self.myName) ) def streamProcess(self, ts, activity): return def postProcess(self): return def worldStats(self): """ Single line of stats to be append to case worldStats """ return "%s: No stats given" % self.myName # Move elsewhere class CasesPool: def __init__(self, cases_list): self.pool = {} self.cases_list = cases_list self.myName = str(self.__class__).split(".")[-1] self.log = logging.getLogger( self.myName ) def removeEndedCases(self, event, ts, activity): what2kill = [] for idx, case in self.pool.iteritems(): if case.isEndEvent(event): what2kill.append(idx) # Kill now. for idx in what2kill: case = self.pool[idx] # Add last event just in case. self.appendToCase(event, ts, activity, case ) case.finish() self.log.info("%s[%s] %s" % (case.myName, idx, case.worldStats())) del(self.pool[idx]) self.log.debug("case[%s] killed at %s because %s" % (idx, event[0], event[1])) def appendToCase(self, event, ts, activity, case): if case.isValidEvent(event): case.appendActivity( ts, activity ) def spawnNewCases(self, event): for ThisCase in self.cases_list: if ThisCase.isStartEvent(event): caseId, caseInstance = ThisCase.newCase(basedOn=event) # Is case already active? Then fail if caseId in self.pool.keys(): caseInstance.log.info("case[%s] %s" % (caseId, self.pool[caseId].worldStats())) raise ValueError("[%s] Error in your logic, buddy. There is already an active case. Check above and belowe offending event:\n%s" % (caseId, event) ) self.pool[caseId] = caseInstance # logging.info("case[%s] created" % caseId) caseInstance.log.debug("[%s] created at %s because %s" % (caseId, event[0], event[1])) def appendActivity(self, event, ts, activity): for idx, case in self.pool.iteritems(): if case.isValidEvent(event): case.appendActivity( ts, activity ) def removeAfterLastEvent(self): for idx in self.pool.keys(): self.pool[idx].finish() self.log.info("%s[%s] %s" % (self.pool[idx].myName, idx, self.pool[idx].worldStats())) self.log.info("case[%s] KILL because no more events are available" % idx) del(self.pool[idx]) if __name__ == '__main__': """If this file is called directly it will execute a self test """ doctest.testmod( optionflags = doctest.ELLIPSIS ) ```
{ "source": "jpgimenez/cbpi-CascadeControl", "score": 3 }
#### File: jpgimenez/cbpi-CascadeControl/__init__.py ```python import time from modules import cbpi from modules.core.controller import KettleController from modules.core.props import Property # Property descriptions kp_description = "The proportional term, also known as kp, is the action of PID in response to each unit of error. kp dictates the aggressiveness of action. \nThe units of kp are output / process variable (e.g. % / °C)" ki_description = "The integral term, also known as ki, is the action of the PID in response to cumulative error in the system. ki is used primarily to reduce steady state error, but also factors into aggressivness of action. \nThe units of ki are output/(process variable • time) (e.g. % / (°C • seconds))" kd_description = "The derivative term, also known as kd, is the action of the PID in response to the rate of change of the error. kd is used primarily to reduce overshoot. \nThe units are of output / process variable / time (e.g. % /°C / seconds)" update_interval_description = "This is the length of time in seconds between recalculation of actor output with the PID algorithm." notification_timeout_description = "Notification duration in milliseconds" action_description = "Positive action results in the Actor being ON when current value of control variable is BELOW it's set point (e.g. heating). Negative action results in an Actor being OFF when the current value of the control variable is ABOVE it's setpoint (e.g. cooling)." maxset_description = "The maximum temperature that the outer loop can set as the target for the inner loop" maxoutput_description = "The maximum PWM output %" @cbpi.controller class CascadePID(KettleController): a_inner_sensor = Property.Sensor(label="Inner loop sensor") b_inner_kp = Property.Number("Inner loop proportional term", True, 5.0, description=kp_description) c_inner_ki = Property.Number("Inner loop integral term", True, 0.25, description=ki_description) d_inner_kd = Property.Number("Inner loop derivative term", True, 0.0, description=kd_description) e_inner_integrator_initial = Property.Number("Inner loop integrator initial value", True, 0.0) if cbpi.get_config_parameter("unit", "C") == "C": f_maxset = Property.Number("Max inner loop target (°C)", True, 75, description=maxset_description) else: f_maxset = Property.Number("Max inner loop target (°F)", True, 168, description=maxset_description) g_maxoutput = Property.Number("Max inner loop output (%)", True, 100, description=maxoutput_description) h_outer_kp = Property.Number("Outer loop proportional term", True, 5.0, description=kp_description) i_outer_ki = Property.Number("Outer loop integral term", True, 2.0, description=ki_description) j_outer_kd = Property.Number("Outer loop derivative term", True, 1.0, description=kd_description) k_outer_integrator_initial = Property.Number("Outer loop integrator initial value", True, 0.0) l_update_interval = Property.Number("Update interval (s)", True, 2.5, description=update_interval_description) m_notification_timeout = Property.Number("Notification duration (ms)", True, 5000, description=notification_timeout_description) def stop(self): self.actor_power(0.0) self.heater_off() super(KettleController, self).stop() def run(self): if not isinstance(self.a_inner_sensor, str): self.notify("PID Error", "An inner sensor must be selected", timeout=None, type="danger") raise UserWarning("PID - An inner sensor must be selected") # Get inner sensor as an integer inner_sensor = int(self.a_inner_sensor) # Ensure all numerical properties are floats inner_kp = float(self.b_inner_kp) inner_ki = float(self.c_inner_ki) inner_kd = float(self.d_inner_kd) inner_integrator_initial = float(self.e_inner_integrator_initial) maxset = float(self.f_maxset) maxoutput = min(float(self.g_maxoutput), 100.0) outer_kp = float(self.h_outer_kp) outer_ki = float(self.i_outer_ki) outer_kd = float(self.j_outer_kd) outer_integrator_initial = float(self.k_outer_integrator_initial) update_interval = float(self.l_update_interval) notification_timeout = float(self.m_notification_timeout) # Error check if update_interval <= 0.0: self.notify("PID Error", "Update interval must be positive", timeout=None, type="danger") raise ValueError("PID - Update interval must be positive") elif notification_timeout <= 0.0: cbpi.notify("PID Error", "Notification timeout must be positive", timeout=None, type="danger") raise ValueError("PID - Notification timeout must be positive") elif maxoutput < 5.0: cbpi.notify("PID Error", "Notification timeout must be positive", timeout=None, type="danger") raise ValueError("PID - Max output must be at least 5%") else: self.heater_on(0.0) # Initialize PID cascade if cbpi.get_config_parameter("unit", "C") == "C": outer_pid = PID(outer_kp, outer_ki, outer_kd, 0.0, maxset, 1.0, outer_integrator_initial) else: outer_pid = PID(outer_kp, outer_ki, outer_kd, 32, maxset, 1.8, outer_integrator_initial) inner_pid = PID(inner_kp, inner_ki, inner_kd, 0.0, maxoutput, 1.0, inner_integrator_initial) while self.is_running(): waketime = time.time() + update_interval # Get the target temperature outer_target_value = self.get_target_temp() # Calculate inner target value from outer PID outer_current_value = self.get_temp() inner_target_value = round(outer_pid.update(outer_current_value, outer_target_value), 2) # Calculate inner output from inner PID inner_current_value = float(cbpi.cache.get("sensors")[inner_sensor].instance.last_value) inner_output = round(inner_pid.update(inner_current_value, inner_target_value), 2) # Update the heater power self.actor_power(inner_output) # Print loop details cbpi.app.logger.info("[%s] Outer loop PID target/actual/output/integrator: %s/%s/%s/%s" % (waketime, outer_target_value, outer_current_value, inner_target_value, round(outer_pid.integrator, 2))) cbpi.app.logger.info("[%s] Inner loop PID target/actual/output/integrator: %s/%s/%s/%s" % (waketime, inner_target_value, inner_current_value, inner_output, round(inner_pid.integrator, 2))) print(("[%s] Outer loop PID target/actual/output/integrator: %s/%s/%s/%s" % (waketime, outer_target_value, outer_current_value, inner_target_value, round(outer_pid.integrator, 2)))) print(("[%s] Inner loop PID target/actual/output/integrator: %s/%s/%s/%s" % (waketime, inner_target_value, inner_current_value, inner_output, round(inner_pid.integrator, 2)))) # Sleep until update required again if waketime <= time.time() + 0.25: self.notify("PID Error", "Update interval is too short", timeout=notification_timeout, type="warning") cbpi.app.logger.info("PID - Update interval is too short") print("PID - Update interval is too short") else: self.sleep(waketime - time.time()) @cbpi.controller class AdvancedPID(KettleController): a_kp = Property.Number("Proportional term", True, 10.0, description=kp_description) b_ki = Property.Number("Integral term", True, 2.0, description=ki_description) c_kd = Property.Number("Derivative term", True, 1.0, description=kd_description) d_maxoutput = Property.Number("Max output (%)", True, 100, description=maxoutput_description) e_integrator_initial = Property.Number("Integrator initial value", True, 0.0) f_update_interval = Property.Number("Update interval (s)", True, 2.5, description=update_interval_description) g_notification_timeout = Property.Number("Notification duration (ms)", True, 5000, description=notification_timeout_description) def stop(self): self.actor_power(0.0) self.heater_off() super(KettleController, self).stop() def run(self): kp = float(self.a_kp) ki = float(self.b_ki) kd = float(self.c_kd) maxoutput = min(float(self.d_maxoutput), 100.0) integrator_initial = float(self.e_integrator_initial) update_interval = float(self.f_update_interval) notification_timeout = float(self.g_notification_timeout) # Error check if update_interval <= 0.0: self.notify("PID Error", "Update interval must be positive", timeout=None, type="danger") raise ValueError("PID - Update interval must be positive") elif notification_timeout <= 0.0: cbpi.notify("PID Error", "Notification timeout must be positive", timeout=None, type="danger") raise ValueError("PID - Notification timeout must be positive") elif maxoutput < 5.0: cbpi.notify("PID Error", "Notification timeout must be positive", timeout=None, type="danger") raise ValueError("PID - Max output must be at least 5%") else: self.heater_on(0.0) # Initialize PID SinglePID = PID(kp, ki, kd, 0.0, maxoutput, 1.0, integrator_initial) while self.is_running(): waketime = time.time() + update_interval # Get the target temperature target_value = self.get_target_temp() # Calculate inner target value from outer PID current_value = self.get_temp() output = round(SinglePID.update(current_value, target_value), 2) # Update the heater power self.actor_power(output) # Log details cbpi.app.logger.info("[%s] PID target/actual/output/integrator: %s/%s/%s/%s" % (waketime, target_value, current_value, output, round(SinglePID.integrator, 2))) print(("[%s] PID target/actual/output/integrator: %s/%s/%s/%s" % (waketime, target_value, current_value, output, round(SinglePID.integrator, 2)))) # Sleep until update required again if waketime <= time.time() + 0.25: self.notify("PID Error", "Update interval is too short", timeout=notification_timeout, type="warning") cbpi.app.logger.info("PID - Update interval is too short") print("PID - Update interval is too short") else: self.sleep(waketime - time.time()) @cbpi.controller class CascadeHysteresis(KettleController): aa_kp = Property.Number("Proportional term", True, 10.0, description=kp_description) ab_ki = Property.Number("Integral term", True, 2.0, description=ki_description) ac_kd = Property.Number("Derivative term", True, 1.0, description=kd_description) ad_integrator_initial = Property.Number("Integrator initial value", True, 0.0) if cbpi.get_config_parameter("unit", "C") == "C": ae_maxset = Property.Number("Max hysteresis target (°C)", True, 75, description=maxset_description) else: ae_maxset = Property.Number("Max hysteresis target (°F)", True, 168, description=maxset_description) ba_inner_sensor = Property.Sensor(label="Inner (hysteresis) sensor") bb_action = Property.Select(label="Hysteresis Action Type", options=["Positive", "Negative"], description=action_description) bc_on_min = Property.Number("Hysteresis Minimum Time On (s)", True, 45) bd_on_max = Property.Number("Hysteresis Maximum Time On (s)", True, 1800) be_off_min = Property.Number("Hysteresis Minimum Time Off (s)", True, 90) c_update_interval = Property.Number("Update interval (s)", True, 2.5, description=update_interval_description) d_notification_timeout = Property.Number("Notification duration (ms)", True, 5000, description=notification_timeout_description) def stop(self): self.heater_off() super(KettleController, self).stop() def run(self): # Get inner sensor as an integer inner_sensor = int(self.ba_inner_sensor) # Outer PID settings kp = float(self.aa_kp) ki = float(self.ab_ki) kd = float(self.ac_kd) integrator_initial = float(self.ad_integrator_initial) maxset = float(self.ae_maxset) # Inner hysteresis settings positive = self.bb_action == "Positive" on_min = float(self.bc_on_min) on_max = float(self.bd_on_max) off_min = float(self.be_off_min) # General settings update_interval = float(self.c_update_interval) notification_timeout = float(self.d_notification_timeout) # Error check if on_min <= 0.0: self.notify("Hysteresis Error", "Minimum 'on time' must be positive", timeout=None, type="danger") raise ValueError("Hysteresis - Minimum 'on time' must be positive") if on_max <= 0.0: self.notify("Hysteresis Error", "Maximum 'on time' must be positive", timeout=None, type="danger") raise ValueError("Hysteresis - Maximum 'on time' must be positive") if on_min >= on_max: self.notify("Hysteresis Error", "Maximum 'on time' must be greater than the minimum 'on time'", timeout=None, type="danger") raise ValueError("Hysteresis - Maximum 'on time' must be greater than the minimum 'on time'") if off_min <= 0.0: self.notify("Hysteresis Error", "Minimum 'off time' must be positive", timeout=None, type="danger") raise ValueError("Hysteresis - Minimum 'off time' must be positive") if update_interval <= 0.0: self.notify("Hysteresis Error", "Update interval must be positive", timeout=None, type="danger") raise ValueError("Hysteresis - Update interval must be positive") elif notification_timeout <= 0.0: cbpi.notify("Hysteresis Error", "Notification timeout must be positive", timeout=None, type="danger") raise ValueError("Hysteresis - Notification timeout must be positive") else: # Initialize outer PID if cbpi.get_config_parameter("unit", "C") == "C": outer_pid = PID(kp, ki, kd, 0.0, maxset, 1.0, integrator_initial) else: outer_pid = PID(kp, ki, kd, 32, maxset, 1.8, integrator_initial) # Initialize hysteresis inner_hysteresis = Hysteresis(positive, on_min, on_max, off_min) while self.is_running(): waketime = time.time() + update_interval # Get the target temperature outer_target_value = self.get_target_temp() # Calculate inner target value from outer PID outer_current_value = self.get_temp() inner_target_value = round(outer_pid.update(outer_current_value, outer_target_value), 2) inner_current_value = float(cbpi.cache.get("sensors")[inner_sensor].instance.last_value) # Update the hysteresis controller if inner_hysteresis.update(inner_current_value, inner_target_value): self.heater_on(100) cbpi.app.logger.info("[%s] Inner hysteresis actor stays ON" % (waketime)) print(("[%s] Innner hysteresis actor stays ON" % (waketime))) else: self.heater_off() cbpi.app.logger.info("[%s] Inner hysteresis actor stays OFF" % (waketime)) print(("[%s] Innner hysteresis actor stays OFF" % (waketime))) # Print loop details cbpi.app.logger.info("[%s] Outer loop PID target/actual/output/integrator: %s/%s/%s/%s" % (waketime, outer_target_value, outer_current_value, inner_target_value, round(outer_pid.integrator, 2))) print(("[%s] Outer loop PID target/actual/output/integrator: %s/%s/%s/%s" % (waketime, outer_target_value, outer_current_value, inner_target_value, round(outer_pid.integrator, 2)))) # Sleep until update required again if waketime <= time.time() + 0.25: self.notify("Hysteresis Error", "Update interval is too short", timeout=notification_timeout, type="warning") cbpi.app.logger.info("Hysteresis - Update interval is too short") print("Hysteresis - Update interval is too short") else: self.sleep(waketime - time.time()) @cbpi.controller class AdvancedHysteresis(KettleController): a_action = Property.Select(label="Hysteresis Action Type", options=["Positive", "Negative"], description=action_description) b_on_min = Property.Number("Hysteresis Minimum Time On (s)", True, 45) c_on_max = Property.Number("Hysteresis Maximum Time On (s)", True, 1800) d_off_min = Property.Number("Hysteresis Minimum Time Off (s)", True, 90) e_update_interval = Property.Number("Update interval (s)", True, 2.5, description=update_interval_description) f_notification_timeout = Property.Number("Notification duration (ms)", True, 5000, description=notification_timeout_description) def stop(self): self.heater_off() super(KettleController, self).stop() def run(self): positive = self.a_action == "Positive" on_min = float(self.b_on_min) on_max = float(self.c_on_max) off_min = float(self.d_off_min) update_interval = float(self.e_update_interval) notification_timeout = float(self.f_notification_timeout) # Error check if on_min <= 0.0: self.notify("Hysteresis Error", "Minimum 'on time' must be positive", timeout=None, type="danger") raise ValueError("Hysteresis - Minimum 'on time' must be positive") if on_max <= 0.0: self.notify("Hysteresis Error", "Maximum 'on time' must be positive", timeout=None, type="danger") raise ValueError("Hysteresis - Maximum 'on time' must be positive") if on_min >= on_max: self.notify("Hysteresis Error", "Maximum 'on time' must be greater than the minimum 'on time'", timeout=None, type="danger") raise ValueError("Hysteresis - Maximum 'on time' must be greater than the minimum 'on time'") if off_min <= 0.0: self.notify("Hysteresis Error", "Minimum 'off time' must be positive", timeout=None, type="danger") raise ValueError("Hysteresis - Minimum 'off time' must be positive") if update_interval <= 0.0: self.notify("Hysteresis Error", "Update interval must be positive", timeout=None, type="danger") raise ValueError("Hysteresis - Update interval must be positive") elif notification_timeout <= 0.0: cbpi.notify("Hysteresis Error", "Notification timeout must be positive", timeout=None, type="danger") raise ValueError("Hysteresis - Notification timeout must be positive") else: # Initialize hysteresis hysteresis_on = Hysteresis(positive, on_min, on_max, off_min) while self.is_running(): waketime = time.time() + update_interval # Get the target temperature current_value = self.get_temp() target_value = self.get_target_temp() if hysteresis_on.update(current_value, target_value): self.heater_on(100) cbpi.app.logger.info("[%s] Hysteresis actor stays ON" % (waketime)) print(("[%s] Hysteresis actor stays ON" % (waketime))) else: self.heater_off() cbpi.app.logger.info("[%s] Hysteresis actor stays OFF" % (waketime)) print(("[%s] Hysteresis actor stays OFF" % (waketime))) # Sleep until update required again if waketime <= time.time() + 0.25: self.notify("Hysteresis Error", "Update interval is too short", timeout=notification_timeout, type="warning") cbpi.app.logger.info("Hysteresis - Update interval is too short") print("Hysteresis - Update interval is too short") else: self.sleep(waketime - time.time()) class PID(object): def __init__(self, kp, ki, kd, output_min, output_max, integrator_error_max, integrator_initial): self.kp = kp self.ki = ki self.kd = kd self.output_min = output_min self.output_max = output_max # Set integrator maximum in relation to ki and output range # such that the maximum integrator alone could result in no # more than 100% of the output. This can help limit excessive # integrator wind up. if ki == 0.0: self.integrator_max = 0.0 else: self.integrator_max = abs((output_max-output_min)/ki) # Setting an error maximum for the integrator is an additional # measure to prevent excessive integrator windup self.integrator_error_max = abs(integrator_error_max) self.last_time = 0.0 self.last_error = 0.0 # Quietly ensure the initial integrator does not exceed # the magnitude of the integrator maximum if abs(integrator_initial) > abs(self.integrator_max): self.integrator = self.integrator_max else: self.integrator = integrator_initial def update(self, current, target): # Initialization iteration if self.last_time == 0.0: self.last_time = time.time() current_error = target - current # Update last_error self.last_error = current_error # Return output return max(min(self.kp * current_error, self.output_max), self.output_min) # Regular iteration else: # Calculate duration of iteration current_time = time.time() iteration_time = current_time - self.last_time self.last_time = current_time # Calculate error current_error = target - current # Calculate error for use with integratorwith respect to specified error limits integrator_error = max(min(current_error, self.integrator_error_max), -self.integrator_error_max) # Update the integrator with respect to total integrator limits self.integrator = max(min(self.integrator + (integrator_error * iteration_time), self.integrator_max), -self.integrator_max) # Calculate error derivative derivative = (current_error - self.last_error)/iteration_time # Calculate output components p_action = self.kp * current_error i_action = self.ki * self.integrator d_action = self.kd * derivative # Update last_error self.last_error = current_error # Return output return max(min(p_action + i_action + d_action, self.output_max), self.output_min) class Hysteresis(object): def __init__(self, positive, on_min, on_max, off_min): # If positive is true, output will be ON when the control variable is # BELOW the lowerbound (i.e. heating if controlling temperature) # # If positive is false, output will be ON when the control variable is # ABOVE the setpoint (i.e. cooling if controlling temperature) self.positive = positive # The minimum and maximum time in seconds that an output should remain ON # This setting is intended to protect agaisnt scenarios which may lead to # excessive cycling of a compressor, etc. This overrides the buffer. self.on_min = on_min self.on_max = on_max # The minimum time in seconds that an output should remain OFF # This setting is intended to protect agaisnt scenarios which may lead to # excessive cycling of a compressor, etc. self.off_min = off_min # To implement min/max on/off times, keep track of time of last change # in the output self.last_change = time.time() # Record intended state self.on = False def update(self, current, target): interval = time.time() - self.last_change if (self.positive & (current <= target)) | (not(self.positive) & (current >= target)): if self.on: if interval > self.on_max: # Current ON time has exceeded ON time maximum # Turn OFF, and update time of last change self.last_change = time.time() self.on = False else: # Leave ON self.on = True else: if interval < self.off_min: # Prevent turning ON due to OFF time mininum self.on = False else: # OK to turn ON # Turn ON, and update time of last change self.last_change = time.time() self.on = True elif (self.positive & (current > target)) | (not(self.positive) & (current < target)): if self.on: if interval < self.on_min: # Current ON time has NOT exceeded minimum, so leave ON self.on = True else: # OK to turn OFF # Turn OFF, and update time of last change self.last_change = time.time() self.on = False else: # Leave OFF self.on = False return self.on ```
{ "source": "JPGlaser/Tycho", "score": 2 }
#### File: JPGlaser/Tycho/gen_RandEncounters.py ```python import sys, os, math import numpy as np import time as tp from optparse import OptionParser import glob # Importing cPickle/Pickle try: import pickle as pickle except: import pickle # Import the Amuse Base Packages from amuse import datamodel from amuse.units import nbody_system from amuse.units import units from amuse.units import constants from amuse.datamodel import particle_attributes from amuse.io import * from amuse.lab import * from tycho import util # Import the Amuse Gravity & Close-Encounter Packages from amuse.community.smalln.interface import SmallN from amuse.community.kepler.interface import Kepler # Import the Tycho Packages from tycho import create, util, read, write, stellar_systems # ------------------------------------- # # Defining Functions # # ------------------------------------- # def gen_scatteringIC(encounter_db, doMultipleClusters=False): global rootDir global cluster_name max_number_of_rotations = 100 if doMultipleClusters: output_ICDirectory = rootDir+'/'+cluster_name+'/Scatter_IC/' else: output_ICDirectory = rootDir+'/Scatter_IC/' if not os.path.exists(output_ICDirectory): os.mkdir(output_ICDirectory) # Set up the Kepler Workers for Subroutines Now converter = nbody_system.nbody_to_si(1 | units.MSun, 100 |units.AU) kepler_workers = [Kepler(unit_converter = converter, redirection = 'none'), Kepler(unit_converter = converter, redirection = 'none')] for kw in kepler_workers: kw.initialize_code() # Loop Through the Star_IDs for star_ID in list(encounter_db.keys()): output_KeyDirectory = output_ICDirectory+str(star_ID) if not os.path.exists(output_KeyDirectory): os.mkdir(output_KeyDirectory) encounter_ID = 0 for encounter in encounter_db[star_ID]: # Set Up Subdirectory for this Specific Encounter output_EncPrefix = output_KeyDirectory+"/Enc-"+str(encounter_ID) # Set up Encounter Key for this Specific Encounter for this Specific Star rotation_ID = 0 while rotation_ID <= max_number_of_rotations: # Set Up Output Directory for this Specific Iteration output_HDF5File = output_EncPrefix+"_Rot-"+str(rotation_ID)+'.hdf5' next_outFile = output_EncPrefix+"_Rot-"+str(rotation_ID+1)+'.hdf5' if os.path.exists(output_HDF5File): if rotation_ID == 99: rotation_ID += 1 continue elif os.path.exists(next_outFile): rotation_ID += 1 continue # Remove Jupiter and Add Desired Planetary System enc_bodies = replace_planetary_system(encounter.copy(), kepler_workers=kepler_workers) write_set_to_file(enc_bodies, output_HDF5File, 'hdf5', version='2.0', close_file=True) printID = str(star_ID)+"-"+str(encounter_ID)+"-"+str(rotation_ID) print(util.timestamp(), "Finished Generating Random Encounter ID:", printID, "...") rotation_ID += 1 encounter_ID += 1 # Stop the Kepler Workers for kw in kepler_workers: kw.stop() def replace_planetary_system(bodies, kepler_workers=None, base_planet_ID=50000, converter=None): # Set up the Converter if not ProvIDed if kepler_workers == None and converter == None: converter = nbody_system.nbody_to_si(bodies.mass.sum(), 2 * np.max(bodies.radius.number) | bodies.radius.unit) # Get the Hierarchical Systems from the Particle Set enc_systems = stellar_systems.get_heirarchical_systems_from_set(bodies, kepler_workers=kepler_workers, converter=converter) sys_with_planets = [] # Remove Any Tracer Planets in the Encounter and Adds the Key to Add in the New System for sys_key in list(enc_systems.keys()): for particle in enc_systems[sys_key]: if particle.id >= base_planet_ID: enc_systems[sys_key].remove_particle(particle) sys_with_planets.append(sys_key) # Allows for Planets to be Added to Single Stars for sys_key in list(enc_systems.keys()): if (len(enc_systems[sys_key]) == 1) and (sys_key not in sys_with_planets): sys_with_planets.append(sys_key) # Add in a New Planetary System for sys_key in sys_with_planets: planets = create.planetary_systems_v2(enc_systems[sys_key], 1, Jupiter=True, \ Earth=True, Neptune=True, \ kepler_worker=kepler_workers[0]) enc_systems[sys_key].add_particles(planets) new_bodies = Particles() for sys_key in enc_systems: new_bodies.add_particles(enc_systems[sys_key]) return new_bodies # ------------------------------------- # # Main Production Script # # ------------------------------------- # if __name__ == '__main__': parser = OptionParser() parser.add_option("-d", "--rootdirectory", dest="rootDir", default=None, type="str", help="Enter the full directory of the Root Folder. Defaults to your CWD unless -M is on.") parser.add_option("-M", "--doMultipleClusters", dest="doMultipleClusters", action="store_true", help="Flag to turn on for running the script over a series of multiple clusters.") (options, args) = parser.parse_args() if options.doMultipleClusters: if options.rootDir != None: rootDir = options.rootDir+'/*' else: print(util.timestamp(), "Please provide the path to your root directory which contains all cluster folders!", cluster_name,"...") else: if options.rootDir != None: rootDir = options.rootDir else: rootDir = os.getcwd() # Bring Root Directory Path Inline with os.cwd() if rootDir.endswith("/"): rootDir = rootDir[:-1] orig_stdout = sys.stdout log_file = open(rootDir+"/rand_encounters.log","w") sys.stdout = log_file paths_of_enc_files = glob.glob(rootDir+'/*_encounters_cut.pkl') print(paths_of_enc_files) cluster_names = [path.split("/")[-2] for path in paths_of_enc_files] print(cluster_names) for i, path in enumerate(paths_of_enc_files): # Read in Encounter Directory encounter_db = pickle.load(open(path, "rb")) cluster_name = cluster_names[i] # Report Start of Generating IC for Cut Encounter Directory sys.stdout.flush() print(util.timestamp(), "Generating initial conditions for", cluster_name,"...") sys.stdout.flush() # Generate IC for Scattering Experiments gen_scatteringIC(encounter_db, doMultipleClusters=options.doMultipleClusters) sys.stdout = orig_stdout log_file.close() ``` #### File: JPGlaser/Tycho/gen_scatterDB.py ```python import numpy as np import random as rp import os, sys import scipy as sp from scipy import optimize from scipy import special import pickle import glob import copy # Import the Amuse Base Packages import amuse from amuse import datamodel from amuse.units import nbody_system from amuse.units import units from amuse.units import constants from amuse.datamodel import particle_attributes from amuse.io import * from amuse.lab import * from tycho import util, create, read, write, stellar_systems set_printing_strategy("custom", preferred_units = [units.MSun, units.AU, units.day], precision = 6, prefix = "", separator = "[", suffix = "]") def replace_planetary_system(bodies, base_planet_ID=50000, converter=None): enc_systems = stellar_systems.get_heirarchical_systems_from_set(bodies, converter=converter) sys_with_planets = [] # Remove Any Tracer Planets in the Encounter and Adds the Key to Add in the New System for sys_key in list(enc_systems.keys()): for particle in enc_systems[sys_key]: if particle.id >= base_planet_ID: enc_systems[sys_key].remove_particle(particle) sys_with_planets.append(sys_key) # Allows for Planets to be Added to Single Stars for sys_key in list(enc_systems.keys()): if (len(enc_systems[sys_key]) == 1) and (sys_key not in sys_with_planets): sys_with_planets.append(sys_key) #print sys_with_planets # Add in a New Planetary System for sys_key in sys_with_planets: planets = create.planetary_systems_v2(enc_systems[sys_key], 1, Jupiter=True, Earth=True, Neptune=True) enc_systems[sys_key].add_particles(planets) new_bodies = Particles() for sys_key in enc_systems: new_bodies.add_particles(enc_systems[sys_key]) return new_bodies if __name__ == '__main__': cutEnc_filePath = glob.glob("/home/draco/jglaser/Public/Tycho_Runs/MarkG/*/*_encounters_cut.pkl") cluster_rootDir = glob.glob("/home/draco/jglaser/Public/Tycho_Runs/MarkG/*/") cluster_names = [x.split("/")[-2] for x in cluster_rootDir] cutEnc_db = {} for i, filepath in enumerate(cutEnc_filePath): opened_file = open(filepath, 'rb') cutEnc_db[cluster_names[i]] = pickle.load(opened_file) opened_file.close() print(list(cutEnc_db.keys())) old_cutEnc_db = copy.deepcopy(cutEnc_db) for clusterName in list(cutEnc_db.keys()): for primaryStar in list(cutEnc_db[clusterName].keys()): origionalEnc = cutEnc_db[clusterName][primaryStar][0].copy() newEncList = [] for i in range(100): newEncList.append(replace_planetary_system(origionalEnc)) cutEnc_db[clusterName][primaryStar] = newEncList output_file = open(os.getcwd()+"full_scatterDB.pkl", 'rb') pickle.dump(cutEnc_db, output_file) print("Finished!") ```
{ "source": "jpgneves/hojehatransportes", "score": 2 }
#### File: hojehatransportes/hat/forms.py ```python from django.forms import ModelForm, Textarea, HiddenInput from models import Strike class SubmitForm(ModelForm): class Meta: model = Strike fields = ('description', 'company', 'start_date', 'all_day', 'end_date', 'region', 'source_link', 'submitter') widgets = {'description': Textarea(attrs={'cols': 60, 'rows': 10}), 'submitter': HiddenInput()} def clean(self): cleaned_data = self.cleaned_data all_day = cleaned_data.get("all_day") end_date = cleaned_data.get("end_date") if not all_day and not end_date: # If it isn't an "all day" event, we must have an end_date msg = u"Must have an end date or mark as an 'all day' event." self._errors["all_day"] = self.error_class([msg]) self._errors["end_date"] = self.error_class([msg]) # Clear invalid data del cleaned_data["all_day"] del cleaned_data["end_date"] if all_day: cleaned_data["end_date"] = cleaned_data["start_date"] return cleaned_data ``` #### File: hojehatransportes/social_auth_extra/sapo.py ```python import json from social.backends.oauth import BaseOAuth1 # Sapo configuration SAPO_SERVER = 'id.sapo.pt' SAPO_REQUEST_TOKEN_URL = 'https://%s/oauth/request_token' % SAPO_SERVER SAPO_ACCESS_TOKEN_URL = 'https://%s/oauth/access_token' % SAPO_SERVER # Note: oauth/authorize forces the user to authorize every time. # oauth/authenticate uses their previous selection, barring revocation. SAPO_AUTHORIZATION_URL = 'http://%s/oauth/authenticate' % SAPO_SERVER SAPO_CHECK_AUTH = 'https://services.sapo.pt/SSO/GetPublicProfile' class SapoOAuth(BaseOAuth1): """Sapo OAuth authentication backend""" name = 'sapo' EXTRA_DATA = [('id', 'id')] AUTHORIZATION_URL = SAPO_AUTHORIZATION_URL REQUEST_TOKEN_URL = SAPO_REQUEST_TOKEN_URL ACCESS_TOKEN_URL = SAPO_ACCESS_TOKEN_URL SERVER_URL = SAPO_SERVER SETTINGS_KEY_NAME = 'SAPO_CONSUMER_KEY' SETTINGS_SECRET_NAME = 'SAPO_CONSUMER_SECRET' def get_user_details(self, response): """Return user details from Sapo account""" return {'username': response['screen_name'], 'email': '', # not supplied 'fullname': response['name'], 'first_name': response['name'], 'last_name': ''} def user_data(self, access_token): """Return user data provided""" request = self.oauth_request(access_token, SAPO_CHECK_AUTH) json = self.fetch_response(request) try: return json.loads(json) except json.JSONDecodeError: return None # Backend definition BACKENDS = { 'sapo': SapoOAuth, } ```
{ "source": "jpgrayson/dot-files", "score": 3 }
#### File: jpgrayson/dot-files/install.py ```python from pathlib import Path import argparse import hashlib import os import shutil HERE = Path(__file__).parent.absolute() EXCLUDE = [ HERE / 'install.py', HERE / 'README.md', HERE / 'LICENSE.md', HERE / '.git', HERE / '.gitmodules', HERE / '.gitignore', ] def hash_digest(path): return hashlib.md5(path.read_bytes()).hexdigest() def identical(path0, path1): return hash_digest(path0) == hash_digest(path1) def link(src, dst): target = Path(os.path.relpath(src, os.path.dirname(dst))) os.symlink(target, dst) print(f'{dst}: linked to {target}') def install(src_dir, dst_dir): if not dst_dir.exists(): print(f'{dst_dir}: mkdir') dst_dir.mkdir(parents=True) make_links(src_dir, dst_dir) elif dst_dir.is_symlink(): print(f'{dst_dir}: is symlink, skipping') elif dst_dir.is_dir(): make_links(src_dir, dst_dir) else: print(f'{dst_dir}: exists but is not dir') def make_links(src_dir, dst_dir): for src in src_dir.iterdir(): if src in EXCLUDE: continue dst = dst_dir / src.relative_to(src_dir) if src.is_dir(): install(src, dst) elif not dst.exists(): link(src, dst) elif dst.samefile(src): print(f'{dst}: already linked') elif dst.is_file(): if identical(dst, src): dst.unlink() link(src, dst) else: print(f'{dst}: differs, not messing') else: print(f'{dst}: exists but is not file') def main(): parser = argparse.ArgumentParser() parser.add_argument( 'dst', metavar='DIR', nargs='?', default=Path.home(), type=Path, help='Installation destination. Default: %(default)s', ) args = parser.parse_args() install(HERE, args.dst) if __name__ == '__main__': main() ```
{ "source": "jpgualdarrama/pokescrape", "score": 3 }
#### File: jpgualdarrama/pokescrape/parse.py ```python import os.path import urllib.request # import urllib3 from html.parser import HTMLParser from pk import * from pokemon import * from move import * from ability import * nameMap = {} baseExpYields = [0 for i in range(0, num_pokemon + 1)] colors = [0 for i in range(0, num_pokemon + 1)] bodyStyles = [0 for i in range(0, num_pokemon + 1)] def Init(): # http = urllib3 loadNames() loadBaseExpYields() loadColors() loadBodyStyles() loadMoves() loadAbilities() def loadNames(): source = open('input_files/names.txt') for line in source: pieces = line.split('\t') name = pieces[1].strip().lower() nameMap[name] = int(pieces[0].strip()) source.close() def loadBaseExpYields(): source = open('input_files/baseexpyields.txt') for line in source: pieces = line.split('\t') name = pieces[2].strip().lower() baseExpYields[nameMap[name]] = int(pieces[3].strip()) source.close() def loadColors(): source = open('input_files/colors.txt') cur_color = 0 for line in source: if line.strip().isdigit(): cur_color = int(line.strip()) else: pieces = line.split('\t') for piece in pieces: name = piece.strip().lower() if name in nameMap: colors[nameMap[name]] = cur_color source.close() def loadBodyStyles(): source = open('input_files/bodystyles.txt') cur_style = 0 for line in source: if line.strip().isdigit(): cur_style = int(line.strip()) else: pieces = line.split('\t') name = pieces[1].strip().lower() if name in nameMap: bodyStyles[nameMap[name]] = cur_style source.close() def loadMoves(): source = open('input_files/moves.txt') for line in source: pieces = line.split('\t') move = Move() move.name = pieces[0] if pieces[1] == 'NOR': move.type = 1 elif pieces[1] == 'FIG': move.type = 2 elif pieces[1] == 'FLY': move.type = 3 elif pieces[1] == 'POI': move.type = 4 elif pieces[1] == 'GRO': move.type = 5 elif pieces[1] == 'ROC': move.type = 6 elif pieces[1] == 'BUG': move.type = 7 elif pieces[1] == 'GHO': move.type = 8 elif pieces[1] == 'STE': move.type = 9 elif pieces[1] == 'FIR': move.type = 10 elif pieces[1] == 'WAT': move.type = 11 elif pieces[1] == 'GRA': move.type = 12 elif pieces[1] == 'ELE': move.type = 13 elif pieces[1] == 'PSY': move.type = 14 elif pieces[1] == 'ICE': move.type = 15 elif pieces[1] == 'DRA': move.type = 16 elif pieces[1] == 'DAR': move.type = 17 elif pieces[1] == 'FAI': move.type = 18 else: print('Failed to parse move type \'%s\'' % pieces[1]) move.pp = int(pieces[2]) move.power = 0 if pieces[3] == '-' else int(pieces[3]) move.accuracy = 0 if pieces[4] == '-' else int(pieces[4]) if pieces[5] == 'No Damage.': move.category = 3 move.damage = 0 else: if 'Physical Attack' in pieces[5]: move.category = 1 elif 'Special Attack' in pieces[5]: move.category = 2 else: print('Failed to parse category \'%s\'' % pieces[5]) if 'Sp.Atk' in pieces[5]: if 'Sp.Def' in pieces[5]: move.damage = 4 elif 'Def' in pieces[5]: move.damage = 2 else: print('Failed to parse damage \'%s\'' % pieces[5]) elif 'Atk' in pieces[5]: if 'Sp.Def' in pieces[5]: move.damage = 3 elif 'Def' in pieces[5]: move.damage = 1 else: print('Failed to parse damage \'%s\'' % pieces[5]) else: print('Failed to parse damage \'%s\'' % pieces[5]) move.description = pieces[6].strip() moves_map[move.name.lower()] = len(moves) moves.append(move) source.close() def loadAbilities(): source = open('input_files/abilities.txt', encoding='utf8') for line in source: pieces = line.split('\t') ability = Ability() ability.name = pieces[0] ability.description = pieces[1].strip() abilities_map[ability.name.lower()] = len(abilities) abilities.append(ability) source.close() def GetAndParse(number, force = False): if not os.path.exists('cache'): os.makedirs('cache') suffix = '%03i.shtml' % number path = 'cache/' + suffix if force == True or os.path.isfile(path) == False: url = 'http://www.serebii.net/pokedex-xy/' + suffix print('Fetching \'%s\' to \'%s\'' % (url, path)) data = urllib.request.urlopen(url) # data = http.request.urlopen(url) out = open(path, 'wb') out.write(data.read().decode('ISO-8859-1').replace('&eacute;', '\u00E9').encode('utf-8')) print('Using newly-fetched file \'%s\'' % path) else: print('Using already-fetched file \'%s\'' % path) source = open(path, 'r', encoding='utf8') parser = PokemonParser() parser.feed(source.read()) source.close() parser.pokemon.color = colors[parser.pokemon.national_dex_number] parser.pokemon.body_style = bodyStyles[parser.pokemon.national_dex_number] parser.pokemon.base_exp_yield = baseExpYields[parser.pokemon.national_dex_number] print('Done parsing \'%s\'' % path) return parser.pokemon class PokemonParser(HTMLParser): def __init__(self): super().__init__(convert_charrefs=True) self.pokemon = Pokemon() self.cur_fooinfo = 0 self.td_cur_level = 0 self.fooinfo_enter_level = -1 self.fooinfo_cur_td = 0 self.cen_enter_level = -1 self.cen_cur_td = 0 self.is_bold = False self.is_evo = False self.is_font = False self.fooinfo_temp = 0 def handle_starttag(self, tag, attrs): if tag == 'td': if ('class', 'fooinfo') in attrs: if self.fooinfo_enter_level != -1: self.cur_fooinfo += 1 self.fooinfo_cur_td = 0 self.fooinfo_temp = 0 self.fooinfo_enter_level = self.td_cur_level if ('class', 'cen') in attrs: if self.cen_enter_level != -1: self.cen_cur_td = 0 self.cen_enter_level = self.td_cur_level self.td_cur_level += 1 # Parse types out of links if tag == 'a': if self.cen_enter_level != -1: if self.cur_fooinfo == 5: ptype = PkType[attrs[0][1][12:-6]] if self.pokemon.types[0] == 0: self.pokemon.types = (ptype, 0) else: self.pokemon.types = (self.pokemon.types[0], ptype) self.is_bold = tag == 'b' self.is_evo = ('class', 'fooevo') in attrs self.is_font = tag == 'font' def handle_endtag(self, tag): if tag == 'td': self.td_cur_level -= 1 if self.fooinfo_enter_level != -1: self.fooinfo_cur_td += 1 if self.fooinfo_enter_level == self.td_cur_level: self.cur_fooinfo += 1 self.fooinfo_enter_level = -1 self.fooinfo_cur_td = 0 self.fooinfo_temp = 0 if self.cen_enter_level != -1: self.cen_cur_td += 1 if self.cen_enter_level == self.td_cur_level: self.cen_enter_level = -1 self.cen_cur_td = 0 def handle_data(self, data): if self.is_evo: if data == 'Locations': self.cur_fooinfo = 18 elif data == 'Flavor Text': self.cur_fooinfo = 50 elif data == 'Generation VI Level Up': self.cur_fooinfo = 100 elif data == 'TM & HM Attacks': self.cur_fooinfo = 400 elif data == 'Egg Moves ': self.cur_fooinfo = 500 elif data == 'Move Tutor Attacks': self.cur_fooinfo = 600 elif data == 'Omega Ruby/Alpha Sapphire Move Tutor Attacks': self.cur_fooinfo = 700 elif data == 'Special Moves': self.cur_fooinfo = 800 elif data == 'Pre-Evolution Only Moves': self.cur_fooinfo = 900 elif data == 'Transfer Only Moves ': self.cur_fooinfo = 1000 if self.is_font: if data == 'X & Y Level Up': self.cur_fooinfo = 200 elif data == '\u03A9R\u03B1S Level Up': self.cur_fooinfo = 300 if self.is_bold: if data == 'Stats': self.cur_fooinfo = 1100 if self.fooinfo_enter_level != -1: # 'Name' if self.cur_fooinfo == 1: self.pokemon.name = data # 'No.' elif self.cur_fooinfo == 3: if self.fooinfo_cur_td == 1: self.pokemon.national_dex_number = int(data[1:]) # 'Gender Ratio' elif self.cur_fooinfo == 4: if 'is Genderless' in data: self.pokemon.gender_threshold = PkGender['0:0'] elif self.fooinfo_cur_td == 1: if data == '0%': self.pokemon.gender_threshold = PkGender['0:1'] elif data == '12.5%': self.pokemon.gender_threshold = PkGender['1:7'] elif data == '25%': self.pokemon.gender_threshold = PkGender['1:3'] elif data == '50%': self.pokemon.gender_threshold = PkGender['1:1'] elif data == '75%': self.pokemon.gender_threshold = PkGender['3:1'] elif data == '87.5%': self.pokemon.gender_threshold = PkGender['7:1'] elif data == '100%': self.pokemon.gender_threshold = PkGender['1:0'] else: print('Failed to parse gender ratio \'%s\'' % data) # 'Classification' elif self.cur_fooinfo == 5: self.pokemon.species = data[:-8] # 'Height' elif self.cur_fooinfo == 6: if 'm' in data: self.pokemon.height = float(data.strip()[:-1]) # 'Weight' elif self.cur_fooinfo == 7: if 'kg' in data: self.pokemon.weight = float(data.strip()[:-2]) # 'Capture Rate' elif self.cur_fooinfo == 8: if data != '(XY)' and data != '(\u03A9R\u03B1S)': self.pokemon.catch_rate = int(data) # 'Base Egg Steps' elif self.cur_fooinfo == 9: if data != '\xa0': self.pokemon.hatch_counter = int(data.replace(',', '')) // 255 # 'Abilities' elif self.cur_fooinfo == 10: if self.is_bold: if self.fooinfo_temp % 2 == 0: if data == 'Hidden Ability': self.fooinfo_temp = 4 else: data = data.strip().lower() if self.fooinfo_temp == 0: self.pokemon.abilities = (abilities_map[data], 0, 0) elif self.fooinfo_temp == 2: self.pokemon.abilities = (self.pokemon.abilities[0], abilities_map[data], 0) elif self.fooinfo_temp == 6: self.pokemon.abilities = (self.pokemon.abilities[0], self.pokemon.abilities[1], abilities_map[data]) self.fooinfo_temp += 1 # 'Experience Growth' elif self.cur_fooinfo == 11: if not 'Points' in data: if data == 'Slow': self.pokemon.exp_group = PkExpGroup['slow'] elif data == 'Medium Slow': self.pokemon.exp_group = PkExpGroup['mediumslow'] elif data == 'Medium Fast': self.pokemon.exp_group = PkExpGroup['mediumfast'] elif data == 'Fast': self.pokemon.exp_group = PkExpGroup['fast'] elif data == 'Erratic': self.pokemon.exp_group = PkExpGroup['erratic'] elif data == 'Fluctuating': self.pokemon.exp_group = PkExpGroup['fluctuating'] else: print('Failed to parse experience group \'%s\'' % data) # 'Base Happiness' elif self.cur_fooinfo == 12: self.pokemon.base_friendship = int(data) # 'Effort Values Earned' elif self.cur_fooinfo == 13: n = int(data[:1]) y = self.pokemon.ev_yield if 'HP' in data: self.pokemon.ev_yield = (n, y[1], y[2], y[3], y[4], y[5]) elif 'Sp. Attack' in data: self.pokemon.ev_yield = (y[0], y[1], y[2], n, y[4], y[5]) elif 'Sp. Defense' in data: self.pokemon.ev_yield = (y[0], y[1], y[2], y[3], n, y[5]) elif 'Attack' in data: self.pokemon.ev_yield = (y[0], n, y[2], y[3], y[4], y[5]) elif 'Defense' in data: self.pokemon.ev_yield = (y[0], y[1], n, y[3], y[4], y[5]) elif 'Speed' in data: self.pokemon.ev_yield = (y[0], y[1], y[2], y[3], y[4], n) else: print('Failed to parse EV yield \'%s\'' % data) # 'Egg Groups' elif self.cur_fooinfo == 15: data = data.strip().lower() if 'cannot breed' in data: self.pokemon.egg_groups = (PkEggGroup['undiscovered'], 0) elif data == 'ditto': if self.pokemon.national_dex_number == 132: self.pokemon.egg_groups = (PkEggGroup['ditto'], 0) elif data != '': if data in PkEggGroup: group = PkEggGroup[data] if self.pokemon.egg_groups[0] == 0: self.pokemon.egg_groups = (group, 0) elif self.pokemon.egg_groups[0] != group: self.pokemon.egg_groups = (self.pokemon.egg_groups[0], group) # 'Flavor Text' (X) elif self.cur_fooinfo == 50: self.pokemon.pokedex_x = data # XXX Compensate for Serebii's double closing tags at the end of pokedex entries self.td_cur_level += 1 # 'Flavor Text' (Y) elif self.cur_fooinfo == 51: self.pokemon.pokedex_y = data # XXX Compensate for Serebii's double closing tags at the end of pokedex entries self.td_cur_level += 1 # 'Flavor Text' (OR/AS?) elif self.cur_fooinfo == 52: self.pokemon.pokedex_or = data self.pokemon.pokedex_as = data # XXX Compensate for Serebii's double closing tags at the end of pokedex entries self.td_cur_level += 1 # 'Flavor Text' (AS) elif self.cur_fooinfo == 53: self.pokemon.pokedex_as = data # XXX Compensate for Serebii's double closing tags at the end of pokedex entries self.td_cur_level += 1 # 'Gen VI Level Up' elif self.cur_fooinfo >= 100 and self.cur_fooinfo < 200: data = data.strip() index = (self.cur_fooinfo - 100) // 3 offset = (self.cur_fooinfo - 100) % 3 if offset == 0: level = 0 if data == '\u2014' else int(data) self.pokemon.learnset_level_xy.append(level) self.pokemon.learnset_level_oras.append(level) elif offset == 1: self.pokemon.learnset_level_xy.append((self.pokemon.learnset_level_xy.pop(), moves_map[data.lower()])) self.pokemon.learnset_level_oras.append((self.pokemon.learnset_level_oras.pop(), moves_map[data.lower()])) elif offset == 2: self.cur_fooinfo = 100 + offset # 'X & Y Level Up' elif self.cur_fooinfo >= 200 and self.cur_fooinfo < 300: data = data.strip() index = (self.cur_fooinfo - 200) // 3 offset = (self.cur_fooinfo - 200) % 3 if offset == 0: level = 0 if data == '\u2014' else int(data) self.pokemon.learnset_level_xy.append(level) elif offset == 1: self.pokemon.learnset_level_xy.append((self.pokemon.learnset_level_xy.pop(), moves_map[data.lower()])) elif offset == 2: self.cur_fooinfo = 200 + offset # 'ORaS Level Up' elif self.cur_fooinfo >= 300 and self.cur_fooinfo < 400: data = data.strip() index = (self.cur_fooinfo - 300) // 3 offset = (self.cur_fooinfo - 300) % 3 if offset == 0: level = 0 if data == '\u2014' else int(data) self.pokemon.learnset_level_oras.append(level) elif offset == 1: self.pokemon.learnset_level_oras.append((self.pokemon.learnset_level_oras.pop(), moves_map[data.lower()])) elif offset == 2: self.cur_fooinfo = 300 + offset # 'TM & HM Attacks' elif self.cur_fooinfo >= 400 and self.cur_fooinfo < 500: data = data.strip() index = (self.cur_fooinfo - 400) // 3 offset = (self.cur_fooinfo - 400) % 3 if offset == 1: self.pokemon.learnset_machine.append(moves_map[data.lower()]) elif offset == 2: self.cur_fooinfo = 400 + offset # 'Egg Moves' elif self.cur_fooinfo >= 500 and self.cur_fooinfo < 600: data = data.strip() index = (self.cur_fooinfo - 500) // 9 offset = (self.cur_fooinfo - 500) % 9 if offset == 0: self.pokemon.learnset_egg_move.append(moves_map[data.lower()]) if data != 'Volt Tackle': self.cur_fooinfo += 7 elif offset == 8: self.cur_fooinfo = 500 + offset # 'Move Tutor Attacks' elif self.cur_fooinfo >= 600 and self.cur_fooinfo < 700: data = data.strip() index = (self.cur_fooinfo - 600) // 8 offset = (self.cur_fooinfo - 600) % 8 if offset == 0: self.pokemon.learnset_tutor.append(moves_map[data.lower()]) elif offset == 7: self.cur_fooinfo = 600 + offset # 'Omega Ruby/Alpha Sapphire Move Tutor Attacks' elif self.cur_fooinfo >= 700 and self.cur_fooinfo < 800: data = data.strip() index = (self.cur_fooinfo - 700) // 8 offset = (self.cur_fooinfo - 700) % 8 if offset == 0: self.pokemon.learnset_tutor.append(moves_map[data.lower()]) elif offset == 7: self.cur_fooinfo = 700 + offset # 'Special Moves' elif self.cur_fooinfo >= 800 and self.cur_fooinfo < 900: data = data.strip() index = (self.cur_fooinfo - 800) // 9 offset = (self.cur_fooinfo - 800) % 9 if offset == 0: self.pokemon.learnset_special.append(moves_map[data.lower()]) elif offset == 8: self.cur_fooinfo = 800 + offset # 'Pre-Evolution Only Moves' elif self.cur_fooinfo >= 900 and self.cur_fooinfo < 1000: data = data.strip() index = (self.cur_fooinfo - 900) // 3 offset = (self.cur_fooinfo - 900) % 3 if offset == 0: self.pokemon.learnset_evolve.append(moves_map[data.lower()]) elif offset == 2: self.cur_fooinfo = 900 + offset # 'Transfer Only Moves' elif self.cur_fooinfo >= 1000 and self.cur_fooinfo < 1100: data = data.strip() index = (self.cur_fooinfo - 1000) // 2 offset = (self.cur_fooinfo - 1000) % 2 if offset == 0: self.pokemon.learnset_transfer.append(moves_map[data.lower()]) elif offset == 1: self.cur_fooinfo = 1000 + offset # 'Stats' elif self.cur_fooinfo >= 1101 and self.cur_fooinfo < 1107: b = self.pokemon.base_stats index = self.cur_fooinfo - 1101 n = int(data) if index == 0: self.pokemon.base_stats = (n, b[1], b[2], b[3], b[4], b[5]) elif index == 1: self.pokemon.base_stats = (b[0], n, b[2], b[3], b[4], b[5]) elif index == 2: self.pokemon.base_stats = (b[0], b[1], n, b[3], b[4], b[5]) elif index == 3: self.pokemon.base_stats = (b[0], b[1], b[2], n, b[4], b[5]) elif index == 4: self.pokemon.base_stats = (b[0], b[1], b[2], b[3], n, b[5]) elif index == 5: self.pokemon.base_stats = (b[0], b[1], b[2], b[3], b[4], n) ``` #### File: jpgualdarrama/pokescrape/pokemon.py ```python from pk import * from move import * from ability import * class Pokemon: def __init__(self): self.national_dex_number = 0 self.name = 'None' self.species = 'None' self.types = (0, 0) self.abilities = (0, 0, 0) self.gender_threshold = 0 self.catch_rate = 0 self.egg_groups = (0, 0) self.hatch_counter = 0 self.height = 0.0 self.weight = 0.0 self.base_exp_yield = 0 self.base_friendship = 0 self.exp_group = 0 self.ev_yield = (0, 0, 0, 0, 0, 0) self.body_style = 0 self.color = 0 self.base_stats = (0, 0, 0, 0, 0, 0) self.pokedex_x = 'None' self.pokedex_y = 'None' self.pokedex_or = 'None' self.pokedex_as = 'None' self.learnset_level_xy = [] self.learnset_level_oras = [] self.learnset_machine = [] self.learnset_egg_move = [] self.learnset_tutor = [] self.learnset_special = [] self.learnset_evolve = [] self.learnset_transfer = [] def __str__(self): return ('Dex #: %i' % self.national_dex_number + '\nName: %s' % self.name + '\nSpecies: %s' % self.species + '\nTypes: %i/%i (%s/%s)' % (self.types[0], self.types[1], PkIType[self.types[0]], PkIType[self.types[1]]) + '\nAbilities: %i/%i/%i (%s/%s/%s)' % (self.abilities[0], self.abilities[1], self.abilities[2], abilities[self.abilities[0]].name, abilities[self.abilities[1]].name, abilities[self.abilities[2]].name) + '\nGender Threshold: %i (%s)' % (self.gender_threshold, PkIGender[self.gender_threshold]) + '\nCatch Rate: %i' % self.catch_rate + '\nEgg Groups: %i/%i (%s/%s)' % (self.egg_groups[0], self.egg_groups[1], PkIEggGroup[self.egg_groups[0]], PkIEggGroup[self.egg_groups[1]]) + '\nHatch Counter: %i' % self.hatch_counter + '\nHeight: %f' % self.height + '\nWeight: %f' % self.weight + '\nBase Exp Yield: %i' % self.base_exp_yield + '\nBase Friendship: %i' % self.base_friendship + '\nExp Group: %i (%s)' % (self.exp_group, PkIExpGroup[self.exp_group]) + '\nEV Yield: %i/%i/%i/%i/%i/%i' % self.ev_yield + '\nBody Style: %i' % self.body_style + '\nColor: %i (%s)' % (self.color, PkIColor[self.color]) + '\nBase Stats: %i/%i/%i/%i/%i/%i' % self.base_stats + '\nPokedex Entry (X): %s' % self.pokedex_x + '\nPokedex Entry (Y): %s' % self.pokedex_y + '\nPokedex Entry (OR): %s' % self.pokedex_or + '\nPokedex Entry (AS): %s' % self.pokedex_as + '\nLearnset (XY): %s' % str(self.learnset_level_xy) + '\nLearnset (ORAS): %s' % str(self.learnset_level_oras) + '\nLearnset (TM/HM): %s' % str(self.learnset_machine) + '\nLearnset (Egg Move): %s' % str(self.learnset_egg_move) + '\nLearnset (Tutor): %s' % str(self.learnset_tutor) + '\nLearnset (Special): %s' % str(self.learnset_special) + '\nLearnset (Pre-evo): %s' % str(self.learnset_evolve) + '\nLearnset (Transfer): %s' % str(self.learnset_transfer)) ```
{ "source": "jph00/SimpleSQLite", "score": 2 }
#### File: SimpleSQLite/test/test_func.py ```python from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals import pytest from simplesqlite import ( append_table, copy_table, connect_sqlite_memdb, InvalidAttributeNameError, InvalidTableNameError, NullDatabaseConnectionError, ) from simplesqlite._func import ( validate_attr_name, validate_table_name, ) from .fixture import ( TEST_TABLE_NAME, con_mix, con_ro, con_profile, con_null, con_empty, ) class Test_validate_table_name(object): @pytest.mark.parametrize(["value"], [ ["valid_table_name"], ["table_"], ]) def test_normal(self, value): validate_table_name(value) @pytest.mark.parametrize(["value", "expected"], [ [None, InvalidTableNameError], ["", InvalidTableNameError], ["table", InvalidTableNameError], ["TABLE", InvalidTableNameError], ["Table", InvalidTableNameError], ["%hoge", InvalidTableNameError], ]) def test_exception(self, value, expected): with pytest.raises(expected): validate_table_name(value) class Test_validate_attr_name(object): @pytest.mark.parametrize(["value"], [ ["valid_attr_name"], ["attr_"], ]) def test_normal(self, value): validate_attr_name(value) @pytest.mark.parametrize(["value", "expected"], [ [None, InvalidAttributeNameError], ["", InvalidAttributeNameError], ["table", InvalidAttributeNameError], ["TABLE", InvalidAttributeNameError], ["Table", InvalidAttributeNameError], ["%hoge", InvalidAttributeNameError], ]) def test_exception(self, value, expected): with pytest.raises(expected): validate_attr_name(value) class Test_append_table(object): def test_normal(self, con_mix, con_empty): assert append_table( src_con=con_mix, dst_con=con_empty, table_name=TEST_TABLE_NAME) result = con_mix.select(select="*", table_name=TEST_TABLE_NAME) src_data_matrix = result.fetchall() result = con_empty.select(select="*", table_name=TEST_TABLE_NAME) dst_data_matrix = result.fetchall() assert src_data_matrix == dst_data_matrix assert append_table( src_con=con_mix, dst_con=con_empty, table_name=TEST_TABLE_NAME) result = con_mix.select(select="*", table_name=TEST_TABLE_NAME) src_data_matrix = result.fetchall() result = con_empty.select(select="*", table_name=TEST_TABLE_NAME) dst_data_matrix = result.fetchall() assert src_data_matrix * 2 == dst_data_matrix def test_exception_mismatch_schema(self, con_mix, con_profile): with pytest.raises(ValueError): append_table( src_con=con_mix, dst_con=con_profile, table_name=TEST_TABLE_NAME) def test_exception_null_connection(self, con_mix, con_null): with pytest.raises(NullDatabaseConnectionError): append_table( src_con=con_mix, dst_con=con_null, table_name=TEST_TABLE_NAME) def test_exception_permission(self, con_mix, con_ro): with pytest.raises(IOError): append_table( src_con=con_mix, dst_con=con_ro, table_name=TEST_TABLE_NAME) class Test_copy_table(object): def test_normal(self, con_mix, con_empty): assert copy_table( src_con=con_mix, dst_con=con_empty, src_table_name=TEST_TABLE_NAME, dst_table_name="dst") result = con_mix.select(select="*", table_name=TEST_TABLE_NAME) src_data_matrix = result.fetchall() result = con_empty.select(select="*", table_name="dst") dst_data_matrix = result.fetchall() assert src_data_matrix == dst_data_matrix assert not copy_table( src_con=con_mix, dst_con=con_empty, src_table_name=TEST_TABLE_NAME, dst_table_name="dst", is_overwrite=False) assert copy_table( src_con=con_mix, dst_con=con_empty, src_table_name=TEST_TABLE_NAME, dst_table_name="dst", is_overwrite=True) class Test_connect_sqlite_db_mem(object): def test_normal(self): con_mem = connect_sqlite_memdb() assert con_mem is not None assert con_mem.database_path == ":memory:" ```
{ "source": "jph425/py_template", "score": 3 }
#### File: py_template/tests/test_package.py ```python from package_name.source import hi import pytest def test_pkg(): assert True @pytest.mark.parametrize("tuple1,tuple2", [ ("2", "10"), ("1", "-4"), ]) def test_multiple_things(tuple1, tuple2): assert hi(tuple1, tuple2) is True @pytest.mark.skip(reason="I haven't implemented this in the module yet.") def test_doesnt_work(): assert False @pytest.mark.xfail def test_div_by_zero(): assert 1/0 == 1 def test_invalid_input(): with pytest.raises(TypeError): hi("bad input", 3.1415) def test_something(capture_stdout): # This shouldn't go to stdout, because we monkeypatch it. # This lets us test the string sent to stdout. print("test") assert capture_stdout["stdout"] == "test\n" ```
{ "source": "jph425/terminal_tattoo", "score": 2 }
#### File: jph425/terminal_tattoo/terminal_tattoo.py ```python from PIL import Image, ImageDraw, ImageFont import argparse import logging import tempfile from os import path, get_terminal_size from sys import exit import pprint import re ### SOME REASONABLE DEFAULTS DEFAULT_FONT = '/System/Library/Fonts/Menlo.ttc' DEFAULT_SIZE = 45 DEFAULT_POS = 'tR' # top right corner DEFAULT_FGC = 'fK' # black DEFAULT_BGC = 'bW' # white ### I USE THESE IN A BUNCH OF PLACES AND I DON'T WANT TO KEEP TYPING IT POSITION_CODES = ['pT', 'pTL', 'pTR', 'pB', 'pBL', 'pBR', 'pC', 'pL', 'pR'] ### EMPIRICAL LINEAR TRANSFORMATION FROM CHARACTER GRID TO PIXELS RETINA_HCELL_PIXELS = 14 RETINA_VCELL_PIXELS = 28 RETINA_H_OFFSET = 20 RETINA_V_OFFSET = 14 ### EXIT CODES EXIT_INVALID_FG = -1 EXIT_INVALID_BG = -2 EXIT_DOES_NOT_FIT = -3 EXIT_CATASTROPHIC_ERROR = -10 ############################################################################## # logging stuff: ############################################################################## class ColorizingStreamHandler(logging.StreamHandler): @property def is_tty(self): isatty = getattr(self.stream, 'isatty', None) return isatty def emit(self, record): # noinspection PyBroadException try: message = self.format(record) stream = self.stream if not self.is_tty: stream.write(message) else: self.output_colorized(message) stream.write(getattr(self, 'terminator', '\n')) self.flush() except (KeyboardInterrupt, SystemExit): raise except: self.handleError(record) def format(self, record): message = logging.StreamHandler.format(self, record) if self.is_tty: # Don't colorize traceback parts = message.split('\n', 1) parts[0] = self.colorize(parts[0], record) message = '\n'.join(parts) return message # color names to partial ANSI code (there'll be math later to make complete codes) color_map = { 'black': 0, 'red': 1, 'green': 2, 'yellow': 3, 'blue': 4, 'magenta': 5, 'cyan': 6, 'white': 7, } # logging levels to (background, foreground, intense) # NOT multi-platform! level_map = { logging.DEBUG: (None, 'blue', False), logging.INFO: (None, 'black', False), logging.WARNING: (None, 'yellow', False), logging.ERROR: (None, 'red', True), logging.CRITICAL: ('red', 'white', True), } csi = '\x1b[' reset = '\x1b[0m' def colorize(self, message, record): if record.levelno in self.level_map: bg, fg, bold = self.level_map[record.levelno] params = [] if bg in self.color_map: params.append(str(self.color_map[bg] + 40)) if fg in self.color_map: params.append(str(self.color_map[fg] + 30)) if bold: params.append('1') if params: message = ''.join((self.csi, ';'.join(params), 'm', message, self.reset)) return message def output_colorized(self, message): self.stream.write(message) # End Class ColorizingStreamHandler # Initialize logging objects Logger = logging.getLogger("terminal_tattoo") formatter = logging.Formatter('%(levelname)-10s: %(message)s') handler = ColorizingStreamHandler() handler.setFormatter(formatter) Logger.addHandler(handler) pp = pprint.PrettyPrinter(indent=4) ############################################################################## # main: ############################################################################## def main(): parser = config_parser() args = parser.parse_args() if None == args.verbose: Logger.setLevel(logging.ERROR) handler.setLevel(logging.ERROR) else: if args.verbose > 0: Logger.setLevel(logging.WARNING) handler.setLevel(logging.WARNING) if args.verbose > 1: Logger.setLevel(logging.INFO) handler.setLevel(logging.INFO) if args.verbose > 2: Logger.setLevel(logging.DEBUG) handler.setLevel(logging.DEBUG) Logger.debug("parsed args:") pp.pprint(args) (c, l) = get_terminal_size() (w, h) = get_terminal_pixel_size(c, l, RETINA_HCELL_PIXELS, RETINA_VCELL_PIXELS, RETINA_H_OFFSET, RETINA_V_OFFSET) position = check_position(args) fg_color = check_fg_color(args) bg_color = check_bg_color(args) out_path = check_output_file(args) font = check_font(args) text = ' '.join(args.text) size = check_size(args) alpha = check_alpha(args) margin = check_margin(args) render_base_image = create_image(w, h, rgb_to_rgba(html_to_888(bg_color), 255)) render_font = create_font(font, size) (render_text_width, render_text_height) = get_text_dimensions(render_font, text) if not fit_check(render_text_width, render_text_height, margin, w, h): exit(EXIT_DOES_NOT_FIT) anchor = get_text_anchor_pos(position, render_text_width, render_text_height, render_base_image.size[0], render_base_image.size[1], margin) render_comp = composite_text(render_base_image, text, render_font, anchor, rgb_to_rgba(html_to_888(fg_color), alpha)) render_comp.save(out_path) return ############################################################################## # rendering functions: ############################################################################## def create_font(font_name, size): return ImageFont.truetype(font_name, size) def create_image(w, h, blanking_color): image = Image.new('RGBA', (w, h), blanking_color) return image def composite_text(base_image, text, font_obj, anchor, color_rgba): text_img = Image.new('RGBA', base_image.size, (255,255,255,0)) drawing = ImageDraw.Draw(text_img) drawing.text(anchor, text, font=font_obj, fill=color_rgba) ret = Image.alpha_composite(base_image, text_img) return ret ############################################################################## # help, sanitize, re-format, safety: ############################################################################## def rgb_to_rgba(rgb, a): return (rgb[0], rgb[1], rgb[2], a) def fit_check(render_text_width, render_text_height, margin, w, h): m2 = 2 * margin if h >= render_text_height + m2 and w >= render_text_width + m2: return True if h >= render_text_height + margin and w >= render_text_width + margin: Logger.warning("this text just barely fits") return True return False def get_terminal_dimensions(): ts = get_terminal_size() columns = ts.columns lines = ts.lines Logger.debug("terminal character cell dimensions measured at ({}, {})".format(columns, lines)) return (columns, lines) def get_terminal_pixel_size(columns, lines, h_pix, v_pix, h_offset=0, v_offset=0): height = lines * v_pix + v_offset width = columns * h_pix + h_offset Logger.info("terminal dimensions: width: {} height: {}".format(width, height)) return (width, height) def sanitize_html_color(code): m = re.match(r'[#]?([0-9a-fA-F]{6})', code) Logger.debug("santized html code {} to {}".format(code, m.group(1))) return m.group(1) def validate_html_color(color): ret = False pattern = r'[#]?[0-9a-fA-F]{6}' m = re.search(pattern, color) if m.group(0) == color: ret = True return ret def html_to_888(html_str): pat = r'(?P<red>[0-9a-fA-F]{2})(?P<green>[0-9a-fA-F]{2})(?P<blue>[0-9a-fA-F]{2})' m = re.match(pat, html_str) r = hex_byte_to_int(m.group('red')) g = hex_byte_to_int(m.group('green')) b = hex_byte_to_int(m.group('blue')) Logger.debug("converted color #{} to RGB888 ({}, {}, {})".format(html_str, r, g, b)) return (r,g,b) def hex_byte_to_int(hexbyte_string): return int(hexbyte_string, 16) def get_text_dimensions(font_obj, text): (w, h) = font_obj.getsize(text) Logger.debug("measured size of text (\'{}\') is ({}, {})".format(text, w, h)) return (w, h) def get_text_anchor_pos(pos, text_w, text_h, image_w, image_h, margin=0): """the text anchor is (by default in ImageFont) the top left corner of the bounding box. I see no reason to change this. The math is trivial when we know the desired text location in the image, the image width and height, and the text width and height.""" anchor_x = 0 anchor_y = 0 (centered_x, centered_y) = center_nested_frames(image_w, image_h, text_w, text_h) far_x = image_w - (margin + text_w) far_y = image_h - (margin + text_h) if pos == 'pTL': # top left corner: just apply margins anchor_x = margin anchor_y = margin elif pos == 'pT': # top center: margin in y, centered text in x anchor_x = centered_x anchor_y = margin elif pos == 'pTR': # top right corner: image_w - (margin + text_w), margin in y anchor_x = far_x anchor_y = margin elif pos == 'pR': # right center: image_w - (margin + text_w), center in y anchor_x = far_x anchor_y = centered_y elif pos == 'pBR': # bottom right corner: image_w - (margin + text_w), image_h - (margin + text_h) anchor_x = far_x anchor_y = far_y elif pos == 'pB': # bottom center: center in x, image_h - (margin + text_h) in y anchor_x = centered_x anchor_y = far_y elif pos == 'pBL': # bottom left corner: margin in x, image_ - (margin + text_h) in y anchor_x = margin anchor_y = far_y elif pos == 'pL': # left center: margin in x, center in y anchor_x = margin anchor_y = centered_y elif pos == 'pC': # centered: center in x, center in y anchor_x = centered_x anchor_y = centered_y else: raise RuntimeError("Not sure how we got here, but this isn't a valid position {}".format(pos)) exit(EXIT_CATASTROPHIC_ERROR) return (anchor_x, anchor_y) def center_nested_frames(outer_w, outer_h, inner_w, inner_h): # we can ignore the margin since it's symmetric, however other # checks are still needed to ensure the margin isn't violated. w = (outer_w / 2) - (inner_w / 2) h = (outer_h / 2) - (inner_h / 2) return (w, h) ############################################################################## # input validation functions: ############################################################################## def check_position(args): ret = DEFAULT_POS position_args = POSITION_CODES for p in position_args: if p in args and getattr(args, p) == True: ret = p break Logger.info("position will be {}".format(ret)) return ret def check_fg_color(args): ret = DEFAULT_FGC skip_iter = False if args.f is not None: if validate_html_color(args.f): Logger.debug("the detected bg color is {}".format(args.f)) ret = args.f else: Logger.error("invalid bg color format given, a 6-digit hex value is required (HTML format)") exit(EXIT_INVALID_FG) color_args = ['f', 'fR', 'fG', 'fB', 'fW', 'fK', 'fC', 'fM', 'fY', 'fg'] color_in_hex = {'fR': 'FF0000', 'fG': '00FF00', 'fB': '0000FF', 'fW': 'FFFFFF', 'fK': '000000', 'fC': '00FFFF', 'fM': 'FF00ff', 'fY': 'FFFF00', 'fg': 'A9A9A9'} if not skip_iter: for color in color_args: if getattr(args, color) == True: Logger.debug("the detected fg color is: {}".format(color)) ret = color_in_hex[color] Logger.info("background color will be {}".format(ret)) ret = sanitize_html_color(ret) return ret def check_bg_color(args): ret = DEFAULT_BGC skip_iter = False if args.b is not None: if validate_html_color(args.b): Logger.debug("the detected bg color is {}".format(args.b)) ret = args.b else: Logger.error("invalid bg color format given, a 6-digit hex value is required (HTML format)") exit(EXIT_INVALID_BG) color_args = ['bR', 'bG', 'bB', 'bW', 'bK', 'bC', 'bM', 'bY', 'bg'] color_in_hex = {'bR': 'FF0000', 'bG': '00FF00', 'bB': '0000FF', 'bW': 'FFFFFF', 'bK': '000000', 'bC': '00FFFF', 'bM': 'FF00ff', 'bY': 'FFFF00', 'bg': 'A9A9A9'} if not skip_iter: for color in color_args: if getattr(args, color) == True: Logger.debug("the detected bg color is: {}".format(color)) ret = color_in_hex[color] Logger.info("background color will be {}".format(ret)) ret = sanitize_html_color(ret) return ret def check_alpha(args): a = args.alpha if a > 255: a = 255 Logger.info("clamping alpha to 255") elif a < 0: a = 0 Logger.info("clamping alpha to 0 (what are you doing?)") else: Logger.info("alpha will be {}".format(a)) return a def check_margin(args): ret = args.margin if ret is None: return 0 MAX = 500 if ret < 0: ret = 0 Logger.info("clamping margin to 0") elif ret > MAX: ret = MAX Logger.info("clamping margin to {}} (what are you doing?)".format(MAX)) else: Logger.info("margin will be {}".format(ret)) return ret def check_output_file(args): if not args.out_path: fallback = tempfile.NamedTemporaryFile(dir='/tmp/') fallback.close() # heh, gross hack to just get some random path ret = fallback.name + '.png' else: ret = args.out_path Logger.info("Output file for image is {}".format(ret)) return ret def check_font(args): ret = False if args.font: if path.exists(args.font): (_, file_extension) = path.splitext(args.font) if file_extension == '.ttf' or file_extension == '.ttc': ret = True if ret: ret = args.font else: ret = DEFAULT_FONT Logger.info("font will be {}".format(ret)) return ret def check_size(args): ret = DEFAULT_SIZE if args.s: ret = args.s Logger.info("text will be point size {}".format(ret)) return ret ############################################################################## # argparse: ############################################################################## def config_parser(): parser = argparse.ArgumentParser(description='Render an image for a watermarked Terminal window.', \ epilog='Defaults to {}, size {}, black text on white, positioned in the top right corner.'.format(path.basename(DEFAULT_FONT), DEFAULT_SIZE)) parser.add_argument('text', type=str, nargs='+', help='Text to use in the watermark') parser.add_argument('-s', metavar='POINTS', type=int, help='point size of the text') parser.add_argument('--font', metavar='PATH', help='font to use for the watermark') parser.add_argument('--verbose', '-v', action='count', help='verbose mode (can be repeated)', default=0) parser.add_argument('-o', metavar='PATH', dest='out_path', help='output file for the rendered image') parser.add_argument('--alpha', '-a', type=int, metavar='ALPHA', default=255, help='alpha value of text') position = parser.add_mutually_exclusive_group() position.add_argument('--pT', action='store_true', help='top center') position.add_argument('--pTL', action='store_true', help='top left') position.add_argument('--pTR', action='store_true', help='top right') position.add_argument('--pB', action='store_true', help='bottom center') position.add_argument('--pBL', action='store_true', help='bottom left') position.add_argument('--pBR', action='store_true', help='bottom right') position.add_argument('--pC', action='store_true', help='center') position.add_argument('--pL', action='store_true', help='left center') position.add_argument('--pR', action='store_true', help='right center') parser.add_argument('--margin', type=int, metavar='PIXELS', default=25, help='no-text perimeter width') fgColor = parser.add_mutually_exclusive_group() fgColor.add_argument('--fR', action='store_true', help='red') fgColor.add_argument('--fG', action='store_true', help='green') fgColor.add_argument('--fB', action='store_true', help='blue') fgColor.add_argument('--fW', action='store_true', help='white') fgColor.add_argument('--fK', action='store_true', help='black') fgColor.add_argument('--fC', action='store_true', help='cyan') fgColor.add_argument('--fM', action='store_true', help='magenta') fgColor.add_argument('--fY', action='store_true', help='yellow') fgColor.add_argument('--fg', action='store_true', help='medium gray') fgColor.add_argument('--f', metavar='RRGGBB', help='arbitrary color in HTML format') bgColor = parser.add_mutually_exclusive_group() bgColor.add_argument('--bR', action='store_true', help='red') bgColor.add_argument('--bG', action='store_true', help='green') bgColor.add_argument('--bB', action='store_true', help='blue') bgColor.add_argument('--bW', action='store_true', help='white') bgColor.add_argument('--bK', action='store_true', help='black') bgColor.add_argument('--bC', action='store_true', help='cyan') bgColor.add_argument('--bM', action='store_true', help='magenta') bgColor.add_argument('--bY', action='store_true', help='yellow') bgColor.add_argument('--bg', action='store_true', help='medium gray') bgColor.add_argument('--b', metavar='RRGGBB', help='arbitrary color in HTML format') return parser if __name__ == '__main__': main() ```
{ "source": "jph58/runko", "score": 3 }
#### File: projects/shocks/shock_RH.py ```python import numpy as np import matplotlib.pyplot as plt import csv # Import Savitzky–Golay filter and command line input from scipy.signal import savgol_filter from parser import parse_input # Function to find lines of file - from online def file_len(fname): with open(fname) as f: for i, l in enumerate(f): pass return i + 1 # Function to find the nearest value in array compared to a given value. Outputs # element of nearest value - from online def find_nearest(array, value): array = np.asarray(array) idx = (np.abs(array - value)).argmin() return idx # Main function if __name__ == "__main__": conf, fdir, args = parse_input() omp = conf.cfl / conf.c_omp # Plasma frequency qe = (omp ** 2.0 * conf.gamma) / (conf.ppc) frames = int(conf.Nt / conf.interval) # Number of simulation frames x_shock = [] # Lists for position of shock and respective lap no. t_laps = [] CR_upstream_ar = [] #Arrays for finding CR CR_downstream_ar = [] CR_delete_index = [] ############################################################################## for i in range(15, frames + 1): #First 15 frames unphysical due to shock formation # Read 1D density values from file rhox = [] rhoy = [] slap = str(i * conf.interval).rjust(5, "0") file = "{}/rho1_{}.csv".format(conf.outdir, slap) with open(file.format(slap), "r") as f: length = file_len(file) reader = csv.reader(f) bob = list(reader) for l in range(length): rhox.append(float(bob[l][0])) rhoy.append(float(bob[l][1])) f.close() # Set upstream density to unity for conv in range(len(rhoy)): rhoy[conv] = rhoy[conv] / (conf.ppc * qe) # Apply Savitzky-Golay filter to data rhoy_f = savgol_filter(rhoy, 51, 3) # 21,2 ... 51,1 #print("Data points = {}".format(len(rhoy_f))) ########################### # This block of code finds the position of the shock, then identifies an upstream position to measure upstream density. Only use if upstream density <> 1 #ep = 0 #r = 0 #while ep != 1: # r += 1 # #print("rhox[r] = {} and rhox[0] = {} and rhoy_f[1] = {}".format(rhox[r], rhox[0], rhoy_f[10])) # rec_a = (rhox[r] - rhox[0])*rhoy_f[10] # rhoy_i = rhoy_f[:r] # rhox_i = rhox[:r] # trap_area = np.trapz(rhoy_i, rhox_i) # #print("r is {} and i is {}".format(r,i)) # #print("rec_a = {} amd trap_area = {}".format(rec_a, trap_area)) # if (rec_a - trap_area) > 2: #2 for Perpendicular # #CR_upstream = rhoy_f[r] #Use where Upstream is not 1 # CR_upstream = 1 # #print("CR found at: {}".format(r)) # ep = 1 #CR upstream value nominally 1 CR_upstream = 1 shock_loc = 2*CR_upstream #True midpoint of shock y-axis xs_index = find_nearest(rhoy_f, shock_loc) # Midpoint and position of shock found #This block of code finds the average Downstream density per frame CR_downstream = 0.0 CR_LFS = 20 #20 is good for Perpendicular shocks, 1000 for Parallel CR_upper_index = xs_index-CR_LFS #Controls how far left of shock program measures Downstream if (CR_upper_index > 10): #Filter out bad frames CR_upstream_ar.append(CR_upstream) #This is upstream density, appended only if a downstream density can be found x_upper_count = 10 #Starting away from reflecting wall while (x_upper_count < CR_upper_index): CR_downstream = CR_downstream + rhoy_f[x_upper_count] x_upper_count = x_upper_count + 1 #print("x_upper_count is {}".format(x_upper_count)) #print("CR_upper_index is {}".format(CR_upper_index)) #print("upper avg is {}".format(CR_downstream)) #print("CR_Upper_index is {}".format(CR_upper_index)) CR_downstream = CR_downstream/(x_upper_count - 10) CR_downstream_ar.append(CR_downstream) else: CR_delete_index.append(i) CR_upstream_ar.append(0.0) CR_downstream_ar.append(0.0) ########################### # Data for lap appended x_shock.append(rhox[xs_index]) t_laps.append(i * conf.interval) #print(t_laps[i]) print("Frame {} appended".format(i)) print("Upstream density is: {}".format(CR_upstream)) print("x is: {}".format(rhox[xs_index])) d = plt.figure() ax = d.add_subplot(111) ax.set_xlim(0, 800) ax.set_ylim(0, 5) plt.plot(rhox, rhoy_f) plt.axhline(y=shock_loc, color = 'purple') #Horizontal line halfway up shock plt.axhline(y=CR_upstream, color = 'yellow') #Measures upstream density if (CR_upper_index > 0): plt.axhline(y=CR_downstream, color = 'orange') #Average Downstream density plt.axvline(x=rhox[xs_index], color = 'green') #Measures x-position of shock #plt.axvline(x = rhox[r], color = 'red') #Use for debug if CR upsteam <> 1 plt.savefig("{}/sav_{}".format(conf.outdir, i)) plt.close() ############################################################################### x_shock = x_shock[:150] t_laps = t_laps[:150] CR_upstream_ar = CR_upstream_ar[:150] CR_downstream_ar = CR_downstream_ar[:150] # Lists converted to numpy arrays t_laps = np.array(t_laps) x_shock = np.array(x_shock) CR_upstream_ar = np.array(CR_upstream_ar) CR_downstream_ar = np.array(CR_downstream_ar) # Remove Zero points zero_points = np.where(x_shock < 20.0) x_shock = np.delete(x_shock, zero_points[0]) t_laps = np.delete(t_laps, zero_points[0]) CR_upstream_ar = np.delete(CR_upstream_ar, zero_points[0]) CR_downstream_ar = np.delete(CR_downstream_ar, zero_points[0]) zero_points = np.where(CR_upstream_ar == 0.0) x_shock = np.delete(x_shock, zero_points[0]) t_laps = np.delete(t_laps, zero_points[0]) CR_upstream_ar = np.delete(CR_upstream_ar, zero_points[0]) CR_downstream_ar = np.delete(CR_downstream_ar, zero_points[0]) #Calculate all CR values across simulation CR_ar = CR_downstream_ar/CR_upstream_ar # Unit conversion t_omp = t_laps * conf.cfl/conf.c_omp x_shock_sd = x_shock #/ conf.c_omp # Fit straight line to data line, covmat = np.polyfit(t_omp, x_shock_sd, 1, cov = True) grad_uncert = np.sqrt(float(covmat[0,0])) inter_uncert = np.sqrt(float(covmat[1,1])) print("The gradient is: {} +- {}".format(line[0], grad_uncert)) print("The y-intercept is: {} +- {}".format(line[1], inter_uncert)) #Find CR value by averaging later values CR_avg = 0.0 start_CR_count = 1 #Minimum 1 stop_CR_count = 50 #Varies depending on how long it takes for CR to stabilise, check CR_RH.png to see if this value needs adjusting for CR_count in range(start_CR_count, stop_CR_count): CR_avg = CR_avg + CR_ar[-CR_count] #print(CR_ar[-CR_count]) CR_avg = CR_avg/(stop_CR_count - start_CR_count) # Plot data and fit plt.plot(t_omp, x_shock_sd, ".") y = [] for t in t_omp: thing = line[0] * t + line[1] y.append(thing) # Output data, Beta-shock and CR value print("beta_shock: {}".format(line[0])) plt.plot(t_omp, y, "-") plt.xlabel("t_omp") plt.ylabel("x_shock") plt.savefig("{}/shock_RH.png".format(conf.outdir)) plt.clf() print("CR: {}".format(CR_avg)) plt.xlabel("t_omp") plt.ylabel("Compression Ratio") plt.plot(t_omp, CR_ar, 'bo') plt.axhline(y = CR_avg, color = 'red') plt.savefig("{}/CR_RH.png".format(conf.outdir)) ``` #### File: runko/tests/test_io.py ```python from mpi4py import MPI import unittest import os import numpy as np import pycorgi import pyrunko import pytools import h5py #from visualize import get_yee #from visualize import getYee2D #from combine_files import combine_tiles #import injector #from read_mesh import TileInfo #from read_mesh import get_mesh #import initialize as init # combine tiles inside grid together into one array def combine_tiles(ff, fvar, conf, isp=None ): arr = np.zeros((conf.Nx*conf.NxMesh, conf.Ny*conf.NyMesh, conf.Nz*conf.NzMesh)) f = h5py.File(ff,'r') for dset in f: if not(isp==None): if not(f[dset]['ispcs'][()] == isp): continue i = f[dset]['i'][()] j = f[dset]['j'][()] k = f[dset]['k'][()] NxMesh = f[dset]['Nx'][()] NyMesh = f[dset]['Ny'][()] NzMesh = f[dset]['Nz'][()] ii = int( i*NxMesh ) jj = int( j*NyMesh ) kk = int( k*NzMesh ) tile = f[dset][fvar][()] tile = np.reshape(tile, (NzMesh, NyMesh, NxMesh)) for s in range(NzMesh): for r in range(NyMesh): for q in range(NxMesh): arr[ii+q, jj+r, kk+s] = tile[s,r,q] return arr class Conf: Nx = 3 Ny = 3 Nz = 1 oneD = False twoD = False threeD = False NxMesh = 5 NyMesh = 5 NzMesh = 5 xmin = 0.0 xmax = 1.0 ymin = 0.0 ymax = 1.0 zmin = 0.0 zmax = 1.0 me = -1.0 mi = 1.0 qe = 1.0 qi = 1.0 #def __init__(self): # print("initialized...") def density_profile(xloc, ispcs, conf): return conf.ppc #load tiles into each grid def loadTiles1D(n, conf): for i in range(n.get_Nx()): for j in range(n.get_Ny()): #if n.get_mpi_grid(i) == n.rank: c = pyrunko.fields.oneD.Tile(conf.NxMesh, conf.NyMesh, conf.NzMesh) n.add_tile(c, (i,) ) #load tiles into each grid def loadTiles2D(n, conf): for i in range(n.get_Nx()): for j in range(n.get_Ny()): #if n.get_mpi_grid(i,j) == n.rank: c = pyrunko.fields.twoD.Tile(conf.NxMesh, conf.NyMesh, conf.NzMesh) n.add_tile(c, (i,j) ) # create similar reference array def fill_ref(grid, conf): data = np.zeros((conf.Nx*conf.NxMesh, conf.Ny*conf.NyMesh, conf.Nz*conf.NzMesh, 9)) # lets put floats into Yee lattice val = 1.0 Nx = grid.get_Nx() Ny = grid.get_Ny() Nz = grid.get_Nz() NxM = conf.NxMesh NyM = conf.NyMesh NzM = conf.NzMesh #print("filling ref") for i in range(grid.get_Nx()): for j in range(grid.get_Ny()): for k in range(grid.get_Nz()): #if n.get_mpi_grid(i,j) == n.rank: if True: for q in range(conf.NxMesh): for r in range(conf.NyMesh): for s in range(conf.NzMesh): #print(i,j,k,q,r,s, "val=",val) # insert 1/val to get more complex floats (instead of ints only) data[i*NxM + q, j*NyM + r, k*NzM + s, 0] = 1.0/val + 1.0 data[i*NxM + q, j*NyM + r, k*NzM + s, 1] = 1.0/val + 2.0 data[i*NxM + q, j*NyM + r, k*NzM + s, 2] = 1.0/val + 3.0 data[i*NxM + q, j*NyM + r, k*NzM + s, 3] = 1.0/val + 4.0 data[i*NxM + q, j*NyM + r, k*NzM + s, 4] = 1.0/val + 5.0 data[i*NxM + q, j*NyM + r, k*NzM + s, 5] = 1.0/val + 6.0 data[i*NxM + q, j*NyM + r, k*NzM + s, 6] = 1.0/val + 7.0 data[i*NxM + q, j*NyM + r, k*NzM + s, 7] = 1.0/val + 8.0 data[i*NxM + q, j*NyM + r, k*NzM + s, 8] = 1.0/val + 9.0 val += 1 return data # fill Yee mesh with values def fill_yee(grid, data, conf): Nx = grid.get_Nx() Ny = grid.get_Ny() Nz = grid.get_Nz() NxM = conf.NxMesh NyM = conf.NyMesh NzM = conf.NzMesh # lets put ref array into Yee lattice #print("filling yee") for i in range(grid.get_Nx()): for j in range(grid.get_Ny()): for k in range(grid.get_Nz()): #if n.get_mpi_grid(i,j) == n.rank: if True: c = grid.get_tile(i,j,k) yee = c.get_yee(0) for q in range(conf.NxMesh): for r in range(conf.NyMesh): for s in range(conf.NzMesh): yee.ex[q,r,s] = data[i*NxM + q, j*NyM + r, k*NzM + s, 0] yee.ey[q,r,s] = data[i*NxM + q, j*NyM + r, k*NzM + s, 1] yee.ez[q,r,s] = data[i*NxM + q, j*NyM + r, k*NzM + s, 2] yee.bx[q,r,s] = data[i*NxM + q, j*NyM + r, k*NzM + s, 3] yee.by[q,r,s] = data[i*NxM + q, j*NyM + r, k*NzM + s, 4] yee.bz[q,r,s] = data[i*NxM + q, j*NyM + r, k*NzM + s, 5] yee.jx[q,r,s] = data[i*NxM + q, j*NyM + r, k*NzM + s, 6] yee.jy[q,r,s] = data[i*NxM + q, j*NyM + r, k*NzM + s, 7] yee.jz[q,r,s] = data[i*NxM + q, j*NyM + r, k*NzM + s, 8] # Generic function to fill the velocity mesh def filler(xloc, uloc, ispcs, conf): x = xloc[0] y = xloc[1] z = xloc[2] ux = uloc[0] uy = uloc[1] uz = uloc[2] return x + y + z + ux + uy + uz + ispcs #physical version mux = 0.0 muy = 0.0 muz = 0.0 delgam = conf.delgam #electrons if ispcs == 0: delgam = conf.delgam * np.abs(conf.mi / conf.me) * conf.temperature_ratio mux = conf.ub_e muy = 0.0 muz = 0.0 #positrons/ions/second species if ispcs == 1: delgam = conf.delgam mux = conf.ub_i muy = 0.0 muz = 0.0 #plasma reaction omp = conf.cfl*conf.dx n0 = (omp**2.0)/conf.Nspecies #velocity perturbation Lx = conf.Nx*conf.NxMesh*conf.dx kmode = conf.modes mux_noise = conf.beta*np.cos(2.0*np.pi*kmode*x/Lx) * (Lx/(2.0*np.pi*kmode)) #Classical Maxwellian f = n0*(1.0/(2.0*np.pi*delgam))**(0.5) f *= np.exp(-0.5*((ux - mux - mux_noise)**2.0)/(delgam)) return f class IO(unittest.TestCase): def test_write_fields1D(self): ################################################## # write conf = Conf() conf.oneD = True conf.Nx = 3 conf.Ny = 1 conf.Nz = 1 conf.NxMesh = 2 conf.NyMesh = 1 conf.NzMesh = 1 conf.outdir = "io_test_1D/" if not os.path.exists( conf.outdir ): os.makedirs(conf.outdir) grid = pycorgi.oneD.Grid(conf.Nx, conf.Ny) grid.set_grid_lims(conf.xmin, conf.xmax, conf.ymin, conf.ymax) loadTiles1D(grid, conf) ref = fill_ref(grid, conf) fill_yee(grid, ref, conf) pyrunko.fields.oneD.write_yee(grid, 0, conf.outdir) ################################################## # read using analysis tools arrs = combine_tiles(conf.outdir+"fields-0_0.h5", "ex", conf) Nx = grid.get_Nx() Ny = grid.get_Ny() Nz = grid.get_Nz() NxM = conf.NxMesh NyM = conf.NyMesh NzM = conf.NzMesh for i in range(grid.get_Nx()): for j in range(grid.get_Ny()): for k in range(grid.get_Nz()): #if n.get_mpi_grid(i,j) == n.rank: if True: for q in range(conf.NxMesh): for r in range(conf.NyMesh): for s in range(conf.NzMesh): self.assertAlmostEqual( arrs[i*NxM + q, j*NyM + r, k*NzM + s], ref[i*NxM + q, j*NyM + r, k*NzM + s, 0], places=6) ################################################## # test reading back node2 = pycorgi.oneD.Grid(conf.Nx, conf.Ny) node2.set_grid_lims(conf.xmin, conf.xmax, conf.ymin, conf.ymax) loadTiles1D(node2, conf) pyrunko.fields.oneD.read_yee(node2, 0, "io_test_1D") yee1 = pytools.visualize.get_yee(grid, conf) yee2 = pytools.visualize.get_yee(node2, conf) for i in range(grid.get_Nx()): for j in range(grid.get_Ny()): for k in range(grid.get_Nz()): #if n.get_mpi_grid(i,j) == n.rank: if True: for q in range(conf.NxMesh): for r in range(conf.NyMesh): for s in range(conf.NzMesh): for m in ["jx", "jy", "jz", "ex", "ey", "ez", "bx", "by", "bz", "rho"]: self.assertAlmostEqual( yee1[m][i*NxM + q], yee2[m][i*NxM + q], places=6) def test_write_fields2D(self): ################################################## # write conf = Conf() conf.twoD = True conf.Nx = 3 conf.Ny = 4 conf.Nz = 1 conf.NxMesh = 5 conf.NyMesh = 6 conf.NzMesh = 1 conf.outdir = "io_test_2D/" if not os.path.exists( conf.outdir ): os.makedirs(conf.outdir) grid = pycorgi.twoD.Grid(conf.Nx, conf.Ny) grid.set_grid_lims(conf.xmin, conf.xmax, conf.ymin, conf.ymax) loadTiles2D(grid, conf) ref = fill_ref(grid, conf) fill_yee(grid, ref, conf) pyrunko.fields.twoD.write_yee(grid, 0, conf.outdir) ################################################## # read using analysis tools arrs = combine_tiles(conf.outdir+"fields-0_0.h5", "ex", conf) Nx = grid.get_Nx() Ny = grid.get_Ny() Nz = grid.get_Nz() NxM = conf.NxMesh NyM = conf.NyMesh NzM = conf.NzMesh for i in range(grid.get_Nx()): for j in range(grid.get_Ny()): for k in range(grid.get_Nz()): #if n.get_mpi_grid(i,j) == n.rank: if True: for q in range(conf.NxMesh): for r in range(conf.NyMesh): for s in range(conf.NzMesh): self.assertAlmostEqual( arrs[i*NxM + q, j*NyM + r, k*NzM + s], ref[i*NxM + q, j*NyM + r, k*NzM + s, 0], places=6) ################################################## # test reading back node2 = pycorgi.twoD.Grid(conf.Nx, conf.Ny) node2.set_grid_lims(conf.xmin, conf.xmax, conf.ymin, conf.ymax) loadTiles2D(node2, conf) pyrunko.fields.twoD.read_yee(node2, 0, "io_test_2D") yee1 = pytools.visualize.get_yee_2D(grid, conf) yee2 = pytools.visualize.get_yee_2D(node2, conf) for i in range(grid.get_Nx()): for j in range(grid.get_Ny()): for k in range(grid.get_Nz()): #if n.get_mpi_grid(i,j) == n.rank: if True: for q in range(conf.NxMesh): for r in range(conf.NyMesh): for s in range(conf.NzMesh): for m in ["jx", "jy", "jz", "ex", "ey", "ez", "bx", "by", "bz", "rho"]: self.assertAlmostEqual( yee1[m][i*NxM + q, j*NyM + r], yee2[m][i*NxM + q, j*NyM + r], places=6) # compare two AdaptiveMesh3D objects and assert their equality def compareMeshes(self, vm, ref): cells = vm.get_cells(True) refcells = ref.get_cells(True) #metainfo self.assertEqual( vm.length, ref.length ) self.assertEqual( vm.maximum_refinement_level, ref.maximum_refinement_level ) self.assertEqual( vm.top_refinement_level, ref.top_refinement_level ) self.assertEqual( len(cells), len(refcells) ) for cid in cells: #refinement level rfl1 = vm.get_refinement_level(cid) rfl2 = ref.get_refinement_level(cid) self.assertEqual(rfl1, rfl2) #indices [ii1,jj1,kk1] = vm.get_indices(cid) [ii2,jj2,kk2] =ref.get_indices(cid) self.assertEqual(ii1, ii2) self.assertEqual(jj1, jj2) self.assertEqual(kk1, kk2) #value self.assertEqual( vm[ii1,jj1,kk1,rfl1], ref[ii2,jj2,kk2,rfl2] ) #center xx1,yy1,zz1 = vm.get_center([ii1,jj1,kk1], rfl1) xx2,yy2,zz2 =ref.get_center([ii2,jj2,kk2], rfl2) self.assertEqual(xx1, xx2) self.assertEqual(yy1, yy2) self.assertEqual(zz1, zz2) def test_write_Mesh3V(self): ################################################## # write conf = Conf() conf.twoD = True conf.Nx = 2 conf.Ny = 1 conf.Nz = 1 conf.NxMesh = 3 conf.NyMesh = 1 conf.NzMesh = 1 conf.Nspecies = 2 conf.outdir = "io_test_mesh/" conf.dx = 1.0 conf.dy = 1.0 conf.dz = 1.0 conf.Nvx = 3 conf.Nvy = 5 conf.Nvz = 8 conf.vxmin = -1.0 conf.vymin = -2.0 conf.vzmin = -3.0 conf.vxmax = 4.0 conf.vymax = 5.0 conf.vzmax = 6.0 conf.refinement_level= 0 conf.clip= True conf.clipThreshold= 1.0e-5 if not os.path.exists( conf.outdir ): os.makedirs(conf.outdir) grid = pycorgi.oneD.Grid(conf.Nx, conf.Ny) grid.set_grid_lims(conf.xmin, conf.xmax, conf.ymin, conf.ymax) for i in range(grid.get_Nx()): for j in range(grid.get_Ny()): #if n.get_mpi_grid(i) == n.rank: c = pyrunko.vlv.oneD.Tile(conf.NxMesh, conf.NyMesh, conf.NzMesh) grid.add_tile(c, (i,) ) pytools.vlv.inject(grid, filler, conf) #inject plasma into vlv mesh pyrunko.vlv.oneD.write_mesh(grid, 0, conf.outdir) ################################################## # read using analysis tools fname = conf.outdir + "meshes-0_0.h5" f = h5py.File(fname,'r') for i in range(grid.get_Nx()): for j in range(grid.get_Ny()): for k in range(grid.get_Nz()): c = grid.get_tile(i,j,k) #if n.get_mpi_grid(i,j) == n.rank: if True: for ispcs in range(conf.Nspecies): block = c.get_plasma_species(0, ispcs) for q in range(conf.NxMesh): for r in range(conf.NyMesh): for s in range(conf.NzMesh): tinfo = pytools.vlv.TileInfo() tinfo.i = i tinfo.j = j tinfo.k = k tinfo.q = q tinfo.r = r tinfo.s = s tinfo.ispcs = ispcs #now assert vm = pytools.vlv.get_mesh(f, tinfo) ref = block[q,r,s] self.compareMeshes(vm, ref) ################################################## # read back node2 = pycorgi.oneD.Grid(conf.Nx, conf.Ny) node2.set_grid_lims(conf.xmin, conf.xmax, conf.ymin, conf.ymax) for i in range(node2.get_Nx()): for j in range(node2.get_Ny()): #if n.get_mpi_grid(i) == n.rank: c = pyrunko.vlv.oneD.Tile(conf.NxMesh, conf.NyMesh, conf.NzMesh) node2.add_tile(c, (i,) ) pytools.vlv.inject(node2, pytools.vlv.empty_filler, conf, empty=True) #injecting empty meshes #pyrunko.vlv.oneD.write_mesh(node2, 1, conf.outdir) pyrunko.vlv.oneD.read_mesh(node2, 0, "io_test_mesh") #pyrunko.vlv.oneD.write_mesh(node2, 2, conf.outdir) for i in range(node2.get_Nx()): for j in range(node2.get_Ny()): for k in range(node2.get_Nz()): c1 = grid.get_tile(i,j,k) c2 = node2.get_tile(i,j,k) #if n.get_mpi_grid(i,j) == n.rank: if True: for ispcs in range(conf.Nspecies): block1 = c1.get_plasma_species(0, ispcs) block2 = c2.get_plasma_species(0, ispcs) for q in range(conf.NxMesh): for r in range(conf.NyMesh): for s in range(conf.NzMesh): tinfo = pytools.vlv.TileInfo() tinfo.i = i tinfo.j = j tinfo.k = k tinfo.q = q tinfo.r = r tinfo.s = s tinfo.ispcs = ispcs #now assert vm1 = block1[q,r,s] vm2 = block2[q,r,s] self.compareMeshes(vm1, vm2) # Complicated restart from file with heterogeneous (boundary) tiles def skip_test_restart(self): conf = Conf() conf.twoD = True conf.Nx = 5 conf.Ny = 1 conf.Nz = 1 conf.NxMesh = 5 conf.NyMesh = 1 conf.NzMesh = 1 conf.outdir = "io_test_restart/" if not os.path.exists( conf.outdir ): os.makedirs(conf.outdir) grid = pycorgi.oneD.Grid(conf.Nx, conf.Ny) grid.set_grid_lims(conf.xmin, conf.xmax, conf.ymin, conf.ymax) pytools.vlv.loadTiles(grid, conf) #load boundaries for i in [0, grid.get_Nx()-1]: for j in range(grid.get_Ny()): if i == 0: c = plasma.Tile_outflow_L(conf.NxMesh, conf.NyMesh, conf.NzMesh) #set left (top) wall location c.fld1 = 1 c.fld2 = 1 else: c = plasma.Tile_outflow_R(conf.NxMesh, conf.NyMesh, conf.NzMesh) #set right (bottom) wall location l = conf.NxMesh-2 iglob, jglob, kglob = globalIndx( (i,j), (l,0,0), conf) c.fld1 = iglob c.fld2 = iglob pytools.vlv.initialize_tile(c, (i,j), grid, conf) #add it to the grid grid.add_tile(c, (i,)) def test_write_pic2D(self): def test_filler(xloc, ispcs, conf): xx = xloc[0] yy = xloc[1] #electrons if ispcs == 0: zz = 0.1 #positrons/ions/second species if ispcs == 1: zz = 0.2 ux = xx*100.0 uy = yy*1000.0 uz =-xx*yy*1.0 x0 = [xx, yy, zz] u0 = [ux, uy, uz] return x0, u0 ################################################## # write conf = Conf() conf.twoD = True conf.Nx = 3 conf.Ny = 4 conf.Nz = 1 conf.NxMesh = 5 conf.NyMesh = 6 conf.NzMesh = 1 conf.outdir = "io_test_2D/" conf.ppc = 1 conf.Nspecies = 2 conf.Nspecies_test = 0 #tmp non-needed variables conf.omp = 1 conf.gamma_e = 0.0 conf.me = 1 conf.mi = 1 conf.cfl = 1.0 conf.c_omp = 1.0 if not os.path.exists( conf.outdir ): os.makedirs(conf.outdir) grid = pycorgi.twoD.Grid(conf.Nx, conf.Ny) grid.set_grid_lims(conf.xmin, conf.xmax, conf.ymin, conf.ymax) for i in range(grid.get_Nx()): for j in range(grid.get_Ny()): for k in range(grid.get_Nz()): c = pyrunko.pic.twoD.Tile(conf.NxMesh, conf.NyMesh, conf.NzMesh) pytools.pic.initialize_tile(c, (i, j, k), grid, conf) grid.add_tile(c, (i,j)) pytools.pic.inject(grid, test_filler, density_profile, conf) print("write prtcls") pyrunko.pic.twoD.write_particles(grid, 0, conf.outdir) # TODO: read with h5py # TODO: read with internal read tool node2 = pycorgi.twoD.Grid(conf.Nx, conf.Ny) node2.set_grid_lims(conf.xmin, conf.xmax, conf.ymin, conf.ymax) for i in range(node2.get_Nx()): for j in range(node2.get_Ny()): for k in range(node2.get_Nz()): c = pyrunko.pic.twoD.Tile(conf.NxMesh, conf.NyMesh, conf.NzMesh) pytools.pic.initialize_tile(c, (i, j,k), node2, conf) node2.add_tile(c, (i,j)) print("read prtcls") pyrunko.pic.twoD.read_particles(node2, 0, conf.outdir) #assert for i in range(node2.get_Nx()): for j in range(node2.get_Ny()): if node2.get_mpi_grid(i,j) == node2.rank(): cid = node2.id(i,j) c = node2.get_tile(cid) #get cell ptr c_ref = grid.get_tile(cid) #get cell ptr for ispcs in range(conf.Nspecies): container1 = c.get_container(ispcs) container2 = c_ref.get_container(ispcs) #TODO: assert content xxs1 = container1.loc(0) yys1 = container1.loc(1) zzs1 = container1.loc(2) vxs1 = container1.vel(0) vys1 = container1.vel(1) vzs1 = container1.vel(2) wgs1 = container1.wgt() xxs2 = container2.loc(0) yys2 = container2.loc(1) zzs2 = container2.loc(2) vxs2 = container2.vel(0) vys2 = container2.vel(1) vzs2 = container2.vel(2) wgs2 = container2.wgt() nprtcls = conf.NxMesh*conf.NyMesh*conf.NzMesh*conf.ppc self.assertEqual(len(xxs1), len(xxs2)) self.assertEqual(len(yys1), len(yys2)) self.assertEqual(len(zzs1), len(zzs2)) self.assertEqual(len(vxs1), len(vxs2)) self.assertEqual(len(vys1), len(vys2)) self.assertEqual(len(vzs1), len(vzs2)) self.assertEqual(len(wgs1), len(wgs2)) for n in range(nprtcls): self.assertAlmostEqual(xxs1[n], xxs2[n], places=6) self.assertAlmostEqual(yys1[n], yys2[n], places=6) self.assertAlmostEqual(zzs1[n], zzs2[n], places=6) self.assertAlmostEqual(vxs1[n], vxs2[n], places=6) self.assertAlmostEqual(vys1[n], vys2[n], places=6) self.assertAlmostEqual(vzs1[n], vzs2[n], places=6) self.assertAlmostEqual(wgs1[n], wgs2[n], places=6) ```
{ "source": "jphacks/A_2001", "score": 3 }
#### File: src/models/task.py ```python from app.database import db from sqlalchemy.dialects.mysql import INTEGER class Task(db.Model): __tablename__ = "tasks" id = db.Column( INTEGER(unsigned=True), primary_key=True, autoincrement=True, ) quest_id = db.Column( INTEGER(unsigned=True), db.ForeignKey("quests.id", ondelete="cascade", onupdate="cascade"), nullable=False, ) name = db.Column(db.String(255), nullable=False) description = db.Column(db.String(5000)) start = db.Column(db.DateTime) done = db.Column(db.Boolean, default=False) created_at = db.Column( db.DateTime, server_default=db.func.current_timestamp(), server_onupdate=db.func.current_timestamp(), nullable=False, ) updated_at = db.Column( db.DateTime, server_default=db.func.current_timestamp(), server_onupdate=db.func.current_timestamp(), nullable=False, ) subtasks = db.relationship("Subtask", backref="task", cascade="all") def __init__(self, quest_id, name, description=None): self.quest_id = quest_id self.name = name self.description = description def to_dict(self): return dict( id=self.id, name=self.name, description="" if self.description is None else self.description, done=self.done, subtasks=[subtask.to_dict() for subtask in self.subtasks], start=self.start, ) ```
{ "source": "jphacks/A_2004", "score": 3 }
#### File: A_2004/make-dataset/square_size.py ```python from PIL import Image from pathlib import Path import os #im = Image.open('./data/src') dir = input("学習データ候補の画像があるディレクトリ名> ") p = Path("./{}".format(dir)) files = sorted(p.glob("*")) def expand2square(pil_img, background_color): width, height = pil_img.size if width == height: return pil_img elif width > height: result = Image.new(pil_img.mode, (width, width), background_color) result.paste(pil_img, (0, (width - height) // 2)) return result else: result = Image.new(pil_img.mode, (height, height), background_color) result.paste(pil_img, ((height - width) // 2, 0)) return result for filename in files: im = Image.open(filename) im_new = expand2square(im, (255, 255, 255)) im_new.save('./{}/{}.jpg'.format(dir,(str(filename).split('/')[1]).split('.')[0]), quality=95) ``` #### File: deep/DCGAN/networks.py ```python import torch from torch import nn ### Generatorの作成 ### class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.main = nn.Sequential( nn.ConvTranspose2d(100, 256, 4, 1, 0, bias=False), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.ConvTranspose2d(256, 128, 4, 2, 1, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.ConvTranspose2d(128, 64, 4, 2, 1, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.ConvTranspose2d(64, 32, 4, 2, 1, bias=False), nn.BatchNorm2d(32), nn.ReLU(inplace=True), nn.ConvTranspose2d(32, 3, 4, 2, 1, bias=False), nn.Tanh() ) def forward(self, x): return self.main(x) ### Discriminatorの作成 ### class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.main = nn.Sequential( nn.Conv2d(3, 32, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(32, 64, 4, 2, 1, bias=False), nn.BatchNorm2d(64), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64, 128, 4, 2, 1, bias=False), nn.BatchNorm2d(128), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(128, 256, 4, 2, 1, bias=False), nn.BatchNorm2d(256), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(256, 1, 4, 1, 0, bias=False), ) def forward(self, x): return self.main(x).squeeze() ```
{ "source": "jphacks/A_2006", "score": 3 }
#### File: jphacks/A_2006/scraping.py ```python from bs4 import BeautifulSoup import urllib.request, urllib.error, urllib.parse def select_img(keyword="TT兄弟"): max_page = 3 # ページ数(20枚/ページ) headers = { "User-Agent": "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:47.0) Gecko/20100101 Firefox/47.0", } # cnt = random.choice([i for i in range(200) if i%20 == 0]) url = 'https://search.yahoo.co.jp/image/search?p={}&fr=top_ga1_sa&ei=UTF-8'.format(urllib.parse.quote(keyword)) req = urllib.request.Request(url=url, headers=headers) res = urllib.request.urlopen(req) soup = BeautifulSoup(res, features="lxml") # div = soup.find_all(class_="sw-ThumbnailGrid") # print(div) imgs = soup.find_all('img') print(imgs) # img = random.choice(imgs) # img = img["src"] # tmp = urllib.request.urlopen(img) # data = tmp.read() # return data if __name__ == "__main__": select_img("犬") ``` #### File: A_2006/server/calc.py ```python from flask import Flask, request, jsonify, make_response from azure.cognitiveservices.vision.customvision.prediction import CustomVisionPredictionClient from msrest.authentication import ApiKeyCredentials from werkzeug.utils import secure_filename from PIL import Image import json import io import base64 # サニタイズ卍 ALLOWED_EXTENSIONS = set(['png', 'jpg', 'jpeg','gif']) def allowed_file(filename): return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS #TODO:画像から犬の状態を判定する coefficient_dic = {'adult':1.8, #成犬 'sterilized':1.6, #不妊治療済み 'obesity':1.4, #肥満気味 'increasing':1.3, #増量中 'pregnancy':2.4, #妊娠期 'lactation':6, #泌乳期 'growth_period':3, #成長期 'old': 1.4 #老犬 } # base64をpillowで扱えるように変換 def img_parser(img): img = request.form["img"] img = base64.b64decode(img) img = BytesIO(img) img = Image.open(img) return img # 距離を返す(km) def ideal_walk_dst(cal, weight): dst = ((cal/weight - 1.25*(weight)**(-1/4))*weight**(-2/5))/1.77 return dst def calc_rep(weight): #安静時エネルギー rep=70*(weight)**(2/3) return rep def calc_der(rep, state): #一日あたりの理想エネルギー der = rep*state return der*0.3 def azure_request(img_by): project_ID = "xxx" iteration_name = "xxx" key = "xxx" endpointurl = "xxx" prediction_credentials = ApiKeyCredentials( in_headers={"Prediction-key": key} ) predictor = CustomVisionPredictionClient( endpointurl, prediction_credentials ) results = predictor.classify_image( project_ID, iteration_name, img_by ) predict = {} for prediction in results.predictions: predict[prediction.tag_name] = prediction.probability return predict # 予測を辞書で返却 app = Flask(__name__) @app.route('/route', methods=["POST"]) def main(): # json_data = request.get_json() # print(json_data) # weight = float(json_data.get("weight")) # coefficient = json_data.get("coefficient") weight = request.get_json()["weight"] img = request.get_json()['image'] #《追加》======================================================================= # 画像をazureにぶん投げて結果を取得 img = base64.b64decode(img) azure_results = azure_request(img) # ['normal: 65.00%', 'slender: 56.72%', 'fat: 9.45%']こんな感じで帰ってくる print("[DEBUG] azure_results: ", azure_results) # fat指数(適当) fat = azure_results["slender"]*(-1) + azure_results["fat"]*1 + 2 #======================================================================= print("[DEBUG] fat指数: ", fat) #TODO:POSTされた画像データを扱う #img = img_parser(json_data.get("img")) rep = calc_rep(float(weight)) der = calc_der(rep, fat) dst = ideal_walk_dst(der, float(weight)) print("[DEBUG] distance: "+str(dst)) payload = { "result":True, "data":{ "distance": dst/2, } } return jsonify(payload) if __name__ == "__main__": app.run(debug=True, host='localhost', port=5678) ``` #### File: A_2006/server/client.py ```python import requests import json def main(): files = { "image_file": open("../data/dog/142520422.jpg", 'rb') } data = {"weight":50, "coefficient":50} response = requests.post("http://127.0.0.1:5678/route", files=files, json=json.dumps(data)) results = response.json() return results if __name__ == "__main__": results = main() print(results) ```
{ "source": "jphacks/A_2016", "score": 2 }
#### File: domain/repository/container_repository.py ```python from typing import List from sqlalchemy.orm import Session from app.domain import entity def get_all_containers(db: Session) -> List[entity.Container]: return db.query(entity.Container).all() ``` #### File: domain/schemas/containers.py ```python import re from pydantic import BaseModel, validator def validate_image(image: str) -> str: if re.fullmatch(r"https?://[\w!?/+\-_~;.,*&@#$%()'[\]]+", image) is None: raise ValueError('malformed image url: %s' % image) return image def validate_name(name: str) -> str: if len(name) == 0: raise ValueError('name is required') return name def validate_min(min_v: int, values) -> int: if min_v > values.get('max'): raise ValueError('max must be larger than min') return min_v def validate_nat(v: int) -> int: if v < 0: raise ValueError('must be larger than 0') return v class ContainerBase(BaseModel): id: str image: str name: str max: int min: int _validate_image = validator('image', allow_reuse=True)(validate_image) _validate_name = validator('name', allow_reuse=True)(validate_name) _validate_max = validator('max', allow_reuse=True)(validate_nat) _validate_min = validator('min', allow_reuse=True)(validate_min) class Container(ContainerBase): class Config: orm_mode = True ```
{ "source": "jphacks/A_2104", "score": 3 }
#### File: lambda/applyGoogleCal/lambda_function.py ```python import os import json import datetime import httplib2 from oauth2client.service_account import ServiceAccountCredentials from apiclient import discovery import traceback class GoogleCalendar(object): def __init__(self): self.service_account_id = os.environ["GOOGLE_SERVICE_ACCOUNT_ID"] def get_credentials(self): scopes = "https://www.googleapis.com/auth/calendar" credentials = ServiceAccountCredentials.from_json_keyfile_name( "google_key.json", scopes=scopes ) return credentials def get_schedule(self, calendar_id, time_min, time_max): try: credentials = self.get_credentials() http = credentials.authorize(httplib2.Http()) service = discovery.build("calendar", "v3", http=http,cache_discovery=False) events = ( service.events() .list( calendarId=calendar_id, timeMin=time_min, timeMax=time_max, singleEvents=True, ) .execute() ) items = events["items"] return items except Exception as e: raise Exception(f"Error:{e}") def insert_event(self,calendar_id,start,end): try: credentials = self.get_credentials() http = credentials.authorize(httplib2.Http()) service = discovery.build("calendar", "v3", http=http,cache_discovery=False) event_body = { 'summary': '移動', 'start': {'dateTime': f'{start}', 'timeZone': 'Asia/Tokyo'}, 'end': {'dateTime': f'{end}', 'timeZone': 'Asia/Tokyo'}, 'colorId':'6', } res = service.events().insert(calendarId=calendar_id,body=event_body).execute() except Exception as e: raise Exception(f"Error:{e}") return res def lambda_handler(event, context): GoogleCal = GoogleCalendar() email = event["email"] contents = event["body"] for content in contents: start = content["start"] end = content["end"] GoogleCal.insert_event(email,start,end) return { 'statusCode': 200, 'body': json.dumps('Success') } ``` #### File: lambda/postEvent/lambda_function.py ```python import os import json import urllib import requests import datetime def get_time(origins,destinations,mode): qs = {"origins":origins,"destinations":destinations,"mode":mode,"key":os.environ["API_KEY"]} d_qs = urllib.parse.urlencode(qs) url = os.environ["API_ENDPOINT"] + d_qs payload={} headers = {} response = requests.request("GET", url, headers=headers, data=payload) res = json.loads(response.text) return res['rows'][0]['elements'][0]['duration']['value'] def calc_transportation(body): """ 移動の予定のみreturn. """ margin = 5*60 #margin before next event start ret = [] for i in range(len(body)): indict = {} if i==0: dur = get_time(os.environ["HOME"],body[i]["location"],body[i]["mode"]) else: dur = get_time(body[i-1]["location"],body[i]["location"],body[i]["mode"]) t_delta = datetime.timedelta(seconds=(dur+margin)) t_delta_margin = datetime.timedelta(seconds=margin) dt = datetime.datetime.fromisoformat(body[i]["start"]) indict["title"] = "移動" indict["start"] = (dt - t_delta).isoformat() indict["end"] = (dt - t_delta_margin).isoformat() indict["backgroundColor"] = "#FFCC99" ret.append(indict) return ret def lambda_handler(event, context): events = event["body"] transport_events = calc_transportation(events) combined_events = events + transport_events res = [combined_events,transport_events] return { 'statusCode': 200, 'body': json.dumps(res) } ```
{ "source": "jphacks/A_2111", "score": 3 }
#### File: A_2111/backend/crud.py ```python from fastapi import HTTPException, status import os from uuid import uuid4 from firebase import db from firebase_admin import firestore import numpy as np # 全ての登録情報を取得 async def get_all_members(): docs = db.collection("members").stream() data = [] for doc in docs: post = {"id": doc.id, **doc.to_dict()} data.append(post) return data # 特定の登録情報を取得 async def get_member(uuid: str): docs = db.collection("members").where("uuid", "==", uuid).stream() data = [] for doc in docs: post = {"id": doc.id, **doc.to_dict()} data.append(post) if len(data) == 0: raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail="このIDは見つかりません") return data # すべてのリレーション情報を取得 async def get_all_familiars(): docs = db.collection("familiars").stream() data = [] for doc in docs: post = {"id": doc.id, **doc.to_dict()} data.append(post) return data # 特定のリレーション情報を取得 async def get_familiar(uuid: str): docs = db.collection("familiars").where("start", "==", uuid).stream() docs2 = db.collection("familiars").where("end", "==", uuid).stream() data = [] for doc in docs: post = {"id": doc.id, **doc.to_dict()} data.append(post) for doc in docs2: post = {"id": doc.id, **doc.to_dict()} data.append(post) return data # メンバー登録 async def create_member(name: str, size: str, vector: str) -> str: size_width = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"] if size not in size_width: raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="1~10のいずれかの整数を半角で入力してください") uuid = str(uuid4()) doc_ref = db.collection("members").document() doc_ref.set({ "uuid": uuid, "name": name, "size": size, "vector": vector }) return uuid # リレーション登録 async def create_familiar(start: str, end: str): doc_ref = db.collection("familiars").document() doc_ref.set({ "start": start, "end": end }) return True # 既存のリレーションの有無を確認 async def existed_familiar(start: str, end: str): docs = db.collection("familiars").where("start", "==", start).where("end", "==", end).stream() docs2 = db.collection("familiars").where("start", "==", end).where("end", "==", start).stream() data = [] for doc in docs: post = {"id": doc.id, **doc.to_dict()} data.append(post) for doc in docs2: post = {"id": doc.id, **doc.to_dict()} data.append(post) if len(data) != 0: raise HTTPException(status_code=status.HTTP_409_CONFLICT, detail="このIDはすでに登録されています") return True # 登録情報を更新 async def update_member(uuid: str, name: str, size: str): size_width = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"] if size not in size_width: raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="1~10のいずれかの整数を半角で入力してください") docs = db.collection("members").where("uuid", "==", uuid).stream() data = [] for doc in docs: post = {"id": doc.id, **doc.to_dict()} data.append(post) if len(data) == 0: raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail="あなたのIDが見つかりませんでした") doc_ref = db.collection("members").document(data[0]["id"]) result = doc_ref.update({"name": name, "size": size}) return result # 登録情報を削除 async def remove_member(uuid: str): docs = db.collection("members").where("uuid", "==", uuid).stream() data = [] for doc in docs: post = {"id": doc.id, **doc.to_dict()} data.append(post) if len(data) == 0: raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail="あなたのIDが見つかりませんでした") result = db.collection("members").document(data[0]["id"]).delete() return result # 登録情報を削除した際、それに付随するリレーションも全て削除 async def remove_familiar_related_member(uuid: str): docs = db.collection("familiars").where("start", "==", uuid).stream() docs2 = db.collection("familiars").where("end", "==", uuid).stream() data = [] for doc in docs: post = {"id": doc.id, **doc.to_dict()} data.append(post) for doc in docs2: post = {"id": doc.id, **doc.to_dict()} data.append(post) i = 0 while True: if i > len(data) - 1: break db.collection("familiars").document(data[i]["id"]).delete() i += 1 return True # 特定のリレーションを削除 async def remove_familiar(start: str, end: str): docs = db.collection("familiars").where("start", "==", start).where("end", "==", end).stream() docs2 = db.collection("familiars").where("start", "==", end).where("end", "==", start).stream() data = [] for doc in docs: post = {"id": doc.id, **doc.to_dict()} data.append(post) for doc in docs2: post = {"id": doc.id, **doc.to_dict()} data.append(post) if len(data) == 0: raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail="登録しているIDがありません") result = db.collection("familiars").document(data[0]["id"]).delete() return result # cos類似度を計算 async def cosine_similarity(a, b): return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)) # もらったベクトルとDBに登録されているベクトルを照合 async def login(uuid: str, vector: list): already_registered_vector = db.collection("members").where("uuid", "==", uuid).stream() for vec in already_registered_vector: post = {"id": vec.id, **vec.to_dict()} cosine_result = await cosine_similarity(vector, post["vector"]) return cosine_result ``` #### File: A_2111/backend/main.py ```python import json from fastapi import FastAPI, Form, status from fastapi.responses import JSONResponse import uvicorn import crud from typing import Optional from fastapi.middleware.cors import CORSMiddleware app = FastAPI() origins = [ # TODO: フロントエンドデプロイしたらそのURLも入れる "http://localhost:3000", "http://localhost", "https://coconomask.web.app", ] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # ルート @app.get("/") async def root(): return {"message": "this is root"} # 登録情報を全て取得 @app.get("/members") async def get_members(): members = await crud.get_all_members() resp = { "status": "ok", "count": len(members), "data": members } return resp # 特定の登録情報を取得 @app.get("/member") async def get_member(uuid: str): member = await crud.get_member(uuid) resp = { "status": "ok", "data": member } return resp # リレーションを全て取得 @app.get("/familiars") async def get_familiars(): familiars = await crud.get_all_familiars() resp = { "status": "ok", "count": len(familiars), "data": familiars } return resp # 特定のリレーションを取得 @app.get("/familiar") async def get_familiar(uuid: str = Form(...)): member = await crud.get_familiar(uuid) if len(member) == 0: return JSONResponse(content={"status": "error", "message": "このIDは見つかりません"}, status_code=status.HTTP_404_NOT_FOUND) resp = { "status": "ok", "data": member } return resp # メンバー登録 @app.post("/member") async def post_member( name: str = Form(...), size: str = Form(...), vector: str = Form(...) ): vector = list(map(float, vector[1:-1].split(","))) uuid = await crud.create_member(name, size, vector) return JSONResponse(content={"status": "ok", "uuid": uuid, "name": name, "size": size, "vector": vector}, status_code=status.HTTP_201_CREATED) # リレーション登録 @app.post("/familiar") async def post_familiar( start: str = Form(...), end: str = Form(...) ): await crud.existed_familiar(start, end) await crud.create_familiar(start, end) return JSONResponse(content={"status": "ok"}, status_code=status.HTTP_201_CREATED) # 登録情報を更新 @app.put("/member") async def put_member( uuid: str = Form(...), name: str = Form(...), size: str = Form(...) ): await crud.update_member(uuid, name, size) return JSONResponse(content={"status": "ok"}, status_code=status.HTTP_201_CREATED) # 登録情報を削除 @app.delete("/member") async def delete_member(uuid: str = Form(...)): await crud.remove_member(uuid) await crud.remove_familiar_related_member(uuid) return JSONResponse(content={"status": "ok"}, status_code=status.HTTP_201_CREATED) # 特定のリレーションを削除 @app.delete("/familiar") async def delete_familiar( start: str = Form(...), end: str = Form(...) ): await crud.remove_familiar(start, end) return JSONResponse(content={"status": "ok"}, status_code=status.HTTP_201_CREATED) # ログイン用 @app.post("/login") async def login( uuid: str = Form(...), vector: str = Form(...) ): vector = list(map(float, vector[1:-1].split(","))) cosine_similarity = await crud.login(uuid, vector) return JSONResponse(content={"status": "ok", "uuid": uuid, "cosine": cosine_similarity}, status_code=status.HTTP_202_ACCEPTED) # 起動 if __name__ == '__main__': uvicorn.run("main:app", reload=True) ``` #### File: device/ML/runonnx.py ```python import onnxruntime as ort from PIL import Image import numpy as np def run(url): x=np.array(Image.open(url),dtype=np.float32).reshape(1,3,160,160) ort_sess = ort.InferenceSession('model.onnx') outputs = ort_sess.run(None, {'input': x}) return outputs[0][0] if __name__ == '__main__': print(run("sample.jpg")) ```
{ "source": "jphacks/A_2112", "score": 3 }
#### File: img_proc_server/app/app.py ```python from flask import * from sklearn import base import cv2 import numpy as np import matplotlib.pyplot as plt import json import base64 from main_modules import * app = Flask(__name__) @app.route('/', methods = ['POST']) def post(): base64Image = json.loads(request.data.decode('UTF-8'))["base64Image"] tmp1 = base64.b64decode(base64Image) tmp2 = np.frombuffer(tmp1, dtype = np.uint8) img = cv2.imdecode(tmp2, cv2.IMREAD_COLOR) img2 = cv2.flip(img, 1) retval, buffer = cv2.imencode('.jpg', img2) base64Image2 = base64.b64encode(buffer).decode('UTF-8') # print(base64Image2) # plt.imshow(img) # plt.show() return make_response(jsonify({'base64Image':base64Image2 }),200) # return make_response(jsonify({'error':'Does not support POST method'}),404) @app.route('/', methods = ['GET']) def get(): print("test") return make_response(jsonify({'base64Image':"test" }),200) @app.route('/calib', methods = ['POST']) def calib(): base64Image = json.loads(request.data.decode('UTF-8'))["base64Image"] arrow_point = json.loads(request.data.decode('UTF-8'))["arrowPoint"] marker_points = json.loads(request.data.decode('UTF-8'))["markerPoints"] crop_points = json.loads(request.data.decode('UTF-8'))["cropPoints"] manual_marker = json.loads(request.data.decode('UTF-8'))["manualMarker"] img_org = image_preprocess(base64Image, calib=True) # arrow_point = [int(arrow_point[0]*h - h_crop[0]), int(arrow_point[1]*w -w_crop[0])] # marker_points = np.array([[int(marker_point[1]*w - w_crop[0]), int(marker_point[0]*h - h_crop[0])] for marker_point in marker_points]) img = init_calib(img_org, arrow_point, marker_points, crop_points, debug=True, manual_marker=manual_marker) if img is None: return make_response(jsonify({'base64Image':base64Image }),200) else: # img = cv2.resize(img, img_org.shape[:2]) retval, buffer = cv2.imencode('.jpg', img) base64Image2 = base64.b64encode(buffer).decode('UTF-8') return make_response(jsonify({'base64Image':base64Image2 }),200) @app.route('/arrow', methods = ['POST']) def arrow(): base64ImagePrev = json.loads(request.data.decode('UTF-8'))["base64ImagePrev"] base64Image = json.loads(request.data.decode('UTF-8'))["base64Image"] img_prev, _ = image_preprocess(base64ImagePrev, calib=False) img, img_org = image_preprocess(base64Image, calib=False) # cv2.imwrite('./work/test1.png', img) # cv2.imwrite('./work/test2.png', img_prev) # img, r, theta, score = detect_arrow(img, img_prev, count) img, x, y, score = detect_arrow(img, img_prev, debug=False) # if img is None: # return make_response(jsonify({'base64Image':base64Image }),200) # else: # # img = cv2.resize(img, img_org.shape[:2]) # retval, buffer = cv2.imencode('.jpg', img) # base64Image2 = base64.b64encode(buffer).decode('UTF-8') # return make_response(jsonify({'base64Image':base64Image2 }),200) return make_response(jsonify({'x': x, 'y': y, 'score': score}),200) @app.route('/trajectory', methods = ['POST']) def proc_movie(): base64Movie = json.loads(request.data.decode('UTF-8'))["base64"] dec_movie = base64.b64decode(base64Movie) movie_path = './work/dec_movie.dat' # f = open(movie_path, 'wb') # f.write(dec_movie) # f.close() # print(cv2.VideoCapture(movie_path).set(cv2.CAP_PROP_POS_FRAMES, 0)) with open(movie_path, 'wb') as f: f.write(dec_movie) cap = cv2.VideoCapture(movie_path) base64mp4 = detc_traj(cap) return make_response(jsonify({'base64mp4':base64mp4 }),200) if __name__ == "__main__": app.run( host='0.0.0.0', port=5000, debug=True, # use_reloader=False, threaded=False ) ```
{ "source": "jphacks/B_2003", "score": 3 }
#### File: lambda/get_number/lambda.py ```python import sys import os import pymysql import json #rds settings DB_USER = os.environ["user"] DB_PASSWORD = os.environ["password"] DB_HOST = os.environ["endpoint"] DB_NAME = os.environ["db"] # connect to SQL try: conn = pymysql.connect(DB_HOST, user=DB_USER, passwd=<PASSWORD>, db=DB_NAME, connect_timeout=5) print("OK") except Exception as e: print("Fail connecting to RDS mysql instance") print(e) sys.exit() print("Success connecting to RDS mysql instance") # main関数(handlerからスタート, eventから引数とってくる) def handler(event, context): print('body=',event['body']) body = json.loads(event['body']) facility_name = body['name'] password_token = body['password_token'] tmp = [(facility_name), (password_token)] facilityID = "none" name_list = [] item_count = 0 with conn.cursor(pymysql.cursors.DictCursor) as cur: try: cur.execute("SELECT facilityID FROM facility WHERE name= %s AND password_token= %s", tmp) row = cur.fetchone() if row == None: print('no Exist in facility') body = json.dumps({ "result":0, }) conn.commit() return { 'isBase64Encoded': False, 'statusCode': 200, 'headers': { 'Content-Type': 'application/json', 'Access-Control-Allow-Origin': '*' }, 'body': body } print('row[facilityID]=',row['facilityID']) facilityID = row['facilityID'] cur.execute("SELECT users.name FROM facility_number INNER JOIN users ON users.userID = facility_number.userID WHERE facilityID = %s AND is_leave=0", facilityID) row = cur.fetchone() while row is not None: print('row=',row) item_count += 1 name_list.append(row['name']) row = cur.fetchone() print('name=',name_list) print( "Get %d items from RDS MySQL table" %(item_count) ) except Exception as e: print(e) result = 0 #データベースコミット! conn.commit() body = json.dumps({ "result":1, "name": name_list }) return { 'isBase64Encoded': False, 'statusCode': 200, 'headers': { 'Content-Type': 'application/json', 'Access-Control-Allow-Origin': '*' }, 'body': body } ``` #### File: lambda/list_get/lambda.py ```python import sys import os import pymysql import json import datetime # rds settings DB_USER = os.environ["user"] DB_PASSWORD = os.environ["password"] DB_HOST = os.environ["endpoint"] DB_NAME = os.environ["db"] # connect to SQL try: conn = pymysql.connect(DB_HOST, user=DB_USER, passwd=<PASSWORD>, db=DB_NAME, connect_timeout=5) print("OK") except Exception as e: print("Fail connecting to RDS mysql instance") print(e) sys.exit() print("Success connecting to RDS mysql instance") def default(o): if isinstance(o, (datetime.date, datetime.datetime)): return o.isoformat() def handler(event, context): print('body=', event['body']) body = json.loads(event['body']) facility_name = body['name'] password = body['password'] starttime = body['starttime'] endtime = body['endtime'] tmp = [(facility_name), (password)] facilityID = "none" adaptive_list = [] item_count = 0 with conn.cursor(pymysql.cursors.DictCursor) as cur: try: cur.execute( "SELECT facilityID FROM facility WHERE name= %s AND password= %s", tmp) row = cur.fetchone() if row == None: print('no Exist in facility') body = json.dumps({ "result": 0, }) conn.commit() return { 'isBase64Encoded': False, 'statusCode': 200, 'headers': { 'Content-Type': 'application/json', 'Access-Control-Allow-Origin': '*' }, 'body': body } print('row[facilityID]=', row['facilityID']) facilityID = row['facilityID'] cur.execute( "SELECT users.name, users.email_address, users.affiliation, starttime, endtime FROM facility_number INNER JOIN users ON users.userID = facility_number.userID WHERE facilityID = %s AND %s<=starttime AND endtime<=%s", [ (facilityID), (starttime), (endtime)]) row=cur.fetchone() while row is not None: print('row=', row) item_count += 1 adaptive_list.append(row) row=cur.fetchone() print('adaptive_list=', adaptive_list) print("Get %d items from RDS MySQL table" % (item_count)) except Exception as e: print(e) result=0 # データベースコミット! conn.commit() body=json.dumps({ "result": 1, "list": adaptive_list }, sort_keys=True, indent=1, default=default) return { 'isBase64Encoded': False, 'statusCode': 200, 'headers': { 'Content-Type': 'application/json', 'Access-Control-Allow-Origin': '*' }, 'body': body } ``` #### File: lambda/recognition/lambda.py ```python import sys import os import pymysql import json #add import boto3 import datetime import botocore import base64 import uuid #rds settings DB_USER = os.environ["user"] DB_PASSWORD = os.environ["password"] DB_HOST = os.environ["endpoint"] DB_NAME = os.environ["db"] try: conn = pymysql.connect(DB_HOST, user=DB_USER, passwd=<PASSWORD>, db=DB_NAME, connect_timeout=5) except Exception as e: print("Fail connecting to RDS mysql instance") print(e) sys.exit() print("Success connecting to RDS mysql instance") def upload_file(file_name, bucket, object_name=None): """Upload a file to an S3 bucket :param file_name: File to upload :param bucket: Bucket to upload to :param object_name: S3 object name. If not specified then file_name is used :return: True if file was uploaded, else False """ # If S3 object_name was not specified, use file_name if object_name is None: object_name = file_name # Upload the file s3_client = boto3.client('s3') try: response = s3_client.upload_file(file_name, bucket, object_name) except ClientError as e: logging.error(e) return False return True def decode_base64(photo): return base64.b64decode(photo.encode('utf-8')) def searchByimg(photo): bucket = 'recognition' collectionId = 'Collection' photo_bytes = decode_base64(photo) #検索したい画像。渡し方要検討 threshold = 70 #信頼度 maxFaces = 1 #認識させる最大の顔の数 client = boto3.client('rekognition') response = client.search_faces_by_image(CollectionId=collectionId, Image= {'Bytes':photo_bytes}, FaceMatchThreshold=threshold, MaxFaces=maxFaces) faceMatches = response['FaceMatches'] return faceMatches def handler(event, context): print(event['body']) body = json.loads(event['body']) face_photo = body["face_photo"] facilityID = body["facilityID"] faceMatches = searchByimg(face_photo) print(faceMatches) result = 0 with conn.cursor(pymysql.cursors.DictCursor) as cur: for match in faceMatches: print('FaceId:' + match['Face']['FaceId']) print('Similarity: ' + "{:.2f}".format(match['Similarity']) + "%") faceID = match['Face']['FaceId'] try: result = 2 cur.execute("SELECT starttime FROM facility_number WHERE userID=%s AND is_leave=0", faceID) for row in cur: #TODO 早すぎる退出の例外処理 dt_now = datetime.datetime.now() print('exit',dt_now) cur.execute("UPDATE facility_number SET endtime= %s, is_leave=1 WHERE (is_leave=0 AND userID=%s) AND facilityID= %s",[(dt_now), (faceID),(facilityID)]) print("OK2") body = json.dumps({ "result":3, }) conn.commit() return { 'isBase64Encoded': False, 'statusCode': 200, 'headers':{ 'Content-Type': 'application/json', 'Access-Control-Allow-Origin': '*' }, 'body': body } print('start checking room limit') cur.execute("SELECT * FROM facility_number WHERE ((is_leave=0 AND facilityID=%s) AND (userID!=%s ))", [(facilityID),(faceID)]) is_leave_num = 0 for row in cur: print('row=',row) is_leave_num += 1 print('now staying num=',is_leave_num) cur.execute("SELECT limit_days FROM facility WHERE facilityID=%s", facilityID) limit = 0 for row in cur: limit = row['limit_days'] print('limit=',limit) if is_leave_num >= limit: body = json.dumps({ "result":1, }) print('room over limit') return { #人数が制限を超えていたとき 'isBase64Encoded': False, 'statusCode': 200, 'headers':{ 'Content-Type': 'application/json', 'Access-Control-Allow-Origin': '*' }, 'body': body } print("finish checking room limit") if result == 2: dt_now = datetime.datetime.now() tmp1 = [(faceID), (facilityID), (dt_now), (0)] print('enter', tmp1) cur.execute("INSERT INTO facility_number(userID, facilityID, starttime, is_leave) VALUE (%s, %s, %s, %s)",tmp1) conn.commit() except Exception as e: print('Exception ',e) result = 0 print('finish searching By faceID') #データベースコミット! conn.commit() body = json.dumps({ "result":result }) # returnは4パラメータで、辞書(or json)を返す return { 'isBase64Encoded': False, 'statusCode': 200, 'headers':{ 'Content-Type': 'application/json', 'Access-Control-Allow-Origin': '*' }, 'body': body } ```
{ "source": "jphacks/B_2011", "score": 3 }
#### File: proctor/websocket/consumers.py ```python from channels.generic.websocket import AsyncWebsocketConsumer from sent_messages.serizlizers import MessageSerializer from channels.db import database_sync_to_async import json class ExamineeConsumer(AsyncWebsocketConsumer): async def connect(self): self.room_name = self.scope['url_route']['kwargs']['exam_id'] self.room_group_name = 'chat_{}'.format(self.room_name) # Join room group await self.channel_layer.group_add( self.room_group_name, self.channel_name ) await self.accept() async def disconnect(self, close_code): await self.channel_layer.group_discard( self.room_group_name, self.channel_name ) # Receive message from WebSocket` async def receive(self, text_data): text_data_json = json.loads(text_data) message = text_data_json #send message to users from examinees await self.channel_layer.group_send( self.room_group_name, { 'type': 'examinee_message', 'message': message } ) #save message to database await self.save_message(text_data) # Receive message from users async def user_message(self, event): message = event['message'] # Send message to WebSocket print(message) await self.send(text_data=message) async def examinee_message(self, event): pass @database_sync_to_async def save_message(self, text): message = json.loads(text) serializer = MessageSerializer(data=message) serializer.is_valid(raise_exception=True) serializer.save() class UserConsumer(AsyncWebsocketConsumer): async def connect(self): self.room_name = self.scope['url_route']['kwargs']['exam_id'] self.room_group_name = 'chat_{}'.format(self.room_name) # Join room group await self.channel_layer.group_add( self.room_group_name, self.channel_name ) await self.accept() async def disconnect(self, close_code): await self.channel_layer.group_discard( self.room_group_name, self.channel_name ) # Receive message from WebSocket` async def receive(self, text_data): text_data_json = json.loads(text_data) message = text_data_json['message'] #send message to users from examinees await self.channel_layer.group_send( self.room_group_name, { 'type': 'user_message', 'message': message } ) # Receive message from examinees async def examinee_message(self, event): message = event['message'] if message['alert']==0: return 0 # Send message to WebSocket await self.send(text_data=json.dumps(message)) async def user_message(self, event): pass ```
{ "source": "jphacks/B_2015", "score": 3 }
#### File: polls/application/bungou.py ```python import os import csv import random #from dictionary import make_synonym_dict def search(param): #from janome.tokenizer import Tokenizer #t = Tokenizer() #print(param2) print("search:") print(param) def flatten(nested_list): """2重のリストをフラットにする関数""" return [e for inner_list in nested_list for e in inner_list] def search2(param): param2 = '"' + param + '":' gokan_sentence_list = [] print(os.getcwd()) with open(os.getcwd()+'/sitm.pythonanywhere.com/polls/application/'+'akutagawa_gokan_dict.tsv', encoding = 'utf-8')as f: print("開けた!") for line in f: #print(line) #t = 0 if param2 in line: _,line = line.split(param2) gokan_sentence_list = line.split('\t') #t = random.randint(0,len(gokan_sentence_list)-1) break print(gokan_sentence_list) print("aaa") if gokan_sentence_list!=[]: return random.choice(gokan_sentence_list) else: return "" gokan_sentence_list = [] gokan_sentence_list.append(search2(param)) #print(gokan_dict) synonym_dict = {} #synonym_dict=make_synonym_dict(param) #print(synonym_dict) with open(os.getcwd()+'/sitm.pythonanywhere.com/polls/application/'+'akutagawa_synonym_dict.tsv', encoding = 'utf-8')as f: param2 = '"'+param+'":' for line in f: if param2 in line: _,line = line.split(param2) synonym_dict[param] = line.split('\t') for synonym in synonym_dict[param]: #print(synonym) gokan_sentence_list.append(search2(synonym)) #if gokan_dict.get(synonym): #for sentence in gokan_sentence_list: with open(os.getcwd()+'/sitm.pythonanywhere.com/polls/application/'+'data.csv','a') as f: for sentence in gokan_sentence_list: f.write(sentence + '::::::::::') #writer.writerow(gokan_sentence_list) # writer.writerow("DONE")""" # 以下を追記(return_text()を呼び出すと"Hello!!"が返される) def return_text(): #return "Hello!" with open(os.getcwd()+'/sitm.pythonanywhere.com/polls/application/'+'data.csv') as f: reader = csv.reader(f, lineterminator='\n,') datas = [] for row in reader: # print(row) datas.append(row) os.remove(os.getcwd()+'/sitm.pythonanywhere.com/polls/application/'+'data.csv') return datas """ with open(os.getcwd()+'/polls/application/'+'data.csv','a') as f: reader = csv.reader(f, lineterminator='\n') datas = [] for row in reader: datas.append(row) return datas """ """ テスト用 # coding:utf-8 import os import csv # htmlからのデータをcsvファイルに記録 def search(data): print("dataだよ") datas = [data] with open(os.getcwd()+'/polls/application/'+'data.csv','a') as f: writer = csv.writer(f, lineterminator='\n') writer.writerow(datas) """ ``` #### File: polls/application/dictionary.py ```python import requests from bs4 import BeautifulSoup def make_synonym_dict(word): #word = input() synonym_dict={word:[]} url = "https://thesaurus.weblio.jp/content/" + word #headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.80 Safari/537.36'} r = requests.get(url) html = r.text bs = BeautifulSoup(html, 'html.parser') try: synonyms_table = bs.find_all("td" ,class_="nwntsR") #synonyms_table = bs.find_all("div" ,class_="Nwnts") for synonyms in synonyms_table: synonyms = synonyms.find_all("li")#class_='crosslink') #meanings = bs.select_one("#main > div:nth-of-type(13) > div > div.Nwnts > table > tbody > tr:nth-of-type(2) > td.nwntsR > ul > li:nth-of-type(1) > a").text for synonym in synonyms: if synonym.find(class_='crosslink')!=None: synonym = synonym.find(class_='crosslink') synonym_dict[word] += synonym.contents #print(synonym_dict) return synonym_dict except AttributeError: meanings = "そのような言葉は見つからなかったよ...。ごめんね。" print(meanings) return {} synonym_dict={} synonym_dict = make_synonym_dict("ぬこ") synonym_dict ```
{ "source": "jphacks/B_2021", "score": 3 }
#### File: 334jst_server/web/models.py ```python from web import db, ma from marshmallow_sqlalchemy import ModelSchema from flask import jsonify import json class Sound(db.Model): __tablename__ = 'sounds' id = db.Column(db.Integer, primary_key=True) sound_type = db.Column(db.String(64), index=True) pitch_name = db.Column(db.String(64), index=True) start = db.Column(db.Integer, index=True) length = db.Column(db.Integer, index=True) room = db.Column(db.String(64), index=True) made_by = db.Column(db.String(64), index=True) def registSound(sound): record = Sound( sound_type=sound['sound_type'], pitch_name=sound['pitch_name'], start=sound['start'], length=sound['length'], room=sound['room'], made_by=sound['made_by'] ) db.session.add(record) db.session.commit() return record.id def removeSound(sound): found_entry = Sound.query.filter_by(id=sound['id']).first() db.session.delete(found_entry) db.session.commit() return sound def room_sound_all_remove(sound): db.session.query(Sound).filter(Sound.room==sound['room']).delete() db.session.commit() return sound def __repr__(self): return '<Sound id={id} sound_type={sound_type} pitch_name={pitch_name} start={start} length={length} room={room} made_by={made_by}>'.format(id=self.id, sound_type=self.sound_type, pitch_name=self.pitch_name, start=self.start, length=self.length, room=self.room, made_by=self.made_by) class SoundSchema(ma.SQLAlchemyAutoSchema): class Meta: model = Sound load_instance = True class Room(db.Model): __tablename__ = 'rooms' name = db.Column(db.String(64), primary_key=True) bpm = db.Column(db.Integer, index=True) num_of_bar = db.Column(db.Integer, index=True) def registRoom(room): record = Room( name=room['name'], bpm=room['bpm'], num_of_bar = room['num_of_bar'] ) db.session.add(record) db.session.commit() return record.name def removeRoom(room): found_entry = Room.query.filter_by(name=room['name']).first() db.session.delete(found_entry) db.session.commit() return room def changeBpm(room): found_entry = db.session.query(Room).filter(Room.name==room['name']).first() found_entry.bpm = room['bpm'] db.session.commit() def changeNumofbar(room): found_entry = db.session.query(Room).filter(Room.name==room['name']).first() found_entry.num_of_bar = room['num_of_bar'] db.session.commit() def __repr__(self): return '<Room name={name} bpm={bpm} num_of_bar={num_of_bar}>'.format(name=self.name, bpm=self.bpm, num_of_bar=self.num_of_bar) class RoomSchema(ma.SQLAlchemyAutoSchema): class Meta: model = Room load_instance = True ```
{ "source": "jphacks/B_2113", "score": 3 }
#### File: seculities/main/resizing.py ```python import re import cv2 import argparse import numpy as np def only_resize(imgcv): # 画像から数字だけを取得するために初期画像を分割する name = "yuuka" h, w, ch = imgcv.shape # 縦横幅の初期値 h_start = 350 h_end = h-125 w_start = round(w/2) w_end = w-92 # 分割する imgcv = imgcv[h_start:h_end, w_start:w_end, :ch] #現在の縦横幅 height = h_end - h_start width = w_end - w_start # n倍 n = 3 width = round(width *n) height = round(height *n) imgcv = cv2.resize(imgcv,(width,height)) return imgcv ``` #### File: seculities/main/views.py ```python import os from django.shortcuts import render from django.http import HttpResponse from django.http import HttpResponseRedirect from .forms import UploadFileForm from pathlib import Path from pdf2image import convert_from_path from .google_ocr_jap import japanese_array from .google_ocr_num import number_array from .creation_excel import cre_ex #語句の辞書 dic_account = {'流動資産' : '短い期間で現金にすることが可能な資産','現金及び預金' : '企業が所有している現金や、銀行に預けている預金', '受取手形及び売掛金' : '売上代金の未回収分' ,'有価証券' : '財産的価値のある権利を表彰する証券','棚卸資産' : '企業が販売する目的で一時的に保有している商品・製品・原材料・仕掛品の総称', '貸倒引当金' : '貸倒損失によるリスクに備え、損失になるかもしれない金額を予想して、あらかじめ計上しておく引当金', '流動資産合計' : '流動資産の合計','固定資産' : '会社が長期間にわたり保有するものや1年を超えて現金化・費用かされる資産', '有形固定資産' : '実体を持つ固定資産' , '無形固定資産':'実体を持たない固定資産','投資その他の資産':'固定資産のひとつで、有形固定資産、無形固定資産に入らない資産', '投資有価証券':'満期保有目的の有価証券など','投資その他の資産合計':'固定資産の中で、有形固定資産、無形固定資産に入らない資産','固定資産合計':'固定資産の合計','資産合計':'会社が運用している財産の総額すなわち資産の合計', '負債の部':'株主・会社以外の外部からの調達資金','流動負債':'原則として1年以内に返済しなくてはならない債務','支払手形及び買掛金':'仕入先との取引に基づいた手形上の債務と仕入先との取引によって発生した営業上の未払金', '引当金':'将来の支出に備えてあらかじめ準備しておく見積金額','未払法人税等':'納付すべき法人税、住民税および事業税の未払い額','流動負債合計':'流動負債の合計','固定負債':'1年以内に支払い義務が発生しない負債', '退職給付に係る負債':'連結財務諸表上、退職給付から年金資産の額を控除した貸方残高(積立状況を示す額)を負債として計上したもの','固定負債合計':'固定負債の合計','負債合計':'流動負債と固定負債の合計', '純資産の部':'資産から負債を差し引いた金額','株主資本':'株主が出資した資本と資本を使って生じた利益のこと','資本金':'事業を円滑に進めるために、株主が会社に出資した金額のこと','資本剩余金':'設立後新たに株式を発行した時など資本取引によって発生する余剰金', '利益剩余金':'会社の活動によって得た利益のうち、社内に留保している額','自己株式':'株式会社が発行する株式のうち、自社で取得した上で保有している株式のこと','株主資本合計':'株主資本の合計', 'その他の包括利益累計額':'これまでに公表された会計基準等で使用されている純資産の部の「評価・換算差額等」を読み替えたもの','その他有価証券評価差額金':'その他有価証券を毎期末に時価評価した場合の、相手勘定を表す勘定科目', '為替換算調整勘定':'連結財務諸表を作成する手続で発生する換算差額を調整する勘定科目','その他の包括利益累計額合計':'その他の包括利益累計額の合計','非支配株主持分':'連結子会社の資本のうち連結親会社の持分に属しない部分', '純資産合計':'純資産の合計','負債純資産合計':'負債と純資産の合計','その他1':'','その他2':'','その他3':'','その他4':'','その他5':'', } # Create your views here. def top(request): return render(request,'top.html') UPLOAD_DIR = os.path.dirname(os.path.abspath(__file__)) + '/uploads/' # アップロードしたファイルを保存するディレクトリ UPLOADS_DIR = os.path.dirname(os.path.abspath(__file__)) + '/jpg_uploads/' # アップロードされたファイルのハンドル def handle_uploaded_file(f): path = os.path.join(UPLOAD_DIR, f.name) with open(path, 'wb+') as destination: for chunk in f.chunks(): destination.write(chunk) # PDFファイルのパス pdf_path = Path(f"{UPLOAD_DIR}\{f.name}") #outputのファイルパス img_path=Path(f"{UPLOADS_DIR}") #この1文で変換されたjpegファイルが、imageホルダー内に作られます。 convert_from_path(pdf_path, output_folder=img_path,fmt='jpeg',output_file=pdf_path.stem) # ファイルアップロード def upload(request): if request.method == 'POST': form = UploadFileForm(request.POST, request.FILES) pdf_name = request.FILES['yuuka'] handle_uploaded_file(request.FILES['yuuka']) return render(request, 'upload.html', {'form': form,'pdf_name':pdf_name}) # ファイルアップロード完了 def upload_complete(request): jap_ar,num_ar = japanese_array() asset = list() liability = list() net_asset = list() flag = 0 asset_num = list() liability_num = list() net_asset_num = list() co = 0 for i in jap_ar: if(i=='資産の部'): flag = 1 elif(i=='負債の部'): flag = 2 elif(i=='純資産の部'): flag = 3 elif(flag ==1): asset.append(i) elif(flag ==2): liability.append(i) elif(flag==3): net_asset.append(i) all = list() for i in asset: all.append(i) for j in liability: all.append(j) for k in net_asset: all.append(k) asset_num = list() liability_num = list() net_asset_num = list() num_before = list() num_current = list() for j in num_ar: if(co%2==0): co += 1 num_before.append(j) else: co += 1 num_current.append(j) co = 0 ad = 0 #判定方法は辞書型に変えられそう for k in all: if(k=='資産の部'): continue elif(k=='負債の部'): continue elif(k=='純資産の部'): continue elif('流動資産' == k): ad += 1 asset_num.append(' ') continue elif('固定資産' == k): ad += 1 asset_num.append(' ') continue elif('投資その他の資産' ==k): ad += 1 asset_num.append(' ') continue elif('流動負債' == k): ad += 1 liability_num.append(' ') continue elif('固定負債' == k): ad += 1 liability_num.append(' ') continue elif('株主資本' == k): ad += 1 net_asset_num.append(' ') continue elif('その他の包括利益累計額' == k): ad += 1 net_asset_num.append(' ') continue elif(ad<len(asset)): ad += 1 asset_num.append(num_current[co]) co += 1 continue elif(len(asset)<=ad and ad <len(liability)+len(asset)): liability_num.append(num_current[co]) ad += 1 co += 1 continue elif(len(liability)+len(asset)<=ad): net_asset_num.append(num_current[co]) ad += 1 co += 1 continue co = 0 ad = 0 asset_num_before = list() liability_num_before = list() net_asset_num_before = list() for k in all: if(k=='資産の部'): continue elif(k=='負債の部'): continue elif(k=='純資産の部'): continue elif('流動資産' == k): ad += 1 asset_num_before.append(' ') continue elif('固定資産' == k): ad += 1 asset_num_before.append(' ') continue elif('投資その他の資産' ==k): ad += 1 asset_num_before.append(' ') continue elif('流動負債' == k): ad += 1 liability_num_before.append(' ') continue elif('固定負債' == k): ad += 1 liability_num_before.append(' ') continue elif('株主資本' == k): ad += 1 net_asset_num_before.append(' ') continue elif('その他の包括利益累計額' == k): ad += 1 net_asset_num_before.append(' ') continue elif(ad<len(asset)): ad += 1 asset_num_before.append(num_before[co]) co += 1 continue elif(len(asset)<=ad and ad <len(liability)+len(asset)): liability_num_before.append(num_before[co]) ad += 1 co += 1 continue elif(len(liability)+len(asset)<=ad): net_asset_num_before.append(num_before[co]) ad += 1 co += 1 continue current = list() ex_temp0 = list() ex_temp1 = list() for i in asset_num: ex_temp0.append(i) for j in liability_num: ex_temp0.append(j) for k in net_asset_num: ex_temp0.append(k) for i in asset_num_before: ex_temp1.append(i) for j in liability_num_before: ex_temp1.append(j) for k in net_asset_num_before: ex_temp1.append(k) all_new = list() for i in asset: all_new.append(i) for j in liability: all_new.append(j) for k in net_asset: all_new.append(k) cre_ex(all_new,ex_temp0,ex_temp1) dic = {key:val for key,val in zip(asset,asset_num)} dic_lia = {key:val for key,val in zip(liability,liability_num)} dic_net = {key:val for key,val in zip(net_asset,net_asset_num)} #語句の説明 phrase_description = list() for k in all: val =dic_account[k] phrase_description.append(val) dic_phrase_description = {key:val for key,val in zip(all,phrase_description)} co = 0 #流動比率 # 流動比率 = 流動資産/流動負債 × 100 #もし流動資産合計という語句があれば flow_rate = dic['流動資産合計']/dic_lia['流動負債合計']*100 flow_rate = round(flow_rate) #当座比率 # 当座比率 = 当座資産/流動負債 × 100 flag = 0 current_term_asset = 0 for i in asset: if(flag): break elif(i=='流動資産'): continue elif(i=='棚卸資産' ): flag = 1 elif(i=='その他1'): flag =1 else: current_term_asset+=dic[i] flag = 0 current_liabilities = 0 for j in liability: if(flag): break elif(j=='流動負債'): continue elif(j=='その他3'): flag = 1 else: current_liabilities+=dic_lia[j] current_rate = current_term_asset/current_liabilities*100 current_rate = round(current_rate) #長期的な安全性を示す固定比率 #固定比率 = 固定資産/自己資本 × 100 fixed_rate = dic['固定資産合計']/dic_net['純資産合計']*100 fixed_rate = round(fixed_rate) #自己資本比率 #自己資本比率 = 純資産/総資本 × 100 capital_adequacy_ratio = dic_net['純資産合計']/dic['資産合計']*100 capital_adequacy_ratio = round(capital_adequacy_ratio) return render( request, 'upload_complete.html',context={ 'liability' : liability, 'net_asset' : net_asset, 'liability_num_current' : liability_num, 'net_asset_num_current' : net_asset_num, 'dic_current' : dic, 'dic_current_lia' : dic_lia, 'dic_current_net' : dic_net, 'dic_phrase_description' : dic_phrase_description, 'flow_rate' : flow_rate, 'current_rate' : current_rate, 'fixed_rate' : fixed_rate, 'capital_adequacy_ratio' : capital_adequacy_ratio, }) ```
{ "source": "jphacks/C_2002", "score": 3 }
#### File: server/FunctionTest/ToHiragana.py ```python import os import configparser from goolabs import GoolabsAPI import json import operator # ソースファイルの場所取得 APP_ROOT = os.path.dirname(os.path.abspath(__file__)) # 設定ファイルの読み込み config = configparser.ConfigParser() config.read(APP_ROOT + '/config_local.ini') # 設定ファイルからgooラボAPIに関する情報を取得 Goo_API_APPLICATION_ID = config.get("Goo_API", "ApplicationId") # gooラボAPIのAPIクライアント設定 gooAPI = GoolabsAPI(Goo_API_APPLICATION_ID) # 名前を50音順にソートする関数 def sort_name(list): name_list = [] for name in list: response = gooAPI.hiragana(sentence=name, output_type="hiragana") response['before'] = name # print(response) name_list.append(response) name_sort_list = sorted(name_list, key=operator.itemgetter('converted')) return name_sort_list arr = [ '高尾', '大羽', '岡崎', '近藤', '石倉' ] print(sort_name(arr)) ```
{ "source": "jphacks/C_2008", "score": 2 }
#### File: data/src/global_variables.py ```python def init(): global tobiiCurrentX, tobiiCurrentY global participant global writeScreenCapVideo, useAaronCircles global wgCurrentX, wgCurrentY global pctFile global participantPos, participantDirList global onlyWritingVideos # Options onlyWritingVideos = True # Only process videos where the participant is asked to write into a text field writeScreenCapVideo = False useAaronCircles = False # global_variables for current state of eye tracking tobiiCurrentX = 0 tobiiCurrentY = 0 wgCurrentX = 0 wgCurrentY = 0 # Which participant are we on? participantDirList = [] participantPos = -1 participant = [] ``` #### File: data/src/participant.py ```python import csv import glob import math import os import json from decimal import Decimal import tornado.escape import global_variables pctFile = "participant_characteristics.csv" ################################################################## # Screen properties # # WARNING: MAGIC NUMBERS # PC clientX = 0 screen position pcDocumentStartX = 0 pcDocumentStartY = 66 pcDocumentEndXNoScrollbar = 1902 # not including scroll bar pcDocumentEndX = 1919 # not including scroll bar pcDocumentEndY = 1110 # not including scroll bar # Laptop clientX = 0 screen position laptopDocumentStartX = 0 laptopDocumentStartY = 97 laptopDocumentEndXNoScrollbar = 1439 # not including scroll bar laptopDocumentEndX = 1439 # not including scroll bar laptopDocumentEndY = 775 # not including scroll bar # In pixels chromeDownloadBarHeight = 52 ################################################################## # Classes for data storage # class TobiiData: timestamp = 0 rightEyeValid = False leftEyeValid = False rightScreenGazeX = -math.inf rightScreenGazeY = -math.inf leftScreenGazeX = -math.inf leftScreenGazeY = -math.inf def __init__(self, timestamp, rev, lev, rsgx, rsgy, lsgx, lsgy ): self.timestamp = timestamp self.rightEyeValid = rev self.leftEyeValid = lev self.rightScreenGazeX = rsgx self.rightScreenGazeY = rsgy self.leftScreenGazeX = lsgx self.leftScreenGazeY = lsgy def __str__(self): return "[TobiiData] Timestamp: " + str(self.timestamp) + " RightEyeValid: " + str(self.rightEyeValid) + " REX: " + str(self.rightScreenGazeX) + " REY: " + str(self.rightScreenGazeY) class ParticipantVideo: filename = [] startTimestamp = -1 stopTimestamp = -1 frameFilesList = [] frameFilesPos = -1 def __init__(self, filename, startTimestamp): self.filename = filename self.startTimestamp = startTimestamp def __str__(self): return "[ParticipantVideo] Timestamp: " + str(self.startTimestamp) + " Filename: " + str(self.filename) class ParticipantData: directory = "" videos = [] videosPos = -1 startTimestamp = -1 screenWidthPixels = -1 screenHeightPixels = -1 inputLogFile = "" wgWindowX = -1 wgWindowY = -1 wgWindowInnerWidth = -1 wgWindowInnerHeight = -1 wgWindowOuterWidth = -1 wgWindowOuterHeight = -1 touchTypist = "" # Equals either 'Yes' or 'No' pcOrLaptop = "" # Equals either 'Laptop' or 'PC' tobiiLogFile = "" tobiiList = [] tobiiListPos = 0 screencapFile = "" screencap = None screencapOut = None screencapStartTime = 0 screencapFrameWidth = 0 screencapFrameHeight = 0 screencapFrameRate = 0 prevMSECIntoVideo = -1 def __init__(self, directory): self.directory = directory def __str__(self): return "[ParticipantData] Directory: " + self.directory + " PC or Laptop: " + str(self.pcOrLaptop) def loadParticipantData(self): ######################## # Load participant characteristics as technical parts with open( pctFile ) as f: readCSV = csv.reader(f, delimiter=',') for row in readCSV: if row[0] == self.directory: self.screenWidthPixels = int(row[4]) self.screenHeightPixels = int(row[5]) self.pcOrLaptop = str(row[3]) # Equals either 'Laptop' or 'PC' self.touchTypist = str(row[18]) # Equals either 'Yes' or 'No' if row[9] != '': self.screencapStartTime = int(row[9]) # 20180316 JT Note: the value in the .csv is currently inaccurate or incomplete else: self.screencapStartTime = 0 break ######################## # WebGazer event log # *dot_test_instructions.webm is the first video file. webMFile = glob.glob( self.directory + '/' + '*dot_test_instructions.webm' ) # Split the video name into its pieces try: f = os.path.split( webMFile[0] )[1] except IndexError: raise OSError('Files are not in right location, see https://webgazer.cs.brown.edu/data/ for details'\ + 'on how to correct this') # Find the first part of the video filename, which is the timestamp as a string self.startTimestamp = int(f[0:f.find('_')]) print( self.directory ) self.inputLogFile = self.directory + "/" + str(self.startTimestamp) + ".json" # Load WebGazer browser window parameters with open( self.inputLogFile ) as f: inputLog = json.load( f ) for l in inputLog: if l.get('windowX') != None: self.wgWindowX = int(l['windowX']) self.wgWindowY = int(l['windowY']) self.wgWindowInnerWidth = int(l['windowInnerWidth']) self.wgWindowInnerHeight = int(l['windowInnerHeight']) self.wgWindowOuterWidth = int(l['windowOuterWidth']) self.wgWindowOuterHeight = int(l['windowOuterHeight']) break # Find all video recordings, with start times self.videos = [] self.videosPos = -1 for l in inputLog: if l.get("type") == "recording start": fn = l.get("sessionString") fn = fn.replace('/', '-') + '.webm' starttime = l.get("epoch") pv = ParticipantVideo( fn, starttime ) self.videos.append( pv ) ################################ # Filter video names # # Oftentimes, we want to only process a subset of the videos per participant. # We can remove videos from self.videos here to accomplish this. # # E.G., if we only wanted video files to do with _writing and the dot tests, then if global_variables.onlyWritingVideos: self.videos = [x for x in self.videos if (x.filename.find('_writing') >= 0 or x.filename.find('dot_test.') >= 0 or x.filename.find( 'dot_test_final.' ) >= 0)] ################################ # Read in JSON output from Tobii self.tobiiLogFile = self.directory + '/' + self.directory + ".txt" self.tobiiList = [] self.tobiiListPos = 0 # Each line is a JSON object, so let's read the file line by line with open( self.tobiiLogFile, 'r' ) as f: for line in f: l = json.loads(line, parse_float=Decimal) rsgx = float(l['right_gaze_point_on_display_area'][0]) rsgy = float(l['right_gaze_point_on_display_area'][1]) lsgx = float(l['left_gaze_point_on_display_area'][0]) lsgy = float(l['left_gaze_point_on_display_area'][1]) timestamp = round( l['true_time'] * 1000 ) rpv = l['right_pupil_validity'] lpv = l['left_pupil_validity'] td = TobiiData( timestamp, rpv, lpv, rsgx, rsgy, lsgx, lsgy ) self.tobiiList.append( td ) ################################ # Define screen capture file if self.pcOrLaptop == "Laptop": self.screencapFile = self.directory + "/" + self.directory + ".mov" elif self.pcOrLaptop == "PC": self.screencapFile = self.directory + "/" + self.directory + ".flv" else: print( "Not PC nor Laptop! ERROR ERROR" ) global_variables.writeScreenCapVideo = False return # If we're going to write out a screen capture video, then load it if global_variables.writeScreenCapVideo: openScreenCapOutVideo( self ) loadScreenCapVideo( self ) ########################################################################################################### # Messages to send over WebSockets # def sendParticipantInfo( wsh, participant ): # Tell the connecting socket about the participant # Screen coordinate data if participant.pcOrLaptop == "PC": docStartX = pcDocumentStartX docStartY = pcDocumentStartY else: docStartX = laptopDocumentStartX docStartY = laptopDocumentStartY parcel = ({ 'msgID': "0", 'screenWidthPixels': str(participant.screenWidthPixels), 'screenHeightPixels': str(participant.screenHeightPixels), 'docStartX': str(docStartX), 'docStartY': str(docStartY), 'touchTypist': str(participant.touchTypist), 'screencapStartTime': str(participant.screencapStartTime), 'participantScreenCapFile': str(participant.screencapFile), 'participantInputLogFile': str(participant.inputLogFile)}) wsh.write_message( tornado.escape.json_encode( parcel ) ) def newParticipant( wsh ): global_variables.participantPos = global_variables.participantPos + 1 # Check we're not at the last participant if global_variables.participantPos >= len(global_variables.participantDirList): print( "All participants completed." ) exit() else: # Load the participant data global_variables.participant = ParticipantData( global_variables.participantDirList[global_variables.participantPos] ) global_variables.participant.loadParticipantData() sendParticipantInfo( wsh, global_variables.participant ) ```
{ "source": "jphacks/C_2013", "score": 3 }
#### File: backend/controller/mayu_controller.py ```python import cv2 import numpy as np import time import urllib from PIL import Image # from middleware.detect import detection from middleware.fast_detect import detection def cv2pil(image): ''' OpenCV型 -> PIL型 ''' new_image = image.copy() if new_image.ndim == 2: # モノクロ pass elif new_image.shape[2] == 3: # カラー new_image = cv2.cvtColor(new_image, cv2.COLOR_BGR2RGB) elif new_image.shape[2] == 4: # 透過 new_image = cv2.cvtColor(new_image, cv2.COLOR_BGRA2RGBA) new_image = Image.fromarray(new_image) return new_image def pil2cv(image): ''' PIL型 -> OpenCV型 ''' new_image = np.array(image, dtype=np.uint8) if new_image.ndim == 2: # モノクロ pass elif new_image.shape[2] == 3: # カラー new_image = cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR) elif new_image.shape[2] == 4: # 透過 new_image = cv2.cvtColor(new_image, cv2.COLOR_RGBA2BGRA) return new_image def calc_mayu_size(landmarks): # まゆの幅 r_mayu_len = landmarks[4][0] - landmarks[0][0] l_mayu_len = landmarks[9][0] - landmarks[5][0] ave_mayu_len = (r_mayu_len+l_mayu_len)/2 # 両まゆ間の距離 mayu_dist = landmarks[5][0] - landmarks[4][0] return ave_mayu_len, mayu_dist def synth_mayu_temp(f_img, b_img, pos, isflip=False): if isflip: # 左眉 f_img = cv2.flip(f_img, 1) # 反転 x_pos = pos[0] - f_img.shape[1] else: # 右眉 x_pos = pos[0] y_pos = int(pos[1] - f_img.shape[0] * (4 / 5)) layer1 = cv2pil(b_img).convert('RGBA') layer2 = cv2pil(f_img).convert('RGBA') c = Image.new('RGBA', layer1.size, (255, 255, 255, 0)) mask = layer2.copy() layer2.putalpha(80) c.paste(layer2, (x_pos, y_pos), mask=mask) result = Image.alpha_composite(layer1, c) return pil2cv(result) def resize_mayu(temp_img, mayu_len): height = temp_img.shape[0] width = temp_img.shape[1] ratio = mayu_len / width temp_img = cv2.resize(temp_img, (int(width*ratio), int(height*ratio))) return temp_img def mayu_handler(stream, img_uri): landmarks, img = detection(stream) for landmark in landmarks: # まゆのサイズを計算 [17-27] mayu_len, mayu_dist = calc_mayu_size(landmark[17:27]) # テンプレート画像貼り付け resp = urllib.request.urlopen(img_uri) mayu_byte = np.asarray(bytearray(resp.read()), dtype="uint8") mayu_img = cv2.imdecode(mayu_byte, cv2.IMREAD_UNCHANGED) # mayu_img = cv2.imread('./template-images/mayu-1.png', cv2.IMREAD_UNCHANGED) mayu_img = resize_mayu(mayu_img, mayu_len) img = synth_mayu_temp(mayu_img, img, landmark[22], False) # 左眉 img = synth_mayu_temp(mayu_img, img, landmark[21], True) # 右眉 result, dst_data = cv2.imencode('.png', img) # cv2.imwrite("./result/{}.png".format(str(time.time())), img) return dst_data if __name__ == "__main__": pass ``` #### File: backend/middleware/detect_dots.py ```python import cv2 import dlib import numpy as np from flask import Flask import base64 import time app = Flask(__name__) app.config.from_json('../config/config.json') cfg = app.config # OpenCVのカスケードファイルと学習済みモデルのパスを指定 CASCADE_PATH = cfg["CASCADEPASS"] CASCADE = cv2.CascadeClassifier(CASCADE_PATH + cfg["CASCADE"]) LEARNED_MODEL_PATH = cfg["LEARNEDMODELPATH"] MODEL = {} MODEL['PREDICTOR'] = dlib.shape_predictor(LEARNED_MODEL_PATH + cfg["DETECTMODEL"]) MODEL['SURROUNDER'] = dlib.shape_predictor(LEARNED_MODEL_PATH + cfg['SURROUNDMODEL']) def face_position(gray_img): # 顔の位置を検出 return:リスト(x,y,w,h) faces = CASCADE.detectMultiScale(gray_img, minSize=(100, 100)) return faces def facemark(gray_img, model): # ランドマーク検出 faces_roi = face_position(gray_img) landmarks = [] for face in faces_roi: detector = dlib.get_frontal_face_detector() rects = detector(gray_img, 1) landmarks = [] for rect in rects: landmarks.append( np.array([[p.x, p.y] for p in MODEL[model](gray_img, rect).parts()])) return landmarks def detect_dots(stream, model='PREDICTOR'): img_binary = base64.b64decode(stream) jpg = np.frombuffer(img_binary, dtype=np.uint8) img = cv2.imdecode(jpg, cv2.IMREAD_COLOR) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 処理を早くするためグレースケールに変換 landmarks = facemark(gray, model) # ランドマーク検出 b_channel, g_channel, r_channel = cv2.split(img) alpha_channel = np.zeros(b_channel.shape, dtype=b_channel.dtype) img_BGRA = cv2.merge((b_channel, g_channel, r_channel, alpha_channel)) # ランドマークの描画 for landmark in landmarks: for points in landmark: cv2.drawMarker( img_BGRA, (points[0], points[1]), (21, 255, 12, 100)) result, dst_data = cv2.imencode('.png', img_BGRA) # cv2.imwrite("./result/{}.png".format(str(time.time())), img_BGRA) return dst_data if __name__ == '__main__': pass ``` #### File: C_2013/backend/personal_color.py ```python import os from glob import glob import numpy as np from PIL import Image, ImageFile from pytorch_lightning import seed_everything import torchvision.transforms as transforms from io import BytesIO import base64 import ml_model ImageFile.LOAD_TRUNCATED_IMAGES = True transform = transforms.Compose([ transforms.Resize(400), transforms.CenterCrop(384), # transforms.RandomRotation([-10, 10]), # transforms.RandomCrop(384), # transforms.RandomHorizontalFlip(p=0.5), # transforms.RandomVerticalFlip(p=0.5), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) """ 0:autumn 1:spring 2:summer 3:winter """ PRETRAINED = "learned-models/epoch=572.ckpt" def predict_Personal_Color(data): predict_model = ml_model.FineTuningModel.load_from_checkpoint(PRETRAINED) predict_model.eval() img = Image.open(BytesIO(base64.b64decode(data))).convert('RGB') # img = Image.open('../../backend/img/input_1.jpg') img = transform(img) img = img.unsqueeze(0) output = predict_model(img).squeeze(0).detach().numpy() rate = {"autumn": output[0], "spring": output[1], "summer": output[2], "winter": output[3]} return rate if __name__ == "__main__": print(predict_Personal_Color()) ``` #### File: landmark_detection/tools/detect.py ```python import cv2 import dlib import numpy import os class detect: def __init__(self, cascade_model_path, landmark_model_path): self.face_cascade = cv2.CascadeClassifier(cascade_model_path) self.predictor = dlib.shape_predictor(landmark_model_path) def detect_face_position(self): faces = self.face_cascade.detectMultiScale(self.gray, minSize=(100, 100)) return faces def detect_facial_landmarks(self): faces_roi = self.detect_face_position() landmarks = [] for face in faces_roi: x, y, w, h = face face_img = self.gray[y: y + h, x: x + w]; rects = dlib.rectangle(x, y, x + w, y + h) landmarks = [] landmarks.append(numpy.array([[p.x, p.y] for p in self.predictor(self.gray, rects).parts()])) return landmarks def draw_landmarks_img(self, img_path): img = cv2.imread(img_path) self.gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) landmarks = self.detect_facial_landmarks() for landmark in landmarks: for i,points in enumerate(landmark): cv2.putText(img, str(i), (points[0], points[1]),cv2.FONT_HERSHEY_PLAIN, 0.4, (255, 100, 12)) # cv2.drawMarker(img, (points[0], points[1]), (255, 100, 12)) while True: cv2.imshow("Image", img) if cv2.waitKey(25) & 0xFF == ord('q'): break cv2.destroyAllWindows() def draw_landmarks_video(self): cap = cv2.VideoCapture(0) while cap.isOpened(): ret, frame = cap.read() self.gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) landmarks = self.detect_facial_landmarks() for landmark in landmarks: for points in landmark: cv2.drawMarker(frame, (points[0], points[1]), (21, 255, 12)) cv2.imshow("video frame", frame) if cv2.waitKey(25) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() ``` #### File: ml/parsonalcolor_detection/model.py ```python from utils import EasyDict import torch import torch.nn as nn import torch.nn.functional as F from torch import optim from pytorch_lightning.core import LightningModule import torchvision.models as models from efficientnet_pytorch import EfficientNet MODELS = [ "vgg16", "resnet18", "resnet34", "resnet50", "resnet101", "resnet152", "resnet101_v2", 'efficientnet-b0', 'efficientnet-b1', 'efficientnet-b2', 'efficientnet-b3', 'efficientnet-b4', 'efficientnet-b5', 'efficientnet-b6', 'efficientnet-b7', 'efficientnet-b8' ] class FineTuningModel(LightningModule): def __init__(self, env): super().__init__() self.save_hyperparameters() if env == {}: # save.hyperparameters()を行っていなかったため from train import env if type(env) == dict: env = EasyDict(env) self.env = env assert env.base_model in MODELS if env.base_model == "vgg16": self.model = models.vgg16(pretrained=True) self.model = nn.Sequential( *list(self.model.children())[:-2]) fc_in_features = 512 if env.base_model.startswith("resnet"): self.model = getattr(models, env.base_model)(pretrained=True) fc_in_features = self.model.fc.in_features self.model = nn.Sequential(*list(self.model.children())[:-2]) if env.base_model.startswith("efficientnet"): self._model = EfficientNet.from_pretrained( env.base_model, include_top=False) fc_in_features = self._model._fc.in_features self.model = self._model.extract_features self.dropout = nn.Dropout(env.dropout_rate) self.fc = nn.Linear(fc_in_features, env.num_class) self.softmax = nn.Softmax(dim=1) def forward(self, x): x = self.model(x) x = F.adaptive_avg_pool2d(x, (1, 1)) x = torch.flatten(x, 1) x = self.dropout(x) x = self.fc(x) x = self.softmax(x) return x def training_step(self, batch, batch_idx): # forward pass x, y = batch y_hat = self(x) loss = F.cross_entropy(y_hat, y) tensorboard_logs = {'train_loss': loss} return {'loss': loss, 'log': tensorboard_logs} def validation_step(self, batch, batch_idx): x, y = batch y_hat = self(x) val_loss = F.cross_entropy(y_hat, y) labels_hat = torch.argmax(y_hat, dim=1) n_correct_pred = torch.sum(y == labels_hat).item() return {'val_loss': val_loss, "n_correct_pred": n_correct_pred, "n_pred": len(x)} def test_step(self, batch, batch_idx): x, y = batch y_hat = self(x) test_loss = F.cross_entropy(y_hat, y) labels_hat = torch.argmax(y_hat, dim=1) n_correct_pred = torch.sum(y == labels_hat).item() return {'test_loss': test_loss, "n_correct_pred": n_correct_pred, "n_pred": len(x)} def validation_epoch_end(self, outputs): avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean() val_acc = sum([x['n_correct_pred'] for x in outputs]) / \ sum(x['n_pred'] for x in outputs) tensorboard_logs = {'val_loss': avg_loss, 'val_acc': val_acc} return {'val_loss': avg_loss, 'log': tensorboard_logs} def test_epoch_end(self, outputs): avg_loss = torch.stack([x['test_loss'] for x in outputs]).mean() test_acc = sum([x['n_correct_pred'] for x in outputs] ) / sum(x['n_pred'] for x in outputs) tensorboard_logs = {'test_loss': avg_loss, 'test_acc': test_acc} return {'test_loss': avg_loss, 'log': tensorboard_logs} # --------------------- # TRAINING SETUP # --------------------- def configure_optimizers(self): """ Return whatever optimizers and learning rate schedulers you want here. At least one optimizer is required. """ optimizer = optim.Adam( self.parameters(), lr=self.env.learning_rate) scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=10) return [optimizer], [scheduler] ```
{ "source": "jphacks/C_2105", "score": 2 }
#### File: backend/src/app.py ```python from flask import Flask, request from flask_sqlalchemy import SQLAlchemy from flask_cors import CORS # import db_init import db_seed import json import datetime import uuid import random app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/jphacks.db' app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False CORS(app) db = SQLAlchemy(app) # プロジェクトテーブルの定義 class Project(db.Model): id = db.Column(db.Integer, primary_key=True) title = db.Column(db.String) explanation = db.Column(db.String) progress = db.Column(db.Integer) imgUrl = db.Column(db.String) targetAmount = db.Column(db.Integer) # 外部キー log = db.relationship('Log') column = db.relationship('Column') # 初期化 def __init__(self, id=0, title='', explanation='', progress=0, imgUrl='', targetAmount=0): self.id = id self.title = title self.explanation = explanation self.progress = progress self.imgUrl = imgUrl self.targetAmount = targetAmount # ログテーブルの定義 class Log(db.Model): logId = db.Column(db.Integer, primary_key=True) id = db.Column(db.Integer, db.ForeignKey('project.id')) date = db.Column(db.String) earnedValue = db.Column(db.Integer) donationType = db.Column(db.String) def __init__(self, logId=0, id=0, date='', earnedValue=0, donationType=''): self.logId = logId self.id = id self.date = date self.earnedValue = earnedValue self.donationType = donationType # コラムテーブルの定義 class Column(db.Model): columnId = db.Column(db.Integer, primary_key=True) id = db.Column(db.Integer, db.ForeignKey('project.id')) columnTitle = db.Column(db.String) body = db.Column(db.String) date = db.Column(db.String) imgUrl = db.Column(db.String) def __init__(self, columnId=0, id=0, columnTitle='', body='', date='', imgUrl=''): self.columnId = columnId self.id = id self.columnTitle = columnTitle self.body = body self.date = date self.imgUrl = imgUrl # プロジェクトのオブジェクトを返す。※そのままだと扱いにくい型のため。 def project_record(p): return {'id': p.id, 'title': p.title, 'explanation': p.explanation, 'progress': p.progress, 'imgUrl': p.imgUrl, 'targetAmount': p.targetAmount} # ログのオブジェクトを返す。 def log_record(l): return {'logId': l.logId, 'id': l.id, 'date': l.date, 'earnedValue': l.earnedValue, 'donationType': l.donationType} # コラムのオブジェクトを返す。 def column_record(c): return {'columnId': c.columnId, 'id': c.id, 'columnTitle': c.columnTitle, 'body': c.body, 'date': c.date, 'imgUrl': c.imgUrl} # プロジェクトのリストを返す。 @app.route('/project') def project(): id = request.args.get('id') if id is not None: # idに一致するプロジェクトのみを返す project = Project.query.get(id) return json.dumps(project_record(project)) else: project = Project.query.all() result = [] for p in project: result.append(project_record(p)) return json.dumps(result) # ログのリストを返す。 @app.route('/log') def log(): id = request.args.get('id') if id is not None: log = Project.query.get(id).log result = [] for l in log: result.append(log_record(l)) return json.dumps(result) else: return 'パラメータが正しくありません。' # コラムのリストを返す。 @app.route('/column') def column(): id = request.args.get('id') if id is not None: column = Project.query.get(id).column result = [] for c in column: result.append(column_record(c)) return json.dumps(result) else: return 'パラメータが正しくありません。' # 募金をする。 @app.route('/collect') def collect(): logId = int(str(uuid.uuid4().int)[:5]) id = request.args.get('id') dt_now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') earnedValue = request.args.get('earnedValue') if id is not None: # idに一致するプロジェクトに募金 donationType = 'selected' else: # ランダムに募金 donationType = 'auto' project_all = Project.query.all() id_array = [] for p in project_all: id_array.append(p.id) target_index = random.randint(0, len(id_array) - 1) id = id_array[target_index] # ログを記録する。 log = Log(logId, id, dt_now, earnedValue, donationType) db.session.add(log) # プロジェクトのprogressを更新する。 project = Project.query.get(id) project.progress += int(earnedValue) # dbを更新 db.session.commit() return json.dumps(project_record(project)) # プロジェクトを作成する。 @app.route('/create_project') def create_project(): id = request.args.get('id') title = request.args.get('title') explanation = request.args.get('explanation') progress = request.args.get('progress') imgUrl = request.args.get('imgUrl') targetAmount = request.args.get('targetAmount') p = Project(id, title, explanation, progress, imgUrl, targetAmount) db.session.add(p) db.session.commit() return json.dumps(project_record(p)) # コラムを作成する。 @app.route('/create_column') def create_column(): columnId = int(str(uuid.uuid4().int)[:5]) id = request.args.get('id') columnTitle = request.args.get('columnTitle') body = request.args.get('body') dt_now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') imgUrl = request.args.get('imgUrl') c = Column(columnId, id, columnTitle, body, dt_now, imgUrl) db.session.add(c) db.session.commit() return json.dumps(column_record(c)) if __name__ == '__main__': # 初期化 db.drop_all() # db生成 db.create_all() # ダミーデータを保存 ※本番では削除して、APIからプロジェクトなどを作成する。 # db_init.initialize() db_seed.seed() app.run(host='0.0.0.0', port=8080) ```
{ "source": "jphacks/C_2111", "score": 3 }
#### File: wtfml/cross_validation/fold_generator.py ```python from typing import Optional, Tuple, Union import numpy as np import pandas as pd import scipy as sp from sklearn import model_selection class FoldGenerator: """ pd.DataFrameをn_split文だけ分割する、class """ def __init__( self, targets: Union[pd.DataFrame, pd.Series], num_splits: int = 5, shuffle: bool = True, task: str = "binary_classification", random_state: Optional[int] = None, ): self.task = task self.targets = targets if isinstance(self.targets, pd.DataFrame) or isinstance( self.targets, pd.Series ): self.targets = self.targets.values if len(self.targets.shape) == 1: self.targets = self.targets.reshape((-1, 1)) self.num_splits = num_splits if self.task == "binary_classification": self.folds = model_selection.StratifiedKFold( n_splits=self.num_splits, shuffle=shuffle, random_state=random_state ) elif self.task == "multiclass_classification": self.folds = model_selection.StratifiedKFold( n_splits=self.num_splits, shuffle=shuffle, random_state=random_state ) elif self.task == "multilabel_classification": self.folds = model_selection.KFold( n_splits=self.num_splits, shuffle=shuffle, random_state=random_state ) elif self.task == "single_col_regression": self.folds = model_selection.KFold( n_splits=self.num_splits, shuffle=shuffle, random_state=random_state ) elif self.task == "multi_col_regression": self.folds = model_selection.KFold( n_splits=self.num_splits, shuffle=shuffle, random_state=random_state ) else: raise Exception("Task not understood") self.splits = dict() for fold_, (trn, val) in enumerate( self.folds.split(self.targets, self.targets) ): self.splits[fold_] = dict() self.splits[fold_]["train_idx"] = trn self.splits[fold_]["valid_idx"] = val def get_fold( self, data: Union[pd.DataFrame, pd.Series], fold: int ) -> Tuple[ dict, dict, Union[pd.DataFrame, pd.Series], Union[pd.DataFrame, pd.Series], np.ndarray, np.ndarray, ]: if fold >= self.num_splits or fold < 0: raise Exception("Invalid fold number specified") if isinstance(data, pd.DataFrame): if self.targets.shape[1] == 1 and self.task != "binary_classification": return ( self.splits[fold]["train_idx"], self.splits[fold]["valid_idx"], data.loc[self.splits[fold]["train_idx"], :], data.loc[self.splits[fold]["valid_idx"], :], self.targets[self.splits[fold]["train_idx"]].ravel(), self.targets[self.splits[fold]["valid_idx"]].ravel(), ) else: return ( self.splits[fold]["train_idx"], self.splits[fold]["valid_idx"], data.loc[self.splits[fold]["train_idx"], :], data.loc[self.splits[fold]["valid_idx"], :], self.targets[self.splits[fold]["train_idx"], :], self.targets[self.splits[fold]["valid_idx"], :], ) elif isinstance(data, sp.sparse.coo.coo_matrix) or isinstance( data, sp.sparse.csc.csc_matrix ): if self.targets.shape[1] == 1 and self.task != "binary_classification": return ( self.splits[fold]["train_idx"], self.splits[fold]["valid_idx"], data[self.splits[fold]["train_idx"]], data[self.splits[fold]["valid_idx"]], self.targets[self.splits[fold]["train_idx"]].ravel(), self.targets[self.splits[fold]["valid_idx"]].ravel(), ) else: return ( self.splits[fold]["train_idx"], self.splits[fold]["valid_idx"], data[self.splits[fold]["train_idx"]], data[self.splits[fold]["valid_idx"]], self.targets[self.splits[fold]["train_idx"], :], self.targets[self.splits[fold]["valid_idx"], :], ) else: if self.targets.shape[1] == 1 and self.task != "binary_classification": return ( self.splits[fold]["train_idx"], self.splits[fold]["valid_idx"], data[self.splits[fold]["train_idx"], :], data[self.splits[fold]["valid_idx"], :], self.targets[self.splits[fold]["train_idx"]].ravel(), self.targets[self.splits[fold]["valid_idx"]].ravel(), ) else: return ( self.splits[fold]["train_idx"], self.splits[fold]["valid_idx"], data[self.splits[fold]["train_idx"], :], data[self.splits[fold]["valid_idx"], :], self.targets[self.splits[fold]["train_idx"], :], self.targets[self.splits[fold]["valid_idx"], :], ) ``` #### File: engine/nlp/model.py ```python import torch import torch.nn as nn import torch.nn.functional as F import transformers class BERTBaseClassifier(nn.Module): def __init__( self, num_classes: int = 4, pretrain_model_name: str = "cl-tohoku/bert-base-japanese-whole-word-masking", ): super().__init__() self.bert = transformers.BertModel.from_pretrained(pretrain_model_name) self.bert_drop = nn.Dropout(0.3) self.out = nn.Linear(768, num_classes) def forward(self, ids, mask, token_type_ids): output = self.bert(ids, attention_mask=mask, token_type_ids=token_type_ids) bo = self.bert_drop(output.pooler_output) output = self.out(bo) return output def get_features(self, ids, mask, token_type_ids): output = self.bert(ids, attention_mask=mask, token_type_ids=token_type_ids) return output.pooler_output class DistilBERTBaseClassifier(nn.Module): def __init__( self, num_classes: int = 4, pretrain_model_name: str = "bandainamco-mirai/distilbert-base-japanese", ): super().__init__() self.backborn= transformers.AutoModel.from_pretrained("bandainamco-mirai/distilbert-base-japanese") # transformers.DistilBertTokenizer.from_pretrained(pretrain_model_name) self.bert_drop = nn.Dropout(0.3) self.out = nn.Linear(768, num_classes) def forward(self, ids, mask): #, token_type_ids output = self.backborn(ids, attention_mask=mask) #, token_type_ids=token_type_ids) hidden_state = output[0] pooler = hidden_state[:, 0] bo = self.bert_drop(pooler) output = self.out(bo) return output def get_features(self, ids, mask): #, token_type_ids output = self.backborn(ids, attention_mask=mask) #, token_type_ids=token_type_ids) hidden_state = output[0] pooler = hidden_state[:, 0] return pooler ``` #### File: C_2111/django_app/models.py ```python from django.db import models from django.db.models.fields import DateTimeField from django.contrib.auth import get_user_model import uuid class Questionnaire(models.Model): id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) date = models.DateTimeField(auto_now_add=True, null=True, help_text='作成日') title = models.CharField(max_length=100) author = models.ForeignKey( get_user_model(), on_delete=models.CASCADE, ) def __str__(self): return self.title class DailyReport(models.Model): questionnaire = models.ForeignKey(Questionnaire, on_delete=models.CASCADE) text = models.TextField('日報', max_length=200, blank=False) date = models.DateTimeField(auto_now_add=True, null=True, help_text='作成日') score = models.FloatField(blank=True, null=True) author = models.ForeignKey( get_user_model(), on_delete=models.CASCADE, ) def __str__(self): return self.text ``` #### File: C_2111/django_app/views.py ```python from django.shortcuts import get_object_or_404, redirect, render from django_app.pytorch_utils import OnnxPredictor from django.http import HttpResponse, HttpResponseRedirect from django.template import loader from django_app.forms import UploadForm, DailyReportForm, CreateQuestionnaireForm from django_app.models import DailyReport, Questionnaire from django.contrib.auth.decorators import login_required from django.contrib.auth.mixins import LoginRequiredMixin from django.views.generic import TemplateView from django.urls import reverse import csv import io import pandas as pd from goo_lab.goo_apis import Goo from graph.word_cloud import create_wordcloud_base64 from graph.psn_freq_graph import create_psn_freq_graph_base64 def index(request): return render(request, 'index.html') def load_model(model_path: str = "./onnx_model/epoch=9-valid_loss=0.1356-valid_acc=0.9745_quant.onnx"): predictor = OnnxPredictor(model_path=model_path, device="cpu") return predictor @login_required def create(request): params = {'message': '', 'form': None} if request.method == 'POST': form = CreateQuestionnaireForm(request.POST) if form.is_valid(): post = form.save(commit=False) post.author = request.user post.save() return HttpResponseRedirect(reverse('django_app:index')) else: params['message'] = '再入力してください' params['form'] = form else: params['form'] = CreateQuestionnaireForm() return render(request, 'create.html', params) @login_required def questionnaires(request): params = {"questionnaires": Questionnaire.objects.filter( author=request.user)} return render(request, 'questionnaires.html', params) model = load_model() @login_required def new(request, questionnaire_id): questionnaire = get_object_or_404(Questionnaire, pk=questionnaire_id) params = {'message': '', 'form': None, 'questionnaire': questionnaire} if request.method == 'POST': form = DailyReportForm(request.POST) if form.is_valid(): post = form.save(commit=False) score = model.predict(form["text"].value()) post.score = score[0][0][1] post.questionnaire = questionnaire post.author = request.user post.save() return HttpResponseRedirect(reverse('django_app:index')) else: params['message'] = '再入力してください' params['form'] = form else: params['form'] = DailyReportForm() return render(request, 'user/new.html', params) @login_required def info(request, questionnaire_id): questionnaire = get_object_or_404(Questionnaire, pk=questionnaire_id) daily_reports = DailyReport.objects.all().filter(questionnaire=questionnaire) texts = [] for dr in list(daily_reports): texts.append(dr.text) wc_base64Img = create_wordcloud_base64(texts) psn_freq_base64Img = create_psn_freq_graph_base64(texts) return render(request, 'info.html', {'questionnaire': questionnaire, 'daily_reports': daily_reports, 'exists_wordcloud': bool(wc_base64Img is not None), 'wc_base64Img': wc_base64Img, 'exists_psn_freq': bool(psn_freq_base64Img is not None), 'psn_freq_base64Img': psn_freq_base64Img, }) ``` #### File: C_2111/graph/create_graph.py ```python import sys sys.path.append("./") from goo_lab.goo_apis import Goo import pandas as pd from collections import Counter, defaultdict from wordcloud import WordCloud df = pd.read_csv("./user_data/user_data_sampled.csv").sample(50).reindex() app_id = "e8be92a5e7fbf6a4b60bb8ff34cbdbf551e65a626b32090fe095864a7f2565e3" print("固有表現抽出") g = Goo(app_id=app_id, request_id="record001") # for text in df["tweet"]: # result = g.entity(sentence=text, class_filter="PSN|ORG").json() # print(result["ne_list"]) print("キーワード") # for title, text in zip(df["username"],df["tweet"]): # result = g.keyword(title=title, # body = text).json() # for i in result["keywords"]: # print(list(i.keys())[0]) def counter(texts_list: list): words_count = defaultdict(int) words = [] for text in texts_list: result = g.keyword(title="title", body = text).json() for i in result["keywords"]: words_count[list(i.keys())[0]]+=1 words.append(list(i.keys())[0]) return words_count, words words_count, words = counter(df["tweet"]) text = ' '.join(words) fpath = "/usr/share/fonts/truetype/hanazono/HanaMinA.ttf" wordcloud = WordCloud(background_color="white",font_path=fpath,width=900, height=500).generate(text) wordcloud.to_file("./test/wordcloud_sample.png") ``` #### File: jphacks/C_2111/main.py ```python from flask import Flask, request, jsonify import sys import json sys.path.append("./") from app.pytorch_utils import OnnxPredictor from goo_lab.goo_apis import Goo def load_model(model_path:str = "./onnx_model/epoch=9-valid_loss=0.6320-valid_acc=1.0000_quant.onnx"): predictor = OnnxPredictor(model_path=model_path, device="cpu") return predictor model = load_model() res = model.predict("今日も自殺")[0][0] print(list(res)) data=json.dumps({"result":[float(i) for i in list(res)]}).encode() print(data) app = Flask(__name__) @app.route('/predict', methods=['POST']) def predict(): model = load_model() res = model.predict("今日も自殺")[0][0] res = json.dumps({"result":[float(i) for i in list(res)]}).encode() return res @app.route('/goo', methods = ["POST"]) def textpair(text1:str, text2:str): textpair = Goo.textpair(text1, text2) return textpair ```
{ "source": "jphacks/C_2113", "score": 3 }
#### File: C_2113/tts/ttsthread.py ```python import base64 import numpy as np import urllib.request import json import subprocess as sp from playsound import playsound import queue import sys import os sys.path.append(os.path.join(os.path.dirname(__file__), '../common')) from interface_struct import SpeakingData # copy from https://qiita.com/to_obara/items/d8d5c92c2ea85a197e2d def get_token() -> str: """ Google Text-To-Speechの認証した上で、gcloudをセットアップした状態で tokenを取得するために、gcloud auth print-access-tokenの結果を取得する """ res = sp.run('gcloud auth application-default print-access-token', shell=True, stdout=sp.PIPE, stderr=sp.PIPE, encoding='utf-8') print("[[TTS]]", f"error=[{res.stderr}]") return res.stdout.strip() def makeRequestDict(txt: str) -> dict: """ Google Text-To-Speechへリクエストのための情報を生成する SSMLには未対応 Args: txt(in): 音声合成するテキスト Returns: 音声合成するために必要な情報をdictで返却する """ dat = { "audioConfig": { "audioEncoding": "LINEAR16", "pitch": 0, "speakingRate": 1 }, "voice": { "languageCode": "ja-JP", "name": "ja-JP-Standard-B" } } dat["input"] = {"text": txt} return dat def output_mp3(dat: dict, ofile: str) -> int: """ Google Text-To-Speechへリクエストした結果を元に音声データにしてファイルに書き込む Args: dat(in): リクエストした結果得られたJSON文字列をdictにしたもの ofile(in): 音声データを書き出すファイル名 """ b64str = dat["audioContent"] binary = base64.b64decode(b64str) uint8_dat = np.frombuffer(binary, dtype=np.uint8) with open(ofile, "wb") as f: f.write(uint8_dat) return len(uint8_dat) / 2 / 24 # playing time in ms. 24,000 Hz with 2 bytes def gtts(txt: str, ofile: str) -> int: # Returns playing time in ms. dat = makeRequestDict(txt) req_data = json.dumps(dat).encode() url = 'https://texttospeech.googleapis.com/v1/text:synthesize' token = get_token() req_header = { 'Authorization': f"Bearer {token}", 'Content-Type': 'application/json; charset=utf-8', } req = urllib.request.Request(url, data=req_data, method='POST', headers=req_header) try: with urllib.request.urlopen(req) as response: dat = response.read() body = json.loads(dat) ret = output_mp3(body, ofile) print("[[TTS]]", "done..") return ret except urllib.error.URLError as e: print("[[TTS]]", "error happen...") print("[[TTS]]", e.reason) print("[[TTS]]", e) return -1 def tts_and_speak(txt: str, id: int, output_queue: queue.Queue = None) -> None: ofile = "tts" + str(id) + ".mp3" playtime = gtts(txt, ofile) if (output_queue is not None): output_queue.put(SpeakingData(txt=txt, sec=playtime*1e-3)) playsound(ofile) def main(txt_queue: queue.Queue, output_queue: queue.Queue, debug: bool = False) -> None: print("[[TTS]]", f"debug={debug}") i = 0 while True: try: txt = txt_queue.get(timeout=500.0) print("[[TTS]]", "get:", txt) if debug: output_queue.put(SpeakingData(txt=txt, sec=0.02*len(txt))) print("[[TTS]]", "speak:", txt) else: tts_and_speak(txt, i, output_queue) i += 1 except: print("[[TTS]]", "get text timeout.") continue ```
{ "source": "jphacks/C_2117", "score": 2 }
#### File: server/trip_diary/models.py ```python from django.db import models class User(models.Model): user_name = models.CharField(max_length=30) def __str__(self): return self.user_name #Tripモデル(id, trip_name, trip_start, trip_end) class Trip(models.Model): trip_name = models.CharField(max_length=30) trip_start = models.DateTimeField(verbose_name='The start of trip', null=True, blank=True) trip_end = models.DateTimeField(verbose_name='The end of trip', null=True, blank=True) trip_menber = models.ManyToManyField(User) def __str__(self): return self.trip_name #Categoryモデル(id, name) class Category(models.Model): category_name = models.CharField(max_length=30) def __str__(self): return self.category_name #VisitHistryモデル(id, trip_id, places_visited_id, date_of_visit) class VisitHistry(models.Model): trip_id = models.ForeignKey(Trip,on_delete=models.CASCADE) place_visited = models.CharField(max_length=30) visit_start = models.DateTimeField('The start of visit') def __str__(self): return self.place_visited #Imageモデル(id, trip_id, date_of_shooting, file_name, placesVisited_id) #primary_keyは未指定のため自動で生成される class Image(models.Model): trip_id = models.ForeignKey(Trip,on_delete=models.CASCADE) date_of_shooting = models.DateTimeField(verbose_name='date of shooting', null=True, blank=True) file_name = models.CharField(max_length=100) location = models.ForeignKey(VisitHistry,on_delete=models.CASCADE) user_id = models.ForeignKey(User,on_delete=models.CASCADE) importance = models.IntegerField() category_name = models.ManyToManyField(Category) def __str__(self): return self.file_name ``` #### File: server/trip_diary/views.py ```python from django.http import HttpResponse import django_filters from rest_framework import viewsets, filters from django.http import FileResponse from .models import Image,Trip,VisitHistry from .serializer import ImageSerializer, TripSerializer, VisitHistrySerializer #ユーザがいった旅のリスト->旅を選ぶ->旅にアクセス #旅の訪れた場所ごとに時系列で(上位n個のハイライト写真を送る)->場所を選ぶ #場所ごとの写真を送る #旅の名前, 日付, 参加したユーザ class ImageViewSet(viewsets.ModelViewSet): queryset = Image.objects.order_by('date_of_shooting') serializer_class = ImageSerializer filter_fields = ('user_id', 'trip_id','category_name') class ImageVeiwSet_highlight(viewsets.ModelViewSet): queryset = Image.objects.order_by('-importance')[:4] serializer_class = ImageSerializer class TripViewSet(viewsets.ModelViewSet): queryset = Trip.objects.all() serializer_class = TripSerializer filter_fields = ('trip_menber','trip_name') class VisitHistryViewSet(viewsets.ModelViewSet): queryset = VisitHistry.objects.order_by('visit_start') serializer_class = VisitHistrySerializer filter_fields = ('trip_id','place_visited') def index(request): return HttpResponse("Hello, world. You're at the polls index.") ```
{ "source": "jphacks/C_2118", "score": 3 }
#### File: api/sentiment/analysis.py ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification, AdapterType model = AutoModelForSequenceClassification.from_pretrained( "cl-tohoku/bert-base-japanese-whole-word-masking" ) tokenizer = AutoTokenizer.from_pretrained( "cl-tohoku/bert-base-japanese-whole-word-masking" ) model.load_adapter("./api/sentiment/adapter/sst-2/") def predict(sentence): token_ids = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(sentence)) input_tensor = torch.tensor([token_ids]) outputs = model(input_tensor, adapter_names=["sst-2"]) result = torch.argmax(outputs[0]).item() return result ``` #### File: api/sentiment/app.py ```python from flask import Flask, jsonify, request import json import analysis app = Flask(__name__) app.config["SQLALCHEMY_DATABASE_URI"] = "sqlite:///data.sqlite" app.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False @app.route("/positiveness", methods=["POST"]) def get_positiveness(): req = json.loads(request.data) comment_body = req["body"] positiveness = analysis.predict(comment_body) return jsonify({"positiveness": positiveness}) if __name__ == "__main__": app.run() ``` #### File: C_2118/web/snowflake.py ```python import time class Snowflake: def __init__(self, init_serial_no=0): self.machine_id = 0 self.epoch = 0 self.serial_no = init_serial_no def generate(self): unique_id = ( ((int(time.time() * 1000) - self.epoch) & 0x1FFFFFFFFFF) << 22 | (self.machine_id & 0x3FF) << 12 | (self.serial_no & 0xFFF) ) self.serial_no += 1 return unique_id ```
{ "source": "jphacks/C_2122", "score": 3 }
#### File: C_2122/pyapp/app.py ```python import datetime import sqlite3 import flask import flask_login SECRET_KEY = "secret_key" app = flask.Flask( __name__, template_folder="static") app.config["SECRET_KEY"] = SECRET_KEY login_manager = flask_login.LoginManager() login_manager.init_app(app) user_id = 0 # ログイン用のクラス class User(flask_login.UserMixin): def __init__(self, user_id): self.id = user_id def get_id(self): return self.id @login_manager.user_loader def load_user(user_id): return User(user_id) def get_abs(path): # 共通部分の読み込み f = open("static/"+path, 'r') read = f.read() f.close() return read @app.route('/', methods=["POST", "GET"]) def index(): # スタートページを表示 # return flask.render_template("index.html", navbar=NAVBAR, headend=HEADEND) return flask.render_template("index.html", abs_path=get_abs) @app.route('/css/style.css', methods=["POST", "GET"]) def css(): return flask.render_template("css/style.css", abs_path=get_abs) @app.route("/login.html", methods=["POST", "GET"]) def login(): # loginページの処理 if(flask.request.method == "POST"): # ユーザーチェック conn = sqlite3.connect('chat_test.db') c = conn.cursor() try: c.execute( "select * from user where username = '{}' and password = '{}'".format(flask.request.form["name"], flask.request.form["password"])) except: return flask.abort(401) user = c.fetchall() if user != []: conn.close() user_id = int(user[0][0]) flask_login.login_user(User(int(user[0][0]))) print("login success") return flask.redirect("room.html") else: print("login fail : Name or password does not match") print(user) flask.flash("ユーザー名またはパスワードが間違っています", "sign in fail") return flask.redirect("login.html") return flask.render_template("login.html", abs_path=get_abs) @app.route("/signup.html", methods=["POST", "GET"]) def sign_up(): # loginページの処理 if(flask.request.method == "POST"): # ユーザーチェック conn = sqlite3.connect('chat_test.db') c = conn.cursor() if len(flask.request.form["name"]) < 2: flask.flash("ユーザー名が短すぎます", "name is too short.") return flask.redirect("/signup.html") if len(flask.request.form["password"]) < 2: flask.flash("パスワードが短すぎます", "password is too short.") return flask.redirect("/signup.html") try: c.execute( "select * from user where username = '{}' ".format(flask.request.form["name"])) user = c.fetchall() if user == []: raise "NoData" flask.flash("その名前はすでに使用されています", "sign up fail") return flask.redirect("/signup.html") except: c.execute( "insert into user(username, password) values('{}', '{}')".format( flask.request.form["name"], flask.request.form["password"]) ) print("Sign up success") c.execute( "select * from user where username = '{}' ".format(flask.request.form["name"])) user = c.fetchall() print(user) conn.commit() conn.close() flask_login.login_user(User(int(user[0][0]))) return flask.redirect("room.html") return flask.render_template("signup.html", abs_path=get_abs) @app.route("/logout", methods=["GET"]) @flask_login.login_required def logout(): # logoutの処理 flask_login.logout_user() return flask.redirect("/") @app.route("/dashboard", methods=["POST", "GET"]) def show_dashboard(): # dashboardの表示 pass #チャット処理 @app.route("/room.html") def room(): conn = sqlite3.connect('chat_test.db') c = conn.cursor() user_id = flask_login.current_user.get_id() # ログインしているユーザのidを取得 c.execute( "select id, date, user_id, content, reserved_id from purpose where (reserved_id is null) and (purpose.user_id = {})".format(user_id) ) purpose_list = c.fetchall() c.execute( "select purpose_id1 from reserve" ) reserve_list = c.fetchall() my_list = [] wait_list = [] for p in purpose_list: b = False for r in reserve_list: if p[0] == r[0]: b = True break if b: wait_list.append(p) else: my_list.append(p) c.execute( "select purpose.date, purpose.content, reserve.id from purpose inner join reserve on purpose.reserved_id = reserve.id where purpose.user_id = {}".format(user_id) ) open_list = c.fetchall() conn.close() return flask.render_template("room.html", my_list=my_list, wait_list=wait_list, open_list=open_list, abs_path=get_abs) @app.route("/chat.html/<int:reserveid>") def chat(reserveid): user_id = flask_login.current_user.get_id() conn = sqlite3.connect('chat_test.db') c = conn.cursor() c.execute( "select reserve_id, date, content, user_id_sender from chat where reserve_id = {}".format(reserveid)) chat_fetch = c.fetchall() chat_list = [] for chat in chat_fetch: chat_list.append( {"reserve_id": chat[0], "date": chat[1], "content": chat[2], "user_id": chat[3]} ) conn.close() return flask.render_template("chat.html", chat_list=chat_list, reserve_id=reserveid, user_id=user_id, abs_path=get_abs) @app.route("/chat.html/<int:reserveid>", methods=["POST"]) def chat_post(reserveid): user_id = flask_login.current_user.get_id() chat_message = flask.request.form.get("input_message") conn = sqlite3.connect('chat_test.db') c = conn.cursor() c.execute("insert into chat values(?,?,?,?)", (reserveid, datetime.datetime.now(), chat_message, user_id)) conn.commit() conn.close() return flask.redirect("/chat.html/{}".format(reserveid)) #予約処理 @app.route("/reservation.html", methods=["POST", "GET"]) @flask_login.login_required def reserve(): """ conn = sqlite3.connect('reserve_test.db') c = conn.cursor() c.execute('CREATE TABLE reserve (id integer, date text, time text, purpose text)') conn.commit() conn.close() return flask.render_template('<reserve {}>', abs_path=get_abs)""" if(flask.request.method == "POST"): # ユーザーチェック conn = sqlite3.connect('chat_test.db') c = conn.cursor() user_id = flask_login.current_user.get_id() print(flask.request.form) t = flask.request.form["time"].replace(":", "-") c.execute("insert into purpose(date, user_id, content) values('{}', '{}', '{}')".format( str(flask.request.form["date"]) + "-" + t, user_id, flask.request.form["purpose"])) conn.commit() c.execute( "select reserve.id, purpose.content from reserve inner join purpose on (reserve.purpose_id1 = purpose.id) or (reserve.purpose_id2 = purpose.id) where purpose.user_id = {}".format(user_id)) room_list = c.fetchall() print(room_list) conn.close() return flask.render_template("/reservation.html", abs_path=get_abs, messages=room_list) return flask.render_template("/reservation.html", abs_path=get_abs) #マッチング処理 @app.route("/match.html") def match(): conn = sqlite3.connect('chat_test.db') c = conn.cursor() user_id = flask_login.current_user.get_id() # ログインしているユーザのidを取得 c.execute( "select id, date, purpose_id1, purpose_id2 from reserve where (purpose_id1 is not null) and (purpose_id2 is not null)" ) room_list = c.fetchall() c.execute( "select purpose.id, purpose.date, purpose.user_id, purpose.content, purpose.reserved_id, user.username from purpose inner join user on purpose.user_id = user.id where reserved_id is null" ) purpose_list = c.fetchall() to_me = [] for r in room_list: for p in purpose_list: if p[2] == user_id and r[3] == p[0]: r = list(r) to_me.append(r) for i in range(len(to_me)): for p in purpose_list: if to_me[i][2] == p[0]: to_me[i].append(p[5]) break c.execute( "select id, date, purpose_id1, purpose_id2 from reserve" ) room_list = c.fetchall() c.execute( "select purpose.id, purpose.date, purpose.user_id, purpose.content, purpose.reserved_id, user.username from purpose inner join user on purpose.user_id = user.id where (reserved_id is null) and (user_id = {})".format(user_id) ) my_list = c.fetchall() c.execute( "select purpose.id, purpose.date, purpose.user_id, purpose.content, purpose.reserved_id, user.username from purpose inner join user on purpose.user_id = user.id where (reserved_id is null) and (user_id != {})".format(user_id) ) your_list = c.fetchall() candidate = [] for my in my_list: for your in your_list: if my[1] == your[1]: b = True for r in room_list: if r[2] == my[0] or r[3] == my[0] or r[2] == your[0] or r[3] == your[0]: b = False if b: your = list(your) your.append(my[0]) candidate.append(your) conn.close() return flask.render_template("match.html", abs_path=get_abs, to_me=to_me, candidate=candidate) @app.route("/match.html", methods=["POST"]) def match_post(): user_id = flask_login.current_user.get_id() # ログインしているユーザのidを取得 conn = sqlite3.connect('chat_test.db') c = conn.cursor() print(flask.request.form) if "reserve" in flask.request.form: c.execute("update purpose set reserved_id='{}' where id={}".format(flask.request.form["reserve"], flask.request.form["my_purpose"])) conn.commit() c.execute("update purpose set reserved_id='{}' where id={}".format(flask.request.form["reserve"], flask.request.form["your_purpose"])) conn.commit() else: c.execute("insert into reserve(date, purpose_id1, purpose_id2) values('{}','{}','{}')".format(flask.request.form["date"], flask.request.form["my_purpose"], flask.request.form["your_purpose"])) conn.commit() conn.close() return flask.redirect("/match.html") if __name__ == "__main__": app.run(host="0.0.0.0", port=8008, debug=True) ```
{ "source": "jphacks/C_2126", "score": 2 }
#### File: C_2126/api/models.py ```python from django.db import models from django.utils import timezone FOOD_TYPE_CHOICES = ( (0, '水'), (1, '食料品'), (2, 'おかず'), (3, 'その他') ) FOOD_GENRE_CHOICES = ( (0, '水'), (1, '麺'), (2, 'おかゆ'), (3, 'その他') ) class FoodModel(models.Model): title = models.CharField(max_length=50) type = models.IntegerField( choices=FOOD_TYPE_CHOICES, help_text='0: 水, 1: 食料品, 2: おかず, 3: その他' ) genre = models.IntegerField( choices=FOOD_GENRE_CHOICES, help_text='0: 水, 1: 麺, 2: おかゆ, 3: その他' ) count = models.IntegerField(default=0) expiration = models.DateTimeField(default=timezone.now) def __str__(self): return self.title class UserModel(models.Model): line_id = models.CharField(max_length=50) token = models.CharField(max_length=50) def __str__(self): return self.line_id class GroupModel(models.Model): line_group_id = models.CharField(max_length=50, blank=False) title = models.CharField(max_length=50, blank=False) count_users = models.IntegerField() stock_days = models.IntegerField() foods = models.ManyToManyField( FoodModel, related_name='foods' ) users = models.ManyToManyField( UserModel, related_name='users' ) def __str__(self): return self.title ```
{ "source": "jphacks/D_2002", "score": 2 }
#### File: src/main/models.py ```python from django.db import models from stdimage.models import StdImageField from stdimage.validators import MinSizeValidator, MaxSizeValidator # Create your models here. class Product(models.Model): name = models.CharField( verbose_name='name', max_length=100, blank=False, null=False) amount = models.IntegerField( verbose_name='amount', blank=True, null=True) price = models.IntegerField( verbose_name='price', blank=False, null=False) intro = models.CharField( verbose_name='intro', max_length=200, blank=True, null=True ) image = StdImageField( verbose_name='image', upload_to="product", validators=[MinSizeValidator(300, 300), MaxSizeValidator(5760, 3840)], blank=True, variations={ 'medium': (500, 500, True), 'small': (300, 300, True), }, ) tx_hash = models.CharField( verbose_name='name', max_length=2000, blank=False, null=False) def __str__(self): return self.name ```
{ "source": "jphacks/D_2006", "score": 3 }
#### File: D_2006/server/app.py ```python from flask import Flask,render_template,abort import sys,os from flask import request,Response from flask_cors import CORS from flask.helpers import make_response app=Flask(__name__,static_url_path="/") CORS(app) @app.route("/") def root(): return render_template("index.html") import sys sys.path.append("../") from algorithm.いじったらだめ import Matching # import algorithm.いじったらだめ.Matching ''' input { analyze_text:str } return { difficult_words:{ {words}, {words},... } analyzed_text:str{ {sentence},... } } ''' import json @app.route("/analyze",methods=["POST"]) def anal(): message = request.get_json() text=message["analyze_text"] print("show-->",text) print("show end") ## Matching() #先に難しい単語を抽出した文を返す(string型) #二個目に要点をまとめた文を返す([str]) words,text=Matching.virtual_server(text) if len(words)==0: words.append(["ありませんでした"]) if len(text)==0: text.append("解析できませんでした") test={"analyzed_text":text,"difficult_words":words} return json.dumps(test),200 if __name__ == "__main__": print(app.url_map) app.run() ```
{ "source": "jphacks/D_2010", "score": 2 }
#### File: super_live/lives/models.py ```python import datetime from django.db import models from django.utils import timezone #liveのURLを管理 class Live(models.Model): liveName = models.CharField(verbose_name='liveName', max_length=100) liveUser = models.CharField(verbose_name='liveUser', max_length=100) liveId = models.CharField(verbose_name='liveId', max_length=100) pub_date = models.DateTimeField() def __str__(self): return self.liveId #リアクションの管理 class Reactions(models.Model): live = models.ForeignKey(Live, on_delete=models.CASCADE) reaction = models.CharField(max_length=100) reactionCount = models.IntegerField(default=0) def __str__(self): return self.reaction ```
{ "source": "jphacks/D_2014", "score": 2 }
#### File: esuits/escreate/forms.py ```python from django import forms from ..models import ESGroupModel, PostModel, TagModel class CreateESForm(forms.ModelForm): '''ES作成のためのフォーム''' class Meta: model = ESGroupModel fields = ( 'company', 'event_type', 'company_url', 'is_editing', 'deadline_date', # 'author', ) class CreatePostForm(forms.ModelForm): '''ポスト作成のためのフォーム''' class Meta: model = PostModel fields = ( 'question', 'answer', 'tags', 'char_num', 'es_group_id', ) def __init__(self, *args, user, **kwargs): self.user = user super().__init__(*args, **kwargs) available_tags = TagModel.objects.filter(author=user) self.fields['tags'].queryset = available_tags ``` #### File: D_2014/esuits/models.py ```python from django.db import models from django.utils import timezone from django.contrib.auth.models import AbstractUser from django.contrib.auth.models import User from django.contrib.auth.signals import user_logged_in # Create your models here. class CustomUserModel(AbstractUser): '''カスタムユーザークラス''' class Meta(object): db_table = 'custom_user' def __str__(self): return self.username class TagModel(models.Model): '''タグモデル''' class Meta(object): db_table = 'tag_table' tag_name = models.CharField(verbose_name='タグ名', max_length=255) author = models.ForeignKey(CustomUserModel, on_delete=models.CASCADE) def __str__(self): return self.tag_name class WordCloudModel(models.Model): '''ワードクラウドを保存するデータベース''' class Meta(object): db_table = 'word_cloud' company_url = models.URLField(verbose_name='企業ホームページ', max_length=200) word_cloud_image_url = models.URLField(verbose_name='ワードクラウドURL', max_length=200) class ESGroupModel(models.Model): '''ESモデル''' class Meta(object): db_table = 'esgroup_table' company = models.CharField(verbose_name='会社名', max_length=100) event_type = models.CharField(verbose_name='イベントタイプ', max_length=50, blank=True, null=True) company_url = models.URLField(verbose_name='企業ホームページ', max_length=200) author = models.ForeignKey(CustomUserModel, verbose_name='作成者', on_delete=models.CASCADE, blank=True) is_editing = models.BooleanField(verbose_name='作成中', default=True) created_date = models.DateTimeField(verbose_name='作成日時', default=timezone.now, blank=True) deadline_date = models.DateTimeField( verbose_name='提出期限', default=timezone.now, blank=True, null=True) word_cloud = models.ForeignKey(WordCloudModel, verbose_name='ワードクラウド', on_delete=models.SET_NULL, null=True) def __str__(self): return str(self.pk) + '_' + self.company + '_' + self.event_type class PostModel(models.Model): '''ポストモデル''' class Meta(object): db_table = 'post_table' question = models.TextField(verbose_name='質問') answer = models.TextField(verbose_name='', blank=True, null=True) # create_date = models.DateTimeField(verbose_name='作成日時', default=timezone.now) tags = models.ManyToManyField(TagModel, verbose_name='タグ名', blank=True) # OPEN_INFO_CHOICES = [ # ('public', '公開'), # ('private', '非公開') # ] # open_info = models.CharField(verbose_name='公開', max_length=20, # choices=OPEN_INFO_CHOICES, default='private') # company = models.CharField(verbose_name='会社名', max_length=50, blank=True, null=True) # state = models.CharField(verbose_name='状況', max_length=50, blank=True, null=True) # author = models.ForeignKey(CustomUserModel, verbose_name='ユーザ名', on_delete=models.CASCADE) es_group_id = models.ForeignKey(ESGroupModel, verbose_name='ES名', on_delete=models.CASCADE, blank=True, null=True) char_num = models.IntegerField(default=0, blank=True) def __str__(self): return self.question ```
{ "source": "jphacks/D_2015", "score": 2 }
#### File: D_2015/DaiCon-raspi/irmcli.py ```python import sys import serial import time import json import argparse import os here = os.path.abspath(os.path.dirname(__file__)) ir_serial = serial.Serial("/dev/ttyACM0", 9600, timeout = 1) #ir_serial = serial.Serial("/dev/tty.usbmodem01231", 9600, timeout = 1) def captureIR(path): print("Capturing IR...".encode()) ir_serial.write("c\r\n".encode()) time.sleep(3.0) msg = ir_serial.readline() print(msg) if path and not 'Time Out' in msg.decode(): return saveIR(path) def playIR(data): #if path and os.path.isfile(path): if len(data) != 0: #print("Playing IR with %s ..." % path) #f = open(path) #data = json.load(f) #f.close() #recNumber = len(data['data']) recNumber = len(data) #rawX = data['data'] rawX = data ir_serial.write("n,%d\r\n".encode() % recNumber) ir_serial.readline() #postScale = data['postscale'] #ir_serial.write("k,%d\r\n".encode() % postScale) #time.sleep(1.0) msg = ir_serial.readline() #print msg for n in range(recNumber): bank = n / 64 pos = n % 64 if (pos == 0): ir_serial.write("b,%d\r\n".encode() % bank) ir_serial.write("w,%d,%d\n\r".encode() % (pos, rawX[n])) ir_serial.write("p\r\n".encode()) msg = ir_serial.readline() print(msg) return "Successed" #ir_serial.close() else: print("Playing IR...") ir_serial.write("p\r\n".encode()) time.sleep(1.0) msg = ir_serial.readline() print(msg) return "Failed" def saveIR(path): print("Saving IR data to %s ..." % path) rawX = [] ir_serial.write("I,1\r\n".encode()) time.sleep(1.0) recNumberStr = ir_serial.readline() recNumber = int(recNumberStr, 16) ir_serial.write("I,6\r\n".encode()) time.sleep(1.0) postScaleStr = ir_serial.readline() postScale = int(postScaleStr, 10) #for n in range(640): for n in range(recNumber): bank = n / 64 pos = n % 64 if (pos == 0): ir_serial.write("b,%d\r\n".encode() % bank) ir_serial.write("d,%d\n\r".encode() % pos) xStr = ir_serial.read(3) xData = int(xStr, 16) rawX.append(xData) data = {'format':'raw', 'freq':38, 'data':rawX, 'postscale':postScale} f = open(path, 'w') json.dump(data, f) f.close() print("Done !") print(rawX) return rawX def measureTemperature(): #print "Sending T command..." ir_serial.write("T\r\n") #print "Reading raw temperature..." raw = ir_serial.readline() #print "Reading command status..." status = ir_serial.readline().rstrip() celsiusTemp = None try: celsiusTemp = ((5.0 / 1024.0 * float(raw)) - 0.4) / 0.01953 print("Temperature: %s" % "{:4.1f}".format(celsiusTemp)) except (ValueError, TypeError): print("TemperatureExcetion: raw => %s, status => %s" % (raw, status)) def printFirmwareVer(): ir_serial.write("V\r\n") print(ir_serial.readline().rstrip()) ir_serial.readline() if __name__ == "__main__": # parse options parser = argparse.ArgumentParser(description='irMagician CLI utility.') parser.add_argument('-c', '--capture', action="store_true", dest="cap", help="capture IR data", default=False) parser.add_argument('-p', '--play', action="store_true", dest="play", help="play IR data", default=False) parser.add_argument('-s', '--save', action="store_true", dest="save", help="save IR data", default=False) parser.add_argument('-f', '--file', action="store", dest="file", help="IR data file (json)", default=False) parser.add_argument('-t', '--temperature', action="store_true", dest="temperature", help="measure ambient irMagicianT temperature in degrees Celsius", default=False) parser.add_argument('-v', '--version', action="store_true", dest="version", help="show firmware version", default=False) args = parser.parse_args() if args.version: printFirmwareVer() if args.temperature: measureTemperature() if args.play: playIR(args.file) if args.save and args.file: saveIR(args.file) if args.cap: captureIR(args.file) # release resources ir_serial.close() ```
{ "source": "jphacks/D_2105", "score": 3 }
#### File: opt/composer/get_tempo.py ```python def get_bpm(related_value_list, positive_param): """ パラメータごとのテンポを返す Parameter --------- related_value_list : [str] 言語分析の結果を格納したリスト positive_param : float Tweetから算出されたポジティブ度 Return ------ bpm そのパラメータに対応したbpm """ bpm = 100 NO_ITEM = 0 ONE_ITEMS = 1 TWO_ITEMS = 2 prime_value = 'none' secondary_value = 'none' third_value = 'none' if len(related_value_list) == NO_ITEM: prime_value = 'none' secondary_value = 'none' third_value = 'none' elif len(related_value_list) == ONE_ITEMS: prime_value = related_value_list[0] elif len(related_value_list) == TWO_ITEMS: prime_value = related_value_list[0] secondary_value = related_value_list[1] else: prime_value = related_value_list[0] secondary_value = related_value_list[1] third_value = related_value_list[2] if prime_value == 'sea': if positive_param < 0.33: bpm = 100 elif positive_param < 0.66: bpm = 100 else: bpm = 100 elif prime_value == 'cherry': if positive_param < 0.5: bpm = 100 else: bpm = 100 elif prime_value == 'cat': bpm = 100 elif prime_value == 'dog': bpm = 100 elif prime_value == 'train': bpm = 134 elif prime_value == 'pc': bpm = 100 elif prime_value == 'gourmet': bpm = 120 elif prime_value == 'sport': bpm = 100 elif prime_value == 'soccer': bpm = 100 elif prime_value == 'baseball': bpm = 100 elif prime_value == 'tabletennis': bpm = 120 elif prime_value == 'japanese': bpm = 100 elif prime_value == 'scandinavian': bpm = 100 elif prime_value == 'tropical': bpm = 100 elif prime_value == 'school': bpm = 100 elif prime_value == 'idol': bpm = 100 elif prime_value == 'outdoor': bpm = 100 elif prime_value == 'car': bpm = 100 elif prime_value == 'bike': bpm = 100 elif prime_value == 'drama': bpm = 120 elif prime_value == 'picture': bpm = 100 elif prime_value == 'rock': bpm = 100 elif prime_value == 'electronic': bpm = 100 elif prime_value == 'jazz': bpm = 100 elif prime_value == 'ghost': bpm = 100 elif prime_value == 'sword': bpm = 100 elif prime_value == 'gun': bpm = 100 elif prime_value == 'history': bpm = 100 elif prime_value == 'chuni': bpm = 100 elif prime_value == 'fairy': bpm = 100 elif prime_value == 'child': bpm = 100 elif prime_value == 'mystery': bpm = 100 elif prime_value == 'shopping': bpm = 100 else: bpm = 100 return bpm ``` #### File: opt/movie_create/movie_create.py ```python import moviepy.editor as mpy import matplotlib.pyplot as plt import numpy as np import cv2, wave import settings # デバッグ用 import shutil, os def get_music(id): """ 音楽の長さが何秒か(浮動小数)と フレーム数を返す関数 Parameter --------- id : str 個人識別用uuid Returns ------- 1.0 * music_frames / SAMPLING_RATE : float 音楽の長さ(秒) """ MOVIE_PATH = MOVIE_PATH = './movie/' + id + '/' WAVE_PATH = MOVIE_PATH + settings.WAV_FILE_NAME SAMPLING_RATE = 44100 with wave.open(WAVE_PATH, 'r') as music: music_frames = music.getnframes() return 1.0 * music_frames / SAMPLING_RATE def create_clip(path, id, bpm=0, is_icon=False, is_related=False): """ 画像から音楽と同じ長さの無音動画を作る関数 Parameters ---------- path : str 動画化したい画像のパス id : str 個人識別用uuid bpm : int 作成した曲のbpm is_icon : bool Twitterアイコンであるかどうか is_related : bool その人に関係ある画像であるかどうか Return ------ concat_clip : 画像から生成した音楽と同じ長さの無音動画 """ MOVIE_PATH = f'./movie/{id}/' FPS = 30 SECONDS_PER_FRAME = 1/30 # 音楽の長さ,フレーム数を取得 music_length = get_music(id) # 画像を格納する処理 clips = [] if is_icon: # Twitterアイコンのとき img_list = clip_circle(path, id, bpm, music_length) for i in img_list: clip = mpy.ImageClip(i).set_duration(SECONDS_PER_FRAME) clips.append(clip) elif is_related: # 関係ある画像のとき img_list = clip_related(path, id, bpm, music_length) for i in img_list: clip = mpy.ImageClip(i).set_duration(SECONDS_PER_FRAME) clips.append(clip) else: # 背景のとき # 画像を取得 img = cv2.imread(path, -1) img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGBA) clip = mpy.ImageClip(img).set_duration(music_length) clips.append(clip) # 動画を作成する処理 concat_clip = mpy.concatenate_videoclips(clips, method='compose') clip.close() return concat_clip def clip_circle(path, id, bpm, music_length): """ 正方形のTwitterアイコンを円形に切り出し, スライドショー用の配列に格納する関数 Parameters ---------- path : str 正方形のTwitterアイコンのパス id : str 個人識別用uuid bpm : int 作成した曲のbpm music_length : float 音楽の長さ(秒) Return ------ img_list : ndarray 円形に切り出したTwitterアイコンの配列 """ MOVIE_PATH = './movie/' + id + '/' FPS = 30 # 画像の読み込み img_origin = cv2.imread(path, -1) img_origin = cv2.cvtColor(img_origin, cv2.COLOR_BGRA2RGBA) img_list = [] movie_frames = int(music_length * FPS) for i in range(movie_frames): ''' bpmに合わせて拡大縮小を行う. bpm 60(s)でpbm(拍) = 60/bpm(s)で1(拍) fps 1(s)で30(枚) = 60/bpm(s)で1800/bpm(枚) ''' SECONDS_PER_MINUTE = 60 FPS = 30 FRAMES_PER_BEAT = SECONDS_PER_MINUTE * FPS // bpm # 深いコピー img = img_origin.copy() # 画像の拡大縮小 if i % FRAMES_PER_BEAT < FRAMES_PER_BEAT // 2: new_size = 200 - 50 * (i % (FRAMES_PER_BEAT // 2)) // (FRAMES_PER_BEAT // 2) else: new_size = 150 + 50 * (i % (FRAMES_PER_BEAT // 2)) // (FRAMES_PER_BEAT // 2) # マスク作成 (黒く塗りつぶす画素の値は0) mask = np.zeros((new_size, new_size), dtype=np.uint8) # 円を描画する関数circle()を利用してマスクの残したい部分を 255 にしている。 cv2.circle(mask, center=(new_size//2, new_size//2), radius=new_size//2, color=255, thickness=-1) # 画像の拡縮 img = cv2.resize(img, dsize=(new_size, new_size)) # maskの値が0の画素は透過する img[mask==0] = [0, 0, 0, 0] img_list.append(img) return img_list def clip_related(path, id, bpm, music_length): """ その人に関係ある画像を, スライドショー用の配列に格納する関数 Parameters ---------- path : str その人に関係ある画像のパス id : str 個人識別用uuid bpm : int 曲の速さ(♩/秒) music_length : float 音楽の長さ(秒) Return ------ img_list : ndarray その人に関係ある画像の配列 """ MOVIE_PATH = './movie/' + id + '/' FPS = 30 # 画像の読み込み img_origin = cv2.imread(path, -1) img_origin = cv2.cvtColor(img_origin, cv2.COLOR_BGRA2RGBA) height = img_origin.shape[0] width = img_origin.shape[1] img_list = [] movie_frames = int(music_length * FPS) for i in range(movie_frames): ''' bpmに合わせてスイングを行う. bpm 60(s)でpbm(拍) = 60/bpm(s)で1(拍) fps 1(s)で30(枚) = 60/bpm(s)で1800/bpm(枚) ''' SECONDS_PER_MINUTE = 60 FPS = 30 FRAMES_PER_BEAT = SECONDS_PER_MINUTE * FPS // bpm # 深いコピー img = img_origin.copy() # 画像を回転する角度を決定 if i % FRAMES_PER_BEAT < FRAMES_PER_BEAT // 2: angle = 15 - 30 * (i % (FRAMES_PER_BEAT // 2)) // (FRAMES_PER_BEAT // 2) else: angle = -15 + 30 * (i % (FRAMES_PER_BEAT // 2)) // (FRAMES_PER_BEAT // 2) rad_angle = np.radians(angle) width_rot = int(np.round(width*abs(np.cos(rad_angle)) + height*abs(np.sin(rad_angle)))) height_rot = int(np.round(width*abs(np.sin(rad_angle)) + height*abs(np.cos(rad_angle)))) # 回転行列を生成 mat = cv2.getRotationMatrix2D((width//2, height), angle, 1) mat[0][2] += -width/2 + width_rot/2 mat[1][2] += -height/2 + height_rot/2 # アフィン変換 affine_img = cv2.warpAffine(img, mat, (width_rot, height_rot)) img_list.append(affine_img) return img_list def movie_create(id, bpm, related_list): """ Parameters ---------- id : str 個人識別用uuid bpm : int 作成した曲のbpm related_list : array 関連するキーワードのリスト """ MOVIE_PATH = './movie/' + id + '/' WAVE_PATH = MOVIE_PATH + settings.WAV_FILE_NAME BASE_IMG_PATH = './movie_create/common_images/cake_background.PNG' ICON_IMG_PATH = MOVIE_PATH + '/icon.png' IMGAGES_PATH = './movie_create/images/' BASE_HEIGHT = 720 BASE_WIDTH = 720 FPS = 30 # クリップを作成 base_clip = create_clip(BASE_IMG_PATH, id) icon_clip = create_clip(ICON_IMG_PATH, id, bpm, is_icon=True) #related_clip_0 = create_clip(IMGAGES_PATH + related_list[0] + '/01.PNG', id, bpm, is_related=True) #related_clip_1 = create_clip(IMGAGES_PATH + related_list[1] + '/01.PNG', id, bpm, is_related=True) #related_clip_2 = create_clip(IMGAGES_PATH + related_list[2] + '/01.PNG', id, bpm, is_related=True) # クリップの合成 final_clip = mpy.CompositeVideoClip([base_clip, icon_clip.set_position((BASE_WIDTH * 0.38, BASE_HEIGHT * 0.2))])#, \ #related_clip_0.set_position((0, BASE_HEIGHT * 0.55)), related_clip_1.set_position((BASE_WIDTH * 0.37, BASE_HEIGHT * 0.65)), \ #related_clip_2.set_position((BASE_WIDTH * 0.7, BASE_HEIGHT * 0.55))]) # 音と動画を合成 final_clip = final_clip.set_audio(mpy.AudioFileClip(WAVE_PATH)) final_clip.write_videofile(filename = MOVIE_PATH + 'happy_birthday.mp4', codec='libx264', audio_codec='aac', fps=FPS) final_clip.close() #related_clip_2.close() #related_clip_1.close() #related_clip_0.close() icon_clip.close() base_clip.close() ``` #### File: opt/nlp/check.py ```python import tweepy import os def check_id(account): """ツイッターアカウントのIDチェック Parameters ---------- account : str アカウントID Returns ------- str エラーメッセージ """ if account == "": return "アカウント名が入力されていません" if account == "@": return "アカウントが存在しません" if account[0] == "@": account = account[1:] auth = tweepy.OAuthHandler(os.environ["T_key"], os.environ["T_keys"]) auth.set_access_token(os.environ["T_token"], os.environ["T_tokens"]) api = tweepy.API(auth) try: user = api.get_user(id=account) except: return "アカウントが存在しません" if user.protected == True: return "相手のアカウントが鍵アカになっています" else: return "" if __name__ == "__main__": error = check_id("yuukamiya68") print(error) ``` #### File: opt/nlp/name_check.py ```python from goolabs import GoolabsAPI import time def name_check(api_id, text_list): """固有表現抽出器で名前と判断された語のリストを取得 Parameters ---------- api_id : str text_list : list[str] ツイッターの文章のリスト Returns ------- name_list : list[str] 名前と判断された語(重複あり) """ n_list = ["鬼太郎", "ぬらりひょん", "コナン", "金田一", "モリアーティー", "ホームズ", "水谷隼", "張本智和", "石川佳純", "丹羽孝希", "陳夢", "馬龍", "伊藤美誠", "宇田幸矢", "許キン", "ロナウド", "リオネルメッシ", "リオネル・メッシ", "本田圭佑", "香川真司", "内田篤人", "三浦知良", "長友佑都", "イチロー", "王貞治", "大谷翔平", "星野仙一", ] name_list = [] api = GoolabsAPI(api_id) for i in range(int(len(text_list)/100)+1): if i != int(len(text_list)/100): text = "".join(text_list[i*100:(i+1)*100]) elif len(text_list)%100 != 0: text = "".join(text_list[i*100:]) ne_list = api.entity(sentence=text, class_filter="PSN")["ne_list"] for name in ne_list: if name[0] not in n_list: name_list.append(name[0]) time.sleep(1) return name_list def main(): tweet_list = joblib.load("twitter_result2") name_check("", tweet_list) return if __name__ == "__main__": main() ```
{ "source": "jphacks/D_2110", "score": 2 }
#### File: symmetryshift/test/test_create_biological_structure_unit.py ```python import filecmp import os import shutil import sys import tempfile import unittest from unittest.mock import patch sys.path.append(os.path.join(os.path.dirname(__file__), "../")) from Bio.PDB import PDBParser, parse_pdb_header from symmetryshift.cli import cli from symmetryshift.create_biological_structure_unit import operator class TestCore(unittest.TestCase): def test_operator(self): pdb_code = "1KZU" parser = PDBParser(QUIET=True) reference_file = "{}/assets/{}.pdb_rotated".format( os.path.dirname(os.path.abspath(__file__)), pdb_code ) reference_structure = parser.get_structure(pdb_code, reference_file) original_file = "{}/assets/{}.pdb_original".format( os.path.dirname(os.path.abspath(__file__)), pdb_code ) original_structure = parser.get_structure(pdb_code, original_file) original_header = parse_pdb_header(original_file) created_structure = operator( structure=original_structure, header=original_header, name=pdb_code ) self.assertEqual(reference_structure, created_structure) class TestAnotherPDB(unittest.TestCase): def test_operator(self): pdb_code = "3C70" parser = PDBParser(QUIET=True) reference_file = "{}/assets/{}.pdb_rotated".format( os.path.dirname(os.path.abspath(__file__)), pdb_code ) reference_structure = parser.get_structure(pdb_code, reference_file) original_file = "{}/assets/{}.pdb_original".format( os.path.dirname(os.path.abspath(__file__)), pdb_code ) original_structure = parser.get_structure(pdb_code, original_file) original_header = parse_pdb_header(original_file) created_structure = operator( structure=original_structure, header=original_header, name=pdb_code ) self.assertEqual(reference_structure, created_structure) class TestCli(unittest.TestCase): def setUp(self) -> None: self.tmp_dir = tempfile.mkdtemp() self.output_filename = os.path.join(self.tmp_dir, "tmp.pdb") self.pdb_code = "1KZU" self.rotated_filename = "{}/assets/{}.pdb_rotated".format( os.path.dirname(os.path.abspath(__file__)), self.pdb_code ) self.original_filename = "{}/assets/{}.pdb_original".format( os.path.dirname(os.path.abspath(__file__)), self.pdb_code ) return super().setUp() def tearDown(self) -> None: shutil.rmtree(self.tmp_dir) return super().tearDown() @patch("builtins.input", return_value="y") def test_pdb_code_and_outputfile(self, mock_input): cli([self.pdb_code, "--output", self.output_filename]) self.assertTrue(filecmp.cmp(self.rotated_filename, self.output_filename)) def test_from_file(self): cli(["--from-file", self.original_filename, "--output", self.output_filename]) self.assertTrue(filecmp.cmp(self.rotated_filename, self.output_filename)) ``` #### File: web/functions/main.py ```python from flask import jsonify import symmetryshift.create_biological_structure_unit as assembler import tempfile import os from google.cloud import storage as gcs import logging def create_assembly(pdb_code, work_dir): # input_filename = os.path.join(work_dir, "tmp_in.pdb") output_filename = os.path.join(work_dir, f"{pdb_code}_assembled.pdb") structure = assembler.get_biological_assembly_from_pdb_code(pdb_code) assembler.save_structure(structure, output=output_filename) return output_filename def upload_assembly(filename, pdb_code): project_id = os.environ["PROJECT_ID"] bucket_id = os.environ["ROTATED_PDB_FILE_BUCKECT_ID"] client = gcs.Client(project_id) bucket = client.get_bucket(bucket_id) file_id = f"{pdb_code}_assembled.pdb" blob_gcs = bucket.blob(file_id) blob_gcs.upload_from_filename(filename, content_type="text/plain") download_url = f"https://storage.googleapis.com/{bucket_id}/{file_id}" return download_url def upload_original(filename, pdb_code): project_id = os.environ["PROJECT_ID"] bucket_id = os.environ["ORIGINAL_PDB_FILE_BUCKECT_ID"] client = gcs.Client(project_id) bucket = client.get_bucket(bucket_id) file_id = f"{pdb_code}.pdb" blob_gcs = bucket.blob(file_id) blob_gcs.upload_from_filename(filename, content_type="text/plain") download_url = f"https://storage.googleapis.com/{bucket_id}/{file_id}" return download_url def fetch_biological_assembly(request): # CORS enable # fmt: off headers = { "Access-Control-Allow-Origin": "*", "Access-Control-Allow-Methods": "POST", "Access-Control-Allow-Headers": "Origin, X-Requested-With, Content-Type, Accept" } # fmt: on if request.method == "OPTIONS": return ("", 204, headers) data = request.get_json() tmp_dir = tempfile.mkdtemp() os.chdir(tmp_dir) try: pdb_code = data["pdb_code"] if type(pdb_code) != str or len(pdb_code) != 4: raise ValueError(f"pdb code must be 4 char. Input is {pdb_code}") assembly_filename = create_assembly(pdb_code, tmp_dir) assembly_url = upload_assembly(assembly_filename, pdb_code) original_filename = os.path.join(tmp_dir, pdb_code, f"pdb{pdb_code}.ent") original_url = upload_original(original_filename, pdb_code) data = { "message": "ok", "assembly_url": assembly_url, "original_url": original_url, } return jsonify(data), 200, headers except FileNotFoundError as err: logging.error(err) return jsonify( { "message": "Requested PDB code does not exist" "or were not submited as a PDB file format." }, 410, headers, ) except OSError as err: logging.error(err) return jsonify( { "message": "Requested PDB code does not exist" "or were not submited as a PDB file format." }, 410, headers, ) except ValueError as err: logging.error(err) return jsonify({"message": str(err)}), 500, headers except Exception as err: logging.error(err) return jsonify({"message": "Unexpected error occur"}), 500, headers ``` #### File: functions/test/test_fetch_biological_assembly.py ```python import main as server import os import unittest from unittest.mock import Mock class TestFetchBiologicalAssembly(unittest.TestCase): def setUp(self) -> None: return super().setUp() def tearDown(self) -> None: self.rotated_pdbfile.close() return super().tearDown() def test_post_pdb_code(self): pdb_code = "5V8K" data = {"pdb_code": pdb_code} request = Mock(get_json=Mock(return_value=data)) ```
{ "source": "jphacks/E_2002", "score": 2 }
#### File: E_2002/AI_camera/jphack_demo.py ```python from ctypes import * import os import cv2 import time import darknet_jphack import argparse import math import numpy as np import datetime import json import subprocess import glab from natsort import natsorted #学習されたクラス名を取得 def classname_management(altNames,data_path): if altNames is None: try: with open(data_path) as metaFH: metaContents = metaFH.read() import re match = re.search("names *= *(.*)$", metaContents, re.IGNORECASE | re.MULTILINE) if match: result = match.group(1) else: result = None try: if os.path.exists(result): with open(result) as namesFH: namesList = namesFH.read().strip().split("\n") altNames = [x.strip() for x in namesList] except TypeError: pass except Exception: pass return altNames #クラスごとの枠を色を決める def color_management(num_classes,class_colors,altNames): class_colors_own = [] for i in range(0, num_classes): hue = 255*i/num_classes col = np.zeros((1,1,3)).astype("uint8") col[0][0][0] = hue col[0][0][1] = 128 col[0][0][2] = 255 cvcol = cv2.cvtColor(col, cv2.COLOR_HSV2BGR) col = (int(cvcol[0][0][0]), int(cvcol[0][0][1]), int(cvcol[0][0][2])) class_colors_own.append(col) class_colors[altNames[i]] = class_colors_own[i] #撮影で得られた画像をから動画を製作する def video_creater(main_process,img_dir,original_video_path): #フォルダの画像を取得 frame_img_folder = img_dir + '*.jpg' frame_images = natsorted(glob.glob(frame_img_folder)) full_frame = len(frame_images) #動画のfpsを決定 fps = math.ceil(full_frame/main_process) fourcc = cv2.VideoWriter_fourcc('m','p','4','v') sample_img = cv2.imread(frame_images[0],cv2.IMREAD_COLOR) #動画の解像度を決定 height, width, channels = sample_img.shape[:3] #動画を設定 recording = cv2.VideoWriter(original_video_path, fourcc, fps, (width, height)) #フレーム画像から動画を生成 for i in range(full_frame): img = cv2.imread(frame_images[i],cv2.IMREAD_COLOR) recording.write(img) recording.release() #YOLOによる物体検出 def image_detection(frame, network, class_names, class_colors, thresh,save_result_path,width,height,first_flag): #物体検出のための画像の前処理 darknet_image = darknet_jphack.make_image(width, height, 3) image_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) image_resized = cv2.resize(image_rgb, (width, height), interpolation=cv2.INTER_LINEAR) darknet_jphack.copy_image_from_bytes(darknet_image, image_resized.tobytes()) #YOLOによる物体検出 detections = darknet_jphack.detect_image(network, class_names, darknet_image, thresh=thresh) #検出結果枠作成 image = darknet_jphack.draw_boxes(detections, image_resized, class_colors) result_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) #検出結果画像保存 pred_image = cv2.imwrite(save_result_path,result_image) darknet_jphack.print_detections(detections) return result_image, detections #カメラからの映像を取得して物体検出した結果をリアルタイムで表示 def start_process(cap,save_img_dir,save_result_dir,width,height,network,class_names,class_colors,threshold): first_flag = False start = time.time() while True: #カメラからの映像取得 ret, frame = cap.read() #画像のパス生成 dt_now = datetime.datetime.now() date = dt_now.strftime('%Y%m%d_%H%M%S%f') save_result_path = str(save_result_dir + date + ".jpg") save_img_path = str(save_img_dir + date + ".jpg") #カメラからの映像を画像として保存 cv2.imwrite(save_img_path,frame) #YOLOによる物体検出 image, detections = image_detection(frame, network, class_names, class_colors, threshold,save_result_path,width,height,first_flag) #画面に検出結果表示 cv2.imshow("YOLO",image) cv2.moveWindow("YOLO", 1000, 200) #何も検出しなかったとき if len(detections) == 0: monitor = str(0) #何か検出したとき else: row = np.shape(detections)[0] for r in range(row): detection_result = detections[r][0] if detection_result == "person": monitor = str(1) else: monitor = str(0) jphack_dict = {"person": monitor} #ユーザーがベッドにいるとき if monitor == "1": result_message = "person in bed" print(result_message) #ユーザーがベッドにいないとき else: result_message = "person out bed" print(result_message) first_flag = True elapsed = time.time() - start #指定した時間が経過したとき if elapsed > set_time: print(" ---------- stop AI camera ----------") cap.release() video_creater(elapsed,save_img_dir,original_video_path) video_creater(elapsed,save_result_dir,result_video_path) break def main(): #カメラ起動 cap = cv2.VideoCapture(0) fps = cap.get(cv2.CAP_PROP_FPS) #撮影時間 [seconds] set_time = 15 #YOLOの物体検出に必要なファイルのパス weights_path = "yolov4-tiny.weights" cfg_path = "cfg/yolov4-tiny.cfg" data_path = "cfg/coco.data" threshold = 0.25 #CNNやデータのロード network, class_names, class_colors = darknet_jphack.load_network( cfg_path, data_path, weights_path, batch_size=1 ) #検出結果の画像サイズ width = darknet_jphack.network_width(network) height = darknet_jphack.network_height(network) #データセットの情報取得 global metaMain, netMain, altNames altNames = None altNames = classname_management(altNames,data_path) num_classes = len(altNames) #クラスごとの枠の色決定 color_management(num_classes,class_colors,altNames) #画像を保存するディレクトリ jphack_dir = "jphack" ori_img_dir = "jphack/video" result_img_dir = "jphack/result" #ディレクトリがない場合にディレクトリ作成 if not os.path.isdir(img_dir): os.makedirs(img_dir) if not os.path.isdir(ori_img_dir): os.makedirs(ori_img_dir) if not os.path.isdir(result_img_dir): os.makedirs(result_img_dir) #撮影日時のフォルダ作成 dt_now = datetime.datetime.now() date = dt_now.strftime('%Y%m%d_%H%M%S') save_img_dir = ori_img_dir + "/" + date save_result_dir = result_img_dir + "/" + date os.makedirs(save_img_dir, exist_ok=True) os.makedirs(save_result_dir, exist_ok=True) #画像のディレクトリ・動画のパスを作成 save_img_dir = save_img_dir + "/" save_result_dir = save_result_dir + "/" original_video_path = save_img_dir + date + ".mp4" result_video_path = save_result_dir + date + "_result.mp4" print("--------------------------------------------------------------------------------") #カメラからの映像に対してリアルタイムで検出結果表示 start_process(cap,save_img_dir,save_result_dir,width,height,network,class_names,class_colors,threshold) if __name__ == '__main__': main() ``` #### File: E_2002/AI_camera/logicamera.py ```python import cv2 from datetime import datetime import os #カメラ動作確認 def main(): #カメラ起動 cap = cv2.VideoCapture(0) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = int(cap.get(cv2.CAP_PROP_FPS)) #カメラのプロパティの表示 print(width,height,fps) #画像を保存するディレクトリ jphack_dir = "jphack" camera_dir = "jphack/camera" #ディレクトリがない場合にディレクトリ作成 if not os.path.isdir(jphack_dir): os.makedirs(jphack_dir) if not os.path.isdir(camera_dir): os.makedirs(camera_dir) #カメラからの映像を取得 while True: #カメラからの映像を取得 ret, frame = cap.read() #カメラからの映像を画面に表示 cv2.imshow("camera", frame) k = cv2.waitKey(1)&0xff # 「s」キーで画像を保存 if k == ord('s'): #画像のパス生成 date = datetime.now().strftime("%Y%m%d_%H%M%S") path = camera_dir + date + ".jpg" # 画像保存 cv2.imwrite(path, frame) # 画像を表示 cv2.imshow(path, frame) # 「q」キーが押されたら終了する elif k == ord('q'): break #カメラ停止 cap.release() #表示していた画面を終了 cv2.destroyAllWindows() if __name__ == '__main__': #カメラ動作確認 main() ``` #### File: E_2002/PC/connect_arduino.py ```python import serial import time import requests # ポートの指定 def initialize(port, bps): port = serial.Serial(port, bps) #print('圧力センサとの接続を開始しました') time.sleep(1) return port # arduinoへのデータ送信 def send_command(port, byte): write = port.write(byte) data = wait_response(port) #pass return data # arduinoから返信されるシリアル内容の表示 def wait_response(port): while 1: if port.in_waiting > 0: time.sleep(0.01) data = port.read_all().decode('utf-8') #print(data) break return data # 圧力センサの初期値をリセット def pressure_reset(port): pressure = {'reset':b"g", 'init': b"s", 'get':b"w"} init_num = send_command(port, pressure['reset']) #print('初期値をリセットしました') # 圧力センサの初期値を更新 def pressure_init(port): pressure = {'reset':b"g", 'init': b"s", 'get':b"w"} init_num = send_command(port, pressure['init']) #print('初期値を更新しました:', init_num) # 圧力センサからベットにいるかの判定を取得 def pressure_get(port): pressure = {'reset':b"g", 'init': b"s", 'get':b"w"} press_data = send_command(port, pressure['get']) #print('圧力センサの値を取得します') return press_data # 圧力センサとの接続を終了 def close_port(port): #print('圧力センサとの接続を終了しました') port.close() pass # ESP32と通信し,部屋の照明を点灯 def light_switch(): requests.post('http://192.168.11.37/ledon') #requests.post('http://192.168.11.37/ledoff') print(' 照明:点灯') # ESP32と通信し,テレビの電源を入れる def tv_switch_on(opt): requests.post('http://192.168.11.37/tvon?broad='+opt[0]+'&ch='+opt[1]) print(' TV:起動') # ESP32と通信し,テレビの電源を切る def tv_switch_off(): requests.post('http://192.168.11.37/tvoff') print(' TV:停止') # ESP32と通信し,エアコンのスイッチを入れる def air_switch(): requests.post('http://192.168.11.37/air') print(' エアコン:起動') # ESP32と通信し,サーボの動作させる def Servomotor(): requests.post('http://192.168.11.37/servo') print(' サーボモータ:スイッチ切り替え') ``` #### File: E_2002/PC/connect_jetson.py ```python import requests import time import subprocess # Jetson Nanoと通信し,Yoloを起動 def ready_yolo(): start_yolo = subprocess.Popen(['python', './subprocess_file/start_yolo.py'],shell=False) print('Yoloを起動します') time.sleep(1) start_yolo.kill() # Jetson Nanoと通信し,ベットに人がいるかの判定を取得 def predict_yolo(): pred_result = requests.get('http://192.168.11.38:5000/api/return_result').json() #print('Yoloの結果を表示します') #pred_result = 1 return pred_result # Jetson Nanoと通信し,Yoloを停止,Jetson Nanoの再起動 def stop_yolo(): response = requests.post('http://192.168.11.38:5000/api/overwrite_state') #print(' Yoloを停止しました') #pass ``` #### File: PC/subprocess_file/start_yolo.py ```python import requests def main(): response = requests.get('http://192.168.11.38:5000/api/start_yolo') if __name__ == "__main__": main() ```
{ "source": "jphacks/E_2005", "score": 3 }
#### File: E_2005/raspi/record.py ```python import pyaudio import wave def record(): chunk = 8194 FORMAT = pyaudio.paInt16 CHANNELS = 1 #サンプリングレート RATE = 44100 p = pyaudio.PyAudio() stream = p.open( format = FORMAT, channels = CHANNELS, rate = RATE, input = True, frames_per_buffer = chunk ) print("=====RECORD START=====") all = [] while True: try: data = stream.read(chunk) all.append(data) except KeyboardInterrupt: break print("=====RECORD END=====") stream.close() p.terminate() data = b''.join(all) #保存するファイル名、wは書き込みモード out = wave.open('proken.wav','w') out.setnchannels(1) out.setsampwidth(2) out.setframerate(RATE) out.writeframes(data) out.close() def transcribe_file(): from google.cloud import speech import io client = speech.SpeechClient() with io.open('proken.wav', 'rb') as audio_file: content = audio_file.read() audio = speech.RecognitionAudio(content=content) config = speech.RecognitionConfig( encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16, sample_rate_hertz=44100, language_code='ja-JP', #audio_channel_count=2, enable_separate_recognition_per_channel=True ) operation = client.long_running_recognize( request={"config": config, "audio": audio} ) operation = client.long_running_recognize(config=config, audio=audio) response = operation.result(timeout=90) with io.open("proken.txt", "w", encoding="utf-8") as f: for result in response.results: f.write(u'{}'.format(result.alternatives[0].transcript)) def send_push_message(): import requests import json import io with io.open('proken.txt', 'r') as f: content = f.read() f.close() url = 'https://fraud-checker-test.herokuapp.com/raspi' headers = {'Content-Type': 'application/json'} payload = {'raspi_id': 'jphacks-e2005-kokokatu', 'content': content} res = requests.post(url, data=json.dumps(payload), headers=headers) print(res) if __name__ == '__main__': record() transcribe_file() send_push_message() ```
{ "source": "jphacks/E_2007", "score": 3 }
#### File: recently-reports/src/collect_reports.py ```python def collect_recently_reports(tweets: list, num: int) -> list: neg_cnt = pos_cnt = 0 loop_num = min(num, len(tweets)) for i in range(loop_num): if tweets[i]["p_or_n"] == "positive": pos_cnt += 1 else: neg_cnt += 1 result = { "positives": pos_cnt, "negatives": neg_cnt, "tweets": tweets[:loop_num] } return result ``` #### File: backend/sentiment-analysis/analysis.py ```python import os import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification, AdapterType def get_analyzer(): adapter_path = os.path.join(os.path.dirname( os.path.abspath(__file__)), "sst-2") model = AutoModelForSequenceClassification.from_pretrained( "cl-tohoku/bert-base-japanese-whole-word-masking") tokenizer = AutoTokenizer.from_pretrained( "cl-tohoku/bert-base-japanese-whole-word-masking") model.load_adapter(adapter_path) def analyzer(sentence: str) -> "positive" or "negative": token_ids = tokenizer.convert_tokens_to_ids( tokenizer.tokenize(sentence)) input_tensor = torch.tensor([token_ids]) outputs = model(input_tensor, adapter_names=["sst-2"]) result = torch.argmax(outputs[0]).item() return 'positive' if result == 1 else 'negative' return analyzer ``` #### File: tweets-analysis/src/analyze_tweets.py ```python from .sentiment_analysis.analyzer import SA def analyze_tweets(tweets: list) -> list: """ツイートのポジティブ・ネガティブを判定する Args: tweets (list): ツイート一覧 Returns: list: 判定結果が入ったリスト """ sa = SA() result = [] for tweet_info in tweets: p_or_n = sa.detect_p_or_n(tweet_info["text"]) result.append({ **tweet_info, "p_or_n": p_or_n }) return result ``` #### File: tweets-analysis/src/collect_tweets.py ```python import datetime import tweepy from .config import CONSUMER_API_KEY, CONSUMER_SECRET_KEY, ACCESS_TOKEN_KEY, ACCESS_TOKEN_SECRET, DATE_FORMAT auth = tweepy.OAuthHandler(CONSUMER_API_KEY, CONSUMER_SECRET_KEY) auth.set_access_token(ACCESS_TOKEN_KEY, ACCESS_TOKEN_SECRET) api = tweepy.API(auth) def get_all_tweets(user_id: str, from_dt: datetime or None = None) -> list: """あるユーザーの、指定した日以降のツイート情報を取得する Args: user_id (str): ツイッターid from_dt (datetimeorNone, optional): 指定日. Defaults to None. Returns: list: ツイートのリスト """ result = [] # 大きすぎると大変なので、最大で100ツイートにする。 for tweet in tweepy.Cursor(api.user_timeline, id=user_id).items(50): tweeted_at = tweet.created_at + datetime.timedelta(hours=9) # 更新日より前のツイートを持ってきた段階で切る。 if from_dt is not None and tweeted_at <= from_dt: break tweet_info = { "text": tweet.text, "created_at": tweeted_at.strftime(DATE_FORMAT) } result.append(tweet_info) return result def filter_tweets(tweets: list) -> list: return tweets def get_user(user_id: str) -> tweepy.User: user = api.get_user(user_id) return user ``` #### File: backend/twitter-timeline/__init__.py ```python import datetime import logging import json import os import azure.functions as func import tweepy consumer_key = os.environ["CONSUMER_API_KEY"] consumer_secret = os.environ["CONSUMER_SECRET_KEY"] access_token= os.environ["ACCESS_TOKEN_KEY"] access_token_secret = os.environ["ACCESS_TOKEN_SECRET"] def main(req: func.HttpRequest) -> func.HttpResponse: logging.info('Python HTTP trigger function processed a request.') user_id = req.params.get('user_id') if not user_id: try: req_body = req.get_json() except ValueError: pass else: user_id = req_body.get('user_id') if not user_id: return func.HttpResponse( "This HTTP triggered function executed successfully. Pass a user_id in the query string or in the request body for a personalized response.", status_code=200 ) auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) result = [] for tweet in tweepy.Cursor(api.user_timeline, id=user_id).items(10): print("="*8) print(tweet.user.profile_image_url) print(tweet.user.name) print(tweet.user.screen_name) print(tweet.text) print(tweet.created_at) tweet_info = { "user_id": tweet.user.screen_name, "text": tweet.text, "created_at": tweet.created_at.strftime("%Y/%m/%d %H:%M:%S") } result.append(tweet_info) return func.HttpResponse(json.dumps({"summary": result}), headers={"Content-Type": "application/json"}) ```
{ "source": "jphacks/E_2010", "score": 2 }
#### File: E_2010/api/serializers.py ```python from django.contrib.auth.hashers import make_password from rest_framework import serializers, validators from .models import User, Invitation, Application class UserSerializer(serializers.ModelSerializer): class Meta: model = User fields = ('id', 'email', 'name', 'university', 'research', 'gender', 'age', 'position', 'self_introduction', 'birthday') extra_kwargs = { 'password': {'write_only': True}, } # GET 時は User の中身を見たい、かつ POST 時は id だけ指定したい # https://sakataharumi.hatenablog.jp/entry/2018/10/20/010806 class InvitationSerializer(serializers.ModelSerializer): author = UserSerializer(read_only=True) user_id = serializers.PrimaryKeyRelatedField(queryset=User.objects.all(), write_only=True) class Meta: model = Invitation fields = ('id', 'author', 'user_id', 'title', 'content', 'date', 'place', 'created_at', 'tags', 'status',) read_only_fields = ('author', 'created_at', 'status',) def create(self, validated_data): validated_data['author'] = validated_data.get('user_id', None) if validated_data['author'] is None: raise serializers.ValidationError("author not found") del validated_data['user_id'] validated_data['status'] = 'seeking' return Invitation.objects.create(**validated_data) class ApplicationSerializer(serializers.ModelSerializer): invitation = InvitationSerializer(read_only=True) inv_id = serializers.PrimaryKeyRelatedField(queryset=Invitation.objects.all(), write_only=True) class Meta: model = Application fields = ('id', 'invitation', 'inv_id', 'applicant', 'status',) def create(self, validated_data): validated_data['invitation'] = validated_data.get('inv_id', None) if validated_data['invitation'] is None: raise serializers.ValidationError("invitation not found") del validated_data['inv_id'] # validated_data['status'] = 'seeking' return Application.objects.create(**validated_data) ```
{ "source": "jphacks/E_2105", "score": 3 }
#### File: jphacks/E_2105/fetch_arxiv.py ```python import arxiv import pandas as pd import datetime def fetch_search_result(search_query, within_5years=False): five_years_ago = datetime.datetime.now(datetime.timezone.utc) - datetime.timedelta(days=5*365) max_results = 50 search = arxiv.Search( query=search_query, max_results=max_results * (3 if within_5years else 1), ) titles = [] absts = [] urls = [] years = [] for result in search.results(): if within_5years and result.published < five_years_ago: continue titles.append(result.title) absts.append(result.summary.replace('\n', ' ')) urls.append(result.entry_id) years.append(result.published.year) num_results = len(titles) keywords = [search_query] * num_results rankings = list(range(1, num_results + 1)) df = pd.DataFrame(data=dict( keyword=keywords[:max_results], site_name=titles[:max_results], URL=urls[:max_results], snippet=absts[:max_results], ranking=rankings[:max_results], year=years[:max_results], )) return df if __name__ == '__main__': import time search_str = input("> ") start = time.time() df = fetch_search_result(search_str, True) duration = time.time() - start print(f"duration: {duration}s") df.to_csv(search_str + ".csv") ``` #### File: E_2105/webapp/figure_maker.py ```python import pathlib import pandas as pd from fetch_arxiv import fetch_search_result from preprocessing_of_words import make_bow import numpy as np import pickle import plotly.graph_objects as go from jax_tsom import ManifoldModeling as MM from sklearn.decomposition import NMF from scipy.spatial import distance as dist from Grad_norm import Grad_Norm from webapp import logger resolution = 10 u_resolution = 10 word_num = 200 CCP_VIEWER = 'CCP' UMATRIX_VIEWER = 'U-matrix' TOPIC_VIEWER = 'topic' ycolors = [[255, 255, 230], [255, 255, 180], [255, 253, 140], [255, 250, 115], [255, 235, 80], [231, 223, 37], [210, 200, 5], [155, 148, 15]] gcolors = [[255, 255, 230], [255, 255, 180], [230, 247, 155], [211, 242, 132], [180, 220, 110], [144, 208, 80], [120, 180, 75]] PAPER_COLORS = list(map(lambda i: 'rgb({},{},{})'.format(*i), gcolors)) WORD_COLORS = list(map(lambda i: 'rgb({},{},{})'.format(*i), ycolors)) PAPER_COLOR = PAPER_COLORS[3] WORD_COLOR = WORD_COLORS[3] def prepare_umatrix(keyword, X, Z1, Z2, sigma, labels, u_resolution, within_5years): within_5years_sign = '_within5y' if within_5years else '' umatrix_save_path = 'data/tmp/'+ keyword + within_5years_sign + '_umatrix_history.pickle' if pathlib.Path(umatrix_save_path).exists(): logger.debug("U-matix already calculated") with open(umatrix_save_path, 'rb') as f: umatrix_history = pickle.load(f) else: logger.debug("Umatrix calculating") umatrix = Grad_Norm( X=X, Z=Z1, sigma=sigma, labels=labels, resolution=u_resolution, title_text="dammy" ) U_matrix1, _, _ = umatrix.calc_umatrix() umatrix2 = Grad_Norm( X=X.T, Z=Z2, sigma=sigma, labels=labels, resolution=u_resolution, title_text="dammy" ) U_matrix2, _, _ = umatrix2.calc_umatrix() umatrix_history = dict( umatrix1=U_matrix1.reshape(u_resolution, u_resolution), umatrix2=U_matrix2.reshape(u_resolution, u_resolution), zeta=np.linspace(-1, 1, u_resolution), ) logger.debug("Calculating finished.") with open(umatrix_save_path, 'wb') as f: pickle.dump(umatrix_history, f) return umatrix_history def prepare_materials(keyword, model_name, within_5years): logger.info(f"Preparing {keyword} map with {model_name}") base_filename = f"{keyword}{'_within5y' if within_5years else ''}" # Learn model nb_epoch = 50 sigma_max = 2.2 sigma_min = 0.2 tau = 50 latent_dim = 2 seed = 1 # Load data if pathlib.Path(f"{base_filename}.csv").exists(): logger.debug("Data exists") csv_df = pd.read_csv(f"{base_filename}.csv") paper_labels = csv_df['site_name'] rank = csv_df['ranking'] X = np.load(f"data/tmp/{base_filename}.npy") word_labels = np.load(f"data/tmp/{base_filename}_label.npy") else: logger.debug("Fetch data to learn") csv_df = fetch_search_result(keyword, within_5years) paper_labels = csv_df['site_name'] X , word_labels = make_bow(csv_df) rank = np.arange(1, X.shape[0]+1) # FIXME csv_df.to_csv(f"{base_filename}.csv") feature_file = f'data/tmp/{base_filename}.npy' word_label_file = f'data/tmp/{base_filename}_label.npy' np.save(feature_file, X) np.save(word_label_file, word_labels) labels = (paper_labels, word_labels) model_save_path = f'data/tmp/{base_filename}_history.pickle' if pathlib.Path(model_save_path).exists(): logger.debug("Model already learned") with open(model_save_path, 'rb') as f: history = pickle.load(f) else: logger.debug("Model learning") np.random.seed(seed) mm = MM( X, latent_dim=latent_dim, resolution=resolution, sigma_max=sigma_max, sigma_min=sigma_min, model_name=model_name, tau=tau, init='parafac' ) mm.fit(nb_epoch=nb_epoch) history = dict( Z1=mm.history['z1'][-1], Z2=mm.history['z2'][-1], Y=mm.history['y'][-1], sigma=mm.history['sigma'][-1], Zeta=mm.Zeta1, resolution=mm.resoluton ) logger.debug("Learning finished.") with open(model_save_path, 'wb') as f: pickle.dump(history, f) umatrix_history = prepare_umatrix( keyword, X, history['Z1'], history['Z2'], history['sigma'], None, u_resolution, within_5years, ) return csv_df, labels, X, history, rank, umatrix_history def draw_umatrix(fig, umatrix_history, viewer_id): if viewer_id == 'viewer_1': z = umatrix_history['umatrix1'] elif viewer_id == 'viewer_2': z = umatrix_history['umatrix2'] zeta = umatrix_history['zeta'] fig.add_trace( go.Contour( x=zeta, y=zeta, z=z, name='contour', colorscale="gnbu", hoverinfo='skip', showscale=False, ) ) return fig def draw_topics(fig, Y, n_components, viewer_id): # decomposed by Topic Y = Y.reshape(Y.shape[0], Y.shape[0]) model_t3 = NMF( n_components=n_components, init='nndsvd', random_state=2, max_iter=300, solver='cd' ) W = model_t3.fit_transform(Y) if viewer_id == 'viewer_2': W = model_t3.components_.T # For mask and normalization(min:0, max->1) mask_std = np.zeros(W.shape) mask = np.argmax(W, axis=1) for i, max_k in enumerate(mask): mask_std[i, max_k] = 1 / np.max(W) W_mask_std = W * mask_std DEFAULT_PLOTLY_COLORS = [ 'rgb(31, 119, 180)', 'rgb(255, 127, 14)', 'rgb(44, 160, 44)', 'rgb(214, 39, 40)', 'rgb(148, 103, 189)', 'rgb(140, 86, 75)', 'rgb(227, 119, 194)', 'rgb(127, 127, 127)', 'rgb(188, 189, 34)', 'rgb(23, 190, 207)' ] alpha = 0.1 DPC_with_Alpha = [k[:-1] + ', ' + str(alpha) + k[-1:] for k in DEFAULT_PLOTLY_COLORS] for i in range(n_components): fig.add_trace( go.Contour( x=np.linspace(-1, 1, resolution), y=np.linspace(-1, 1, resolution), z=W_mask_std[:, i].reshape(resolution, resolution), name='contour', colorscale=[ [0, "rgba(0, 0, 0,0)"], [1.0, DPC_with_Alpha[i]]], hoverinfo='skip', showscale=False, ) ) return fig def draw_ccp(fig, Y, Zeta, resolution, clickedData, viewer_id): logger.debug('ccp') if viewer_id == 'viewer_1': y = Y[:, get_bmu(Zeta, clickedData)].reshape(resolution, resolution) colors = WORD_COLORS elif viewer_id == 'viewer_2': y = Y[get_bmu(Zeta, clickedData), :].reshape(resolution, resolution) colors = PAPER_COLORS fig.add_trace( go.Contour( x=np.linspace(-1, 1, resolution), y=np.linspace(-1, 1, resolution), z=y, name='contour', colorscale=colors, hoverinfo='skip', showscale=False, ) ) return fig def get_bmu(Zeta, clickData): clicked_point = [[clickData['points'][0]['x'], clickData['points'][0]['y']]] if clickData else [[0, 0]] clicked_point = np.array(clicked_point) dists = dist.cdist(Zeta, clicked_point) unit = np.argmin(dists, axis=0) return unit[0] def draw_scatter(fig, Z, labels, rank, viewer_name): rank = np.linspace(1, len(labels), len(labels)) logger.debug(f"viewer_name: {viewer_name}") logger.debug(f"Z: {Z.shape}, labels:{len(labels)}, rank:{len(rank)}") color = PAPER_COLORS[-1] if viewer_name == 'viewer_2': Z = Z[:word_num] labels = labels[:word_num] rank = rank[:word_num] color = WORD_COLORS[-1] fig.add_trace( go.Scatter( x=Z[:, 0], y=Z[:, 1], mode=f"markers+text", name="", marker=dict( size=(rank[::-1])*(1 if viewer_name == 'viewer_1' else 0.5), sizemode='area', sizeref=2. * max(rank) / (40. ** 2), sizemin=10, ), text=(labels if viewer_name == 'viewer_2' else rank), textfont=dict( family="sans serif", size=10, color='black' ), hovertext=labels, hoverlabel=dict( bgcolor="rgba(255, 255, 255, 0.75)", ), textposition='top center', hovertemplate="<b>%{hovertext}</b>", ) ) # fig.add_annotation( # x=Z[:, 0], # y=Z[:, 1], # text=(labels if viewer_name == 'viewer_2' else list(map(lambda i: str(i), rank))), # showarrow=False, # yshift=10) return fig def make_figure(history, umatrix_hisotry, X, rank, labels, viewer_name='U_matrix', viewer_id=None, clicked_z=None): logger.debug(viewer_id) if viewer_id == 'viewer_1': Z, Y = history['Z1'], history['Y'] labels = labels[0] if isinstance(labels[0], list) else labels[0].tolist() elif viewer_id == 'viewer_2': Z, Y = history['Z2'], history['Y'] X = X.T labels = labels[1] if isinstance(labels[1], list) else labels[1].tolist() logger.debug(f"LABELS: {labels[:5]}") else: logger.debug("Set viewer_id") # Build figure x1, x2 = Z[:, 0].min(), Z[:, 0].max() y1, y2 = Z[:, 1].min(), Z[:, 1].max() fig = go.Figure( layout=go.Layout( xaxis=dict( range=[Z[:, 0].min() + 0.05, Z[:, 0].max() + 0.05], visible=False, autorange=True, ), yaxis=dict( range=[Z[:, 1].min() - 0.1, Z[:, 1].max() + 0.2], visible=False, scaleanchor='x', scaleratio=1.0, ), showlegend=False, autosize=True, plot_bgcolor="#FFFFFF", margin=dict( b=0, t=0, l=0, r=0, ), ), ) if viewer_name == "topic": n_components = 5 fig = draw_topics(fig, Y, n_components, viewer_id) elif viewer_name == "CCP": fig = draw_ccp(fig, Y, history['Zeta'], history['resolution'], clicked_z, viewer_id) else: fig = draw_umatrix(fig, umatrix_hisotry, viewer_id) if viewer_id == 'viewer_2': _, unique_Z_idx = np.unique(Z, axis=0, return_index=True) logger.debug(unique_Z_idx) duplicated_Z_idx = np.setdiff1d(np.arange(Z.shape[0]), unique_Z_idx) labels = np.array(labels) labels[duplicated_Z_idx] = '' fig = draw_scatter(fig, Z, labels, rank, viewer_id) fig.update_coloraxes( showscale=False ) fig.update_layout( plot_bgcolor=(PAPER_COLOR if viewer_id == 'viewer_1' else WORD_COLOR), ) fig.update( layout_coloraxis_showscale=False, layout_showlegend=False, ) fig.update_yaxes( fixedrange=True, ) fig.update_xaxes( fixedrange=True, ) return fig def make_first_figure(viewer_id): _, labels, X, history, rank, umatrix_hisotry = prepare_materials('Machine Learning', 'TSOM', False) return make_figure(history, umatrix_hisotry, X, rank, labels, 'U-matrix', viewer_id, None) def draw_toi(fig, clickData, view_method, viewer_id): if not clickData: return fig color = { CCP_VIEWER: 'green', UMATRIX_VIEWER: '#ffd700', TOPIC_VIEWER: 'yellow', }[view_method] color = PAPER_COLORS if viewer_id == 'viewer_1' else WORD_COLORS x, y = clickData['points'][0]['x'], clickData['points'][0]['y'] radius = 0.15 fig.add_shape( type='circle', line=dict( color=color[0], width=9.0, ), x0=(x - radius), y0=(y - radius), x1=(x + radius), y1=(y + radius), ) fig.add_shape( type='circle', line=dict( color=color[-1], width=5, ), x0=(x - radius), y0=(y - radius), x1=(x + radius), y1=(y + radius), ) return fig ```
{ "source": "jphacks/F_2004", "score": 3 }
#### File: F_2004/src/model.py ```python from . import app from flask_sqlalchemy import SQLAlchemy from sqlalchemy.sql.functions import current_timestamp db = SQLAlchemy(app) class User(db.Model): __tablename__ = "users" id = db.Column(db.Integer, primary_key=True, nullable=False) name = db.Column(db.String(100), nullable=False) group_id = db.Column(db.Integer, nullable=False) group_name = db.Column(db.String(100), nullable=True) is_watch = db.Column(db.Boolean, default=False, nullable=False) created_at = db.Column( db.TIMESTAMP, server_default=current_timestamp(), default=current_timestamp(), nullable=False ) def to_dict(self): return dict( id=self.id, name=self.name, group_id=self.group_id, group_name=self.group_name, is_watch=self.is_watch, created_at=self.created_at ) def __repr__(self): return f'<User {self.id}:{self.name},{self.created_at}>' class ConcentrationValue(db.Model): __tablename__ = "concentration_values" user_id = db.Column( db.Integer, db.ForeignKey("users.id"), primary_key=True, nullable=False) concentration_value = db.Column(db.SMALLINT, nullable=False) is_sitting = db.Column(db.Boolean, nullable=False) created_at = db.Column( db.TIMESTAMP, server_default=current_timestamp(), default=current_timestamp(), primary_key=True, nullable=False ) def to_dict(self): return dict( user_id=self.user_id, concentration_value=self.concentration_value, is_sitting=self.is_sitting, created_at=self.created_at ) def __repr__(self): return f'<ConcentrationValue {self.user_id}({self.created_at}):{self.concentration_value},{self.is_sitting}>' ```
{ "source": "jphacks/F_2006", "score": 2 }
#### File: jphacks/F_2006/main.py ```python from flask import Flask, request, render_template, jsonify, redirect, url_for from flask_cors import CORS import os import json from datetime import datetime import uuid import morph from flask_sqlalchemy import SQLAlchemy from flask_marshmallow import Marshmallow from flask_marshmallow.fields import fields from flask_login import LoginManager, login_user, logout_user, login_required, UserMixin, current_user import urllib.parse from Cryptodome.Cipher import AES app = Flask(__name__) CORS(app) db_uri = os.environ.get('DATABASE_URL') or "postgresql://admin:admin@localhost:5433/flash-reading-db" app.config['SQLALCHEMY_DATABASE_URI'] = db_uri db = SQLAlchemy(app) class tDocuments(db.Model): __tablename__ = 't_documents' uuid = db.Column(db.String(36), primary_key=True) user_uuid = db.Column(db.String(36), primary_key=False) name = db.Column(db.Text, primary_key=False) content = db.Column(db.Text, primary_key=False) current_pos = db.Column(db.Integer, primary_key=False) created_at = db.Column(db.DateTime(), primary_key=True) updated_at = db.Column(db.DateTime(), primary_key=True) def __init__(self, user_uuid, uuid, name, content, current_pos): self.uuid = uuid self.user_uuid = user_uuid self.name = name self.content = content now = datetime.now() self.created_at = now self.updated_at = now self.current_pos = current_pos ma = Marshmallow(app) class tDocumentsSchema(ma.SQLAlchemyAutoSchema): class Meta: model = tDocuments load_instance = True created_at = fields.DateTime('%Y-%m-%dT%H:%M:%S+09:00') updated_at = fields.DateTime('%Y-%m-%dT%H:%M:%S+09:00') class tSplitUnits(db.Model): __tablename__ = 't_split_units' uuid = db.Column(db.String(36), primary_key=True) doc_uuid = db.Column(db.String(36), primary_key=False) index = db.Column(db.Integer, primary_key=False) content = db.Column(db.Text, primary_key=False) class tSplitUnitsSchema(ma.SQLAlchemyAutoSchema): class Meta: model = tSplitUnits load_instance = True login_manager = LoginManager() login_manager.init_app(app) login_manager.login_view = 'login' app.config['SECRET_KEY'] = "secret" class tUsers(UserMixin, db.Model): __tablename__ = 't_users' id = db.Column(db.String(36), primary_key=True) user_name = db.Column(db.String(36), primary_key=False) password = db.Column(db.String(36), primary_key=False) # キー設定関数 def create_key(KeyWord): key_size = 32 KeySizeFill = KeyWord.zfill(key_size) Key = KeySizeFill[:key_size].encode('utf-8') return Key # パスワードの暗号化関数 def encryptPassword(PassWord, KeyWord): iv = b"1234567890123456" Key = create_key(KeyWord) obj = AES.new(Key, AES.MODE_CFB, iv) ret_bytes = obj.encrypt(PassWord.encode(encoding='utf-8')) return ret_bytes # パスワードの複合化関数 def decodePassword(Password, KeyWord): iv = b"1234567890123456" # 初期化ベクトル設定 key = create_key(KeyWord) # キー設定 obj = AES.new(key, AES.MODE_CFB, iv) OPassword = obj.decrypt(PassWord.encode(encoding='utf-8')).decode('utf-8') #パスワードの複合化 return OPassword @login_manager.user_loader def load_user(uuid): userDoc = db.session.\ query(tUsers).\ filter(tUsers.id==uuid).\ first() return userDoc @app.route('/') def home(): return render_template('home.html', baseUrl=request.base_url, docObj="{}") @app.route('/login', methods=['GET', 'POST']) def login(): if request.method == 'POST': user_name = request.form['user-name'] plain_password = request.form['password'] password = str(encryptPassword(plain_password, user_name)) userDoc = db.session.\ query(tUsers).\ filter(tUsers.user_name==user_name).\ filter(tUsers.password==password).\ first() print(userDoc) if userDoc: login_user(userDoc) return redirect(url_for('home')) else: return render_template('error.html', baseUrl=request.base_url, canInsert=False, docObj="{}", sentence="ログインエラーが発生しました") else: return render_template('login.html', buttonName="Login", formName='ログイン', action="login", docObj="{}") @app.route('/logout') @login_required def logout(): logout_user() return redirect(url_for('home')) @app.route('/register', methods=['GET', 'POST']) def register(): if request.method == 'POST': user_name = request.form['user-name'] password = request.form['password'] if len(password) > 32: return render_template('error.html', baseUrl=request.base_url, canInsert=False, docObj="{}", sentence="パスワードが長すぎます (32 文字以内にしてください)") password = str(encryptPassword(password, user_name)) userDoc = db.session.\ query(tUsers).\ filter(tUsers.user_name==user_name).\ first() if userDoc: return render_template('error.html', baseUrl=request.base_url, canInsert=False, docObj="{}", sentence="すでにユーザーが存在します") userDoc = tUsers(id=uuid.uuid4(), user_name=user_name, password=password) db.session.add(userDoc) db.session.commit() return redirect(url_for('home')) else: return render_template('login.html', buttonName="Register", formName='ユーザー登録', action="register", docObj="{}") @app.route('/list') @login_required def list(): docs = db.session.\ query(tDocuments).\ filter(tDocuments.user_uuid == current_user.id).\ all() print(docs) docsJson = tDocumentsSchema(many=True).dump(docs) docList = docs docsObj = {} docsObj['docs'] = docsJson return render_template('list.html', baseUrl=request.base_url, docList=docList, docObj="{}", docsObj=docsObj) # uuid 既存の文書のみ @app.route('/doc/<string:uuid>') @login_required def doc(uuid): doc = db.session.\ query(tDocuments).\ filter(tDocuments.uuid==uuid).\ first() print(doc) docJson = tDocumentsSchema().dump(doc) print(docJson) docObj = {} docObj['doc'] = docJson units = db.session.\ query(tSplitUnits).\ filter(tSplitUnits.doc_uuid == doc.uuid).\ order_by(tSplitUnits.index).\ all() unitsJson = tSplitUnitsSchema(many=True).dump(units) print(unitsJson) docObj['units'] = unitsJson return render_template('index.html', baseUrl=request.base_url, canInsert=False, docObj=docObj, sentence="", clipboard=False) @app.route('/read') def read(): sentence = request.args.get('q') clipboard = request.args.get('clipboard') if not sentence: sentence = "" if clipboard == 'true': clipboard = True return render_template('index.html', baseUrl=request.base_url, canInsert=True, docObj="{}", sentence=sentence, clipboard=clipboard) @app.route('/result', methods=["POST"]) def result(): if request.headers['Content-Type'] != 'application/json': print(request.headers['Content-Type']) return render_template('error.html', baseUrl=request.base_url, canInsert=False, docObj="{}", sentence="JSON を POST してください") data = request.json print(data) data = data['text'] # ここで処理 texts = morph.morph(data) data = { 'text': texts } return jsonify(data) # required param: content, name, current_pos, split_units, user_uuid @app.route('/insert', methods=["POST"]) @login_required def insert(): if request.headers['Content-Type'] != 'application/json': print(request.headers['Content-Type']) return render_template('error.html', baseUrl=request.base_url, canInsert=False, docObj="{}", sentence="JSON を POST してください") data = request.json print(data) docUuid = uuid.uuid4() doc = tDocuments(uuid=docUuid, user_uuid=current_user.id, content=data['content'], name=data['name'], current_pos=data['current_pos']) db.session.add(doc) idx = 0 for unit in data['split_units']: unitUuid = uuid.uuid4() unitDoc = tSplitUnits(uuid=unitUuid, doc_uuid=docUuid, index=idx, content=unit) db.session.add(unitDoc) idx += 1 db.session.commit() return jsonify(success=True) # required param: uuid, current_pos @app.route('/update', methods=["POST"]) @login_required def update(): if request.headers['Content-Type'] != 'application/json': print(request.headers['Content-Type']) return render_template('error.html', baseUrl=request.base_url, canInsert=False, docObj="{}", sentence="JSON を POST してください") data = request.json print(data) doc = db.session.\ query(tDocuments).\ filter(tDocuments.uuid==data['uuid']).\ first() doc.current_pos = data['current_pos'] doc.updated_at = datetime.now() db.session.commit() return jsonify(success=True) # required param: uuid のみ @app.route('/delete', methods=["POST"]) @login_required def delete(): if request.headers['Content-Type'] != 'application/json': print(request.headers['Content-Type']) return render_template('error.html', baseUrl=request.base_url, canInsert=False, docObj="{}", sentence="JSON を POST してください") data = request.json print(data) doc = db.session.\ query(tDocuments).\ filter(tDocuments.uuid==data['uuid']).\ first() db.session.delete(doc) units = db.session.\ query(tSplitUnits).\ filter(tSplitUnits.doc_uuid==data['uuid']).\ all() for unit in units: db.session.delete(unit) db.session.commit() return jsonify(success=True) #おまじない if __name__ == '__main__': app.run(debug=True) ```
{ "source": "jphacks/F_2009", "score": 3 }
#### File: flask/modules/history_module.py ```python import datetime from .bathroom_monitor import BathroomMonitor def get_range(time_list,range): if (len(time_list['grandma_list']) >= 7): if (range == 'week'): week_list = time_list['grandma_list'][0:7] return week_list if (range == 'all'): all_list = time_list['grandma_list'] return all_list else: # データが一週間分なければすべて返す if (range == 'all'): all_list = time_list['grandma_list'] return all_list def datetime_to_date(datetime_str): # datetime型に変換 tdatetime = datetime.datetime.strptime(datetime_str, '%Y%m%d%H%M%S') # 任意の文字列に変換 tstr = tdatetime.strftime('%Y-%m-%d') return tstr def calc_mean(time_list): # 平均値取得 if len(time_list) == 0: return 0 else: sum = 0 for item in time_list: sum += int(item['bath_time']) mean = int(sum / len(time_list)) return mean def reverse_list(time_list): # 配列を逆順にする time_list.reverse() return time_list def check_history(user_id, window): """ :param user_id: :param window: 範囲、all, week ... :return: """ bm = BathroomMonitor(user_id) # デバイスから入浴履歴取得 grandparents_time_dict = bm.fast_list() if grandparents_time_dict["status"] == 400: return {"result":"error","message":"データの取得に失敗しました"} # window分の期間を抽出 week_list = get_range(grandparents_time_dict,window) # リストを逆順に並べ替え week_list_reverse = reverse_list(week_list) result_dict = {"result": "success", "history": [], "mean": None, "message": "データの取得に成功しました"} for index, item in enumerate(week_list_reverse): # 日付抽出 date = datetime_to_date(item["checkin_time"]) result_dict["history"].append({"date": date, "minute": int(item["bath_time"])}) # 平均計算 result_dict["mean"] = calc_mean(week_list) return result_dict ```
{ "source": "jphacks/F_2110", "score": 3 }
#### File: demo/demo/save_epoch_1000_to_DB.py ```python import glob import base64 import os import psycopg2 import base64 import yaml import sys sys.path.append(os.path.join(os.path.dirname(__file__), '..')) import settings #DB接続用ステータス設定 path = "localhost" port = "5432" dbname = settings.DBNAME user = settings.USER password = settings.PW # PATH読み込み top = settings.top imgsplit = settings.imgsplit EPOCH_1000_IMG = '20211028_200545epoch_1000.png_split.png' def main(): # 拡張子なしのファイル名を取得 filename = os.path.splitext(os.path.basename(EPOCH_1000_IMG))[0] print(filename) # ファイルにbase64の内容を書き込む file_data = open(os.path.join(top, imgsplit,'') + EPOCH_1000_IMG, "rb").read() b64_data = base64.b64encode(file_data).decode('utf-8') #接続部分 conText = "host={} port={} dbname={} user={} password={}" conText = conText.format(path,port,dbname,user,password) connection = psycopg2.connect(conText) cur = connection.cursor() #DBにデータを保存 sql = "insert into tbl_create_image(user_id,image) values('masaru',%s) on conflict (user_id) do update set image=%s;" cur.execute(sql,(b64_data,b64_data,)) connection.commit() print("--- end ---") if __name__ == '__main__': main() ``` #### File: make_2dimage/postgres/take_img_from_db.py ```python import base64 import os import psycopg2 import base64 from io import BytesIO from PIL import Image import sys sys.path.append(os.path.join(os.path.dirname(__file__), '..')) import settings # PATH読み込み top = settings.top script = settings.script image = settings.image #DB接続用ステータス設定 path = "localhost" port = "5432" dbname = settings.DBNAME user = settings.USER password = <PASSWORD> def main(): print('------------------ START OF THIS SERIES IF PROCESSING ------------------') print('--------- THIS FILE IS take_img_from_db.py ---------') #DBへの接続部分 conText = "host={} port={} dbname={} user={} password={}" conText = conText.format(path,port,dbname,user,password) connection = psycopg2.connect(conText) cur = connection.cursor() #DBにデータを保存 sql = "select id, image from tbl_save_image where user_id='masaru';" cur.execute(sql) result = cur.fetchall() for row in result: # 左側についている'data:image/png;base64,'を除去 img_base64 = row[1].rsplit('data:image/png;base64,')[-1] # base64をPNGにデコードして、保存 im = Image.open(BytesIO(base64.b64decode(img_base64))) im.save(os.path.join(top, image, '') + str(row[0]) +'_image.png', 'PNG') connection.close() print('--------- EOF ---------') if __name__ == '__main__': main() # dcgan_model2.pyを走らせる。 exec(open(os.path.join(top,script,"dcgan_model2.py")).read()) ``` #### File: make_2dimage/script/pngtobase64.py ```python import glob import base64 import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), '..')) import settings # PATH読み込み top = settings.top imgsplit = settings.imgsplit # メイン関数 def main(): print('--------- THIS FILE IS pngtobase64.py ---------') # フォルダ内にあるデータから、一番最新のものをとってくる。 # imgsplitフォルダ配下からのファイルを全て取得してリストにする。 last_img = os.listdir(os.path.join(top, imgsplit,'')) # 昇順になるように並び替える last_img.sort() # 一番最新のものを持ってくる。(昇順に並べられてるので、最新のものは最後尾。) last_img_name = last_img[-1] # 'img_b64.js'ファイルに書き込む。 f = open(os.path.join(top, 'img_b64.js'), 'w') # 拡張子なしのファイル名を取得 filename = os.path.splitext(os.path.basename(last_img_name))[0] # ファイルにbase64にしたものを書き込む f.write("const " + filename + "_B64 = \"data:image/png;base64,") file_data = open(os.path.join(top, imgsplit,'') + last_img_name, "rb").read() b64_data = base64.b64encode(file_data).decode('utf-8') f.write(b64_data) f.write("\";\n") f.close() print('--------- EOF ---------') if __name__ == '__main__': main() # フォルダの中身を全てbase64にする ''' # ソートしたファイルリストを取得 images = sorted(glob.glob(IMG_FOLDER_PATH)) f = open(SAVE_FILE_PATH, 'w') for fpath in images: # 拡張子なしのファイル名を取得 filename = os.path.splitext(os.path.basename(fpath))[0] print(filename) # ファイルにbase64の内容を書き込む f.write("const " + filename + "_B64 = \"data:image/png;base64,") file_data = open(fpath, "rb").read() b64_data = base64.b64encode(file_data).decode('utf-8') f.write(b64_data) f.write("\";\n") f.close() print("--- end ---") ''' ```
{ "source": "jphacks/FK_1707", "score": 3 }
#### File: linebot/bot/touroku.py ```python import requests import json import re import psycopg2.extensions import bot.secret as secret def reply_text(cur, reply_token, REPLY_ENDPOINT, HEADER, text, userid): reply = '' """ url= secret.WCDAPI response = requests.get(url) tenki = json.loads(response.text) """ if re.match('登録 ', text): memo = text[3:] cur.execute("INSERT INTO touroku(userid, data) VALUES(%s, %s);", [ userid, memo]) reply += "「" + memo + '」を登録しました。' elif re.match('削除 ', text): memo = text[3:] if memo == '全部' or memo == 'ぜんぶ' or memo == 'すべて' or memo == '全て': cur.execute("DELETE FROM touroku WHERE userid=%s", [userid]) reply += "すべてのメモを削除しました。" elif memo == '最後' or memo == 'さいご': cur.execute("SELECT * FROM touroku WHERE userid=%s", [userid]) sakujo_taplelist = cur.fetchall() last_memo = len(sakujo_taplelist) - 1 idz = sakujo_taplelist[last_memo][0] reply += "「" + sakujo_taplelist[last_memo][2] + "」を削除しました。" cur.execute("DELETE FROM touroku WHERE id=%s", [idz]) else: memo = int(memo) - 1 cur.execute("SELECT * FROM touroku WHERE userid=%s", [userid]) sakujo_taplelist = cur.fetchall() idz = sakujo_taplelist[memo][0] reply += "「" + sakujo_taplelist[memo][2] + "」を削除しました。" cur.execute("DELETE FROM touroku WHERE id=%s", [idz]) elif text == '一覧': cur.execute("SELECT * FROM touroku WHERE userid = %s", [userid]) itiran_taplelist = cur.fetchall() if len(itiran_taplelist) is not 0: print(itiran_taplelist) for i, j in enumerate(itiran_taplelist): reply += str(i+1) + " " + j[2] + '\n' reply = reply[:-1] else: reply += "何も登録されていません!" elif re.match('おうむがえし ', text): reply += text[7:] elif re.match('userid', text): reply += userid payload = { "replyToken": reply_token, "messages": [ { "type": "text", "text": reply } ] } requests.post(REPLY_ENDPOINT, headers=HEADER, data=json.dumps(payload)) # LINEにデータを送信 return reply ```
{ "source": "jphacks/FK_1809", "score": 3 }
#### File: FK_1809/recommend/extract_color.py ```python from PIL import Image import cv2 import sklearn import numpy as np from sklearn.cluster import KMeans import matplotlib.pyplot as plt def extract_main_color(img_path, k_num): cv2_img = cv2.imread(img_path) cv2_img = cv2.cvtColor(cv2_img, cv2.COLOR_BGR2RGB) cv2_img = cv2_img.reshape((cv2_img.shape[0] * cv2_img.shape[1], 3)) cluster = KMeans(n_clusters=k_num) cluster.fit(X=cv2_img) KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300, n_clusters=5, n_init=10, n_jobs=1, precompute_distances='auto', random_state=None, tol=0.0001, verbose=0) hist = [0] * k_num result = cluster.fit_predict(cv2_img) for item in result: hist[item] += 1 sorted_index = np.argsort(hist) print(sorted_index) hist = np.array(hist)[sorted_index[:-1]] hist = hist / hist.sum() color_list = cluster.cluster_centers_[sorted_index[:-1]] plt.bar(np.arange(1,k_num), hist, color=cluster.cluster_centers_[sorted_index[:-1]]/256) plt.show() res = [{"color": c, "percent": h} for c, h in zip(color_list, hist)] return res hoge = extract_main_color('/home/sotaro/develop/hachathon/FK_1809/wearlog/app/assets/images/wear_images/20171201112823521_320.jpg', 4) ```
{ "source": "jphacks/FK_1906", "score": 2 }
#### File: jphacks/FK_1906/server.py ```python import sys import time import math import cv2 import json import base64 import requests import numpy import threading import queue import numpy as np import os import io # request フォームから送信した情報を扱うためのモジュール # redirect ページの移動 # url_for アドレス遷移 from flask import Flask, request, redirect, url_for, render_template, jsonify # ファイル名をチェックする関数 from werkzeug.utils import secure_filename # 画像のダウンロード from flask import send_from_directory from api import videoReader from sound import analyze_sound import matplotlib.pyplot as plt import moviepy.editor as mp from models.models import Progress from models.database import db_session app = Flask(__name__) # 学習済みモデルのロード import pickle models = {} for filename in os.listdir('data'): label = filename.split('.')[0] models[label] = pickle.load(open(os.path.join('data', filename), 'rb')) # 画像のアップロード先のディレクトリ UPLOAD_FOLDER = './uploads' # アップロードされる拡張子の制限 ALLOWED_EXTENSIONS = set(['mp4']) def digitize_score(target, begin, end, digits=5): return np.digitize(target, bins=np.linspace(begin, end, digits+1)[1:-1]) def allwed_file(filename): # .があるかどうかのチェックと、拡張子の確認 # OKなら1、だめなら0 return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS def set_progress_data(frames, progress): progress_data = Progress.query.first() progress_data.movie_frames = frames progress_data.movie_progress = progress db_session.add(progress_data) db_session.commit() def user_pich_image(pich_mean_score): image_path = "/static/images/" if(pich_mean_score > 20): image_path += "top.png" elif(pich_mean_score > 10): image_path += "middle.png" elif(pich_mean_score >= 0): image_path += "buttom.png" return image_path def user_yaw_image(yaw_var_score, yaw_mean): image_path = "/static/images/" if(yaw_var_score >= 10): image_path += "center_five.png" else: if(-10 <= yaw_mean and yaw_mean <= 10): image_path += "center_one.png" elif(yaw_mean > 10): image_path += "left_two.png" elif(yaw_mean < -10): image_path += "right_two.png" return image_path # ファイルを受け取る方法の指定 @app.route('/', methods=['GET', 'POST']) def uploads_file(): now_loading = True if request.method == "POST": if 'file' not in request.files: print("ファイルがありません") else: img = request.files["file"] filename = secure_filename(img.filename) root, ext = os.path.splitext(filename) ext = ext.lower() gazouketori = set([".mp4"]) if ext not in gazouketori: return render_template('index.html',massege = "対応してない拡張子です",color = "red") print("success") try: ### Main ###################################################################### file = request.files['file'] videoSource = os.path.join(app.config['UPLOAD_FOLDER'], img.filename) file.save(videoSource) print("videonSouse", videoSource) print("app",app.config['UPLOAD_FOLDER']) sound_analize_result = analyze_sound(videoSource) # Extract audio from input video. clip_input = mp.VideoFileClip(videoSource).subclip() clip_input.audio.write_audiofile('audio.mp3') gaze_list = videoReader(videoSource) set_progress_data(-1, -1) #progress go to write video editedVideoSource = os.path.join(app.config['UPLOAD_FOLDER'], "edited.avi") # Add audio to output video. clip_output = mp.VideoFileClip(editedVideoSource).subclip() clip_output.write_videofile(editedVideoSource.replace('.avi', '.mp4'), audio='audio.mp3') set_progress_data(0, 0) #progress go to finish and database reset yaw_list, pich_list = zip(*gaze_list) yaw_list, pich_list = np.array(yaw_list), np.array(pich_list) yaw_mean, yaw_var = np.mean(yaw_list), np.var(yaw_list) pich_mean, pich_var = np.mean(pich_list), np.var(pich_list) print("[yaw] mean: {}, var: {}".format(yaw_mean, yaw_var)) print("[pich] mean: {}, var: {}".format(pich_mean, pich_var)) center_range = np.array([-10, 10]) LEFT = 0 CENTER = 1 RIGHT = 2 yaw_distribution = {LEFT: 0, CENTER: 0, RIGHT: 0} for yaw in yaw_list: pos = np.digitize(yaw, bins=center_range) yaw_distribution[pos] += 1 num_total = float(len(yaw_list)) left_rate = yaw_distribution[LEFT] / num_total center_rate = yaw_distribution[CENTER] / num_total right_rate = yaw_distribution[RIGHT] / num_total print("left: {}, center: {}, right: {}".format(left_rate, center_rate, right_rate)) img = io.BytesIO() plt.hist(yaw_list, bins=50) plt.savefig(img, format='png') # img.seek(0) plot_b64str = base64.b64encode(img.getvalue()).decode("utf-8") plot_b64data = "data:image/png;base64,{}".format(plot_b64str) plt.clf() amp_mean = sound_analize_result["volume_mean"] amp_var = sound_analize_result["volume_var"] fle_var = sound_analize_result["tone_var"] # スコアの計算 # ヒューリスティック ver #yaw_mean_score = digitize_score(yaw_mean, 0.3, 0.8) yaw_var_score = digitize_score(yaw_var, 30, 10) pich_mean_score = digitize_score(pich_mean, 20, 10) amp_var_score = digitize_score(amp_var, 5, 10) fle_var_score = digitize_score(fle_var, 10, 20) #gaze_score = sum((yaw_mean_score, yaw_var_score, pich_mean_score)) * 5 intonation_score = sum((amp_var_score, fle_var_score) * 5) # 機械学習 ver yaw_var = yaw_var.reshape(-1, 1) pich_mean = pich_mean.reshape(-1, 1) volume_mean = amp_mean.reshape(-1, 1) # Renaming tone_var = fle_var.reshape(-1, 1) # Renaming yaw_var_score = int(models['yaw_var_score'].predict(yaw_var)*0.2) pich_mean_score = int(models['pich_mean_score'].predict(pich_mean)*0.3) volume_mean_score = int(models['volume_mean_score'].predict(volume_mean)*0.3) tone_var_score = int(models['tone_var_score'].predict(tone_var)*0.2) total_score = yaw_var_score + pich_mean_score + volume_mean_score + tone_var_score print("yaw_var_score: ", yaw_var_score) print("pich_mean_score: ", pich_mean_score) print("volume_mean_score: ", volume_mean_score) print("tone_var_score: ", tone_var_score) print("[total_score]: ", total_score) print("yaw_mean:", yaw_mean) #Image Path の指定 pich_image_path = user_pich_image(pich_mean_score) yaw_image_path = user_yaw_image(yaw_var_score, yaw_mean) kwargs = { "predicted" : True, "yaw_mean" : yaw_mean, "yaw_var" : yaw_var, "pich_mean" : pich_mean, "pich_var" : pich_var, "left_rate" : left_rate, "center_rate": center_rate, "right_rate" : right_rate, "amp_mean" : amp_mean, "amp_var" : amp_var, "fle_var" : fle_var, "yaw_var_score": yaw_var_score, "pich_mean_score": pich_mean_score, "amp_var_score": amp_var_score, "fle_var_score": fle_var_score, "intonation_score": intonation_score, "plot_url" : plot_b64data, "total_score": total_score, "volume_mean_score": volume_mean_score, "tone_var_score": tone_var_score, "pich_image_path": pich_image_path, "yaw_image_path": yaw_image_path } params_for_train = { "yaw_var" : yaw_var, # 目線の左右の分散 "pich_mean" : pich_mean, # 目線の高さの平均 "volume_mean": amp_mean, # 声の大小の平均 "tone_var" : fle_var # 声のトーンの分散 } now_loading = False write_analysis_result(filename, params_for_train) return render_template("index.html", now_loading=now_loading, **kwargs) except Exception as e: print(e) return render_template('index.html',massege = "解析出来ませんでした",color = "red") else: print("get request") return render_template('index.html', now_loading=now_loading) def write_analysis_result(filepath, results): filename = os.path.basename(filepath) with open(os.path.join("./results", filename+".txt"), mode='w') as f: for key, value in results.items(): result_str = "{}:{}\n".format(key, value) f.write(result_str) app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER @app.route('/uploads/#') def uploaded_file(filename): return send_from_directory(app.config['UPLOAD_FOLDER'], filename) @app.route("/progress",methods=["post"]) def progress(): progress = Progress.query.first() text = "" if progress is None: text = "処理中" elif progress.movie_frames <= 0 and progress.movie_progress <= 0: status = progress.movie_frames if status == 0: text = "" elif status == -1: text = "動画保存中" else : text = str(progress.movie_progress) + "/" + str(progress.movie_frames) return jsonify({'text' : text}) @app.after_request def add_header(r): """ Add headers to both force latest IE rendering engine or Chrome Frame, and also to cache the rendered page for 10 minutes. """ r.headers["Cache-Control"] = "no-cache, no-store, must-revalidate" r.headers["Pragma"] = "no-cache" r.headers["Expires"] = "0" r.headers['Cache-Control'] = 'public, max-age=0' return r import subprocess def analyze_localy(dirname): video_files = [os.path.join(dirname, video_filename) for video_filename in os.listdir(dirname)] for filename in video_files: sound_analize_result = analyze_sound(filename) gaze_list = videoReader(filename) try: yaw_list, pich_list = zip(*gaze_list) except: print("##############################") print("gaze_list: ", gaze_list) print("##############################") continue yaw_list, pich_list = np.array(yaw_list), np.array(pich_list) yaw_mean, yaw_var = np.mean(yaw_list), np.var(yaw_list) pich_mean, pich_var = np.mean(pich_list), np.var(pich_list) amp_mean = sound_analize_result["volume_mean"] fle_var = sound_analize_result["tone_var"] params_for_train = { "yaw_var" : yaw_var, # 目線の左右の分散 "pich_mean" : pich_mean, # 目線の高さの平均 "volume_mean": amp_mean, # 声の大小の平均 "tone_var" : fle_var # 声のトーンの分散 } write_analysis_result(filename, params_for_train) basename = os.path.basename(filename) subprocess.run(['mv', 'uploads/edited.avi', 'uploads/edited_'+basename+'.avi']) if __name__ == '__main__': app.run(host='0.0.0.0') ``` #### File: jphacks/FK_1906/sound.py ```python import numpy as np import audiosegment from matplotlib import pyplot as plt import time from pydub import AudioSegment plt.ion() def analyze_sound(video_source): volume_mean, volume_var = analyze_volume(video_source) tone_var = analyze_tone(video_source, display=False) return {'volume_mean': volume_mean, 'volume_var': volume_var, 'tone_var': tone_var} def analyze_volume(video_source): sound = AudioSegment.from_file(video_source, format="mp4") sound = np.array(sound.get_array_of_samples()) sound = np.abs(sound) mean = sound.mean() var = sound.var() return mean, var def analyze_tone(video_source, display=False): sound = audiosegment.from_file(video_source).resample(sample_rate_Hz=24000, sample_width=2, channels=1) hist_bins, hist_vals = sound.fft() hist_vals_real_normed = np.abs(hist_vals) / len(hist_vals) mean = np.mean(hist_vals_real_normed) max_hz, min_hz = 1200, 400 num_samples = len(sound) offset = 1000 total_data = np.zeros(max_hz-min_hz) for i in range(0, num_samples-offset, offset): hist_bins, hist_vals = sound[i:i+offset].fft() hist_bins, hist_vals = hist_bins[min_hz:max_hz], hist_vals[min_hz:max_hz] hist_vals = np.abs(hist_vals) / len(hist_vals) hist_vals = np.where(hist_vals >= 500, hist_vals / mean, 0) total_data += hist_vals if display: plt.plot(hist_bins, hist_vals) plt.xlabel("Hz") plt.ylabel("dB") plt.draw() plt.pause(1) mean = np.mean(total_data) # total_data /= mean distribution = np.array([], dtype="int32") for i, num_samples in enumerate(total_data): hz = i + min_hz hz_array = np.full(int(num_samples), hz) distribution = np.append(distribution, hz_array) return np.var(distribution) if __name__ == '__main__': import sys video_source = sys.argv[1] print("tone var: ", analyze_tone(video_source, True)) volume_result = analyze_volume(video_source) print("volume:", volume_result) time.sleep(10) ```
{ "source": "jphacks/FK_1908", "score": 3 }
#### File: server/recognition/api.py ```python import flask import os import cv2 import numpy as np import tensorflow as tf from flask import Flask, request from keras.models import load_model classes = ['no_breads', 'breads'] global model, graph model = load_model(os.path.dirname(os.path.abspath(__file__)) + '/vgg16.h5') from config import * global model, graph model = load_model(os.path.dirname(os.path.abspath(__file__)) + '/' + conf.model_na graph = tf.compat.v1.get_default_graph() app = flask.Flask(__name__) @app.route('/', methods = ['POST']) def handle_request(): stream = request.files['image'].stream img_array = np.asarray(bytearray(stream.read()), dtype=np.uint8) img = cv2.imdecode(img_array, 1) img = np.asarray(img) img = img.reshape((1, conf.image_size, conf.image_size, 3)) with graph.as_default(): result = model.predict(img) print(parse2label(result)[0]) return parse2label(result)[0] @app.route('/hello', methods = ['GET']) def handle_hello(): return 'hello' def parse2label(predicted_arr): return [conf.classes[np.argmax(result)] for result in predicted_arr] if __name__ == "__main__": app.run(host="0.0.0.0", port=5000, debug=True) ```
{ "source": "jphacks/KB_02", "score": 3 }
#### File: KB_02/source/face_recognizer.py ```python import matplotlib matplotlib.use('TkAgg') import cv2 import math import numpy as np import os from PIL import Image, ImageDraw, ImageFont from speech_recognizer import SpeechRecognizer from Face import GeoInfo,Face from graph_drawer import GraphDrawer,Graph from word_analyze import WordAnalyze from omoroi_data import OmoroiData from face_history import FaceHistories from fig2img import fig2data,fig2img import matplotlib.pyplot as plt import numpy import time face_feature_path = "../dataset/haarcascade_frontalface_alt.xml" smile_feature_path = "../dataset/smiled_04.xml" def _rect_parallel_translation(lrect,translation): lrect[0:2] = [lrect[0]+translation[0],lrect[1]+translation[1]] class FaceRecognizer(object): def __init__(self,capture): self.faces = [] self.smile_matrix = [[]] * 50 # カメラからキャプチャー self.cap = capture # 顔データの履歴 self.histories = FaceHistories() def get_features(self, image, feature_path,min_neighbors=1,min_size=(200, 200)): """ 与えた特徴量, 教師によって学習したcascade adaboostで領域分割. input image: cv2.imreadで読み取った変数 feature_path: trainingデータ min_size: 顔判定する最小サイズ指定 output faces: 顔の座標情報 """ image = np.array(image) cascade = cv2.CascadeClassifier(feature_path) #グレースケール frame_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #顔判定 """ minSizeで顔判定する際の最小の四角の大きさを指定できる. (小さい値を指定し過ぎると顔っぽい小さなシミも顔判定されるので) """ faces = cascade.detectMultiScale(frame_gray, scaleFactor=1.1, minNeighbors=min_neighbors, minSize=min_size) return faces def update(self, speech, recogflg, min_size=(200, 200)): """ 顔を四角で囲うメソッド. input image: cv2.imreadで読み取った変数 speech: 音声認識によって推定されたstringのテキスト min_size: 顔判定する最小サイズ指定 output: enclosed_facs: 囲まれた顔画像 """ ret, image = self.cap.read() # 出力結果を格納する変数 enclosed_faces = image # 顔認識 face_rects = self.get_features(image, face_feature_path, min_neighbors=1, min_size=min_size) # 顔認識の枠の色 color_face = (255, 0, 0) # 笑顔認識の枠の色 color_smile = (0, 0, 255) # 新しい顔 new_faces = [] for face_rect in face_rects: new_faces.append(Face(geoinfo=GeoInfo(face_rect))) image_ = Image.fromarray(np.uint8(image)) # 現在トラッキングしている顔を更新 self.update_faces(self.faces, new_faces, image_) # 音声信号のない場合は、発話者の判定処理をスキップする if True: speaker_index = -1 value = 0 for i, face in enumerate(self.faces): tmp = face.mouth_images.compute_variability() if tmp > value: speaker_index = i value = tmp else: speaker_index = -1 for i, face in enumerate(self.faces): # 笑顔認識 顔の下半分だけ笑顔(笑顔唇)判定 x1, y1 = face.geoinfo.coordinates[0][0], face.geoinfo.coordinates[0][1]+face.geoinfo.length[1]/2 x2, y2 = face.geoinfo.coordinates[1] face_image = image_.crop((x1, y1, x2, y2)) smile_rects = self.get_features(face_image, smile_feature_path, min_neighbors=1, min_size=(int(face.geoinfo.length[0]*0.25), int(face.geoinfo.length[1]*0.25))) #[For debug]認識している笑顔の唇の枠表示 #for smile_rect in smile_rects: # _rect_parallel_translation(smile_rect,face.geoinfo.coordinates[0]) # _rect_parallel_translation(smile_rect,(0,face.geoinfo.length[1]/2)) # smile_geoinfo = GeoInfo(smile_rect) # cv2.rectangle(enclosed_faces, # smile_geoinfo.coordinates[0], # smile_geoinfo.coordinates[1], # (0,0,255), thickness=3) #ひとつでも笑顔唇を認識している場合「笑っている」と判定 if len(smile_rects) > 0: face.is_smiling = True frame_color = color_smile else: face.is_smiling = False frame_color = color_face if i == speaker_index: # 顔の下半分の領域から口を含む矩形を決め打ちで表示 w = x2 - x1 h = y2 - y1 if(recogflg): cv2.rectangle(enclosed_faces, (x1 + int(w * 0.25), y1 + int(h * 0.3)), (x2 - int(w * 0.25), y2 - int(h * 0.1)), (255, 0, 255), thickness=3) cv2.rectangle(enclosed_faces, face.geoinfo.coordinates[0], face.geoinfo.coordinates[1], frame_color, thickness=3) # enclosed_faces = self.write_speech(enclosed_faces, # face.geoinfo.coordinates[0], # face.geoinfo.coordinates[1], # speech, str(i)) face.update() return enclosed_faces def update_faces(self, faces, new_faces, image): """ 顔を更新 input faces:現在tracking中の顔リスト new_faces:新たにdetectした顔リスト """ #今現在トラッキングしている顔座標と新たに取得した顔座標同士の距離を計算 distances_matrix = [] for face in faces: distances = [] for new_face in new_faces: euc_distance = (face.geoinfo.center[0] - new_face.geoinfo.center[0])**2 \ + (face.geoinfo.center[1] - new_face.geoinfo.center[1])**2 distances.append(euc_distance) distances_matrix.append(distances) face_indexes = [ i for i in xrange(len(faces))] new_face_indexes = [ i for i in xrange(len(new_faces))] # O( (顔の数)^3 )の計算量。 O( (顔の数)^2 log(顔の数) )の計算量にできるが。 while(len(face_indexes)>0): if (len(new_face_indexes) == 0): face_indexes.reverse() # トラッキングしていたが顔がなくなったので、消す前に履歴に残す for i in face_indexes: print '顔が消えた' if faces[i].face_images.is_enough_images(): # 十分に枚数を取得できている場合にのみ履歴を保存 self.histories.set_history(faces[i].face_images.images, faces[i]) del faces[i] break min_distance = np.inf for i in xrange(len(face_indexes)): for j in xrange(len(new_face_indexes)): if ( distances_matrix[face_indexes[i]][new_face_indexes[j]] < min_distance): min_distance = distances_matrix[face_indexes[i]][new_face_indexes[j]] min_i = i min_j = j faces[face_indexes[min_i]].geoinfo = new_faces[new_face_indexes[min_j]].geoinfo # geoinfoに対応する領域の画像を取得、faceに保存 geoinfo = new_faces[new_face_indexes[min_j]].geoinfo # 顔画像の処理 x1, y1 = geoinfo.coordinates[0] x2, y2 = geoinfo.coordinates[1] face_image = np.asarray(image.crop((x1, y1, x2, y2))) faces[face_indexes[min_i]].face_images.add_face_image(face_image) # 口元の画像の処理 領域の大きさは決め打ち w = x2 - x1 h = (y2 - y1) / 2 y3 = y1 + h mouth_image = np.asarray(image.crop((x1 + int(w * 0.25), y3 + int(h * 0.3), x2 - int(w * 0.25), y2 - int(h * 0.1)))) faces[face_indexes[min_i]].mouth_images.add_mouth_image(mouth_image) del face_indexes[min_i] del new_face_indexes[min_j] # 新しい顔が見つかったので、過去の履歴にないか調べる for j in new_face_indexes: print '顔が出てきた' new_face = new_faces[j] # 顔画像を取得 face_image = image.crop((new_face.geoinfo.coordinates[0][0], new_face.geoinfo.coordinates[0][1], new_face.geoinfo.coordinates[1][0], new_face.geoinfo.coordinates[1][1],)) face_image_ = np.asarray(face_image) # 履歴に照らし合わせてfaceを追加 faces.append(self.histories.get_history(face_image_, new_face)) # faces.append(new_faces[j]) def write_speech(self, image, coordinates, length, speech, label): """ 顔枠の下に文字を書き込むメソッド. input image: 元画像(フレーム) coordinates: 顔枠の左上の座標 length: 縦横の長さ speech: 発話内容 label: 人物分類の結果 output: image: 顔フレームの下に発話を書き込んだもの """ # # イメージをpillowで扱うことのできる形式に変換 # img_edit = Image.fromarray(image) # font = cv2.FONT_HERSHEY_PLAIN # font_size = 3.5 # text = "wei" # #文字の書き込み # cv2.putText(image, text, (coordinates[0], length[1] + 40), font, font_size,(255,255,0)) img_edit = Image.fromarray(image) font = ImageFont.truetype('../fonts/ヒラギノ角ゴシック W0.ttc', 40, encoding='unic') # ポジネガ判定(todo) #words = word_analyze.morphological_analysis(speech) draw = ImageDraw.Draw(img_edit) draw.text((coordinates[0], length[1]), label, font = font, fill='#FFFFFF') draw.text((coordinates[0], length[1]), speech, font = font, fill='#FFFFFF') image = np.asarray(img_edit) return image def get_mean_of_smiles(self): ret = 0 for face in self.faces: ret += int(face.is_smiling) return ret/(len(self.faces)+1e-6) if __name__ == '__main__': word_analyze = WordAnalyze() capture = cv2.VideoCapture(0) face_recognizer = FaceRecognizer(capture=capture) speech_recognizer = SpeechRecognizer() speech_recognizer.start() w=int(capture.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH )) h=int(capture.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT )) fourcc = cv2.cv.CV_FOURCC('m', 'p', '4', 'v') graph_drawer = GraphDrawer() graph_drawer.start() all_omorosa = OmoroiData() all_graph = Graph(color=(1.0,0.0,1.0),ylim=[all_omorosa.omoroi_min-1.0,all_omorosa.omoroi_max+1.0],ylabel="Omorosa") #if os.path.exists('movie.avi'): # os.remove('movie.avi') #out = cv2.VideoWriter('movie.avi',fourcc,7.5,(w,h)) count = 0 while(True): # 動画ストリームからフレームを取得 speech = speech_recognizer.get_speech() recogflg = speech_recognizer.recogflg print "uwaaaaaaaaa----- " + str(recogflg) # frameで切り取り画像を受け取る frame_face = face_recognizer.update(speech,recogflg) all_omorosa.update_omoroi_sequence(face_recognizer.get_mean_of_smiles()) # 盛り上がり度の部分時系列を取得 length = 20 all_omoroi_subsequence = all_omorosa.get_subsequence(all_omorosa.omoroi_sequence,length) all_graph.set_graph_data(x = numpy.arange(len(all_omoroi_subsequence)), y = all_omoroi_subsequence, pos = (w-300,h-300)) #graph_drawer内のgraphを更新 graphs =[] for face in face_recognizer.faces: graphs.append(face.graph) graphs.append(all_graph) graph_drawer.reprace_graphs(graphs) frame_face = graph_drawer.draw_graphs(frame_face) #out.write(np.asarray(frame_face,np.uint8)) #表示 なぜか初期は if(count > 10): cv2.imshow('FACE', frame_face) else: count += 1 #if omorosa.omoroi_sequence[-1] > omorosa.omoroi_max*0.9: # _,image = face_recognizer.cap.read() # cv2.imwrite("image.png",image ) # break #if omorosa.omoroi_sequence[-1] > omorosa.omoroi_max*0.9: # _,image = face_recognizer.cap.read() # cv2.imwrite("image.png",image ) # break # qを押したら終了 k = cv2.waitKey(1) if k == ord('q'): break capture.release() #out.release() cv2.destroyAllWindows() graph_drawer.stop() speech_recognizer.stop() ``` #### File: KB_02/source/preprocessing.py ```python import numpy import re import os import errno import sys import MeCab import cPickle def make_sure_path_exists(path): try: os.makedirs(path) except OSError as exception: if exception.errno != errno.EEXIST: raise def divide_sentence_and_label(): load_dir_path = "../dataset/sentiment/" save_sentences_dir_path = "../dataset/sentences/" save_trdata_dir_path = "../dataset/training_dataset/" make_sure_path_exists(save_sentences_dir_path) make_sure_path_exists(save_trdata_dir_path) labeled_text_file = open(load_dir_path + "labeled_text.txt", "r") sentences = open(save_sentences_dir_path + "labeled_sentences.txt", "wr") labels=[] inline = labeled_text_file.readline() while inline: label,sentence = inline.split(":") labels.append(label) sentences.writelines(sentence) inline = labeled_text_file.readline() cPickle.dump(labels,open(save_trdata_dir_path + "labels.pkl","wb")) def rawtext2sentences(): load_dir_path = "../dataset/nuc/" save_dir_path = "../dataset/sentences/" make_sure_path_exists(save_dir_path) senteneces = open(save_dir_path + "unlabeled_sentences.txt", "wr") for doc_index in xrange(1, 130): text_file = open(load_dir_path + "data%03d.txt" % doc_index, "r") inline = text_file.readline() while inline: if not re.search(r"@", inline): # 会話文の取得 sentence = inline.split(":")[-1] senteneces.writelines(sentence) inline = text_file.readline() senteneces.close() def remove_specific_symbols(sentence_divided): i = 0 while(i < len(sentence_divided)): w = sentence_divided[i] if w == "<" or w == "(": print w j = i while(j < len(sentence_divided)): w = sentence_divided[j] if w == ">" or w == ")" or j == len(sentence_divided)-1: del sentence_divided[i:j+1] print "deleted" break else: j += 1 else: i += 1 def sentences2divsentences(filename): def make_sure_path_exists(path): try: os.makedirs(path) except OSError as exception: if exception.errno != errno.EEXIST: raise load_dir_path = "../dataset/sentences/" save_dir_path = "../dataset/sentences_divided/" make_sure_path_exists(save_dir_path) t = MeCab.Tagger("-Owakati") sentences = open(load_dir_path + filename + '.txt', "r") line = sentences.readline() sentences_divided = [] while line: print line sentence_divided = t.parse(line).split(" ") #後ろの3文字[。,\r,\n]は除去 sentence_divided = sentence_divided[:-3] remove_specific_symbols(sentence_divided) sentences_divided.append(sentence_divided) line = sentences.readline() cPickle.dump(sentences_divided, open(save_dir_path + filename + '.pkl', "wb")) sentences.close() def remove_short_sentences(sentences,len_threshold=10): print "len(sentences) before removing short sentences" + str(len(sentences)) index = 0 while index < len(sentences): sentence = sentences[index] if(len(sentence)<len_threshold): del sentences[index] else: index += 1 print "len(sentences) after removing short sentences" + str(len(sentences) ) ``` #### File: KB_02/train_nn/train_sup.py ```python from docopt import docopt import numpy import theano import theano.tensor as T from theano.tensor.shared_randomstreams import RandomStreams import cPickle from vat.source import optimizers from vat.source import costs import os import errno def make_sure_path_exists(path): try: os.makedirs(path) except OSError as exception: if exception.errno != errno.EEXIST: raise from vat.models.fnn import FNN import vat.source.layers as L class FNN_sentiment(FNN): def __init__(self,layer_sizes): self.linear_layers = [] self.bn_layers = [] self.act_layers = [] self.params = [] for m,n in zip(layer_sizes[:-1],layer_sizes[1:]): l = L.Linear(size=(m,n)) bn = L.BatchNormalization(size=(n)) self.linear_layers.append(l) self.bn_layers.append(bn) self.params += l.params + bn.params for i in xrange(len(self.linear_layers)-1): self.act_layers.append(L.relu) self.act_layers.append(L.softmax) def forward_for_finetuning_batch_stat(self,input): return self.forward(input,finetune=True) def forward_no_update_batch_stat(self,input,train=True): return self.forward(input,train,False) def forward(self,input,train=True,update_batch_stat=True,finetune=False): h = input for l,bn,act in zip(self.linear_layers,self.bn_layers,self.act_layers): h = l(h) h = bn(h,train=train,update_batch_stat=update_batch_stat,finetune=finetune) h = act(h) return h def train(args,x_train,t_train,x_test,t_test,ul_x_train=None): print args numpy.random.seed(int(args['--seed'])) layer_sizes = [int(layer_size) for layer_size in args['--layer_sizes'].split('-')] model = FNN_sentiment(layer_sizes=layer_sizes) x = T.matrix() ul_x = T.matrix() t = T.ivector() if(args['--cost_type']=='MLE'): cost = costs.cross_entropy_loss(x=x,t=t,forward_func=model.forward_train) elif(args['--cost_type']=='L2'): cost = costs.cross_entropy_loss(x=x,t=t,forward_func=model.forward_train) \ + costs.weight_decay(params=model.params,coeff=float(args['--lamb'])) elif(args['--cost_type']=='AT'): cost = costs.adversarial_training(x,t,model.forward_train, 'CE', epsilon=float(args['--epsilon']), lamb=float(args['--lamb']), norm_constraint = args['--norm_constraint'], forward_func_for_generating_adversarial_examples=model.forward_no_update_batch_stat) elif(args['--cost_type']=='VAT'): cost = costs.virtual_adversarial_training(x,t,model.forward_train, 'CE', epsilon=float(args['--epsilon']), lamb=float(args['--lamb']), norm_constraint = args['--norm_constraint'], num_power_iter = int(args['--num_power_iter']), x_for_generating_adversarial_examples=ul_x, forward_func_for_generating_adversarial_examples=model.forward_no_update_batch_stat) elif(args['--cost_type']=='VAT_finite_diff'): cost = costs.virtual_adversarial_training_finite_diff(x,t,model.forward_train, 'CE', epsilon=float(args['--epsilon']), lamb=float(args['--lamb']), norm_constraint = args['--norm_constraint'], num_power_iter = int(args['--num_power_iter']), x_for_generating_adversarial_examples=ul_x, unchain_y = False, forward_func_for_generating_adversarial_examples=model.forward_no_update_batch_stat) nll = costs.cross_entropy_loss(x=x,t=t,forward_func=model.forward_test) error = costs.error(x=x,t=t,forward_func=model.forward_test) optimizer = optimizers.ADAM(cost=cost,params=model.params,alpha=float(args['--initial_learning_rate'])) f_train = theano.function(inputs=[], outputs=cost, updates=optimizer.updates, givens={ x:x_train, t:t_train, ul_x:ul_x_train},on_unused_input='warn') f_nll_train = theano.function(inputs=[], outputs=nll, givens={ x:x_train, t:t_train}) f_nll_test = theano.function(inputs=[], outputs=nll, givens={ x:x_test, t:t_test}) f_error_train = theano.function(inputs=[], outputs=error, givens={ x:x_train, t:t_train}) f_error_test = theano.function(inputs=[], outputs=error, givens={ x:x_test, t:t_test}) f_lr_decay = theano.function(inputs=[],outputs=optimizer.alpha, updates={optimizer.alpha:theano.shared(numpy.array(args['--learning_rate_decay']).astype(theano.config.floatX))*optimizer.alpha}) statuses = {} statuses['nll_train'] = [] statuses['error_train'] = [] statuses['nll_test'] = [] statuses['error_test'] = [] n_train = numpy.asarray(x_train.get_value().shape[0],theano.config.floatX) n_test = numpy.asarray(x_test.get_value().shape[0],theano.config.floatX) statuses['nll_train'].append(f_nll_train()) statuses['error_train'].append(f_error_train()/n_train) statuses['nll_test'].append(f_nll_test()) statuses['error_test'].append(f_error_test()/n_test) print "[Epoch]",str(-1) print "nll_train : " , statuses['nll_train'][-1], "error_train : ", statuses['error_train'][-1], \ "nll_test : " , statuses['nll_test'][-1], "error_test : ", statuses['error_test'][-1] print "training..." make_sure_path_exists("./trained_model") for epoch in xrange(int(args['--num_epochs'])): cPickle.dump((statuses,args),open('./trained_model/'+'tmp-' + args['--save_filename'],'wb'),cPickle.HIGHEST_PROTOCOL) ### update parameters ### f_train() ######################### statuses['nll_train'].append(f_nll_train()) statuses['error_train'].append(f_error_train()/n_train) statuses['nll_test'].append(f_nll_test()) statuses['error_test'].append(f_error_test()/n_test) print "[Epoch]",str(epoch) print "nll_train : " , statuses['nll_train'][-1], "error_train : ", statuses['error_train'][-1], \ "nll_test : " , statuses['nll_test'][-1], "error_test : ", statuses['error_test'][-1] f_lr_decay() return f_error_train()/n_train, f_error_test()/n_test #make_sure_path_exists("./trained_model") #cPickle.dump((model,statuses,args),open('./trained_model/'+args['--save_filename'],'wb'),cPickle.HIGHEST_PROTOCOL) import numpy from scipy import linalg from sklearn.base import TransformerMixin, BaseEstimator """ class ZCA(BaseEstimator, TransformerMixin): def __init__(self, regularization=10**-5, copy=False): self.regularization = regularization def fit(self, _X, y=None): X = _X.copy() self.mean_ = numpy.mean(X, axis=0) X -= self.mean_ sigma = numpy.dot(X.T,X) / X.shape[0] + self.regularization*numpy.eye(X.shape[1]) U, S, V = linalg.svd(sigma) tmp = numpy.dot(U, numpy.diag(1/numpy.sqrt(S))) self.components_ = numpy.dot(tmp, U.T) return self def transform(self, X): X_transformed = X - self.mean_ X_transformed = numpy.dot(X_transformed, self.components_.T) return X_transformed """ if __name__=='__main__': args = docopt(__doc__) x,y = cPickle.load(open("../dataset/training_dataset/dataset.pkl")) l_x = x[numpy.where(y != 0.5)[0]].astype(theano.config.floatX) l_y = y[numpy.where(y != 0.5)[0]].astype("int32") ul_x = x[numpy.where(y == 0.5)[0]].astype(theano.config.floatX) num_samples = l_x.shape[0] num_groups = 10 print "chance level :" + str(1-numpy.mean(l_y)) accs = numpy.zeros(num_groups) for i in xrange(num_groups): valid_index = numpy.arange(int(i*num_samples/num_groups),int((i+1)*num_samples/num_groups)) train_index =numpy.delete(numpy.arange(num_samples), valid_index) x_train = theano.shared(l_x[train_index]) t_train = theano.shared(l_y[train_index]) x_valid = theano.shared(l_x[valid_index]) t_valid = theano.shared(l_y[valid_index]) ul_x_train = theano.shared(numpy.concatenate((l_x[train_index],ul_x),axis=0)) error_train, error_valid = train(args,x_train,t_train,x_valid,t_valid,x_train) accs[i] = 1-error_valid print "valid error : " + str(accs.mean()) + "%" cPickle.dump(accs.mean(),open("Valid_accuracy_" + args["--cost_type"] + "_epsilon" + args["--epsilon"] + ".pkl","wb")) ```
{ "source": "jphacks/KB_1712", "score": 3 }
#### File: KB_1712/model/analysis_receipt.py ```python from sklearn.externals import joblib from PIL import Image import pandas as pd import numpy as np import unicodedata import json import os def merge_block(head_block, block_list): guide_text = head_block["description"].split("\n") guide_text_index = 0 merged_block_list = [] temp_block_list = [] check_text = "" for block in block_list: check_text += block["description"] temp_block_list.append(block) if check_text == guide_text[guide_text_index].replace(' ',''): merged_block_list.append({'boundingPoly': {'vertices': [temp_block_list[0]["boundingPoly"]["vertices"][0],\ temp_block_list[-1]["boundingPoly"]["vertices"][1],\ temp_block_list[-1]["boundingPoly"]["vertices"][2],\ temp_block_list[0]["boundingPoly"]["vertices"][3]]},\ 'description': check_text}) check_text = "" temp_block_list = [] guide_text_index += 1 return merged_block_list def translate_to_plot_box(block_list): return [{"x" : block["boundingPoly"]["vertices"][0]["x"], \ "y" : block["boundingPoly"]["vertices"][0]["y"], \ "w" : block["boundingPoly"]["vertices"][2]["x"] - block["boundingPoly"]["vertices"][0]["x"], \ "h" : block["boundingPoly"]["vertices"][2]["y"] - block["boundingPoly"]["vertices"][0]["y"], \ } for block in block_list] def plot_reciept(image_path, box_list): im = np.array(Image.open(image_path), dtype=np.uint8) # Create figure and axes fig,ax = plt.subplots(1) fig.set_size_inches(20, 10) # Display the image ax.imshow(im) # Create a Rectangle patch for box in box_list: rect = patches.Rectangle((box["x"],box["y"]),box["w"],box["h"],linewidth=1,edgecolor='r',facecolor='none') # Add the patch to the Axes ax.add_patch(rect) plt.show() def get_un_count(sentence,target_type): return [unicodedata.name(ch).split(" ")[0] for ch in sentence].count(target_type) def translate_train_data(head_block, block_list): un_ja_types = ["CJK", "HIRAGANA", "KATAKANA"] un_digit_types = ["DIGIT"] return [{"x": (block["boundingPoly"]["vertices"][0]["x"] - head_block["boundingPoly"]["vertices"][0]["x"]) / head_block["boundingPoly"]["vertices"][1]["x"],\ "y": (block["boundingPoly"]["vertices"][0]["y"] - head_block["boundingPoly"]["vertices"][0]["y"]) / head_block["boundingPoly"]["vertices"][2]["y"],\ "num_ja": sum([get_un_count(block["description"], types) for types in un_ja_types]) / len(block["description"]),\ "num_digit": sum([get_un_count(block["description"], types) for types in un_digit_types]) / len(block["description"]),\ "description": block["description"]\ } for block in block_list] def get_train_data(json_file): head_block, content_block_list = json_file[0], json_file[1:] merged_block_list = merge_block(head_block, content_block_list) return translate_train_data(head_block, merged_block_list) def convert_price(price): return int("".join([c for c in price if unicodedata.name(c).split(' ')[0] == "DIGIT"])) def parse_info(result): date = result[result["label"] == "date"]["description"].tolist()[0] product = result[result["label"] == "product"] price = result[result["label"] == "price"] cleared_price = [ convert_price(price[ abs(price["y"] - product_y) < 0.005]["description"].tolist()[0]) for product_y in product["y"] ] return [{"date" : date, "product" : pro, "price" : pri} for pro, pri in zip(product["description"], cleared_price)] def predict_receipt(responses_json_path, model_path): responses_json = json.load(open(responses_json_path, 'r')) responses_df = pd.DataFrame([data for data in get_train_data(responses_json["responses"][0]["textAnnotations"])]) features_test = np.array([responses_df['x'].tolist(),responses_df['y'].tolist(),\ responses_df['num_digit'].tolist(),responses_df['num_ja'].tolist()], np.float64) features_test = features_test.T clf = joblib.load(model_path) predict_result = clf.predict(features_test) merged_result = pd.DataFrame([responses_df["description"],responses_df["x"],responses_df["y"] ,predict_result]).T merged_result.columns = ['description', 'x', 'y', 'label'] return parse_info(merged_result) ```
{ "source": "jphacks/KB_1804", "score": 3 }
#### File: KB_1804/jp_clova/check.py ```python import requests import time class check_clova: def __init__(self,): self.num = 0 self.url = "https://4b9a3cba.ngrok.io/rpi0" self.pre = None def check(self,): # print(url) r = requests.get(self.url) # print('pre',pre) # print('num',num) self.pre = self.num # print('pre',pre) # print('num',num) if r.text.find('<!DOCTYPE html>') != -1: print('text') #None else: # print('aaaaa') received_text = r.text.split('_')[0] self.num = int(r.text.split('_')[-1]) print('received text:', received_text) # print(num) self.url = "https://4b9a3cba.ngrok.io/rpi" + str(self.num) return received_text """ num = 0 url = "https://4b9a3cba.ngrok.io/rpi0" pre = None while True: print(url) r = requests.get(url) print('pre',pre) print('num',num) pre = num print('pre',pre) print('num',num) if r.text.find('<!DOCTYPE html>') != -1: print('text') #None else: # print('aaaaa') # print(r.text) num = int(r.text.split('_')[-1]) print(num) # any process. url = "https://4b9a3cba.ngrok.io/rpi" + str(num) time.sleep(5) """ ``` #### File: KB_1804/venv_YOLO/Human_Reco.py ```python import cv2 def main(): cap = cv2.VideoCapture(0) while(cap.isOpened()): ret, frame = cap.read() # 入力画像の読み込み # img = cv2.imread("input.jpg") # グレースケール変換 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # HoG特徴量 + SVMで人の識別器を作成 hog = cv2.HOGDescriptor() hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector()) hogParams = {'winStride': (8, 8), 'padding': (32, 32), 'scale': 1.05} # 作成した識別器で人を検出 human, r = hog.detectMultiScale(gray, **hogParams) # 人の領域を赤色の矩形で囲む for (x, y, w, h) in human: cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 200), 3) # 結果を出力 cv2.imshow("Frame", frame) # cv2.imwrite("result.jpg", frame) if __name__ == '__main__': main() ```
{ "source": "jphacks/KB_1805", "score": 3 }
#### File: KB_1805/tool/img2md.py ```python import pyocr import pyocr.builders import cv2 from PIL import Image import numpy as np import sys import os import codecs def img2wordbox(img): tools = pyocr.get_available_tools() if len(tools) == 0: print("No OCR tool found") exit() tool = tools[0] # Word Recognition word_box = tool.image_to_string( img, lang="eng", builder=pyocr.builders.LineBoxBuilder() ) return word_box def delwords(img, word_box): for box in word_box: hight = box.position[1][0] - box.position[0][0] width = box.position[1][1] - box.position[0][1] white_img = Image.new("L", (hight, width), 255) img.paste(white_img, (box.position[0][0], box.position[0][1])) return img def img2figure(img, texts, output_path): if(os.path.exists(output_path + "/fig") == False): os.mkdir(output_path + "/fig") img_word_deleted = delwords(img, texts) edge = np.asarray(img_word_deleted) edge = cv2.cvtColor(edge, cv2.COLOR_BGR2GRAY) ret, edge = cv2.threshold(edge, np.average(edge), 255, 0) edge = cv2.bitwise_not(edge) edge, contours, hierarchy = cv2.findContours(edge, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) fig_pos = [] figure = np.asarray(img) idx = 0 MINIMUM_FIGURE_SIZE = 100 for (i, cnt) in enumerate(contours): if(hierarchy[0][i][3] != -1): continue x,y,w,h = cv2.boundingRect(cnt) if w * h < MINIMUM_FIGURE_SIZE: continue fig_pos.append([x,y,w,h]) cv2.imwrite((output_path + "/fig/%d.png" %(idx)), figure[y:y+h, x:x+w]) idx += 1 return fig_pos def img2md(input_path, output_path): if(os.path.exists(output_path) == False): os.mkdir(output_path) # Load Image img = cv2.imread(input_path, cv2.IMREAD_GRAYSCALE) if(img is None): sys.stderr.write("Cannot open file!!") exit(1) thresh, img = cv2.threshold(img, np.average(img), 255, cv2.THRESH_BINARY) img = Image.fromarray(np.uint8(img)) word_box = img2wordbox(img) fig_box = img2figure(Image.open(input_path), word_box, output_path) words = [] for box in word_box: words.append(box.content) f = codecs.open((output_path + "/output.md"), "w", "utf-8") word_idx = 0 figure_idx = 0 while(word_idx < len(word_box) or figure_idx < len(fig_box)): if(word_idx >= len(word_box)): f.writelines("![figure %d](fig/%d.png) \n" %(figure_idx, figure_idx)) figure_idx += 1 elif(figure_idx >= len(fig_box)): f.writelines("%s \n" %(word_box[word_idx].content)) word_idx += 1 else: if(word_box[word_idx].position[0][1] <= fig_box[figure_idx][0]): f.writelines("%s \n" %(word_box[word_idx].content)) word_idx += 1 else: f.writelines("![figure %d](fig/%d.png) \n" %(figure_idx, figure_idx)) figure_idx += 1 f.close() def get_args(): import argparse parser = argparse.ArgumentParser() parser.add_argument('input_path', type=str) parser.add_argument('output_path', type=str) return parser.parse_args() def main(): args = get_args() img2md(args.input_path, args.output_path) if __name__ == "__main__": main() ```
{ "source": "jphacks/KB_1810", "score": 3 }
#### File: KB_1810/learn/main.py ```python from darkflow.net.build import TFNet import cv2 import os import json import numpy as np from PIL import Image import random import csv import sys import math from scipy import genfromtxt from sklearn.cluster import KMeans import pandas as pd from sklearn.externals import joblib from sklearn import svm import matplotlib save_path = 'sample_img/output/' open_path = 'sample_img/' #detection関数 def inputdata(image_name): os.chdir('/var/www/KB_1810/learn/') options = {"model": "/var/www/KB_1810/learn/cfg/yolov2-voc.cfg", "load": "/var/www/KB_1810/learn/bin/yolo_learn.weights", "threshold": 0.4, "gpu": 0.3} tfnet = TFNet(options) input_image = image_name image_folder = "sample_img" current_path = os.getcwd() output_file = "out" current_path = os.path.join(current_path,image_folder) output_path = os.path.join(current_path,output_file) if not os.path.exists(output_path): print('Creating output path {}'.format(output_path)) os.mkdir(output_path) src = cv2.imread(os.path.join(current_path,input_image)) dst = src #cv2.imshow("img", src) result, result1 = tfnet.return_predict(src,dst) print(result) #cv2.imshow("img_out", dst) cv2.waitKey() cv2.imwrite(output_path + '\\' + input_image, dst) cv2.imwrite("result1.png",dst) return result1 #detectionされた部分を画像にする def image_split(img_name): global save_path global open_path #save_path1 = 'sample_img' img = img_name #detectionする boxdataにはobjectの座標が入る boxdata = inputdata(img) subregion = list() pic = Image.open(open_path + img) #detection画像の分割 for boxs in boxdata: box = (int(boxs[0]), int(boxs[2]), int(boxs[1]), int(boxs[3])) #print(box) subregion.append(pic.crop(box)) for num in range(len(boxdata)): subregion[num].save(save_path +str(num) + 'bus.jpg',"JPEG") return boxdata # 点p0に一番近い点を点群psから抽出 def serch_neighbourhood(p0, ps): L = np.array([]) for i in range(ps.shape[0]): L = np.append(L,np.linalg.norm(ps[i]-p0)) return ps[np.argmin(L)] #detection画像の色抽出 def color_detection(image_name): box = image_split(image_name) print(box) color = np.empty((0,3), int) count1 = 0 while(count1 <= len(box) -1): #global save_path #global open_path z=str(count1) gazou = save_path + z + 'bus.jpg' imag = Image.open(gazou) a = imag.size[0] r = imag.size[1] #img = np.array(Image.open(gazosu)) img = cv2.imread(gazou) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) #print(img) img_base = img.reshape(-1,3) img_flat=img_base color = np.append(color, img_flat,axis = 0) count1 = count1 + 1 ''' #クラスタリング kmeans_modeluv = KMeans(n_clusters=5).fit(color) labelsuv = kmeans_modeluv.labels_ #print 'center' + str(kmeans_modeluv.cluster_centers_) #代表色 center = kmeans_modeluv.cluster_centers_ print(center) #離散化 ps = np.array([[255,255,255],[0,0,0],[159,160,160],[255,0,0],[0,0,255],[0,105,62],[255,241,0],[235,97,0],[241,158,194],[146,7,131],[149,86,41],[128,128,0],[0,0,128]]) for i, repcolor in enumerate(center): center[i] = serch_neighbourhood(repcolor ,ps) print(center) dis_center = np.array([]) for i in range(len(center)): for j in range(len(ps)): if all(center[i] == ps[j]): dis_center = np.append(dis_center, [j]) print(dis_center) #降順 labels = kmeans_modeluv.labels_ print(np.sum(labels == 0), np.sum(labels == 1), np.sum(labels == 2), np.sum(labels == 3), np.sum(labels == 4)) print(len(labels)) ''' kmeans_modeluv = KMeans(n_clusters=5).fit(color) labelsuv = kmeans_modeluv.labels_ #print 'center' + str(kmeans_modeluv.cluster_centers_) #代表色 center = kmeans_modeluv.cluster_centers_ #print(center) img_compuv=kmeans_modeluv.cluster_centers_[kmeans_modeluv.labels_] uvlabel2 = np.c_[img_compuv,labelsuv] rows, cols = np.where(uvlabel2 != 0) np.delete(uvlabel2,rows[np.where(cols==3)],0) uv20 = np.delete(uvlabel2,np.where(uvlabel2 != 0)[0][np.where(np.where(uvlabel2 != 0)[1] == 3)],0) uv20 = uv20[0] rows, cols = np.where(uvlabel2 != 1) np.delete(uvlabel2,rows[np.where(cols==3)],0) uv21 = np.delete(uvlabel2,np.where(uvlabel2 != 1)[0][np.where(np.where(uvlabel2 != 1)[1] == 3)],0) uv21 = uv21[0] rows, cols = np.where(uvlabel2 != 2) np.delete(uvlabel2,rows[np.where(cols==3)],0) uv22 = np.delete(uvlabel2,np.where(uvlabel2 != 2)[0][np.where(np.where(uvlabel2 != 2)[1] == 3)],0) uv22 = uv22[0] rows, cols = np.where(uvlabel2 != 3) np.delete(uvlabel2,rows[np.where(cols==3)],0) uv23 = np.delete(uvlabel2,np.where(uvlabel2 != 3)[0][np.where(np.where(uvlabel2 != 3)[1] == 3)],0) uv23 = uv23[0] rows, cols = np.where(uvlabel2 != 4) np.delete(uvlabel2,rows[np.where(cols==3)],0) uv24 = np.delete(uvlabel2,np.where(uvlabel2 != 4)[0][np.where(np.where(uvlabel2 != 4)[1] == 3)],0) uv24 = uv24[0] uv20 = np.delete(uv20,3) uv21 = np.delete(uv21,3) uv22 = np.delete(uv22,3) uv23 = np.delete(uv23,3) uv24 = np.delete(uv24,3) #uv24 = np.delete(uv24, 2) labels = kmeans_modeluv.labels_ uv20 = np.append(uv20, np.sum(labels == 0)/len(labels)) uv21 = np.append(uv21, np.sum(labels == 1)/len(labels)) uv22 = np.append(uv22, np.sum(labels == 2)/len(labels)) uv23 = np.append(uv23, np.sum(labels == 3)/len(labels)) uv24 = np.append(uv24, np.sum(labels == 4)/len(labels)) #uv20 = np.array([uv20]) arr = np.empty((0,4), int) arr = np.append(arr, np.array([uv20]), axis=0) arr = np.append(arr, np.array([uv21]), axis=0) arr = np.append(arr, np.array([uv22]), axis=0) arr = np.append(arr, np.array([uv23]), axis=0) arr = np.append(arr, np.array([uv24]), axis=0) #print(arr) daihyousp = arr[arr[:,3].argsort()[::-1],:] #print(daihyousp) daihyouspi = np.delete(daihyousp, 3, 1) print(daihyousp) per_list = daihyousp[:,[3]] #print(daihyousp) #離散化 ps = np.array([[255,255,255],[0,0,0],[159,160,160],[255,0,0],[0,0,255],[0,105,62],[255,241,0],[235,97,0],[241,158,194],[146,7,131],[149,86,41],[128,128,0],[0,0,128]]) for i, repcolor in enumerate(daihyouspi): daihyouspi[i] = serch_neighbourhood(repcolor ,ps) dis_center = np.array([]) for i in range(len(daihyouspi)): for j in range(len(ps)): if all(daihyouspi[i] == ps[j]): dis_center = np.append(dis_center, [j]) return dis_center,per_list def color_point(img_name): center, per_list = color_detection(img_name) target = np.array([center]) clf = joblib.load('clf.pkl') point = clf.predict(target) return center, per_list, point #center, per_list, point = color_point('kondate.jpg') #print(center, per_list, point) ```
{ "source": "jphacks/KB_1915", "score": 3 }
#### File: flask_app/api/mojioko.py ```python from flask_app import config import requests import base64 import json def mojioko_main(img_url): img_base64 = img_to_base64("flask_app/static/img/kb-1915.png") # img_base64 = img_url_to_base64(img_url) result = request_cloud_vison_api(img_base64) text_r = result["responses"][0]["fullTextAnnotation"]["text"] return text_r # APIを呼び、認識結果をjson型で返す def request_cloud_vison_api(image_base64): api_url = config.MURL + config.MKEY req_body = json.dumps({ 'requests': [{ 'image': { 'content': image_base64.decode('utf-8') # jsonに変換するためにstring型に変換する }, 'features': [{ 'type': 'TEXT_DETECTION', 'maxResults': 10, }] }] }) res = requests.post(api_url, data=req_body) return res.json() # 画像読み込み def img_to_base64(filepath): with open(filepath, 'rb') as img: img_byte = img.read() return base64.b64encode(img_byte) def img_url_to_base64(img_url): img_con = requests.get(img_url).content return base64.b64encode(img_con) ```
{ "source": "jphacks/NG_1703", "score": 2 }
#### File: NG_1703/webui/app.py ```python import komagen_sd_client from flask import Flask, render_template, abort from flaski.models import WikiContent import komates app = Flask(__name__) app.config['DEBUG'] = True @app.route("/") def index(): contents = WikiContent.query.all() return render_template("index.html", contents = contents) @app.route("/", methods=["POST"]) def callkomagen(): koma = komates.komagen() return None if __name__ == "__main__": app.run() ``` #### File: webui/flaski/database.py ```python from sqlalchemy import create_engine from sqlalchemy.orm import scoped_session, sessionmaker from sqlalchemy.ext.declarative import declarative_base import os databese_file = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'wiki.db') engine = create_engine('sqlite:///' + databese_file, convert_unicode=True) db_session = scoped_session(sessionmaker(autocommit=False, autoflush=False, bind=engine)) Base = declarative_base() Base.query = db_session.query_property() def init_db(): import flaski.models Base.metadata.create_all(bind=engine) ```
{ "source": "jphacks/NG_1707", "score": 3 }
#### File: src/scripts/drunkjudge.py ```python import numpy as np import cv2 import sys def drunkjudge(file_name): # 画像の読み込み img_color = cv2.imread(file_name) # RGB値をそれぞれ抽出 imgR = img_color[:,:,2] imgG = img_color[:,:,1] imgB = img_color[:,:,0] average_color_per_row = np.average(img_color,axis=0) average_color = np.average(average_color_per_row, axis=0) average_color = np.uint8(average_color) average_sum = int(average_color[1])+int(average_color[0])+int(average_color[2]) average_judge = (int(average_color[1])+int(average_color[0])) / float(average_color[2]) #average_color_img = np.array([[average_color]*500]*500, np.uint8) #cv2.imshow('average',average_color_img) # 何かしらのキーを押せばwindowを閉じる #if cv2.waitKey(0): # cv2.destroyAllWindows() if average_judge <= 1.2 : return -1 elif average_judge <= 1.25 : return 0 else : return 1 ``` #### File: src/scripts/trimming.py ```python import cv2 # @brief 画像を正方形にトリミングする # # @param[in] image 画像情報を扱うnumpy.ndarray # @param[in] top トリミングしたい矩形の左上の頂点のy座標 # @param[in] left トリミングしたい矩形の左上の頂点のx座標 # @param[in] width トリミングしたい矩形の幅 # @param[in] height トリミングしたい矩形の高さ # @param[in] file_name トリミングする画像の名前 # @param[in] serial_number トリミングする画像の通し番号 # # @return image_name トリミング後の画像のファイル名 def trimming(image, top, left, width, height, file_name, serial_number): image_name = file_name+str(serial_number)+".png" # 矩形を正方形に変換 if(height > width): height -= (height - width) / 2 top += (height - width) / 2 else: width -= (width - height) / 2 left += (width - height) / 2 # 画像を256*256にトリミング trim = image[top:top+height, left:left+width] size = (256, 256) trim = cv2.resize(trim, size) cv2.imwrite(image_name,trim) return image_name ```
{ "source": "jphacks/NG_1807", "score": 3 }
#### File: jphacks/NG_1807/record.py ```python import pyaudio import wave # import numpy as np def record_start(): CHUNK = 1024 FORMAT = pyaudio.paInt16 CHANNELS = 2 RATE = 44100 RECORD_SECONDS = 4 WAVE_OUTPUT_FILENAME = "output.wav" p = pyaudio.PyAudio() stream = p.open(format = FORMAT, channels = CHANNELS, rate = RATE, input = True, frames_per_buffer = CHUNK) print("recording") frames = [] for i in range(0,int(RATE / CHUNK * RECORD_SECONDS)): data = stream.read(CHUNK) frames.append(data) # buf = np.frombuffer(data,dtype="int16") # frames.append(b''.join(buf[::3])) print("done recording") stream.stop_stream() stream.close() p.terminate() wf = wave.open(WAVE_OUTPUT_FILENAME,'wb') wf.setnchannels(CHANNELS) wf.setsampwidth(p.get_sample_size(FORMAT)) wf.setframerate(RATE) wf.writeframes(b''.join(frames)) wf.close() if __name__ == "__main__": record_start() ```
{ "source": "jphacks/NG_1901", "score": 3 }
#### File: NG_1901/noti_purchase/list_other_picture.py ```python import requests import re from bs4 import BeautifulSoup #関数serch_pictureの引数に消耗品を入力して実行すると、その消耗品が映った画像のURLが1つ出力されます def serch_picture(serch_word): url = "https://search.nifty.com/imagesearch/search?select=1&q=%s&ss=up" keyword = serch_word r = requests.get(url%(keyword)) soup = BeautifulSoup(r.text,'lxml') imgs = soup.find_all('img',src=re.compile('^https://msp.c.yimg.jp/yjimage')) #条件により検索ワードに近い画像が20個くらいに絞られています #countにより無理やり一個めの要素だけ出力しています count = 0 for img in imgs: if count == 1: break print(img['src']) count = count+1 ``` #### File: NG_1901/noti_purchase/test.py ```python from bs4 import BeautifulSoup import requests #アマゾンで検索したい言葉とページ数を引数に取る関数 検索結果の「商品名」と「値段」「URL」をCSVにまとめて保存してくれる def serch_amazon(serch_word, get_pages): #引数の中に空白があったとき、空白を+に置き換える words = serch_word.split(" ") serch_words = words[0] for i in range(1, len(words)): serch_words = serch_words + "+" + words[i] #スクレイピングするサイトのURLを作成 url = "https://www.amazon.co.jp/s/ref=nb_sb_noss_2?__mk_ja_JP=カタカナ&url=search-alias%3Daps&field-keywords=" + serch_words + "&rh=i%3Aaps%2Ck%3A" + serch_words #リストを作成 columns = ["Name", "Price", "Url"] #次のページに行く際にこのURLが必要 amazon = "https://www.amazon.co.jp" #ページ番号 page = 1 #ページ数が足りないときはエラーではなく、そのページ以降はないことを知らせてくれる try: #「 get_pages」のページ分だけ繰り返す while page < get_pages + 1: #何ページ目を取得している最中なのか表示 print(page,"ページを取得中.....") #作成したURLからHTMLを取得 response = requests.get(url).text #BeautifulSoupの初期化 soup = BeautifulSoup(response, 'html.parser') #どこの部分を取得するか指定 items = soup.find_all('li', {"class":"s-result-item"}) #いくつかの商品を同時に取得しているので商品ごとに商品名と値段とURLを取得 for item in items: #商品名付近のHTML取得 name = item.h2 #商品の値段付近のHTML取得 price = item.find("span", {"class":"a-size-base"}) #商品名の情報も値段の情報も含まないHTMLがあってそのままだとエラーが起きたので、Noneになる部分は除外 if name != None and price != None: #商品名取得 nameTitle = name.string #商品の値段取得 priceText = price.string #商品のURL取得 item_url = item.a.get("href") #ページの下の方の「次のページ」のURLを取得 NextUrl = soup.find('span', {"class":"pagnRA"}) #Url = NextUrl.a.get("href") #そのままでは次のページに行けないのでちゃんとしたものに変更 #url = amazon + Url #次のページに行くので変数pageの値を1大きくする page += 1 except: #取得しようと思ったページ数まで到達する前に終わったらそのページ以降はなかったと出力 print(page+1 + "以降のページはなかった") finally: #終わったことを出力 print(url) print(item_url) print("finish") serch_amazon("ティッシュ", 1) ```
{ "source": "jphacks/NG_1902", "score": 3 }
#### File: NG_1902/rasp/getschedule.py ```python import urllib.request #do with python3 import json def getsched(token): url= 'https://us-central1-come-in-pillow.cloudfunctions.net/getSchedule?token={}'.format(token) req = urllib.request.Request(url) with urllib.request.urlopen(req) as res: body=res.read() return(body.decode()) if __name__ == '__main__': f = open("reference.json",'r') ref = json.load(f) f.close() print(getsched(ref["token"])) ```
{ "source": "jphacks/NG_1903", "score": 2 }
#### File: jphacks/NG_1903/app.py ```python from flask import Flask, jsonify, request, redirect import json import time import datetime, pytz import os from google.auth.transport import requests import hashlib from google.oauth2 import id_token from flask_cors import CORS import firebase_admin from firebase_admin import credentials, db from flask_login import ( LoginManager, current_user, login_required, login_user, logout_user, ) from oauthlib.oauth2 import WebApplicationClient import uuid import urllib from batch import update_rate, update_rank, update_team cred = credentials.Certificate("tapidora-63973-firebase-adminsdk-lzcfe-fb0238ec1f.json") firebase_admin.initialize_app(cred, { 'databaseURL': 'https://tapidora-63973.firebaseio.com/' }) app = Flask(__name__) CORS(app) # tokenの有効時間(秒) TOKEN_VALID_TIME = 1.0 * 60.0 * 60.0 * 24 * 7 * 100 # GOOGLE_CLIENT_ID GOOGLE_CLIENT_ID = '142703424738-kkqmrm6eejec9hnkdglr7npotj1ijqr4.apps.googleusercontent.com' def token_verified(token, userid): ref = db.reference('/Users/' + userid) user_info = ref.get() db_token = user_info['apiToken'] if token[0:7] == "Bearer ": token = token[7:] if db_token != token: return False valid_time = user_info['valid_time'] if valid_time < time.time(): return False return True @app.route('/login', methods=["POST"]) def verify_token(): if request.method == "POST": user_token = json.loads(request.get_data())['token'] try: # Specify the CLIENT_ID of the app that accesses the backend: idinfo = id_token.verify_oauth2_token(user_token, requests.Request(), GOOGLE_CLIENT_ID) # Or, if multiple clients access the backend server: # idinfo = id_token.verify_oauth2_token(token, requests.Request()) # if idinfo['aud'] not in [CLIENT_ID_1, CLIENT_ID_2, CLIENT_ID_3]: # raise ValueError('Could not verify audience.') if idinfo['iss'] not in ['accounts.google.com', 'https://accounts.google.com']: raise ValueError('Wrong issuer.') # If auth request is from a G Suite domain: # if idinfo['hd'] != GSUITE_DOMAIN_NAME: # raise ValueError('Wrong hosted domain.') # ID token is valid. Get the user's Google Account ID from the decoded token. # sub is user primary id googleId = idinfo['sub'] email_verified = idinfo['email_verified'] # email検証がTrueかどうか if not email_verified: raise ValueError("email_verified false") # クライアントの検証 if idinfo['aud'] != GOOGLE_CLIENT_ID: raise ValueError("Bad") email = idinfo['email'] userName = idinfo['name'] now_time = time.time() global TOKEN_VALID_TIME valid_time = now_time + TOKEN_VALID_TIME token_org_str = userName + googleId + str(valid_time) return_token = hashlib.sha256(token_org_str.encode()).hexdigest() ref = db.reference('/Users') userId = "" snapshot = ref.order_by_child("googleId").equal_to(googleId).get() if not snapshot: user_ref = ref.push() userId = user_ref.key else: if len(snapshot) == 1: # 普通にやっていればgoogleIdは重複しない for key in snapshot: userId = key user_ref = ref.child(userId) batch_ref = db.reference('/batch') batch_data = batch_ref.get() weekId = batch_data['current_week_id'] weekId = str(weekId) user_ref.update({ 'apiToken': return_token, 'valid_time': valid_time, 'userName': userName, 'email': email, 'googleToken' : user_token, "googleId" : googleId }) if 'totalDistance' not in user_ref.get(): user_ref.update({ 'totalDistance' : 0 }) if 'before_pull_time' not in user_ref.get(): default_push_time = nowtime_to_rcf3339() user_ref.update({ 'before_pull_time': default_push_time }) if 'weeklyDistance' not in user_ref.get(): weeklyDistance_ref = user_ref.child('weeklyDistance') weeklyDistance_ref.update({ weekId: 0 }) else: weeklyDistance_ref = user_ref.child('weeklyDistance') if weekId not in weeklyDistance_ref.get(): weeklyDistance_ref.update({ weekId : 0 }) now_week_tames = db.reference('/Teams/' + weekId) new_Team_ref = now_week_tames.push() new_TeamId = new_Team_ref.key # 1人チームを作成 new_Team_ref.update({ "teamGoal" : 10, "users": { "1" : { "userId" : userId } } }) user_ref.update({ 'teamId' : { weekId : new_TeamId }, 'rate' : { weekId : 0 } }) ret_data = { 'userId' : userId, 'apiToken' : return_token, 'teamID' : new_TeamId, 'userName' : userName, 'verified' : True } print(ret_data) return jsonify(ret_data) except Exception as e: print(e) # Invalid token ret_data = { 'userId' : "Notset", 'apiToken' : 'Not<PASSWORD>', "teamID": "Notset", "userName": "Notset", 'verified' : False } return ret_data @app.route('/user',methods=['OPTION']) def preflight(): return "OK" @app.route('/user/<userId>', methods=['GET']) def get_user_info(userId): ret_data = { 'rate': -99, 'weeklyDistance': -99, 'totalDistance': -99, 'token_verified_flag': False } if request.method == 'GET': # posted_json = json.loads(request.get_data()) # token = posted_json['apiToken'] # userId = posted_json['userId'] token = request.headers.get("Authorization") if not token_verified(token=token, userid=userId): return ret_data user_ref = db.reference('/Users/' + userId) user_info = user_ref.get() batch_ref = db.reference('/batch') batch_data = batch_ref.get() totalDistance = user_info['totalDistance'] rate_ref =user_ref.child('rate') weekId = batch_data['current_week_id'] weekId = str(weekId) rate_data = rate_ref.get() rate = rate_data[weekId] weeklyDistance = user_info['weeklyDistance'][weekId] ret_data = { 'rate' : rate, 'weeklyDistance': weeklyDistance, 'totalDistance': totalDistance, 'token_verified_flag': True } print(ret_data) return jsonify(ret_data) @app.route('/team',methods=['OPTION']) def team_preflight(): return "OK" @app.route('/team/<teamId>', methods=["GET"]) def get_team_info(teamId): ret_data = { 'teamGoal': -99, 'teamMember' : [ { 'userName': 'dummy', 'userData':{ 'rate': -50, 'weeklyDistance': -50, 'totalDistance': -50 } } ], 'token_verified_flag': False } if request.method == "GET": # posted_json = json.loads(request.get_data()) # token = posted_json['apiToken'] # userid = posted_json['userId'] token = request.headers.get("Authorization") userId = request.headers.get("UserID") if not token_verified(token=token, userid=userId): return ret_data user_ref = db.reference('/Users/' + userId) user_info = user_ref.get() batch_ref = db.reference('/batch') batch_data = batch_ref.get() user_teamId_ref = user_ref.child('teamId') weekId = batch_data['current_week_id'] weekId = str(weekId) teamId = user_teamId_ref.get()[weekId] teams_teamId_ref = db.reference('Teams/' + weekId + '/' + teamId) team_data = teams_teamId_ref.get() teamGoal = team_data['teamGoal'] users = team_data['users'] team_menber = [] for index in users: if index == None: continue loop_user_id = index["userId"] loop_user_ref = db.reference('Users/' + loop_user_id) loop_user_data = loop_user_ref.get() loop_user_rate = loop_user_data['rate'][weekId] loop_user_weeklyDistance = loop_user_data['weeklyDistance'][weekId] loop_user_totalDistance = loop_user_data['totalDistance'] loop_userName = loop_user_data['userName'] team_menber_add_data = { "userName": loop_userName, "userData":{ "rate": loop_user_rate, "weeklyDistance": loop_user_weeklyDistance, "totalDistance": loop_user_totalDistance } } team_menber.append(team_menber_add_data) ret_data = { "teamGoal": teamGoal, "teamMember" : team_menber } return jsonify(ret_data) # google fit とかでデータを更新した時に呼んで欲しい関数 # 最後にデータを送信した時間を更新します def push_data_time_update(userId): user_ref = db.reference('/Users/' + userId) user_ref.update({ "before_pull_time" : nowtime_to_rcf3339() }) # 今の所タイムゾーンは全て日本 def nowtime_to_rcf3339(): dt = datetime.datetime.now(tz=pytz.timezone('US/Pacific')) ret_str = dt.strftime('%Y/%m/%dT%H:%M:%S%z') return ret_str # デバッグ用 @app.route("/") def dummy_data_create(): ref = db.reference() names = ["Tom", "Ant", "Ken", "Bob", "Rinrin", "Sayo", "Rute", "Rob"] import random for index, userName in enumerate(names): apiToken = "apiToken" googleToken = "googleToken" totalDistance = 0 batch_ref = db.reference('/batch') batch_data = batch_ref.get() user_teamId_ref = user_ref.child('teamId') weekId = batch_data['current_week_id'] weekId = str(weekId) rate = { weekId : random.randint(0, 500) } weeklyDistance = { weekId : random.randint(0, 20) } user_teamId = "402" if index >= len(names)/2: user_teamId = "5000" teamId = { weekId : user_teamId } userId = hashlib.sha256(userName.encode()).hexdigest() push_data = { "userName": userName, "googleToken": googleToken, "apiToken" : apiToken, "totalDistance" : totalDistance, "googleId" : "googleId" + str(index), # "rate" : rate, # "weeklyDistance" : weeklyDistance, "teamId" : teamId, "before_pull_time" : nowtime_to_rcf3339() } user_ref = db.reference("/Users/" + userId) user_ref.update(push_data) team_ref = db.reference("/Teams/" + weekId + '/' + user_teamId + "/users/") # team_ref.update({ # "teamGoal": random.randint(100, 200) # }) team_ref = team_ref.child(str((index)%4 + 1 )) team_ref.update({ "teamGoal": 100, "userId" : userId }) return "OK" @app.route("/test") def test(): ref = db.reference('/Users') googleId = "45" snapshot = ref.order_by_child("googleId").equal_to(googleId).get() if not snapshot: user_ref = ref.push() userId = user_ref.key else: if len(snapshot) == 1: # 普通にやっていればgoogleIdは重複しない for key in snapshot: userId = key user_ref = ref.child(userId) return snapshot @app.route('/pull/google-fit') def pull_google_fit_data(): import requests # todo: アクセストークン失効時の処理 # token検証 # token = request.headers.get("Authorization") user_id = request.headers.get("UserID") # if not token_verified(token=token, userid=user_id): # return "ng" # todo: remove # user_id = 'b3cd90b170e623ff13c227330f5a3e0de0d3148801119ebcc4472b9e099dca36' # google_access_token = '' # user_ref = db.reference('/Users/'+user_id) # user_info = user_ref.get() user_ref = db.reference('/Users/' + user_id) user_info = user_ref.get() google_access_token = user_info['googleToken'] if 'before_pull_time' in user_info: before_pull_time = user_info['before_pull_time'] # before_pull_time = '2018-12-31T23:59:59-08:00' else: before_pull_time = '2018-12-31T23:59:59-08:00' latest_pull_time = nowtime_to_rcf3339() push_data_time_update(user_id) res = requests.get( 'https://www.googleapis.com/fitness/v1/users/me/sessions', params={ 'startTime': before_pull_time, }, headers={ 'Authorization': 'Bearer ' + google_access_token } ) all_sessions = json.loads(res.text)['session'] running_sessions = [] for sessions in all_sessions: if sessions['activityType'] == 8 or sessions['activityType'] == 57 or sessions['activityType'] == 58: running_sessions.append(sessions) pulled_running_session = running_sessions[0] # todo session_start_time_millis = pulled_running_session['startTimeMillis'] session_end_time_millis = pulled_running_session['endTimeMillis'] url = 'https://www.googleapis.com/fitness/v1/users/me/dataset:aggregate' headers = { 'Authorization': 'Bearer ' + google_access_token } post_body = { "aggregateBy": [{ "dataTypeName": "com.google.distance.delta", "dataSourceId": "derived:com.google.distance.delta:com.google.android.gms:merge_distance_delta" }], "startTimeMillis": session_start_time_millis, "endTimeMillis": session_end_time_millis } session_dataset = json.loads(requests.post(url, headers=headers, json=post_body).text)['bucket'][0]['dataset'][0] ran_distance_km = float(session_dataset['point'][0]['value'][0]['fpVal'])/1000 batch_ref = db.reference('/batch') batch = batch_ref.get() current_week_id = batch['current_week_id'] current_user_weekly_distance = float(0) if 'weeklyDistance' in user_info: if current_week_id in user_info['weeklyDistance']: current_user_weekly_distance = float(user_info['weeklyDistance'][current_week_id]) user_weekly_distance = current_user_weekly_distance + ran_distance_km ref = user_ref.child('weeklyDistance') ref.update({ current_week_id: user_weekly_distance }) current_user_total_distance = 0 if 'totalDistance' in user_info: current_user_total_distance = float(user_info['totalDistance']) user_total_distance = current_user_total_distance + ran_distance_km user_ref.update({ 'totalDistance': user_total_distance }) return {"status": "ok"} @app.route("/cron") def cron_run(): batch_ref = db.reference('/batch') batch = batch_ref.get() # ロック状態にする updates = {} updates['/is_running'] = True batch_ref.update(updates) current_week_id = batch['current_week_id'] next_week_id = str(uuid.uuid4()) # レート更新 update_rate.update_rate(current_week_id=current_week_id, next_week_id=next_week_id) # ランキング生成 update_rank.update_rank(current_week_id=current_week_id, next_week_id=next_week_id) # チームマッチング update_team.update_team(current_week_id=current_week_id, next_week_id=next_week_id) # week_idの更新 updates = {} updates['/current_week_id'] = next_week_id batch_ref.update(updates) # ロック状態を解除 updates = {} updates['/is_running'] = False batch_ref.update(updates) return jsonify({'result': 'ok'}) if __name__ == '__main__': app.run() ``` #### File: NG_1903/batch/update_rank.py ```python import firebase_admin from firebase_admin import credentials from firebase_admin import db def update_rank(current_week_id, next_week_id): ranks_ref = db.reference('/ranks') ranking = {} users_ref = db.reference('/Users') users = users_ref.get() for users_key in users: user = users[users_key] ranking[users_key] = { "rate": user['rate'][next_week_id], "name": user['userName'] } ranking = sorted(ranking.items(), key=lambda x: x[1]['rate'], reverse=True) print(ranking) rank_num = 1 rank = {} for rank_data in ranking: rank[str(rank_num)] = { "user_id": rank_data[0], "rate": rank_data[1]['rate'], "name": rank_data[1]["name"] } rank_num += 1 ranks_ref.child(next_week_id).set( rank ) ``` #### File: NG_1903/batch/update_team.py ```python import random import uuid import firebase_admin from firebase_admin import credentials from firebase_admin import db NUM_TEAM_MEMBER = 3 BLOCK_SIZE = NUM_TEAM_MEMBER * 2 def create_team(new_team_id, current_week_id, next_week_id, arr_members_id): users_ref = db.reference('/Users') users = users_ref.get() teams_ref = db.reference('/Teams') team_goal = 0 members = {} member_index = 1 for member_id in arr_members_id: team_goal += users[str(member_id)]['weeklyDistance'][str(current_week_id)] members[member_id] = { "userId": member_id } member_index += 1 teams_ref.child(next_week_id).child(new_team_id).set({ "teamGoal": team_goal, "users": members }) def update_team(current_week_id, next_week_id): ranks_ref = db.reference('/ranks') ranks = ranks_ref.get() ranks = ranks[next_week_id] ranks = [x for x in ranks if x is not None] # 謎None対策 ind = 0 _ranks = {} for rank in ranks: _ranks[ind] = ranks[ind] ind += 1 num_full_member_block = len(_ranks) / BLOCK_SIZE for i in range(int(num_full_member_block)): tmp = {} # ブロックサイズのユーザを取り出す for j in range(BLOCK_SIZE): index = i * int(num_full_member_block) + j tmp[index] = _ranks[index] # チームをつくる for j in range(int(BLOCK_SIZE / NUM_TEAM_MEMBER)): team_members_keys = random.sample(list(tmp.keys()), NUM_TEAM_MEMBER) team_members_ids = [] for key in team_members_keys: team_members_ids.append(_ranks[key]['user_id']) tmpi = sorted(team_members_keys, reverse=True) for key in tmpi: del tmp[key] del _ranks[key] create_team(new_team_id=str(uuid.uuid4()), current_week_id=current_week_id, next_week_id=next_week_id, arr_members_id=team_members_ids) # len(ranks) <= NUM_TEAM_MEMBERなときは、ブロック関係なく組んでしまう if len(ranks) <= NUM_TEAM_MEMBER: team_members_keys = random.sample(list(_ranks.keys), NUM_TEAM_MEMBER) team_members_ids = [] for key in team_members_keys: team_members_ids.append(_ranks[key]['user_id']) tmpi = sorted(team_members_keys, reverse=True) for key in tmpi: del ranks[key] create_team(new_team_id=str(uuid.uuid4()), current_week_id=current_week_id, next_week_id=next_week_id, arr_members_id=team_members_ids) # 残り team_members_keys = list(_ranks.keys()) team_members_ids = [] tmpi = sorted(team_members_keys, reverse=True) for key in tmpi: team_members_ids.append(_ranks[key]['user_id']) del _ranks[key] create_team(new_team_id=str(uuid.uuid4()), current_week_id=current_week_id, next_week_id=next_week_id, arr_members_id=team_members_ids) ```
{ "source": "jphacks/NG_1907", "score": 2 }
#### File: NG_1907/client/client_test.py ```python import requests import json URL = '' def send_bpm(userID, musicID, BPM): #POSTパラメータは二つ目の引数に辞書で指定する response = requests.post( URL, json.dumps({'userID': userID, 'musicID': musicID, 'BPM': BPM}), headers={'Content-Type': 'application/json'}) if __name__=='__main__': send_bpm('5555', '144', '20') ``` #### File: jphacks/NG_1907/MusicSelect.py ```python import random import math # テスト用 # 現在の時刻(開始時刻からの経過時間) now = 54 from datetime import datetime # テスト用 textTime = datetime.now() textStartTime = 1571516344.799226 # timestampをunixtimeに変換 def timeChanger(textTime): return textTime.timestamp() # 経過時間を演算 def ElapsedTime(now): return math.floor(timeChanger(textTime) - textStartTime) # 時刻ごとの盛り上がり度の登録時の演算 (修正あり) # 盛り上がり度 = 現在時刻でのbpmの平均 と考える def GetExcitementForTime(now): # 引数は現在の時刻(開始時刻からの経過時間) bpmSum = 0 # UserIDごとに[bpm, bpm, bpm, ....]の形式で配列を生成 (修正) listDataOfMusicData = [] # 時刻ごとのbpmの平均 for data in listDataOfMusicData: bpmSum += data[1] bpmAverage = bpmSum / len(listDataOfMusicData) return [now, bpmAverage] # 共分散 def GetCovariance(listData): averageX = 0 averageY = 0 for data in listData: averageX += data[0] averageY += data[1] averageX = averageX / len(listData) averageY = averageY / len(listData) covariance = 0 for data in listData: covariance += (data[0] - averageX) * (data[1] - averageY) return covariance / len(listData) # 分散 def GetDispersion(listData): averageX = 0 for data in listData: averageX += data[0] averageX = averageX / len(listData) dispersion = 0 for data in listData: dispersion += (data[0] - averageX) * (data[0] - averageX) return dispersion / len(listData) # 最小二乗法による回帰直線の傾きを演算 (修正あり) def LeastSquareMethod(num): # excitementデータベースから取得した盛り上がり度データ(新しい順) excitementData = [[5, 100], [6, 80], [7, 90]] return GetCovariance(excitementData[:num]) / GetDispersion(excitementData[:num]) # print(LeastSquareMethod(5)) # 乱数 def RandomNumber(num): print(num) return random.randrange(num) # 同じ系統の曲を抽出(論理積) def musicSiftAnd(data, bpm, genre): musicData = data resultData = [] for d in musicData: if d[1] == bpm and d[2] == genre: resultData.append(d) return resultData # 同じ系統の曲を抽出(論理和) def musicSiftOr(data, bpm, genre): musicData = data resultData = [] for d in musicData: if d[1] == bpm or d[2] == genre: resultData.append(d) return resultData # テスト用 nowMusicID = 100 # 選曲関数 (修正あり) def SelectMusic(nowMusicID): # 引数は現在の流れている曲のID # 引数のnowMusicIDから現在の曲のbpmを取得する musicData = [[222, 1, "free"], [100, 1, "free"], [333, 2, "hhh"], [4444, 3, "ggg"], [555, -1, "free"], [999, 3, "free"], [888, 2, ""]] nowMusicBpmType = 0 nowMusicGenre = "" count = 0 for data in musicData: if data[0] == nowMusicID: nowMusicBpmType = data[1] nowMusicGenre = data[2] musicData.pop(count) count += 1 # 最近5回分のデータの傾向を演算 inclination = LeastSquareMethod(5) # 次の曲のbpmを決定 if nowMusicBpmType == 3: if inclination < 0: nowMusicBpmType -= 2 elif nowMusicBpmType == -1: if inclination > 0: nowMusicBpmType += 1 else: if inclination > 0.5: nowMusicBpmType += 1 elif inclination < 0.5: nowMusicBpmType -= 1 # musicデータベースからmusicBpmTypeとジャンルが一致するmusicDataのlist musicIdListOfMusicBpmType = musicSiftAnd(musicData ,nowMusicBpmType, nowMusicGenre) if len(musicIdListOfMusicBpmType) == 0: musicIdListOfMusicBpmType = musicSiftOr(musicData ,nowMusicBpmType, nowMusicGenre) return musicIdListOfMusicBpmType[RandomNumber(len(musicIdListOfMusicBpmType))][0] print(SelectMusic(nowMusicID)) # ------------------------------------------------------------------------------- # 以下はいらなくなった関数たち # # 基準値(大)を抽出 # def GetStandardMax(listData, i): # listSort = sorted(listData, reverse = True) # maxList = listSort[:i] # return sum(maxList) / len(maxList) # # 平均値を出力 # def GetAverage(listData): # return sum(listData) / len(listData) # # 個人の盛り上がり度を曲内で演算 # def GetExcitementPoint(listData): # i = 0 # standard = GetStandardMin(listData, 5) # excitementPointList = [] # while i < len(listData): # if listData[i] - standard > 10: # excitementPointList.append(i) # i += 1 # return excitementPointList # # 個人の盛り上がり度を1曲単位で演算 # def GetExcitementFull(listData): # standardMin = GetStandardMin(listData, 10) # standardMax = GetStandardMax(listData, 10) # average = GetAverage(listData) # return standardMax - standardMin + average # # 全体の盛り上がり度を1曲単位で演算 # def GetExcitementFullAll(musicID): # excitementSum = 0 # for data in listDataOfMusicData: # excitementSum += GetExcitementFull(data[1]) # return [musicID, excitementSum / len(listDataOfMusicData)] # # 曲のランキング # musicRanking = [] # # 曲をランキングする関数 # def MusicRanking(musicID): # musicData = GetExcitementFullAll(musicID) # i = 0 # while i < len(musicRanking):7 # if musicRanking[i][1] < musicRanking[1]: # musicRanking.insert(i, musicData) # break # i += 1 # if i == len(musicRanking): musicRanking.append(musicData) # if len(musicRanking) > 10: musicRanking.pop(10) # マッチング用リスト追加関数 # def AscendingQuickSort(matchingList): # if len(matchingList) < 2: # return matchingList # head = matchingList[0][1] # left = [] # middle = [] # right = [] # for data in matchingList: # if data[1] < head: left.append(data) # elif data[1] == head: middle.append(data) # else: right.append(data) # return AscendingQuickSort(left) + middle + AscendingQuickSort(right) # 変位抽出関数 # def DisplacementChanger(listData): # i = 0 # displacementList = [] # while i < len(listData) - 2: # displacementList.append(listData[i + 1] - listData[i]) # i += 1 # return displacementList # displacementList1 = DisplacementChanger(test1) # displacementList2 = DisplacementChanger(test2) # print(displacementList1) # print("\n") # print(displacementList2) # print("\n") # def SelectMusic2(nowMusicID): # music = [] # return music[RandomNumber(len(music))] ``` #### File: NG_1907/RPi/emove_json.py ```python import json import requests JSON_FILE_PATH = '/home/pi/EMOVE/test_bpm.json' SEND_URL = 'https://jphacks_noblesseoblige07.serveo.net/bpm' def send_bpm(userID, twitterID, BPM, name, age, sex): #POSTパラメータは二つ目の引数に辞書で指定する dict = json.dumps({ 'userID': userID, 'twitterID': twitterID, 'BPM': BPM, 'name': name, 'age': age, 'sex': sex}) print(dict) response = requests.post( SEND_URL, dict, headers={'Content-Type': 'application/json'}) def save_music_list_json(): dic = {} musicID = '4567' name = 'no1' genre = 'Pop' part = { "Name": name, "Genre": genre } dic[musicID] = part a = open(JSON_FILE_PATH, 'w') json.dump(dic, a) def send_json(path, url): file = {'upload_file': open(path, 'rb')} headers = {'content-type': 'application/json'} res = requests.post(url, files=file, headers=headers) def main(): userID = '3125' BPM = 70 twitterID = '@shikishijun' name = 'shikishima' age = 22 sex = 'male' send_bpm(userID, twitterID, BPM, name, age, sex) if __name__ == "__main__": main() ```
{ "source": "jphacks/NG_1911", "score": 3 }
#### File: NG_1911/raspberrypi/client.py ```python import urllib.request import threading import json import wiringpi as pi , time BASE_URL = "http://ec2-13-114-247-66.ap-northeast-1.compute.amazonaws.com" pi.wiringPiSetupGpio() class Motor: def __init__(self, OUTPUT_PINS, TIME_SLEEP): self.OUTPUT_PINS = OUTPUT_PINS self.TIME_SLEEP = TIME_SLEEP self.is_open = False # GPIOピンを出力モードにする for OUTPUT_PIN in self.OUTPUT_PINS: pi.pinMode(OUTPUT_PIN, pi.OUTPUT) def open(self): if self.is_open == True: return for k in range(128): for p in range (4): for i in range (4): if p == i: pi.digitalWrite (self.OUTPUT_PINS [i], pi.HIGH) else : pi.digitalWrite (self.OUTPUT_PINS [i], pi.LOW) time.sleep (self.TIME_SLEEP) self.is_open = True def close(self): if self.is_open == False: return for k in range(128): for p in range (4): for i in range (4): if 3 - p == i: pi.digitalWrite (self.OUTPUT_PINS [i], pi.HIGH) else : pi.digitalWrite (self.OUTPUT_PINS [i], pi.LOW) time.sleep (self.TIME_SLEEP) self.is_open = False class Buzzer: def __init__(self, OUTPUT_PIN): self.OUTPUT_PIN = OUTPUT_PIN pi.pinMode(OUTPUT_PIN, pi.OUTPUT) self.is_buzzing = False self.thread = threading.Thread(target=self.buzz) self.thread.start() def buzz(self): while True: if self.is_buzzing == True: pi.digitalWrite (self.OUTPUT_PIN, pi.HIGH) time.sleep(1) pi.digitalWrite (self.OUTPUT_PIN, pi.LOW) time.sleep(1) def start(self): if self.is_buzzing == True: return self.is_buzzing = True def stop(self): if self.is_buzzing == False: return pi.digitalWrite (self.OUTPUT_PIN, pi.LOW) self.is_buzzing = False motor = Motor(OUTPUT_PINS=[6 , 13 , 19 , 26], TIME_SLEEP=0.002) buzzer = Buzzer(OUTPUT_PIN=4) while True: req = urllib.request.Request(BASE_URL+"/api/status") try: with urllib.request.urlopen(req) as res: data = json.loads(res.read().decode('utf-8')) print(data) # 鍵の開閉 if data["status"] == 0: motor.close() elif data["status"] == 1: motor.open() # ブザーを鳴らす if data["alert"] == 0: buzzer.stop() elif data["alert"] == 1: buzzer.start() except urllib.error.HTTPError as err: print(err.code) except urllib.error.URLError as err: print(err.reason) time.sleep(1) ```
{ "source": "jphacks/NG_1912", "score": 3 }
#### File: app/foods/models.py ```python from django.db.models import ( PositiveIntegerField, CharField, Model ) class Food(Model): name = CharField(max_length=100, unique=True) price = PositiveIntegerField(blank=True, default=0) def __str__(self): return self.name ```
{ "source": "jphacks/OK_1905", "score": 2 }
#### File: OK_1905/flask/image_process.py ```python import cv2 def canny(image): return cv2.Canny(image, 100, 200) ```
{ "source": "jphacks/ON_1801", "score": 2 }
#### File: ON_1801/src_flask/application.py ```python import sqlite3 from flask import Flask, request, jsonify, g import logging import cek import os import peewee as pe import zaim from datetime import datetime, date,timedelta db = pe.SqliteDatabase('my_database.db') class BaseModel(pe.Model): class Meta: database = db # データテーブルのモデル class User(BaseModel): id = pe.IntegerField() class ZaimAccesstoken(BaseModel): user = pe.ForeignKeyField(User, related_name='zaimaccesstokens') access = pe.CharField() class Zaim(BaseModel): id = pe.IntegerField() user = pe.ForeignKeyField(User, related_name='zaims') money = pe.IntegerField() application = Flask(__name__) logging.basicConfig() logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) clova = cek.Clova( application_id=os.environ['CLOVA_ID'], default_language="ja", debug_mode=True) @application.route('/', methods=['GET', 'POST']) def lambda_handler(event=None, context=None): logger.info('Lambda function invoked index()') return 'hello from Flask!' # /clova に対してのPOSTリクエストを受け付けるサーバーを立てる @application.route('/clova', methods=['POST']) def my_service(): body_dict = clova.route(body=request.data, header=request.headers) response = jsonify(body_dict) response.headers['Content-Type'] = 'application/json;charset-UTF-8' return response # 起動時の処理 @clova.handle.launch def launch_request_handler(clova_request): welcome_japanese = cek.Message(message="金なら残っていないぞ", language="ja") response = clova.response([welcome_japanese]) return response # WifeStatusIntentの発火箇所 @clova.handle.intent("StatusIntent") def wife_status_handler(clova_request): VALUE = (yesterday_sum() - today_sum()) print(VALUE) money_msg = clova_request.slot_value('money_chan') response = clova.response("もう一回言ってね") print(money_msg) if money_msg is not None: if money_msg == "差額": response = clova.response("先月との差額は"+str(VALUE)+"円だよ") if VALUE < 0: response = clova.response("先月との差額はマイナス"+str(VALUE)+"円だよ!使いすぎです。") elif money_msg == "残高": response = clova.response("残っていないよ") return response # 終了時 @clova.handle.end def end_handler(clova_request): # Session ended, this handler can be used to clean up logger.info("Session ended.") # 認識できなかった場合 @clova.handle.default def default_handler(request): return clova.response("Sorry I don't understand! Could you please repeat?") # zaimに問い合わせ def request_zaim_setup(): zapi = zaim.Api(consumer_key=os.environ['ZAIM_KEY'], consumer_secret=os.environ['ZAIM_SECRET'], access_token=os.environ['ACCESS_TOKEN_ZAIM'], access_token_secret=os.environ['ACCESS_TOKEN_ZAIM_SECRET']) return zapi def request_zaim_money_day(zapi,calc_days=0): d_day = datetime.today() if calc_days !=0 : if calc_days < 0 : calc_days *= -1 d_day = d_day - timedelta(days=calc_days) print(d_day.strftime('%Y-%m-%d')) day_moneys_json = zapi.money(mapping=1, start_date=d_day.strftime('%Y-%m-%d'), mode='payment', end_date=d_day.strftime('%Y-%m-%d') ) return day_moneys_json def today_sum(): return calc_money_sum(request_zaim_money_day(request_zaim_setup())) def calc_money_sum(moneys): summoney = 0 for money in moneys['money']: summoney += money['amount'] return summoney def yesterday_sum(): return calc_money_sum(request_zaim_money_day(request_zaim_setup(),-1)) if __name__ == '__main__': application.run() ```
{ "source": "jphacks/ON_1802", "score": 3 }
#### File: task_api/manage_data/read.py ```python import pandas as pd import os def json_to_data(user_id): path = './data/' file_name = str(user_id) + '.json' if os.path.isfile(path + file_name): df = pd.read_json(path + file_name) task_list = [] for _, task in df.iterrows(): user_id = task['user_id'] task_name = task['task_name'] task_info = task['task_info'] time_limit = task['time_limit'] task_dict = {'user_id':user_id, 'task_name':task_name, 'task_info':task_info, 'time_limit':time_limit} task_list.append(task_dict) return task_list else: return False # this is test if __name__ == '__main__': user_id = 1 task_data = json_to_data(user_id) print(task_data) ```
{ "source": "jphacks/ON_1804", "score": 2 }
#### File: MuscleBattle_django/ranking/views.py ```python from django.shortcuts import render # Create your views here. def ranking(request): return render(request, 'ranking/index.html') ```
{ "source": "jphacks/SD_1702", "score": 2 }
#### File: SD_1702/learnSVM/generate.py ```python import cv2 import sys import glob import os import os.path import random import numpy as np from generate_settings import ( GENERATE_PAR_IMAGE, GENERATED_IMAGE_WIDTH, GENERATED_IMAGE_HEIGHT, RANDOMIZE_RADIUS, OUTPUT_DIR, ) dic = { "1m":0, "2m":1, "3m":2, "4m":3, "5m":4, "6m":5, "7m":6, "8m":7, "9m":8, "1p":9, "2p":10, "3p":11, "4p":12, "5p":13, "6p":14, "7p":15, "8p":16, "9p":17, "1s":18, "2s":19, "3s":20, "4s":21, "5s":22, "6s":23, "7s":24, "8s":25, "9s":26, "1z":27, "2z":28, "3z":29, "4z":30, "5z":31, "6z":32, "7z":33, } def main(dirpath): absdirpath = os.path.abspath(dirpath) files = os.listdir(absdirpath + '/') jpgfiles = [] for fp in files: if fp[-4:] == '.JPG': jpgfiles.append(fp) count = len(jpgfiles) print(' * [{}] .jpg files detected. generate [{}] images.'.format(count, count * 2 * GENERATE_PAR_IMAGE)) outarray = np.empty((0,GENERATED_IMAGE_HEIGHT * GENERATED_IMAGE_WIDTH + 1), int) # print(outarray.shape) for jpgfile in jpgfiles: jpgpath = dirpath + '/' + jpgfile print(' * {}'.format(jpgpath)) tag = jpgfile[:2] if tag not in dic: print(' * unknown label: {}'.format(tag)) label = dic[tag] image = cv2.imread(jpgpath) index = 0 inv = '' for _ in range(2): for index in range(GENERATE_PAR_IMAGE): generated_image = generate(image) outjpgname = '{}_{}{}.JPG'.format(jpgfile[:-4], index, inv) outjpgpath = os.path.join(OUTPUT_DIR, outjpgname) cv2.imwrite(outjpgpath, generated_image) array = np.append([label], generated_image.flatten().copy() // 255) # print(array.shape) outarray = np.append(outarray, [array], axis=0) # inverse image image = cv2.flip(image, -1) index = 0 inv = 'inv' #print(outarray) #print(outarray.shape) #input() np.save('mahjong_dataset', outarray) def generate(image): size = tuple(np.array([image.shape[1], image.shape[0]])) width = size[0] height = size[1] rands = [random.randint(- RANDOMIZE_RADIUS, RANDOMIZE_RADIUS) for _ in range(8)] src_prs = np.float32( [ [0 + rands[0], 0 + rands[1]], [width + rands[2], 0 + rands[3]], [width + rands[4], height + rands[5]], [0 + rands[6], height + rands[7]] ] ) dst_prs = np.float32( [ [0, 0], [GENERATED_IMAGE_WIDTH, 0], [GENERATED_IMAGE_WIDTH, GENERATED_IMAGE_HEIGHT], [0, GENERATED_IMAGE_HEIGHT] ] ) transform = cv2.getPerspectiveTransform(src_prs, dst_prs) outsize = tuple([GENERATED_IMAGE_WIDTH, GENERATED_IMAGE_HEIGHT]) randomized = cv2.warpPerspective(image, transform, size, borderMode=cv2.BORDER_CONSTANT, borderValue=(255, 255, 255)) randomized = randomized[0:GENERATED_IMAGE_HEIGHT, 0:GENERATED_IMAGE_WIDTH] randomized = cv2.cvtColor(randomized, cv2.COLOR_RGBA2GRAY) ret, thres = cv2.threshold(randomized,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU) return thres if __name__ == '__main__': if len(sys.argv) < 2: print(' * please specify target image') else: dirpath = sys.argv[1] if (os.path.isfile(dirpath)): print(' * {} is not directory'.format(dirpath)) if not os.path.exists(OUTPUT_DIR): os.mkdir(OUTPUT_DIR) main(dirpath) ```
{ "source": "jphacks/SD_1802", "score": 2 }
#### File: SD_1802/LINE_Bot/Reply_Message.py ```python from flask import Flask, request, abort from linebot import ( LineBotApi, WebhookHandler ) from linebot.exceptions import ( InvalidSignatureError ) from linebot.models import ( MessageEvent, TextMessage, TextSendMessage, ) # 中身 app = Flask(__name__) line_bot_api = LineBotApi('Access Token') handler = WebhookHandler('Channel Secret') @handler.add(MessageEvent, message=TextMessage) def handle_message(event): line_bot_api.reply_message( event.reply_token, TextSendMessage(text="event.message.text")) if __name__ == "__main__": app.run() ``` #### File: products/python/compare.py ```python import time start = time.time() import argparse import cv2 import itertools import os import re import requests import sqlite3 import glob import numpy as np np.set_printoptions(precision=2) import openface parser = argparse.ArgumentParser() parser.add_argument('--verbose', action='store_true') def getRep(imgPath, align, net, imgDim, verbose=False): """ 入力された画像の認証スコアを算出する imgPath: 画像の path align: dlib の顔検出器 net: 認証スコアを計算する facenet imgDim: 画像の次元 default=96 なんでこれに従う verbose: ログを出力するかどうか returns: 認証スコア """ if verbose: print("Processing {}.".format(imgPath)) bgrImg = cv2.imread(imgPath) if bgrImg is None: raise Exception("Unable to load image: {}".format(imgPath)) rgbImg = cv2.cvtColor(bgrImg, cv2.COLOR_BGR2RGB) start = time.time() bb = align.getLargestFaceBoundingBox(rgbImg) if bb is None: raise Exception("Unable to find a face: {}".format(imgPath)) if verbose: print(" + Face detection took {} seconds.".format(time.time() - start)) ############################################################## #ul = (bb.left(), bb.top()) #br = (bb.right(), bb.bottom()) #cv2.rectangle(bgrImg, ul, br, (0, 0, 255), 2) #png_path = os.path.basename(imgPath).replace('.jpg', '.png') #png_path = os.path.join('/home/ubuntu/', png_path) #print('save path:', png_path) #cv2.imwrite(imgPath, bgrImg) ############################################################# start = time.time() alignedFace = align.align(imgDim, rgbImg, bb, landmarkIndices=openface.AlignDlib.OUTER_EYES_AND_NOSE) if alignedFace is None: raise Exception("Unable to align image: {}".format(imgPath)) if verbose: print(" + Face alignment took {} seconds.".format(time.time() - start)) start = time.time() rep = net.forward(alignedFace) if verbose: print(" + OpenFace forward pass took {} seconds.".format(time.time() - start)) #print("Representation:") #print(rep) print("-----\n") return rep def getDistance(reg_img_path, input_img_path, align, net, imgDim, verbose=False): """ 登録画像と入力画像との間の顔認証スコアを計算し、距離を出す reg_img_path: 登録画像の path input_img_path: 入力画像の path align: dlib の顔検出器 net: 認証スコアを計算する facenet verbose: ログを出力するかどうか returns: 画像間のスコアから計算した距離(L2 norm) """ reg_rep = getRep(reg_img_path, align, net, imgDim, verbose=verbose) input_rep = getRep(input_img_path, align, net, imgDim, verbose=verbose) dis = np.linalg.norm(reg_rep - input_rep) return dis def get_all_images(root_dir): """ ディレクトリを再帰的に探って画像ファイルを抽出 """ for root, dirs, files in os.walk(root_dir): for f in files: if re.match(r'enrolled_image.jpg', f) or re.match(r'enrolled_image.png', f) or re.match('enolled_image.jpeg', f): yield os.path.join(root, f) def Line(mes): TOKEN = "" URL = "https://notify-api.line.me/api/notify" message = "\n" + mes payload = {"message": message} headers = {"Authorization": "Bearer " + TOKEN} lineNotify = requests.post(URL, data=payload, headers=headers) def get_user_info(user_info_id): """ rails で登録されている database から user_id に紐づく user_infos user_info_id: user_infos の外部キーになっている user_id return: user_info の辞書 """ dbpath = '/home/ubuntu/Documents/SD_1802/products/db/development.sqlite3' connection = sqlite3.connect(dbpath) cursor = connection.cursor() try: cursor.execute('SELECT * FROM user_infos WHERE id = {}'.format(user_info_id)) res = cursor.fetchone() except sqlite3.Error as e: print('sqlite3.Error occurred:', e.args[0]) print(res) dic = {'name': res[1], 'memo': res[3]} return dic def main(): # general setting args = parser.parse_args() dlib_path = '/home/ubuntu/Documents/SD_1802/products/python/shape_predictor_68_face_landmarks.dat' facenet_model_path = '/home/ubuntu/Documents/SD_1802/products/python/nn4.small2.v1.t7' imgDim = 96 verbose = args.verbose start = time.time() align = openface.AlignDlib(dlib_path) net = openface.TorchNeuralNet(facenet_model_path, imgDim) if verbose: print("Loading the dlib and OpenFace models took {} seconds.".format( time.time() - start)) # get register images & input image register_root_dir = '/home/ubuntu/Documents/SD_1802/products/public/uploads/' input_img_path = '/var/www/html/upload/image.jpg' mini = np.inf candidate = "" while(1): if os.path.exists(input_img_path): print('start to calc') for reg_img_path in get_all_images(register_root_dir): d = getDistance(reg_img_path, input_img_path, align, net, imgDim, verbose=verbose) if mini > d: mini = d candidate = reg_img_path user_info_id = int(os.path.dirname(candidate).split('/')[-1]) user_info = get_user_info(user_info_id) msg = '名前: {}\n情報: {}'.format(user_info['name'].encode('utf-8'), user_info['memo'].encode('utf-8')) Line(msg) os.remove(input_img_path) else: print('Not found the image.jpg in upload directory') time.sleep(5) if __name__ == '__main__': main() ```
{ "source": "jphacks/SD_1806", "score": 2 }
#### File: SD_1806/driver/driver.py ```python import wiringpi as wp import time import atexit import datetime import subprocess import requests import threading import spidev import RPi.GPIO as GPIO import sys import os pd_pins = [19, 26, 21, 6, 5] human_pin = 20 loop_interval = 0.3 notify_interval = 30 api_url = 'https://sugoigomibako.herokuapp.com/' notify_sound = './gomi_today.wav' post_amount_interval = 1.1 threshold = 500 smell_val = 0 GPIO.setmode(GPIO.BCM) GPIO.setup(17,GPIO.OUT) GPIO.setup(22,GPIO.OUT) spi = spidev.SpiDev() spi.open(0,0) spi.max_speed_hz=1000000 spi.bits_per_word=8 dummy = 0xff start = 0x47 sgl = 0x20 ch0 = 0x00 msbf = 0x08 class SmellThread(threading.Thread): def __init__(self): super(SmellThread, self).__init__() self.stop_event = threading.Event() self.setDaemon(True) def stop(self): self.stop_event.set() def smell_measure(self, ch): ad = spi.xfer2( [ (start + sgl + ch + msbf), dummy ] ) val = ((ad[0] & 0x03) << 8) + ad[1] return val def run(self): try: while not self.stop_event.is_set(): time.sleep(0.237) GPIO.output(22,True) time.sleep(0.003) ch0_val = SmellThread.smell_measure(self,ch0) Val = 1023 - ch0_val time.sleep(0.002) GPIO.output(22,False) GPIO.output(17,True) time.sleep(0.008) GPIO.output(17,False) global smell_val smell_val = Val except KeyboardInterrupt: pass spi.close() def cleanup(): print('cleanup completed') def setup(): wp.wiringPiSetupSys() for pd_pin in pd_pins: wp.pinMode(pd_pin, wp.GPIO.INPUT) atexit.register(cleanup) print('setup completed') def get_amount(): pd_stats = [wp.digitalRead(pd_pin) for pd_pin in pd_pins] num_filled = len([0 for pd_stat in pd_stats if not pd_stat]) return num_filled def is_human_detected(): return wp.digitalRead(human_pin) def notify(): subprocess.call('aplay {}'.format(notify_sound), shell=True) def post_amount(amount): print('\033[32;1m==== posting amount: ' + str(amount) + ' ====\033[0m') try: responce = requests.post(api_url + 'amount', {'amount': amount}) if responce.status_code != 200: print('\033[31;1m==== failed to post amount: ' + responce.status_code + ' ====\033[0m') except: pass def post_smell_val(smell_val): print('\033[32;1m==== posting smell_val: ' + str(smell_val) + ' ====\033[0m') try: response = requests.post(api_url + 'smell', {'smell': smell_val}) if response.status_code != 200: print('\033[31;1m==== failed to post smell_vall: ' + response.status_code + ' ====\033[0m') except: pass def main(): setup() smell_thread = SmellThread(); green = '\033[32;1m' red = '\033[31;1m' clear = '\033[0m' last_notified = time.time() - notify_interval last_posted_amount = 0 last_amount_changed = time.time() - notify_interval previous_amount = 0 previous_smell_val = 0 smell_thread.start() while True: now = time.time() # current status pd_stats = [wp.digitalRead(pd_pin) for pd_pin in pd_pins] os.system('clear') print(datetime.datetime.now()) for i, (pd_pin, pd_stat) in enumerate(zip(pd_pins, pd_stats), 1): print(' [{}] {} {}{}{} (GPIO #{})'.format( i, pd_stat, green if pd_stat else red, 'EMPTY' if pd_stat else 'FILLED', clear, pd_pin )) amount = get_amount() print(' amount: {}{} ({}%){}'.format( red if amount > 0.5 else green, amount, amount / len(pd_pins) * 100, clear )) # notification triggered by human sensor print(' human sensor: {}'.format(is_human_detected())) if is_human_detected() and amount >= len(pd_pins) - 1: if now - last_notified > notify_interval: print('play notification...') notify() last_notified = now # TODO: consider day of week # smell sensor print(' smell sensor: {}'.format(smell_val)) # amount smell control if previous_amount != amount: last_amount_changed = time.time() keep_time = now - last_amount_changed print('amount keep time: ' + str(keep_time)) if keep_time > post_amount_interval: if last_posted_amount != amount: post_amount_thread = threading.Thread(target=post_amount, args=([amount])) post_amount_thread.start() last_posted_amount = amount previous_amount = amount if abs(smell_val - previous_smell_val) > 100: post_smell_thread = threading.Thread(target=post_smell_val, args=([smell_val])) post_smell_thread.start() previous_smell_val = smell_val time.sleep(loop_interval) if __name__ == '__main__': try: main() except KeyboardInterrupt: pass ``` #### File: SD_1806/server/amount.py ```python import random def get_amount(full=False): return 4 if full else random.randint(0, 4) ```