metadata
dict
text
stringlengths
60
3.49M
{ "source": "4006G2/AutoMod", "score": 2 }
#### File: automod/chat/chat_discord.py ```python from . import ChatBase import discord import asyncio class ChatDiscord(ChatBase): def __init__(self, chat_bot, token): super().__init__(chat_bot) self.token = token self.client = discord.Client() self.client.event(self.on_ready) self.client.event(self.on_message) self.guilds = [] self.muted = {} async def init_guilds(self): guilds = await self.client.fetch_guilds(limit=10).flatten() for guild in guilds: if guild not in self.guilds: self.guilds.append(guild) async def find_guild_id(self, guild_name): for guild in self.guilds: if guild.name == guild_name: return guild.id return None def find_channel_id(self, ch_name): for ch in self.client.get_all_channels(): if ch.name == ch_name: return ch.id return None def find_user_id(self, user_name): for user in self.client.get_all_members(): if user.name == user_name: return user.id return None async def broadcast_message(self, ch_name, message): ch_id = self.find_channel_id(ch_name) ch = self.client.get_channel(ch_id) await ch.send(message) async def send_message_to(self, user_name, message): user_id = self.find_user_id(user_name) user = self.client.get_user(user_id) await user.send(message) async def send_message_to_id(self, user_id, message): user = self.client.get_user(user_id) await user.send(message) async def get_last_msg(self, ch_name): ch_id = self.find_channel_id(ch_name) ch = self.client.get_channel(ch_id) async for message in ch.history(limit=1): return message async def send_ban_req(self, user_name, guild_name, reason=None): user_id = self.find_user_id(user_name) user = self.client.get_user(user_id) guild_id = await self.find_guild_id(guild_name) guild = self.client.get_guild(guild_id) if reason is None: reason = "You are unworthy." message = f"{user_name} have been banned for {reason}!" await guild.ban(user, reason=reason) await self.broadcast_message('general', message) async def find_banned_user(self, user_name, guild_name): guild_id = await self.find_guild_id(guild_name) guild = self.client.get_guild(guild_id) banned = await guild.bans() for (reason, user) in banned: if user.name == user_name: return user return None async def print_banned(self, guild_name): guild_id = self.find_guild_id(guild_name) guild = self.client.get_guild(guild_id) banned = await guild.bans() for (reason, user) in banned: print(reason, user) async def unban(self, user_name, guild_name, reason=None): user = await self.find_banned_user(user_name, guild_name) guild_id = await self.find_guild_id(guild_name) guild = self.client.get_guild(guild_id) message = f"{user_name} have been unbanned for {reason}!" await guild.unban(user) await self.broadcast_message('general', message) async def send_mute_req(self, user_name, reason=None): user_id = self.find_user_id(user_name) user = self.client.get_user(user_id) if reason is None: reason = "Cause I can." message = f"{user_name} have been muted for {reason}!" for ch in self.client.get_all_channels(): await ch.set_permissions(user, read_messages=True, send_messages=False) self.muted[user_name] = reason await self.broadcast_message('general', message) async def unmute(self, user_name): user_id = self.find_user_id(user_name) user = self.client.get_user(user_id) for ch in self.client.get_all_channels(): await ch.set_permissions(user, overwrite=None) async def unmute_all(self, reason=None): if len(self.muted) != 0: for user in list(self.muted): await self.unmute(user) self.muted.pop(user, None) message = f"{user} have been unmuted for {reason}!" await self.broadcast_message('general', message) def report_all(self): for member in self.client.get_all_members(): username = str(member).split('#')[0] if username != "ModeratorBot": user_id = self.find_user_id(username) self.chat_bot.report_user(user_id) async def discussion_prompt(self): last_msg = await self.get_last_msg('general') prompt = self.chat_bot.raise_discussion(last_msg) if len(prompt) != 0: await self.broadcast_message('general', prompt) async def event_alert(self): alert = self.chat_bot.event_alert() if len(alert) != 0: await self.broadcast_message('general', alert) # client.event async def on_ready(self): await self.init_guilds() await self.broadcast_message('general', 'ModeratorBot is online!') # client.event async def on_message(self, message): user_id = message.author.id username = str(message.author).split('#')[0] if user_id != self.find_user_id('ModeratorBot'): # check if sender is the bot if self.chat_bot.is_spam(user_id, message.created_at, message.content): # spam check await self.send_mute_req(username, reason="Spamming") else: action = self.chat_bot.monitor_behaviour(user_id, message.content) # behaviour check if action == 0: await self.send_message_to(username, 'Please stop sending toxic messages!') elif action == 1: await self.send_mute_req(username, reason="toxic behaviour") elif action == 2: await self.send_ban_req(username, str(message.guild), reason="toxic behaviour") async def tasks(self): await self.client.wait_until_ready() self.report_all() # for prototype testing while not self.client.is_closed(): # main loop await self.discussion_prompt() await self.event_alert() await self.unmute_all(reason='mute expired') await asyncio.sleep(60) ``` #### File: automod/chat/test_discord.py ```python import unittest from . import ChatDiscord from automod.chatbot import ChatBot import json with open('keys.json') as keys: key_dict = json.loads(keys.read()) TOKEN = key_dict['discord'] class DiscordTests(unittest.TestCase): def __init__(self, methodName: str = "runTest") -> None: super().__init__(methodName) self.cb = ChatBot() self.test_server = ChatDiscord(self.cb, TOKEN) def test(self): srvr = self.test_server.client if __name__ == '__main__': unittest.main() ```
{ "source": "4006G2/chatter-box", "score": 3 }
#### File: chatter_box/chatbot/chatbot.py ```python from typing import Union, Match import re import random __author__ = "<NAME>" __copyright__ = "Copyright 2019" __credits__ = ["<NAME>"] __license__ = "MIT" __version__ = "0.0.1p" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Pre-alpha" from chatter_box.users import UserBase _SELF_NAME = r"Chat-?bot" _PATTERN_NAME = re.compile(_SELF_NAME, re.IGNORECASE) _GREETINGS = [r"Hi", r"Hello", r"Hey"] _PATTERN_GREETING = re.compile(r'^(' + r'|'.join(_GREETINGS) + r'),? ?(' + _SELF_NAME + r')?', re.IGNORECASE) class Chatbot: """Platform independent chatbot implementation""" def __init__(self) -> None: pass # TODO: initialise the chatbot. def parse(self, user: UserBase, user_input: str) -> Union[None, str]: """ :param user: the user who sent the message :param user_input: the whole text entered by the user :return: str: the response to send back (or None if thi message ws unused) """ match = _PATTERN_GREETING.search(user_input) if match: return self.process_greeting(match, user) return None def process_greeting(self, match: Match, user: UserBase) -> str: greeting = match.group(1) name = match.group(2) if name is not None: user_name = user.name return "{0}, {1}.".format(greeting, user_name) return "{0}!".format(random.choice(_GREETINGS)) ``` #### File: chatter-box/chatter_box/__main__.py ```python __author__ = "<NAME>" __copyright__ = "Copyright 2019" __credits__ = ["<NAME>"] __license__ = "MIT" __version__ = "0.0.1p" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Pre-alpha" from chatter_box.users import UserCmd from chatter_box.chatbot import Chatbot def main(): user = UserCmd() bot = Chatbot() user.add_message_listener(bot.parse) user_string = "" while user_string.lower() != "quit": user_string = input(">>") user.on_message(user_string) if __name__ == '__main__': main() ``` #### File: chatter_box/users/user.py ```python import abc from typing import Union, Callable __author__ = "<NAME>" __copyright__ = "Copyright 2019" __credits__ = ["<NAME>"] __license__ = "MIT" __version__ = "0.0.1p" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Pre-alpha" UserListener = Callable[['UserBase', str], Union[None, str]] class UserBase(abc.ABC): """ Abstract base class to be used for all future users. """ def __init__(self) -> None: super().__init__() self._listeners = [] def on_message(self, message: str) -> None: for listener in self._listeners: reply = listener(self, message) if reply is not None: self.tell(reply) return def add_message_listener(self, listener: UserListener): self._listeners.append(listener) @abc.abstractmethod def tell(self, message: str): """ sends a message to the user :param message: atr message to send to the user. :return: None """ pass @property @abc.abstractmethod def name(self): """ :return: the user's name """ pass ```
{ "source": "4010k3h4r4/deep-learning-from-scratch-3", "score": 3 }
#### File: deep-learning-from-scratch-3/steps/step28.py ```python import numpy as np # Import core_simple explicitly from dezero.core_simple import Variable from dezero.core_simple import setup_variable setup_variable() def rosenbrock(x0, x1): y = 100 * (x1 - x0 ** 2) ** 2 + (x0 - 1) ** 2 return y logs = [] x0 = Variable(np.array(0.0)) x1 = Variable(np.array(2.0)) iters = 1000 lr = 0.001 for i in range(iters): print(x0, x1) y = rosenbrock(x0, x1) x0.cleargrad() x1.cleargrad() y.backward() logs.append([float(x0.data), float(x1.data), float(y.data)]) x0.data -= lr * x0.grad x1.data -= lr * x1.grad # Plot import matplotlib.pyplot as plt R = 0.01 x = np.arange(-2.0, 2.0, R) y = np.arange(-1.0, 3.0, R) X, Y = np.meshgrid(x, y) Z = rosenbrock(X, Y) XX = [float(d[0]) for d in logs] YY = [float(d[1]) for d in logs] ZZ = [float(d[2]) for d in logs] plt.plot(XX, YY, c='orange', alpha=0.8) plt.scatter(XX, YY, c='red', alpha=0.5) plt.scatter([1], [1],marker="*",s=100,linewidths="2", c='blue') plt.contour(X, Y, Z, alpha=0.5, levels=[0, 1, 2, 4, 8, 16, 32, 64, 128, 256]) plt.show() ```
{ "source": "40127093/Second-Coursework", "score": 2 }
#### File: Second-Coursework/src/index.py ```python import ConfigParser import logging import warnings # to avoid the generation of .pyc files import sys sys.dont_write_bytecode = True # necessary import to ignore any ExtdepricationWarning warnings for external # libraries from flask.exthook import ExtDeprecationWarning warnings.simplefilter('ignore', ExtDeprecationWarning) # other essential imports from logging.handlers import RotatingFileHandler from flask import (Flask, url_for, g, render_template, flash, redirect, abort) from flask.ext.bcrypt import check_password_hash from flask.ext.login import (LoginManager, login_user, logout_user, login_required, current_user) import models import forms app = Flask(__name__) app.secret_key = 'sefdewfewr43r535rewfwda!' login_manager = LoginManager() login_manager.init_app(app) login_manager.login_view = 'login' @login_manager.user_loader def load_user(userid): try: return models.User.get(models.User.id == userid) except models.DoesNotExist: return None # to connect to the database before each request @app.before_request def before_request(): g.db = models.DATABASE g.db.connect() g.user = current_user # to close the database connection after each request @app.after_request def after_request(response): g.db.close() return response # routing to my landing page which is the portfolio section @app.route("/myprofile/<username>") @app.route("/myprofile") @login_required def profile(username=None): template='portfolio.html' try: if username and username != current_user.username: user = models.User.select().where(models.User.username**username).get() this_route = url_for('.profile') app.logger.info( current_user.username + " viewed " + username + "'s personal Profile page " + this_route) else: user=current_user this_route = url_for('.profile') app.logger.info( current_user.username + " viewed his/her personal Profile page " + this_route) if username: template = 'portfolio.html' except models.DoesNotExist: abort(404) else: return render_template(template, user=user) # routing to the about section @app.route("/about/<username>") @app.route("/about") @login_required def about(username=None): template='about.html' try: if username and username != current_user.username: user = models.User.select().where(models.User.username**username).get() this_route = url_for('.about') app.logger.info( current_user.username + " viewed " + username + "'s personal About page " + this_route) else: user=current_user this_route = url_for('.about') app.logger.info( current_user.username + " viewed his/her personal About Me page " + this_route) if username: template = 'about.html' except models.DoesNotExist: abort(404) else: return render_template(template, user=user) # routing to the create a new post section @app.route("/new_post", methods=('GET','POST')) @login_required def post(username=None): if username and username != current_user.username: user = models.User.select().where(models.User.username**username).get() this_route = url_for('.post') app.logger.info( current_user.username + " created a new post on " + username + "'s post feed section " + this_route) else: user=current_user this_route = url_for('.post') app.logger.info( current_user.username + " created a new post on his/her post feed section " + this_route) form = forms.PostForm() if form.validate_on_submit(): models.Post.create(user=g.user._get_current_object(), content=form.content.data.strip()) flash("Message posted!", "success") return redirect(url_for('root')) return render_template('post.html', form=form, user=user) # the user is redirected to the root page after posting a new message and can # view their recent posts on the post feed section @app.route("/") def root(username=None): if username and username != current_user.username: user = models.User.select().where(models.User.username**username).get() else: user = current_user this_route = url_for('.root') app.logger.info(current_user.username + " was redirected to the root page " + this_route) stream = models.Post.select().limit(100) return render_template('stream.html',user=user, stream=stream) # routing to the posts stream section @app.route('/stream') @app.route('/stream/<username>') def stream(username=None): template='stream.html' if username and username != current_user.username: this_route = url_for('.stream') app.logger.info(current_user.username + " viewed " + username + "'s Stream section " + this_route) try: user = models.User.select().where(models.User.username**username).get() except models.DoesNotExist: abort(404) else: stream=user.posts.limit(100) else: stream=current_user.get_stream().limit(100) user=current_user this_route = url_for('.stream') app.logger.info(current_user.username + " viewed his/her Stream section " + this_route) if username: template = 'user-stream.html' return render_template(template, stream=stream, user=user) # routing to each individual post @app.route('/post/<int:post_id>') def view_post(post_id, username=None): if username and username != current_user.username: user = models.User.select().where(models.User.username**username).get() else: user=current_user posts = models.Post.select().where(models.Post.id == post_id) if posts.count() == 0: abort(404) return render_template('stream.html', stream=posts, user=user) # function that adds one follower in the relationship table for the selected user @app.route('/follow/<username>') @login_required def follow(username): try: to_user = models.User.get(models.User.username**username) except models.DoesNotExist: abort(404) else: try: models.Relationship.create( from_user=g.user._get_current_object(), to_user=to_user ) except models.IntegrityError: pass else: flash("You're now following {}!".format(to_user.username),"success") app.logger.info(current_user.username + " is now following " + username) return redirect(url_for('stream',username=to_user.username)) # function that deletes the follower instance from the relationship table for # the selected user @app.route('/unfollow/<username>') @login_required def unfollow(username): try: to_user = models.User.get(models.User.username**username) except models.DoesNotExist: abort(404) else: try: models.Relationship.get( from_user=g.user._get_current_object(), to_user=to_user ).delete_instance() except models.IntegrityError: pass else: flash("You've unfollowed {}!".format(to_user.username),"success") app.logger.info(current_user.username + " is now unfollowing " + username) return redirect(url_for('stream',username=to_user.username)) # routing to the register page @app.route('/register', methods=('GET','POST')) def register(): this_route = url_for('.register') app.logger.info("Someone visited the Register page " + this_route) form = forms.RegisterForm() if form.validate_on_submit(): flash("Congratulations, you have successfully registered!", "success") models.User.create_user( username=form.username.data, email=form.email.data, password=form.password.data ) return redirect(url_for('profile')) return render_template('register.html', form=form) # routing to the login page @app.route('/login', methods=('GET','POST')) def login(): this_route = url_for('.login') app.logger.info("Someone visited the Login page " + this_route) form = forms.LoginForm() if form.validate_on_submit(): try: user = models.User.get(models.User.email == form.email.data) except models.DoesNotExist: flash("Your email or password doesn't match!", "error") else: if check_password_hash(user.password, form.password.data): login_user(user) flash("You've been logged in!", "success") return redirect(url_for('profile')) else: flash("Your email or password doesn't match!", "error") return render_template('login.html', form=form) # routing to the logout page which redirects the user to the login page @app.route('/logout') @login_required def logout(): this_route = url_for('.logout') app.logger.info( current_user.username + " requested to logout " + this_route) logout_user() flash("You've been logged out. Come back soon!","success") return redirect(url_for('login')) # parsing configuration details from an external file def init (app): config = ConfigParser.ConfigParser() try: config_location = "etc/defaults.cfg" config.read(config_location) app.config['DEBUG'] = config.get("config", "debug") app.config['ip_address'] = config.get("config", "ip_address") app.config['port'] = config.get("config", "port") app.config['url'] = config.get("config", "url") app.config['log_file'] = config.get("logging", "name") app.config['log_location'] = config.get("logging", "location") app.config['log_level'] = config.get("logging", "level") except: print "Could not read configuration file from: " , config_location # setting up a logging feature to record action logs into a text file def logs(app): log_pathname = app.config['log_location']+ app.config['log_file'] file_handler = RotatingFileHandler(log_pathname, maxBytes=1024*1024*10 , backupCount=1024) file_handler.setLevel( app.config['log_level']) formatter = logging.Formatter("%(levelname)s | %(asctime)s | %(module)s | %(funcName)s | %(message)s") file_handler.setFormatter(formatter) app.logger.setLevel(app.config['log_level']) app.logger.addHandler(file_handler) # error handling mechanism to catch all the 404 errors and to redirect the user to # a custom 404 page @app.errorhandler(404) def not_found(error): return render_template('404.html'), 404 # initialisation function if __name__ == "__main__": init(app) logs(app) models.initialize() try: # first user created to populate the user table models.User.create_user( username='poisonphoebe', email='<EMAIL>', password='password', admin=True ) except ValueError: pass app.run( host = app.config['ip_address'], port = int(app.config['port'])) ```
{ "source": "401ode/state_time", "score": 3 }
#### File: state_time/timesheet-transition/forms.py ```python from flask_wtf import Form from flask_security.forms import LoginForm from wtforms import validators, StringField, TextAreaField, DateField, DateTimeField, SelectField, FormField, FieldList from wtforms.validators import InputRequired from models import Break from werkzeug.datastructures import MultiDict class ExtendedLoginForm(LoginForm): email = StringField('Username or Email Address', [InputRequired()]) class ApprovingForm(Form): pass class EntryForm(Form): # breaks = list(Break.select(Break.id, Break.name).tuples()) # breaks.insert(0, (0, '')) # date = DateField("Date") # started_at = DateTimeField("Started At", format='%H:%M') # finished_at = DateTimeField("Finished At", format='%H:%M') # break_for = SelectField("Break For", choices=breaks) #title = StringField("Title",[ # validators.Required(), # validators.Length(max=80) #]) #body = TextAreaField("Content",[validators.Required(),]) #category = QuerySelectField("Category", query_factory=lambda: Category.query, allow_blank=True) #new_category = StringField("New Category") pass class TimeSheetForm(Form): pass # entries = FieldList(FormField(EntryForm), min_entries=7, max_entries=7) # def fill(self, timesheet): # for e in timesheet: # entry = MultiDict([ # ('date', e.date), # ('started_at', e.started_at), # ('finished_at', e.finished_at), # ('break_for', e.break_for.id if e.break_for else None) # ]) # row = EntryForm(entry) # self.entries.append_entry(row) ``` #### File: state_time/timesheet-transition/models.py ```python from datetime import datetime, timedelta from peewee import Model, CharField, DateTimeField, ForeignKeyField, \ TextField, IntegerField, DateField, TimeField, BooleanField from state_time import db, FlaskDB, app, current_user, \ current_week_ending_date, str_to_time from hashlib import md5 from flask_security import PeeweeUserDatastore, UserMixin, \ RoleMixin, login_required from playhouse.fields import ManyToManyField from peewee import drop_model_tables, Proxy, CompositeKey, RawQuery UserRolesProxy = Proxy() ApproverCompaniesProxy = Proxy() class Company(db.Model): name = CharField() code = CharField() class Meta: table_alias = 'c' def __str__(self): return self.name class Role(db.Model, RoleMixin): name = CharField(unique=True) description = TextField(null=True) class Meta: table_alias = 'r' class User(db.Model, UserMixin): username = CharField(unique=True, index=True) password = <PASSWORD>() email = CharField() first_name = CharField() last_name = CharField() #confirmed_at = DateTimeField(null=True) active = BooleanField(default=True) workplace = ForeignKeyField(Company, related_name='works_for') roles = ManyToManyField( Role, related_name='users', through_model=UserRolesProxy) approves_for = ManyToManyField( Company, related_name='approved_by', through_model=ApproverCompaniesProxy) full_name = property( lambda self: "%s %s" % (self.first_name, self.last_name)) def gravatar_url(self, size=80): return "http://www.gravatar.com/avatar/%s?d=identicon&s=%d" % \ (md5(self.email.strip().lower().encode('utf-8')).hexdigest(), size) class Meta: order_by = ('username',) table_alias = 'u' def __str__(self): return self.full_name class UserRoles(db.Model): user = ForeignKeyField(User, index=True, db_column='user_id') role = ForeignKeyField(Role, index=True, db_column='role_id') name = property(lambda self: self.role.name) description = property(lambda self: self.role.description) class Meta: db_table = "user_role" table_alias = 'ur' primary_key = CompositeKey('user', 'role') UserRolesProxy.initialize(UserRoles) class ApproverCompanies(db.Model): user = ForeignKeyField(User, index=True, db_column='user_id') company = ForeignKeyField(Company, index=True, db_column='company_id') name = property(lambda self: self.company.name) code = property(lambda self: self.company.code) class Meta: db_table = "approver_company" table_alias = "ac" primary_key = CompositeKey('user', 'company') ApproverCompaniesProxy.initialize(ApproverCompanies) class Break(db.Model): code = CharField(unique=True) name = CharField() minutes = IntegerField() alternative_code = CharField(unique=True, null=True) class Meta: order_by = ('code',) table_alias = 'b' def __str__(self): return self.name def __repr__(self): return "Break(code=%r, name=%r, minutes=%r, alternative_code=%r)" \ % (self.code, self.name, self.minutes, self.alternative_code) class Entry(db.Model): date = DateField() user = ForeignKeyField(User, related_name='reported_by') approver = ForeignKeyField(User, related_name='approved_by', null=True) started_at = TimeField() finished_at = TimeField() modified_at = DateTimeField(default=datetime.now) approved_at = DateTimeField(null=True) comment = TextField(null=True, default="") break_for = ForeignKeyField(Break, related_name='break_for', null=True) is_approved = BooleanField(default=False) break_length = property( lambda self: self.break_for.minutes if self.break_for else 0) @property def total_min(self): if self.started_at is None or self.finished_at is None: return None total = (self.finished_at.hour - self.started_at.hour) * 60 total += (self.finished_at.minute - self.started_at.minute) total -= self.break_length return total @property def total_time(self): total = self.total_min if total is None: return None return timedelta(hours=(total / 60), minutes=(total % 60)) def __str__(self): output = "On %s from %s to %s" % ( self.date.isoformat(), "N/A" if self.started_at is None else self.started_at.strftime("%H:%M"), "N/A" if self.finished_at is None else self.finished_at.strftime("%H:%M")) if self.break_for: output += " with beak for " + self.break_for.name total_min = self.total_min if total_min: output += ", total: %d:%02d" % (total_min // 60, total_min % 60) return output class Meta: table_alias = 'e' @classmethod def get_user_timesheet(cls, *, user=None, week_ending_date=None): """ Retrieves timesheet entries for a user a week ending on week_ending_date. """ if user is None: user = current_user if week_ending_date is None: week_ending_date = current_week_ending_date() rq = RawQuery(cls, """ WITH daynums(num) AS (VALUES (6),(5),(4),(3),(2),(1),(0)), week(day) AS (SELECT date(?, '-'||num||' day') FROM daynums) SELECT id, day as date, finished_at, started_at, user_id, modified_at, break_for_id, is_approved, approver_id, approved_at, comment FROM week LEFT JOIN entry ON "date" = day AND user_id = ? ORDER BY "date" ASC """, week_ending_date.isoformat(), user.id) return rq.execute() @classmethod def get_for_approving(cls, *, user=None, week_ending_date=None): """ Retrievs timesheet entries for approval """ query = Entry.select() if user: query = query.where(Entry.user_id == user.id) if week_ending_date: week_start_date = week_ending_date - timedelta(days=7) query = query.where((Entry.date >= week_start_date) & (Entry.date <= week_ending_date)) return query.order_by(Entry.date).limit(100).execute() class TimeSheet(object): def __init__(self, *, user=None, week_ending_date=None): if user is None: user = current_user if week_ending_date is None: week_ending_date = current_week_ending_date() self.user = user self.week_ending_date = week_ending_date self.entries = Entry.get_user_timesheet( user=user, week_ending_date=week_ending_date) def update(self, rows): """ Update timesheet entries or create new ones based on the submitted data based on the list of row values submitted by the user. rows - a list of dict of update data """ for idx, (old, new) in enumerate(zip(self.entries, rows)): if not new["id"] or new["id"] == "None": if not new["started_at"] or new["started_at"] == "None" or not new[ "finished_at"] or new["finished_at"] == "None": # Create a new entry continue # skip if there is no basic data old.user = User.get(id=current_user.id) row_date = self.week_ending_date - timedelta(days=(6 - idx)) old.is_approved = False started_at = str_to_time(new["started_at"]) finished_at = str_to_time(new["finished_at"]) break_for = Break.get( id=int(new["break_id"])) if new["break_id"] else None if (old.started_at != started_at or old.finished_at != finished_at or old.break_for != break_for): # update only if there are changes: old.started_at = started_at old.finished_at = finished_at if break_for: old.break_for = break_for old.modified_at = datetime.now() old.save() def approve(self, rows): """ Approve timesheet entriesbased on the list of row values submitted by the user. rows - a list of dict of update data """ for idx, (entry, row) in enumerate(zip(self.entries, rows)): if not entry.id: continue if "is_approved" in row: entry.is_approved = True entry.approver = current_user.id entry.comment = row["comment"] entry.approved_at = datetime.now() else: entry.is_approved = False entry.approver = None entry.comment = row["comment"] entry.approved_at = None entry.save() # Setup Flask-Security user_datastore = PeeweeUserDatastore(db, User, Role, UserRoles) def create_tables(): """ Create all DB tables """ if isinstance(db, FlaskDB): _db = db.database else: _db = db _db.connect() _db.create_tables(( Company, Role, User, Break, Entry, UserRoles, ApproverCompanies,)) def drop_talbes(): """ Drop all model tables """ models = ( m for m in globals().values() if isinstance( m, type) and issubclass( m, db.Model)) drop_model_tables(models, fail_silently=True) ```
{ "source": "401-pi-rates/raspberry-garden", "score": 3 }
#### File: raspberry-garden/garden_app/models.py ```python from django.db import models from django.utils import timezone from django.contrib.auth.models import User class Temperature(models.Model): """To set up Temperature class.""" user = models.ForeignKey(User, on_delete=models.CASCADE, related_name='temperature') temperature = models.CharField(max_length=48) date_added = models.DateTimeField(default=timezone.now) # def __repr__(self): # return '' def __str__(self): return f'{self.date_added} ({self.temperature})' # class WaterLevel(models.Model): # """To set up WaterLevel class.""" # user = models.ForeignKey(User, on_delete=models.CASCADE, related_name='waterlevel') # water = models.CharField(max_length=48) # date_added = models.DateTimeField(default=timezone.now) # # def __repr__(self): # # return '' # def __str__(self): # return f'{self.date_added} ({self.water})' ``` #### File: raspberry-garden/garden_app/views.py ```python from .models import Temperature from garden_api.models import SoilMoisture from django.contrib.auth.decorators import login_required from django.shortcuts import render, get_list_or_404, get_object_or_404 import bokeh.plotting as bk from bokeh.plotting import figure from bokeh.embed import components from bokeh.models import HoverTool, Label, BoxZoomTool, PanTool, ZoomInTool, ZoomOutTool, ResetTool @login_required def weekly_view(request): """To render weekly_view with its content.""" # To populate temp_list: temps = Temperature.objects.all() temp_date = [] temp_read = [] temp_list = [] # Add unique entries to temp_date, temp_read, and temp_list: for item in temps: if item.date_added.date() not in temp_date: temp_date.append(item.date_added.date()) temp_read.append(item.temperature) for i in range(len(temp_date)): obj = {'date_added': temp_date[i], 'temperature': temp_read[i]} temp_list.append(obj) temp_list.sort(key=lambda x: x['date_added'], reverse=True) # To select 7 entries from the sorted list: temp_list_7 = [] for i in range(7): if len(temp_list) >= i+1: temp_list_7.append(temp_list[i]) # Add unique entries to water_date, water_read, and water_list: waters = SoilMoisture.objects.all() water_date = [] water_read = [] water_list = [] for i in range(len(waters)): if waters[i].time_stamp.date() not in water_date: water_date.append(waters[i].time_stamp.date()) if (waters[i].has_moisture): water_read.append('Has Water') else: water_read.append('Dry') for i in range(len(water_date)): obj = {'time_stamp': water_date[i], 'has_moisture': water_read[i]} water_list.append(obj) water_list.sort(key=lambda x: x['time_stamp'], reverse=True) # To select 7 entries from the sorted list: water_list_7 = [] for i in range(7): if len(water_list) >= i+1: water_list_7.append(water_list[i]) context = { # 'temperatures': get_list_or_404(Temperature), 'temperatures': temp_list_7, # 'waterlevel': get_list_or_404(SoilMoisture), 'waterlevel': water_list_7, } return render(request, 'raspberry/weekly.html', context) @login_required def monthly_view(request): """To render monthly_view with its content.""" # TO POPULATE TEMP_DATE AND TEMP_READ: temps = Temperature.objects.all() temp_date = [] temp_read = [] temp_list = [] i = 0 # To append all entries in temp_list, in sorted sequence: for item in temps: if item.date_added.date() not in temp_date: temp_date.append(item.date_added.date()) temp_read.append(item.temperature) for i in range(len(temp_date)): obj = {'date_added': temp_date[i], 'temperature': temp_read[i]} temp_list.append(obj) temp_list.sort(key=lambda x: x['date_added'], reverse=True) # To select 30 entries from the sorted list: temp_list_30 = [] for i in range(30): if len(temp_list) >= i+1: temp_list_30.append(temp_list[i]) # To save object key values to lists: temp_date_graph = [] temp_read_graph = [] for i in range(len(temp_list_30)): temp_date_graph.append(temp_list_30[i]['date_added']) temp_read_graph.append(temp_list_30[i]['temperature']) # TO PLOT TEMPERATURE STOCK_CHART p1 = bk.figure(title=f'Temperature', x_axis_type="datetime", width=350, height=300) p1.grid.grid_line_alpha = 0.3 p1.xaxis.axis_label = 'Date' p1.yaxis.axis_label = 'Temperature' p1.line(temp_date_graph, temp_read_graph, color='red') p1.legend.location = "top_left" script_temperature, div_temperature = components(p1) # TO POPULATE WATER_DATE AND WATER_READ: # To append all entries in water_list, in sorted sequence: waters = SoilMoisture.objects.all() water_date = [] water_read = [] water_list = [] for i in range(len(waters)): if waters[i].time_stamp.date() not in water_date: water_date.append(waters[i].time_stamp.date()) water_read.append(0) if (waters[i].has_moisture): water_read[i] = 1 for i in range(len(water_date)): obj = {'time_stamp': water_date[i], 'has_moisture': water_read[i]} water_list.append(obj) water_list.sort(key=lambda x: x['time_stamp'], reverse=True) # To select 30 entries from the sorted list: water_list_30 = [] for i in range(30): if len(water_list) >= i+1: water_list_30.append(water_list[i]) # To save object key values to lists: water_date_graph = [] water_read_graph = [] for i in range(len(water_list_30)): water_date_graph.append(water_list_30[i]['time_stamp']) water_read_graph.append(water_list_30[i]['has_moisture']) # TO PLOT WATER IRIS_CHART p3 = figure(title="WaterLevel", x_axis_type="datetime", width=350, height=300) p3.xaxis.axis_label = 'Date' p3.yaxis.axis_label = 'WaterLevel' p3.circle(water_date_graph, water_read_graph, color='blue', fill_alpha=0.2, size=10) script_water, div_water = components(p3) context = { 'temperatures': get_list_or_404(Temperature), 'the_script_temperature': script_temperature, 'the_div_temperature': div_temperature, 'the_script_water': script_water, 'the_div_water': div_water, } return render(request, 'raspberry/monthly.html', context) ```
{ "source": "402853962/meiduo_mall", "score": 2 }
#### File: celery_tasks/email/tasks.py ```python from django.core.mail import send_mail from itsdangerous import TimedJSONWebSignatureSerializer as Serializer from meiduo_mall import settings from celery_tasks.main import app @app.task def celery_send_mail(email,access_token): subject = "美多商城邮箱验证" message = '' from_email = '<EMAIL>' recipient_list = [email] verify_url = 'http://www.meiduo.site:8080/success_verify_email.html?token=%s' % access_token html_message = '<p>尊敬的用户您好!</p>' \ '<p>感谢您使用美多商城。</p>' \ '<p>您的邮箱为:%s 。请点击此链接激活您的邮箱:</p>' \ '<p><a href="%s">%s<a></p>' % (email, verify_url, verify_url) send_mail(subject, message, from_email, recipient_list, html_message=html_message) ``` #### File: meiduo_mall/utils/converters.py ```python class UsernameConverter: regex = '[a-zA-Z0-9_-]{5,20}' def to_python(self,value): return str(value) class MobileConverter: regex = '1[3-9]\d{9}' def to_python(self,value): return str(value) class ImageConverter: regex = '[\w]{8}-[\w]{4}-[\w]{4}-[\w]{4}-[\w]{12}' def to_python(self,value): return str(value) ``` #### File: utils/fastdfs/storage.py ```python from django.core.files.storage import Storage class MyStorage(Storage): # def __init__(self, option=None): # if not option: # option = settings.CUSTOM_STORAGE_OPTIONS def __open(self,name,mode='rb'): pass def __save(self,name,content,max_length=None): pass def url(self, name): return 'http://192.168.112.146:8888/' + name ```
{ "source": "403712387/ggf", "score": 2 }
#### File: ggf/build/BuildService.py ```python import os import stat import copy import shutil import time import sys currentTime = time.localtime() strTime = "%d-%02d-%02d %02d:%02d:%02d" % (currentTime.tm_year, currentTime.tm_mon, currentTime.tm_mday, currentTime.tm_hour, currentTime.tm_min,currentTime.tm_sec) # 服务模块 serviceName = "ggf" # git信息 gitBranch = "unknown" gitCommitId = "unknown" #编译参数,支持debug,race compileArg = "" #------------------------函数的定义-------------------------# #清理 def cleanFiles(path): if os.path.exists(path): shutil.rmtree(path) #解析参数 def parseArgs(): global compileArg if "race" in sys.argv: compileArg = "-race" if "debug" in sys.argv: compileArg = '''-gcflags "-N -l"''' #下载依赖的包 def downloadThirdLibrary(): librarys = ["github.com/btfak/sntp", "github.com/sirupsen/logrus", "github.com/shirou/gopsutil", "github.com/segmentio/kafka-go", "github.com/mattn/go-sqlite3"] for library in librarys: os.system("go get %s"%library) #获取git的信息(获取当前分支以及commit id) def getGitInfo(): global gitBranch, gitCommitId gitDir = "../.git" #获取分支信息 branchFile = os.path.join(gitDir, "HEAD") if os.path.exists(branchFile): with open(branchFile, "r") as f: line = f.readline() line = line.strip() splits = line.split("/") if len(splits) > 0: gitBranch = splits[-1] # 获取commit id commitIdFile = os.path.join(gitDir + "/refs/heads" , gitBranch) if os.path.exists(commitIdFile): with open(commitIdFile) as f: line = f.readline() line = line.strip() gitCommitId = line #编译各个模块 def compileService(): global serviceName, compileArg, gitBranch, gitCommitId compileSuccessful = False # 切换目录 currentPath = os.getcwd() os.chdir("../src") # 格式话git信息 git = "-X HostServiceModule.GitBranch=%s -X HostServiceModule.GitCommitID=%s"%(gitBranch, gitCommitId) # 获取当前GOPATH currentGoPath = "" pipe = os.popen("go env GOPATH") lines = pipe.readlines() if len(lines) > 0 : currentGoPath = lines[0].strip("\n") # 编译 projectPath = os.getcwd()[:-4] goPathEnv = "export GOPATH=%s:%s"%(currentGoPath,projectPath) os.system(goPathEnv + " && go clean") os.system(goPathEnv + " && go clean -r") os.system(goPathEnv + " && go clean -cache") compile = '''go build -ldflags "%s" %s -o ./bin/%s/%s main.go'''%(git, compileArg, serviceName, serviceName) print(goPathEnv + " && " + compile) if os.system(goPathEnv + " && " + compile) == 0: compileSuccessful = True os.chdir(currentPath) return compileSuccessful # 拷贝配置文件 def copyConfigFile(): global serviceName src = "../config" dst = "../src/bin/%s"%serviceName copyFiles(src, dst) # 配置文件要放在config目录下 src = "../src/bin/%s/config.json"%serviceName dst = "../src/bin/%s/config"%serviceName copyFiles(src, dst) os.remove(src) #修改文件的权限 def processFilePromission(path): files = os.listdir(path) for file in files: fileName = os.path.join(path, file) if not os.path.isfile(fileName): continue #对于sh结束的文件,修改权限 if fileName.endswith(".sh"): os.chmod(fileName, stat.S_IRWXU | stat.S_IRWXG | stat.S_IRWXO) #拷贝文件或者目录 def copyFiles(source, destination): #复制文件(要注意权限和软连接这种情况) def copyFile(sourceFile, destDir): if not os.path.exists(sourceFile): return if not os.path.exists(destDir): os.makedirs(destDir) if os.path.islink(sourceFile): #复制软连接 currentPath = os.getcwd() symbolLink = os.readlink(sourceFile) os.chdir(destDir) os.symlink(symbolLink, os.path.basename(sourceFile)) os.chdir(currentPath) elif os.path.isfile(sourceFile): #复制文件 with open(sourceFile, "rb") as input: with open(os.path.join(destDir, os.path.basename(sourceFile)), "wb") as output: output.write(input.read()) os.chmod(os.path.join(destDir, os.path.basename(sourceFile)), os.stat(sourceFile).st_mode) if not os.path.exists(source): print("copy %s to %s fail, not find %s"%(source, destination, source)) return # 目标文件夹一定要存在 if not os.path.exists(destination): os.makedirs(destination) if os.path.isdir(source): #复制整个目录下的文件 for path, directorys, files in os.walk(source): subPath = path[len(source): ] # 创建目录 if subPath.startswith("/"): subPath = subPath[1:] destinationPath = os.path.join(destination, subPath) if not os.path.exists(destinationPath): os.makedirs(destinationPath) # 复制目录下中的文件 for file in files: copyFile(os.path.join(path, file), destinationPath) elif os.path.isfile(source): # 复制单个文件 copyFile(source, destination) #修改脚本中的结束符,\r\n换为\n def formatLineBrak(): global serviceName fileNames = ["../src/bin/" + serviceName + "/start.sh", "../src/bin/" + serviceName + "/stop.sh"] for fileName in fileNames: if not os.path.exists(fileName): continue fileData = "" with open(fileName, "r") as file: for lineData in file: lineData = lineData.replace("\r\n", "\n") fileData += lineData # 向启动脚本中写入内容 with open(fileName, "w") as file: file.write(fileData) #构建服务 def buildService(): global serviceName outputDir = "../src/bin/" + serviceName serviceDir = "./" + serviceName parseArgs() downloadThirdLibrary() cleanFiles(outputDir) cleanFiles(serviceDir) getGitInfo() #编译各个模块 if not compileService(): print("\n--------------compile fail at %s--------------" % (strTime)) return -1 #拷贝文件 copyConfigFile() #处理脚本 formatLineBrak() #修改文件的权限 processFilePromission(outputDir) #移动到当前目录 print("move dir %s to %s"%(outputDir, serviceDir)) copyFiles(outputDir, serviceDir) print("\n--------------compile successful at %s--------------"%(strTime)) return 0 #------------------------函数的调用-------------------------# buildService() ```
{ "source": "40423219/cpw3b", "score": 2 }
#### File: plugin/liquid_tags/liquid_tags.py ```python from pelican import signals from .mdx_liquid_tags import LiquidTags, LT_CONFIG def addLiquidTags(gen): if not gen.settings.get('MD_EXTENSIONS'): from pelican.settings import DEFAULT_CONFIG gen.settings['MD_EXTENSIONS'] = DEFAULT_CONFIG['MD_EXTENSIONS'] if LiquidTags not in gen.settings['MD_EXTENSIONS']: configs = dict() for key,value in LT_CONFIG.items(): configs[key]=value for key,value in gen.settings.items(): if key in LT_CONFIG: configs[key]=value gen.settings['MD_EXTENSIONS'].append(LiquidTags(configs)) def register(): signals.initialized.connect(addLiquidTags) ```
{ "source": "404akhan/memnet", "score": 2 }
#### File: 404akhan/memnet/memnet.py ```python import torch import torch.nn.functional as F import torch.nn.init as init from torch import nn, autograd from torch.utils.data import DataLoader from babi import BabiDataset, pad_collate from torch.nn.utils import clip_grad_norm torch.backends.cudnn.benchmark = True torch.backends.cudnn.fastest = True class MemoryCell(nn.Module): def __init__(self, num_mem_slots, embed_dim): super(MemoryCell, self).__init__() self.num_mem_slots = num_mem_slots self.embed_dim = embed_dim # Memory update linear layers. self.U = nn.Linear(embed_dim, embed_dim) self.V = nn.Linear(embed_dim, embed_dim, bias=False) self.W = nn.Linear(embed_dim, embed_dim, bias=False) self.prelu_memory = nn.PReLU(init=1) init.xavier_normal(self.U.weight) init.xavier_normal(self.V.weight) init.xavier_normal(self.W.weight) def forward(self, inputs, keys): memories = keys memory_inputs = inputs for index, sentence in enumerate(memory_inputs): # Compute memory updates. sentence = sentence.unsqueeze(1).repeat(1, self.num_mem_slots, 1) sentence = sentence.view_as(memories) memory_gates = F.sigmoid((sentence * (memories + keys)).sum(dim=-1)) memory_gates = memory_gates.expand_as(memories) candidate_memories = self.prelu_memory(self.U(memories) + self.V(sentence) + self.W(keys)) updated_memories = memories + memory_gates * candidate_memories updated_memories = updated_memories / ( updated_memories.norm(p=2, dim=-1).expand_as(updated_memories) + 1e-12) memories = updated_memories return memories class RecurrentEntityNetwork(nn.Module): def __init__(self, hidden_dim, max_num_sentences=150, vocab_size=50): super(RecurrentEntityNetwork, self).__init__() self.max_num_sentences = max_num_sentences self.embed_dim = hidden_dim self.num_mem_slots = 20 self.vocab_size = vocab_size self.memory_mask = nn.Parameter(torch.randn(max_num_sentences, 1)) self.question_mask = nn.Parameter(torch.randn(max_num_sentences, 1)) self.embedding = nn.Embedding(vocab_size + self.num_mem_slots, hidden_dim, padding_idx=0) init.uniform(self.embedding.weight, a=-(3 ** 0.5), b=3 ** 0.5) self.cell = MemoryCell(self.num_mem_slots, hidden_dim) # Fully connected linear layers. self.C = nn.Linear(hidden_dim, hidden_dim) self.H = nn.Linear(hidden_dim, hidden_dim, bias=False) self.Z = nn.Linear(hidden_dim, vocab_size, bias=False) self.prelu_outputs = nn.ReLU() # Initialize weights. init.xavier_normal(self.C.weight) init.xavier_normal(self.H.weight) init.xavier_normal(self.Z.weight) self.memory_mask.data.fill_(1) self.question_mask.data.fill_(1) def forward(self, contexts, questions): batch_size, context_length, context_num_words = contexts.size() _, question_length = questions.size() # List of sentence embeddings for every story in a batch. (num. sentences, batch size, encoder dim.) contexts = self.embedding(contexts.view(batch_size, -1)) contexts = contexts.view(batch_size, context_length, context_num_words, -1) questions = self.embedding(questions) memory_mask = self.memory_mask[:context_length].unsqueeze(0).unsqueeze(2).expand(*contexts.size()) question_mask = self.question_mask[:question_length].unsqueeze(0).expand(*questions.size()) memory_inputs = torch.sum(contexts * memory_mask, dim=2).squeeze().t() question_inputs = torch.sum(questions * question_mask, dim=1).squeeze() # Compute memory updates. keys = torch.arange(self.vocab_size, self.vocab_size + self.num_mem_slots) keys = torch.autograd.Variable(keys.unsqueeze(0).expand(batch_size, self.num_mem_slots).long().cuda()) keys = self.embedding(keys).view(batch_size * self.num_mem_slots, -1) network_graph = self.cell(memory_inputs, keys) network_graph = self.C(network_graph).view(batch_size, self.num_mem_slots, self.embed_dim) # Apply attention to the entire acyclic graph using the questions. attention_energies = network_graph * question_inputs.unsqueeze(1).expand_as(network_graph) attention_energies = attention_energies.sum(dim=-1) attention_weights = F.softmax(attention_energies).expand_as(network_graph) attended_network_graph = (network_graph * attention_weights).sum(dim=1).squeeze() # Condition the fully-connected layer using the questions. outputs = self.prelu_outputs(question_inputs + self.H(attended_network_graph)) outputs = self.Z(outputs) return outputs HIDDEN_DIM = 100 BATCH_SIZE = 100 NUM_EPOCHS = 250 LOG_FILE = "memnet.txt" if __name__ == '__main__': dataset = BabiDataset() vocab_size = len(dataset.QA.VOCAB) criterion = nn.CrossEntropyLoss(size_average=False) model = RecurrentEntityNetwork(HIDDEN_DIM, 130, vocab_size) model.cuda() early_stopping_counter = 0 best_accuracy = 0 optimizer = torch.optim.Adam(model.parameters(), lr=0.005) for epoch in range(NUM_EPOCHS): dataset.set_mode('train') train_loader = DataLoader( dataset, batch_size=BATCH_SIZE, shuffle=True, collate_fn=pad_collate ) model.train() if early_stopping_counter < 20: total_accuracy = 0 num_batches = 0 for batch_idx, data in enumerate(train_loader): optimizer.zero_grad() contexts, questions, answers = data contexts = autograd.Variable(contexts.long().cuda()) questions = autograd.Variable(questions.long().cuda()) answers = autograd.Variable(answers.cuda()) outputs = model(contexts, questions) l2_loss = 0 for name, param in model.named_parameters(): l2_loss += 0.001 * torch.sum(param * param) loss = criterion(outputs, answers) + l2_loss predictions = F.softmax(outputs).data.max(1)[1] correct = predictions.eq(answers.data).cpu().sum() acc = correct * 100. / len(contexts) loss.backward() clip_grad_norm(model.parameters(), 40) total_accuracy += acc num_batches += 1 if batch_idx % 20 == 0: print('[Epoch %d] [Training] loss : %f, acc : %f, batch_idx : %d' % ( epoch, loss.data[0], total_accuracy / num_batches, batch_idx )) optimizer.step() dataset.set_mode('valid') valid_loader = DataLoader( dataset, batch_size=BATCH_SIZE, shuffle=False, collate_fn=pad_collate ) model.eval() total_accuracy = 0 num_batches = 0 for batch_idx, data in enumerate(valid_loader): contexts, questions, answers = data contexts = autograd.Variable(contexts.long().cuda()) questions = autograd.Variable(questions.long().cuda()) answers = autograd.Variable(answers.cuda()) outputs = model(contexts, questions) l2_loss = 0 for name, param in model.named_parameters(): l2_loss += 0.001 * torch.sum(param * param) loss = criterion(outputs, answers) + l2_loss predictions = F.softmax(outputs).data.max(1)[1] correct = predictions.eq(answers.data).cpu().sum() acc = correct * 100. / len(contexts) total_accuracy += acc num_batches += 1 total_accuracy = total_accuracy / num_batches if total_accuracy > best_accuracy: best_accuracy = total_accuracy best_state = model.state_dict() early_stopping_counter = 0 else: early_stopping_counter += 1 print('[Epoch %d] [Validate] Accuracy : %f' % (epoch, total_accuracy)) with open(LOG_FILE, 'a') as fp: fp.write('[Epoch %d] [Validate] Accuracy : %f' % (epoch, total_accuracy) + '\n') if total_accuracy == 1.0: break else: print('Early Stopping at Epoch %d, Valid Accuracy : %f' % (epoch, best_accuracy)) break dataset.set_mode('test') test_loader = DataLoader( dataset, batch_size=BATCH_SIZE, shuffle=False, collate_fn=pad_collate ) test_acc = 0 num_batches = 0 for batch_idx, data in enumerate(test_loader): contexts, questions, answers = data contexts = autograd.Variable(contexts.long().cuda()) questions = autograd.Variable(questions.long().cuda()) answers = autograd.Variable(answers.cuda()) model.state_dict().update(best_state) outputs = model(contexts, questions) l2_loss = 0 for name, param in model.named_parameters(): l2_loss += 0.001 * torch.sum(param * param) loss = criterion(outputs, answers) + l2_loss predictions = F.softmax(outputs).data.max(1)[1] correct = predictions.eq(answers.data).cpu().sum() acc = correct * 100. / len(contexts) test_acc += acc num_batches += 1 print('[Epoch %d] [Test] Accuracy : %f' % (epoch, test_acc / num_batches)) with open(LOG_FILE, 'a') as fp: fp.write('[Epoch %d] [Test] Accuracy : %f' % (epoch, test_acc / num_batches) + '\n') ```
{ "source": "404alex/AdaptiveNeuralTrees", "score": 3 }
#### File: 404alex/AdaptiveNeuralTrees/data.py ```python import torch import torchvision from torchvision import datasets, transforms from ops import ChunkSampler from imbalanced import ImbalancedDatasetSampler import numpy as np from torch.utils import data as tu from torch._utils import _accumulate from torch import randperm from sklearn.preprocessing import normalize from helper import Subset import torch.nn.functional as F def random_split(dataset, lengths): r""" Randomly split a dataset into non-overlapping new datasets of given lengths. Arguments: dataset (Dataset): Dataset to be split lengths (sequence): lengths of splits to be produced """ if sum(lengths) != len(dataset): raise ValueError("Sum of input lengths does not equal the length of the input dataset!") indices = randperm(sum(lengths)).tolist() return [Subset(dataset, indices[offset - length:offset]) for offset, length in zip(_accumulate(lengths), lengths)] def get_dataloaders( dataset='mnist', batch_size=128, augmentation_on=False, cuda=False, num_workers=0, ): # TODO: move the dataloader to data.py kwargs = { 'num_workers': num_workers, 'pin_memory': True, } if cuda else {} if dataset == 'mnist': if augmentation_on: transform_train = transforms.Compose( [ transforms.RandomCrop(28, padding=2), transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)), ], ) transform_test = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)), ], ) else: transform_train = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)), ], ) transform_test = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)), ], ) mnist_train = datasets.MNIST( '../data', train=True, download=True, transform=transform_train, ) mnist_valid = datasets.MNIST( '../data', train=True, download=True, transform=transform_test, ) mnist_test = datasets.MNIST( '../data', train=False, transform=transform_test, ) TOTAL_NUM = 60000 NUM_VALID = int(round(TOTAL_NUM * 0.1)) NUM_TRAIN = int(round(TOTAL_NUM - NUM_VALID)) train_loader = torch.utils.data.DataLoader( mnist_train, batch_size=batch_size, sampler=ChunkSampler(NUM_TRAIN, 0, shuffle=True), **kwargs) valid_loader = torch.utils.data.DataLoader( mnist_valid, batch_size=batch_size, sampler=ChunkSampler(NUM_VALID, NUM_TRAIN, shuffle=True), **kwargs) test_loader = torch.utils.data.DataLoader( mnist_test, batch_size=1000, shuffle=False, **kwargs) elif dataset == 'cifar10': if augmentation_on: transform_train = transforms.Compose( [ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize( (0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010), ), ], ) transform_test = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize( (0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010), ), ], ) else: transform_train = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ], ) transform_test = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ], ) cifar10_train = torchvision.datasets.CIFAR10( root='../data', train=True, download=True, transform=transform_train, ) cifar10_valid = torchvision.datasets.CIFAR10( root='../data', train=True, download=True, transform=transform_test, ) cifar10_test = torchvision.datasets.CIFAR10( root='../data', train=False, download=True, transform=transform_test, ) TOTAL_NUM = 50000 NUM_VALID = int(round(TOTAL_NUM * 0.02)) NUM_TRAIN = int(round(TOTAL_NUM - NUM_VALID)) train_loader = torch.utils.data.DataLoader( cifar10_train, batch_size=batch_size, sampler=ChunkSampler(NUM_TRAIN, 0, shuffle=True), **kwargs) valid_loader = torch.utils.data.DataLoader( cifar10_valid, batch_size=batch_size, sampler=ChunkSampler(NUM_VALID, NUM_TRAIN, shuffle=True), **kwargs) test_loader = torch.utils.data.DataLoader( cifar10_test, batch_size=1000, shuffle=False, **kwargs) elif dataset == 'iot': if augmentation_on: transform_train = transforms.Compose( [ transforms.Resize((40, 40)), transforms.RandomCrop(40, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize( (0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010), ), ], ) transform_test = transforms.Compose( [ transforms.Resize((40, 40)), transforms.ToTensor(), transforms.Normalize( (0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010), ), ], ) else: transform_train = transforms.Compose( [ transforms.Resize((40, 40)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ], ) transform_test = transforms.Compose( [ transforms.Resize((40, 40)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ], ) train_data = datasets.ImageFolder(root="../img", transform=transform_train) test_data = datasets.ImageFolder(root="../img", transform=transform_test) val_data = datasets.ImageFolder(root="../img", transform=transform_test) unseen_data = datasets.ImageFolder(root="../img_test", transform=transform_test) TOTAL_NUM = 551 NUM_VALID = 11 NUM_TRAIN = TOTAL_NUM - NUM_VALID train_loader = torch.utils.data.DataLoader( train_data, batch_size=batch_size, sampler=ChunkSampler(NUM_TRAIN, 0, shuffle=True), **kwargs) valid_loader = torch.utils.data.DataLoader( val_data, batch_size=batch_size, sampler=ChunkSampler(NUM_VALID, NUM_TRAIN, shuffle=True), **kwargs) test_loader = torch.utils.data.DataLoader( unseen_data, batch_size=51, shuffle=False, **kwargs) # train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True, **kwargs) # test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, shuffle=False, **kwargs) # valid_loader = torch.utils.data.DataLoader(val_data, batch_size=batch_size, shuffle=True, **kwargs) elif dataset == 'batadal': filename = '../data/ICS/BATADAL/Physical_BATADAL.npy' data = np.load(filename, allow_pickle=True) datalen = len(data[0]) X = data[:, 1:datalen - 2] X = normalize(X, axis=0) y = data[:, datalen - 1] re_X = [] for item in X: z = np.zeros(6) item = np.concatenate((item, z), axis=0) temp = np.reshape(item, (1, 7, 7)).tolist() re_X.append(np.array(temp)) re_y = [] for item in y: if item == 'Normal': temp = 0 else: temp = 1 re_y.append(temp) tensor_x = torch.Tensor(re_X) tensor_x = F.upsample(tensor_x, size=28, mode='bilinear') tensor_y = torch.Tensor(re_y).long() all_dataset = tu.TensorDataset(tensor_x.data, tensor_y) total_num = len(y) val_num = int(round(total_num * 0.1)) train_num = total_num - val_num - 2000 tran_set, test_set, val_set = random_split(all_dataset, [train_num, 2000, val_num]) NUM_VALID = len(val_set) NUM_TRAIN = len(tran_set) train_loader = torch.utils.data.DataLoader( tran_set, batch_size=batch_size, sampler=ImbalancedDatasetSampler(tran_set), **kwargs) valid_loader = torch.utils.data.DataLoader( val_set, batch_size=batch_size, sampler=ImbalancedDatasetSampler(val_set), **kwargs) test_loader = torch.utils.data.DataLoader( test_set, batch_size=2000, shuffle=False, **kwargs) elif dataset == 'swat': filename = '../data/SWAT/Physical_SWAT_2019.npy' data = np.load(filename, allow_pickle=True) datalen = len(data[0]) X = data[:, 1:datalen - 2] X[X == 'Active'] = 1.0 X[X == 'Inactive'] = 0.0 X = normalize(X, axis=0) y = data[:, datalen - 1] re_X = [] for item in X: z = np.zeros(5) item = np.concatenate((item, z), axis=0) temp = np.reshape(item, (1, 9, 9)).tolist() re_X.append(np.array(temp)) re_y = [] for item in y: if item == 'Normal': temp = 0 else: temp = 1 re_y.append(temp) tensor_x = torch.Tensor(re_X) tensor_x = F.upsample(tensor_x, size=54, mode='bilinear') tensor_y = torch.Tensor(re_y).long() all_dataset = tu.TensorDataset(tensor_x.data, tensor_y) total_num = len(y) val_num = int(round(total_num * 0.1)) train_num = total_num - val_num - 2000 tran_set, test_set, val_set = random_split(all_dataset, [train_num, 2000, val_num]) NUM_VALID = len(val_set) NUM_TRAIN = len(tran_set) train_loader = torch.utils.data.DataLoader( tran_set, batch_size=batch_size, sampler=ImbalancedDatasetSampler(tran_set), **kwargs) valid_loader = torch.utils.data.DataLoader( val_set, batch_size=batch_size, sampler=ImbalancedDatasetSampler(val_set), **kwargs) test_loader = torch.utils.data.DataLoader( test_set, batch_size=2000, shuffle=False, **kwargs) else: raise NotImplementedError("Specified data set is not available.") return train_loader, valid_loader, test_loader, NUM_TRAIN, NUM_VALID def get_dataset_details(dataset): if dataset == 'mnist': input_nc, input_width, input_height = 1, 28, 28 classes = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) elif dataset == 'cifar10': input_nc, input_width, input_height = 3, 32, 32 classes = ( 'plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck', ) elif dataset == 'iot': input_nc, input_width, input_height = 3, 40, 40 classes = ( 'benign_img', 'malicious_img' ) elif dataset == 'batadal': input_nc, input_width, input_height = 1, 28, 28 classes = ( 'Normal', 'Attack' ) elif dataset == 'swat': input_nc, input_width, input_height = 1, 54, 54 classes = ( 'Normal', 'Attack' ) else: raise NotImplementedError("Specified data set is not available.") return input_nc, input_width, input_height, classes ``` #### File: 404alex/AdaptiveNeuralTrees/utils.py ```python import torch import torchvision import json import time import models import random import numpy as np import matplotlib.pyplot as plt from torch.autograd import Variable import torch.nn.functional as F from torch import optim from torch.utils.data import DataLoader from torchvision import datasets, transforms from ops import \ count_number_transforms, count_number_transforms_after_last_downsample # ---------------------------- Model configuration ---------------------- def define_node( args, node_index, level, parent_index, tree_struct, identity=False, ): """ Define node operations. In this function, we assume that 3 building blocks of node operations i.e. transformer, solver and router are of fixed complexity. """ # define meta information num_transforms = 0 if node_index == 0 else count_number_transforms(parent_index, tree_struct) meta = {'index': node_index, 'parent': parent_index, 'left_child': 0, 'right_child': 0, 'level': level, 'extended': False, 'split': False, 'visited': False, 'is_leaf': True, 'train_accuracy_gain_split': -np.inf, 'valid_accuracy_gain_split': -np.inf, 'test_accuracy_gain_split': -np.inf, 'train_accuracy_gain_ext': -np.inf, 'valid_accuracy_gain_ext': -np.inf, 'test_accuracy_gain_ext': -np.inf, 'num_transforms': num_transforms} # get input shape before transformation if not tree_struct: # if it's first node, then set it to the input data size meta['in_shape'] = (1, args.input_nc, args.input_width, args.input_height) else: meta['in_shape'] = tree_struct[parent_index]['out_shape'] # -------------------------- define transformer --------------------------- # no transformation if the input size is too small. if meta['in_shape'][2] < 3 or meta['in_shape'][3] < 3: identity = True if identity or args.transformer_ver==1: meta['transformed'] = False else: meta['transformed'] = True # only downsample at the specified frequency: # currently assume the initial transform always perform downsampling. num_downsample = 0 if node_index == 0 else count_number_transforms_after_last_downsample(parent_index, tree_struct) if args.downsample_interval == num_downsample or node_index == 0: meta['downsampled'] = True else: meta['downsampled'] = False # get the transformer version: config_t = {'kernel_size': args.transformer_k, 'ngf': args.transformer_ngf, 'batch_norm': args.batch_norm, 'downsample': meta['downsampled'], 'expansion_rate': args.transformer_expansion_rate, 'reduction_rate': args.transformer_reduction_rate } transformer_ver = args.transformer_ver if identity: transformer = models.Identity(meta['in_shape'][1], meta['in_shape'][2], meta['in_shape'][3], **config_t) else: transformer = define_transformer(transformer_ver, meta['in_shape'][1], meta['in_shape'][2], meta['in_shape'][3], **config_t) meta['identity'] = identity # get output shape after transformation: meta['out_shape'] = transformer.outputshape print('---------------- data shape before/after transformer -------------') print(meta['in_shape'], type(meta['in_shape'])) print(meta['out_shape'], type(meta['out_shape'])) # ---------------------------- define solver------------------------------- config_s = {'no_classes': args.no_classes, 'dropout_prob': args.solver_dropout_prob, 'batch_norm': args.batch_norm} solver = define_solver(args.solver_ver, meta['out_shape'][1], meta['out_shape'][2], meta['out_shape'][3], **config_s) # ---------------------------- define router ------------------------------ config_r = {'kernel_size': args.router_k, 'ngf': args.router_ngf, 'soft_decision': True, 'stochastic': False, 'dropout_prob':args.router_dropout_prob, 'batch_norm': args.batch_norm} router = define_router( args.router_ver, meta['out_shape'][1], meta['out_shape'][2], meta['out_shape'][3], **config_r) # define module: module = {'transform': transformer, 'classifier': solver, 'router': router} return meta, module def define_transformer(version, input_nc, input_width, input_height, **kwargs): if version == 1: # Identity function return models.Identity(input_nc, input_width, input_height, **kwargs) elif version == 2: # 1 conv layer return models.JustConv(input_nc, input_width, input_height, **kwargs) elif version == 3: # 1 conv layer + 1 max pooling return models.ConvPool(input_nc, input_width, input_height, **kwargs) elif version == 4: # Bottle-neck residual block return models.ResidualTransformer(input_nc, input_width, input_height, **kwargs) elif version == 5: # VGG13: 2 conv layer + 1 max pooling return models.VGG13ConvPool(input_nc, input_width, input_height, **kwargs) else: raise NotImplementedError("Specified transformer module not available.") def define_router(version, input_nc, input_width, input_height, **kwargs): if version == 1: # Simple router with 1 conv kernel + spatial averaging return models.Router(input_nc, input_width, input_height, **kwargs) elif version == 2: # 1 conv layer with global average pooling + fc layer return models.RouterGAP(input_nc, input_width, input_height, **kwargs) elif version == 3: # 2 conv with global average pooling + fc layer return models.RouterGAPwithDoubleConv(input_nc, input_width, input_height, **kwargs) elif version == 4: # MLP with 1 hidden layer return models.Router_MLP_h1(input_nc, input_width, input_height, **kwargs) elif version == 5: # GAP + 2 fc layers (Veit. et al 2017) return models.RouterGAP_TwoFClayers(input_nc, input_width, input_height, **kwargs) elif version == 6: # 1 conv + GAP + 2 fc layers return models.RouterGAPwithConv_TwoFClayers(input_nc, input_width, input_height, **kwargs) else: raise NotImplementedError("Specified router module not available!") def define_solver(version, input_nc, input_width, input_height, **kwargs): if version == 1: # Logistric regressor return models.LR(input_nc, input_width, input_height, **kwargs) elif version == 2: # MLP with 2 hidden layers: return models.MLP_LeNet(input_nc, input_width, input_height, **kwargs) elif version == 3: # MLP with a single hidden layer (MNIST LeNet) return models.MLP_LeNetMNIST(input_nc, input_width, input_height, **kwargs) elif version == 4: # GAP + 2 FC layers return models.Solver_GAP_TwoFClayers(input_nc, input_width, input_height, **kwargs) elif version == 5: # MLP with a single hidden layer in AlexNet return models.MLP_AlexNet(input_nc, input_width, input_height, **kwargs) elif version == 6: # GAP + 1 FC layer return models.Solver_GAP_OneFClayers(input_nc, input_width, input_height, **kwargs) else: raise NotImplementedError("Specified solver module not available!") def get_scheduler(scheduler_type, optimizer, grow): if scheduler_type == 'step_lr': # reduce the learning rate scheduler = optim.lr_scheduler.MultiStepLR( optimizer, milestones=[100,150], gamma=0.1, ) elif scheduler_type == 'plateau': # patience based decay of learning rates scheduler = optim.lr_scheduler.ReduceLROnPlateau( optimizer, 'min', factor=0.1, patience=10, ) elif scheduler_type == 'hybrid': # hybrid between step_lr and plateau if grow: # use 'plateau' during the local growth phase scheduler = optim.lr_scheduler.ReduceLROnPlateau( optimizer, 'min', factor=0.1, patience=10, ) else: scheduler = optim.lr_scheduler.MultiStepLR( optimizer, milestones=[100, 150], gamma=0.1, ) else: scheduler = None return scheduler # --------------------------- Visualisation ---------------------------- # visualise numpy image: def imshow(img): npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) def plot_hist(data, save_as='./figure'): fig = plt.figure() plt.hist(data, normed=True, bins=150, range=(0, 1.0)) fig.savefig(save_as) def plot_hist_root(labels, split_status, save_as='./figures/hist_labels_split.png'): """ Plot the distribution of labels of a binary routing function. Args: labels (np array): labels (N) each entry contains a label split_status (np array bool): boolean array (N) where 0 indicates the entry belongs to the right and 1 indicates left. """ fig = plt.figure() plt.hist(labels[split_status], bins=range(11), alpha=0.75, label='right branch') plt.hist(labels[split_status==False], bins=range(11), alpha=0.5, label='left branch') plt.legend(loc='upper right') print('save the histogram as ' + save_as) fig.savefig(save_as) # Use to visualise performance of one model: def print_performance(jasonfile, model_name='model_1', figsize=(5,5)) : """ Inspect performance of a single model """ records = json.load(open(jasonfile, 'r')) print('\n'+model_name) print(" train_best_loss: {}".format(records['train_best_loss'])) print(" valid_best_loss: {}".format(records['valid_best_loss'])) print(" test_best_loss: {}".format(records['test_best_loss'])) # Plot train/test loss fig = plt.figure(figsize=figsize) plt.plot(np.arange(len(records['test_epoch_loss'])), np.array(records['test_epoch_loss']), linestyle='-.', color='b', label='test epoch loss') plt.plot(np.arange(len(records['train_epoch_loss']), dtype=float), np.array(records['train_epoch_loss']), color='r', linestyle='-', label='train epoch loss') plt.legend(loc='upper right') plt.ylabel('epoch wise loss (average CE loss)') plt.xlabel('epoch number') def plot_performance(jasonfiles, model_names=[], figsize=(5,5), title='') : """ Visualise the results for several models Args: jasonfiles (list): List of jason files model_names (list): List of model names """ # TODO: currently only supports up to 8 models at a time due to color types fig = plt.figure(figsize=figsize) color = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'] if not(model_names): model_names = [str(i) for i in range(len(jasonfiles))] for i, f in enumerate(jasonfiles): # load the information: records = json.load(open(f, 'r')) # Plot train/test loss plt.plot(np.arange(len(records['test_epoch_loss'])), np.array(records['test_epoch_loss']), color=color[i], linestyle='-.', label='test epoch loss: ' + model_names[i] ) plt.plot(np.arange(len(records['train_epoch_loss']), dtype=float), np.array(records['train_epoch_loss']), color=color[i], linestyle='-', label='train epoch loss: ' + model_names[i]) plt.ylabel('epoch wise loss (average CE loss)') plt.xlabel('epoch number') plt.legend(loc='upper right') plt.title(title) def plot_accuracy(jasonfiles, model_names=[], figsize=(5,5), ymax=100.0, title=''): fig = plt.figure(figsize=figsize) color = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'] if not(model_names): model_names = [str(i) for i in range(len(jasonfiles))] for i, f in enumerate(jasonfiles): # load the information: records = json.load(open(f, 'r')) # Plot train/test loss plt.plot( np.arange(len(records['test_epoch_accuracy']), dtype=float), np.array(records['test_epoch_accuracy']), color=color[i], linestyle='-', label=model_names[i], ) # print(records['train_epoch_accuracy']) plt.ylabel('test accuracy (%)') plt.xlabel('epoch number') plt.ylim(ymax=ymax) print(model_names[i] + ': accuracy = {}'.format(max(records['test_epoch_accuracy']))) plt.legend(loc='lower right') plt.title(title) def compute_error(model_file, data_loader, cuda_on=False, name = ''): """Load a model and compute errors on a held-out dataset Args: model_file (str): model parameters data_dataloader (torch.utils.data.DataLoader): data loader """ # load the model model = torch.load(model_file) if cuda_on: model.cuda() # compute the error model.eval() test_loss = 0 correct = 0 for data, target in data_loader: if cuda_on: data, target = data.cuda(), target.cuda() data, target = Variable(data, volatile=True), Variable(target) output = model(data) test_loss += F.nll_loss(output, target, size_average=False).data[ 0] # sum up batch loss pred = output.data.max(1, keepdim=True)[ 1] # get the index of the max log-probability correct += pred.eq(target.data.view_as(pred)).cpu().sum() test_loss /= len(data_loader.dataset) print(name + 'Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format( test_loss, correct, len(data_loader.dataset), 100. * correct / len(data_loader.dataset))) def load_tree_model(model_file, cuda_on=False, soft_decision=True, stochastic=False, breadth_first=False, fast=False, ): """Load a tree model. """ # load the model and set routers stochastic. map_location = None if not (cuda_on): map_location = 'cpu' tree_tmp = torch.load(model_file, map_location=map_location) tree_struct, tree_modules = tree_tmp.tree_struct, tree_tmp.update_tree_modules() for node in tree_modules: node['router'].stochastic = stochastic node['router'].soft_decision = soft_decision node['router'].dropout_prob = 0.0 for node_meta in tree_struct: if not ('extended' in node_meta.keys()): node_meta['extended'] = False model = models.Tree( tree_struct, tree_modules, split=False, cuda_on=cuda_on, soft_decision=soft_decision, breadth_first=breadth_first, ) if cuda_on: model.cuda() return model def compute_error_general(model_file, data_loader, cuda_on=False, soft_decision=True, stochastic=False, breadth_first=False, fast = False, task="classification", name = ''): """Load a model and perform stochastic inferenc Args: model_file (str): model parameters data_dataloader (torch.utils.data.DataLoader): data loader """ # load the model and set routers stochastic. map_location = None if not (cuda_on): map_location = 'cpu' tree_tmp = torch.load(model_file, map_location=map_location) tree_struct, tree_modules = \ tree_tmp.tree_struct, tree_tmp.update_tree_modules() for node in tree_modules: node['router'].stochastic = stochastic node['router'].soft_decision = soft_decision node['router'].dropout_prob = 0.0 for node_meta in tree_struct: if not('extended' in node_meta.keys()): node_meta['extended']=False if task == "classification": model = models.Tree( tree_struct, tree_modules, split=False, cuda_on=cuda_on, soft_decision=soft_decision, breadth_first=breadth_first, ) if cuda_on: model.cuda() # compute the error model.eval() test_loss = 0 correct = 0 for data, target in data_loader: if cuda_on: data, target = data.cuda(), target.cuda() data, target = Variable(data, volatile=True), Variable(target) if fast: output = model.fast_forward_BF(data) else: output = model.forward(data) if task == "classification": test_loss += F.nll_loss(output, target, size_average=False).data[0] pred = output.data.max(1, keepdim=True)[1] correct += pred.eq(target.data.view_as(pred)).cpu().sum() else: raise NotImplementedError("The specified task is not supported") # Normalise the loss and print: if task == "classification": test_loss /= len(data_loader.dataset) print(name + 'Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format( test_loss, correct, len(data_loader.dataset), 100. * correct / len(data_loader.dataset))) elif task == "regression": test_loss = test_loss / 7.0 / len(data_loader.dataset) print('Average loss: {:.4f}'.format(test_loss)) def compute_error_general_ensemble(model_file_list, data_loader, cuda_on=False, soft_decision=True, stochastic=False, breadth_first=False, fast = False, task="classification", name = ''): """Load an ensemble of models and compute the average prediction. """ # load the model and set routers stochastic. model_list = [] map_location = None if not (cuda_on): map_location = 'cpu' for model_file in model_file_list: tree_tmp = torch.load(model_file, map_location=map_location) tree_struct, tree_modules = tree_tmp.tree_struct, tree_tmp.update_tree_modules() for node in tree_modules: node['router'].stochastic = stochastic node['router'].soft_decision = soft_decision node['router'].dropout_prob = 0.0 for node_meta in tree_struct: if not('extended' in node_meta.keys()): node_meta['extended']=False if task == "classification": model = models.Tree( tree_struct, tree_modules, split=False, cuda_on=cuda_on, soft_decision=soft_decision, breadth_first=breadth_first, ) if cuda_on: model.cuda() model_list.append(model) # compute the error for model in model_list: model.eval() test_loss = 0 correct = 0 for data, target in data_loader: if cuda_on: data, target = data.cuda(), target.cuda() data, target = Variable(data, volatile=True), Variable(target) # compute the average prediction over different models output = 0.0 for model in model_list: if fast: output += model.fast_forward_BF(data) else: output += model.forward(data) output /= len(model_list) if task == "classification": test_loss += F.nll_loss(output, target, size_average=False).data[0] pred = output.data.max(1, keepdim=True)[1] correct += pred.eq(target.data.view_as(pred)).cpu().sum() elif task == "regression": # print(test_loss) test_loss += F.mse_loss(output, target, size_average=False).data[0] # Normalise the loss and print: if task == "classification": test_loss /= len(data_loader.dataset) print(name + 'Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format( test_loss, correct, len(data_loader.dataset), 100. * correct / len(data_loader.dataset))) elif task == "regression": test_loss = test_loss / 7.0 / len(data_loader.dataset) print('Average loss: {:.4f}'.format(test_loss)) def try_different_inference_methods( model_file, dataset, task="classification", augmentation_on=False, cuda_on=True, ): """ Try different inference methods and compute accuracy """ if dataset == 'cifar10': if augmentation_on: transform_test = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))]) else: transform_test = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) cifar10_test = torchvision.datasets.CIFAR10(root='../../data', train=False, download=True, transform=transform_test) test_loader = torch.utils.data.DataLoader(cifar10_test, batch_size=100, shuffle=False, num_workers = 2) elif dataset == 'mnist': transform_test = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) mnist_test = datasets.MNIST('../../data', train=False, transform=transform_test) test_loader = torch.utils.data.DataLoader(mnist_test, batch_size=100, shuffle=False, num_workers=2) else: raise NotImplementedError("The specified dataset is not supported") # soft inferences: start = time.time() compute_error_general( model_file, test_loader, task=task, cuda_on=cuda_on, soft_decision=True, stochastic=False, breadth_first=True, name='soft + BF : ', ) end = time.time() print('took {} seconds'.format(end - start)) # hard: compute_error_general( model_file, test_loader, task=task, cuda_on=cuda_on, soft_decision=False, stochastic=False, breadth_first=True, name='hard + max + BF : ', ) end = time.time() print('took {} seconds'.format(end - start)) # stochastic hard compute_error_general( model_file, test_loader, cuda_on=cuda_on, soft_decision=False, stochastic=True, breadth_first=True, name='hard + stochastic + BF : ', ) end = time.time() print('took {} seconds'.format(end - start)) def try_different_inference_methods_ensemble( model_file_list, dataset, task="classification", augmentation_on=False, cuda_on=True, ): """ Try different inference methods and compute accuracy """ if dataset == 'cifar10': if augmentation_on: transform_test = transforms.Compose([transforms.ToTensor(), transforms.Normalize( (0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))]) else: transform_test = transforms.Compose([transforms.ToTensor(), transforms.Normalize( (0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) cifar10_test = torchvision.datasets.CIFAR10(root='../../data', train=False, download=True, transform=transform_test) test_loader = torch.utils.data.DataLoader(cifar10_test, batch_size=100, shuffle=False, num_workers=2) elif dataset == 'mnist': transform_test = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) mnist_test = datasets.MNIST('../../data', train=False, transform=transform_test) test_loader = torch.utils.data.DataLoader(mnist_test, batch_size=100, shuffle=False, num_workers=2) else: raise NotImplementedError("The specified dataset is not availble") # soft inferences: start = time.time() compute_error_general_ensemble( model_file_list, test_loader, task=task, cuda_on=cuda_on, soft_decision=True, stochastic=False, breadth_first=True, name='soft + BF : ', ) end = time.time() print('took {} seconds'.format(end - start)) # hard: compute_error_general_ensemble( model_file_list, test_loader, task=task, cuda_on=cuda_on, soft_decision=False, stochastic=False, breadth_first=True, name='hard + max + BF : ', ) end = time.time() print('took {} seconds'.format(end - start)) # --------------------- Parameter counters ------------------------- def get_total_number_of_params(model, print_on=False): tree_struct = model.tree_struct names, params = [], [] for node_idx, node_meta in enumerate(tree_struct): for name, param in model.named_parameters(): if (( not(node_meta['is_leaf']) and '.'+str(node_idx)+'.router' in name) \ or ('.'+str(node_idx)+'.transform' in name) \ or (node_meta['is_leaf'] and '.'+str(node_idx)+'.classifier' in name)): names.append(name) params.append(param) if print_on: print("Count the number of parameters below: ") for name in names: print(' '+name) return sum(p.numel() for p in params) def get_number_of_params_path( model, nodes, print_on=False, include_routers=True, ): names, params = [], [] if include_routers: for name, param in model.named_parameters(): if '.'+str(nodes[-1])+'.classifier' in name \ or any(['.'+str(node)+'.transform' in name for node in nodes]) \ or any(['.'+str(node)+'.router' in name for node in nodes[:-1]]): names.append(name) params.append(param) else: for name, param in model.named_parameters(): if '.' + str(nodes[-1]) + '.classifier' in name \ or any(['.' + str(node) + '.transform' in name for node in nodes]): names.append(name) params.append(param) if print_on: print("\nCount the number of parameters below: ") for name in names: print(' '+name) return sum(p.numel() for p in params) def get_number_of_params_summary( model, name='', print_on=True, include_routers=True, ): # compute the total number total_num = get_total_number_of_params(model) # compute min,max,mean number of parameters per branch paths_list = model.paths_list num_list = [] for (nodes, _) in paths_list: num = get_number_of_params_path( model, nodes, include_routers=include_routers, ) num_list.append(num) if print_on: print('\n' + name) print('Number of parameters summary:') print(' Total: {} '.format(total_num)) print(' Max per branch: {} '.format(max(num_list))) print(' Min per branch: {} '.format(min(num_list))) print(' Average per branch: {}'.format(sum(num_list)*1.0/len(num_list))) return total_num, max(num_list), min(num_list), sum(num_list)*1.0/len(num_list) # --------------------- Others ------------------------- def round_value(value, binary=False): divisor = 1024. if binary else 1000. if value // divisor**4 > 0: return str(round(value / divisor**4, 2)) + 'T' elif value // divisor**3 > 0: return str(round(value / divisor**3, 2)) + 'G' elif value // divisor**2 > 0: return str(round(value / divisor**2, 2)) + 'M' elif value // divisor > 0: return str(round(value / divisor, 2)) + 'K' return str(value) def set_random_seed(seed, cuda): np.random.seed(seed) # cpu vars torch.manual_seed(seed) # pytorch cpu vars random.seed(seed) # Python if cuda: torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) # pytorch gpu vars torch.backends.cudnn.deterministic = True # needed torch.backends.cudnn.benchmark = False ```
{ "source": "404CoderNotFound/Aternos-On-Discord-Replit", "score": 2 }
#### File: 404CoderNotFound/Aternos-On-Discord-Replit/connect_and_launch.py ```python from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.common.exceptions import ElementNotInteractableException from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as ec from selenium.webdriver.common.by import By from helper import can_fire, can_fire_async import asyncio import time from dotenv import load_dotenv import os from chromedriver_py import binary_path if os.path.exists(os.path.relpath(".env")): load_dotenv() USER = os.getenv('USERNAME_C') PASSWORD = os.getenv('PASSWORD_C') URL = "https://aternos.org/server/" SERVER_STATUS_URI = URL connected = False options = webdriver.ChromeOptions() options.add_argument('headless') options.add_argument('--ignore-certificate-errors') options.add_argument('--ignore-ssl-errors') options.add_argument('--ignore-certificate-errors') options.add_argument("--allow-insecure-localhost") #options.add_argument("user-agent=Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36 OPR/68.0.3618.125") driver = webdriver.Chrome(options=options, executable_path=binary_path) async def start_server(): """ Starts the server by clicking on the start button. The try except part tries to find the confirmation button, and if it doesn't, it continues to loop until the confirm button is clicked.""" # if not connected: # connect_account() await asyncio.sleep(5) element = driver.find_element_by_xpath("/html/body/div[20]/div/div/div/div[3]/div[2]/div[2]") element.click() await asyncio.sleep(3) element = driver.find_element_by_xpath('/html/body/div[2]/main/section/div[3]/div[4]/div[1]') element.click() await asyncio.sleep(10) element = driver.find_element_by_xpath('/html/body/div[2]/main/div/div/div/main/div/a[2]') element.click() state = driver.find_element_by_xpath('/html/body/div[2]/main/section/div[3]/div[3]/div[1]/div/span[2]/span') while state.text == "Wachten in de wachtrij": state = driver.find_element_by_xpath('/html/body/div[2]/main/section/div[3]/div[3]/div[1]/div/span[2]/span') try: element = driver.find_element_by_xpath('/html/body/div[2]/main/section/div[3]/div[4]/div[6]') element.click() except ElementNotInteractableException as e: pass driver.close() @can_fire def connect_account(): """ Connects to the accounts through a headless chrome tab so we don't have to do it every time we want to start or stop the server.""" driver.get(URL) element = driver.find_element_by_xpath('//*[@id="user"]') element.send_keys(USER) element = driver.find_element_by_xpath('//*[@id="password"]') element.send_keys(PASSWORD) element = driver.find_element_by_xpath('//*[@id="login"]') element.click() connected = True time.sleep(10) @can_fire def get_status(): # Returns the status of the server as a string driver.get(SERVER_STATUS_URI) time.sleep(2) if not connected: connect_account() time.sleep(2) element = driver.find_element_by_xpath('/html/body/div/main/section/div/div[2]/div/div[1]') element.click() time.sleep(1) element = driver.find_element_by_class_name('statuslabel-label') print(element.text) return element.text @can_fire def get_number_of_players(): # Returns the number of players as a string driver.get(SERVER_STATUS_URI) if not connected: connect_account() time.sleep(5) element = driver.find_element_by_xpath('/html/body/div/main/section/div/div[2]/div/div[1]') element.click() time.sleep(1) number_of_players = WebDriverWait(driver, 360).until(ec.presence_of_element_located((By.XPATH, '/html/body/div[2]/main/section/div[3]/div[5]/div[2]/div[1]/div/div[2]/div/span'))) return number_of_players.text async def stop_server(): if not connected: connect_account() driver.get(URL) element = driver.find_element_by_xpath("/html/body/div/main/section/div/div[2]/div[1]/div[1]") element.click() await asyncio.sleep(3) element = driver.find_element_by_xpath('//*[@id="stop"]') element.click() ``` #### File: 404CoderNotFound/Aternos-On-Discord-Replit/helper.py ```python from dotenv import load_dotenv import os import inspect import asyncio async def can_fire_async(func): if os.path.exists(os.path.relpath(".env")): return await func() else: print("Cannot find configuration file.") def can_fire(func): if os.path.exists(os.path.relpath(".env")): return(func) else: print("Cannot find configuration file") ```
{ "source": "404devt/menace", "score": 4 }
#### File: menace/py/quat_ht.py ```python import re import string from board import * from ast import literal_eval class BoardHashTable: ''' Quadratic Hash Class ''' def __init__(self, seedfilename=None): ''' Initialization of Hash Table ''' self.tablesize = 251 self.count = 0 self.arr = [] for i in range(self.tablesize): self.arr.append(None) if seedfilename != None: self.load_file(seedfilename) def get_conflict_resolved_index(self,key): ''' Gets a free index in the table based on the key with the proper conflict resolution strategy''' indx = self.myhash(key,self.get_tablesize()) orig = indx inc = 0 while self.arr[indx] is not None and self.arr[indx][0] != key: inc += 1 indx = orig + inc**2 indx %= self.get_tablesize() return indx def put(self, board, movelist=None): '''inserts the keyitem pair into the table, rehashes if table too large''' if self.get_load_fact() > 0.4: copy = self.arr oldct = self.count self.tablesize = self.tablesize*2 + 1 self.count = 0 self.arr = [] for i in range(self.tablesize): self.arr.append(None) for tup in copy: if tup is not None: self.put(Board(tup[0]),tup[1]) if abs(oldct - self.count) >= 1: print("old=%d, new=%d" % (oldct,self.count)) raise AssertionError("lost elements in rehash") # print("ok") indx = self.get_conflict_resolved_index(board.get_key()) if self.arr[indx] == None: if movelist is None: movelist = board.make_movelist() self.arr[indx] = (board.get_key(),movelist) self.count += 1 else: raise AssertionError("double put") def contains(self,board): '''returns true if the key is indeed in the list''' indx = self.get_conflict_resolved_index(board.get_key()) # print(self.arr[indx]) if self.arr[indx] is None: return False if self.arr[indx][0] == board.get_key(): return True def get_movelist(self, board): ''' Uses given key to find and return the item, key pair''' indx = self.get_conflict_resolved_index(board.get_key()) if self.arr[indx] == None: raise LookupError() if self.arr[indx][0] == board.get_key(): return self.arr[indx][1] def get_tablesize(self): '''returns Size of Hash Table''' return self.tablesize def get_load_fact(self): '''returns the load factor of the hash table''' return float(self.count) / float(self.tablesize) def myhash(self, key, table_size): '''hashes based on horners rule''' num = 0 for i in range(min(len(key),9)): num = 31*num + self.strangeord(key[i]) return num % table_size def strangeord(self, char): if char == '-': return 0 elif char == 'o': return 1 elif char == 'x': return 2 else: return ord(char) def print_all_boards(self): for i in range(self.tablesize): if self.arr[i] is not None: Board(self.arr[i][0]).print_board() print(self.arr[i][1]) def menace_save(self,filename): f = open(filename, 'w') for i in range(self.tablesize): if self.arr[i] is not None: line = self.arr[i][0] + "|" + str(self.arr[i][1]) + '\n' f.write(line) f.close() def load_file(self,filename): f = open(filename,'r') while True: line = f.readline() if not line: break pretup = line.split('|') self.put(Board(pretup[0]),literal_eval(pretup[1])) ``` #### File: menace/py/test_quat_ht.py ```python import unittest from quat_ht import * from board import * class testing_menace(unittest.TestCase): def test_ht_simple(self): bht = BoardHashTable() board = Board('-o-o-o-o-') bht.put(board) self.assertTrue(bht.contains(board)) self.assertListEqual(bht.get_movelist(board),[2,0,2,0,2,0,2,0,2]) def test_ht_a_bit_harder(self): bht = BoardHashTable() board = Board('-o-o-o-o-') bht.put(board) for i in range(6): self.assertTrue(bht.contains(board.transform(i))) self.assertListEqual(bht.get_movelist(board),[2,0,2,0,2,0,2,0,2]) def test_ht__harder(self): bht = BoardHashTable() board = Board('------xo-') bht.put(board) expect = [False,False,False,False,True,False] topboard = Board('xo-------') for i in range(6): self.assertEqual(bht.contains(topboard.transform(i)),expect[i]) self.assertListEqual(bht.get_movelist(board),[2,2,2,2,2,2,0,0,2]) if __name__ == "__main__": unittest.main() ```
{ "source": "404-F21/project", "score": 2 }
#### File: project/main/views.py ```python import os from django.db.models import query import requests from django.contrib.auth.models import User from django.db.models.query import QuerySet from rest_framework.decorators import api_view from rest_framework.response import Response from rest_framework.views import APIView from main.models import Author, Comment, Following, FollowNotification, Post, LikePost, Admin, Node, MediaFile, PostNotification from main.serializers import AuthorSerializer, CommentSerializer, FollowingSerializer, PostNotificationSerializer, FollowNotificationSerializer, PostSerializer from django.http import HttpResponse, JsonResponse from django.shortcuts import render from main.decorator import need_admin from main.response import success, failure, no_auth from django.db.models import F from django.db.models.query import EmptyQuerySet from django.core.paginator import Paginator from django.shortcuts import redirect from main.response import fetch_posts from main.response import basic_auth, AUTH_SUCCESS from social.settings import BASE_DIR import uuid import json import time import base64 from django.views.decorators.csrf import csrf_exempt import hashlib from typing import Dict # ======================================================= # ============= Methods for startup/helpers ============= # ======================================================= def admin_page_logo(request): """ Redirect request for logo to correct path """ return redirect('/static/ant-design-pro/logo.svg') # Create your views here. def render_html(request): # create default super user if User.objects.count() == 0: user = User.objects.create_user('admin', '<EMAIL>', 'admin123456') user.is_stuff = True user.save() return render(request, 'index.html') def paginate(objects: QuerySet, params: Dict[str, str]) -> QuerySet: page = int(params.get('page', '1')) size = int(params.get('size', '10')) begin = (page - 1) * size end = begin + size return objects[begin:end] # ======================================================= # ============= Views for the Model classes ============= # ======================================================= class PostList(APIView): """ List all Posts in the database """ def get(self, request, format=None): # check if user is authenticated and if not return a 401 r_a = basic_auth(request) if r_a != AUTH_SUCCESS: return no_auth() fetcher_id = request.GET.get('fid', None) public_posts = Post.objects.filter(visibility='public') all_posts = public_posts.order_by('-publishedOn') if fetcher_id is not None: private_posts = Post.objects.filter(visibility='toAuthor', author__id=fetcher_id) author = Author.objects.get(pk=uuid.UUID(fetcher_id)) followers = (author.follower_set.all() .values_list('follower__id')) friends = (author.followed_set .filter(followee__id__in=followers) .order_by('followee__displayName') .values('followee')) friend_posts = Post.objects.filter(visibility='friends', author__in=friends) all_posts = (all_posts | private_posts | friend_posts).order_by('-publishedOn') # not to spec, but cannot change for fear of breaking connections with # other groups data = [] for post in all_posts: data.append(post.dict()) foreign_posts = fetch_posts() data = data + foreign_posts response = JsonResponse(data, safe=False) return response def post(self, request, *args, **kwargs): ''' make a post, giving `authorId`, `content`, `title`, and potentially `contentType` and `visibility`. ''' # check if user is authenticated and if not return a 401 r_a = basic_auth(request) if r_a != AUTH_SUCCESS: return no_auth() if request.content_type == "application/json": author = Author.objects.get(pk=uuid.UUID(request.data['authorId'])) text = request.data['content'] title = request.data['title'] contentType = request.data.get('contentType', 'text/plain') visibility = request.data.get('visibility', 'public') new_post = Post(author=author, content=text, title=title, contentType=contentType, visibility=visibility) new_post.save() #friend_post_notification = PostNotification(type = 'friends post', authorId=post_author, senderId=liker, postId = post, sender_display_name=liker_display_name) #print(f"\n\n\nREQUEST HEADERS: {request.headers}\n request data: {request.data}\n\n\n") elif request.content_type == "application/x-www-form-urlencoded": author = Author.objects.all().first() text = request.data['content'] title = request.data['title'] new_post = Post(author=author, content=text, title=title) new_post.save() return HttpResponse("post created") class Register(APIView): def post(self, request, format=None): author = Author.objects.create( displayName = request.data['displayName'], password = request.data["password"], ) author.save() ser = AuthorSerializer(author) return Response(ser.data) class FollowerList(APIView): def get(self, request, pk, format=None): # check if user is authenticated and if not return a 401 r_a = basic_auth(request) if r_a != AUTH_SUCCESS: return no_auth() author = Author.objects.get(pk=uuid.UUID(pk)) follow_pairs = author.follower_set.all().order_by('follower__displayName') serializer = FollowingSerializer(follow_pairs, many=True) # this list comprehension is required to keep the serializers consistent items = [e['follower'] for e in serializer.data] return Response({ 'type': 'followers', 'items': items }) class FollowerDetail(APIView): def delete(self, request, pk, fpk, format=None): # check if user is authenticated and if not return a 401 r_a = basic_auth(request) if r_a != AUTH_SUCCESS: return no_auth() try: followee = Author.objects.get(pk=uuid.UUID(pk)) follower = Author.objects.get(pk=uuid.UUID(fpk)) follow_pair = Following.objects.get(followee=followee, follower=follower) follow_pair.delete() return Response({ 'success': True }) except (Author.DoesNotExist, Following.DoesNotExist): return Response({ 'success': False }) def put(self, request, pk, fpk, format=None): # check if user is authenticated and if not return a 401 r_a = basic_auth(request) if r_a != AUTH_SUCCESS: return no_auth() follower = Author.objects.get(pk=uuid.UUID(fpk)) followee = Author.objects.get(pk=uuid.UUID(pk)) follow_pair = Following.objects.create(followee=followee, follower=follower) follow_pair.save() follower_display_name = follower.displayName front_end_text = f'Friend request: {follower_display_name} has started following you. Follow them back to become friends with {follower_display_name}.' #comment_notification = PostNotification(type='comment', postId = post, senderId=author, authorId=post_author, sender_display_name=author.displayName) follow_notification = FollowNotification(front_end_text=front_end_text, senderId=follower, authorId=followee, sender_display_name=follower_display_name) follow_notification.save() serializer = FollowingSerializer(follow_pair) return Response(serializer.data) def get(self, request, pk, fpk, format=None): # check if user is authenticated and if not return a 401 r_a = basic_auth(request) if r_a != AUTH_SUCCESS: return no_auth() try: followee = Author.objects.get(pk=uuid.UUID(pk)) follower = Author.objects.get(pk=uuid.UUID(fpk)) #author.followed_set.get(follower=uuid.UUID(fpk)) follow_query= Following.objects.filter(follower=follower, followee=followee) #print(f"follow_query: {follow_query}") #print(f"follow_query str: {str(follow_query)}") if str(follow_query) == '<QuerySet []>': return Response({ 'isFollower': False }) else: return Response({ 'isFollower': True }) except (Author.DoesNotExist, Following.DoesNotExist): return Response({ 'isFollower': False }) class FollowedList(APIView): def get(self, request, pk, format=None): author = Author.objects.get(pk=uuid.UUID(pk)) follow_pairs = author.followed_set.all().order_by('followee__displayName') paged_pairs = paginate(follow_pairs, request.query_params) serializer = FollowingSerializer(paged_pairs, many=True) # this list comprehension is required to keep the serializers consistent items = [e['followee'] for e in serializer.data] return Response({ 'type': 'followees', 'items': items }) class FollowedDetail(APIView): def delete(self, request, pk, fpk, format=None): try: author = Author.objects.get(pk=uuid.UUID(pk)) follow_pair = author.followed_set.get(followee=uuid.UUID(fpk)) follow_pair.delete() return Response({ 'success': True }) except (Author.DoesNotExist, Following.DoesNotExist): return Response({ 'success': False }) def put(self, request, pk, fpk, format=None): follower = Author.objects.get(pk=uuid.UUID(pk)) followee = Author.objects.get(pk=uuid.UUID(fpk)) follow_pair = Following.objects.create(followee=followee, follower=follower) follow_pair.save() serializer = FollowingSerializer(follow_pair) return Response(serializer.data) def get(self, request, pk, fpk, format=None): try: author = Author.objects.get(pk=uuid.UUID(pk)) author.follower_set.get(followee=uuid.UUID(fpk)) return Response({ 'isFollower': True }) except (Author.DoesNotExist, Following.DoesNotExist): return Response({ 'isFollower': False }) class FriendList(APIView): def get(self, request, pk, format=None): ''' get a list all of the user with id <pk>'s friends; that being those who the user follows, and those who follow the user back ''' # check if user is authenticated and if not return a 401 r_a = basic_auth(request) if r_a != AUTH_SUCCESS: return no_auth() author = Author.objects.get(pk=uuid.UUID(pk)) followers = author.follower_set.all().values_list('follower__id') friend_pairs = author.followed_set.filter(followee__id__in=followers).order_by('followee__displayName') serializer = FollowingSerializer(friend_pairs, many=True) items = [e['followee'] for e in serializer.data] return Response({'type': 'friends', 'items': items}) class FriendDetail(APIView): def get(self, request, pk, fpk): ''' find out whether the user with id <fpk> is friends with the user with id <pk>. ''' r_a = basic_auth(request) if r_a != AUTH_SUCCESS: return no_auth() try: author = Author.objects.get(pk=uuid.UUID(pk)) followers = author.follower_set.all().values_list('follower__id') friend_pairs = author.followed_set.filter(followee__id__in=followers) friend_pairs.get(followee=fpk) return Response({ 'isFriend': True }) except (Author.DoesNotExist, Following.DoesNotExist): return Response({ 'isFriend': False }) class PostDetail(APIView): """ List an individual post """ def get(self, request, pk, format=None): # check if user is authenticated and if not return a 401 r_a = basic_auth(request) if r_a != AUTH_SUCCESS: return no_auth() try: post = Post.objects.get(postId=uuid.UUID(pk)) except Post.DoesNotExist: return HttpResponse(status=404) combined_data = [] post_serializer = PostSerializer(post) return JsonResponse(post_serializer.data) class AuthorPostList(APIView): def get(self, request, pk, format=None): # check if user is authenticated and if not return a 401 r_a = basic_auth(request) if r_a != AUTH_SUCCESS: return no_auth() author = Author.objects.get(pk=uuid.UUID(pk)) posts = author.post_set.all().order_by('-publishedOn') result = [] for post in posts: result.append(post.dict()) return Response({ 'type': 'posts', 'items': result }) def post(self, request, pk, format=None): # check if user is authenticated and if not return a 401 r_a = basic_auth(request) if r_a != AUTH_SUCCESS: return no_auth() author = Author.objects.get(pk=uuid.UUID(pk)) text = request.data['content'] title = request.data['title'] new_post = Post.objects.create(authorId=author,content=text,title=title) new_post.save() return Response({ 'success': True }) class AuthorPostDetail(APIView): def get(self, request, pk, pid, format=None): # check if user is authenticated and if not return a 401 r_a = basic_auth(request) if r_a != AUTH_SUCCESS: return no_auth() author = Author.objects.get(pk=uuid.UUID(pk)) post = author.post_set.get(pk=uuid.UUID(pid)) serializer = PostSerializer(post) data = dict({ 'type': 'post' }, **serializer.data) return Response(data) def post(self, request, pk, pid, format=None): # check if user is authenticated and if not return a 401 r_a = basic_auth(request) if r_a != AUTH_SUCCESS: return no_auth() text = request.data['content'] title = request.data['title'] post = Post.objects.get(author__id=uuid.UUID(pk), pk=uuid.UUID(pid)) post.content = text post.title=title post.save() return Response({ 'success': True }) def delete(self, request, pk, pid, format=None): # check if user is authenticated and if not return a 401 r_a = basic_auth(request) if r_a != AUTH_SUCCESS: return no_auth() post = Post.objects.get(author__id=uuid.UUID(pk), pk=uuid.UUID(pid)) post.delete() return Response({ 'success': True }) class CommentList(APIView): def get(self, request, pk, format=None): # check if user is authenticated and if not return a 401 r_a = basic_auth(request) if r_a != AUTH_SUCCESS: return no_auth() # https://docs.djangoproject.com/en/dev/ref/models/querysets/#exists post = Post.objects.get(pk=pk) if post is not None: # Check if the post is visible for public/friends/whatever #assuming it is visible to all comments = Comment.objects.filter(postId=post) if comments.count() > 0: paged_comments = paginate(comments, request.query_params) serializer = CommentSerializer(paged_comments, many=True) return JsonResponse(serializer.data, safe=False) else: return Response("There are no comments on the post", status=404) else: # return a 404 response return Response("Post not found", status=404) def post(self, request, pk, format=None): # check if user is authenticated and if not return a 401 r_a = basic_auth(request) if r_a != AUTH_SUCCESS: return no_auth() post = Post.objects.get(pk=pk) if post is not None: if request.data.get('authorId', None) is not None: # If this api is used by internal frontend try: author = Author.objects.get(pk=uuid.UUID(request.data['authorId']), if_foreign=False) except Author.DoesNotExist: author = None else: # If this api is used by foreign nodes author_input = request.data['author'] try: author = Author.objects.get(url=author_input['url'], if_foreign=True) except Author.DoesNotExist: # If foreign node want to create comment for our post, create their author user = User.objects.create_user(author_input['displayName'], 'FOREIGN_INNER_AUTHOR') author = Author.objects.create( displayName=author_input['displayName'], password='<PASSWORD>', user=user, url=author_input['url'], host=author_input['host'], github=author_input['github'], if_foreign=True ) if author is None: return HttpResponse('Error, no such author') comment = Comment( postId = post, authorId = author, text = request.data['text'] ) post.commentCount += 1 post.save() comment.save() post_author = Author.objects.get(id=post.author.id) # So you don't get notifications from your own comments if post_author.id != author.id: comment_notification = PostNotification(type='comment', postId = post, senderId=author, authorId=post_author, sender_display_name=author.displayName) front_end_text = f'{author.displayName} has commented on your post.' comment_notification.front_end_text = front_end_text comment_notification.comment_text = request.data['text'] comment_notification.save() print(f"comment notification: {comment_notification}") serializer = PostNotificationSerializer(comment_notification) print(f"data: {serializer.data}") return HttpResponse(str(comment)) else: # return a 404 response return Response("Post not found", status=404) class AuthorDetail(APIView): def get(self, request, pk): # check if user is authenticated and if not return a 401 r_a = basic_auth(request) if r_a != AUTH_SUCCESS: return no_auth() author = Author.objects.filter(id=pk) author_serializer = AuthorSerializer(author.first()) data = dict() data['type'] = 'author' data.update(author_serializer.data) return JsonResponse(data) def post(self, request, pk): """ Update info of a user """ # check if user is authenticated and if not return a 401 r_a = basic_auth(request) if r_a != AUTH_SUCCESS: return no_auth() display_name = request.data['displayName'] github = request.data['github'] # save new profile image profile_pic_base64 = request.data.get('headPic', None) file = None if profile_pic_base64 is not None and profile_pic_base64 != '': file_path = os.path.join(BASE_DIR, 'media', str(uuid.uuid4())) file = MediaFile.objects.create(file_path=file_path) # Save the image with open(file_path, 'wb+') as f: f.write(base64.b64decode(profile_pic_base64)) try: author = Author.objects.get(id=pk) except Author.DoesNotExist: return failure('id not found') author.displayName = display_name author.github = github if file: author.profilePic = request.build_absolute_uri('/') + 'service/media/' + str(file.id) + '/' author.save() return Response({ 'succ': True }) class AuthorList(APIView): """ List all authors in the server, or register a new author """ def get(self, request, format=None): # check if user is authenticated and if not return a 401 r_a = basic_auth(request) if r_a != AUTH_SUCCESS: return no_auth() authors = paginate(Author.objects.filter(if_foreign=False).order_by('displayName'), request.query_params) serializer = AuthorSerializer(authors, many=True) data = { 'type': 'authors', 'items': serializer.data } return Response(data) def post(self, request, format=None): # check if user is authenticated and if not return a 401 r_a = basic_auth(request) if r_a != AUTH_SUCCESS: return no_auth() displayName = request.data['displayName'] password = request.data['password'] github = request.data['github'] profile_pic_base64 = request.data.get('headPic', None) uri = request.build_absolute_uri('/') file = None if profile_pic_base64 is not None and profile_pic_base64 != '': file_path = os.path.join(BASE_DIR, 'media', str(uuid.uuid4())) file = MediaFile.objects.create(file_path=file_path) # Save the image with open(file_path, 'wb+') as f: f.write(base64.b64decode(profile_pic_base64)) user = User.objects.create_user(displayName, password) author = Author.objects.create( displayName=displayName, password=password, user=user, host=uri, github=github, profilePic=(request.build_absolute_uri('/') + 'service/media/' + str(file.id) + '/') if file else '' ) author.save() ser = AuthorSerializer(author) return Response(ser.data) # ============================================================ # ============= Decorators to handle API methods ============= # ============================================================ @api_view(['POST']) def app_login(request): name = request.data['displayName'] pwd = request.data['password'] try: author = Author.objects.get(displayName=name, password=<PASSWORD>) return Response({ 'succ': True, 'id': str(author.pk), 'url': author.url, 'host': author.host, 'github': author.github, 'profilePic': author.profilePic }) except Author.DoesNotExist: return Response({ 'succ': False }) @api_view(['POST']) def like_post(request, pk): # check if user is authenticated and if not return a 401 r_a = basic_auth(request) if r_a != AUTH_SUCCESS: return no_auth() post_id = uuid.UUID(pk) post = Post.objects.get(postId=post_id) if request.data.get('authorId', None) is not None: # If this api is used by internal frontend author_id = uuid.UUID(request.data['authorId']) try: author = Author.objects.get(id=author_id, if_foreign=False) except Author.DoesNotExist: author = None else: # If this api is used by foreign nodes author_input = request.data['author'] try: author = Author.objects.get(url=author_input['url'], if_foreign=True) except Author.DoesNotExist: # If foreign node want to create comment for our post, create their author user = User.objects.create_user(author_input['displayName'], 'FOREIGN_INNER_AUTHOR') author = Author.objects.create( displayName=author_input['displayName'], password='<PASSWORD>', user=user, url=author_input['url'], host=author_input['host'], github=author_input['github'], if_foreign=True ) # check if already exists likes = LikePost.objects.filter(postId=post, authorId=author) if len(likes): # already liked can not like again return Response({ 'succ': False }) likepost = LikePost(postId=post, authorId=author) likepost.save() if request.data.get('authorId', None) is not None: author_id = uuid.UUID(request.data['authorId']) else: author_id = author.id #print(f"authorID from request: {author_id}") #print(f"POST: {post}") #print(f"POST AUTHOR: {post.author.id}") liker = Author.objects.get(id=author_id) post_author = Author.objects.get(id=post.author.id) #post_author_id = Author.objects.get(id=post.author) # So you don't get notifications from your own comments if liker.id != post_author.id: liker_display_name = liker.displayName like_notification = PostNotification(type = 'like', authorId=post_author, senderId=liker, postId = post, sender_display_name=liker_display_name) front_end_text = f'{author.displayName} has liked your post.' like_notification.front_end_text = front_end_text like_notification.save() #serializer = PostNotificationSerializer(like_notification) #data = serializer.data #print(f"DATA: {data}") #like_notification.save() #print(f"lIKE NOTIFICAITON: {like_notification}") post.likeCount += 1 post.save() return Response({ 'succ': True, 'count': post.likeCount }) @api_view(['POST']) def reshare_post(request, author_id, post_id): """ Reshare post, share_aid is the author who preform the reshare action """ # check if user is authenticated and if not return a 401 r_a = basic_auth(request) if r_a != AUTH_SUCCESS: return no_auth() if author_id == request.data['shareAid']: return failure('Cannot share post by yourself') try: reshare_author = Author.objects.get(id=request.data['shareAid']) except Author.DoesNotExist: return failure('Author not found') try: target_post = Post.objects.get(postId=post_id, author__id=author_id) except Post.DoesNotExist: return failure('Post not found') Post.objects.create( author=reshare_author, title=target_post.title, content=target_post.content, contentType=target_post.contentType ) return success(None) @api_view(['POST']) def reshare_post_foreign(request, reshare_aid): """ Reshare foreign post to target author """ # check if user is authenticated and if not return a 401 r_a = basic_auth(request) if r_a != AUTH_SUCCESS: return no_auth() title = request.data['title'] content = request.data['content'] content_type = request.data['contentType'] try: reshare_author = Author.objects.get(id=reshare_aid) except Author.DoesNotExist: return failure('Author not found') Post.objects.create( author=reshare_author, title=title, content=content, contentType=content_type ) return success(None) @api_view(['GET','POST']) def comment_list(request, pk): """ List all Comments of a Post """ # get simply gets all comments from a single post if request.method == 'GET': comments = Comment.objects.filter(postId=uuid.UUID(pk)) serializer = CommentSerializer(comments, many=True) return JsonResponse(serializer.data, safe=False) """ Create a Comment of a Post """ # post will be used to comment on a Post if request.method == 'POST': post = Post.objects.filter(postId=uuid.UUID(request.data['postId'])) author = Author.objects.filter(id=uuid.UUID(request.data['authorId'])) comment = Comment( postId = post[0], authorId = author[0], text = request.data['text'] ) post.update(commentCount=F('commentCount') + 1) comment.save() #nOT USED #comment_notification = Notification(type='comment', aut) #print(f"\n\nREQUEST DATAAAAA FOR COMMENT: {request.data} \n\n") #print("\n\nauthor: {author}, post author: {post.author}") return HttpResponse(str(comment)) serializer = PostSerializer(data=request.data['post']) if serializer.is_valid(): serializer.saver() return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) # Inbox will be composed of notifications & friend requests seperately @api_view(['GET']) def post_notifications(request, pk): """ List all post notification items """ author = Author.objects.get(id=uuid.UUID(pk)) author_notifications = PostNotification.objects.filter(authorId=author).order_by('-publishedOn') serializer = PostNotificationSerializer(author_notifications, many=True) return JsonResponse(serializer.data, safe=False) @api_view(['GET']) def follow_notifications(request, pk): """ List all post notification items """ author = Author.objects.get(id=uuid.UUID(pk)) author_notifications = FollowNotification.objects.filter(authorId=author).order_by('-sentOn') serializer = FollowNotificationSerializer(author_notifications, many=True) return JsonResponse(serializer.data, safe=False) @csrf_exempt def get_foreign_data(request, node_id, url_base64): """ Get foreign data (used as a proxy) Post dat to foreign url (used as a proxy) """ # check if user is authenticated and if not return a 401 r_a = basic_auth(request) if r_a != AUTH_SUCCESS: return no_auth() url = base64.b64decode(url_base64).decode() try: node = Node.objects.get(nodeId=node_id) except Node.DoesNotExist: return failure('Node not found') username = node.http_username password = node.http_password if 'http://' in url: url = url.replace('http:', 'https:') if request.method == 'GET': # GET result = requests.get(url, auth=(username, password)) return JsonResponse(result.json(), safe=False) elif request.method == 'POST': # POST try: data: dict = json.loads(request.body.decode()) except json.JSONDecodeError: return failure('json data format incorrect') result = requests.post(url, json=data, auth=(username, password)) if not result.text: return JsonResponse({}) return JsonResponse(result.json(), safe=False) else: return failure('GET') # APIs for admin functions # ============================ @csrf_exempt def admin_login(request): """ Admin login """ if request.method == 'POST': json_obj = json.loads(request.body.decode()) username = json_obj.get('username') password = <PASSWORD>_<PASSWORD>('password') if not username or not password: return failure('arguments not enough') # Check if the user exists try: admin = Admin.objects.get(username=username) except Admin.DoesNotExist: return failure('user not exists') password_md5 = hashlib.md5(password.encode()).hexdigest() if admin.password_md5 == password_md5: # Password correct, admin login request.session['id'] = str(admin.id) request.session['username'] = username request.session['role'] = 'admin' return HttpResponse(json.dumps({ 'status': 'ok', 'type': 'account', 'currentAuthority': 'admin', })) else: # Password incorrect, fail return HttpResponse(json.dumps({ 'status': 'error', 'type': 'account', 'currentAuthority': 'guest', })) else: return failure('POST') @csrf_exempt def admin_current_user(request): """ Get current login user """ # Init first admin try: Admin.objects.get(username='admin') except Admin.DoesNotExist: Admin.objects.create(username='admin', password_md5=hashlib.md5('<PASSWORD>'.encode()).hexdigest()) if request.method == 'GET': if request.session.get('username', None) is not None: return HttpResponse(json.dumps({ 'success': True, 'data': { 'id': request.session['id'], 'name': request.session['username'], 'avatar': 'https://gw.alipayobjects.com/zos/antfincdn/XAosXuNZyF/BiazfanxmamNRoxxVxka.png', 'access': request.session['role'] } })) else: r = HttpResponse(json.dumps({ 'data': { 'isLogin': False, }, 'errorCode': '401', 'errorMessage': 'Login please!', 'success': True })) r.status_code = 401 return r else: return failure('GET') @csrf_exempt def admin_logout(request): """ Admin logout """ del request.session['username'] del request.session['role'] return success(None) @csrf_exempt @need_admin def admin_list(request): """ Get admin users list """ if request.method == 'GET': # Pagination current = request.GET.get('current') page_size = request.GET.get('pageSize') if not current or not page_size: return failure('arguments not enough') admins = Admin.objects.all() page = Paginator(admins, page_size).page(current) obj_list = page.object_list results = [] for admin in obj_list: results.append(admin.dict()) return success({ 'data': results, 'total': admins.count() }) else: return failure('GET') @csrf_exempt @need_admin def admin_create_admin(request): """ Create admin """ if request.method == 'POST': json_obj = json.loads(request.body.decode()) username = json_obj.get('username') password = json_obj.get('password') if not username or not password: return failure('arguments not enough') # Check if the user exists try: Admin.objects.get(username=username) except Admin.DoesNotExist: password_md5 = hashlib.md5(password.encode()).hexdigest() Admin.objects.create(username=username, password_md5=password_md5) return success(None) return failure('User already exists.') else: return failure('POST') @csrf_exempt @need_admin def admin_change_password(request, admin_id): """ Change admin user's password """ if request.method == 'POST': json_obj = json.loads(request.body.decode()) password = <PASSWORD>_obj.get('password') if not admin_id or not password: return failure('arguments not enough') # Check if the user exists try: admin = Admin.objects.get(id=admin_id) except Admin.DoesNotExist: return failure('user not exists') # Change the password password_md5 = hashlib.md5(password.encode()).hexdigest() admin.password_md5 = password_md5 admin.save() return success(None) else: return failure('POST') @csrf_exempt @need_admin def admin_node_list(request, node_type): """ Get node list """ if request.method == 'GET': # Pagination current = request.GET.get('current') page_size = request.GET.get('pageSize') if not current or not page_size or not node_type: return failure('arguments not enough') nodes = Node.objects.filter(node_type=node_type) page = Paginator(nodes, page_size).page(current) obj_list = page.object_list results = [] for node in obj_list: results.append(node.dict()) return success({ 'data': results, 'total': nodes.count() }) else: return failure('GET') @csrf_exempt @need_admin def admin_create_node(request, node_type): """ Create node """ if request.method == 'POST': json_obj = json.loads(request.body.decode()) host = json_obj.get('host') node_id = json_obj.get('nodeId') if not node_id: node_id = uuid.uuid4() if node_type == 'SHARE': password = json_obj.get('password') if not host or not password or not node_type: return failure('arguments not enough') try: Node.objects.get(host=host) except Node.DoesNotExist: password_md5 = hashlib.md5(password.encode()).hexdigest() node = Node( nodeId=node_id, host=host, password_md5=<PASSWORD>, create_time=time.time(), node_type=node_type ) node.save() return success(None) else: # If type of new node is FETCH, then this operation need an another argument: username for HTTP Basic Auth username = json_obj.get('username') password = <PASSWORD>('password') author_url = json_obj.get('authorUrl') post_url = json_obj.get('postUrl') if not host or not username or not password or not author_url or not post_url: return failure('arguments not enough') try: Node.objects.get(host=host) except Node.DoesNotExist: node = Node( nodeId=node_id, host=host, password_md5='', create_time=time.time(), node_type=node_type, fetch_author_url=author_url, fetch_post_url=post_url, http_username=username, http_password=password ) node.save() return success(None) return failure('This host address already exists.') else: return failure('POST') @csrf_exempt @need_admin def admin_delete_node(request, node_id): """ Delete node """ if request.method == 'DELETE': if not node_id: return failure('arguments not enough') try: node = Node.objects.get(nodeId=node_id) except Node.DoesNotExist: return failure('The node not exists') node.delete() return success(None) else: return failure('DELETE') @csrf_exempt @need_admin def admin_set_node_approved(request, node_id): """ Set if a node is allowed to connect """ if request.method == 'POST': json_obj = json.loads(request.body.decode()) if_approved = json_obj.get('approved') if not node_id or not if_approved: return failure('arguments not enough') # Check if particular node already exists try: node = Node.objects.get(nodeId=node_id) except Node.DoesNotExist: return failure('The node not exists.') node.if_approved = str(if_approved) == '1' node.save() return success(None) else: return failure('POST') @csrf_exempt def get_public_post(request): """ Get public data on this server, used for providing data to other nodes Every different node has its own access password """ if request.method == 'GET': if 'HTTP_AUTHORIZATION' in request.META: auth = request.META['HTTP_AUTHORIZATION'].split() if len(auth) == 2: if auth[0].lower() == "basic": node_id, password = base64.b64decode(auth[1]).decode().split(':') password_md5 = hashlib.md5(password.encode()).hexdigest() try: node = Node.objects.get(nodeId=node_id) except Node.DoesNotExist: return failure('id not found') if not node.if_approved or node.password_md5 != password_md5: # Password is incorrect return no_auth() public_posts = Post.objects.filter(visibility='public').order_by('-publishedOn') result = [] for post in public_posts: p = post.dict() p['type'] = 'post' result.append(p) return JsonResponse({ 'type': 'posts', 'items': result }) return no_auth() else: return failure('GET') @csrf_exempt def get_public_author(request): """ Get authors on this server, used for providing data to other nodes Every different node has its own access password """ if request.method == 'GET': if 'HTTP_AUTHORIZATION' in request.META: auth = request.META['HTTP_AUTHORIZATION'].split() if len(auth) == 2: if auth[0].lower() == "basic": node_id, password = base64.b64decode(auth[1]).decode().split(':') password_md5 = hashlib.md5(password.encode()).hexdigest() try: node = Node.objects.get(nodeId=node_id) except Node.DoesNotExist: return failure('id not found') if not node.if_approved or node.password_md5 != <PASSWORD>: # Password is incorrect return no_auth() authors = Author.objects.filter(if_foreign=False) result = [] for author in authors: a = author.dict() a['type'] = 'author' result.append(a) return JsonResponse({ "type": "authors", "items": result }) return no_auth() else: return failure('GET') @api_view(['GET']) def download_media_file(request, file_id): """ Download media file (for user profile pic) """ try: file = MediaFile.objects.get(id=file_id) except MediaFile.DoesNotExist: return failure('file not found') with open(file.file_path, 'rb') as f: file_content = f.read() r = HttpResponse(file_content, content_type='image/png') r['Content-Disposition'] = "attachment; filename=default.png" r["Access-Control-Allow-Origin"] = '*' return r ```
{ "source": "404ic/HRNet_for_MARS", "score": 2 }
#### File: HRNet_for_MARS/data_utils/visualize.py ```python import glob import yaml import os import json import matplotlib.pyplot as plt import matplotlib.image as mpimg import matplotlib.colors as colors import matplotlib.cm as cm import math def plot_frame(project, config_file, frame_num, save=True, markersize=8, figsize=[15, 10]): config_fid = config_file with open(config_fid) as f: cfg = yaml.load(f, Loader=yaml.FullLoader) legend_flag=[False,False] image = glob.glob(os.path.join(project, cfg['DATASET']['ROOT'], 'images', 'MARS_' + cfg['DATASET']['VIEW'] + '_' + f'{frame_num:05d}' + '.jpg')) if not image: print("I couldn't find image " + str(frame_num)) return matched_id = frame_num config_file_name = config_file.split('/')[-1].split('.')[0] infile = os.path.join(project, cfg['OUTPUT_DIR'], cfg['DATASET']['DATASET'], cfg['MODEL']['NAME'], config_file_name, 'results', 'MARS_format.json') with open(infile) as jsonfile: cocodata = json.load(jsonfile) pred = [i for i in cocodata['pred_keypoints'] if i['category_id'] == 1 and int(i['image_id']) == matched_id] gt = [i for i in cocodata['gt_keypoints']['annotations'] if i['category_id'] == 1 and int(i['image_id']) == matched_id] colors = ['tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:brown', 'tab:pink', 'tab:olive', 'tab:cyan'] im = mpimg.imread(image[0]) plt.figure(figsize=figsize) plt.imshow(im, cmap='gray') for pt in gt: for i, [x, y] in enumerate(zip(pt['keypoints'][::3], pt['keypoints'][1::3])): plt.plot(x, y, color=colors[i], marker='o', markeredgecolor='k', markeredgewidth=math.sqrt(markersize)/4, markersize=markersize, linestyle='None', label='ground truth' if not legend_flag[0] else None) legend_flag[0]=True for pt in pred: for i,[x,y] in enumerate(zip(pt['keypoints'][::3], pt['keypoints'][1::3])): plt.plot(x, y, color=colors[i], marker='^', markeredgecolor='w', markeredgewidth=math.sqrt(markersize)/2, markersize=markersize, linestyle='None', label='predicted' if not legend_flag[1] else None) legend_flag[1] = True plt.legend(prop={'size': 14}) plt.show() if save: save_dir = os.path.join(project, cfg['OUTPUT_DIR'], cfg['DATASET']['DATASET'], cfg['MODEL']['NAME'], config_file_name, 'results') plt.savefig(os.path.join(save_dir, 'frame_' + str(frame_num) + '.jpg')) ```
{ "source": "404neko/bridge", "score": 2 }
#### File: 404neko/bridge/main.py ```python import sys import json import hashlib import datetime from datetime import timedelta from flask import Flask from flask import render_template from flask import request from flask import flash from flask import url_for from flask import redirect from flask import session import requests sys.path.append('..') from mod.database import * import mod.whois app = Flask(__name__) app.secret_key = '2333' SALT = '2333' DOMAIN = 'http://csrss.tk/' FORM = ''' <form action="w_" method="GET"> <input name="domain"></input><br> <input type="checkbox" name="brief">brief</input><br> <button>Submit</button> </form>''' BASE_SITE = '<html><head>%s</head><body>%s</body></html>' LINK_SITE = '<html><body><p><a href="%s&_=">%s&_=</a></p></body></html>' JUMP_SITE = ''' <html> <head> <title>%s</title> <script type="text/javascript"> var t = 1; function showTime(){ t -= 1; if(t==0){ location.href='%s'; } setTimeout("showTime()",1000); } showTime(); </script> </head> <body>Nyan</body></html> ''' def uhash(password,salt=SALT): pre_hash = password[0]+salt+password[1:] Hash=hashlib.md5() Hash.update(pre_hash) return Hash.hexdigest() @app.before_request def _db_connect(): database.connect() @app.teardown_request def _db_close(exc): if not database.is_closed(): database.close() @app.teardown_appcontext def close_database(error): database.close() @app.route('/w') def w(): #@content = content =''' <form action="w_" method="GET"> <input name="domain"></input><br> <input type="checkbox" name="brief">brief</input><br> <button>Submit</button> </form> ''' return BASE_SITE % ('',content,) @app.route('/w_') def w_(): domain = request.args.get('domain','') brief = request.args.get('brief',False) if domain=='': return '500' return BASE_SITE % ('',FORM+'<hr>'+mod.whois.whois(domain,brief),) @app.route('/',methods=['GET','POST']) def index(): return 'Nyan' @app.route('/l233') def l(): return 'Nyan' #uid = request.args.get('page',None) @app.route('/a233',methods=['GET','POST']) def a(): if request.method=='POST': url = request.form.get('url','') if url=='': return '500' hash_ = uhash(url) content = request.get(url) try: title = content.content.split('<title>')[1].split('</title>')[0] except: title = '' #content new_url_info = Pool(time=datetime.datetime.now(),uid=hash_,url=url,title=title,content='') new_url_info.save() return LINK_SITE % (DOMAIN+'r?uid='+hash_,DOMAIN+'r?uid='+hash_,) else: url = request.args.get('url','') if url=='': return '500' hash_ = uhash(url) respon = requests.get(url) try: title = respon.content.split('<title>')[1].split('</title>')[0] except: title = '' #content new_url_info = Pool(time=datetime.datetime.now(),uid=hash_,url=url,title=title,content='') new_url_info.save() return LINK_SITE % (DOMAIN+'r?uid='+hash_,DOMAIN+'r?uid='+hash_,) @app.route('/r',methods=['GET']) def r(): uid = request.args.get('uid',None) for char in uid: if char not in 'qwertyuioplkjhgfdsazxcvbnm0123456789': return redirect(url_for('index')) ip = request.headers.get('X-Real-IP','127.0.0.1') ua = '' for tuple_ in request.headers: if tuple_[0].lower()=='user-agent': ua = tuple_[1] referer = '' if request.referrer==None: pass else: referer = request.referrer new_record = Record(ip=ip,ua=ua,referer=referer,time=datetime.datetime.now()) new_record.save() url_info = Pool.select().where(Pool.uid==uid) for url_info_ in url_info: return JUMP_SITE % (url_info_.title,url_info_.url,) return '404' if __name__ == '__main__': app.run(host='0.0.0.0',port=5000,debug=1) ```
{ "source": "404neko/Marisa", "score": 3 }
#### File: Marisa/interface/error.py ```python class SystemCallFault(Exception): def __init__(self): pass def __str__(self): return 'System not give expect response.' class NecessaryLibraryNotFound(Exception): def __init__(self,value = '?'): self.value = value def __str__(self): return 'Necessary library \'%s\' not found.'%self.value ``` #### File: Marisa/Module/__twitter__.py ```python import requests import os import re import socket class Action: def __init__(self,text,env): self.env = env self.text = text def proxy(self,port = 1080): def scan(port): s = socket.socket() if s.connect_ex(('localhost', port)) == 0: s.close() return True return False if scan(port): import socks socks.set_default_proxy(socks.SOCKS5, 'localhost', 1080, rdns=True) socket.socket = socks.socksocket return True else: return False def run(self): if self.proxy(): re_get_pic = 'data-image-url="((https|http)://pbs.twimg.com/media/.*?.(jpg|png|gif))"' print 1 s_url = re.findall(re_get_pic,requests.get(self.text,verify=False).content)[0] url = s_url+':orig' print 2 data = requests.get(url,verify=False) f = open(s_url.split('/')[-1],'wb') f.write(data.content) f.close() return {'value':url,'notice':['twitter','Picture has been downloaded.'],} else: f = open('record.txt','a+') f.write(self.text) f.write('\n') f.close() return {'value':'','notice':['twitter','No proxy, url has been recorded.'],} @staticmethod def test(text): import re return len(re.findall('((https|http)://twitter.com/.*?/status/.*?)',text))>0 ```
{ "source": "404neko/Risu", "score": 2 }
#### File: 404neko/Risu/Risu.py ```python import traceback import io import hashlib import shutil import os import base64 from PIL import Image from requests import Session class RisuExtension: def __init__(self, session): self.session = session def can_handle(self, url): return False def handle(self, url): raise Exception class Risu: session = None path = 'risu' extensions = [] cached = {} default_image = 'iVBORw0KGgoAAAANSUhEUgAAAQAAAAEACAIAAADTED8xAAAACXBIWXMAAAsTAAALEwEAmpwYAAAB+0lEQVR42u3TQQ0AAAjEMED5SeeNBloJS9ZJCr4aCTAAGAAMAAYAA4ABwABgADAAGAAMAAYAA4ABwABgADAAGAAMAAYAA4ABwABgADAAGAAMAAYAA4ABwABgADAAGAAMAAYAA4ABwABgADAAGAAMAAYAA4ABwABgADAAGAAMgAHAAGAAMAAYAAwABgADgAHAAGAAMAAYAAwABgADgAHAAGAAMAAYAAwABgADgAHAAGAAMAAYAAwABgADgAHAAGAAMAAYAAwABgADgAHAAGAAMAAYAAwABgADgAHAAGAAMAAGAAOAAcAAYAAwABgADAAGAAOAAcAAYAAwABgADAAGAAOAAcAAYAAwABgADAAGAAOAAcAAYAAwABgADAAGAAOAAcAAYAAwABgADAAGAAOAAcAAYAAwABgADAAGAAOAATAAGAAMAAYAA4ABwABgADAAGAAMAAYAA4ABwABgADAAGAAMAAYAA4ABwABgADAAGAAMAAYAA4ABwABgADAAGAAMAAYAA4ABwABgADAAGAAMAAYAA4ABwABgADAAGAAMAAbAAGAAMAAYAAwABgADgAHAAGAAMAAYAAwABgADgAHAAGAAMAAYAAwABgADgAHAAGAAMAAYAAwABgADgAHAAGAAMAAYAAwABgADgAHAAGAAMAAYAAwABgADgAHgWu7LA4CJx71QAAAAAElFTkSuQmCC' def initialize_filesystem(self): for item in ['', 'image', 'thumbnail']: try: os.mkdir(self.path + os.sep + item) except: pass for item in os.listdir(os.sep.join([self.path, 'image'])): self.cached[item] = 0 def on_fail(self): expected_path = os.sep.join([self.path, 'default']) if os.path.isfile(expected_path): pass else: with open(expected_path, 'wb') as file_handle: file_handle.write(base64.encode(self.default_image)) return expected_path def __init__(self, session=None, path='risu', extensions=[]): if session==None: session = Session() self.session = session self.path = path self.extensions = extensions self.initialize_filesystem() def get_hash(self, content): md5 = hashlib.md5() md5.update(content.encode('UTF-8')) return md5.hexdigest() def get_image(self, url): if url.startswith('file:///'): url = url[len('file:///'):] hash_ = self.get_hash(url) expected_path = os.sep.join([self.path, 'image', hash_]) if hash_ in self.cached: return expected_path for extension in self.extensions: if extension.can_handle(url): content = extension.handle(url) with open(expected_path, 'wb') as file_handle: file_handle.write(content) if os.path.isfile(url): storage_path = expected_path shutil.copy2(url, storage_path) return storage_path if url[:7] in ['https:/', 'http://']: try: response = self.session.get(url) if response: with open(expected_path, 'wb') as file_handle: file_handle.write(response.content) return expected_path except: return self.on_fail() # todo: base64 return self.on_fail() def get_thumbnail(self, url, _size=[256, 256]): if type(_size)==int: size = [_size, _size] else: size = _size if url.startswith('file:///'): url = url[len('file:///'):] hash_ = self.get_hash(url) expected_path = os.sep.join([self.path, 'thumbnail', hash_]) if os.path.isfile(expected_path): return expected_path image_path = self.get_image(url) data = None with open(image_path, 'rb') as file_handle: data = file_handle.read() file_handle = io.BytesIO(data) file_handle.seek(0) image = Image.open(file_handle) image.thumbnail(size) image.save(expected_path, 'PNG') file_handle.close() return expected_path if __name__=='__main__': risu = Risu() print(risu.get_image('http://wx4.sinaimg.cn/large/006z09Zkly1gana5bcf62j30yi0w4gzm.jpg')) print(risu.get_image('https://wx4.sinaimg.cn/large/006z09Zkly1gana5bcf62j30yi0w4gzm.jpg')) print(risu.get_thumbnail('http://wx4.sinaimg.cn/large/006z09Zkly1gana5bcf62j30yi0w4gzm.jpg')) print(risu.get_thumbnail('https://wx4.sinaimg.cn/large/006z09Zkly1gana5bcf62j30yi0w4gzm.jpg')) ```
{ "source": "404nofound/CS521-Info-Str-Python", "score": 4 }
#### File: Homework/Homework4/10_9.py ```python import math def mean(x): sum = 0 for number in x: sum += float(number) mean = sum / len(x) return mean def deviation(x): mean1 = mean(x) middle = 0; for number in x: middle += pow(float(number) - mean1, 2) deviation = math.sqrt(middle/(len(x)-1)) return deviation input = input('Enter numbers: ') list = input.split() print ('The mean is %.2f' %mean(list)) print ('The standard deviation is %.5f' %deviation(list)) ``` #### File: Homework/Homework4/6_14.py ```python def m(i): result = 0 for n in range(1,i+1): result += pow((-1), n+1)/(2 * n - 1) return 4 * result list = [1, 101, 201, 301, 401, 501, 601, 701, 801, 901] print ('i\tm(i)') for number in list: print ('%d\t%.4f' %(number, m(number))) ``` #### File: Homework/Homework5/new_7_3.py ```python class Account: def __init__(self, id = 0, balance = 100, annualInterestRate = 0): self.__id = id self.__balance = balance exception = Exception() if exception.check(annualInterestRate) == False: print ("The annual interest rate cannot be negative!") self.__annualInterestRate = 0 else: self.__annualInterestRate = annualInterestRate def get_id(self): return self.__id def get_balance(self): return self.__balance def get_annualInterestRate(self): return self.annualInterestRate def set_id(self, value): self.__id = value def set_balance(self, value): self.__balance = value def set_annualInterestRate(self, value): self.__annualInterestRate = value def getMonthlyInterestRate(self): return (self.__annualInterestRate / 12) def getMonthlyInterest(self): return self.__balance * self.getMonthlyInterestRate() / 100 def withdraw(self, amount): exception = Exception() if exception.check(amount) == False: print ("The withdraw amount cannot be negative!") else: self.__balance -= amount def deposit(self, amount): exception = Exception() if exception.check(amount) == False: print ("The deposit amount cannot be negative!") else: self.__balance += amount class Exception: def check(self, amount): if amount < 0: return False def main(): print ("******************************************\nCondition 1: Input negative annual interest") account1 = Account(1122, 20000, -4.5) print ("******************************************\nCondition 2: Withdraw negative amount") account2 = Account(1122, 20000, 4.5) account2.withdraw(-2500) print ("******************************************\nCondition 3: Deposit negative amount") account2.deposit(-3000) print ("******************************************\nCondition 4: Everything is correct") account2.withdraw(2500) account2.deposit(3000) print ("id: %d \nbalance: $%f \nmonthly interest rate: %f%% \nmonthly interest: $%f" % (account2.get_id(), account2.get_balance(), account2.getMonthlyInterestRate(), account2.getMonthlyInterest())) if __name__ == '__main__': main() ``` #### File: Homework/Homework6/12_1.py ```python import math from GeometricObject import GeometricObject class Triangle(GeometricObject): def __init__(self, side1 = 1.0, side2 = 1.0, side3 = 1.0, *args): super().__init__(*args) self.__side1 = side1 self.__side2 = side2 self.__side3 = side3 def get_side1(self): return self.__side1 def get_side2(self): return self.__side2 def get_side3(self): return self.__side3 def getArea(self): p = self.getPerimeter() / 2 area = math.sqrt( p * (p - self.__side1) * (p - self.__side2) * (p - self.__side3) ) return area def getPerimeter(self): return self.__side1 + self.__side2 + self.__side3 def __str__(self): return "Triangle: side1 = " + str(self.__side1) + " side2 = " + str(self.__side2) + " side3 = " + str(self.__side3) def main(): sides = input("Please enter three sides' length (Using ',' to split): ") side = [float(i) for i in sides.replace(' ', '').split(',')] color = input("Please enter a color: ") filled = eval(input("please enter filled or not(1 mean Yes, 0 mean No): ")) fill = True if filled == 0: fill = False triangle = Triangle(side[0], side[1], side[2], color, fill) print (triangle.__str__()) print ("The Area: %.1f\nThe Perimeter: %.1f\nThe Color: %s\nThe filled: %s" %(triangle.getArea(), triangle.getPerimeter(), triangle.get_color(), triangle.is_filled())) if __name__ == '__main__': main() ``` #### File: Homework/Homework6/12_3.py ```python from account import Account class atm(Account): def __init__(self, id): super().__init__() self.__id = id def show_menu(self): print ("\nMain menu\n1: check balance\n2: withdraw\n3: deposit\n4: exit") def main(): again = True next = True while again: id = eval(input("Enter an account id: ")) if id in range(0,10): again = False else: print ("Please enter a correct id") ATM = atm(id) while next: ATM.show_menu() choice = eval(input("Enter a choice: ")) if choice == 1: print ("The balance is ", ATM.get_balance()) elif choice == 2: wit = eval(input("Enter an amount to withdraw: ")) ATM.withdraw(wit) elif choice == 3: dep = eval(input("Enter an amount to deposit: ")) ATM.deposit(dep) elif choice == 4: print ("") next = False main() if __name__ == '__main__': main() ``` #### File: Homework/Homework6/GeometricObject.py ```python class GeometricObject: def __init__(self, color="green", filled=True): self.__color = color self.__filled = filled def get_color(self): return self.__color def set_color(self, color): self.__color = color def is_filled(self): return self.__filled def set_filled(self, filled): self.__filled = filled def __str__(self): return "color: " + self.__color + \ " and filled: " + str(self.__filled) ``` #### File: Lecture/Lecture12/L12_Fib_gen.py ```python from itertools import islice def fib(): prev, curr = 0, 1 while True: yield curr prev, curr = curr, prev + curr f = fib() print(list(islice(f, 0, 10))) ``` #### File: Lecture/Lecture12/L12_iter3.py ```python class Bookshelf: def __init__(self): self.__book_list = [] def addBook(self, author, title, price): self.__book_list.append((author, title, price)) class BookIter: def __init__(self, bookshelf): self.reflist = [b for b in bookshelf._Bookshelf__book_list] def __iter__(self): return self def __next__(self): raise StopIteration class BookAuthorIter(BookIter): def __iter__(self): return iter(sorted(self.reflist, key=lambda x:x[0])) # dictionary for lookingup country of the author author_country = {"<NAME>" : "UK", "<NAME>" : "UK", \ "<NAME>" : "US", "<NAME>" : "Russia", \ "<NAME>" : "Russia"} class BookCountryIter(BookIter): def __init__(self, bookshelf): super().__init__(bookshelf) self.book_iter = \ iter(sorted([(b, author_country[b[0]]) for b in self.reflist], key=lambda x : x[1])) #books_with_country = [(b, author_country[b[0]]) for b in self.reflist] #books_sort_country = sorted(books_with_country, key=lambda x : x[1]) #self.book_iter = iter(books_sort_country) def __next__(self): return next(self.book_iter)[0] myshelf = Bookshelf() myshelf.addBook("<NAME>", "Pride and Prejudice", 6.95) myshelf.addBook("<NAME>", "Romeo and Juliet", 10.99) myshelf.addBook("<NAME>", "Adventures of Huckleberry Finn", 5.95) myshelf.addBook("<NAME>", "Crime and Punishment", 12.95) myshelf.addBook("<NAME>", "<NAME>", 9.56) myshelf.addBook("<NAME>", "Macbeth", 5.99) myshelf.addBook("<NAME>", "War and Peace", 10.36) for b in BookAuthorIter(myshelf): print(b) print() for b in BookCountryIter(myshelf): print(b) ``` #### File: Lecture/Lecture12/L12_toh.py ```python def toh(n, origin, target, interim): if n < 1: raise Exception('invalid input') if n == 1: print('Move Disc', n, 'from Pole', origin, 'to Pole', target) return toh(n-1, origin, interim, target) print('Move Disc', n, 'from Pole', origin, 'to Pole', target) toh(n-1, interim, target, origin) return import sys if __name__ == '__main__': toh(int(sys.argv[1]), 0, 1, 2) ```
{ "source": "404nofound/MBTA_Python", "score": 4 }
#### File: MBTA_Python/MBTA/step1_group.py ```python import pandas as pd import numpy as np import os # Function, divided all data into groups by time period, like [1AM-3AM; 3AM-5Am ...] def binning(column, points, labels=None, month=0, stop=0): ''' Notes: The Row Data from MBTA webiste The Time format is from 3:00 to 27:00, means 3:00 AM today to next day 3:00 AM And in the csv file, it use int to replace date format, like 300 means 3:00 AM; 1500 means 3:00 PM :param column: use which column to divide, here we use TIME_PERIOD column :param points: the break points we use to divide :param labels: the labels for result groups that have been divided :param month: used to record error :param stop: used to record error ''' # Get max time and min time from data minval = column.min() maxval = column.max() # Handle break points and labels errors and print while maxval <= points[len(points)-1]: print ('Month: ' + str(month) + ' Stop: ' + stop) del points[len(points)-1] del labels[len(points)-1] while minval >= points[0]: print ('Month: ' + str(month) + ' Stop: ' + stop) del points[0] del labels[0] # The full break points includes min, max time break_points = [minval] + points + [maxval] # If user doesn't provide labels, using int number to replace, here I have provided labels, so it doesn't work if not labels: labels = range(len(points)+1) # cut() function to divide data into groups and return them columnbin = pd.cut(column, bins=break_points, labels=labels, include_lowest=True) return columnbin # Function, make directory. if exist, do nothing def mkdir(path): folder = os.path.exists(path) if not folder: os.makedirs(path) # Using Pandas read every months' row data, from January to July, there only 7 months provide by MBTA this year until now for month in range(1,8): csvfile = pd.read_csv('/Users/Eddy/Desktop/Python_MBTA/MBTA_Raw_Entry_Data/2018_0' + str(month) + '.csv') # Format file to prepare data analysis df = pd.DataFrame(csvfile) # Divide data into different part group by stop id grouped = df.groupby('GTFS_STOP_ID', as_index=False) # For every stop's data, using binning() function to divide into different time period for stop, group in grouped: # Define break points points = [500, 700, 900, 1100, 1300, 1500, 1700, 1900, 2100, 2300, 2500] # Define labels labels = ['3AM-5AM', '5AM-7AM', '7AM-9AM', '9AM-11AM', '11AM-1PM', '1PM-3PM', '3PM-5PM', '5PM-7PM', '7PM-9PM', '9PM-11PM', '11PM-1AM', '1AM-3AM'] # Create new column [TIME_PERIOD_Bin] for the result returned by binning() function group['TIME_PERIOD_Bin'] = binning(group['TIME_PERIOD'], points, labels, month, stop) # Format all the data again df_station = pd.DataFrame(group) # Until now, all data have been grouped by stop_id, and then grouped by time period that we create group_time = df_station.groupby('TIME_PERIOD_Bin') # Make directory to store new csv files mkdir('/Users/Eddy/Desktop/Python_MBTA/Step1/' + str(month)) # Calculate the sum of entry people number for every stops and every periods data1 = pd.DataFrame(group_time['STATION_ENTRIES'].agg(np.sum)) # Write into the csv files data1.to_csv('/Users/Eddy/Desktop/Python_MBTA/Step1/' + str(month) + "/" + stop + '.csv') ```
{ "source": "404notfound-3/ig-profile-scraper", "score": 3 }
#### File: 404notfound-3/ig-profile-scraper/scraper.py ```python import csv import time import json import random import subprocess from os import path, name from selenium import webdriver from traceback import format_exc from bs4 import BeautifulSoup as bs from pyvirtualdisplay import Display from config import URL, slack, proxies, date, timee, weekday, lps, lprint, get_tor_ip, renew_tor_ip, profile, OUTPUT_FOLDER, usernames, ids, check_tor_conn ## This block will check for your OS. if name == "nt":## To wake up Tor executables(only windows). subprocess.Popen(r".\Tor\tor.exe -f .\Tor\torrc", shell = False) elif name == "posix":## To create virtual display(only linux). display = Display(visiable = False, size = (13666, 768)) display.start() lprint("[+]", "Successfully started virtual display", "green") check_tor_conn() browser = webdriver.Firefox(firefox_profile = profile) browser.delete_all_cookies() ## just in case if your browser... ## this function will take a soup as input and will return some valuable data. def parse_data(page_source_soup): data = {} body = page_source_soup.find("body") script = body.find("script", text=lambda t: t.startswith("window._sharedData")) script_json = script.string.split(" = ", 1)[1].rstrip(";") script_json = json.loads(script_json) data["full_name"] = str(script_json["entry_data"]["ProfilePage"][0]["graphql"]["user"]["full_name"].encode()) data["biography"] = str(script_json["entry_data"]["ProfilePage"][0]["graphql"]["user"]["biography"].encode()) data["followers"] = str(script_json["entry_data"]["ProfilePage"][0]["graphql"]["user"]["edge_followed_by"]["count"]) data["following"] = str(script_json["entry_data"]["ProfilePage"][0]["graphql"]["user"]["edge_follow"]["count"]) data["date"], data["time"], data["weekday"] = date(), timee(), weekday() data["is_private"] = str(script_json["entry_data"]["ProfilePage"][0]["graphql"]["user"]["is_private"]) data["is_business_account"] = str(script_json["entry_data"]["ProfilePage"][0]["graphql"]["user"]["is_business_account"]) data["is_verified"] = str(script_json["entry_data"]["ProfilePage"][0]["graphql"]["user"]["is_verified"]) data["logging_page_id"] = script_json["entry_data"]["ProfilePage"][0]["logging_page_id"] data["id"] = script_json["entry_data"]["ProfilePage"][0]["graphql"]["user"]["id"] data["has_channel"] = str(script_json["entry_data"]["ProfilePage"][0]["graphql"]["user"]["has_channel"]) data["has_blocked_viewer"] = str(script_json["entry_data"]["ProfilePage"][0]["graphql"]["user"]["has_blocked_viewer"]) data["joined_recently"] = str(script_json["entry_data"]["ProfilePage"][0]["graphql"]["user"]["is_joined_recently"]) data["external_url"] = str(script_json["entry_data"]["ProfilePage"][0]["graphql"]["user"]["external_url"]) data["external_url_linkshimmed"] = str(script_json["entry_data"]["ProfilePage"][0]["graphql"]["user"]["external_url_linkshimmed"]) data["connected_fb_page"] = str(script_json["entry_data"]["ProfilePage"][0]["graphql"]["user"]["connected_fb_page"]) data["edge_felix_video_timeline"] = str(script_json["entry_data"]["ProfilePage"][0]["graphql"]["user"]["edge_felix_video_timeline"]["count"]) data["edge_owner_to_timeline_media"] = str(script_json["entry_data"]["ProfilePage"][0]["graphql"]["user"]["edge_owner_to_timeline_media"]["count"]) data["edge_saved_media"] = str(script_json["entry_data"]["ProfilePage"][0]["graphql"]["user"]["edge_saved_media"]["count"]) data["edge_media_collections"] = str(script_json["entry_data"]["ProfilePage"][0]["graphql"]["user"]["edge_media_collections"]["count"]) ## All values below for further data analysis data["viewerId"] = script_json["config"]["viewerId"] data["csrf_token"] = script_json["config"]["csrf_token"] data["device_id"] = script_json["device_id"] data["platform"] = script_json["platform"] data["rollout_hash"] = script_json["rollout_hash"] data["nonce"] = script_json["nonce"] return data ## will return parsed html to parse_data function above. def scrape_data(username): browser.get(URL.format(username)) return parse_data(bs(browser.page_source, "html.parser")) ## This function will take data dictonary in input and will save all of data "smartly" in a csv file. def check_csv_file(data, filename): ## Check for the existing csv file if path.isfile(OUTPUT_FOLDER + filename): with open(OUTPUT_FOLDER + filename, "r") as rf: last_line_items, true_false_list, specific_key_index = rf.readlines()[-1].split(","), [], [0, 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] for key_index in specific_key_index: true_false_list.append(data[list(data.keys())[key_index]] == last_line_items[key_index]) if False in true_false_list: with open(OUTPUT_FOLDER + filename, "a", newline = "") as csvfile: csvwriter = csv.writer(csvfile) csvwriter.writerow([data[keys] for keys in data.keys()]) ## This block will create an csv file if you are runnig this script first time. else: with open(OUTPUT_FOLDER + filename, "a", newline = "") as csvfile: csvwriter = csv.writer(csvfile) csvwriter.writerow(list(data.keys())) csvwriter.writerow([data[keys] for keys in data.keys()]) ## this function will help us to create randomness in scraper, so we can save our little a** from facebook's anti scraping tools. def random_sleep_time(secends): return random.randint(secends-(secends * 0.3), secends+(secends * 0.4)) ## Exit options will called if you pressed "CTRL+C" def exit_options(): print("\n\nWelcome to the exit options, you have choices below\n1). Exit and close this script\n\n2). Do nothing, I intrupted accidently") your_choice = int(input("\nYour command >>> ")) if your_choice == 1: exit() else: pass ## This function will take instagram credentials as input, and will login your id as output in browser. ## Warning please make sure that you are using temporary ids to signin and scraping profiles. def ig_login(email, password): lps("[*]", f"Trying to logging in using {email}", "yellow") browser.get("https://instagram.com") username_input_box = browser.find_element_by_xpath('//*[@id="loginForm"]/div/div[1]/div/label/input') username_input_box.click() time.sleep(3.7) for words in email: username_input_box.send_keys(words) time.sleep(0.3) password_input_box = browser.find_element_by_xpath('//*[@id="loginForm"]/div/div[2]/div/label/input') password_input_box.click() time.sleep(1.6) for words in password: password_input_box.send_keys(words) time.sleep(0.25) browser.find_element_by_xpath('//*[@id="loginForm"]/div/div[3]/button/div').click() lps("[+]", f"Successfully logged in {email}", "green") time.sleep(15) browser.find_element_by_xpath('//*[@id="react-root"]/section/main/div/div/div/div/button').click() time.sleep(15) browser.find_element_by_xpath('/html/body/div[4]/div/div/div/div[3]/button[2]').click() time.sleep(15) ## request to browser to take and save an screenshot "smartly". t1 = None def save_ss(event = None): global t1 t2 = time.time() if not t1 or ((t2-t1)>120):# 2 Minutes browser.get_screenshot_as_file(f'./ss_log/browser/{date()}__{timee()}.png') lps("[+]", "Browser Screenshot Successfully saved at ./ss_log/browser/", "green") t1 = time.time() ## t1 will be replaced with current time if we succeed to take a screenshot. else: lprint("[-]", f"Screenshot event cancelled, last ss was taken just {t2-t1} secends ago", "yellow") ## To send alerts to your slack installed devices t3 = None def slack_hook(username, exception): global t3 t4 = time.time() if not t3 or ((t4-t3)>120):# 2 Minutes lps("[!]", f"Exception Occurred while scraping for {username}\n{str(exception)}", "red") t3 = time.time() ## t3 will be replaced with current time. else: lprint("[-]", f"Slack text cancelled, last text was just posted {t4-t3} secends ago", "yellow") ## This Function will log out your id from browser, after logout succeed all cookies will be deleted so we can login new id. def ig_logout(email): browser.get("https://instagram.com/") lps("[*]", f"Trying to logging out {email} ", "yellow") browser.find_element_by_xpath('//*[@id="react-root"]/section/nav/div[2]/div/div/div[3]/div/div[5]/span').click() time.sleep(1) browser.find_element_by_xpath('//div[text() = "Log Out"]').click() browser.delete_all_cookies() lps("[+]", f"Successfully logged out {email}", "green") temp_id1 = random.choice([keys for keys in ids.keys()]) ## To load credentials from ids dictionary (randomly). ig_login(email = temp_id1, password = ids[temp_id1]) ## To login your temprary id in browser t5 = time.time() while True: ## To keep running this scraper. for username in usernames: ## load a instagram username from usernames list, which we have loaded previously filename = f"{username}.csv" ## name of csv file try: data = scrape_data(username) check_csv_file(data, filename) lprint("[+]", f"\n{username} {data}", random.choice(["magenta", "cyan", "blue"])) sleep_time = random_sleep_time(120)# 2 Minutes lprint("[*]", f"Sleeping for {sleep_time} secends", "green") time.sleep(sleep_time) ## To logout automaticly if script is running from past 8 hours, else instagram will block our temprory id. if (time.time()-t5) > (8*3600):# 8 Hours ig_logout(email = temp_id1) t5, temp_id2 = time.time(), random.choice([keys for keys in ids.keys()]) ig_login(email = temp_id2, password = ids[temp_id2]) ## login new id temp_id1 = temp_id2 ## variable will replaed if autologin succeed. except KeyboardInterrupt: lprint("[-]", "CTRL+C detected, Taking you to exit options...", "red") exit_options() except Exception as e: exception = format_exc(e) ## to format exceptions lprint("[!]", f"Exception Occurred while scraping for {username}\n{str(exception)}", "red") save_ss() slack_hook(username, exception) ```
{ "source": "404NotFound-401/DjangoTutorial", "score": 2 }
#### File: HelloWorldWebsite/searchTest/views.py ```python from __future__ import unicode_literals from django.shortcuts import render, redirect from django.template import loader from django.http import HttpResponse from django.views import generic from .models import Movie from . import searchapi from django.urls import reverse # Create your views here. class Search(generic.DetailView): model = Movie template_name = 'searchTest.html' def get(self, request, *args, **kwargs): context = {'movieId':'Please enter the film name'} return render(request, self.template_name, context) def post(self, request, *args, **kwargs): if 'movieName' in request.POST: print("Get movie name") context = searchapi.getName(request.POST['movieName']) else: print("Wrong act") return redirect('mainpage') return render(request, "home/result.html", context) ```
{ "source": "404NotFoundJ/ytubr", "score": 2 }
#### File: youtube_dl/extractor/viewlift.py ```python from __future__ import unicode_literals import re from .common import InfoExtractor from ..utils import ( ExtractorError, clean_html, determine_ext, int_or_none, js_to_json, parse_duration, ) class ViewLiftBaseIE(InfoExtractor): _DOMAINS_REGEX = r'(?:snagfilms|snagxtreme|funnyforfree|kiddovid|winnersview|monumentalsportsnetwork|vayafilm)\.com|kesari\.tv' class ViewLiftEmbedIE(ViewLiftBaseIE): _VALID_URL = r'https?://(?:(?:www|embed)\.)?(?:%s)/embed/player\?.*\bfilmId=(?P<id>[\da-f-]{36})' % ViewLiftBaseIE._DOMAINS_REGEX _TESTS = [{ 'url': 'http://embed.snagfilms.com/embed/player?filmId=74849a00-85a9-11e1-9660-123139220831&w=500', 'md5': '2924e9215c6eff7a55ed35b72276bd93', 'info_dict': { 'id': '74849a00-85a9-11e1-9660-123139220831', 'ext': 'mp4', 'title': '#whilewewatch', } }, { # invalid labels, 360p is better that 480p 'url': 'http://www.snagfilms.com/embed/player?filmId=17ca0950-a74a-11e0-a92a-0026bb61d036', 'md5': '882fca19b9eb27ef865efeeaed376a48', 'info_dict': { 'id': '17ca0950-a74a-11e0-a92a-0026bb61d036', 'ext': 'mp4', 'title': 'Life in Limbo', } }, { 'url': 'http://www.snagfilms.com/embed/player?filmId=0000014c-de2f-d5d6-abcf-ffef58af0017', 'only_matching': True, }] @staticmethod def _extract_url(webpage): mobj = re.search( r'<iframe[^>]+?src=(["\'])(?P<url>(?:https?:)?//(?:embed\.)?(?:%s)/embed/player.+?)\1' % ViewLiftBaseIE._DOMAINS_REGEX, webpage) if mobj: return mobj.group('url') def _real_extract(self, url): video_id = self._match_id(url) webpage = self._download_webpage(url, video_id) if '>This film is not playable in your area.<' in webpage: raise ExtractorError( 'Film %s is not playable in your area.' % video_id, expected=True) formats = [] has_bitrate = False for source in self._parse_json(js_to_json(self._search_regex( r'(?s)sources:\s*(\[.+?\]),', webpage, 'json')), video_id): file_ = source.get('file') if not file_: continue type_ = source.get('type') ext = determine_ext(file_) format_id = source.get('label') or ext if all(v == 'm3u8' or v == 'hls' for v in (type_, ext)): formats.extend(self._extract_m3u8_formats( file_, video_id, 'mp4', m3u8_id='hls')) else: bitrate = int_or_none(self._search_regex( [r'(\d+)kbps', r'_\d{1,2}x\d{1,2}_(\d{3,})\.%s' % ext], file_, 'bitrate', default=None)) if not has_bitrate and bitrate: has_bitrate = True height = int_or_none(self._search_regex( r'^(\d+)[pP]$', format_id, 'height', default=None)) formats.append({ 'url': file_, 'format_id': 'http-%s%s' % (format_id, ('-%dk' % bitrate if bitrate else '')), 'tbr': bitrate, 'height': height, }) field_preference = None if has_bitrate else ('height', 'tbr', 'format_id') self._sort_formats(formats, field_preference) title = self._search_regex( [r"title\s*:\s*'([^']+)'", r'<title>([^<]+)</title>'], webpage, 'title') return { 'id': video_id, 'title': title, 'formats': formats, } class ViewLiftIE(ViewLiftBaseIE): _VALID_URL = r'https?://(?:www\.)?(?P<domain>%s)/(?:films/title|show|(?:news/)?videos?)/(?P<id>[^?#]+)' % ViewLiftBaseIE._DOMAINS_REGEX _TESTS = [{ 'url': 'http://www.snagfilms.com/films/title/lost_for_life', 'md5': '19844f897b35af219773fd63bdec2942', 'info_dict': { 'id': '0000014c-de2f-d5d6-abcf-ffef58af0017', 'display_id': 'lost_for_life', 'ext': 'mp4', 'title': 'Lost for Life', 'description': 'md5:fbdacc8bb6b455e464aaf98bc02e1c82', 'thumbnail': r're:^https?://.*\.jpg', 'duration': 4489, 'categories': ['Documentary', 'Crime', 'Award Winning', 'Festivals'] } }, { 'url': 'http://www.snagfilms.com/show/the_world_cut_project/india', 'md5': 'e6292e5b837642bbda82d7f8bf3fbdfd', 'info_dict': { 'id': '00000145-d75c-d96e-a9c7-ff5c67b20000', 'display_id': 'the_world_cut_project/india', 'ext': 'mp4', 'title': 'India', 'description': 'md5:5c168c5a8f4719c146aad2e0dfac6f5f', 'thumbnail': r're:^https?://.*\.jpg', 'duration': 979, 'categories': ['Documentary', 'Sports', 'Politics'] } }, { # Film is not playable in your area. 'url': 'http://www.snagfilms.com/films/title/inside_mecca', 'only_matching': True, }, { # Film is not available. 'url': 'http://www.snagfilms.com/show/augie_alone/flirting', 'only_matching': True, }, { 'url': 'http://www.winnersview.com/videos/the-good-son', 'only_matching': True, }, { 'url': 'http://www.kesari.tv/news/video/1461919076414', 'only_matching': True, }, { # Was once Kaltura embed 'url': 'https://www.monumentalsportsnetwork.com/videos/john-carlson-postgame-2-25-15', 'only_matching': True, }] def _real_extract(self, url): domain, display_id = re.match(self._VALID_URL, url).groups() webpage = self._download_webpage(url, display_id) if ">Sorry, the Film you're looking for is not available.<" in webpage: raise ExtractorError( 'Film %s is not available.' % display_id, expected=True) film_id = self._search_regex(r'filmId=([\da-f-]{36})"', webpage, 'film id') snag = self._parse_json( self._search_regex( r'Snag\.page\.data\s*=\s*(\[.+?\]);', webpage, 'snag'), display_id) for item in snag: if item.get('data', {}).get('film', {}).get('id') == film_id: data = item['data']['film'] title = data['title'] description = clean_html(data.get('synopsis')) thumbnail = data.get('image') duration = int_or_none(data.get('duration') or data.get('runtime')) categories = [ category['title'] for category in data.get('categories', []) if category.get('title')] break else: title = self._search_regex( r'itemprop="title">([^<]+)<', webpage, 'title') description = self._html_search_regex( r'(?s)<div itemprop="description" class="film-synopsis-inner ">(.+?)</div>', webpage, 'description', default=None) or self._og_search_description(webpage) thumbnail = self._og_search_thumbnail(webpage) duration = parse_duration(self._search_regex( r'<span itemprop="duration" class="film-duration strong">([^<]+)<', webpage, 'duration', fatal=False)) categories = re.findall(r'<a href="/movies/[^"]+">([^<]+)</a>', webpage) return { '_type': 'url_transparent', 'url': 'http://%s/embed/player?filmId=%s' % (domain, film_id), 'id': film_id, 'display_id': display_id, 'title': title, 'description': description, 'thumbnail': thumbnail, 'duration': duration, 'categories': categories, 'ie_key': 'ViewLiftEmbed', } ```
{ "source": "404-NOTFOUND/SHARESPACE-Server", "score": 2 }
#### File: sharespace/views/main.py ```python from flask import ( render_template, flash, redirect, request, abort, url_for ) from flask_login import ( current_user, login_user, logout_user, login_required ) from werkzeug import secure_filename import os, base64, random import image_classification from server import app from server.database import * ALLOWED_EXTENSIONS = set(['.jpg', '.jpeg']) def allowed_file(filename): return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS @app.route('/upload', methods=['GET', 'POST']) @login_required def upload(): if request.method == 'POST': if 'file' not in request.files: # no file part in POST request return redirect(request.url) file = request.files['file'] if file.filename == '': # no file selected return redirect(request.url) if file and allowed_file(file.filename): filename = secure_filename(file.filename) file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename)) # return redirect('/view/' + get_img_id(filename)) newpost = Post( title = 'test', author = current_user.username, article = 'test', image_url = url_for('static', filename='uploads/' + filename), tags = ['a', 'b', 'c'] ) return redirect(url_for('backdoor')) return render_template('vrview/upload.html') ```
{ "source": "404-Program-not-found/Discord-AntiScamBot", "score": 3 }
#### File: 404-Program-not-found/Discord-AntiScamBot/Moderation.py ```python import json import re from discord.ext import commands from thefuzz import process class moderation(commands.Cog): def __init__(self, bot): self.bot = bot # Default Values. It is not recommended to edit this. Use the built-in commands instead self.defaultUpper = 98 self.defaultLower = 88 @commands.Cog.listener("on_message") async def phishing_detection(self, message): with open("database.json", "r") as f: master = json.load(f) detect = master.get("server_settings").get(str(message.guild.id)) if detect and detect.get("detect_phishing"): links = re.findall(r'(https?://[^\s]+)', message.content) # Find all links in a message if links and not message.author.bot: # Get Upper and Lower Bounds upper = detect.get("upper") or self.defaultUpper lower = detect.get("lower") or self.defaultLower links = [re.sub(r'https?://', '', s).split("/")[0].lower() for s in links] # Clean up link for better fuzzy match # Loops through every link to see if it is a suspected phishing domain for i in links: extracted = process.extractOne(i, master["domain_whitelist"]) if upper >= extracted[1] >= lower: await message.delete() # Delete the Message await message.channel.send( f"{message.author.mention} **Uh Oh.**\n" f"I detected a possible phishing link and have automatically removed it. " f"Your link matched a known domain by {extracted[1]}%") # Send a message to the author telling them that the message has been removed break # Stop looping as it is no longer necessary @commands.group(description="Main settings for moderation related commands and features") @commands.check_any(commands.has_guild_permissions(administrator=True)) async def mod_settings(self, ctx): if ctx.invoked_subcommand is None: await ctx.send('Invalid sub command passed') @mod_settings.command( description="Toggles the link detection feature. Off by default") async def toggle_link_detect(self, ctx): # Get the Database file with open('database.json', 'r') as f: channels = json.load(f) channels.setdefault("server_settings", {}) settings = channels["server_settings"] settings.setdefault(str(ctx.guild.id), {}) # In case if the ctx.guild.id entry does not exist if not settings.get(str(ctx.guild.id)).get("detect_phishing"): settings[str(ctx.guild.id)]["detect_phishing"] = True await ctx.send(f'Phishing link detection is now **on**') elif settings.get(str(ctx.guild.id)).get("verify_channel"): settings[str(ctx.guild.id)]["detect_phishing"] = False await ctx.send(f'Phishing link detection is now **off**') # Save the edits with open('database.json', 'w') as f: channels["server_settings"] = settings json.dump(channels, f, indent=4) @mod_settings.command( description="Sets the upper bound for the detection algorithm in comparison to the similarity to any link (Default = 98).") async def set_upper_bound(self, ctx, number: int): with open('database.json', 'r') as f: channels = json.load(f) channels.setdefault("server_settings", {}) settings = channels["server_settings"] settings.setdefault(str(ctx.guild.id), {}) # In case if the ctx.guild.id entry does not exist lower = settings[str(ctx.guild.id)].get("lower") or self.defaultLower # Get the lower bound if lower <= number: ctx.send(f"Please select a number higher than {lower}") return settings[str(ctx.guild.id)]["upper"] = number await ctx.send(f"Upper bound is {number}") with open('database.json', 'w') as f: channels["server_settings"] = settings json.dump(channels, f, indent=4) @mod_settings.command( description="Sets the lower bound for the detection algorithm in comparison to the similarity to any link (Default = 88).") async def set_lower_bound(self, ctx, number: int): with open('database.json', 'r') as f: channels = json.load(f) channels.setdefault("server_settings", {}) settings = channels["server_settings"] settings.setdefault(str(ctx.guild.id), {}) # In case if the ctx.guild.id entry does not exist upper = settings[str(ctx.guild.id)].get("upper") or self.defaultUpper # Get the upper bound if upper <= number: ctx.send(f"Please select a number lower than {upper}") return settings[str(ctx.guild.id)]["lower"] = number await ctx.send(f"Lower bound is {number}") with open('database.json', 'w') as f: channels["server_settings"] = settings json.dump(channels, f, indent=4) def setup(bot): bot.add_cog(moderation(bot)) ```
{ "source": "404Room/go-in-python", "score": 3 }
#### File: go-in-python/tests/test_defer.py ```python from gopy import ( golang, defer ) import unittest import os class TestFunctionDefer(unittest.TestCase): def test_close_file(self): @golang def read_file(src): f = open(src, 'r') defer(f.close) assert f.read() return f src = os.path.abspath(__file__) f = read_file(src) assert f.closed is True def test_reverse_order(self): @golang def append_to_list(order): defer(order.append, 1) defer(order.append, 2) order.append(3) order = [] append_to_list(order) assert [3, 2, 1] == order if __name__ == '__main__': unittest.main() ```
{ "source": "404-wave/404-project", "score": 2 }
#### File: 404-project/posts/forms.py ```python from django import forms from mimetypes import guess_type import base64 import os from .models import Post from users.models import User from friends.models import FollowManager class PostForm(forms.ModelForm): class Meta: model = Post fields = [ "content", "image", "privacy", "accessible_users", "content_type", "unlisted", "user", "publish" ] widgets = {'accessible_users': forms.CheckboxSelectMultiple} def __init__(self, *args, **kwargs): user_details = kwargs.pop('user_details', None) super(PostForm, self).__init__(*args, **kwargs) self.fields['user'].widget = forms.HiddenInput() self.fields['publish'].widget = forms.HiddenInput() self.fields['content_type'].choices = (('text/plain', 'text/plain'), ('text/markdown','text/markdown')) self.fields['accessible_users'] = forms.MultipleChoiceField( label="Accessible Users", required=False, widget=forms.CheckboxSelectMultiple, choices=self.choices(user_details) ) self.set_placeholder('content', 'What\'s on your mind?') self.set_form_class() def choices(self, user_req): users = User.objects.all().exclude(id=user_req.id).exclude(is_node=True) options = [] followManager = FollowManager() friends = followManager.get_friends(user_req) for user in users: if (user not in friends): options.append((user.host+'/author/'+str(user.id),user.username)) friends = ((item, item) for item in friends) options = options + list(friends) return options #add placeholder text to fields def set_placeholder(self, field, text): self.fields[field].widget.attrs['placeholder'] = text #add class for css def set_form_class(self): self.fields['content'].widget.attrs['class'] = "create_post" self.fields['unlisted'].widget.attrs['class'] = "create_post" """ Creates the objects for the accessible useres and then save to the form """ def save(self, commit=True): #accessible_users = self.cleaned_data post = super().save(commit) username = post.user.username timestamp = post.timestamp.strftime("%b %-d, %Y, at %H:%M %p") post.title = username+" - "+timestamp if (post.privacy == 1): if (isinstance(post.accessible_users, list)): post.accessible_users = post.user.host+'/author/'+str(post.user.id) #post.accessible_users.add(*accessible_users) post.accessible_users = post.accessible_users[:-1] +', \''+post.user.host+'/author/'+str(post.user.id)+'\']' post.save() return post class ImageForm(forms.ModelForm): class Meta: model = Post fields = [ "image", "privacy", "accessible_users", "user", "publish" ] def __init__(self, *args, **kwargs): user_details = kwargs.pop('user_details', None) super().__init__(*args, **kwargs) self.fields['user'].widget = forms.HiddenInput() self.fields['publish'].widget = forms.HiddenInput() self.fields['accessible_users'] = forms.MultipleChoiceField( label="question", required=False, widget=forms.CheckboxSelectMultiple, choices=self.choices(user_details) ) """ Creates the objects for the accessible useres and then save to the form """ def save(self, commit=True): #accessible_users = self.cleaned_data.pop('accessible_users', []) print("KK") post = super().save(commit) username = post.user.username timestamp = post.timestamp.isoformat() post.title = username+" - "+timestamp if (post.privacy == 1): if (isinstance(post.accessible_users, list)): post.accessible_users = post.user.host+'/author/'+str(post.user.id) post.accessible_users = post.accessible_users[:-1] +', \''+post.user.host+'/author/'+str(post.user.id)+'\']' post.save() return post def choices(self, user_req): users = User.objects.all().exclude(id=user_req.id).exclude(is_node=True) options = [] followManager = FollowManager() friends = followManager.get_friends(user_req) for user in users: if (user not in friends): options.append((user.host+'author/'+str(user.id),user.username)) friends = ((item, item) for item in friends) options = options + list(friends) return options ```
{ "source": "406345/centernet-keras", "score": 2 }
#### File: 406345/centernet-keras/FPS_test.py ```python import colorsys import copy import math import os import pickle import time import numpy as np from keras.applications.imagenet_utils import preprocess_input from keras.layers import Input from PIL import Image from tqdm import tqdm from centernet import CenterNet from nets.centernet import centernet from utils.utils import centernet_correct_boxes, letterbox_image, nms ''' 该FPS测试不包括前处理(归一化与resize部分)、绘图。 包括的内容为:网络推理、得分门限筛选、非极大抑制。 使用'img/street.jpg'图片进行测试,该测试方法参考库https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch video.py里面测试的FPS会低于该FPS,因为摄像头的读取频率有限,而且处理过程包含了前处理和绘图部分。 ''' def preprocess_image(image): mean = [0.40789655, 0.44719303, 0.47026116] std = [0.2886383, 0.27408165, 0.27809834] return ((np.float32(image) / 255.) - mean) / std class FPS_CenterNet(CenterNet): def get_FPS(self, image, test_interval): image_shape = np.array(np.shape(image)[0:2]) #---------------------------------------------------------# # 给图像增加灰条,实现不失真的resize #---------------------------------------------------------# crop_img = letterbox_image(image, [self.input_shape[0],self.input_shape[1]]) #----------------------------------------------------------------------------------# # 将RGB转化成BGR,这是因为原始的centernet_hourglass权值是使用BGR通道的图片训练的 #----------------------------------------------------------------------------------# photo = np.array(crop_img,dtype = np.float32)[:,:,::-1] #-----------------------------------------------------------# # 图片预处理,归一化。获得的photo的shape为[1, 512, 512, 3] #-----------------------------------------------------------# photo = np.reshape(preprocess_image(photo), [1, self.input_shape[0], self.input_shape[1], self.input_shape[2]]) preds = self.centernet.predict(photo) if self.nms: preds = np.array(nms(preds, self.nms_threhold)) if len(preds[0])>0: preds[0][:, 0:4] = preds[0][:, 0:4] / (self.input_shape[0] / 4) det_label = preds[0][:, -1] det_conf = preds[0][:, -2] det_xmin, det_ymin, det_xmax, det_ymax = preds[0][:, 0], preds[0][:, 1], preds[0][:, 2], preds[0][:, 3] top_indices = [i for i, conf in enumerate(det_conf) if conf >= self.confidence] top_conf = det_conf[top_indices] top_label_indices = det_label[top_indices].tolist() top_xmin, top_ymin, top_xmax, top_ymax = np.expand_dims(det_xmin[top_indices],-1),np.expand_dims(det_ymin[top_indices],-1),np.expand_dims(det_xmax[top_indices],-1),np.expand_dims(det_ymax[top_indices],-1) boxes = centernet_correct_boxes(top_ymin,top_xmin,top_ymax,top_xmax,np.array([self.input_shape[0],self.input_shape[1]]),image_shape) t1 = time.time() for _ in range(test_interval): preds = self.centernet.predict(photo) if self.nms: preds = np.array(nms(preds, self.nms_threhold)) if len(preds[0])>0: preds[0][:, 0:4] = preds[0][:, 0:4] / (self.input_shape[0] / 4) det_label = preds[0][:, -1] det_conf = preds[0][:, -2] det_xmin, det_ymin, det_xmax, det_ymax = preds[0][:, 0], preds[0][:, 1], preds[0][:, 2], preds[0][:, 3] top_indices = [i for i, conf in enumerate(det_conf) if conf >= self.confidence] top_conf = det_conf[top_indices] top_label_indices = det_label[top_indices].tolist() top_xmin, top_ymin, top_xmax, top_ymax = np.expand_dims(det_xmin[top_indices],-1),np.expand_dims(det_ymin[top_indices],-1),np.expand_dims(det_xmax[top_indices],-1),np.expand_dims(det_ymax[top_indices],-1) boxes = centernet_correct_boxes(top_ymin,top_xmin,top_ymax,top_xmax,np.array([self.input_shape[0],self.input_shape[1]]),image_shape) t2 = time.time() tact_time = (t2 - t1) / test_interval return tact_time centernet = FPS_CenterNet() test_interval = 100 img = Image.open('img/street.jpg') tact_time = centernet.get_FPS(img, test_interval) print(str(tact_time) + ' seconds, ' + str(1/tact_time) + 'FPS, @batch_size 1') ```
{ "source": "406345/SharedPortProxy", "score": 2 }
#### File: SharedPortProxy/scripts/debug.py ```python def filter(x): print("filter called") print(x) def detect(x): print(x) return False ``` #### File: SharedPortProxy/scripts/mstsc.py ```python def filter(x): print("filter called") print(x) def detect(x): if len(x) < 4: return False if x[0] == 3 and x[1] == 0 and x[2] == 0 and x[3] == 19 : return True return False ``` #### File: SharedPortProxy/scripts/openvpn.py ```python def order(): return 2 def filter(x): print(x) def detect(x): if len(x) < 4: return False if x[0] == 22 and x[1] == 3 and x[2] == 1 and x[3] == 0 : return True return False ```
{ "source": "40647045S/nnUNet", "score": 3 }
#### File: training/network_training/my_trainer.py ```python from nnunet.training.network_training.nnUNetTrainerV2 import nnUNetTrainerV2 class my_trainer(nnUNetTrainerV2): def __init__(self, plans_file, fold, output_folder=None, dataset_directory=None, batch_dice=True, stage=None, unpack_data=True, deterministic=True, fp16=False): super().__init__(plans_file, fold, output_folder, dataset_directory, batch_dice, stage, unpack_data, deterministic, fp16) self.max_num_epochs = 300 ```
{ "source": "4069430/burger_war_dev", "score": 2 }
#### File: burger_war_dev/scripts/randomRun.py ```python import rospy import random from sensor_msgs.msg import Image from geometry_msgs.msg import Twist from cv_bridge import CvBridge, CvBridgeError import cv2 import time from mask1 import detect_red_color from mask1 import detect_green_color from mask1 import detect_blue_color from mask1 import detect_yellow_color from mask1 import detect_white_color #from mask import mask_green #from mask import mask_red from sensor_msgs.msg import LaserScan class RandomBot(): def __init__(self, bot_name="NoName", use_camera=False,use_lidar=False): # bot name self.name = bot_name # velocity publisher self.vel_pub = rospy.Publisher('cmd_vel', Twist,queue_size=1) if use_camera: # for convert image topic to opencv obj self.img_red = 0 self.img_green = 0 self.img_blue = 0 self.img_yellow = 0 self.img_white = 0 self.img = None self.bridge = CvBridge() self.image_sub = rospy.Subscriber('image_raw', Image, self.imageCallback) self.back_count = 0 self.blue_count = 0 if use_lidar: self.scan = LaserScan() self.lidar_sub = rospy.Subscriber('scan', LaserScan, self.lidarCallback) def calcTwist(self): if (230 < self.img_white) and (self.img_blue < 10) and (self.img_red < 55): #CASE1:near only the white wall x = -1 r_int = random.randint(-1,1) th = r_int self.back_count += 1 print('--------') print('| 2 |') print('--------') print(self.back_count) elif (self.img_blue > 10): #CASE2:Hit the blue wall x = 0.1 th = 0 self.blue_count += 1 if (self.blue_count > 3): x = -1.5 if (self.blue_count > 5): self.back_count = 0 print('--------') print('| 3 |') print(self.blue_count) print('--------') elif (self.img_white > 150) and (self.img_red > 55): x = -2 th = 0 print('--------') print('| 4 |') print('--------') else: #CASE1:Don't see the enemy, random r_int = random.randint(-1,1) th = r_int x = 0.5 print('--------') print('| 1 |') print('--------') twist = Twist() twist.linear.x = x; twist.linear.y = 0; twist.linear.z = 0 twist.angular.x = 0; twist.angular.y = 0; twist.angular.z = th return twist def strategy(self): r = rospy.Rate(1) # change speed 1fps target_speed = 0 target_turn = 0 control_speed = 0 control_turn = 0 while not rospy.is_shutdown(): twist = self.calcTwist() print(twist) self.vel_pub.publish(twist) r.sleep() def imageCallback(self, data): try: self.img = self.bridge.imgmsg_to_cv2(data, "bgr8") except CvBridgeError as e: rospy.logerr(e) #masked_img_r = mask_red(self.img) #masked_img_g = mask_green(self.img) self.img_red = detect_red_color(self.img) self.img_green = detect_green_color(self.img) self.img_blue = detect_blue_color(self.img) self.img_yellow = detect_yellow_color(self.img) self.img_white = detect_white_color(self.img) print('Red') print(self.img_red) print('green') print(self.img_green) print('bule') print(self.img_blue) print('yellow') print(self.img_yellow) print('white') print(self.img_white) #grayimg_r = cv2.cvtColor(masked_img_r, cv2.COLOR_BGR2GRAY) #グレースケール化 #grayimg_g = cv2.cvtColor(masked_img_g, cv2.COLOR_BGR2GRAY) #グレースケール化 #self.gray_pix_num = len(grayimg_r[grayimg_r<255])+len(grayimg_g[grayimg_g<255]) #黒い点の数を数える #neg_grayimg_r = cv2.bitwise_not(grayimg_r) #self.mu_r = cv2.moments(neg_grayimg_r, False) #neg_grayimg_g = cv2.bitwise_not(grayimg_g) #self.mu_g = cv2.moments(neg_grayimg_g, False) cv2.waitKey(1) def lidarCallback(self, data): self.scan = data #rospy.loginfo(self.scan) #print(self.scan) if __name__ == '__main__': rospy.init_node('random_run') bot = RandomBot('Random', use_camera=True,use_lidar=True) bot.strategy() ```
{ "source": "408794550/Mechine-Learning-In-Action", "score": 3 }
#### File: Mechine-Learning-In-Action/Ch02/KNNDating.py ```python from Utility import * from numpy import * import matplotlib import matplotlib.pyplot as plt import KNearestNeighbor def file2_matrix(file_name): # f = open(file_name) f = open(file_name) array_lines = f.readlines() file_lines = len(array_lines) logging.info(file_lines) # zeros()函数:创建指定类型的矩阵,并初始化为0 return_mat = zeros((file_lines,3)) class_label_vec = [] index = 0 for line in array_lines: # strip(char)函数从头尾移除指定字符,并返回 line = line.strip() # 去掉回车 list_from_line = line.split('\t') # 分割得到列表 return_mat[index,:] = list_from_line[0:3] # -1可以取到最后一个元素,如果不明确指示这是int,解释器将当做字符串处理 class_label_vec.append(int(list_from_line[-1])) index += 1 return return_mat,class_label_vec mat, dating_labels = file2_matrix('datingTestSet2.txt') logging.info(mat[:15]) # 创建画布 fig = plt.figure() # add_subplot(111),参数111的解释: # 111表示将画布分割成1行1列,在分割出来的区域的第1块作图,所以349,表示3行3列(有12个区域了),在第9个区域作图 ax = fig.add_subplot(111) # scatter(x,y,s,c,marker,cmap,norm,vmin,vmax,alpha,linewidths,verts,hold,**kwargs)函数解析: # x,y 对应输入的数据; s 对应散点的大小; c 对应散点的颜色; marker 对应散点的形状 # http://blog.csdn.net/u013634684/article/details/49646311 后面的参数详细见链接 ax.scatter(mat[:, 1], mat[:, 2], 15.0*array(dating_labels), 15.0*array(dating_labels)) plt.show() def auto_norm(data_set): # 获取每一 列 的最小值(如果参数是1,则是获取 行 的最小值) min_vals = data_set.min(0) # 最大值 max_vals = data_set.max(0) ranges = max_vals - min_vals # 创建一个数值全为0的形状为shape(data_set)的矩阵 norm_data_set = zeros(shape(data_set)) # shape[0]获得矩阵的行数,1获得列数 m = data_set.shape[0] # 此时min_vals是一行,tile函数扩展到m行,和data_set形状一致 # 归一化公式:第一步,原来的值减去最小值 norm_data_set = data_set - tile(min_vals,(m,1)) # 第二步:除以取值范围(最大值与最小值之间的范围),这里ranges同min_vals是一行 # 下面的代码虽然是两个矩阵相除,但并不是矩阵的除法,矩阵的除法在numpy中另有方法 norm_data_set = norm_data_set / tile(ranges, (m,1)) return norm_data_set, ranges, min_vals def dating_class_test(): ho_rotio = 0.10 dating_data_mat, dating_label = file2_matrix('datingTestSet2.txt') norm_mat, ranges, min_vals = auto_norm(dating_data_mat) m = norm_mat.shape[0] # 用来测试的行数 num_test_vecs = int(m * ho_rotio) error_count = 0 # 对每一行进行测试(这里有100行) for i in range(num_test_vecs): # 将每行norm_mat[i,:]进行分类,在使用这些数据的时候,我们已经知道了他是属于哪一类,所以可以计算这个算法的分类成功率 classifier_result = KNearestNeighbor.classify0(norm_mat[i, :], norm_mat[num_test_vecs:m, :], dating_labels[num_test_vecs:m], 3) logging.info('came back with:%d,the real answer is: %d', classifier_result, dating_labels[i]) if classifier_result != dating_labels[i]: error_count += 1.0 logging.info('total error rate is:%f', (error_count/float(num_test_vecs))) dating_class_test() def classify_person(): result_list = ['not at all', 'in small doses', 'in large doses'] # 3.0之后,raw_input()与input()等效,不再有raw_input() percent_tats = float(input('percentage of time spent playing video games')) ff_miles = float(input('frequent flier miles earned per year?')) ice_cream = float(input('liters of ice cream consumed per year?')) dating_data_mat, dating_labels = file2_matrix('datingTestSet2.txt') norm_mat, ranges, min_vals = auto_norm(dating_data_mat) in_arr = array([ff_miles, percent_tats, ice_cream]) classifier_result = MechineLearningDemo.classify0((in_arr - min_vals)/ranges, norm_mat, dating_labels, 3) # 下面两个打印的差异,logging如果不加%s打印会出错,而print貌似会自动处理在最后没有%s这个过程 logging.info('you will probably like this person:%s',result_list[classifier_result - 1]) # print('you will probably like this person:',result_list[classifier_result - 1]) # classify_person() ``` #### File: Mechine-Learning-In-Action/Ch06/SVM.py ```python from Utility import logging from numpy import * import random def load_dataset(file_name): data_mat = [] label_mat = [] with open(file_name) as fr: for line in fr.readlines(): line_arr = line.strip().split('\t') data_mat.append([float(line_arr[0]), float(line_arr[1])]) label_mat.append(float(line_arr[2])) return data_mat, label_mat def selectJ_rand(i, m): j = i while(j == i): j = int(random.uniform(0, m)) return j def clip_alpha(aj, H, L): if aj > H: aj = H if L > aj: aj = L return aj data_arr, label_arr = load_dataset('testSet.txt') logging.info('{}'.format(label_arr)) def smo_simple(data_mat_in, # 数据集 class_labels, # 类别标签 C, # 常数C toler, # 容错率 max_iter): # 取消前最大的循环次数 data_matrix = mat(data_mat_in) # 列表转成了矩阵 label_mat = mat(class_labels).transpose() # 转置得到了一个列向量,于是数据矩阵的每一行都和类别标签向量意义对应 b = 0 m, n = shape(data_matrix) # 100行2列 alphas = mat(zeros((m, 1))) # 构建alphas列矩阵(100行1列,都为0) iter_count = 0 while iter_count < max_iter: alpha_pairs_changed = 0 # 变量用于记录alpha是否已经进行优化,每次循环结束时得知 for i in range(m): # multiply实现对应元素相乘,同使用 * 号 # .T 效果同使用.transpose(),只是在,只有一行的情况下,返回的是本身 f_Xi = float(multiply(alphas, label_mat).T * (data_matrix * data_matrix[i, :].T)) + b Ei = f_Xi - float(label_mat[i]) # 计算误差Ei if ((label_mat[i] * Ei < -toler) and (alphas[i] < C)) or ((label_mat[i] * Ei) > toler) and (alphas[i] > 0): j = selectJ_rand(i, m) # 随机选择第二个alpha值 f_Xj = float(multiply(alphas, label_mat).T * (data_matrix * data_matrix[j, :].T)) + b Ej = f_Xj - float(label_mat[j]) # 同样计算第二个alpha的误差 alphaI_old = alphas[i].copy() alphaJ_old = alphas[j].copy() # L H用来将alpha[j]调整到0与C之间 if label_mat[i] != label_mat[j]: L = max(0, alphas[j] - alphas[i]) H = min(C, C + alphas[j] - alphas[i]) else: L = max(0, alphas[j] + alphas[i] - C) H = min(C, alphas[j] + alphas[i]) if L == H: logging.info('L == H') continue # eta 为最优修改量 eta = 2.0 * data_matrix[i, :] * data_matrix[j, :].T - data_matrix[i, :] * data_matrix[i, :].T - data_matrix[j, :] *data_matrix[j, :].T if eta >= 0: logging.info('eta >= 0') continue alphas[j] -= label_mat[j] * (Ei - Ej) / eta alphas[j] = clip_alpha(alphas[j], H, L) if abs(alphas[j] - alphaJ_old) < 0.00001 : logging.info('j not moving enough') continue alphas[i] += label_mat[j] * label_mat[i] * (alphaJ_old - alphas[j]) b1 = b - Ei - label_mat[i] * (alphas[i] - alphaI_old) * data_matrix[i, :] * data_matrix[i, :].T - label_mat[j] * (alphas[j] - alphaJ_old) * data_matrix[i, :] * data_matrix[j, :].T b2 = b - Ej - label_mat[i] * (alphas[i] - alphaI_old) * data_matrix[i, :] * data_matrix[j, :].T - label_mat[j] * (alphas[j] - alphaJ_old) * data_matrix[j, :] * data_matrix[j, :].T if 0 < alphas[j] and C > alphas[i]: b = b1 elif 0 < alphas[j] < C: b = b2 else: b = (b1 + b2) / 2.0 alpha_pairs_changed += 1 logging.info('iter:{} i:{},pairs changed {}'.format(iter_count, i, alpha_pairs_changed)) if alpha_pairs_changed == 0: iter_count += 1 else: iter_count = 0 logging.info('iteration number: {}'.format(iter_count)) return b, alphas b, alphas = smo_simple(data_arr, label_arr, 0.6, 0.001, 40) logging.info('{}'.format(b)) logging.info('{}'.format(alphas[alphas > 0])) ''' 这里没理解SMO算法的真谛,选择了先跳过完整的SMO算法。 class opt_struct: def __init__(self, datamat_in, class_labels, C, toler): self.X = datamat_in self.label_mat = class_labels self.C = C self.tol = toler self.m = shape(datamat_in)[0] self.b = 0 self.alphas = mat(zeros(self.m, 1)) self.e_cache = mat(zeros(self.m, 2)) def calculate_Ek(opt_stru, k): f_Xk = float(multiply(opt_stru.alphas, opt_stru.label_mat).T * (opt_stru.X * opt_stru.X[k, :].T)) + opt_stru.b Ek = f_Xk - float(opt_stru.label_mat[k]) return Ek def select_j(i, opt_stru, Ei): max_k = -1 max_delta_E = 0 Ej = 0 opt_stru.e_cache[i] = [1, Ei] validE_ecache_list = nonzero(opt_stru.e_cache[:, 0].A)[0] if len(validE_ecache_list) > 1: for k in validE_ecache_list: if k == i: continue Ek = calculate_Ek(opt_stru, k) delta_E = abs(Ei - Ek) if delta_E > max_delta_E: max_k = k max_delta_E = delta_E Ej = Ek return max_k, Ej else: j = selectJ_rand(i, opt_stru.m) Ej = calculate_Ek(opt_stru, j) return j, Ej def update_Ek(opt_stru, k): Ek = calculate_Ek(opt_stru, k) opt_stru.e_cache[k] = [1, Ek] ''' ```
{ "source": "409729-diploma-thesis/similarity", "score": 2 }
#### File: 409729-diploma-thesis/similarity/language_model.py ```python from __future__ import division from heapq import heappush, heappop import logging from math import sqrt, floor, ceil from multiprocessing import cpu_count, Pool import pickle import re from datetime import timedelta from time import monotonic as time from gensim import corpora, models from gensim.matutils import cossim from numpy import mean, seterr, save, load, diag from scipy.sparse import lil_matrix, identity, save_npz, load_npz, diags, coo_matrix # from sparsesvd import sparsesvd from filenames import UNANNOTATED_DATASET_FNAME, \ UNANNOTATED_DATASET_DICTIONARY_FNAME, \ UNANNOTATED_DATASET_DOCUMENT_TERM_MATRIX_FNAME as C_FNAME, \ UNANNOTATED_DATASET_WEIGHTED_DOCUMENT_TERM_MATRIX_FNAME as W_C_FNAME, \ UNANNOTATED_DATASET_SOFT_WEIGHTED_DOCUMENT_TERM_MATRIX_FNAME as M_W_C_FNAME, \ UNANNOTATED_DATASET_TFIDF_FNAME, \ UNANNOTATED_DATASET_TFIDF_MATRIX_FNAME as W_FNAME, \ UNANNOTATED_DATASET_W2V_FNAME, \ UNANNOTATED_DATASET_SOFT_MREL_MATRIX_FNAME as MREL_FNAME, \ UNANNOTATED_DATASET_SOFT_MLEV_MATRIX_FNAME as MLEV_FNAME, \ UNANNOTATED_DATASET_SOFT_SVD_MATRIX_UT as SOFT_UT_FNAME, \ UNANNOTATED_DATASET_SOFT_SVD_MATRIX_S as SOFT_S_FNAME, \ UNANNOTATED_DATASET_SOFT_SVD_MATRIX_VT as SOFT_VT_FNAME, \ UNANNOTATED_DATASET_SVD_MATRIX_UT as UT_FNAME, \ UNANNOTATED_DATASET_SVD_MATRIX_S as S_FNAME, \ UNANNOTATED_DATASET_SVD_MATRIX_VT as VT_FNAME, \ EXTERNAL_TERM_SIMILARITY_MODEL_FILENAMES from preprocessing import documents, SegmentIterator from workers import levsim W2V_RANDOM_STATE = 12345 FLOAT_DTYPE = "float32" LSI_NUM_FEATURES = 300 W2V_NUM_WORKERS = cpu_count() W2V_NUM_FEATURES = 300 MREL_POWER_FACTOR = 2.0 MLEV_NUM_WORKERS = cpu_count() MLEV_POOL = Pool(MLEV_NUM_WORKERS) MLEV_MAX_LENGTH_RATIO = 1.5 LOGGER = logging.getLogger(__name__) def density(M): """Returns the density of a sparse matrix M.""" return M.getnnz() / (M.shape[0] * M.shape[1]) class LanguageModel(object): """A tf-idf language model using the unannotated SemEval 2016/2017 Task 3 dataset.""" def __init__(self, similarity, technique="hard_topics", soft_matrices=[("mrel", 1.0)], w2v_min_count=5, m_knn=100, m_threshold=0.0, term_similarity="w2v.ql"): """ Sets up a tf-idf language model using the unannotated SemEval 2016/2017 Task 3 dataset. Attributes: similarity The similarity model that will be used to compute the similarity between two documents. technique The model that will be employed when computing the similarity of two documents. The following values are admissible: (i) "hard_terms" -- cosine similarity in term space, (ii) "soft_terms" -- soft cosine similarity in term space, (iii) "hard_topics" -- cosine similarity in topic space, (iv) "soft_topics" -- cosine similarity in soft topic space. soft_matrices An iterable of (weight, metric) 2-tuples that specifies a weighted average of similarity matrices that we will be using to model soft terms and topics. The following similarity matrices are available: (i) "mrel" -- mij = max(cossim(vi, vj), m_threshold)**MREL_POWER_FACTOR, where vi, vj are word2vec vectors corresponding to terms wi, wj. (ii) "mlev" -- mij = MLEV_ALPHA*((1-edit_distance(wi, wj)) /max(|wi|, |wj|))**MLEV_BETA, where |wi|, |wj| are the character lengths of terms wi and wj. w2v_min_count The minimum number of occurences of a term to be included in the word2vec model dictionary. m_knn The number of nearest neighbors of a term that are considered when building the term similarity matrix M. Note that this imposes an upper limit on the number of nonzero elements in any column / row of M. m_threshold The minimum similarity that is recorded inside the sparse term similarity matrix M. term_similarity The term similarity model and the associated dictionary that should be used when computing the local part of the similarity between two documents (X^TM) with late weighting. The following values are admissible: (i) "w2v.ql" -- the Qatar Living word2vec model. (ii) "w2v.googlenews" -- the Google News word2vec model. (iii) "glove.enwiki_gigaword5" -- the English Wikipedia 2014 + Gigaword 5 glove model. (iv) "glove.common_crawl" -- the Common Crawl dictionary glove model. (v) "glove.twitter" -- the Twitter glove model. (vi) "fasttext.enwiki" -- the English Wikipedia fasttext model. """ assert technique in ("hard_terms", "soft_terms", "hard_topics", "soft_topics") self.technique = technique assert isinstance(similarity, Similarity) self.similarity = similarity assert isinstance(w2v_min_count, int) assert isinstance(m_knn, int) assert isinstance(m_threshold, float) if technique == "soft_terms" or technique == "soft_topics": assert soft_matrices soft_matrices_config_string = ','.join(["%s_%.10f" % (matrix, weight) \ for matrix, weight in soft_matrices]) use_mrel = False mrel_weight = 0.0 use_mlev = False mlev_weight = 0.0 for matrix, weight in soft_matrices: assert matrix in ("mrel", "mlev") if matrix == "mrel": use_mrel = True mrel_weight = weight else: use_mlev = True mlev_weight = weight assert use_mrel or use_mlev assert term_similarity in ("w2v.ql", "w2v.googlenews", "glove.enwiki_gigaword5", "glove.common_crawl", "glove.twitter", "fasttext.enwiki") try: self.dictionary = corpora.Dictionary.load(UNANNOTATED_DATASET_DICTIONARY_FNAME, mmap='r') except IOError: LOGGER.info("Building the dictionary.") file_handler = logging.FileHandler("%s.log" % UNANNOTATED_DATASET_DICTIONARY_FNAME, encoding='utf8') logging.getLogger().addHandler(file_handler) start_time = time() self.dictionary = corpora.Dictionary(document.tokens for document in documents()) avg_tokens, avg_terms = mean(list(zip(*((len(document.tokens), len(document.terms)) \ for document in documents()))), axis=1) LOGGER.info("Average number of tokens per a document: %f" % avg_tokens) LOGGER.info("Average number of terms per a document: %f" % avg_terms) self.dictionary.save(UNANNOTATED_DATASET_DICTIONARY_FNAME) self.dictionary = corpora.Dictionary.load(UNANNOTATED_DATASET_DICTIONARY_FNAME, mmap='r') LOGGER.info("Time elapsed: %s" % timedelta(seconds=time()-start_time)) logging.getLogger().removeHandler(file_handler) m = len(self.dictionary) # number of terms self.m = m n = self.dictionary.num_docs # number of documents self.n = n try: self.tfidf = models.TfidfModel.load(UNANNOTATED_DATASET_TFIDF_FNAME, mmap='r') except IOError: LOGGER.info("Building the tf-idf model.") file_handler = logging.FileHandler("%s.log" % UNANNOTATED_DATASET_TFIDF_FNAME, encoding='utf8') logging.getLogger().addHandler(file_handler) start_time = time() corpus_bow = [self.dictionary.doc2bow(document.tokens) for document in documents()] self.tfidf = models.TfidfModel(corpus_bow) self.tfidf.save(UNANNOTATED_DATASET_TFIDF_FNAME) self.tfidf = models.TfidfModel.load(UNANNOTATED_DATASET_TFIDF_FNAME, mmap='r') LOGGER.info("Time elapsed: %s" % timedelta(seconds=time()-start_time)) logging.getLogger().removeHandler(file_handler) try: self.W = load_npz("%s.npz" % W_FNAME) except: LOGGER.info("Building the diagonal IDF matrix W.") file_handler = logging.FileHandler("%s.log" % W_FNAME, encoding='utf8') logging.getLogger().addHandler(file_handler) start_time = time() W = lil_matrix((m, m), dtype=FLOAT_DTYPE) for i in range(m): W[i,i] = self.tfidf.idfs[i] self.W = W.tocoo() save_npz("%s.npz" % W_FNAME, self.W) LOGGER.info("Time elapsed: %s" % timedelta(seconds=time()-start_time)) logging.getLogger().removeHandler(file_handler) self.W = self.W.todia() del self.tfidf if technique == "soft_terms" or technique == "soft_topics": self.M = lil_matrix((m, m), dtype=FLOAT_DTYPE) if use_mrel: if term_similarity == "w2v.ql": w2v_full_fname = "%s-%d" % (UNANNOTATED_DATASET_W2V_FNAME, w2v_min_count) try: self.term_similarity = models.Word2Vec.load(w2v_full_fname, mmap='r').wv except IOError: LOGGER.info("Building the word2vec model.") file_handler = logging.FileHandler("%s.log" % w2v_full_fname, encoding='utf8') logging.getLogger().addHandler(file_handler) start_time = time() self.term_similarity = models.Word2Vec(sentences=SegmentIterator(), size=W2V_NUM_FEATURES, seed=W2V_RANDOM_STATE, min_count=w2v_min_count, sg=0, workers=W2V_NUM_WORKERS) self.term_similarity.save(w2v_full_fname) self.term_similarity = models.Word2Vec.load(w2v_full_fname, mmap='r').wv LOGGER.info("Time elapsed: %s" % timedelta(seconds=time()-start_time)) LOGGER.info("Number of terms in the model: %d" % len(self.term_similarity.vocab)) logging.getLogger().removeHandler(file_handler) elif term_similarity in ("glove.enwiki_gigaword5", "glove.common_crawl", "glove.twitter", "fasttext.enwiki"): self.term_similarity = models.KeyedVectors.load_word2vec_format( \ EXTERNAL_TERM_SIMILARITY_MODEL_FILENAMES[term_similarity], binary=False) elif term_similarity == "w2v.googlenews": self.term_similarity = models.KeyedVectors.load_word2vec_format( \ EXTERNAL_TERM_SIMILARITY_MODEL_FILENAMES[term_similarity], binary=True) m_rel = len(self.term_similarity.vocab) # number of terms in the term similarity model Mrel_full_fname = "%s-%s-%d-%d-%f-%f" % (MREL_FNAME, term_similarity, w2v_min_count, m_knn, m_threshold, MREL_POWER_FACTOR) try: self.Mrel = load_npz("%s.npz" % Mrel_full_fname) except FileNotFoundError: LOGGER.info("Building the term similarity matrix Mrel.") file_handler = logging.FileHandler("%s.log" % Mrel_full_fname, encoding='utf8') logging.getLogger().addHandler(file_handler) start_time = time() Mrel = identity(m, dtype=FLOAT_DTYPE, format="lil") for k, term_i in enumerate(self.term_similarity.vocab.keys()): if k % 10000 == 0: LOGGER.info("Processing term number %d." % (k+1)) i = self.dictionary.doc2bow([term_i]) if not i: continue for _, (term_j, similarity) in \ zip(range(m_knn), self.term_similarity.most_similar(positive=[term_i], topn=m_knn)): j = self.dictionary.doc2bow([term_j]) if not j: continue if similarity > m_threshold: Mrel[i[0][0],j[0][0]] = similarity**2 self.Mrel = Mrel.tocoo() save_npz("%s.npz" % Mrel_full_fname, self.Mrel) LOGGER.info("Time elapsed: %s" % timedelta(seconds=time()-start_time)) LOGGER.info("Matrix density:\n- %.10f by word2vec,\n- %.10f by kNN," \ % (m_rel**2/m**2, ((m_knn+1)*m_rel + 1*(m-m_rel))/m**2) \ + "\n- %.10f by thresholding" % density(self.Mrel)) logging.getLogger().removeHandler(file_handler) del self.term_similarity self.M = self.M + mrel_weight * self.Mrel del self.Mrel if use_mlev: Mlev_full_fname = "%s-%d-%f" % (MLEV_FNAME, m_knn, m_threshold) try: self.Mlev = load_npz("%s.npz" % Mlev_full_fname) except FileNotFoundError: LOGGER.info("Building the term similarity matrix Mlev.") file_handler = logging.FileHandler("%s.log" % Mlev_full_fname, encoding='utf8') logging.getLogger().addHandler(file_handler) start_time = time() Mlev = identity(m, dtype=FLOAT_DTYPE, format="lil") min_terms = m avg_terms = [] max_terms = 0 for k, (i, term_i) in enumerate(self.dictionary.items()): if k % 10 == 0: LOGGER.info("Processing term number %d." % (k+1)) terms = [(term_i, term_j, j) for j, term_j \ in self.dictionary.items() \ if i != j and max(len(term_i), len(term_j)) \ / min(len(term_i), len(term_j)) < MLEV_MAX_LENGTH_RATIO] Mlev_chunksize = max(1, ceil(len(terms)/MLEV_NUM_WORKERS)) similarities = [] for term_num, (similarity, term_j, j) in \ enumerate(MLEV_POOL.imap_unordered(levsim, terms, Mlev_chunksize)): heappush(similarities, (-similarity, term_j, j)) min_terms = min(min_terms, term_num+1) avg_terms.append(term_num+1) max_terms = max(max_terms, term_num+1) for similarity, term_j, j in (heappop(similarities) for _ \ in range(min(m_knn, len(similarities)))): similarity = -similarity if similarity > m_threshold: Mlev[i,j] = similarity self.Mlev = Mlev.tocoo() save_npz("%s.npz" % Mlev_full_fname, self.Mlev) LOGGER.info("Time elapsed: %s" % timedelta(seconds=time()-start_time)) LOGGER.info("Minimum number of terms considered: %d", min_terms) LOGGER.info("Average number of terms considered: %d", mean(avg_terms)) LOGGER.info("Maximum number of terms considered: %d", max_terms) LOGGER.info("Matrix density:\n- %.10f by kNN," % (((m_knn+1)*m)/m**2) \ + "\n- %.10f by thresholding" % density(self.Mlev)) logging.getLogger().removeHandler(file_handler) self.M = self.M + mlev_weight * self.Mlev del self.Mlev if technique == "hard_topics" or technique == "soft_topics": try: self.C = load_npz("%s.npz" % C_FNAME) except FileNotFoundError: LOGGER.info("Building the (unweighted) term-document matrix C.") file_handler = logging.FileHandler("%s.log" % C_FNAME, encoding='utf8') logging.getLogger().addHandler(file_handler) start_time = time() Ct = lil_matrix((n, m), dtype=FLOAT_DTYPE) for i, document in enumerate(documents()): if i % 10000 == 0: LOGGER.info("Processing document number %d." % (i+1)) for j, ct_ij in self.dictionary.doc2bow(document.tokens): Ct[i,j] = ct_ij self.C = Ct.tocoo().transpose() del Ct save_npz(C_FNAME, self.C) LOGGER.info("Time elapsed: %s" % timedelta(seconds=time()-start_time)) LOGGER.info("Matrix density: %f" % density(self.C)) logging.getLogger().removeHandler(file_handler) W_C_full_fname = "%s-%d-%d-%f-%f" % (W_C_FNAME, w2v_min_count, m_knn, \ m_threshold, MREL_POWER_FACTOR) try: self.W_C = load_npz("%s.npz" % W_C_full_fname) except FileNotFoundError: LOGGER.info("Building the weighted term-document matrix W*C.") file_handler = logging.FileHandler("%s.log" % W_C_full_fname, encoding='utf8') logging.getLogger().addHandler(file_handler) start_time = time() W_C = self.W.tocsr().dot(self.C.tocsc()) self.W_C = W_C.tocoo() save_npz("%s.npz" % W_C_full_fname, self.W_C) LOGGER.info("Time elapsed: %s" % timedelta(seconds=time()-start_time)) LOGGER.info("Matrix density: %f" % density(self.W_C)) logging.getLogger().removeHandler(file_handler) del self.C del self.W if technique == "soft_topics": M_W_C_full_fname = "%s-%s-%s-%d-%d-%f-%f" % (M_W_C_FNAME, soft_matrices_config_string, \ term_similarity, \ w2v_min_count, m_knn, m_threshold, \ MREL_POWER_FACTOR) try: self.M_W_C = load_npz("%s.npz" % M_W_C_full_fname) except FileNotFoundError: LOGGER.info("Building the weighted soft term-document matrix M*W*C.") file_handler = logging.FileHandler("%s.log" % Mrel_W_C_full_fname, encoding='utf8') logging.getLogger().addHandler(file_handler) start_time = time() M_W_C = self.M.tocsr().dot(self.W_C.tocsc()) self.M_W_C = M_W_C.tocoo() save_npz("%s.npz" % Mrel_W_C_full_fname, self.M_W_C) LOGGER.info("Time elapsed: %s" % timedelta(seconds=time()-start_time)) LOGGER.info("Matrix density: %f" % density(self.M_W_C)) logging.getLogger().removeHandler(file_handler) del self.W_C del self.M soft_Ut_full_fname = "%s-%s-%s-%d-%d-%f-%f" % (SOFT_UT_FNAME, soft_matrices_config_string,\ term_similarity, w2v_min_count, m_knn, \ m_threshold, MREL_POWER_FACTOR) soft_S_full_fname = "%s-%s-%s-%d-%d-%f-%f" % (SOFT_S_FNAME, soft_matrices_config_string, \ term_similarity, w2v_min_count, m_knn, \ m_threshold, MREL_POWER_FACTOR) soft_Vt_full_fname = "%s-%s-%s-%d-%d-%f-%f" % (SOFT_VT_FNAME, soft_matrices_config_string,\ term_similarity, w2v_min_count, m_knn, \ m_threshold, MREL_POWER_FACTOR) try: self.UT = load("%s.npy" % soft_Ut_full_fname) self.S = load("%s.npy" % soft_S_full_fname) self.VT = load("%s.npy" % soft_Vt_full_fname) except FileNotFoundError: LOGGER.info("Building the SVD of M*W*C.") file_handler = logging.FileHandler("%s.log" % soft_Ut_full_fname, encoding='utf8') logging.getLogger().addHandler(file_handler) start_time = time() self.UT, self.S, self.VT = sparsesvd(self.M_W_C.tocsc(), LSI_NUM_FEATURES) save("%s.npy" % soft_Ut_full_fname, self.UT) save("%s.npy" % soft_S_full_fname, self.S) save("%s.npy" % soft_Vt_full_fname, self.VT) LOGGER.info("Time elapsed: %s" % timedelta(seconds=time()-start_time)) logging.getLogger().removeHandler(file_handler) del self.M_W_C if technique == "hard_topics": try: self.UT = load("%s.npy" % UT_FNAME) self.S = load("%s.npy" % S_FNAME) self.VT = load("%s.npy" % VT_FNAME) except FileNotFoundError: LOGGER.info("Building the SVD of W*C.") file_handler = logging.FileHandler("%s.log" % Ut_full_fname, encoding='utf8') logging.getLogger().addHandler(file_handler) start_time = time() self.UT, self.S, self.VT = sparsesvd(self.W_C.tocsc(), LSI_NUM_FEATURES) save("%s.npy" % UT_FNAME, self.UT) save("%s.npy" % S_FNAME, self.S) save("%s.npy" % VT_FNAME, self.VT) LOGGER.info("Time elapsed: %s" % timedelta(seconds=time()-start_time)) logging.getLogger().removeHandler(file_handler) del self.W_C if technique == "hard_topics" or technique == "soft_topics": self.Sinv_UT = diag(1/self.S).dot(self.UT) del self.UT del self.S del self.VT def sparse2scipy(self, input): """Converts a sparse key-value list representation of a document to a sparse scipy array.""" col = [0] * len(input) row, data = zip(*input) return coo_matrix((data, (row, col)), shape=(self.m, 1), dtype=FLOAT_DTYPE) def compare(self, query, result): """Returns similarity between a query and a result document.""" X = self.sparse2scipy(self.dictionary.doc2bow(query.qsubject.tokens + query.qbody.tokens)) Y = self.sparse2scipy(self.dictionary.doc2bow(result.qsubject.tokens + result.qbody.tokens)) if self.technique == "hard_topics" or self.technique == "soft_topics": X = self.Sinv_UT * X Y = self.Sinv_UT * Y return self.similarity.compare(self, X, Y) class Similarity(object): """An interface for an object that represents some measure of similarity between two documents.""" def compare(self, language_model, X, Y): """Computes cosine similarity between the query vector X and a result vector Y, where language_model is a language model.""" class TopicCosineSimilarity(Similarity): """A class that represents the cosine similarity between two documents represented by dense topic vectors.""" def __init__(self): """Sets up an object that represents the cosine similarity between two documents.""" pass def compare(self, language_model, X, Y): """Computes cosine similarity between the query vector X and a result vector Y, where language_model is a language model that provides the term weighting matrix.""" X_tX = (X.T.dot(X))[0,0] Y_tY = (Y.T.dot(Y))[0,0] if X_tX == 0.0 or Y_tY == 0.0: return 0.0 X_tY = (X.T.dot(Y))[0,0] result = X_tY / (sqrt(X_tX) * sqrt(Y_tY)) return result class TermHardCosineSimilarity(Similarity): """A class that represents the cosine similarity between two documents represented by sparse term vectors.""" def __init__(self): """Sets up an object that represents the cosine similarity between two documents.""" pass def compare(self, language_model, X, Y): """Computes cosine similarity between the query vector X and a result vector Y, where language_model is a language model that provides the term weighting matrix.""" WX = language_model.W.tocsr() * X.tocsc() WY = language_model.W.tocsr() * Y.tocsc() _WX_tWX = (WX.transpose().tocsr() * WX.tocsc())[0,0] _WY_tWY = (WY.transpose().tocsr() * WY.tocsc())[0,0] if _WX_tWX == 0.0 or _WY_tWY == 0.0: return 0.0 _WX_tWY = (WX.transpose().tocsr() * WY.tocsc())[0,0] result = _WX_tWY / (sqrt(_WX_tWX) * sqrt(_WY_tWY)) return result class TermSoftCosineSimilarity(Similarity): """A class that represents the soft cosine similarity between two documents represented by sparse term vectors.""" def __init__(self, weighting="early", rounding=None, normalization="soft"): """Sets up an object that represents the soft cosine similarity between two documents. Attributes: weighting Whether a query vector will be weighted before its transpose has been multiplied with the term similarity matrix ("early"), after ("late"), or never (None). rounding Whether the term frequencies in the query vector will be rounded ("round", "ceil", "floor") after the vector's transpose has been multiplied with the term similarity matrix or not (None). The rounding will only be applied with the "late" weighting. normalization Whether the final product will be normalized using the soft cosine norm ("soft"), just the cosine norm ("hard"), or not at all (None). """ assert weighting in ("early", "late", None) self.weighting = weighting if self.weighting == "early": assert rounding is None self.rounding = None else: assert rounding in (None, "round", "ceil", "floor") if rounding == "round": self.rounding = round elif rounding == "ceil": self.rounding = ceil else: self.rounding = floor assert normalization in ("soft", "hard", None) self.normalization = normalization def compare(self, language_model, X, Y): """Computes cosine similarity between the query vector X and a result vector Y, where language_model is a language model that provides the term weighting and term similarity matrices.""" # Precompute commonly used data. if self.weighting is None: _WX_tM = (X.transpose().tocsr() * language_model.M.tocsc()) else: WX = language_model.W.tocsr() * X.tocsc() WY = language_model.W.tocsr() * Y.tocsc() if self.weighting == "early": _WX_tM = (WX.transpose().tocsr() * language_model.M.tocsc()) else: XtM = X.transpose().tocsr() * language_model.M.tocsc() if self.rounding is not None: XtM = XtM.tocsr() for coord in zip(*XtM.nonzero()): XtM[coord] = self.rounding(XtM[coord]) W_XtM_t = language_model.W.tocsr() * XtM.transpose().tocsc() # Compute the norm. if self.normalization == "soft": if self.weighting is None or self.weighting == "early": if self.weighting is None: _WY_tM = (Y.transpose().tocsr() * language_model.M.tocsc()) _WX_tMWX = (_WX_tM.tocsr() * X.tocsc())[0,0] _WY_tMWY = (_WY_tM.tocsr() * Y.tocsc())[0,0] elif self.weighting == "early": _WY_tM = (WY.transpose().tocsr() * language_model.M.tocsc()) _WX_tMWX = (_WX_tM.tocsr() * WX.tocsc())[0,0] _WY_tMWY = (_WY_tM.tocsr() * WY.tocsc())[0,0] if _WX_tMWX == 0.0 or _WY_tMWY == 0.0: return 0.0 norm = sqrt(_WX_tMWX) * sqrt(_WY_tMWY) else: YtM = Y.transpose().tocsr() * language_model.M.tocsc() W_YtM_t = language_model.W.tocsr() * YtM.transpose().tocsc() _W_XtM_t_t_WX = (W_XtM_t.transpose().tocsr() * WX.tocsc())[0,0] _W_YtM_t_t_WY = (W_YtM_t.transpose().tocsr() * WY.tocsc())[0,0] if _W_XtM_t_t_WX == 0.0 or _W_YtM_t_t_WY == 0.0: return 0.0 norm = sqrt(_W_XtM_t_t_WX) * sqrt(_W_YtM_t_t_WY) elif self.normalization == "hard": if self.weighting is None: _WX_tWX = (X.transpose().tocsr() * X.tocsc())[0,0] _WY_tWY = (Y.transpose().tocsr() * Y.tocsc())[0,0] else: _WX_tWX = (WX.transpose().tocsr() * WX.tocsc())[0,0] _WY_tWY = (WY.transpose().tocsr() * WY.tocsc())[0,0] if _WX_tWX == 0.0 or _WY_tWY == 0.0: return 0.0 norm = sqrt(_WX_tWX) * sqrt(_WY_tWY) else: norm = 1.0 # Compute the product. if self.weighting is None or self.weighting == "early": if self.weighting is None: _WX_tMWY = (_WX_tM.tocsr() * Y.tocsc())[0,0] if self.weighting == "early": _WX_tMWY = (_WX_tM.tocsr() * WY.tocsc())[0,0] product = _WX_tMWY else: _W_XtM_t_t_WY = (W_XtM_t.transpose().tocsr() * WY.tocsc())[0,0] product = _W_XtM_t_t_WY return product / norm ```
{ "source": "40hood/zulip", "score": 2 }
#### File: zulip/zproject/backends.py ```python from __future__ import absolute_import from django.contrib.auth.backends import RemoteUserBackend from django.conf import settings import django.contrib.auth from django_auth_ldap.backend import LDAPBackend from zerver.models import UserProfile, get_user_profile_by_id, \ get_user_profile_by_email, remote_user_to_email, email_to_username from apiclient.sample_tools import client as googleapiclient from oauth2client.crypt import AppIdentityError def password_auth_enabled(realm): if realm is not None: if realm.domain == 'zulip.com' and settings.PRODUCTION: # the dropbox realm is SSO only, but the unit tests still need to be # able to login return False for backend in django.contrib.auth.get_backends(): if isinstance(backend, EmailAuthBackend): return True return False def dev_auth_enabled(): for backend in django.contrib.auth.get_backends(): if isinstance(backend, DevAuthBackend): return True return False def google_auth_enabled(): for backend in django.contrib.auth.get_backends(): if isinstance(backend, GoogleMobileOauth2Backend): return True return False class ZulipAuthMixin(object): def get_user(self, user_profile_id): """ Get a UserProfile object from the user_profile_id. """ try: return get_user_profile_by_id(user_profile_id) except UserProfile.DoesNotExist: return None class ZulipDummyBackend(ZulipAuthMixin): """ Used when we want to log you in but we don't know which backend to use. """ def authenticate(self, username=None, use_dummy_backend=False): if use_dummy_backend: try: return get_user_profile_by_email(username) except UserProfile.DoesNotExist: pass return None class EmailAuthBackend(ZulipAuthMixin): """ Email Authentication Backend Allows a user to sign in using an email/password pair rather than a username/password pair. """ def authenticate(self, username=None, password=<PASSWORD>): """ Authenticate a user based on email address as the user name. """ if username is None or password is None: # Return immediately. Otherwise we will look for a SQL row with # NULL username. While that's probably harmless, it's needless # exposure. return None try: user_profile = get_user_profile_by_email(username) if not password_auth_enabled(user_profile.realm): return None if user_profile.check_password(password): return user_profile except UserProfile.DoesNotExist: return None class GoogleMobileOauth2Backend(ZulipAuthMixin): """ Google Apps authentication for mobile devices Allows a user to sign in using a Google-issued OAuth2 token. Ref: https://developers.google.com/+/mobile/android/sign-in#server-side_access_for_your_app https://developers.google.com/accounts/docs/CrossClientAuth#offlineAccess This backend is not currently supported on voyager. """ def authenticate(self, google_oauth2_token=None, return_data={}): try: token_payload = googleapiclient.verify_id_token(google_oauth2_token, settings.GOOGLE_CLIENT_ID) except AppIdentityError: return None if token_payload["email_verified"] in (True, "true"): try: return get_user_profile_by_email(token_payload["email"]) except UserProfile.DoesNotExist: return_data["valid_attestation"] = True return None else: return_data["valid_attestation"] = False class ZulipRemoteUserBackend(RemoteUserBackend): create_unknown_user = False def authenticate(self, remote_user): if not remote_user: return email = remote_user_to_email(remote_user) try: user_profile = get_user_profile_by_email(email) except UserProfile.DoesNotExist: return None if user_profile.is_mirror_dummy: # mirror dummies can not login, but they can convert to real users return None return user_profile class ZulipLDAPAuthBackend(ZulipAuthMixin, LDAPBackend): def django_to_ldap_username(self, username): if settings.LDAP_APPEND_DOMAIN is not None: return email_to_username(username) return username def ldap_to_django_username(self, username): if settings.LDAP_APPEND_DOMAIN is not None: return "@".join((username, settings.LDAP_APPEND_DOMAIN)) return username def get_or_create_user(self, username, ldap_user): try: return get_user_profile_by_email(username), False except UserProfile.DoesNotExist: return UserProfile(), False class ZulipLDAPUserPopulator(ZulipLDAPAuthBackend): # Just like ZulipLDAPAuthBackend, but doesn't let you log in. def authenticate(self, username, password): return None class DevAuthBackend(ZulipAuthMixin): # Allow logging in as any user without a password. # This is used for convenience when developing Zulip. def authenticate(self, username): try: return get_user_profile_by_email(username) except UserProfile.DoesNotExist: return None ```
{ "source": "40i4/receiptDetection", "score": 3 }
#### File: 40i4/receiptDetection/detection.py ```python import cv2 import numpy as np import imutils from transform import four_point_transform from skimage.filter import threshold_adaptive font = cv2.FONT_HERSHEY_SIMPLEX image_name = "img1.jpg" imageIn = cv2.imread(image_name) ratio = imageIn.shape[0] / 500.0 orig = imageIn.copy() def use_image_contour(all_vertices, image): height, width, _ = image.shape print "height: " + str(height) + " width: " + str(width) first_vertex = all_vertices[0] second_vertex = all_vertices[1] # check if the curve is horizontal or vertical if abs(first_vertex[1] - second_vertex[1]) < 0.1 * height: print "horizontal curve" # if y of the first vertex is on the upper side of image if first_vertex[1] < height/2: new_vertices = [[first_vertex[0], height], [second_vertex[0], height]] # if y of the first vertex is on the bottom side of image else: new_vertices = [[first_vertex[0], 0], [second_vertex[0], 0]] else: print "vertical curve" # if y of the first vertex is on the left side of image if first_vertex[0] < width/2: new_vertices = [[width, first_vertex[1]], [width, second_vertex[1]]] # if y of the first vertex is on the right side of image else: new_vertices = [[0, first_vertex[1]], [0, second_vertex[1]]] all_vertices = all_vertices + new_vertices return all_vertices # argument: image to transform def transform_image(image): image = imutils.resize(image, height=500) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (5, 5), 0) edged = cv2.Canny(gray, 75, 200) cv2.imshow("edged", edged) # find contours; len(cnts) returns no. of contours found (cnts, _) = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # if there are no contours found if len(cnts) < 1: height, width, _ = image.shape print "height: " + str(height) + " width: " + str(width) # return coordinates of the whole image all_vertices = [[0, 0], [width, 0], [width, height], [0, height]] contours = all_vertices # print vertices' coordinates for elem in contours: text2 = str(elem[0]) + " " + str(elem[1]) cv2.putText(image, text2, (elem[0], elem[1]), font, 0.5, (255, 255, 0), 2) contours_copy = contours contours_copy_np = np.array(contours_copy) cv2.drawContours(image, [contours_copy_np], -1, (0, 255, 0), 2) warped = four_point_transform(orig, contours_copy_np.reshape(4, 2) * ratio) return warped, image # if there are some contours found else: # sort from the longest perimeter to the shortest cnts_sorted = sorted(cnts, key=lambda x: cv2.arcLength(x, True), reverse=True) # print "cnts sorted: " + str(cnts_sorted) peri_arr2 = [] for elem in cnts_sorted: perii = cv2.arcLength(elem, True) peri_arr2.append(perii) # length of the longest perimeter peri_max = peri_arr2[0] # approxPolyDP returns coordinates of vertices of the longest perimeter approx2 = cv2.approxPolyDP(cnts_sorted[0], 0.02 * peri_max, True) # find vertices and put them into array all_vertices all_vertices = [] for a in approx2: aa = a[0] x_coord = aa[0] y_coord = aa[1] two_vertices = [x_coord, y_coord] all_vertices.append(two_vertices) # if only one curve was found if len(all_vertices) == 2: # but if there are other curves if len(peri_arr2) > 1: peri_max2 = peri_arr2[1] print "peri max 2 length: " + str(peri_max2) approx3 = cv2.approxPolyDP(cnts_sorted[1], 0.02 * peri_max2, True) print "no of ver: " + str(len(approx3)) # find another vertical contour if len(approx3) == 2: all_vertices2 = [] for a in approx3: aa = a[0] x_coord = aa[0] y_coord = aa[1] two_vertices = [x_coord, y_coord] all_vertices2.append(two_vertices) print "all vertices 2: " + str(all_vertices2) all_vertices = all_vertices + all_vertices2 # if there is no another vertical contour - use image contour else: all_vertices = use_image_contour(all_vertices, image) # if there is no other curve found else: print 'there is no other curve found' all_vertices = use_image_contour(all_vertices, image) # find vertices that are most likely to be receipt vertices br = ul = bl = ur = [] max_sum = 0 min_sum = 10000 max_sub_x_y = 0 max_sub_y_x = 0 for elem in all_vertices: sum_x_and_y = elem[0] + elem[1] if sum_x_and_y > max_sum: max_sum = sum_x_and_y br = elem if sum_x_and_y < min_sum: min_sum = sum_x_and_y ul = elem if elem[0] - elem[1] > 0: if elem[0] - elem[1] > max_sub_x_y: max_sub_x_y = elem[0] - elem[1] ur = elem if elem[1] - elem[0] > 0: if elem[1] - elem[0] > max_sub_y_x: max_sub_y_x = elem[1] - elem[0] bl = elem print "ul: " + str(ul) print "ur: " + str(ur) print "br: " + str(br) print "bl: " + str(bl) contours = [] contours.append(ul) contours.append(ur) contours.append(br) contours.append(bl) # if there are any empty vertices, assign their values to [0,0] for elem, val in enumerate(contours): if val == []: contours[elem] = [0, 0] print "coordinates of vertices ul, ur, br, bl: " + str(contours) # print vertices' coordinates for elem in contours: text2 = str(elem[0]) + " " + str(elem[1]) cv2.putText(image, text2, (elem[0], elem[1]), font, 0.5, (255, 255, 0), 2) contours_copy = contours for elem, val in enumerate(contours_copy): tab = [] tab.append(val) contours_copy[elem] = tab contours_copy_np = np.array(contours_copy) cv2.drawContours(image, [contours_copy_np], -1, (0, 255, 0), 2) warped = four_point_transform(orig, contours_copy_np.reshape(4, 2) * ratio) return warped, image cv2.waitKey(0) cv2.destroyAllWindows() def main(): warped, cut_image = transform_image(imageIn) cv2.imshow("cut_image", cut_image) cv2.imshow("warped", imutils.resize(warped, height=500)) cv2.waitKey(0) cv2.destroyAllWindows() if __name__ == "__main__": main() ```
{ "source": "40th-SOC/SpyderBot", "score": 3 }
#### File: SpyderBot/cogs/help.py ```python import os, sys, discord from discord.ext import commands if not os.path.isfile("config.py"): sys.exit("'config.py' not found! Please add it and try again.") else: import config class Help(commands.Cog, name="help"): def __init__(self, bot): self.bot = bot @commands.command(name="help") async def help(self, context): # Note that commands made only for the owner of the bot are not listed here. embed = discord.Embed( title="Bot", description="List of commands are:", color=0x00FF00 ) embed.add_field( name="Invite", value=f"Usage: {config.BOT_PREFIX}invite", inline=False ) embed.add_field( name="Server", value=f"Usage: {config.BOT_PREFIX}server", inline=False ) embed.add_field( name="Poll", value=f"Usage: {config.BOT_PREFIX}poll <Idea>", inline=False ) embed.add_field( name="8ball", value=f"Usage: {config.BOT_PREFIX}8ball <Question>", inline=False) embed.add_field( name="Bitcoin", value=f"Usage: {config.BOT_PREFIX}bitcoin", inline=False ) embed.add_field( name="Info", value=f"Usage: {config.BOT_PREFIX}info", inline=False ) embed.add_field( name="status", value=f"Usage: {config.BOT_PREFIX}status\n Desc: Get DCS Mission, Uptime, Players for servers", inline=False ) embed.add_field( name="mlist", value=f"Usage: {config.BOT_PREFIX}mlist\n Desc: Get DCS Mission Server last 10 missions", inline=False ) embed.add_field( name="attendance", value=f"Usage: {config.BOT_PREFIX}attendance <mission ID> \n Desc: Get DCS attendance using ID from mlist", inline=False ) embed.add_field( name="Purge", value=f"Usage: {config.BOT_PREFIX}purge <Number>", inline=False ) embed.add_field( name="Help", value=f"Usage: {config.BOT_PREFIX}help", inline=False ) await context.send(embed=embed) def setup(bot): bot.add_cog(Help(bot)) ```
{ "source": "40uf411/English-Grammar-Checker", "score": 3 }
#### File: 40uf411/English-Grammar-Checker/web.py ```python import os import re from flask import Flask, request, json from grammarChecker import GrammarChecker from parser import TextTokenizing import _nlp_ app = Flask(__name__) @app.route('/') def home(): file = '' with open('./static/html/home.html', 'r') as file: html = file.read() return html @app.route('/check', methods=['POST', 'GET']) def check(): text = request.form.get('text') print(text) taggedTokens = TextTokenizing.parse(text) print(taggedTokens) # execute the testing process p = [ 0 < _nlp_.test([taggedToken], GrammarChecker.grammar, GrammarChecker.fdist, GrammarChecker.n_gram_nbr) for taggedToken in taggedTokens] #r = GrammarChecker.checkGrammar(taggedTokens) result = False not in p sents = list() for i in range(len(p)): if not p[i]: sents.append(' '.join(taggedTokens[i])) data = {'result': result, 'errors': sents} response = app.response_class( response=json.dumps(data), status=200, mimetype='application/json' ) return response @app.route('/train', methods=['POST', 'GET']) def train(): text = request.form.get('text') print(text) taggedTokens = TextTokenizing.parse(text) print(taggedTokens) # execute the training process grammar, fdist, n_gram_nbr = _nlp_.train(taggedTokens) GrammarChecker.grammar = grammar GrammarChecker.fdist = fdist GrammarChecker.n_gram_nbr = n_gram_nbr result = GrammarChecker.checkGrammar(taggedTokens) print(result) data = {'result': result} response = app.response_class( response=json.dumps(data), status=200, mimetype='application/json' ) return response if __name__ == '__main__': app.run() ```
{ "source": "410063005/AndroidViewClient", "score": 2 }
#### File: android/uiautomator/uiautomatorhelpertests.py ```python import io import os import random import sys from PIL import Image try: sys.path.insert(0, os.path.join(os.environ['ANDROID_VIEW_CLIENT_HOME'], 'src')) except: pass from com.dtmilano.android.viewclient import ViewClient from com.dtmilano.android.uiautomator.uiautomatorhelper import UiAutomatorHelper, UiObject2 __author__ = 'diego' import unittest DEBUG = False class UiAutomatorHelperTests(unittest.TestCase): def setUp(self): if DEBUG: print("@@@ UiAutomatorHelperTests.setUp", file=sys.stderr) (self.device, self.serialno) = ViewClient.connectToDeviceOrExit(serialno='.*') self.assertIsNotNone(self.device) self.uiAutomatorHelper = UiAutomatorHelper(self.device) def tearDown(self): if DEBUG: print("@@@ UiAutomatorHelperTests.tearDown", file=sys.stderr) self.uiAutomatorHelper.quit() def testDumpWindowHierarchy(self): dump = self.uiAutomatorHelper.dumpWindowHierarchy() self.assertIsNotNone(dump) def testDumpWindowHierarchy_repeat(self): for _ in range(10): dump = self.uiAutomatorHelper.dumpWindowHierarchy() self.assertIsNotNone(dump) def testPressKeyCode(self): response = self.uiAutomatorHelper.pressKeyCode(4) '''4 is KEYCODE_BACK''' if DEBUG: print("response=", response, file=sys.stderr) def testTakeScreenshot(self): buf = self.uiAutomatorHelper.takeScreenshot() self.assertIsNotNone(buf) self.assertTrue(len(buf) > 0) image = Image.open(io.StringIO(buf)) self.assertIsNotNone(image) self.assertEqual(image.format, 'PNG') def testClick_random(self): x = random.randint(0, 1000) y = random.randint(0, 1000) response = self.uiAutomatorHelper.click(x=x, y=y) if DEBUG: print("response=", response, file=sys.stderr) def testSwipe_random(self): x0 = random.randint(0, 1000) y0 = random.randint(0, 1000) x1 = random.randint(0, 1000) y1 = random.randint(0, 1000) steps = random.randint(10, 100) response = self.uiAutomatorHelper.swipe(startX=x0, startY=y0, endX=x1, endY=y1, steps=steps) if DEBUG: print("response=", response, file=sys.stderr) def testSetText_UiObject2_Chinese_text(self): # This enters a Reminder using Calendar # See https://github.com/dtmilano/AndroidViewClient/issues/242 uio = self.uiAutomatorHelper.findObject( bySelector='res@<EMAIL>.<EMAIL>.calendar:id/title_edit_text,[email protected],text@$Remind me to…,<EMAIL>') self.assertIsNotNone(uio) self.assertTrue(isinstance(uio, UiObject2)) uio.setText("提醒我包括中文支持") if __name__ == '__main__': unittest.main() ```
{ "source": "411522/mppcca", "score": 2 }
#### File: 411522/mppcca/mppcca.py ```python import numpy as np from numpy.linalg import inv from scipy.misc import logsumexp def init_params(nb_K, dim_y1, dim_y2, dim_x): list_params = [{} for k in range(nb_K)] dim_t = min(dim_y1, dim_y2) Σπ = 0 for params in list_params: params["μ"] = np.transpose(np.random.randn(dim_y1 + dim_y2)) params["Wx"] = np.random.randn(dim_x, dim_y1 + dim_y2) params["μx"] = np.transpose(np.zeros(dim_x)) params["Ψx"] = np.zeros((dim_x, dim_x)) params["π"] = np.random.randn() ** 2 Σπ += params["π"] Wt = np.matrix(np.random.randn(dim_y1 + dim_y2, dim_t)) Ψ1 = np.random.randn(dim_y1, dim_y1) Ψ2 = np.random.randn(dim_y2, dim_y2) Ψ1 = Ψ1 * Ψ1 Ψ2 = Ψ2 * Ψ2 temp_zero_mat1 = np.zeros((dim_y1, dim_y2)) temp_zero_mat2 = np.zeros((dim_y2, dim_y1)) Ψ = np.r_[np.c_[Ψ1, temp_zero_mat1], np.c_[temp_zero_mat2, Ψ2]] params["C"] = Ψ + Wt * Wt.T for key, value in params.items(): temp = np.matrix(value) params[key] = temp for params in list_params: params["π"] = params["π"] / Σπ return list_params def calc_μ(params_k, γ_N, y_N, x_N): # Σₙ(γₙ(yₙ-Wₓxₙ)) / Σₙγₙ return np.dot(γ_N, (y_N - np.einsum("jk,ij->ik", params_k["Wx"], x_N))) / np.sum(γ_N) def calc_π(γ_N): return np.sum(γ_N) / len(γ_N) def calc_Wx(y_tilde_N, x_tilde_N, γ_N): temp1 = np.einsum("ijk,i->jk", np.einsum("ij,ik->ijk", y_tilde_N, x_tilde_N), γ_N) temp2 = np.einsum("ijk,i->jk", np.einsum("ij,ik->ijk", x_tilde_N, x_tilde_N), γ_N) return np.dot(temp1, inv(temp2)).transpose() def calc_C(params_k, y_tilde_N, x_tilde_N, γ_N): temp = y_tilde_N - np.einsum("jk,ij->ik", params_k["Wx"], x_tilde_N) return np.einsum("i,ijk->jk", γ_N, np.einsum("ij,ik->ijk", temp, temp)) / np.sum(γ_N) def calc_lpdf_norm(y_N, x_N, params_k): sign, logdet = np.linalg.slogdet(2 * np.pi * params_k["C"]) mean = np.einsum("jk,ij->ik", params_k["Wx"], x_N) + params_k["μ"] covariance_inv = inv(params_k["C"]) # temp = (y-mean).T * C.I * (y-mean) temp_N = np.einsum("ij,ij->i", np.einsum("ij,jk->ik", y_N - mean, covariance_inv), y_N - mean) return np.array(-0.5 * logdet - 0.5 * temp_N + np.log(params_k["π"])).reshape(len(y_N)) def E_step(y_N, x_N, params, K): lpdf_K_N = [calc_lpdf_norm(y_N, x_N, params[k]) for k in range(K)] lpdf_N = logsumexp(lpdf_K_N, axis=0) lpdf_K_N -= lpdf_N γ_K_N = np.exp(lpdf_K_N) return γ_K_N def M_step(γ_K_N, y_N, x_N, params): for k, (γ_N, params_k) in enumerate(zip(γ_K_N, params)): μ_k = calc_μ(params_k, γ_N, y_N, x_N) y_tilde_N = y_N - np.dot(γ_N, y_N) / np.sum(γ_N) x_tilde_N = x_N - np.dot(γ_N, x_N) / np.sum(γ_N) Wx_k = calc_Wx(y_tilde_N, x_tilde_N, γ_N) C_k = calc_C(params_k, y_tilde_N, x_tilde_N, γ_N) π_k = calc_π(γ_N) params[k]["μ"] = μ_k params[k]["Wx"] = Wx_k params[k]["C"] = C_k params[k]["π"] = π_k def mppcca(y1_N, y2_N, x_N, nb_K): params = init_params(nb_K, len(y1_N[0]), len(y2_N[0]), len(x_N[0])) y_N = np.concatenate([y1_N, y2_N], axis=1) history_labels = [] while True: log_γ = E_step(y_N, x_N, params, nb_K) M_step(log_γ, y_N, x_N, params) history_labels.append(np.argmax(log_γ, axis=0)) if len(history_labels) < 2: continue if np.array_equal(history_labels[-2], history_labels[-1]): break print("%d step - updated %d labels" % (len(history_labels), (np.count_nonzero(history_labels[-1] - history_labels[-2])))) return params, history_labels[-1] ```
{ "source": "412b/cvat", "score": 2 }
#### File: datumaro/plugins/image_dir.py ```python import os import os.path as osp from datumaro.components.extractor import DatasetItem, SourceExtractor, Importer from datumaro.components.converter import Converter from datumaro.util.image import save_image class ImageDirImporter(Importer): EXTRACTOR_NAME = 'image_dir' def __call__(self, path, **extra_params): from datumaro.components.project import Project # cyclic import project = Project() if not osp.isdir(path): raise Exception("Can't find a directory at '%s'" % path) source_name = osp.basename(osp.normpath(path)) project.add_source(source_name, { 'url': source_name, 'format': self.EXTRACTOR_NAME, 'options': dict(extra_params), }) return project class ImageDirExtractor(SourceExtractor): _SUPPORTED_FORMATS = ['.png', '.jpg'] def __init__(self, url): super().__init__() assert osp.isdir(url), url items = [] for dirpath, _, filenames in os.walk(url): for name in filenames: path = osp.join(dirpath, name) if not self._is_image(path): continue item_id = osp.relpath(osp.splitext(path)[0], url) items.append(DatasetItem(id=item_id, image=path)) self._items = items def __iter__(self): for item in self._items: yield item def __len__(self): return len(self._items) def _is_image(self, path): if not osp.isfile(path): return False for ext in self._SUPPORTED_FORMATS: if path.endswith(ext): return True return False class ImageDirConverter(Converter): def __call__(self, extractor, save_dir): os.makedirs(save_dir, exist_ok=True) for item in extractor: if item.has_image and item.image.has_data: save_image(osp.join(save_dir, item.id + '.jpg'), item.image.data, create_dir=True) ```
{ "source": "4-1-2/BIOBOT", "score": 2 }
#### File: BIOBOT/server/app.py ```python from cloudant import Cloudant from flask import Flask, render_template, request, jsonify from ibm_botocore.client import Config import ibm_boto3 import numpy as np import atexit import os import json import io as libio from PIL import Image app = Flask(__name__) from biobot.model import predict, get_model import base64 from io import BytesIO # Write image STORAGE IBM def cgsWriteImage(client, bucket, file, image): n = image.ndim if (n==3): img = Image.fromarray(image,'RGB') else: if (image.max()==1): img = Image.fromarray(image,'1').convert('RGB') else: img = Image.fromarray(image,'L').convert('RGB') bufImage = libio.BytesIO() img.save(bufImage,"JPEG") bufImage.seek(0) isr = client.put_object(Bucket=bucket, Body = bufImage, Key = file, ContentType = 'image/jpeg') print("""cgsWriteImage: \n\tBucket=%s \n\tFile=%s \n\tArraySize=%d %s RawSize=%d\n""" % ( bucket, file, image.size, image.shape, bufImage.getbuffer().nbytes)) # DB IBM client = Cloudant.iam( "0543c3c0-716a-4fe4-8deb-bb2fd61dcd8e-bluemix", "<KEY>", connect=True ) database_bot = client['biobot'] # STORAGE IBM cgsClient = ibm_boto3.client(service_name='s3', ibm_api_key_id = '<KEY>', ibm_auth_endpoint='https://iam.cloud.ibm.com/identity/token', config=Config(signature_version='oauth'), endpoint_url='https://s3.ap.cloud-object-storage.appdomain.cloud') #!im = numpy.array(pic) # On IBM Cloud Cloud Foundry, get the port number from the environment variable # PORT when running this app on the local machine, default the port to 8000 # Create the model: # ResNet9 : classifier # Input size : [56 x 256 x 3] # Output size : [38] model = get_model() port = int(os.getenv('PORT', 8000)) @app.route('/', methods=['GET', 'POST']) def basic(): if request.method == 'POST': name = request.form['name'] partition_key = 'Humans' document_key = 'julia30' database_bot.create_document({ '_id': ':'.join((partition_key, document_key)), 'name': name }) return render_template('index.html', t=name) return render_template('index.html') # Diagnosis @app.route('/diagnosis', methods=['GET', 'POST']) def run_diagnosis(): if request.method == 'POST': #import pdb; pdb.set_trace() image = request.files['img'] image_ = Image.open(image) new_width, new_height = 256, 256 width, height = image_.size # Get dimensions left = (width - new_width)/2 top = (height - new_height)/2 right = (width + new_width)/2 bottom = (height + new_height)/2 # Crop the center of the image image_cropped = image_.crop((left, top, right, bottom)) im_file = BytesIO() # -*- coding: utf-8 -*- image_cropped.save(im_file, format='JPEG') binary_data = im_file.getvalue() io_image = base64.b64encode(binary_data) #io_image = base64.b64encode(image_cropped.read()).decode('utf-8') res1, res2 = predict(model, io_image) return render_template('upload_image.html', image_up= res1 +' - '+ res2) return render_template('upload_image.html') if __name__ == '__main__': app.run(host='0.0.0.0', port=port, debug=True) ``` #### File: biobot/model/modules.py ```python import os import torch import torch.nn as nn import numpy as np import base64 from torchvision.datasets import ImageFolder from torch.utils.data import DataLoader import torchvision.transforms as transforms from biobot.model import network def ConvBlock(in_channels, out_channels, pool=False): """ Convolutional Block: Conv2d + BatchNorm2d + ReLU Parameters: in_channels : input channels out_channels : output channels pool : use pooling operation """ layers = [ nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True)] if pool: layers.append(nn.MaxPool2d(4)) return nn.Sequential(*layers) def create_network(device): """ Create ResNet9 network Parameters: device: the device to which the model parameters are sent. """ model = network.ResNet9(3, 38).to(device) return model def load_model(device, load_path): """ Parameters: device : the device to which the model parameters are sent. load_path : a string containing the 'state_dict' of the model. """ model = create_network(device) checkpoint = torch.load(load_model, map_location=torch.device('cpu')) model.load_state_dict(checkpoint) return model def get_db(path): """ Parameters: path: a filename that contains the test dataset. """ test_db = ImageFolder(path, transform=transforms.ToTensor()) return test_db, test_db.classes def load_test_db(path): """ Parameters: path: a filename that contains the test dataset. """ test_db, _ = get_db(path) test_dl = DataLoader(test_db, 1, num_workers=2, pin_memory=True) return test_dl, len(test_db) def eval_accuracy(model, path, device): """ Parameters: model : an 'torch.nn.Module' model. path : a filename that contains the test dataset. device : the device to which the model parameters are sent. """ model.eval() data_generator, data_size = load_test_db(path) acc = [] for it, batch in enumerate(data_generator): image_batch, label_batch = batch y = model(image_batch.to(device)) acc_it = (torch.max(y.detach().cpu(), dim=1)[1] == label_batch) acc.append(float(acc_it.item())) print('\r[{:4d}/{:4d}] acc = {:3.5f}%'.format( it, data_size, np.mean(acc) * 100.), end='') accuracy = np.mean(acc) print('\r[{:4d}/{:4d}] acc = {:3.5f}%'.format( it, data_size, accuracy * 100.)) return accuracy def test_classes_ids(): test_path = 'dataset/test' test1 = sorted(os.listdir(test_path)) test2 = get_db(test_path)[1] for t1, t2 in zip(test1, test2): assert t1 == t2 def accuracy_performance(path, device): """ Parameters: path : the device to which the model parameters are sent. device : a string containing the 'state_dict' of the model. """ model = load_model(device, os.path.join('params', 'model.pth')) assert eval_accuracy(model, path, device) >= 0.95 def predict_random_image(path, device): """ Parameters: path : the device to which the model parameters are sent. device : a string containing the 'state_dict' of the model. """ model = load_model(device, os.path.join('params', 'model.pth')) model.eval() test_db, classes_id = get_db(path) x, pred_y = test_db[np.random.randint(len(test_db))] y_hat = model(x.to(device).unsqueeze(0)) _, pred_y_hat = torch.max(y_hat, dim=1) return classes_id[pred_y], classes_id[pred_y_hat[0].item()] ```
{ "source": "413612/PL-0.5", "score": 3 }
#### File: 413612/PL-0.5/my_parser.py ```python from llvmlite import ir from llvmlite import binding import ast import utils from lexer import Lexer def get_rpn(i, tokens): res, stack, error = [], [], '' while tokens[i].type not in ['SEMI', 'COLON']: if tokens[i].type == 'INT_LIT' or tokens[i].type == 'FLOAT_LIT' or tokens[i].type == 'CHAR_LIT': res.append(i) i += 1 continue elif tokens[i].type == 'ID': res.append(i) if tokens[i + 1].type == 'LPAREN': i += 1 while tokens[i].type != 'RPAREN': i += 1 else: i += 1 continue elif utils.is_operator(tokens[i].type): if len(stack) == 0: stack.append(i) else: while tokens[stack[-1]].type != 'LPAREN' and utils.op_priority(tokens[i].type) >= utils.op_priority(tokens[stack[-1]].type): res.append(stack.pop()) if len(stack) == 0: break stack.append(i) i += 1 continue elif tokens[i].type == 'LPAREN': stack.append(i) i += 1 continue elif tokens[i].type == 'RPAREN': while tokens[stack[-1]].type != 'LPAREN': res.append(stack.pop()) if len(stack) == 0: break if len(stack) > 0: if tokens[stack[-1]].type == 'LPAREN': stack.pop() else: error = "В выражении неправильно расставлены скобки" i += 1 continue else: break while len(stack) != 0: res.append(stack.pop()) return i, res, error def var_parse(i: int, tokens, parent): v = ast.VarDecAST() v.set_parent(parent) if tokens[i].type == 'VAR': i += 1 if tokens[i].type == 'ID': obj = parent.get_children(tokens[i].value) if obj is not None: error = "Переменная с именем " + tokens[i].value + " существует." print(error) return None, i, error else: parent.add_child(tokens[i].value, v) v.set_name(tokens[i].value) else: error = "Ошибка объявления переменной. Не указано имя." print(error) return None, i, error i += 1 if utils.is_type(tokens[i].type): v.set_type(tokens[i].type) else: error = "Ошибка объявления переменной. Некорректно указан тип." print(error) return None, i, error i += 1 if tokens[i].type == 'SEMI': return v, i, "" else: error = "Ошибка. Нет точки с запятой." print(error) return None, i, error def func_call_parse(i, tokens, parent): error = "" name = "" args = [] if tokens[i].type == 'ID': name = tokens[i].value i += 1 if tokens[i].type == 'LPAREN': i += 1 while tokens[i].type != 'RPAREN': if utils.is_number(tokens[i].type): if tokens[i].type == 'INT_LIT': numb = ast.IntLiteralAST(tokens[i].value) args.append(numb) elif tokens[i].type == 'FLOAT_LIT': numb = ast.FloatLiteralAST(tokens[i].value) args.append(numb) elif tokens[i].type == 'CHAR_LIT': char = ast.CharLiteralAST(tokens[i].value) args.append(char) elif tokens[i].type == 'ID': obj = parent.get_children(tokens[i].value) if obj is None: error = "Переменная с имененем " + tokens[i].value + " не объявлена." print(error) return None, i, error var_def_obj = ast.VarDefAST(parent) var_def_obj.set_var_dec(obj) args.append(var_def_obj) i += 1 if name != "": obj = parent.get_children(name) if obj is not None: f = ast.FunctionCallAST(obj, args) f.set_parent(parent) return f, i, error else: error = "Не объявлена функция с именем " + name print(error) return None, i, error else: error = "Не корректное объявление функции" print(error) return None, i, error def proc_call_parse(i, tokens, parent): error = "" name = "" args = [] if tokens[i].type == 'ID': name = tokens[i].value i += 1 while tokens[i].type != 'SEMI': if utils.is_number(tokens[i].type): if tokens[i].type == 'INT_LIT': numb = ast.IntLiteralAST(tokens[i].value) args.append(numb) elif tokens[i].type == 'FLOAT_LIT': numb = ast.FloatLiteralAST(tokens[i].value) args.append(numb) elif tokens[i].type == 'CHAR_LIT': char = ast.CharLiteralAST(tokens[i].value) args.append(char) elif tokens[i].type == 'ID': obj = parent.get_children(tokens[i].value) if obj is None: error = "Переменная с имененем " + tokens[i].value + " не объявлена." print(error) return None, i, error var_def_obj = ast.VarDefAST(parent) var_def_obj.set_var_dec(obj) args.append(var_def_obj) i += 1 if name != "": obj = parent.get_children(name) if obj is not None: p = ast.ProcedureCallAST(obj, args) p.set_parent(parent) return p, i, error else: error = "Не объявлена процедура с именем " + name print(error) return None, i, error else: error = "Требуется имя процедуры" print(error) return None, i, error def bin_op_parse(i: int, tokens, parent: ast.BaseAST): error = "" root = None j, rpn, error = get_rpn(i, tokens) if error != "": print(error) return None, i, error stack = [] for k in range(len(rpn)): if tokens[rpn[k]].type == 'INT_LIT': hs = ast.IntLiteralAST(tokens[rpn[k]].value) stack.append(hs) continue elif tokens[rpn[k]].type == 'FLOAT_LIT': hs = ast.FloatLiteralAST(tokens[rpn[k]].value) stack.append(hs) continue elif tokens[rpn[k]].type == 'ID': obj = parent.get_children(tokens[rpn[k]].value) if obj is None: error = "Переменная с именем " + tokens[rpn[k]].value + " не объявлена." print(error) return None, rpn[k], error else: if tokens[rpn[k] + 1].type == 'LPAREN': call_obj, i, error = func_call_parse(rpn[k], tokens, parent) if call_obj is None: error = "Функция с именем " + tokens[i].value + " вызвана некорректно." print(error) return None, i, error else: stack.append(call_obj) else: var_def_obj = ast.VarDefAST(parent) var_def_obj.set_var_dec(obj) stack.append(var_def_obj) elif utils.is_operator(tokens[rpn[k]].type): bin_op = ast.BinaryAST() bin_op.set_op(tokens[rpn[k]].type) rhs = stack.pop() lhs = stack.pop() rhs.set_parent(bin_op) lhs.set_parent(bin_op) bin_op.set_rhs(rhs) bin_op.set_lhs(lhs) stack.append(bin_op) if len(stack) == 1: root = stack.pop() root.set_parent(parent) return root, j, error def base_parse(tokens): base = ast.CompoundExpression(None) i = 0 error = "" while i < len(tokens): base, i, error = top_expression_parse(i, tokens, base) if error != "": print(error) return None, i, error i += 1 return base, i, error def func_parse(i, tokens, parent=None): func = ast.FunctionDefAST(parent) error = "" while tokens[i].type != 'END': if tokens[i].type == 'FUNC': i += 1 continue elif tokens[i].type == 'ID': obj = parent.get_children(tokens[i].value) if obj is not None: error = "Переменная с именем " + tokens[i].value + " уже объявлена." print(error) return None, i, error parent.add_child(tokens[i].value, func) func.set_name(tokens[i].value) i += 1 elif tokens[i].type == 'LPAREN': i += 1 while tokens[i].type != 'RPAREN': if tokens[i].type == 'ID': a = parent.get_children(tokens[i].value) if a is not None: error = "Переменная с именем " + tokens[i].value + " уже объявлена во внешней области видимости." print(error) return None, i, error a = ast.VarDecAST(func) a.set_name(tokens[i].value) func.add_arg(a) i += 1 if utils.is_type(tokens[i].type): a.set_type(tokens[i].type) else: error = "Не указан тип у переменной с именем " + tokens[i].value + "." print(error) return None, i, error i += 1 i += 1 continue elif utils.is_type(tokens[i].type): func.set_type(tokens[i].type) i += 1 continue elif tokens[i].type == 'COLON': if func.type is None: error = "Не указан возвращаемый тип у функции с именем " + func.name + "." print(error) return None, i, error i += 1 while tokens[i].type != 'END': _, i, error = compound_expression_parse(i, tokens, func) i += 1 if error != "": print(error) return None, i, error return func, i, error def proc_parse(i, tokens, parent=None): proc = ast.ProcedureDefAST(parent) error = "" while tokens[i].type != 'END': if tokens[i].type == 'PROC': i += 1 continue elif tokens[i].type == 'ID': obj = parent.get_children(tokens[i].value) if obj is not None: error = "Переменная с именем " + tokens[i].value + " уже объявлена." print(error) return None, i, error parent.add_child(tokens[i].value, proc) proc.set_name(tokens[i].value) i += 1 elif tokens[i].type == 'LPAREN': i += 1 while tokens[i].type != 'RPAREN': if tokens[i].type == 'ID': a = parent.get_children(tokens[i].value) if a is not None: error = "Переменная с именем " + tokens[i].value + " уже объявлена во внешней области видимости." print(error) return None, i, error a = ast.VarDecAST(proc) a.set_name(tokens[i].value) proc.add_arg(a) i += 1 if utils.is_type(tokens[i].type): a.set_type(tokens[i].type) else: error = "Не указан тип у переменной с именем " + tokens[i].value + "." print(error) return None, i, error i += 1 i += 1 continue elif tokens[i].type == 'COLON': i += 1 while tokens[i].type != 'END': _, i, error = compound_expression_parse(i, tokens, proc) i += 1 if error != "": print(error) return None, i, error return proc, i, error def compound_expression_parse(i, tokens, compound_expression): obj, i, error = parse(i, tokens, parent=compound_expression) if error != "": print(error) return obj, i, error compound_expression.set_child(obj) return compound_expression, i, error def top_expression_parse(i, tokens, compound_expression): obj, i, error = top_parse(i, tokens, parent=compound_expression) if error != "": print(error) return obj, i, error compound_expression.set_child(obj) return compound_expression, i, error def parse(i, tokens, parent=None): obj = None error = "" if tokens[i].type == 'VAR': obj, i, error = var_parse(i, tokens, parent) if obj is None: print(error) return None, i, error elif tokens[i].type == 'SEMI': i += 1 elif tokens[i].type == 'ID': if tokens[i + 1].type == 'RPAREN': obj, i, error = func_call_parse(i, tokens, parent) if obj is None: print(error) return None, i, error elif tokens[i + 1].type == 'EQ': assignment = ast.AssignmentAST(parent) var_dec_obj = parent.get_children(tokens[i].value) var_def_obj = ast.VarDefAST(parent) var_def_obj.set_var_dec(var_dec_obj) assignment.set_lval(var_def_obj) obj, i, error = bin_op_parse(i + 2, tokens, parent) if obj is None: print(error) return None, i, error assignment.set_rval(obj) obj = assignment else: obj, i, error = proc_call_parse(i, tokens, parent) if obj is None: print(error) return None, i, error elif tokens[i].type == 'IF': obj, i, error = expr_if_parse(i, tokens, parent) elif tokens[i].type == 'WHILE': obj, i, error = expr_while_parse(i, tokens, parent) elif tokens[i].type == 'DO': obj, i, error = expr_do_while_parse(i, tokens, parent) elif tokens[i].type == 'RETURN': i += 1 obj, i, error = bin_op_parse(i, tokens, parent) if obj is None: print(error) return None, i, error if isinstance(parent, ast.FunctionDefAST): if obj.get_type() == parent.type: parent.set_return_value(obj) ret_obj = ast.ReturnAst(parent) ret_obj.set_value(obj) if tokens[i].value != ';': i += 1 return ret_obj, i, error else: error = "Ожидается возвращаемый тип " + str(parent.type) + " актуальный тип - " + str(obj.get_type()) print(error) return None, i, error else: error = "Недопустимая конструкция: return в " + type(parent) print(error) return None, i, error return obj, i, error def top_parse(i, tokens, parent=None): obj = None error = "" if tokens[i].type == 'VAR': obj, i, error = var_parse(i, tokens, parent) if obj is None: print(error) return None, i, error elif tokens[i].type == 'SEMI': i += 1 elif tokens[i].type == 'FUNC': obj, i, error = func_parse(i, tokens, parent) if error != "": print(error) return None, i, error elif tokens[i].type == 'PROC': obj, i, error = proc_parse(i, tokens, parent) if error != "": print(error) return None, i, error return obj, i, error def expr_if_parse(i, tokens, parent=None): error = "" if tokens[i].type == 'IF': if_ast = ast.ExprIfAST(parent=parent) orig_if_ast = if_ast i += 1 if tokens[i].type == 'ID' or tokens[i].type == 'INT_LIT' or tokens[i].type == 'FLOAT_LIT': obj, i, error = bin_op_parse(i, tokens, if_ast) if_ast.set_expression(obj) else: error = "Ожидается выражение" print(error) return None, i, error if tokens[i].type == 'COLON': i += 1 then_body = ast.CompoundExpression(parent=if_ast) while tokens[i].type not in ('ELIF','ELSE','END'): then_body, i, error = compound_expression_parse(i, tokens, then_body) i += 1 if error != "": print(error) return None, i, error if_ast.set_then(then_body) while tokens[i].type not in ('ELSE', 'END'): if tokens[i].type == 'ELIF': i += 1 else_body = ast.CompoundExpression(if_ast) if_ast.set_else(else_body) if_ast = ast.ExprIfAST(else_body) else_body.set_child(if_ast) if tokens[i].type == 'ID' or tokens[i].type == 'INT_LIT' or tokens[i].type == 'FLOAT_LIT': obj, i, error = bin_op_parse(i, tokens, if_ast) if_ast.set_expression(obj) else: error = "Ожидается выражение" print(error) return None, i, error if tokens[i].type == 'COLON': i += 1 then_body = ast.CompoundExpression(parent=if_ast) while tokens[i].type not in ('ELIF','ELSE','END'): then_body, i, error = compound_expression_parse(i, tokens, then_body) i += 1 if error != "": print(error) return None, i, error if_ast.set_then(then_body) else: error = "Ожидается двоеточие" print(error) return None, i, error if tokens[i].type == 'ELSE': i += 1 if tokens[i].type == 'COLON': i += 1 else_body = ast.CompoundExpression(parent=if_ast) while tokens[i].type != 'END': else_body, i, error = compound_expression_parse(i, tokens, else_body) i += 1 if error != "": print(error) return None, i, error if_ast.set_else(else_body) else: error = "Ожидается двоеточие" print(error) return None, i, error return orig_if_ast, i, error def expr_while_parse(i, tokens, parent=None): while_expr = None error = "" while tokens[i].type != 'END': if tokens[i].type == 'WHILE': while_expr = ast.ExprWhileAST(parent) i += 1 continue elif (tokens[i].type == 'ID') or (tokens[i].type == 'INT_LIT') or (tokens[i].type == 'FLOAT_LIT'): expr = ast.BinaryAST(while_expr) expr, i, error = bin_op_parse(i, tokens, expr) if error != "": print(error) return None, i, error while_expr.set_expression(expr) elif tokens[i].type == 'COLON': i += 1 compound_expression = ast.CompoundExpression(parent=while_expr) while tokens[i].type != 'END': compound_expression, i, error = compound_expression_parse(i, tokens, compound_expression) i += 1 if error != "": print(error) return None, i, error # i += 1 while_expr.set_body(compound_expression) break return while_expr, i, error def expr_do_while_parse(i, tokens, parent=None): error = "" expr_do = None while tokens[i].type != 'SEMI': if tokens[i].type == 'DO': expr_do = ast.ExprDoWhileAST(parent) compound_expression = ast.CompoundExpression(parent=expr_do) i += 1 continue else: while tokens[i].type != 'WHILE': compound_expression, i, error = compound_expression_parse(i, tokens, compound_expression) i += 1 if error != "": print(error) return None, i, error if tokens[i].type == 'WHILE': j = i while tokens[j].type not in ['SEMI', 'COLON']: j += 1 if tokens[j].type == 'COLON': compound_expression, i, error = compound_expression_parse(i, tokens, compound_expression) continue elif tokens[j].type == 'SEMI': expr = ast.BinaryAST(expr_do) expr, i, error = bin_op_parse(i + 1, tokens, expr) if error != "": print(error) return None, i, error expr_do.set_body(compound_expression) expr_do.set_expression(expr) break return expr_do, i, error def print_result(root, i=0): print(' ' * i, type(root).__name__) if root is None: return elif isinstance(root, (ast.ExprWhileAST, ast.ExprDoWhileAST)): print_result(root.expression, i + 1) print_result(root.body, i + 1) elif isinstance(root, ast.ExprIfAST): print_result(root.expression, i + 1) print_result(root.then_body, i + 1) print_result(root.else_body, i + 1) elif isinstance(root, ast.BinaryAST): print(' ' * i, root.operator) print_result(root.lhs, i + 1) print_result(root.rhs, i + 1) elif isinstance(root, ast.AssignmentAST): print_result(root.lval, i + 1) print_result(root.rval, i + 1) elif isinstance(root, ast.VarDecAST): print(' ' * i, root.name, root.type) elif isinstance(root, ast.VarDefAST): print(' ' * i, root.var_dec.name) elif isinstance(root, (ast.IntLiteralAST, ast.FloatLiteralAST, ast.CharLiteralAST)): print(' ' * i, root.value) elif isinstance(root, ast.FunctionCallAST): print(' ' * i, root.func_callee.name, root.args) elif isinstance(root, ast.ProcedureCallAST): print(' ' * i, root.proc_callee.name, root.args) elif isinstance(root, ast.CompoundExpression): if isinstance(root, (ast.FunctionDefAST, ast.ProcedureDefAST)): print(' ' * i, root.name) for op in root.order_operations: print_result(op, i + 1) if __name__ == '__main__': lexer = Lexer() with open("examples\\correct\\1.txt", 'r', encoding='utf-8') as f: code = f.read() tokens = lexer.lex(code) root, i, errors = base_parse(tokens) print_result(root) binding.initialize() binding.initialize_all_targets() binding.initialize_all_asmprinters() triple = binding.get_default_triple() # 'mips-PC-Linux-GNU' module = ir.Module('module') module.triple = triple target = binding.Target.from_triple(triple) target_machine = target.create_target_machine() root.code_gen(module) llvm_ir = str(module) mod = binding.parse_assembly(llvm_ir) mod.verify() pass_builder = binding.create_pass_manager_builder() mod_pass = binding.create_module_pass_manager() # pass_builder.opt_level = 2 # pass_builder.populate(mod_pass) mod_pass.add_constant_merge_pass() mod_pass.add_dead_arg_elimination_pass() mod_pass.add_function_inlining_pass(225) mod_pass.add_global_dce_pass() mod_pass.add_global_optimizer_pass() mod_pass.add_ipsccp_pass() mod_pass.add_dead_code_elimination_pass() mod_pass.add_cfg_simplification_pass() mod_pass.add_gvn_pass() mod_pass.add_instruction_combining_pass() mod_pass.add_licm_pass() mod_pass.add_sccp_pass() mod_pass.add_type_based_alias_analysis_pass() mod_pass.add_basic_alias_analysis_pass() print(mod_pass.run(mod)) print(str(mod)) asm = target_machine.emit_assembly(mod) print(asm) with open("examples\\correct\\1.s", 'w') as asm_file: asm_file.write(asm) with open("examples\\correct\\1.elf", 'wb') as obj_file: obj_file.write(target_machine.emit_object(mod)) ```
{ "source": "4144414D/zinky", "score": 2 }
#### File: 4144414D/zinky/zinky.py ```python VERSION="BETA 0.0.1" from docopt import docopt import zipfile import re import os import xml.dom.minidom as xml import time from datetime import datetime def find_track_changes(raw_data): data = "" for line in raw_data: data = data + line track_changes = re.findall('date="(.*?)"', data) return track_changes def read_core_docProps(docprops,zipinfo,not_safe): data = "" for line in docprops: data = data + line dates = re.findall('<dcterms:(.*?) xsi:type="dcterms:W3CDTF">(.*?)</', data) print "DATES FOUND" for date in dates: print str(date[0]) + ":", print date[1] print print "ZIP DETAILS" print_details(zipinfo) if not_safe: print "\nXML" print xml.parseString(data).toprettyxml() def find_content_xml(path): f = open(path,'rb') f.seek(30) data = f.read(19) print "[Content_Types].xml POSITION" print "---------------------------------------------" if data == "[Content_Types].xml": print "It looks to be in the right place" else: print "It isn't found at offset 0x1D... this is hinky!" print f.close() def test_document(path,safe,track_changes): if os.path.isfile(os.path.abspath(path)): print "=============================================" print path print find_content_xml(path) with zipfile.ZipFile(path, 'r') as zip: #list all details all_file_info = zip.infolist() if track_changes: print "TRACK CHANGES" print "---------------------------------------------" for file in all_file_info: results = find_track_changes(zip.open(file.filename)) if results: print file.filename for item in results: print item print print "docProps/core.xml" print "---------------------------------------------" try: read_core_docProps(zip.open('docProps/core.xml'),zip.getinfo('docProps/core.xml'),safe) except KeyError: print "ERROR! Cannot find docProps/core.xml. We would expect to see this is a post 2007 office document" for file in all_file_info: if file.filename != 'docProps/core.xml': print file.filename print "---------------------------------------------" print_details(file) print else: print "WARNING!", print path, print "does not exist" def format_zip_date(date): return time.strftime("%Y-%m-%dT%H:%M:%S", date + (0, 0, 0,))#convert zip date to something human def print_details(zipinfo): print 'date_time: ' + format_zip_date(zipinfo.date_time) print 'compress_type: ' + str(zipinfo.compress_type) print 'comment: ' + str(zipinfo.comment) print 'extra: ' + str(zipinfo.extra) print 'create_system: ' + str(zipinfo.create_system) print 'create_version: ' + str(zipinfo.create_version) print 'extract_version: ' + str(zipinfo.extract_version) print 'reserved: ' + str(zipinfo.reserved) print 'flag_bits: ' + str(zipinfo.flag_bits) print 'volume: ' + str(zipinfo.volume) print 'internal_attr: ' + str(zipinfo.internal_attr) print 'external_attr: ' + str(zipinfo.external_attr) print 'header_offset: ' + str(zipinfo.header_offset) print 'CRC: ' + str(zipinfo.CRC) print 'compress_size: ' + str(zipinfo.compress_size) print 'file_size: ' + str(zipinfo.file_size) if __name__ == '__main__': arguments = docopt(__doc__, version=VERSION) for file in arguments['<files>']: test_document(file,arguments['--not-safe'],arguments['--track-changes']) ```
{ "source": "4144/rich", "score": 2 }
#### File: rich/rich/style.py ```python from functools import lru_cache import sys from typing import Any, Dict, Iterable, List, Mapping, Optional, Type, Union from . import errors from .color import blend_rgb, Color, ColorParseError, ColorSystem from .terminal_theme import TerminalTheme, DEFAULT_TERMINAL_THEME class _Bit: """A descriptor to get/set a style attribute bit.""" def __init__(self, bit_no: int) -> None: self.bit = 1 << bit_no def __get__(self, obj: "Style", objtype: Type["Style"]) -> Optional[bool]: if obj._set_attributes & self.bit: return obj._attributes & self.bit != 0 return None class Style: """A terminal style.""" _color: Optional[Color] _bgcolor: Optional[Color] _attributes: int _set_attributes: int def __init__( self, *, color: Union[Color, str] = None, bgcolor: Union[Color, str] = None, bold: bool = None, dim: bool = None, italic: bool = None, underline: bool = None, blink: bool = None, blink2: bool = None, reverse: bool = None, conceal: bool = None, strike: bool = None, ): def _make_color(color: Union[Color, str]) -> Color: return color if isinstance(color, Color) else Color.parse(color) self._color = None if color is None else _make_color(color) self._bgcolor = None if bgcolor is None else _make_color(bgcolor) self._attributes = ( (bold or 0) | (dim or 0) << 1 | (italic or 0) << 2 | (underline or 0) << 3 | (blink or 0) << 4 | (blink2 or 0) << 5 | (reverse or 0) << 6 | (conceal or 0) << 7 | (strike or 0) << 8 ) self._set_attributes = ( (bold is not None) | (dim is not None) << 1 | (italic is not None) << 2 | (underline is not None) << 3 | (blink is not None) << 4 | (blink2 is not None) << 5 | (reverse is not None) << 6 | (conceal is not None) << 7 | (strike is not None) << 8 ) bold = _Bit(0) dim = _Bit(1) italic = _Bit(2) underline = _Bit(3) blink = _Bit(4) blink2 = _Bit(5) reverse = _Bit(6) conceal = _Bit(7) strike = _Bit(8) def __str__(self) -> str: """Re-generate style definition from attributes.""" attributes: List[str] = [] append = attributes.append if self.bold is not None: append("bold" if self.bold else "not bold") if self.dim is not None: append("dim" if self.dim else "not dim") if self.italic is not None: append("italic" if self.italic else "not italic") if self.underline is not None: append("underline" if self.underline else "not underline") if self.blink is not None: append("blink" if self.blink else "not blink") if self.blink2 is not None: append("blink2" if self.blink2 else "not blink2") if self.reverse is not None: append("reverse" if self.reverse else "not reverse") if self.conceal is not None: append("conceal" if self.conceal else "not conceal") if self.strike is not None: append("strike" if self.strike else "not strike") if self._color is not None: append(self._color.name) if self._bgcolor is not None: append("on") append(self._bgcolor.name) return " ".join(attributes) or "none" @classmethod @lru_cache(maxsize=1000) def normalize(cls, style: str) -> str: """Normalize a style definition so that styles with the same effect have the same string representation. Args: style (str): A style definition. Returns: str: Normal form of style definition. """ try: return str(cls.parse(style)) except errors.StyleSyntaxError: return style.strip().lower() @classmethod def pick_first(cls, *values: Optional[Union["Style", str]]) -> Union["Style", str]: """Pick first non-None style.""" for value in values: if value is not None: return value raise ValueError("expected at least one non-None style") def __repr__(self) -> str: """Render a named style differently from an anonymous style.""" return f'<style "{self}">' def __eq__(self, other: Any) -> bool: if not isinstance(other, Style): return NotImplemented return ( self._color == other._color and self._bgcolor == other._bgcolor and self._set_attributes == other._set_attributes and self._attributes == other._attributes ) def __hash__(self) -> int: return hash( (self._color, self._bgcolor, self._attributes, self._set_attributes,) ) @property def color(self) -> Optional[Color]: """Get the style foreground color or None if it is not set.""" return self._color @property def bgcolor(self) -> Optional[Color]: """Get the style background color or None if it is not set.""" return self._bgcolor @classmethod @lru_cache(maxsize=1000) def parse(cls, style_definition: str) -> "Style": """Parse style name(s) in to style object.""" style_attributes = { "dim", "bold", "italic", "underline", "blink", "blink2", "reverse", "conceal", "strike", } color: Optional[str] = None bgcolor: Optional[str] = None attributes: Dict[str, Optional[bool]] = {} words = iter(style_definition.split()) for original_word in words: word = original_word.lower() if word == "on": word = next(words, "") if not word: raise errors.StyleSyntaxError("color expected after 'on'") try: Color.parse(word) is None except ColorParseError as error: raise errors.StyleSyntaxError( f"unable to parse {word} in {style_definition!r}; {error}" ) bgcolor = word elif word == "not": word = next(words, "") if word not in style_attributes: raise errors.StyleSyntaxError( f"expected style attribute after 'not', found {original_word!r}" ) attributes[word] = False elif word in style_attributes: attributes[word] = True else: try: Color.parse(word) except ColorParseError as error: raise errors.StyleSyntaxError( f"unable to parse {word!r} in style {style_definition!r}; {error}" ) color = word style = Style(color=color, bgcolor=bgcolor, **attributes) return style @lru_cache(maxsize=1000) def get_html_style(self, theme: TerminalTheme = None) -> str: """Get a CSS style rule.""" theme = theme or DEFAULT_TERMINAL_THEME css: List[str] = [] append = css.append color = self.color bgcolor = self.bgcolor if self.reverse: color, bgcolor = bgcolor, color if self.dim: foreground_color = ( theme.foreground_color if color is None else color.get_truecolor(theme) ) color = Color.from_triplet( blend_rgb(foreground_color, theme.background_color, 0.5) ) if color is not None: theme_color = color.get_truecolor(theme) append(f"color: {theme_color.hex}") if bgcolor is not None: theme_color = bgcolor.get_truecolor(theme, foreground=False) append(f"background-color: {theme_color.hex}") if self.bold: append("font-weight: bold") if self.italic: append("font-style: italic") if self.underline: append("text-decoration: underline") if self.strike: append("text-decoration: line-through") return "; ".join(css) @classmethod def combine(self, styles: Iterable["Style"]) -> "Style": """Combine styles and get result. Args: styles (Iterable[Style]): Styles to combine. Returns: Style: A new style instance. """ style = Style() update = style._update for _style in styles: update(_style) return style @classmethod def chain(self, *styles: "Style") -> "Style": """Combine styles from positiona argument in to a single style. Args: styles (Iterable[Style]): Styles to combine. Returns: Style: A new style instance. """ style = Style() update = style._update for _style in styles: update(_style) return style def copy(self) -> "Style": """Get a copy of this style. Returns: Style: A new Style instance with identical attributes. """ style = self.__new__(Style) style.__dict__ = self.__dict__.copy() return style def render( self, text: str = "", *, color_system: Optional[ColorSystem] = ColorSystem.TRUECOLOR, reset=False, ) -> str: """Render the ANSI codes to implement the style.""" if color_system is None: return text attrs: List[str] = [] if self._color is not None: attrs.extend(self._color.downgrade(color_system).get_ansi_codes()) if self._bgcolor is not None: attrs.extend( self._bgcolor.downgrade(color_system).get_ansi_codes(foreground=False) ) set_bits = self._set_attributes if set_bits: append = attrs.append bits = self._attributes for bit_no in range(0, 9): bit = 1 << bit_no if set_bits & bit: append(str(1 + bit_no) if bits & bit else str(21 + bit_no)) reset = "\x1b[0m" if reset else "" if attrs: return f"\x1b[{';'.join(attrs)}m{text or ''}{reset}" else: return f"{text or ''}{reset}" def test(self, text: Optional[str] = None) -> None: """Write test text with style to terminal. Args: text (Optional[str], optional): Text to style or None for style name. Returns: None: """ text = text or str(self) sys.stdout.write(f"{self.render(text)}\x1b[0m\n") def _apply(self, style: "Style") -> "Style": """Merge this style with another. Args: style (Optional[Style]): A style object to copy attributes from. If `style` is `None`, then a copy of this style will be returned. Returns: (Style): A new style with combined attributes. """ new_style = self.__new__(Style) new_style.__dict__ = { "_color": style._color or self._color, "_bgcolor": style._bgcolor or self._bgcolor, "_attributes": ( (self._attributes & ~style._set_attributes) | (style._attributes & style._set_attributes) ), "_set_attributes": self._set_attributes | style._set_attributes, } return new_style def _update(self, style: "Style") -> None: """Update this style with another. Args: style (Style): Style to combine to this instance. """ self._color = style._color or self._color self._bgcolor = style._bgcolor or self._bgcolor self._attributes = (self._attributes & ~style._set_attributes) | ( style._attributes & style._set_attributes ) self._set_attributes = self._set_attributes | style._set_attributes def __add__(self, style: Optional["Style"]) -> "Style": if style is None: return self if not isinstance(style, Style): return NotImplemented # type: ignore return self._apply(style) def __iadd__(self, style: Optional["Style"]) -> "Style": if style is None: return self if not isinstance(style, Style): return NotImplemented # type: ignore self._update(style) return self class StyleStack: """A stack of styles that maintains a current style.""" def __init__(self, default_style: "Style") -> None: self._stack: List[Style] = [default_style] self.current = default_style def __repr__(self) -> str: return f"<stylestack {self._stack!r}>" def push(self, style: Style) -> None: """Push a new style on to the stack. Args: style (Style): New style to combine with current style. """ self.current = self.current + style self._stack.append(self.current) def pop(self) -> Style: """Pop last style and discard. Returns: Style: New current style (also available as stack.current) """ self._stack.pop() self.current = self._stack[-1] return self.current if __name__ == "__main__": # pragma: no cover import sys # style = Style(color="blue", bold=True, italic=True, reverse=False, dim=True) from .console import Console c = Console() style = Style.parse("bold not italic #6ab825") print(bin(style._attributes), bin(style._set_attributes)) print(repr(style.bold)) print(repr(style.italic)) print(style.render("hello", reset=True)) c.print("hello", style=style) print(Style.parse("dim cyan").render("COLOR", reset=True)) print(Style.parse("dim cyan+").render("COLOR", reset=True)) print(Style.parse("cyan").render("COLOR", reset=True)) print(Style.parse("cyan+").render("COLOR", reset=True)) print(Style.parse("bold blue on magenta+ red").render("COLOR", reset=True)) print(Style.parse("bold blue on magenta+ red").get_html_style()) # style.italic = True # print(style._attributes, style._set_attributes) # print(style.italic) # print(style.bold) # # style = Style.parse("bold") # # print(style) # # print(repr(style)) # # style.test() # style = Style.parse("bold on black") # print(style.bold) # print(style) # print(repr(style)) ``` #### File: rich/rich/theme.py ```python import configparser from typing import Dict, IO from .style import Style class Theme: def __init__(self, styles: Dict[str, Style] = None): self.styles = styles or {} @property def config(self) -> str: """Get contents of a config file for this theme.""" config_lines = ["[styles]"] append = config_lines.append for name, style in sorted(self.styles.items()): append(f"{name} = {style}") config = "\n".join(config_lines) return config @classmethod def from_file(cls, config_file: IO[str], source: str = None) -> "Theme": config = configparser.ConfigParser() config.read_file(config_file, source=source) styles = {name: Style.parse(value) for name, value in config.items("styles")} theme = Theme(styles) return theme @classmethod def read(cls, path: str) -> "Theme": with open(path, "rt") as config_file: return cls.from_file(config_file, source=path) ```
{ "source": "4144/s3viewer", "score": 2 }
#### File: src/providers/httpindex_provider.py ```python import sys import os import re import time import argparse import requests import collections import urllib.parse import bs4 from utils import show_message_box from consts import HTTP_MAX_RECURSE_LEVEL, USER_AGENT from providers.base_provider import StorageProvider ################################################################################## ### Most of the code here is from https://github.com/gumblex/htmllisting-parser ## ################################################################################## HEADERS = {"User-Agent": USER_AGENT} RE_ISO8601 = re.compile(r'\d{4}-\d+-\d+T\d+:\d{2}:\d{2}Z') DATETIME_FMTs = ( (re.compile(r'\d+-[A-S][a-y]{2}-\d{4} \d+:\d{2}:\d{2}'), "%d-%b-%Y %H:%M:%S"), (re.compile(r'\d+-[A-S][a-y]{2}-\d{4} \d+:\d{2}'), "%d-%b-%Y %H:%M"), (re.compile(r'\d{4}-\d+-\d+ \d+:\d{2}:\d{2}'), "%Y-%m-%d %H:%M:%S"), (RE_ISO8601, "%Y-%m-%dT%H:%M:%SZ"), (re.compile(r'\d{4}-\d+-\d+ \d+:\d{2}'), "%Y-%m-%d %H:%M"), (re.compile(r'\d{4}-[A-S][a-y]{2}-\d+ \d+:\d{2}:\d{2}'), "%Y-%b-%d %H:%M:%S"), (re.compile(r'\d{4}-[A-S][a-y]{2}-\d+ \d+:\d{2}'), "%Y-%b-%d %H:%M"), (re.compile(r'[F-W][a-u]{2} [A-S][a-y]{2} +\d+ \d{2}:\d{2}:\d{2} \d{4}'), "%a %b %d %H:%M:%S %Y"), (re.compile(r'[F-W][a-u]{2}, \d+ [A-S][a-y]{2} \d{4} \d{2}:\d{2}:\d{2} .+'), "%a, %d %b %Y %H:%M:%S %Z"), (re.compile(r'\d{4}-\d+-\d+'), "%Y-%m-%d"), (re.compile(r'\d+/\d+/\d{4} \d{2}:\d{2}:\d{2} [+-]\d{4}'), "%d/%m/%Y %H:%M:%S %z"), (re.compile(r'\d{2} [A-S][a-y]{2} \d{4}'), "%d %b %Y") ) RE_FILESIZE = re.compile(r'\d+(\.\d+)? ?[BKMGTPEZY]|\d+|-', re.I) RE_ABSPATH = re.compile(r'^((ht|f)tps?:/)?/') RE_COMMONHEAD = re.compile('Name|(Last )?modifi(ed|cation)|date|Size|Description|Metadata|Type|Parent Directory', re.I) RE_HASTEXT = re.compile('.+') RE_HEAD_NAME = re.compile('name$|^file|^download') RE_HEAD_MOD = re.compile('modifi|^uploaded|date|time') RE_HEAD_SIZE = re.compile('size|bytes$') FileEntry = collections.namedtuple('FileEntry', 'name modified size description') def human2bytes(s): """ >>> human2bytes('1M') 1048576 >>> human2bytes('1G') 1073741824 """ if s is None: return None try: return int(s) except ValueError: symbols = 'BKMGTPEZY' letter = s[-1:].strip().upper() num = float(s[:-1]) prefix = {symbols[0]: 1} for i, s in enumerate(symbols[1:]): prefix[s] = 1 << (i+1)*10 return int(num * prefix[letter]) def aherf2filename(a_href): isdir = ('/' if a_href[-1] == '/' else '') return os.path.basename(urllib.parse.unquote(a_href.rstrip('/'))) + isdir def parse(soup): ''' Try to parse apache/nginx-style directory listing with all kinds of tricks. Exceptions or an empty listing suggust a failure. We strongly recommend generating the `soup` with 'html5lib'. Returns: Current directory, Directory listing ''' cwd = None listing = [] if soup.title and soup.title.string and soup.title.string.startswith('Index of '): cwd = soup.title.string[9:] elif soup.h1: title = soup.h1.get_text().strip() if title.startswith('Index of '): cwd = title[9:] [img.decompose() for img in soup.find_all('img')] file_name = file_mod = file_size = file_desc = None pres = [x for x in soup.find_all('pre') if x.find('a', string=RE_HASTEXT)] tables = [x for x in soup.find_all('table') if x.find(string=RE_COMMONHEAD)] if not pres else () heads = [] if pres: pre = pres[0] started = False for element in (pre.hr.next_siblings if pre.hr else pre.children): if element.name == 'a': if not element.string or not element.string.strip(): continue elif started: if file_name: listing.append(FileEntry( file_name, file_mod, file_size, file_desc)) file_name = aherf2filename(element['href']) file_mod = file_size = file_desc = None elif (element.string in ('Parent Directory', '..', '../') or element['href'][0] not in '?/'): started = True elif not element.name: line = element.string.replace('\r', '').split('\n', 1)[0].lstrip() for regex, fmt in DATETIME_FMTs: match = regex.match(line) if match: file_mod = time.strptime(match.group(0), fmt) line = line[match.end():].lstrip() break match = RE_FILESIZE.match(line) if match: sizestr = match.group(0) if sizestr == '-': file_size = None else: file_size = human2bytes(sizestr.replace(' ', '').replace(',', '')) line = line[match.end():].lstrip() if line: file_desc = line.rstrip() if file_name and file_desc == '/': file_name += '/' file_desc = None else: continue if file_name: listing.append(FileEntry(file_name, file_mod, file_size, file_desc)) elif tables: started = False for tr in tables[0].find_all('tr'): status = 0 file_name = file_mod = file_size = file_desc = None if started: if tr.parent.name in ('thead', 'tfoot') or tr.th: continue for td in tr.find_all('td'): if status >= len(heads): raise AssertionError("can't detect table column number") if td.get('colspan'): continue elif heads[status] == 'name': if not td.a: continue a_str = td.a.get_text().strip() a_href = td.a['href'] if not a_str or not a_href or a_href[0] == '#': continue elif a_str == 'Parent Directory' or a_href == '../': break else: file_name = aherf2filename(a_href) status = 1 elif heads[status] == 'modified': if td.time: timestr = td.time.get('datetime', '') if RE_ISO8601.match(timestr): file_mod = time.strptime(timestr, "%Y-%m-%dT%H:%M:%SZ") status += 1 continue timestr = td.get_text().strip() if timestr: for regex, fmt in DATETIME_FMTs: if regex.match(timestr): file_mod = time.strptime(timestr, fmt) break else: if td.get('data-sort-value'): file_mod = time.gmtime(int(td['data-sort-value'])) # else: # raise AssertionError( # "can't identify date/time format") status += 1 elif heads[status] == 'size': sizestr = td.get_text().strip().replace(',', '') if sizestr == '-' or not sizestr: file_size = None elif td.get('data-sort-value'): file_size = int(td['data-sort-value']) else: match = RE_FILESIZE.match(sizestr) if match: file_size = human2bytes( match.group(0).replace(' ', '')) else: file_size = None status += 1 elif heads[status] == 'description': file_desc = file_desc or ''.join(map(str, td.children) ).strip(' \t\n\r\x0b\x0c\xa0') or None status += 1 elif status: # unknown header status += 1 if file_name: listing.append(FileEntry( file_name, file_mod, file_size, file_desc)) elif tr.hr: started = True continue elif tr.find(string=RE_COMMONHEAD): namefound = False colspan = False for th in (tr.find_all('th') if tr.th else tr.find_all('td')): if th.get('colspan'): colspan = True continue name = th.get_text().strip(' \t\n\r\x0b\x0c\xa0↑↓').lower() if not name: continue elif not namefound and RE_HEAD_NAME.search(name): heads.append('name') namefound = True elif name in ('size', 'description'): heads.append(name) elif RE_HEAD_MOD.search(name): heads.append('modified') elif RE_HEAD_SIZE.search(name): heads.append('size') elif name.endswith('signature'): heads.append('signature') else: heads.append('description') if colspan: continue if not heads: heads = ('name', 'modified', 'size', 'description') elif not namefound: heads[0] = 'name' started = True continue elif soup.ul: for li in soup.ul.find_all('li'): a = li.a if not a or not a.get('href'): continue file_name = urllib.parse.unquote(a['href']) if (file_name in {'Parent Directory', '.', './', '..', '../', '#'} or RE_ABSPATH.match(file_name)): continue else: listing.append(FileEntry(file_name, None, None, None)) return cwd, listing def fetch_listing(url, timeout=30): req = requests.get(url, headers=HEADERS, timeout=timeout) req.raise_for_status() soup = bs4.BeautifulSoup(req.content, 'html5lib') return parse(soup) def is_directory(entry): return entry.description == "Directory" or (not entry.description and not entry.size) def print_fetch_dir(url, max_recurse_level=HTTP_MAX_RECURSE_LEVEL, recurse_level=0): if recurse_level == 0: print(url) print("-----------------------") if recurse_level == max_recurse_level: return recurse_level += 1 cwd, listing = fetch_listing(url) # Fix cwd to support inner starting point # cwd shouldn't start with /, but it should end with one if cwd: cwd = cwd.strip("/") + "/" else: cwd = "" for f in listing: filename_print = cwd + f.name if is_directory(f): if not filename_print.endswith("/"): filename_print = filename_print + "/" date_format = time.strftime('%Y-%m-%d %H:%M:%S', f.modified) size_format = f.size or "0" print("{}{:>13} {}".format(date_format, size_format, filename_print)) if is_directory(f): print_fetch_dir(url=url + f.name, max_recurse_level=max_recurse_level, recurse_level=recurse_level) # BFS and DFS mixture - output entire content of each directory met def yield_fetch_dir(url, max_recurse_level=HTTP_MAX_RECURSE_LEVEL, recurse_level=0): if recurse_level == max_recurse_level: return queue_process = [] recurse_level += 1 try: cwd, listing = fetch_listing(url) except Exception as e: # Skip bad entries return # Fix cwd to support inner starting point # cwd shouldn't start with /, but it should end with one if cwd: cwd = cwd.strip("/") + "/" else: cwd = "" for f in listing: filename_output = cwd + f.name if is_directory(f): if not filename_output.endswith("/"): filename_output = filename_output + "/" date_format = time.strftime('%Y-%m-%d %H:%M:%S', f.modified) size_format = f.size or "0" yield "{}{:>13} {}".format(date_format, size_format, filename_output) + os.linesep queue_process.append(f) for f in queue_process: if is_directory(f): yield from yield_fetch_dir(url=url + f.name, max_recurse_level=max_recurse_level, recurse_level=recurse_level) class HTTPIndexStorageProvider(StorageProvider): NODE_BATCH_UPDATE_COUNT = 100 @staticmethod def is_provider(url): url = url.lower() scheme = urllib.parse.urlparse(url).scheme if scheme and "http" in scheme: return True return False def check(self): try: cwd, listing = fetch_listing(self.url) return len(listing) > 0 except Exception as e: show_message_box(self.get_default_error_message()) return False def get_download_url(self, relative_path): uri_obj = urllib.parse.urlparse(self.url) return '{uri.scheme}://{uri.netloc}/{relative_path}'.format(uri=uri_obj, relative_path=relative_path) def yield_dirlist(self): url = self.url if not self.url.endswith("/"): url = self.url + "/" for dirlist_line in yield_fetch_dir(url): # Stop if self.should_stop: break yield dirlist_line def get_default_error_message(self): return "Could not parse Apache/nginx-style directory listing. Are you sure it's a valid HTTP dir index?" def hostname(self): return urllib.parse.urlparse(self.url).netloc if __name__ == '__main__': parser = argparse.ArgumentParser(description='DirLister IndexOf/') parser.add_argument('-u', '--url', dest='url', help='URL') parser.add_argument('--max_level', dest='max_level', type=int, default=HTTP_MAX_RECURSE_LEVEL, help='Max recurse level') args = parser.parse_args() print_fetch_dir(url=args.url, max_recurse_level=args.max_level) ```
{ "source": "415905716/MQBench", "score": 3 }
#### File: intrinsic/modules/fused.py ```python from torch.nn.intrinsic import _FusedModule from torch.nn import Linear, BatchNorm1d class LinearBn1d(_FusedModule): r"""This is a sequential container which calls the Linear and Batch Norm 1d modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, linear, bn): assert type(linear) == Linear and type(bn) == BatchNorm1d, \ 'Incorrect types for input modules{}{}'.format( type(linear), type(bn)) super().__init__(linear, bn) ```
{ "source": "416104443/QUANTAXIS", "score": 2 }
#### File: QUANTAXIS/QAFetch/__init__.py ```python from . import QAWind as QAWind from . import QATushare as QATushare from . import QATdx as QATdx from . import QAThs as QAThs #import QAFetch.QAGmsdk as QAGmsdk #import QAFetch.QACrawlData as QACD class QA_Fetcher(): """ 一个通用的数据获取方法类 """ def __init__(self, *args, **kwargs): pass @property def security_list(self): return self.security_list def use(package): if package in ['wind']: from WindPy import w # w.start() return QAWind elif package in ['tushare', 'ts']: return QATushare elif package in ['tdx', 'pytdx']: return QATdx elif package in ['ths', 'THS']: return QAThs def QA_fetch_get_stock_day(package, code, startDate, endDate, if_fq='01', level='day', type_='json'): Engine = use(package) if package in ['ths', 'THS', 'wind']: return Engine.QA_fetch_get_stock_day(code, startDate, endDate, if_fq) elif package in ['ts', 'tushare']: return Engine.QA_fetch_get_stock_day(code, startDate, endDate, if_fq, type_) elif package in ['tdx', 'pytdx']: return Engine.QA_fetch_get_stock_day(code, startDate, endDate, if_fq, level) else: return Engine.QA_fetch_get_stock_day(code, startDate, endDate) def QA_fetch_get_stock_realtime(package, code): Engine = use(package) return Engine.QA_fetch_get_stock_realtime(code) def QA_fetch_get_stock_indicator(package, code, startDate, endDate): Engine = use(package) return Engine.QA_fetch_get_stock_indicator(code, startDate, endDate) def QA_fetch_get_trade_date(package, endDate, exchange): Engine = use(package) return Engine.QA_fetch_get_trade_date(endDate, exchange) def QA_fetch_get_stock_min(package, code, start, end, level='1min'): Engine = use(package) if package in ['tdx', 'pytdx']: return Engine.QA_fetch_get_stock_min(code, start, end, level) else: return 'Unsupport packages' def QA_fetch_get_stock_list(package, type_='stock'): Engine = use(package) if package in ['tdx', 'pytdx']: return Engine.QA_fetch_get_stock_list(type_) else: return 'Unsupport packages' def QA_fetch_get_stock_transaction(package, code, start, end, retry=2): Engine = use(package) if package in ['tdx', 'pytdx']: return Engine.QA_fetch_get_stock_transaction(code, start, end, retry) else: return 'Unsupport packages' def QA_fetch_get_stock_xdxr(package, code): Engine = use(package) if package in ['tdx', 'pytdx']: return Engine.QA_fetch_get_stock_xdxr(code) else: return 'Unsupport packages' def QA_fetch_get_index_day(package, code, start, end, level='day'): Engine = use(package) if package in ['tdx', 'pytdx']: return Engine.QA_fetch_get_index_day(code, start, end, level) else: return 'Unsupport packages' def QA_fetch_get_index_min(package, code, start, end, level='1min'): Engine = use(package) if package in ['tdx', 'pytdx']: return Engine.QA_fetch_get_index_min(code, start, end, level) else: return 'Unsupport packages' def QA_fetch_get_stock_block(package): Engine = use(package) if package in ['tdx', 'pytdx']: return Engine.QA_fetch_get_stock_block() else: return 'Unsupport packages' def QA_fetch_get_stock_info(package,code): Engine = use(package) if package in ['tdx', 'pytdx']: return Engine.QA_fetch_get_stock_info(code) else: return 'Unsupport packages' ```
{ "source": "416e64726579/fast-example-github-dvwa-integration-jira", "score": 2 }
#### File: 416e64726579/fast-example-github-dvwa-integration-jira/create_ticket.py ```python from jira import JIRA import fnmatch import os def find_txt(): for file in os.listdir('.'): if fnmatch.fnmatch(file, '*.txt'): return file jira = JIRA(basic_auth=(str(os.environ['LOGIN']), str(os.environ['PASSWORD'])), server=str(os.environ['SERVER'])) with open(f'./{find_txt()}', 'r') as report: description = report.read() new_issue = jira.create_issue(project='FAST', summary='Automatic report from FAST Security testing', description=description, issuetype={'name': 'Task'}, labels=['FAST', 'WALLARM']) ```
{ "source": "418sec/BentoML", "score": 2 }
#### File: bentoml/marshal/utils.py ```python import pickle from functools import lru_cache from typing import Sequence from bentoml import config as bentoml_config from bentoml.types import HTTPRequest, HTTPResponse BATCH_REQUEST_HEADER = bentoml_config("apiserver").get("batch_request_header") import io import builtins safe_builtins = { 'range', 'complex', 'set', 'frozenset', 'slice', } class RestrictedUnpickler(pickle.Unpickler): def find_class(self, module, name): """Only allow safe classes from builtins""" if module == "builtins" and name in safe_builtins: return getattr(builtins, name) """Forbid everything else""" raise pickle.UnpicklingError("global '%s.%s' is forbidden" % (module, name)) def restricted_loads(s): """Helper function analogous to pickle.loads()""" return RestrictedUnpickler(io.BytesIO(s)).load() class PlasmaDataLoader: """ Transfer datas with plasma store, in development now """ @classmethod @lru_cache(maxsize=1) def get_plasma(cls): import pyarrow.plasma as plasma import subprocess object_store_size = 2 * 10 * 1000 * 1000 plasma_path = "/tmp/store" subprocess.Popen( ["plasma_store", "-s", plasma_path, "-m", str(object_store_size)] ) return plasma.connect(plasma_path) @classmethod def merge_requests(cls, reqs) -> bytes: merged_reqs = tuple((b, h) for h, b in reqs) oid = cls.get_plasma().put(merged_reqs) return oid.binary() @classmethod def split_responses(cls, raw: bytes): import pyarrow.plasma as plasma oid = plasma.ObjectID(raw) merged_responses = cls.get_plasma().get(oid) cls.get_plasma().delete((oid,)) return merged_responses @classmethod def split_requests(cls, raw: bytes): import pyarrow.plasma as plasma oid = plasma.ObjectID(raw) info_list = cls.get_plasma().get(oid) cls.get_plasma().delete((oid,)) return info_list @classmethod def merge_responses(cls, resps) -> bytes: merged_resps = tuple((r, tuple()) for r in resps) oid = cls.get_plasma().put(merged_resps) return oid.binary() class PickleDataLoader: @classmethod def merge_requests(cls, reqs: Sequence[HTTPRequest]) -> bytes: return pickle.dumps(reqs) @classmethod def split_requests(cls, raw: bytes) -> Sequence[HTTPRequest]: restricted_loads(raw) return pickle.loads(raw) @classmethod def merge_responses(cls, resps: Sequence[HTTPResponse]) -> bytes: return pickle.dumps(list(resps)) @classmethod def split_responses(cls, raw: bytes) -> Sequence[HTTPResponse]: try: return pickle.loads(raw) except pickle.UnpicklingError: raise ValueError( f"Batching result unpacking error: \n {raw[:1000]}" ) from None DataLoader = PickleDataLoader ```
{ "source": "418sec/computervision-recipes", "score": 3 }
#### File: utils_cv/common/deployment.py ```python import os import yaml from azureml.core.conda_dependencies import CondaDependencies def generate_yaml( directory: str, ref_filename: str, needed_libraries: list, conda_filename: str, ): """ Creates a deployment-specific yaml file as a subset of the image classification environment.yml Also adds extra libraries, if not present in environment.yml Args: directory (string): Directory name of reference yaml file ref_filename (string): Name of reference yaml file needed_libraries (list of strings): List of libraries needed in the Docker container conda_filename (string): Name of yaml file to be deployed in the Docker container Returns: Nothing """ with open(os.path.join(directory, ref_filename), "r") as f: yaml_content = yaml.load(f, Loader=yaml.SafeLoader) # Extract libraries to be installed using conda extracted_libraries = [ depend for depend in yaml_content["dependencies"] if any(lib in depend for lib in needed_libraries) ] # Extract libraries to be installed using pip if any(isinstance(x, dict) for x in yaml_content["dependencies"]): # if the reference yaml file contains a "pip" section, # find where it is in the list of dependencies ind = [ yaml_content["dependencies"].index(depend) for depend in yaml_content["dependencies"] if isinstance(depend, dict) ][0] extracted_libraries += [ depend for depend in yaml_content["dependencies"][ind]["pip"] if any(lib in depend for lib in needed_libraries) ] # Check whether additional libraries are needed not_found = [ lib for lib in needed_libraries if not any(lib in ext for ext in extracted_libraries) ] # Create the deployment-specific yaml file conda_env = CondaDependencies() for ch in yaml_content["channels"]: conda_env.add_channel(ch) for library in extracted_libraries + not_found: conda_env.add_conda_package(library) # Display the environment print(conda_env.serialize_to_string()) # Save the file to disk conda_env.save_to_file( base_directory=os.getcwd(), conda_file_path=conda_filename ) # Note: For users interested in creating their own environments, # the only commands needed are: # conda_env = CondaDependencies() # conda_env.add_channel() # conda_env.add_conda_package() # conda_env.save_to_file() ```
{ "source": "418sec/pypicloud", "score": 3 }
#### File: pypicloud/pypicloud/auth.py ```python import binascii from base64 import b64decode # pylint: disable=E0611 from paste.httpheaders import AUTHORIZATION, WWW_AUTHENTICATE # pylint: enable=E0611 from pyramid.authorization import ACLAuthorizationPolicy from pyramid.httpexceptions import HTTPForbidden, HTTPUnauthorized from pyramid.security import Everyone, authenticated_userid # Copied from # http://docs.pylonsproject.org/projects/pyramid_cookbook/en/latest/auth/basic.html def get_basicauth_credentials(request): """Get the user/password from HTTP basic auth""" authorization = AUTHORIZATION(request.environ) try: authmeth, auth = authorization.split(" ", 1) except ValueError: # not enough values to unpack return None if authmeth.lower() == "basic": try: auth = b64decode(auth.strip()).decode("utf8") except (TypeError, binascii.Error): # can't decode return None try: login, password = auth.split(":", 1) except ValueError: # not enough values to unpack return None return {"login": login, "password": password} return None class BasicAuthenticationPolicy(object): """A :app:`Pyramid` :term:`authentication policy` which obtains data from basic authentication headers. Constructor Arguments ``check`` A callback passed the credentials and the request, expected to return None if the userid doesn't exist or a sequence of group identifiers (possibly empty) if the user does exist. Required. """ def authenticated_userid(self, request): """Verify login and return the authed userid""" credentials = get_basicauth_credentials(request) if credentials is None: return None userid = credentials["login"] if request.access.verify_user(credentials["login"], credentials["password"]): return userid return None def unauthenticated_userid(self, request): """Return userid without performing auth""" return request.userid def effective_principals(self, request): """Get the authed groups for the active user""" if request.userid is None: return [Everyone] return request.access.user_principals(request.userid) def remember(self, request, principal, **kw): """HTTP Headers to remember credentials""" return [] def forget(self, request): """HTTP headers to forget credentials""" return [] class SessionAuthPolicy(object): """Simple auth policy using beaker sessions""" def authenticated_userid(self, request): """Return the authenticated userid or ``None`` if no authenticated userid can be found. This method of the policy should ensure that a record exists in whatever persistent store is used related to the user (the user should not have been deleted); if a record associated with the current id does not exist in a persistent store, it should return ``None``.""" return request.session.get("user", None) def unauthenticated_userid(self, request): """Return the *unauthenticated* userid. This method performs the same duty as ``authenticated_userid`` but is permitted to return the userid based only on data present in the request; it needn't (and shouldn't) check any persistent store to ensure that the user record related to the request userid exists.""" return request.userid def effective_principals(self, request): """Return a sequence representing the effective principals including the userid and any groups belonged to by the current user, including 'system' groups such as ``pyramid.security.Everyone`` and ``pyramid.security.Authenticated``.""" if request.userid is None: return [Everyone] return request.access.user_principals(request.userid) def remember(self, request, principal, **_): """ This implementation is slightly different than expected. The application should call remember(userid) rather than remember(principal) """ request.session["user"] = principal return [] def forget(self, request): """Return a set of headers suitable for 'forgetting' the current user on subsequent requests.""" request.session.delete() return [] def _is_logged_in(request): """Check if there is a logged-in user in the session""" return request.userid is not None def _request_login(request): """Return a 401 to force pip to upload its HTTP basic auth credentials""" response = HTTPUnauthorized() realm = WWW_AUTHENTICATE.tuples('Basic realm="%s"' % request.registry.realm) response.headers.update(realm) return response def _forbid(request): """ Return a 403 if user is logged in, otherwise return a 401. This is required to force pip to upload its HTTP basic auth credentials """ if request.is_logged_in: return HTTPForbidden() else: return _request_login(request) def includeme(config): """Configure the app""" config.set_authorization_policy(ACLAuthorizationPolicy()) config.set_authentication_policy(config.registry.authentication_policy) config.add_authentication_policy(SessionAuthPolicy()) config.add_authentication_policy(BasicAuthenticationPolicy()) config.add_request_method(authenticated_userid, name="userid", reify=True) config.add_request_method(_forbid, name="forbid") config.add_request_method(_request_login, name="request_login") config.add_request_method(_is_logged_in, name="is_logged_in", reify=True) settings = config.get_settings() realm = settings.get("pypi.realm", "pypi") config.registry.realm = realm ```
{ "source": "41alderson/Sinister.ly-Notifier", "score": 3 }
#### File: 41alderson/Sinister.ly-Notifier/sinister.py ```python import requests import ctypes from win10toast import ToastNotifier from time import sleep from bs4 import BeautifulSoup from colorama import Fore, init init(convert=True) last_posts_dup = [] last_posts_clean = [] latest_post = [] new_posts = [] topic = [] latest_topic = [] ctypes.windll.kernel32.SetConsoleTitleW(f"Sinister.ly Posts Notifier") Notify = ToastNotifier() class c: r = Fore.RED re = Fore.RESET y = Fore.YELLOW w = Fore.WHITE b = Fore.BLUE g = Fore.GREEN def get_stats(): url = 'https://sinister.ly/index.php' r = requests.get(url) scraper = BeautifulSoup(r.text, 'html.parser') for links in scraper.find_all('a'): try: if 'Thread' in links['href']: if 'https' in links['href']: last_posts_dup.append(links['href']) topic.append(links['title']) else: pass except Exception: pass last_posts_dup.pop(0) clean_links = list(dict.fromkeys(last_posts_dup)) for sublist in clean_links: last_posts_clean.append(sublist) latest_post.append(last_posts_clean[0]) latest_topic.append(topic[0]) for i in last_posts_clean: if i == latest_post[0]: break else: new_posts.append(i) def check_stats(): try: if new_posts[0] is not None: latest_post.clear() latest_post.append(new_posts[0]) print(f'\n\t\t{c.y}Found {len(new_posts)} Post{c.re}') send_notifications(posts=len(new_posts)) except IndexError: print(f'\n\t\t{c.r}No New Posts{c.re}') def send_notifications(posts): if posts == 0: pass elif posts == 1: Notify.show_toast(title='New Posts Available', msg=f'Topic: {latest_topic[0]}', duration=10) else: Notify.show_toast(title='New Posts Available', msg=f'There Are {posts} New Posts Being Discussed On Forum.', duration=10) def get_data(post): if post == 1: r = requests.get(new_posts[0]) soup = BeautifulSoup(r.text, 'html.parser') for span in soup.findAll('span'): span.unwrap() for div in soup.findAll('div'): div.unwrap() content = soup.find('div', {'class': 'post_content'}) content = str(content).split('post_body scaleimages') content = content[1].split('</div>') content = content[0].split('">') content = content[1].replace('<br/>', '') show = f'''\n TOPIC: {c.y}{latest_topic[0]} {content}{c.re} ''' print(show) input(f'\n\n{c.b}Press Enter To Continue...') else: pass def cleaner(): last_posts_dup.clear() last_posts_clean.clear() new_posts.clear() topic.clear() latest_topic.clear() def runner(duration): get_stats() check_stats() sleep(duration) cleaner() sleep(1) return runner(dur) def about(): about = f'''{Fore.MAGENTA} \t\t _ _ _____ _____ _____________ __ \t\t| \ | | _ |_ _|_ _| ___\ \ / / \t\t| \| | | | | | | | | | |_ \ V / \t\t| . ` | | | | | | | | | _| \ / \t\t| |\ \ \_/ / | | _| |_| | | | \t\t\_| \_/\___/ \_/ \___/\_| \_/ \t\t{c.re}by ALDERSON41 ''' contact = f''' {c.r}CONTACT ME {c.y}sinister.ly -> {c.w}sefefew {c.y}instagram -> {c.w}john_snow__41 {c.y}Telegram -> {c.w}@Thanos_Did_Nothing_Wrong{c.re} ''' print(about) sleep(1) print(contact) input(f'\n\n{c.b}Press Enter To Continue...') if '__main__' == __name__: about() sleep(1) dur = int(input('Enter Time To Refresh Feeds: ')) runner(dur) ```
{ "source": "41WhiteElephants/glow-tts", "score": 3 }
#### File: 41WhiteElephants/glow-tts/attentions.py ```python import copy import math import numpy as np import torch from torch import nn from torch.nn import functional as F import commons import modules from modules import LayerNorm class Encoder(nn.Module): def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=None, block_length=None, **kwargs): super().__init__() self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = p_dropout self.window_size = window_size self.block_length = block_length self.drop = nn.Dropout(p_dropout) self.attn_layers = nn.ModuleList() self.norm_layers_1 = nn.ModuleList() self.ffn_layers = nn.ModuleList() self.norm_layers_2 = nn.ModuleList() for i in range(self.n_layers): self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, window_size=window_size, p_dropout=p_dropout, block_length=block_length)) self.norm_layers_1.append(LayerNorm(hidden_channels)) self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout)) self.norm_layers_2.append(LayerNorm(hidden_channels)) def forward(self, x, x_mask): attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) for i in range(self.n_layers): x = x * x_mask y = self.attn_layers[i](x, x, attn_mask) y = self.drop(y) x = self.norm_layers_1[i](x + y) y = self.ffn_layers[i](x, x_mask) y = self.drop(y) x = self.norm_layers_2[i](x + y) x = x * x_mask return x class CouplingBlock(nn.Module): def __init__(self, in_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0, sigmoid_scale=False): super().__init__() self.in_channels = in_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = gin_channels self.p_dropout = p_dropout self.sigmoid_scale = sigmoid_scale start = torch.nn.Conv1d(in_channels//2, hidden_channels, 1) start = torch.nn.utils.weight_norm(start) self.start = start # Initializing last layer to 0 makes the affine coupling layers # do nothing at first. This helps with training stability end = torch.nn.Conv1d(hidden_channels, in_channels, 1) end.weight.data.zero_() end.bias.data.zero_() self.end = end self.wn = modules.WN(in_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels, p_dropout) def forward(self, x, x_mask=None, reverse=False, g=None, **kwargs): b, c, t = x.size() if x_mask is None: x_mask = 1 attn_mask = None else: attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) x_0, x_1 = x[:,:self.in_channels//2], x[:,self.in_channels//2:] x = self.start(x_0) * x_mask x = self.wn(x, x_mask, g) out = self.end(x) z_0 = x_0 m = out[:, :self.in_channels//2, :] logs = out[:, self.in_channels//2:, :] if self.sigmoid_scale: logs = torch.log(1e-6 + torch.sigmoid(logs + 2)) if reverse: z_1 = (x_1 - m) * torch.exp(-logs) * x_mask logdet = None else: z_1 = (m + torch.exp(logs) * x_1) * x_mask logdet = torch.sum(logs * x_mask, [1, 2]) z = torch.cat([z_0, z_1], 1) return z, logdet def store_inverse(self): self.wn.remove_weight_norm() class MultiHeadAttention(nn.Module): def __init__(self, channels, out_channels, n_heads, window_size=None, heads_share=True, p_dropout=0., block_length=None, proximal_bias=False, proximal_init=False): super().__init__() assert channels % n_heads == 0 self.channels = channels self.out_channels = out_channels self.n_heads = n_heads self.window_size = window_size self.heads_share = heads_share self.block_length = block_length self.proximal_bias = proximal_bias self.p_dropout = p_dropout self.attn = None self.k_channels = channels // n_heads self.conv_q = nn.Conv1d(channels, channels, 1) self.conv_k = nn.Conv1d(channels, channels, 1) self.conv_v = nn.Conv1d(channels, channels, 1) if window_size is not None: n_heads_rel = 1 if heads_share else n_heads rel_stddev = self.k_channels**-0.5 self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) self.conv_o = nn.Conv1d(channels, out_channels, 1) self.drop = nn.Dropout(p_dropout) nn.init.xavier_uniform_(self.conv_q.weight) nn.init.xavier_uniform_(self.conv_k.weight) if proximal_init: self.conv_k.weight.data.copy_(self.conv_q.weight.data) self.conv_k.bias.data.copy_(self.conv_q.bias.data) nn.init.xavier_uniform_(self.conv_v.weight) def forward(self, x, c, attn_mask=None): q = self.conv_q(x) k = self.conv_k(c) v = self.conv_v(c) x, self.attn = self.attention(q, k, v, mask=attn_mask) x = self.conv_o(x) return x def attention(self, query, key, value, mask=None): # reshape [b, d, t] -> [b, n_h, t, d_k] b, d, t_s, t_t = (*key.size(), query.size(2)) query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3) key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels) if self.window_size is not None: assert t_s == t_t, "Relative attention is only available for self-attention." key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s) rel_logits = self._matmul_with_relative_keys(query, key_relative_embeddings) rel_logits = self._relative_position_to_absolute_position(rel_logits) scores_local = rel_logits / math.sqrt(self.k_channels) scores = scores + scores_local if self.proximal_bias: assert t_s == t_t, "Proximal bias is only available for self-attention." scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype) if mask is not None: scores = scores.masked_fill(mask == 0, -1e4) if self.block_length is not None: block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length) scores = scores * block_mask + -1e4*(1 - block_mask) p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s] p_attn = self.drop(p_attn) output = torch.matmul(p_attn, value) if self.window_size is not None: relative_weights = self._absolute_position_to_relative_position(p_attn) value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s) output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings) output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t] return output, p_attn def _matmul_with_relative_values(self, x, y): """ x: [b, h, l, m] y: [h or 1, m, d] ret: [b, h, l, d] """ ret = torch.matmul(x, y.unsqueeze(0)) return ret def _matmul_with_relative_keys(self, x, y): """ x: [b, h, l, d] y: [h or 1, m, d] ret: [b, h, l, m] """ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1)) return ret def _get_relative_embeddings(self, relative_embeddings, length): max_relative_position = 2 * self.window_size + 1 # Pad first before slice to avoid using cond ops. pad_length = max(length - (self.window_size + 1), 0) slice_start_position = max((self.window_size + 1) - length, 0) slice_end_position = slice_start_position + 2 * length - 1 if pad_length > 0: padded_relative_embeddings = F.pad( relative_embeddings, commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]])) else: padded_relative_embeddings = relative_embeddings used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position] return used_relative_embeddings def _relative_position_to_absolute_position(self, x): """ x: [b, h, l, 2*l-1] ret: [b, h, l, l] """ batch, heads, length, _ = x.size() # Concat columns of pad to shift from relative to absolute indexing. x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]])) # Concat extra elements so to add up to shape (len+1, 2*len-1). x_flat = x.view([batch, heads, length * 2 * length]) x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]])) # Reshape and slice out the padded elements. x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:] return x_final def _absolute_position_to_relative_position(self, x): """ x: [b, h, l, l] ret: [b, h, l, 2*l-1] """ batch, heads, length, _ = x.size() # padd along column x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]])) x_flat = x.view([batch, heads, length**2 + length*(length -1)]) # add 0's in the beginning that will skew the elements after reshape x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]])) x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:] return x_final def _attention_bias_proximal(self, length): """Bias for self-attention to encourage attention to close positions. Args: length: an integer scalar. Returns: a Tensor with shape [1, 1, length, length] """ r = torch.arange(length, dtype=torch.float32) diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0) class FFN(nn.Module): def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.filter_channels = filter_channels self.kernel_size = kernel_size self.p_dropout = p_dropout self.activation = activation self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2) self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size, padding=kernel_size//2) self.drop = nn.Dropout(p_dropout) def forward(self, x, x_mask): x = self.conv_1(x * x_mask) if self.activation == "gelu": x = x * torch.sigmoid(1.702 * x) else: x = torch.relu(x) x = self.drop(x) x = self.conv_2(x * x_mask) return x * x_mask ``` #### File: 41WhiteElephants/glow-tts/train.py ```python import os import json import argparse import math import torch from torch import nn, optim from torch.nn import functional as F from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter import torch.multiprocessing as mp import torch.distributed as dist from apex.parallel import DistributedDataParallel as DDP from apex import amp from data_utils import TextMelLoader, TextMelCollate import models import commons import utils from text.symbols import symbols global_step = 0 def main(): """Assume Single Node Multi GPUs Training Only""" assert torch.cuda.is_available(), "CPU training is not allowed." n_gpus = 1 # torch.cuda.device_count() os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '80000' hps = utils.get_hparams() mp.spawn(train_and_eval, nprocs=n_gpus, args=(n_gpus, hps,)) def train_and_eval(rank, n_gpus, hps): global global_step if rank == 0: logger = utils.get_logger(hps.model_dir) logger.info(hps) utils.check_git_hash(hps.model_dir) writer = SummaryWriter(log_dir=hps.model_dir) writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval")) dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank) torch.manual_seed(hps.train.seed) torch.cuda.set_device(rank) train_dataset = TextMelLoader(hps.data.training_files, hps.data) train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset, num_replicas=n_gpus, rank=rank, shuffle=True) collate_fn = TextMelCollate(1) train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, batch_size=hps.train.batch_size, pin_memory=True, drop_last=True, collate_fn=collate_fn, sampler=train_sampler) if rank == 0: val_dataset = TextMelLoader(hps.data.validation_files, hps.data) val_loader = DataLoader(val_dataset, num_workers=8, shuffle=False, batch_size=hps.train.batch_size, pin_memory=True, drop_last=True, collate_fn=collate_fn) generator = models.FlowGenerator( n_vocab=len(symbols), out_channels=hps.data.n_mel_channels, **hps.model).cuda(rank) optimizer_g = commons.Adam(generator.parameters(), scheduler=hps.train.scheduler, dim_model=hps.model.hidden_channels, warmup_steps=hps.train.warmup_steps, lr=hps.train.learning_rate, betas=hps.train.betas, eps=hps.train.eps) if hps.train.fp16_run: generator, optimizer_g._optim = amp.initialize(generator, optimizer_g._optim, opt_level="O1") generator = DDP(generator) epoch_str = 1 global_step = 0 try: _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), generator, optimizer_g) epoch_str += 1 optimizer_g.step_num = (epoch_str - 1) * len(train_loader) optimizer_g._update_learning_rate() global_step = (epoch_str - 1) * len(train_loader) except: if hps.train.ddi and os.path.isfile(os.path.join(hps.model_dir, "ddi_G.pth")): _ = utils.load_checkpoint(os.path.join(hps.model_dir, "ddi_G.pth"), generator, optimizer_g) for epoch in range(epoch_str, hps.train.epochs + 1): if rank==0: train(rank, epoch, hps, generator, optimizer_g, train_loader, logger, writer) evaluate(rank, epoch, hps, generator, optimizer_g, val_loader, logger, writer_eval) utils.save_checkpoint(generator, optimizer_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(epoch))) else: train(rank, epoch, hps, generator, optimizer_g, train_loader, None, None) def train(rank, epoch, hps, generator, optimizer_g, train_loader, logger, writer): train_loader.sampler.set_epoch(epoch) global global_step generator.train() for batch_idx, (x, x_lengths, y, y_lengths) in enumerate(train_loader): x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True) y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True) # Train Generator optimizer_g.zero_grad() (z, y_m, y_logs, logdet), attn, logw, logw_, x_m, x_logs = generator(x, x_lengths, y, y_lengths, gen=False) l_mle = 0.5 * math.log(2 * math.pi) + (torch.sum(y_logs) + 0.5 * torch.sum(torch.exp(-2 * y_logs) * (z - y_m)**2) - torch.sum(logdet)) / (torch.sum(y_lengths // hps.model.n_sqz) * hps.model.n_sqz * hps.data.n_mel_channels) l_length = torch.sum((logw - logw_)**2) / torch.sum(x_lengths) loss_gs = [l_mle, l_length] loss_g = sum(loss_gs) if hps.train.fp16_run: with amp.scale_loss(loss_g, optimizer_g._optim) as scaled_loss: scaled_loss.backward() grad_norm = commons.clip_grad_value_(amp.master_params(optimizer_g._optim), 5) else: loss_g.backward() grad_norm = commons.clip_grad_value_(generator.parameters(), 5) optimizer_g.step() if rank==0: if batch_idx % hps.train.log_interval == 0: (y_gen, *_), *_ = generator.module(x[:1], x_lengths[:1], gen=True) logger.info('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(x), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss_g.item())) logger.info([x.item() for x in loss_gs] + [global_step, optimizer_g.get_lr()]) scalar_dict = {"loss/g/total": loss_g, "learning_rate": optimizer_g.get_lr(), "grad_norm": grad_norm} scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(loss_gs)}) utils.summarize( writer=writer, global_step=global_step, images={"y_org": utils.plot_spectrogram_to_numpy(y[0].data.cpu().numpy()), "y_gen": utils.plot_spectrogram_to_numpy(y_gen[0].data.cpu().numpy()), "attn": utils.plot_alignment_to_numpy(attn[0,0].data.cpu().numpy()), }, scalars=scalar_dict) global_step += 1 if rank == 0: logger.info('====> Epoch: {}'.format(epoch)) def evaluate(rank, epoch, hps, generator, optimizer_g, val_loader, logger, writer_eval): if rank == 0: global global_step generator.eval() losses_tot = [] with torch.no_grad(): for batch_idx, (x, x_lengths, y, y_lengths) in enumerate(val_loader): x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True) y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True) (z, y_m, y_logs, logdet), attn, logw, logw_, x_m, x_logs = generator(x, x_lengths, y, y_lengths, gen=False) l_mle = 0.5 * math.log(2 * math.pi) + (torch.sum(y_logs) + 0.5 * torch.sum(torch.exp(-2 * y_logs) * (z - y_m)**2) - torch.sum(logdet)) / (torch.sum(y_lengths // hps.model.n_sqz) * hps.model.n_sqz * hps.data.n_mel_channels) l_length = torch.sum((logw - logw_)**2) / torch.sum(x_lengths) loss_gs = [l_mle, l_length] loss_g = sum(loss_gs) if batch_idx == 0: losses_tot = loss_gs else: losses_tot = [x + y for (x, y) in zip(losses_tot, loss_gs)] if batch_idx % hps.train.log_interval == 0: logger.info('Eval Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(x), len(val_loader.dataset), 100. * batch_idx / len(val_loader), loss_g.item())) logger.info([x.item() for x in loss_gs]) losses_tot = [x/len(val_loader) for x in losses_tot] loss_tot = sum(losses_tot) scalar_dict = {"loss/g/total": loss_tot} scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_tot)}) utils.summarize( writer=writer_eval, global_step=global_step, scalars=scalar_dict) logger.info('====> Epoch: {}'.format(epoch)) if __name__ == "__main__": main() ```
{ "source": "41xu/GeneticAlgorithm", "score": 3 }
#### File: 41xu/GeneticAlgorithm/GA.py ```python import math import random populationNum = 50000 chromoLen = 21 * 2 # 2D X in f1, therefore the chromosome len will be 21*2, 1-21: x1, 22-42: x2 maxX = 100 minX = -100 crossRate=0.7 mutationRate=0.01 def f1(x1, x2): return x1 * x1 + x2 * x2 def f3(x1,x2): return x1*x1-10*math.cos(2*math.pi*x1)+10+\ x2*x2-10*math.cos(2*math.pi*x2)+10 def f4(x1,x2): return (x1*x1+x2*x2)/4000-math.cos(x1/1)*math.cos(x2/2)+1 def EncodingInit(populationNum, chromoLen): population = [] for i in range(populationNum): temp = [] for j in range(chromoLen): temp.append(random.randint(0, 1)) population.append(temp) return population def Decoding(population, chromoLen): X1 = [] X2 = [] for i in range(len(population)): temp = 0 for j in range(0,chromoLen // 2): temp += population[i][j] * math.pow(2, j) X1.append(temp) temp = 0 for j in range(chromoLen // 2, chromoLen): temp += population[i][j] * math.pow(2, j - chromoLen // 2) X2.append(temp) X1_ = [minX + xi * (maxX - minX) / (pow(2, chromoLen // 2) - 1) for xi in X1] X2_ = [minX + xi * (maxX - minX) / (pow(2, chromoLen // 2) - 1) for xi in X2] return X1_, X2_ def fitness1(X1, X2,population): # cal Y # Y is the actual value of function f1, smaller is better # while we calculate the fitness, the larger will be chose # the larger one should has the higher probability to be chose # therefore, we do some little trick on Y # we use (max of Y) - Y[i] to represent the fitness of Y[i] # So, the larger, the better Y = [] for i in range(len(population)): Y.append(f1(X1[i], X2[i])) maxY = max(Y) for i in range(len(population)): Y[i] = maxY - Y[i] return Y def fitness3(X1,X2,population): Y=[] for i in range(len(population)): Y.append(f3(X1[i],X2[i])) maxY=max(Y) for i in range(len(population)): Y[i]=maxY-Y[i] return Y def fitness4(X1,X2,population): Y=[] for i in range(len(population)): Y.append(f4(X1[i],X2[i])) maxY=max(Y) for i in range(len(population)): Y[i]=maxY-Y[i] return Y def selection(population, Y): # Roulette Wheel Selection newPopulation = [] if sum(Y)!=0: probY = [y / sum(Y) for y in Y] else: return None c = 0 for (index, item) in enumerate(probY): c += item r = random.random() if r < c: newPopulation.append(population[index]) return newPopulation def crossover(newPopulation): for i in range(len(newPopulation)-1): r=random.random() if r<crossRate: point=random.randint(0,len(newPopulation[0])-1) temp1=[] temp2=[] temp1.extend(newPopulation[i][:point]) temp1.extend(newPopulation[i+1][point:]) temp2.extend(newPopulation[i+1][:point]) temp2.extend(newPopulation[i][point:]) newPopulation[i]=temp1 newPopulation[i+1]=temp2 return newPopulation def mutation(newPopulation): for i in range(len(newPopulation)): r=random.random() if r<mutationRate: position=random.randint(0,chromoLen//2-1) if newPopulation[i][position]==1: newPopulation[i][position]=0 else: newPopulation[i][position]=1 return newPopulation if __name__ == '__main__': totalPop=[] X=[] Y=[] population = EncodingInit(populationNum, chromoLen) totalPop.append(population) for i in range(populationNum): X1, X2 = Decoding(totalPop[-1], chromoLen) # print(X1,X2) y = fitness1(X1, X2,totalPop[-1]) X.append([X1,X2]) Y.append(y) newpop = selection(totalPop[-1], y) if newpop!=None: newpop = crossover(newpop) newpop = mutation(newpop) totalPop.append(newpop) # print(len(totalPop[-1])) else: break print("f1(x)=sum(xi)^2 for i in range(1,3)") print("x1,x2:",X[-1]) print("y:",Y[-1]) print("Precision for 10^(-4)") populationNum = 50000 chromoLen = 17 * 2 # 2D X in f1, therefore the chromosome len will be 21*2, 1-21: x1, 22-42: x2 maxX = 5.12 minX = -5.12 crossRate = 0.7 mutationRate = 0.01 totalPop=[] X=[] Y=[] population = EncodingInit(populationNum, chromoLen) totalPop.append(population) for i in range(populationNum): X1, X2 = Decoding(totalPop[-1], chromoLen) # print(X1,X2) y = fitness3(X1, X2,totalPop[-1]) X.append([X1,X2]) Y.append(y) newpop = selection(totalPop[-1], y) if newpop!=None: newpop = crossover(newpop) newpop = mutation(newpop) totalPop.append(newpop) # print(len(totalPop[-1])) else: break print("f3(x)=sum(xi^2-10*cos(2*pi*xi)+10) for i in range(1,3)") print("x1,x2=",X[-1]) print("y:",Y[-1]) print("Precision for 10^(-4)") populationNum = 50000 chromoLen = 24 * 2 # 2D X in f1, therefore the chromosome len will be 21*2, 1-21: x1, 22-42: x2 maxX = 600 minX = -600 crossRate = 0.7 mutationRate = 0.01 totalPop=[] X=[] Y=[] population = EncodingInit(populationNum, chromoLen) totalPop.append(population) for i in range(populationNum): X1, X2 = Decoding(totalPop[-1], chromoLen) # print(X1,X2) y = fitness4(X1, X2,totalPop[-1]) X.append([X1,X2]) Y.append(y) newpop = selection(totalPop[-1], y) if newpop!=None: newpop = crossover(newpop) newpop = mutation(newpop) totalPop.append(newpop) # print(len(totalPop[-1])) else: break print("f4(x)=(x1*x1+x2*x2)/4000-math.cos(x1/1)*math.cos(x2/2)+1") print("x1,x2=",X[-1]) print("y:",Y[-1]) print("Precision for 10^(-4)") ```
{ "source": "41y08h/warah-killer", "score": 3 }
#### File: resources/classes/powerup.py ```python import os import pygame import random import globals from os import listdir from os.path import isfile, join class BulletPlus(pygame.sprite.Sprite): appeared = 0 # Constructor def __init__(self): # Call the parent class (Sprite) constructor pygame.sprite.Sprite.__init__(self) # Image self.image = pygame.image.load(os.path.join(globals.data_dir, 'img/pwrp/pwr_bullets.png')).convert_alpha() self.rect = self.image.get_rect() # Create mask self.mask = pygame.mask.from_surface(self.image) # Place on screen self.rect.center = (random.randint(1, globals.winWidth - 140), random.randint(100, globals.winHeight - 140)) def kill(self): self.rect.center = (-300, -300) class BulletPlusGone(pygame.sprite.Sprite): frames = [] # Constructor def __init__(self, x, y): # Call the parent class (Sprite) constructor pygame.sprite.Sprite.__init__(self) # Get all frames path = "data/img/pwrp/pwr_bullets_kill/" frames = [f for f in listdir(path) if isfile(join(path, f))] # Put all frames in a list of Pygame images self.images = [] for frame in frames: self.images.append(pygame.image.load(path + frame).convert_alpha()) self.index = 0 self.image = self.images[self.index] self.rect = self.image.get_rect() # Position self.rect.x = x self.rect.y = y def update(self): # ANIMATE AND KILL AFTER ANIMATION if self.index >= len(self.images): self.kill() else: self.image = self.images[self.index] self.index += 1 class Bomb(pygame.sprite.Sprite): appeared = 0 # Constructor def __init__(self): # Call the parent class (Sprite) constructor pygame.sprite.Sprite.__init__(self) # Image self.image = pygame.image.load(os.path.join(globals.data_dir, 'img/pwrp/pwr_bomb.png')).convert_alpha() self.rect = self.image.get_rect() # Create mask self.mask = pygame.mask.from_surface(self.image) # Place on screen self.rect.center = (random.randint(1, globals.winWidth - 140), random.randint(100, globals.winHeight - 140)) def kill(self): self.rect.center = (-300, -300) class BombGone(pygame.sprite.Sprite): frames = [] # Constructor def __init__(self, x, y): # Call the parent class (Sprite) constructor pygame.sprite.Sprite.__init__(self) # Get all frames path = "data/img/pwrp/pwr_bomb_kill/" frames = [f for f in listdir(path) if isfile(join(path, f))] # Put all frames in a list of Pygame images self.images = [] for frame in frames: self.images.append(pygame.image.load(path + frame).convert_alpha()) self.index = 0 self.image = self.images[self.index] self.rect = self.image.get_rect() # Position self.rect.x = x self.rect.y = y def update(self): # ANIMATE AND KILL AFTER ANIMATION if self.index >= len(self.images): self.kill() else: self.image = self.images[self.index] self.index += 1 ```
{ "source": "4201337/InstagramChecker", "score": 3 }
#### File: 4201337/InstagramChecker/app.py ```python from multiprocessing.dummy import Pool as ThreadPool from threading import Lock as LockPool import requests import time import sys myList = open('app.txt').readlines() myThreads = 50 myLock = LockPool() myPool = ThreadPool(myThreads) def myRun(username): username = username.strip() url = 'https://www.instagram.com/' req = requests.get(url + username) if req.status_code == 200: with myLock: print '[Unavailable]' , username with open('Unavailable.txt', 'a') as Unavailable: Unavailable.write(username + '\n') elif req.status_code == 404: with myLock: print '[Available]' , username with open('Available.txt', 'a') as Available: Available.write(username + '\n') else: with myLock: print '[Error]' , username with open('Error.txt', 'a') as Error: Error.write(username + '|' + req.status_code + '\n') startTime = time.time() if __name__ == '__main__': myPool.map(myRun, myList) myPool.close() myPool.join() endTime = time.time() print '=============================' print 'Done!' print '=============================' print 'Total Time :' , round(endTime - startTime, 2) , 'Seconds' print 'Total Threads :' , myThreads print 'Total Tries :' , len(myList) print '============================' print 'Thank you, come again!' print '============================' ```
{ "source": "420tushar/text_to_handwriting", "score": 3 }
#### File: 420tushar/text_to_handwriting/imagehand.py ```python import numpy as np from PIL import Image def make_image(list1,count): imgs = [ Image.open(i) for i in list1 ] #min_shape = sorted( [(np.sum(i.size), i.size ) for i in imgs])[0][1] min_shape=(10*y,10*y) imgs_comb = np.hstack( (np.asarray( i.resize(min_shape) ) for i in imgs ) ) imgs_comb = Image.fromarray( imgs_comb) imgs_comb.save( str(count)+'.jpg' ) def multiple_lines(count): list1=[] for i in range(1,count+1,1): z=str(i)+".jpg" list1.append(z) imgs = [ Image.open(i) for i in list1 ] min_shape = sorted( [(np.sum(i.size), i.size ) for i in imgs])[0][1] # min_shape=(300*y,200*y) imgs_comb = np.vstack( (np.asarray( i.resize(min_shape) ) for i in imgs ) ) imgs_comb = Image.fromarray( imgs_comb) imgs_comb.save( 'final.jpg') #list_im = ['Test1.jpg', 'Test2.jpg', 'Test3.jpg'] x=open("new.txt","r") #print("ENTER TEXT TO CONVERT") #x.write(input()+"\n") list1=[] listx=[i for i in x.read()] y=0 count=0 for i in listx: if i=='\n': count=count+1 if(len(list1)<50): for i in range(len(list1),50,1): list1.append('space.jpg') make_image(list1,count) list1.clear() continue if(i>='a' and i<= 'z') : z=i+".jpg" else: z='space.jpg' list1.append(z) y=y+1 if(count>0): multiple_lines(count) ```
{ "source": "421408/tudocomp", "score": 3 }
#### File: tudocomp/etc/genregistry.py ```python import collections import os import argparse import re import sys from textwrap import dedent, indent parser = argparse.ArgumentParser() parser.add_argument('config') parser.add_argument('config_path') parser.add_argument('out_path') parser.add_argument('--print_deps', action='store_true') parser.add_argument('--generate_files', action='store_true') args = parser.parse_args() pyconfig = args.config config_path = args.config_path out_path = args.out_path root_filename = os.path.join(out_path, 'root.cpp') def eval_config(path, globs): file0 = open(path, 'r') content = file0.read() file0.flush() file0.close() exec(content, globs) def config_match(pattern): textfile = open(config_path, 'r') filetext = textfile.read() textfile.close() pattern = re.compile(pattern) for line in filetext.splitlines(): for match in re.finditer(pattern, line): return True return False AlgorithmConfig = collections.namedtuple( 'AlgorithmConfig', ['name', 'header', 'sub']) AlgorithmConfig.__new__.__defaults__ = ('', '', []) class RegistryConfig: compressors = [] decompressors = [] generators = [] def get_kinds(self): return [ ("Compressor", self.compressors), ("Decompressor", self.decompressors), ("Generator", self.generators), ] def code(s, i = 0, r = {}): s = indent(dedent(s), ' ' * i) for key in r: s = s.replace(key, r[key]) return s class Code: def __init__(self, file): self.file = file def code(self, s, i = 0, r = {}): self.file.write(code(s, i, r) + '\n') def emptyline(self): self.file.write('\n') autogen_disclaimer = ''' /* Autogenerated file by genregistry.py */ ''' tdc = RegistryConfig() eval_config(pyconfig, { "config_match": config_match, "AlgorithmConfig": AlgorithmConfig, "tdc": tdc }) def cpp_template_instance(instance): str = "" level = 0 level_num = [1] level_rank = [0] for (name, nsubs) in instance: if level_rank[level] > 0: str += ", " str += name level_rank[level] += 1 if nsubs > 0: str += '<' level += 1 level_num.append(nsubs) level_rank.append(0) while level > 0 and level_rank[level] >= level_num[level]: del level_rank[level] del level_num[level] level -= 1 str += '>' return str def dfs(algo, f, q = [], instance = [], headers = []): (name, header, sub) = algo instance_ = instance + [(name,len(sub))] headers_ = headers + [header] q_ = sub + q if len(q_) > 0: next = q_[0] q_ = q_[1:] for sub_algo in next: dfs(sub_algo, f, q_, instance_, headers_) else: # reached a leaf f(instance_, headers_) def print_instance(instance, headers): print(cpp_template_instance(instance)) ####################### ### Instance groups ### ####################### groups = [] max_groupsize = 100; for (classname, algos) in tdc.get_kinds(): class_groups = [] for algo in algos: (name, _, _) = algo group_name = name.replace(':', '_') group_rank = 1 group_count = 0 group_headers = [] group_instances = [] def write_group(): global class_groups class_groups.append(group_name) if args.generate_files: group_headers.sort() with open(os.path.join(out_path, group_name + '.cpp'), 'w') as f: cpp = Code(f) cpp.code(autogen_disclaimer) cpp.code('#include <tudocomp_driver/Registry.hpp>') for h in group_headers: cpp.code('#include <tudocomp/' + h + '>') cpp.emptyline() cpp.code('namespace tdc_algorithms {') cpp.emptyline() cpp.code('using namespace tdc;') cpp.emptyline() cpp.code('void register_$GROUP(RegistryOf<$TYPE>& r) {', 0, { '$GROUP': group_name, '$TYPE': classname}) for i in group_instances: cpp.code('r.register_algorithm<$INSTANCE>();', 1, { '$INSTANCE': i }) cpp.code('}') cpp.emptyline() cpp.code('} // namespace') def process_instance(instance, headers): global group_name, group_rank, group_count, group_headers, group_instances group_headers = list(set(group_headers + headers)) group_instances.append(cpp_template_instance(instance)) group_count += 1 if group_count > max_groupsize: write_group() group_headers = [] group_instances = [] group_count = 0 group_rank += 1 group_name = name + '_' + str(group_rank) dfs(algo, process_instance) if group_count > 0: write_group() groups.append((classname, class_groups)) ################ ### root.cpp ### ################ if args.generate_files: with open(root_filename, 'w') as f: root = Code(f) root.code(autogen_disclaimer) root.code('#include <tudocomp_driver/Registry.hpp>') root.emptyline() root.code('namespace tdc_algorithms {') root.emptyline() root.code('using namespace tdc;') root.emptyline() root.code('// forward declarations') for (classname, class_groups) in groups: for group_name in class_groups: root.code('void register_$GROUP(RegistryOf<$TYPE>&);', 0, { '$GROUP': group_name, '$TYPE': classname }) root.emptyline() root.code('void register_algorithms() {', 0) for (classname, class_groups) in groups: root.code('// $TYPEs', 1, { '$TYPE': classname }) root.code('{', 1) if len(class_groups) > 0: root.code('auto& r = Registry::of<$TYPE>();', 2, { '$TYPE': classname }) for group_name in class_groups: root.code('register_$GROUP(r);', 2, { '$GROUP': group_name }) root.code('}', 1) root.code('}') root.emptyline() root.code('} //namespace') if args.print_deps: files = [root_filename] for (_, class_groups) in groups: for group_name in class_groups: files.append(os.path.join(out_path, group_name + '.cpp')) sys.stdout.write(';'.join(files)) sys.stdout.flush() os.sync() ```
{ "source": "4220182/py-flask", "score": 4 }
#### File: 4220182/py-flask/test.py ```python def getval(a): return a * 3 a = {'a':1, 'b':2, 'c':3} s = {k: getval(s) for k,s in a.items() if s>2} print(s) a = [1,2,3] s = [k * 2 for k in a] print(s) ```
{ "source": "422562/cert-verifier", "score": 3 }
#### File: cert-verifier/certverifier/cert_verifier.py ```python from certverifier.print_helper import * from certverifier.classify_features import * import os, sys, getopt, codecs, csv import pandas from OpenSSL import crypto from time import time def main(): argv = sys.argv[1:] infile = "" outfile = "output.csv" mode = "123" strict = False cert_count = 0 try: opts, args = getopt.getopt(argv, "hi:o:m:s", ["infile=","outfile=","mode=","strict"]) except getopt.GetoptError: print_help() sys.exit() for opt, arg in opts: if opt == "-h": print_help() sys.exit() if opt == "-i": infile = arg if opt == "-o": outfile = arg if opt == "-m": mode = arg if opt == "-s": strict = True patterns_df = pandas.read_csv(pkgfile("data/malicious-patterns-with-malware.csv")) malicious_patterns = patterns_df.drop('malware', axis = 1).values.tolist() malicious_subjectCNs = pandas.read_csv(pkgfile("data/malicious_subjectCN.csv"))['subject.CN'].values.tolist() classifiers = load_classifiers() count_vectorizers = load_count_vectorizers() # classify a single .PEM file if os.path.isfile(infile): with codecs.open(infile, 'r', 'utf-8') as certfile: certdata = certfile.read() cert = crypto.load_certificate(crypto.FILETYPE_PEM, certdata) class_dict = get_class_dict(cert, classifiers, count_vectorizers) cert_type = classify_cert(cert, mode, strict, class_dict, malicious_patterns, malicious_subjectCNs) print_cert_result(infile, cert_type) # classify a folder with .PEM certificates if os.path.isdir(infile): start_time = time() cert_counts = [0] * 5 lst = os.listdir(infile) lst.sort() with codecs.open(outfile, 'w', 'utf-8') as out: print_header(out) for file in lst: with codecs.open(os.path.join(infile, file), 'r', 'utf-8') as certfile: certdata = certfile.read() cert = crypto.load_certificate(crypto.FILETYPE_PEM, certdata) class_dict = get_class_dict(cert, classifiers, count_vectorizers) cert_type = classify_cert(cert, mode, strict, class_dict, malicious_patterns, malicious_subjectCNs) print_to_file(out, file, cert_type) cert_counts[cert_type] += 1 # print information to output about the progress if sum(cert_counts) % 100 == 0: print_certificate_counts(cert_counts) print_classification_time(start_time) print_certificate_counts(cert_counts) if __name__ == "__main__": main(sys.argv[1:]) ```
{ "source": "422926799/SecistSploit", "score": 3 }
#### File: modules/listener/connection_vnc.py ```python import os,sys,shutil from secistsploit.core.exploit import * from secistsploit.core.tcp.tcp_client import TCPClient platform=sys.platform #判断获取操作系统 if platform == "darwin": path=os.getcwd()+'/secistsploit/data/vnc/vncviewer_linux' elif platform == "linux": path=os.getcwd()+'/secistsploit/data/vnc/vncviewer_linux' elif platform == "windows": path=os.getcwd()+'/secistsploit/data/vnc/vncviewer_win.exe' class Exploit(TCPClient): __info__ = { "name": "connection_vnc", "\033[91m内容描述\033[0m": "connection模块叙述:\n" "1.runvnc.exe 运行后会启动vnc默认5900端口支持x64 x86\n", "2.连接密码是<PASSWORD> \n" "\033[91m参考链接\033[0m": ( " \n" ), "\033[91m作者\033[0m": ( "WBGlIl", ), } rhost = OptIP("", "远程目标IP地址") target = OptString("Windows") rport= OptPort("5900","port") def run(self): RHOST=(self.rhost) TARGET=(self.target) RPORT=(self.rport) ip = " "+RHOST+":" if TARGET == "Windows": file=os.getcwd()+'/secistsploit/data/vnc/runvnc.exe' shutil.copy(file,os.getcwd()) print ("\033[92m[+]\033[0m 客户端输出路径: "+os.getcwd()+"/runvnc.exe \n") yes= input("\033[94m[*]\033[0m 如果已经执行客户端请输入yes: ") if yes =="yes": runvnc=path+ip+str(RPORT) os.system(runvnc) else: print ("请在被攻击者机器上执行客户端程序") ``` #### File: 422926799/SecistSploit/SSF.py ```python from __future__ import print_function import logging.handlers import sys if sys.version_info.major < 3: print("secistsploit supports only Python3. Rerun application in Python3 environment.") exit(0) from secistsploit.main import secistsploitInterpreter log_handler = logging.handlers.RotatingFileHandler(filename="secistsploit_attack.log", maxBytes=500000) log_formatter = logging.Formatter("%(asctime)s %(levelname)s %(name)s %(message)s") log_handler.setFormatter(log_formatter) LOGGER = logging.getLogger() LOGGER.setLevel(logging.DEBUG) LOGGER.addHandler(log_handler) def secistsploit(): ssf = secistsploitInterpreter() ssf.start() if __name__ == "__main__": secistsploit() ```
{ "source": "423s22/G1", "score": 4 }
#### File: src/Python_Files/controller.py ```python import directory_scanner as scanner import converter import directory_controller as directory def collect_scannable_files(): acceptable_file_extensions = [".xlsx", ".csv"] return scanner.remove_invalid_file_types(scanner.retrieve_files("./data_files/machine_readable_files/*.*"), acceptable_file_extensions) PATH = './data_files/machine_readable_files/' documents = collect_scannable_files() for files in documents: extension = "." + files.split(".")[-1] hospital = scanner.strip_path_and_ending(files) print("Scanning: ", hospital) try: converter.output_to_csv(converter.scan_document(hospital, PATH, extension), hospital) except Exception as e: directory.generate_directory("logs") print("Error scanning", hospital) print("Item aded to log") with open("./logs/error_log.txt", "a") as file: file.write("Error Processing: " + hospital + " ") file.write(str(e)) print("Completed") print() ```
{ "source": "423s22/G2", "score": 3 }
#### File: G2/LocalServer/correctOutputTest.py ```python import fileParser def testValidDocValidates(): validate = fileParser.validatorMain() validate.parse("Completed_Example_ETD.docx") fp = open("Changes/requiredChanges.txt") firstLine = fp.readline() assert "All good" in firstLine if __name__ == '__main__': # Code to test fileParser independently testValidDocValidates() ```
{ "source": "425741639/gssresources", "score": 4 }
#### File: 425741639/gssresources/Part_Edition.py ```python import random #四则运算式参数列表生成(不带括号) def getList(Operator,max_num,decimal_status,decimal_digit): operator = [] calculate_num = [] operate_num = random.randint(2, 3)#操作数数量 operator_num = operate_num - 1#操作符数量 for i in range(operate_num): if decimal_status == 1: calculate_num.append(random.randint(0, max_num)) elif decimal_status ==0: if random.randint(0,1) == 1: calculate_num.append(random.randint(0, max_num)) else: calculate_num.append(round(random.uniform(0, max_num),decimal_digit)) for i in range(operator_num): operator.append(Operator[random.randint(0, len(Operator) - 1)]) if operator[i] == '/': while calculate_num[i+1] == 0: if decimal_status == 1: calculate_num[i + 1] = random.randint(0, max_num) elif decimal_status == 0: if random.randint(0,1) == 1: calculate_num[i+1] = random.randint(0, max_num) else: calculate_num[i + 1] = round(random.uniform(0, max_num),decimal_digit) if decimal_status == 1: for i in range(len(operator)): if i == 0: if operator[i] == '*': temp = calculate_num[i] * calculate_num[i + 1] elif operator[i] == '/': while calculate_num[i] % calculate_num[i + 1] != 0: calculate_num[i] = random.randint(0, max_num) calculate_num[i + 1] = random.randint(0, max_num) while calculate_num[i + 1] == 0: calculate_num[i + 1] = random.randint(0, max_num) temp = calculate_num[i] // calculate_num[i + 1] else: if operator[i] == '*': if operator[i - 1] == '*' or operator[i - 1] == '/': temp = temp * calculate_num[i + 1] else: temp = calculate_num[i] * calculate_num[i + 1] elif operator[i] == '/': if operator[i - 1] == '*' or operator[i - 1] == '/': while temp % calculate_num[i + 1] != 0: calculate_num[i + 1] = random.randint(0, max_num) while calculate_num[i + 1] == 0: calculate_num[i + 1] = random.randint(0, max_num) temp = temp // calculate_num[i + 1] else: while calculate_num[i] % calculate_num[i + 1] != 0: calculate_num[i] = random.randint(0, max_num) calculate_num[i + 1] = random.randint(0, max_num) while calculate_num[i + 1] == 0: calculate_num[i + 1] = random.randint(0, max_num) temp = calculate_num[i] // calculate_num[i + 1] return operator,calculate_num #四则运算式参数列表生成(带括号) def getList2(Operator,max_num,decimal_status,decimal_digit): operator = [] calculate_num = [] operate_num = random.randint(3,4)#操作数的数量 operator_num = operate_num - 1#操作符数量 for i in range(operate_num): if decimal_status == 1: calculate_num.append(random.randint(0, max_num)) elif decimal_status == 0: if random.randint(0,1) == 1: calculate_num.append(random.randint(0, max_num)) else: calculate_num.append(round(random.uniform(0, max_num),decimal_digit)) for i in range(operator_num): operator.append(Operator[random.randint(0, len(Operator) - 1)]) if operator[i] == '/': while calculate_num[i+1] == 0: if decimal_status == 1: calculate_num[i+1] = random.randint(0,max_num) elif decimal_status == 0: if random.randint(0,1) == 1: calculate_num[i+1] = random.randint(0, max_num) else: calculate_num[i+1] = round(random.uniform(0, max_num),decimal_digit) if decimal_status == 1: for i in range(len(operator)): if i == 0: if operator[i] == '*': temp = calculate_num[i] * calculate_num[i + 1] elif operator[i] == '/': while calculate_num[i] % calculate_num[i + 1] != 0: calculate_num[i] = random.randint(0, max_num) calculate_num[i + 1] = random.randint(0, max_num) while calculate_num[i + 1] == 0: calculate_num[i + 1] = random.randint(0, max_num) temp = calculate_num[i] // calculate_num[i + 1] elif operator[i] == '+': temp = calculate_num[i] + calculate_num[i + 1] elif operator[i] == '-': temp = calculate_num[i] - calculate_num[i + 1] elif i == 1: if operator[i] == '*': temp = temp * calculate_num[i + 1] elif operator[i] == '/': while temp % calculate_num[i + 1] != 0: calculate_num[i + 1] = random.randint(0, max_num) while calculate_num[i + 1] == 0: calculate_num[i + 1] = random.randint(0, max_num) temp = temp // calculate_num[i + 1] else: if operator[i] == '*': if operator[i - 1] == '*' or operator[i - 1] == '/': temp = temp * calculate_num[i + 1] else: temp = calculate_num[i] * calculate_num[i + 1] elif operator[i] == '/': if operator[i - 1] == '*' or operator[i - 1] == '/': while temp % calculate_num[i + 1] != 0: calculate_num[i + 1] = random.randint(0, max_num) while calculate_num[i + 1] == 0: calculate_num[i + 1] = random.randint(0, max_num) temp = temp // calculate_num[i + 1] else: while calculate_num[i] % calculate_num[i + 1] != 0: calculate_num[i] = random.randint(0, max_num) calculate_num[i + 1] = random.randint(0, max_num) while calculate_num[i + 1] == 0: calculate_num[i + 1] = random.randint(0, max_num) temp = calculate_num[i] // calculate_num[i + 1] return operator,calculate_num #四则运算式组合 def getFormula(operator,calculate_num,brackets=0): formula = '' if brackets == 0 or brackets == 1: formula = str(calculate_num[0]) for i in range(len(operator)): formula = formula + operator[i] + str(calculate_num[i + 1]) elif brackets == 2: formula = '(' + str(calculate_num[0]) for i in range(len(operator)): if i == 0: formula = formula + operator[i] + str(calculate_num[i + 1]) + ')' else: formula = formula + operator[i] + str(calculate_num[i + 1]) return formula #四则式列表生成模块,传入参数需:program_num,Operator,max_num,decimal_status,decimal_digit,返回值为ProgramList def getProgramList(program_num,Operator,max_num,decimal_status,decimal_digit,blackets): ProgramList = [] while len(ProgramList) != program_num: #利用集合元素的唯一性获得无重复四则式列表 if blackets == 0: brackets_probability = random.randint(0, 2) #2/3概率为不带括号,1/3概率为带括号 if brackets_probability==0 or brackets_probability == 1: operator,calculate_num = getList(Operator,max_num,decimal_status,decimal_digit) ProgramList.append(getFormula(operator,calculate_num,brackets_probability)) elif brackets_probability==2: operator,calculate_num = getList2(Operator,max_num,decimal_status,decimal_digit) ProgramList.append(getFormula(operator,calculate_num,brackets_probability)) elif blackets == 1: operator, calculate_num = getList(Operator, max_num, decimal_status, decimal_digit) ProgramList.append(getFormula(operator, calculate_num)) ProgramList = set(ProgramList) #列表转集合 ProgramList = list(ProgramList) #集合转列表 return ProgramList #计算模块,传入参数需:decimal_status,decimal_digit,ProgramList,Program_Answer,返回值为Program_Answer def Compute_Answer(program_num, decimal_status, decimal_digit, ProgramList): ProgramList_Temp = [] Program_Answer = [] if decimal_status == 1:#如果不包括小数 for i in ProgramList: ProgramList_Temp.append(i.replace('/', '//')) for i in range(program_num): Program_Answer.append(eval(ProgramList_Temp[i])) elif decimal_status == 0: for i in range(len(ProgramList)): Program_Answer.append(round(eval(ProgramList[i]),decimal_digit)) return Program_Answer #输出模块,传入参数:Output_Mode,ProgramList,Program_Answer def Output_Module(program_num,ProgramList,Program_Answer): print(str(program_num) + "道题目已生成,请选择操作方式:\n" "1-输出至屏幕同时存为文件 2-仅输出至屏幕") while True: try: Output_Mode = int(input()) while Output_Mode not in [1,2]: Output_Mode = int(input("无该选项,请重新选择:1-输出至屏幕同时存为文件 2-仅输出至屏幕\n")) except ValueError: print("请输入正确选项!!!") else: break if Output_Mode == 1: print_screen(program_num,ProgramList,Program_Answer) count1 = count2 = 1 with open('Program.txt','w',encoding='UTF-8') as f: f.write("题目如下:\n") for i in range(program_num): f.write(str(count1) + '、' + str(ProgramList[i]) + '='+'\n') count1 += 1 with open('Answer.txt', 'w', encoding='UTF-8') as f: f.write("答案如下:\n") for i in range(program_num): f.write(str(count2) + '、' + str(Program_Answer[i])+'\n') count2 += 1 else: print_screen(program_num,ProgramList,Program_Answer) def print_screen(program_num,ProgramList,Program_Answer): count1 = count2 = 1 print("题目如下:") for i in range(program_num): print(str(count1)+'、'+ str(ProgramList[i]) + '=') count1+=1 while True: try: Answer_Print = int(input("是否输出答案:0-是 1-否")) while Answer_Print not in [0,1]: Answer_Print = int(input("无该选项,请重新选择:0-是 1-否")) except ValueError: print("请输入正确选项!") else: break if Answer_Print == 0: print("答案如下:") for i in range(program_num): print(str(count2) + '、' + str(Program_Answer[i])) count2+=1 def main(): while True: try: program_num = int(input("请输入题目数量:")) while program_num <= 0: program_num = int(input("输入为非正整数!!!\n请输入有效题目数量:")) except ValueError: print("请输入整数!!!") else: break while True: try: max_num = int(input("请输入最大操作数:")) while max_num < 0: max_num = int(input("输入为负数!!!\n请输入有效最大操作数:")) except ValueError: print("请输入非负整数!") else: break while True: try: blackets = int(input("是否包含括号:0-是 1-否\n")) while blackets not in [0,1]: blackets = int(input("无该选项,请重新选择:0-是 1-否\n")) except ValueError: print("请输入正确选项!") else: break while True: try: decimal_status = int(input("是否包括小数:0-是 1-否\n")) while decimal_status not in [0,1]: decimal_status = int(input("无该选项,请重新选择:0-是 1-否\n")) except ValueError: print("请输入正确选项!") else: break decimal_digit = 0 if decimal_status == 0: while True: try: decimal_digit = int(input("请输入小数位数:")) while decimal_digit < 0: decimal_digit = int(input("输入为非正整数!!!\n请输入有效小数位数:")) except ValueError: print("请输入非负整数!") else: break Operator_str_temp = input("请输入操作符,以空格隔开:") Operator_str = Operator_str_temp.strip(' ') Operator = Operator_str.split(' ') while True: count = 0 for i in Operator: if i not in ['+','-','*','/']: Operator_str_temp = input("输入含非运算符!!!\n请输入正确的操作符:") Operator_str = Operator_str_temp.strip(' ') Operator = Operator_str.split(' ') break else: count += 1 if count == len(Operator): break ProgramList = getProgramList(program_num,Operator,max_num,decimal_status,decimal_digit,blackets) Program_Answer = Compute_Answer(program_num, decimal_status, decimal_digit, ProgramList) Output_Module(program_num, ProgramList, Program_Answer) if __name__ == '__main__': main() ```
{ "source": "425776024/CoolNERTool", "score": 2 }
#### File: CoolNERTool/src/load_json.py ```python import json def get_json(path_json: str): with open(path_json, encoding='utf-8') as f: return json.load(f) ```
{ "source": "425776024/MOEAD", "score": 3 }
#### File: src/utils/Draw_Utils.py ```python import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D ''' 绘图工具包 ''' fig = plt.figure() plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 ax = 0 def show(): plt.show() def draw_MOEAD_Pareto(moead, name): Pareto_F_ID = moead.EP_X_ID Pop_F_Data = moead.Pop_FV Len = len(Pop_F_Data[0]) if Len == 2: r_x = Pop_F_Data[0][:] r_y = Pop_F_Data[0][:] for pi, pp in enumerate(Pop_F_Data): plt.scatter(pp[0], pp[1], c='black', s=5) for pid in Pareto_F_ID: p = Pop_F_Data[pid] if p[0] < r_x[0]: r_x[0] = p[0] if p[0] > r_x[1]: r_x[1] = p[0] if p[1] < r_y[0]: r_y[0] = p[0] if p[1] > r_y[1]: r_y[1] = p[1] # cc=(np.random.rand(),np.random.rand(),np.random.rand()) plt.scatter(p[0], p[1], c='r', s=20) # plt.text(p[0], p[1]+0.2*np.random.rand(), str(pid), fontsize=10) plt.xlabel('Function 1', fontsize=15) plt.ylabel('Function 2', fontsize=15) plt.title(name) # plt.xlim(r_x[0] - 0.1, r_x[1] + 0.1) # plt.ylim(r_y[0] - 0.1, r_y[1] + 0.1) # if Len == 3: # global ax, fig # if ax == 0: # ax = Axes3D(fig) # ax.set_xlabel('Function 1') # ax.set_ylabel('Function 2') # ax.set_zlabel('Function 3') # for pp in Pop_F_Data: # ax.scatter(pp[0], pp[1], pp[2], c='black', s=5) # for pid in Pareto_F_ID: # p = Pop_F_Data[pid] # ax.scatter(p[0], p[1], p[2], c='red', s=10) # ax.set_xlim([0,20]) # ax.set_ylim([0,20]) # ax.set_zlim([0,20]) def draw_W(moead): Start_Pts = moead.Z path = moead.csv_file_path + '/' + moead.name + '.csv' data = np.loadtxt(path) Pareto_F_ID = moead.EP_X_ID Pop_F_Data = moead.Pop_FV if data.shape[1] == 3: global ax, fig if ax == 0: ax = Axes3D(fig) x, y, z = data[:, 0], data[:, 1], data[:, 2] VecStart_x = Start_Pts[0] VecStart_y = Start_Pts[1] VecStart_z = Start_Pts[2] VecEnd_x = data[:, 0] VecEnd_y = data[:, 1] VecEnd_z = data[:, 2] ax.scatter(x, y, z, marker='.', s=50, label='', color='r') for i in range(VecEnd_x.shape[0]): ax.plot([VecStart_x, VecEnd_x[i]], [VecStart_y, VecEnd_y[i]], zs=[VecStart_z, VecEnd_z[i]]) if data.shape[1] == 2: # x, y = data[:, 0], data[:, 1] # plt.xlabel('X') # plt.xlabel('Y') # plt.scatter(x, y, marker='.', s=50, label='', color='r') VecStart_x = Start_Pts[0] VecStart_y = Start_Pts[1] VecEnd_x = data[:, 0] VecEnd_y = data[:, 1] for i in range(VecEnd_y.shape[0]): if i == moead.now_y: plt.plot([VecEnd_x[i], Pop_F_Data[i][0]], [VecEnd_y[i], Pop_F_Data[i][1]]) plt.plot([VecStart_x, VecEnd_x[i]], [VecStart_y, VecEnd_y[i]]) ``` #### File: src/utils/Mean_Vector_Util.py ```python import numpy as np ''' 求解均值向量 ''' class Mean_vector: # 对m维空间,目标方向个数H def __init__(self, H=5, m=3, path='out.csv'): self.H = H self.m = m self.path = path self.stepsize = 1 / H def perm(self, sequence): # !!! 序列全排列,且无重复 l = sequence if (len(l) <= 1): return [l] r = [] for i in range(len(l)): if i != 0 and sequence[i - 1] == sequence[i]: continue else: s = l[:i] + l[i + 1:] p = self.perm(s) for x in p: r.append(l[i:i + 1] + x) return r def get_mean_vectors(self): H = self.H m = self.m sequence = [] for ii in range(H): sequence.append(0) for jj in range(m - 1): sequence.append(1) ws = [] pe_seq = self.perm(sequence) for sq in pe_seq: s = -1 weight = [] for i in range(len(sq)): if sq[i] == 1: w = i - s w = (w - 1) / H s = i weight.append(w) nw = H + m - 1 - s nw = (nw - 1) / H weight.append(nw) if weight not in ws: ws.append(weight) return ws def save_mv_to_file(self, mv): f = np.array(mv, dtype=np.float64) np.savetxt(fname=self.path, X=f) def generate(self): m_v = self.get_mean_vectors() self.save_mv_to_file(m_v) # mv = Mean_vector(10, 3, 'test.csv') # mv.generate() ```
{ "source": "428lab/debug-shrine", "score": 2 }
#### File: debug-shrine/server/main.py ```python from flask import Flask from flask_cors import CORS import router def create_app(): # Generate Flask App Instance app = Flask(__name__) app.register_blueprint(router.router) app.config['JSON_AS_ASCII'] = False #日本語文字化け対策 app.config["JSON_SORT_KEYS"] = False #ソートをそのまま CORS(app, origins=["http://localhost", "http://localhost:3000"]) return app app = create_app() if __name__ == "__main__": app.run(host='0.0.0.0', debug=True, port=80, threaded=True, use_reloader=False) ``` #### File: debug-shrine/server/router.py ```python from flask import Blueprint # from controller import user_controller from logging import config from json import load # import auth # import logger # Generate Router Instance router = Blueprint('router', __name__) @router.route("/", methods=['GET']) # @logger.http_request_logging # @auth.requires_auth def hello_world(): return "Hello World!!" # @router.route("/api/v1/users/getUserList", methods=['GET']) # @logger.http_request_logging # @auth.requires_auth # def api_v1_users_get_user_list(): # return user_controller.get_user() # @router.after_request # def after_request(response): # # response.headers.add('Access-Control-Allow-Origin', '*') # response.headers.add('Access-Control-Allow-Headers', 'Content-Type,Authorization') # response.headers.add('Access-Control-Allow-Methods', 'GET,PUT,POST,DELETE,OPTIONS') # return response ```
{ "source": "428lab/reception_bot", "score": 2 }
#### File: reception_bot/plugins/log.py ```python class Handler: def __init__(self, db): self.db = db self.info = { "name":"log", "permission":"user", "type":"command", "commands":["*"], "version":"0.0.1", } def get_plugin_info(self): return self.info def on_message(self, server_id, server_name, user_id, user_name, channel_id, channel_name, content, command): self.db.discord_log_chat(server_id, channel_id, user_id, content) reaction = { "message": None, "embed": None, "processed": True, "through": True, "file": None } return reaction ```
{ "source": "428s/kamonohashi", "score": 2 }
#### File: rest/models/tenant_api_models_edit_input_model.py ```python import pprint import re # noqa: F401 import six class TenantApiModelsEditInputModel(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'available_infinite_time_notebook': 'bool', 'default_git_id': 'int', 'default_registry_id': 'int', 'display_name': 'str', 'git_ids': 'list[int]', 'registry_ids': 'list[int]', 'storage_id': 'int' } attribute_map = { 'available_infinite_time_notebook': 'availableInfiniteTimeNotebook', 'default_git_id': 'defaultGitId', 'default_registry_id': 'defaultRegistryId', 'display_name': 'displayName', 'git_ids': 'gitIds', 'registry_ids': 'registryIds', 'storage_id': 'storageId' } def __init__(self, available_infinite_time_notebook=None, default_git_id=None, default_registry_id=None, display_name=None, git_ids=None, registry_ids=None, storage_id=None): # noqa: E501 """TenantApiModelsEditInputModel - a model defined in Swagger""" # noqa: E501 self._available_infinite_time_notebook = None self._default_git_id = None self._default_registry_id = None self._display_name = None self._git_ids = None self._registry_ids = None self._storage_id = None self.discriminator = None if available_infinite_time_notebook is not None: self.available_infinite_time_notebook = available_infinite_time_notebook if default_git_id is not None: self.default_git_id = default_git_id if default_registry_id is not None: self.default_registry_id = default_registry_id self.display_name = display_name self.git_ids = git_ids self.registry_ids = registry_ids self.storage_id = storage_id @property def available_infinite_time_notebook(self): """Gets the available_infinite_time_notebook of this TenantApiModelsEditInputModel. # noqa: E501 :return: The available_infinite_time_notebook of this TenantApiModelsEditInputModel. # noqa: E501 :rtype: bool """ return self._available_infinite_time_notebook @available_infinite_time_notebook.setter def available_infinite_time_notebook(self, available_infinite_time_notebook): """Sets the available_infinite_time_notebook of this TenantApiModelsEditInputModel. :param available_infinite_time_notebook: The available_infinite_time_notebook of this TenantApiModelsEditInputModel. # noqa: E501 :type: bool """ self._available_infinite_time_notebook = available_infinite_time_notebook @property def default_git_id(self): """Gets the default_git_id of this TenantApiModelsEditInputModel. # noqa: E501 :return: The default_git_id of this TenantApiModelsEditInputModel. # noqa: E501 :rtype: int """ return self._default_git_id @default_git_id.setter def default_git_id(self, default_git_id): """Sets the default_git_id of this TenantApiModelsEditInputModel. :param default_git_id: The default_git_id of this TenantApiModelsEditInputModel. # noqa: E501 :type: int """ self._default_git_id = default_git_id @property def default_registry_id(self): """Gets the default_registry_id of this TenantApiModelsEditInputModel. # noqa: E501 :return: The default_registry_id of this TenantApiModelsEditInputModel. # noqa: E501 :rtype: int """ return self._default_registry_id @default_registry_id.setter def default_registry_id(self, default_registry_id): """Sets the default_registry_id of this TenantApiModelsEditInputModel. :param default_registry_id: The default_registry_id of this TenantApiModelsEditInputModel. # noqa: E501 :type: int """ self._default_registry_id = default_registry_id @property def display_name(self): """Gets the display_name of this TenantApiModelsEditInputModel. # noqa: E501 :return: The display_name of this TenantApiModelsEditInputModel. # noqa: E501 :rtype: str """ return self._display_name @display_name.setter def display_name(self, display_name): """Sets the display_name of this TenantApiModelsEditInputModel. :param display_name: The display_name of this TenantApiModelsEditInputModel. # noqa: E501 :type: str """ if display_name is None: raise ValueError("Invalid value for `display_name`, must not be `None`") # noqa: E501 self._display_name = display_name @property def git_ids(self): """Gets the git_ids of this TenantApiModelsEditInputModel. # noqa: E501 :return: The git_ids of this TenantApiModelsEditInputModel. # noqa: E501 :rtype: list[int] """ return self._git_ids @git_ids.setter def git_ids(self, git_ids): """Sets the git_ids of this TenantApiModelsEditInputModel. :param git_ids: The git_ids of this TenantApiModelsEditInputModel. # noqa: E501 :type: list[int] """ if git_ids is None: raise ValueError("Invalid value for `git_ids`, must not be `None`") # noqa: E501 self._git_ids = git_ids @property def registry_ids(self): """Gets the registry_ids of this TenantApiModelsEditInputModel. # noqa: E501 :return: The registry_ids of this TenantApiModelsEditInputModel. # noqa: E501 :rtype: list[int] """ return self._registry_ids @registry_ids.setter def registry_ids(self, registry_ids): """Sets the registry_ids of this TenantApiModelsEditInputModel. :param registry_ids: The registry_ids of this TenantApiModelsEditInputModel. # noqa: E501 :type: list[int] """ if registry_ids is None: raise ValueError("Invalid value for `registry_ids`, must not be `None`") # noqa: E501 self._registry_ids = registry_ids @property def storage_id(self): """Gets the storage_id of this TenantApiModelsEditInputModel. # noqa: E501 :return: The storage_id of this TenantApiModelsEditInputModel. # noqa: E501 :rtype: int """ return self._storage_id @storage_id.setter def storage_id(self, storage_id): """Sets the storage_id of this TenantApiModelsEditInputModel. :param storage_id: The storage_id of this TenantApiModelsEditInputModel. # noqa: E501 :type: int """ if storage_id is None: raise ValueError("Invalid value for `storage_id`, must not be `None`") # noqa: E501 self._storage_id = storage_id def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(TenantApiModelsEditInputModel, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, TenantApiModelsEditInputModel): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other ``` #### File: rest/models/training_api_models_create_input_model.py ```python import pprint import re # noqa: F401 import six class TrainingApiModelsCreateInputModel(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'container_image': 'ComponentsContainerImageInputModel', 'cpu': 'int', 'data_set_id': 'int', 'entry_point': 'str', 'git_model': 'ComponentsGitCommitInputModel', 'gpu': 'int', 'memo': 'str', 'memory': 'int', 'name': 'str', 'options': 'dict(str, str)', 'parent_id': 'int', 'partition': 'str', 'zip': 'bool' } attribute_map = { 'container_image': 'containerImage', 'cpu': 'cpu', 'data_set_id': 'dataSetId', 'entry_point': 'entryPoint', 'git_model': 'gitModel', 'gpu': 'gpu', 'memo': 'memo', 'memory': 'memory', 'name': 'name', 'options': 'options', 'parent_id': 'parentId', 'partition': 'partition', 'zip': 'zip' } def __init__(self, container_image=None, cpu=None, data_set_id=None, entry_point=None, git_model=None, gpu=None, memo=None, memory=None, name=None, options=None, parent_id=None, partition=None, zip=None): # noqa: E501 """TrainingApiModelsCreateInputModel - a model defined in Swagger""" # noqa: E501 self._container_image = None self._cpu = None self._data_set_id = None self._entry_point = None self._git_model = None self._gpu = None self._memo = None self._memory = None self._name = None self._options = None self._parent_id = None self._partition = None self._zip = None self.discriminator = None self.container_image = container_image self.cpu = cpu self.data_set_id = data_set_id self.entry_point = entry_point self.git_model = git_model self.gpu = gpu if memo is not None: self.memo = memo self.memory = memory self.name = name if options is not None: self.options = options if parent_id is not None: self.parent_id = parent_id if partition is not None: self.partition = partition if zip is not None: self.zip = zip @property def container_image(self): """Gets the container_image of this TrainingApiModelsCreateInputModel. # noqa: E501 :return: The container_image of this TrainingApiModelsCreateInputModel. # noqa: E501 :rtype: ComponentsContainerImageInputModel """ return self._container_image @container_image.setter def container_image(self, container_image): """Sets the container_image of this TrainingApiModelsCreateInputModel. :param container_image: The container_image of this TrainingApiModelsCreateInputModel. # noqa: E501 :type: ComponentsContainerImageInputModel """ if container_image is None: raise ValueError("Invalid value for `container_image`, must not be `None`") # noqa: E501 self._container_image = container_image @property def cpu(self): """Gets the cpu of this TrainingApiModelsCreateInputModel. # noqa: E501 :return: The cpu of this TrainingApiModelsCreateInputModel. # noqa: E501 :rtype: int """ return self._cpu @cpu.setter def cpu(self, cpu): """Sets the cpu of this TrainingApiModelsCreateInputModel. :param cpu: The cpu of this TrainingApiModelsCreateInputModel. # noqa: E501 :type: int """ if cpu is None: raise ValueError("Invalid value for `cpu`, must not be `None`") # noqa: E501 self._cpu = cpu @property def data_set_id(self): """Gets the data_set_id of this TrainingApiModelsCreateInputModel. # noqa: E501 :return: The data_set_id of this TrainingApiModelsCreateInputModel. # noqa: E501 :rtype: int """ return self._data_set_id @data_set_id.setter def data_set_id(self, data_set_id): """Sets the data_set_id of this TrainingApiModelsCreateInputModel. :param data_set_id: The data_set_id of this TrainingApiModelsCreateInputModel. # noqa: E501 :type: int """ if data_set_id is None: raise ValueError("Invalid value for `data_set_id`, must not be `None`") # noqa: E501 self._data_set_id = data_set_id @property def entry_point(self): """Gets the entry_point of this TrainingApiModelsCreateInputModel. # noqa: E501 :return: The entry_point of this TrainingApiModelsCreateInputModel. # noqa: E501 :rtype: str """ return self._entry_point @entry_point.setter def entry_point(self, entry_point): """Sets the entry_point of this TrainingApiModelsCreateInputModel. :param entry_point: The entry_point of this TrainingApiModelsCreateInputModel. # noqa: E501 :type: str """ if entry_point is None: raise ValueError("Invalid value for `entry_point`, must not be `None`") # noqa: E501 self._entry_point = entry_point @property def git_model(self): """Gets the git_model of this TrainingApiModelsCreateInputModel. # noqa: E501 :return: The git_model of this TrainingApiModelsCreateInputModel. # noqa: E501 :rtype: ComponentsGitCommitInputModel """ return self._git_model @git_model.setter def git_model(self, git_model): """Sets the git_model of this TrainingApiModelsCreateInputModel. :param git_model: The git_model of this TrainingApiModelsCreateInputModel. # noqa: E501 :type: ComponentsGitCommitInputModel """ if git_model is None: raise ValueError("Invalid value for `git_model`, must not be `None`") # noqa: E501 self._git_model = git_model @property def gpu(self): """Gets the gpu of this TrainingApiModelsCreateInputModel. # noqa: E501 :return: The gpu of this TrainingApiModelsCreateInputModel. # noqa: E501 :rtype: int """ return self._gpu @gpu.setter def gpu(self, gpu): """Sets the gpu of this TrainingApiModelsCreateInputModel. :param gpu: The gpu of this TrainingApiModelsCreateInputModel. # noqa: E501 :type: int """ if gpu is None: raise ValueError("Invalid value for `gpu`, must not be `None`") # noqa: E501 self._gpu = gpu @property def memo(self): """Gets the memo of this TrainingApiModelsCreateInputModel. # noqa: E501 :return: The memo of this TrainingApiModelsCreateInputModel. # noqa: E501 :rtype: str """ return self._memo @memo.setter def memo(self, memo): """Sets the memo of this TrainingApiModelsCreateInputModel. :param memo: The memo of this TrainingApiModelsCreateInputModel. # noqa: E501 :type: str """ self._memo = memo @property def memory(self): """Gets the memory of this TrainingApiModelsCreateInputModel. # noqa: E501 :return: The memory of this TrainingApiModelsCreateInputModel. # noqa: E501 :rtype: int """ return self._memory @memory.setter def memory(self, memory): """Sets the memory of this TrainingApiModelsCreateInputModel. :param memory: The memory of this TrainingApiModelsCreateInputModel. # noqa: E501 :type: int """ if memory is None: raise ValueError("Invalid value for `memory`, must not be `None`") # noqa: E501 self._memory = memory @property def name(self): """Gets the name of this TrainingApiModelsCreateInputModel. # noqa: E501 :return: The name of this TrainingApiModelsCreateInputModel. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this TrainingApiModelsCreateInputModel. :param name: The name of this TrainingApiModelsCreateInputModel. # noqa: E501 :type: str """ if name is None: raise ValueError("Invalid value for `name`, must not be `None`") # noqa: E501 if name is not None and len(name) < 1: raise ValueError("Invalid value for `name`, length must be greater than or equal to `1`") # noqa: E501 self._name = name @property def options(self): """Gets the options of this TrainingApiModelsCreateInputModel. # noqa: E501 :return: The options of this TrainingApiModelsCreateInputModel. # noqa: E501 :rtype: dict(str, str) """ return self._options @options.setter def options(self, options): """Sets the options of this TrainingApiModelsCreateInputModel. :param options: The options of this TrainingApiModelsCreateInputModel. # noqa: E501 :type: dict(str, str) """ self._options = options @property def parent_id(self): """Gets the parent_id of this TrainingApiModelsCreateInputModel. # noqa: E501 :return: The parent_id of this TrainingApiModelsCreateInputModel. # noqa: E501 :rtype: int """ return self._parent_id @parent_id.setter def parent_id(self, parent_id): """Sets the parent_id of this TrainingApiModelsCreateInputModel. :param parent_id: The parent_id of this TrainingApiModelsCreateInputModel. # noqa: E501 :type: int """ self._parent_id = parent_id @property def partition(self): """Gets the partition of this TrainingApiModelsCreateInputModel. # noqa: E501 :return: The partition of this TrainingApiModelsCreateInputModel. # noqa: E501 :rtype: str """ return self._partition @partition.setter def partition(self, partition): """Sets the partition of this TrainingApiModelsCreateInputModel. :param partition: The partition of this TrainingApiModelsCreateInputModel. # noqa: E501 :type: str """ self._partition = partition @property def zip(self): """Gets the zip of this TrainingApiModelsCreateInputModel. # noqa: E501 :return: The zip of this TrainingApiModelsCreateInputModel. # noqa: E501 :rtype: bool """ return self._zip @zip.setter def zip(self, zip): """Sets the zip of this TrainingApiModelsCreateInputModel. :param zip: The zip of this TrainingApiModelsCreateInputModel. # noqa: E501 :type: bool """ self._zip = zip def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(TrainingApiModelsCreateInputModel, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, TrainingApiModelsCreateInputModel): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other ```
{ "source": "42-AI/DemocracyWatcher", "score": 3 }
#### File: DemocracyWatcher/.42AI/test_environment.py ```python import sys REQUIRED_PYTHON = "python3.8" required_major = 3 required_minor = 8 def main(): system_major = sys.version_info.major system_minor = sys.version_info.minor if system_major != required_major: raise TypeError( "This project requires Python{}.{}. Found: Python{}.{}".format( required_major, required_minor, system_major, system_minor)) elif system_minor != required_minor: raise TypeError( "This project requires Python{}.{}. Found: Python{}.{}".format( required_major, required_minor, system_major, system_minor)) else: print(">>> Development environment passes all tests!") if __name__ == '__main__': main() ``` #### File: data/load_dataset/twitter_predict.py ```python import pandas as pd import numpy as np from unidecode import unidecode import os from src import config def get_tweets_csv(csv_path: str) -> np.array: df = pd.read_csv(csv_path) X = df['text'].apply(lambda row: unidecode(row)).to_numpy() return X def get_tweets_df(df) -> np.array: X = df['text'].apply(lambda row: unidecode(row)).to_numpy() return X ``` #### File: src/models/main.py ```python from src.models.huggingface.roberta import HuggingFaceModel from src.models.sklearn.Naive_Bayes import Naive_Bayes from src.models.random.predict_model_random import RandomModel import argparse from src.models.pytorch.local_main import torch_main from src.models.ModelManager import ModelManager def add_models_args(parser): parser.add_argument('--model', help="Training based on the model entered", default='random', choices=['random', 'naive-bayes', 'huggingface', 'torch'] ) parser.add_argument('--task', required=True, help="Task to be perforemed", choices=['train', 'test', 'predict'] ) parser.add_argument('--dataset_type', default="bi", choices=['bi', 'tri', 'predict'], help="Wether the dataset has 2 or 3 label", ) parser.add_argument('--flat_y', default=False, action="store_true", help="Wether the dataset has 2 or 3 label", ) parser.add_argument('--in_csv', required=True, help="The input csv", # type=argparse.FileType('r') ) parser.add_argument('--out_csv', help="Path of output csv file: must finish by '.csv'\ Required if --task is test or predict" ) parser.add_argument('--weights_in', help="Only if --task is test or predict.\ If no weights are passed and --task is test, \ the model will train first on the test_file.csv", default=None ) parser.add_argument('--weights_out', help="Path to save the weights if --task is train", default=None ) parser.add_argument('--score', help="Path to save the weights if --task is train", choices=['accuracy'], default='accuracy' ) def models_main(args): """Redirect args to the asking model in the CLI Args: args: args passed in CLI """ if args.model == "torch": torch_main(args) return if args.model == "naive-bayes": mdl = Naive_Bayes() elif args.model == "huggingface": mdl = HuggingFaceModel() elif args.model == "random": mdl = RandomModel() mm = ModelManager(mdl, args.dataset_type, args.flat_y) if args.weights_in: mm.load(args.weights_in) if args.task == "test": mm.test(args.in_csv, args.score) elif args.task == "train": mm.train(args.in_csv, args.weights_out) elif args.task == "predict": mm.predict(args.in_csv, args.out_csv) ``` #### File: models/sklearn/Naive_Bayes.py ```python import sklearn from sklearn.naive_bayes import MultinomialNB as NB import pandas as pd import numpy as np import scipy from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer import joblib from src.data.load_dataset.base_dataset_tri_label import get_X_y_tri from src.data.load_dataset.base_dataset_bi_label import get_X_y_bi from src.models.BaseModel import BaseModel class Naive_Bayes(BaseModel): """_summary_ Multinomial Naive Bayes model based on hyperparam alpha = 1. - Multinomial Model only selected beacuse seems to be common practice for NLP (no thorough research done) - aplha set to 1 because default value (no iteration on alpha done) """ def __init__(self): self.__clf = NB(alpha=1) self.trained_preprocessing = False def train(self, X_train: scipy.sparse.csr.csr_matrix, y_train: scipy.sparse.csr.csr_matrix): """ X_train: {array-like, sparse matrix} of shape (n_samples, n_features) y_train: array-like of shape (n_samples,) """ self.__clf = self.__clf.fit(X_train, y_train) def preprocess(self, X): if not self.trained_preprocessing: self.vec = CountVectorizer() # 1st step of vectorization: CountVectorizer vectorizes X_train and X_test _ = self.vec.fit_transform(X) # # 2nd step: TF-IDF improves the vectorization of vectors created by # # CountVectorizer # self.tf_transformer = TfidfTransformer(use_idf=False).fit(X) self.trained_preprocessing = True X_vec = self.vec.transform(X) # X_tf = self.tf_transformer.transform(X_vec) return X_vec def one_hot_y(self, y): nb_features = 3 b = np.zeros((y.size, nb_features)) b[np.arange(y.size), y] = 1 return b def predict(self, X: scipy.sparse.csr.csr_matrix): predicted = self.__clf.predict(X) matrix_predicted = self.one_hot_y(predicted) return matrix_predicted def add_predictions_to_df(self, df, y): y_preds = pd.DataFrame(y, columns=[ 'predict_Positive', 'predict_Negative', 'predict_Neutral', ] ) return pd.concat([df, y_preds], axis=1) # def naive_bayes_train(csv_in, weights_out, weights_in=None): # df = pd.read_csv(csv_in) # X, y = get_X_y_tri(df, flat_y=True) # if weights_in: # nb = Naive_Bayes().load(weights_in) # else: # nb = Naive_Bayes() # X_prep = nb.preprocess(X) # nb.train(X_prep, y) # nb.save(weights_out) # def naive_bayes_predict(csv_in, csv_out, weights_in): # df = pd.read_csv(csv_in) # X, _ = get_X_y_tri(df, flat_y=True) # nb = Naive_Bayes().load(weights_in) # X_prep = nb.preprocess(X) # y_pred = nb.predict(X_prep) # df = add_predictions_to_df(df, y_pred) # df.to_csv(csv_out) # print(f"\nCsv with predictions created at {csv_out}\n") # def naive_bayes_test(csv_in, csv_out, weights_in, score='accuracy'): # df = pd.read_csv(csv_in) # X, y = get_X_y_tri(df, flat_y=True) # nb = Naive_Bayes().load(weights_in) # X_prep = nb.preprocess(X) # y_pred = nb.predict(X_prep) # accuracy = nb.get_score(y, y_pred) # print(f"Accuracy: {accuracy}") # df.to_csv(csv_out) # print(f"\nCsv with predictions created at {csv_out}\n") # def naive_bayes_alex(csv_in, csv_out, weights_in=None, score='accuracy'): # """ # Args: # csv_in (_type_): _description_ # csv_out (_type_): _description_ # weights_in (_type_, optional): _description_. Defaults to None. # score (str, optional): _description_. Defaults to 'accuracy'. # """ # # =================== PREPROCESS DATA ============================= # df = pd.read_csv(csv_in) # X = df[['text']] # y = df[['Positive', 'Negative', 'Neutral']] # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5) # X_train = X_train.values # X_test = X_test.values # y_train_1d = y_train['Positive'] + (y_train['Negative'] * (-1)) # y_test_1d = y_test['Positive'] + (y_test['Negative'] * (-1)) # y_train_1d = y_train_1d.values # y_test_1d = y_test_1d.values # X_train = X_train.squeeze() # X_test = X_test.squeeze() # # =================== VECTORIZATION ============================= # # 1st step of vectorization: CountVectorizer vectorizes X_train and X_test # vec = CountVectorizer() # X_train_trans = vec.fit_transform(X_train) # X_test_trans = vec.transform(X_test) # # 2nd step: TF-IDF improves the vectorization of vectors created by # # CountVectorizer # tf_transformer = TfidfTransformer(use_idf=False).fit(X_train_trans) # X_train_tf = tf_transformer.transform(X_train_trans) # X_test_tf = tf_transformer.transform(X_test_trans) # # =================== TRAIN + PREDICT =============================== # nb = NB() # nb.train(X_train_tf, y_train_1d) # y_pred = nb.predict(X_test_tf) # # =================== EXPORT CSV_OUT =============================== # df["predict_Negative"] = (y_pred == -1).astype(int) # df["predict_Neutral"] = (y_pred == 0).astype(int) # df["predict_Positive"] = (y_pred == 1).astype(int) # df.to_csv(csv_out) # print(f"\nCsv with predictions created at {csv_out}\n") # # =================== PRINT SCORE =============================== # accuracy = sklearn.metrics.accuracy_score(y_test_1d, y_pred) # print(f"Accuracy: {accuracy}") # return (accuracy) # def naive_bayes_main(args): # if args.task == 'train': # naive_bayes_train(args.train_csv, args.weights_out, args.weights_in) # elif args.task == 'test': # naive_bayes_test(args.test_csv, args.out_csv, args.weights_in) # elif args.task == 'predict': # naive_bayes_predict(args.predict_csv, args.csv_out, args.weights_in) ```
{ "source": "42-AI/pdf_builder", "score": 2 }
#### File: pdf_builder/bootcamp/format.py ```python import re # ============================================================================# # ================================ FUNCTIONS =================================# # ============================================================================# # INSERT BOOTCAMP TITLE / PDF TITLE ###################################### def get_line_containing(file, content): """ Search a line containing a specific content. Args: file (undefined): file name content (undefined): searched content """ index = 0 with open(file, 'r') as infile: for idx, line in enumerate(infile): if re.match(r'.*{}.*'.format(content), line): index = idx + 1 return (index) def insert_line(file, idx, content): """ Insert line into a file at a precise line. Args: file (undefined): file name idx (undefined): line number content (undefined): content to be added. """ f = open(file, "r") contents = f.readlines() f.close() contents.insert(idx, "{}".format(content)) f = open(file, "w") contents = "".join(contents) f.write(contents) f.close() def insert_day_title(day_title): """ Insert day title to the template file. Args: args (undefined): """ idx = get_line_containing("tmp/template.latex", "day_number") insert_line("tmp/template.latex", idx, day_title.split(' - ')[0]) idx = get_line_containing("tmp/template.latex", "day_title") insert_line("tmp/template.latex", idx, day_title.split(' - ')[1]) ``` #### File: pdf_builder/common/pandoc.py ```python from pdf_builder.common.utils import sub_run, error # ============================================================================# # ================================ FUNCTIONS =================================# # ============================================================================# # RUN PANDOC ############### def run_pandoc(file_name): """ Build pdf file for each markdown. Args: file_name (undefined): """ res = sub_run("pandoc {} --to=pdf --pdf-engine=pdflatex --highlight-style=breezedark\ -t latex -o {} --template=tmp/template.latex" .format(file_name, file_name + ".pdf")) if res.stderr: print(file_name) error(res.stderr.decode().strip(), file_name) def run_pandoc_all(outfile, debug): """ Build a pdf with all markdown files. Args: outfile (undefined): output file name debug (undefined): debug option """ res = sub_run("pandoc tmp/*.md --to=pdf --pdf-engine=pdflatex --highlight-style=breezedark\ -t latex -o {} --template=tmp/template.latex".format(outfile)) if res.stderr: error(res.stderr.decode().strip()) if not debug: sub_run("rm -rf tmp") ```
{ "source": "42-AI/TCP-Unity-Client", "score": 3 }
#### File: AllAgents/bob/utils.py ```python from bomberman import defines from bomberman.defines import t_action from bomberman.states.StatePlayer import StatePlayer from typing import List, Tuple, Union Coordinates = Union[Tuple[int, int], Tuple[float, float]] def get_players(pp: List[StatePlayer]): if pp[0].enemy: me, yu = pp[1], pp[0] else: me, yu = pp[0], pp[1] return me, yu def move_from_to(from_: Coordinates, to_: Coordinates) -> t_action: diff_horizontal = from_[0] - to_[0] diff_vertical = from_[1] - to_[1] if abs(diff_horizontal) > abs(diff_vertical): if diff_horizontal > 0: action = defines.Down else: action = defines.Up else: if diff_vertical > 0: action = defines.Right else: action = defines.Left return action ``` #### File: TCP-Unity-Client/AllAgents/NoSuicide.py ```python from bomberman.agents.BaseAgent import BaseAgent from bomberman.states.State import State from bomberman.defines import t_action from bomberman import defines from random import Random class NoSuicide(BaseAgent): def __init__(self, player_num: int) -> None: super().__init__(player_num) def get_action(self, state: State) -> t_action: """Choose an action from a given state This is where you put something smart to choose an action. Args: ------- state (State): State object from the client/Environment Returns: ------- int: Agent action It must be one the action defined in bomberman.defines For example: from bomberman import defines return defines.Bomb """ return (Random().choice(defines.move_space)) ```
{ "source": "42Bastian/arm64-pgtable-tool", "score": 3 }
#### File: arm64-pgtable-tool/pgtt/mmap.py ```python from enum import Enum from enum import IntEnum import errno import re import sys from dataclasses import dataclass # Internal deps from . import args from . import log # External deps from intervaltree import Interval, IntervalTree class AP_TYPE(IntEnum): NS = 16, UXN = 8, SXN = 4, SRW_UNA = 0, # implies User no access SRW_URW = 1, # implies SRW SRO_UNA = 2, # implies User no access SRO_URO = 3 # implies SRO class MEMORY_TYPE(IntEnum): DEVICE = 0, CACHE_WB = 1, CACHE_WT = 2, NO_CACHE = 3, SHARED = 4, GLOBAL = 8 @dataclass class Region: """ Class representing a single region in the memory map. """ lineno: int # line number in source memory map file comment: str # name/comment e.g. DRAM, GIC, UART, ... addr: int # base address virtaddr: int # virtual base addr length: int # length in bytes memory_type: MEMORY_TYPE # True for Device-nGnRnE, False for Normal WB RAWA ap_type: AP_TYPE # Access right num_contig = 1 def copy( self, **kwargs ): """ Create a duplicate of this Region. Use kwargs to override this region's corresponding properties. """ region = Region(self.lineno,self.comment, self.addr, self.virtaddr, self.length, self.memory_type, self.ap_type) for kw,arg in kwargs.items(): region.__dict__[kw] = arg return region def __str__( self ): """ Override default __str__ to print addr and length in hex format. """ return "Region(lineno={}, comment='{}', addr={}, virtaddr={}, length={}, memory_type={}".format( self.lineno, self.comment, hex(self.addr), hex(self.virtaddr), hex(self.length), self.memory_type, self.ap_type ) class MemoryMap(): """ Class representing the user's entire specified memory map. This is a wrapper around chaimleib's intervaltree library. """ def __init__( self, map_file:str ): self._ivtree = IntervalTree() if map_file == "stdin" : map_file_handle=sys.stdin else: try: map_file_handle= open(map_file, "r") except OSError as e: log.error(f"failed to open map file: {e}") sys.exit(e.errno) with map_file_handle: map_file_lines = map_file_handle.readlines() """ Loop through each line in the map file. """ for lineno,line in enumerate(map_file_lines): line = line.strip() log.debug() log.debug(f"parsing line {lineno}: {line}") if len(line) == 0: continue if line[0] == '#': continue if line.startswith('//'): continue def abort_bad_region( msg:str, variable ) -> None: """ Pretty-print an error message and force-exit the script. """ log.error(f"in {map_file_handle} on line {lineno+1}: bad region {msg}: {variable}") log.error(f" {line}") log.error(f" {' '*line.find(variable)}{'^'*len(variable)}") sys.exit(errno.EINVAL) """ Ensure correct number of fields have been specified. """ split_line = line.split(",") if len(split_line) < 6: abort_bad_region("format: incomplete", line) if len(split_line) > 6: abort_bad_region("format: unexpected field(s)", line[line.find(split_line[4]):]) (addr, virtaddr, length, memtype, rights, comment) = split_line addr = addr.strip() virtaddr = virtaddr.strip() if virtaddr == "": virtaddr = addr length = length.strip() memtype = memtype.strip() split_memtype = memtype.split(":") if len(split_memtype) > 3: abort_bad_region("To many options", line) memtype = split_memtype[0] split_rights = rights.split(":") if len(split_rights) < 1: abort_bad_region("Missing rights", line) # if len(split_rights) > 2: # abort_bad_region("To many rights", line) comment = comment.strip() """ Parse region base address. """ log.debug(f"parsing base address: {addr}") try: addr = eval(addr) except SyntaxError: abort_bad_region("base address", addr) log.debug(f"parsing virtual base address: {virtaddr}") try: virtaddr = eval(virtaddr) except SyntaxError: abort_bad_region("virtual address", virtaddr) if addr > (1 << args.tsz): abort_bad_region("out address too largs", addr) if virtaddr > (1 << args.tsz): abort_bad_region("VA address too largs", hex(virtaddr)) """ Parse region length. """ log.debug(f"parsing length: {length}") length1 = re.sub(r"(\d+)K","(\\1*1024)", length) length1 = re.sub(r"(\d+)M","(\\1*1024*1024)", length1) length1 = re.sub(r"(\d+)G","(\\1*1024*1024*1024)", length1) length1 = re.sub(r"(\d+)T","(\\1*1024*1024*1024*1024)", length1) try: length = eval(length1) except SyntaxError: abort_bad_region("length", length1) """ Fudge region to be mappable at chosen granule size. """ misalignment = addr % args.tg if misalignment: addr = addr - misalignment length = length + args.tg log.debug("corrected misalignment, new addr={}, length={}".format(hex(addr), hex(length))) misalignment = virtaddr % args.tg if misalignment: virtaddr = virtaddr - misalignment log.debug("corrected misalignment, new addr={}, length={}".format(hex(addr), hex(length))) overflow = length % args.tg if overflow: length = length + args.tg - overflow log.debug("corrected overflow, new length={}".format(hex(length))) """ Parse region attributes. """ memory_type = 0 log.debug(f"parsing memory type: {memtype}") for memtype in split_memtype: memtype = memtype.strip() if not memtype in ["DEVICE", "CACHE_WB", "CACHE_WT", "NO_CACHE", "GLOBAL", "SHARED" ]: abort_bad_region("memory type", memtype) if (memory_type & 3) and memtype in ["DEVICE", "CACHE_WB", "CACHE_WT", "NO_CACHE"]: abort_bad_region("memory type", memtype) if memtype == "DEVICE": memory_type |= MEMORY_TYPE.DEVICE elif memtype == "CACHE_WB": memory_type |= MEMORY_TYPE.CACHE_WB elif memtype == "CACHE_WT": memory_type |= MEMORY_TYPE.CACHE_WT elif memtype == "NO_CACHE": memory_type |= MEMORY_TYPE.NO_CACHE elif memtype == "SHARED": memory_type |= MEMORY_TYPE.SHARED else: memory_type |= MEMORY_TYPE.GLOBAL log.debug(f"{memory_type=}") """ Parse access rights """ ap_right = AP_TYPE.SXN|AP_TYPE.UXN for ap in split_rights: ap = ap.strip() if not ap in ["SX", "UX", "SRW_UNA", "SRW_URW", "SRO_UNA", "SRO_URO", "NS", "GLOBAL"]: abort_bad_region("access rights", ap) if ap == "SX": ap_right &= ~AP_TYPE.SXN elif ap == "UX": ap_right &= ~AP_TYPE.UXN elif ap == "NS": ap_right |= AP_TYPE.NS elif ap == "SHARED": ap_right |= AP_TYPE.SHARED elif ap == "GLOBAL": memory_type |= MEMORY_TYPE.GLOBAL elif ap == "SRW_UNA": if (ap_right & 3): abort_bad_region("access rights", ap) ap_right |= AP_TYPE.SRW_UNA elif ap == "SRW_URW": if (ap_right & 3): abort_bad_region("access rights", ap) ap_right |= AP_TYPE.SRW_URW elif ap == "SRO_UNA": if (ap_right & 3): abort_bad_region("access rights", ap) ap_right |= AP_TYPE.SRO_UNA else: if (ap_right & 3): abort_bad_region("access rights", ap) ap_right |= AP_TYPE.SRO_URO if memory_type == MEMORY_TYPE.DEVICE and (ap_right >> 2) != 3: abort_bad_region(": Device region not be SX or UX!",hex(ap_right)) """ Check for overlap with other regions. """ log.debug(f"checking for overlap with existing regions") overlap = sorted(self._ivtree[virtaddr:virtaddr+length]) if overlap: log.error(f"in {map_file} on line {lineno+1}: region overlaps other regions") log.error(f" {line}") log.error(f"the overlapped regions are:") [log.error(f" {map_file_lines[iv.data.lineno-1].strip()} (on line {iv.data.lineno})") for iv in overlap] sys.exit(errno.EINVAL) """ Add parsed region to memory map. """ r = Region(lineno+1, comment, addr, virtaddr, length, memory_type, ap_right) self._ivtree.addi(virtaddr, virtaddr+length, r) log.debug(f"added {r}") def regions( self ): """ Return list of Region objects sorted by ascending base address. """ return list(map(lambda r: r[2], sorted(self._ivtree))) regions = MemoryMap(args.i).regions() ```
{ "source": "42bbichero/MovieMon", "score": 4 }
#### File: moviemon/classes/map.py ```python class Map: def __init__(self, h_case=10, w_case=10, current_case=1): if current_case < 1 or (w_case * h_case) < current_case: raise Exception('Position is not good.') if h_case < 1 or h_case > 100: raise Exception('Height is not good.') if w_case < 1 or w_case > 100: raise Exception('Width is not good.') else: self.h_case = h_case self.w_case = w_case self.current_case = current_case def get_position(self): return self.current_case def get_map(self): return { 'position': self.current_case, 'width': self.w_case, 'heigth': self.h_case, 'up': ((self.current_case - self.w_case) >= 1), 'down': ((self.current_case + self.w_case) <= (self.w_case * self.h_case)), 'left': ((self.current_case - 1) % self.w_case != 0), 'right': (self.current_case % self.w_case != 0), } def move_up(self): if (self.current_case - self.w_case) >= 1: self.current_case -= self.w_case return True else: return False def move_down(self): if (self.current_case + self.w_case) <= (self.w_case * self.h_case): self.current_case += self.w_case return True else: return False def move_left(self): if (self.current_case - 1) % self.w_case != 0: self.current_case -= 1 return True else: return False def move_right(self): if self.current_case % self.w_case != 0: self.current_case += 1 return True else: return False ``` #### File: moviemon/classes/players.py ```python class Players: def __init__(self, strength=0, movieballs=0): self.strength = strength self.movieballs = movieballs def get_strength(self): return self.strength def get_movieballs(self): return self.movieballs def strength_up(self): self.strength += 1 def movieballs_up(self): self.movieballs += 1 def movieballs_down(self): if self.movieballs > 0: self.movieballs -= 1 ```
{ "source": "42B/i2plib", "score": 3 }
#### File: docs/examples/wget.py ```python import sys import asyncio from urllib.parse import urlparse import i2plib async def http_get(sam_address, loop, session_name, url): url = urlparse(url) r, w = await i2plib.stream_connect(session_name, url.netloc, sam_address=sam_address, loop=loop) w.write("GET {} HTTP/1.0\nHost: {}\r\n\r\n".format( url.path, url.netloc).encode()) buflen, resp = 4096, b"" while 1: data = await r.read(buflen) if len(data) > 0: resp += data else: break w.close() try: return resp.split(b"\r\n\r\n", 1)[1].decode() except IndexError: return resp.decode() async def wget(sam_address, loop, url): session_name = "wget" READY = asyncio.Event(loop=loop) asyncio.ensure_future(i2plib.create_session(session_name, sam_address=sam_address, loop=loop, session_ready=READY), loop=loop) await READY.wait() res = await http_get(sam_address, loop, session_name, url) print(res) if __name__ == "__main__": sam_address = i2plib.get_sam_address() if len(sys.argv) == 2: url = sys.argv[1] if not url.startswith("http://"): url = "http://" + url loop = asyncio.get_event_loop() loop.run_until_complete(wget(sam_address, loop, url)) loop.stop() loop.close() else: print("""Fetch I2P URL. Usage: python wget.py http://site.i2p/""") ``` #### File: i2plib/i2plib/utils.py ```python import socket import os import i2plib.sam def get_free_port(): """Get a free port on your local host""" s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind(('', 0)) free_port = s.getsockname()[1] s.close() return free_port def is_address_accessible(address): """Check if address is accessible or down""" s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) is_accessible = s.connect_ex(address) == 0 s.close() return is_accessible def address_from_string(address_string): """Address tuple from host:port string""" address = address_string.split(":") return (address[0], int(address[1])) def get_sam_address(): """ Get SAM address from environment variable I2P_SAM_ADDRESS, or use a default value """ value = os.getenv("I2P_SAM_ADDRESS") return address_from_string(value) if value else i2plib.sam.DEFAULT_ADDRESS def get_new_destination(sam_address=i2plib.sam.DEFAULT_ADDRESS, sig_type=i2plib.sam.Destination.default_sig_type): """Generates new I2P destination of a chosen signature type""" sam_socket = i2plib.sam.get_socket(sam_address) sam_socket.send(i2plib.sam.dest_generate(sig_type)) a = i2plib.sam.get_response(sam_socket) sam_socket.close() return i2plib.sam.Destination(a['PRIV'], has_private_key=True) ```
{ "source": "42B/krampus", "score": 2 }
#### File: krampus/lib/krampus_logging.py ```python import boto3 import time import os from hypchat import HypChat # given how modules work with python it was easiest to use globals # I know, I know messages = [] hc_room = None # yeah this is a mess and should have been fully static sometimes # it is easier to just avoid side effects, you know? class KLog(object): def __init__(self, bucket_name, key, region="us-east-1"): self.conn = boto3.resource("s3", region) self.bucket = self.conn.Bucket(bucket_name) self.key = key self.log_file = self.bucket.Object(key) # add a log msg to the list # because we are doing unique files per run we store all messages in mem # then before krampus exits we upload to the specified key @staticmethod def log(msg, level="info"): levels = ["info", "warn", "critical"] # keep it simple level = level.lower() if level not in levels: level = "info" # don't allow random stuff # print the stdout part # stdout print prepends prepends = { "info": "[i]", "warn": "[-]", "critical": "[!]" } print "%s %s" % (prepends[level], msg) # see if it should go to the hipchat room if level == "critical": KLog.hipLog(msg) # due to interesting decisions log message stay in mem until run finish messages.append({ "level": level, "msg": msg, "timestamp": int(time.time()) }) # log something to the hipchat room @staticmethod def hipLog(msg): if not hc_room: # don't change below to critical, think about it... KLog.log("tried to log to hipchat without a working connection", "warn") return False # otherwise let's set as red hc_room.notification("KRAMPUS: " + msg, "red") # write the final product def writeLogFile(self): # we will need to go through each of the entries to make them into a # friendly-ish log format. instead of dumping json objs from the # array of messages, we'll create newline delimited log messages # to write to our key buff = "" for m in messages: buff += "[%d] %s: %s\n" % (m['timestamp'], m['level'].upper(), m['msg']) # now we can worry about putting to s3 resp = self.bucket.Object(self.key).put(Body=buff) return resp # just trust me when I say at the time I was out of options and needed global namespace # should have planned better man if os.getenv('HIPCHAT_ACCESS_TOKEN') and os.getenv('HIPCHAT_ROOM'): try: hc_room = HypChat(os.getenv('HIPCHAT_ACCESS_TOKEN')).get_room(os.getenv('HIPCHAT_ROOM')) except: KLog.log("problem starting hipchat, check env vars and connection", "warn") ```
{ "source": "42B/quandl-python", "score": 2 }
#### File: quandl-python/test/test_database.py ```python try: from urllib.parse import urlparse from urllib.parse import parse_qs except ImportError: from urlparse import urlparse from cgi import parse_qs import re import unittest from test.helpers.httpretty_extension import httpretty import json import six from quandl.errors.quandl_error import (InternalServerError, QuandlError) from quandl.api_config import ApiConfig from quandl.model.database import Database from quandl.connection import Connection from test.test_retries import ModifyRetrySettingsTestCase from mock import patch, call, mock_open from test.factories.database import DatabaseFactory from test.factories.meta import MetaFactory class GetDatabaseTest(unittest.TestCase): @classmethod def setUpClass(cls): httpretty.enable() database = {'database': DatabaseFactory.build(database_code='NSE')} httpretty.register_uri(httpretty.GET, re.compile( 'https://www.quandl.com/api/v3/databases/*'), body=json.dumps(database)) cls.db_instance = Database(Database.get_code_from_meta( database['database']), database['database']) @classmethod def tearDownClass(cls): httpretty.disable() httpretty.reset() @patch('quandl.connection.Connection.request') def test_database_calls_connection(self, mock): database = Database('NSE') database.data_fields() expected = call('get', 'databases/NSE', params={}) self.assertEqual(mock.call_args, expected) def test_database_returns_database_object(self): database = Database('NSE') self.assertIsInstance(database, Database) self.assertEqual(database.database_code, 'NSE') @patch('quandl.model.dataset.Dataset.all') def test_database_datasets_calls_datasets_all(self, mock): self.db_instance.datasets() expected = call( params={'query': '', 'database_code': 'NSE', 'page': 1}) self.assertEqual(mock.call_args, expected) @patch('quandl.model.dataset.Dataset.all') def test_database_datasets_accepts_query_params(self, mock): self.db_instance.datasets(params={'query': 'foo', 'page': 2}) expected = call( params={'query': 'foo', 'database_code': 'NSE', 'page': 2}) self.assertEqual(mock.call_args, expected) class ListDatabasesTest(unittest.TestCase): @classmethod def setUpClass(cls): httpretty.enable() databases = {'databases': DatabaseFactory.build_batch(10)} meta = {'meta': MetaFactory.build()} databases.update(meta) httpretty.register_uri(httpretty.GET, re.compile( 'https://www.quandl.com/api/v3/databases*'), body=json.dumps(databases)) cls.expected_databases = databases @classmethod def tearDownClass(cls): httpretty.disable() httpretty.reset() @patch('quandl.connection.Connection.request') def test_databases_calls_connection(self, mock): Database.all() expected = call('get', 'databases', params={}) self.assertEqual(mock.call_args, expected) def test_databases_returns_database_objects(self): results = Database.all() self.assertEqual(len(results), 10) for result in results: self.assertIsInstance(result, Database) def test_databases_has_meta(self): results = Database.all() self.assertIsNotNone(results.meta) def test_databases_returns_expected_ids(self): results = Database.all() self.assertEqual(len(results), 10) six.assertCountEqual(self, [x.id for x in results], [x['id'] for x in self.expected_databases['databases']]) def test_databases_has_more(self): results = Database.all() self.assertTrue(results.has_more_results()) class BulkDownloadDatabaseTest(ModifyRetrySettingsTestCase): def setUp(self): httpretty.enable() httpretty.register_uri(httpretty.GET, re.compile( 'https://www.quandl.com/api/v3/databases/*'), adding_headers={ 'Location': 'https://www.blah.com/download/db.zip' }, body='{}', status=302) httpretty.register_uri(httpretty.GET, re.compile('https://www.blah.com/'), body='{}') database = {'database': DatabaseFactory.build(database_code='NSE')} self.database = Database(database['database']['database_code'], database['database']) ApiConfig.api_key = 'api_token' ApiConfig.api_version = '2015-04-09' def tearDown(self): httpretty.disable() httpretty.reset() def test_get_bulk_downnload_url_with_download_type(self): url = self.database.bulk_download_url(params={'download_type': 'partial'}) parsed_url = urlparse(url) self.assertEqual(parsed_url.scheme, 'https') self.assertEqual(parsed_url.netloc, 'www.quandl.com') self.assertEqual(parsed_url.path, '/api/v3/databases/NSE/data') self.assertDictEqual(parse_qs(parsed_url.query), { 'download_type': ['partial'], 'api_key': ['api_token'], 'api_version': ['2015-04-09']}) def test_get_bulk_download_url_without_download_type(self): url = self.database.bulk_download_url() parsed_url = urlparse(url) self.assertDictEqual(parse_qs(parsed_url.query), { 'api_key': ['api_token'], 'api_version': ['2015-04-09']}) def test_bulk_download_to_fileaccepts_download_type(self): m = mock_open() with patch.object(Connection, 'request') as mock_method: mock_method.return_value.url = 'https://www.blah.com/download/db.zip' with patch('quandl.model.database.open', m, create=True): self.database.bulk_download_to_file( '.', params={'download_type': 'partial'}) expected = call('get', 'databases/NSE/data', params={'download_type': 'partial'}, stream=True) self.assertEqual(mock_method.call_args, expected) def test_bulk_download_to_file_writes_to_file(self): m = mock_open() with patch('quandl.model.database.open', m, create=True): self.database.bulk_download_to_file('.') m.assert_called_once_with(six.u('./db.zip'), 'wb') m().write.assert_called_once_with(six.b('{}')) def test_bulk_download_raises_exception_when_no_path(self): self.assertRaises( QuandlError, lambda: self.database.bulk_download_to_file(None)) def test_bulk_download_raises_exception_when_error_response(self): ApiConfig.retry_backoff_factor = 0 httpretty.reset() httpretty.register_uri(httpretty.GET, re.compile( 'https://www.quandl.com/api/v3/databases/*'), body=json.dumps( {'quandl_error': {'code': 'QEMx01', 'message': 'something went wrong'}}), status=500) self.assertRaises( InternalServerError, lambda: self.database.bulk_download_to_file('.')) ``` #### File: quandl-python/test/test_util.py ```python import unittest import datetime import six from quandl.util import Util # use this function just for test This function is define in python 2 but not at python 3 def cmp(a, b): a = sorted(a) b = sorted(b) return (a > b) - (a < b) class UtilTest(unittest.TestCase): def test_methodize(self): self.assertEqual( Util.methodize(six.u('Hello World...Foo-Bar')), 'hello_worldfoo_bar') def test_convert_to_dates(self): d = '2015-04-09' dt = '2015-07-24T02:39:40.624Z' dic = {'foo': d, d: {'bar': dt}} result = Util.convert_to_dates(dic) self.assertIsInstance(result['foo'], datetime.date) self.assertIsInstance(result[d]['bar'], datetime.datetime) def test_merge_options_when_key_exists_in_options(self): params = {'foo': 'bar', 'foo2': 'bar2'} options = {'params': {'foo': 'bar3'}} merged = Util.merge_options('params', params, **options) self.assertDictEqual( merged, {'params': {'foo': 'bar3', 'foo2': 'bar2'}}) def test_merge_options_when_key_doesnt_exist_in_options(self): params = {'foo': 'bar', 'foo2': 'bar2'} options = {'params': {'foo3': 'bar3'}} merged = Util.merge_options('params', params, **options) self.assertDictEqual( merged, {'params': {'foo': 'bar', 'foo2': 'bar2', 'foo3': 'bar3'}}) def test_constructed_path(self): path = '/hello/:foo/world/:id' params = {'foo': 'bar', 'id': 1, 'another': 'a'} result = Util.constructed_path(path, params) self.assertEqual(result, '/hello/bar/world/1') self.assertDictEqual(params, {'another': 'a'}) def test_convert_options(self): options = {'params': {'ticker': ['AAPL', 'MSFT'], 'per_end_date': {'gte': {'2015-01-01'}}, 'qopts': {'columns': ['ticker', 'per_end_date'], 'per_page': 5}}} expect_result = {'params': {'qopts.per_page': 5, 'per_end_date.gte': set(['2015-01-01']), 'ticker[]': ['AAPL', 'MSFT'], 'qopts.columns[]': ['ticker', 'per_end_date']}} result = Util.convert_options(**options) self.assertEqual(cmp(result, expect_result), 0) options = {'params': {'ticker': 'AAPL', 'per_end_date': {'gte': {'2015-01-01'}}, 'qopts': {'columns': ['ticker', 'per_end_date']}}} expect_result = {'params': {'per_end_date.gte': set(['2015-01-01']), 'ticker': 'AAPL', 'qopts.columns[]': ['ticker', 'per_end_date']}} result = Util.convert_options(**options) self.assertEqual(cmp(result, expect_result), 0) ```
{ "source": "42cc/dashr-gw", "score": 2 }
#### File: apps/core/context_processors.py ```python from apps.core.utils import get_minimal_transaction_amount def minimal_amounts(request): if request.is_ajax(): return return { 'minimal_deposit_amount': get_minimal_transaction_amount('deposit'), 'minimal_withdrawal_amount': get_minimal_transaction_amount( 'withdrawal', ), } ``` #### File: apps/core/models.py ```python from __future__ import unicode_literals import uuid from datetime import timedelta from decimal import Decimal from encrypted_fields import EncryptedCharField from solo.models import SingletonModel from django.core.validators import MaxValueValidator, MinValueValidator from django.db import models from django.db.models.signals import post_save from django.utils import formats from django.utils.translation import ugettext as _ from apps.core.validators import ( dash_address_validator, ripple_address_validator, withdrawal_min_dash_amount_validator, ) from apps.core.wallet import DashWallet class GatewaySettings(SingletonModel): gateway_fee_percent = models.DecimalField( max_digits=5, decimal_places=2, default=0, verbose_name='Gateway fee (percentage)', validators=[MinValueValidator(0), MaxValueValidator(100)], ) max_dash_miner_fee = models.DecimalField( max_digits=16, decimal_places=8, default=Decimal('0.1'), verbose_name='Dash - maximal miner fee', help_text=( 'This value is used to calculate amount that is sent in ' 'withdrawal transactions. <b>It should be the same as <code>' 'maxtxfee</code> of your Dash node.</b>' ), validators=[MinValueValidator(0)], ) dash_required_confirmations = models.PositiveIntegerField( default=6, verbose_name='Dash - minimal confirmations', ) transaction_expiration_minutes = models.PositiveIntegerField( default=60, verbose_name='Transaction expiration (minutes)', ) def __str__(self): return 'Gateway Settings' class Meta: verbose_name = 'Gateway Settings' class RippleWalletCredentials(SingletonModel): address = models.CharField( max_length=35, validators=[ripple_address_validator], verbose_name='Address', ) secret = EncryptedCharField(max_length=29, verbose_name='Secret key') def __str__(self): return 'Ripple Wallet Credentials' class Meta: verbose_name = 'Ripple Wallet Credentials' class Page(models.Model): slug = models.SlugField(max_length=300, db_index=True, unique=True) title = models.CharField(verbose_name=_("Title"), max_length=200) description = models.TextField(verbose_name=_("Description"), blank=True) class Meta: ordering = ('-title', ) def __str__(self): return self.title class TransactionStates(object): INITIATED = 1 UNCONFIRMED = 2 CONFIRMED = 3 PROCESSED = 4 OVERDUE = 5 FAILED = 6 NO_RIPPLE_TRUST = 7 class BaseTransaction(models.Model, TransactionStates): timestamp = models.DateTimeField(auto_now_add=True) dash_address = models.CharField( max_length=35, validators=[dash_address_validator], ) class Meta: abstract = True def get_overdue_datetime(self): return self.timestamp + timedelta( minutes=GatewaySettings.get_solo().transaction_expiration_minutes, ) def get_state_history(self): return [ { 'state': state.current_state, 'timestamp': formats.date_format( state.datetime, 'DATETIME_FORMAT', ), } for state in self.state_changes.order_by('datetime').all() ] def get_normalized_dash_to_transfer(self): if not isinstance(self.dash_to_transfer, Decimal): return self.dash_to_transfer # Based on https://docs.python.org/2.7/library/decimal.html#decimal-faq if self.dash_to_transfer == self.dash_to_transfer.to_integral(): return self.dash_to_transfer.quantize(Decimal(1)) return self.dash_to_transfer.normalize() class DepositTransaction(BaseTransaction): STATE_CHOICES = ( ( TransactionStates.INITIATED, 'Initiated. Send {dash_to_transfer} DASH to {dash_address} before ' '{overdue_datetime}', ), ( TransactionStates.UNCONFIRMED, 'Received {dash_to_transfer} DASH. Waiting for ' '{confirmations_number} confirmations', ), ( TransactionStates.CONFIRMED, 'Confirmed receiving {dash_to_transfer} DASH. Initiated an ' 'outgoing transaction', ), ( TransactionStates.PROCESSED, 'Transaction is processed. Hash of a Ripple transaction is ' '{outgoing_ripple_transaction_hash}', ), ( TransactionStates.OVERDUE, 'Time expired. Transactions to {dash_address} are no longer ' 'tracked', ), ( TransactionStates.FAILED, 'Transaction failed. Please contact our support team', ), ( TransactionStates.NO_RIPPLE_TRUST, 'The ripple account {ripple_address} does not trust our gateway. ' 'Please set a trust line to {gateway_ripple_address}', ), ) id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) dash_to_transfer = models.DecimalField( max_digits=16, decimal_places=8, ) state = models.PositiveSmallIntegerField( default=TransactionStates.INITIATED, choices=STATE_CHOICES, ) ripple_address = models.CharField( max_length=35, validators=[ripple_address_validator], ) outgoing_ripple_transaction_hash = models.CharField( max_length=64, blank=True, ) def __str__(self): return 'Deposit {}'.format(self.id) def save(self, *args, **kwargs): dash_wallet = DashWallet() if not self.dash_address: self.dash_address = dash_wallet.get_new_address() super(DepositTransaction, self).save(*args, **kwargs) def get_current_state(self): values = self.__dict__ values['dash_to_transfer'] = self.get_normalized_dash_to_transfer() values['overdue_datetime'] = formats.date_format( self.get_overdue_datetime(), 'DATETIME_FORMAT', ) values['confirmations_number'] = ( GatewaySettings.get_solo().dash_required_confirmations ) values['gateway_ripple_address'] = ( RippleWalletCredentials.get_solo().address ) return self.get_state_display().format(**values) @staticmethod def post_save_signal_handler(instance, **kwargs): DepositTransactionStateChange.objects.create( transaction=instance, current_state=instance.get_current_state(), ) class WithdrawalTransaction(BaseTransaction): STATE_CHOICES = ( ( TransactionStates.INITIATED, 'Initiated. Send {dash_to_transfer} Dash tokens to ' '{ripple_address} with a destination tag {destination_tag} before ' '{overdue_datetime}', ), ( TransactionStates.CONFIRMED, 'Received {dash_to_transfer} Dash tokens. Initiated an outgoing ' 'transaction', ), ( TransactionStates.PROCESSED, 'Transaction is processed. Hash of a Dash transaction is ' '{outgoing_dash_transaction_hash}', ), ( TransactionStates.OVERDUE, 'Time expired. Transactions with the destination tag ' '{destination_tag} are no longer tracked', ), ( TransactionStates.FAILED, 'Transaction failed. Please contact our support team', ), ) id = models.BigAutoField( primary_key=True, serialize=False, verbose_name='ID', ) dash_to_transfer = models.DecimalField( max_digits=16, decimal_places=8, validators=[withdrawal_min_dash_amount_validator], ) state = models.PositiveSmallIntegerField( default=TransactionStates.INITIATED, choices=STATE_CHOICES, ) outgoing_dash_transaction_hash = models.CharField( max_length=64, blank=True, ) def __str__(self): return 'Withdrawal {}'.format(self.id) @property def destination_tag(self): return self.id def get_current_state(self): values = self.__dict__ values['dash_to_transfer'] = self.get_normalized_dash_to_transfer() values['overdue_datetime'] = formats.date_format( self.get_overdue_datetime(), 'DATETIME_FORMAT', ) values['destination_tag'] = self.destination_tag values['ripple_address'] = RippleWalletCredentials.get_solo().address return self.get_state_display().format(**values) @staticmethod def post_save_signal_handler(instance, **kwargs): WithdrawalTransactionStateChange.objects.create( transaction=instance, current_state=instance.get_current_state(), ) class BaseTransactionStateChange(models.Model): datetime = models.DateTimeField(auto_now_add=True) current_state = models.CharField(max_length=500) class Meta: abstract = True class DepositTransactionStateChange(BaseTransactionStateChange): transaction = models.ForeignKey( DepositTransaction, related_name='state_changes', ) class WithdrawalTransactionStateChange(BaseTransactionStateChange): transaction = models.ForeignKey( WithdrawalTransaction, related_name='state_changes', ) post_save.connect( DepositTransaction.post_save_signal_handler, sender=DepositTransaction, ) post_save.connect( WithdrawalTransaction.post_save_signal_handler, sender=WithdrawalTransaction, ) ``` #### File: core/tests/test_context_processors.py ```python from django.test import RequestFactory, TestCase from apps.core import context_processors from apps.core.utils import get_minimal_transaction_amount class ContextProcessorsTest(TestCase): def test_minimal_amounts(self): request = RequestFactory().get('') context = context_processors.minimal_amounts(request) self.assertIn('minimal_deposit_amount', context) self.assertEqual( context['minimal_deposit_amount'], get_minimal_transaction_amount('deposit'), ) self.assertIn('minimal_withdrawal_amount', context) self.assertEqual( context['minimal_withdrawal_amount'], get_minimal_transaction_amount('withdrawal'), ) ajax_request = RequestFactory().get( '', HTTP_X_REQUESTED_WITH='XMLHttpRequest', ) self.assertIsNone(context_processors.minimal_amounts(ajax_request)) ``` #### File: core/tests/test_utils.py ```python from decimal import Decimal from django.test import TestCase from apps.core.models import GatewaySettings from apps.core.utils import ( get_minimal_transaction_amount, get_received_amount, ) class UtilsTest(TestCase): def setUp(self): GatewaySettings.objects.create( gateway_fee_percent=Decimal('0.5'), max_dash_miner_fee=Decimal('0.001'), ) def test_get_received_amount_deposit(self): self.assertEqual( get_received_amount('1', 'deposit'), Decimal('0.995'), ) self.assertEqual( get_received_amount('1.1', 'deposit'), Decimal('1.0945'), ) self.assertEqual( get_received_amount('0', 'deposit'), Decimal('0'), ) self.assertEqual( get_received_amount('1.123456789', 'deposit'), Decimal('1.11783949'), ) self.assertEqual( get_received_amount('1.123456784', 'deposit'), Decimal('1.11783949'), ) def test_get_received_amount_withdrawal(self): self.assertEqual( get_received_amount('1', 'withdrawal'), Decimal('0.994'), ) self.assertEqual( get_received_amount('1.1', 'withdrawal'), Decimal('1.0935'), ) self.assertEqual( get_received_amount('0', 'withdrawal'), Decimal('0'), ) self.assertEqual( get_received_amount('1.123456789', 'withdrawal'), Decimal('1.11683949'), ) self.assertEqual( get_received_amount('1.123456784', 'withdrawal'), Decimal('1.11683949'), ) def test_get_minimal_withdrawal_amount(self): self.assertEqual( get_minimal_transaction_amount('deposit'), Decimal('0.00000002'), ) self.assertEqual( get_minimal_transaction_amount('withdrawal'), Decimal('0.00100504'), ) ``` #### File: apps/core/utils.py ```python from decimal import Decimal, ROUND_DOWN, ROUND_UP from django.apps import apps dash_minimal = Decimal('0.00000001') def get_minimal_transaction_amount(transaction_type): gateway_settings = apps.get_model('core', 'GatewaySettings').get_solo() gateway_fee = gateway_settings.gateway_fee_percent / 100 minimal_amount = dash_minimal # Add fees. if transaction_type == 'withdrawal': minimal_amount += gateway_settings.max_dash_miner_fee minimal_amount /= (1 - gateway_fee) # Round minimal amount to 8 decimal places. minimal_amount = minimal_amount.quantize( dash_minimal, rounding=ROUND_UP, ) return minimal_amount def get_received_amount(amount, transaction_type): # Round amount to 8 decimal places. amount = Decimal(amount).quantize( dash_minimal, rounding=ROUND_DOWN, ) gateway_settings = apps.get_model('core', 'GatewaySettings').get_solo() gateway_fee = gateway_settings.gateway_fee_percent / 100 # Subtract fees. received_amount = amount * (1 - gateway_fee) if transaction_type == 'withdrawal': received_amount -= gateway_settings.max_dash_miner_fee # Round received amount to 8 decimal places. received_amount = received_amount.quantize( dash_minimal, rounding=ROUND_DOWN, ) return max(received_amount, 0) ```
{ "source": "42cc/ripple_api", "score": 2 }
#### File: ripple_api/ripple_api/models.py ```python from django.db import models from django.utils.translation import ugettext_lazy as _ from model_utils import ModelTracker from signals import transaction_status_changed, transaction_failure_send class Transaction(models.Model): RECEIVED = 0 PROCESSED = 1 MUST_BE_RETURN = 2 RETURNING = 3 RETURNED = 4 PENDING = 5 SUBMITTED = 6 FAILURE = 7 SUCCESS = 8 CREATED = 9 SUCCESS_PROCESSED = 10 FAIL_FIXED = 100 STATUS_CHOICES = ( (RECEIVED, _(u'Transaction received')), (PROCESSED, _(u'Transaction was processed')), (MUST_BE_RETURN, _(u'This transaction must be returned to user')), (RETURNING, _(u'Created new transaction for returning')), (RETURNED, _(u'Transaction was returned')), (PENDING, _(u'Pending to submit')), (SUBMITTED, _(u'Transaction was submitted')), (FAILURE, _(u'Transaction was failed')), (SUCCESS, _(u'Transaction was completed successfully')), (CREATED, _(u'Transaction was created but not sign')), (SUCCESS_PROCESSED, _(u'Transaction was processed after successful submit')), (FAIL_FIXED, _(u'The failed transaction was fixed by a new retry')) ) account = models.CharField(max_length=100) destination = models.CharField(max_length=100) hash = models.CharField(max_length=100, blank=True) tx_blob = models.TextField(blank=True) currency = models.CharField(max_length=3) issuer = models.CharField(max_length=100) value = models.CharField(max_length=100) source_tag = models.IntegerField(null=True, blank=True) destination_tag = models.IntegerField(null=True, blank=True) ledger_index = models.IntegerField(null=True, blank=True) status = models.SmallIntegerField(choices=STATUS_CHOICES, default=RECEIVED) parent = models.ForeignKey('self', null=True, blank=True, related_name='returning_transaction') created = models.DateTimeField(auto_now_add=True) status_tracker = ModelTracker(fields=['status']) def __unicode__(self): return u'[%s] %s. %s %s from %s to %s' % ( self.pk, self.created, self.value, self.currency, self.account, self.destination ) def save(self, *args, **kwargs): created = bool(self.pk) super(Transaction, self).save(*args, **kwargs) if created and self.status_tracker.previous('status') is not None: transaction_status_changed.send( sender=self.__class__, instance=self, old_status=self.status_tracker.previous('status') ) if self.status == self.FAILURE: transaction_failure_send.send(sender=self.__class__, instance=self) ``` #### File: ripple_api/ripple_api/test_trade.py ```python import unittest from decimal import Decimal from django.conf import settings from django.test import TestCase from mock import patch from .trade import sell_all part_pay = 0.5 part_get = 0.1 amount_get = 1 amount_pay = 2 sequence = 1 balance_pay = 100 balance_get = 200 AffectedNodes = { u'DeletedNode': { 'LedgerEntryType': 'Offer', 'PreviousFields': { u'TakerPays': { u'currency': 'TUS', u'value': str(part_pay), u'issuer': u'<KEY>' }, u'Account': u'<KEY>', u'TakerGets': { u'currency': 'TBT', u'value': str(part_get), u'issuer': u'<KEY>' }, } }, } data = { u'status': u'success', u'engine_result': u'tesSUCCESS', u'engine_result_message': u'The transaction was applied.', u'engine_result_code': 0, u'tx_blob': u'test', u'tx_json': { u'Account': settings.RIPPLE_ACCOUNT, u'hash': u'test_hash', u'Sequence': sequence, u'TakerPays': { u'currency': 'TBT', u'value': amount_pay, u'issuer': '<KEY>' }, u'TakerGets': { u'currency': 'TUS', u'value': amount_get, u'issuer': '<KEY>', u'TransactionType': u'OfferCreate' } } } tx_data = { u'status': u'success', u'Account': settings.RIPPLE_ACCOUNT, u'Sequence': sequence, u'TakerPays': { u'currency': 'TBT', u'value': str(amount_pay), u'issuer': '<KEY>' }, u'meta': { u'TransactionResult': u'tesSUCCESS', u'AffectedNodes': [{ u'ModifiedNode': { u'LedgerEntryType': u'Offer', u'FinalFields': { u'Account': u'<KEY>', u'Sequence': sequence, u'TakerPays': { u'currency': 'TUS', u'value': str(amount_pay), u'issuer': u'<KEY>' }, u'TakerGets': { u'currency': 'TBT', u'value': str(amount_get), u'issuer': u'<KEY>' }, u'Flags': 0 }, u'PreviousFields': { u'TakerPays': { u'currency': 'TUS', u'value': str(balance_pay), u'issuer': u'<KEY>' }, u'TakerGets': { u'currency': 'TBT', u'value': str(balance_get), u'issuer': u'<KEY>' } } } }] }, u'TakerGets': { u'currency': 'TUS', u'value': str(amount_get), u'issuer': '<KEY>', }, u'validated': True, u'TransactionType': u'OfferCreate' } def generate_ripple_transaction_meta(final_balance, previous_balance): return { 'AffectedNodes': [ { "ModifiedNode": { "FinalFields": { "Balance": { "currency": "TUS", "issuer": "<KEY>", "value": str(final_balance) }, "HighLimit": { "currency": "TUS", "issuer": '<KEY>', "value": "10000" }, }, "LedgerEntryType": "RippleState", "PreviousFields": { "Balance": { "currency": "TUS", "issuer": "<KEY>", "value": str(previous_balance) } }, } }, { "ModifiedNode": { "FinalFields": { "Account": settings.RIPPLE_ACCOUNT, "Balance": "80678117", }, "LedgerEntryType": "AccountRoot", "PreviousFields": { "Balance": "80688117", "Sequence": 959 }, } }, { "ModifiedNode": { "FinalFields": { "Balance": { "currency": "TUS", "issuer": "<KEY>", "value": "0.1" }, "HighLimit": { "currency": "TUS", "issuer": "<KEY>", "value": "0" }, }, "LedgerEntryType": "RippleState", "PreviousFields": { "Balance": { "currency": "TUS", "issuer": "<KEY>", "value": "0.2" } }, } } ], 'TransactionResult': 'tesSUCCESS' } # FIXME: disable tests for now as these are not consistent with # the implementation at all # https://github.com/42cc/ripple_api/issues/24 @unittest.skip class TradeTestCase(TestCase): def setUp(self): self.create_data = data self.tx_data = tx_data @patch('ripple_api.ripple_api.call_api') @patch('ripple_api.trade.create_offer') def test_offer_create_error(self, create_offer_mock, call_api_mock): """Test if do not sell all when has error in offer.""" self.create_data['engine_result'] = 'error' create_offer_mock.return_value = self.create_data call_api_mock.return_value = self.create_data exchange_result = sell_all( sell_needed={ 'value': amount_pay, 'currency': 'TUS', 'issuer': '<KEY>' }, buy_expected={ 'value': amount_get, 'currency': 'TBT', 'issuer': '<KEY>' }, ) # check result error, sold 0, bought 0 self.assertEqual(exchange_result['status'], 'error') self.assertEqual(exchange_result['status_msg'], 'Offer creation failed: error') self.assertEqual(exchange_result['sold'], 0) self.assertEqual(exchange_result['bought'], 0) @patch('ripple_api.ripple_api.call_api') @patch('ripple_api.trade.create_offer') def test_offer_create_nothing_happened(self, create_offer_mock, call_api_mock): """Test if do not sell all when offer without data 'AffectedNodes'.""" self.create_data['engine_result'] = 'tesSUCCESS' rez = self.tx_data['meta']['AffectedNodes'] del self.tx_data['meta']['AffectedNodes'] create_offer_mock.return_value = self.create_data call_api_mock.return_value = self.tx_data exchange_result = sell_all( sell_needed={ 'value': amount_pay, 'currency': 'TUS', 'issuer': '<KEY>' }, buy_expected={ 'value': amount_get, 'currency': 'TBT', 'issuer': '<KEY>' }, ) self.tx_data['meta']['AffectedNodes'] = rez # check result success, sold 0, bought 0 self.assertEqual(exchange_result['status'], 'error') self.assertEqual(exchange_result['status_msg'], "Offer was not identified.") self.assertEqual(exchange_result['sold'], 0) self.assertEqual(exchange_result['bought'], 0) @patch('ripple_api.ripple_api.call_api') @patch('ripple_api.trade.create_offer') def test_offer_create_not_happened(self, create_offer_mock, call_api_mock): """Test if do not sell all when offer without data 'ModifiedNode'.""" self.create_data['engine_result'] = 'tesSUCCESS' rez = self.tx_data['meta']['AffectedNodes'][0]['ModifiedNode'] del self.tx_data['meta']['AffectedNodes'][0]['ModifiedNode'] create_offer_mock.return_value = self.create_data call_api_mock.return_value = self.tx_data exchange_result = sell_all( sell_needed={ 'value': amount_pay, 'currency': 'TUS', 'issuer': '<KEY>' }, buy_expected={ 'value': amount_get, 'currency': 'TBT', 'issuer': '<KEY>' }, ) self.tx_data['meta']['AffectedNodes'][0]['ModifiedNode'] = rez # check result success, sold 0, bought 0 self.assertEqual(exchange_result['status'], 'success') self.assertEqual(exchange_result['sold'], 0) self.assertEqual(exchange_result['bought'], 0) @patch('ripple_api.ripple_api.call_api') @patch('ripple_api.trade.create_offer') def test_offer_create_sold_a_part(self, create_offer_mock, call_api_mock): """Test if correct sell a part, when offer has only part for sell.""" self.create_data['engine_result'] = 'tesSUCCESS' create_offer_mock.return_value = self.create_data call_api_mock.return_value = self.tx_data exchange_result = sell_all( sell_needed={ 'value': amount_pay, 'currency': 'TUS', 'issuer': '<KEY>' }, buy_expected={ 'value': amount_get, 'currency': 'TBT', 'issuer': '<KEY>' }, ) # check result success, sold only a part self.assertEqual(exchange_result['status'], 'success') self.assertEqual(exchange_result['bought'], Decimal(balance_get - amount_get)) self.assertEqual(exchange_result['sold'], Decimal(balance_pay - amount_pay)) @patch('ripple_api.ripple_api.call_api') @patch('ripple_api.trade.create_offer') def test_offer_create_sold_everything(self, create_offer_mock, call_api_mock): """Test if correct we can sell all.""" self.create_data['engine_result'] = 'tesSUCCESS' del self.tx_data['meta']['AffectedNodes'][0]['ModifiedNode'] self.tx_data['meta']['AffectedNodes'][-1] = AffectedNodes create_offer_mock.return_value = self.create_data call_api_mock.return_value = self.tx_data exchange_result = sell_all( sell_needed={ 'value': amount_pay, 'currency': 'TUS', 'issuer': '<KEY>' }, buy_expected={ 'value': amount_get, 'currency': 'TBT', 'issuer': '<KEY>' }, ) # check result success, sold a part self.assertEqual(exchange_result['status'], 'success') self.assertEqual(exchange_result['sold'], Decimal("%.6f" % part_pay)) self.assertEqual(exchange_result['bought'], Decimal("%.6f" % part_get)) ``` #### File: ripple_api/ripple_api/test_trust.py ```python import json from django.conf import settings from django.test import TestCase from requests import Response from mock import patch from .ripple_api import trust_set, RippleApiError sequence = 12 destination_account = u'<KEY>' wrong_secret = "somesecret" data = { u"engine_result": u"tesSUCCESS", u"engine_result_code": 0, u"engine_result_message": (u"The transaction was applied. Only final " + u"in a validated ledger."), u"status": u"success", u"tx_blob": u"-- hexBinary data --", u"tx_json": { u"Account": settings.RIPPLE_ACCOUNT, u"Fee": u"10000", u"Flags": 262144, u"LimitAmount": { u"currency": u"USD", u"issuer": destination_account, u"value": u"1" }, u"Sequence": sequence, u"SigningPubKey": u"-- hexBinary data of SigningPubKey --", u"TransactionType": u"TrustSet", u"TxnSignature": u"-- hexBinary data of TxnSignature --", u"hash": u"-- hexBinary data of hash --" } } error_data = { u"error": "badSecret", u"error_code": 39, u"error_message": "Secret does not match account.", u"request": { u"command": u"submit", u"secret": wrong_secret, u"tx_json": { u"Account": settings.RIPPLE_ACCOUNT, u"Fee": "10000", u"Flags": 262144, u"LimitAmount": { u"currency": "USD", u"issuer": destination_account, u"value": "1" }, u"TransactionType": "TrustSet" } }, u"status": "error" } class TrustSetTestCase(TestCase): def setUp(self): pass @patch('requests.post') def test_trust_set_error(self, post_mock): """Test if RippleApiError raised in case when secret is wrong""" response = Response() response._content = json.dumps({u"result": error_data}) post_mock.return_value = response exp_msg = u'39: badSecret. Secret does not match account.' with self.assertRaisesMessage(RippleApiError, exp_msg): trust_set( settings.RIPPLE_ACCOUNT, wrong_secret, destination_account, 1, u"USD", flags={"AllowRipple": False, "Freeze": True} ) @patch('requests.post') def test_trust_set_success(self, post_mock): response = Response() response._content = json.dumps({u"result": data}) post_mock.return_value = response result = trust_set( settings.RIPPLE_ACCOUNT, settings.RIPPLE_SECRET, destination_account, 1, u"USD", flags={"AllowRipple": True} ) self.assertDictEqual(result, data) ```
{ "source": "42cursus-youkim/packman", "score": 3 }
#### File: 42cursus-youkim/packman/makegen.py ```python import re import textwrap from pathlib import Path def get_subdirs(path: Path): yield from (p for p in path.glob("[!.]*") if p.is_dir()) def get_src_files(subdir: Path): yield from (p for p in subdir.glob("*.c")) def make_var(name: str, values: list[str]) -> str: name_len = len(name) wrapped = textwrap.wrap(" ".join(values), 70 - name_len) wrapped_len = len(wrapped) if wrapped_len == 0: return "" pad = "\t" * ((name_len + 3) // 4) res = f"{name} = {wrapped[0]}" if wrapped_len > 1: res += "\\" for w in wrapped[1:-1]: res += f"\n{pad}{w}\\" if wrapped_len > 1: res += f"\n{pad}{wrapped[-1]}" res += "\n" return res def create_values(subdir: Path) -> str: values = [s.stem for s in get_src_files(subdir)] return make_var(f"{subdir.name.replace('std__', '')}V", values) def create_template(path: Path) -> str: subdirs = [s for s in get_subdirs(path)] packages = [s.name.replace("std__", "") for s in subdirs] res = make_var("PKGS", packages) + "\n" for subdir in subdirs: res += create_values(subdir) return res def regex_index(lst: list[str], pattern: str, flags=0): for i, line in enumerate(lst): if re.match(pattern, line, flags): return i raise ValueError(f"{pattern} not found in {lst}") def replace_text( text: str, to_replace: str, begin_text: str = r"#\s*@packages", end_text: str = "#", ) -> str: lines = text.splitlines() begin = 1 + regex_index(lines, begin_text, re.I) end = begin + regex_index(lines[begin:], end_text, re.I) # replace lines lines[begin:end] = [to_replace] return "\n".join(lines) def makegen(src_dir: Path = Path('src'), makefile: Path = Path('Makefile')): template = create_template(src_dir) text = makefile.read_text() makefile.write_text(replace_text(text, template)) def main(): makegen() if __name__ == "__main__": main() ```
{ "source": "42cursus-youkim/Rank04-CPP-Module01", "score": 3 }
#### File: Rank04-CPP-Module01/ex04/test.py ```python from pathlib import Path from subprocess import run from hypothesis import example, given from hypothesis import strategies as st from termcolor import cprint EXIT_FAILURE = 1 @given(st.text(min_size=1), st.text(min_size=1)) @example("para", "PARA") @example("para", "") @example(" ", "!!!!") def test_replace_works(word: str, to: str): cprint(f"case: <{word}> => <{to=}>", "yellow") param = ["./prog.out", "test.txt", word, to] try: result = run(param) except ValueError: cprint(f"skipping due to {word} or {to} a NULL byte", "magenta") return if len(param) != 4: assert result.returncode == EXIT_FAILURE else: text = Path("test.replace").read_text() answer = Path("test.txt").read_text().replace(word, to) assert text == answer def test_invalid_file(): param = ["./prog.out", "DOES.NOT.EXIST", "para", "PARA"] assert run(param).returncode == EXIT_FAILURE def test_invalid_arg(): param = ["./prog.out"] for _ in range(6): assert run(param).returncode == EXIT_FAILURE param.append("a") if __name__ == "__main__": test_replace_works() test_invalid_file() test_invalid_arg() ```
{ "source": "4-2-cz/Zabbix-Addons", "score": 2 }
#### File: Extensions/Screen-Builder/screen_info.py ```python __author__ = "<NAME>" __copyright__ = "Copyright (C) 2014 Vermont 24x7" __version__ = "1.0" import ConfigParser import sys, os sys.path.append('./lib') from zabbix_api import ZabbixAPI, ZabbixAPIException import json class Config: def __init__(self, conf_file): self.config = None self.zabbix_frontend = '' self.zabbix_user = '' self.zabbix_password = '' self.screen_name = '' self.screen_hsize = 0 self.graph_width = 0 self.graph_height = 0 self.conf_file = conf_file if not os.path.exists(self.conf_file): print "Can't open config file %s" % self.conf_file exit(1) # Read common config self.config = ConfigParser.ConfigParser() self.config.read(self.conf_file) def parse(self): # Parse common config try: self.zabbix_frontend = self.config.get('common', 'zabbix_frontend') except: self.zabbix_frontend = 'localhost' try: self.zabbix_user = self.config.get('common', 'zabbix_user') except: self.zabbix_user = 'admin' try: self.zabbix_password = self.config.get('common', 'zabbix_password') except: self.zabbix_password = '' try: self.screen_name = self.config.get('screen', 'name') except: print "No name given for screen to create" sys.exit(1) try: self.screen_hsize = self.config.get('screen', 'hsize') except: self.screen_hsize = 2 try: self.graph_width = self.config.get('screen', 'graph_width') except: self.graph_width = 500 try: self.graph_height = self.config.get('screen', 'graph_height') except: self.graph_height = 100 def cleanup(): pass def main(): import atexit atexit.register(cleanup) #get screens for screen in zapi.screen.get({ "output": "extend", "selectScreenItems": "extend" }): print json.dumps(screen, indent=4) sys.exit(1) if __name__ == "__main__": global config config_file = './screenbuilder.conf' config = Config(config_file) config.parse() zapi = ZabbixAPI(server=config.zabbix_frontend) try: print("Connecting to Zabbix API") zapi.login(config.zabbix_user, config.zabbix_password) print("Connected to Zabbix API Version: %s" % zapi.api_version()) except ZabbixAPIException, e: print("Zabbix API connection failed") print("Additional info: %s" % e) sys.exit(1) main() ```
{ "source": "42electronics/level_c", "score": 2 }
#### File: level_c/lesson_10/tk_6050_all.py ```python from tkinter import * from mpu6050 import mpu6050 sensor = mpu6050(0x68) def update(): ax.delete(0,END) ay.delete(0,END) az.delete(0,END) gx.delete(0,END) gy.delete(0,END) gz.delete(0,END) data = sensor.get_all_data() ax_data = data[0]['x'] ay_data = data[0]['y'] az_data = data[0]['z'] gx_data = data[1]['x'] gy_data = data[1]['y'] gz_data = data[1]['z'] ax.insert(0, '%.1f'%ax_data) ay.insert(0, '%.1f'%ay_data) az.insert(0, '%.1f'%az_data) gx.insert(0, '%.1f'%gx_data) gy.insert(0, '%.1f'%gy_data) gz.insert(0, '%.1f'%gz_data) root.after(300, update) root = Tk() root.title('MPU6050') Label(root, text = 'Accel X:').grid(row=0, column=0) Label(root, text = 'Accel Y:').grid(row=1, column=0) Label(root, text = 'Accel Z:').grid(row=2, column=0) Label(root, text = 'Gyro X:').grid(row=3, column=0) Label(root, text = 'Gyro Y:').grid(row=4, column=0) Label(root, text = 'Gyro Z:').grid(row=5, column=0) ax = Entry(root) ay = Entry(root) az = Entry(root) gx = Entry(root) gy = Entry(root) gz = Entry(root) ax.grid(row=0, column=1) ay.grid(row=1, column=1) az.grid(row=2, column=1) gx.grid(row=3, column=1) gy.grid(row=4, column=1) gz.grid(row=5, column=1) Button(root, text='Quit', command=root.destroy).grid(row=6, column=0) update() root.mainloop() ``` #### File: level_c/lesson_12/camera_capture.py ```python import time, os from tkinter import * root = Tk() root.title('Photos') def quit(): root.destroy() print('Program Exiting...') raise SystemExit() def update(): global img timestamp = (time.strftime('%Y-%m-%d_%H:%M:%S')) img_file = ('/home/pi/Pictures/%s.png' % timestamp) os.system('raspistill -o %s -e png -w 640 -h 480' % img_file) print('Image saved as %s' % img_file) img = PhotoImage(file='%s' % img_file) Label(root, image=img).grid(row=0, column=0) img = PhotoImage(file='/home/pi/Pictures/init.png') Label(root, image=img).grid(row=0, column=0) Button(root, text='Capture', command=update).grid(row=1, column=0) Button(root, text='Quit', command=quit).grid(row=2, column=0) root.mainloop() ``` #### File: level_c/lesson_15/internet_oled.py ```python import time import Adafruit_SSD1306 from PIL import Image, ImageDraw, ImageFont import requests disp = Adafruit_SSD1306.SSD1306_128_64(rst=None) disp.begin() width = disp.width height = disp.height image = Image.new('1', (width, height)) draw = ImageDraw.Draw(image) font = ImageFont.truetype('/usr/share/fonts/truetype/freefont/FreeSans.ttf',18) def update_color(): draw.rectangle((0,0,width,height), outline=0, fill=0) feed = requests.get('http://api.thingspeak.com/channels/1417/field/1/last.json') data = feed.json() current = data['field1'] return(current) try: while True: color = update_color() draw.text((0, 0), 'Cheerlights', font=font, fill=255) draw.text((0, 22), 'color is:', font=font, fill=255) draw.text((0, 44), color, font=font, fill=255) disp.image(image) disp.display() time.sleep(30) except KeyboardInterrupt: disp.clear() disp.display() SystemExit() ``` #### File: level_c/lesson_3/tk_keyboard.py ```python from tkinter import Tk def on_close(): print('Quitting Program...') root.destroy() def key_input(event): if event.char == 'a': print('a pressed') elif event.char == 's': print('s pressed') elif event.char == 'd': print('d pressed') elif event.char == 'f': print('f pressed') elif event.char == 'q': on_close() else: print('Invalid input') root = Tk() root.bind('<KeyPress>', key_input) root.protocol("WM_DELETE_WINDOW", on_close) root.mainloop() ``` #### File: level_c/lesson_3/tx_xy.py ```python from tkinter import Tk, Canvas def click(event): print("Clicked at x=",event.x," y=",event.y) def on_close(): root.destroy() root = Tk() root.protocol("WM_DELETE_WINDOW", on_close) project = Canvas(root) project.configure(width=300, height=300) project.bind("<Button-1>", click) project.pack() root.mainloop() ``` #### File: level_c/lesson_9/mpu6050_rgb.py ```python import RPi.GPIO as GPIO import time from mpu6050 import mpu6050 red = 13 green = 19 blue = 26 GPIO.setmode(GPIO.BCM) GPIO.setup(red, GPIO.OUT) GPIO.setup(green, GPIO.OUT) GPIO.setup(blue, GPIO.OUT) def led_update(red_value,green_value,blue_value): GPIO.output(red, red_value) GPIO.output(green, green_value) GPIO.output(blue, blue_value) sensor = mpu6050(0x68) try: while True: data = sensor.get_accel_data() y_accel = data['y'] if y_accel > 4: led_update(1,0,0) elif y_accel < -4: led_update(0,0,1) else: led_update(0,1,0) time.sleep(0.05) except KeyboardInterrupt: led_update(0,0,0) GPIO.cleanup() ```
{ "source": "42enrique/osteoblasticCNN", "score": 3 }
#### File: osteoblasticCNN/keras-covid-19/train_lib.py ```python from random import shuffle, choice from PIL import Image import os import numpy as np import matplotlib as plt import random import glob import matplotlib.pyplot as plt from matplotlib.pyplot import figure import time import pandas as pd import cv2 import math from random import randint def load_rgb_data(IMAGE_DIRECTORY,IMAGE_SIZE, shuffle=True): print("Loading images...") data = [] #labels=[] directories = next(os.walk(IMAGE_DIRECTORY))[1] print(directories) for diretcory_name in directories: print("Loading {0}".format(diretcory_name)) file_names = next(os.walk(os.path.join(IMAGE_DIRECTORY, diretcory_name)))[2] print("we will load [", len(file_names), "] files from [",diretcory_name,"] class ..." ) for i in range(len(file_names)): image_name = file_names[i] image_path = os.path.join(IMAGE_DIRECTORY, diretcory_name, image_name) if ('.DS_Store' not in image_path): #print(image_path) label = diretcory_name img = Image.open(image_path) rgbimg = Image.new("RGB", img.size) rgbimg.paste(img) img=rgbimg #print(np.array(img).shape) img = img.resize((IMAGE_SIZE, IMAGE_SIZE), Image.ANTIALIAS) #print(np.array(img).shape) data.append([np.array(img), label]) if (shuffle): random.shuffle(data) training_images = np.array([i[0] for i in data]).reshape(-1, IMAGE_SIZE, IMAGE_SIZE, 3) training_labels = np.array([i[1] for i in data]) print("File loading completed.") return training_images, training_labels def load_rgb_data_cv(IMAGE_DIRECTORY,IMAGE_SIZE, shuffle=True): print("Loading images...") data = [] #labels=[] directories = next(os.walk(IMAGE_DIRECTORY))[1] for diretcory_name in directories: print("Loading {0}".format(diretcory_name)) file_names = next(os.walk(os.path.join(IMAGE_DIRECTORY, diretcory_name)))[2] print("we will load [", len(file_names), "] files from [",diretcory_name,"] class ..." ) for i in range(len(file_names)): image_name = file_names[i] image_path = os.path.join(IMAGE_DIRECTORY, diretcory_name, image_name) #print(image_path) label = diretcory_name img = cv2.imread(image_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = cv2.resize(img, (IMAGE_SIZE, IMAGE_SIZE)) #print(np.array(img).shape) data.append([np.array(img), label]) if (shuffle): random.shuffle(data) training_images = np.array([i[0] for i in data]).reshape(-1, IMAGE_SIZE, IMAGE_SIZE, 3) training_labels = np.array([i[1] for i in data]) print("File loading completed.") return training_images, training_labels def normalize_data(dataset): print("normalize data") dataset= dataset/255.0 return dataset def display_image(trainX, trainY, index=0): plt.imshow(trainX[index]) print ("Label = " + str(np.squeeze(trainY[index]))) print ("image shape: ",trainX[index].shape) def display_one_image(one_image, its_label): plt.imshow(one_image) print ("Label = " + its_label) print ("image shape: ",one_image.shape) def display_dataset_shape(X,Y): print("Shape of images: ", X.shape) print("Shape of labels: ", Y.shape) def plot_sample_from_dataset(images, labels,rows=5, colums=5, width=8,height=8): plt.figure(figsize=(width,height)) for i in range(rows*colums): plt.subplot(rows,colums,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(images[i], cmap=plt.cm.binary) plt.xlabel(labels[i]) plt.show() def display_dataset_folders(path): classes=os.listdir(path) classes.sort() print(classes) def get_data_distribution(IMAGE_DIRECTORY, output_file=None,plot_stats=True): print("Loading images...") #list structure to collect the statistics stats=[] #get all image directories directories = next(os.walk(IMAGE_DIRECTORY))[1] for diretcory_name in directories: print("Loading {0}".format(diretcory_name)) images_file_names = next(os.walk(os.path.join(IMAGE_DIRECTORY, diretcory_name)))[2] print("we will load [", len(images_file_names), "] files from [",diretcory_name,"] class ..." ) for i in range(len(images_file_names)): image_name = images_file_names[i] image_path = os.path.join(IMAGE_DIRECTORY, diretcory_name, image_name) #print(image_path) #the class is assumed to be equal to the directorty name label = diretcory_name img = Image.open(image_path) #convert any image to RGB to make sure that it has three channels rgbimg = Image.new("RGB", img.size) rgbimg.paste(img) img=rgbimg #get the width and the height of the image in pixels width,height = img.size #get the size of the image in KB size_kb=os.stat(image_path).st_size/1000 #add the size to a list of sizes to be stats.append([label,os.path.basename(image_name),width,height,size_kb]) if (output_file is not None): #convert the list into a dataframe to make it easy to save into a CSV stats_dataframe = pd.DataFrame(stats,columns=['Class','Filename','Width','Height','Size_in_KB']) stats_dataframe.to_csv(output_file,index=False) print("Stats collected and saved in .",output_file) else: print("Stats collected"); return stats def plot_dataset_distribution (stats, num_cols=5, width=10, height=5, histogram_bins = 10, histogram_range=[0, 1000], figure_padding=4): #convert the list into a dataframe stats_frame = pd.DataFrame(stats,columns=['Class','Filename','Width','Height','Size_in_KB']) #extract the datframe related to sizes only list_sizes=stats_frame['Size_in_KB'] #get the number of classes in the dataset number_of_classes=stats_frame['Class'].nunique() print(number_of_classes, " classes found in the dataset") #create a list of (list of sizes) for each class of images #we start by the the sizes of all images in the dataset list_sizes_per_class=[list_sizes] class_names=['whole dataset'] print("Images of the whole dataset have an average size of ", list_sizes.mean()) for c in stats_frame['Class'].unique(): print("sizes of class [", c, "] have an average size of ", list_sizes.loc[stats_frame['Class']== c].mean()) #then, we append the sizes of images of a particular class list_sizes_per_class.append(list_sizes.loc[stats_frame['Class'] == c]) class_names.append(c) num_rows=math.ceil((number_of_classes+1)/num_cols) if (number_of_classes<num_cols): num_cols=number_of_classes+1 fig,axes = plt.subplots(num_rows, num_cols, figsize=(width,height)) fig.tight_layout(pad=figure_padding) class_count=0 if (num_rows==1 or num_cols==1): for i in range(num_rows): for j in range(num_cols): axes[j+i].hist(list_sizes_per_class[num_cols*i+j], bins = histogram_bins, range=histogram_range) axes[j+i].set_xlabel('Image size (in KB)', fontweight='bold') axes[i+j].set_title(class_names[j+i] + ' images ', fontweight='bold') class_count=class_count+1 if (class_count==number_of_classes+1): break else: for i in range(num_rows): for j in range(num_cols): axes[i,j].hist(list_sizes_per_class[num_cols*i+j], bins = histogram_bins, range=histogram_range) axes[i,j].set_xlabel('Image size (in KB)', fontweight='bold') axes[i,j].set_title(class_names[i] + ' images ', fontweight='bold') class_count=class_count+1 if (class_count==number_of_classes+1): break def reshape_image_for_neural_network_input(image, IMAGE_SIZE=244): print ("flatten the image") image = np.reshape(image,[IMAGE_SIZE* IMAGE_SIZE*3,1]) print ("image.shape", image.shape) print ("reshape the image to be similar to the input feature vector") #image = np.reshape(image,[1,IMAGE_SIZE, IMAGE_SIZE,3]).astype('float') image = image.reshape(1,IMAGE_SIZE,IMAGE_SIZE,3).astype('float') print ("image.shape", image.shape) return image def plot_loss_accuracy(H, EPOCHS, output_file=None): N = EPOCHS plt.style.use("ggplot") plt.figure() plt.plot(np.arange(0, N), H.history["loss"], label="train_loss") plt.plot(np.arange(0, N), H.history["val_loss"], label="val_loss") plt.plot(np.arange(0, N), H.history["accuracy"], label="train_acc") plt.plot(np.arange(0, N), H.history["val_accuracy"], label="val_acc") plt.title("Training Loss and Accuracy on COVID-19 Dataset") plt.xlabel("Epoch #") plt.ylabel("Loss/Accuracy") plt.legend(loc="lower left") if (output_file is not None): plt.savefig(output_file) def draw_accuracy_graph(history): # summarize history for accuracy plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() def draw_loss_graph(history): # summarize history for loss plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() #-------------------------------# def plot_test_image(testX, image_index, predictions_array, true_binary_labels): """ testX: this is the test dataset image_index: index of the image that we will plot from the test dataset predictions_array: it is the array that contains all the predictions of the test dataset as output of model.predict(testX) true_binary_labels: these are the true label expressed as INTEGER values. It does not work with hot-encoding and string labels. """ single_predictions_array, true_binary_label, test_image = predictions_array, true_binary_labels[image_index], testX[image_index] plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(test_image, cmap=plt.cm.binary) predicted_binary_label = np.argmax(predictions_array) #print ("predicted_binary_label:", predicted_binary_label) #print ("true_binary_label:",true_binary_label) if predicted_binary_label == true_binary_label: color = 'blue' else: color = 'red' plt.xlabel("predicted: {} {:2.0f}% (true: {})".format(predicted_binary_label, 100*np.max(single_predictions_array), true_binary_label), color=color) def plot_value_array(i, predictions_array, true_label, number_of_classes=3): predictions_array, true_label = predictions_array, true_label[i] plt.style.use(['classic']) plt.grid(False) plt.xticks(range(number_of_classes)) plt.yticks([]) thisplot = plt.bar(range(number_of_classes), 1, color="#FFFFFF") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) #print(true_label[0]) #print(predicted_label) thisplot[predicted_label].set_color('red') thisplot[true_label[0]].set_color('blue') def plot_sample_predictions(testX, predictions_array, true_binary_labels,number_of_classes=3,num_rows = 10, num_cols = 4, width=None, height=None, is_random=True): """ this method plots a sample of predictions from the test dataset and highlight correct and wrong predictions testX: this is the test dataset image_index: index of the image that we will plot from the test dataset predictions_array: it is the array that contains all the predictions of the test dataset as output of model.predict(testX) true_binary_labels: these are the true labels array expressed as INTEGER values. It does not work with hot-encoding and string labels. """ num_images = num_rows*num_cols if (num_images>testX.shape[0]): raise Exception("num_rows*num_cols is",(num_rows*num_cols), "must be smaller than number of images in the Test Dataset", testX.shape[0]) if width is None: width=6*num_cols if height is None: height=2*num_rows plt.figure(figsize=(width, height)) plt.style.use(['seaborn-bright']) image_index=-1 for i in range(num_images): if (is_random==True): image_index=randint(0,testX.shape[0]-1) else: image_index=image_index+1 #print(image_index) #--------------- plt.subplot(num_rows, 2*num_cols, 2*i+1) plot_test_image(testX, image_index, predictions_array[image_index], true_binary_labels) #--------------- plt.subplot(num_rows, 2*num_cols, 2*i+2) plot_value_array(image_index, predictions_array[image_index], true_binary_labels, number_of_classes) plt.tight_layout() plt.show() ```
{ "source": "42ip/ShuttleBot", "score": 3 }
#### File: ShuttleBot/commands/earth.py ```python import discord import requests import random from PIL import Image, ImageDraw import io async def earth(message,channel): if len(message.mentions) == 0: person = message.author else: person = message.mentions[0] response = requests.get(person.avatar_url) image_bytes = io.BytesIO(response.content) im2 = Image.open(image_bytes) response = requests.get( 'https://cdn.mos.cms.futurecdn.net/3upZx2gxxLpW7MBbnKYQLH-1200-80.jpg') image_bytes = io.BytesIO(response.content) im1 = Image.open(image_bytes) im2 = im2.resize((470, 470)) mask_im = Image.new("L", im2.size, 0) draw = ImageDraw.Draw(mask_im) draw.ellipse((0, 0, im2.width, im2.height), fill=150 ) im = im1.copy() im.paste(im2, (35, 40), mask_im) msgs = ["Zuckerberg told me that you were blue today, well, you are now the Blue Planet! <:deadinside:762920553941303327>", "You are now a 12,000 km wide ball called Earth. Congratulations <:poggies:886538902184292393>", "I present to you the face of the planet with 7.8 billion people who contributed nothing to the space <:superAngry:843088789349335050>"] with io.BytesIO() as image_binary: im.save(image_binary, 'PNG') image_binary.seek(0) picture = discord.File(image_binary, "space.png") await channel.send(random.choice(msgs)) await channel.send(file=picture) ```
{ "source": "42jaylonw/rrc_2021_three_wolves", "score": 2 }
#### File: deep_whole_body_controller/utility/reward_utils.py ```python import numpy as np def ComputeDist(p0, p1): return np.linalg.norm(np.subtract(p1, p0)) def FVCap(v_cap, r): return max(-v_cap, min(r, v_cap)) def ComputeAcc(pos_3, time_step=0.1): assert pos_3.shape == (3, 3) vel_0 = ComputeDist(pos_3[0], pos_3[1]) / time_step vel_1 = ComputeDist(pos_3[1], pos_3[2]) / time_step acc_3 = (vel_1 - vel_0) / time_step return acc_3 def ExpSqr(cur, tar=0, wei=-3): assert wei < 0 return np.sum(np.exp(wei * np.square(np.abs(tar - cur)))) def Delta(seq): seq = np.array(seq) assert seq.ndim == 1 _diff = seq - np.mean(seq) return np.sum(np.abs(_diff)) ``` #### File: three_wolves/envs/contact_cube_env.py ```python import time import gym import numpy as np import pybullet from trifinger_simulation import TriFingerPlatform, visual_objects from trifinger_simulation.tasks import move_cube_on_trajectory as task from three_wolves.envs.base_cube_env import ActionType, BaseCubeTrajectoryEnv from three_wolves.envs.utilities.env_utils import HistoryWrapper, resetCamera from three_wolves.deep_whole_body_controller import position_controller, contact_planner from three_wolves.deep_whole_body_controller.utility import pinocchio_utils, reward_utils, trajectory class ContactControlEnv(BaseCubeTrajectoryEnv): def render(self, mode='human'): pass def __init__(self, goal_trajectory, visualization, randomization, evaluation=False, history_num=1, robot_type='sim'): super(ContactControlEnv, self).__init__( goal_trajectory=goal_trajectory, action_type=ActionType.POSITION, step_size=3) self.visualization = visualization self.randomization = randomization self.evaluation = evaluation self.observer = HistoryWrapper(history_num) self.kinematics = pinocchio_utils.Kinematics(robot_type) self.contact_planner = contact_planner.ContactPlanner() self.position_controller = position_controller.PositionController(self.kinematics, self.observer, self.step_size) self.max_episode = task.EPISODE_LENGTH self.tip_force_offset = [] # create observation space spaces = TriFingerPlatform.spaces self.observation_space = gym.spaces.Box( low=np.hstack([ spaces.object_position.gym.low, # cube position [-2 * np.pi] * 3, # cube rpy spaces.object_position.gym.low, # goal position [-0.3] * 3, # goal-cube difference [0] # goal-cube distance ]), high=np.hstack([ spaces.object_position.gym.high, # cube position [2 * np.pi] * 3, # cube rpy spaces.object_position.gym.high, # goal position [0.3] * 3, # goal-cube difference [1] # goal-cube distance ]) ) self.action_space = self.contact_planner.action_space def reset(self): """Reset the environment.""" # hard-reset simulation self.goal_marker = None del self.platform # initialize simulation initial_robot_position = ( TriFingerPlatform.spaces.robot_position.default ) # initialize cube at the centre _random_obj_xy_pos = np.random.uniform( low=[-0.04] * 2, high=[0.04] * 2, ) _random_obj_yaw_ori = np.random.uniform(-2 * np.pi, 2 * np.pi) _random_obj_yaw_ori = pybullet.getQuaternionFromEuler([0, 0, _random_obj_yaw_ori]) random_object_pose = task.move_cube.Pose( position=[_random_obj_xy_pos[0], _random_obj_xy_pos[1], task.INITIAL_CUBE_POSITION[2]], orientation=_random_obj_yaw_ori ) self.platform = TriFingerPlatform( visualization=self.visualization, initial_robot_position=initial_robot_position, initial_object_pose=random_object_pose, ) if self.randomization: cube_id = self.platform.cube._object_id random_mass = 0.094*np.random.uniform(0.9, 1.1) random_lateral_friction = 1*np.random.uniform(0.9, 1) random_step_size = np.random.randint(1, 6) pybullet.changeDynamics(cube_id, -1, mass=random_mass, lateralFriction=random_lateral_friction) self.step_size = random_step_size # get goal trajectory if self.goal is None: trajectory = task.sample_goal() else: trajectory = self.goal # visualize the goal if self.visualization: self.goal_marker = visual_objects.CubeMarker( width=task.move_cube._CUBE_WIDTH, position=trajectory[0][1], orientation=(0, 0, 0, 1), pybullet_client_id=self.platform.simfinger._pybullet_client_id, ) resetCamera() self.info = {"time_index": -1, "trajectory": trajectory, "eval_score": 0} self.step_count = 0 self.drop_times = 0 self.tip_force_offset = [] # initial step robot_action = self._gym_action_to_robot_action(self._initial_action) t = self.platform.append_desired_action(robot_action) self.info["time_index"] = t self.step_count += 1 obs, _ = self._create_observation(self.info["time_index"]) return obs def _create_observation(self, t): robot_observation = self.platform.get_robot_observation(t) camera_observation = self.platform.get_camera_observation(t) object_observation = camera_observation.filtered_object_pose active_goal = np.asarray( task.get_active_goal(self.info["trajectory"], t) ) cube_pos = object_observation.position cube_orn = pybullet.getEulerFromQuaternion(object_observation.orientation) finger_pos = self.kinematics.forward_kinematics(robot_observation.position) obs_dict = { "joint_position": robot_observation.position, # joint position "joint_velocity": robot_observation.velocity, # joint velocity "joint_torque": robot_observation.torque, # joint torque "tip_force": robot_observation.tip_force, # tip force "object_position": cube_pos, # cube position "object_rpy": cube_orn, # cube orientation "goal_position": active_goal, # goal position "object_goal_distance": active_goal - cube_pos, # cube to goal distance "tip_0_position": finger_pos[0], # tri-finger position 0 "tip_1_position": finger_pos[1], # tri-finger position 1 "tip_2_position": finger_pos[2], # tri-finger position 2 } self.observer.update(obs_dict) rl_obs = np.hstack([ cube_pos, # cube position cube_orn, # cube rpy active_goal, # goal position active_goal - cube_pos, # goal-cube difference np.linalg.norm(active_goal - cube_pos) # goal-cube distance ]) return rl_obs, obs_dict def _internal_step(self, action): self.step_count += 1 # send action to robot robot_action = self._gym_action_to_robot_action(action) t = self.platform.append_desired_action(robot_action) # update goal visualization if self.visualization: goal_position = task.get_active_goal(self.info["trajectory"], t) self.goal_marker.set_state(goal_position, (0, 0, 0, 1)) time.sleep(0.001) return t def apply_action(self, action): tg = trajectory.get_interpolation_planner(init_pos=self.observer.dt['joint_position'], tar_pos=action, start_time=0, reach_time=self.step_size) for i in range(self.step_size): if self.step_count >= self.max_episode: break _action = tg(i + 1) t = self._internal_step(_action) self.info["time_index"] = t _, obs_dict = self._create_observation(self.info["time_index"]) if self.evaluation: eval_score = self.compute_reward( obs_dict["object_position"], obs_dict["goal_position"], self.info, ) self.info['eval_score'] += eval_score # return score def update(self, policy_action): self._last_goal = self.observer.dt['goal_position'] contact_face_ids, contact_points = self.contact_planner.compute_contact_points(policy_action) self.position_controller.update(contact_points, contact_face_ids) def step(self, policy_action): self.update(policy_action) self.position_controller.tips_reach(self.apply_action, self.tip_force_offset) reward = 0 while not self.Dropped() and not self.step_count >= self.max_episode: if (self._last_goal != self.observer.dt['goal_position']).all(): self.update(policy_action) cur_phase_action = self.position_controller.get_action() self.apply_action(cur_phase_action) reward += self.position_controller.get_reward() * 0.001 * self.step_size self.drop_times += 1 done = self.drop_times >= 3 or self.step_count >= self.max_episode if self.evaluation: done = self.step_count >= self.max_episode return self._create_observation(self.info["time_index"])[0], reward, done, self.info def Dropped(self): tip_touch = np.subtract(self.observer.dt['tip_force'], self.tip_force_offset[0]) > 0 cube_pos = np.array(self.observer.dt['object_position']) tri_distance = [reward_utils.ComputeDist(self.observer.dt['tip_0_position'], cube_pos), reward_utils.ComputeDist(self.observer.dt['tip_1_position'], cube_pos), reward_utils.ComputeDist(self.observer.dt['tip_2_position'], cube_pos)] is_dropped = np.sum(tip_touch) < 2 or any(np.array(tri_distance) > 0.08) return is_dropped class RealContactControlEnv(ContactControlEnv): def __init__(self, goal_trajectory): super().__init__(goal_trajectory=goal_trajectory, visualization=False, evaluation=False, randomization=False, robot_type='real') self.max_episode = task.EPISODE_LENGTH def _internal_step(self, action): self.step_count += 1 # send action to robot robot_action = self._gym_action_to_robot_action(action) t = self.platform.append_desired_action(robot_action) return t def step(self, policy_action): if self.platform is None: raise RuntimeError("Call `reset()` before starting to step.") self.update(policy_action) self.position_controller.tips_reach(self.apply_action, self.tip_force_offset) reward = 0 while not self.Dropped() and not self.step_count >= self.max_episode: if list(self._last_goal) != list(self.observer.dt['goal_position']): self.update(policy_action) cur_phase_action = self.position_controller.get_action() self.apply_action(cur_phase_action) # reward += self.position_controller.get_reward() * 0.001 * self.step_size # self.drop_times += 1 done = self.step_count >= self.max_episode return self._create_observation(self.info["time_index"])[0], reward, done, self.info def reset(self): import robot_fingers # cannot reset multiple times if self.platform is not None: raise RuntimeError( "Once started, this environment cannot be reset." ) self.platform = robot_fingers.TriFingerPlatformWithObjectFrontend() # get goal trajectory if self.goal is None: trajectory = task.sample_goal() else: trajectory = self.goal self.info = {"time_index": -1, "trajectory": trajectory} self.step_count = 0 # initial step for i in range(int(1./(0.001*self.step_size))): robot_action = self._gym_action_to_robot_action(self._initial_action) t = self.platform.append_desired_action(robot_action) self.info["time_index"] = t self.step_count += 1 obs, _ = self._create_observation(self.info["time_index"]) return obs if __name__ == '__main__': env = ContactControlEnv(goal_trajectory=None, visualization=True, randomization=False) observation = env.reset() is_done = False t = 0 while t < env.max_episode: observation, score, is_done, info = env.step([0.5 + 0.25 / 2, 0.25 / 2, 0.75 + 0.2 / 2, 0.5, 0.5, 0.5]) print("eval_score:", score) t += 0.001 * env.step_size if is_done: env.reset() ``` #### File: envs/utilities/env_utils.py ```python from trifinger_simulation.visual_objects import CubeMarker import pybullet import numpy as np U = [] def tag(xyz): U.append(CubeMarker( width=0.03, position=xyz, orientation=(0, 0, 0, 1), color=(1, 0, 0, 0.7), pybullet_client_id=0, )) def clean(): for o in U: pybullet.removeBody(o.body_id, physicsClientId=0) def resetCamera(): pybullet.resetDebugVisualizerCamera( cameraDistance=0.5, cameraYaw=0, cameraPitch=-41, cameraTargetPosition=[0, 0, 0], physicsClientId=0 ) class HistoryWrapper: def __init__(self, history_num=3): self._history_obs = {} self.history_num = history_num self.dt = {} def reset(self, init_obs_dict): for k, v in init_obs_dict.items(): self._history_obs.update({k: [v]*self.history_num}) return self.get_history_obs() def update(self, obs_dict): if not self.dt: self.dt = obs_dict return self.reset(obs_dict) self.dt = obs_dict for k, v in obs_dict.items(): assert len(v) == len(self._history_obs[k][0]), 'wrong shape' assert k in self._history_obs.keys(), 'wrong key' self._history_obs[k].pop() self._history_obs[k].insert(0, v) assert len(self._history_obs[k]) == self.history_num return self.get_history_obs() def get_history_obs(self): _obs = [] for _, v in self._history_obs.items(): _obs.append(np.hstack(v)) return np.hstack(_obs) def search(self, k): return np.array(self._history_obs[k]) if __name__ == '__main__': his = HistoryWrapper(3) his.reset({'pos': [1], 'orn': [6]}) q = his.get_history_obs() ``` #### File: envs/utilities/model_utils.py ```python import os import matplotlib.pyplot as plt from stable_baselines3.common.callbacks import BaseCallback from stable_baselines3.common.results_plotter import load_results, ts2xy import numpy as np class SaveOnBestTrainingRewardCallback(BaseCallback): """ Callback for saving a model (the check is done every ``check_freq`` steps) based on the training reward (in practice, we recommend using ``EvalCallback``). :param check_freq: (int) :param log_dir: (str) Path to the folder where the model will be saved. It must contains the file created by the ``Monitor`` wrapper. :param verbose: (int) """ def __init__(self, check_freq: int, log_dir: str, verbose=1): super(SaveOnBestTrainingRewardCallback, self).__init__(verbose) self.check_freq = check_freq self.log_dir = log_dir self.save_path = os.path.join(log_dir, 'best_model') self.best_mean_reward = -np.inf def _on_step(self) -> bool: if self.n_calls % self.check_freq == 0: # Retrieve training reward x, y = ts2xy(load_results(self.log_dir), 'timesteps') if len(x) > 0: # Mean training reward over the last 100 episodes mean_reward = np.mean(y[-100:]) if self.verbose > 0: print(f"Num timesteps: {self.num_timesteps}") print( f"Best mean reward: {self.best_mean_reward:.2f} - Last mean reward per episode: {mean_reward:.2f}") # New best model, you could save the agent here if mean_reward > self.best_mean_reward: self.best_mean_reward = mean_reward # Example for saving best model if self.verbose > 0: print(f"Saving new best model to {self.save_path}.zip") self.model.save(self.save_path) return True def plot_results(log_folder, title='Learning Curve'): from scipy.signal import savgol_filter R = load_results(log_folder)['r'] T = load_results(log_folder)['t'] _w = 7 _window_size = len(R) // _w if (len(R) // _w) % 2 != 0 else len(R) // _w + 1 filtered = savgol_filter(R, _window_size, 1) plt.title('smoothed returns') plt.ylabel('Returns') plt.xlabel('time step') plt.plot(T, filtered) plt.grid() plt.show() ``` #### File: trifinger_simulation/gym_wrapper/data_logger.py ```python import pickle class EpisodeData: """ The structure in which the data from each episode will be logged. """ def __init__(self, joint_goal, tip_goal): self.joint_goal = joint_goal self.tip_goal = tip_goal self.joint_positions = [] self.tip_positions = [] self.timestamps = [] def append(self, joint_pos, tip_pos, timestamp): self.joint_positions.append(joint_pos) self.tip_positions.append(tip_pos) self.timestamps.append(timestamp) class DataLogger: """ Dumps the env episodic data to a pickle file """ def __init__(self): self.episodes = [] self._curr = None def new_episode(self, joint_goal, tip_goal): if self._curr: # convert to dict for saving so loading has no dependencies self.episodes.append(self._curr.__dict__) self._curr = EpisodeData(joint_goal, tip_goal) def append(self, joint_pos, tip_pos, timestamp): self._curr.append(joint_pos, tip_pos, timestamp) def store(self, filename): with open(filename, "wb") as file_handle: pickle.dump(self.episodes, file_handle) ``` #### File: rrc_2021_three_wolves/trifinger_simulation/real_finger.py ```python import os from ament_index_python.packages import get_package_share_directory import robot_interfaces import robot_fingers from trifinger_simulation import finger_types_data from trifinger_simulation.sim_finger import SimFinger class RealFinger: """ The RealFinger class provides an interface to the real robot. Any script that creates an instance of the :class:`.SimFinger` can create an instance of this class and use it in the same way. """ def __init__( self, finger_type, finger_config_suffix, enable_visualization=False, ): """ Constructor, initializes the physical world we will work in. Args: finger_type (string): Name of the finger type. In order to get a list of the valid finger types, call :meth:`.finger_types_data.get_valid_finger_types`. finger_config_suffix (int): ID of the finger that is used. Has to be one of [0, 120, 240]. This is only if a single finger is to be used on any of the robots, and is ignored otherwise. enable_visualization (bool, optional): Set to 'True' to run a GUI for visualization. This uses pyBullet but only for visualization, i.e. the state of the simulation is constantly set to match the one of the real robot. """ # Simulation is only used for visualization, so only run it when needed self.simulator = None if enable_visualization: self.simulator = SimFinger( finger_type=finger_type, time_step=0.001, # todo: not sure if this is correct enable_visualization=True, ) number_of_fingers = finger_types_data.get_number_of_fingers( finger_type ) if number_of_fingers == 1: if finger_type == "fingerone": config_file_path = os.path.join( get_package_share_directory("robot_fingers"), "config", "finger_%s.yml" % finger_config_suffix, ) elif finger_type == "fingeredu": config_file_path = os.path.join( get_package_share_directory("robot_fingers"), "config", "fingeredu_%s.yml" % finger_config_suffix, ) finger_data = robot_interfaces.finger.SingleProcessData() self.real_finger_backend = ( robot_fingers.create_real_finger_backend( finger_data, config_file_path ) ) self.robot = robot_interfaces.finger.Frontend(finger_data) self.Action = robot_interfaces.finger.Action elif number_of_fingers == 3: if finger_type == "trifingerone": config_file_path = os.path.join( get_package_share_directory("robot_fingers"), "config", "trifinger.yml", ) elif finger_type == "trifingeredu": config_file_path = os.path.join( get_package_share_directory("robot_fingers"), "config", "trifingeredu.yml", ) finger_data = robot_interfaces.trifinger.SingleProcessData() self.real_finger_backend = robot_fingers.create_trifinger_backend( finger_data, config_file_path ) self.robot = robot_interfaces.trifinger.Frontend(finger_data) self.Action = robot_interfaces.trifinger.Action self.real_finger_backend.initialize() def append_desired_action(self, action): """ Append an action to the action timeseries, that should be applied to the robot. Args: action (self.Action): Joint positions or torques or both Returns: self.action_index (int): The current time-index at which the action was applied. """ return self.robot.append_desired_action(action) def get_observation(self, time_index): """ Get the observation from the robot at a specified time_index. Args: time_index (int): the time_index at which the observation is needed Returns: observation (robot.Observation): the corresponding observation """ observation = self.robot.get_observation(time_index) if self.simulator is not None: self.simulator.reset_finger_positions_and_velocities( joint_positions=observation.position ) return observation def reset_finger(self, joint_positions): """ Move the finger(s) to a random position (sampled in the joint space). The sampled random position is set as target and the robot is stepped for one second to give it time to reach there. """ action = self.Action(position=joint_positions) for i in range(1000): t = self.append_desired_action(action) observation = self.get_observation(t) return observation ``` #### File: tasks/move_cube_on_trajectory/run_replay.py ```python import argparse import json import pathlib import pickle import sys import numpy as np from . import replay_action_log def add_arguments(parser): parser.add_argument( "log_directory", type=pathlib.Path, help="Directory containing the generated log files.", ) def main(log_directory: pathlib.Path): try: if not log_directory.is_dir(): print( "'{}' does not exist or is not a directory.".format( log_directory ) ) sys.exit(1) logfile_tmpl = str(log_directory / "action_log_{:02d}.p") # load samples sample_file = log_directory / "test_data.p" with open(sample_file, "rb") as fh: test_data = pickle.load(fh) # run "replay_action_log.py" for each sample rewards = [] for i, sample_json in enumerate(test_data): print("\n___Replay trajectory {}___".format(i)) sample = json.loads(sample_json) reward = replay_action_log.replay_action_log( logfile_tmpl.format(i), sample ) rewards.append(reward) # report print("\n=======================================================\n") report = { "mean": np.mean(rewards), "median": np.median(rewards), "std": np.std(rewards), } print( "reward median: {:.3f},\tmean: {:.3f},\tstd: {:.3f}\n".format( report["median"], report["mean"], report["std"] ) ) # save report to file report_file = log_directory / "reward.json" with open(report_file, "w") as f: json.dump(report, f) except Exception as e: print("Error: {}".format(e), file=sys.stderr) sys.exit(1) if __name__ == "__main__": parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter, ) add_arguments(parser) args = parser.parse_args() main(args.log_directory) ``` #### File: tasks/move_cube/run_replay.py ```python import argparse import os import pickle import sys import typing import numpy as np from . import replay_action_log class TestSample(typing.NamedTuple): difficulty: int iteration: int init_pose_json: str goal_pose_json: str logfile: str def main(input_directory: str): try: if not os.path.isdir(input_directory): print( "'{}' does not exist or is not a directory.".format( input_directory ) ) sys.exit(1) levels = (1, 2, 3, 4) # load samples sample_file = os.path.join(input_directory, "test_data.p") with open(sample_file, "rb") as fh: test_data = pickle.load(fh) # run "replay_action_log.py" for each sample level_rewards: dict = {level: [] for level in levels} for sample in test_data: print( "Replay level {} sample {}".format( sample.difficulty, sample.iteration ) ) reward = replay_action_log.replay_action_log( sample.logfile, sample.difficulty, sample.init_pose_json, sample.goal_pose_json, ) level_rewards[sample.difficulty].append(reward) # report print("\n=======================================================\n") report = "" total_reward = 0 for level, rewards in level_rewards.items(): rewards = np.asarray(rewards) mean = rewards.mean() report += "Level {} mean reward:\t{:.3f},\tstd: {:.3f}\n".format( level, mean, rewards.std() ) total_reward += level * mean report += "-------------------------------------------------------\n" report += "Total Weighted Reward: {:.3f}\n".format(total_reward) print(report) # save report to file report_file = os.path.join(input_directory, "reward.txt") with open(report_file, "w") as fh: fh.write(report) except Exception as e: print(e, file=sys.stderr) sys.exit(1) def add_arguments(parser): parser.add_argument( "input_directory", type=str, help="Directory containing the generated log files.", ) if __name__ == "__main__": parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter, ) add_arguments(parser) args = parser.parse_args() main(args.input_directory) ``` #### File: tasks/rearrange_dice/__main__.py ```python import argparse import sys import numpy as np import cv2 import trifinger_simulation from . import json_goal_from_config, sample_goal, goal_to_json from . import visualize_2d, generate_goal_mask def cmd_sample_goal(args): try: goal = sample_goal() print(goal_to_json(goal)) if args.show: visualize_2d(goal) if args.show_masks: data_dir = trifinger_simulation.get_data_dir() camera_param_dir = data_dir / "camera_params" camera_params = trifinger_simulation.camera.load_camera_parameters( camera_param_dir, "camera{id}_cropped_and_downsampled.yml" ) masks = generate_goal_mask(camera_params, goal) masks = np.hstack(masks) cv2.imshow("Goal Masks", masks) cv2.waitKey() except FileExistsError as e: print(e, file=sys.stderr) sys.exit(1) def cmd_goal_from_config(args): try: goal = json_goal_from_config(args.goal_config_file) print(goal) except Exception as e: print(e, file=sys.stderr) sys.exit(1) def main(): parser = argparse.ArgumentParser("rearrange_dice", description=__doc__) subparsers = parser.add_subparsers(title="command", dest="command") subparsers.required = True sub = subparsers.add_parser( "sample_goal", description="""Sample a random goal. The goal is written to stdout as JSON string. """, ) sub.add_argument( "--show", action="store_true", help="Visualize the goal positions." ) sub.add_argument( "--show-masks", action="store_true", help="Show the goal masks (using some default camera parameters).", ) sub.set_defaults(func=cmd_sample_goal) sub = subparsers.add_parser( "goal_from_config", description="""Load or sample a goal based on the given config file. The goal is writtten to stdout as JSON string. """, ) sub.add_argument( "goal_config_file", type=str, help="Path to a goal config JSON file." ) sub.set_defaults(func=cmd_goal_from_config) args = parser.parse_args() args.func(args) if __name__ == "__main__": main() ```
{ "source": "42lacksky/ML_DecisionTree", "score": 3 }
#### File: 42lacksky/ML_DecisionTree/decision_tree.py ```python import numpy as np from sklearn.base import BaseEstimator, TransformerMixin from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score class Rule(object): def __init__(self, feature_number, feature_value): self.feature_num = feature_number self.feature_value = feature_value self.predicate = lambda X: X[:, self.feature_num] >= self.feature_value def split(self, X, y=None): if y is None: return X[self.predicate(X)], X[~self.predicate(X)] return X[self.predicate(X)], y[self.predicate(X)], X[~self.predicate(X)], y[~self.predicate(X)] def match(self, x): return x[self.feature_num] >= self.feature_value class Leaf(object): def __init__(self, labels): self.labels = labels self.unique_label_counts = np.asarray((np.unique(self.labels, return_counts=True))).T self.prediction = self.unique_label_counts[self.unique_label_counts[:, 1].argsort()][0][0] def predict(self, X): return np.array([self.prediction] * X.shape[0]) class DecisionNode(object): def __init__(self, rows, labels, predicate, true_branch, false_branch): self.rows = rows self.labels = labels self.predicate = predicate self.true_branch = true_branch self.false_branch = false_branch self.unique_label_counts = np.asarray((np.unique(self.labels, return_counts=True))).T self.prediction = self.unique_label_counts[self.unique_label_counts[:, 1].argsort()][0][0] def predict(self, X): return np.array([self.prediction] * X.shape[0]) class DecisionTree(BaseEstimator, TransformerMixin): def __init__(self, depth=5, n_splits=5): self.depth = depth self.n_splits = n_splits self.selected_values_per_feature = None self.label_counts = None self.tree_root = None def fit(self, X, y=None): self.selected_values_per_feature = np.zeros((X.shape[1], self.n_splits), dtype=float) self.tree_root = self._build_tree(X, y, 0) return self def predict(self, X): predictions = [] for x in X: predictions.append(int(self._classify(x, self.tree_root, current_depth=0)[0])) return np.array(predictions) def _classify(self, sample, node, current_depth): if self.depth == current_depth or isinstance(node, Leaf): return node.predict(sample) current_depth += 1 if node.predicate.match(sample): return self._classify(sample, node.true_branch, current_depth) else: return self._classify(sample, node.false_branch, current_depth) def _build_tree(self, features, labels, current_depth): gain, predicate = self._find_best_split(features, labels) if (current_depth == self.depth) or (gain == 0): return Leaf(labels) true_rows, true_labels, false_rows, false_labels = predicate.split(features, labels) current_depth += 1 true_branch = self._build_tree(true_rows, true_labels, current_depth=current_depth) false_branch = self._build_tree(false_rows, false_labels, current_depth=current_depth) return DecisionNode(features, labels, predicate, true_branch, false_branch) def _find_best_split(self, rows, labels): best_gain = 0 best_predicate = None current_uncertainty = self._gini(sample_labels=labels) for feature_number in range(rows.shape[1]): unique_values = self._get_unique_values(rows[:, feature_number]) for feature_value in unique_values: predicate = Rule(feature_number=feature_number, feature_value=feature_value) true_rows, true_labels, false_rows, false_labels = predicate.split(rows, labels) if true_rows.shape[0] == 0 or false_rows.shape[0] == 0: continue gain = self._information_gain(true_labels, false_labels, current_uncertainty) if gain >= best_gain: best_gain, best_predicate = gain, predicate return best_gain, best_predicate def _get_unique_values(self, X_column): unique_feature_values = np.sort(np.unique(X_column)) if unique_feature_values.shape[0] < self.n_splits: return unique_feature_values selected_values_indexes = np.linspace(0, unique_feature_values.shape[0], num=self.n_splits, endpoint=False, dtype=int) return unique_feature_values[selected_values_indexes] def _gini(self, sample_labels): def get_label_counts(labels): return np.asarray((np.unique(labels, return_counts=True))).T impurity = 1 for label, label_count in get_label_counts(labels=sample_labels): label_probability = label_count / sample_labels.shape[0] impurity -= label_probability ** 2 return impurity def _information_gain(self, labels_left, labels_right, current_uncertainty): p = float(labels_left.shape[0]) / (labels_left.shape[0] + labels_right.shape[0]) return current_uncertainty - p * self._gini(labels_left) - (1 - p) * self._gini(labels_right) if __name__ == '__main__': dataset = make_classification(n_samples=300) X_train, X_test, y_train, y_test = train_test_split(dataset[0], dataset[1], test_size=0.3) tree = DecisionTree(depth=5, n_splits=5).fit(X_train, y_train) print(accuracy_score(y_test, tree.predict(X_test))) ```
{ "source": "42MachineLearning/pyrb", "score": 2 }
#### File: pyrb/tests/test_risk_budgeting.py ```python import unittest import numpy as np from pyrb.allocation import EqualRiskContribution, RiskBudgeting, ConstrainedRiskBudgeting class AllocationTest(unittest.TestCase): def setUp(self): self.cor = np.array([[1, 0.1, 0.4, 0.5, 0.5], [0.1, 1, 0.7, 0.4, 0.4], [ 0.4, 0.7, 1, 0.8, 0.05], [0.5, 0.4, 0.8, 1, 0.1], [0.5, 0.4, 0.05, 0.1, 1]]) self.vol = [0.15, 0.20, 0.25, 0.3, 0.1] self.n = len(self.vol) self.cov = self.cor * np.outer(self.vol, self.vol) self.budgets = [0.2, 0.2, 0.3, 0.1, 0.2] self.bounds = np.array( [[0.2, 0.3], [0.2, 0.3], [0.05, 0.15], [0.05, 0.15], [0.25, 0.35]]) self.ERC = EqualRiskContribution(self.cov) self.RB = RiskBudgeting(self.cov, self.budgets) self.CRB = ConstrainedRiskBudgeting( self.cov, budgets=None, pi=None, bounds=self.bounds) class PyrbTest(AllocationTest): def test_erc(self): self.ERC.solve() np.testing.assert_almost_equal(np.sum(self.ERC.x), 1) np.testing.assert_almost_equal( np.dot( np.dot( self.ERC.x, self.cov), self.ERC.x) ** 0.5, self.ERC.get_risk_contributions( scale=False).sum(), decimal=10) self.assertTrue( abs(self.ERC.get_risk_contributions().mean() - 1.0 / self.n) < 1e-5) def test_rb(self): self.RB.solve() np.testing.assert_almost_equal(np.sum(self.RB.x), 1, decimal=5) np.testing.assert_almost_equal( np.dot( np.dot( self.RB.x, self.cov), self.RB.x) ** 0.5, self.RB.get_risk_contributions( scale=False).sum(), decimal=10) self.assertTrue( abs(self.RB.get_risk_contributions() - self.budgets).sum() < 1e-5) def test_cerb(self): self.CRB.solve() np.testing.assert_almost_equal(np.sum(self.CRB.x), 1) np.testing.assert_almost_equal( self.CRB.get_risk_contributions()[1], 0.2455, decimal=5) np.testing.assert_almost_equal(np.sum(self.CRB.x[1]), 0.2) if __name__ == "__main__": unittest.main() ```
{ "source": "42maru/saas-gitbook", "score": 3 }
#### File: saas-gitbook/f2maru_qa/client.py ```python import json import logging from typing import List import requests logger = logging.getLogger(__name__) class Client(object): def __init__(self, app_code: str, api_key: str, **kwargs): self._app_code: str = app_code self._api_key: str = api_key self._config: str = kwargs # todo domain setting 필요. self.__host = '172.16.58.3' self.__bulk_path = '/api/application/documents/bulk' self.__broker_path = '/api/broker' self.__headers = {'Content-Type': 'application/json; charset=utf-8'} self.__headers.update({ 'X-PLATFORM42-API-KEY': api_key, 'X-PLATFORM42-APP-ID': app_code }) def bulk_insert(self, data: List[dict]) -> bool: def validation(obj: dict): assert "title" in obj, "title is mandatory" assert "content" in obj, "content is mandatory" assert obj['content'], "content can not be empty" def validations(objects: List[dict]): [validation(obj) for obj in objects] validations(data) try: requests.post(self.__write_url, data=json.dumps(data), headers=self.__headers) return True except Exception as e: logger.error("fail add new object [Error Msg] ({})".format(str(e))) return False def insert(self, data: dict) -> bool: return self.bulk_insert([data]) def inquiry(self, query: str, answer_count: int = 3): # todo debug없으면 동작안함. payload = {'query': query, 'count': answer_count, 'debug': False} res = requests.get(self.__read_url, params=payload, headers=self.__headers) return res.json() if res and res.status_code == 200 else None @property def __write_url(self): return "http://{}{}".format(self.__host, self.__bulk_path) @property def __read_url(self): return "http://{}{}".format(self.__host, self.__broker_path) ```
{ "source": "42nick/my_plotting_utils", "score": 2 }
#### File: my_plotting_utils/tests/conftest.py ```python import sys import pytest # @pytest.fixture # def capture_stdout(monkeypatch): # buffer = {"stdout": "", "write_calls": 0, "sprint": []} # def fake_write(s): # buffer["stdout"] += s # buffer["write_calls"] += 1 # buffer["sprint"].append(s) # monkeypatch.setattr(sys.stdout, 'write', fake_write) # return buffer @pytest.fixture def capture_stdout(monkeypatch): string_buffer = {"stdout": "", "write_calls": 0, "sprint": []} def fake_stdout(s): string_buffer["stdout"] += s string_buffer["write_calls"] += 1 string_buffer["sprint"].append(s) monkeypatch.setattr(sys.stdout, "write", fake_stdout) return string_buffer ```
{ "source": "42Numeric/noisyopt", "score": 2 }
#### File: noisyopt/tests/test_noisyopt.py ```python import numpy as np import numpy.testing as npt import noisyopt def test_minimize(): deltatol = 1e-3 ## basic testing without stochasticity def quadratic(x): return (x**2).sum() res = noisyopt.minimize(quadratic, np.asarray([0.5, 1.0]), deltatol=deltatol) npt.assert_allclose(res.x, [0.0, 0.0], atol=deltatol) npt.assert_equal(res.free, [False, False]) res = noisyopt.minimize(quadratic, np.asarray([2.5, -3.2]), deltatol=deltatol) npt.assert_allclose(res.x, [0.0, 0.0], atol=deltatol) npt.assert_equal(res.free, [False, False]) res = noisyopt.minimize(quadratic, np.asarray([2.5, -3.2, 0.9, 10.0, -0.3]), deltatol=deltatol) npt.assert_allclose(res.x, np.zeros(5), atol=deltatol) npt.assert_equal(res.free, [False, False, False, False, False]) ## test bound handling res = noisyopt.minimize(quadratic, np.asarray([0.5, 0.5]), bounds=np.asarray([[0, 1], [0, 1]]), deltatol=deltatol) npt.assert_allclose(res.x, [0.0, 0.0], atol=deltatol) npt.assert_equal(res.free, [False, False]) res = noisyopt.minimize(quadratic, np.asarray([0.8, 0.8]), bounds=np.asarray([[0.5, 1], [0.5, 1]]), deltatol=deltatol) npt.assert_allclose(res.x, [0.5, 0.5], atol=deltatol) npt.assert_equal(res.free, [False, False]) ## test determination of unconstrained variables def quadratic_except_last(x): return (x[:-1]**2).sum() res = noisyopt.minimize(quadratic_except_last, np.asarray([0.5, 1.0])) npt.assert_approx_equal(res.x[0], 0.0) npt.assert_equal(res.free, [False, True]) ## test errorcontrol for stochastic function def stochastic_quadratic(x, seed=None): prng = np.random if seed is None else np.random.RandomState(seed) return (x**2).sum() + prng.randn(1) + 0.5*np.random.randn(1) deltatol = 0.5 # test unpaired res = noisyopt.minimize(stochastic_quadratic, np.array([4.55, 3.0]), deltainit=2.0, deltatol=deltatol, errorcontrol=True) npt.assert_allclose(res.x, [0.0, 0.0], atol=deltatol) npt.assert_equal(res.free, [False, False]) # test paired res = noisyopt.minimize(stochastic_quadratic, np.array([4.55, 3.0]), deltainit=2.0, deltatol=deltatol, errorcontrol=True, paired=True) npt.assert_allclose(res.x, [0.0, 0.0], atol=deltatol) npt.assert_equal(res.free, [False, False]) def test_bisect(): xtol = 1e-6 ## simple tests root = noisyopt.bisect(lambda x: x, -2, 2, xtol=xtol) npt.assert_allclose(root, 0.0, atol=xtol) root = noisyopt.bisect(lambda x: x-1, -2, 2, xtol=xtol) npt.assert_allclose(root, 1.0, atol=xtol) ## extrapolate if 0 outside of interval root = noisyopt.bisect(lambda x: x, 1, 2, xtol=xtol) npt.assert_allclose(root, 0.0, atol=xtol) npt.assert_raises(noisyopt.BisectException, noisyopt.bisect, lambda x: x, 1, 2, xtol=xtol, outside='raise') ## extrapolate with nonlinear function root = noisyopt.bisect(lambda x: x+x**2, 1.0, 2, xtol=xtol) assert root < 1.0 ## test with stochastic function xtol = 1e-1 func = lambda x: x - 0.25 + np.random.normal(scale=0.01) root = noisyopt.bisect(noisyopt.AveragedFunction(func), -2, 2, xtol=xtol, errorcontrol=True) npt.assert_allclose(root, 0.25, atol=xtol) def test_AveragedFunction(): ## averaging a simple function func = lambda x: np.asarray(x).sum() avfunc = noisyopt.AveragedFunction(func, N=30) av, avse = avfunc([1.0, 1.0]) npt.assert_equal(av, 2.0) npt.assert_equal(avse, 0.0) # se of function value difference between two points is zero # (as function evaluation is not stochastic) diffse = avfunc.diffse([1.0, 1.0], [2.0, 1.0]) npt.assert_equal(diffse, 0.0) ## changing the number of evaluations avfunc.N *= 2 npt.assert_equal(avfunc.N, 60) ## averaging a stochastic function func = lambda x: np.asarray(x).sum() + np.random.randn() avfunc = noisyopt.AveragedFunction(func, N=30) # check that reevaluation gives the same thing due to caching av30_1, avse30_1 = avfunc([1.0, 1.0]) av30_2, avse30_2 = avfunc([1.0, 1.0]) npt.assert_equal(av30_1, av30_2) npt.assert_equal(avse30_1, avse30_2) # check that se decreases if avfunc.N *= 2 av60, avse60 = avfunc([1.0, 1.0]) assert av30_1 != av60 assert avse30_1 > avse60 # test with floating point N noisyopt.AveragedFunction(func, N=30.0, paired=True) if __name__ == '__main__': npt.run_module_suite() ```
{ "source": "42pde-bakk/DSLR", "score": 3 }
#### File: DSLR/srcs/scatter_plot.py ```python from pkgs.parsing import check_input from pkgs.feature import Feature import pandas as pd import sys import numpy as np import math import matplotlib.pyplot as plt def create_dict(houses) -> dict: courses = dict() for house in houses: courses[house] = dict() for name, dtype in houses[house].dtypes.iteritems(): if dtype == np.float64: column = [float(x) for x in houses[house][name].values if not math.isnan(x)] courses[house][name] = Feature(name, column) return courses def plot(houses): for house in houses: plt.scatter(houses[house]["Defense Against the Dark Arts"], houses[house]["Astronomy"], alpha=0.4) plt.xlabel("Defense Against the Dark Arts") plt.ylabel("Astronomy") plt.legend(houses.keys()) plt.show() def main(): check_input(sys.argv) data = pd.read_csv(sys.argv[1], index_col=0) houses = {x: pd.DataFrame(y) for x, y in data.groupby('Hogwarts House', as_index=False)} courses = create_dict(houses) plot(houses) if __name__ == '__main__': main() ```
{ "source": "42piratas/shakespeare", "score": 2 }
#### File: shakespeare/modules/hentities.py ```python import nltk import hg def hfind_entities(): for w in hg.content_raw_words: nameEnt = nltk.ne_chunk(hg.content_raw_words) namedEnt.draw() if __name__ == '__main__': from hextractor import hextract from hfilter import hfilter hextract() hfilter() hfind_entities() ``` #### File: shakespeare/modules/hfilter.py ```python import string import hg from nltk.tokenize import word_tokenize from nltk.corpus import stopwords, wordnet from collections import Counter stop_words = set(stopwords.words("english")) # syns = wordnet.synset '''Filtered content means: - Punctuation removed - Tokenized by words - Stopwords removed''' def hfilter(): # RAW CONTENT ############################## # Remove punctuation content_raw_no_punctuation = hg.content_raw.translate(None, string.punctuation) # Tokenize by words hg.content_raw_words = word_tokenize(content_raw_no_punctuation) # Counting words from raw content hg.content_raw_words_len = len(hg.content_raw_words) # Counting unique words from raw content hg.content_raw_words_unique_len = len(set(hg.content_raw_words)) # Defining top words from raw content content_raw_words_counter = Counter(hg.content_raw_words) hg.content_raw_words_top = (content_raw_words_counter.most_common(hg.top_words_num)) # # Creating list of synonyms # for w in hg.content_raw_words: # syn = syns(w) # hg.content_raw_words_syns.append(syn) # FILTERED CONTENT ############################## # Remove stop words // Filtered by words! hg.content_filtered_words = [w for w in hg.content_raw_words if w not in stop_words] # Counting words from filtered content hg.content_filtered_words_len = len(hg.content_filtered_words) # Counting unique words from raw content hg.content_filtered_words_unique_len = len(set(hg.content_filtered_words)) # Defining top words from filtered content content_filtered_words_counter = Counter(hg.content_filtered_words) hg.content_filtered_words_tops = (content_filtered_words_counter.most_common(hg.top_words_num)) if __name__ == '__main__': from hextractor import hextract hextract() hfilter() ```
{ "source": "42pre/ansible-role-omero-server", "score": 2 }
#### File: resources/tests/test_default.py ```python import os import pytest import testinfra.utils.ansible_runner from time import time testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner( os.environ['MOLECULE_INVENTORY_FILE']).get_hosts('all') # Ubuntu sudo doesn't set HOME so it tries to write to /root ENV = 'OMERO_USERDIR=/home/data-importer/omero-{}'.format(time()) OMERO = '/opt/omero/server/OMERO.server/bin/omero' OMERO_LOGIN = '-C -s localhost -u root -w omero' def test_service_running_and_enabled(host): assert host.service('omero-server').is_running assert host.service('omero-server').is_enabled def test_omero_root_login(host): with host.sudo('data-importer'): host.check_output('%s %s login %s' % (ENV, OMERO, OMERO_LOGIN)) @pytest.mark.parametrize("key,value", [ ('omero.data.dir', '/OMERO'), ('omero.client.ui.tree.type_order', '["screen", "plate", "project", "dataset"]'), ('omero.policy.binary_access', '-read,-write,-image,-plate'), ]) def test_omero_server_config(host, key, value): with host.sudo('omero-server'): cfg = host.check_output('%s %s config get %s' % (ENV, OMERO, key)) assert cfg == value def test_omero_datadir(host): d = host.file('/OMERO') assert d.is_directory assert d.user == 'omero-server' assert d.group == 'root' assert d.mode == 0o755 def test_omero_managedrepo(host): d = host.file('/OMERO/ManagedRepository') assert d.is_directory assert d.user == 'omero-server' assert d.group == 'importer' assert d.mode == 0o2775 def test_inplace_import(host): fake_file = '/data/import/test.fake' with host.sudo('data-importer'): outimport = host.check_output( '%s %s %s import --skip=upgrade --transfer=ln_s %s' % (ENV, OMERO, OMERO_LOGIN, fake_file)) imageid = int(outimport.split(':', 1)[1]) assert imageid query = ('SELECT concat(ofile.path, ofile.name) ' 'FROM FilesetEntry AS fse ' 'JOIN fse.fileset AS fileset ' 'JOIN fse.originalFile AS ofile ' 'JOIN fileset.images AS image ' 'WHERE image.id = %d' % imageid) with host.sudo('data-importer'): outhql = host.check_output( '%s %s %s hql -q --style plain "%s"' % (ENV, OMERO, OMERO_LOGIN, query)) f = host.file('/OMERO/ManagedRepository/%s' % outhql.split(',', 1)[1]) assert f.is_symlink assert f.linked_to == fake_file ```
{ "source": "42six/PiClock-test", "score": 2 }
#### File: PiClock-test/Clock/PyQtPiClock.py ```python import sys, os, platform, signal import datetime, time, json from pprint import pprint import random sys.dont_write_bytecode = True from PyQt4 import QtGui, QtCore, QtNetwork from PyQt4.QtGui import QPixmap, QMovie from PyQt4.QtCore import Qt, QByteArray, QUrl, QFile, QIODevice, QString from PyQt4.QtNetwork import QNetworkAccessManager, QNetworkRequest, QNetworkReply, QNetworkProxy from subprocess import Popen from GoogleMercatorProjection import LatLng, Point, getCorners import re import ApiKeys #def main(): def tick(): global hourpixmap, minpixmap, secpixmap global hourpixmap2, minpixmap2, secpixmap2 global lastmin global clockrect global datex, datex2, datey2 now = datetime.datetime.now() angle = now.second * 6 ts = secpixmap.size() secpixmap2 = secpixmap.transformed( QtGui.QMatrix().scale( float(clockrect.width())/ts.height(), float(clockrect.height())/ts.height() ).rotate(angle), Qt.SmoothTransformation ) sechand.setPixmap(secpixmap2) ts = secpixmap2.size() sechand.setGeometry( clockrect.center().x()-ts.width()/2, clockrect.center().y()-ts.height()/2, ts.width(), ts.height() ) if now.minute != lastmin: lastmin = now.minute angle = now.minute * 6 ts = minpixmap.size() minpixmap2 = minpixmap.transformed( QtGui.QMatrix().scale( float(clockrect.width())/ts.height(), float(clockrect.height())/ts.height() ).rotate(angle), Qt.SmoothTransformation ) minhand.setPixmap(minpixmap2) ts = minpixmap2.size() minhand.setGeometry( clockrect.center().x()-ts.width()/2, clockrect.center().y()-ts.height()/2, ts.width(), ts.height() ) angle = ((now.hour % 12) + now.minute / 60.0) * 30.0 ts = hourpixmap.size() hourpixmap2 = hourpixmap.transformed( QtGui.QMatrix().scale( float(clockrect.width())/ts.height(), float(clockrect.height())/ts.height() ).rotate(angle), Qt.SmoothTransformation ) hourhand.setPixmap(hourpixmap2) ts = hourpixmap2.size() hourhand.setGeometry( clockrect.center().x()-ts.width()/2, clockrect.center().y()-ts.height()/2, ts.width(), ts.height() ) # date sup = 'th' if (now.day == 1 or now.day == 21 or now.day == 31): sup = 'st' if (now.day == 2 or now.day == 22): sup = 'nd' if (now.day == 3 or now.day == 23): sup = 'rd' ds = "{0:%A %B} {0.day}<sup>".format(now)+sup+"</sup> {0.year}".format(now) datex.setText(ds) datex2.setText(ds) datey2.setText("{0:%I:%M %p}".format(now)) def tempfinished(): global tempreply, temp if tempreply.error() != QNetworkReply.NoError: return tempstr = str(tempreply.readAll()) tempdata = json.loads(tempstr) if Config.metric: s = 'Inside Temp '+ "%3.1f" % ((float(tempdata['temp'])-32.0)*5.0/9.0) if tempdata['temps']: if len(tempdata['temps']) > 1: s = '' for tk in tempdata['temps']: s += ' ' + tk + ':' + "%3.1f" % ((float(tempdata['temps'][tk])-32.0)*5.0/9.0) else: s = 'Inside Temp '+tempdata['temp'] if tempdata['temps']: if len(tempdata['temps']) > 1: s = '' for tk in tempdata['temps']: s += ' ' + tk + ':' + tempdata['temps'][tk] temp.setText(s) def gettemp(): global tempreply host = 'localhost' if platform.uname()[1] == 'KW81': host = 'piclock.local' #this is here just for testing r = QUrl('http://'+host+':48213/temp') r = QNetworkRequest(r) tempreply = manager.get(r) tempreply.finished.connect(tempfinished) def wxfinished(): global wxreply, wxdata global wxicon, temper, wxdesc, press, humidity, wind, wind2, wdate, bottom, forecast global wxicon2, temper2, wxdesc wxstr = str(wxreply.readAll()) wxdata = json.loads(wxstr) f = wxdata['current_observation'] iconurl = f['icon_url'] icp = '' if (re.search('/nt_',iconurl)): icp = 'n_'; wxiconpixmap = QtGui.QPixmap(Config.icons+"/"+icp+f['icon']+".png") wxicon.setPixmap(wxiconpixmap.scaled(wxicon.width(),wxicon.height(), Qt.IgnoreAspectRatio, Qt.SmoothTransformation)) wxicon2.setPixmap(wxiconpixmap.scaled(wxicon.width(),wxicon.height(), Qt.IgnoreAspectRatio, Qt.SmoothTransformation)) wxdesc.setText(f['weather']) wxdesc2.setText(f['weather']) if Config.metric: temper.setText(str(f['temp_c'])+u'°C') temper2.setText(str(f['temp_c'])+u'°C') press.setText("Pressure "+f['pressure_mb']+' '+f['pressure_trend']) humidity.setText("Humidity "+f['relative_humidity']) wind.setText('Wind '+f['wind_dir']+' '+str(f['wind_kph'])+' gusting '+str(f['wind_gust_kph'])) wind2.setText("Feels like "+str(f['feelslike_c']) ) wdate.setText("{0:%H:%M}".format(datetime.datetime.fromtimestamp(int(f['local_epoch'])))+ ' Precip 1hr:'+f['precip_1hr_metric']+'mm Today:'+f['precip_today_metric']+'mm') else: temper.setText(str(f['temp_f'])+u'°F') temper2.setText(str(f['temp_f'])+u'°F') press.setText("Pressure "+f['pressure_in']+' '+f['pressure_trend']) humidity.setText("Humidity "+f['relative_humidity']) wind.setText('Wind '+f['wind_dir']+' '+str(f['wind_mph'])+' gusting '+str(f['wind_gust_mph'])) wind2.setText("Feels like "+str(f['feelslike_f']) ) wdate.setText("{0:%H:%M}".format(datetime.datetime.fromtimestamp(int(f['local_epoch'])))+ ' Precip 1hr:'+f['precip_1hr_in']+'in Today:'+f['precip_today_in']+'in') bottom.setText('Sun Rise:'+ wxdata['sun_phase']['sunrise']['hour']+':'+wxdata['sun_phase']['sunrise']['minute']+ ' Set:'+ wxdata['sun_phase']['sunset']['hour']+':'+wxdata['sun_phase']['sunset']['minute']+ ' Moon Phase: '+ wxdata['moon_phase']['phaseofMoon'] ) for i in range(0,3): f = wxdata['hourly_forecast'][i*3+2] fl = forecast[i] iconurl = f['icon_url'] icp = '' if (re.search('/nt_',iconurl)): icp = 'n_'; icon = fl.findChild(QtGui.QLabel,"icon") wxiconpixmap = QtGui.QPixmap(Config.icons+"/"+icp+f['icon']+".png") icon.setPixmap(wxiconpixmap.scaled(icon.width(),icon.height(), Qt.IgnoreAspectRatio, Qt.SmoothTransformation)) wx = fl.findChild(QtGui.QLabel,"wx") wx.setText(f['condition']) day = fl.findChild(QtGui.QLabel,"day") day.setText(f['FCTTIME']['weekday_name']+' '+f['FCTTIME']['civil']) wx2 = fl.findChild(QtGui.QLabel,"wx2") s = ''; if float(f['pop']) > 0.0: s += f['pop'] + '% '; if Config.metric: if float(f['snow']['metric']) > 0.0: s += ' Snow: '+f['snow']['metric']+'mm ' else: if float(f['qpf']['metric']) > 0.0: s += ' Rain: '+f['qpf']['metric']+'mm ' s += f['temp']['metric']+u'°C' else: if float(f['snow']['english']) > 0.0: s += ' Snow: '+f['snow']['english']+'in ' else: if float(f['qpf']['english']) > 0.0: s += ' Rain: '+f['qpf']['english']+'in ' s += f['temp']['english']+u'°F' wx2.setText(s) for i in range(3,9): f = wxdata['forecast']['simpleforecast']['forecastday'][i-3] fl = forecast[i] icon = fl.findChild(QtGui.QLabel,"icon") wxiconpixmap = QtGui.QPixmap(Config.icons+"/"+f['icon']+".png") icon.setPixmap(wxiconpixmap.scaled(icon.width(),icon.height(), Qt.IgnoreAspectRatio, Qt.SmoothTransformation)) wx = fl.findChild(QtGui.QLabel,"wx") wx.setText(f['conditions']) day = fl.findChild(QtGui.QLabel,"day") day.setText(f['date']['weekday']) wx2 = fl.findChild(QtGui.QLabel,"wx2") s = ''; if float(f['pop']) > 0.0: s += str(f['pop']) + '% '; if Config.metric: if float(f['snow_allday']['cm']) > 0.0: s += ' Snow: '+str(f['snow_allday']['cm'])+'cm ' else: if float(f['qpf_allday']['mm']) > 0.0: s += ' Rain: '+str(f['qpf_allday']['mm'])+'mm ' s += str(f['high']['celsius'])+'/'+str(f['low']['celsius'])+u'°C' else: if float(f['snow_allday']['in']) > 0.0: s += ' Snow: '+str(f['snow_allday']['in'])+'in ' else: if float(f['qpf_allday']['in']) > 0.0: s += ' Rain: '+str(f['qpf_allday']['in'])+'in ' s += str(f['high']['fahrenheit'])+'/'+str(f['low']['fahrenheit'])+u'°F' wx2.setText(s) def getwx(): global wxurl global wxreply print "getting current and forecast:"+time.ctime() wxurl = Config.wuprefix + ApiKeys.wuapi + '/conditions/astronomy/hourly10day/forecast10day/q/' wxurl += str(Config.wulocation.lat)+','+str(Config.wulocation.lng)+'.json' wxurl += '?r=' + str(random.random()) r = QUrl(wxurl) r = QNetworkRequest(r) wxreply = manager.get(r) wxreply.finished.connect(wxfinished) def getallwx(): getwx() def qtstart(): global ctimer, wxtimer, temptimer global manager global objradar1 global objradar2 global objradar3 global objradar4 getallwx() gettemp() objradar1.start(Config.radar_refresh*60) objradar1.wxstart() objradar2.start(Config.radar_refresh*60) objradar2.wxstart() objradar3.start(Config.radar_refresh*60) objradar4.start(Config.radar_refresh*60) ctimer = QtCore.QTimer() ctimer.timeout.connect(tick) ctimer.start(1000) wxtimer = QtCore.QTimer() wxtimer.timeout.connect(getallwx) wxtimer.start(1000*Config.weather_refresh*60+random.uniform(1000,10000)) temptimer = QtCore.QTimer() temptimer.timeout.connect(gettemp) temptimer.start(1000*10*60+random.uniform(1000,10000)) class Radar(QtGui.QLabel): def __init__(self, parent, radar, rect, myname): global xscale, yscale self.myname = myname self.rect = rect self.baseurl = self.mapurl(radar, rect, False) #print "google map base url: "+self.baseurl self.mkurl = self.mapurl(radar, rect, True) self.wxurl = self.radarurl(radar, rect) QtGui.QLabel.__init__(self, parent) self.interval = Config.radar_refresh*60 self.lastwx = 0 self.setObjectName("radar") self.setGeometry(rect) self.setStyleSheet("#radar { background-color: grey; }") self.setAlignment(Qt.AlignCenter) self.wwx = QtGui.QLabel(self) self.wwx.setObjectName("wx") self.wwx.setStyleSheet("#wx { background-color: transparent; }") self.wwx.setGeometry(0, 0, rect.width(), rect.height()) self.wmk = QtGui.QLabel(self) self.wmk.setObjectName("mk") self.wmk.setStyleSheet("#mk { background-color: transparent; }") self.wmk.setGeometry(0, 0, rect.width(), rect.height()) self.wxmovie = QMovie() def mapurl(self, radar,rect,markersonly): #'https://maps.googleapis.com/maps/api/staticmap?maptype=hybrid&center='+rcenter.lat+','+rcenter.lng+'&zoom='+rzoom+'&size=300x275'+markersr; urlp = []; if len(ApiKeys.googleapi) > 0: urlp.append('key='+ApiKeys.googleapi) urlp.append('center='+str(radar['center'].lat)+','+str(radar['center'].lng)) zoom = radar['zoom'] rsize = rect.size() if rsize.width() > 640 or rsize.height() > 640: rsize = QtCore.QSize(rsize.width()/2,rsize.height()/2) zoom -= 1 urlp.append('zoom='+str(zoom)) urlp.append('size='+str(rsize.width())+'x'+str(rsize.height())) if markersonly: urlp.append('style=visibility:off') else: urlp.append('maptype=hybrid') for marker in radar['markers']: marks = [] for opts in marker: if opts != 'location': marks.append(opts + ':' + marker[opts]) marks.append(str(marker['location'].lat)+','+str(marker['location'].lng)) urlp.append('markers='+'|'.join(marks)) return 'http://maps.googleapis.com/maps/api/staticmap?'+'&'.join(urlp) def radarurl(self,radar,rect): #wuprefix = 'http://api.wunderground.com/api/'; #wuprefix+wuapi+'/animatedradar/image.gif?maxlat='+rNE.lat+'&maxlon='+rNE.lng+'&minlat='+rSW.lat+'&minlon='+rSW.lng+wuoptionsr; #wuoptionsr = '&width=300&height=275&newmaps=0&reproj.automerc=1&num=5&delay=25&timelabel=1&timelabel.y=10&rainsnow=1&smooth=1'; rr = getCorners(radar['center'],radar['zoom'],rect.width(),rect.height()) return (Config.wuprefix+ApiKeys.wuapi+'/animatedradar/image.gif'+ '?maxlat='+str(rr['N'])+ '&maxlon='+str(rr['E'])+ '&minlat='+str(rr['S'])+ '&minlon='+str(rr['W'])+ '&width='+str(rect.width())+ '&height='+str(rect.height())+ '&newmaps=0&reproj.automerc=1&num=5&delay=25&timelabel=1&timelabel.y=10&rainsnow=1&smooth=1&radar_bitmap=1&xnoclutter=1&xnoclutter_mask=1&cors=1' ) def basefinished(self): if self.basereply.error() != QNetworkReply.NoError: return self.basepixmap = QPixmap() self.basepixmap.loadFromData(self.basereply.readAll()) if self.basepixmap.size() != self.rect.size(): self.basepixmap = self.basepixmap.scaled(self.rect.size(), Qt.KeepAspectRatio, Qt.SmoothTransformation) self.setPixmap(self.basepixmap) def mkfinished(self): if self.mkreply.error() != QNetworkReply.NoError: return self.mkpixmap = QPixmap() self.mkpixmap.loadFromData(self.mkreply.readAll()) if self.mkpixmap.size() != self.rect.size(): self.mkpixmap = self.mkpixmap.scaled(self.rect.size(), Qt.KeepAspectRatio, Qt.SmoothTransformation) self.wmk.setPixmap(self.mkpixmap) def wxfinished(self): if self.wxreply.error() != QNetworkReply.NoError: print "get radar error "+self.myname+":"+str(self.wxreply.error()) self.lastwx = 0 return print "radar map received:"+self.myname+":"+time.ctime() self.wxmovie.stop() self.wxdata = QtCore.QByteArray(self.wxreply.readAll()) self.wxbuff = QtCore.QBuffer(self.wxdata) self.wxbuff.open(QtCore.QIODevice.ReadOnly) mov = QMovie(self.wxbuff, 'GIF') print "radar map frame count:"+self.myname+":"+str(mov.frameCount()) if mov.frameCount() > 2: self.lastwx = time.time() else: # radar image retreval failed self.lastwx = 0 # retry in 5 seconds QtCore.QTimer.singleShot(5*1000, self.getwx) return self.wxmovie = mov self.wwx.setMovie( self.wxmovie) if self.parent().isVisible(): self.wxmovie.start() def getwx(self): global lastapiget i = 0.1 # making sure there is at least 2 seconds between radar api calls lastapiget += 2 if time.time() > lastapiget: lastapiget = time.time() else: i = lastapiget - time.time() print "get radar api call spacing oneshot get i="+str(i) QtCore.QTimer.singleShot(i*1000, self.getwx2) def getwx2(self): global manager try: if self.wxreply.isRunning(): return except Exception: pass print "getting radar map "+self.myname+":"+time.ctime() self.wxreq = QNetworkRequest(QUrl(self.wxurl+'&rrrand='+str(time.time()))) self.wxreply = manager.get(self.wxreq) QtCore.QObject.connect(self.wxreply, QtCore.SIGNAL("finished()"),self.wxfinished) def getbase(self): global manager self.basereq = QNetworkRequest(QUrl(self.baseurl)) self.basereply = manager.get(self.basereq) QtCore.QObject.connect(self.basereply,QtCore.SIGNAL("finished()"),self.basefinished) def getmk(self): global manager self.mkreq = QNetworkRequest(QUrl(self.mkurl)) self.mkreply = manager.get(self.mkreq) QtCore.QObject.connect(self.mkreply,QtCore.SIGNAL("finished()"),self.mkfinished) def start(self, interval=0): if interval > 0: self.interval = interval self.getbase() self.getmk() self.timer = QtCore.QTimer() QtCore.QObject.connect(self.timer,QtCore.SIGNAL("timeout()"), self.getwx) def wxstart(self): print "wxstart for "+self.myname if (self.lastwx == 0 or (self.lastwx+self.interval) < time.time()): self.getwx() # random 1 to 10 seconds added to refresh interval to spread the queries over time i = (self.interval+random.uniform(1,10))*1000 self.timer.start(i) self.wxmovie.start() QtCore.QTimer.singleShot(1000, self.wxmovie.start) def wxstop(self): print "wxstop for "+self.myname self.timer.stop() self.wxmovie.stop() def stop(self): try: self.timer.stop() self.timer = None if self.wxmovie: self.wxmovie.stop() except Exception: pass def realquit(): QtGui.QApplication.exit(0) def myquit(a=0,b=0): global objradar1, objradar2,objradar3,objradar4 global ctimer, wtimer,temptimer objradar1.stop() objradar2.stop() objradar3.stop() objradar4.stop() ctimer.stop() wxtimer.stop() temptimer.stop() QtCore.QTimer.singleShot(30, realquit) def fixupframe(frame,onoff): for child in frame.children(): if isinstance(child,Radar): if onoff: #print "calling wxstart on radar on ",frame.objectName() child.wxstart() else: #print "calling wxstop on radar on ",frame.objectName() child.wxstop() def nextframe(plusminus): global frames, framep frames[framep].setVisible(False) fixupframe(frames[framep],False) framep += plusminus if framep >= len(frames): framep = 0 if framep < 0: framep = len(frames) - 1 frames[framep].setVisible(True) fixupframe(frames[framep],True) class myMain(QtGui.QWidget): def keyPressEvent(self, event): global weatherplayer, lastkeytime if type(event) == QtGui.QKeyEvent: # print event.key(), format(event.key(), '08x') if event.key() == Qt.Key_F4: myquit() if event.key() == Qt.Key_F2: if time.time() > lastkeytime: if weatherplayer == None: weatherplayer = Popen(["mpg123","-q", Config.noaastream ]) else: weatherplayer.kill() weatherplayer = None lastkeytime = time.time() + 2 if event.key() == Qt.Key_Space: nextframe(1) if event.key() == Qt.Key_Left: nextframe(-1) if event.key() == Qt.Key_Right: nextframe(1) configname = 'Config' if len(sys.argv) > 1: configname = sys.argv[1] if not os.path.isfile(configname+".py"): print "Config file not found %s" % configname+".py" exit(1) Config = __import__(configname) # define default values for new/optional config variables. try: Config.metric except AttributeError: Config.metric = 0 try: Config.weather_refresh except AttributeError: Config.weather_refresh = 30 #minutes try: Config.radar_refresh except AttributeError: Config.radar_refresh = 10 #minutes # lastmin = -1 weatherplayer = None lastkeytime = 0; lastapiget = time.time() app = QtGui.QApplication(sys.argv) desktop = app.desktop() rec = desktop.screenGeometry() height = rec.height() width = rec.width() signal.signal(signal.SIGINT, myquit) w = myMain() w.setWindowTitle(os.path.basename(__file__)) w.setStyleSheet("QWidget { background-color: black;}") #fullbgpixmap = QtGui.QPixmap(Config.background) #fullbgrect = fullbgpixmap.rect() #xscale = float(width)/fullbgpixmap.width() #yscale = float(height)/fullbgpixmap.height() xscale = float(width)/1440.0 yscale = float(height)/900.0 frames = [] framep = 0 frame1 = QtGui.QFrame(w) frame1.setObjectName("frame1") frame1.setGeometry(0,0,width,height) frame1.setStyleSheet("#frame1 { background-color: black; border-image: url("+Config.background+") 0 0 0 0 stretch stretch;}") frames.append(frame1) frame2 = QtGui.QFrame(w) frame2.setObjectName("frame2") frame2.setGeometry(0,0,width,height) frame2.setStyleSheet("#frame2 { background-color: blue; border-image: url("+Config.background+") 0 0 0 0 stretch stretch;}") frame2.setVisible(False) frames.append(frame2) #frame3 = QtGui.QFrame(w) #frame3.setObjectName("frame3") #frame3.setGeometry(0,0,width,height) #frame3.setStyleSheet("#frame3 { background-color: blue; border-image: url("+Config.background+") 0 0 0 0 stretch stretch;}") #frame3.setVisible(False) #frames.append(frame3) squares1 = QtGui.QFrame(frame1) squares1.setObjectName("squares1") squares1.setGeometry(0,height-yscale*600,xscale*340,yscale*600) squares1.setStyleSheet("#squares1 { background-color: transparent; border-image: url("+Config.squares1+") 0 0 0 0 stretch stretch;}") squares2 = QtGui.QFrame(frame1) squares2.setObjectName("squares2") squares2.setGeometry(width-xscale*340,0,xscale*340,yscale*900) squares2.setStyleSheet("#squares2 { background-color: transparent; border-image: url("+Config.squares2+") 0 0 0 0 stretch stretch;}") clockface = QtGui.QFrame(frame1) clockface.setObjectName("clockface") clockrect = QtCore.QRect(width/2-height*.4, height*.45-height*.4,height * .8, height * .8) clockface.setGeometry(clockrect) clockface.setStyleSheet("#clockface { background-color: transparent; border-image: url("+Config.clockface+") 0 0 0 0 stretch stretch;}") hourhand = QtGui.QLabel(frame1) hourhand.setObjectName("hourhand") hourhand.setStyleSheet("#hourhand { background-color: transparent; }") minhand = QtGui.QLabel(frame1) minhand.setObjectName("minhand") minhand.setStyleSheet("#minhand { background-color: transparent; }") sechand = QtGui.QLabel(frame1) sechand.setObjectName("sechand") sechand.setStyleSheet("#sechand { background-color: transparent; }") hourpixmap = QtGui.QPixmap(Config.hourhand) hourpixmap2 = QtGui.QPixmap(Config.hourhand) minpixmap = QtGui.QPixmap(Config.minhand) minpixmap2 = QtGui.QPixmap(Config.minhand) secpixmap = QtGui.QPixmap(Config.sechand) secpixmap2 = QtGui.QPixmap(Config.sechand) radar1rect = QtCore.QRect(3*xscale, 344*yscale, 300*xscale, 275*yscale) objradar1 = Radar(frame1, Config.radar1, radar1rect, "radar1") radar2rect = QtCore.QRect(3*xscale, 622*yscale, 300*xscale, 275*yscale) objradar2 = Radar(frame1, Config.radar2, radar2rect, "radar2") radar3rect = QtCore.QRect(13*xscale, 50*yscale, 700*xscale, 700*yscale) objradar3 = Radar(frame2, Config.radar3, radar3rect, "radar3") radar4rect = QtCore.QRect(726*xscale, 50*yscale, 700*xscale, 700*yscale) objradar4 = Radar(frame2, Config.radar4, radar4rect, "radar4") datex = QtGui.QLabel(frame1) datex.setObjectName("datex") datex.setStyleSheet("#datex { font-family:sans-serif; color: "+Config.textcolor+"; background-color: transparent; font-size: "+str(int(50*xscale))+"px }") datex.setAlignment(Qt.AlignHCenter | Qt.AlignTop); datex.setGeometry(0,0,width,100) datex2 = QtGui.QLabel(frame2) datex2.setObjectName("datex2") datex2.setStyleSheet("#datex2 { font-family:sans-serif; color: "+Config.textcolor+"; background-color: transparent; font-size: "+str(int(50*xscale))+"px }") datex2.setAlignment(Qt.AlignHCenter | Qt.AlignTop); datex2.setGeometry(800*xscale,780*yscale,640*xscale,100) datey2 = QtGui.QLabel(frame2) datey2.setObjectName("datey2") datey2.setStyleSheet("#datey2 { font-family:sans-serif; color: "+Config.textcolor+"; background-color: transparent; font-size: "+str(int(50*xscale))+"px }") datey2.setAlignment(Qt.AlignHCenter | Qt.AlignTop); datey2.setGeometry(800*xscale,840*yscale,640*xscale,100) ypos = -25 wxicon = QtGui.QLabel(frame1) wxicon.setObjectName("wxicon") wxicon.setStyleSheet("#wxicon { background-color: transparent; }") wxicon.setGeometry(75*xscale,ypos*yscale,150*xscale,150*yscale) wxicon2 = QtGui.QLabel(frame2) wxicon2.setObjectName("wxicon2") wxicon2.setStyleSheet("#wxicon2 { background-color: transparent; }") wxicon2.setGeometry(0*xscale,750*yscale,150*xscale,150*yscale) ypos += 130 wxdesc = QtGui.QLabel(frame1) wxdesc.setObjectName("wxdesc") wxdesc.setStyleSheet("#wxdesc { background-color: transparent; color: "+Config.textcolor+"; font-size: "+str(int(30*xscale))+"px }") wxdesc.setAlignment(Qt.AlignHCenter | Qt.AlignTop); wxdesc.setGeometry(3*xscale,ypos*yscale,300*xscale,100) wxdesc2 = QtGui.QLabel(frame2) wxdesc2.setObjectName("wxdesc2") wxdesc2.setStyleSheet("#wxdesc2 { background-color: transparent; color: "+Config.textcolor+"; font-size: "+str(int(50*xscale))+"px }") wxdesc2.setAlignment(Qt.AlignLeft | Qt.AlignTop); wxdesc2.setGeometry(400*xscale,800*yscale,400*xscale,100) ypos += 25 temper = QtGui.QLabel(frame1) temper.setObjectName("temper") temper.setStyleSheet("#temper { background-color: transparent; color: "+Config.textcolor+"; font-size: "+str(int(70*xscale))+"px }") temper.setAlignment(Qt.AlignHCenter | Qt.AlignTop); temper.setGeometry(3*xscale,ypos*yscale,300*xscale,100) temper2 = QtGui.QLabel(frame2) temper2.setObjectName("temper2") temper2.setStyleSheet("#temper2 { background-color: transparent; color: "+Config.textcolor+"; font-size: "+str(int(70*xscale))+"px }") temper2.setAlignment(Qt.AlignHCenter | Qt.AlignTop); temper2.setGeometry(125*xscale,780*yscale,300*xscale,100) ypos += 80 press = QtGui.QLabel(frame1) press.setObjectName("press") press.setStyleSheet("#press { background-color: transparent; color: "+Config.textcolor+"; font-size: "+str(int(25*xscale))+"px }") press.setAlignment(Qt.AlignHCenter | Qt.AlignTop); press.setGeometry(3*xscale,ypos*yscale,300*xscale,100) ypos += 30 humidity = QtGui.QLabel(frame1) humidity.setObjectName("humidity") humidity.setStyleSheet("#humidity { background-color: transparent; color: "+Config.textcolor+"; font-size: "+str(int(25*xscale))+"px }") humidity.setAlignment(Qt.AlignHCenter | Qt.AlignTop); humidity.setGeometry(3*xscale,ypos*yscale,300*xscale,100) ypos += 30 wind = QtGui.QLabel(frame1) wind.setObjectName("wind") wind.setStyleSheet("#wind { background-color: transparent; color: "+Config.textcolor+"; font-size: "+str(int(20*xscale))+"px }") wind.setAlignment(Qt.AlignHCenter | Qt.AlignTop); wind.setGeometry(3*xscale,ypos*yscale,300*xscale,100) ypos += 20 wind2 = QtGui.QLabel(frame1) wind2.setObjectName("wind2") wind2.setStyleSheet("#wind2 { background-color: transparent; color: "+Config.textcolor+"; font-size: "+str(int(20*xscale))+"px }") wind2.setAlignment(Qt.AlignHCenter | Qt.AlignTop); wind2.setGeometry(3*xscale,ypos*yscale,300*xscale,100) ypos += 20 wdate = QtGui.QLabel(frame1) wdate.setObjectName("wdate") wdate.setStyleSheet("#wdate { background-color: transparent; color: "+Config.textcolor+"; font-size: "+str(int(15*xscale))+"px }") wdate.setAlignment(Qt.AlignHCenter | Qt.AlignTop); wdate.setGeometry(3*xscale,ypos*yscale,300*xscale,100) bottom = QtGui.QLabel(frame1) bottom.setObjectName("bottom") bottom.setStyleSheet("#bottom { font-family:sans-serif; color: "+Config.textcolor+"; background-color: transparent; font-size: "+str(int(30*xscale))+"px }") bottom.setAlignment(Qt.AlignHCenter | Qt.AlignTop); bottom.setGeometry(0,height-50,width,50) temp = QtGui.QLabel(frame1) temp.setObjectName("temp") temp.setStyleSheet("#temp { font-family:sans-serif; color: "+Config.textcolor+"; background-color: transparent; font-size: "+str(int(30*xscale))+"px }") temp.setAlignment(Qt.AlignHCenter | Qt.AlignTop); temp.setGeometry(0,height-100,width,50) forecast = [] for i in range(0,9): lab = QtGui.QLabel(frame1) lab.setObjectName("forecast"+str(i)) lab.setStyleSheet("QWidget { background-color: transparent; color: "+Config.textcolor+"; font-size: "+str(int(20*xscale))+"px }") lab.setGeometry(1137*xscale,i*100*yscale,300*xscale,100*yscale) icon = QtGui.QLabel(lab) icon.setStyleSheet("#icon { background-color: transparent; }") icon.setGeometry(0,0,100*xscale,100*yscale) icon.setObjectName("icon") wx = QtGui.QLabel(lab) wx.setStyleSheet("#wx { background-color: transparent; }") wx.setGeometry(100*xscale,10*yscale,200*xscale,20*yscale) wx.setObjectName("wx") wx2 = QtGui.QLabel(lab) wx2.setStyleSheet("#wx2 { background-color: transparent; }") wx2.setGeometry(100*xscale,30*yscale,200*xscale,100*yscale) wx2.setAlignment(Qt.AlignLeft | Qt.AlignTop); wx2.setWordWrap(True) wx2.setObjectName("wx2") day = QtGui.QLabel(lab) day.setStyleSheet("#day { background-color: transparent; }") day.setGeometry(100*xscale,80*yscale,200*xscale,20*yscale) day.setAlignment(Qt.AlignRight | Qt.AlignBottom); day.setObjectName("day") forecast.append(lab) manager = QtNetwork.QNetworkAccessManager() #proxy = QNetworkProxy() #proxy.setType(QNetworkProxy.HttpProxy) #proxy.setHostName("localhost") #proxy.setPort(8888) #QNetworkProxy.setApplicationProxy(proxy) stimer = QtCore.QTimer() stimer.singleShot(10, qtstart) #print radarurl(Config.radar1,radar1rect) w.show() w.showFullScreen() sys.exit(app.exec_()) ```
{ "source": "42sol-eu/mdpre", "score": 2 }
#### File: mdpre/tests/test_writer.py ```python import sys import mdpre # TODO: fix this later def test_stdout_g_output(): g_output_stdout = mdpre.create_output_file() g_output_stdout.writeMarkdown('| sys.stdout works\n') mdpre.exit_script(g_output_stdout, 0) def test_file_g_output(): g_output_file = mdpre.create_output_file('test.md') g_output_file.writeMarkdown('| file output works\n') mdpre.exit_script(g_output_file, 0) if __name__ == "__main__": test_stdout_g_output() test_file_g_output() ```
{ "source": "42sol/termbase_de_shared", "score": 2 }
#### File: scripts/Python/core_setup.py ```python from pathlib import Path #!md|[docs](https://docs.python.org/3/library/pathlib.html#Path) from toml import * #!md|[docs](https://github.com/uiri/toml) from logging import INFO,DEBUG #!md|[docs](https://docs.python.org/3/library/logging.html?highlight=logging#module-logging) from logging import basicConfig as config_logging from logging import getLogger as Logger import chevron #OLD #!md|[docs](https://github.com/defunkt/pystache) config_logging(level=INFO, filename='tembase_split.log', format='%(asctime)s;%(name)s;%(levelname)s;%(message)s;[file;line]', datefmt='%Y-%m-%d;CW%W;%H:%M:%S') app = Logger('app.process') test = Logger('app.test') debug = False test.info(f'"\nSTART\n"') app.info('started') class Parameters: config_file_path= 'project_example.toml' def __init__(self): app.info('Parameters created') self.load(x_local=True) def load(self, x_config_file_path='', x_local=False): """ load parameters from config """ if x_config_file_path == '': x_config_file_path = Parameters.config_file_path script_path = Path(__file__).parent test.debug(script_path) config_file_path = Path(x_config_file_path) if x_local: config_file_path = script_path / x_config_file_path self.data = {} if config_file_path.exists(): with open(config_file_path, 'r') as toml_file: toml_string = toml_file.read() toml_data = loads(toml_string) if debug: print(toml_data) self.data = toml_data if self.data != {}: app.info('Parameters loaded successfull') active_section = 'setup' if active_section in self.data.keys(): if 'language' in self.data[active_section].keys(): setattr(self, 'language', self.data[active_section]['language']) if 'project_path' in self.data[active_section].keys(): setattr(self, 'project_path', self.data[active_section]['project_path']) active_section= 'files' if active_section in self.data.keys(): if 'termbase' in self.data[active_section].keys(): setattr(self, 'termbase_path', chevron.render(self.data[active_section]['termbase'], {'project_path': self.project_path,'language':self.language})) else: app.error('NO Parameters found!') ```
{ "source": "42tak/Flood-warning-grp-85", "score": 3 }
#### File: Flood-warning-grp-85/floodsystem/geo.py ```python from .utils import sorted_by_key # noqa from haversine import haversine, Unit def stations_within_radius(stations, centre,r): station_radius_list=[] for station in stations: if haversine(centre, station.coord)<=r: station_radius_list.append(station) return station_radius_list ```
{ "source": "42tm/pylnagb", "score": 3 }
#### File: pylnagb/assets/coordsys.py ```python import undefinedterms class CoordSys: """ Coordinate system prototype. """ def __init__(self): self.ORIGIN = undefinedterms.Point("O", 0, 0) class Cartesian(CoordSys): def __repr__(): return "2-dimensional Cartesian coordinates system" class Cartesian_3(CoordSys): def __repr__(): return "3-dimensional Cartesian coordinates system" class Polar(CoordSys): def __repr__(): return "Polar coordinates system" class PhySpherical(CoordSys): def __repr__(): return "Spherical coordinates system (in Physics)" class MathSpherical(CoordSys): def __repr__(): return "Spherical coordinates system (in Mathematics)" ``` #### File: pylnagb/sys/linagb_error.py ```python class DimensionError(Exception): def __init__(self, message="Dimension mismatch"): super(DimensionError, self).__init__(message) ```
{ "source": "42triangles/plovary", "score": 3 }
#### File: examples/ezkana/ezkana.py ```python from typing import * from plovary import * # "English Single Chord DICTionary" ESCDict = Dictionary[Chord[EnglishSystem], str] shared = system.parse("-LGDZ") # only isn't needed here, but this way `mypy` checks that this # is really just a single correct key: add_y = system.chord("-F") submit = system.chord("-R") add_tu = system.chord("-P") add_n = system.chord("-B") # Everything is done in combinations of two # * Space for a consonant means no consonant # * "l" as a consonant means small y+vowel if it exists, # otherwise it's a small vowel # * "xu" is a small "tu" # * "nn" is an n without a vowel # * "--" is the katakana elongation thingy small_tu = Dictionary({add_tu: "xu"}) n = Dictionary({add_n: "nn"}) # This is only available in Katakana mode, so the asterisk is # there, even in IME mode (where Katakana mode only consists of # this, because I have yet to figure out how to give `ibus` # katakana explicitly) katakana_elongate = system.parsed_single_dict({"AOEU": "--"}) normal_consonants = Dictionary( (fingertyping_lowercase_no_asterisk.keys_for(k)[0], k) for k in [ "k", "g", "s", "z", "t", "d", "n", "h", "b", "p", "m", "y", "r", "w", "l" ] ) no_consonant = Dictionary({system.empty_chord: " "}) y_consonants = normal_consonants.map(keys=add(add_y), values=suffix("il")) special_consonants = system.parsed_single_dict({ "SH": "si", # sh "KH": "ti", # ch "TP": "hu", # f "SKWR": "zi", # j }) vowels = Dictionary( (fingertyping_lowercase_no_asterisk.keys_for(k)[0], k) for k in ["a", "i", "u", "e", "o"] ) + system.parsed_single_dict({ "AE": "a a", "AOE": "i i", "AOU": "u u", "AEU": "e i", "OU": "o u", }) simple_consonants = normal_consonants + no_consonant + y_consonants simple_combinations = simple_consonants * vowels special_combinations = special_consonants.combinations( vowels, values=lambda cv, v: ( cv + v[1:] if cv.endswith(v[0]) else cv + "l" + v ), ) combinations = simple_combinations + special_combinations extended_combinations = ( (small_tu.with_empty_chord() * combinations + small_tu) * n.with_empty_chord() + n ) katakana_combinations = extended_combinations + katakana_elongate def translate( dictionary: ESCDict, symbol_mapping: Callable[[str], str] ) -> ESCDict: def value_mapping(output: str) -> str: assert len(output) % 2 == 0 return "".join( symbol_mapping(output[i:i+2]) for i in range(0, len(output), 2) ) return dictionary.map(values=value_mapping) def handle_ime() -> ESCDict: def translate_symbol(symbol: str) -> str: symbol = ( "ltu" if symbol == "xu" else ( "-" if symbol == "--" else ( "ly" + symbol[1] if symbol in ["la", "lu", "lo"] else symbol.replace(" ", "") ) ) ) if len(symbol) == 1: return symbol else: return ( symbol[0] + "{^}{#" + " ".join(symbol[1:]) + "}{^}" ) # We don't put anything on the asterisk except the # elongating thingy for katakana return translate( extended_combinations + katakana_elongate.map(keys=add("*")), translate_symbol, ) * system.toggle(submit, "a{^}{#Backspace}{^ ^}") def handle_proper() -> ESCDict: vowel_order = { "a": 0, "i": 1, "u": 2, "e": 3, "o": 4, } hiragana = { " ": "あいうえお", "k": "かきくけこ", "g": "がぎぐげご", "s": "さしすせそ", "z": "ざじずぜぞ", "t": "たちつてと", "d": "だぢづでど", "n": "なにぬねの", "h": "はひふへほ", "b": "ばびぶべぼ", "p": "ぱぴぷぺぽ", "m": "まみむめも", "y": "や ゆ よ", "r": "らりるれろ", "w": "わゐ ゑを", "l": "ゃぃゅぇょ", "nn": "ん", "xu": "っ", } katakana = { " ": "アイウエオ", "k": "カキクケコ", "g": "ガギグゲゴ", "s": "サシスセソ", "z": "ザジズゼゾ", "t": "タチツテト", "d": "ダヂヅデド", "n": "ナニヌネノ", "h": "ハヒフヘホ", "b": "バビブベボ", "p": "パピプペポ", "m": "マミムメモ", "y": "ヤ ユ ヨ", "r": "ラリルレロ", "w": "ワヰ ヱヲ", "l": "ャィュェョ", "nn": "ン", "xu": "ッ", } def translation_for( table: Dict[str, str] ) -> Callable[[str], str]: def translate_symbol(symbol: str) -> str: if symbol == "--": return "ー" elif symbol in table: return table[symbol] else: return table[symbol[0]][vowel_order[symbol[1]]] return translate_symbol return ( translate(extended_combinations, translation_for(hiragana)) + translate( extended_combinations + katakana_elongate, translation_for(katakana), ).map(keys=add("*")) ) * system.toggle(submit, "") # Make submit do nothing here def finalize(dictionary: ESCDict) -> ESCDict: return dictionary.map( keys=add(shared), values=lambda x: "{^}" + x + "{^}", ) final_ime = finalize(handle_ime()) final_proper = finalize(handle_proper()) ```