metadata
dict
text
stringlengths
60
3.49M
{ "source": "AakankshaAshok/pandas", "score": 2 }
#### File: pandas/core/apply.py ```python import inspect import numpy as np from pandas._libs import reduction as libreduction from pandas.util._decorators import cache_readonly from pandas.core.dtypes.common import ( is_dict_like, is_extension_array_dtype, is_list_like, is_sequence, ) from pandas.core.dtypes.generic import ABCSeries def frame_apply( obj, func, axis=0, raw=False, result_type=None, ignore_failures=False, args=None, kwds=None, ): """ construct and return a row or column based frame apply object """ axis = obj._get_axis_number(axis) if axis == 0: klass = FrameRowApply elif axis == 1: klass = FrameColumnApply return klass( obj, func, raw=raw, result_type=result_type, ignore_failures=ignore_failures, args=args, kwds=kwds, ) class FrameApply: def __init__(self, obj, func, raw, result_type, ignore_failures, args, kwds): self.obj = obj self.raw = raw self.ignore_failures = ignore_failures self.args = args or () self.kwds = kwds or {} if result_type not in [None, "reduce", "broadcast", "expand"]: raise ValueError( "invalid value for result_type, must be one " "of {None, 'reduce', 'broadcast', 'expand'}" ) self.result_type = result_type # curry if needed if (kwds or args) and not isinstance(func, (np.ufunc, str)): def f(x): return func(x, *args, **kwds) else: f = func self.f = f # results self.result = None self.res_index = None self.res_columns = None @property def columns(self): return self.obj.columns @property def index(self): return self.obj.index @cache_readonly def values(self): return self.obj.values @cache_readonly def dtypes(self): return self.obj.dtypes @property def agg_axis(self): return self.obj._get_agg_axis(self.axis) def get_result(self): """ compute the results """ # dispatch to agg if is_list_like(self.f) or is_dict_like(self.f): return self.obj.aggregate(self.f, axis=self.axis, *self.args, **self.kwds) # all empty if len(self.columns) == 0 and len(self.index) == 0: return self.apply_empty_result() # string dispatch if isinstance(self.f, str): # Support for `frame.transform('method')` # Some methods (shift, etc.) require the axis argument, others # don't, so inspect and insert if necessary. func = getattr(self.obj, self.f) sig = inspect.getfullargspec(func) if "axis" in sig.args: self.kwds["axis"] = self.axis return func(*self.args, **self.kwds) # ufunc elif isinstance(self.f, np.ufunc): with np.errstate(all="ignore"): results = self.obj._data.apply("apply", func=self.f) return self.obj._constructor( data=results, index=self.index, columns=self.columns, copy=False ) # broadcasting if self.result_type == "broadcast": return self.apply_broadcast() # one axis empty elif not all(self.obj.shape): return self.apply_empty_result() # raw elif self.raw and not self.obj._is_mixed_type: return self.apply_raw() return self.apply_standard() def apply_empty_result(self): """ we have an empty result; at least 1 axis is 0 we will try to apply the function to an empty series in order to see if this is a reduction function """ # we are not asked to reduce or infer reduction # so just return a copy of the existing object if self.result_type not in ["reduce", None]: return self.obj.copy() # we may need to infer should_reduce = self.result_type == "reduce" from pandas import Series if not should_reduce: try: r = self.f(Series([])) except Exception: pass else: should_reduce = not isinstance(r, Series) if should_reduce: if len(self.agg_axis): r = self.f(Series([])) else: r = np.nan return self.obj._constructor_sliced(r, index=self.agg_axis) else: return self.obj.copy() def apply_raw(self): """ apply to the values as a numpy array """ try: result = libreduction.compute_reduction(self.values, self.f, axis=self.axis) except ValueError as err: if "Function does not reduce" not in str(err): # catch only ValueError raised intentionally in libreduction raise result = np.apply_along_axis(self.f, self.axis, self.values) # TODO: mixed type case if result.ndim == 2: return self.obj._constructor(result, index=self.index, columns=self.columns) else: return self.obj._constructor_sliced(result, index=self.agg_axis) def apply_broadcast(self, target): result_values = np.empty_like(target.values) # axis which we want to compare compliance result_compare = target.shape[0] for i, col in enumerate(target.columns): res = self.f(target[col]) ares = np.asarray(res).ndim # must be a scalar or 1d if ares > 1: raise ValueError("too many dims to broadcast") elif ares == 1: # must match return dim if result_compare != len(res): raise ValueError("cannot broadcast result") result_values[:, i] = res # we *always* preserve the original index / columns result = self.obj._constructor( result_values, index=target.index, columns=target.columns ) return result def apply_standard(self): # try to reduce first (by default) # this only matters if the reduction in values is of different dtype # e.g. if we want to apply to a SparseFrame, then can't directly reduce # we cannot reduce using non-numpy dtypes, # as demonstrated in gh-12244 if ( self.result_type in ["reduce", None] and not self.dtypes.apply(is_extension_array_dtype).any() # Disallow complex_internals since libreduction shortcut # cannot handle MultiIndex and not self.agg_axis._has_complex_internals ): values = self.values index = self.obj._get_axis(self.axis) labels = self.agg_axis empty_arr = np.empty(len(index), dtype=values.dtype) # Preserve subclass for e.g. test_subclassed_apply dummy = self.obj._constructor_sliced( empty_arr, index=index, dtype=values.dtype ) try: result = libreduction.compute_reduction( values, self.f, axis=self.axis, dummy=dummy, labels=labels ) except ValueError as err: if "Function does not reduce" not in str(err): # catch only ValueError raised intentionally in libreduction raise except TypeError: # e.g. test_apply_ignore_failures we just ignore if not self.ignore_failures: raise except ZeroDivisionError: # reached via numexpr; fall back to python implementation pass else: return self.obj._constructor_sliced(result, index=labels) # compute the result using the series generator self.apply_series_generator() # wrap results return self.wrap_results() def apply_series_generator(self): series_gen = self.series_generator res_index = self.result_index i = None keys = [] results = {} if self.ignore_failures: successes = [] for i, v in enumerate(series_gen): try: results[i] = self.f(v) except Exception: pass else: keys.append(v.name) successes.append(i) # so will work with MultiIndex if len(successes) < len(res_index): res_index = res_index.take(successes) else: for i, v in enumerate(series_gen): results[i] = self.f(v) keys.append(v.name) self.results = results self.res_index = res_index self.res_columns = self.result_columns def wrap_results(self): results = self.results # see if we can infer the results if len(results) > 0 and 0 in results and is_sequence(results[0]): return self.wrap_results_for_axis() # dict of scalars result = self.obj._constructor_sliced(results) result.index = self.res_index return result class FrameRowApply(FrameApply): axis = 0 def apply_broadcast(self): return super().apply_broadcast(self.obj) @property def series_generator(self): return (self.obj._ixs(i, axis=1) for i in range(len(self.columns))) @property def result_index(self): return self.columns @property def result_columns(self): return self.index def wrap_results_for_axis(self): """ return the results for the rows """ results = self.results result = self.obj._constructor(data=results) if not isinstance(results[0], ABCSeries): if len(result.index) == len(self.res_columns): result.index = self.res_columns if len(result.columns) == len(self.res_index): result.columns = self.res_index return result class FrameColumnApply(FrameApply): axis = 1 def apply_broadcast(self): result = super().apply_broadcast(self.obj.T) return result.T @property def series_generator(self): constructor = self.obj._constructor_sliced return ( constructor(arr, index=self.columns, name=name) for i, (arr, name) in enumerate(zip(self.values, self.index)) ) @property def result_index(self): return self.index @property def result_columns(self): return self.columns def wrap_results_for_axis(self): """ return the results for the columns """ results = self.results # we have requested to expand if self.result_type == "expand": result = self.infer_to_same_shape() # we have a non-series and don't want inference elif not isinstance(results[0], ABCSeries): from pandas import Series result = Series(results) result.index = self.res_index # we may want to infer results else: result = self.infer_to_same_shape() return result def infer_to_same_shape(self): """ infer the results to the same shape as the input object """ results = self.results result = self.obj._constructor(data=results) result = result.T # set the index result.index = self.res_index # infer dtypes result = result.infer_objects() return result ```
{ "source": "aakanksha-gubbala/STHE_Optimization", "score": 3 }
#### File: aakanksha-gubbala/STHE_Optimization/theory.py ```python import streamlit as st def main(): st.subheader("Problem Solving Approach") st.image('diagram.png') st.image('optim-schematic.png', width=500) st.write("Objective : Minimize total cost of STHE") st.write("Constraints : ") st.write(r"1. $\Delta P_s < \Delta P_{s, permissible}$") st.write(r"2. $\Delta P_t < \Delta P_{t, permissible}$") st.write(r"3. $A_{calculated} < A_{available}$") st.write("Subject to variables : ") st.write(r"1. Tube layout = [Triangular 30 deg, Rotated square 45 deg, Square 90 deg]") st.write(r"2. Number of tube passes = [1, 2, 4]") st.write(r"3. Baffle cut = 15% to 25%") st.write(r"4. Length of tube = 2.5 to 6 m") st.write(r"5. Outer diameter of tube = 0.75 in, 1 in, 1.25 in, 1.5 in, 2 in") st.write(r"6. Shell-baffle clearance = 1 to 5 mm") st.write(r"7. Tube-baffle clearance = 1 to 5 mm") st.write("Assumptions") st.write(r"1. Tube Thickness is 16 BWG") st.write(r"2. Baffle spacing = 0.5D$_s$") st.write(r"3. Constant specific heat capacity in the temperature range") st.write("References") st.write("1) <NAME>., <NAME>., & <NAME>. (2013). " "Design of shell-and-tube heat exchangers using multiobjective optimization." " International Journal of Heat and Mass Transfer, 60, 343–354.") st.write("2) Hewitt, <NAME>., <NAME>, and <NAME> (1994) Process Heat Transfer. CRC Press.") ```
{ "source": "aakanksha-gubbala/unifac", "score": 3 }
#### File: aakanksha-gubbala/unifac/UNIFAC.py ```python import numpy as np #### Get nomenclature from Introduction to Chemical Engineering Thermodynamics by <NAME>, <NAME>, <NAME>, <NAME> class UNIFAC: def __init__(self): self.x = np.array([[0.2, 0.8]]) # mol fractions self.T = np.array([[330]]) # K # Frequency of UNIFAC groups : each row denotes the subgroup and each column denotes the component self.nu = np.array([[2, 0], [2, 0], [1, 0], [0, 1]]) # R values self.R = np.array([0.9011, 0.6744, 1.6764, 3.1680]) # Q values self.Q = np.array([0.8480, 0.5400, 1.4200, 2.4840]) # a_mn values (energy contributions in residual) self.a = np.array([[0.0000, 0.0000, 232.10, 354.55], [0.0000, 0.0000, 232.10, 354.55], [114.80, 114.80, 0.0000, 202.30], [-25.31, -25.31, -146.3, 0.0000]]) self.r = np.matmul(self.R, self.nu) self.q = np.matmul(self.Q, self.nu) def get_gammaC(self): # Get the combinatorial part of activity coefficient # J = ri / sum(rj xj) J = np.zeros((len(self.x), len(self.x[0]))) for i in range(len(self.x)): J[i] = self.r / np.dot(self.x[i], self.r) # L = qi / sum(qj xj) L = np.zeros((len(self.x), len(self.x[0]))) for i in range(len(self.x)): L[i] = self.q / np.dot(self.x[i], self.q) lngammaC = 1 - J + np.log(J) - 5 * self.q * (1 - J / L + np.log(J / L)) return np.exp(lngammaC) def get_gammaR(self): # Get the residual part of activity coefficient e = np.zeros(self.nu.transpose().shape) for i in range(e.shape[0]): e[i] = self.nu.transpose()[i] * self.Q / self.q[i] e = e.transpose() tau = np.exp(-self.a / self.T) beta = np.matmul(e.transpose(), tau) theta = np.zeros((len(self.x), len(self.nu))) for i in range(len(self.x)): for j in range(len(self.nu)): theta[i][j] = np.sum(self.x[i] * self.q * e[j, :]) / np.dot(self.x[i], self.q) s = np.matmul(theta, tau) lngammaR = np.zeros((len(self.x), len(self.x[0]))) for i in range(len(self.x)): lngammaR[i] = self.q * (1 - (np.sum((theta[i, :] * beta / s[i, :]).transpose() - np.log(beta / s[i, :]).transpose() * e, axis=0)) ) return np.exp(lngammaR) def get_gamma(self): # Get the activity coefficent gammaC = self.get_gammaC() gammaR = self.get_gammaR() return gammaC * gammaR # unifac = UNIFAC() # print(unifac.get_gamma()) ```
{ "source": "aakanksha-gubbala/vle-web-app", "score": 2 }
#### File: vle-web-app/models/wohls.py ```python import streamlit as st import scipy.constants as constants import numpy as np import scipy.optimize as opt from scipy.special import xlogy from sklearn import metrics import matplotlib.pyplot as plt from matplotlib import style from volume import get_volume from antoine import get_psat class Wohls: def __init__(self, s1, s2, T): self.q1 = get_volume(s1, T) self.q2 = get_volume(s2, T) self.T = T def Ge(self, x1, A): x1 = np.asfarray(x1, float) z1 = x1 * self.q1 / (x1 * self.q1 + (1 - x1) * self.q2) z2 = (1 - x1) * self.q2 / (x1 * self.q1 + (1 - x1) * self.q2) return constants.R * self.T * (x1 * self.q1 + (1 - x1) * self.q2) * (2 * A) * (z1 * z2) def gamma1(self, z, A): return np.exp(2 * A * self.q1 * (1 - z) ** 2) def gamma2(self, z, A): return np.exp(2 * A * self.q2 * z ** 2) # @st.cache(suppress_st_warning=True) def get_parameter(self, x, G_e): A, params_cov = opt.curve_fit(self.Ge, x, G_e, p0=1000, maxfev=10000) return A # @st.cache(suppress_st_warning=True) def get_accuracy(self, G_e, x1): A = self.get_parameter(x1, G_e) Ge = self.Ge(x1, A) return metrics.r2_score(G_e, Ge) def main(x1, y1, P, G_e, T, s1, s2): style.use('classic') w = Wohls(s1, s2, T) A = w.get_parameter(x1, G_e) acc = w.get_accuracy(G_e, x1) x = np.linspace(0, 1, 50) fig4 = plt.figure(facecolor='white') plt.title(r"$G^E-x$") plt.xlim(0, 1) plt.xlabel(r'$x_1$') plt.ylabel(r'$G^E\ (J/mol)$') plt.scatter(x1, G_e) plt.plot(x, w.Ge(x, A), label=r"$Wohls\ model$", color='red') plt.axhline(0, color='black') q1 = get_volume(s1, T) q2 = get_volume(s2, T) z = x * q1 / (x * q1 + (1 - x) * q2) p1_s = get_psat(s1, T) p2_s = get_psat(s2, T) P_Wohls = x * p1_s * w.gamma1(z, A) + (1 - x) * p2_s * w.gamma2(z, A) y_Wohls = x * p1_s * w.gamma1(z, A) / P_Wohls P_raoult = x * p1_s + (1 - x) * p2_s fig5 = plt.figure(facecolor='white') plt.title(r"$P-x$") plt.xlim(0, 1) plt.ylim(0, 1.2 * max(P_Wohls)) plt.xlabel(r'$x_1$') plt.ylabel(r'$P\ (kPa)$') plt.scatter(x1, P) plt.plot(x, P_Wohls, label=r"$Wohls\ model$", color='red') plt.plot(x, P_raoult, color='black', label=r"$Raoult's\ Law$") plt.legend(loc='best', fontsize=10) fig6 = plt.figure(facecolor='white') plt.gca().set_aspect('equal', adjustable='box') plt.title(r"$y-x$") plt.xlim(0, 1) plt.ylim(0, 1) plt.xlabel(r'$x_1$') plt.ylabel(r'$y_1$') plt.scatter(x1, y1) plt.plot(x, y_Wohls, label=r"$Wohls\ model$", color='red') plt.plot(x, x, color='black') plt.legend(loc='best', fontsize=10) return A, acc, fig4, fig5, fig6 ```
{ "source": "Aakanksha-Rana/HD-BET", "score": 2 }
#### File: HD-BET/HD_BET/Train.py ```python import argparse import os import numpy as np import matplotlib # matplotlib.use('Agg') import matplotlib.pyplot as plt import torch import torch.autograd as autograd import torch.optim as optim import torchvision.transforms as transforms import torchvision.datasets as dsets import torchvision.models as models #from ipywidgets import IntProgress import lrs from data_loader import ScanDataset from network_architecture import Network as net def main(config): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") train_transform = transforms.Compose([ transforms.Scale(256), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor()]) val_transform = transforms.Compose([ transforms.Scale(256), transforms.RandomCrop(224), transforms.ToTensor()]) test_transform = transforms.Compose([ transforms.ToTensor()]) trainset = ScanDataset(csv_file=config.train_csv_file, root_dir=config.train_img_path, transform=train_transform) valset = ScanDataset(csv_file=config.val_csv_file, root_dir=config.val_img_path, transform=val_transform) train_loader = torch.utils.data.DataLoader(trainset, batch_size=config.train_batch_size, shuffle=True, num_workers=config.num_workers) val_loader = torch.utils.data.DataLoader(valset, batch_size=config.val_batch_size, shuffle=False, num_workers=config.num_workers) # base_model = models.vgg16(pretrained=True) base_model = models.resnet101(pretrained=True, progress = False) # base_model = models.inception_v3(pretrained=True) model = NIMA(base_model) # model = NIMA() if config.warm_start == False: model.load_state_dict(torch.load(os.path.join(config.ckpt_path, 'epoch-%d.pkl' % config.warm_start_epoch))) print('Successfully loaded model epoch-%d.pkl' % config.warm_start_epoch) if config.multi_gpu: model.features = torch.nn.DataParallel(model.features, device_ids=config.gpu_ids) model = model.to(device) else: model = model.to(device) conv_base_lr = config.conv_base_lr dense_lr = config.dense_lr optimizer = optim.SGD([ {'params': model.features.parameters(), 'lr': conv_base_lr}, {'params': model.classifier.parameters(), 'lr': dense_lr}], momentum=0.9 ) # optimizer = optim.Adam( model.parameters(), lr = conv_base_lr, betas=(0.9,0.999)) # Loss functions # criterion = torch.nn.L1Loss() criterion = torch.nn.BCELoss() # send hyperparams lrs.send({ 'title': 'EMD Loss', 'train_batch_size': config.train_batch_size, 'val_batch_size': config.val_batch_size, 'optimizer': 'SGD', 'conv_base_lr': config.conv_base_lr, 'dense_lr': config.dense_lr, 'momentum': 0.9 }) param_num = 0 for param in model.parameters(): param_num += int(np.prod(param.shape)) print('Trainable params: %.2f million' % (param_num / 1e6)) if config.train: # for early stopping count = 0 init_val_loss = float('inf') train_losses = [] val_losses = [] for epoch in range(config.warm_start_epoch, config.epochs): lrs.send('epoch', epoch) batch_losses = [] for i, data in enumerate(train_loader): images = data['image'].to(device) # labels = data['annotations'].to(device).long() # labels = labels.view(labels.shape[0]) labels = data['annotations'].to(device).float() labels = labels.view(-1,2) outputs = model(images) outputs = outputs.view( -1, 2) optimizer.zero_grad() loss = criterion(outputs, labels) # loss = emd_loss(labels, outputs) batch_losses.append(loss.item()) loss.backward() optimizer.step() lrs.send('train_bce_loss', loss.item()) # print('Epoch: %d/%d | Step: %d/%d | Training EMD loss: %.4f' % (epoch + 1, config.epochs, i + 1, len(trainset) // config.train_batch_size + 1, loss.data[0])) avg_loss = sum(batch_losses) / (len(trainset) // config.train_batch_size + 1) train_losses.append(avg_loss) print('Epoch %d averaged training EMD loss: %.4f' % (epoch + 1, avg_loss)) # exponetial learning rate decay if (epoch + 1) % 10 == 0: conv_base_lr = conv_base_lr * config.lr_decay_rate ** ((epoch + 1) / config.lr_decay_freq) dense_lr = dense_lr * config.lr_decay_rate ** ((epoch + 1) / config.lr_decay_freq) optimizer = optim.SGD([ {'params': model.features.parameters(), 'lr': conv_base_lr}, {'params': model.classifier.parameters(), 'lr': dense_lr}], momentum=0.9 ) # send decay hyperparams lrs.send({ 'lr_decay_rate': config.lr_decay_rate, 'lr_decay_freq': config.lr_decay_freq, 'conv_base_lr': config.conv_base_lr, 'dense_lr': config.dense_lr }) # do validation after each epoch batch_val_losses = [] for data in val_loader: images = data['image'].to(device) labels = data['annotations'].to(device).float() labels = labels.view(-1,2) with torch.no_grad(): outputs = model(images) val_outputs = outputs.view(-1, 2) val_loss = criterion(val_outputs, labels) # val_loss = emd_loss(labels, outputs) batch_val_losses.append(val_loss.item()) avg_val_loss = sum(batch_val_losses) / (len(valset) // config.val_batch_size + 1) val_losses.append(avg_val_loss) lrs.send('val_bce_loss', avg_val_loss) print('Epoch %d completed. Averaged BCE loss on val set: %.4f. Inital val loss : %.4f.' % (epoch + 1, avg_val_loss, init_val_loss)) # Use early stopping to monitor training if avg_val_loss < init_val_loss: init_val_loss = avg_val_loss # save model weights if val loss decreases print('Saving model...') torch.save(model.state_dict(), os.path.join(config.ckpt_path, 'epoch-%d.pkl' % (epoch + 1))) print('Done.\n') # reset count count = 0 elif avg_val_loss >= init_val_loss: count += 1 if count == config.early_stopping_patience: print('Val BCE loss has not decreased in %d epochs. Training terminated.' % config.early_stopping_patience) # break print('Training completed.') if config.save_fig: # plot train and val loss epochs = range(1, epoch + 2) plt.plot(epochs, train_losses, 'b-', label='train loss') plt.plot(epochs, val_losses, 'g-', label='val loss') plt.title('BCE loss') plt.legend() plt.savefig('./loss.png') if config.test: # start.record() print('Testing') # compute mean score test_transform = test_transform#val_transform testset = AVADataset(csv_file=config.test_csv_file, root_dir=config.test_img_path, transform=val_transform) test_loader = torch.utils.data.DataLoader(testset, batch_size=config.test_batch_size, shuffle=False, num_workers=config.num_workers) mean_preds = np.zeros(45) mean_labels = np.zeros(45) # std_preds = [] count = 0 for data in test_loader: im_id = data['img_id'] image = data['image'].to(device) labels = data['annotations'].to(device).float() output = model(image) output = output.view(1, 1) bpred = output.to(torch.device("cpu")) cpred = bpred.data.numpy() blabel = labels.to(torch.device("cpu")) clabel = blabel.data.numpy() # predicted_mean, predicted_std = 0.0, 0.0 # for i, elem in enumerate(output, 1): # predicted_mean += i * elem # for j, elem in enumerate(output, 1): # predicted_std += elem * (i - predicted_mean) ** 2 mean_preds[count] = cpred mean_labels[count] = clabel print(im_id,mean_preds[count]) count= count+1 # std_preds.append(predicted_std) # Do what you want with predicted and std... end.record() if __name__ == '__main__': parser = argparse.ArgumentParser() # input parameters parser.add_argument('--train_img_path', type=str, default='/path/to/train') parser.add_argument('--val_img_path', type=str, default='/path/to/val') parser.add_argument('--test_img_path', type=str, default='/path/to/test') parser.add_argument('--train_csv_file', type=str, default='./Train_final.csv') parser.add_argument('--val_csv_file', type=str, default='./Val_final.csv') parser.add_argument('--test_csv_file', type=str, default='./Test_final.csv') # training parameters parser.add_argument('--train', type=bool, default = True) parser.add_argument('--test', type=bool, default = False) parser.add_argument('--conv_base_lr', type=float, default=.000001) parser.add_argument('--dense_lr', type=float, default=.000001) parser.add_argument('--lr_decay_rate', type=float, default=0.95) parser.add_argument('--lr_decay_freq', type=int, default=10) parser.add_argument('--train_batch_size', type=int, default=32) parser.add_argument('--val_batch_size', type=int, default=16) parser.add_argument('--test_batch_size', type=int, default=1) parser.add_argument('--num_workers', type=int, default=1) parser.add_argument('--epochs', type=int, default=100) # misc parser.add_argument('--ckpt_path', type=str, default='./ckpts/') parser.add_argument('--multi_gpu', type=bool, default=False) parser.add_argument('--gpu_ids', type=list, default=None) parser.add_argument('--warm_start', type=bool, default=False) parser.add_argument('--warm_start_epoch', type=int, default=0) parser.add_argument('--early_stopping_patience', type=int, default=5) parser.add_argument('--save_fig', type=bool, default=False) config = parser.parse_args() main(config) ```
{ "source": "aakanksharathore/yoloTracker", "score": 3 }
#### File: yoloTracker/tracking/yoloTrackVid.py ```python import numpy as np import cv2, sys import glob import ntpath sys.path.append("..") from models.yolo_models import get_yolo_model def _sigmoid(x): return 1. / (1. + np.exp(-x)) def _interval_overlap(interval_a, interval_b): x1, x2 = interval_a x3, x4 = interval_b if x3 < x1: if x4 < x1: return 0 else: return min(x2,x4) - x1 else: if x2 < x3: return 0 else: return min(x2,x4) - x3 def bbox_iou(box1, box2): intersect_w = _interval_overlap([box1[0], box1[2]], [box2[0], box2[2]]) intersect_h = _interval_overlap([box1[1], box1[3]], [box2[1], box2[3]]) intersect = intersect_w * intersect_h w1, h1 = box1[2]-box1[0], box1[3]-box1[1] w2, h2 = box2[2]-box2[0], box2[3]-box2[1] union = w1*h1 + w2*h2 - intersect return float(intersect) / union #import tkinter to use diaglogue window for movie name import tkinter as tk from tkinter.filedialog import askopenfilename #Open the video file which needs to be processed root = tk.Tk() movieName = askopenfilename(initialdir='/media/aakanksha/f41d5ac2-703c-4b56-a960-cd3a54f21cfb/aakanksha/Documents/Backup/Phd/Analysis/Videos/',filetypes=[("Video files","*")]) cap = cv2.VideoCapture(movieName) nframe =cap.get(cv2.CAP_PROP_FRAME_COUNT) step=500 im_width = 3840 #1920#864 im_height = 2176#1088#864 obj_threshold=0.5; max_length=256; weight_file = '/media/aakanksha/f41d5ac2-703c-4b56-a960-cd3a54f21cfb/aakanksha/Documents/Backup/Phd/Analysis/blackbuckML/yoloTracker/weights/compare-blackbucks-yolo.h5' model = get_yolo_model(im_width, im_height, num_class=1) model.load_weights(weight_file,by_name=True) im_num=0 width=3840#1920 height=2176#1080 count=0 #video = cv2.VideoWriter('/media/aakanksha/f41d5ac2-703c-4b56-a960-cd3a54f21cfb/aakanksha/Documents/Backup/Phd/Analysis/blackbuckML/testOut/video.avi',-1,1,(im_width,im_height)) while(cap.isOpened()): if (cv2.waitKey(1) & 0xFF == ord('q')) | (count > 32): break cap.set(cv2.CAP_PROP_POS_FRAMES,im_num) ret, img = cap.read() im_num+=step image_h, image_w, _ = img.shape img = cv2.resize(img, (im_width,im_height)) new_image = img[:,:,::-1]/255. new_image = np.expand_dims(new_image, 0) # get detections preds = model.predict(new_image) #print('yolo time: ', (stop-start)/batches) new_boxes = np.zeros((0,5)) for i in range(3): netout=preds[i][0] grid_h, grid_w = netout.shape[:2] xpos = netout[...,0] ypos = netout[...,1] wpos = netout[...,2] hpos = netout[...,3] objectness = netout[...,4] indexes = (objectness > obj_threshold) & (wpos<max_length) & (hpos<max_length) if np.sum(indexes)==0: continue corner1 = np.column_stack((xpos[indexes]-wpos[indexes]/2.0, ypos[indexes]-hpos[indexes]/2.0)) corner2 = np.column_stack((xpos[indexes]+wpos[indexes]/2.0, ypos[indexes]+hpos[indexes]/2.0)) new_boxes = np.append(new_boxes, np.column_stack((corner1, corner2, objectness[indexes])),axis=0) # do nms sorted_indices = np.argsort(-new_boxes[:,4]) boxes=new_boxes.tolist() for i in range(len(sorted_indices)): index_i = sorted_indices[i] if new_boxes[index_i,4] == 0: continue for j in range(i+1, len(sorted_indices)): index_j = sorted_indices[j] if bbox_iou(boxes[index_i][0:4], boxes[index_j][0:4]) >= obj_threshold: new_boxes[index_j,4] = 0 new_boxes = new_boxes[new_boxes[:,4]>0] detection_list = [] for row in new_boxes: stacker = (row[0],row[1],row[2],row[3], row[4]) detection_list.append(stacker) #Display the detections for detect in detection_list: bbox = detect[0:4] #if 1: #iwarp = (full_warp) #corner1 = np.expand_dims([bbox[0],bbox[1]], axis=0) #corner1 = np.expand_dims(corner1,axis=0) #corner1 = cv2.perspectiveTransform(corner1,iwarp)[0,0,:] minx = bbox[0] miny = bbox[1] #corner2 = np.expand_dims([bbox[2],bbox[3]], axis=0) #corner2 = np.expand_dims(corner2,axis=0) #corner2 = cv2.perspectiveTransform(corner2,iwarp)[0,0,:] maxx = bbox[2] maxy = bbox[3] cv2.rectangle(img, (int(minx)-2, int(miny)-2), (int(maxx)+2, int(maxy)+2),(0,0,0), 1) #write output image cv2.imwrite('/media/aakanksha/f41d5ac2-703c-4b56-a960-cd3a54f21cfb/aakanksha/Documents/Backup/Phd/Analysis/blackbuckML/testOut/'+ntpath.basename(movieName[0:len(movieName)-4])+'_'+str(im_num)+'.png',img) count+=1 #video.write(img) cv2.destroyAllWindows() #video.release() ``` #### File: train/prepare_samples/makeTrain.py ```python import numpy as np import pandas as pd import os,sys,glob import cv2 import yaml sys.path.append('../..') sys.path.append('..') from models.yolo_models import get_yolo_model from utils.decoder import decode from random import shuffle def main(argv): if(len(sys.argv) != 3): print('Usage ./makeTrain.py [root_dir] [config.yml]') sys.exit(1) #Load data root_dir = argv[1] + '/' #in case we forgot print('Opening file' + root_dir + argv[2]) with open(root_dir + argv[2], 'r') as configfile: config = yaml.safe_load(configfile) image_dir = root_dir + config['data_dir'] train_dir = root_dir + config['data_dir'] your_weights = root_dir + config['weights_dir'] + config['specific_weights'] trained_annotations_fname = train_dir + config['trained_annotations_fname'] train_files_regex = config['specific_train_files_regex'] train_images = glob.glob( train_dir + train_files_regex ) shuffle(train_images) max_l=100 min_l=10 im_size=864 #size of training imageas for yolo ################################################## #im_size=416 #size of training imageas for yolo yolov3 = get_yolo_model(im_size,im_size,num_class=1,trainable=False) yolov3.load_weights(your_weights) ######################################## im_num=1 all_imgs = [] for imagename in train_images: img = cv2.imread(imagename) print('processing image ' + imagename + ', ' + str(im_num) + ' of ' + str(len(train_images)) + '...') im_num+=1 img_data = {'object':[]} #dictionary? key-value pair to store image data head, tail = os.path.split(imagename) noext, ext = os.path.splitext(tail) box_name = train_dir + '/bbox/' + tail img_data['filename'] = tail img_data['width'] = im_size img_data['height'] = im_size # use the trained yolov3 model to predict # preprocess the image image_h, image_w, _ = img.shape new_image = img[:,:,::-1]/255. new_image = np.expand_dims(new_image, 0) # run the prediction yolos = yolov3.predict(new_image) boxes = decode(yolos, obj_thresh=0.2, nms_thresh=0.3) for b in boxes: xmin=int(b[0]) xmax=int(b[2]) ymin=int(b[1]) ymax=int(b[3]) obj = {} obj['name'] = 'aoi' if xmin<0: continue if ymin<0: continue if xmax>im_size: continue if ymax>im_size: continue if (xmax-xmin)<min_l: continue if (xmax-xmin)>max_l: continue if (ymax-ymin)<min_l: continue if (ymax-ymin)>max_l: continue obj['xmin'] = xmin obj['ymin'] = ymin obj['xmax'] = xmax obj['ymax'] = ymax img_data['object'] += [obj] cv2.rectangle(img, (xmin,ymin), (xmax,ymax), (0,255,0), 2) cv2.imwrite(box_name, img) all_imgs += [img_data] #print(all_imgs) with open(trained_annotations_fname, 'w') as handle: yaml.dump(all_imgs, handle) if __name__ == '__main__': main(sys.argv) ```
{ "source": "Aakansha99/AI-Therapist", "score": 2 }
#### File: AI-Therapist/main_app/views.py ```python from django.shortcuts import render, redirect from django.http import HttpResponse from django.http import JsonResponse from datetime import date from django.contrib import messages from django.contrib.auth.models import User , auth from .models import patient , doctor , diseaseinfo , consultation ,rating_review from chats.models import Chat,Feedback from .models import SentimentModel from .forms import SentimentForm from code import SentimentAnalyzer import text2emotion as te # Create your views here. #loading trained_model import joblib as jb model = jb.load('trained_model') def home(request): if request.method == 'GET': if request.user.is_authenticated: return render(request,'homepage/index.html') else : return render(request,'homepage/index.html') def admin_ui(request): if request.method == 'GET': if request.user.is_authenticated: auser = request.user Feedbackobj = Feedback.objects.all() return render(request,'admin/admin_ui/admin_ui.html' , {"auser":auser,"Feedback":Feedbackobj}) else : return redirect('home') if request.method == 'POST': return render(request,'patient/patient_ui/profile.html') def patient_ui(request): if request.method == 'GET': if request.user.is_authenticated: patientusername = request.session['patientusername'] puser = User.objects.get(username=patientusername) return render(request,'patient/patient_ui/profile.html' , {"puser":puser}) else : return redirect('home') if request.method == 'POST': return render(request,'patient/patient_ui/profile.html') def pviewprofile(request, patientusername): if request.method == 'GET': puser = User.objects.get(username=patientusername) return render(request,'patient/view_profile/view_profile.html', {"puser":puser}) def checkdisease(request): diseaselist=['Fungal infection','Allergy','GERD','Chronic cholestasis','Drug Reaction','Peptic ulcer diseae','AIDS','Diabetes ', 'Gastroenteritis','Bronchial Asthma','Hypertension ','Migraine','Cervical spondylosis','Paralysis (brain hemorrhage)', 'Jaundice','Malaria','Chicken pox','Dengue','Typhoid','hepatitis A', 'Hepatitis B', 'Hepatitis C', 'Hepatitis D', 'Hepatitis E', 'Alcoholic hepatitis','Tuberculosis', 'Common Cold', 'Pneumonia', 'Dimorphic hemmorhoids(piles)', 'Heart attack', 'Varicose veins','Hypothyroidism', 'Hyperthyroidism', 'Hypoglycemia', 'Osteoarthristis', 'Arthritis', '(vertigo) Paroymsal Positional Vertigo','Acne', 'Urinary tract infection', 'Psoriasis', 'Impetigo'] symptomslist=['itching','skin_rash','nodal_skin_eruptions','continuous_sneezing','shivering','chills','joint_pain', 'stomach_pain','acidity','ulcers_on_tongue','muscle_wasting','vomiting','burning_micturition','spotting_ urination', 'fatigue','weight_gain','anxiety','cold_hands_and_feets','mood_swings','weight_loss','restlessness','lethargy', 'patches_in_throat','irregular_sugar_level','cough','high_fever','sunken_eyes','breathlessness','sweating', 'dehydration','indigestion','headache','yellowish_skin','dark_urine','nausea','loss_of_appetite','pain_behind_the_eyes', 'back_pain','constipation','abdominal_pain','diarrhoea','mild_fever','yellow_urine', 'yellowing_of_eyes','acute_liver_failure','fluid_overload','swelling_of_stomach', 'swelled_lymph_nodes','malaise','blurred_and_distorted_vision','phlegm','throat_irritation', 'redness_of_eyes','sinus_pressure','runny_nose','congestion','chest_pain','weakness_in_limbs', 'fast_heart_rate','pain_during_bowel_movements','pain_in_anal_region','bloody_stool', 'irritation_in_anus','neck_pain','dizziness','cramps','bruising','obesity','swollen_legs', 'swollen_blood_vessels','puffy_face_and_eyes','enlarged_thyroid','brittle_nails', 'swollen_extremeties','excessive_hunger','extra_marital_contacts','drying_and_tingling_lips', 'slurred_speech','knee_pain','hip_joint_pain','muscle_weakness','stiff_neck','swelling_joints', 'movement_stiffness','spinning_movements','loss_of_balance','unsteadiness', 'weakness_of_one_body_side','loss_of_smell','bladder_discomfort','foul_smell_of urine', 'continuous_feel_of_urine','passage_of_gases','internal_itching','toxic_look_(typhos)', 'depression','irritability','muscle_pain','altered_sensorium','red_spots_over_body','belly_pain', 'abnormal_menstruation','dischromic _patches','watering_from_eyes','increased_appetite','polyuria','family_history','mucoid_sputum', 'rusty_sputum','lack_of_concentration','visual_disturbances','receiving_blood_transfusion', 'receiving_unsterile_injections','coma','stomach_bleeding','distention_of_abdomen', 'history_of_alcohol_consumption','fluid_overload','blood_in_sputum','prominent_veins_on_calf', 'palpitations','painful_walking','pus_filled_pimples','blackheads','scurring','skin_peeling', 'silver_like_dusting','small_dents_in_nails','inflammatory_nails','blister','red_sore_around_nose', 'yellow_crust_ooze'] alphabaticsymptomslist = sorted(symptomslist) if request.method == 'GET': return render(request,'patient/checkdisease/checkdisease.html', {"list2":alphabaticsymptomslist}) elif request.method == 'POST': ## access you data by playing around with the request.POST object inputno = int(request.POST["noofsym"]) print(inputno) if (inputno == 0 ) : return JsonResponse({'predicteddisease': "none",'confidencescore': 0 }) else : psymptoms = [] psymptoms = request.POST.getlist("symptoms[]") print(psymptoms) """ #main code start from here... """ testingsymptoms = [] #append zero in all coloumn fields... for x in range(0, len(symptomslist)): testingsymptoms.append(0) #update 1 where symptoms gets matched... for k in range(0, len(symptomslist)): for z in psymptoms: if (z == symptomslist[k]): testingsymptoms[k] = 1 inputtest = [testingsymptoms] print(inputtest) predicted = model.predict(inputtest) print("predicted disease is : ") print(predicted) y_pred_2 = model.predict_proba(inputtest) confidencescore=y_pred_2.max() * 100 print(" confidence score of : = {0} ".format(confidencescore)) confidencescore = format(confidencescore, '.0f') predicted_disease = predicted[0] #consult_doctor codes---------- # doctor_specialization = ["Rheumatologist","Cardiologist","ENT specialist","Orthopedist","Neurologist", # "Allergist/Immunologist","Urologist","Dermatologist","Gastroenterologist"] Rheumatologist = [ 'Osteoarthristis','Arthritis'] Cardiologist = [ 'Heart attack','Bronchial Asthma','Hypertension '] ENT_specialist = ['(vertigo) Paroymsal Positional Vertigo','Hypothyroidism' ] Orthopedist = [] Neurologist = ['Varicose veins','Paralysis (brain hemorrhage)','Migraine','Cervical spondylosis'] Allergist_Immunologist = ['Allergy','Pneumonia', 'AIDS','Common Cold','Tuberculosis','Malaria','Dengue','Typhoid'] Urologist = [ 'Urinary tract infection', 'Dimorphic hemmorhoids(piles)'] Dermatologist = [ 'Acne','Chicken pox','Fungal infection','Psoriasis','Impetigo'] Gastroenterologist = ['Peptic ulcer diseae', 'GERD','Chronic cholestasis','Drug Reaction','Gastroenteritis','Hepatitis E', 'Alcoholic hepatitis','Jaundice','hepatitis A', 'Hepatitis B', 'Hepatitis C', 'Hepatitis D','Diabetes ','Hypoglycemia'] if predicted_disease in Rheumatologist : consultdoctor = "Rheumatologist" if predicted_disease in Cardiologist : consultdoctor = "Cardiologist" elif predicted_disease in ENT_specialist : consultdoctor = "ENT specialist" elif predicted_disease in Orthopedist : consultdoctor = "Orthopedist" elif predicted_disease in Neurologist : consultdoctor = "Neurologist" elif predicted_disease in Allergist_Immunologist : consultdoctor = "Allergist/Immunologist" elif predicted_disease in Urologist : consultdoctor = "Urologist" elif predicted_disease in Dermatologist : consultdoctor = "Dermatologist" elif predicted_disease in Gastroenterologist : consultdoctor = "Gastroenterologist" else : consultdoctor = "other" request.session['doctortype'] = consultdoctor patientusername = request.session['patientusername'] puser = User.objects.get(username=patientusername) #saving to database..................... patient = puser.patient diseasename = predicted_disease no_of_symp = inputno symptomsname = psymptoms confidence = confidencescore diseaseinfo_new = diseaseinfo(patient=patient,diseasename=diseasename,no_of_symp=no_of_symp,symptomsname=symptomsname,confidence=confidence,consultdoctor=consultdoctor) diseaseinfo_new.save() request.session['diseaseinfo_id'] = diseaseinfo_new.id print("disease record saved sucessfully.............................") return JsonResponse({'predicteddisease': predicted_disease ,'confidencescore':confidencescore , "consultdoctor": consultdoctor}) def pconsultation_history(request): if request.method == 'GET': patientusername = request.session['patientusername'] puser = User.objects.get(username=patientusername) patient_obj = puser.patient consultationnew = consultation.objects.filter(patient = patient_obj) return render(request,'patient/consultation_history/consultation_history.html',{"consultation":consultationnew}) def dconsultation_history(request): if request.method == 'GET': doctorusername = request.session['doctorusername'] duser = User.objects.get(username=doctorusername) doctor_obj = duser.doctor consultationnew = consultation.objects.filter(doctor = doctor_obj) return render(request,'doctor/consultation_history/consultation_history.html',{"consultation":consultationnew}) def doctor_ui(request): if request.method == 'GET': doctorid = request.session['doctorusername'] duser = User.objects.get(username=doctorid) return render(request,'doctor/doctor_ui/profile.html',{"duser":duser}) def dviewprofile(request, doctorusername): if request.method == 'GET': duser = User.objects.get(username=doctorusername) r = rating_review.objects.filter(doctor=duser.doctor) return render(request,'doctor/view_profile/view_profile.html', {"duser":duser, "rate":r} ) def consult_a_doctor(request): if request.method == 'GET': doctortype = request.session['doctortype'] print(doctortype) dobj = doctor.objects.all() #dobj = doctor.objects.filter(specialization=doctortype) return render(request,'patient/consult_a_doctor/consult_a_doctor.html',{"dobj":dobj}) def make_consultation(request, doctorusername): if request.method == 'POST': patientusername = request.session['patientusername'] puser = User.objects.get(username=patientusername) patient_obj = puser.patient #doctorusername = request.session['doctorusername'] duser = User.objects.get(username=doctorusername) doctor_obj = duser.doctor request.session['doctorusername'] = doctorusername diseaseinfo_id = request.session['diseaseinfo_id'] diseaseinfo_obj = diseaseinfo.objects.get(id=diseaseinfo_id) consultation_date = date.today() status = "active" consultation_new = consultation( patient=patient_obj, doctor=doctor_obj, diseaseinfo=diseaseinfo_obj, consultation_date=consultation_date,status=status) consultation_new.save() request.session['consultation_id'] = consultation_new.id print("consultation record is saved sucessfully.............................") return redirect('consultationview',consultation_new.id) def consultationview(request,consultation_id): if request.method == 'GET': request.session['consultation_id'] = consultation_id consultation_obj = consultation.objects.get(id=consultation_id) return render(request,'consultation/consultation.html', {"consultation":consultation_obj }) # if request.method == 'POST': # return render(request,'consultation/consultation.html' ) def rate_review(request,consultation_id): if request.method == "POST": consultation_obj = consultation.objects.get(id=consultation_id) patient = consultation_obj.patient doctor1 = consultation_obj.doctor rating = request.POST.get('rating') review = request.POST.get('review') rating_obj = rating_review(patient=patient,doctor=doctor1,rating=rating,review=review) rating_obj.save() rate = int(rating_obj.rating_is) doctor.objects.filter(pk=doctor1).update(rating=rate) return redirect('consultationview',consultation_id) def close_consultation(request,consultation_id): if request.method == "POST": consultation.objects.filter(pk=consultation_id).update(status="closed") return redirect('home') #-----------------------------chatting system --------------------------------------------------- def post(request): if request.method == "POST": msg = request.POST.get('msgbox', None) consultation_id = request.session['consultation_id'] consultation_obj = consultation.objects.get(id=consultation_id) c = Chat(consultation_id=consultation_obj,sender=request.user, message=msg) #msg = c.user.username+": "+msg if msg != '': c.save() print("msg saved"+ msg ) return JsonResponse({ 'msg': msg }) else: return HttpResponse('Request must be POST.') def chat_messages(request): if request.method == "GET": consultation_id = request.session['consultation_id'] c = Chat.objects.filter(consultation_id=consultation_id) return render(request, 'consultation/chat_body.html', {'chat': c}) def checksentiment(request): form = SentimentForm(request.POST or None) context = {} if request.method == 'POST': if form.is_valid(): sent = form.cleaned_data.get('Sentence') # got the sentence if sent == "I am bored": textAns = "Bored" context['text'] = 'Bored' else: textAns = te.get_emotion(sent) print(textAns) for key,value in textAns.items(): if value>0: print(key) context['text'] = key else: form = SentimentForm() context['form'] = form return render(request, 'patient/checksentiment/checksentiment.html', context=context) def solution1(request): if request.method == "GET": return render(request, 'patient/checksentiment/solution/solution1.html') #-----------------------------chatting system --------------------------------------------------- ```
{ "source": "AakanshaDhawan/Algorithms-2", "score": 4 }
#### File: AakanshaDhawan/Algorithms-2/naive_string_matching.py ```python def naive(word, text): m = len(word) n = len(text) counter = 0 for i in range(0,n-m+1): found = True for j in range(0, m): if word[j] != text[i+j]: found = False break if found: counter += 1 if counter == 0: print "No match" else: print "The word appears: ",counter, "times!" naive("ata","ata") naive("ata","atata") naive("ata","aaaaaaa") naive("ata","") naive("125","1259784651887125987894125") ```
{ "source": "aakar77/Docker-isolation-benchmarking", "score": 3 }
#### File: Docker-isolation-benchmarking/docker-python-sdk/DockerApiClass.py ```python import docker from itertools import izip import json import datetime import time import csv class docker_sdk_abstraction(): def __init__(self): ''' <Purpose> Initializes the Docker API client object. Initializes the Docker API container class object to None. container_obj will be initialized while container_create / container_run methods. <Arguments> None ''' self.docker_api_obj = docker.from_env() self.container_obj = None self.process_set = set() self.container_start_timestamp = None self.stats_dict = None # Following are the Getter methods for getting Docker Api Container Object attributes def get_container_id(self): ''' <Purpose> For returning the container object id attribute. id attribute is container's id <Arguments> None <Return> Returns the container ID to which the object is pointing to ''' return self.container_obj.id def get_container_id_short(self): ''' <Purpose> Get method for container object short id(truncated to 10 character) attribute. <Arguments> None <Return> Returns the 10 charcter container ID to which the object is pointing to ''' return self.container_obj.short_id def get_container_name(self): ''' <Purpose> Get method for container object name attribute. It is by default assigned by the docker container if not specified while docker run / docker create <Arguments> None <Return> Returns the 10 charcter container ID to which the object is pointing to ''' return self.container_obj.name def get_container_image_name(self): ''' <Purpose> Get method for the container's object image attribute. <Arguments> None <Return> Returns the container image name for example <Image: 'python-prog:latest'> ''' return str(self.container_obj.image) def get_container_status(self): return self.container_obj.status def get_container_process(self): return self.process_set def set_container_process(self): if(self.get_container_status() != "exited"): # docker container object top method, it gives process ids currently running in the form of a list process_dict = self.container_obj.top() nested_list = process_dict.get("Processes") for list_a in nested_list: self.process_set.add(list_a[1]) # Process ID self.process_set.add(list_a[2]) # Parent Process print self.get_container_process() """ It gives the process ID of processes running inside the container in format like {u'Processes': [[u'root', u'27138', u'27121', u'30', u'16:36', u'?', u'00:00:01', u'mplayer -benchmark -vo null -ao null ./Sintel.mp4']], u'Titles': [u'UID', u'PID', u'PPID', u'C', u'STIME', u'TTY', u'TIME', u'CMD']} Made a set attribute that stores the process running inside the docker container. """ # Following are the class methods def container_create(self, docker_image_tag_name, container_arguments): ''' <Purpose> Create a docker container using containers.create method. Inigtializes the docker API container class object. <Arguments> 1) Image name for which container is to created. 2) A Dictonary which can be used for setting up the arguments for the containers.create() method. ''' print container_arguments self.container_obj = self.docker_api_obj.containers.create(docker_image_tag_name, **container_arguments) def container_start(self): ''' <Purpose> Invoke Docker API container class object start method. Starts the docker container <Arguments> None ''' self.container_obj.start() def container_run(self, docker_image_tag_name, detach_mode): if (detach_mode == False): # Docker container will run on foreground # Output = docker container logs # Will not return untill container execution completes container_run_log = self.docker_api_obj.containers.run(docker_image_tag_name, detach=detach_mode) return container_run_log else: # Docker container won't run in foreground # Output of the containers.run method = Container class object self.container_obj = self.docker_ai_obj.containers.run(docker_image_tag_name, detach=detach_mode) def container_log(self): ''' <Purpose> This method is for getting the container log after container has stopped running. It creates a log file with the filename as container short id + output-file.log <Arguments> None <Return> None ''' #Updating container's processes self.set_container_process() #Calling container object logs method - stream is False and Follow is True container_end_log = self.container_obj.logs(stdout = True, stderr = True, stream = False, follow = True) # Formatting the log output container_end_log.replace("\r", "\n") # Creating file name filename = self.get_container_id_short() +"-"+self.get_container_image_name()+"-output-file.log" # Creating and writting into the log file log_file_obj = open(filename, "w+") log_file_obj.write(container_end_log) log_file_obj.close() def container_log_stream(self): ''' <Purpose> This method is for getting the container log throughout the container execution. It creates a log file with the filename as container short id + image name + output-file.log. This method will return back only after the container has completed its execution. i.e. status = exited. <Arguments> None <Return> None ''' # Reloading the container object attributes, especially needed for the status self.container_obj.reload() # Creating file name for the log file filename = self.get_container_id_short()+"-"+self.get_container_image_name()+"-output-file.log" log_file_obj = open(filename, "w+") #update container procees set attribute self.container_obj.set_container_process() # Gives generator stream object helper log_stream = self.container_obj.logs(stdout = True, stderr = True, stream = True, follow = True) for data in izip(log_stream): # Reloading the container object atrributes, more concerned for container status = exited self.container_obj.reload() # Formatting the stream data tuple data = "".join(data) data.replace("\r", "\n") # Dumping the data into file json.dump(data, log_file_obj) #update container procees set attribute self.set_container_process() """ Break the generator stream, once the container status turns exicted. If not, it will produce 0 values for all the other fields. """ if(self.get_container_status() == "exited"): stat_file_obj.close() break def container_stats_stream(self): ''' <Purpose> This method is for getting the statistics stream during the container execution. It creates a stats file with the filename as container short id + stat-file.log. This method will return back only after the container has completed its execution. i.e. status = exited Next Task would be: Manually logging cpu and memory data and calculating average over them. A suggestion by Lukas to log these stats into a CSV file and parse the file after completion. <Arguments> None <Return> None ''' self.get_container_process() # Updating the container object attributes self.container_obj.reload() # Creating file name. filename = self.get_container_id_short() +"-"+self.get_container_image_name()+"-stats-file.csv" #stat_file_obj = open(filename, "w+") # Gives generator stream object helper stats_stream = self.container_obj.stats(decode=True, stream = True) writer = csv.writer(open(filename, 'w+')) for stats_tuple in izip(stats_stream): # Updating the container object attributes, especially the container status self.container_obj.reload() # Getting memory stat dictionary read_timestamp = stats_tuple[0]['read'] preread_timestamp = stats_tuple[0]['preread'] memory_stat = stats_tuple[0]['memory_stats'] memory_usage = memory_stat.get('usage') memory_limit = memory_stat.get('limit') memory_max_usage = memory_stat.get('max_usage') csv_row = [read_timestamp, preread_timestamp, memory_usage, memory_limit, memory_max_usage ] #print csv_row writer.writerow(csv_row) # If the container has exited, close the file object and break the for loopn if(self.get_container_status() == "exited"): stat_file_obj.close() break """ # Getting CPU stats dictonary cpu_stat = stats_tuple[0]['cpu_stats'] # Dumping the stats stream data, in the file json.dump(stats_tuple, stat_file_obj, indent = 4) #update container procees set attribute self.set_container_process() """ def list_containers(self, method_options): # sending a dict of container arguments. It returns a list of containers list_containers = self.docker_api_obj(**method_options) ############################# object1 = docker_sdk_abstraction() """ Important note here ------------------------- cpu_cpus Datatype = int or String cpu_shares Datatype = int only mem_limit = if int specify memory limit in bytes or can specify values like 200m 4000k 1g More options available at https://docker-py.readthedocs.io/en/stable/containers.html """ container_arguments = { 'cpuset_cpus': "1", 'cpu_shares': 2000, 'mem_limit': "200m" } object1.container_create("docker-mplayer-i", container_arguments) object1.container_start() #print object1.get_container_image_name() #object1.container_log_stream() object1.container_stats_stream() object1.container_log() """ #print object1.get_container_image() #while(object1.get_container_status == "running"): # pass # object1.start_container() # print object1.get_container_name() """ ```
{ "source": "aakardwivedi/MusicComposer_A-Machine-Learning-Model", "score": 3 }
#### File: MusicComposer_A-Machine-Learning-Model/python-scripts/model.py ```python import os import logging import numpy as np import tensorflow as tf from tensorflow.models.rnn import rnn_cell from tensorflow.models.rnn import rnn, seq2seq import nottingham_util class Model(object): """ Cross-Entropy Naive Formulation A single time step may have multiple notes active, so a sigmoid cross entropy loss is used to match targets. seq_input: a [ T x B x D ] matrix, where T is the time steps in the batch, B is the batch size, and D is the amount of dimensions """ def __init__(self, config, training=False): self.config = config self.time_batch_len = time_batch_len = config.time_batch_len self.input_dim = input_dim = config.input_dim hidden_size = config.hidden_size num_layers = config.num_layers dropout_prob = config.dropout_prob input_dropout_prob = config.input_dropout_prob cell_type = config.cell_type self.seq_input = \ tf.placeholder(tf.float32, shape=[self.time_batch_len, None, input_dim]) if (dropout_prob <= 0.0 or dropout_prob > 1.0): raise Exception("Invalid dropout probability: {}".format(dropout_prob)) if (input_dropout_prob <= 0.0 or input_dropout_prob > 1.0): raise Exception("Invalid input dropout probability: {}".format(input_dropout_prob)) # setup variables with tf.variable_scope("rnnlstm"): output_W = tf.get_variable("output_w", [hidden_size, input_dim]) output_b = tf.get_variable("output_b", [input_dim]) self.lr = tf.constant(config.learning_rate, name="learning_rate") self.lr_decay = tf.constant(config.learning_rate_decay, name="learning_rate_decay") def create_cell(input_size): if cell_type == "vanilla": cell_class = rnn_cell.BasicRNNCell elif cell_type == "gru": cell_class = rnn_cell.BasicGRUCell elif cell_type == "lstm": cell_class = rnn_cell.BasicLSTMCell else: raise Exception("Invalid cell type: {}".format(cell_type)) cell = cell_class(hidden_size, input_size = input_size) if training: return rnn_cell.DropoutWrapper(cell, output_keep_prob = dropout_prob) else: return cell if training: self.seq_input_dropout = tf.nn.dropout(self.seq_input, keep_prob = input_dropout_prob) else: self.seq_input_dropout = self.seq_input self.cell = rnn_cell.MultiRNNCell( [create_cell(input_dim)] + [create_cell(hidden_size) for i in range(1, num_layers)]) batch_size = tf.shape(self.seq_input_dropout)[0] self.initial_state = self.cell.zero_state(batch_size, tf.float32) inputs_list = tf.unpack(self.seq_input_dropout) # rnn outputs a list of [batch_size x H] outputs outputs_list, self.final_state = rnn.rnn(self.cell, inputs_list, initial_state=self.initial_state) outputs = tf.pack(outputs_list) outputs_concat = tf.reshape(outputs, [-1, hidden_size]) logits_concat = tf.matmul(outputs_concat, output_W) + output_b logits = tf.reshape(logits_concat, [self.time_batch_len, -1, input_dim]) # probabilities of each note self.probs = self.calculate_probs(logits) self.loss = self.init_loss(logits, logits_concat) self.train_step = tf.train.RMSPropOptimizer(self.lr, decay = self.lr_decay) \ .minimize(self.loss) def init_loss(self, outputs, _): self.seq_targets = \ tf.placeholder(tf.float32, [self.time_batch_len, None, self.input_dim]) batch_size = tf.shape(self.seq_input_dropout) cross_ent = tf.nn.sigmoid_cross_entropy_with_logits(outputs, self.seq_targets) return tf.reduce_sum(cross_ent) / self.time_batch_len / tf.to_float(batch_size) def calculate_probs(self, logits): return tf.sigmoid(logits) def get_cell_zero_state(self, session, batch_size): return self.cell.zero_state(batch_size, tf.float32).eval(session=session) class NottinghamModel(Model): """ Dual softmax formulation A single time step should be a concatenation of two one-hot-encoding binary vectors. Loss function is a sum of two softmax loss functions over [:r] and [r:] respectively, where r is the number of melody classes """ def init_loss(self, outputs, outputs_concat): self.seq_targets = \ tf.placeholder(tf.int64, [self.time_batch_len, None, 2]) batch_size = tf.shape(self.seq_targets)[1] with tf.variable_scope("rnnlstm"): self.melody_coeff = tf.constant(self.config.melody_coeff) r = nottingham_util.NOTTINGHAM_MELODY_RANGE targets_concat = tf.reshape(self.seq_targets, [-1, 2]) melody_loss = tf.nn.sparse_softmax_cross_entropy_with_logits( \ outputs_concat[:, :r], \ targets_concat[:, 0]) harmony_loss = tf.nn.sparse_softmax_cross_entropy_with_logits( \ outputs_concat[:, r:], \ targets_concat[:, 1]) losses = tf.add(self.melody_coeff * melody_loss, (1 - self.melody_coeff) * harmony_loss) return tf.reduce_sum(losses) / self.time_batch_len / tf.to_float(batch_size) def calculate_probs(self, logits): steps = [] for t in range(self.time_batch_len): melody_softmax = tf.nn.softmax(logits[t, :, :nottingham_util.NOTTINGHAM_MELODY_RANGE]) harmony_softmax = tf.nn.softmax(logits[t, :, nottingham_util.NOTTINGHAM_MELODY_RANGE:]) steps.append(tf.concat(1, [melody_softmax, harmony_softmax])) return tf.pack(steps) def assign_melody_coeff(self, session, melody_coeff): if melody_coeff < 0.0 or melody_coeff > 1.0: raise Exception("Invalid melody coeffecient") session.run(tf.assign(self.melody_coeff, melody_coeff)) class NottinghamSeparate(Model): """ Single softmax formulation Regular single classification formulation, used to train baseline models where the melody and harmony are trained separately """ def init_loss(self, outputs, outputs_concat): self.seq_targets = \ tf.placeholder(tf.int64, [self.time_batch_len, None]) batch_size = tf.shape(self.seq_targets)[1] with tf.variable_scope("rnnlstm"): self.melody_coeff = tf.constant(self.config.melody_coeff) targets_concat = tf.reshape(self.seq_targets, [-1]) losses = tf.nn.sparse_softmax_cross_entropy_with_logits( \ outputs_concat, targets_concat) return tf.reduce_sum(losses) / self.time_batch_len / tf.to_float(batch_size) def calculate_probs(self, logits): steps = [] for t in range(self.time_batch_len): softmax = tf.nn.softmax(logits[t, :, :]) steps.append(softmax) return tf.pack(steps) ```
{ "source": "aakarsh2126/HacktoberFest_2021", "score": 2 }
#### File: phishingurldetector/phishingapp/views.py ```python from django.shortcuts import render import joblib,os #pkl def index(request): phish_model = open('templates/phishing.pkl','rb') phish_model_ls = joblib.load(phish_model) if request.method == 'GET': X_predict = [] search_text = request.GET.get("search_box") print(search_text) X_predict.append(str(search_text)) y_Predict = phish_model_ls.predict(X_predict) result="" if y_Predict == 'bad': result = "Not Secure" else: result = "Secure" return render(request, "index.html", {'search_text':result,'text':search_text}) ```
{ "source": "aakarshg/scribe", "score": 3 }
#### File: transcribe/scribe_modules/base_scribe_module.py ```python from abc import ABCMeta, abstractmethod ## noqa class ScribeModuleBaseClass(metaclass=ABCMeta): # we can do something like this: # def __init__(self, dictionary): # for k, v in dictionary.items(): # setattr(self, k, v) # if we are sure that there's no transformation needed on the # input dict. def __init__(self, input_dict=None, module_name=None, input_type=None, host_name=None, scribe_uuid=None): if module_name: self.module = module_name self.source_type = input_type self.host = host_name self.scribe_uuid = scribe_uuid # self.value = list(input_dict.values())[0] # Ideally we'd be using abstractmethod # however since we dont want children classes to write their # own methods, we'll be not be using it # This also allows users to implement their own __iter__ function # in their classes where they can make the object's entities iterable # as they please # @abstractmethod def __iter__(self): for attr, value in self.__dict__.items(): yield attr, value ``` #### File: transcribe/scribe_modules/cpu_vulnerabilities.py ```python from . import ScribeModuleBaseClass from . lib.util import format_url class Cpu_vulnerabilities(ScribeModuleBaseClass): def __init__(self, input_dict=None, module_name=None, host_name=None, input_type=None, scribe_uuid=None): ScribeModuleBaseClass.__init__(self, module_name=module_name, input_dict=input_dict, host_name=host_name, input_type=input_type, scribe_uuid=scribe_uuid) if input_dict: self._assign_properties(self._parse(input_dict)) def __iter__(self): for attr, value in self.__dict__.items(): yield attr, value def _assign_properties(self, initial_data): for key in initial_data: setattr(self, key, initial_data[key]) def _parse(self, input_parse): output_dict = {} if '/' in input_parse: input_string = input_parse.split('/')[-1] else: input_string = input_parse if ':' in input_string: name_string = input_string.split(':') output_dict['vulnerability_name'] = name_string[0] if 'Vulnerable' in input_string: output_dict['current_vulnerability_status'] = True vulnerable_string = input_string.split('Vulnerable: ') if len(vulnerable_string) >= 2: output_dict['current_vulnerability_type'] = \ vulnerable_string[1] else: output_dict['current_vulnerability_status'] = False if 'Mitigation' in input_string: output_dict['mitigation_exists'] = True mitigation_string = input_string.split('Mitigation: ') if len(mitigation_string) >= 2: output_dict['mitigation_type'] = \ mitigation_string[1] else: output_dict['mitigation_exists'] = False return output_dict ``` #### File: transcribe/scribe_modules/yum_repos.py ```python from . import ScribeModuleBaseClass from . lib.util import format_url base_url = "http://mirror.centos.org/centos/$releasever/{}/$basearch/" # object_dict = {} class Yum_repos(ScribeModuleBaseClass): def __init__(self, input_dict=None, module_name=None, host_name=None, input_type=None, scribe_uuid=None): ScribeModuleBaseClass.__init__(self, module_name=module_name, input_dict=input_dict, host_name=host_name, input_type=input_type, scribe_uuid=scribe_uuid) if input_dict: # object_dict['repo_name'] = input_dict['repoid'] # object_dict['repo_state'] = self.update_repo_state(input_dict) # object_dict['base_url'] = format_url(base_url, self.repo_name) self.repo_name = input_dict['repoid'] self.repo_state = self.update_repo_state(input_dict) # This is just for the sake of it self.base_url = format_url(base_url, self.repo_name) def update_repo_state(self, value): if value['state'] == 'enabled': return 1 return 0 def __iter__(self): for attr, value in self.__dict__.items(): yield attr, value ```
{ "source": "aakarshg/sincgars", "score": 2 }
#### File: aakarshg/sincgars/deploy.py ```python import argparse import sys import subprocess import time def _run(cmd): process = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE) stdout,stderr = process.communicate() return stdout.strip(), process.returncode def main(): parser = argparse.ArgumentParser(description='enable remotewrite',prog='sincgars') parser.add_argument( '-c', '--clustername', nargs=1, help='clustername to be added as an externallabel') parser.add_argument( '-u', '--url', nargs=1, help='the endpoint for the remotewrite') args = parser.parse_args() _json = '{ "data": { "config.yaml": "prometheusK8s:\\n externalLabels:\\n clustername: placeholder_name\\n remoteWrite:\\n - url: placeholder_url\\n" }}' _count , _rc = _run('oc -n openshift-monitoring get configmap | grep cluster-monitoring-config -i -c') if int(_count) == 0: print("cluster-monitoring-config configmap doesn't already exist, so creating one") print(subprocess.check_output('oc -n openshift-monitoring create configmap cluster-monitoring-config'.split(' '))) _temp_array = 'oc patch configmap/cluster-monitoring-config -n openshift-monitoring --patch'.split(' ') new_json = _json.replace("placeholder_name",str(args.clustername[0]).strip()).replace("placeholder_url",str(args.url[0]).strip()) _temp_array.append(new_json) print(subprocess.check_output(_temp_array)) if __name__ == '__main__': sys.exit(main()) ```
{ "source": "aakarshg/touchstone", "score": 2 }
#### File: touchstone/benchmarks/pgbench.py ```python import logging from . import BenchmarkBaseClass _logger = logging.getLogger("touchstone") class Pgbench(BenchmarkBaseClass): def _build_search(self): _logger.debug("Building search array for PGBENCH") return self._search_dict[self._source_type][self._harness_type] def _build_compare_keys(self): _logger.debug("Building compare map") _temp_dict = {} for index in self._search_map: _temp_dict[index] = self._search_map[index]['compare'] return _temp_dict def _build_compute(self): _logger.debug("Building compute map") _temp_dict = {} for index in self._search_map: _temp_dict[index] = self._search_map[index]['compute'] return _temp_dict def __init__(self, source_type=None, harness_type=None): _logger.debug("Initializing PGBENCH instance") BenchmarkBaseClass.__init__(self, source_type=source_type, harness_type=harness_type) self._search_dict = { 'elasticsearch': { 'ripsaw': { 'ripsaw-pgbench-summary': { 'compare': ['uuid', 'user', 'cluster_name', 'scaling_factor', 'query_mode', 'number_of_threads', 'number_of_clients', 'duration_seconds' ], 'compute': [{ 'filter': { 'workload': 'pgbench' }, 'buckets': ['iteration'], 'aggregations': {}, 'collate': ['tps_incl_con_est', 'number_of_transactions_actually_processed', # noqa 'latency_average_ms' ] }, ] }, 'ripsaw-pgbench-results': { 'compare': ['transaction_type'], 'compute': [{ 'filter': { 'workload': 'pgbench' }, 'buckets': ['iteration'], 'aggregations': { 'latency_ms': [{ 'percentiles': { 'percents': [95] } }] }, 'collate': [] }, ] } } } } self._search_map = self._build_search() self._compute_map = self._build_compute() self._compare_map = self._build_compare_keys() _logger.debug("Finished initializing pgbench instance") def emit_compute_map(self): _logger.debug("Emitting built compute map ") _logger.info("Compute map is {} in the database \ {}".format(self._compute_map, self._source_type)) return self._compute_map def emit_compare_map(self): _logger.debug("Emitting built compare map ") _logger.info("compare map is {} in the database \ {}".format(self._compare_map, self._source_type)) return self._compare_map def emit_indices(self): return self._search_map.keys() ```
{ "source": "Aakarshit-Sharma19/django-quill-editor", "score": 2 }
#### File: django-quill-editor/django_quill/widgets.py ```python from collections.abc import Mapping from django import forms from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.core.serializers.json import DjangoJSONEncoder from django.forms.renderers import get_default_renderer from django.forms.utils import flatatt from django.utils.encoding import force_text from django.utils.functional import Promise from django.utils.safestring import mark_safe from .config import DEFAULT_CONFIG __all__ = ( 'LazyEncoder', 'QuillWidget', ) class LazyEncoder(DjangoJSONEncoder): def default(self, obj): if isinstance(obj, Promise): return force_text(obj) return super(LazyEncoder, self).default(obj) json_encode = LazyEncoder().encode class QuillWidget(forms.Textarea): class Media: js = ( 'https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/highlight.min.js', 'django_quill/django_quill.js', 'https://cdn.quilljs.com/1.3.7/quill.min.js', 'https://unpkg.com/[email protected]/dist/quill.imageUploader.min.js' ) css = { 'all': ( 'https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/styles/darcula.min.css', 'django_quill/django_quill.css', 'https://cdn.quilljs.com/1.3.7/quill.snow.css', 'https://unpkg.com/[email protected]/dist/quill.imageUploader.min.css' ) } def __init__(self, config_name='default', *args, **kwargs): super().__init__(*args, **kwargs) self.config = DEFAULT_CONFIG.copy() self.image_upload_url = getattr( settings, 'QUILL_IMAGE_UPLOAD_URL', None) configs = getattr(settings, 'QUILL_CONFIGS', None) if configs: if isinstance(configs, Mapping): if config_name in configs: config = configs[config_name] if not isinstance(config, Mapping): raise ImproperlyConfigured( 'QUILL_CONFIGS["%s"] setting must be a Mapping object' % config_name) self.config.update(config) else: raise ImproperlyConfigured( 'No configuration named "%s" found in your QUILL_CONFIGS' % config_name) else: raise ImproperlyConfigured( 'QUILL_CONFIGS settings must be a Mapping object') def render(self, name, value, attrs=None, renderer=None): if renderer is None: renderer = get_default_renderer() if value is None: value = '' attrs = attrs or {} attrs['name'] = name if hasattr(value, 'quill'): attrs['quill'] = value.quill else: attrs['value'] = value final_attrs = self.build_attrs(self.attrs, attrs) return mark_safe(renderer.render('django_quill/widget.html', { 'final_attrs': flatatt(final_attrs), 'id': final_attrs['id'], 'name': final_attrs['name'], 'config': json_encode(self.config), 'imageUploadURL': self.image_upload_url, 'quill': final_attrs.get('quill', None), 'value': final_attrs.get('value', None), })) ```
{ "source": "aakaruimahesh/tic-tac-toe", "score": 4 }
#### File: aakaruimahesh/tic-tac-toe/player.py ```python class Player: # declaring class variables name = '' # constructor: takes valid player name def __init__(self, player_number): is_valid_name = False while not is_valid_name: name = input('Enter the Player {0} name: '.format(player_number)) if name: name += '{0}'.format(player_number) self.set_name(name) is_valid_name = True else: print('Please enter the valid name.') # getter method to return name from class variable def get_name(self): return self.name # setter method to set name in class variable def set_name(self, name): self.name = name ```
{ "source": "aakash0017/BI-MOO", "score": 2 }
#### File: BI-MOO/examples/main.py ```python import sys from plotter import Plotter from metrics.problems.zdt import ZDT3Metrics import plotly.express as px from nsga2.evolution import Evolution from nsga2.problems.zdt import ZDT from nsga2.problems.zdt.zdt3_definitions import ZDT3Definitions import matplotlib.pyplot as plt from plotter import Plotter import examples.triclusteringPlusAffiramationScore as tr from examples.triclusteringPlusAffiramationScore import Tricluster def print_generation(population, generation_num): print("Generation: {}".format(generation_num)) # def print_metrics(population, generation_num): # pareto_front = population.fronts[0] # metrics = ZDT3Metrics() # # hv = metrics.HV(pareto_front) # # hvr = metrics.HVR(pareto_front) # # print("HV: {}".format(hv)) # print("HVR: {}".format(hvr)) collected_metrics = {} # def collect_metrics(population, generation_num): # pareto_front = population.fronts[0] # metrics = ZDT3Metrics() # hv = metrics.HV(pareto_front) # hvr = metrics.HVR(pareto_front) # collected_metrics[generation_num] = hv, hvr # delta = 100 path1 = 'yeast_output.txt' # names1 =[path1+'tp1',path1+'tp2', path1+'tp3',path1+'tp4'] #bcl dataste data = tr.readFiles(path1) # zdt_definitions = ZDT3Definitions(data, delta) zdt_definitions = ZDT3Definitions(data) # plotter = Plotter(zdt_definitions) problem = ZDT(zdt_definitions) evolution = Evolution(problem, 100, 10) # evolution.register_on_new_generation(plotter.plot_population_best_front) evolution.register_on_new_generation(print_generation) # evolution.register_on_new_generation(print_metrics) # evolution.register_on_new_generation(collect_metrics) pareto_front = evolution.evolve() # plotter = Plotter(problem) # plotter.plot_x_y(collected_metrics.keys(), map(lambda x: x[1], collected_metrics.values()), 'generation', 'HVR', 'HVR metric for ZDT3 problem', 'hvr-zdt3') # function1 = [i[0] for i in problem.min_objectives[0]] # function2 = [i[1] for i in problem.min_objectives[1]] # plt.xlabel('Function 1', fontsize=15) # plt.ylabel('Function 2', fontsize=15) # plt.scatter(function1, function2) # plt.show() print(problem.function1) print(problem.function2) plt.xlabel('MSR', fontsize=15) plt.ylabel('Area', fontsize=15) print(problem.function2) print(problem.function1) plt.scatter(problem.function1, problem.function2) plt.show() print("'generation 100 individual: 20 dataset: som_yeast ") print('Lowest MSR is ' ,problem.min_objectives[0]) print('heighest msr is ', problem.max_objectives[0]) fig = px.scatter(x=problem.function1, y=problem.function2, ) fig2 = px.line(y=problem.function1) fig3 = px.line(y=problem.function2) fig.show() fig2.show() fig3.show() ```
{ "source": "aakash0017/covid-bot", "score": 2 }
#### File: covid-bot/data/default_dict.py ```python def default_dict(): dict_ = { 'Name': '', 'Mobile': '', 'Email': '', 'City': '', 'State': '', 'Resources': '', 'Description': '' } return dict_ def default_chat_dict(): dict_ = { 'updateID': '', 'chatID': '', 'Text': '' } return dict_ ``` #### File: aakash0017/covid-bot/user.py ```python import numpy as np from user_utility import user_utility from data.res_list import res_list from utility import _utility class user: def __init__(self, name, email_Id, mobile): self.name = name self.email_Id = email_Id self.mobile = mobile # user's categories self.helper = False self.aid = False # user's location details self.state = '' self.city = '' # list of resources self.resource = [] # list of user_resources self.user_res = [] self.description = '' # remove later # resource file path self.file_path = 'data/res.npy' # tokens tokens = ['state', 'city', 'resources', 'blood_grp'] # user_providance for plasma self.has_plasma = False # blood_grp for plasma users self.blood_grps = [] # load resource list saved under data/ directory # self.load_res() # initialize resource dict self.create_res_dict() def resource_provider(self): self.helper = True def help_required(self): self.aid = True def create_res_dict(self): # list of zeros of same lenght as of resources self.resource = user_utility.load_file(self.file_path) # self.resource = res_list() indicator = [0] * len(self.resource) self.res_dict = dict(zip(self.resource, indicator)) def get_details(self): if self.has_plasma: self.user_res = user_utility.user_res(self.res_dict) details = [self.name, self.mobile, self.email_Id, self.city, self.state, self.user_res, ''] else: self.factor_res() details = [self.name, self.mobile, self.email_Id, self.city, self.state, self.user_res, ''] return details # update user attributes def update_attributes(self, token, update_key): if token == 'state': self.state = update_key elif token == 'city': self.city = update_key elif token == 'resources': self.res_dict = user_utility.update_dict(self.res_dict, update_key) elif token == 'blood_grp': self.blood_grps = user_utility.plasma_handler(self.res_dict, self.blood_grps, update_key) # update user resource list based on mentioned resources. # def factor_res(self): # self.user_res = user_utility.user_res(self.res_dict) # if user_utility.check_plasma(self.user_res): # # concate blood groups # user_utility.concat_grps(self.user_res, self.blood_grps) def factor_res(self): self.user_res = user_utility.user_res(self.res_dict) # concate blood groups user_utility.concat_grps(self.user_res, self.blood_grps) ``` #### File: covid-bot/user_utility/user_utility.py ```python import numpy as np import re from cms_queries.queries import post_request # load files from data directory def load_file(file_path): return np.load(file_path, allow_pickle=True) # update resource dict def update_dict(res_dict, update_key): for key, value in res_dict.items(): if key == update_key: res_dict[key] = 1 return res_dict def validate_email(email): regex = '^(\w|\.|\_|\-)+[@](\w|\_|\-|\.)+[.]\w{2,3}$' if re.search(regex, email): return True else: return False def validate_mobile(mobile): Pattern = re.compile("(0/91)?[7-9][0-9]{9}") if (Pattern.match(mobile)): return True else : return False # def plasma_handler(res_dict, blood_grps, user_input): # grps = user_input.split(' ') # for bg in grps: # if res_dict['Plasma'] == 1: # blood_grps.append(bg.lower()) # return blood_grps def plasma_handler(res_dict, blood_grps, user_input): grps = user_input.split(' ') for bg in grps: blood_grps.append(bg.lower()) return blood_grps def check_plasma(res_list): if 'Plasma' in res_list: return True else: return False def user_res(res_dict): return [key for key, val in res_dict.items() if val == 1] def concat_grps(res_list, blood_grps): # remove plasma # res_list.remove('Plasma') string = 'Plasma_{0}' # concat blood grps to string return [res_list.append(string.format(bg)) for bg in blood_grps] def save_details(details_dict, chat_id, hasplasma_Flag): details_dict['chat_id'] = chat_id details_dict['has_plasma'] = hasplasma_Flag details_dict['Resources'].remove("Plasma") tmp_string = '' for i in details_dict['Resources']: tmp_string += i + ',' details_dict['Resources'] = tmp_string print("67", details_dict) dict_body = def_dict_2_post_mapping(details_dict) url = 'https://covid-bot-cms.herokuapp.com' res = post_request(endpoint='/Beta-objects', body=dict_body, url=url) print(res) return res def save_details_app(details_dict, chat_id, hasplasma_Flag): details_dict['chat_id'] = chat_id details_dict['has_plasma'] = hasplasma_Flag print("67", details_dict) dict_body = def_dict_2_post_mapping(details_dict) url = 'https://covid-bot-cms.herokuapp.com' res = post_request(endpoint='/Beta-objects', body=dict_body, url=url) print(res) return res def after_bg_save(details_dict, chat_id, hasplasma_Flag=False): details_dict['chat_id'] = chat_id details_dict['has_plasma'] = hasplasma_Flag tmp_string = '' for i in details_dict['Resources']: tmp_string += i + ',' details_dict['Resources'] = tmp_string print("60", details_dict) dict_body = def_dict_2_post_mapping(details_dict) url = 'https://covid-bot-cms.herokuapp.com' res = post_request(endpoint='/Beta-objects', body=dict_body, url=url) print(res) return res def def_dict_2_post_mapping(details_dict): dict_ = {'name': '', 'mobile': '', 'email': '', 'city': '', 'state': '', 'resources': '', 'description': '', 'chatID': '', 'hasPlasma': ''} dict_['name'] = details_dict['Name'] dict_['mobile'] = details_dict['Mobile'] dict_['email'] = details_dict['Email'] dict_['city'] = details_dict['City'] dict_['state'] = details_dict['State'] dict_['resources'] = details_dict['Resources'] dict_['description'] = details_dict['Description'] dict_['chatID'] = details_dict['chat_id'] dict_['hasPlasma'] = details_dict['has_plasma'] return dict_ ```
{ "source": "aakash0017/DeepCon-Frontend", "score": 2 }
#### File: aakash0017/DeepCon-Frontend/app.py ```python from concurrent.futures import process import emails import random import string from flask import Flask, render_template, request, redirect import requests from mail_generator import send_email from utilities import upload_to_aws import os import asyncio import httpx from dotenv import load_dotenv from database_handler import insert_values, get_result, authenticate_login import jinja2 env = jinja2.Environment() env.globals.update(zip=zip) load_dotenv() app = Flask(__name__) app.config["MP3_UPLOADS"] = "static/images/uploads" def generate_process_code(): x = ''.join(random.choice(string.ascii_uppercase + string.ascii_lowercase + string.digits) for _ in range(16)) return x @app.route('/') def index(): return render_template('login.html') @app.route('/success', methods=["POST", "GET"]) def success(): template = 'nologin.html' if request.method == "POST": email = request.form.get('email') password = request.form.get('password') print("email: ", email) print("password: ", password) auth = authenticate_login(email, password) print('auth:', auth) if auth: template = 'home.html' return render_template(template) @app.route('/minutes', methods=["POST", "GET"]) async def result(): if request.method == "POST": sender = "<EMAIL>" receivers = request.form.get("email") file = request.files["audio"] translation = ' '.join(request.form.getlist('Translation')) length = request.form.get('length') num_speakers = request.form.get('num-speakers') print('length', length) print('translation checkbox ', translation) file.save(os.path.join(app.config["MP3_UPLOADS"], file.filename)) file_path = "static/images/uploads/{}".format(file.filename) print("-------------file path -------------- ", file_path) receivers_name = request.form.get("name") process_code = generate_process_code() res = upload_to_aws(file_path, file_name=process_code) try: async with httpx.AsyncClient() as client: params_dict = {'process_code': process_code, 'receiver_email': receivers, 'receiver_name': receivers_name, 'translation': translation, 'length': length, 'num_speakers': num_speakers } res = await asyncio.gather( client.post('http://localhost:8000/getcode', params=params_dict) ) except: print("microservice request not processed") insert_values(process_code=process_code, receiver_name=receivers_name, receiver_email=receivers, ) email_res = send_email(process_code=process_code, receiver_email=receivers, receivers_name=receivers_name, sender=sender) return render_template('greetings.html') @app.route('/get-transcript') def sample(): return render_template('result.html') @app.route('/get-transcript', methods=["POST", "GET"]) def my_form_post(): if request.method == 'POST': process_code = request.form.get('Process_code') ziped_list, process_code, user_name = get_result(process_code) return render_template('result.html', list=ziped_list, process_code=process_code, user_name=user_name) # @app.route('/get-transcript', methods=["POST", "GET"]) if __name__ == '__main__': app.run(host='0.0.0.0', port=3000) ```
{ "source": "aakash0017/DeepCon-Server", "score": 2 }
#### File: aakash0017/DeepCon-Server/isometric_translation.py ```python import os import boto3 import shutil # from tqdm.notebook import tqdm from tqdm import tqdm import pandas as pd from torch.utils.data import DataLoader from datasets import load_dataset import transformers import subprocess from transformers import MarianMTModel, MarianTokenizer, AutoTokenizer, AutoModel, MBartForConditionalGeneration tqdm.pandas() # utilities def read_minute(path_to_file): with open(path_to_file, 'r') as f: minute = [line.strip() for line in f] return minute def translate_minutes( minute: list, tokenizer: transformers.models.marian.tokenization_marian.MarianTokenizer, model: transformers.models.marian.modeling_marian.MarianMTModel ): translated_minutes = [] for source_sentence in tqdm(minute, total=len(minute)): translated = model.generate(**tokenizer(source_sentence, return_tensors="pt", padding=True)) translated_minutes.extend([tokenizer.decode(t, skip_special_tokens=True) for t in translated]) return translated_minutes def save_2_text(translated_minutes: list, path_to_file: str): with open(path_to_file, 'w') as filehandle: for listitem in translated_minutes: filehandle.write('%s\n' % listitem) def check_for_verbosity(input_text, target_text): if not input_text or not target_text: return False ts_ratio = len(target_text)/len(input_text) if not (ts_ratio >= 0.90 and ts_ratio <= 1.10): return True return False def append_paraphrase_prompt(input_text, target_text): ts_ratio = len(target_text)/len(input_text) prefix = None if ts_ratio < 0.90: prefix = "paraphrase long" elif ts_ratio > 1.10: prefix = "paraphrase short" target_text = prefix + " " + target_text return target_text # -------------------------------------------------------- # language_2_mt_model_mappings = { 'de': 'enimai/opus-mt-en-de-finetuned-en-to-de', 'fr': 'enimai/OPUS-mt-en-fr-finetuned-MUST-C', 'ru': 'enimai/opus-mt-en-ru-finetuned-en-to-ru', 'it': 'enimai/opus-mt-en-it-finetuned-en-to-it', 'hi': 'enimai/opus-mt-en-hi-finetuned-en-to-hi', } language_2_para_model_mappings = { 'de': 'enimai/mbart-large-50-paraphrase-finetuned-for-de', 'fr': 'enimai/mbart-large-50-paraphrase-finetuned-for-fr', 'ru': 'enimai/mbart-large-50-paraphrase-finetuned-for-ru' } def simple_translation( text: str, tokenizer: transformers.models.marian.tokenization_marian.MarianTokenizer, model: transformers.models.marian.modeling_marian.MarianMTModel ): output = [] translated = model.generate(**tokenizer(text, return_tensors="pt", padding=True)) output.extend([tokenizer.decode(t, skip_special_tokens=True) for t in translated]) return output def translate_keywords(languages, process_code): current_directory = os.getcwd() path_to_output_folder = os.path.join(current_directory, "output") path_to_keywords_folder = os.path.join(path_to_output_folder, 'processed-keywords') path_to_translated_keywords_folder = os.path.join(path_to_output_folder, 'keywords-translated') path_to_keyword_file = [os.path.join(path_to_keywords_folder, file) for file in os.listdir(path_to_keywords_folder) if file == f"{process_code}.csv"][0] for language in languages: df = pd.read_csv(path_to_keyword_file) model_name = language_2_mt_model_mappings[language] tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated_texts = [] for index, row in df.iterrows(): translated_texts.extend( simple_translation(row['text'], tokenizer, model)) translated_df = pd.DataFrame({'text': translated_texts}) path_to_translated_keyword_file = os.path.join(path_to_translated_keywords_folder, f"translated_{language}_{process_code}.csv") translated_df.to_csv(path_to_translated_keyword_file, index=False) def process_transcripts_translation(languages, process_code): current_directory = os.getcwd() path_to_output_folder = os.path.join(current_directory, "output") path_to_transcript_folder = os.path.join(path_to_output_folder, 'processed-transcripts') path_to_translated_transcripts_folder = os.path.join(path_to_output_folder, 'transcripts-translated') path_to_transcripts_file = [os.path.join(path_to_transcript_folder, file) for file in os.listdir(path_to_transcript_folder) if file == f"{process_code}.txt"][0] for language in languages: transcripts = read_minute(path_to_transcripts_file) model_name = language_2_mt_model_mappings[language] tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = translate_minutes(transcripts, tokenizer, model) path_to_translated_file = os.path.join(path_to_translated_transcripts_folder, f"translated_{language}_{process_code}.txt") save_2_text(translated, path_to_translated_file) def process_translation(languages, process_code): current_directory = os.getcwd() path_to_output_folder = os.path.join(current_directory, "output") path_to_minutes_folder = os.path.join(path_to_output_folder, 'meeting-minutes') path_to_translated_minutes_folder = os.path.join(path_to_output_folder, 'meeting-minutes-translated') path_to_minute_file = [os.path.join(path_to_minutes_folder, file) for file in os.listdir(path_to_minutes_folder) if file == f"{process_code}.txt"][0] for language in languages: minutes = read_minute(path_to_minute_file) model_name = language_2_mt_model_mappings[language] tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = translate_minutes(minutes, tokenizer, model) path_to_translated_file = os.path.join(path_to_translated_minutes_folder, f"translated_{language}_{process_code}.txt") save_2_text(translated, path_to_translated_file) def process_paraphrase(languages, process_code): para_languages = list(language_2_para_model_mappings.keys()) for language in languages: if language not in para_languages: continue current_directory = os.getcwd() path_to_output_folder = os.path.join(current_directory, "output") path_to_minutes_folder = os.path.join(path_to_output_folder, 'meeting-minutes') path_to_translated_minutes_folder = os.path.join(path_to_output_folder, 'meeting-minutes-translated') path_to_minute_file = [os.path.join(path_to_minutes_folder, file) for file in os.listdir(path_to_minutes_folder) if file == f"{process_code}.txt"][0] path_to_translated_file = [os.path.join(path_to_translated_minutes_folder, file) for file in os.listdir(path_to_translated_minutes_folder) if file == f"translated_{language}_{process_code}.txt"][0] minutes = read_minute(path_to_minute_file) translated = read_minute(path_to_translated_file) model_name = language_2_para_model_mappings[language] tokenizer = AutoTokenizer.from_pretrained(model_name) model = MBartForConditionalGeneration.from_pretrained(model_name) pred_df = pd.DataFrame({ 'input_text': minutes, 'target_text': translated }) # check if mt_prediction -> input length ratio is normal pred_df["is_normal"] = pred_df.progress_apply( lambda row: check_for_verbosity(row['input_text'], row['target_text']), axis=1 ) not_normal_seq_index = pred_df.index[pred_df['is_normal'] == True].to_list() columns = ["input_text", "target_text"] pred_normal_df = pred_df[~pred_df.index.isin(not_normal_seq_index)][columns] pred_not_normal_df = pred_df[pred_df.index.isin(not_normal_seq_index)][columns] # apply paraphrase prompt pred_not_normal_df["target_text"] = pred_not_normal_df.progress_apply( lambda row: append_paraphrase_prompt(row['input_text'], row['target_text']), axis=1 ) # temp folder to store files path_to_temp_folder = os.path.join(current_directory, f"temp_{process_code}") if not os.path.exists(path_to_temp_folder): os.makedirs(path_to_temp_folder) path_to_not_normal_file = os.path.join(path_to_temp_folder, "test_not_normal.csv") path_to_normal_file = os.path.join(path_to_temp_folder, "test_normal.csv") pred_not_normal_df.to_csv(path_to_not_normal_file, index=False) pred_normal_df.to_csv(path_to_normal_file, index=False) processed_raw_test_dataset = load_dataset('csv', data_files={"test": path_to_not_normal_file}) test_dataloader = DataLoader(processed_raw_test_dataset["test"], batch_size=1, num_workers=0) predictions = [] for batch in tqdm(test_dataloader): translated = model.generate(**tokenizer(batch['target_text'], return_tensors="pt", padding=True)) predictions.extend([tokenizer.decode(t, skip_special_tokens=True) for t in translated]) pred_not_normal_df["target_text"] = predictions processed_pred_df = pd.concat([pred_normal_df, pred_not_normal_df]).sort_index() shutil.rmtree(path_to_temp_folder) processed_translated = processed_pred_df["target_text"].to_list() save_2_text(processed_translated, path_to_translated_file) def process_transcripts_paraphrase(languages, process_code): para_languages = list(language_2_para_model_mappings.keys()) for language in languages: if language not in para_languages: continue current_directory = os.getcwd() path_to_output_folder = os.path.join(current_directory, "output") path_to_transcript_folder = os.path.join(path_to_output_folder, 'processed-transcripts') path_to_translated_transcripts_folder = os.path.join(path_to_output_folder, 'transcripts-translated') path_to_transcripts_file = [os.path.join(path_to_transcript_folder, file) for file in os.listdir(path_to_transcript_folder) if file == f"{process_code}.txt"][0] path_to_translated_file = [os.path.join(path_to_translated_transcripts_folder, file) for file in os.listdir(path_to_translated_transcripts_folder) if file == f"translated_{language}_{process_code}.txt"][0] transcripts = read_minute(path_to_transcripts_file) translated = read_minute(path_to_translated_file) model_name = language_2_para_model_mappings[language] tokenizer = AutoTokenizer.from_pretrained(model_name) model = MBartForConditionalGeneration.from_pretrained(model_name) pred_df = pd.DataFrame({ 'input_text': transcripts, 'target_text': translated }) # check if mt_prediction -> input length ratio is normal pred_df["is_normal"] = pred_df.progress_apply( lambda row: check_for_verbosity(row['input_text'], row['target_text']), axis=1 ) not_normal_seq_index = pred_df.index[pred_df['is_normal'] == True].to_list() columns = ["input_text", "target_text"] pred_normal_df = pred_df[~pred_df.index.isin(not_normal_seq_index)][columns] pred_not_normal_df = pred_df[pred_df.index.isin(not_normal_seq_index)][columns] # apply paraphrase prompt pred_not_normal_df["target_text"] = pred_not_normal_df.progress_apply( lambda row: append_paraphrase_prompt(row['input_text'], row['target_text']), axis=1 ) # temp folder to store files path_to_temp_folder = os.path.join(current_directory, f"temp_{process_code}") if not os.path.exists(path_to_temp_folder): os.makedirs(path_to_temp_folder) path_to_not_normal_file = os.path.join(path_to_temp_folder, "test_not_normal.csv") path_to_normal_file = os.path.join(path_to_temp_folder, "test_normal.csv") pred_not_normal_df.to_csv(path_to_not_normal_file, index=False) pred_normal_df.to_csv(path_to_normal_file, index=False) processed_raw_test_dataset = load_dataset('csv', data_files={"test": path_to_not_normal_file}) test_dataloader = DataLoader(processed_raw_test_dataset["test"], batch_size=1, num_workers=0) predictions = [] for batch in tqdm(test_dataloader): translated = model.generate(**tokenizer(batch['target_text'], return_tensors="pt", padding=True)) predictions.extend([tokenizer.decode(t, skip_special_tokens=True) for t in translated]) pred_not_normal_df["target_text"] = predictions processed_pred_df = pd.concat([pred_normal_df, pred_not_normal_df]).sort_index() shutil.rmtree(path_to_temp_folder) processed_translated = processed_pred_df["target_text"].to_list() save_2_text(processed_translated, path_to_translated_file) def generate_translated_document(languages, process_code, process_type="min"): if process_type == "min": # generate translation process_translation(languages=languages, process_code=process_code) # rephrase translation for isometric process_paraphrase(languages=languages, process_code=process_code) elif process_type == "trans": # generate translation process_transcripts_translation(languages=languages, process_code=process_code) # rephrase translation for isometric process_transcripts_paraphrase(languages=languages, process_code=process_code) ``` #### File: aakash0017/DeepCon-Server/mailing_module.py ```python import random, string import emails import os EMAIL_USER = os.getenv("EMAIL_USER") EMAIL_USER_PASSWORD = os.getenv("EMAIL_USER_PASSWORD") def generate_process_code(): x = ''.join(random.choice(string.ascii_uppercase + string.ascii_lowercase + string.digits) for _ in range(16)) return x def generate_mail(transcript_link, translated_link, minutes_link,user_name="user", process_code=""): # process_code = generate_process_code() SUBJECT = "[ALERT] DeepCon Processing Complete." TEXT = f"""Hello {user_name}, We're glad that you've chosen DeepCon. your processing of request is completed and you can download files from our website. Please find the information below: \n 1. Your Request Number: {process_code}\n 2. Transcript Link: {transcript_link}\n 3. Minutes Link: {minutes_link}\n 4. Translated Minuted Link: {translated_link}""" return SUBJECT, TEXT def send_email(receivers_name, process_code, receiver_email, sender, minutes_link, translated_link, transcript_link): print(receivers_name) print(receiver_email) print(sender) subject, text = generate_mail( transcript_link=transcript_link, translated_link= translated_link, minutes_link= minutes_link, user_name = receivers_name, process_code= process_code) message = emails.html( text=text, subject=subject, mail_from=sender, ) r = message.send( to=receiver_email, smtp={ "host": "email-smtp.ap-south-1.amazonaws.com", "port": 587, "timeout": 5, "user": EMAIL_USER, "password": <PASSWORD>, "tls": True, } ) return r ```
{ "source": "Aakash10399/ebBiller", "score": 2 }
#### File: Aakash10399/ebBiller/main.py ```python from flask import Flask, render_template, request, url_for, flash, redirect, session, send_file import pyodbc app = Flask(__name__) @app.route('/') def index(): try: id_arg = request.args.get('id',type=str) mobile = request.args.get('mobile',type=str) server = '' database = '' username = '' password = '' driver= '{ODBC Driver 13 for SQL Server}' cnxn = pyodbc.connect('DRIVER='+driver+';PORT=1433;SERVER='+server+';PORT=1443;DATABASE='+database+';UID='+username+';PWD='+ password) cursor = cnxn.cursor() cursor.execute("SELECT * FROM billTable WHERE id="+id_arg) row = cursor.fetchone() GSTIN = str(row[1]) products = row[2].split(";") sgst = row[3].split(";") cgst = row[4].split(";") price = row[5].split(";") quantity = row[6].split(";") mobile_sql = str(row[7]) prod_f = [] price_f = [] cgst_f = [] sgst_f = [] quantity_f = [] if mobile==mobile_sql: for i in range(0,len(quantity)): if quantity[i]!=0: prod_f.append(products[i]) cgst_f.append(cgst[i]) sgst_f.append(sgst[i]) temp = float(price[i]) + ((float(cgst[i])/100.0)*float(price[i])) + ((float(sgst[i])/100.0)*float(price[i])) price_f.append(temp*float(quantity[i])) quantity_f.append(quantity[i]) return render_template("index.html",len=len(prod_f),GSTIN=GSTIN,prod_f=prod_f,cgst_f=cgst_f,sgst_f=sgst_f,price_f=price_f,quantity_f=quantity_f) else: return "error" except Exception as e: return str(e) if __name__ == '__main__': app.run() ```
{ "source": "Aakash10399/simple-health-glucheck", "score": 2 }
#### File: kivy/lib/mtdev.py ```python import os from ctypes import cdll, Structure, c_ulong, c_int, c_ushort, \ c_void_p, pointer, POINTER, byref # load library if 'KIVY_DOC' not in os.environ: libmtdev = cdll.LoadLibrary('libmtdev.so.1') # from linux/input.h MTDEV_CODE_SLOT = 0x2f # MT slot being modified MTDEV_CODE_TOUCH_MAJOR = 0x30 # Major axis of touching ellipse MTDEV_CODE_TOUCH_MINOR = 0x31 # Minor axis (omit if circular) MTDEV_CODE_WIDTH_MAJOR = 0x32 # Major axis of approaching ellipse MTDEV_CODE_WIDTH_MINOR = 0x33 # Minor axis (omit if circular) MTDEV_CODE_ORIENTATION = 0x34 # Ellipse orientation MTDEV_CODE_POSITION_X = 0x35 # Center X ellipse position MTDEV_CODE_POSITION_Y = 0x36 # Center Y ellipse position MTDEV_CODE_TOOL_TYPE = 0x37 # Type of touching device MTDEV_CODE_BLOB_ID = 0x38 # Group a set of packets as a blob MTDEV_CODE_TRACKING_ID = 0x39 # Unique ID of initiated contact MTDEV_CODE_PRESSURE = 0x3a # Pressure on contact area MTDEV_CODE_ABS_X = 0x00 MTDEV_CODE_ABS_Y = 0x01 MTDEV_CODE_ABS_Z = 0x02 MTDEV_CODE_BTN_DIGI = 0x140 MTDEV_CODE_BTN_TOOL_PEN = 0x140 MTDEV_CODE_BTN_TOOL_RUBBER = 0x141 MTDEV_CODE_BTN_TOOL_BRUSH = 0x142 MTDEV_CODE_BTN_TOOL_PENCIL = 0x143 MTDEV_CODE_BTN_TOOL_AIRBRUSH = 0x144 MTDEV_CODE_BTN_TOOL_FINGER = 0x145 MTDEV_CODE_BTN_TOOL_MOUSE = 0x146 MTDEV_CODE_BTN_TOOL_LENS = 0x147 MTDEV_CODE_BTN_TOUCH = 0x14a MTDEV_CODE_BTN_STYLUS = 0x14b MTDEV_CODE_BTN_STYLUS2 = 0x14c MTDEV_CODE_BTN_TOOL_DOUBLETAP = 0x14d MTDEV_CODE_BTN_TOOL_TRIPLETAP = 0x14e MTDEV_CODE_BTN_TOOL_QUADTAP = 0x14f # Four fingers on trackpad MTDEV_TYPE_EV_ABS = 0x03 MTDEV_TYPE_EV_SYN = 0x00 MTDEV_TYPE_EV_KEY = 0x01 MTDEV_TYPE_EV_REL = 0x02 MTDEV_TYPE_EV_ABS = 0x03 MTDEV_TYPE_EV_MSC = 0x04 MTDEV_TYPE_EV_SW = 0x05 MTDEV_TYPE_EV_LED = 0x11 MTDEV_TYPE_EV_SND = 0x12 MTDEV_TYPE_EV_REP = 0x14 MTDEV_TYPE_EV_FF = 0x15 MTDEV_TYPE_EV_PWR = 0x16 MTDEV_TYPE_EV_FF_STATUS = 0x17 MTDEV_ABS_TRACKING_ID = 9 MTDEV_ABS_POSITION_X = 5 MTDEV_ABS_POSITION_Y = 6 MTDEV_ABS_TOUCH_MAJOR = 0 MTDEV_ABS_TOUCH_MINOR = 1 MTDEV_ABS_WIDTH_MAJOR = 2 MTDEV_ABS_WIDTH_MINOR = 3 MTDEV_ABS_ORIENTATION = 4 MTDEV_ABS_SIZE = 11 class timeval(Structure): _fields_ = [ ('tv_sec', c_ulong), ('tv_usec', c_ulong) ] class input_event(Structure): _fields_ = [ ('time', timeval), ('type', c_ushort), ('code', c_ushort), ('value', c_int) ] class input_absinfo(Structure): _fields_ = [ ('value', c_int), ('minimum', c_int), ('maximum', c_int), ('fuzz', c_int), ('flat', c_int), ('resolution', c_int) ] class mtdev_caps(Structure): _fields_ = [ ('has_mtdata', c_int), ('has_slot', c_int), ('has_abs', c_int * MTDEV_ABS_SIZE), ('slot', input_absinfo), ('abs', input_absinfo * MTDEV_ABS_SIZE) ] class mtdev(Structure): _fields_ = [ ('caps', mtdev_caps), ('state', c_void_p) ] # binding if 'KIVY_DOC' not in os.environ: mtdev_open = libmtdev.mtdev_open mtdev_open.argtypes = [POINTER(mtdev), c_int] mtdev_get = libmtdev.mtdev_get mtdev_get.argtypes = [POINTER(mtdev), c_int, POINTER(input_event), c_int] mtdev_idle = libmtdev.mtdev_idle mtdev_idle.argtypes = [POINTER(mtdev), c_int, c_int] mtdev_close = libmtdev.mtdev_close mtdev_close.argtypes = [POINTER(mtdev)] class Device: def __init__(self, filename): self._filename = filename self._fd = -1 self._device = mtdev() self._fd = os.open(filename, os.O_NONBLOCK | os.O_RDONLY) ret = mtdev_open(pointer(self._device), self._fd) if ret != 0: os.close(self._fd) self._fd = -1 raise Exception('Unable to open device') def close(self): '''Close the mtdev converter ''' if self._fd == -1: return mtdev_close(POINTER(self._device)) os.close(self._fd) self._fd = -1 def idle(self, ms): '''Check state of kernel device :Parameters: `ms`: int Number of milliseconds to wait for activity :Return: Return True if the device is idle, i.e, there are no fetched events in the pipe and there is nothing to fetch from the device. ''' if self._fd == -1: raise Exception('Device closed') return bool(mtdev_idle(pointer(self._device), self._fd, ms)) def get(self): if self._fd == -1: raise Exception('Device closed') ev = input_event() if mtdev_get(pointer(self._device), self._fd, byref(ev), 1) <= 0: return None return ev def has_mtdata(self): '''Return True if the device has multitouch data. ''' if self._fd == -1: raise Exception('Device closed') return bool(self._device.caps.has_mtdata) def has_slot(self): '''Return True if the device has slot information. ''' if self._fd == -1: raise Exception('Device closed') return bool(self._device.caps.has_slot) def has_abs(self, index): '''Return True if the device has abs data. :Parameters: `index`: int One of const starting with a name ABS_MT_ ''' if self._fd == -1: raise Exception('Device closed') if index < 0 or index >= MTDEV_ABS_SIZE: raise IndexError('Invalid index') return bool(self._device.caps.has_abs[index]) def get_max_abs(self): '''Return the maximum number of abs information available. ''' return MTDEV_ABS_SIZE def get_slot(self): '''Return the slot data. ''' if self._fd == -1: raise Exception('Device closed') if self._device.caps.has_slot == 0: return return self._device.caps.slot def get_abs(self, index): '''Return the abs data. :Parameters: `index`: int One of const starting with a name ABS_MT_ ''' if self._fd == -1: raise Exception('Device closed') if index < 0 or index >= MTDEV_ABS_SIZE: raise IndexError('Invalid index') return self._device.caps.abs[index] ``` #### File: kivy/storage/jsonstore.py ```python __all__ = ('JsonStore', ) from os.path import exists from kivy.compat import iteritems from kivy.storage import AbstractStore from json import loads, dump class JsonStore(AbstractStore): '''Store implementation using a json file for storing the key-value pairs. See the :mod:`kivy.storage` module documentation for more information. ''' def __init__(self, filename, indent=None, sort_keys=False, **kwargs): self.filename = filename self.indent = indent self.sort_keys = sort_keys self._data = {} self._is_changed = True super(JsonStore, self).__init__(**kwargs) def store_load(self): if not exists(self.filename): return with open(self.filename) as fd: data = fd.read() if len(data) == 0: return self._data = loads(data) def store_sync(self): if not self._is_changed: return with open(self.filename, 'w') as fd: dump(self._data, fd, indent=self.indent, sort_keys=self.sort_keys) self._is_changed = False def store_exists(self, key): return key in self._data def store_get(self, key): return self._data[key] def store_put(self, key, value): self._data[key] = value self._is_changed = True return True def store_delete(self, key): del self._data[key] self._is_changed = True return True def store_find(self, filters): for key, values in iteritems(self._data): found = True for fkey, fvalue in iteritems(filters): if fkey not in values: found = False break if values[fkey] != fvalue: found = False break if found: yield key, values def store_count(self): return len(self._data) def store_keys(self): return self._data.keys() ``` #### File: uix/behaviors/drag.py ```python __all__ = ('DragBehavior', ) from kivy.clock import Clock from kivy.properties import NumericProperty, ReferenceListProperty from kivy.config import Config from kivy.metrics import sp from functools import partial # When we are generating documentation, Config doesn't exist _scroll_timeout = _scroll_distance = 0 if Config: _scroll_timeout = Config.getint('widgets', 'scroll_timeout') _scroll_distance = Config.getint('widgets', 'scroll_distance') class DragBehavior(object): ''' The DragBehavior `mixin <https://en.wikipedia.org/wiki/Mixin>`_ provides Drag behavior. When combined with a widget, dragging in the rectangle defined by :attr:`drag_rectangle` will drag the widget. Please see the :mod:`drag behaviors module <kivy.uix.behaviors.drag>` documentation for more information. .. versionadded:: 1.8.0 ''' drag_distance = NumericProperty(_scroll_distance) '''Distance to move before dragging the :class:`DragBehavior`, in pixels. As soon as the distance has been traveled, the :class:`DragBehavior` will start to drag, and no touch event will be dispatched to the children. It is advisable that you base this value on the dpi of your target device's screen. :attr:`drag_distance` is a :class:`~kivy.properties.NumericProperty` and defaults to the `scroll_distance` as defined in the user :class:`~kivy.config.Config` (20 pixels by default). ''' drag_timeout = NumericProperty(_scroll_timeout) '''Timeout allowed to trigger the :attr:`drag_distance`, in milliseconds. If the user has not moved :attr:`drag_distance` within the timeout, dragging will be disabled, and the touch event will be dispatched to the children. :attr:`drag_timeout` is a :class:`~kivy.properties.NumericProperty` and defaults to the `scroll_timeout` as defined in the user :class:`~kivy.config.Config` (55 milliseconds by default). ''' drag_rect_x = NumericProperty(0) '''X position of the axis aligned bounding rectangle where dragging is allowed (in window coordinates). :attr:`drag_rect_x` is a :class:`~kivy.properties.NumericProperty` and defaults to 0. ''' drag_rect_y = NumericProperty(0) '''Y position of the axis aligned bounding rectangle where dragging is allowed (in window coordinates). :attr:`drag_rect_Y` is a :class:`~kivy.properties.NumericProperty` and defaults to 0. ''' drag_rect_width = NumericProperty(100) '''Width of the axis aligned bounding rectangle where dragging is allowed. :attr:`drag_rect_width` is a :class:`~kivy.properties.NumericProperty` and defaults to 100. ''' drag_rect_height = NumericProperty(100) '''Height of the axis aligned bounding rectangle where dragging is allowed. :attr:`drag_rect_height` is a :class:`~kivy.properties.NumericProperty` and defaults to 100. ''' drag_rectangle = ReferenceListProperty(drag_rect_x, drag_rect_y, drag_rect_width, drag_rect_height) '''Position and size of the axis aligned bounding rectangle where dragging is allowed. :attr:`drag_rectangle` is a :class:`~kivy.properties.ReferenceListProperty` of (:attr:`drag_rect_x`, :attr:`drag_rect_y`, :attr:`drag_rect_width`, :attr:`drag_rect_height`) properties. ''' def __init__(self, **kwargs): self._drag_touch = None super(DragBehavior, self).__init__(**kwargs) def _get_uid(self, prefix='sv'): return '{0}.{1}'.format(prefix, self.uid) def on_touch_down(self, touch): xx, yy, w, h = self.drag_rectangle x, y = touch.pos if not self.collide_point(x, y): touch.ud[self._get_uid('svavoid')] = True return super(DragBehavior, self).on_touch_down(touch) if self._drag_touch or ('button' in touch.profile and touch.button.startswith('scroll')) or\ not ((xx < x <= xx + w) and (yy < y <= yy + h)): return super(DragBehavior, self).on_touch_down(touch) # no mouse scrolling, so the user is going to drag with this touch. self._drag_touch = touch uid = self._get_uid() touch.grab(self) touch.ud[uid] = { 'mode': 'unknown', 'dx': 0, 'dy': 0} Clock.schedule_once(self._change_touch_mode, self.drag_timeout / 1000.) return True def on_touch_move(self, touch): if self._get_uid('svavoid') in touch.ud or\ self._drag_touch is not touch: return super(DragBehavior, self).on_touch_move(touch) or\ self._get_uid() in touch.ud if touch.grab_current is not self: return True uid = self._get_uid() ud = touch.ud[uid] mode = ud['mode'] if mode == 'unknown': ud['dx'] += abs(touch.dx) ud['dy'] += abs(touch.dy) if ud['dx'] > sp(self.drag_distance): mode = 'drag' if ud['dy'] > sp(self.drag_distance): mode = 'drag' ud['mode'] = mode if mode == 'drag': self.x += touch.dx self.y += touch.dy return True def on_touch_up(self, touch): if self._get_uid('svavoid') in touch.ud: return super(DragBehavior, self).on_touch_up(touch) if self._drag_touch and self in [x() for x in touch.grab_list]: touch.ungrab(self) self._drag_touch = None ud = touch.ud[self._get_uid()] if ud['mode'] == 'unknown': super(DragBehavior, self).on_touch_down(touch) Clock.schedule_once(partial(self._do_touch_up, touch), .1) else: if self._drag_touch is not touch: super(DragBehavior, self).on_touch_up(touch) return self._get_uid() in touch.ud def _do_touch_up(self, touch, *largs): super(DragBehavior, self).on_touch_up(touch) # don't forget about grab event! for x in touch.grab_list[:]: touch.grab_list.remove(x) x = x() if not x: continue touch.grab_current = x super(DragBehavior, self).on_touch_up(touch) touch.grab_current = None def _change_touch_mode(self, *largs): if not self._drag_touch: return uid = self._get_uid() touch = self._drag_touch ud = touch.ud[uid] if ud['mode'] != 'unknown': return touch.ungrab(self) self._drag_touch = None super(DragBehavior, self).on_touch_down(touch) return ``` #### File: core/tests/test_arrayprint.py ```python from __future__ import division, absolute_import, print_function import sys import numpy as np from numpy.testing import ( run_module_suite, assert_, assert_equal, assert_raises, assert_warns ) import textwrap class TestArrayRepr(object): def test_nan_inf(self): x = np.array([np.nan, np.inf]) assert_equal(repr(x), 'array([nan, inf])') def test_subclass(self): class sub(np.ndarray): pass # one dimensional x1d = np.array([1, 2]).view(sub) assert_equal(repr(x1d), 'sub([1, 2])') # two dimensional x2d = np.array([[1, 2], [3, 4]]).view(sub) assert_equal(repr(x2d), 'sub([[1, 2],\n' ' [3, 4]])') # two dimensional with flexible dtype xstruct = np.ones((2,2), dtype=[('a', 'i4')]).view(sub) assert_equal(repr(xstruct), "sub([[(1,), (1,)],\n" " [(1,), (1,)]], dtype=[('a', '<i4')])" ) def test_self_containing(self): arr0d = np.array(None) arr0d[()] = arr0d assert_equal(repr(arr0d), 'array(array(..., dtype=object), dtype=object)') arr1d = np.array([None, None]) arr1d[1] = arr1d assert_equal(repr(arr1d), 'array([None, array(..., dtype=object)], dtype=object)') first = np.array(None) second = np.array(None) first[()] = second second[()] = first assert_equal(repr(first), 'array(array(array(..., dtype=object), dtype=object), dtype=object)') def test_containing_list(self): # printing square brackets directly would be ambiguuous arr1d = np.array([None, None]) arr1d[0] = [1, 2] arr1d[1] = [3] assert_equal(repr(arr1d), 'array([list([1, 2]), list([3])], dtype=object)') def test_void_scalar_recursion(self): # gh-9345 repr(np.void(b'test')) # RecursionError ? class TestComplexArray(object): def test_str(self): rvals = [0, 1, -1, np.inf, -np.inf, np.nan] cvals = [complex(rp, ip) for rp in rvals for ip in rvals] dtypes = [np.complex64, np.cdouble, np.clongdouble] actual = [str(np.array([c], dt)) for c in cvals for dt in dtypes] wanted = [ '[0.+0.j]', '[0.+0.j]', '[0.+0.j]', '[0.+1.j]', '[0.+1.j]', '[0.+1.j]', '[0.-1.j]', '[0.-1.j]', '[0.-1.j]', '[0.+infj]', '[0.+infj]', '[0.+infj]', '[0.-infj]', '[0.-infj]', '[0.-infj]', '[0.+nanj]', '[0.+nanj]', '[0.+nanj]', '[1.+0.j]', '[1.+0.j]', '[1.+0.j]', '[1.+1.j]', '[1.+1.j]', '[1.+1.j]', '[1.-1.j]', '[1.-1.j]', '[1.-1.j]', '[1.+infj]', '[1.+infj]', '[1.+infj]', '[1.-infj]', '[1.-infj]', '[1.-infj]', '[1.+nanj]', '[1.+nanj]', '[1.+nanj]', '[-1.+0.j]', '[-1.+0.j]', '[-1.+0.j]', '[-1.+1.j]', '[-1.+1.j]', '[-1.+1.j]', '[-1.-1.j]', '[-1.-1.j]', '[-1.-1.j]', '[-1.+infj]', '[-1.+infj]', '[-1.+infj]', '[-1.-infj]', '[-1.-infj]', '[-1.-infj]', '[-1.+nanj]', '[-1.+nanj]', '[-1.+nanj]', '[inf+0.j]', '[inf+0.j]', '[inf+0.j]', '[inf+1.j]', '[inf+1.j]', '[inf+1.j]', '[inf-1.j]', '[inf-1.j]', '[inf-1.j]', '[inf+infj]', '[inf+infj]', '[inf+infj]', '[inf-infj]', '[inf-infj]', '[inf-infj]', '[inf+nanj]', '[inf+nanj]', '[inf+nanj]', '[-inf+0.j]', '[-inf+0.j]', '[-inf+0.j]', '[-inf+1.j]', '[-inf+1.j]', '[-inf+1.j]', '[-inf-1.j]', '[-inf-1.j]', '[-inf-1.j]', '[-inf+infj]', '[-inf+infj]', '[-inf+infj]', '[-inf-infj]', '[-inf-infj]', '[-inf-infj]', '[-inf+nanj]', '[-inf+nanj]', '[-inf+nanj]', '[nan+0.j]', '[nan+0.j]', '[nan+0.j]', '[nan+1.j]', '[nan+1.j]', '[nan+1.j]', '[nan-1.j]', '[nan-1.j]', '[nan-1.j]', '[nan+infj]', '[nan+infj]', '[nan+infj]', '[nan-infj]', '[nan-infj]', '[nan-infj]', '[nan+nanj]', '[nan+nanj]', '[nan+nanj]'] for res, val in zip(actual, wanted): assert_equal(res, val) class TestArray2String(object): def test_basic(self): """Basic test of array2string.""" a = np.arange(3) assert_(np.array2string(a) == '[0 1 2]') assert_(np.array2string(a, max_line_width=4, legacy='1.13') == '[0 1\n 2]') assert_(np.array2string(a, max_line_width=4) == '[0\n 1\n 2]') def test_format_function(self): """Test custom format function for each element in array.""" def _format_function(x): if np.abs(x) < 1: return '.' elif np.abs(x) < 2: return 'o' else: return 'O' x = np.arange(3) if sys.version_info[0] >= 3: x_hex = "[0x0 0x1 0x2]" x_oct = "[0o0 0o1 0o2]" else: x_hex = "[0x0L 0x1L 0x2L]" x_oct = "[0L 01L 02L]" assert_(np.array2string(x, formatter={'all':_format_function}) == "[. o O]") assert_(np.array2string(x, formatter={'int_kind':_format_function}) == "[. o O]") assert_(np.array2string(x, formatter={'all':lambda x: "%.4f" % x}) == "[0.0000 1.0000 2.0000]") assert_equal(np.array2string(x, formatter={'int':lambda x: hex(x)}), x_hex) assert_equal(np.array2string(x, formatter={'int':lambda x: oct(x)}), x_oct) x = np.arange(3.) assert_(np.array2string(x, formatter={'float_kind':lambda x: "%.2f" % x}) == "[0.00 1.00 2.00]") assert_(np.array2string(x, formatter={'float':lambda x: "%.2f" % x}) == "[0.00 1.00 2.00]") s = np.array(['abc', 'def']) assert_(np.array2string(s, formatter={'numpystr':lambda s: s*2}) == '[abcabc defdef]') # check for backcompat that using FloatFormat works and emits warning with assert_warns(DeprecationWarning): fmt = np.core.arrayprint.FloatFormat(x, 9, 'maxprec', False) assert_equal(np.array2string(x, formatter={'float_kind': fmt}), '[0. 1. 2.]') def test_structure_format(self): dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))]) x = np.array([('Sarah', (8.0, 7.0)), ('John', (6.0, 7.0))], dtype=dt) assert_equal(np.array2string(x), "[('Sarah', [8., 7.]) ('John', [6., 7.])]") np.set_printoptions(legacy='1.13') try: # for issue #5692 A = np.zeros(shape=10, dtype=[("A", "M8[s]")]) A[5:].fill(np.datetime64('NaT')) assert_equal( np.array2string(A), textwrap.dedent("""\ [('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('NaT',) ('NaT',) ('NaT',) ('NaT',) ('NaT',)]""") ) finally: np.set_printoptions(legacy=False) # same again, but with non-legacy behavior assert_equal( np.array2string(A), textwrap.dedent("""\ [('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ( 'NaT',) ( 'NaT',) ( 'NaT',) ( 'NaT',) ( 'NaT',)]""") ) # and again, with timedeltas A = np.full(10, 123456, dtype=[("A", "m8[s]")]) A[5:].fill(np.datetime64('NaT')) assert_equal( np.array2string(A), textwrap.dedent("""\ [(123456,) (123456,) (123456,) (123456,) (123456,) ( 'NaT',) ( 'NaT',) ( 'NaT',) ( 'NaT',) ( 'NaT',)]""") ) # See #8160 struct_int = np.array([([1, -1],), ([123, 1],)], dtype=[('B', 'i4', 2)]) assert_equal(np.array2string(struct_int), "[([ 1, -1],) ([123, 1],)]") struct_2dint = np.array([([[0, 1], [2, 3]],), ([[12, 0], [0, 0]],)], dtype=[('B', 'i4', (2, 2))]) assert_equal(np.array2string(struct_2dint), "[([[ 0, 1], [ 2, 3]],) ([[12, 0], [ 0, 0]],)]") # See #8172 array_scalar = np.array( (1., 2.1234567890123456789, 3.), dtype=('f8,f8,f8')) assert_equal(np.array2string(array_scalar), "(1., 2.12345679, 3.)") def test_unstructured_void_repr(self): a = np.array([27, 91, 50, 75, 7, 65, 10, 8, 27, 91, 51, 49,109, 82,101,100], dtype='u1').view('V8') assert_equal(repr(a[0]), r"void(b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08')") assert_equal(str(a[0]), r"b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08'") assert_equal(repr(a), r"array([b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08'," "\n" r" b'\x1B\x5B\x33\x31\x6D\x52\x65\x64'], dtype='|V8')") assert_equal(eval(repr(a), vars(np)), a) assert_equal(eval(repr(a[0]), vars(np)), a[0]) def test_edgeitems_kwarg(self): # previously the global print options would be taken over the kwarg arr = np.zeros(3, int) assert_equal( np.array2string(arr, edgeitems=1, threshold=0), "[0 ... 0]" ) def test_summarize_1d(self): A = np.arange(1001) strA = '[ 0 1 2 ... 998 999 1000]' assert_equal(str(A), strA) reprA = 'array([ 0, 1, 2, ..., 998, 999, 1000])' assert_equal(repr(A), reprA) def test_summarize_2d(self): A = np.arange(1002).reshape(2, 501) strA = '[[ 0 1 2 ... 498 499 500]\n' \ ' [ 501 502 503 ... 999 1000 1001]]' assert_equal(str(A), strA) reprA = 'array([[ 0, 1, 2, ..., 498, 499, 500],\n' \ ' [ 501, 502, 503, ..., 999, 1000, 1001]])' assert_equal(repr(A), reprA) def test_linewidth(self): a = np.full(6, 1) def make_str(a, width, **kw): return np.array2string(a, separator="", max_line_width=width, **kw) assert_equal(make_str(a, 8, legacy='1.13'), '[111111]') assert_equal(make_str(a, 7, legacy='1.13'), '[111111]') assert_equal(make_str(a, 5, legacy='1.13'), '[1111\n' ' 11]') assert_equal(make_str(a, 8), '[111111]') assert_equal(make_str(a, 7), '[11111\n' ' 1]') assert_equal(make_str(a, 5), '[111\n' ' 111]') b = a[None,None,:] assert_equal(make_str(b, 12, legacy='1.13'), '[[[111111]]]') assert_equal(make_str(b, 9, legacy='1.13'), '[[[111111]]]') assert_equal(make_str(b, 8, legacy='1.13'), '[[[11111\n' ' 1]]]') assert_equal(make_str(b, 12), '[[[111111]]]') assert_equal(make_str(b, 9), '[[[111\n' ' 111]]]') assert_equal(make_str(b, 8), '[[[11\n' ' 11\n' ' 11]]]') def test_wide_element(self): a = np.array(['xxxxx']) assert_equal( np.array2string(a, max_line_width=5), "['xxxxx']" ) assert_equal( np.array2string(a, max_line_width=5, legacy='1.13'), "[ 'xxxxx']" ) class TestPrintOptions(object): """Test getting and setting global print options.""" def setup(self): self.oldopts = np.get_printoptions() def teardown(self): np.set_printoptions(**self.oldopts) def test_basic(self): x = np.array([1.5, 0, 1.234567890]) assert_equal(repr(x), "array([1.5 , 0. , 1.23456789])") np.set_printoptions(precision=4) assert_equal(repr(x), "array([1.5 , 0. , 1.2346])") def test_precision_zero(self): np.set_printoptions(precision=0) for values, string in ( ([0.], "0."), ([.3], "0."), ([-.3], "-0."), ([.7], "1."), ([1.5], "2."), ([-1.5], "-2."), ([-15.34], "-15."), ([100.], "100."), ([.2, -1, 122.51], " 0., -1., 123."), ([0], "0"), ([-12], "-12"), ([complex(.3, -.7)], "0.-1.j")): x = np.array(values) assert_equal(repr(x), "array([%s])" % string) def test_formatter(self): x = np.arange(3) np.set_printoptions(formatter={'all':lambda x: str(x-1)}) assert_equal(repr(x), "array([-1, 0, 1])") def test_formatter_reset(self): x = np.arange(3) np.set_printoptions(formatter={'all':lambda x: str(x-1)}) assert_equal(repr(x), "array([-1, 0, 1])") np.set_printoptions(formatter={'int':None}) assert_equal(repr(x), "array([0, 1, 2])") np.set_printoptions(formatter={'all':lambda x: str(x-1)}) assert_equal(repr(x), "array([-1, 0, 1])") np.set_printoptions(formatter={'all':None}) assert_equal(repr(x), "array([0, 1, 2])") np.set_printoptions(formatter={'int':lambda x: str(x-1)}) assert_equal(repr(x), "array([-1, 0, 1])") np.set_printoptions(formatter={'int_kind':None}) assert_equal(repr(x), "array([0, 1, 2])") x = np.arange(3.) np.set_printoptions(formatter={'float':lambda x: str(x-1)}) assert_equal(repr(x), "array([-1.0, 0.0, 1.0])") np.set_printoptions(formatter={'float_kind':None}) assert_equal(repr(x), "array([0., 1., 2.])") def test_0d_arrays(self): unicode = type(u'') assert_equal(unicode(np.array(u'café', np.unicode_)), u'café') if sys.version_info[0] >= 3: assert_equal(repr(np.array('café', np.unicode_)), "array('café', dtype='<U4')") else: assert_equal(repr(np.array(u'café', np.unicode_)), "array(u'caf\\xe9', dtype='<U4')") assert_equal(str(np.array('test', np.str_)), 'test') a = np.zeros(1, dtype=[('a', '<i4', (3,))]) assert_equal(str(a[0]), '([0, 0, 0],)') assert_equal(repr(np.datetime64('2005-02-25')[...]), "array('2005-02-25', dtype='datetime64[D]')") assert_equal(repr(np.timedelta64('10', 'Y')[...]), "array(10, dtype='timedelta64[Y]')") # repr of 0d arrays is affected by printoptions x = np.array(1) np.set_printoptions(formatter={'all':lambda x: "test"}) assert_equal(repr(x), "array(test)") # str is unaffected assert_equal(str(x), "1") # check `style` arg raises assert_warns(DeprecationWarning, np.array2string, np.array(1.), style=repr) # but not in legacy mode np.array2string(np.array(1.), style=repr, legacy='1.13') def test_float_spacing(self): x = np.array([1., 2., 3.]) y = np.array([1., 2., -10.]) z = np.array([100., 2., -1.]) w = np.array([-100., 2., 1.]) assert_equal(repr(x), 'array([1., 2., 3.])') assert_equal(repr(y), 'array([ 1., 2., -10.])') assert_equal(repr(np.array(y[0])), 'array(1.)') assert_equal(repr(np.array(y[-1])), 'array(-10.)') assert_equal(repr(z), 'array([100., 2., -1.])') assert_equal(repr(w), 'array([-100., 2., 1.])') assert_equal(repr(np.array([np.nan, np.inf])), 'array([nan, inf])') assert_equal(repr(np.array([np.nan, -np.inf])), 'array([ nan, -inf])') x = np.array([np.inf, 100000, 1.1234]) y = np.array([np.inf, 100000, -1.1234]) z = np.array([np.inf, 1.1234, -1e120]) np.set_printoptions(precision=2) assert_equal(repr(x), 'array([ inf, 1.00e+05, 1.12e+00])') assert_equal(repr(y), 'array([ inf, 1.00e+05, -1.12e+00])') assert_equal(repr(z), 'array([ inf, 1.12e+000, -1.00e+120])') def test_bool_spacing(self): assert_equal(repr(np.array([True, True])), 'array([ True, True])') assert_equal(repr(np.array([True, False])), 'array([ True, False])') assert_equal(repr(np.array([True])), 'array([ True])') assert_equal(repr(np.array(True)), 'array(True)') assert_equal(repr(np.array(False)), 'array(False)') def test_sign_spacing(self): a = np.arange(4.) b = np.array([1.234e9]) assert_equal(repr(a), 'array([0., 1., 2., 3.])') assert_equal(repr(np.array(1.)), 'array(1.)') assert_equal(repr(b), 'array([1.234e+09])') assert_equal(repr(np.array([0.])), 'array([0.])') np.set_printoptions(sign=' ') assert_equal(repr(a), 'array([ 0., 1., 2., 3.])') assert_equal(repr(np.array(1.)), 'array( 1.)') assert_equal(repr(b), 'array([ 1.234e+09])') np.set_printoptions(sign='+') assert_equal(repr(a), 'array([+0., +1., +2., +3.])') assert_equal(repr(np.array(1.)), 'array(+1.)') assert_equal(repr(b), 'array([+1.234e+09])') np.set_printoptions(legacy='1.13') assert_equal(repr(a), 'array([ 0., 1., 2., 3.])') assert_equal(repr(b), 'array([ 1.23400000e+09])') assert_equal(repr(-b), 'array([ -1.23400000e+09])') assert_equal(repr(np.array(1.)), 'array(1.0)') assert_equal(repr(np.array([0.])), 'array([ 0.])') assert_raises(TypeError, np.set_printoptions, wrongarg=True) def test_float_overflow_nowarn(self): # make sure internal computations in FloatingFormat don't # warn about overflow repr(np.array([1e4, 0.1], dtype='f2')) def test_sign_spacing_structured(self): a = np.ones(2, dtype='f,f') assert_equal(repr(a), "array([(1., 1.), (1., 1.)], dtype=[('f0', '<f4'), ('f1', '<f4')])") assert_equal(repr(a[0]), "(1., 1.)") def test_floatmode(self): x = np.array([0.6104, 0.922, 0.457, 0.0906, 0.3733, 0.007244, 0.5933, 0.947, 0.2383, 0.4226], dtype=np.float16) y = np.array([0.2918820979355541, 0.5064172631089138, 0.2848750619642916, 0.4342965294660567, 0.7326538397312751, 0.3459503329096204, 0.0862072768214508, 0.39112753029631175], dtype=np.float64) z = np.arange(6, dtype=np.float16)/10 # also make sure 1e23 is right (is between two fp numbers) w = np.array(['1e{}'.format(i) for i in range(25)], dtype=np.float64) # note: we construct w from the strings `1eXX` instead of doing # `10.**arange(24)` because it turns out the two are not equivalent in # python. On some architectures `1e23 != 10.**23`. wp = np.array([1.234e1, 1e2, 1e123]) # unique mode np.set_printoptions(floatmode='unique') assert_equal(repr(x), "array([0.6104 , 0.922 , 0.457 , 0.0906 , 0.3733 , 0.007244,\n" " 0.5933 , 0.947 , 0.2383 , 0.4226 ], dtype=float16)") assert_equal(repr(y), "array([0.2918820979355541 , 0.5064172631089138 , 0.2848750619642916 ,\n" " 0.4342965294660567 , 0.7326538397312751 , 0.3459503329096204 ,\n" " 0.0862072768214508 , 0.39112753029631175])") assert_equal(repr(z), "array([0. , 0.1, 0.2, 0.3, 0.4, 0.5], dtype=float16)") assert_equal(repr(w), "array([1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04, 1.e+05, 1.e+06, 1.e+07,\n" " 1.e+08, 1.e+09, 1.e+10, 1.e+11, 1.e+12, 1.e+13, 1.e+14, 1.e+15,\n" " 1.e+16, 1.e+17, 1.e+18, 1.e+19, 1.e+20, 1.e+21, 1.e+22, 1.e+23,\n" " 1.e+24])") assert_equal(repr(wp), "array([1.234e+001, 1.000e+002, 1.000e+123])") # maxprec mode, precision=8 np.set_printoptions(floatmode='maxprec', precision=8) assert_equal(repr(x), "array([0.6104 , 0.922 , 0.457 , 0.0906 , 0.3733 , 0.007244,\n" " 0.5933 , 0.947 , 0.2383 , 0.4226 ], dtype=float16)") assert_equal(repr(y), "array([0.2918821 , 0.50641726, 0.28487506, 0.43429653, 0.73265384,\n" " 0.34595033, 0.08620728, 0.39112753])") assert_equal(repr(z), "array([0. , 0.1, 0.2, 0.3, 0.4, 0.5], dtype=float16)") assert_equal(repr(w[::5]), "array([1.e+00, 1.e+05, 1.e+10, 1.e+15, 1.e+20])") assert_equal(repr(wp), "array([1.234e+001, 1.000e+002, 1.000e+123])") # fixed mode, precision=4 np.set_printoptions(floatmode='fixed', precision=4) assert_equal(repr(x), "array([0.6104, 0.9219, 0.4570, 0.0906, 0.3733, 0.0072, 0.5933, 0.9468,\n" " 0.2383, 0.4226], dtype=float16)") assert_equal(repr(y), "array([0.2919, 0.5064, 0.2849, 0.4343, 0.7327, 0.3460, 0.0862, 0.3911])") assert_equal(repr(z), "array([0.0000, 0.1000, 0.2000, 0.3000, 0.3999, 0.5000], dtype=float16)") assert_equal(repr(w[::5]), "array([1.0000e+00, 1.0000e+05, 1.0000e+10, 1.0000e+15, 1.0000e+20])") assert_equal(repr(wp), "array([1.2340e+001, 1.0000e+002, 1.0000e+123])") assert_equal(repr(np.zeros(3)), "array([0.0000, 0.0000, 0.0000])") # for larger precision, representation error becomes more apparent: np.set_printoptions(floatmode='fixed', precision=8) assert_equal(repr(z), "array([0.00000000, 0.09997559, 0.19995117, 0.30004883, 0.39990234,\n" " 0.50000000], dtype=float16)") # maxprec_equal mode, precision=8 np.set_printoptions(floatmode='maxprec_equal', precision=8) assert_equal(repr(x), "array([0.610352, 0.921875, 0.457031, 0.090576, 0.373291, 0.007244,\n" " 0.593262, 0.946777, 0.238281, 0.422607], dtype=float16)") assert_equal(repr(y), "array([0.29188210, 0.50641726, 0.28487506, 0.43429653, 0.73265384,\n" " 0.34595033, 0.08620728, 0.39112753])") assert_equal(repr(z), "array([0.0, 0.1, 0.2, 0.3, 0.4, 0.5], dtype=float16)") assert_equal(repr(w[::5]), "array([1.e+00, 1.e+05, 1.e+10, 1.e+15, 1.e+20])") assert_equal(repr(wp), "array([1.234e+001, 1.000e+002, 1.000e+123])") def test_legacy_mode_scalars(self): # in legacy mode, str of floats get truncated, and complex scalars # use * for non-finite imaginary part np.set_printoptions(legacy='1.13') assert_equal(str(np.float64(1.123456789123456789)), '1.12345678912') assert_equal(str(np.complex128(complex(1, np.nan))), '(1+nan*j)') np.set_printoptions(legacy=False) assert_equal(str(np.float64(1.123456789123456789)), '1.1234567891234568') assert_equal(str(np.complex128(complex(1, np.nan))), '(1+nanj)') def test_legacy_stray_comma(self): np.set_printoptions(legacy='1.13') assert_equal(str(np.arange(10000)), '[ 0 1 2 ..., 9997 9998 9999]') np.set_printoptions(legacy=False) assert_equal(str(np.arange(10000)), '[ 0 1 2 ... 9997 9998 9999]') def test_dtype_linewidth_wrapping(self): np.set_printoptions(linewidth=75) assert_equal(repr(np.arange(10,20., dtype='f4')), "array([10., 11., 12., 13., 14., 15., 16., 17., 18., 19.], dtype=float32)") assert_equal(repr(np.arange(10,23., dtype='f4')), textwrap.dedent("""\ array([10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22.], dtype=float32)""")) styp = '<U4' if sys.version_info[0] >= 3 else '|S4' assert_equal(repr(np.ones(3, dtype=styp)), "array(['1', '1', '1'], dtype='{}')".format(styp)) assert_equal(repr(np.ones(12, dtype=styp)), textwrap.dedent("""\ array(['1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1'], dtype='{}')""".format(styp))) def test_linewidth_repr(self): a = np.full(7, fill_value=2) np.set_printoptions(linewidth=17) assert_equal( repr(a), textwrap.dedent("""\ array([2, 2, 2, 2, 2, 2, 2])""") ) np.set_printoptions(linewidth=17, legacy='1.13') assert_equal( repr(a), textwrap.dedent("""\ array([2, 2, 2, 2, 2, 2, 2])""") ) a = np.full(8, fill_value=2) np.set_printoptions(linewidth=18, legacy=False) assert_equal( repr(a), textwrap.dedent("""\ array([2, 2, 2, 2, 2, 2, 2, 2])""") ) np.set_printoptions(linewidth=18, legacy='1.13') assert_equal( repr(a), textwrap.dedent("""\ array([2, 2, 2, 2, 2, 2, 2, 2])""") ) def test_linewidth_str(self): a = np.full(18, fill_value=2) np.set_printoptions(linewidth=18) assert_equal( str(a), textwrap.dedent("""\ [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]""") ) np.set_printoptions(linewidth=18, legacy='1.13') assert_equal( str(a), textwrap.dedent("""\ [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]""") ) def test_edgeitems(self): np.set_printoptions(edgeitems=1, threshold=1) a = np.arange(27).reshape((3, 3, 3)) assert_equal( repr(a), textwrap.dedent("""\ array([[[ 0, ..., 2], ..., [ 6, ..., 8]], ..., [[18, ..., 20], ..., [24, ..., 26]]])""") ) b = np.zeros((3, 3, 1, 1)) assert_equal( repr(b), textwrap.dedent("""\ array([[[[0.]], ..., [[0.]]], ..., [[[0.]], ..., [[0.]]]])""") ) # 1.13 had extra trailing spaces, and was missing newlines np.set_printoptions(legacy='1.13') assert_equal( repr(a), textwrap.dedent("""\ array([[[ 0, ..., 2], ..., [ 6, ..., 8]], ..., [[18, ..., 20], ..., [24, ..., 26]]])""") ) assert_equal( repr(b), textwrap.dedent("""\ array([[[[ 0.]], ..., [[ 0.]]], ..., [[[ 0.]], ..., [[ 0.]]]])""") ) def test_unicode_object_array(): import sys if sys.version_info[0] >= 3: expected = "array(['é'], dtype=object)" else: expected = "array([u'\\xe9'], dtype=object)" x = np.array([u'\xe9'], dtype=object) assert_equal(repr(x), expected) if __name__ == "__main__": run_module_suite() ``` #### File: Aakash10399/simple-health-glucheck/main.py ```python import numpy as np import cv2 import kivy from kivy.app import App from kivy.uix.label import Label from kivy.core.window import Window from kivy.config import Config from kivy.uix.widget import Widget b_cfactor = 0.0722 g_cfactor = 0.7152 r_cfactor = 0.2126 b_0 = 0 g_0 = 0 r_0 = 0 img_0 = cv2.imread("0.jpg") height,width,channels = img_0.shape for i in range(0,height): for j in range(0,width): (b,g,r) = img_0[i,j] b_0 = b_0 + b g_0 = g_0 + g r_0 = r_0 + r b_0 = b_0/(height*width) g_0 = g_0/(height*width) r_0 = r_0/(height*width) #print b_0 #print g_0 #print r_0 #print "*************************" b_100 = 0 g_100 = 0 r_100 = 0 img_100 = cv2.imread("100.jpg") height,width,channels = img_100.shape for i in range(0,height): for j in range(0,width): (b,g,r) = img_100[i,j] b_100 = b_100 + b g_100 = g_100 + g r_100 = r_100 + r b_100 = b_100/(height*width) g_100 = g_100/(height*width) r_100 = r_100/(height*width) #print b_100 #print g_100 #print r_100 #print "*************************" b_300 = 0 g_300 = 0 r_300 = 0 img_300 = cv2.imread("300.jpg") height,width,channels = img_300.shape for i in range(0,height): for j in range(0,width): (b,g,r) = img_300[i,j] b_300 = b_300 + b g_300 = g_300 + g r_300 = r_300 + r b_300 = b_300/(height*width) g_300 = g_300/(height*width) r_300 = r_300/(height*width) #print b_300 #print g_300 #print r_300 #print "*************************" b_1000 = 0 g_1000 = 0 r_1000 = 0 img_1000 = cv2.imread("1000.jpg") height,width,channels = img_1000.shape for i in range(0,height): for j in range(0,width): (b,g,r) = img_1000[i,j] b_1000 = b_1000 + b g_1000 = g_1000 + g r_1000 = r_1000 + r b_1000 = b_1000/(height*width) g_1000 = g_1000/(height*width) r_1000 = r_1000/(height*width) #print b_1000 #print g_1000 #print r_1000 #print "*************************" b_3000 = 0 g_3000 = 0 r_3000 = 0 img_3000 = cv2.imread("3000.jpg") height,width,channels = img_3000.shape for i in range(0,height): for j in range(0,width): (b,g,r) = img_3000[i,j] b_3000 = b_3000 + b g_3000 = g_3000 + g r_3000 = r_3000 + r b_3000 = b_3000/(height*width) g_3000 = g_3000/(height*width) r_3000 = r_3000/(height*width) #print b_3000 #print g_3000 #print r_3000 #print "*************************" cam = cv2.VideoCapture(0) while True: if cam.grab(): flag, frame = cam.retrieve() if not flag: continue else: cv2.imshow('INITIAL', frame) gray_counter = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) gray_counter2 = cv2.bitwise_not(cv2.Canny(gray_counter,100,200)) ret,thresh = cv2.threshold(gray_counter2,127,255,1) _,contours,_ = cv2.findContours(thresh,1,2) if len(contours)==1: captured_frame = frame cv2.destroyAllWindows() break key = cv2.waitKey(1) & 0xFF if key == ord("c"): captured_frame = frame cv2.destroyAllWindows() break #captured_frame = cv2.imread("test.jpg") #testing canny = cv2.bitwise_not(cv2.Canny(captured_frame,100,200)) height,width = canny.shape count = 0 centroid_x = 0 centroid_y = 0 for i in range(0,height): for j in range(0,width): if canny[i,j] == 0: count = count + 1 centroid_x = centroid_x + i centroid_y = centroid_y + j centroid_x = centroid_x / count centroid_y = centroid_y / count #print str(centroid_x) + " , " + str(centroid_y) #print str(height) + " , " + str(width) #cv2.imshow("Captured Frame",captured_frame) #cv2.waitKey(0) #cv2.destroyAllWindows() b_var,g_var,r_var = captured_frame[centroid_x,centroid_y] #print str(r_var) + " , " + str(g_var) + " , " + str(b_var) x0 = (b_cfactor*b_0)+(g_cfactor*g_0)+(r_cfactor*r_0) y0 = 0 x1 = (b_cfactor*b_100)+(g_cfactor*g_100)+(r_cfactor*r_100) y1 = 100 x2 = (b_cfactor*b_300)+(g_cfactor*g_300)+(r_cfactor*r_300) y2 = 300 x3 = (b_cfactor*b_1000)+(g_cfactor*g_1000)+(r_cfactor*r_1000) y3 = 1000 x4 = (b_cfactor*b_3000)+(g_cfactor*g_3000)+(r_cfactor*r_3000) y4 = 3000 x_tofind = (b_cfactor*b_var)+(g_cfactor*g_var)+(r_cfactor*r_var) term1 = (((x_tofind-x1)*(x_tofind-x2)*(x_tofind-x3)*(x_tofind-x4)*y0)/((x0-x1)*(x0-x2)*(x0-x3)*(x0-x4))) term2 = (((x_tofind-x0)*(x_tofind-x2)*(x_tofind-x3)*(x_tofind-x4)*y1)/((x1-x0)*(x1-x2)*(x1-x3)*(x1-x4))) term3 = (((x_tofind-x0)*(x_tofind-x1)*(x_tofind-x3)*(x_tofind-x4)*y2)/((x2-x0)*(x2-x1)*(x2-x3)*(x2-x4))) term4 = (((x_tofind-x0)*(x_tofind-x1)*(x_tofind-x2)*(x_tofind-x4)*y3)/((x3-x0)*(x3-x1)*(x3-x2)*(x3-x4))) term5 = (((x_tofind-x0)*(x_tofind-x1)*(x_tofind-x2)*(x_tofind-x3)*y4)/((x4-x0)*(x4-x1)*(x4-x2)*(x4-x3))) y_tofind = term1 + term2 + term3 + term4 + term5 #print y_tofind #app = tk.Tk() #text1 = tk.Label(app,text="Glucose Test Level",font=("Helvetica", 16)) #text1.pack() #text2 = tk.Label(app,text=str(y_tofind)+" mg/dL",font=("Helvetica", 16)) #text2.pack() #app.minsize(500,80) #app.geometry("500x80") #app.mainloop() Config.set('graphics', 'width', '500') Config.set('graphics', 'height', '80') Config.write() class Layout(Widget): def draw(self): with self.canvas: Label(text="Glucose Test Level",font=("Helvetica", 16),pos=(200,0)) Label(text=str(y_tofind)+" mg/dL",font=("Helvetica", 16),pos=(200,-20)) class GlucoseLevel(App): def build(self): app = Layout() app.draw() return app GlucoseLevel().run() ```
{ "source": "Aakash10975/Kafka_Avro", "score": 3 }
#### File: Aakash10975/Kafka_Avro/consume_records.py ```python from confluent_kafka.avro import AvroConsumer from argparse import ArgumentParser def parse_cmd_line_args(): arg_parser = ArgumentParser() arg_parser.add_argument("--topic", required=True, help="Topic Name") arg_parser.add_argument("--bootstrap-servers", required=False, default="localhost:9092", help="Bootstrap server address") arg_parser.add_argument("--schema-registry", required=False, default="http://localhost:8081", help="Schema Registry URL") arg_parser.add_argument("--schema-file", required=False, help="File name of Avro schema to use") arg_parser.add_argument("--record-key", required=False, type=str, help="Record key. If not provided, will be a random UUID") arg_parser.add_argument("--record-value", required=False, help="Record value") return arg_parser.parse_args() def consume_record(args): default_group_name = "default-consumer-group" consumer_config = {"bootstrap.servers": args.bootstrap_servers, "schema.registry.url": args.schema_registry, "group.id": default_group_name, "auto.offset.reset": "earliest"} consumer = AvroConsumer(consumer_config) consumer.subscribe([args.topic]) try: message = consumer.poll(5) except Exception as e: print("Exception while trying to poll messages - {}".format(e)) else: if message: print("Successfully poll a record from Kafka topic: {}, partition: {}, \ offset: {}\nmessage key: {} || message value: {}"\ .format(message.topic(), message.partition(), message.offset(), message.key(), message.value())) consumer.commit() else: print("No new messages at this point. Try again later.") consumer.close() if __name__ == "__main__": consume_record(parse_cmd_line_args()) ``` #### File: Aakash10975/Kafka_Avro/send_records.py ```python import json, uuid, ast from confluent_kafka.avro import AvroProducer from confluent_kafka import avro from argparse import ArgumentParser # from util.load_avro_schema_from_file import load_avro_schema_from_file # from util.parse_command_line_args import parse_cmd_line_args def load_avro_schema_from_file(schema_file): key_schema_string = """ {"type": "string"} """ key_schema = avro.loads(key_schema_string) value_schema = avro.load("./avro/" + schema_file) return key_schema, value_schema def parse_cmd_line_args(): arg_parser = ArgumentParser() arg_parser.add_argument("--topic", required=True, help="Topic Name") arg_parser.add_argument("--bootstrap-servers", required=False, default="localhost:9092", help="Bootstrap server address") arg_parser.add_argument("--schema-registry", required=False, default="http://localhost:8081", help="Schema Registry URL") arg_parser.add_argument("--schema-file", required=False, help="File name of Avro schema to use") arg_parser.add_argument("--record-key", required=False, type=str, help="Record key. If not provided, will be a random UUID") arg_parser.add_argument("--record-value", required=False, help="Record value") return arg_parser.parse_args() def send_records(args): if args.record_value is None: raise AttributeError("--record-value is not provided.") if args.schema_file is None: raise AttributeError("--schema-file is not provided.") key_schema, value_schema = load_avro_schema_from_file(args.schema_file) producer_config = { "bootstrap.servers": args.bootstrap_servers, "schema.registry.url": args.schema_registry} # producer = AvroProducer(producer_config, default_key_schema=key_schema, default_value_schema=value_schema) producer = AvroProducer(producer_config) key = args.record_key if args.record_key else str(uuid.uuid4()) # value = json.loads(args.record_value) value = ast.literal_eval(args.record_value) try: producer.produce(topic=args.topic, key=key, value=value) except Exception as e: print("Exception while producing record key = {} value = {} to topic = {}: {}"\ .format(key, value, args.topic, e)) else: print("Successfully producing record value - {} to topic - {}"\ .format(value, args.topic)) producer.flush() if __name__ == "__main__": send_records(parse_cmd_line_args()) ```
{ "source": "Aakash1312/appleseed", "score": 2 }
#### File: many light sampling/generators/grid_point_lights.py ```python from __future__ import print_function import colorsys import math import random import signal import sys import time import threading import os import numpy as np import appleseed as asr # Initial parameters for generating grid light scene grid_lights_count = 20 color = "white" plane_size = 100 output_scene_name = "{0}x{0}_{1}_point_lights".format(grid_lights_count, color) def build_project(): # Create an empty project. project = asr.Project("grid-point-lights-generator") paths = project.get_search_paths() paths.append("data") project.set_search_paths(paths) # Add default configurations to the project. project.add_default_configurations() # Set the number of samples. This is basically the quality parameter: the higher the number # of samples, the smoother the image but the longer the rendering time. # todo: fix. conf = project.configurations()["final"] conf.insert_path("uniform_pixel_renderer.samples", 1) # Create a scene. scene = asr.Scene() # Create an assembly. assembly = asr.Assembly("assembly") # Prepare the orientation of all the objects in the scene. orientation = asr.Matrix4d.make_rotation(asr.Vector3d(1.0, 0.0, 0.0), math.radians(-90.0)) #------------------------------------------------------------------------ # Materials #------------------------------------------------------------------------ # Create a material called "01 - Default_mat" and insert it into the assembly. assembly.materials().insert(asr.Material( "disney_material", "01 - Default_mat", { "alpha_map": "1", "layer1": { "anisotropic": "0", "base_color": "[1, 1, 1]", "clearcoat": "0", "clearcoat_gloss": "0", "layer_name": "layer1", "layer_number": "0", "mask": "1.0", "metallic": "0", "roughness": "1", "sheen": "0", "sheen_tint": "0", "specular": "0", "specular_tint": "0", "subsurface": "0.0" } })) #------------------------------------------------------------------------ # Geometry #------------------------------------------------------------------------ # Load the scene geometry from disk. objects = asr.MeshObjectReader.read(project.get_search_paths(), "plane", {"filename": "Plane001.binarymesh"}) # Insert all the objects into the assembly. for object in objects: # Create an instance of this object and insert it into the assembly. instance_name = object.get_name() + "_inst" material_name = {"material_slot_0": "01 - Default_mat"} mat = orientation * asr.Matrix4d.make_translation(asr.Vector3d(0.0, 0.0, 0.0)) instance = asr.ObjectInstance( instance_name, {"visibility": { "camera": "true", "diffuse": "true", "glossy": "true", "light": "true", "probe": "true", "shadow": "true", "specular": "true", "subsurface": "true", "transparency": "true" }}, object.get_name(), asr.Transformd(mat), material_name, material_name) assembly.object_instances().insert(instance) # Insert this object into the scene. assembly.objects().insert(object) #------------------------------------------------------------------------ # Lights #------------------------------------------------------------------------ light_z_distance = 1.0 if color == "white": assembly.colors().insert(asr.ColorEntity("white", { "color_space": "linear_rgb", "multiplier": 1.0 }, [1.0, 1.0, 1.0])) step = float(plane_size) / grid_lights_count light_count = 0 grid_range = np.linspace(-plane_size / 2 + step, plane_size / 2 - step, grid_lights_count) for j in grid_range: for i in grid_range: # Create a point light called "light" and insert it into the assembly. light_name = "light_" + str(light_count) light_count = light_count + 1 light = asr.Light("point_light", light_name, { "intensity": "white", "intensity_multiplier": "3" }) light_position = asr.Vector3d(i, j, light_z_distance) mat = orientation * asr.Matrix4d.make_translation(light_position) light.set_transform(asr.Transformd(mat)) assembly.lights().insert(light) elif color == "mix": for i in xrange(0, grid_lights_count * grid_lights_count): s = random.uniform(0, 1) if s < 0.65: ran = random.gauss(1, 0.01) elif s < 0.9: ran = random.gauss(0.3, 0.1) else: ran = random.gauss(0.7, 0.01) random_color = list(colorsys.hls_to_rgb(ran, 0.5, 1.0)) assembly.colors().insert(asr.ColorEntity("color_" + str(i), { "color_space": "linear_rgb", "multiplier": 1.0 }, random_color)) step = float(plane_size) / grid_lights_count light_count = 0 grid_range = np.linspace(-plane_size / 2 + step, plane_size / 2 - step, grid_lights_count) for j in grid_range: for i in grid_range: # Create a point light called "light" and insert it into the assembly. light_name = "light_" + str(light_count) color_name = "color_" + str(light_count) light_count = light_count + 1 light = asr.Light("point_light", light_name, { "intensity": color_name, "intensity_multiplier": "3" }) light_position = asr.Vector3d(i, j, light_z_distance) mat = orientation * asr.Matrix4d.make_translation(light_position) light.set_transform(asr.Transformd(mat)) assembly.lights().insert(light) else: print("Unknown color: {0}".format(color)) return #------------------------------------------------------------------------ # Assembly instance #------------------------------------------------------------------------ # Create an instance of the assembly and insert it into the scene. assembly_inst = asr.AssemblyInstance("assembly_inst", {}, assembly.get_name()) assembly_inst.transform_sequence().set_transform(0.0, asr.Transformd(asr.Matrix4d.identity())) scene.assembly_instances().insert(assembly_inst) # Insert the assembly into the scene. scene.assemblies().insert(assembly) #------------------------------------------------------------------------ # Environment #------------------------------------------------------------------------ # Create an environment called "env" and bind it to the scene. scene.set_environment(asr.Environment("env", {})) #------------------------------------------------------------------------ # Camera #------------------------------------------------------------------------ # Create an orthographic camera. params = { "controller_target": "0 0 0", "film_dimensions": "128 128", "near_z": "-0.1", "shutter_close_time": "1.0", "shutter_open_time": "0.0" } camera = asr.Camera("orthographic_camera", "camera", params) # Place and orient the camera. mat = orientation * asr.Matrix4d.make_translation(asr.Vector3d(0.0, 0.0, 0.0)) camera.transform_sequence().set_transform(0.0, asr.Transformd(mat)) # Bind the camera to the scene. scene.cameras().insert(camera) #------------------------------------------------------------------------ # Frame #------------------------------------------------------------------------ # Create a frame and bind it to the project. params = { "camera": "camera", "clamping": "false", "color_space": "srgb", "filter": "box", "filter_size": "0.5", "gamma_correction": "1.0", "pixel_format": "float", "premultiplied_alpha": "true", "resolution": "512 512", "tile_size": "64 64"} project.set_frame(asr.Frame("beauty", params)) # Bind the scene to the project. project.set_scene(scene) return project def main(): # Build the project. project = build_project() # Save the project to disk. asr.ProjectFileWriter().write(project, output_scene_name + ".appleseed") if __name__ == "__main__": main() ``` #### File: appleseed.python/test/testentitymap.py ```python import unittest import appleseed as asr class TestEntityMap(unittest.TestCase): """ Basic entity map tests. """ def setUp(self): self.scn = asr.Scene() self.assembly_map = self.scn.assemblies() def test_get_by_name(self): ass = asr.Assembly("assembly", {}) self.assembly_map.insert(ass) ass = asr.Assembly("another_assembly", {}) self.assembly_map.insert(ass) a = self.assembly_map.get_by_name("assembly") self.assertEqual(a.get_name(), "assembly") a = self.assembly_map.get_by_name("another_assembly") self.assertEqual(a.get_name(), "another_assembly") a = self.assembly_map.get_by_name("no_such_assembly") self.assertEqual(a, None) def test_get_by_uuid(self): ass = asr.Assembly("assembly") uid1 = ass.get_uid() self.assembly_map.insert(ass) ass = asr.Assembly("another_assembly") uid2 = ass.get_uid() self.assembly_map.insert(ass) a = self.assembly_map.get_by_uid(uid1) self.assertEqual(a.get_name(), "assembly") a = self.assembly_map.get_by_uid(uid2) self.assertEqual(a.get_name(), "another_assembly") a = self.assembly_map.get_by_uid(77567) self.assertEqual(a, None) def test_get_item(self): ass = asr.Assembly("assembly") uid1 = ass.get_uid() self.assembly_map.insert(ass) ass = asr.Assembly("another_assembly") uid2 = ass.get_uid() self.assembly_map.insert(ass) self.assertEqual(self.assembly_map["assembly"].get_uid(), uid1) self.assertEqual(self.assembly_map["another_assembly"].get_uid(), uid2) def test_insert_remove_by_uid(self): ass = asr.Assembly("assembly") self.assembly_map.insert(ass) self.assertEqual(len(self.assembly_map), 1) a = self.assembly_map.get_by_name("assembly") ass = self.assembly_map.remove_by_uid(a.get_uid()) self.assertEqual(len(self.assembly_map), 0) self.assembly_map.insert(ass) self.assertEqual(len(self.assembly_map), 1) def test_keys(self): self.assertEqual(self.assembly_map.keys(), []) ass = asr.Assembly("assembly") self.assembly_map.insert(ass) ass = asr.Assembly("another_assembly") self.assembly_map.insert(ass) self.assertEqual(self.assembly_map.keys(), ["assembly", "another_assembly"]) def test_values(self): ass = asr.Assembly("assembly") uid1 = ass.get_uid() self.assembly_map.insert(ass) ass = asr.Assembly("another_assembly") uid2 = ass.get_uid() self.assembly_map.insert(ass) values = self.assembly_map.values() self.assertEqual(len(values), 2) self.assertEqual(values[0].get_uid(), uid1) self.assertEqual(values[1].get_uid(), uid2) def test_iters(self): names = ['assembly', 'assembly2', 'assembly3'] uids = [] for name in names: ass = asr.Assembly(name) uids.append(ass.get_uid()) self.assembly_map.insert(ass) result_names = [] result_uids = [] for ass in self.assembly_map: result_names.append(ass) result_uids.append(self.assembly_map[ass].get_uid()) self.assertEqual(sorted(names), sorted(result_names)) self.assertEqual(sorted(uids), sorted(result_uids)) if __name__ == "__main__": unittest.main() ```
{ "source": "aakash140799/ScreenCapture", "score": 2 }
#### File: aakash140799/ScreenCapture/capture_scripts.py ```python import key_scripts import video_scripts import log_scripts from vidgear.gears import WriteGear import win32api as wapi import os import threading import time """ press f11 to start captuing frames press f11 again to stop captuing press f10 to delete current capture, and restart immidately press f9 to stop program immidately """ output_params = {"-vcodec":"MPEG", "-input_framerate": 25} capture_state = 0 del_it = 0 start = len(os.listdir('data'))//2 + 1 def capture(): global capture_state global del_it global start # while in not_exit mode while capture_state != 2: out_file = str(start) # capture mode if capture_state == 1: log_scripts.log_msg('capturing : '+out_file) out_file = 'data\\'+out_file vid_out = WriteGear(out_file+'.avi',compression_mode=False, custom_ffmpeg='C:\Program Files (x86)\ffmpeg\bin',**output_params) txt_out = open(out_file+'.txt', 'w') # capture 512 frames, or stop if altered cnt = 0 while cnt <= 512 and not del_it: vid_out.write(video_scripts.get_state()) txt_out.write(key_scripts.get_state()) cnt = cnt + 1 vid_out.close() txt_out.close() # if delete if del_it: os.remove(out_file+'.avi') os.remove(out_file+'.txt') del_it = 0 capture_state = 0 log_scripts.log_msg('deleting : '+out_file) log_scripts.log_msg('state : False') log_scripts.log_msg('Capturing : Stop') else: log_scripts.log_msg('saving : '+out_file) start = start + 1 else: log_scripts.log_msg('at hold') time.sleep(2) log_scripts.log_msg('capture thread exited') exit() try: capture_thread = threading.Thread(target=capture) capture_thread.start() f11_state = 0 f10_state = 0 f9_state = 0 while capture_state != 2: f11 = wapi.GetAsyncKeyState(0x7A) f10 = wapi.GetAsyncKeyState(0x79) f9 = wapi.GetAsyncKeyState(0x78) if f11 and f11_state == 0: print('alter') capture_state = 1 if capture_state == 0 else 0 if f10 and f10_state == 0: del_it = 1 if f9 and f9_state == 0: capture_state = 2 f11_state = f11 f10_state = f10 f9_state = f9 log_scripts.log_msg('exiting') capture_thread.join() except KeyboardInterrupt: exit() ``` #### File: aakash140799/ScreenCapture/key_scripts.py ```python import win32api as wapi import threading import time """ press f11 to start capture press f11 again to stop catpure press f9 to end """ key_str = "<KEY>".lower() keys_state = {k : 0 for k in key_str} mouse_state = [0, 0, 0, 0] def get_state(): kstate = "" for k in key_str: kstate = kstate + str(keys_state[k]) + ", " kstate = kstate + str(mouse_state[2]) + ", " kstate = kstate + str(mouse_state[3]) + "\n" return kstate def update_state(): while True: for k in key_str: keys_state[k] = wapi.GetAsyncKeyState(ord(k)) (x, y) = wapi.GetCursorPos() mouse_state[2:4] = [x-mouse_state[0],y-mouse_state[1]] mouse_state[0:2] = [x,y] time.sleep(0.01) key_thread = threading.Thread(target=update_state) key_thread.start() print('key_script done') ```
{ "source": "aakash2007/CodeExtract-CodeChef", "score": 3 }
#### File: aakash2007/CodeExtract-CodeChef/codechef.py ```python from util import * from bs4 import BeautifulSoup class Profile(object): """Profile Class For User""" def __init__(self, handle=""): super(Profile, self).__init__() self.handle = handle self.domain_url = "https://www.codechef.com" def get_user_handle(self): usr_name = '' first_time = True while len(usr_name) == 0: if first_time: first_time = False else: print("You haven't entered any handle. Please try again.") usr_name = input("Enter Your CodeChef Handle: ").strip() self.handle = usr_name def get_solved_problems(self): """Function Processes the user page and return a dictionary object containing all successfully solved problems""" """Return format { problem_code : problem_link }""" domain_url = self.domain_url handle = self.handle user_url = domain_url + "/users/" + handle user_page = get_url_data(user_url) soup = BeautifulSoup(user_page,"lxml") # Segregate problems table sp = soup.find_all('table')[2] prob_list = {} for cell in sp.find_all('td'): if cell.text == "Problems Successfully Solved:": n_soup = cell.nextSibling.nextSibling for s in n_soup.find_all('a'): ques_link = (str(s.get('href'))).strip() ques_url = ques_link prob_list[s.text.strip()] = ques_url return prob_list def get_AC_submission(self, sub_link): """Function extracts the correct submission from list of user submissions for a problem""" domain_url = self.domain_url sub_page_url = domain_url + sub_link sub_page = get_url_data(sub_page_url) soup = BeautifulSoup(sub_page, "lxml") obj = soup.find('tbody') code_link = "" for s in obj.find_all('tr'): if s.find('img').get('src') == "/misc/tick-icon.gif" : code_link = s.find_all('a')[-1].get('href') break code_url = code_link return code_url def extract_code(self, code_link): """Function extracts the user submitted code from submission page""" """Return format @tuple (code_lang, code_str)""" domain_url = self.domain_url code_page_url = domain_url + code_link code_page = get_url_data(code_page_url) soup = BeautifulSoup(code_page,"lxml") lang = (soup.find('pre')).get("class")[-1] code = soup.find_all('ol')[-1] # in some cases code contains stray /xa0 character # it needs to be removed cod_str = str(code) cod_str = cod_str.replace(u'\xa0',u' ') # replacing </li> with </li>\n for pretty-printing # then recreate a bs4 object cod_str = cod_str.replace("</li>", "</li>\n") code = BeautifulSoup(cod_str,"lxml") code_str = code.text return (lang, code_str) ``` #### File: aakash2007/CodeExtract-CodeChef/util.py ```python from urllib.request import urlopen import urllib.request def get_url_data(url1): req = urllib.request.Request(url1, headers={'User-Agent': 'Mozilla/5.0'}) html_pg = urllib.request.urlopen(req) return html_pg def write_to_file(code, location, prob_code, lang): file_name = "./" + location + "/" + prob_code + "." + lang with open(file_name,'w') as fl: fl.write(code) ```
{ "source": "aakash2007/Laboratory-Inventory", "score": 3 }
#### File: Laboratory-Inventory/inventory/models.py ```python from __future__ import unicode_literals from django.db import models # Create your models here. class Laboratory(models.Model): lab_name = models.CharField("Laboratory Name", max_length=200) lab_incharge = models.CharField("Laboratory Incharge", max_length=200) def __str__(self): return self.lab_name class Meta: verbose_name = "Laboratory" verbose_name_plural = "Laboratories" class Item(models.Model): lab = models.ForeignKey(Laboratory, on_delete=models.CASCADE) item_name = models.CharField("Item Name", max_length=200) item_count = models.IntegerField("Count", default=0) item_cost = models.DecimalField("Cost (In INR)", max_digits=20, decimal_places=2) total_cost = models.DecimalField("Total Cost (In INR)", max_digits=10, decimal_places=2) def save(self, *args, **kwargs): self.total_cost = self.item_count*self.item_cost return super(Item, self).save(*args, **kwargs) def __str__(self): return self.item_name ```
{ "source": "aakash2007/Rapid-Visual-Survey", "score": 2 }
#### File: Rapid-Visual-Survey/survey/rc_score.py ```python def RC_score(bd): # Plan Irregularities if bd.ir_plc is 1 and bd.re_crn is 1: bd.pl_irr = 2 elif (bd.ir_plc is 1 and bd.re_crn is 0) or (bd.ir_plc is 0 and bd.re_crn is 1): bd.pl_irr = 1 else: bd.pl_irr = 0 # Soft Storey if bd.op_prk is 1 or bd.ab_prt is 1 or bd.st_shp is 1 or bd.tl_htg is 1: bd.soft_st = 1 else: bd.soft_st = 0 # Vertical Irregularity if bd.pr_stb is 1 or bd.bl_slp is 1: bd.vrt_irr = 1 else: bd.vrt_irr = 0 # Heavy Overhangs if bd.md_hrp is 1 or bd.sb_hrp is 1: bd.hvy_ovh = 1 else: bd.hvy_ovh = 0 # Apparent Quality if bd.ql_mat is 2 and bd.maintc is 2: bd.ap_qlt = 2 elif bd.ql_mat is 0 and bd.maintc is 0: bd.ap_qlt = 0 else: bd.ap_qlt = 1 # Pounding if bd.un_flr is 1 or bd.pr_qlt is 1: bd.pnding = 1 else: bd.pnding = 0 buil_flr = int(bd.no_floor) if buil_flr is 2: flr = 1 elif buil_flr > 5: flr = 6 else: flr = buil_flr base_table = { 1: {1:150, 2:130, 3:100}, 3: {1:140, 2:120, 3:90}, 4: {1:120, 2:100, 3:75}, 5: {1:100, 2:85, 3:65}, 6: {1:90, 2:80, 3:60} } base_score = base_table[flr][bd.s_zone] soft_st_f = {1:0, 3:-15, 4:-20, 5:-25, 6:-30} hvy_ovh_f = {1:-5, 3:-10, 4:-10, 5:-15, 6:-15} ap_qlt_f = {1:-5, 3:-10, 4:-10, 5:-15, 6:-15} pnding_f = {1:0, 3:-2, 4:-3, 5:-5, 6:-5} bas_prsnt_f = {1:0, 3:3, 4:4, 5:5, 6:5} sft = bd.soft_st*soft_st_f[flr] vrt = bd.vrt_irr*(-10) plir = bd.pl_irr*(-5) hvyov = bd.hvy_ovh*hvy_ovh_f[flr] apqlty = bd.ap_qlt*ap_qlt_f[flr] shrt_clm = bd.shr_col*(-5) pound = bd.pnding*2*pnding_f[flr] soilcn = bd.soil_cn*10 frmact = bd.frm_act*10 bsmt = bd.bas_prsnt*bas_prsnt_f[flr] vs = sft + vrt + plir + hvyov + apqlty + shrt_clm + pound + soilcn + frmact + bsmt perf_sc = base_score + vs return perf_sc ```
{ "source": "aakash2016/UI-PRMD-Python", "score": 3 }
#### File: aakash2016/UI-PRMD-Python/uiprmd_data.py ```python import math as m import numpy as np from numpy import genfromtxt import matplotlib.pyplot as plt import matplotlib.animation as animation num_kp = 22 num_axes = 3 def Rotx(theta): # Rotation about X axis return np.matrix([[1, 0, 0], [0, m.cos(theta), -m.sin(theta)], [0, m.sin(theta), m.cos(theta)]]) def Roty(theta): # Rotation about Y axis return np.matrix([[m.cos(theta), 0, m.sin(theta)], [0, 1, 0], [-m.sin(theta), 0, m.cos(theta)]]) def Rotz(theta): # Rotation about Z axis return np.matrix([[m.cos(theta), -m.sin(theta), 0], [m.sin(theta), m.cos(theta), 0], [0, 0, 1]]) def eulers_2_rot_matrix(x): """ eulers_2_rot_matrix transforms a set of euler angles into a rotation matrix input: vector of euler angles [gamma_x, beta_y, alpha_z] are ZYX Eulers angles in radians """ gamma_x = x[0] beta_y = x[1] alpha_z = x[2] return Rotz(alpha_z) * Roty(beta_y) * Rotx(gamma_x) def rel2abs(p, a, num_frames): # convert the data from relative coordinates to absolute coordinates skel = np.zeros((num_kp, num_axes, num_frames)) for i in range(num_frames): """ 1 Waist (absolute) 2 Spine 3 Chest 4 Neck 5 Head 6 Head tip 7 Left collar 8 Left upper arm 9 Left forearm 10 Left hand 11 Right collar 12 Right upper arm 13 Right forearm 14 Right hand 15 Left upper leg 16 Left lower leg 17 Left foot 18 Left leg toes 19 Right upper leg 20 Right lower leg 21 Right foot 22 Right leg toes """ joint = p[:,:,i] joint_ang = a[:,:,i] # chest, neck, head rot_1 = eulers_2_rot_matrix(joint_ang[0,:]*np.pi/180) joint[1,:] = rot_1@joint[1,:] + joint[0,:] rot_2 = rot_1*eulers_2_rot_matrix(joint_ang[1,:]*np.pi/180) joint[2,:] = rot_2@joint[2,:] + joint[1,:] rot_3 = rot_2*eulers_2_rot_matrix(joint_ang[2,:]*np.pi/180) joint[3,:] = rot_3@joint[3,:] + joint[2,:] rot_4 = rot_3*eulers_2_rot_matrix(joint_ang[3,:]*np.pi/180) joint[4,:] = rot_4@joint[4,:] + joint[3,:] rot_5 = rot_4*eulers_2_rot_matrix(joint_ang[4,:]*np.pi/180) joint[5,:] = rot_5@joint[5,:] + joint[4,:] # left-arm rot_6 = eulers_2_rot_matrix(joint_ang[2,:]*np.pi/180) joint[6,:] = rot_6@joint[6,:] + joint[2,:] rot_7 = rot_6*eulers_2_rot_matrix(joint_ang[6,:]*np.pi/180) joint[7,:] = rot_7@joint[7,:] + joint[6,:] rot_8 = rot_7*eulers_2_rot_matrix(joint_ang[7,:]*np.pi/180) joint[8,:] = rot_8@joint[8,:] + joint[7,:] rot_9 = rot_8*eulers_2_rot_matrix(joint_ang[8,:]*np.pi/180) joint[9,:] = rot_9@joint[9,:] + joint[8,:] # right-arm rot_10 = eulers_2_rot_matrix(joint_ang[2,:]*np.pi/180) joint[10,:] = rot_10@joint[10,:] + joint[2,:] rot_11 = rot_10*eulers_2_rot_matrix(joint_ang[10,:]*np.pi/180) joint[11,:] = rot_11@joint[11,:] + joint[10,:] rot_12 = rot_11*eulers_2_rot_matrix(joint_ang[11,:]*np.pi/180) joint[12,:] = rot_12@joint[12,:] + joint[11,:] rot_13 = rot_12*eulers_2_rot_matrix(joint_ang[12,:]*np.pi/180) joint[13,:] = rot_13@joint[13,:] + joint[12,:] # left-leg rot_14 = eulers_2_rot_matrix(joint_ang[0,:]*np.pi/180) joint[14,:] = rot_14@joint[14,:] + joint[0,:] rot_15 = rot_14*eulers_2_rot_matrix(joint_ang[14,:]*np.pi/180) joint[15,:] = rot_15@joint[15,:] + joint[14,:] rot_16 = rot_15*eulers_2_rot_matrix(joint_ang[15,:]*np.pi/180) joint[16,:] = rot_16@joint[16,:] + joint[15,:] rot_17 = rot_16*eulers_2_rot_matrix(joint_ang[16,:]*np.pi/180) joint[17,:] = rot_17@joint[17,:] + joint[16,:] # right-leg rot_18 = eulers_2_rot_matrix(joint_ang[0,:]*np.pi/180) joint[18,:] = rot_18@joint[18,:] + joint[0,:] rot_19 = rot_18*eulers_2_rot_matrix(joint_ang[18,:]*np.pi/180) joint[19,:] = rot_19@joint[19,:] + joint[18,:] rot_20 = rot_19*eulers_2_rot_matrix(joint_ang[19,:]*np.pi/180) joint[20,:] = rot_20@joint[20,:] + joint[19,:] rot_21 = rot_20*eulers_2_rot_matrix(joint_ang[20,:]*np.pi/180) joint[21,:] = rot_21@joint[21,:] + joint[20,:] skel[:,:,i] = joint return skel def main(): pos_path = "/Users/aakash_agrawal/Downloads/Movements/Kinect/Positions/m01_s01_positions.txt" ang_path = "/Users/aakash_agrawal/Downloads/Movements/Kinect/Angles/m01_s01_angles.txt" pos_data = genfromtxt(pos_path) ang_data = genfromtxt(ang_path) num_frames = pos_data.shape[0] p_data = pos_data.T.reshape(num_kp, num_axes, -1) a_data = ang_data.T.reshape(num_kp, num_axes, -1) skel = rel2abs(p_data, a_data, num_frames) # order of joint connections J = np.array([[3, 5, 4, 2, 1, 2, 6, 7, 8, 2, 10, 11, 12, 0, 14, 15, 16, 0, 18, 19, 20], [2, 4, 2, 1, 0, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]]) # find maximum and minimum values (for plotting) a = p_data.transpose(2, 0, 1).reshape(-1, 3) max_x = max(a[:, 0]) min_x = min(a[:, 0]) max_y = max(a[:, 1]) min_y = min(a[:, 1]) max_z = max(a[:, 2]) min_z = min(a[:, 2]) # Visualization fig = plt.figure(figsize=(12, 10)) ax = fig.add_subplot(111) def get_plot(i): ax.cla() ax.set_title('2D plot using transformed data') ax.set_xlabel('x') ax.set_ylabel('y') joint = skel[:, :, i] for j in range(J.shape[1]): p1 = joint[J[0, j], :] p2 = joint[J[1, j], :] ax.plot([p1[0], p2[0]], [p1[1], p2[1]], 'o-') plt.rcParams['animation.html'] = 'html5' anim = animation.FuncAnimation(fig, get_plot, blit=False, frames=num_frames) plt.close() if __name__ == "__main__": main() ```
{ "source": "aakash21696/c2c2017", "score": 3 }
#### File: c2c2017/src/check_hackerrank_problems.py ```python import urllib, json import os from datetime import datetime from time import sleep import sys HR_URL = "https://www.hackerrank.com/rest/hackers/{user}/recent_challenges?cursor={cursor}&limit=100&response_version=v2" HR_FILE = "hackerrank_c2c2017.json" SLEEP_TIME_IN_SECONDS = 5 class HackerRankProblem(object): def __init__(self, url, created_at, ch_slug, name, con_slug): self.url = url self.created_at = created_at self.ch_slug = ch_slug self.name = name self.con_slug = con_slug def update_json(username): """Update our local JSON file with any new problems that user may have solved""" last_known_prob = get_last_known_solved(username) last_known_prob_name = None if last_known_prob: last_known_prob_name = last_known_prob['name'] # print("Last known solved problem is " + last_known_prob_name) new_solved = [] for prob in get_problems_from_hackerrank(username): if prob.name == last_known_prob_name: break new_solved.append(prob.__dict__) # print("{user} has solved {new_probs} new problems since last time!".format(user=username, new_probs=len(new_solved))) user_data = read_json_file() if username not in user_data: user_data[username] = [] user_data[username] = new_solved + user_data[username] write_json_file(user_data) return (last_known_prob_name, len(new_solved)) def get_last_known_solved(username): """Read the last entry from a JSON file for the user""" solved_problems = get_all_known_solved(username) if solved_problems: return solved_problems[0] def get_all_known_solved(username): """Read all entries from a JSON file for the user""" all_user_data = read_json_file() if username not in all_user_data: return [] user_data = all_user_data[username] if not user_data: return [] return user_data def get_problems_from_hackerrank(username): """Generator function that returns solved problems in descending order""" cursor = "null" while True: problems, cursor = _get_next_set_of_problems(username, cursor) for p in problems: hr_prob = HackerRankProblem(p['url'], p['created_at'], p['ch_slug'], p['name'], p['con_slug']) yield hr_prob if not cursor: return def _get_next_set_of_problems(username, cursor): url = HR_URL.format(user=username, cursor=cursor) start_time = datetime.now() response = urllib.urlopen(url) end_time = datetime.now() total_seconds = (end_time - start_time).total_seconds() print("URL call took {} seconds".format(total_seconds)) try: data = json.load(response) except ValueError as ve: print("ERROR: " + str(ve)) print("We will try again later for {user}".format(user=username)) return [], None problems = data['models'] cursor = data['cursor'] return problems, cursor def read_json_file(): if not os.path.exists(HR_FILE): return {} with open(HR_FILE, 'r') as json_file: user_data = json.load(json_file) return user_data def write_json_file(user_data): """Write out the data to the json file""" with open(HR_FILE, 'w') as json_file: user_json = json.dumps(user_data) json_file.truncate() json_file.write(user_json) def pretty_print_status_table(user_status): print("Username".ljust(25) + "\t|" + "Last Solved".ljust(50) + "\t|" + "#New Solved".ljust(10) + "\t|" + "Total Solved") sorted_user_status = sorted(user_status.items(), key=lambda x: x[1]["no_of_solved_total"]) for username, status in sorted_user_status: last_known_prob_name = status["last_known_prob_name"].ljust(50) new_solved = str(status["new_solved"]).ljust(10) no_of_solved_total = str(status["no_of_solved_total"]) print("{}\t|{}\t|{}\t|{}".format(username.ljust(25), last_known_prob_name, str(new_solved).ljust(10), no_of_solved_total)) def main(): usernames = ["shahdhrumil1060", "kiran_jawahiran1", "urvi_gadda", "masiraansari62", "akshay_kamath", "cpt01", "parikhsagar073", "hvaidsain26", "vikrant51296", "revati0616", "deep20", "knaik", "a_agarwal_14", "sahil_mankad", "niharika_nahar", "suresh_bp", "bhakti12", "melvita_a", "Wazirabahnan3", "adi99ss", "ashanka_bhilare1", "dev69", "Bhakti_C", "priyanka_agarkar", "saketdmano", "rugnesh_k", "aakash216961", "AdiPadi3", "quickgun_ak47", "DevikaShanbhag", "Aishriya", "niyati_js", "gautami_shelar", "adepudivya96", "mihir_jethwa", "Havan"] user_status = {} if len(sys.argv) > 1: usernames = sys.argv[1:] for username in usernames: print("Checking status for {}".format(username)) last_known_prob_name, new_solved = update_json(username) if last_known_prob_name is not None: last_known_prob_name = last_known_prob_name.ljust(40) else: last_known_prob_name = "None".ljust(40) no_of_solved_total = len(get_all_known_solved(username)) user_status[username] = { "last_known_prob_name": last_known_prob_name, "no_of_solved_total": no_of_solved_total, "new_solved": new_solved } print("Sleeping for {} seconds".format(SLEEP_TIME_IN_SECONDS)) sleep(SLEEP_TIME_IN_SECONDS) pretty_print_status_table(user_status) if __name__ == '__main__': main() ```
{ "source": "aakash257/tool_for_checking_if_website_allows_text_scraping", "score": 3 }
#### File: aakash257/tool_for_checking_if_website_allows_text_scraping/tool_for_checking_web_scraping_terms.py ```python import os from bs4 import BeautifulSoup import urllib, urllib.request, requests import tkinter from tkinter import * #folder_path = os.getcwd() folder_path = r'C:\Users\aasa9247\Desktop\Research-Current\Buildsystem\Automatic Tools\GitHub-AutomationTools\tool_for_checking_if_website_allows_text_scraping' # data-tags are the tags used for explaining the conditions of using the # content in the weblink file_name = '\\data_tags.txt' file_path = folder_path + file_name with open(file_path, encoding="utf-8") as data_file: content = data_file.readlines() data_tags = [l.strip() for l in content] def check_for_data_tags(url): '''return true if found a match for the data tags or false if found no match for the data tags''' with open(file_path, encoding="utf-8") as data_file: content = data_file.readlines() data_tags = [l.strip() for l in content] page = requests.get(url) soup = BeautifulSoup(page.content, 'html.parser') imp_links = [] for link in soup.find_all('a', href=True): ref_link = link.get('href') num_tag = len(set(ref_link.split('/')).intersection(set(data_tags))) if num_tag > 0: imp_links.append(ref_link) else: continue return imp_links def urls2text(links): '''extract text from multiple links to one string''' all_text = '' for link in links: #print(link) page = requests.get(link) soup = BeautifulSoup(page.content, 'html.parser') paras = soup.find_all('p') for para in paras: #print(para) all_text = all_text + ' ' + para.getText() return all_text def clean_text(text): import re from nltk.corpus import stopwords text = text.lower() punc = '!"#$%&\'()*+,-/:;<=>?@[\\]^_`{|}~' exclud = set(punc) #list of punctuation text = re.sub(r'[0-9]+', r' ', text) text = re.sub(' +', ' ', text) text = re.sub('\. +', '. ', text) text = ''.join(ch for ch in text if ch not in exclud) text = re.sub('( \. )+', ' ', text) text = re.sub('\.+ ', '. ', text) text = re.sub(' \. ', ' ', text) return text def text2binary_for_scrape(text): '''extract sentence that contains important information about data usage''' full_text = clean_text(text) full_text_sent = full_text.split('. ') full_tok_sent = [] for sent in full_text_sent: full_tok_sent.append(sent.split(' ')) file_path = folder_path + '\\data_usage_terms_tags.txt' with open(file_path, encoding="utf-8") as data_file: content = data_file.readlines() data_usage_tags = [l.strip() for l in content] max_num_common_terms = 0 imp_tok_sent = '' num_no_term = '' for tok_sent in full_tok_sent: msg = 'Web scraping terms are unclear to our system. Please check\ the terms manually' num_common_terms = len(set(tok_sent).intersection(set(data_usage_tags))) num_no_term = len(set(tok_sent).intersection(set(['no', 'not']))) #print(num_common_terms, num_no_term) if num_common_terms > max_num_common_terms: max_num_common_terms = num_common_terms imp_tok_sent = tok_sent else: continue if num_no_term >= 1: can_scrape = 'no' sent = ' '.join(imp_tok_sent) msg = 'You cannot scrape text from the website. Here are more\ details from the url: ' + ' "' + sent + '"' else: can_scrape = 'not sure' msg = 'Please check the terms as they are complicated to\ understand by our system' continue return msg def start_gui(): window = tkinter.Tk() window.title('Check Web Scraping Terms Tool') window.geometry('400x100') label_tag = Label(window, text = 'URL') label_tag.pack(side = LEFT) input_button = Entry(window, width = 70, bd = 5) input_button.pack(expand = True, side = RIGHT) def tk_store(): global url url = input_button.get() from tkinter import messagebox msgbox = messagebox.showinfo( 'Check Web Scraping Terms Tool',\ 'Please wait, while we analyze the url entered') def tk_close_window (): window.destroy() check_button = Button(window, text = 'Check',\ command = lambda:[tk_store(), tk_close_window()]) check_button.place(x = 175,y = 70) window.mainloop() def close_gui(final_msg): window = tkinter.Tk() window.title('Check Web Scraping Terms Tool') var = StringVar() msg_label = Message(window, textvariable = var, relief = RAISED ) var.set(final_msg) msg_label.pack() window.mainloop() window.after(30000, lambda: window.destroy()) start_gui() links = check_for_data_tags(url) text = urls2text(links) final_msg = text2binary_for_scrape(text) close_gui(final_msg) ```
{ "source": "Aakash310/A-Hackers-AI-Voice-Assistant", "score": 3 }
#### File: wakeword/scripts/create_wakeword_jsons.py ```python import os import argparse import json import random def main(args): zeros = os.listdir(args.zero_label_dir) ones = os.listdir(args.one_label_dir) percent = args.percent data = [] for z in zeros: data.append({ "key": os.path.join(args.zero_label_dir, z), "label": 0 }) for o in ones: data.append({ "key": os.path.join(args.one_label_dir, o), "label": 1 }) random.shuffle(data) f = open(args.save_json_path +"/"+ "train.json", "w") with open(args.save_json_path +"/"+ 'train.json','w') as f: d = len(data) i=0 while(i<d-d/percent): r=data[i-1] line = json.dumps(r) f.write(line + "\n") i = i+1 f = open(args.save_json_path +"/"+ "test.json", "w") with open(args.save_json_path +"/"+ 'test.json','w') as f: d = len(data) i=int(d-d/percent) while(i<d): r=data[i-1] line = json.dumps(r) f.write(line + "\n") i = i+1 if __name__ == "__main__": parser = argparse.ArgumentParser(description=""" Utility script to create training json file for wakeword. There should be two directories. one that has all of the 0 labels and one with all the 1 labels """ ) parser.add_argument('--zero_label_dir', type=str, default=None, required=True, help='directory of clips with zero labels') parser.add_argument('--one_label_dir', type=str, default=None, required=True, help='directory of clips with one labels') parser.add_argument('--save_json_path', type=str, default=None, required=True, help='path to save json file') parser.add_argument('--percent', type=int, default=10, required=False, help='percent of clips put into test.json instead of train.json') args = parser.parse_args() main(args) ```
{ "source": "aakash4525/py_link_preview", "score": 3 }
#### File: py_link_preview/link_preview/link_preview.py ```python import urllib.request as req import re def generate_dict(url): ''' returns dictionary containing elements of link_preview: dict_keys : 'title' : '', 'description': '', 'image': '', 'website': '' if Exception occurs, it raises Exception of urllib.request module. ''' return_dict = {} try: html = req.urlopen(url).read().decode('utf-8') meta_elems = re.findall('<[\s]*meta[^<>]+og:(?:title|image|description)(?!:)[^<>]+>', html) og_map = map(return_og, meta_elems) og_dict = dict(list(og_map)) # title try: return_dict['title'] = og_dict['og.title'] except KeyError: return_dict['title'] = find_title(html) # description try: return_dict['description'] = og_dict['og.description'] except KeyError: return_dict['description'] = find_meta_desc(html) # website return_dict['website'] = find_host_website(url) # Image try: return_dict['image'] = og_dict['og.image'] except KeyError: image_path = find_image(html) if 'http' not in image_path: image_path = 'http://' + return_dict['website'] + image_path return_dict['image'] = image_path return return_dict except Exception as e: 'Raises Occurred Exception' raise e def return_og(elem): ''' returns content of og_elements ''' content = re.findall('content[\s]*=[\s]*"[^<>"]+"', elem)[0] p = re.findall('"[^<>]+"', content)[0][1:-1] if 'og:title' in elem: return ("og.title", p) elif 'og:image' in elem and 'og:image:' not in elem: return ("og.image", p) elif 'og:description' in elem: return ("og.description", p) def find_title(html): ''' returns the <title> of html ''' try: title_elem = re.findall('<[\s]*title[\s]*>[^<>]+<[\s]*/[\s]*title[\s]*>', html)[0] title = re.findall('>[^<>]+<', title_elem)[0][1:-1] except: title = '' return title def find_meta_desc(html): ''' returns the description (<meta name="description") of html ''' try: meta_elem = re.findall('<[\s]*meta[^<>]+name[\s]*=[\s]*"[\s]*description[\s]*"[^<>]*>', html)[0] content = re.findall('content[\s]*=[\s]*"[^<>"]+"', meta_elem)[0] description = re.findall('"[^<>]+"', content)[0][1:-1] except: description = '' return description def find_image(html): ''' returns the favicon of html ''' try: favicon_elem = re.findall('<[\s]*link[^<>]+rel[\s]*=[\s]*"[\s]*shortcut icon[\s]*"[^<>]*>', html)[0] href = re.findall('href[\s]*=[\s]*"[^<>"]+"', favicon_elem)[0] image = re.findall('"[^<>]+"', href)[0][1:-1] except: image = '' return image def find_host_website(url): ''' returns host website from the url ''' return list(filter(lambda x: '.' in x, url.split('/')))[0] ```
{ "source": "Aakasha01Agarwal/Python", "score": 5 }
#### File: Python/conversions/angle_conversions.py ```python def degree_to_radian(degree): ''' will take an integer degree and convert it to radians >>> degree_to_radian(180) 3.14 >>> degree_to_radian(360) 6.28 TypeError: string was passed to the function >>>degree_to_radian('a') TypeError: can't multiply sequence by non-int of type 'float' ''' return (3.14/180)*degree def radian_to_degree(radian): ''' will take an integer radian angle and return the converted into degree form >>>radian_to_degree(3.14) 180.0 >>>radian_to_degree(6.28) 360 TypeError: string was passed to the function >>>radian_to_degree('a') TypeError: can't multiply sequence by non-int of type 'float' ''' return(180/3.14)*radian ```
{ "source": "aakashaarya/cefkivy", "score": 2 }
#### File: cefkivy/tests/fps.py ```python from kivy.app import App from kivy.garden.cefpython import CEFBrowser CEFBrowser.update_flags({'enable-fps': True}) if __name__ == '__main__': class SimpleBrowserApp(App): def build(self): return CEFBrowser(url="https://www.vsynctester.com") SimpleBrowserApp().run() ```
{ "source": "aakashananth/covid-prediction", "score": 3 }
#### File: covid-prediction/api/app.py ```python import os import pickle from tensorflow.keras.models import Sequential, load_model from tensorflow.keras.preprocessing import image import numpy as np from flask import Flask, request, render_template from werkzeug.utils import secure_filename app = Flask(__name__) print(" * Loading models...") cnn_model = load_model("models/cnn_model.h5") feature_selector = Sequential() for layer in cnn_model.layers[:-2]: feature_selector.add(layer) scaler = pickle.load(open('models/scaler.pkl', 'rb')) vcf_clf = pickle.load(open('models/vcf_clf.sav', 'rb')) print(" * Loaded models") @app.route('/', methods=['GET']) def index(): return render_template('index.html') @app.route('/predict', methods=['GET', 'POST']) def upload(): if request.method == 'POST': # Get the file from post request f = request.files['file'] # Save the file to ./uploads basepath = os.path.dirname(__file__) file_path = os.path.join( basepath, 'uploads', secure_filename(f.filename)) f.save(file_path) img = image.load_img(file_path, target_size=(299,299,3)) img_arr = (np.expand_dims(image.img_to_array(img), axis=0))/255.0 fs = feature_selector.predict(img_arr) X = scaler.transform(fs) result = vcf_clf.predict_proba(X.reshape(1,-1)) normal, covid = result[0][0], result[0][1] # Delete the file os.remove(file_path) return str(round(normal*100, 2))+","+str(round(covid*100, 2)) return None if __name__ == '__main__': app.run(debug=False) ```
{ "source": "aakashbajaj/Youngun-Campaign-Tracking", "score": 2 }
#### File: apps/authentication/tasks.py ```python import boto3 from django.conf import settings from datetime import timedelta from django.utils import timezone from django_q.tasks import async_task, schedule from django_q.models import Schedule def send_otp_mail(email, otptkn): msg = "Hey!\n\nThe OTP for your login on Youngun Campaign Tracker is {0}".format( otptkn) subj = "Login OTP for Youngun Portal" opts = {'group': "otp-email"} async_task('django.core.mail.send_mail', subj, msg, "<EMAIL>", [email], q_options=opts) def senf_otp_sms(mobile, otptkn): client = boto3.client( "sns", aws_access_key_id=settings.AWS_ACCESS_KEY, aws_secret_access_key=settings.AWS_SECRET, region_name="" ) client.publish( PhoneNumber=mobile, msg="Youngun Portal OTP: {0}".format(otptkn), MessageAttributes={ 'AWS.SNS.SMS.SenderID': { 'DataType': 'String', 'StringValue': settings.SENDER_ID } } ) ``` #### File: apps/authentication/views.py ```python import random import re from datetime import datetime import pytz from rest_framework import status from rest_framework.generics import RetrieveAPIView from rest_framework.views import APIView from rest_framework.permissions import IsAuthenticated, AllowAny from rest_framework.response import Response from .tasks import send_otp_mail from .models import User from .serializers import UserInfoSerializer from .renderers import UserInfoJSONRenderer from youngun.apps.core.models import MasterLogger # Create your views here. def generate_otp(): return random.randint(100000, 999999) def generate_tempid(): return str(random.randint(1000, 9999)) class UserInfoRetrieveAPIView(RetrieveAPIView): permission_classes = (IsAuthenticated, ) serializer_class = UserInfoSerializer renderer_classes = (UserInfoJSONRenderer, ) def retrieve(self, request, *args, **kwargs): serializer = self.serializer_class(request.user) m_logger, created = MasterLogger.objects.get_or_create( user=request.user) if created: m_logger.email = request.user.email m_logger.login_cnt = m_logger.login_cnt + 1 dt_str = datetime.now(pytz.timezone('Asia/Kolkata') ).strftime("%Y-%m-%d %H:%M:%S") m_logger.history_log = dt_str + "\n" + m_logger.history_log m_logger.last_login = datetime.now(pytz.timezone('Asia/Kolkata')) m_logger.save() return Response(serializer.data, status=status.HTTP_200_OK) class InitiateLogin(APIView): permission_classes = (AllowAny, ) def post(self, request): try: email = request.data["email"].lower() except KeyError: return Response({"response": "Invalid Email"}, status.HTTP_400_BAD_REQUEST) # verify email exists try: user_obj = User.objects.get(email=email) except User.DoesNotExist: return Response({"response": "No user found with provided email"}, status.HTTP_401_UNAUTHORIZED) # generate temp id for user # generate OTP # authInProgress = true tempid = generate_tempid() tempotp = generate_otp() if email == "<EMAIL>": tempid = "1111" tempotp = 836882 user_obj.tempid = tempid user_obj.tempotp = tempotp user_obj.authInProgress = True user_obj.last_requested = datetime.now(pytz.timezone('Asia/Kolkata')) # save instance user_obj.save() # send sms, mail send_otp_mail(user_obj.email, tempotp) # return tempid, masked email/mobile masked_email = re.sub(r"([A-Za-z0-9])(.*)@([A-Za-z])(.*)\.(.*)$", lambda x: r"{}{}@{}{}.{}".format( x.group(1), "*"*len(x.group(2)), x.group(3), "*"*len(x.group(4)), x.group(5)), user_obj.email) masked_mobile = None if not user_obj.mobile == "": masked_mobile = user_obj.mobile[3:5] + \ "*******" + user_obj.mobile[-2:] payload = { "tempid": tempid, "masked_email": masked_email, "masked_mobile": masked_mobile } return Response(payload, status=status.HTTP_200_OK) class VerifyLogin(APIView): permission_classes = (AllowAny, ) def post(self, request): try: tempid = request.data["tempid"] inpotp = request.data["inpotp"] except KeyError: return Response({"response": "Invalid Data"}, status.HTTP_400_BAD_REQUEST) # get user obj from temp id and email try: user_obj = User.objects.get(tempid=tempid) except User.DoesNotExist: return Response({"response": "Not Allowed. Invalid Request"}, status.HTTP_400_BAD_REQUEST) # verify if otp matches if inpotp == user_obj.tempotp and user_obj.authInProgress == True: # authInProgress = false # destroy otp and tempid user_obj.authInProgress = False user_obj.tempid = None user_obj.tempotp = None user_obj.save() else: return Response({"response": "Incorrect OTP"}, status.HTTP_401_UNAUTHORIZED) # return token payload = { "token": user_obj.token_string } return Response(payload, status=status.HTTP_200_OK) ``` #### File: apps/campaigns/tasks.py ```python import requests import re from django_q.tasks import async_task, schedule from django.db.models import Count, Sum from youngun.apps.campaigns.models import Campaign from youngun.apps.content.models import Post from youngun.apps.content.models import InstagramStory, FacebookStory, TwitterStory # def update_v2_active_camp_metrics(): # opts = {'group': 'update_v2_active_camp_metrics'} # for camp in Campaign.objects.all(): # if camp.status == "active" and camp.campaign_module == "v2": # async_task("youngun.apps.content.tasks.update_v2_active_camp_metrics", # camp.pk, camp.name, q_options=opts) def trigger_update_campaign_report_metrics(): opts = {'group': 'update_campaign_report_metrics'} for camp in Campaign.objects.all(): if camp.status == "active" and camp.campaign_module == "v2": async_task("youngun.apps.campaigns.tasks.update_campaign_report_metrics", camp.pk, camp.name, q_options=opts) def update_all_active_camp_engagement_data(): # opts = {'group': 'update_all_active_camp_metrics'} for camp in Campaign.objects.all(): if camp.status == "active": camp_reach = camp.posts.all().aggregate(Sum('post_reach'))[ 'post_reach__sum'] + camp.posts.all().aggregate(Sum('total_views'))['total_views__sum'] camp_engagement = camp.posts.all().aggregate( Sum('post_engagement'))['post_engagement__sum'] if camp.posts.filter(platform="in").count() > 0: in_reach = camp.posts.filter(platform="in").aggregate(Sum('post_reach'))[ 'post_reach__sum'] + camp.posts.filter(platform="in").aggregate(Sum('total_views'))['total_views__sum'] in_engagement = camp.posts.filter(platform="in").aggregate( Sum('post_engagement'))['post_engagement__sum'] camp.in_engagement = in_engagement camp.in_reach = in_reach if camp.posts.filter(platform="tw").count() > 0: tw_reach = camp.posts.filter(platform="tw").aggregate(Sum('post_reach'))[ 'post_reach__sum'] + camp.posts.filter(platform="tw").aggregate(Sum('total_views'))['total_views__sum'] tw_engagement = camp.posts.filter(platform="tw").aggregate( Sum('post_engagement'))['post_engagement__sum'] camp.tw_engagement = tw_engagement camp.tw_reach = tw_reach if camp.posts.filter(platform="fb").count() > 0: fb_reach = camp.posts.filter(platform="fb").aggregate(Sum('post_reach'))[ 'post_reach__sum'] + camp.posts.filter(platform="fb").aggregate(Sum('total_views'))['total_views__sum'] fb_engagement = camp.posts.filter(platform="fb").aggregate( Sum('post_engagement'))['post_engagement__sum'] camp.fb_engagement = fb_engagement camp.fb_reach = fb_reach camp.total_post_engagement = camp_engagement camp.total_campaign_reach = camp_reach camp.num_posts = camp.posts.all().count() camp.save() def update_campaign_report_metrics(camp_pk, camp_name): print(f"Processing {camp_name}") camp = Campaign.objects.get(pk=camp_pk) camp.num_posts = camp.posts.all().count() engagement = 0 shares = 0 saves = 0 video_views = 0 reach = 0 for post in camp.posts.all(): engagement = engagement + post.post_engagement shares = shares + post.post_shares saves = saves + post.post_saves video_views = video_views + post.total_views reach = reach + post.post_reach camp.post_engagement = engagement camp.post_shares = shares camp.post_saves = saves camp.video_views = video_views camp.post_reach = reach camp.save() return f"Success: {camp.name}" def bulk_upload_csv(posts_list, campaign_id): opts = {'group': "csv-bulk-post-upload"} async_task('youngun.apps.campaigns.tasks.upload_posts_lists', posts_list, campaign_id, q_options=opts) def upload_posts_lists(posts_list, campaign_id): cnt = 0 camp_to_add = Campaign.objects.get(id=campaign_id) for post in posts_list: try: p_obj, created = Post.objects.get_or_create( campaign=camp_to_add, url=post) if created: cnt = cnt + 1 if "facebook.com" in post: p_obj.platform = "fb" if "/video" in post: p_obj.post_type = "video" else: p_obj.post_type = "post" elif "instagram.com" in post: p_obj.platform = "in" p_obj.embed_code = "" elif "twitter.com" in post: p_obj.platform = "tw" p_obj.embed_code = "" p_obj.save() except: print("Failed to add " + post + " in " + str(camp_to_add.name)) return posts_list # def update_live_cnts(): # for camp in Campaign.objects.all(): # if camp: # camp.live_fb_posts = camp.get_facebook_posts.count() # camp.live_in_posts = camp.get_instagram_posts.count() # camp.live_tw_posts = camp.get_twitter_posts.count() # camp.live_fb_stories = camp.get_facebook_stories.count() # camp.live_in_stories = camp.get_instagram_stories.count() # camp.live_tw_stories = camp.get_twitter_stories.count() # camp.save() def fetch_campaign_stories(): for camp in Campaign.objects.all(): if camp: try: reg_str = r'\["(https:\/\/lh3\.googleusercontent\.com\/[a-zA-Z0-9\-_]*)"' resp = requests.get(camp.in_stories_google_photos_album_url) resp_str = resp.text matches = re.findall(reg_str, resp_str) camp.get_instagram_stories.delete() for photo_url in matches: obj, new_create = InstagramStory.objects.get_or_create( campaign=camp, url=photo_url) resp = requests.get(camp.fb_stories_google_photos_album_url) resp_str = resp.text matches = re.findall(reg_str, resp_str) camp.get_facebook_stories.delete() for photo_url in matches: obj, new_create = FacebookStory.objects.get_or_create( campaign=camp, url=photo_url) resp = requests.get(camp.tw_stories_google_photos_album_url) resp_str = resp.text matches = re.findall(reg_str, resp_str) camp.get_twitter_stories.delete() for photo_url in matches: obj, new_create = TwitterStory.objects.get_or_create( campaign=camp, url=photo_url) except Exception as e: print(str(e)) ``` #### File: helpers/graphapi/iginsights.py ```python import requests from django.conf import settings def get_ig_media_insights_data(media_id, media_type): access_token = settings.INSTA_GRAPH_LL_TOKEN metrics = "" if media_type == "a": metrics = "carousel_album_engagement,carousel_album_impressions,carousel_album_reach,carousel_album_saved,carousel_album_video_views" elif media_type == "v": metrics = "engagement,video_views,saved,impressions,reach" elif media_type == "p": metrics = "engagement,saved,impressions,reach" params = { "metric": metrics, } headers = { "Authorization": f"Bearer {access_token}" } host_url = f"https://graph.facebook.com/v8.0/{media_id}/insights" data = requests.get(host_url, params=params, headers=headers) resp = data.json() print(resp) data = dict() for metric in resp["data"]: data[metric["name"]] = metric["values"][0]["value"] if media_type == "a": cleaned_data = dict() for k in data: if k.startswith("carousel_album_"): cleaned_data[k[len("carousel_album_"):]] = data[k] else: cleaned_data[k] = data[k] # del data[k] data = cleaned_data try: body = data return body except Exception as e: return {"error": str(e)} ``` #### File: content/helpers/tw_post.py ```python import requests import json from datetime import datetime, timedelta import pytz import re import dateutil.parser from pprint import pprint from django.conf import settings class TwitterPostScraper: def __init__(self, post_link, resp): self.resp = resp self.data = {"link": post_link} def get_username(self): return self.resp.get('includes').get('users')[0].get('username') def get_profile_img_url(self): return self.resp.get('includes').get('users')[0].get('profile_image_url') def get_account_name(self): return self.resp.get('includes').get('users')[0].get('name') def get_timestamp(self): dt = dateutil.parser.parse(self.resp.get('data')[0].get('created_at')) return datetime.strftime(dt.astimezone(pytz.timezone("Asia/Kolkata")), "%Y-%m-%d %H:%M:%S") def get_caption(self): return self.resp['data'][0].get('text') def get_likes(self): return self.resp['data'][0].get('public_metrics').get('like_count') def get_retweet(self): return self.resp['data'][0].get('public_metrics').get('retweet_count') def get_replies(self): return self.resp['data'][0].get('public_metrics').get('reply_count') def media_exists(self): return self.resp.get('includes').get('media') def get_media(self): url = [] if self.resp.get('includes').get('media')[0].get('type') == 'video': views = self.resp.get('includes').get('media')[0].get( 'public_metrics').get('view_count') media_obj = { 'media_url': self.resp.get('includes').get('media')[0].get('preview_image_url'), 'media_key': self.resp.get('includes').get('media')[0].get('media_key'), 'is_video': True, 'view_count': views } url.append(media_obj) else: views = None for i in self.resp.get('includes').get('media'): media_obj = { 'media_url': i.get('url'), 'media_key': i.get('media_key'), 'is_video': False } url.append(media_obj) return views, url def get_data(self): X = { 'username': self.get_username(), 'account_name': self.get_account_name(), 'profile_image_url': self.get_profile_img_url(), 'timestamp': self.get_timestamp(), 'likes': self.get_likes(), 'caption': self.get_caption(), 'comments': self.get_replies(), 'retweets': self.get_retweet(), 'total_views': self.get_media()[0] if self.media_exists() else None, 'urls': self.get_media()[1] if self.media_exists() else [], } self.data = {**self.data, **X} return self.data def tw_headers_and_params(): headers = { 'Authorization': 'Bearer ' + settings.TWITTER_AUTH_TOKEN, } params = ( ('expansions', 'author_id,attachments.media_keys'), ('tweet.fields', 'public_metrics,created_at'), ('user.fields', 'username,verified,profile_image_url'), ('media.fields', 'public_metrics,preview_image_url,url'), ) return headers, params def get_tw_post_details(post_link): num = int(post_link.strip('/').split('/')[-1]) try: resp = requests.get(f'https://api.twitter.com/2/tweets?ids={num}', headers=tw_headers_and_params()[ 0], params=tw_headers_and_params()[1]).json() # pprint(resp) tw = TwitterPostScraper(post_link, resp) data = tw.get_data() return {"error": None, "result": data} except Exception as e: # print(e) return {"error": "An error occurred!!", "result": None, "link": post_link, "msg": str(e)} ``` #### File: content/mixins/campaignlistfilter.py ```python from django.contrib.admin import SimpleListFilter from youngun.apps.campaigns.models import Campaign class CampaignNameFilter(SimpleListFilter): title = 'Campaign' parameter_name = 'campaign__name' def lookups(self, request, model_admin): qs = Campaign.objects.all() if not request.user.is_superuser or request.user.groups.filter(name="MasterAdmin").exists(): qs = qs.filter(staff_profiles=request.user.profile) output_list = [(camp.id, camp.name) for camp in qs] return output_list def queryset(self, request, queryset): if self.value() is None: return queryset return queryset.filter(campaign__id=self.value()) ``` #### File: apps/core/models.py ```python from django.db import models from youngun.apps.authentication.models import User from django.utils.translation import gettext as _ # Create your models here. class MasterLogger(models.Model): user = models.OneToOneField("authentication.User", verbose_name=_( "User"), on_delete=models.CASCADE, related_name="masterlogger") email = models.EmailField(_("User Email"), max_length=254) # full_name = models.CharField( # _("User Name"), max_length=255, default="", blank=True) login_cnt = models.IntegerField(_("Total Login Count"), default=0) last_login = models.DateTimeField( _("Last Login"), auto_now=False, auto_now_add=False, blank=True, null=True) history_log = models.TextField(_("Login History")) def __str__(self): return self.email # class LoginLogger(models.Model): # master_user = models.ForeignKey(MasterLogger, verbose_name=_( # "User Master Logger"), on_delete=models.DO_NOTHING) # login_time = models.DateTimeField(_("Login Time"), auto_now_add=True) # class CampaignLogger(models.Model): ``` #### File: apps/usermanager/forms.py ```python from django import forms from django.contrib import admin from youngun.apps.authentication.models import User from django.contrib.auth.forms import ReadOnlyPasswordHashField # class UserCreationForm(forms.ModelForm): # password1 = forms.CharField(label='Password', widget=forms.PasswordInput) # password2 = forms.CharField( # label='Password confirmation', widget=forms.PasswordInput) # class Meta: # model = User # fields = ('email', 'password1', 'password2', # 'is_active', 'is_superuser') # def clean_password2(self): # # Check that the two password entries match # password1 = self.cleaned_data.get("password1") # password2 = self.cleaned_data.get("password2") # if password1 and password2 and password1 != password2: # raise forms.ValidationError("Passwords don't match") # return password2 # def save(self, commit=True): # # Save the provided password in hashed format # user = super().save(commit=False) # user.set_password(self.cleaned_data["<PASSWORD>"]) # if commit: # user.save() # return user # class UserChangeForm(forms.ModelForm): # password = forms.CharField( # label='Password (only edit if you want to change)', widget=forms.PasswordInput, required=False) # class Meta: # model = User # fields = ('email', 'password', # 'is_active', 'is_staff', 'is_superuser', 'groups') # def clean_password(self): # print(self.initial) # return self.cleaned_data.get("password") # def save(self, commit=True): # # Save the provided password in hashed format # user = super().save(commit=False) # if not self.cleaned_data["password"] == "": # user.set_password(self.cleaned_data["password"]) # if commit: # user.save() # return user class StaffUserCreationForm(forms.ModelForm): password1 = forms.CharField(label='Password', widget=forms.PasswordInput) password2 = forms.CharField( label='Password confirmation', widget=forms.PasswordInput) class Meta: model = User fields = ('email', 'password1', 'password2', 'is_active', 'is_superuser') def clean_password2(self): # Check that the two password entries match password1 = self.cleaned_data.get("password1") password2 = self.cleaned_data.get("password2") if password1 and password2 and password1 != password2: raise forms.ValidationError("Passwords don't match") return password2 def save(self, commit=True): # Save the provided password in hashed format user = super().save(commit=False) user.set_password(self.cleaned_data["password1"]) user.is_staff = True if commit: user.save() return user class StaffUserChangeForm(forms.ModelForm): password = forms.CharField( label='Password (only edit if you want to change)', widget=forms.PasswordInput, required=False) class Meta: model = User fields = ('email', 'password', 'is_active', 'is_staff', 'is_superuser', 'groups') def clean_password(self): print(self.initial) return self.cleaned_data.get("password") def save(self, commit=True): # Save the provided password in hashed format user = super().save(commit=False) if not self.cleaned_data["password"] == "": user.set_password(self.cleaned_data["password"]) user.is_staff = True if commit: user.save() return user class ClientUserCreationForm(forms.ModelForm): password1 = forms.CharField(label='Password', widget=forms.PasswordInput) password2 = forms.CharField( label='Password confirmation', widget=forms.PasswordInput) class Meta: model = User fields = ('email', 'password1', 'password2', 'is_active', 'is_superuser') def clean_password2(self): # Check that the two password entries match password1 = self.cleaned_data.get("password1") password2 = self.cleaned_data.get("password2") if password1 and password2 and password1 != password2: raise forms.ValidationError("Passwords don't match") return password2 def save(self, commit=True): # Save the provided password in hashed format user = super().save(commit=False) user.set_password(self.cleaned_data["password1"]) user.is_staff = False if commit: user.save() return user class ClientUserChangeForm(forms.ModelForm): password = forms.CharField( label='Password (only edit if you want to change)', widget=forms.PasswordInput, required=False) class Meta: model = User fields = ('email', 'password', 'is_active', 'is_staff', 'is_superuser', 'groups') def clean_password(self): print(self.initial) return self.cleaned_data.get("password") def save(self, commit=True): # Save the provided password in hashed format user = super().save(commit=False) if not self.cleaned_data["password"] == "": user.set_password(self.cleaned_data["password"]) user.is_staff = False if commit: user.save() return user ```
{ "source": "aakashbilly/python3-ransomeware", "score": 3 }
#### File: python3-ransomeware/ransomeeewareee/dec.py ```python from cryptography.fernet import Fernet from loadkey import load_key import os def decrypt(filename,key): f = Fernet(key) with open(filename,"rb") as content: content = content.read() decrypted_data = f.decrypt(content) with open(filename+".dec","wb") as content: content.write(decrypted_data) # path = "/home/pi/Documents/ransomware/text.txt.enc" # key = load_key() # decrypt(path,key) ``` #### File: python3-ransomeware/ransomeeewareee/loadkey.py ```python def load_key(): with open("key.key","rb") as key: key = key.read() return key ```
{ "source": "Aakash-Devadiga/Machine-Learning-Model-Scoring-and-Monitoring", "score": 3 }
#### File: Machine-Learning-Model-Scoring-and-Monitoring/src/ingestion.py ```python import os import sys import logging import pandas as pd from datetime import datetime from config import DATA_PATH, INPUT_FOLDER_PATH logging.basicConfig(stream=sys.stdout, level=logging.INFO) def merge_multiple_dataframe(): """ Function for data ingestion. Check for datasets, combine them together, drops duplicates and write metadata ingestedfiles.txt and ingested data to finaldata.csv """ df = pd.DataFrame() file_names = [] logging.info(f"Reading files from {INPUT_FOLDER_PATH}") for file in os.listdir(INPUT_FOLDER_PATH): file_path = os.path.join(INPUT_FOLDER_PATH, file) df_tmp = pd.read_csv(file_path) file = os.path.join(*file_path.split(os.path.sep)[-3:]) file_names.append(file) df = df.append(df_tmp, ignore_index=True) logging.info("Dropping duplicates") df = df.drop_duplicates().reset_index(drop=1) logging.info("Saving ingested metadata") with open(os.path.join(DATA_PATH, 'ingestedfiles.txt'), "w") as file: file.write( f"Ingestion date: {datetime.now().strftime('%d/%m/%Y %H:%M:%S')}\n") file.write("\n".join(file_names)) logging.info("Saving ingested data") df.to_csv(os.path.join(DATA_PATH, 'finaldata.csv'), index=False) if __name__ == '__main__': logging.info("Running ingestion.py") merge_multiple_dataframe() ``` #### File: Machine-Learning-Model-Scoring-and-Monitoring/src/training.py ```python import os import sys import pickle import logging import pandas as pd from sklearn.linear_model import LogisticRegression from config import MODEL_PATH, DATA_PATH logging.basicConfig(stream=sys.stdout, level=logging.INFO) def train_model(): """ Train logistic regression model on ingested data and and saves the model """ logging.info("Loading and preparing finaldata.csv") data_df = pd.read_csv(os.path.join(DATA_PATH, 'finaldata.csv')) y_df = data_df.pop('exited') X_df = data_df.drop(['corporation'], axis=1) model = LogisticRegression( C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='auto', n_jobs=None, penalty='l2', random_state=0, solver='liblinear', tol=0.0001, verbose=0, warm_start=False) logging.info("Training model") model.fit(X_df, y_df) logging.info("Saving trained model") pickle.dump( model, open( os.path.join( MODEL_PATH, 'trainedmodel.pkl'), 'wb')) if __name__ == '__main__': logging.info("Running training.py") train_model() ```
{ "source": "Aakashdgupta/Python-How-To", "score": 4 }
#### File: Algorithms/Searching/binarySearch_ittr.py ```python def binarySearch(array,leftIndex,rightIndex,toFind): # a =[1,2,3,4,5,6,7,8] # print(binarySearch(a,0,7,5)) # 0 < 7 # mid = 0 + (7 -0)//2 = 3 # a[mid] = 4 < 5 # left = 4 #a = [5,6,7,8] # repeat while leftIndex <= rightIndex: midIndex = leftIndex + (rightIndex - leftIndex)//2 if array[midIndex]==toFind: return toFind elif array[midIndex]>toFind: rightIndex = midIndex - 1 else: leftIndex = midIndex + 1 return -1 a =[1,2,3,4,5,6,7,8] print(binarySearch(a,0,7,5)) ``` #### File: Datastructures/Tree/BST.py ```python class node: def __init__(self, key, name="no name yet"): self.key = key self.name = name self.left = None self.right = None # bst class by default root node is set to none class BST: def __init__(self): self.root = None # method for in order traversal # gives visit nodes from smaller to greater def inorderTraversal(self, currentNode): # method takes start node # to start traversal currentNode if currentNode != None: # if current node is not none # call inorderTraversal to its left child # print currentNodes key # call inorderTraversal to its right child self.inorderTraversal(currentNode.left) print(currentNode.key) self.inorderTraversal(currentNode.right) # similar to inorder traversal # just we print key before calling method recursiveliy # to both of its child def preorderTraversal(self, currentNode): if currentNode != None: print(currentNode.key) self.preorderTraversal(currentNode.left) self.preorderTraversal(currentNode.right) # similar to in order traversal just # we print key at last after calling # method recursively to both of its child def postorderTraversal(self, currentNode): if currentNode != None: self.postorderTraversal(currentNode.left) self.postorderTraversal(currentNode.right) print(currentNode.key) # method to add node def addNodes(self, key): # create new node using key passed n = node(key) # if root is none which means tree is empty # set n as root if self.root == None: self.root = n # else traverse tree to find appropriate position for # node else: # at start currentNode = root currentNode = self.root # while current node is true while currentNode: # set parent to current node parent = currentNode # and if key of node to be added is smaller # than current node # set currentnode to its left child # if current node is none # set parents left to newnode # and return if key < currentNode.key: currentNode = currentNode.left if currentNode == None: parent.left = n return # and if key of node to be added is greater # than current node # set currentnode to its right child # if current node is none # set parents right to newnode # and return else: currentNode = currentNode.right if currentNode == None: parent.right = n return def remove(self, key): currentNode = self.root parent = self.root isAtLeft = True # Finding Phase while currentNode.key != key: parent = currentNode if key < currentNode.key: isAtLeft = True currentNode = currentNode.left else: isAtLeft = False currentNode = currentNode.right # If its not found if currentNode == None: return False # Removing Phase behind # If item to be removed found # and have no children # ( Leaf Format ) if currentNode.left == None and currentNode.right == None: # if its root node if currentNode == self.root: # delete root self.root = None # if found node is not root # and its a left child elif isAtLeft: # delete found node parent.left = None else: # if its not a left child # its a right child # delete the node parent.right = None # if found node has a left child # but no right child elif currentNode.right == None: # if it's root nose if currentNode == self.root: # delete it and replace # it with its left child self.root = currentNode.left # else if it's a left child elif isAtLeft: parent.left = currentNode.left # else it's a right child else: parent.right = currentNode.left # else if it has a right child # but no left child elif currentNode.left == None: # if it's root nose if currentNode == self.root: # delete it and replace # it with its left child self.root = currentNode.right # else if it's a left child elif isAtLeft: parent.right = currentNode.right # else it's a right child else: parent.right = currentNode.left # else have both left and right child else: replacement = self.getReplacement(currentNode) # if it's root if currentNode == self.root: self.root = replacement # if it's a left child elif isAtLeft: parent.left = replacement else: parent.right = replacement # finally set replacements # left child # to current left child replacement.left = currentNode.left return True def getReplacement(self, toReplace): replacementParent = toReplace replacement = toReplace cur = toReplace.right while cur != None: replacementParent = replacement replacement = cur cur = cur.left if replacement != toReplace.right: replacementParent.left = replacement.right replacement.right = toReplace.right return replacement bst = BST() bst.addNodes(1) bst.addNodes(5) bst.addNodes(3) bst.addNodes(7) bst.remove(5) bst.addNodes(10) bst.addNodes(4) bst.inorderTraversal(bst.root) print() print() bst.preorderTraversal(bst.root) print() print() bst.postorderTraversal(bst.root) ```
{ "source": "Aakash-Ez/indicLP", "score": 2 }
#### File: indicLP/indicLP/preprocessing.py ```python import os os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" from torchtext.data.functional import sentencepiece_tokenizer from torchtext.data.functional import load_sp_model from gensim.models import Word2Vec import snowballstemmer import pickle import os.path import re punctuation = """[,.;@#?!&$।|()]+\ *""" package_directory = os.path.dirname(os.path.abspath(__file__)) supported_lang = ["hi","ta"] langDict = {"hi":"hindi","ta":"tamil"} class TextNormalizer: def __init__(self, lang = "hi"): assert lang in supported_lang, "Language is not supported. Currently we support the following: "+str(supported_lang) self.lang = lang self.stemmer = snowballstemmer.stemmer(langDict[lang]) def tokenizer(self, inp_list, stem = True): inp = [re.sub(punctuation, " ", i) for i in inp_list] # Fetch the model from assets file = os.path.join(package_directory, "assets","tokenizer_models",self.lang,"token.model") sp_model = load_sp_model(file) sp_tokens_generator = sentencepiece_tokenizer(sp_model) tokens = list(sp_tokens_generator(inp)) if not stem: return tokens out = [] for i in tokens: out.append(self.stemmer.stemWords(i)) return out def stem(self, word): assert type(word) == str, "ERROR: Expected a "+str(str)+" but received a "+str(type(word)) return self.stemmer.stemWord(word) def remove_stop_words(self,wordList): file = open(os.path.join(package_directory, "assets","stopwords",self.lang,"stopwords.pkl"),'rb') stopWords = pickle.load(file) file.close() out = [i for i in wordList if i not in stopWords] return out class Embedding: def __init__(self, lang = "hi"): assert lang in supported_lang, "Language is not supported. Currently we support the following: "+str(supported_lang) self.lang = lang self.file_path = os.path.join(package_directory, "assets","embed_models","word2vec."+lang+".model") self.model = Word2Vec.load(self.file_path) self.stemmer = snowballstemmer.stemmer(langDict[lang]) def get_vector(self, word): assert type(word) == str, "ERROR: Expected a "+str(str)+" but received a "+str(type(word)) word = word.replace("▁","") try: return self.model.wv[word] except KeyError: try: return self.model.wv[self.stemmer.stemWord(word)] except: raise KeyError("The given word is not in vocabulary.") def get_closest(self, word, n = 10): assert type(word) == str, "ERROR: Expected a "+str(str)+" but received a "+str(type(word)) assert type(n) == int, "ERROR: Expected a "+str(int)+" but received a "+str(type(n)) word = word.replace("▁","") try: return self.model.wv.most_similar(word, topn=n) except KeyError: try: return self.model.wv.most_similar(self.stemmer.stemWord(word), topn=n) except: raise KeyError("The given word is not in vocabulary.") ```
{ "source": "aakashgandham-nucleussoftware/ansible-lint", "score": 3 }
#### File: lib/ansiblelint/errors.py ```python class Match(object): """Rule violation detected during linting.""" def __init__(self, linenumber, line, filename, rule, message=None): """Initialize a Match instance.""" self.linenumber = linenumber self.line = line self.filename = filename self.rule = rule self.message = message or rule.shortdesc def __repr__(self): """Return a Match instance representation.""" formatstr = u"[{0}] ({1}) matched {2}:{3} {4}" return formatstr.format(self.rule.id, self.message, self.filename, self.linenumber, self.line) ``` #### File: lib/ansiblelint/utils.py ```python from collections import OrderedDict import glob import importlib import logging import os from pathlib import Path import pprint import subprocess import yaml from yaml.composer import Composer from yaml.representer import RepresenterError from ansible import constants from ansible.errors import AnsibleError from ansible.errors import AnsibleParserError from ansible.parsing.dataloader import DataLoader from ansible.parsing.mod_args import ModuleArgsParser from ansible.parsing.splitter import split_args from ansible.parsing.yaml.constructor import AnsibleConstructor from ansible.parsing.yaml.loader import AnsibleLoader from ansible.parsing.yaml.objects import AnsibleSequence from ansible.plugins.loader import module_loader from ansible.template import Templar # ansible-lint doesn't need/want to know about encrypted secrets, so we pass a # string as the password to enable such yaml files to be opened and parsed # successfully. DEFAULT_VAULT_PASSWORD = 'x' PLAYBOOK_DIR = os.environ.get('ANSIBLE_PLAYBOOK_DIR', None) INVALID_CONFIG_RC = 2 ANSIBLE_FAILURE_RC = 3 _logger = logging.getLogger(__name__) def initialize_logger(level=0): """Set up the global logging level based on the verbosity number.""" VERBOSITY_MAP = { 0: logging.NOTSET, 1: logging.INFO, 2: logging.DEBUG } handler = logging.StreamHandler() formatter = logging.Formatter('%(levelname)-8s %(message)s') handler.setFormatter(formatter) logger = logging.getLogger(__package__) logger.addHandler(handler) # Unknown logging level is treated as DEBUG logging_level = VERBOSITY_MAP.get(level, logging.DEBUG) logger.setLevel(logging_level) # Use module-level _logger instance to validate it _logger.debug("Logging initialized to level %s", logging_level) def parse_yaml_from_file(filepath): dl = DataLoader() if hasattr(dl, 'set_vault_password'): dl.set_vault_password(DEFAULT_VAULT_PASSWORD) return dl.load_from_file(filepath) def path_dwim(basedir, given): dl = DataLoader() dl.set_basedir(basedir) return dl.path_dwim(given) def ansible_template(basedir, varname, templatevars, **kwargs): dl = DataLoader() dl.set_basedir(basedir) templar = Templar(dl, variables=templatevars) return templar.template(varname, **kwargs) LINE_NUMBER_KEY = '__line__' FILENAME_KEY = '__file__' VALID_KEYS = [ 'name', 'action', 'when', 'async', 'poll', 'notify', 'first_available_file', 'include', 'include_tasks', 'import_tasks', 'import_playbook', 'tags', 'register', 'ignore_errors', 'delegate_to', 'local_action', 'transport', 'remote_user', 'sudo', 'sudo_user', 'sudo_pass', 'when', 'connection', 'environment', 'args', 'always_run', 'any_errors_fatal', 'changed_when', 'failed_when', 'check_mode', 'delay', 'retries', 'until', 'su', 'su_user', 'su_pass', 'no_log', 'run_once', 'become', 'become_user', 'become_method', FILENAME_KEY, ] BLOCK_NAME_TO_ACTION_TYPE_MAP = { 'tasks': 'task', 'handlers': 'handler', 'pre_tasks': 'task', 'post_tasks': 'task', 'block': 'meta', 'rescue': 'meta', 'always': 'meta', } def load_plugins(directory): result = [] for pluginfile in glob.glob(os.path.join(directory, '[A-Za-z]*.py')): pluginname = os.path.basename(pluginfile.replace('.py', '')) spec = importlib.util.spec_from_file_location(pluginname, pluginfile) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) obj = getattr(module, pluginname)() result.append(obj) return result def tokenize(line): tokens = line.lstrip().split(" ") if tokens[0] == '-': tokens = tokens[1:] if tokens[0] == 'action:' or tokens[0] == 'local_action:': tokens = tokens[1:] command = tokens[0].replace(":", "") args = list() kwargs = dict() nonkvfound = False for arg in tokens[1:]: if "=" in arg and not nonkvfound: kv = arg.split("=", 1) kwargs[kv[0]] = kv[1] else: nonkvfound = True args.append(arg) return (command, args, kwargs) def _playbook_items(pb_data): if isinstance(pb_data, dict): return pb_data.items() elif not pb_data: return [] else: return [item for play in pb_data for item in play.items()] def find_children(playbook, playbook_dir): if not os.path.exists(playbook[0]): return [] if playbook[1] == 'role': playbook_ds = {'roles': [{'role': playbook[0]}]} else: try: playbook_ds = parse_yaml_from_file(playbook[0]) except AnsibleError as e: raise SystemExit(str(e)) results = [] basedir = os.path.dirname(playbook[0]) items = _playbook_items(playbook_ds) for item in items: for child in play_children(basedir, item, playbook[1], playbook_dir): if "$" in child['path'] or "{{" in child['path']: continue valid_tokens = list() for token in split_args(child['path']): if '=' in token: break valid_tokens.append(token) path = ' '.join(valid_tokens) results.append({ 'path': path_dwim(basedir, path), 'type': child['type'] }) return results def template(basedir, value, vars, fail_on_undefined=False, **kwargs): try: value = ansible_template(os.path.abspath(basedir), value, vars, **dict(kwargs, fail_on_undefined=fail_on_undefined)) # Hack to skip the following exception when using to_json filter on a variable. # I guess the filter doesn't like empty vars... except (AnsibleError, ValueError, RepresenterError): # templating failed, so just keep value as is. pass return value def play_children(basedir, item, parent_type, playbook_dir): delegate_map = { 'tasks': _taskshandlers_children, 'pre_tasks': _taskshandlers_children, 'post_tasks': _taskshandlers_children, 'block': _taskshandlers_children, 'include': _include_children, 'import_playbook': _include_children, 'roles': _roles_children, 'dependencies': _roles_children, 'handlers': _taskshandlers_children, 'include_tasks': _include_children, 'import_tasks': _include_children, } (k, v) = item play_library = os.path.join(os.path.abspath(basedir), 'library') _load_library_if_exists(play_library) if k in delegate_map: if v: v = template(os.path.abspath(basedir), v, dict(playbook_dir=PLAYBOOK_DIR or os.path.abspath(basedir)), fail_on_undefined=False) return delegate_map[k](basedir, k, v, parent_type) return [] def _include_children(basedir, k, v, parent_type): # handle include: filename.yml tags=blah (command, args, kwargs) = tokenize("{0}: {1}".format(k, v)) result = path_dwim(basedir, args[0]) if not os.path.exists(result) and not basedir.endswith('tasks'): result = path_dwim(os.path.join(basedir, '..', 'tasks'), v) return [{'path': result, 'type': parent_type}] def _taskshandlers_children(basedir, k, v, parent_type): results = [] for th in v: if 'include' in th: append_children(th['include'], basedir, k, parent_type, results) elif 'include_tasks' in th: append_children(th['include_tasks'], basedir, k, parent_type, results) elif 'import_playbook' in th: append_children(th['import_playbook'], basedir, k, parent_type, results) elif 'import_tasks' in th: append_children(th['import_tasks'], basedir, k, parent_type, results) elif 'include_role' in th or 'import_role' in th: th = normalize_task_v2(th) module = th['action']['__ansible_module__'] if "name" not in th['action']: raise RuntimeError( "Failed to find required 'name' key in %s" % module) if not isinstance(th['action']["name"], str): raise RuntimeError( "Value assigned to 'name' key on '%s' is not a string." % module) results.extend(_roles_children(basedir, k, [th['action'].get("name")], parent_type, main=th['action'].get('tasks_from', 'main'))) elif 'block' in th: results.extend(_taskshandlers_children(basedir, k, th['block'], parent_type)) if 'rescue' in th: results.extend(_taskshandlers_children(basedir, k, th['rescue'], parent_type)) if 'always' in th: results.extend(_taskshandlers_children(basedir, k, th['always'], parent_type)) return results def append_children(taskhandler, basedir, k, parent_type, results): # when taskshandlers_children is called for playbooks, the # actual type of the included tasks is the section containing the # include, e.g. tasks, pre_tasks, or handlers. if parent_type == 'playbook': playbook_section = k else: playbook_section = parent_type results.append({ 'path': path_dwim(basedir, taskhandler), 'type': playbook_section }) def _roles_children(basedir, k, v, parent_type, main='main'): results = [] for role in v: if isinstance(role, dict): if 'role' in role or 'name' in role: if 'tags' not in role or 'skip_ansible_lint' not in role['tags']: results.extend(_look_for_role_files(basedir, role.get('role', role.get('name')), main=main)) elif k != 'dependencies': raise SystemExit('role dict {0} does not contain a "role" ' 'or "name" key'.format(role)) else: results.extend(_look_for_role_files(basedir, role, main=main)) return results def _load_library_if_exists(path): if os.path.exists(path): module_loader.add_directory(path) def _rolepath(basedir, role): role_path = None possible_paths = [ # if included from a playbook path_dwim(basedir, os.path.join('roles', role)), path_dwim(basedir, role), # if included from roles/[role]/meta/main.yml path_dwim( basedir, os.path.join('..', '..', '..', 'roles', role) ), path_dwim(basedir, os.path.join('..', '..', role)), ] if constants.DEFAULT_ROLES_PATH: search_locations = constants.DEFAULT_ROLES_PATH if isinstance(search_locations, str): search_locations = search_locations.split(os.pathsep) for loc in search_locations: loc = os.path.expanduser(loc) possible_paths.append(path_dwim(loc, role)) possible_paths.append(path_dwim(basedir, '')) for path_option in possible_paths: if os.path.isdir(path_option): role_path = path_option break if role_path: _load_library_if_exists(os.path.join(role_path, 'library')) return role_path def _look_for_role_files(basedir, role, main='main'): role_path = _rolepath(basedir, role) if not role_path: return [] results = [] for th in ['tasks', 'handlers', 'meta']: current_path = os.path.join(role_path, th) for dir, subdirs, files in os.walk(current_path): for file in files: file_ignorecase = file.lower() if file_ignorecase.endswith(('.yml', '.yaml')): thpath = os.path.join(dir, file) results.append({'path': thpath, 'type': th}) return results def rolename(filepath): idx = filepath.find('roles/') if idx < 0: return '' role = filepath[idx + 6:] role = role[:role.find('/')] return role def _kv_to_dict(v): (command, args, kwargs) = tokenize(v) return (dict(__ansible_module__=command, __ansible_arguments__=args, **kwargs)) def normalize_task_v2(task): """Ensure tasks have an action key and strings are converted to python objects.""" result = dict() mod_arg_parser = ModuleArgsParser(task) try: action, arguments, result['delegate_to'] = mod_arg_parser.parse() except AnsibleParserError as e: try: task_info = "%s:%s" % (task[FILENAME_KEY], task[LINE_NUMBER_KEY]) del task[FILENAME_KEY] del task[LINE_NUMBER_KEY] except KeyError: task_info = "Unknown" pp = pprint.PrettyPrinter(indent=2) task_pprint = pp.pformat(task) _logger.critical("Couldn't parse task at %s (%s)\n%s", task_info, e.message, task_pprint) raise SystemExit(ANSIBLE_FAILURE_RC) # denormalize shell -> command conversion if '_uses_shell' in arguments: action = 'shell' del(arguments['_uses_shell']) for (k, v) in list(task.items()): if k in ('action', 'local_action', 'args', 'delegate_to') or k == action: # we don't want to re-assign these values, which were # determined by the ModuleArgsParser() above continue else: result[k] = v result['action'] = dict(__ansible_module__=action) if '_raw_params' in arguments: result['action']['__ansible_arguments__'] = arguments['_raw_params'].split(' ') del(arguments['_raw_params']) else: result['action']['__ansible_arguments__'] = list() if 'argv' in arguments and not result['action']['__ansible_arguments__']: result['action']['__ansible_arguments__'] = arguments['argv'] del(arguments['argv']) result['action'].update(arguments) return result def normalize_task_v1(task): result = dict() for (k, v) in task.items(): if k in VALID_KEYS or k.startswith('with_'): if k == 'local_action' or k == 'action': if not isinstance(v, dict): v = _kv_to_dict(v) v['__ansible_arguments__'] = v.get('__ansible_arguments__', list()) result['action'] = v else: result[k] = v else: if isinstance(v, str): v = _kv_to_dict(k + ' ' + v) elif not v: v = dict(__ansible_module__=k) else: if isinstance(v, dict): v.update(dict(__ansible_module__=k)) else: if k == '__line__': # Keep the line number stored result[k] = v continue else: # Tasks that include playbooks (rather than task files) # can get here # https://github.com/ansible/ansible-lint/issues/138 raise RuntimeError("Was not expecting value %s of type %s for key %s\n" "Task: %s. Check the syntax of your playbook using " "ansible-playbook --syntax-check" % (str(v), type(v), k, str(task))) v['__ansible_arguments__'] = v.get('__ansible_arguments__', list()) result['action'] = v if 'module' in result['action']: # this happens when a task uses # local_action: # module: ec2 # etc... result['action']['__ansible_module__'] = result['action']['module'] del(result['action']['module']) if 'args' in result: result['action'].update(result.get('args')) del(result['args']) return result def normalize_task(task, filename): ansible_action_type = task.get('__ansible_action_type__', 'task') if '__ansible_action_type__' in task: del(task['__ansible_action_type__']) task = normalize_task_v2(task) task[FILENAME_KEY] = filename task['__ansible_action_type__'] = ansible_action_type return task def task_to_str(task): name = task.get("name") if name: return name action = task.get("action") args = " ".join([u"{0}={1}".format(k, v) for (k, v) in action.items() if k not in ["__ansible_module__", "__ansible_arguments__"]] + action.get("__ansible_arguments__")) return u"{0} {1}".format(action["__ansible_module__"], args) def extract_from_list(blocks, candidates): results = list() for block in blocks: for candidate in candidates: if isinstance(block, dict) and candidate in block: if isinstance(block[candidate], list): results.extend(add_action_type(block[candidate], candidate)) elif block[candidate] is not None: raise RuntimeError( "Key '%s' defined, but bad value: '%s'" % (candidate, str(block[candidate]))) return results def add_action_type(actions, action_type): results = list() for action in actions: action['__ansible_action_type__'] = BLOCK_NAME_TO_ACTION_TYPE_MAP[action_type] results.append(action) return results def get_action_tasks(yaml, file): tasks = list() if file['type'] in ['tasks', 'handlers']: tasks = add_action_type(yaml, file['type']) else: tasks.extend(extract_from_list(yaml, ['tasks', 'handlers', 'pre_tasks', 'post_tasks'])) # Add sub-elements of block/rescue/always to tasks list tasks.extend(extract_from_list(tasks, ['block', 'rescue', 'always'])) # Remove block/rescue/always elements from tasks list block_rescue_always = ('block', 'rescue', 'always') tasks[:] = [task for task in tasks if all(k not in task for k in block_rescue_always)] return [task for task in tasks if set(['include', 'include_tasks', 'import_playbook', 'import_tasks']).isdisjoint(task.keys())] def get_normalized_tasks(yaml, file): tasks = get_action_tasks(yaml, file) res = [] for task in tasks: # An empty `tags` block causes `None` to be returned if # the `or []` is not present - `task.get('tags', [])` # does not suffice. if 'skip_ansible_lint' in (task.get('tags') or []): # No need to normalize_task is we are skipping it. continue res.append(normalize_task(task, file['path'])) return res def parse_yaml_linenumbers(data, filename): """Parse yaml as ansible.utils.parse_yaml but with linenumbers. The line numbers are stored in each node's LINE_NUMBER_KEY key. """ def compose_node(parent, index): # the line number where the previous token has ended (plus empty lines) line = loader.line node = Composer.compose_node(loader, parent, index) node.__line__ = line + 1 return node def construct_mapping(node, deep=False): mapping = AnsibleConstructor.construct_mapping(loader, node, deep=deep) if hasattr(node, '__line__'): mapping[LINE_NUMBER_KEY] = node.__line__ else: mapping[LINE_NUMBER_KEY] = mapping._line_number mapping[FILENAME_KEY] = filename return mapping try: import inspect kwargs = {} if 'vault_password' in inspect.getargspec(AnsibleLoader.__init__).args: kwargs['vault_password'] = <PASSWORD>_VAULT_PASSWORD loader = AnsibleLoader(data, **kwargs) loader.compose_node = compose_node loader.construct_mapping = construct_mapping data = loader.get_single_data() except (yaml.parser.ParserError, yaml.scanner.ScannerError) as e: raise SystemExit("Failed to parse YAML in %s: %s" % (filename, str(e))) return data def get_first_cmd_arg(task): try: if 'cmd' in task['action']: first_cmd_arg = task['action']['cmd'].split()[0] else: first_cmd_arg = task['action']['__ansible_arguments__'][0] except IndexError: return None return first_cmd_arg def normpath(path): """ Normalize a path in order to provide a more consistent output. Currently it generates a relative path but in the future we may want to make this user configurable. """ # convertion to string in order to allow receiving non string objects return os.path.relpath(str(path)) def is_playbook(filename): """ Check if the file is a playbook. Given a filename, it should return true if it looks like a playbook. The function is not supposed to raise exceptions. """ # we assume is a playbook if we loaded a sequence of dictionaries where # at least one of these keys is present: playbooks_keys = { "gather_facts", "hosts", "import_playbook", "post_tasks", "pre_tasks", "roles" "tasks", } # makes it work with Path objects by converting them to strings if not isinstance(filename, str): filename = str(filename) try: f = parse_yaml_from_file(filename) except Exception as e: _logger.warning( "Failed to load %s with %s, assuming is not a playbook.", filename, e) else: if ( isinstance(f, AnsibleSequence) and hasattr(f, 'keys') and playbooks_keys.intersection(next(iter(f), {}).keys()) ): return True return False def get_yaml_files(options): """Find all yaml files.""" # git is preferred as it also considers .gitignore git_command = ['git', 'ls-files', '*.yaml', '*.yml'] _logger.info("Discovering files to lint: %s", ' '.join(git_command)) out = None try: out = subprocess.check_output( git_command, stderr=subprocess.STDOUT, universal_newlines=True ).split() except subprocess.CalledProcessError as exc: _logger.warning( "Failed to discover yaml files to lint using git: %s", exc.output.rstrip('\n') ) except FileNotFoundError as exc: if options.verbosity: _logger.warning( "Failed to locate command: %s", exc ) if out is None: out = [ os.path.join(root, name) for root, dirs, files in os.walk('.') for name in files if name.endswith('.yaml') or name.endswith('.yml') ] return OrderedDict.fromkeys(sorted(out)) def get_playbooks_and_roles(options=None): """Find roles and playbooks.""" if options is None: options = {} files = get_yaml_files(options) playbooks = [] role_dirs = [] role_internals = { 'defaults', 'files', 'handlers', 'meta', 'tasks', 'templates', 'vars', } # detect role in repository root: if 'tasks/main.yml' in files or 'tasks/main.yaml' in files: role_dirs.append('.') for p in map(Path, files): try: for file_path in options.exclude_paths: if str(p.resolve()).startswith(str(file_path)): raise FileNotFoundError( f'File {file_path} matched exclusion entry: {p}') except FileNotFoundError as e: _logger.debug('Ignored %s due to: %s', p, e) continue if (next((i for i in p.parts if i.endswith('playbooks')), None) or 'playbook' in p.parts[-1]): playbooks.append(normpath(p)) continue # ignore if any folder ends with _vars if next((i for i in p.parts if i.endswith('_vars')), None): continue elif 'roles' in p.parts or '.' in role_dirs: if 'tasks' in p.parts and p.parts[-1] in ['main.yaml', 'main.yml']: role_dirs.append(str(p.parents[1])) elif role_internals.intersection(p.parts): continue elif 'tests' in p.parts: playbooks.append(normpath(p)) if 'molecule' in p.parts: if p.parts[-1] != 'molecule.yml': playbooks.append(normpath(p)) continue # hidden files are clearly not playbooks, likely config files. if p.parts[-1].startswith('.'): continue if is_playbook(p): playbooks.append(normpath(p)) continue _logger.info('Unknown file type: %s', normpath(p)) _logger.info('Found roles: %s', ' '.join(role_dirs)) _logger.info('Found playbooks: %s', ' '.join(playbooks)) return role_dirs + playbooks def expand_path_vars(path): """Expand the environment or ~ variables in a path string.""" path = path.strip() path = os.path.expanduser(path) path = os.path.expandvars(path) return path def expand_paths_vars(paths): """Expand the environment or ~ variables in a list.""" paths = [expand_path_vars(p) for p in paths] return paths ```
{ "source": "AakashGfude/MyST-Parser", "score": 2 }
#### File: tests/test_html/test_html_to_nodes.py ```python from pathlib import Path from unittest.mock import Mock import pytest from docutils import nodes from markdown_it.utils import read_fixture_file from myst_parser.html_to_nodes import html_to_nodes FIXTURE_PATH = Path(__file__).parent @pytest.fixture() def mock_renderer(): def _run_directive(name: str, first_line: str, content: str, position: int): node = nodes.Element(name=name, first=first_line, position=position) node += nodes.Text(content) return [node] return Mock( config={"myst_extensions": ["html_image", "html_admonition"]}, document={"source": "source"}, reporter=Mock( warning=Mock(return_value=nodes.system_message("warning")), error=Mock(return_value=nodes.system_message("error")), ), run_directive=_run_directive, ) @pytest.mark.parametrize( "line,title,text,expected", read_fixture_file(FIXTURE_PATH / "html_to_nodes.md"), ids=[ f"{i[0]}-{i[1]}" for i in read_fixture_file(FIXTURE_PATH / "html_to_nodes.md") ], ) def test_html_to_nodes(line, title, text, expected, mock_renderer): output = nodes.container() output += html_to_nodes(text, line_number=0, renderer=mock_renderer) try: assert output.pformat().rstrip() == expected.rstrip() except AssertionError: print(output.pformat()) raise ```
{ "source": "AakashGupta1993/P4-Advanced-Lane_lines", "score": 4 }
#### File: P4-Advanced-Lane_lines/Submit/Final.py ```python import numpy as np import cv2 import glob import matplotlib.pyplot as plt #get_ipython().run_line_magic('matplotlib', 'qt') #get_ipython().run_line_magic('matplotlib', 'inline') from mpl_toolkits.axes_grid1 import ImageGrid # preparing the object points, like (0,0,0), (1,0,0), (2,0,0) ....,(8,5,0) objp = np.zeros((6*9,3), np.float32) objp[:,:2] = np.mgrid[0:9, 0:6].T.reshape(-1,2) # Arrays to store object points and image points from all the images. objpoints = [] # 3d points in real world space imgpoints = [] # 2d points in image plane. # List of calibration images images = glob.glob('camera_cal/calibration*.jpg') i = 0 #fig = plt.figure(1, (30, 30)) '''grid = ImageGrid(fig, 111, # similar to subplot(111) nrows_ncols=(6, 3), # creates 6x3 grid of axes axes_pad=0.2, # pad between axes in inch. )''' print("Total images :" , len(images)) # Step through the list and search for chessboard corners for idx, fname in enumerate(images): img = cv2.imread(fname) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Find the chessboard corners ret, corners = cv2.findChessboardCorners(gray, (9,6), None) # If found, add object points, image points if ret == True: objpoints.append(objp) imgpoints.append(corners) # Draw and display the corners cv2.drawChessboardCorners(img, (9,6), corners, ret) i = i +1 plt.show() print("Done") # Now I have objpoints and imgpoints needed for camera calibration. I can thus calculate distortion coefficients, and test undistortion on an image! # In[2]: import pickle #get_ipython().run_line_magic('matplotlib', 'inline') # Undistortion on an image img = cv2.imread('camera_cal/test_image.jpg') img_size = (img.shape[1], img.shape[0]) # Do camera calibration given object points and image points ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img_size,None,None) dst = cv2.undistort(img, mtx, dist, None, mtx) cv2.imwrite('camera_cal/test_undist11.jpg',dst) # Save the camera calibration result for later use (we won't worry about rvecs / tvecs) dist_pickle = {} dist_pickle["mtx"] = mtx dist_pickle["dist"] = dist pickle.dump( dist_pickle, open( "camera_cal/wide_dist_pickle.p", "wb" ) ) #dst = cv2.cvtColor(dst, cv2.COLOR_BGR2RGB) # Visualize undistortion '''f, (ax1, ax2) = plt.subplots(1, 2, figsize=(20,10)) ax1.imshow(img) ax1.set_title('Original Image', fontsize=30) ax2.imshow(dst) ax2.set_title('Undistorted Image', fontsize=30)''' # ### The image was distorted successfully # ## Perspective transform # # Why are we using perspective transform? The reason behid using the perspective transform is that when we see the lane lines from the normal camera view we see them converging like a triangle, whereas they are actually not converging. Also by using bird-eye-view of the same image helps us get the better visualization of the line in terms of turns etc. So here I am performing the perspective transfrom to bird-eye-view or the top-view of the lane lines. # # I have two main functions defined in the bloack below. # # The **get_src_destination_points_perspective_transform** has 3 sets of src and destination points. Why 3 sets ? Isn't one enough? One is sufficient but during the project I tried various set so I have put them in a function to testing which gives better results. # # The **corners_unwarp** function is used to undistort the image and give a top-view of the image. For this it takes various parameters as input like camera matrix(calculated using chessboard images), souce and destination points , and distortion coefficients etc. # In[3]: #import pickle #import cv2 #import numpy as np #import matplotlib.pyplot as plt #import matplotlib.image as mpimg def get_src_destination_points_perspective_transform(index): if index == 1 : #set 1 offset=10 src_bottom_left = [260,680] src_bottom_right = [1040,680] src_top_left = [581,460] src_top_right = [700,460] destination_bottom_left = [100,700] destination_bottom_right = [1000,700] destination_top_left = [100,50] destination_top_right = [1000,50] src = np.float32([[src_top_left,src_top_right,src_bottom_right,src_bottom_left]]) dst_points = np.float32([[destination_top_left,destination_top_right,destination_bottom_right,destination_bottom_left]]) elif index == 2 : #set 2 src = np.float32([[(200, 720), (570, 470), (720, 470), (1130, 720)]]) dst_points = np.float32([[(350, 720), (350, 0), (980, 0), (980, 720)]]) elif index == 3 : #set 3 offset_x = 400 # offset for dst points offset_y = 50 src = np.float32([[610,440], [670, 440], [1040, 680], [260, 680]]) dst_points = np.float32([[offset_x, offset_y], [img_size[0]-offset_x, offset_y], [img_size[0]-offset_x, img_size[1]-offset_y], [offset_x, img_size[1]-offset_y]]) else : src = np.float32([[(200, 720), (570, 470), (720, 470), (1130, 720)]]) dst_points = np.float32([[(350, 720), (350, 0), (980, 0), (980, 720)]]) return src, dst_points def carmera_parameters(): # Read in the saved camera matrix and distortion coefficients # These are the arrays calculated using cv2.calibrateCamera() dist_pickle = pickle.load( open( "camera_cal/wide_dist_pickle.p", "rb" ) ) mtx = dist_pickle["mtx"] dist = dist_pickle["dist"] return mtx,dist def corners_unwarp(img, src, dst_points, print_statements=False): mtx,dist_coeff = carmera_parameters() #Undistort using mtx and dist. undis = cv2.undistort(img, mtx, dist, None, mtx) if print_statements == True : print('Calibration matrix :' , mtx) print('Image shape : ',img.shape) M = cv2.getPerspectiveTransform(src, dst_points) warped = cv2.warpPerspective(undis, M, (img.shape[1],img.shape[0]), flags=cv2.INTER_LINEAR) dist_pickle = {} dist_pickle["mtx"] = mtx dist_pickle["dist"] = dist dist_pickle["M"] = M pickle.dump( dist_pickle, open( "camera_cal/wide_dist_pickle.p", "wb" ) ) return warped, M, undis print('Done') # In[4]: def print_undistorted_and_warped_images(image1, image2, text1= 'Original Image', text2 = 'Undistorted and Warped Image'): f, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 9)) f.tight_layout() ax1.imshow(image1) ax1.set_title(text1, fontsize=50) ax2.imshow(image2) ax2.set_title(text2, fontsize=50) plt.subplots_adjust(left=0., right=1, top=0.9, bottom=0.) def print_4_images(img1,img2,img3,img4,txt1,txt2,txt3,txt4): f, (ax1, ax2, ax3, ax4) = plt.subplots(1, 4, figsize=(30, 30)) f.tight_layout() ax1.imshow(img1,cmap='gray') ax1.set_title(txt1, fontsize=50) ax2.imshow(img2,cmap='gray') ax2.set_title(txt2, fontsize=50) ax3.imshow(img3,cmap='gray') ax3.set_title(txt3, fontsize=50) ax4.imshow(img4,cmap='gray') ax4.set_title(txt4, fontsize=50) def print_2_images (img1,img2,txt1='',txt2=''): f, (ax1, ax2) = plt.subplots(1, 2, figsize=(30, 30)) f.tight_layout() ax1.imshow(img1,cmap='gray') ax1.set_title(txt1, fontsize=50) ax2.imshow(img2,cmap='gray') ax2.set_title(txt2, fontsize=50) # ## Color channels # Printing various color channels for visualization to check which channel detects what. # # Printing BGR, HSV and HLS color channels. # ### BGR Color channels # In[5]: def print_bgr_color_images(img) : #grayscale image gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #b,g,r image b_img = img[:,:,0] g_img = img[:,:,1] r_img = img[:,:,2] f, (ax1, ax2, ax3, ax4) = plt.subplots(1, 4, figsize=(30, 30)) f.tight_layout() ax1.imshow(gray,cmap='gray') ax1.set_title('gray', fontsize=50) ax2.imshow(b_img,cmap='gray') ax2.set_title('b_img', fontsize=50) ax3.imshow(g_img,cmap='gray') ax3.set_title('g_img', fontsize=50) ax4.imshow(r_img,cmap='gray') ax4.set_title('r_img', fontsize=50) plt.subplots_adjust(left=0., right=1, top=0.9, bottom=0.) # ### HLS Color channels # In[6]: def print_hls_color_images(img) : #RGB to HLS hls_image = cv2.cvtColor(img, cv2.COLOR_BGR2HLS) h_img = hls_image[:,:,0] l_img = hls_image[:,:,1] s_img = hls_image[:,:,2] f, (ax1, ax2, ax3, ax4) = plt.subplots(1, 4, figsize=(30, 30)) f.tight_layout() ax1.imshow(hls_image) ax1.set_title('hls_image', fontsize=50) ax2.imshow(h_img,cmap='gray') ax2.set_title('h_img', fontsize=50) ax3.imshow(l_img,cmap='gray') ax3.set_title('l_img', fontsize=50) ax4.imshow(s_img,cmap='gray') ax4.set_title('s_img', fontsize=50) plt.subplots_adjust(left=0., right=1, top=0.9, bottom=0.) # ## HSV Color Channels # In[7]: def print_hsv_color_images(img) : #RGB to HLS hsv_image = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) hsv_h_img = hsv_image[:,:,0] hsv_s_img = hsv_image[:,:,1] hsv_v_img = hsv_image[:,:,2] f, (ax1, ax2, ax3, ax4) = plt.subplots(1, 4, figsize=(30, 30)) f.tight_layout() ax1.imshow(hsv_image) ax1.set_title('hsv_image', fontsize=50) ax2.imshow(hsv_h_img,cmap='gray') ax2.set_title('hsv_h_img', fontsize=50) ax3.imshow(hsv_s_img,cmap='gray') ax3.set_title('hsv_s_img', fontsize=50) ax4.imshow(hsv_v_img,cmap='gray') ax4.set_title('hsv_v_img', fontsize=50) # ## Threshold functions for sobel # # Defining various sobel threshold functions. These are visualized later to help in choosing the bast combination for lane lines detection. # In[8]: def abs_sobel_thresh(image, orient='x', sobel_kernel=3, thresh=(0, 255)): # Steps fro abs sobel # 1) Converting to grayscale image = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) thresh_min = thresh[0] thresh_max = thresh[1] # 2) Taking the derivative in x or y given orient = 'x' or 'y' if orient == 'x' : sobelx = cv2.Sobel(image, cv2.CV_64F, 1, 0) else : sobely = cv2.Sobel(image, cv2.CV_64F, 0, 1) # 3) Taking the absolute value of the derivative or gradient if orient == 'x' : absSobel = abs(sobelx) else : absSobel = abs(sobely) # 4) Scaling to 8-bit (0 - 255) then convert to type = np.uint8 scaled_sobel = np.uint8(255*absSobel/(np.max(absSobel))) # 5) Create a mask of 1's where the scaled gradient magnitude masked_output = np.zeros_like(scaled_sobel) masked_output [(scaled_sobel >= thresh_min) & (scaled_sobel <= thresh_max)] = 1 binary_output = np.copy(masked_output) return binary_output def mag_thresh(image, sobel_kernel=3, mag_thresh=(0, 255)): # 1) Converting to grayscale gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) # 2) Taking the gradient in x and y separately sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0) sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1) # 3) Calculating the magnitude mag = np.sqrt(sobelx*sobelx+sobely*sobely) # 4) Scaling to 8-bit (0 - 255) and convert to type = np.uint8 scaled_sobel = np.uint8(255*mag/(np.max(mag))) # 5) Creating a binary mask where mag thresholds are met masked_sobel = np.zeros_like(scaled_sobel) masked_sobel[ (scaled_sobel>=mag_thresh[0]) & (scaled_sobel<= mag_thresh[1]) ] = 1 binary_output = np.copy(masked_sobel) return binary_output def dir_threshold(image, sobel_kernel=3, thresh=(0, np.pi/2)): # 1) Converting to grayscale gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) # 2) Taking the gradient in x and y separately sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel) sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel) # 3) Taking the absolute value of the x and y gradients abs_sobelx = np.absolute(sobelx) abs_sobely = np.absolute(sobely) # 4) Using np.arctan2(abs_sobely, abs_sobelx) to calculate the direction of the gradient direction_gradient = np.arctan2(abs_sobely,abs_sobelx) # 5) Creating a binary mask where direction thresholds are met masked_sobel = np.zeros_like(direction_gradient) masked_sobel[ (direction_gradient >= thresh[0]) & (direction_gradient <= thresh[1]) ] = 1 # 6) Return this mask as masked_sobel image return masked_sobel # ## Threshold for color spaces # After visualizing the color channel results, I have taken decided to use red binary, green binary and s binary from HLS color space. # In[9]: def red_threshold(bird_eye_view_image, thresh = (200,255)): r_img = bird_eye_view_image[:,:,2] binary_red = np.zeros_like(r_img) binary_red[(r_img > thresh[0]) & (r_img <= thresh[1])] = 1 return binary_red def green_threshold(bird_eye_view_image, thresh = (200,255)): g_img = bird_eye_view_image[:,:,1] binary_green = np.zeros_like(g_img) binary_green[(g_img > thresh[0]) & (g_img <= thresh[1])] = 1 return binary_green def hls_s_threshold(bird_eye_view_image, thresh = (90, 255)): hls_image = cv2.cvtColor(bird_eye_view_image, cv2.COLOR_BGR2HLS) s_img = hls_image[:,:,2] binary_s_hls = np.zeros_like(s_img) binary_s_hls[(s_img > thresh[0]) & (s_img <= thresh[1])] = 1 return binary_s_hls # ## Process the image - test block (Can be ignored as used for testing purposes) # # This block is the testing block to check the pipeline process to get a good binary image after appling sobel and color binaries. # In[10]: nx = 9 ny = 6 img = cv2.imread('test_images/test4.jpg') ksize = 3 bird_eye_view_image = [] def process_the_image(img): #img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB) src, dst_points = get_src_destination_points_perspective_transform(index=1) mtx,dist_coeff = carmera_parameters() top_down, perspective_M, undist = corners_unwarp(img, src, dst_points, print_statements=False) #print_undistorted_and_warped_images(cv2.cvtColor(img,cv2.COLOR_BGR2RGB),cv2.cvtColor(top_down,cv2.COLOR_BGR2RGB)) #print_2_images(cv2.cvtColor(img,cv2.COLOR_BGR2RGB),cv2.cvtColor(top_down,cv2.COLOR_BGR2RGB), 'Original Image', 'Undistorted and Warped Image') cv2.imwrite('test_images/bird_eye_test5.jpg',top_down) bird_eye_view_image = np.copy(top_down) #print_bgr_color_images(bird_eye_view_image) #print_hls_color_images(bird_eye_view_image) #print_hsv_color_images(bird_eye_view_image) gradx = abs_sobel_thresh(bird_eye_view_image, orient='x', sobel_kernel=ksize, thresh=(20, 100)) grady = abs_sobel_thresh(bird_eye_view_image, orient='y', sobel_kernel=ksize, thresh=(20, 100)) mag_binary = mag_thresh(bird_eye_view_image, sobel_kernel=ksize, mag_thresh=(20, 100)) dir_binary = dir_threshold(bird_eye_view_image, sobel_kernel=ksize, thresh=(0, 0.2)) #print_4_images(gradx,grady,mag_binary,dir_binary,'Gradient x','Gradient y','mag_binary','dir_binary') #Combined threshols sobel combined = np.zeros_like(dir_binary) combined[((gradx == 1) & (grady == 1)) | ((mag_binary == 1) & (dir_binary == 1))] = 1 #==========================================================# combined_2 = np.zeros_like(dir_binary) combined_2[((gradx == 1) & (grady == 1)) | ((mag_binary == 1))] = 1 #==========================================================# #print_2_images(combined,combined_2,'Combined 1','Combined 2') #==========================================================# #Color thresholding #=======================================================# r_img = bird_eye_view_image[:,:,2] thresh = (200, 255) binary_red = np.zeros_like(r_img) binary_red[(r_img > thresh[0]) & (r_img <= thresh[1])] = 1 #=======================================================# #=======================================================# hls_image = cv2.cvtColor(bird_eye_view_image, cv2.COLOR_BGR2HLS) s_img = hls_image[:,:,2] thresh = (90, 255) binary_s_hls = np.zeros_like(s_img) binary_s_hls[(s_img > thresh[0]) & (s_img <= thresh[1])] = 1 #=======================================================# #print_2_images(binary_red,binary_s_hls,'binary_red','binary_s_hls') #==========================================================# combined_try1 = np.zeros_like(mag_binary) combined_try1[((gradx == 1) & (grady == 1)) | ((mag_binary == 1)) | (binary_red==1) & (binary_s_hls==1)] = 1 #plt.figure() #plt.imshow(combined_try1,cmap='gray') return combined_try1, bird_eye_view_image, undist processed_image, bird_eye_view_image, undist = process_the_image(img) # ## Histogram and Minv # # Here I am getting histogram of the comibned binary image. The histogram helps us find the lane lines by detecting the starting points of the lane lines. After detecting the initial points I have used sliding window method to get the other points of lane lines. # # # Minv is needed to change the detected driving portion back to overlap with original image # In[11]: def get_histogram(combined_binay, print_statements=False): histogram = np.sum(combined_binay[combined_binay.shape[0]//2:,:], axis=0) if print_statements==True: plt.plot(histogram,linewidth=2.5,color='yellow') return histogram def get_Minv(src,dst_points): Minv = cv2.getPerspectiveTransform(dst_points, src) return Minv # ## Pipeline for the # Get the starting point of the lane lines using the histogram. Get the lane line points using sliding window and then build the polynomial. Once we get the starting point of the lane lines and the polynomial function, we can skip the sliding window part for the next frame until we encounter a bad frame. # # This skipping the sliding window part saves a lot of computation. It also shows the polynomial on the lane lines. However the output is shown when the function is called and not after this block. # # Using count variable to check when to use sliding window and when to skip. Use the sliding window in the first frame and then use the previous polynomial for the next frame. If somehow there is error or less ponits are detected in the polynomial for the next frame, shift to sliding window. # # In[12]: def lane_line(count,left_fitx, left_fit, right_fitx, right_fit, Minv, bird_eye_view_image, undist, histogram, processed_image, print_image_statment=False) : #print(count) #using count to check when to use sliding window and when to skip. if count==0 : # Create an output image to draw on and visualize the result out_img = np.dstack((processed_image, processed_image, processed_image))*255 if print_image_statment == True : plt.imshow(out_img) print("out_img :", out_img.shape) # Find the peak of the left and right halves of the histogram # These will be the starting point for the left and right lines midpoint = np.int(histogram.shape[0]/2) leftx_base = np.argmax(histogram[:midpoint]) rightx_base = np.argmax(histogram[midpoint:]) + midpoint # Choose the number of sliding windows nwindows = 9 # Set height of windows window_height = np.int(processed_image.shape[0]/nwindows) # Identify the x and y positions of all nonzero pixels in the image nonzero = processed_image.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) # Current positions to be updated for each window leftx_current = leftx_base rightx_current = rightx_base # Set the width of the windows +/- margin margin = 100 # Set minimum number of pixels found to recenter window minpix = 50 # Create empty lists to receive left and right lane pixel indices left_lane_inds = [] right_lane_inds = [] # Step through the windows one by one for window in range(nwindows): # Identify window boundaries in x and y (and right and left) win_y_low = processed_image.shape[0] - (window+1)*window_height win_y_high = processed_image.shape[0] - window*window_height win_xleft_low = leftx_current - margin win_xleft_high = leftx_current + margin win_xright_low = rightx_current - margin win_xright_high = rightx_current + margin # Draw the windows on the visualization image cv2.rectangle(out_img,(win_xleft_low,win_y_low),(win_xleft_high,win_y_high), (0,255,0), 2) cv2.rectangle(out_img,(win_xright_low,win_y_low),(win_xright_high,win_y_high), (0,255,0), 2) # Identify the nonzero pixels in x and y within the window good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0] good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0] # Append these indices to the lists left_lane_inds.append(good_left_inds) right_lane_inds.append(good_right_inds) # If you found > minpix pixels, recenter next window on their mean position if len(good_left_inds) > minpix: leftx_current = np.int(np.mean(nonzerox[good_left_inds])) if len(good_right_inds) > minpix: rightx_current = np.int(np.mean(nonzerox[good_right_inds])) # Concatenate the arrays of indices left_lane_inds = np.concatenate(left_lane_inds) right_lane_inds = np.concatenate(right_lane_inds) # Extract left and right line pixel positions leftx = nonzerox[left_lane_inds] lefty = nonzeroy[left_lane_inds] rightx = nonzerox[right_lane_inds] righty = nonzeroy[right_lane_inds] # Fit a second order polynomial to each left_fit = np.polyfit(lefty, leftx, 2) right_fit = np.polyfit(righty, rightx, 2) if print_image_statment == True : print(leftx_current) print(rightx_current) print(left_lane_inds) print(right_lane_inds) print(len(left_lane_inds)) print(len(right_lane_inds)) #=====================================================# ploty = np.linspace(0, processed_image.shape[0]-1, processed_image.shape[0] ) left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2] right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2] out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0] out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255] if print_image_statment == True : plt.figure() plt.imshow(out_img) plt.plot(left_fitx, ploty, color='yellow') plt.plot(right_fitx, ploty, color='yellow') plt.xlim(0, 1280) plt.ylim(720, 0) result = out_img else : #===================================================# # Assume you now have a new warped binary image # from the next frame of video (also called "binary_warped") # It's now much easier to find line pixels! nonzero = processed_image.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) margin = 100 left_lane_inds = ((nonzerox > (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] - margin)) & (nonzerox < (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] + margin))) right_lane_inds = ((nonzerox > (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] - margin)) & (nonzerox < (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] + margin))) # Again, extract left and right line pixel positions leftx = nonzerox[left_lane_inds] lefty = nonzeroy[left_lane_inds] rightx = nonzerox[right_lane_inds] righty = nonzeroy[right_lane_inds] # Fit a second order polynomial to each left_fit = np.polyfit(lefty, leftx, 2) right_fit = np.polyfit(righty, rightx, 2) # Generate x and y values for plotting ploty = np.linspace(0, processed_image.shape[0]-1, processed_image.shape[0] ) left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2] right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2] #=======================================================# # Create an image to draw on and an image to show the selection window out_img = np.dstack((processed_image, processed_image, processed_image))*255 window_img = np.zeros_like(out_img) # Color in left and right line pixels out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0] out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255] # Generate a polygon to illustrate the search window area # And recast the x and y points into usable format for cv2.fillPoly() left_line_window1 = np.array([np.transpose(np.vstack([left_fitx-margin, ploty]))]) left_line_window2 = np.array([np.flipud(np.transpose(np.vstack([left_fitx+margin, ploty])))]) left_line_pts = np.hstack((left_line_window1, left_line_window2)) right_line_window1 = np.array([np.transpose(np.vstack([right_fitx-margin, ploty]))]) right_line_window2 = np.array([np.flipud(np.transpose(np.vstack([right_fitx+margin, ploty])))]) right_line_pts = np.hstack((right_line_window1, right_line_window2)) # Draw the lane onto the warped blank image cv2.fillPoly(window_img, np.int_([left_line_pts]), (0,255, 0)) cv2.fillPoly(window_img, np.int_([right_line_pts]), (0,255, 0)) result = cv2.addWeighted(out_img, 1, window_img, 0.3, 0) if print_image_statment == True : plt.figure() plt.imshow(result) plt.plot(left_fitx, ploty, color='yellow') plt.plot(right_fitx, ploty, color='yellow') plt.xlim(0, 1280) plt.ylim(720, 0) return left_fitx, left_fit, leftx, right_fitx, right_fit, rightx, ploty, result #left_fitx, left_fit, right_fit = lane_line(count, left_fitx, left_fit, right_fit, Minv, bird_eye_view_image, undist) #count= count+1 # ## Unwarp and fill the polygon # # Here we pass the x and y arrays for left lane and right lane, plot the polygon, and then do a perspective transform to plot it on the original image. # In[13]: def unwarp_and_fillPoly(image, combined_binary, left_fitx, right_fitx, ploty, Minv, undist, print_image_statments=False) : # Create an image to draw the lines on warp_zero = np.zeros_like(combined_binary).astype(np.uint8) color_warp = np.dstack((warp_zero, warp_zero, warp_zero)) if print_image_statments == True : print("color warp shape", color_warp.shape) print("warp zero shape", warp_zero.shape) print(type(color_warp)) #plt.imshow(color_warp) # Recast the x and y points into usable format for cv2.fillPoly() pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))]) pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))]) pts = np.hstack((pts_left, pts_right)) # Draw the lane onto the warped blank image cv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0)) # Warp the blank back to original image space using inverse perspective matrix (Minv) newwarp = cv2.warpPerspective(color_warp, Minv, (image.shape[1], image.shape[0])) # Combine the result with the original image result = cv2.addWeighted(undist, 1, newwarp, 0.3, 0) if print_image_statments == True : plt.figure() plt.imshow(result) return result # ## Radius of curvature and center offset # Finding the radius of curvature and center offset here. Offset is difference of center of image with center of the lane lines. # In[14]: def set_raduis_curvature(ploty , left_fitx, right_fitx, final_image) : y_eval = np.max(ploty) # Define conversions in x and y from pixels space to meters ym_per_pix = 30/720 # meters per pixel in y dimension xm_per_pix = 3.7/700 # meters per pixel in x dimension # Fit new polynomials to x,y in world space left_fit_cr = np.polyfit(ploty*ym_per_pix, left_fitx*xm_per_pix, 2) right_fit_cr = np.polyfit(ploty*ym_per_pix, right_fitx*xm_per_pix, 2) # Calculate the new radii of curvature left_curverad = ((1 + (2*left_fit_cr[0]*y_eval*ym_per_pix + left_fit_cr[1])**2)**1.5) / np.absolute(2*left_fit_cr[0]) right_curverad = ((1 + (2*right_fit_cr[0]*y_eval*ym_per_pix + right_fit_cr[1])**2)**1.5) / np.absolute(2*right_fit_cr[0]) font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(final_image, 'Radius of Curvature left curved : '+ str(left_curverad)[:6]+ 'm', (20,40), font, 1, (255,255,255), 2) cv2.putText(final_image, 'Radius of Curvature right curved : '+ str(right_curverad)[:6]+ 'm', (20,80), font, 1, (255,255,255), 2) return final_image def set_center(left_line_x, right_line_x,final_image) : #y_max = np.max(ploty) offset = 640 - (right_line_x + left_line_x)/2 offset_meter = offset*3.7/700 font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(final_image, 'Center '+ str(offset_meter)[:6]+ 'm', (20,120), font, 1, (255,255,255), 2) return final_image # ### Convert 1-D array to 3-D for stacking images together # In[15]: def binary_to_stack_fit(image) : return (np.dstack((image, image, image))*255).astype(np.uint8) # ## Process the image to get the final output # This is the main function from where all the functions are called to generate the output. I am using various global variables to keep track of variables from 1st frame. # # ## Output images: # # In[25]: import cv2 img = cv2.imread('test_images/test4.jpg') #img = cv2.imread('testing/test_img_3_20.jpg') count = 0 left_fitx = 0 right_fitx = 0 left_fit = 0 right_fit = 0 ploty = 0 leftx = 0 rightx = 0 def process_image_for_video(img) : global count print_logs = False img = cv2.cvtColor(img,cv2.COLOR_RGB2BGR) cv2.imwrite('data/data_road/training/image_2/um_00000'+str(count)+'.jpg',img) global left_fitx global left_fit global right_fitx global right_fit global ploty global leftx global rightx src, dst_points = get_src_destination_points_perspective_transform(index=1) top_down, perspective_M, undist = corners_unwarp(img, src, dst_points, print_statements=False) bird_eye_view_image = np.copy(top_down) gradx = abs_sobel_thresh(bird_eye_view_image, orient='x', sobel_kernel=ksize, thresh=(20, 100)) grady = abs_sobel_thresh(bird_eye_view_image, orient='y', sobel_kernel=ksize, thresh=(20, 100)) mag_binary = mag_thresh(bird_eye_view_image, sobel_kernel=ksize, mag_thresh=(20, 100)) dir_binary = dir_threshold(bird_eye_view_image, sobel_kernel=ksize, thresh=(0, 0.2)) r_binary = red_threshold(bird_eye_view_image, thresh = (200, 255))#red binary from cv2.imread(), bgr g_binary = green_threshold(bird_eye_view_image, thresh = (200, 255)) hls_s_binary = hls_s_threshold(bird_eye_view_image, thresh = (90, 255))#s binary from cv2.imread(), hls combined_binary = np.zeros_like(mag_binary) #combined_binary[((gradx == 1) & (grady == 1)) | ((mag_binary == 1)) | (r_binary==1) & (hls_s_binary==1)] = 1 combined_binary[((gradx == 1) & (grady == 1))| ((g_binary == 1)) | ((mag_binary == 1)) | (r_binary==1) & (hls_s_binary==1)] = 1 histogram = get_histogram(combined_binary, print_statements=False) Minv = get_Minv(src,dst_points) left_fitx, left_fit, leftx, right_fitx, right_fit, rightx, ploty, image_search_window = lane_line(count,left_fitx, left_fit, right_fitx, right_fit, Minv, bird_eye_view_image, undist, histogram, combined_binary, print_image_statment=False) final_image = unwarp_and_fillPoly(img, combined_binary, left_fitx, right_fitx, ploty, Minv, undist, print_image_statments=False) #count = count #print('Count in updation' , count) if print_logs == True : #print_undistorted_and_warped_images(cv2.cvtColor(img,cv2.COLOR_BGR2RGB),cv2.cvtColor(top_down,cv2.COLOR_BGR2RGB)) print_2_images(img,top_down, 'Original Image', 'Undistorted and Warped Image') print_bgr_color_images(bird_eye_view_image) print_hls_color_images(bird_eye_view_image) print_hsv_color_images(bird_eye_view_image) print_4_images(gradx,grady,mag_binary,dir_binary,'Gradient x','Gradient y','mag_binary','dir_binary') print_2_images(r_binary,hls_s_binary,'binary_red','binary_s_hls') plt.figure() plt.imshow(combined_binary,cmap='gray') cv2.imwrite('data/data_road/training/gt_image_2/um_lane_00000'+str(count)+'.jpg',final_image) final_image = set_raduis_curvature(ploty, left_fitx, right_fitx, final_image) final_image = set_center(left_fitx[719],right_fitx[719],final_image) final_image = cv2.cvtColor(final_image,cv2.COLOR_RGB2BGR) bird_eye_view_image = cv2.cvtColor(bird_eye_view_image,cv2.COLOR_RGB2BGR) combined_binary_stack_fit = binary_to_stack_fit(combined_binary) stack_image1 = np.hstack((final_image,image_search_window)) stack_image2 = np.hstack((combined_binary_stack_fit,bird_eye_view_image)) stack_image3 = np.vstack((stack_image1,stack_image2)) count = count + 1 print(count) return stack_image3 #final_image = process_image_for_video(img) #plt.figure() #final_image = cv2.cvtColor(final_image,cv2.COLOR_BGR2RGB) #plt.imshow(final_image) # ## Video pipeline # It calls the image pipeline by passing each frame and then appends each frame. Global variables are initialized here. # ## Choose a method for processing image # ### Method 1:process_image_for_video # * Compute the camera calibration matrix and distortion coefficients given a set of chessboard images. # * Apply a distortion correction to raw images. # * ** Apply a perspective transform to raw images ("birds-eye view").** # * ** Use color transforms, gradients, etc., to create a thresholded binary image from bird-eye view.** # * Detect lane pixels and fit to find the lane boundary. # * Determine the curvature of the lane and vehicle position with respect to center. # * Warp the detected lane boundaries back onto the original image. # * Output visual display of the lane boundaries and numerical estimation of lane curvature and vehicle position. # # ### Method 2: process_image_for_video2 # * Compute the camera calibration matrix and distortion coefficients given a set of chessboard images. # * **Apply a distortion correction to raw images.** # * **Use color transforms, gradients, etc., to create a thresholded binary image.** # * Apply a perspective transform to rectify binary image ("birds-eye view"). # * Detect lane pixels and fit to find the lane boundary. # * Determine the curvature of the lane and vehicle position with respect to center. # * Warp the detected lane boundaries back onto the original image. # * Output visual display of the lane boundaries and numerical estimation of lane curvature and vehicle position. # In[26]: # Import everything needed to edit/save/watch video clips from moviepy.editor import VideoFileClip from IPython.display import HTML white_output = 'project_video_full8.mp4' count = 0 left_fitx = 0 right_fitx = 0 left_fit = 0 right_fit = 0 ploty = 0 clip1 = VideoFileClip("project_video.mp4")#.subclip(0,20) white_clip = clip1.fl_image(process_image_for_video) #NOTE: this function expects color images!! #get_ipython().run_line_magic('time', 'white_clip.write_videofile(white_output, audio=False)') # ## Output of the video # In[ ]: HTML(""" <video width="960" height="540" controls> <source src="{0}"> </video> """.format(white_output)) # ## Problems # # There are many problems that I am facing. Some of them are : # # 1) It is not able to handle challenge video. It requires averaging. # 2) No sanity checks have been done. Sanity checks need to be done to start searching using sliding window. # 3) I want to apply thresholds first and then take the top-down view. # # These are some of the problems. I will try to work on them so that project looks good. # In[ ]: import cv2 img = cv2.imread('test_images/test4.jpg') #img = cv2.imread('testing/test_img_3_20.jpg') count = 0 left_fitx = 0 right_fitx = 0 left_fit = 0 right_fit = 0 ploty = 0 leftx = 0 rightx = 0 def process_image_for_video2(img) : global count print_logs = False img = cv2.cvtColor(img,cv2.COLOR_RGB2BGR) #cv2.imwrite('data/data_road/training/image_2/um_00000'+str(count)+'.png',img) global left_fitx global left_fit global right_fitx global right_fit global ploty global leftx global rightx src, dst_points = get_src_destination_points_perspective_transform(index=1) top_down1, perspective_M1, undist = corners_unwarp(img, src, dst_points, print_statements=False) bird_eye_view_image = np.copy(img) gradx = abs_sobel_thresh(bird_eye_view_image, orient='x', sobel_kernel=ksize, thresh=(20, 100)) grady = abs_sobel_thresh(bird_eye_view_image, orient='y', sobel_kernel=ksize, thresh=(20, 100)) mag_binary = mag_thresh(bird_eye_view_image, sobel_kernel=ksize, mag_thresh=(20, 100)) dir_binary = dir_threshold(bird_eye_view_image, sobel_kernel=ksize, thresh=(0, 0.2)) r_binary = red_threshold(bird_eye_view_image, thresh = (200, 255))#red binary from cv2.imread(), bgr g_binary = green_threshold(bird_eye_view_image, thresh = (200, 255)) hls_s_binary = hls_s_threshold(bird_eye_view_image, thresh = (90, 255))#s binary from cv2.imread(), hls combined_binary = np.zeros_like(mag_binary) #combined_binary[((gradx == 1) & (grady == 1)) | ((mag_binary == 1)) | (r_binary==1) & (hls_s_binary==1)] = 1 combined_binary[((gradx == 1) & (grady == 1))| ((g_binary == 1)) | ((mag_binary == 1)) | (r_binary==1) & (hls_s_binary==1)] = 1 top_down, perspective_M, undist1 = corners_unwarp(combined_binary, src, dst_points, print_statements=False) combined_binary = np.copy(top_down) histogram = get_histogram(combined_binary, print_statements=False) Minv = get_Minv(src,dst_points) left_fitx, left_fit, leftx, right_fitx, right_fit, rightx, ploty, image_search_window = lane_line(count,left_fitx, left_fit, right_fitx, right_fit, Minv, bird_eye_view_image, undist, histogram, combined_binary, print_image_statment=False) final_image = unwarp_and_fillPoly(img, combined_binary, left_fitx, right_fitx, ploty, Minv, undist, print_image_statments=False) #count = count #print('Count in updation' , count) if print_logs == True : #print_undistorted_and_warped_images(cv2.cvtColor(img,cv2.COLOR_BGR2RGB),cv2.cvtColor(top_down,cv2.COLOR_BGR2RGB)) print_2_images(img,top_down, 'Original Image', 'Undistorted and Warped Image') print_bgr_color_images(bird_eye_view_image) print_hls_color_images(bird_eye_view_image) print_hsv_color_images(bird_eye_view_image) print_4_images(gradx,grady,mag_binary,dir_binary,'Gradient x','Gradient y','mag_binary','dir_binary') print_2_images(r_binary,hls_s_binary,'binary_red','binary_s_hls') plt.figure() plt.imshow(combined_binary,cmap='gray') cv2.imwrite('data/data_road/training/gt_image_2/um_lane_00000'+str(count)+'.png',img) final_image = set_raduis_curvature(ploty, left_fitx, right_fitx, final_image) final_image = set_center(left_fitx[719],right_fitx[719],final_image) final_image = cv2.cvtColor(final_image,cv2.COLOR_RGB2BGR) bird_eye_view_image = cv2.cvtColor(bird_eye_view_image,cv2.COLOR_RGB2BGR) combined_binary_stack_fit = binary_to_stack_fit(combined_binary) stack_image1 = np.hstack((final_image,image_search_window)) stack_image2 = np.hstack((combined_binary_stack_fit,bird_eye_view_image)) stack_image3 = np.vstack((stack_image1,stack_image2)) count = count + 1 return stack_image3 #final_image = process_image_for_video(img) #plt.figure() #final_image = cv2.cvtColor(final_image,cv2.COLOR_BGR2RGB) #plt.imshow(final_image) ```
{ "source": "aakashgusain1990/Text-Encryption", "score": 2 }
#### File: Text-Encryption/home/views.py ```python from django.shortcuts import render,redirect from django.http import HttpResponse from django.contrib import messages from .models import AllData,ImgData def home(request): return render(request,'home.html') def encrypt(request): if request.method == 'POST': allData=AllData() allData.passkey = request.POST['passkey'] pwd = request.POST['passkey'] text = request.POST['enctext'] encryptext="" j=0 for i in range(len(text)): if j==len(pwd): j=0 val = ((ord(text[i])-33)+(ord(pwd[j])-33))%89 val+=33 char = chr(val) encryptext+=char j+=1 allData.encrytext = encryptext allData.save() request.session['resp'] = encryptext return render(request,'encrypted.html',{'enc':encryptext}) return render(request, 'encrypt.html') def decrypt(request): if request.method == 'POST': try: pwd = request.POST['pwdd'] text = request.POST['etext'] j=0 decryptext="" q = AllData.objects.filter(passkey = request.POST["pwdd"], encrytext=request.POST["etext"]).first() print(q) for i in text: if j == len(pwd): j=0 val = ((ord(i)-33)-(ord(pwd[j])-33)+89)%89 val+=33 char = chr(val) decryptext+=char j+=1 print(decryptext) return render(request,'decrypted.html',{'decryptext':decryptext}) except: messages.warning(request, "INCORRECT PASSWORD OR TEXT") return render(request, 'decrypt.html') def encrypted(request): q = AllData.objects.filter(passkey = "sds").first() return render(request, 'encrypted.html', {'resp': q}) def decrypted(request): return render(request, 'decrypted.html') def imgencrypt(request): if request.method=='POST': key=request.POST['passkey'] image=request.FILES['image'] imgdata=ImgData() imgdata.imgpasskey=key imgdata.encryptimg=image imgdata.save() imgObj = ImgData.objects.filter(imgpasskey=key).last() passwd=0 j=1 for i in key: passwd+=j*(ord(i)) j+=1 key=(passwd)%256 print(imgObj.encryptimg.path) fi=open(imgObj.encryptimg.path,'rb') image=fi.read() fi.close() image=bytearray(image) # print(image) for index, values in enumerate(image): image[index]=values^int(key) fi1=open(imgObj.encryptimg.path,'wb') fi1.write(image) fi1.close() return render(request, 'imgencrypted.html',{'imgdata':imgdata}) return render(request,'imgencrypt.html') def imgdecrypt(request): if request.method=='POST': key=request.POST['passkey'] image=request.FILES['image'] imgObj = ImgData.objects.filter(imgpasskey=key).last() imgObj.decryptimg=image imgObj.save() passwd=0 j=1 for i in key: passwd+=j*(ord(i)) j+=1 key=(passwd)%256 print(imgObj.decryptimg.path) fi=open(imgObj.decryptimg.path,'rb') image=fi.read() fi.close() image=bytearray(image) # print(image) for index, values in enumerate(image): image[index]=values^int(key) fi1=open(imgObj.decryptimg.path,'wb') fi1.write(image) fi1.close() return render(request, 'imgdecrypted.html',{'imgdata':imgObj}) return render(request,'imgdecrypt.html') def imgdecrypted(request): return render(request,'imgdecrypted.html') def imgencrypted(request): return render(request,'imgencrypted.html') ```
{ "source": "aakashhemadri/courses", "score": 4 }
#### File: 15XW23 - Data Structures and Algorithms/dijkstra/dijkstra.py ```python import sys import numpy class dijkstra: """Dijkstra's algorithm""" def __init__(self, data=[numpy.zeros((2,2),numpy.int8),1,1,'A']): self.graph = data[0] self.n_vertices = data[1] self.n_edges = data[2] self.source = data[3] self.dist = [sys.maxsize] * self.n_vertices self.dist[ 65 - ord(self.source)] = 0 self.spanning_tree = [False] * self.n_vertices #Auto assign each vertice as an incremental Alphabet self.vertices = [] for iter in range(self.n_vertices): self.vertices.append(chr(65+iter)) def min_distance(self): min = sys.maxsize min_index = 0 for vertex in range(self.n_vertices): if(self.dist[vertex] < min and self.spanning_tree[vertex] == False): min = self.dist[vertex] min_index = vertex return min_index def algorithm(self): for iterator in range(self.n_vertices): u = self.min_distance() self.spanning_tree[u] = True for v in range(self.n_vertices): if self.graph[u][v] > 0 and self.spanning_tree[v] == False and self.dist[v] > self.dist[u] + self.graph[u][v]: self.dist[v] = self.dist[u] + self.graph[u][v] def print_dist(self): """Print's distance from Source""" print("[Vertex]\t-\t[Distance from Source]") for iterator in range(self.n_vertices): print(self.vertices[iterator],"\t\t-\t\t",self.dist[iterator]) def print_member(self): """Print function""" print(self.graph) print(self.n_vertices) print(self.n_edges) print(self.source) print(self.vertices) def test(): pass if __name__ == "__main__": test() ```
{ "source": "aakashhemadri/mc-serve", "score": 3 }
#### File: mc-serve/mcserve/serve.py ```python class MCServe(object): def __init__(self, config=None, args=None): self.config = config self.args = args def run(self): print("Initializing mc-serve") if self.args.action == 'start': self.start() elif self.args.action == 'stop': self.stop() elif self.args.action == 'stop': self.logs() elif self.args.action == 'stop': self.execute() print("bye bye") def execute(self): print("Executing command on minecraft-server instance") def start(self): print("Starting minecraft-server instance") def stop(self): print("Stopping minecraft-server instance") def logs(self): print("Following logs of the minecraft-server instance") ``` #### File: aakashhemadri/mc-serve/setup.py ```python import setuptools import sys import os import re if sys.version_info < (3, 0): print('MCServe requires at least Python 3 to run.') sys.exit(1) PY3 = sys.version_info[0] == 3 # Global functions ################## with open(os.path.join('mcserve', '__init__.py'), encoding='utf-8') as f: version = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", f.read(), re.M).group(1) if not version: raise RuntimeError('Cannot find MCServe version information.') with open("README.md", "r") as fh: long_description = fh.read() def get_data_files(): data_files = [ ('share/doc/compose-templates', ['docs/compose-templates/bukkit/bukkit-docker-compose.yml', 'docs/compose-templates/paper/paper-docker-compose.yml', 'docs/compose-templates/vanilla/hardcore-docker-compose.yml'] ), ( 'share/doc/mcserve',['AUTHORS.md', 'README.md','CONTRIBUTING.md', 'conf/mcserve.conf']), ('share/man/man1', ['docs/man/mcserve.1']) ] return data_files setuptools.setup( name="mcserve", version=version, author="<NAME>", author_email="<EMAIL>", description="docker-minecraft-server manager.", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/aakashhemadri/mcserve", packages=setuptools.find_packages(), data_files=get_data_files(), entry_points={"console_scripts": ['mcserve=mcserve:main']}, classifiers=[ 'Environment :: Console :: Curses', 'Intended Audience :: End Users/Desktop', "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3', ) ```
{ "source": "aakashhemadri/python", "score": 3 }
#### File: python/tcp_finite_state/client.py ```python from tcp_statemachine import TCPStateMachine, Data import socket class Client: """ Client class """ def __init__(self, statemachine, data): self.ME = 'client' self.HOST = '127.0.0.1' self.PORT = 22085 self.ADDRESS = (self.HOST, self.PORT) self.client_socket = socket.socket() def run(self): self.client_socket.connect(self.ADDRESS) self.statemachine.send_syn(self.client_socket, self.statemachine) self.statemachine.conn_estb_client() data.receive(self.client_socket, statemachine) while statemachine.is_established: data.send(self.client_socket, statemachine) data.receive(self.client_socket, statemachine) self.client_socket.close() def whoami(self): return self.ME def main(): tcp_fsm = TCPFiniteStateMachine() data = Data(12345) client = Client(tcp_fsm, data) if __name__ == '__main__': main() ``` #### File: python/validate_ip/class_identification.py ```python from validate import validate,request def identify(ip): if(ip == False): return False else: #ip = '.'.join(ip) netid = format(int(ip[0]),'08b') if(netid[:1] == '0'): cls = 'A' cls_ip = [255,0,0,0] elif(netid[:2] == '10'): cls = 'B' cls_ip = [255,255,0,0] elif(netid[:3] == '110'): cls = 'C' cls_ip = [255,255,255,0] elif(netid[:4] == '1110'): cls = 'D' cls_ip = [255,255,255,255] elif(netid[:4] == '1111'): cls = 'E' cls_ip = [255,255,255,255] return (ip, cls, cls_ip) def test(): print('Running Test..') message = identify(validate(request())) if(message != False): print(message) else: print('Invalid IP Address! Try Again!') if __name__=='__main__': test() ```
{ "source": "AakashKath/location_service", "score": 2 }
#### File: app/location/tests.py ```python from unittest.mock import patch from django.core.management import call_command from django.db.utils import OperationalError from django.test import TestCase from location.models import Locality, City def sample_city(name='city'): """Creates and returns sample city""" return City.objects.create(name=name) def sample_locality(**params): """Creates and returns sample locality""" defaults = { 'name': 'local', 'latitude': 0, 'longitude': 0, 'city': sample_city() } defaults.update(params) return Locality.objects.create(**defaults) class CommandTests(TestCase): def test_wait_for_db_ready(self): """Test waiting for db when db available""" with patch('django.db.utils.ConnectionHandler.__getitem__') as gi: gi.return_value = True call_command('wait_for_db') self.assertEqual(gi.call_count, 1) @patch('time.sleep', return_value=True) def test_wait_for_db(self, ts): """Test waiting for db""" with patch('django.db.utils.ConnectionHandler.__getitem__') as gi: gi.side_effect = [OperationalError] * 5 + [True] call_command('wait_for_db') self.assertEqual(gi.call_count, 6) class ModelTests(TestCase): def tes_city_str(self): """Test city string representation""" city = sample_city(name='city1') self.assertEqual(str(city), city.name) def test_locality_str(self): """Test city string representation""" locality = sample_locality(name='local1') self.assertEqual(str(locality), locality.name) ``` #### File: app/location/views.py ```python from django.db.models import F from rest_framework import viewsets from ratelimit.mixins import RatelimitMixin from location.models import Locality, City from location.serializers import LocalitySerializer, CitySerializer class CityViewSet(viewsets.ModelViewSet): """Manage City objects""" queryset = City.objects.all() serializer_class = CitySerializer class LocalityNameViewSet(viewsets.ModelViewSet, RatelimitMixin): """Manage locality objects by name""" ratelimit_key = 'ip' ratelimit_rate = '5/m' ratelimit_block = True queryset = Locality.objects.all() serializer_class = LocalitySerializer def get_queryset(self): city = self.request.query_params.get('name') lat_str = self.request.query_params.get('lat') or '0' long_str = self.request.query_params.get('long') or '0' lat = float(lat_str) long = float(long_str) queryset = self.queryset if city: queryset = queryset.filter(name__istartswith=city)\ .order_by((F('latitude')-lat)**2+(F('longitude')-long)**2)[:5] return queryset class LocalityDistanceViewSet(viewsets.ModelViewSet, RatelimitMixin): """Manage locality objects by distance""" ratelimit_key = 'ip' ratelimit_rate = '5/m' ratelimit_block = True queryset = Locality.objects.all() serializer_class = LocalitySerializer def get_queryset(self): lat_str = self.request.query_params.get('lat') or '0' long_str = self.request.query_params.get('long') or '0' lat = float(lat_str) long = float(long_str) queryset = self.queryset if lat_str and long_str: queryset = queryset.annotate(distance=(F('latitude')-lat)**2+(F('longitude')-long)**2)\ .filter(distance__lte=10).order_by((F('latitude')-lat)**2+(F('longitude')-long)**2) return queryset ```
{ "source": "Aakash-kaushik/aibox", "score": 3 }
#### File: aibox/aibox/utils.py ```python import os import io from PIL import Image def fetch(url): # efficient loading of URLS import os, tempfile, hashlib, requests fp = os.path.join(tempfile.gettempdir(), hashlib.md5(url.encode("utf-8")).hexdigest()) if os.path.isfile(fp) and os.stat(fp).st_size > 0: with open(fp, "rb") as f: dat = f.read() else: dat = requests.get(url).content with open(fp + ".tmp", "wb") as f: f.write(dat) os.rename(fp + ".tmp", fp) return dat def get_image(file_path_or_url): if os.path.exists(file_path_or_url): return Image.open(file_path_or_url) else: return Image.open(io.BytesIO(fetch(file_path_or_url))) def folder(x): # get the folder of this file path import os return os.path.split(os.path.abspath(x))[0] ```
{ "source": "Aakash-kaushik/robert_bot", "score": 3 }
#### File: Aakash-kaushik/robert_bot/main.py ```python import os, re, codecs, csv, random import unicodedata,itertools, torch import torch.nn as nn from torch import optim corpus_name="cornell_movie_dialogs_corpus" corpus=os.path.join("data",corpus_name) def print_lines(file,n=10): """Shows some lines ftom the text file""" with open(file,'rb') as datafile: lines=datafile.readlines() for line in lines[:n]: print(line) device=torch.device("cuda" if torch.cuda.is_available() else "cpu") def load_lines(file,fields): """loads lines and splits then into fields and return a dict""" lines={} with open(file,"r",encoding="iso-8859-1") as f: for line in f: values=line.split(" +++$+++ ") line_obj={} for idx,field in enumerate(fields): line_obj[field]=values[idx] lines[line_obj[fields[0]]]=line_obj return lines def load_conv(file,lines,fields): convs=[] with open(file,"r",encoding="iso-8859-1") as f: for line in f: values=line.split(" +++$+++ ") conv_obj={} for idx,field in enumerate(fields): conv_obj[field]=values[idx] line_id_pattern=re.compile('L[0-9]+') line_ids=line_id_pattern.findall(conv_obj[fields[-1]]) conv_obj["lines"]=[] for line_id in line_ids: conv_obj["lines"].append(lines[line_id]) convs.append(conv_obj) return convs def sentence_pair_extract(convs): qa_pairs=[] for conv in convs: for i in range(len(conv["lines"])-1): input_line=conv["lines"][i]["text"].strip() target_line=conv["lines"][i+1]["text"].strip() if input_line and target_line: qa_pairs.append([input_line,target_line]) return qa_pairs #paths to files movie_file=os.path.join(corpus,"movie_lines.txt") character_file=os.path.join(corpus,"movie_conversations.txt") formatted_file=os.path.join(corpus,"formatted_movie_lines.txt") delimiter="\t" delimiter=str(codecs.decode(delimiter,"unicode_escape")) lines=load_lines(movie_file,["lineID", "characterID", "movieID", "character", "text"]) convs=load_conv(character_file,lines,["character1ID", "character2ID", "movieID", "utteranceIDs"]) with open(formatted_file, "w", encoding="utf-8") as outputfile: writer=csv.writer(outputfile,delimiter=delimiter,lineterminator="\n") for pair in sentence_pair_extract(convs): writer.writerow(pair) #text_manip part formatted_file=os.path.join(corpus,"formatted_movie_lines.txt") pad_token=0 sos_token=1 eos_token=2 class Voc: def __init__(self,name): self.name=name self.trimmed=False self.word2idx={} self.word2count={} self.idx2word={pad_token:"PAD",sos_token:"SOS",eos_token:"EOS"} self.num_words=3 def add_sentence(self,sentence): for word in sentence.split(" "): self.add_word(word) def add_word(self,word): if word not in self.word2idx: self.word2idx[word]=self.num_words self.word2count[word]=1 self.idx2word[self.num_words]=word self.num_words+=1 else: self.word2count[word]+=1 def trim(self,min_thr): if self.trimmed: return self.trimmed=True keep_word=[] for k,v in self.word2count.items(): if v>=min_thr: keep_word.append(k) self.word2idx={} self.word2count={} self.idx2word={pad_token:"PAD",sos_token:"SOS",eos_token:"EOS"} self.num_words=3 for word in keep_word: self.add_word(word) max_length=10 def unicode_to_ascii(s): return "".join(c for c in unicodedata.normalize('NFD',s) if unicodedata.category(c)!="Mn") def normalize_string(s): s=unicode_to_ascii(s.lower().strip()) s=re.sub(r"([.!?])",r" \1",s) s=re.sub(r"[^a-zA-Z.!?]+",r" ",s) s=re.sub(r"\s+",r" ",s).strip() return s def read_vocs(formatted_file,corpus_name): lines=open(formatted_file,encoding="utf-8").read().strip().split("\n") pairs=[[normalize_string(s) for s in l.split("\t")] for l in lines] voc=Voc(corpus_name) return voc, pairs def filter_pair(p): """Returns True if pairs are smaller than max_length""" return len(p[0].split(" ")) <= max_length and len(p[1].split(" ")) <= max_length def filter_pairs(pairs): """returns pairs of with filter_pair()==True""" return [pair for pair in pairs if filter_pair(pair)] def load_prepare_data(corpus,corpus_name,formatted_file,save_dir): voc,pairs=read_vocs(formatted_file,corpus_name) pairs=filter_pairs(pairs) for pair in pairs: voc.add_sentence(pair[0]) voc.add_sentence(pair[1]) return voc, pairs save_dir=os.path.join("data","save") voc,pairs=load_prepare_data(corpus,corpus_name,formatted_file,save_dir) def trim_rare_words(voc,pairs,min_count): voc.trim(min_count) keep_pairs=[] for pair in pairs: input_sentence=pair[0] output_sentence=pair[1] keep_input=True keep_output=True for word in input_sentence.split(" "): if word not in voc.word2idx: keep_input=False break for word in output_sentence.split(" "): if word not in voc.word2idx: keep_output=False break if keep_output and keep_input: keep_pairs.append(pair) return keep_pairs min_count=3 #pairs with word_count less than min_count will be removedby trim_rare_words() pairs=trim_rare_words(voc,pairs,min_count) def indexes_from_sentence(voc,sentence): return [voc.word2idx[word] for word in sentence.split(" ")]+[eos_token] def zero_padding(l,fillval=pad_token): return list(itertools.zip_longest(*l,fillvalue=fillval)) def binary_matrix(l,val=pad_token): m=[] for i, seq in enumerate(l): m.append([]) for token in seq: if token==pad_token: m[i].append(0) else: m[i].append(1) return m def input_var(l,voc): indexes_batch=[indexes_from_sentence(voc,sentence) for sentence in l] lengths=torch.tensor([len(indexes) for indexes in indexes_batch]) pad_list=zero_padding(indexes_batch) pad_var=torch.LongTensor(pad_list) return pad_var,lengths def output_var(l,voc): indexes_batch=[indexes_from_sentence(voc,sentence) for sentence in l] max_target_length=max([len(indexes) for indexes in indexes_batch]) pad_list=zero_padding(indexes_batch) mask=binary_matrix(pad_list) mask=torch.BoolTensor(mask) pad_var=torch.LongTensor(pad_list) return pad_var,mask,max_target_length def batch2train_data(voc,pair_batch): pair_batch.sort(key=lambda x: len(x[0].split(" ")),reverse=True) input_batch,output_batch=[],[] for pair in pair_batch: input_batch.append(pair[0]) output_batch.append(pair[1]) inp,lengths=input_var(input_batch,voc) output,mask,max_target_length=output_var(output_batch,voc) return inp,lengths,output,mask,max_target_length #model part class encoder_rnn(nn.Module): def __init__(self,hidden_size,embedding,n_layers=1,dropout=0): super(encoder_rnn,self).__init__() self.n_layers=n_layers self.hidden_size=hidden_size self.embedding=embedding self.gru=nn.GRU(hidden_size,hidden_size, n_layers,dropout=(0 if n_layers==1 else dropout),bidirectional=True) def forward(self,input_seq,input_lengths,hidden=None): embedded=self.embedding(input_seq) packed=nn.utils.rnn.pack_padded_sequence(embedded,input_lengths) outputs,hidden=self.gru(packed,hidden) outputs,_=nn.utils.rnn.pad_packed_sequence(outputs) outputs=outputs[:,:,:self.hidden_size]+outputs[:,:,self.hidden_size:] return outputs,hidden class Attn(nn.Module): def __init__(self,method,hidden_size): super(Attn,self).__init__() self.method=method if self.method not in ["dot","general","concat"]: raise ValueError(self.method,"is not an appropriate attention method") self.hidden_size=hidden_size if self.method=="general": self.attn=nn.Linear(self.hidden_size,hidden_size) elif self.method=="concat": self.attn=nn.Linear(self.hidden_size*2,hidden_size) self.v=nn.Parameter(torch.FloatTensor(hidden_size)) def dot_score(self,hidden,encoder_output): return torch.sum(hidden,encoder_output,dim=2) def general_score(self,hidden,encoder_output): energy=self.attn(encoder_output) return torch.sum(energy*hidden,dim=2) def concat_score(self,hidden,encoder_output): energy=self.attn(torch.cat((hidden.expand(encoder_output.size(0),-1,-1),encoder_output),2)).tanh() return torch.sum(self.v*energy,dim=2) def forward(self,hidden,encoder_outputs): if self.method=="general": attn_energies=self.general_score(hidden,encoder_outputs) elif self.method=="concat": attn_energies=self.concat_score(hidden,encoder_outputs) elif self.method=="dot": attn_energies=self.dot_score(hidden,encoder_outputs) attn_energies=attn_energies.t() return nn.functional.softmax(attn_energies,dim=1).unsqueeze(1) class attn_decoder_rnn(nn.Module): def __init__(self,attn_model,embedding,hidden_size,output_size,n_layers=1,dropout=0.1): super(attn_decoder_rnn,self).__init__() self.attn_model=attn_model self.hidden_size=hidden_size self.output_size=output_size self.n_layers=n_layers self.dropout=dropout self.embedding=embedding self.embedding_dropout=nn.Dropout(dropout) self.gru=nn.GRU(hidden_size,hidden_size,n_layers,dropout=(0 if n_layers==1 else dropout)) self.concat=nn.Linear(hidden_size*2,hidden_size) self.out=nn.Linear(hidden_size,output_size) self.attn=Attn(attn_model,hidden_size) def forward(self,input_step,last_hidden,encoder_outputs): embedded=self.embedding(input_step) embedded=self.embedding_dropout(embedded) rnn_output,hidden=self.gru(embedded,last_hidden) attn_weights=self.attn(rnn_output,encoder_outputs) context=attn_weights.bmm(encoder_outputs.transpose(0,1)) rnn_output=rnn_output.squeeze(0) context=context.squeeze(1) concat_input=torch.cat((rnn_output,context),1) concat_output=torch.tanh(self.concat(concat_input)) output=self.out(concat_output) output=nn.functional.softmax(output,dim=1) return output,hidden #train part def mask_nll_loss(inp,target,mask): n_total=mask.sum() cross_entropy = -torch.log(torch.gather(inp,1,target.view(-1,1)).squeeze(1)) loss=cross_entropy.masked_select(mask).mean() loss=loss.to(device) return loss, n_total.item() def train(input_variable,lengths,target_variable, mask,max_target_length,encoder,decoder,embedding, encoder_optimizer,decoder_optimizer,batch_size,clip,max_length=15): encoder_optimizer.zero_grad() decoder_optimizer.zero_grad() input_variable=input_variable.to(device) lengths=lengths.to(device) target_variable=target_variable.to(device) mask=mask.to(device) loss=0 print_losses=[] n_totals=0 encoder_outputs, encoder_hidden = encoder(input_variable,lengths) decoder_input=torch.LongTensor([[sos_token for _ in range(batch_size)]]) decoder_input=decoder_input.to(device) decoder_hidden=encoder_hidden[:decoder.n_layers] use_teacher_forcing= True if random.random() < teacher_forcing_ratio else False if use_teacher_forcing: for t in range(max_target_length): decoder_output,decoder_hidden=decoder(decoder_input,decoder_hidden,encoder_outputs) decoder_input=target_variable[t].view(1,-1) mask_loss,n_total=mask_nll_loss(decoder_output,target_variable[t],mask[t]) loss+=mask_loss print_losses.append(mask_loss.item()*n_total) n_totals += n_total else: for t in range(max_target_length): decoder_output,decoder_hidden=decoder(decoder_input,decoder_hidden,encoder_outputs) _,topi=decoder_output.topk(1) decoder_input=torch.LongTensor([[topi[i][0] for i in range(batch_size)]]) decoder_input=decoder_input.to(device) mask_loss,n_total=mask_nll_loss(decoder_output,target_variable[t],mask[t]) loss+=mask_loss print_losses.append(mask_loss.item()*n_total) n_totals+=n_total loss.backward() _=torch.nn.utils.clip_grad_norm_(encoder.parameters(),clip) _=torch.nn.utils.clip_grad_norm_(decoder.parameters(),clip) encoder_optimizer.step() decoder_optimizer.step() return sum(print_losses)/n_totals def train_iters(model_name, voc, pairs, encoder, decoder, encoder_optimizer, decoder_optimizer, embedding, encoder_n_layers, decoder_n_layers, save_dir, n_iter, batch_size, print_every, save_every, clip, corpus_name, load_filename): training_batches=[batch2train_data(voc,[random.choice(pairs) for _ in range(batch_size)]) for _ in range(n_iteration)] print("initializing") start_iter=1 print_loss=0 if load_filename: start_iter=checkpoint['iteration']+1 print('Training') for iteration in range(start_iter,n_iteration+1): training_batch=training_batches[iteration-1] input_variable,lengths,target_variable,mask,max_target_length=training_batch loss=train(input_variable,lengths,target_variable,mask,max_target_length,encoder,decoder,embedding,encoder_optimizer,decoder_optimizer,batch_size,clip) print_loss+=loss if iteration % print_every == 0: print_loss_avg=print_loss/print_every print("iteration: {}; Percent complete: {:.1f}%; Average loss: {:.4f}".format(iteration,iteration/n_iteration*100,print_loss_avg)) print_loss=0 if iteration % save_every == 0: directory=os.path.join(save_dir,model_name,corpus_name,'{}-{}_{}'.format(encoder_n_layers,decoder_n_layers,hidden_size)) if not os.path.exists(directory): os.makedirs(directory) torch.save({"iteration":iteration, "en":encoder.state_dict(), "de":decoder.state_dict(), "en_opt":encoder_optimizer.state_dict(), "de_opt":decoder_optimizer.state_dict(), "loss":loss, "voc_dict":voc.__dict__, "embedding":embedding.state_dict() },os.path.join(directory,"{}_{}.tar".format(iteration,"checkpoint"))) #eval part class greedy_search_decoder(nn.Module): def __init__(self,encoder,decoder): super(greedy_search_decoder,self).__init__() self.encoder=encoder self.decoder=decoder def forward(self,input_seq,input_length,max_length): encoder_outputs,encoder_hidden=self.encoder(input_seq,input_length) decoder_hidden=encoder_hidden[:decoder.n_layers] decoder_input=torch.ones(1,1,device=device,dtype=torch.long)* sos_token all_tokens=torch.zeros([0],device=device,dtype=torch.long) all_scores=torch.zeros([0],device=device) for _ in range(max_length): decoder_output,decoder_hidden=self.decoder(decoder_input,decoder_hidden,encoder_outputs) decoder_scores,decoder_input=torch.max(decoder_output,dim=1) all_tokens=torch.cat((all_tokens,decoder_input),dim=0) all_scores=torch.cat((all_scores,decoder_scores),dim=0) decoder_input=torch.unsqueeze(decoder_input,0) return all_tokens,all_scores def evaluate(encoder,decoder,searcher,voc,sentence,max_length=max_length): indexes_batch=[indexes_from_sentence(voc,sentence)] lengths=torch.tensor([len(indexes) for indexes in indexes_batch]) input_batch=torch.LongTensor(indexes_batch).transpose(0,1) input_batch=input_batch.to(device) lengths=lengths.to(device) tokens,scores=searcher(input_batch,lengths,max_length) decoded_words=[voc.idx2word[token.item()] for token in tokens] return decoded_words def eval_input(encoder,decoder,searcher,voc): input_sentence="" while(1): try: input_sentence=input("> ") if input_sentence=='q' or input_sentence=="quit": break input_sentence=normalize_string(input_sentence) output_words=evaluate(encoder,decoder,searcher,voc,input_sentence) output_words[:]=[x for x in output_words if not(x=='EOS' or x=='PAD')] print("Robert:",' '.join(output_words)) except KeyError: print("Error: Encountered unknown word.") '''#training model_name = 'cb_model' attn_model = 'dot' hidden_size = 500 encoder_n_layers = 2 decoder_n_layers = 2 dropout = 0.1 batch_size = 64 # Set checkpoint to load from; set to None if starting from scratch attn_model="general" load_filename=None embedding = nn.Embedding(voc.num_words, hidden_size) encoder = encoder_rnn(hidden_size, embedding, encoder_n_layers, dropout) decoder = attn_decoder_rnn(attn_model, embedding, hidden_size, voc.num_words, decoder_n_layers, dropout) encoder = encoder.to(device) decoder = decoder.to(device) clip=50.0 teacher_forcing_ratio=1.0 learning_rate=0.0001 decoder_learning_ratio=5.0 n_iteration=5000 print_every=1 save_every=500 encoder.train() decoder.train() encoder_optimizer=optim.Adam(encoder.parameters(),lr=learning_rate) decoder_optimizer=optim.Adam(decoder.parameters(),lr=learning_rate*decoder_learning_ratio) if load_filename: encoder_optimizer.load_state_dict(encoder_optimizer_sd) decoder_optimizer.load_state_dict(decoder_optimizer_sd) print("starting training") train_iters(model_name, voc, pairs, encoder, decoder, encoder_optimizer, decoder_optimizer, embedding, encoder_n_layers, decoder_n_layers, save_dir, n_iteration, batch_size, print_every, save_every, clip, corpus_name, load_filename)''' #eval model_name = 'cb_model' attn_model = 'dot' attn_model = 'general' #attn_model = 'concat' hidden_size = 500 encoder_n_layers = 2 decoder_n_layers = 2 dropout = 0.1 batch_size = 64 # Set checkpoint to load from; set to None if starting from scratch loadFilename = r"checkpoint/5000_checkpoint.tar" checkpoint_iter = 5000 if loadFilename: # If loading on same machine the model was trained on checkpoint = torch.load(loadFilename) # If loading a model trained on GPU to CPU #checkpoint = torch.load(loadFilename, map_location=torch.device('cpu')) encoder_sd = checkpoint['en'] decoder_sd = checkpoint['de'] encoder_optimizer_sd = checkpoint['en_opt'] decoder_optimizer_sd = checkpoint['de_opt'] embedding_sd = checkpoint['embedding'] voc.__dict__ = checkpoint['voc_dict'] # Initialize word embeddings embedding = nn.Embedding(voc.num_words, hidden_size) if loadFilename: embedding.load_state_dict(embedding_sd) # Initialize encoder & decoder models encoder = encoder_rnn(hidden_size, embedding, encoder_n_layers, dropout) decoder = attn_decoder_rnn(attn_model, embedding, hidden_size, voc.num_words, decoder_n_layers, dropout) if loadFilename: encoder.load_state_dict(encoder_sd) decoder.load_state_dict(decoder_sd) # Use appropriate device encoder = encoder.to(device) decoder = decoder.to(device) print('Robert: Hi, I am Robert') encoder.eval() decoder.eval() # Initialize search module searcher = greedy_search_decoder(encoder, decoder) # Begin chatting (uncomment and run the following line to begin) eval_input(encoder, decoder, searcher, voc) ```
{ "source": "AakashKhatu/iDontNeedThis", "score": 3 }
#### File: i_dont_need_this/qr/views.py ```python from django.http import HttpResponse import requests from django.contrib.auth.decorators import login_required def scanned(request): rpi_ip = "192.168.0.10:5000" box_id = request.GET["id"] box_state = request.GET["open"] # return HttpResponse( # "invalid arguments in url") print("qr code of box with id: {0} scanned".format(box_id)) url = "http://"+rpi_ip+"/?open="+box_state response = requests.request("GET", url) return HttpResponse( "Box is currently {0}".format( "opened" if box_state == "True" else "Closed")) ``` #### File: i_dont_need_this/web/otp.py ```python import requests import random def send_otp(number): url = "https://www.fast2sms.com/dev/bulk" otp = random.randint(10000, 99999) querystring = {"authorization": "<KEY>", "sender_id": "FSTSMS", "language": "english", "route": "qt", "numbers": number, "message": "8528", "variables": "{AA}", "variables_values": otp} headers = { 'cache-control': "no-cache" } response = requests.request( "GET", url, headers=headers, params=querystring) return (response.ok, otp) ``` #### File: i_dont_need_this/web/views.py ```python from django.shortcuts import render, redirect from django.views.generic import TemplateView from django.contrib.auth.mixins import LoginRequiredMixin from django.contrib.auth import login from django.contrib.auth.models import User from .otp import send_otp import json from django.http import HttpResponse from django.contrib.auth import logout def logout_view(request): logout(request) return redirect('index') def about_view(request): return render(request, 'web/about.html', {}) def faq_view(request): return render(request, 'web/faq.html', {}) def submit_view(request): return render(request, 'web/submit.html', {}) def pay_view(request): return render(request, 'web/paymentGateway.html', {}) def otp_view(request): resp = send_otp(request.GET['phone']) response_data = {} response_data['result'] = resp[0] response_data['otp'] = resp[1] return HttpResponse(json.dumps(response_data), content_type="application/json") class index(TemplateView): def get(self, request): if request.user.is_authenticated: c = {"phnum": request.user.username} else: c = {"phnum": None} return render(request, "web/index.html", {}) def post(self, request): try: user = User.objects.get(username=request.POST.get('phone')) print("user exists", user) except User.DoesNotExist: user = User.objects.create_user( request.POST.get('phone'), '<EMAIL>', 'password') user.save() print("created user", user) if request.POST.get('otphidden') == request.POST.get('password'): print("validated") user = login(request, user) return render(request, "web/index.html", {}) class dash(TemplateView): def get(self, request): return render(request, "web/FrontEnd.html", {}) def post(self, request): otp = send_otp(request.POST.get('phone')) if 'login' in request.POST: try: user = User.objects.get(username=request.POST.get('phone')) print("user exists", user) except User.DoesNotExist: user = User.objects.create_user( request.POST.get('phone'), '<EMAIL>', 'password') user.save() print("created user", user) if otp == request.POST.get('password'): print("validated") else: print("LOL") user = login(request, user) return render(request, "web/FrontEnd.html", {}) else: print(request.POST) return redirect("submit") class profile(LoginRequiredMixin, TemplateView): login_url = '/' def get(self, request): return render(request, "web/profile.html", {}) def post(self, request): print(request.POST) return render(request, "web/FrontEnd.html", {}) def handler404(request, exception, template_name="404.html"): response = render_to_response("web/404.html") response.status_code = 404 return response ```
{ "source": "AakashKhatu/lbry-sdk", "score": 2 }
#### File: unit/stream/test_managed_stream.py ```python import os import shutil import unittest from unittest import mock import asyncio from lbry.blob.blob_file import MAX_BLOB_SIZE from lbry.blob_exchange.serialization import BlobResponse from lbry.blob_exchange.server import BlobServerProtocol from lbry.dht.node import Node from lbry.dht.peer import KademliaPeer from lbry.extras.daemon.storage import StoredStreamClaim from lbry.stream.managed_stream import ManagedStream from lbry.stream.descriptor import StreamDescriptor from tests.unit.blob_exchange.test_transfer_blob import BlobExchangeTestBase def get_mock_node(loop): mock_node = mock.Mock(spec=Node) mock_node.joined = asyncio.Event(loop=loop) mock_node.joined.set() return mock_node class TestManagedStream(BlobExchangeTestBase): async def create_stream(self, blob_count: int = 10): self.stream_bytes = b'' for _ in range(blob_count): self.stream_bytes += os.urandom((MAX_BLOB_SIZE - 1)) # create the stream file_path = os.path.join(self.server_dir, "test_file") with open(file_path, 'wb') as f: f.write(self.stream_bytes) descriptor = await StreamDescriptor.create_stream(self.loop, self.server_blob_manager.blob_dir, file_path) self.sd_hash = descriptor.calculate_sd_hash() return descriptor async def setup_stream(self, blob_count: int = 10): await self.create_stream(blob_count) self.stream = ManagedStream( self.loop, self.client_config, self.client_blob_manager, self.sd_hash, self.client_dir ) async def test_status_file_completed(self): await self._test_transfer_stream(10) self.assertTrue(self.stream.output_file_exists) self.assertTrue(self.stream.completed) with open(self.stream.full_path, 'w+b') as outfile: outfile.truncate(1) self.assertTrue(self.stream.output_file_exists) self.assertFalse(self.stream.completed) async def _test_transfer_stream(self, blob_count: int, mock_accumulate_peers=None, stop_when_done=True): await self.setup_stream(blob_count) mock_node = mock.Mock(spec=Node) def _mock_accumulate_peers(q1, q2): async def _task(): pass q2.put_nowait([self.server_from_client]) return q2, self.loop.create_task(_task()) mock_node.accumulate_peers = mock_accumulate_peers or _mock_accumulate_peers await self.stream.save_file(node=mock_node) await self.stream.finished_write_attempt.wait() self.assertTrue(os.path.isfile(self.stream.full_path)) if stop_when_done: await self.stream.stop() self.assertTrue(os.path.isfile(self.stream.full_path)) with open(self.stream.full_path, 'rb') as f: self.assertEqual(f.read(), self.stream_bytes) await asyncio.sleep(0.01) async def test_transfer_stream(self): await self._test_transfer_stream(10) self.assertEqual(self.stream.status, "finished") self.assertFalse(self.stream._running.is_set()) async def test_delayed_stop(self): await self._test_transfer_stream(10, stop_when_done=False) self.assertEqual(self.stream.status, "finished") self.assertTrue(self.stream._running.is_set()) await asyncio.sleep(0.5, loop=self.loop) self.assertTrue(self.stream._running.is_set()) await asyncio.sleep(2, loop=self.loop) self.assertEqual(self.stream.status, "finished") self.assertFalse(self.stream._running.is_set()) @unittest.SkipTest async def test_transfer_hundred_blob_stream(self): await self._test_transfer_stream(100) async def test_transfer_stream_bad_first_peer_good_second(self): await self.setup_stream(2) mock_node = mock.Mock(spec=Node) q = asyncio.Queue() bad_peer = KademliaPeer(self.loop, "127.0.0.1", b'2' * 48, tcp_port=3334) def _mock_accumulate_peers(q1, q2): async def _task(): pass q2.put_nowait([bad_peer]) self.loop.call_later(1, q2.put_nowait, [self.server_from_client]) return q2, self.loop.create_task(_task()) mock_node.accumulate_peers = _mock_accumulate_peers await self.stream.save_file(node=mock_node) await self.stream.finished_writing.wait() self.assertTrue(os.path.isfile(self.stream.full_path)) with open(self.stream.full_path, 'rb') as f: self.assertEqual(f.read(), self.stream_bytes) await self.stream.stop() # self.assertIs(self.server_from_client.tcp_last_down, None) # self.assertIsNot(bad_peer.tcp_last_down, None) async def test_client_chunked_response(self): self.server.stop_server() class ChunkedServerProtocol(BlobServerProtocol): def send_response(self, responses): to_send = [] while responses: to_send.append(responses.pop()) for byte in BlobResponse(to_send).serialize(): self.transport.write(bytes([byte])) self.server.server_protocol_class = ChunkedServerProtocol self.server.start_server(33333, '127.0.0.1') self.assertEqual(0, len(self.client_blob_manager.completed_blob_hashes)) await asyncio.wait_for(self._test_transfer_stream(10), timeout=2) self.assertEqual(11, len(self.client_blob_manager.completed_blob_hashes)) async def test_create_and_decrypt_one_blob_stream(self, blobs=1, corrupt=False): descriptor = await self.create_stream(blobs) # copy blob files shutil.copy(os.path.join(self.server_blob_manager.blob_dir, self.sd_hash), os.path.join(self.client_blob_manager.blob_dir, self.sd_hash)) self.stream = ManagedStream(self.loop, self.client_config, self.client_blob_manager, self.sd_hash, self.client_dir) for blob_info in descriptor.blobs[:-1]: shutil.copy(os.path.join(self.server_blob_manager.blob_dir, blob_info.blob_hash), os.path.join(self.client_blob_manager.blob_dir, blob_info.blob_hash)) if corrupt and blob_info.length == MAX_BLOB_SIZE: with open(os.path.join(self.client_blob_manager.blob_dir, blob_info.blob_hash), "rb+") as handle: handle.truncate() handle.flush() await self.stream.save_file() await self.stream.finished_writing.wait() if corrupt: return self.assertFalse(os.path.isfile(os.path.join(self.client_dir, "test_file"))) with open(os.path.join(self.client_dir, "test_file"), "rb") as f: decrypted = f.read() self.assertEqual(decrypted, self.stream_bytes) self.assertEqual(True, self.client_blob_manager.get_blob(self.sd_hash).get_is_verified()) self.assertEqual( True, self.client_blob_manager.get_blob(self.stream.descriptor.blobs[0].blob_hash).get_is_verified() ) # # # its all blobs + sd blob - last blob, which is the same size as descriptor.blobs # self.assertEqual(len(descriptor.blobs), len(await downloader_storage.get_all_finished_blobs())) # self.assertEqual( # [descriptor.sd_hash, descriptor.blobs[0].blob_hash], await downloader_storage.get_blobs_to_announce() # ) # # await downloader_storage.close() # await self.storage.close() async def test_create_and_decrypt_multi_blob_stream(self): await self.test_create_and_decrypt_one_blob_stream(10) # async def test_create_truncate_and_handle_stream(self): # # The purpose of this test is just to make sure it can finish even if a blob is corrupt/truncated # await asyncio.wait_for(self.test_create_and_decrypt_one_blob_stream(corrupt=True), timeout=5) ``` #### File: torba/client/baseaccount.py ```python import json import time import asyncio import random import typing from typing import Dict, Tuple, Type, Optional, Any, List from torba.client.mnemonic import Mnemonic from torba.client.bip32 import PrivateKey, PubKey, from_extended_key_string from torba.client.hash import aes_encrypt, aes_decrypt, sha256 from torba.client.constants import COIN if typing.TYPE_CHECKING: from torba.client import baseledger, wallet as basewallet class AddressManager: name: str __slots__ = 'account', 'public_key', 'chain_number', 'address_generator_lock' def __init__(self, account, public_key, chain_number): self.account = account self.public_key = public_key self.chain_number = chain_number self.address_generator_lock = asyncio.Lock() @classmethod def from_dict(cls, account: 'BaseAccount', d: dict) \ -> Tuple['AddressManager', 'AddressManager']: raise NotImplementedError @classmethod def to_dict(cls, receiving: 'AddressManager', change: 'AddressManager') -> Dict: d: Dict[str, Any] = {'name': cls.name} receiving_dict = receiving.to_dict_instance() if receiving_dict: d['receiving'] = receiving_dict change_dict = change.to_dict_instance() if change_dict: d['change'] = change_dict return d def apply(self, d: dict): pass def to_dict_instance(self) -> Optional[dict]: raise NotImplementedError def _query_addresses(self, **constraints): return self.account.ledger.db.get_addresses( accounts=[self.account], chain=self.chain_number, **constraints ) def get_private_key(self, index: int) -> PrivateKey: raise NotImplementedError def get_public_key(self, index: int) -> PubKey: raise NotImplementedError async def get_max_gap(self): raise NotImplementedError async def ensure_address_gap(self): raise NotImplementedError def get_address_records(self, only_usable: bool = False, **constraints): raise NotImplementedError async def get_addresses(self, only_usable: bool = False, **constraints) -> List[str]: records = await self.get_address_records(only_usable=only_usable, **constraints) return [r['address'] for r in records] async def get_or_create_usable_address(self) -> str: addresses = await self.get_addresses(only_usable=True, limit=10) if addresses: return random.choice(addresses) addresses = await self.ensure_address_gap() return addresses[0] class HierarchicalDeterministic(AddressManager): """ Implements simple version of Bitcoin Hierarchical Deterministic key management. """ name: str = "deterministic-chain" __slots__ = 'gap', 'maximum_uses_per_address' def __init__(self, account: 'BaseAccount', chain: int, gap: int, maximum_uses_per_address: int) -> None: super().__init__(account, account.public_key.child(chain), chain) self.gap = gap self.maximum_uses_per_address = maximum_uses_per_address @classmethod def from_dict(cls, account: 'BaseAccount', d: dict) -> Tuple[AddressManager, AddressManager]: return ( cls(account, 0, **d.get('receiving', {'gap': 20, 'maximum_uses_per_address': 1})), cls(account, 1, **d.get('change', {'gap': 6, 'maximum_uses_per_address': 1})) ) def apply(self, d: dict): self.gap = d.get('gap', self.gap) self.maximum_uses_per_address = d.get('maximum_uses_per_address', self.maximum_uses_per_address) def to_dict_instance(self): return {'gap': self.gap, 'maximum_uses_per_address': self.maximum_uses_per_address} def get_private_key(self, index: int) -> PrivateKey: return self.account.private_key.child(self.chain_number).child(index) def get_public_key(self, index: int) -> PubKey: return self.account.public_key.child(self.chain_number).child(index) async def get_max_gap(self) -> int: addresses = await self._query_addresses(order_by="n asc") max_gap = 0 current_gap = 0 for address in addresses: if address['used_times'] == 0: current_gap += 1 else: max_gap = max(max_gap, current_gap) current_gap = 0 return max_gap async def ensure_address_gap(self) -> List[str]: async with self.address_generator_lock: addresses = await self._query_addresses(limit=self.gap, order_by="n desc") existing_gap = 0 for address in addresses: if address['used_times'] == 0: existing_gap += 1 else: break if existing_gap == self.gap: return [] start = addresses[0]['pubkey'].n+1 if addresses else 0 end = start + (self.gap - existing_gap) new_keys = await self._generate_keys(start, end-1) await self.account.ledger.announce_addresses(self, new_keys) return new_keys async def _generate_keys(self, start: int, end: int) -> List[str]: if not self.address_generator_lock.locked(): raise RuntimeError('Should not be called outside of address_generator_lock.') keys = [self.public_key.child(index) for index in range(start, end+1)] await self.account.ledger.db.add_keys(self.account, self.chain_number, keys) return [key.address for key in keys] def get_address_records(self, only_usable: bool = False, **constraints): if only_usable: constraints['used_times__lt'] = self.maximum_uses_per_address if 'order_by' not in constraints: constraints['order_by'] = "used_times asc, n asc" return self._query_addresses(**constraints) class SingleKey(AddressManager): """ Single Key address manager always returns the same address for all operations. """ name: str = "single-address" __slots__ = () @classmethod def from_dict(cls, account: 'BaseAccount', d: dict)\ -> Tuple[AddressManager, AddressManager]: same_address_manager = cls(account, account.public_key, 0) return same_address_manager, same_address_manager def to_dict_instance(self): return None def get_private_key(self, index: int) -> PrivateKey: return self.account.private_key def get_public_key(self, index: int) -> PubKey: return self.account.public_key async def get_max_gap(self) -> int: return 0 async def ensure_address_gap(self) -> List[str]: async with self.address_generator_lock: exists = await self.get_address_records() if not exists: await self.account.ledger.db.add_keys(self.account, self.chain_number, [self.public_key]) new_keys = [self.public_key.address] await self.account.ledger.announce_addresses(self, new_keys) return new_keys return [] def get_address_records(self, only_usable: bool = False, **constraints): return self._query_addresses(**constraints) class BaseAccount: mnemonic_class = Mnemonic private_key_class = PrivateKey public_key_class = PubKey address_generators: Dict[str, Type[AddressManager]] = { SingleKey.name: SingleKey, HierarchicalDeterministic.name: HierarchicalDeterministic, } def __init__(self, ledger: 'baseledger.BaseLedger', wallet: 'basewallet.Wallet', name: str, seed: str, private_key_string: str, encrypted: bool, private_key: Optional[PrivateKey], public_key: PubKey, address_generator: dict, modified_on: float) -> None: self.ledger = ledger self.wallet = wallet self.id = public_key.address self.name = name self.seed = seed self.modified_on = modified_on self.private_key_string = private_key_string self.password: Optional[str] = None self.private_key_encryption_init_vector: Optional[bytes] = None self.seed_encryption_init_vector: Optional[bytes] = None self.encrypted = encrypted self.serialize_encrypted = encrypted self.private_key = private_key self.public_key = public_key generator_name = address_generator.get('name', HierarchicalDeterministic.name) self.address_generator = self.address_generators[generator_name] self.receiving, self.change = self.address_generator.from_dict(self, address_generator) self.address_managers = {am.chain_number: am for am in {self.receiving, self.change}} ledger.add_account(self) wallet.add_account(self) @classmethod def generate(cls, ledger: 'baseledger.BaseLedger', wallet: 'basewallet.Wallet', name: str = None, address_generator: dict = None): return cls.from_dict(ledger, wallet, { 'name': name, 'seed': cls.mnemonic_class().make_seed(), 'address_generator': address_generator or {} }) @classmethod def get_private_key_from_seed(cls, ledger: 'baseledger.BaseLedger', seed: str, password: str): return cls.private_key_class.from_seed( ledger, cls.mnemonic_class.mnemonic_to_seed(seed, password) ) @classmethod def keys_from_dict(cls, ledger: 'baseledger.BaseLedger', d: dict) \ -> Tuple[str, Optional[PrivateKey], PubKey]: seed = d.get('seed', '') private_key_string = d.get('private_key', '') private_key = None public_key = None encrypted = d.get('encrypted', False) if not encrypted: if seed: private_key = cls.get_private_key_from_seed(ledger, seed, '') public_key = private_key.public_key elif private_key_string: private_key = from_extended_key_string(ledger, private_key_string) public_key = private_key.public_key if public_key is None: public_key = from_extended_key_string(ledger, d['public_key']) return seed, private_key, public_key @classmethod def from_dict(cls, ledger: 'baseledger.BaseLedger', wallet: 'basewallet.Wallet', d: dict): seed, private_key, public_key = cls.keys_from_dict(ledger, d) name = d.get('name') if not name: name = 'Account #{}'.format(public_key.address) return cls( ledger=ledger, wallet=wallet, name=name, seed=seed, private_key_string=d.get('private_key', ''), encrypted=d.get('encrypted', False), private_key=private_key, public_key=public_key, address_generator=d.get('address_generator', {}), modified_on=d.get('modified_on', time.time()) ) def to_dict(self): private_key_string, seed = self.private_key_string, self.seed if not self.encrypted and self.private_key: private_key_string = self.private_key.extended_key_string() if not self.encrypted and self.serialize_encrypted: assert None not in [self.seed_encryption_init_vector, self.private_key_encryption_init_vector] private_key_string = aes_encrypt( self.password, private_key_string, self.private_key_encryption_init_vector ) seed = aes_encrypt(self.password, self.seed, self.seed_encryption_init_vector) return { 'ledger': self.ledger.get_id(), 'name': self.name, 'seed': seed, 'encrypted': self.serialize_encrypted, 'private_key': private_key_string, 'public_key': self.public_key.extended_key_string(), 'address_generator': self.address_generator.to_dict(self.receiving, self.change), 'modified_on': self.modified_on } def apply(self, d: dict): if d.get('modified_on', 0) > self.modified_on: self.name = d['name'] self.modified_on = d.get('modified_on', time.time()) assert self.address_generator.name == d['address_generator']['name'] for chain_name in ('change', 'receiving'): if chain_name in d['address_generator']: chain_object = getattr(self, chain_name) chain_object.apply(d['address_generator'][chain_name]) @property def hash(self) -> bytes: return sha256(json.dumps(self.to_dict()).encode()) async def get_details(self, show_seed=False, **kwargs): satoshis = await self.get_balance(**kwargs) details = { 'id': self.id, 'name': self.name, 'coins': round(satoshis/COIN, 2), 'satoshis': satoshis, 'encrypted': self.encrypted, 'public_key': self.public_key.extended_key_string(), 'address_generator': self.address_generator.to_dict(self.receiving, self.change) } if show_seed: details['seed'] = self.seed return details def decrypt(self, password: str) -> None: assert self.encrypted, "Key is not encrypted." try: seed, seed_iv = aes_decrypt(password, self.seed) pk_string, pk_iv = aes_decrypt(password, self.private_key_string) except ValueError: # failed to remove padding, password is wrong return try: Mnemonic().mnemonic_decode(seed) except IndexError: # failed to decode the seed, this either means it decrypted and is invalid # or that we hit an edge case where an incorrect password gave valid padding return try: private_key = from_extended_key_string( self.ledger, pk_string ) except (TypeError, ValueError): return self.seed = seed self.seed_encryption_init_vector = seed_iv self.private_key = private_key self.private_key_encryption_init_vector = pk_iv self.password = password self.encrypted = False def encrypt(self, password: str) -> None: assert not self.encrypted, "Key is already encrypted." assert isinstance(self.private_key, PrivateKey) self.seed = aes_encrypt(password, self.seed, self.seed_encryption_init_vector) self.private_key_string = aes_encrypt( password, self.private_key.extended_key_string(), self.private_key_encryption_init_vector ) self.private_key = None self.password = None self.encrypted = True async def ensure_address_gap(self): addresses = [] for address_manager in self.address_managers.values(): new_addresses = await address_manager.ensure_address_gap() addresses.extend(new_addresses) return addresses async def get_addresses(self, **constraints) -> List[str]: rows = await self.ledger.db.select_addresses('address', accounts=[self], **constraints) return [r[0] for r in rows] def get_address_records(self, **constraints): return self.ledger.db.get_addresses(accounts=[self], **constraints) def get_address_count(self, **constraints): return self.ledger.db.get_address_count(accounts=[self], **constraints) def get_private_key(self, chain: int, index: int) -> PrivateKey: assert not self.encrypted, "Cannot get private key on encrypted wallet account." return self.address_managers[chain].get_private_key(index) def get_public_key(self, chain: int, index: int) -> PubKey: return self.address_managers[chain].get_public_key(index) def get_balance(self, confirmations: int = 0, **constraints): if confirmations > 0: height = self.ledger.headers.height - (confirmations-1) constraints.update({'height__lte': height, 'height__gt': 0}) return self.ledger.db.get_balance(accounts=[self], **constraints) async def get_max_gap(self): change_gap = await self.change.get_max_gap() receiving_gap = await self.receiving.get_max_gap() return { 'max_change_gap': change_gap, 'max_receiving_gap': receiving_gap, } def get_utxos(self, **constraints): return self.ledger.get_utxos(wallet=self.wallet, accounts=[self], **constraints) def get_utxo_count(self, **constraints): return self.ledger.get_utxo_count(wallet=self.wallet, accounts=[self], **constraints) def get_transactions(self, **constraints): return self.ledger.get_transactions(wallet=self.wallet, accounts=[self], **constraints) def get_transaction_count(self, **constraints): return self.ledger.get_transaction_count(wallet=self.wallet, accounts=[self], **constraints) async def fund(self, to_account, amount=None, everything=False, outputs=1, broadcast=False, **constraints): assert self.ledger == to_account.ledger, 'Can only transfer between accounts of the same ledger.' tx_class = self.ledger.transaction_class if everything: utxos = await self.get_utxos(**constraints) await self.ledger.reserve_outputs(utxos) tx = await tx_class.create( inputs=[tx_class.input_class.spend(txo) for txo in utxos], outputs=[], funding_accounts=[self], change_account=to_account ) elif amount > 0: to_address = await to_account.change.get_or_create_usable_address() to_hash160 = to_account.ledger.address_to_hash160(to_address) tx = await tx_class.create( inputs=[], outputs=[ tx_class.output_class.pay_pubkey_hash(amount//outputs, to_hash160) for _ in range(outputs) ], funding_accounts=[self], change_account=self ) else: raise ValueError('An amount is required.') if broadcast: await self.ledger.broadcast(tx) else: await self.ledger.release_tx(tx) return tx ```
{ "source": "AakashKT/analytic_ss_cpu", "score": 2 }
#### File: AakashKT/analytic_ss_cpu/visualize.py ```python import os, sys, math, random, time, csv, copy, argparse import matplotlib from matplotlib import cm import matplotlib.pyplot as plt import numpy as np import cv2 fig = None ax1 = None ax2 = None data = {} showOccluders = False showSpherical = True prev_mousex = 0 prev_mousey = 0 def plotXY(pixel): global ax1, data, showOccluders ax1.clear() ax2.clear() pix_str = str(pixel[0]) + '_' + str(pixel[1]) pix = copy.deepcopy(data[pix_str]) num_lights = int(pix[0]) pix = pix[1:] for l in range(num_lights): ne = int(pix[0]) pix = pix[1:] phi_theta = pix[:ne*2] pix = pix[ne*2:] xy = pix[:ne*3] pix = pix[ne*3:] xy = xy + xy[0:3] xy = np.array(xy).reshape(ne+1, 3) phi_theta = phi_theta + phi_theta[0:2] phi_theta = np.array(phi_theta).reshape(ne+1, 2) if showSpherical: ax1.set_xlim(0, 2*np.pi, auto=False) ax1.set_ylim(0, np.pi, auto=False) ax1.invert_yaxis() ax1.set_aspect('equal', adjustable='box') ax1.plot(phi_theta[:, 0], phi_theta[:, 1], color='b') # ax1.plot([0, 2*np.pi], [np.pi/2.0, np.pi/2.0], color='k') else: ax1.plot(xy[:, 0], xy[:, 1], color='b') # Occluders num_occ = int(pix[0]) pix = pix[1:] for o in range(num_occ): ne = int(pix[0]) pix = pix[1:] phi_theta = pix[:ne*2] pix = pix[ne*2:] xy = pix[:ne*3] pix = pix[ne*3:] xy = xy + xy[0:3] xy = np.array(xy).reshape(ne+1, 3) phi_theta = phi_theta + phi_theta[0:2] phi_theta = np.array(phi_theta).reshape(ne+1, 2) if showOccluders: if showSpherical: ax1.plot(phi_theta[:, 0], phi_theta[:, 1], color='r') ax2.plot(phi_theta[:, 0], phi_theta[:, 1], color='r', alpha=0.3) else: ax1.plot(xy[:, 0], xy[:, 1], color='r') ax2.plot(xy[:, 0], xy[:, 1], color='r', alpha=0.3) # Clipped # print(pix) num_clip = int(pix[0]) pix = pix[1:] for o in range(num_clip): # print(pix[0]) ne = int(pix[0]) pix = pix[1:] phi_theta = pix[:ne*2] pix = pix[ne*2:] xy = pix[:ne*3] pix = pix[ne*3:] xy = xy + xy[0:3] xy = np.array(xy).reshape(ne+1, 3) phi_theta = phi_theta + phi_theta[0:2] phi_theta = np.array(phi_theta).reshape(ne+1, 2) if showSpherical: ax2.set_xlim(0, 2*np.pi, auto=False) ax2.set_ylim(0, np.pi, auto=False) ax2.invert_yaxis() ax2.set_aspect('equal', adjustable='box') ax2.plot(phi_theta[:, 0], phi_theta[:, 1], color='g') # ax1.plot([0, 2*np.pi], [np.pi/2.0, np.pi/2.0], color='k') else: ax2.plot(xy[:, 0], xy[:, 1], color='g') fig.canvas.draw() ax1.figure.canvas.draw() ax2.figure.canvas.draw() def onclick(event): global prev_mousex, prev_mousey # print('%s click: button=%d, x=%d, y=%d, xdata=%f, ydata=%f' % # ('double' if event.dblclick else 'single', event.button, # event.x, event.y, event.xdata, event.ydata)) prev_mousex = int(event.xdata) prev_mousey = int(event.ydata) plotXY(( int(event.xdata), int(event.ydata) )) def on_key(event): global showOccluders, showSpherical # print('you pressed', event.key, event.xdata, event.ydata) if event.key == 'b' or event.key == 'B': showOccluders = not showOccluders plotXY((prev_mousex, prev_mousey)) elif event.key == 'h' or event.key == 'H': showSpherical = not showSpherical plotXY((prev_mousex, prev_mousey)) elif event.key == 'z' or event.key == 'Z': extent = ax1.get_window_extent().transformed(fig.dpi_scale_trans.inverted()) fig.savefig('sph_poly.png', bbox_inches=extent, transparent=True, dpi=500) extent = ax2.get_window_extent().transformed(fig.dpi_scale_trans.inverted()) fig.savefig('sph_pol_1.png', bbox_inches=extent, transparent=True, dpi=500) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--pixel_file', type=str, default='Pixel data from PBRT') parser.add_argument('--image_file', type=str, default='Pixel data from PBRT') args = parser.parse_args() f = csv.reader(open(args.pixel_file)) for l in f: temp = [float(i) for i in l] data[str( int(temp[0]) ) + '_' + str( int(temp[1])) ] = temp[2:] nrows = 1 ncols = 3 fig = plt.figure(figsize=(20, 15)) button_press_id = fig.canvas.mpl_connect('button_press_event', onclick) key_press_id = fig.canvas.mpl_connect('key_press_event', on_key) ax1 = fig.add_subplot(nrows, ncols, 2) ax1.set_xlim(0, 2*np.pi, auto=False) ax1.set_ylim(0, np.pi, auto=False) ax1.invert_yaxis() ax1.set_aspect('equal', adjustable='box') ax2 = fig.add_subplot(nrows, ncols, 3) ax2.set_aspect('equal', adjustable='box') # Plot everything # plotXY((0, 0)) render = cv2.imread(args.image_file) img_ax = fig.add_subplot(nrows, ncols, 1) img_ax.imshow(cv2.cvtColor(render, cv2.COLOR_BGR2RGB)) plt.show() ```
{ "source": "AakashKT/interface-master-config", "score": 2 }
#### File: AakashKT/interface-master-config/peers.py ```python import os import json import re import sys import subprocess import time import urllib.request as urllib2 import multiprocessing as mp from charmhelpers.core import host from charmhelpers.core.hookenv import ( open_port, open_ports, status_set, config, unit_public_ip, unit_private_ip, ) from charmhelpers.core.host import ( service_start, service_stop, log, mkdir, write_file, ) from charmhelpers.fetch import ( apt_install, apt_update, apt_upgrade ) from charms.reactive.helpers import ( mark_invoked, was_invoked, ) from charms.reactive import ( when, when_not, when_file_changed, hook, RelationBase, scopes, set_state, remove_state ) CONF_FILE = '/tmp'; ######################################################################### # Common functions ######################################################################### def run_command(command=None): if command is None: return False; log('Running Command "%s"' % command); try: return subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT).decode('utf-8').replace('\n', ''); except subprocess.CalledProcessError as e: log('Error running "%s" : %s' % (command, e.output)); return False; def get_config(key): conf = config(key); return conf; def retrieve(key): try: conf = open('/tmp/ovn_conf', 'r'); except: return ''; plain_text = conf.read(); conf.close(); if plain_text == '': return ''; else: data = json.loads(plain_text); return data[key]; def store(key, value): conf = open('/tmp/ovn_conf', 'r'); plain_text = conf.read(); conf.close(); conf = open('/tmp/ovn_conf', 'w+'); data = {}; if plain_text != '': data = json.loads(plain_text); data[key] = value; conf.truncate(0); conf.seek(0, 0); conf.write(json.dumps(data)); conf.close(); ######################################################################### # Relation Class ######################################################################### class MasterConfigPeer(RelationBase): scope = scopes.UNIT; @hook("{peers:master-config}-relation-{joined}") def joined(self): conv = self.conversation(); conv.set_state("{relation_name}.connected"); @hook("{peers:master-config}-relation-{changed}") def changed(self): conv = self.conversation(); worker_id = conv.get_local(key='worker_id'); if worker_id != None and conv.get_remote(worker_id): conv.set_state("{relation_name}.master.data.available"); elif conv.get_remote('cert_to_sign'): conv.set_state("{relation_name}.worker.cert.available"); @hook("{peers:master-config}-relation-{departed}") def departed(self): conv = self.conversation(); conv.remove_state("{relation_name}.connected"); conv.remove_state("{relation_name}.master.data.available"); conv.remove_state("{relation_name}.worker.cert.available"); def set_worker_id(self, worker_id): convs = self.conversations(); for conv in convs: conv.set_local(key='worker_id', value=worker_id); def get_worker_data(self): convs = self.conversations(); final_data = []; for conv in convs: worker_unit = {}; cert = conv.get_remote('cert_to_sign'); worker_hostname = conv.get_remote('worker_hostname'); worker_unit['cert_to_sign'] = cert; worker_unit['worker_hostname'] = worker_hostname; final_data.append(worker_unit); return final_data; def send_worker_data(self, data): convs = self.conversations(); for conv in convs: conv.set_remote(data=data); def send_signed_certs(self, certs): convs = self.conversations(); for conv in convs: for key, value in certs.items(): data_str = json.dumps(value); conv.set_remote(key=key, value=data_str); def get_signed_cert(self, worker_hostname): convs = self.conversations(); final = None; for conv in convs: data = conv.get_remote(worker_hostname); if data != '' and data != None: data = json.loads(data); final = data; break; return final; ```
{ "source": "aakash-lambton/project", "score": 2 }
#### File: aakash-lambton/project/Program.py ```python import pymongo import random def create_database(db): user_collection = db['users'] user_collection.drop() user_collection = db['users'] post_collection = db['posts'] post_collection.drop() post_collection = db['posts'] comment_collection = db['comments'] comment_collection.drop() comment_collection = db['comments'] like_collection = db['likes'] like_collection.drop() like_collection = db['likes'] status_collection = db['status'] status_collection.drop() status_collection = db['status'] followers_collection = db['followers'] followers_collection.drop() followers_collection = db['followers'] user_data = [ { "_id": 1, "name": "Aakash", "email": "<EMAIL>", "phone":"647632134", "friends": 456, "pictures": 34, "contacts": 90, "isVerified": True }, { "_id": 2, "name": "<NAME>", "email": "<EMAIL>", "phone": "6476546784", "friends": 665, "pictures": 76, "contacts": 50, "isVerified": True }, { "_id": 3, "name": "<NAME>", "email": "<EMAIL>", "phone": "6478765545", "friends": 987, "pictures": 64, "contacts": 75, "isVerified": False }, { "_id": 4, "name": "<NAME>", "email": "<EMAIL>", "phone": "6478672134", "friends": 654, "pictures": 68, "contacts": 46, "isVerified": True }, { "_id": 5, "name": "Harkaran", "email": "<EMAIL>", "phone": "64768664335", "friends": 786, "pictures": 74, "contacts": 87, "isVerified": False }, { "_id": 6, "name": "Dipanshu", "email": "<EMAIL>", "phone": "416082134", "friends": 756, "pictures": 86, "contacts": 34, "isVerified": True }, { "_id": 7, "name": "Hrsimran", "email": "<EMAIL>", "phone": "643732939", "friends": 234, "pictures": 74, "contacts": 70, "isVerified": False }, { "_id": 8, "name": "Harpreet ", "email": "<EMAIL>", "phone": "324776566", "friends": 856, "pictures": 94, "contacts": 50, "isVerified": True }, ] user_status = [ { "status": "Having Dinner at Bahamas", "uploadTime": "20:44", "location": "indonesia", "likes": 46, "comments": 34, "user": "Anmol" }, { "status": "Playing cricket at Key Land Field", "uploadTime": "10:44", "location": "india", "likes": 56, "comments": 14, "user": "Aakash" }, { "status": "Watching Movie at Cineplex Theatre", "uploadTime": "16:44", "location": "Canada", "likes": 96, "comments": 66, "user": "Harjant" }, { "status": "Reading novel at pearson library", "uploadTime": "19:34", "location": "Toronto", "likes": 51, "comments": 34, "user": "Prabhjot" }, { "status": "Playing Golf at Wee Golf Course", "uploadTime": "11:22", "location": "USA", "likes": 12, "comments": 3, "user": "Harkaran" }, ] followers = [ { "name": "Ali", "active": False, "lastSeen": "20-8-2020", "followers": 943, "username": "ali_zumair" }, { "name": "Alex", "active": True, "lastSeen": "10-8-2020", "followers": 443, "username": "alex_scott" }, { "name": "Lee", "active": False, "lastSeen": "10-3-2020", "followers": 333, "username": "lee_you" }, { "name": "joe", "active": True, "lastSeen": "09-1-2020", "followers": 567, "username": "joe_Tribiani" }, { "name": "Ross", "active": False, "lastSeen": "05-7-2020", "followers": 133, "username": "ross_geller" } ] #ADD DATA INTO COLLECTION user_ids = user_collection.insert_many(user_data) status_collection.insert_many(user_status) followers_collection.insert_many(followers) user_id_list = user_ids.inserted_ids like_id = 1 post_id = 1 comment_id = 1 #ADD DUMMY POSTS for user_id in user_ids.inserted_ids: post_data = [{"_id": post_id, "user_id": user_id, "content": 'Dummy post', "view_count": 10, "likes": [{"like_id": like_id}], "comments": [{"comment_id": comment_id}]}] like_id += 1 comment_id += 1 post_id += 1 post_collection.insert_many(post_data) comment_id = 1 comment_all = [] for p_id in range(1, post_id): comment_data = [{"_id": comment_id, "post_id": p_id, "user_id": random.choice(user_id_list), "comment": "Looks good"}] comment_collection.insert_many(comment_data) comment_all.append(comment_id) comment_id += 1 like_id = 1 for p_id in range(1, post_id): like_data = [{"_id": like_id, "post_id": p_id, "user_id": random.choice(user_id_list), "comment_id": random.choice(comment_all)}] like_collection.insert_many(like_data) like_id += 1 #PRINT ALL USERS def read_all_users(db): user_collection = db['users'] for user in user_collection.find(): print(user) #PRINT SINGLE USER def read_single_users(db): user_id = int(input("Enter user id: ")) user_collection = db['users'] for user in user_collection.find({"_id": user_id}): print(user) #READ ALL POSTS def read_all_post(db): post_collection = db['posts'] for post in post_collection.find(): print(post) #PRINT SINGLE POST def read_single_post(db): user_id = int(input("Enter user id: ")) post_collection = db['posts'] for post in post_collection.find({"user_id": user_id}): print(post) #PRINT ALL COMMENTS def read_all_comments(db): comment_collection = db['comments'] for comment in comment_collection.find(): print(comment) #PRINT SINGLE COMMENTS def read_single_comment(db): user_id = int(input("Enter user id: ")) comment_collection = db['comments'] for comment in comment_collection.find({"user_id": user_id}): print(comment) #READ POST DATA def read_post_comment(db): post_id = int(input("Enter post id: ")) comment_collection = db['comments'] for comment in comment_collection.find({"post_id": post_id}): print(comment) #INSERT NEW USER INTO COLLECTION def insert_user(db): users = db["users"] name = input("User name: ") email = input("User Email: ") ids = users.insert_many([{"name": name, "email": email}]) print(ids.inserted_ids) #DELETE COMMENT def delete_comment(db): comment_id = int(input("Enter comment Id: ")) comment_collection = db['comments'] comment = comment_collection.find_one({"_id": comment_id}) db.post.update( {"_id": comment["post_id"]}, {"$pull": {"comments": {"comment_id": comment["_id"]}}} ) comment_collection.delete_one({"_id": comment_id}) #UPDATE POST CONTENT def update_post_content(db): post_id = int(input("Enter post Id: ")) post_content = input("Enter post content: ") post_query = {"_id": post_id} update_data = {"$set": {"content": post_content}} db.posts.update_one(post_query, update_data) if __name__ == '__main__': #CONNECT TO MONGO ATLAS client = pymongo.MongoClient("mongodb+srv://akash:[email protected]/db?retryWrites=true&w=majority") database = client["feeddb"] create_database(database) print("Reading all users") read_all_users(database) print("Reading single user") read_single_users(database) print("Reading all posts") read_all_post(database) print("Reading single post") read_single_post(database) print("Reading all comments") read_all_comments(database) print("Reading single comment") read_single_comment(database) print("Reading all comments of a post") read_post_comment(database) print("Inserting new user") insert_user(database) print("Deleting comment") delete_comment(database) print("Reading all comments") read_all_comments(database) print("Updating the post") update_post_content(database) print("Reading all posts") read_all_post(database) ```
{ "source": "AakashMallik/cnn-firefly", "score": 2 }
#### File: common/datasets/factory.py ```python from ..interfaces import FactoryInterface from cifar10 import Cifar10 class DatasetFactory(FactoryInterface): @classmethod def generate(cls, name=None, options={}): return Cifar10() ``` #### File: src/utils/device.py ```python import torch def get_device(): if torch.cuda.is_available(): device = torch.device("cuda:0") print("[ GPU: {} (1/{}) ]".format( torch.cuda.get_device_name(0), torch.cuda.device_count()) ) else: device = torch.device("cpu") print("[ Running on the CPU ]") return device ```
{ "source": "AakashMallik/CVPR2020-FGVC7", "score": 3 }
#### File: CVPR2020-FGVC7/dataset/dataset_factory.py ```python from os import path # list of datasets from dataset.fgvc7_dataset import FGVC7_Dataset class DatasetFactory: def __init__(self, org_data_dir="data",): self.FOLDS = 5 self.org_data_dir = org_data_dir def get_dataset(self, mode, dataset_name, transformer=None, fold_number=None): if mode not in ["train", "test", "val"]: print("[ Dataset Mode should either be train/test/val ]") exit() else: dataset_dir = path.join(self.org_data_dir, dataset_name) dataset = None if dataset_name == "fgvc7": print("[ Dataset : fgvc7 <", mode, "/", "raw" if fold_number is None else fold_number, "> ]") dataset = FGVC7_Dataset( mode, dataset_dir, transformer, fold_number) else: print("[ Dataset not found ]") exit() print("[ Transformer : ", str(transformer), " ]") return dataset ``` #### File: CVPR2020-FGVC7/dataset/fgvc7_dataset.py ```python import torch import pandas as pd from skimage import io from os import path from torch.utils.data import Dataset from dataset.utils import (fold_creator) NUMBER_OF_FOLDS = 5 DATASET_NAME = 'fgvc7' class FGVC7_Dataset(Dataset): def __init__(self, mode, dataset_path, transformer=None, fold_number=None): if transformer is None: print("[ No Transformer passed in - ", DATASET_NAME, " ]") exit() if fold_number is not None and fold_number >= NUMBER_OF_FOLDS: print("[ Fold limit exceeded in - ", DATASET_NAME, " ]") exit() self.mode = mode self.transformer = transformer self.dataset_path = dataset_path if fold_number is None: # If fold not selected self.csv_path = path.join(dataset_path, mode + ".csv") self.image_dir = path.join(dataset_path, "images") else: # if fold selected self.create_folds() self.csv_path = path.join( "folds", DATASET_NAME, str(fold_number), mode + ".csv") self.image_dir = path.join( "folds", DATASET_NAME, str(fold_number), mode) self.data_frame = pd.read_csv(self.csv_path) def create_folds(self): fold_creator( self.dataset_path, path.join("folds", DATASET_NAME), NUMBER_OF_FOLDS ) def get_csv_path(self): return self.csv_path def __len__(self): return len(self.data_frame) def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() image_name = str(self.data_frame.iloc[idx, 0]) + ".jpg" image_path = path.join(self.image_dir, image_name) image = io.imread(image_path) if self.mode == "test": return self.transformer(image) else: label = torch.tensor( self.data_frame.iloc[idx, 1:].to_numpy(dtype=float) ) return self.transformer(image), label ``` #### File: CVPR2020-FGVC7/loss/utils.py ```python import torch class ClassificationLossWrapper: def __init__(self, loss_obj): self.loss = loss_obj def to(self, device): self.loss.to(device) def __call__(self, output, target): return self.loss(output, torch.argmax(target, dim=1)) class RegressionLossWrapper: def __init__(self, loss_obj): self.loss = loss_obj def to(self, device): self.loss.to(device) def __call__(self, output, target): return self.loss(output, torch.argmax(target, dim=1).view(-1, 1).float()) class MixedLossWrapper: def __init__(self, reg_loss_obj, class_loss_obj, classification_coefficient): self.reg_loss = reg_loss_obj self.class_loss = class_loss_obj self.class_coeff = classification_coefficient self.reg_coeff = 1 - classification_coefficient def to(self, device): self.reg_loss.to(device) self.class_loss.to(device) def __call__(self, output, target): mixed_loss = self.reg_coeff * \ self.reg_loss(output[:, 0].view(-1, 1), torch.argmax( target, dim=1).view(-1, 1).float()) mixed_loss += self.class_coeff * \ self.class_loss(output[:, 1:], torch.argmax(target, dim=1)) return mixed_loss ``` #### File: CVPR2020-FGVC7/model/model_factory.py ```python import torch from torch import nn from os import path import pretrainedmodels import torchvision.models as models # from model.efficientnet import EfficientNet from efficientnet_pytorch import EfficientNet from model.layer_utils import GeM class ModelFactory(): def __init__(self): pass def get_model(self, model_name, num_classes, pred_type, hyper_params=None, tuning_type='feature-extraction', pre_trained_path=None, weight_type=None): if pred_type == 'regression': adjusted_num_classes = 1 elif pred_type == 'mixed': adjusted_num_classes = num_classes + 1 else: adjusted_num_classes = num_classes model = None if model_name == 'efficientnet-b4': print("[ Model : Efficientnet B4 ]") model = EfficientNet.from_pretrained( 'efficientnet-b4' ) if tuning_type == 'feature-extraction': for param in model.parameters(): param.requires_grad = False # changing avg pooling to Generalized Mean Avg model._avg_pooling = GeM() num_ftrs = model._fc.in_features model._fc = nn.Sequential( nn.Linear(num_ftrs, 1000, bias=True), nn.ReLU(), nn.Dropout(p=hyper_params['fc_drop_out']), nn.Linear(1000, adjusted_num_classes, bias=True) ) # if hyper_params is not None: # model._bn_mom = hyper_params['batch_norm_momentum'] if model_name == 'efficientnet-b5': print("[ Model : Efficientnet B5 ]") model = EfficientNet.from_pretrained( 'efficientnet-b5' ) if tuning_type == 'feature-extraction': for param in model.parameters(): param.requires_grad = False # changing avg pooling to Generalized Mean Avg # model._avg_pooling = GeM() num_ftrs = model._fc.in_features model._fc = nn.Sequential( nn.Linear(num_ftrs, 1000, bias=True), nn.ReLU(), nn.Dropout(p=hyper_params['fc_drop_out']), nn.Linear(1000, adjusted_num_classes, bias=True) ) # if hyper_params is not None: # model._bn_mom = hyper_params['batch_norm_momentum'] if model_name == 'efficientnet-b7': print("[ Model : Efficientnet B7 ]") model = EfficientNet.from_pretrained( 'efficientnet-b7' ) if tuning_type == 'feature-extraction': for param in model.parameters(): param.requires_grad = False # changing avg pooling to Generalized Mean Avg model._avg_pooling = GeM() num_ftrs = model._fc.in_features model._fc = nn.Sequential( nn.Linear(num_ftrs, 1000, bias=True), nn.ReLU(), nn.Dropout(p=hyper_params['fc_drop_out']), nn.Linear(1000, adjusted_num_classes, bias=True) ) # if hyper_params is not None: # model._bn_mom = hyper_params['batch_norm_momentum'] if model_name == 'densenet-161': print("[ Model : Densenet 161 ]") model = models.densenet161(pretrained=True) if tuning_type == 'feature-extraction': for param in model.parameters(): param.requires_grad = False num_ftrs = model.classifier.in_features model.classifier = nn.Sequential( nn.Linear(num_ftrs, adjusted_num_classes) ) if model_name == 'resnet-34': print("[ Model : Resnet 34 ]") model = pretrainedmodels.__dict__[ 'resnet34'](pretrained='imagenet') if tuning_type == 'feature-extraction': for param in model.parameters(): param.requires_grad = False model.avgpool = nn.AdaptiveAvgPool2d(1) num_ftrs = model.last_linear.in_features model.last_linear = nn.Sequential( nn.Linear(num_ftrs, adjusted_num_classes) ) if model_name == 'se-resnet-152': print("[ Model : SeResnet 152 ]") model = pretrainedmodels.__dict__[ 'se_resnet152'](pretrained='imagenet') if tuning_type == 'feature-extraction': for param in model.parameters(): param.requires_grad = False num_ftrs = model.last_linear.in_features model._fc = nn.Sequential( nn.Linear(num_ftrs, 1000, bias=True), nn.ReLU(), nn.Dropout(p=hyper_params['fc_drop_out']), nn.Linear(1000, adjusted_num_classes, bias=True) ) tuning_type and print("[ Tuning type : ", tuning_type, " ]") print("[ Prediction type : ", pred_type, " ]") # if model needs to resume from pretrained weights if pre_trained_path: weight_path = 'weights.pth' if weight_type == 'best_val_kaggle_metric': weight_path = 'weights_kaggle_metric.pth' elif weight_type == 'best_val_loss': weight_path = 'weights_loss.pth' weight_path = path.join( 'results', pre_trained_path, weight_path) if path.exists(weight_path): print("[ Loading checkpoint : ", pre_trained_path, " ]") model.load_state_dict(torch.load( weight_path # ,map_location={'cuda:1': 'cuda:0'} )) else: print("[ Provided pretrained weight path is invalid ]") exit() print( "[ Weight type : ", weight_type if weight_type else "Last Epoch", " ]") return model ``` #### File: CVPR2020-FGVC7/scheduler/scheduler_factory.py ```python from torch.optim.lr_scheduler import (StepLR, CosineAnnealingLR) from transformers import get_cosine_schedule_with_warmup class SchedulerFactory: def __init__(self): pass def get_scheduler(self, optimiser, name, hyper_params, epochs, iter_per_epoch): scheduler = None if name == 'step-lr': print("[ Scheduler : Step LR ]") scheduler = StepLR( optimiser, hyper_params['step'], hyper_params['lr_decay'] ) elif name == 'cosineAnnealing-lr': print("[ Scheduler : Cosine Annealing LR ]") scheduler = CosineAnnealingLR( optimiser, T_max=epochs*iter_per_epoch ) elif name == 'cosineAnnealing-warmup-lr': print("[ Scheduler : Cosine Annealing LR with Warmup ]") scheduler = get_cosine_schedule_with_warmup( optimiser, num_warmup_steps=iter_per_epoch * 5, num_training_steps=iter_per_epoch * epochs ) return scheduler ``` #### File: CVPR2020-FGVC7/utils/custom_bar.py ```python from tqdm import (trange, tqdm) from math import ceil class CustomBar: def __init__(self, epoch, len_training_data_set, batch_size): self.bar = tqdm( total=epoch * ceil(len_training_data_set / batch_size), desc="Progress", postfix=[ dict(batch_idx=0), ceil(len_training_data_set / batch_size), dict(epoch_idx=0), epoch ], bar_format='{desc}: {percentage:3.0f}%|{bar}| [ETA:{remaining}] [Batch:{postfix[0][batch_idx]}/{postfix[1]} Epoch:{postfix[2][epoch_idx]}/{postfix[3]}]' ) def step(self): self.bar.update() def update_epoch_info(self,i): self.bar.postfix[2]["epoch_idx"] = i + 1 def update_batch_info(self, batch_ndx): self.bar.postfix[0]["batch_idx"] = batch_ndx + 1 def __enter__(self): return self def __exit__(self, type, value, traceback): self.bar.close() ``` #### File: CVPR2020-FGVC7/utils/wandb_update.py ```python import wandb import torch from utils.print_util import cprint def wandb_init(config): cprint("[ Setting up project on W&B ]", type="info3") wandb.init(project="plantpatho-2020") wandb.config.experiment_name = config['experiment_name'] wandb.config.seed = config['seed'] wandb.config.model = config['model']['name'] wandb.config.prediction_type = config['model']['pred_type'] wandb.config.optimiser = config['optimiser']['name'] wandb.config.learning_rate = config['optimiser']['hyper_params']['learning_rate'] wandb.config.loss_function = config['loss_function']['name'] wandb.config.resize_dims = config['train_dataset']['resize_dims'] wandb.config.epochs = config["epochs"] wandb.config.batch_size = config["batch_size"] # saving config files to W&B wandb.save('./config/' + config['experiment_name'] + '.yml') return True def publish_intermediate(results, best_val_loss, best_kaggle_metric, output_list, target_list): wandb.run.summary["best_val_loss"] = best_val_loss wandb.run.summary["best_kaggle_metric"] = best_kaggle_metric # saving confusion matrix (image) # wandb.sklearn.plot_confusion_matrix( # torch.argmax(target_list, dim=1).numpy(), # torch.argmax(output_list, dim=1).numpy(), # ['H', 'MD', 'R', 'S'] # ) return wandb.log(results) ```
{ "source": "aakashnand/trino-python-client", "score": 2 }
#### File: tests/unit/test_client.py ```python import httpretty import pytest import requests import time from unittest import mock from urllib.parse import urlparse from requests_kerberos.exceptions import KerberosExchangeError from trino.client import TrinoQuery, TrinoRequest, TrinoResult from trino.auth import KerberosAuthentication, _OAuth2TokenBearer from trino import constants import trino.exceptions @mock.patch("trino.client.TrinoRequest.http") def test_trino_initial_request(mock_requests, sample_post_response_data): mock_requests.Response.return_value.json.return_value = sample_post_response_data req = TrinoRequest( host="coordinator", port=8080, user="test", source="test", catalog="test", schema="test", http_scheme="http", session_properties={}, ) http_resp = TrinoRequest.http.Response() http_resp.status_code = 200 status = req.process(http_resp) assert status.next_uri == sample_post_response_data["nextUri"] assert status.id == sample_post_response_data["id"] def test_request_headers(mock_get_and_post): get, post = mock_get_and_post catalog = "test_catalog" schema = "test_schema" user = "test_user" source = "test_source" accept_encoding_header = "accept-encoding" accept_encoding_value = "identity,deflate,gzip" client_info_header = constants.HEADER_CLIENT_INFO client_info_value = "some_client_info" req = TrinoRequest( host="coordinator", port=8080, user=user, source=source, catalog=catalog, schema=schema, http_scheme="http", session_properties={}, http_headers={ accept_encoding_header: accept_encoding_value, client_info_header: client_info_value, }, redirect_handler=None, ) def assert_headers(headers): assert headers[constants.HEADER_CATALOG] == catalog assert headers[constants.HEADER_SCHEMA] == schema assert headers[constants.HEADER_SOURCE] == source assert headers[constants.HEADER_USER] == user assert headers[constants.HEADER_SESSION] == "" assert headers[accept_encoding_header] == accept_encoding_value assert headers[client_info_header] == client_info_value assert len(headers.keys()) == 8 req.post("URL") _, post_kwargs = post.call_args assert_headers(post_kwargs["headers"]) req.get("URL") _, get_kwargs = get.call_args assert_headers(get_kwargs["headers"]) def test_request_session_properties_headers(mock_get_and_post): get, post = mock_get_and_post req = TrinoRequest( host="coordinator", port=8080, user="test_user", session_properties={ "a": "1", "b": "2", "c": "more=v1,v2" } ) def assert_headers(headers): assert headers[constants.HEADER_SESSION] == "a=1,b=2,c=more%3Dv1%2Cv2" req.post("URL") _, post_kwargs = post.call_args assert_headers(post_kwargs["headers"]) req.get("URL") _, get_kwargs = get.call_args assert_headers(get_kwargs["headers"]) def test_additional_request_post_headers(mock_get_and_post): """ Tests that the `TrinoRequest.post` function can take addtional headers and that it combines them with the existing ones to perform the request. """ _, post = mock_get_and_post req = TrinoRequest( host="coordinator", port=8080, user="test", source="test", catalog="test", schema="test", http_scheme="http", session_properties={}, ) sql = 'select 1' additional_headers = { 'X-Trino-Fake-1': 'one', 'X-Trino-Fake-2': 'two', } combined_headers = req.http_headers combined_headers.update(additional_headers) req.post(sql, additional_headers) # Validate that the post call was performed including the addtional headers _, post_kwargs = post.call_args assert post_kwargs['headers'] == combined_headers def test_request_invalid_http_headers(): with pytest.raises(ValueError) as value_error: TrinoRequest( host="coordinator", port=8080, user="test", http_headers={constants.HEADER_USER: "invalid_header"}, ) assert str(value_error.value).startswith("cannot override reserved HTTP header") def test_enabling_https_automatically_when_using_port_443(mock_get_and_post): _, post = mock_get_and_post req = TrinoRequest( host="coordinator", port=constants.DEFAULT_TLS_PORT, user="test", ) req.post("SELECT 1") post_args, _ = post.call_args parsed_url = urlparse(post_args[0]) assert parsed_url.scheme == constants.HTTPS def test_https_scheme(mock_get_and_post): _, post = mock_get_and_post req = TrinoRequest( host="coordinator", port=constants.DEFAULT_TLS_PORT, user="test", http_scheme=constants.HTTPS, ) req.post("SELECT 1") post_args, _ = post.call_args parsed_url = urlparse(post_args[0]) assert parsed_url.scheme == constants.HTTPS assert parsed_url.port == constants.DEFAULT_TLS_PORT def test_http_scheme_with_port(mock_get_and_post): _, post = mock_get_and_post req = TrinoRequest( host="coordinator", port=constants.DEFAULT_TLS_PORT, user="test", http_scheme=constants.HTTP, ) req.post("SELECT 1") post_args, _ = post.call_args parsed_url = urlparse(post_args[0]) assert parsed_url.scheme == constants.HTTP assert parsed_url.port == constants.DEFAULT_TLS_PORT def test_request_timeout(): timeout = 0.1 http_scheme = "http" host = "coordinator" port = 8080 url = http_scheme + "://" + host + ":" + str(port) + constants.URL_STATEMENT_PATH def long_call(request, uri, headers): time.sleep(timeout * 2) return (200, headers, "delayed success") httpretty.enable() for method in [httpretty.POST, httpretty.GET]: httpretty.register_uri(method, url, body=long_call) # timeout without retry for request_timeout in [timeout, (timeout, timeout)]: req = TrinoRequest( host=host, port=port, user="test", http_scheme=http_scheme, max_attempts=1, request_timeout=request_timeout, ) with pytest.raises(requests.exceptions.Timeout): req.get(url) with pytest.raises(requests.exceptions.Timeout): req.post("select 1") httpretty.disable() httpretty.reset() OAUTH_SERVER_URL_NO_HEADER = "http://coordinator/no_header" OAUTH_SERVER_URL_FAIL_SERVER = "http://coordinator/fail_server" OAUTH_SERVER_URL_SERVER_DENIED = "http://coordinator/server_denied_accesss" OAUTH_SERVER_URL_SERVER_SUCCESS = "http://coordinator/statement_url_suceess" OAUTH_REDIRECT_SERVER = "https://coordinator/as/authorization.oauth2" OAUTH_SERVER_URL_LOOP = "https://coordinator/oauth2/token/loop" OAUTH_SERVER_URL_1 = "https://coordinator/oauth2/token/<PASSWORD>" OAUTH_SERVER_URL_2 = "https://coordinator/oauth2/token/<PASSWORD>" OAUTH_SERVER_URL_FORCE_FAIL = "https://coordinator/oauth2/token/force_fail" OAUTH_SERVER_URL_DENY_ACCESS = "https://coordinator/oauth2/token/deny_access" OAUTH_DENY_ERROR_TEXT = '{"error": "OAuth server returned an error: error=access_denied, error_description=null, error_uri=null, state=EncodedState"}' # NOQA: E501 OAUTH_TEST_TOKEN = "<PASSWORD>" def oauth2_test_url_handler(url): print(url, end='') class OAuthTestReq: def __init__(self, method, url): self.method = method self.url = url def __call__(self, str, callback_func): if (self.method == 'post'): callback_func(self.get_statement_post_response()) elif (self.method == 'get'): callback_func(self.get_token_url_response()) def get_statement_request(self): req = mock.Mock() req.url = self.url req.headers = requests.structures.CaseInsensitiveDict() req.register_hook = mock.Mock(side_effect=self) return req def get_token_request(self): req = mock.Mock() req.url = self.url req.headers = requests.structures.CaseInsensitiveDict() req.register_hook = mock.Mock(side_effect=self) return req def get_statement_post_response(self): statement_resp = mock.Mock() statement_resp.status_code = 401 if (self.url == OAUTH_SERVER_URL_NO_HEADER): statement_resp.headers = requests.structures.CaseInsensitiveDict() elif (self.url == OAUTH_SERVER_URL_FAIL_SERVER): statement_resp.headers = requests.structures.CaseInsensitiveDict([ ('Www-Authenticate', 'Bearer x_redirect_server=\"{OAUTH_REDIRECT_SERVER}\",' f'x_token_server=\"{OAUTH_SERVER_URL_FORCE_FAIL}\",' 'Basic realm=\"Trino\"')]) elif (self.url == OAUTH_SERVER_URL_SERVER_DENIED): statement_resp.headers = requests.structures.CaseInsensitiveDict([ ('Www-Authenticate', 'Bearer x_redirect_server=\"{OAUTH_REDIRECT_SERVER}\",' f'x_token_server=\"{OAUTH_SERVER_URL_DENY_ACCESS}\",' 'Basic realm=\"Trino\"')]) elif (self.url == OAUTH_SERVER_URL_SERVER_SUCCESS): statement_resp.status_code = 200 statement_resp.headers = requests.structures.CaseInsensitiveDict([ ('Www-Authenticate', f'Bearer x_redirect_server=\"{OAUTH_REDIRECT_SERVER}\",' f'x_token_server=\"{OAUTH_SERVER_URL_1}\",' 'Basic realm=\"Trino\"')]) else: statement_resp.headers = requests.structures.CaseInsensitiveDict([ ('Www-Authenticate', f'Bearer x_redirect_server=\"{OAUTH_REDIRECT_SERVER}\",' f'x_token_server=\"{OAUTH_SERVER_URL_1}\",' 'Basic realm=\"Trino\"')]) statement_resp.register_hook = mock.Mock(side_effect=self) statement_resp.url = self.url return statement_resp def get_token_url_response(self): token_resp = mock.Mock() token_resp.status_code = 200 # Success cases if self.url == OAUTH_SERVER_URL_1: token_resp.text = f'{{"nextUri":"{OAUTH_SERVER_URL_2}"}}' elif self.url == OAUTH_SERVER_URL_2: token_resp.text = f'{{"token":"{OAUTH_TEST_TOKEN}"}}' # Failure cases elif self.url == OAUTH_SERVER_URL_FORCE_FAIL: token_resp.status_code = 500 elif self.url == OAUTH_SERVER_URL_DENY_ACCESS: token_resp.text = OAUTH_DENY_ERROR_TEXT elif self.url == OAUTH_SERVER_URL_LOOP: token_resp.text = f'{{"nextUri":"{OAUTH_SERVER_URL_LOOP}"}}' return token_resp def call_response_hook(str, callback_func): statement_resp = mock.Mock() statement_resp.headers = requests.structures.CaseInsensitiveDict([ ('Www-Authenticate', f'Bearer x_redirect_server=\"{OAUTH_REDIRECT_SERVER}\",' f'x_token_server=\"{OAUTH_SERVER_URL_1}\",' 'Basic realm=\"Trino\"')]) statement_resp.status_code = 401 callback_func(statement_resp) @mock.patch("requests.Session.get") @mock.patch("requests.Session.post") def test_oauth2_authentication_flow(http_session_post, http_session_get, capsys): http_session = requests.Session() # set up the patched session, with the correct response oauth_test = OAuthTestReq("post", "http://coordinator/statement_url") http_session_post.return_value = oauth_test.get_statement_post_response() http_session_get.side_effect = oauth_test.get_token_url_response() oauth = _OAuth2TokenBearer(http_session, oauth2_test_url_handler) statement_req = oauth_test.get_statement_request() oauth(statement_req) oauth_test = OAuthTestReq("get", OAUTH_SERVER_URL_1) token_req = oauth_test.get_token_request() oauth(token_req) oauth_test = OAuthTestReq("get", OAUTH_SERVER_URL_2) token_req = oauth_test.get_token_request() oauth(token_req) # Finally resend the original request, and respond back with status code 200 oauth_test = OAuthTestReq("post", "http://coordinator/statement_url_suceess") # statement_req.register_hook = mock.Mock(side_effect=oauth_test) statement_req = oauth_test.get_statement_request() http_session_post.return_value = oauth_test.get_statement_post_response() oauth(statement_req) out, err = capsys.readouterr() assert out == OAUTH_REDIRECT_SERVER assert statement_req.headers['Authorization'] == "Bearer " + OAUTH_TEST_TOKEN @mock.patch("requests.Session.get") @mock.patch("requests.Session.post") def test_oauth2_exceed_max_attempts(http_session_post, http_session_get): http_session = requests.Session() # set up the patched session, with the correct response oauth_test = OAuthTestReq("post", "http://coordinator/statement_url") http_session_post.return_value = oauth_test.get_statement_post_response() http_session_get.side_effect = oauth_test.get_token_url_response() oauth = _OAuth2TokenBearer(http_session, oauth2_test_url_handler) statement_req = oauth_test.get_statement_request() oauth(statement_req) with pytest.raises(trino.exceptions.TrinoAuthError) as exp: for i in range(0, 5): oauth_test = OAuthTestReq("get", OAUTH_SERVER_URL_1) token_req = oauth_test.get_token_request() oauth(token_req) assert str(exp.value) == "Exceeded max attempts while getting the token" @mock.patch("requests.Session.post") def test_oauth2_authentication_missing_headers(http_session_post): http_session = requests.Session() oauth_test = OAuthTestReq("post", OAUTH_SERVER_URL_NO_HEADER) http_session_post.return_value = oauth_test.get_statement_post_response() oauth = _OAuth2TokenBearer(http_session, oauth2_test_url_handler) with pytest.raises(trino.exceptions.TrinoAuthError) as exp: statement_req = oauth_test.get_statement_request() oauth(statement_req) assert str(exp.value) == "Error: header WWW-Authenticate not available in the response." @mock.patch("requests.Session.get") @mock.patch("requests.Session.post") def test_oauth2_authentication_fail_token_server(http_session_post, http_session_get): http_session = requests.Session() oauth_test = OAuthTestReq("post", OAUTH_SERVER_URL_FAIL_SERVER) http_session_post.return_value = oauth_test.get_statement_post_response() oauth = _OAuth2TokenBearer(http_session, oauth2_test_url_handler) http_session_get.side_effect = oauth_test.get_token_url_response() statement_req = oauth_test.get_statement_request() oauth(statement_req) with pytest.raises(trino.exceptions.TrinoAuthError) as exp: oauth_test = OAuthTestReq("get", OAUTH_SERVER_URL_FORCE_FAIL) token_req = oauth_test.get_token_request() oauth(token_req) assert "Error while getting the token response status" in str(exp.value) @mock.patch("requests.Session.get") @mock.patch("requests.Session.post") def test_oauth2_authentication_access_denied(http_session_post, http_session_get): http_session = requests.Session() oauth_test = OAuthTestReq("post", OAUTH_SERVER_URL_SERVER_DENIED) http_session_post.return_value = oauth_test.get_statement_post_response() oauth = _OAuth2TokenBearer(http_session, oauth2_test_url_handler) http_session_get.side_effect = oauth_test.get_token_url_response() statement_req = oauth_test.get_statement_request() oauth(statement_req) with pytest.raises(trino.exceptions.TrinoAuthError) as exp: oauth_test = OAuthTestReq("get", OAUTH_SERVER_URL_FORCE_FAIL) token_req = oauth_test.get_token_request() oauth(token_req) assert "Error while getting the token" in str(exp.value) @mock.patch("trino.client.TrinoRequest.http") def test_trino_fetch_request(mock_requests, sample_get_response_data): mock_requests.Response.return_value.json.return_value = sample_get_response_data req = TrinoRequest( host="coordinator", port=8080, user="test", source="test", catalog="test", schema="test", http_scheme="http", session_properties={}, ) http_resp = TrinoRequest.http.Response() http_resp.status_code = 200 status = req.process(http_resp) assert status.next_uri == sample_get_response_data["nextUri"] assert status.id == sample_get_response_data["id"] assert status.rows == sample_get_response_data["data"] @mock.patch("trino.client.TrinoRequest.http") def test_trino_fetch_error(mock_requests, sample_get_error_response_data): mock_requests.Response.return_value.json.return_value = sample_get_error_response_data req = TrinoRequest( host="coordinator", port=8080, user="test", source="test", catalog="test", schema="test", http_scheme="http", session_properties={}, ) http_resp = TrinoRequest.http.Response() http_resp.status_code = 200 with pytest.raises(trino.exceptions.TrinoUserError) as exception_info: req.process(http_resp) error = exception_info.value assert error.error_code == 1 assert error.error_name == "SYNTAX_ERROR" assert error.error_type == "USER_ERROR" assert error.error_exception == "io.trino.spi.TrinoException" assert "stack" in error.failure_info assert len(error.failure_info["stack"]) == 36 assert "suppressed" in error.failure_info assert ( error.message == "line 1:15: Schema must be specified when session schema is not set" ) assert error.error_location == (1, 15) assert error.query_id == "20210817_140827_00000_arvdv" @pytest.mark.parametrize( "error_code, error_type, error_message", [ (503, trino.exceptions.Http503Error, "service unavailable"), (504, trino.exceptions.Http504Error, "gateway timeout"), (404, trino.exceptions.HttpError, "error 404"), ], ) def test_trino_connection_error(monkeypatch, error_code, error_type, error_message): monkeypatch.setattr(TrinoRequest.http.Response, "json", lambda x: {}) req = TrinoRequest( host="coordinator", port=8080, user="test", source="test", catalog="test", schema="test", http_scheme="http", session_properties={}, ) http_resp = TrinoRequest.http.Response() http_resp.status_code = error_code with pytest.raises(error_type) as error: req.process(http_resp) assert error_message in str(error) class RetryRecorder(object): def __init__(self, error=None, result=None): self.__name__ = "RetryRecorder" self._retry_count = 0 self._error = error self._result = result def __call__(self, *args, **kwargs): self._retry_count += 1 if self._error is not None: raise self._error if self._result is not None: return self._result @property def retry_count(self): return self._retry_count def test_authentication_fail_retry(monkeypatch): post_retry = RetryRecorder(error=KerberosExchangeError()) monkeypatch.setattr(TrinoRequest.http.Session, "post", post_retry) get_retry = RetryRecorder(error=KerberosExchangeError()) monkeypatch.setattr(TrinoRequest.http.Session, "get", get_retry) attempts = 3 kerberos_auth = KerberosAuthentication() req = TrinoRequest( host="coordinator", port=8080, user="test", http_scheme=constants.HTTPS, auth=kerberos_auth, max_attempts=attempts, ) with pytest.raises(KerberosExchangeError): req.post("URL") assert post_retry.retry_count == attempts with pytest.raises(KerberosExchangeError): req.get("URL") assert post_retry.retry_count == attempts def test_503_error_retry(monkeypatch): http_resp = TrinoRequest.http.Response() http_resp.status_code = 503 post_retry = RetryRecorder(result=http_resp) monkeypatch.setattr(TrinoRequest.http.Session, "post", post_retry) get_retry = RetryRecorder(result=http_resp) monkeypatch.setattr(TrinoRequest.http.Session, "get", get_retry) attempts = 3 req = TrinoRequest( host="coordinator", port=8080, user="test", max_attempts=attempts ) req.post("URL") assert post_retry.retry_count == attempts req.get("URL") assert post_retry.retry_count == attempts def test_504_error_retry(monkeypatch): http_resp = TrinoRequest.http.Response() http_resp.status_code = 504 post_retry = RetryRecorder(result=http_resp) monkeypatch.setattr(TrinoRequest.http.Session, "post", post_retry) get_retry = RetryRecorder(result=http_resp) monkeypatch.setattr(TrinoRequest.http.Session, "get", get_retry) attempts = 3 req = TrinoRequest( host="coordinator", port=8080, user="test", max_attempts=attempts ) req.post("URL") assert post_retry.retry_count == attempts req.get("URL") assert post_retry.retry_count == attempts class FakeGatewayResponse(object): def __init__(self, http_response, redirect_count=1): self.__name__ = "FakeGatewayResponse" self.http_response = http_response self.redirect_count = redirect_count self.count = 0 def __call__(self, *args, **kwargs): self.count += 1 if self.count == self.redirect_count: return self.http_response http_response = TrinoRequest.http.Response() http_response.status_code = 301 http_response.headers["Location"] = "http://1.2.3.4:8080/new-path/" assert http_response.is_redirect return http_response def test_trino_result_response_headers(): """ Validates that the `TrinoResult.response_headers` property returns the headers associated to the TrinoQuery instance provided to the `TrinoResult` class. """ mock_trino_query = mock.Mock(respone_headers={ 'X-Trino-Fake-1': 'one', 'X-Trino-Fake-2': 'two', }) result = TrinoResult( query=mock_trino_query, ) assert result.response_headers == mock_trino_query.response_headers def test_trino_query_response_headers(sample_get_response_data): """ Validates that the `TrinoQuery.execute` function can take addtional headers that are pass the the provided request instance post function call and it returns a `TrinoResult` instance. """ class MockResponse(mock.Mock): # Fake response class @property def headers(self): return { 'X-Trino-Fake-1': 'one', 'X-Trino-Fake-2': 'two', } def json(self): return sample_get_response_data req = TrinoRequest( host="coordinator", port=8080, user="test", source="test", catalog="test", schema="test", http_scheme="http", session_properties={}, ) sql = 'execute my_stament using 1, 2, 3' additional_headers = { constants.HEADER_PREPARED_STATEMENT: 'my_statement=added_prepare_statement_header' } # Patch the post function to avoid making the requests, as well as to # validate that the function was called with the right arguments. with mock.patch.object(req, 'post', return_value=MockResponse()) as mock_post: query = TrinoQuery( request=req, sql=sql ) result = query.execute(additional_http_headers=additional_headers) # Validate the the post function was called with the right argguments mock_post.assert_called_once_with(sql, additional_headers) # Validate the result is an instance of TrinoResult assert isinstance(result, TrinoResult) ```
{ "source": "aakashns/cloudman", "score": 3 }
#### File: cloudman/gcp/network.py ```python from cloudman.utils.logger import log from cloudman.gcp.utils import run def list_networks(): """Get list of networks in current project""" res = run('compute networks list') return [str(net['name']) for net in res] def has_network(name): """Check if a network with given name exists""" nets = list_networks() return name in nets def create_network(name): """Create a networks with the given name""" log("Creating network '" + name + "'. This may take a while...", prefix=True) return run('compute networks create ' + name) def delete_network(name): """Delete a networks with the given name""" log("Deleting network '" + name + "'. This may take a while...", prefix=True) return run('compute networks delete ' + name + ' -q') ``` #### File: cloudman/utils/logger.py ```python from __future__ import print_function from sys import stderr from termcolor import colored def log(msg, error=False, prefix=False): """Print a message to stdout""" if error: print(colored('ERROR:', color='red'), '[cloudman]', msg, "\n", file=stderr) else: print(('[cloudman] ' if prefix else '') + msg, "\n") ```
{ "source": "aakashns/swiftai", "score": 2 }
#### File: swiftai/swiftai/object_detection.py ```python from fastai.imports import * from matplotlib import patches, patheffects from fastai.dataset import * def wh_bb(a): return np.array([a[1], a[0], a[3]+a[1]-1, a[2]+a[0]-1]) def bb_wh(a): return np.array([a[1],a[0],a[3]-a[1]+1,a[2]-a[0]+1]) def show_img(im, figsize=None, ax=None, grid=False): if not ax: fig, ax = plt.subplots(figsize=figsize) ax.imshow(im) if grid: ax.set_xticks(np.linspace(0, 224, 9)) ax.set_yticks(np.linspace(0, 224, 9)) ax.grid() ax.set_yticklabels([]) ax.set_xticklabels([]) else: ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) return ax def draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def draw_rect(ax, b, color='white'): patch = ax.add_patch(patches.Rectangle( b[:2], *b[-2:], fill=False, edgecolor=color, lw=2)) draw_outline(patch, 4) def draw_text(ax, xy, txt, sz=14, color='white'): text = ax.text(*xy, txt, verticalalignment='top', color=color, fontsize=sz, weight='bold') draw_outline(text, 1) class ConcatLblDataset(Dataset): def __init__(self, ds, y2): self.ds, self.y2 = ds, y2 self.sz = ds.sz def __len__(self): return len(self.ds) def __getitem__(self, i): x, y = self.ds[i] return (x, (y, self.y2[i])) def append_y(md, md2): md.trn_dl.dataset = ConcatLblDataset(md.trn_ds, md2.trn_y) md.val_dl.dataset = ConcatLblDataset(md.val_ds, md2.val_y) class VOCData: def __init__(self, fname, img_path): j = json.load(Path(fname).open()) self.img_path = img_path self.cats = {o['id']: o['name'] for o in j['categories']} self.ids = [o['id'] for o in j['images']] self.fnames = {o['id']: o['file_name'] for o in j['images']} self.anns = collections.defaultdict(lambda:[]) for o in j['annotations']: if not o['ignore']: b, c = wh_bb(o['bbox']), o['category_id'] self.anns[o['image_id']].append((b, c)) self._lrg_anns = None @property def lrg_anns(self): if self._lrg_anns is None: largest = lambda ann: max(ann, key=lambda x: np.product(x[0][-2:]-x[0][:2])) self._lrg_anns = {id: largest(ann) for id,ann in self.anns.items()} return self._lrg_anns def open_img(self, id): return open_image(self.img_path/self.fnames[id]) def show(self, id, figsize=(16,8), anns=None, largest=False): if anns is None: anns = [self.lrg_anns[id]] if largest else self.anns[id] im = self.open_img(id) print(im.shape) ax = show_img(im, figsize=figsize) for b,c in anns: b = bb_wh(b) draw_rect(ax, b) draw_text(ax, b[:2], self.cats[c], sz=16) def show_batch(self, x, y): fig, axes = plt.subplots(3, 4, figsize=(16, 12)) for i, ax in enumerate(axes.flat): bb = [bb_wh(o) for o in y[0][i].reshape(-1,4)] ax = show_img(x[i], ax=ax) for b, c in zip(bb, y[1][i]): if (b[2] > 1): draw_rect(ax, b) draw_text(ax, b[:2], self.cats[int(c)]) plt.tight_layout() def get_cls_df(self, largest=False, dedupe=False, named=False): fns = [self.fnames[i] for i in self.ids] if largest: cts = [self.cats[self.lrg_anns[i][1]] for i in self.ids] else: wrap = set if dedupe else list ct_ids = [wrap([a[1] for a in self.anns[i]]) for i in self.ids] cts = [' '.join(self.cats[ci] if named else str(ci) for ci in ids) for ids in ct_ids] return pd.DataFrame({'fn': fns, 'cat': cts}, columns=['fn', 'cat']) def get_bb_df(self, largest=False): fns = [self.fnames[i] for i in self.ids] if largest: bbs = np.array([' '.join(str(p) for p in self.lrg_anns[i][0]) for i in self.ids]) else: _bbs = [np.concatenate([a[0] for a in self.anns[i]]) for i in self.ids] bbs = [' '.join(str(p) for p in a) for a in _bbs] return pd.DataFrame({ 'fn': fns, 'bbox': bbs}, columns=['fn', 'bbox']) ```
{ "source": "aakashparsi/HTS", "score": 3 }
#### File: HTS/hts/convenience.py ```python from typing import Dict, Optional, Union import numpy import pandas from hts._t import ArrayLike, MethodT, NAryTreeT, TransformT from hts.functions import to_sum_mat from hts.revision import RevisionMethod def _to_numpy(v: ArrayLike, kind: str = "forecasts") -> numpy.ndarray: if isinstance(v, numpy.ndarray): if v.ndim > 1: raise ValueError(f"`{kind}` values must be of a dimension 1") return v elif isinstance(v, pandas.DataFrame): if len(v.columns) > 1: raise ValueError( f"If providing `{kind}` as a DataFrame, it must have one column only" ) col_name = v.columns[0] return v[col_name].values elif isinstance(v, pandas.Series): return v.values else: raise ValueError( f"`{kind}` must be a dict mapping string to array, series or DataFrame" ) def _sanitize_errors_dict(errors: Dict[str, float]) -> Dict[str, float]: for k, v in errors.items(): if not isinstance(v, float): raise ValueError("`errors` dict must be a mapping from string to float") return errors def _sanitize_residuals_dict( residuals: Dict[str, ArrayLike] ) -> Dict[str, numpy.ndarray]: for k, v in residuals.items(): residuals[k] = _to_numpy(v, kind="residuals") return residuals def _sanitize_forecasts_dict( forecasts: Dict[str, ArrayLike] ) -> Dict[str, pandas.DataFrame]: for k, v in forecasts.items(): as_array = _to_numpy(v, kind="forecasts") forecasts[k] = pandas.DataFrame({"yhat": as_array}) return forecasts def _calculate_errors( method: str, errors: Optional[Dict[str, float]] = None, residuals: Optional[Dict[str, numpy.ndarray]] = None, ): errors_or_residuals = ( True if (errors is not None or residuals is not None) else False ) if not errors_or_residuals: raise ValueError( f"Method {method} requires either errors or residuals to be provided" ) if residuals is not None: residuals = _sanitize_residuals_dict(residuals) if errors is None: errors = {} for k, v in residuals.items(): errors[k] = numpy.mean(numpy.array(v) ** 2) return _sanitize_errors_dict(errors) def revise_forecasts( method: str, forecasts: Dict[str, ArrayLike], errors: Optional[Dict[str, float]] = None, residuals: Optional[Dict[str, ArrayLike]] = None, summing_matrix: numpy.ndarray = None, nodes: NAryTreeT = None, transformer: TransformT = None, ): """ Convenience function to get revised forecast for pre-computed base forecasts Parameters ---------- method : str The reconciliation method to use forecasts : Dict[str, ArrayLike] A dict mapping key name to its forecasts (including in-sample forecasts). Required, can be of type ``numpy.ndarray`` of ``ndim == 1``, ``pandas.Series``, or single columned ``pandas.DataFrame`` errors : Dict[str, float] A dict mapping key name to the in-sample errors. Required for methods: ``OLS``, ``WLSS``, ``WLSV`` if ``residuals`` is not passed residuals : Dict[str, ArrayLike] A dict mapping key name to the residuals of in-sample forecasts. Required for methods: ``OLS``, ``WLSS``, ``WLSV``, can be of type ``numpy.ndarray`` of ndim == 1, ``pandas.Series``, or single columned ``pandas.DataFrame``. If passing residuals, ``errors`` dict is not required and will instead be calculated using MSE metric: ``numpy.mean(numpy.array(residual) ** 2)`` summing_matrix : numpy.ndarray Not required if ``nodes`` argument is passed, or if using ``BU`` approach nodes : NAryTreeT The tree of nodes as specified in :py:class:`HierarchyTree <hts.hierarchy.HierarchyTree>`. Required if not if using ``AHP``, ``PHA``, ``FP`` methods, or if using passing the ``OLS``, ``WLSS``, ``WLSV`` methods and not passing the ``summing_matrix`` parameter transformer : TransformT A transform with the method: ``inv_func`` that will be applied to the forecasts Returns ------- revised forecasts : ``pandas.DataFrame`` The revised forecasts """ if nodes: summing_matrix, sum_mat_labels = to_sum_mat(nodes) if method in [MethodT.AHP.name, MethodT.PHA.name, MethodT.FP.name] and not nodes: raise ValueError(f"Method {method} requires an NAryTree to be passed") if method in [MethodT.OLS.name, MethodT.WLSS.name, MethodT.WLSV.name]: errors = _calculate_errors(method=method, errors=errors, residuals=residuals) if not (all([forecasts, errors]) or (not summing_matrix)): raise ValueError( f"Method {method} requires forecasts, errors, and residuals to be passed, as " f"well as an NAryTree or a summing matrix" ) revision = RevisionMethod( name=method, sum_mat=summing_matrix, transformer=transformer ) sanitized_forecasts = _sanitize_forecasts_dict(forecasts) revised = revision.revise(forecasts=sanitized_forecasts, mse=errors, nodes=nodes) return pandas.DataFrame(revised, columns=list(sanitized_forecasts.keys())) ``` #### File: hts/core/utils.py ```python import os import pickle from typing import Dict, List, Optional, Tuple import numpy import pandas from hts._t import ( HTSFitResultT, LowMemoryFitResultT, ModelFitResultT, NAryTreeT, TimeSeriesModelT, ) from hts.hierarchy.utils import make_iterable from hts.utilities.distribution import ( DistributorBaseClass, MapDistributor, MultiprocessingDistributor, ) def _do_fit( nodes: NAryTreeT, function_kwargs, n_jobs: int, disable_progressbar: bool, show_warnings: bool, distributor: Optional[DistributorBaseClass], ) -> HTSFitResultT: distributor = _get_distributor( n_jobs=n_jobs, disable_progressbar=disable_progressbar, show_warnings=show_warnings, distributor=distributor, ) result = distributor.map_reduce( _do_actual_fit, data=nodes, function_kwargs=function_kwargs ) distributor.close() return result def _do_actual_fit(node: NAryTreeT, function_kwargs: Dict) -> ModelFitResultT: instantiated_model = function_kwargs["model_instance"]( node=node, transform=function_kwargs["transform"], **function_kwargs["model_args"] ) if not function_kwargs["low_memory"]: model_instance = instantiated_model.fit(**function_kwargs["fit_kwargs"]) return model_instance else: return _fit_serialize_model(instantiated_model, function_kwargs) def _fit_serialize_model( model: TimeSeriesModelT, function_kwargs: Dict ) -> LowMemoryFitResultT: tmp = function_kwargs["tmp_dir"] path = os.path.join(tmp, model.node.key + ".pkl") model_instance = model.fit(**function_kwargs["fit_kwargs"]) with open(path, "wb") as p: pickle.dump(model_instance, p) return model.node.key, path def _do_predict( models: List[Tuple[str, ModelFitResultT, NAryTreeT]], function_kwargs: Dict, n_jobs: int, disable_progressbar: bool, show_warnings: bool, distributor: DistributorBaseClass, ) -> HTSFitResultT: distributor = _get_distributor( n_jobs=n_jobs, disable_progressbar=disable_progressbar, show_warnings=show_warnings, distributor=distributor, ) result = distributor.map_reduce( _do_actual_predict, data=models, function_kwargs=function_kwargs ) distributor.close() return result def _model_mapping_to_iterable( model_mapping: Dict[str, ModelFitResultT], nodes: NAryTreeT ) -> List[Tuple[str, ModelFitResultT, NAryTreeT]]: prediction_triplet = [] for node in make_iterable(nodes, prop=None): if isinstance(model_mapping[node.key], tuple): model = model_mapping[node.key][1] else: model = model_mapping[node.key] prediction_triplet.append((node.key, model, node)) return prediction_triplet def _do_actual_predict( model: Tuple[str, ModelFitResultT, NAryTreeT], function_kwargs: Dict ) -> Tuple[str, pandas.DataFrame, numpy.ndarray, numpy.ndarray]: key, file_or_model, node = model if function_kwargs["low_memory"]: model_instance = _load_serialized_model( tmp_dir=function_kwargs["tmp_dir"], file_name=file_or_model ) else: model_instance = file_or_model model_instance = model_instance.predict( node=node, steps_ahead=function_kwargs["steps_ahead"], **function_kwargs["predict_kwargs"] ) return key, model_instance.forecast, model_instance.mse, model_instance.residual def _load_serialized_model(tmp_dir, file_name): path = os.path.join(tmp_dir, file_name) with open(path, "rb") as p: return pickle.load(p) def _get_distributor( n_jobs: int, disable_progressbar: bool, show_warnings: bool, distributor: Optional[DistributorBaseClass], ): if distributor is None: if n_jobs == 0: distributor = MapDistributor( disable_progressbar=disable_progressbar, progressbar_title="Fitting models: ", ) else: distributor = MultiprocessingDistributor( n_workers=n_jobs, disable_progressbar=disable_progressbar, progressbar_title="Fitting models", show_warnings=show_warnings, ) if not isinstance(distributor, DistributorBaseClass): raise ValueError("the passed distributor is not an DistributorBaseClass object") return distributor ``` #### File: hts/viz/geo.py ```python import logging import string from itertools import chain import numpy from hts._t import HierarchyVisualizerT, NAryTreeT logger = logging.getLogger(__name__) def get_min_max_ll(geos): fl = list(chain.from_iterable([g[0] for g in geos])) mx_lat = max([x[0] for x in fl]) mx_lon = max([x[1] for x in fl]) mn_lat = min([x[0] for x in fl]) mn_lon = min([x[1] for x in fl]) return mx_lat, mx_lon, mn_lat, mn_lon class HierarchyVisualizer(HierarchyVisualizerT): def __init__(self, tree: NAryTreeT): self.tree = tree @property def as_df(self): return self.tree.to_pandas() def get_geos(self): try: from h3 import h3 except ImportError: # pragma: no cover logger.error( "h3-py must be installed for geo hashing capabilities. Exiting." "Install it with: pip install scikit-hts[geo]" ) return h3s = [ col for col in self.as_df.columns if all(c in string.hexdigits for c in col) ] return [ (h3.h3_to_geo_boundary(g), self.as_df[g].fillna(0).sum(), g) for g in h3s ] def h3_to_lat_long(self): return def create_map(self): try: import branca.colormap as cm from folium import Map from folium.vector_layers import Polygon except ImportError: # pragma: no cover logger.error( "Mapping requires folium==0.10.0 to be installed, geo mapping will not work." "Install it with: pip install scikit-hts[geo]" ) return _map = Map(tiles="cartodbpositron") geos = self.get_geos() max_lat, max_lon, min_lat, min_lon = get_min_max_ll(geos) geos = [ (i, numpy.log(j + 1) / (self.tree.get_node_height(k) + 1), k) for i, j, k in geos ] mx, mn = max([j for i, j, k in geos]), min([j for i, j, k in geos]) geos = [(i, (j - mn) / (mx - mn), k) for i, j, k in geos] for points, count, h in sorted(geos, key=lambda x: x[1]): tooltip = f"hex: {h}" polygon = Polygon( locations=points, tooltip=tooltip, fill=True, color=cm.linear.OrRd_03.rgb_hex_str(count), fill_color=cm.linear.OrRd_03.rgb_hex_str(count), fill_opacity=0.3, weight=3, opacity=0.4, ) polygon.add_to(_map) _map.fit_bounds([[min_lat, min_lon], [max_lat, max_lon]]) return _map ``` #### File: tests/integ/test_fit_model.py ```python from collections import namedtuple import numpy import pandas import pytest # from fbprophet import Prophet from pmdarima import AutoARIMA from hts.model import AutoArimaModel, FBProphetModel, HoltWintersModel, SarimaxModel from hts.model.base import TimeSeriesModel # def test_instantiate_fb_model_uv(uv_tree): # fb = FBProphetModel(node=uv_tree) # assert isinstance(fb, TimeSeriesModel) # fb = FBProphetModel(node=uv_tree, capacity_max=1) # assert isinstance(fb, TimeSeriesModel) # fb = FBProphetModel(node=uv_tree, capacity_min=1) # assert isinstance(fb, TimeSeriesModel) # def test_fit_predict_fb_model_mv(mv_tree): # exog = pandas.DataFrame({"precipitation": [1], "temp": [20]}) # fb = FBProphetModel(node=mv_tree) # assert isinstance(fb, TimeSeriesModel) # fb.fit() # fb.predict(mv_tree, exogenous_df=exog) # assert isinstance(fb.forecast, pandas.DataFrame) # assert isinstance(fb.residual, numpy.ndarray) # assert isinstance(fb.mse, float) # def test_fit_predict_fb_model_mv(mv_tree): # exog = pandas.DataFrame({"precipitation": [1, 2], "temp": [20, 30]}) # fb = FBProphetModel(node=mv_tree) # assert isinstance(fb, TimeSeriesModel) # fb.fit() # fb.predict(mv_tree, exogenous_df=exog) # assert isinstance(fb.forecast, pandas.DataFrame) # assert isinstance(fb.residual, numpy.ndarray) # assert isinstance(fb.mse, float) # def test_fit_predict_fb_model_uv(uv_tree): # fb = FBProphetModel(node=uv_tree) # fb.fit() # assert isinstance(fb.model, Prophet) # fb.predict(uv_tree) # assert isinstance(fb.forecast, pandas.DataFrame) # assert isinstance(fb.residual, numpy.ndarray) # assert isinstance(fb.mse, float) def test_fit_predict_ar_model_mv(mv_tree): ar = AutoArimaModel(node=mv_tree) ar.fit(max_iter=1) assert isinstance(ar.model, AutoARIMA) exog = pandas.DataFrame({"precipitation": [1], "temp": [20]}) ar.predict(mv_tree, steps_ahead=1, exogenous_df=exog) assert isinstance(ar.forecast, pandas.DataFrame) assert isinstance(ar.residual, numpy.ndarray) assert isinstance(ar.mse, float) def test_fit_predict_ar_model_uv(uv_tree): ar = AutoArimaModel( node=uv_tree, ) ar.fit(max_iter=1) assert isinstance(ar.model, AutoARIMA) ar.predict(uv_tree) assert isinstance(ar.forecast, pandas.DataFrame) assert isinstance(ar.residual, numpy.ndarray) assert isinstance(ar.mse, float) def test_fit_predict_sarimax_model_uv(uv_tree): sar = SarimaxModel( node=uv_tree, max_iter=1, ) fitted_sar = sar.fit() assert isinstance(fitted_sar, SarimaxModel) sar.predict(uv_tree) assert isinstance(sar.forecast, pandas.DataFrame) assert isinstance(sar.residual, numpy.ndarray) assert isinstance(sar.mse, float) def test_fit_predict_hw_model_uv(uv_tree): hw = HoltWintersModel( node=uv_tree, ) fitted_hw = hw.fit() assert isinstance(fitted_hw, HoltWintersModel) hw.predict(uv_tree) assert isinstance(hw.forecast, pandas.DataFrame) assert isinstance(hw.residual, numpy.ndarray) assert isinstance(hw.mse, float) def test_fit_predict_hw_model_uv_with_transform(uv_tree): Transform = namedtuple("Transform", ["func", "inv_func"]) transform_pos_neg = Transform(func=numpy.exp, inv_func=lambda x: -x) hw = HoltWintersModel(node=uv_tree, transform=transform_pos_neg) fitted_hw = hw.fit() assert isinstance(fitted_hw, HoltWintersModel) preds = hw.predict(uv_tree) assert not (preds.forecast.values > 0).any() assert isinstance(hw.forecast, pandas.DataFrame) assert isinstance(hw.residual, numpy.ndarray) assert isinstance(hw.mse, float) def test_fit_predict_model_invalid_transform(uv_tree): Transform = namedtuple("Transform", ["func_invalid_arg", "inv_func"]) transform_pos_neg = Transform(func_invalid_arg=numpy.exp, inv_func=lambda x: -x) with pytest.raises(ValueError): HoltWintersModel(node=uv_tree, transform=transform_pos_neg) from hts.utilities.load_data import load_mobility_data from hts.hierarchy import HierarchyTree from hts.core import regressor import pandas as pd def test_ar_model(): dummydf = pd.DataFrame( [ [10, 1, 4, 5, 100, 10, 10, 110], [20, 2, 8, 10, 25, 5, 5, 45], [30, 3, 12, 15, 400, 20, 20, 430], [40, 4, 16, 20, 225, 15, 15, 265], ], columns = ['target1', 'exog11', 'exog12', 'exog13', 'target2', 'exog21', 'exog22', 'total'], index = ['2021-01', '2021-02', '2021-03', '2021-04'] ) dummydf.index = pd.to_datetime(dummydf.index) dummydf.index = dummydf.index.to_period('M') exogdf = pd.DataFrame( [ [1, 16, 25, 2, 2], # [4, 64, 100, 1, 1] ], columns = ['exog11', 'exog12', 'exog13', 'exog21', 'exog22'], index = ['2021-05'] ) exogdf.index = pd.to_datetime(exogdf.index) exogdf.index = exogdf.index.to_period('M') hier = { 'total': ['target1', 'target2'] } exogenous = { 'target1': ['exog11', 'exog12'], 'target2': ['exog21', 'exog22'] } print(exogdf) ht = HierarchyTree.from_nodes(hier, dummydf, exogenous=exogenous) from collections import namedtuple Transform = namedtuple('Transform', ['func', 'inv_func']) sqrtTransformation = Transform(func=numpy.sqrt, inv_func=numpy.square) htsmodel = regressor.HTSRegressor(model = 'auto_arima', revision_method = 'PHA', n_jobs = 0, transform = sqrtTransformation) htsfit = htsmodel.fit(dummydf, hier, exogenous = exogenous) print("fitting completed\n") pred = htsfit.predict(steps_ahead = 5, exogenous_df=exogdf) print(pred) return "DONE" ```
{ "source": "aakashparsi/tsmoothie", "score": 4 }
#### File: tsmoothie/tsmoothie/regression_basis.py ```python import numpy as np def polynomial(degree, basis_len): """Create basis for polynomial regression. Returns ------- X_base : array Basis for polynomial regression. """ X = np.arange(basis_len, dtype=np.float64) X_base = np.repeat([X], degree, axis=0).T X_base = np.power(X_base, np.arange(1, degree + 1)) return X_base def linear_spline(knots, basis_len): """Create basis for linear spline regression. Returns ------- X_base : array Basis for linear spline regression. """ n_knots = len(knots) X = np.arange(basis_len) X_base = np.zeros((basis_len, n_knots + 1)) X_base[:, 0] = X X_base[:, 1:] = X[:, None] - knots[None, :] X_base[X_base < 0] = 0 return X_base def cubic_spline(knots, basis_len): """Create basis for cubic spline regression. Returns ------- X_base : array Basis for cubic spline regression. """ n_knots = len(knots) X = np.arange(basis_len) X_base = np.zeros((basis_len, n_knots + 3)) X_base[:, 0] = X X_base[:, 1] = X_base[:, 0] * X_base[:, 0] X_base[:, 2] = X_base[:, 1] * X_base[:, 0] X_base[:, 3:] = np.power(X[:, None] - knots[None, :], 3) X_base[X_base < 0] = 0 return X_base def natural_cubic_spline(knots, basis_len): """Create basis for natural cubic spline regression. Returns ------- X_base : array Basis for natural cubic spline regression. """ n_knots = len(knots) X = np.arange(basis_len) X_base = np.zeros((basis_len, n_knots - 1)) X_base[:, 0] = X numerator1 = X[:, None] - knots[None, :n_knots - 2] numerator1[numerator1 < 0] = 0 numerator2 = X[:, None] - knots[None, n_knots - 1] numerator2[numerator2 < 0] = 0 numerator = np.power(numerator1, 3) - np.power(numerator2, 3) denominator = knots[n_knots - 1] - knots[:n_knots - 2] numerator1_dd = X[:, None] - knots[None, n_knots - 2] numerator1_dd[numerator1_dd < 0] = 0 numerator2_dd = X[:, None] - knots[None, n_knots - 1] numerator2_dd[numerator2_dd < 0] = 0 numerator_dd = np.power(numerator1_dd, 3) - np.power(numerator2_dd, 3) denominator_dd = knots[n_knots - 1] - knots[n_knots - 2] dd = numerator_dd / denominator_dd X_base[:, 1:] = numerator / denominator - dd return X_base def gaussian_kernel(knots, sigma, basis_len): """Create basis for gaussian kernel regression. Returns ------- X_base : array Basis for gaussian kernel regression. """ n_knots = len(knots) X = np.arange(basis_len) / basis_len X_base = - np.square(X[:, None] - knots) / (2 * sigma) X_base = np.exp(X_base) return X_base def binner(knots, basis_len): """Create basis for binner regression. Returns ------- X_base : array Basis for binner regression. """ n_knots = len(knots) X = np.arange(basis_len) X_base = np.zeros((basis_len, n_knots + 1)) X_base[:, 0] = X <= knots[0] X_base[:, 1:-1] = np.logical_and( X[:, None] <= knots[1:][None, :], X[:, None] > knots[:(n_knots - 1)][None, :]) X_base[:, n_knots] = knots[-1] < X return X_base def lowess(smooth_fraction, basis_len): """Create basis for LOWESS. Returns ------- X_base : array Basis for LOWESS. """ X = np.arange(basis_len) r = int(np.ceil(smooth_fraction * basis_len)) r = min(r, basis_len - 1) X = X[:, None] - X[None, :] h = np.sort(np.abs(X), axis=1)[:, r] X_base = np.abs(X / h).clip(0.0, 1.0) X_base = np.power(1 - np.power(X_base, 3), 3) return X_base return X_base ```
{ "source": "aakashpatel379/radviz", "score": 3 }
#### File: aakashpatel379/radviz/Server.py ```python from flask import Flask, render_template, request from sklearn.cluster import KMeans import ast import json import pandas as pd from flask_cors import CORS import plotly import plotly.graph_objs as go import plotly.express as px app = Flask(__name__, template_folder="templates") cors = CORS(app) df = pd.read_csv('./winequality-red.csv') @app.route('/') def home(): json_response = json.loads(df.to_json(orient='records')) print(json_response) return render_template('home.html', data=json.dumps(json_response)) @app.route('/displaycsv', methods=['POST', 'GET']) def displaycsv(): global df df = pd.read_csv('./winequality-white.csv') json_response = json.loads(df.to_json(orient='records')) return json.dumps(json_response) @app.route('/labelUpdate', methods=['POST', 'GET']) def updateLabel(): arguments = request.args df_a1 = pd.read_csv('./dataset1_processed_updated.csv') numcols =['age', 'fnlwgt', 'education-num', 'capital-gain', 'capital-loss', 'hours-per-week'] labelcol = arguments['label'] numcols.append(labelcol) global df_al df_a1_filtered = df_a1[numcols] json_response = json.loads(df_a1_filtered.to_json(orient='records')) return json.dumps(json_response) @app.route('/applyAlgoParameters', methods=['POST', 'GET']) def applyAlgoParamsKMeans(): arguments = request.args rstate = arguments['randomstate'] init = str(arguments['init']) if('means' in init): init =init.strip() init+="++" csvname = arguments['name'] colormode = arguments['mode'] print(csvname+":"+colormode) global df df = pd.read_csv('./' + csvname + '.csv') labelcol = df.columns labelcol = labelcol[-1] classes = df[labelcol].unique() if colormode != "Class-Based": del df[labelcol] kmeans = KMeans(n_clusters=len(classes),init=init,random_state=int(rstate)) kmeans.fit(df) y_kmeans = kmeans.predict(df) labels = list(y_kmeans) labels = kmeans.labels_ df['labels'] = labels json_response = json.loads(df.to_json(orient='records')) return json.dumps(json_response) @app.route('/load', methods=['POST', 'GET']) def readcsv(): arguments = request.args csvname = arguments['name'] print(csvname) global df df = pd.read_csv('./' + csvname + '.csv') json_response = json.loads(df.to_json(orient='records')) return json.dumps(json_response) @app.route('/correlationMatrix', methods=['POST', 'GET']) def calculateCorrelationMatrix(): arguments = request.args try: cid = int(arguments['clusterid']) except ValueError: cid = arguments['clusterid'] global df labelcol = df.columns labelcol = labelcol[-1] df_filtered = df[df[labelcol] == cid] x = list(df_filtered.columns) x.pop() fig = go.Figure(data=go.Heatmap( z=df_filtered.corr(), x=x, y=x, colorscale='Reds' )) fig['layout'].update(title="Correlation Matrix") json_response=json.loads(fig.to_json()) return json.dumps(json_response) @app.route('/visualizeA1Assignment', methods=['POST', 'GET']) def getAssignment1Data(): df_a1 = pd.read_csv('./dataset1_processed_updated.csv') df_a1_filtered = df_a1[['age', 'fnlwgt', 'education-num', 'capital-gain', 'capital-loss', 'hours-per-week', 'salary']] json_response = json.loads(df_a1_filtered.to_json(orient='records')) return render_template('a1_dataset.html', data=json.dumps(json_response)) @app.route('/clusterizeA1', methods=['POST', 'GET']) def clusterizeA1Data(): df_a1 = pd.read_csv('./dataset1_processed_updated.csv') arguments = request.args lbl = arguments['label'] numcols = ['age', 'fnlwgt', 'education-num', 'capital-gain', 'capital-loss', 'hours-per-week', lbl] colormode = arguments['mode'] df_a1_filtered = df_a1[numcols] classes = df_a1_filtered[lbl].unique() if colormode != "Class-Based": del df_a1_filtered[lbl] kmeans = KMeans(n_clusters=len(classes)) kmeans.fit(df_a1_filtered) y_kmeans = kmeans.predict(df_a1_filtered) labels =list(y_kmeans) labels = kmeans.labels_ df_a1_filtered['labels'] = labels json_response = json.loads(df_a1_filtered.to_json(orient='records')) return json.dumps(json_response) @app.route('/clusterize', methods=['POST', 'GET']) def clusterizeData(): arguments = request.args csvname = arguments['name'] colormode = arguments['mode'] print(csvname+":"+colormode) global df df = pd.read_csv('./' + csvname + '.csv') labelcol = df.columns labelcol = labelcol[-1] classes = df[labelcol].unique() if colormode != "Class-Based": del df[labelcol] kmeans = KMeans(n_clusters=len(classes)) kmeans.fit(df) y_kmeans = kmeans.predict(df) labels =list(y_kmeans) labels = kmeans.labels_ df['labels'] = labels json_response = json.loads(df.to_json(orient='records')) return json.dumps(json_response) if __name__ == '__main__': app.run(debug=True) ```
{ "source": "aakashrana1995/svnit-tnp", "score": 2 }
#### File: company/migrations/0017_auto_20170530_1724.py ```python from __future__ import unicode_literals from django.db import migrations from django.contrib.auth.models import Group, User, Permission def load_coordinator_group(apps, schema_editor): group, created = Group.objects.get_or_create(name='Coordinator') company_permissions = Permission.objects.filter( content_type__app_label='company' ).exclude( codename__startswith='add', content_type__model__in=['company', 'job'], ).exclude( codename__startswith='delete', content_type__model__in=['company', 'branch', 'job'], ) consent_permissions = Permission.objects.filter(codename='change_consentdeadline') for p in company_permissions: group.permissions.add(p) for p in consent_permissions: group.permissions.add(p) class Migration(migrations.Migration): dependencies = [ ('company', '0016_auto_20170529_2226'), ] operations = [ migrations.RunPython(load_coordinator_group), ] ``` #### File: consent/templatetags/consent_extras.py ```python from django import template from django.contrib.auth.models import Group register = template.Library() @register.filter def is_coordinator(user): return user.groups.filter(name='Coordinator').exists() ```
{ "source": "Aakash-Roy/allenact", "score": 2 }
#### File: allenact/scripts/dmain.py ```python import sys import os import time import random import string from pathlib import Path from typing import Optional import subprocess # Add to PYTHONPATH the path of the parent directory of the current file's directory sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(Path(__file__))))) from allenact.main import get_argument_parser as get_main_arg_parser from allenact.utils.system import init_logging, get_logger from constants import ABS_PATH_OF_TOP_LEVEL_DIR def get_argument_parser(): """Creates the argument parser.""" parser = get_main_arg_parser() parser.description = f"distributed {parser.description}" parser.add_argument( "--runs_on", required=True, type=str, help="Comma-separated IP addresses of machines", ) parser.add_argument( "--ssh_cmd", required=False, type=str, default="ssh -f {addr}", help="SSH command. Useful to utilize a pre-shared key with 'ssh -i mykey.pem -f ubuntu@{addr}'. " "The option `-f` should be used for non-interactive session", ) parser.add_argument( "--env_activate_path", required=True, type=str, help="Path to the virtual environment's `activate` script. It must be the same across all machines", ) parser.add_argument( "--allenact_path", required=False, type=str, default="allenact", help="Path to allenact top directory. It must be the same across all machines", ) # Required distributed_ip_and_port idx = [a.dest for a in parser._actions].index("distributed_ip_and_port") parser._actions[idx].required = True return parser def get_args(): """Creates the argument parser and parses any input arguments.""" parser = get_argument_parser() args = parser.parse_args() return args def get_raw_args(): raw_args = sys.argv[1:] filtered_args = [] remove: Optional[str] = None enclose_in_quotes: Optional[str] = None for arg in raw_args: if remove is not None: remove = None elif enclose_in_quotes is not None: # Within backslash expansion: close former single, open double, create single, close double, reopen single inner_quote = r"\'\"\'\"\'" # Convert double quotes into backslash double for later expansion filtered_args.append( inner_quote + arg.replace('"', r"\"").replace("'", r"\"") + inner_quote ) enclose_in_quotes = None elif arg in [ "--runs_on", "--ssh_cmd", "--env_activate_path", "--allenact_path", "--extra_tag", "--machine_id", ]: remove = arg elif arg == "--config_kwargs": enclose_in_quotes = arg filtered_args.append(arg) else: filtered_args.append(arg) return filtered_args def wrap_single(text): return f"'{text}'" def wrap_single_nested(text): # Close former single, start backslash expansion (via $), create new single quote for expansion: quote_enter = r"'$'\'" # New closing single quote for expansion, close backslash expansion, reopen former single: quote_leave = r"\'''" return f"{quote_enter}{text}{quote_leave}" def wrap_double(text): return f'"{text}"' def id_generator(size=4, chars=string.ascii_uppercase + string.digits): return "".join(random.choice(chars) for _ in range(size)) # Assume we can ssh into each of the `runs_on` machines through port 22 if __name__ == "__main__": # Tool must be called from AllenAct project's root directory cwd = os.path.abspath(os.getcwd()) assert cwd == ABS_PATH_OF_TOP_LEVEL_DIR, ( f"`dmain.py` called from {cwd}." f"\nIt should be called from AllenAct's top level directory {ABS_PATH_OF_TOP_LEVEL_DIR}." ) args = get_args() init_logging(args.log_level) raw_args = get_raw_args() if args.seed is None: seed = random.randint(0, 2 ** 31 - 1) raw_args.extend(["-s", f"{seed}"]) get_logger().info(f"Using random seed {seed} in all workers (none was given)") all_addresses = args.runs_on.split(",") get_logger().info(f"Running on IP addresses {all_addresses}") assert args.distributed_ip_and_port.split(":")[0] in all_addresses, ( f"Missing listener IP address {args.distributed_ip_and_port.split(':')[0]}" f" in list of worker addresses {all_addresses}" ) time_str = time.strftime("%Y-%m-%d_%H-%M-%S", time.localtime(time.time())) global_job_id = id_generator() killfilename = os.path.join( os.path.expanduser("~"), ".allenact", f"{time_str}_{global_job_id}.killfile" ) os.makedirs(os.path.dirname(killfilename), exist_ok=True) code_src = "." with open(killfilename, "w") as killfile: for it, addr in enumerate(all_addresses): code_tget = f"{addr}:{args.allenact_path}/" get_logger().info(f"rsync {code_src} to {code_tget}") os.system(f"rsync -rz {code_src} {code_tget}") job_id = id_generator() command = " ".join( ["python", "main.py"] + raw_args + [ "--extra_tag", f"{args.extra_tag}{'__' if len(args.extra_tag) > 0 else ''}machine{it}", ] + ["--machine_id", f"{it}"] ) logfile = ( f"{args.output_dir}/log_{time_str}_{global_job_id}_{job_id}_machine{it}" ) env_and_command = wrap_single_nested( f"for NCCL_SOCKET_IFNAME in $(route | grep default) ; do : ; done && export NCCL_SOCKET_IFNAME" f" && cd {args.allenact_path}" f" && mkdir -p {args.output_dir}" f" && source {args.env_activate_path} &>> {logfile}" f" && echo pwd=$(pwd) &>> {logfile}" f" && echo output_dir={args.output_dir} &>> {logfile}" f" && echo python_version=$(python --version) &>> {logfile}" f" && echo python_path=$(which python) &>> {logfile}" f" && set | grep NCCL_SOCKET_IFNAME &>> {logfile}" f" && echo &>> {logfile}" f" && {command} &>> {logfile}" ) screen_name = f"allenact_{time_str}_{global_job_id}_{job_id}_machine{it}" screen_command = wrap_single( f"screen -S {screen_name} -dm bash -c {env_and_command}" ) ssh_command = f"{args.ssh_cmd.format(addr=addr)} {screen_command}" get_logger().debug(f"SSH command {ssh_command}") subprocess.run(ssh_command, shell=True, executable="/bin/bash") get_logger().info(f"{addr} {screen_name}") killfile.write(f"{addr} {screen_name}\n") get_logger().info("") get_logger().info(f"Running screen ids saved to {killfilename}") get_logger().info("") get_logger().info("DONE") ```
{ "source": "Aakash-Roy/cal-auto-google-calendar", "score": 3 }
#### File: Aakash-Roy/cal-auto-google-calendar/cal_setup.py ```python print(r""" //\\ || // ___ || //''''''// \\ // // \\ __ ___ || // __ ___ / || || // ___ \\ // // \\ / _` ||// / _` '___ ||-----, ||___ // / _ \ \\// //------\\| (_| |-||\\ | (_| | / || || || \\| (_) | || // \\\__,_| || \\ \__,_| ___/ || || || \\\___/ || """) print("\n****************************************************************") ''' Import the following libraries ''' import pickle import os.path from googleapiclient.discovery import build from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request # You can change the scope of the application, make sure to delete token.pickle file first SCOPES = ['https://www.googleapis.com/auth/calendar'] CREDENTIALS_FILE = 'credentials.json' # Give path to your credentials.json file def get_calendar_service(): cred = None ''' The file token.pickle stores the user's access and refresh tokens, and is created automatically when the authorization flow completes for the first time. In other words when the user give access to this channel ''' if os.path.exists('token.pickle'): with open('token.pickle','rb') as token: cred = pickle.load(token) if not cred or not cred.valid: if cred and cred.expired and cred.refresh_token: cred.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file(CREDENTIALS_FILE, SCOPES) cred = flow.run_local_server(port=0) with open('token.pickle', 'wb') as token: pickle.dump(cred, token) service = build('calendar','v3',credentials=cred) return service ```
{ "source": "Aakash-Roy/sportsanalysis", "score": 4 }
#### File: Aakash-Roy/sportsanalysis/sportsanalysis.py ```python import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set_style("darkgrid") plt.rcParams['figure.figsize'] = (14, 8) matches = pd.read_csv('matches.csv') def display_menu(): print("Which of the following analysis you want to see?") print("------------------------------------------------") print("1. Toss Winner") print("2. Toss Decision") print("3. Top players") print("4. Win by runs") print("5. Win by wickets") print("------------------------------------------------") def toss_winner(): sns.countplot(x='toss_winner', data=matches) plt.show() def toss_decision(): sns.countplot(x='toss_winner', data=matches) plt.show() def top_players(): top_players = matches.player_of_match.value_counts()[:10] fig, ax = plt.subplots() ax.set_ylim([0,20]) ax.set_ylabel("Count") ax.set_title("Top player of the match Winners") #top_players.plot.bar() sns.barplot(x = top_players.index, y = top_players, orient='v'); plt.show() def win_by_runs(): fig, ax = plt.subplots() ax.set_title("Winning by Runs - Team Performance") #top_players.plot.bar() sns.boxplot(y = 'winner', x = 'win_by_runs', data=matches[matches['win_by_runs']>0], orient = 'h'); #palette="Blues"); plt.show() def win_by_wickets(): fig, ax = plt.subplots() ax.set_title("Winning by Wickets - Team Performance") #top_players.plot.bar() sns.boxplot(y = 'winner', x = 'win_by_wickets', data=matches[matches['win_by_wickets']>0], orient = 'h'); #palette="Blues"); plt.show() while True: display_menu() choice = input("Enter your choice: ") if choice == '1': toss_winner() elif choice == '2': toss_decision() elif choice == '3': top_players() elif choice == '4': win_by_runs() elif choice == '5': win_by_wickets() else: break ```
{ "source": "Aakash-Roy/webscraping", "score": 3 }
#### File: Aakash-Roy/webscraping/webscraping.py ```python from bs4 import BeautifulSoup import requests def display_menu(): print("Which of the following task you want to perform?") print("------------------------------------------------") print("1. Webpage") print("2. Wikipedia Page") print("------------------------------------------------") def webpages(): url = input("Paste a webpage url: ") source = requests.get(url) s = BeautifulSoup(source.text,'html') title = s.find('title') print("This is with HTML tags: ",title) notags = s.find('h1') print(("This is not with HTML tags: ",notags.text)) links = s.find('a') print(links) print(links['href']) print(links['class']) link1 = s.find_all('a') link2 = len(link1) print("Total links in the webpage: ",link2) for i in link1[:6]: print(i) links2 = link1[1] print(links2) print() print('href is: ',links2['href']) div = links2.find('div') print(div) print() h = (div['class']) print(h) print(type(h)) print() print("Class name of Div is: ","".join(div['class'])) def wikipage(): url1 = input("Paste a wikipedia page url: ") wiki = requests.get(url1) s2 = BeautifulSoup(wiki.text,'html') print(s2.find(('title'))) content = s2.find_all('div',class_='toc') for i in content: print(i.text) ''' To perform this program, we need to have a conditional loop ''' while True: display_menu() choice = input("Enter your choice: ") if choice == '1': webpages() elif choice == '2': wikipage() else: break ```
{ "source": "aakash-saboo/semi_contrast_seg_fixed", "score": 3 }
#### File: datasets/prepare_dataset/create_splits.py ```python import pickle from batchgenerators.utilities.file_and_folder_operations import subfiles import os import numpy as np def create_splits(output_dir, image_dir): npy_files = subfiles(image_dir, suffix=".npy", join=False) trainset_size = len(npy_files)*50//100 valset_size = len(npy_files)*25//100 testset_size = len(npy_files)*25//100 splits = [] for split in range(0, 5): image_list = npy_files.copy() trainset = [] valset = [] testset = [] for i in range(0, trainset_size): patient = np.random.choice(image_list) image_list.remove(patient) trainset.append(patient) for i in range(0, valset_size): patient = np.random.choice(image_list) image_list.remove(patient) valset.append(patient) for i in range(0, testset_size): patient = np.random.choice(image_list) image_list.remove(patient) testset.append(patient) split_dict = dict() split_dict['train'] = trainset split_dict['val'] = valset split_dict['test'] = testset splits.append(split_dict) with open(os.path.join(output_dir, 'splits.pkl'), 'wb') as f: pickle.dump(splits, f) # some dataset may include an independent test set def create_splits_1(output_dir, image_dir, test_dir): npy_files = subfiles(image_dir, suffix=".npy", join=False) test_files = subfiles(test_dir, suffix=".npy", join=False) trainset_size = len(npy_files) * 3 // 4 valset_size = len(npy_files) - trainset_size splits = [] for split in range(0, 5): image_list = npy_files.copy() trainset = [] valset = [] for i in range(0, trainset_size): patient = np.random.choice(image_list) image_list.remove(patient) trainset.append(patient) for i in range(0, valset_size): patient = np.random.choice(image_list) image_list.remove(patient) valset.append(patient) split_dict = dict() split_dict['train'] = trainset split_dict['val'] = valset split_dict['test'] = test_files splits.append(split_dict) with open(os.path.join(output_dir, 'splits.pkl'), 'wb') as f: pickle.dump(splits, f) if __name__ == "__main__": root_dir = "../../data/Hippocampus" image_dir = "../../data/Hippocampus/preprocessed" create_splits(root_dir, image_dir) ``` #### File: datasets/prepare_dataset/preprocessing.py ```python from collections import defaultdict from batchgenerators.augmentations.utils import resize_image_by_padding from medpy.io import load import os import numpy as np import shutil import torch import torch.nn.functional as F def preprocess_data(root_dir): image_dir = os.path.join(root_dir, 'imgs') label_dir = os.path.join(root_dir, 'labels') output_dir = os.path.join(root_dir, 'orig') if not os.path.exists(output_dir): os.makedirs(output_dir) print('Created' + output_dir + '...') class_stats = defaultdict(int) total = 0 nii_files = subfiles(image_dir, suffix=".nii.gz", join=False) for f in nii_files: if f.startswith("."): os.remove(os.path.join(image_dir, f)) continue file_dir = os.path.join(output_dir, f.split('.')[0]+'.npy') if not os.path.exists(file_dir): image, _ = load(os.path.join(image_dir, f)) label, _ = load(os.path.join(label_dir, f.replace('image', 'label'))) # normalize images image = (image - image.min()) / (image.max() - image.min()) print(label.max()) print(label.min()) image = image.transpose((0, 2, 1)) label = label.transpose((0, 2, 1)) total += image.shape[2] # image = image[:, :, 0].transpose((0, 2, 1)) """ # modify the label for MMWHS dataset label[label == 500] = 1 label[label == 600] = 2 label[label == 420] = 3 label[label == 550] = 4 label[label == 205] = 5 label[label == 820] = 6 label[label == 850] = 7 """ print(image.shape, label.shape) result = np.stack((image, label)).transpose((3, 0, 1, 2)) print(result.shape) np.save(os.path.join(output_dir, f.split('.')[0] + '.npy'), result) print(f) print(total) def reshape_2d_data(input_dir, output_dir, target_size=(64, 64)): if not os.path.exists(output_dir): os.makedirs(output_dir) print('Created' + output_dir + '...') files_list = os.listdir(input_dir) for f in files_list: target_dir = os.path.join(output_dir, f) if not os.path.exists(target_dir): data = np.load(os.path.join(input_dir, f)) image = data[:, 0] label = data[:, 1] image_tensor = torch.from_numpy(image) label_tensor = torch.from_numpy(label) new_image = F.interpolate(image_tensor[None], size=target_size, mode="bilinear") new_image = new_image.squeeze().cpu().numpy() new_label = F.interpolate(label_tensor[None], size=target_size, mode="bilinear") new_label = new_label.squeeze().cpu().numpy() new_data = np.concatenate((new_image[:, None], new_label[:, None]), axis=1) print(new_data.shape) np.save(target_dir, new_data) def reshape_three_dim_data(input_dir, output_dir): if not os.path.exists(output_dir): os.makedirs(output_dir) print('Created' + output_dir + '...') files_list = os.listdir(input_dir) for f in files_list: target_dir = os.path.join(output_dir, f) if not os.path.exists(target_dir): data = np.load(os.path.join(input_dir, f)) image = data[:, 0] label = data[:, 1] image_tensor = torch.from_numpy(image) label_tensor = torch.from_numpy(label) new_image = F.interpolate(image_tensor[None, None], size=(160, 160), mode="bilinear") new_image = new_image.squeeze().cpu().numpy() new_label = F.interpolate(label_tensor[None, None], size=(160, 160), mode="bilinear") new_label = new_label.squeeze().cpu().numpy() new_data = np.concatenate((new_image[None], new_label[None])) print(new_data.shape) np.save(target_dir, new_data) def subfiles(folder, join=True, prefix=None, suffix=None, sort=True): if join: l = os.path.join else: l = lambda x, y: y # lambda is another simplified way of defining a function res = [l(folder, i) for i in os.listdir(folder) if os.path.isfile(os.path.join(folder, i)) and (prefix is None or i.startswith(prefix)) and (suffix is None or i.endswith(suffix))] if sort: res.sort() return res if __name__ == "__main__": root_dir = "../../data/Hippocampus" input_dir = "../../data/Hippocampus/orig" target_dir = "../../data/Hippocampus/preprocessed" preprocess_data(root_dir) reshape_2d_data(input_dir, target_dir) ``` #### File: datasets/two_dim/data_augmentation.py ```python import numpy as np from batchgenerators.transforms import Compose, MirrorTransform from batchgenerators.transforms.crop_and_pad_transforms import CenterCropTransform, RandomCropTransform from batchgenerators.transforms.spatial_transforms import ResizeTransform, SpatialTransform from batchgenerators.transforms.utility_transforms import NumpyToTensor from batchgenerators.transforms.color_transforms import BrightnessTransform, GammaTransform from batchgenerators.transforms.noise_transforms import GaussianNoiseTransform, GaussianBlurTransform from torchvision import transforms def get_transforms(mode="train", target_size=128): tranform_list = [] if mode == "train": tranform_list = [# CenterCropTransform(crop_size=target_size), ResizeTransform(target_size=(target_size,target_size), order=1), # resize MirrorTransform(axes=(1,)), SpatialTransform(patch_size=(target_size, target_size), random_crop=False, patch_center_dist_from_border=target_size // 2, do_elastic_deform=True, alpha=(0., 1000.), sigma=(40., 60.), do_rotation=True, p_rot_per_sample=0.5, angle_x=(-0.1, 0.1), angle_y=(0, 1e-8), angle_z=(0, 1e-8), scale=(0.5, 1.9), p_scale_per_sample=0.5, border_mode_data="nearest", border_mode_seg="nearest"), ] elif mode == "val": tranform_list = [# CenterCropTransform(crop_size=target_size), ResizeTransform(target_size=target_size, order=1), ] elif mode == "test": tranform_list = [# CenterCropTransform(crop_size=target_size), ResizeTransform(target_size=target_size, order=1), ] elif mode == "supcon": tranform_list = [ BrightnessTransform(mu=1, sigma=1, p_per_sample=0.5), GammaTransform(p_per_sample=0.5), GaussianNoiseTransform(p_per_sample=0.5), # SpatialTransform(patch_size=(target_size, target_size) # do_elastic_deform=True, alpha=(0., 1000.), sigma=(40., 60.), # do_rotation=True, p_rot_per_sample=0.5, # angle_z=(0, 2 * np.pi), # scale=(0.7, 1.25), p_scale_per_sample=0.5, # border_mode_data="nearest", border_mode_seg="nearest"), ] tranform_list.append(NumpyToTensor()) return TwoCropTransform(Compose(tranform_list)) elif mode == "simclr": tranform_list = [ BrightnessTransform(mu=1, sigma=1, p_per_sample=0.5), GammaTransform(p_per_sample=0.5), GaussianNoiseTransform(p_per_sample=0.5), SpatialTransform(patch_size=(target_size, target_size), random_crop=True, do_elastic_deform=True, alpha=(0., 1000.), sigma=(40., 60.), do_rotation=True, p_rot_per_sample=0.5, angle_z=(0, 2 * np.pi), scale=(0.7, 1.25), p_scale_per_sample=0.5, border_mode_data="nearest", border_mode_seg="nearest"), NumpyToTensor(), ] return TwoCropTransform(Compose(tranform_list)) tranform_list.append(NumpyToTensor()) return Compose(tranform_list) class TwoCropTransform: """Create two crops of the same image""" def __init__(self, transform): self.transform = transform def __call__(self, **x): return [self.transform(**x), self.transform(**x)] ``` #### File: aakash-saboo/semi_contrast_seg_fixed/inference.py ```python import os import pickle from datetime import datetime import numpy as np import torch import torch.nn as nn import torch.nn.functional as F # from configs.Config import get_config from configs.Config_mmwhs import get_config from datasets.two_dim.NumpyDataLoader import NumpyDataSet from networks.unet_con import SupConUnetInfer from loss_functions.supcon_loss import SupConSegLoss, LocalConLoss, BlockConLoss from loss_functions.metrics import SegmentationMetric from util import AverageMeter class InferenceExperiment(object): def __init__(self, config): self.config = config pkl_dir = self.config.split_dir with open(os.path.join(pkl_dir, "splits.pkl"), 'rb') as f: splits = pickle.load(f) self.train_keys = splits[self.config.fold]['train'][0:2] self.val_keys = splits[self.config.fold]['val'][0:2] self.test_data_loader = NumpyDataSet(self.config.data_dir, target_size=self.config.img_size, batch_size=2, keys=self.train_keys, do_reshuffle=False, mode="test") self.model = SupConUnetInfer(num_classes=self.config.num_classes) self.criterion = SupConSegLoss(temperature=0.7) self.criterion1 = LocalConLoss(temperature=0.7) self.criterion2 = BlockConLoss(temperature=0.7) if torch.cuda.device_count() > 1: print("Let's use", torch.cuda.device_count(), "GPUs!") # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs self.model = nn.DataParallel(self.model) self.device = torch.device(self.config.device if torch.cuda.is_available() else 'cpu') self.model.to(self.device) self.criterion.to(self.device) self.criterion1.to(self.device) self.criterion2.to(self.device) # self.load_checkpoint() self.save_folder = os.path.join(self.config.base_dir, "infer_" + self.config.name + str(datetime.now())[0:16]) if not os.path.exists(self.save_folder): os.mkdir(self.save_folder) def load_checkpoint(self): if self.config.saved_model_path is None: print('checkpoint_dir is empty, please provide directory to load checkpoint.') exit(0) else: state_dict = torch.load(self.config.saved_model_path)['model'] self.model.load_state_dict(state_dict, strict=False) # self.model.load_state_dict(state_dict) def binfer(self): self.model.eval() co_losses = AverageMeter() local_co_losses = AverageMeter() block_co_losses = AverageMeter() metric_val = SegmentationMetric(self.config.num_classes) metric_val.reset() bsz = 2 with torch.no_grad(): for (i, data_batch) in enumerate(self.test_data_loader): """ data = data_batch['data'][0].float().to(self.device) labels = data_batch['seg'][0].long().to(self.device) fnames = data_batch['fnames'] slice_idx = data_batch['slice_idxs'] """ data1 = data_batch[0]['data'][0].float() target1 = data_batch[0]['seg'][0].long() data2 = data_batch[1]['data'][0].float() target2 = data_batch[1]['seg'][0].long() data = torch.cat([data1, data2], dim=0) labels = torch.cat([target1, target2], dim=0).squeeze(dim=1) # of shape [2B, 512, 512] features, output = self.model(data) output_softmax = F.softmax(output, dim=1) pred = torch.argmax(output_softmax, dim=1) metric_val.update(labels, output_softmax) # self.save_data(pred, fnames, slice_idx, 'seg') features = F.normalize(features, p=2, dim=1) # print(features.shape, labels.shape) f1, f2 = torch.split(features, [bsz, bsz], dim=0) features = torch.cat([f1.unsqueeze(1), f2.unsqueeze(1)], dim=1) # [bsz, n_view, c, img_size, img_size] l1, l2 = torch.split(labels, [bsz, bsz], dim=0) labels = torch.cat([l1.unsqueeze(1), l2.unsqueeze(1)], dim=1) labels = labels.cuda() # print(features.device, labels.device) co_loss = self.criterion(features, labels) local_co_loss = self.criterion1(features, labels) block_co_loss = self.criterion2(features, labels) if co_loss == 0: continue co_losses.update(co_loss, bsz) if local_co_loss == 0: continue local_co_losses.update(local_co_loss, bsz) if block_co_loss == 0: continue block_co_losses.update(block_co_loss, bsz) # self.save_data(features, fnames, slice_idx, 'features') if i % 10 == 0: _, _, Dice = metric_val.get() print("Index:%d, mean Dice:%.4f" % (i, Dice)) print("Index:%d, mean contrastive loss:%.4f" % (i, co_losses.avg)) print("=====Inference Finished=====") _, _, Dice = metric_val.get() print("mean Dice:", Dice) print("mean contrastive loss:", co_losses.avg.item()) print("mean local contrastive loss:", local_co_losses.avg.item()) print("mean block contrastive loss:", block_co_losses.avg.item()) def inference(self): self.model.eval() co_losses = AverageMeter() metric_val = SegmentationMetric(self.config.num_classes) metric_val.reset() bsz = 4 with torch.no_grad(): for k in range(2): key = self.val_keys[k:k+1] data_loader = NumpyDataSet(self.config.data_dir, target_size=self.config.img_size, batch_size=bsz, keys=key, do_reshuffle=False, mode="test") feature_map = [] prediction = [] for (i, data_batch) in enumerate(data_loader): data = data_batch['data'][0].float().to(self.device) labels = data_batch['seg'][0].long().to(self.device) slice_idx = data_batch['slice_idxs'] features, output = self.model(data) # print(output.shape, labels.shape) output_softmax = F.softmax(output, dim=1) pred = torch.argmax(output_softmax, dim=1) metric_val.update(labels.squeeze(), output_softmax) # self.save_data(pred, fnames, slice_idx, 'seg') features = F.normalize(features, p=2, dim=1) for j in range(features.shape[0]): # feature_map.append(features[j].cpu().numpy()) prediction.append(pred[j].cpu().numpy()) # print(features.shape, labels.shape) """ if i == 30: print(slice_idx) self.save_data(features.cpu().numpy(), key[0], 'features') self.save_data(labels.cpu().numpy(), key[0], "labels") """ if i % 10 == 0: _, _, Dice = metric_val.get() print("Index:%d, mean Dice:%.4f" % (i, Dice)) # feature_map = np.stack(feature_map) prediction = np.stack(prediction) # self.save_data(feature_map, key, 'features') self.save_data(prediction, key[0], 'prediction') print("=====Inference Finished=====") _, _, Dice = metric_val.get() print("mean Dice:", Dice) def save_data(self, data, key, mode): if not os.path.exists(os.path.join(self.save_folder, mode)): os.mkdir(os.path.join(self.save_folder, mode)) save_path = os.path.join(self.save_folder, mode + '_' + key) np.save(save_path, data) """ for k in range(bsz): slice = slice_idx[k][0].numpy() file_name = fnames[k][0].split("preprocessed/")[1] save_path = os.path.join(self.save_folder, mode, str(slice) + '_' + file_name) np.save(save_path, data[k]) """ if __name__ == "__main__": c = get_config() c.saved_model_path = os.path.abspath("output_experiment") + "/20210227-065712_Unet_mmwhs/" \ + "checkpoint/" + "checkpoint_last.pth.tar" # c.saved_model_path = os.path.abspath('save') + '/SupCon/mmwhs_models/' \ # + 'SupCon_mmwhs_adam_fold_0_lr_0.0001_decay_0.0001_bsz_4_temp_0.1_train_0.4_mlp_block_pretrained/' \ # + 'ckpt.pth' c.fold = 0 print(c) exp = InferenceExperiment(config=c) exp.load_checkpoint() exp.inference() ``` #### File: semi_contrast_seg_fixed/loss_functions/metrics.py ```python import threading import torch import numpy as np # PyTroch version SMOOTH = 1e-5 def dice_pytorch(outputs: torch.Tensor, labels: torch.Tensor, N_class): # You can comment out this line if you are passing tensors of equal shape # But if you are passing output from UNet or something it will most probably # be with the BATCH x 1 x H x W shape outputs = outputs.squeeze().float() labels = labels.squeeze().float() dice = torch.ones(N_class-1).float() # dice = torch.ones(N_class).float() ## for test #outputs = torch.tensor([[1,1],[3,3]]).float() #labels = torch.tensor([[0, 1], [2, 3]]).float() for iter in range(1, N_class): ## ignore the background # for iter in range(0, N_class): predict_temp = torch.eq(outputs, iter) label_temp = torch.eq(labels, iter) intersection = predict_temp & label_temp intersection = intersection.float().sum() union = (predict_temp.float().sum() + label_temp.float().sum()) if intersection>0 and union>0: dice_temp = (2*intersection)/(union) else: dice_temp = 0 #print(dice_temp) dice[iter-1] = dice_temp #(intersection + SMOOTH) / (union + SMOOTH) # dice[iter] = dice_temp #print(dice) return dice # Or thresholded.mean() def iou_pytorch(outputs: torch.Tensor, labels: torch.Tensor): # You can comment out this line if you are passing tensors of equal shape # But if you are passing output from UNet or something it will most probably # be with the BATCH x 1 x H x W shape outputs = outputs.squeeze(1) # BATCH x 1 x H x W => BATCH x H x W intersection = (outputs & labels).float().sum((1, 2)) # Will be zero if Truth=0 or Prediction=0 union = (outputs | labels).float().sum((1, 2)) # Will be zzero if both are 0 iou = (intersection + SMOOTH) / (union + SMOOTH) # We smooth our devision to avoid 0/0 thresholded = torch.clamp(20 * (iou - 0.5), 0, 10).ceil() / 10 # This is equal to comparing with thresolds return thresholded # Or thresholded.mean() if you are interested in average across the batch ################ Numpy version ################ # Well, it's the same function, so I'm going to omit the comments def iou_numpy(outputs: np.array, labels: np.array): outputs = outputs.squeeze() intersection = (outputs & labels).sum((1, 2)) union = (outputs | labels).sum((1, 2)) iou = (intersection + SMOOTH) / (union + SMOOTH) thresholded = np.ceil(np.clip(20 * (iou - 0.5), 0, 10)) / 10 return thresholded # Or thresholded.mean() # Numpy version # Well, it's the same function, so I'm going to omit the comments def dice_numpy(outputs: np.array, labels: np.array): outputs = outputs.squeeze() intersection = (outputs & labels).sum((1, 2)) union = (outputs | labels).sum((1, 2)) dice = (intersection + SMOOTH) / (union + SMOOTH) return dice # Or thresholded.mean() class SegmentationMetric(object): """Computes pixAcc and mIoU metric scroes""" def __init__(self, nclass): self.nclass = nclass self.lock = threading.Lock() self.reset() def update(self, labels, preds): def evaluate_worker(self, label, pred): correct, labeled = batch_pix_accuracy( pred, label) inter, union = batch_intersection_union( pred, label, self.nclass) with self.lock: self.total_correct += correct self.total_label += labeled self.total_inter += inter self.total_union += union return if isinstance(preds, torch.Tensor): evaluate_worker(self, labels, preds) elif isinstance(preds, (list, tuple)): threads = [threading.Thread(target=evaluate_worker, args=(self, label, pred), ) for (label, pred) in zip(labels, preds)] for thread in threads: thread.start() for thread in threads: thread.join() else: raise NotImplemented def get(self, mode='mean'): pixAcc = 1.0 * self.total_correct / (np.spacing(1) + self.total_label) IoU = 1.0 * self.total_inter / (np.spacing(1) + self.total_union) Dice = 2.0 * self.total_inter / (np.spacing(1) + self.total_union + self.total_inter) if mode == 'mean': mIoU = IoU.mean() Dice = Dice.mean() return pixAcc, mIoU, Dice else: return pixAcc, IoU, Dice def reset(self): self.total_inter = 0 self.total_union = 0 self.total_correct = 0 self.total_label = 0 return def batch_pix_accuracy(output, target): """Batch Pixel Accuracy Args: predict: input 4D tensor target: label 3D tensor """ # predict = torch.max(output, 1)[1] predict = torch.argmax(output, dim=1) # predict = output # label: 0, 1, ..., nclass - 1 # Note: 0 is background predict = predict.cpu().numpy().astype('int64') + 1 target = target.cpu().numpy().astype('int64') + 1 pixel_labeled = np.sum(target > 0) pixel_correct = np.sum((predict == target)*(target > 0)) assert pixel_correct <= pixel_labeled, \ "Correct area should be smaller than Labeled" return pixel_correct, pixel_labeled def batch_intersection_union(output, target, nclass): #只区分背景和器官: nclass = 2 """Batch Intersection of Union Args: predict: input 4D tensor #model的输出 target: label 3D Tensor #label nclass: number of categories (int) #只区分背景和器官: nclass = 2 """ predict = torch.max(output, dim=1)[1] #获得了预测结果 # predict = output mini = 1 maxi = nclass-1 #nclass = 2, maxi=1 nbins = nclass-1 #nclass = 2, nbins=1 # label is: 0, 1, 2, ..., nclass-1 # Note: 0 is background predict = predict.cpu().numpy().astype('int64') target = target.cpu().numpy().astype('int64') predict = predict * (target >= 0).astype(predict.dtype) intersection = predict * (predict == target) # 得到TP和TN # areas of intersection and union area_inter, _ = np.histogram(intersection, bins=nbins, range=(mini, maxi)) #统计(TP、TN)值为1的像素个数,获得TN area_pred, _ = np.histogram(predict, bins=nbins, range=(mini, maxi)) #统计predict中值为1的像素个数,获得TN+FN area_lab, _ = np.histogram(target, bins=nbins, range=(mini, maxi)) #统计target中值为1的像素个数,获得TN+FP area_union = area_pred + area_lab - area_inter #area_union:TN+FN+FP assert (area_inter <= area_union).all(), \ "Intersection area should be smaller than Union area" return area_inter, area_union ``` #### File: semi_contrast_seg_fixed/networks/unet_con.py ```python import torch import torch.nn as nn import torch.nn.functional as F class SupConUnet(nn.Module): def __init__(self, num_classes, in_channels=1, initial_filter_size=64, kernel_size=3, do_instancenorm=True, mode="cls"): super(SupConUnet, self).__init__() self.encoder = UNet(num_classes, in_channels, initial_filter_size, kernel_size, do_instancenorm) if mode == 'mlp': self.head = nn.Sequential(nn.Conv2d(initial_filter_size, 256, kernel_size=1), nn.Conv2d(256, num_classes, kernel_size=1)) elif mode == "cls": self.head = nn.Conv2d(initial_filter_size, num_classes, kernel_size=1) else: raise NotImplemented("This mode is not supported yet") def forward(self, x): y = self.encoder(x) output = self.head(y) # output = F.normalize(self.head(y), dim=1) return output class SupConUnetInfer(nn.Module): def __init__(self, num_classes, in_channels=1, initial_filter_size=64, kernel_size=3, do_instancenorm=True): super(SupConUnetInfer, self).__init__() self.encoder = UNet(num_classes, in_channels, initial_filter_size, kernel_size, do_instancenorm) self.head = nn.Conv2d(initial_filter_size, num_classes, kernel_size=1) def forward(self, x): y = self.encoder(x) output = self.head(y) # output = F.normalize(self.head(y), dim=1) return y, output class UNet(nn.Module): def __init__(self, num_classes, in_channels=1, initial_filter_size=64, kernel_size=3, do_instancenorm=True): super().__init__() self.contr_1_1 = self.contract(in_channels, initial_filter_size, kernel_size, instancenorm=do_instancenorm) self.contr_1_2 = self.contract(initial_filter_size, initial_filter_size, kernel_size, instancenorm=do_instancenorm) self.pool = nn.MaxPool2d(2, stride=2) self.contr_2_1 = self.contract(initial_filter_size, initial_filter_size*2, kernel_size, instancenorm=do_instancenorm) self.contr_2_2 = self.contract(initial_filter_size*2, initial_filter_size*2, kernel_size, instancenorm=do_instancenorm) # self.pool2 = nn.MaxPool2d(2, stride=2) self.contr_3_1 = self.contract(initial_filter_size*2, initial_filter_size*2**2, kernel_size, instancenorm=do_instancenorm) self.contr_3_2 = self.contract(initial_filter_size*2**2, initial_filter_size*2**2, kernel_size, instancenorm=do_instancenorm) # self.pool3 = nn.MaxPool2d(2, stride=2) self.contr_4_1 = self.contract(initial_filter_size*2**2, initial_filter_size*2**3, kernel_size, instancenorm=do_instancenorm) self.contr_4_2 = self.contract(initial_filter_size*2**3, initial_filter_size*2**3, kernel_size, instancenorm=do_instancenorm) # self.pool4 = nn.MaxPool2d(2, stride=2) self.center = nn.Sequential( nn.Conv2d(initial_filter_size*2**3, initial_filter_size*2**4, 3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(initial_filter_size*2**4, initial_filter_size*2**4, 3, padding=1), nn.ReLU(inplace=True), nn.ConvTranspose2d(initial_filter_size*2**4, initial_filter_size*2**3, 2, stride=2), nn.ReLU(inplace=True), ) self.expand_4_1 = self.expand(initial_filter_size*2**4, initial_filter_size*2**3) self.expand_4_2 = self.expand(initial_filter_size*2**3, initial_filter_size*2**3) self.upscale4 = nn.ConvTranspose2d(initial_filter_size*2**3, initial_filter_size*2**2, kernel_size=2, stride=2) self.expand_3_1 = self.expand(initial_filter_size*2**3, initial_filter_size*2**2) self.expand_3_2 = self.expand(initial_filter_size*2**2, initial_filter_size*2**2) self.upscale3 = nn.ConvTranspose2d(initial_filter_size*2**2, initial_filter_size*2, 2, stride=2) self.expand_2_1 = self.expand(initial_filter_size*2**2, initial_filter_size*2) self.expand_2_2 = self.expand(initial_filter_size*2, initial_filter_size*2) self.upscale2 = nn.ConvTranspose2d(initial_filter_size*2, initial_filter_size, 2, stride=2) self.expand_1_1 = self.expand(initial_filter_size*2, initial_filter_size) self.expand_1_2 = self.expand(initial_filter_size, initial_filter_size) # Output layer for segmentation # self.final = nn.Conv2d(initial_filter_size, num_classes, kernel_size=1) # kernel size for final layer = 1, see paper self.softmax = torch.nn.Softmax2d() # Output layer for "autoencoder-mode" self.output_reconstruction_map = nn.Conv2d(initial_filter_size, out_channels=1, kernel_size=1) @staticmethod def contract(in_channels, out_channels, kernel_size=3, instancenorm=True): if instancenorm: layer = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, padding=1), nn.InstanceNorm2d(out_channels), nn.LeakyReLU(inplace=True)) else: layer = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, padding=1), nn.LeakyReLU(inplace=True)) return layer @staticmethod def expand(in_channels, out_channels, kernel_size=3): layer = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, padding=1), nn.LeakyReLU(inplace=True), ) return layer @staticmethod def center_crop(layer, target_width, target_height): batch_size, n_channels, layer_width, layer_height = layer.size() xy1 = (layer_width - target_width) // 2 xy2 = (layer_height - target_height) // 2 return layer[:, :, xy1:(xy1 + target_width), xy2:(xy2 + target_height)] def forward(self, x, enable_concat=True): concat_weight = 1 if not enable_concat: concat_weight = 0 contr_1 = self.contr_1_2(self.contr_1_1(x)) pool = self.pool(contr_1) contr_2 = self.contr_2_2(self.contr_2_1(pool)) pool = self.pool(contr_2) contr_3 = self.contr_3_2(self.contr_3_1(pool)) pool = self.pool(contr_3) contr_4 = self.contr_4_2(self.contr_4_1(pool)) pool = self.pool(contr_4) center = self.center(pool) crop = self.center_crop(contr_4, center.size()[2], center.size()[3]) concat = torch.cat([center, crop*concat_weight], 1) expand = self.expand_4_2(self.expand_4_1(concat)) upscale = self.upscale4(expand) crop = self.center_crop(contr_3, upscale.size()[2], upscale.size()[3]) concat = torch.cat([upscale, crop*concat_weight], 1) expand = self.expand_3_2(self.expand_3_1(concat)) upscale = self.upscale3(expand) crop = self.center_crop(contr_2, upscale.size()[2], upscale.size()[3]) concat = torch.cat([upscale, crop*concat_weight], 1) expand = self.expand_2_2(self.expand_2_1(concat)) upscale = self.upscale2(expand) crop = self.center_crop(contr_1, upscale.size()[2], upscale.size()[3]) concat = torch.cat([upscale, crop*concat_weight], 1) expand = self.expand_1_2(self.expand_1_1(concat)) return expand class DownsampleUnet(nn.Module): def __init__(self, in_channels=1, initial_filter_size=64, kernel_size=3, do_instancenorm=True): super().__init__() self.contr_1_1 = self.contract(in_channels, initial_filter_size, kernel_size, instancenorm=do_instancenorm) self.contr_1_2 = self.contract(initial_filter_size, initial_filter_size, kernel_size, instancenorm=do_instancenorm) self.pool = nn.MaxPool2d(2, stride=2) self.contr_2_1 = self.contract(initial_filter_size, initial_filter_size*2, kernel_size, instancenorm=do_instancenorm) self.contr_2_2 = self.contract(initial_filter_size*2, initial_filter_size*2, kernel_size, instancenorm=do_instancenorm) # self.pool2 = nn.MaxPool2d(2, stride=2) self.contr_3_1 = self.contract(initial_filter_size*2, initial_filter_size*2**2, kernel_size, instancenorm=do_instancenorm) self.contr_3_2 = self.contract(initial_filter_size*2**2, initial_filter_size*2**2, kernel_size, instancenorm=do_instancenorm) # self.pool3 = nn.MaxPool2d(2, stride=2) self.contr_4_1 = self.contract(initial_filter_size*2**2, initial_filter_size*2**3, kernel_size, instancenorm=do_instancenorm) self.contr_4_2 = self.contract(initial_filter_size*2**3, initial_filter_size*2**3, kernel_size, instancenorm=do_instancenorm) # self.pool4 = nn.MaxPool2d(2, stride=2) self.center = nn.Sequential( nn.Conv2d(initial_filter_size*2**3, initial_filter_size*2**4, 3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(initial_filter_size*2**4, initial_filter_size*2**4, 3, padding=1), nn.ReLU(inplace=True), nn.ConvTranspose2d(initial_filter_size*2**4, initial_filter_size*2**3, 2, stride=2), nn.ReLU(inplace=True), ) self.softmax = torch.nn.Softmax2d() @staticmethod def contract(in_channels, out_channels, kernel_size=3, instancenorm=True): if instancenorm: layer = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, padding=1), nn.InstanceNorm2d(out_channels), nn.LeakyReLU(inplace=True)) else: layer = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, padding=1), nn.LeakyReLU(inplace=True)) return layer @staticmethod def center_crop(layer, target_width, target_height): batch_size, n_channels, layer_width, layer_height = layer.size() xy1 = (layer_width - target_width) // 2 xy2 = (layer_height - target_height) // 2 return layer[:, :, xy1:(xy1 + target_width), xy2:(xy2 + target_height)] def forward(self, x, enable_concat=True): concat_weight = 1 if not enable_concat: concat_weight = 0 contr_1 = self.contr_1_2(self.contr_1_1(x)) pool = self.pool(contr_1) contr_2 = self.contr_2_2(self.contr_2_1(pool)) pool = self.pool(contr_2) contr_3 = self.contr_3_2(self.contr_3_1(pool)) pool = self.pool(contr_3) contr_4 = self.contr_4_2(self.contr_4_1(pool)) pool = self.pool(contr_4) center = self.center(pool) return center class GlobalConUnet(nn.Module): def __init__(self, in_channels=1, initial_filter_size=64): super().__init__() self.encoder = DownsampleUnet(in_channels, initial_filter_size) def forward(self, x): y = self.encoder(x) return y class MLP(nn.Module): def __init__(self, input_channels=512, num_class=128): super().__init__() self.gap = nn.AdaptiveAvgPool2d(1) self.f1 = nn.Linear(input_channels, input_channels) self.f2 = nn.Linear(input_channels, num_class) def forward(self, x): x = self.gap(x) y = self.f1(x.squeeze()) y = self.f2(y) return y class UpsampleUnet2(nn.Module): def __init__(self, in_channels=1, initial_filter_size=64, kernel_size=3, do_instancenorm=True): super().__init__() self.contr_1_1 = self.contract(in_channels, initial_filter_size, kernel_size, instancenorm=do_instancenorm) self.contr_1_2 = self.contract(initial_filter_size, initial_filter_size, kernel_size, instancenorm=do_instancenorm) self.pool = nn.MaxPool2d(2, stride=2) self.contr_2_1 = self.contract(initial_filter_size, initial_filter_size*2, kernel_size, instancenorm=do_instancenorm) self.contr_2_2 = self.contract(initial_filter_size*2, initial_filter_size*2, kernel_size, instancenorm=do_instancenorm) # self.pool2 = nn.MaxPool2d(2, stride=2) self.contr_3_1 = self.contract(initial_filter_size*2, initial_filter_size*2**2, kernel_size, instancenorm=do_instancenorm) self.contr_3_2 = self.contract(initial_filter_size*2**2, initial_filter_size*2**2, kernel_size, instancenorm=do_instancenorm) # self.pool3 = nn.MaxPool2d(2, stride=2) self.contr_4_1 = self.contract(initial_filter_size*2**2, initial_filter_size*2**3, kernel_size, instancenorm=do_instancenorm) self.contr_4_2 = self.contract(initial_filter_size*2**3, initial_filter_size*2**3, kernel_size, instancenorm=do_instancenorm) # self.pool4 = nn.MaxPool2d(2, stride=2) self.center = nn.Sequential( nn.Conv2d(initial_filter_size*2**3, initial_filter_size*2**4, 3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(initial_filter_size*2**4, initial_filter_size*2**4, 3, padding=1), nn.ReLU(inplace=True), nn.ConvTranspose2d(initial_filter_size*2**4, initial_filter_size*2**3, 2, stride=2), nn.ReLU(inplace=True), ) self.expand_4_1 = self.expand(initial_filter_size * 2 ** 4, initial_filter_size * 2 ** 3) self.expand_4_2 = self.expand(initial_filter_size * 2 ** 3, initial_filter_size * 2 ** 3) self.upscale4 = nn.ConvTranspose2d(initial_filter_size * 2 ** 3, initial_filter_size * 2 ** 2, kernel_size=2, stride=2) self.expand_3_1 = self.expand(initial_filter_size * 2 ** 3, initial_filter_size * 2 ** 2) self.expand_3_2 = self.expand(initial_filter_size * 2 ** 2, initial_filter_size * 2 ** 2) self.upscale3 = nn.ConvTranspose2d(initial_filter_size * 2 ** 2, initial_filter_size * 2, 2, stride=2) self.expand_2_1 = self.expand(initial_filter_size * 2 ** 2, initial_filter_size * 2) self.expand_2_2 = self.expand(initial_filter_size * 2, initial_filter_size * 2) self.softmax = torch.nn.Softmax2d() @staticmethod def contract(in_channels, out_channels, kernel_size=3, instancenorm=True): if instancenorm: layer = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, padding=1), nn.InstanceNorm2d(out_channels), nn.LeakyReLU(inplace=True)) else: layer = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, padding=1), nn.LeakyReLU(inplace=True)) return layer @staticmethod def expand(in_channels, out_channels, kernel_size=3): layer = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, padding=1), nn.LeakyReLU(inplace=True), ) return layer @staticmethod def center_crop(layer, target_width, target_height): batch_size, n_channels, layer_width, layer_height = layer.size() xy1 = (layer_width - target_width) // 2 xy2 = (layer_height - target_height) // 2 return layer[:, :, xy1:(xy1 + target_width), xy2:(xy2 + target_height)] def forward(self, x, enable_concat=True): concat_weight = 1 if not enable_concat: concat_weight = 0 contr_1 = self.contr_1_2(self.contr_1_1(x)) pool = self.pool(contr_1) contr_2 = self.contr_2_2(self.contr_2_1(pool)) pool = self.pool(contr_2) contr_3 = self.contr_3_2(self.contr_3_1(pool)) pool = self.pool(contr_3) contr_4 = self.contr_4_2(self.contr_4_1(pool)) pool = self.pool(contr_4) center = self.center(pool) crop = self.center_crop(contr_4, center.size()[2], center.size()[3]) concat = torch.cat([center, crop * concat_weight], 1) expand = self.expand_4_2(self.expand_4_1(concat)) upscale = self.upscale4(expand) crop = self.center_crop(contr_3, upscale.size()[2], upscale.size()[3]) concat = torch.cat([upscale, crop * concat_weight], 1) expand = self.expand_3_2(self.expand_3_1(concat)) upscale = self.upscale3(expand) crop = self.center_crop(contr_2, upscale.size()[2], upscale.size()[3]) concat = torch.cat([upscale, crop * concat_weight], 1) expand = self.expand_2_2(self.expand_2_1(concat)) return expand class LocalConUnet2(nn.Module): def __init__(self, num_classes, in_channels=1, initial_filter_size=64): super().__init__() self.encoder = UpsampleUnet2(in_channels, initial_filter_size) self.head = MLP(input_channels=initial_filter_size*2, num_class=num_classes) def forward(self, x): y = self.encoder(x) return y class UpsampleUnet3(nn.Module): def __init__(self, in_channels=1, initial_filter_size=64, kernel_size=3, do_instancenorm=True): super().__init__() self.contr_1_1 = self.contract(in_channels, initial_filter_size, kernel_size, instancenorm=do_instancenorm) self.contr_1_2 = self.contract(initial_filter_size, initial_filter_size, kernel_size, instancenorm=do_instancenorm) self.pool = nn.MaxPool2d(2, stride=2) self.contr_2_1 = self.contract(initial_filter_size, initial_filter_size*2, kernel_size, instancenorm=do_instancenorm) self.contr_2_2 = self.contract(initial_filter_size*2, initial_filter_size*2, kernel_size, instancenorm=do_instancenorm) # self.pool2 = nn.MaxPool2d(2, stride=2) self.contr_3_1 = self.contract(initial_filter_size*2, initial_filter_size*2**2, kernel_size, instancenorm=do_instancenorm) self.contr_3_2 = self.contract(initial_filter_size*2**2, initial_filter_size*2**2, kernel_size, instancenorm=do_instancenorm) # self.pool3 = nn.MaxPool2d(2, stride=2) self.contr_4_1 = self.contract(initial_filter_size*2**2, initial_filter_size*2**3, kernel_size, instancenorm=do_instancenorm) self.contr_4_2 = self.contract(initial_filter_size*2**3, initial_filter_size*2**3, kernel_size, instancenorm=do_instancenorm) # self.pool4 = nn.MaxPool2d(2, stride=2) self.center = nn.Sequential( nn.Conv2d(initial_filter_size*2**3, initial_filter_size*2**4, 3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(initial_filter_size*2**4, initial_filter_size*2**4, 3, padding=1), nn.ReLU(inplace=True), nn.ConvTranspose2d(initial_filter_size*2**4, initial_filter_size*2**3, 2, stride=2), nn.ReLU(inplace=True), ) self.expand_4_1 = self.expand(initial_filter_size * 2 ** 4, initial_filter_size * 2 ** 3) self.expand_4_2 = self.expand(initial_filter_size * 2 ** 3, initial_filter_size * 2 ** 3) self.upscale4 = nn.ConvTranspose2d(initial_filter_size * 2 ** 3, initial_filter_size * 2 ** 2, kernel_size=2, stride=2) self.expand_3_1 = self.expand(initial_filter_size * 2 ** 3, initial_filter_size * 2 ** 2) self.expand_3_2 = self.expand(initial_filter_size * 2 ** 2, initial_filter_size * 2 ** 2) self.softmax = torch.nn.Softmax2d() @staticmethod def contract(in_channels, out_channels, kernel_size=3, instancenorm=True): if instancenorm: layer = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, padding=1), nn.InstanceNorm2d(out_channels), nn.LeakyReLU(inplace=True)) else: layer = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, padding=1), nn.LeakyReLU(inplace=True)) return layer @staticmethod def expand(in_channels, out_channels, kernel_size=3): layer = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, padding=1), nn.LeakyReLU(inplace=True), ) return layer @staticmethod def center_crop(layer, target_width, target_height): batch_size, n_channels, layer_width, layer_height = layer.size() xy1 = (layer_width - target_width) // 2 xy2 = (layer_height - target_height) // 2 return layer[:, :, xy1:(xy1 + target_width), xy2:(xy2 + target_height)] def forward(self, x, enable_concat=True): concat_weight = 1 if not enable_concat: concat_weight = 0 contr_1 = self.contr_1_2(self.contr_1_1(x)) pool = self.pool(contr_1) contr_2 = self.contr_2_2(self.contr_2_1(pool)) pool = self.pool(contr_2) contr_3 = self.contr_3_2(self.contr_3_1(pool)) pool = self.pool(contr_3) contr_4 = self.contr_4_2(self.contr_4_1(pool)) pool = self.pool(contr_4) center = self.center(pool) crop = self.center_crop(contr_4, center.size()[2], center.size()[3]) concat = torch.cat([center, crop * concat_weight], 1) expand = self.expand_4_2(self.expand_4_1(concat)) upscale = self.upscale4(expand) crop = self.center_crop(contr_3, upscale.size()[2], upscale.size()[3]) concat = torch.cat([upscale, crop * concat_weight], 1) expand = self.expand_3_2(self.expand_3_1(concat)) return expand class LocalConUnet3(nn.Module): def __init__(self, num_classes, in_channels=1, initial_filter_size=64): super().__init__() self.encoder = UpsampleUnet3(in_channels, initial_filter_size) self.head = MLP(input_channels=initial_filter_size*2*2, num_class=num_classes) def forward(self, x): y = self.encoder(x) return y ``` #### File: semi_contrast_seg_fixed/networks/UNET.py ```python import torch import torch.nn as nn class UNet(nn.Module): def __init__(self, num_classes, in_channels=1, initial_filter_size=64, kernel_size=3, do_instancenorm=True): super().__init__() self.contr_1_1 = self.contract(in_channels, initial_filter_size, kernel_size, instancenorm=do_instancenorm) self.contr_1_2 = self.contract(initial_filter_size, initial_filter_size, kernel_size, instancenorm=do_instancenorm) self.pool = nn.MaxPool2d(2, stride=2) self.contr_2_1 = self.contract(initial_filter_size, initial_filter_size*2, kernel_size, instancenorm=do_instancenorm) self.contr_2_2 = self.contract(initial_filter_size*2, initial_filter_size*2, kernel_size, instancenorm=do_instancenorm) # self.pool2 = nn.MaxPool2d(2, stride=2) self.contr_3_1 = self.contract(initial_filter_size*2, initial_filter_size*2**2, kernel_size, instancenorm=do_instancenorm) self.contr_3_2 = self.contract(initial_filter_size*2**2, initial_filter_size*2**2, kernel_size, instancenorm=do_instancenorm) # self.pool3 = nn.MaxPool2d(2, stride=2) self.contr_4_1 = self.contract(initial_filter_size*2**2, initial_filter_size*2**3, kernel_size, instancenorm=do_instancenorm) self.contr_4_2 = self.contract(initial_filter_size*2**3, initial_filter_size*2**3, kernel_size, instancenorm=do_instancenorm) # self.pool4 = nn.MaxPool2d(2, stride=2) self.center = nn.Sequential( nn.Conv2d(initial_filter_size*2**3, initial_filter_size*2**4, 3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(initial_filter_size*2**4, initial_filter_size*2**4, 3, padding=1), nn.ReLU(inplace=True), nn.ConvTranspose2d(initial_filter_size*2**4, initial_filter_size*2**3, 2, stride=2), nn.ReLU(inplace=True), ) self.expand_4_1 = self.expand(initial_filter_size*2**4, initial_filter_size*2**3) self.expand_4_2 = self.expand(initial_filter_size*2**3, initial_filter_size*2**3) self.upscale4 = nn.ConvTranspose2d(initial_filter_size*2**3, initial_filter_size*2**2, kernel_size=2, stride=2) self.expand_3_1 = self.expand(initial_filter_size*2**3, initial_filter_size*2**2) self.expand_3_2 = self.expand(initial_filter_size*2**2, initial_filter_size*2**2) self.upscale3 = nn.ConvTranspose2d(initial_filter_size*2**2, initial_filter_size*2, 2, stride=2) self.expand_2_1 = self.expand(initial_filter_size*2**2, initial_filter_size*2) self.expand_2_2 = self.expand(initial_filter_size*2, initial_filter_size*2) self.upscale2 = nn.ConvTranspose2d(initial_filter_size*2, initial_filter_size, 2, stride=2) self.expand_1_1 = self.expand(initial_filter_size*2, initial_filter_size) self.expand_1_2 = self.expand(initial_filter_size, initial_filter_size) # Output layer for segmentation self.final = nn.Conv2d(initial_filter_size, num_classes, kernel_size=1) # kernel size for final layer = 1, see paper self.softmax = torch.nn.Softmax2d() # Output layer for "autoencoder-mode" self.output_reconstruction_map = nn.Conv2d(initial_filter_size, out_channels=1, kernel_size=1) @staticmethod def contract(in_channels, out_channels, kernel_size=3, instancenorm=True): if instancenorm: layer = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, padding=1), nn.InstanceNorm2d(out_channels), nn.LeakyReLU(inplace=True)) else: layer = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, padding=1), nn.LeakyReLU(inplace=True)) return layer @staticmethod def expand(in_channels, out_channels, kernel_size=3): layer = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, padding=1), nn.LeakyReLU(inplace=True), ) return layer @staticmethod def center_crop(layer, target_width, target_height): batch_size, n_channels, layer_width, layer_height = layer.size() xy1 = (layer_width - target_width) // 2 xy2 = (layer_height - target_height) // 2 return layer[:, :, xy1:(xy1 + target_width), xy2:(xy2 + target_height)] def forward(self, x, enable_concat=True, print_layer_shapes=False): concat_weight = 1 if not enable_concat: concat_weight = 0 contr_1 = self.contr_1_2(self.contr_1_1(x)) pool = self.pool(contr_1) contr_2 = self.contr_2_2(self.contr_2_1(pool)) pool = self.pool(contr_2) contr_3 = self.contr_3_2(self.contr_3_1(pool)) pool = self.pool(contr_3) contr_4 = self.contr_4_2(self.contr_4_1(pool)) pool = self.pool(contr_4) center = self.center(pool) crop = self.center_crop(contr_4, center.size()[2], center.size()[3]) concat = torch.cat([center, crop*concat_weight], 1) expand = self.expand_4_2(self.expand_4_1(concat)) upscale = self.upscale4(expand) crop = self.center_crop(contr_3, upscale.size()[2], upscale.size()[3]) concat = torch.cat([upscale, crop*concat_weight], 1) expand = self.expand_3_2(self.expand_3_1(concat)) upscale = self.upscale3(expand) crop = self.center_crop(contr_2, upscale.size()[2], upscale.size()[3]) concat = torch.cat([upscale, crop*concat_weight], 1) expand = self.expand_2_2(self.expand_2_1(concat)) upscale = self.upscale2(expand) crop = self.center_crop(contr_1, upscale.size()[2], upscale.size()[3]) concat = torch.cat([upscale, crop*concat_weight], 1) expand = self.expand_1_2(self.expand_1_1(concat)) if enable_concat: output = self.final(expand) if not enable_concat: output = self.output_reconstruction_map(expand) return output ``` #### File: aakash-saboo/semi_contrast_seg_fixed/run_seg_pipeline.py ```python import os import argparse import torch from os.path import exists from trixi.util import Config from configs.Config import get_config import configs.Config_mmwhs as config_mmwhs from datasets.prepare_dataset.preprocessing import preprocess_data from datasets.prepare_dataset.create_splits import create_splits from experiments.SegExperiment import SegExperiment from datasets.downsanpling_data import downsampling_image import datetime import time import matplotlib import matplotlib.pyplot as plt from datasets.prepare_dataset.rearrange_dir import rearrange_dir def parse_option(): parser = argparse.ArgumentParser("argument for run segmentation pipeline") parser.add_argument("--dataset", type=str, default="hippo") parser.add_argument("--train_sample", type=float, default=1) parser.add_argument("--batch_size", type=int, default=8) parser.add_argument("-f", "--fold", type=int, default=1) parser.add_argument("--saved_model_path", type=str, default=None) parser.add_argument("--freeze_model", action='store_true', help="whether load saved model from saved_model_path") parser.add_argument("--load_saved_model", action='store_true', help='whether freeze encoder of the segmenter') args = parser.parse_args() return args def training(config): if not os.path.exists(os.path.join(config.split_dir, "splits.pkl")): create_splits(output_dir=config.split_dir, image_dir=config.data_dir) if config.saved_model_path is not None: config.load_model = True # config.saved_model_path = os.path.abspath('save') + '/SupCon/Hippocampus_models/' \ # + 'SupCon_Hippocampus_resnet50_lr_0.0001_decay_0.0001_bsz_1_temp_0.7_trial_0_cosine/' \ # + 'last.pth' exp = SegExperiment(config=config, name=config.name, n_epochs=config.n_epochs, seed=42, append_rnd_to_name=config.append_rnd_string) # visdomlogger_kwargs={"auto_start": c.start_visdom} exp.run() exp.run_test(setup=False) def testing(config): c.do_load_checkpoint = True c.checkpoint_dir = c.base_dir + '/20210202-064334_Unet_mmwhs' + '/checkpoint/checkpoint_current' exp = SegExperiment(config=config, name='unet_test', n_epochs=config.n_epochs, seed=42, globs=globals()) exp.run_test(setup=True) if __name__ == "__main__": args = parse_option() if args.dataset == "mmwhs": c = config_mmwhs.get_config() elif args.dataset == "hippo" or args.dataset == "Hippocampus": c = get_config() else: exit('the dataset is not supoorted currently') c.fold = args.fold c.batch_size = args.batch_size c.train_sample = args.train_sample if args.load_saved_model: c.saved_model_path = os.path.abspath('save') + '/SupCon/mmwhs_models/' \ + 'SupCon_mmwhs_adam_fold_1_lr_0.0001_decay_0.0001_bsz_4_temp_0.7_train_0.4_block/' \ + 'ckpt.pth' c.saved_model_path = args.saved_model_path c.freeze = args.freeze_model print(c) training(config=c) ```
{ "source": "aakash-sharma/DS-Analyzer", "score": 3 }
#### File: DS-Analyzer/tool/analyze.py ```python import sys import os import json import matplotlib.pyplot as plt import numpy as np from collections import defaultdict stats = defaultdict(lambda: defaultdict(dict)) stats2 = defaultdict(lambda: defaultdict(dict)) gpu_map = { "p2.xlarge" : "gpus-1", "p2.8xlarge" : "gpus-8", "p2.16xlarge-io1" : "gpus-16", "p2.16xlarge" : "gpus-16"} instances = [] def process_json(model, gpu, json_path): with open(json_path) as fd: dagJson = json.load(fd) stats[model][gpu]["TRAIN_SPEED_INGESTION"] = dagJson["SPEED_INGESTION"] stats[model][gpu]["TRAIN_SPEED_DISK"] = dagJson["SPEED_DISK"] stats[model][gpu]["TRAIN_SPEED_CACHED"] = dagJson["SPEED_CACHED"] stats[model][gpu]["DISK_THR"] = dagJson["DISK_THR"] #stats[model][gpu]["MEM_THR"] = dagJson["MEM_THR"] stats[model][gpu]["TRAIN_TIME_DISK"] = dagJson["RUN2"]["TRAIN"] stats[model][gpu]["TRAIN_TIME_CACHED"] = dagJson["RUN3"]["TRAIN"] stats[model][gpu]["CPU_UTIL_DISK_PCT"] = dagJson["RUN2"]["CPU"] stats[model][gpu]["CPU_UTIL_CACHED_PCT"] = dagJson["RUN3"]["CPU"] stats[model][gpu]["GPU_UTIL_DISK_PCT"] = dagJson["RUN2"]["GPU_UTIL"] stats[model][gpu]["GPU_UTIL_CACHED_PCT"] = dagJson["RUN3"]["GPU_UTIL"] stats[model][gpu]["GPU_MEM_UTIL_DISK_PCT"] = dagJson["RUN2"]["GPU_MEM_UTIL"] stats[model][gpu]["GPU_MEM_UTIL_CACHED_PCT"] = dagJson["RUN3"]["GPU_MEM_UTIL"] stats[model][gpu]["PREP_STALL_TIME"] = dagJson["RUN3"]["TRAIN"] - dagJson["RUN1"]["TRAIN"] stats[model][gpu]["FETCH_STALL_TIME"] = dagJson["RUN2"]["TRAIN"] - stats[model][gpu]["PREP_STALL_TIME"] stats[model][gpu]["PREP_STALL_PCT"] = stats[model][gpu]["PREP_STALL_TIME"] / stats[model][gpu]["TRAIN_TIME_DISK"] * 100 stats[model][gpu]["FETCH_STALL_PCT"] = stats[model][gpu]["FETCH_STALL_TIME"] / stats[model][gpu]["TRAIN_TIME_DISK"] * 100 def process_json2(model, gpu, json_path): with open(json_path) as fd: dagJson = json.load(fd) stats[model][gpu]["TRAIN_SPEED_INGESTION"] = dagJson["SPEED_INGESTION"] stats[model][gpu]["TRAIN_SPEED_DISK"] = dagJson["SPEED_DISK"] stats[model][gpu]["TRAIN_SPEED_CACHED"] = dagJson["SPEED_CACHED"] stats[model][gpu]["DISK_THR"] = dagJson["DISK_THR"] stats[model][gpu]["TRAIN_TIME_DISK"] = dagJson["RUN2"]["TRAIN"] stats[model][gpu]["TRAIN_TIME_CACHED"] = dagJson["RUN3"]["TRAIN"] stats[model][gpu]["TRAIN_TIME_CACHED"] = dagJson["RUN3"]["TRAIN"] stats[model][gpu]["MEM_DISK"] = dagJson["RUN2"]["MEM"] stats[model][gpu]["PCACHE_DISK"] = dagJson["RUN2"]["PCACHE"] stats[model][gpu]["MEM_CACHED"] = dagJson["RUN3"]["MEM"] stats[model][gpu]["PCACHE_CACHED"] = dagJson["RUN3"]["PCACHE"] stats[model][gpu]["READ_WRITE_DISK"] = dagJson["RUN2"]["READ"] + dagJson["RUN2"]["WRITE"] stats[model][gpu]["IO_WAIT_DISK"] = dagJson["RUN2"]["IO_WAIT"] stats[model][gpu]["READ_WRITE_CACHED"] = dagJson["RUN3"]["READ"] + dagJson["RUN3"]["WRITE"] stats[model][gpu]["IO_WAIT_CACHED"] = dagJson["RUN3"]["IO_WAIT"] stats[model][gpu]["CPU_UTIL_DISK_PCT"] = dagJson["RUN2"]["CPU"] stats[model][gpu]["CPU_UTIL_CACHED_PCT"] = dagJson["RUN3"]["CPU"] stats[model][gpu]["GPU_UTIL_DISK_PCT"] = dagJson["RUN2"]["GPU_UTIL"] stats[model][gpu]["GPU_UTIL_CACHED_PCT"] = dagJson["RUN3"]["GPU_UTIL"] stats[model][gpu]["GPU_MEM_UTIL_DISK_PCT"] = dagJson["RUN2"]["GPU_MEM_UTIL"] stats[model][gpu]["GPU_MEM_UTIL_CACHED_PCT"] = dagJson["RUN3"]["GPU_MEM_UTIL"] stats[model][gpu]["CPU_UTIL_DISK_LIST"] = dagJson["RUN2"]["CPU_LIST"] stats[model][gpu]["CPU_UTIL_CACHED_LIST"] = dagJson["RUN3"]["CPU_LIST"] stats[model][gpu]["GPU_UTIL_DISK_LIST"] = dagJson["RUN2"]["GPU_UTIL_LIST"] stats[model][gpu]["GPU_UTIL_CACHED_LIST"] = dagJson["RUN3"]["GPU_UTIL_LIST"] stats[model][gpu]["GPU_MEM_UTIL_DISK_LIST"] = dagJson["RUN2"]["GPU_MEM_UTIL_LIST"] stats[model][gpu]["GPU_MEM_UTIL_CACHED_LIST"] = dagJson["RUN3"]["GPU_MEM_UTIL_LIST"] stats[model][gpu]["READ_WRITE_LIST_DISK"] = dagJson["RUN2"]["READ_LIST"] + dagJson["RUN2"]["WRITE_LIST"] stats[model][gpu]["READ_WRITE_LIST_CACHED"] = dagJson["RUN3"]["READ_LIST"] + dagJson["RUN3"]["WRITE_LIST"] stats[model][gpu]["IO_WAIT_LIST_DISK"] = dagJson["RUN2"]["IO_WAIT_LIST"] stats[model][gpu]["IO_WAIT_LIST_CACHED"] = dagJson["RUN3"]["IO_WAIT_LIST"] stats[model][gpu]["PREP_STALL_TIME"] = dagJson["RUN3"]["TRAIN"] - dagJson["RUN1"]["TRAIN"] stats[model][gpu]["FETCH_STALL_TIME"] = dagJson["RUN2"]["TRAIN"] - stats[model][gpu]["PREP_STALL_TIME"] stats[model][gpu]["PREP_STALL_PCT"] = stats[model][gpu]["PREP_STALL_TIME"] / stats[model][gpu]["TRAIN_TIME_DISK"] * 100 stats[model][gpu]["FETCH_STALL_PCT"] = stats[model][gpu]["FETCH_STALL_TIME"] / stats[model][gpu]["TRAIN_TIME_DISK"] * 100 def plotModels(instance): fig1, axs1 = plt.subplots(2, 1) gpu = gpu_map[instance] X = [model for model in stats.keys()] X_axis = np.arange(len(X)) Y_PREP_STALL_TIME = [stats[model][gpu]["PREP_STALL_TIME"] for model in X] Y_FETCH_STALL_TIME = [stats[model][gpu]["FETCH_STALL_TIME"] for model in X] Y_TRAIN_TIME = [stats[model][gpu]["TRAIN_TIME"] for model in X] Y_PREP_STALL_PCT = [stats[model][gpu]["PREP_STALL_PCT"] for model in X] Y_FETCH_STALL_PCT = [stats[model][gpu]["FETCH_STALL_PCT"] for model in X] axs1[0].bar(X_axis-0.2, Y_TRAIN_TIME, 0.2, label = 'Train time') axs1[0].bar(X_axis, Y_PREP_STALL_TIME, 0.2, label = 'Prep stall time') axs1[0].bar(X_axis+0.2, Y_FETCH_STALL_TIME, 0.2, label = 'Fetch stall time') axs1[1].bar(X_axis-0.2, Y_PREP_STALL_PCT, 0.2, label = 'Prep stall %') axs1[1].bar(X_axis, Y_FETCH_STALL_PCT, 0.2, label = 'Fetch stall %') axs1[0].set_xticks(X_axis) axs1[0].set_xticklabels(X) axs1[0].set_xlabel("Models") axs1[0].set_ylabel("Time") axs1[0].legend() axs1[1].set_xticks(X_axis) axs1[1].set_xticklabels(X) axs1[1].set_xlabel("Models") axs1[1].set_ylabel("Percentage") axs1[1].legend() fig1.suptitle("Stall analysis " + instance) plt.show() def compare(): models = list(stats.keys()) for instance in instances: gpu = gpu_map[instance] for model in models: if gpu not in stats[model]: del stats[model] fig1, axs1 = plt.subplots(2, 1) fig2, axs2 = plt.subplots(3, 1) fig3, axs3 = plt.subplots(3, 1) fig4, axs4 = plt.subplots(3, 1) fig5, axs5 = plt.subplots(3, 1) X = [model for model in stats.keys()] X_axis = np.arange(len(X)) diff = 0 for instance in instances: gpu = gpu_map[instance] Y_PREP_STALL_PCT = [stats[model][gpu]["PREP_STALL_PCT"] for model in X] Y_FETCH_STALL_PCT = [stats[model][gpu]["FETCH_STALL_PCT"] for model in X] Y_TRAIN_TIME_DISK = [stats[model][gpu]["TRAIN_TIME_DISK"] for model in X] Y_TRAIN_TIME_CACHED = [stats[model][gpu]["TRAIN_TIME_CACHED"] for model in X] Y_DISK_THR = [stats[model][gpu]["DISK_THR"] for model in X] Y_TRAIN_SPEED_INGESTION = [stats[model][gpu]["TRAIN_SPEED_INGESTION"] for model in X] Y_TRAIN_SPEED_DISK = [stats[model][gpu]["TRAIN_SPEED_DISK"] for model in X] Y_TRAIN_SPEED_CACHED = [stats[model][gpu]["TRAIN_SPEED_CACHED"] for model in X] Y_CPU_UTIL_DISK_PCT = [stats[model][gpu]["CPU_UTIL_DISK_PCT"] for model in X] Y_CPU_UTIL_CACHED_PCT = [stats[model][gpu]["CPU_UTIL_CACHED_PCT"] for model in X] Y_GPU_UTIL_DISK_PCT = [stats[model][gpu]["GPU_UTIL_DISK_PCT"] for model in X] Y_GPU_UTIL_CACHED_PCT = [stats[model][gpu]["GPU_UTIL_CACHED_PCT"] for model in X] Y_GPU_MEM_UTIL_DISK_PCT = [stats[model][gpu]["GPU_MEM_UTIL_DISK_PCT"] for model in X] Y_GPU_MEM_UTIL_CACHED_PCT = [stats[model][gpu]["GPU_MEM_UTIL_CACHED_PCT"] for model in X] axs1[0].bar(X_axis-0.2 + diff , Y_PREP_STALL_PCT, 0.2, label = instance) axs1[1].bar(X_axis-0.2 + diff, Y_FETCH_STALL_PCT, 0.2, label = instance) axs2[0].bar(X_axis-0.2 + diff , Y_TRAIN_TIME_DISK, 0.2, label = instance) axs2[1].bar(X_axis-0.2 + diff, Y_TRAIN_TIME_CACHED, 0.2, label = instance) axs2[2].bar(X_axis-0.2 + diff, Y_DISK_THR, 0.2, label = instance) axs3[0].bar(X_axis-0.2 + diff, Y_TRAIN_SPEED_INGESTION, 0.2, label = instance) axs3[1].bar(X_axis-0.2 + diff , Y_TRAIN_SPEED_DISK, 0.2, label = instance) axs3[2].bar(X_axis-0.2 + diff, Y_TRAIN_SPEED_CACHED, 0.2, label = instance) axs4[0].bar(X_axis-0.2 + diff , Y_CPU_UTIL_DISK_PCT, 0.2, label = instance) axs4[1].bar(X_axis-0.2 + diff , Y_GPU_UTIL_DISK_PCT, 0.2, label = instance) axs4[2].bar(X_axis-0.2 + diff , Y_GPU_MEM_UTIL_DISK_PCT, 0.2, label = instance) axs5[0].bar(X_axis-0.2 + diff , Y_CPU_UTIL_CACHED_PCT, 0.2, label = instance) axs5[1].bar(X_axis-0.2 + diff , Y_GPU_UTIL_CACHED_PCT, 0.2, label = instance) axs5[2].bar(X_axis-0.2 + diff , Y_GPU_MEM_UTIL_CACHED_PCT, 0.2, label = instance) diff += 0.2 axs1[0].set_xticks(X_axis) axs1[0].set_xticklabels(X) axs1[0].set_xlabel("Models") axs1[0].set_ylabel("Percentage") axs1[0].set_title("Prep stall comparison") axs1[0].legend() axs1[1].set_xticks(X_axis) axs1[1].set_xticklabels(X) axs1[1].set_xlabel("Models") axs1[1].set_ylabel("Percentage") axs1[1].set_title("Fetch stall comparison") axs1[1].legend() fig1.suptitle("Stall comparison" , fontsize=20, fontweight ="bold") fig1.savefig("stall_comparison.png") axs2[0].set_xticks(X_axis) axs2[0].set_xticklabels(X) #axs2[0].set_xlabel("Models") axs2[0].set_ylabel("Time") axs2[0].set_title("Training time disk comparison") axs2[0].legend() axs2[1].set_xticks(X_axis) axs2[1].set_xticklabels(X) #axs2[1].set_xlabel("Models") axs2[1].set_ylabel("Time") axs2[1].set_title("Training time cached comparison") axs2[1].legend() axs2[2].set_xticks(X_axis) axs2[2].set_xticklabels(X) #axs2[1].set_xlabel("Models") axs2[2].set_ylabel("Throughput") axs2[2].set_title("Disk throughput comparison") axs2[2].legend() fig2.suptitle("Training time comparison" , fontsize=20, fontweight ="bold") axs3[0].set_xticks(X_axis) axs3[0].set_xticklabels(X) #axs3[0].set_xlabel("Models") axs3[0].set_ylabel("Samples/sec") axs3[0].set_title("Training speed ingestion comparison") axs3[0].legend() axs3[1].set_xticks(X_axis) axs3[1].set_xticklabels(X) #axs3[1].set_xlabel("Models") axs3[1].set_ylabel("Samples/sec") axs3[1].set_title("Training speed disk comparison") axs3[1].legend() axs3[2].set_xticks(X_axis) axs3[2].set_xticklabels(X) #axs3[2].set_xlabel("Models") axs3[2].set_ylabel("Samples/sec") axs3[2].set_title("Training speed cached comparison") axs3[2].legend() fig3.suptitle("Training speed comparison", fontsize=20, fontweight ="bold") axs4[0].set_xticks(X_axis) axs4[0].set_xticklabels(X) #axs4[0].set_xlabel("Models") axs4[0].set_ylabel("Average CPU utilization") axs4[0].set_title("CPU utilization comparison") axs4[0].legend() axs4[1].set_xticks(X_axis) axs4[1].set_xticklabels(X) #axs4[1].set_xlabel("Models") axs4[1].set_ylabel("Average GPU utilization") axs4[1].set_title("GPU utilization comparison") axs4[1].legend() axs4[2].set_xticks(X_axis) axs4[2].set_xticklabels(X) #axs4[2].set_xlabel("Models") axs4[2].set_ylabel("Average GPU memory utilization") axs4[2].set_title("GPU memory utilization comparison") axs4[2].legend() fig4.suptitle("CPU and GPU utilization DISK comparison", fontsize=20, fontweight ="bold") axs5[0].set_xticks(X_axis) axs5[0].set_xticklabels(X) #axs5[0].set_xlabel("Models") axs5[0].set_ylabel("Average CPU utilization") axs5[0].set_title("CPU utilization comparison") axs5[0].legend() axs5[1].set_xticks(X_axis) axs5[1].set_xticklabels(X) #axs5[1].set_xlabel("Models") axs5[1].set_ylabel("Average GPU utilization") axs5[1].set_title("GPU utilization comparison") axs5[1].legend() axs5[2].set_xticks(X_axis) axs5[2].set_xticklabels(X) #axs5[2].set_xlabel("Models") axs5[2].set_ylabel("Average GPU memory utilization") axs5[2].set_title("GPU memory utilization comparison") axs5[2].legend() fig5.suptitle("CPU and GPU utilization CACHED comparison", fontsize=20, fontweight ="bold") plt.show() def compare_models(): models = list(stats.keys()) max_dstat_len = 0 max_nvidia_len = 0 X = ["Disk Throughput", "Train speed", "Memory", "Page cache"] X_IO = ["Read Write", "IOWait"] # models = ["alexnet"] for model in models: for instance in instances: gpu = gpu_map[instance] if gpu not in stats[model]: del stats[model] continue max_dstat_len = max(max_dstat_len, len(stats[model][gpu]["CPU_UTIL_DISK_LIST"])) max_dstat_len = max(max_dstat_len, len(stats[model][gpu]["CPU_UTIL_CACHED_LIST"])) max_nvidia_len = max(max_nvidia_len, len(stats[model][gpu]["GPU_UTIL_DISK_LIST"])) max_nvidia_len = max(max_nvidia_len, len(stats[model][gpu]["GPU_UTIL_CACHED_LIST"])) fig1, axs1 = plt.subplots(3, 2, figsize=(30,20)) fig2, axs2 = plt.subplots(3, 2, figsize=(30,20)) X_dstat_axis = np.arange(max_dstat_len) X_nvidia_axis = np.arange(max_nvidia_len) X_metrics_axis = np.arange(len(X)) X_metrics_io_axis = np.arange(len(X_IO)) diff = 0 for instance in instances: gpu = gpu_map[instance] style = None if instance == "p2.8xlarge": style = 'r--' elif instance == "p2.16xlarge": style = 'b--' overlapping = 0.50 Y_METRICS_DISK = [] Y_METRICS_CACHED = [] Y_METRICS_IO_DISK = [] Y_METRICS_IO_CACHED = [] print(model) Y_METRICS_DISK.append(stats[model][gpu]["DISK_THR"]) Y_METRICS_DISK.append(stats[model][gpu]["TRAIN_SPEED_DISK"]) Y_METRICS_DISK.append(stats[model][gpu]["MEM_DISK"]) Y_METRICS_DISK.append(stats[model][gpu]["PCACHE_DISK"]) Y_METRICS_IO_DISK.append(stats[model][gpu]["READ_WRITE_DISK"]) Y_METRICS_IO_DISK.append(stats[model][gpu]["IO_WAIT_DISK"]) Y_METRICS_CACHED.append(stats[model][gpu]["DISK_THR"]) Y_METRICS_CACHED.append(stats[model][gpu]["TRAIN_SPEED_CACHED"]) Y_METRICS_CACHED.append(stats[model][gpu]["MEM_CACHED"]) Y_METRICS_CACHED.append(stats[model][gpu]["PCACHE_CACHED"]) Y_METRICS_IO_CACHED.append(stats[model][gpu]["READ_WRITE_CACHED"]) Y_METRICS_IO_CACHED.append(stats[model][gpu]["IO_WAIT_CACHED"]) Y_CPU_UTIL_DISK = stats[model][gpu]["CPU_UTIL_DISK_LIST"] Y_CPU_UTIL_CACHED = stats[model][gpu]["CPU_UTIL_CACHED_LIST"] Y_GPU_UTIL_DISK = stats[model][gpu]["GPU_UTIL_DISK_LIST"] Y_GPU_UTIL_CACHED = stats[model][gpu]["GPU_UTIL_CACHED_LIST"] Y_GPU_MEM_UTIL_DISK = stats[model][gpu]["GPU_MEM_UTIL_DISK_LIST"] Y_GPU_MEM_UTIL_CACHED = stats[model][gpu]["GPU_MEM_UTIL_CACHED_LIST"] Y_IO_WAIT_LIST_DISK = stats[model][gpu]["IO_WAIT_LIST_DISK"] Y_IO_WAIT_LIST_CACHED = stats[model][gpu]["IO_WAIT_LIST_CACHED"] if len(Y_CPU_UTIL_DISK) < max_dstat_len: Y_CPU_UTIL_DISK.extend([0] * (max_dstat_len - len(Y_CPU_UTIL_DISK))) if len(Y_CPU_UTIL_CACHED) < max_dstat_len: Y_CPU_UTIL_CACHED.extend([0] * (max_dstat_len - len(Y_CPU_UTIL_CACHED))) if len(Y_GPU_UTIL_DISK) < max_nvidia_len: Y_GPU_UTIL_DISK.extend([0] * (max_nvidia_len - len(Y_GPU_UTIL_DISK))) if len(Y_GPU_UTIL_CACHED) < max_nvidia_len: Y_GPU_UTIL_CACHED.extend([0] * (max_nvidia_len - len(Y_GPU_UTIL_CACHED))) if len(Y_GPU_MEM_UTIL_DISK) < max_nvidia_len: Y_GPU_MEM_UTIL_DISK.extend([0] * (max_nvidia_len - len(Y_GPU_MEM_UTIL_DISK))) if len(Y_GPU_MEM_UTIL_CACHED) < max_nvidia_len: Y_GPU_MEM_UTIL_CACHED.extend([0] * (max_nvidia_len - len(Y_GPU_MEM_UTIL_CACHED))) if len(Y_IO_WAIT_LIST_DISK) < max_dstat_len: Y_IO_WAIT_LIST_DISK.extend([0] * (max_dstat_len - len(Y_IO_WAIT_LIST_DISK))) if len(Y_IO_WAIT_LIST_CACHED) < max_dstat_len: Y_IO_WAIT_LIST_CACHED.extend([0] * (max_dstat_len - len(Y_IO_WAIT_LIST_CACHED))) axs1[0,0].bar(X_metrics_axis -0.2 + diff, Y_METRICS_CACHED, 0.2, label = instance) axs1[0,1].plot(X_dstat_axis, Y_CPU_UTIL_CACHED, style, alpha=overlapping, label = instance) axs1[1,0].plot(X_nvidia_axis, Y_GPU_UTIL_CACHED, style, alpha=overlapping, label = instance) axs1[1,1].plot(X_nvidia_axis, Y_GPU_MEM_UTIL_CACHED, style, alpha=overlapping, label = instance) axs1[2,0].bar(X_metrics_io_axis -0.2 + diff, Y_METRICS_IO_CACHED, 0.2, label = instance) axs1[2,1].plot(X_dstat_axis, Y_IO_WAIT_LIST_CACHED, style, alpha=overlapping, label = instance) axs2[0,0].bar(X_metrics_axis - 0.2 + diff, Y_METRICS_DISK, 0.2, label = instance) axs2[0,1].plot(X_dstat_axis, Y_CPU_UTIL_DISK, style, alpha=overlapping, label = instance) axs2[1,0].plot(X_nvidia_axis, Y_GPU_UTIL_DISK, style, alpha=overlapping, label = instance) axs2[1,1].plot(X_nvidia_axis, Y_GPU_MEM_UTIL_DISK, style, alpha=overlapping, label = instance) axs2[2,0].bar(X_metrics_io_axis -0.2 + diff, Y_METRICS_IO_DISK, 0.2, label = instance) axs2[2,1].plot(X_dstat_axis, Y_IO_WAIT_LIST_DISK, style, alpha=overlapping, label = instance) diff += 0.2 axs1[0,0].set_xticks(X_metrics_axis) axs1[0,0].set_xticklabels(X) axs1[0,0].set_xlabel("Metrics") axs1[0,0].set_ylabel("Values") axs1[0,0].set_title("Metric comparison cached") axs1[0,0].legend() axs1[0,1].set_xlabel("Time") axs1[0,1].set_ylabel("Percentage") axs1[0,1].set_title("CPU utilization comparison cached") axs1[0,1].legend() axs1[1,0].set_xlabel("Time") axs1[1,0].set_ylabel("Percentage") axs1[1,0].set_title("GPU utilization comparison cached") axs1[1,0].legend() axs1[1,1].set_xlabel("Time") axs1[1,1].set_ylabel("Percentage") axs2[1,1].set_title("GPU memory utilization comparison cached") axs1[1,1].legend() axs1[2,0].set_xticks(X_metrics_io_axis) axs1[2,0].set_xticklabels(X_IO) axs1[2,0].set_xlabel("Metrics") axs1[2,0].set_ylabel("Values") axs1[2,0].set_title("IO Metric comparison cached") axs1[2,0].legend() axs1[2,1].set_xlabel("Time") axs1[2,1].set_ylabel("Percentage") axs1[2,1].set_title("IO wait percentage cached") axs1[2,1].legend() fig1.suptitle("Cached comparison - " + model , fontsize=20, fontweight ="bold") fig1.savefig("figures/cached_comparison - " + model) axs2[0,0].set_xticks(X_metrics_axis) axs2[0,0].set_xticklabels(X) axs2[0,0].set_xlabel("Metrics") axs2[0,0].set_ylabel("Values") axs2[0,0].set_title("Metric comparison cached") axs2[0,0].legend() axs2[0,1].set_xlabel("Time") axs2[0,1].set_ylabel("Percentage") axs2[0,1].set_title("CPU utilization comparison cached") axs2[0,1].legend() axs2[1,0].set_xlabel("Time") axs2[1,0].set_ylabel("Percentage") axs2[1,0].set_title("GPU utilization comparison cached") axs2[1,0].legend() axs2[1,1].set_xlabel("Time") axs2[1,1].set_ylabel("Percentage") axs2[1,1].set_title("GPU memeory utilization comparison cached") axs2[1,1].legend() axs2[2,0].set_xticks(X_metrics_io_axis) axs2[2,0].set_xticklabels(X_IO) axs2[2,0].set_xlabel("Metrics") axs2[2,0].set_ylabel("Values") axs2[2,0].set_title("IO Metric comparison disk") axs2[2,0].legend() axs2[2,1].set_xlabel("Time") axs2[2,1].set_ylabel("Percentage") axs2[2,1].set_title("io wait percentage disk") axs2[2,1].legend() fig2.suptitle("Disk comparison - " + model , fontsize=20, fontweight ="bold") fig2.savefig("figures/disk_comparison - " + model) def main(): if len(sys.argv) <= 1: return result_dir = sys.argv[1] for instance in sys.argv[2:]: instances.append(instance) result_path1 = result_dir + "/" + instance + "/" + "dali-gpu" result_path2 = result_dir + "/" + instance + "/" + "dali-cpu" for result_path in [result_path1, result_path2]: try: model_paths = [os.path.join(result_path, o) for o in os.listdir(result_path) if os.path.isdir(os.path.join(result_path,o))] except: continue for model_path in model_paths: model = model_path.split('/')[-1] model_path_ = model_path + "/jobs-1" gpu_paths = [os.path.join(model_path_, o) for o in os.listdir(model_path_) if os.path.isdir(os.path.join(model_path_,o))] for gpu_path in gpu_paths: gpu = gpu_path.split('/')[-1] cpu_paths = [os.path.join(gpu_path, o) for o in os.listdir(gpu_path) if os.path.isdir(os.path.join(gpu_path,o))] for cpu_path in cpu_paths: json_path = cpu_path + "/MODEL.json" json_path2 = cpu_path + "/MODEL2.json" if not os.path.isfile(json_path): continue process_json(model, gpu, json_path) process_json2(model, gpu, json_path2) # compare() compare_models() if __name__ == "__main__": main() ``` #### File: DS-Analyzer/tool/parseall.py ```python import os import json import sys def main(): if len(sys.argv) < 2: print("Input file path") sys.exit(1) path = sys.argv[1] for files in os.listdir(path): for subdir in os.listdir(os.path.join(path, files)): json_file = os.path.join(path, files,subdir, "MODEL.json") data = json.load(open(json_file, 'r')) print(files, data['SPEED_INGESTION'], data['SPEED_DISK'], data['SPEED_CACHED']) if __name__ == "__main__": main() ``` #### File: DS-Analyzer/tool/what_if_tool.py ```python import sys import subprocess import os import utils from argparse import ArgumentParser, REMAINDER from synthetic_data import get_shared_image_classification_tensors from utils import aggregate_run1_maps, print_as_table, print_header import multiprocessing import json def parse_args(): """ Helper function parsing the command line options @retval ArgumentParser """ parser = ArgumentParser(description="PyTorch data stall profiler") # Optional arguments for the launch helper parser.add_argument("--nnodes", type=int, default=1, help="The number of nodes to use for distributed " "training") parser.add_argument("--nproc_per_node", type=int, default=1, help="The number of processes to launch on each node, " "for GPU training, this is recommended to be set " "to the number of GPUs in your system so that " "each process can be bound to a single GPU.") # profiling parser.add_argument('-j', '--workers', default=3, type=int, metavar='N', help='number of data loading workers') parser.add_argument('--epochs', default=1, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18') parser.add_argument('--synthetic', action='store_true', help='Use synthetic dataset') parser.add_argument('--data-profile', action='store_true', help='Set profiler on') parser.add_argument('--precreate', action='store_true') parser.add_argument('--use_precreate', action='store_true') parser.add_argument("--classes", default=1000, type=int) parser.add_argument("--tensor_path", default="./train", type=str) parser.add_argument("--num_minibatches", default=50, type=int) parser.add_argument("--path", default="./", type=str) parser.add_argument("--model_path", default=None, type=str) parser.add_argument('-q', '--question', default="cache", type=str) # rest from the training program parser.add_argument('training_script_args', nargs=REMAINDER) return parser.parse_args() args = parse_args() def analyze_cache(): print("In analyze cache") if args.model_path is not None: _analyze_cache(args.model_path) else: for job_path in args.jobs: print("Analysis for jon {}".format(job_path)) #Must analyze for each GPU and CPU combination seperately gpu_paths = [os.path.join(job_path, o) for o in os.listdir(job_path) if os.path.isdir(os.path.join(job_path,o))] for gpu_path in gpu_paths: cpu_paths = [os.path.join(gpu_path, o) for o in os.listdir(gpu_path) if os.path.isdir(os.path.join(gpu_path,o))] for cpu_path in cpu_paths: print(cpu_path) model_path = cpu_path + "/MODEL.json" _analyze_cache(model_path) def _analyze_cache(model_path): model = {} with open(model_path, 'r') as mf: model = json.load(mf) # Have the model now. Calculate speeds for different cache sizes max_speed = model["SPEED_INGESTION"] cached_speed = model["SPEED_CACHED"] disk_thr = model["DISK_THR"] disk_bw = 525 mem_thr = model["MEM_THR"] dataset_size = model["AVG_SAMPLE_SIZE"] total_samples = model["TOTAL_SAMPLES"] speed_map = {} for cache_percent in range(0, 100, 5): cache_size = cache_percent/100*dataset_size disk_fetch_size = dataset_size - cache_size time_to_cache = cache_size/mem_thr time_to_disk = disk_fetch_size*1024/disk_bw total_time = time_to_cache + time_to_disk avg_sample_size = dataset_size*1024*1024 / total_samples #effective_store_thr = dataset_size*1024*1024/total_time effective_store_thr = dataset_size*1024*1024/total_time/avg_sample_size speed_map[cache_percent] = effective_store_thr keys = speed_map.keys() values = speed_map.values() print("Max achievable speed = {} samples/s".format(int(cached_speed))) for key in keys: print("{:<5}".format(int(key)), end=" ") print("\n") for val in values: print("{:<5}".format(int(val)), end = " ") print("\n") print("-"*100) def question(qname): switch = { "cache" : analyze_cache # Add more analysis questions } func = switch.get(qname, lambda: "Invalid analysis option") func() def main(): """ args.path is the path to the model being analyzed. The expected heirarchy is : <model> |--jobs-<count_per_node> |--gpus-<count_per_job> |--cpus-<count_per_gpu> |--MODEL.json """ args.jobs = [os.path.join(args.path, o) for o in os.listdir(args.path) if os.path.isdir(os.path.join(args.path,o))] print(args.jobs) question(args.question) if __name__ == "__main__": main() ```
{ "source": "aakash-sharma/DSS", "score": 3 }
#### File: DSS/events/event.py ```python import copy import logging from abc import ABCMeta, abstractmethod from enum import Enum event_formatter = logging.Formatter('%(asctime)-15s %(levelname)-8s %(name)s CLK: %(clock)-20s %(message)s') console = logging.StreamHandler() console.setFormatter(event_formatter) LOG = logging.getLogger("event") LOG.addHandler(console) LOG.propagate = False EventResult = Enum("EventResult", "CONTINUE FINISHED PAUSE") class EventLoggerAdapter(logging.LoggerAdapter): def __init__(self, logger, event): logging.LoggerAdapter.__init__(self, logger, extra={'event': event}) def process(self, msg, kwargs): # Need to do it like this because the clock needs refreshing each time self.extra['clock'] = self.extra['event'].state.simulator.clock_millis return logging.LoggerAdapter.process(self, msg, kwargs) class Event(object): __metaclass__ = ABCMeta def __init__(self, state): self.time_millis = 0 self.state = state self.log = EventLoggerAdapter(LOG, self) # noinspection PyArgumentList def __deepcopy__(self, memo): new_event = self.__class__(copy.deepcopy(self.state, memo)) new_event.time_millis = self.time_millis return new_event @abstractmethod def handle(self): raise NotImplementedError() ``` #### File: yarn/elastic/elastic.py ```python import copy import logging from abc import ABCMeta from contextlib import contextmanager from events.event import EventResult, LOG, event_formatter, Event class YarnOracleSimulationEvent(Event): __metaclass__ = ABCMeta def __init__(self, state): super(YarnOracleSimulationEvent, self).__init__(state) def __deepcopy__(self, memo): new_event = copy.copy(self) return new_event @staticmethod @contextmanager def nested_logging(name, debug_flag): # Change logging output to include oracle simulation name for the rest of DSS current_level = LOG.getEffectiveLevel() LOG.setLevel(logging.DEBUG if debug_flag else current_level) event_log = logging.getLogger("event") for h in event_log.handlers: h.setFormatter(logging.Formatter('%(asctime)-15s %(levelname)-8s ORACLE ' + name + ' %(name)s CLK: %(clock)-20s %(message)s')) yarn_schedulers_log = logging.getLogger("yarn_schedulers") yarn_schedulers_log.setLevel(logging.DEBUG if debug_flag else current_level) console_handler = logging.StreamHandler() console_handler.setFormatter(logging.Formatter('%(asctime)-15s %(levelname)-8s ORACLE ' + name + ' %(name)s %(message)s')) yarn_schedulers_log.addHandler(console_handler) yarn_schedulers_log.propagate = False yield # Revert logging back to normal for h in event_log.handlers: h.setFormatter(event_formatter) yarn_schedulers_log.removeHandler(console_handler) yarn_schedulers_log.propagate = True console_handler.close() yarn_schedulers_log.setLevel(current_level) LOG.setLevel(current_level) class YarnResumeSchedulingEvent(Event): def __init__(self, state): super(YarnResumeSchedulingEvent, self).__init__(state) self.winner = None self.job = None self.node = None def __deepcopy__(self, memo): new_event = copy.copy(self) return new_event def handle(self): self.log.info("YARN_RESUME_SCHEDULING_EVENT") if not self.state.user_config.race_lockstep_regular: self.state.scheduler.allow_scheduling = True elif self.winner is not None: self.log.info(str(self.winner)) if self.job is None and self.node is None: # RACE_LOCKSTEP resume scheduling self.state.scheduler.behavior = self.winner elif self.node is None: # RACE_JOB resume scheduling self.state.scheduler.set_behavior(self.job, self.winner) elif self.job is None: # RACE_NODEG resume scheduling self.state.scheduler.set_behavior(self.node, self.winner) # Generate NodeHeartbeat events for all the nodes. for node in self.state.nodes.values(): if node.next_heartbeat.handled: node.next_heartbeat.generate_next_heartbeat() return EventResult.CONTINUE, ``` #### File: DSS/schedulers/yarn.py ```python import copy import logging import sys from abc import ABCMeta, abstractmethod from random import Random from events.event import EventResult from models.yarn.objects import YarnRunningContainer, YarnContainerType, YarnResource, YarnErrorType, YarnErrorMode from stats.decisions import YarnSchedulerStats from utils import PEnum, round_up YarnSchedulerType = PEnum("YarnSchedulerType", "REGULAR GREEDY SMARTG SYMBEX RACE_LOCKSTEP RACE_CONTINUOUS " + "RACE_JOB RACE_NODEG SRTF PEEK") LOG = logging.getLogger("yarn_schedulers") ERROR_RANDOM_SEED = 24381092348021 YARN_MIN_ALLOCATION_MB = 100 MEM_INCREMENT = 100 class YarnScheduler(YarnSchedulerStats): __metaclass__ = ABCMeta def __init__(self, state): super(YarnScheduler, self).__init__() self.state = state self.running_jobs = set() self.completed_jobs = set() self.allocated_containers = {} self.next_job_id = 1 self.allow_scheduling = True # Per-job error factors for ideal-memory self.job_random = Random(ERROR_RANDOM_SEED) self.mem_errors = {} # noinspection PyArgumentList def __deepcopy__(self, memo): new_scheduler = copy.copy(self) memo[id(self)] = new_scheduler new_scheduler.state = copy.deepcopy(self.state, memo) new_scheduler.running_jobs = copy.deepcopy(self.running_jobs, memo) new_scheduler.completed_jobs = self.completed_jobs.copy() new_scheduler.allocated_containers = copy.deepcopy(self.allocated_containers, memo) return new_scheduler def compute_error_adjustment(self, ideal_value, error_perc, error_mode, error_type): error = ideal_value * error_perc / 100 if error_mode is YarnErrorMode.CONSTANT: error_adjustment = error if error_type is YarnErrorType.POSITIVE else -error else: lower_limit = 0 if error_type is YarnErrorType.POSITIVE else -error upper_limit = 0 if error_type is YarnErrorType.NEGATIVE else error error_adjustment = self.job_random.randint(lower_limit, upper_limit) if not isinstance(ideal_value, float) \ else self.job_random.uniform(lower_limit, upper_limit) return error_adjustment def compute_memory_error_adjustment(self, task): memory_adjustment = self.compute_error_adjustment(task.ideal_resource.memory_mb, self.state.user_config.mem_error, self.state.user_config.mem_error_mode, self.state.user_config.mem_error_type) if task.ideal_resource.memory_mb + memory_adjustment < YARN_MIN_ALLOCATION_MB: memory_adjustment = YARN_MIN_ALLOCATION_MB - task.ideal_resource.memory_mb if task.ideal_resource.memory_mb + memory_adjustment > self.state.user_config.node_mem_mb: memory_adjustment = self.state.user_config.node_mem_mb - task.ideal_resource.memory_mb return memory_adjustment def all_jobs_are_done(self): return all(job.finished for job in self.state.jobs) # NOTE: This method should return a tuple: # (AllocationSuccessful, EventResultTuple) # where AllocationResult is a bool marking if any # containers were allocated on this node, # and EventResultTuple is of the form: # (EventResult, [ newly_forked_symbex_states ] # A non-symbex call to schedule() will always return # (EventResult.CONTINUE,) as the EventResultTuple @abstractmethod def schedule(self, node): raise NotImplementedError() def handle_job_arrived(self, job): # Set a new application id for the job job.yarn_id = self.next_job_id self.next_job_id += 1 # Check that job isn't already running if job in self.running_jobs: LOG.error("Attempt to launch existing job: " + str(job)) raise Exception("Attempt to launch existing job") # Adjust job start time job.start_ms = self.state.simulator.clock_millis self.stats_job_start_update(job.start_ms) # Add job to set of running jobs self.running_jobs.add(job) # Compute memory error if needed. if self.state.is_inside_oracle_simulation: return if self.state.user_config.mem_error is not None: self.mem_errors[job.job_id] = self.compute_memory_error_adjustment( next(task for task in job.tasks if task.type != YarnContainerType.MRAM) ) def handle_job_completed(self, job): # Update finishing time job.end_ms = self.state.simulator.clock_millis self.stats_job_end_update(job.end_ms) # Move job to completed list. if job not in self.running_jobs: LOG.error("Completed job " + str(job) + " not found in running list: " + str(self.running_jobs)) raise Exception("Completed job not in running list.") self.running_jobs.remove(job) self.completed_jobs.add(job) @abstractmethod def has_pending_jobs(self): raise NotImplementedError() def create_container_from_task(self, node, allocated, job, task): err_adjusted_duration = duration = task.duration if task.penalty is not None: mem_error_adjustment = self.mem_errors[job.job_id] if job.job_id in self.mem_errors else 0 if LOG.isEnabledFor(logging.DEBUG): LOG.debug("YARN_REGULAR_SCHEDULER: MEM_ERR_ADJUST: {}".format(mem_error_adjustment)) resource = task.ideal_resource if mem_error_adjustment != 0: resource = YarnResource(task.ideal_resource.memory_mb, task.ideal_resource.vcores) resource.memory_mb += mem_error_adjustment resource.memory_mb = round_up(resource.memory_mb, MEM_INCREMENT) if allocated < resource: err_adjusted_duration = task.penalty.get_penalized_runtime(resource, allocated, task.duration) duration = task.penalty.get_penalized_runtime(task.ideal_resource, allocated, task.duration) # Create YarnRunningContainer from YarnPrototypeContainer yarn_container = YarnRunningContainer( container_id=job.get_new_container_id(), duration=err_adjusted_duration, resource=task.resource, priority=task.priority, container_type=task.type, job=task.job, node=node, task=task) yarn_container.duration_error = err_adjusted_duration - duration return yarn_container def handle_container_allocation(self, node, allocated, job, task, time_millis): # Create a container from the task yarn_container = self.create_container_from_task(node, allocated, job, task) # Adjust job to reflect launched container task.num_containers -= 1 if task.num_containers == 0: # All of this job's type of tasks were processed: remove it from the task list job.pending_tasks.remove(task) job.running_tasks.add(yarn_container) job.consumption += yarn_container.resource # Mark container as scheduled yarn_container.schedule_container(time_millis) # Adjust node to reflect scheduled container node.book_container(yarn_container) # Add container to list of containers to launch try: self.allocated_containers[job.job_id].add(yarn_container) except KeyError: self.allocated_containers[job.job_id] = {yarn_container} # Generate next AM heartbeat, if needed. if job.am_next_heartbeat.handled: job.am_next_heartbeat.generate_next_heartbeat() def handle_container_finished(self, node, finished_container): job = finished_container.job job.consumption -= finished_container.resource self.stats_container_end_update(finished_container) class YarnFairScheduler(YarnScheduler): __metaclass__ = ABCMeta def __init__(self, state): super(YarnFairScheduler, self).__init__(state) self.job_queue = [] # noinspection PyArgumentList def __deepcopy__(self, memo): new_scheduler = YarnScheduler.__deepcopy__(self, memo) memo[id(self)] = new_scheduler new_scheduler.job_queue = copy.deepcopy(self.job_queue, memo) return new_scheduler def handle_job_arrived(self, job): YarnScheduler.handle_job_arrived(self, job) self.job_queue.insert(0, job) # Sort the job queue self.queue_down_job(0) def handle_container_finished(self, node, finished_container): YarnScheduler.handle_container_finished(self, node, finished_container) # Sort the job queue if finished_container.job.pending_tasks: self.queue_up_job(self.job_queue.index(finished_container.job)) def has_pending_jobs(self): return len(self.job_queue) != 0 @abstractmethod def allocate_on_node(self, node, task): # Returns a tuple (memory, duration) raise NotImplementedError() def queue_down_job(self, job_idx): queue_len = len(self.job_queue) while job_idx < queue_len - 1: job = self.job_queue[job_idx] next_job = self.job_queue[job_idx + 1] if [job.consumption.memory_mb, job.start_ms, job.job_id] > [next_job.consumption.memory_mb, next_job.start_ms, next_job.job_id]: self.job_queue[job_idx], self.job_queue[job_idx + 1] = \ self.job_queue[job_idx + 1], self.job_queue[job_idx] job_idx += 1 else: return def queue_up_job(self, job_idx): while job_idx > 0: job = self.job_queue[job_idx] next_job = self.job_queue[job_idx - 1] if [job.consumption.memory_mb, job.start_ms, job.job_id] < [next_job.consumption.memory_mb, next_job.start_ms, next_job.job_id]: self.job_queue[job_idx], self.job_queue[job_idx - 1] = \ self.job_queue[job_idx - 1], self.job_queue[job_idx] job_idx -= 1 else: return # noinspection PyUnusedLocal def adjust_for_allocation(self, node, task, queue_idx, alloc_result): allocated_resource = alloc_result[0] allocated_duration = alloc_result[1] job = self.job_queue[queue_idx] if LOG.isEnabledFor(logging.DEBUG): LOG.debug("CLUSTER: Capacity: " + str(reduce(lambda x, y: x + y, map(lambda x: x.available, self.state.nodes.values())).memory_mb) + "MB Maximum: " + str(max(self.state.nodes.values(), key=lambda x: x.available.memory_mb).available.memory_mb) + "MB") LOG.debug("QUEUE: " + ", ".join(map(lambda x: "<" + x.get_name() + " " + str(x.am_launched) + " " + str(x.consumption) + ">", self.job_queue))) if not all(self.job_queue[i].consumption.memory_mb <= self.job_queue[i + 1].consumption.memory_mb for i in xrange(len(self.job_queue) - 1)): LOG.error("QUEUE SORTING ERROR") # Adjust task, job and node properties to reflect allocation self.handle_container_allocation(node, allocated_resource, job, task, self.state.simulator.clock_millis) if not job.pending_tasks: # All of the job's containers were processed: remove it from the queue self.job_queue.remove(job) else: # Sort the queue again since this job's consumption has changed self.queue_down_job(queue_idx) def get_job_finish_scheduling_time(self, job): # Returns the expected time when all containers of this job are scheduled. return sys.maxint def get_job_finish_time(self, job): # Returns the expected time when the job finishes. return sys.maxint def get_container_finish_time(self, container, memo=None): # memo is an optional dictionary used to cache durations (e.g., for AM containers) if memo is not None and container in memo: return memo[container] if container.type is not YarnContainerType.MRAM: # NOTE: This is an approximation, since the container launch time is # given by the AM heartbeat that triggers it. container_finish_time = container.launched_time_millis if container.launched_time_millis != -1 else \ (container.scheduled_time_millis + container.node.hb_interval_ms) container_finish_time += container.duration else: # AM containers can only be determined if the job duration is somehow known. container_finish_time = self.get_job_finish_time(container.job) if memo is not None: memo[container] = container_finish_time return container_finish_time def schedule(self, node, queue_start=0): # Check if scheduling is postponed if not self.allow_scheduling: # Return True so that node heartbeats keep getting created. return True, (EventResult.CONTINUE,) gap_allocation_mode = False release_time = -1 # Check first if this node is reserved. if node.reserved_application is not None: # Get next task needed for the job required_task = next(iter(node.reserved_application.pending_tasks or []), None) # Check if the reserved application still needs this reservation. if required_task is None or \ node.reserved_task_type != required_task.type: if LOG.isEnabledFor(logging.DEBUG): LOG.debug("Released node " + str(node) + " from app " + str(node.reserved_application)) self.stats_release_node(node.reserved_application.job_id, node.node_id, self.state.simulator.clock_millis) node.reserved_application = None node.reserved_task_type = None reserved_duration = self.state.simulator.clock_millis - node.reserved_start_ms reserved_memory_mb = node.capacity.memory_mb - node.available.memory_mb self.reserved_memory_time += reserved_duration * reserved_memory_mb if node.available.vcores > 0: self.reserved_usable_memory_time += reserved_duration * reserved_memory_mb node.reserved_start_ms = 0 else: self.stats_decisions_inc(node.reserved_application.job_id) # Try to allocate the reserved application. alloc_result = self.allocate_on_node(node, required_task) if alloc_result is not None: reserved_duration = self.state.simulator.clock_millis - node.reserved_start_ms reserved_memory_mb = node.capacity.memory_mb - node.available.memory_mb self.reserved_memory_time += reserved_duration * reserved_memory_mb if node.available.vcores > 0: self.reserved_usable_memory_time += reserved_duration * reserved_memory_mb self.stats_accept_decisions_inc(node.reserved_application.job_id) self.adjust_for_allocation(node, required_task, self.job_queue.index(node.reserved_application), alloc_result) self.stats_release_node(node.reserved_application.job_id, node.node_id, self.state.simulator.clock_millis) node.reserved_application = None node.reserved_task_type = None node.reserved_start_ms = 0 if not self.state.user_config.assign_multiple: return True, (EventResult.CONTINUE,) else: if self.state.use_gaps: # Try to see if another app in the queue can make use of the unused slot. # Compute time required for the reserved application to be scheduled. required_resource = required_task.resource released_resource = YarnResource(node.available.memory_mb, node.available.vcores) available_resource = node.available node.available = released_resource release_time = -1 # Look at all the scheduled and running containers on this node. duration_memo = {} for container in sorted(node.running_containers | node.allocated_containers, key=lambda x: self.get_container_finish_time(x, duration_memo)): container_finish_time = self.get_container_finish_time(container, duration_memo) released_resource += container.resource if container_finish_time > release_time: release_time = container_finish_time if release_time == sys.maxint: break # Check if the reserved application can now make use of this. if self.allocate_on_node(node, required_task) is not None or \ released_resource >= required_resource: break node.available = available_resource # Check if the job that has the reservation is due to finish scheduling soon. job_release_time = self.get_job_finish_scheduling_time(node.reserved_application) if job_release_time is not None and \ job_release_time < release_time: release_time = job_release_time if release_time != -1: if LOG.isEnabledFor(logging.DEBUG): LOG.debug("Gap for node " + node.name + " reserved by " + node.reserved_application.get_name() + " of " + str(required_resource) + " available at " + str(release_time)) gap_allocation_mode = True if not gap_allocation_mode: self.stats_reject_decisions_inc(node.reserved_application.job_id) return False, (EventResult.CONTINUE,) queue_idx = queue_start while queue_idx < len(self.job_queue): if self.job_queue[queue_idx] == node.reserved_application: # This can only happen if gap_allocation_mode is True. queue_idx += 1 continue # Iterate over jobs in order of consumption job = self.job_queue[queue_idx] self.stats_decisions_inc(job.job_id) # Get next task needed for the job task = job.pending_tasks[0] # Check if the AM container was launched. In YARN this can't happen, since # the AM would not send ResourceRequests for any other containers before # the AM itself wouldn't be up and running. # In gap-allocation mode, check that AMs can be allocated in gaps. if not job.am_launched and \ (task.type is not YarnContainerType.MRAM or (gap_allocation_mode and not self.state.user_config.gaps_allow_ams)): self.stats_reject_decisions_inc(job.job_id) queue_idx += 1 continue # Check if the task fits on the current node # In gap-allocation mode, also check that the task would finish in time. alloc_result = self.allocate_on_node(node, task) if alloc_result is not None and \ (gap_allocation_mode is False or self.state.simulator.clock_millis + alloc_result[1] + node.hb_interval_ms <= release_time): self.stats_accept_decisions_inc(job.job_id) self.adjust_for_allocation(node, task, queue_idx, alloc_result) if not self.state.user_config.assign_multiple: return True, (EventResult.CONTINUE,) else: # Reset the queue_idx to take first job in order of consumption queue_idx = 0 elif self.state.user_config.use_reservations and not gap_allocation_mode: # Reserve this node and finish. self.stats_reserve_decisions_inc(job.job_id) if LOG.isEnabledFor(logging.DEBUG): LOG.debug("Reserving node " + str(node) + " by app " + str(job)) node.reserved_application = job node.reserved_task_type = task.type node.reserved_start_ms = self.state.simulator.clock_millis self.stats_reserve_node(job.job_id, node.node_id, self.state.simulator.clock_millis) break else: self.stats_reject_decisions_inc(job.job_id) queue_idx += 1 return bool(node.allocated_containers), (EventResult.CONTINUE,) class YarnRegularScheduler(YarnFairScheduler): def __init__(self, state): super(YarnRegularScheduler, self).__init__(state) def create_container_from_task(self, node, allocated, job, task): yarn_container = super(YarnRegularScheduler, self).create_container_from_task(node, allocated, job, task) if LOG.isEnabledFor(logging.DEBUG): LOG.debug("YARN_REGULAR_SCHEDULER: " + str(self.state.simulator.clock_millis) + " Allocated " + str(task.resource.memory_mb) + " regularly for " + task.job.get_name() + ":" + str(task.job.next_container_id) + " with a duration of: " + str(task.duration)) return yarn_container def allocate_on_node(self, node, task): if task.resource <= node.available: if LOG.isEnabledFor(logging.DEBUG): LOG.debug("YARN_REGULAR_SCHEDULER: REGULAR possible with " + str(task.resource.memory_mb) + " for " + task.job.get_name() + ":" + str(task.job.next_container_id) + " with a duration of: " + str(task.duration)) return task.resource, task.duration return None ``` #### File: aakash-sharma/DSS/simulator.py ```python import logging import time from events.event import EventResult from utils import PQueue LOG = logging.getLogger("simulator") class Simulator(object): def __init__(self): self.queue = PQueue() self.clock_millis = 0 self.start_real_clock_seconds = 0 self.finish_real_clock_seconds = 0 def __deepcopy__(self, memo): new_simulator = Simulator() memo[id(self)] = new_simulator new_simulator.queue = self.queue.__deepcopy__(memo) new_simulator.clock_millis = self.clock_millis return new_simulator @property def duration_seconds(self): if self.start_real_clock_seconds == 0: LOG.error("Simulation has not started yet, cannot compute duration!") return 0 if self.finish_real_clock_seconds == 0: LOG.error("Simulation has not finished yet, cannot compute duration!") return 0 return self.finish_real_clock_seconds - self.start_real_clock_seconds def add_event(self, event): self.queue.push(event, event.time_millis) def run(self): self.start_real_clock_seconds = time.clock() try: while not self.queue.empty(): queue_el = self.queue.pop() new_clock = queue_el[0] event = queue_el[1] if new_clock > self.clock_millis: # Update the internal clock self.clock_millis = new_clock elif new_clock < self.clock_millis and new_clock != 0: LOG.warn("Parsing event in the past: " + str(new_clock)) if event is None: continue # Run event callback # NOTE: All event handlers should return a tuple (EVENT_RESULT, optional_info) with the first element # being the handling result and whether the simulation should continue, and additional information. # # This is used, for example, to pass information from the simulation to the simulation runner. event_return = event.handle() if event_return[0] is EventResult.FINISHED or event_return[0] is EventResult.PAUSE: return event_return LOG.warn("Reached queue end without receiving a FINISHED event.") return EventResult.FINISHED, finally: self.finish_real_clock_seconds = time.clock() ```
{ "source": "aakash-sharma/training_on_a_dime", "score": 3 }
#### File: scripts/aws/analyze.py ```python from datetime import datetime import json import matplotlib.pyplot as plt from availability import instance_types TL = [] all_y_axis = {} lifespan_buckets = {} def get_timeline(logs2): for ts in sorted(logs2.keys()): TL.append(ts) def instances_over_time(logs, logs2): for instance in instance_types: all_y_axis[instance] = [0] * len(TL) i = 1 for ts in sorted(logs2.keys()): instance_id = logs2[ts][0] if instance_id == None: continue curr_instance = (logs[instance_id][0][0], logs[instance_id][0][1]) for instance in all_y_axis: y_axis = all_y_axis[instance] if instance == curr_instance: y_axis[i] = y_axis[i-1] + logs2[ts][1] else: y_axis[i] = y_axis[i-1] i += 1 for instance in all_y_axis: y_axis = all_y_axis[instance] for i in range(len(y_axis)): y_axis[i] = max(0, y_axis[i]) print(all_y_axis) def avg_lifespan(logs): for instance in instance_types: lifespan_buckets[instance] = [] end_time = datetime.strptime(TL[-1], '%Y-%m-%dT%H:%M:%S.000Z') print(end_time) for instance_id in logs: instance = (logs[instance_id][0][0], logs[instance_id][0][1]) st_time = datetime.strptime(logs[instance_id][1], '%Y-%m-%dT%H:%M:%S.000Z') lifespan = 0 if logs[instance_id][2] != -1: lifespan = datetime.strptime(logs[instance_id][2], '%Y-%m-%dT%H:%M:%S.000Z') - st_time else: lifespan = end_time - st_time if lifespan.total_seconds() < 0: print(logs[instance_id]) lifespan_buckets[instance].append(lifespan.total_seconds()) print(lifespan_buckets) def plot(): #fig1, axs1 = plt.plot() instance = ("k80", 1) y_axis = all_y_axis[instance] plt.plot([i for i in range(len(TL))], y_axis) plt.title("Spot instance (p2.xlarge) availability") plt.xlabel('Normalized time interval') plt.ylabel('Availability') plt.show() y_axis = lifespan_buckets[instance] y_axis = [lifespan for lifespan in y_axis if lifespan > 0] x_axis = [i for i in range(len(y_axis))] plt.plot(x_axis, y_axis) plt.title("Instance lifespan") plt.ylabel('Seconds') plt.xlabel('Normalized instance Id') plt.show() def main(): with open('dict_snapshot', 'r') as dict_snapshot: logs = json.load(dict_snapshot) with open('dict_snapshot2', 'r') as dict_snapshot2: logs2 = json.load(dict_snapshot2) get_timeline(logs2) instances_over_time(logs, logs2) avg_lifespan(logs) plot() if __name__ == '__main__': main() ``` #### File: scripts/data_transfer/data_transfer_costs.py ```python def aws(data_size, intra_region, src_continent, dst_internet): # https://aws.amazon.com/ec2/pricing/on-demand/ if data_size <= 0.0: return 0.0 data_transfer_cost = 0.0 if intra_region: data_transfer_cost = 0.01 * data_size elif dst_internet: if src_continent == 'north_america' or src_continent == 'europe': if data_size > 1: data_transfer_cost += .09 * min(data_size - 1, 10000 - 1) if data_size > 10000: data_transfer_cost += .085 * min(data_size - 10000, 50000 - 10000) if data_size > 50000: data_transfer_cost += .07 * min(data_size - 50000, 150000 - 50000) if data_size > 150000: data_transfer_cost += .05 * min(data_size - 150000, 500000 - 150000) elif src_continent == 'asia': if data_size > 1: data_transfer_cost += .114 * min(data_size - 1, 10000 - 1) if data_size > 10000: data_transfer_cost += .089 * min(data_size - 10000, 50000 - 10000) if data_size > 50000: data_transfer_cost += .086 * min(data_size - 50000, 150000 - 50000) if data_size > 150000: data_transfer_cost += .084 * min(data_size - 150000, 500000 - 150000) elif src_continent == 'south_america': if data_size > 1: data_transfer_cost += .25 * min(data_size - 1, 10000 - 1) if data_size > 10000: data_transfer_cost += .23 * min(data_size - 10000, 50000 - 10000) if data_size > 50000: data_transfer_cost += .21 * min(data_size - 50000, 150000 - 50000) if data_size > 150000: data_transfer_cost += .19 * min(data_size - 150000, 500000 - 150000) else: if src_continent == 'north_america' or src_continent == 'europe': data_transfer_cost = 0.02 * data_size elif src_continent == 'asia': data_transfer_cost = 0.08 * data_size elif src_continent == 'south_america': data_transfer_cost = 0.16 * data_size return data_transfer_cost def azure(data_size, intra_region, src_continent, dst_internet): # https://azure.microsoft.com/en-us/pricing/details/bandwidth/ if data_size <= 0.0: return 0.0 data_transfer_cost = 0.0 if not intra_region: if src_continent == 'north_america' or src_continent == 'europe': if data_size > 5: data_transfer_cost += .087 * min(data_size - 5, 10000 - 5) if data_size > 10000: data_transfer_cost += .083 * min(data_size - 10000, 50000 - 10000) if data_size > 50000: data_transfer_cost += .07 * min(data_size - 50000, 150000 - 50000) if data_size > 150000: data_transfer_cost += .05 * min(data_size - 150000, 500000 - 150000) elif src_continent == 'asia': if data_size > 5: data_transfer_cost += .12 * min(data_size - 5, 10000 - 5) if data_size > 10000: data_transfer_cost += .085 * min(data_size - 10000, 50000 - 10000) if data_size > 50000: data_transfer_cost += .082 * min(data_size - 50000, 150000 - 50000) if data_size > 150000: data_transfer_cost += .08 * min(data_size - 150000, 500000 - 150000) elif src_continent == 'south_america': if data_size > 5: data_transfer_cost += .181 * min(data_size - 5, 10000 - 5) if data_size > 10000: data_transfer_cost += .175 * min(data_size - 10000, 50000 - 10000) if data_size > 50000: data_transfer_cost += .17 * min(data_size - 50000, 150000 - 50000) if data_size > 150000: data_transfer_cost += .16 * min(data_size - 150000, 500000 - 150000) return data_transfer_cost def gcp(data_size, intra_region, src_continent, dst_internet): # https://cloud.google.com/compute/network-pricing if data_size <= 0.0: return 0.0 data_transfer_cost = 0.0 if not intra_region: if dst_internet: if src_continent == 'asia': data_transfer_cost += min(data_size * 0.147, 1000 * 0.147) if data_size > 1000: data_transfer_cost += .147 * min(data_size - 1000, 10000 - 1000) if data_size > 10000: data_transfer_cost += .134 * data_size - 10000 else: data_transfer_cost += min(data_size * 0.12, 1000 * 0.12) if data_size > 1000: data_transfer_cost += .11 * min(data_size - 1000, 10000 - 1000) if data_size > 10000: data_transfer_cost += .08 * data_size - 10000 elif src_continent == 'north_america': data_transfer_cost = 0.01 * data_size elif src_continent == 'europe': data_transfer_cost = 0.02 * data_size elif src_continent == 'asia': data_transfer_cost = 0.05 * data_size elif src_continent == 'south_america': data_transfer_cost = 0.08 * data_size return data_transfer_cost ```
{ "source": "aakash-sheth/django-rest-api", "score": 3 }
#### File: app/core/models.py ```python from django.db import models from django.contrib.auth.models import AbstractBaseUser,\ BaseUserManager, PermissionsMixin from django.conf import settings # Create your models here class UserManager(BaseUserManager): def create_user(self, email, password=None, **extra_fields): """Create and save a new user""" if not email: raise ValueError('Users must have an email address') user = self.model(email=self.normalize_email(email), **extra_fields) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, password): """Create and save a new superuser""" user = self.create_user(email, password) user.is_staff = True user.is_superuser = True user.save(using=self._db) return user class User(AbstractBaseUser, PermissionsMixin): """Custom user model that support using email instead of username""" email = models.EmailField(max_length=255, unique=True) name = models.CharField(max_length=255) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) objects = UserManager() USERNAME_FIELD = 'email' class GrowthRateByAgeEducation(models.Model): """Table for Growth Rate by Age and Education""" updated_date = models.DateField(auto_now=True) age = models.IntegerField(unique=True) dropout = models.DecimalField(max_digits=6, decimal_places=3) diploma = models.DecimalField(max_digits=6, decimal_places=3) some_college = models.DecimalField(max_digits=6, decimal_places=3) associates = models.DecimalField(max_digits=6, decimal_places=3) license = models.DecimalField(max_digits=6, decimal_places=3) bachelors = models.DecimalField(max_digits=6, decimal_places=3) masters = models.DecimalField(max_digits=6, decimal_places=3) mba = models.DecimalField(max_digits=6, decimal_places=3) attorney = models.DecimalField(max_digits=6, decimal_places=3) doctorate = models.DecimalField(max_digits=6, decimal_places=3) professional = models.DecimalField(max_digits=6, decimal_places=3) def __str__(self): return str(self.age) class Pricing(models.Model): """Table for ISA pricing""" updated_date = models.DateField(auto_now=True) term = models.IntegerField(unique=True) interest_rate = models.DecimalField(max_digits=6, decimal_places=4) min_cagr = models.DecimalField(max_digits=5, decimal_places=3) targeted_cagr = models.DecimalField(max_digits=5, decimal_places=3) max_cagr = models.DecimalField(max_digits=5, decimal_places=3) payment_cap_factor = models.DecimalField(max_digits=5, decimal_places=3) prepayment_fv = models.DecimalField(max_digits=5, decimal_places=3) prepayment_growth = models.DecimalField(max_digits=5, decimal_places=3) def __str__(self): return str(self.term) class UnemploymentByIndustry(models.Model): """Table of Mean and Median Unemployment Duration in Weeks by Industry (NAICS) """ updated_date = models.DateField(auto_now=True) industry_id = models.IntegerField() industry = models.CharField(max_length=255) mean_duration = models.DecimalField(max_digits=4, decimal_places=1) median_duration = models.DecimalField(max_digits=4, decimal_places=1) def __str__(self): return self.industry class UnemploymentByOccupation(models.Model): """Table of Mean and Median Unemployment Duration in Weeks by Occupation (NAICS) """ updated_date = models.DateField(auto_now=True) occupation_id = models.IntegerField() occupation = models.CharField(max_length=255) occupation_type = models.CharField(max_length=255) mean_duration = models.DecimalField(max_digits=4, decimal_places=1) median_duration = models.DecimalField(max_digits=4, decimal_places=1) def __str__(self): return self.occupation class UnemploymentByAgeGroup(models.Model): """Table of Mean and Median Unemployment Duration in Weeks by Age Group """ updated_date = models.DateField(auto_now=True) age_group = models.CharField(max_length=255) age_min = models.IntegerField() age_max = models.IntegerField() mean_duration = models.DecimalField(max_digits=4, decimal_places=1) median_duration = models.DecimalField(max_digits=4, decimal_places=1) def __str__(self): return self.age_group class EmploymentDurationByAgeGroup(models.Model): """Table of Mean and Median Employment Duration in Months by Age Group """ updated_date = models.DateField(auto_now=True) age_group = models.CharField(max_length=255) age_min = models.IntegerField() age_max = models.IntegerField() duration = models.DecimalField(max_digits=4, decimal_places=1) def __str__(self): return self.age_group class HikesByEducation(models.Model): """Table of average % hike by Education based on what farrukh thinks""" degree = models.CharField(max_length=255) updated_date = models.DateField(auto_now=True) hike = models.DecimalField(max_digits=6, decimal_places=3) def __str__(self): return str(self.degree) class PraisParameterCap(models.Model): """Table of Prais limit paramters for upper and lower protection""" updated_date = models.DateField(auto_now=True) isa_processing_fee = models.DecimalField(max_digits=6, decimal_places=3) isa_servicing_fee = models.DecimalField(max_digits=6, decimal_places=3) isa_sales_charge = models.DecimalField(max_digits=6, decimal_places=3) minimum_self_equity_perc = models.DecimalField(max_digits=6, decimal_places=3) max_minimum_self_equity = models.DecimalField(max_digits=7, decimal_places=2) annual_lower_income = models.DecimalField(max_digits=8, decimal_places=2) isa_processing_fee_cap = models.DecimalField(max_digits=8, decimal_places=2) buyout_servicing_fee = models.DecimalField(max_digits=6, decimal_places=2) isp_age_factor = models.DecimalField(max_digits=4, decimal_places=2) isa_maximum_value = models.DecimalField(max_digits=4, decimal_places=2) max_age_for_quote = models.IntegerField() min_age_for_quote = models.IntegerField() def __str__(self): return str(self.updated_date) # # class Quote(models.Model): # """Quotes Calculated""" # user = models.ForeignKey( # settings.AUTH_USER_MODEL # ) # customer_id = models.CharField(ma) ``` #### File: app/quote/views.py ```python from rest_framework.views import APIView from rest_framework import viewsets, mixins,generics from rest_framework.authentication import TokenAuthentication from rest_framework.permissions import IsAuthenticated, AllowAny from rest_framework.response import Response from rest_framework import status from core.models import GrowthRateByAgeEducation, UnemploymentByAgeGroup,\ UnemploymentByIndustry,UnemploymentByOccupation,\ Pricing,EmploymentDurationByAgeGroup from quote import serializers from quote.quote import Prais import json class QuoteViewSet(APIView): """ Process quotes""" authentication_classes = (TokenAuthentication, ) permission_classes = (IsAuthenticated, ) # serializer_class = serializers.QuoteSerializer def get_queryset(self): pass def get(self, request, *args, **kwargs): """ Quotes request should have following parameters funding_amount,current_income,age,degree,industry(optional), profession(optional),method(optional),term_list(optional in years) """ term_flag = 0 paras = request.query_params funding_amount = float(paras['funding_amount']) current_income = float(paras['current_income']) age = int(paras['age']) degree = paras['degree'] if 'industry'in paras.keys(): industry = request.query_params['industry'] if 'profession' in paras.keys(): profession = request.query_params['profession'] if 'method' in paras.keys(): method = request.query_params['method'] if 'term_list' in paras.keys(): term_list = eval(request.query_params['term_list']) term_flag = 1 print('here') prais = Prais() if term_flag == 1: quotes_result = prais.Quotes(funding_amount,current_income,age,degree,term_list=term_list) else : quotes_result = prais.Quotes(funding_amount,current_income,age,degree) quotes_json = quotes_result#json.dumps(quotes_result) # except: # return Response(status.HTTP_406_NOT_ACCEPTABLE) return Response(quotes_json) ```
{ "source": "AakashSrinivasan03/GlossBert-GraphEmbeddings", "score": 2 }
#### File: GlossBert-GraphEmbeddings/GCN/train_classifier_gcn.py ```python from __future__ import absolute_import, division, print_function import argparse from collections import OrderedDict import csv import logging import os import random import sys import pandas as pd import numpy as np import torch.nn as nn import torch import torch.nn.functional as F from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset) from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange from nltk.corpus import wordnet as wn from torch.nn import CrossEntropyLoss, MSELoss from graph_embeddings import Graph from evaluation_script import evaluate_results import networkx as nx import torch.sparse as ts import scipy.sparse as ss def get_graph(): G=nx.Graph() vertices = [] edges = [] dictionary_name_to_id = {} dictionary_id_to_name = {} noun_synsets = list(wn.all_synsets()) vertices = [synset for synset in noun_synsets] G.add_nodes_from(range(0, len(vertices))) for node in G.nodes(): G.nodes[node]['name'] = vertices[node].name() dictionary_name_to_id[vertices[node].name()] = node dictionary_id_to_name[node] = vertices[node] for node in G.nodes(): current_vertex_id = node current_vertex_name = G.nodes[node]['name'] word = vertices[node].lemmas()[0].name() current_synset = wn.synsets(word) for syn in current_synset: # if ".n." in synset.name() # if synset.name() >= current_vertice_name: synset_id = dictionary_name_to_id[syn.name()] G.add_edge(current_vertex_id, synset_id) # G.add_edges_from(edges) nV = len(G.nodes()) G.add_node(nV) # dummy for unknown synsets G.add_edge(nV, nV) # nx.write_adjlist(G, "wordnet.adjlist") return G import torch.nn as nn import torch.nn.functional as F # from pygcn.layers import GraphConvolution class GCN_FCNet(nn.Module): def __init__(self, input_dim, G, embedding_dim=300, num_labels=2, emb_scale=1.0, w_scale=1e-2, dropout=0.1, activation=F.sigmoid): super(GCN_FCNet, self).__init__() self.input_dim = input_dim+embedding_dim # self.linear_final = nn.Linear(self.input_dim + embedding_dim, num_labels) self.linear_final = nn.Sequential( nn.Linear(self.input_dim, 500), nn.Sigmoid(), # nn.Linear(500, 500), # nn.Sigmoid(), nn.Linear(500, 500), nn.Sigmoid(), nn.Linear(500, num_labels) ) # self.linear_final = nn.Linear(self.input_dim, num_labels) self.G = G self.nV = len(G.nodes()) edgelist = np.array([[u, v] for u,v,c in nx.to_edgelist(G)]).T self.nE = edgelist.shape[1] A = ss.csr_matrix((np.ones(self.nE), edgelist), shape=(self.nV, self.nV)) # A = ss.coo_matrix(A) # A_ix = torch.LongTensor(np.vstack((A.row, A.col))) # A_val = torch.FloatTensor(A.data) # A = ts.FloatTensor(A_ix, A_val, torch.Size(A.shape)) # A.requires_grad = False D_half_val = np.array(A.sum(axis=1)).flatten()**-0.5 D_half_ix = np.arange(self.nV).reshape(1,-1).repeat(2, axis=0) D_half = ss.csr_matrix((D_half_val, D_half_ix), shape=(self.nV, self.nV)) LM = ss.coo_matrix(D_half.dot(A).dot(D_half)) LM_ix = torch.LongTensor(np.vstack((LM.row, LM.col))) LM_val = torch.FloatTensor(LM.data) self.LM = ts.FloatTensor(LM_ix, LM_val, torch.Size(LM.shape)) self.LM.requires_grad = False self.H0 = torch.randn((self.nV, embedding_dim))*emb_scale self.W1 = torch.randn((embedding_dim, embedding_dim))*w_scale self.W2 = torch.randn((embedding_dim, embedding_dim))*w_scale self.H0 = nn.Parameter(self.H0, requires_grad=True) self.W1 = nn.Parameter(self.W1, requires_grad=True) self.W2 = nn.Parameter(self.W2, requires_grad=True) self.cached = False # def backward_hook(m, grad_input, grad_output): # m.cached = False # self.register_backward_hook(backward_hook) self.dropout = dropout self.activation = activation # self.gcn = GCN(embedding_dim, embedding_dim, embedding_dim, 0.1, A) def forward(self, input_tensor, node): if not self.cached: # H1 = F.dropout(self.activation(torch.spmm(self.LM, torch.mm(self.H0, self.W1)) ), self.dropout, training=self.training) # self.H2 = F.dropout(self.activation(torch.spmm(self.LM, torch.mm(H1, self.W2)) ), self.dropout, training=self.training) H1 = self.activation(torch.spmm(self.LM, torch.mm(self.H0, self.W1)) ) self.H2 = self.activation(torch.spmm(self.LM, torch.mm(H1, self.W2)) ) # self.H2 = ts.spmm(self.LM, torch.mm(H1, self.W1)) self.cached = True # print(gcn_out.shape) # print(input_tensor.shape) gcn_out = self.H2[node] fc_input = torch.cat((gcn_out, input_tensor), 1) scores = self.linear_final(fc_input) # scores = self.linear_final(input_tensor) return scores def load_dataset(path,train): train_data = np.load(path, allow_pickle=True) if not train: train_data = train_data[()] embeddings = train_data['embeddings'] labels = train_data['labels'] sense_keys = train_data['synsets'] synsets = [sc2ss(sensekey) for sensekey in sense_keys] print('loaded BERT embeddings') return embeddings, labels, synsets # def attach_graph(graph_dict, sense_keys, embeddings): # counter = 0 # concatenated_representation = [] # #print('report.n.04' in ix_G_lookup) # #print('back.n.03' in ix_G_lookup) # for i in range(len(sense_keys)): # sensekey = sense_keys[i] # synset = sc2ss(sensekey) # if(synset in ix_G_lookup): # index = ix_G_lookup[synset] # vector = graph_dict['embeddings'][index] # else: # #sensekey not in graph list # counter += 1 # vector = np.zeros_like(graph_dict['embeddings'][0]) # if(i%1e5==0): # print(i,"done") # #attach graph vector # concatenated_representation.append(np.concatenate([embeddings[i],vector],axis=0)) # print("shape",np.array(concatenated_representation).shape,counter) # return np.array(concatenated_representation) # def get_graph_embeddings(graph_dict,synset_ids): # embeddings = [] # for synset_id in synset_ids: # embeddings.append(graph_dict['embeddings'][synset_id]) # return np.array(embeddings) def write_results(path,dataset,probs): pred = np.argmax(probs,axis=1) with open(os.path.join(path,dataset+'_results.txt'),'w') as f: for i,j,k in zip(pred,probs[:,0],probs[:,1]): f.write(str(i)+' '+str(j)+' '+str(k)+'\n') return os.path.join(path,dataset+'_results.txt') def sc2ss(sensekey): '''Look up a synset given the information from SemCor''' ### Assuming it is the same WN version (e.g. 3.0) # TO DO: Need a better way of extracting string synset = str(wn.lemma_from_key(sensekey).synset())[8:-2] #print(synset) return synset # def main(): if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--embeddings_data_dir",default=None,type=str,help="The input embedding file") parser.add_argument("--dataset",default=None,type=str,help="Dataset name") parser.add_argument("--do_train",action='store_true',help="Whether to run training.") parser.add_argument("--do_eval",action='store_true',help="Whether to run evaluation") parser.add_argument("--out_results_dir",default=None,type=str,help="Output result path") parser.add_argument("--load_model_path",default=None,type=str,help="Eval - model to be loaded") parser.add_argument("--batch_size",default=32,type=int,help="Total batch size for training.") parser.add_argument("--num_epochs",default=5,type=int,help="Number of epochs.") # parser.add_argument("--graph_embeddings_loc",default=None,type=str,help="The graph embedding file") args = parser.parse_args() os.makedirs(args.out_results_dir, exist_ok=True) # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device = "cpu" n_gpu = torch.cuda.device_count() print("device",device,"n_gpu",n_gpu) # graph_location = args.graph_embeddings_loc # graph = Graph('load') # g_vector = graph.get_embeddings(location =graph_location) # graph_dict = graph.embedding_to_tuple(g_vector) G = get_graph() # model = GCN_FCNet(300, G) # model.to(device) # model(1, 2) nV = len(G.nodes()) ix_G_lookup = {name:i for i, name in enumerate(G.nodes())} embeddings, labels,synsets = load_dataset(args.embeddings_data_dir,args.do_train) # assert list(G.nodes()) == ix_G_lookup.keys() all_labels = labels synset_mapping = torch.tensor([ix_G_lookup[synset] if synset in ix_G_lookup else -1 for synset in synsets]).long() # graph_embeddings = torch.tensor(np.concatenate([graph_dict['embeddings'],np.mean(graph_dict['embeddings'],axis=0).reshape(1,-1)],axis=0)) ###embeddings = attach_graph(graph_dict,sense_keys,embeddings) embeddings = torch.tensor(embeddings) labels = torch.tensor(labels).long() data= TensorDataset(embeddings, labels, synset_mapping) shuffle_bool = not args.do_eval dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=shuffle_bool) num_labels = 2 ####Semeval07 dev set dev_embeddings, dev_labels,dev_synsets = load_dataset("embeddings/semeval2007.npy",False) dev_embeddings = torch.tensor(dev_embeddings, device=device) all_dev_labels = dev_labels dev_synset_mapping = torch.tensor([ix_G_lookup.get(synset, nV-1) for synset in dev_synsets]).long() # dev_graph_embeddings = torch.tensor(np.concatenate([graph_dict['embeddings'],np.mean(graph_dict['embeddings'],axis=0).reshape(1,-1)],axis=0)) # dev_embeddings = torch.tensor(dev_embeddings) # dev_concatenated_embeddings = torch.cat((dev_embeddings,dev_graph_embeddings[dev_synset_mapping]),axis=1) ########## best_accuracy = 0 if args.do_train: output_model_file = os.path.join(args.out_results_dir,"model_save") model = GCN_FCNet(embeddings.shape[1], G) model.to(device) model.train() optimizer = torch.optim.Adam(model.parameters(), lr=0.01) gamma = 0.995 scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma, last_epoch=-1) epoch = 0 loss_fct = CrossEntropyLoss() for epoch_no in trange(int(args.num_epochs), desc="Epoch"): epoch += 1 tr_loss = 0 for step, batch in enumerate(tqdm(dataloader, desc="Iteration")): batch = tuple(t.to(device) for t in batch) bert_embeddings, labels, synsets = batch # graph_embedding_lookup = graph_embeddings[synsets.to('cpu')] # inputs = torch.cat((bert_embeddings,graph_embedding_lookup.to(device)),1) inputs = bert_embeddings logits = model(inputs.float(), synsets) loss = loss_fct(logits.view(-1, num_labels), labels.view(-1)) tr_loss += loss loss.backward(retain_graph=True) optimizer.step() optimizer.zero_grad() print("Epoch",epoch_no,"Loss",tr_loss) dev_logits = model(dev_embeddings.float(), dev_synset_mapping) dev_prob_values = nn.Softmax(dim=-1)(dev_logits).cpu().detach().numpy() result_path = write_results(".",'semeval2007',dev_prob_values) accuracy = evaluate_results('semeval2007',result_path) best_accuracy = max(best_accuracy,accuracy) # if(best_accuracy==accuracy): # print("saving model..") # torch.save(model.state_dict(), output_model_file) if(args.do_eval): model = GCN_FCNet(embeddings.shape[1], G) model.to(device) model.load_state_dict(torch.load(args.load_model_path)) model.eval() probs = np.zeros((embeddings.shape[0],num_labels)) l = 0 h = 0 eval_dataloader = DataLoader(data, batch_size=args.batch_size, shuffle=False) for step, batch in enumerate(tqdm(eval_dataloader, desc="Iteration")): batch = tuple(t.to(device) for t in batch) bert_embeddings, labels, synsets = batch # graph_embedding_lookup = graph_embeddings[synsets.to('cpu')] # inputs = torch.cat((bert_embeddings,graph_embedding_lookup.to(device)),1) inputs = bert_embeddings logits = model(inputs.float(), synsets) prob_values = nn.Softmax(dim=-1)(logits).cpu().detach().numpy() h = l + prob_values.shape[0] probs[l:h] = prob_values l = h pred = (probs[:,1]>=0.5).astype(int) truth = all_labels.astype(int) print(truth.shape) print("accuracy",np.sum(pred==truth)*1.0/pred.shape[0]) result_path = write_results(args.out_results_dir,args.dataset,probs) evaluate_results(args.dataset,result_path) # if __name__ == "__main__": # main() ``` #### File: AakashSrinivasan03/GlossBert-GraphEmbeddings/graph_embeddings.py ```python import numpy as np import os from tqdm import tqdm class Graph(object): """docstring for Graph""" def __init__(self, source): super(Graph, self).__init__() self.source = source def build(self): '''builds adjacency matrix''' pass def load(self, location): embeddings_index = {} f = open(location, 'r', encoding='utf-8') for line in f: values = line.rstrip().rsplit(' ') word = values[0] coefs = np.asarray(values[1:], dtype='float32') embeddings_index[word] = coefs f.close() print('found %s word vectors' % len(embeddings_index)) return embeddings_index def get_embeddings(self, location = None): if self.source == 'load': embeddings = self.load(location) else: embeddings = self.build() return embeddings def embedding_to_tuple(self, dic): '''converts embedding dictionary to matrix and returns matrix and indexing''' name_to_index = {} index_to_name = {} mat = np.zeros((len(dic),300)) i=0 for key, value in dic.items(): mat[i] = value name_to_index[key] = i index_to_name[i] = key i+=1 output = {} output['embeddings'] = mat output['node_2_idx'] = name_to_index output['idx_2_node'] = index_to_name return output ``` #### File: AakashSrinivasan03/GlossBert-GraphEmbeddings/sampling.py ```python import pickle import pandas as pd import nltk import re from nltk.corpus import wordnet as ewn import numpy as np def load_dataset(path,train): train_data = np.load(path, allow_pickle=True) ########if(not train): #train_data = train_data[()] embeddings = train_data['embeddings'] labels = train_data['labels'] sense_keys = train_data['synsets'] synsets = [sc2ss(sensekey) for sensekey in sense_keys] print('loaded BERT embeddings') return embeddings, labels, synsets def sc2ss(sensekey): '''Look up a synset given the information from SemCor''' ### Assuming it is the same WN version (e.g. 3.0) # TO DO: Need a better way of extracting string synset = str(ewn.lemma_from_key(sensekey).synset())[8:-2] #print(synset) return synset count = 0 def get_neg_sampling(data_loc,loc,save_loc): print(data_loc) print(loc) embeddings, labels, synsets = load_dataset(data_loc,True) df = pd.read_csv(loc,sep='\t') def get_key(sent): return sent.split()[0] df['key'] = df['gloss'].apply(get_key) print('keys done') def sc2ss(sensekey): '''Look up a synset given the information from SemCor''' ### Assuming it is the same WN version (e.g. 3.0) # TO DO: Need a better way of extracting string synset = str(ewn.lemma_from_key(sensekey).synset())[8:-2] #print(synset) return synset def get_wordnet_pos(treebank_tag): if treebank_tag.startswith('J'): return 's' elif treebank_tag.startswith('V'): return 'v' elif treebank_tag.startswith('N'): return 'n' elif treebank_tag.startswith('R'): return 'r' else: return None def sensekey_2_syn(x): syn = sc2ss(x).split('.')[1] return syn df['syn'] = df['sense_key'].apply(sensekey_2_syn) print('got syn') def get_tag(x): sent = x['sentence'] #key = x['gloss'].split()[0] key = x['key'] #sense = x['sense_key'] global count count+=1 if(count%2000==0): print('We are at line ',count) #syn = sc2ss(sense).split('.')[1] syn = x['syn'] #sent is a single sentence tokens = nltk.word_tokenize(sent) tokens = [t for t in tokens if not re.search(r'[^\w\d\s]',t)] tags = nltk.pos_tag(tokens) for i in range(len(tokens)): if tokens[i]==key: val = get_wordnet_pos(tags[i][1]) if val==syn: return 1 else: return 0 return 0 print('done') df['pos'] = df.apply(get_tag,axis=1) out = df['pos'].to_numpy() #print(df['pos'].head()) #print(df['pos'].sum()) #np.save('mask_train_pos.npy',out) embeddings = embeddings[out==1] labels = labels[out==1] synsets = np.array(synsets)[out==1] dataset = {} dataset['embeddings'] = embeddings dataset['labels'] = labels dataset['synsets'] = synsets with open(save_loc, 'wb') as handle: pickle.dump(out, handle, protocol=pickle.HIGHEST_PROTOCOL) return dataset import argparse if __name__ =='__main__': parser = argparse.ArgumentParser() parser.add_argument("--embeddings_loc",default=None,type=str,help="Location to embeddings of numpy") parser.add_argument("--csv_loc",default=None,type=str,help="Location to the csv") parser.add_argument("--save_location",default=None,type=str,help="Location for the final dataset") args = parser.parse_args() d = get_neg_sampling(data_loc=args.embeddings_loc,loc=args.csv_loc,save_loc = args.save_location) # d = get_neg_sampling(data_loc='combined.npy',loc= '/home/pratyushgarg11/data/bert-n-graph-embeddings/GlossBert-GraphEmbeddings/Training_Corpora/SemCor/semcor_train_sent_cls_ws.csv') ''' count= 0 def count_zeros(word): global count if not word: count+=1 return 0 _ = words.apply(count_zeros) print(count) print(words.head()) ''' ```
{ "source": "AakashSudhakar/6nomads-interview-project", "score": 3 }
#### File: 6nomads-interview-project/structures/dataset_processor.py ```python import numpy as np import pandas as pd class Dataset_Processor(object): """ Class object instance for processing and transforming 6Nomads data for predictive analytics. """ def __init__(self): """ Initializer method for object instance creation. """ self.REL_PATH_TO_INT_DATA_TRAIN = "../data/interim/train_i.csv" self.REL_PATH_TO_INT_DATA_TEST = "../data/interim/test_i.csv" def load_data(self, which="both"): """ Instance method to load in dataset(s) into conditionally separated/joined Pandas DataFrame(s). INPUTS: {which}: - str(both): Reads in training and testing data files as tuple of individual DataFrames. (DEFAULT) - str(all): Reads in training and testing data files as single conjoined DataFrame. - str(train): Reads in training data file as single DataFrame. - str(test): Reads in testing data file as single DataFrame. OUTPUTS: pandas.DataFrame: Single or multiple Pandas DataFrame object(s) containing relevant data. """ # Validate conditional data loading arguments if which not in ["all", "both", "train", "test"]: raise ValueError("ERROR: Inappropriate value passed to argument `which`.\n\nExpected value in range:\n - all\n - both\n - train\n - test\n\nActual:\n - {}".format(which)) # Independently load training data if which == "train": return pd.read_csv(self.REL_PATH_TO_INT_DATA_TRAIN, index_col=0) # Independently load testing data if which == "test": return pd.read_csv(self.REL_PATH_TO_INT_DATA_TEST, index_col=0) else: df_train = pd.read_csv(self.REL_PATH_TO_INT_DATA_TRAIN, index_col=0) df_test = pd.read_csv(self.REL_PATH_TO_INT_DATA_TEST, index_col=0) # Load merged training and testing data if which == "all": return pd.concat([df_train, df_test], keys=["train", "test"], sort=True) # Load separated training and testing data (DEFAULT) if which == "both": return df_train, df_test def feature_encoder(self, datasets, target, lookup_table, dtype="discrete", drop_og=False): """ Instance method to iteratively encode labels in dataset as numerically categorical data. INPUTS: {datasets}: - pd.DataFrame: Single dataset; cast to list for iterative feature mapping. - list: List of datasets; used for iterative feature mapping. {target}: - str: Name of target feature in dataset containing labels on which to encode. {lookup_table}: - dict: Encoding table with unencoded data ranges as values and encoded numerical categories as keys. {dtype}: - str(discrete): Data type parameter; indicates presence of discretized values across dataset. (DEFAULT) - str(continuous): Data type parameter; indicates presence of continuous values across dataset. {drop_og}: - bool(True): Dataset drops original feature after encoding. - bool(False): Dataset does not drop original feature after encoding. (DEFAULT) OUTPUTS: NoneType: Dataset insertion is performed inplace and does not return new object(s). """ if type(datasets) is not list: datasets = [datasets] def _encoder_helper(label, lookup_table, dtype): """ Custom helper function to replace unencoded label with encoded value from custom lookup table. INPUTS: {label}: - int: Unencoded value within Pandas Series to alter to categorically encoded label. {lookup_table}: - dict: Encoding table with unencoded data ranges as values and encoded numerical categories as keys. {dtype}: - str(discrete): Data type parameter; indicates presence of discretized labels. - str(continuous): Data type parameter; indicates presence of continuous labels. OUTPUTS: int: Encoded numerical category as new label. (DEFAULT) str: Encoded string-based category as new label. """ for key, value in lookup_table.items(): if dtype == "discrete": if label in value: return key if dtype == "continuous": if value[0] <= label < value[1]: return key encoded_feature = "{}_encoded".format(target) for dataset in datasets: if encoded_feature in dataset: dataset.drop(columns=[encoded_feature], inplace=True) features = dataset.columns.tolist() dataset.insert(loc=features.index(target) + 1, column="{}_encoded".format(target), value=dataset[target].apply(_encoder_helper, lookup_table=lookup_table, dtype=dtype)) if drop_og: dataset.drop(columns=[target], inplace=True) return def save_dataset(self, dataset, savepath, filetype="csv"): """ Instance method to save current state of dataset to data file accessible by navigating the parent directory. INPUTS: {dataset}: - pd.DataFrame: Single parent dataset; used for data formatting and allocation (save to memory). {savepath}: - str: Relative path location within parent directory to which dataset is saved. {filetype}: - str(csv): Dataset is formatted as comma-separated values file architecture. (DEFAULT) - str(excel): Dataset is formatted as Excel spreadsheet file architecture. OUTPUTS: NoneType: Saving data to memory is performed outside context of object and does not return new object(s). """ # Sanitization for method instantiation if unknown value is passed to `filetype` keyword argument if filetype not in ["csv", "excel"]: raise ValueError("Value passed to keyword argument `filetype` is uninterpretable. EXPECTED: ['csv', 'excel']. ACTUAL: ['{}']".format(filetype)) # Explicit relative pathway declaration and saving process performed on dataset savepath += ".{}".format(filetype) if filetype == "csv": dataset.to_csv(savepath) elif filetype == "excel": dataset.to_excel(savepath) return ```
{ "source": "AakashSudhakar/helical", "score": 2 }
#### File: AakashSudhakar/helical/app.py ```python from flask import Flask, request, render_template # Imports Custom Algorithm Structures for Data Processing from .structures import processor01, processor02, processor03, processor04, processor05 # Initializes Flask App app = Flask(__name__) def _validate_data_general(dataset): """ Helper function to validate user input as genomic data. """ PERMITTED_CHARS = ["A", "C", "G", "T"] for char in dataset: if char not in PERMITTED_CHARS: return -1 def _validate_data_codons(dataset): """ Helper function to validate user input as codon sequence. """ if len(dataset) % 3 != 0: return -1 # Creates Home Page with User Data Input Option @app.route("/") def user_form(): return render_template("input-data.html") # Creates POST Route at Home Page with User Data Processing @app.route("/", methods=["POST"]) def user_form_proc(): # NOTE: PROCESSORS values reflect the _value_ tags in the HTML button elements in ./templates/input-data.html. PROCESSORS = { 1: "Get Nucleotide Count", # P01: DNA 2: "Convert to RNA", # P02: RNA 3: "Generate Reverse Complement", # P03: REVC 4: "Determine GC Content", # P05: GC 5: "Translate to Protein Chain" # P08: PROT } if request.form["proc"] == PROCESSORS[1]: if request.form["proc01"]: text01 = request.form["proc01"].upper() if _validate_data_general(text01) != -1: proc01 = processor01.Processor01_NucleotideCounter(text01) return proc01.render_response(proc01.nucleotide_counter()) else: return "ERROR: Inputted data is invalid. Please try again." else: return "ERROR: Nucleotide Counts Processor did not receive any data." elif request.form["proc"] == PROCESSORS[2]: if request.form["proc02"]: text02 = request.form["proc02"].upper() if _validate_data_general(text02) != -1: proc02 = processor02.Processor02_DNATransriber(text02) return proc02.render_response(proc02.transcriber()) else: return "ERROR: Inputted data is invalid. Please try again." else: return "ERROR: RNA Transcriber Processor did not receive any data." elif request.form["proc"] == PROCESSORS[3]: if request.form["proc03"]: text03 = request.form["proc03"].upper() if _validate_data_general(text03) != -1: proc03 = processor03.Processor03_ReverseComplement(text03) return proc03.render_response(proc03.reverse_complement_generator()) else: return "ERROR: Inputted data is invalid. Please try again." else: return "ERROR: Reverse Complement Processor did not receive any data." elif request.form["proc"] == PROCESSORS[4]: if request.form["proc04"]: text04 = request.form["proc04"].upper() if _validate_data_general(text04) != -1: proc04 = processor04.Processor04_GCContent(text04) return proc04.render_response(proc04.gc_content_calculator()) else: return "ERROR: Inputted data is invalid. Please try again." else: return "ERROR: GC-Content Calculation Processor did not receive any data." elif request.form["proc"] == PROCESSORS[5]: if request.form["proc05"]: text05 = request.form["proc05"].upper() if _validate_data_general(text05) != -1 and _validate_data_codons(text05) != -1: preproc05 = processor02.Processor02_DNATransriber(text05) proc05 = processor05.Processor05_ProteinTranslator(preproc05.transcriber()) return proc05.render_response(proc05.rna_to_protein_translator()) else: return "ERROR: Inputted data is invalid or is not evenly divisible by three (3). Please try again." else: return "ERROR: Protein Chain Translator did not receive any data." ``` #### File: helical/structures/processor02.py ```python class Processor02_DNATransriber(object): """ Object structure containing logic for DNA-to-RNA Transcription algorithm. """ def __init__(self, data): self.dataset = data def transcriber(self): """ Method to transcribe relevant DNA base pairs (Thymine) into RNA base pairs (Uracil). """ return "".join([[base, "U"][base == "T"] for base in self.dataset]) def render_response(self, response): """ Method to render stylized response text to user. """ return "\nOriginal genomic sequence: {}\n\nTranscribed genomic sequence: {}".format(str(self.dataset), response) ``` #### File: helical/structures/processor03.py ```python class Processor03_ReverseComplement(object): """ Object structure containing logic for DNA reverse complement generation. """ def __init__(self, data): self.dataset = data def reverse_complement_generator(self): """ Method to generate reversed complement strand (swapped base pair, reverse order) from DNA. """ BASE_PAIRS = { "A": "T", "T": "A", "G": "C", "C": "G" } return [str(value) for value in [BASE_PAIRS.get(key) for key in self.dataset.strip()]] def render_response(self, response): """ Method to render stylized response text to user. """ return "\nOriginal genomic sequence: {}\n\nReverse complement sequence: {}".format(str(self.dataset), "".join(response)[::-1]) ``` #### File: helical/structures/processor05.py ```python class Processor05_ProteinTranslator(object): """ Object structure containing logic for DNA-to-RNA-to-protein genomic translation. """ def __init__(self, data): self.dataset = data self.TRANSLATION_TABLE = { "UUU": "F", "CUU": "L", "AUU": "I", "GUU": "V", "UUC": "F", "CUC": "L", "AUC": "I", "GUC": "V", "UUA": "L", "CUA": "L", "AUA": "I", "GUA": "V", "UUG": "L", "CUG": "L", "AUG": "M", "GUG": "V", "UCU": "S", "CCU": "P", "ACU": "T", "GCU": "A", "UCC": "S", "CCC": "P", "ACC": "T", "GCC": "A", "UCA": "S", "CCA": "P", "ACA": "T", "GCA": "A", "UCG": "S", "CCG": "P", "ACG": "T", "GCG": "A", "UAU": "Y", "CAU": "H", "AAU": "N", "GAU": "D", "UAC": "Y", "CAC": "H", "AAC": "N", "GAC": "D", "UAA": "Stop", "CAA": "Q", "AAA": "K", "GAA": "E", "UAG": "Stop", "CAG": "Q", "AAG": "K", "GAG": "E", "UGU": "C", "CGU": "R", "AGU": "S", "GGU": "G", "UGC": "C", "CGC": "R", "AGC": "S", "GGC": "G", "UGA": "Stop", "CGA": "R", "AGA": "R", "GGA": "G", "UGG": "W", "CGG": "R", "AGG": "R", "GGG": "G" } def rna_to_protein_translator(self): """ Method to convert transcribed DNA into corresponding protein sequence. """ protein_seq = list() for iterator in range(0, len(self.dataset), 3): codon = self.dataset[iterator:iterator+3] if self.TRANSLATION_TABLE[codon] == "Stop": return protein_seq protein_seq.append(self.TRANSLATION_TABLE[codon]) return protein_seq def render_response(self, response): """ Method to render stylized response text to user. """ return "Transcribed RNA sequence: {}\n\nTranslated protein chain: {}".format(self.dataset, "-".join(response)) ```
{ "source": "aakashsur/docker-hirise", "score": 3 }
#### File: docker-hirise/scripts/add_short_contigs.py ```python import argparse def main(broken=None, scaffolds=None, length=1000, output=None): """Takes as input a broken.fa file and a HiRise scaffold file and outputs the scaffolds with the short contigs appended to the end.""" # Open output and write HiRise scaffolds with open(output, 'w') as out_handle: with open(scaffolds) as scaff_handle: for line in scaff_handle: out_handle.write(line) # Writes small contigs to output for header, seq, string_seq in get_seqs(broken): if len(seq) < length: out_handle.write(header) out_handle.write(string_seq) out_handle.write("\n") def get_seqs(fasta): """Takes as input a fasta file and yields the header line, the sequence stripped on newlines, and the sequence with new lines as they were in the fasta file.""" with open(fasta) as fasta_handle: header = None for line in fasta_handle: if line.startswith(">"): if header: yield header, ''.join(seq), '\n'.join(seq) seq = [] header = line else: seq.append(line.rstrip()) # Yield final sequence yield header, ''.join(seq), '\n'.join(seq) def get_args(): parser = argparse.ArgumentParser() parser.add_argument("-b", "--broken", help="The broken.fa file.") parser.add_argument("-s", "--scaffolds", help="The HiRise scaffold fasta file.", default="/dev/stdin") parser.add_argument("-l", "--length", help="The maximum length of contigs to include", default=1000) parser.add_argument("-o", "--output", help="Output file", default="/dev/stdout") parser.add_argument("-d", "--debug", help="Run pdb", default=False, action="store_true") return parser.parse_args() if __name__ == "__main__": args = get_args() if args.debug: import pdb pdb.set_trace() main(broken=args.broken, scaffolds=args.scaffolds, length=args.length, output=args.output) ``` #### File: docker-hirise/scripts/chicago_edge_scores.py ```python from __future__ import division from __future__ import print_function from builtins import str from builtins import range from builtins import object from past.utils import old_div import math import sys """Chicago likelihood model calculations as described in ... """ debug=False def fragment_size(l1,l2,o1,o2,coords,g=0): """o1 and o2 indicate the orientations of the two contigs being used 0 means 5' to 3'; 1 means flipped""" x,y = coords[0],coords[1] if (o1,o2) == (0,0): # -------1-----> ----2------> return (y+l1-x+g) if (o1,o2) == (0,1): # -------1-----> <---2------- return (l2-y+l1-x+g) if (o1,o2) == (1,0): # <-------1----- ----2------> return (x+y+g) if (o1,o2) == (1,1): # <-------1-----> <----2------ return (l2-y+x+g) class ChicagoModel(object): def __init__(self,params): self.alpha = params.get('alpha',[1.0]) self.beta = params.get('beta',[1.0]) self.pn = params.get('pn',0.5) self.G = params.get('G',3000000000) self.N = params.get('N',100000000) self.nexps = len(self.alpha) def set_params(self,params): self.alpha = params.get('alpha') self.beta = params.get('beta' ) self.pn = params.get('pn' ) self.G = params.get('G' ) self.N = params.get('N' ) self.nexps = len(self.alpha) self.lnFinf = math.log(self.pn)-math.log(self.G) self.logN = math.log(self.N) self.logG = math.log(self.G) def __repr__(self): return(str({ 'pn': self.pn, 'G':self.G, 'N':self.N, 'a':self.alpha, 'b':self.beta, 'n':self.nexps })) ### These are the things that depend on the model: # def f0(self,x): """P_{raw}(x)= \sum \alpha_i \beta_i e^{-x \beta_i} """ return sum( [ self.alpha[i]*self.beta[i]*math.exp(-x*self.beta[i]) for i in range(self.nexps) ] ) def f0_prime(self,x): alpha=self.alpha beta=self.beta """P_{raw}(x)= \sum \alpha_i \beta_i e^{-x \beta_i} """ return ( sum([ -alpha[i]*beta[i]*beta[i]*math.exp(-beta[i]*x) for i in range(self.nexps) ]) ) def f0_double_prime(self,x): alpha=self.alpha beta=self.beta """P_{raw}(x)= \sum \alpha_i \beta_i e^{-x \beta_i} """ return ( sum([ alpha[i]*(beta[i]**3.0)*math.exp(-beta[i]*x) for i in range(self.nexps) ]) ) def F0(self,d): # \int f(x) dx alpha=self.alpha beta =self.beta if d<0: print("WTF? d<0:",d,file=sys.stderr) raise Exception return self.pn*d/self.G + (1.0-self.pn) * sum( [ - alpha[i]*(math.exp(-beta[i]*d)) for i in range(self.nexps)] ) def H0(self,d): # \int b x f(x) dx = \int b x e^{- b x} dx = -e^{- b x} \frac{bx+1}{b} alpha=self.alpha beta =self.beta return 0.5*d*d*self.pn/self.G + (1.0-self.pn)* sum([ -(old_div(alpha[i],beta[i]))*(math.exp(-beta[i]*d)*(beta[i]*d + 1.0)) for i in range(self.nexps) ]) def H0_good(self,d): # \int b x f(x) dx = \int b x e^{- b x} dx = -e^{- b x} \frac{bx+1}{b} alpha=self.alpha beta =self.beta return (1.0-self.pn)* sum([ -(old_div(alpha[i],beta[i]))*(math.exp(-beta[i]*d)*(beta[i]*d + 1.0)) for i in range(self.nexps) ]) # ### def F(self,d): return self.F0(d)-self.F0(0) def H(self,d): return self.H0(d)-self.H0(0) def f(self,x,cache={}): #cache this if x in cache: return cache[x] r= old_div(self.pn,self.G) + (1.0-self.pn) * self.f0(x) cache[x]=r return r def f_prime(self,x): return (1-self.pn)*self.f0_prime(x) def f_double_prime(self,x): return (1-self.pn)*self.f0_double_prime(x) ### These are for backwards compatability with the old implementation # def p_insert_raw(self,x): return self.f0(x) def p_insert_effective(self,x): """ p_n/G + (1-p_n) P_{raw}(x) """ return self.f(x) def ddg_p(self,x): return self.f0_prime(x) def d2dg2_p(self,x): return self.f0_double_prime(x) def ll(self,l1,l2,o1,o2,links,g,p0=-1): return self.lnL(l1,l2,o1,o2,g,links) def p0(self,l1,l2,g): return 1.0-(old_div(self.n_bar(l1,l2,g),self.N)) # ### def omega(self,l1a,l2a,d): l1=min(l1a,l2a) l2=max(l1a,l2a) if d<0: return 1 elif d<l1: return d+1 elif d<l2: return l1+1 elif d<=l1+l2: return l1+l2-d+1 else: return 0 def osigma(self,l1a,l2a,d): l1=min(l1a,l2a) l2=max(l1a,l2a) if d<0: return 0 elif d<l1: return 1.0 elif d<l2: return 0 elif d<l1+l2: return -1.0 else: return 0 def lnF(self,x,cache={}): # Cache this if x in cache: return cache[x] r=math.log( self.f(x) ) cache[x]=r return r #math.log( self.f(x) ) def T(self,d,cache={}): # Cache this if d in cache: return cache[d] #\sum_{i=0}^{d} (d-i) f(i) \approx x= d*self.F(d) - self.H(d) cache[d]=x return x def p(self,l1,l2,g): if l1<0: raise Exception if l2<0: raise Exception if (l1+l2+g)<0: sys.stderr.write("wtf: l1+l2+g < 0 ; {}+{}+{} < 0\n".format(l1,l2,g)) if (l1+g)<0: sys.stderr.write("wtf: l1+g < 0 ; {}+{} < 0\n".format(l1,g)) if (l2+g)<0: sys.stderr.write("wtf: l2+g < 0 ; {}+{} < 0\n".format(l2,g)) if (g)<0: sys.stderr.write("wtf: g < 0 ; {} < 0\n".format(g)) p = old_div((self.T(l1+l2+g)+self.T(g)-self.T(l1+g)-self.T(l2+g)),self.G) return p def p_prime(self,l1,l2,g): if l1<0: raise Exception if l2<0: raise Exception p = old_div((self.F(l1+l2+g)+self.F(g)-self.F(l1+g)-self.F(l2+g)),self.G) # p = ((l1+l2+g)*self.f(l1+l2+g)+g*self.f(g)-(l1+g)*self.f(l1+g)-(l2+g)*self.f(l2+g))/self.G return p def p_double_prime(self,l1,l2,g): if l1<0: raise Exception if l2<0: raise Exception ss = self.f(l1+l2+g)+self.f(g)-self.f(l1+g)-self.f(l2+g) # ss +=(l1+l2+g)*self.f_prime(l1+l2+g)+g*self.f_prime(g)-(l1+g)*self.f_prime(l1+g)-(l2+g)*self.f_prime(l2+g) return old_div(ss,self.G) # def Q(self,l1,l2,g,x): # return (self.omega(l1,l2,x-g)*self.f_prime(x) + self.osigma(l1,l2,x-g)*self.f(x) )/( self.omega(l1,l2,x-g)*self.f(x) ) def R(self,l1,l2,g,x): # P''/P - (P'/P)^2 return ( old_div(self.f_double_prime(x),self.f(x)) - (self.Q(x))**2.0 ) def n_bar0(self,l1l2): #return self.N*self.pn*l1l2*2/(self.G*self.G) # return self.N*self.pn*l1l2*2.0/(self.G*self.G) return self.N*self.pn*l1l2/(self.G*self.G) def n_bar(self,l1,l2,g): p = self.p(l1,l2,g) return self.N*p def cutScore(self,l1,x,n,sumLogP,rangeCutoff=False,minSep=0): la=x-minSep/2 lb=l1-x-minSep/2 if rangeCutoff and la>rangeCutoff: la=rangeCutoff if rangeCutoff and lb>rangeCutoff: lb=rangeCutoff if la <=0: return 0.0 if lb <=0: return 0.0 try: n_bar = self.n_bar(la,lb,minSep) except Exception as e: print("Caught an exception when trying to compute n_bar, where la={}, lb={} and gap={}, based on l1={}, x={}, minSep={}".format(la,lb,minSep,l1,x,minSep)) raise e n_bar0= self.n_bar0(la*lb) sumLogP0 = n*(math.log(self.pn) - self.logG) return -n_bar + sumLogP - ( -n_bar0 + sumLogP0) def tileScore(self,binwidth,tile,n,sumLogP,rangeCutoff=False,minSep=0): la=binwidth lb=binwidth # if rangeCutoff and la>rangeCutoff: la=rangeCutoff # if rangeCutoff and lb>rangeCutoff: lb=rangeCutoff if tile[0]==tile[1]: n_bar = self.N*(binwidth*(self.F(binwidth)-self.F(minSep))-(self.H(binwidth)-self.H(minSep)))/self.G n_bar0= self.N*self.pn*(((binwidth-minSep)/self.G)**2.0) # sumLogP0 = n*(math.log(self.pn) - self.logG) sumLogP0 = n*self.lnFinf return -n_bar + sumLogP - ( -n_bar0 + sumLogP0) else: n_bar = self.n_bar(la,lb,(tile[1]-tile[0]-1)*binwidth) n_bar0= self.N*self.pn*la*lb*2/(self.G*self.G) # sumLogP0 = n*(math.log(self.pn) - self.logG) # self.lnFinf = math.log(self.pn)-math.log(self.G) sumLogP0 = n*self.lnFinf return -n_bar + sumLogP - ( -n_bar0 + sumLogP0) def lnL(self,l1,l2,o1,o2,g,links): n=len(links) n_bar = self.n_bar(l1,l2,g) try: r= n*self.logN - n_bar - n*self.logG + sum( [ math.log(self.omega(l1,l2,fragment_size(l1,l2,o1,o2,links[i],0))) + self.lnF( fragment_size(l1,l2,o1,o2,links[i],g) ) for i in range(n) ] ) except Exception as e: print(e) print("l1,l2",l1,l2) print("o1,o2",o1,o2) print("links:",links) print("fragment sizes g=0:", [fragment_size(l1,l2,o1,o2,links[i],0) for i in range(n)]) print("fragment sizes g=g:", [fragment_size(l1,l2,o1,o2,links[i],g) for i in range(n)]) print("omega=",[self.omega(l1,l2,fragment_size(l1,l2,o1,o2,links[i],0)) for i in range(n)]) print("lnF=",[ self.lnF( fragment_size(l1,l2,o1,o2,links[i],g)) for i in range(n)]) raise e return r def lnL0(self,l1,l2,o1,o2,links): n=len(links) n_bar = self.n_bar0(l1*l2) # n_bar = self.N*self.pn*l2*l1/(self.G**2) # return n*math.log(n_bar) - n_bar - math.log(math.factorial(n)) ll1= n*self.logN - n_bar - n*self.logG + sum( [ math.log(self.omega(l1,l2,fragment_size(l1,l2,o1,o2,links[i],0))) + self.lnFinf for i in range(n) ] ) return ll1 # ll2=ll1 # o2+=1 # o2=o2%2 # ll2= n*self.logN - n_bar - n*self.logG + sum( [ math.log(self.omega(l1,l2,fragment_size(l1,l2,o1,o2,links[i],0))) + self.lnFinf for i in range(n) ] ) # return max(ll1,ll2) def score(self,l1,l2,o1,o2,links,g,p0=0): n=len(links) #return self.lnL(l1,l2,o1,o2,g,links) - self.lnL0(l1,l2,o1,o2,links) # alternatively: return( - self.n_bar(l1,l2,g) + self.n_bar0(l1*l2) - n * self.lnFinf + sum( [ ( self.lnF( fragment_size(l1,l2,o1,o2,links[i],g) ) ) for i in range(n) ] ) ) def Q(self,x): # return (self.omega(l1,l2,x-g)*self.f_prime(x) + self.osigma(l1,l2,x-g)*self.f(x) )/( self.omega(l1,l2,x-g)*self.f(x) ) return (old_div(self.f_prime(x),self.f(x))) def ddg_lnL( self,l1,l2,o1,o2,links,g): n=len(links) try: r = -self.N * self.p_prime(l1,l2,g) + sum([ self.Q(fragment_size(l1,l2,o1,o2,links[i],g) ) for i in range(n)]) except Exception as e: print(e) print("l1,l2,g",l1,l2,g) print("n_bar:",self.n_bar(l1,l2,g)) print("p:",self.p(l1,l2,g)) print("p_prime:",self.p_prime(l1,l2,g)) raise e return r # return ( -self.n_bar(l1,l2,g) * self.p_prime(l1,l2,g) / self.p(l1,l2,g) + sum([ self.Q(l1,l2,g,fragment_size(l1,l2,o1,o2,links[i],g) ) for i in range(n)])) def d2dg2_lnL(self,l1,l2,o1,o2,links,g): n=len(links) return ( -self.N * self.p_double_prime(l1,l2,g) + sum([ self.R(l1,l2,g,fragment_size(l1,l2,o1,o2,links[i],g) ) for i in range(n) ]) ) def d2dg2_llr(self, l1,l2,o1,o2,links,g,seen={}): if not "warned" in seen: sys.stderr.write("using deprecated interface to likelihood model code.\n") seen["warned"]=1 return self.d2dg2_lnL(l1,l2,o1,o2,links,g) def ddg_llr(self, l1,l2,o1,o2,links,g,seen={}): if not "warned" in seen: sys.stderr.write("using deprecated interface to likelihood model code.\n") seen["warned"]=1 return self.ddg_lnL(l1,l2,o1,o2,links,g) def ml_gap(self,l1,l2,o1,o2,links,g0): gap=g0 G=self.G N=self.N pn=self.pn last_gap=g0 for i in range(100): #p0 = self.p0( l1,l2,gap) x1= self.ddg_lnL( l1,l2,o1,o2,links,gap) #1st derivative of the likelihood wrt. gap size x2= self.d2dg2_lnL(l1,l2,o1,o2,links,gap) #2nd derivative of the likelihood wrt. gap size score=self.score(l1,l2,o1,o2,links,gap) # if debug: print "\t".join(map(str,[ "#it",i,o1,o2,gap,score,gap-x1/2,x1,x2,x1/x2])) if x2==0: break print("hit x2==0 after",i) gap = int( gap - old_div(x1,x2) ) if gap<0.0: gap=10.0 if gap>200000.0: gap=200000 if abs(old_div(x1,x2))<0.1: break if abs(gap-last_gap)<1.0: break last_gap=gap score=self.score(l1,l2,o1,o2,links,gap) #l1,l2,o1,o2,G,pn,links,N,gap,p0) if gap<0.0: print("wtf? negative gap") raise Exception return gap,score model=ChicagoModel({}) def insert_size_dist(x): return model.p_insert_raw(x) def set_exp_insert_size_dist_fit_params(fit_params): model.set_params(fit_params) #print("#",model) def p_not_a_hit(l1,l2,GenomeSize,gaplen,pn): return model.p0(l1,l2,gaplen) def llr_v0(l1,l2,o1,o2,GenomeSize,pn,links,N,gaplen,p0 ): return model.score(l1,l2,o1,o2,links,gaplen,p0) def ll(l1,l2,o1,o2,GenomeSize,pn,links,N,gaplen,p0=-1): return model.ll(l1,l2,o1,o2,links,gaplen,p0) def ml_gap(l1,l2,o1,o2,G,pn,links,N,g0): #print "#",links return model.ml_gap(l1,l2,o1,o2,links,g0) # def ml_gap(self, l1,l2,o1,o2,links,g0): if __name__=="__main__": import sys import argparse parser = argparse.ArgumentParser() parser.add_argument('-M','--set_insert_size_dist_fit_params',default=False ) parser.add_argument('-d','--debug',default=False ) args = parser.parse_args() debug=args.debug fmodel=open( args.set_insert_size_dist_fit_params ) contents = fmodel.read() try: fit_params=eval(contents) except: "couldn't deal with option", args.param fmodel.close set_exp_insert_size_dist_fit_params(fit_params) for x in range(1,200000,100): print(x,model.f(x),model.f_prime(x),model.S(x),model.F(x),model.H(x)) ``` #### File: docker-hirise/scripts/chicago_support_bootstrap.py ```python from __future__ import division from __future__ import print_function from builtins import range from past.utils import old_div import sys import argparse from mapperlite import MapperLite import struct import hashlib import pysam import chicago_edge_scores as ces #import BamTags from bamtags import BamTags from chicago_edge_links2 import read_mask_ranges, mask_test from time import gmtime, strftime debug=False def pairs_overlap(x,y): a=min(x[0],x[1]) b=max(x[0],x[1]) c=min(y[0],y[1]) d=max(y[0],y[1]) if a<=c and c<=b: return True if a<=d and d<=b: return True if c<=a and a<=d: return True if c<=b and b<=d: return True return False def segments_intersect(x,y): if not pairs_overlap(x,y): raise Exception a=min(x[0],x[1]) b=max(x[0],x[1]) c=min(y[0],y[1]) d=max(y[0],y[1]) if a<=c and c<=b: p,q = (c,min(b,d)) if p>q: print("wtf1",x,y,(p,q)) if a<=d and d<=b: p,q = (max(a,c),d) if p>q: print("wtf2",x,y,(p,q)) if c<=a and a<=d: p,q = (a,min(b,d)) #wtf3 (2608, 2741) (1500, 3000) (2608, 1500) if p>q: print("wtf3",x,y,(p,q)) if c<=b and b<=d: p,q = (max(a,c),b) if p>q: print("wtf4",x,y,(p,q)) #wtf (1694, 3362) (1500, 3000) (1694, 1500) if p>q: print("wtf",x,y,(p,q)) raise Exception return (p,q) tmsd_debug=False def tile_mask_score_delta(i,j,binwidth,masked_segments,model,mask_iter_i,mask_iter_j,debug): if i==j: return(0) gap=(j-i)*binwidth left_tile_masked_segments = [] right_tile_masked_segments = [] mii0,mij0=mask_iter_i,mask_iter_j while mask_iter_i<len(masked_segments) and masked_segments[mask_iter_i][0]<(i+1)*binwidth: if tmsd_debug: print("tmsd:\tI",mask_iter_i,masked_segments[mask_iter_i],(i*binwidth,(i+1)*binwidth),file=sys.stderr,sep="\t") if pairs_overlap( masked_segments[mask_iter_i],(i*binwidth,(i+1)*binwidth)) : a,b = segments_intersect(masked_segments[mask_iter_i],(i*binwidth,(i+1)*binwidth)) if b-a < 0: print("tmsd:\tI",a,b,mask_iter_i,masked_segments[mask_iter_i],(i*binwidth,(i+1)*binwidth),file=sys.stderr,sep="\t") raise Exception left_tile_masked_segments.append( (a,b) ) mask_iter_i+=1 while mask_iter_j<len(masked_segments) and masked_segments[mask_iter_j][0]<(j+1)*binwidth: if tmsd_debug: print("tmsd:\tJ",mask_iter_j,masked_segments[mask_iter_j],(j*binwidth,(j+1)*binwidth),file=sys.stderr,sep="\t") if pairs_overlap( masked_segments[mask_iter_j],(j*binwidth,(j+1)*binwidth)) : a,b = segments_intersect(masked_segments[mask_iter_j],(j*binwidth,(j+1)*binwidth)) if b-a < 0: print("tmsd:\tJ",a,b,mask_iter_j,masked_segments[mask_iter_j],(j*binwidth,(j+1)*binwidth),file=sys.stderr,sep="\t") raise Exception right_tile_masked_segments.append( (a,b) ) mask_iter_j+=1 score_delta = 0.0 for a,b in right_tile_masked_segments: score_delta += model.n_bar( binwidth, b-a, gap+a-j*binwidth ) - model.n_bar0( binwidth*(b-a) ) for a,b in left_tile_masked_segments: score_delta += model.n_bar( binwidth, b-a, gap+(i+1)*binwidth-b ) - model.n_bar0( binwidth*(b-a) ) for a,b in left_tile_masked_segments: for c,d in right_tile_masked_segments: if tmsd_debug: print("mask pair:",a,b,c,d,b-a,d-c,c-b,file=sys.stderr,sep="\t") score_delta -= model.n_bar( b-a, d-c, c-b ) - model.n_bar0( (b-a)*(d-c) ) if tmsd_debug: print("tmsd:",(i*binwidth,(i+1)*binwidth),(j*binwidth,(j+1)*binwidth),score_delta,left_tile_masked_segments,right_tile_masked_segments,(mii0,mij0),masked_segments,file=sys.stderr,sep="\t") return(score_delta) def pair2bin2D(pair,binwidth): a,b=pair return( int(a/binwidth),int(b/binwidth) ) def make_scaffold_mask(scaffold,mapper,mask): s_mask = {} segments={} slen = mapper.scaffold_length[scaffold] for seg in mapper.scaffold_contigs[scaffold]: # print("x:",seg) ocontig=mapper.contig_ocontig[seg] for m in mask.get(ocontig,[]): oscaffold ,z1a,z2a,strand,c1 = mapper.mapCoord(ocontig,m[0],m[1]) if not scaffold==oscaffold: continue if not z1a: continue if strand==1: # segments.append( (z1a,min(slen,z2a)) ) segments[ (z1a,min(slen,z2a)) ] =1 else: segments[ (max(0,z2a),z1a) ] = 1 # segments.append( (max(0,z2a),z1a) ) # print(ocontig,seg,"\t\t",m,mapper.mapCoord(ocontig,m[0],m[1])) # for a,b in segments: # print("\t",a,b,b-a,sep="\t") segments=list(segments.keys()) segments.sort() return(segments) def chicago_pairs(sca,mapper,bamlist,minq=20,mask={}): for seg in mapper.scaffold_contigs[sca]: ref="_".join(seg.split("_")[:-1]) for b in bamlist: for aln in b.fetch(until_eof=True,reference=ref): if not aln.is_read1: continue if aln.is_duplicate: continue if aln.mapq < minq : continue if BamTags.mate_mapq(aln) < minq : continue # print("#x",ref,mask.get(ref,[])) if mask_test(ref,aln.pos,mask) or mask_test(b.getrname(aln.rnext),aln.pnext,mask) : continue contig = b.getrname(aln.tid) # snam[aln.tid] ncontig= b.getrname(aln.rnext) if aln.rnext>=0 else -1 scaffold ,z1a,z2a,z3a,c1 = mapper.mapCoord( contig, aln.pos, aln.pos+1 ) nscaffold,z2p,x2p,z3p,c2 = mapper.mapCoord(ncontig, aln.pnext,aln.pnext+1 ) if debug: print(("#x",contig,ncontig,aln.pos,aln.pnext,scaffold,nscaffold,sca,z1a,z2p,ref,mapper.ocontig_contigs.get(ref,[]))) if scaffold==nscaffold and sca==scaffold: #yield( sc,seg,contig,ncontig,scaffold,z1a,z2a,z3a,nscaffold,z2p,x2p,z3p ) yield( sca,z1a,z2p,c1,c2,seg,contig,ncontig,scaffold,z1a,z2a,z3a,nscaffold,z2p,x2p,z3p,aln.query_name ) hist_sample_interval = 1500 hist_bisize = 1.0 scaffold_end_filter=10000 # Fine grained means for every read def fine_grained_support(edges,nb,scaffold,pairs,model,buff,debug,t1,t2,gpf,minx,maxx,joins,logfile,binwidth,slen,mask=[],masked_segment_pairs_n_minus_n0=[],raw_hist=False,support_curve=False): # print("zz:",scaffold,sum([b-a for a,b in mask]),[ (a,b,b-a) for a,b in mask]) curve=[] if gpf: gpf.write("\n\n\n") # if True: print("fine",len(edges),debug) if len(edges)==0: return([],[]) if edges[-1][0]<0 or edges[-1][0] > slen+1: print("unexpected coordinate {} not in range 0-{}".format(edges[-1][0],slen)) raise Exception edges.sort() nb.sort() rs=0 # running sum for individual reads n=0 tripped=False # have we reached the threshold where we want to start breaking (by construction support low on edges). last=0 state=0 stretch_start=0 low_point=0.0 ji=0 gap_scores={} gap_coverages={} # slen = mapper.scaffold_length[scaffold] break_buffer = [] last_trip=0 a=0 b=0 c=0 f=0 # index in masked segment pairs mask_correction_rs=0.0 next_sample = hist_sample_interval /2 for i in range(len(edges)): rs+=edges[i][1] n+=nb[i][1] # number of pairs spanning x=edges[i][0] # position while f<len(masked_segment_pairs_n_minus_n0) and masked_segment_pairs_n_minus_n0[f][0]<x: mask_correction_rs -= masked_segment_pairs_n_minus_n0[f][1] f +=1 #update iterators that keep track of which masked regions are "in range": a-b are in range and trailing x, b-c are in range and upcoming. while a<len(mask) and mask[a][1]<x-maxx: a+=1 while b<len(mask) and mask[b][0]<x: b+=1 while c<len(mask) and mask[c][0]<x+maxx: c+=1 # ----------------------------------------- # a bx c mask_correction = 0.0 # rmi = right mask index for rmi in range(b,min(c+1,len(mask))): ma,mb = mask[rmi] if x>ma: continue left_limit = max(0,ma-maxx) if (x-left_limit)<0: continue mask_correction_delta = model.n_bar( mb-ma, x-left_limit, ma-x ) - model.n_bar0( (mb-ma)*(x-left_limit ) ) mask_correction += mask_correction_delta if debug: print(x,ma-x,a,b,c,left_limit,"Right",mask_correction_delta,sep="\t") # left mask index for lmi in range(a,b): ma,mb = mask[lmi] if x<mb: if ma<x and x<mb: right_limit = min(slen,mb+maxx) #left_limit = min(slen,mb-maxx) left_limit = max(0,ma-maxx) mask_correction_delta1 = model.n_bar( mb-x, x-left_limit, 0 ) - model.n_bar0( (mb-x)*(x-left_limit) ) try: mask_correction_delta2 = model.n_bar( x-ma, right_limit-x, mb-x ) - model.n_bar0( (x-ma)*(right_limit-x) ) except Exception as e: #wtf: scaffold: 7396, x: 1006292, ma: 686903, mb: 1006300, rl: 886903, ll: 486903 print("wtf: scaffold: {scaffold}, x: {x}, ma: {ma}, mb: {mb}, rl: {right_limit}, ll: {left_limit}".format(scaffold=scaffold,x=x,ma=ma,right_limit=right_limit,mb=mb,left_limit=left_limit)) raise e mask_correction += mask_correction_delta1 + mask_correction_delta2 if debug: print(x,x-mb,a,b,c,left_limit,right_limit,"Spanned",mask_correction_delta1,mask_correction_delta2,sep="\t") continue right_limit = min(slen,mb+maxx) if right_limit - x < 0: continue mask_correction_delta = model.n_bar( mb-ma, right_limit-x, x-mb ) - model.n_bar0( (mb-ma)*(right_limit-x ) ) mask_correction += mask_correction_delta if debug: print(x,x-mb,a,b,c,right_limit,"Left",mask_correction_delta,sep="\t") # take our running sum score and see if we should cut here, fine grained not clipping try: score=model.cutScore(slen,x,n,rs,rangeCutoff=maxx,minSep=minx)+mask_correction+mask_correction_rs score+=mask_correction+mask_correction_rs if debug: print("finescore:",scaffold,x,a,b,c,len(mask),score,mask_correction ,mask_correction_rs,score+mask_correction+mask_correction_rs,sep="\t") except Exception as e: print("Exception computing cutScore for scaffold {} at {}. i={}".format(scaffold,x,i),edges[:10]) #Exception computing cutScore for scaffold 8351 at 12290. i=2 [(11306, -8.997670875606678, 'a', 'a'), (11686, -8.578118407318865, 'a', 'a'), (12290, 8.578118407318865, 'a', 'b'), (12297, 8.997670875606678, 'a', 'b')] # print(i,edges[i],nb[i],rs,n,x,scaffold,slen,len(edges)) raise e # print("#xxxxx",x,next_sample,raw_hist) # print(support_curve) if support_curve: curve.append((x,score)) # print("##yield") # yield (x,score) if (not raw_hist==False) and x>next_sample: if min(x,slen-x)>scaffold_end_filter: next_sample += hist_sample_interval hist_bin=int(score/hist_bisize)*hist_bisize raw_hist[ hist_bin ] = raw_hist.get(hist_bin,0)+1 # print("#hist bin",hist_bin,score,raw_hist[ hist_bin ]) # sys.stdout.flush() # Obsolete? each gap between contigs? while ji<len(joins) and x>joins[ji][0]: gap_scores[ji] =score gap_coverages[ji] =n ji+=1 if score>t1: tripped=True last_trip=x if tripped and score<t2 and state==0: stretch_start=x state=1 low_point =score low_x = x # Reached beginning of region for candidate break (state = 0) if state==1 and score>t2: if logfile: break_buffer.append( (scaffold,stretch_start,x,low_x,low_point,slen) ) # print(scaffold,stretch_start,x,slen,low_point,"break") state=0 if state==1: if score<low_point: low_point=score low_x=x if debug: print("dd:",scaffold,edges[i][0],score,rs,state,x,stretch_start,score,n,edges[i][2]) if gpf: gpf.write("{}\t{}\t{}\t{}\n".format(edges[i][0],score,rs,n)) last=edges[i][0] segments = [] for scaffold,stretch_start,x,low_x,low_point,slen in break_buffer: if x < last_trip: logfile.write("{} {} {} {} {} {} rawLLR\n".format(scaffold,stretch_start,x,low_x,low_point,slen)) segments.append((scaffold,stretch_start,x,low_x,low_point)) return segments,curve # for ji in range(len(joins)): # print("\t".join(map(str,["gapscore:",ji]+list(joins[ji])+[gap_scores.get(ji,0),gap_coverages.get(ji,0)]))) def pairs2support(scaffold, pairs, # internal to scaffold model, slen=0, masked_segments=[], mapper=None, buff=0, debug=False, t1=20.0, t2=5.0, gpf=False, # gnu plot file handle? minx=1000, maxx=1e7, joins=[], logfile=False, binwidth=1000, nreject=2, # how many rows or colums to toss out raw_hist=False, clipped_hist=False, support_curve=False): # slen=mapper.scaffold_length[scaffold] # if debug: print("#masked:",scaffold,len(masked_segments),masked_segments[:10]) # print("#",scaffold,masked_segments,file=logfile,sep="\t") logfile.flush() edges=[] # pairs nb=[] # buffer to keep track of how many pairs cover tile_scores={} tile_counts={} tile_reads={} maxtile=0 # masked_segments=[] for p in pairs: if len(p)>=16: # old style, mostly ignore the additional info now if p[1]<p[2]: a,b,c1,c2,w,z=p[1],p[2],p[3],p[4],p[6],p[7] else: a,b,c1,c2,w,z=p[2],p[1],p[4],p[3],p[7],p[6] # masked_segments = p[17] tid=p[16] else: # a,b = p[0],p[1] # Order the coordinates a=min( p[0],p[1]) b=max( p[0],p[1]) c1,c2="a","a" tid="x" if a>slen or b> slen: print("how could a read be at x > slen?",a,b,slen) raise Exception # Throw away really far and short innies if abs(b-a) > maxx: continue if abs(b-a) < minx: continue # insert size log liklihood ll=model.lnF(b-a) if debug: print("pt:",scaffold,a,b,b-a,tid,ll-model.lnFinf) #For the old-style exact LLR score, size of "buff" is taken off # to be conservative about support edges.append( tuple([a+buff , ll,c1,"a"]) ) edges.append( tuple([b-buff +1 , -ll,c2,"b"]) ) nb.append( tuple([a+buff , 1]) ) nb.append( tuple([b-buff +1 ,-1]) ) #For the new-style clipped LLR score add to appropriate tile tile = pair2bin2D((a,b),binwidth) # tile is a tuple rows, colums maxtile = max(maxtile,tile[0],tile[1]) # furthest tiles seen for size? tile_scores[tile] = tile_scores.get(tile,0.0)+ll tile_counts[tile] = tile_counts.get(tile,0)+1 # for debuggin? should we remove when not debugging? tile_reads[tile] = tile_reads.get(tile,[]) + [tid] masked_segment_pairs_n_minus_n0 = [] for i in range(len(masked_segments)): a,b = masked_segments[i] for j in range(i+1,len(masked_segments)): c,d = masked_segments[j] # pair of masked segments: a---b c-----d if c-b > maxx: continue # gap = c-b if b-a<0: print("#wtf?",scaffold,(a,b),(c,d),i,j,file=logfile,sep="\t") logfile.flush() raise Exception if d-c<0: print("#wtf?",scaffold,(a,b),(c,d),i,j,file=logfile,sep="\t") logfile.flush() raise Exception if c-b<0: print("#wtf?",scaffold,(a,b),(c,d),i,j,file=logfile,sep="\t") logfile.flush() raise Exception n_bar = ces.model.n_bar(b-a,d-c,c-b) n_bar0= ces.model.n_bar0((b-a)*(d-c)) if debug: print("X",i,j,(a,b),(c,d),b-a,d-c,c-b,n_bar,n_bar0,sep="\t") masked_segment_pairs_n_minus_n0.append( (b, (n_bar-n_bar0)) ) masked_segment_pairs_n_minus_n0.append( (c,-(n_bar-n_bar0)) ) masked_segment_pairs_n_minus_n0.sort() fine_grain_segments,fine_grain_support_curve=fine_grained_support(edges,nb,scaffold,pairs,model,buff,debug,t1,t2,gpf,minx,maxx,joins,logfile,binwidth,slen,masked_segments,masked_segment_pairs_n_minus_n0=masked_segment_pairs_n_minus_n0,raw_hist=raw_hist,support_curve=support_curve) if debug: print("w:",scaffold,slen,len(fine_grain_segments),len(edges),sep="\t") for a,b in masked_segments: print(a,b) if a>slen: print("a>slen",a,slen) raise Exception if b>slen: print("b>slen",b,slen) raise Exception # clipped LLR score: tile_bumps=[] # print("#maxtile=",maxtile,strftime("%Y-%m-%d %H:%M:%S"),file=logfile,sep="\t") # logfile.flush() mask_iter_i=0 for i in range(maxtile+1): # print("#i=",i,strftime("%Y-%m-%d %H:%M:%S"),file=logfile,sep="\t") # logfile.flush() while mask_iter_i<len(masked_segments) and masked_segments[mask_iter_i][1]<i*binwidth: mask_iter_i+=1 j=i mask_iter_j=mask_iter_i while ((j-i)*binwidth<maxx) and j<=maxtile: tile=(i,j) # print("#tile=",(i,j),strftime("%Y-%m-%d %H:%M:%S"),file=logfile,sep="\t") # logfile.flush() tscore = tile_scores.get(tile,0.0) score = model.tileScore(binwidth,tile,tile_counts.get(tile,0),tscore,rangeCutoff=maxx,minSep=minx) # print("#score=",score,masked_segments,i,j,mask_iter_i,mask_iter_j,strftime("%Y-%m-%d %H:%M:%S"),file=logfile,sep="\t") # logfile.flush() mask_score_delta = tile_mask_score_delta(i,j,binwidth,masked_segments,model,mask_iter_i,mask_iter_j,debug) score+= mask_score_delta # print("#mask_score_delta=",mask_score_delta,strftime("%Y-%m-%d %H:%M:%S"),file=logfile,sep="\t") # logfile.flush() if debug: print("tile:",scaffold,tile[0],tile[1],tile[0]*binwidth,tile[1]*binwidth,tscore,tile_counts.get(tile,0.0),score,mask_score_delta,sep="\t") for read in tile_reads.get(tile,[]): print("tileread:",tile,read) if not i==j: tile_bumps.append( (i*binwidth,i,j, score, 1) ) tile_bumps.append( (j*binwidth,i,j,-score,-1) ) j+=1 while mask_iter_j<len(masked_segments) and masked_segments[mask_iter_j][1]<j*binwidth: mask_iter_j+=1 print("#done making tile bumps. len(tile_bumps)=",len(tile_bumps),strftime("%Y-%m-%d %H:%M:%S"),file=logfile,sep="\t") logfile.flush() if debug: for tile in tile_scores.keys(): print("tile:",scaffold,tile[0],tile[1],tile[0]*binwidth,tile[1]*binwidth,tile_scores[tile],tile_counts[tile],model.tileScore(binwidth,tile,tile_counts[tile],tile_scores[tile],rangeCutoff=maxx,minSep=minx),sep="\t") for read in tile_reads[tile]: print("tileread:",tile,read) tile_bumps.sort() print("#done sorting tile bumps",strftime("%Y-%m-%d %H:%M:%S"),file=logfile,sep="\t") logfile.flush() tripped=False row_sums={} col_sums={} row_counts={} col_counts={} break_buffer = [] stretch_start=0 minx=0 state=0 low_point=0 ii=0 last_trip=0 while ii<len(tile_bumps): x,i,j,scoreD,dn = tile_bumps[ii] row_sums[i] = row_sums.get(i,0.0) + scoreD col_sums[j] = col_sums.get(j,0.0) + scoreD row_counts[i] = row_counts.get(i,0) + dn col_counts[j] = col_counts.get(j,0) + dn if dn==-1 and row_counts[i]==0: del row_sums[i] if dn==-1 and col_counts[j]==0: del col_sums[j] if ii%100000==0: print("#progress: ii= {} / {}".format(ii,len(tile_bumps)),x,i,j,scoreD,strftime("%Y-%m-%d %H:%M:%S"),file=logfile,sep="\t") logfile.flush() while ii<len(tile_bumps)-1 and tile_bumps[ii+1][0]==x: ii+=1 x,i,j,scoreD,dn = tile_bumps[ii] row_sums[i] = row_sums.get(i,0.0) + scoreD col_sums[j] = col_sums.get(j,0.0) + scoreD row_counts[i] = row_counts.get(i,0) + dn col_counts[j] = col_counts.get(j,0) + dn if dn==-1 and row_counts[i]==0: del row_sums[i] if dn==-1 and col_counts[j]==0: del col_sums[j] total = sum(row_sums.values()) row_vals = list(row_sums.values()) col_vals = list(col_sums.values()) row_vals.sort() col_vals.sort() without_best_row = sum(row_vals[:-nreject]) #total - max(row_sums.values()) without_best_col = sum(col_vals[:-nreject]) #total - max(col_sums.values()) trimmed_total = min(without_best_row,without_best_col,total) score=trimmed_total if (not clipped_hist==False): if min(x,slen-x)>scaffold_end_filter: hist_bin=int(score/hist_bisize)*hist_bisize clipped_hist[ hist_bin ] = clipped_hist.get(hist_bin,0)+1 if score>t1: tripped=True last_trip=x if tripped and score<t2 and state==0: stretch_start=x state=1 low_point =score minx = x if debug: print("trimmed_support",x,trimmed_total,total,without_best_row,without_best_col,tripped,maxtile*binwidth,scaffold,tripped,score<t2,state,low_point,minx,stretch_start,last_trip) if state==1 and score>t2: if logfile: break_buffer.append( (scaffold,stretch_start,x,minx,low_point,slen) ) # print(scaffold,stretch_start,x,slen,low_point,"break") state=0 if state==1: if score<low_point: low_point=score minx=x ii+=1 print("#done building breaks buffer",strftime("%Y-%m-%d %H:%M:%S"),file=logfile,sep="\t") logfile.flush() if state==1: if logfile: break_buffer.append( (scaffold,stretch_start,x,minx,low_point,slen) ) for scaffold,stretch_start,x,minx,low_point,slen in break_buffer: if (x < last_trip) or (minx < last_trip): min_fine_graph_segment_overlap_score=False for fg_scaffold,fg_stretch_start,fg_x,fg_minx,fg_low_point in fine_grain_segments: if pairs_overlap((fg_stretch_start,fg_x),(stretch_start,x)): if (not min_fine_graph_segment_overlap_score) or (min_fine_graph_segment_overlap_score > fg_low_point): min_fine_graph_segment_overlap_score = fg_low_point logfile.write("{} {} {} {} {} {} {} clippedLLR\n".format(scaffold,stretch_start,x,minx,low_point,slen,min_fine_graph_segment_overlap_score)) return fine_grain_support_curve if __name__=="__main__": parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-d','--debug',default=False,action="store_true",help="Turn on debugging ouput") parser.add_argument('-p','--progress',default=False,action="store_true",help="Print progress info") parser.add_argument('-l','--layout',default=False,help="File containing scaffolding layout.") parser.add_argument('-s','--segments',default=False,help="File containing scaffolding segments.") # parser.add_argument('-L','--length',default=False,help="File containing lenghts.") parser.add_argument('-m','--mask',default=False,help="File containing segments to mask.") parser.add_argument('-g','--plotfiles',default=False,help="Plot file name prefix.") parser.add_argument('-f','--logfile',default=False,help="Output file for storing score segments.") parser.add_argument('-q','--mapq',type=int,default=55) parser.add_argument('-t','--t1',type=float,default=50.0,help="Don't break in the trailing regions at the end of scaffolds where support never exceeds this number.") parser.add_argument('-T','--t2',type=float,default=25.0,help="Report all segments where support dips below this threshold, if they are not in the trailing ends.") parser.add_argument('-w','--binwidth',type=float,default=3000.0) parser.add_argument('-n','--nreject',type=int,default=2) parser.add_argument('-c','--my_chunk',type=int,default=1) parser.add_argument('-C','--nchunks',type=int,default=32) parser.add_argument('--minx',type=int,default=1000, help=" ") parser.add_argument('--maxx',type=int,default=200000,help=" ") parser.add_argument('-S','--scaffold',default=False) # parser.add_argument('-b','--bamfiles',required=True) parser.add_argument('-b','--bamfile',action="append") parser.add_argument('-M','--model') args = parser.parse_args() if args.progress: print("#",args) fmodel=open( args.model ) contents = fmodel.read() try: fit_params=eval(contents) except: print("couldn't set model parameters", args.model) fmodel.close ces.set_exp_insert_size_dist_fit_params(fit_params) if args.mask: mask_ranges = read_mask_ranges( open(args.mask) ) else: mask_ranges={} # # Read in a hirise layout (from "^p:" lines) # mapper = MapperLite() mapper.load_layout(open(args.layout)) if args.scaffold: my_scaffolds={args.scaffold:1} else: my_scaffolds={} scaffold_hashes={} for s in list(mapper.scaffolds.keys()): scaffold_hashes[s]=struct.unpack("<L", hashlib.md5(s.encode("utf-8")).digest()[:4])[0]%args.nchunks if scaffold_hashes[s]==args.my_chunk: my_scaffolds[s]=1 if args.debug: print("my scaffold:",s) bamlist = [ pysam.Samfile(bamfile,"rb") for bamfile in args.bamfile ] segment_logfile=False if args.logfile: segment_logfile = open(args.logfile,"wt") for sc in sorted(my_scaffolds.keys()): ncontigs=len(mapper.scaffold_contigs[sc]) slen=mapper.scaffold_length[sc] if not ncontigs>1: continue print("sc:",sc,ncontigs,slen) # print(sc,mapper.scaffold_contigs[sc]) fp=False contigs = sorted(mapper.scaffold_contigs[sc],key=lambda x: mapper.contigx[x]) ii=0 gap_locations=[] for i in range(len(contigs)-1): con = contigs[i] x= max(mapper.contigx[con]+mapper.contig_strand[con]*mapper.contig_length[con],mapper.contigx[con]) con2 = contigs[i+1] y= min(mapper.contigx[con2]+mapper.contig_strand[con2]*mapper.contig_length[con2],mapper.contigx[con2]) gap_locations.append((int((x+y)/2),con,con2)) if args.plotfiles: fn="{}{}".format(args.plotfiles,sc) fp=open(fn,"wt") print("#plot \"{}\" i 2 u 1:2 w steps, \"\" i 1 u 1:($2/20) lt 3 pt 5 ps 0.7, \"\" i 0 u 1:(($2-5)*100) w steps lt 3, -500 lt 3".format(fn)) ii=0 fp.write("0\t0\n") for con in contigs: ii+=1 ii=ii%2 if args.debug: print(con,mapper.contigx[con],mapper.contig_strand[con],mapper.contig_length[con],slen) if mapper.contig_strand[con]==1: fp.write("{}\t{}\n".format( mapper.contigx[con],2*ii-1 )) fp.write("{}\t{}\n".format( mapper.contigx[con]+mapper.contig_length[con],0 )) else: fp.write("{}\t{}\n".format( mapper.contigx[con]-mapper.contig_length[con],2*ii-1 )) fp.write("{}\t{}\n".format( mapper.contigx[con],0 )) fp.write("\n\n\n") masked_segments = make_scaffold_mask(sc,mapper,mask_ranges) pairs2support(sc,chicago_pairs(sc,mapper,bamlist,minq=args.mapq,mask=mask_ranges),ces.model,masked_segments=masked_segments,slen=mapper.scaffold_length[sc],buff=1,debug=args.debug,gpf=fp,joins=gap_locations,minx=args.minx,maxx=args.maxx,logfile=segment_logfile,t1=args.t1,t2=args.t2,binwidth=args.binwidth,nreject=args.nreject) if fp: fp.close() ``` #### File: docker-hirise/scripts/edgelist2oo.py ```python from __future__ import print_function from builtins import range import networkx as nx import sys import greedy_chicagoan2 def edges2oo(f): g=nx.Graph() ll={} scaffolds={} scaffold={} while True: l = f.readline() if not l: break if l[:6]=="#edge:": #continue c = l.strip().split() v=eval(" ".join(c[3:])) if v['contig']: ll[c[1][:-2]]=v['length'] g.add_edge(c[1],c[2],**v) if l[:3]=="cc:": #continue c = l.strip().split() scn=int(c[1]) scl=eval(" ".join(c[3:])) scaffolds[scn]=scl for s in scl: scaffold[s]=scn contigs=[] strand={} scaffold={} coords={} facing={} ccn=1 for c in nx.connected_components(g): # print "#",len(c) ends=[] for cc in c: scaffold[cc]=ccn if g.degree(cc)==1: ends.append(cc) ccn+=1 order = list(nx.dfs_preorder_nodes(g,ends[0])) # def traverse_and_layout(n,coords,facing,x,s,og,max_disp=False): # """Traverse the nodes in og, from node n. Give node n position x. s==1 for increasing coords, -1 for decreasing. store in coords and facing the position and 'side' of each end respectively. # Stop traversing if you hit max_disp (optional).""" greedy_chicagoan2.traverse_and_layout(ends[0],coords,facing,0,1,g) order1=[] for i in range(0,len(order),2): print(order) if not order[i][:-2]==order[i+1][:-2]: print("wtf", i,order) exit(0) if order[i][-1]=="5": strand[order[i][:-2]]="+" else: strand[order[i][:-2]]="-" order1.append(order[i][:-2]) contigs.append(order1) return(contigs,strand,ll,scaffolds,scaffold,coords) if __name__=="__main__": import argparse parser = argparse.ArgumentParser() #parser.add_argument('-i','--input',default="gj4.out") parser.add_argument('-l','--links') parser.add_argument('-w','--window',type=int,default=3) args = parser.parse_args() print("#",args) contigs,strand,ll,scaffolds,scaffold,coords = edges2oo(sys.stdin) for cl in contigs: sl=max( [ coords[c+e] for c in cl for e in (".5",".3")] ) cl.sort(key=lambda x: coords[x+".5"]) for c in cl: if coords[c+".5"] < coords[c+".3"]: ends = (".5",".3") else: ends = (".3",".5") for e in ends: print("p:",scaffold[c+e],c+e,coords[c+e],"-",-1,sl,ll[c],1==2) #p: 1 Scaffold76818_1.3 790422 - -1 5832906 32362 False # print [strand[cc] for cc in c] ``` #### File: docker-hirise/scripts/hirise_assembly.py ```python import os import re import pysam from bamtags import BamTags import gc import random import bisect import numpy as np def parse_pline(l,scaffold_lengths): c=l.strip().split() m=re.match("(.*)_(\d+)\.([35])",c[2]) scaffold_lengths[c[1]]=int(c[6]) return( c[1],m.group(1),int(m.group(2)),m.group(3),int(c[3]),int(c[7]) ) def parse_pline2(l,scaffold_lengths): c=l.strip().split() base=int(c[3]) x=int(c[5]) scaffold_lengths[c[1]]=max(scaffold_lengths.get(c[1],0),x) return( c[1],c[2],base,c[4],x,int(c[6]) ) def aln2bins(aln,binsize): return( ( aln.tid,int(aln.pos/binsize) ),( aln.rnext,int(aln.pnext/binsize))) class GrowingNPArray: def __init__(self,dtype): self.data = np.zeros((10000,),dtype=dtype) self.N=10000 self.n=0 self.dtype = dtype def append(self,d): if self.n==self.N: self.N *=2 dd = np.zeros((self.N,),dtype=self.dtype) dd[:self.n] = self.data self.data = dd self.data[self.n]=d self.n+=1 def finalize(self): dd = np.zeros((self.n,),dtype=self.dtype) dd[:self.n] = self.data[:self.n] return dd def pairs_overlap(x,y): a=min(x[0],x[1]) b=max(x[0],x[1]) c=min(y[0],y[1]) d=max(y[0],y[1]) if a<=c and c<=b: return True if a<=d and d<=b: return True if c<=a and a<=d: return True if c<=b and b<=d: return True return False class HiriseAssembly: """This class is designed to encapsulate a Hirise Assembly.""" def __init__(self,options={}): """Options currently used are: bams, bam, datamodel, layout""" self.bams=[] if options.get("bams"): self.bams+=list(options["bams"]) if options.get("bam") : self.bams +=[options["bam"]] self.model_params=False self.binsize=10000 self.bam_objects=False self.shotgun_bam_objects=False if "bam" in options or "bams" in options: self.load_ocontig_info() if "datamodel" in options and options["datamodel"]: self.set_modelparams(options["datamodel"]) self.layout_lines=[] if options.get("layout"): self.load_playout(options["layout"]) self.masked_regions={} self.check_bams() self.ocontig_fa=False self.ocontig_fasta=False if "shotgun" in options: self.shotgun = options["shotgun"] else: self.shotgun = [] self.contigx=False def get_seq(self,contig): if not self.ocontig_fasta: raise Exception if not os.path.exists(self.ocontig_fasta+".fai"): pysam.faidx(self.ocontig_fasta) if not self.ocontig_fa: self.ocontig_fa = pysam.Fastafile(self.ocontig_fasta) m=re.match("(.*)_(\d+)",contig) ocontig=m.group(1) x=int(m.group(2)) y=x+self.contig_length(contig) leng=self.ocontig_lengths[ocontig] #return self.ocontig_lengths[m.group(1)] #dummy,scaffold,x,y,leng = l.strip().split() #x=int(x) #y=int(y) #leng=int(leng) # y=min(y,leng) seq = self.ocontig_fa.fetch(ocontig,x-1,y) return(seq) def contig_length(self,contig): if contig in self.contig_lengths: return self.contig_lengths[contig] else: m=re.match("(.*)_(\d+)",contig) return self.ocontig_lengths[m.group(1)] return 0 def contig_end_to_region(self,contig_end_string,w): ((this_contig,this_base,this_end),) = re.findall("^(.*)_(\d+)\.([53])$",contig_end_string) print(this_contig,this_base,this_end) this_base = int(this_base) # this_end = int(this_end) for scaffold,contig,base,end,x,l in self.layout_lines: slen = self.scaffold_lengths[scaffold] if this_contig == contig and this_base == base and this_end == end: return(scaffold,max(0,x-w),min(slen,x+w),(x<slen-x)) print("so such end found",contig_end_string) raise Exception def index_ocontigs(self): self.ocontig_bases = {} self.contig_lengths = {} self.contig_scaffold= {} self.load_ocontig_info() # self.scaffold_ocontigs={} ocb=self.ocontig_bases for scaffold,contig,base,end,x,l in self.layout_lines: # if not scaffold in self.scaffold_ocontigs: # self.scaffold_ocontigs[scaffold]={} # self.scaffold_ocontigs[scaffold][self.contig_ocontig[contig]]=1 self.contig_scaffold[contig,base]=scaffold if end in [5,"5"] and not base==1: ocb[contig] = ocb.get(contig,[])+[ base ] if end in [5,"5"]: self.contig_lengths[ contig+"_"+str(base) ]=l self.contig_lengths[ contig,base ]=l for b in ocb.keys(): ocb[b].sort() #print("ocb:",b,ocb[b]) self.total_ocontig_length = sum(self.ocontig_lengths.values()) self.rc_buffer=[] x=0 for i in self.ocontigs_iter(): self.rc_buffer.append((x,i)) x+=self.ocontig_lengths[i] def broken_coord(self,ocontig,x,tuples=False): if tuples: if not ocontig in self.ocontig_bases: if (not (ocontig,1) in self.contig_lengths ) or x < self.contig_lengths[(ocontig,1)]: # print(ocontig,"1") return((ocontig,1), x) else: # print(ocontig,"2") return((ocontig, self.contig_lengths[(ocontig,1)]), x) for b in self.ocontig_bases[ocontig][::-1]: if b<x: new_contig = (ocontig,b) #print("zxzx",ocontig,x,b,new_contig,self.contig_lengths.get(new_contig,False)) if (not new_contig in self.contig_lengths) or (x-b)<self.contig_lengths[new_contig]: # print(ocontig,"3") return((ocontig,b), x-b) else: return (False,False) new_contig = (ocontig,1) if (not new_contig in self.contig_lengths) or x < self.contig_lengths[new_contig]: # print(ocontig,"4",new_contig,new_contig in self.contig_lengths) return(new_contig, x) else: return (False,False) else: if not ocontig in self.ocontig_bases: if (not ocontig+"_1" in self.contig_lengths ) or x < self.contig_lengths[ocontig+"_1"]: return(ocontig+"_1", x) else: return(ocontig+"_"+str( self.contig_lengths[ocontig+"_1"] ), x) for b in self.ocontig_bases[ocontig][::-1]: if b<x: new_contig = ocontig+"_"+str(b) #print("zxzx",ocontig,x,b,new_contig,self.contig_lengths.get(new_contig,False)) if (not new_contig in self.contig_lengths) or (x-b)<self.contig_lengths[new_contig]: return(ocontig+"_"+str(b), x-b) else: return (False,False) new_contig = ocontig+"_1" if (not new_contig in self.contig_lengths) or x < self.contig_lengths[new_contig]: return(new_contig, x) else: return (False,False) def merge_masked_regions(self,debug=False): mr = self.masked_regions for ocontig in mr.keys(): new_regions=[] edges = [] for x,y in mr[ocontig]: edges.append((x,1)) edges.append((y,-1)) edges.sort(key=lambda x:(x[0],-x[1])) rs=0 state=0 for x,b in edges: rs+=b if state==0 and rs>0: start=x state=1 elif state==1 and rs==0: end=x new_regions.append((start,end)) state=0 if debug and not (len(mr[ocontig])==len(new_regions)): print("#mmr",ocontig,len(mr[ocontig]),len(new_regions),mr[ocontig],new_regions) mr[ocontig]=new_regions def add_mask_regions(self,segments=[],filename=False): masked_regions = self.masked_regions if filename: for line in open(filename): c=line.strip().split() ocontig,x,y = c[0],int(c[1]),int(c[2]) if not ocontig in masked_regions: masked_regions[ocontig]=[] masked_regions[ocontig].append((x,y)) for ocontig,x,y in segments: if not ocontig in masked_regions: masked_regions[ocontig]=[] masked_regions[ocontig].append((x,y)) for oc in masked_regions.keys(): masked_regions[oc].sort() def setup_mapper(self,debug=False): # debug=True self.contigx={} self.contigst={} cex={} for scaffold,contig,base,end,x,l in self.layout_lines: if end in [5,"5"]: self.contigx[contig,base] = x cex[contig,base,end]=x for contig,base in self.contigx.keys(): if cex[contig,base,"5"] < cex[contig,base,"3"]: self.contigst[contig,base]=1 else: self.contigst[contig,base]=-1 # if debug: # for contig,base in self.contigx.keys(): # print("m:",contig,base,self.contigx[contig,base],self.contigst[contig,base]) def scaffolds_iter(self,debug=False): if not self.layout_lines or len(self.layout_lines)==0: self.make_trivial_layout_lines(debug=debug) self.validate() last_scaffold=False for scaffold,contig,base,end,x,l in self.layout_lines: if (not last_scaffold) or not scaffold==last_scaffold: last_scaffold=scaffold # print("#",scaffold) yield(scaffold) def scaffold_coord(self,c,x,debug=False): if not self.contigx: self.setup_mapper(debug=debug) y=self.contigx[c]+self.contigst[c]*x if debug: print("sc:",c,x,y) return y def chicago_support_scan(self,scaffold,minsupport=0.0,mapq=10,debug=False,minx=0,maxx=1e6,gpf=False,logfile=False): import chicago_edge_scores as ces ces.set_exp_insert_size_dist_fit_params(self.model_params) model=ces.model links={} self.get_scaffold_links(scaffold,skipI=False,mapq=mapq,links=links,debug=debug,tuples=True) # model = ces. pairs=[] edges=[] buff=100 nb=[] joins=[] t1=50.0 t2=minsupport slen=self.ocontig_lengths[scaffold] for c1,c2 in links.keys(): if debug: print(c1,c2,links[c1,c2]) for x,y in links[c1,c2]: pairs.append( ( self.scaffold_coord(c1,x,debug=debug),self.scaffold_coord(c2,y,debug=debug)) ) for a,b in pairs: a,b=min(a,b),max(a,b) if debug: print("z",a,b) if (b-a)>minx and (b-a)<maxx: if gpf: gpf.write("{}\t{}\t{}\t{}\n".format(0.5*(a+b),0.5*(b-a),w,z)) ll=model.lnF(b-a) edges.append( tuple([a+buff , ll,c1,"a"]) ) edges.append( tuple([b-buff ,-ll,c2,"b"]) ) nb.append( tuple([a+buff , 1]) ) nb.append( tuple([b-buff ,-1]) ) if gpf: gpf.write("\n\n\n") edges.sort() nb.sort() rs=0 n=0 tripped=False last=0 state=0 stretch_start=0 low_point=0.0 ji=0 gap_scores={} gap_coverages={} max_t1=0 min_t1=slen breakers=[] for i in range(len(edges)): rs+=edges[i][1] n+=nb[i][1] x=edges[i][0] try: score=model.cutScore(slen,x,n,rs,rangeCutoff=maxx,minSep=minx) except Exception as e: print(edges) print(i,edges[i],nb[i],rs,n,x,scaffold,slen,len(edges)) raise e if score>t1: tripped=True last_t1=x min_t1 = min(min_t1,x) max_t1 = max(max_t1,x) if tripped and score<t2 and state==0: stretch_start=x state=1 low_point =score minx = x if state==1 and score>t2: breakers.append((scaffold,stretch_start,x,minx,low_point,slen)) # if logfile: logfile.write("{} {} {} {} {} {}\n".format(scaffold,stretch_start,x,minx,low_point,slen)) state=0 if state==1: if score<low_point: low_point=score minx=x if debug: print("dd:",scaffold,edges[i][0],score,rs,state,x,stretch_start,score,n,edges[i][2]) if gpf: gpf.write("{}\t{}\t{}\t{}\n".format(edges[i][0],score,rs,n)) last=edges[i][0] for scaffold,stretch_start,x,minx,low_point,slen in breakers: if stretch_start < last_t1: # if logfile: logfile.write("{} {} {} {} {} {} {} {}\n".format(scaffold,stretch_start,x,minx,low_point,slen,min_t1,max_t1)) if logfile: logfile.write("{} {} {} {} {} {}\n".format(scaffold,stretch_start,x,minx,low_point,slen)) def make_trivial_layout_lines(self,debug=False): self.layout_lines=[] #print(self.ocontig_lengths) if len(self.ocontig_lengths)==0: print("#load_contig_info") self.load_ocontig_info() i=1 for ocontig in self.ocontigs_iter(): scaffold=ocontig # if debug: print(scaffold,ocontig,1,"5",0,self.ocontig_lengths[ocontig],sep="\t") self.layout_lines.append((scaffold,ocontig,1,"5",0,self.ocontig_lengths[ocontig])) # self.layout_lines.append((scaffold,ocontig,1,"3",self.ocontig_lengths[ocontig],self.ocontig_lengths[ocontig])) # self.scaffold_lengths[scaffold] = self.ocontig_lengths[ocontig] self.scaffold_ocontigs[scaffold] = self.scaffold_ocontigs.get(scaffold,[])+[ocontig] i+=1 self.index_ocontigs() self.setup_mapper() def get_scaffold_links(self,Tscaffold,skipI=False,mapq=10,links={},debug=False,tuples=False): if not self.layout_lines or len(self.layout_lines)==0: self.make_trivial_layout_lines(debug=debug) self.validate() contigs={} ocontigs={} if not tuples: for scaffold,contig,base,end,x,l in self.layout_lines: if scaffold==Tscaffold and end in [5,"5"]: contigs[ contig+"_"+str(base) ]=1 ocontigs[contig]=1 else: for scaffold,contig,base,end,x,l in self.layout_lines: if scaffold==Tscaffold and end in [5,"5"]: contigs[ contig,base ]=1 ocontigs[contig]=1 if debug: print(ocontigs,contigs) self.get_links(list(ocontigs.keys()),skipI,mapq,links,contigs,tuples=tuples) def segments_iter(self): for l in self.layout_lines: scaffold1,contig1,base1,end1,x1,l21 =l if end1 in [5 , "5"]: #cc=self.contig_length(contig1+"_"+str(base1)) yield( contig1,base1,base1+l21,self.ocontig_lengths[contig1] ) def contigs_iter(self): for l in self.layout_lines: scaffold1,contig1,base1,end1,x1,l21 =l if end1 in [5 , "5"]: yield( contig1 +"_"+str(base1) ) def ocontigs_iter(self): for ocontig in self.ocontig_lengths.keys(): yield(ocontig) def load_ocontig_info(self): import pysam self.ocontig_lengths={} if not self.bam_objects: self.bam_objects={} for b in self.bams: self.bam_objects[b] = pysam.Samfile(b,"rb") for bam in self.bam_objects.values(): h=bam.header seqs=h['SQ'] for s in seqs: if s['SN'] in self.ocontig_lengths: if not self.ocontig_lengths[s['SN']]==s['LN'] : raise Exception else: self.ocontig_lengths[s['SN']]=s['LN'] def random_window(self,wlen=1000): r=int(random.random()*self.total_ocontig_length) x=bisect.bisect_right(self.rc_buffer,(r,"a")) while r+x > self.total_ocontig_length or (x<len(self.rc_buffer)-1 and r+wlen>self.rc_buffer[x+1][0]): r=int(random.random()*self.total_ocontig_length) x=bisect.bisect_right(self.rc_buffer,(r,"a")) # print( r,self.rc_buffer[x],self.rc_buffer[x+1],r-self.rc_buffer[x][0]) x-=1 # print( r,self.rc_buffer[x],self.rc_buffer[x+1],r-self.rc_buffer[x][0]) return( self.rc_buffer[x][1], r-self.rc_buffer[x][0], r-self.rc_buffer[x][0]+wlen ) def top_other_contigs(self,reference,mapq=10,n=2,debug=False,bins=False,binx=0): nother={} if not self.bam_objects: self.bam_objects={} for b in self.bams: self.bam_objects[b] = pysam.Samfile(b,"rb") if debug: print(self.bam_objects) if bins: region="{}:{}-{}".format(reference,binx*self.binsize,(binx+1)*self.binsize) for bam in self.bam_objects.values(): for aln in bam.fetch(region=region,until_eof=True): if aln.is_duplicate : continue if aln.mapq < mapq : continue if BamTags.mate_mapq(aln) < mapq : continue my_bin,rbin = aln2bins(aln,self.binsize) if not my_bin == rbin : nother[rbin] = nother.get(rbin,0)+1 else: for bam in self.bam_objects.values(): for aln in bam.fetch(reference=reference,until_eof=True): if aln.is_duplicate : continue if aln.mapq < mapq : continue if BamTags.mate_mapq(aln) < mapq : continue if not aln.rnext == aln.tid : nother[aln.rnext] = nother.get(aln.rnext,0)+1 kk=list(nother.keys()) kk.sort(key=lambda x: nother[x],reverse=True) if debug: print(kk[:2]) return(tuple(kk[:2])) def window_stats(self,reference,xa,xb,mapq=10,debug=False,bins=False): if not self.bam_objects: self.bam_objects=[] for b in self.bams: self.bam_objects.append( pysam.Samfile(b,"rb") ) if not self.shotgun_bam_objects: self.shotgun_bam_objects=[] for b in self.shotgun: self.shotgun_bam_objects.append( pysam.Samfile(b,"rb") ) binx = 0 if bins: binx = int(xa/self.binsize) top2 = self.top_other_contigs(reference,mapq=mapq,debug=debug,bins=bins,binx=binx) region = "{}:{}-{}".format(reference,max(1,xa-1000),xb+1000) n_aligned=0 n_hiq=0 templates={} n_lowq =0 occ ={} occ2={} for bam in self.bam_objects.values(): if debug: print("#",region,xa,xb,bam) for aln in bam.fetch(region=region): if aln.pos > xb: continue if aln.pos < xa: continue if aln.is_duplicate : continue n_aligned+=1 if aln.mapq < mapq : continue if BamTags.mate_mapq(aln) < mapq : continue templates[aln.query_name]=templates.get(aln.query_name,0)+1 if bins: my_bin,rbin = aln2bins(aln,self.binsize) if not my_bin==rbin: occ[rbin] = occ.get(rbin,0)+1 if not rbin in top2: occ2[rbin] = occ2.get(rbin,0)+1 else: if (not aln.rnext == aln.tid): occ[aln.rnext] = occ.get(aln.rnext,0)+1 if (not aln.rnext in top2) : occ2[aln.rnext] = occ2.get(aln.rnext,0)+1 n_hiq+=1 if debug: print("#",n_hiq,n_aligned) n_both = len([ i for i in templates.keys() if templates[i]>1 ]) n_other = len(occ.keys()) n_other2 = len([ i for i in occ.keys() if occ[i]>1 ]) n_other3 = len([ i for i in occ.keys() if occ[i]>2 ]) n_otherB = len(occ2.keys()) n_otherB2 = len([ i for i in occ2.keys() if occ[i]>1 ]) n_otherB3 = len([ i for i in occ2.keys() if occ[i]>2 ]) n_shotgun=0 for bam in self.shotgun_bam_objects: for aln in bam.fetch(region=region): if aln.pos > xb: continue if aln.is_duplicate : continue if aln.mapq < mapq : continue n_shotgun+=1 print("\t".join(map(str,[region,n_aligned,n_hiq,n_both,n_other,n_other2,n_other3,n_otherB,n_otherB2,n_otherB3,n_shotgun]))) def chicago_promiscuity_mask(self,ocontig,mapq=10,w=1000,minlinks=2,maxothers=3,outfile=False,bins=False,debug=False): if not self.bam_objects: self.bam_objects=[] for b in self.bams: self.bam_objects.append( pysam.Samfile(b,"rb") ) # dtype=[('x',int),('t',int),('y',int),('b',int),('r',int)] dtype=[('x',int),('t',int),('y',int)] buffer = GrowingNPArray(dtype=dtype) i=0 tid=0 for bam in self.bam_objects: if debug: print("#",ocontig,bam) tid = bam.gettid(ocontig) for aln in bam.fetch(reference=ocontig): if aln.rnext<0: continue if aln.mapq < mapq : continue if BamTags.mate_mapq(aln) < mapq : continue if aln.is_duplicate : continue # buffer.append((aln.pos,aln.rnext,aln.pnext,i,aln.tid)) buffer.append((aln.pos,aln.rnext,aln.pnext)) i+=1 buffer = buffer.finalize() buffer = np.sort(buffer,order='x',kind="mergesort") bad_edges=[] def get_contig(x,b): return x[1] def get_contig_bin(x,b): return(x[1]+(int(x[2]/b)/1.0e6)) if bins: get_bin = get_contig_bin else: get_bin = get_contig bc={} i=0 j=0 N=len(buffer) while i < N: mybin = get_bin((0,tid,buffer[i][0]),self.binsize) while j<N and buffer[j][0]<buffer[i][0]+w: jbin = get_bin(buffer[j],self.binsize) bc[ jbin ] = bc.get(jbin,0)+1 j+=1 n_in_window = j-i nw=len([ ii for ii in bc.keys() if bc[ii]>=minlinks and not ii==mybin ]) #n_other_windows(buffer[i:j],minlinks,bins,self.binsize) # if debug: print(tid,buffer[i][0],n_in_window,nw,mybin,[ (ii,bc[ii]) for ii in bc.keys() if bc[ii]>=minlinks and not ii==mybin ],[ get_bin(x,self.binsize) for x in buffer[i:j] ]) if debug: print(tid,buffer[i][0],n_in_window,nw,mybin,[ (ii,bc[ii]) for ii in bc.keys() if bc[ii]>=minlinks and not ii==mybin ]) if nw > maxothers: bad_edges.append((buffer[i ][0], 1)) bad_edges.append((buffer[j-1][0],-1)) ibin = get_bin(buffer[i],self.binsize) bc[ ibin ] = bc[ibin]-1 if bc[ibin]==0: bc.pop(ibin) i+=1 bad_edges.sort() if debug: for be in bad_edges: print(e) rs=0 state=0 for x,dy in bad_edges: rs+=dy if state==0 and rs>0: startx=x state=1 elif state==1 and rs==0: outfile.write("{} {} {}\n".format(ocontig,startx,x)) if debug: print("#{} {} {}\n".format(ocontig,startx,x)) state=0 outfile.flush() def chicago_read_density_mask(self,ocontigs,mapq=10,outfile=False,w=1000,cutoff=100,debug=False,shotgunT=False): if not self.bam_objects: self.bam_objects=[] for b in self.bams: self.bam_objects.append( pysam.Samfile(b,"rb") ) if not self.shotgun_bam_objects: self.shotgun_bam_objects=[] for b in self.shotgun: self.shotgun_bam_objects.append( pysam.Samfile(b,"rb") ) for ocontig in ocontigs: locations=[] shotgun_locations=[] # gc.disable() for bam in self.bam_objects: if debug: print("#",ocontig,bam) for aln in bam.fetch(reference=ocontig): # if debug: print("#",aln.pos,aln.is_duplicate,aln.mapq,BamTags.mate_mapq(aln),aln.query_name,len(locations)) if aln.rnext<0: continue if aln.mapq < mapq : continue if BamTags.mate_mapq(aln) < mapq : continue if aln.is_duplicate : continue locations.append(aln.pos) if debug: print("#",len(locations)) if shotgunT: for bam in self.shotgun_bam_objects: if debug: print("#",ocontig,bam) for aln in bam.fetch(reference=ocontig): if aln.mapq < mapq : continue if aln.is_duplicate : continue shotgun_locations.append(aln.pos) if debug: print("#",len(locations),len(shotgun_locations)) # gc.enable() locations.sort() shotgun_locations.sort() i=0 j=0 bad_edges=[] while i<len(locations): while j<len(locations) and locations[j]<locations[i]+w: j+=1 n_in_window = j-i if debug: print("chicago_density",ocontig,locations[i],locations[j-1],j-i,locations[j-1]-locations[i],locations[i:j]) if n_in_window > cutoff: # outfile.write("{} {} {}\n".format(ocontig,locations[i],locations[j-1])) bad_edges.append((locations[i],1) ) bad_edges.append((locations[j-1],-1) ) i+=1 if shotgunT: i=0 j=0 while i<len(shotgun_locations): while j<len(shotgun_locations) and shotgun_locations[j]<shotgun_locations[i]+w: j+=1 n_in_window = j-i if debug: print("shotgun_density",ocontig,shotgun_locations[i],shotgun_locations[j-1],j-i,shotgun_locations[j-1]-shotgun_locations[i]) if n_in_window > shotgunT: # outfile.write("{} {} {}\n".format(ocontig,locations[i],locations[j-1])) bad_edges.append((shotgun_locations[i],1) ) bad_edges.append((shotgun_locations[j-1],-1) ) i+=1 bad_edges.sort() rs=0 state=0 for x,dy in bad_edges: rs+=dy if state==0 and rs>0: startx=x state=1 elif state==1 and rs==0: outfile.write("{} {} {}\n".format(ocontig,startx,x)) state=0 outfile.flush() def make_scaffold_mask(self,scaffold): #,mapper,mask): s_mask = {} segments={} slen = self.scaffold_lengths[scaffold] for ocontig in self.scaffold_ocontigs[scaffold]: # print(ocontig) for a,b in self.masked_regions.get(ocontig,[]): c1,x = self.broken_coord(ocontig,a,tuples=True) c2,y = self.broken_coord(ocontig,b,tuples=True) s1=self.contig_scaffold.get(c1) s2=self.contig_scaffold.get(c2) if c1==c2 and s1==s2 and s1==scaffold: xx=self.scaffold_coord(c1,x) yy=self.scaffold_coord(c2,y) #print("#msm:",scaffold,ocontig,a,b,x,y,xx,yy,s1,s2,scaffold,sep="\t") segments[ max(0,min(xx,yy)) , min( slen, max(xx,yy) ) ]=1 elif (not c1==c2) and s1==s2 and s1==scaffold: xA = x yA = self.contig_lengths[c1] xx=self.scaffold_coord(c1,xA) yy=self.scaffold_coord(c1,yA) segments[ max(0,min(xx,yy)) , min( slen, max(xx,yy) ) ]=1 xB = 1 yB = y xx=self.scaffold_coord(c2,xB) yy=self.scaffold_coord(c2,yB) segments[ max(0,min(xx,yy)) , min( slen, max(xx,yy) ) ]=1 elif (not c1==c2) and s1==scaffold and not s2==scaffold: xA = x yA = self.contig_lengths[c1] xx=self.scaffold_coord(c1,xA) yy=self.scaffold_coord(c1,yA) segments[ max(0,min(xx,yy)) , min( slen, max(xx,yy) ) ]=1 elif (not c1==c2) and s2==scaffold and not s1==scaffold: xB = 1 yB = y xx=self.scaffold_coord(c2,xB) yy=self.scaffold_coord(c2,yB) segments[ max(0,min(xx,yy)) , min( slen, max(xx,yy) ) ]=1 segments=list(segments.keys()) segments.sort() #print("#msm:",scaffold,slen,segments,sep="\t") return(segments) def read_deserts(self,outfile,mapq=10,min_len=1000): if not self.bam_objects: self.bam_objects={} for b in self.bams: self.bam_objects[b]= pysam.Samfile(b,"rb") desert_edges=[] for bam in self.bam_objects.values(): lastx=0 lastr=-1 for aln in bam.fetch(until_eof=True): if aln.mapq < mapq : continue ref = aln.tid if not ref==lastr: if lastr>-1: lastname =bam.getrname(lastr) lastl = self.ocontig_lengths[ lastname ] if lastl - lastx > min_len: desert_edges.append(( lastname,lastx , 1 )) desert_edges.append(( lastname,lastl ,-1 )) lastx=0 deltax= aln.pos - lastx if deltax>min_len: desert_edges.append(( bam.getrname(aln.tid),lastx , 1 )) desert_edges.append(( bam.getrname(aln.tid),aln.pos,-1 )) lastx=aln.pos lastr=aln.tid nbams = len( self.bams) state=0 startx=0 desert_edges.sort() y=0 for contig,x,dy in desert_edges: y+=dy if state==0 and y == nbams: state=1 startx=x elif state==1 and y<nbams: endx = x state=0 if endx-startx>min_len: print(contig,startx,endx,"readDesert",file=outfile) last_contig,last_x = contig,x def chicago_pairs(self,mapq=10,scaffold_contig_counts={},contig_scaffold_counts={},callback=False,bamfile=False,my_scaffolds=False): read_length = 100 if not self.bam_objects: self.bam_objects={} for b in self.bams: self.bam_objects[b]= pysam.Samfile(b,"rb") if bamfile: bams_iter = iter( [ self.bam_objects[bamfile] ] ) else: bams_iter = iter( self.bam_objects.values() ) for bam in bams_iter: # print("#",bam) last_contig=False mri=0 mr=[] last_scaffold=False for aln in bam.fetch(until_eof=True): if not aln.is_read1: continue track=False skip=False if aln.rnext<0: continue if aln.mapq < mapq : continue if BamTags.mate_mapq(aln) < mapq : continue if aln.is_duplicate : continue contig = bam.getrname(aln.tid) contig2 = bam.getrname(aln.rnext) if not last_contig or not last_contig==contig: if contig in self.masked_regions: mr = self.masked_regions[contig] mri=0 else: mr=[] mri=0 c1,x = self.broken_coord(contig ,aln.pos ,tuples=True) scaffold=self.contig_scaffold.get(c1) c2,y = self.broken_coord(contig2,aln.pnext,tuples=True) nscaffold=self.contig_scaffold.get(c2) if (not my_scaffolds==False) and (not ((scaffold in my_scaffolds) and (nscaffold in my_scaffolds))): continue if last_contig and not last_contig==contig: # print("#done with contig",last_contig,list(contig_scaffold_counts.get(last_contig,{}).keys())) for sc in contig_scaffold_counts.get(last_contig,{}).keys(): # for each hirise scaffold that this contig contributes a segment to: if sc in scaffold_contig_counts: if last_contig in scaffold_contig_counts[sc]: # if we are still tracking the number of times we need to read this contig from a bam file for this scaffold # print("##",sc,last_contig,scaffold_contig_counts[sc][last_contig]) scaffold_contig_counts[sc][last_contig] -= 1 # decrease the count by one # print("##",sc,last_contig,scaffold_contig_counts[sc][last_contig]) if scaffold_contig_counts[sc][last_contig] ==0: del scaffold_contig_counts[sc][last_contig] if len(scaffold_contig_counts[sc])==0: # print("scaffold {} ready now",sc) if callback: callback(sc) else: yield(sc,"done") del scaffold_contig_counts[sc] # raise ScaffoldReady(sc) # print("#s",last_contig,sc,scaffold_contig_counts.get(sc)) # print("#c",last_contig,contig_scaffold_counts.get(last_contig)) last_contig = contig last_scaffold = scaffold while mri<len(mr) and aln.pos > mr[mri][1]: mri+=1 if mri<len(mr) and mr[mri][0]<aln.pos and aln.pos+read_length<mr[mri][1] : continue #this read maps to a masked region if contig2 in self.masked_regions: if [ (aa,bb) for aa,bb in self.masked_regions[contig2] if aa<aln.pnext and aln.pnext+read_length<bb ]: continue #the pair maps to a masked region if not scaffold: continue if not nscaffold: continue xx=self.scaffold_coord(c1,x) yy=self.scaffold_coord(c2,y) # yield(s1,self.scaffold_coord(c1,x),s2,self.scaffold_coord(c2,y)) if self.scaffold_lengths[scaffold] < xx or self.scaffold_lengths[nscaffold] < yy: print("coordinate out of range error",xx,yy,scaffold,nscaffold,self.scaffold_lengths[scaffold], self.scaffold_lengths[nscaffold],contig,contig2,c1,c2,x,y) raise Exception yield( scaffold, nscaffold, xx, yy, c1, c2, aln.query_name ) def chicago_pairs_for_scaffolds(self,mapq=10,callback=False,bamfile=False,scaffolds=[],contigs=False,minsep=0): read_length = 100 if not self.bam_objects: self.bam_objects={} for b in self.bams: self.bam_objects[b]= pysam.Samfile(b,"rb") if bamfile: bams_iter = iter( [ self.bam_objects[bamfile] ] ) else: bams_iter = iter( self.bam_objects.values() ) ocontigs_to_hit = {} my_ocontigs=[] if contigs: my_ocontigs=contigs else: for scaffold in scaffolds: for oc in self.scaffold_ocontigs[scaffold]: ocontigs_to_hit[oc]=1 my_ocontigs = list(ocontigs_to_hit.keys()) for bam in bams_iter: # print("#",bam) last_contig=False mri=0 mr=[] last_scaffold=False for ocontig in my_ocontigs: for aln in bam.fetch(reference=ocontig): if not aln.is_read1: continue track=False skip=False if aln.rnext<0: continue if aln.mapq < mapq : continue if BamTags.mate_mapq(aln) < mapq : continue if aln.is_duplicate : continue contig = bam.getrname(aln.tid) contig2 = bam.getrname(aln.rnext) if not last_contig or not last_contig==contig: if contig in self.masked_regions: mr = self.masked_regions[contig] mri=0 else: mr=[] mri=0 if last_contig and not last_contig==contig: pass # print("#done with contig",last_contig,list(contig_scaffold_counts.get(last_contig,{}).keys())) c1,x = self.broken_coord(contig ,aln.pos ,tuples=True) scaffold=self.contig_scaffold.get(c1) last_contig = contig last_scaffold = scaffold while mri<len(mr) and aln.pos > mr[mri][1]: mri+=1 if mri<len(mr) and mr[mri][0]<aln.pos and aln.pos+read_length<mr[mri][1] : continue #this read maps to a masked region if contig2 in self.masked_regions: if [ (aa,bb) for aa,bb in self.masked_regions[contig2] if aa<aln.pnext and aln.pnext+read_length<bb ]: continue #the pair maps to a masked region c2,y = self.broken_coord(contig2,aln.pnext,tuples=True) nscaffold=self.contig_scaffold.get(c2) if not scaffold: continue if not nscaffold: continue if not scaffold in scaffolds: continue if not nscaffold in scaffolds: continue xx=self.scaffold_coord(c1,x) yy=self.scaffold_coord(c2,y) if scaffold==nscaffold and abs(xx-yy)<minsep: continue # yield(s1,self.scaffold_coord(c1,x),s2,self.scaffold_coord(c2,y)) if self.scaffold_lengths[scaffold] < xx or self.scaffold_lengths[nscaffold] < yy: print("coordinate out of range error",xx,yy,scaffold,nscaffold,self.scaffold_lengths[scaffold], self.scaffold_lengths[nscaffold],contig,contig2,c1,c2,x,y) raise Exception yield( scaffold, nscaffold, xx, yy, c1, c2, aln.query_name ) def get_links(self,ocontigs,skipI=False,mapq=10,links={},contigs=False,raw=False,tuples=False,debug=False): # links={} if not self.bam_objects: self.bam_objects={} for b in self.bams: self.bam_objects[b]= pysam.Samfile(b,"rb") for bam in self.bam_objects.values(): # bam = pysam.Samfile(b,"rb") for ocontig in ocontigs: # print("#",ocontig) mr=[] mri=0 if ocontig in self.masked_regions: mr=self.masked_regions[ocontig] for aln in bam.fetch(reference=ocontig): # if debug: print("#",aln.query_name,aln.pos,aln.pnext,aln.mapq,sep="\t") if aln.rnext<0: continue if aln.mapq < mapq : continue if BamTags.mate_mapq(aln) < mapq : continue if aln.is_duplicate : continue while mri<len(mr) and aln.pos > mr[mri][1]: mri+=1 if mri<len(mr) and mr[mri][0]<aln.pos and aln.pos<mr[mri][1] : if debug: print("#m1",ocontig,bam.getrname(aln.rnext),aln.pos,aln.pnext,mr[mri],aln.query_name,sep="\t") continue #this read maps to a masked region if raw: c1,x1 = ocontig,aln.pos else: c1,x1 = self.broken_coord(ocontig,aln.pos,tuples=tuples) if not c1: continue if contigs and not c1 in contigs: continue ocontig2 = bam.getrname(aln.rnext) if raw: c2,x2 = ocontig2,aln.pnext else: c2,x2 = self.broken_coord(ocontig2,aln.pnext,tuples=tuples) if not c2: continue if contigs and not c2 in contigs: continue if skipI and c1 == c2: continue if ocontig2 in self.masked_regions: overlapping_masked_segs = [ (aa,bb) for aa,bb in self.masked_regions[ocontig2] if aa<aln.pnext and aln.pnext<bb ] if overlapping_masked_segs: if debug: print("#m2",ocontig,ocontig2, aln.pos,aln.pnext,overlapping_masked_segs ,aln.query_name,sep="\t") continue #the pair maps to a masked region if not (c1,c2) in links: links[c1,c2]=[] links[c1,c2].append((x1,x2)) if debug: print("#p",c1,c2,aln.query_name,aln.pos,aln.pnext,sep="\t") # print(self.broken_coord(ocontig,aln.pos),self.broken_coord(bam.getrname(aln.rnext),aln.pnext)) # for c1,c2 in links: # print(c1,c2,links[c1,c2]) return(links) def validate(self): contig_mins={} contig_maxs={} scaffold_mins={} scaffold_maxs={} contig_lengths={} counts={} # scaffold_lengths={] lastx=0 last_scaffold=False last_contig=(False,) for scaffold,contig,base,end,x,l in self.layout_lines: if last_scaffold and scaffold == last_scaffold and not x>lastx: print(last_scaffold,scaffold,x,lastx) raise Exception if x<0: raise Exception counts[contig,base]=counts.get((contig,base),0)+1 contig_mins[contig,base]=min( contig_mins.get((contig,base),1e99) , x ) contig_maxs[contig,base]=max( contig_maxs.get((contig,base),-1) , x ) if (contig,base) in contig_lengths: if not contig_lengths[contig,base]==l: raise Exception else: contig_lengths[contig,base]=l if (contig,base) == last_contig: # print(scaffold,contig,base,end,x,l,last_contig,lastx,x-lastx,"XXXX",sep="\t") if not l == x-lastx : print(scaffold,contig,base,end,x,l,last_contig,lastx,sep="\t") raise Exception scaffold_mins[scaffold]=min( scaffold_mins.get(scaffold,1e99) , x ) scaffold_maxs[scaffold]=max( scaffold_maxs.get(scaffold,-1) , x ) last_contig=(contig,base) lastx,last_scaffold=x,scaffold for contig,base in counts.keys(): if not counts[contig,base]==2: raise Exception if not contig_maxs[contig,base]-contig_mins[contig,base]==contig_lengths[contig,base]: print("wtf?",contig,base,contig_mins[contig,base],contig_maxs[contig,base],contig_lengths[contig,base],contig_maxs[contig,base]-contig_mins[contig,base]) raise Exception self.setup_mapper() lastk=(1,0) lastl=0 lastx=0 for k in sorted(self.contigx.keys()): if k[0]==lastk[0]: #print("XX",k,contig_lengths.get(k),self.contigx[k],lastl,k[1]-lastk[1],lastl==k[1]-lastk[1],sep="\t") if not lastl==k[1]-lastk[1]: print(k,contig_lengths.get(k),self.contigx[k],lastl,k[1]-lastk[1],lastl==k[1]-lastk[1],sep="\t") raise Exception lastk=k lastl = contig_lengths.get(k) lastx=self.contigx[k] # self.contigx={} # self.contigst={} print("#validation success") # contig_maxs[contig,base]=max( contig_maxs.get((contig,base),-1) , x ) def add_breakpoints_ranges(self,breaks,debug=False,scores={},unlink_threshold=100.0, contig_break_threshold=100.0,score_types={},clipped_likelihood_for_gaps_only=True): """This function filters breaks expressed as spans according to several criteria before passing selected break points along to add_breakpoints()""" if not self.layout_lines or len(self.layout_lines)==0: self.make_trivial_layout_lines(debug=debug) self.validate() break_points = [] category={} br={} scaffold_breaks={} for s,a,b,c in breaks: if not s in scaffold_breaks: scaffold_breaks[s]=[] for s,a,b,c in breaks: scaffold_breaks[s].append((a,b,c)) for s in scaffold_breaks.keys(): scaffold_breaks[s].sort() i=0 offset={} while i< len(self.layout_lines)-1: #print(self.layout_lines[i]) scaffold1,contig1,base1,end1,x1,l21 = self.layout_lines[ i ] scaffold2,contig2,base2,end2,x2,l22 = self.layout_lines[ i+1 ] i+=1 if not scaffold1 in scaffold_breaks: continue if not scaffold1 == scaffold2 : continue for a,b,c in scaffold_breaks[scaffold1]: if pairs_overlap((a,b),(x1,x2)) and (not (contig1,base1)==(contig2,base2)): # you don't have to break a contig to make this break if x1<=c and c<=x2: this_offset_from_min_score = 0 else: this_offset_from_min_score = min(abs(x1-c),abs(x2-c)) if (not (scaffold1,a,b,c) in category) or \ (category[scaffold1,a,b,c]=="break") or \ (category[scaffold1,a,b,c]=="gap" and offset[scaffold1,a,b,c]>this_offset_from_min_score): category[scaffold1,a,b,c]="gap" br[scaffold1,a,b,c]=int((x1+x2)/2) offset[scaffold1,a,b,c] = this_offset_from_min_score elif x1<a and b<x2: if not (scaffold1,a,b,c) in category: if scores.get((scaffold1,a,b,c),-1e9) < contig_break_threshold: category[scaffold1,a,b,c]="break" br[scaffold1,a,b,c]=c categories={} for s,a,b,c in br.keys(): if (category[s,a,b,c]=="break" and scores.get((s,a,b,c),100)< contig_break_threshold) or \ (category[s,a,b,c]=="gap" and scores.get((s,a,b,c),100)< unlink_threshold) : if clipped_likelihood_for_gaps_only and (score_types.get((s,a,b,c),"fine")=="clipped") and category[s,a,b,c]=="break": if debug: print("Skip break because we're only using clipped likelihood for un-scaffolding, not contig breaking",s,a,b,c,scores.get((s,a,b,c),-100),sep="\t") if debug: print("X",s,a,b,c,br[s,a,b,c],category[s,a,b,c],score_types.get((s,a,b,c),"fine"),scores.get((s,a,b,c),-100)) continue break_points.append((s,br[s,a,b,c])) if True or debug: print("Q",s,a,b,c,br[s,a,b,c],category[s,a,b,c],score_types.get((s,a,b,c),"fine"),scores.get((s,a,b,c),-100)) categories[s,br[s,a,b,c]]=category[s,a,b,c] self.add_breakpoints(break_points,debug=debug) def add_breakpoints(self,breaks,debug=False,categories={}): """breaks is a list of (scaffold,x) pairs where scaffold is the id of a scaffold in the assembly, and x is a basepair offset from the scaffold 5' end of the scaffold where a break should be added. If x falls in a gap between contigs, the linkage is broken. If x falls in a contig, the contig is broken.""" import networkx as nx g = nx.DiGraph() scaffold_breaks={} for s,x in breaks: if not s in scaffold_breaks: scaffold_breaks[s]=[] for s,x in breaks: scaffold_breaks[s].append(x) for s in scaffold_breaks.keys(): scaffold_breaks[s].sort() if debug: print(scaffold_breaks) new_layout_lines=[] scaffold_broken=False break_indices={} i=0 break_counter=0 # debug=False edge_breaks={} elength={} scaffold={} xcoord={} # # Convert the layout lines into a directed graph # contig_length={} while i< len(self.layout_lines)-1: #print(self.layout_lines[i]) scaffold1,contig1,base1,end1,x1,l21 = self.layout_lines[ i ] scaffold2,contig2,base2,end2,x2,l22 = self.layout_lines[ i+1 ] scaffold[contig1,base1]=scaffold1 scaffold[contig2,base2]=scaffold2 i+=1 if scaffold1==scaffold2: if scaffold1 in scaffold_breaks and (not (contig1,base1)==(contig2,base2)) and len([z for z in scaffold_breaks[scaffold1] if x1<z and z<x2])>0: pass # this is an OO join to remove else: g.add_edge( (contig1,base1,end1),(contig2,base2,end2) ) elength[ (contig1,base1,end1),(contig2,base2,end2) ]=x2-x1 if (contig1,base1)==(contig2,base2): contig_length[contig1,base2]=x2-x1 if not ( scaffold1==scaffold2 and scaffold1 in scaffold_breaks): continue else: break_positions = [z for z in scaffold_breaks[scaffold1] if x1<z and z<x2] if len(break_positions)==0: continue edge_breaks[(contig1,base1,end1),(contig2,base2,end2)]=[] for x in break_positions: # these's a break in here! edge_breaks[(contig1,base1,end1),(contig2,base2,end2)].append( x-x1 ) for e1,e2 in edge_breaks.keys(): # print(e1,e2) next_nodes= g.neighbors(e2) prev_nodes= g.predecessors(e1) # print(prev_nodes) if len(list(next_nodes))>1: raise Exception if len(list(prev_nodes))>1: raise Exception next_node=False prev_node=False if len(list(next_nodes)) == 0: continue if len(list(previous_nodes)) == 0: continue if next_nodes: next_node = list(next_nodes)[0] if prev_nodes: prev_node = list(prev_nodes)[0] g.remove_edge(e1,e2) #print(e1,e2,edge_breaks[e1,e2],scaffold[e1[0],e1[1]],next_node,prev_node) if not (e1[0],e1[1])==(e2[0],e2[1]): #print("this is just an oo link to udo") #this is just an edge to remove continue ocontig = e1[0] if e1[2] in ["5",5]: #forward if next_node: g.remove_edge(e2,next_node) g.remove_node(e2) # a b # prev e1 x1 x2 e2 next # ----------> ---------------------------> -----------------> #just implement the first and last break. (this is not necessarily good if the contig is really, really long. XXX TODO ) edge_breaks[e1,e2].sort() x1=edge_breaks[e1,e2][0] x2=edge_breaks[e1,e2][-1] for i in range(len(edge_breaks[e1,e2])-1): xa = edge_breaks[e1,e2][i ] xb = edge_breaks[e1,e2][i+1] new_node_a = ( e1[0] , e1[1]+xa, '5' ) new_node_b = ( e1[0] , e1[1]+xa, '3' ) g.add_edge(new_node_a,new_node_b) elength[ new_node_a,new_node_b ] = xb-xa scaffold[e1[0] , e1[1]+xa] = scaffold[e1[0],e1[1]] new_node_1 = (e1[0],e1[1] ,'3') new_node_2 = (e1[0],e1[1]+x2,'5') new_node_3 = (e1[0],e1[1]+x2,'3') scaffold[e1[0],e1[1]+x2] = scaffold[e1[0],e1[1]] if debug: print("b",e1,e2,prev_node,next_node,x1,x2,edge_breaks[e1,e2],new_node_1,new_node_2, sep="\t") g.add_edge(e1,new_node_1) g.add_edge(new_node_2,new_node_3) if next_node: g.add_edge(new_node_3,next_node) LL = elength[e1,e2] if next_node: LL2 = elength[e2,next_node] elength[ e1,new_node_1 ] = x1 elength[ new_node_2,new_node_3 ] = LL - x2 if next_node: elength[ new_node_3,next_node ] = LL2 if debug: print("b",e1,e2,prev_node,next_node,x1,x2,edge_breaks[e1,e2],new_node_1,new_node_2, elength.get(( e1,new_node_1 )),elength.get(( new_node_2,new_node_3 )), elength.get((new_node_3,next_node)), sep="\t") # print("zzz",contig_length[e1[0],e1[1]],LL,elength[e1,e2],edge_breaks[e1,e2],x1,x2,elength[e1,e2],elength[ e1,new_node_1 ],elength[ new_node_2,new_node_3 ]) else: #reverse if prev_node: g.remove_edge(prev_node,e1) g.remove_node(e1) #just implement the first and last break. (this is not necessarily good if the contig is really, really long. XXX TODO ) edge_breaks[e1,e2].sort() x1=elength[e1,e2]-edge_breaks[e1,e2][-1] x2=elength[e1,e2]-edge_breaks[e1,e2][0] # b a # prev e1 x2 x1 e2 next # ----------> <---------------------------- -----------------> # A B C for i in range(len(edge_breaks[e1,e2])-1): xb = elength[e1,e2]-edge_breaks[e1,e2][i ] xa = elength[e1,e2]-edge_breaks[e1,e2][i+1] new_node_a = ( e1[0] , e2[1]+xa, '5' ) new_node_b = ( e1[0] , e2[1]+xa, '3' ) g.add_edge(new_node_a,new_node_b) elength[ new_node_a,new_node_b ] = abs(xb-xa) scaffold[e1[0] , e2[1]+xa] = scaffold[e1[0],e2[1]] new_node_C = (e1[0],e2[1] ,'3') # new_node_B = (e1[0],e2[1]+x2,'5') # new_node_A = (e1[0],e2[1]+x2,'3') # scaffold[e1[0],e2[1]+x2] = scaffold[e1[0],e2[1]] g.add_edge(new_node_C,e2) # g.add_edge(new_node_A,new_node_B) # if prev_node: g.add_edge(prev_node,new_node_A) # LL = elength[e1,e2] if prev_node: LL2 = elength[prev_node,e1] elength[ new_node_C, e2 ] = x1 elength[ new_node_A,new_node_B ] = LL - x2 if prev_node: elength[ prev_node, new_node_A ] = LL2 # print("zzW",edge_breaks[e1,e2],x1,x2,elength[e1,e2],elength[ new_node_1, e2 ],elength[ new_node_3,new_node_2 ]) # for e1,e2 in elength.keys(): # if elength[e1,e2]<0: # print("wtf?",e1,e2,elength[e1,e2]) # # Compute the new layout coordinates and scaffold IDs # scaffold_incr={} node_x={} contig_length={} new_scaffold={} for n in sorted(g.nodes()): #print(n,scaffold[n[0],n[1]],g.degree(n),g.in_degree(n),g.out_degree(n)) if g.in_degree(n)==0: scaffold_id=scaffold[n[0],n[1]] new_scaffold_id = scaffold_id if scaffold_id in scaffold_incr: new_scaffold_id = scaffold_id + "."+str(scaffold_incr.get(scaffold_id,0)) new_scaffold[n]=new_scaffold_id scaffold_incr[scaffold_id] = scaffold_incr.get(scaffold_id,0)+1 ll=list(nx.dfs_preorder_nodes(g,n)) xx=0 lastl=False for l in ll: if lastl: xx+=elength[ lastl,l ] #print("z",l,lastl,elength[lastl,l],node_x[lastl],xx,new_scaffold[n],sep="\t") if (lastl[0],lastl[1])==(l[0],l[1]): contig_length[lastl[0],lastl[1]]=elength[ lastl,l ] #print(new_scaffold_id,l,xx) node_x[l]=xx lastl = l # # Build the new layout_lines list # self.scaffold_lengths={} new_layout = [] for n in g.nodes(): if g.in_degree(n)==0: new_scaffold_id = new_scaffold[n] ll=list(nx.dfs_preorder_nodes(g,n)) for l in ll: # print("w",new_scaffold_id,l[0],l[1],l[2],node_x[l]) # print("z",new_scaffold_id,l[0],l[1],l[2],node_x[l],contig_length[l[0],l[1]]) new_layout.append( (new_scaffold_id,l[0],l[1],l[2],node_x[l],contig_length[l[0],l[1]] ) ) # new_layout.append( (new_scaffold_id,l[0],l[1],l[2],node_x[l],elength[l[0],l[1]] ) ) self.scaffold_lengths[new_scaffold_id] = max( node_x[l] , self.scaffold_lengths.get(new_scaffold_id,0)) self.layout_lines=new_layout # self.layout_lines.sort( key=lambda x: (x[0],x[4]) ) self.index_ocontigs() def load_assembly(self,infile): self.scaffold_lengths={} self.bams=[] self.layout_lines=[] self.model_params={} self.ocontig_lengths={} self.contig_lengths={} self.scaffold_ocontigs={} self.bam_objects=False # self.model_params={} f=open(infile,"r") path = "" #if infile.startswith("/"): path = os.path.dirname(os.path.normpath(infile)) for l in f: #print(l) if l[0]=="M": c=l.strip().split() self.model_params[c[1]] = eval(" ".join(c[2:]))[0] if l[0]=="B": #self.bams.append(l[2:].strip()) possible_path = l[2:].strip() if possible_path.startswith("/"): self.bams.append(l[2:].strip()) else: self.bams.append(os.path.join(path,l[2:].strip())) if l[0]=="S": #self.shotgun.append(l[2:].strip()) possible_path = l[2:].strip() if possible_path.startswith("/"): self.shotgun.append(l[2:].strip()) else: self.shotgun.append(os.path.join(path,l[2:].strip())) if l[0]=="P": # Layout self.layout_lines.append( parse_pline2(l,self.scaffold_lengths) ) scaffold,contig,base,end,x,lll = self.layout_lines[-1] self.contig_lengths[contig+"_"+str(base)]=lll self.contig_lengths[contig,base]=lll self.scaffold_ocontigs[scaffold] = self.scaffold_ocontigs.get(scaffold,[])+[contig] if l[0]=="D": # Masked regions (from D for shotgun depth) dummy,ocontig,a,b = l.strip().split() if not ocontig in self.masked_regions: self.masked_regions[ocontig]=[] self.masked_regions[ocontig].append((int(a),int(b))) if l[0]=="L": # Length of input contigs, same as bam header lengths dummy,ocontig,l = l.strip().split() #if not ocontig in self.masked_regions: self.masked_regions[ocontig]=[] self.ocontig_lengths[ocontig] = int(l) f.close() self.index_ocontigs() # print("setup mapper") self.setup_mapper(debug=True) def save_assembly(self,outfile): f=open(outfile,"w") for b in self.shotgun: f.write("S {}\n".format(b)) for b in self.bams: f.write("B {}\n".format(b)) #f.write("M {}\n".format(self.model_params)) if self.model_params: for k in sorted(self.model_params.keys()): f.write("M {} {}\n".format(k,(self.model_params[k],))) for l in self.layout_lines: f.write("P "+" ".join(map(str,l))+"\n") for oc in sorted(self.masked_regions.keys()): for a,b in self.masked_regions[oc]: f.write("D {} {} {}\n".format(oc,a,b)) for oc in sorted(self.ocontig_lengths.keys()): f.write("L {} {}\n".format(oc,self.ocontig_lengths[oc])) # self.masked_regions={} f.close() def scaffold_mapping(): for i in range(len(self.layout_lines)): scaffold1,contig1,base1,end1,x1,l11 = self.layout_lines[i ] if end1 == "3": yield("{}_{}".format(contig1,base1),scaffold1) def as_edges(self): for i in range(len(self.layout_lines)-1): scaffold1,contig1,base1,end1,x1,l21 = self.layout_lines[i ] scaffold2,contig2,base2,end2,x2,l22 = self.layout_lines[i+1] if scaffold1==scaffold2 : if contig1==contig2 and base1==base2: yield(["#edge:","{}_{}.{}".format(contig1,base1,end1) ,"{}_{}.{}".format(contig2,base2,end2) ,{'length':l21,'contig':True}]) else: yield(["#edge:","{}_{}.{}".format(contig1,base1,end1) ,"{}_{}.{}".format(contig2,base2,end2) ,{'length':x2-x1,'contig':False}]) # yield(["#edge:",contig1+"."+end1,contig2+"."+end2,{'length':x2-x1,'contig':False}]) def contig_coords(self): seen = {} for l in self.layout_lines: scaffold1,contig1,base1,end1,x1,l21 = l if not (contig1,base1) in seen: yield( {"contig":contig1,"base":base1,"scaffold":scaffold1,"span":(x1,x1+l21),"flipped":end1 in [3,"3"] }) seen[contig1,base1]=True def dump_layout(self,f): # f=open(outfile,"w") for s in self.scaffold_lengths.keys(): f.write("{} slen\n".format(self.scaffold_lengths[s])) for l in self.layout_lines: scaffold1,contig1,base1,end1,x1,l21 = l f.write("p: {} {}_{}.{} {} - -1 {} {} {}\n".format(scaffold1,contig1,base1,end1,x1,self.scaffold_lengths[scaffold1],l21,False)) # f.close() #p: 1 Scaffold105707_1.3 3019 - -1 85132546 3048 False def load_playout(self,layoutfile): #print(layoutfile) self.scaffold_lengths={} # self.contig_lengths={} if not os.path.exists(layoutfile): raise Exception self.layout_lines = [ parse_pline(c,self.scaffold_lengths) for c in open(layoutfile,"rt") if c[:2]=="p:" ] #for l in self.layout_lines: #print(l) self.index_ocontigs() def check_bams(self): for bamfile in self.bams: if not os.path.exists(bamfile): raise Exception def set_modelparams(self,datamodel): if os.path.exists(datamodel): self.model_params = eval(open(datamodel).read()) else: self.model_params=datamodel if __name__=="__main__": import sys import argparse parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-d','--debug',default=False,action="store_true",help="Turn on debugging ouput") parser.add_argument('-E','--edges',default=False,action="store_true",help="Print the layout as edges.") # parser.add_argument('-E','--edges',default=False,action="store_true",help="Print the layout as edges.") parser.add_argument('-D','--dump_layout',default=False,action="store_true",help="Print the layout as edges.") #parser.add_argument('-p','--progress',default=False,action="store_true",help="Print progress info") parser.add_argument('-M','--datamodel',default=False, help="Name of a file containing the model parameter dictionary") parser.add_argument('-m','--mask' ,default=[], action="append",help="Name of a file containing regions of the input assembly to mask out") parser.add_argument('-b','--bamfile',default=[], action="append",help="A chicago bam file") parser.add_argument('-S','--shotgunbamfile',default=[], action="append",help="A shotgun bam file") #parser.add_argument('-p','--progress',default=False,action="store_true",help="Print progress info") parser.add_argument('-L','--layout',default=False,help="File containing a scaffolding layout in 'p:' lines.") parser.add_argument('-o','--outfile',default=False,help="Filename for serialization of the assembly file.") parser.add_argument('-i','--infile',default=False,help="Filename for serialised assembly input file.") args = parser.parse_args() # print(args) if args.infile: asf = HiriseAssembly() asf.load_assembly(args.infile) # asf.validate() else: asf = HiriseAssembly( {"bams":args.bamfile, "datamodel": args.datamodel, "layout": args.layout , "debug":args.debug, "shotgun": args.shotgunbamfile} ) if args.debug: print("# done with intital load") asf.validate() # asf.index_ocontigs() if args.datamodel: asf.set_modelparams(args.datamodel) for segments_file in args.mask: asf.add_mask_regions(filename=segments_file) asf.merge_masked_regions() if args.outfile: asf.save_assembly( args.outfile ) if args.edges: for e in asf.as_edges(): print("\t".join(map(str,e))) # asf.add_breakpoints( [( '1', 1692 ),('1',10000)] ) # asf.add_breakpoints( [( '1', 1692 ),('1',2000),('1',10000)] ) # asf.add_breakpoints( [( '1', 1692 ),('1',2000),('1',2100),('1',10000)] ) # asf.validate() # asf.load_ocontig_info() # print("#loaded ocontig info") # asf.load_ocontig_info() # print("#loaded ocontig info") # print(asf.get_links(["Scaffold116325"],links={})) # print(asf.get_links(["Scaffold116325"],links={})) # asf.get_scaffold_links("1000",skipI=True) #1691 if args.dump_layout: asf.dump_layout(sys.stdout) ``` #### File: docker-hirise/scripts/linker4.py ```python from __future__ import print_function from builtins import str from builtins import map from builtins import range import sys import networkx as nx import greedy_chicagoan2 as gs def update_end_distance(end_distance,n,g): x=0 q=[n] seen={} last=False while len(q)>0: m=q.pop(0) if last: x+=g[last][m]['length'] last=m if (not m in end_distance) or end_distance[m]>x: end_distance[m]=x seen[m]=True for l in g.neighbors(m): if not l in seen: q.append(l) # print end_distance #def llr(e1,e2): # return 1.0 L=200000.0 def test_interc(c1,c2,join_options,graph,ends,linked): os1=oscaffold[c1] os1_mine = (args.fromS <= os1) and (os1 < args.endS) if not os1_mine: return([-100]) # print "test interc",c1,c2,oscaffold[c1],oscaffold[c2],ends[oscaffold[c1]],ends[oscaffold[c2]],linked.get(c1),linked.get(c2),len(linked.keys()) if False: for free_end in ends[scaffold[c1]]: for c2_end in [c2+".5",c2+".3"]: if c2_end in linked: # print 1,free_end,c2_end try: gs.test_interc_option( c2_end, linked[c2_end], free_end, join_options, graph ) except Exception as e: print("c2_end=",c2_end,"--",linked[c2_end],free_end) print(e) raise Exception('too connected 1') for free_end in ends[scaffold[c2]]: for c1_end in [c1+".5",c1+".3"]: if c1_end in linked: # print 2,free_end,c1_end try: gs.test_interc_option( c1_end, linked[c1_end], free_end, join_options, graph ) except Exception as e: print("c1_end=",c1_end,"--",linked[c1_end],free_end) print(e) raise Exception('too connected 2') if len(join_options)>0: join_options.sort(reverse=True) # print join_options return(join_options[0]) return([-100.0]) if __name__=="__main__": import sys import argparse parser = argparse.ArgumentParser() parser.add_argument('-d','--debug',default=False,action='store_true') parser.add_argument('-p','--progress',default=False,action='store_true') parser.add_argument('-L','--links') parser.add_argument('-a','--chunk1',type=int) parser.add_argument('-b','--chunk2',type=int) parser.add_argument('-1','--first') parser.add_argument('-2','--second') parser.add_argument('-s','--scaffolds') parser.add_argument('-S','--alreadyDone') #parser.add_argument('-b','--besthits') parser.add_argument('-l','--lengths') parser.add_argument('-E','--edgefile') parser.add_argument('--test_intercs',default=False) parser.add_argument('-F','--filter') parser.add_argument('-K','--endS',default=100000,type=int) parser.add_argument('-k','--fromS' ,default=0,type=int) parser.add_argument('-t','--threshold' ,default=0.10,type=float) parser.add_argument('-Z','--chunkfile') parser.add_argument('--set_insert_size_dist_fit_params',default="3.85301461797326,1.42596694138494,1.38674994280385e-05,10940.8191219759,49855.7525034142,0.3,420110993") args = parser.parse_args() if args.debug: args.progress=True if args.progress: print("#", str(args)) print("#"+str(args)) fit_params={} try: fit_params = eval(args.set_insert_size_dist_fit_params ) except Exception as e: f=open( args.set_insert_size_dist_fit_params ) contents = f.read() try: fit_params=eval(contents) except: "couldn't deal with option", args.param f.close gs.set_exp_insert_size_dist_fit_params(fit_params) components=[] component={} chunk={} if args.chunkfile: f = open(args.chunkfile) while True: l = f.readline() if not l: break c = l.strip().split() if not c[0]=="c:": continue if int(c[2])==args.chunk1 or int(c[2])==args.chunk2: ccn = int(c[1]) contigs = eval(" ".join(c[4:])) components.append(contigs) for cc in contigs: component[cc]=ccn chunk[cc]=int(c[2]) ll={} if args.lengths: f = open(args.lengths) while True: l = f.readline() if not l: break if l[0]=="#": continue c=l.strip().split() ll[c[0]]=int(c[1]) f.close() oscaffold={} oslen={} slen={} g=nx.Graph() linked={} if args.scaffolds: f=open(args.scaffolds) while True: l=f.readline() if not l: break c=l.strip().split() if c[0]=="cc:": #print l.strip() # cc: 10 313 ['Scaffold98750_1', 'Scaffold2044 scn=int(c[1]) scs=eval(" ".join(c[3:])) for s in scs: oscaffold[s]=scn g.add_node(s+".3") g.add_node(s+".5") g.add_edge(s+".3",s+".5",{"contig":True, "length":ll[s]}) if c[0]=="#edge:": ht=eval(" ".join(c[3:])) g.add_edge(c[1],c[2],**ht) sb,e=c[1][:-2],c[1][-1:] oslen[oscaffold.get(sb,sb)] = oslen.get(oscaffold.get(sb,sb),0)+ht['length'] if not ht['contig']: linked[c[1]]=c[2] linked[c[2]]=c[1] #print "#add edge",c[1],c[2],eval(" ".join(c[3:])),linked[c[1]],linked[c[2]] f.close() for n in g.nodes(): s = n[:-2] g.add_edge(s+".3",s+".5",{"contig":True, "length":ll[s]}) if not s in oscaffold: oscaffold[s]=0 # for n in ["Scaffold27527_1","Scaffold40367_1","Scaffold17670_1"]: # print n,oscaffold[n] #, nx.node_connected_component(g,n) # print len(linked.keys()) sys.stdout.flush() sc=1 scaffold={} for c in nx.connected_components(g): for cc in c: scaffold[cc]=sc scaffold[cc[:-2]]=sc tl=0 for e1,e2 in nx.dfs_edges(g,c[0]): tl+=g[e1][e2]['length'] slen[sc]=tl sc+=1 end_distance={} ends={} for n in g.nodes(): if g.degree(n)==1:# and n in oscaffold and oscaffold[n]<args.endS: update_end_distance(end_distance,n,g) ends[scaffold[n]] = ends.get(scaffold[n],[])+[n] #x print n,scaffold[n],ends[scaffold[n]] print("#done setting edge distances") sys.stdout.flush() scaffold_pairs_tested={} #Scaffold50016_1 Scaffold40593_1 ['Scaffold77744_1.5', 'Scaffold246520_1.5'] ['Scaffold111955_1.3', 'Scaffold216064_1.3'] 1141 455 1 15 1 if args.alreadyDone: f=open(args.alreadyDone) while True: l=f.readline() if not l: break if l[0]=="#": continue if "link score"==l[:10]: continue c=l.strip().split() print("# skip",int(c[-5]),int(c[-4])) s1=scaffold[c[0]] s2=scaffold[c[1]] scaffold_pairs_tested[s1,s2]=True scaffold_pairs_tested[s2,s1]=True f.close() max_interc_len = 20000 inter_chunk_pairs={} links={} links_interc={} if args.links: if args.links=="-": f = sys.stdin else: f = open(args.links) nlinks=0 while True: l = f.readline() if not l: break if l[0]=="#": continue # parser.add_argument('-K','--endS',default=100000,type=int) # parser.add_argument('-k','--fromS' ,default=0,type=int) c=l.strip().split() c1,c2=c[0],c[1] if ( chunk.get(c1)==args.chunk1 and chunk.get(c2)==args.chunk2 ) or ( chunk.get(c2)==args.chunk1 and chunk.get(c1)==args.chunk2 ) : inter_chunk_pairs[c1,c2]=1 os1=oscaffold.get(c1,-1) os2=oscaffold.get(c2,-1) os1_mine = (args.fromS <= os1) and (os1 < args.endS) os2_mine = (args.fromS <= os2) and (os2 < args.endS) # if (os1_mine or os2_mine) if (os1_mine or os2_mine) \ and os1>=0 and os2>=0 \ and (c1 in scaffold and c2 in scaffold) \ and (not ( scaffold[c1],scaffold[c2] ) in scaffold_pairs_tested): links[c1,c2]=eval(" ".join(c[5:])) nlinks+=1 if nlinks%10000==1: print("#nlinks=",nlinks,c1,c2,os1,os2,scaffold[c1],scaffold[c2],args.fromS,args.endS) else: pass #print c1,c2,ll[c1],ll[c2],eval(" ".join(c[5:])) #if oslen[oscaffold.get(c1,c1)] < max_interc_len or oslen[oscaffold.get(c1,c1)] < max_interc_len: # links_interc[c1,c2] = eval(" ".join(c[5:])) if args.links=="-": pass else: f.close() gaps_list=(1000,) link_scores={} gs.ll=ll gs.links=links pairs_to_test=list(inter_chunk_pairs.keys()) if args.first: pairs_to_test = [(args.first,args.second)] # for c1,c2 in links.keys(): # for c1,c2 in [("Scaffold68143_1","Scaffold42944_1"),("Scaffold232867_1","Scaffold519668_1"),("Scaffold82730_1","Scaffold59156_1")]: for c1,c2 in pairs_to_test: nlinks_used={} if c1 in scaffold and c2 in scaffold and scaffold[c1]==scaffold[c2]: continue if (scaffold[c1],scaffold[c2]) in scaffold_pairs_tested: continue #if c1+".5" in nx.node_connected_component(g,c2+".5" ): print "wtf? 1 ",c1,c2 #if oscaffold[c1]==oscaffold[c2]: print "wtf? 3 ",c1,c2,oscaffold[c1],oscaffold[c2] # if not scaffold[c1]%args.slices == args.slice : continue scaffold_pairs_tested[scaffold[c1],scaffold[c2]]=True scaffold_pairs_tested[scaffold[c2],scaffold[c1]]=True # scaffold_pairs_tested[c2,c1]=True #print oslen[oscaffold.get(c1,c1)] header="\t".join(map(str,[ c1,c2,ends[scaffold[c1]],ends[scaffold[c2]],scaffold[c1],scaffold[c2],oscaffold.get(c1),oscaffold.get(c2),slen[scaffold[c1]],slen[scaffold[c2]]])) #,scaffold[c1]%args.slices,scaffold[c2]%args.slices,args.slice # sys.stdout.flush() linkscore=[] hit=False for e1 in ends[scaffold[c1]]: for e2 in ends[scaffold[c2]]: # link_scores[e1,e2]=[ gs.link_test(g,e1,e2,gap) for gap in (1, 1000,5000,10000, 20000, 35000, 50000, 80000, 100000,150000,200000,500000 ) ] link_scores[e1,e2] =[ gs.link_test(g,e1,e2,gap) for gap in gaps_list ] if args.debug: nlinks_used[e1,e2]=[ gs.nlinks_used(g,e1,e2,gap) for gap in gaps_list ] if max( link_scores[e1,e2])>args.threshold: hit=True print(ends[scaffold[c1]], slen[scaffold[c1]],slen[scaffold[c2]], max( link_scores[e1,e2]), max(nlinks_used.get((e1,e2),[-1]))) best_interc="" if args.test_intercs: join_options=[] best_interc=[-1] try: best_interc=test_interc(c1,c2,join_options,g,ends,linked) except Exception as e: print(e) print(header) if best_interc[0]>0: hit=True else: best_interc="" # def joined(c,graph): if hit: print(header,"i:",best_interc) for e1 in ends[scaffold[c1]]: for e2 in ends[scaffold[c2]]: print("link score",e1,e2,"\t".join(map(str,link_scores[e1,e2]))) if args.debug: for ii in range(len(gaps_list)): print("#nlink_debug:",e1,e2,ii,nlinks_used[e1,e2][ii],link_scores[e1,e2][ii]) sys.stdout.flush() # sc[x,y] = link_test(og,x,y) #link score Scaffold68143_1.5 Scaffold42944_1.3 -12.0363618331 -8.50975484023 3.09050796551 13.1466146475 23.6521102192 #link score Scaffold232867_1.5 Scaffold519668_1.3 14.2053772843 17.5334920011 28.5300425318 38.1409186507 48.2455365211 #link score Scaffold82730_1.3 Scaffold59156_1.3 19.032925025 22.7060494622 34.76613982 45.137277127 55.5327333446 #link score Scaffold139910_1.5 Scaffold88540_1.5 18.4718988438 22.0553877336 33.8485414561 44.045490051 54.4456783858 #link score Scaffold264145_1.3 Scaffold163676_1.5 58.5394818429 61.4418869438 70.6603831852 77.9258584168 83.0945142366 #link score Scaffold48407_1.3 Scaffold136888_1.5 43.5898317791 46.6738612148 56.8244456982 65.4217034062 73.3441397183 #link score Scaffold113693_1.5 Scaffold61032_1.5 23.6894794909 27.0904366266 38.3018179122 47.9797590877 57.7542115065 #link score Scaffold125405_1.5 Scaffold158227_1.3 24.2942327515 27.8092174693 39.3813872363 49.3913743569 59.5690031451 ``` #### File: docker-hirise/scripts/local_scramble_dp.py ```python from __future__ import print_function from builtins import range from builtins import object import math import itertools import networkx as nx class LSbitlinks(object): def __init__(self,w): n = 2**w self.n=n #print n bitlinks={} for d in range(1,w+1): for f in range(n): bitlinks[f,d]=[] for g in range(n): #print d,f,g,bin(f),bin(g),bin(f>>d),bin((2**(w-d)-1)),bin(g&(2**(w-d)-1)),f>>d == g&(2**(w-d)-1) if (f>>d) == g&(2**(w-d)-1): bitlinks[f,d].append(g) #print d,f,bitlinks[f,d] self.bitlinks = bitlinks class LSbacklinks(object): def __init__(self,w): g=nx.DiGraph() g0=nx.Graph() n=math.factorial(w) self.n = n perms = [] self.perms=perms for p in itertools.permutations(list(range(w))): perms.append(p) for x in range(0,w) : for y in range(x+1,w+1): d = y-x for i in range(n): for j in range(n): match=True #print d,x,y,i,j,w-d,"####" for k in range(w-d): #print d,x,y,i,j,k,k+d if not perms[i][k]+d == perms[j][k+d]: match=False if match: g.add_edge((x,i),(y,j),weight=d*d ) g0.add_edge((x,i),(y,j),weight=d*d ) #print (x,i),(y,j),d,"z" # for e in g.edges(): #print "e:",e n_backlinks=0 backlinks={} for i in range(n): backlinks[i]=[] nn = nx.dfs_preorder_nodes(g,(0,i)) #print "#",str((0,i))#,list(nn) sg = g0.subgraph(nn) #print "#",list(sg.nodes()) t = nx.minimum_spanning_tree(sg) for a,b in t.edges(): if b<a: c=b b=a a=c if a==(0,i): #print "x:",b[0]-a[0],a,b,perms[b[1]],perms[a[1]] n_backlinks+=1 backlinks[i].append( (b[0]-a[0],b[1]) ) self.backlinks = backlinks self.n_backlinks=n_backlinks if __name__=='__main__': import sys w=int(sys.argv[1]) bl = LSbacklinks(w) #print "#",bl.n_backlinks,bl.n,float(bl.n_backlinks)/bl.n x="abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789" def sperm(p,s): r="" for pp in p: if pp<len(s): r+=s[pp] return r print(x) if False: for i in range(w,len(x)-w+1): for p in bl.perms: s1p = sperm(p,x[i:i+w]) for o,p2 in bl.backlinks[p]: s2 = x[i-o:i] print("."*(i-o) + sperm(p2,s2) + s1p +"."*(len(x)-(i-o)-w-o),"%") else: for i in range(w,len(x)-w+1): for pi in range(bl.n): s1p = sperm(bl.perms[pi],x[i:i+w]) for o,p2 in bl.backlinks[pi]: s2 = x[i-o:i] print("."*(i-o) + sperm(bl.perms[p2],s2) + s1p +"."*(len(x)-(i-o)-w-o),"%") fl = LSbitlinks(w) ``` #### File: docker-hirise/scripts/p2fa2.py ```python from __future__ import division from __future__ import print_function from builtins import str from builtins import range from builtins import object from past.utils import old_div import sys import string import random import os import re import pysam tt = str.maketrans("ACTGactg","TGACtgac") class fastaWriter(object): def __init__(self,filename,linelen=60): # print(filename, file=sys.stderr) self.f=open(filename,"w") # print(self.f, file=sys.stderr) self.linelen=linelen self.buff="" self.x=0 self.name="" def write(self,s): self.buff+=s self.x+=len(s) # print(len(self.buff),self.linelen, file=sys.stderr) # while len(self.buff)>self.linelen: wrtn=0 for i in range( 0, self.linelen*(int(old_div(len(self.buff),self.linelen))) , self.linelen ): wrtn+=self.linelen self.f.write( self.buff[i:i+self.linelen]+"\n" ) # print "#",self.buff[i:i+self.linelen] # sys.stdout.flush() if (len(self.buff)%self.linelen)==0: self.buff="" else: self.buff= self.buff[ -(len(self.buff)%self.linelen) :] # print(len(self.buff),wrtn, file=sys.stderr) self.f.flush() def flush(self): # while len(self.buff)>self.linelen: # print(len(self.buff),self.linelen,"flush", file=sys.stderr) wrtn=0 for i in range( 0, self.linelen*(int(old_div(len(self.buff),self.linelen))) , self.linelen ): wrtn+=self.linelen self.f.write( self.buff[i:i+self.linelen]+"\n" ) if len(self.buff)%self.linelen>0: wrtn+=(len(self.buff)%self.linelen) # print("flush",self.buff[ -(len(self.buff)%self.linelen) :], file=sys.stderr) self.f.write( self.buff[ -(len(self.buff)%self.linelen) :] +"\n") self.buff="" # print(len(self.buff),wrtn, file=sys.stderr) self.f.flush() def next(self,name): # if self.x>0: # print("#.",self.name,self.x, file=sys.stderr) self.x=0 self.flush() # print(name, file=sys.stderr) sys.stdout.flush() self.f.write(">{}\n".format(name)) self.f.flush() self.name=name def close(self): self.f.close() def rc(s): try: s = s.translate(tt) except: print(type(tt)) print(tt) print(type(s)) print(s) return s[::-1] if __name__=="__main__": import sys # print " ".join(sys.argv) import argparse parser = argparse.ArgumentParser() parser.add_argument('-f','--fasta',required=True) parser.add_argument('-o','--outfile',required=True) parser.add_argument('-p','--prefix',required=False) parser.add_argument('-l','--logfile',required=False,default=False) parser.add_argument('-g','--gapclose',required=False) parser.add_argument('-d','--debug',default=False,action="store_true") parser.add_argument('--seed',required=False,type=int,default=1, help="Seed for random number generation, use -1 for no seed") args = parser.parse_args() if args.seed != -1 : random.seed(args.seed) if not os.path.exists("%s.fai" % args.fasta): pysam.faidx(args.fasta) fastafile = pysam.Fastafile( args.fasta ) outfasta=fastaWriter(args.outfile) # print("opened outfile", file=sys.stderr) logfile=False if args.logfile: logfile=open(args.logfile,"wt") name_prefix="" if args.prefix: name_prefix=args.prefix else: import idGen as idGen name_prefix="Sc" + idGen.id() print("name_prefix",name_prefix,file=sys.stderr) # for i in range(5): # name_prefix += random.choice( "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz" ) #31 Scaffold142609_1.5 GGGGTACCAGGTGTCTGGGTGCTGGCAGAGCCGGCACTGATGTTTTCTGGG Scaffold41854_1.5 GGTACCAGGTGTCTGGGTGCTGGCAGAGCCGGCACTGATGTTTTCTGGGGG GGGGTACCAGGTGTCTGGGTGCTGGCAGAGCCGGCACTGATGTTTTCTGGGGG gapclose_data={} if args.gapclose: fh=open(args.gapclose) while True: l=fh.readline() if not l: break if l[0]=="#": continue scaffold,end1,kmer1,end2,kmer2,closure=l.strip().split() gapclose_data[end1,end2]=(kmer1,kmer2,closure) fh.close() last_patch="" kmer=51 trailing_kemr="" nibbled_seq="" last_c=-1 last_x=0 last_s="__" cl=0 while True: l=sys.stdin.readline() if not l: break if not l[:2]=="p:": continue # print(l.strip(), file=sys.stderr) c=l.strip().split() #p: 1 Scaffold63081_1.5 25308872.0 8 31235809 37446086.0 ['79538.0', '8', '+', '31235809', '31278771', '1', '42972', '42972'] scaffold,end,x = c[1],c[2],float(c[3]) clen=int(c[7]) if not scaffold==last_s: outfasta.next(name_prefix+"_"+str(scaffold)) last_x=0 contig,p=end[:-2],end[-1:] ((ocontig,base),) = re.findall("(.*)_(\d+)$",contig) base=int(base) if args.debug: print(scaffold,end,x,contig,p,base,last_c, file=sys.stderr) if not contig == last_c: nibble_off=0 nibbled_seq = "" # if args.debug: print(last_x) if last_x>0: if (last_end,end) in gapclose_data: kmer1,kmer2,closure= gapclose_data[last_end,end] if args.debug: print("gc->",kmer1,kmer2,closure) if not kmer1.lower() == closure[:len(kmer1)].lower(): print("kmers mismatch:",kmer1,closure,len(kmer1),len(closure), file=sys.stderr) raise Exception outfasta.write( closure[len(kmer1):] ) nibble_off = len(kmer2) last_patch = closure nibbled_seq = closure[-len(kmer2):] elif (end,last_end) in gapclose_data: if args.debug: print("gc<-") kmer2,kmer1,closure= gapclose_data[end,last_end] kmer1 = rc(kmer1) kmer2 = rc(kmer2) closure = rc(closure) last_patch = closure if not kmer1 == closure[:len(kmer1)]: print("kmers mismatch:",kmer1,closure,len(kmer1),len(closure), file=sys.stderr) raise Exception outfasta.write( closure[len(kmer1):] ) nibble_off = len(kmer2) nibbled_seq = closure[-len(kmer2):] pass else: outfasta.write( "N" * int(x-last_x) ) nibbled_seq = "" last_patch = "" # print(seqs[contig][:500], file=sys.stderr) x_before=outfasta.x st="+" if p=="5": cseq = fastafile.fetch(reference=ocontig,start=base-1,end=base+clen).decode() outfasta.write(cseq[nibble_off:]) trailing_kmer = cseq[-kmer:] if not cseq[:nibble_off].lower()==nibbled_seq.lower(): print("inconsistent gap closure:",contig,nibble_off,cseq[:nibble_off].lower(),"neq",nibbled_seq.lower(),len(cseq),trailing_kmer, file=sys.stderr) raise Exception #exit(1) else: st="-" cseq = fastafile.fetch(reference=ocontig,start=base-1,end=base+clen).decode() if args.debug: print("x",ocontig,len(cseq)) outfasta.write(rc(cseq)[nibble_off:]) trailing_kmer = rc(cseq)[-kmer:] if not rc(cseq)[:nibble_off].lower()==nibbled_seq.lower(): outfasta.flush() print("inconsistent gap closure:",contig,nibble_off,rc(cseq)[:nibble_off],"neq",nibbled_seq,"rc",base,clen,ocontig,cseq, file=sys.stderr) raise Exception #exit(1) x_after=outfasta.x if logfile: logfile.write("{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format(name_prefix+"_"+str(scaffold),ocontig,base-1,base+clen-1,st,x_before,x_after)) else: pass # print("#lc:",contig,p,int(x-last_x),len(seqs[contig]), file=sys.stderr) # print "N" * int(x-last_x) last_c=contig last_x=x last_s=scaffold last_end=end outfasta.flush() outfasta.close() ``` #### File: docker-hirise/scripts/score_links4.py ```python from __future__ import print_function from builtins import str from builtins import map import sys import networkx as nx import chicago_edge_scores as ces import numpy as np from scipy.stats import poisson import math #G=3.0e9 N=100000000.0 pn=0.3 G=3000000000.0 import math if __name__=="__main__": import sys import argparse parser = argparse.ArgumentParser() # parser.add_argument('-t','--threshold',default=0.0 , type=float) # parser.add_argument('-b','--besthits') parser.add_argument('-d','--debug',default=False , action='store_true') # parser.add_argument('-P','--plot',default=False , action='store_true') parser.add_argument('-M','--set_insert_size_dist_fit_params',default=False ) # parser.add_argument('-G','--maxTrueGap',type=int,default=False) parser.add_argument('-S','--scoreDelta',type=float,default=2.0) parser.add_argument('-p','--pvalue',type=float,default=0.000001) parser.add_argument('-E','--endwindow',type=float,default=False,help="Ignore links where either read is burried more than endwindow bases from the end of its mapped contig.") parser.add_argument('-N','--maxN',type=int,default=False) parser.add_argument('-L','--minlen',type=int,default=1000) args = parser.parse_args() ces.debug=args.debug fmodel=open( args.set_insert_size_dist_fit_params ) contents = fmodel.read() try: fit_params=eval(contents) except: "couldn't deal with option", args.param fmodel.close ces.set_exp_insert_size_dist_fit_params(fit_params) # besthit={} # if args.besthits: # besthit={} # if args.besthits: # f = open(args.besthits) # while True: # l = f.readline() # if not l: break # if not l[:5]=="best:": continue # c=l.strip().split() # besthit[c[1]]=c[2:] # print c[1],besthit[c[1]] # f.close() # if args.progress: print("#Done reading besthits") def ppf_cached(y,cache={}): x=round(y,4) if x==0: return(poisson.ppf(0.99999999,y)) if x in cache: return cache[x] ppf=poisson.ppf(0.99999999,x) if np.isnan(ppf) or ppf==np.inf: print("wtf:",y,x) cache[x]=max(ppf,1) return ppf def ppf_mtc(y,N,cache={}): pp=(1.0-(args.pvalue/N)) if pp==1.0: pp=1.0-np.finfo(float).resolution x=round(y,4) if x==0: ppf=poisson.ppf(pp,y) if np.isnan(ppf) or np.isinf(ppf): print("wtf:",y,x,ppf,(1.0-(args.pvalue/N)),N) return ppf if (x) in cache: return cache[x] ppf=poisson.ppf(pp,x) cache[x]=max(ppf,1) return ppf n_done=0 G2=(ces.model.G*ces.model.G) while (not args.maxN) or n_done<args.maxN: l=sys.stdin.readline() if not l: break if l[0]=="#": continue c = l.strip().split("\t") s1,s2,l1,l2,n = c[0],c[1],int(c[2]),int(c[3]),int(c[4]) if l1<args.minlen : continue if l2<args.minlen : continue if args.endwindow and ((l1>args.endwindow*2) or (l2>args.endwindow*2)) : links = eval( " ".join(c[5:]) ) n=0 for x,y in links: if not (x<args.endwindow or (l1-x)<args.endwindow): continue if not (y<args.endwindow or (l2-y)<args.endwindow): continue n+=1 l1 = min(l1,2*args.endwindow) l2 = min(l2,2*args.endwindow) n_done+=1 n_bar0= ces.model.N*ces.model.pn*l1*l2*2/G2 # n=len(links) # ppf=ppf_cached(n_bar0) N=int((G2/(l1*l2))) ppf=ppf_mtc(n_bar0,N) if (n-ppf)>=args.scoreDelta: print("\t".join(map(str,[s1,s2,n,ppf,round(n_bar0,4),l1,l2,N]))) ```
{ "source": "AakashSYadav/SpriD", "score": 3 }
#### File: SpriD/Additional/ani.py ```python import math from PIL import Image, ImageDraw imgx = 800 imgy = 600 image = Image.new("RGB", (imgx, imgy)) draw = ImageDraw.Draw(image) # Second Order ODE (y'' = f(x, y, y')) Solver using Euler method # n : number of steps (higher the better) # xa: initial value of independent variable # xb: final value of independent variable # ya: initial value of dependent variable # y1a: initial value of first derivative of dependent variable # Returns value of y, y1 at xb. def Euler2(f, xa, xb, ya, y1a, n): h = (xb - xa) / float(n) x = xa y = ya y1 = y1a for i in range(n): y1 += h * f(x, y, y1) y += h * y1 x += h return [y, y1] # Damped spring-mass system driven by sinusoidal force # y'' = (F0 * math.cos(omega * t - phi) - b * y' - k * y) / m # y'' : acceleration # y' : velocity # y : position m = 2.0 # mass (kg) F0 = 4.76 # force amplitude constant (N) omega = 0.36 # angular frequency (rad/s) phi = 0.0 # phase constant (rad) b = 0.0 # friction constant (Ns/m) k = 20.0 # spring constant (N/m) def f(x, y, y1): return (F0 * math.cos(omega * x - phi) - b * y1 - k * y) / m yaSim = 0.0 # initial position (m) y1aSim = 0.0 # initial velocity (m/s) n = 1000 # number of steps for Euler method xaSim = 0.0 # initial time of simulation (s) xbSim = 100.0 # final time of simulation (s) xdSim = xbSim - xaSim # deltaT of simulation nSim = 1000 # number of time steps of simulation # find min and max values of position (needed for the graph) ya = yaSim y1a = y1aSim yMin = ya yMax = ya for i in range(nSim): xa = xaSim + xdSim * i / nSim xb = xaSim + xdSim * (i + 1) / nSim y_y1 = Euler2(f, xa, xb, ya, y1a, n) ya = y_y1[0] y1a = y_y1[1] if ya < yMin: yMin = ya if ya > yMax: yMax = ya # draw the graph ya = yaSim y1a = y1aSim for i in range(nSim): xa = xaSim + xdSim * i / nSim xb = xaSim + xdSim * (i + 1) / nSim kxa = (imgx - 1) * (xa - xaSim) / xdSim kya = (imgy - 1) * (ya - yMin) / (yMax - yMin) y_y1 = Euler2(f, xa, xb, ya, y1a, n) ya = y_y1[0] y1a = y_y1[1] kxb = (imgx - 1) * (xb - xaSim) / xdSim kyb = (imgy - 1) * (ya - yMin) / (yMax - yMin) draw.line((kxa, kya, kxb, kyb), (0, 255, 0)) # (r, g, b) image.save("Spring_mass system simulation.png", "PNG") ``` #### File: SpriD/Additional/heli.py ```python from tkinter import * # for using combobox from tkinter.ttk import * # for creating messagebox alert from tkinter import messagebox # for adding menu from tkinter import Menu # for Image from PIL import ImageTk, Image # TODO: http://www.java2s.com/Code/Python/GUI-Tk/LayoutsideTOPLEFT.htm window = Tk() window.title("Welcome to SpriD") window.geometry('700x400') def interplt(x,y,a): if a in x: i=x.index(a) lbl1.configure(text= y[i]) # return y[i] else: for j in range(len(x)): if(a<x[j]): x1=x[j-1] x2=x[j] y1=y[j-1] y2=y[j] m=(y2-y1)/(x2-x1) c=m*(a-x1)+y1 lbl1.configure(text= c) # return c x = [1,2,3,4,5] y = [2,4,6,8,10] # button1 = Button(topFrame, text="Calculate", command=lambda: interplt(x,y,float(txt1.get()))) headFrame = Frame(window) toolbar1 = Frame(window) toolbar2 = Frame(window) toolbar3 = Frame(window) calcFrame = Frame(window) toolbar4 = Frame(window) toolbar5 = Frame(window) toolbar6 = Frame(window) footFrame = Frame(window) lbl = Label(headFrame, text="Input the given params",font=("Arial B",14)) lbl.pack(padx=2, pady=2) headFrame.pack(side=TOP, fill=X, padx=4 ) lbl = Label(toolbar1, text="open", width=6) lbl.pack(side=LEFT, padx=2, pady=2) txt = Entry(toolbar1,width=10) txt.pack(side=LEFT, padx=2, pady=2) lbl = Label(toolbar1, text="m/s^2",font=("Arial B", 10), width=6) lbl.pack(side=LEFT, padx=2, pady=2) lbl = Label(toolbar1, text="open", width=6) lbl.pack(side=LEFT, padx=2, pady=2) txt = Entry(toolbar1,width=10) txt.pack(side=LEFT, padx=2, pady=2) lbl = Label(toolbar1, text="m/s^2",font=("Arial B", 10), width=6) lbl.pack(side=LEFT, padx=2, pady=2) toolbar1.pack(fill=X, padx=4 ) lbl = Label(toolbar2, text="open", width=6) lbl.pack(side=LEFT, padx=2, pady=2) txt = Entry(toolbar2,width=10) txt.pack(side=LEFT, padx=2, pady=2) lbl = Label(toolbar2, text="MPa",font=("Arial B", 10), width=6) lbl.pack(side=LEFT, padx=2, pady=2) toolbar2.pack(fill=X, padx=4) lbl = Label(toolbar3, text="open", width=6) lbl.pack(side=LEFT, padx=2, pady=2) txt = Entry(toolbar3,width=10) txt.pack(side=LEFT, padx=2, pady=2) lbl = Label(toolbar3, text="MPa",font=("Arial B", 10), width=6) lbl.pack(side=LEFT, padx=2, pady=2) toolbar3.pack(fill=X, padx=4) b = Button(calcFrame, text="Calculate") b.pack() calcFrame.pack(fill=X) lbl = Label(toolbar4, text="length", width=6) lbl.pack(side=LEFT, padx=2, pady=2) lbl = Label(toolbar4, text="20.28mm", width=6) lbl.pack(side=LEFT, padx=2, pady=2) toolbar4.pack(side=BOTTOM) window.mainloop() ``` #### File: SpriD/Additional/sim2.py ```python from vpython import* import Tkinter as tk import thread # will be global sphere = None def vthread(): global sphere vs.scene.title = "Sphere in space (3D drag with right mouse button)" vs.scene.autoscale = False sphere = vs.sphere(pos=(0, 0, 0), color=vs.color.green) def move_sphere_incr_x(event=None): """moves along the x axis incrementing x""" x, y, z = sphere.pos sphere.pos = (x+1, y, z) def move_sphere_decr_x(event=None): """moves along the x axis decrementing x""" x, y, z = sphere.pos sphere.pos = (x-1, y, z) root = tk.Tk() w = 300 h = 200 x = 450 y = 100 # use width x height + x_offset + y_offset (no spaces!) root.geometry("%dx%d+%d+%d" % (w, h, x, y)) root.title("Control Sphere from here") b_incr_x = tk.Button(root, text="move on x axis increment x") # bind passes an event to function b_incr_x.bind("<Button-1>", move_sphere_incr_x) b_incr_x.grid(row=0, column=0, padx=20, pady=10) b_decr_x = tk.Button(root, text="move on x axis decrement x") # bind passes an event to function b_decr_x.bind("<Button-1>", move_sphere_decr_x) b_decr_x.grid(row=1, column=0, padx=10) # use thread to do run VPython and Tkinter simultaneously # thread.start_new_thread(function, args) # args is an empty tuple here sphere = thread.start_new_thread(vthread, ()) root.mainloop() ``` #### File: SpriD/Additional/tabs2.py ```python from tkinter import * from tkinter import ttk # for using combobox from tkinter.ttk import * # for creating messagebox alert from tkinter import messagebox # for adding menu from tkinter import Menu # for Image from PIL import ImageTk, Image # add hyperlinks import webbrowser # timestamp import time import datetime root = Tk() var = IntVar() #__________________________________________________________________________________________________ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^from brain ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\ pi = 3.14159265; # TODO: pg 510 diameter dependency # material = [m, A(kpsi), E(mpsi), G(mpsi), density(ld/inch^3), relative cost] A228 = [0.145, 201, 29.5, 12, 0.284, 2.6] A229 = [0.147, 147, 30, 11.5, 0.284, 1.3] A227 = [0.190, 140, 28.8, 11.7, 0.284, 1.0] A232 = [0.168, 169, 29.5, 11.2, 0.284, 3.1] A401 = [0.108, 202, 29.5, 11.2, 0.284, 4] def calcMain(): # def calcMain(fmax, ymax, freelength, solidlength, material, endCondition): # if inout in si if var.get()==2: fmax=float(txt_fmax.get())/4.44822 ymax=float(txt_ymax.get())/25.4 freelength=float(txt_freelength.get())/25.4 solidlength=float(txt_solidlength.get())/25.4 if var.get()==1: fmax=float(txt_fmax.get()) ymax=float(txt_ymax.get()) freelength=float(txt_freelength.get()) solidlength=float(txt_solidlength.get()) d=0.001 counter = 0 while d>0: # factor of safety # TODO: take input ns = 1.2; # fixed pg510 zeta = 0.15 #for fom gama = 1; #for music wire ## TODO: reduce size material=combo_mat.get(); if material=='A228': if d <0.033: E=29.5*1000000 G=12*1000000 elif d >= 0.033 and d<=0.063: E=29*1000000 G=11.85*1000000 elif d > 0.063 and d<=0.125: E=28.5*1000000 G=11.75*1000000 elif d > 0.125: E=28*1000000 G=11.6*1000000 A=A228[1]*1000 m=A228[0] # E=A228[2]*1000000 # G=A228[3]*1000000 rc=A228[5] if material=='A229': if d <0.033: E=28.8*1000000 G=11.7*1000000 elif d >= 0.033 and d<=0.063: E=28.7*1000000 G=11.6*1000000 elif d > 0.063 and d<=0.125: E=28.6*1000000 G=11.5*1000000 elif d > 0.125: E=28.5*1000000 G=11.4*1000000 A=A229[1]*1000 m=A229[0] # E=A229[2]*1000000 # G=A229[3]*1000000 rc=A229[5] if material=='A227': A=A227[1]*1000 m=A227[0] E=A227[2]*1000000 G=A227[3]*1000000 rc=A227[5] if material=='A232': A=A232[1]*1000 m=A232[0] E=A232[2]*1000000 G=A232[3]*1000000 rc=A232[5] if material=='A401': A=A401[1]*1000 m=A401[0] E=A401[2]*1000000 G=A401[3]*1000000 rc=A401[5] # A = 201000 ; # relative cost for mausc wire # rc = 2.6; # kpsi inch # m = 0.145; #E = 28.5; # G = 11750000; sut = A/(d**m); ssy = 0.45*sut; alpha = ssy/ns; beta = (8*(1+zeta)*fmax)/(pi*(d**2)); # TODO: C = (2*alpha-beta)/(4*beta) + (((2*alpha-beta)/(4*beta))**2 - (3*alpha)/(4*beta))**(0.5); D = d*C; # kb = (4*C+ 2)/(4*C - 3); # taus = (kb*8*(1+zeta)*fmax*D)/(3.147*(d^3)); # OD = D+d; Na = (G*(d**4)*ymax)/(8*(D**3)*fmax); # checking end condition combo_end['values']= ('Plain','Plain-Ground','Square-Closed','Square-Ground') endCondition=combo_end.get() if endCondition=='Plain': Nt=Na ls = d*(Nt+1) if endCondition=='Plain-Ground': Nt=Na+1 ls = d*Nt if endCondition=='Square-Closed': Nt=Na+2 ls = d*(Nt+1) if endCondition=='Square-Ground': Nt=Na+2 ls = d*Nt lo = ls + (1+zeta)*ymax; fom = -rc*gama*(pi**2)*(d**2)*Nt*D*0.25; if isinstance(C, complex) or isinstance(Na, complex) or isinstance(ls, complex) or isinstance(lo, complex): print('complex values') elif (C >= 4 and C <= 12 and Na >= 3 and Na <= 15 and ls < solidlength and lo < freelength): # break # return D, d, Na, ls, lo, fom if counter==0: if var.get()==2: xD=D*25.4 xd=d*25.4 xls=ls*25.4 xlo=lo*25.4 if var.get()==1: xD=D xd=d xls=ls xlo=lo # fmax=float(txt_fmax.get()) # ymax=float(txt_ymax.get()) # freelength=float(txt_freelength.get()) # solidlength=float(txt_solidlength.get()) # xD=D # xd=d xNa=Na # xls=ls # xlo=lo xfom=fom counter=counter+1 f=open("res.txt", "a+") f.write("Wire diameter %f\r\n" % d) f.write("Spring diameter %f\r\n" % D) f.write("Na %f\r\n" % Na) f.write("ls %f\r\n" % ls) f.write("lo %f\r\n" % lo) f.write("Figure of merit %f\r\n" % fom) ts = time.time() st = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S') f.write("____________"+st+"_____________\n") f.close() elif d>1: print("iteration stopped") # messagebox.showinfo("Sorry! couldn't design the spring\nTIP:try different input") break d = d+0.001; # print(xD, xd, xNa, xls, xlo, xfom) if var.get()==2: res = "Spring diameter " + str(xD) + "mm\nWire diameter "+str(xd)+"mm\nNa "+str(xNa)+"\nls "+str(xls)+"mm\nlo "+str(xlo)+"mm\nFigure of merit "+str(xfom) if var.get()==1: res = "Spring diameter " + str(xD) + "inch\nWire diameter "+str(xd)+"inch\nNa "+str(xNa)+"\nls "+str(xls)+"inch\nlo "+str(xlo)+"inch\nFigure of merit "+str(xfom) # res = "Spring diameter " + str(xD) + "\nWire diameter "+str(xd)+"\nNa "+str(xNa)+"\nls "+str(xls)+"\nlo "+str(xlo)+"\nFigure of merit "+str(xfom) lbl_res.configure(text= res) #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^from brain ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # for openeing file def callback(event): webbrowser.open_new(r"file://file/home/aakash/DME/res.txt") #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ radio @ SI units toggle def rad_si(): lbl_ut_fmx.configure(text="N") lbl_ut_ymx.configure(text="mm") lbl_ut_freelen.configure(text="mm") lbl_ut_solidlen.configure(text="mm") toolbar1.pack_forget() def rad_us(): lbl_ut_fmx.configure(text="lbf") lbl_ut_ymx.configure(text="inch") lbl_ut_freelen.configure(text="inch") lbl_ut_solidlen.configure(text="inch") toolbar1.pack(fill=X, padx=70 ) #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ radio @ SI units toggle note = ttk.Notebook(root) tab1 = ttk.Frame(note) headFrame = Frame(tab1) toolbar1 = Frame(tab1) toolbar2 = Frame(tab1) toolbar3 = Frame(tab1) toolbar4 = Frame(tab1) calcFrame = Frame(tab1) toolbar5 = Frame(tab1) toolbar6 = Frame(tab1) toolbar7 = Frame(tab1) footFrame = Frame(tab1) lbl = Label(headFrame, text="Input the given params",font=("Arial B",14)) lbl.pack(padx=2, pady=2) headFrame.pack(side=TOP, fill=X, padx=4 , pady=20) lbl = Label(toolbar1, text="Maximum force", width=15) lbl.pack(side=LEFT, padx=2, pady=2) txt_fmax = Entry(toolbar1,width=10) txt_fmax.pack(side=LEFT, padx=2, pady=2) txt_fmax.focus() lbl_ut_fmx = Label(toolbar1, text="",font=("Arial B", 10), width=6) lbl_ut_fmx.pack(side=LEFT, padx=2, pady=2) lbl = Label(toolbar1, text="ymax", width=15) lbl.pack(side=LEFT, padx=2, pady=2) txt_ymax = Entry(toolbar1,width=10) txt_ymax.pack(side=LEFT, padx=2, pady=2) lbl_ut_ymx = Label(toolbar1, text="",font=("Arial B", 10), width=6) lbl_ut_ymx.pack(side=LEFT, padx=2, pady=2) toolbar1.pack(fill=X, padx=70 ) lbl = Label(toolbar2, text="Free Length", width=15) lbl.pack(side=LEFT, padx=2, pady=2) txt_freelength = Entry(toolbar2,width=10) txt_freelength.pack(side=LEFT, padx=2, pady=2) lbl_ut_freelen = Label(toolbar2, text="",font=("Arial B", 10), width=6) lbl_ut_freelen.pack(side=LEFT, padx=2, pady=2) lbl = Label(toolbar2, text="End condition", width=15) lbl.pack(side=LEFT, padx=2, pady=2) # txt = Entry(toolbar2,width=10) # txt.pack(side=LEFT, padx=2, pady=2) combo_end = Combobox(toolbar2,width=10) combo_end['values']= ('Plain','Plain-Ground','Square-Closed','Square-Ground') combo_end.current(1) #set the selected item combo_end.pack(side=LEFT, padx=2, pady=2) # lbl = Label(toolbar2, text="m/s^2",font=("Arial B", 10), width=6) # lbl.pack(side=LEFT, padx=2, pady=2) toolbar2.pack(fill=X, padx=70) lbl = Label(toolbar3, text="Solid Length", width=15) lbl.pack(side=LEFT, padx=2, pady=2) txt_solidlength = Entry(toolbar3,width=10) txt_solidlength.pack(side=LEFT, padx=2, pady=2) lbl_ut_solidlen = Label(toolbar3, text="",font=("Arial B", 10), width=6) lbl_ut_solidlen.pack(side=LEFT, padx=2, pady=2) lbl = Label(toolbar3, text="Material", width=15) lbl.pack(side=LEFT, padx=2, pady=2) combo_mat = Combobox(toolbar3,width=5) combo_mat['values']= ('A227','A228','A229','A232','A401') combo_mat.current(1) #set the selected item combo_mat.pack(side=LEFT, padx=2, pady=2) toolbar3.pack(fill=X, padx=70) lbl = Label(toolbar4, text="Output Units", width=15) lbl.pack(side=LEFT, padx=2, pady=2) rad1 = Radiobutton(toolbar4,text='US', value=1, variable=var, command=rad_us) rad1.pack(side=LEFT, padx=2, pady=2) rad2 = Radiobutton(toolbar4,text='SI', value=2, variable=var, command=rad_si) rad2.pack(side=LEFT, padx=2, pady=2) toolbar4.pack(fill=X, padx=70) b = Button(calcFrame, text="Calculate",command=calcMain) b.pack() calcFrame.pack(fill=X, pady=20) lbl = Label(toolbar5, text="Results", width=6,font=("Calibri",10)) lbl.pack(padx=2, pady=2) link = Label(toolbar5, text="(more)", cursor="hand2") link.pack() link.bind("<Button-1>",callback) lbl_res = Label(toolbar5, text="", width=40) lbl_res.pack(padx=2, pady=2) toolbar5.pack(side=BOTTOM) note.add(tab1, text = "Tab One",compound=TOP) tab2 = ttk.Frame(note) lbl = Label(tab2, text="gf") lbl.pack(side = BOTTOM) note.add(tab2, text = "Tab Two") note.pack() root.mainloop() ```
{ "source": "aakashthapa060/Atom-Social-Media", "score": 2 }
#### File: Atom-Social-Media/posts/views.py ```python from django.shortcuts import render from .models import Post # Create your views here. def main_view(request): posts = Post.objects.all() context = { "posts": posts } return render(request, "main.html", context) ```
{ "source": "aakashthapa060/Octo-Notes", "score": 3 }
#### File: Octo-Notes/users/views.py ```python from django import forms from django.shortcuts import redirect, render from django.contrib.auth import authenticate,login,logout from .forms import LoginForm, RegisterForm # Create your views here. def login_view(request): if request.user.is_authenticated: return redirect("notes:index") else: form = LoginForm(request.POST or None) if form.is_valid(): username = form.cleaned_data["username"] password = form.cleaned_data["password"] user = authenticate(request, username = username, password = password) if user != None: login(request, user) return redirect("notes:index") else: print("sorry") form = LoginForm() context = { "form": form } return render(request, "users/login.html",context) def register_view(request): if request.user.is_authenticated: return redirect("notes:index") else: form = RegisterForm(request.POST or None) if form.is_valid(): form.save() return redirect("users:login") else: form = RegisterForm() context = { "form": form } return render(request, "users/register.html", context) def logout_view(request): logout(request) return redirect("users:login") ```
{ "source": "Aakash-Tripathi/FaceMaskDetection", "score": 3 }
#### File: FaceMaskDetection/src/loader.py ```python import os import pandas as pd import matplotlib.image as img from torch.utils.data import Dataset, DataLoader from sklearn.model_selection import train_test_split from torchvision import transforms class FMDDataset(Dataset): def __init__(self, data, path, transform=None): self.data = data.values self.path = path self.transform = transform def __len__(self): return len(self.data) def __getitem__(self, index): img_name, label = self.data[index] img_path = os.path.join(self.path, img_name) image = img.imread(img_path) if self.transform is not None: image = self.transform(image) return image, label def load_data(batch_size, test_size): CWDpath = os.getcwd() path = (CWDpath + r'/data/') labels = pd.read_csv(path+r'train.csv') train_path = path+r'FMD/' transformer = transforms.Compose([transforms.ToPILImage(), transforms.ToTensor(), transforms.Resize((256, 256)), transforms.RandomHorizontalFlip(p=0.5), transforms.GaussianBlur( 1, sigma=(0.1, 2.0)), transforms.Normalize(0, 1)]) train, valid = train_test_split(labels, test_size=test_size) train_dataset = FMDDataset(train, train_path, transformer) test_dataset = FMDDataset(valid, train_path, transformer) train_dataloader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_dataloader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True) return train_dataloader, test_dataloader ``` #### File: FaceMaskDetection/src/pred.py ```python import torch from torchvision import models from torchvision.transforms import transforms from PIL import Image import glob import os import warnings warnings.filterwarnings("ignore") def prediction(img_path): """ ! FUNCTION FAILS IF THE IMAGE IS GREYSCALE """ checkpoint = torch.load(os.getcwd()+r'/models/resnet.pt', map_location=torch.device('cpu')) model = models.resnet18(pretrained=True) num_ftrs = model.fc.in_features model.fc = torch.nn.Linear(num_ftrs, 128) model.load_state_dict(checkpoint) model.eval() classes = ['no mask', 'mask'] transformer = transforms.Compose([transforms.Resize((256, 256)), transforms.ToTensor()]) image = Image.open(img_path) image_tensor = transformer(image).float() image_tensor = image_tensor.unsqueeze_(0) if torch.cuda.is_available(): image_tensor.cuda() input = torch.autograd.Variable(image_tensor) output = model(input) index = output.data.numpy().argmax() pred = classes[index] return pred def main(): """ TODO: serial the each new model with its performance on the test dataset TODO: Use OpenCV to find faces (masked and unmasked) & make bounding boxes TODO: Feed in the OpenCV Data to prediction() TODO: Display prediciton on the bounding boxes """ from tqdm import tqdm pred_path = os.getcwd()+'/data/test/' images_path = glob.glob(pred_path+'/*.jpg') pred_dict = {} for i in tqdm(images_path, desc='Loading Files'): pred_dict[i[i.rfind('/')+1:]] = prediction(i) for key, value in pred_dict.items(): print(key, ':', value) if __name__ == "__main__": main() ```
{ "source": "aakashv8900/django-blog", "score": 3 }
#### File: blog/tests/tests_forms.py ```python from django.test import SimpleTestCase from blog.forms import PostForm, CommentForm class TestForms(SimpleTestCase): def test_post_form_valid_data(self): form = PostForm(data={ 'title': 'Rain Water Harvesting', 'text': 'Rain water harvesting is good for nature.' }) self.assertTrue(form.is_valid()) def test_comment_form_valid_data(self): form = CommentForm(data={ 'author': 'aakash', 'text': 'Rain water harvesting is good for nature.' }) self.assertTrue(form.is_valid()) def test_post_form_no_data(self): form = PostForm(data={}) self.assertFalse(form.is_valid()) self.assertEquals(len(form.errors), 2) def test_comment_form_no_data(self): form = CommentForm(data={}) self.assertFalse(form.is_valid()) self.assertEquals(len(form.errors), 2) ``` #### File: blog/tests/tests_models.py ```python from django.test import TestCase from django.contrib.auth.models import User from django.test import Client class TestModels(TestCase): def setUp(self): user = User.objects.create(username='testuser') user.set_password('<PASSWORD>') user.save() def test_login_with_wrong_password(self): """Login with wrong password""" c = Client() logged_in = c.login(username='testuser', password='<PASSWORD>') self.assertFalse(logged_in) def test_login_with_correct_password(self): """Login with correct password""" c = Client() logged_in = c.login(username='testuser', password='<PASSWORD>') self.assertTrue(logged_in) ```
{ "source": "aakashvarma/Med-I", "score": 2 }
#### File: Med-I/other_resources/ap.py ```python from hemorrhage import Pred_hemo from flask import Flask import json app=Flask(__name__) @app.route("/") def hello(): obj=Pred_hemo() return json.dumps({"image_data":obj.getData(obj.dirPath),"prediction":obj.prediction()}) if __name__=='__main__': #hel=hello() #print(hel) app.run(debug=True) ``` #### File: Med-I/Python_files/app.py ```python from alzheimers import Predict_alhzeimer from hemorrhage import Pred_hemo from tumor import Pred_tumor import train from flask import Flask import json import requests app = Flask(__name__) @app.route("/") def hello(): response = requests.get('http://127.0.0.1:8000/image/api') imgData = response.json() imgScanType = imgData["rawdata"]["scan"] try: age = imgData["rawdata"]["age"] if (imgData["rawdata"]["gender"] == 'm'): gender = 1.0 else: gender = 0.0 educ = imgData["rawdata"]["educ"] ses = imgData["rawdata"]["ses"] mmse = imgData["rawdata"]["mmse"] etiv = imgData["rawdata"]["etiv"] nebv = imgData["rawdata"]["nebv"] asf = imgData["rawdata"]["asf"] # [0.0, 76.0, 16.0, 3.0, 26.0, 1391.0, 0.705, 1.262] getdata = train.getScalledData([[gender, age, educ, ses, mmse, etiv, nebv, asf]]) ea_prediction = train.predict(getdata)[0] except: ea_prediction = 'none' if imgScanType == 'mri': try: obj = Predict_alhzeimer() return json.dumps({ "image_data" : obj.getData(obj.url), "prediction" : obj.prediction(), "ea_prediction" : ea_prediction }) except: obj=Pred_tumor() return json.dumps({ "image_data":obj.getData(obj.url), "prediction":obj.prediction(), "ea_prediction" : ea_prediction }) elif imgScanType == 'ct': obj = Pred_hemo() return json.dumps({ "image_data":obj.getData(obj.url), "prediction":obj.prediction(), "ea_prediction" : ea_prediction }) else: print "error" if __name__ == '__main__': app.run(debug=True) ```
{ "source": "aakash-v-virani/conversational-ai-chatbot", "score": 2 }
#### File: deepspeech_openvino/deepspeech_openvino/deepspeech_asr_base.py ```python import sys import os import numpy as np import logging as log from time import time from openvino.inference_engine import IENetwork, IECore import codecs from deepspeech_openvino.speech_features import audio_spectrogram, mfcc from deepspeech_openvino.ctc_beamsearch_decoder import ctc_beam_search_decoder from abc import abstractmethod n_input = 26 n_context = 9 n_steps = 16 numcep = n_input numcontext = n_context beamwidth = 10 def preprocess_sound(audio_rev, fs): """ converts audio to features """ audio = np.frombuffer(audio_rev, dtype=np.dtype("<h")) # normalize to -1 to 1, int 16 to float32 audio = audio / np.float32(32768) audio = audio.reshape(-1, 1) spectrogram = audio_spectrogram( audio, (16000 * 32 / 1000), (16000 * 20 / 1000), True ) features = mfcc(spectrogram.reshape(1, spectrogram.shape[0], -1), fs, 26) empty_context = np.zeros((numcontext, numcep), dtype=features.dtype) features = np.concatenate((empty_context, features, empty_context)) num_strides = len(features) - (n_context * 2) # Create a view into the array with overlapping strides of size # numcontext (past) + 1 (present) + numcontext (future) window_size = 2 * n_context + 1 features = np.lib.stride_tricks.as_strided( features, (num_strides, window_size, n_input), (features.strides[0], features.strides[0], features.strides[1]), writeable=False, ) return features class DeepSpeechASR(object): def __init__(self, model, device, sample_rate, alphabet_cfg="", SPEECH_LIB_PATH=""): # TODO asserts on model= have .xml xtension, sample rate should be a number, # alphabet_cfg a file name, protect it additionally, speechlib path apath # assert device in supported openvino devices self.output_text = "" self.cpu_extension = SPEECH_LIB_PATH self.sample_rate = "" self.model_bin = model.replace(".xml", ".bin") self.model_xml = model self.device = device self.alphabet_cfg = alphabet_cfg self.sample_rate = 16000 self.ie = IECore() self.exec_net = None # TODO: Enable cpu extensions # if self.cpu_extension and 'CPU' in self.device: # if os.path.exists(self.cpu_extension) and 'CPU' in self.device: # self.ie.add_extension(self.cpu_extension, "CPU") # Read IR log.debug( "DeepSpeechASR: Loading network files:\n\t{}\n\t{}".format( self.model_xml, self.model_bin ) ) self.net = self.ie.read_network( model=self.model_xml, weights=self.model_bin) return self._load_model_to_device() @abstractmethod def _load_model_to_device(self): pass @abstractmethod def _transcribe(self, features): pass def close(self): log.info("DeepSpeechASR: close()") if self.exec_net: del self.exec_net if self.ie: del self.ie def push_data(self, buffer): features = preprocess_sound(buffer, self.sample_rate) self.output_text = self._transcribe(features) def get_result(self, final, finish_processing): # TODO: do something with final result = self.output_text if finish_processing: self.exec_net = "" self._load_model_to_device() return result class Alphabet(object): def __init__(self, alphabet_cfg): self._label_to_str = [] self._str_to_label = {} self._size = 0 with codecs.open(alphabet_cfg, "r", "utf-8") as fin: for line in fin: if line[0:2] == "\\#": line = "#\n" elif line[0] == "#": continue self._label_to_str += line[:-1] # remove the line ending self._str_to_label[line[:-1]] = self._size self._size += 1 def string_from_label(self, label): return self._label_to_str[label] def label_from_string(self, string): return self._str_to_label[string] def size(self): return self._size def main(): # TODO: Write sample app here # asr = DeepSpeechASR() pass if __name__ == "__main__": main() ``` #### File: src/test/test_asr.py ```python import unittest import unittest.mock as mock class TestSpeechLibrary(unittest.TestCase): def setUp(self): pass def tearDown(self): pass @mock.patch("zmq_integration_lib.zmq") def test_speech_manager(self, mock_zmq): pass ``` #### File: nlp/nlp_server/rasa_wrapper.py ```python import json import os import requests import jwt SERVER_URL = "http://localhost:5005" def get_sanic_server_ssl(app): # read sanic variables ssl = { "cert": os.path.join("/run/secrets", app.config.SERVERCERT), "key": os.path.join("/run/secrets", app.config.SERVERKEY), } return ssl def get_client_cert(app): return ( os.path.join("/run/secrets", app.config.TLS_CERT), os.path.join("/run/secrets", app.config.TLS_KEY), ) def update_secrets(app): # read env vars # SANIC_JWTSECRET # SANIC_JWTALGORITHM jwt_secret = None jwt_algorithm = None try: jwt_secret = _read_docker_secret(app.config.JWTSECRET) jwt_algorithm = _read_docker_secret(app.config.JWTALGORITHM) except Exception as msg: print("authenticate failed: ", msg) app.config["jwt_secret"] = jwt_secret app.config["jwt_algorithm"] = jwt_algorithm return app def _read_docker_secret(secret_name): # docker secret path # build path to secret, read and return value of # secret file secret = None secret_file = os.path.join("/run/secrets", secret_name) with open(secret_file) as f: secret = f.read() return secret def authenticate(app, req): jwt_token = req.token try: jwt_secret = app.config.jwt_secret jwt_algorithm = app.config.jwt_algorithm except Exception as msg: print("authenticate failed: ", msg) return False return _verify_token(jwt_token, jwt_secret, jwt_algorithm) def _verify_token(jwt_token, JWT_SECRET, JWT_ALGORITHM): ret = False try: _ = json.loads(json.dumps(jwt.decode( jwt_token, JWT_SECRET, JWT_ALGORITHM))) ret = True except Exception as msg: print("Token failed ", msg) return ret def forward_to_rasa(app, req): # connect to rasa and send print(req.json) # TODO: remove setting proxies to somewhere else os.environ["http_proxy"] = "" os.environ["https_proxy"] = "" # curl localhost:5005/webhooks/rest/webhook -d '{"sender": "user1", "message":"show atms for Pune Bank"}' # validate req data = req.json # validate data payload = {"sender": data["sender"], "message": data["message"]} headers = {"content-type": "application/json"} # r = requests.post(SERVER_URL + '/webhooks/rest/webhook', headers=headers, data = json.dumps(payload), verify=False,cert = get_client_cert(app) ) r = requests.post( SERVER_URL + "/webhooks/rest/webhook", headers=headers, data=json.dumps(payload) ) return r.json() ``` #### File: obp_api/test/test_bank.py ```python import unittest from obp_api.banks import Bank import unittest.mock as mock class TestBank(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def test_get_banks(self): pass ```
{ "source": "aakbar5/handy-python", "score": 4 }
#### File: handy-python/general/list_cmp.py ```python def compare_two_lists(reference, to_cmp): """ Compare two python lists and return True if reference list is having all elements of to_cmp list. """ return all(elem in reference for elem in to_cmp) list1 = [1, 2, 3, 4] list2 = [1] ret = compare_two_lists(list1, list2) print("List1:", list1) print("List2:", list2) print("list1 is having all element of list2") if ret == True else print("Lists are different") print("") list1 = [1] list2 = [1, 2, 3, 4] ret = compare_two_lists(list1, list2) print("List1:", list1) print("List2:", list2) print("list1 is having all element of list2") if ret == True else print("Lists are different") print("") list1 = [1, 2, 3, 4] list2 = [1, 2, 3, 4] ret = compare_two_lists(list1, list2) print("List1:", list1) print("List2:", list2) print("list1 is having all element of list2") if ret == True else print("Lists are different") print("") list1 = [1, 2, 3, 4] list2 = [4, 2, 3, 1] ret = compare_two_lists(list1, list2) print("List1:", list1) print("List2:", list2) print("list1 is having all element of list2") if ret == True else print("Lists are different") print("") list1 = [1, 2, 3, 4] list2 = [10, 11, 12, 14, 15, 16] ret = compare_two_lists(list1, list2) print("List1:", list1) print("List2:", list2) print("list1 is having all element of list2") if ret == True else print("Lists are different") print("") list1 = [1, 2, 3, 4] list2 = [6, 7, 8, 9] ret = compare_two_lists(list1, list2) print("List1:", list1) print("List2:", list2) print("list1 is having all element of list2") if ret == True else print("Lists are different") print("") ``` #### File: handy-python/general/tuple_list_to_list.py ```python def convert_list_of_tuple_to_list(py_list): """ Convert list of tuple(s) to plain list. """ if not isinstance(py_list, list): return return list(x for tup in py_list for x in tup) # Simple tuple t = ("val1", "val2", "val3") print(type(t), t) l = [(1,), (2, 3), (4, 5, 6), (4, 5, 6, 7)] ret = convert_list_of_tuple_to_list(l) print(type(l), l) print(type(ret), ret) l = [(1,), (2,)] ret = convert_list_of_tuple_to_list(l) print(type(l), l) print(type(ret), ret) ```
{ "source": "aak-dev/mango-explorer", "score": 2 }
#### File: oracles/serum/serum.py ```python import rx import rx.operators as ops import typing from datetime import datetime from decimal import Decimal from pyserum.market.orderbook import OrderBook from pyserum.market import Market as SerumMarket from ...accountinfo import AccountInfo from ...context import Context from ...market import Market from ...observables import observable_pipeline_error_reporter from ...oracle import Oracle, OracleProvider, OracleSource, Price from ...spotmarket import SpotMarket # # 🥭 Serum # # This file contains code specific to oracles on the [Serum DEX](https://projectserum.com/). # # # 🥭 SerumOracle class # # Implements the `Oracle` abstract base class specialised to the Serum DEX. # class SerumOracle(Oracle): def __init__(self, spot_market: SpotMarket): name = f"Serum Oracle for {spot_market.symbol}" super().__init__(name, spot_market) self.spot_market: SpotMarket = spot_market self.source: OracleSource = OracleSource("Serum", name, spot_market) self._serum_market: SerumMarket = None def fetch_price(self, context: Context) -> Price: if self._serum_market is None: self._serum_market = SerumMarket.load(context.client, self.spot_market.address, context.dex_program_id) bids_address = self._serum_market.state.bids() asks_address = self._serum_market.state.asks() bid_ask_account_infos = AccountInfo.load_multiple(context, [bids_address, asks_address]) if len(bid_ask_account_infos) != 2: raise Exception( f"Failed to get bid/ask data from Serum for market address {self.spot_market.address} (bids: {bids_address}, asks: {asks_address}).") bids = OrderBook.from_bytes(self._serum_market.state, bid_ask_account_infos[0].data) asks = OrderBook.from_bytes(self._serum_market.state, bid_ask_account_infos[1].data) top_bid = list(bids.orders())[-1] top_ask = list(asks.orders())[0] top_bid_price = self.spot_market.quote.round(Decimal(top_bid.info.price)) top_ask_price = self.spot_market.quote.round(Decimal(top_ask.info.price)) mid_price = (top_bid_price + top_ask_price) / 2 return Price(self.source, datetime.now(), self.spot_market, top_bid_price, mid_price, top_ask_price) def to_streaming_observable(self, context: Context) -> rx.core.typing.Observable: return rx.interval(1).pipe( ops.subscribe_on(context.pool_scheduler), ops.start_with(-1), ops.map(lambda _: self.fetch_price(context)), ops.catch(observable_pipeline_error_reporter), ops.retry(), ) # # 🥭 SerumOracleProvider class # # Implements the `OracleProvider` abstract base class specialised to the Serum Network. # class SerumOracleProvider(OracleProvider): def __init__(self) -> None: super().__init__("Serum Oracle Factory") def oracle_for_market(self, context: Context, market: Market) -> typing.Optional[Oracle]: if isinstance(market, SpotMarket): return SerumOracle(market) else: optional_spot_market = context.market_lookup.find_by_symbol(market.symbol) if optional_spot_market is None: return None if isinstance(optional_spot_market, SpotMarket): return SerumOracle(optional_spot_market) return None def all_available_symbols(self, context: Context) -> typing.Sequence[str]: all_markets = context.market_lookup.all_markets() symbols: typing.List[str] = [] for spot_market in all_markets: symbols += [spot_market.symbol] return symbols ```
{ "source": "aakejiang/milvus", "score": 2 }
#### File: python_client/base/index_wrapper.py ```python import sys from pymilvus import Index sys.path.append("..") from check.func_check import ResponseChecker from utils.api_request import api_request TIMEOUT = 20 INDEX_NAME = "_default_idx" class ApiIndexWrapper: index = None def init_index(self, collection, field_name, index_params, index_name=None, check_task=None, check_items=None, **kwargs): timeout = kwargs.get("timeout", TIMEOUT * 2) index_name = INDEX_NAME if index_name is None else index_name index_name = kwargs.get("index_name", index_name) kwargs.update({"timeout": timeout, "index_name": index_name}) """ In order to distinguish the same name of index """ func_name = sys._getframe().f_code.co_name res, is_succ = api_request([Index, collection, field_name, index_params], **kwargs) self.index = res if is_succ is True else None check_result = ResponseChecker(res, func_name, check_task, check_items, is_succ, collection=collection, field_name=field_name, index_params=index_params, **kwargs).run() return res, check_result def drop(self, index_name=None ,check_task=None, check_items=None, **kwargs): timeout = kwargs.get("timeout", TIMEOUT) index_name = INDEX_NAME if index_name is None else index_name index_name = kwargs.get("index_name", index_name) kwargs.update({"timeout": timeout, "index_name": index_name}) func_name = sys._getframe().f_code.co_name res, is_succ = api_request([self.index.drop], **kwargs) check_result = ResponseChecker(res, func_name, check_task, check_items, is_succ, **kwargs).run() return res, check_result @property def params(self): return self.index.params @property def collection_name(self): return self.index.collection_name @property def field_name(self): return self.index.field_name ``` #### File: python_client/chaos/test_chaos_bulk_load.py ```python import threading import pytest import os import time import json from time import sleep from pathlib import Path from minio import Minio from pymilvus import connections from chaos.checker import (InsertFlushChecker, SearchChecker, QueryChecker, BulkLoadChecker, Op) from common.cus_resource_opts import CustomResourceOperations as CusResource from common.milvus_sys import MilvusSys from utils.util_log import test_log as log from utils.util_k8s import wait_pods_ready, get_pod_list, get_pod_ip_name_pairs, get_milvus_instance_name from utils.util_common import findkeys, update_key_value from chaos import chaos_commons as cc from common.common_type import CaseLabel from common import common_func as cf from chaos import constants # from bulk_load.bulk_load_data import gen_file_name from bulk_load.minio_comm import copy_files_to_minio from delayed_assert import expect, assert_expectations def assert_statistic(checkers, expectations={}): for k in checkers.keys(): # expect succ if no expectations succ_rate = checkers[k].succ_rate() total = checkers[k].total() average_time = checkers[k].average_time if expectations.get(k, '') == constants.FAIL: log.info( f"Expect Fail: {str(k)} succ rate {succ_rate}, total: {total}, average time: {average_time:.4f}") expect(succ_rate < 0.49 or total < 2, f"Expect Fail: {str(k)} succ rate {succ_rate}, total: {total}, average time: {average_time:.4f}") else: log.info( f"Expect Succ: {str(k)} succ rate {succ_rate}, total: {total}, average time: {average_time:.4f}") expect(succ_rate > 0.90 and total > 2, f"Expect Succ: {str(k)} succ rate {succ_rate}, total: {total}, average time: {average_time:.4f}") def get_querynode_info(release_name): querynode_id_pod_pair = {} querynode_ip_pod_pair = get_pod_ip_name_pairs( "chaos-testing", f"app.kubernetes.io/instance={release_name}, component=querynode") ms = MilvusSys() for node in ms.query_nodes: ip = node["infos"]['hardware_infos']["ip"].split(":")[0] querynode_id_pod_pair[node["identifier"]] = querynode_ip_pod_pair[ip] return querynode_id_pod_pair class TestChaosBase: expect_create = constants.SUCC expect_insert = constants.SUCC expect_flush = constants.SUCC expect_index = constants.SUCC expect_search = constants.SUCC expect_query = constants.SUCC host = '127.0.0.1' port = 19530 _chaos_config = None health_checkers = {} class TestChaos(TestChaosBase): @pytest.fixture(scope="function", autouse=True) def connection(self, host, port): connections.add_connection(default={"host": host, "port": port}) connections.connect(alias='default') if connections.has_connection("default") is False: raise Exception("no connections") instance_name = get_milvus_instance_name(constants.CHAOS_NAMESPACE, host) self.host = host self.port = port self.instance_name = instance_name @pytest.fixture(scope="function", autouse=True) def init_health_checkers(self): log.info("init health checkers") checkers = { # Op.insert: InsertFlushChecker(collection_name=c_name), # Op.search: SearchChecker(collection_name=c_name, replica_number=2), Op.bulk_load: BulkLoadChecker() # Op.query: QueryChecker(collection_name=c_name, replica_number=2) } self.health_checkers = checkers @pytest.fixture(scope="function", autouse=True) def prepare_bulk_load(self, nb=1000, row_based=True): if Op.bulk_load not in self.health_checkers: log.info("bulk_load checker is not in health checkers, skip prepare bulk load") return log.info("bulk_load checker is in health checkers, prepare data firstly") release_name = self.instance_name minio_ip_pod_pair = get_pod_ip_name_pairs("chaos-testing", f"release={release_name}, app=minio") ms = MilvusSys() minio_ip = list(minio_ip_pod_pair.keys())[0] minio_port = "9000" minio_endpoint = f"{minio_ip}:{minio_port}" bucket_name = ms.index_nodes[0]["infos"]["system_configurations"]["minio_bucket_name"] schema = cf.gen_default_collection_schema() data = cf.gen_default_list_data_for_bulk_load(nb=nb) fields_name = [field.name for field in schema.fields] if not row_based: data_dict = dict(zip(fields_name, data)) if row_based: entities = [] for i in range(nb): entity_value = [field_values[i] for field_values in data] entity = dict(zip(fields_name, entity_value)) entities.append(entity) data_dict = {"rows": entities} file_name = "bulk_load_data_source.json" files = [file_name] #TODO: npy file type is not supported so far log.info("generate bulk load file") with open(file_name, "w") as f: f.write(json.dumps(data_dict)) log.info("upload file to minio") client = Minio(minio_endpoint, access_key="minioadmin", secret_key="minioadmin", secure=False) client.fput_object(bucket_name, file_name, file_name) self.health_checkers[Op.bulk_load].update(schema=schema, files=files, row_based=row_based) log.info("prepare data for bulk load done") def teardown(self): chaos_res = CusResource(kind=self._chaos_config['kind'], group=constants.CHAOS_GROUP, version=constants.CHAOS_VERSION, namespace=constants.CHAOS_NAMESPACE) meta_name = self._chaos_config.get('metadata', None).get('name', None) chaos_res.delete(meta_name, raise_ex=False) sleep(2) log.info(f'Alive threads: {threading.enumerate()}') @pytest.mark.tags(CaseLabel.L3) @pytest.mark.parametrize("target_component", ["minio"]) # "minio", "proxy", "rootcoord", "datacoord", "datanode", "etcd" @pytest.mark.parametrize("chaos_type", ["pod_kill"]) # "pod_kill", "pod_failure" def test_bulk_load(self, chaos_type, target_component): # start the monitor threads to check the milvus ops log.info("*********************Chaos Test Start**********************") log.info(connections.get_connection_addr('default')) release_name = self.instance_name cc.start_monitor_threads(self.health_checkers) chaos_config = cc.gen_experiment_config(f"{str(Path(__file__).absolute().parent)}/chaos_objects/{chaos_type}/chaos_{target_component}_{chaos_type}.yaml") chaos_config['metadata']['name'] = f"test-bulk-load-{int(time.time())}" kind = chaos_config['kind'] meta_name = chaos_config.get('metadata', None).get('name', None) update_key_value(chaos_config, "release", release_name) update_key_value(chaos_config, "app.kubernetes.io/instance", release_name) self._chaos_config = chaos_config # cache the chaos config for tear down log.info(f"chaos_config: {chaos_config}") # wait 20s sleep(constants.WAIT_PER_OP * 10) # assert statistic:all ops 100% succ log.info("******1st assert before chaos: ") assert_statistic(self.health_checkers) # apply chaos object chaos_res = CusResource(kind=chaos_config['kind'], group=constants.CHAOS_GROUP, version=constants.CHAOS_VERSION, namespace=constants.CHAOS_NAMESPACE) chaos_res.create(chaos_config) log.info("chaos injected") sleep(constants.WAIT_PER_OP * 10) # reset counting cc.reset_counting(self.health_checkers) # wait 120s sleep(constants.CHAOS_DURATION) log.info(f'Alive threads: {threading.enumerate()}') # assert statistic log.info("******2nd assert after chaos injected: ") assert_statistic(self.health_checkers, expectations={ Op.bulk_load: constants.FAIL, }) # delete chaos chaos_res.delete(meta_name) log.info("chaos deleted") sleep(2) # wait all pods ready log.info(f"wait for pods in namespace {constants.CHAOS_NAMESPACE} with label app.kubernetes.io/instance={release_name}") wait_pods_ready(constants.CHAOS_NAMESPACE ,f"app.kubernetes.io/instance={release_name}") log.info(f"wait for pods in namespace {constants.CHAOS_NAMESPACE} with label release={release_name}") wait_pods_ready(constants.CHAOS_NAMESPACE, f"release={release_name}") log.info("all pods are ready") # reconnect if needed sleep(constants.WAIT_PER_OP * 2) cc.reconnect(connections, alias='default') # recheck failed tasks in third assert self.health_checkers[Op.bulk_load].recheck_failed_task = True # reset counting again cc.reset_counting(self.health_checkers) # wait 50s (varies by feature) sleep(constants.WAIT_PER_OP * 10) # assert statistic: all ops success again log.info("******3rd assert after chaos deleted: ") assert_statistic(self.health_checkers) # assert all expectations assert_expectations() log.info("*********************Chaos Test Completed**********************") ``` #### File: python_client/chaos/test_chaos.py ```python import threading import pytest import os import time import json from time import sleep from pymilvus import connections from chaos.checker import (CreateChecker, InsertFlushChecker, SearchChecker, QueryChecker, IndexChecker, Op) from common.cus_resource_opts import CustomResourceOperations as CusResource from utils.util_log import test_log as log from utils.util_k8s import wait_pods_ready, get_pod_list from utils.util_common import findkeys from chaos import chaos_commons as cc from common.common_type import CaseLabel from chaos import constants from delayed_assert import expect, assert_expectations def assert_statistic(checkers, expectations={}): for k in checkers.keys(): # expect succ if no expectations succ_rate = checkers[k].succ_rate() total = checkers[k].total() average_time = checkers[k].average_time if expectations.get(k, '') == constants.FAIL: log.info(f"Expect Fail: {str(k)} succ rate {succ_rate}, total: {total}, average time: {average_time:.4f}") expect(succ_rate < 0.49 or total < 2, f"Expect Fail: {str(k)} succ rate {succ_rate}, total: {total}, average time: {average_time:.4f}") else: log.info(f"Expect Succ: {str(k)} succ rate {succ_rate}, total: {total}, average time: {average_time:.4f}") expect(succ_rate > 0.90 or total > 2, f"Expect Succ: {str(k)} succ rate {succ_rate}, total: {total}, average time: {average_time:.4f}") def check_cluster_nodes(chaos_config): # if all pods will be effected, the expect is all fail. # Even though the replicas is greater than 1, it can not provide HA, so cluster_nodes is set as 1 for this situation. if "all" in chaos_config["metadata"]["name"]: return 1 selector = findkeys(chaos_config, "selector") selector = list(selector) log.info(f"chaos target selector: {selector}") # assert len(selector) == 1 selector = selector[0] # chaos yaml file must place the effected pod selector in the first position namespace = selector["namespaces"][0] labels_dict = selector["labelSelectors"] labels_list = [] for k,v in labels_dict.items(): labels_list.append(k+"="+v) labels_str = ",".join(labels_list) pods = get_pod_list(namespace, labels_str) return len(pods) def record_results(checkers): res = "" for k in checkers.keys(): check_result = checkers[k].check_result() res += f"{str(k):10} {check_result}\n" return res class TestChaosBase: expect_create = constants.SUCC expect_insert = constants.SUCC expect_flush = constants.SUCC expect_index = constants.SUCC expect_search = constants.SUCC expect_query = constants.SUCC host = '127.0.0.1' port = 19530 _chaos_config = None health_checkers = {} def parser_testcase_config(self, chaos_yaml, chaos_config): cluster_nodes = check_cluster_nodes(chaos_config) tests_yaml = constants.TESTS_CONFIG_LOCATION + 'testcases.yaml' tests_config = cc.gen_experiment_config(tests_yaml) test_collections = tests_config.get('Collections', None) for t in test_collections: test_chaos = t.get('testcase', {}).get('chaos', {}) if test_chaos in chaos_yaml: expects = t.get('testcase', {}).get('expectation', {}).get('cluster_1_node', {}) # for the cluster_n_node if cluster_nodes > 1: expects = t.get('testcase', {}).get('expectation', {}).get('cluster_n_node', {}) log.info(f"yaml.expects: {expects}") self.expect_create = expects.get(Op.create.value, constants.SUCC) self.expect_insert = expects.get(Op.insert.value, constants.SUCC) self.expect_flush = expects.get(Op.flush.value, constants.SUCC) self.expect_index = expects.get(Op.index.value, constants.SUCC) self.expect_search = expects.get(Op.search.value, constants.SUCC) self.expect_query = expects.get(Op.query.value, constants.SUCC) log.info(f"self.expects: create:{self.expect_create}, insert:{self.expect_insert}, " f"flush:{self.expect_flush}, index:{self.expect_index}, " f"search:{self.expect_search}, query:{self.expect_query}") return True return False class TestChaos(TestChaosBase): @pytest.fixture(scope="function", autouse=True) def connection(self, host, port): connections.add_connection(default={"host": host, "port": port}) connections.connect(alias='default') if connections.has_connection("default") is False: raise Exception("no connections") self.host = host self.port = port @pytest.fixture(scope="function", autouse=True) def init_health_checkers(self): checkers = { Op.create: CreateChecker(), Op.insert: InsertFlushChecker(), Op.flush: InsertFlushChecker(flush=True), Op.index: IndexChecker(), Op.search: SearchChecker(), Op.query: QueryChecker() } self.health_checkers = checkers def teardown(self): chaos_res = CusResource(kind=self._chaos_config['kind'], group=constants.CHAOS_GROUP, version=constants.CHAOS_VERSION, namespace=constants.CHAOS_NAMESPACE) meta_name = self._chaos_config.get('metadata', None).get('name', None) chaos_res.delete(meta_name, raise_ex=False) sleep(2) log.info(f'Alive threads: {threading.enumerate()}') @pytest.mark.tags(CaseLabel.L3) @pytest.mark.parametrize('chaos_yaml', cc.get_chaos_yamls()) def test_chaos(self, chaos_yaml): # start the monitor threads to check the milvus ops log.info("*********************Chaos Test Start**********************") log.info(f"chaos_yaml: {chaos_yaml}") log.info(connections.get_connection_addr('default')) cc.start_monitor_threads(self.health_checkers) # parse chaos object chaos_config = cc.gen_experiment_config(chaos_yaml) release_name = constants.RELEASE_NAME log.info(f"release_name: {release_name}") chaos_config['metadata']['name'] = release_name kind = chaos_config['kind'] meta_name = chaos_config.get('metadata', None).get('name', None) chaos_config_str = json.dumps(chaos_config) chaos_config_str = chaos_config_str.replace("milvus-chaos", release_name) chaos_config = json.loads(chaos_config_str) self._chaos_config = chaos_config # cache the chaos config for tear down log.info(f"chaos_config: {chaos_config}") # parse the test expectations in testcases.yaml if self.parser_testcase_config(chaos_yaml, chaos_config) is False: log.error("Fail to get the testcase info in testcases.yaml") assert False # init report dir_name = "./reports" file_name = f"./reports/{meta_name}.log" if not os.path.exists(dir_name): os.makedirs(dir_name) # wait 20s sleep(constants.WAIT_PER_OP * 2) # assert statistic:all ops 100% succ log.info("******1st assert before chaos: ") assert_statistic(self.health_checkers) try: with open(file_name, "a+") as f: ts = time.strftime("%Y-%m-%d %H:%M:%S") f.write(f"{meta_name}-{ts}\n") f.write("1st assert before chaos:\n") f.write(record_results(self.health_checkers)) except Exception as e: log.info(f"Fail to write to file: {e}") # apply chaos object chaos_res = CusResource(kind=chaos_config['kind'], group=constants.CHAOS_GROUP, version=constants.CHAOS_VERSION, namespace=constants.CHAOS_NAMESPACE) chaos_res.create(chaos_config) log.info("chaos injected") # verify the chaos is injected log.info(f"kubectl get {kind} {meta_name} -n {constants.CHAOS_NAMESPACE}") os.system(f"kubectl get {kind} {meta_name} -n {constants.CHAOS_NAMESPACE}") sleep(constants.WAIT_PER_OP * 2) # reset counting cc.reset_counting(self.health_checkers) # wait 120s sleep(constants.CHAOS_DURATION) log.info(f'Alive threads: {threading.enumerate()}') # assert statistic log.info("******2nd assert after chaos injected: ") assert_statistic(self.health_checkers, expectations={Op.create: self.expect_create, Op.insert: self.expect_insert, Op.flush: self.expect_flush, Op.index: self.expect_index, Op.search: self.expect_search, Op.query: self.expect_query }) try: with open(file_name, "a+") as f: f.write("2nd assert after chaos injected:\n") f.write(record_results(self.health_checkers)) except Exception as e: log.error(f"Fail to write the report: {e}") # delete chaos chaos_res.delete(meta_name) log.info("chaos deleted") # verify the chaos is deleted log.info(f"kubectl get {kind} {meta_name} -n {constants.CHAOS_NAMESPACE}") os.system(f"kubectl get {kind} {meta_name} -n {constants.CHAOS_NAMESPACE}") log.info(f'Alive threads: {threading.enumerate()}') sleep(2) # wait all pods ready log.info(f"wait for pods in namespace {constants.CHAOS_NAMESPACE} with label app.kubernetes.io/instance={meta_name}") wait_pods_ready(constants.CHAOS_NAMESPACE, f"app.kubernetes.io/instance={meta_name}") log.info(f"wait for pods in namespace {constants.CHAOS_NAMESPACE} with label release={meta_name}") wait_pods_ready(constants.CHAOS_NAMESPACE, f"release={meta_name}") log.info("all pods are ready") # reconnect if needed sleep(constants.WAIT_PER_OP * 2) cc.reconnect(connections, alias='default') # reset counting again cc.reset_counting(self.health_checkers) # wait 50s (varies by feature) sleep(constants.WAIT_PER_OP * 5) # assert statistic: all ops success again log.info("******3rd assert after chaos deleted: ") assert_statistic(self.health_checkers) try: with open(file_name, "a+") as f: f.write("3rd assert after chaos deleted:\n") f.write(record_results(self.health_checkers)) except Exception as e: log.info(f"Fail to write the report: {e}") # assert all expectations assert_expectations() log.info("*********************Chaos Test Completed**********************") ``` #### File: python_client/common/milvus_sys.py ```python import ujson import json from pymilvus.grpc_gen import milvus_pb2 as milvus_types from pymilvus import connections sys_info_req = ujson.dumps({"metric_type": "system_info"}) sys_statistics_req = ujson.dumps({"metric_type": "system_statistics"}) sys_logs_req = ujson.dumps({"metric_type": "system_logs"}) class MilvusSys: def __init__(self, alias='default'): self.alias = alias self.handler = connections._fetch_handler(alias=self.alias) if self.handler is None: raise Exception(f"Connection {alias} is disconnected or nonexistent") # TODO: for now it only supports non_orm style API for getMetricsRequest req = milvus_types.GetMetricsRequest(request=sys_info_req) self.sys_info = self.handler._stub.GetMetrics(req, wait_for_ready=True, timeout=None) req = milvus_types.GetMetricsRequest(request=sys_statistics_req) self.sys_statistics = self.handler._stub.GetMetrics(req, wait_for_ready=True, timeout=None) req = milvus_types.GetMetricsRequest(request=sys_logs_req) self.sys_logs = self.handler._stub.GetMetrics(req, wait_for_ready=True, timeout=None) @property def build_version(self): """get the first node's build version as milvus build version""" return self.nodes[0].get('infos').get('system_info').get('system_version') @property def build_time(self): """get the first node's build time as milvus build time""" return self.nodes[0].get('infos').get('system_info').get('build_time') @property def deploy_mode(self): """get the first node's deploy_mode as milvus deploy_mode""" return self.nodes[0].get('infos').get('system_info').get('deploy_mode') @property def simd_type(self): """ get simd type that milvus is running against return the first query node's simd type """ for node in self.query_nodes: return node.get('infos').get('system_configurations').get('simd_type') raise Exception("No query node found") @property def query_nodes(self): """get all query nodes in Milvus deployment""" query_nodes = [] for node in self.nodes: if 'querynode' == node.get('infos').get('type'): query_nodes.append(node) return query_nodes @property def data_nodes(self): """get all data nodes in Milvus deployment""" data_nodes = [] for node in self.nodes: if 'datanode' == node.get('infos').get('type'): data_nodes.append(node) return data_nodes @property def index_nodes(self): """get all index nodes in Milvus deployment""" index_nodes = [] for node in self.nodes: if 'indexnode' == node.get('infos').get('type'): index_nodes.append(node) return index_nodes @property def proxy_nodes(self): """get all proxy nodes in Milvus deployment""" proxy_nodes = [] for node in self.nodes: if 'proxy' == node.get('infos').get('type'): proxy_nodes.append(node) return proxy_nodes @property def nodes(self): """get all the nodes in Milvus deployment""" all_nodes = json.loads(self.sys_info.response).get('nodes_info') online_nodes = [node for node in all_nodes if node["infos"]["has_error"] is False] return online_nodes def get_nodes_by_type(self, node_type=None): """get milvus nodes by node type""" target_nodes = [] if node_type is not None: for node in self.nodes: if str(node_type).lower() == str(node.get('infos').get('type')).lower(): target_nodes.append(node) return target_nodes if __name__ == '__main__': connections.connect(host="10.96.250.111", port="19530") ms = MilvusSys() ``` #### File: python_client/testcases/test_e2e.py ```python import time import pytest from base.client_base import TestcaseBase from common import common_func as cf from common import common_type as ct from common.common_type import CaseLabel from utils.util_log import test_log as log prefix = "e2e_" class TestE2e(TestcaseBase): """ Test case of end to end""" @pytest.mark.tags(CaseLabel.L1) def test_milvus_default(self): # create name = cf.gen_unique_str(prefix) t0 = time.time() collection_w = self.init_collection_wrap(name=name, active_trace=True) tt = time.time() - t0 assert collection_w.name == name entities = collection_w.num_entities log.info(f"assert create collection: {tt}, init_entities: {entities}") # insert data = cf.gen_default_list_data() t0 = time.time() _, res = collection_w.insert(data) tt = time.time() - t0 log.info(f"assert insert: {tt}") assert res # flush t0 = time.time() num_entities, check_result = collection_w.flush(timeout=180) assert check_result assert num_entities == len(data[0]) + entities tt = time.time() - t0 entities = collection_w.num_entities log.info(f"assert flush: {tt}, entities: {entities}") # search collection_w.load() search_vectors = cf.gen_vectors(1, ct.default_dim) search_params = {"metric_type": "L2", "params": {"nprobe": 16}} t0 = time.time() res_1, _ = collection_w.search(data=search_vectors, anns_field=ct.default_float_vec_field_name, param=search_params, limit=1) tt = time.time() - t0 log.info(f"assert search: {tt}") assert len(res_1) == 1 collection_w.release() # index d = cf.gen_default_list_data() collection_w.insert(d) log.info(f"assert index entities: {collection_w.num_entities}") _index_params = {"index_type": "IVF_SQ8", "params": {"nlist": 64}, "metric_type": "L2"} t0 = time.time() index, _ = collection_w.create_index(field_name=ct.default_float_vec_field_name, index_params=_index_params, name=cf.gen_unique_str()) tt = time.time() - t0 log.info(f"assert index: {tt}") assert len(collection_w.indexes) == 1 # search t0 = time.time() collection_w.load() tt = time.time() - t0 log.info(f"assert load: {tt}") search_vectors = cf.gen_vectors(1, ct.default_dim) t0 = time.time() res_1, _ = collection_w.search(data=search_vectors, anns_field=ct.default_float_vec_field_name, param=search_params, limit=1) tt = time.time() - t0 log.info(f"assert search: {tt}") # query term_expr = f'{ct.default_int64_field_name} in [1001,1201,4999,2999]' t0 = time.time() res, _ = collection_w.query(term_expr) tt = time.time() - t0 log.info(f"assert query result {len(res)}: {tt}") ``` #### File: python_client/testcases/test_insert.py ```python from ssl import ALERT_DESCRIPTION_UNKNOWN_PSK_IDENTITY import threading import numpy as np import pandas as pd import random import pytest from pymilvus import Index, DataType from pymilvus.exceptions import MilvusException from base.client_base import TestcaseBase from utils.util_log import test_log as log from common import common_func as cf from common import common_type as ct from common.common_type import CaseLabel, CheckTasks prefix = "insert" exp_name = "name" exp_schema = "schema" exp_num = "num_entities" exp_primary = "primary" default_schema = cf.gen_default_collection_schema() default_binary_schema = cf.gen_default_binary_collection_schema() default_index_params = {"index_type": "IVF_SQ8", "metric_type": "L2", "params": {"nlist": 64}} default_binary_index_params = {"index_type": "BIN_IVF_FLAT", "metric_type": "JACCARD", "params": {"nlist": 64}} default_search_exp = "int64 >= 0" class TestInsertParams(TestcaseBase): """ Test case of Insert interface """ @pytest.fixture(scope="function", params=ct.get_invalid_strs) def get_non_data_type(self, request): if isinstance(request.param, list) or request.param is None: pytest.skip("list and None type is valid data type") yield request.param @pytest.fixture(scope="module", params=ct.get_invalid_strs) def get_invalid_field_name(self, request): if isinstance(request.param, (list, dict)): pytest.skip() yield request.param @pytest.mark.tags(CaseLabel.L0) def test_insert_dataframe_data(self): """ target: test insert DataFrame data method: 1.create collection 2.insert dataframe data expected: assert num entities """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) df = cf.gen_default_dataframe_data(ct.default_nb) mutation_res, _ = collection_w.insert(data=df) assert mutation_res.insert_count == ct.default_nb assert mutation_res.primary_keys == df[ct.default_int64_field_name].values.tolist() assert collection_w.num_entities == ct.default_nb @pytest.mark.tags(CaseLabel.L0) def test_insert_list_data(self): """ target: test insert list-like data method: 1.create 2.insert list data expected: assert num entities """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) data = cf.gen_default_list_data(ct.default_nb) mutation_res, _ = collection_w.insert(data=data) assert mutation_res.insert_count == ct.default_nb assert mutation_res.primary_keys == data[0] assert collection_w.num_entities == ct.default_nb @pytest.mark.tags(CaseLabel.L2) def test_insert_non_data_type(self, get_non_data_type): """ target: test insert with non-dataframe, non-list data method: insert with data (non-dataframe and non-list type) expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) error = {ct.err_code: 0, ct.err_msg: "Data type is not support"} collection_w.insert(data=get_non_data_type, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) @pytest.mark.parametrize("data", [[], pd.DataFrame()]) def test_insert_empty_data(self, data): """ target: test insert empty data method: insert empty expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) error = {ct.err_code: 0, ct.err_msg: "The data fields number is not match with schema"} collection_w.insert(data=data, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_dataframe_only_columns(self): """ target: test insert with dataframe just columns method: dataframe just have columns expected: num entities is zero """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) columns = [ct.default_int64_field_name, ct.default_float_vec_field_name] df = pd.DataFrame(columns=columns) error = {ct.err_code: 0, ct.err_msg: "Cannot infer schema from empty dataframe"} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_empty_field_name_dataframe(self): """ target: test insert empty field name df method: dataframe with empty column expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) df = cf.gen_default_dataframe_data(10) df.rename(columns={ct.default_int64_field_name: ' '}, inplace=True) error = {ct.err_code: 0, ct.err_msg: "The types of schema and data do not match"} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_invalid_field_name_dataframe(self, get_invalid_field_name): """ target: test insert with invalid dataframe data method: insert with invalid field name dataframe expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) df = cf.gen_default_dataframe_data(10) df.rename(columns={ct.default_int64_field_name: get_invalid_field_name}, inplace=True) error = {ct.err_code: 0, ct.err_msg: "The types of schema and data do not match"} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) def test_insert_dataframe_index(self): """ target: test insert dataframe with index method: insert dataframe with index expected: todo """ pass @pytest.mark.tags(CaseLabel.L2) def test_insert_none(self): """ target: test insert None method: data is None expected: return successfully with zero results """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) mutation_res, _ = collection_w.insert(data=None) assert mutation_res.insert_count == 0 assert len(mutation_res.primary_keys) == 0 assert collection_w.is_empty assert collection_w.num_entities == 0 @pytest.mark.tags(CaseLabel.L1) def test_insert_numpy_data(self): """ target: test insert numpy.ndarray data method: 1.create by schema 2.insert data expected: assert num_entities """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) data = cf.gen_numpy_data(nb=10) collection_w.insert(data=data) @pytest.mark.tags(CaseLabel.L1) def test_insert_binary_dataframe(self): """ target: test insert binary dataframe method: 1. create by schema 2. insert dataframe expected: assert num_entities """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name, schema=default_binary_schema) df, _ = cf.gen_default_binary_dataframe_data(ct.default_nb) mutation_res, _ = collection_w.insert(data=df) assert mutation_res.insert_count == ct.default_nb assert mutation_res.primary_keys == df[ct.default_int64_field_name].values.tolist() assert collection_w.num_entities == ct.default_nb @pytest.mark.tags(CaseLabel.L0) def test_insert_binary_data(self): """ target: test insert list-like binary data method: 1. create by schema 2. insert data expected: assert num_entities """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name, schema=default_binary_schema) data, _ = cf.gen_default_binary_list_data(ct.default_nb) mutation_res, _ = collection_w.insert(data=data) assert mutation_res.insert_count == ct.default_nb assert mutation_res.primary_keys == data[0] assert collection_w.num_entities == ct.default_nb @pytest.mark.tags(CaseLabel.L0) def test_insert_single(self): """ target: test insert single method: insert one entity expected: verify num """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) data = cf.gen_default_list_data(nb=1) mutation_res, _ = collection_w.insert(data=data) assert mutation_res.insert_count == 1 assert mutation_res.primary_keys == data[0] assert collection_w.num_entities == 1 @pytest.mark.tags(CaseLabel.L2) def test_insert_dim_not_match(self): """ target: test insert with not match dim method: insert data dim not equal to schema dim expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) dim = 129 df = cf.gen_default_dataframe_data(ct.default_nb, dim=dim) error = {ct.err_code: 1, ct.err_msg: f'Collection field dim is {ct.default_dim}, but entities field dim is {dim}'} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_binary_dim_not_match(self): """ target: test insert binary with dim not match method: insert binary data dim not equal to schema expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name, schema=default_binary_schema) dim = 120 df, _ = cf.gen_default_binary_dataframe_data(ct.default_nb, dim=dim) error = {ct.err_code: 1, ct.err_msg: f'Collection field dim is {ct.default_dim}, but entities field dim is {dim}'} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_field_name_not_match(self): """ target: test insert field name not match method: data field name not match schema expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) df = cf.gen_default_dataframe_data(10) df.rename(columns={ct.default_float_field_name: "int"}, inplace=True) error = {ct.err_code: 0, ct.err_msg: 'The types of schema and data do not match'} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_field_value_not_match(self): """ target: test insert data value not match method: insert data value type not match schema expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) nb = 10 df = cf.gen_default_dataframe_data(nb) new_float_value = pd.Series(data=[float(i) for i in range(nb)], dtype="float64") df.iloc[:, 1] = new_float_value error = {ct.err_code: 0, ct.err_msg: 'The types of schema and data do not match'} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_value_less(self): """ target: test insert value less than other method: int field value less than vec-field value expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) nb = 10 int_values = [i for i in range(nb - 1)] float_values = [np.float32(i) for i in range(nb)] float_vec_values = cf.gen_vectors(nb, ct.default_dim) data = [int_values, float_values, float_vec_values] error = {ct.err_code: 0, ct.err_msg: 'Arrays must all be same length.'} collection_w.insert(data=data, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_vector_value_less(self): """ target: test insert vector value less than other method: vec field value less than int field expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) nb = 10 int_values = [i for i in range(nb)] float_values = [np.float32(i) for i in range(nb)] float_vec_values = cf.gen_vectors(nb - 1, ct.default_dim) data = [int_values, float_values, float_vec_values] error = {ct.err_code: 0, ct.err_msg: 'Arrays must all be same length.'} collection_w.insert(data=data, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_fields_more(self): """ target: test insert with fields more method: field more than schema fields expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) df = cf.gen_default_dataframe_data(ct.default_nb) new_values = [i for i in range(ct.default_nb)] df.insert(3, 'new', new_values) error = {ct.err_code: 0, ct.err_msg: 'The data fields number is not match with schema.'} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_fields_less(self): """ target: test insert with fields less method: fields less than schema fields expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) df = cf.gen_default_dataframe_data(ct.default_nb) df.drop(ct.default_float_vec_field_name, axis=1, inplace=True) error = {ct.err_code: 0, ct.err_msg: 'The data fields number is not match with schema.'} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_list_order_inconsistent_schema(self): """ target: test insert data fields order inconsistent with schema method: insert list data, data fields order inconsistent with schema expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) nb = 10 int_values = [i for i in range(nb)] float_values = [np.float32(i) for i in range(nb)] float_vec_values = cf.gen_vectors(nb, ct.default_dim) data = [float_values, int_values, float_vec_values] error = {ct.err_code: 0, ct.err_msg: 'The types of schema and data do not match'} collection_w.insert(data=data, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L1) def test_insert_dataframe_order_inconsistent_schema(self): """ target: test insert with dataframe fields inconsistent with schema method: insert dataframe, and fields order inconsistent with schema expected: assert num entities """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) nb = 10 int_values = pd.Series(data=[i for i in range(nb)]) float_values = pd.Series(data=[float(i) for i in range(nb)], dtype="float32") float_vec_values = cf.gen_vectors(nb, ct.default_dim) df = pd.DataFrame({ ct.default_float_field_name: float_values, ct.default_float_vec_field_name: float_vec_values, ct.default_int64_field_name: int_values }) error = {ct.err_code: 0, ct.err_msg: 'The types of schema and data do not match'} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_inconsistent_data(self): """ target: test insert with inconsistent data method: insert with data that same field has different type data expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) data = cf.gen_default_list_data(nb=100) data[0][1] = 1.0 error = {ct.err_code: 0, ct.err_msg: "The data in the same column must be of the same type"} collection_w.insert(data, check_task=CheckTasks.err_res, check_items=error) class TestInsertOperation(TestcaseBase): """ ****************************************************************** The following cases are used to test insert interface operations ****************************************************************** """ @pytest.fixture(scope="function", params=[8, 4096]) def dim(self, request): yield request.param @pytest.mark.tags(CaseLabel.L2) def test_insert_without_connection(self): """ target: test insert without connection method: insert after remove connection expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) self.connection_wrap.remove_connection(ct.default_alias) res_list, _ = self.connection_wrap.list_connections() assert ct.default_alias not in res_list data = cf.gen_default_list_data(10) error = {ct.err_code: 0, ct.err_msg: 'should create connect first'} collection_w.insert(data=data, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L1) @pytest.mark.skip("https://github.com/milvus-io/milvus/issues/12680") @pytest.mark.parametrize("vec_fields", [[cf.gen_float_vec_field(name="float_vector1")], [cf.gen_binary_vec_field()], [cf.gen_binary_vec_field(), cf.gen_binary_vec_field("binary_vec")]]) def test_insert_multi_float_vec_fields(self, vec_fields): """ target: test insert into multi float vec fields collection method: create collection with different schema and insert expected: verify num entities """ schema = cf.gen_schema_multi_vector_fields(vec_fields) collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), schema=schema) df = cf.gen_dataframe_multi_vec_fields(vec_fields=vec_fields) collection_w.insert(df) assert collection_w.num_entities == ct.default_nb @pytest.mark.tags(CaseLabel.L1) def test_insert_drop_collection(self): """ target: test insert and drop method: insert data and drop collection expected: verify collection if exist """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) collection_list, _ = self.utility_wrap.list_collections() assert collection_w.name in collection_list df = cf.gen_default_dataframe_data(ct.default_nb) collection_w.insert(data=df) collection_w.drop() collection_list, _ = self.utility_wrap.list_collections() assert collection_w.name not in collection_list @pytest.mark.tags(CaseLabel.L1) def test_insert_create_index(self): """ target: test insert and create index method: 1. insert 2. create index expected: verify num entities and index """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) df = cf.gen_default_dataframe_data(ct.default_nb) collection_w.insert(data=df) assert collection_w.num_entities == ct.default_nb collection_w.create_index(ct.default_float_vec_field_name, default_index_params) assert collection_w.has_index()[0] index, _ = collection_w.index() assert index == Index(collection_w.collection, ct.default_float_vec_field_name, default_index_params) assert collection_w.indexes[0] == index @pytest.mark.tags(CaseLabel.L1) def test_insert_after_create_index(self): """ target: test insert after create index method: 1. create index 2. insert data expected: verify index and num entities """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) collection_w.create_index(ct.default_float_vec_field_name, default_index_params) assert collection_w.has_index()[0] index, _ = collection_w.index() assert index == Index(collection_w.collection, ct.default_float_vec_field_name, default_index_params) assert collection_w.indexes[0] == index df = cf.gen_default_dataframe_data(ct.default_nb) collection_w.insert(data=df) assert collection_w.num_entities == ct.default_nb @pytest.mark.tags(CaseLabel.L1) def test_insert_binary_after_index(self): """ target: test insert binary after index method: 1.create index 2.insert binary data expected: 1.index ok 2.num entities correct """ schema = cf.gen_default_binary_collection_schema() collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), schema=schema) collection_w.create_index(ct.default_binary_vec_field_name, default_binary_index_params) assert collection_w.has_index()[0] index, _ = collection_w.index() assert index == Index(collection_w.collection, ct.default_binary_vec_field_name, default_binary_index_params) assert collection_w.indexes[0] == index df, _ = cf.gen_default_binary_dataframe_data(ct.default_nb) collection_w.insert(data=df) assert collection_w.num_entities == ct.default_nb @pytest.mark.tags(CaseLabel.L1) def test_insert_auto_id_create_index(self): """ target: test create index in auto_id=True collection method: 1.create auto_id=True collection and insert 2.create index expected: index correct """ schema = cf.gen_default_collection_schema(auto_id=True) collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), schema=schema) df = cf.gen_default_dataframe_data() df.drop(ct.default_int64_field_name, axis=1, inplace=True) mutation_res, _ = collection_w.insert(data=df) assert cf._check_primary_keys(mutation_res.primary_keys, ct.default_nb) assert collection_w.num_entities == ct.default_nb # create index collection_w.create_index(ct.default_float_vec_field_name, default_index_params) assert collection_w.has_index()[0] index, _ = collection_w.index() assert index == Index(collection_w.collection, ct.default_float_vec_field_name, default_index_params) assert collection_w.indexes[0] == index @pytest.mark.tags(CaseLabel.L2) def test_insert_auto_id_true(self): """ target: test insert ids fields values when auto_id=True method: 1.create collection with auto_id=True 2.insert without ids expected: verify primary_keys and num_entities """ c_name = cf.gen_unique_str(prefix) schema = cf.gen_default_collection_schema(auto_id=True) collection_w = self.init_collection_wrap(name=c_name, schema=schema) df = cf.gen_default_dataframe_data() df.drop(ct.default_int64_field_name, axis=1, inplace=True) mutation_res, _ = collection_w.insert(data=df) assert cf._check_primary_keys(mutation_res.primary_keys, ct.default_nb) assert collection_w.num_entities == ct.default_nb @pytest.mark.tags(CaseLabel.L1) def test_insert_twice_auto_id_true(self): """ target: test insert ids fields twice when auto_id=True method: 1.create collection with auto_id=True 2.insert twice expected: verify primary_keys unique """ c_name = cf.gen_unique_str(prefix) schema = cf.gen_default_collection_schema(auto_id=True) nb = 10 collection_w = self.init_collection_wrap(name=c_name, schema=schema) df = cf.gen_default_dataframe_data(nb) df.drop(ct.default_int64_field_name, axis=1, inplace=True) mutation_res, _ = collection_w.insert(data=df) primary_keys = mutation_res.primary_keys assert cf._check_primary_keys(primary_keys, nb) mutation_res_1, _ = collection_w.insert(data=df) primary_keys.extend(mutation_res_1.primary_keys) assert cf._check_primary_keys(primary_keys, nb * 2) assert collection_w.num_entities == nb * 2 @pytest.mark.tags(CaseLabel.L2) def test_insert_auto_id_true_list_data(self): """ target: test insert ids fields values when auto_id=True method: 1.create collection with auto_id=True 2.insert list data with ids field values expected: assert num entities """ c_name = cf.gen_unique_str(prefix) schema = cf.gen_default_collection_schema(auto_id=True) collection_w = self.init_collection_wrap(name=c_name, schema=schema) data = cf.gen_default_list_data() mutation_res, _ = collection_w.insert(data=data[1:]) assert mutation_res.insert_count == ct.default_nb assert cf._check_primary_keys(mutation_res.primary_keys, ct.default_nb) assert collection_w.num_entities == ct.default_nb @pytest.mark.tags(CaseLabel.L1) def test_insert_auto_id_true_with_dataframe_values(self): """ target: test insert with auto_id=True method: create collection with auto_id=True expected: 1.verify num entities 2.verify ids """ c_name = cf.gen_unique_str(prefix) schema = cf.gen_default_collection_schema(auto_id=True) collection_w = self.init_collection_wrap(name=c_name, schema=schema) df = cf.gen_default_dataframe_data(nb=100) error = {ct.err_code: 0, ct.err_msg: 'Auto_id is True, primary field should not have data'} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) assert collection_w.is_empty @pytest.mark.tags(CaseLabel.L2) def test_insert_auto_id_true_with_list_values(self): """ target: test insert with auto_id=True method: create collection with auto_id=True expected: 1.verify num entities 2.verify ids """ c_name = cf.gen_unique_str(prefix) schema = cf.gen_default_collection_schema(auto_id=True) collection_w = self.init_collection_wrap(name=c_name, schema=schema) data = cf.gen_default_list_data(nb=100) error = {ct.err_code: 0, ct.err_msg: 'The data fields number is not match with schema'} collection_w.insert(data=data, check_task=CheckTasks.err_res, check_items=error) assert collection_w.is_empty @pytest.mark.tags(CaseLabel.L1) def test_insert_auto_id_false_same_values(self): """ target: test insert same ids with auto_id false method: 1.create collection with auto_id=False 2.insert same int64 field values expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) nb = 100 data = cf.gen_default_list_data(nb=nb) data[0] = [1 for i in range(nb)] mutation_res, _ = collection_w.insert(data) assert mutation_res.insert_count == nb assert mutation_res.primary_keys == data[0] @pytest.mark.tags(CaseLabel.L1) def test_insert_auto_id_false_negative_values(self): """ target: test insert negative ids with auto_id false method: auto_id=False, primary field values is negative expected: verify num entities """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) nb = 100 data = cf.gen_default_list_data(nb) data[0] = [i for i in range(0, -nb, -1)] mutation_res, _ = collection_w.insert(data) assert mutation_res.primary_keys == data[0] assert collection_w.num_entities == nb @pytest.mark.tags(CaseLabel.L1) @pytest.mark.xfail(reason="issue 15416") def test_insert_multi_threading(self): """ target: test concurrent insert method: multi threads insert expected: verify num entities """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) df = cf.gen_default_dataframe_data(ct.default_nb) thread_num = 4 threads = [] primary_keys = df[ct.default_int64_field_name].values.tolist() def insert(thread_i): log.debug(f'In thread-{thread_i}') mutation_res, _ = collection_w.insert(df) assert mutation_res.insert_count == ct.default_nb assert mutation_res.primary_keys == primary_keys for i in range(thread_num): x = threading.Thread(target=insert, args=(i,)) threads.append(x) x.start() for t in threads: t.join() assert collection_w.num_entities == ct.default_nb * thread_num @pytest.mark.tags(CaseLabel.L2) @pytest.mark.skip(reason="Currently primary keys are not unique") def test_insert_multi_threading_auto_id(self): """ target: test concurrent insert auto_id=True collection method: 1.create auto_id=True collection 2.concurrent insert expected: verify primary keys unique """ pass @pytest.mark.tags(CaseLabel.L1) def test_insert_multi_times(self, dim): """ target: test insert multi times method: insert data multi times expected: verify num entities """ step = 120 nb = 12000 collection_w = self.init_collection_general(prefix, dim=dim)[0] for _ in range(nb // step): df = cf.gen_default_dataframe_data(step, dim) mutation_res, _ = collection_w.insert(data=df) assert mutation_res.insert_count == step assert mutation_res.primary_keys == df[ct.default_int64_field_name].values.tolist() assert collection_w.num_entities == nb @pytest.mark.tags(CaseLabel.L1) def test_insert_all_datatype_collection(self): """ target: test insert into collection that contains all datatype fields method: 1.create all datatype collection 2.insert data expected: verify num entities """ self._connect() nb = 100 df = cf.gen_dataframe_all_data_type(nb=nb) self.collection_wrap.construct_from_dataframe(cf.gen_unique_str(prefix), df, primary_field=ct.default_int64_field_name) assert self.collection_wrap.num_entities == nb class TestInsertAsync(TestcaseBase): """ ****************************************************************** The following cases are used to test insert async ****************************************************************** """ @pytest.mark.tags(CaseLabel.L1) def test_insert_sync(self): """ target: test async insert method: insert with async=True expected: verify num entities """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) df = cf.gen_default_dataframe_data() future, _ = collection_w.insert(data=df, _async=True) future.done() mutation_res = future.result() assert mutation_res.insert_count == ct.default_nb assert mutation_res.primary_keys == df[ct.default_int64_field_name].values.tolist() assert collection_w.num_entities == ct.default_nb @pytest.mark.tags(CaseLabel.L1) def test_insert_async_false(self): """ target: test insert with false async method: async = false expected: verify num entities """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) df = cf.gen_default_dataframe_data() mutation_res, _ = collection_w.insert(data=df, _async=False) assert mutation_res.insert_count == ct.default_nb assert mutation_res.primary_keys == df[ct.default_int64_field_name].values.tolist() assert collection_w.num_entities == ct.default_nb @pytest.mark.tags(CaseLabel.L1) def test_insert_async_callback(self): """ target: test insert with callback func method: insert with callback func expected: verify num entities """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) df = cf.gen_default_dataframe_data() future, _ = collection_w.insert(data=df, _async=True, _callback=assert_mutation_result) future.done() mutation_res = future.result() assert mutation_res.primary_keys == df[ct.default_int64_field_name].values.tolist() assert collection_w.num_entities == ct.default_nb @pytest.mark.tags(CaseLabel.L2) def test_insert_async_long(self): """ target: test insert with async method: insert 5w entities with callback func expected: verify num entities """ nb = 50000 collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) df = cf.gen_default_dataframe_data(nb) future, _ = collection_w.insert(data=df, _async=True) future.done() mutation_res = future.result() assert mutation_res.insert_count == nb assert mutation_res.primary_keys == df[ct.default_int64_field_name].values.tolist() assert collection_w.num_entities == nb @pytest.mark.tags(CaseLabel.L2) def test_insert_async_callback_timeout(self): """ target: test insert async with callback method: insert 10w entities with timeout=1 expected: raise exception """ nb = 100000 collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) df = cf.gen_default_dataframe_data(nb) future, _ = collection_w.insert(data=df, _async=True, _callback=None, timeout=0.2) with pytest.raises(MilvusException): future.result() @pytest.mark.tags(CaseLabel.L2) def test_insert_async_invalid_data(self): """ target: test insert async with invalid data method: insert async with invalid data expected: raise exception """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) columns = [ct.default_int64_field_name, ct.default_float_vec_field_name] df = pd.DataFrame(columns=columns) error = {ct.err_code: 0, ct.err_msg: "Cannot infer schema from empty dataframe"} collection_w.insert(data=df, _async=True, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_async_invalid_partition(self): """ target: test insert async with invalid partition method: insert async with invalid partition expected: raise exception """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) df = cf.gen_default_dataframe_data() err_msg = "partitionID of partitionName:p can not be find" future, _ = collection_w.insert(data=df, partition_name="p", _async=True) future.done() with pytest.raises(MilvusException, match=err_msg): future.result() @pytest.mark.tags(CaseLabel.L2) def test_insert_async_no_vectors_raise_exception(self): """ target: test insert vectors with no vectors method: set only vector field and insert into collection expected: raise exception """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) df = cf.gen_collection_schema([cf.gen_int64_field(is_primary=True)]) error = {ct.err_code: 0, ct.err_msg: "fleldSchema lack of vector field."} future, _ = collection_w.insert(data=df, _async=True, check_task=CheckTasks.err_res, check_items=error) def assert_mutation_result(mutation_res): assert mutation_res.insert_count == ct.default_nb class TestInsertOperation(TestcaseBase): """ ****************************************************************** The following cases are used to test insert interface operations ****************************************************************** """ @pytest.mark.tags(CaseLabel.L1) def test_insert_default_partition(self): """ target: test insert entities into default partition method: create partition and insert info collection expected: the collection insert count equals to nb """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) partition_w1 = self.init_partition_wrap(collection_w) data = cf.gen_default_list_data(nb=ct.default_nb) mutation_res, _ = collection_w.insert(data=data, partition_name=partition_w1.name) assert mutation_res.insert_count == ct.default_nb def test_insert_partition_not_existed(self): """ target: test insert entities in collection created before method: create collection and insert entities in it, with the not existed partition_name param expected: error raised """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) df = cf.gen_default_dataframe_data(nb=ct.default_nb) error = {ct.err_code: 1, ct.err_msg: "partitionID of partitionName:p can not be existed"} mutation_res, _ = collection_w.insert(data=df, partition_name="p", check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L1) def test_insert_partition_repeatedly(self): """ target: test insert entities in collection created before method: create collection and insert entities in it repeatedly, with the partition_name param expected: the collection row count equals to nq """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) partition_w1 = self.init_partition_wrap(collection_w) partition_w2 = self.init_partition_wrap(collection_w) df = cf.gen_default_dataframe_data(nb=ct.default_nb) mutation_res, _ = collection_w.insert(data=df, partition_name=partition_w1.name) new_res, _ = collection_w.insert(data=df, partition_name=partition_w2.name) assert mutation_res.insert_count == ct.default_nb assert new_res.insert_count == ct.default_nb @pytest.mark.tags(CaseLabel.L0) def test_insert_partition_with_ids(self): """ target: test insert entities in collection created before, insert with ids method: create collection and insert entities in it, with the partition_name param expected: the collection insert count equals to nq """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) partition_name = cf.gen_unique_str(prefix) partition_w1 = self.init_partition_wrap(collection_w, partition_name=partition_name) df = cf.gen_default_dataframe_data(ct.default_nb) mutation_res, _ = collection_w.insert(data=df, partition_name=partition_w1.name) assert mutation_res.insert_count == ct.default_nb @pytest.mark.tags(CaseLabel.L2) def test_insert_with_field_type_not_match(self): """ target: test insert entities, with the entity field type updated method: update entity field type expected: error raised """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) df = cf.gen_collection_schema_all_datatype error = {ct.err_code: 0, ct.err_msg: "Data type is not support"} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_with_lack_vector_field(self): """ target: test insert entities, with no vector field method: remove entity values of vector field expected: error raised """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) df = cf.gen_collection_schema([cf.gen_int64_field(is_primary=True)]) error = {ct.err_code: 0, ct.err_msg: "Primary key field can only be one"} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_with_no_vector_field_dtype(self): """ target: test insert entities, with vector field type is error method: vector field dtype is not existed expected: error raised """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) vec_field, _ = self.field_schema_wrap.init_field_schema(name=ct.default_int64_field_name, dtype=DataType.NONE) field_one = cf.gen_int64_field(is_primary=True) field_two = cf.gen_int64_field() df =[field_one, field_two, vec_field] error = {ct.err_code: 0, ct.err_msg: "Field dtype must be of DataType."} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_with_no_vector_field_name(self): """ target: test insert entities, with no vector field name method: vector field name is error expected: error raised """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) vec_field = cf.gen_float_vec_field(name=ct.get_invalid_strs) field_one = cf.gen_int64_field(is_primary=True) field_two = cf.gen_int64_field() df =[field_one, field_two, vec_field] error = {ct.err_code: 0, ct.err_msg: "Data type is not support."} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) class TestInsertBinary(TestcaseBase): @pytest.mark.tags(CaseLabel.L0) def test_insert_binary_partition(self): """ target: test insert entities and create partition method: create collection and insert binary entities in it, with the partition_name param expected: the collection row count equals to nb """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name, schema=default_binary_schema) df, _ = cf.gen_default_binary_dataframe_data(ct.default_nb) partition_name = cf.gen_unique_str(prefix) partition_w1 = self.init_partition_wrap(collection_w, partition_name=partition_name) mutation_res, _ =collection_w.insert(data=df, partition_name=partition_w1.name) assert mutation_res.insert_count == ct.default_nb @pytest.mark.tags(CaseLabel.L1) def test_insert_binary_multi_times(self): """ target: test insert entities multi times and final flush method: create collection and insert binary entity multi expected: the collection row count equals to nb """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name, schema=default_binary_schema) df, _ = cf.gen_default_binary_dataframe_data(ct.default_nb) nums = 2 for i in range(nums): mutation_res, _ = collection_w.insert(data=df) assert collection_w.num_entities == ct.default_nb*nums @pytest.mark.tags(CaseLabel.L2) def test_insert_binary_create_index(self): """ target: test build index insert after vector method: insert vector and build index expected: no error raised """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name, schema=default_binary_schema) df, _ = cf.gen_default_binary_dataframe_data(ct.default_nb) mutation_res, _ = collection_w.insert(data=df) assert mutation_res.insert_count == ct.default_nb default_index = {"index_type": "BIN_IVF_FLAT", "params": {"nlist": 128}, "metric_type": "JACCARD"} collection_w.create_index("binary_vector", default_index) class TestInsertInvalid(TestcaseBase): """ ****************************************************************** The following cases are used to test insert invalid params ****************************************************************** """ @pytest.mark.tags(CaseLabel.L2) def test_insert_ids_invalid(self): """ target: test insert, with using auto id is invaild, which are not int64 method: create collection and insert entities in it expected: raise exception """ collection_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=collection_name) int_field = cf.gen_float_field(is_primary=True) vec_field = cf.gen_float_vec_field(name='vec') df =[int_field, vec_field] error = {ct.err_code: 0, ct.err_msg: "Primary key type must be DataType.INT64."} mutation_res, _ =collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_with_invalid_partition_name(self): """ target: test insert with invalid scenario method: insert with invalid partition name expected: raise exception """ collection_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=collection_name) df = cf.gen_default_list_data(ct.default_nb) error={ct.err_code: 1, 'err_msg': "partition name is illegal"} mutation_res, _ = collection_w.insert(data=df, partition_name="p", check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L1) def test_insert_with_invalid_field_value(self): """ target: test insert with invalid field method: insert with invalid field value expected: raise exception """ collection_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=collection_name) field_one = cf.gen_int64_field(is_primary=True) field_two = cf.gen_int64_field() vec_field = ct.get_invalid_vectors df =[field_one, field_two, vec_field] error = {ct.err_code: 0, ct.err_msg: "The field of schema type must be FieldSchema."} mutation_res, _ = collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) class TestInsertInvalidBinary(TestcaseBase): """ ****************************************************************** The following cases are used to test insert invalid params of binary ****************************************************************** """ @pytest.mark.tags(CaseLabel.L1) def test_insert_ids_binary_invalid(self): """ target: test insert, with using customize ids, which are not int64 method: create collection and insert entities in it expected: raise exception """ collection_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=collection_name) field_one = cf.gen_float_field(is_primary=True) field_two = cf.gen_float_field() vec_field, _ = self.field_schema_wrap.init_field_schema(name=ct.default_binary_vec_field_name, dtype=DataType.BINARY_VECTOR) df = [field_one, field_two, vec_field] error = {ct.err_code: 0, ct.err_msg: "Data type is not support."} mutation_res, _ = collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_with_invalid_binary_partition_name(self): """ target: test insert with invalid scenario method: insert with invalid partition name expected: raise exception """ collection_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=collection_name) partition_name = ct.get_invalid_strs df, _ = cf.gen_default_binary_dataframe_data(ct.default_nb) error = {ct.err_code: 1, 'err_msg': "The types of schema and data do not match."} mutation_res, _ = collection_w.insert(data=df, partition_name=partition_name, check_task=CheckTasks.err_res, check_items=error) class TestInsertString(TestcaseBase): """ ****************************************************************** The following cases are used to test insert string ****************************************************************** """ @pytest.mark.tags(CaseLabel.L0) def test_insert_string_field_is_primary(self): """ target: test insert string is primary method: 1.create a collection and string field is primary 2.insert string field data expected: Insert Successfully """ c_name = cf.gen_unique_str(prefix) schema = cf.gen_string_pk_default_collection_schema() collection_w = self.init_collection_wrap(name=c_name, schema=schema) data = cf.gen_default_list_data(ct.default_nb) mutation_res, _ = collection_w.insert(data=data) assert mutation_res.insert_count == ct.default_nb assert mutation_res.primary_keys == data[2] @pytest.mark.tags(CaseLabel.L0) @pytest.mark.parametrize("string_fields", [[cf.gen_string_field(name="string_field1")], [cf.gen_string_field(name="string_field2")], [cf.gen_string_field(name="string_field3")]]) def test_insert_multi_string_fields(self, string_fields): """ target: test insert multi string fields method: 1.create a collection 2.Insert multi string fields expected: Insert Successfully """ schema = cf.gen_schema_multi_string_fields(string_fields) collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), schema=schema) df = cf.gen_dataframe_multi_string_fields(string_fields=string_fields) collection_w.insert(df) assert collection_w.num_entities == ct.default_nb @pytest.mark.tags(CaseLabel.L0) def test_insert_string_field_invalid_data(self): """ target: test insert string field data is not match method: 1.create a collection 2.Insert string field data is not match expected: Raise exceptions """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) nb = 10 df = cf.gen_default_dataframe_data(nb) new_float_value = pd.Series(data=[float(i) for i in range(nb)], dtype="float64") df.iloc[:, 2] = new_float_value error = {ct.err_code: 0, ct.err_msg: 'The types of schema and data do not match'} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L0) def test_insert_string_field_name_invalid(self): """ target: test insert string field name is invaild method: 1.create a collection 2.Insert string field name is invalid expected: Raise exceptions """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) df = [cf.gen_int64_field(),cf.gen_string_field(name=ct.get_invalid_strs), cf.gen_float_vec_field()] error = {ct.err_code: 0, ct.err_msg: 'Data type is not support.'} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L0) def test_insert_string_field_length_exceed(self): """ target: test insert string field exceed the maximum length method: 1.create a collection 2.Insert string field length is exceeded maximum value of 65535 expected: Raise exceptions """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) nums = 70000 field_one = cf.gen_int64_field() field_two = cf.gen_float_field() field_three = cf.gen_string_field(max_length=nums) vec_field = cf.gen_float_vec_field() df = [field_one, field_two, field_three, vec_field] error = {ct.err_code: 0, ct.err_msg: 'Data type is not support.'} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L1) def test_insert_string_field_dtype_invalid(self): """ target: test insert string field with invaild dtype method: 1.create a collection 2.Insert string field dtype is invalid expected: Raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) string_field = self.field_schema_wrap.init_field_schema(name="string", dtype=DataType.STRING)[0] int_field = cf.gen_int64_field(is_primary=True) vec_field = cf.gen_float_vec_field() df = [string_field, int_field, vec_field] error = {ct.err_code: 0, ct.err_msg: 'Data type is not support.'} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L1) def test_insert_string_field_auto_id_is_true(self): """ target: test create collection with string field method: 1.create a collection 2.Insert string field with auto id is true expected: Raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) int_field = cf.gen_int64_field() vec_field = cf.gen_float_vec_field() string_field = cf.gen_string_field(is_primary=True, auto_id=True) df = [int_field, string_field, vec_field] error = {ct.err_code: 0, ct.err_msg: 'Data type is not support.'} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) ```
{ "source": "aakgun/pytorch-VideoDataset", "score": 3 }
#### File: pytorch-VideoDataset/models/R2Plus1D.py ```python import math import torch.nn as nn from torch.nn.modules.utils import _triple class SpatioTemporalConv(nn.Module): r"""Applies a factored 3D convolution over an input signal composed of several input planes with distinct spatial and time axes, by performing a 2D convolution over the spatial axes to an intermediate subspace, followed by a 1D convolution over the time axis to produce the final output. Args: in_channels (int): Number of channels in the input tensor out_channels (int): Number of channels produced by the convolution kernel_size (int or tuple): Size of the convolving kernel stride (int or tuple, optional): Stride of the convolution. Default: 1 padding (int or tuple, optional): Zero-padding added to the sides of the input during their respective convolutions. Default: 0 bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True`` """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=False, first_conv=False): super(SpatioTemporalConv, self).__init__() kernel_size = _triple(kernel_size) stride = _triple(stride) padding = _triple(padding) spatial_kernel_size = (1, kernel_size[1], kernel_size[2]) spatial_stride = (1, stride[1], stride[2]) spatial_padding = (0, padding[1], padding[2]) temporal_kernel_size = (kernel_size[0], 1, 1) temporal_stride = (stride[0], 1, 1) temporal_padding = (padding[0], 0, 0) if first_conv: intermed_channels = 45 else: intermed_channels = int(math.floor( (kernel_size[0] * kernel_size[1] * kernel_size[2] * in_channels * out_channels) / ( kernel_size[1] * kernel_size[2] * in_channels + kernel_size[0] * out_channels))) self.spatial_conv = nn.Conv3d(in_channels, intermed_channels, spatial_kernel_size, stride=spatial_stride, padding=spatial_padding, bias=bias) self.bn1 = nn.BatchNorm3d(intermed_channels) self.temporal_conv = nn.Conv3d(intermed_channels, out_channels, temporal_kernel_size, stride=temporal_stride, padding=temporal_padding, bias=bias) self.bn2 = nn.BatchNorm3d(out_channels) self.relu = nn.ReLU(inplace=True) def forward(self, x): x = self.relu(self.bn1(self.spatial_conv(x))) x = self.relu(self.bn2(self.temporal_conv(x))) return x class ResBlock(nn.Module): r"""Single block for the ResNet network. Uses SpatioTemporalConv in the standard ResNet block layout (conv->batchnorm->ReLU->conv->batchnorm->sum->ReLU) Args: in_channels (int): Number of channels in the input tensor out_channels (int): Number of channels in the output produced by the block kernel_size (int or tuple): Size of the convolving kernels downsample (bool, optional): If ``True``, the output size is to be smaller than the input. Default: ``False`` """ def __init__(self, in_channels, out_channels, kernel_size, downsample=False): super(ResBlock, self).__init__() self.downsample = downsample padding = kernel_size // 2 if self.downsample: self.conv1 = SpatioTemporalConv(in_channels, out_channels, kernel_size, padding=padding, stride=2) self.downsampleconv = SpatioTemporalConv(in_channels, out_channels, 1, stride=2) self.downsamplebn = nn.BatchNorm3d(out_channels) else: self.conv1 = SpatioTemporalConv(in_channels, out_channels, kernel_size, padding=padding) self.bn1 = nn.BatchNorm3d(out_channels) self.conv2 = SpatioTemporalConv(out_channels, out_channels, kernel_size, padding=padding) self.bn2 = nn.BatchNorm3d(out_channels) self.relu = nn.ReLU() def forward(self, x): res = self.relu(self.bn1(self.conv1(x))) res = self.bn2(self.conv2(res)) if self.downsample: x = self.downsamplebn(self.downsampleconv(x)) return self.relu(x + res) class ResLayer(nn.Module): r"""Forms a single layer of the ResNet network, with a number of repeating blocks of same output size stacked on top of each other Args: in_channels (int): Number of channels in the input tensor out_channels (int): Number of channels in the output produced by the layer kernel_size (int or tuple): Size of the convolving kernels layer_size (int): Number of blocks to be stacked to form the layer downsample (bool, optional): If ``True``, the first block in layer will implement downsampling. Default: ``False`` """ def __init__(self, in_channels, out_channels, kernel_size, layer_size, downsample=False): super(ResLayer, self).__init__() # implement the first block self.block1 = ResBlock(in_channels, out_channels, kernel_size, downsample) # prepare module list to hold all (layer_size - 1) blocks self.blocks = nn.ModuleList([]) for i in range(layer_size - 1): # all these blocks are identical, and have downsample = False by default self.blocks += [ResBlock(out_channels, out_channels, kernel_size)] def forward(self, x): x = self.block1(x) for block in self.blocks: x = block(x) return x class FeatureLayer(nn.Module): r"""Forms the overall ResNet feature extractor by initializng 5 layers, with the number of blocks in each layer set by layer_sizes, and by performing a global average pool at the end producing a 512-dimensional vector for each element in the batch. Args: layer_sizes (tuple): An iterable containing the number of blocks in each layer """ def __init__(self, layer_sizes, input_channel=3): super(FeatureLayer, self).__init__() self.conv1 = SpatioTemporalConv(input_channel, 64, (1, 7, 7), stride=(1, 2, 2), padding=(0, 3, 3), first_conv=True) self.conv2 = ResLayer(64, 64, 3, layer_sizes[0]) self.conv3 = ResLayer(64, 128, 3, layer_sizes[1], downsample=True) self.conv4 = ResLayer(128, 256, 3, layer_sizes[2], downsample=True) self.conv5 = ResLayer(256, 512, 3, layer_sizes[3], downsample=True) # global average pooling of the output self.pool = nn.AdaptiveAvgPool3d(1) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = self.conv4(x) x = self.conv5(x) x = self.pool(x) return x.view(-1, 512) class R2Plus1D(nn.Module): r"""Forms a complete ResNet classifier producing vectors of size num_classes, by initializng 5 layers, with the number of blocks in each layer set by layer_sizes, and by performing a global average pool at the end producing a 512-dimensional vector for each element in the batch, and passing them through a Linear layer. Args: num_classes(int): Number of classes in the data layer_sizes (tuple): An iterable containing the number of blocks in each layer """ def __init__(self, num_classes, layer_sizes, input_channel=3): super(R2Plus1D, self).__init__() self.feature = FeatureLayer(layer_sizes, input_channel) self.fc = nn.Linear(512, num_classes) self.__init_weight() def forward(self, x): x = self.feature(x) logits = self.fc(x) return logits def __init_weight(self): for m in self.modules(): if isinstance(m, nn.Conv3d): nn.init.kaiming_normal_(m.weight) elif isinstance(m, nn.BatchNorm3d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) ``` #### File: aakgun/pytorch-VideoDataset/transforms.py ```python import torch import torchvision import numpy as np import PIL import collections import random import cv2 import os __all__ = ['VideoFilePathToTensor', 'VideoFolderPathToTensor', 'VideoResize', 'VideoRandomCrop', 'VideoCenterCrop', 'VideoRandomHorizontalFlip', 'VideoRandomVerticalFlip', 'VideoGrayscale'] class VideoFilePathToTensor(object): """ load video at given file path to torch.Tensor (C x L x H x W, C = 3) It can be composed with torchvision.transforms.Compose(). Args: max_len (int): Maximum output time depth (L <= max_len). Default is None. If it is set to None, it will output all frames. fps (int): sample frame per seconds. It must lower than or equal the origin video fps. Default is None. padding_mode (str): Type of padding. Default to None. Only available when max_len is not None. - None: won't padding, video length is variable. - 'zero': padding the rest empty frames to zeros. - 'last': padding the rest empty frames to the last frame. """ def __init__(self, max_len=None, fps=None, padding_mode=None): self.max_len = max_len self.fps = fps assert padding_mode in (None, 'zero', 'last') self.padding_mode = padding_mode self.channels = 3 # only available to read 3 channels video def __call__(self, path): """ Args: path (str): path of video file. Returns: torch.Tensor: Video Tensor (C x L x H x W) """ # open video file cap = cv2.VideoCapture(path) assert(cap.isOpened()) # calculate sample_factor to reset fps sample_factor = 1 if self.fps: old_fps = cap.get(cv2.CAP_PROP_FPS) # fps of video sample_factor = int(old_fps / self.fps) assert(sample_factor >= 1) # init empty output frames (C x L x H x W) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) time_len = None if self.max_len: # time length has upper bound if self.padding_mode: # padding all video to the same time length time_len = self.max_len else: # video have variable time length time_len = min(int(num_frames / sample_factor), self.max_len) else: # time length is unlimited time_len = int(num_frames / sample_factor) frames = torch.FloatTensor(self.channels, time_len, height, width) for index in range(time_len): frame_index = sample_factor * index # read frame cap.set(cv2.CAP_PROP_POS_FRAMES, frame_index) ret, frame = cap.read() if ret: # successfully read frame # BGR to RGB frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frame = torch.from_numpy(frame) # (H x W x C) to (C x H x W) frame = frame.permute(2, 0, 1) frames[:, index, :, :] = frame.float() else: # reach the end of the video if self.padding_mode == 'zero': # fill the rest frames with 0.0 frames[:, index:, :, :] = 0 elif self.padding_mode == 'last': # fill the rest frames with the last frame assert(index > 0) frames[:, index:, :, :] = frames[:, index-1, :, :].view(self.channels, 1, height, width) break frames /= 255 cap.release() return frames class VideoFolderPathToTensor(object): """ load video at given folder path to torch.Tensor (C x L x H x W) It can be composed with torchvision.transforms.Compose(). Args: max_len (int): Maximum output time depth (L <= max_len). Default is None. If it is set to None, it will output all frames. padding_mode (str): Type of padding. Default to None. Only available when max_len is not None. - None: won't padding, video length is variable. - 'zero': padding the rest empty frames to zeros. - 'last': padding the rest empty frames to the last frame. """ def __init__(self, max_len=None, padding_mode=None): self.max_len = max_len assert padding_mode in (None, 'zero', 'last') self.padding_mode = padding_mode def __call__(self, path): """ Args: path (str): path of video folder. Returns: torch.Tensor: Video Tensor (C x L x H x W) """ # get video properity frames_path = sorted([os.path.join(path,f) for f in os.listdir(path) if os.path.isfile(os.path.join(path, f))]) frame = cv2.imread(frames_path[0]) height, width, channels = frame.shape num_frames = len(frames_path) # init empty output frames (C x L x H x W) time_len = None if self.max_len: # time length has upper bound if self.padding_mode: # padding all video to the same time length time_len = self.max_len else: # video have variable time length time_len = min(num_frames, self.max_len) else: # time length is unlimited time_len = num_frames frames = torch.FloatTensor(channels, time_len, height, width) # load the video to tensor for index in range(time_len): if index < num_frames: # frame exists # read frame frame = cv2.imread(frames_path[index]) # BGR to RGB frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frame = torch.from_numpy(frame) # (H x W x C) to (C x H x W) frame = frame.permute(2, 0, 1) frames[:, index, :, :] = frame.float() else: # reach the end of the video if self.padding_mode == 'zero': # fill the rest frames with 0.0 frames[:, index:, :, :] = 0 elif self.padding_mode == 'last': # fill the rest frames with the last frame assert(index > 0) frames[:, index:, :, :] = frames[:, index-1, :, :].view(channels, 1, height, width) break frames /= 255 return frames class VideoResize(object): """ resize video tensor (C x L x H x W) to (C x L x h x w) Args: size (sequence): Desired output size. size is a sequence like (H, W), output size will matched to this. interpolation (int, optional): Desired interpolation. Default is 'PIL.Image.BILINEAR' """ def __init__(self, size, interpolation=PIL.Image.BILINEAR): assert isinstance(size, collections.Iterable) and len(size) == 2 self.size = size self.interpolation = interpolation def __call__(self, video): """ Args: video (torch.Tensor): Video to be scaled (C x L x H x W) Returns: torch.Tensor: Rescaled video (C x L x h x w) """ h, w = self.size C, L, H, W = video.size() rescaled_video = torch.FloatTensor(C, L, h, w) # use torchvision implemention to resize video frames transform = torchvision.transforms.Compose([ torchvision.transforms.ToPILImage(), torchvision.transforms.Resize(self.size, self.interpolation), torchvision.transforms.ToTensor(), ]) for l in range(L): frame = video[:, l, :, :] frame = transform(frame) rescaled_video[:, l, :, :] = frame return rescaled_video def __repr__(self): return self.__class__.__name__ + '(size={0})'.format(self.size) class VideoRandomCrop(object): """ Crop the given Video Tensor (C x L x H x W) at a random location. Args: size (sequence): Desired output size like (h, w). """ def __init__(self, size): assert len(size) == 2 self.size = size def __call__(self, video): """ Args: video (torch.Tensor): Video (C x L x H x W) to be cropped. Returns: torch.Tensor: Cropped video (C x L x h x w). """ H, W = video.size()[2:] h, w = self.size assert H >= h and W >= w top = np.random.randint(0, H - h) left = np.random.randint(0, W - w) video = video[:, :, top : top + h, left : left + w] return video class VideoCenterCrop(object): """ Crops the given video tensor (C x L x H x W) at the center. Args: size (sequence): Desired output size of the crop like (h, w). """ def __init__(self, size): self.size = size def __call__(self, video): """ Args: video (torch.Tensor): Video (C x L x H x W) to be cropped. Returns: torch.Tensor: Cropped Video (C x L x h x w). """ H, W = video.size()[2:] h, w = self.size assert H >= h and W >= w top = int((H - h) / 2) left = int((W - w) / 2) video = video[:, :, top : top + h, left : left + w] return video class VideoRandomHorizontalFlip(object): """ Horizontal flip the given video tensor (C x L x H x W) randomly with a given probability. Args: p (float): probability of the video being flipped. Default value is 0.5. """ def __init__(self, p=0.5): self.p = p def __call__(self, video): """ Args: video (torch.Tensor): Video to flipped. Returns: torch.Tensor: Randomly flipped video. """ if random.random() < self.p: # horizontal flip the video video = video.flip([3]) return video class VideoRandomVerticalFlip(object): """ Vertical flip the given video tensor (C x L x H x W) randomly with a given probability. Args: p (float): probability of the video being flipped. Default value is 0.5. """ def __init__(self, p=0.5): self.p = p def __call__(self, video): """ Args: video (torch.Tensor): Video to flipped. Returns: torch.Tensor: Randomly flipped video. """ if random.random() < self.p: # horizontal flip the video video = video.flip([2]) return video class VideoGrayscale(object): """ Convert video (C x L x H x W) to grayscale (C' x L x H x W, C' = 1 or 3) Args: num_output_channels (int): (1 or 3) number of channels desired for output video """ def __init__(self, num_output_channels=1): assert num_output_channels in (1, 3) self.num_output_channels = num_output_channels def __call__(self, video): """ Args: video (torch.Tensor): Video (3 x L x H x W) to be converted to grayscale. Returns: torch.Tensor: Grayscaled video (1 x L x H x W or 3 x L x H x W) """ C, L, H, W = video.size() grayscaled_video = torch.FloatTensor(self.num_output_channels, L, H, W) # use torchvision implemention to convert video frames to gray scale transform = torchvision.transforms.Compose([ torchvision.transforms.ToPILImage(), torchvision.transforms.Grayscale(self.num_output_channels), torchvision.transforms.ToTensor(), ]) for l in range(L): frame = video[:, l, :, :] frame = transform(frame) grayscaled_video[:, l, :, :] = frame return grayscaled_video ```
{ "source": "aakhundov/deep-german", "score": 3 }
#### File: aakhundov/deep-german/cnn_deep_german.py ```python import sys import tensorflow as tf from datetime import datetime from read_data import read_data_sets from cnn_word_model import CNNWordModel MAX_WORD_LEN = 31 ALPHABET_SIZE = 31 NUM_GENDERS = 3 EPOCHS = 50 BATCH_SIZE = 128 # -batch 128, 256, or 512 NUM_LAYERS = 3 # -layers 0, 1, 2, or 3 DROPOUT_RATE = 0.5 # -dropout 0.0 or 0.5 LEARNING_RATE = 1e-3 # -learning 1e-2, 1e-3, or 1e-4 WINDOW_SIZE = 7 # -window 3, 5, 7, or 9 CONV_FILTERS = [32, 64] NUM_HIDDEN = [512, 256, 128] def echo(*args): print("[{0}] ".format(datetime.now()), end="") print(*args) def log(file, message=""): file.write(message + "\n") if message != "": echo(message) else: print() while len(sys.argv) > 1: option = sys.argv[1]; del sys.argv[1] if option == "-batch": BATCH_SIZE = int(sys.argv[1]); del sys.argv[1] elif option == "-window": WINDOW_SIZE = int(sys.argv[1]); del sys.argv[1] elif option == "-dropout": DROPOUT_RATE = float(sys.argv[1]); del sys.argv[1] elif option == "-learning": LEARNING_RATE = float(sys.argv[1]); del sys.argv[1] else: print(sys.argv[0], ": invalid option", option) sys.exit(1) model_name = "{0}_{1}_{2}_{3}_{4}_{5}".format( "CNN", NUM_LAYERS, WINDOW_SIZE, LEARNING_RATE, DROPOUT_RATE, BATCH_SIZE ) log_path = "./results/logs/" + model_name + ".txt" model_path = "./results/models/" + model_name + ".ckpt" log_file = open(log_path, "w") print("hidden layers:", NUM_LAYERS) print("hidden units:", NUM_HIDDEN[:NUM_LAYERS]) print("conv. filters:", CONV_FILTERS) print("window size:", WINDOW_SIZE) print("learning rate:", LEARNING_RATE) print("dropout rate:", DROPOUT_RATE) print("batch size:", BATCH_SIZE) print() # BUILDING GRAPH echo("Creating placeholders...") xs = tf.placeholder(tf.float32, [None, MAX_WORD_LEN, ALPHABET_SIZE]) ys = tf.placeholder(tf.float32, [None, NUM_GENDERS]) dropout = tf.placeholder(tf.float32) echo("Creating model...") model = CNNWordModel( xs, ys, dropout, CONV_FILTERS, WINDOW_SIZE, NUM_LAYERS, NUM_HIDDEN, tf.train.AdamOptimizer(LEARNING_RATE) ) # PREPARING DATA echo("Preparing data...") # preparing words dataset dataset = read_data_sets() print() echo("Training set:", dataset.train.words.shape[0]) echo("Validation set:", dataset.validation.words.shape[0]) echo("Testing set:", dataset.test.words.shape[0]) print() # EXECUTING THE GRAPH best_epoch = 0 best_val_error = 1.0 saver = tf.train.Saver() config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: echo("Initializing variables...") sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) echo("Training...") print() steps_per_epoch = dataset.train.words.shape[0] // BATCH_SIZE for epoch in range(1, EPOCHS+1): for step in range(steps_per_epoch): batch_xs, batch_ys, seq_len = dataset.train.next_batch(BATCH_SIZE) sess.run( model.training, feed_dict={ xs: batch_xs, ys: batch_ys, dropout: DROPOUT_RATE } ) val_loss, val_error = 0, 0 val_batches = dataset.validation.words.shape[0] // 1024 for i in range(val_batches): b_val_loss, b_val_error = sess.run( [model.loss, model.error], feed_dict={ xs: dataset.validation.words[1024 * i:1024 * (i + 1)], ys: dataset.validation.genders[1024 * i:1024 * (i + 1)], dropout: 0.0 } ) val_loss += b_val_loss / val_batches val_error += b_val_error / val_batches if val_error < best_val_error: best_epoch = epoch best_val_error = val_error saver.save(sess, model_path) log(log_file, "Epoch {:2d}: error {:3.2f}% loss {:.4f}".format( epoch, 100 * val_error, val_loss )) saver.restore(sess, model_path) test_loss, test_error = 0, 0 test_batches = dataset.test.words.shape[0] // 1024 for i in range(test_batches): b_test_loss, b_test_error = sess.run( [model.loss, model.error], feed_dict={ xs: dataset.test.words[1024 * i:1024 * (i + 1)], ys: dataset.test.genders[1024 * i:1024 * (i + 1)], dropout: 0.0 } ) test_loss += b_test_loss / test_batches test_error += b_test_error / test_batches log(log_file) log(log_file, "Best epoch: {0}".format(best_epoch)) log(log_file) log(log_file, "Test Set: error {:3.2f}% loss {:.4f}".format( 100 * test_error, test_loss )) log_file.close() ``` #### File: aakhundov/deep-german/evaluate_auto.py ```python import sys import numpy as np import tensorflow as tf import tensorflow.contrib.rnn as rnn from read_data import nouns_to_one_hot from rnn_word_model import RNNWordModel MAX_WORD_LEN = 31 ALPHABET_SIZE = 31 NUM_GENDERS = 3 MIN_GEN_WORD_LEN = 3 MAX_GEN_WORD_LEN = 20 GEN_WORDS_PER_GENDER = 10000 german_chars = "abcdefghijklmnopqrstuvwxyzßäöü" total_chars = len(german_chars) noun_endings = { "masculine": ["ant", "ast", "er", "ich", "eich", "ig", "eig", "ling", "or", "us", "ismus"], "feminine": ["anz", "e", "ei", "enz", "heit", "ie", "ik", "keit", "schaft", "sion", "sis", "tion", "tät", "ung", "ur"], "neutral": ["chen", "lein", "en", "il", "ing", "ma", "ment", "nis", "tum", "um", ] } def generate_nouns(noun_ending, count=1, min_len=1, max_len=30): end_len = len(noun_ending) min_len = max(min_len, end_len+1) max_len = max(max_len, min_len+1) result = [] for _ in range(count): length = np.random.randint(low=min_len-end_len, high=max_len-end_len) word = "".join([german_chars[np.random.randint(total_chars)] for _ in range(length)]) word += noun_ending result.append(word) return result # parsing hyperparameters from model name model_name = "BasicLSTMCell_2_0.01_0.5_128" if len(sys.argv) > 1: model_name = sys.argv[1] model_tokens = model_name.split("_") model_path = "./results/models/" + model_name + ".ckpt" CELL_TYPE = getattr(rnn, model_tokens[0]) NUM_LAYERS = int(model_tokens[1]) LEARNING_RATE = float(model_tokens[2]) DROPOUT_RATE = float(model_tokens[3]) NUM_HIDDEN = [128, 128, 128] # creating placeholders and model xs = tf.placeholder(tf.float32, [None, MAX_WORD_LEN, ALPHABET_SIZE]) ys = tf.placeholder(tf.float32, [None, NUM_GENDERS]) seq = tf.placeholder(tf.int32, [None]) dropout = tf.placeholder(tf.float32) model = RNNWordModel( xs, ys, seq, dropout, CELL_TYPE, NUM_LAYERS, NUM_HIDDEN, tf.train.AdamOptimizer(LEARNING_RATE) ) # running a session saver = tf.train.Saver() np.random.seed(12345) with tf.Session() as sess: saver.restore(sess, model_path) for gender in noun_endings.keys(): print(gender, "endings") print("-------------------------------------") for ending in noun_endings[gender]: nouns = generate_nouns( ending, GEN_WORDS_PER_GENDER, MIN_GEN_WORD_LEN, MAX_GEN_WORD_LEN ) one_hot, seq_len = nouns_to_one_hot(nouns) prediction = sess.run( model.prediction, feed_dict={ xs: one_hot, seq: seq_len, dropout: 0.0 } ) counts = [0, 0, 0] for g in np.argmax(prediction, axis=1): counts[g] += 1 fractions = [c / sum(counts) * 100 for c in counts] print("-{:<10}{:<10.2f}{:<10.2f}{:<10.2f}".format( ending, *fractions )) print() ``` #### File: aakhundov/deep-german/mlp_deep_german.py ```python import sys import numpy as np import tensorflow as tf from datetime import datetime from read_data import read_data_sets from mlp_word_model import MLPWordModel MAX_WORD_LEN = 31 ALPHABET_SIZE = 31 NUM_GENDERS = 3 EPOCHS = 30 # the hyperparameters below are # configurable with CL arguments BATCH_SIZE = 128 # -batch 128, 256, or 512 NUM_LAYERS = 3 # -layers 1, 2, or 3 ACTIVATION = tf.nn.relu # -activation "sigmoid", "tanh", or "relu" DROPOUT_RATE = 0.0 # -dropout 0.0 or 0.5 LEARNING_RATE = 1e-3 # -learning 1e-2, 1e-3, or 1e-4 NUM_HIDDEN = [512, 256, 128] def echo(*args): print("[{0}] ".format(datetime.now()), end="") print(*args) def log(file, message=""): file.write(message + "\n") if message != "": echo(message) else: print() while len(sys.argv) > 1: option = sys.argv[1]; del sys.argv[1] if option == "-batch": BATCH_SIZE = int(sys.argv[1]); del sys.argv[1] elif option == "-layers": NUM_LAYERS = int(sys.argv[1]); del sys.argv[1] elif option == "-activation": ACTIVATION = getattr(tf.nn, sys.argv[1]); del sys.argv[1] elif option == "-dropout": DROPOUT_RATE = float(sys.argv[1]); del sys.argv[1] elif option == "-learning": LEARNING_RATE = float(sys.argv[1]); del sys.argv[1] else: print(sys.argv[0], ": invalid option", option) sys.exit(1) model_name = "{0}_{1}_{2}_{3}_{4}_{5}".format( "MLP", NUM_LAYERS, ACTIVATION.__name__, LEARNING_RATE, DROPOUT_RATE, BATCH_SIZE ) log_path = "./results/logs/" + model_name + ".txt" model_path = "./results/models/" + model_name + ".ckpt" log_file = open(log_path, "w") print("hidden layers:", NUM_LAYERS) print("activation:", ACTIVATION.__name__) print("hidden units:", NUM_HIDDEN[:NUM_LAYERS]) print("learning rate:", LEARNING_RATE) print("dropout rate:", DROPOUT_RATE) print("batch size:", BATCH_SIZE) print() # BUILDING GRAPH echo("Creating placeholders...") xs = tf.placeholder(tf.float32, [None, MAX_WORD_LEN * ALPHABET_SIZE]) ys = tf.placeholder(tf.float32, [None, NUM_GENDERS]) dropout = tf.placeholder(tf.float32) echo("Creating model...") model = MLPWordModel( xs, ys, dropout, ACTIVATION, NUM_LAYERS, NUM_HIDDEN, tf.train.AdamOptimizer(LEARNING_RATE) ) # PREPARING DATA echo("Preparing data...") # preparing words dataset dataset = read_data_sets() print() echo("Training set:", dataset.train.words.shape[0]) echo("Validation set:", dataset.validation.words.shape[0]) echo("Testing set:", dataset.test.words.shape[0]) print() # EXECUTING THE GRAPH best_epoch = 0 best_val_error = 1.0 saver = tf.train.Saver() config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: echo("Initializing variables...") sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) echo("Training...") print() steps_per_epoch = dataset.train.words.shape[0] // BATCH_SIZE for epoch in range(1, EPOCHS+1): for step in range(steps_per_epoch): batch_xs, batch_ys, seq_len = dataset.train.next_batch(BATCH_SIZE) batch_xs = np.reshape(batch_xs, [-1, MAX_WORD_LEN * ALPHABET_SIZE]) sess.run( model.training, feed_dict={ xs: batch_xs, ys: batch_ys, dropout: DROPOUT_RATE } ) val_loss, val_error = sess.run( [model.loss, model.error], feed_dict={ xs: np.reshape(dataset.validation.words, [-1, MAX_WORD_LEN * ALPHABET_SIZE]), ys: dataset.validation.genders, dropout: 0.0 } ) if val_error < best_val_error: best_epoch = epoch best_val_error = val_error saver.save(sess, model_path) log(log_file, "Epoch {:2d}: error {:3.2f}% loss {:.4f}".format( epoch, 100 * val_error, val_loss )) saver.restore(sess, model_path) test_loss, test_error = sess.run( [model.loss, model.error], feed_dict={ xs: np.reshape(dataset.test.words, [-1, MAX_WORD_LEN * ALPHABET_SIZE]), ys: dataset.test.genders, dropout: 0.0 } ) log(log_file) log(log_file, "Best epoch: {0}".format(best_epoch)) log(log_file) log(log_file, "Test Set: error {:3.2f}% loss {:.4f}".format( 100 * test_error, test_loss )) log_file.close() ```
{ "source": "aakhundov/mnist-challenge", "score": 3 }
#### File: mnist-challenge/code/gp.py ```python import sys import numpy as np import scipy.spatial.distance as sp import data # computing covariance matrix for GP by means of SE kernel: # depending on what Xs and Ys are, this can be K, K*, or K**. # scipy.spatial.distance.pdist and .cdist are used to compute # the matrix of squared Euclidian distances efficiently. # "lsquared" is an argument, sigmaF is assumed to be 1. def compute_se_kernel_matrix(Xs, Ys, lsquared): if Xs is Ys: dist = sp.squareform(sp.pdist(Xs, "sqeuclidean")) else: dist = sp.cdist(Xs, Ys, "sqeuclidean") return np.exp(-dist / (2.0 * lsquared)) # actual Gaussian Process: the target values for unobserved data # X* ("X_s") are inferred based on the observed dataset "X" and the # corresponding labels "T". "lsquared" is used while computing the # SE-kernel function. sigmaF and sigmaN are taken as 1 and 0, as # only mean, and not variance, is of practical importance here. def gaussian_process(X, T, X_s, lsquared): # computing the K matrix for the observed data K = compute_se_kernel_matrix(X, X, lsquared) print "K matrix computed" # computing the K* transposed matrix K_s_T = compute_se_kernel_matrix(X_s, X, lsquared) print "K*^T matrix computed" # inverting the K matrix K_inv = np.linalg.inv(K) print "K matrix inverted" # multiplying the K*^T and K^-1 matrices K_s_T_times_K_inv = np.dot(K_s_T, K_inv) print "K*^T times K^-1 matrix computed" inputs, classes = len(X_s), T.max()+1 predictions = np.zeros((inputs, classes)) # for each class k: for k in range(classes): # transforming target labels into k-class vs. rest # representation: 1.0 for the k-class, -1.0 for rest k_class_vs_rest = np.where(T == k, 1.0, -1.0) # inferring the corresponding k-class (1.0) vs. the rest (-1.0) values # for the unobserved data by multiplying pre-computed [K*^T times K^-1] # matrix by the above "k_class_vs_rest" vector. what is obtained is the # set of the mean values of the k-class vs. rest regression in the # unobserved data points X* ("X_s") result = np.dot(K_s_T_times_K_inv, k_class_vs_rest) # storing the predicted k-class vs. # rest means in the data points X* predictions[:, k] = result print "{0} binary classifications done".format(classes) # inferring actual target labels in accordance with # the highest predicted k-class vs. rest mean labels = np.argmax(predictions, axis=1) print "Class labels detected" print return labels # comparing predicted vs. true labels # and returning the corresponding error score def get_error_score(T_predicted, T_true): count = np.count_nonzero(np.array(T_predicted != T_true)) return count * 100.0 / len(T_predicted) if __name__ == "__main__": # command-line arguments (and their default values) ntrain = 60000 # number of training samples used ntest = 10000 # number of testing samples used deskew = True # deskew input images or not (by default: yes) normalize = True # normalize input vectors or not (by default: yes) lsquared = 33.0 # l^2 used in SE kernel computation # processing command-line arguments while len(sys.argv) > 1: option = sys.argv[1]; del sys.argv[1] if option == "-ntrain": ntrain = int(sys.argv[1]); del sys.argv[1] elif option == "-ntest": ntest = int(sys.argv[1]); del sys.argv[1] elif option == "-deskew": deskew = int(sys.argv[1]); del sys.argv[1] elif option == "-normalize": normalize = int(sys.argv[1]); del sys.argv[1] elif option == "-lsquared": lsquared = float(sys.argv[1]); del sys.argv[1] else: print sys.argv[0], ": invalid option", option sys.exit(1) print "Gaussian Processes" print print "Reading data..." # reading the data and applying configured pre-processing steps X_train, T_train = data.get_training_data(ntrain, normalize=normalize, deskew=deskew) X_test, T_test = data.get_testing_data(ntest, normalize=normalize, deskew=deskew) print "{0} training data read".format(len(X_train)) print "{0} testing data read".format(len(X_test)) print # running a Gaussian process on training and testing sets, with "lsquared" T_predicted = gaussian_process(X_train, T_train, X_test, lsquared=lsquared) # evaluating the model performance on the testing set print "Testing Set Error: {0:.3f}".format( get_error_score(T_predicted, T_test) ) print ``` #### File: mnist-challenge/code/logreg.py ```python import sys import numpy as np import data # softmax function computed for an array of # input vectors (inputs are rows of matrix "X") def softmax(X): exped = np.nan_to_num(np.exp(X)) summed = np.sum(exped, axis=1) return exped / summed[:, np.newaxis] # classifying the data "X"/"T" using the weights "W" # and returning the corresponding error score def get_error_score(X, W, T): linear = np.dot(X, W) classified = np.argmax(linear, axis=1) incorrect = np.sum(classified != T) return incorrect * 100.0 / len(X) # cross-entropy loss function, with L2-regularization def get_loss(X, W, T, regularization): sm = softmax(np.dot(X, W)) logs = np.nan_to_num(np.log(sm[np.arange(len(X)), T])) regs = 0.5 * regularization * np.sum(W * W) return -1.0 / len(X) * np.sum(logs) + regs # gradient of the loss function with respect # to the weights "W", with L2-regularization def get_gradient(X, W, T, regularization): delta = softmax(np.dot(X, W)) delta[np.arange(len(X)), T] -= 1 regs = regularization * W return np.dot(X.T, delta) / len(X) + regs # fitting logistic regression model to "X"/"T" data # by means of mini-batch stochastic gradient descent. # the rest of the argument names seem self-explanatory def train_logreg(X, T, epochs, batch_size, learning_rate, regularization, dataset_split, verbose=False): # splitting the data into training and validation sets # according to the value of "dataset_split" argument training_set_size = int(dataset_split * len(X)) X_training, T_training = X[:training_set_size].copy(), T[:training_set_size].copy() X_validation, T_validation = X[training_set_size:].copy(), T[training_set_size:].copy() inputs, outputs = X.shape[1], T.max()+1 W = np.zeros((inputs, outputs)) weights = [] training_losses, training_errors = [], [] validation_losses, validation_errors = [], [] # storing the initial values of # weights, errors, and losses weights.append(W.copy()) training_losses.append(get_loss(X_training, W, T_training, regularization)) training_errors.append(get_error_score(X_training, W, T_training)) validation_losses.append(get_loss(X_validation, W, T_validation, regularization)) validation_errors.append(get_error_score(X_validation, W, T_validation)) if verbose: print print "Training with {0}".format((batch_size, learning_rate, regularization)) print "Stage\t\tTr. Loss/Error\tVal. Loss/Error" print "------------------------------------------------------" print "Initial\t\t{0:.3f}\t{1:.2f}\t{2:.3f}\t{3:.2f}".format( training_losses[-1], training_errors[-1], validation_losses[-1], validation_errors[-1] ) # for each training epoch: for epoch in range(0, epochs): # randomly shuffling the training set p = np.random.permutation(len(X_training)) X_training, T_training = X_training[p], T_training[p] # for each mini-batch (of "batch_size") computing # the gradient and updating the weights "W" (subtracting # gradient) after scaling the gradient by the "learning_rate" for b in range(0, X_training.shape[0] / batch_size): X_batch = X_training[b * batch_size:(b+1) * batch_size] T_batch = T_training[b * batch_size:(b+1) * batch_size] W -= learning_rate * get_gradient(X_batch, W, T_batch, regularization) # storing the weights, errors, and # losses after each training epoch weights.append(W.copy()) training_losses.append(get_loss(X_training, W, T_training, regularization)) training_errors.append(get_error_score(X_training, W, T_training)) validation_losses.append(get_loss(X_validation, W, T_validation, regularization)) validation_errors.append(get_error_score(X_validation, W, T_validation)) if verbose: print "Epoch #{0}\t{1:.3f}\t{2:.2f}\t{3:.3f}\t{4:.2f}".format( epoch + 1, training_losses[-1], training_errors[-1], validation_losses[-1], validation_errors[-1] ) # selecting the weights resulting from the epoch # with the lowest error score on the validation set best_epoch = np.argmin(validation_errors) best_weights = weights[best_epoch] if verbose: print "------------------------------------------------------" print "Best Epoch: {0}".format(best_epoch) print "Training Loss: {0:.3f}, Training Error: {1:.2f}".format( training_losses[best_epoch], training_errors[best_epoch]) print "Validation Loss: {0:.3f}, Validation Error: {1:.2f}".format( validation_losses[best_epoch], validation_errors[best_epoch]) print return best_weights, best_epoch, training_losses, training_errors, validation_losses, validation_errors if __name__ == "__main__": ntrain = 60000 # number of training samples used ntest = 10000 # number of testing samples used deskew = True # deskew input images or not (by default: yes) normalize = True # normalize input vectors or not (by default: yes) evaluate = False # evaluate on testing data or not (by default: no) verbose = False # output details of each training epoch epochs = 100 # number of training epochs dataset_split = 0.8 # training / validation set split batch_sizes = [50, 100, 200] # different mini-batch sizes tried learning_rates = [0.02, 0.05, 0.1, 0.5, 1.0] # different learning rates tried regularizations = [0.0, 0.0001, 0.0005] # different regularization parameters tried # processing command-line arguments while len(sys.argv) > 1: option = sys.argv[1]; del sys.argv[1] if option == "-ntrain": ntrain = int(sys.argv[1]); del sys.argv[1] elif option == "-ntest": ntest = int(sys.argv[1]); del sys.argv[1] elif option == "-deskew": deskew = int(sys.argv[1]); del sys.argv[1] elif option == "-normalize": normalize = int(sys.argv[1]); del sys.argv[1] elif option == "-evaluate": evaluate = int(sys.argv[1]); del sys.argv[1] elif option == "-verbose": verbose = int(sys.argv[1]); del sys.argv[1] elif option == "-epochs": epochs = int(sys.argv[1]); del sys.argv[1] elif option == "-dataset_split": dataset_split = float(sys.argv[1]); del sys.argv[1] elif option == "-batch_sizes": batch_sizes = [int(b) for b in sys.argv[1].split(",")]; del sys.argv[1] elif option == "-learning_rates": learning_rates = [float(l) for l in sys.argv[1].split(",")]; del sys.argv[1] elif option == "-regularizations": regularizations = [float(r) for r in sys.argv[1].split(",")]; del sys.argv[1] else: print sys.argv[0], ": invalid option", option sys.exit(1) np.seterr(over="ignore", divide="ignore") print "Logistic Regression" print print "Reading data..." # reading the data, applying configured pre-processing, and adding 1.0 to each vector as a bias input X_train, T_train = data.get_training_data(ntrain, normalize=normalize, deskew=deskew, add_ones=True) X_test, T_test = data.get_testing_data(ntest, normalize=normalize, deskew=deskew, add_ones=True) print "{0} training data read".format(len(X_train)) print "{0} testing data read".format(len(X_test)) print weights, errors, params = [], [], [] print "{0:25}\tV. Loss\t\tV. Error".format("(Batch, Learn, Reg)") print "-----------------------------------------------------------" for batch_size in batch_sizes: for learning_rate in learning_rates: for regularization in regularizations: # fixing the seed of randomization for the sake of # reproducibility of the randomized training process np.random.seed(1) # training a model for each combination of hyperparameters W_best, E_best, T_loss, T_err, V_loss, V_err = train_logreg( X_train, T_train, epochs, batch_size, learning_rate, regularization, dataset_split, verbose=verbose ) # storing the weights and the corresponding validation # error resulting from the above training, together with # the values of the hyperparameters tried weights.append(W_best) errors.append(V_err[E_best]) params.append(( batch_size, learning_rate, regularization )) print "{0:25}\t{1:.3f}\t\t{2:.3f}".format( params[-1], V_loss[E_best], V_err[E_best] ) # selecting the set of hyperparameters, # which caused the lowest validation error, # with the respective resulting weights P_selected = params[np.argmin(errors)] W_selected = weights[np.argmin(errors)] print "-----------------------------------------------------------" print "Best Params: {0}, validation error: {1:.3f}".format(P_selected, np.min(errors)) print if evaluate: # evaluating the model performance on the testing set print "Testing Set Error: {0:.3f}".format( get_error_score(X_test, W_selected, T_test) ) print ```
{ "source": "aakhundov/sequence-labeling", "score": 3 }
#### File: sequence-labeling/convert/convert_kaggle.py ```python import os import csv import argparse import common def convert(): parser = argparse.ArgumentParser() parser.add_argument("-s", "--source-folder", type=str, default="../data/sources/kaggle") parser.add_argument("-t", "--target-folder", type=str, default="../data/ready/nerc/kaggle") parser.add_argument("-i", "--iobes", type=bool, default=True) args = parser.parse_args() print("Source folder: {}".format(args.source_folder)) print("Target folder: {}".format(args.target_folder)) print("Convert to IOBES: {}".format(args.iobes)) print() sentence_pairs = [] file_path = os.path.join(args.source_folder, "ner_dataset.csv") with open(file_path, encoding="iso-8859-1") as f: file_lines = [l[:-1] for l in f.readlines()] print("processing data from {}".format(file_path)) running_pairs = [] for tokens in csv.reader(file_lines[1:]): if tokens[0].startswith("Sentence:") and len(running_pairs) > 0: sentence_pairs.append( common.convert_to_iobes_tags(running_pairs) if args.iobes else running_pairs ) running_pairs = [] running_pairs.append(tokens[1::2]) if len(running_pairs) > 0: sentence_pairs.append(running_pairs) if not os.path.exists(args.target_folder): os.makedirs(args.target_folder) label_count_pairs = common.get_label_count_pairs(sentence_pairs) common.report_statistics(sentence_pairs, label_count_pairs) for target, dataset in zip( ["train", "val", "test"], common.shuffle_and_split( sentence_pairs, split_points=(0.8, 0.9) ) ): sentences_written, tokens_written = 0, 0 out_path = os.path.join(args.target_folder, target + ".txt") with open(out_path, "w+", encoding="utf-8") as out: for sentence in dataset: out.write("{}\t{}\n".format( " ".join([p[0] for p in sentence]), " ".join([p[1] for p in sentence]), )) tokens_written += len(sentence) sentences_written = len(dataset) print("{:,} sentences ({:,} tokens) written to {}".format( sentences_written, tokens_written, out_path )) label_path = os.path.join(args.target_folder, "labels.txt") with open(label_path, "w+", encoding="utf-8") as out: for lb in label_count_pairs: out.write("{}\n".format(lb[0])) print("{} labels written to {}".format( len(label_count_pairs), label_path )) if __name__ == "__main__": convert() ``` #### File: aakhundov/sequence-labeling/evaluate.py ```python import os import argparse import numpy as np import tensorflow as tf from model.input import input_fn from model.model import model_fn from util.embeddings import load_embeddings from util.metrics import compute_metrics, get_class_f1_summary from util.metrics import get_performance_summary, visualize_predictions from util.misc import fetch_in_batches, read_params_from_log def evaluate(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument( "-r", metavar="results-folder", type=str, required=True, help="the path to the folder with the training results") parser.add_argument( "-f", metavar="data-file", type=str, default="val.txt", help="the file (within the original data folder) " "with the data to evaluate the model on") parser.add_argument( "-b", metavar="batch-size", type=int, default=2000, help="the batch size used for the evaluation") parser.add_argument( "-v", metavar="num-to-show", type=int, default=0, help="the number of predicted sentence samples to visualize") args = parser.parse_args() assert os.path.exists(args.results_folder) print("Results folder: {}".format(args.results_folder)) print("Data file: {}".format(args.data_file)) print("Batch size: {}".format(args.batch_size)) print("Samples to show: {}".format(args.num_to_show)) print() params = read_params_from_log(os.path.join(args.results_folder, "log.txt")) data_folder = params["data folder"] embeddings_name, embeddings_id = params["embeddings"].split(", ") byte_lstm_units = int(params["byte lstm units"]) if "byte lstm units" in params else 64 word_lstm_units = int(params["word lstm units"]) if "word lstm units" in params else 128 byte_projection_dim = int(params["byte projection dim"]) if "byte projection dim" in params else 50 byte_lstm_layers = int(params["byte lstm layers"]) if "byte lstm layers" in params else 1 word_lstm_layers = int(params["word lstm layers"]) if "word lstm layers" in params else 1 use_byte_embeddings = int(params["use byte embeddings"]) if "use byte embeddings" in params else 1 use_word_embeddings = int(params["use word embeddings"]) if "use word embeddings" in params else 1 use_crf_layer = int(params["use crf layer"]) if "use crf layer" in params else 1 label_file = os.path.join(data_folder, "labels.txt") data_file = os.path.join(data_folder, args.data_file) data_count = sum(1 for _ in open(data_file, encoding="utf-8")) print("Loading embeddings data...") emb_words, emb_vectors, uncased_embeddings = load_embeddings(embeddings_name, embeddings_id) label_names = [line[:-1] for line in open(label_file, encoding="utf-8").readlines()] print("Setting up input pipeline...") with tf.device("/cpu:0"): next_input_values = input_fn( tf.data.TextLineDataset(data_file), batch_size=args.batch_size, lower_case_words=uncased_embeddings, shuffle=False, cache=False, repeat=False ).make_one_shot_iterator().get_next() print("Building the model...") emb_words_placeholder = tf.placeholder(tf.string, [len(emb_words)]) emb_vectors_placeholder = tf.placeholder(tf.float32, emb_vectors.shape) _, loss, _, predictions, labels, sentence_length, sentences, _, _ = model_fn( input_values=next_input_values, label_vocab=label_names, embedding_words=emb_words_placeholder, embedding_vectors=emb_vectors_placeholder, byte_lstm_units=byte_lstm_units, word_lstm_units=word_lstm_units, byte_lstm_layers=byte_lstm_layers, word_lstm_layers=word_lstm_layers, byte_projection_dim=byte_projection_dim, use_byte_embeddings=bool(use_byte_embeddings), use_word_embeddings=bool(use_word_embeddings), use_crf_layer=bool(use_crf_layer) ) config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: print("Initializing variables...") sess.run(tf.tables_initializer(), feed_dict={emb_words_placeholder: emb_words}) sess.run(tf.global_variables_initializer(), feed_dict={emb_vectors_placeholder: emb_vectors}) del emb_words, emb_vectors tf.train.Saver([ v for v in tf.global_variables() if "known_word_embeddings" not in v.name ]).restore(sess, os.path.join( args.results_folder, "model", "nlp-model" )) print("Evaluating...") print() e_loss, e_predictions, e_labels, e_sentence_len, e_sentences = fetch_in_batches( sess, [loss, predictions, labels, sentence_length, sentences], total=data_count, progress_callback=lambda fetched: print("{} / {} done".format(fetched, data_count)) ) e_metrics = compute_metrics(e_labels, e_predictions, e_sentence_len, label_names) e_message, e_key_metric = get_performance_summary(e_metrics, len(label_names)) e_class_summary = get_class_f1_summary(e_metrics, label_names) np.set_printoptions(threshold=np.nan, linewidth=1000) print() print("Loss: {:.3f}".format(e_loss)) print("Key metric: {:.2f}".format(e_key_metric)) print() print("Performance summary:\n") print(e_message) print() print("Confusion matrix:\n") print(e_metrics["confusion"]) print() if e_class_summary != "": print("Per-class summary:\n") print(e_class_summary) if args.num_to_show > 0: print("Predicted sentence samples:\n") print(visualize_predictions( e_sentences, e_labels, e_predictions, e_sentence_len, label_names, args.num_to_show )) if __name__ == "__main__": evaluate() ``` #### File: sequence-labeling/model/input.py ```python import tensorflow as tf def input_fn(input_lines, batch_size=None, lower_case_words=False, shuffle=False, cache=True, repeat=True, num_threads=4): """Convert 1D string tf.data.Dataset input_lines into an input pipeline.""" def split_string(s, delimiter, skip_empty=True): """Split a single string tensor s into multiple string tokens by delimiter.""" return tf.string_split([s], delimiter, skip_empty=skip_empty).values def decode_word(word, max_len): """Convert string tensor word into a list of encoding bytes zero-padded up to max_len.""" w_bytes = tf.concat(([1], tf.decode_raw(word, tf.uint8), [2]), axis=0) padded = tf.pad(w_bytes, [[0, max_len - tf.shape(w_bytes)[0]]]) return padded def get_word_lengths(words, padding=2): """Compute a length of each word in a 1D string tensor.""" return tf.map_fn( lambda x: tf.size(tf.string_split([x], "")) + padding, words, dtype=tf.int32 ) def get_word_bytes(words, max_len): """Retrieve UTF-8 bytes of each word in a 1D string tensor.""" return tf.map_fn( lambda x: decode_word(x, max_len), words, dtype=tf.uint8 ) def words_to_lower(words): """Convert all strings in a 1D tensor to lower-case (same shape tensor is returned).""" def to_lower(byte_string): return str(byte_string, encoding="utf-8").lower() return tf.reshape(tf.map_fn( lambda x: tf.py_func( to_lower, [x], tf.string, stateful=False ), words ), [-1]) # splitting input lines into sentence and label parts (by "\t") # extra "\t" is added to create labels placeholder if line contains no labels data = input_lines.map(lambda l: split_string(l + "\t", "\t", False), num_threads) # splitting sentence and label parts into respective tokens (by " ") data = data.map(lambda sp: (sp[0], split_string(sp[0], " "), split_string(sp[1], " ")), num_threads) # adding sentence lengths; result: (full sentences, sentence tokens, sentence length, label tokens) data = data.map(lambda sl, st, lt: (sl, st, tf.shape(st)[0], lt), num_threads) if shuffle: if cache: # if caching is required, it is # done before shuffling to maintain # different batches in every epoch data = data.cache() # shuffling the entire dataset data = data.shuffle(1000000000) # generating padded batch_size-batches of everything so far # or a single batch of the entire dataset if batch_size=None data = data.padded_batch( batch_size if batch_size is not None else 1000000000, ([], [-1], [], [-1]), ("", "", 0, "") ) # adding a tuple of unique words in a batch and their respective indices data = data.map(lambda *d: (d, tf.unique(tf.reshape(d[1], [-1]))), num_threads) # reshaping unique words' index (resulting from tf.unique) to 2D sentence tokens' shape data = data.map(lambda d, u: (d, (u[0], tf.reshape(u[1], tf.shape(d[1])))), num_threads) # adding length of each unique word in a batch data = data.map(lambda d, u: (d, u, get_word_lengths(u[0])), num_threads) # (temporarily) adding the maximum length among unique words data = data.map(lambda d, u, uwl: (d, u, uwl, tf.reduce_max(uwl)), num_threads) # replacing the maximum length by the 2D tf.uint8 tensor of encoding bytes of unique words data = data.map(lambda d, u, uwl, mwl: (d, (u, uwl, get_word_bytes(u[0], mwl))), num_threads) if lower_case_words: # if required, all unique words are converted to lower case (using Python function) data = data.map(lambda d, w: (d, ((words_to_lower(w[0][0]), w[0][1]), w[1], w[2]))) if not shuffle and cache: # if shuffling is not required, caching the # final dataset at once (before repeating) data = data.cache() if repeat: # if repeating is required, # doing so infinitely data = data.repeat() return data.prefetch(1) ``` #### File: aakhundov/sequence-labeling/train.py ```python import os import time import shutil import argparse import numpy as np import tensorflow as tf from model.input import input_fn from model.model import model_fn from util.embeddings import load_embeddings from util.metrics import compute_metrics, get_class_f1_summary from util.metrics import get_performance_summary, visualize_predictions from util.misc import fetch_in_batches def echo(log, *messages): print(*messages) joined = " ".join([str(m) for m in messages]) log.write(joined + "\n") log.flush() def create_training_artifacts(data_folder): if not os.path.exists("results"): os.mkdir("results") results_folder = "results/" + data_folder.replace("/", "_") + time.strftime("%Y%m%d_%H%M%S") results_folder = results_folder.replace("data_ready_", "").replace("data_", "") model_folder = os.path.join(results_folder, "model/") source_folder = os.path.join(results_folder, "source/") os.mkdir(results_folder) os.mkdir(model_folder) os.mkdir(source_folder) for folder in ["./", "model/", "util/"]: destination = source_folder if folder != "./": destination += folder os.makedirs(destination) for source_file in [f for f in os.listdir(folder) if f.endswith(".py")]: shutil.copy(folder + source_file, destination + source_file) log_file = open(os.path.join(results_folder, "log.txt"), "w+", encoding="utf-8") model_path = os.path.join(model_folder, "nlp-model") return model_path, log_file def train(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument( "-d", metavar="data-folder", type=str, required=True, help="the path to the folder with prepared " "train/val/test data and the labels") parser.add_argument( "-em", metavar="embeddings-name", type=str, default="glove", help="the word embeddings to use ('glove', 'polyglot', or 'senna')") parser.add_argument( "-emid", metavar="embeddings-id", type=str, default="6B.100d", help="the version of the word embeddings (e.g. 'en' for 'polyglot')") parser.add_argument( "-ep", metavar="epochs", type=int, default=100, help="the number of epochs to train") parser.add_argument( "-b", metavar="batch-size", type=int, default=8, help="the batch size (number of sentences per batch) for training") parser.add_argument( "-eb", metavar="eval-batch-size", type=int, default=2000, help="the batch size (number of sentences per batch) for validation") parser.add_argument( "-lr", metavar="initial-learning-rate", type=float, default=0.001, help="the initial value of the learning rate (during the first epoch)") parser.add_argument( "-lrd", metavar="lr-decay-rate", type=float, default=0.05, help="the learning rate decay factor: LR_t = " "LR_init / (1 + LR_decay_factor * (t - 1))") parser.add_argument( "-blu", metavar="byte-lstm-units", type=int, default=64, help="the hidden state size (cell size) for the Byte Bi-LSTM") parser.add_argument( "-wlu", metavar="word-lstm-units", type=int, default=128, help="the hidden state size (cell size) for the Word Bi-LSTM") parser.add_argument( "-bpd", metavar="byte-projection-dim", type=int, default=50, help="the dimensionality of the byte projections") parser.add_argument( "-bll", metavar="byte-lstm-layers", type=int, default=1, help="the number of layers in the Byte Bi-LSTM") parser.add_argument( "-wll", metavar="word-lstm-layers", type=int, default=1, help="the number of layers in the Word Bi-LSTM") parser.add_argument( "-be", metavar="use-byte-embeddings", type=int, default=1, help="use byte embeddings (1) or not (0)") parser.add_argument( "-we", metavar="use-word-embeddings", type=int, default=1, help="use word embeddings (1) or not (0)") parser.add_argument( "-crf", metavar="use-crf-layer", type=int, default=1, help="use CRF layer (1) or not (0)") args = parser.parse_args() assert os.path.exists(args.data_folder) if not args.data_folder.endswith("/"): args.data_folder += "/" print("Loading embeddings data...") emb_words, emb_vectors, uncased_embeddings = load_embeddings(args.embeddings_name, args.embeddings_id) label_names = [line[:-1] for line in open(args.data_folder + "labels.txt", encoding="utf-8").readlines()] print("Setting up input pipeline...") with tf.device("/cpu:0"): train_data = input_fn( tf.data.TextLineDataset(args.data_folder + "train.txt"), batch_size=args.batch_size, lower_case_words=uncased_embeddings, shuffle=True, cache=True, repeat=True ) train_eval_data = input_fn( tf.data.TextLineDataset(args.data_folder + "train.txt"), batch_size=args.eval_batch_size, lower_case_words=uncased_embeddings, shuffle=False, cache=True, repeat=True ) val_data = input_fn( tf.data.TextLineDataset(args.data_folder + "val.txt"), batch_size=args.eval_batch_size, lower_case_words=uncased_embeddings, shuffle=False, cache=True, repeat=True ) train_data_count = sum(1 for _ in open(args.data_folder + "train.txt", encoding="utf-8")) val_data_count = sum(1 for _ in open(args.data_folder + "val.txt", encoding="utf-8")) data_handle = tf.placeholder(tf.string, shape=()) next_input_values = tf.data.Iterator.from_string_handle( data_handle, train_data.output_types, train_data.output_shapes ).get_next() print("Building the model...") emb_words_placeholder = tf.placeholder(tf.string, [len(emb_words)]) emb_vectors_placeholder = tf.placeholder(tf.float32, emb_vectors.shape) train_op, loss, accuracy, predictions, labels, \ sentence_length, sentences, dropout_rate, completed_epochs = model_fn( input_values=next_input_values, label_vocab=label_names, embedding_words=emb_words_placeholder, embedding_vectors=emb_vectors_placeholder, byte_lstm_units=args.byte_lstm_units, word_lstm_units=args.word_lstm_units, byte_lstm_layers=args.byte_lstm_layers, word_lstm_layers=args.word_lstm_layers, byte_projection_dim=args.byte_projection_dim, training=True, initial_learning_rate=args.initial_learning_rate, lr_decay_rate=args.lr_decay_rate, use_byte_embeddings=bool(args.use_byte_embeddings), use_word_embeddings=bool(args.use_word_embeddings), use_crf_layer=bool(args.use_crf_layer) ) config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: print("Initializing variables...") sess.run(tf.tables_initializer(), feed_dict={emb_words_placeholder: emb_words}) sess.run(tf.global_variables_initializer(), feed_dict={emb_vectors_placeholder: emb_vectors}) del emb_words, emb_vectors train_handle = sess.run(train_data.make_one_shot_iterator().string_handle()) train_eval_handle = sess.run(train_eval_data.make_one_shot_iterator().string_handle()) val_handle = sess.run(val_data.make_one_shot_iterator().string_handle()) best_metric, best_epoch = -1, 0 saver = tf.train.Saver([ v for v in tf.global_variables() if "known_word_embeddings" not in v.name ]) print("Creating training artifacts...") model_path, log = create_training_artifacts(args.data_folder) print("Training...") print() echo(log, "data folder: {}".format(args.data_folder)) echo(log, "embeddings: {}, {}".format(args.embeddings_name, args.embeddings_id)) echo(log, "epochs: {}".format(args.epochs)) echo(log, "batch size: {}".format(args.batch_size)) echo(log, "initial learning rate: {}".format(args.initial_learning_rate)) echo(log, "l.r. decay rate: {}".format(args.lr_decay_rate)) echo(log, "byte lstm units: {}".format(args.byte_lstm_units)) echo(log, "word lstm units: {}".format(args.word_lstm_units)) echo(log, "byte projection dim: {}".format(args.byte_projection_dim)) echo(log, "byte lstm layers: {}".format(args.byte_lstm_layers)) echo(log, "word lstm layers: {}".format(args.word_lstm_layers)) echo(log, "use byte embeddings: {}".format(args.use_byte_embeddings)) echo(log, "use word embeddings: {}".format(args.use_word_embeddings)) echo(log, "use crf layer: {}".format(args.use_crf_layer)) echo(log) for epoch in range(args.epochs): for step in range(-(-train_data_count // args.batch_size)): try: sess.run(train_op, feed_dict={ data_handle: train_handle, completed_epochs: epoch, dropout_rate: 0.5 }) except Exception as ex: print(ex) for set_name, set_handle, set_size in [ ["train", train_eval_handle, train_data_count], ["val", val_handle, val_data_count] ]: eval_loss, eval_labels, eval_predictions, eval_sentence_len = fetch_in_batches( sess, [loss, labels, predictions, sentence_length], set_size, feed_dict={data_handle: set_handle, dropout_rate: 0.0} ) eval_metrics = compute_metrics(eval_labels, eval_predictions, eval_sentence_len, label_names) eval_message, eval_key_metric = get_performance_summary(eval_metrics, len(label_names)) echo(log, "{:<22} {}".format( "{0}.{1:<8} L {2:.3f}".format( epoch + 1, set_name, eval_loss ), eval_message )) echo(log) if eval_key_metric > best_metric: best_epoch = epoch + 1 best_metric = eval_key_metric saver.save(sess, model_path) saver.restore(sess, model_path) best_labels, best_predictions, best_sentence_len, best_sentences = fetch_in_batches( sess, [labels, predictions, sentence_length, sentences], val_data_count, feed_dict={data_handle: val_handle, dropout_rate: 0.0} ) best_metrics = compute_metrics(best_labels, best_predictions, best_sentence_len, label_names) best_message, best_key_metric = get_performance_summary(best_metrics, len(label_names)) best_class_summary = get_class_f1_summary(best_metrics, label_names) np.set_printoptions(threshold=np.nan, linewidth=1000) echo(log) echo(log, "Best epoch: {}".format(best_epoch)) echo(log, "Best metric: {:.2f}".format(best_key_metric)) echo(log) echo(log, "Confusion matrix:\n") echo(log, best_metrics["confusion"]) echo(log) if best_class_summary != "": echo(log, "Per-class summary:\n") echo(log, best_class_summary) echo(log, "Predicted sentence samples:\n") echo(log, visualize_predictions( best_sentences, best_labels, best_predictions, best_sentence_len, label_names, 100 )) if __name__ == "__main__": train() ```
{ "source": "aakhundov/tf-attend-infer-repeat", "score": 2 }
#### File: tf-attend-infer-repeat/air/vae.py ```python import tensorflow as tf import tensorflow.contrib.layers as layers def vae(inputs, input_dim, rec_hidden_units, latent_dim, gen_hidden_units, likelihood_std=0.0, activation=tf.nn.softplus): input_size = tf.shape(inputs)[0] next_layer = inputs for i in range(len(rec_hidden_units)): with tf.variable_scope("recognition_" + str(i+1)) as scope: next_layer = layers.fully_connected( next_layer, rec_hidden_units[i], activation_fn=activation, scope=scope ) with tf.variable_scope("rec_mean") as scope: recognition_mean = layers.fully_connected(next_layer, latent_dim, activation_fn=None, scope=scope) with tf.variable_scope("rec_log_variance") as scope: recognition_log_variance = layers.fully_connected(next_layer, latent_dim, activation_fn=None, scope=scope) with tf.variable_scope("rec_sample"): standard_normal_sample = tf.random_normal([input_size, latent_dim]) recognition_sample = recognition_mean + standard_normal_sample * tf.sqrt(tf.exp(recognition_log_variance)) next_layer = recognition_sample for i in range(len(gen_hidden_units)): with tf.variable_scope("generative_" + str(i+1)) as scope: next_layer = layers.fully_connected( next_layer, gen_hidden_units[i], activation_fn=activation, scope=scope ) with tf.variable_scope("gen_mean") as scope: generative_mean = layers.fully_connected(next_layer, input_dim, activation_fn=None, scope=scope) with tf.variable_scope("gen_sample"): standard_normal_sample2 = tf.random_normal([input_size, input_dim]) generative_sample = generative_mean + standard_normal_sample2 * likelihood_std reconstruction = tf.nn.sigmoid( generative_sample ) return reconstruction, recognition_mean, recognition_log_variance, recognition_mean ``` #### File: tf-attend-infer-repeat/demo/demo_window.py ```python import tkinter as tk import tkinter.ttk as ttk from .pixel_canvas import PixelCanvas class DemoWindow(ttk.Frame): def __init__(self, master, model_wrapper, canvas_size=50, window_size=28, refresh_period=50, test_image=None, **kw): ttk.Frame.__init__(self, master=master, **kw) self.master = master self.model_wrapper = model_wrapper self.canvas_size = canvas_size self.window_size = window_size self.refresh_period = refresh_period self._create_interface() if test_image is not None: self.cnv_orig.set_image(test_image) self.columnconfigure(0, weight=410, minsize=215) self.columnconfigure(1, weight=410, minsize=210) self.columnconfigure(2, weight=140, minsize=65) self.rowconfigure(0, weight=0, minsize=50) self.rowconfigure(1, weight=1, minsize=220) self.rowconfigure(2, weight=0, minsize=0) self.master.after(50, lambda: master.focus_force()) self.master.after(100, self._reconstruct_image) def _create_interface(self): self.frm_controls = ttk.Frame(self, padding=(10, 15, 10, 10)) self.frm_controls.grid(row=0, column=0, columnspan=3, sticky=(tk.N, tk.S, tk.W, tk.E)) self.lbl_draw_mode = ttk.Label(self.frm_controls, text="Drawing Mode:") self.lbl_line_width = ttk.Label(self.frm_controls, text="Line Width:") self.lbl_refresh_rate = ttk.Label(self.frm_controls, text="Refresh (ms):") self.var_draw_mode = tk.IntVar(value=1) self.rad_draw = ttk.Radiobutton(self.frm_controls, text="Draw", variable=self.var_draw_mode, value=1) self.rad_erase = ttk.Radiobutton(self.frm_controls, text="Erase", variable=self.var_draw_mode, value=0) self.btn_clear = ttk.Button( self.frm_controls, text="Clear Image", command=lambda: self.cnv_orig.clear_image() ) self.var_width = tk.StringVar(self.frm_controls) self.spn_width = tk.Spinbox( self.frm_controls, values=(1, 2, 3, 4, 5), width=10, state="readonly", textvariable=self.var_width ) self.var_rate = tk.StringVar(self.frm_controls) self.spn_rate = tk.Spinbox( self.frm_controls, values=(10, 20, 50, 100, 200, 500, 1000), width=10, state="readonly", textvariable=self.var_rate ) self.var_bbox = tk.IntVar(value=1) self.cbx_bbox = ttk.Checkbutton(self.frm_controls, text="Bounding Boxes", variable=self.var_bbox) self.lbl_draw_mode.grid(row=0, column=0, columnspan=2, sticky=(tk.N, tk.W)) self.lbl_line_width.grid(row=0, column=3, sticky=(tk.N, tk.W)) self.lbl_refresh_rate.grid(row=0, column=4, sticky=(tk.N, tk.W)) self.rad_draw.grid(row=1, column=0, sticky=(tk.N, tk.S, tk.W, tk.E)) self.rad_erase.grid(row=1, column=1, sticky=(tk.N, tk.S, tk.W, tk.E), padx=(0, 20)) self.btn_clear.grid(row=1, column=2, sticky=(tk.N, tk.S, tk.W, tk.E), padx=(0, 20)) self.spn_width.grid(row=1, column=3, sticky=(tk.N, tk.S, tk.W, tk.E), padx=(0, 20)) self.spn_rate.grid(row=1, column=4, sticky=(tk.N, tk.S, tk.W, tk.E), padx=(0, 20)) self.cbx_bbox.grid(row=1, column=5, sticky=(tk.N, tk.S, tk.W, tk.E)) self.var_draw_mode.trace("w", lambda *_: self._set_draw_mode(self.var_draw_mode.get() == 1)) self.var_width.trace("w", lambda *_: self.cnv_orig.set_line_width(int(self.var_width.get()))) self.var_rate.trace("w", lambda *_: self._set_refresh_period(int(self.var_rate.get()))) self.var_bbox.trace("w", lambda *_: self._set_bbox_visibility(self.var_bbox.get() == 1)) self.frm_canvas_orig = ttk.Frame(self, padding=(10, 10, 5, 10)) self.frm_canvas_orig.grid(row=1, column=0, sticky=(tk.N, tk.S, tk.W, tk.E)) self.frm_canvas_orig.columnconfigure(0, weight=1, minsize=200) self.frm_canvas_orig.rowconfigure(0, weight=0, minsize=20) self.frm_canvas_orig.rowconfigure(1, weight=1, minsize=200) self.lbl_orig = ttk.Label(self.frm_canvas_orig, text="Original Image (draw here):") self.cnv_orig = PixelCanvas( self.frm_canvas_orig, self.canvas_size, self.canvas_size, drawable=True, highlightthickness=0, borderwidth=0, width=400, height=400 ) self.lbl_orig.grid(row=0, column=0, sticky=(tk.N, tk.S, tk.W, tk.E)) self.cnv_orig.grid(row=1, column=0, sticky=(tk.N, tk.S, tk.W, tk.E)) self.frm_canvas_rec = ttk.Frame(self, padding=(5, 10, 5, 10)) self.frm_canvas_rec.grid(row=1, column=1, sticky=(tk.N, tk.S, tk.W, tk.E)) self.frm_canvas_rec.columnconfigure(0, weight=1, minsize=200) self.frm_canvas_rec.rowconfigure(0, weight=0, minsize=20) self.frm_canvas_rec.rowconfigure(1, weight=1, minsize=200) self.lbl_rec = ttk.Label(self.frm_canvas_rec, text="Reconstructed Image:") self.cnv_rec = PixelCanvas( self.frm_canvas_rec, self.canvas_size, self.canvas_size, drawable=False, highlightthickness=0, borderwidth=0, width=400, height=400 ) self.lbl_rec.grid(row=0, column=0, sticky=(tk.N, tk.S, tk.W, tk.E)) self.cnv_rec.grid(row=1, column=0, sticky=(tk.N, tk.S, tk.W, tk.E)) self.frm_windows = ttk.Frame(self, padding=(0, 0, 0, 0)) self.frm_windows.grid(row=1, column=2, sticky=(tk.N, tk.S, tk.W, tk.E)) self.frm_windows.columnconfigure(0, weight=1) self.frm_canvas_win, self.lbl_win, self.cnv_win = [], [], [] for i in range(3): self.frm_windows.rowconfigure(i, weight=1) frm_canvas_win = ttk.Frame( self.frm_windows, padding=(5, 10 if i == 0 else 0, 10, 10 if i == 2 else 0) ) frm_canvas_win.grid(row=i, column=0, sticky=(tk.N, tk.S, tk.W, tk.E)) frm_canvas_win.columnconfigure(0, weight=1, minsize=50) frm_canvas_win.rowconfigure(0, weight=0, minsize=20) frm_canvas_win.rowconfigure(1, weight=1, minsize=50) lbl_win = ttk.Label( frm_canvas_win, text="VAE Rec. #{0}:".format(i+1) ) cnv_win = PixelCanvas( frm_canvas_win, self.window_size, self.window_size, drawable=False, highlightthickness=0, borderwidth=0, width=120, height=120 ) lbl_win.grid(row=0, column=0, sticky=(tk.S, tk.W)) cnv_win.grid(row=1, column=0, sticky=(tk.N, tk.S, tk.W, tk.E)) self.frm_canvas_win.append(frm_canvas_win) self.lbl_win.append(lbl_win) self.cnv_win.append(cnv_win) self.lbl_status = ttk.Label(self, borderwidth=1, relief="sunken", padding=(5, 2)) self.lbl_status.grid(row=2, column=0, columnspan=3, sticky=(tk.N, tk.S, tk.W, tk.E)) self.cnv_orig.bind("<Button-2>", lambda *_: self.cnv_orig.clear_image()) self.cnv_orig.bind("<Button-3>", lambda *_: self.cnv_orig.clear_image()) self.var_draw_mode.set(1) self.var_width.set("3") self.var_rate.set("50") self.var_bbox.set(1) def _reconstruct_image(self): dig, pos, rec, win, lat, loss = self.model_wrapper.infer( [self.cnv_orig.get_image()] ) self.cnv_rec.set_image(rec[0]) self.cnv_rec.set_bbox_positions(pos[0]) self.cnv_orig.set_bbox_positions(pos[0]) for i in range(len(self.cnv_win)): if i < len(win[0]): self.cnv_win[i].set_image(win[0][i]) self.cnv_win[i].set_bbox_positions( [[0.0, -2.0, -2.0]] * i + [[0.99, 0.0, 0.0]] ) else: self.cnv_win[i].clear_image() self.cnv_win[i].set_bbox_positions([]) self.lbl_status.configure( text="Reconstruction loss (negative log-likelihood): {0:.3f}".format( abs(loss[0]) ) ) self.master.after(self.refresh_period, self._reconstruct_image) def _set_refresh_period(self, value): self.refresh_period = value def _set_bbox_visibility(self, visible): self.cnv_orig.set_bbox_visibility(visible) self.cnv_rec.set_bbox_visibility(visible) def _set_draw_mode(self, draw): self.cnv_orig.set_erasing_mode(not draw) self.cnv_orig.config(cursor=("cross" if draw else "icon")) ``` #### File: tf-attend-infer-repeat/demo/model_wrapper.py ```python import numpy as np class ModelWrapper: def __init__(self, model, session, data_placeholder, canvas_size=50, window_size=28): self.model = model self.session = session self.data_placeholder = data_placeholder self.canvas_size = canvas_size self.window_size = window_size def infer(self, images): all_digits, all_positions = [], [] all_windows, all_latents = [], [] all_reconstructions, all_loss = [], [] rec_digits, rec_scales, rec_shifts, reconstructions, \ rec_windows, rec_latents, rec_loss = self.session.run( [ self.model.rec_num_digits, self.model.rec_scales, self.model.rec_shifts, self.model.reconstruction, self.model.rec_windows, self.model.rec_latents, self.model.reconstruction_loss ], feed_dict={ self.data_placeholder: [np.ravel(img) for img in images] } ) for i in range(len(rec_digits)): digits = int(rec_digits[i]) reconstruction = np.reshape( reconstructions[i], (self.canvas_size, self.canvas_size) ) positions = [] windows, latents = [], [] for j in range(digits): positions.append(np.array([rec_scales[i][j][0]] + list(rec_shifts[i][j]))) windows.append(np.reshape(rec_windows[i][j], (self.window_size, self.window_size))) latents.append(rec_latents[i][j]) all_digits.append(digits) all_positions.append(np.array(positions)) all_reconstructions.append(reconstruction) all_windows.append(np.array(windows)) all_latents.append(np.array(latents)) all_loss.append(rec_loss[i]) return all_digits, all_positions, all_reconstructions, all_windows, all_latents, all_loss ```
{ "source": "aakinlalu/textlabelling", "score": 3 }
#### File: src/textlabelling/csvmodel.py ```python class CSVModel: def __init__(self, output_dir:str): self.output_dir=output_dir def load_model(self): print("Loading from", self.output_dir) nlp = spacy.load(self.output_dir) return nlp def write_result_csv(self, DATA:list, filename:str)->str: nlp = self.load_model() with open(filename, 'w') as f: writer = csv.writer(f) writer.writerow(['text','intents','classes']) for text in DATA: intents = [] labels = [] doc = nlp(text) for ent in doc.ents: intents.append(ent.text) labels.append(ent.label_) writer.writerow([text,intents,labels]) print(f'{filename} has been created') #print([(text, ent.text, ent.label_)for ent in doc.ents]) #print("Tokens", [(t.text, t.ent_type_, t.ent_iob) for t in doc]) def write_df_csv(self, df:pd.DataFrame, filename:str)->str: nlp = self.load_model() with open(filename, 'w') as f: writer = csv.writer(f) writer.writerow(['created_date','nps_vervatism','nps_score','intents','classes']) for index, row in df.iterrows(): intents = [] labels = [] if type(row[1])==str: if len(row[1])>1: doc = nlp(row[1]) for ent in doc.ents: intents.append(ent.text) labels.append(ent.label_) writer.writerow([row[0],row[1],row[2],intents,labels]) def print_result_console(self, df:pd.DataFrame)->str: nlp = self.load_model() for index, row in df.iterrows(): intents = [] labels = [] if type(row[2])==str: if len(row[2])>1: doc = nlp(row[2]) for ent in doc.ents: intents.append(ent.text) labels.append(ent.label_) print(f'NPS_Score: {row[2]}') print(f'NPS_verbatism:{row[1]}') print('intent:', intents) print('entities:', labels) print('') ``` #### File: src/textlabelling/trainner.py ```python import dataclasses from pathlib import Path import random import spacy from spacy.lang.en import English from spacy.util import minibatch, compounding from spacy.gold import GoldParse from spacy.scorer import Scorer def save_model(nlp, model_dir=None): """ :param model_dir: :param model: """ try: if model_dir is not None: model_dir = Path(model_dir) if not model_dir.exists(): model_dir.mkdir() nlp.to_disk(model_dir) else: model_dir = 'Ner_model' nlp.to_disk(model_dir) print("Saved model to", model_dir) except ValueError as e: return e def evaluate(nlp: spacy.lang.en.English, TEST_DATA: list): ''' Evaluate model on test data :param nlp: :param TEST_DATA: :return: ''' try: if type(nlp) == spacy.lang.en.English and type(TEST_DATA) == list: scorer = Scorer() for input_, annot in TEST_DATA: doc_gold_text = nlp.make_doc(input_) gold = GoldParse(doc_gold_text, entities=annot) pred_value = nlp(input_) scorer.score(pred_value, gold) return scorer.scores else: raise ValueError('The argments is be spacy model and list') except ValueError as e: return e class TrainNer: def __init__(self,TRAIN_DATA:list, model: spacy.lang.en.English = None, min_batch_size: float = 4.0, max_batch_size: float = 32.0, n_iter: int = 100): self.TRAIN_DATA=TRAIN_DATA self.model=model self.min_batch_size=min_batch_size self.max_batch_size=max_batch_size self.n_iter=n_iter def train_model(self, drop=0.5) -> spacy.lang.en.English: """ Load the model, set up the pipeline and train the entity recognizer. :param drop: :return: """ if self.model is not None: nlp = spacy.load(self.model) # load existing spaCy model print("Loaded model '%s'" % self.model) else: nlp = spacy.blank("en") # create blank Language class print("Created blank 'en' model") if "ner" not in nlp.pipe_names: ner = nlp.create_pipe("ner") nlp.add_pipe(ner, last=True) # otherwise, get it so we can add labels else: ner = nlp.get_pipe("ner") # add labels for _, annotations in self.TRAIN_DATA: for ent in annotations.get("entities"): ner.add_label(ent[2]) # get names of other pipes to disable them during training other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "ner"] with nlp.disable_pipes(*other_pipes): # only train NER # reset and initialize the weights randomly – but only if we're # training a new model if self.model is None: optimizer = nlp.begin_training() else: optimizer = nlp.resume_training() for itn in range(self.n_iter): random.shuffle(self.TRAIN_DATA) losses = {} # batch up the examples using spaCy's minibatch batch_size = compounding(self.min_batch_size, self.max_batch_size, 1.001) batches = minibatch(self.TRAIN_DATA, size=batch_size) for batch in batches: texts, annotations = zip(*batch) nlp.update( texts, # batch of texts annotations, # batch of annotations sgd=optimizer, drop=drop, # dropout - make it harder to memorise data losses=losses, ) print("Losses", losses) return nlp, losses def test_model(self, TEST_DATA:list): """ :param TEST_DATA: """ model = self.train_model() # test the trained model for text, _ in TEST_DATA: doc = model(text) print("Classes", [(ent.text, ent.label_) for ent in doc.ents]) print("") ```
{ "source": "aakloul/connectors", "score": 2 }
#### File: export-report-pdf/src/export-report-pdf.py ```python import yaml import os import time import datetime from pycti.utils.constants import StixCyberObservableTypes from weasyprint import HTML from pycti import OpenCTIConnectorHelper, get_config_variable from jinja2 import Environment, FileSystemLoader class ExportReportPdf: def __init__(self): # Instantiate the connector helper from config config_file_path = os.path.dirname(os.path.abspath(__file__)) + "/config.yml" config = ( yaml.load(open(config_file_path), Loader=yaml.FullLoader) if os.path.isfile(config_file_path) else {} ) self.helper = OpenCTIConnectorHelper(config) # ExportReportPdf specific config settings self.primary_color = get_config_variable( "EXPORT_REPORT_PDF_PRIMARY_COLOR", ["export_report_pdf", "primary_color"], config, ) self.secondary_color = get_config_variable( "EXPORT_REPORT_PDF_SECONDARY_COLOR", ["export_report_pdf", "secondary_color"], config, ) self.current_dir = os.path.abspath(os.path.dirname(__file__)) self.set_colors() self.company_address_line_1 = get_config_variable( "EXPORT_REPORT_PDF_COMPANY_ADDRESS_LINE_1", ["export_report_pdf", "company_address_line_1"], config, ) self.company_address_line_2 = get_config_variable( "EXPORT_REPORT_PDF_COMPANY_ADDRESS_LINE_2", ["export_report_pdf", "company_address_line_2"], config, ) self.company_address_line_3 = get_config_variable( "EXPORT_REPORT_PDF_COMPANY_ADDRESS_LINE_3", ["export_report_pdf", "company_address_line_3"], config, ) self.company_phone_number = get_config_variable( "EXPORT_REPORT_PDF_COMPANY_PHONE_NUMBER", ["export_report_pdf", "company_phone_number"], config, ) self.company_email = get_config_variable( "EXPORT_REPORT_PDF_COMPANY_EMAIL", ["export_report_pdf", "company_email"], config, ) self.company_website = get_config_variable( "EXPORT_REPORT_PDF_COMPANY_WEBSITE", ["export_report_pdf", "company_website"], config, ) self.indicators_only = get_config_variable( "EXPORT_REPORT_PDF_INDICATORS_ONLY", ["export_report_pdf", "indicators_only"], config, ) self.defang_urls = get_config_variable( "EXPORT_REPORT_PDF_DEFANG_URLS", ["export_report_pdf", "defang_urls"], config, ) def _process_message(self, data): file_name = data["file_name"] # TODO this can be implemented to filter every entity and observable # max_marking = data["max_marking"] entity_type = data["entity_type"] if entity_type != "Report": raise ValueError( f'This Connector can only process entities of type "Report" and not of type "{entity_type}".' ) # Get the Report report_dict = self.helper.api.report.read(id=data["entity_id"]) # Extract values for inclusion in output pdf report_marking = report_dict.get("objectMarking", None) if report_marking: report_marking = report_marking[-1]["definition"] report_name = report_dict["name"] report_description = report_dict.get("description", "No description available.") report_confidence = report_dict["confidence"] report_id = report_dict["id"] report_external_refs = [ external_ref_dict["url"] for external_ref_dict in report_dict["externalReferences"] ] report_objs = report_dict["objects"] report_date = datetime.datetime.now().strftime("%b %d %Y") context = { "report_name": report_name, "report_description": report_description, "report_marking": report_marking, "report_confidence": report_confidence, "report_external_refs": report_external_refs, "report_date": report_date, "company_address_line_1": self.company_address_line_1, "company_address_line_2": self.company_address_line_2, "company_address_line_3": self.company_address_line_3, "company_phone_number": self.company_phone_number, "company_email": self.company_email, "company_website": self.company_website, "entities": {}, "observables": {}, } # Process each STIX Object for report_obj in report_objs: obj_entity_type = report_obj["entity_type"] obj_id = report_obj["standard_id"] # Handle StixCyberObservables entities if obj_entity_type == "StixFile" or StixCyberObservableTypes.has_value( obj_entity_type ): observable_dict = self.helper.api.stix_cyber_observable.read(id=obj_id) # If only include indicators and # the observable doesn't have an indicator, skip it if self.indicators_only and not observable_dict["indicators"]: self.helper.log_info( f"Skipping {obj_entity_type} observable with value {observable_dict['observable_value']} as it was not an Indicator." ) continue if obj_entity_type not in context["observables"]: context["observables"][obj_entity_type] = [] # Defang urls if self.defang_urls and obj_entity_type == "Url": observable_dict["observable_value"] = observable_dict[ "observable_value" ].replace("http", "hxxp", 1) context["observables"][obj_entity_type].append(observable_dict) # Handle all other entities else: reader_func = self.get_reader(obj_entity_type) if reader_func is None: self.helper.log_error( f'Could not find a function to read entity with type "{obj_entity_type}"' ) continue entity_dict = reader_func(id=obj_id) if obj_entity_type not in context["entities"]: context["entities"][obj_entity_type] = [] context["entities"][obj_entity_type].append(entity_dict) # Render html with input variables env = Environment(loader=FileSystemLoader(self.current_dir)) template = env.get_template("resources/report.html") html_string = template.render(context) # Generate pdf from html string pdf_contents = HTML(string=html_string, base_url="resources").write_pdf() # Upload the output pdf self.helper.log_info(f"Uploading: {file_name}") self.helper.api.stix_domain_object.add_file( id=report_id, file_name=file_name, data=pdf_contents, mime_type="application/pdf", ) return "Export done" def set_colors(self): with open( os.path.join(self.current_dir, "resources/report.css.template"), "r" ) as f: new_css = f.read() new_css = new_css.replace("<primary_color>", self.primary_color) new_css = new_css.replace("<secondary_color>", self.secondary_color) with open(os.path.join(self.current_dir, "resources/report.css"), "w") as f: f.write(new_css) def get_reader(self, entity_type): """ Returns the function to use for calling the OpenCTI to read data for a particular entity type. entity_type: a str representing the entity type, i.e. Indicator returns: a function or None if entity type is not supported """ reader = { "Stix-Domain-Object": self.helper.api.stix_domain_object.read, "Attack-Pattern": self.helper.api.attack_pattern.read, "Campaign": self.helper.api.campaign.read, "Note": self.helper.api.note.read, "Observed-Data": self.helper.api.observed_data.read, "Organization": self.helper.api.identity.read, "Opinion": self.helper.api.opinion.read, "Report": self.helper.api.report.read, "Sector": self.helper.api.identity.read, "System": self.helper.api.identity.read, "Course-Of-Action": self.helper.api.course_of_action.read, "Identity": self.helper.api.identity.read, "Indicator": self.helper.api.indicator.read, "Individual": self.helper.api.identity.read, "Infrastructure": self.helper.api.infrastructure.read, "Intrusion-Set": self.helper.api.intrusion_set.read, "Malware": self.helper.api.malware.read, "Threat-Actor": self.helper.api.threat_actor.read, "Tool": self.helper.api.tool.read, "Vulnerability": self.helper.api.vulnerability.read, "Incident": self.helper.api.incident.read, "City": self.helper.api.location.read, "Country": self.helper.api.location.read, "Region": self.helper.api.location.read, "Position": self.helper.api.location.read, "Location": self.helper.api.location.read, } return reader.get(entity_type, None) # Start the main loop def start(self): self.helper.listen(self._process_message) if __name__ == "__main__": try: connector_export_report_pdf = ExportReportPdf() connector_export_report_pdf.start() except Exception as e: print(e) time.sleep(10) exit(0) ```
{ "source": "aakmsk/EasyMazeEnv", "score": 3 }
#### File: aakmsk/EasyMazeEnv/EasyMaze.py ```python import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches import gym from gym import spaces # gym.Envを継承したEasyMazeクラス class EasyMaze(gym.Env): # この環境ではrenderのモードとしてrgb_arrayのみを用意していることを宣言しておく # GymのWrapperなどから参照される可能性がある metadata = {'render.modes': ['rgb_array']} m = 0.2 # 迷路の周りの外枠の幅 c = 1 # 各セルの幅 agent_color = "blue" # エージェントの色 maze_color = "green" # 迷路の色 # 迷路の枠の描画関連情報 maze_info_rec = {"xy":[(0, 0), (0, m+4*c), (m+4*c, 0), (0, 0), (m, m+c), (m+c, m+3*c), (m+3*c, m+c)], "width":[m, 2*m+4*c, m, 2*m+4*c, 2*c, c, c], "height":[2*m+4*c, m, 2*m+4*c, m, c, c, c]} # 迷路内の点線の表示関連情報 maze_info_line = {"s_xy":[(m, m+c), (m, m+2*c), (m, m+3*c), (m+c, m), (m+2*c, m), (m+3*c, m)], "e_xy":[(m+4*c, m+c), (m+4*c, m+2*c), (m+4*c, m+3*c), (m+c, m+4*c), (m+2*c, m+4*c), (m+3*c, m+4*c)]} # 状態テキストの表示位置情報 maze_state_pos = {"xy":[(m+0.5*c, m+3.5*c), (m+0.5*c, m+2.5*c), (m+1.5*c, m+2.5*c), (m+2.5*c, m+2.5*c), (m+2.5*c, m+3.5*c), (m+3.5*c, m+3.5*c), (m+3.5*c, m+2.5*c), (m+2.5*c, m+1.5*c), (m+2.5*c, m+0.5*c), (m+3.5*c, m+0.5*c), (m+1.5*c, m+0.5*c), (m+0.5*c, m+0.5*c),], "text":["s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "s8", "s9", "s10", "s11"]} # 状態と行動に対する遷移先状態(ダイナミクス) # 一般的にMDPにおけるダイナミクスは確率P(s'|s,a)で表されるが、ここでは決定論的なダイナミクスを採用 # 左から順番に行動入力が"left","top","right","down"の場合の各状態の遷移先を示す # 例)状態"s0"のとき、 # "left"を受け取っても移動ができないので遷移先は現在と同じ"s0" # "top"を受け取っても移動ができないので遷移先は現在と同じ"s0" # "right"を受け取っても移動ができないので遷移先は現在と同じ"s0" # "down"を受け取ったら下へ移動できるので遷移先は"s1" # その他全ての状態も同様 dynamics = {"s0":["s0", "s0", "s0", "s1"], "s1":["s1", "s0", "s2", "s1"], "s2":["s1", "s2", "s3", "s2"], "s3":["s2", "s4", "s6", "s7"], "s4":["s4", "s4", "s5", "s3"], "s5":["s4", "s5", "s5", "s6"], "s6":["s3", "s5", "s6", "s6"], "s7":["s7", "s3", "s7", "s8"], "s8":["s10", "s7", "s9", "s8"], "s9":["s8", "s9", "s9", "s9"], "s10":["s11", "s10", "s8", "s10"], "s11":["s11", "s11", "s10", "s11"]} def __init__(self): super(EasyMaze, self).__init__() self.fig = None self.ax = None self.state = None # 行動空間として0から3までの4種類の離散値を対象とする # ちなみに、0は"left"、1は"top"、2は”right”、3は"down"に対応させた self.action_space = gym.spaces.Discrete(4) # 状態はエージェントが存在するセルの位置(12種類) self.observation_space = gym.spaces.Discrete(12) # 即時報酬の値は0から1の間とした self.reward_range = (0, 1) def reset(self): # 迷路のスタート位置は"s0"とする self.state = "s0" # 初期状態の番号を観測として返す return int(self.state[1:]) def step(self, action): # 現在の状態と行動から次の状態に遷移 self.state = self.dynamics[self.state][action] # ゴール状態"s11"に遷移していたら終了したことをdoneに格納&報酬1を格納 # その他の状態ならdone=False, reward=0とする if self.state == "s11": done = True reward = 1 else: done = False reward = 0 # 今回の例ではinfoは使用しない info = {} return int(self.state[1:]), reward, done, info # 描画関連の処理を実施 def render(self, mode='rgb_array'): # matplotlibを用いて迷路を作成 self.make_maze() # 現在位置にエージェントを配置 self.plot_agent(self.state) # matplotlibで作成した図を配列にRGB配列に変換 rgb_array = self.fig2array()[:, :, :3] # RGB配列をリターン return rgb_array # 迷路を描画する関数 def make_maze(self): self.fig = plt.figure(figsize=(7, 7), dpi=200) self.ax = plt.axes() self.ax.axis("off") # 迷路の外枠を表示 for i in range(len(self.maze_info_rec["xy"])): r = patches.Rectangle(xy=self.maze_info_rec["xy"][i], width=self.maze_info_rec["width"][i], height=self.maze_info_rec["height"][i], color=self.maze_color, fill=True) self.ax.add_patch(r) # 点線による枠の表示 for i in range(len(self.maze_info_line["s_xy"])): self.ax.plot([self.maze_info_line["s_xy"][i][0], self.maze_info_line["e_xy"][i][0]], [self.maze_info_line["s_xy"][i][1], self.maze_info_line["e_xy"][i][1]], linewidth=1, linestyle="--", color=self.maze_color) # 状態のテキストを表示(スタート状態とゴール状態は後で描画) for i in range(1, len(self.maze_state_pos["xy"])-1): self.ax.text(self.maze_state_pos["xy"][i][0], self.maze_state_pos["xy"][i][1], self.maze_state_pos["text"][i], size=14, ha="center") # スタート状態のテキストを描画 self.ax.text(self.maze_state_pos["xy"][0][0], self.maze_state_pos["xy"][0][1], "s0\n start", size=14, ha="center") # ゴール状態のテキストを描画 self.ax.text(self.maze_state_pos["xy"][11][0], self.maze_state_pos["xy"][11][1], "s11\n goal", size=14, ha="center") # エージェントを描画 def plot_agent(self, state_name): state_index = self.maze_state_pos["text"].index(state_name) agent_pos = self.maze_state_pos["xy"][state_index] line, = self.ax.plot([agent_pos[0]], [agent_pos[1]], marker="o", color=self.agent_color, markersize=50) # matplotlibの画像データをnumpyに変換 def fig2array(self): self.fig.canvas.draw() w, h = self.fig.canvas.get_width_height() buf = np.fromstring(self.fig.canvas.tostring_argb(), dtype=np.uint8) buf.shape = (w, h, 4) buf = np.roll(buf, 3, axis=2) return buf ```
{ "source": "aaknitt/gdl90", "score": 3 }
#### File: gdl90/gdl90/decoder.py ```python import sys import datetime from collections import deque import messages from gdl90.fcs import crcCheck from messagesuat import messageUatToObject class Decoder(object): """GDL-90 data link interface decoder class""" def __init__(self): self.format = 'normal' self.uatOutput = False self.inputBuffer = bytearray() self.messages = deque() self.parserSynchronized = False self.stats = { 'msgCount' : 0, 'resync' : 0, 'msgs' : { 0 : [0, 0] }, } self.reportFrequency = 10 # altitude reporting in plotflight mode self.altitude = 0 self.altitudeAge = 9999 self.altitudeMaxAge = 5 # setup internal time tracking self.gpsTimeReceived = False self.dayStart = None self.currtime = datetime.datetime.utcnow() self.heartbeatInterval = datetime.timedelta(seconds=1) def addBytes(self, data): """add raw input bytes for decode processing""" self.inputBuffer.extend(data) self._parseMessages() def _log(self, msg): sys.stderr.write('decoder.Decoder:' + msg + '\n') def _parseMessages(self): """parse input buffer for all complete messages""" if not self.parserSynchronized: if not self._resynchronizeParser(): # false if we empty the input buffer return while True: # Check that buffer has enough bytes to use if len(self.inputBuffer) < 2: #self._log("buffer reached low watermark") return # We expect 0x7e at the head of the buffer if self.inputBuffer[0] != 0x7e: # failed assertion; we are not synchronized anymore #self._log("synchronization lost") if not self._resynchronizeParser(): # false if we empty the input buffer return # Look to see if we have an ending 0x7e marker yet try: i = self.inputBuffer.index(chr(0x7e), 1) except ValueError: # no end marker found yet #self._log("no end marker found; leaving parser for now") return # Extract byte message without markers and delete bytes from buffer msg = self.inputBuffer[1:i] del(self.inputBuffer[0:i+1]) # Decode the received message self._decodeMessage(msg) return def _resynchronizeParser(self): """throw away bytes in buffer until empty or resynchronized Return: true=resynchronized, false=buffer empty & not synced""" self.parserSynchronized = False self.stats['resync'] += 1 while True: if len(self.inputBuffer) < 2: #self._log("buffer reached low watermark during sync") return False # found end of a message and beginning of next if self.inputBuffer[0] == 0x7e and self.inputBuffer[1] == 0x7e: # remove end marker from previous message del(self.inputBuffer[0:1]) self.parserSynchronized = True #self._log("parser is synchronized (end:start)") return True if self.inputBuffer[0] == 0x7e: self.parserSynchronized = True #self._log("parser is synchronized (start)") return True # remove everything up to first 0x7e or end of buffer try: i = self.inputBuffer.index(chr(0x7e)) #self._log("removing leading bytes before marker") except ValueError: # did not find 0x7e, so blank the whole buffer i = len(self.inputBuffer) #self._log("removing all bytes in buffer since no markers") #self._log('inputBuffer[0:%d]=' % (len(self.inputBuffer)) +str(self.inputBuffer)[:+32]) del(self.inputBuffer[0:i]) raise Exception("_resynchronizeParser: unexpected reached end") def _decodeMessage(self, escapedMessage): """decode one GDL90 message without the start/end markers""" rawMsg = self._unescape(escapedMessage) if len(rawMsg) < 5: return False msg = rawMsg[:-2] crc = rawMsg[-2:] crcValid = crcCheck(msg, crc) """ self.stats['msgCount'] += 1 if (self.stats['msgCount'] % self.reportFrequency) == 0: print "Statistics: total msgs = %d, resyncs = %d" % (self.stats['msgCount'], self.stats['resync']) msgTypes = self.stats['msgs'].keys() msgTypes.sort() for mt in msgTypes: (g, b) = self.stats['msgs'][mt] print " Messge #%d: %d good, %d bad" % (mt, g, b) """ # Create a new entry for this message type if it doesn't exist if not msg[0] in self.stats['msgs'].keys(): self.stats['msgs'][msg[0]] = [0,0] if not crcValid: self.stats['msgs'][msg[0]][1] += 1 #print "****BAD CRC****" return False self.stats['msgs'][msg[0]][0] += 1 """ #if msg[0] in [0, 10, 11]: if msg[0] in [101]: print "msg%d: " % (msg[0]) for m in [msg]: hexstr = "" for n in range(len(msg)): if (n % 4) == 0: hexstr += " " hexstr += "%02x" % (msg[n]) print " " + hexstr """ m = messages.messageToObject(msg) if not m: return False if m.MsgType == 'Heartbeat': self.currtime += self.heartbeatInterval if self.format == 'normal': print 'MSG00: s1=%02x, s2=%02x, ts=%02x' % (m.StatusByte1, m.StatusByte2, m.TimeStamp) elif self.format == 'plotflight': self.altitudeAge += 1 elif m.MsgType == 'OwnershipReport': if m.Latitude == 0.00 and m.Longitude == 0.00: if m.NavIntegrityCat == 0 or m.NavIntegrityCat == 1: # unknown or <20nm, consider it invalid pass elif self.format == 'normal': print 'MSG10: %0.7f %0.7f %d %d %d' % (m.Latitude, m.Longitude, m.HVelocity, m.Altitude, m.TrackHeading) elif self.format == 'plotflight': if self.altitudeAge < self.altitudeMaxAge: altitude = self.altitude else: # revert to 25' resolution altitude from ownership report altitude = m.Altitude # Must have the GPS time from a message 101 before outputting anything if not self.gpsTimeReceived: return True print '%02d:%02d:%02d %0.7f %0.7f %d %d %d' % (self.currtime.hour, self.currtime.minute, self.currtime.second, m.Latitude, m.Longitude, m.HVelocity, altitude, m.TrackHeading) elif m.MsgType == 'OwnershipGeometricAltitude': if self.format == 'normal': print 'MSG11: %d %04xh' % (m.Altitude, m.VerticalMetrics) elif self.format == 'plotflight': self.altitude = m.Altitude self.altitudeAge = 0 elif m.MsgType == 'TrafficReport': if m.Latitude == 0.00 and m.Longitude == 0.00 and m.NavIntegrityCat == 0: # no valid position pass elif self.format == 'normal': print 'MSG20: %0.7f %0.7f %d %d %d %d %s' % (m.Latitude, m.Longitude, m.HVelocity, m.VVelocity, m.Altitude, m.TrackHeading, m.CallSign) elif m.MsgType == 'GpsTime': if not self.gpsTimeReceived: self.gpsTimeReceived = True utcTime = datetime.time(m.Hour, m.Minute, 0) self.currtime = datetime.datetime.combine(self.dayStart, utcTime) else: # correct time slips and move clock forward if necessary if self.currtime.hour < m.Hour or self.currtime.minute < m.Minute: utcTime = datetime.time(m.Hour, m.Minute, 0) self.currtime = datetime.datetime.combine(self.currtime, utcTime) if self.format == 'normal': print 'MSG101: %02d:%02d UTC (waas = %s)' % (m.Hour, m.Minute, m.Waas) elif m.MsgType == 'UplinkData' and self.uatOutput == True: messageUatToObject(m) return True def _unescape(self, msg): """unescape 0x7e and 0x7d characters in coded message""" msgNew = bytearray() escapeValue = 0x7d foundEscapeChar = False while True: try: i = msg.index(chr(escapeValue)) foundEscapeChar = True msgNew.extend(msg[0:i]); # everything up to the escape character # this will throw an exception if nothing follows the escape escapedValue = msg[i+1] ^ 0x20 msgNew.append(chr(escapedValue)); # escaped value del(msg[0:i+2]); # remove prefix bytes, escape, and escaped value except (ValueError, IndexError): # no more escape characters if foundEscapeChar: msgNew.extend(msg) return msgNew else: return msg raise Exception("_unescape: unexpected reached end") def _messageHex(self, msg, prefix="", suffix="", maxbytes=32, breakint=4): """prints the hex contents of a message""" s = "" numbytes=len(msg) if numbytes > maxbytes: numbytes=maxbytes for i in range(numbytes): s += "%02x" % (msg[i]) if ((i+1) % breakint) == 0: s += " " return "%s%s%s" % (prefix, s.strip(), suffix) ```
{ "source": "aaknitt/python-uds", "score": 2 }
#### File: TransportProtocols/Can/CanConnectionFactory.py ```python import can from can.interfaces import pcan, vector, kvaser from uds.uds_configuration.Config import Config from os import path from platform import system #from uds import CanConnection from uds.uds_communications.TransportProtocols.Can.CanConnection import CanConnection # used to conditionally import socketcan for linux to avoid error messages if system() == "Linux": from can.interfaces import socketcan else: from can.interfaces import ics_neovi class CanConnectionFactory(object): connections = {} config = None @staticmethod def __call__(callback=None, filter=None, configPath=None, **kwargs): CanConnectionFactory.loadConfiguration(configPath) CanConnectionFactory.checkKwargs(**kwargs) # check config file and load connectionType = CanConnectionFactory.config['can']['interface'] if connectionType == 'virtual': connectionName = CanConnectionFactory.config['virtual']['interfaceName'] if connectionName not in CanConnectionFactory.connections: CanConnectionFactory.connections[connectionName] = CanConnection(callback, filter, can.interface.Bus(connectionName, bustype='virtual')) else: CanConnectionFactory.connections[connectionName].addCallback(callback) CanConnectionFactory.connections[connectionName].addFilter(filter) return CanConnectionFactory.connections[connectionName] elif connectionType == 'peak': channel = CanConnectionFactory.config['peak']['device'] if channel not in CanConnectionFactory.connections: baudrate = CanConnectionFactory.config['can']['baudrate'] CanConnectionFactory.connections[channel] = CanConnection(callback, filter, pcan.PcanBus(channel, bitrate=baudrate)) else: CanConnectionFactory.connections[channel].addCallback(callback) CanConnectionFactory.connections[channel].addFilter(filter) return CanConnectionFactory.connections[channel] elif connectionType == 'vector': channel = int(CanConnectionFactory.config['vector']['channel']) app_name = CanConnectionFactory.config['vector']['appName'] connectionKey = str("{0}_{1}").format(app_name, channel) if connectionKey not in CanConnectionFactory.connections: baudrate = int(CanConnectionFactory.config['can']['baudrate']) CanConnectionFactory.connections[connectionKey] = CanConnection(callback, filter, vector.VectorBus(channel, app_name=app_name, data_bitrate=baudrate)) else: CanConnectionFactory.connections[connectionKey].addCallback(callback) CanConnectionFactory.connections[connectionKey].addFilter(filter) return CanConnectionFactory.connections[connectionKey] elif connectionType == 'socketcan': if system() == "Linux": channel = CanConnectionFactory.config['socketcan']['channel'] if channel not in CanConnectionFactory.connections: CanConnectionFactory.connections[channel] = CanConnection(callback, filter, socketcan.SocketcanBus(channel=channel)) else: CanConnectionFactory.connections[channel].addCallback(callback) CanConnectionFactory.connections[channel].addFilter(filter) return CanConnectionFactory.connections[channel] else: raise Exception("SocketCAN on Pythoncan currently only supported in Linux") elif connectionType == 'neovi': channel = int(CanConnectionFactory.config['neovi']['channel']) baudrate = int(CanConnectionFactory.config['can']['baudrate']) CanConnectionFactory.connections[channel] = CanConnection(callback, filter, ics_neovi.NeoViBus(channel, bitrate=baudrate)) return CanConnectionFactory.connections[channel] elif connectionType == 'kvaser': channel = int(CanConnectionFactory.config['kvaser']['channel']) baudrate = int(CanConnectionFactory.config['can']['baudrate']) CanConnectionFactory.connections[channel] = CanConnection(callback, filter, kvaser.canlib.KvaserBus(channel, bitrate=baudrate)) return CanConnectionFactory.connections[channel] @staticmethod def loadConfiguration(configPath=None): CanConnectionFactory.config = Config() localConfig = path.dirname(__file__) + "/config.ini" CanConnectionFactory.config.read(localConfig) if configPath is not None: if path.exists(configPath): CanConnectionFactory.config.read(configPath) else: raise FileNotFoundError("Can not find config file") @staticmethod def checkKwargs(**kwargs): if 'interface' in kwargs: CanConnectionFactory.config['can']['interface'] = kwargs['interface'] if 'baudrate' in kwargs: CanConnectionFactory.config['can']['baudrate'] = kwargs['baudrate'] if 'device' in kwargs: CanConnectionFactory.config['peak']['device'] = kwargs['device'] if 'appName' in kwargs: CanConnectionFactory.config['vector']['appName'] = kwargs['appName'] if 'channel' in kwargs: CanConnectionFactory.config['vector']['channel'] = kwargs['channel'] CanConnectionFactory.config['kvaser']['channel'] = kwargs['channel'] CanConnectionFactory.config['neovi']['channel'] = kwargs['channel'] ```
{ "source": "aakorolyova/DeSpin", "score": 3 }
#### File: aakorolyova/DeSpin/myListBox.py ```python import sys if sys.version_info[0] != 3: print( 'This script requires Python 3' ) exit() import tkinter as tki from tkinter.scrolledtext import ScrolledText from tkinter import Tk, Frame, filedialog, Label, Button, Radiobutton, IntVar, StringVar, messagebox, Entry, Text, Scrollbar, Listbox ##By default, the selection is exported via the X selection mechanism ##(or the clipboard, on Windows). If you have more than one listbox on the screen, ##this really messes things up for the poor user. If she selects something in one ##listbox, and then selects something in another, the original selection disappears. ##It is usually a good idea to disable this mechanism in such cases. ##In the following example, three listboxes are used in the same dialog: ## ##b1 = Listbox(exportselection=0) ##for item in families: ## b1.insert(END, item) ## ##b2 = Listbox(exportselection=0) ##for item in fonts: ## b2.insert(END, item) ## ##b3 = Listbox(exportselection=0) ##for item in styles: ## b3.insert(END, item) def default_item_select_handler( e ): # e.x_root, e.y_root, e.num print( 'list box widget {0} has one click event is {1} at x= {2} y= {3}'.format( self.id, e, e.x, e.y ) ) s = self.list.curselection() print( s ) items = map( int, self.list.curselection() ) print( items ) print( '-----------' ) class myListBox( Frame ): def __init__(self, root, items = [], id = '', item_select_handler = default_item_select_handler, smode=tki.EXTENDED ): self.item_count = 0 self.root = root self.item_select_handler = item_select_handler Frame.__init__( self, self.root ) self.id = id vscrollbar = Scrollbar( self, orient=tki.VERTICAL) vscrollbar.pack( side=tki.RIGHT, fill=tki.Y ) hscrollbar = Scrollbar( self, orient=tki.HORIZONTAL) hscrollbar.pack( side=tki.BOTTOM, fill = tki.X ) ## mode can be: SINGLE, BROWSE, MULTIPLE, EXTENDED ## selectmode ## ## Determines how many items can be selected, and how mouse drags affect the selection − ## ## BROWSE − Normally, you can only select one line out of a listbox. If you click on an item and then drag to a different line, the selection will follow the mouse. This is the default. ## SINGLE − You can only select one line, and you can't drag the mouse.wherever you click button 1, that line is selected. ## MULTIPLE − You can select any number of lines at once. Clicking on any line toggles whether or not it is selected. ## EXTENDED − You can select any adjacent group of lines at once by clicking on the first line and dragging to the last line. self.list = Listbox( self, selectmode = smode, exportselection = 0, xscrollcommand = hscrollbar.set, yscrollcommand = vscrollbar.set ) for i in items: assert( type( i ) is str ) self.list.insert( items.index(i), i ) self.list.pack( fill=tki.BOTH, expand=1 ) self.list.bind( '<Double-Button-1>', self.item_select_handler ) self.list.bind( '<1>', self.item_select_handler ) self.list.bind( '<Return>', self.item_select_handler ) ## DO NOT catch ListboxSelect event, because: ## a) it is not associated with (x_root, y_root) and (x,y) coordinates, so the popup appears always at (0,0) of the main root window ## b) it duplicates the click event catching self.list.bind( '<1>', self.item_select_handler ) and generates a second event ## self.list.bind( '<<ListboxSelect>>', self.item_select_handler ) hscrollbar.config( command=self.list.xview ) vscrollbar.config( command=self.list.yview ) self.pack( side=tki.LEFT, fill=tki.BOTH, expand=1 ) self.current = self.list.curselection() def insert_item( self, pos, item ): self.list.insert( pos, item ) self.item_count += 1 self.activate( pos ) self.index( pos ) def delete( self, start, end = None ): assert( type( start ) is int ) if( end is None ): self.list.delete( start ) self.item_count -= 1 else: assert( (type( end ) is int) or (end == tki.END) ) if( type( end ) is str ): self.list.delete( start, (self.item_count-1) ) self.item_count -= (self.item_count - start) else: self.list.delete( start, end ) self.item_count -= (end - start) + 1 def select_set( self, i ): self.list.selection_clear( 0, tki.END ) self.list.select_set( i ) def activate( self, i ): self.list.activate( i ) def index( self, i ): self.list.index( i ) def generate_select_event( self, pos = None ): assert( pos is not None ) if( pos is not None ): self.activate( pos ) self.index( pos ) self.select_set( pos ) self.list.event_generate( "<<ListboxSelect>>" ) ## def poll(self): ## now = self.list.curselection() ## if now != self.current: ## self.list_has_changed( now ) ## self.current = now ## self.after( 250, self.poll ) def list_has_changed(self, selection): print( 'widget {0} selection is {1}'.format( self.id, selection )) ## self.item_select_handler() ##items=[ 'Python', 'Perl', 'C', 'PHP', 'JSP', 'Ruby', 'Pascal', 'Fortran', 'Modula', 'a very very very very lonnnnnnnnnnng programming language name', 'Spark', 'Haskell', 'Lisp', 'C++', 'Eiffel'] ##items2=['foo', 'bar', 'zoo' ] ##root=tki.Tk() ##d1=myListBox( tki.Toplevel(), items, 'list_1') ##d2=myListBox( tki.Toplevel(), items2, 'list_2') ##root.mainloop() ```
{ "source": "aakp10/Malice-and-Bytes", "score": 4 }
#### File: aakp10/Malice-and-Bytes/hamming.py ```python def str_to_bytes(str,base): byte_array = bytearray() byte_array.extend([ord(ch) for ch in str]) return byte_array def calc_hamming(str1,str2): bits1 = str_to_bytes(str1,1) bits2 = str_to_bytes(str2,1) print(bits1) print(bits2) ham = 0 for (x,y) in zip(bits1,bits2): print(x,y) while x > 0 or y > 0: if x > 0 and y == 0 or x == 0 and y>0: ham += 1 elif (int(x)%2)!=(int(y)%2): ham += 1 x = int(x/2) y = int(y/2) print(ham) calc_hamming("this is a test","wokka wokka!!!") ```