Datasets:
Tasks:
Text Retrieval
Modalities:
Text
Formats:
json
Sub-tasks:
document-retrieval
Languages:
English
Size:
10K - 100K
metadata
language:
- en
multilinguality:
- monolingual
task_categories:
- text-retrieval
source_datasets:
- NevIR
task_ids:
- document-retrieval
config_names:
- corpus
- queries
- qrels
- top_ranked
tags:
- text-retrieval
- negation
dataset_info:
- config_name: corpus
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_examples: 1896
- config_name: queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: queries
num_examples: 1896
- config_name: qrels
features:
- name: query_id
dtype: string
- name: doc_id
dtype: string
- name: score
dtype: int
splits:
- name: train
num_examples: 1896
- name: validation
num_examples: 450
- name: test
num_examples: 450
- config_name: top_ranked
features:
- name: query_id
dtype: string
- name: doc_ids
dtype: list
splits:
- name: train
num_examples: 1896
- name: validation
num_examples: 238
- name: test
num_examples: 238
configs:
- config_name: corpus
data_files:
- split: corpus
path: corpus.jsonl
- config_name: queries
data_files:
- split: queries
path: queries.jsonl
- config_name: qrels
data_files:
- split: train
path: qrels/train.jsonl
- split: validation
path: qrels/validation.jsonl
- split: test
path: qrels/test.jsonl
- config_name: top_ranked
data_files:
- split: train
path: top_ranked/train.jsonl
- split: validation
path: top_ranked/validation.jsonl
- split: test
path: top_ranked/test.jsonl
NevIR-mteb Dataset
This is the MTEB-compatible version of the NevIR dataset, structured for information retrieval tasks focused on negation understanding.
Dataset Structure
The dataset is organized into multiple configurations:
corpus
: Contains all documents (doc1 and doc2 from each sample)queries
: Contains all queries (q1 and q2 from each sample)qrels
: Contains relevance judgments (q1 matches with doc1, q2 matches with doc2)top_ranked
: Contains candidate documents for each query (both doc1 and doc2 for every query)
Usage
from datasets import load_dataset
# Load the entire dataset
dataset = load_dataset("orionweller/NevIR-mteb")
# Load specific configurations
corpus = load_dataset("orionweller/NevIR-mteb", "corpus")
queries = load_dataset("orionweller/NevIR-mteb", "queries")
qrels = load_dataset("orionweller/NevIR-mteb", "qrels")
top_ranked = load_dataset("orionweller/NevIR-mteb", "top_ranked")