file_path
stringlengths
21
202
content
stringlengths
13
1.02M
size
int64
13
1.02M
lang
stringclasses
9 values
avg_line_length
float64
5.43
98.5
max_line_length
int64
12
993
alphanum_fraction
float64
0.27
0.91
NVIDIA-Omniverse/blender_omniverse_addons/omni_audio2face/ui.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. import os from typing import * import bpy from bpy.utils import previews from omni_audio2face.operators import ( OMNI_OT_PrepareScene, OMNI_OT_MarkExportMesh, OMNI_OT_ChooseUSDFile, OMNI_OT_ChooseAnimCache, OMNI_OT_ExportPreparedScene, OMNI_OT_ImportRigFile, OMNI_OT_TransferShapeData, OMNI_OT_ImportAnimation, ) ## ====================================================================== def preload_icons() -> previews.ImagePreviewCollection: """Preload icons used by the interface.""" icons_directory = os.path.join(os.path.dirname(os.path.abspath(__file__)), "icons") all_icons = { "AUDIO2FACE": "omni_audio2face.png", } preview = previews.new() for name, filepath in all_icons.items(): preview.load(name, os.path.join(icons_directory, filepath), "IMAGE") return preview ## ====================================================================== class OBJECT_PT_Audio2FacePanel(bpy.types.Panel): bl_space_type = 'VIEW_3D' bl_region_type = 'UI' bl_category = "Omniverse" bl_label = "Audio2Face" bl_options = {"DEFAULT_CLOSED"} version = "0.0.0" icons = preload_icons() def draw_header(self, context): self.layout.label(text="", icon_value=self.icons["AUDIO2FACE"].icon_id) # draw the panel def draw(self, context): use_face_selection = context.scene.audio2face.use_face_selection is_poly_edit_mode = context.tool_settings.mesh_select_mode[2] and context.mode == "EDIT_MESH" a2f_export_static = bpy.data.collections.get("A2F Export Static", None) a2f_export_dynamic = bpy.data.collections.get("A2F Export Dynamic", None) layout = self.layout layout.label(text="Face Prep and Export", icon="EXPORT") row = layout.row(align=True) op = row.operator(OMNI_OT_MarkExportMesh.bl_idname, text="Export Static") op.is_dynamic = False op = row.operator(OMNI_OT_MarkExportMesh.bl_idname, text="Export Dynamic") op.is_dynamic = True row = layout.row(align=True) row.prop(context.scene.audio2face, "use_face_selection", text="") if use_face_selection and not is_poly_edit_mode: row.label(text="Use Faces: Must be in Polygon Edit Mode!", icon="ERROR") else: row.label(text="Use Face Selection?") ## mesh selections col = layout.column(align=True) if a2f_export_dynamic: col.prop_search(context.scene.audio2face, "mesh_skin", a2f_export_dynamic, "objects", text="Skin Mesh: ") col.prop_search(context.scene.audio2face, "mesh_tongue", a2f_export_dynamic, "objects", text="Tongue Mesh: ") else: col.label(text="Dynamic Meshes are required to set Skin and Tongue", icon="ERROR") col.label(text=" ") if a2f_export_static: col.prop_search(context.scene.audio2face, "mesh_eye_left", a2f_export_static, "objects", text="Left Eye Mesh: ") col.prop_search(context.scene.audio2face, "mesh_eye_right", a2f_export_static, "objects", text="Right Eye Mesh: ") col.prop_search(context.scene.audio2face, "mesh_gums_lower", a2f_export_static, "objects", text="Lower Gums Mesh: ") else: col.label(text="Static Meshes are required to set Eyes", icon="ERROR") col.label(text=" ") col = layout.column(align=True) row = col.row(align=True) row.prop(context.scene.audio2face, "export_filepath", text="Export Path: ") op = row.operator(OMNI_OT_ChooseUSDFile.bl_idname, text="", icon="FILE_FOLDER") op.operation = "EXPORT" col.prop(context.scene.audio2face, "export_project", text="Export With Project File") row = col.row(align=True) collection = bpy.data.collections.get("A2F Export", None) child_count = len(collection.all_objects) if collection else 0 args = { "text": "Export Face USD" if child_count else "No meshes available for Export", } op = row.operator(OMNI_OT_ExportPreparedScene.bl_idname, **args) ## Import Side -- after Audio2Face has transferred the shapes layout.separator() layout.label(text="Face Shapes Import", icon="IMPORT") col = layout.column(align=True) row = col.row(align=True) row.prop(context.scene.audio2face, "import_filepath", text="Shapes Import Path") op = row.operator(OMNI_OT_ChooseUSDFile.bl_idname, text="", icon="FILE_FOLDER") op.operation = "IMPORT" col = layout.column(align=True) col.operator(OMNI_OT_ImportRigFile.bl_idname) row = col.row(align=True) op = row.operator(OMNI_OT_TransferShapeData.bl_idname) op.apply_fix = context.scene.audio2face.transfer_apply_fix row.prop(context.scene.audio2face, "transfer_apply_fix", icon="MODIFIER", text="") col = layout.column(align=True) col.label(text="Anim Cache Path") row = col.row(align=True) row.prop(context.scene.audio2face, "import_anim_path", text="") row.operator(OMNI_OT_ChooseAnimCache.bl_idname, text="", icon="FILE_FOLDER") if context.scene.audio2face.import_anim_path.lower().endswith(".json"): col.prop(context.scene.audio2face, "anim_frame_rate", text="Source Framerate") row = col.row(align=True) row.prop(context.scene.audio2face, "anim_start_type", text="Start Frame") if context.scene.audio2face.anim_start_type == "CUSTOM": row.prop(context.scene.audio2face, "anim_start_frame", text="") col.prop(context.scene.audio2face, "anim_load_to", text="Load To") row = col.row(align=True) row.prop(context.scene.audio2face, "anim_apply_scale", text="Apply Clip Scale") if context.scene.audio2face.anim_load_to == "CLIP": row.prop(context.scene.audio2face, "anim_overwrite") op_label = ("Please change to Object Mode" if not context.mode == "OBJECT" else ("Import Animation Clip" if OMNI_OT_ImportAnimation.poll(context) else "Please Select Target Mesh")) op = col.operator(OMNI_OT_ImportAnimation.bl_idname, text=op_label) op.start_type = context.scene.audio2face.anim_start_type op.frame_rate = context.scene.audio2face.anim_frame_rate op.start_frame = context.scene.audio2face.anim_start_frame op.set_range = context.scene.audio2face.anim_set_range op.load_to = context.scene.audio2face.anim_load_to op.overwrite = context.scene.audio2face.anim_overwrite op.apply_scale = context.scene.audio2face.anim_apply_scale
6,105
Python
36.00606
119
0.702867
NVIDIA-Omniverse/blender_omniverse_addons/omni_panel/ui.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. from typing import * import bpy from bpy.types import (Context, Object, Material, Scene) from . particle_bake.operators import * from . material_bake.background_bake import bgbake_ops # from .material_bake_complex import OBJECT_OT_omni_material_bake from os.path import join, dirname import bpy.utils.previews from .material_bake import baker ## ====================================================================== def get_icons_directory(): icons_directory = join(dirname(__file__), "icons") return icons_directory ## ====================================================================== def _get_bake_types(scene:Scene) -> List[str]: result = [] bake_all = scene.all_maps if scene.selected_col or bake_all: result.append("DIFFUSE") if scene.selected_normal or bake_all: result.append("NORMAL") if scene.selected_emission or bake_all: result.append("EMIT") if scene.selected_specular or bake_all: result.append("GLOSSY") if scene.selected_rough or bake_all: result.append("ROUGHNESS") if scene.selected_trans or bake_all: result.append("TRANSMISSION") ## special types if scene.omni_bake.bake_metallic or bake_all: result.append("METALLIC") return ",".join(result) ## ====================================================================== class OBJECT_PT_omni_panel(bpy.types.Panel): bl_space_type = 'VIEW_3D' bl_region_type = 'UI' bl_category = "Omniverse" bl_label = "NVIDIA Omniverse" bl_options = {"DEFAULT_CLOSED"} version = "0.0.0" #retrieve icons icons = bpy.utils.previews.new() icons_directory = get_icons_directory() icons.load("OMNI", join(icons_directory, "ICON.png"), 'IMAGE') def draw_header(self, context): self.layout.label(text="", icon_value=self.icons["OMNI"].icon_id) def draw(self, context): layout = self.layout scene = context.scene # --------Particle Collection Instancing------------------- particleOptions = scene.particle_options particleCol = self.layout.column(align=True) particleCol.label(text="Omni Particles", icon='PARTICLES') box = particleCol.box() column = box.column(align=True) column.prop(particleOptions, "deletePSystemAfterBake") row = column.row() row.prop(particleOptions, "animateData") if particleOptions.animateData: row = column.row(align=True) row.prop(particleOptions, "selectedStartFrame") row.prop(particleOptions, "selectedEndFrame") row = column.row() row.enabled = False row.label(text="Increased Calculation Time", icon='ERROR') row = column.row() row.scale_y = 1.5 row.operator('omni.hair_bake', text='Convert', icon='MOD_PARTICLE_INSTANCE') if len(bpy.context.selected_objects) != 0 and bpy.context.active_object != None: if bpy.context.active_object.select_get() and bpy.context.active_object.type == "MESH": layout.separator() column = layout.column(align=True) column.label(text="Convert Material to:", icon='SHADING_RENDERED') box = column.box() materialCol = box.column(align=True) materialCol.operator('universalmaterialmap.create_template_omnipbr', text='OmniPBR') materialCol.operator('universalmaterialmap.create_template_omniglass', text='OmniGlass') ## ====================================================================== class OBJECT_PT_omni_bake_panel(bpy.types.Panel): bl_space_type = 'VIEW_3D' bl_region_type = 'UI' bl_category = "Omniverse" bl_label = "Material Baking" bl_options = {"DEFAULT_CLOSED"} version = "0.0.0" #retrieve icons icons = bpy.utils.previews.new() icons_directory = get_icons_directory() icons.load("OMNI", join(icons_directory, "ICON.png"), 'IMAGE') icons.load("BAKE",join(icons_directory, "Oven.png"), 'IMAGE') def draw_header(self, context): self.layout.label(text="", icon="UV_DATA") def draw(self, context): layout = self.layout scene = context.scene box = layout.box() #--------PBR Bake Settings------------------- row = box.row() if scene.all_maps == True: row.prop(scene, "all_maps", icon = 'CHECKBOX_HLT') else: row.prop(scene, "all_maps", icon = 'CHECKBOX_DEHLT') column = box.column(align= True) row = column.row() row.prop(scene, "selected_col") row.prop(scene, "selected_normal") row = column.row() row.prop(scene, "selected_rough") row.prop(scene, "selected_specular", text="Gloss") row = column.row() row.prop(scene, "selected_trans") row.prop(scene, "selected_emission") row = column.row() row.label(text="Special Maps") row = column.row() row.prop(scene.omni_bake, "bake_metallic") row.label(text=" ") #--------Texture Settings------------------- row = box.row() row.label(text="Texture Resolution:") row.scale_y = 0.5 row = box.row() row.prop(scene, "texture_res", expand=True) row.scale_y = 1 if scene.texture_res == "8k" or scene.texture_res == "4k": row = box.row() row.enabled = False row.label(text="Long Bake Times", icon= 'ERROR') #--------UV Settings------------------- column = box.column(align = True) row = column.row() row.prop(scene, "newUVoption") row.prop(scene, "unwrapmargin") #--------Other Settings------------------- column= box.column(align=True) row = column.row() if scene.bgbake == "fg": text = "Copy objects and apply bakes" else: text = "Copy objects and apply bakes (after import)" row.prop(scene, "prepmesh", text=text) if scene.prepmesh == True: if scene.bgbake == "fg": text = "Hide source objects after bake" else: text = "Hide source objects after bake (after import)" row = column.row() row.prop(scene, "hidesourceobjects", text=text) #-------------Buttons------------------------- row = box.row() try: row.prop(scene.cycles, "device", text="Device") except: pass row = box.row() row.scale_y = 1.5 op = row.operator("omni.bake_maps", icon_value=self.icons["BAKE"].icon_id) op.unwrap = scene.newUVoption op.bake_types = _get_bake_types(scene) op.merge_textures = scene.omni_bake.merge_textures op.hide_original = scene.hidesourceobjects op.width = op.height = { "0.5k": 512, "1k": 1024, "2k": 2048, "4k": 4096, "8k": 8192, }[scene.texture_res] can_bake_poll, error_data = baker.omni_bake_maps_poll(context) can_bake_poll_result = { -1: f"Cannot bake objects in collection {baker.COLLECTION_NAME}", -2: f"Material cannot be baked:", -3: "Cycles Renderer Add-on not loaded!" } if can_bake_poll < 0: row = box.row() row.label(text=can_bake_poll_result[can_bake_poll], icon="ERROR") if can_bake_poll == -2: mesh_name, material_name = error_data row = box.row() row.label(text=f"{material_name} on {mesh_name}") row = column.row() row.scale_y = 1 ##!TODO: Restore background baking # row.prop(context.scene, "bgbake", expand=True) if scene.bgbake == "bg": row = column.row(align= True) # - BG status button col = row.column() if len(bgbake_ops.bgops_list) == 0: enable = False icon = "TIME" else: enable = True icon = "TIME" col.operator("object.omni_bake_bgbake_status", text="", icon=icon) col.enabled = enable # - BG import button col = row.column() if len(bgbake_ops.bgops_list_finished) != 0: enable = True icon = "IMPORT" else: enable = False icon = "IMPORT" col.operator("object.omni_bake_bgbake_import", text="", icon=icon) col.enabled = enable #BG erase button col = row.column() if len(bgbake_ops.bgops_list_finished) != 0: enable = True icon = "TRASH" else: enable = False icon = "TRASH" col.operator("object.omni_bake_bgbake_clear", text="", icon=icon) col.enabled = enable row.alignment = 'CENTER' row.label(text=f"Running {len(bgbake_ops.bgops_list)} | Finished {len(bgbake_ops.bgops_list_finished)}") ## ====================================================================== class OmniBakePreferences(bpy.types.AddonPreferences): # this must match the add-on name, use '__package__' # when defining this in a submodule of a python package. bl_idname = __package__ img_name_format: bpy.props.StringProperty(name="Image format string", default="%OBJ%_%BATCH%_%BAKEMODE%_%BAKETYPE%") #Aliases diffuse_alias: bpy.props.StringProperty(name="Diffuse", default="diffuse") metal_alias: bpy.props.StringProperty(name="Metal", default="metalness") roughness_alias: bpy.props.StringProperty(name="Roughness", default="roughness") glossy_alias: bpy.props.StringProperty(name="Glossy", default="glossy") normal_alias: bpy.props.StringProperty(name="Normal", default="normal") transmission_alias: bpy.props.StringProperty(name="Transmission", default="transparency") transmissionrough_alias: bpy.props.StringProperty(name="Transmission Roughness", default="transparencyroughness") clearcoat_alias: bpy.props.StringProperty(name="Clearcost", default="clearcoat") clearcoatrough_alias: bpy.props.StringProperty(name="Clearcoat Roughness", default="clearcoatroughness") emission_alias: bpy.props.StringProperty(name="Emission", default="emission") specular_alias: bpy.props.StringProperty(name="Specular", default="specular") alpha_alias: bpy.props.StringProperty(name="Alpha", default="alpha") sss_alias: bpy.props.StringProperty(name="SSS", default="sss") ssscol_alias: bpy.props.StringProperty(name="SSS Colour", default="ssscol") @classmethod def reset_img_string(self): prefs = bpy.context.preferences.addons[__package__].preferences prefs.property_unset("img_name_format") bpy.ops.wm.save_userpref()
12,271
Python
34.98827
117
0.557412
NVIDIA-Omniverse/blender_omniverse_addons/omni_panel/workflow/usd_kind.py
from typing import * import bpy from bpy.types import (Collection, Context, Image, Object, Material, Mesh, Node, NodeSocket, NodeTree, Scene) from bpy.props import * ## ====================================================================== usd_kind_items = { ('COMPONENT', 'component', 'kind: component'), ('GROUP', 'group', 'kind: group'), ('ASSEMBLY', 'assembly', 'kind: assembly'), ('CUSTOM', 'custom', 'kind: custom'), } ## ====================================================================== def get_plural_count(items) -> (str, int): count = len(items) plural = '' if count == 1 else 's' return plural, count ## ====================================================================== class OBJECT_OT_omni_set_usd_kind(bpy.types.Operator): """Sets the USD Kind value on the selected objects.""" bl_idname = "omni.set_usd_kind" bl_label = "Set USD Kind" bl_options = {"REGISTER", "UNDO"} kind: EnumProperty(name='kind', description='USD Kind', items=usd_kind_items) custom_kind: StringProperty(default="") verbose: BoolProperty(default=False) @property ## read-only def value(self) -> str: return self.custom_kind if self.kind == "CUSTOM" else self.kind.lower() @classmethod def poll(cls, context:Context) -> bool: return bool(len(context.selected_objects)) def execute(self, context:Context) -> Set[str]: if self.kind == "NONE": self.report({"WARNING"}, "No kind specified-- nothing authored.") return {"CANCELLED"} for item in context.selected_objects: props = item.id_properties_ensure() props["usdkind"] = self.value props_ui = item.id_properties_ui("usdkind") props_ui.update(default=self.value, description="USD Kind") if self.verbose: plural, count = get_plural_count(context.selected_objects) self.report({"INFO"}, f"Set USD Kind to {self.value} for {count} object{plural}.") return {"FINISHED"} ## ====================================================================== class OBJECT_OT_omni_set_usd_kind_auto(bpy.types.Operator): """Sets the USD Kind value on scene objects, automatically.""" bl_idname = "omni.set_usd_kind_auto" bl_label = "Set USD Kind Auto" bl_options = {"REGISTER", "UNDO"} verbose: BoolProperty(default=False) def execute(self, context:Context) -> Set[str]: active = context.active_object selected = list(context.selected_objects) bpy.ops.object.select_all(action='DESELECT') ## heuristics ## First, assign "component" to all unparented empties unparented = [x for x in context.scene.collection.all_objects if not x.parent and x.type == "EMPTY"] for item in unparented: item.select_set(True) bpy.ops.omni.set_usd_kind(kind="COMPONENT") item.select_set(False) if self.verbose: plural, count = get_plural_count(unparented) self.report({"INFO"}, f"Set USD Kind Automatically on {count} object{plural}.") return {"FINISHED"} ## ====================================================================== class OBJECT_OT_omni_clear_usd_kind(bpy.types.Operator): """Clear USD Kind values on the selected objects.""" bl_idname = "omni.clear_usd_kind" bl_label = "Clear USD Kind" bl_options = {"REGISTER", "UNDO"} verbose: BoolProperty(default=False) @classmethod def poll(cls, context:Context) -> bool: return bool(len(context.selected_objects)) def execute(self, context:Context) -> Set[str]: from rna_prop_ui import rna_idprop_ui_prop_update total = 0 for item in context.selected_objects: if "usdkind" in item: rna_idprop_ui_prop_update(item, "usdkind") del item["usdkind"] total += 1 if self.verbose: plural, count = get_plural_count(range(total)) self.report({"INFO"}, f"Cleared USD Kind from {count} object{plural}.") return {"FINISHED"} ## ====================================================================== class OBJECT_PT_omni_usd_kind_panel(bpy.types.Panel): bl_space_type = 'VIEW_3D' bl_region_type = 'UI' bl_category = "Omniverse" bl_label = "USD Kind" def draw(self, context:Context): layout = self.layout scene = context.scene layout.label(text="USD Kind") row = layout.row() row.prop(scene.omni_usd_kind, "kind", text="Kind") if scene.omni_usd_kind.kind == "CUSTOM": row = layout.row() row.prop(scene.omni_usd_kind, "custom_kind", text="Custom Kind") col = layout.column(align=True) op = col.operator(OBJECT_OT_omni_set_usd_kind.bl_idname, icon="PLUS") op.kind = scene.omni_usd_kind.kind op.custom_kind = scene.omni_usd_kind.custom_kind op.verbose = True op = col.operator(OBJECT_OT_omni_clear_usd_kind.bl_idname, icon="X") op.verbose = True op = col.operator(OBJECT_OT_omni_set_usd_kind_auto.bl_idname, icon="BRUSH_DATA") op.verbose = True ## ====================================================================== class USDKindProperites(bpy.types.PropertyGroup): kind: EnumProperty(name='kind', description='USD Kind', items=usd_kind_items) custom_kind: StringProperty(default="") ## ====================================================================== classes = [ OBJECT_OT_omni_set_usd_kind, OBJECT_OT_omni_set_usd_kind_auto, OBJECT_OT_omni_clear_usd_kind, OBJECT_PT_omni_usd_kind_panel, USDKindProperites, ] def unregister(): for cls in reversed(classes): try: bpy.utils.unregister_class(cls) except ValueError: continue except RuntimeError: continue try: del bpy.types.Scene.omni_usd_kind except AttributeError: pass def register(): unregister() for cls in classes: bpy.utils.register_class(cls) bpy.types.Scene.omni_usd_kind = bpy.props.PointerProperty(type=USDKindProperites)
5,618
Python
27.668367
102
0.620862
NVIDIA-Omniverse/blender_omniverse_addons/omni_panel/material_bake/baker.py
from tempfile import NamedTemporaryFile from typing import * import addon_utils import bpy from bpy.types import (Collection, Context, Image, Object, Material, Mesh, Node, NodeSocket, NodeTree, Scene) from bpy.props import * from mathutils import * from omni_panel.material_bake import material_setup COLLECTION_NAME = "OmniBake_Bakes" def get_material_output(tree:NodeTree, engine:str="CYCLES") -> Optional[Node]: """ Find the material output node that applies only to a specific engine. :param tree: The NodeTree to search. :param engine: The engine to search for. :return: The Material Output Node associated with the engine, or None if not found. """ supported_engines = {"CYCLES", "EEVEE", "ALL"} assert engine in supported_engines, f"Only the following engines are supported: {','.join(supported_engines)}" result = [x for x in tree.nodes if x.type == "OUTPUT_MATERIAL" and x.target in {"ALL", engine}] if len(result): return result[0] return None def prepare_collection(scene:Scene) -> Collection: """ Ensures the bake Collection exists in the specified scene. :param scene: The scene to which you wish to add the bake Collection. :return: the bake Collection """ collection = bpy.data.collections.get(COLLECTION_NAME, None) or bpy.data.collections.new(COLLECTION_NAME) if not COLLECTION_NAME in scene.collection.children: scene.collection.children.link(collection) return collection def select_only(ob:Object): """ Ensure that only the specified object is selected. :param ob: Object to select """ bpy.ops.object.select_all(action="DESELECT") ob.select_set(state=True) bpy.context.view_layer.objects.active = ob def smart_unwrap_object(ob:Object, name:str="OmniBake"): """ Use Blenders built-in smart unwrap functionality to generate a new UV map. :param ob: Mesh Object to unwrap. """ bpy.ops.object.mode_set(mode="EDIT", toggle=False) # Unhide any geo that's hidden in edit mode or it'll cause issues. bpy.ops.mesh.reveal() bpy.ops.mesh.select_all(action="SELECT") bpy.ops.mesh.reveal() if name in ob.data.uv_layers: ob.data.uv_layers.remove(ob.data.uv_layers[name]) uv_layer = ob.data.uv_layers.new(name=name) uv_layer.active = True bpy.ops.uv.select_all(action="SELECT") bpy.ops.uv.smart_project(island_margin=0.0) bpy.ops.object.mode_set(mode="OBJECT", toggle=False) def prepare_mesh(ob:Object, collection: Collection, unwrap=False) -> Object: """ Duplicate the specified Object, also duplicating all its materials. :param ob: The object to duplicate. :param collection: After duplication, the object will be inserted into this Collection :param unwrap: If True, also smart unwrap the object's UVs. :return: The newly created duplicate object. """ assert not ob.name in collection.all_objects, f"{ob.name} is a baked mesh (cannot be used)" new_mesh_name = ob.data.name[:56] + "_baked" if new_mesh_name in bpy.data.meshes: bpy.data.meshes.remove(bpy.data.meshes[new_mesh_name]) new_mesh = ob.data.copy() new_mesh.name = new_mesh_name new_name = ob.name[:56] + "_baked" if new_name in bpy.data.objects: bpy.data.objects.remove(bpy.data.objects[new_name]) new_object = bpy.data.objects.new(new_name, new_mesh) collection.objects.link(new_object) select_only(new_object) new_object.matrix_world = ob.matrix_world.copy() if unwrap: smart_unwrap_object(new_object) for index, material in enumerate([x.material for x in new_object.material_slots]): new_material_name = material.name[:56] + "_baked" if new_material_name in bpy.data.materials: bpy.data.materials.remove(bpy.data.materials[new_material_name]) new_material = material.copy() new_material.name = new_material_name new_object.material_slots[index].material = new_material ob.hide_viewport = True return new_object ##!<--- TODO: Fix these def find_node_from_label(label:str, nodes:List[Node]) -> Node: for node in nodes: if node.label == label: return node return False def find_isocket_from_identifier(idname:str, node:Node) -> NodeSocket: for inputsocket in node.inputs: if inputsocket.identifier == idname: return inputsocket return False def find_osocket_from_identifier(idname, node): for outputsocket in node.outputs: if outputsocket.identifier == idname: return outputsocket return False def make_link(f_node_label, f_node_ident, to_node_label, to_node_ident, nodetree): fromnode = find_node_from_label(f_node_label, nodetree.nodes) if (fromnode == False): return False fromsocket = find_osocket_from_identifier(f_node_ident, fromnode) tonode = find_node_from_label(to_node_label, nodetree.nodes) if (tonode == False): return False tosocket = find_isocket_from_identifier(to_node_ident, tonode) nodetree.links.new(fromsocket, tosocket) return True ## ---> ## ====================================================================== ##!TODO: Shader type identification and bake setup def _nodes_for_type(node_tree:NodeTree, node_type:str) -> List[Node]: result = [x for x in node_tree.nodes if x.type == node_type] ## skip unconnected nodes from_nodes = [x.from_node for x in node_tree.links] to_nodes = [x.to_node for x in node_tree.links] all_nodes = set(from_nodes + to_nodes) result = list(filter(lambda x: x in all_nodes, result)) return result def output_nodes_for_engine(node_tree:NodeTree, engine:str) -> List[Node]: nodes = _nodes_for_type(node_tree, "OUTPUT_MATERIAL") return nodes def get_principled_nodes(node_tree:NodeTree) -> List[Node]: return _nodes_for_type(node_tree, "BSDF_PRINCIPLED") def identify_shader_type(node_tree:NodeTree) -> str: principled_nodes = get_principled_nodes(node_tree) emission_nodes = _nodes_for_type(node_tree, "EMISSION") mix_nodes = _nodes_for_type(node_tree, "MIX_SHADER") outputs = output_nodes_for_engine(node_tree, "CYCLES") total_shader_nodes = principled_nodes + emission_nodes + mix_nodes ## first type: principled straight into the output ## ---------------------------------------------------------------------- def create_principled_setup(material:Material, images:Dict[str,Image]): """ Creates a new shader setup in the tree of the specified material using the baked images, removing all old shader nodes. :param material: The material to change. :param images: The baked Images dictionary, name:Image pairs. """ node_tree = material.node_tree nodes = node_tree.nodes material.cycles.displacement_method = 'BOTH' principled_nodes = get_principled_nodes(node_tree) for node in filter(lambda x: not x in principled_nodes, nodes): nodes.remove(node) # Node Frame frame = nodes.new("NodeFrame") frame.location = (0, 0) frame.use_custom_color = True frame.color = (0.149763, 0.214035, 0.0590617) ## reuse the old BSDF if it exists to make sure the non-textured constant inputs are correct pnode = principled_nodes[0] if len(principled_nodes) else nodes.new("ShaderNodeBsdfPrincipled") pnode.location = (-25, 335) pnode.label = "pnode" pnode.use_custom_color = True pnode.color = (0.3375297784805298, 0.4575316309928894, 0.08615386486053467) pnode.parent = nodes["Frame"] # And the output node node = nodes.new("ShaderNodeOutputMaterial") node.location = (500, 200) node.label = "monode" node.show_options = False node.parent = nodes["Frame"] make_link("pnode", "BSDF", "monode", "Surface", node_tree) # ----------------------------------------------------------------- # 'COMBINED', 'AO', 'SHADOW', 'POSITION', 'NORMAL', 'UV', 'ROUGHNESS', # 'EMIT', 'ENVIRONMENT', 'DIFFUSE', 'GLOSSY', 'TRANSMISSION' ## These are the currently supported types. ## More could be supported at a future date. if "DIFFUSE" in images: node = nodes.new("ShaderNodeTexImage") node.hide = True node.location = (-500, 250) node.label = "col_tex" node.image = images["DIFFUSE"] node.parent = nodes["Frame"] make_link("col_tex", "Color", "pnode", "Base Color", node_tree) if "METALLIC" in images: node = nodes.new("ShaderNodeTexImage") node.hide = True node.location = (-500, 140) node.label = "metallic_tex" node.image = images["METALLIC"] node.parent = nodes["Frame"] make_link("metallic_tex", "Color", "pnode", "Metallic", node_tree) if "GLOSSY" in images: node = nodes.new("ShaderNodeTexImage") node.hide = True node.location = (-500, 90) node.label = "specular_tex" node.image = images["GLOSSY"] node.parent = nodes["Frame"] make_link("specular_tex", "Color", "pnode", "Specular", node_tree) if "ROUGHNESS" in images: node = nodes.new("ShaderNodeTexImage") node.hide = True node.location = (-500, 50) node.label = "roughness_tex" node.image = images["ROUGHNESS"] node.parent = nodes["Frame"] make_link("roughness_tex", "Color", "pnode", "Roughness", node_tree) if "TRANSMISSION" in images: node = nodes.new("ShaderNodeTexImage") node.hide = True node.location = (-500, -90) node.label = "transmission_tex" node.image = images["TRANSMISSION"] node.parent = nodes["Frame"] make_link("transmission_tex", "Color", "pnode", "Transmission", node_tree) if "EMIT" in images: node = nodes.new("ShaderNodeTexImage") node.hide = True node.location = (-500, -170) node.label = "emission_tex" node.image = images["EMIT"] node.parent = nodes["Frame"] make_link("emission_tex", "Color", "pnode", "Emission", node_tree) if "NORMAL" in images: node = nodes.new("ShaderNodeTexImage") node.hide = True node.location = (-500, -318.7) node.label = "normal_tex" image = images["NORMAL"] node.image = image node.parent = nodes["Frame"] # Additional normal map node for normal socket node = nodes.new("ShaderNodeNormalMap") node.location = (-220, -240) node.label = "normalmap" node.show_options = False node.parent = nodes["Frame"] make_link("normal_tex", "Color", "normalmap", "Color", node_tree) make_link("normalmap", "Normal", "pnode", "Normal", node_tree) # ----------------------------------------------------------------- ## wipe all labels for item in nodes: item.label = "" node = nodes["Frame"] node.label = "OMNI PBR" for type, image in images.items(): if type in {"DIFFUSE", "EMIT"}: image.colorspace_settings.name = "sRGB" else: image.colorspace_settings.name = "Non-Color" ## ====================================================================== def _selected_meshes(context:Context) -> List[Mesh]: """ :return: List[Mesh] of all selected mesh objects in active Blender Scene. """ return [x for x in context.selected_objects if x.type == "MESH"] def _material_can_be_baked(material:Material) -> bool: outputs = output_nodes_for_engine(material.node_tree, "CYCLES") if not len(outputs) == 1: return False try: from_node = outputs[0].inputs["Surface"].links[0].from_node except IndexError: return False ##!TODO: Support one level of mix with principled inputs if not from_node.type == "BSDF_PRINCIPLED": return False return True def omni_bake_maps_poll(context:Context) -> (int, Any): """ :return: 1 if we can bake 0 if no meshes are selected -1 if any selected meshes are already in the bake collection -2 if mesh contains non-bakeable materials -3 if Cycles renderer isn't loaded """ ## Cycles renderer is not available _, loaded_state = addon_utils.check("cycles") if not loaded_state: return (-3, None) selected = _selected_meshes(context) if not len(selected): return (0, None) for mesh in selected: for material in [slot.material for slot in mesh.material_slots]: if not _material_can_be_baked(material): return (-2, [mesh.name, material.name]) collection = bpy.data.collections.get(COLLECTION_NAME, None) if collection is None: ## We have selected meshes but no collection-- early out return (1, None) in_collection = [x for x in selected if x.name in collection.all_objects] if len(in_collection): return (-1, None) return (1, None) ## ====================================================================== class OmniBakerProperties(bpy.types.PropertyGroup): bake_metallic: BoolProperty(name="Metallic", default=True) merge_textures: BoolProperty(name="Merge Textures", description="Bake all materials for each object onto a single map", default=True) ## ====================================================================== class OBJECT_OT_omni_bake_maps(bpy.types.Operator): """Bake specified passes on the selected Mesh object.""" bl_idname = "omni.bake_maps" bl_label = "Bake Maps" bl_options = {"REGISTER", "UNDO"} base_bake_types = { ##!TODO: Possibly support these at a later date? # "COMBINED", "AO", "SHADOW", "POSITION", "UV", "ENVIRONMENT", "DIFFUSE", "NORMAL", "EMIT", "GLOSSY", "ROUGHNESS", "TRANSMISSION", } special_bake_types = { "METALLIC": "Metallic", } unwrap: BoolProperty(default=False, description="Unwrap") hide_original: BoolProperty(default=False, description="Hide Original") width: IntProperty(default=1024, min=128, max=8192, description="Width") height: IntProperty(default=1024, min=128, max=8192, description="Height") bake_types: StringProperty(default="DIFFUSE") merge_textures: BoolProperty(default=True, description="Merge Textures") @classmethod def poll(cls, context:Context) -> bool: return omni_bake_maps_poll(context)[0] == 1 def draw(self, context:Context): """Empty draw to disable the Operator Props Panel.""" pass def _get_bake_emission_target(self, node_tree:NodeTree) -> Node: bake_emission_name = "OmniBake_Emission" if not bake_emission_name in node_tree.nodes: node = node_tree.nodes.new("ShaderNodeEmission") node.name = bake_emission_name output = get_material_output(node_tree, "CYCLES") node.location = output.location + Vector((-200.0, -100.0)) return node_tree.nodes[bake_emission_name] def _copy_connection(self, material:Material, bsdf:Node, bake_type:str, target_socket:NodeSocket) -> bool: if not bake_type in self.special_bake_types: return False orig_socket = bsdf.inputs[self.special_bake_types[bake_type]] if not len(orig_socket.links): ## copy over the color and return if orig_socket.type == "VECTOR": for index in range(4): target_socket.default_value[index] = orig_socket.default_value elif orig_socket.type in {"VECTOR", "RGBA"}: for index in range(3): target_socket.default_value[index] = orig_socket.default_value[index] target_socket.default_value[3] = 1.0 else: ## should never arrive here return False else: input_socket = orig_socket.links[0].from_socket material.node_tree.links.new(input_socket, target_socket) return True def _create_bake_texture_names(self, ob:Object, bake_types:List[str]) -> List[str]: result = [] for material in [x.material for x in ob.material_slots]: material_name = material.name.rpartition('_baked')[0] for bake_type in bake_types: if self.merge_textures: image_name = f"{ob.name}__{bake_type}" else: image_name = f"{ob.name}_{material_name}_{bake_type}" result.append(image_name) return result def report(self, type:Set[str], message:str): print(message) super(OBJECT_OT_omni_bake_maps, self).report(type, message) def execute(self, context:Context) -> Set[str]: wm = context.window_manager scene = context.scene scene_engine = scene.render.engine scene.render.engine = "CYCLES" scene_use_clear = scene.render.bake.use_clear scene.render.bake.use_clear = False collection = prepare_collection(scene) all_bake_types = self.base_bake_types | self.special_bake_types.keys() valid_types_str = "Valid types are: " + ", ".join(all_bake_types) self.report({"INFO"}, f"Bake types: {self.bake_types}") bake_types = self.bake_types.split(",") if not len(bake_types): self.report({"ERROR"}, "No bake type specified. " + valid_types_str) for bake_type in bake_types: if not bake_type in all_bake_types: self.report({"ERROR"}, f"Bake type '{bake_type}' is not valid. " + valid_types_str) return {"CANCELLED"} selected_meshes = _selected_meshes(context) count = 0 total = 0 for mesh in selected_meshes: count += len(mesh.material_slots) * len(bake_types) wm.progress_begin(total, count) bpy.ops.object.mode_set(mode="OBJECT") for mesh_object in _selected_meshes(context): mesh_object.hide_select = mesh_object.hide_render = mesh_object.hide_viewport = False baked_ob = prepare_mesh(mesh_object, collection, unwrap=self.unwrap) uv_layer = "OmniBake" if self.unwrap else baked_ob.data.uv_layers.active.name bpy.ops.object.select_all(action="DESELECT") baked_ob.select_set(True) context.view_layer.objects.active = baked_ob self.report({"INFO"}, f"Baking Object {baked_ob.name}") baked_materials = [] ## Because of merge_textures, we have to create the names now and clear them ## before the whole bake process starts bake_image_names = self._create_bake_texture_names(baked_ob, bake_types) ## if merge_textures is on there'll be some repeats for image_name in set(bake_image_names): if image_name in bpy.data.images: bpy.data.images.remove(bpy.data.images[image_name]) image = bpy.data.images.new(image_name, self.width, self.height, float_buffer=(image_name.endswith(("NORMAL", "EMIT"))) ) # if bake_type in {"DIFFUSE", "EMIT"}: # image.colorspace_settings.name = "sRGB" # else: # image.colorspace_settings.name = "Non-Color" image.colorspace_settings.name = "Raw" if self.merge_textures: temp_file = NamedTemporaryFile(prefix=bake_type, suffix=".png", delete=False) image.filepath = temp_file.name image_index = 0 for material_index, material in enumerate([x.material for x in baked_ob.material_slots]): self.report({"INFO"}, f" => Material: {material.name}") tree = material.node_tree baked_ob.active_material_index = material_index for node in tree.nodes: node.select = False output = get_material_output(tree) bsdf = output.inputs["Surface"].links[0].from_node if "OmniBakeImage" in tree.nodes: tree.nodes.remove(tree.nodes["OmniBakeImage"]) bake_image_node = tree.nodes.new("ShaderNodeTexImage") bake_image_node.name = "OmniBakeImage" bake_image_node.location = output.location.copy() bake_image_node.location.x += 200.0 bake_image_node.select = True tree.nodes.active = bake_image_node ## for special cases bake_emission = self._get_bake_emission_target(tree) original_link = output.inputs["Surface"].links[0] original_from, original_to = original_link.from_socket, original_link.to_socket baked_images = {} for bake_type in bake_types: image_name = bake_image_names[image_index] image = bpy.data.images[image_name] bake_image_node.image = image.original if image.original else image self.report({"INFO"}, f"====> Baking {material.name} pass {bake_type}...") kwargs = {} if bake_type in {"DIFFUSE"}: ## ensure no black due to bad direct / indirect lighting kwargs["pass_filter"] = {"COLOR"} scene.render.bake.use_pass_indirect = False scene.render.bake.use_pass_direct = False if bake_type in self.special_bake_types: ## cheat by running the bake through emit after reconnecting real_bake_type = "EMIT" tree.links.new(bake_emission.outputs["Emission"], original_to) self._copy_connection(material, bsdf, bake_type, bake_emission.inputs["Color"]) else: real_bake_type = bake_type tree.links.new(original_from, original_to) ## have to do this every pass? if bake_type in {"DIFFUSE", "EMIT"}: image.colorspace_settings.name = "sRGB" else: image.colorspace_settings.name = "Non-Color" bpy.ops.object.bake(type=real_bake_type, width=self.width, height=self.height, uv_layer=uv_layer, use_clear=False, margin=1, **kwargs) if self.merge_textures: ## I know this seems weird, but if you don't save the file here ## post-bake when merging, the texture gets corrupted and you end ## up with a texture that's taking up ram, but can't be loaded ## for rendering (comes up pink in Cycles) image.save() self.report({"INFO"}, "... Done.") baked_images[bake_type] = image total += 1 image_index += 1 wm.progress_update(total) wm.update_tag() for node in bake_image_node, bake_emission: tree.nodes.remove(node) tree.links.new(original_from, original_to) baked_materials.append((material, baked_images)) for material, images in baked_materials: ## Perform conversion after all images are baked ## If this is not done, then errors can arise despite not ## replacing shader indices. create_principled_setup(material, images) for image in [bpy.data.images[x] for x in bake_image_names]: image.pack() ## Set new UV map as active if it exists if "OmniBake" in baked_ob.data.uv_layers: baked_ob.data.uv_layers["OmniBake"].active_render = True if self.hide_original: mesh_object.hide_set(True) wm.progress_end() scene.render.engine = scene_engine scene.render.bake.use_clear = scene_use_clear return {"FINISHED"} ## ====================================================================== module_classes = [ OBJECT_OT_omni_bake_maps, OmniBakerProperties, ] def register(): for cls in module_classes: bpy.utils.register_class(cls) bpy.types.Scene.omni_bake = bpy.props.PointerProperty(type=OmniBakerProperties) def unregister(): for cls in reversed(module_classes): bpy.utils.unregister_class(cls) try: del bpy.types.Scene.omni_bake except (AttributeError, RuntimeError): pass
21,781
Python
30.659884
111
0.678573
NVIDIA-Omniverse/blender_omniverse_addons/omni_optimization_panel/__init__.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. bl_info = { "name": "Omni Scene Optimization Panel", "author": "Nvidia", "description": "", "blender": (3, 4, 0), "version": (2, 0, 0), "location": "View3D > Toolbar > Omniverse", "warning": "", "category": "Omniverse" } from . import (operators, ui) def register(): operators.register() ui.register() def unregister(): operators.unregister() ui.unregister()
1,274
Python
27.333333
74
0.678964
NVIDIA-Omniverse/blender_omniverse_addons/omni_optimization_panel/operators.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. import os import subprocess import time from typing import * from importlib import reload import bpy from bpy.props import (BoolProperty, EnumProperty, FloatProperty, IntProperty, StringProperty) from bpy.types import (Context, Event, Object, Modifier, NodeTree, Scene) from mathutils import Vector from .properties import (OmniSceneOptChopPropertiesMixin, chopProperties) ## ====================================================================== symmetry_axis_items = [ ("X", "X", "X"), ("Y", "Y", "Y"), ("Z", "Z", "Z") ] generate_type_items = [ ("CONVEX_HULL", "Convex Hull", "Convex Hull"), ("BOUNDING_BOX", "Bounding Box", "Bounding Box") ] generate_name = "OmniSceneOptGenerate" ## ====================================================================== def selected_meshes(scene:Scene) -> List[Object]: result = [x for x in scene.collection.all_objects if x.type == "MESH" and x.select_get()] return result def get_plural_count(items) -> (str, int): count = len(items) plural = '' if count == 1 else 's' return plural, count ## ====================================================================== def preserve_selection(func, *args, **kwargs): def wrapper(*args, **kwargs): selection = [x.name for x in bpy.context.selected_objects] active = bpy.context.active_object.name if bpy.context.active_object else None result = func(*args, **kwargs) scene_objects = bpy.context.scene.objects to_select = [ scene_objects[x] for x in selection if x in scene_objects ] if active: active = scene_objects[active] if active in scene_objects else (to_select[-1] if len(to_select) else None) bpy.ops.object.select_all(action="DESELECT") for item in to_select: item.select_set(True) bpy.context.view_layer.objects.active = active return result return wrapper ## ====================================================================== class OmniSceneOptPropertiesMixin: """ Blender Properties that are shared between the in-scene preferences pointer and the various operators. """ verbose: BoolProperty(name="Verbose", description="Print information while running", default=False) selected: BoolProperty(name="Selected", description="Run on Selected Objects (if False, run on whole Scene)", default=False) ## export options export_textures: BoolProperty(name="Export Textures", description="Export textures when doing a background export", default=True) ## these are deliberate copies from ui.OmniYes.Properties validate: BoolProperty(name="Validate Meshes", description="Attempt to remove invalid geometry", default=True) weld: BoolProperty(name="Weld Verts", description="Weld loose vertices", default=False) weld_distance: FloatProperty(name="Weld Distance", description="Distance threshold for welds", default=0.0001, min=0.00001, step=0.00001) unwrap: BoolProperty(name="Unwrap Mesh UVs", description="Use the Smart Unwrap feature to add new UVs", default=False) unwrap_margin: FloatProperty(name="Margin", description="Distance between UV islands", default=0.00, min=0.0, step=0.01) decimate: BoolProperty(name="Decimate", description="Reduce polygon and vertex counts on meshes", default=False) decimate_ratio: IntProperty(name="Ratio", subtype="PERCENTAGE", description="Reduce face count to this percentage of original", default=50, min=10, max=100, step=5) decimate_use_symmetry: BoolProperty(name="Use Symmetry", description="Decimate with Symmetry across an axis", default=False) decimate_symmetry_axis: EnumProperty(name="Symmetry Axis", description="Axis for symmetry", items=symmetry_axis_items, default="X") decimate_min_face_count: IntProperty(name="Minimum Face Count", description="Do not decimate objects with less faces", default=500, min=100, step=10) decimate_remove_shape_keys: BoolProperty(name="Remove Shape Keys", description="Remove shape keys to allow meshes with shapes to be decimated", default=False) chop: BoolProperty(name="Chop Meshes", description="Physically divide meshes based on size and point count", default=False) generate: BoolProperty(name="Generate", description="Generate convex hulls or bounding boxes", default=False) merge: BoolProperty(name="Merge Selected", description="On Export, merge selected meshes into a single object", default=False) ## ====================================================================== class OmniSceneOptGeneratePropertiesMixin: generate_duplicate: BoolProperty(name="Create Duplicate", description="Generate a new object instead of replacing the original", default=True) generate_type: EnumProperty(name="Generate Type", description="Type of geometry to generate", items=generate_type_items, default="CONVEX_HULL") ## ====================================================================== """ This is a weird one. The decimate modifier was failing on multiple objects in order, but wrapping it in an Operator seems to fix the issues with making sure the correct things are selected in the Context. """ class OBJECT_OT_omni_sceneopt_decimate(bpy.types.Operator, OmniSceneOptPropertiesMixin): """Decimates the selected object using the Decimation modifier.""" bl_idname = "omni_sceneopt.decimate" bl_label = "Omni Scene Optimization: Decimate" bl_options = {"REGISTER", "UNDO"} ratio: IntProperty(name="Ratio", subtype="PERCENTAGE", description="Reduce face count to this percentage of original", default=50, min=10, max=100, step=5) use_symmetry: BoolProperty(name="Use Symmetry", description="Decimate with Symmetry across an axis", default=True) symmetry_axis: EnumProperty(name="Symmetry Axis", description="Axis for symmetry", items=symmetry_axis_items, default="X") min_face_count: IntProperty(name="Minimum Face Count", description="Do not decimate objects with less faces", default=500, min=100, step=10) @classmethod def poll(cls, context:Context) -> bool: return bool(context.active_object) def execute(self, context:Context) -> Set[str]: from .batch import lod result = lod.decimate_object(context.active_object, ratio=self.ratio / 100.0, use_symmetry=self.use_symmetry, symmetry_axis=self.symmetry_axis, min_face_count=self.min_face_count, create_duplicate=False) return {"FINISHED"} ## ====================================================================== class OmniOverrideMixin: def set_active(self, ob:Object): try: bpy.context.view_layer.objects.active = ob except RuntimeError as e: print(f"-- unable to set active: {ob.name} ({e}") def override(self, objects:List[Object], single=False): assert isinstance(objects, (list, tuple)), "'objects' is expected to be a list or tuple" assert len(objects), "'objects' cannot be empty" ## filter out objects not in current view layer objects = list(filter(lambda x: x.name in bpy.context.view_layer.objects, objects)) if single: objects = objects[0:1] override = { 'active_object': objects[0], 'edit_object': None, 'editable_objects': objects, 'object': objects[0], 'objects_in_mode': [], 'objects_in_mode_unique_data': [], 'selectable_objects': objects, 'selected_editable_objects': objects, 'selected_objects': objects, 'visible_objects': objects, } self.set_active(objects[0]) return bpy.context.temp_override(**override) def edit_override(self, objects:List[Object], single=False): assert isinstance(objects, (list, tuple)), "'objects' is expected to be a list or tuple" assert len(objects), "'objects' cannot be empty" if single: objects = objects[0:1] override = { 'active_object': objects[0], 'edit_object': objects[0], 'editable_objects': objects, 'object': objects[0], 'objects_in_mode': objects, 'objects_in_mode_unique_data': objects, 'selectable_objects': objects, 'selected_editable_objects': objects, 'selected_objects': objects, 'visible_objects': objects, } self.set_active(objects[0]) return bpy.context.temp_override(**override) ## ====================================================================== class OBJECT_OT_omni_sceneopt_optimize(bpy.types.Operator, OmniSceneOptPropertiesMixin, OmniSceneOptChopPropertiesMixin, OmniSceneOptGeneratePropertiesMixin, OmniOverrideMixin): """Run specified optimizations on the scene or on selected objects.""" bl_idname = "omni_sceneopt.optimize" bl_label = "Omni Scene Optimization: Optimize Scene" bl_options = {"REGISTER", "UNDO"} # def draw(self, context:Context): # """Empty draw to disable the Operator Props Panel.""" # pass def _object_mode(self): if not bpy.context.mode == "OBJECT": bpy.ops.object.mode_set(mode="OBJECT") def _edit_mode(self): if not bpy.context.mode == "EDIT_MESH": bpy.ops.object.mode_set(mode="EDIT") @staticmethod def _remove_shape_keys(ob:Object): assert ob.type == "MESH", "Cannot be run on non-Mesh Objects." ## Reversed because we want to remove Basis last, or we will end up ## with garbage baked in. for key in reversed(ob.data.shape_keys.key_blocks): ob.shape_key_remove(key) @staticmethod def _select_one(ob:Object): bpy.ops.object.select_all(action="DESELECT") ob.select_set(True) bpy.context.view_layer.objects.active = ob @staticmethod def _select_objects(objects:List[Object]): bpy.ops.object.select_all(action="DESELECT") for item in objects: item.select_set(True) bpy.context.view_layer.objects.active = objects[-1] @staticmethod def _get_evaluated(objects:List[Object]) -> List[Object]: deps = bpy.context.evaluated_depsgraph_get() return [x.evaluated_get(deps).original for x in objects] @staticmethod def _total_vertex_count(target_objects:List[Object]): deps = bpy.context.evaluated_depsgraph_get() eval_objs = [x.evaluated_get(deps) for x in target_objects] return sum([len(x.data.vertices) for x in eval_objs]) def do_validate(self, target_objects:List[Object]) -> List[Object]: """Expects to be run in Edit Mode with all meshes selected""" total_orig = self._total_vertex_count(target_objects) bpy.ops.mesh.select_all(action="SELECT") bpy.ops.mesh.dissolve_degenerate() total_result = self._total_vertex_count(target_objects) if self.verbose: plural, obj_count = get_plural_count(target_objects) message = f"Validated {obj_count} object{plural}." self.report({"INFO"}, message) return target_objects def do_weld(self, target_objects:List[Object]) -> List[Object]: """Expects to be run in Edit Mode with all meshes selected""" bpy.ops.mesh.remove_doubles(threshold=self.weld_distance, use_unselected=True) bpy.ops.mesh.normals_make_consistent(inside=False) return target_objects def do_unwrap(self, target_objects:List[Object]) -> List[Object]: bpy.ops.object.select_all(action="DESELECT") start = time.time() for item in target_objects: with self.edit_override([item]): bpy.ops.object.mode_set(mode="EDIT") bpy.ops.mesh.select_all(action="SELECT") bpy.ops.uv.smart_project(island_margin=0.0) bpy.ops.uv.select_all(action="SELECT") # bpy.ops.uv.average_islands_scale() # bpy.ops.uv.pack_islands(margin=self.unwrap_margin) bpy.ops.object.mode_set(mode="OBJECT") end = time.time() if self.verbose: plural, obj_count = get_plural_count(target_objects) message = f"Unwrapped {obj_count} object{plural} ({end-start:.02f} seconds)." self.report({"INFO"}, message) return target_objects def do_decimate(self, target_objects:List[Object]) -> List[Object]: assert bpy.context.mode == "OBJECT", "Decimate must be run in object mode." total_orig = self._total_vertex_count(target_objects) total_result = 0 start = time.time() for item in target_objects: if item.data.shape_keys and len(item.data.shape_keys.key_blocks): if not self.decimate_remove_shape_keys: self.report({"WARNING"}, f"[ Decimate ] Skipping {item.name} because it has shape keys.") continue else: self._remove_shape_keys(item) if len(item.data.polygons) < self.decimate_min_face_count: self.report({"INFO"}, f"{item.name} is under face count-- not decimating.") continue ## We're going to use the decimate modifier mod = item.modifiers.new("OmniLOD", type="DECIMATE") mod.decimate_type = "COLLAPSE" mod.ratio = self.decimate_ratio / 100.0 mod.use_collapse_triangulate = True mod.use_symmetry = self.decimate_use_symmetry mod.symmetry_axis = self.decimate_symmetry_axis ## we don't need a full context override here self.set_active(item) bpy.ops.object.modifier_apply(modifier=mod.name) total_result += len(item.data.vertices) end = time.time() if self.verbose: plural, obj_count = get_plural_count(target_objects) message = f"Decimated {obj_count} object{plural}. Vertex count original {total_orig} to {total_result} ({end-start:.02f} seconds)." self.report({"INFO"}, message) return target_objects def do_chop(self, target_objects:List[Object]): """ Assumes all objects are selected and that we are in Object mode """ assert bpy.context.mode == "OBJECT", "Chop must be run in object mode." scene = bpy.context.scene attributes = scene.omni_sceneopt_chop.attributes() attributes["selected_only"] = self.selected bpy.ops.omni_sceneopt.chop(**attributes) return target_objects def do_generate(self, target_objects:List[Object]): with self.override(target_objects): bpy.ops.omni_sceneopt.generate(generate_type=self.generate_type, generate_duplicate=self.generate_duplicate) return target_objects def execute(self, context:Context) -> Set[str]: start = time.time() active = context.active_object if self.selected: targets = selected_meshes(context.scene) else: targets = [x for x in context.scene.collection.all_objects if x.type == "MESH"] bpy.ops.object.select_all(action="DESELECT") [ x.select_set(True) for x in targets ] if active: self.set_active(active) if not len(targets): self.info({"ERROR"}, "No targets specified.") return {"CANCELLED"} self._object_mode() ## Have to do vertex counts outside edit mode! total_orig = self._total_vertex_count(targets) if self.validate or self.weld: with self.edit_override(targets): bpy.ops.object.mode_set(mode="EDIT") ## We can run these two operations together because they don't collide ## or cause issues between each other. if self.validate: self.do_validate(targets) if self.weld: self.do_weld(targets) ## Unfortunately, the rest are object-by-object operations self._object_mode() total_result = self._total_vertex_count(targets) if self.verbose and self.weld: plural, obj_count = get_plural_count(targets) message = f"Welded {obj_count} object{plural}. Vertex count original {total_orig} to {total_result}." self.report({"INFO"}, message) if self.unwrap: self.do_unwrap(targets) if self.decimate: self.do_decimate(targets) if self.chop: self.do_chop(targets) if self.generate: self.do_generate(targets) end = time.time() if self.verbose: self.report({"INFO"}, f"Optimization complete-- process took {end-start:.02f} seconds") return {"FINISHED"} ## ====================================================================== class OBJECT_OT_omni_sceneopt_chop(bpy.types.Operator, OmniSceneOptChopPropertiesMixin): """Chop the specified object into a grid of smaller ones""" bl_idname = "omni_sceneopt.chop" bl_label = "Omni Scene Optimizer: Chop" bl_options = {"REGISTER", "UNDO"} # def draw(self, context:Context): # """Empty draw to disable the Operator Props Panel.""" # pass def execute(self, context:Context) -> Set[str]: attributes = dict( merge=self.merge, cut_meshes=self.cut_meshes, max_vertices=self.max_vertices, min_box_size=self.min_box_size, max_depth=self.max_depth, print_updated_results=self.print_updated_results, create_bounds=self.create_bounds, selected_only=self.selected_only ) from .scripts.chop import Chop chopper = Chop() chopper.execute(self.attributes()) return {"FINISHED"} ## ====================================================================== class OBJECT_OT_omni_sceneopt_generate(bpy.types.Operator, OmniSceneOptGeneratePropertiesMixin, OmniOverrideMixin): """Generate geometry based on selected objects. Currently supported: Bounding Box, Convex Hull""" bl_idname = "omni_sceneopt.generate" bl_label = "Omni Scene Optimizer: Generate" bl_options = {"REGISTER", "UNDO"} # def draw(self, context:Context): # """Empty draw to disable the Operator Props Panel.""" # pass def create_geometry_nodes_group(self, group:NodeTree): """Create or return the shared Generate node group.""" node_type = { "CONVEX_HULL": "GeometryNodeConvexHull", "BOUNDING_BOX": "GeometryNodeBoundBox", }[self.generate_type] geometry_input = group.nodes["Group Input"] geometry_input.location = Vector((-1.5 * geometry_input.width, 0)) group_output = group.nodes["Group Output"] group_output.location = Vector((1.5 * group_output.width, 0)) node = group.nodes.new(node_type) node.name = "Processor" group.links.new(geometry_input.outputs['Geometry'], node.inputs['Geometry']) group.links.new(node.outputs[0], group_output.inputs['Geometry']) return bpy.data.node_groups[generate_name] def create_geometry_nodes_modifier(self, ob:Object) -> Modifier: if generate_name in ob.modifiers: ob.modifiers.remove(ob.modifiers[generate_name]) if generate_name in bpy.data.node_groups: bpy.data.node_groups.remove(bpy.data.node_groups[generate_name]) mod = ob.modifiers.new(name=generate_name, type="NODES") bpy.ops.node.new_geometry_node_group_assign() mod.node_group.name = generate_name self.create_geometry_nodes_group(mod.node_group) return mod def create_duplicate(self, ob:Object, token:str) -> Object: from .batch import lod duplicate = lod.duplicate_object(ob, token, weld=False) return duplicate @preserve_selection def apply_modifiers(self, target_objects:List[Object]): count = 0 for item in target_objects: if self.generate_duplicate: token = self.generate_type.rpartition("_")[-1] duplicate = self.create_duplicate(item, token=token) duplicate.parent = item.parent duplicate.matrix_world = item.matrix_world.copy() bpy.context.scene.collection.objects.unlink(duplicate) for collection in item.users_collection: collection.objects.link(duplicate) item = duplicate with self.override([item]): mod = self.create_geometry_nodes_modifier(item) bpy.context.view_layer.objects.active = item item.select_set(True) bpy.ops.object.modifier_apply(modifier=mod.name) count += 1 def execute(self, context:Context) -> Set[str]: changed = self.apply_modifiers(context.selected_objects) if changed: group = bpy.data.node_groups["OMNI_SCENEOPT_GENERATE"] bpy.data.node_groups.remove(group) return {"FINISHED"} ## ====================================================================== class OBJECT_OT_omni_progress(bpy.types.Operator): bl_idname = "omni.progress" bl_label = "Export Optimized USD" bl_options = {"REGISTER", "UNDO"} message: StringProperty(name="message", description="Message to print upon completion.", default="") _timer = None def modal(self, context:Context, event:Event) -> Set[str]: if context.scene.omni_progress_active is False: message = self.message.strip() if len(message): self.report({"INFO"}, message) return {"FINISHED"} context.area.tag_redraw() context.window.cursor_set("WAIT") return {"RUNNING_MODAL"} def invoke(self, context:Context, event:Event) -> Set[str]: context.scene.omni_progress_active = True self._timer = context.window_manager.event_timer_add(0.1, window=context.window) context.window_manager.modal_handler_add(self) context.window.cursor_set("WAIT") return {"RUNNING_MODAL"} ## ====================================================================== class OBJECT_OT_omni_sceneopt_export(bpy.types.Operator, OmniSceneOptPropertiesMixin, OmniSceneOptChopPropertiesMixin, OmniSceneOptGeneratePropertiesMixin): """Runs specified optimizations on the scene before running a USD Export""" bl_idname = "omni_sceneopt.export" bl_label = "Export USD" bl_options = {"REGISTER", "UNDO"} filepath: StringProperty(subtype="FILE_PATH") filter_glob: StringProperty(default="*.usd;*.usda;*.usdc", options={"HIDDEN"}) check_existing: BoolProperty(default=True, options={"HIDDEN"}) def draw(self, context:Context): """Empty draw to disable the Operator Props Panel.""" pass def invoke(self, context:Context, event:Event) -> Set[str]: if len(self.filepath.strip()) == 0: self.filepath = "untitled.usdc" context.window_manager.fileselect_add(self) return {"RUNNING_MODAL"} def execute(self, context:Context) -> Set[str]: output_path = bpy.path.abspath(self.filepath) script_path = os.sep.join((os.path.dirname(os.path.abspath(__file__)), "batch", "optimize_export.py")) bpy.ops.omni.progress(message=f"Finished background write to {output_path}") bpy.ops.wm.save_mainfile() command = " ".join([ '"{}"'.format(bpy.app.binary_path), "--background", '"{}"'.format(bpy.data.filepath), "--python", '"{}"'.format(script_path), "--", '"{}"'.format(output_path) ]) print(command) subprocess.check_output(command, shell=True) context.scene.omni_progress_active = False if self.verbose: self.report({"INFO"}, f"Exported optimized scene to: {output_path}") return {"FINISHED"} ## ====================================================================== classes = [ OBJECT_OT_omni_sceneopt_decimate, OBJECT_OT_omni_sceneopt_chop, OBJECT_OT_omni_sceneopt_generate, OBJECT_OT_omni_sceneopt_optimize, OBJECT_OT_omni_progress, OBJECT_OT_omni_sceneopt_export, chopProperties ] def unregister(): try: del bpy.types.Scene.omni_sceneopt_chop except AttributeError: pass try: del bpy.types.Scene.omni_progress_active except AttributeError: pass for cls in reversed(classes): try: bpy.utils.unregister_class(cls) except (ValueError, AttributeError, RuntimeError): continue def register(): for cls in classes: bpy.utils.register_class(cls) bpy.types.Scene.omni_sceneopt_chop = bpy.props.PointerProperty(type=chopProperties) bpy.types.Scene.omni_progress_active = bpy.props.BoolProperty(default=False)
23,131
Python
30.687671
134
0.67001
NVIDIA-Omniverse/blender_omniverse_addons/omni_optimization_panel/panel.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. from bpy.types import Panel from os.path import join, dirname import bpy.utils.previews #---------------Custom ICONs---------------------- def get_icons_directory(): icons_directory = join(dirname(__file__), "icons") return icons_directory class OPTIMIZE_PT_Panel(Panel): bl_space_type = "VIEW_3D" bl_region_type = "UI" bl_label = "OPTIMIZE SCENE" bl_category = "Omniverse" #retrieve icons icons = bpy.utils.previews.new() icons_directory = get_icons_directory() icons.load("OMNI", join(icons_directory, "ICON.png"), 'IMAGE') icons.load("GEAR", join(icons_directory, "gear.png"), 'IMAGE') def draw(self, context): layout = self.layout layout.label(text="Omniverse", icon_value=self.icons["OMNI"].icon_id) optimizeOptions = context.scene.optimize_options modifyOptions = context.scene.modify_options uvOptions = context.scene.uv_options chopOptions = context.scene.chop_options # OPERATOR SETTINGS box = layout.box() col = box.column(align= True) row = col.row(align=True) row.scale_y = 1.5 row.operator("optimize.scene", text = "Optimize Scene", icon_value=self.icons["GEAR"].icon_id) col.separator() row2 = col.row(align=True) row2.scale_y = 1.3 row2.prop(optimizeOptions, "operation", text="Operation") col.separator() col.prop(optimizeOptions, "print_attributes", expand= True) box2 = layout.box() box2.label(text= "OPERATION PROPERTIES:") col2 = box2.column(align= True) # MODIFY SETTINGS if optimizeOptions.operation == 'modify': row = col2.row(align= True) row.prop(modifyOptions, "modifier", text="Modifier") row2 = col2.row(align= True) row3 = col2.row(align= True) #DECIMATE if modifyOptions.modifier == 'DECIMATE': row2.prop(modifyOptions, "decimate_type", expand= True) if modifyOptions.decimate_type == 'COLLAPSE': row3.prop(modifyOptions, "ratio", expand= True) elif modifyOptions.decimate_type == 'UNSUBDIV': row3.prop(modifyOptions, "iterations", expand= True) elif modifyOptions.decimate_type == 'DISSOLVE': row3.prop(modifyOptions, "angle", expand= True) #REMESH elif modifyOptions.modifier == 'REMESH': row2.prop(modifyOptions, "remesh_type", expand= True) if modifyOptions.remesh_type == 'BLOCKS': row3.prop(modifyOptions, "oDepth", expand= True) if modifyOptions.remesh_type == 'SMOOTH': row3.prop(modifyOptions, "oDepth", expand= True) if modifyOptions.remesh_type == 'SHARP': row3.prop(modifyOptions, "oDepth", expand= True) if modifyOptions.remesh_type == 'VOXEL': row3.prop(modifyOptions, "voxel_size", expand= True) #NODES elif modifyOptions.modifier == 'NODES': row2.prop(modifyOptions, "geo_type") if modifyOptions.geo_type == "GeometryNodeSubdivisionSurface": row2.prop(modifyOptions, "geo_attribute", expand= True) col2.prop(modifyOptions, "selected_only", expand= True) col2.prop(modifyOptions, "apply_mod", expand= True) box3 = col2.box() col3 = box3.column(align=True) col3.label(text="FIX MESH BEFORE MODIFY") col3.prop(modifyOptions, "fix_bad_mesh", expand= True) if modifyOptions.fix_bad_mesh: col3.prop(modifyOptions, "dissolve_threshold", expand= True) col3.prop(modifyOptions, "merge_vertex", expand= True) if modifyOptions.merge_vertex: col3.prop(modifyOptions, "merge_threshold", expand= True) if modifyOptions.fix_bad_mesh or modifyOptions.merge_vertex: col3.prop(modifyOptions, "remove_existing_sharp", expand= True) col3.prop(modifyOptions, "fix_normals", expand= True) if modifyOptions.fix_normals: col3.prop(modifyOptions, "create_new_custom_normals", expand= True) # use_modifier_stack= modifyOptions.use_modifier_stack, # modifier_stack=[["DECIMATE", "COLLAPSE", 0.5]], # FIX MESH SETTINGS elif optimizeOptions.operation == 'fixMesh': col2.prop(modifyOptions, "selected_only", expand= True) col3 = col2.column(align=True) col3.prop(modifyOptions, "fix_bad_mesh", expand= True) if modifyOptions.fix_bad_mesh: col3.prop(modifyOptions, "dissolve_threshold", expand= True) col3.prop(modifyOptions, "merge_vertex", expand= True) if modifyOptions.merge_vertex: col3.prop(modifyOptions, "merge_threshold", expand= True) if modifyOptions.fix_bad_mesh or modifyOptions.merge_vertex: col3.prop(modifyOptions, "remove_existing_sharp", expand= True) col3.prop(modifyOptions, "fix_normals", expand= True) if modifyOptions.fix_normals: col3.prop(modifyOptions, "create_new_custom_normals", expand= True) # UV SETTINGS elif optimizeOptions.operation == 'uv': if uvOptions.unwrap_type == 'Smart': col2.label(text= "SMART UV CAN BE SLOW", icon='ERROR') else: col2.label(text= "Unwrap Type") col2.prop(uvOptions, "unwrap_type", expand= True) col2.prop(uvOptions, "selected_only", expand= True) col2.prop(uvOptions, "scale_to_bounds", expand= True) col2.prop(uvOptions, "clip_to_bounds", expand= True) col2.prop(uvOptions, "use_set_size", expand= True) if uvOptions.use_set_size: col2.prop(uvOptions, "set_size", expand= True) col2.prop(uvOptions, "print_updated_results", expand= True) # CHOP SETTINGS elif optimizeOptions.operation == 'chop': col2.prop(chopOptions, "selected_only", expand= True) col2.prop(chopOptions, "cut_meshes", expand= True) col2.prop(chopOptions, "max_vertices", expand= True) col2.prop(chopOptions, "min_box_size", expand= True) col2.prop(chopOptions, "max_depth", expand= True) col2.prop(chopOptions, "merge", expand= True) col2.prop(chopOptions, "create_bounds", expand= True) col2.prop(chopOptions, "print_updated_results", expand= True)
7,603
Python
44.532934
102
0.605682
NVIDIA-Omniverse/blender_omniverse_addons/omni_optimization_panel/properties.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. from typing import * from bpy.props import * import bpy class optimizeProperties(bpy.types.PropertyGroup): # PROPERTIES operation: EnumProperty( name="Operation", items= [ ('modify', 'MODIFY', 'run modify'), ('fixMesh', 'FIX MESH', 'run fix Mesh'), ('uv', 'UV UNWRAP', "run uv"), ('chop', 'CHOP', 'run chop')], description= "Choose the operation to run on the scene", default = 'modify' ) print_attributes: BoolProperty( name ="Print Attributes", description = "Print attributes used at the begging of operation", default = False ) class modProperties(bpy.types.PropertyGroup): # PROPERTIES selected_only: BoolProperty( name ="Use Selected Only", description = "Operate on selected objects only", default = False ) apply_mod: BoolProperty( name ="Apply Modifier", description = "Apply modifier after adding", default = True ) fix_bad_mesh: BoolProperty( name ="Fix Bad Mesh", description = "Remove zero area faces and zero length edges", default = False ) dissolve_threshold: FloatProperty( name="Dissolve Threshold", description = "Threshold value used with Fix Bad Mesh", default=0.08, min=0, max=50 ) merge_vertex: BoolProperty( name ="Merge Vertex", description = "Merge vertices by distance", default = False ) merge_threshold: FloatProperty( name="Merge Threshold", description = "Distance value used with merge vertex", default=0.01, min=0, max=50 ) remove_existing_sharp: BoolProperty( name ="Remove Existing Sharp", description = "Remove existing sharp edges from meshes. This helps sometimes after fixing bad meshes", default = True ) fix_normals: BoolProperty( name ="Fix Normals", description = "Remove existing custom split normals", default = False ) create_new_custom_normals: BoolProperty( name ="Create New Custom Normals", description = "Create new custom split normals", default = False ) # Some common modifier names for reference:'DECIMATE''REMESH''NODES''SUBSURF''SOLIDIFY''ARRAY''BEVEL' modifier: EnumProperty( name="Modifier", items= [ ('DECIMATE', 'Decimate', 'decimate geometry'), ('REMESH', 'Remesh', 'remesh geometry'), ('NODES', 'Nodes', 'add geometry node mod'), ('FIX', 'Fix Mesh', "fix mesh")], description= "Choose the modifier to apply to geometry", default = 'DECIMATE' ) # TODO: Implement this modifier stack properly. would allow for multiple modifiers to be queued and run at once # use_modifier_stack: BoolProperty( # name ="Use Modifier Stack", # description = "use stack of modifiers instead of a single modifier", # default = False # ) # modifier_stack: CollectionProperty( # type= optimizeProperties, # name="Modifiers", # description= "list of modifiers to be used", # default = [["DECIMATE", "COLLAPSE", 0.5]] # ) decimate_type: EnumProperty( items= [ ('COLLAPSE','collapse',"collapse geometry"), ('UNSUBDIV','unSubdivide',"un subdivide geometry"), ('DISSOLVE','planar',"dissolve geometry")], description = "Choose which type of decimation to perform.", default = "COLLAPSE" ) ratio: FloatProperty( name="Ratio", default=0.5, min=0.0, max=1.0 ) iterations: IntProperty( name="Iterations", default=2, min=0, max=50 ) angle: FloatProperty( name="Angle", default=15.0, min=0.0, max=180.0 ) remesh_type: EnumProperty( items= [ ('BLOCKS','blocks',"collapse geometry"), ('SMOOTH','smooth',"un subdivide geometry"), ('SHARP','sharp',"un subdivide geometry"), ('VOXEL','voxel',"dissolve geometry")], description = "Choose which type of remesh to perform.", default = "VOXEL" ) oDepth: IntProperty( name="Octree Depth", default=4, min=1, max=8 ) voxel_size: FloatProperty( name="Voxel Size", default=0.1, min=0.01, max=2.0 ) geo_type: EnumProperty( items= [ ('GeometryNodeConvexHull','convex hull',"basic convex hull"), ('GeometryNodeBoundBox','bounding box',"basic bounding box"), ('GeometryNodeSubdivisionSurface','subdiv',"subdivide geometry")], description = "Choose which type of geo node tree to add", default = "GeometryNodeBoundBox" ) geo_attribute: IntProperty( name="Attribute", description = "Additional attribute used for certain geo nodes", default=2, min=0, max=8 ) class uvProperties(bpy.types.PropertyGroup): # PROPERTIES selected_only: BoolProperty( name ="Use Selected Only", description = "Operate on selected objects only", default = False ) unwrap_type: EnumProperty( items= [ ('Cube','cube project',"basic convex hull"), ('Sphere','sphere project',"subdivide geometry"), ('Cylinder','cylinder project',"dissolve geometry"), ('Smart','smart project',"basic bounding box")], description = "Choose which type of unwrap process to use.", default = "Cube" ) scale_to_bounds: BoolProperty( name ="Scale To Bounds", description = "Scale UVs to 2D bounds", default = False ) clip_to_bounds: BoolProperty( name ="Clip To Bounds", description = "Clip UVs to 2D bounds", default = False ) use_set_size: BoolProperty( name ="Use Set Size", description = "Use a defined UV size for all objects", default = False ) set_size : FloatProperty( name="Set Size", default=2.0, min=0.01, max=100.0 ) print_updated_results: BoolProperty( name ="Print Updated Results", description = "Print updated results to console", default = True ) class OmniSceneOptChopPropertiesMixin: selected_only: BoolProperty( name="Split Selected Only", description="Operate on selected objects only", default=False ) print_updated_results: BoolProperty( name="Print Updated Results", description="Print updated results to console", default=True ) cut_meshes: BoolProperty( name="Cut Meshes", description="Cut meshes", default=True ) merge: BoolProperty( name="Merge", description="Merge split chunks after splitting is complete", default=False ) create_bounds: BoolProperty( name="Create Boundary Objects", description="Add generated boundary objects to scene", default=False ) max_depth: IntProperty( name="Max Depth", description="Maximum recursion depth", default=8, min=0, max=32 ) max_vertices: IntProperty( name="Max Vertices", description="Maximum vertices allowed per block", default=10000, min=0, max=1000000 ) min_box_size: FloatProperty( name="Min Box Size", description="Minimum dimension for a chunk to be created", default=1, min=0, max=10000 ) def attributes(self) -> Dict: return dict( merge=self.merge, cut_meshes=self.cut_meshes, max_vertices=self.max_vertices, min_box_size=self.min_box_size, max_depth=self.max_depth, print_updated_results=self.print_updated_results, create_bounds=self.create_bounds, selected_only=self.selected_only ) def set_attributes(self, attributes:Dict): for attr, value in attributes.items(): if hasattr(self, attr): setattr(self, attr, value) else: raise ValueError(f"OmniSceneOptChopPropertiesMixin: invalid attribute for set {attr}") class chopProperties(bpy.types.PropertyGroup, OmniSceneOptChopPropertiesMixin): pass
9,344
Python
27.842593
115
0.601241
NVIDIA-Omniverse/blender_omniverse_addons/omni_optimization_panel/ui.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. import os from typing import * import bpy from bpy.utils import previews from bpy.props import (BoolProperty, EnumProperty, FloatProperty, IntProperty, StringProperty) from bpy.types import (Context, Object, Operator, Scene) from .operators import ( OBJECT_OT_omni_sceneopt_optimize, OBJECT_OT_omni_sceneopt_export, OmniSceneOptPropertiesMixin, OmniSceneOptGeneratePropertiesMixin, selected_meshes, symmetry_axis_items ) ## ====================================================================== def preload_icons() -> previews.ImagePreviewCollection: """Preload icons used by the interface.""" icons_directory = os.path.join(os.path.dirname(os.path.abspath(__file__)), "icons") all_icons = { "GEAR": "gear.png", "ICON": "ICON.png", } preview = previews.new() for name, filepath in all_icons.items(): preview.load(name, os.path.join(icons_directory, filepath), "IMAGE") return preview ## ====================================================================== class OmniSceneOptProperties(bpy.types.PropertyGroup, OmniSceneOptPropertiesMixin, OmniSceneOptGeneratePropertiesMixin): """We're only here to register the mixins through the PropertyGroup""" pass ## ====================================================================== def can_run_optimization(scene:Scene) -> bool: if scene.omni_sceneopt.selected and not len(selected_meshes(scene)): return False has_operations = any(( scene.omni_sceneopt.validate, scene.omni_sceneopt.weld, scene.omni_sceneopt.decimate, scene.omni_sceneopt.unwrap, scene.omni_sceneopt.chop, scene.omni_sceneopt.generate, )) if not has_operations: return False return True ## ====================================================================== class OBJECT_PT_OmniOptimizationPanel(bpy.types.Panel): bl_space_type = 'VIEW_3D' bl_region_type = 'UI' bl_category = "Omniverse" bl_label = "Scene Optimizer" bl_options = {"DEFAULT_CLOSED"} icons = preload_icons() @staticmethod def _apply_parameters(settings, op:Operator): """Copy parameters from the scene-level settings blob to an operator""" invalid = {"bl_rna", "name", "rna_type"} for property_name in filter(lambda x: not x[0] == '_' and not x in invalid, dir(settings)): if hasattr(op, property_name): value = getattr(settings, property_name) setattr(op, property_name, value) op.verbose = True def draw_validate(self, layout, scene: Scene): box = layout.box() box.prop(scene.omni_sceneopt, "validate") def draw_weld(self, layout, scene: Scene): box = layout.box() box.prop(scene.omni_sceneopt, "weld") if not scene.omni_sceneopt.weld: return box.prop(scene.omni_sceneopt, "weld_distance") def draw_decimate(self, layout, scene: Scene): box = layout.box() box.prop(scene.omni_sceneopt, "decimate") if not scene.omni_sceneopt.decimate: return box.prop(scene.omni_sceneopt, "decimate_ratio") box.prop(scene.omni_sceneopt, "decimate_min_face_count") row = box.row() row.prop(scene.omni_sceneopt, "decimate_use_symmetry") row = row.row() row.prop(scene.omni_sceneopt, "decimate_symmetry_axis", text="") row.enabled = scene.omni_sceneopt.decimate_use_symmetry box.prop(scene.omni_sceneopt, "decimate_remove_shape_keys") def draw_unwrap(self, layout, scene: Scene): box = layout.box() box.prop(scene.omni_sceneopt, "unwrap") if not scene.omni_sceneopt.unwrap: return box.prop(scene.omni_sceneopt, "unwrap_margin") def draw_chop(self, layout, scene: Scene): box = layout.box() box.prop(scene.omni_sceneopt, "chop") if not scene.omni_sceneopt.chop: return col = box.column(align=True) col.prop(scene.omni_sceneopt_chop, "max_vertices") col.prop(scene.omni_sceneopt_chop, "min_box_size") col.prop(scene.omni_sceneopt_chop, "max_depth") box.prop(scene.omni_sceneopt_chop, "create_bounds") def draw_generate(self, layout, scene: Scene): box = layout.box() box.prop(scene.omni_sceneopt, "generate", text="Generate Bounding Mesh") if not scene.omni_sceneopt.generate: return col = box.column(align=True) col.prop(scene.omni_sceneopt, "generate_type") col.prop(scene.omni_sceneopt, "generate_duplicate") def draw_operators(self, layout, context:Context, scene:Scene): layout.label(text="") row = layout.row(align=True) row.label(text="Run Operations", icon="PLAY") row.prop(scene.omni_sceneopt, "selected", text="Selected Meshes Only") run_text = f"{'Selected' if scene.omni_sceneopt.selected else 'Scene'}" col = layout.column(align=True) op = col.operator(OBJECT_OT_omni_sceneopt_optimize.bl_idname, text=f"Optimize {run_text}", icon_value=self.icons["GEAR"].icon_id) self._apply_parameters(scene.omni_sceneopt, op) col.enabled = can_run_optimization(scene) col = layout.column(align=True) op = col.operator(OBJECT_OT_omni_sceneopt_export.bl_idname, text=f"Export Optimized Scene to USD", icon='EXPORT') self._apply_parameters(scene.omni_sceneopt, op) col.label(text="Export Options") row = col.row(align=True) row.prop(scene.omni_sceneopt, "merge") row.prop(scene.omni_sceneopt, "export_textures") def draw(self, context:Context): scene = context.scene layout = self.layout self.draw_validate(layout, scene=scene) self.draw_weld(layout, scene=scene) self.draw_unwrap(layout, scene=scene) self.draw_decimate(layout, scene=scene) self.draw_chop(layout, scene=scene) self.draw_generate(layout, scene=scene) self.draw_operators(layout, context, scene=scene) ## ====================================================================== classes = [ OBJECT_PT_OmniOptimizationPanel, OmniSceneOptProperties, ] def unregister(): try: del bpy.types.Scene.omni_sceneopt except (ValueError, AttributeError, RuntimeError): pass for cls in reversed(classes): try: bpy.utils.unregister_class(cls) except (ValueError, AttributeError, RuntimeError): continue def register(): for cls in classes: bpy.utils.register_class(cls) bpy.types.Scene.omni_sceneopt = bpy.props.PointerProperty(type=OmniSceneOptProperties)
6,169
Python
27.302752
94
0.677906
NVIDIA-Omniverse/blender_omniverse_addons/omni_optimization_panel/batch/lod.py
import argparse import os import sys from typing import * import bpy from bpy.types import (Collection, Context, Image, Object, Material, Mesh, Node, NodeSocket, NodeTree, Scene) from bpy.props import * from mathutils import * ## ====================================================================== def select_only(ob:Object): """ Ensure that only the specified object is selected. :param ob: Object to select """ bpy.ops.object.select_all(action="DESELECT") ob.select_set(state=True) bpy.context.view_layer.objects.active = ob ## -------------------------------------------------------------------------------- def _selected_meshes(context:Context, use_instancing=True) -> List[Mesh]: """ :return: List[Mesh] of all selected mesh objects in active Blender Scene. """ ## instances support meshes = [x for x in context.selected_objects if x.type == "MESH"] instances = [x for x in context.selected_objects if x.type == "EMPTY" and x.instance_collection] if use_instancing: for inst in instances: instance_meshes = [x for x in inst.instance_collection.all_objects if x.type == "MESH"] meshes += instance_meshes meshes = list(set(meshes)) return meshes ## -------------------------------------------------------------------------------- def copy_object_parenting(source_ob:Object, target_ob:Object): """ Copy parenting and Collection membership from a source object. """ target_collections = list(target_ob.users_collection) for collection in target_collections: collection.objects.unlink(target_ob) for collection in source_ob.users_collection: collection.objects.link(target_ob) target_ob.parent = source_ob.parent ## -------------------------------------------------------------------------------- def find_unique_name(name:str, library:Iterable) -> str: """ Given a Blender library, find a unique name that does not exist in it. """ if not name in library: return name index = 0 result_name = name + f".{index:03d}" while result_name in library: index += 1 result_name = name + f".{index:03d}" print(f"Unique Name: {result_name}") return result_name ## -------------------------------------------------------------------------------- def duplicate_object(ob:Object, token:str="D", weld=True) -> Object: """ Duplicates the specified object, maintaining the same parenting and collection memberships. """ base_name = "__".join((ob.name.rpartition("__")[0] if "__" in ob.name else ob.name, token)) base_data = "__".join((ob.data.name.rpartition("__")[0] if "__" in ob.data.name else ob.data.name, token)) if base_name in bpy.data.objects: base_name = find_unique_name(base_name, bpy.data.objects) if base_data in bpy.data.objects: base_data = find_unique_name(base_data, bpy.data.objects) data = ob.data.copy() data.name = base_data duplicate = bpy.data.objects.new(base_name, data) ## Ensure scene collection membership ## Prototypes might not have this or be in the view layer if not duplicate.name in bpy.context.scene.collection.all_objects: bpy.context.scene.collection.objects.link(duplicate) select_only(duplicate) ## decimate doesn't work on unwelded triangle soups if weld: bpy.ops.object.mode_set(mode="EDIT") bpy.ops.mesh.select_all(action="SELECT") bpy.ops.mesh.remove_doubles(threshold=0.01, use_unselected=True) bpy.ops.object.mode_set(mode="OBJECT") return duplicate ## -------------------------------------------------------------------------------- def delete_mesh_object(ob:Object): """ Removes object from the Blender library. """ base_name = ob.name data_name = ob.data.name bpy.data.objects.remove(bpy.data.objects[base_name]) bpy.data.meshes.remove(bpy.data.meshes[data_name]) ## -------------------------------------------------------------------------------- def decimate_object(ob:Object, token:str=None, ratio:float=0.5, use_symmetry:bool=False, symmetry_axis="X", min_face_count:int=3, create_duplicate=True): old_mode = bpy.context.mode scene = bpy.context.scene token = token or "DCM" if create_duplicate: target = duplicate_object(ob, token=token) else: target = ob if len(target.data.polygons) < min_face_count: print(f"{target.name} is under face count-- not decimating.") return target ## We're going to use the decimate modifier mod = target.modifiers.new("OmniLOD", type="DECIMATE") mod.decimate_type = "COLLAPSE" mod.ratio = ratio mod.use_collapse_triangulate = True mod.use_symmetry = use_symmetry mod.symmetry_axis = symmetry_axis bpy.ops.object.select_all(action="DESELECT") target.select_set(True) bpy.context.view_layer.objects.active = target bpy.ops.object.modifier_apply(modifier=mod.name) return target ## -------------------------------------------------------------------------------- def decimate_selected(ratios:List[float]=[0.5], min_face_count=3, use_symmetry:bool=False, symmetry_axis="X", use_instancing=True): assert isinstance(ratios, (list, tuple)), "Ratio should be a list of floats from 0.1 to 1.0" for value in ratios: assert 0.1 <= value <= 1.0, f"Invalid ratio value {value} -- should be between 0.1 and 1.0" selected_objects = list(bpy.context.selected_objects) active = bpy.context.view_layer.objects.active selected_meshes = _selected_meshes(bpy.context, use_instancing=use_instancing) total = len(selected_meshes) * len(ratios) count = 1 print(f"\n\n[ Generating {total} decimated LOD meshes (minimum face count: {min_face_count}]") for mesh in selected_meshes: welded_duplicate = duplicate_object(mesh, token="welded") for index, ratio in enumerate(ratios): padd = len(str(total)) - len(str(count)) token = f"LOD{index}" orig_count = len(welded_duplicate.data.vertices) lod_duplicate = decimate_object(welded_duplicate, ratio=ratio, token=token, use_symmetry=use_symmetry, symmetry_axis=symmetry_axis, min_face_count=min_face_count) print(f"[{'0'*padd}{count}/{total}] Decimating {mesh.name} to {ratio} ({orig_count} >> {len(lod_duplicate.data.vertices)}) ...") copy_object_parenting(mesh, lod_duplicate) count += 1 delete_mesh_object(welded_duplicate) print(f"\n[ Decimation complete ]\n\n") ## -------------------------------------------------------------------------------- def import_usd_file(filepath:str, root_prim:Optional[str]=None, visible_only:bool=False, use_instancing:bool=True): all_objects = bpy.context.scene.collection.all_objects names = [x.name for x in all_objects] try: bpy.ops.object.mode_set(mode="OBJECT") except RuntimeError: pass for name in names: ob = bpy.data.objects[name] bpy.data.objects.remove(ob) kwargs = { "filepath":filepath, "import_cameras": False, "import_curves": False, "import_lights": False, "import_materials": True, "import_blendshapes": False, "import_volumes": False, "import_skeletons": False, "import_shapes": False, "import_instance_proxies": True, "import_visible_only": visible_only, "read_mesh_uvs": True, "read_mesh_colors": False, "use_instancing": use_instancing, "validate_meshes": True, } if root_prim: ## if you end with a slash it fails kwargs["prim_path_mask"] = root_prim[:-1] if root_prim.endswith("/") else root_prim bpy.ops.wm.usd_import(**kwargs) print(f"Imported USD file: {filepath}") ## -------------------------------------------------------------------------------- def export_usd_file(filepath:str, use_instancing:bool=True): kwargs = { "filepath":filepath, "visible_objects_only": False, "default_prim_path": "/World", "root_prim_path": "/World", "generate_preview_surface": True, "export_materials": True, "export_uvmaps": True, "merge_transform_and_shape": True, "use_instancing": use_instancing, } bpy.ops.wm.usd_export(**kwargs) print(f"Wrote USD file with UVs: {filepath}") ## ====================================================================== if __name__ == "__main__": real_args = sys.argv[sys.argv.index("--") + 1:] if "--" in sys.argv else [] parser = argparse.ArgumentParser() parser.add_argument('--input', type=str, required=True, help="Path to input USD file") parser.add_argument('--output', type=str, help="Path to output USD file (default is input_LOD.usd)") parser.add_argument('--ratios', type=str, required=True, help='Ratios to use as a space-separated string, ex: "0.5 0.2"') parser.add_argument('--use_symmetry', action="store_true", default=False, help="Decimate with symmetry enabled.") parser.add_argument('--symmetry_axis', default="X", help="Symmetry axis to use (X, Y, or Z)") parser.add_argument('--visible_only', action="store_true", default=False, help="Only import visible prims from the input USD file.") parser.add_argument('--min_face_count', type=int, default=3, help="Minimum number of faces for decimation.") parser.add_argument('--no_instancing', action="store_false", help="Process the prototype meshes of instanced prims.") parser.add_argument('--root_prim', type=str, default=None, help="Root Prim to import. If unspecified, the whole file will be imported.") if not len(real_args): parser.print_help() sys.exit(1) args = parser.parse_args(real_args) input_file = os.path.abspath(args.input) split = input_file.rpartition(".") output_path = args.output or (split[0] + "_LOD." + split[-1]) ratios = args.ratios if not " " in ratios: ratios = [float(ratios)] else: ratios = list(map(lambda x: float(x), ratios.split(" "))) use_instancing = not args.no_instancing import_usd_file(input_file, root_prim=args.root_prim, visible_only=args.visible_only, use_instancing=use_instancing) bpy.ops.object.select_all(action="SELECT") decimate_selected(ratios=ratios, min_face_count=args.min_face_count, use_symmetry=args.use_symmetry, symmetry_axis=args.symmetry_axis, use_instancing=use_instancing) export_usd_file(output_path, use_instancing=use_instancing) sys.exit(0)
9,912
Python
32.94863
166
0.64659
NVIDIA-Omniverse/blender_omniverse_addons/omni_optimization_panel/batch/optimize_export.py
import os import sys import time import bpy from omni_optimization_panel.operators import OmniOverrideMixin omniover = OmniOverrideMixin() ## ====================================================================== def perform_scene_merge(): """ Combine all selected mesh objects into a single mesh. """ orig_scene = bpy.context.scene selected = [x for x in bpy.context.selected_objects if x.type == "MESH"] if not len(selected): print("-- No objects selected for merge.") return merge_collection = bpy.data.collections.new("MergeCollection") if not "MergeCollection" in bpy.data.collections else bpy.data.collections["MergeCollection"] merge_scene = bpy.data.scenes.new("MergeScene") if not "MergeScene" in bpy.data.scenes else bpy.data.scenes["MergeScene"] for child in merge_scene.collection.children: merge_scene.collection.children.unlink(child) for ob in merge_collection.all_objects: merge_collection.objects.unlink(ob) to_merge = set() sources = set() for item in selected: to_merge.add(item) merge_collection.objects.link(item) if not item.instance_type == "NONE": item.show_instancer_for_render = True child_set = set(item.children) to_merge |= child_set sources |= child_set merge_scene.collection.children.link(merge_collection) bpy.context.window.scene = merge_scene for item in to_merge: try: merge_collection.objects.link(item) except RuntimeError: continue ## make sure to remove shape keys and merge modifiers for all merge_collection objects for item in merge_collection.all_objects: with omniover.override([item], single=True): if item.data.shape_keys: bpy.ops.object.shape_key_remove(all=True, apply_mix=True) for mod in item.modifiers: bpy.ops.object.modifier_apply(modifier=mod.name, single_user=True) ## turns out the make_duplis_real function swaps selection for you, and ## leaves non-dupli objects selected bpy.ops.object.select_all(action="SELECT") bpy.ops.object.duplicates_make_real() ## this invert and delete is removing the old instancer objects bpy.ops.object.select_all(action="INVERT") for item in sources: item.select_set(True) bpy.ops.object.delete(use_global=False) bpy.ops.object.select_all(action="SELECT") ## need an active object for join poll() bpy.context.view_layer.objects.active = bpy.context.selected_objects[0] bpy.ops.object.join() ## ====================================================================== if __name__ == "__main__": real_args = sys.argv[sys.argv.index("--") + 1:] if "--" in sys.argv else [] if not len(real_args): print("-- No output path name.") sys.exit(-1) output_file = real_args[-1] ## make sure the add-on is properly loaded bpy.ops.preferences.addon_enable(module="omni_optimization_panel") start_time = time.time() ## pull all attribute names from all mixins for passing on to the optimizer sceneopts = bpy.context.scene.omni_sceneopt chopopts = bpy.context.scene.omni_sceneopt_chop skips = {"bl_rna", "name", "rna_type"} optimize_kwargs = {} for item in sceneopts, chopopts: for key in filter(lambda x: not x.startswith("__") and not x in skips, dir(item)): optimize_kwargs[key] = getattr(item, key) print(f"optimize kwargs: {optimize_kwargs}") if sceneopts.merge: ## merge before because of the possibility of objects getting created perform_scene_merge() bpy.ops.wm.save_as_mainfile(filepath=output_file.rpartition(".")[0]+".blend") ## always export whole scene optimize_kwargs["selected"] = False optimize_kwargs["verbose"] = True bpy.ops.omni_sceneopt.optimize(**optimize_kwargs) optimize_time = time.time() print(f"Optimization time: {(optimize_time - start_time):.2f} seconds.") export_kwargs = { "filepath": output_file, "visible_objects_only": False, "default_prim_path": "/World", "root_prim_path": "/World", "material_prim_path": "/World/materials", "generate_preview_surface": True, "export_materials": True, "export_uvmaps": True, "merge_transform_and_shape": True, "use_instancing": True, "export_textures": sceneopts.export_textures, } bpy.ops.wm.usd_export(**export_kwargs) export_time = time.time() print(f"Wrote optimized USD file: {output_file}") print(f"Export time: {(export_time - optimize_time):.2f} seconds.") print(f"Total time: {(export_time - start_time):.2f} seconds.") sys.exit(0)
4,378
Python
30.278571
157
0.693011
NVIDIA-Omniverse/blender_omniverse_addons/omni_optimization_panel/batch/uv.py
import argparse import os import sys from typing import * import bpy from bpy.types import (Collection, Context, Image, Object, Material, Mesh, Node, NodeSocket, NodeTree, Scene) from bpy.props import * from mathutils import * ## ====================================================================== OMNI_MATERIAL_NAME = "OmniUVTestMaterial" ## ====================================================================== def select_only(ob:Object): """ Ensure that only the specified object is selected. :param ob: Object to select """ bpy.ops.object.select_all(action="DESELECT") ob.select_set(state=True) bpy.context.view_layer.objects.active = ob ## -------------------------------------------------------------------------------- def _selected_meshes(context:Context) -> List[Mesh]: """ :return: List[Mesh] of all selected mesh objects in active Blender Scene. """ return [x for x in context.selected_objects if x.type == "MESH"] ## -------------------------------------------------------------------------------- def get_test_material() -> Material: image_name = "OmniUVGrid" if not image_name in bpy.data.images: bpy.ops.image.new(generated_type="COLOR_GRID", width=4096, height=4096, name=image_name, alpha=False) if not OMNI_MATERIAL_NAME in bpy.data.materials: image = bpy.data.images[image_name] material = bpy.data.materials.new(name=OMNI_MATERIAL_NAME) ## this creates the new graph material.use_nodes = True tree = material.node_tree shader = tree.nodes['Principled BSDF'] im_node = tree.nodes.new("ShaderNodeTexImage") im_node.location = [-300, 300] tree.links.new(im_node.outputs['Color'], shader.inputs['Base Color']) im_node.image = image return bpy.data.materials[OMNI_MATERIAL_NAME] ## -------------------------------------------------------------------------------- def apply_test_material(ob:Object): ##!TODO: Generate it select_only(ob) while len(ob.material_slots): bpy.ops.object.material_slot_remove() material = get_test_material() bpy.ops.object.material_slot_add() ob.material_slots[0].material = material ## -------------------------------------------------------------------------------- def unwrap_object(ob:Object, uv_layer_name="OmniUV", apply_material=False, margin=0.0): """ Unwraps the target object by creating a fixed duplicate and copying the UVs over to the original. """ old_mode = bpy.context.mode scene = bpy.context.scene if not old_mode == "OBJECT": bpy.ops.object.mode_set(mode="OBJECT") select_only(ob) uv_layers = list(ob.data.uv_layers) for layer in uv_layers: ob.data.uv_layers.remove(layer) bpy.ops.object.mode_set(mode="EDIT") bpy.ops.mesh.select_all(action='SELECT') bpy.ops.uv.cube_project() bpy.ops.object.mode_set(mode="OBJECT") duplicate = ob.copy() duplicate.data = ob.data.copy() scene.collection.objects.link(duplicate) ## if the two objects are sitting on each other it gets silly, ## so move the dupe over by double it's Y bounds size bound_size = Vector(duplicate.bound_box[0]) - Vector(duplicate.bound_box[-1]) duplicate.location.y += bound_size.y select_only(duplicate) bpy.ops.object.mode_set(mode="EDIT") bpy.ops.mesh.select_all(action='SELECT') bpy.ops.mesh.remove_doubles(threshold=0.01, use_unselected=True) bpy.ops.mesh.normals_make_consistent(inside=True) bpy.ops.object.mode_set(mode="OBJECT") bpy.ops.object.mode_set(mode="EDIT") bpy.ops.uv.select_all(action='SELECT') bpy.ops.uv.smart_project(island_margin=margin) bpy.ops.uv.average_islands_scale() bpy.ops.uv.pack_islands(margin=0) bpy.ops.object.mode_set(mode="OBJECT") ## copies from ACTIVE to all other SELECTED select_only(ob) ## This is incredibly broken # bpy.ops.object.data_transfer(data_type="UV") ## snap back now that good UVs exist; the two meshes need to be in the same ## position in space for the modifier to behave correctly. duplicate.matrix_world = ob.matrix_world.copy() modifier = ob.modifiers.new(type="DATA_TRANSFER", name="OmniBake_Transfer") modifier.object = duplicate modifier.use_loop_data = True modifier.data_types_loops = {'UV'} modifier.loop_mapping = 'NEAREST_NORMAL' select_only(ob) bpy.ops.object.modifier_apply(modifier=modifier.name) if apply_material: apply_test_material(ob) bpy.data.objects.remove(duplicate) ## -------------------------------------------------------------------------------- def unwrap_selected(uv_layer_name="OmniUV", apply_material=False, margin=0.0): old_mode = bpy.context.mode selected_objects = list(bpy.context.selected_objects) active = bpy.context.view_layer.objects.active selected_meshes = _selected_meshes(bpy.context) total = len(selected_meshes) count = 1 print(f"\n\n[ Unwrapping {total} meshes ]") for mesh in selected_meshes: padd = len(str(total)) - len(str(count)) print(f"[{'0'*padd}{count}/{total}] Unwrapping {mesh.name}...") unwrap_object(mesh, uv_layer_name=uv_layer_name, apply_material=apply_test_material) count += 1 print(f"\n[ Unwrapping complete ]\n\n") select_only(selected_objects[0]) for item in selected_objects[1:]: item.select_set(True) bpy.context.view_layer.objects.active = active if old_mode == "EDIT_MESH": bpy.ops.object.mode_set(mode="EDIT") ## -------------------------------------------------------------------------------- def import_usd_file(filepath:str, root_prim=None, visible_only=False): all_objects = bpy.context.scene.collection.all_objects names = [x.name for x in all_objects] try: bpy.ops.object.mode_set(mode="OBJECT") except RuntimeError: pass for name in names: ob = bpy.data.objects[name] bpy.data.objects.remove(ob) kwargs = { "filepath":filepath, "import_cameras": False, "import_curves": False, "import_lights": False, "import_materials": False, "import_blendshapes": False, "import_volumes": False, "import_skeletons": False, "import_shapes": False, "import_instance_proxies": True, "import_visible_only": visible_only, "read_mesh_uvs": False, "read_mesh_colors": False, } if root_prim: ## if you end with a slash it fails kwargs["prim_path_mask"] = root_prim[:-1] if root_prim.endswith("/") else root_prim bpy.ops.wm.usd_import(**kwargs) print(f"Imported USD file: {filepath}") ## -------------------------------------------------------------------------------- def export_usd_file(filepath:str): kwargs = { "filepath":filepath, "visible_objects_only": False, "default_prim_path": "/World", "root_prim_path": "/World", # "generate_preview_surface": False, # "generate_mdl": False, "merge_transform_and_shape": True, } bpy.ops.wm.usd_export(**kwargs) print(f"Wrote USD file with UVs: {filepath}") ## ====================================================================== if __name__ == "__main__": real_args = sys.argv[sys.argv.index("--") + 1:] if "--" in sys.argv else [] parser = argparse.ArgumentParser() parser.add_argument('--input', type=str, required=True, help="Path to input USD file") parser.add_argument('--output', type=str, help="Path to output USD file (default is input_UV.usd)") parser.add_argument('--margin', type=float, default=None, help="Island margin (default is 0.01)") parser.add_argument('--root_prim', type=str, default=None, help="Root Prim to import. If unspecified, the whole file will be imported.") parser.add_argument('--add_test_material', action="store_true") parser.add_argument('--visible_only', action="store_true", default=False) if not len(real_args): parser.print_help() sys.exit(1) args = parser.parse_args(real_args) input_file = os.path.abspath(args.input) split = input_file.rpartition(".") output_path = args.output or (split[0] + "_UV." + split[-1]) margin = args.margin or 0.0 import_usd_file(input_file, root_prim=args.root_prim, visible_only=args.visible_only) bpy.ops.object.select_all(action="SELECT") unwrap_selected(apply_material=args.add_test_material, margin=margin) export_usd_file(output_path) sys.exit(0)
8,005
Python
29.674329
103
0.639975
NVIDIA-Omniverse/blender_omniverse_addons/omni_optimization_panel/scripts/geo_nodes.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. import bpy from mathutils import Vector # the type of geometry node tree to create: # geometry nodes is currently under development, so feature set is not yet at a stage to be fully utilized # this puts in place a framework for more customizable and easily implementable optimizations in the future # geometry nodes is a modifier, but unlike "DECIMATE" or "REMESH", geometry nodes can be customized with a wide array of options. # similar to other modifiers, if there are multiple objects with the same geo node modifier, the calculations are done independently for each object. # currently this setup can be used for generating convex hulls, creating bounding box meshes, and subdividing geometry. # (GeometryNodeConvexHull, GeometryNodeBoundBox, GeometryNodeSubdivisionSurface) # as the nodes options in blender expand, A lot more can be done wit it. # more on geometry nodes: https://docs.blender.org/manual/en/latest/modeling/geometry_nodes/index.html#geometry-nodes def new_GeometryNodes_group(): # create a new empty node group that can be used in a GeometryNodes modifier # tree only contains a simple input/output node setup # the input node gives a geometry, and the output node takes a geometry. # nodes then have input and output SOCKET(S). # this basic tree setup will accesses the output socket of the input node in order to connect it to the input socket of the output node # in order to make these connections, physical links between index values of inputs and outputs need to be made # this tree on its own will do nothing. In order to make changes to the geometry, more nodes must be inserted node_group = bpy.data.node_groups.new('GeometryNodes', 'GeometryNodeTree') # this is the container for the nodes inNode = node_group.nodes.new('NodeGroupInput') # this is the input node and gives the geometry to be modified. inNode.outputs.new('NodeSocketGeometry', 'Geometry') # gets reference to the output socket on the input node outNode = node_group.nodes.new('NodeGroupOutput') # this is the output node and returns the geometry that modified. outNode.inputs.new('NodeSocketGeometry', 'Geometry') # gets reference to the input socket on the output node node_group.links.new(inNode.outputs['Geometry'], outNode.inputs['Geometry']) # makes the link between the two nodes at the given sockets inNode.location = Vector((-1.5*inNode.width, 0)) # sets the position of the node in 2d space so that they are readable in the GUI outNode.location = Vector((1.5*outNode.width, 0)) return node_group # now that there is a basic node tree, additional nodes can be inserted into the tree to modify the geometry def geoTreeBasic(geo_tree, nodes, group_in, group_out, geo_type, attribute): # once the base geo tree has been created, we can insert additional pieces # this includes: convex hull, bounding box, subdivide new_node = nodes.new(geo_type) # create a new node of the specified type # insert that node between the input and output node geo_tree.links.new(group_in.outputs['Geometry'], new_node.inputs[0]) geo_tree.links.new(new_node.outputs[0], group_out.inputs['Geometry']) if geo_type == 'GeometryNodeSubdivisionSurface': # subsurf node requires an additional input value geo_tree.nodes["Subdivision Surface"].inputs[1].default_value = attribute def geoNodes(objects, geo_type, attribute): # TODO: When Geo Nodes develops further, hopefully all other modifier ops can be done through nodes # (currently does not support decimate/remesh) modifier = 'NODES' # create empty tree - this tree is a container for nodes geo_tree = new_GeometryNodes_group() # add tree to all objects for obj in objects: # for each object in selected objects, add the desired modifier and adjust its properties mod = obj.modifiers.new(name = modifier, type=modifier) # set name of modifier based on its type mod.node_group = geo_tree #bpy.data.node_groups[geo_tree.name] # alter tree - once the default tree has been created, additional nodes can be added in nodes = geo_tree.nodes group_in = nodes.get('Group Input') # keep track of the input node group_out = nodes.get('Group Output') # keep track of the output node geoTreeBasic(geo_tree, nodes, group_in, group_out, geo_type, attribute) # adds node to make modifications to the geometry
5,272
Python
63.304877
149
0.744499
NVIDIA-Omniverse/blender_omniverse_addons/omni_optimization_panel/scripts/run_ops_wo_update.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. from bpy.ops import _BPyOpsSubModOp view_layer_update = _BPyOpsSubModOp._view_layer_update def open_update(): # blender operator calls update the scene each time after running # updating the scene can take a long time, esp for large scenes. So we want to delay update until we are finished # there is not an official way to suppress this update, so we need to use a workaround def dummy_view_layer_update(context): # tricks blender into thinking the scene has been updated and instead passes pass _BPyOpsSubModOp._view_layer_update = dummy_view_layer_update def close_update(): # in the end, still need to update scene, so this manually calls update _BPyOpsSubModOp._view_layer_update = view_layer_update
1,619
Python
42.783783
118
0.731316
NVIDIA-Omniverse/blender_omniverse_addons/omni_optimization_panel/scripts/chop.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. import bpy, bmesh from mathutils import Vector import time from . import blender_class, run_ops_wo_update, select_mesh, bounds, utils, fix_mesh class Chop(blender_class.BlenderClass): # settings for GUI version only bl_idname = "chop.scene" bl_label = "Chop Scene" bl_description = "Recursively split scene in half until reaches a desired threshold" bl_options = {"REGISTER", "UNDO"} print_results = True def __init__(self): self._default_attributes = dict( merge= True, # optionally merge meshes in each split chunk after split recursion is complete cut_meshes=True, # split all meshes intersecting each cut plane # Cannot set this very low since split creates new triangles(if quads...) max_vertices= 100000, # a vertex threshold value, that once a chunk is below, the splitting terminates min_box_size= 1, # a size threshold that once a chunk is smaller than, the splitting terminates max_depth= 16, # a recursion depth threshold that once is reached, the splitting terminates print_updated_results= True, # print progress to console create_bounds = False, # create new bounds objects for displaying the cut boundaries. Mostly useful for GUI selected_only = False # uses only objects selected in scene. For GUI version only ) def execute(self, in_attributes=None): attributes = self.get_attributes(in_attributes) context = bpy.context Chop.print_results = attributes["print_updated_results"] Stats.resetValues() Stats.startTime = time.time() then = Stats.startTime # select objects selected = select_mesh.setSelected(context, attributes["selected_only"], deselectAll = False) if len(selected): # run only if there are selected mesh objects in the scene self.split(context, selected, attributes) # starts the splitting process now = time.time() # time after it finished Stats.printTermination() if attributes['merge']: Stats.printMerge() print("TIME FOR SPLIT: ", round(now-then, 3)) else: utils.do_print_error("NO MESH OBJECTS") return {'FINISHED'} def getSplitPlane(self, obj_details): # the cut plane used in split. Aligned perpendicular to the longest dimension of the bounds # find longest side var = {obj_details.x.distance: "x", obj_details.y.distance: "y", obj_details.z.distance: "z"} max_dim = var.get(max(var)) # get the axis name of maximum of the three dims # adjust the plane normal depending on the axis with the largest dimension if max_dim == "x": normal = [1,0,0,0] axis = "x" elif max_dim == "y": normal = [0,1,0,0] axis = "y" else: normal = [0,0,1,0] axis = "z" # get data for sub-boxes midPt = [obj_details.x.mid,obj_details.y.mid,obj_details.z.mid] # get center of bounds to be able to create the next set of bounds return midPt, normal, axis def getSplitBoxes(self, obj_details, attributes): # get the bounds for the two successive splits during recursion # find longest side var = {obj_details.x.distance: "x", obj_details.y.distance: "y", obj_details.z.distance: "z"} mx = var.get(max(var)) # get the axis name of maximum of the three dims mid_0 = [obj_details.x.max, obj_details.y.max, obj_details.z.max] # the longest axis value will be replaced with a mid point high = mid_0.copy() # maximum value of bounds mid_1 = [obj_details.x.min, obj_details.y.min, obj_details.z.min] # the longest axis value will be replaced with a mid point low = mid_1.copy() # minimum value fo bounds midPt = [obj_details.x.mid,obj_details.y.mid,obj_details.z.mid] # center point of previous bounds # replace the mid point of new bounds depending on the axis with the largest dimension if mx == "x": mid_0[0] = midPt[0] mid_1[0] = midPt[0] elif mx == "y": mid_0[1] = midPt[1] mid_1[1] = midPt[1] else: mid_0[2] = midPt[2] mid_1[2] = midPt[2] # Create sub-bounds. These are the two halves of the previous bounds, split along the longest axis of the bounds # only need two points to calculate bounds, uses the maximum/minimum value point (high/low) and the set mid point (mid_0/mid_1) coords_1 = [high[:], mid_1[:]] # put the points in a list box_0 = bounds.bounds(coords_1) # gather attributes of new bounds (max, min, mid, and dim of each axis) coords_0 = [low[:], mid_0[:]] # put the points in a list box_1 = bounds.bounds(coords_0) # gather attributes of new bounds (max, min, mid, and dim of each axis) if attributes["create_bounds"]: # optionally create display objects for viewing bounds bounds.boundsObj(coords_1) bounds.boundsObj(coords_0) return box_0, box_1 def boxTooSmall(self, obj_details, attributes): # returns whether bounds of current occurrences is too small # find longest sides dims = [obj_details.x.distance, obj_details.y.distance, obj_details.z.distance] # get the dimensions of each axis of the bounds if max(dims) < attributes["min_box_size"]: # if the maximum of the three dims is less than the specified min_box_size return True # continue recursion return False # end recursion def parentEmpty(self, part, children): # for parenting new created objects from split parent_name = part.name # part is the original object that was split. keep track of its name parent_col = part.users_collection[0] # track the collection of the part as well parent_parent = part.parent # if the part object has an existing parent track that too bpy.data.objects.remove(part, do_unlink=True) # now that that info is stored, part can be deleted and removed from the scene # an empty will take the place of the original part obj = bpy.data.objects.new(parent_name, None) # create an empty object that will inherit the name of part parent_col.objects.link(obj) # connect this object to part's collection obj.parent = parent_parent # make this empty the child of part's parent for child in children: # make the newly created objects from the split operation children of the empty child.parent = obj def newObj(self, bm, parent): # create a new object for each half of a split obj = parent.copy() # parent is the original mesh being split. this contains data such as material, # so it is easiest to start with a copy of the object obj.data = parent.data.copy() # need to copy the object mesh data separately # TODO: obj.animation_data = sibling.animation_data.copy() # not sure if animation data should be copied. This would do that. parent.users_collection[0].objects.link(obj) # apply bmesh to new mesh bm.to_mesh(obj.data) # Once the new object is formed, bmesh data created during the split process can be transferred to the new obj bm.free() # always do this when finished with a bmesh return obj def checkIntersect(self, obj, axis, center): # for checking cut plane intersection while splitting # intersection is checked by testing the objects bounds rather than each vertex individually obj_details = bounds.bounds([obj.matrix_world @ Vector(v) for v in obj.bound_box]) tolerance = .01 # a tolerance value for intersection to prevent cutting a mesh that is in line with cut plane # TODO: may need to have user control over this tolerance, or define it relative to total scene size. # check for intersection depending on the direction of the cutting # boolean is created for both sides of cut plane. # rather than a single boolean checking for intersection, return if mesh is on one or both sides of cut plane. if axis == "x": intersect_0 = obj_details.x.max > center[0] + tolerance intersect_1 = obj_details.x.min < center[0] - tolerance elif axis == "y": intersect_0 = obj_details.y.max > center[1] + tolerance intersect_1 = obj_details.y.min < center[1] - tolerance elif axis == "z": intersect_0 = obj_details.z.max > center[2] + tolerance intersect_1 = obj_details.z.min < center[2] - tolerance return intersect_0, intersect_1 def doSplit(self, partsToSplit, planeOrigin, planeNormal, axis): # perform the actual split # split separates the occurrences into two. those halves need to be stored in their own new lists occurrences_0 = [] occurrences_1 = [] for part in partsToSplit: # iterate over occurrences intersect_0, intersect_1 = self.checkIntersect(part, axis, planeOrigin) # only perform split if object intersects the cut plane. if intersect_0 and intersect_1: # if mesh has vertices on both sides of cut plane Stats.printPart(part) # print the part being processed co = part.matrix_world.inverted() @ Vector(planeOrigin) # splitting takes place relative to object space not world space. normDir = part.matrix_world.transposed() @ Vector(planeNormal) # need to adjust plane origin and normal for each object. bmi = bmesh.new() # 'bmesh' in Blender is data type that contains the 'edit mesh' for an object # It allows for much greater control over mesh properties and operations bmi.from_mesh(part.data) # attach the mesh to the bmesh container so that changes can be made bmo = bmi.copy() # must use two separate bmesh objects because two new occurrence lists are being written to # bisect_plane is how to split a mesh using a plane. It can only save one side of the split result at a time, so it is done twice # save inner mesh data bmesh.ops.bisect_plane(bmi, geom=bmi.verts[:]+bmi.edges[:]+bmi.faces[:], # the geometry to be split, which is the first bmesh just created dist=0.0001, # a threshold value for the split to check vertex proximity to cut plane # TODO: may need to have user control over this tolerance, or define it relative to total scene size. plane_co=co, # the cut plane plane_no=(normDir.x,normDir.y,normDir.z), # the plane normal direction clear_inner=True, # remove the geometry on the positive side of the cut plane clear_outer=False) # keep the geometry on the negative side of the cut plane # save outer mesh data bmesh.ops.bisect_plane(bmo, geom=bmo.verts[:]+bmo.edges[:]+bmo.faces[:], # the geometry to be split, which is the second bmesh just created dist=0.0001, # a threshold value for the split to check vertex proximity to cut plane plane_co=co, # the cut plane plane_no=(normDir.x,normDir.y,normDir.z), # the plane normal direction clear_inner=False, # keep the geometry on the positive side of the cut plane clear_outer=True) # remove the geometry on the negative side of the cut plane # make the bmesh the object's mesh # need to transfer the altered bmesh data back to the original mesh children = [] # create a list that will contain the newly created split meshes obj = self.newObj(bmi, part) # create a new mesh object to attach the inner bmesh data to occurrences_0.append(obj) # add new object to inner occurrence list children.append(obj) # add new object to children list obj2 = self.newObj(bmo, part) # create a new mesh object to attach the outer bmesh data to occurrences_1.append(obj2) # add new object to outer occurrence list children.append(obj2) # add new object to children list self.parentEmpty(part, children) # use children list to fix object parents if Chop.print_results: utils.printClearLine() # clear last printed line before continuing # if there are vertices on only one side of the cut plane there is nothing to split so place the existing mesh into the appropriate list elif intersect_0: occurrences_0.append(part) # add object to inner occurrence list part.select_set(False) # deselect object else: occurrences_1.append(part )# add object to outer occurrence list part.select_set(False) # deselect object # bisect_plane can create empty objects, or zero vert count meshes. remove those objects before continuing occurrences_0 = fix_mesh.deleteEmptyXforms(occurrences_0) # update occurrences_0 occurrences_1 = fix_mesh.deleteEmptyXforms(occurrences_1) # update occurrences_1 return occurrences_0, occurrences_1 def doMerge(self, partsToMerge): # for merging individual meshes within each chunk after split is complete if len(partsToMerge) > 1: # if there is only one mesh or zero meshes, there is no merging to do then = time.time() # time at the beginning of merge ctx = bpy.context.copy() #making a copy of the current context allows for temporary modifications to be made # in this case, the temporary context is switching the active and selected objects # this allows avoiding needing to deselect and reselect after the merge ctx['selected_editable_objects'] = partsToMerge # set the meshes in the chunk being merged to be selected ctx['active_object'] = partsToMerge[0] # set active object. Blender needs active object to be the selected object parents = [] # a list that will contain the parent of each part being merged for merge in partsToMerge: parents.append(merge.parent) run_ops_wo_update.open_update() # allows for operators to be run without updating scene bpy.ops.object.join(ctx) # merges all parts into one run_ops_wo_update.close_update() # must always call close_update if open_update is called now = time.time() # time after merging is complete Stats.mergeTime += (now-then) # add time to total merge time to get an output of total time spent on merge def recursiveSplit(self, occurrences, attributes, obj_details, depth): # runs checks before each split, and handles recursion if not occurrences: # if there are no occurrences, end recursion Stats.printPercent(depth, True) # optionally print results before ending recursion return # Check for maximum recursive depth has been reached to terminate and merge if attributes["max_depth"] != 0 and depth >= attributes["max_depth"]: # if max recursion depth is 0, the check will be ignored Stats.chunks += 1 # each split creates a new chunk, adds only chunks from completed recursive branches Stats.printMsg_maxDepth += 1 # "REACHED MAX DEPTH" Stats.printPercent(depth) # optionally print results before ending recursion if attributes["merge"]: # if merging, do so now self.doMerge(occurrences) return # Check for vertex count threshold and bbox size to terminate and merge vertices = utils.getVertexCount(occurrences) if self.boxTooSmall(obj_details, attributes) or vertices < attributes["max_vertices"]: Stats.chunks += 1 # each split creates a new chunk, adds only chunks form completed recursive branches if vertices < attributes["max_vertices"]: Stats.printMsg_vertexGoal += 1 # "REACHED VERTEX GOAL" elif self.boxTooSmall(obj_details, attributes): # or vertices < attributes["max_vertices"]: Stats.printMsg_boxSize += 1 # "BOX TOO SMALL" Stats.printPercent(depth) # optionally print results before ending recursion if attributes["merge"]: # if merging, do so now self.doMerge(occurrences) return # Keep subdividing planeOrigin, planeNormal, axis = self.getSplitPlane(obj_details) # calculate components for cutter object # Do the split and merge if attributes["cut_meshes"]: # splits meshes in scene based on cut plane and separates them into two halves occurrences_0, occurrences_1 = self.doSplit(occurrences, planeOrigin, planeNormal, axis) depth += 1 # if split has taken place, increment recursive depth count # Recurse. Get bounding box for each half. box_0, box_1 = self.getSplitBoxes(obj_details, attributes) self.recursiveSplit(occurrences_0, attributes, box_0, depth) self.recursiveSplit(occurrences_1, attributes, box_1, depth) def split(self, context, selected, attributes): # preps original occurrences and file for split occurrences = selected # tracks the objects for each recursive split # on the first split, this is the selected objects. # Initial bbox includes all original occurrences boundsCombined = bounds.boundingBox(occurrences) # gets the combined bounds coordinates of the occurrences obj_details = bounds.bounds(boundsCombined) # create a dictionary of specific statistics for each axis of bounds if attributes["create_bounds"]: # optionally create a bounds object for each recursive split. target_coll_name = "BOUNDARIES" # put these objects in a separate collection to keep scene organized target_coll = bpy.data.collections.new(target_coll_name) # create a new collection in the master scene collection context.scene.collection.children.link(target_coll) # link the newly created collection to the scene bounds.boundsObj(boundsCombined) # create bounds obj depth = 0 # tracks recursive depth print("-----SPLIT HAS BEGUN-----") Stats.printPercent(depth) # for optionally printing progress of operation self.recursiveSplit(occurrences, attributes, obj_details, depth) # begin recursive split class Stats(): startTime= 0 # start time of script execution, used for calculating progress printMsg_vertexGoal = 0 # for tracking number of times recursion terminated because vertex goal was reached printMsg_boxSize = 0 # for tracking number of times recursion terminated because box was too small printMsg_maxDepth = 0 # for tracking number of times recursion terminated because max recursive depth was exceeded percent_worked = 0 # for tracking amount of scene that contains objects for progress calculation percent_empty = 0 # for tracking amount of scene that is empty for progress calculation chunks = 0 # the number of parts created after the recursive split. each chunk may contain multiple meshes/objects mergeTime = 0 # for tracking the amount of time spent merging chunks def resetValues(): # reset values before running Stats.startTime= 0 Stats.printMsg_vertexGoal = 0 Stats.printMsg_boxSize = 0 Stats.printMsg_maxDepth = 0 Stats.percent_worked = 0 Stats.percent_empty = 0 Stats.chunks = 0 Stats.mergeTime = 0 # for printing progress statistics to console def printTermination(): print("Reached Vertex Goal: ", Stats.printMsg_vertexGoal, # print number of times recursion terminated because vertex goal was reached " Box Too Small: ", Stats.printMsg_boxSize, # print number of times recursion terminated because box was too small " Exceeded Max Depth: ", Stats.printMsg_maxDepth) # print number of times recursion terminated because max recursive depth was exceeded print("chunks: ", Stats.chunks) # print total number of chunks created from split def printMerge(): print("merge time: ", Stats.mergeTime) # print the total time the merging took def printPart(part): if Chop.print_results: print("current part being split: ", part) # want to keep track of latest part being split in order to more easily debug if blender crashes def printPercent(depth, empty=False): # for printing progress of recursive split if Chop.print_results: if depth != 0: if empty: # generated chunk contains no geometry it is considered empty Stats.percent_empty += 100/pow(2,depth) # calculated as a fraction of 2 raised to the recursive depth. Gives a measurement of total volume complete elif depth: # cannot calculate if depth is zero due to division by zero Stats.percent_worked += 100/pow(2,depth) # calculated as a fraction of 2 raised to the recursive depth. Gives a measurement of total volume complete total = Stats.percent_empty + Stats.percent_worked # percent of bounds volume calculated. Includes empty and occupied chunks percent_real = Stats.percent_worked/(100-Stats.percent_empty)*100 # calculated based on a ratio of chunks with split meshes to empty chunks. # this results in a more accurate calculation of remaining time because empty chunks take virtually zero time to process #timer now = time.time() # current time elapsed in operation if percent_real > 0: # if at least one occupied chunk has been calculated est_comp_time = f"{((now-Stats.startTime)/percent_real*100 - (now-Stats.startTime)):1.0f}" # estimation of remaining time # based on what has already been processed else: est_comp_time = "Unknown" utils.printClearLine() utils.printClearLine() # print results to console print("\033[93m" + "Percent_empty: ", f"{Stats.percent_empty:.1f}" , "%, Percent_worked: ", f"{Stats.percent_worked:.1f}", "%, Total: ", f"{total:.1f}", "%, Real: ", f"{percent_real:.1f}", "%") print("Estimated time remaining: ", est_comp_time, "s, Depth: ", depth, "\033[0m") else: print() # empty lines to prep for the progress printing print() # empty lines to prep for the progress printing
23,807
Python
59.580153
168
0.656278
NVIDIA-Omniverse/blender_omniverse_addons/omni_optimization_panel/scripts/fix_mesh.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. import bpy import bmesh import time from functools import reduce from . import blender_class, run_ops_wo_update, select_mesh, utils class FixMesh(blender_class.BlenderClass): # settings for GUI version only bl_idname = "fix.mesh" bl_label = "Fix Mesh" bl_description = "fix bad meshes in the scene" bl_options = {"REGISTER", "UNDO"} def __init__(self): self._default_attributes = dict( selected_only=False, # uses only objects selected in scene. For GUI version only fix_bad_mesh = True, # used to remove zero are faces and zero length edges based on the 'dissolve_threshold' dissolve_threshold = 0.08, # threshold value for 'fix_bad_mesh' merge_vertex = False, # merge connected and disconnected vertices of a mesh by a distance threshold merge_threshold = 0.01, # distance value to use for merge_vertex remove_existing_sharp = True, # when removing zero area faces, edge data can become messed up, causing bad normals. This helps minimize that. fix_normals = True, # optionally fix normals. useful for after 'fix_bad_mesh' to fix the normals as well. create_new_custom_normals = True # will auto generate new sharp edges (based on angle) ) def execute(self, in_attributes=None): attributes = self.get_attributes(in_attributes) context = bpy.context then = time.time() # start time of script execution if context.mode != 'OBJECT': # must be in object mode to perform the rest of the operations. bpy.ops.object.mode_set(mode='OBJECT') # select objects selected = select_mesh.setSelected(context, attributes["selected_only"], deselectAll = False) if len(selected): # run only if there are selected mesh objects in the scene # if removing zero-area-faces/zero-length-edges or merging vertices by distance: if attributes["fix_bad_mesh"] or attributes["merge_vertex"]: self.fixBadMesh( selected, attributes["dissolve_threshold"], attributes["fix_bad_mesh"], attributes["merge_vertex"], attributes["merge_threshold"], attributes["remove_existing_sharp"]) if attributes["fix_normals"]: # optionally fix bad normals (can often arise after fixing bad mesh) self.fixNormals(selected, attributes["create_new_custom_normals"]) else: utils.do_print_error("NO MESH OBJECTS") now = time.time() # time after it finished print("TIME FOR FIX MESH: ", round(now-then, 3)) return {'FINISHED'} def fixBadMesh(self, selected, dissolveThreshold = 0.08, fixBadMesh = False, mergeVertex = False, mergeThreshold = 0.1, removeExistingSharp = True): # once degenerate dissolve geometry node exists (needs to be developed by Blender), replace this with a GN setup # that would go towards producing non-destructive workflows, which is a goal for the GUI version # for printing vertex and face data startingVerts = utils.getVertexCount(selected) startingFaces = utils.getFaceCount(selected) bm = bmesh.new() # 'bmesh' in BLender is data type that contains the 'edit mesh' for an object # It allows for much greater control over mesh properties and operations for object in selected: # loop through each selected object utils.printPart(object) # print the current part being fixed. mesh = object.data # all mesh objects contain mesh data, that is what we need to alter, not the object itself bm.from_mesh(mesh) # attach the mesh to the bmesh container so that changes can be made if fixBadMesh: bmesh.ops.dissolve_degenerate( # for removing zero area faces and zero length edges bm, dist=dissolveThreshold, edges=bm.edges ) if mergeVertex: bmesh.ops.remove_doubles( bm, verts=bm.verts, dist=mergeThreshold ) # Clear sharp state for all edges. This step reduces problems that arise from bad normals if removeExistingSharp: for edge in bm.edges: edge.smooth = True # smooth is the opposite of sharp, so setting to smooth is the same as removing sharp bm.to_mesh(mesh) # need to transfer the altered bmesh data back to the original mesh bm.clear() # always clear a bmesh after use utils.printClearLine() # remove last print, so that printPart can be updated # print vertex and face data endingVerts = utils.getVertexCount(selected) endingFaces = utils.getFaceCount(selected) vertsRemoved = startingVerts-endingVerts facesRemoved = startingFaces-endingFaces print("Fix Mesh Statistics:") utils.do_print("Starting Verts: " + str(startingVerts) + ", Ending Verts: " + str(endingVerts) + ", Verts Removed: " + str(vertsRemoved)) utils.do_print("Starting Faces: " + str(startingFaces) + ", Ending Faces: " + str(endingFaces) + ", Faces Removed: " + str(facesRemoved)) def fixNormals(self, selected, createNewCustomNormals): run_ops_wo_update.open_update() # allows for operators to be run without updating scene # important especially when working with loops for o in selected: if o.type != 'MESH': continue bpy.context.view_layer.objects.active = o mesh = o.data if mesh.has_custom_normals: bpy.ops.mesh.customdata_custom_splitnormals_clear() if createNewCustomNormals: bpy.ops.mesh.customdata_custom_splitnormals_add() run_ops_wo_update.close_update() # must always call close_update if open_update is called def deleteEmptyXforms(occurrences): # Delete objects with no meshes, or zero vertex count meshes # first separate occurrences into two lists to get meshes with zero vertex count def partition(p, l): # uses lambda function to efficiently parse data return reduce(lambda x, y: x[not p(y)].append(y) or x, l, ([], [])) # if obj has vertices place in x, else place in y occurrences_clean, occurrences_dirty = partition(lambda obj:len(obj.data.vertices), occurrences) # delete obj with zero vertex count or no meshes for obj in occurrences_dirty: bpy.data.objects.remove(obj, do_unlink=True) # return good meshes return occurrences_clean
7,637
Python
48.597402
153
0.647506
NVIDIA-Omniverse/blender_omniverse_addons/omni_optimization_panel/scripts/bounds.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. import bpy, bmesh from mathutils import Vector import collections def boundsObj(points): # for displaying the bounds of each split chunk mesh = bpy.data.meshes.new("mesh") # add a new mesh obj = bpy.data.objects.new("MyObject", mesh) # add a new object using the new mesh # link the new bounds object to the newly created collection in split. # this is the last collection added to the scene, hence index of len -1 bpy.context.scene.collection.children[len( bpy.context.scene.collection.children)-1].objects.link(obj) obj.display_type = 'BOUNDS' # display only the objects bounds in the Blender viewport. bm = bmesh.new() # 'bmesh' in Blender is data type that contains the 'edit mesh' for an object # allows control over vertices, edges, and faces for point in points: # iterate over input bounds(points) bm.verts.new(point) # add a new vert # make the bmesh the object's mesh bm.to_mesh(obj.data) # transfer bmesh data to the new obj bm.free() # always do this when finished with a bmesh return obj def boundingBox(objects): # the bounding box used for calculating the split plane if not isinstance(objects, list): # if objects is not a list convert it to one objects = [objects] points_co_global = [] # list of all vertices of all objects from list with global coordinates for obj in objects: # iterate over objects list and add its vertices to list points_co_global.extend([obj.matrix_world @ Vector(v) for v in obj.bound_box]) # must add points in world space return points_co_global def bounds(coords): # returns a dictionary containing details of split bounds zipped = zip(*coords) # The zip() function returns a zip object, which is an iterator of tuples push_axis = [] # list that will contain useful for each axis for (axis, _list) in zip('xyz', zipped): # for x, y, and z axis calculate set of values and add them to list info = lambda: None info.max = max(_list) # the maximum value of bounds for each axis info.min = min(_list) # the minimum value of bounds for each axis info.distance = info.max - info.min # the length of the bounds for each axis info.mid = (info.max + info.min)/2 # the center point of bounds for each axis push_axis.append(info) # add this info to push_axis originals = dict(zip(['x', 'y', 'z'], push_axis)) # create dictionary wit the values from push_axis o_details = collections.namedtuple('object_details', ['x', 'y', 'z']) # organize dictionary to be accessed easier return o_details(**originals)
3,481
Python
47.36111
119
0.703533
NVIDIA-Omniverse/blender_omniverse_addons/omni_optimization_panel/scripts/remesh.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # Remeshing reconstructs a mesh to produce clean/uniform geometry, but removes all UV mappings from an object # There are four different remesh methods. (BLOCKS, SMOOTH, SHARP, VOXEL) # https://docs.blender.org/manual/en/latest/modeling/modifiers/generate/remesh.html#remesh-modifier def remesh(objects, remesh_type, prop): modifier = 'REMESH' # sets type of modifier to be used for obj in objects: # for each object in selected objects, add the desired modifier and adjust its properties mod = obj.modifiers.new(name = modifier, type=modifier) # set name of modifier based on its type mod.mode = remesh_type # sets remesh type (BLOCKS, SMOOTH, SHARP, VOXEL) # first three modes produce almost identical typology, but with differing amounts of smoothing (BLOCKS, SMOOTH, SHARP) if remesh_type == 'BLOCKS': # "There is no smoothing at all." mod.octree_depth = prop # controls the resolution of most of the remesh modifiers. # the higher the number, the more geometry created (2^x) elif remesh_type == 'SMOOTH': # "Output a smooth surface." mod.octree_depth = prop # the higher the number, the more geometry created (2^x) elif remesh_type == 'SHARP': # "Similar to Smooth, but preserves sharp edges and corners." mod.octree_depth = prop # the higher the number, the more geometry created (2^x) elif remesh_type == 'VOXEL': # "Uses an OpenVDB to generate a new manifold mesh from the current geometry # while trying to preserve the mesh’s original volume." mod.voxel_size = prop # used for voxel remesh to control resolution. the lower the number, the more geometry created (x) else: raise TypeError('Invalid Remesh Type') return
2,657
Python
54.374999
132
0.703049
NVIDIA-Omniverse/blender_omniverse_addons/omni_optimization_panel/scripts/process_attributes.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. from bpy.types import Operator from . import modify, fix_mesh, chop, uv, utils class OPTIMIZE_OT_Scene(Operator): bl_idname = "optimize.scene" bl_label = "Optimize Scene" bl_description = "Optimize scene based on operation and set parameters" bl_options = {"REGISTER", "UNDO"} def execute(self, context): self.get_attributes(context) return {'FINISHED'} def get_attributes(self, context): optimizeOptions = context.scene.optimize_options modifyOptions = context.scene.modify_options uvOptions = context.scene.uv_options chopOptions = context.scene.chop_options if optimizeOptions.operation == "modify": attributes = dict( selected_only= modifyOptions.selected_only, apply_mod= modifyOptions.apply_mod, fix_bad_mesh = modifyOptions.fix_bad_mesh, dissolve_threshold = modifyOptions.dissolve_threshold, merge_vertex = modifyOptions.merge_vertex, merge_threshold = modifyOptions.merge_threshold, remove_existing_sharp = modifyOptions.remove_existing_sharp, fix_normals = modifyOptions.fix_normals, create_new_custom_normals = modifyOptions.create_new_custom_normals, modifier= modifyOptions.modifier, # use_modifier_stack= modifyOptions.use_modifier_stack, # modifier_stack= modifyOptions.modifier_stack, decimate_type= modifyOptions.decimate_type, ratio= modifyOptions.ratio, iterations= modifyOptions.iterations, angle= modifyOptions.angle, remesh_type= modifyOptions.remesh_type, oDepth= modifyOptions.oDepth, voxel_size= modifyOptions.voxel_size, geo_type= modifyOptions.geo_type, geo_attribute= modifyOptions.geo_attribute ) elif optimizeOptions.operation == "fixMesh": attributes = dict( selected_only=modifyOptions.selected_only, fix_bad_mesh = modifyOptions.fix_bad_mesh, dissolve_threshold = modifyOptions.dissolve_threshold, merge_vertex = modifyOptions.merge_vertex, merge_threshold = modifyOptions.merge_threshold, remove_existing_sharp = modifyOptions.remove_existing_sharp, fix_normals = modifyOptions.fix_normals, create_new_custom_normals = modifyOptions.create_new_custom_normals ) elif optimizeOptions.operation == "uv": attributes = dict( selected_only= uvOptions.selected_only, scale_to_bounds = uvOptions.scale_to_bounds, clip_to_bounds = uvOptions.clip_to_bounds, unwrap_type = uvOptions.unwrap_type, use_set_size = uvOptions.use_set_size, set_size = uvOptions.set_size, print_updated_results= uvOptions.print_updated_results ) elif optimizeOptions.operation == "chop": attributes = dict( merge= chopOptions.merge, cut_meshes= chopOptions.cut_meshes, max_vertices= chopOptions.max_vertices, min_box_size= chopOptions.min_box_size, max_depth= chopOptions.max_depth, print_updated_results= chopOptions.print_updated_results, create_bounds = chopOptions.create_bounds, selected_only = chopOptions.selected_only ) if optimizeOptions.print_attributes: print(attributes) self.process_operation(optimizeOptions.operation, attributes) def process_operation(self, operation, attributes): start = utils.start_time() blender_cmd = None if operation == 'modify': # Modify Scene blender_cmd = modify.Modify() elif operation == 'fixMesh': # Clean Scene blender_cmd = fix_mesh.FixMesh() elif operation == 'chop': # Chop Scene blender_cmd = chop.Chop() elif operation == 'uv': # Unwrap scene blender_cmd = uv.uvUnwrap() elif operation == "noop": # Runs the load/save USD round trip without modifying the scene. utils.do_print("No-op for this scene") return else: utils.do_print_error("Unknown operation: " + operation + " - add function call to process_file in process.py") return # Run the command if blender_cmd: blender_cmd.execute(attributes) else: utils.do_print_error("No Blender class found to run") utils.report_time(start, "operation")
5,736
Python
40.273381
122
0.61175
NVIDIA-Omniverse/blender_omniverse_addons/omni_optimization_panel/scripts/utils.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # Generic utility functions for Blender import json import sys from timeit import default_timer as timer import bpy def do_print(msg): # Flush so prints immediately. print("\033[93m" + msg + "\033[0m", flush=True) def do_print_error(msg): # Flush so prints immediately. print("\033[91m" + msg + "\033[0m", flush=True) def start_time(): return timer() def report_time(start, msg): end = timer() do_print("Elapsed time for {}: {:.3f}".format(msg, end-start)) def print_python_version(): do_print("Python version: %s.%s" % (sys.version_info.major, sys.version_info.minor)) def open_file(inputPath): start = timer() # Load scene. Clears any existing file before loading if inputPath.endswith(tuple([".usd", ".usda", ".usdc"])): do_print("Load file: " + inputPath) bpy.ops.wm.usd_import(filepath=inputPath) elif inputPath.endswith(".fbx"): bpy.ops.import_scene.fbx(filepath=inputPath) else: do_print_error("Unrecognized file, not loaded: " + inputPath) return False end = timer() do_print("Elapsed time to load file: " + "{:.3f}".format(end-start)) return True def save_file(outputPath): # Save scene. Only writes diffs, so faster than export. start = timer() do_print("Save file: " + outputPath) bpy.ops.wm.usd_export(filepath=outputPath) end = timer() do_print("Elapsed time to save file: " + "{:.3f}".format(end-start)) return True def clear_scene(): # This seems to be difficult with Blender. Partially working code: bpy.ops.wm.read_factory_settings(use_empty=True) def process_json_config(operation): return json.loads(operation) if operation else None def getVertexCount(occurrences): # returns the vertex count of all current occurrences for threshold testing during recursion vertexCount = 0 for obj in occurrences: vertexCount += len(obj.data.vertices) return vertexCount def getFaceCount(occurrences): # returns the face count of all current occurrences for threshold testing during recursion faceCount = 0 for obj in occurrences: faceCount += len(obj.data.polygons) return faceCount def printPart(part): print("current part being operated on: ", part.name) def printClearLine(): LINE_UP = '\033[1A' # command to move up a line in the console LINE_CLEAR = '\x1b[2K' # command to clear current line in the console print(LINE_UP, end=LINE_CLEAR) # don't want endless print statements
3,371
Python
33.408163
125
0.69119
NVIDIA-Omniverse/blender_omniverse_addons/omni_optimization_panel/scripts/select_mesh.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # for selecting only mesh objects in the scene. To be used by multiple other files. def setSelected(context, selectedOnly = False, deselectAll = True): def select(input): for obj in input: if obj.type == 'MESH': # only mesh objects, ignore lights/cameras/curves/etc. selected.append(obj) # add object to array if deselectAll: # may want all objects deselected at end of processing obj.select_set(False) # make sure all objects are deselected before continuing. else: obj.select_set(obj.type == 'MESH') # select only mesh objects selected = [] # an empty array that will be used to store the objects that need to be unwrapped objects=[ob for ob in context.view_layer.objects if ob.visible_get()] # only want to look at visible objects. process will fail otherwise if not selectedOnly: # selectedOnly is for GUI version only select(objects) elif len(context.selected_objects): # run only if there are selected objects in the scene to isolate just the selected meshes select(context.selected_objects) return selected
2,025
Python
46.116278
141
0.698765
NVIDIA-Omniverse/blender_omniverse_addons/omni_optimization_panel/scripts/blender_class.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. from abc import ABC, abstractmethod import json from . import utils class BlenderClass(ABC): def __init__(self): self._default_attributes = dict() def get_attributes(self, in_attributes): attributes = {**self._default_attributes, **in_attributes} # utils.do_print("Attributes: " + json.dumps(attributes, indent=4, sort_keys=False)) return attributes @abstractmethod def execute(self, in_attributes=None): pass
1,332
Python
32.324999
92
0.705706
NVIDIA-Omniverse/blender_omniverse_addons/omni_optimization_panel/scripts/decimate.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # Decimation reduces geometry while maintaining form and UVs # There are three different decimation methods. Each method produces different results, with its own pros/cons) # https://docs.blender.org/manual/en/latest/modeling/modifiers/generate/decimate.html#decimate-modifier def decimate(objects, decimate_type, prop): modifier = 'DECIMATE' # sets type of modifier to be used for obj in objects: # for each object in selected objects, add the desired modifier and adjust its properties if len(obj.data.polygons) > 3: # decimation cannot be performed on meshes with 3 or less faces mod = obj.modifiers.new(name = modifier, type=modifier) # set name of modifier based on its type mod.decimate_type = decimate_type # sets decimation type if decimate_type == 'COLLAPSE': # "Merges vertices together progressively, taking the shape of the mesh into account."" mod.ratio = prop # the ratio value used for collapse decimation. Is a ratio of total faces. (x/1) elif decimate_type == 'UNSUBDIV': # "It is intended for meshes with a mainly grid-based topology (without giving uneven geometry)" mod.iterations = prop # the number of un-subdivisions performed. The higher the number, the less geometry remaining (1/2^x) elif decimate_type == 'DISSOLVE': # "It reduces details on forms comprised of mainly flat surfaces." mod.angle_limit = prop # the reduction is limited to an angle between faces (x degrees) mod.delimit = {'UV'} else: raise TypeError('Invalid Decimate Type') return
2,515
Python
54.91111
142
0.702982
NVIDIA-Omniverse/blender_omniverse_addons/omni_optimization_panel/scripts/modify.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. import bpy import time import math from . import blender_class, select_mesh, fix_mesh, decimate, remesh, geo_nodes, utils # Master Class for all modifiers class Modify(blender_class.BlenderClass): # settings for GUI version only bl_idname = "modify.scene" bl_label = "Modify Scene" bl_description = "Modify the scene based on set parameters" bl_options = {"REGISTER", "UNDO"} def __init__(self): self._default_attributes = dict( selected_only=True, # uses only objects selected in scene. For GUI version only apply_mod=True, # applies the generated modifiers. Should always be true for command line running fix_bad_mesh = True, # used to remove zero are faces and zero length edges based on the 'dissolve_threshold' dissolve_threshold = .08, # threshold value for 'fix_bad_mesh' merge_vertex = False, # merge connected and disconnected vertices of a mesh by a distance threshold merge_threshold = 0.01, # distance value to use for merge_vertex remove_existing_sharp = True, # when removing zero area faces, edge data can become messed up, causing bad normals. This helps minimize that. fix_normals = True, # optionally fix normals. useful for after 'fix_bad_mesh' to fix the normals as well. create_new_custom_normals = True, # useful for after 'fix_bad_mesh' to fix the normals as well. modifier= "DECIMATE", # determines which modifier type to use if 'use_modifier_stack' is False. (DECIMATE, REMESH, NODES, or SUBSURF) # Some common modifier names for reference:'DECIMATE''REMESH''NODES''SUBSURF''SOLIDIFY''ARRAY''BEVEL' use_modifier_stack= False, # allows use of more that one modifier sequentially. Useful for more specific customizable workflows. modifier_stack=[["DECIMATE", "COLLAPSE", 0.5]], # determines which modifier(s) to use if 'use_modifier_stack' is True.(DECIMATE, REMESH, NODES) # Modifiers are procedural adjustments to a mesh. The modifiers are stored in 'modifier_stack'. # Most modifiers have different options for calculation. for instance the 'DECIMATE' modifier options are stored in 'decimate_type' decimate_type="COLLAPSE", # the type of decimation being performed(COLLAPSE, UNSUBDIV, or DISSOLVE) # Each method produces different results, with its own pros/cons) # https://docs.google.com/document/d/1pkMZxgW4Xn_KJymFlKOo5XIkK2YleVYtyLJztTUTyAY/edit # COLLAPSE: "Merges vertices together progressively, taking the shape of the mesh into account."" # UNSUBDIV: "It is intended for meshes with a mainly grid-based topology (without giving uneven geometry)" # DISSOLVE: "It reduces details on forms comprised of mainly flat surfaces." ratio=0.5, # the ratio value used for collapse decimation. iterations=2, # the number of un-subdivisions performed angle=15.0, # attribute used when performing dissolve decimation. remesh_type="VOXEL", # the type of remesh being performed(BLOCKS, SMOOTH, SHARP, VOXEL) # remeshing removes all UV mappings from an object # https://docs.blender.org/manual/en/latest/modeling/modifiers/generate/remesh.html#remesh-modifier # first three modes produce almost identical typology, but with differing amounts of smoothing (BLOCKS, SMOOTH, SHARP) # BLOCKS: "There is no smoothing at all." # SMOOTH: "Output a smooth surface." # SHARP: "Similar to Smooth, but preserves sharp edges and corners." # VOXEL: "Uses an OpenVDB to generate a new manifold mesh from the current geometry while trying to preserve the mesh’s original volume." oDepth=4, # stands for octree depth and controls the resolution of most of the remesh modifiers voxel_size=0.1, # used for voxel remesh to control resolution geo_type="GeometryNodeBoundBox", # the type of geometry node tree to create: # (GeometryNodeConvexHull, GeometryNodeBoundBox, GeometryNodeSubdivisionSurface) # geometry nodes is currently under development, so feature set is not yet at a stage to be fully utilized # this puts in place a framework for more customizable and easily implementable optimizations in the future # more on geometry nodes: https://docs.blender.org/manual/en/latest/modeling/geometry_nodes/index.html#geometry-nodes geo_attribute=2 # a generic attribute variable that can be used for the different geo node types ) def execute(self, in_attributes=None): attributes = self.get_attributes(in_attributes) context = bpy.context then = time.time() # start time of script execution. # shorthands for multi-used attributes modifier = attributes["modifier"] decimate_type = attributes["decimate_type"] angle = attributes["angle"] remesh_type = attributes["remesh_type"] if context.mode != 'OBJECT': # must be in object mode to perform the rest of the operations. bpy.ops.object.mode_set(mode='OBJECT') # select objects selected = select_mesh.setSelected(context, attributes["selected_only"], deselectAll = False) if len(selected): # run only if there are selected mesh objects in the scene if attributes["fix_bad_mesh"]: # optionally fix bad meshes. Can also be done separately before hand fix_mesh.FixMesh.fixBadMesh( self, selected, attributes["dissolve_threshold"], attributes["fix_bad_mesh"], attributes["merge_vertex"], attributes["merge_threshold"], attributes["remove_existing_sharp"]) if attributes["fix_normals"]: # optionally fix bad normals (can often arise after fixing bad mesh) fix_mesh.FixMesh.fixNormals(self, selected, attributes["create_new_custom_normals"]) # for printing vertex and face data startingVerts = utils.getVertexCount(selected) startingFaces = utils.getFaceCount(selected) if attributes["use_modifier_stack"]: for mod in attributes["modifier_stack"]: self.run_modifier(selected, mod[0], mod[1], mod[2]) else: #Decimate if modifier == 'DECIMATE': sub_mod = decimate_type if decimate_type == 'COLLAPSE': prop = attributes["ratio"] elif decimate_type == 'UNSUBDIV': prop = attributes["iterations"] elif decimate_type == 'DISSOLVE': angle = math.radians(angle) # need to change angle to radians for the modifier prop = angle #Remesh elif modifier == 'REMESH': sub_mod = remesh_type if remesh_type == 'BLOCKS' or remesh_type == 'SMOOTH' or remesh_type == 'SHARP': prop = attributes["oDepth"] if remesh_type == 'VOXEL': prop = attributes["voxel_size"] #Geometry Nodes elif modifier == 'NODES': sub_mod = attributes["geo_type"] prop = attributes["geo_attribute"] else: sub_mod = None prop = None self.run_modifier(selected, modifier, sub_mod, prop) raise RuntimeError # apply modifiers once above loop is complete if attributes["apply_mod"]: context.view_layer.objects.active = selected[0] # need to set one of the selected objects as the active object # arbitrarily choosing to set the first object in selected_objects list. (there can only be one AO, but multiple SO) # this is necessary for the applying the modifiers. bpy.ops.object.convert(target='MESH') # applies all modifiers of each selected mesh. this preps the scene for proper export. # print vertex and face data endingVerts = utils.getVertexCount(selected) endingFaces = utils.getFaceCount(selected) vertsRemoved = startingVerts-endingVerts facesRemoved = startingFaces-endingFaces print("Modify Mesh Statistics:") utils.do_print("Starting Verts: " + str(startingVerts) + ", Ending Verts: " + str(endingVerts) + ", Verts Removed: " + str(vertsRemoved)) utils.do_print("Starting Faces: " + str(startingFaces) + ", Ending Faces: " + str(endingFaces) + ", Faces Removed: " + str(facesRemoved)) else: utils.do_print_error("NO MESH OBJECTS") now = time.time() # time after it finished. print("TIME FOR MODIFY: ", round(now-then, 3)) return {'FINISHED'} # "return {"FINISHED"} (or return{"CANCELED"}) is how Blender understands that an operator call is complete def run_modifier(self, objects, modifier, sub_mod = None, prop = None): # RUN BASED ON TYPE OF MODIFIER AND MODIFIER SUB_TYPE. Each modifier requires different input variables/values # Decimate if modifier == 'DECIMATE': decimate.decimate(objects, sub_mod, prop) # Remesh elif modifier == 'REMESH': remesh.remesh(objects, sub_mod, prop) # Geometry Nodes elif modifier == 'NODES': geo_nodes.geoNodes(objects, sub_mod, prop)
10,769
Python
58.175824
155
0.626613
NVIDIA-Omniverse/blender_omniverse_addons/omni_optimization_panel/scripts/uv.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. import bpy import time import contextlib from . import blender_class, run_ops_wo_update, select_mesh, utils class uvUnwrap(blender_class.BlenderClass): # settings for GUI version only bl_idname = "uv.unwrap_batch" bl_label = "Batch UV Unwrap" bl_description = "batch uv unwrap objects" bl_options = {"REGISTER", "UNDO"} def __init__(self): self._default_attributes = dict( selected_only= False, # uses only objects selected in scene. For GUI version only scale_to_bounds = False, # determines if the unwrapped map gets scaled to the square uv image bounds clip_to_bounds = False, # if unwrapping exceeds bounds, it will be clipped off unwrap_type = 'Cube', # the method for unwrapping (cube, sphere, cylinder, or smart) use_set_size = False, # for cube and cylinder project, use specified projection size for all objects. # Overrides scale_to_bounds to False set_size = 2, # projection size for cube and cylinder project print_updated_results= True # print progress to console ) def execute(self, in_attributes=None): attributes = self.get_attributes(in_attributes) context = bpy.context then = time.time() # start time of script execution # blender operates in modes/contexts, and certain operations can only be performed in certain contexts if bpy.context.mode != 'OBJECT': # make sure context is object mode. bpy.ops.object.mode_set(mode='OBJECT') # if it is not, set it to object mode run_ops_wo_update.open_update() # allows for operators to be run without updating scene # important especially when working with loops self.unwrap(context, attributes) run_ops_wo_update.close_update() # must always call close_update if open_update is called now = time.time() # time after it finished print("TIME FOR UNWRAP: ", round(now-then, 3)) return {"FINISHED"} def unwrap(self, context, attributes): scaleBounds = attributes["scale_to_bounds"] clipBounds = attributes["clip_to_bounds"] unwrapType = attributes["unwrap_type"] use_set_size = attributes["use_set_size"] set_size = attributes["set_size"] print_updated_results = attributes["print_updated_results"] # select objects selected = select_mesh.setSelected(context, attributes["selected_only"], deselectAll = True) if len(selected): # run only if there are mesh objects in the 'selected' array LINE_UP = '\033[1A' # command to move up a line in the console LINE_CLEAR = '\x1b[2K' # command to clear current line in the console count = 0 # counter for which object is being calculated then = time.time() # start time of loop execution for object in selected: # unwrap each object separately object.select_set(True) # select object. This is now the only selected object context.view_layer.objects.active = object # set active object. Blender needs active object to be the selected object bpy.ops.object.mode_set(mode='EDIT') # make sure context is edit mode. Context switching is object dependent, must be after selection bpy.ops.mesh.select_all(action='SELECT') # select all mesh vertices. only selected vertices will be uv unwrapped # for smart UV projection if unwrapType == "Smart": # smart UV can take a long time, so this prints out a progress bar if count and print_updated_results: # if the first object has already been calculated and results should be printed with contextlib.redirect_stdout(None): # smartUV prints an output sometimes. We don't want/need this output this suppresses it self.smartUV(scaleBounds) # perform the uv unwrap now = time.time() # time after unwrapping is complete timeElapsed = now - then remaining = len(selected)-count # number of remaining objects timeLeft = timeElapsed/count * remaining # estimation of remaining time print(LINE_UP, end=LINE_CLEAR) # don't want endless print statements print(LINE_UP, end=LINE_CLEAR) # don't want endless print statements # so move up and clear the previously printed lines and overwrite them print("Object Count = ", count, " Objects Remaining = ", remaining) print(" Elapsed Time = ", round(timeElapsed,3), " Time Remaining = ", round(timeLeft,3)) # print results to console else: # if calculating the first object or not printing results self.smartUV(scaleBounds) # perform the uv unwrap if print_updated_results: print("Object Count = 0") print("Time Remaining = UNKOWN") # for cube projection elif unwrapType == "Cube": self.cubeUV(scaleBounds, clipBounds, use_set_size, set_size) # perform the uv unwrap # for sphere projection elif unwrapType == "Sphere": self.sphereUV(scaleBounds, clipBounds) # perform the uv unwrap # for cylinder projection elif unwrapType == "Cylinder": self.cylinderUV(scaleBounds, clipBounds, use_set_size, set_size) # perform the uv unwrap bpy.ops.object.mode_set(mode='OBJECT') # once complete, make sure context is object mode. # Must be in object mode to select the next object object.select_set(False) # deselect the current object. Now there are again no objects selected count += 1 # increase the object counter for obj in selected: # reselect all originally selected meshes obj.select_set(True) else: utils.do_print_error("NO MESH OBJECTS") return {'FINISHED'} # methods for running each type of uv projection def smartUV(self, scale): bpy.ops.uv.smart_project(correct_aspect=True, scale_to_bounds=scale) def cubeUV(self, scale, clip, use_set_size, size): if use_set_size: # user sets cube_size value of cube projection bpy.ops.uv.cube_project(scale_to_bounds=False, clip_to_bounds=clip, cube_size=size) else: bpy.ops.uv.cube_project(scale_to_bounds=scale, clip_to_bounds=clip) def sphereUV(self, scale, clip): bpy.ops.uv.sphere_project(direction='ALIGN_TO_OBJECT', scale_to_bounds=scale, clip_to_bounds=clip) # 'ALIGN_TO_OBJECT' sets the direction of the projection to be consistent regardless of view position/direction def cylinderUV(self, scale, clip, use_set_size, size): if use_set_size: # user sets radius value of cylinder projection bpy.ops.uv.cylinder_project(direction='ALIGN_TO_OBJECT', scale_to_bounds=False, clip_to_bounds=clip, radius=size) else: bpy.ops.uv.cylinder_project(direction='ALIGN_TO_OBJECT', scale_to_bounds=scale, clip_to_bounds=clip)
8,297
Python
52.192307
150
0.632277
NVIDIA-Omniverse/blender_omniverse_addons/omni/__init__.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. """ To invoke in Blender script editor: import bpy bpy.ops.universalmaterialmap.generator() bpy.ops.universalmaterialmap.converter() INFO_HT_header Header VIEW3D_HT_tool_header Info Header: INFO_HT_HEADER 3D View Header: VIEW3D_HT_HEADER Timeline Header: TIME_HT_HEADER Outliner Header: OUTLINER_HT_HEADER Properties Header: PROPERTIES_HT_HEADER, etc. """ """ Menu location problem https://blender.stackexchange.com/questions/3393/add-custom-menu-at-specific-location-in-the-header#:~:text=Blender%20has%20a%20built%20in,%3EPython%2D%3EUI%20Menu. """ bl_info = { 'name': 'Universal Material Map', 'author': 'NVIDIA Corporation', 'description': 'A Blender AddOn based on the Universal Material Map framework.', 'blender': (3, 1, 0), 'location': 'View3D', 'warning': '', 'category': 'Omniverse' } import sys import importlib import bpy from .universalmaterialmap.blender import developer_mode if developer_mode: print('UMM DEBUG: Initializing "{0}"'.format(__file__)) ordered_module_names = [ 'omni.universalmaterialmap', 'omni.universalmaterialmap.core', 'omni.universalmaterialmap.core.feature', 'omni.universalmaterialmap.core.singleton', 'omni.universalmaterialmap.core.data', 'omni.universalmaterialmap.core.util', 'omni.universalmaterialmap.core.operator', 'omni.universalmaterialmap.core.service', 'omni.universalmaterialmap.core.service.core', 'omni.universalmaterialmap.core.service.delegate', 'omni.universalmaterialmap.core.service.resources', 'omni.universalmaterialmap.core.service.store', 'omni.universalmaterialmap.core.converter', 'omni.universalmaterialmap.core.converter.core', 'omni.universalmaterialmap.core.converter.util', 'omni.universalmaterialmap.core.generator', 'omni.universalmaterialmap.core.generator.core', 'omni.universalmaterialmap.core.generator.util', 'omni.universalmaterialmap.blender', 'omni.universalmaterialmap.blender.menu', 'omni.universalmaterialmap.blender.converter', 'omni.universalmaterialmap.blender.generator', 'omni.universalmaterialmap.blender.material', ] for module_name in sys.modules: if 'omni.' not in module_name: continue if module_name not in ordered_module_names: raise Exception('Unexpected module name in sys.modules: {0}'.format(module_name)) for module_name in ordered_module_names: if module_name in sys.modules: print('UMM reloading: {0}'.format(module_name)) importlib.reload(sys.modules.get(module_name)) if developer_mode: from .universalmaterialmap.blender.converter import OT_InstanceToDataConverter, OT_DataToInstanceConverter, OT_DataToDataConverter, OT_ApplyDataToInstance, OT_DescribeShaderGraph from .universalmaterialmap.blender.converter import OT_CreateTemplateOmniPBR, OT_CreateTemplateOmniGlass from .universalmaterialmap.blender.menu import UniversalMaterialMapMenu from .universalmaterialmap.blender.generator import OT_Generator else: from .universalmaterialmap.blender.converter import OT_CreateTemplateOmniPBR, OT_CreateTemplateOmniGlass from .universalmaterialmap.blender.menu import UniversalMaterialMapMenu def draw_item(self, context): layout = self.layout layout.menu(UniversalMaterialMapMenu.bl_idname) def register(): bpy.utils.register_class(OT_CreateTemplateOmniPBR) bpy.utils.register_class(OT_CreateTemplateOmniGlass) if developer_mode: bpy.utils.register_class(OT_DataToInstanceConverter) bpy.utils.register_class(OT_DataToDataConverter) bpy.utils.register_class(OT_ApplyDataToInstance) bpy.utils.register_class(OT_InstanceToDataConverter) bpy.utils.register_class(OT_DescribeShaderGraph) bpy.utils.register_class(OT_Generator) bpy.utils.register_class(UniversalMaterialMapMenu) # lets add ourselves to the main header bpy.types.NODE_HT_header.append(draw_item) def unregister(): bpy.utils.unregister_class(OT_CreateTemplateOmniPBR) bpy.utils.unregister_class(OT_CreateTemplateOmniGlass) if developer_mode: bpy.utils.unregister_class(OT_DataToInstanceConverter) bpy.utils.unregister_class(OT_DataToDataConverter) bpy.utils.unregister_class(OT_ApplyDataToInstance) bpy.utils.unregister_class(OT_InstanceToDataConverter) bpy.utils.unregister_class(OT_DescribeShaderGraph) bpy.utils.unregister_class(OT_Generator) bpy.utils.unregister_class(UniversalMaterialMapMenu) bpy.types.NODE_HT_header.remove(draw_item) if __name__ == "__main__": register() # The menu can also be called from scripts # bpy.ops.wm.call_menu(name=UniversalMaterialMapMenu.bl_idname)
5,725
Python
35.471337
182
0.731528
NVIDIA-Omniverse/blender_omniverse_addons/omni/universalmaterialmap/core/util.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. import typing import sys from .data import Plug def to_plug_value_type(value: typing.Any, assumed_value_type: str) -> str: """Returns matching :class:`omni.universalmaterialmap.core.data.Plug` value type.""" if sys.version_info.major < 3: if isinstance(value, basestring): return Plug.VALUE_TYPE_STRING else: if isinstance(value, str): return Plug.VALUE_TYPE_STRING if type(value) == bool: return Plug.VALUE_TYPE_BOOLEAN if isinstance(value, int): return Plug.VALUE_TYPE_INTEGER if isinstance(value, float): return Plug.VALUE_TYPE_FLOAT try: test = iter(value) is_iterable = True except TypeError: is_iterable = False if is_iterable: if assumed_value_type == Plug.VALUE_TYPE_LIST: return Plug.VALUE_TYPE_LIST bum_booleans = 0 num_integers = 0 num_floats = 0 num_strings = 0 for o in value: if sys.version_info.major < 3: if isinstance(value, basestring): num_strings += 1 continue else: if isinstance(value, str): num_strings += 1 continue if type(o) == bool: bum_booleans += 1 continue if isinstance(o, int): num_integers += 1 continue if isinstance(o, float): num_floats += 1 if num_floats > 0: if len(value) == 2: return Plug.VALUE_TYPE_VECTOR2 if len(value) == 3: return Plug.VALUE_TYPE_VECTOR3 if len(value) == 4: return Plug.VALUE_TYPE_VECTOR4 if len(value) == 2 and assumed_value_type == Plug.VALUE_TYPE_VECTOR2: return assumed_value_type if len(value) == 3 and assumed_value_type == Plug.VALUE_TYPE_VECTOR3: return assumed_value_type if len(value) == 4 and assumed_value_type == Plug.VALUE_TYPE_VECTOR4: return assumed_value_type return Plug.VALUE_TYPE_LIST return Plug.VALUE_TYPE_ANY def get_extension_from_image_file_format(format:str, base_name:str) -> str: """ For image formats that have multiple possible extensions, determine if we should stick with the current format specifier or use the one from the filename itself. """ format = format.lower() split = base_name.rpartition(".")[-1] extension = split.lower() if len(split) else None if format == "open_exr": format = "exr" elif format == "jpeg": format = extension if extension in {"jpeg", "jpg"} else "jpg" elif format == "tiff": format = extension if extension in {"tiff", "tif"} else "tif" elif format == "targa_raw": format = "tga" return format
3,780
Python
31.042373
88
0.598677
NVIDIA-Omniverse/blender_omniverse_addons/omni/universalmaterialmap/core/data.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. import typing import uuid import sys import importlib from .service.core import IDelegate class ChangeNotification(object): def __init__(self, item: object, property_name: str, old_value: typing.Any, new_value: typing.Any): super(ChangeNotification, self).__init__() self._item: object = item self._property_name: str = property_name self._old_value: typing.Any = old_value self._new_value: typing.Any = new_value @property def item(self) -> object: """ """ return self._item @property def property_name(self) -> str: """ """ return self._property_name @property def old_value(self) -> typing.Any: """ """ return self._old_value @property def new_value(self) -> typing.Any: """ """ return self._new_value class Notifying(object): """Base class providing change notification capability""" def __init__(self): super(Notifying, self).__init__() self._changed_callbacks: typing.Dict[uuid.uuid4, typing.Callable[[ChangeNotification], typing.NoReturn]] = dict() def add_changed_fn(self, callback: typing.Callable[[ChangeNotification], typing.NoReturn]) -> uuid.uuid4: for key, value in self._changed_callbacks.items(): if value == callback: return key key = uuid.uuid4() self._changed_callbacks[key] = callback return key def remove_changed_fn(self, callback_id: uuid.uuid4) -> None: if callback_id in self._changed_callbacks.keys(): del self._changed_callbacks[callback_id] def _notify(self, notification: ChangeNotification): for callback in self._changed_callbacks.values(): callback(notification) def destroy(self): self._changed_callbacks = None class Subscribing(Notifying): def __init__(self): super(Subscribing, self).__init__() self._subscriptions: typing.Dict[Notifying, uuid.uuid4] = dict() def _subscribe(self, notifying: Notifying) -> uuid.uuid4: if notifying in self._subscriptions.keys(): return self._subscriptions[notifying] self._subscriptions[notifying] = notifying.add_changed_fn(self._on_notification) def _unsubscribe(self, notifying: Notifying) -> None: if notifying in self._subscriptions.keys(): callback_id = self._subscriptions[notifying] del self._subscriptions[notifying] notifying.remove_changed_fn(callback_id=callback_id) def _on_notification(self, notification: ChangeNotification) -> None: pass class ManagedListInsert(object): def __init__(self, notifying: Notifying, index: int): super(ManagedListInsert, self).__init__() self._notifying: Notifying = notifying self._index: int = index @property def notifying(self) -> Notifying: """ """ return self._notifying @property def index(self) -> int: """ """ return self._index class ManagedListRemove(object): def __init__(self, notifying: Notifying, index: int): super(ManagedListRemove, self).__init__() self._notifying: Notifying = notifying self._index: int = index @property def notifying(self) -> Notifying: """ """ return self._notifying @property def index(self) -> int: """ """ return self._index class ManagedListNotification(object): ADDED_ITEMS: int = 0 UPDATED_ITEMS: int = 1 REMOVED_ITEMS: int = 2 def __init__(self, managed_list: 'ManagedList', items: typing.List[typing.Union[ManagedListInsert, ChangeNotification, ManagedListRemove]]): super(ManagedListNotification, self).__init__() self._managed_list: ManagedList = managed_list self._inserted_items: typing.List[ManagedListInsert] = [] self._change_notifications: typing.List[ChangeNotification] = [] self._removed_items: typing.List[ManagedListRemove] = [] self._kind: int = -1 if isinstance(items[0], ManagedListInsert): self._kind = ManagedListNotification.ADDED_ITEMS self._inserted_items = typing.cast(typing.List[ManagedListInsert], items) elif isinstance(items[0], ChangeNotification): self._kind = ManagedListNotification.UPDATED_ITEMS self._change_notifications = typing.cast(typing.List[ChangeNotification], items) elif isinstance(items[0], ManagedListRemove): self._kind = ManagedListNotification.REMOVED_ITEMS self._removed_items = typing.cast(typing.List[ManagedListRemove], items) else: raise Exception('Unexpected object: "{0}" of type "{1}".'.format(items[0], type(items[0]))) @property def managed_list(self) -> 'ManagedList': """ """ return self._managed_list @property def kind(self) -> int: """ """ return self._kind @property def inserted_items(self) -> typing.List[ManagedListInsert]: """ """ return self._inserted_items @property def change_notifications(self) -> typing.List[ChangeNotification]: """ """ return self._change_notifications @property def removed_items(self) -> typing.List[ManagedListRemove]: """ """ return self._removed_items class ManagedList(object): def __init__(self, items: typing.List[Notifying] = None): super(ManagedList, self).__init__() self._subscriptions: typing.Dict[Notifying, uuid.uuid4] = dict() self._changed_callbacks: typing.Dict[uuid.uuid4, typing.Callable[[ManagedListNotification], typing.NoReturn]] = dict() self._managed_items: typing.List[Notifying] = [] if items: for o in items: self._manage_item(notifying=o) def __iter__(self): return iter(self._managed_items) def _manage_item(self, notifying: Notifying) -> typing.Union[Notifying, None]: """ Subscribes to managed item. Returns item only if it became managed. """ if notifying in self._managed_items: return None self._managed_items.append(notifying) self._subscriptions[notifying] = notifying.add_changed_fn(self._on_notification) return notifying def _unmanage_item(self, notifying: Notifying) -> typing.Union[typing.Tuple[Notifying, int], typing.Tuple[None, int]]: """ Unsubscribes to managed item. Returns item only if it became unmanaged. """ if notifying not in self._managed_items: return None, -1 index = self._managed_items.index(notifying) self._managed_items.remove(notifying) callback_id = self._subscriptions[notifying] del self._subscriptions[notifying] notifying.remove_changed_fn(callback_id=callback_id) return notifying, index def _on_notification(self, notification: ChangeNotification) -> None: self._notify( notification=ManagedListNotification( managed_list=self, items=[notification] ) ) def _notify(self, notification: ManagedListNotification): for callback in self._changed_callbacks.values(): callback(notification) def add_changed_fn(self, callback: typing.Callable[[ManagedListNotification], typing.NoReturn]) -> uuid.uuid4: for key, value in self._changed_callbacks.items(): if value == callback: return key key = uuid.uuid4() self._changed_callbacks[key] = callback return key def remove_changed_fn(self, callback_id: uuid.uuid4) -> None: if callback_id in self._changed_callbacks.keys(): del self._changed_callbacks[callback_id] def append(self, notifying: Notifying) -> None: if self._manage_item(notifying=notifying) is not None: self._notify( ManagedListNotification( managed_list=self, items=[ManagedListInsert(notifying=notifying, index=self.index(notifying=notifying))] ) ) def extend(self, notifying: typing.List[Notifying]) -> None: added = [] for o in notifying: o = self._manage_item(notifying=o) if o: added.append(o) if len(added) == 0: return self._notify( ManagedListNotification( managed_list=self, items=[ManagedListInsert(notifying=o, index=self.index(notifying=o)) for o in added] ) ) def remove(self, notifying: Notifying) -> None: notifying, index = self._unmanage_item(notifying=notifying) if notifying: self._notify( ManagedListNotification( managed_list=self, items=[ManagedListRemove(notifying=notifying, index=index)] ) ) def remove_all(self) -> None: items = [ManagedListRemove(notifying=o, index=i) for i, o in enumerate(self._managed_items)] for callback_id, notifying in self._subscriptions.items(): notifying.remove_changed_fn(callback_id=callback_id) self._subscriptions = dict() self._managed_items = [] self._notify( ManagedListNotification( managed_list=self, items=items ) ) def pop(self, index: int = 0) -> Notifying: notifying, index = self._unmanage_item(self._managed_items[index]) self._notify( ManagedListNotification( managed_list=self, items=[ManagedListRemove(notifying=notifying, index=index)] ) ) return notifying def index(self, notifying: Notifying) -> int: if notifying in self._managed_items: return self._managed_items.index(notifying) return -1 class Serializable(Subscribing): """Base class providing serialization method template""" def __init__(self): super(Serializable, self).__init__() def serialize(self) -> dict: """ """ return dict() def deserialize(self, data: dict) -> None: """ """ pass class Base(Serializable): """Base class providing id property""" @classmethod def Create(cls) -> 'Base': return cls() def __init__(self): super(Base, self).__init__() self._id: str = str(uuid.uuid4()) def serialize(self) -> dict: """ """ output = super(Base, self).serialize() output['_id'] = self._id return output def deserialize(self, data: dict) -> None: """ """ super(Base, self).deserialize(data=data) self._id = data['_id'] if '_id' in data.keys() else str(uuid.uuid4()) @property def id(self) -> str: """ """ return self._id class DagNode(Base): """Base class providing input and outputs of :class:`omni.universalmaterialmap.core.data.Plug` """ def __init__(self): super(DagNode, self).__init__() self._inputs: typing.List[Plug] = [] self._outputs: typing.List[Plug] = [] self._computing: bool = False def serialize(self) -> dict: """ """ output = super(DagNode, self).serialize() output['_inputs'] = [plug.serialize() for plug in self.inputs] output['_outputs'] = [plug.serialize() for plug in self.outputs] return output def deserialize(self, data: dict) -> None: """ """ super(DagNode, self).deserialize(data=data) old_inputs = self._inputs[:] old_outputs = self._outputs[:] while len(self._inputs): self._unsubscribe(notifying=self._inputs.pop()) while len(self._outputs): self._unsubscribe(notifying=self._outputs.pop()) plugs = [] if '_inputs' in data.keys(): for o in data['_inputs']: plug = Plug(parent=self) plug.deserialize(data=o) plugs.append(plug) self._inputs = plugs plugs = [] if '_outputs' in data.keys(): for o in data['_outputs']: plug = Plug(parent=self) plug.deserialize(data=o) plugs.append(plug) self._outputs = plugs for o in self._inputs: self._subscribe(notifying=o) for o in self._outputs: self._subscribe(notifying=o) if not old_inputs == self._inputs: self._notify( ChangeNotification( item=self, property_name='inputs', old_value=old_inputs, new_value=self._inputs[:] ) ) if not old_inputs == self._outputs: self._notify( ChangeNotification( item=self, property_name='outputs', old_value=old_outputs, new_value=self._outputs[:] ) ) def _on_notification(self, notification: ChangeNotification) -> None: if notification.item == self: return # Re-broadcast notification self._notify(notification=notification) def invalidate(self, plug: 'Plug'): pass def compute(self) -> None: """ """ if self._computing: return self._computing = True self._compute_inputs(input_plugs=self._inputs) self._compute_outputs(output_plugs=self._outputs) self._computing = False def _compute_inputs(self, input_plugs: typing.List['Plug']): # Compute dependencies for plug in input_plugs: if not plug.input: continue if not plug.input.parent: continue if not plug.input.is_invalid: continue plug.input.parent.compute() # Set computed_value for plug in input_plugs: if plug.input: plug.computed_value = plug.input.computed_value else: plug.computed_value = plug.value def _compute_outputs(self, output_plugs: typing.List['Plug']): # Compute dependencies for plug in output_plugs: if not plug.input: continue if not plug.input.parent: continue if not plug.input.is_invalid: continue plug.input.parent.compute() # Set computed_value for plug in output_plugs: if plug.input: plug.computed_value = plug.input.computed_value else: plug.computed_value = plug.value def add_input(self) -> 'Plug': raise NotImplementedError() def can_remove_plug(self, plug: 'Plug') -> bool: return plug.is_removable def remove_plug(self, plug: 'Plug') -> None: if not plug.is_removable: raise Exception('Plug is not removable') notifications = [] if plug in self._inputs: old_value = self._inputs[:] self._unsubscribe(notifying=plug) self._inputs.remove(plug) notifications.append( ChangeNotification( item=self, property_name='inputs', old_value=old_value, new_value=self._inputs[:] ) ) if plug in self._outputs: old_value = self._outputs[:] self._unsubscribe(notifying=plug) self._outputs.remove(plug) notifications.append( ChangeNotification( item=self, property_name='outputs', old_value=old_value, new_value=self._outputs[:] ) ) destination: Plug for destination in plug.outputs: destination.input = None for notification in notifications: self._notify(notification=notification) @property def can_add_input(self) -> bool: return False @property def inputs(self) -> typing.List['Plug']: """ """ return self._inputs @property def outputs(self) -> typing.List['Plug']: """ """ return self._outputs class GraphEntity(DagNode): """Base class providing omni.kit.widget.graph properties for a data item.""" OPEN = 0 MINIMIZED = 1 CLOSED = 2 def __init__(self): super(GraphEntity, self).__init__() self._display_name: str = '' self._position: typing.Union[typing.Tuple[float, float], None] = None self._expansion_state: int = GraphEntity.OPEN self._show_inputs: bool = True self._show_outputs: bool = True self._show_peripheral: bool = False def serialize(self) -> dict: """ """ output = super(GraphEntity, self).serialize() output['_display_name'] = self._display_name output['_position'] = self._position output['_expansion_state'] = self._expansion_state output['_show_inputs'] = self._show_inputs output['_show_outputs'] = self._show_outputs output['_show_peripheral'] = self._show_peripheral return output def deserialize(self, data: dict) -> None: """ """ super(GraphEntity, self).deserialize(data=data) self._display_name = data['_display_name'] if '_display_name' in data.keys() else '' self._position = data['_position'] if '_position' in data.keys() else None self._expansion_state = data['_expansion_state'] if '_expansion_state' in data.keys() else GraphEntity.OPEN self._show_inputs = data['_show_inputs'] if '_show_inputs' in data.keys() else True self._show_outputs = data['_show_outputs'] if '_show_outputs' in data.keys() else True self._show_peripheral = data['_show_peripheral'] if '_show_peripheral' in data.keys() else False @property def display_name(self) -> str: """ """ return self._display_name @display_name.setter def display_name(self, value: str) -> None: """ """ if self._display_name is value: return notification = ChangeNotification( item=self, property_name='display_name', old_value=self._display_name, new_value=value ) self._display_name = value self._notify(notification=notification) @property def position(self) -> typing.Union[typing.Tuple[float, float], None]: """ """ return self._position @position.setter def position(self, value: typing.Union[typing.Tuple[float, float], None]) -> None: """ """ if self._position is value: return notification = ChangeNotification( item=self, property_name='position', old_value=self._position, new_value=value ) self._position = value self._notify(notification=notification) @property def expansion_state(self) -> int: """ """ return self._expansion_state @expansion_state.setter def expansion_state(self, value: int) -> None: """ """ if self._expansion_state is value: return notification = ChangeNotification( item=self, property_name='expansion_state', old_value=self._expansion_state, new_value=value ) self._expansion_state = value self._notify(notification=notification) @property def show_inputs(self) -> bool: """ """ return self._show_inputs @show_inputs.setter def show_inputs(self, value: bool) -> None: """ """ if self._show_inputs is value: return notification = ChangeNotification( item=self, property_name='show_inputs', old_value=self._show_inputs, new_value=value ) self._show_inputs = value self._notify(notification=notification) @property def show_outputs(self) -> bool: """ """ return self._show_outputs @show_outputs.setter def show_outputs(self, value: bool) -> None: """ """ if self._show_outputs is value: return notification = ChangeNotification( item=self, property_name='show_outputs', old_value=self._show_outputs, new_value=value ) self._show_outputs = value self._notify(notification=notification) @property def show_peripheral(self) -> bool: """ """ return self._show_peripheral @show_peripheral.setter def show_peripheral(self, value: bool) -> None: """ """ if self._show_peripheral is value: return notification = ChangeNotification( item=self, property_name='show_peripheral', old_value=self._show_peripheral, new_value=value ) self._show_peripheral = value self._notify(notification=notification) class Connection(Serializable): def __init__(self): super(Connection, self).__init__() self._source_id = '' self._destination_id = '' def serialize(self) -> dict: output = super(Connection, self).serialize() output['_source_id'] = self._source_id output['_destination_id'] = self._destination_id return output def deserialize(self, data: dict) -> None: super(Connection, self).deserialize(data=data) self._source_id = data['_source_id'] if '_source_id' in data.keys() else '' self._destination_id = data['_destination_id'] if '_destination_id' in data.keys() else '' @property def source_id(self): return self._source_id @property def destination_id(self): return self._destination_id class Plug(Base): """ A Plug can be: a source an output both a source and an output a container for a static value - most likely as an output a container for an editable value - most likely as an output plug.default_value Starting point and for resetting. plug.value Apply as computed_value if there is no input or dependency providing a value. plug.computed_value Final value. Could be thought of as plug.output_value. Plug is_dirty on input connect input disconnect value change if not connected A Plug is_dirty if it is_dirty its input is_dirty any dependency is_dirty """ VALUE_TYPE_ANY = 'any' VALUE_TYPE_FLOAT = 'float' VALUE_TYPE_INTEGER = 'int' VALUE_TYPE_STRING = 'str' VALUE_TYPE_BOOLEAN = 'bool' VALUE_TYPE_NODE_ID = 'node_id' VALUE_TYPE_VECTOR2 = 'vector2' VALUE_TYPE_VECTOR3 = 'vector3' VALUE_TYPE_VECTOR4 = 'vector4' VALUE_TYPE_ENUM = 'enum' VALUE_TYPE_LIST = 'list' VALUE_TYPES = [ VALUE_TYPE_ANY, VALUE_TYPE_FLOAT, VALUE_TYPE_INTEGER, VALUE_TYPE_STRING, VALUE_TYPE_BOOLEAN, VALUE_TYPE_NODE_ID, VALUE_TYPE_VECTOR2, VALUE_TYPE_VECTOR3, VALUE_TYPE_VECTOR4, VALUE_TYPE_ENUM, VALUE_TYPE_LIST, ] @classmethod def Create( cls, parent: DagNode, name: str, display_name: str, value_type: str = 'any', editable: bool = False, is_removable: bool = False, ) -> 'Plug': instance = cls(parent=parent) instance._name = name instance._display_name = display_name instance._value_type = value_type instance._is_editable = editable instance._is_removable = is_removable return instance def __init__(self, parent: DagNode): super(Plug, self).__init__() self._parent: DagNode = parent self._name: str = '' self._display_name: str = '' self._value_type: str = Plug.VALUE_TYPE_ANY self._internal_value_type: str = Plug.VALUE_TYPE_ANY self._is_peripheral: bool = False self._is_editable: bool = False self._is_removable: bool = False self._default_value: typing.Any = None self._computed_value: typing.Any = None self._value: typing.Any = None self._is_invalid: bool = False self._input: typing.Union[Plug, typing.NoReturn] = None self._outputs: typing.List[Plug] = [] self._enum_values: typing.List = [] def serialize(self) -> dict: output = super(Plug, self).serialize() output['_name'] = self._name output['_display_name'] = self._display_name output['_value_type'] = self._value_type output['_internal_value_type'] = self._internal_value_type output['_is_peripheral'] = self._is_peripheral output['_is_editable'] = self._is_editable output['_is_removable'] = self._is_removable output['_default_value'] = self._default_value output['_value'] = self._value output['_enum_values'] = self._enum_values return output def deserialize(self, data: dict) -> None: super(Plug, self).deserialize(data=data) self._input = None self._name = data['_name'] if '_name' in data.keys() else '' self._display_name = data['_display_name'] if '_display_name' in data.keys() else '' self._value_type = data['_value_type'] if '_value_type' in data.keys() else Plug.VALUE_TYPE_ANY self._internal_value_type = data['_internal_value_type'] if '_internal_value_type' in data.keys() else None self._is_peripheral = data['_is_peripheral'] if '_is_peripheral' in data.keys() else False self._is_editable = data['_is_editable'] if '_is_editable' in data.keys() else False self._is_removable = data['_is_removable'] if '_is_removable' in data.keys() else False self._default_value = data['_default_value'] if '_default_value' in data.keys() else None self._value = data['_value'] if '_value' in data.keys() else self._default_value self._enum_values = data['_enum_values'] if '_enum_values' in data.keys() else [] def invalidate(self) -> None: if self._is_invalid: return self._is_invalid = True if self.parent: self.parent.invalidate(self) @property def parent(self) -> DagNode: return self._parent @property def name(self) -> str: return self._name @name.setter def name(self, value: str) -> None: if self._name is value: return notification = ChangeNotification( item=self, property_name='name', old_value=self._name, new_value=value ) self._name = value self._notify(notification=notification) @property def display_name(self) -> str: return self._display_name @display_name.setter def display_name(self, value: str) -> None: if self._display_name is value: return notification = ChangeNotification( item=self, property_name='display_name', old_value=self._display_name, new_value=value ) self._display_name = value self._notify(notification=notification) @property def value_type(self) -> str: return self._value_type @value_type.setter def value_type(self, value: str) -> None: if self._value_type is value: return notification = ChangeNotification( item=self, property_name='value_type', old_value=self._value_type, new_value=value ) self._value_type = value self._notify(notification=notification) @property def internal_value_type(self) -> str: return self._internal_value_type @internal_value_type.setter def internal_value_type(self, value: str) -> None: if self._internal_value_type is value: return notification = ChangeNotification( item=self, property_name='internal_value_type', old_value=self._internal_value_type, new_value=value ) self._internal_value_type = value self._notify(notification=notification) @property def is_removable(self) -> bool: return self._is_removable @property def is_peripheral(self) -> bool: return self._is_peripheral @is_peripheral.setter def is_peripheral(self, value: bool) -> None: if self._is_peripheral is value: return notification = ChangeNotification( item=self, property_name='is_peripheral', old_value=self._is_peripheral, new_value=value ) self._is_peripheral = value self._notify(notification=notification) @property def computed_value(self) -> typing.Any: return self._computed_value @computed_value.setter def computed_value(self, value: typing.Any) -> None: if self._computed_value is value: self._is_invalid = False self._value = self._computed_value return notification = ChangeNotification( item=self, property_name='computed_value', old_value=self._computed_value, new_value=value ) if self._input and self._input.is_invalid: print('WARNING: Universal Material Map: Compute encountered an unexpected state: input invalid after compute. Results may be incorrect.') print('\tplug: "{0}"'.format(self.name)) if self._parent: print('\tplug.parent: "{0}"'.format(self._parent.__class__.__name__)) print('\tplug.input: "{0}"'.format(self._input.name)) if self._input.parent: print('\tplug.input.parent: "{0}"'.format(self._input.parent.__class__.__name__)) return self._is_invalid = False self._computed_value = value self._value = self._computed_value self._notify(notification=notification) @property def value(self) -> typing.Any: return self._value @value.setter def value(self, value: typing.Any) -> None: if self._value is value: return notification = ChangeNotification( item=self, property_name='value', old_value=self._value, new_value=value ) self._value = value self._notify(notification=notification) if self._input is None: self.invalidate() @property def is_invalid(self) -> typing.Any: if self._input and self._input._is_invalid: return True return self._is_invalid @property def input(self) -> typing.Union['Plug', typing.NoReturn]: return self._input @input.setter def input(self, value: typing.Union['Plug', typing.NoReturn]) -> None: if self._input is value: return notification = ChangeNotification( item=self, property_name='input', old_value=self._input, new_value=value ) self._input = value self._notify(notification=notification) self.invalidate() @property def outputs(self) -> typing.List['Plug']: return self._outputs @property def is_editable(self) -> bool: return self._is_editable @is_editable.setter def is_editable(self, value: bool) -> None: if self._is_editable is value: return notification = ChangeNotification( item=self, property_name='is_editable', old_value=self._is_editable, new_value=value ) self._is_editable = value self._notify(notification=notification) @property def default_value(self) -> typing.Any: return self._default_value @default_value.setter def default_value(self, value: typing.Any) -> None: if self._default_value is value: return notification = ChangeNotification( item=self, property_name='default_value', old_value=self._default_value, new_value=value ) self._default_value = value self._notify(notification=notification) @property def enum_values(self) -> typing.List: return self._enum_values @enum_values.setter def enum_values(self, value: typing.List) -> None: if self._enum_values is value: return notification = ChangeNotification( item=self, property_name='enum_values', old_value=self._enum_values, new_value=value ) self._enum_values = value self._notify(notification=notification) class Node(DagNode): @classmethod def Create(cls, class_name: str) -> 'Node': instance = typing.cast(Node, super(Node, cls).Create()) instance._class_name = class_name return instance def __init__(self): super(Node, self).__init__() self._class_name: str = '' def serialize(self) -> dict: output = super(Node, self).serialize() output['_class_name'] = self._class_name return output def deserialize(self, data: dict) -> None: super(Node, self).deserialize(data=data) self._class_name = data['_class_name'] if '_class_name' in data.keys() else '' @property def class_name(self): return self._class_name class Client(Serializable): ANY_VERSION = 'any' NO_VERSION = 'none' DCC_OMNIVERSE_CREATE = 'Omniverse Create' DCC_3DS_MAX = '3ds MAX' DCC_MAYA = 'Maya' DCC_HOUDINI = 'Houdini' DCC_SUBSTANCE_DESIGNER = 'Substance Designer' DCC_SUBSTANCE_PAINTER = 'Substance Painter' DCC_BLENDER = 'Blender' @classmethod def Autodesk_3dsMax(cls, version: str = ANY_VERSION) -> 'Client': instance = Client() instance._name = Client.DCC_3DS_MAX instance._version = version return instance @classmethod def Autodesk_Maya(cls, version: str = ANY_VERSION) -> 'Client': instance = Client() instance._name = Client.DCC_MAYA instance._version = version return instance @classmethod def OmniverseCreate(cls, version: str = ANY_VERSION) -> 'Client': instance = Client() instance._name = Client.DCC_OMNIVERSE_CREATE instance._version = version return instance @classmethod def Blender(cls, version: str = ANY_VERSION) -> 'Client': instance = Client() instance._name = Client.DCC_BLENDER instance._version = version return instance def __init__(self): super(Client, self).__init__() self._name: str = '' self._version: str = '' def __eq__(self, other: 'Client') -> bool: if not isinstance(other, Client): return False return other.name == self._name and other.version == self._version def is_compatible(self, other: 'Client') -> bool: if not isinstance(other, Client): return False if other == self: return True return other._version == Client.ANY_VERSION or self._version == Client.ANY_VERSION def serialize(self) -> dict: output = super(Client, self).serialize() output['_name'] = self._name output['_version'] = self._version return output def deserialize(self, data: dict) -> None: super(Client, self).deserialize(data=data) self._name = data['_name'] if '_name' in data.keys() else '' self._version = data['_version'] if '_version' in data.keys() else '' @property def name(self) -> str: return self._name @name.setter def name(self, value: str) -> None: self._name = value @property def version(self) -> str: return self._version @version.setter def version(self, value: str) -> None: self._version = value class AssemblyMetadata(Serializable): CATEGORY_BASE = 'Base Materials' CATEGORY_CONNECTOR = 'Connector Materials' CATEGORIES = [ CATEGORY_BASE, CATEGORY_CONNECTOR, ] def __init__(self): super(AssemblyMetadata, self).__init__() self._category = '' self._name = '' self._keywords: typing.List[str] = [] self._supported_clients: typing.List[Client] = [] def serialize(self) -> dict: output = super(AssemblyMetadata, self).serialize() output['_category'] = self._category output['_name'] = self._name output['_keywords'] = self._keywords output['_supported_clients'] = [o.serialize() for o in self._supported_clients] return output def deserialize(self, data: dict) -> None: super(AssemblyMetadata, self).deserialize(data=data) self._category = data['_category'] if '_category' in data.keys() else '' self._name = data['_name'] if '_name' in data.keys() else '' self._keywords = data['_keywords'] if '_keywords' in data.keys() else '' items = [] if '_supported_clients' in data.keys(): for o in data['_supported_clients']: item = Client() item.deserialize(data=o) items.append(item) self._supported_clients = items @property def category(self) -> str: return self._category @category.setter def category(self, value: str) -> None: self._category = value @property def name(self) -> str: return self._name @name.setter def name(self, value: str) -> None: self._name = value @property def keywords(self) -> typing.List[str]: return self._keywords @keywords.setter def keywords(self, value: typing.List[str]) -> None: self._keywords = value @property def supported_clients(self) -> typing.List[Client]: return self._supported_clients class Target(GraphEntity): def __init__(self): super(Target, self).__init__() self._nodes: typing.List[Node] = [] self._metadata: AssemblyMetadata = AssemblyMetadata() self._root_node_id: str = '' self._root_node: Node = None self._revision: int = 0 self._store_id: str = '' self._connections: typing.List[Connection] = [] def serialize(self) -> dict: output = super(Target, self).serialize() output['_nodes'] = [node.serialize() for node in self.nodes] output['_metadata'] = self._metadata.serialize() output['_root_node_id'] = self._root_node_id output['_revision'] = self._revision output['_connections'] = [o.serialize() for o in self._connections] return output def deserialize(self, data: dict) -> None: super(Target, self).deserialize(data=data) self._root_node_id = data['_root_node_id'] if '_root_node_id' in data.keys() else '' nodes = [] if '_nodes' in data.keys(): for o in data['_nodes']: node = Node() node.deserialize(data=o) nodes.append(node) self._nodes = nodes root_node = None if self._root_node_id: for node in self._nodes: if node.id == self._root_node_id: root_node = node break self._root_node = root_node metadata = AssemblyMetadata() if '_metadata' in data.keys(): metadata.deserialize(data=data['_metadata']) self._metadata = metadata self._revision = data['_revision'] if '_revision' in data.keys() else 0 items = [] if '_connections' in data.keys(): for o in data['_connections']: item = Connection() item.deserialize(data=o) items.append(item) self._connections = items for connection in self._connections: input_plug: Plug = None output_plug: Plug = None for node in self._nodes: for plug in node.inputs: if connection.source_id == plug.id: input_plug = plug elif connection.destination_id == plug.id: input_plug = plug for plug in node.outputs: if connection.source_id == plug.id: output_plug = plug elif connection.destination_id == plug.id: output_plug = plug if input_plug is not None and output_plug is not None: break if input_plug is None or output_plug is None: continue if output_plug not in input_plug.outputs: input_plug.outputs.append(output_plug) output_plug.input = input_plug def connect(self, source: Plug, destination: Plug) -> None: for connection in self._connections: if connection.source_id == source.id and connection.destination_id == destination.id: return connection = Connection() connection._source_id = source.id connection._destination_id = destination.id self._connections.append(connection) if destination not in source.outputs: source.outputs.append(destination) destination.input = source @property def nodes(self) -> typing.List[Node]: return self._nodes @property def metadata(self) -> AssemblyMetadata: return self._metadata @property def root_node(self) -> Node: return self._root_node @root_node.setter def root_node(self, value: Node) -> None: self._root_node = value self._root_node_id = self._root_node.id if self._root_node else '' @property def revision(self) -> int: return self._revision @revision.setter def revision(self, value: int) -> None: self._revision = value @property def store_id(self) -> str: return self._store_id @store_id.setter def store_id(self, value: int) -> None: if self._store_id is value: return notification = ChangeNotification( item=self, property_name='store_id', old_value=self._store_id, new_value=value ) self._store_id = value self._notify(notification=notification) class TargetInstance(GraphEntity): @classmethod def FromAssembly(cls, assembly: Target) -> 'TargetInstance': instance = cls() instance._target_id = assembly.id instance.target = assembly instance.display_name = assembly.display_name return instance def __init__(self): super(TargetInstance, self).__init__() self._target_id: str = '' self._target: typing.Union[Target, typing.NoReturn] = None self._is_setting_target = False def serialize(self) -> dict: super(TargetInstance, self).serialize() output = GraphEntity.serialize(self) output['_target_id'] = self._target_id output['_inputs'] = [] output['_outputs'] = [] return output def deserialize(self, data: dict) -> None: """ Does not invoke super on DagNode base class because inputs and outputs are derived from assembly instance. """ data['_inputs'] = [] data['_outputs'] = [] GraphEntity.deserialize(self, data=data) self._target_id = data['_target_id'] if '_target_id' in data.keys() else '' def invalidate(self, plug: 'Plug' = None): """ Invalidate any plug that is a destination of an output plug named plug.name. """ # If a destination is invalidated it is assumed compute will be invoked once a destination endpoint has been found do_compute = True output: Plug destination: Plug for output in self.outputs: if not plug or output.name == plug.name: for destination in output.outputs: destination.invalidate() do_compute = False if do_compute: self.compute() @property def target_id(self) -> str: return self._target_id @property def target(self) -> typing.Union[Target, typing.NoReturn]: return self._target @target.setter def target(self, value: typing.Union[Target, typing.NoReturn]) -> None: if self._target is value: return if not self._target_id and value: raise Exception('Target ID "" does not match assembly instance "{0}".'.format(value.id)) if self._target_id and not value: raise Exception('Target ID "{0}" does not match assembly instance "None".'.format(self._target_id)) if self._target_id and value and not self._target_id == value.id: raise Exception('Target ID "{0}" does not match assembly instance "{1}".'.format(self._target_id, value.id)) self._is_setting_target = True notification = ChangeNotification( item=self, property_name='target', old_value=self._target, new_value=value ) self._target = value self._inputs = [] self._outputs = [] if self._target: node_id_plug = Plug.Create( parent=self, name='node_id_output', display_name='Node Id', value_type=Plug.VALUE_TYPE_STRING ) node_id_plug._id = self._target.id node_id_plug.value = self._target.id self._outputs.append(node_id_plug) for node in self._target.nodes: for o in node.inputs: plug = Plug(parent=self) plug.deserialize(data=o.serialize()) self._inputs.append(plug) for o in node.outputs: plug = Plug(parent=self) plug.deserialize(data=o.serialize()) self._outputs.append(plug) self._is_setting_target = False self._notify(notification=notification) self.invalidate() class Operator(Base): def __init__( self, id: str, name: str, required_inputs: int, min_inputs: int, max_inputs: int, num_outputs: int, ): super(Operator, self).__init__() self._id = id self._name: str = name self._required_inputs: int = required_inputs self._min_inputs: int = min_inputs self._max_inputs: int = max_inputs self._num_outputs: int = num_outputs self._computing: bool = False def compute(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): """ Base class only computes input_plugs. It is assumed that extending class computes output plugs. """ if self._computing: return self._computing = True if len(input_plugs) < self._required_inputs: raise Exception('Array of inputs not of required length "{0}". Actual length "{1}". Operator: "{2}"'.format(self._required_inputs, len(input_plugs), self.__class__.__name__)) for plug in input_plugs: if plug.input: if plug.input in input_plugs: print('WARNING: Universal Material Map: Invalid state in compute graph. Compute cancelled.') print('\tInput {0}.{1} is dependent on another input on the same node.'.format(plug.parent.display_name, plug.name)) print('\tDependency: {0}.{1}'.format(plug.input.parent.display_name, plug.input.name)) print('\tThis is not supported.') print('\tComputations likely to not behave as expected. It is recommended you restart the solution using this data.') self._computing = False return if plug.input in output_plugs: print('WARNING: Universal Material Map: Invalid state in compute graph. Compute cancelled.') print('\tInput {0}.{1} is dependent on another output on the same node.'.format( plug.parent.display_name, plug.name)) print('\tDependency: {0}.{1}'.format(plug.input.parent.display_name, plug.input.name)) print('\tThis is not supported.') print('\tComputations likely to not behave as expected. It is recommended you restart the solution using this data.') self._computing = False return for plug in output_plugs: if plug.input: if plug.input in output_plugs: print('WARNING: Universal Material Map: Invalid state in compute graph. Compute cancelled.') print('\tInput {0}.{1} is dependent on another output on the same node.'.format( plug.parent.display_name, plug.name)) print('\tDependency: {0}.{1}'.format(plug.input.parent.display_name, plug.input.name)) print('\tThis is not supported.') print('\tComputations likely to not behave as expected. It is recommended you restart the solution using this data.') self._computing = False return self._compute_inputs(input_plugs=input_plugs) self._compute_outputs(input_plugs=input_plugs, output_plugs=output_plugs) self._computing = False def _compute_inputs(self, input_plugs: typing.List[Plug]): # Compute dependencies for plug in input_plugs: if not plug.input: continue if not plug.input.parent: continue if not plug.input.is_invalid: continue plug.input.parent.compute() # Set computed_value for plug in input_plugs: if plug.input: plug.computed_value = plug.input.computed_value else: plug.computed_value = plug.value def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): raise NotImplementedError(self.__class__) def generate_input(self, parent: 'DagNode', index: int) -> Plug: """ Base class provides method template but does nothing. """ pass def generate_output(self, parent: 'DagNode', index: int) -> Plug: """ Base class provides method template but does nothing. """ pass def test(self) -> None: parent = OperatorInstance() inputs = [] while len(inputs) < self.min_inputs: inputs.append( self.generate_input(parent=parent, index=len(inputs)) ) outputs = [] while len(outputs) < self.num_outputs: outputs.append( self.generate_output(parent=parent, index=len(outputs)) ) self._prepare_plugs_for_test(input_plugs=inputs, output_plugs=outputs) self._perform_test(input_plugs=inputs, output_plugs=outputs) self._assert_test(input_plugs=inputs, output_plugs=outputs) def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): pass def _perform_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): self.compute(input_plugs=input_plugs, output_plugs=output_plugs) def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): raise NotImplementedError() def remove_plug(self, operator_instance: 'OperatorInstance', plug: 'Plug') -> None: if not plug.is_removable: raise Exception('Plug is not removable') notifications = [] if plug in operator_instance._inputs: old_value = operator_instance._inputs[:] operator_instance._inputs.remove(plug) operator_instance._unsubscribe(notifying=plug) notifications.append( ChangeNotification( item=operator_instance, property_name='inputs', old_value=old_value, new_value=operator_instance._inputs[:] ) ) if plug in operator_instance._outputs: old_value = operator_instance._outputs[:] operator_instance._outputs.remove(plug) operator_instance._unsubscribe(notifying=plug) notifications.append( ChangeNotification( item=operator_instance, property_name='outputs', old_value=old_value, new_value=operator_instance._outputs[:] ) ) destination: Plug for destination in plug.outputs: destination.input = None for notification in notifications: for callback in operator_instance._changed_callbacks.values(): callback(notification) @property def name(self) -> str: return self._name @property def min_inputs(self) -> int: return self._min_inputs @property def max_inputs(self) -> int: return self._max_inputs @property def required_inputs(self) -> int: return self._required_inputs @property def num_outputs(self) -> int: return self._num_outputs class GraphOutput(Operator): """ Output resolves to a node id. """ def __init__(self): super(GraphOutput, self).__init__( id='5f39ab48-5bee-46fe-9a22-0f678013568e', name='Graph Output', required_inputs=1, min_inputs=1, max_inputs=1, num_outputs=1 ) def generate_input(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='input_node_id', display_name='Node Id', value_type=Plug.VALUE_TYPE_NODE_ID) raise Exception('Input index "{0}" not supported.'.format(index)) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='output_node_id', display_name='Node Id', value_type=Plug.VALUE_TYPE_NODE_ID) raise Exception('Output index "{0}" not supported.'.format(index)) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): output_plugs[0].computed_value = input_plugs[0].computed_value def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): input_plugs[0].computed_value = self.id def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): for output in output_plugs: if not output.computed_value == self.id: raise Exception('Test failed.') class OperatorInstance(GraphEntity): @classmethod def FromOperator(cls, operator: Operator) -> 'OperatorInstance': instance = OperatorInstance() instance._is_deserializing = True instance._operator = operator instance._display_name = operator.name while len(instance._inputs) < operator.min_inputs: instance._inputs.append( operator.generate_input(parent=instance, index=len(instance._inputs)) ) while len(instance._outputs) < operator.num_outputs: instance._outputs.append( operator.generate_output(parent=instance, index=len(instance._outputs)) ) instance._operator_module = operator.__class__.__module__ instance._operator_class_name = operator.__class__.__name__ instance._is_deserializing = False instance.invalidate() return instance def __init__(self): super(OperatorInstance, self).__init__() self._description: str = '' self._operator_module: str = '' self._operator_class_name: str = '' self._operator: Operator = None self._is_deserializing = False def serialize(self) -> dict: output = super(OperatorInstance, self).serialize() output['_description'] = self._description output['_operator_module'] = self._operator_module output['_operator_class_name'] = self._operator_class_name return output def deserialize(self, data: dict) -> None: self._is_deserializing = True super(OperatorInstance, self).deserialize(data=data) self._description = data['_description'] if '_description' in data.keys() else '' self._operator_module = data['_operator_module'] if '_operator_module' in data.keys() else '' self._operator_class_name = data['_operator_class_name'] if '_operator_class_name' in data.keys() else '' if not self._operator_module: raise Exception('Unexpected data: no valid "operator module" defined') if not self._operator_class_name: raise Exception('Unexpected data: no valid "operator class name" defined') if self._operator_module not in sys.modules.keys(): importlib.import_module(self._operator_module) module_pointer = sys.modules[self._operator_module] class_pointer = module_pointer.__dict__[self._operator_class_name] self._operator = typing.cast(Operator, class_pointer()) notifying = [] while len(self._inputs) < self._operator.min_inputs: plug = self._operator.generate_input(parent=self, index=len(self._inputs)) self._inputs.append(plug) notifying.append(plug) while len(self._outputs) < self._operator.num_outputs: plug = self._operator.generate_output(parent=self, index=len(self._outputs)) self._outputs.append(plug) notifying.append(plug) self._is_deserializing = False for o in notifying: self._subscribe(notifying=o) self.invalidate() def invalidate(self, plug: 'Plug' = None): """ Because one plug changed we assume any connected plug to any output needs to be invalidated. """ if self._is_deserializing: return # Set all outputs to invalid output: Plug for output in self.outputs: output._is_invalid = True # If a destination is invalidated it is assumed compute will be invoked once a destination endpoint has been found do_compute = True destination: Plug for output in self.outputs: for destination in output.outputs: destination.invalidate() do_compute = False if do_compute: self.compute() def compute(self) -> None: if self._operator: self._operator.compute(input_plugs=self._inputs, output_plugs=self._outputs) def add_input(self) -> Plug: if not self.can_add_input: raise Exception('Cannot add another input.') old_value = self._inputs[:] plug = self._operator.generate_input(parent=self, index=len(self._inputs)) self._inputs.append(plug) self._subscribe(notifying=plug) notification = ChangeNotification( item=self, property_name='inputs', old_value=old_value, new_value=self._inputs[:] ) self._notify(notification=notification) for o in self.outputs: o.invalidate() return plug def remove_plug(self, plug: 'Plug') -> None: self._operator.remove_plug(operator_instance=self, plug=plug) @property def operator(self) -> Operator: return self._operator @property def description(self) -> str: return self._description @description.setter def description(self, value: str) -> None: if self._description is value: return notification = ChangeNotification( item=self, property_name='description', old_value=self._description, new_value=value ) self._description = value self._notify(notification=notification) @DagNode.can_add_input.getter def can_add_input(self) -> bool: if self._operator.max_inputs == -1: return True return len(self._inputs) < self._operator.max_inputs - 1 class StyleInfo(object): def __init__( self, name: str, background_color: int, border_color: int, connection_color: int, node_background_color: int, footer_icon_filename: str, ): super(StyleInfo, self).__init__() self._name: str = name self._background_color: int = background_color self._border_color: int = border_color self._connection_color: int = connection_color self._node_background_color: int = node_background_color self._footer_icon_filename: str = footer_icon_filename @property def name(self) -> str: return self._name @property def background_color(self) -> int: return self._background_color @property def border_color(self) -> int: return self._border_color @property def connection_color(self) -> int: return self._connection_color @property def node_background_color(self) -> int: return self._node_background_color @property def footer_icon_filename(self) -> str: return self._footer_icon_filename class ConversionGraph(Base): # STYLE_OUTPUT: StyleInfo = StyleInfo( # name='output', # background_color=0xFF2E2E2E, # border_color=0xFFB97E9C, # connection_color=0xFF80C26F, # node_background_color=0xFF444444, # footer_icon_filename='Material.svg' # ) STYLE_SOURCE_NODE: StyleInfo = StyleInfo( name='source_node', background_color=0xFF2E2E2E, border_color=0xFFE5AAC8, connection_color=0xFF80C26F, node_background_color=0xFF444444, footer_icon_filename='Material.svg' ) STYLE_ASSEMBLY_REFERENCE: StyleInfo = StyleInfo( name='assembly_reference', background_color=0xFF2E2E2E, border_color=0xFFB97E9C, connection_color=0xFF80C26F, node_background_color=0xFF444444, footer_icon_filename='Material.svg' ) STYLE_OPERATOR_INSTANCE: StyleInfo = StyleInfo( name='operator_instance', background_color=0xFF34302A, border_color=0xFFCD923A, connection_color=0xFF80C26F, node_background_color=0xFF444444, footer_icon_filename='constant_color.svg' ) STYLE_VALUE_RESOLVER: StyleInfo = StyleInfo( name='value_resolver', background_color=0xFF34302A, border_color=0xFFCD923A, connection_color=0xFF80C26F, node_background_color=0xFF444444, footer_icon_filename='value_resolver.svg' ) STYLE_BOOLEAN_SWITCH: StyleInfo = StyleInfo( name='boolean_switch', background_color=0xFF34302A, border_color=0xFFCD923A, connection_color=0xFF80C26F, node_background_color=0xFF444444, footer_icon_filename='boolean_switch.svg' ) STYLE_CONSTANT_BOOLEAN: StyleInfo = StyleInfo( name='constant_boolean', background_color=0xFF34302A, border_color=0xFFCD923A, connection_color=0xFF80C26F, node_background_color=0xFF444444, footer_icon_filename='constant_boolean.svg' ) STYLE_CONSTANT_COLOR: StyleInfo = StyleInfo( name='constant_color', background_color=0xFF34302A, border_color=0xFFCD923A, connection_color=0xFF80C26F, node_background_color=0xFF444444, footer_icon_filename='constant_color.svg' ) STYLE_CONSTANT_FLOAT: StyleInfo = StyleInfo( name='constant_float', background_color=0xFF34302A, border_color=0xFFCD923A, connection_color=0xFF80C26F, node_background_color=0xFF444444, footer_icon_filename='constant_float.svg' ) STYLE_CONSTANT_INTEGER: StyleInfo = StyleInfo( name='constant_integer', background_color=0xFF34302A, border_color=0xFFCD923A, connection_color=0xFF80C26F, node_background_color=0xFF444444, footer_icon_filename='constant_integer.svg' ) STYLE_CONSTANT_STRING: StyleInfo = StyleInfo( name='constant_string', background_color=0xFF34302A, border_color=0xFFCD923A, connection_color=0xFF80C26F, node_background_color=0xFF444444, footer_icon_filename='constant_string.svg' ) STYLE_EQUAL: StyleInfo = StyleInfo( name='equal', background_color=0xFF34302A, border_color=0xFFCD923A, connection_color=0xFF80C26F, node_background_color=0xFF444444, footer_icon_filename='equal.svg' ) STYLE_GREATER_THAN: StyleInfo = StyleInfo( name='greater_than', background_color=0xFF34302A, border_color=0xFFCD923A, connection_color=0xFF80C26F, node_background_color=0xFF444444, footer_icon_filename='greater_than.svg' ) STYLE_LESS_THAN: StyleInfo = StyleInfo( name='less_than', background_color=0xFF34302A, border_color=0xFFCD923A, connection_color=0xFF80C26F, node_background_color=0xFF444444, footer_icon_filename='less_than.svg' ) STYLE_MERGE_RGB: StyleInfo = StyleInfo( name='merge_rgb', background_color=0xFF34302A, border_color=0xFFCD923A, connection_color=0xFF80C26F, node_background_color=0xFF444444, footer_icon_filename='merge_rgb.svg' ) STYLE_NOT: StyleInfo = StyleInfo( name='not', background_color=0xFF34302A, border_color=0xFFCD923A, connection_color=0xFF80C26F, node_background_color=0xFF444444, footer_icon_filename='not.svg' ) STYLE_OR: StyleInfo = StyleInfo( name='or', background_color=0xFF34302A, border_color=0xFFCD923A, connection_color=0xFF80C26F, node_background_color=0xFF444444, footer_icon_filename='or.svg' ) STYLE_SPLIT_RGB: StyleInfo = StyleInfo( name='split_rgb', background_color=0xFF34302A, border_color=0xFFCD923A, connection_color=0xFF80C26F, node_background_color=0xFF444444, footer_icon_filename='split_rgb.svg' ) STYLE_TRANSPARENCY_RESOLVER: StyleInfo = StyleInfo( name='transparency_resolver', background_color=0xFF34302A, border_color=0xFFCD923A, connection_color=0xFF80C26F, node_background_color=0xFF444444, footer_icon_filename='transparency_resolver.svg' ) STYLE_OUTPUT: StyleInfo = StyleInfo( name='output', background_color=0xFF34302A, border_color=0xFFCD923A, connection_color=0xFF80C26F, node_background_color=0xFF444444, footer_icon_filename='output.svg' ) STYLE_INFOS = ( STYLE_OUTPUT, STYLE_SOURCE_NODE, STYLE_ASSEMBLY_REFERENCE, STYLE_OPERATOR_INSTANCE, STYLE_VALUE_RESOLVER, STYLE_BOOLEAN_SWITCH, STYLE_CONSTANT_BOOLEAN, STYLE_CONSTANT_COLOR, STYLE_CONSTANT_FLOAT, STYLE_CONSTANT_INTEGER, STYLE_CONSTANT_STRING, STYLE_EQUAL, STYLE_GREATER_THAN, STYLE_LESS_THAN, STYLE_NOT, STYLE_OR, STYLE_SPLIT_RGB, STYLE_TRANSPARENCY_RESOLVER, STYLE_MERGE_RGB, ) def __init__(self): super(ConversionGraph, self).__init__() self._graph_output: OperatorInstance = OperatorInstance.FromOperator(operator=GraphOutput()) self._target_instances: typing.List[TargetInstance] = [] self._operator_instances: typing.List[OperatorInstance] = [self._graph_output] self._connections: typing.List[Connection] = [] self._library: Library = None self._source_node_id: str = '' self._source_node: TargetInstance = None self._filename: str = '' self._exists_on_disk: bool = False self._revision: int = 0 def _on_notification(self, notification: ChangeNotification) -> None: if notification.item == self: return # Re-broadcast notification self._notify(notification=notification) def serialize(self) -> dict: output = super(ConversionGraph, self).serialize() output['_target_instances'] = [o.serialize() for o in self._target_instances] output['_operator_instances'] = [o.serialize() for o in self._operator_instances] output['_connections'] = [o.serialize() for o in self._connections] output['_source_node_id'] = self._source_node_id output['_revision'] = self._revision return output def deserialize(self, data: dict) -> None: super(ConversionGraph, self).deserialize(data=data) notifications = [] # _source_node_id old = self._source_node_id new = data['_source_node_id'] if '_source_node_id' in data.keys() else '' if not old == new: self._source_node_id = new notifications.append( ChangeNotification( item=self, property_name='source_node_id', old_value=old, new_value=new ) ) # _revision old = self._revision new = data['_revision'] if '_revision' in data.keys() else 0 if not old == new: self._revision = new notifications.append( ChangeNotification( item=self, property_name='revision', old_value=old, new_value=new ) ) # _target_instances old = self._target_instances[:] while len(self._target_instances): self._unsubscribe(notifying=self._target_instances.pop()) items = [] if '_target_instances' in data.keys(): for o in data['_target_instances']: item = TargetInstance() item.deserialize(data=o) items.append(item) self._target_instances = items if not self._target_instances == old: notifications.append( ChangeNotification( item=self, property_name='target_instances', old_value=old, new_value=self._target_instances ) ) # _source_node old = self._source_node source_node = None if self._source_node_id: items = [o for o in self._target_instances if o.id == self._source_node_id] source_node = items[0] if len(items) else None self._source_node = source_node if not self._source_node == old: notifications.append( ChangeNotification( item=self, property_name='source_node', old_value=old, new_value=self._source_node ) ) # _operator_instances # _graph_output old_operator_instances = self._operator_instances old_graph_output = self._graph_output items = [] self._graph_output = None if '_operator_instances' in data.keys(): for o in data['_operator_instances']: item = OperatorInstance() item.deserialize(data=o) items.append(item) if isinstance(item.operator, GraphOutput): self._graph_output = item if not self._graph_output: self._graph_output = OperatorInstance.FromOperator(operator=GraphOutput()) items.insert(0, self._graph_output) self._operator_instances = items if not self._operator_instances == old_operator_instances: notifications.append( ChangeNotification( item=self, property_name='operator_instances', old_value=old_operator_instances, new_value=self._operator_instances ) ) if not self._graph_output == old_graph_output: notifications.append( ChangeNotification( item=self, property_name='old_graph_output', old_value=old_operator_instances, new_value=self._graph_output ) ) items = [] if '_connections' in data.keys(): for o in data['_connections']: item = Connection() item.deserialize(data=o) items.append(item) self._connections = items for o in self._target_instances: self._subscribe(notifying=o) for o in self._operator_instances: self._subscribe(notifying=o) for o in notifications: self._notify(notification=o) def build_dag(self) -> None: for connection in self._connections: source = self._get_plug(plug_id=connection.source_id) destination = self._get_plug(plug_id=connection.destination_id) if not source or not destination: continue if destination not in source.outputs: source.outputs.append(destination) destination.input = source def _get_plug(self, plug_id: str) -> typing.Union[Plug, typing.NoReturn]: for assembly_reference in self._target_instances: for plug in assembly_reference.inputs: if plug.id == plug_id: return plug for plug in assembly_reference.outputs: if plug.id == plug_id: return plug for operator_instance in self._operator_instances: for plug in operator_instance.outputs: if plug.id == plug_id: return plug for plug in operator_instance.inputs: if plug.id == plug_id: return plug return None def add_node(self, node: OperatorInstance) -> None: self._operator_instances.append(node) def add_connection(self, source: Plug, destination: Plug) -> None: connection = Connection() connection._source_id = source.id connection._destination_id = destination.id self._connections.append(connection) if destination not in source.outputs: source.outputs.append(destination) destination.input = source def add(self, entity: GraphEntity) -> None: if isinstance(entity, TargetInstance): if entity in self._target_instances: return self._target_instances.append(entity) self._subscribe(notifying=entity) return if isinstance(entity, OperatorInstance): if entity in self._operator_instances: return self._operator_instances.append(entity) self._subscribe(notifying=entity) return raise NotImplementedError() def can_be_removed(self, entity: GraphEntity) -> bool: if not entity: return False if entity not in self._target_instances and entity not in self._operator_instances: return False if entity == self._graph_output: return False return True def remove(self, entity: GraphEntity) -> None: if not self.can_be_removed(entity=entity): raise Exception('Not allowed: entity is not allowed to be deleted.') if isinstance(entity, TargetInstance): if entity in self._target_instances: self._unsubscribe(notifying=entity) self._target_instances.remove(entity) to_remove = [] for connection in self._connections: if connection.source_id == entity.id or connection.destination_id == entity.id: to_remove.append(connection) for connection in to_remove: self.remove_connection(connection=connection) return if isinstance(entity, OperatorInstance): if entity in self._operator_instances: self._unsubscribe(notifying=entity) self._operator_instances.remove(entity) to_remove = [] for connection in self._connections: if connection.source_id == entity.id or connection.destination_id == entity.id: to_remove.append(connection) for connection in to_remove: self.remove_connection(connection=connection) return raise NotImplementedError() def remove_connection(self, connection: Connection) -> None: if connection in self._connections: self._connections.remove(connection) source = self._get_plug(plug_id=connection.source_id) destination = self._get_plug(plug_id=connection.destination_id) if source and destination: if destination in source.outputs: source.outputs.remove(destination) if destination.input == source: destination.input = None def get_entity_by_id(self, identifier: str) -> typing.Union[GraphEntity, typing.NoReturn]: entities = [entity for entity in self._target_instances if entity.id == identifier] if len(entities): return entities[0] entities = [entity for entity in self._operator_instances if entity.id == identifier] if len(entities): return entities[0] return None def get_output_entity(self) -> typing.Union[TargetInstance, typing.NoReturn]: """ Computes the dependency graph and returns the resulting Target reference. Make sure relevant source node plug values have been set prior to invoking this method. """ if not self._graph_output: return None self._graph_output.invalidate() assembly_id = self._graph_output.outputs[0].computed_value for item in self._target_instances: if item.target_id == assembly_id: return item return None def get_object_style_name(self, entity: GraphEntity) -> str: if not entity: return '' # TODO: Style computed output entity # if entity == self.get_output_entity(): # return ConversionGraph.STYLE_OUTPUT.name if entity == self.source_node: return ConversionGraph.STYLE_SOURCE_NODE.name if isinstance(entity, TargetInstance): return ConversionGraph.STYLE_ASSEMBLY_REFERENCE.name if isinstance(entity, OperatorInstance): if entity.operator: if entity.operator.__class__.__name__ == 'ConstantBoolean': return ConversionGraph.STYLE_CONSTANT_BOOLEAN.name if entity.operator.__class__.__name__ == 'ConstantColor': return ConversionGraph.STYLE_CONSTANT_COLOR.name if entity.operator.__class__.__name__ == 'ConstantFloat': return ConversionGraph.STYLE_CONSTANT_FLOAT.name if entity.operator.__class__.__name__ == 'ConstantInteger': return ConversionGraph.STYLE_CONSTANT_INTEGER.name if entity.operator.__class__.__name__ == 'ConstantString': return ConversionGraph.STYLE_CONSTANT_STRING.name if entity.operator.__class__.__name__ == 'BooleanSwitch': return ConversionGraph.STYLE_BOOLEAN_SWITCH.name if entity.operator.__class__.__name__ == 'ValueResolver': return ConversionGraph.STYLE_VALUE_RESOLVER.name if entity.operator.__class__.__name__ == 'SplitRGB': return ConversionGraph.STYLE_SPLIT_RGB.name if entity.operator.__class__.__name__ == 'MergeRGB': return ConversionGraph.STYLE_MERGE_RGB.name if entity.operator.__class__.__name__ == 'LessThan': return ConversionGraph.STYLE_LESS_THAN.name if entity.operator.__class__.__name__ == 'GreaterThan': return ConversionGraph.STYLE_GREATER_THAN.name if entity.operator.__class__.__name__ == 'Or': return ConversionGraph.STYLE_OR.name if entity.operator.__class__.__name__ == 'Equal': return ConversionGraph.STYLE_EQUAL.name if entity.operator.__class__.__name__ == 'Not': return ConversionGraph.STYLE_NOT.name if entity.operator.__class__.__name__ == 'MayaTransparencyResolver': return ConversionGraph.STYLE_TRANSPARENCY_RESOLVER.name if entity.operator.__class__.__name__ == 'GraphOutput': return ConversionGraph.STYLE_OUTPUT.name return ConversionGraph.STYLE_OPERATOR_INSTANCE.name return '' def get_output_targets(self) -> typing.List[TargetInstance]: return [o for o in self._target_instances if not o == self._source_node] @property def target_instances(self) -> typing.List[TargetInstance]: return self._target_instances[:] @property def operator_instances(self) -> typing.List[OperatorInstance]: return self._operator_instances[:] @property def connections(self) -> typing.List[Connection]: return self._connections[:] @property def filename(self) -> str: return self._filename @filename.setter def filename(self, value: str) -> None: if self._filename is value: return notification = ChangeNotification( item=self, property_name='filename', old_value=self._filename, new_value=value ) self._filename = value self._notify(notification=notification) @property def library(self) -> 'Library': return self._library @property def graph_output(self) -> OperatorInstance: return self._graph_output @property def source_node(self) -> TargetInstance: return self._source_node @source_node.setter def source_node(self, value: TargetInstance) -> None: if self._source_node is value: return node_notification = ChangeNotification( item=self, property_name='source_node', old_value=self._source_node, new_value=value ) node_id_notification = ChangeNotification( item=self, property_name='source_node_id', old_value=self._source_node_id, new_value=value.id if value else '' ) self._source_node = value self._source_node_id = self._source_node.id if self._source_node else '' self._notify(notification=node_notification) self._notify(notification=node_id_notification) @property def exists_on_disk(self) -> bool: return self._exists_on_disk @property def revision(self) -> int: return self._revision @revision.setter def revision(self, value: int) -> None: if self._revision is value: return notification = ChangeNotification( item=self, property_name='revision', old_value=self._revision, new_value=value ) self._revision = value self._notify(notification=notification) class FileHeader(Serializable): @classmethod def FromInstance(cls, instance: Serializable) -> 'FileHeader': header = cls() header._module = instance.__class__.__module__ header._class_name = instance.__class__.__name__ return header @classmethod def FromData(cls, data: dict) -> 'FileHeader': if '_module' not in data.keys(): raise Exception('Unexpected data: key "_module" not in dictionary') if '_class_name' not in data.keys(): raise Exception('Unexpected data: key "_class_name" not in dictionary') header = cls() header._module = data['_module'] header._class_name = data['_class_name'] return header def __init__(self): super(FileHeader, self).__init__() self._module = '' self._class_name = '' def serialize(self) -> dict: output = dict() output['_module'] = self._module output['_class_name'] = self._class_name return output @property def module(self) -> str: return self._module @property def class_name(self) -> str: return self._class_name class FileUtility(Serializable): @classmethod def FromInstance(cls, instance: Serializable) -> 'FileUtility': utility = cls() utility._header = FileHeader.FromInstance(instance=instance) utility._content = instance return utility @classmethod def FromData(cls, data: dict) -> 'FileUtility': if '_header' not in data.keys(): raise Exception('Unexpected data: key "_header" not in dictionary') if '_content' not in data.keys(): raise Exception('Unexpected data: key "_content" not in dictionary') utility = cls() utility._header = FileHeader.FromData(data=data['_header']) if utility._header.module not in sys.modules.keys(): importlib.import_module(utility._header.module) module_pointer = sys.modules[utility._header.module] class_pointer = module_pointer.__dict__[utility._header.class_name] utility._content = class_pointer() if isinstance(utility._content, Serializable): utility._content.deserialize(data=data['_content']) return utility def __init__(self): super(FileUtility, self).__init__() self._header: FileHeader = None self._content: Serializable = None def serialize(self) -> dict: output = dict() output['_header'] = self._header.serialize() output['_content'] = self._content.serialize() return output def assert_content_serializable(self): data = self.content.serialize() self._assert(data=data) def _assert(self, data: dict): for key, value in data.items(): if isinstance(value, dict): self._assert(data=value) elif isinstance(value, list): for item in value: if isinstance(item, dict): self._assert(data=item) else: print(item) else: print(key, value) @property def header(self) -> FileHeader: return self._header @property def content(self) -> Serializable: return self._content class Library(Base): """ A Library represents a UMM data set. It can contain any of the following types of files: - Settings - Conversion Graph - Target - Conversion Manifest A Library is divided into a "core" and a "user" data set. "core": - Files provided by NVIDIA. - Installed and updated by UMM. - Adding, editing, and deleting files require running in "Developer Mode". - Types: - Conversion Graph - Target - Conversion Manifest "user" - Files created and updated by user. - Types: - Conversion Graph - Target - Conversion Manifest Overrides ./core/Conversion Manifest ...or... each file header has an attribute: source = core, source = user if source == core then it is read-only to users. TARGET: problem with that is what if user needs to update an existing target? ...why would they? ...because they may want to edit property states in the Target... would want their own. CONVERSION GRAPH ...they could just Save As and make a different one. no problem here. do need to change the 'source' attribute to 'user' though. CONVERSION MANIFEST 2 files ConversionManifest.json ConversionManifest_user.json (overrides ConversionManifest.json) Limitation: User cannot all together remove a manifest item """ @classmethod def Create( cls, library_id: str, name: str, manifest: IDelegate = None, conversion_graph: IDelegate = None, target: IDelegate = None, settings: IDelegate = None ) -> 'Library': instance = typing.cast(Library, super(Library, cls).Create()) instance._id = library_id instance._name = name instance._manifest = manifest instance._conversion_graph = conversion_graph instance._target = target instance._settings = settings return instance def __init__(self): super(Library, self).__init__() self._name: str = '' self._manifest: typing.Union[IDelegate, typing.NoReturn] = None self._conversion_graph: typing.Union[IDelegate, typing.NoReturn] = None self._target: typing.Union[IDelegate, typing.NoReturn] = None self._settings: typing.Union[IDelegate, typing.NoReturn] = None def serialize(self) -> dict: output = super(Library, self).serialize() output['_name'] = self._name return output def deserialize(self, data: dict) -> None: super(Library, self).deserialize(data=data) self._name = data['_name'] if '_name' in data.keys() else '' @property def name(self) -> str: return self._name @name.setter def name(self, value: str) -> None: self._name = value @property def manifest(self) -> typing.Union[IDelegate, typing.NoReturn]: return self._manifest @property def conversion_graph(self) -> typing.Union[IDelegate, typing.NoReturn]: return self._conversion_graph @property def target(self) -> typing.Union[IDelegate, typing.NoReturn]: return self._target @property def settings(self) -> typing.Union[IDelegate, typing.NoReturn]: return self._settings @property def is_read_only(self) -> bool: return not self._conversion_graph or not self._target or not self._conversion_graph class Settings(Serializable): def __init__(self): super(Settings, self).__init__() self._libraries: typing.List[Library] = [] self._store_id = 'Settings.json' self._render_contexts: typing.List[str] = [] def serialize(self) -> dict: output = super(Settings, self).serialize() output['_libraries'] = [o.serialize() for o in self._libraries] output['_render_contexts'] = self._render_contexts return output def deserialize(self, data: dict) -> None: super(Settings, self).deserialize(data=data) items = [] if '_libraries' in data.keys(): for o in data['_libraries']: item = Library() item.deserialize(data=o) items.append(item) self._libraries = items self._render_contexts = data['_render_contexts'] if '_render_contexts' in data.keys() else [] @property def libraries(self) -> typing.List[Library]: return self._libraries @property def store_id(self) -> str: return self._store_id @property def render_contexts(self) -> typing.List[str]: return self._render_contexts class ClassInfo(object): def __init__(self, display_name: str, class_name: str): super(ClassInfo, self).__init__() self._display_name = display_name self._class_name = class_name @property def display_name(self) -> str: return self._display_name @property def class_name(self) -> str: return self._class_name class OmniMDL(object): OMNI_GLASS: ClassInfo = ClassInfo(display_name='Omni Glass', class_name='OmniGlass.mdl|OmniGlass') OMNI_GLASS_OPACITY: ClassInfo = ClassInfo(display_name='Omni Glass Opacity', class_name='OmniGlass_Opacity.mdl|OmniGlass_Opacity') OMNI_PBR: ClassInfo = ClassInfo(display_name='Omni PBR', class_name='OmniPBR.mdl|OmniPBR') OMNI_PBR_CLEAR_COAT: ClassInfo = ClassInfo(display_name='Omni PBR Clear Coat', class_name='OmniPBR_ClearCoat.mdl|OmniPBR_ClearCoat') OMNI_PBR_CLEAR_COAT_OPACITY: ClassInfo = ClassInfo(display_name='Omni PBR Clear Coat Opacity', class_name='OmniPBR_ClearCoat_Opacity.mdl|OmniPBR_ClearCoat_Opacity') OMNI_PBR_OPACITY = ClassInfo(display_name='Omni PBR Opacity', class_name='OmniPBR_Opacity.mdl|OmniPBR_Opacity') OMNI_SURFACE: ClassInfo = ClassInfo(display_name='OmniSurface', class_name='OmniSurface.mdl|OmniSurface') OMNI_SURFACE_LITE: ClassInfo = ClassInfo(display_name='OmniSurfaceLite', class_name='OmniSurfaceLite.mdl|OmniSurfaceLite') OMNI_SURFACE_UBER: ClassInfo = ClassInfo(display_name='OmniSurfaceUber', class_name='OmniSurfaceUber.mdl|OmniSurfaceUber') class MayaShader(object): LAMBERT: ClassInfo = ClassInfo(display_name='Lambert', class_name='lambert') class ConversionMap(Serializable): @classmethod def Create( cls, render_context: str, application: str, document: ConversionGraph, ) -> 'ConversionMap': if not isinstance(document, ConversionGraph): raise Exception('Argument "document" unexpected class: "{0}"'.format(type(document))) instance = cls() instance._render_context = render_context instance._application = application instance._conversion_graph_id = document.id instance._conversion_graph = document return instance def __init__(self): super(ConversionMap, self).__init__() self._render_context: str = '' self._application: str = '' self._conversion_graph_id: str = '' self._conversion_graph: ConversionGraph = None def __eq__(self, other: 'ConversionMap') -> bool: if not isinstance(other, ConversionMap): return False if not self.render_context == other.render_context: return False if not self.application == other.application: return False if not self.conversion_graph_id == other.conversion_graph_id: return False return True def serialize(self) -> dict: output = super(ConversionMap, self).serialize() output['_render_context'] = self._render_context output['_application'] = self._application output['_conversion_graph_id'] = self._conversion_graph_id return output def deserialize(self, data: dict) -> None: super(ConversionMap, self).deserialize(data=data) self._render_context = data['_render_context'] if '_render_context' in data.keys() else '' self._application = data['_application'] if '_application' in data.keys() else '' self._conversion_graph_id = data['_conversion_graph_id'] if '_conversion_graph_id' in data.keys() else '' self._conversion_graph = None @property def render_context(self) -> str: return self._render_context @property def application(self) -> str: return self._application @property def conversion_graph_id(self) -> str: return self._conversion_graph_id @property def conversion_graph(self) -> ConversionGraph: return self._conversion_graph class ConversionManifest(Serializable): def __init__(self): super(ConversionManifest, self).__init__() self._version_major: int = 100 self._version_minor: int = 0 self._conversion_maps: typing.List[ConversionMap] = [] self._store_id = 'ConversionManifest.json' def serialize(self) -> dict: output = super(ConversionManifest, self).serialize() output['_version_major'] = self._version_major output['_version_minor'] = self._version_minor output['_conversion_maps'] = [o.serialize() for o in self._conversion_maps] return output def deserialize(self, data: dict) -> None: super(ConversionManifest, self).deserialize(data=data) self._version_major = data['_version_major'] if '_version_major' in data.keys() else 100 self._version_minor = data['_version_minor'] if '_version_minor' in data.keys() else 0 items = [] if '_conversion_maps' in data.keys(): for o in data['_conversion_maps']: item = ConversionMap() item.deserialize(data=o) items.append(item) self._conversion_maps = items def set_version(self, major: int = 100, minor: int = 0) -> None: self._version_major = major self._version_minor = minor def add( self, render_context: str, application: str, document: ConversionGraph, ) -> ConversionMap: item = ConversionMap.Create( render_context=render_context, application=application, document=document, ) self._conversion_maps.append(item) return item def remove(self, item: ConversionMap) -> None: if item in self._conversion_maps: self._conversion_maps.remove(item) @property def conversion_maps(self) -> typing.List[ConversionMap]: return self._conversion_maps[:] @property def version(self) -> str: return '{0}.{1}'.format(self._version_major, self._version_minor) @property def version_major(self) -> int: return self._version_major @property def version_minor(self) -> int: return self._version_minor @property def store_id(self) -> str: return self._store_id
100,965
Python
32.949563
187
0.58241
NVIDIA-Omniverse/blender_omniverse_addons/omni/universalmaterialmap/core/operator.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. import sys import typing from .data import Operator, Plug, DagNode, OperatorInstance from . import util class ConstantFloat(Operator): def __init__(self): super(ConstantFloat, self).__init__( id='293c38db-c9b3-4b37-ab02-c4ff6052bcb6', name='Constant Float', required_inputs=0, min_inputs=0, max_inputs=0, num_outputs=1 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): output_plugs[0].computed_value = output_plugs[0].value if output_plugs[0].value else 0.0 def generate_input(self, parent: DagNode, index: int) -> Plug: raise Exception('Input index "{0}" not supported.'.format(index)) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: plug = Plug.Create( parent=parent, name='value', display_name='Float', value_type=Plug.VALUE_TYPE_FLOAT, editable=True ) plug.value = 0.0 return plug raise Exception('Output index "{0}" not supported.'.format(index)) def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): output_plugs[0].value = len(self.id) * 0.3 def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): for output in output_plugs: if not output.computed_value == len(self.id) * 0.3: raise Exception('Test failed.') class ConstantInteger(Operator): def __init__(self): super(ConstantInteger, self).__init__( id='293c38db-c9b3-4b37-ab02-c4ff6052bcb7', name='Constant Integer', required_inputs=0, min_inputs=0, max_inputs=0, num_outputs=1 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): output_plugs[0].computed_value = output_plugs[0].value if output_plugs[0].value else 0 def generate_input(self, parent: DagNode, index: int) -> Plug: raise Exception('Input index "{0}" not supported.'.format(index)) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: plug = Plug.Create( parent=parent, name='value', display_name='Integer', value_type=Plug.VALUE_TYPE_INTEGER, editable=True ) plug.value = 0 return plug raise Exception('Output index "{0}" not supported.'.format(index)) def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): output_plugs[0].value = len(self.id) def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): for output in output_plugs: if not output.computed_value == len(self.id): raise Exception('Test failed.') class ConstantBoolean(Operator): def __init__(self): super(ConstantBoolean, self).__init__( id='293c38db-c9b3-4b37-ab02-c4ff6052bcb8', name='Constant Boolean', required_inputs=0, min_inputs=0, max_inputs=0, num_outputs=1 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): output_plugs[0].computed_value = output_plugs[0].value if output_plugs[0].value else False def generate_input(self, parent: DagNode, index: int) -> Plug: raise Exception('Input index "{0}" not supported.'.format(index)) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: plug = Plug.Create( parent=parent, name='value', display_name='Boolean', value_type=Plug.VALUE_TYPE_BOOLEAN, editable=True ) plug.value = True return plug raise Exception('Output index "{0}" not supported.'.format(index)) def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): output_plugs[0].value = False def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): for output in output_plugs: if output.computed_value: raise Exception('Test failed.') class ConstantString(Operator): def __init__(self): super(ConstantString, self).__init__( id='cb169ec0-5ddb-45eb-98d1-5d09f1ca759g', name='Constant String', required_inputs=0, min_inputs=0, max_inputs=0, num_outputs=1 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): output_plugs[0].computed_value = output_plugs[0].value if output_plugs[0].value else '' # print('ConstantString._compute_outputs(): output_plugs[0].computed_value', output_plugs[0].computed_value) def generate_input(self, parent: DagNode, index: int) -> Plug: raise Exception('Input index "{0}" not supported.'.format(index)) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: plug = Plug.Create( parent=parent, name='value', display_name='String', value_type=Plug.VALUE_TYPE_STRING, editable=True ) plug.value = '' plug.default_value = '' return plug raise Exception('Output index "{0}" not supported.'.format(index)) def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): output_plugs[0].value = self.id def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): for output in output_plugs: if not output.computed_value == self.id: raise Exception('Test failed.') class ConstantRGB(Operator): def __init__(self): super(ConstantRGB, self).__init__( id='60f21797-dd62-4b06-9721-53882aa42e81', name='Constant RGB', required_inputs=0, min_inputs=0, max_inputs=0, num_outputs=1 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): output_plugs[0].computed_value = output_plugs[0].value if output_plugs[0].value else (0, 0, 0) def generate_input(self, parent: DagNode, index: int) -> Plug: raise Exception('Input index "{0}" not supported.'.format(index)) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: plug = Plug.Create( parent=parent, name='value', display_name='Color', value_type=Plug.VALUE_TYPE_VECTOR3, editable=True ) plug.value = (0, 0, 0) return plug raise Exception('Output index "{0}" not supported.'.format(index)) def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): output_plugs[0].value = (0.1, 0.2, 0.3) def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): for output in output_plugs: if not output.computed_value == (0.1, 0.2, 0.3): raise Exception('Test failed.') class ConstantRGBA(Operator): def __init__(self): super(ConstantRGBA, self).__init__( id='0ab39d82-5862-4332-af7a-329200ae1d14', name='Constant RGBA', required_inputs=0, min_inputs=0, max_inputs=0, num_outputs=1 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): output_plugs[0].computed_value = output_plugs[0].value if output_plugs[0].value else (0, 0, 0, 0) def generate_input(self, parent: DagNode, index: int) -> Plug: raise Exception('Input index "{0}" not supported.'.format(index)) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: plug = Plug.Create( parent=parent, name='value', display_name='Color', value_type=Plug.VALUE_TYPE_VECTOR4, editable=True ) plug.value = (0, 0, 0, 1) return plug raise Exception('Output index "{0}" not supported.'.format(index)) def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): output_plugs[0].value = (0.1, 0.2, 0.3, 0.4) def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): for output in output_plugs: if not output.computed_value == (0.1, 0.2, 0.3, 0.4): raise Exception('Test failed.') class BooleanSwitch(Operator): """ Outputs the value of input 2 if input 1 is TRUE. Otherwise input 3 will be output. Input 1 must be a boolean. Input 2 and 3 can be of any value type. """ def __init__(self): super(BooleanSwitch, self).__init__( id='a628ab13-f19f-45b3-81cf-6824dd6e7b5d', name='Boolean Switch', required_inputs=3, min_inputs=3, max_inputs=3, num_outputs=1 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): debug = False value = None if debug: print('BooleanSwitch') print('\tinput_plugs[0].input:', input_plugs[0].input) if input_plugs[0].input is not None: if debug: print('\tinput_plugs[0].input.computed_value:', input_plugs[0].input.computed_value) print('\tinput_plugs[1].input:', input_plugs[1].input) if input_plugs[1].input is not None: print('\tinput_plugs[1].input.computed_value:', input_plugs[1].input.computed_value) print('\tinput_plugs[2].input:', input_plugs[2].input) if input_plugs[2].input is not None: print('\tinput_plugs[2].input.computed_value:', input_plugs[2].input.computed_value) if input_plugs[0].input.computed_value: value = input_plugs[1].input.computed_value if input_plugs[1].input is not None else False else: value = input_plugs[2].input.computed_value if input_plugs[2].input is not None else False elif debug: print('\tskipping evaluating inputs') if debug: print('\tvalue:', value) print('\toutput_plugs[0].computed_value is value', output_plugs[0].computed_value is value) output_plugs[0].computed_value = value if value is not None else False def generate_input(self, parent: DagNode, index: int) -> Plug: if index == 0: plug = Plug.Create(parent=parent, name='input_boolean', display_name='Boolean', value_type=Plug.VALUE_TYPE_BOOLEAN) plug.value = False return plug if index == 1: return Plug.Create(parent=parent, name='on_true', display_name='True Output', value_type=Plug.VALUE_TYPE_ANY) if index == 2: return Plug.Create(parent=parent, name='on_false', display_name='False Output', value_type=Plug.VALUE_TYPE_ANY) raise Exception('Input index "{0}" not supported.'.format(index)) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: plug = Plug.Create(parent=parent, name='output', display_name='Output', value_type=Plug.VALUE_TYPE_ANY) plug.value = False return plug raise Exception('Output index "{0}" not supported.'.format(index)) def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): fake = OperatorInstance.FromOperator(operator=ConstantBoolean()) fake.outputs[0].value = True input_plugs[0].input = fake.outputs[0] fake = OperatorInstance.FromOperator(operator=ConstantString()) fake.outputs[0].value = 'Input 1 value' input_plugs[1].input = fake.outputs[0] fake = OperatorInstance.FromOperator(operator=ConstantString()) fake.outputs[0].value = 'Input 2 value' input_plugs[2].input = fake.outputs[0] def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): for output in output_plugs: if not output.computed_value == 'Input 1 value': raise Exception('Test failed.') class SplitRGB(Operator): def __init__(self): super(SplitRGB, self).__init__( id='1cbcf8c6-328c-49b6-b4fc-d16fd78d4868', name='Split RGB', required_inputs=1, min_inputs=1, max_inputs=1, num_outputs=3 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if input_plugs[0].input is None: output_plugs[0].computed_value = 0 output_plugs[1].computed_value = 0 output_plugs[2].computed_value = 0 else: value = input_plugs[0].input.computed_value try: test = iter(value) is_iterable = True except TypeError: is_iterable = False if is_iterable and len(value) == 3: output_plugs[0].computed_value = value[0] output_plugs[1].computed_value = value[1] output_plugs[2].computed_value = value[2] else: output_plugs[0].computed_value = output_plugs[0].default_value output_plugs[1].computed_value = output_plugs[1].default_value output_plugs[2].computed_value = output_plugs[2].default_value def generate_input(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='input_rgb', display_name='RGB', value_type=Plug.VALUE_TYPE_VECTOR3) raise Exception('Input index "{0}" not supported.'.format(index)) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: plug = Plug.Create( parent=parent, name='red', display_name='Red', value_type=Plug.VALUE_TYPE_FLOAT, editable=False ) plug.value = 0 return plug if index == 1: plug = Plug.Create( parent=parent, name='green', display_name='Green', value_type=Plug.VALUE_TYPE_FLOAT, editable=False ) plug.value = 0 return plug if index == 2: plug = Plug.Create( parent=parent, name='blue', display_name='Blue', value_type=Plug.VALUE_TYPE_FLOAT, editable=False ) plug.value = 0 return plug raise Exception('Output index "{0}" not supported.'.format(index)) def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): fake = OperatorInstance.FromOperator(operator=ConstantRGB()) fake.outputs[0].value = (0.1, 0.2, 0.3) input_plugs[0].input = fake.outputs[0] def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if not output_plugs[0].computed_value == 0.1: raise Exception('Test failed.') if not output_plugs[1].computed_value == 0.2: raise Exception('Test failed.') if not output_plugs[2].computed_value == 0.3: raise Exception('Test failed.') class MergeRGB(Operator): def __init__(self): super(MergeRGB, self).__init__( id='1cbcf8c6-328d-49b6-b4fc-d16fd78d4868', name='Merge RGB', required_inputs=3, min_inputs=3, max_inputs=3, num_outputs=1 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): rgb = [0.0, 0.0, 0.0] for i in range(3): if input_plugs[i].input is not None: assumed_value_type = input_plugs[i].input.value_type if util.to_plug_value_type(value=input_plugs[i].input.computed_value, assumed_value_type=assumed_value_type) == Plug.VALUE_TYPE_FLOAT: rgb[i] = input_plugs[i].input.computed_value output_plugs[0].computed_value = tuple(rgb) def generate_input(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='input_r', display_name='R', value_type=Plug.VALUE_TYPE_FLOAT) if index == 1: return Plug.Create(parent=parent, name='input_g', display_name='G', value_type=Plug.VALUE_TYPE_FLOAT) if index == 2: return Plug.Create(parent=parent, name='input_B', display_name='B', value_type=Plug.VALUE_TYPE_FLOAT) raise Exception('Input index "{0}" not supported.'.format(index)) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: plug = Plug.Create( parent=parent, name='rgb', display_name='RGB', value_type=Plug.VALUE_TYPE_VECTOR3, editable=False ) plug.value = (0, 0, 0) return plug raise Exception('Output index "{0}" not supported.'.format(index)) def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): fake = OperatorInstance.FromOperator(operator=ConstantFloat()) fake.outputs[0].value = 0.1 input_plugs[0].input = fake.outputs[0] fake = OperatorInstance.FromOperator(operator=ConstantFloat()) fake.outputs[0].value = 0.2 input_plugs[1].input = fake.outputs[0] fake = OperatorInstance.FromOperator(operator=ConstantFloat()) fake.outputs[0].value = 0.3 input_plugs[2].input = fake.outputs[0] def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if not output_plugs[0].computed_value == (0.1, 0.2, 0.3): raise Exception('Test failed.') class SplitRGBA(Operator): def __init__(self): super(SplitRGBA, self).__init__( id='2c48e13c-2b58-48b9-a3b6-5f977c402b2e', name='Split RGBA', required_inputs=1, min_inputs=1, max_inputs=1, num_outputs=4 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if input_plugs[0].input is None: output_plugs[0].computed_value = 0 output_plugs[1].computed_value = 0 output_plugs[2].computed_value = 0 output_plugs[3].computed_value = 0 return value = input_plugs[0].input.computed_value try: test = iter(value) is_iterable = True except TypeError: is_iterable = False if is_iterable and len(value) == 4: output_plugs[0].computed_value = value[0] output_plugs[1].computed_value = value[1] output_plugs[2].computed_value = value[2] output_plugs[3].computed_value = value[3] else: output_plugs[0].computed_value = output_plugs[0].default_value output_plugs[1].computed_value = output_plugs[1].default_value output_plugs[2].computed_value = output_plugs[2].default_value output_plugs[3].computed_value = output_plugs[3].default_value def generate_input(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='input_rgba', display_name='RGBA', value_type=Plug.VALUE_TYPE_VECTOR4) raise Exception('Input index "{0}" not supported.'.format(index)) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: plug = Plug.Create( parent=parent, name='red', display_name='Red', value_type=Plug.VALUE_TYPE_FLOAT, editable=False ) plug.value = 0 return plug if index == 1: plug = Plug.Create( parent=parent, name='green', display_name='Green', value_type=Plug.VALUE_TYPE_FLOAT, editable=False ) plug.value = 0 return plug if index == 2: plug = Plug.Create( parent=parent, name='blue', display_name='Blue', value_type=Plug.VALUE_TYPE_FLOAT, editable=False ) plug.value = 0 return plug if index == 3: plug = Plug.Create( parent=parent, name='alpha', display_name='Alpha', value_type=Plug.VALUE_TYPE_FLOAT, editable=False ) plug.value = 0 return plug raise Exception('Output index "{0}" not supported.'.format(index)) def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): fake = OperatorInstance.FromOperator(operator=ConstantRGB()) fake.outputs[0].value = (0.1, 0.2, 0.3, 0.4) input_plugs[0].input = fake.outputs[0] def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if not output_plugs[0].computed_value == 0.1: raise Exception('Test failed.') if not output_plugs[1].computed_value == 0.2: raise Exception('Test failed.') if not output_plugs[2].computed_value == 0.3: raise Exception('Test failed.') if not output_plugs[3].computed_value == 0.4: raise Exception('Test failed.') class MergeRGBA(Operator): def __init__(self): super(MergeRGBA, self).__init__( id='92e57f3d-8514-4786-a4ed-2767139a15eb', name='Merge RGBA', required_inputs=4, min_inputs=4, max_inputs=4, num_outputs=1 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): rgba = [0.0, 0.0, 0.0, 0.0] for i in range(4): if input_plugs[i].input is not None: assumed_value_type = input_plugs[i].input.value_type if util.to_plug_value_type(value=input_plugs[i].input.computed_value, assumed_value_type=assumed_value_type) == Plug.VALUE_TYPE_FLOAT: rgba[i] = input_plugs[i].input.computed_value output_plugs[0].computed_value = tuple(rgba) def generate_input(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='input_r', display_name='R', value_type=Plug.VALUE_TYPE_FLOAT) if index == 1: return Plug.Create(parent=parent, name='input_g', display_name='G', value_type=Plug.VALUE_TYPE_FLOAT) if index == 2: return Plug.Create(parent=parent, name='input_b', display_name='B', value_type=Plug.VALUE_TYPE_FLOAT) if index == 3: return Plug.Create(parent=parent, name='input_a', display_name='A', value_type=Plug.VALUE_TYPE_FLOAT) raise Exception('Input index "{0}" not supported.'.format(index)) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: plug = Plug.Create( parent=parent, name='rgba', display_name='RGBA', value_type=Plug.VALUE_TYPE_VECTOR3, editable=False ) plug.value = (0, 0, 0, 0) return plug raise Exception('Output index "{0}" not supported.'.format(index)) def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): fake = OperatorInstance.FromOperator(operator=ConstantFloat()) fake.outputs[0].value = 0.1 input_plugs[0].input = fake.outputs[0] fake = OperatorInstance.FromOperator(operator=ConstantFloat()) fake.outputs[0].value = 0.2 input_plugs[1].input = fake.outputs[0] fake = OperatorInstance.FromOperator(operator=ConstantFloat()) fake.outputs[0].value = 0.3 input_plugs[2].input = fake.outputs[0] fake = OperatorInstance.FromOperator(operator=ConstantFloat()) fake.outputs[0].value = 0.4 input_plugs[3].input = fake.outputs[0] def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if not output_plugs[0].computed_value == (0.1, 0.2, 0.3, 0.4): raise Exception('Test failed.') class LessThan(Operator): def __init__(self): super(LessThan, self).__init__( id='996df9bd-08d5-451b-a67c-80d0de7fba32', name='Less Than', required_inputs=2, min_inputs=2, max_inputs=2, num_outputs=1 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if input_plugs[0].input is None or input_plugs[1].input is None: for output in output_plugs: output.computed_value = False return value = input_plugs[0].input.computed_value compare = input_plugs[1].input.computed_value result = False try: result = value < compare except Exception as error: print('WARNING: Universal Material Map: ' 'unable to compare if "{0}" is less than "{1}". ' 'Setting output to "{2}".'.format( value, compare, result )) output_plugs[0].computed_value = result def generate_input(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='value', display_name='Value', value_type=Plug.VALUE_TYPE_FLOAT) if index == 1: return Plug.Create(parent=parent, name='comparison', display_name='Comparison', value_type=Plug.VALUE_TYPE_FLOAT) raise Exception('Input index "{0}" not supported.'.format(index)) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='output', display_name='Is Less Than', value_type=Plug.VALUE_TYPE_BOOLEAN) raise Exception('Output index "{0}" not supported.'.format(index)) def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): fake = OperatorInstance.FromOperator(operator=ConstantFloat()) fake.outputs[0].value = 0.1 input_plugs[0].input = fake.outputs[0] fake = OperatorInstance.FromOperator(operator=ConstantFloat()) fake.outputs[0].value = 0.2 input_plugs[1].input = fake.outputs[0] def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if not output_plugs[0].computed_value: raise Exception('Test failed.') class GreaterThan(Operator): def __init__(self): super(GreaterThan, self).__init__( id='1e751c3a-f6cd-43a2-aa72-22cb9d82ad19', name='Greater Than', required_inputs=2, min_inputs=2, max_inputs=2, num_outputs=1 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if input_plugs[0].input is None or input_plugs[1].input is None: output_plugs[0].computed_value = False return value = input_plugs[0].input.computed_value compare = input_plugs[1].input.computed_value result = False try: result = value > compare except Exception as error: print('WARNING: Universal Material Map: ' 'unable to compare if "{0}" is greater than "{1}". ' 'Setting output to "{2}".'.format( value, compare, result )) output_plugs[0].computed_value = result def generate_input(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='value', display_name='Value', value_type=Plug.VALUE_TYPE_FLOAT) if index == 1: return Plug.Create(parent=parent, name='comparison', display_name='Comparison', value_type=Plug.VALUE_TYPE_FLOAT) raise Exception('Input index "{0}" not supported.'.format(index)) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='output', display_name='Is Greater Than', value_type=Plug.VALUE_TYPE_BOOLEAN) raise Exception('Output index "{0}" not supported.'.format(index)) def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): fake = OperatorInstance.FromOperator(operator=ConstantFloat()) fake.outputs[0].value = 0.1 input_plugs[0].input = fake.outputs[0] fake = OperatorInstance.FromOperator(operator=ConstantFloat()) fake.outputs[0].value = 0.2 input_plugs[1].input = fake.outputs[0] def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if output_plugs[0].computed_value: raise Exception('Test failed.') class Or(Operator): def __init__(self): super(Or, self).__init__( id='d0288faf-cb2e-4765-8923-1a368b45f62c', name='Or', required_inputs=2, min_inputs=2, max_inputs=2, num_outputs=1 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if input_plugs[0].input is None and input_plugs[1].input is None: output_plugs[0].computed_value = False return value_1 = input_plugs[0].input.computed_value if input_plugs[0].input else False value_2 = input_plugs[1].input.computed_value if input_plugs[1].input else False if value_1 is None and value_2 is None: output_plugs[0].computed_value = False return if value_1 is None: output_plugs[0].computed_value = True if value_2 else False return if value_2 is None: output_plugs[0].computed_value = True if value_1 else False return output_plugs[0].computed_value = value_1 or value_2 def generate_input(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='value_1', display_name='Value 1', value_type=Plug.VALUE_TYPE_ANY) if index == 1: return Plug.Create(parent=parent, name='value_2', display_name='Value 2', value_type=Plug.VALUE_TYPE_ANY) raise Exception('Input index "{0}" not supported.'.format(index)) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='output', display_name='Is True', value_type=Plug.VALUE_TYPE_BOOLEAN) raise Exception('Output index "{0}" not supported.'.format(index)) def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): fake = OperatorInstance.FromOperator(operator=ConstantBoolean()) fake.outputs[0].value = True input_plugs[0].input = fake.outputs[0] fake = OperatorInstance.FromOperator(operator=ConstantBoolean()) fake.outputs[0].value = False input_plugs[1].input = fake.outputs[0] def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if not output_plugs[0].computed_value: raise Exception('Test failed.') class And(Operator): def __init__(self): super(And, self).__init__( id='9c5e4fb9-9948-4075-a7d6-ae9bc04e25b5', name='And', required_inputs=2, min_inputs=2, max_inputs=2, num_outputs=1 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if input_plugs[0].input is None and input_plugs[1].input is None: output_plugs[0].computed_value = False return value_1 = input_plugs[0].input.computed_value if input_plugs[0].input else False value_2 = input_plugs[1].input.computed_value if input_plugs[1].input else False if value_1 is None and value_2 is None: output_plugs[0].computed_value = False return if value_1 is None: output_plugs[0].computed_value = True if value_2 else False return if value_2 is None: output_plugs[0].computed_value = True if value_1 else False return output_plugs[0].computed_value = value_1 and value_2 def generate_input(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='value_1', display_name='Value 1', value_type=Plug.VALUE_TYPE_ANY) if index == 1: return Plug.Create(parent=parent, name='value_2', display_name='Value 2', value_type=Plug.VALUE_TYPE_ANY) raise Exception('Input index "{0}" not supported.'.format(index)) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='output', display_name='Is True', value_type=Plug.VALUE_TYPE_BOOLEAN) raise Exception('Output index "{0}" not supported.'.format(index)) def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): fake = OperatorInstance.FromOperator(operator=ConstantBoolean()) fake.outputs[0].value = True input_plugs[0].input = fake.outputs[0] fake = OperatorInstance.FromOperator(operator=ConstantBoolean()) fake.outputs[0].value = True input_plugs[1].input = fake.outputs[0] def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if not output_plugs[0].computed_value: raise Exception('Test failed.') class Equal(Operator): def __init__(self): super(Equal, self).__init__( id='fb353972-aebd-4d32-8231-f644f75d322c', name='Equal', required_inputs=2, min_inputs=2, max_inputs=2, num_outputs=1 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if input_plugs[0].input is None and input_plugs[1].input is None: output_plugs[0].computed_value = True return if input_plugs[0].input is None or input_plugs[1].input is None: output_plugs[0].computed_value = False return value_1 = input_plugs[0].input.computed_value value_2 = input_plugs[1].input.computed_value if value_1 is None and value_2 is None: output_plugs[0].computed_value = True return if value_1 is None or value_2 is None: output_plugs[0].computed_value = False return result = False try: result = value_1 == value_2 except Exception as error: print('WARNING: Universal Material Map: ' 'unable to compare if "{0}" is equal to "{1}". ' 'Setting output to "{2}".'.format( value_1, value_2, result )) output_plugs[0].computed_value = result def generate_input(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='value_1', display_name='Value 1', value_type=Plug.VALUE_TYPE_ANY) if index == 1: return Plug.Create(parent=parent, name='value_1', display_name='Value 2', value_type=Plug.VALUE_TYPE_ANY) raise Exception('Input index "{0}" not supported.'.format(index)) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='output', display_name='Are Equal', value_type=Plug.VALUE_TYPE_BOOLEAN) raise Exception('Output index "{0}" not supported.'.format(index)) def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): fake = OperatorInstance.FromOperator(operator=ConstantString()) fake.outputs[0].value = self.id input_plugs[0].input = fake.outputs[0] fake = OperatorInstance.FromOperator(operator=ConstantString()) fake.outputs[0].value = self.id input_plugs[1].input = fake.outputs[0] def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if not output_plugs[0].computed_value: raise Exception('Test failed.') class Not(Operator): def __init__(self): super(Not, self).__init__( id='7b8b67df-ce2e-445c-98b7-36ea695c77e3', name='Not', required_inputs=1, min_inputs=1, max_inputs=1, num_outputs=1 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if input_plugs[0].input is None: output_plugs[0].computed_value = False return value_1 = input_plugs[0].input.computed_value if value_1 is None: output_plugs[0].computed_value = False return output_plugs[0].computed_value = not value_1 def generate_input(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='value', display_name='Boolean', value_type=Plug.VALUE_TYPE_BOOLEAN) raise Exception('Input index "{0}" not supported.'.format(index)) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='output', display_name='Boolean', value_type=Plug.VALUE_TYPE_BOOLEAN) raise Exception('Output index "{0}" not supported.'.format(index)) def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): fake = OperatorInstance.FromOperator(operator=ConstantBoolean()) fake.outputs[0].value = False input_plugs[0].input = fake.outputs[0] def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if not output_plugs[0].computed_value: raise Exception('Test failed.') class ValueTest(Operator): def __init__(self): super(ValueTest, self).__init__( id='2899f66b-2e8d-467b-98d1-5f590cf98e7a', name='Value Test', required_inputs=1, min_inputs=1, max_inputs=1, num_outputs=1 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if input_plugs[0].input is None: output_plugs[0].computed_value = None return output_plugs[0].computed_value = input_plugs[0].input.computed_value def generate_input(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='input', display_name='Input', value_type=Plug.VALUE_TYPE_ANY) raise Exception('Input index "{0}" not supported.'.format(index)) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='output', display_name='Output', value_type=Plug.VALUE_TYPE_ANY) raise Exception('Output index "{0}" not supported.'.format(index)) def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): fake = OperatorInstance.FromOperator(operator=ConstantInteger()) fake.outputs[0].value = 10 input_plugs[0].input = fake.outputs[0] def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if not output_plugs[0].computed_value == 10: raise Exception('Test failed.') class ValueResolver(Operator): def __init__(self): super(ValueResolver, self).__init__( id='74306cd0-b668-4a92-9e15-7b23486bd89a', name='Value Resolver', required_inputs=8, min_inputs=8, max_inputs=8, num_outputs=7 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): assumed_value_type = input_plugs[0].input.value_type if input_plugs[0].input else input_plugs[0].value_type computed_value = input_plugs[0].input.computed_value if input_plugs[0].input else False value_type = util.to_plug_value_type(value=computed_value, assumed_value_type=assumed_value_type) if value_type == Plug.VALUE_TYPE_BOOLEAN: output_plugs[0].computed_value = computed_value else: output_plugs[0].computed_value = input_plugs[1].computed_value if value_type == Plug.VALUE_TYPE_VECTOR3: output_plugs[1].computed_value = computed_value else: output_plugs[1].computed_value = input_plugs[2].computed_value if value_type == Plug.VALUE_TYPE_FLOAT: output_plugs[2].computed_value = computed_value else: output_plugs[2].computed_value = input_plugs[3].computed_value if value_type == Plug.VALUE_TYPE_INTEGER: output_plugs[3].computed_value = computed_value else: output_plugs[3].computed_value = input_plugs[4].computed_value if value_type == Plug.VALUE_TYPE_STRING: output_plugs[4].computed_value = computed_value else: output_plugs[4].computed_value = input_plugs[5].computed_value if value_type == Plug.VALUE_TYPE_VECTOR4: output_plugs[5].computed_value = computed_value else: output_plugs[5].computed_value = input_plugs[6].computed_value if value_type == Plug.VALUE_TYPE_LIST: output_plugs[6].computed_value = computed_value else: output_plugs[6].computed_value = input_plugs[7].computed_value for index, input_plug in enumerate(input_plugs): if index == 0: continue input_plug.is_editable = not input_plug.input for output_plug in output_plugs: output_plug.is_editable = False def generate_input(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='input', display_name='Input', value_type=Plug.VALUE_TYPE_ANY) if index == 1: plug = Plug.Create( parent=parent, name='boolean', display_name='Boolean', value_type=Plug.VALUE_TYPE_BOOLEAN, editable=True, ) plug.value = False return plug if index == 2: plug = Plug.Create( parent=parent, name='color', display_name='Color', value_type=Plug.VALUE_TYPE_VECTOR3, editable=True, ) plug.value = (0, 0, 0) return plug if index == 3: plug = Plug.Create( parent=parent, name='float', display_name='Float', value_type=Plug.VALUE_TYPE_FLOAT, editable=True, ) plug.value = 0 return plug if index == 4: plug = Plug.Create( parent=parent, name='integer', display_name='Integer', value_type=Plug.VALUE_TYPE_INTEGER, editable=True, ) plug.value = 0 return plug if index == 5: plug = Plug.Create( parent=parent, name='string', display_name='String', value_type=Plug.VALUE_TYPE_STRING, editable=True, ) plug.value = '' return plug if index == 6: plug = Plug.Create( parent=parent, name='rgba', display_name='RGBA', value_type=Plug.VALUE_TYPE_VECTOR4, editable=True, ) plug.value = (0, 0, 0, 1) return plug if index == 7: plug = Plug.Create( parent=parent, name='list', display_name='List', value_type=Plug.VALUE_TYPE_LIST, editable=False, ) plug.value = [] return plug raise Exception('Input index "{0}" not supported.'.format(index)) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: plug = Plug.Create( parent=parent, name='boolean', display_name='Boolean', value_type=Plug.VALUE_TYPE_BOOLEAN, editable=False, ) plug.value = False return plug if index == 1: plug = Plug.Create( parent=parent, name='color', display_name='Color', value_type=Plug.VALUE_TYPE_VECTOR3, editable=False, ) plug.value = (0, 0, 0) return plug if index == 2: plug = Plug.Create( parent=parent, name='float', display_name='Float', value_type=Plug.VALUE_TYPE_FLOAT, editable=False, ) plug.value = 0 return plug if index == 3: plug = Plug.Create( parent=parent, name='integer', display_name='Integer', value_type=Plug.VALUE_TYPE_INTEGER, editable=False, ) plug.value = 0 return plug if index == 4: plug = Plug.Create( parent=parent, name='string', display_name='String', value_type=Plug.VALUE_TYPE_STRING, editable=False, ) plug.value = '' return plug if index == 5: plug = Plug.Create( parent=parent, name='rgba', display_name='RGBA', value_type=Plug.VALUE_TYPE_VECTOR4, editable=False, ) plug.value = (0, 0, 0, 1) return plug if index == 6: plug = Plug.Create( parent=parent, name='list', display_name='List', value_type=Plug.VALUE_TYPE_LIST, editable=False, ) plug.value = [] return plug raise Exception('Output index "{0}" not supported.'.format(index)) def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): fake = OperatorInstance.FromOperator(operator=ConstantInteger()) fake.outputs[0].value = 10 input_plugs[0].input = fake.outputs[0] def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if not output_plugs[3].computed_value == 10: raise Exception('Test failed.') class MayaTransparencyResolver(Operator): """ Specialty operator based on Maya transparency attribute. If the input is of type string - and is not an empty string - then the output will be TRUE. If the input is a tripple float - and any value is greater than zero - then the output will also be TRUE. In all other cases the output will be FALSE. """ def __init__(self): super(MayaTransparencyResolver, self).__init__( id='2b523832-ac84-4051-9064-6046121dcd48', name='Maya Transparency Resolver', required_inputs=1, min_inputs=1, max_inputs=1, num_outputs=1 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): is_transparent = False assumed_value_type = input_plugs[0].input.value_type if input_plugs[0].input else input_plugs[0].value_type computed_value = input_plugs[0].input.computed_value if input_plugs[0].input else False value_type = util.to_plug_value_type(value=computed_value, assumed_value_type=assumed_value_type) if value_type == Plug.VALUE_TYPE_STRING: is_transparent = not computed_value == '' elif value_type == Plug.VALUE_TYPE_VECTOR3: for value in computed_value: if value > 0: is_transparent = True break elif value_type == Plug.VALUE_TYPE_FLOAT: is_transparent = computed_value > 0 output_plugs[0].computed_value = is_transparent def generate_input(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='input', display_name='Input', value_type=Plug.VALUE_TYPE_ANY) raise Exception('Input index "{0}" not supported.'.format(index)) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: plug = Plug.Create( parent=parent, name='is_transparent', display_name='Is Transparent', value_type=Plug.VALUE_TYPE_BOOLEAN, ) plug.value = False return plug raise Exception('Output index "{0}" not supported.'.format(index)) def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): fake = OperatorInstance.FromOperator(operator=ConstantRGB()) fake.outputs[0].value = (0.5, 0.5, 0.5) input_plugs[0].input = fake.outputs[0] def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if not output_plugs[0].computed_value: raise Exception('Test failed.') class ListGenerator(Operator): def __init__(self): super(ListGenerator, self).__init__( id='a410f7a0-280a-451f-a26c-faf9a8e302b4', name='List Generator', required_inputs=0, min_inputs=0, max_inputs=-1, num_outputs=1 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): output = [] for input_plug in input_plugs: output.append(input_plug.computed_value) output_plugs[0].computed_value = output def generate_input(self, parent: DagNode, index: int) -> Plug: return Plug.Create( parent=parent, name='[{0}]'.format(index), display_name='[{0}]'.format(index), value_type=Plug.VALUE_TYPE_ANY, editable=False, is_removable=True, ) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='list', display_name='list', value_type=Plug.VALUE_TYPE_LIST) raise Exception('Output index "{0}" not supported.'.format(index)) def remove_plug(self, operator_instance: 'OperatorInstance', plug: 'Plug') -> None: super(ListGenerator, self).remove_plug(operator_instance=operator_instance, plug=plug) for index, plug in enumerate(operator_instance.inputs): plug.name = '[{0}]'.format(index) plug.display_name = '[{0}]'.format(index) for plug in operator_instance.outputs: plug.invalidate() def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): pass def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): pass class ListIndex(Operator): def __init__(self): super(ListIndex, self).__init__( id='e4a81506-fb6b-4729-8273-f68e97f5bc6b', name='List Index', required_inputs=2, min_inputs=2, max_inputs=2, num_outputs=1 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): try: test = iter(input_plugs[0].computed_value) index = input_plugs[1].computed_value if 0 <= index < len(input_plugs[0].computed_value): output_plugs[0].computed_value = input_plugs[0].computed_value[index] else: output_plugs[0].computed_value = None except TypeError: output_plugs[0].computed_value = None def generate_input(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='list', display_name='List', value_type=Plug.VALUE_TYPE_LIST) if index == 1: plug = Plug.Create( parent=parent, name='index', display_name='Index', value_type=Plug.VALUE_TYPE_INTEGER, editable=True ) plug.computed_value = 0 return plug raise Exception('Input index "{0}" not supported.'.format(index)) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='output', display_name='Output', value_type=Plug.VALUE_TYPE_ANY) raise Exception('Output index "{0}" not supported.'.format(index)) def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): input_plugs[0].value = ['hello', 'world'] input_plugs[1].value = 1 def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if not output_plugs[0].computed_value == 'world': raise Exception('Test failed.') class MDLColorSpace(Operator): def __init__(self): super(MDLColorSpace, self).__init__( id='cf0b97c8-fb55-4cf3-8afc-23ebd4a0a6c7', name='MDL Color Space', required_inputs=0, min_inputs=0, max_inputs=0, num_outputs=1 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): output_plugs[0].computed_value = output_plugs[0].value if output_plugs[0].value else 'auto' def generate_input(self, parent: DagNode, index: int) -> Plug: raise Exception('Input index "{0}" not supported.'.format(index)) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: plug = Plug.Create( parent=parent, name='color_space', display_name='Color Space', value_type=Plug.VALUE_TYPE_ENUM, editable=True ) plug.enum_values = ['auto', 'raw', 'sRGB'] plug.default_value = 'auto' plug.value = 'auto' return plug raise Exception('Output index "{0}" not supported.'.format(index)) def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): output_plugs[0].value = output_plugs[0].enum_values[2] def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if not output_plugs[0].computed_value == output_plugs[0].enum_values[2]: raise Exception('Test failed.') class MDLTextureResolver(Operator): def __init__(self): super(MDLTextureResolver, self).__init__( id='af766adb-cf54-4a8b-a598-44b04fbcf630', name='MDL Texture Resolver', required_inputs=2, min_inputs=2, max_inputs=2, num_outputs=1 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): filepath = input_plugs[0].input.computed_value if input_plugs[0].input else '' value_type = util.to_plug_value_type(value=filepath, assumed_value_type=Plug.VALUE_TYPE_STRING) filepath = filepath if value_type == Plug.VALUE_TYPE_STRING else '' colorspace = input_plugs[1].computed_value output_plugs[0].computed_value = [filepath, colorspace] def generate_input(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='input', display_name='Input', value_type=Plug.VALUE_TYPE_STRING) if index == 1: plug = Plug.Create( parent=parent, name='color_space', display_name='Color Space', value_type=Plug.VALUE_TYPE_ENUM, editable=True ) plug.enum_values = ['auto', 'raw', 'sRGB'] plug.default_value = 'auto' plug.value = 'auto' return plug raise Exception('Input index "{0}" not supported.'.format(index)) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: plug = Plug.Create( parent=parent, name='list', display_name='List', value_type=Plug.VALUE_TYPE_LIST, editable=False, ) plug.default_value = ['', 'auto'] plug.value = ['', 'auto'] return plug raise Exception('Output index "{0}" not supported.'.format(index)) def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): input_plugs[0].value = 'c:/folder/color.png' input_plugs[1].value = 'raw' def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if not output_plugs[3].computed_value == ['c:/folder/color.png', 'raw']: raise Exception('Test failed.') class SplitTextureData(Operator): def __init__(self): super(SplitTextureData, self).__init__( id='6a411798-434c-4ad4-b464-0bd2e78cdcec', name='Split Texture Data', required_inputs=1, min_inputs=1, max_inputs=1, num_outputs=2 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): is_valid_input = False try: value = input_plugs[0].computed_value test = iter(value) if len(value) == 2: if sys.version_info.major < 3: if isinstance(value[0], basestring) and isinstance(value[1], basestring): is_valid_input = True else: if isinstance(value[0], str) and isinstance(value[1], str): is_valid_input = True except TypeError: pass if is_valid_input: output_plugs[0].computed_value = value[0] output_plugs[1].computed_value = value[1] else: output_plugs[0].computed_value = '' output_plugs[1].computed_value = 'auto' def generate_input(self, parent: DagNode, index: int) -> Plug: if index == 0: plug = Plug.Create(parent=parent, name='list', display_name='List', value_type=Plug.VALUE_TYPE_LIST) plug.default_value = ['', 'auto'] plug.computed_value = ['', 'auto'] return plug raise Exception('Input index "{0}" not supported.'.format(index)) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: plug = Plug.Create(parent=parent, name='texture_path', display_name='Texture Path', value_type=Plug.VALUE_TYPE_STRING) plug.default_value = '' plug.computed_value = '' return plug if index == 1: plug = Plug.Create(parent=parent, name='color_space', display_name='Color Space', value_type=Plug.VALUE_TYPE_STRING) plug.default_value = 'auto' plug.computed_value = 'auto' return plug raise Exception('Output index "{0}" not supported.'.format(index)) def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): input_plugs[0].computed_value = ['hello.png', 'world'] def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if not output_plugs[0].computed_value == 'hello.png': raise Exception('Test failed.') if not output_plugs[1].computed_value == 'world': raise Exception('Test failed.') class Multiply(Operator): def __init__(self): super(Multiply, self).__init__( id='0f5c9828-f582-48aa-b055-c12b91e692a7', name='Multiply', required_inputs=0, min_inputs=2, max_inputs=-1, num_outputs=1 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): values = [] for input_plug in input_plugs: if isinstance(input_plug.computed_value, int): values.append(input_plug.computed_value) continue if isinstance(input_plug.computed_value, float): values.append(input_plug.computed_value) if len(values) < 2: output_plugs[0].computed_value = 0 else: product = 1.0 for o in values: product *= o output_plugs[0].computed_value = product for input_plug in input_plugs: input_plug.is_editable = not input_plug.input def generate_input(self, parent: DagNode, index: int) -> Plug: plug = Plug.Create( parent=parent, name='[{0}]'.format(index), display_name='[{0}]'.format(index), value_type=Plug.VALUE_TYPE_FLOAT, editable=True, is_removable=index > 1, ) plug.default_value = 1.0 plug.value = 1.0 plug.computed_value = 1.0 return plug def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='product', display_name='product', value_type=Plug.VALUE_TYPE_FLOAT) raise Exception('Output index "{0}" not supported.'.format(index)) def remove_plug(self, operator_instance: 'OperatorInstance', plug: 'Plug') -> None: super(Multiply, self).remove_plug(operator_instance=operator_instance, plug=plug) for index, plug in enumerate(operator_instance.inputs): plug.name = '[{0}]'.format(index) plug.display_name = '[{0}]'.format(index) for plug in operator_instance.outputs: plug.invalidate() def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): input_plugs[0].computed_value = 2 input_plugs[1].computed_value = 2 def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if not output_plugs[0].computed_value == 4: raise Exception('Test failed.') class ColorSpaceResolver(Operator): MAPPING = { 'MDL|auto|Blender': 'sRGB', 'MDL|srgb|Blender': 'sRGB', 'MDL|raw|Blender': 'Raw', 'Blender|filmic log|MDL': 'raw', 'Blender|linear|MDL': 'raw', 'Blender|linear aces|MDL': 'raw', 'Blender|non-color|MDL': 'raw', 'Blender|raw|MDL': 'raw', 'Blender|srgb|MDL': 'sRGB', 'Blender|xyz|MDL': 'raw', } DEFAULT = { 'Blender': 'Linear', 'MDL': 'auto', } def __init__(self): super(ColorSpaceResolver, self).__init__( id='c159df8f-a0a2-4300-b897-e8eaa689a901', name='Color Space Resolver', required_inputs=3, min_inputs=3, max_inputs=3, num_outputs=1 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): color_space = input_plugs[0].computed_value.lower() from_color_space = input_plugs[1].computed_value to_color_space = input_plugs[2].computed_value key = '{0}|{1}|{2}'.format( from_color_space, color_space, to_color_space ) if key in ColorSpaceResolver.MAPPING: output_plugs[0].computed_value = ColorSpaceResolver.MAPPING[key] else: output_plugs[0].computed_value = ColorSpaceResolver.DEFAULT[to_color_space] def generate_input(self, parent: DagNode, index: int) -> Plug: if index == 0: plug = Plug.Create( parent=parent, name='color_space', display_name='Color Space', value_type=Plug.VALUE_TYPE_STRING, editable=False, is_removable=False, ) plug.default_value = '' plug.computed_value = '' return plug if index == 1: plug = Plug.Create( parent=parent, name='from_color_space', display_name='From', value_type=Plug.VALUE_TYPE_ENUM, editable=True ) plug.enum_values = ['MDL', 'Blender'] plug.default_value = 'MDL' plug.computed_value = 'MDL' return plug if index == 2: plug = Plug.Create( parent=parent, name='to_color_space', display_name='To', value_type=Plug.VALUE_TYPE_ENUM, editable=True ) plug.enum_values = ['Blender', 'MDL'] plug.default_value = 'Blender' plug.computed_value = 'Blender' return plug raise Exception('Input index "{0}" not supported.'.format(index)) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: plug = Plug.Create( parent=parent, name='color_space', display_name='Color Space', value_type=Plug.VALUE_TYPE_STRING, editable=False ) plug.default_value = '' plug.computed_value = '' return plug raise Exception('Output index "{0}" not supported.'.format(index)) def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): raise NotImplementedError() def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if not output_plugs[0].computed_value == output_plugs[0].enum_values[2]: raise Exception('Test failed.') class Add(Operator): def __init__(self): super(Add, self).__init__( id='f2818669-5454-4599-8792-2cb09f055bf9', name='Add', required_inputs=0, min_inputs=2, max_inputs=-1, num_outputs=1 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): output = 0 for input_plug in input_plugs: try: output += input_plug.computed_value except: pass output_plugs[0].computed_value = output def generate_input(self, parent: DagNode, index: int) -> Plug: plug = Plug.Create( parent=parent, name='[{0}]'.format(index), display_name='[{0}]'.format(index), value_type=Plug.VALUE_TYPE_FLOAT, editable=True, is_removable=True, ) plug.default_value = 0.0 plug.computed_value = 0.0 return plug def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='sum', display_name='sum', value_type=Plug.VALUE_TYPE_FLOAT) raise Exception('Output index "{0}" not supported.'.format(index)) def remove_plug(self, operator_instance: 'OperatorInstance', plug: 'Plug') -> None: super(Add, self).remove_plug(operator_instance=operator_instance, plug=plug) for index, plug in enumerate(operator_instance.inputs): plug.name = '[{0}]'.format(index) plug.display_name = '[{0}]'.format(index) for plug in operator_instance.outputs: plug.invalidate() def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): pass def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): pass class Subtract(Operator): def __init__(self): super(Subtract, self).__init__( id='15f523f3-4e94-43a5-8306-92d07cbfa48c', name='Subtract', required_inputs=0, min_inputs=2, max_inputs=-1, num_outputs=1 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): output = None for input_plug in input_plugs: try: if output is None: output = input_plug.computed_value else: output -= input_plug.computed_value except: pass output_plugs[0].computed_value = output def generate_input(self, parent: DagNode, index: int) -> Plug: plug = Plug.Create( parent=parent, name='[{0}]'.format(index), display_name='[{0}]'.format(index), value_type=Plug.VALUE_TYPE_FLOAT, editable=True, is_removable=True, ) plug.default_value = 0.0 plug.computed_value = 0.0 return plug def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='difference', display_name='difference', value_type=Plug.VALUE_TYPE_FLOAT) raise Exception('Output index "{0}" not supported.'.format(index)) def remove_plug(self, operator_instance: 'OperatorInstance', plug: 'Plug') -> None: super(Subtract, self).remove_plug(operator_instance=operator_instance, plug=plug) for index, plug in enumerate(operator_instance.inputs): plug.name = '[{0}]'.format(index) plug.display_name = '[{0}]'.format(index) for plug in operator_instance.outputs: plug.invalidate() def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): pass def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): pass class Remap(Operator): def __init__(self): super(Remap, self).__init__( id='2405c02a-facc-47a6-80ef-d35d959b0cd4', name='Remap', required_inputs=5, min_inputs=5, max_inputs=5, num_outputs=1 ) def _compute_outputs(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): result = 0.0 old_value = input_plugs[0].computed_value try: test = iter(old_value) is_iterable = True except TypeError: is_iterable = False if not is_iterable: try: old_min = input_plugs[1].computed_value old_max = input_plugs[2].computed_value new_min = input_plugs[3].computed_value new_max = input_plugs[4].computed_value result = ((old_value - old_min) / (old_max - old_min)) * (new_max - new_min) + new_min except: pass else: result = [] for o in old_value: try: old_min = input_plugs[1].computed_value old_max = input_plugs[2].computed_value new_min = input_plugs[3].computed_value new_max = input_plugs[4].computed_value result.append(((o - old_min) / (old_max - old_min)) * (new_max - new_min) + new_min) except: pass output_plugs[0].computed_value = result def generate_input(self, parent: DagNode, index: int) -> Plug: if index == 0: plug = Plug.Create(parent=parent, name='value', display_name='Value', value_type=Plug.VALUE_TYPE_ANY) plug.default_value = 0 plug.computed_value = 0 return plug if index == 1: plug = Plug.Create(parent=parent, name='old_min', display_name='Old Min', value_type=Plug.VALUE_TYPE_FLOAT) plug.is_editable = True plug.default_value = 0 plug.computed_value = 0 return plug if index == 2: plug = Plug.Create(parent=parent, name='old_max', display_name='Old Max', value_type=Plug.VALUE_TYPE_FLOAT) plug.is_editable = True plug.default_value = 1 plug.computed_value = 1 return plug if index == 3: plug = Plug.Create(parent=parent, name='new_min', display_name='New Min', value_type=Plug.VALUE_TYPE_FLOAT) plug.is_editable = True plug.default_value = 0 plug.computed_value = 0 return plug if index == 4: plug = Plug.Create(parent=parent, name='new_max', display_name='New Max', value_type=Plug.VALUE_TYPE_FLOAT) plug.is_editable = True plug.default_value = 10 plug.computed_value = 10 return plug raise Exception('Input index "{0}" not supported.'.format(index)) def generate_output(self, parent: DagNode, index: int) -> Plug: if index == 0: return Plug.Create(parent=parent, name='remapped_value', display_name='Remapped Value', value_type=Plug.VALUE_TYPE_FLOAT) raise Exception('Output index "{0}" not supported.'.format(index)) def _prepare_plugs_for_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): input_plugs[0].computed_value = 0.5 input_plugs[1].computed_value = 0 input_plugs[2].computed_value = 1 input_plugs[3].computed_value = 1 input_plugs[4].computed_value = 0 def _assert_test(self, input_plugs: typing.List[Plug], output_plugs: typing.List[Plug]): if not output_plugs[0].computed_value == 0.5: raise Exception('Test failed.')
77,143
Python
37.765829
150
0.570421
NVIDIA-Omniverse/blender_omniverse_addons/omni/universalmaterialmap/core/generator/util.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. import sys import typing from ..data import Library, Target from .core import IGenerator __generators: typing.List['IGenerator'] = [] def register(generator: IGenerator) -> typing.NoReturn: """ Registers the generator at the top of the internal list - overriding previously registered generators - for future queries and processes. """ generators = getattr(sys.modules[__name__], '__generators') if generator not in generators: generators.insert(0, generator) def un_register(generator: IGenerator) -> typing.NoReturn: """ Removes the generator from internal list of generators and will ignore it for future queries and processes. """ generators = getattr(sys.modules[__name__], '__generators') if generator in generators: generators.remove(generator) def can_generate_target(class_name: str) -> bool: """ """ generators = getattr(sys.modules[__name__], '__generators') for generator in generators: if generator.can_generate_target(class_name=class_name): return True return False def generate_target(class_name: str) -> typing.Tuple[Library, Target]: """ """ generators = getattr(sys.modules[__name__], '__generators') for generator in generators: if generator.can_generate_target(class_name=class_name): print('UMM using generator "{0}" for class_name "{1}".'.format(generator, class_name)) return generator.generate_target(class_name=class_name) raise Exception('Registered generators does not support action.') def generate_targets() -> typing.List[typing.Tuple[Library, Target]]: """ Generates targets from all registered workers that are able to. """ targets = [] generators = getattr(sys.modules[__name__], '__generators') for generator in generators: if generator.can_generate_targets(): print('UMM using generator "{0}" for generating targets.'.format(generator)) targets.extend(generator.generate_targets()) return targets def can_generate_target_from_instance(instance: object) -> bool: """ """ generators = getattr(sys.modules[__name__], '__generators') for generator in generators: if generator.can_generate_target_from_instance(instance=instance): return True return False def generate_target_from_instance(instance: object) -> typing.List[typing.Tuple[Library, Target]]: """ Generates targets from all registered workers that are able to. """ generators = getattr(sys.modules[__name__], '__generators') for generator in generators: if generator.can_generate_target_from_instance(instance=instance): print('UMM using generator "{0}" for instance "{1}".'.format(generator, instance)) return generator.generate_target_from_instance(instance=instance)
3,695
Python
40.066666
149
0.696076
NVIDIA-Omniverse/blender_omniverse_addons/omni/universalmaterialmap/core/converter/util.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. """ Convert Queries & Actions ######################### DCC Connectors and other conversion solutions will want to use this module. There are three different conversion strategies available: 1. Source *class* and *data*. The framework finds a suitable conversion template and returns data indicating a *target class* and data for setting its attributes. For example: .. code:: from omni.universalmaterialmap.core.converter import util if util.can_convert_data_to_data( class_name='lambert', render_context='MDL', source_data=[ ('color', 'color_texture.png'), ('normalCamera', 'normal_texture.png') ]): data = util.convert_data_to_data( class_name='lambert', render_context='MDL', source_data=[ ('color', 'color_texture.png'), ('normalCamera', 'normal_texture.png') ] ) ...could return: .. code:: [ ('umm_target_class', 'omnipbr'), ('diffuse_texture', 'color_texture.png'), ('normalmap_texture', 'normal_texture.png'), ] Note that the first value pair :code:`('umm_target_class', 'omnipbr')` indicates the object class that should be used for conversion. All other value pairs indicate attribute names and attribute values. Using this strategy puts very little responsibility on the conversion workers to understand assets. They merely have to apply the arguments to a conversion template, compute the internal graph, and spit out the results. It also means that the solution invoking the converter will have to gather the necessary arguments from some object or data source. 2. Source *instance* into conversion data. Here we use an object instance in order to get the same data as in strategy #1 above. For example: .. code:: from omni.universalmaterialmap.core.converter import util if util.can_convert_instance( instance=MyLambertPyNode, render_context='MDL'): data = util.convert_instance_to_data( instance=MyLambertPyNode, render_context='MDL' ) ...could return: .. code:: [ ('umm_target_class', 'omnipbr'), ('diffuse_texture', 'color_texture.png'), ('normalmap_texture', 'normal_texture.png'), ] Note that the first value pair :code:`('umm_target_class', 'omnipbr')` indicates the object class that should be used for conversion. All other value pairs indicate attribute names and attribute values. The advantage here is that the user of the framework can rely on a converter's understanding of objects and attributes. The downside is that there has to be an actual asset or dependency graph loaded. 3. Source *instance* into converted object. In this approach the converter will create a new object and set its properties/attributes based on a conversion template. For example: .. code:: from omni.universalmaterialmap.core.converter import util if util.can_convert_instance( instance=MyLambertPyNode, render_context='MDL'): node = util.convert_instance_to_instance( instance=MyLambertPyNode, render_context='MDL' ) ...could create and return an MDL material in the current Maya scene. Manifest Query ############## Module has methods for querying its conversion capabilities as indicated by library manifests. This could be useful when wanting to expose commands for converting assets within a DCC application scene. Note that this API does not require any data or object instance argument. It's a more *general* query. .. code:: from omni.universalmaterialmap.core.converter import util manifest = util.get_conversion_manifest() # Returns data indicating what source class can be converted to a render context. # # Example: # [ # ('lambert', 'MDL'), # ('blinn', 'MDL'), # ] if (my_class_name, 'MDL') in manifest: # Do something """ import sys import typing import traceback from .. import data from .core import ICoreConverter, IDataConverter, IObjectConverter _debug_mode = False __converters: typing.List['ICoreConverter'] = [] TARGET_CLASS_IDENTIFIER = 'umm_target_class' def register(converter: ICoreConverter) -> typing.NoReturn: """ Registers the converter at the top of the internal list - overriding previously registered converters - for future queries and processes. """ converters = getattr(sys.modules[__name__], '__converters') if converter not in converters: if _debug_mode: print('UMM: core.converter.util: Registering converter: "{0}"'.format(converter)) converters.insert(0, converter) elif _debug_mode: print('UMM: core.converter.util: Not registering converter because it is already registered: "{0}"'.format(converter)) def un_register(converter: ICoreConverter) -> typing.NoReturn: """ Removes the converter from internal list of converters and will ignore it for future queries and processes. """ converters = getattr(sys.modules[__name__], '__converters') if converter in converters: if _debug_mode: print('UMM: core.converter.util: un-registering converter: "{0}"'.format(converter)) converters.remove(converter) elif _debug_mode: print('UMM: core.converter.util: Not un-registering converter because it not registered to begin with: "{0}"'.format(converter)) def can_create_instance(class_name: str) -> bool: """ Resolves if a converter can create a node. """ converters = getattr(sys.modules[__name__], '__converters') for converter in converters: if isinstance(converter, IObjectConverter): if converter.can_create_instance(class_name=class_name): if _debug_mode: print('UMM: core.converter.util: converter can create instance: "{0}"'.format(converter)) return True if _debug_mode: print('UMM: core.converter.util: no converter can create instance.') return False def create_instance(class_name: str) -> object: """ Creates an asset using the first converter in the internal list that supports the class_name. """ converters = getattr(sys.modules[__name__], '__converters') for converter in converters: if isinstance(converter, IObjectConverter): if converter.can_create_instance(class_name=class_name): if _debug_mode: print('UMM: core.converter.util: converter creating instance: "{0}"'.format(converter)) return converter.create_instance(class_name=class_name) raise Exception('Registered converters does not support class "{0}".'.format(class_name)) def can_set_plug_value(instance: object, plug: data.Plug) -> bool: """ Resolves if a converter can set the plug's value given the instance and its attributes. """ converters = getattr(sys.modules[__name__], '__converters') for converter in converters: if isinstance(converter, IObjectConverter): if _debug_mode: print('UMM: core.converter.util: converter can set plug value: "{0}"'.format(converter)) if converter.can_set_plug_value(instance=instance, plug=plug): return True if _debug_mode: print('UMM: core.converter.util: converter cannot set plug value given instance "{0}" and plug "{1}"'.format(instance, plug)) return False def set_plug_value(instance: object, plug: data.Plug) -> typing.NoReturn: """ Sets the plug's value given the value of the instance's attribute named the same as the plug. """ converters = getattr(sys.modules[__name__], '__converters') for converter in converters: if isinstance(converter, IObjectConverter): if converter.can_set_plug_value(instance=instance, plug=plug): if _debug_mode: print('UMM: core.converter.util: converter setting plug value: "{0}"'.format(converter)) return converter.set_plug_value(instance=instance, plug=plug) raise Exception('Registered converters does not support action.') def can_set_instance_attribute(instance: object, name: str) -> bool: """ Resolves if a converter can set an attribute by the given name on the instance. """ converters = getattr(sys.modules[__name__], '__converters') for converter in converters: if isinstance(converter, IObjectConverter): if _debug_mode: print('UMM: core.converter.util: converter can set instance attribute: "{0}", "{1}", "{2}"'.format(converter, instance, name)) if converter.can_set_instance_attribute(instance=instance, name=name): return True if _debug_mode: print('UMM: core.converter.util: cannot set instance attribute: "{0}", "{1}"'.format(instance, name)) return False def set_instance_attribute(instance: object, name: str, value: typing.Any) -> typing.NoReturn: """ Sets the named attribute on the instance to the value. """ converters = getattr(sys.modules[__name__], '__converters') for converter in converters: if isinstance(converter, IObjectConverter): if converter.can_set_instance_attribute(instance=instance, name=name): if _debug_mode: print('UMM: core.converter.util: converter setting instance attribute: "{0}", "{1}", "{2}", "{3}"'.format(converter, instance, name, value)) return converter.set_instance_attribute(instance=instance, name=name, value=value) raise Exception('Registered converters does not support action.') def can_convert_instance(instance: object, render_context: str) -> bool: """ Resolves if a converter can convert the instance to another object given the render_context. """ converters = getattr(sys.modules[__name__], '__converters') for converter in converters: if isinstance(converter, IObjectConverter): if _debug_mode: print('UMM: core.converter.util: converter can convert instance: "{0}", "{1}", "{2}"'.format(converter, instance, render_context)) if converter.can_convert_instance(instance=instance, render_context=render_context): return True return False def convert_instance_to_instance(instance: object, render_context: str) -> typing.Any: """ Interprets the instance and instantiates another object given the render_context. """ converters = getattr(sys.modules[__name__], '__converters') for converter in converters: if isinstance(converter, IObjectConverter): if converter.can_convert_instance(instance=instance, render_context=render_context): if _debug_mode: print('UMM: core.converter.util: converter converting instance: "{0}", "{1}", "{2}"'.format(converter, instance, render_context)) return converter.convert_instance_to_instance(instance=instance, render_context=render_context) raise Exception('Registered converters does not support action.') def can_convert_instance_to_data(instance: object, render_context: str) -> bool: """ Resolves if a converter can convert the instance to another object given the render_context. """ try: converters = getattr(sys.modules[__name__], '__converters') for converter in converters: if isinstance(converter, IObjectConverter): if converter.can_convert_instance_to_data(instance=instance, render_context=render_context): return True except Exception as error: print('Warning: Universal Material Map: function "can_convert_instance_to_data": Unexpected error:') print('\targument "instance" = "{0}"'.format(instance)) print('\targument "render_context" = "{0}"'.format(render_context)) print('\terror: {0}'.format(error)) print('\tcallstack: {0}'.format(traceback.format_exc())) return False def convert_instance_to_data(instance: object, render_context: str) -> typing.List[typing.Tuple[str, typing.Any]]: """ Returns a list of key value pairs in tuples. The first pair is ("umm_target_class", "the_class_name") indicating the conversion target class. """ try: converters = getattr(sys.modules[__name__], '__converters') for converter in converters: if isinstance(converter, IObjectConverter): if converter.can_convert_instance_to_data(instance=instance, render_context=render_context): result = converter.convert_instance_to_data(instance=instance, render_context=render_context) print('Universal Material Map: convert_instance_to_data({0}, "{1}") generated data:'.format(instance, render_context)) print('\t(') for o in result: print('\t\t{0}'.format(o)) print('\t)') return result except Exception as error: print('Warning: Universal Material Map: function "convert_instance_to_data": Unexpected error:') print('\targument "instance" = "{0}"'.format(instance)) print('\targument "render_context" = "{0}"'.format(render_context)) print('\terror: {0}'.format(error)) print('\tcallstack: {0}'.format(traceback.format_exc())) result = dict() result['umm_notification'] = 'unexpected_error' result['message'] = 'Not able to convert "{0}" for render context "{1}" because there was an unexpected error. Details: {2}'.format(instance, render_context, error) return result raise Exception('Registered converters does not support action.') def can_convert_attribute_values(instance: object, render_context: str, destination: object) -> bool: """ Resolves if the instance's attribute values can be converted and set on the destination object's attributes. """ converters = getattr(sys.modules[__name__], '__converters') for converter in converters: if isinstance(converter, IObjectConverter): if converter.can_convert_attribute_values(instance=instance, render_context=render_context, destination=destination): return True return False def convert_attribute_values(instance: object, render_context: str, destination: object) -> typing.NoReturn: """ Attribute values are converted and set on the destination object's attributes. """ converters = getattr(sys.modules[__name__], '__converters') for converter in converters: if isinstance(converter, IObjectConverter): if converter.can_convert_attribute_values(instance=instance, render_context=render_context, destination=destination): return converter.convert_attribute_values(instance=instance, render_context=render_context, destination=destination) raise Exception('Registered converters does not support action.') def can_convert_data_to_data(class_name: str, render_context: str, source_data: typing.List[typing.Tuple[str, typing.Any]]) -> bool: """ Resolves if a converter can convert the given class and source_data to another class and target data. """ converters = getattr(sys.modules[__name__], '__converters') for converter in converters: if isinstance(converter, IDataConverter): if converter.can_convert_data_to_data(class_name=class_name, render_context=render_context, source_data=source_data): return True return False def convert_data_to_data(class_name: str, render_context: str, source_data: typing.List[typing.Tuple[str, typing.Any]]) -> typing.List[typing.Tuple[str, typing.Any]]: """ Returns a list of key value pairs in tuples. The first pair is ("umm_target_class", "the_class_name") indicating the conversion target class. """ converters = getattr(sys.modules[__name__], '__converters') for converter in converters: if isinstance(converter, IDataConverter): if converter.can_convert_data_to_data(class_name=class_name, render_context=render_context, source_data=source_data): result = converter.convert_data_to_data(class_name=class_name, render_context=render_context, source_data=source_data) print('Universal Material Map: convert_data_to_data("{0}", "{1}") generated data:'.format(class_name, render_context)) print('\t(') for o in result: print('\t\t{0}'.format(o)) print('\t)') return result raise Exception('Registered converters does not support action.') def can_apply_data_to_instance(source_class_name: str, render_context: str, source_data: typing.List[typing.Tuple[str, typing.Any]], instance: object) -> bool: """ Resolves if a converter can create one or more instances given the arguments. """ converters = getattr(sys.modules[__name__], '__converters') for converter in converters: if isinstance(converter, IObjectConverter): if converter.can_apply_data_to_instance(source_class_name=source_class_name, render_context=render_context, source_data=source_data, instance=instance): return True return False def apply_data_to_instance(source_class_name: str, render_context: str, source_data: typing.List[typing.Tuple[str, typing.Any]], instance: object) -> dict: """ Returns a list of created objects. """ try: converters = getattr(sys.modules[__name__], '__converters') for converter in converters: if isinstance(converter, IObjectConverter): if converter.can_apply_data_to_instance(source_class_name=source_class_name, render_context=render_context, source_data=source_data, instance=instance): converter.apply_data_to_instance(source_class_name=source_class_name, render_context=render_context, source_data=source_data, instance=instance) print('Universal Material Map: apply_data_to_instance("{0}", "{1}") completed.'.format(instance, render_context)) result = dict() result['umm_notification'] = 'success' result['message'] = 'Material conversion data applied to "{0}".'.format(instance) return result result = dict() result['umm_notification'] = 'incomplete_process' result['message'] = 'Not able to convert type "{0}" for render context "{1}" because there is no Conversion Graph for that scenario. No changes were applied to "{2}".'.format(source_class_name, render_context, instance) return result except Exception as error: print('UMM: Unexpected error: {0}'.format(traceback.format_exc())) result = dict() result['umm_notification'] = 'unexpected_error' result['message'] = 'Not able to convert type "{0}" for render context "{1}" because there was an unexpected error. Some changes may have been applied to "{2}". Details: {3}'.format(source_class_name, render_context, instance, error) return result def get_conversion_manifest() -> typing.List[typing.Tuple[str, str]]: """ Returns data indicating what source class can be converted to a render context. Example: [('lambert', 'MDL'), ('blinn', 'MDL'),] """ manifest: typing.List[typing.Tuple[str, str]] = [] converters = getattr(sys.modules[__name__], '__converters') for converter in converters: manifest.extend(converter.get_conversion_manifest()) return manifest
20,886
Python
47.687646
241
0.655559
NVIDIA-Omniverse/blender_omniverse_addons/omni/universalmaterialmap/core/converter/core.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. from abc import ABCMeta, abstractmethod import typing from ..data import Plug class ICoreConverter(metaclass=ABCMeta): """ """ @abstractmethod def __init__(self): super(ICoreConverter, self).__init__() @abstractmethod def get_conversion_manifest(self) -> typing.List[typing.Tuple[str, str]]: """ Returns data indicating what source class can be converted to a render context. Example: [('lambert', 'MDL'), ('blinn', 'MDL'),] """ raise NotImplementedError() class IObjectConverter(ICoreConverter): """ """ @abstractmethod def can_create_instance(self, class_name: str) -> bool: """ Returns true if worker can generate an object of the given class name. """ raise NotImplementedError() @abstractmethod def create_instance(self, class_name: str) -> object: """ Creates an object of the given class name. """ raise NotImplementedError() @abstractmethod def can_set_plug_value(self, instance: object, plug: Plug) -> bool: """ Returns true if worker can set the plug's value given the instance and its attributes. """ raise NotImplementedError() @abstractmethod def set_plug_value(self, instance: object, plug: Plug) -> typing.NoReturn: """ Sets the plug's value given the value of the instance's attribute named the same as the plug. """ raise NotImplementedError() @abstractmethod def can_set_instance_attribute(self, instance: object, name: str): """ Resolves if worker can set an attribute by the given name on the instance. """ return False @abstractmethod def set_instance_attribute(self, instance: object, name: str, value: typing.Any) -> typing.NoReturn: """ Sets the named attribute on the instance to the value. """ raise NotImplementedError() @abstractmethod def can_convert_instance(self, instance: object, render_context: str) -> bool: """ Resolves if worker can convert the instance to another object given the render_context. """ return False @abstractmethod def convert_instance_to_instance(self, instance: object, render_context: str) -> typing.Any: """ Converts the instance to another object given the render_context. """ raise NotImplementedError() @abstractmethod def can_convert_instance_to_data(self, instance: object, render_context: str) -> bool: """ Resolves if worker can convert the instance to another object given the render_context. """ return False @abstractmethod def convert_instance_to_data(self, instance: object, render_context: str) -> typing.List[typing.Tuple[str, typing.Any]]: """ Returns a list of key value pairs in tuples. The first pair is ("umm_target_class", "the_class_name") indicating the conversion target class. """ raise NotImplementedError() @abstractmethod def can_convert_attribute_values(self, instance: object, render_context: str, destination: object) -> bool: """ Resolves if the instance's attribute values can be converted and set on the destination object's attributes. """ raise NotImplementedError() @abstractmethod def convert_attribute_values(self, instance: object, render_context: str, destination: object) -> typing.NoReturn: """ Attribute values are converted and set on the destination object's attributes. """ raise NotImplementedError() @abstractmethod def can_apply_data_to_instance(self, source_class_name: str, render_context: str, source_data: typing.List[typing.Tuple[str, typing.Any]], instance: object) -> bool: """ Resolves if worker can convert the instance to another object given the render_context. """ return False @abstractmethod def apply_data_to_instance(self, source_class_name: str, render_context: str, source_data: typing.List[typing.Tuple[str, typing.Any]], instance: object) -> dict: """ Returns a notification object Examples: { 'umm_notification': "success", 'message': "Material \"Material_A\" was successfully converted from \"OmniPBR\" data." } { 'umm_notification': "incomplete_process", 'message': "Not able to convert \"Material_B\" using \"CustomMDL\" since there is no Conversion Graph supporting that scenario." } { 'umm_notification': "unexpected_error", 'message': "Not able to convert \"Material_C\" using \"OmniGlass\" due to an unexpected error. Details: \"cannot set property to None\"." } """ raise NotImplementedError() class IDataConverter(ICoreConverter): """ """ @abstractmethod def can_convert_data_to_data(self, class_name: str, render_context: str, source_data: typing.List[typing.Tuple[str, typing.Any]]) -> bool: """ Resolves if worker can convert the given class and source_data to another class and target data. """ return False @abstractmethod def convert_data_to_data(self, class_name: str, render_context: str, source_data: typing.List[typing.Tuple[str, typing.Any]]) -> typing.List[typing.Tuple[str, typing.Any]]: """ Returns a list of key value pairs in tuples. The first pair is ("umm_target_class", "the_class_name") indicating the conversion target class. """ raise NotImplementedError()
6,404
Python
40.590909
176
0.665209
NVIDIA-Omniverse/blender_omniverse_addons/omni/universalmaterialmap/core/service/store.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. import typing import os import uuid import traceback from .. import data from .. import operator from ..feature import POLLING from ..singleton import Singleton from .core import ChangeEvent, IDelegate from .delegate import Filesystem, FilesystemManifest, FilesystemSettings from .resources import install COMMON_LIBRARY_ID = '327ef29b-8358-441b-b2f0-4a16a9afd349' libraries_directory = os.path.expanduser('~').replace('\\', '/') if not libraries_directory.endswith('/Documents'): # os.path.expanduser() has different behaviour between 2.7 and 3 libraries_directory = '{0}/Documents'.format(libraries_directory) libraries_directory = '{0}/Omniverse'.format(libraries_directory) common_library_directory = '{0}/ConnectorCommon/UMMLibrary'.format(libraries_directory) cache_directory = '{0}/Cache'.format(common_library_directory) COMMON_LIBRARY = data.Library.Create( library_id=COMMON_LIBRARY_ID, name='Common', manifest=FilesystemManifest(root_directory='{0}'.format(common_library_directory)), conversion_graph=Filesystem(root_directory='{0}/ConversionGraph'.format(common_library_directory)), target=Filesystem(root_directory='{0}/Target'.format(common_library_directory)), settings=FilesystemSettings(root_directory='{0}'.format(common_library_directory)), ) DEFAULT_LIBRARIES = [COMMON_LIBRARY] class _ItemProvider(object): """ Class provides IO interface for a single UMM Library item. """ def __init__(self, identifier: str, library_delegate: IDelegate = None, cache_delegate: IDelegate = None): super(_ItemProvider, self).__init__() self._library_delegate: typing.Union[IDelegate, typing.NoReturn] = library_delegate self._cache_delegate: typing.Union[IDelegate, typing.NoReturn] = cache_delegate self._identifier: str = identifier self._file_util: typing.Union[data.FileUtility, typing.NoReturn] = None self._content_cache: dict = dict() def revert(self) -> None: if self._file_util: self._file_util.content.deserialize(data=self._content_cache) def has_unsaved_changes(self) -> bool: if not self._file_util: return False return not self._file_util.content.serialize() == self._content_cache def read(self, update: bool = False) -> None: """ TODO: Check if path has changed since last read from disk. """ if not self._library_delegate and not self._cache_delegate: raise Exception('Not supported: No delegate available to read().') # update_cache() assumes that read() prioritizes reading with library delegate! delegate = self._library_delegate if self._library_delegate else self._cache_delegate if not self._file_util: contents = delegate.read(identifier=self._identifier) if contents is not None: self._file_util = data.FileUtility.FromData(data=contents) self._update_content_cache() elif update: contents = delegate.read(identifier=self._identifier) self._file_util.content.deserialize(data=contents) def create(self, instance: data.Serializable) -> None: self._file_util = data.FileUtility.FromInstance(instance=instance) self.write() def write(self, content: data.Serializable = None) -> None: if not self._library_delegate and not self._cache_delegate: raise Exception('Not supported: No delegate available to write().') if content: if not self._file_util: self._file_util = data.FileUtility.FromInstance(instance=content) else: self._file_util._content = content elif not self._file_util: raise Exception('Not supported: _ItemProvider not initialized properly prior to "write()"') contents = self._file_util.serialize() if self._library_delegate: self._library_delegate.write(identifier=self._identifier, contents=contents) if self._cache_delegate: self._cache_delegate.write(identifier=self._identifier, contents=contents) self._update_content_cache() def delete(self) -> None: if not self._library_delegate and not self._cache_delegate: raise Exception('Not supported: No delegate available to delete().') if self._library_delegate: self._library_delegate.delete(identifier=self._identifier) if self._cache_delegate: self._cache_delegate.delete(identifier=self._identifier) self._file_util = None self._content_cache = None def _update_content_cache(self) -> None: if not self._file_util: self._content_cache = dict() else: self._content_cache = self._file_util.content.serialize() def update_cache(self) -> bool: if not self._library_delegate or not self._cache_delegate: return False # Assumes that read() prioritizes reading with library delegate! try: self.read() except Exception as error: print('Warning: Universal Material Map error reading data with identifier "{0}". Cache will not be updated due to the read error.\n\tDetails: "{1}".\n\tCallstack: {2}'.format(self._identifier, error, traceback.format_exc())) return False self._cache_delegate.write(identifier=self._identifier, contents=self._file_util.serialize()) def on_shutdown(self): self._cache_delegate = None self._library_delegate = None self._identifier = None self._file_util = None self._content_cache = None @property def content(self) -> data.Serializable: return self._file_util.content class _LibraryProvider(object): """ Class provides IO interface for a single UMM Library. """ @staticmethod def _transfer_data(source: IDelegate, target: IDelegate) -> bool: """ Returns True if transfer was made. """ if not source or not target: return False for identifier in source.get_ids(): target.write(identifier=identifier, contents=source.read(identifier=identifier)) return True def __init__(self, library: data.Library): super(_LibraryProvider, self).__init__() self._library: data.Library = library if POLLING: self._manifest_subscription: uuid.uuid4 = None self._conversion_graph_subscription: uuid.uuid4 = None self._target_subscription: uuid.uuid4 = None self._manifest_cache: typing.Union[IDelegate, typing.NoReturn] = None self._conversion_graph_cache: typing.Union[IDelegate, typing.NoReturn] = None self._target_cache: typing.Union[IDelegate, typing.NoReturn] = None self._settings_cache: typing.Union[IDelegate, typing.NoReturn] = None self._manifest_providers: typing.Dict[str, _ItemProvider] = dict() self._conversion_graph_providers: typing.Dict[str, _ItemProvider] = dict() self._target_providers: typing.Dict[str, _ItemProvider] = dict() self._settings_providers: typing.Dict[str, _ItemProvider] = dict() self._initialize() def _initialize(self) -> None: cache: _ItemProvider for cache in self._manifest_providers.values(): cache.on_shutdown() for cache in self._conversion_graph_providers.values(): cache.on_shutdown() for cache in self._target_providers.values(): cache.on_shutdown() for cache in self._settings_providers.values(): cache.on_shutdown() self._manifest_providers = dict() self._conversion_graph_providers = dict() self._target_providers = dict() self._settings_providers = dict() if not self._library: return if not self._library.id == COMMON_LIBRARY_ID: self._manifest_cache = FilesystemManifest( root_directory='{0}/{1}'.format(cache_directory, self._library.id) ) self._conversion_graph_cache = Filesystem( root_directory='{0}/{1}/ConversionGraph'.format(cache_directory, self._library.id) ) self._target_cache = Filesystem( root_directory='{0}/{1}/Target'.format(cache_directory, self._library.id) ) self._settings_cache = FilesystemSettings( root_directory='{0}/{1}'.format(cache_directory, self._library.id) ) if not self._library.id == COMMON_LIBRARY_ID and not self._library.is_read_only: self._update_cache() def _update_cache(self) -> None: if self._library.is_read_only: return self._update_cache_table( source=self._library.manifest, target=self._manifest_cache, providers=self._manifest_providers, ) self._update_cache_table( source=self._library.conversion_graph, target=self._conversion_graph_cache, providers=self._conversion_graph_providers, ) self._update_cache_table( source=self._library.target, target=self._target_cache, providers=self._target_providers, ) self._update_cache_table( source=self._library.settings, target=self._settings_cache, providers=self._settings_providers, ) def _update_cache_table(self, source: IDelegate, target: IDelegate, providers: dict) -> None: if self._library.is_read_only: return if not source or not target: return for identifier in source.get_ids(): if identifier not in providers.keys(): provider = _ItemProvider( identifier=identifier, library_delegate=source, cache_delegate=target ) providers[identifier] = provider else: provider = providers[identifier] provider.update_cache() def get_settings(self) -> typing.List[data.Settings]: if not self._library.settings: return [] settings: typing.List[data.Settings] = [] for identifier in self._library.settings.get_ids(): if identifier not in self._settings_providers.keys(): cache = _ItemProvider( identifier=identifier, library_delegate=self._library.settings, cache_delegate=self._settings_cache ) self._settings_providers[identifier] = cache else: cache = self._settings_providers[identifier] cache.read() setting = typing.cast(data.Settings, cache.content) settings.append(setting) return settings def get_manifests(self) -> typing.List[data.ConversionManifest]: delegate = self._library.manifest if self._library.manifest else self._manifest_cache if not delegate: return [] manifests: typing.List[data.ConversionManifest] = [] conversion_graphs: typing.List[data.ConversionGraph] = None for identifier in delegate.get_ids(): if identifier not in self._manifest_providers.keys(): cache = _ItemProvider( identifier=identifier, library_delegate=self._library.manifest, cache_delegate=self._manifest_cache ) self._manifest_providers[identifier] = cache else: cache = self._manifest_providers[identifier] cache.read() manifest = typing.cast(data.ConversionManifest, cache.content) if not conversion_graphs: conversion_graphs = self.get_conversion_graphs() for item in manifest.conversion_maps: if not item._conversion_graph: for conversion_graph in conversion_graphs: if conversion_graph.id == item.conversion_graph_id: item._conversion_graph = conversion_graph break manifests.append(manifest) if POLLING: if self._library.manifest and not self._manifest_subscription: self._manifest_subscription = self._library.manifest.add_change_subscription(callback=self._on_store_manifest_changes) return manifests def get_conversion_graphs(self) -> typing.List[data.ConversionGraph]: delegate = self._library.conversion_graph if self._library.conversion_graph else self._conversion_graph_cache if not delegate: return [] conversion_graphs: typing.List[data.ConversionGraph] = [] for identifier in delegate.get_ids(): if identifier not in self._conversion_graph_providers.keys(): cache = _ItemProvider( identifier=identifier, library_delegate=self._library.conversion_graph, cache_delegate=self._conversion_graph_cache ) try: cache.read() except Exception as error: print('Warning: Universal Material Map error reading Conversion Graph data with identifier "{0}". Graph will not be available for use inside UMM.\n\tDetails: "{1}".\n\tCallstack: {2}'.format(identifier, error, traceback.format_exc())) continue self._conversion_graph_providers[identifier] = cache else: cache = self._conversion_graph_providers[identifier] try: cache.read() except Exception as error: print('Warning: Universal Material Map error reading Conversion Graph data with identifier "{0}". Graph will not be available for use inside UMM.\n\tDetails: "{1}".\n\tCallstack: {2}'.format(identifier, error, traceback.format_exc())) continue conversion_graph = typing.cast(data.ConversionGraph, cache.content) conversion_graph._library = self._library conversion_graph.filename = identifier conversion_graph._exists_on_disk = True conversion_graphs.append(conversion_graph) if POLLING: if self._library.conversion_graph and not self._conversion_graph_subscription: self._conversion_graph_subscription = self._library.conversion_graph.add_change_subscription(callback=self._on_store_conversion_graph_changes) return conversion_graphs def get_targets(self) -> typing.List[data.Target]: delegate = self._library.target if self._library.target else self._target_cache if not delegate: return [] targets: typing.List[data.Target] = [] for identifier in delegate.get_ids(): if identifier not in self._target_providers.keys(): cache = _ItemProvider( identifier=identifier, library_delegate=self._library.target, cache_delegate=self._target_cache ) self._target_providers[identifier] = cache else: cache = self._target_providers[identifier] cache.read() target = typing.cast(data.Target, cache.content) target.store_id = identifier targets.append(target) if POLLING: if self._library.target and not self._target_subscription: self._target_subscription = self._library.target.add_change_subscription(callback=self._on_store_target_changes) return targets def _on_store_manifest_changes(self, event: ChangeEvent) -> None: if not POLLING: raise NotImplementedError() print('_on_store_manifest_changes', event) def _on_store_conversion_graph_changes(self, event: ChangeEvent) -> None: if not POLLING: raise NotImplementedError() print('_on_store_conversion_graph_changes', event) def _on_store_target_changes(self, event: ChangeEvent) -> None: if not POLLING: raise NotImplementedError() print('_on_store_target_changes...', event, self) def revert(self, item: data.Serializable) -> bool: """ Returns True if the item existed in a data store and was successfully reverted. """ if isinstance(item, data.ConversionGraph): if item.filename not in self._conversion_graph_providers.keys(): return False filename = item.filename library = item.library cache = self._conversion_graph_providers[item.filename] cache.revert() item.filename = filename item._library = library item._exists_on_disk = True return True if isinstance(item, data.Target): if item.store_id not in self._target_providers.keys(): return False cache = self._target_providers[item.store_id] cache.revert() return True if isinstance(item, data.ConversionManifest): if item.store_id not in self._manifest_providers.keys(): return False cache = self._manifest_providers[item.store_id] cache.revert() return True if isinstance(item, data.Settings): if item.store_id not in self._settings_providers.keys(): return False cache = self._settings_providers[item.store_id] cache.revert() return True def write(self, item: data.Serializable, identifier: str = None, overwrite: bool = False) -> None: if isinstance(item, data.Settings): if not item.store_id: raise Exception('Not supported: Settings must have a valid store id in order to write the item.') if not self._library.settings: raise Exception('Library "{0}" with id="{1}" does not support a Settings store.'.format(self._library.name, self._library.id)) if item.store_id not in self._settings_providers.keys(): cache = _ItemProvider( identifier=item.store_id, library_delegate=self._library.settings, cache_delegate=self._settings_cache ) self._settings_providers[item.store_id] = cache else: if not overwrite: return cache = self._settings_providers[item.store_id] cache.write(content=item) return if isinstance(item, data.ConversionManifest): if not item.store_id: raise Exception('Not supported: Conversion Manifest must have a valid store id in order to write the item.') if item.store_id not in self._manifest_providers.keys(): cache = _ItemProvider( identifier=item.store_id, library_delegate=self._library.manifest, cache_delegate=self._manifest_cache ) self._manifest_providers[item.store_id] = cache else: if not overwrite: return cache = self._manifest_providers[item.store_id] cache.write(content=item) return if isinstance(item, data.ConversionGraph): if not item.filename and not identifier: raise Exception('Not supported: Conversion Manifest must have a valid store id in order to write the item.') key = identifier if identifier else item.filename if key not in self._conversion_graph_providers.keys(): cache = _ItemProvider( identifier=key, library_delegate=self._library.conversion_graph, cache_delegate=self._conversion_graph_cache ) self._conversion_graph_providers[key] = cache else: if not overwrite: return cache = self._conversion_graph_providers[key] item.revision += 1 cache.write(content=item) if identifier: item.filename = identifier item._exists_on_disk = True item._library = self._library return if isinstance(item, data.Target): if not item.store_id: raise Exception( 'Not supported: Conversion Manifest must have a valid store id in order to write the item.') if item.store_id not in self._target_providers.keys(): cache = _ItemProvider( identifier=item.store_id, library_delegate=self._library.target, cache_delegate=self._target_cache ) self._target_providers[item.store_id] = cache else: if not overwrite: return cache = self._target_providers[item.store_id] cache.write(content=item) return raise NotImplementedError() def delete(self, item: data.Serializable) -> None: if isinstance(item, data.Settings): if not item.store_id: raise Exception('Not supported: Settings must have a valid store id in order to write the item.') if not self._library.settings: raise Exception('Library "{0}" with id="{1}" does not support a Settings store.'.format(self._library.name, self._library.id)) if item.store_id not in self._settings_providers.keys(): return cache = self._settings_providers[item.store_id] cache.delete() cache.on_shutdown() del self._settings_providers[item.store_id] return if isinstance(item, data.ConversionManifest): if not item.store_id: raise Exception('Not supported: Conversion Manifest must have a valid store id in order to write the item.') if item.store_id not in self._manifest_providers.keys(): return cache = self._manifest_providers[item.store_id] cache.delete() cache.on_shutdown() del self._manifest_providers[item.store_id] return if isinstance(item, data.ConversionGraph): if not item.filename: raise Exception('Not supported: Conversion Manifest must have a valid store id in order to write the item.') if item.filename not in self._conversion_graph_providers.keys(): return cache = self._conversion_graph_providers[item.filename] cache.delete() cache.on_shutdown() del self._conversion_graph_providers[item.filename] return if isinstance(item, data.Target): if not item.store_id: raise Exception( 'Not supported: Conversion Manifest must have a valid store id in order to write the item.') if item.store_id not in self._target_providers.keys(): return cache = self._target_providers[item.store_id] cache.write(content=item) cache.on_shutdown() del self._target_providers[item.store_id] return raise NotImplementedError() def can_show_in_store(self, item: data.Serializable) -> bool: if isinstance(item, data.ConversionGraph): delegate = self._library.conversion_graph if self._library.conversion_graph else self._conversion_graph_cache if not delegate: return False return delegate.can_show_in_store(identifier=item.filename) if isinstance(item, data.Target): delegate = self._library.target if self._library.target else self._target_cache if not delegate: return False return delegate.can_show_in_store(identifier=item.store_id) return False def show_in_store(self, item: data.Serializable) -> None: if isinstance(item, data.ConversionGraph): delegate = self._library.conversion_graph if self._library.conversion_graph else self._conversion_graph_cache if not delegate: return return delegate.show_in_store(identifier=item.filename) if isinstance(item, data.Target): delegate = self._library.target if self._library.target else self._target_cache if not delegate: return return delegate.show_in_store(identifier=item.store_id) @property def library(self) -> data.Library: return self._library @library.setter def library(self, value: data.Library) -> None: if self._library == value: return if POLLING: if self._library: if self._manifest_subscription and self._library.manifest: self._library.manifest.remove_change_subscription(subscription_id=self._manifest_subscription) if self._conversion_graph_subscription and self._library.conversion_graph: self._library.conversion_graph.remove_change_subscription(subscription_id=self._conversion_graph_subscription) if self._target_subscription and self._library.target: self._library.target.remove_change_subscription(subscription_id=self._target_subscription) self._library = value self._initialize() @Singleton class __Manager: def __init__(self): install() self._library_caches: typing.Dict[str, _LibraryProvider] = dict() self._operators: typing.List[data.Operator] = [ operator.And(), operator.Add(), operator.BooleanSwitch(), operator.ColorSpaceResolver(), operator.ConstantBoolean(), operator.ConstantFloat(), operator.ConstantInteger(), operator.ConstantRGB(), operator.ConstantRGBA(), operator.ConstantString(), operator.Equal(), operator.GreaterThan(), operator.LessThan(), operator.ListGenerator(), operator.ListIndex(), operator.MayaTransparencyResolver(), operator.MergeRGB(), operator.MergeRGBA(), operator.MDLColorSpace(), operator.MDLTextureResolver(), operator.Multiply(), operator.Not(), operator.Or(), operator.Remap(), operator.SplitRGB(), operator.SplitRGBA(), operator.SplitTextureData(), operator.Subtract(), operator.ValueResolver(), operator.ValueTest(), ] for o in self._operators: if len([item for item in self._operators if item.id == o.id]) == 1: continue raise Exception('Operator id "{0}" is not unique.'.format(o.id)) provider = _LibraryProvider(library=COMMON_LIBRARY) self._library_caches[COMMON_LIBRARY_ID] = provider render_contexts = [ 'MDL', 'USDPreview', 'Blender', ] settings = provider.get_settings() if len(settings) == 0: self._settings: data.Settings = data.Settings() for render_context in render_contexts: self._settings.render_contexts.append(render_context) self._settings.render_contexts.append(render_context) self._save_settings() else: self._settings: data.Settings = settings[0] added_render_context = False for render_context in render_contexts: if render_context not in self._settings.render_contexts: self._settings.render_contexts.append(render_context) added_render_context = True if added_render_context: self._save_settings() for i in range(len(self._settings.libraries)): for library in DEFAULT_LIBRARIES: if self._settings.libraries[i].id == library.id: self._settings.libraries[i] = library break for library in DEFAULT_LIBRARIES: if len([o for o in self._settings.libraries if o.id == library.id]) == 0: self._settings.libraries.append(library) for library in self._settings.libraries: self.register_library(library=library) def _save_settings(self) -> None: if COMMON_LIBRARY_ID not in self._library_caches.keys(): raise Exception('Not supported: Common library not in cache. Unable to save settings.') cache = self._library_caches[COMMON_LIBRARY_ID] cache.write(item=self._settings, identifier=None, overwrite=True) def register_library(self, library: data.Library) -> None: preferences_changed = False to_remove = [] for item in self._settings.libraries: if item.id == library.id: if not item == library: to_remove.append(item) for item in to_remove: self._settings.libraries.remove(item) preferences_changed = True if library not in self._settings.libraries: self._settings.libraries.append(library) preferences_changed = True if preferences_changed: self._save_settings() if library.id not in self._library_caches.keys(): self._library_caches[library.id] = _LibraryProvider(library=library) else: cache = self._library_caches[library.id] cache.library = library def register_render_contexts(self, context: str) -> None: """Register a render context such as MDL or USD Preview.""" if context not in self._settings.render_contexts: self._settings.render_contexts.append(context) self._save_settings() def get_assembly(self, reference: data.TargetInstance) -> typing.Union[data.Target, None]: cache: _LibraryProvider for cache in self._library_caches.values(): for target in cache.get_targets(): if target.id == reference.target_id: return target return None def get_assemblies(self, library: data.Library = None) -> typing.List[data.Target]: if library: if library.id not in self._library_caches.keys(): return [] cache = self._library_caches[library.id] return cache.get_targets() targets: typing.List[data.Target] = [] cache: _LibraryProvider for cache in self._library_caches.values(): targets.extend(cache.get_targets()) return targets def get_documents(self, library: data.Library = None) -> typing.List[data.ConversionGraph]: conversion_graphs: typing.List[data.ConversionGraph] = [] if library: if library.id not in self._library_caches.keys(): return [] cache = self._library_caches[library.id] conversion_graphs = cache.get_conversion_graphs() else: cache: _LibraryProvider for cache in self._library_caches.values(): conversion_graphs.extend(cache.get_conversion_graphs()) for conversion_graph in conversion_graphs: self._completed_document_serialization(conversion_graph=conversion_graph) return conversion_graphs def get_document(self, library: data.Library, document_filename: str) -> typing.Union[data.ConversionGraph, typing.NoReturn]: if library.id not in self._library_caches.keys(): return None cache = self._library_caches[library.id] for conversion_graph in cache.get_conversion_graphs(): if conversion_graph.filename == document_filename: self._completed_document_serialization(conversion_graph=conversion_graph) return conversion_graph return None def can_show_in_filesystem(self, document: data.ConversionGraph) -> bool: if not document.library: return False if document.library.id not in self._library_caches.keys(): return False cache = self._library_caches[document.library.id] return cache.can_show_in_store(item=document) def show_in_filesystem(self, document: data.ConversionGraph) -> None: if not document.library: return if document.library.id not in self._library_caches.keys(): return cache = self._library_caches[document.library.id] cache.show_in_store(item=document) def get_document_by_id(self, library: data.Library, document_id: str) -> typing.Union[data.ConversionGraph, typing.NoReturn]: for conversion_graph in self.get_documents(library=library): if conversion_graph.id == document_id: return conversion_graph return None def create_new_document(self, library: data.Library) -> data.ConversionGraph: conversion_graph = data.ConversionGraph() conversion_graph._library = library conversion_graph.filename = '' self._completed_document_serialization(conversion_graph=conversion_graph) return conversion_graph def _completed_document_serialization(self, conversion_graph: data.ConversionGraph) -> None: build_dag = len(conversion_graph.target_instances) == 0 for reference in conversion_graph.target_instances: if reference.target and reference.target.id == reference.target_id: continue reference.target = self.get_assembly(reference=reference) build_dag = True if build_dag: conversion_graph.build_dag() def create_from_source(self, source: data.ConversionGraph) -> data.ConversionGraph: new_conversion_graph = data.ConversionGraph() new_id = new_conversion_graph.id new_conversion_graph.deserialize(data=source.serialize()) new_conversion_graph._id = new_id new_conversion_graph._library = source.library new_conversion_graph.filename = source.filename self._completed_document_serialization(conversion_graph=new_conversion_graph) return new_conversion_graph def revert(self, library: data.Library, instance: data.Serializable) -> bool: """ Returns True if the file existed on disk and was successfully reverted. """ if not library: return False if library.id not in self._library_caches.keys(): return False cache = self._library_caches[library.id] if cache.revert(item=instance): if isinstance(instance, data.ConversionGraph): self._completed_document_serialization(conversion_graph=instance) return True return False def find_documents(self, source_class: str, library: data.Library = None) -> typing.List[data.ConversionGraph]: conversion_graphs = [] for conversion_graph in self.get_documents(library=library): if not conversion_graph.source_node: continue for node in conversion_graph.source_node.target.nodes: if node.class_name == source_class: conversion_graphs.append(conversion_graph) return conversion_graphs def find_assembly(self, assembly_class: str, library: data.Library = None) -> typing.List[data.Target]: targets = [] for target in self.get_assemblies(library=library): for node in target.nodes: if node.class_name == assembly_class: targets.append(target) break return targets def _get_manifest_filepath(self, library: data.Library) -> str: return '{0}/ConversionManifest.json'.format(library.path) def get_conversion_manifest(self, library: data.Library) -> data.ConversionManifest: if library.id not in self._library_caches.keys(): return data.ConversionManifest() cache = self._library_caches[library.id] manifests = cache.get_manifests() if len(manifests): manifest = manifests[0] for conversion_map in manifest.conversion_maps: if conversion_map.conversion_graph is None: continue self._completed_document_serialization(conversion_graph=conversion_map.conversion_graph) return manifest return data.ConversionManifest() def save_conversion_manifest(self, library: data.Library, manifest: data.ConversionManifest) -> None: if library.id not in self._library_caches.keys(): return cache = self._library_caches[library.id] cache.write(item=manifest) def write(self, filename: str, instance: data.Serializable, library: data.Library, overwrite: bool = False) -> None: if not filename.strip(): raise Exception('Invalid filename: empty string.') if library.id not in self._library_caches.keys(): raise Exception('Cannot write to a library that is not registered') if not filename.lower().endswith('.json'): filename = '{0}.json'.format(filename) cache = self._library_caches[library.id] cache.write(item=instance, identifier=filename, overwrite=overwrite) def delete_document(self, document: data.ConversionGraph) -> bool: if not document.library: return False if document.library.id not in self._library_caches.keys(): return False cache = self._library_caches[document.library.id] cache.delete(item=document) return True def is_graph_entity_id(self, identifier: str) -> bool: for item in self.get_assemblies(): if item.id == identifier: return True return False def get_graph_entity(self, identifier: str) -> data.GraphEntity: for item in self.get_assemblies(): if item.id == identifier: return data.TargetInstance.FromAssembly(assembly=item) for item in self.get_operators(): if item.id == identifier: return data.OperatorInstance.FromOperator(operator=item) raise Exception('Graph Entity with id "{0}" cannot be found'.format(identifier)) def register_operator(self, operator: data.Operator): if operator not in self._operators: self._operators.append(operator) def get_operators(self) -> typing.List[data.Operator]: return self._operators def is_operator_id(self, identifier: str) -> bool: for item in self.get_operators(): if item.id == identifier: return True return False def on_shutdown(self): if len(self._library_caches.keys()): provider: _LibraryProvider for provider in self._library_caches.values(): provider.library = None self._library_caches = dict() @property def libraries(self) -> typing.List[data.Library]: return self._settings.libraries def register_library(library: data.Library) -> None: """ """ __Manager().register_library(library=library) def get_libraries() -> typing.List[data.Library]: """ """ return __Manager().libraries def get_library(library_id: str) -> data.Library: """ """ for library in __Manager().libraries: if library.id == library_id: return library raise Exception('Library with id "{0}" not found.'.format(library_id)) def get_assembly(reference: data.TargetInstance) -> data.Target: """ """ # TODO: Is this still needed? return __Manager().get_assembly(reference=reference) def write(filename: str, instance: data.Serializable, library: data.Library, overwrite: bool = False) -> None: """ """ __Manager().write(filename=filename, instance=instance, library=library, overwrite=overwrite) def get_assemblies(library: data.Library = None) -> typing.List[data.Target]: """ """ return __Manager().get_assemblies(library=library) def is_graph_entity_id(identifier: str) -> bool: """ """ return __Manager().is_graph_entity_id(identifier=identifier) def get_graph_entity(identifier: str) -> data.GraphEntity: """ """ return __Manager().get_graph_entity(identifier=identifier) def get_documents(library: data.Library = None) -> typing.List[data.ConversionGraph]: """ """ return __Manager().get_documents(library=library) def get_document(library: data.Library, document_filename: str) -> typing.Union[data.ConversionGraph, typing.NoReturn]: """ """ # TODO: Is this still needed? return __Manager().get_document(library=library, document_filename=document_filename) def create_new_document(library: data.Library) -> data.ConversionGraph: """ """ return __Manager().create_new_document(library=library) def create_from_source(source: data.ConversionGraph) -> data.ConversionGraph: """ """ return __Manager().create_from_source(source=source) def revert(library: data.Library, instance: data.Serializable) -> bool: """ Returns True if the file existed on disk and was successfully reverted. """ return __Manager().revert(library, instance) def find_documents(source_class: str, library: data.Library = None) -> typing.List[data.ConversionGraph]: """ """ # TODO: Is this still needed? return __Manager().find_documents(source_class=source_class, library=library) def find_assembly(assembly_class: str, library: data.Library = None) -> typing.List[data.Target]: """ """ # TODO: Is this still needed? return __Manager().find_assembly(assembly_class=assembly_class, library=library) def register_operator(operator: data.Operator): """ """ __Manager().register_operator(operator=operator) def get_operators() -> typing.List[data.Operator]: """ """ return __Manager().get_operators() def is_operator_id(identifier: str) -> bool: """ """ return __Manager().is_operator_id(identifier=identifier) def delete_document(document: data.ConversionGraph) -> bool: """ """ return __Manager().delete_document(document=document) def get_conversion_manifest(library: data.Library) -> data.ConversionManifest: """ """ return __Manager().get_conversion_manifest(library=library) def get_render_contexts() -> typing.List[str]: """Returns list of registered render contexts.""" return __Manager()._settings.render_contexts[:] def register_render_contexts(context: str) -> None: """Register a render context such as MDL or USD Preview.""" __Manager().register_render_contexts(context=context) def can_show_in_filesystem(document: data.ConversionGraph) -> bool: """Checks if the operating system can display where a document is saved on disk.""" return __Manager().can_show_in_filesystem(document=document) def show_in_filesystem(document: data.ConversionGraph) -> None: """Makes the operating system display where a document is saved on disk.""" return __Manager().show_in_filesystem(document=document) def on_shutdown() -> None: """Makes the operating system display where a document is saved on disk.""" return __Manager().on_shutdown()
44,912
Python
38.60582
254
0.614557
NVIDIA-Omniverse/blender_omniverse_addons/omni/universalmaterialmap/core/service/delegate.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. import typing import os import json import subprocess import threading import platform import uuid from ..feature import POLLING from .core import ChangeEvent, IDelegate class Filesystem(IDelegate): def __init__(self, root_directory: str): super(Filesystem, self).__init__() if POLLING: self.__is_polling: bool = False self.__poll_timer: threading.Timer = None self.__poll_data: typing.Dict[str, float] = dict() self.__poll_subscriptions: typing.Dict[uuid.uuid4, typing.Callable[[ChangeEvent], typing.NoReturn]] = dict() self.__pending_write_ids: typing.List[str] = [] self.__pending_delete_ids: typing.List[str] = [] self._root_directory: str = root_directory def __start_polling(self) -> None: if not POLLING: return if self.__is_polling: return self.__is_polling = True # Store current state in self.__poll_data so that __on_timer we only notify of changes since starting to poll self.__poll_data = dict() self.__pending_change_ids = [] identifiers = self.get_ids() for identifier in identifiers: filepath = '{0}/{1}'.format(self._root_directory, identifier) modified_time = os.path.getmtime(filepath) if platform.system() == 'Windows' else os.stat(filepath).st_mtime self.__poll_data[identifier] = modified_time self.__poll_timer = threading.Timer(5, self.__on_timer) self.__poll_timer.start() def __on_timer(self): print('UMM PING') if not POLLING: return if not self.__is_polling: return try: identifiers = self.get_ids() added = [o for o in identifiers if o not in self.__poll_data.keys() and o not in self.__pending_write_ids] removed = [o for o in self.__poll_data.keys() if o not in identifiers and o not in self.__pending_delete_ids] modified_maybe = [o for o in identifiers if o not in added and o not in removed and o not in self.__pending_write_ids] modified = [] for identifier in modified_maybe: filepath = '{0}/{1}'.format(self._root_directory, identifier) modified_time = os.path.getmtime(filepath) if platform.system() == 'Windows' else os.stat(filepath).st_mtime if self.__poll_data[identifier] == modified_time: continue modified.append(identifier) self.__poll_data[identifier] = modified_time for identifier in added: filepath = '{0}/{1}'.format(self._root_directory, identifier) self.__poll_data[identifier] = os.path.getmtime(filepath) if platform.system() == 'Windows' else os.stat(filepath).st_mtime for identifier in removed: del self.__poll_data[identifier] if len(added) + len(modified) + len(removed) > 0: event = ChangeEvent(added=tuple(added), modified=tuple(modified), removed=tuple(removed)) for callbacks in self.__poll_subscriptions.values(): callbacks(event) except Exception as error: print('WARNING: Universal Material Map failed to poll {0} for file changes.\nDetail: {1}'.format(self._root_directory, error)) self.__poll_timer.run() def __stop_polling(self) -> None: if not POLLING: return self.__is_polling = False try: self.__poll_timer.cancel() except: pass self.__poll_data = dict() def can_poll(self) -> bool: if not POLLING: return False return True def start_polling(self): if not POLLING: return self.__start_polling() def stop_polling(self): if not POLLING: return self.__stop_polling() def add_change_subscription(self, callback: typing.Callable[[ChangeEvent], typing.NoReturn]) -> uuid.uuid4: if not POLLING: raise NotImplementedError('Polling feature not enabled.') for key, value in self.__poll_subscriptions.items(): if value == callback: return key key = uuid.uuid4() self.__poll_subscriptions[key] = callback self.start_polling() return key def remove_change_subscription(self, subscription_id: uuid.uuid4) -> None: if not POLLING: raise NotImplementedError('Polling feature not enabled.') if subscription_id in self.__poll_subscriptions.keys(): del self.__poll_subscriptions[subscription_id] if len(self.__poll_subscriptions.keys()) == 0: self.stop_polling() def get_ids(self) -> typing.List[str]: identifiers: typing.List[str] = [] for directory, sub_directories, filenames in os.walk(self._root_directory): for filename in filenames: if not filename.lower().endswith('.json'): continue identifiers.append(filename) break return identifiers def read(self, identifier: str) -> typing.Union[typing.Dict, typing.NoReturn]: if not identifier.lower().endswith('.json'): raise Exception('Invalid identifier: "{0}" does not end with ".json".'.format(identifier)) filepath = '{0}/{1}'.format(self._root_directory, identifier) if os.path.exists(filepath): try: with open(filepath, 'r') as pointer: contents = json.load(pointer) if not isinstance(contents, dict): raise Exception('Not supported: Load of file "{0}" did not resolve to a dictionary. Could be due to reading same file twice too fast.'.format(filepath)) return contents except Exception as error: print('Failed to open file "{0}"'.format(filepath)) raise error return None def write(self, identifier: str, contents: typing.Dict) -> None: if not identifier.lower().endswith('.json'): raise Exception('Invalid identifier: "{0}" does not end with ".json".'.format(identifier)) if not isinstance(contents, dict): raise Exception('Not supported: Argument "contents" is not an instance of dict.') if not os.path.exists(self._root_directory): os.makedirs(self._root_directory) if POLLING: if identifier not in self.__pending_write_ids: self.__pending_write_ids.append(identifier) filepath = '{0}/{1}'.format(self._root_directory, identifier) with open(filepath, 'w') as pointer: json.dump(contents, pointer, indent=4) if POLLING: # Store the modified time so that we don't trigger a notification. We only want notifications when changes are caused by external modifiers. self.__poll_data[identifier] = os.path.getmtime(filepath) if platform.system() == 'Windows' else os.stat(filepath).st_mtime self.__pending_write_ids.remove(identifier) def delete(self, identifier: str) -> None: if not identifier.lower().endswith('.json'): raise Exception('Invalid identifier: "{0}" does not end with ".json".'.format(identifier)) if POLLING: if identifier not in self.__pending_delete_ids: self.__pending_delete_ids.append(identifier) filepath = '{0}/{1}'.format(self._root_directory, identifier) if os.path.exists(filepath): os.remove(filepath) if POLLING: # Remove the item from self.__poll_data so that we don't trigger a notification. We only want notifications when changes are caused by external modifiers. if identifier in self.__poll_data.keys(): del self.__poll_data[identifier] self.__pending_delete_ids.remove(identifier) def can_show_in_store(self, identifier: str) -> bool: filepath = '{0}/{1}'.format(self._root_directory, identifier) return os.path.exists(filepath) def show_in_store(self, identifier: str) -> None: filepath = '{0}/{1}'.format(self._root_directory, identifier) if os.path.exists(filepath): subprocess.Popen(r'explorer /select,"{0}"'.format(filepath.replace('/', '\\'))) class FilesystemManifest(Filesystem): def __init__(self, root_directory: str): super(FilesystemManifest, self).__init__(root_directory=root_directory) def get_ids(self) -> typing.List[str]: identifiers: typing.List[str] = [] for directory, sub_directories, filenames in os.walk(self._root_directory): for filename in filenames: if not filename.lower() == 'conversionmanifest.json': continue identifiers.append(filename) break return identifiers class FilesystemSettings(Filesystem): def __init__(self, root_directory: str): super(FilesystemSettings, self).__init__(root_directory=root_directory) def get_ids(self) -> typing.List[str]: identifiers: typing.List[str] = [] for directory, sub_directories, filenames in os.walk(self._root_directory): for filename in filenames: if not filename.lower() == 'settings.json': continue identifiers.append(filename) break return identifiers
10,456
Python
40.995984
176
0.608072
NVIDIA-Omniverse/blender_omniverse_addons/omni/universalmaterialmap/core/service/core.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. import abc import typing import uuid class ChangeEvent(object): def __init__(self, added: typing.Tuple[str], modified: typing.Tuple[str], removed: typing.Tuple[str]): super(ChangeEvent, self).__init__() self.__added: typing.Tuple[str] = added self.__modified: typing.Tuple[str] = modified self.__removed: typing.Tuple[str] = removed def __str__(self): o = 'omni.universalmaterialmap.core.service.core.ChangeEvent(' o += '\n\tadded: ' o += ', '.join(self.__added) o += '\n\tmodified: ' o += ', '.join(self.__modified) o += '\n\tremoved: ' o += ', '.join(self.__removed) o += '\n)' return o @property def added(self) -> typing.Tuple[str]: return self.__added @property def modified(self) -> typing.Tuple[str]: return self.__modified @property def removed(self) -> typing.Tuple[str]: return self.__removed class IDelegate(metaclass=abc.ABCMeta): """ Interface for an online library database table. """ @abc.abstractmethod def get_ids(self) -> typing.List[str]: """ Returns a list of identifiers. """ raise NotImplementedError @abc.abstractmethod def read(self, identifier: str) -> typing.Dict: """ Returns a JSON dictionary if an item by the given identifier exists - otherwise None """ raise NotImplementedError @abc.abstractmethod def write(self, identifier: str, contents: typing.Dict) -> str: """ Creates or updates an item by using the JSON contents data. """ raise NotImplementedError @abc.abstractmethod def delete(self, identifier: str) -> None: """ Deletes an item by the given identifier if it exists. """ raise NotImplementedError @abc.abstractmethod def can_show_in_store(self, identifier: str) -> bool: """ Deletes an item by the given identifier if it exists. """ raise NotImplementedError @abc.abstractmethod def show_in_store(self, identifier: str) -> None: """ Deletes an item by the given identifier if it exists. """ raise NotImplementedError @abc.abstractmethod def can_poll(self) -> bool: """ States if delegate is able to poll file changes and provide subscription to those changes. """ raise NotImplementedError @abc.abstractmethod def start_polling(self) -> None: """ Starts monitoring files for changes. """ raise NotImplementedError @abc.abstractmethod def stop_polling(self) -> None: """ Stops monitoring files for changes. """ raise NotImplementedError @abc.abstractmethod def add_change_subscription(self, callback: typing.Callable[[ChangeEvent], typing.NoReturn]) -> uuid.uuid4: """ Creates a subscription for file changes in location managed by delegate. """ raise NotImplementedError @abc.abstractmethod def remove_change_subscription(self, subscription_id: uuid.uuid4) -> None: """ Removes the subscription for file changes in location managed by delegate. """ raise NotImplementedError
4,024
Python
34.307017
111
0.657306
NVIDIA-Omniverse/blender_omniverse_addons/omni/universalmaterialmap/core/service/resources/__init__.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. import os import shutil import json import inspect from ...data import FileUtility, Target, ConversionGraph, ConversionManifest def __copy(source_path: str, destination_path: str) -> None: try: shutil.copy(source_path, destination_path) except Exception as error: print('Error installing UMM data. Unable to copy source "{0}" to destination "{1}".\n Details: {2}'.format(source_path, destination_path, error)) raise error def __install_library(source_root: str, destination_root: str) -> None: source_root = source_root.replace('\\', '/') destination_root = destination_root.replace('\\', '/') for directory, sub_directories, filenames in os.walk(source_root): directory = directory.replace('\\', '/') destination_directory = directory.replace(source_root, destination_root) destination_directory_created = os.path.exists(destination_directory) for filename in filenames: if not filename.lower().endswith('.json'): continue source_path = '{0}/{1}'.format(directory, filename) destination_path = '{0}/{1}'.format(destination_directory, filename) if not destination_directory_created: try: os.makedirs(destination_directory) destination_directory_created = True except Exception as error: print('Universal Material Map error installing data. Unable to create directory "{0}".\n Details: {1}'.format(destination_directory, error)) raise error if not os.path.exists(destination_path): __copy(source_path=source_path, destination_path=destination_path) print('Universal Material Map installed "{0}".'.format(destination_path)) continue try: with open(source_path, 'r') as fp: source = FileUtility.FromData(data=json.load(fp)).content except Exception as error: print('Universal Material Map error installing data. Unable to read source "{0}". \n Details: {1}'.format(source_path, error)) raise error try: with open(destination_path, 'r') as fp: destination = FileUtility.FromData(data=json.load(fp)).content except Exception as error: print('Warning: Universal Material Map error installing data. Unable to read destination "{0}". It is assumed that the installed version is more recent than the one attempted to be installed.\n Details: {1}'.format(destination_path, error)) continue if isinstance(source, Target) and isinstance(destination, Target): if source.revision > destination.revision: __copy(source_path=source_path, destination_path=destination_path) print('Universal Material Map installed the more recent revision #{0} of "{1}".'.format(source.revision, destination_path)) continue if isinstance(source, ConversionGraph) and isinstance(destination, ConversionGraph): if source.revision > destination.revision: __copy(source_path=source_path, destination_path=destination_path) print('Universal Material Map installed the more recent revision #{0} of "{1}".'.format(source.revision, destination_path)) continue if isinstance(source, ConversionManifest) and isinstance(destination, ConversionManifest): if source.version_major < destination.version_major: continue if source.version_minor <= destination.version_minor: continue __copy(source_path=source_path, destination_path=destination_path) print('Universal Material Map installed the more recent revision #{0}.{1} of "{2}".'.format(source.version_major, source.version_minor, destination_path)) continue def install() -> None: current_path = inspect.getfile(inspect.currentframe()).replace('\\', '/') current_path = current_path[:current_path.rfind('/')] library_names = [] for o in os.listdir(current_path): path = '{0}/{1}'.format(current_path, o) if os.path.isdir(path) and not o == '__pycache__': library_names.append(o) libraries_directory = os.path.expanduser('~').replace('\\', '/') if not libraries_directory.endswith('/Documents'): # os.path.expanduser() has different behaviour between 2.7 and 3 libraries_directory = '{0}/Documents'.format(libraries_directory) libraries_directory = '{0}/Omniverse'.format(libraries_directory) for library_name in library_names: source_root = '{0}/{1}/UMMLibrary'.format(current_path, library_name) destination_root = '{0}/{1}/UMMLibrary'.format(libraries_directory, library_name) __install_library(source_root=source_root, destination_root=destination_root)
5,935
Python
49.735042
256
0.643134
NVIDIA-Omniverse/blender_omniverse_addons/omni/universalmaterialmap/blender/converter.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. import typing import sys import traceback import os import re import json import math import bpy import bpy_types from . import get_library, get_value, CORE_MATERIAL_PROPERTIES, create_template, developer_mode, get_template_data_by_shader_node, get_template_data_by_class_name, create_from_template from ..core.converter.core import ICoreConverter, IObjectConverter, IDataConverter from ..core.converter import util from ..core.service import store from ..core.data import Plug, ConversionManifest, DagNode, ConversionGraph, TargetInstance from ..core.util import get_extension_from_image_file_format __initialized: bool = False __manifest: ConversionManifest = None def _get_manifest() -> ConversionManifest: if not getattr(sys.modules[__name__], '__manifest'): setattr(sys.modules[__name__], '__manifest', store.get_conversion_manifest(library=get_library())) if developer_mode: manifest: ConversionManifest = getattr(sys.modules[__name__], '__manifest') print('UMM DEBUG: blender.converter._get_manifest(): num entries = "{0}"'.format(len(manifest.conversion_maps))) for conversion_map in manifest.conversion_maps: print('UMM DEBUG: blender.converter._get_manifest(): Entry: graph_id = "{0}", render_context = "{1}"'.format(conversion_map.conversion_graph_id, conversion_map.render_context)) return getattr(sys.modules[__name__], '__manifest') def _get_conversion_graph_impl(source_class: str, render_context: str) -> typing.Union[ConversionGraph, typing.NoReturn]: if developer_mode: print('UMM DEBUG: blender.converter._get_conversion_graph_impl(source_class="{0}", render_context="{1}")'.format(source_class, render_context)) for conversion_map in _get_manifest().conversion_maps: if not conversion_map.render_context == render_context: if developer_mode: print('UMM DEBUG: blender.converter._get_conversion_graph_impl: conversion_map.render_context "{0}" != "{1}")'.format(conversion_map.render_context, render_context)) continue if not conversion_map.conversion_graph: if developer_mode: print('UMM DEBUG: blender.converter._get_conversion_graph_impl: conversion_map.conversion_graph "{0}")'.format(conversion_map.conversion_graph)) continue if not conversion_map.conversion_graph.source_node: if developer_mode: print('UMM DEBUG: blender.converter._get_conversion_graph_impl: conversion_map.source_node "{0}")'.format(conversion_map.conversion_graph.source_node)) continue if not conversion_map.conversion_graph.source_node.target.root_node.class_name == source_class: if developer_mode: print('UMM DEBUG: blender.converter._get_conversion_graph_impl: conversion_map.conversion_graph.source_node.target.root_node.class_name "{0}" != "{1}")'.format(conversion_map.conversion_graph.source_node.target.root_node.class_name, source_class)) continue if developer_mode: print('UMM DEBUG: blender.converter._get_conversion_graph_impl: found match "{0}")'.format(conversion_map.conversion_graph.filename)) return conversion_map.conversion_graph if developer_mode: print('UMM DEBUG: blender.converter._get_conversion_graph_impl: found no match!)') return None def _instance_to_output_entity(graph: ConversionGraph, instance: object) -> TargetInstance: if developer_mode: print('_instance_to_output_entity') for output in graph.source_node.outputs: if output.name == 'node_id_output': continue if util.can_set_plug_value(instance=instance, plug=output): util.set_plug_value(instance=instance, plug=output) else: print('UMM Warning: Unable to set output plug "{0}"... using default value of "{1}"'.format(output.name, output.default_value)) output.value = output.default_value return graph.get_output_entity() def _data_to_output_entity(graph: ConversionGraph, data: typing.List[typing.Tuple[str, typing.Any]]) -> TargetInstance: for output in graph.source_node.outputs: if output.name == 'node_id_output': continue o = [o for o in data if o[0] == output.name] if len(o): output.value = o[0][1] else: output.value = output.default_value return graph.get_output_entity() def _instance_to_data(instance: object, graph: ConversionGraph) -> typing.List[typing.Tuple[str, typing.Any]]: target_instance = _instance_to_output_entity(graph=graph, instance=instance) if developer_mode: print('_instance_to_data') print('\ttarget_instance.target.store_id', target_instance.target.store_id) # Compute target attribute values attribute_data = [(util.TARGET_CLASS_IDENTIFIER, target_instance.target.root_node.class_name)] for plug in target_instance.inputs: if not plug.input: continue if developer_mode: print('\t{} is invalid: {}'.format(plug.name, plug.is_invalid)) if plug.is_invalid and isinstance(plug.parent, DagNode): plug.parent.compute() if developer_mode: print('\t{} computed value = {}'.format(plug.name, plug.computed_value)) attribute_data.append((plug.name, plug.computed_value)) return attribute_data def _to_convertible_instance(instance: object, material: bpy.types.Material = None) -> object: if developer_mode: print('_to_convertible_instance', type(instance)) if material is None: if isinstance(instance, bpy.types.Material): material = instance else: for m in bpy.data.materials: if not m.use_nodes: continue if not len([o for o in m.node_tree.nodes if o == instance]): continue material = m break if material is None: return instance if not material.use_nodes: return material if instance == material: # Find the Surface Shader. for link in material.node_tree.links: if not isinstance(link, bpy.types.NodeLink): continue if not isinstance(link.to_node, bpy.types.ShaderNodeOutputMaterial): continue if not link.to_socket.name == 'Surface': continue result = _to_convertible_instance(instance=link.from_node, material=material) if result is not None: return result # No surface shader found - return instance return instance if isinstance(instance, bpy.types.ShaderNodeAddShader): for link in material.node_tree.links: if not isinstance(link, bpy.types.NodeLink): continue if not link.to_node == instance: continue # if not link.to_socket.name == 'Shader': # continue result = _to_convertible_instance(instance=link.from_node, material=material) if result is not None: return result # if isinstance(instance, bpy.types.ShaderNodeBsdfGlass): # return instance # if isinstance(instance, bpy.types.ShaderNodeBsdfGlossy): # return instance if isinstance(instance, bpy.types.ShaderNodeBsdfPrincipled): return instance # if isinstance(instance, bpy.types.ShaderNodeBsdfRefraction): # return instance # if isinstance(instance, bpy.types.ShaderNodeBsdfTranslucent): # return instance # if isinstance(instance, bpy.types.ShaderNodeBsdfTransparent): # return instance # if isinstance(instance, bpy.types.ShaderNodeEeveeSpecular): # return instance # if isinstance(instance, bpy.types.ShaderNodeEmission): # return instance # if isinstance(instance, bpy.types.ShaderNodeSubsurfaceScattering): # return instance return None class CoreConverter(ICoreConverter): def __init__(self): super(CoreConverter, self).__init__() def get_conversion_manifest(self) -> typing.List[typing.Tuple[str, str]]: """ Returns data indicating what source class can be converted to a render context. Example: [('lambert', 'MDL'), ('blinn', 'MDL'),] """ output = [] for conversion_map in _get_manifest().conversion_maps: if not conversion_map.render_context: continue if not conversion_map.conversion_graph: continue if not conversion_map.conversion_graph.source_node: continue output.append((conversion_map.conversion_graph.source_node.target.root_node.class_name, conversion_map.render_context)) return output class ObjectConverter(CoreConverter, IObjectConverter): """ """ MATERIAL_CLASS = 'bpy.types.Material' SHADER_NODES = [ 'bpy.types.ShaderNodeBsdfGlass', 'bpy.types.ShaderNodeBsdfGlossy', 'bpy.types.ShaderNodeBsdfPrincipled', 'bpy.types.ShaderNodeBsdfRefraction', 'bpy.types.ShaderNodeBsdfTranslucent', 'bpy.types.ShaderNodeBsdfTransparent', 'bpy.types.ShaderNodeEeveeSpecular', 'bpy.types.ShaderNodeEmission', 'bpy.types.ShaderNodeSubsurfaceScattering', ] def can_create_instance(self, class_name: str) -> bool: """ Returns true if worker can generate an object of the given class name. """ if class_name == ObjectConverter.MATERIAL_CLASS: return True return class_name in ObjectConverter.SHADER_NODES def create_instance(self, class_name: str, name: str = 'material') -> object: """ Creates an object of the given class name. """ material = bpy.data.materials.new(name=name) if class_name in ObjectConverter.SHADER_NODES: material.use_nodes = True return material def can_set_plug_value(self, instance: object, plug: Plug) -> bool: """ Returns true if worker can set the plug's value given the instance and its attributes. """ if plug.input: return False if isinstance(instance, bpy.types.Material): for o in CORE_MATERIAL_PROPERTIES: if o[0] == plug.name: return hasattr(instance, plug.name) return False if isinstance(instance, bpy_types.ShaderNode): return len([o for o in instance.inputs if o.name == plug.name]) == 1 return False def set_plug_value(self, instance: object, plug: Plug) -> typing.NoReturn: """ Sets the plug's value given the value of the instance's attribute named the same as the plug. """ if isinstance(instance, bpy.types.Material): plug.value = getattr(instance, plug.name) if developer_mode: print('set_plug_value') print('\tinstance', type(instance)) print('\tname', plug.name) print('\tvalue', plug.value) return inputs = [o for o in instance.inputs if o.name == plug.name] if not len(inputs) == 1: return plug.value = get_value(socket=inputs[0]) if developer_mode: # print('set_plug_value') # print('\tinstance', type(instance)) # print('\tname', plug.name) # print('\tvalue', plug.value) print('\tset_plug_value: {} = {}'.format(plug.name, plug.value)) def can_set_instance_attribute(self, instance: object, name: str): """ Resolves if worker can set an attribute by the given name on the instance. """ return False def set_instance_attribute(self, instance: object, name: str, value: typing.Any) -> typing.NoReturn: """ Sets the named attribute on the instance to the value. """ raise NotImplementedError() def can_convert_instance(self, instance: object, render_context: str) -> bool: """ Resolves if worker can convert the instance to another object given the render_context. """ return False def convert_instance_to_instance(self, instance: object, render_context: str) -> typing.Any: """ Converts the instance to another object given the render_context. """ raise NotImplementedError() def can_convert_instance_to_data(self, instance: object, render_context: str) -> bool: """ Resolves if worker can convert the instance to another object given the render_context. """ node = _to_convertible_instance(instance=instance) if node is not None and not node == instance: if developer_mode: print('Found graph node to use instead of bpy.types.Material: {0}'.format(type(node))) instance = node template, template_map, template_shader_name, material = get_template_data_by_shader_node(shader_node=instance) if template is None: class_name = '{0}.{1}'.format(instance.__class__.__module__, instance.__class__.__name__) conversion_graph = _get_conversion_graph_impl(source_class=class_name, render_context=render_context) if not conversion_graph: return False try: destination_target_instance = _instance_to_output_entity(graph=conversion_graph, instance=instance) except Exception as error: print('Warning: Unable to get destination assembly using document "{0}".\nDetails: {1}'.format(conversion_graph.filename, error)) return False return destination_target_instance is not None else: conversion_graph = _get_conversion_graph_impl(source_class=template_shader_name, render_context=render_context) return conversion_graph is not None def convert_instance_to_data(self, instance: object, render_context: str) -> typing.List[typing.Tuple[str, typing.Any]]: """ Returns a list of key value pairs in tuples. The first pair is ("umm_target_class", "the_class_name") indicating the conversion target class. """ node = _to_convertible_instance(instance=instance) if node is not None and not node == instance: if developer_mode: print('Found graph node to use instead of bpy.types.Material: {0}'.format(type(node))) instance = node template, template_map, template_shader_name, material = get_template_data_by_shader_node(shader_node=instance) if template is None: class_name = '{0}.{1}'.format(instance.__class__.__module__, instance.__class__.__name__) conversion_graph = _get_conversion_graph_impl(source_class=class_name, render_context=render_context) return _instance_to_data(instance=instance, graph=conversion_graph) else: conversion_graph = _get_conversion_graph_impl(source_class=template_shader_name, render_context=render_context) if developer_mode: print('conversion_graph', conversion_graph.filename) # set plug values on conversion_graph.source_node.outputs for output in conversion_graph.source_node.outputs: if output.name == 'node_id_output': continue if developer_mode: print('output', output.name) internal_node = None for a in conversion_graph.source_node.target.nodes: for b in a.outputs: if output.id == b.id: internal_node = a break if internal_node is not None: break if internal_node is None: raise NotImplementedError(f"No internal node found for {output.name}") map_definition = None for o in template_map['maps']: if o['blender_node'] == internal_node.id and o['blender_socket'] == output.name: map_definition = o break if map_definition is None: raise NotImplementedError(f"No map definition found for {output.name}") if developer_mode: print('map_definition', map_definition['blender_node']) if map_definition['blender_node'] == '': output.value = output.default_value if developer_mode: print('output.value', output.value) continue for shader_node in material.node_tree.nodes: if not shader_node.name == map_definition['blender_node']: continue if isinstance(shader_node, bpy.types.ShaderNodeTexImage): if map_definition['blender_socket'] == 'image': if shader_node.image and (shader_node.image.source == 'FILE' or shader_node.image.source == 'TILED'): print(f'UMM: image.filepath: "{shader_node.image.filepath}"') print(f'UMM: image.source: "{shader_node.image.source}"') print(f'UMM: image.file_format: "{shader_node.image.file_format}"') value = shader_node.image.filepath if (shader_node.image.source == 'TILED'): # Find all numbers in the path. numbers = re.findall('[0-9]+', value) if (len(numbers) > 0): # Get the string representation of the last number. num_str = str(numbers[-1]) # Replace the number substring with '<UDIM>'. split_items = value.rsplit(num_str, 1) if (len(split_items) == 2): value = split_items[0] + '<UDIM>' + split_items[1] try: if value is None or value == '': file_format = shader_node.image.file_format file_format = get_extension_from_image_file_format(file_format, shader_node.image.name) if not shader_node.image.name.endswith(file_format): value = f'{shader_node.image.name}.{file_format}' else: value = shader_node.image.name output.value = [value, shader_node.image.colorspace_settings.name] else: output.value = [os.path.abspath(bpy.path.abspath(value)), shader_node.image.colorspace_settings.name] except Exception as error: print('Warning: Universal Material Map: Unable to evaluate absolute file path of texture "{0}". Detail: {1}'.format(shader_node.image.filepath, error)) output.value = ['', 'raw'] print(f'UMM: output.value: "{output.value}"') else: if developer_mode: print('setting default value for output.value') if not shader_node.image: print('\tshader_node.image == None') else: print('\tshader_node.image.source == {}'.format(shader_node.image.source)) output.value = ['', 'raw'] if developer_mode: print('output.value', output.value) break raise NotImplementedError(f"No support for bpy.types.ShaderNodeTexImage {map_definition['blender_socket']}") if isinstance(shader_node, bpy.types.ShaderNodeBsdfPrincipled): socket: bpy.types.NodeSocketStandard = shader_node.inputs[map_definition['blender_socket']] output.value = socket.default_value if developer_mode: print('output.value', output.value) break if isinstance(shader_node, bpy.types.ShaderNodeGroup): if map_definition['blender_socket'] not in shader_node.inputs.keys(): if developer_mode: print(f'{map_definition["blender_socket"]} not in shader_node.inputs.keys()') break socket: bpy.types.NodeSocketStandard = shader_node.inputs[map_definition['blender_socket']] output.value = socket.default_value if developer_mode: print('output.value', output.value) break if isinstance(shader_node, bpy.types.ShaderNodeMapping): socket: bpy.types.NodeSocketStandard = shader_node.inputs[map_definition['blender_socket']] value = socket.default_value if output.name == 'Rotation': value = [ math.degrees(value[0]), math.degrees(value[1]), math.degrees(value[2]) ] output.value = value if developer_mode: print('output.value', output.value) break # compute to target_instance for output target_instance = conversion_graph.get_output_entity() if developer_mode: print('_instance_to_data') print('\ttarget_instance.target.store_id', target_instance.target.store_id) # Compute target attribute values attribute_data = [(util.TARGET_CLASS_IDENTIFIER, target_instance.target.root_node.class_name)] for plug in target_instance.inputs: if not plug.input: continue if developer_mode: print('\t{} is invalid: {}'.format(plug.name, plug.is_invalid)) if plug.is_invalid and isinstance(plug.parent, DagNode): plug.parent.compute() if developer_mode: print('\t{} computed value = {}'.format(plug.name, plug.computed_value)) value = plug.computed_value if plug.internal_value_type == 'bool': value = True if value else False attribute_data.append((plug.name, value)) return attribute_data def can_convert_attribute_values(self, instance: object, render_context: str, destination: object) -> bool: """ Resolves if the instance's attribute values can be converted and set on the destination object's attributes. """ raise NotImplementedError() def convert_attribute_values(self, instance: object, render_context: str, destination: object) -> typing.NoReturn: """ Attribute values are converted and set on the destination object's attributes. """ raise NotImplementedError() def can_apply_data_to_instance(self, source_class_name: str, render_context: str, source_data: typing.List[typing.Tuple[str, typing.Any]], instance: object) -> bool: """ Resolves if worker can convert the instance to another object given the render_context. """ if developer_mode: print('can_apply_data_to_instance()') if not isinstance(instance, bpy.types.Material): if developer_mode: print('can_apply_data_to_instance: FALSE - instance not bpy.types.Material') return False if not render_context == 'Blender': if developer_mode: print('can_apply_data_to_instance: FALSE - render_context not "Blender"') return False conversion_graph = _get_conversion_graph_impl(source_class=source_class_name, render_context=render_context) if not conversion_graph: if developer_mode: print('can_apply_data_to_instance: FALSE - conversion_graph is None') return False if developer_mode: print(f'conversion_graph {conversion_graph.filename}') try: destination_target_instance = _data_to_output_entity(graph=conversion_graph, data=source_data) except Exception as error: print('Warning: Unable to get destination assembly using document "{0}".\nDetails: {1}'.format(conversion_graph.filename, error)) return False if developer_mode: if destination_target_instance is None: print('destination_target_instance is None') elif destination_target_instance is None: print('destination_target_instance.target is None') else: print('destination_target_instance.target is not None') if destination_target_instance is None or destination_target_instance.target is None: return False if developer_mode: print(f'num destination_target_instance.target.nodes: {len(destination_target_instance.target.nodes)}') if len(destination_target_instance.target.nodes) < 2: return True template, template_map = get_template_data_by_class_name(class_name=destination_target_instance.target.root_node.class_name) if developer_mode: print(f'return {template is not None}') return template is not None def apply_data_to_instance(self, source_class_name: str, render_context: str, source_data: typing.List[typing.Tuple[str, typing.Any]], instance: object) -> None: """ Implementation requires that `instance` is type `bpy.types.Material`. """ if developer_mode: print('apply_data_to_instance()') if not isinstance(instance, bpy.types.Material): raise Exception('instance type not supported', type(instance)) if not render_context == 'Blender': raise Exception('render_context not supported', render_context) conversion_graph = _get_conversion_graph_impl(source_class=source_class_name, render_context=render_context) # This only works for Blender import of MDL/USDPreview. Blender export would need to use convert_instance_to_data(). destination_target_instance = _data_to_output_entity(graph=conversion_graph, data=source_data) material: bpy.types.Material = instance # Make sure we're using nodes material.use_nodes = True # Remove existing nodes - we're starting from scratch - assuming Blender import to_delete = [o for o in material.node_tree.nodes] while len(to_delete): material.node_tree.nodes.remove(to_delete.pop()) if len(destination_target_instance.target.nodes) < 2: # Create base graph output_node = material.node_tree.nodes.new('ShaderNodeOutputMaterial') output_node.location = [300.0, 300.0] bsdf_node = material.node_tree.nodes.new('ShaderNodeBsdfPrincipled') bsdf_node.location = [0.0, 300.0] material.node_tree.links.new(bsdf_node.outputs[0], output_node.inputs[0]) node_cache = dict() node_location = [-500, 300] # Create graph if texture value for plug in destination_target_instance.inputs: if not plug.input: continue if isinstance(plug.computed_value, list) or isinstance(plug.computed_value, tuple): if len(plug.computed_value) == 2 and isinstance(plug.computed_value[0], str) and isinstance(plug.computed_value[1], str): key = '{0}|{1}'.format(plug.computed_value[0], plug.computed_value[1]) if key in node_cache.keys(): node = node_cache[key] else: try: path = plug.computed_value[0] if not path == '': node = material.node_tree.nodes.new('ShaderNodeTexImage') path = plug.computed_value[0] if '<UDIM>' in path: pattern = path.replace('\\', '/') pattern = pattern.replace('<UDIM>', '[0-9][0-9][0-9][0-9]') directory = pattern[:pattern.rfind('/') + 1] pattern = pattern.replace(directory, '') image_set = False for item in os.listdir(directory): if re.match(pattern, item): tile_path = '{}{}'.format(directory, item) if not os.path.isfile(tile_path): continue if not image_set: node.image = bpy.data.images.load(tile_path) node.image.source = 'TILED' image_set = True continue tile_indexes = re.findall('[0-9][0-9][0-9][0-9]', item) node.image.tiles.new(int(tile_indexes[-1])) else: node.image = bpy.data.images.load(path) node.image.colorspace_settings.name = plug.computed_value[1] else: continue except Exception as error: print('Warning: UMM failed to properly setup a ShaderNodeTexImage. Details: {0}\n{1}'.format(error, traceback.format_exc())) continue node_cache[key] = node node.location = node_location node_location[1] -= 300 bsdf_input = [o for o in bsdf_node.inputs if o.name == plug.name][0] if plug.name == 'Metallic': separate_node = None for link in material.node_tree.links: if link.from_node == node and link.to_node.__class__.__name__ == 'ShaderNodeSeparateRGB': separate_node = link.to_node break if separate_node is None: separate_node = material.node_tree.nodes.new('ShaderNodeSeparateRGB') separate_node.location = [node.location[0] + 250, node.location[1]] material.node_tree.links.new(node.outputs[0], separate_node.inputs[0]) material.node_tree.links.new(separate_node.outputs[2], bsdf_input) elif plug.name == 'Roughness': separate_node = None for link in material.node_tree.links: if link.from_node == node and link.to_node.__class__.__name__ == 'ShaderNodeSeparateRGB': separate_node = link.to_node break if separate_node is None: separate_node = material.node_tree.nodes.new('ShaderNodeSeparateRGB') separate_node.location = [node.location[0] + 250, node.location[1]] material.node_tree.links.new(node.outputs[0], separate_node.inputs[0]) material.node_tree.links.new(separate_node.outputs[1], bsdf_input) elif plug.name == 'Normal': normal_node = None for link in material.node_tree.links: if link.from_node == node and link.to_node.__class__.__name__ == 'ShaderNodeNormalMap': normal_node = link.to_node break if normal_node is None: normal_node = material.node_tree.nodes.new('ShaderNodeNormalMap') normal_node.location = [node.location[0] + 250, node.location[1]] material.node_tree.links.new(node.outputs[0], normal_node.inputs[1]) material.node_tree.links.new(normal_node.outputs[0], bsdf_input) else: material.node_tree.links.new(node.outputs[0], bsdf_input) continue # Set Value blender_inputs = [o for o in bsdf_node.inputs if o.name == plug.name] if len(blender_inputs) == 0: for property_name, property_object in bsdf_node.rna_type.properties.items(): if not property_name == plug.name: continue if property_object.is_readonly: break try: setattr(bsdf_node, property_name, plug.computed_value) except Exception as error: print('Warning: Universal Material Map: Unexpected error when setting property "{0}" to value "{1}": "{2}"'.format(property_name, plug.computed_value, error)) else: if isinstance(blender_inputs[0], bpy.types.NodeSocketShader): continue try: blender_inputs[0].default_value = plug.computed_value except Exception as error: print('Warning: Universal Material Map: Unexpected error when setting input "{0}" to value "{1}": "{2}"'.format(plug.name, plug.computed_value, error)) return if developer_mode: print(f'TEMPLATE CREATION BASED ON {destination_target_instance.target.root_node.class_name}') # find template to use template, template_map = get_template_data_by_class_name(class_name=destination_target_instance.target.root_node.class_name) if developer_mode: print(f"TEMPLATE NAME {template['name']}") # create graph create_from_template(material=material, template=template) # set attributes use_albedo_map = False use_normal_map = False use_detail_normal_map = False use_emission_map = False for input_plug in destination_target_instance.inputs: # if developer_mode: # print('input_plug', input_plug.name) internal_node = None for a in destination_target_instance.target.nodes: for b in a.inputs: if input_plug.id == b.id: internal_node = a break if internal_node is not None: break if internal_node is None: raise NotImplementedError(f"No internal node found for {input_plug.name}") map_definition = None for o in template_map['maps']: if o['blender_node'] == internal_node.id and o['blender_socket'] == input_plug.name: map_definition = o break if map_definition is None: raise NotImplementedError(f"No map definition found for {internal_node.id} {input_plug.name}") for shader_node in material.node_tree.nodes: if not shader_node.name == map_definition['blender_node']: continue # if developer_mode: # print(f'node: {shader_node.name}') if isinstance(shader_node, bpy.types.ShaderNodeTexImage): if map_definition['blender_socket'] == 'image': # if developer_mode: # print(f'\tbpy.types.ShaderNodeTexImage: path: {input_plug.computed_value[0]}') # print(f'\tbpy.types.ShaderNodeTexImage: colorspace: {input_plug.computed_value[1]}') path = input_plug.computed_value[0] if not path == '': if '<UDIM>' in path: pattern = path.replace('\\', '/') pattern = pattern.replace('<UDIM>', '[0-9][0-9][0-9][0-9]') directory = pattern[:pattern.rfind('/') + 1] pattern = pattern.replace(directory, '') image_set = False for item in os.listdir(directory): if re.match(pattern, item): tile_path = '{}{}'.format(directory, item) if not os.path.isfile(tile_path): continue if not image_set: shader_node.image = bpy.data.images.load(tile_path) shader_node.image.source = 'TILED' image_set = True continue tile_indexes = re.findall('[0-9][0-9][0-9][0-9]', item) shader_node.image.tiles.new(int(tile_indexes[-1])) else: shader_node.image = bpy.data.images.load(path) if map_definition['blender_node'] == 'Albedo Map': use_albedo_map = True if map_definition['blender_node'] == 'Normal Map': use_normal_map = True if map_definition['blender_node'] == 'Detail Normal Map': use_detail_normal_map = True if map_definition['blender_node'] == 'Emissive Map': use_emission_map = True shader_node.image.colorspace_settings.name = input_plug.computed_value[1] continue raise NotImplementedError( f"No support for bpy.types.ShaderNodeTexImage {map_definition['blender_socket']}") if isinstance(shader_node, bpy.types.ShaderNodeBsdfPrincipled): blender_inputs = [o for o in shader_node.inputs if o.name == input_plug.name] if len(blender_inputs) == 0: for property_name, property_object in shader_node.rna_type.properties.items(): if not property_name == input_plug.name: continue if property_object.is_readonly: break try: setattr(shader_node, property_name, input_plug.computed_value) except Exception as error: print('Warning: Universal Material Map: Unexpected error when setting property "{0}" to value "{1}": "{2}"'.format(property_name, input_plug.computed_value, error)) else: if isinstance(blender_inputs[0], bpy.types.NodeSocketShader): continue try: blender_inputs[0].default_value = input_plug.computed_value except Exception as error: print('Warning: Universal Material Map: Unexpected error when setting input "{0}" to value "{1}": "{2}"'.format(input_plug.name, input_plug.computed_value, error)) continue if isinstance(shader_node, bpy.types.ShaderNodeGroup): blender_inputs = [o for o in shader_node.inputs if o.name == input_plug.name] if len(blender_inputs) == 0: for property_name, property_object in shader_node.rna_type.properties.items(): if not property_name == input_plug.name: continue if property_object.is_readonly: break try: setattr(shader_node, property_name, input_plug.computed_value) except Exception as error: print('Warning: Universal Material Map: Unexpected error when setting property "{0}" to value "{1}": "{2}"'.format(property_name, input_plug.computed_value, error)) else: if isinstance(blender_inputs[0], bpy.types.NodeSocketShader): continue try: blender_inputs[0].default_value = input_plug.computed_value except Exception as error: print('Warning: Universal Material Map: Unexpected error when setting input "{0}" to value "{1}": "{2}"'.format(input_plug.name, input_plug.computed_value, error)) continue if isinstance(shader_node, bpy.types.ShaderNodeMapping): blender_inputs = [o for o in shader_node.inputs if o.name == input_plug.name] value = input_plug.computed_value if input_plug.name == 'Rotation': value[0] = math.radians(value[0]) value[1] = math.radians(value[1]) value[2] = math.radians(value[2]) if len(blender_inputs) == 0: for property_name, property_object in shader_node.rna_type.properties.items(): if not property_name == input_plug.name: continue if property_object.is_readonly: break try: setattr(shader_node, property_name, value) except Exception as error: print('Warning: Universal Material Map: Unexpected error when setting property "{0}" to value "{1}": "{2}"'.format(property_name, input_plug.computed_value, error)) else: if isinstance(blender_inputs[0], bpy.types.NodeSocketShader): continue try: blender_inputs[0].default_value = value except Exception as error: print('Warning: Universal Material Map: Unexpected error when setting input "{0}" to value "{1}": "{2}"'.format(input_plug.name, input_plug.computed_value, error)) continue # UX assist with special attributes for shader_node in material.node_tree.nodes: if shader_node.name == 'OmniPBR Compute' and isinstance(shader_node, bpy.types.ShaderNodeGroup): shader_node.inputs['Use Albedo Map'].default_value = 1 if use_albedo_map else 0 shader_node.inputs['Use Normal Map'].default_value = 1 if use_normal_map else 0 shader_node.inputs['Use Detail Normal Map'].default_value = 1 if use_detail_normal_map else 0 shader_node.inputs['Use Emission Map'].default_value = 1 if use_emission_map else 0 break class DataConverter(CoreConverter, IDataConverter): """ """ def can_convert_data_to_data(self, class_name: str, render_context: str, source_data: typing.List[typing.Tuple[str, typing.Any]]) -> bool: """ Resolves if worker can convert the given class and source_data to another class and target data. """ conversion_graph = _get_conversion_graph_impl(source_class=class_name, render_context=render_context) if not conversion_graph: return False try: destination_target_instance = _data_to_output_entity(graph=conversion_graph, data=source_data) except Exception as error: print('Warning: Unable to get destination assembly using document "{0}".\nDetails: {1}'.format(conversion_graph.filename, error)) return False return destination_target_instance is not None def convert_data_to_data(self, class_name: str, render_context: str, source_data: typing.List[typing.Tuple[str, typing.Any]]) -> typing.List[typing.Tuple[str, typing.Any]]: """ Returns a list of key value pairs in tuples. The first pair is ("umm_target_class", "the_class_name") indicating the conversion target class. """ if developer_mode: print('UMM DEBUG: DataConverter.convert_data_to_data()') print('\tclass_name="{0}"'.format(class_name)) print('\trender_context="{0}"'.format(render_context)) print('\tsource_data=[') for o in source_data: if o[1] == '': print('\t\t("{0}", ""),'.format(o[0])) continue print('\t\t("{0}", {1}),'.format(o[0], o[1])) print('\t]') conversion_graph = _get_conversion_graph_impl(source_class=class_name, render_context=render_context) destination_target_instance = _data_to_output_entity(graph=conversion_graph, data=source_data) attribute_data = [(util.TARGET_CLASS_IDENTIFIER, destination_target_instance.target.root_node.class_name)] for plug in destination_target_instance.inputs: if not plug.input: continue if plug.is_invalid and isinstance(plug.parent, DagNode): plug.parent.compute() attribute_data.append((plug.name, plug.computed_value)) return attribute_data class OT_InstanceToDataConverter(bpy.types.Operator): bl_idname = 'universalmaterialmap.instance_to_data_converter' bl_label = 'Universal Material Map Converter Operator' bl_description = 'Universal Material Map Converter' def execute(self, context): print('Conversion Operator: execute') # Get object by name: bpy.data.objects['Cube'] # Get material by name: bpy.data.materials['MyMaterial'] # node = [o for o in bpy.context.active_object.active_material.node_tree.nodes if o.select][0] print('selected_node', bpy.context.active_object, type(bpy.context.active_object)) # print('\n'.join(dir(bpy.context.active_object))) material_slot: bpy.types.MaterialSlot # https://docs.blender.org/api/current/bpy.types.MaterialSlot.html?highlight=materialslot#bpy.types.MaterialSlot for material_slot in bpy.context.active_object.material_slots: material: bpy.types.Material = material_slot.material if material.node_tree: for node in material.node_tree.nodes: if isinstance(node, bpy.types.ShaderNodeOutputMaterial): for input in node.inputs: if not input.type == 'SHADER': continue if not input.is_linked: continue for link in input.links: if not isinstance(link, bpy.types.NodeLink): continue if not link.is_valid: continue instance = link.from_node for render_context in ['MDL', 'USDPreview']: if util.can_convert_instance_to_data(instance=instance, render_context=render_context): util.convert_instance_to_data(instance=instance, render_context=render_context) else: print('Information: Universal Material Map: Not able to convert instance "{0}" to data with render context "{1}"'.format(instance, render_context)) else: instance = material for render_context in ['MDL', 'USDPreview']: if util.can_convert_instance_to_data(instance=instance, render_context=render_context): util.convert_instance_to_data(instance=instance, render_context=render_context) else: print('Information: Universal Material Map: Not able to convert instance "{0}" to data with render context "{1}"'.format(instance, render_context)) return {'FINISHED'} class OT_DataToInstanceConverter(bpy.types.Operator): bl_idname = 'universalmaterialmap.data_to_instance_converter' bl_label = 'Universal Material Map Converter Operator' bl_description = 'Universal Material Map Converter' def execute(self, context): render_context = 'Blender' source_class = 'OmniPBR.mdl|OmniPBR' sample_data = [ ('diffuse_color_constant', (0.800000011920929, 0.800000011920929, 0.800000011920929)), ('diffuse_texture', ''), ('reflection_roughness_constant', 0.4000000059604645), ('reflectionroughness_texture', ''), ('metallic_constant', 0.0), ('metallic_texture', ''), ('specular_level', 0.5), ('enable_emission', True), ('emissive_color', (0.0, 0.0, 0.0)), ('emissive_color_texture', ''), ('emissive_intensity', 1.0), ('normalmap_texture', ''), ('enable_opacity', True), ('opacity_constant', 1.0), ] if util.can_convert_data_to_data(class_name=source_class, render_context=render_context, source_data=sample_data): converted_data = util.convert_data_to_data(class_name=source_class, render_context=render_context, source_data=sample_data) destination_class = converted_data[0][1] if util.can_create_instance(class_name=destination_class): instance = util.create_instance(class_name=destination_class) print('instance "{0}".'.format(instance)) temp = converted_data[:] while len(temp): item = temp.pop(0) property_name = item[0] property_value = item[1] if util.can_set_instance_attribute(instance=instance, name=property_name): util.set_instance_attribute(instance=instance, name=property_name, value=property_value) else: print('Cannot create instance from "{0}".'.format(source_class)) return {'FINISHED'} class OT_DataToDataConverter(bpy.types.Operator): bl_idname = 'universalmaterialmap.data_to_data_converter' bl_label = 'Universal Material Map Converter Operator' bl_description = 'Universal Material Map Converter' def execute(self, context): render_context = 'Blender' source_class = 'OmniPBR.mdl|OmniPBR' sample_data = [ ('diffuse_color_constant', (0.800000011920929, 0.800000011920929, 0.800000011920929)), ('diffuse_texture', ''), ('reflection_roughness_constant', 0.4000000059604645), ('reflectionroughness_texture', ''), ('metallic_constant', 0.0), ('metallic_texture', ''), ('specular_level', 0.5), ('enable_emission', True), ('emissive_color', (0.0, 0.0, 0.0)), ('emissive_color_texture', ''), ('emissive_intensity', 1.0), ('normalmap_texture', ''), ('enable_opacity', True), ('opacity_constant', 1.0), ] if util.can_convert_data_to_data(class_name=source_class, render_context=render_context, source_data=sample_data): converted_data = util.convert_data_to_data(class_name=source_class, render_context=render_context, source_data=sample_data) print('converted_data:', converted_data) else: print('UMM Failed to convert data. util.can_convert_data_to_data() returned False') return {'FINISHED'} class OT_ApplyDataToInstance(bpy.types.Operator): bl_idname = 'universalmaterialmap.apply_data_to_instance' bl_label = 'Universal Material Map Apply Data To Instance Operator' bl_description = 'Universal Material Map Converter' def execute(self, context): if not bpy.context: return {'FINISHED'} if not bpy.context.active_object: return {'FINISHED'} if not bpy.context.active_object.active_material: return {'FINISHED'} instance = bpy.context.active_object.active_material render_context = 'Blender' source_class = 'OmniPBR.mdl|OmniPBR' sample_data = [ ('albedo_add', 0.02), # Adds a constant value to the diffuse color ('albedo_desaturation', 0.19999999), # Desaturates the diffuse color ('ao_texture', ('', 'raw')), ('ao_to_diffuse', 1), # Controls the amount of ambient occlusion multiplied into the diffuse color channel ('bump_factor', 10), # Strength of normal map ('diffuse_color_constant', (0.800000011920929, 0.800000011920929, 0.800000011920929)), ('diffuse_texture', ('D:/Blender_GTC_2021/Marbles/assets/standalone/A_bumper/textures/play_bumper/blue/play_bumperw_albedo.png', 'sRGB')), ('diffuse_tint', (0.96202534, 0.8118357, 0.8118357)), # When enabled, this color value is multiplied over the final albedo color ('enable_emission', 0), ('enable_ORM_texture', 1), ('metallic_constant', 1), ('metallic_texture', ('', 'raw')), ('metallic_texture_influence', 1), ('normalmap_texture', ('D:/Blender_GTC_2021/Marbles/assets/standalone/A_bumper/textures/play_bumper/blue/play_bumperw_normal.png', 'raw')), ('ORM_texture', ('D:/Blender_GTC_2021/Marbles/assets/standalone/A_bumper/textures/play_bumper/blue/play_bumperw_orm.png', 'raw')), ('reflection_roughness_constant', 1), # Higher roughness values lead to more blurry reflections ('reflection_roughness_texture_influence', 1), # Blends between the constant value and the lookup of the roughness texture ('reflectionroughness_texture', ('', 'raw')), ('texture_rotate', 45), ('texture_scale', (2, 2)), ('texture_translate', (0.1, 0.9)), ] if util.can_apply_data_to_instance(source_class_name=source_class, render_context=render_context, source_data=sample_data, instance=instance): util.apply_data_to_instance(source_class_name=source_class, render_context=render_context, source_data=sample_data, instance=instance) else: print('UMM Failed to convert data. util.can_convert_data_to_data() returned False') return {'FINISHED'} class OT_CreateTemplateOmniPBR(bpy.types.Operator): bl_idname = 'universalmaterialmap.create_template_omnipbr' bl_label = 'Convert to OmniPBR Graph' bl_description = 'Universal Material Map Converter' def execute(self, context): if not bpy.context: return {'FINISHED'} if not bpy.context.active_object: return {'FINISHED'} if not bpy.context.active_object.active_material: return {'FINISHED'} create_template(source_class='OmniPBR', material=bpy.context.active_object.active_material) return {'FINISHED'} class OT_CreateTemplateOmniGlass(bpy.types.Operator): bl_idname = 'universalmaterialmap.create_template_omniglass' bl_label = 'Convert to OmniGlass Graph' bl_description = 'Universal Material Map Converter' def execute(self, context): if not bpy.context: return {'FINISHED'} if not bpy.context.active_object: return {'FINISHED'} if not bpy.context.active_object.active_material: return {'FINISHED'} create_template(source_class='OmniGlass', material=bpy.context.active_object.active_material) return {'FINISHED'} class OT_DescribeShaderGraph(bpy.types.Operator): bl_idname = 'universalmaterialmap.describe_shader_graph' bl_label = 'Universal Material Map Describe Shader Graph Operator' bl_description = 'Universal Material Map' @staticmethod def describe_node(node) -> dict: node_definition = dict() node_definition['name'] = node.name node_definition['label'] = node.label node_definition['location'] = [node.location[0], node.location[1]] node_definition['width'] = node.width node_definition['height'] = node.height node_definition['parent'] = node.parent.name if node.parent else None node_definition['class'] = type(node).__name__ node_definition['inputs'] = [] node_definition['outputs'] = [] node_definition['nodes'] = [] node_definition['links'] = [] node_definition['properties'] = [] node_definition['texts'] = [] if node_definition['class'] == 'NodeFrame': node_definition['properties'].append( { 'name': 'use_custom_color', 'value': node.use_custom_color, } ) node_definition['properties'].append( { 'name': 'color', 'value': [node.color[0], node.color[1], node.color[2]], } ) node_definition['properties'].append( { 'name': 'shrink', 'value': node.shrink, } ) if node.text is not None: text_definition = dict() text_definition['name'] = node.text.name text_definition['contents'] = node.text.as_string() node_definition['texts'].append(text_definition) elif node_definition['class'] == 'ShaderNodeRGB': for index, output in enumerate(node.outputs): definition = dict() definition['index'] = index definition['name'] = output.name definition['class'] = type(output).__name__ if definition['class'] == 'NodeSocketColor': default_value = output.default_value definition['default_value'] = [default_value[0], default_value[1], default_value[2], default_value[3]] else: raise NotImplementedError() node_definition['outputs'].append(definition) elif node_definition['class'] == 'ShaderNodeMixRGB': node_definition['properties'].append( { 'name': 'blend_type', 'value': node.blend_type, } ) node_definition['properties'].append( { 'name': 'use_clamp', 'value': node.use_clamp, } ) for index, input in enumerate(node.inputs): definition = dict() definition['index'] = index definition['name'] = input.name definition['class'] = type(input).__name__ if definition['class'] == 'NodeSocketFloatFactor': definition['default_value'] = node.inputs[input.name].default_value elif definition['class'] == 'NodeSocketColor': default_value = node.inputs[input.name].default_value definition['default_value'] = [default_value[0], default_value[1], default_value[2], default_value[3]] else: raise NotImplementedError() node_definition['inputs'].append(definition) elif node_definition['class'] == 'ShaderNodeGroup': for index, input in enumerate(node.inputs): definition = dict() definition['index'] = index definition['name'] = input.name definition['class'] = type(input).__name__ if definition['class'] == 'NodeSocketFloatFactor': definition['min_value'] = node.node_tree.inputs[input.name].min_value definition['max_value'] = node.node_tree.inputs[input.name].max_value definition['default_value'] = node.inputs[input.name].default_value elif definition['class'] == 'NodeSocketIntFactor': definition['min_value'] = node.node_tree.inputs[input.name].min_value definition['max_value'] = node.node_tree.inputs[input.name].max_value definition['default_value'] = node.inputs[input.name].default_value elif definition['class'] == 'NodeSocketColor': default_value = node.inputs[input.name].default_value definition['default_value'] = [default_value[0], default_value[1], default_value[2], default_value[3]] else: raise NotImplementedError() node_definition['inputs'].append(definition) for index, output in enumerate(node.outputs): definition = dict() definition['index'] = index definition['name'] = output.name definition['class'] = type(output).__name__ node_definition['outputs'].append(definition) for child in node.node_tree.nodes: node_definition['nodes'].append(OT_DescribeShaderGraph.describe_node(child)) for link in node.node_tree.links: if not isinstance(link, bpy.types.NodeLink): continue if not link.is_valid: continue link_definition = dict() link_definition['from_node'] = link.from_node.name link_definition['from_socket'] = link.from_socket.name link_definition['to_node'] = link.to_node.name link_definition['to_socket'] = link.to_socket.name node_definition['links'].append(link_definition) elif node_definition['class'] == 'ShaderNodeUVMap': pass elif node_definition['class'] == 'ShaderNodeTexImage': pass elif node_definition['class'] == 'ShaderNodeOutputMaterial': pass elif node_definition['class'] == 'ShaderNodeBsdfPrincipled': pass elif node_definition['class'] == 'ShaderNodeMapping': pass elif node_definition['class'] == 'ShaderNodeNormalMap': pass elif node_definition['class'] == 'ShaderNodeHueSaturation': pass elif node_definition['class'] == 'ShaderNodeSeparateRGB': pass elif node_definition['class'] == 'NodeGroupInput': pass elif node_definition['class'] == 'NodeGroupOutput': pass elif node_definition['class'] == 'ShaderNodeMath': node_definition['properties'].append( { 'name': 'operation', 'value': node.operation, } ) node_definition['properties'].append( { 'name': 'use_clamp', 'value': node.use_clamp, } ) elif node_definition['class'] == 'ShaderNodeVectorMath': node_definition['properties'].append( { 'name': 'operation', 'value': node.operation, } ) else: raise NotImplementedError(node_definition['class']) return node_definition def execute(self, context): material = bpy.context.active_object.active_material output = dict() output['name'] = 'Principled Omni Glass' output['nodes'] = [] output['links'] = [] for node in material.node_tree.nodes: output['nodes'].append(OT_DescribeShaderGraph.describe_node(node)) for link in material.node_tree.links: if not isinstance(link, bpy.types.NodeLink): continue if not link.is_valid: continue link_definition = dict() link_definition['from_node'] = link.from_node.name link_definition['from_socket'] = link.from_socket.name link_definition['to_node'] = link.to_node.name link_definition['to_socket'] = link.to_socket.name output['links'].append(link_definition) print(json.dumps(output, indent=4)) return {'FINISHED'} def initialize(): if getattr(sys.modules[__name__], '__initialized'): return setattr(sys.modules[__name__], '__initialized', True) util.register(converter=DataConverter()) util.register(converter=ObjectConverter()) print('Universal Material Map: Registered Converter classes.') initialize()
67,817
Python
49.724009
263
0.552177
NVIDIA-Omniverse/blender_omniverse_addons/omni/universalmaterialmap/blender/material.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. import typing import traceback import bpy from ..core.converter import util def apply_data_to_instance(instance_name: str, source_class: str, render_context: str, source_data: typing.List[typing.Tuple[str, typing.Any]]) -> dict: ## bugfix: Extract class correctly from exporters that name the class like a Python function call. real_source_class = source_class.partition("(")[0] try: for material in bpy.data.materials: if not isinstance(material, bpy.types.Material): continue if material.name == instance_name: if util.can_apply_data_to_instance(source_class_name=real_source_class, render_context=render_context, source_data=source_data, instance=material): return util.apply_data_to_instance(source_class_name=real_source_class, render_context=render_context, source_data=source_data, instance=material) print(f'Omniverse UMM: Unable to apply data at import for material "{instance_name}". This is not an error - just means that conversion data does not support the material.') result = dict() result['umm_notification'] = 'incomplete_process' result['message'] = 'Not able to convert type "{0}" for render context "{1}" because there is no Conversion Graph for that scenario. No changes were applied to "{2}".'.format(real_source_class, render_context, instance_name) return result except Exception as error: print('Warning: Universal Material Map: function "apply_data_to_instance": Unexpected error:') print('\targument "instance_name" = "{0}"'.format(instance_name)) print('\targument "source_class" = "{0}"'.format(real_source_class)) print('\targument "render_context" = "{0}"'.format(render_context)) print('\targument "source_data" = "{0}"'.format(source_data)) print('\terror: {0}'.format(error)) print('\tcallstack: {0}'.format(traceback.format_exc())) result = dict() result['umm_notification'] = 'unexpected_error' result['message'] = 'Not able to convert type "{0}" for render context "{1}" because there was an unexpected error. Some changes may have been applied to "{2}". Details: {3}'.format(real_source_class, render_context, instance_name, error) return result def convert_instance_to_data(instance_name: str, render_context: str) -> typing.List[typing.Tuple[str, typing.Any]]: try: for material in bpy.data.materials: if not isinstance(material, bpy.types.Material): continue if material.name == instance_name: if util.can_convert_instance_to_data(instance=material, render_context=render_context): return util.convert_instance_to_data(instance=material, render_context=render_context) result = dict() result['umm_notification'] = 'incomplete_process' result['message'] = 'Not able to convert material "{0}" for render context "{1}" because there is no Conversion Graph for that scenario.'.format(instance_name, render_context) return result except Exception as error: print('Warning: Universal Material Map: function "convert_instance_to_data": Unexpected error:') print('\targument "instance_name" = "{0}"'.format(instance_name)) print('\targument "render_context" = "{0}"'.format(render_context)) print('\terror: {0}'.format(error)) print('\tcallstack: {0}'.format(traceback.format_exc())) result = dict() result['umm_notification'] = 'unexpected_error' result['message'] = 'Not able to convert material "{0}" for render context "{1}" there was an unexpected error. Details: {2}'.format(instance_name, render_context, error) return result result = dict() result['umm_notification'] = 'incomplete_process' result['message'] = 'Not able to convert material "{0}" for render context "{1}" because there is no Conversion Graph for that scenario.'.format(instance_name, render_context) return result
5,004
Python
57.197674
246
0.670464
NVIDIA-Omniverse/blender_omniverse_addons/omni/universalmaterialmap/blender/__init__.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. import typing import os import re import sys import json import bpy from ..core.data import Library from ..core.feature import POLLING from ..core.service import store from ..core.service import delegate from ..core.util import get_extension_from_image_file_format LIBRARY_ID = '195c69e1-7765-4a16-bb3a-ecaa222876d9' __initialized = False developer_mode: bool = False CORE_MATERIAL_PROPERTIES = [ ('diffuse_color', 'RGBA'), ('metallic', 'VALUE'), ('specular_color', 'STRING'), ('roughness', 'VALUE'), ('use_backface_culling', 'BOOLEAN'), ('blend_method', 'STRING'), ('shadow_method', 'STRING'), ('alpha_threshold', 'VALUE'), ('use_screen_refraction', 'BOOLEAN'), ('refraction_depth', 'VALUE'), ('use_sss_translucency', 'BOOLEAN'), ('pass_index', 'INT'), ] def show_message(message: str = '', title: str = 'Message Box', icon: str = 'INFO'): try: def draw(self, context): self.layout.label(text=message) bpy.context.window_manager.popup_menu(draw, title=title, icon=icon) except: print('{0}\n{1}'.format(title, message)) def initialize(): if getattr(sys.modules[__name__], '__initialized'): return setattr(sys.modules[__name__], '__initialized', True) directory = os.path.expanduser('~').replace('\\', '/') if not directory.endswith('/Documents'): directory = '{0}/Documents'.format(directory) directory = '{0}/Omniverse/Blender/UMMLibrary'.format(directory) library = Library.Create( library_id=LIBRARY_ID, name='Blender', manifest=delegate.FilesystemManifest(root_directory='{0}'.format(directory)), conversion_graph=delegate.Filesystem(root_directory='{0}/ConversionGraph'.format(directory)), target=delegate.Filesystem(root_directory='{0}/Target'.format(directory)), ) store.register_library(library=library) from ..blender import converter converter.initialize() from ..blender import generator generator.initialize() if POLLING: # TODO: On application exit > un_initialize() pass def un_initialize(): if POLLING: store.on_shutdown() def get_library(): """ :return: omni.universalmaterialmap.core.data.Library """ initialize() return store.get_library(library_id=LIBRARY_ID) def __get_value_impl(socket: bpy.types.NodeSocketStandard, depth=0, max_depth=100) -> typing.Any: # Local utility function which returns a file extension # corresponding to the given image file format string. # This mimics similar logic used in the Blender USD IO # C++ implementation. debug = False if debug: print('__get_value_impl: depth={0}'.format(depth)) if depth > max_depth: if debug: print('\t reached max_depth ({0}). terminating recursion'.format(max_depth)) return None if debug: print('\tsocket.is_linked'.format(socket.is_linked)) if socket.is_linked: for link in socket.links: if not isinstance(link, bpy.types.NodeLink): if debug: print('\t\tlink is not bpy.types.NodeLink: {0}'.format(type(link))) continue if not link.is_valid: if debug: print('\t\tlink is not valid') continue instance = link.from_node if debug: print('\t\tlink.from_node: {0}'.format(type(instance))) if isinstance(instance, bpy.types.ShaderNodeTexImage): print(f'UMM: image.filepath: "{instance.image.filepath}"') print(f'UMM: image.source: "{instance.image.source}"') print(f'UMM: image.file_format: "{instance.image.file_format}"') if debug: print('\t\tinstance.image: {0}'.format(instance.image)) if instance.image: print('\t\tinstance.image.source: {0}'.format(instance.image.source)) if instance.image and (instance.image.source == 'FILE' or instance.image.source == 'TILED'): value = instance.image.filepath if (instance.image.source == 'TILED'): # Find all numbers in the path. numbers = re.findall('[0-9]+', value) if (len(numbers) > 0): # Get the string representation of the last number. num_str = str(numbers[-1]) # Replace the number substring with '<UDIM>'. split_items = value.rsplit(num_str, 1) if (len(split_items)==2): value = split_items[0] + '<UDIM>' + split_items[1] if debug: print('\t\tinstance.image.filepath: {0}'.format(value)) try: if value and instance.image.packed_file: # The image is packed, so ignore the filepath, which is likely # invalid, and return just the base name. value = bpy.path.basename(value) # Make sure the file has a valid extension for # the expected format. file_format = instance.image.file_format file_format = get_extension_from_image_file_format(file_format, base_name=value) value = bpy.path.ensure_ext(value, '.' + file_format) print(f'UMM: packed image data: "{[value, instance.image.colorspace_settings.name]}"') return [value, instance.image.colorspace_settings.name] if value is None or value == '': file_format = instance.image.file_format file_format = get_extension_from_image_file_format(file_format) value = f'{instance.image.name}.{file_format}' if debug: print(f'\t\tvalue: {value}') print(f'UMM: image data: "{[value, instance.image.colorspace_settings.name]}"') return [value, instance.image.colorspace_settings.name] return [os.path.abspath(bpy.path.abspath(value)), instance.image.colorspace_settings.name] except Exception as error: print('Warning: Universal Material Map: Unable to evaluate absolute file path of texture "{0}". Detail: {1}'.format(instance.image.filepath, error)) return None if isinstance(instance, bpy.types.ShaderNodeNormalMap): for o in instance.inputs: if o.name == 'Color': value = __get_value_impl(socket=o, depth=depth + 1, max_depth=max_depth) if value: return value for o in instance.inputs: value = __get_value_impl(socket=o, depth=depth + 1, max_depth=max_depth) if debug: print('\t\tre-entrant: input="{0}", value="{1}"'.format(o.name, value)) if value: return value return None def get_value(socket: bpy.types.NodeSocketStandard) -> typing.Any: debug = False value = __get_value_impl(socket=socket) if debug: print('get_value', value, socket.default_value) return socket.default_value if not value else value def _create_node_from_template(node_tree: bpy.types.NodeTree, node_definition: dict, parent: object = None) -> object: node = node_tree.nodes.new(node_definition['class']) if parent: node.parent = parent node.name = node_definition['name'] node.label = node_definition['label'] node.location = node_definition['location'] if node_definition['class'] == 'NodeFrame': node.width = node_definition['width'] node.height = node_definition['height'] for o in node_definition['properties']: setattr(node, o['name'], o['value']) if node_definition['class'] == 'NodeFrame': for text_definition in node_definition['texts']: existing = None for o in bpy.data.texts: if o.name == text_definition['name']: existing = o break if existing is None: existing = bpy.data.texts.new(text_definition['name']) existing.write(text_definition['contents']) node.text = existing node.location = node_definition['location'] elif node_definition['class'] == 'ShaderNodeGroup': node.node_tree = bpy.data.node_groups.new('node tree', 'ShaderNodeTree') child_cache = dict() for child_definition in node_definition['nodes']: child_cache[child_definition['name']] = _create_node_from_template(node_tree=node.node_tree, node_definition=child_definition) for input_definition in node_definition['inputs']: node.node_tree.inputs.new(input_definition['class'], input_definition['name']) if input_definition['class'] == 'NodeSocketFloatFactor': node.node_tree.inputs[input_definition['name']].min_value = input_definition['min_value'] node.node_tree.inputs[input_definition['name']].max_value = input_definition['max_value'] node.node_tree.inputs[input_definition['name']].default_value = input_definition['default_value'] node.inputs[input_definition['name']].default_value = input_definition['default_value'] if input_definition['class'] == 'NodeSocketIntFactor': node.node_tree.inputs[input_definition['name']].min_value = input_definition['min_value'] node.node_tree.inputs[input_definition['name']].max_value = input_definition['max_value'] node.node_tree.inputs[input_definition['name']].default_value = input_definition['default_value'] node.inputs[input_definition['name']].default_value = input_definition['default_value'] if input_definition['class'] == 'NodeSocketColor': node.node_tree.inputs[input_definition['name']].default_value = input_definition['default_value'] node.inputs[input_definition['name']].default_value = input_definition['default_value'] for output_definition in node_definition['outputs']: node.node_tree.outputs.new(output_definition['class'], output_definition['name']) for link_definition in node_definition['links']: from_node = child_cache[link_definition['from_node']] from_socket = [o for o in from_node.outputs if o.name == link_definition['from_socket']][0] to_node = child_cache[link_definition['to_node']] to_socket = [o for o in to_node.inputs if o.name == link_definition['to_socket']][0] node.node_tree.links.new(from_socket, to_socket) node.width = node_definition['width'] node.height = node_definition['height'] node.location = node_definition['location'] elif node_definition['class'] == 'ShaderNodeMixRGB': for input_definition in node_definition['inputs']: if input_definition['class'] == 'NodeSocketFloatFactor': node.inputs[input_definition['name']].default_value = input_definition['default_value'] if input_definition['class'] == 'NodeSocketColor': node.inputs[input_definition['name']].default_value = input_definition['default_value'] elif node_definition['class'] == 'ShaderNodeRGB': for output_definition in node_definition['outputs']: if output_definition['class'] == 'NodeSocketColor': node.outputs[output_definition['name']].default_value = output_definition['default_value'] return node def create_template(source_class: str, material: bpy.types.Material) -> None: template_filepath = '{}'.format(__file__).replace('\\', '/') template_filepath = template_filepath[:template_filepath.rfind('/')] template_filepath = '{}/template/{}.json'.format(template_filepath, source_class.lower()) if not os.path.exists(template_filepath): return with open(template_filepath, 'r') as template_file: template = json.load(template_file) # Make sure we're using nodes. material.use_nodes = True # Remove existing nodes - we're starting from scratch. to_delete = [o for o in material.node_tree.nodes] while len(to_delete): material.node_tree.nodes.remove(to_delete.pop()) # Create nodes according to template. child_cache = dict() for node_definition in template['nodes']: if node_definition['parent'] is None: node = _create_node_from_template(node_tree=material.node_tree, node_definition=node_definition) child_cache[node_definition['name']] = node for node_definition in template['nodes']: if node_definition['parent'] is not None: parent = child_cache[node_definition['parent']] node = _create_node_from_template(node_tree=material.node_tree, node_definition=node_definition, parent=parent) child_cache[node_definition['name']] = node for link_definition in template['links']: from_node = child_cache[link_definition['from_node']] from_socket = [o for o in from_node.outputs if o.name == link_definition['from_socket']][0] to_node = child_cache[link_definition['to_node']] to_socket = [o for o in to_node.inputs if o.name == link_definition['to_socket']][0] material.node_tree.links.new(from_socket, to_socket) def create_from_template(material: bpy.types.Material, template: dict) -> None: # Make sure we're using nodes. material.use_nodes = True # Create nodes according to template. child_cache = dict() for node_definition in template['nodes']: if node_definition['parent'] is None: node = _create_node_from_template(node_tree=material.node_tree, node_definition=node_definition) child_cache[node_definition['name']] = node for node_definition in template['nodes']: if node_definition['parent'] is not None: parent = child_cache[node_definition['parent']] node = _create_node_from_template(node_tree=material.node_tree, node_definition=node_definition, parent=parent) child_cache[node_definition['name']] = node for link_definition in template['links']: from_node = child_cache[link_definition['from_node']] from_socket = [o for o in from_node.outputs if o.name == link_definition['from_socket']][0] to_node = child_cache[link_definition['to_node']] to_socket = [o for o in to_node.inputs if o.name == link_definition['to_socket']][0] material.node_tree.links.new(from_socket, to_socket) def get_parent_material(shader_node: object) -> bpy.types.Material: for material in bpy.data.materials: if shader_node == material: return material if not material.use_nodes: continue if not material.node_tree or not material.node_tree.nodes: continue for node in material.node_tree.nodes: if shader_node == node: return material return None def get_template_data_by_shader_node(shader_node: object) -> typing.Tuple[typing.Dict, typing.Dict, str, bpy.types.Material]: material: bpy.types.Material = get_parent_material(shader_node=shader_node) if material and material.use_nodes and material.node_tree and material.node_tree.nodes: template_directory = '{}'.format(__file__).replace('\\', '/') template_directory = template_directory[:template_directory.rfind('/')] template_directory = f'{template_directory}/template' for item in os.listdir(template_directory): if item.lower().endswith('_map.json'): continue if not item.lower().endswith('.json'): continue template_filepath = f'{template_directory}/{item}' with open(template_filepath, 'r') as template_file: template = json.load(template_file) material_has_all_template_nodes = True for node_definition in template['nodes']: found_node = False for node in material.node_tree.nodes: if node.name == node_definition['name']: found_node = True break if not found_node: material_has_all_template_nodes = False break if not material_has_all_template_nodes: continue template_has_all_material_nodes = True for node in material.node_tree.nodes: found_template = False for node_definition in template['nodes']: if node.name == node_definition['name']: found_template = True break if not found_template: template_has_all_material_nodes = False break if not template_has_all_material_nodes: continue template_shader_name = template['name'] map_filename = '{}_map.json'.format(item[:item.rfind('.')]) template_map_filepath = f'{template_directory}/{map_filename}' with open(template_map_filepath, 'r') as template_map_file: template_map = json.load(template_map_file) return template, template_map, template_shader_name, material return None, None, None, None def get_template_data_by_class_name(class_name: str) -> typing.Tuple[typing.Dict, typing.Dict]: template_directory = '{}'.format(__file__).replace('\\', '/') template_directory = template_directory[:template_directory.rfind('/')] template_directory = f'{template_directory}/template' for item in os.listdir(template_directory): if item.lower().endswith('_map.json'): continue if not item.lower().endswith('.json'): continue template_filepath = f'{template_directory}/{item}' with open(template_filepath, 'r') as template_file: template = json.load(template_file) if not template['name'] == class_name: continue map_filename = '{}_map.json'.format(item[:item.rfind('.')]) template_map_filepath = f'{template_directory}/{map_filename}' with open(template_map_filepath, 'r') as template_map_file: template_map = json.load(template_map_file) return template, template_map return None, None
19,919
Python
43.663677
172
0.599377
NVIDIA-Omniverse/blender_omniverse_addons/omni/universalmaterialmap/blender/menu.py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. import bpy from . import developer_mode class UniversalMaterialMapMenu(bpy.types.Menu): bl_label = "Omniverse" bl_idname = "OBJECT_MT_umm_node_menu" def draw(self, context): layout = self.layout layout.operator('universalmaterialmap.create_template_omnipbr', text='Replace with OmniPBR graph template') layout.operator('universalmaterialmap.create_template_omniglass', text='Replace with OmniGlass graph template') if developer_mode: layout.operator('universalmaterialmap.generator', text='DEV: Generate Targets') layout.operator('universalmaterialmap.instance_to_data_converter', text='DEV: Convert Instance to Data') layout.operator('universalmaterialmap.data_to_instance_converter', text='DEV: Convert Data to Instance') layout.operator('universalmaterialmap.data_to_data_converter', text='DEV: Convert Data to Data') layout.operator('universalmaterialmap.apply_data_to_instance', text='DEV: Apply Data to Instance') layout.operator('universalmaterialmap.describe_shader_graph', text='DEV: Describe Shader Graph')
1,999
Python
45.511627
119
0.724362
NVIDIA-Omniverse/kit-app-template/repo.toml
######################################################################################################################## # Repo tool base settings ######################################################################################################################## [repo] # Use the Kit Template repo configuration as a base. Only override things specific to the repo. import_configs = [ "${root}/_repo/deps/repo_kit_tools/kit-template/repo.toml", "${root}/_repo/deps/repo_kit_tools/kit-template/repo-external-app.toml", ] # Repository Name name = "kit-app-template" ######################################################################################################################## # Extensions precacher ######################################################################################################################## [repo_precache_exts] # Apps to run and precache apps = [ "${root}/source/apps/omni.usd_explorer.kit", "${root}/source/apps/my_name.my_app.kit", ] registries = [ { name = "kit/default", url = "https://ovextensionsprod.blob.core.windows.net/exts/kit/prod/shared" }, { name = "kit/sdk", url = "https://ovextensionsprod.blob.core.windows.net/exts/kit/prod/sdk/${kit_version_short}/${kit_git_hash}" }, ]
1,265
TOML
37.363635
136
0.422925
NVIDIA-Omniverse/kit-app-template/README.md
# Omniverse Kit App Template [Omniverse Kit App Template](https://github.com/NVIDIA-Omniverse/kit-app-template) - is the place to start learning about developing Omniverse Apps. This project contains everything necessary to develop and package an Omniverse App. ## Links * Recommended: [Tutorial](https://docs.omniverse.nvidia.com/kit/docs/kit-app-template) for getting started with application development. * [Developer Guide](https://docs.omniverse.nvidia.com/dev-guide/latest/index.html). ## Build 1. Clone [this repo](https://github.com/NVIDIA-Omniverse/kit-app-template) to your local machine. 2. Open a command prompt and navigate to the root of your cloned repo. 3. Run `build.bat` to bootstrap your dev environment and build an example app. 4. Run `_build\windows-x86_64\release\my_name.my_app.bat` (or other apps) to open an example kit application. You should have now launched your simple kit-based application! ## Contributing The source code for this repository is provided as-is and we are not accepting outside contributions.
1,048
Markdown
44.608694
148
0.781489
NVIDIA-Omniverse/kit-app-template/tools/deps/repo-deps.packman.xml
<project toolsVersion="5.0"> <dependency name="repo_man" linkPath="../../_repo/deps/repo_man"> <package name="repo_man" version="1.50.6"/> </dependency> <dependency name="repo_build" linkPath="../../_repo/deps/repo_build"> <package name="repo_build" version="0.60.1"/> </dependency> <dependency name="repo_ci" linkPath="../../_repo/deps/repo_ci"> <package name="repo_ci" version="0.6.0" /> </dependency> <dependency name="repo_changelog" linkPath="../../_repo/deps/repo_changelog"> <package name="repo_changelog" version="0.3.13"/> </dependency> <dependency name="repo_docs" linkPath="../../_repo/deps/repo_docs"> <package name="repo_docs" version="0.39.2"/> </dependency> <dependency name="repo_kit_tools" linkPath="../../_repo/deps/repo_kit_tools"> <package name="repo_kit_tools" version="0.14.17"/> </dependency> <dependency name="repo_test" linkPath="../_repo/deps/repo_test"> <package name="repo_test" version="2.16.1" /> </dependency> <dependency name="repo_source" linkPath="../../_repo/deps/repo_source"> <package name="repo_source" version="0.4.3" /> </dependency> <dependency name="repo_package" linkPath="../../_repo/deps/repo_package"> <package name="repo_package" version="5.9.3" /> </dependency> <dependency name="repo_format" linkPath="../../_repo/deps/repo_format"> <package name="repo_format" version="2.8.0" /> </dependency> <dependency name="repo_kit_template" linkPath="../../_repo/deps/repo_kit_template"> <package name="repo_kit_template" version="0.1.9" /> </dependency> </project>
1,593
XML
43.277777
85
0.648462
NVIDIA-Omniverse/kit-app-template/tools/deps/kit-sdk.packman.xml
<project toolsVersion="5.0"> <dependency name="kit_sdk_${config}" linkPath="../../_build/${platform}/${config}/kit" tags="${config} non-redist"> <package name="kit-kernel" version="105.1.2+release.134727.de96b556.tc.${platform}.${config}"/> </dependency> </project>
274
XML
44.833326
117
0.664234
NVIDIA-Omniverse/kit-app-template/tools/deps/user.toml
[exts."omni.kit.registry.nucleus"] registries = [ { name = "kit/default", url = "https://ovextensionsprod.blob.core.windows.net/exts/kit/prod/shared" }, { name = "kit/sdk", url = "https://ovextensionsprod.blob.core.windows.net/exts/kit/prod/sdk/${kit_version_short}/${kit_git_hash}" }, ]
296
TOML
48.499992
136
0.675676
NVIDIA-Omniverse/kit-app-template/tools/deps/kit-sdk-deps.packman.xml
<project toolsVersion="5.0"> <!-- Only edit this file to pull kit depedencies. --> <!-- Put all extension-specific dependencies in `ext-deps.packman.xml`. --> <!-- This file contains shared Kit SDK dependencies used by most kit extensions. --> <!-- Import Kit SDK all-deps xml file to steal some deps from it: --> <import path="../../_build/${platform}/${config}/kit/dev/all-deps.packman.xml"> <filter include="pybind11" /> <filter include="fmt" /> <filter include="python" /> <filter include="carb_sdk_plugins" /> <filter include="winsdk" /> </import> <!-- Pull those deps of the same version as in Kit SDK. Override linkPath to point correctly, other properties can also be override, including version. --> <dependency name="carb_sdk_plugins" linkPath="../../_build/target-deps/carb_sdk_plugins" tags="non-redist" /> <dependency name="pybind11" linkPath="../../_build/target-deps/pybind11" /> <dependency name="fmt" linkPath="../../_build/target-deps/fmt" /> <dependency name="python" linkPath="../../_build/target-deps/python" /> <!-- Import host deps from Kit SDK to keep in sync --> <import path="../../_build/${platform}/${config}/kit/dev/deps/host-deps.packman.xml"> <filter include="premake" /> <filter include="msvc" /> <filter include="linbuild" /> </import> <dependency name="premake" linkPath="../../_build/host-deps/premake" /> <dependency name="msvc" linkPath="../../_build/host-deps/msvc" /> <dependency name="winsdk" linkPath="../../_build/host-deps/winsdk" /> <dependency name="linbuild" linkPath="../../_build/host-deps/linbuild" tags="non-redist"/> </project>
1,651
XML
49.060605
157
0.660206
NVIDIA-Omniverse/kit-app-template/source/extensions/omni.usd_explorer.setup/config/extension.toml
[package] # Semantic Versionning is used: https://semver.org/ version = "1.0.32" # The title and description fields are primarily for displaying extension info in UI title = "Setup Extension for USD Explorer" description = "an extensions that Setup my App" # Path (relative to the root) or content of readme markdown file for UI. readme = "docs/README.md" # URL of the extension source repository. repository = "https://gitlab-master.nvidia.com/omniverse/usd_explorer" # One of categories for UI. category = "setup" # Keywords for the extension keywords = ["kit", "app", "setup"] # Icon to show in the extension manager icon = "data/icon.png" # Preview to show in the extension manager preview_image = "data/preview.png" # Use omni.ui to build simple UI [dependencies] "omni.kit.quicklayout" = {} "omni.kit.window.title" = {} "omni.kit.browser.asset" = {} "omni.kit.window.console" = {} "omni.kit.window.content_browser" = {} "omni.kit.window.material" = {} "omni.kit.window.toolbar" = {version = "1.5.4", exact = true} "omni.kit.property.bundle" = {} "omni.kit.property.layer" = {} "omni.kit.viewport.navigation.usd_explorer.bundle" = {} "omni.kit.window.preferences" = {} # from omni.view.app.setup "omni.kit.viewport.menubar.camera" = { optional=true } "omni.kit.widget.layers" = { optional=true } "omni.kit.widgets.custom" = {} "omni.kit.window.file" = {} # Main python module this extension provides, it will be publicly available as "import omni.hello.world". [[python.module]] name = "omni.usd_explorer.setup" [settings] app.layout.name = "viewport_only" app.application_mode = "review" exts."omni.kit.viewport.menubar.camera".expand = true # Expand the extra-camera settings by default exts."omni.kit.window.file".useNewFilePicker = true exts."omni.kit.tool.asset_importer".useNewFilePicker = true exts."omni.kit.tool.collect".useNewFilePicker = true exts."omni.kit.widget.layers".useNewFilePicker = true exts."omni.kit.renderer.core".imgui.enableMips = true exts."omni.kit.browser.material".enabled = false exts."omni.kit.window.material".load_after_startup = true exts."omni.kit.widget.cloud_share".require_access_code = false exts."omni.kit.mesh.raycast".bvhBuildOnFirstRequired = true # Avoids mesh raycast to initialize during stage open app.content.emptyStageOnStart = true app.viewport.createCameraModelRep = false # Disable creation of camera meshes in USD # USDRT app.usdrt.scene_delegate.enableProxyCubes = false app.usdrt.scene_delegate.geometryStreaming.enabled = true app.usdrt.scene_delegate.numFramesBetweenLoadBatches = 2 app.usdrt.scene_delegate.geometryStreaming.numberOfVerticesToLoadPerChunk = 600000 exts."omni.kit.viewport.navigation.camera_manipulator".defaultOperation = "" [[test]] dependencies = [ "omni.kit.core.tests", "omni.kit.ui_test", "omni.kit.mainwindow", "omni.kit.viewport.window", "omni.kit.viewport.utility", ] args = [ "--/app/file/ignoreUnsavedOnExit=true", # "--/renderer/enabled=pxr", # "--/renderer/active=pxr", "--/app/window/width=1280", "--/app/window/height=720", "--/app/window/dpiScaleOverride=1.0", "--/app/window/scaleToMonitor=false", "--/exts/omni.kit.viewport.window/startup/windowName=Viewport", "--reset-user", "--no-window", "--/app/fastShutdown=1" ]
3,294
TOML
33.322916
113
0.728597
NVIDIA-Omniverse/kit-app-template/source/extensions/omni.usd_explorer.setup/omni/usd_explorer/setup/menubar_helper.py
from pathlib import Path import carb import carb.settings import carb.tokens import omni.ui as ui from omni.ui import color as cl ICON_PATH = carb.tokens.get_tokens_interface().resolve("${omni.usd_explorer.setup}/data/icons") VIEW_MENUBAR_STYLE = { "MenuBar.Window": {"background_color": 0xA0000000}, "MenuBar.Item.Background": { "background_color": 0, }, "Menu.Item.Background": { "background_color": 0, } } VIEWPORT_CAMERA_STYLE = { "Menu.Item.Icon::Expand": {"image_url": f"{ICON_PATH}/caret_s2_right_dark.svg", "color": cl.viewport_menubar_light}, "Menu.Item.Icon::Expand:checked": {"image_url": f"{ICON_PATH}/caret_s2_left_dark.svg"}, } class MenubarHelper: def __init__(self) -> None: self._settings = carb.settings.get_settings() # Set menubar background and style try: from omni.kit.viewport.menubar.core import DEFAULT_MENUBAR_NAME from omni.kit.viewport.menubar.core import get_instance as get_menubar_instance instance = get_menubar_instance() if not instance: # pragma: no cover return default_menubar = instance.get_menubar(DEFAULT_MENUBAR_NAME) default_menubar.background_visible = True default_menubar.style.update(VIEW_MENUBAR_STYLE) default_menubar.show_separator = True except ImportError: # pragma: no cover carb.log_warn("Viewport menubar not found!") try: import omni.kit.viewport.menubar.camera self._camera_menubar_instance = omni.kit.viewport.menubar.camera.get_instance() if not self._camera_menubar_instance: # pragma: no cover return # Change expand button icon self._camera_menubar_instance._camera_menu._style.update(VIEWPORT_CAMERA_STYLE) # New menu item for camera speed self._camera_menubar_instance.register_menu_item(self._create_camera_speed, order=100) # OM-76591 - Removing "Create from view" item - Bob self._camera_menubar_instance.deregister_menu_item(self._camera_menubar_instance._camera_menu._build_create_camera) except ImportError: carb.log_warn("Viewport menubar not found!") self._camera_menubar_instance = None except AttributeError: # pragma: no cover self._camera_menubar_instance = None # Hide default render and settings menubar self._settings.set("/persistent/exts/omni.kit.viewport.menubar.render/visible", False) self._settings.set("/persistent/exts/omni.kit.viewport.menubar.settings/visible", False) def destroy(self) -> None: if self._camera_menubar_instance: self._camera_menubar_instance.deregister_menu_item(self._create_camera_speed) def _create_camera_speed(self, _vc, _r: ui.Menu) -> None: from omni.kit.viewport.menubar.core import SettingModel, SliderMenuDelegate ui.MenuItem( "Speed", hide_on_click=False, delegate=SliderMenuDelegate( model=SettingModel("/persistent/app/viewport/camMoveVelocity", draggable=True), min=self._settings.get_as_float("/persistent/app/viewport/camVelocityMin") or 0.01, max=self._settings.get_as_float("/persistent/app/viewport/camVelocityMax"), tooltip="Set the Fly Mode navigation speed", width=0, reserve_status=True, ), )
3,517
Python
42.974999
127
0.642593
NVIDIA-Omniverse/kit-app-template/source/extensions/omni.usd_explorer.setup/omni/usd_explorer/setup/__init__.py
from .setup import *
21
Python
9.999995
20
0.714286
NVIDIA-Omniverse/kit-app-template/source/extensions/omni.usd_explorer.setup/omni/usd_explorer/setup/setup.py
import asyncio import weakref from functools import partial import os from pathlib import Path from typing import cast, Optional import omni.client import omni.ext import omni.kit.menu.utils import omni.kit.app import omni.kit.context_menu import omni.kit.ui import omni.usd from omni.kit.quicklayout import QuickLayout from omni.kit.menu.utils import MenuLayout from omni.kit.window.title import get_main_window_title from omni.kit.usd.layers import LayerUtils from omni.kit.viewport.menubar.core import get_instance as get_mb_inst, DEFAULT_MENUBAR_NAME from omni.kit.viewport.menubar.core.viewport_menu_model import ViewportMenuModel from omni.kit.viewport.utility import get_active_viewport, get_active_viewport_window, disable_selection import carb import carb.settings import carb.dictionary import carb.events import carb.tokens import carb.input import omni.kit.imgui as _imgui from pxr import Sdf, Usd from .navigation import Navigation from .menu_helper import MenuHelper from .menubar_helper import MenubarHelper from .stage_template import SunnySkyStage from .ui_state_manager import UIStateManager SETTINGS_PATH_FOCUSED = "/app/workspace/currentFocused" APPLICATION_MODE_PATH = "/app/application_mode" MODAL_TOOL_ACTIVE_PATH = "/app/tools/modal_tool_active" CURRENT_TOOL_PATH = "/app/viewport/currentTool" ROOT_WINDOW_NAME = "DockSpace" ICON_PATH = carb.tokens.get_tokens_interface().resolve("${omni.usd_explorer.setup}/data/icons") SETTINGS_STARTUP_EXPAND_VIEWPORT = "/app/startup/expandViewport" VIEWPORT_CONTEXT_MENU_PATH = "/exts/omni.kit.window.viewport/showContextMenu" TELEPORT_VISIBLE_PATH = "/persistent/exts/omni.kit.viewport.navigation.teleport/visible" async def _load_layout_startup(layout_file: str, keep_windows_open: bool=False) -> None: try: # few frames delay to avoid the conflict with the layout of omni.kit.mainwindow for i in range(3): await omni.kit.app.get_app().next_update_async() # type: ignore QuickLayout.load_file(layout_file, keep_windows_open) # WOR: some layout don't happy collectly the first time await omni.kit.app.get_app().next_update_async() # type: ignore QuickLayout.load_file(layout_file, keep_windows_open) except Exception as exc: # pragma: no cover (Can't be tested because a non-existing layout file prints an log_error in QuickLayout and does not throw an exception) carb.log_warn(f"Failed to load layout {layout_file}: {exc}") async def _load_layout(layout_file: str, keep_windows_open:bool=False) -> None: try: # few frames delay to avoid the conflict with the layout of omni.kit.mainwindow for i in range(3): await omni.kit.app.get_app().next_update_async() # type: ignore QuickLayout.load_file(layout_file, keep_windows_open) except Exception as exc: # pragma: no cover (Can't be tested because a non-existing layout file prints an log_error in QuickLayout and does not throw an exception) carb.log_warn(f"Failed to load layout {layout_file}: {exc}") async def _clear_startup_scene_edits() -> None: try: for i in range(50): # This could possibly be a smaller value. I want to ensure this happens after RTX startup await omni.kit.app.get_app().next_update_async() # type: ignore omni.usd.get_context().set_pending_edit(False) except Exception as exc: # pragma: no cover carb.log_warn(f"Failed to clear stage edits on startup: {exc}") # This extension is mostly loading the Layout updating menu class SetupExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. @property def _app(self): return omni.kit.app.get_app() @property def _settings(self): return carb.settings.get_settings() def on_startup(self, ext_id: str) -> None: self._ext_id = ext_id self._menubar_helper = MenubarHelper() self._menu_helper = MenuHelper() # using imgui directly to adjust some color and Variable imgui = _imgui.acquire_imgui() # match Create overides imgui.push_style_color(_imgui.StyleColor.ScrollbarGrab, carb.Float4(0.4, 0.4, 0.4, 1)) imgui.push_style_color(_imgui.StyleColor.ScrollbarGrabHovered, carb.Float4(0.6, 0.6, 0.6, 1)) imgui.push_style_color(_imgui.StyleColor.ScrollbarGrabActive, carb.Float4(0.8, 0.8, 0.8, 1)) # DockSplitterSize is the variable that drive the size of the Dock Split connection imgui.push_style_var_float(_imgui.StyleVar.DockSplitterSize, 2) # setup the Layout for your app self._layouts_path = carb.tokens.get_tokens_interface().resolve("${omni.usd_explorer.setup}/layouts") layout_file = Path(self._layouts_path).joinpath(f"{self._settings.get('/app/layout/name')}.json") self.__setup_window_task = asyncio.ensure_future(_load_layout_startup(f"{layout_file}", True)) self.review_layout_path = str(Path(self._layouts_path) / "comment_layout.json") self.default_layout_path = str(Path(self._layouts_path) / "default.json") self.layout_user_path = str(Path(self._layouts_path) / "layout_user.json") # remove the user defined layout so that we always load the default layout when startup if os.path.exists(self.layout_user_path): os.remove(self.layout_user_path) # setup the menu and their layout self._current_layout_priority = 0 self._layout_menu_items = [] self._layout_file_menu() self._menu_layout = [] if self._settings.get_as_bool('/app/view/debug/menus'): self._layout_menu() # setup the Application Title window_title = get_main_window_title() if window_title: window_title.set_app_version(self._settings.get_as_string("/app/titleVersion")) # self._context_menu() self._register_my_menu() self._navigation = Navigation() self._navigation.on_startup(ext_id) self._application_mode_changed_sub = self._settings.subscribe_to_node_change_events( APPLICATION_MODE_PATH, weakref.proxy(self)._on_application_mode_changed ) self._set_viewport_menubar_visibility(False) self._test = asyncio.ensure_future(_clear_startup_scene_edits()) # OM-95865: Ensure teleport on by default. self._usd_context = omni.usd.get_context() self._stage_event_sub = self._usd_context.get_stage_event_stream().create_subscription_to_pop( self._on_stage_open_event, name="TeleportDefaultOn" ) if self._settings.get_as_bool(SETTINGS_STARTUP_EXPAND_VIEWPORT): self._set_viewport_fill_on() self._stage_templates = [SunnySkyStage()] disable_selection(get_active_viewport()) self._ui_state_manager = UIStateManager() self._setup_ui_state_changes() omni.kit.menu.utils.add_layout([ MenuLayout.Menu("Window", [ MenuLayout.Item("Viewport", source="Window/Viewport/Viewport 1"), MenuLayout.Item("Playlist", remove=True), MenuLayout.Item("Layout", remove=True), MenuLayout.Item("" if any(v in self._app.get_app_version() for v in ("alpha", "beta")) else "Extensions", remove=True), MenuLayout.Sort(exclude_items=["Extensions"], sort_submenus=True), ]) ]) def show_documentation(*x): import webbrowser webbrowser.open("http://docs.omniverse.nvidia.com/explorer") self._help_menu_items = [ omni.kit.menu.utils.MenuItemDescription(name="Documentation", onclick_fn=show_documentation, appear_after=[omni.kit.menu.utils.MenuItemOrder.FIRST]) ] omni.kit.menu.utils.add_menu_items(self._help_menu_items, name="Help") def _on_stage_open_event(self, event: carb.events.IEvent) -> None: if event.type == int(omni.usd.StageEventType.OPENED): app_mode = self._settings.get_as_string(APPLICATION_MODE_PATH).lower() # exit all tools self._settings.set(CURRENT_TOOL_PATH, "none") # OM-95865, OMFP-1993: Activate Teleport upon scene load ... # OMFP-2743: ... but only when in Review mode. if app_mode == "review": asyncio.ensure_future(self._stage_post_open_teleport_toggle()) # toggle RMB viewport context menu based on application mode value = False if app_mode == "review" else True self._settings.set(VIEWPORT_CONTEXT_MENU_PATH, value) # teleport is activated after loading a stage and app is in Review mode async def _stage_post_open_teleport_toggle(self) -> None: await self._app.next_update_async() if hasattr(self, "_usd_context") and self._usd_context is not None and not self._usd_context.is_new_stage(): self._settings.set("/exts/omni.kit.viewport.navigation.core/activeOperation", "teleport") def _set_viewport_fill_on(self) -> None: vp_window = get_active_viewport_window() vp_widget = vp_window.viewport_widget if vp_window else None if vp_widget: vp_widget.expand_viewport = True def _set_viewport_menubar_visibility(self, show: bool) -> None: mb_inst = get_mb_inst() if mb_inst and hasattr(mb_inst, "get_menubar"): main_menubar = mb_inst.get_menubar(DEFAULT_MENUBAR_NAME) if main_menubar.visible_model.as_bool != show: main_menubar.visible_model.set_value(show) ViewportMenuModel()._item_changed(None) # type: ignore def _on_application_mode_changed(self, item: carb.dictionary.Item, _typ: carb.settings.ChangeEventType) -> None: if self._settings.get_as_string(APPLICATION_MODE_PATH).lower() == "review": omni.usd.get_context().get_selection().clear_selected_prim_paths() disable_selection(get_active_viewport()) current_mode: str = cast(str, item.get_dict()) asyncio.ensure_future(self.defer_load_layout(current_mode)) async def defer_load_layout(self, current_mode: str) -> None: keep_windows = True # Focus Mode Toolbar self._settings.set_bool(SETTINGS_PATH_FOCUSED, True) # current_mode not in ("review", "layout")) # Turn off all tools and modal self._settings.set_string(CURRENT_TOOL_PATH, "none") self._settings.set_bool(MODAL_TOOL_ACTIVE_PATH, False) if current_mode == "review": # save the current layout for restoring later if switch back QuickLayout.save_file(self.layout_user_path) # we don't want to keep any windows except the ones which are visible in self.review_layout_path await _load_layout(self.review_layout_path, False) else: # current_mode == "layout": # check if there is any user modified layout, if yes use that one layout_filename = self.layout_user_path if os.path.exists(self.layout_user_path) else self.default_layout_path await _load_layout(layout_filename, keep_windows) self._set_viewport_menubar_visibility(current_mode == "layout") def _setup_ui_state_changes(self) -> None: windows_to_hide_on_modal = ["Measure", "Section", "Waypoints"] self._ui_state_manager.add_hide_on_modal(window_names=windows_to_hide_on_modal, restore=True) window_titles = ["Markups", "Waypoints"] for window in window_titles: setting_name = f'/exts/omni.usd_explorer.setup/{window}/visible' self._ui_state_manager.add_window_visibility_setting(window, setting_name) # toggle icon visibilites based on window visibility self._ui_state_manager.add_settings_copy_dependency( source_path="/exts/omni.usd_explorer.setup/Markups/visible", target_path="/exts/omni.kit.markup.core/show_icons", ) self._ui_state_manager.add_settings_copy_dependency( source_path="/exts/omni.usd_explorer.setup/Waypoints/visible", target_path="/exts/omni.kit.waypoint.core/show_icons", ) def _custom_quicklayout_menu(self) -> None: # we setup a simple ways to Load custom layout from the exts def add_layout_menu_entry(name, parameter, key): import inspect editor_menu = omni.kit.ui.get_editor_menu() layouts_path = carb.tokens.get_tokens_interface().resolve("${omni.usd_explorer.setup}/layouts") menu_path = f"Layout/{name}" menu = editor_menu.add_item(menu_path, None, False, self._current_layout_priority) # type: ignore self._current_layout_priority = self._current_layout_priority + 1 if inspect.isfunction(parameter): # pragma: no cover (Never used, see commented out section below regarding quick save/load) menu_action = omni.kit.menu.utils.add_action_to_menu( menu_path, lambda *_: asyncio.ensure_future(parameter()), name, (carb.input.KEYBOARD_MODIFIER_FLAG_CONTROL, key), ) else: menu_action = omni.kit.menu.utils.add_action_to_menu( menu_path, lambda *_: asyncio.ensure_future(_load_layout(f"{layouts_path}/{parameter}.json")), name, (carb.input.KEYBOARD_MODIFIER_FLAG_CONTROL, key), ) self._layout_menu_items.append((menu, menu_action)) add_layout_menu_entry("Reset Layout", "default", carb.input.KeyboardInput.KEY_1) add_layout_menu_entry("Viewport Only", "viewport_only", carb.input.KeyboardInput.KEY_2) add_layout_menu_entry("Markup Editor", "markup_editor", carb.input.KeyboardInput.KEY_3) # add_layout_menu_entry("Waypoint Viewer", "waypoint_viewer", carb.input.KeyboardInput.KEY_4) # # you can enable Quick Save and Quick Load here # if False: # # create Quick Load & Quick Save # from omni.kit.quicklayout import QuickLayout # async def quick_save(): # QuickLayout.quick_save(None, None) # async def quick_load(): # QuickLayout.quick_load(None, None) # add_layout_menu_entry("Quick Save", quick_save, carb.input.KeyboardInput.KEY_7) # add_layout_menu_entry("Quick Load", quick_load, carb.input.KeyboardInput.KEY_8) def _register_my_menu(self) -> None: context_menu: Optional[omni.kit.context_menu.ContextMenuExtension] = omni.kit.context_menu.get_instance() if not context_menu: # pragma: no cover return def _layout_file_menu(self) -> None: self._menu_file_layout = [ MenuLayout.Menu( "File", [ MenuLayout.Item("New"), MenuLayout.Item("New From Stage Template"), MenuLayout.Item("Open"), MenuLayout.Item("Open Recent"), MenuLayout.Seperator(), MenuLayout.Item("Re-open with New Edit Layer"), MenuLayout.Seperator(), MenuLayout.Item("Share"), MenuLayout.Seperator(), MenuLayout.Item("Save"), MenuLayout.Item("Save As..."), MenuLayout.Item("Save With Options"), MenuLayout.Item("Save Selected"), MenuLayout.Item("Save Flattened As...", remove=True), MenuLayout.Seperator(), MenuLayout.Item("Collect As..."), MenuLayout.Item("Export"), MenuLayout.Seperator(), MenuLayout.Item("Import"), MenuLayout.Item("Add Reference"), MenuLayout.Item("Add Payload"), MenuLayout.Seperator(), MenuLayout.Item("Exit"), ] ) ] omni.kit.menu.utils.add_layout(self._menu_file_layout) def _layout_menu(self) -> None: self._menu_layout = [ MenuLayout.Menu( "Window", [ MenuLayout.SubMenu( "Animation", [ MenuLayout.Item("Timeline"), MenuLayout.Item("Sequencer"), MenuLayout.Item("Curve Editor"), MenuLayout.Item("Retargeting"), MenuLayout.Item("Animation Graph"), MenuLayout.Item("Animation Graph Samples"), ], ), MenuLayout.SubMenu( "Layout", [ MenuLayout.Item("Quick Save", remove=True), MenuLayout.Item("Quick Load", remove=True), ], ), MenuLayout.SubMenu( "Browsers", [ MenuLayout.Item("Content", source="Window/Content"), MenuLayout.Item("Materials"), MenuLayout.Item("Skies"), ], ), MenuLayout.SubMenu( "Rendering", [ MenuLayout.Item("Render Settings"), MenuLayout.Item("Movie Capture"), MenuLayout.Item("MDL Material Graph"), MenuLayout.Item("Tablet XR"), ], ), MenuLayout.SubMenu( "Simulation", [ MenuLayout.Group( "Flow", [ MenuLayout.Item("Presets", source="Window/Flow/Presets"), MenuLayout.Item("Monitor", source="Window/Flow/Monitor"), ], ), MenuLayout.Group( "Blast", [ MenuLayout.Item("Settings", source="Window/Blast/Settings"), MenuLayout.SubMenu( "Documentation", [ MenuLayout.Item("Kit UI", source="Window/Blast/Documentation/Kit UI"), MenuLayout.Item( "Programming", source="Window/Blast/Documentation/Programming" ), MenuLayout.Item( "USD Schemas", source="Window/Blast/Documentation/USD Schemas" ), ], ), ], ), MenuLayout.Item("Debug"), # MenuLayout.Item("Performance"), MenuLayout.Group( "Physics", [ MenuLayout.Item("Demo Scenes"), MenuLayout.Item("Settings", source="Window/Physics/Settings"), MenuLayout.Item("Debug"), MenuLayout.Item("Test Runner"), MenuLayout.Item("Character Controller"), MenuLayout.Item("OmniPVD"), MenuLayout.Item("Physics Helpers"), ], ), ], ), MenuLayout.SubMenu( "Utilities", [ MenuLayout.Item("Console"), MenuLayout.Item("Profiler"), MenuLayout.Item("USD Paths"), MenuLayout.Item("Statistics"), MenuLayout.Item("Activity Monitor"), ], ), # Remove 'Viewport 2' entry MenuLayout.SubMenu( "Viewport", [ MenuLayout.Item("Viewport 2", remove=True), ], ), MenuLayout.Sort(exclude_items=["Extensions"]), MenuLayout.Item("New Viewport Window", remove=True), ], ), # that is you enable the Quick Layout Menu MenuLayout.Menu( "Layout", [ MenuLayout.Item("Default", source="Reset Layout"), MenuLayout.Item("Viewport Only"), MenuLayout.Item("Markup Editor"), MenuLayout.Item("Waypoint Viewer"), MenuLayout.Seperator(), MenuLayout.Item("UI Toggle Visibility", source="Window/UI Toggle Visibility"), MenuLayout.Item("Fullscreen Mode", source="Window/Fullscreen Mode"), MenuLayout.Seperator(), MenuLayout.Item("Save Layout", source="Window/Layout/Save Layout..."), MenuLayout.Item("Load Layout", source="Window/Layout/Load Layout..."), # MenuLayout.Seperator(), # MenuLayout.Item("Quick Save", source="Window/Layout/Quick Save"), # MenuLayout.Item("Quick Load", source="Window/Layout/Quick Load"), ], ), MenuLayout.Menu("Tools", [MenuLayout.SubMenu("Animation", remove=True)]), ] omni.kit.menu.utils.add_layout(self._menu_layout) # type: ignore # if you want to support the Quick Layout Menu self._custom_quicklayout_menu() def on_shutdown(self): if self._menu_layout: omni.kit.menu.utils.remove_layout(self._menu_layout) # type: ignore self._menu_layout.clear() self._layout_menu_items.clear() self._navigation.on_shutdown() del self._navigation self._settings.unsubscribe_to_change_events(self._application_mode_changed_sub) del self._application_mode_changed_sub self._stage_event_sub = None # From View setup self._menubar_helper.destroy() if self._menu_helper and hasattr(self._menu_helper, "destroy"): self._menu_helper.destroy() self._menu_helper = None self._stage_templates = []
23,462
Python
45.005882
167
0.557753
NVIDIA-Omniverse/kit-app-template/source/extensions/omni.usd_explorer.setup/omni/usd_explorer/setup/navigation.py
import asyncio import carb import carb.settings import carb.tokens import carb.dictionary import omni.kit.app import omni.ext import omni.ui as ui import omni.kit.actions.core from omni.kit.viewport.navigation.core import ( NAVIGATION_TOOL_OPERATION_ACTIVE, ViewportNavigationTooltip, get_navigation_bar, ) __all__ = ["Navigation"] CURRENT_TOOL_PATH = "/app/viewport/currentTool" SETTING_NAVIGATION_ROOT = "/exts/omni.kit.tool.navigation/" NAVIGATION_BAR_VISIBLE_PATH = "/exts/omni.kit.viewport.navigation.core/isVisible" APPLICATION_MODE_PATH = "/app/application_mode" WALK_VISIBLE_PATH = "/persistent/exts/omni.kit.viewport.navigation.walk/visible" CAPTURE_VISIBLE_PATH = "/persistent/exts/omni.kit.viewport.navigation.capture/visible" MARKUP_VISIBLE_PATH = "/persistent/exts/omni.kit.viewport.navigation.markup/visible" MEASURE_VISIBLE_PATH = "/persistent/exts/omni.kit.viewport.navigation.measure/visible" SECTION_VISIBLE_PATH = "/persistent/exts/omni.kit.viewport.navigation.section/visible" TELEPORT_SEPARATOR_VISIBLE_PATH = "/persistent/exts/omni.kit.viewport.navigation.teleport/spvisible" WAYPOINT_VISIBLE_PATH = "/persistent/exts/omni.kit.viewport.navigation.waypoint/visible" VIEWPORT_CONTEXT_MENU_PATH = "/exts/omni.kit.window.viewport/showContextMenu" MENUBAR_APP_MODES_PATH = "/exts/omni.kit.usd_presenter.main.menubar/include_modify_mode" WELCOME_WINDOW_VISIBLE_PATH = "/exts/omni.kit.usd_presenter.window.welcome/visible" ACTIVE_OPERATION_PATH = "/exts/omni.kit.viewport.navigation.core/activeOperation" class Navigation: NAVIGATION_BAR_NAME = None # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id: str) -> None: sections = ext_id.split("-") self._ext_name = sections[0] self._settings = carb.settings.get_settings() self._navigation_bar = get_navigation_bar() self._tool_bar_button = None self._dict = carb.dictionary.get_dictionary() self._panel_visible = True self._navigation_bar.show() self._settings.set(CURRENT_TOOL_PATH, "navigation") self._settings.set(NAVIGATION_TOOL_OPERATION_ACTIVE, "teleport") self._viewport_welcome_window_visibility_changed_sub = self._settings.subscribe_to_node_change_events( WELCOME_WINDOW_VISIBLE_PATH, self._on_welcome_window_visibility_change ) # OMFP-1799 Set nav bar visibility defaults. These should remain fixed now. self._settings.set(WALK_VISIBLE_PATH, False) self._settings.set(MARKUP_VISIBLE_PATH, True) self._settings.set(WAYPOINT_VISIBLE_PATH, True) self._settings.set(TELEPORT_SEPARATOR_VISIBLE_PATH, True) self._settings.set(CAPTURE_VISIBLE_PATH, True) self._settings.set(MEASURE_VISIBLE_PATH, True) self._settings.set(SECTION_VISIBLE_PATH, True) self._application_mode_changed_sub = self._settings.subscribe_to_node_change_events( APPLICATION_MODE_PATH, self._on_application_mode_changed ) self._show_tooltips = False self._nav_bar_visibility_sub = self._settings.subscribe_to_node_change_events( NAVIGATION_BAR_VISIBLE_PATH, self._delay_reset_tooltip) _prev_navbar_vis = None _prev_tool = None _prev_operation = None def _on_welcome_window_visibility_change(self, item: carb.dictionary.Item, *_) -> None: if not isinstance(self._dict, (carb.dictionary.IDictionary, dict)): return welcome_window_vis = self._dict.get(item) # preserve the state of the navbar upon closing the Welcome window if the app is in Layout mode if self._settings.get_as_string(APPLICATION_MODE_PATH).lower() == "layout": # preserve the state of the navbar visibility if welcome_window_vis: self._prev_navbar_vis = self._settings.get_as_bool(NAVIGATION_BAR_VISIBLE_PATH) self._settings.set(NAVIGATION_BAR_VISIBLE_PATH, not(welcome_window_vis)) self._prev_tool = self._settings.get(CURRENT_TOOL_PATH) self._prev_operation = self._settings.get(ACTIVE_OPERATION_PATH) else: # restore the state of the navbar visibility if self._prev_navbar_vis is not None: self._settings.set(NAVIGATION_BAR_VISIBLE_PATH, self._prev_navbar_vis) self._prev_navbar_vis = None if self._prev_tool is not None: self._settings.set(CURRENT_TOOL_PATH, self._prev_tool) if self._prev_operation is not None: self._settings.set(ACTIVE_OPERATION_PATH, self._prev_operation) return else: if welcome_window_vis: self._settings.set(NAVIGATION_TOOL_OPERATION_ACTIVE, "none") else: self._settings.set(NAVIGATION_TOOL_OPERATION_ACTIVE, "teleport") self._settings.set(NAVIGATION_BAR_VISIBLE_PATH, not(welcome_window_vis)) def _on_application_mode_changed(self, item: carb.dictionary.Item, *_) -> None: if not isinstance(self._dict, (carb.dictionary.IDictionary, dict)): return current_mode = self._dict.get(item) self._test = asyncio.ensure_future(self._switch_by_mode(current_mode)) async def _switch_by_mode(self, current_mode: str) -> None: await omni.kit.app.get_app().next_update_async() state = True if current_mode == "review" else False self._settings.set(NAVIGATION_BAR_VISIBLE_PATH, state) self._settings.set(VIEWPORT_CONTEXT_MENU_PATH, not(state)) # toggle RMB viewport context menu self._delay_reset_tooltip(None) # OM-92161: Need to reset the tooltip when change the mode def _delay_reset_tooltip(self, *_) -> None: async def delay_set_tooltip() -> None: for _i in range(4): await omni.kit.app.get_app().next_update_async() # type: ignore ViewportNavigationTooltip.set_visible(self._show_tooltips) asyncio.ensure_future(delay_set_tooltip()) def _on_showtips_click(self, *_) -> None: self._show_tooltips = not self._show_tooltips ViewportNavigationTooltip.set_visible(self._show_tooltips) def on_shutdown(self) -> None: self._navigation_bar = None self._viewport_welcome_window_visibility_changed_sub = None self._settings.unsubscribe_to_change_events(self._application_mode_changed_sub) # type:ignore self._application_mode_changed_sub = None self._dict = None
6,679
Python
45.713286
119
0.676898
NVIDIA-Omniverse/kit-app-template/source/extensions/omni.usd_explorer.setup/omni/usd_explorer/setup/ui_state_manager.py
import carb.dictionary import carb.settings import omni.ui as ui from functools import partial from typing import Any, Dict, List, Tuple, Union MODAL_TOOL_ACTIVE_PATH = "/app/tools/modal_tool_active" class UIStateManager: def __init__(self) -> None: self._settings = carb.settings.acquire_settings_interface() self._modal_changed_sub = self._settings.subscribe_to_node_change_events( MODAL_TOOL_ACTIVE_PATH, self._on_modal_setting_changed ) self._hide_on_modal: List[Tuple[str,bool]] = [] self._modal_restore_window_states: Dict[str,bool] = {} self._settings_dependencies: Dict[Tuple(str,str), Dict[Any, Any]] = {} self._settings_changed_subs = {} self._window_settings = {} self._window_vis_changed_id = ui.Workspace.set_window_visibility_changed_callback(self._on_window_vis_changed) def destroy(self) -> None: if self._settings: if self._modal_changed_sub: self._settings.unsubscribe_to_change_events(self._modal_changed_sub) self._settings = None self._hide_on_modal = [] self._modal_restore_window_states = {} self._settings_dependencies = {} self._window_settings = {} if self._window_vis_changed_id: ui.Workspace.remove_window_visibility_changed_callback(self._window_vis_changed_id) self._window_vis_changed_id = None def __del__(self) -> None: self.destroy() def add_hide_on_modal(self, window_names: Union[str, List[str]], restore: bool) -> None: if isinstance(window_names, str): window_names = [window_names] for window_name in window_names: if window_name not in self._hide_on_modal: self._hide_on_modal.append((window_name, restore)) def remove_hide_on_modal(self, window_names: Union[str, List[str]]) -> None: if isinstance(window_names, str): window_names = [window_names] self._hide_on_modal = [item for item in self._hide_on_modal if item[0] not in window_names] def add_window_visibility_setting(self, window_name: str, setting_path: str) -> None: window = ui.Workspace.get_window(window_name) if window is not None: self._settings.set(setting_path, window.visible) else: # handle the case when the window is created later self._settings.set(setting_path, False) if window_name not in self._window_settings.keys(): self._window_settings[window_name] = [] self._window_settings[window_name].append(setting_path) def remove_window_visibility_setting(self, window_name: str, setting_path: str) -> None: if window_name in self._window_settings.keys(): setting_list = self._window_settings[window_name] if setting_path in setting_list: setting_list.remove(setting_path) if len(setting_list) == 0: del self._window_settings[window_name] def remove_all_window_visibility_settings(self, window_name: str) -> None: if window_name in self._window_settings.keys(): del self._window_settings[window_name] def add_settings_dependency(self, source_path: str, target_path: str, value_map: Dict[Any, Any]) -> None: key = (source_path, target_path) if key in self._settings_dependencies.keys(): carb.log_error(f'Settings dependency {source_path} -> {target_path} already exists. Ignoring.') return self._settings_dependencies[key] = value_map self._settings_changed_subs[key] = self._settings.subscribe_to_node_change_events( source_path, partial(self._on_settings_dependency_changed, source_path) ) def add_settings_copy_dependency(self, source_path: str, target_path: str) -> None: self.add_settings_dependency(source_path, target_path, None) def remove_settings_dependency(self, source_path: str, target_path: str) -> None: key = (source_path, target_path) if key in self._settings_dependencies.keys(): del self._settings_dependencies[key] if key in self._settings_changed_subs.keys(): sub = self._settings_changed_subs.pop(key) self._settings.unsubscribe_to_change_events(sub) def _on_settings_dependency_changed(self, path: str, item, event_type) -> None: value = self._settings.get(path) # setting does not exist if value is None: return target_settings = [source_target[1] for source_target in self._settings_dependencies.keys() if source_target[0] == path] for target_setting in target_settings: value_map = self._settings_dependencies[(path, target_setting)] # None means copy everything if value_map is None: self._settings.set(target_setting, value) elif value in value_map.keys(): self._settings.set(target_setting, value_map[value]) def _on_modal_setting_changed(self, item, event_type) -> None: modal = self._settings.get_as_bool(MODAL_TOOL_ACTIVE_PATH) if modal: self._hide_windows() else: self._restore_windows() def _hide_windows(self) -> None: for window_info in self._hide_on_modal: window_name, restore_later = window_info[0], window_info[1] window = ui.Workspace.get_window(window_name) if window is not None: if restore_later: self._modal_restore_window_states[window_name] = window.visible window.visible = False def _restore_windows(self) -> None: for window_info in self._hide_on_modal: window_name, restore_later = window_info[0], window_info[1] if restore_later: if window_name in self._modal_restore_window_states.keys(): old_visibility = self._modal_restore_window_states[window_name] if old_visibility is not None: window = ui.Workspace.get_window(window_name) if window is not None: window.visible = old_visibility self._modal_restore_window_states[window_name] = None def _on_window_vis_changed(self, title: str, state: bool) -> None: if title in self._window_settings.keys(): for setting in self._window_settings[title]: self._settings.set_bool(setting, state)
6,634
Python
44.136054
128
0.611999
NVIDIA-Omniverse/kit-app-template/source/extensions/omni.usd_explorer.setup/omni/usd_explorer/setup/stage_template.py
import carb import omni.ext import omni.kit.commands from omni.kit.stage_templates import register_template, unregister_template from pxr import Gf, Sdf, Usd, UsdGeom, UsdLux class SunnySkyStage: def __init__(self): register_template("SunnySky", self.new_stage) def __del__(self): unregister_template("SunnySky") def new_stage(self, rootname, usd_context_name): # Create basic DistantLight usd_context = omni.usd.get_context(usd_context_name) stage = usd_context.get_stage() # get up axis up_axis = UsdGeom.GetStageUpAxis(stage) with Usd.EditContext(stage, stage.GetRootLayer()): # create Environment omni.kit.commands.execute( "CreatePrim", prim_path="/Environment", prim_type="Xform", select_new_prim=False, create_default_xform=True, context_name=usd_context_name ) texture_path = carb.tokens.get_tokens_interface().resolve("${omni.usd_explorer.setup}/data/light_rigs/HDR/partly_cloudy.hdr") # create Sky omni.kit.commands.execute( "CreatePrim", prim_path="/Environment/Sky", prim_type="DomeLight", select_new_prim=False, attributes={ UsdLux.Tokens.inputsIntensity: 1000, UsdLux.Tokens.inputsTextureFile: texture_path, UsdLux.Tokens.inputsTextureFormat: UsdLux.Tokens.latlong, UsdLux.Tokens.inputsSpecular: 1, UsdGeom.Tokens.visibility: "inherited", } if hasattr(UsdLux.Tokens, 'inputsIntensity') else \ { UsdLux.Tokens.intensity: 1000, UsdLux.Tokens.textureFile: texture_path, UsdLux.Tokens.textureFormat: UsdLux.Tokens.latlong, UsdGeom.Tokens.visibility: "inherited", }, create_default_xform=True, context_name=usd_context_name ) prim = stage.GetPrimAtPath("/Environment/Sky") prim.CreateAttribute("xformOp:scale", Sdf.ValueTypeNames.Double3, False).Set(Gf.Vec3d(1, 1, 1)) prim.CreateAttribute("xformOp:translate", Sdf.ValueTypeNames.Double3, False).Set(Gf.Vec3d(0, 0, 0)) if up_axis == "Y": prim.CreateAttribute("xformOp:rotateXYZ", Sdf.ValueTypeNames.Double3, False).Set(Gf.Vec3d(270, 0, 0)) else: prim.CreateAttribute("xformOp:rotateXYZ", Sdf.ValueTypeNames.Double3, False).Set(Gf.Vec3d(0, 0, 90)) prim.CreateAttribute("xformOpOrder", Sdf.ValueTypeNames.String, False).Set(["xformOp:translate", "xformOp:rotateXYZ", "xformOp:scale"]) # create DistantLight omni.kit.commands.execute( "CreatePrim", prim_path="/Environment/DistantLight", prim_type="DistantLight", select_new_prim=False, attributes={ UsdLux.Tokens.inputsAngle: 4.3, UsdLux.Tokens.inputsIntensity: 3000, UsdGeom.Tokens.visibility: "inherited", } if hasattr(UsdLux.Tokens, 'inputsIntensity') else \ { UsdLux.Tokens.angle: 4.3, UsdLux.Tokens.intensity: 3000, UsdGeom.Tokens.visibility: "inherited", }, create_default_xform=True, context_name=usd_context_name ) prim = stage.GetPrimAtPath("/Environment/DistantLight") prim.CreateAttribute("xformOp:scale", Sdf.ValueTypeNames.Double3, False).Set(Gf.Vec3d(1, 1, 1)) prim.CreateAttribute("xformOp:translate", Sdf.ValueTypeNames.Double3, False).Set(Gf.Vec3d(0, 0, 0)) if up_axis == "Y": prim.CreateAttribute("xformOp:rotateXYZ", Sdf.ValueTypeNames.Double3, False).Set(Gf.Vec3d(310.6366313590111, -125.93251524567805, 0.8821359067542289)) else: prim.CreateAttribute("xformOp:rotateXYZ", Sdf.ValueTypeNames.Double3, False).Set(Gf.Vec3d(41.35092544555664, 0.517652153968811, -35.92928695678711)) prim.CreateAttribute("xformOpOrder", Sdf.ValueTypeNames.String, False).Set(["xformOp:translate", "xformOp:rotateXYZ", "xformOp:scale"])
4,590
Python
48.902173
166
0.56732
NVIDIA-Omniverse/kit-app-template/source/extensions/omni.usd_explorer.setup/omni/usd_explorer/setup/menu_helper.py
import asyncio import carb.settings import omni.kit.app import omni.kit.commands import omni.kit.menu.utils import omni.renderer_capture from omni.kit.menu.utils import MenuLayout SETTINGS_APPLICATION_MODE_PATH = "/app/application_mode" class MenuHelper: def __init__(self) -> None: self._settings = carb.settings.get_settings() self._current_layout = None self._pending_layout = None self._changing_layout_task: asyncio.Task = None self._menu_layout_empty = [] self._menu_layout_modify = [] omni.kit.menu.utils.add_hook(self._menu_hook) self._app_mode_sub = self._settings.subscribe_to_node_change_events( SETTINGS_APPLICATION_MODE_PATH, self._on_application_mode_changed ) self._menu_hook() def destroy(self) -> None: omni.kit.menu.utils.remove_hook(self._menu_hook) if self._changing_layout_task and not self._changing_layout_task.done(): self._changing_layout_task.cancel() self._changing_layout_task = None if self._app_mode_sub: self._settings.unsubscribe_to_change_events(self._app_mode_sub) self._app_mode_sub = None self._app_ready_sub = None if self._current_layout: omni.kit.menu.utils.remove_layout(self._current_layout) self._current_layout = None def _menu_hook(self, *args, **kwargs) -> None: if self._settings.get_as_bool("/app/view/debug/menus"): return LAYOUT_EMPTY_ALLOWED_MENUS = set() LAYOUT_MODIFY_ALLOWED_MENUS = {"File", "Edit", "Window", "Tools", "Help"} # make NEW list object instead of clear original # the original list may be held by self._current_layout and omni.kit.menu.utils self._menu_layout_empty = [] self._menu_layout_modify = [] menu_instance = omni.kit.menu.utils.get_instance() if not menu_instance: # pragma: no cover return # Build new layouts using allowlists for key in menu_instance._menu_defs: if key.lower().endswith("widget"): continue if key not in LAYOUT_EMPTY_ALLOWED_MENUS: self._menu_layout_empty.append(MenuLayout.Menu(key, remove=True)) if key not in LAYOUT_MODIFY_ALLOWED_MENUS: self._menu_layout_modify.append(MenuLayout.Menu(key, remove=True)) # Remove 'Viewport 2' entry if key == "Window": for menu_item_1 in menu_instance._menu_defs[key]: for menu_item_2 in menu_item_1: if menu_item_2.name == "Viewport": menu_item_2.sub_menu = [mi for mi in menu_item_2.sub_menu if mi.name != "Viewport 2"] if self._changing_layout_task is None or self._changing_layout_task.done(): self._changing_layout_task = asyncio.ensure_future(self._delayed_change_layout()) def _on_application_mode_changed(self, *args) -> None: if self._changing_layout_task is None or self._changing_layout_task.done(): self._changing_layout_task = asyncio.ensure_future(self._delayed_change_layout()) async def _delayed_change_layout(self): mode = self._settings.get_as_string(SETTINGS_APPLICATION_MODE_PATH) if mode in ["present", "review"]: pending_layout = self._menu_layout_empty else: pending_layout = self._menu_layout_modify # Don't change layout inside of menu callback _on_application_mode_changed # omni.ui throws error if self._current_layout: # OMFP-2737: Do no rebuild menu (change menu layout) if layout is same # Here only check number of layout menu items and name of every of layout menu item same_layout = len(self._current_layout) == len(pending_layout) if same_layout: for index, item in enumerate(self._current_layout): if item.name != pending_layout[index].name: same_layout = False if same_layout: return omni.kit.menu.utils.remove_layout(self._current_layout) self._current_layout = None omni.kit.menu.utils.add_layout(pending_layout) # type: ignore self._current_layout = pending_layout.copy() self._changing_layout_task = None
4,434
Python
37.565217
113
0.608029
NVIDIA-Omniverse/kit-app-template/source/extensions/omni.usd_explorer.setup/omni/usd_explorer/setup/tests/test_release_config.py
import carb.settings import carb.tokens import omni.kit.app import omni.kit.test class TestConfig(omni.kit.test.AsyncTestCase): async def test_l1_public_release_configuration(self): settings = carb.settings.get_settings() app_version = settings.get("/app/version") # This test covers a moment in time when we switch version to RC. # Following test cases must be satisfied. is_rc = "-rc." in app_version # title_format_string = settings.get("exts/omni.kit.window.modifier.titlebar/titleFormatString") # if is_rc: # Make sure the title format string doesn't use app version if app version contains rc # title_using_app_version = "/app/version" in title_format_string # self.assertFalse(is_rc and title_using_app_version, "check failed: title format string contains app version which contains 'rc'") # Make sure the title format string has "Beta" in it # title_has_beta = "Beta" in title_format_string # self.assertTrue(title_has_beta, "check failed: title format string does not have 'Beta ' in it") # if is_rc: # Make sure the title format string doesn't use app version if app version contains rc # title_using_app_version = "/app/version" in title_format_string # self.assertFalse(is_rc and title_using_app_version, "check failed: title format string contains app version which contains 'rc'") # Make sure the title format string has "Beta" in it # title_has_beta = "Beta" in title_format_string # self.assertTrue(title_has_beta, "check failed: title format string does not have 'Beta ' in it") # Make sure we set build to external when going into RC release mode # external = settings.get("/privacy/externalBuild") or False # self.assertEqual( # external, # is_rc, # "check failed: is this an RC build? %s Is /privacy/externalBuild set to true? %s" % (is_rc, external), # ) # if is_rc: # # Make sure we remove some extensions from public release # EXTENSIONS = [ # # "omni.kit.profiler.tracy", # "omni.kit.window.jira", # "omni.kit.testing.services", # "omni.kit.tests.usd_stress", # "omni.kit.tests.basic_validation", # # "omni.kit.extension.reports", # ] # manager = omni.kit.app.get_app().get_extension_manager() # ext_names = {e["name"] for e in manager.get_extensions()} # for ext in EXTENSIONS: # self.assertEqual( # ext in ext_names, # False, # f"looks like {ext} was not removed from public build", # ) async def test_l1_usd_explorer_and_usd_explorer_full_have_same_version(self): manager = omni.kit.app.get_app().get_extension_manager() EXTENSIONS = [ "omni.usd_explorer", "omni.usd_explorer.full", ] # need to find both extensions and they need the same version id usd_explorer_exts = [e for e in manager.get_extensions() if e.get("name", "") in EXTENSIONS] self.assertEqual(len(usd_explorer_exts), 2) self.assertEqual( usd_explorer_exts[0]["version"], usd_explorer_exts[1]["version"], "omni.usd_explorer.kit and omni.usd_explorer.full.kit have different versions", )
3,572
Python
43.662499
143
0.594905
NVIDIA-Omniverse/kit-app-template/source/extensions/omni.usd_explorer.setup/omni/usd_explorer/setup/tests/test_state_manager.py
## Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. ## ## NVIDIA CORPORATION and its licensors retain all intellectual property ## and proprietary rights in and to this software, related documentation ## and any modifications thereto. Any use, reproduction, disclosure or ## distribution of this software and related documentation without an express ## license agreement from NVIDIA CORPORATION is strictly prohibited. ## import carb.settings import omni.kit.app import omni.ui as ui from omni.kit.test import AsyncTestCase from ..ui_state_manager import UIStateManager, MODAL_TOOL_ACTIVE_PATH class TestUIStateManager(AsyncTestCase): async def setUp(self): self._sm = UIStateManager() self._settings = carb.settings.get_settings() async def tearDown(self): self._sm = None async def test_destroy(self): self._sm.add_hide_on_modal('dummy', False) self._sm.add_settings_copy_dependency('a', 'b') self._sm.add_settings_dependency('c', 'd', {1: 2}) self._sm.add_window_visibility_setting('my_window', 'my_setting') self._sm.destroy() async def test_hide_on_modal(self): self._settings.set_bool(MODAL_TOOL_ACTIVE_PATH, False) self._sm.add_hide_on_modal('NO_RESTORE', False) self._sm.add_hide_on_modal(['A_RESTORE', 'B_RESTORE'], True) window_no_restore = ui.Window('NO_RESTORE') window_restore_1 = ui.Window('A_RESTORE') window_restore_2 = ui.Window('B_RESTORE') window_no_restore.visible = True window_restore_1.visible = True window_restore_2.visible = False await self._wait() self._settings.set_bool(MODAL_TOOL_ACTIVE_PATH, True) await self._wait() self.assertFalse(window_no_restore.visible) self.assertFalse(window_restore_1.visible) self.assertFalse(window_restore_2.visible) self._settings.set_bool(MODAL_TOOL_ACTIVE_PATH, False) await self._wait() self.assertFalse(window_no_restore.visible) self.assertTrue(window_restore_1.visible) self.assertFalse(window_restore_2.visible) self._sm.remove_hide_on_modal(window_restore_1.title) self._settings.set_bool(MODAL_TOOL_ACTIVE_PATH, True) await self._wait() self.assertTrue(window_restore_1.visible) self._settings.set_bool(MODAL_TOOL_ACTIVE_PATH, False) async def test_window_visibility_setting(self): window_name = 'Dummy' setting_path = '/apps/dummy' setting_path2 = '/apps/dummy2' window = ui.Window(window_name) window.visible = True await self._wait() self._sm.add_window_visibility_setting(window_name=window_name, setting_path=setting_path) self._sm.add_window_visibility_setting(window_name=window_name, setting_path=setting_path2) self.assertIsNotNone(self._settings.get(setting_path)) self.assertTrue(self._settings.get(setting_path)) self.assertTrue(self._settings.get(setting_path2)) window.visible = False self.assertFalse(self._settings.get(setting_path)) self.assertFalse(self._settings.get(setting_path2)) window.visible = True self.assertTrue(self._settings.get(setting_path)) self.assertTrue(self._settings.get(setting_path2)) self._sm.remove_window_visibility_setting(window_name=window_name, setting_path=setting_path) window.visible = False self.assertTrue(self._settings.get(setting_path)) self.assertFalse(self._settings.get(setting_path2)) self._sm.remove_all_window_visibility_settings(window_name=window_name) window.visible = True self.assertFalse(self._settings.get(setting_path2)) async def test_setting_dependency(self): setting_path_copy_from = '/app/copy_from' setting_path_copy_to = '/ext/copy_to' setting_path_map_from = '/ext/map_from' setting_path_map_to = '/something/map_to' self._sm.add_settings_copy_dependency(setting_path_copy_from, setting_path_copy_to) self._settings.set_string(setting_path_copy_from, 'hello_world') self.assertEqual(self._settings.get(setting_path_copy_from), self._settings.get(setting_path_copy_to)) # doesn't work the other way around self._settings.set_string(setting_path_copy_to, 'no_copy_back') self.assertEqual(self._settings.get(setting_path_copy_from), 'hello_world') self._sm.add_settings_dependency(setting_path_map_from, setting_path_map_to, {1: 2, 3: 4}) self._settings.set_int(setting_path_map_from, 1) self.assertEqual(self._settings.get(setting_path_map_to), 2) self._settings.set_int(setting_path_map_from, 3) self.assertEqual(self._settings.get(setting_path_map_to), 4) # not in the map self._settings.set_int(setting_path_map_from, 42) self.assertEqual(self._settings.get(setting_path_map_to), 4) self.assertEqual(self._settings.get(setting_path_copy_from), 'hello_world') self.assertEqual(self._settings.get(setting_path_copy_to), 'no_copy_back') self._sm.remove_settings_dependency(setting_path_copy_from, setting_path_copy_to) self._settings.set_string(setting_path_copy_from, 'this_is_not_copied') self.assertEqual(self._settings.get(setting_path_copy_to), 'no_copy_back') async def _wait(self, frames: int = 5): for _ in range(frames): await omni.kit.app.get_app().next_update_async()
5,552
Python
42.046511
110
0.67219
NVIDIA-Omniverse/kit-app-template/source/extensions/omni.usd_explorer.setup/omni/usd_explorer/setup/tests/__init__.py
# run startup tests first from .test_app_startup import * # run all other tests after from .test_extensions import * from .test_release_config import * from .test import * from .test_state_manager import *
206
Python
24.874997
34
0.757282
NVIDIA-Omniverse/kit-app-template/source/extensions/omni.usd_explorer.setup/omni/usd_explorer/setup/tests/test.py
import omni.kit.app from omni.ui.tests.test_base import OmniUiTest from omni.kit import ui_test ext_id = 'omni.usd_explorer.setup' class TestSetupToolExtension(OmniUiTest): async def test_extension(self): manager = omni.kit.app.get_app().get_extension_manager() self.assertTrue(ext_id) self.assertTrue(manager.is_extension_enabled(ext_id)) app = omni.kit.app.get_app() for _ in range(500): await app.next_update_async() manager.set_extension_enabled(ext_id, False) await ui_test.human_delay() self.assertTrue(not manager.is_extension_enabled(ext_id)) manager.set_extension_enabled(ext_id, True) await ui_test.human_delay() self.assertTrue(manager.is_extension_enabled(ext_id)) async def test_menubar_helper_camera_dependency(self): manager = omni.kit.app.get_app().get_extension_manager() manager.set_extension_enabled(ext_id, False) await ui_test.human_delay() self.assertFalse(manager.is_extension_enabled(ext_id)) manager.set_extension_enabled('omni.kit.viewport.menubar.camera', True) await ui_test.human_delay() manager.set_extension_enabled(ext_id, True) await ui_test.human_delay() self.assertTrue(manager.is_extension_enabled(ext_id)) manager.set_extension_enabled(ext_id, False) await ui_test.human_delay() self.assertFalse(manager.is_extension_enabled(ext_id)) manager.set_extension_enabled(ext_id, True) await ui_test.human_delay() self.assertTrue(manager.is_extension_enabled(ext_id)) async def test_menu_helper(self): from ..menu_helper import MenuHelper menu_helper = MenuHelper() menu_helper.destroy() async def test_menubar_helper_menu(self): from ..menubar_helper import MenubarHelper menubar_helper = MenubarHelper() menubar_helper._create_camera_speed(None, None) menubar_helper.destroy() async def test_menu_helper_debug_setting(self): SETTINGS_VIEW_DEBUG_MENUS = '/app/view/debug/menus' import carb.settings settings = carb.settings.get_settings() manager = omni.kit.app.get_app().get_extension_manager() manager.set_extension_enabled(ext_id, False) await ui_test.human_delay() self.assertFalse(manager.is_extension_enabled(ext_id)) orig_value = settings.get(SETTINGS_VIEW_DEBUG_MENUS) settings.set_bool(SETTINGS_VIEW_DEBUG_MENUS, True) manager.set_extension_enabled(ext_id, True) await ui_test.human_delay() self.assertTrue(manager.is_extension_enabled(ext_id)) manager.set_extension_enabled(ext_id, False) await ui_test.human_delay() self.assertFalse(manager.is_extension_enabled(ext_id)) settings.set_bool(SETTINGS_VIEW_DEBUG_MENUS, orig_value) manager.set_extension_enabled(ext_id, True) await ui_test.human_delay() self.assertTrue(manager.is_extension_enabled(ext_id)) async def test_menu_helper_application_mode_change(self): from ..menu_helper import SETTINGS_APPLICATION_MODE_PATH import carb.settings settings = carb.settings.get_settings() settings.set_string(SETTINGS_APPLICATION_MODE_PATH, 'modify') await ui_test.human_delay() settings.set_string(SETTINGS_APPLICATION_MODE_PATH, 'welcome') await ui_test.human_delay() settings.set_string(SETTINGS_APPLICATION_MODE_PATH, 'modify') await ui_test.human_delay() settings.set_string(SETTINGS_APPLICATION_MODE_PATH, 'comment') await ui_test.human_delay() settings.set_string(SETTINGS_APPLICATION_MODE_PATH, 'modify') await ui_test.human_delay() async def test_menu_helper_widget_menu(self): import omni.kit.menu.utils omni.kit.menu.utils.add_menu_items([], name='test widget') from ..menu_helper import MenuHelper menu_helper = MenuHelper() menu_helper.destroy() async def test_startup_expand_viewport(self): from ..setup import SETTINGS_STARTUP_EXPAND_VIEWPORT import carb.settings settings = carb.settings.get_settings() orig_value = settings.get(SETTINGS_STARTUP_EXPAND_VIEWPORT) settings.set_bool(SETTINGS_STARTUP_EXPAND_VIEWPORT, True) manager = omni.kit.app.get_app().get_extension_manager() manager.set_extension_enabled(ext_id, False) await ui_test.human_delay() self.assertFalse(manager.is_extension_enabled(ext_id)) manager.set_extension_enabled(ext_id, True) await ui_test.human_delay() self.assertTrue(manager.is_extension_enabled(ext_id)) settings.set_bool(SETTINGS_STARTUP_EXPAND_VIEWPORT, orig_value) manager.set_extension_enabled(ext_id, False) await ui_test.human_delay() self.assertFalse(manager.is_extension_enabled(ext_id)) manager.set_extension_enabled(ext_id, True) await ui_test.human_delay() self.assertTrue(manager.is_extension_enabled(ext_id)) async def test_navigation_invalid_dict(self): from ..navigation import Navigation navigation = Navigation() navigation._show_tooltips = False navigation._dict = 42 navigation._on_application_mode_changed(None, None) navigation._on_showtips_click() async def test_navigation_current_tool_mode_change(self): from ..navigation import CURRENT_TOOL_PATH, APPLICATION_MODE_PATH import carb.settings settings = carb.settings.get_settings() settings.set_string(APPLICATION_MODE_PATH, 'modify') await ui_test.human_delay() settings.set_string(CURRENT_TOOL_PATH, 'markup') await ui_test.human_delay() settings.set_string(CURRENT_TOOL_PATH, 'navigation') await ui_test.human_delay() settings.set_string(CURRENT_TOOL_PATH, 'markup') await ui_test.human_delay() settings.set_string(CURRENT_TOOL_PATH, 'welcome') await ui_test.human_delay() settings.set_string(CURRENT_TOOL_PATH, 'navigation') await ui_test.human_delay() settings.set_string(CURRENT_TOOL_PATH, 'markup') await ui_test.human_delay() settings.set_string(CURRENT_TOOL_PATH, 'navigation') await ui_test.human_delay() async def test_setup_clear_startup_scene_edits(self): from ..setup import _clear_startup_scene_edits await _clear_startup_scene_edits() import omni.usd self.assertFalse(omni.usd.get_context().has_pending_edit()) async def test_stage_template(self): import omni.kit.stage_templates omni.kit.stage_templates.new_stage(template='SunnySky')
6,826
Python
34.190721
79
0.665397
NVIDIA-Omniverse/kit-app-template/source/extensions/omni.usd_explorer.setup/omni/usd_explorer/setup/tests/test_app_startup.py
## Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. ## ## NVIDIA CORPORATION and its licensors retain all intellectual property ## and proprietary rights in and to this software, related documentation ## and any modifications thereto. Any use, reproduction, disclosure or ## distribution of this software and related documentation without an express ## license agreement from NVIDIA CORPORATION is strictly prohibited. ## import omni.kit.app from omni.kit.test import AsyncTestCase class TestAppStartup(AsyncTestCase): async def test_l1_app_startup_time(self): """Get startup time - send to nvdf""" for _ in range(60): await omni.kit.app.get_app().next_update_async() try: from omni.kit.core.tests import app_startup_time app_startup_time(self.id()) except: # noqa pass self.assertTrue(True) async def test_l1_app_startup_warning_count(self): """Get the count of warnings during startup - send to nvdf""" for _ in range(60): await omni.kit.app.get_app().next_update_async() try: from omni.kit.core.tests import app_startup_warning_count app_startup_warning_count(self.id()) except: # noqa pass self.assertTrue(True)
1,323
Python
32.948717
77
0.657596
NVIDIA-Omniverse/kit-app-template/source/extensions/omni.usd_explorer.setup/omni/usd_explorer/setup/tests/test_extensions.py
## Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. ## ## NVIDIA CORPORATION and its licensors retain all intellectual property ## and proprietary rights in and to this software, related documentation ## and any modifications thereto. Any use, reproduction, disclosure or ## distribution of this software and related documentation without an express ## license agreement from NVIDIA CORPORATION is strictly prohibited. ## import sys import carb.settings import omni.kit.app import omni.kit.actions.core from omni.kit.core.tests import validate_extensions_load, validate_extensions_tests from omni.kit.test import AsyncTestCase from pxr import Usd, UsdGeom, Gf class TestUSDExplorerExtensions(AsyncTestCase): async def test_l1_extensions_have_tests(self): """Loop all enabled extensions to see if they have at least one (1) unittest""" await omni.kit.app.get_app().next_update_async() await omni.kit.app.get_app().next_update_async() # This list should be empty or near empty ideally EXCLUSION_LIST = [ # extensions from Kit "omni.mdl", "omni.ansel.init", # extensions from USD Explorer ] # These extensions only run tests on win32 for now if sys.platform != "win32": EXCLUSION_LIST.append("omni.hydra.scene_api") EXCLUSION_LIST.append("omni.rtx.tests") self.assertEqual(validate_extensions_tests(EXCLUSION_LIST), 0) async def test_l1_extensions_load(self): """Loop all enabled extensions to see if they loaded correctly""" self.assertEqual(validate_extensions_load(), 0) async def test_regression_omfp_2304(self): """Regression test for OMFP-2304""" loaded_omni_kit_collaboration_selection_outline = False manager = omni.kit.app.get_app().get_extension_manager() for ext in manager.get_extensions(): if ext["name"] == "omni.kit.collaboration.selection_outline": loaded_omni_kit_collaboration_selection_outline = True break self.assertTrue(loaded_omni_kit_collaboration_selection_outline) async def _wait(self, frames: int = 10): for _ in range(frames): await omni.kit.app.get_app().next_update_async() async def wait_stage_loading(self): while True: _, files_loaded, total_files = omni.usd.get_context().get_stage_loading_status() if files_loaded or total_files: await self._wait() continue break await self._wait(100) async def _get_1_1_1_rotation(self) -> Gf.Vec3d: """Loads a stage and returns the transformation of the (1,1,1) vector by the directional light's rotation""" await self._wait() omni.kit.actions.core.execute_action("omni.kit.window.file", "new") await self.wait_stage_loading() context = omni.usd.get_context() self.assertIsNotNone(context) stage = context.get_stage() self.assertIsNotNone(stage) prim_path = '/Environment/DistantLight' prim = stage.GetPrimAtPath(prim_path) self.assertTrue(prim.IsValid()) # Extract the prim's transformation matrix in world space xformAPI = UsdGeom.XformCache() transform_matrix_world = xformAPI.GetLocalToWorldTransform(prim) unit_point = Gf.Vec3d(1, 1, 1) transformed_point = transform_matrix_world.Transform(unit_point) return transformed_point async def test_regression_omfp_OMFP_3314(self): """Regression test for OMFP-3314""" settings = carb.settings.get_settings() UP_AXIS_PATH = "/persistent/app/stage/upAxis" settings.set("/persistent/app/newStage/defaultTemplate", "SunnySky") settings.set_string(UP_AXIS_PATH, "Z") point_z_up = await self._get_1_1_1_rotation() settings.set_string(UP_AXIS_PATH, "Y") point_y_up = await self._get_1_1_1_rotation() # with the default camera position: # in y-up: z points bottom left, x points bottom right, y points up # in z-up: x points bottom left, y points bottom right, z points up places = 4 self.assertAlmostEqual(point_y_up[2], point_z_up[0], places=places) self.assertAlmostEqual(point_y_up[0], point_z_up[1], places=places) self.assertAlmostEqual(point_y_up[1], point_z_up[2], places=places)
4,461
Python
40.314814
116
0.656355
NVIDIA-Omniverse/kit-app-template/source/extensions/omni.usd_explorer.setup/docs/CHANGELOG.md
# Changelog The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/). ## [1.0.32] - 2023-11-02 ### Changed - OMFP-3224: Added regression test - Added unit tests for state manager ## [1.0.31] - 2023-10-25 ### Changed - OMFP-3094: Restored Window/Viewport menu ## [1.0.30] - 2023-10-26 ### Changed - OMFP-2904: Show "Examples" by default in Layout mode ## [1.0.29] - 2023-10-25 ### Changed - OMFP-3224: Fix stage template light directions. ## [1.0.28] - 2023-10-23 ### Changed - OMFP-2654: Upgraded carb.imgui with omni.kit.imgui ## [1.0.27] - 2023-10-20 ### Changed - OMFP-2649: Missed the Layout item, it is now hidden as requested. ## [1.0.26] - 2023-10-20 ### Changed - Update embedded light rigs and textures ## [1.0.25] - 2023-10-19 ### Changed - Added regression test for OMFP-2304 ## [1.0.24] - 2023-10-19 ### Changed - OMFP-1981: always load the default layout when startup the app ## [1.0.23] - 2023-10-18 ### Changed - OMFP-2649: Hiding menu entries. ## [1.0.22] - 2023-10-18 ### Changed - Updated About dialog PNG to match the new application icon. ## [1.0.21] - 2023-10-18 ### Changed - OMFP-2737: Do no rebuild menu (change menu layout) if layout is same ## [1.0.20] - 2023-10-18 ### Changed - make windows invisible which are not desired to be in Review mode, OMFP-2252 activity progress window and OMFP-1981 scene optimizer window. - OMFP-1981: when user switch between modes, make sure the user defined layout in Layout mode is kept. ## [1.0.19] - 2023-10-17 ### Changed - OMFP-2547 - remove markup from modal list, markup window visibility is now handled in omni.kit.markup.core ## [1.0.18] - 2023-10-17 ### Changed - Fixed test ## [1.0.17] - 2023-10-16 ### Changed - Navigation bar visibility fixes ## [1.0.16] - 2023-10-13 ### Changed - Waypoint and markup visibilities are bound to their list windows ## [1.0.15] - 2023-10-12 ### Changed - OMFP-2417 - Rename 'comment' -> 'review' and 'modify' -> 'layout' ## [1.0.14] - 2023-10-12 ### Changed - Added more unit tests. ## [1.0.13] - 2023-10-11 ### Changed - OMFP-2328: Fix "Sunnysky" oriented incorrectly ## [1.0.12] - 2023-10-10 ### Changed - OMFP-2226 - Remove second Viewport menu item from layouts. ## [1.0.11] - 2023-10-11 ### Changed - Added UI state manager. ## [1.0.10] - 2023-10-10 ### Changed - Deactivate tools when app mode is changed. ## [1.0.9] - 2023-10-09 ### Changed - OMFP-2200 - Disabling the viewport expansion, this should keep us locked to a 16:9 aspect ratio. ## [1.0.8] - 2023-10-06 ### Changed - Added a new stage template and made it default ## [1.0.7] - 2023-10-06 ### Changed - Enable UI aware "expand_viewport" mode rather than lower-level fill_viewport mode ## [1.0.6] - 2023-10-05 ### Changed - Used allowlists for building main menu entries to guard against unexpected menus. ## [1.0.5] - 2023-10-05 ### Fixed - Regression in hiding viewport toolbar. ## [1.0.4] - 2023-10-04 ### Changed - Modify mode now shows selected menus on main menubar. ## [1.0.3] - 2023-10-04 - Hide Viewport top toolbar in Comment Mode ## [1.0.2] - 2023-10-03 - Navigation Toolbar hidden by default in Modify Mode ## [1.0.1] - 2023-09-27 - Renamed to omni.usd_explorer.setup ## [1.0.0] - 2021-04-26 - Initial version of extension UI template with a window
3,289
Markdown
23.37037
141
0.672545
NVIDIA-Omniverse/kit-app-template/source/extensions/omni.usd_explorer.setup/docs/README.md
# omni.usd_explorer.setup
25
Markdown
24.999975
25
0.8
NVIDIA-Omniverse/kit-app-template/source/extensions/omni.hello.world/omni/hello/world/extension.py
# Copyright 2019-2023 NVIDIA CORPORATION # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import omni.ext import omni.ui as ui # Functions and vars are available to other extension as usual in python: `example.python_ext.some_public_function(x)` def some_public_function(x: int): print(f"[omni.hello.world] some_public_function was called with {x}") return x ** x # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class MyExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[omni.hello.world] MyExtension startup") self._count = 0 self._window = ui.Window("My Window", width=300, height=300) with self._window.frame: with ui.VStack(): label = ui.Label("") def on_click(): self._count += 1 label.text = f"count: {self._count}" def on_reset(): self._count = 0 label.text = "empty" on_reset() with ui.HStack(): ui.Button("Add", clicked_fn=on_click) ui.Button("Reset", clicked_fn=on_reset) def on_shutdown(self): print("[omni.hello.world] MyExtension shutdown")
2,141
Python
36.578947
119
0.64269
NVIDIA-Omniverse/kit-app-template/source/extensions/omni.hello.world/omni/hello/world/tests/test_hello_world.py
# Copyright 2019-2023 NVIDIA CORPORATION # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test # Extnsion for writing UI tests (simulate UI interaction) import omni.kit.ui_test as ui_test # Import extension python module we are testing with absolute import path, as if we are external user (other extension) import omni.hello.world # Having a test class dervived from omni.kit.test.AsyncTestCase declared on the root of module will make it auto-discoverable by omni.kit.test class Test(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): pass # After running each test async def tearDown(self): pass # Actual test, notice it is "async" function, so "await" can be used if needed async def test_hello_public_function(self): result = omni.hello.world.some_public_function(4) self.assertEqual(result, 256) async def test_window_button(self): # Find a label in our window label = ui_test.find("My Window//Frame/**/Label[*]") # Find buttons in our window add_button = ui_test.find("My Window//Frame/**/Button[*].text=='Add'") reset_button = ui_test.find("My Window//Frame/**/Button[*].text=='Reset'") # Click reset button await reset_button.click() self.assertEqual(label.widget.text, "empty") await add_button.click() self.assertEqual(label.widget.text, "count: 1") await add_button.click() self.assertEqual(label.widget.text, "count: 2")
2,253
Python
35.950819
142
0.70395
NVIDIA-Omniverse/kit-app-template/source/launcher/description.toml
name = "USD Explorer" # displayed application name shortName = "USD Explorer" # displayed application name in smaller card and library view version = "${version}" # version must be semantic kind = "app" # enum of "app", "connector", and "experience" for now latest = true # boolean for if this version is the latest version slug = "my_company.usd_explorer" # unique identifier for component, all lower case, persists between versions productArea = "My Company" # displayed before application name in launcher category = "Apps" # category of content channel = "beta" # 3 filter types [ "alpha", "beta", "release "] enterpriseStatus = false # set true if you want this package to show in enterprise launcher #values for filtering content, not implemented yet tags = [ "Manufacturing", "Product Design", "Scene Composition", "Visualization", "Rendering" ] #string array, each line is a new line, keep lines under 256 char and keep lines under 4 description = [ "My Company USD Explorer is an Omniverse app for Reviewing and Constructing large facilities such as factories, warehouses and more. It is built using NVIDIA Omniverse™ Kit. The Scene Description and in-memory model is based on Pixar's USD. Omniverse USD Composer takes advantage of the advanced workflows of USD like Layers, Variants, Instancing and much more.", "When connected to a Omniverse Nucleus server, worlds can be authored LIVE across multiple Omniverse applications, machines and users for advanced collaborative workflows." ] #array of links for more info on product [[links]] title = "Tutorials" url = "http://omniverse.nvidia.com/tutorials" [[links]] title = "Forums" url = "https://forums.developer.nvidia.com/c/omniverse/300" [developer] #name of developer name = 'My Company' # hyperlink on developer name (can be left as empty string) url = 'https://www.my-company.com/' [publisher] #name of publisher name = 'My Company' # hyperlink on publisher name (can be left as empty string) url = 'https://www.my-company.com/' [url] windows-x86_64 = 'windows-x86_64/package.zip' linux-x86_64 = 'linux-x86_64/package.zip'
2,246
TOML
43.939999
363
0.704809
NVIDIA-Omniverse/kit-app-template/source/launcher/requirements.toml
# Optional note that will be shown below system requirements. # Supports markdown. note = "Note: Omniverse is built to run on any RTX-powered machine. For ideal performance, we recommend using GeForce RTX™ 2080, Quadro RTX™ 5000, or higher. For latest drivers, visit [NVIDIA Driver Downloads](https://www.nvidia.com/Download/index.aspx). For Quadro, select 'Quadro New Feature Driver (QNF)." # System requirements specs. # Supports line breaks. [minimum] cpuNames = "Intel I7\nAMD Ryzen" cpuCores = "4" ram = "16 GB" storage = "512 GB SSD" vram = "6 GB" gpu = "Any RTX GPU" [recommended] cpuNames = "Intel I7\nAMD Ryzen" cpuCores = "8" ram = "32 GB" storage = "512 GB M.2 SSD" vram = "8 GB" gpu = "GeForce RTX 2080\nQuadro RTX 5000"
734
TOML
33.999998
308
0.723433
NVIDIA-Omniverse/kit-app-template/source/launcher/launcher.toml
## install and launch instructions by environment [defaults.windows-x86_64] url = "" entrypoint = "${productRoot}/omni.usd_explorer.bat" args = ["--/app/environment/name='launcher'"] [defaults.windows-x86_64.open] command = "${productRoot}/omni.usd_explorer.bat" args = ['--exec "open_stage.py ${file}"', "--/app/environment/name='launcher'"] [defaults.windows-x86_64.environment] [defaults.windows-x86_64.install] pre-install = "" pre-install-args = [] install = "${productRoot}/pull_kit_sdk.bat" install-args = [] post-install = "" # "${productRoot}/omni.usd_explorer.warmup.bat" post-install-args = ["--/app/environment/name='launcher_warmup'"] [defaults.windows-x86_64.uninstall] pre-uninstall = "" pre-uninstall-args = [] uninstall = "" uninstall-args = [] post-uninstall = "" post-uninstall-args = [] [defaults.linux-x86_64] url = "" entrypoint = "${productRoot}/omni.usd_explorer.sh" args = ["--/app/environment/name='launcher'"] [defaults.linux-x86_64.environment] [defaults.linux-x86_64.install] pre-install = "" pre-install-args = [] install = "${productRoot}/pull_kit_sdk.sh" install-args = [] post-install = "" # "${productRoot}/omni.usd_explorer.warmup.sh" post-install-args = ["--/app/environment/name='launcher_warmup'"] [defaults.linux-x86_64.uninstall] pre-uninstall = "" pre-uninstall-args = [] uninstall = "" uninstall-args = [] post-uninstall = "" post-uninstall-args = []
1,400
TOML
27.019999
79
0.696429
NVIDIA-Omniverse/IsaacGymEnvs/setup.py
"""Installation script for the 'isaacgymenvs' python package.""" from __future__ import absolute_import from __future__ import print_function from __future__ import division from setuptools import setup, find_packages import os root_dir = os.path.dirname(os.path.realpath(__file__)) # Minimum dependencies required prior to installation INSTALL_REQUIRES = [ # RL "gym==0.23.1", "torch", "omegaconf", "termcolor", "jinja2", "hydra-core>=1.2", "rl-games>=1.6.0", "pyvirtualdisplay", "urdfpy==0.0.22", "pysdf==0.1.9", "warp-lang==0.10.1", "trimesh==3.23.5", ] # Installation operation setup( name="isaacgymenvs", author="NVIDIA", version="1.5.1", description="Benchmark environments for high-speed robot learning in NVIDIA IsaacGym.", keywords=["robotics", "rl"], include_package_data=True, python_requires=">=3.6", install_requires=INSTALL_REQUIRES, packages=find_packages("."), classifiers=["Natural Language :: English", "Programming Language :: Python :: 3.6, 3.7, 3.8"], zip_safe=False, ) # EOF
1,107
Python
21.612244
99
0.644986
NVIDIA-Omniverse/IsaacGymEnvs/README.md
# Isaac Gym Benchmark Environments [Website](https://developer.nvidia.com/isaac-gym) | [Technical Paper](https://arxiv.org/abs/2108.10470) | [Videos](https://sites.google.com/view/isaacgym-nvidia) ### About this repository This repository contains example RL environments for the NVIDIA Isaac Gym high performance environments described [in our NeurIPS 2021 Datasets and Benchmarks paper](https://openreview.net/forum?id=fgFBtYgJQX_) ### Installation Download the Isaac Gym Preview 4 release from the [website](https://developer.nvidia.com/isaac-gym), then follow the installation instructions in the documentation. We highly recommend using a conda environment to simplify set up. Ensure that Isaac Gym works on your system by running one of the examples from the `python/examples` directory, like `joint_monkey.py`. Follow troubleshooting steps described in the Isaac Gym Preview 4 install instructions if you have any trouble running the samples. Once Isaac Gym is installed and samples work within your current python environment, install this repo: ```bash pip install -e . ``` ### Creating an environment We offer an easy-to-use API for creating preset vectorized environments. For more info on what a vectorized environment is and its usage, please refer to the Gym library [documentation](https://www.gymlibrary.dev/content/vectorising/#vectorized-environments). ```python import isaacgym import isaacgymenvs import torch num_envs = 2000 envs = isaacgymenvs.make( seed=0, task="Ant", num_envs=num_envs, sim_device="cuda:0", rl_device="cuda:0", ) print("Observation space is", envs.observation_space) print("Action space is", envs.action_space) obs = envs.reset() for _ in range(20): random_actions = 2.0 * torch.rand((num_envs,) + envs.action_space.shape, device = 'cuda:0') - 1.0 envs.step(random_actions) ``` ### Running the benchmarks To train your first policy, run this line: ```bash python train.py task=Cartpole ``` Cartpole should train to the point that the pole stays upright within a few seconds of starting. Here's another example - Ant locomotion: ```bash python train.py task=Ant ``` Note that by default we show a preview window, which will usually slow down training. You can use the `v` key while running to disable viewer updates and allow training to proceed faster. Hit the `v` key again to resume viewing after a few seconds of training, once the ants have learned to run a bit better. Use the `esc` key or close the viewer window to stop training early. Alternatively, you can train headlessly, as follows: ```bash python train.py task=Ant headless=True ``` Ant may take a minute or two to train a policy you can run. When running headlessly, you can stop it early using Control-C in the command line window. ### Loading trained models // Checkpoints Checkpoints are saved in the folder `runs/EXPERIMENT_NAME/nn` where `EXPERIMENT_NAME` defaults to the task name, but can also be overridden via the `experiment` argument. To load a trained checkpoint and continue training, use the `checkpoint` argument: ```bash python train.py task=Ant checkpoint=runs/Ant/nn/Ant.pth ``` To load a trained checkpoint and only perform inference (no training), pass `test=True` as an argument, along with the checkpoint name. To avoid rendering overhead, you may also want to run with fewer environments using `num_envs=64`: ```bash python train.py task=Ant checkpoint=runs/Ant/nn/Ant.pth test=True num_envs=64 ``` Note that If there are special characters such as `[` or `=` in the checkpoint names, you will need to escape them and put quotes around the string. For example, `checkpoint="./runs/Ant/nn/last_Antep\=501rew\[5981.31\].pth"` ### Configuration and command line arguments We use [Hydra](https://hydra.cc/docs/intro/) to manage the config. Note that this has some differences from previous incarnations in older versions of Isaac Gym. Key arguments to the `train.py` script are: * `task=TASK` - selects which task to use. Any of `AllegroHand`, `AllegroHandDextremeADR`, `AllegroHandDextremeManualDR`, `AllegroKukaLSTM`, `AllegroKukaTwoArmsLSTM`, `Ant`, `Anymal`, `AnymalTerrain`, `BallBalance`, `Cartpole`, `FrankaCabinet`, `Humanoid`, `Ingenuity` `Quadcopter`, `ShadowHand`, `ShadowHandOpenAI_FF`, `ShadowHandOpenAI_LSTM`, and `Trifinger` (these correspond to the config for each environment in the folder `isaacgymenvs/config/task`) * `train=TRAIN` - selects which training config to use. Will automatically default to the correct config for the environment (ie. `<TASK>PPO`). * `num_envs=NUM_ENVS` - selects the number of environments to use (overriding the default number of environments set in the task config). * `seed=SEED` - sets a seed value for randomizations, and overrides the default seed set up in the task config * `sim_device=SIM_DEVICE_TYPE` - Device used for physics simulation. Set to `cuda:0` (default) to use GPU and to `cpu` for CPU. Follows PyTorch-like device syntax. * `rl_device=RL_DEVICE` - Which device / ID to use for the RL algorithm. Defaults to `cuda:0`, and also follows PyTorch-like device syntax. * `graphics_device_id=GRAPHICS_DEVICE_ID` - Which Vulkan graphics device ID to use for rendering. Defaults to 0. **Note** - this may be different from CUDA device ID, and does **not** follow PyTorch-like device syntax. * `pipeline=PIPELINE` - Which API pipeline to use. Defaults to `gpu`, can also set to `cpu`. When using the `gpu` pipeline, all data stays on the GPU and everything runs as fast as possible. When using the `cpu` pipeline, simulation can run on either CPU or GPU, depending on the `sim_device` setting, but a copy of the data is always made on the CPU at every step. * `test=TEST`- If set to `True`, only runs inference on the policy and does not do any training. * `checkpoint=CHECKPOINT_PATH` - Set to path to the checkpoint to load for training or testing. * `headless=HEADLESS` - Whether to run in headless mode. * `experiment=EXPERIMENT` - Sets the name of the experiment. * `max_iterations=MAX_ITERATIONS` - Sets how many iterations to run for. Reasonable defaults are provided for the provided environments. Hydra also allows setting variables inside config files directly as command line arguments. As an example, to set the discount rate for a rl_games training run, you can use `train.params.config.gamma=0.999`. Similarly, variables in task configs can also be set. For example, `task.env.enableDebugVis=True`. #### Hydra Notes Default values for each of these are found in the `isaacgymenvs/config/config.yaml` file. The way that the `task` and `train` portions of the config works are through the use of config groups. You can learn more about how these work [here](https://hydra.cc/docs/tutorials/structured_config/config_groups/) The actual configs for `task` are in `isaacgymenvs/config/task/<TASK>.yaml` and for train in `isaacgymenvs/config/train/<TASK>PPO.yaml`. In some places in the config you will find other variables referenced (for example, `num_actors: ${....task.env.numEnvs}`). Each `.` represents going one level up in the config hierarchy. This is documented fully [here](https://omegaconf.readthedocs.io/en/latest/usage.html#variable-interpolation). ## Tasks Source code for tasks can be found in `isaacgymenvs/tasks`. Each task subclasses the `VecEnv` base class in `isaacgymenvs/base/vec_task.py`. Refer to [docs/framework.md](docs/framework.md) for how to create your own tasks. Full details on each of the tasks available can be found in the [RL examples documentation](docs/rl_examples.md). ## Domain Randomization IsaacGymEnvs includes a framework for Domain Randomization to improve Sim-to-Real transfer of trained RL policies. You can read more about it [here](docs/domain_randomization.md). ## Reproducibility and Determinism If deterministic training of RL policies is important for your work, you may wish to review our [Reproducibility and Determinism Documentation](docs/reproducibility.md). ## Multi-GPU Training You can run multi-GPU training using `torchrun` (i.e., `torch.distributed`) using this repository. Here is an example command for how to run in this way - `torchrun --standalone --nnodes=1 --nproc_per_node=2 train.py multi_gpu=True task=Ant <OTHER_ARGS>` Where the `--nproc_per_node=` flag specifies how many processes to run and note the `multi_gpu=True` flag must be set on the train script in order for multi-GPU training to run. ## Population Based Training You can run population based training to help find good hyperparameters or to train on very difficult environments which would otherwise be hard to learn anything on without it. See [the readme](docs/pbt.md) for details. ## WandB support You can run [WandB](https://wandb.ai/) with Isaac Gym Envs by setting `wandb_activate=True` flag from the command line. You can set the group, name, entity, and project for the run by setting the `wandb_group`, `wandb_name`, `wandb_entity` and `wandb_project` set. Make sure you have WandB installed with `pip install wandb` before activating. ## Capture videos We implement the standard `env.render(mode='rgb_rray')` `gym` API to provide an image of the simulator viewer. Additionally, we can leverage `gym.wrappers.RecordVideo` to help record videos that shows agent's gameplay. Consider running the following file which should produce a video in the `videos` folder. ```python import gym import isaacgym import isaacgymenvs import torch num_envs = 64 envs = isaacgymenvs.make( seed=0, task="Ant", num_envs=num_envs, sim_device="cuda:0", rl_device="cuda:0", graphics_device_id=0, headless=False, multi_gpu=False, virtual_screen_capture=True, force_render=False, ) envs.is_vector_env = True envs = gym.wrappers.RecordVideo( envs, "./videos", step_trigger=lambda step: step % 10000 == 0, # record the videos every 10000 steps video_length=100 # for each video record up to 100 steps ) envs.reset() print("the image of Isaac Gym viewer is an array of shape", envs.render(mode="rgb_array").shape) for _ in range(100): actions = 2.0 * torch.rand((num_envs,) + envs.action_space.shape, device = 'cuda:0') - 1.0 envs.step(actions) ``` ## Capture videos during training You can automatically capture the videos of the agents gameplay by toggling the `capture_video=True` flag and tune the capture frequency `capture_video_freq=1500` and video length via `capture_video_len=100`. You can set `force_render=False` to disable rendering when the videos are not captured. ``` python train.py capture_video=True capture_video_freq=1500 capture_video_len=100 force_render=False ``` You can also automatically upload the videos to Weights and Biases: ``` python train.py task=Ant wandb_activate=True wandb_entity=nvidia wandb_project=rl_games capture_video=True force_render=False ``` ## Pre-commit We use [pre-commit](https://pre-commit.com/) to helps us automate short tasks that improve code quality. Before making a commit to the repository, please ensure `pre-commit run --all-files` runs without error. ## Troubleshooting Please review the Isaac Gym installation instructions first if you run into any issues. You can either submit issues through GitHub or through the [Isaac Gym forum here](https://forums.developer.nvidia.com/c/agx-autonomous-machines/isaac/isaac-gym/322). ## Citing Please cite this work as: ``` @misc{makoviychuk2021isaac, title={Isaac Gym: High Performance GPU-Based Physics Simulation For Robot Learning}, author={Viktor Makoviychuk and Lukasz Wawrzyniak and Yunrong Guo and Michelle Lu and Kier Storey and Miles Macklin and David Hoeller and Nikita Rudin and Arthur Allshire and Ankur Handa and Gavriel State}, year={2021}, journal={arXiv preprint arXiv:2108.10470} } ``` **Note** if you use the DexPBT: Scaling up Dexterous Manipulation for Hand-Arm Systems with Population Based Training work or the code related to Population Based Training, please cite the following paper: ``` @inproceedings{ petrenko2023dexpbt, author = {Aleksei Petrenko, Arthur Allshire, Gavriel State, Ankur Handa, Viktor Makoviychuk}, title = {DexPBT: Scaling up Dexterous Manipulation for Hand-Arm Systems with Population Based Training}, booktitle = {RSS}, year = {2023} } ``` **Note** if you use the DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to Reality work or the code related to Automatic Domain Randomisation, please cite the following paper: ``` @inproceedings{ handa2023dextreme, author = {Ankur Handa, Arthur Allshire, Viktor Makoviychuk, Aleksei Petrenko, Ritvik Singh, Jingzhou Liu, Denys Makoviichuk, Karl Van Wyk, Alexander Zhurkevich, Balakumar Sundaralingam, Yashraj Narang, Jean-Francois Lafleche, Dieter Fox, Gavriel State}, title = {DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to Reality}, booktitle = {ICRA}, year = {2023} } ``` **Note** if you use the ANYmal rough terrain environment in your work, please ensure you cite the following work: ``` @misc{rudin2021learning, title={Learning to Walk in Minutes Using Massively Parallel Deep Reinforcement Learning}, author={Nikita Rudin and David Hoeller and Philipp Reist and Marco Hutter}, year={2021}, journal = {arXiv preprint arXiv:2109.11978} } ``` **Note** if you use the Trifinger environment in your work, please ensure you cite the following work: ``` @misc{isaacgym-trifinger, title = {{Transferring Dexterous Manipulation from GPU Simulation to a Remote Real-World TriFinger}}, author = {Allshire, Arthur and Mittal, Mayank and Lodaya, Varun and Makoviychuk, Viktor and Makoviichuk, Denys and Widmaier, Felix and Wuthrich, Manuel and Bauer, Stefan and Handa, Ankur and Garg, Animesh}, year = {2021}, journal = {arXiv preprint arXiv:2108.09779} } ``` **Note** if you use the AMP: Adversarial Motion Priors environment in your work, please ensure you cite the following work: ``` @article{ 2021-TOG-AMP, author = {Peng, Xue Bin and Ma, Ze and Abbeel, Pieter and Levine, Sergey and Kanazawa, Angjoo}, title = {AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control}, journal = {ACM Trans. Graph.}, issue_date = {August 2021}, volume = {40}, number = {4}, month = jul, year = {2021}, articleno = {1}, numpages = {15}, url = {http://doi.acm.org/10.1145/3450626.3459670}, doi = {10.1145/3450626.3459670}, publisher = {ACM}, address = {New York, NY, USA}, keywords = {motion control, physics-based character animation, reinforcement learning}, } ``` **Note** if you use the Factory simulation methods (e.g., SDF collisions, contact reduction) or Factory learning tools (e.g., assets, environments, or controllers) in your work, please cite the following paper: ``` @inproceedings{ narang2022factory, author = {Yashraj Narang and Kier Storey and Iretiayo Akinola and Miles Macklin and Philipp Reist and Lukasz Wawrzyniak and Yunrong Guo and Adam Moravanszky and Gavriel State and Michelle Lu and Ankur Handa and Dieter Fox}, title = {Factory: Fast contact for robotic assembly}, booktitle = {Robotics: Science and Systems}, year = {2022} } ``` **Note** if you use the IndustReal training environments or algorithms in your work, please cite the following paper: ``` @inproceedings{ tang2023industreal, author = {Bingjie Tang and Michael A Lin and Iretiayo Akinola and Ankur Handa and Gaurav S Sukhatme and Fabio Ramos and Dieter Fox and Yashraj Narang}, title = {IndustReal: Transferring contact-rich assembly tasks from simulation to reality}, booktitle = {Robotics: Science and Systems}, year = {2023} } ```
15,616
Markdown
44.135838
455
0.75698
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/__init__.py
import hydra from hydra import compose, initialize from hydra.core.hydra_config import HydraConfig from omegaconf import DictConfig, OmegaConf from isaacgymenvs.utils.reformat import omegaconf_to_dict OmegaConf.register_new_resolver('eq', lambda x, y: x.lower()==y.lower()) OmegaConf.register_new_resolver('contains', lambda x, y: x.lower() in y.lower()) OmegaConf.register_new_resolver('if', lambda pred, a, b: a if pred else b) OmegaConf.register_new_resolver('resolve_default', lambda default, arg: default if arg=='' else arg) def make( seed: int, task: str, num_envs: int, sim_device: str, rl_device: str, graphics_device_id: int = -1, headless: bool = False, multi_gpu: bool = False, virtual_screen_capture: bool = False, force_render: bool = True, cfg: DictConfig = None ): from isaacgymenvs.utils.rlgames_utils import get_rlgames_env_creator # create hydra config if no config passed in if cfg is None: # reset current hydra config if already parsed (but not passed in here) if HydraConfig.initialized(): task = HydraConfig.get().runtime.choices['task'] hydra.core.global_hydra.GlobalHydra.instance().clear() with initialize(config_path="./cfg"): cfg = compose(config_name="config", overrides=[f"task={task}"]) cfg_dict = omegaconf_to_dict(cfg.task) cfg_dict['env']['numEnvs'] = num_envs # reuse existing config else: cfg_dict = omegaconf_to_dict(cfg.task) create_rlgpu_env = get_rlgames_env_creator( seed=seed, task_config=cfg_dict, task_name=cfg_dict["name"], sim_device=sim_device, rl_device=rl_device, graphics_device_id=graphics_device_id, headless=headless, multi_gpu=multi_gpu, virtual_screen_capture=virtual_screen_capture, force_render=force_render, ) return create_rlgpu_env()
1,953
Python
33.892857
100
0.656938
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/train.py
# train.py # Script to train policies in Isaac Gym # # Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import hydra from omegaconf import DictConfig, OmegaConf from omegaconf import DictConfig, OmegaConf def preprocess_train_config(cfg, config_dict): """ Adding common configuration parameters to the rl_games train config. An alternative to this is inferring them in task-specific .yaml files, but that requires repeating the same variable interpolations in each config. """ train_cfg = config_dict['params']['config'] train_cfg['device'] = cfg.rl_device train_cfg['population_based_training'] = cfg.pbt.enabled train_cfg['pbt_idx'] = cfg.pbt.policy_idx if cfg.pbt.enabled else None train_cfg['full_experiment_name'] = cfg.get('full_experiment_name') print(f'Using rl_device: {cfg.rl_device}') print(f'Using sim_device: {cfg.sim_device}') print(train_cfg) try: model_size_multiplier = config_dict['params']['network']['mlp']['model_size_multiplier'] if model_size_multiplier != 1: units = config_dict['params']['network']['mlp']['units'] for i, u in enumerate(units): units[i] = u * model_size_multiplier print(f'Modified MLP units by x{model_size_multiplier} to {config_dict["params"]["network"]["mlp"]["units"]}') except KeyError: pass return config_dict @hydra.main(version_base="1.1", config_name="config", config_path="./cfg") def launch_rlg_hydra(cfg: DictConfig): import logging import os from datetime import datetime # noinspection PyUnresolvedReferences import isaacgym from isaacgymenvs.pbt.pbt import PbtAlgoObserver, initial_pbt_check from isaacgymenvs.utils.rlgames_utils import multi_gpu_get_rank from hydra.utils import to_absolute_path from isaacgymenvs.tasks import isaacgym_task_map import gym from isaacgymenvs.utils.reformat import omegaconf_to_dict, print_dict from isaacgymenvs.utils.utils import set_np_formatting, set_seed if cfg.pbt.enabled: initial_pbt_check(cfg) from isaacgymenvs.utils.rlgames_utils import RLGPUEnv, RLGPUAlgoObserver, MultiObserver, ComplexObsRLGPUEnv from isaacgymenvs.utils.wandb_utils import WandbAlgoObserver from rl_games.common import env_configurations, vecenv from rl_games.torch_runner import Runner from rl_games.algos_torch import model_builder from isaacgymenvs.learning import amp_continuous from isaacgymenvs.learning import amp_players from isaacgymenvs.learning import amp_models from isaacgymenvs.learning import amp_network_builder import isaacgymenvs time_str = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") run_name = f"{cfg.wandb_name}_{time_str}" # ensure checkpoints can be specified as relative paths if cfg.checkpoint: cfg.checkpoint = to_absolute_path(cfg.checkpoint) cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) # set numpy formatting for printing only set_np_formatting() # global rank of the GPU global_rank = int(os.getenv("RANK", "0")) # sets seed. if seed is -1 will pick a random one cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic, rank=global_rank) def create_isaacgym_env(**kwargs): envs = isaacgymenvs.make( cfg.seed, cfg.task_name, cfg.task.env.numEnvs, cfg.sim_device, cfg.rl_device, cfg.graphics_device_id, cfg.headless, cfg.multi_gpu, cfg.capture_video, cfg.force_render, cfg, **kwargs, ) if cfg.capture_video: envs.is_vector_env = True envs = gym.wrappers.RecordVideo( envs, f"videos/{run_name}", step_trigger=lambda step: step % cfg.capture_video_freq == 0, video_length=cfg.capture_video_len, ) return envs env_configurations.register('rlgpu', { 'vecenv_type': 'RLGPU', 'env_creator': lambda **kwargs: create_isaacgym_env(**kwargs), }) ige_env_cls = isaacgym_task_map[cfg.task_name] dict_cls = ige_env_cls.dict_obs_cls if hasattr(ige_env_cls, 'dict_obs_cls') and ige_env_cls.dict_obs_cls else False if dict_cls: obs_spec = {} actor_net_cfg = cfg.train.params.network obs_spec['obs'] = {'names': list(actor_net_cfg.inputs.keys()), 'concat': not actor_net_cfg.name == "complex_net", 'space_name': 'observation_space'} if "central_value_config" in cfg.train.params.config: critic_net_cfg = cfg.train.params.config.central_value_config.network obs_spec['states'] = {'names': list(critic_net_cfg.inputs.keys()), 'concat': not critic_net_cfg.name == "complex_net", 'space_name': 'state_space'} vecenv.register('RLGPU', lambda config_name, num_actors, **kwargs: ComplexObsRLGPUEnv(config_name, num_actors, obs_spec, **kwargs)) else: vecenv.register('RLGPU', lambda config_name, num_actors, **kwargs: RLGPUEnv(config_name, num_actors, **kwargs)) rlg_config_dict = omegaconf_to_dict(cfg.train) rlg_config_dict = preprocess_train_config(cfg, rlg_config_dict) observers = [RLGPUAlgoObserver()] if cfg.pbt.enabled: pbt_observer = PbtAlgoObserver(cfg) observers.append(pbt_observer) if cfg.wandb_activate: cfg.seed += global_rank if global_rank == 0: # initialize wandb only once per multi-gpu run wandb_observer = WandbAlgoObserver(cfg) observers.append(wandb_observer) # register new AMP network builder and agent def build_runner(algo_observer): runner = Runner(algo_observer) runner.algo_factory.register_builder('amp_continuous', lambda **kwargs : amp_continuous.AMPAgent(**kwargs)) runner.player_factory.register_builder('amp_continuous', lambda **kwargs : amp_players.AMPPlayerContinuous(**kwargs)) model_builder.register_model('continuous_amp', lambda network, **kwargs : amp_models.ModelAMPContinuous(network)) model_builder.register_network('amp', lambda **kwargs : amp_network_builder.AMPBuilder()) return runner # convert CLI arguments into dictionary # create runner and set the settings runner = build_runner(MultiObserver(observers)) runner.load(rlg_config_dict) runner.reset() # dump config dict if not cfg.test: experiment_dir = os.path.join('runs', cfg.train.params.config.name + '_{date:%d-%H-%M-%S}'.format(date=datetime.now())) os.makedirs(experiment_dir, exist_ok=True) with open(os.path.join(experiment_dir, 'config.yaml'), 'w') as f: f.write(OmegaConf.to_yaml(cfg)) runner.run({ 'train': not cfg.test, 'play': cfg.test, 'checkpoint': cfg.checkpoint, 'sigma': cfg.sigma if cfg.sigma != '' else None }) if __name__ == "__main__": launch_rlg_hydra()
8,604
Python
38.113636
159
0.675035
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/learning/amp_datasets.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import torch from rl_games.common import datasets class AMPDataset(datasets.PPODataset): def __init__(self, batch_size, minibatch_size, is_discrete, is_rnn, device, seq_len): super().__init__(batch_size, minibatch_size, is_discrete, is_rnn, device, seq_len) self._idx_buf = torch.randperm(batch_size) return def update_mu_sigma(self, mu, sigma): raise NotImplementedError() return def _get_item(self, idx): start = idx * self.minibatch_size end = (idx + 1) * self.minibatch_size sample_idx = self._idx_buf[start:end] input_dict = {} for k,v in self.values_dict.items(): if k not in self.special_names and v is not None: input_dict[k] = v[sample_idx] if (end >= self.batch_size): self._shuffle_idx_buf() return input_dict def _shuffle_idx_buf(self): self._idx_buf[:] = torch.randperm(self.batch_size) return
2,564
Python
41.749999
90
0.704758
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/learning/replay_buffer.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import torch class ReplayBuffer(): def __init__(self, buffer_size, device): self._head = 0 self._total_count = 0 self._buffer_size = buffer_size self._device = device self._data_buf = None self._sample_idx = torch.randperm(buffer_size) self._sample_head = 0 return def reset(self): self._head = 0 self._total_count = 0 self._reset_sample_idx() return def get_buffer_size(self): return self._buffer_size def get_total_count(self): return self._total_count def store(self, data_dict): if (self._data_buf is None): self._init_data_buf(data_dict) n = next(iter(data_dict.values())).shape[0] buffer_size = self.get_buffer_size() assert(n < buffer_size) for key, curr_buf in self._data_buf.items(): curr_n = data_dict[key].shape[0] assert(n == curr_n) store_n = min(curr_n, buffer_size - self._head) curr_buf[self._head:(self._head + store_n)] = data_dict[key][:store_n] remainder = n - store_n if (remainder > 0): curr_buf[0:remainder] = data_dict[key][store_n:] self._head = (self._head + n) % buffer_size self._total_count += n return def sample(self, n): total_count = self.get_total_count() buffer_size = self.get_buffer_size() idx = torch.arange(self._sample_head, self._sample_head + n) idx = idx % buffer_size rand_idx = self._sample_idx[idx] if (total_count < buffer_size): rand_idx = rand_idx % self._head samples = dict() for k, v in self._data_buf.items(): samples[k] = v[rand_idx] self._sample_head += n if (self._sample_head >= buffer_size): self._reset_sample_idx() return samples def _reset_sample_idx(self): buffer_size = self.get_buffer_size() self._sample_idx[:] = torch.randperm(buffer_size) self._sample_head = 0 return def _init_data_buf(self, data_dict): buffer_size = self.get_buffer_size() self._data_buf = dict() for k, v in data_dict.items(): v_shape = v.shape[1:] self._data_buf[k] = torch.zeros((buffer_size,) + v_shape, device=self._device) return
3,986
Python
33.973684
90
0.632965
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/learning/amp_network_builder.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from rl_games.algos_torch import torch_ext from rl_games.algos_torch import layers from rl_games.algos_torch import network_builder import torch import torch.nn as nn import numpy as np DISC_LOGIT_INIT_SCALE = 1.0 class AMPBuilder(network_builder.A2CBuilder): def __init__(self, **kwargs): super().__init__(**kwargs) return class Network(network_builder.A2CBuilder.Network): def __init__(self, params, **kwargs): super().__init__(params, **kwargs) if self.is_continuous: if (not self.space_config['learn_sigma']): actions_num = kwargs.get('actions_num') sigma_init = self.init_factory.create(**self.space_config['sigma_init']) self.sigma = nn.Parameter(torch.zeros(actions_num, requires_grad=False, dtype=torch.float32), requires_grad=False) sigma_init(self.sigma) amp_input_shape = kwargs.get('amp_input_shape') self._build_disc(amp_input_shape) return def load(self, params): super().load(params) self._disc_units = params['disc']['units'] self._disc_activation = params['disc']['activation'] self._disc_initializer = params['disc']['initializer'] return def eval_critic(self, obs): c_out = self.critic_cnn(obs) c_out = c_out.contiguous().view(c_out.size(0), -1) c_out = self.critic_mlp(c_out) value = self.value_act(self.value(c_out)) return value def eval_disc(self, amp_obs): disc_mlp_out = self._disc_mlp(amp_obs) disc_logits = self._disc_logits(disc_mlp_out) return disc_logits def get_disc_logit_weights(self): return torch.flatten(self._disc_logits.weight) def get_disc_weights(self): weights = [] for m in self._disc_mlp.modules(): if isinstance(m, nn.Linear): weights.append(torch.flatten(m.weight)) weights.append(torch.flatten(self._disc_logits.weight)) return weights def _build_disc(self, input_shape): self._disc_mlp = nn.Sequential() mlp_args = { 'input_size' : input_shape[0], 'units' : self._disc_units, 'activation' : self._disc_activation, 'dense_func' : torch.nn.Linear } self._disc_mlp = self._build_mlp(**mlp_args) mlp_out_size = self._disc_units[-1] self._disc_logits = torch.nn.Linear(mlp_out_size, 1) mlp_init = self.init_factory.create(**self._disc_initializer) for m in self._disc_mlp.modules(): if isinstance(m, nn.Linear): mlp_init(m.weight) if getattr(m, "bias", None) is not None: torch.nn.init.zeros_(m.bias) torch.nn.init.uniform_(self._disc_logits.weight, -DISC_LOGIT_INIT_SCALE, DISC_LOGIT_INIT_SCALE) torch.nn.init.zeros_(self._disc_logits.bias) return def build(self, name, **kwargs): net = AMPBuilder.Network(self.params, **kwargs) return net
4,898
Python
39.487603
134
0.620457
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/learning/hrl_continuous.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import copy from datetime import datetime from gym import spaces import numpy as np import os import time import yaml from rl_games.algos_torch import torch_ext from rl_games.algos_torch import central_value from rl_games.algos_torch.running_mean_std import RunningMeanStd from rl_games.common import a2c_common from rl_games.common import datasets from rl_games.common import schedulers from rl_games.common import vecenv import torch from torch import optim import isaacgymenvs.learning.common_agent as common_agent import isaacgymenvs.learning.gen_amp as gen_amp import isaacgymenvs.learning.gen_amp_models as gen_amp_models import isaacgymenvs.learning.gen_amp_network_builder as gen_amp_network_builder from tensorboardX import SummaryWriter class HRLAgent(common_agent.CommonAgent): def __init__(self, base_name, config): with open(os.path.join(os.getcwd(), config['llc_config']), 'r') as f: llc_config = yaml.load(f, Loader=yaml.SafeLoader) llc_config_params = llc_config['params'] self._latent_dim = llc_config_params['config']['latent_dim'] super().__init__(base_name, config) self._task_size = self.vec_env.env.get_task_obs_size() self._llc_steps = config['llc_steps'] llc_checkpoint = config['llc_checkpoint'] assert(llc_checkpoint != "") self._build_llc(llc_config_params, llc_checkpoint) return def env_step(self, actions): actions = self.preprocess_actions(actions) obs = self.obs['obs'] rewards = 0.0 done_count = 0.0 for t in range(self._llc_steps): llc_actions = self._compute_llc_action(obs, actions) obs, curr_rewards, curr_dones, infos = self.vec_env.step(llc_actions) rewards += curr_rewards done_count += curr_dones rewards /= self._llc_steps dones = torch.zeros_like(done_count) dones[done_count > 0] = 1.0 if self.is_tensor_obses: if self.value_size == 1: rewards = rewards.unsqueeze(1) return self.obs_to_tensors(obs), rewards.to(self.ppo_device), dones.to(self.ppo_device), infos else: if self.value_size == 1: rewards = np.expand_dims(rewards, axis=1) return self.obs_to_tensors(obs), torch.from_numpy(rewards).to(self.ppo_device).float(), torch.from_numpy(dones).to(self.ppo_device), infos def cast_obs(self, obs): obs = super().cast_obs(obs) self._llc_agent.is_tensor_obses = self.is_tensor_obses return obs def preprocess_actions(self, actions): clamped_actions = torch.clamp(actions, -1.0, 1.0) if not self.is_tensor_obses: clamped_actions = clamped_actions.cpu().numpy() return clamped_actions def _setup_action_space(self): super()._setup_action_space() self.actions_num = self._latent_dim return def _build_llc(self, config_params, checkpoint_file): network_params = config_params['network'] network_builder = gen_amp_network_builder.GenAMPBuilder() network_builder.load(network_params) network = gen_amp_models.ModelGenAMPContinuous(network_builder) llc_agent_config = self._build_llc_agent_config(config_params, network) self._llc_agent = gen_amp.GenAMPAgent('llc', llc_agent_config) self._llc_agent.restore(checkpoint_file) print("Loaded LLC checkpoint from {:s}".format(checkpoint_file)) self._llc_agent.set_eval() return def _build_llc_agent_config(self, config_params, network): llc_env_info = copy.deepcopy(self.env_info) obs_space = llc_env_info['observation_space'] obs_size = obs_space.shape[0] obs_size -= self._task_size llc_env_info['observation_space'] = spaces.Box(obs_space.low[:obs_size], obs_space.high[:obs_size]) config = config_params['config'] config['network'] = network config['num_actors'] = self.num_actors config['features'] = {'observer' : self.algo_observer} config['env_info'] = llc_env_info return config def _compute_llc_action(self, obs, actions): llc_obs = self._extract_llc_obs(obs) processed_obs = self._llc_agent._preproc_obs(llc_obs) z = torch.nn.functional.normalize(actions, dim=-1) mu, _ = self._llc_agent.model.a2c_network.eval_actor(obs=processed_obs, amp_latents=z) llc_action = mu llc_action = self._llc_agent.preprocess_actions(llc_action) return llc_action def _extract_llc_obs(self, obs): obs_size = obs.shape[-1] llc_obs = obs[..., :obs_size - self._task_size] return llc_obs
6,339
Python
38.625
150
0.675974
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/learning/amp_continuous.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from rl_games.algos_torch.running_mean_std import RunningMeanStd from rl_games.algos_torch import torch_ext from rl_games.common import a2c_common from rl_games.common import schedulers from rl_games.common import vecenv from isaacgymenvs.utils.torch_jit_utils import to_torch import time from datetime import datetime import numpy as np from torch import optim import torch from torch import nn import isaacgymenvs.learning.replay_buffer as replay_buffer import isaacgymenvs.learning.common_agent as common_agent from tensorboardX import SummaryWriter class AMPAgent(common_agent.CommonAgent): def __init__(self, base_name, params): super().__init__(base_name, params) if self.normalize_value: self.value_mean_std = self.central_value_net.model.value_mean_std if self.has_central_value else self.model.value_mean_std if self._normalize_amp_input: self._amp_input_mean_std = RunningMeanStd(self._amp_observation_space.shape).to(self.ppo_device) return def init_tensors(self): super().init_tensors() self._build_amp_buffers() return def set_eval(self): super().set_eval() if self._normalize_amp_input: self._amp_input_mean_std.eval() return def set_train(self): super().set_train() if self._normalize_amp_input: self._amp_input_mean_std.train() return def get_stats_weights(self): state = super().get_stats_weights() if self._normalize_amp_input: state['amp_input_mean_std'] = self._amp_input_mean_std.state_dict() return state def set_stats_weights(self, weights): super().set_stats_weights(weights) if self._normalize_amp_input: self._amp_input_mean_std.load_state_dict(weights['amp_input_mean_std']) return def play_steps(self): self.set_eval() epinfos = [] update_list = self.update_list for n in range(self.horizon_length): self.obs, done_env_ids = self._env_reset_done() self.experience_buffer.update_data('obses', n, self.obs['obs']) if self.use_action_masks: masks = self.vec_env.get_action_masks() res_dict = self.get_masked_action_values(self.obs, masks) else: res_dict = self.get_action_values(self.obs) for k in update_list: self.experience_buffer.update_data(k, n, res_dict[k]) if self.has_central_value: self.experience_buffer.update_data('states', n, self.obs['states']) self.obs, rewards, self.dones, infos = self.env_step(res_dict['actions']) shaped_rewards = self.rewards_shaper(rewards) self.experience_buffer.update_data('rewards', n, shaped_rewards) self.experience_buffer.update_data('next_obses', n, self.obs['obs']) self.experience_buffer.update_data('dones', n, self.dones) self.experience_buffer.update_data('amp_obs', n, infos['amp_obs']) terminated = infos['terminate'].float() terminated = terminated.unsqueeze(-1) next_vals = self._eval_critic(self.obs) next_vals *= (1.0 - terminated) self.experience_buffer.update_data('next_values', n, next_vals) self.current_rewards += rewards self.current_lengths += 1 all_done_indices = self.dones.nonzero(as_tuple=False) done_indices = all_done_indices[::self.num_agents] self.game_rewards.update(self.current_rewards[done_indices]) self.game_lengths.update(self.current_lengths[done_indices]) self.algo_observer.process_infos(infos, done_indices) not_dones = 1.0 - self.dones.float() self.current_rewards = self.current_rewards * not_dones.unsqueeze(1) self.current_lengths = self.current_lengths * not_dones if (self.vec_env.env.viewer and (n == (self.horizon_length - 1))): self._amp_debug(infos) mb_fdones = self.experience_buffer.tensor_dict['dones'].float() mb_values = self.experience_buffer.tensor_dict['values'] mb_next_values = self.experience_buffer.tensor_dict['next_values'] mb_rewards = self.experience_buffer.tensor_dict['rewards'] mb_amp_obs = self.experience_buffer.tensor_dict['amp_obs'] amp_rewards = self._calc_amp_rewards(mb_amp_obs) mb_rewards = self._combine_rewards(mb_rewards, amp_rewards) mb_advs = self.discount_values(mb_fdones, mb_values, mb_rewards, mb_next_values) mb_returns = mb_advs + mb_values batch_dict = self.experience_buffer.get_transformed_list(a2c_common.swap_and_flatten01, self.tensor_list) batch_dict['returns'] = a2c_common.swap_and_flatten01(mb_returns) batch_dict['played_frames'] = self.batch_size for k, v in amp_rewards.items(): batch_dict[k] = a2c_common.swap_and_flatten01(v) return batch_dict def prepare_dataset(self, batch_dict): super().prepare_dataset(batch_dict) self.dataset.values_dict['amp_obs'] = batch_dict['amp_obs'] self.dataset.values_dict['amp_obs_demo'] = batch_dict['amp_obs_demo'] self.dataset.values_dict['amp_obs_replay'] = batch_dict['amp_obs_replay'] return def train_epoch(self): play_time_start = time.time() with torch.no_grad(): if self.is_rnn: batch_dict = self.play_steps_rnn() else: batch_dict = self.play_steps() play_time_end = time.time() update_time_start = time.time() rnn_masks = batch_dict.get('rnn_masks', None) self._update_amp_demos() num_obs_samples = batch_dict['amp_obs'].shape[0] amp_obs_demo = self._amp_obs_demo_buffer.sample(num_obs_samples)['amp_obs'] batch_dict['amp_obs_demo'] = amp_obs_demo if (self._amp_replay_buffer.get_total_count() == 0): batch_dict['amp_obs_replay'] = batch_dict['amp_obs'] else: batch_dict['amp_obs_replay'] = self._amp_replay_buffer.sample(num_obs_samples)['amp_obs'] self.set_train() self.curr_frames = batch_dict.pop('played_frames') self.prepare_dataset(batch_dict) self.algo_observer.after_steps() if self.has_central_value: self.train_central_value() train_info = None if self.is_rnn: frames_mask_ratio = rnn_masks.sum().item() / (rnn_masks.nelement()) print(frames_mask_ratio) for _ in range(0, self.mini_epochs_num): ep_kls = [] for i in range(len(self.dataset)): curr_train_info = self.train_actor_critic(self.dataset[i]) if self.schedule_type == 'legacy': self.last_lr, self.entropy_coef = self.scheduler.update(self.last_lr, self.entropy_coef, self.epoch_num, 0, curr_train_info['kl'].item()) self.update_lr(self.last_lr) if (train_info is None): train_info = dict() for k, v in curr_train_info.items(): train_info[k] = [v] else: for k, v in curr_train_info.items(): train_info[k].append(v) av_kls = torch_ext.mean_list(train_info['kl']) if self.schedule_type == 'standard': self.last_lr, self.entropy_coef = self.scheduler.update(self.last_lr, self.entropy_coef, self.epoch_num, 0, av_kls.item()) self.update_lr(self.last_lr) if self.schedule_type == 'standard_epoch': self.last_lr, self.entropy_coef = self.scheduler.update(self.last_lr, self.entropy_coef, self.epoch_num, 0, av_kls.item()) self.update_lr(self.last_lr) update_time_end = time.time() play_time = play_time_end - play_time_start update_time = update_time_end - update_time_start total_time = update_time_end - play_time_start self._store_replay_amp_obs(batch_dict['amp_obs']) train_info['play_time'] = play_time train_info['update_time'] = update_time train_info['total_time'] = total_time self._record_train_batch_info(batch_dict, train_info) return train_info def calc_gradients(self, input_dict): self.set_train() value_preds_batch = input_dict['old_values'] old_action_log_probs_batch = input_dict['old_logp_actions'] advantage = input_dict['advantages'] old_mu_batch = input_dict['mu'] old_sigma_batch = input_dict['sigma'] return_batch = input_dict['returns'] actions_batch = input_dict['actions'] obs_batch = input_dict['obs'] obs_batch = self._preproc_obs(obs_batch) amp_obs = input_dict['amp_obs'][0:self._amp_minibatch_size] amp_obs = self._preproc_amp_obs(amp_obs) amp_obs_replay = input_dict['amp_obs_replay'][0:self._amp_minibatch_size] amp_obs_replay = self._preproc_amp_obs(amp_obs_replay) amp_obs_demo = input_dict['amp_obs_demo'][0:self._amp_minibatch_size] amp_obs_demo = self._preproc_amp_obs(amp_obs_demo) amp_obs_demo.requires_grad_(True) lr = self.last_lr kl = 1.0 lr_mul = 1.0 curr_e_clip = lr_mul * self.e_clip batch_dict = { 'is_train': True, 'prev_actions': actions_batch, 'obs' : obs_batch, 'amp_obs' : amp_obs, 'amp_obs_replay' : amp_obs_replay, 'amp_obs_demo' : amp_obs_demo } rnn_masks = None if self.is_rnn: rnn_masks = input_dict['rnn_masks'] batch_dict['rnn_states'] = input_dict['rnn_states'] batch_dict['seq_length'] = self.seq_len with torch.cuda.amp.autocast(enabled=self.mixed_precision): res_dict = self.model(batch_dict) action_log_probs = res_dict['prev_neglogp'] values = res_dict['values'] entropy = res_dict['entropy'] mu = res_dict['mus'] sigma = res_dict['sigmas'] disc_agent_logit = res_dict['disc_agent_logit'] disc_agent_replay_logit = res_dict['disc_agent_replay_logit'] disc_demo_logit = res_dict['disc_demo_logit'] a_info = self._actor_loss(old_action_log_probs_batch, action_log_probs, advantage, curr_e_clip) a_loss = a_info['actor_loss'] c_info = self._critic_loss(value_preds_batch, values, curr_e_clip, return_batch, self.clip_value) c_loss = c_info['critic_loss'] b_loss = self.bound_loss(mu) losses, sum_mask = torch_ext.apply_masks([a_loss.unsqueeze(1), c_loss, entropy.unsqueeze(1), b_loss.unsqueeze(1)], rnn_masks) a_loss, c_loss, entropy, b_loss = losses[0], losses[1], losses[2], losses[3] disc_agent_cat_logit = torch.cat([disc_agent_logit, disc_agent_replay_logit], dim=0) disc_info = self._disc_loss(disc_agent_cat_logit, disc_demo_logit, amp_obs_demo) disc_loss = disc_info['disc_loss'] loss = a_loss + self.critic_coef * c_loss - self.entropy_coef * entropy + self.bounds_loss_coef * b_loss \ + self._disc_coef * disc_loss if self.multi_gpu: self.optimizer.zero_grad() else: for param in self.model.parameters(): param.grad = None self.scaler.scale(loss).backward() #TODO: Refactor this ugliest code of the year if self.truncate_grads: if self.multi_gpu: self.optimizer.synchronize() self.scaler.unscale_(self.optimizer) nn.utils.clip_grad_norm_(self.model.parameters(), self.grad_norm) with self.optimizer.skip_synchronize(): self.scaler.step(self.optimizer) self.scaler.update() else: self.scaler.unscale_(self.optimizer) nn.utils.clip_grad_norm_(self.model.parameters(), self.grad_norm) self.scaler.step(self.optimizer) self.scaler.update() else: self.scaler.step(self.optimizer) self.scaler.update() with torch.no_grad(): reduce_kl = not self.is_rnn kl_dist = torch_ext.policy_kl(mu.detach(), sigma.detach(), old_mu_batch, old_sigma_batch, reduce_kl) if self.is_rnn: kl_dist = (kl_dist * rnn_masks).sum() / rnn_masks.numel() #/ sum_mask self.train_result = { 'entropy': entropy, 'kl': kl_dist, 'last_lr': self.last_lr, 'lr_mul': lr_mul, 'b_loss': b_loss } self.train_result.update(a_info) self.train_result.update(c_info) self.train_result.update(disc_info) return def _load_config_params(self, config): super()._load_config_params(config) self._task_reward_w = config['task_reward_w'] self._disc_reward_w = config['disc_reward_w'] self._amp_observation_space = self.env_info['amp_observation_space'] self._amp_batch_size = int(config['amp_batch_size']) self._amp_minibatch_size = int(config['amp_minibatch_size']) assert(self._amp_minibatch_size <= self.minibatch_size) self._disc_coef = config['disc_coef'] self._disc_logit_reg = config['disc_logit_reg'] self._disc_grad_penalty = config['disc_grad_penalty'] self._disc_weight_decay = config['disc_weight_decay'] self._disc_reward_scale = config['disc_reward_scale'] self._normalize_amp_input = config.get('normalize_amp_input', True) return def _build_net_config(self): config = super()._build_net_config() config['amp_input_shape'] = self._amp_observation_space.shape return config def _init_train(self): super()._init_train() self._init_amp_demo_buf() return def _disc_loss(self, disc_agent_logit, disc_demo_logit, obs_demo): # prediction loss disc_loss_agent = self._disc_loss_neg(disc_agent_logit) disc_loss_demo = self._disc_loss_pos(disc_demo_logit) disc_loss = 0.5 * (disc_loss_agent + disc_loss_demo) # logit reg logit_weights = self.model.a2c_network.get_disc_logit_weights() disc_logit_loss = torch.sum(torch.square(logit_weights)) disc_loss += self._disc_logit_reg * disc_logit_loss # grad penalty disc_demo_grad = torch.autograd.grad(disc_demo_logit, obs_demo, grad_outputs=torch.ones_like(disc_demo_logit), create_graph=True, retain_graph=True, only_inputs=True) disc_demo_grad = disc_demo_grad[0] disc_demo_grad = torch.sum(torch.square(disc_demo_grad), dim=-1) disc_grad_penalty = torch.mean(disc_demo_grad) disc_loss += self._disc_grad_penalty * disc_grad_penalty # weight decay if (self._disc_weight_decay != 0): disc_weights = self.model.a2c_network.get_disc_weights() disc_weights = torch.cat(disc_weights, dim=-1) disc_weight_decay = torch.sum(torch.square(disc_weights)) disc_loss += self._disc_weight_decay * disc_weight_decay disc_agent_acc, disc_demo_acc = self._compute_disc_acc(disc_agent_logit, disc_demo_logit) disc_info = { 'disc_loss': disc_loss, 'disc_grad_penalty': disc_grad_penalty, 'disc_logit_loss': disc_logit_loss, 'disc_agent_acc': disc_agent_acc, 'disc_demo_acc': disc_demo_acc, 'disc_agent_logit': disc_agent_logit, 'disc_demo_logit': disc_demo_logit } return disc_info def _disc_loss_neg(self, disc_logits): bce = torch.nn.BCEWithLogitsLoss() loss = bce(disc_logits, torch.zeros_like(disc_logits)) return loss def _disc_loss_pos(self, disc_logits): bce = torch.nn.BCEWithLogitsLoss() loss = bce(disc_logits, torch.ones_like(disc_logits)) return loss def _compute_disc_acc(self, disc_agent_logit, disc_demo_logit): agent_acc = disc_agent_logit < 0 agent_acc = torch.mean(agent_acc.float()) demo_acc = disc_demo_logit > 0 demo_acc = torch.mean(demo_acc.float()) return agent_acc, demo_acc def _fetch_amp_obs_demo(self, num_samples): amp_obs_demo = self.vec_env.env.fetch_amp_obs_demo(num_samples) return amp_obs_demo def _build_amp_buffers(self): batch_shape = self.experience_buffer.obs_base_shape self.experience_buffer.tensor_dict['amp_obs'] = torch.zeros(batch_shape + self._amp_observation_space.shape, device=self.ppo_device) amp_obs_demo_buffer_size = int(self.config['amp_obs_demo_buffer_size']) self._amp_obs_demo_buffer = replay_buffer.ReplayBuffer(amp_obs_demo_buffer_size, self.ppo_device) self._amp_replay_keep_prob = self.config['amp_replay_keep_prob'] replay_buffer_size = int(self.config['amp_replay_buffer_size']) self._amp_replay_buffer = replay_buffer.ReplayBuffer(replay_buffer_size, self.ppo_device) self.tensor_list += ['amp_obs'] return def _init_amp_demo_buf(self): buffer_size = self._amp_obs_demo_buffer.get_buffer_size() num_batches = int(np.ceil(buffer_size / self._amp_batch_size)) for i in range(num_batches): curr_samples = self._fetch_amp_obs_demo(self._amp_batch_size) self._amp_obs_demo_buffer.store({'amp_obs': curr_samples}) return def _update_amp_demos(self): new_amp_obs_demo = self._fetch_amp_obs_demo(self._amp_batch_size) self._amp_obs_demo_buffer.store({'amp_obs': new_amp_obs_demo}) return def _preproc_amp_obs(self, amp_obs): if self._normalize_amp_input: amp_obs = self._amp_input_mean_std(amp_obs) return amp_obs def _combine_rewards(self, task_rewards, amp_rewards): disc_r = amp_rewards['disc_rewards'] combined_rewards = self._task_reward_w * task_rewards + \ + self._disc_reward_w * disc_r return combined_rewards def _eval_disc(self, amp_obs): proc_amp_obs = self._preproc_amp_obs(amp_obs) return self.model.a2c_network.eval_disc(proc_amp_obs) def _calc_amp_rewards(self, amp_obs): disc_r = self._calc_disc_rewards(amp_obs) output = { 'disc_rewards': disc_r } return output def _calc_disc_rewards(self, amp_obs): with torch.no_grad(): disc_logits = self._eval_disc(amp_obs) prob = 1 / (1 + torch.exp(-disc_logits)) disc_r = -torch.log(torch.maximum(1 - prob, torch.tensor(0.0001, device=self.ppo_device))) disc_r *= self._disc_reward_scale return disc_r def _store_replay_amp_obs(self, amp_obs): buf_size = self._amp_replay_buffer.get_buffer_size() buf_total_count = self._amp_replay_buffer.get_total_count() if (buf_total_count > buf_size): keep_probs = to_torch(np.array([self._amp_replay_keep_prob] * amp_obs.shape[0]), device=self.ppo_device) keep_mask = torch.bernoulli(keep_probs) == 1.0 amp_obs = amp_obs[keep_mask] self._amp_replay_buffer.store({'amp_obs': amp_obs}) return def _record_train_batch_info(self, batch_dict, train_info): train_info['disc_rewards'] = batch_dict['disc_rewards'] return def _log_train_info(self, train_info, frame): super()._log_train_info(train_info, frame) self.writer.add_scalar('losses/disc_loss', torch_ext.mean_list(train_info['disc_loss']).item(), frame) self.writer.add_scalar('info/disc_agent_acc', torch_ext.mean_list(train_info['disc_agent_acc']).item(), frame) self.writer.add_scalar('info/disc_demo_acc', torch_ext.mean_list(train_info['disc_demo_acc']).item(), frame) self.writer.add_scalar('info/disc_agent_logit', torch_ext.mean_list(train_info['disc_agent_logit']).item(), frame) self.writer.add_scalar('info/disc_demo_logit', torch_ext.mean_list(train_info['disc_demo_logit']).item(), frame) self.writer.add_scalar('info/disc_grad_penalty', torch_ext.mean_list(train_info['disc_grad_penalty']).item(), frame) self.writer.add_scalar('info/disc_logit_loss', torch_ext.mean_list(train_info['disc_logit_loss']).item(), frame) disc_reward_std, disc_reward_mean = torch.std_mean(train_info['disc_rewards']) self.writer.add_scalar('info/disc_reward_mean', disc_reward_mean.item(), frame) self.writer.add_scalar('info/disc_reward_std', disc_reward_std.item(), frame) return def _amp_debug(self, info): with torch.no_grad(): amp_obs = info['amp_obs'] amp_obs = amp_obs[0:1] disc_pred = self._eval_disc(amp_obs) amp_rewards = self._calc_amp_rewards(amp_obs) disc_reward = amp_rewards['disc_rewards'] disc_pred = disc_pred.detach().cpu().numpy()[0, 0] disc_reward = disc_reward.cpu().numpy()[0, 0] print("disc_pred: ", disc_pred, disc_reward) return
23,314
Python
40.933453
157
0.6035
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/learning/amp_players.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import torch from rl_games.algos_torch import torch_ext from rl_games.algos_torch.running_mean_std import RunningMeanStd from rl_games.common.player import BasePlayer import isaacgymenvs.learning.common_player as common_player class AMPPlayerContinuous(common_player.CommonPlayer): def __init__(self, params): config = params['config'] self._normalize_amp_input = config.get('normalize_amp_input', True) self._disc_reward_scale = config['disc_reward_scale'] self._print_disc_prediction = config.get('print_disc_prediction', False) super().__init__(params) return def restore(self, fn): super().restore(fn) if self._normalize_amp_input: checkpoint = torch_ext.load_checkpoint(fn) self._amp_input_mean_std.load_state_dict(checkpoint['amp_input_mean_std']) return def _build_net(self, config): super()._build_net(config) if self._normalize_amp_input: self._amp_input_mean_std = RunningMeanStd(config['amp_input_shape']).to(self.device) self._amp_input_mean_std.eval() return def _post_step(self, info): super()._post_step(info) if self._print_disc_prediction: self._amp_debug(info) return def _build_net_config(self): config = super()._build_net_config() if (hasattr(self, 'env')): config['amp_input_shape'] = self.env.amp_observation_space.shape else: config['amp_input_shape'] = self.env_info['amp_observation_space'] return config def _amp_debug(self, info): with torch.no_grad(): amp_obs = info['amp_obs'] amp_obs = amp_obs[0:1] disc_pred = self._eval_disc(amp_obs.to(self.device)) amp_rewards = self._calc_amp_rewards(amp_obs.to(self.device)) disc_reward = amp_rewards['disc_rewards'] disc_pred = disc_pred.detach().cpu().numpy()[0, 0] disc_reward = disc_reward.cpu().numpy()[0, 0] print("disc_pred: ", disc_pred, disc_reward) return def _preproc_amp_obs(self, amp_obs): if self._normalize_amp_input: amp_obs = self._amp_input_mean_std(amp_obs) return amp_obs def _eval_disc(self, amp_obs): proc_amp_obs = self._preproc_amp_obs(amp_obs) return self.model.a2c_network.eval_disc(proc_amp_obs) def _calc_amp_rewards(self, amp_obs): disc_r = self._calc_disc_rewards(amp_obs) output = { 'disc_rewards': disc_r } return output def _calc_disc_rewards(self, amp_obs): with torch.no_grad(): disc_logits = self._eval_disc(amp_obs) prob = 1.0 / (1.0 + torch.exp(-disc_logits)) disc_r = -torch.log(torch.maximum(1 - prob, torch.tensor(0.0001, device=self.device))) disc_r *= self._disc_reward_scale return disc_r
4,535
Python
38.103448
98
0.657773
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/learning/common_agent.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import copy from datetime import datetime from gym import spaces import numpy as np import os import time import yaml from rl_games.algos_torch import a2c_continuous from rl_games.algos_torch import torch_ext from rl_games.algos_torch import central_value from rl_games.algos_torch.running_mean_std import RunningMeanStd from rl_games.common import a2c_common from rl_games.common import datasets from rl_games.common import schedulers from rl_games.common import vecenv import torch from torch import optim from . import amp_datasets as amp_datasets from tensorboardX import SummaryWriter class CommonAgent(a2c_continuous.A2CAgent): def __init__(self, base_name, params): a2c_common.A2CBase.__init__(self, base_name, params) config = params['config'] self._load_config_params(config) self.is_discrete = False self._setup_action_space() self.bounds_loss_coef = config.get('bounds_loss_coef', None) self.clip_actions = config.get('clip_actions', True) self.network_path = self.nn_dir net_config = self._build_net_config() self.model = self.network.build(net_config) self.model.to(self.ppo_device) self.states = None self.init_rnn_from_model(self.model) self.last_lr = float(self.last_lr) self.optimizer = optim.Adam(self.model.parameters(), float(self.last_lr), eps=1e-08, weight_decay=self.weight_decay) if self.has_central_value: cv_config = { 'state_shape' : torch_ext.shape_whc_to_cwh(self.state_shape), 'value_size' : self.value_size, 'ppo_device' : self.ppo_device, 'num_agents' : self.num_agents, 'num_steps' : self.horizon_length, 'num_actors' : self.num_actors, 'num_actions' : self.actions_num, 'seq_len' : self.seq_len, 'model' : self.central_value_config['network'], 'config' : self.central_value_config, 'writter' : self.writer, 'multi_gpu' : self.multi_gpu } self.central_value_net = central_value.CentralValueTrain(**cv_config).to(self.ppo_device) self.use_experimental_cv = self.config.get('use_experimental_cv', True) self.dataset = amp_datasets.AMPDataset(self.batch_size, self.minibatch_size, self.is_discrete, self.is_rnn, self.ppo_device, self.seq_len) self.algo_observer.after_init(self) return def init_tensors(self): super().init_tensors() self.experience_buffer.tensor_dict['next_obses'] = torch.zeros_like(self.experience_buffer.tensor_dict['obses']) self.experience_buffer.tensor_dict['next_values'] = torch.zeros_like(self.experience_buffer.tensor_dict['values']) self.tensor_list += ['next_obses'] return def train(self): self.init_tensors() self.last_mean_rewards = -100500 start_time = time.time() total_time = 0 rep_count = 0 self.frame = 0 self.obs = self.env_reset() self.curr_frames = self.batch_size_envs self.model_output_file = os.path.join(self.network_path, self.config['name'] + '_{date:%d-%H-%M-%S}'.format(date=datetime.now())) self._init_train() # global rank of the GPU # multi-gpu training is not currently supported for AMP self.global_rank = int(os.getenv("RANK", "0")) while True: epoch_num = self.update_epoch() train_info = self.train_epoch() sum_time = train_info['total_time'] total_time += sum_time frame = self.frame if self.global_rank == 0: scaled_time = sum_time scaled_play_time = train_info['play_time'] curr_frames = self.curr_frames self.frame += curr_frames if self.print_stats: fps_step = curr_frames / scaled_play_time fps_total = curr_frames / scaled_time print(f'fps step: {fps_step:.1f} fps total: {fps_total:.1f}') self.writer.add_scalar('performance/total_fps', curr_frames / scaled_time, frame) self.writer.add_scalar('performance/step_fps', curr_frames / scaled_play_time, frame) self.writer.add_scalar('info/epochs', epoch_num, frame) self._log_train_info(train_info, frame) self.algo_observer.after_print_stats(frame, epoch_num, total_time) if self.game_rewards.current_size > 0: mean_rewards = self.game_rewards.get_mean() mean_lengths = self.game_lengths.get_mean() for i in range(self.value_size): self.writer.add_scalar('rewards/frame'.format(i), mean_rewards[i], frame) self.writer.add_scalar('rewards/iter'.format(i), mean_rewards[i], epoch_num) self.writer.add_scalar('rewards/time'.format(i), mean_rewards[i], total_time) self.writer.add_scalar('episode_lengths/frame', mean_lengths, frame) self.writer.add_scalar('episode_lengths/iter', mean_lengths, epoch_num) if self.has_self_play_config: self.self_play_manager.update(self) if self.save_freq > 0: if (epoch_num % self.save_freq == 0): self.save(self.model_output_file + "_" + str(epoch_num)) if epoch_num > self.max_epochs: self.save(self.model_output_file) print('MAX EPOCHS NUM!') return self.last_mean_rewards, epoch_num update_time = 0 return def train_epoch(self): play_time_start = time.time() with torch.no_grad(): if self.is_rnn: batch_dict = self.play_steps_rnn() else: batch_dict = self.play_steps() play_time_end = time.time() update_time_start = time.time() rnn_masks = batch_dict.get('rnn_masks', None) self.set_train() self.curr_frames = batch_dict.pop('played_frames') self.prepare_dataset(batch_dict) self.algo_observer.after_steps() if self.has_central_value: self.train_central_value() train_info = None if self.is_rnn: frames_mask_ratio = rnn_masks.sum().item() / (rnn_masks.nelement()) print(frames_mask_ratio) for _ in range(0, self.mini_epochs_num): ep_kls = [] for i in range(len(self.dataset)): curr_train_info = self.train_actor_critic(self.dataset[i]) print(type(curr_train_info)) if self.schedule_type == 'legacy': self.last_lr, self.entropy_coef = self.scheduler.update(self.last_lr, self.entropy_coef, self.epoch_num, 0, curr_train_info['kl'].item()) self.update_lr(self.last_lr) if (train_info is None): train_info = dict() for k, v in curr_train_info.items(): train_info[k] = [v] else: for k, v in curr_train_info.items(): train_info[k].append(v) av_kls = torch_ext.mean_list(train_info['kl']) if self.schedule_type == 'standard': self.last_lr, self.entropy_coef = self.scheduler.update(self.last_lr, self.entropy_coef, self.epoch_num, 0, av_kls.item()) self.update_lr(self.last_lr) if self.schedule_type == 'standard_epoch': self.last_lr, self.entropy_coef = self.scheduler.update(self.last_lr, self.entropy_coef, self.epoch_num, 0, av_kls.item()) self.update_lr(self.last_lr) update_time_end = time.time() play_time = play_time_end - play_time_start update_time = update_time_end - update_time_start total_time = update_time_end - play_time_start train_info['play_time'] = play_time train_info['update_time'] = update_time train_info['total_time'] = total_time self._record_train_batch_info(batch_dict, train_info) return train_info def play_steps(self): self.set_eval() epinfos = [] update_list = self.update_list for n in range(self.horizon_length): self.obs, done_env_ids = self._env_reset_done() self.experience_buffer.update_data('obses', n, self.obs['obs']) if self.use_action_masks: masks = self.vec_env.get_action_masks() res_dict = self.get_masked_action_values(self.obs, masks) else: res_dict = self.get_action_values(self.obs) for k in update_list: self.experience_buffer.update_data(k, n, res_dict[k]) if self.has_central_value: self.experience_buffer.update_data('states', n, self.obs['states']) self.obs, rewards, self.dones, infos = self.env_step(res_dict['actions']) shaped_rewards = self.rewards_shaper(rewards) self.experience_buffer.update_data('rewards', n, shaped_rewards) self.experience_buffer.update_data('next_obses', n, self.obs['obs']) self.experience_buffer.update_data('dones', n, self.dones) terminated = infos['terminate'].float() terminated = terminated.unsqueeze(-1) next_vals = self._eval_critic(self.obs) next_vals *= (1.0 - terminated) self.experience_buffer.update_data('next_values', n, next_vals) self.current_rewards += rewards self.current_lengths += 1 all_done_indices = self.dones.nonzero(as_tuple=False) done_indices = all_done_indices[::self.num_agents] self.game_rewards.update(self.current_rewards[done_indices]) self.game_lengths.update(self.current_lengths[done_indices]) self.algo_observer.process_infos(infos, done_indices) not_dones = 1.0 - self.dones.float() self.current_rewards = self.current_rewards * not_dones.unsqueeze(1) self.current_lengths = self.current_lengths * not_dones mb_fdones = self.experience_buffer.tensor_dict['dones'].float() mb_values = self.experience_buffer.tensor_dict['values'] mb_next_values = self.experience_buffer.tensor_dict['next_values'] mb_rewards = self.experience_buffer.tensor_dict['rewards'] mb_advs = self.discount_values(mb_fdones, mb_values, mb_rewards, mb_next_values) mb_returns = mb_advs + mb_values batch_dict = self.experience_buffer.get_transformed_list(a2c_common.swap_and_flatten01, self.tensor_list) batch_dict['returns'] = a2c_common.swap_and_flatten01(mb_returns) batch_dict['played_frames'] = self.batch_size return batch_dict def calc_gradients(self, input_dict): self.set_train() value_preds_batch = input_dict['old_values'] old_action_log_probs_batch = input_dict['old_logp_actions'] advantage = input_dict['advantages'] old_mu_batch = input_dict['mu'] old_sigma_batch = input_dict['sigma'] return_batch = input_dict['returns'] actions_batch = input_dict['actions'] obs_batch = input_dict['obs'] obs_batch = self._preproc_obs(obs_batch) lr = self.last_lr kl = 1.0 lr_mul = 1.0 curr_e_clip = lr_mul * self.e_clip batch_dict = { 'is_train': True, 'prev_actions': actions_batch, 'obs' : obs_batch } rnn_masks = None if self.is_rnn: rnn_masks = input_dict['rnn_masks'] batch_dict['rnn_states'] = input_dict['rnn_states'] batch_dict['seq_length'] = self.seq_len with torch.cuda.amp.autocast(enabled=self.mixed_precision): res_dict = self.model(batch_dict) action_log_probs = res_dict['prev_neglogp'] values = res_dict['value'] entropy = res_dict['entropy'] mu = res_dict['mu'] sigma = res_dict['sigma'] a_info = self._actor_loss(old_action_log_probs_batch, action_log_probs, advantage, curr_e_clip) a_loss = a_info['actor_loss'] c_info = self._critic_loss(value_preds_batch, values, curr_e_clip, return_batch, self.clip_value) c_loss = c_info['critic_loss'] b_loss = self.bound_loss(mu) losses, sum_mask = torch_ext.apply_masks([a_loss.unsqueeze(1), c_loss, entropy.unsqueeze(1), b_loss.unsqueeze(1)], rnn_masks) a_loss, c_loss, entropy, b_loss = losses[0], losses[1], losses[2], losses[3] loss = a_loss + self.critic_coef * c_loss - self.entropy_coef * entropy + self.bounds_loss_coef * b_loss if self.multi_gpu: self.optimizer.zero_grad() else: for param in self.model.parameters(): param.grad = None self.scaler.scale(loss).backward() #TODO: Refactor this ugliest code of the year if self.truncate_grads: if self.multi_gpu: self.optimizer.synchronize() self.scaler.unscale_(self.optimizer) nn.utils.clip_grad_norm_(self.model.parameters(), self.grad_norm) with self.optimizer.skip_synchronize(): self.scaler.step(self.optimizer) self.scaler.update() else: self.scaler.unscale_(self.optimizer) nn.utils.clip_grad_norm_(self.model.parameters(), self.grad_norm) self.scaler.step(self.optimizer) self.scaler.update() else: self.scaler.step(self.optimizer) self.scaler.update() with torch.no_grad(): reduce_kl = not self.is_rnn kl_dist = torch_ext.policy_kl(mu.detach(), sigma.detach(), old_mu_batch, old_sigma_batch, reduce_kl) if self.is_rnn: kl_dist = (kl_dist * rnn_masks).sum() / rnn_masks.numel() #/ sum_mask self.train_result = { 'entropy': entropy, 'kl': kl_dist, 'last_lr': self.last_lr, 'lr_mul': lr_mul, 'b_loss': b_loss } self.train_result.update(a_info) self.train_result.update(c_info) return def discount_values(self, mb_fdones, mb_values, mb_rewards, mb_next_values): lastgaelam = 0 mb_advs = torch.zeros_like(mb_rewards) for t in reversed(range(self.horizon_length)): not_done = 1.0 - mb_fdones[t] not_done = not_done.unsqueeze(1) delta = mb_rewards[t] + self.gamma * mb_next_values[t] - mb_values[t] lastgaelam = delta + self.gamma * self.tau * not_done * lastgaelam mb_advs[t] = lastgaelam return mb_advs def bound_loss(self, mu): if self.bounds_loss_coef is not None: soft_bound = 1.0 mu_loss_high = torch.maximum(mu - soft_bound, torch.tensor(0, device=self.ppo_device))**2 mu_loss_low = torch.minimum(mu + soft_bound, torch.tensor(0, device=self.ppo_device))**2 b_loss = (mu_loss_low + mu_loss_high).sum(axis=-1) else: b_loss = 0 return b_loss def _load_config_params(self, config): self.last_lr = config['learning_rate'] return def _build_net_config(self): obs_shape = torch_ext.shape_whc_to_cwh(self.obs_shape) config = { 'actions_num' : self.actions_num, 'input_shape' : obs_shape, 'num_seqs' : self.num_actors * self.num_agents, 'value_size': self.env_info.get('value_size', 1), 'normalize_value' : self.normalize_value, 'normalize_input': self.normalize_input, } return config def _setup_action_space(self): action_space = self.env_info['action_space'] self.actions_num = action_space.shape[0] # todo introduce device instead of cuda() self.actions_low = torch.from_numpy(action_space.low.copy()).float().to(self.ppo_device) self.actions_high = torch.from_numpy(action_space.high.copy()).float().to(self.ppo_device) return def _init_train(self): return def _env_reset_done(self): obs, done_env_ids = self.vec_env.reset_done() return self.obs_to_tensors(obs), done_env_ids def _eval_critic(self, obs_dict): self.model.eval() obs = obs_dict['obs'] processed_obs = self._preproc_obs(obs) if self.normalize_input: processed_obs = self.model.norm_obs(processed_obs) value = self.model.a2c_network.eval_critic(processed_obs) if self.normalize_value: value = self.value_mean_std(value, True) return value def _actor_loss(self, old_action_log_probs_batch, action_log_probs, advantage, curr_e_clip): clip_frac = None if (self.ppo): ratio = torch.exp(old_action_log_probs_batch - action_log_probs) surr1 = advantage * ratio surr2 = advantage * torch.clamp(ratio, 1.0 - curr_e_clip, 1.0 + curr_e_clip) a_loss = torch.max(-surr1, -surr2) clipped = torch.abs(ratio - 1.0) > curr_e_clip clip_frac = torch.mean(clipped.float()) clip_frac = clip_frac.detach() else: a_loss = (action_log_probs * advantage) info = { 'actor_loss': a_loss, 'actor_clip_frac': clip_frac } return info def _critic_loss(self, value_preds_batch, values, curr_e_clip, return_batch, clip_value): if clip_value: value_pred_clipped = value_preds_batch + \ (values - value_preds_batch).clamp(-curr_e_clip, curr_e_clip) value_losses = (values - return_batch)**2 value_losses_clipped = (value_pred_clipped - return_batch)**2 c_loss = torch.max(value_losses, value_losses_clipped) else: c_loss = (return_batch - values)**2 info = { 'critic_loss': c_loss } return info def _record_train_batch_info(self, batch_dict, train_info): return def _log_train_info(self, train_info, frame): self.writer.add_scalar('performance/update_time', train_info['update_time'], frame) self.writer.add_scalar('performance/play_time', train_info['play_time'], frame) self.writer.add_scalar('losses/a_loss', torch_ext.mean_list(train_info['actor_loss']).item(), frame) self.writer.add_scalar('losses/c_loss', torch_ext.mean_list(train_info['critic_loss']).item(), frame) self.writer.add_scalar('losses/bounds_loss', torch_ext.mean_list(train_info['b_loss']).item(), frame) self.writer.add_scalar('losses/entropy', torch_ext.mean_list(train_info['entropy']).item(), frame) self.writer.add_scalar('info/last_lr', train_info['last_lr'][-1] * train_info['lr_mul'][-1], frame) self.writer.add_scalar('info/lr_mul', train_info['lr_mul'][-1], frame) self.writer.add_scalar('info/e_clip', self.e_clip * train_info['lr_mul'][-1], frame) self.writer.add_scalar('info/clip_frac', torch_ext.mean_list(train_info['actor_clip_frac']).item(), frame) self.writer.add_scalar('info/kl', torch_ext.mean_list(train_info['kl']).item(), frame) return
21,575
Python
39.863636
157
0.585724
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/learning/common_player.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import torch from rl_games.algos_torch import players from rl_games.algos_torch import torch_ext from rl_games.algos_torch.running_mean_std import RunningMeanStd from rl_games.common.player import BasePlayer class CommonPlayer(players.PpoPlayerContinuous): def __init__(self, params): BasePlayer.__init__(self, params) self.network = self.config['network'] self.normalize_input = self.config['normalize_input'] self.normalize_value = self.config['normalize_value'] self._setup_action_space() self.mask = [False] net_config = self._build_net_config() self._build_net(net_config) return def run(self): n_games = self.games_num render = self.render_env n_game_life = self.n_game_life is_determenistic = self.is_deterministic sum_rewards = 0 sum_steps = 0 sum_game_res = 0 n_games = n_games * n_game_life games_played = 0 has_masks = False has_masks_func = getattr(self.env, "has_action_mask", None) is not None op_agent = getattr(self.env, "create_agent", None) if op_agent: agent_inited = True if has_masks_func: has_masks = self.env.has_action_mask() need_init_rnn = self.is_rnn for _ in range(n_games): if games_played >= n_games: break obs_dict = self.env_reset(self.env) batch_size = 1 batch_size = self.get_batch_size(obs_dict['obs'], batch_size) if need_init_rnn: self.init_rnn() need_init_rnn = False cr = torch.zeros(batch_size, dtype=torch.float32) steps = torch.zeros(batch_size, dtype=torch.float32) print_game_res = False for n in range(self.max_steps): obs_dict, done_env_ids = self._env_reset_done() if has_masks: masks = self.env.get_action_mask() action = self.get_masked_action(obs_dict, masks, is_determenistic) else: action = self.get_action(obs_dict, is_determenistic) obs_dict, r, done, info = self.env_step(self.env, action) cr += r steps += 1 self._post_step(info) if render: self.env.render(mode = 'human') time.sleep(self.render_sleep) all_done_indices = done.nonzero(as_tuple=False) done_indices = all_done_indices[::self.num_agents] done_count = len(done_indices) games_played += done_count if done_count > 0: if self.is_rnn: for s in self.states: s[:,all_done_indices,:] = s[:,all_done_indices,:] * 0.0 cur_rewards = cr[done_indices].sum().item() cur_steps = steps[done_indices].sum().item() cr = cr * (1.0 - done.float()) steps = steps * (1.0 - done.float()) sum_rewards += cur_rewards sum_steps += cur_steps game_res = 0.0 if isinstance(info, dict): if 'battle_won' in info: print_game_res = True game_res = info.get('battle_won', 0.5) if 'scores' in info: print_game_res = True game_res = info.get('scores', 0.5) if self.print_stats: if print_game_res: print('reward:', cur_rewards/done_count, 'steps:', cur_steps/done_count, 'w:', game_res) else: print('reward:', cur_rewards/done_count, 'steps:', cur_steps/done_count) sum_game_res += game_res if batch_size//self.num_agents == 1 or games_played >= n_games: break print(sum_rewards) if print_game_res: print('av reward:', sum_rewards / games_played * n_game_life, 'av steps:', sum_steps / games_played * n_game_life, 'winrate:', sum_game_res / games_played * n_game_life) else: print('av reward:', sum_rewards / games_played * n_game_life, 'av steps:', sum_steps / games_played * n_game_life) return def obs_to_torch(self, obs): obs = super().obs_to_torch(obs) obs_dict = { 'obs': obs } return obs_dict def get_action(self, obs_dict, is_determenistic = False): output = super().get_action(obs_dict['obs'], is_determenistic) return output def _build_net(self, config): self.model = self.network.build(config) self.model.to(self.device) self.model.eval() self.is_rnn = self.model.is_rnn() return def _env_reset_done(self): obs, done_env_ids = self.env.reset_done() return self.obs_to_torch(obs), done_env_ids def _post_step(self, info): return def _build_net_config(self): obs_shape = torch_ext.shape_whc_to_cwh(self.obs_shape) config = { 'actions_num' : self.actions_num, 'input_shape' : obs_shape, 'num_seqs' : self.num_agents, 'value_size': self.env_info.get('value_size', 1), 'normalize_value': self.normalize_value, 'normalize_input': self.normalize_input, } return config def _setup_action_space(self): self.actions_num = self.action_space.shape[0] self.actions_low = torch.from_numpy(self.action_space.low.copy()).float().to(self.device) self.actions_high = torch.from_numpy(self.action_space.high.copy()).float().to(self.device) return
7,570
Python
37.627551
181
0.571731
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/tasks/allegro_hand.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np import os import torch from isaacgym import gymtorch from isaacgym import gymapi from isaacgymenvs.utils.torch_jit_utils import scale, unscale, quat_mul, quat_conjugate, quat_from_angle_axis, \ to_torch, get_axis_params, torch_rand_float, tensor_clamp from isaacgymenvs.tasks.base.vec_task import VecTask class AllegroHand(VecTask): def __init__(self, cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render): self.cfg = cfg self.aggregate_mode = self.cfg["env"]["aggregateMode"] self.dist_reward_scale = self.cfg["env"]["distRewardScale"] self.rot_reward_scale = self.cfg["env"]["rotRewardScale"] self.action_penalty_scale = self.cfg["env"]["actionPenaltyScale"] self.success_tolerance = self.cfg["env"]["successTolerance"] self.reach_goal_bonus = self.cfg["env"]["reachGoalBonus"] self.fall_dist = self.cfg["env"]["fallDistance"] self.fall_penalty = self.cfg["env"]["fallPenalty"] self.rot_eps = self.cfg["env"]["rotEps"] self.vel_obs_scale = 0.2 # scale factor of velocity based observations self.force_torque_obs_scale = 10.0 # scale factor of velocity based observations self.reset_position_noise = self.cfg["env"]["resetPositionNoise"] self.reset_rotation_noise = self.cfg["env"]["resetRotationNoise"] self.reset_dof_pos_noise = self.cfg["env"]["resetDofPosRandomInterval"] self.reset_dof_vel_noise = self.cfg["env"]["resetDofVelRandomInterval"] self.force_scale = self.cfg["env"].get("forceScale", 0.0) self.force_prob_range = self.cfg["env"].get("forceProbRange", [0.001, 0.1]) self.force_decay = self.cfg["env"].get("forceDecay", 0.99) self.force_decay_interval = self.cfg["env"].get("forceDecayInterval", 0.08) self.shadow_hand_dof_speed_scale = self.cfg["env"]["dofSpeedScale"] self.use_relative_control = self.cfg["env"]["useRelativeControl"] self.act_moving_average = self.cfg["env"]["actionsMovingAverage"] self.debug_viz = self.cfg["env"]["enableDebugVis"] self.max_episode_length = self.cfg["env"]["episodeLength"] self.reset_time = self.cfg["env"].get("resetTime", -1.0) self.print_success_stat = self.cfg["env"]["printNumSuccesses"] self.max_consecutive_successes = self.cfg["env"]["maxConsecutiveSuccesses"] self.av_factor = self.cfg["env"].get("averFactor", 0.1) self.object_type = self.cfg["env"]["objectType"] assert self.object_type in ["block", "egg", "pen"] self.ignore_z = (self.object_type == "pen") self.asset_files_dict = { "block": "urdf/objects/cube_multicolor.urdf", "egg": "mjcf/open_ai_assets/hand/egg.xml", "pen": "mjcf/open_ai_assets/hand/pen.xml" } if "asset" in self.cfg["env"]: self.asset_files_dict["block"] = self.cfg["env"]["asset"].get("assetFileNameBlock", self.asset_files_dict["block"]) self.asset_files_dict["egg"] = self.cfg["env"]["asset"].get("assetFileNameEgg", self.asset_files_dict["egg"]) self.asset_files_dict["pen"] = self.cfg["env"]["asset"].get("assetFileNamePen", self.asset_files_dict["pen"]) # can be "full_no_vel", "full", "full_state" self.obs_type = self.cfg["env"]["observationType"] if not (self.obs_type in ["full_no_vel", "full", "full_state"]): raise Exception( "Unknown type of observations!\nobservationType should be one of: [openai, full_no_vel, full, full_state]") print("Obs type:", self.obs_type) self.num_obs_dict = { "full_no_vel": 50, "full": 72, "full_state": 88 } self.up_axis = 'z' self.use_vel_obs = False self.fingertip_obs = True self.asymmetric_obs = self.cfg["env"]["asymmetric_observations"] num_states = 0 if self.asymmetric_obs: num_states = 88 self.cfg["env"]["numObservations"] = self.num_obs_dict[self.obs_type] self.cfg["env"]["numStates"] = num_states self.cfg["env"]["numActions"] = 16 super().__init__(config=self.cfg, rl_device=rl_device, sim_device=sim_device, graphics_device_id=graphics_device_id, headless=headless, virtual_screen_capture=virtual_screen_capture, force_render=force_render) self.dt = self.sim_params.dt control_freq_inv = self.cfg["env"].get("controlFrequencyInv", 1) if self.reset_time > 0.0: self.max_episode_length = int(round(self.reset_time/(control_freq_inv * self.dt))) print("Reset time: ", self.reset_time) print("New episode length: ", self.max_episode_length) if self.viewer != None: cam_pos = gymapi.Vec3(10.0, 5.0, 1.0) cam_target = gymapi.Vec3(6.0, 5.0, 0.0) self.gym.viewer_camera_look_at(self.viewer, None, cam_pos, cam_target) # get gym GPU state tensors actor_root_state_tensor = self.gym.acquire_actor_root_state_tensor(self.sim) dof_state_tensor = self.gym.acquire_dof_state_tensor(self.sim) rigid_body_tensor = self.gym.acquire_rigid_body_state_tensor(self.sim) if self.obs_type == "full_state" or self.asymmetric_obs: # sensor_tensor = self.gym.acquire_force_sensor_tensor(self.sim) # self.vec_sensor_tensor = gymtorch.wrap_tensor(sensor_tensor).view(self.num_envs, self.num_fingertips * 6) dof_force_tensor = self.gym.acquire_dof_force_tensor(self.sim) self.dof_force_tensor = gymtorch.wrap_tensor(dof_force_tensor).view(self.num_envs, self.num_shadow_hand_dofs) self.gym.refresh_actor_root_state_tensor(self.sim) self.gym.refresh_dof_state_tensor(self.sim) self.gym.refresh_rigid_body_state_tensor(self.sim) # create some wrapper tensors for different slices self.shadow_hand_default_dof_pos = torch.zeros(self.num_shadow_hand_dofs, dtype=torch.float, device=self.device) self.dof_state = gymtorch.wrap_tensor(dof_state_tensor) self.shadow_hand_dof_state = self.dof_state.view(self.num_envs, -1, 2)[:, :self.num_shadow_hand_dofs] self.shadow_hand_dof_pos = self.shadow_hand_dof_state[..., 0] self.shadow_hand_dof_vel = self.shadow_hand_dof_state[..., 1] self.rigid_body_states = gymtorch.wrap_tensor(rigid_body_tensor).view(self.num_envs, -1, 13) self.num_bodies = self.rigid_body_states.shape[1] self.root_state_tensor = gymtorch.wrap_tensor(actor_root_state_tensor).view(-1, 13) self.num_dofs = self.gym.get_sim_dof_count(self.sim) // self.num_envs print("Num dofs: ", self.num_dofs) self.prev_targets = torch.zeros((self.num_envs, self.num_dofs), dtype=torch.float, device=self.device) self.cur_targets = torch.zeros((self.num_envs, self.num_dofs), dtype=torch.float, device=self.device) self.global_indices = torch.arange(self.num_envs * 3, dtype=torch.int32, device=self.device).view(self.num_envs, -1) self.x_unit_tensor = to_torch([1, 0, 0], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.y_unit_tensor = to_torch([0, 1, 0], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.z_unit_tensor = to_torch([0, 0, 1], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.reset_goal_buf = self.reset_buf.clone() self.successes = torch.zeros(self.num_envs, dtype=torch.float, device=self.device) self.consecutive_successes = torch.zeros(1, dtype=torch.float, device=self.device) self.av_factor = to_torch(self.av_factor, dtype=torch.float, device=self.device) self.total_successes = 0 self.total_resets = 0 # object apply random forces parameters self.force_decay = to_torch(self.force_decay, dtype=torch.float, device=self.device) self.force_prob_range = to_torch(self.force_prob_range, dtype=torch.float, device=self.device) self.random_force_prob = torch.exp((torch.log(self.force_prob_range[0]) - torch.log(self.force_prob_range[1])) * torch.rand(self.num_envs, device=self.device) + torch.log(self.force_prob_range[1])) self.rb_forces = torch.zeros((self.num_envs, self.num_bodies, 3), dtype=torch.float, device=self.device) def create_sim(self): self.dt = self.sim_params.dt self.up_axis_idx = 2 # index of up axis: Y=1, Z=2 self.sim = super().create_sim(self.device_id, self.graphics_device_id, self.physics_engine, self.sim_params) self._create_ground_plane() self._create_envs(self.num_envs, self.cfg["env"]['envSpacing'], int(np.sqrt(self.num_envs))) def _create_ground_plane(self): plane_params = gymapi.PlaneParams() plane_params.normal = gymapi.Vec3(0.0, 0.0, 1.0) self.gym.add_ground(self.sim, plane_params) def _create_envs(self, num_envs, spacing, num_per_row): lower = gymapi.Vec3(-spacing, -spacing, 0.0) upper = gymapi.Vec3(spacing, spacing, spacing) asset_root = os.path.join(os.path.dirname(os.path.abspath(__file__)), '../../assets') allegro_hand_asset_file = "urdf/kuka_allegro_description/allegro.urdf" if "asset" in self.cfg["env"]: asset_root = self.cfg["env"]["asset"].get("assetRoot", asset_root) allegro_hand_asset_file = self.cfg["env"]["asset"].get("assetFileName", allegro_hand_asset_file) object_asset_file = self.asset_files_dict[self.object_type] # load shadow hand_ asset asset_options = gymapi.AssetOptions() asset_options.flip_visual_attachments = False asset_options.fix_base_link = True asset_options.collapse_fixed_joints = True asset_options.disable_gravity = True asset_options.thickness = 0.001 asset_options.angular_damping = 0.01 if self.physics_engine == gymapi.SIM_PHYSX: asset_options.use_physx_armature = True asset_options.default_dof_drive_mode = gymapi.DOF_MODE_POS allegro_hand_asset = self.gym.load_asset(self.sim, asset_root, allegro_hand_asset_file, asset_options) self.num_shadow_hand_bodies = self.gym.get_asset_rigid_body_count(allegro_hand_asset) self.num_shadow_hand_shapes = self.gym.get_asset_rigid_shape_count(allegro_hand_asset) self.num_shadow_hand_dofs = self.gym.get_asset_dof_count(allegro_hand_asset) print("Num dofs: ", self.num_shadow_hand_dofs) self.num_shadow_hand_actuators = self.num_shadow_hand_dofs self.actuated_dof_indices = [i for i in range(self.num_shadow_hand_dofs)] # set shadow_hand dof properties shadow_hand_dof_props = self.gym.get_asset_dof_properties(allegro_hand_asset) self.shadow_hand_dof_lower_limits = [] self.shadow_hand_dof_upper_limits = [] self.shadow_hand_dof_default_pos = [] self.shadow_hand_dof_default_vel = [] self.sensors = [] sensor_pose = gymapi.Transform() for i in range(self.num_shadow_hand_dofs): self.shadow_hand_dof_lower_limits.append(shadow_hand_dof_props['lower'][i]) self.shadow_hand_dof_upper_limits.append(shadow_hand_dof_props['upper'][i]) self.shadow_hand_dof_default_pos.append(0.0) self.shadow_hand_dof_default_vel.append(0.0) print("Max effort: ", shadow_hand_dof_props['effort'][i]) shadow_hand_dof_props['effort'][i] = 0.5 shadow_hand_dof_props['stiffness'][i] = 3 shadow_hand_dof_props['damping'][i] = 0.1 shadow_hand_dof_props['friction'][i] = 0.01 shadow_hand_dof_props['armature'][i] = 0.001 self.actuated_dof_indices = to_torch(self.actuated_dof_indices, dtype=torch.long, device=self.device) self.shadow_hand_dof_lower_limits = to_torch(self.shadow_hand_dof_lower_limits, device=self.device) self.shadow_hand_dof_upper_limits = to_torch(self.shadow_hand_dof_upper_limits, device=self.device) self.shadow_hand_dof_default_pos = to_torch(self.shadow_hand_dof_default_pos, device=self.device) self.shadow_hand_dof_default_vel = to_torch(self.shadow_hand_dof_default_vel, device=self.device) # load manipulated object and goal assets object_asset_options = gymapi.AssetOptions() object_asset = self.gym.load_asset(self.sim, asset_root, object_asset_file, object_asset_options) object_asset_options.disable_gravity = True goal_asset = self.gym.load_asset(self.sim, asset_root, object_asset_file, object_asset_options) shadow_hand_start_pose = gymapi.Transform() shadow_hand_start_pose.p = gymapi.Vec3(*get_axis_params(0.5, self.up_axis_idx)) shadow_hand_start_pose.r = gymapi.Quat.from_axis_angle(gymapi.Vec3(0, 1, 0), np.pi) * gymapi.Quat.from_axis_angle(gymapi.Vec3(1, 0, 0), 0.47 * np.pi) * gymapi.Quat.from_axis_angle(gymapi.Vec3(0, 0, 1), 0.25 * np.pi) object_start_pose = gymapi.Transform() object_start_pose.p = gymapi.Vec3() object_start_pose.p.x = shadow_hand_start_pose.p.x pose_dy, pose_dz = -0.2, 0.06 object_start_pose.p.y = shadow_hand_start_pose.p.y + pose_dy object_start_pose.p.z = shadow_hand_start_pose.p.z + pose_dz if self.object_type == "pen": object_start_pose.p.z = shadow_hand_start_pose.p.z + 0.02 self.goal_displacement = gymapi.Vec3(-0.2, -0.06, 0.12) self.goal_displacement_tensor = to_torch( [self.goal_displacement.x, self.goal_displacement.y, self.goal_displacement.z], device=self.device) goal_start_pose = gymapi.Transform() goal_start_pose.p = object_start_pose.p + self.goal_displacement goal_start_pose.p.z -= 0.04 # compute aggregate size max_agg_bodies = self.num_shadow_hand_bodies + 2 max_agg_shapes = self.num_shadow_hand_shapes + 2 self.allegro_hands = [] self.envs = [] self.object_init_state = [] self.hand_start_states = [] self.hand_indices = [] self.fingertip_indices = [] self.object_indices = [] self.goal_object_indices = [] shadow_hand_rb_count = self.gym.get_asset_rigid_body_count(allegro_hand_asset) object_rb_count = self.gym.get_asset_rigid_body_count(object_asset) self.object_rb_handles = list(range(shadow_hand_rb_count, shadow_hand_rb_count + object_rb_count)) for i in range(self.num_envs): # create env instance env_ptr = self.gym.create_env( self.sim, lower, upper, num_per_row ) if self.aggregate_mode >= 1: self.gym.begin_aggregate(env_ptr, max_agg_bodies, max_agg_shapes, True) # add hand - collision filter = -1 to use asset collision filters set in mjcf loader allegro_hand_actor = self.gym.create_actor(env_ptr, allegro_hand_asset, shadow_hand_start_pose, "hand", i, -1, 0) self.hand_start_states.append([shadow_hand_start_pose.p.x, shadow_hand_start_pose.p.y, shadow_hand_start_pose.p.z, shadow_hand_start_pose.r.x, shadow_hand_start_pose.r.y, shadow_hand_start_pose.r.z, shadow_hand_start_pose.r.w, 0, 0, 0, 0, 0, 0]) self.gym.set_actor_dof_properties(env_ptr, allegro_hand_actor, shadow_hand_dof_props) hand_idx = self.gym.get_actor_index(env_ptr, allegro_hand_actor, gymapi.DOMAIN_SIM) self.hand_indices.append(hand_idx) # add object object_handle = self.gym.create_actor(env_ptr, object_asset, object_start_pose, "object", i, 0, 0) self.object_init_state.append([object_start_pose.p.x, object_start_pose.p.y, object_start_pose.p.z, object_start_pose.r.x, object_start_pose.r.y, object_start_pose.r.z, object_start_pose.r.w, 0, 0, 0, 0, 0, 0]) object_idx = self.gym.get_actor_index(env_ptr, object_handle, gymapi.DOMAIN_SIM) self.object_indices.append(object_idx) # add goal object goal_handle = self.gym.create_actor(env_ptr, goal_asset, goal_start_pose, "goal_object", i + self.num_envs, 0, 0) goal_object_idx = self.gym.get_actor_index(env_ptr, goal_handle, gymapi.DOMAIN_SIM) self.goal_object_indices.append(goal_object_idx) if self.object_type != "block": self.gym.set_rigid_body_color( env_ptr, object_handle, 0, gymapi.MESH_VISUAL, gymapi.Vec3(0.6, 0.72, 0.98)) self.gym.set_rigid_body_color( env_ptr, goal_handle, 0, gymapi.MESH_VISUAL, gymapi.Vec3(0.6, 0.72, 0.98)) if self.aggregate_mode > 0: self.gym.end_aggregate(env_ptr) self.envs.append(env_ptr) self.allegro_hands.append(allegro_hand_actor) object_rb_props = self.gym.get_actor_rigid_body_properties(env_ptr, object_handle) self.object_rb_masses = [prop.mass for prop in object_rb_props] self.object_init_state = to_torch(self.object_init_state, device=self.device, dtype=torch.float).view(self.num_envs, 13) self.goal_states = self.object_init_state.clone() self.goal_states[:, self.up_axis_idx] -= 0.04 self.goal_init_state = self.goal_states.clone() self.hand_start_states = to_torch(self.hand_start_states, device=self.device).view(self.num_envs, 13) self.object_rb_handles = to_torch(self.object_rb_handles, dtype=torch.long, device=self.device) self.object_rb_masses = to_torch(self.object_rb_masses, dtype=torch.float, device=self.device) self.hand_indices = to_torch(self.hand_indices, dtype=torch.long, device=self.device) self.object_indices = to_torch(self.object_indices, dtype=torch.long, device=self.device) self.goal_object_indices = to_torch(self.goal_object_indices, dtype=torch.long, device=self.device) def compute_reward(self, actions): self.rew_buf[:], self.reset_buf[:], self.reset_goal_buf[:], self.progress_buf[:], self.successes[:], self.consecutive_successes[:] = compute_hand_reward( self.rew_buf, self.reset_buf, self.reset_goal_buf, self.progress_buf, self.successes, self.consecutive_successes, self.max_episode_length, self.object_pos, self.object_rot, self.goal_pos, self.goal_rot, self.dist_reward_scale, self.rot_reward_scale, self.rot_eps, self.actions, self.action_penalty_scale, self.success_tolerance, self.reach_goal_bonus, self.fall_dist, self.fall_penalty, self.max_consecutive_successes, self.av_factor, (self.object_type == "pen") ) self.extras['consecutive_successes'] = self.consecutive_successes.mean() if self.print_success_stat: self.total_resets = self.total_resets + self.reset_buf.sum() direct_average_successes = self.total_successes + self.successes.sum() self.total_successes = self.total_successes + (self.successes * self.reset_buf).sum() # The direct average shows the overall result more quickly, but slightly undershoots long term # policy performance. print("Direct average consecutive successes = {:.1f}".format(direct_average_successes/(self.total_resets + self.num_envs))) if self.total_resets > 0: print("Post-Reset average consecutive successes = {:.1f}".format(self.total_successes/self.total_resets)) def compute_observations(self): self.gym.refresh_dof_state_tensor(self.sim) self.gym.refresh_actor_root_state_tensor(self.sim) self.gym.refresh_rigid_body_state_tensor(self.sim) if self.obs_type == "full_state" or self.asymmetric_obs: self.gym.refresh_force_sensor_tensor(self.sim) self.gym.refresh_dof_force_tensor(self.sim) self.object_pose = self.root_state_tensor[self.object_indices, 0:7] self.object_pos = self.root_state_tensor[self.object_indices, 0:3] self.object_rot = self.root_state_tensor[self.object_indices, 3:7] self.object_linvel = self.root_state_tensor[self.object_indices, 7:10] self.object_angvel = self.root_state_tensor[self.object_indices, 10:13] self.goal_pose = self.goal_states[:, 0:7] self.goal_pos = self.goal_states[:, 0:3] self.goal_rot = self.goal_states[:, 3:7] if self.obs_type == "full_no_vel": self.compute_full_observations(True) elif self.obs_type == "full": self.compute_full_observations() elif self.obs_type == "full_state": self.compute_full_state() else: print("Unknown observations type!") if self.asymmetric_obs: self.compute_full_state(True) def compute_full_observations(self, no_vel=False): if no_vel: self.obs_buf[:, 0:self.num_shadow_hand_dofs] = unscale(self.shadow_hand_dof_pos, self.shadow_hand_dof_lower_limits, self.shadow_hand_dof_upper_limits) self.obs_buf[:, 16:23] = self.object_pose self.obs_buf[:, 23:30] = self.goal_pose self.obs_buf[:, 30:34] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) self.obs_buf[:, 34:50] = self.actions else: self.obs_buf[:, 0:self.num_shadow_hand_dofs] = unscale(self.shadow_hand_dof_pos, self.shadow_hand_dof_lower_limits, self.shadow_hand_dof_upper_limits) self.obs_buf[:, self.num_shadow_hand_dofs:2*self.num_shadow_hand_dofs] = self.vel_obs_scale * self.shadow_hand_dof_vel # 2*16 = 32 -16 self.obs_buf[:, 32:39] = self.object_pose self.obs_buf[:, 39:42] = self.object_linvel self.obs_buf[:, 42:45] = self.vel_obs_scale * self.object_angvel self.obs_buf[:, 45:52] = self.goal_pose self.obs_buf[:, 52:56] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) self.obs_buf[:, 56:72] = self.actions def compute_full_state(self, asymm_obs=False): if asymm_obs: self.states_buf[:, 0:self.num_shadow_hand_dofs] = unscale(self.shadow_hand_dof_pos, self.shadow_hand_dof_lower_limits, self.shadow_hand_dof_upper_limits) self.states_buf[:, self.num_shadow_hand_dofs:2*self.num_shadow_hand_dofs] = self.vel_obs_scale * self.shadow_hand_dof_vel self.states_buf[:, 2*self.num_shadow_hand_dofs:3*self.num_shadow_hand_dofs] = self.force_torque_obs_scale * self.dof_force_tensor obj_obs_start = 3*self.num_shadow_hand_dofs # 48 self.states_buf[:, obj_obs_start:obj_obs_start + 7] = self.object_pose self.states_buf[:, obj_obs_start + 7:obj_obs_start + 10] = self.object_linvel self.states_buf[:, obj_obs_start + 10:obj_obs_start + 13] = self.vel_obs_scale * self.object_angvel goal_obs_start = obj_obs_start + 13 # 61 self.states_buf[:, goal_obs_start:goal_obs_start + 7] = self.goal_pose self.states_buf[:, goal_obs_start + 7:goal_obs_start + 11] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) fingertip_obs_start = goal_obs_start + 11 # 72 # obs_end = 96 + 65 + 30 = 191 # obs_total = obs_end + num_actions = 72 + 16 = 88 obs_end = fingertip_obs_start self.states_buf[:, obs_end:obs_end + self.num_actions] = self.actions else: self.obs_buf[:, 0:self.num_shadow_hand_dofs] = unscale(self.shadow_hand_dof_pos, self.shadow_hand_dof_lower_limits, self.shadow_hand_dof_upper_limits) self.obs_buf[:, self.num_shadow_hand_dofs:2*self.num_shadow_hand_dofs] = self.vel_obs_scale * self.shadow_hand_dof_vel self.obs_buf[:, 2*self.num_shadow_hand_dofs:3*self.num_shadow_hand_dofs] = self.force_torque_obs_scale * self.dof_force_tensor obj_obs_start = 3*self.num_shadow_hand_dofs # 48 self.obs_buf[:, obj_obs_start:obj_obs_start + 7] = self.object_pose self.obs_buf[:, obj_obs_start + 7:obj_obs_start + 10] = self.object_linvel self.obs_buf[:, obj_obs_start + 10:obj_obs_start + 13] = self.vel_obs_scale * self.object_angvel goal_obs_start = obj_obs_start + 13 # 61 self.obs_buf[:, goal_obs_start:goal_obs_start + 7] = self.goal_pose self.obs_buf[:, goal_obs_start + 7:goal_obs_start + 11] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) fingertip_obs_start = goal_obs_start + 11 # 72 # obs_end = 96 + 65 + 30 = 191 # obs_total = obs_end + num_actions = 72 + 16 = 88 obs_end = fingertip_obs_start #+ num_ft_states + num_ft_force_torques self.obs_buf[:, obs_end:obs_end + self.num_actions] = self.actions def reset_target_pose(self, env_ids, apply_reset=False): rand_floats = torch_rand_float(-1.0, 1.0, (len(env_ids), 4), device=self.device) new_rot = randomize_rotation(rand_floats[:, 0], rand_floats[:, 1], self.x_unit_tensor[env_ids], self.y_unit_tensor[env_ids]) self.goal_states[env_ids, 0:3] = self.goal_init_state[env_ids, 0:3] self.goal_states[env_ids, 3:7] = new_rot self.root_state_tensor[self.goal_object_indices[env_ids], 0:3] = self.goal_states[env_ids, 0:3] + self.goal_displacement_tensor self.root_state_tensor[self.goal_object_indices[env_ids], 3:7] = self.goal_states[env_ids, 3:7] self.root_state_tensor[self.goal_object_indices[env_ids], 7:13] = torch.zeros_like(self.root_state_tensor[self.goal_object_indices[env_ids], 7:13]) if apply_reset: goal_object_indices = self.goal_object_indices[env_ids].to(torch.int32) self.gym.set_actor_root_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.root_state_tensor), gymtorch.unwrap_tensor(goal_object_indices), len(env_ids)) self.reset_goal_buf[env_ids] = 0 def reset_idx(self, env_ids, goal_env_ids): # generate random values rand_floats = torch_rand_float(-1.0, 1.0, (len(env_ids), self.num_shadow_hand_dofs * 2 + 5), device=self.device) # randomize start object poses self.reset_target_pose(env_ids) # reset rigid body forces self.rb_forces[env_ids, :, :] = 0.0 # reset object self.root_state_tensor[self.object_indices[env_ids]] = self.object_init_state[env_ids].clone() self.root_state_tensor[self.object_indices[env_ids], 0:2] = self.object_init_state[env_ids, 0:2] + \ self.reset_position_noise * rand_floats[:, 0:2] self.root_state_tensor[self.object_indices[env_ids], self.up_axis_idx] = self.object_init_state[env_ids, self.up_axis_idx] + \ self.reset_position_noise * rand_floats[:, self.up_axis_idx] new_object_rot = randomize_rotation(rand_floats[:, 3], rand_floats[:, 4], self.x_unit_tensor[env_ids], self.y_unit_tensor[env_ids]) if self.object_type == "pen": rand_angle_y = torch.tensor(0.3) new_object_rot = randomize_rotation_pen(rand_floats[:, 3], rand_floats[:, 4], rand_angle_y, self.x_unit_tensor[env_ids], self.y_unit_tensor[env_ids], self.z_unit_tensor[env_ids]) self.root_state_tensor[self.object_indices[env_ids], 3:7] = new_object_rot self.root_state_tensor[self.object_indices[env_ids], 7:13] = torch.zeros_like(self.root_state_tensor[self.object_indices[env_ids], 7:13]) object_indices = torch.unique(torch.cat([self.object_indices[env_ids], self.goal_object_indices[env_ids], self.goal_object_indices[goal_env_ids]]).to(torch.int32)) self.gym.set_actor_root_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.root_state_tensor), gymtorch.unwrap_tensor(object_indices), len(object_indices)) # reset random force probabilities self.random_force_prob[env_ids] = torch.exp((torch.log(self.force_prob_range[0]) - torch.log(self.force_prob_range[1])) * torch.rand(len(env_ids), device=self.device) + torch.log(self.force_prob_range[1])) # reset shadow hand delta_max = self.shadow_hand_dof_upper_limits - self.shadow_hand_dof_default_pos delta_min = self.shadow_hand_dof_lower_limits - self.shadow_hand_dof_default_pos rand_delta = delta_min + (delta_max - delta_min) * 0.5 * (rand_floats[:, 5:5+self.num_shadow_hand_dofs] + 1) pos = self.shadow_hand_default_dof_pos + self.reset_dof_pos_noise * rand_delta self.shadow_hand_dof_pos[env_ids, :] = pos self.shadow_hand_dof_vel[env_ids, :] = self.shadow_hand_dof_default_vel + \ self.reset_dof_vel_noise * rand_floats[:, 5+self.num_shadow_hand_dofs:5+self.num_shadow_hand_dofs*2] self.prev_targets[env_ids, :self.num_shadow_hand_dofs] = pos self.cur_targets[env_ids, :self.num_shadow_hand_dofs] = pos hand_indices = self.hand_indices[env_ids].to(torch.int32) self.gym.set_dof_position_target_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.prev_targets), gymtorch.unwrap_tensor(hand_indices), len(env_ids)) self.gym.set_dof_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.dof_state), gymtorch.unwrap_tensor(hand_indices), len(env_ids)) self.progress_buf[env_ids] = 0 self.reset_buf[env_ids] = 0 self.successes[env_ids] = 0 def pre_physics_step(self, actions): env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) goal_env_ids = self.reset_goal_buf.nonzero(as_tuple=False).squeeze(-1) # if only goals need reset, then call set API if len(goal_env_ids) > 0 and len(env_ids) == 0: self.reset_target_pose(goal_env_ids, apply_reset=True) # if goals need reset in addition to other envs, call set API in reset() elif len(goal_env_ids) > 0: self.reset_target_pose(goal_env_ids) if len(env_ids) > 0: self.reset_idx(env_ids, goal_env_ids) self.actions = actions.clone().to(self.device) if self.use_relative_control: targets = self.prev_targets[:, self.actuated_dof_indices] + self.shadow_hand_dof_speed_scale * self.dt * self.actions self.cur_targets[:, self.actuated_dof_indices] = tensor_clamp(targets, self.shadow_hand_dof_lower_limits[self.actuated_dof_indices], self.shadow_hand_dof_upper_limits[self.actuated_dof_indices]) else: self.cur_targets[:, self.actuated_dof_indices] = scale(self.actions, self.shadow_hand_dof_lower_limits[self.actuated_dof_indices], self.shadow_hand_dof_upper_limits[self.actuated_dof_indices]) self.cur_targets[:, self.actuated_dof_indices] = self.act_moving_average * self.cur_targets[:, self.actuated_dof_indices] + (1.0 - self.act_moving_average) * self.prev_targets[:, self.actuated_dof_indices] self.cur_targets[:, self.actuated_dof_indices] = tensor_clamp(self.cur_targets[:, self.actuated_dof_indices], self.shadow_hand_dof_lower_limits[self.actuated_dof_indices], self.shadow_hand_dof_upper_limits[self.actuated_dof_indices]) self.prev_targets[:, self.actuated_dof_indices] = self.cur_targets[:, self.actuated_dof_indices] self.gym.set_dof_position_target_tensor(self.sim, gymtorch.unwrap_tensor(self.cur_targets)) if self.force_scale > 0.0: self.rb_forces *= torch.pow(self.force_decay, self.dt / self.force_decay_interval) # apply new forces force_indices = (torch.rand(self.num_envs, device=self.device) < self.random_force_prob).nonzero() self.rb_forces[force_indices, self.object_rb_handles, :] = torch.randn( self.rb_forces[force_indices, self.object_rb_handles, :].shape, device=self.device) * self.object_rb_masses * self.force_scale self.gym.apply_rigid_body_force_tensors(self.sim, gymtorch.unwrap_tensor(self.rb_forces), None, gymapi.LOCAL_SPACE) def post_physics_step(self): self.progress_buf += 1 self.randomize_buf += 1 self.compute_observations() self.compute_reward(self.actions) if self.viewer and self.debug_viz: # draw axes on target object self.gym.clear_lines(self.viewer) self.gym.refresh_rigid_body_state_tensor(self.sim) for i in range(self.num_envs): targetx = (self.goal_pos[i] + quat_apply(self.goal_rot[i], to_torch([1, 0, 0], device=self.device) * 0.2)).cpu().numpy() targety = (self.goal_pos[i] + quat_apply(self.goal_rot[i], to_torch([0, 1, 0], device=self.device) * 0.2)).cpu().numpy() targetz = (self.goal_pos[i] + quat_apply(self.goal_rot[i], to_torch([0, 0, 1], device=self.device) * 0.2)).cpu().numpy() p0 = self.goal_pos[i].cpu().numpy() + self.goal_displacement_tensor.cpu().numpy() self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], targetx[0], targetx[1], targetx[2]], [0.85, 0.1, 0.1]) self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], targety[0], targety[1], targety[2]], [0.1, 0.85, 0.1]) self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], targetz[0], targetz[1], targetz[2]], [0.1, 0.1, 0.85]) objectx = (self.object_pos[i] + quat_apply(self.object_rot[i], to_torch([1, 0, 0], device=self.device) * 0.2)).cpu().numpy() objecty = (self.object_pos[i] + quat_apply(self.object_rot[i], to_torch([0, 1, 0], device=self.device) * 0.2)).cpu().numpy() objectz = (self.object_pos[i] + quat_apply(self.object_rot[i], to_torch([0, 0, 1], device=self.device) * 0.2)).cpu().numpy() p0 = self.object_pos[i].cpu().numpy() self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], objectx[0], objectx[1], objectx[2]], [0.85, 0.1, 0.1]) self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], objecty[0], objecty[1], objecty[2]], [0.1, 0.85, 0.1]) self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], objectz[0], objectz[1], objectz[2]], [0.1, 0.1, 0.85]) ##################################################################### ###=========================jit functions=========================### ##################################################################### @torch.jit.script def compute_hand_reward( rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes, max_episode_length: float, object_pos, object_rot, target_pos, target_rot, dist_reward_scale: float, rot_reward_scale: float, rot_eps: float, actions, action_penalty_scale: float, success_tolerance: float, reach_goal_bonus: float, fall_dist: float, fall_penalty: float, max_consecutive_successes: int, av_factor: float, ignore_z_rot: bool ): # Distance from the hand to the object goal_dist = torch.norm(object_pos - target_pos, p=2, dim=-1) if ignore_z_rot: success_tolerance = 2.0 * success_tolerance # Orientation alignment for the cube in hand and goal cube quat_diff = quat_mul(object_rot, quat_conjugate(target_rot)) rot_dist = 2.0 * torch.asin(torch.clamp(torch.norm(quat_diff[:, 0:3], p=2, dim=-1), max=1.0)) dist_rew = goal_dist * dist_reward_scale rot_rew = 1.0/(torch.abs(rot_dist) + rot_eps) * rot_reward_scale action_penalty = torch.sum(actions ** 2, dim=-1) # Total reward is: position distance + orientation alignment + action regularization + success bonus + fall penalty reward = dist_rew + rot_rew + action_penalty * action_penalty_scale # Find out which envs hit the goal and update successes count goal_resets = torch.where(torch.abs(rot_dist) <= success_tolerance, torch.ones_like(reset_goal_buf), reset_goal_buf) successes = successes + goal_resets # Success bonus: orientation is within `success_tolerance` of goal orientation reward = torch.where(goal_resets == 1, reward + reach_goal_bonus, reward) # Fall penalty: distance to the goal is larger than a threshold reward = torch.where(goal_dist >= fall_dist, reward + fall_penalty, reward) # Check env termination conditions, including maximum success number resets = torch.where(goal_dist >= fall_dist, torch.ones_like(reset_buf), reset_buf) if max_consecutive_successes > 0: # Reset progress buffer on goal envs if max_consecutive_successes > 0 progress_buf = torch.where(torch.abs(rot_dist) <= success_tolerance, torch.zeros_like(progress_buf), progress_buf) resets = torch.where(successes >= max_consecutive_successes, torch.ones_like(resets), resets) timed_out = progress_buf >= max_episode_length - 1 resets = torch.where(timed_out, torch.ones_like(resets), resets) # Apply penalty for not reaching the goal if max_consecutive_successes > 0: reward = torch.where(timed_out, reward + 0.5 * fall_penalty, reward) num_resets = torch.sum(resets) finished_cons_successes = torch.sum(successes * resets.float()) cons_successes = torch.where(num_resets > 0, av_factor*finished_cons_successes/num_resets + (1.0 - av_factor)*consecutive_successes, consecutive_successes) return reward, resets, goal_resets, progress_buf, successes, cons_successes @torch.jit.script def randomize_rotation(rand0, rand1, x_unit_tensor, y_unit_tensor): return quat_mul(quat_from_angle_axis(rand0 * np.pi, x_unit_tensor), quat_from_angle_axis(rand1 * np.pi, y_unit_tensor)) @torch.jit.script def randomize_rotation_pen(rand0, rand1, max_angle, x_unit_tensor, y_unit_tensor, z_unit_tensor): rot = quat_mul(quat_from_angle_axis(0.5 * np.pi + rand0 * max_angle, x_unit_tensor), quat_from_angle_axis(rand0 * np.pi, z_unit_tensor)) return rot
40,972
Python
54.897681
223
0.622157
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/tasks/ball_balance.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import os import torch import xml.etree.ElementTree as ET from isaacgym import gymutil, gymtorch, gymapi from isaacgymenvs.utils.torch_jit_utils import to_torch, torch_rand_float, tensor_clamp, torch_random_dir_2 from .base.vec_task import VecTask def _indent_xml(elem, level=0): i = "\n" + level * " " if len(elem): if not elem.text or not elem.text.strip(): elem.text = i + " " if not elem.tail or not elem.tail.strip(): elem.tail = i for elem in elem: _indent_xml(elem, level + 1) if not elem.tail or not elem.tail.strip(): elem.tail = i else: if level and (not elem.tail or not elem.tail.strip()): elem.tail = i class BallBalance(VecTask): def __init__(self, cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render): self.cfg = cfg self.max_episode_length = self.cfg["env"]["maxEpisodeLength"] self.action_speed_scale = self.cfg["env"]["actionSpeedScale"] self.debug_viz = self.cfg["env"]["enableDebugVis"] sensors_per_env = 3 actors_per_env = 2 dofs_per_env = 6 bodies_per_env = 7 + 1 # Observations: # 0:3 - activated DOF positions # 3:6 - activated DOF velocities # 6:9 - ball position # 9:12 - ball linear velocity # 12:15 - sensor force (same for each sensor) # 15:18 - sensor torque 1 # 18:21 - sensor torque 2 # 21:24 - sensor torque 3 self.cfg["env"]["numObservations"] = 24 # Actions: target velocities for the 3 actuated DOFs self.cfg["env"]["numActions"] = 3 super().__init__(config=self.cfg, rl_device=rl_device, sim_device=sim_device, graphics_device_id=graphics_device_id, headless=headless, virtual_screen_capture=virtual_screen_capture, force_render=force_render) self.root_tensor = self.gym.acquire_actor_root_state_tensor(self.sim) self.dof_state_tensor = self.gym.acquire_dof_state_tensor(self.sim) self.sensor_tensor = self.gym.acquire_force_sensor_tensor(self.sim) vec_root_tensor = gymtorch.wrap_tensor(self.root_tensor).view(self.num_envs, actors_per_env, 13) vec_dof_tensor = gymtorch.wrap_tensor(self.dof_state_tensor).view(self.num_envs, dofs_per_env, 2) vec_sensor_tensor = gymtorch.wrap_tensor(self.sensor_tensor).view(self.num_envs, sensors_per_env, 6) self.root_states = vec_root_tensor self.tray_positions = vec_root_tensor[..., 0, 0:3] self.ball_positions = vec_root_tensor[..., 1, 0:3] self.ball_orientations = vec_root_tensor[..., 1, 3:7] self.ball_linvels = vec_root_tensor[..., 1, 7:10] self.ball_angvels = vec_root_tensor[..., 1, 10:13] self.dof_states = vec_dof_tensor self.dof_positions = vec_dof_tensor[..., 0] self.dof_velocities = vec_dof_tensor[..., 1] self.sensor_forces = vec_sensor_tensor[..., 0:3] self.sensor_torques = vec_sensor_tensor[..., 3:6] self.gym.refresh_actor_root_state_tensor(self.sim) self.gym.refresh_dof_state_tensor(self.sim) self.initial_dof_states = self.dof_states.clone() self.initial_root_states = vec_root_tensor.clone() self.dof_position_targets = torch.zeros((self.num_envs, dofs_per_env), dtype=torch.float32, device=self.device, requires_grad=False) self.all_actor_indices = torch.arange(actors_per_env * self.num_envs, dtype=torch.int32, device=self.device).view(self.num_envs, actors_per_env) self.all_bbot_indices = actors_per_env * torch.arange(self.num_envs, dtype=torch.int32, device=self.device) # vis self.axes_geom = gymutil.AxesGeometry(0.2) def create_sim(self): self.dt = self.sim_params.dt self.sim_params.up_axis = gymapi.UP_AXIS_Z self.sim_params.gravity.x = 0 self.sim_params.gravity.y = 0 self.sim_params.gravity.z = -9.81 self.sim = super().create_sim(self.device_id, self.graphics_device_id, self.physics_engine, self.sim_params) self._create_balance_bot_asset() self._create_ground_plane() self._create_envs(self.num_envs, self.cfg["env"]['envSpacing'], int(np.sqrt(self.num_envs))) def _create_balance_bot_asset(self): # there is an asset balance_bot.xml, here we override some features. tray_radius = 0.5 tray_thickness = 0.02 leg_radius = 0.02 leg_outer_offset = tray_radius - 0.1 leg_length = leg_outer_offset - 2 * leg_radius leg_inner_offset = leg_outer_offset - leg_length / math.sqrt(2) tray_height = leg_length * math.sqrt(2) + 2 * leg_radius + 0.5 * tray_thickness root = ET.Element('mujoco') root.attrib["model"] = "BalanceBot" compiler = ET.SubElement(root, "compiler") compiler.attrib["angle"] = "degree" compiler.attrib["coordinate"] = "local" compiler.attrib["inertiafromgeom"] = "true" worldbody = ET.SubElement(root, "worldbody") tray = ET.SubElement(worldbody, "body") tray.attrib["name"] = "tray" tray.attrib["pos"] = "%g %g %g" % (0, 0, tray_height) tray_joint = ET.SubElement(tray, "joint") tray_joint.attrib["name"] = "root_joint" tray_joint.attrib["type"] = "free" tray_geom = ET.SubElement(tray, "geom") tray_geom.attrib["type"] = "cylinder" tray_geom.attrib["size"] = "%g %g" % (tray_radius, 0.5 * tray_thickness) tray_geom.attrib["pos"] = "0 0 0" tray_geom.attrib["density"] = "100" leg_angles = [0.0, 2.0 / 3.0 * math.pi, 4.0 / 3.0 * math.pi] for i in range(len(leg_angles)): angle = leg_angles[i] upper_leg_from = gymapi.Vec3() upper_leg_from.x = leg_outer_offset * math.cos(angle) upper_leg_from.y = leg_outer_offset * math.sin(angle) upper_leg_from.z = -leg_radius - 0.5 * tray_thickness upper_leg_to = gymapi.Vec3() upper_leg_to.x = leg_inner_offset * math.cos(angle) upper_leg_to.y = leg_inner_offset * math.sin(angle) upper_leg_to.z = upper_leg_from.z - leg_length / math.sqrt(2) upper_leg_pos = (upper_leg_from + upper_leg_to) * 0.5 upper_leg_quat = gymapi.Quat.from_euler_zyx(0, -0.75 * math.pi, angle) upper_leg = ET.SubElement(tray, "body") upper_leg.attrib["name"] = "upper_leg" + str(i) upper_leg.attrib["pos"] = "%g %g %g" % (upper_leg_pos.x, upper_leg_pos.y, upper_leg_pos.z) upper_leg.attrib["quat"] = "%g %g %g %g" % (upper_leg_quat.w, upper_leg_quat.x, upper_leg_quat.y, upper_leg_quat.z) upper_leg_geom = ET.SubElement(upper_leg, "geom") upper_leg_geom.attrib["type"] = "capsule" upper_leg_geom.attrib["size"] = "%g %g" % (leg_radius, 0.5 * leg_length) upper_leg_geom.attrib["density"] = "1000" upper_leg_joint = ET.SubElement(upper_leg, "joint") upper_leg_joint.attrib["name"] = "upper_leg_joint" + str(i) upper_leg_joint.attrib["type"] = "hinge" upper_leg_joint.attrib["pos"] = "%g %g %g" % (0, 0, -0.5 * leg_length) upper_leg_joint.attrib["axis"] = "0 1 0" upper_leg_joint.attrib["limited"] = "true" upper_leg_joint.attrib["range"] = "-45 45" lower_leg_pos = gymapi.Vec3(-0.5 * leg_length, 0, 0.5 * leg_length) lower_leg_quat = gymapi.Quat.from_euler_zyx(0, -0.5 * math.pi, 0) lower_leg = ET.SubElement(upper_leg, "body") lower_leg.attrib["name"] = "lower_leg" + str(i) lower_leg.attrib["pos"] = "%g %g %g" % (lower_leg_pos.x, lower_leg_pos.y, lower_leg_pos.z) lower_leg.attrib["quat"] = "%g %g %g %g" % (lower_leg_quat.w, lower_leg_quat.x, lower_leg_quat.y, lower_leg_quat.z) lower_leg_geom = ET.SubElement(lower_leg, "geom") lower_leg_geom.attrib["type"] = "capsule" lower_leg_geom.attrib["size"] = "%g %g" % (leg_radius, 0.5 * leg_length) lower_leg_geom.attrib["density"] = "1000" lower_leg_joint = ET.SubElement(lower_leg, "joint") lower_leg_joint.attrib["name"] = "lower_leg_joint" + str(i) lower_leg_joint.attrib["type"] = "hinge" lower_leg_joint.attrib["pos"] = "%g %g %g" % (0, 0, -0.5 * leg_length) lower_leg_joint.attrib["axis"] = "0 1 0" lower_leg_joint.attrib["limited"] = "true" lower_leg_joint.attrib["range"] = "-70 90" _indent_xml(root) ET.ElementTree(root).write("balance_bot.xml") # save some useful robot parameters self.tray_height = tray_height self.leg_radius = leg_radius self.leg_length = leg_length self.leg_outer_offset = leg_outer_offset self.leg_angles = leg_angles def _create_ground_plane(self): plane_params = gymapi.PlaneParams() plane_params.normal = gymapi.Vec3(0.0, 0.0, 1.0) self.gym.add_ground(self.sim, plane_params) def _create_envs(self, num_envs, spacing, num_per_row): lower = gymapi.Vec3(-spacing, -spacing, 0.0) upper = gymapi.Vec3(spacing, spacing, spacing) asset_root = "." asset_file = "balance_bot.xml" asset_path = os.path.join(asset_root, asset_file) asset_root = os.path.dirname(asset_path) asset_file = os.path.basename(asset_path) bbot_options = gymapi.AssetOptions() bbot_options.fix_base_link = False bbot_options.slices_per_cylinder = 40 bbot_asset = self.gym.load_asset(self.sim, asset_root, asset_file, bbot_options) # printed view of asset built # self.gym.debug_print_asset(bbot_asset) self.num_bbot_dofs = self.gym.get_asset_dof_count(bbot_asset) bbot_dof_props = self.gym.get_asset_dof_properties(bbot_asset) self.bbot_dof_lower_limits = [] self.bbot_dof_upper_limits = [] for i in range(self.num_bbot_dofs): self.bbot_dof_lower_limits.append(bbot_dof_props['lower'][i]) self.bbot_dof_upper_limits.append(bbot_dof_props['upper'][i]) self.bbot_dof_lower_limits = to_torch(self.bbot_dof_lower_limits, device=self.device) self.bbot_dof_upper_limits = to_torch(self.bbot_dof_upper_limits, device=self.device) bbot_pose = gymapi.Transform() bbot_pose.p.z = self.tray_height # create force sensors attached to the tray body bbot_tray_idx = self.gym.find_asset_rigid_body_index(bbot_asset, "tray") for angle in self.leg_angles: sensor_pose = gymapi.Transform() sensor_pose.p.x = self.leg_outer_offset * math.cos(angle) sensor_pose.p.y = self.leg_outer_offset * math.sin(angle) self.gym.create_asset_force_sensor(bbot_asset, bbot_tray_idx, sensor_pose) # create ball asset self.ball_radius = 0.1 ball_options = gymapi.AssetOptions() ball_options.density = 200 ball_asset = self.gym.create_sphere(self.sim, self.ball_radius, ball_options) self.envs = [] self.bbot_handles = [] self.obj_handles = [] for i in range(self.num_envs): # create env instance env_ptr = self.gym.create_env( self.sim, lower, upper, num_per_row ) bbot_handle = self.gym.create_actor(env_ptr, bbot_asset, bbot_pose, "bbot", i, 0, 0) actuated_dofs = np.array([1, 3, 5]) free_dofs = np.array([0, 2, 4]) dof_props = self.gym.get_actor_dof_properties(env_ptr, bbot_handle) dof_props['driveMode'][actuated_dofs] = gymapi.DOF_MODE_POS dof_props['stiffness'][actuated_dofs] = 4000.0 dof_props['damping'][actuated_dofs] = 100.0 dof_props['driveMode'][free_dofs] = gymapi.DOF_MODE_NONE dof_props['stiffness'][free_dofs] = 0 dof_props['damping'][free_dofs] = 0 self.gym.set_actor_dof_properties(env_ptr, bbot_handle, dof_props) lower_leg_handles = [] lower_leg_handles.append(self.gym.find_actor_rigid_body_handle(env_ptr, bbot_handle, "lower_leg0")) lower_leg_handles.append(self.gym.find_actor_rigid_body_handle(env_ptr, bbot_handle, "lower_leg1")) lower_leg_handles.append(self.gym.find_actor_rigid_body_handle(env_ptr, bbot_handle, "lower_leg2")) # create attractors to hold the feet in place attractor_props = gymapi.AttractorProperties() attractor_props.stiffness = 5e7 attractor_props.damping = 5e3 attractor_props.axes = gymapi.AXIS_TRANSLATION for j in range(3): angle = self.leg_angles[j] attractor_props.rigid_handle = lower_leg_handles[j] # attractor world pose to keep the feet in place attractor_props.target.p.x = self.leg_outer_offset * math.cos(angle) attractor_props.target.p.z = self.leg_radius attractor_props.target.p.y = self.leg_outer_offset * math.sin(angle) # attractor local pose in lower leg body attractor_props.offset.p.z = 0.5 * self.leg_length self.gym.create_rigid_body_attractor(env_ptr, attractor_props) ball_pose = gymapi.Transform() ball_pose.p.x = 0.2 ball_pose.p.z = 2.0 ball_handle = self.gym.create_actor(env_ptr, ball_asset, ball_pose, "ball", i, 0, 0) self.obj_handles.append(ball_handle) # pretty colors self.gym.set_rigid_body_color(env_ptr, ball_handle, 0, gymapi.MESH_VISUAL, gymapi.Vec3(0.99, 0.66, 0.25)) self.gym.set_rigid_body_color(env_ptr, bbot_handle, 0, gymapi.MESH_VISUAL, gymapi.Vec3(0.48, 0.65, 0.8)) for j in range(1, 7): self.gym.set_rigid_body_color(env_ptr, bbot_handle, j, gymapi.MESH_VISUAL, gymapi.Vec3(0.15, 0.2, 0.3)) self.envs.append(env_ptr) self.bbot_handles.append(bbot_handle) def compute_observations(self): #print("~!~!~!~! Computing obs") actuated_dof_indices = torch.tensor([1, 3, 5], device=self.device) #print(self.dof_states[:, actuated_dof_indices, :]) self.obs_buf[..., 0:3] = self.dof_positions[..., actuated_dof_indices] self.obs_buf[..., 3:6] = self.dof_velocities[..., actuated_dof_indices] self.obs_buf[..., 6:9] = self.ball_positions self.obs_buf[..., 9:12] = self.ball_linvels self.obs_buf[..., 12:15] = self.sensor_forces[..., 0] / 20 # !!! lousy normalization self.obs_buf[..., 15:18] = self.sensor_torques[..., 0] / 20 # !!! lousy normalization self.obs_buf[..., 18:21] = self.sensor_torques[..., 1] / 20 # !!! lousy normalization self.obs_buf[..., 21:24] = self.sensor_torques[..., 2] / 20 # !!! lousy normalization return self.obs_buf def compute_reward(self): self.rew_buf[:], self.reset_buf[:] = compute_bbot_reward( self.tray_positions, self.ball_positions, self.ball_linvels, self.ball_radius, self.reset_buf, self.progress_buf, self.max_episode_length ) def reset_idx(self, env_ids): num_resets = len(env_ids) # reset bbot and ball root states self.root_states[env_ids] = self.initial_root_states[env_ids] min_d = 0.001 # min horizontal dist from origin max_d = 0.5 # max horizontal dist from origin min_height = 1.0 max_height = 2.0 min_horizontal_speed = 0 max_horizontal_speed = 5 dists = torch_rand_float(min_d, max_d, (num_resets, 1), self.device) dirs = torch_random_dir_2((num_resets, 1), self.device) hpos = dists * dirs speedscales = (dists - min_d) / (max_d - min_d) hspeeds = torch_rand_float(min_horizontal_speed, max_horizontal_speed, (num_resets, 1), self.device) hvels = -speedscales * hspeeds * dirs vspeeds = -torch_rand_float(5.0, 5.0, (num_resets, 1), self.device).squeeze() self.ball_positions[env_ids, 0] = hpos[..., 0] self.ball_positions[env_ids, 2] = torch_rand_float(min_height, max_height, (num_resets, 1), self.device).squeeze() self.ball_positions[env_ids, 1] = hpos[..., 1] self.ball_orientations[env_ids, 0:3] = 0 self.ball_orientations[env_ids, 3] = 1 self.ball_linvels[env_ids, 0] = hvels[..., 0] self.ball_linvels[env_ids, 2] = vspeeds self.ball_linvels[env_ids, 1] = hvels[..., 1] self.ball_angvels[env_ids] = 0 # reset root state for bbots and balls in selected envs actor_indices = self.all_actor_indices[env_ids].flatten() self.gym.set_actor_root_state_tensor_indexed(self.sim, self.root_tensor, gymtorch.unwrap_tensor(actor_indices), len(actor_indices)) # reset DOF states for bbots in selected envs bbot_indices = self.all_bbot_indices[env_ids].flatten() self.dof_states[env_ids] = self.initial_dof_states[env_ids] self.gym.set_dof_state_tensor_indexed(self.sim, self.dof_state_tensor, gymtorch.unwrap_tensor(bbot_indices), len(bbot_indices)) self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def pre_physics_step(self, _actions): # resets reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) actions = _actions.to(self.device) actuated_indices = torch.LongTensor([1, 3, 5]) # update position targets from actions self.dof_position_targets[..., actuated_indices] += self.dt * self.action_speed_scale * actions self.dof_position_targets[:] = tensor_clamp(self.dof_position_targets, self.bbot_dof_lower_limits, self.bbot_dof_upper_limits) # reset position targets for reset envs self.dof_position_targets[reset_env_ids] = 0 self.gym.set_dof_position_target_tensor(self.sim, gymtorch.unwrap_tensor(self.dof_position_targets)) def post_physics_step(self): self.progress_buf += 1 self.gym.refresh_actor_root_state_tensor(self.sim) self.gym.refresh_dof_state_tensor(self.sim) self.gym.refresh_force_sensor_tensor(self.sim) self.compute_observations() self.compute_reward() # vis if self.viewer and self.debug_viz: self.gym.clear_lines(self.viewer) for i in range(self.num_envs): env = self.envs[i] bbot_handle = self.bbot_handles[i] body_handles = [] body_handles.append(self.gym.find_actor_rigid_body_handle(env, bbot_handle, "upper_leg0")) body_handles.append(self.gym.find_actor_rigid_body_handle(env, bbot_handle, "upper_leg1")) body_handles.append(self.gym.find_actor_rigid_body_handle(env, bbot_handle, "upper_leg2")) for lhandle in body_handles: lpose = self.gym.get_rigid_transform(env, lhandle) gymutil.draw_lines(self.axes_geom, self.gym, self.viewer, env, lpose) ##################################################################### ###=========================jit functions=========================### ##################################################################### @torch.jit.script def compute_bbot_reward(tray_positions, ball_positions, ball_velocities, ball_radius, reset_buf, progress_buf, max_episode_length): # type: (Tensor, Tensor, Tensor, float, Tensor, Tensor, float) -> Tuple[Tensor, Tensor] # calculating the norm for ball distance to desired height above the ground plane (i.e. 0.7) ball_dist = torch.sqrt(ball_positions[..., 0] * ball_positions[..., 0] + (ball_positions[..., 2] - 0.7) * (ball_positions[..., 2] - 0.7) + (ball_positions[..., 1]) * ball_positions[..., 1]) ball_speed = torch.sqrt(ball_velocities[..., 0] * ball_velocities[..., 0] + ball_velocities[..., 1] * ball_velocities[..., 1] + ball_velocities[..., 2] * ball_velocities[..., 2]) pos_reward = 1.0 / (1.0 + ball_dist) speed_reward = 1.0 / (1.0 + ball_speed) reward = pos_reward * speed_reward reset = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(reset_buf), reset_buf) reset = torch.where(ball_positions[..., 2] < ball_radius * 1.5, torch.ones_like(reset_buf), reset) return reward, reset
22,414
Python
45.991614
217
0.605559
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/tasks/anymal_terrain.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np import os, time from isaacgym import gymtorch from isaacgym import gymapi from .base.vec_task import VecTask import torch from typing import Tuple, Dict from isaacgymenvs.utils.torch_jit_utils import to_torch, get_axis_params, torch_rand_float, normalize, quat_apply, quat_rotate_inverse from isaacgymenvs.tasks.base.vec_task import VecTask class AnymalTerrain(VecTask): def __init__(self, cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render): self.cfg = cfg self.height_samples = None self.custom_origins = False self.debug_viz = self.cfg["env"]["enableDebugVis"] self.init_done = False # normalization self.lin_vel_scale = self.cfg["env"]["learn"]["linearVelocityScale"] self.ang_vel_scale = self.cfg["env"]["learn"]["angularVelocityScale"] self.dof_pos_scale = self.cfg["env"]["learn"]["dofPositionScale"] self.dof_vel_scale = self.cfg["env"]["learn"]["dofVelocityScale"] self.height_meas_scale = self.cfg["env"]["learn"]["heightMeasurementScale"] self.action_scale = self.cfg["env"]["control"]["actionScale"] # reward scales self.rew_scales = {} self.rew_scales["termination"] = self.cfg["env"]["learn"]["terminalReward"] self.rew_scales["lin_vel_xy"] = self.cfg["env"]["learn"]["linearVelocityXYRewardScale"] self.rew_scales["lin_vel_z"] = self.cfg["env"]["learn"]["linearVelocityZRewardScale"] self.rew_scales["ang_vel_z"] = self.cfg["env"]["learn"]["angularVelocityZRewardScale"] self.rew_scales["ang_vel_xy"] = self.cfg["env"]["learn"]["angularVelocityXYRewardScale"] self.rew_scales["orient"] = self.cfg["env"]["learn"]["orientationRewardScale"] self.rew_scales["torque"] = self.cfg["env"]["learn"]["torqueRewardScale"] self.rew_scales["joint_acc"] = self.cfg["env"]["learn"]["jointAccRewardScale"] self.rew_scales["base_height"] = self.cfg["env"]["learn"]["baseHeightRewardScale"] self.rew_scales["air_time"] = self.cfg["env"]["learn"]["feetAirTimeRewardScale"] self.rew_scales["collision"] = self.cfg["env"]["learn"]["kneeCollisionRewardScale"] self.rew_scales["stumble"] = self.cfg["env"]["learn"]["feetStumbleRewardScale"] self.rew_scales["action_rate"] = self.cfg["env"]["learn"]["actionRateRewardScale"] self.rew_scales["hip"] = self.cfg["env"]["learn"]["hipRewardScale"] #command ranges self.command_x_range = self.cfg["env"]["randomCommandVelocityRanges"]["linear_x"] self.command_y_range = self.cfg["env"]["randomCommandVelocityRanges"]["linear_y"] self.command_yaw_range = self.cfg["env"]["randomCommandVelocityRanges"]["yaw"] # base init state pos = self.cfg["env"]["baseInitState"]["pos"] rot = self.cfg["env"]["baseInitState"]["rot"] v_lin = self.cfg["env"]["baseInitState"]["vLinear"] v_ang = self.cfg["env"]["baseInitState"]["vAngular"] self.base_init_state = pos + rot + v_lin + v_ang # default joint positions self.named_default_joint_angles = self.cfg["env"]["defaultJointAngles"] # other self.decimation = self.cfg["env"]["control"]["decimation"] self.dt = self.decimation * self.cfg["sim"]["dt"] self.max_episode_length_s = self.cfg["env"]["learn"]["episodeLength_s"] self.max_episode_length = int(self.max_episode_length_s/ self.dt + 0.5) self.push_interval = int(self.cfg["env"]["learn"]["pushInterval_s"] / self.dt + 0.5) self.allow_knee_contacts = self.cfg["env"]["learn"]["allowKneeContacts"] self.Kp = self.cfg["env"]["control"]["stiffness"] self.Kd = self.cfg["env"]["control"]["damping"] self.curriculum = self.cfg["env"]["terrain"]["curriculum"] for key in self.rew_scales.keys(): self.rew_scales[key] *= self.dt super().__init__(config=self.cfg, rl_device=rl_device, sim_device=sim_device, graphics_device_id=graphics_device_id, headless=headless, virtual_screen_capture=virtual_screen_capture, force_render=force_render) if self.graphics_device_id != -1: p = self.cfg["env"]["viewer"]["pos"] lookat = self.cfg["env"]["viewer"]["lookat"] cam_pos = gymapi.Vec3(p[0], p[1], p[2]) cam_target = gymapi.Vec3(lookat[0], lookat[1], lookat[2]) self.gym.viewer_camera_look_at(self.viewer, None, cam_pos, cam_target) # get gym GPU state tensors actor_root_state = self.gym.acquire_actor_root_state_tensor(self.sim) dof_state_tensor = self.gym.acquire_dof_state_tensor(self.sim) net_contact_forces = self.gym.acquire_net_contact_force_tensor(self.sim) self.gym.refresh_dof_state_tensor(self.sim) self.gym.refresh_actor_root_state_tensor(self.sim) self.gym.refresh_net_contact_force_tensor(self.sim) # create some wrapper tensors for different slices self.root_states = gymtorch.wrap_tensor(actor_root_state) self.dof_state = gymtorch.wrap_tensor(dof_state_tensor) self.dof_pos = self.dof_state.view(self.num_envs, self.num_dof, 2)[..., 0] self.dof_vel = self.dof_state.view(self.num_envs, self.num_dof, 2)[..., 1] self.contact_forces = gymtorch.wrap_tensor(net_contact_forces).view(self.num_envs, -1, 3) # shape: num_envs, num_bodies, xyz axis # initialize some data used later on self.common_step_counter = 0 self.extras = {} self.noise_scale_vec = self._get_noise_scale_vec(self.cfg) self.commands = torch.zeros(self.num_envs, 4, dtype=torch.float, device=self.device, requires_grad=False) # x vel, y vel, yaw vel, heading self.commands_scale = torch.tensor([self.lin_vel_scale, self.lin_vel_scale, self.ang_vel_scale], device=self.device, requires_grad=False,) self.gravity_vec = to_torch(get_axis_params(-1., self.up_axis_idx), device=self.device).repeat((self.num_envs, 1)) self.forward_vec = to_torch([1., 0., 0.], device=self.device).repeat((self.num_envs, 1)) self.torques = torch.zeros(self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False) self.actions = torch.zeros(self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False) self.last_actions = torch.zeros(self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False) self.feet_air_time = torch.zeros(self.num_envs, 4, dtype=torch.float, device=self.device, requires_grad=False) self.last_dof_vel = torch.zeros_like(self.dof_vel) self.height_points = self.init_height_points() self.measured_heights = None # joint positions offsets self.default_dof_pos = torch.zeros_like(self.dof_pos, dtype=torch.float, device=self.device, requires_grad=False) for i in range(self.num_actions): name = self.dof_names[i] angle = self.named_default_joint_angles[name] self.default_dof_pos[:, i] = angle # reward episode sums torch_zeros = lambda : torch.zeros(self.num_envs, dtype=torch.float, device=self.device, requires_grad=False) self.episode_sums = {"lin_vel_xy": torch_zeros(), "lin_vel_z": torch_zeros(), "ang_vel_z": torch_zeros(), "ang_vel_xy": torch_zeros(), "orient": torch_zeros(), "torques": torch_zeros(), "joint_acc": torch_zeros(), "base_height": torch_zeros(), "air_time": torch_zeros(), "collision": torch_zeros(), "stumble": torch_zeros(), "action_rate": torch_zeros(), "hip": torch_zeros()} self.reset_idx(torch.arange(self.num_envs, device=self.device)) self.init_done = True def create_sim(self): self.up_axis_idx = 2 # index of up axis: Y=1, Z=2 self.sim = super().create_sim(self.device_id, self.graphics_device_id, self.physics_engine, self.sim_params) terrain_type = self.cfg["env"]["terrain"]["terrainType"] if terrain_type=='plane': self._create_ground_plane() elif terrain_type=='trimesh': self._create_trimesh() self.custom_origins = True self._create_envs(self.num_envs, self.cfg["env"]['envSpacing'], int(np.sqrt(self.num_envs))) def _get_noise_scale_vec(self, cfg): noise_vec = torch.zeros_like(self.obs_buf[0]) self.add_noise = self.cfg["env"]["learn"]["addNoise"] noise_level = self.cfg["env"]["learn"]["noiseLevel"] noise_vec[:3] = self.cfg["env"]["learn"]["linearVelocityNoise"] * noise_level * self.lin_vel_scale noise_vec[3:6] = self.cfg["env"]["learn"]["angularVelocityNoise"] * noise_level * self.ang_vel_scale noise_vec[6:9] = self.cfg["env"]["learn"]["gravityNoise"] * noise_level noise_vec[9:12] = 0. # commands noise_vec[12:24] = self.cfg["env"]["learn"]["dofPositionNoise"] * noise_level * self.dof_pos_scale noise_vec[24:36] = self.cfg["env"]["learn"]["dofVelocityNoise"] * noise_level * self.dof_vel_scale noise_vec[36:176] = self.cfg["env"]["learn"]["heightMeasurementNoise"] * noise_level * self.height_meas_scale noise_vec[176:188] = 0. # previous actions return noise_vec def _create_ground_plane(self): plane_params = gymapi.PlaneParams() plane_params.normal = gymapi.Vec3(0.0, 0.0, 1.0) plane_params.static_friction = self.cfg["env"]["terrain"]["staticFriction"] plane_params.dynamic_friction = self.cfg["env"]["terrain"]["dynamicFriction"] plane_params.restitution = self.cfg["env"]["terrain"]["restitution"] self.gym.add_ground(self.sim, plane_params) def _create_trimesh(self): self.terrain = Terrain(self.cfg["env"]["terrain"], num_robots=self.num_envs) tm_params = gymapi.TriangleMeshParams() tm_params.nb_vertices = self.terrain.vertices.shape[0] tm_params.nb_triangles = self.terrain.triangles.shape[0] tm_params.transform.p.x = -self.terrain.border_size tm_params.transform.p.y = -self.terrain.border_size tm_params.transform.p.z = 0.0 tm_params.static_friction = self.cfg["env"]["terrain"]["staticFriction"] tm_params.dynamic_friction = self.cfg["env"]["terrain"]["dynamicFriction"] tm_params.restitution = self.cfg["env"]["terrain"]["restitution"] self.gym.add_triangle_mesh(self.sim, self.terrain.vertices.flatten(order='C'), self.terrain.triangles.flatten(order='C'), tm_params) self.height_samples = torch.tensor(self.terrain.heightsamples).view(self.terrain.tot_rows, self.terrain.tot_cols).to(self.device) def _create_envs(self, num_envs, spacing, num_per_row): asset_root = os.path.join(os.path.dirname(os.path.abspath(__file__)), '../../assets') asset_file = self.cfg["env"]["urdfAsset"]["file"] asset_path = os.path.join(asset_root, asset_file) asset_root = os.path.dirname(asset_path) asset_file = os.path.basename(asset_path) asset_options = gymapi.AssetOptions() asset_options.default_dof_drive_mode = gymapi.DOF_MODE_EFFORT asset_options.collapse_fixed_joints = True asset_options.replace_cylinder_with_capsule = True asset_options.flip_visual_attachments = True asset_options.fix_base_link = self.cfg["env"]["urdfAsset"]["fixBaseLink"] asset_options.density = 0.001 asset_options.angular_damping = 0.0 asset_options.linear_damping = 0.0 asset_options.armature = 0.0 asset_options.thickness = 0.01 asset_options.disable_gravity = False anymal_asset = self.gym.load_asset(self.sim, asset_root, asset_file, asset_options) self.num_dof = self.gym.get_asset_dof_count(anymal_asset) self.num_bodies = self.gym.get_asset_rigid_body_count(anymal_asset) # prepare friction randomization rigid_shape_prop = self.gym.get_asset_rigid_shape_properties(anymal_asset) friction_range = self.cfg["env"]["learn"]["frictionRange"] num_buckets = 100 friction_buckets = torch_rand_float(friction_range[0], friction_range[1], (num_buckets,1), device=self.device) self.base_init_state = to_torch(self.base_init_state, device=self.device, requires_grad=False) start_pose = gymapi.Transform() start_pose.p = gymapi.Vec3(*self.base_init_state[:3]) body_names = self.gym.get_asset_rigid_body_names(anymal_asset) self.dof_names = self.gym.get_asset_dof_names(anymal_asset) foot_name = self.cfg["env"]["urdfAsset"]["footName"] knee_name = self.cfg["env"]["urdfAsset"]["kneeName"] feet_names = [s for s in body_names if foot_name in s] self.feet_indices = torch.zeros(len(feet_names), dtype=torch.long, device=self.device, requires_grad=False) knee_names = [s for s in body_names if knee_name in s] self.knee_indices = torch.zeros(len(knee_names), dtype=torch.long, device=self.device, requires_grad=False) self.base_index = 0 dof_props = self.gym.get_asset_dof_properties(anymal_asset) # env origins self.env_origins = torch.zeros(self.num_envs, 3, device=self.device, requires_grad=False) if not self.curriculum: self.cfg["env"]["terrain"]["maxInitMapLevel"] = self.cfg["env"]["terrain"]["numLevels"] - 1 self.terrain_levels = torch.randint(0, self.cfg["env"]["terrain"]["maxInitMapLevel"]+1, (self.num_envs,), device=self.device) self.terrain_types = torch.randint(0, self.cfg["env"]["terrain"]["numTerrains"], (self.num_envs,), device=self.device) if self.custom_origins: self.terrain_origins = torch.from_numpy(self.terrain.env_origins).to(self.device).to(torch.float) spacing = 0. env_lower = gymapi.Vec3(-spacing, -spacing, 0.0) env_upper = gymapi.Vec3(spacing, spacing, spacing) self.anymal_handles = [] self.envs = [] for i in range(self.num_envs): # create env instance env_handle = self.gym.create_env(self.sim, env_lower, env_upper, num_per_row) if self.custom_origins: self.env_origins[i] = self.terrain_origins[self.terrain_levels[i], self.terrain_types[i]] pos = self.env_origins[i].clone() pos[:2] += torch_rand_float(-1., 1., (2, 1), device=self.device).squeeze(1) start_pose.p = gymapi.Vec3(*pos) for s in range(len(rigid_shape_prop)): rigid_shape_prop[s].friction = friction_buckets[i % num_buckets] self.gym.set_asset_rigid_shape_properties(anymal_asset, rigid_shape_prop) anymal_handle = self.gym.create_actor(env_handle, anymal_asset, start_pose, "anymal", i, 0, 0) self.gym.set_actor_dof_properties(env_handle, anymal_handle, dof_props) self.envs.append(env_handle) self.anymal_handles.append(anymal_handle) for i in range(len(feet_names)): self.feet_indices[i] = self.gym.find_actor_rigid_body_handle(self.envs[0], self.anymal_handles[0], feet_names[i]) for i in range(len(knee_names)): self.knee_indices[i] = self.gym.find_actor_rigid_body_handle(self.envs[0], self.anymal_handles[0], knee_names[i]) self.base_index = self.gym.find_actor_rigid_body_handle(self.envs[0], self.anymal_handles[0], "base") def check_termination(self): self.reset_buf = torch.norm(self.contact_forces[:, self.base_index, :], dim=1) > 1. if not self.allow_knee_contacts: knee_contact = torch.norm(self.contact_forces[:, self.knee_indices, :], dim=2) > 1. self.reset_buf |= torch.any(knee_contact, dim=1) self.reset_buf = torch.where(self.progress_buf >= self.max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf) def compute_observations(self): self.measured_heights = self.get_heights() heights = torch.clip(self.root_states[:, 2].unsqueeze(1) - 0.5 - self.measured_heights, -1, 1.) * self.height_meas_scale self.obs_buf = torch.cat(( self.base_lin_vel * self.lin_vel_scale, self.base_ang_vel * self.ang_vel_scale, self.projected_gravity, self.commands[:, :3] * self.commands_scale, self.dof_pos * self.dof_pos_scale, self.dof_vel * self.dof_vel_scale, heights, self.actions ), dim=-1) def compute_reward(self): # velocity tracking reward lin_vel_error = torch.sum(torch.square(self.commands[:, :2] - self.base_lin_vel[:, :2]), dim=1) ang_vel_error = torch.square(self.commands[:, 2] - self.base_ang_vel[:, 2]) rew_lin_vel_xy = torch.exp(-lin_vel_error/0.25) * self.rew_scales["lin_vel_xy"] rew_ang_vel_z = torch.exp(-ang_vel_error/0.25) * self.rew_scales["ang_vel_z"] # other base velocity penalties rew_lin_vel_z = torch.square(self.base_lin_vel[:, 2]) * self.rew_scales["lin_vel_z"] rew_ang_vel_xy = torch.sum(torch.square(self.base_ang_vel[:, :2]), dim=1) * self.rew_scales["ang_vel_xy"] # orientation penalty rew_orient = torch.sum(torch.square(self.projected_gravity[:, :2]), dim=1) * self.rew_scales["orient"] # base height penalty rew_base_height = torch.square(self.root_states[:, 2] - 0.52) * self.rew_scales["base_height"] # TODO add target base height to cfg # torque penalty rew_torque = torch.sum(torch.square(self.torques), dim=1) * self.rew_scales["torque"] # joint acc penalty rew_joint_acc = torch.sum(torch.square(self.last_dof_vel - self.dof_vel), dim=1) * self.rew_scales["joint_acc"] # collision penalty knee_contact = torch.norm(self.contact_forces[:, self.knee_indices, :], dim=2) > 1. rew_collision = torch.sum(knee_contact, dim=1) * self.rew_scales["collision"] # sum vs any ? # stumbling penalty stumble = (torch.norm(self.contact_forces[:, self.feet_indices, :2], dim=2) > 5.) * (torch.abs(self.contact_forces[:, self.feet_indices, 2]) < 1.) rew_stumble = torch.sum(stumble, dim=1) * self.rew_scales["stumble"] # action rate penalty rew_action_rate = torch.sum(torch.square(self.last_actions - self.actions), dim=1) * self.rew_scales["action_rate"] # air time reward # contact = torch.norm(contact_forces[:, feet_indices, :], dim=2) > 1. contact = self.contact_forces[:, self.feet_indices, 2] > 1. first_contact = (self.feet_air_time > 0.) * contact self.feet_air_time += self.dt rew_airTime = torch.sum((self.feet_air_time - 0.5) * first_contact, dim=1) * self.rew_scales["air_time"] # reward only on first contact with the ground rew_airTime *= torch.norm(self.commands[:, :2], dim=1) > 0.1 #no reward for zero command self.feet_air_time *= ~contact # cosmetic penalty for hip motion rew_hip = torch.sum(torch.abs(self.dof_pos[:, [0, 3, 6, 9]] - self.default_dof_pos[:, [0, 3, 6, 9]]), dim=1)* self.rew_scales["hip"] # total reward self.rew_buf = rew_lin_vel_xy + rew_ang_vel_z + rew_lin_vel_z + rew_ang_vel_xy + rew_orient + rew_base_height +\ rew_torque + rew_joint_acc + rew_collision + rew_action_rate + rew_airTime + rew_hip + rew_stumble self.rew_buf = torch.clip(self.rew_buf, min=0., max=None) # add termination reward self.rew_buf += self.rew_scales["termination"] * self.reset_buf * ~self.timeout_buf # log episode reward sums self.episode_sums["lin_vel_xy"] += rew_lin_vel_xy self.episode_sums["ang_vel_z"] += rew_ang_vel_z self.episode_sums["lin_vel_z"] += rew_lin_vel_z self.episode_sums["ang_vel_xy"] += rew_ang_vel_xy self.episode_sums["orient"] += rew_orient self.episode_sums["torques"] += rew_torque self.episode_sums["joint_acc"] += rew_joint_acc self.episode_sums["collision"] += rew_collision self.episode_sums["stumble"] += rew_stumble self.episode_sums["action_rate"] += rew_action_rate self.episode_sums["air_time"] += rew_airTime self.episode_sums["base_height"] += rew_base_height self.episode_sums["hip"] += rew_hip def reset_idx(self, env_ids): positions_offset = torch_rand_float(0.5, 1.5, (len(env_ids), self.num_dof), device=self.device) velocities = torch_rand_float(-0.1, 0.1, (len(env_ids), self.num_dof), device=self.device) self.dof_pos[env_ids] = self.default_dof_pos[env_ids] * positions_offset self.dof_vel[env_ids] = velocities env_ids_int32 = env_ids.to(dtype=torch.int32) if self.custom_origins: self.update_terrain_level(env_ids) self.root_states[env_ids] = self.base_init_state self.root_states[env_ids, :3] += self.env_origins[env_ids] self.root_states[env_ids, :2] += torch_rand_float(-0.5, 0.5, (len(env_ids), 2), device=self.device) else: self.root_states[env_ids] = self.base_init_state self.gym.set_actor_root_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.root_states), gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32)) self.gym.set_dof_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.dof_state), gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32)) self.commands[env_ids, 0] = torch_rand_float(self.command_x_range[0], self.command_x_range[1], (len(env_ids), 1), device=self.device).squeeze() self.commands[env_ids, 1] = torch_rand_float(self.command_y_range[0], self.command_y_range[1], (len(env_ids), 1), device=self.device).squeeze() self.commands[env_ids, 3] = torch_rand_float(self.command_yaw_range[0], self.command_yaw_range[1], (len(env_ids), 1), device=self.device).squeeze() self.commands[env_ids] *= (torch.norm(self.commands[env_ids, :2], dim=1) > 0.25).unsqueeze(1) # set small commands to zero self.last_actions[env_ids] = 0. self.last_dof_vel[env_ids] = 0. self.feet_air_time[env_ids] = 0. self.progress_buf[env_ids] = 0 self.reset_buf[env_ids] = 1 # fill extras self.extras["episode"] = {} for key in self.episode_sums.keys(): self.extras["episode"]['rew_' + key] = torch.mean(self.episode_sums[key][env_ids]) / self.max_episode_length_s self.episode_sums[key][env_ids] = 0. self.extras["episode"]["terrain_level"] = torch.mean(self.terrain_levels.float()) def update_terrain_level(self, env_ids): if not self.init_done or not self.curriculum: # don't change on initial reset return distance = torch.norm(self.root_states[env_ids, :2] - self.env_origins[env_ids, :2], dim=1) self.terrain_levels[env_ids] -= 1 * (distance < torch.norm(self.commands[env_ids, :2])*self.max_episode_length_s*0.25) self.terrain_levels[env_ids] += 1 * (distance > self.terrain.env_length / 2) self.terrain_levels[env_ids] = torch.clip(self.terrain_levels[env_ids], 0) % self.terrain.env_rows self.env_origins[env_ids] = self.terrain_origins[self.terrain_levels[env_ids], self.terrain_types[env_ids]] def push_robots(self): self.root_states[:, 7:9] = torch_rand_float(-1., 1., (self.num_envs, 2), device=self.device) # lin vel x/y self.gym.set_actor_root_state_tensor(self.sim, gymtorch.unwrap_tensor(self.root_states)) def pre_physics_step(self, actions): self.actions = actions.clone().to(self.device) for i in range(self.decimation): torques = torch.clip(self.Kp*(self.action_scale*self.actions + self.default_dof_pos - self.dof_pos) - self.Kd*self.dof_vel, -80., 80.) self.gym.set_dof_actuation_force_tensor(self.sim, gymtorch.unwrap_tensor(torques)) self.torques = torques.view(self.torques.shape) self.gym.simulate(self.sim) if self.device == 'cpu': self.gym.fetch_results(self.sim, True) self.gym.refresh_dof_state_tensor(self.sim) def post_physics_step(self): # self.gym.refresh_dof_state_tensor(self.sim) # done in step self.gym.refresh_actor_root_state_tensor(self.sim) self.gym.refresh_net_contact_force_tensor(self.sim) self.progress_buf += 1 self.randomize_buf += 1 self.common_step_counter += 1 if self.common_step_counter % self.push_interval == 0: self.push_robots() # prepare quantities self.base_quat = self.root_states[:, 3:7] self.base_lin_vel = quat_rotate_inverse(self.base_quat, self.root_states[:, 7:10]) self.base_ang_vel = quat_rotate_inverse(self.base_quat, self.root_states[:, 10:13]) self.projected_gravity = quat_rotate_inverse(self.base_quat, self.gravity_vec) forward = quat_apply(self.base_quat, self.forward_vec) heading = torch.atan2(forward[:, 1], forward[:, 0]) self.commands[:, 2] = torch.clip(0.5*wrap_to_pi(self.commands[:, 3] - heading), -1., 1.) # compute observations, rewards, resets, ... self.check_termination() self.compute_reward() env_ids = self.reset_buf.nonzero(as_tuple=False).flatten() if len(env_ids) > 0: self.reset_idx(env_ids) self.compute_observations() if self.add_noise: self.obs_buf += (2 * torch.rand_like(self.obs_buf) - 1) * self.noise_scale_vec self.last_actions[:] = self.actions[:] self.last_dof_vel[:] = self.dof_vel[:] if self.viewer and self.enable_viewer_sync and self.debug_viz: # draw height lines self.gym.clear_lines(self.viewer) self.gym.refresh_rigid_body_state_tensor(self.sim) sphere_geom = gymutil.WireframeSphereGeometry(0.02, 4, 4, None, color=(1, 1, 0)) for i in range(self.num_envs): base_pos = (self.root_states[i, :3]).cpu().numpy() heights = self.measured_heights[i].cpu().numpy() height_points = quat_apply_yaw(self.base_quat[i].repeat(heights.shape[0]), self.height_points[i]).cpu().numpy() for j in range(heights.shape[0]): x = height_points[j, 0] + base_pos[0] y = height_points[j, 1] + base_pos[1] z = heights[j] sphere_pose = gymapi.Transform(gymapi.Vec3(x, y, z), r=None) gymutil.draw_lines(sphere_geom, self.gym, self.viewer, self.envs[i], sphere_pose) def init_height_points(self): # 1mx1.6m rectangle (without center line) y = 0.1 * torch.tensor([-5, -4, -3, -2, -1, 1, 2, 3, 4, 5], device=self.device, requires_grad=False) # 10-50cm on each side x = 0.1 * torch.tensor([-8, -7, -6, -5, -4, -3, -2, 2, 3, 4, 5, 6, 7, 8], device=self.device, requires_grad=False) # 20-80cm on each side grid_x, grid_y = torch.meshgrid(x, y) self.num_height_points = grid_x.numel() points = torch.zeros(self.num_envs, self.num_height_points, 3, device=self.device, requires_grad=False) points[:, :, 0] = grid_x.flatten() points[:, :, 1] = grid_y.flatten() return points def get_heights(self, env_ids=None): if self.cfg["env"]["terrain"]["terrainType"] == 'plane': return torch.zeros(self.num_envs, self.num_height_points, device=self.device, requires_grad=False) elif self.cfg["env"]["terrain"]["terrainType"] == 'none': raise NameError("Can't measure height with terrain type 'none'") if env_ids: points = quat_apply_yaw(self.base_quat[env_ids].repeat(1, self.num_height_points), self.height_points[env_ids]) + (self.root_states[env_ids, :3]).unsqueeze(1) else: points = quat_apply_yaw(self.base_quat.repeat(1, self.num_height_points), self.height_points) + (self.root_states[:, :3]).unsqueeze(1) points += self.terrain.border_size points = (points/self.terrain.horizontal_scale).long() px = points[:, :, 0].view(-1) py = points[:, :, 1].view(-1) px = torch.clip(px, 0, self.height_samples.shape[0]-2) py = torch.clip(py, 0, self.height_samples.shape[1]-2) heights1 = self.height_samples[px, py] heights2 = self.height_samples[px+1, py+1] heights = torch.min(heights1, heights2) return heights.view(self.num_envs, -1) * self.terrain.vertical_scale # terrain generator from isaacgym.terrain_utils import * class Terrain: def __init__(self, cfg, num_robots) -> None: self.type = cfg["terrainType"] if self.type in ["none", 'plane']: return self.horizontal_scale = 0.1 self.vertical_scale = 0.005 self.border_size = 20 self.num_per_env = 2 self.env_length = cfg["mapLength"] self.env_width = cfg["mapWidth"] self.proportions = [np.sum(cfg["terrainProportions"][:i+1]) for i in range(len(cfg["terrainProportions"]))] self.env_rows = cfg["numLevels"] self.env_cols = cfg["numTerrains"] self.num_maps = self.env_rows * self.env_cols self.num_per_env = int(num_robots / self.num_maps) self.env_origins = np.zeros((self.env_rows, self.env_cols, 3)) self.width_per_env_pixels = int(self.env_width / self.horizontal_scale) self.length_per_env_pixels = int(self.env_length / self.horizontal_scale) self.border = int(self.border_size/self.horizontal_scale) self.tot_cols = int(self.env_cols * self.width_per_env_pixels) + 2 * self.border self.tot_rows = int(self.env_rows * self.length_per_env_pixels) + 2 * self.border self.height_field_raw = np.zeros((self.tot_rows , self.tot_cols), dtype=np.int16) if cfg["curriculum"]: self.curiculum(num_robots, num_terrains=self.env_cols, num_levels=self.env_rows) else: self.randomized_terrain() self.heightsamples = self.height_field_raw self.vertices, self.triangles = convert_heightfield_to_trimesh(self.height_field_raw, self.horizontal_scale, self.vertical_scale, cfg["slopeTreshold"]) def randomized_terrain(self): for k in range(self.num_maps): # Env coordinates in the world (i, j) = np.unravel_index(k, (self.env_rows, self.env_cols)) # Heightfield coordinate system from now on start_x = self.border + i * self.length_per_env_pixels end_x = self.border + (i + 1) * self.length_per_env_pixels start_y = self.border + j * self.width_per_env_pixels end_y = self.border + (j + 1) * self.width_per_env_pixels terrain = SubTerrain("terrain", width=self.width_per_env_pixels, length=self.width_per_env_pixels, vertical_scale=self.vertical_scale, horizontal_scale=self.horizontal_scale) choice = np.random.uniform(0, 1) if choice < 0.1: if np.random.choice([0, 1]): pyramid_sloped_terrain(terrain, np.random.choice([-0.3, -0.2, 0, 0.2, 0.3])) random_uniform_terrain(terrain, min_height=-0.1, max_height=0.1, step=0.05, downsampled_scale=0.2) else: pyramid_sloped_terrain(terrain, np.random.choice([-0.3, -0.2, 0, 0.2, 0.3])) elif choice < 0.6: # step_height = np.random.choice([-0.18, -0.15, -0.1, -0.05, 0.05, 0.1, 0.15, 0.18]) step_height = np.random.choice([-0.15, 0.15]) pyramid_stairs_terrain(terrain, step_width=0.31, step_height=step_height, platform_size=3.) elif choice < 1.: discrete_obstacles_terrain(terrain, 0.15, 1., 2., 40, platform_size=3.) self.height_field_raw[start_x: end_x, start_y:end_y] = terrain.height_field_raw env_origin_x = (i + 0.5) * self.env_length env_origin_y = (j + 0.5) * self.env_width x1 = int((self.env_length/2. - 1) / self.horizontal_scale) x2 = int((self.env_length/2. + 1) / self.horizontal_scale) y1 = int((self.env_width/2. - 1) / self.horizontal_scale) y2 = int((self.env_width/2. + 1) / self.horizontal_scale) env_origin_z = np.max(terrain.height_field_raw[x1:x2, y1:y2])*self.vertical_scale self.env_origins[i, j] = [env_origin_x, env_origin_y, env_origin_z] def curiculum(self, num_robots, num_terrains, num_levels): num_robots_per_map = int(num_robots / num_terrains) left_over = num_robots % num_terrains idx = 0 for j in range(num_terrains): for i in range(num_levels): terrain = SubTerrain("terrain", width=self.width_per_env_pixels, length=self.width_per_env_pixels, vertical_scale=self.vertical_scale, horizontal_scale=self.horizontal_scale) difficulty = i / num_levels choice = j / num_terrains slope = difficulty * 0.4 step_height = 0.05 + 0.175 * difficulty discrete_obstacles_height = 0.025 + difficulty * 0.15 stepping_stones_size = 2 - 1.8 * difficulty if choice < self.proportions[0]: if choice < 0.05: slope *= -1 pyramid_sloped_terrain(terrain, slope=slope, platform_size=3.) elif choice < self.proportions[1]: if choice < 0.15: slope *= -1 pyramid_sloped_terrain(terrain, slope=slope, platform_size=3.) random_uniform_terrain(terrain, min_height=-0.1, max_height=0.1, step=0.025, downsampled_scale=0.2) elif choice < self.proportions[3]: if choice<self.proportions[2]: step_height *= -1 pyramid_stairs_terrain(terrain, step_width=0.31, step_height=step_height, platform_size=3.) elif choice < self.proportions[4]: discrete_obstacles_terrain(terrain, discrete_obstacles_height, 1., 2., 40, platform_size=3.) else: stepping_stones_terrain(terrain, stone_size=stepping_stones_size, stone_distance=0.1, max_height=0., platform_size=3.) # Heightfield coordinate system start_x = self.border + i * self.length_per_env_pixels end_x = self.border + (i + 1) * self.length_per_env_pixels start_y = self.border + j * self.width_per_env_pixels end_y = self.border + (j + 1) * self.width_per_env_pixels self.height_field_raw[start_x: end_x, start_y:end_y] = terrain.height_field_raw robots_in_map = num_robots_per_map if j < left_over: robots_in_map +=1 env_origin_x = (i + 0.5) * self.env_length env_origin_y = (j + 0.5) * self.env_width x1 = int((self.env_length/2. - 1) / self.horizontal_scale) x2 = int((self.env_length/2. + 1) / self.horizontal_scale) y1 = int((self.env_width/2. - 1) / self.horizontal_scale) y2 = int((self.env_width/2. + 1) / self.horizontal_scale) env_origin_z = np.max(terrain.height_field_raw[x1:x2, y1:y2])*self.vertical_scale self.env_origins[i, j] = [env_origin_x, env_origin_y, env_origin_z] @torch.jit.script def quat_apply_yaw(quat, vec): quat_yaw = quat.clone().view(-1, 4) quat_yaw[:, :2] = 0. quat_yaw = normalize(quat_yaw) return quat_apply(quat_yaw, vec) @torch.jit.script def wrap_to_pi(angles): angles %= 2*np.pi angles -= 2*np.pi * (angles > np.pi) return angles
38,280
Python
54.640988
217
0.610789
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/tasks/trifinger.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np import os import torch from isaacgym import gymtorch from isaacgym import gymapi from isaacgymenvs.utils.torch_jit_utils import quat_mul from collections import OrderedDict project_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) from isaacgymenvs.utils.torch_jit_utils import * from isaacgymenvs.tasks.base.vec_task import VecTask from types import SimpleNamespace from collections import deque from typing import Deque, Dict, Tuple, Union # python import enum import numpy as np # ################### # # Dimensions of robot # # ################### # class TrifingerDimensions(enum.Enum): """ Dimensions of the tri-finger robot. Note: While it may not seem necessary for tri-finger robot since it is fixed base, for floating base systems having this dimensions class is useful. """ # general state # cartesian position + quaternion orientation PoseDim = 7, # linear velocity + angular velcoity VelocityDim = 6 # state: pose + velocity StateDim = 13 # force + torque WrenchDim = 6 # for robot # number of fingers NumFingers = 3 # for three fingers JointPositionDim = 9 JointVelocityDim = 9 JointTorqueDim = 9 # generalized coordinates GeneralizedCoordinatesDim = JointPositionDim GeneralizedVelocityDim = JointVelocityDim # for objects ObjectPoseDim = 7 ObjectVelocityDim = 6 # ################# # # Different objects # # ################# # # radius of the area ARENA_RADIUS = 0.195 class CuboidalObject: """ Fields for a cuboidal object. @note Motivation for this class is that if domain randomization is performed over the size of the cuboid, then its attributes are automatically updated as well. """ # 3D radius of the cuboid radius_3d: float # distance from wall to the center max_com_distance_to_center: float # minimum and mximum height for spawning the object min_height: float max_height = 0.1 NumKeypoints = 8 ObjectPositionDim = 3 KeypointsCoordsDim = NumKeypoints * ObjectPositionDim def __init__(self, size: Union[float, Tuple[float, float, float]]): """Initialize the cuboidal object. Args: size: The size of the object along x, y, z in meters. If a single float is provided, then it is assumed that object is a cube. """ # decide the size depedning on input type if isinstance(size, float): self._size = (size, size, size) else: self._size = size # compute remaining attributes self.__compute() """ Properties """ @property def size(self) -> Tuple[float, float, float]: """ Returns the dimensions of the cuboid object (x, y, z) in meters. """ return self._size """ Configurations """ @size.setter def size(self, size: Union[float, Tuple[float, float, float]]): """ Set size of the object. Args: size: The size of the object along x, y, z in meters. If a single float is provided, then it is assumed that object is a cube. """ # decide the size depedning on input type if isinstance(size, float): self._size = (size, size, size) else: self._size = size # compute attributes self.__compute() """ Private members """ def __compute(self): """Compute the attributes for the object. """ # compute 3D radius of the cuboid max_len = max(self._size) self.radius_3d = max_len * np.sqrt(3) / 2 # compute distance from wall to the center self.max_com_distance_to_center = ARENA_RADIUS - self.radius_3d # minimum height for spawning the object self.min_height = self._size[2] / 2 class Trifinger(VecTask): # constants # directory where assets for the simulator are present _trifinger_assets_dir = os.path.join(project_dir, "../", "assets", "trifinger") # robot urdf (path relative to `_trifinger_assets_dir`) _robot_urdf_file = "robot_properties_fingers/urdf/pro/trifingerpro.urdf" # stage urdf (path relative to `_trifinger_assets_dir`) # _stage_urdf_file = "robot_properties_fingers/urdf/trifinger_stage.urdf" _table_urdf_file = "robot_properties_fingers/urdf/table_without_border.urdf" _boundary_urdf_file = "robot_properties_fingers/urdf/high_table_boundary.urdf" # object urdf (path relative to `_trifinger_assets_dir`) # TODO: Make object URDF configurable. _object_urdf_file = "objects/urdf/cube_multicolor_rrc.urdf" # physical dimensions of the object # TODO: Make object dimensions configurable. _object_dims = CuboidalObject(0.065) # dimensions of the system _dims = TrifingerDimensions # Constants for limits # Ref: https://github.com/rr-learning/rrc_simulation/blob/master/python/rrc_simulation/trifinger_platform.py#L68 # maximum joint torque (in N-m) applicable on each actuator _max_torque_Nm = 0.36 # maximum joint velocity (in rad/s) on each actuator _max_velocity_radps = 10 # History of state: Number of timesteps to save history for # Note: Currently used only to manage history of object and frame states. # This can be extended to other observations (as done in ANYmal). _state_history_len = 2 # buffers to store the simulation data # goal poses for the object [num. of instances, 7] where 7: (x, y, z, quat) _object_goal_poses_buf: torch.Tensor # DOF state of the system [num. of instances, num. of dof, 2] where last index: pos, vel _dof_state: torch.Tensor # Rigid body state of the system [num. of instances, num. of bodies, 13] where 13: (x, y, z, quat, v, omega) _rigid_body_state: torch.Tensor # Root prim states [num. of actors, 13] where 13: (x, y, z, quat, v, omega) _actors_root_state: torch.Tensor # Force-torque sensor array [num. of instances, num. of bodies * wrench] _ft_sensors_values: torch.Tensor # DOF position of the system [num. of instances, num. of dof] _dof_position: torch.Tensor # DOF velocity of the system [num. of instances, num. of dof] _dof_velocity: torch.Tensor # DOF torque of the system [num. of instances, num. of dof] _dof_torque: torch.Tensor # Fingertip links state list([num. of instances, num. of fingers, 13]) where 13: (x, y, z, quat, v, omega) # The length of list is the history of the state: 0: t, 1: t-1, 2: t-2, ... step. _fingertips_frames_state_history: Deque[torch.Tensor] = deque(maxlen=_state_history_len) # Object prim state [num. of instances, 13] where 13: (x, y, z, quat, v, omega) # The length of list is the history of the state: 0: t, 1: t-1, 2: t-2, ... step. _object_state_history: Deque[torch.Tensor] = deque(maxlen=_state_history_len) # stores the last action output _last_action: torch.Tensor # keeps track of the number of goal resets _successes: torch.Tensor # keeps track of number of consecutive successes _consecutive_successes: float _robot_limits: dict = { "joint_position": SimpleNamespace( # matches those on the real robot low=np.array([-0.33, 0.0, -2.7] * _dims.NumFingers.value, dtype=np.float32), high=np.array([1.0, 1.57, 0.0] * _dims.NumFingers.value, dtype=np.float32), default=np.array([0.0, 0.9, -2.0] * _dims.NumFingers.value, dtype=np.float32), ), "joint_velocity": SimpleNamespace( low=np.full(_dims.JointVelocityDim.value, -_max_velocity_radps, dtype=np.float32), high=np.full(_dims.JointVelocityDim.value, _max_velocity_radps, dtype=np.float32), default=np.zeros(_dims.JointVelocityDim.value, dtype=np.float32), ), "joint_torque": SimpleNamespace( low=np.full(_dims.JointTorqueDim.value, -_max_torque_Nm, dtype=np.float32), high=np.full(_dims.JointTorqueDim.value, _max_torque_Nm, dtype=np.float32), default=np.zeros(_dims.JointTorqueDim.value, dtype=np.float32), ), "fingertip_position": SimpleNamespace( low=np.array([-0.4, -0.4, 0], dtype=np.float32), high=np.array([0.4, 0.4, 0.5], dtype=np.float32), ), "fingertip_orientation": SimpleNamespace( low=-np.ones(4, dtype=np.float32), high=np.ones(4, dtype=np.float32), ), "fingertip_velocity": SimpleNamespace( low=np.full(_dims.VelocityDim.value, -0.2, dtype=np.float32), high=np.full(_dims.VelocityDim.value, 0.2, dtype=np.float32), ), "fingertip_wrench": SimpleNamespace( low=np.full(_dims.WrenchDim.value, -1.0, dtype=np.float32), high=np.full(_dims.WrenchDim.value, 1.0, dtype=np.float32), ), # used if we want to have joint stiffness/damping as parameters` "joint_stiffness": SimpleNamespace( low=np.array([1.0, 1.0, 1.0] * _dims.NumFingers.value, dtype=np.float32), high=np.array([50.0, 50.0, 50.0] * _dims.NumFingers.value, dtype=np.float32), ), "joint_damping": SimpleNamespace( low=np.array([0.01, 0.03, 0.0001] * _dims.NumFingers.value, dtype=np.float32), high=np.array([1.0, 3.0, 0.01] * _dims.NumFingers.value, dtype=np.float32), ), } # limits of the object (mapped later: str -> torch.tensor) _object_limits: dict = { "position": SimpleNamespace( low=np.array([-0.3, -0.3, 0], dtype=np.float32), high=np.array([0.3, 0.3, 0.3], dtype=np.float32), default=np.array([0, 0, _object_dims.min_height], dtype=np.float32) ), # difference between two positions "position_delta": SimpleNamespace( low=np.array([-0.6, -0.6, 0], dtype=np.float32), high=np.array([0.6, 0.6, 0.3], dtype=np.float32), default=np.array([0, 0, 0], dtype=np.float32) ), "orientation": SimpleNamespace( low=-np.ones(4, dtype=np.float32), high=np.ones(4, dtype=np.float32), default=np.array([0.0, 0.0, 0.0, 1.0], dtype=np.float32), ), "velocity": SimpleNamespace( low=np.full(_dims.VelocityDim.value, -0.5, dtype=np.float32), high=np.full(_dims.VelocityDim.value, 0.5, dtype=np.float32), default=np.zeros(_dims.VelocityDim.value, dtype=np.float32) ), "scale": SimpleNamespace( low=np.full(1, 0.0, dtype=np.float32), high=np.full(1, 1.0, dtype=np.float32), ), } # PD gains for the robot (mapped later: str -> torch.tensor) # Ref: https://github.com/rr-learning/rrc_simulation/blob/master/python/rrc_simulation/sim_finger.py#L49-L65 _robot_dof_gains = { # The kp and kd gains of the PD control of the fingers. # Note: This depends on simulation step size and is set for a rate of 250 Hz. "stiffness": [10.0, 10.0, 10.0] * _dims.NumFingers.value, "damping": [0.1, 0.3, 0.001] * _dims.NumFingers.value, # The kd gains used for damping the joint motor velocities during the # safety torque check on the joint motors. "safety_damping": [0.08, 0.08, 0.04] * _dims.NumFingers.value } action_dim = _dims.JointTorqueDim.value def __init__(self, cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render): self.cfg = cfg self.obs_spec = { "robot_q": self._dims.GeneralizedCoordinatesDim.value, "robot_u": self._dims.GeneralizedVelocityDim.value, "object_q": self._dims.ObjectPoseDim.value, "object_q_des": self._dims.ObjectPoseDim.value, "command": self.action_dim } if self.cfg["env"]["asymmetric_obs"]: self.state_spec = { # observations spec **self.obs_spec, # extra observations (added separately to make computations simpler) "object_u": self._dims.ObjectVelocityDim.value, "fingertip_state": self._dims.NumFingers.value * self._dims.StateDim.value, "robot_a": self._dims.GeneralizedVelocityDim.value, "fingertip_wrench": self._dims.NumFingers.value * self._dims.WrenchDim.value, } else: self.state_spec = self.obs_spec self.action_spec = { "command": self.action_dim } self.cfg["env"]["numObservations"] = sum(self.obs_spec.values()) self.cfg["env"]["numStates"] = sum(self.state_spec.values()) self.cfg["env"]["numActions"] = sum(self.action_spec.values()) self.max_episode_length = self.cfg["env"]["episodeLength"] self.randomize = self.cfg["task"]["randomize"] self.randomization_params = self.cfg["task"]["randomization_params"] # define prims present in the scene prim_names = ["robot", "table", "boundary", "object", "goal_object"] # mapping from name to asset instance self.gym_assets = dict.fromkeys(prim_names) # mapping from name to gym indices self.gym_indices = dict.fromkeys(prim_names) # mapping from name to gym rigid body handles # name of finger tips links i.e. end-effector frames fingertips_frames = ["finger_tip_link_0", "finger_tip_link_120", "finger_tip_link_240"] self._fingertips_handles = OrderedDict.fromkeys(fingertips_frames, None) # mapping from name to gym dof index robot_dof_names = list() for finger_pos in ['0', '120', '240']: robot_dof_names += [f'finger_base_to_upper_joint_{finger_pos}', f'finger_upper_to_middle_joint_{finger_pos}', f'finger_middle_to_lower_joint_{finger_pos}'] self._robot_dof_indices = OrderedDict.fromkeys(robot_dof_names, None) super().__init__(config=self.cfg, rl_device=rl_device, sim_device=sim_device, graphics_device_id=graphics_device_id, headless=headless, virtual_screen_capture=virtual_screen_capture, force_render=force_render) if self.viewer != None: cam_pos = gymapi.Vec3(0.7, 0.0, 0.7) cam_target = gymapi.Vec3(0.0, 0.0, 0.0) self.gym.viewer_camera_look_at(self.viewer, None, cam_pos, cam_target) # change constant buffers from numpy/lists into torch tensors # limits for robot for limit_name in self._robot_limits: # extract limit simple-namespace limit_dict = self._robot_limits[limit_name].__dict__ # iterate over namespace attributes for prop, value in limit_dict.items(): limit_dict[prop] = torch.tensor(value, dtype=torch.float, device=self.device) # limits for the object for limit_name in self._object_limits: # extract limit simple-namespace limit_dict = self._object_limits[limit_name].__dict__ # iterate over namespace attributes for prop, value in limit_dict.items(): limit_dict[prop] = torch.tensor(value, dtype=torch.float, device=self.device) # PD gains for actuation for gain_name, value in self._robot_dof_gains.items(): self._robot_dof_gains[gain_name] = torch.tensor(value, dtype=torch.float, device=self.device) # store the sampled goal poses for the object: [num. of instances, 7] self._object_goal_poses_buf = torch.zeros((self.num_envs, 7), device=self.device, dtype=torch.float) # get force torque sensor if enabled if self.cfg["env"]["enable_ft_sensors"] or self.cfg["env"]["asymmetric_obs"]: # # joint torques # dof_force_tensor = self.gym.acquire_dof_force_tensor(self.sim) # self._dof_torque = gymtorch.wrap_tensor(dof_force_tensor).view(self.num_envs, # self._dims.JointTorqueDim.value) # # force-torque sensor num_ft_dims = self._dims.NumFingers.value * self._dims.WrenchDim.value # sensor_tensor = self.gym.acquire_force_sensor_tensor(self.sim) # self._ft_sensors_values = gymtorch.wrap_tensor(sensor_tensor).view(self.num_envs, num_ft_dims) sensor_tensor = self.gym.acquire_force_sensor_tensor(self.sim) self._ft_sensors_values = gymtorch.wrap_tensor(sensor_tensor).view(self.num_envs, num_ft_dims) dof_force_tensor = self.gym.acquire_dof_force_tensor(self.sim) self._dof_torque = gymtorch.wrap_tensor(dof_force_tensor).view(self.num_envs, self._dims.JointTorqueDim.value) # get gym GPU state tensors actor_root_state_tensor = self.gym.acquire_actor_root_state_tensor(self.sim) dof_state_tensor = self.gym.acquire_dof_state_tensor(self.sim) rigid_body_tensor = self.gym.acquire_rigid_body_state_tensor(self.sim) # refresh the buffer (to copy memory?) self.gym.refresh_actor_root_state_tensor(self.sim) self.gym.refresh_dof_state_tensor(self.sim) self.gym.refresh_rigid_body_state_tensor(self.sim) # create wrapper tensors for reference (consider everything as pointer to actual memory) # DOF self._dof_state = gymtorch.wrap_tensor(dof_state_tensor).view(self.num_envs, -1, 2) self._dof_position = self._dof_state[..., 0] self._dof_velocity = self._dof_state[..., 1] # rigid body self._rigid_body_state = gymtorch.wrap_tensor(rigid_body_tensor).view(self.num_envs, -1, 13) # root actors self._actors_root_state = gymtorch.wrap_tensor(actor_root_state_tensor).view(-1, 13) # frames history action_dim = sum(self.action_spec.values()) self._last_action = torch.zeros(self.num_envs, action_dim, dtype=torch.float, device=self.device) fingertip_handles_indices = list(self._fingertips_handles.values()) object_indices = self.gym_indices["object"] # timestep 0 is current tensor curr_history_length = 0 while curr_history_length < self._state_history_len: # add tensors to history list print(self._rigid_body_state.shape) self._fingertips_frames_state_history.append(self._rigid_body_state[:, fingertip_handles_indices]) self._object_state_history.append(self._actors_root_state[object_indices]) # update current history length curr_history_length += 1 self._observations_scale = SimpleNamespace(low=None, high=None) self._states_scale = SimpleNamespace(low=None, high=None) self._action_scale = SimpleNamespace(low=None, high=None) self._successes = torch.zeros(self.num_envs, device=self.device, dtype=torch.long) self._successes_pos = torch.zeros(self.num_envs, device=self.device, dtype=torch.long) self._successes_quat = torch.zeros(self.num_envs, device=self.device, dtype=torch.long) self.__configure_mdp_spaces() def create_sim(self): self.up_axis_idx = 2 # index of up axis: Y=1, Z=2 self.sim = super().create_sim(self.device_id, self.graphics_device_id, self.physics_engine, self.sim_params) self._create_ground_plane() self._create_scene_assets() self._create_envs(self.num_envs, self.cfg["env"]["envSpacing"], int(np.sqrt(self.num_envs))) # If randomizing, apply once immediately on startup before the fist sim step if self.randomize: self.apply_randomizations(self.randomization_params) def _create_ground_plane(self): plane_params = gymapi.PlaneParams() plane_params.normal = gymapi.Vec3(0.0, 0.0, 1.0) plane_params.distance = 0.013 plane_params.static_friction = 1.0 plane_params.dynamic_friction = 1.0 self.gym.add_ground(self.sim, plane_params) def _create_scene_assets(self): """ Define Gym assets for stage, robot and object. """ # define assets self.gym_assets["robot"] = self.__define_robot_asset() self.gym_assets["table"] = self.__define_table_asset() self.gym_assets["boundary"] = self.__define_boundary_asset() self.gym_assets["object"] = self.__define_object_asset() self.gym_assets["goal_object"] = self.__define_goal_object_asset() # display the properties (only for debugging) # robot print("Trifinger Robot Asset: ") print(f'\t Number of bodies: {self.gym.get_asset_rigid_body_count(self.gym_assets["robot"])}') print(f'\t Number of shapes: {self.gym.get_asset_rigid_shape_count(self.gym_assets["robot"])}') print(f'\t Number of dofs: {self.gym.get_asset_dof_count(self.gym_assets["robot"])}') print(f'\t Number of actuated dofs: {self._dims.JointTorqueDim.value}') # stage print("Trifinger Table Asset: ") print(f'\t Number of bodies: {self.gym.get_asset_rigid_body_count(self.gym_assets["table"])}') print(f'\t Number of shapes: {self.gym.get_asset_rigid_shape_count(self.gym_assets["table"])}') print("Trifinger Boundary Asset: ") print(f'\t Number of bodies: {self.gym.get_asset_rigid_body_count(self.gym_assets["boundary"])}') print(f'\t Number of shapes: {self.gym.get_asset_rigid_shape_count(self.gym_assets["boundary"])}') def _create_envs(self, num_envs, spacing, num_per_row): # define the dof properties for the robot robot_dof_props = self.gym.get_asset_dof_properties(self.gym_assets["robot"]) # set dof properites based on the control mode for k, dof_index in enumerate(self._robot_dof_indices.values()): # note: since safety checks are employed, the simulator PD controller is not # used. Instead the torque is computed manually and applied, even if the # command mode is 'position'. robot_dof_props['driveMode'][dof_index] = gymapi.DOF_MODE_EFFORT robot_dof_props['stiffness'][dof_index] = 0.0 robot_dof_props['damping'][dof_index] = 0.0 # set dof limits robot_dof_props['effort'][dof_index] = self._max_torque_Nm robot_dof_props['velocity'][dof_index] = self._max_velocity_radps robot_dof_props['lower'][dof_index] = float(self._robot_limits["joint_position"].low[k]) robot_dof_props['upper'][dof_index] = float(self._robot_limits["joint_position"].high[k]) self.envs = [] # define lower and upper region bound for each environment env_lower_bound = gymapi.Vec3(-self.cfg["env"]["envSpacing"], -self.cfg["env"]["envSpacing"], 0.0) env_upper_bound = gymapi.Vec3(self.cfg["env"]["envSpacing"], self.cfg["env"]["envSpacing"], self.cfg["env"]["envSpacing"]) num_envs_per_row = int(np.sqrt(self.num_envs)) # initialize gym indices buffer as a list # note: later the list is converted to torch tensor for ease in interfacing with IsaacGym. for asset_name in self.gym_indices.keys(): self.gym_indices[asset_name] = list() # count number of shapes and bodies max_agg_bodies = 0 max_agg_shapes = 0 for asset in self.gym_assets.values(): max_agg_bodies += self.gym.get_asset_rigid_body_count(asset) max_agg_shapes += self.gym.get_asset_rigid_shape_count(asset) # iterate and create environment instances for env_index in range(self.num_envs): # create environment env_ptr = self.gym.create_env(self.sim, env_lower_bound, env_upper_bound, num_envs_per_row) # begin aggregration mode if enabled - this can improve simulation performance if self.cfg["env"]["aggregate_mode"]: self.gym.begin_aggregate(env_ptr, max_agg_bodies, max_agg_shapes, True) # add trifinger robot to environment trifinger_actor = self.gym.create_actor(env_ptr, self.gym_assets["robot"], gymapi.Transform(), "robot", env_index, 0, 0) trifinger_idx = self.gym.get_actor_index(env_ptr, trifinger_actor, gymapi.DOMAIN_SIM) # add table to environment table_handle = self.gym.create_actor(env_ptr, self.gym_assets["table"], gymapi.Transform(), "table", env_index, 1, 0) table_idx = self.gym.get_actor_index(env_ptr, table_handle, gymapi.DOMAIN_SIM) # add stage to environment boundary_handle = self.gym.create_actor(env_ptr, self.gym_assets["boundary"], gymapi.Transform(), "boundary", env_index, 1, 0) boundary_idx = self.gym.get_actor_index(env_ptr, boundary_handle, gymapi.DOMAIN_SIM) # add object to environment object_handle = self.gym.create_actor(env_ptr, self.gym_assets["object"], gymapi.Transform(), "object", env_index, 0, 0) object_idx = self.gym.get_actor_index(env_ptr, object_handle, gymapi.DOMAIN_SIM) # add goal object to environment goal_handle = self.gym.create_actor(env_ptr, self.gym_assets["goal_object"], gymapi.Transform(), "goal_object", env_index + self.num_envs, 0, 0) goal_object_idx = self.gym.get_actor_index(env_ptr, goal_handle, gymapi.DOMAIN_SIM) # change settings of DOF self.gym.set_actor_dof_properties(env_ptr, trifinger_actor, robot_dof_props) # add color to instances stage_color = gymapi.Vec3(0.73, 0.68, 0.72) self.gym.set_rigid_body_color(env_ptr, table_handle, 0, gymapi.MESH_VISUAL_AND_COLLISION, stage_color) self.gym.set_rigid_body_color(env_ptr, boundary_handle, 0, gymapi.MESH_VISUAL_AND_COLLISION, stage_color) # end aggregation mode if enabled if self.cfg["env"]["aggregate_mode"]: self.gym.end_aggregate(env_ptr) # add instances to list self.envs.append(env_ptr) self.gym_indices["robot"].append(trifinger_idx) self.gym_indices["table"].append(table_idx) self.gym_indices["boundary"].append(boundary_idx) self.gym_indices["object"].append(object_idx) self.gym_indices["goal_object"].append(goal_object_idx) # convert gym indices from list to tensor for asset_name, asset_indices in self.gym_indices.items(): self.gym_indices[asset_name] = torch.tensor(asset_indices, dtype=torch.long, device=self.device) def __configure_mdp_spaces(self): """ Configures the observations, state and action spaces. """ # Action scale for the MDP # Note: This is order sensitive. if self.cfg["env"]["command_mode"] == "position": # action space is joint positions self._action_scale.low = self._robot_limits["joint_position"].low self._action_scale.high = self._robot_limits["joint_position"].high elif self.cfg["env"]["command_mode"] == "torque": # action space is joint torques self._action_scale.low = self._robot_limits["joint_torque"].low self._action_scale.high = self._robot_limits["joint_torque"].high else: msg = f"Invalid command mode. Input: {self.cfg['env']['command_mode']} not in ['torque', 'position']." raise ValueError(msg) # Observations scale for the MDP # check if policy outputs normalized action [-1, 1] or not. if self.cfg["env"]["normalize_action"]: obs_action_scale = SimpleNamespace( low=torch.full((self.action_dim,), -1, dtype=torch.float, device=self.device), high=torch.full((self.action_dim,), 1, dtype=torch.float, device=self.device) ) else: obs_action_scale = self._action_scale object_obs_low = torch.cat([ self._object_limits["position"].low, self._object_limits["orientation"].low, ]*2) object_obs_high = torch.cat([ self._object_limits["position"].high, self._object_limits["orientation"].high, ]*2) # Note: This is order sensitive. self._observations_scale.low = torch.cat([ self._robot_limits["joint_position"].low, self._robot_limits["joint_velocity"].low, object_obs_low, obs_action_scale.low ]) self._observations_scale.high = torch.cat([ self._robot_limits["joint_position"].high, self._robot_limits["joint_velocity"].high, object_obs_high, obs_action_scale.high ]) # State scale for the MDP if self.cfg["env"]["asymmetric_obs"]: # finger tip scaling fingertip_state_scale = SimpleNamespace( low=torch.cat([ self._robot_limits["fingertip_position"].low, self._robot_limits["fingertip_orientation"].low, self._robot_limits["fingertip_velocity"].low, ]), high=torch.cat([ self._robot_limits["fingertip_position"].high, self._robot_limits["fingertip_orientation"].high, self._robot_limits["fingertip_velocity"].high, ]) ) states_low = [ self._observations_scale.low, self._object_limits["velocity"].low, fingertip_state_scale.low.repeat(self._dims.NumFingers.value), self._robot_limits["joint_torque"].low, self._robot_limits["fingertip_wrench"].low.repeat(self._dims.NumFingers.value), ] states_high = [ self._observations_scale.high, self._object_limits["velocity"].high, fingertip_state_scale.high.repeat(self._dims.NumFingers.value), self._robot_limits["joint_torque"].high, self._robot_limits["fingertip_wrench"].high.repeat(self._dims.NumFingers.value), ] # Note: This is order sensitive. self._states_scale.low = torch.cat(states_low) self._states_scale.high = torch.cat(states_high) # check that dimensions of scalings are correct # count number of dimensions state_dim = sum(self.state_spec.values()) obs_dim = sum(self.obs_spec.values()) action_dim = sum(self.action_spec.values()) # check that dimensions match # observations if self._observations_scale.low.shape[0] != obs_dim or self._observations_scale.high.shape[0] != obs_dim: msg = f"Observation scaling dimensions mismatch. " \ f"\tLow: {self._observations_scale.low.shape[0]}, " \ f"\tHigh: {self._observations_scale.high.shape[0]}, " \ f"\tExpected: {obs_dim}." raise AssertionError(msg) # state if self.cfg["env"]["asymmetric_obs"] \ and (self._states_scale.low.shape[0] != state_dim or self._states_scale.high.shape[0] != state_dim): msg = f"States scaling dimensions mismatch. " \ f"\tLow: {self._states_scale.low.shape[0]}, " \ f"\tHigh: {self._states_scale.high.shape[0]}, " \ f"\tExpected: {state_dim}." raise AssertionError(msg) # actions if self._action_scale.low.shape[0] != action_dim or self._action_scale.high.shape[0] != action_dim: msg = f"Actions scaling dimensions mismatch. " \ f"\tLow: {self._action_scale.low.shape[0]}, " \ f"\tHigh: {self._action_scale.high.shape[0]}, " \ f"\tExpected: {action_dim}." raise AssertionError(msg) # print the scaling print(f'MDP Raw observation bounds\n' f'\tLow: {self._observations_scale.low}\n' f'\tHigh: {self._observations_scale.high}') print(f'MDP Raw state bounds\n' f'\tLow: {self._states_scale.low}\n' f'\tHigh: {self._states_scale.high}') print(f'MDP Raw action bounds\n' f'\tLow: {self._action_scale.low}\n' f'\tHigh: {self._action_scale.high}') def compute_reward(self, actions): self.rew_buf[:] = 0. self.reset_buf[:] = 0. self.rew_buf[:], self.reset_buf[:], log_dict = compute_trifinger_reward( self.obs_buf, self.reset_buf, self.progress_buf, self.max_episode_length, self.cfg["sim"]["dt"], self.cfg["env"]["reward_terms"]["finger_move_penalty"]["weight"], self.cfg["env"]["reward_terms"]["finger_reach_object_rate"]["weight"], self.cfg["env"]["reward_terms"]["object_dist"]["weight"], self.cfg["env"]["reward_terms"]["object_rot"]["weight"], self.env_steps_count, self._object_goal_poses_buf, self._object_state_history[0], self._object_state_history[1], self._fingertips_frames_state_history[0], self._fingertips_frames_state_history[1], self.cfg["env"]["reward_terms"]["keypoints_dist"]["activate"] ) self.extras.update({"env/rewards/"+k: v.mean() for k, v in log_dict.items()}) def compute_observations(self): # refresh memory buffers self.gym.refresh_dof_state_tensor(self.sim) self.gym.refresh_actor_root_state_tensor(self.sim) self.gym.refresh_rigid_body_state_tensor(self.sim) if self.cfg["env"]["enable_ft_sensors"] or self.cfg["env"]["asymmetric_obs"]: self.gym.refresh_dof_force_tensor(self.sim) self.gym.refresh_force_sensor_tensor(self.sim) joint_torques = self._dof_torque tip_wrenches = self._ft_sensors_values else: joint_torques = torch.zeros(self.num_envs, self._dims.JointTorqueDim.value, dtype=torch.float32, device=self.device) tip_wrenches = torch.zeros(self.num_envs, self._dims.NumFingers.value * self._dims.WrenchDim.value, dtype=torch.float32, device=self.device) # extract frame handles fingertip_handles_indices = list(self._fingertips_handles.values()) object_indices = self.gym_indices["object"] # update state histories self._fingertips_frames_state_history.appendleft(self._rigid_body_state[:, fingertip_handles_indices]) self._object_state_history.appendleft(self._actors_root_state[object_indices]) # fill the observations and states buffer self.obs_buf[:], self.states_buf[:] = compute_trifinger_observations_states( self.cfg["env"]["asymmetric_obs"], self._dof_position, self._dof_velocity, self._object_state_history[0], self._object_goal_poses_buf, self.actions, self._fingertips_frames_state_history[0], joint_torques, tip_wrenches, ) # normalize observations if flag is enabled if self.cfg["env"]["normalize_obs"]: # for normal obs self.obs_buf = scale_transform( self.obs_buf, lower=self._observations_scale.low, upper=self._observations_scale.high ) def reset_idx(self, env_ids): # randomization can happen only at reset time, since it can reset actor positions on GPU if self.randomize: self.apply_randomizations(self.randomization_params) # A) Reset episode stats buffers self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 self._successes[env_ids] = 0 self._successes_pos[env_ids] = 0 self._successes_quat[env_ids] = 0 # B) Various randomizations at the start of the episode: # -- Robot base position. # -- Stage position. # -- Coefficient of restituion and friction for robot, object, stage. # -- Mass and size of the object # -- Mass of robot links # -- Robot joint state robot_initial_state_config = self.cfg["env"]["reset_distribution"]["robot_initial_state"] self._sample_robot_state( env_ids, distribution=robot_initial_state_config["type"], dof_pos_stddev=robot_initial_state_config["dof_pos_stddev"], dof_vel_stddev=robot_initial_state_config["dof_vel_stddev"] ) # -- Sampling of initial pose of the object object_initial_state_config = self.cfg["env"]["reset_distribution"]["object_initial_state"] self._sample_object_poses( env_ids, distribution=object_initial_state_config["type"], ) # -- Sampling of goal pose of the object self._sample_object_goal_poses( env_ids, difficulty=self.cfg["env"]["task_difficulty"] ) # C) Extract trifinger indices to reset robot_indices = self.gym_indices["robot"][env_ids].to(torch.int32) object_indices = self.gym_indices["object"][env_ids].to(torch.int32) goal_object_indices = self.gym_indices["goal_object"][env_ids].to(torch.int32) all_indices = torch.unique(torch.cat([robot_indices, object_indices, goal_object_indices])) # D) Set values into simulator # -- DOF self.gym.set_dof_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self._dof_state), gymtorch.unwrap_tensor(robot_indices), len(robot_indices)) # -- actor root states self.gym.set_actor_root_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self._actors_root_state), gymtorch.unwrap_tensor(all_indices), len(all_indices)) def _sample_robot_state(self, instances: torch.Tensor, distribution: str = 'default', dof_pos_stddev: float = 0.0, dof_vel_stddev: float = 0.0): """Samples the robot DOF state based on the settings. Type of robot initial state distribution: ["default", "random"] - "default" means that robot is in default configuration. - "random" means that noise is added to default configuration - "none" means that robot is configuration is not reset between episodes. Args: instances: A tensor constraining indices of environment instances to reset. distribution: Name of distribution to sample initial state from: ['default', 'random'] dof_pos_stddev: Noise scale to DOF position (used if 'type' is 'random') dof_vel_stddev: Noise scale to DOF velocity (used if 'type' is 'random') """ # number of samples to generate num_samples = instances.size()[0] # sample dof state based on distribution type if distribution == "none": return elif distribution == "default": # set to default configuration self._dof_position[instances] = self._robot_limits["joint_position"].default self._dof_velocity[instances] = self._robot_limits["joint_velocity"].default elif distribution == "random": # sample uniform random from (-1, 1) dof_state_dim = self._dims.JointPositionDim.value + self._dims.JointVelocityDim.value dof_state_noise = 2 * torch.rand((num_samples, dof_state_dim,), dtype=torch.float, device=self.device) - 1 # set to default configuration self._dof_position[instances] = self._robot_limits["joint_position"].default self._dof_velocity[instances] = self._robot_limits["joint_velocity"].default # add noise # DOF position start_offset = 0 end_offset = self._dims.JointPositionDim.value self._dof_position[instances] += dof_pos_stddev * dof_state_noise[:, start_offset:end_offset] # DOF velocity start_offset = end_offset end_offset += self._dims.JointVelocityDim.value self._dof_velocity[instances] += dof_vel_stddev * dof_state_noise[:, start_offset:end_offset] else: msg = f"Invalid robot initial state distribution. Input: {distribution} not in [`default`, `random`]." raise ValueError(msg) # reset robot fingertips state history for idx in range(1, self._state_history_len): self._fingertips_frames_state_history[idx][instances] = 0.0 def _sample_object_poses(self, instances: torch.Tensor, distribution: str): """Sample poses for the cube. Type of distribution: ["default", "random", "none"] - "default" means that pose is default configuration. - "random" means that pose is randomly sampled on the table. - "none" means no resetting of object pose between episodes. Args: instances: A tensor constraining indices of environment instances to reset. distribution: Name of distribution to sample initial state from: ['default', 'random'] """ # number of samples to generate num_samples = instances.size()[0] # sample poses based on distribution type if distribution == "none": return elif distribution == "default": pos_x, pos_y, pos_z = self._object_limits["position"].default orientation = self._object_limits["orientation"].default elif distribution == "random": # For initialization pos_x, pos_y = random_xy(num_samples, self._object_dims.max_com_distance_to_center, self.device) # add a small offset to the height to account for scale randomisation (prevent ground intersection) pos_z = self._object_dims.size[2] / 2 + 0.0015 orientation = random_yaw_orientation(num_samples, self.device) else: msg = f"Invalid object initial state distribution. Input: {distribution} " \ "not in [`default`, `random`, `none`]." raise ValueError(msg) # set buffers into simulator # extract indices for goal object object_indices = self.gym_indices["object"][instances] # set values into buffer # object buffer self._object_state_history[0][instances, 0] = pos_x self._object_state_history[0][instances, 1] = pos_y self._object_state_history[0][instances, 2] = pos_z self._object_state_history[0][instances, 3:7] = orientation self._object_state_history[0][instances, 7:13] = 0 # reset object state history for idx in range(1, self._state_history_len): self._object_state_history[idx][instances] = 0.0 # root actor buffer self._actors_root_state[object_indices] = self._object_state_history[0][instances] def _sample_object_goal_poses(self, instances: torch.Tensor, difficulty: int): """Sample goal poses for the cube and sets them into the desired goal pose buffer. Args: instances: A tensor constraining indices of environment instances to reset. difficulty: Difficulty level. The higher, the more difficult is the goal. Possible levels are: - -1: Random goal position on the table, including yaw orientation. - 1: Random goal position on the table, no orientation. - 2: Fixed goal position in the air with x,y = 0. No orientation. - 3: Random goal position in the air, no orientation. - 4: Random goal pose in the air, including orientation. """ # number of samples to generate num_samples = instances.size()[0] # sample poses based on task difficulty if difficulty == -1: # For initialization pos_x, pos_y = random_xy(num_samples, self._object_dims.max_com_distance_to_center, self.device) pos_z = self._object_dims.size[2] / 2 orientation = random_yaw_orientation(num_samples, self.device) elif difficulty == 1: # Random goal position on the table, no orientation. pos_x, pos_y = random_xy(num_samples, self._object_dims.max_com_distance_to_center, self.device) pos_z = self._object_dims.size[2] / 2 orientation = default_orientation(num_samples, self.device) elif difficulty == 2: # Fixed goal position in the air with x,y = 0. No orientation. pos_x, pos_y = 0.0, 0.0 pos_z = self._object_dims.min_height + 0.05 orientation = default_orientation(num_samples, self.device) elif difficulty == 3: # Random goal position in the air, no orientation. pos_x, pos_y = random_xy(num_samples, self._object_dims.max_com_distance_to_center, self.device) pos_z = random_z(num_samples, self._object_dims.min_height, self._object_dims.max_height, self.device) orientation = default_orientation(num_samples, self.device) elif difficulty == 4: # Random goal pose in the air, including orientation. # Note: Set minimum height such that the cube does not intersect with the # ground in any orientation max_goal_radius = self._object_dims.max_com_distance_to_center max_height = self._object_dims.max_height orientation = random_orientation(num_samples, self.device) # pick x, y, z according to the maximum height / radius at the current point # in the cirriculum pos_x, pos_y = random_xy(num_samples, max_goal_radius, self.device) pos_z = random_z(num_samples, self._object_dims.radius_3d, max_height, self.device) else: msg = f"Invalid difficulty index for task: {difficulty}." raise ValueError(msg) # extract indices for goal object goal_object_indices = self.gym_indices["goal_object"][instances] # set values into buffer # object goal buffer self._object_goal_poses_buf[instances, 0] = pos_x self._object_goal_poses_buf[instances, 1] = pos_y self._object_goal_poses_buf[instances, 2] = pos_z self._object_goal_poses_buf[instances, 3:7] = orientation # root actor buffer self._actors_root_state[goal_object_indices, 0:7] = self._object_goal_poses_buf[instances] # self._actors_root_state[goal_object_indices, 2] = -10 def pre_physics_step(self, actions): env_ids = self.reset_buf.nonzero(as_tuple=False).flatten() if len(env_ids) > 0: self.reset_idx(env_ids) self.gym.simulate(self.sim) self.actions = actions.clone().to(self.device) # if normalized_action is true, then denormalize them. if self.cfg["env"]["normalize_action"]: # TODO: Default action should correspond to normalized value of 0. action_transformed = unscale_transform( self.actions, lower=self._action_scale.low, upper=self._action_scale.high ) else: action_transformed = self.actions # compute command on the basis of mode selected if self.cfg["env"]["command_mode"] == 'torque': # command is the desired joint torque computed_torque = action_transformed elif self.cfg["env"]["command_mode"] == 'position': # command is the desired joint positions desired_dof_position = action_transformed # compute torque to apply computed_torque = self._robot_dof_gains["stiffness"] * (desired_dof_position - self._dof_position) computed_torque -= self._robot_dof_gains["damping"] * self._dof_velocity else: msg = f"Invalid command mode. Input: {self.cfg['env']['command_mode']} not in ['torque', 'position']." raise ValueError(msg) # apply clamping of computed torque to actuator limits applied_torque = saturate( computed_torque, lower=self._robot_limits["joint_torque"].low, upper=self._robot_limits["joint_torque"].high ) # apply safety damping and clamping of the action torque if enabled if self.cfg["env"]["apply_safety_damping"]: # apply damping by joint velocity applied_torque -= self._robot_dof_gains["safety_damping"] * self._dof_velocity # clamp input applied_torque = saturate( applied_torque, lower=self._robot_limits["joint_torque"].low, upper=self._robot_limits["joint_torque"].high ) # set computed torques to simulator buffer. self.gym.set_dof_actuation_force_tensor(self.sim, gymtorch.unwrap_tensor(applied_torque)) def post_physics_step(self): self._step_info = {} self.progress_buf += 1 self.randomize_buf += 1 self.compute_observations() self.compute_reward(self.actions) # check termination conditions (success only) self._check_termination() if torch.sum(self.reset_buf) > 0: self._step_info['consecutive_successes'] = np.mean(self._successes.float().cpu().numpy()) self._step_info['consecutive_successes_pos'] = np.mean(self._successes_pos.float().cpu().numpy()) self._step_info['consecutive_successes_quat'] = np.mean(self._successes_quat.float().cpu().numpy()) def _check_termination(self): """Check whether the episode is done per environment. """ # Extract configuration for termination conditions termination_config = self.cfg["env"]["termination_conditions"] # Termination condition - successful completion # Calculate distance between current object and goal object_goal_position_dist = torch.norm( self._object_goal_poses_buf[:, 0:3] - self._object_state_history[0][:, 0:3], p=2, dim=-1 ) # log theoretical number of r eseats goal_position_reset = torch.le(object_goal_position_dist, termination_config["success"]["position_tolerance"]) self._step_info['env/current_position_goal/per_env'] = np.mean(goal_position_reset.float().cpu().numpy()) # For task with difficulty 4, we need to check if orientation matches as well. # Compute the difference in orientation between object and goal pose object_goal_orientation_dist = quat_diff_rad(self._object_state_history[0][:, 3:7], self._object_goal_poses_buf[:, 3:7]) # Check for distance within tolerance goal_orientation_reset = torch.le(object_goal_orientation_dist, termination_config["success"]["orientation_tolerance"]) self._step_info['env/current_orientation_goal/per_env'] = np.mean(goal_orientation_reset.float().cpu().numpy()) if self.cfg["env"]['task_difficulty'] < 4: # Check for task completion if position goal is within a threshold task_completion_reset = goal_position_reset elif self.cfg["env"]['task_difficulty'] == 4: # Check for task completion if both position + orientation goal is within a threshold task_completion_reset = torch.logical_and(goal_position_reset, goal_orientation_reset) else: # Check for task completion if both orientation goal is within a threshold task_completion_reset = goal_orientation_reset self._successes = task_completion_reset self._successes_pos = goal_position_reset self._successes_quat = goal_orientation_reset """ Helper functions - define assets """ def __define_robot_asset(self): """ Define Gym asset for robot. """ # define tri-finger asset robot_asset_options = gymapi.AssetOptions() robot_asset_options.flip_visual_attachments = False robot_asset_options.fix_base_link = True robot_asset_options.collapse_fixed_joints = False robot_asset_options.disable_gravity = False robot_asset_options.default_dof_drive_mode = gymapi.DOF_MODE_EFFORT robot_asset_options.thickness = 0.001 robot_asset_options.angular_damping = 0.01 robot_asset_options.vhacd_enabled = True robot_asset_options.vhacd_params = gymapi.VhacdParams() robot_asset_options.vhacd_params.resolution = 100000 robot_asset_options.vhacd_params.concavity = 0.0025 robot_asset_options.vhacd_params.alpha = 0.04 robot_asset_options.vhacd_params.beta = 1.0 robot_asset_options.vhacd_params.convex_hull_downsampling = 4 robot_asset_options.vhacd_params.max_num_vertices_per_ch = 256 if self.physics_engine == gymapi.SIM_PHYSX: robot_asset_options.use_physx_armature = True # load tri-finger asset trifinger_asset = self.gym.load_asset(self.sim, self._trifinger_assets_dir, self._robot_urdf_file, robot_asset_options) # set the link properties for the robot # Ref: https://github.com/rr-learning/rrc_simulation/blob/master/python/rrc_simulation/sim_finger.py#L563 trifinger_props = self.gym.get_asset_rigid_shape_properties(trifinger_asset) for p in trifinger_props: p.friction = 1.0 p.torsion_friction = 1.0 p.restitution = 0.8 self.gym.set_asset_rigid_shape_properties(trifinger_asset, trifinger_props) # extract the frame handles for frame_name in self._fingertips_handles.keys(): self._fingertips_handles[frame_name] = self.gym.find_asset_rigid_body_index(trifinger_asset, frame_name) # check valid handle if self._fingertips_handles[frame_name] == gymapi.INVALID_HANDLE: msg = f"Invalid handle received for frame: `{frame_name}`." print(msg) if self.cfg["env"]["enable_ft_sensors"] or self.cfg["env"]["asymmetric_obs"]: sensor_pose = gymapi.Transform() for fingertip_handle in self._fingertips_handles.values(): self.gym.create_asset_force_sensor(trifinger_asset, fingertip_handle, sensor_pose) # extract the dof indices # Note: need to write actuated dofs manually since the system contains fixed joints as well which show up. for dof_name in self._robot_dof_indices.keys(): self._robot_dof_indices[dof_name] = self.gym.find_asset_dof_index(trifinger_asset, dof_name) # check valid handle if self._robot_dof_indices[dof_name] == gymapi.INVALID_HANDLE: msg = f"Invalid index received for DOF: `{dof_name}`." print(msg) # return the asset return trifinger_asset def __define_table_asset(self): """ Define Gym asset for stage. """ # define stage asset table_asset_options = gymapi.AssetOptions() table_asset_options.disable_gravity = True table_asset_options.fix_base_link = True table_asset_options.thickness = 0.001 # load stage asset table_asset = self.gym.load_asset(self.sim, self._trifinger_assets_dir, self._table_urdf_file, table_asset_options) # set stage properties table_props = self.gym.get_asset_rigid_shape_properties(table_asset) # iterate over each mesh for p in table_props: p.friction = 0.1 p.torsion_friction = 0.1 self.gym.set_asset_rigid_shape_properties(table_asset, table_props) # return the asset return table_asset def __define_boundary_asset(self): """ Define Gym asset for stage. """ # define stage asset boundary_asset_options = gymapi.AssetOptions() boundary_asset_options.disable_gravity = True boundary_asset_options.fix_base_link = True boundary_asset_options.thickness = 0.001 boundary_asset_options.vhacd_enabled = True boundary_asset_options.vhacd_params = gymapi.VhacdParams() boundary_asset_options.vhacd_params.resolution = 100000 boundary_asset_options.vhacd_params.concavity = 0.0 boundary_asset_options.vhacd_params.alpha = 0.04 boundary_asset_options.vhacd_params.beta = 1.0 boundary_asset_options.vhacd_params.max_num_vertices_per_ch = 1024 # load stage asset boundary_asset = self.gym.load_asset(self.sim, self._trifinger_assets_dir, self._boundary_urdf_file, boundary_asset_options) # set stage properties boundary_props = self.gym.get_asset_rigid_shape_properties(boundary_asset) self.gym.set_asset_rigid_shape_properties(boundary_asset, boundary_props) # return the asset return boundary_asset def __define_object_asset(self): """ Define Gym asset for object. """ # define object asset object_asset_options = gymapi.AssetOptions() object_asset_options.disable_gravity = False object_asset_options.thickness = 0.001 object_asset_options.flip_visual_attachments = True # load object asset object_asset = self.gym.load_asset(self.sim, self._trifinger_assets_dir, self._object_urdf_file, object_asset_options) # set object properties # Ref: https://github.com/rr-learning/rrc_simulation/blob/master/python/rrc_simulation/collision_objects.py#L96 object_props = self.gym.get_asset_rigid_shape_properties(object_asset) for p in object_props: p.friction = 1.0 p.torsion_friction = 0.001 p.restitution = 0.0 self.gym.set_asset_rigid_shape_properties(object_asset, object_props) # return the asset return object_asset def __define_goal_object_asset(self): """ Define Gym asset for goal object. """ # define object asset object_asset_options = gymapi.AssetOptions() object_asset_options.disable_gravity = True object_asset_options.fix_base_link = True object_asset_options.thickness = 0.001 object_asset_options.flip_visual_attachments = True # load object asset goal_object_asset = self.gym.load_asset(self.sim, self._trifinger_assets_dir, self._object_urdf_file, object_asset_options) # return the asset return goal_object_asset @property def env_steps_count(self) -> int: """Returns the total number of environment steps aggregated across parallel environments.""" return self.gym.get_frame_count(self.sim) * self.num_envs ##################################################################### ###=========================jit functions=========================### ##################################################################### @torch.jit.script def lgsk_kernel(x: torch.Tensor, scale: float = 50.0, eps:float=2) -> torch.Tensor: """Defines logistic kernel function to bound input to [-0.25, 0) Ref: https://arxiv.org/abs/1901.08652 (page 15) Args: x: Input tensor. scale: Scaling of the kernel function (controls how wide the 'bell' shape is') eps: Controls how 'tall' the 'bell' shape is. Returns: Output tensor computed using kernel. """ scaled = x * scale return 1.0 / (scaled.exp() + eps + (-scaled).exp()) @torch.jit.script def gen_keypoints(pose: torch.Tensor, num_keypoints: int = 8, size: Tuple[float, float, float] = (0.065, 0.065, 0.065)): num_envs = pose.shape[0] keypoints_buf = torch.ones(num_envs, num_keypoints, 3, dtype=torch.float32, device=pose.device) for i in range(num_keypoints): # which dimensions to negate n = [((i >> k) & 1) == 0 for k in range(3)] corner_loc = [(1 if n[k] else -1) * s / 2 for k, s in enumerate(size)], corner = torch.tensor(corner_loc, dtype=torch.float32, device=pose.device) * keypoints_buf[:, i, :] keypoints_buf[:, i, :] = local_to_world_space(corner, pose) return keypoints_buf @torch.jit.script def compute_trifinger_reward( obs_buf: torch.Tensor, reset_buf: torch.Tensor, progress_buf: torch.Tensor, episode_length: int, dt: float, finger_move_penalty_weight: float, finger_reach_object_weight: float, object_dist_weight: float, object_rot_weight: float, env_steps_count: int, object_goal_poses_buf: torch.Tensor, object_state: torch.Tensor, last_object_state: torch.Tensor, fingertip_state: torch.Tensor, last_fingertip_state: torch.Tensor, use_keypoints: bool ) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, torch.Tensor]]: ft_sched_start = 0 ft_sched_end = 5e7 # Reward penalising finger movement fingertip_vel = (fingertip_state[:, :, 0:3] - last_fingertip_state[:, :, 0:3]) / dt finger_movement_penalty = finger_move_penalty_weight * fingertip_vel.pow(2).view(-1, 9).sum(dim=-1) # Reward for finger reaching the object # distance from each finger to the centroid of the object, shape (N, 3). curr_norms = torch.stack([ torch.norm(fingertip_state[:, i, 0:3] - object_state[:, 0:3], p=2, dim=-1) for i in range(3) ], dim=-1) # distance from each finger to the centroid of the object in the last timestep, shape (N, 3). prev_norms = torch.stack([ torch.norm(last_fingertip_state[:, i, 0:3] - last_object_state[:, 0:3], p=2, dim=-1) for i in range(3) ], dim=-1) ft_sched_val = 1.0 if ft_sched_start <= env_steps_count <= ft_sched_end else 0.0 finger_reach_object_reward = finger_reach_object_weight * ft_sched_val * (curr_norms - prev_norms).sum(dim=-1) if use_keypoints: object_keypoints = gen_keypoints(object_state[:, 0:7]) goal_keypoints = gen_keypoints(object_goal_poses_buf[:, 0:7]) delta = object_keypoints - goal_keypoints dist_l2 = torch.norm(delta, p=2, dim=-1) keypoints_kernel_sum = lgsk_kernel(dist_l2, scale=30., eps=2.).mean(dim=-1) pose_reward = object_dist_weight * dt * keypoints_kernel_sum else: # Reward for object distance object_dist = torch.norm(object_state[:, 0:3] - object_goal_poses_buf[:, 0:3], p=2, dim=-1) object_dist_reward = object_dist_weight * dt * lgsk_kernel(object_dist, scale=50., eps=2.) # Reward for object rotation # extract quaternion orientation quat_a = object_state[:, 3:7] quat_b = object_goal_poses_buf[:, 3:7] angles = quat_diff_rad(quat_a, quat_b) object_rot_reward = object_rot_weight * dt / (3. * torch.abs(angles) + 0.01) pose_reward = object_dist_reward + object_rot_reward total_reward = ( finger_movement_penalty + finger_reach_object_reward + pose_reward ) # reset agents reset = torch.zeros_like(reset_buf) reset = torch.where(progress_buf >= episode_length - 1, torch.ones_like(reset_buf), reset) info: Dict[str, torch.Tensor] = { 'finger_movement_penalty': finger_movement_penalty, 'finger_reach_object_reward': finger_reach_object_reward, 'pose_reward': finger_reach_object_reward, 'reward': total_reward, } return total_reward, reset, info @torch.jit.script def compute_trifinger_observations_states( asymmetric_obs: bool, dof_position: torch.Tensor, dof_velocity: torch.Tensor, object_state: torch.Tensor, object_goal_poses: torch.Tensor, actions: torch.Tensor, fingertip_state: torch.Tensor, joint_torques: torch.Tensor, tip_wrenches: torch.Tensor ): num_envs = dof_position.shape[0] obs_buf = torch.cat([ dof_position, dof_velocity, object_state[:, 0:7], # pose object_goal_poses, actions ], dim=-1) if asymmetric_obs: states_buf = torch.cat([ obs_buf, object_state[:, 7:13], # linear / angular velocity fingertip_state.reshape(num_envs, -1), joint_torques, tip_wrenches ], dim=-1) else: states_buf = obs_buf return obs_buf, states_buf """ Sampling of cuboidal object """ @torch.jit.script def random_xy(num: int, max_com_distance_to_center: float, device: str) -> Tuple[torch.Tensor, torch.Tensor]: """Returns sampled uniform positions in circle (https://stackoverflow.com/a/50746409)""" # sample radius of circle radius = torch.sqrt(torch.rand(num, dtype=torch.float, device=device)) radius *= max_com_distance_to_center # sample theta of point theta = 2 * np.pi * torch.rand(num, dtype=torch.float, device=device) # x,y-position of the cube x = radius * torch.cos(theta) y = radius * torch.sin(theta) return x, y @torch.jit.script def random_z(num: int, min_height: float, max_height: float, device: str) -> torch.Tensor: """Returns sampled height of the goal object.""" z = torch.rand(num, dtype=torch.float, device=device) z = (max_height - min_height) * z + min_height return z @torch.jit.script def default_orientation(num: int, device: str) -> torch.Tensor: """Returns identity rotation transform.""" quat = torch.zeros((num, 4,), dtype=torch.float, device=device) quat[..., -1] = 1.0 return quat @torch.jit.script def random_orientation(num: int, device: str) -> torch.Tensor: """Returns sampled rotation in 3D as quaternion. Ref: https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.random.html """ # sample random orientation from normal distribution quat = torch.randn((num, 4,), dtype=torch.float, device=device) # normalize the quaternion quat = torch.nn.functional.normalize(quat, p=2., dim=-1, eps=1e-12) return quat @torch.jit.script def random_orientation_within_angle(num: int, device:str, base: torch.Tensor, max_angle: float): """ Generates random quaternions within max_angle of base Ref: https://math.stackexchange.com/a/3448434 """ quat = torch.zeros((num, 4,), dtype=torch.float, device=device) rand = torch.rand((num, 3), dtype=torch.float, device=device) c = torch.cos(rand[:, 0]*max_angle) n = torch.sqrt((1.-c)/2.) quat[:, 3] = torch.sqrt((1+c)/2.) quat[:, 2] = (rand[:, 1]*2.-1.) * n quat[:, 0] = (torch.sqrt(1-quat[:, 2]**2.) * torch.cos(2*np.pi*rand[:, 2])) * n quat[:, 1] = (torch.sqrt(1-quat[:, 2]**2.) * torch.sin(2*np.pi*rand[:, 2])) * n # floating point errors can cause it to be slightly off, re-normalise quat = torch.nn.functional.normalize(quat, p=2., dim=-1, eps=1e-12) return quat_mul(quat, base) @torch.jit.script def random_angular_vel(num: int, device: str, magnitude_stdev: float) -> torch.Tensor: """Samples a random angular velocity with standard deviation `magnitude_stdev`""" axis = torch.randn((num, 3,), dtype=torch.float, device=device) axis /= torch.norm(axis, p=2, dim=-1).view(-1, 1) magnitude = torch.randn((num, 1,), dtype=torch.float, device=device) magnitude *= magnitude_stdev return magnitude * axis @torch.jit.script def random_yaw_orientation(num: int, device: str) -> torch.Tensor: """Returns sampled rotation around z-axis.""" roll = torch.zeros(num, dtype=torch.float, device=device) pitch = torch.zeros(num, dtype=torch.float, device=device) yaw = 2 * np.pi * torch.rand(num, dtype=torch.float, device=device) return quat_from_euler_xyz(roll, pitch, yaw)
70,571
Python
45.643754
217
0.611568
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/tasks/franka_cabinet.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np import os import torch from isaacgym import gymutil, gymtorch, gymapi from isaacgymenvs.utils.torch_jit_utils import to_torch, get_axis_params, tensor_clamp, \ tf_vector, tf_combine from .base.vec_task import VecTask class FrankaCabinet(VecTask): def __init__(self, cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render): self.cfg = cfg self.max_episode_length = self.cfg["env"]["episodeLength"] self.action_scale = self.cfg["env"]["actionScale"] self.start_position_noise = self.cfg["env"]["startPositionNoise"] self.start_rotation_noise = self.cfg["env"]["startRotationNoise"] self.num_props = self.cfg["env"]["numProps"] self.aggregate_mode = self.cfg["env"]["aggregateMode"] self.dof_vel_scale = self.cfg["env"]["dofVelocityScale"] self.dist_reward_scale = self.cfg["env"]["distRewardScale"] self.rot_reward_scale = self.cfg["env"]["rotRewardScale"] self.around_handle_reward_scale = self.cfg["env"]["aroundHandleRewardScale"] self.open_reward_scale = self.cfg["env"]["openRewardScale"] self.finger_dist_reward_scale = self.cfg["env"]["fingerDistRewardScale"] self.action_penalty_scale = self.cfg["env"]["actionPenaltyScale"] self.debug_viz = self.cfg["env"]["enableDebugVis"] self.up_axis = "z" self.up_axis_idx = 2 self.distX_offset = 0.04 self.dt = 1/60. # prop dimensions self.prop_width = 0.08 self.prop_height = 0.08 self.prop_length = 0.08 self.prop_spacing = 0.09 num_obs = 23 num_acts = 9 self.cfg["env"]["numObservations"] = 23 self.cfg["env"]["numActions"] = 9 super().__init__(config=self.cfg, rl_device=rl_device, sim_device=sim_device, graphics_device_id=graphics_device_id, headless=headless, virtual_screen_capture=virtual_screen_capture, force_render=force_render) # get gym GPU state tensors actor_root_state_tensor = self.gym.acquire_actor_root_state_tensor(self.sim) dof_state_tensor = self.gym.acquire_dof_state_tensor(self.sim) rigid_body_tensor = self.gym.acquire_rigid_body_state_tensor(self.sim) self.gym.refresh_actor_root_state_tensor(self.sim) self.gym.refresh_dof_state_tensor(self.sim) self.gym.refresh_rigid_body_state_tensor(self.sim) # create some wrapper tensors for different slices self.franka_default_dof_pos = to_torch([1.157, -1.066, -0.155, -2.239, -1.841, 1.003, 0.469, 0.035, 0.035], device=self.device) self.dof_state = gymtorch.wrap_tensor(dof_state_tensor) self.franka_dof_state = self.dof_state.view(self.num_envs, -1, 2)[:, :self.num_franka_dofs] self.franka_dof_pos = self.franka_dof_state[..., 0] self.franka_dof_vel = self.franka_dof_state[..., 1] self.cabinet_dof_state = self.dof_state.view(self.num_envs, -1, 2)[:, self.num_franka_dofs:] self.cabinet_dof_pos = self.cabinet_dof_state[..., 0] self.cabinet_dof_vel = self.cabinet_dof_state[..., 1] self.rigid_body_states = gymtorch.wrap_tensor(rigid_body_tensor).view(self.num_envs, -1, 13) self.num_bodies = self.rigid_body_states.shape[1] self.root_state_tensor = gymtorch.wrap_tensor(actor_root_state_tensor).view(self.num_envs, -1, 13) if self.num_props > 0: self.prop_states = self.root_state_tensor[:, 2:] self.num_dofs = self.gym.get_sim_dof_count(self.sim) // self.num_envs self.franka_dof_targets = torch.zeros((self.num_envs, self.num_dofs), dtype=torch.float, device=self.device) self.global_indices = torch.arange(self.num_envs * (2 + self.num_props), dtype=torch.int32, device=self.device).view(self.num_envs, -1) self.reset_idx(torch.arange(self.num_envs, device=self.device)) def create_sim(self): self.sim_params.up_axis = gymapi.UP_AXIS_Z self.sim_params.gravity.x = 0 self.sim_params.gravity.y = 0 self.sim_params.gravity.z = -9.81 self.sim = super().create_sim( self.device_id, self.graphics_device_id, self.physics_engine, self.sim_params) self._create_ground_plane() self._create_envs(self.num_envs, self.cfg["env"]['envSpacing'], int(np.sqrt(self.num_envs))) def _create_ground_plane(self): plane_params = gymapi.PlaneParams() plane_params.normal = gymapi.Vec3(0.0, 0.0, 1.0) self.gym.add_ground(self.sim, plane_params) def _create_envs(self, num_envs, spacing, num_per_row): lower = gymapi.Vec3(-spacing, -spacing, 0.0) upper = gymapi.Vec3(spacing, spacing, spacing) asset_root = os.path.join(os.path.dirname(os.path.abspath(__file__)), "../../assets") franka_asset_file = "urdf/franka_description/robots/franka_panda.urdf" cabinet_asset_file = "urdf/sektion_cabinet_model/urdf/sektion_cabinet_2.urdf" if "asset" in self.cfg["env"]: asset_root = os.path.join(os.path.dirname(os.path.abspath(__file__)), self.cfg["env"]["asset"].get("assetRoot", asset_root)) franka_asset_file = self.cfg["env"]["asset"].get("assetFileNameFranka", franka_asset_file) cabinet_asset_file = self.cfg["env"]["asset"].get("assetFileNameCabinet", cabinet_asset_file) # load franka asset asset_options = gymapi.AssetOptions() asset_options.flip_visual_attachments = True asset_options.fix_base_link = True asset_options.collapse_fixed_joints = True asset_options.disable_gravity = True asset_options.thickness = 0.001 asset_options.default_dof_drive_mode = gymapi.DOF_MODE_POS asset_options.use_mesh_materials = True franka_asset = self.gym.load_asset(self.sim, asset_root, franka_asset_file, asset_options) # load cabinet asset asset_options.flip_visual_attachments = False asset_options.collapse_fixed_joints = True asset_options.disable_gravity = False asset_options.default_dof_drive_mode = gymapi.DOF_MODE_NONE asset_options.armature = 0.005 cabinet_asset = self.gym.load_asset(self.sim, asset_root, cabinet_asset_file, asset_options) franka_dof_stiffness = to_torch([400, 400, 400, 400, 400, 400, 400, 1.0e6, 1.0e6], dtype=torch.float, device=self.device) franka_dof_damping = to_torch([80, 80, 80, 80, 80, 80, 80, 1.0e2, 1.0e2], dtype=torch.float, device=self.device) self.num_franka_bodies = self.gym.get_asset_rigid_body_count(franka_asset) self.num_franka_dofs = self.gym.get_asset_dof_count(franka_asset) self.num_cabinet_bodies = self.gym.get_asset_rigid_body_count(cabinet_asset) self.num_cabinet_dofs = self.gym.get_asset_dof_count(cabinet_asset) print("num franka bodies: ", self.num_franka_bodies) print("num franka dofs: ", self.num_franka_dofs) print("num cabinet bodies: ", self.num_cabinet_bodies) print("num cabinet dofs: ", self.num_cabinet_dofs) # set franka dof properties franka_dof_props = self.gym.get_asset_dof_properties(franka_asset) self.franka_dof_lower_limits = [] self.franka_dof_upper_limits = [] for i in range(self.num_franka_dofs): franka_dof_props['driveMode'][i] = gymapi.DOF_MODE_POS if self.physics_engine == gymapi.SIM_PHYSX: franka_dof_props['stiffness'][i] = franka_dof_stiffness[i] franka_dof_props['damping'][i] = franka_dof_damping[i] else: franka_dof_props['stiffness'][i] = 7000.0 franka_dof_props['damping'][i] = 50.0 self.franka_dof_lower_limits.append(franka_dof_props['lower'][i]) self.franka_dof_upper_limits.append(franka_dof_props['upper'][i]) self.franka_dof_lower_limits = to_torch(self.franka_dof_lower_limits, device=self.device) self.franka_dof_upper_limits = to_torch(self.franka_dof_upper_limits, device=self.device) self.franka_dof_speed_scales = torch.ones_like(self.franka_dof_lower_limits) self.franka_dof_speed_scales[[7, 8]] = 0.1 franka_dof_props['effort'][7] = 200 franka_dof_props['effort'][8] = 200 # set cabinet dof properties cabinet_dof_props = self.gym.get_asset_dof_properties(cabinet_asset) for i in range(self.num_cabinet_dofs): cabinet_dof_props['damping'][i] = 10.0 # create prop assets box_opts = gymapi.AssetOptions() box_opts.density = 400 prop_asset = self.gym.create_box(self.sim, self.prop_width, self.prop_height, self.prop_width, box_opts) franka_start_pose = gymapi.Transform() franka_start_pose.p = gymapi.Vec3(1.0, 0.0, 0.0) franka_start_pose.r = gymapi.Quat(0.0, 0.0, 1.0, 0.0) cabinet_start_pose = gymapi.Transform() cabinet_start_pose.p = gymapi.Vec3(*get_axis_params(0.4, self.up_axis_idx)) # compute aggregate size num_franka_bodies = self.gym.get_asset_rigid_body_count(franka_asset) num_franka_shapes = self.gym.get_asset_rigid_shape_count(franka_asset) num_cabinet_bodies = self.gym.get_asset_rigid_body_count(cabinet_asset) num_cabinet_shapes = self.gym.get_asset_rigid_shape_count(cabinet_asset) num_prop_bodies = self.gym.get_asset_rigid_body_count(prop_asset) num_prop_shapes = self.gym.get_asset_rigid_shape_count(prop_asset) max_agg_bodies = num_franka_bodies + num_cabinet_bodies + self.num_props * num_prop_bodies max_agg_shapes = num_franka_shapes + num_cabinet_shapes + self.num_props * num_prop_shapes self.frankas = [] self.cabinets = [] self.default_prop_states = [] self.prop_start = [] self.envs = [] for i in range(self.num_envs): # create env instance env_ptr = self.gym.create_env( self.sim, lower, upper, num_per_row ) if self.aggregate_mode >= 3: self.gym.begin_aggregate(env_ptr, max_agg_bodies, max_agg_shapes, True) franka_actor = self.gym.create_actor(env_ptr, franka_asset, franka_start_pose, "franka", i, 1, 0) self.gym.set_actor_dof_properties(env_ptr, franka_actor, franka_dof_props) if self.aggregate_mode == 2: self.gym.begin_aggregate(env_ptr, max_agg_bodies, max_agg_shapes, True) cabinet_pose = cabinet_start_pose cabinet_pose.p.x += self.start_position_noise * (np.random.rand() - 0.5) dz = 0.5 * np.random.rand() dy = np.random.rand() - 0.5 cabinet_pose.p.y += self.start_position_noise * dy cabinet_pose.p.z += self.start_position_noise * dz cabinet_actor = self.gym.create_actor(env_ptr, cabinet_asset, cabinet_pose, "cabinet", i, 2, 0) self.gym.set_actor_dof_properties(env_ptr, cabinet_actor, cabinet_dof_props) if self.aggregate_mode == 1: self.gym.begin_aggregate(env_ptr, max_agg_bodies, max_agg_shapes, True) if self.num_props > 0: self.prop_start.append(self.gym.get_sim_actor_count(self.sim)) drawer_handle = self.gym.find_actor_rigid_body_handle(env_ptr, cabinet_actor, "drawer_top") drawer_pose = self.gym.get_rigid_transform(env_ptr, drawer_handle) props_per_row = int(np.ceil(np.sqrt(self.num_props))) xmin = -0.5 * self.prop_spacing * (props_per_row - 1) yzmin = -0.5 * self.prop_spacing * (props_per_row - 1) prop_count = 0 for j in range(props_per_row): prop_up = yzmin + j * self.prop_spacing for k in range(props_per_row): if prop_count >= self.num_props: break propx = xmin + k * self.prop_spacing prop_state_pose = gymapi.Transform() prop_state_pose.p.x = drawer_pose.p.x + propx propz, propy = 0, prop_up prop_state_pose.p.y = drawer_pose.p.y + propy prop_state_pose.p.z = drawer_pose.p.z + propz prop_state_pose.r = gymapi.Quat(0, 0, 0, 1) prop_handle = self.gym.create_actor(env_ptr, prop_asset, prop_state_pose, "prop{}".format(prop_count), i, 0, 0) prop_count += 1 prop_idx = j * props_per_row + k self.default_prop_states.append([prop_state_pose.p.x, prop_state_pose.p.y, prop_state_pose.p.z, prop_state_pose.r.x, prop_state_pose.r.y, prop_state_pose.r.z, prop_state_pose.r.w, 0, 0, 0, 0, 0, 0]) if self.aggregate_mode > 0: self.gym.end_aggregate(env_ptr) self.envs.append(env_ptr) self.frankas.append(franka_actor) self.cabinets.append(cabinet_actor) self.hand_handle = self.gym.find_actor_rigid_body_handle(env_ptr, franka_actor, "panda_link7") self.drawer_handle = self.gym.find_actor_rigid_body_handle(env_ptr, cabinet_actor, "drawer_top") self.lfinger_handle = self.gym.find_actor_rigid_body_handle(env_ptr, franka_actor, "panda_leftfinger") self.rfinger_handle = self.gym.find_actor_rigid_body_handle(env_ptr, franka_actor, "panda_rightfinger") self.default_prop_states = to_torch(self.default_prop_states, device=self.device, dtype=torch.float).view(self.num_envs, self.num_props, 13) self.init_data() def init_data(self): hand = self.gym.find_actor_rigid_body_handle(self.envs[0], self.frankas[0], "panda_link7") lfinger = self.gym.find_actor_rigid_body_handle(self.envs[0], self.frankas[0], "panda_leftfinger") rfinger = self.gym.find_actor_rigid_body_handle(self.envs[0], self.frankas[0], "panda_rightfinger") hand_pose = self.gym.get_rigid_transform(self.envs[0], hand) lfinger_pose = self.gym.get_rigid_transform(self.envs[0], lfinger) rfinger_pose = self.gym.get_rigid_transform(self.envs[0], rfinger) finger_pose = gymapi.Transform() finger_pose.p = (lfinger_pose.p + rfinger_pose.p) * 0.5 finger_pose.r = lfinger_pose.r hand_pose_inv = hand_pose.inverse() grasp_pose_axis = 1 franka_local_grasp_pose = hand_pose_inv * finger_pose franka_local_grasp_pose.p += gymapi.Vec3(*get_axis_params(0.04, grasp_pose_axis)) self.franka_local_grasp_pos = to_torch([franka_local_grasp_pose.p.x, franka_local_grasp_pose.p.y, franka_local_grasp_pose.p.z], device=self.device).repeat((self.num_envs, 1)) self.franka_local_grasp_rot = to_torch([franka_local_grasp_pose.r.x, franka_local_grasp_pose.r.y, franka_local_grasp_pose.r.z, franka_local_grasp_pose.r.w], device=self.device).repeat((self.num_envs, 1)) drawer_local_grasp_pose = gymapi.Transform() drawer_local_grasp_pose.p = gymapi.Vec3(*get_axis_params(0.01, grasp_pose_axis, 0.3)) drawer_local_grasp_pose.r = gymapi.Quat(0, 0, 0, 1) self.drawer_local_grasp_pos = to_torch([drawer_local_grasp_pose.p.x, drawer_local_grasp_pose.p.y, drawer_local_grasp_pose.p.z], device=self.device).repeat((self.num_envs, 1)) self.drawer_local_grasp_rot = to_torch([drawer_local_grasp_pose.r.x, drawer_local_grasp_pose.r.y, drawer_local_grasp_pose.r.z, drawer_local_grasp_pose.r.w], device=self.device).repeat((self.num_envs, 1)) self.gripper_forward_axis = to_torch([0, 0, 1], device=self.device).repeat((self.num_envs, 1)) self.drawer_inward_axis = to_torch([-1, 0, 0], device=self.device).repeat((self.num_envs, 1)) self.gripper_up_axis = to_torch([0, 1, 0], device=self.device).repeat((self.num_envs, 1)) self.drawer_up_axis = to_torch([0, 0, 1], device=self.device).repeat((self.num_envs, 1)) self.franka_grasp_pos = torch.zeros_like(self.franka_local_grasp_pos) self.franka_grasp_rot = torch.zeros_like(self.franka_local_grasp_rot) self.franka_grasp_rot[..., -1] = 1 # xyzw self.drawer_grasp_pos = torch.zeros_like(self.drawer_local_grasp_pos) self.drawer_grasp_rot = torch.zeros_like(self.drawer_local_grasp_rot) self.drawer_grasp_rot[..., -1] = 1 self.franka_lfinger_pos = torch.zeros_like(self.franka_local_grasp_pos) self.franka_rfinger_pos = torch.zeros_like(self.franka_local_grasp_pos) self.franka_lfinger_rot = torch.zeros_like(self.franka_local_grasp_rot) self.franka_rfinger_rot = torch.zeros_like(self.franka_local_grasp_rot) def compute_reward(self, actions): self.rew_buf[:], self.reset_buf[:] = compute_franka_reward( self.reset_buf, self.progress_buf, self.actions, self.cabinet_dof_pos, self.franka_grasp_pos, self.drawer_grasp_pos, self.franka_grasp_rot, self.drawer_grasp_rot, self.franka_lfinger_pos, self.franka_rfinger_pos, self.gripper_forward_axis, self.drawer_inward_axis, self.gripper_up_axis, self.drawer_up_axis, self.num_envs, self.dist_reward_scale, self.rot_reward_scale, self.around_handle_reward_scale, self.open_reward_scale, self.finger_dist_reward_scale, self.action_penalty_scale, self.distX_offset, self.max_episode_length ) def compute_observations(self): self.gym.refresh_actor_root_state_tensor(self.sim) self.gym.refresh_dof_state_tensor(self.sim) self.gym.refresh_rigid_body_state_tensor(self.sim) hand_pos = self.rigid_body_states[:, self.hand_handle][:, 0:3] hand_rot = self.rigid_body_states[:, self.hand_handle][:, 3:7] drawer_pos = self.rigid_body_states[:, self.drawer_handle][:, 0:3] drawer_rot = self.rigid_body_states[:, self.drawer_handle][:, 3:7] self.franka_grasp_rot[:], self.franka_grasp_pos[:], self.drawer_grasp_rot[:], self.drawer_grasp_pos[:] = \ compute_grasp_transforms(hand_rot, hand_pos, self.franka_local_grasp_rot, self.franka_local_grasp_pos, drawer_rot, drawer_pos, self.drawer_local_grasp_rot, self.drawer_local_grasp_pos ) self.franka_lfinger_pos = self.rigid_body_states[:, self.lfinger_handle][:, 0:3] self.franka_rfinger_pos = self.rigid_body_states[:, self.rfinger_handle][:, 0:3] self.franka_lfinger_rot = self.rigid_body_states[:, self.lfinger_handle][:, 3:7] self.franka_rfinger_rot = self.rigid_body_states[:, self.rfinger_handle][:, 3:7] dof_pos_scaled = (2.0 * (self.franka_dof_pos - self.franka_dof_lower_limits) / (self.franka_dof_upper_limits - self.franka_dof_lower_limits) - 1.0) to_target = self.drawer_grasp_pos - self.franka_grasp_pos self.obs_buf = torch.cat((dof_pos_scaled, self.franka_dof_vel * self.dof_vel_scale, to_target, self.cabinet_dof_pos[:, 3].unsqueeze(-1), self.cabinet_dof_vel[:, 3].unsqueeze(-1)), dim=-1) return self.obs_buf def reset_idx(self, env_ids): env_ids_int32 = env_ids.to(dtype=torch.int32) # reset franka pos = tensor_clamp( self.franka_default_dof_pos.unsqueeze(0) + 0.25 * (torch.rand((len(env_ids), self.num_franka_dofs), device=self.device) - 0.5), self.franka_dof_lower_limits, self.franka_dof_upper_limits) self.franka_dof_pos[env_ids, :] = pos self.franka_dof_vel[env_ids, :] = torch.zeros_like(self.franka_dof_vel[env_ids]) self.franka_dof_targets[env_ids, :self.num_franka_dofs] = pos # reset cabinet self.cabinet_dof_state[env_ids, :] = torch.zeros_like(self.cabinet_dof_state[env_ids]) # reset props if self.num_props > 0: prop_indices = self.global_indices[env_ids, 2:].flatten() self.prop_states[env_ids] = self.default_prop_states[env_ids] self.gym.set_actor_root_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.root_state_tensor), gymtorch.unwrap_tensor(prop_indices), len(prop_indices)) multi_env_ids_int32 = self.global_indices[env_ids, :2].flatten() self.gym.set_dof_position_target_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.franka_dof_targets), gymtorch.unwrap_tensor(multi_env_ids_int32), len(multi_env_ids_int32)) self.gym.set_dof_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.dof_state), gymtorch.unwrap_tensor(multi_env_ids_int32), len(multi_env_ids_int32)) self.progress_buf[env_ids] = 0 self.reset_buf[env_ids] = 0 def pre_physics_step(self, actions): self.actions = actions.clone().to(self.device) targets = self.franka_dof_targets[:, :self.num_franka_dofs] + self.franka_dof_speed_scales * self.dt * self.actions * self.action_scale self.franka_dof_targets[:, :self.num_franka_dofs] = tensor_clamp( targets, self.franka_dof_lower_limits, self.franka_dof_upper_limits) env_ids_int32 = torch.arange(self.num_envs, dtype=torch.int32, device=self.device) self.gym.set_dof_position_target_tensor(self.sim, gymtorch.unwrap_tensor(self.franka_dof_targets)) def post_physics_step(self): self.progress_buf += 1 env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(env_ids) > 0: self.reset_idx(env_ids) self.compute_observations() self.compute_reward(self.actions) # debug viz if self.viewer and self.debug_viz: self.gym.clear_lines(self.viewer) self.gym.refresh_rigid_body_state_tensor(self.sim) for i in range(self.num_envs): px = (self.franka_grasp_pos[i] + quat_apply(self.franka_grasp_rot[i], to_torch([1, 0, 0], device=self.device) * 0.2)).cpu().numpy() py = (self.franka_grasp_pos[i] + quat_apply(self.franka_grasp_rot[i], to_torch([0, 1, 0], device=self.device) * 0.2)).cpu().numpy() pz = (self.franka_grasp_pos[i] + quat_apply(self.franka_grasp_rot[i], to_torch([0, 0, 1], device=self.device) * 0.2)).cpu().numpy() p0 = self.franka_grasp_pos[i].cpu().numpy() self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], px[0], px[1], px[2]], [0.85, 0.1, 0.1]) self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], py[0], py[1], py[2]], [0.1, 0.85, 0.1]) self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], pz[0], pz[1], pz[2]], [0.1, 0.1, 0.85]) px = (self.drawer_grasp_pos[i] + quat_apply(self.drawer_grasp_rot[i], to_torch([1, 0, 0], device=self.device) * 0.2)).cpu().numpy() py = (self.drawer_grasp_pos[i] + quat_apply(self.drawer_grasp_rot[i], to_torch([0, 1, 0], device=self.device) * 0.2)).cpu().numpy() pz = (self.drawer_grasp_pos[i] + quat_apply(self.drawer_grasp_rot[i], to_torch([0, 0, 1], device=self.device) * 0.2)).cpu().numpy() p0 = self.drawer_grasp_pos[i].cpu().numpy() self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], px[0], px[1], px[2]], [1, 0, 0]) self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], py[0], py[1], py[2]], [0, 1, 0]) self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], pz[0], pz[1], pz[2]], [0, 0, 1]) px = (self.franka_lfinger_pos[i] + quat_apply(self.franka_lfinger_rot[i], to_torch([1, 0, 0], device=self.device) * 0.2)).cpu().numpy() py = (self.franka_lfinger_pos[i] + quat_apply(self.franka_lfinger_rot[i], to_torch([0, 1, 0], device=self.device) * 0.2)).cpu().numpy() pz = (self.franka_lfinger_pos[i] + quat_apply(self.franka_lfinger_rot[i], to_torch([0, 0, 1], device=self.device) * 0.2)).cpu().numpy() p0 = self.franka_lfinger_pos[i].cpu().numpy() self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], px[0], px[1], px[2]], [1, 0, 0]) self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], py[0], py[1], py[2]], [0, 1, 0]) self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], pz[0], pz[1], pz[2]], [0, 0, 1]) px = (self.franka_rfinger_pos[i] + quat_apply(self.franka_rfinger_rot[i], to_torch([1, 0, 0], device=self.device) * 0.2)).cpu().numpy() py = (self.franka_rfinger_pos[i] + quat_apply(self.franka_rfinger_rot[i], to_torch([0, 1, 0], device=self.device) * 0.2)).cpu().numpy() pz = (self.franka_rfinger_pos[i] + quat_apply(self.franka_rfinger_rot[i], to_torch([0, 0, 1], device=self.device) * 0.2)).cpu().numpy() p0 = self.franka_rfinger_pos[i].cpu().numpy() self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], px[0], px[1], px[2]], [1, 0, 0]) self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], py[0], py[1], py[2]], [0, 1, 0]) self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], pz[0], pz[1], pz[2]], [0, 0, 1]) ##################################################################### ###=========================jit functions=========================### ##################################################################### @torch.jit.script def compute_franka_reward( reset_buf, progress_buf, actions, cabinet_dof_pos, franka_grasp_pos, drawer_grasp_pos, franka_grasp_rot, drawer_grasp_rot, franka_lfinger_pos, franka_rfinger_pos, gripper_forward_axis, drawer_inward_axis, gripper_up_axis, drawer_up_axis, num_envs, dist_reward_scale, rot_reward_scale, around_handle_reward_scale, open_reward_scale, finger_dist_reward_scale, action_penalty_scale, distX_offset, max_episode_length ): # type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, int, float, float, float, float, float, float, float, float) -> Tuple[Tensor, Tensor] # distance from hand to the drawer d = torch.norm(franka_grasp_pos - drawer_grasp_pos, p=2, dim=-1) dist_reward = 1.0 / (1.0 + d ** 2) dist_reward *= dist_reward dist_reward = torch.where(d <= 0.02, dist_reward * 2, dist_reward) axis1 = tf_vector(franka_grasp_rot, gripper_forward_axis) axis2 = tf_vector(drawer_grasp_rot, drawer_inward_axis) axis3 = tf_vector(franka_grasp_rot, gripper_up_axis) axis4 = tf_vector(drawer_grasp_rot, drawer_up_axis) dot1 = torch.bmm(axis1.view(num_envs, 1, 3), axis2.view(num_envs, 3, 1)).squeeze(-1).squeeze(-1) # alignment of forward axis for gripper dot2 = torch.bmm(axis3.view(num_envs, 1, 3), axis4.view(num_envs, 3, 1)).squeeze(-1).squeeze(-1) # alignment of up axis for gripper # reward for matching the orientation of the hand to the drawer (fingers wrapped) rot_reward = 0.5 * (torch.sign(dot1) * dot1 ** 2 + torch.sign(dot2) * dot2 ** 2) # bonus if left finger is above the drawer handle and right below around_handle_reward = torch.zeros_like(rot_reward) around_handle_reward = torch.where(franka_lfinger_pos[:, 2] > drawer_grasp_pos[:, 2], torch.where(franka_rfinger_pos[:, 2] < drawer_grasp_pos[:, 2], around_handle_reward + 0.5, around_handle_reward), around_handle_reward) # reward for distance of each finger from the drawer finger_dist_reward = torch.zeros_like(rot_reward) lfinger_dist = torch.abs(franka_lfinger_pos[:, 2] - drawer_grasp_pos[:, 2]) rfinger_dist = torch.abs(franka_rfinger_pos[:, 2] - drawer_grasp_pos[:, 2]) finger_dist_reward = torch.where(franka_lfinger_pos[:, 2] > drawer_grasp_pos[:, 2], torch.where(franka_rfinger_pos[:, 2] < drawer_grasp_pos[:, 2], (0.04 - lfinger_dist) + (0.04 - rfinger_dist), finger_dist_reward), finger_dist_reward) # regularization on the actions (summed for each environment) action_penalty = torch.sum(actions ** 2, dim=-1) # how far the cabinet has been opened out open_reward = cabinet_dof_pos[:, 3] * around_handle_reward + cabinet_dof_pos[:, 3] # drawer_top_joint rewards = dist_reward_scale * dist_reward + rot_reward_scale * rot_reward \ + around_handle_reward_scale * around_handle_reward + open_reward_scale * open_reward \ + finger_dist_reward_scale * finger_dist_reward - action_penalty_scale * action_penalty # bonus for opening drawer properly rewards = torch.where(cabinet_dof_pos[:, 3] > 0.01, rewards + 0.5, rewards) rewards = torch.where(cabinet_dof_pos[:, 3] > 0.2, rewards + around_handle_reward, rewards) rewards = torch.where(cabinet_dof_pos[:, 3] > 0.39, rewards + (2.0 * around_handle_reward), rewards) # prevent bad style in opening drawer rewards = torch.where(franka_lfinger_pos[:, 0] < drawer_grasp_pos[:, 0] - distX_offset, torch.ones_like(rewards) * -1, rewards) rewards = torch.where(franka_rfinger_pos[:, 0] < drawer_grasp_pos[:, 0] - distX_offset, torch.ones_like(rewards) * -1, rewards) # reset if drawer is open or max length reached reset_buf = torch.where(cabinet_dof_pos[:, 3] > 0.39, torch.ones_like(reset_buf), reset_buf) reset_buf = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(reset_buf), reset_buf) return rewards, reset_buf @torch.jit.script def compute_grasp_transforms(hand_rot, hand_pos, franka_local_grasp_rot, franka_local_grasp_pos, drawer_rot, drawer_pos, drawer_local_grasp_rot, drawer_local_grasp_pos ): # type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor] global_franka_rot, global_franka_pos = tf_combine( hand_rot, hand_pos, franka_local_grasp_rot, franka_local_grasp_pos) global_drawer_rot, global_drawer_pos = tf_combine( drawer_rot, drawer_pos, drawer_local_grasp_rot, drawer_local_grasp_pos) return global_franka_rot, global_franka_pos, global_drawer_rot, global_drawer_pos
32,782
Python
56.716549
217
0.613141
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/tasks/__init__.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from .ant import Ant from .anymal import Anymal from .anymal_terrain import AnymalTerrain from .ball_balance import BallBalance from .cartpole import Cartpole from .factory.factory_task_gears import FactoryTaskGears from .factory.factory_task_insertion import FactoryTaskInsertion from .factory.factory_task_nut_bolt_pick import FactoryTaskNutBoltPick from .factory.factory_task_nut_bolt_place import FactoryTaskNutBoltPlace from .factory.factory_task_nut_bolt_screw import FactoryTaskNutBoltScrew from .franka_cabinet import FrankaCabinet from .franka_cube_stack import FrankaCubeStack from .humanoid import Humanoid from .humanoid_amp import HumanoidAMP from .ingenuity import Ingenuity from .quadcopter import Quadcopter from .shadow_hand import ShadowHand from .allegro_hand import AllegroHand from .dextreme.allegro_hand_dextreme import AllegroHandDextremeManualDR, AllegroHandDextremeADR from .trifinger import Trifinger from .allegro_kuka.allegro_kuka_reorientation import AllegroKukaReorientation from .allegro_kuka.allegro_kuka_regrasping import AllegroKukaRegrasping from .allegro_kuka.allegro_kuka_throw import AllegroKukaThrow from .allegro_kuka.allegro_kuka_two_arms_regrasping import AllegroKukaTwoArmsRegrasping from .allegro_kuka.allegro_kuka_two_arms_reorientation import AllegroKukaTwoArmsReorientation from .industreal.industreal_task_pegs_insert import IndustRealTaskPegsInsert from .industreal.industreal_task_gears_insert import IndustRealTaskGearsInsert def resolve_allegro_kuka(cfg, *args, **kwargs): subtask_name: str = cfg["env"]["subtask"] subtask_map = dict( reorientation=AllegroKukaReorientation, throw=AllegroKukaThrow, regrasping=AllegroKukaRegrasping, ) if subtask_name not in subtask_map: print("!!!!!") raise ValueError(f"Unknown subtask={subtask_name} in {subtask_map}") return subtask_map[subtask_name](cfg, *args, **kwargs) def resolve_allegro_kuka_two_arms(cfg, *args, **kwargs): subtask_name: str = cfg["env"]["subtask"] subtask_map = dict( reorientation=AllegroKukaTwoArmsReorientation, regrasping=AllegroKukaTwoArmsRegrasping, ) if subtask_name not in subtask_map: raise ValueError(f"Unknown subtask={subtask_name} in {subtask_map}") return subtask_map[subtask_name](cfg, *args, **kwargs) # Mappings from strings to environments isaacgym_task_map = { "AllegroHand": AllegroHand, "AllegroKuka": resolve_allegro_kuka, "AllegroKukaTwoArms": resolve_allegro_kuka_two_arms, "AllegroHandManualDR": AllegroHandDextremeManualDR, "AllegroHandADR": AllegroHandDextremeADR, "Ant": Ant, "Anymal": Anymal, "AnymalTerrain": AnymalTerrain, "BallBalance": BallBalance, "Cartpole": Cartpole, "FactoryTaskGears": FactoryTaskGears, "FactoryTaskInsertion": FactoryTaskInsertion, "FactoryTaskNutBoltPick": FactoryTaskNutBoltPick, "FactoryTaskNutBoltPlace": FactoryTaskNutBoltPlace, "FactoryTaskNutBoltScrew": FactoryTaskNutBoltScrew, "IndustRealTaskPegsInsert": IndustRealTaskPegsInsert, "IndustRealTaskGearsInsert": IndustRealTaskGearsInsert, "FrankaCabinet": FrankaCabinet, "FrankaCubeStack": FrankaCubeStack, "Humanoid": Humanoid, "HumanoidAMP": HumanoidAMP, "Ingenuity": Ingenuity, "Quadcopter": Quadcopter, "ShadowHand": ShadowHand, "Trifinger": Trifinger, }
4,960
Python
42.13913
95
0.777218
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/tasks/humanoid_amp.py
# Copyright (c) 2021-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.. from enum import Enum import numpy as np import torch import os from gym import spaces from isaacgym import gymapi from isaacgym import gymtorch from isaacgymenvs.tasks.amp.humanoid_amp_base import HumanoidAMPBase, dof_to_obs from isaacgymenvs.tasks.amp.utils_amp import gym_util from isaacgymenvs.tasks.amp.utils_amp.motion_lib import MotionLib from isaacgymenvs.utils.torch_jit_utils import quat_mul, to_torch, calc_heading_quat_inv, quat_to_tan_norm, my_quat_rotate NUM_AMP_OBS_PER_STEP = 13 + 52 + 28 + 12 # [root_h, root_rot, root_vel, root_ang_vel, dof_pos, dof_vel, key_body_pos] class HumanoidAMP(HumanoidAMPBase): class StateInit(Enum): Default = 0 Start = 1 Random = 2 Hybrid = 3 def __init__(self, cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render): self.cfg = cfg state_init = cfg["env"]["stateInit"] self._state_init = HumanoidAMP.StateInit[state_init] self._hybrid_init_prob = cfg["env"]["hybridInitProb"] self._num_amp_obs_steps = cfg["env"]["numAMPObsSteps"] assert(self._num_amp_obs_steps >= 2) self._reset_default_env_ids = [] self._reset_ref_env_ids = [] super().__init__(config=self.cfg, rl_device=rl_device, sim_device=sim_device, graphics_device_id=graphics_device_id, headless=headless, virtual_screen_capture=virtual_screen_capture, force_render=force_render) motion_file = cfg['env'].get('motion_file', "amp_humanoid_backflip.npy") motion_file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "../../assets/amp/motions/" + motion_file) self._load_motion(motion_file_path) self.num_amp_obs = self._num_amp_obs_steps * NUM_AMP_OBS_PER_STEP self._amp_obs_space = spaces.Box(np.ones(self.num_amp_obs) * -np.Inf, np.ones(self.num_amp_obs) * np.Inf) self._amp_obs_buf = torch.zeros((self.num_envs, self._num_amp_obs_steps, NUM_AMP_OBS_PER_STEP), device=self.device, dtype=torch.float) self._curr_amp_obs_buf = self._amp_obs_buf[:, 0] self._hist_amp_obs_buf = self._amp_obs_buf[:, 1:] self._amp_obs_demo_buf = None return def post_physics_step(self): super().post_physics_step() self._update_hist_amp_obs() self._compute_amp_observations() amp_obs_flat = self._amp_obs_buf.view(-1, self.get_num_amp_obs()) self.extras["amp_obs"] = amp_obs_flat return def get_num_amp_obs(self): return self.num_amp_obs @property def amp_observation_space(self): return self._amp_obs_space def fetch_amp_obs_demo(self, num_samples): return self.task.fetch_amp_obs_demo(num_samples) def fetch_amp_obs_demo(self, num_samples): dt = self.dt motion_ids = self._motion_lib.sample_motions(num_samples) if (self._amp_obs_demo_buf is None): self._build_amp_obs_demo_buf(num_samples) else: assert(self._amp_obs_demo_buf.shape[0] == num_samples) motion_times0 = self._motion_lib.sample_time(motion_ids) motion_ids = np.tile(np.expand_dims(motion_ids, axis=-1), [1, self._num_amp_obs_steps]) motion_times = np.expand_dims(motion_times0, axis=-1) time_steps = -dt * np.arange(0, self._num_amp_obs_steps) motion_times = motion_times + time_steps motion_ids = motion_ids.flatten() motion_times = motion_times.flatten() root_pos, root_rot, dof_pos, root_vel, root_ang_vel, dof_vel, key_pos \ = self._motion_lib.get_motion_state(motion_ids, motion_times) root_states = torch.cat([root_pos, root_rot, root_vel, root_ang_vel], dim=-1) amp_obs_demo = build_amp_observations(root_states, dof_pos, dof_vel, key_pos, self._local_root_obs) self._amp_obs_demo_buf[:] = amp_obs_demo.view(self._amp_obs_demo_buf.shape) amp_obs_demo_flat = self._amp_obs_demo_buf.view(-1, self.get_num_amp_obs()) return amp_obs_demo_flat def _build_amp_obs_demo_buf(self, num_samples): self._amp_obs_demo_buf = torch.zeros((num_samples, self._num_amp_obs_steps, NUM_AMP_OBS_PER_STEP), device=self.device, dtype=torch.float) return def _load_motion(self, motion_file): self._motion_lib = MotionLib(motion_file=motion_file, num_dofs=self.num_dof, key_body_ids=self._key_body_ids.cpu().numpy(), device=self.device) return def reset_idx(self, env_ids): super().reset_idx(env_ids) self._init_amp_obs(env_ids) return def _reset_actors(self, env_ids): if (self._state_init == HumanoidAMP.StateInit.Default): self._reset_default(env_ids) elif (self._state_init == HumanoidAMP.StateInit.Start or self._state_init == HumanoidAMP.StateInit.Random): self._reset_ref_state_init(env_ids) elif (self._state_init == HumanoidAMP.StateInit.Hybrid): self._reset_hybrid_state_init(env_ids) else: assert(False), "Unsupported state initialization strategy: {:s}".format(str(self._state_init)) self.progress_buf[env_ids] = 0 self.reset_buf[env_ids] = 0 self._terminate_buf[env_ids] = 0 return def _reset_default(self, env_ids): self._dof_pos[env_ids] = self._initial_dof_pos[env_ids] self._dof_vel[env_ids] = self._initial_dof_vel[env_ids] env_ids_int32 = env_ids.to(dtype=torch.int32) self.gym.set_actor_root_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self._initial_root_states), gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32)) self.gym.set_dof_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self._dof_state), gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32)) self._reset_default_env_ids = env_ids return def _reset_ref_state_init(self, env_ids): num_envs = env_ids.shape[0] motion_ids = self._motion_lib.sample_motions(num_envs) if (self._state_init == HumanoidAMP.StateInit.Random or self._state_init == HumanoidAMP.StateInit.Hybrid): motion_times = self._motion_lib.sample_time(motion_ids) elif (self._state_init == HumanoidAMP.StateInit.Start): motion_times = np.zeros(num_envs) else: assert(False), "Unsupported state initialization strategy: {:s}".format(str(self._state_init)) root_pos, root_rot, dof_pos, root_vel, root_ang_vel, dof_vel, key_pos \ = self._motion_lib.get_motion_state(motion_ids, motion_times) self._set_env_state(env_ids=env_ids, root_pos=root_pos, root_rot=root_rot, dof_pos=dof_pos, root_vel=root_vel, root_ang_vel=root_ang_vel, dof_vel=dof_vel) self._reset_ref_env_ids = env_ids self._reset_ref_motion_ids = motion_ids self._reset_ref_motion_times = motion_times return def _reset_hybrid_state_init(self, env_ids): num_envs = env_ids.shape[0] ref_probs = to_torch(np.array([self._hybrid_init_prob] * num_envs), device=self.device) ref_init_mask = torch.bernoulli(ref_probs) == 1.0 ref_reset_ids = env_ids[ref_init_mask] if (len(ref_reset_ids) > 0): self._reset_ref_state_init(ref_reset_ids) default_reset_ids = env_ids[torch.logical_not(ref_init_mask)] if (len(default_reset_ids) > 0): self._reset_default(default_reset_ids) return def _init_amp_obs(self, env_ids): self._compute_amp_observations(env_ids) if (len(self._reset_default_env_ids) > 0): self._init_amp_obs_default(self._reset_default_env_ids) if (len(self._reset_ref_env_ids) > 0): self._init_amp_obs_ref(self._reset_ref_env_ids, self._reset_ref_motion_ids, self._reset_ref_motion_times) return def _init_amp_obs_default(self, env_ids): curr_amp_obs = self._curr_amp_obs_buf[env_ids].unsqueeze(-2) self._hist_amp_obs_buf[env_ids] = curr_amp_obs return def _init_amp_obs_ref(self, env_ids, motion_ids, motion_times): dt = self.dt motion_ids = np.tile(np.expand_dims(motion_ids, axis=-1), [1, self._num_amp_obs_steps - 1]) motion_times = np.expand_dims(motion_times, axis=-1) time_steps = -dt * (np.arange(0, self._num_amp_obs_steps - 1) + 1) motion_times = motion_times + time_steps motion_ids = motion_ids.flatten() motion_times = motion_times.flatten() root_pos, root_rot, dof_pos, root_vel, root_ang_vel, dof_vel, key_pos \ = self._motion_lib.get_motion_state(motion_ids, motion_times) root_states = torch.cat([root_pos, root_rot, root_vel, root_ang_vel], dim=-1) amp_obs_demo = build_amp_observations(root_states, dof_pos, dof_vel, key_pos, self._local_root_obs) self._hist_amp_obs_buf[env_ids] = amp_obs_demo.view(self._hist_amp_obs_buf[env_ids].shape) return def _set_env_state(self, env_ids, root_pos, root_rot, dof_pos, root_vel, root_ang_vel, dof_vel): self._root_states[env_ids, 0:3] = root_pos self._root_states[env_ids, 3:7] = root_rot self._root_states[env_ids, 7:10] = root_vel self._root_states[env_ids, 10:13] = root_ang_vel self._dof_pos[env_ids] = dof_pos self._dof_vel[env_ids] = dof_vel env_ids_int32 = env_ids.to(dtype=torch.int32) self.gym.set_actor_root_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self._root_states), gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32)) self.gym.set_dof_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self._dof_state), gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32)) return def _update_hist_amp_obs(self, env_ids=None): if (env_ids is None): for i in reversed(range(self._amp_obs_buf.shape[1] - 1)): self._amp_obs_buf[:, i + 1] = self._amp_obs_buf[:, i] else: for i in reversed(range(self._amp_obs_buf.shape[1] - 1)): self._amp_obs_buf[env_ids, i + 1] = self._amp_obs_buf[env_ids, i] return def _compute_amp_observations(self, env_ids=None): key_body_pos = self._rigid_body_pos[:, self._key_body_ids, :] if (env_ids is None): self._curr_amp_obs_buf[:] = build_amp_observations(self._root_states, self._dof_pos, self._dof_vel, key_body_pos, self._local_root_obs) else: self._curr_amp_obs_buf[env_ids] = build_amp_observations(self._root_states[env_ids], self._dof_pos[env_ids], self._dof_vel[env_ids], key_body_pos[env_ids], self._local_root_obs) return ##################################################################### ###=========================jit functions=========================### ##################################################################### @torch.jit.script def build_amp_observations(root_states, dof_pos, dof_vel, key_body_pos, local_root_obs): # type: (Tensor, Tensor, Tensor, Tensor, bool) -> Tensor root_pos = root_states[:, 0:3] root_rot = root_states[:, 3:7] root_vel = root_states[:, 7:10] root_ang_vel = root_states[:, 10:13] root_h = root_pos[:, 2:3] heading_rot = calc_heading_quat_inv(root_rot) if (local_root_obs): root_rot_obs = quat_mul(heading_rot, root_rot) else: root_rot_obs = root_rot root_rot_obs = quat_to_tan_norm(root_rot_obs) local_root_vel = my_quat_rotate(heading_rot, root_vel) local_root_ang_vel = my_quat_rotate(heading_rot, root_ang_vel) root_pos_expand = root_pos.unsqueeze(-2) local_key_body_pos = key_body_pos - root_pos_expand heading_rot_expand = heading_rot.unsqueeze(-2) heading_rot_expand = heading_rot_expand.repeat((1, local_key_body_pos.shape[1], 1)) flat_end_pos = local_key_body_pos.view(local_key_body_pos.shape[0] * local_key_body_pos.shape[1], local_key_body_pos.shape[2]) flat_heading_rot = heading_rot_expand.view(heading_rot_expand.shape[0] * heading_rot_expand.shape[1], heading_rot_expand.shape[2]) local_end_pos = my_quat_rotate(flat_heading_rot, flat_end_pos) flat_local_key_pos = local_end_pos.view(local_key_body_pos.shape[0], local_key_body_pos.shape[1] * local_key_body_pos.shape[2]) dof_obs = dof_to_obs(dof_pos) obs = torch.cat((root_h, root_rot_obs, local_root_vel, local_root_ang_vel, dof_obs, dof_vel, flat_local_key_pos), dim=-1) return obs
14,984
Python
44
217
0.602309
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/tasks/humanoid.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np import os import torch from isaacgym import gymtorch from isaacgym import gymapi from isaacgymenvs.utils.torch_jit_utils import scale, unscale, quat_mul, quat_conjugate, quat_from_angle_axis, \ to_torch, get_axis_params, torch_rand_float, tensor_clamp, compute_heading_and_up, compute_rot, normalize_angle from isaacgymenvs.tasks.base.vec_task import VecTask class Humanoid(VecTask): def __init__(self, cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render): self.cfg = cfg self.randomization_params = self.cfg["task"]["randomization_params"] self.randomize = self.cfg["task"]["randomize"] self.dof_vel_scale = self.cfg["env"]["dofVelocityScale"] self.angular_velocity_scale = self.cfg["env"].get("angularVelocityScale", 0.1) self.contact_force_scale = self.cfg["env"]["contactForceScale"] self.power_scale = self.cfg["env"]["powerScale"] self.heading_weight = self.cfg["env"]["headingWeight"] self.up_weight = self.cfg["env"]["upWeight"] self.actions_cost_scale = self.cfg["env"]["actionsCost"] self.energy_cost_scale = self.cfg["env"]["energyCost"] self.joints_at_limit_cost_scale = self.cfg["env"]["jointsAtLimitCost"] self.death_cost = self.cfg["env"]["deathCost"] self.termination_height = self.cfg["env"]["terminationHeight"] self.debug_viz = self.cfg["env"]["enableDebugVis"] self.plane_static_friction = self.cfg["env"]["plane"]["staticFriction"] self.plane_dynamic_friction = self.cfg["env"]["plane"]["dynamicFriction"] self.plane_restitution = self.cfg["env"]["plane"]["restitution"] self.max_episode_length = self.cfg["env"]["episodeLength"] self.cfg["env"]["numObservations"] = 108 self.cfg["env"]["numActions"] = 21 super().__init__(config=self.cfg, rl_device=rl_device, sim_device=sim_device, graphics_device_id=graphics_device_id, headless=headless, virtual_screen_capture=virtual_screen_capture, force_render=force_render) if self.viewer != None: cam_pos = gymapi.Vec3(50.0, 25.0, 2.4) cam_target = gymapi.Vec3(45.0, 25.0, 0.0) self.gym.viewer_camera_look_at(self.viewer, None, cam_pos, cam_target) # get gym GPU state tensors actor_root_state = self.gym.acquire_actor_root_state_tensor(self.sim) dof_state_tensor = self.gym.acquire_dof_state_tensor(self.sim) sensor_tensor = self.gym.acquire_force_sensor_tensor(self.sim) sensors_per_env = 2 self.vec_sensor_tensor = gymtorch.wrap_tensor(sensor_tensor).view(self.num_envs, sensors_per_env * 6) dof_force_tensor = self.gym.acquire_dof_force_tensor(self.sim) self.dof_force_tensor = gymtorch.wrap_tensor(dof_force_tensor).view(self.num_envs, self.num_dof) self.gym.refresh_dof_state_tensor(self.sim) self.gym.refresh_actor_root_state_tensor(self.sim) self.root_states = gymtorch.wrap_tensor(actor_root_state) self.initial_root_states = self.root_states.clone() self.initial_root_states[:, 7:13] = 0 # create some wrapper tensors for different slices self.dof_state = gymtorch.wrap_tensor(dof_state_tensor) self.dof_pos = self.dof_state.view(self.num_envs, self.num_dof, 2)[..., 0] self.dof_vel = self.dof_state.view(self.num_envs, self.num_dof, 2)[..., 1] self.initial_dof_pos = torch.zeros_like(self.dof_pos, device=self.device, dtype=torch.float) zero_tensor = torch.tensor([0.0], device=self.device) self.initial_dof_pos = torch.where(self.dof_limits_lower > zero_tensor, self.dof_limits_lower, torch.where(self.dof_limits_upper < zero_tensor, self.dof_limits_upper, self.initial_dof_pos)) self.initial_dof_vel = torch.zeros_like(self.dof_vel, device=self.device, dtype=torch.float) # initialize some data used later on self.up_vec = to_torch(get_axis_params(1., self.up_axis_idx), device=self.device).repeat((self.num_envs, 1)) self.heading_vec = to_torch([1, 0, 0], device=self.device).repeat((self.num_envs, 1)) self.inv_start_rot = quat_conjugate(self.start_rotation).repeat((self.num_envs, 1)) self.basis_vec0 = self.heading_vec.clone() self.basis_vec1 = self.up_vec.clone() self.targets = to_torch([1000, 0, 0], device=self.device).repeat((self.num_envs, 1)) self.target_dirs = to_torch([1, 0, 0], device=self.device).repeat((self.num_envs, 1)) self.dt = self.cfg["sim"]["dt"] self.potentials = to_torch([-1000./self.dt], device=self.device).repeat(self.num_envs) self.prev_potentials = self.potentials.clone() def create_sim(self): self.up_axis_idx = 2 # index of up axis: Y=1, Z=2 self.sim = super().create_sim(self.device_id, self.graphics_device_id, self.physics_engine, self.sim_params) self._create_ground_plane() self._create_envs(self.num_envs, self.cfg["env"]['envSpacing'], int(np.sqrt(self.num_envs))) # If randomizing, apply once immediately on startup before the fist sim step if self.randomize: self.apply_randomizations(self.randomization_params) def _create_ground_plane(self): plane_params = gymapi.PlaneParams() plane_params.normal = gymapi.Vec3(0.0, 0.0, 1.0) plane_params.static_friction = self.plane_static_friction plane_params.dynamic_friction = self.plane_dynamic_friction plane_params.restitution = self.plane_restitution self.gym.add_ground(self.sim, plane_params) def _create_envs(self, num_envs, spacing, num_per_row): lower = gymapi.Vec3(-spacing, -spacing, 0.0) upper = gymapi.Vec3(spacing, spacing, spacing) asset_root = os.path.join(os.path.dirname(os.path.abspath(__file__)), '../../assets') asset_file = "mjcf/nv_humanoid.xml" if "asset" in self.cfg["env"]: asset_file = self.cfg["env"]["asset"].get("assetFileName", asset_file) asset_path = os.path.join(asset_root, asset_file) asset_root = os.path.dirname(asset_path) asset_file = os.path.basename(asset_path) asset_options = gymapi.AssetOptions() asset_options.angular_damping = 0.01 asset_options.max_angular_velocity = 100.0 # Note - DOF mode is set in the MJCF file and loaded by Isaac Gym asset_options.default_dof_drive_mode = gymapi.DOF_MODE_NONE humanoid_asset = self.gym.load_asset(self.sim, asset_root, asset_file, asset_options) # Note - for this asset we are loading the actuator info from the MJCF actuator_props = self.gym.get_asset_actuator_properties(humanoid_asset) motor_efforts = [prop.motor_effort for prop in actuator_props] # create force sensors at the feet right_foot_idx = self.gym.find_asset_rigid_body_index(humanoid_asset, "right_foot") left_foot_idx = self.gym.find_asset_rigid_body_index(humanoid_asset, "left_foot") sensor_pose = gymapi.Transform() self.gym.create_asset_force_sensor(humanoid_asset, right_foot_idx, sensor_pose) self.gym.create_asset_force_sensor(humanoid_asset, left_foot_idx, sensor_pose) self.max_motor_effort = max(motor_efforts) self.motor_efforts = to_torch(motor_efforts, device=self.device) self.torso_index = 0 self.num_bodies = self.gym.get_asset_rigid_body_count(humanoid_asset) self.num_dof = self.gym.get_asset_dof_count(humanoid_asset) self.num_joints = self.gym.get_asset_joint_count(humanoid_asset) start_pose = gymapi.Transform() start_pose.p = gymapi.Vec3(*get_axis_params(1.34, self.up_axis_idx)) start_pose.r = gymapi.Quat(0.0, 0.0, 0.0, 1.0) self.start_rotation = torch.tensor([start_pose.r.x, start_pose.r.y, start_pose.r.z, start_pose.r.w], device=self.device) self.humanoid_handles = [] self.envs = [] self.dof_limits_lower = [] self.dof_limits_upper = [] for i in range(self.num_envs): # create env instance env_ptr = self.gym.create_env( self.sim, lower, upper, num_per_row ) handle = self.gym.create_actor(env_ptr, humanoid_asset, start_pose, "humanoid", i, 0, 0) self.gym.enable_actor_dof_force_sensors(env_ptr, handle) for j in range(self.num_bodies): self.gym.set_rigid_body_color( env_ptr, handle, j, gymapi.MESH_VISUAL, gymapi.Vec3(0.97, 0.38, 0.06)) self.envs.append(env_ptr) self.humanoid_handles.append(handle) dof_prop = self.gym.get_actor_dof_properties(env_ptr, handle) for j in range(self.num_dof): if dof_prop['lower'][j] > dof_prop['upper'][j]: self.dof_limits_lower.append(dof_prop['upper'][j]) self.dof_limits_upper.append(dof_prop['lower'][j]) else: self.dof_limits_lower.append(dof_prop['lower'][j]) self.dof_limits_upper.append(dof_prop['upper'][j]) self.dof_limits_lower = to_torch(self.dof_limits_lower, device=self.device) self.dof_limits_upper = to_torch(self.dof_limits_upper, device=self.device) self.extremities = to_torch([5, 8], device=self.device, dtype=torch.long) def compute_reward(self, actions): self.rew_buf[:], self.reset_buf = compute_humanoid_reward( self.obs_buf, self.reset_buf, self.progress_buf, self.actions, self.up_weight, self.heading_weight, self.potentials, self.prev_potentials, self.actions_cost_scale, self.energy_cost_scale, self.joints_at_limit_cost_scale, self.max_motor_effort, self.motor_efforts, self.termination_height, self.death_cost, self.max_episode_length ) def compute_observations(self): self.gym.refresh_dof_state_tensor(self.sim) self.gym.refresh_actor_root_state_tensor(self.sim) self.gym.refresh_force_sensor_tensor(self.sim) self.gym.refresh_dof_force_tensor(self.sim) self.obs_buf[:], self.potentials[:], self.prev_potentials[:], self.up_vec[:], self.heading_vec[:] = compute_humanoid_observations( self.obs_buf, self.root_states, self.targets, self.potentials, self.inv_start_rot, self.dof_pos, self.dof_vel, self.dof_force_tensor, self.dof_limits_lower, self.dof_limits_upper, self.dof_vel_scale, self.vec_sensor_tensor, self.actions, self.dt, self.contact_force_scale, self.angular_velocity_scale, self.basis_vec0, self.basis_vec1) def reset_idx(self, env_ids): # Randomization can happen only at reset time, since it can reset actor positions on GPU if self.randomize: self.apply_randomizations(self.randomization_params) positions = torch_rand_float(-0.2, 0.2, (len(env_ids), self.num_dof), device=self.device) velocities = torch_rand_float(-0.1, 0.1, (len(env_ids), self.num_dof), device=self.device) self.dof_pos[env_ids] = tensor_clamp(self.initial_dof_pos[env_ids] + positions, self.dof_limits_lower, self.dof_limits_upper) self.dof_vel[env_ids] = velocities env_ids_int32 = env_ids.to(dtype=torch.int32) self.gym.set_actor_root_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.initial_root_states), gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32)) self.gym.set_dof_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.dof_state), gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32)) to_target = self.targets[env_ids] - self.initial_root_states[env_ids, 0:3] to_target[:, self.up_axis_idx] = 0 self.prev_potentials[env_ids] = -torch.norm(to_target, p=2, dim=-1) / self.dt self.potentials[env_ids] = self.prev_potentials[env_ids].clone() self.progress_buf[env_ids] = 0 self.reset_buf[env_ids] = 0 def pre_physics_step(self, actions): self.actions = actions.to(self.device).clone() forces = self.actions * self.motor_efforts.unsqueeze(0) * self.power_scale force_tensor = gymtorch.unwrap_tensor(forces) self.gym.set_dof_actuation_force_tensor(self.sim, force_tensor) def post_physics_step(self): self.progress_buf += 1 self.randomize_buf += 1 env_ids = self.reset_buf.nonzero(as_tuple=False).flatten() if len(env_ids) > 0: self.reset_idx(env_ids) self.compute_observations() self.compute_reward(self.actions) # debug viz if self.viewer and self.debug_viz: self.gym.clear_lines(self.viewer) points = [] colors = [] for i in range(self.num_envs): origin = self.gym.get_env_origin(self.envs[i]) pose = self.root_states[:, 0:3][i].cpu().numpy() glob_pos = gymapi.Vec3(origin.x + pose[0], origin.y + pose[1], origin.z + pose[2]) points.append([glob_pos.x, glob_pos.y, glob_pos.z, glob_pos.x + 4 * self.heading_vec[i, 0].cpu().numpy(), glob_pos.y + 4 * self.heading_vec[i, 1].cpu().numpy(), glob_pos.z + 4 * self.heading_vec[i, 2].cpu().numpy()]) colors.append([0.97, 0.1, 0.06]) points.append([glob_pos.x, glob_pos.y, glob_pos.z, glob_pos.x + 4 * self.up_vec[i, 0].cpu().numpy(), glob_pos.y + 4 * self.up_vec[i, 1].cpu().numpy(), glob_pos.z + 4 * self.up_vec[i, 2].cpu().numpy()]) colors.append([0.05, 0.99, 0.04]) self.gym.add_lines(self.viewer, None, self.num_envs * 2, points, colors) ##################################################################### ###=========================jit functions=========================### ##################################################################### @torch.jit.script def compute_humanoid_reward( obs_buf, reset_buf, progress_buf, actions, up_weight, heading_weight, potentials, prev_potentials, actions_cost_scale, energy_cost_scale, joints_at_limit_cost_scale, max_motor_effort, motor_efforts, termination_height, death_cost, max_episode_length ): # type: (Tensor, Tensor, Tensor, Tensor, float, float, Tensor, Tensor, float, float, float, float, Tensor, float, float, float) -> Tuple[Tensor, Tensor] # reward from the direction headed heading_weight_tensor = torch.ones_like(obs_buf[:, 11]) * heading_weight heading_reward = torch.where(obs_buf[:, 11] > 0.8, heading_weight_tensor, heading_weight * obs_buf[:, 11] / 0.8) # reward for being upright up_reward = torch.zeros_like(heading_reward) up_reward = torch.where(obs_buf[:, 10] > 0.93, up_reward + up_weight, up_reward) actions_cost = torch.sum(actions ** 2, dim=-1) # energy cost reward motor_effort_ratio = motor_efforts / max_motor_effort scaled_cost = joints_at_limit_cost_scale * (torch.abs(obs_buf[:, 12:33]) - 0.98) / 0.02 dof_at_limit_cost = torch.sum((torch.abs(obs_buf[:, 12:33]) > 0.98) * scaled_cost * motor_effort_ratio.unsqueeze(0), dim=-1) electricity_cost = torch.sum(torch.abs(actions * obs_buf[:, 33:54]) * motor_effort_ratio.unsqueeze(0), dim=-1) # reward for duration of being alive alive_reward = torch.ones_like(potentials) * 2.0 progress_reward = potentials - prev_potentials total_reward = progress_reward + alive_reward + up_reward + heading_reward - \ actions_cost_scale * actions_cost - energy_cost_scale * electricity_cost - dof_at_limit_cost # adjust reward for fallen agents total_reward = torch.where(obs_buf[:, 0] < termination_height, torch.ones_like(total_reward) * death_cost, total_reward) # reset agents reset = torch.where(obs_buf[:, 0] < termination_height, torch.ones_like(reset_buf), reset_buf) reset = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(reset_buf), reset) return total_reward, reset @torch.jit.script def compute_humanoid_observations(obs_buf, root_states, targets, potentials, inv_start_rot, dof_pos, dof_vel, dof_force, dof_limits_lower, dof_limits_upper, dof_vel_scale, sensor_force_torques, actions, dt, contact_force_scale, angular_velocity_scale, basis_vec0, basis_vec1): # type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, float, Tensor, Tensor, float, float, float, Tensor, Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor] torso_position = root_states[:, 0:3] torso_rotation = root_states[:, 3:7] velocity = root_states[:, 7:10] ang_velocity = root_states[:, 10:13] to_target = targets - torso_position to_target[:, 2] = 0 prev_potentials_new = potentials.clone() potentials = -torch.norm(to_target, p=2, dim=-1) / dt torso_quat, up_proj, heading_proj, up_vec, heading_vec = compute_heading_and_up( torso_rotation, inv_start_rot, to_target, basis_vec0, basis_vec1, 2) vel_loc, angvel_loc, roll, pitch, yaw, angle_to_target = compute_rot( torso_quat, velocity, ang_velocity, targets, torso_position) roll = normalize_angle(roll).unsqueeze(-1) yaw = normalize_angle(yaw).unsqueeze(-1) angle_to_target = normalize_angle(angle_to_target).unsqueeze(-1) dof_pos_scaled = unscale(dof_pos, dof_limits_lower, dof_limits_upper) # obs_buf shapes: 1, 3, 3, 1, 1, 1, 1, 1, num_dofs (21), num_dofs (21), 6, num_acts (21) obs = torch.cat((torso_position[:, 2].view(-1, 1), vel_loc, angvel_loc * angular_velocity_scale, yaw, roll, angle_to_target, up_proj.unsqueeze(-1), heading_proj.unsqueeze(-1), dof_pos_scaled, dof_vel * dof_vel_scale, dof_force * contact_force_scale, sensor_force_torques.view(-1, 12) * contact_force_scale, actions), dim=-1) return obs, potentials, prev_potentials_new, up_vec, heading_vec
20,168
Python
47.717391
217
0.631743
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/tasks/cartpole.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np import os import torch from isaacgym import gymutil, gymtorch, gymapi from .base.vec_task import VecTask class Cartpole(VecTask): def __init__(self, cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render): self.cfg = cfg self.reset_dist = self.cfg["env"]["resetDist"] self.max_push_effort = self.cfg["env"]["maxEffort"] self.max_episode_length = 500 self.cfg["env"]["numObservations"] = 4 self.cfg["env"]["numActions"] = 1 super().__init__(config=self.cfg, rl_device=rl_device, sim_device=sim_device, graphics_device_id=graphics_device_id, headless=headless, virtual_screen_capture=virtual_screen_capture, force_render=force_render) dof_state_tensor = self.gym.acquire_dof_state_tensor(self.sim) self.dof_state = gymtorch.wrap_tensor(dof_state_tensor) self.dof_pos = self.dof_state.view(self.num_envs, self.num_dof, 2)[..., 0] self.dof_vel = self.dof_state.view(self.num_envs, self.num_dof, 2)[..., 1] def create_sim(self): # set the up axis to be z-up given that assets are y-up by default self.up_axis = self.cfg["sim"]["up_axis"] self.sim = super().create_sim(self.device_id, self.graphics_device_id, self.physics_engine, self.sim_params) self._create_ground_plane() self._create_envs(self.num_envs, self.cfg["env"]['envSpacing'], int(np.sqrt(self.num_envs))) def _create_ground_plane(self): plane_params = gymapi.PlaneParams() # set the normal force to be z dimension plane_params.normal = gymapi.Vec3(0.0, 0.0, 1.0) if self.up_axis == 'z' else gymapi.Vec3(0.0, 1.0, 0.0) self.gym.add_ground(self.sim, plane_params) def _create_envs(self, num_envs, spacing, num_per_row): # define plane on which environments are initialized lower = gymapi.Vec3(0.5 * -spacing, -spacing, 0.0) if self.up_axis == 'z' else gymapi.Vec3(0.5 * -spacing, 0.0, -spacing) upper = gymapi.Vec3(0.5 * spacing, spacing, spacing) asset_root = os.path.join(os.path.dirname(os.path.abspath(__file__)), "../../assets") asset_file = "urdf/cartpole.urdf" if "asset" in self.cfg["env"]: asset_root = os.path.join(os.path.dirname(os.path.abspath(__file__)), self.cfg["env"]["asset"].get("assetRoot", asset_root)) asset_file = self.cfg["env"]["asset"].get("assetFileName", asset_file) asset_path = os.path.join(asset_root, asset_file) asset_root = os.path.dirname(asset_path) asset_file = os.path.basename(asset_path) asset_options = gymapi.AssetOptions() asset_options.fix_base_link = True cartpole_asset = self.gym.load_asset(self.sim, asset_root, asset_file, asset_options) self.num_dof = self.gym.get_asset_dof_count(cartpole_asset) pose = gymapi.Transform() if self.up_axis == 'z': pose.p.z = 2.0 # asset is rotated z-up by default, no additional rotations needed pose.r = gymapi.Quat(0.0, 0.0, 0.0, 1.0) else: pose.p.y = 2.0 pose.r = gymapi.Quat(-np.sqrt(2)/2, 0.0, 0.0, np.sqrt(2)/2) self.cartpole_handles = [] self.envs = [] for i in range(self.num_envs): # create env instance env_ptr = self.gym.create_env( self.sim, lower, upper, num_per_row ) cartpole_handle = self.gym.create_actor(env_ptr, cartpole_asset, pose, "cartpole", i, 1, 0) dof_props = self.gym.get_actor_dof_properties(env_ptr, cartpole_handle) dof_props['driveMode'][0] = gymapi.DOF_MODE_EFFORT dof_props['driveMode'][1] = gymapi.DOF_MODE_NONE dof_props['stiffness'][:] = 0.0 dof_props['damping'][:] = 0.0 self.gym.set_actor_dof_properties(env_ptr, cartpole_handle, dof_props) self.envs.append(env_ptr) self.cartpole_handles.append(cartpole_handle) def compute_reward(self): # retrieve environment observations from buffer pole_angle = self.obs_buf[:, 2] pole_vel = self.obs_buf[:, 3] cart_vel = self.obs_buf[:, 1] cart_pos = self.obs_buf[:, 0] self.rew_buf[:], self.reset_buf[:] = compute_cartpole_reward( pole_angle, pole_vel, cart_vel, cart_pos, self.reset_dist, self.reset_buf, self.progress_buf, self.max_episode_length ) def compute_observations(self, env_ids=None): if env_ids is None: env_ids = np.arange(self.num_envs) self.gym.refresh_dof_state_tensor(self.sim) self.obs_buf[env_ids, 0] = self.dof_pos[env_ids, 0].squeeze() self.obs_buf[env_ids, 1] = self.dof_vel[env_ids, 0].squeeze() self.obs_buf[env_ids, 2] = self.dof_pos[env_ids, 1].squeeze() self.obs_buf[env_ids, 3] = self.dof_vel[env_ids, 1].squeeze() return self.obs_buf def reset_idx(self, env_ids): positions = 0.2 * (torch.rand((len(env_ids), self.num_dof), device=self.device) - 0.5) velocities = 0.5 * (torch.rand((len(env_ids), self.num_dof), device=self.device) - 0.5) self.dof_pos[env_ids, :] = positions[:] self.dof_vel[env_ids, :] = velocities[:] env_ids_int32 = env_ids.to(dtype=torch.int32) self.gym.set_dof_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.dof_state), gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32)) self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def pre_physics_step(self, actions): actions_tensor = torch.zeros(self.num_envs * self.num_dof, device=self.device, dtype=torch.float) actions_tensor[::self.num_dof] = actions.to(self.device).squeeze() * self.max_push_effort forces = gymtorch.unwrap_tensor(actions_tensor) self.gym.set_dof_actuation_force_tensor(self.sim, forces) def post_physics_step(self): self.progress_buf += 1 env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(env_ids) > 0: self.reset_idx(env_ids) self.compute_observations() self.compute_reward() ##################################################################### ###=========================jit functions=========================### ##################################################################### @torch.jit.script def compute_cartpole_reward(pole_angle, pole_vel, cart_vel, cart_pos, reset_dist, reset_buf, progress_buf, max_episode_length): # type: (Tensor, Tensor, Tensor, Tensor, float, Tensor, Tensor, float) -> Tuple[Tensor, Tensor] # reward is combo of angle deviated from upright, velocity of cart, and velocity of pole moving reward = 1.0 - pole_angle * pole_angle - 0.01 * torch.abs(cart_vel) - 0.005 * torch.abs(pole_vel) # adjust reward for reset agents reward = torch.where(torch.abs(cart_pos) > reset_dist, torch.ones_like(reward) * -2.0, reward) reward = torch.where(torch.abs(pole_angle) > np.pi / 2, torch.ones_like(reward) * -2.0, reward) reset = torch.where(torch.abs(cart_pos) > reset_dist, torch.ones_like(reset_buf), reset_buf) reset = torch.where(torch.abs(pole_angle) > np.pi / 2, torch.ones_like(reset_buf), reset) reset = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(reset_buf), reset) return reward, reset
9,134
Python
45.370558
217
0.629297
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/tasks/franka_cube_stack.py
# Copyright (c) 2021-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np import os import torch from isaacgym import gymtorch from isaacgym import gymapi from isaacgymenvs.utils.torch_jit_utils import quat_mul, to_torch, tensor_clamp from isaacgymenvs.tasks.base.vec_task import VecTask @torch.jit.script def axisangle2quat(vec, eps=1e-6): """ Converts scaled axis-angle to quat. Args: vec (tensor): (..., 3) tensor where final dim is (ax,ay,az) axis-angle exponential coordinates eps (float): Stability value below which small values will be mapped to 0 Returns: tensor: (..., 4) tensor where final dim is (x,y,z,w) vec4 float quaternion """ # type: (Tensor, float) -> Tensor # store input shape and reshape input_shape = vec.shape[:-1] vec = vec.reshape(-1, 3) # Grab angle angle = torch.norm(vec, dim=-1, keepdim=True) # Create return array quat = torch.zeros(torch.prod(torch.tensor(input_shape)), 4, device=vec.device) quat[:, 3] = 1.0 # Grab indexes where angle is not zero an convert the input to its quaternion form idx = angle.reshape(-1) > eps quat[idx, :] = torch.cat([ vec[idx, :] * torch.sin(angle[idx, :] / 2.0) / angle[idx, :], torch.cos(angle[idx, :] / 2.0) ], dim=-1) # Reshape and return output quat = quat.reshape(list(input_shape) + [4, ]) return quat class FrankaCubeStack(VecTask): def __init__(self, cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render): self.cfg = cfg self.max_episode_length = self.cfg["env"]["episodeLength"] self.action_scale = self.cfg["env"]["actionScale"] self.start_position_noise = self.cfg["env"]["startPositionNoise"] self.start_rotation_noise = self.cfg["env"]["startRotationNoise"] self.franka_position_noise = self.cfg["env"]["frankaPositionNoise"] self.franka_rotation_noise = self.cfg["env"]["frankaRotationNoise"] self.franka_dof_noise = self.cfg["env"]["frankaDofNoise"] self.aggregate_mode = self.cfg["env"]["aggregateMode"] # Create dicts to pass to reward function self.reward_settings = { "r_dist_scale": self.cfg["env"]["distRewardScale"], "r_lift_scale": self.cfg["env"]["liftRewardScale"], "r_align_scale": self.cfg["env"]["alignRewardScale"], "r_stack_scale": self.cfg["env"]["stackRewardScale"], } # Controller type self.control_type = self.cfg["env"]["controlType"] assert self.control_type in {"osc", "joint_tor"},\ "Invalid control type specified. Must be one of: {osc, joint_tor}" # dimensions # obs include: cubeA_pose (7) + cubeB_pos (3) + eef_pose (7) + q_gripper (2) self.cfg["env"]["numObservations"] = 19 if self.control_type == "osc" else 26 # actions include: delta EEF if OSC (6) or joint torques (7) + bool gripper (1) self.cfg["env"]["numActions"] = 7 if self.control_type == "osc" else 8 # Values to be filled in at runtime self.states = {} # will be dict filled with relevant states to use for reward calculation self.handles = {} # will be dict mapping names to relevant sim handles self.num_dofs = None # Total number of DOFs per env self.actions = None # Current actions to be deployed self._init_cubeA_state = None # Initial state of cubeA for the current env self._init_cubeB_state = None # Initial state of cubeB for the current env self._cubeA_state = None # Current state of cubeA for the current env self._cubeB_state = None # Current state of cubeB for the current env self._cubeA_id = None # Actor ID corresponding to cubeA for a given env self._cubeB_id = None # Actor ID corresponding to cubeB for a given env # Tensor placeholders self._root_state = None # State of root body (n_envs, 13) self._dof_state = None # State of all joints (n_envs, n_dof) self._q = None # Joint positions (n_envs, n_dof) self._qd = None # Joint velocities (n_envs, n_dof) self._rigid_body_state = None # State of all rigid bodies (n_envs, n_bodies, 13) self._contact_forces = None # Contact forces in sim self._eef_state = None # end effector state (at grasping point) self._eef_lf_state = None # end effector state (at left fingertip) self._eef_rf_state = None # end effector state (at left fingertip) self._j_eef = None # Jacobian for end effector self._mm = None # Mass matrix self._arm_control = None # Tensor buffer for controlling arm self._gripper_control = None # Tensor buffer for controlling gripper self._pos_control = None # Position actions self._effort_control = None # Torque actions self._franka_effort_limits = None # Actuator effort limits for franka self._global_indices = None # Unique indices corresponding to all envs in flattened array self.debug_viz = self.cfg["env"]["enableDebugVis"] self.up_axis = "z" self.up_axis_idx = 2 super().__init__(config=self.cfg, rl_device=rl_device, sim_device=sim_device, graphics_device_id=graphics_device_id, headless=headless, virtual_screen_capture=virtual_screen_capture, force_render=force_render) # Franka defaults self.franka_default_dof_pos = to_torch( [0, 0.1963, 0, -2.6180, 0, 2.9416, 0.7854, 0.035, 0.035], device=self.device ) # OSC Gains self.kp = to_torch([150.] * 6, device=self.device) self.kd = 2 * torch.sqrt(self.kp) self.kp_null = to_torch([10.] * 7, device=self.device) self.kd_null = 2 * torch.sqrt(self.kp_null) #self.cmd_limit = None # filled in later # Set control limits self.cmd_limit = to_torch([0.1, 0.1, 0.1, 0.5, 0.5, 0.5], device=self.device).unsqueeze(0) if \ self.control_type == "osc" else self._franka_effort_limits[:7].unsqueeze(0) # Reset all environments self.reset_idx(torch.arange(self.num_envs, device=self.device)) # Refresh tensors self._refresh() def create_sim(self): self.sim_params.up_axis = gymapi.UP_AXIS_Z self.sim_params.gravity.x = 0 self.sim_params.gravity.y = 0 self.sim_params.gravity.z = -9.81 self.sim = super().create_sim( self.device_id, self.graphics_device_id, self.physics_engine, self.sim_params) self._create_ground_plane() self._create_envs(self.num_envs, self.cfg["env"]['envSpacing'], int(np.sqrt(self.num_envs))) def _create_ground_plane(self): plane_params = gymapi.PlaneParams() plane_params.normal = gymapi.Vec3(0.0, 0.0, 1.0) self.gym.add_ground(self.sim, plane_params) def _create_envs(self, num_envs, spacing, num_per_row): lower = gymapi.Vec3(-spacing, -spacing, 0.0) upper = gymapi.Vec3(spacing, spacing, spacing) asset_root = os.path.join(os.path.dirname(os.path.abspath(__file__)), "../../assets") franka_asset_file = "urdf/franka_description/robots/franka_panda_gripper.urdf" if "asset" in self.cfg["env"]: asset_root = os.path.join(os.path.dirname(os.path.abspath(__file__)), self.cfg["env"]["asset"].get("assetRoot", asset_root)) franka_asset_file = self.cfg["env"]["asset"].get("assetFileNameFranka", franka_asset_file) # load franka asset asset_options = gymapi.AssetOptions() asset_options.flip_visual_attachments = True asset_options.fix_base_link = True asset_options.collapse_fixed_joints = False asset_options.disable_gravity = True asset_options.thickness = 0.001 asset_options.default_dof_drive_mode = gymapi.DOF_MODE_EFFORT asset_options.use_mesh_materials = True franka_asset = self.gym.load_asset(self.sim, asset_root, franka_asset_file, asset_options) franka_dof_stiffness = to_torch([0, 0, 0, 0, 0, 0, 0, 5000., 5000.], dtype=torch.float, device=self.device) franka_dof_damping = to_torch([0, 0, 0, 0, 0, 0, 0, 1.0e2, 1.0e2], dtype=torch.float, device=self.device) # Create table asset table_pos = [0.0, 0.0, 1.0] table_thickness = 0.05 table_opts = gymapi.AssetOptions() table_opts.fix_base_link = True table_asset = self.gym.create_box(self.sim, *[1.2, 1.2, table_thickness], table_opts) # Create table stand asset table_stand_height = 0.1 table_stand_pos = [-0.5, 0.0, 1.0 + table_thickness / 2 + table_stand_height / 2] table_stand_opts = gymapi.AssetOptions() table_stand_opts.fix_base_link = True table_stand_asset = self.gym.create_box(self.sim, *[0.2, 0.2, table_stand_height], table_opts) self.cubeA_size = 0.050 self.cubeB_size = 0.070 # Create cubeA asset cubeA_opts = gymapi.AssetOptions() cubeA_asset = self.gym.create_box(self.sim, *([self.cubeA_size] * 3), cubeA_opts) cubeA_color = gymapi.Vec3(0.6, 0.1, 0.0) # Create cubeB asset cubeB_opts = gymapi.AssetOptions() cubeB_asset = self.gym.create_box(self.sim, *([self.cubeB_size] * 3), cubeB_opts) cubeB_color = gymapi.Vec3(0.0, 0.4, 0.1) self.num_franka_bodies = self.gym.get_asset_rigid_body_count(franka_asset) self.num_franka_dofs = self.gym.get_asset_dof_count(franka_asset) print("num franka bodies: ", self.num_franka_bodies) print("num franka dofs: ", self.num_franka_dofs) # set franka dof properties franka_dof_props = self.gym.get_asset_dof_properties(franka_asset) self.franka_dof_lower_limits = [] self.franka_dof_upper_limits = [] self._franka_effort_limits = [] for i in range(self.num_franka_dofs): franka_dof_props['driveMode'][i] = gymapi.DOF_MODE_POS if i > 6 else gymapi.DOF_MODE_EFFORT if self.physics_engine == gymapi.SIM_PHYSX: franka_dof_props['stiffness'][i] = franka_dof_stiffness[i] franka_dof_props['damping'][i] = franka_dof_damping[i] else: franka_dof_props['stiffness'][i] = 7000.0 franka_dof_props['damping'][i] = 50.0 self.franka_dof_lower_limits.append(franka_dof_props['lower'][i]) self.franka_dof_upper_limits.append(franka_dof_props['upper'][i]) self._franka_effort_limits.append(franka_dof_props['effort'][i]) self.franka_dof_lower_limits = to_torch(self.franka_dof_lower_limits, device=self.device) self.franka_dof_upper_limits = to_torch(self.franka_dof_upper_limits, device=self.device) self._franka_effort_limits = to_torch(self._franka_effort_limits, device=self.device) self.franka_dof_speed_scales = torch.ones_like(self.franka_dof_lower_limits) self.franka_dof_speed_scales[[7, 8]] = 0.1 franka_dof_props['effort'][7] = 200 franka_dof_props['effort'][8] = 200 # Define start pose for franka franka_start_pose = gymapi.Transform() franka_start_pose.p = gymapi.Vec3(-0.45, 0.0, 1.0 + table_thickness / 2 + table_stand_height) franka_start_pose.r = gymapi.Quat(0.0, 0.0, 0.0, 1.0) # Define start pose for table table_start_pose = gymapi.Transform() table_start_pose.p = gymapi.Vec3(*table_pos) table_start_pose.r = gymapi.Quat(0.0, 0.0, 0.0, 1.0) self._table_surface_pos = np.array(table_pos) + np.array([0, 0, table_thickness / 2]) self.reward_settings["table_height"] = self._table_surface_pos[2] # Define start pose for table stand table_stand_start_pose = gymapi.Transform() table_stand_start_pose.p = gymapi.Vec3(*table_stand_pos) table_stand_start_pose.r = gymapi.Quat(0.0, 0.0, 0.0, 1.0) # Define start pose for cubes (doesn't really matter since they're get overridden during reset() anyways) cubeA_start_pose = gymapi.Transform() cubeA_start_pose.p = gymapi.Vec3(-1.0, 0.0, 0.0) cubeA_start_pose.r = gymapi.Quat(0.0, 0.0, 0.0, 1.0) cubeB_start_pose = gymapi.Transform() cubeB_start_pose.p = gymapi.Vec3(1.0, 0.0, 0.0) cubeB_start_pose.r = gymapi.Quat(0.0, 0.0, 0.0, 1.0) # compute aggregate size num_franka_bodies = self.gym.get_asset_rigid_body_count(franka_asset) num_franka_shapes = self.gym.get_asset_rigid_shape_count(franka_asset) max_agg_bodies = num_franka_bodies + 4 # 1 for table, table stand, cubeA, cubeB max_agg_shapes = num_franka_shapes + 4 # 1 for table, table stand, cubeA, cubeB self.frankas = [] self.envs = [] # Create environments for i in range(self.num_envs): # create env instance env_ptr = self.gym.create_env(self.sim, lower, upper, num_per_row) # Create actors and define aggregate group appropriately depending on setting # NOTE: franka should ALWAYS be loaded first in sim! if self.aggregate_mode >= 3: self.gym.begin_aggregate(env_ptr, max_agg_bodies, max_agg_shapes, True) # Create franka # Potentially randomize start pose if self.franka_position_noise > 0: rand_xy = self.franka_position_noise * (-1. + np.random.rand(2) * 2.0) franka_start_pose.p = gymapi.Vec3(-0.45 + rand_xy[0], 0.0 + rand_xy[1], 1.0 + table_thickness / 2 + table_stand_height) if self.franka_rotation_noise > 0: rand_rot = torch.zeros(1, 3) rand_rot[:, -1] = self.franka_rotation_noise * (-1. + np.random.rand() * 2.0) new_quat = axisangle2quat(rand_rot).squeeze().numpy().tolist() franka_start_pose.r = gymapi.Quat(*new_quat) franka_actor = self.gym.create_actor(env_ptr, franka_asset, franka_start_pose, "franka", i, 0, 0) self.gym.set_actor_dof_properties(env_ptr, franka_actor, franka_dof_props) if self.aggregate_mode == 2: self.gym.begin_aggregate(env_ptr, max_agg_bodies, max_agg_shapes, True) # Create table table_actor = self.gym.create_actor(env_ptr, table_asset, table_start_pose, "table", i, 1, 0) table_stand_actor = self.gym.create_actor(env_ptr, table_stand_asset, table_stand_start_pose, "table_stand", i, 1, 0) if self.aggregate_mode == 1: self.gym.begin_aggregate(env_ptr, max_agg_bodies, max_agg_shapes, True) # Create cubes self._cubeA_id = self.gym.create_actor(env_ptr, cubeA_asset, cubeA_start_pose, "cubeA", i, 2, 0) self._cubeB_id = self.gym.create_actor(env_ptr, cubeB_asset, cubeB_start_pose, "cubeB", i, 4, 0) # Set colors self.gym.set_rigid_body_color(env_ptr, self._cubeA_id, 0, gymapi.MESH_VISUAL, cubeA_color) self.gym.set_rigid_body_color(env_ptr, self._cubeB_id, 0, gymapi.MESH_VISUAL, cubeB_color) if self.aggregate_mode > 0: self.gym.end_aggregate(env_ptr) # Store the created env pointers self.envs.append(env_ptr) self.frankas.append(franka_actor) # Setup init state buffer self._init_cubeA_state = torch.zeros(self.num_envs, 13, device=self.device) self._init_cubeB_state = torch.zeros(self.num_envs, 13, device=self.device) # Setup data self.init_data() def init_data(self): # Setup sim handles env_ptr = self.envs[0] franka_handle = 0 self.handles = { # Franka "hand": self.gym.find_actor_rigid_body_handle(env_ptr, franka_handle, "panda_hand"), "leftfinger_tip": self.gym.find_actor_rigid_body_handle(env_ptr, franka_handle, "panda_leftfinger_tip"), "rightfinger_tip": self.gym.find_actor_rigid_body_handle(env_ptr, franka_handle, "panda_rightfinger_tip"), "grip_site": self.gym.find_actor_rigid_body_handle(env_ptr, franka_handle, "panda_grip_site"), # Cubes "cubeA_body_handle": self.gym.find_actor_rigid_body_handle(self.envs[0], self._cubeA_id, "box"), "cubeB_body_handle": self.gym.find_actor_rigid_body_handle(self.envs[0], self._cubeB_id, "box"), } # Get total DOFs self.num_dofs = self.gym.get_sim_dof_count(self.sim) // self.num_envs # Setup tensor buffers _actor_root_state_tensor = self.gym.acquire_actor_root_state_tensor(self.sim) _dof_state_tensor = self.gym.acquire_dof_state_tensor(self.sim) _rigid_body_state_tensor = self.gym.acquire_rigid_body_state_tensor(self.sim) self._root_state = gymtorch.wrap_tensor(_actor_root_state_tensor).view(self.num_envs, -1, 13) self._dof_state = gymtorch.wrap_tensor(_dof_state_tensor).view(self.num_envs, -1, 2) self._rigid_body_state = gymtorch.wrap_tensor(_rigid_body_state_tensor).view(self.num_envs, -1, 13) self._q = self._dof_state[..., 0] self._qd = self._dof_state[..., 1] self._eef_state = self._rigid_body_state[:, self.handles["grip_site"], :] self._eef_lf_state = self._rigid_body_state[:, self.handles["leftfinger_tip"], :] self._eef_rf_state = self._rigid_body_state[:, self.handles["rightfinger_tip"], :] _jacobian = self.gym.acquire_jacobian_tensor(self.sim, "franka") jacobian = gymtorch.wrap_tensor(_jacobian) hand_joint_index = self.gym.get_actor_joint_dict(env_ptr, franka_handle)['panda_hand_joint'] self._j_eef = jacobian[:, hand_joint_index, :, :7] _massmatrix = self.gym.acquire_mass_matrix_tensor(self.sim, "franka") mm = gymtorch.wrap_tensor(_massmatrix) self._mm = mm[:, :7, :7] self._cubeA_state = self._root_state[:, self._cubeA_id, :] self._cubeB_state = self._root_state[:, self._cubeB_id, :] # Initialize states self.states.update({ "cubeA_size": torch.ones_like(self._eef_state[:, 0]) * self.cubeA_size, "cubeB_size": torch.ones_like(self._eef_state[:, 0]) * self.cubeB_size, }) # Initialize actions self._pos_control = torch.zeros((self.num_envs, self.num_dofs), dtype=torch.float, device=self.device) self._effort_control = torch.zeros_like(self._pos_control) # Initialize control self._arm_control = self._effort_control[:, :7] self._gripper_control = self._pos_control[:, 7:9] # Initialize indices self._global_indices = torch.arange(self.num_envs * 5, dtype=torch.int32, device=self.device).view(self.num_envs, -1) def _update_states(self): self.states.update({ # Franka "q": self._q[:, :], "q_gripper": self._q[:, -2:], "eef_pos": self._eef_state[:, :3], "eef_quat": self._eef_state[:, 3:7], "eef_vel": self._eef_state[:, 7:], "eef_lf_pos": self._eef_lf_state[:, :3], "eef_rf_pos": self._eef_rf_state[:, :3], # Cubes "cubeA_quat": self._cubeA_state[:, 3:7], "cubeA_pos": self._cubeA_state[:, :3], "cubeA_pos_relative": self._cubeA_state[:, :3] - self._eef_state[:, :3], "cubeB_quat": self._cubeB_state[:, 3:7], "cubeB_pos": self._cubeB_state[:, :3], "cubeA_to_cubeB_pos": self._cubeB_state[:, :3] - self._cubeA_state[:, :3], }) def _refresh(self): self.gym.refresh_actor_root_state_tensor(self.sim) self.gym.refresh_dof_state_tensor(self.sim) self.gym.refresh_rigid_body_state_tensor(self.sim) self.gym.refresh_jacobian_tensors(self.sim) self.gym.refresh_mass_matrix_tensors(self.sim) # Refresh states self._update_states() def compute_reward(self, actions): self.rew_buf[:], self.reset_buf[:] = compute_franka_reward( self.reset_buf, self.progress_buf, self.actions, self.states, self.reward_settings, self.max_episode_length ) def compute_observations(self): self._refresh() obs = ["cubeA_quat", "cubeA_pos", "cubeA_to_cubeB_pos", "eef_pos", "eef_quat"] obs += ["q_gripper"] if self.control_type == "osc" else ["q"] self.obs_buf = torch.cat([self.states[ob] for ob in obs], dim=-1) maxs = {ob: torch.max(self.states[ob]).item() for ob in obs} return self.obs_buf def reset_idx(self, env_ids): env_ids_int32 = env_ids.to(dtype=torch.int32) # Reset cubes, sampling cube B first, then A # if not self._i: self._reset_init_cube_state(cube='B', env_ids=env_ids, check_valid=False) self._reset_init_cube_state(cube='A', env_ids=env_ids, check_valid=True) # self._i = True # Write these new init states to the sim states self._cubeA_state[env_ids] = self._init_cubeA_state[env_ids] self._cubeB_state[env_ids] = self._init_cubeB_state[env_ids] # Reset agent reset_noise = torch.rand((len(env_ids), 9), device=self.device) pos = tensor_clamp( self.franka_default_dof_pos.unsqueeze(0) + self.franka_dof_noise * 2.0 * (reset_noise - 0.5), self.franka_dof_lower_limits.unsqueeze(0), self.franka_dof_upper_limits) # Overwrite gripper init pos (no noise since these are always position controlled) pos[:, -2:] = self.franka_default_dof_pos[-2:] # Reset the internal obs accordingly self._q[env_ids, :] = pos self._qd[env_ids, :] = torch.zeros_like(self._qd[env_ids]) # Set any position control to the current position, and any vel / effort control to be 0 # NOTE: Task takes care of actually propagating these controls in sim using the SimActions API self._pos_control[env_ids, :] = pos self._effort_control[env_ids, :] = torch.zeros_like(pos) # Deploy updates multi_env_ids_int32 = self._global_indices[env_ids, 0].flatten() self.gym.set_dof_position_target_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self._pos_control), gymtorch.unwrap_tensor(multi_env_ids_int32), len(multi_env_ids_int32)) self.gym.set_dof_actuation_force_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self._effort_control), gymtorch.unwrap_tensor(multi_env_ids_int32), len(multi_env_ids_int32)) self.gym.set_dof_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self._dof_state), gymtorch.unwrap_tensor(multi_env_ids_int32), len(multi_env_ids_int32)) # Update cube states multi_env_ids_cubes_int32 = self._global_indices[env_ids, -2:].flatten() self.gym.set_actor_root_state_tensor_indexed( self.sim, gymtorch.unwrap_tensor(self._root_state), gymtorch.unwrap_tensor(multi_env_ids_cubes_int32), len(multi_env_ids_cubes_int32)) self.progress_buf[env_ids] = 0 self.reset_buf[env_ids] = 0 def _reset_init_cube_state(self, cube, env_ids, check_valid=True): """ Simple method to sample @cube's position based on self.startPositionNoise and self.startRotationNoise, and automaticlly reset the pose internally. Populates the appropriate self._init_cubeX_state If @check_valid is True, then this will also make sure that the sampled position is not in contact with the other cube. Args: cube(str): Which cube to sample location for. Either 'A' or 'B' env_ids (tensor or None): Specific environments to reset cube for check_valid (bool): Whether to make sure sampled position is collision-free with the other cube. """ # If env_ids is None, we reset all the envs if env_ids is None: env_ids = torch.arange(start=0, end=self.num_envs, device=self.device, dtype=torch.long) # Initialize buffer to hold sampled values num_resets = len(env_ids) sampled_cube_state = torch.zeros(num_resets, 13, device=self.device) # Get correct references depending on which one was selected if cube.lower() == 'a': this_cube_state_all = self._init_cubeA_state other_cube_state = self._init_cubeB_state[env_ids, :] cube_heights = self.states["cubeA_size"] elif cube.lower() == 'b': this_cube_state_all = self._init_cubeB_state other_cube_state = self._init_cubeA_state[env_ids, :] cube_heights = self.states["cubeA_size"] else: raise ValueError(f"Invalid cube specified, options are 'A' and 'B'; got: {cube}") # Minimum cube distance for guarenteed collision-free sampling is the sum of each cube's effective radius min_dists = (self.states["cubeA_size"] + self.states["cubeB_size"])[env_ids] * np.sqrt(2) / 2.0 # We scale the min dist by 2 so that the cubes aren't too close together min_dists = min_dists * 2.0 # Sampling is "centered" around middle of table centered_cube_xy_state = torch.tensor(self._table_surface_pos[:2], device=self.device, dtype=torch.float32) # Set z value, which is fixed height sampled_cube_state[:, 2] = self._table_surface_pos[2] + cube_heights.squeeze(-1)[env_ids] / 2 # Initialize rotation, which is no rotation (quat w = 1) sampled_cube_state[:, 6] = 1.0 # If we're verifying valid sampling, we need to check and re-sample if any are not collision-free # We use a simple heuristic of checking based on cubes' radius to determine if a collision would occur if check_valid: success = False # Indexes corresponding to envs we're still actively sampling for active_idx = torch.arange(num_resets, device=self.device) num_active_idx = len(active_idx) for i in range(100): # Sample x y values sampled_cube_state[active_idx, :2] = centered_cube_xy_state + \ 2.0 * self.start_position_noise * ( torch.rand_like(sampled_cube_state[active_idx, :2]) - 0.5) # Check if sampled values are valid cube_dist = torch.linalg.norm(sampled_cube_state[:, :2] - other_cube_state[:, :2], dim=-1) active_idx = torch.nonzero(cube_dist < min_dists, as_tuple=True)[0] num_active_idx = len(active_idx) # If active idx is empty, then all sampling is valid :D if num_active_idx == 0: success = True break # Make sure we succeeded at sampling assert success, "Sampling cube locations was unsuccessful! ):" else: # We just directly sample sampled_cube_state[:, :2] = centered_cube_xy_state.unsqueeze(0) + \ 2.0 * self.start_position_noise * ( torch.rand(num_resets, 2, device=self.device) - 0.5) # Sample rotation value if self.start_rotation_noise > 0: aa_rot = torch.zeros(num_resets, 3, device=self.device) aa_rot[:, 2] = 2.0 * self.start_rotation_noise * (torch.rand(num_resets, device=self.device) - 0.5) sampled_cube_state[:, 3:7] = quat_mul(axisangle2quat(aa_rot), sampled_cube_state[:, 3:7]) # Lastly, set these sampled values as the new init state this_cube_state_all[env_ids, :] = sampled_cube_state def _compute_osc_torques(self, dpose): # Solve for Operational Space Control # Paper: khatib.stanford.edu/publications/pdfs/Khatib_1987_RA.pdf # Helpful resource: studywolf.wordpress.com/2013/09/17/robot-control-4-operation-space-control/ q, qd = self._q[:, :7], self._qd[:, :7] mm_inv = torch.inverse(self._mm) m_eef_inv = self._j_eef @ mm_inv @ torch.transpose(self._j_eef, 1, 2) m_eef = torch.inverse(m_eef_inv) # Transform our cartesian action `dpose` into joint torques `u` u = torch.transpose(self._j_eef, 1, 2) @ m_eef @ ( self.kp * dpose - self.kd * self.states["eef_vel"]).unsqueeze(-1) # Nullspace control torques `u_null` prevents large changes in joint configuration # They are added into the nullspace of OSC so that the end effector orientation remains constant # roboticsproceedings.org/rss07/p31.pdf j_eef_inv = m_eef @ self._j_eef @ mm_inv u_null = self.kd_null * -qd + self.kp_null * ( (self.franka_default_dof_pos[:7] - q + np.pi) % (2 * np.pi) - np.pi) u_null[:, 7:] *= 0 u_null = self._mm @ u_null.unsqueeze(-1) u += (torch.eye(7, device=self.device).unsqueeze(0) - torch.transpose(self._j_eef, 1, 2) @ j_eef_inv) @ u_null # Clip the values to be within valid effort range u = tensor_clamp(u.squeeze(-1), -self._franka_effort_limits[:7].unsqueeze(0), self._franka_effort_limits[:7].unsqueeze(0)) return u def pre_physics_step(self, actions): self.actions = actions.clone().to(self.device) # Split arm and gripper command u_arm, u_gripper = self.actions[:, :-1], self.actions[:, -1] # print(u_arm, u_gripper) # print(self.cmd_limit, self.action_scale) # Control arm (scale value first) u_arm = u_arm * self.cmd_limit / self.action_scale if self.control_type == "osc": u_arm = self._compute_osc_torques(dpose=u_arm) self._arm_control[:, :] = u_arm # Control gripper u_fingers = torch.zeros_like(self._gripper_control) u_fingers[:, 0] = torch.where(u_gripper >= 0.0, self.franka_dof_upper_limits[-2].item(), self.franka_dof_lower_limits[-2].item()) u_fingers[:, 1] = torch.where(u_gripper >= 0.0, self.franka_dof_upper_limits[-1].item(), self.franka_dof_lower_limits[-1].item()) # Write gripper command to appropriate tensor buffer self._gripper_control[:, :] = u_fingers # Deploy actions self.gym.set_dof_position_target_tensor(self.sim, gymtorch.unwrap_tensor(self._pos_control)) self.gym.set_dof_actuation_force_tensor(self.sim, gymtorch.unwrap_tensor(self._effort_control)) def post_physics_step(self): self.progress_buf += 1 env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(env_ids) > 0: self.reset_idx(env_ids) self.compute_observations() self.compute_reward(self.actions) # debug viz if self.viewer and self.debug_viz: self.gym.clear_lines(self.viewer) self.gym.refresh_rigid_body_state_tensor(self.sim) # Grab relevant states to visualize eef_pos = self.states["eef_pos"] eef_rot = self.states["eef_quat"] cubeA_pos = self.states["cubeA_pos"] cubeA_rot = self.states["cubeA_quat"] cubeB_pos = self.states["cubeB_pos"] cubeB_rot = self.states["cubeB_quat"] # Plot visualizations for i in range(self.num_envs): for pos, rot in zip((eef_pos, cubeA_pos, cubeB_pos), (eef_rot, cubeA_rot, cubeB_rot)): px = (pos[i] + quat_apply(rot[i], to_torch([1, 0, 0], device=self.device) * 0.2)).cpu().numpy() py = (pos[i] + quat_apply(rot[i], to_torch([0, 1, 0], device=self.device) * 0.2)).cpu().numpy() pz = (pos[i] + quat_apply(rot[i], to_torch([0, 0, 1], device=self.device) * 0.2)).cpu().numpy() p0 = pos[i].cpu().numpy() self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], px[0], px[1], px[2]], [0.85, 0.1, 0.1]) self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], py[0], py[1], py[2]], [0.1, 0.85, 0.1]) self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], pz[0], pz[1], pz[2]], [0.1, 0.1, 0.85]) ##################################################################### ###=========================jit functions=========================### ##################################################################### @torch.jit.script def compute_franka_reward( reset_buf, progress_buf, actions, states, reward_settings, max_episode_length ): # type: (Tensor, Tensor, Tensor, Dict[str, Tensor], Dict[str, float], float) -> Tuple[Tensor, Tensor] # Compute per-env physical parameters target_height = states["cubeB_size"] + states["cubeA_size"] / 2.0 cubeA_size = states["cubeA_size"] cubeB_size = states["cubeB_size"] # distance from hand to the cubeA d = torch.norm(states["cubeA_pos_relative"], dim=-1) d_lf = torch.norm(states["cubeA_pos"] - states["eef_lf_pos"], dim=-1) d_rf = torch.norm(states["cubeA_pos"] - states["eef_rf_pos"], dim=-1) dist_reward = 1 - torch.tanh(10.0 * (d + d_lf + d_rf) / 3) # reward for lifting cubeA cubeA_height = states["cubeA_pos"][:, 2] - reward_settings["table_height"] cubeA_lifted = (cubeA_height - cubeA_size) > 0.04 lift_reward = cubeA_lifted # how closely aligned cubeA is to cubeB (only provided if cubeA is lifted) offset = torch.zeros_like(states["cubeA_to_cubeB_pos"]) offset[:, 2] = (cubeA_size + cubeB_size) / 2 d_ab = torch.norm(states["cubeA_to_cubeB_pos"] + offset, dim=-1) align_reward = (1 - torch.tanh(10.0 * d_ab)) * cubeA_lifted # Dist reward is maximum of dist and align reward dist_reward = torch.max(dist_reward, align_reward) # final reward for stacking successfully (only if cubeA is close to target height and corresponding location, and gripper is not grasping) cubeA_align_cubeB = (torch.norm(states["cubeA_to_cubeB_pos"][:, :2], dim=-1) < 0.02) cubeA_on_cubeB = torch.abs(cubeA_height - target_height) < 0.02 gripper_away_from_cubeA = (d > 0.04) stack_reward = cubeA_align_cubeB & cubeA_on_cubeB & gripper_away_from_cubeA # Compose rewards # We either provide the stack reward or the align + dist reward rewards = torch.where( stack_reward, reward_settings["r_stack_scale"] * stack_reward, reward_settings["r_dist_scale"] * dist_reward + reward_settings["r_lift_scale"] * lift_reward + reward_settings[ "r_align_scale"] * align_reward, ) # Compute resets reset_buf = torch.where((progress_buf >= max_episode_length - 1) | (stack_reward > 0), torch.ones_like(reset_buf), reset_buf) return rewards, reset_buf
37,426
Python
49.036096
217
0.595816
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/tasks/quadcopter.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import os import torch import xml.etree.ElementTree as ET from isaacgym import gymutil, gymtorch, gymapi from isaacgymenvs.utils.torch_jit_utils import * from .base.vec_task import VecTask class Quadcopter(VecTask): def __init__(self, cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render): self.cfg = cfg self.max_episode_length = self.cfg["env"]["maxEpisodeLength"] self.debug_viz = self.cfg["env"]["enableDebugVis"] dofs_per_env = 8 bodies_per_env = 9 # Observations: # 0:13 - root state # 13:29 - DOF states num_obs = 21 # Actions: # 0:8 - rotor DOF position targets # 8:12 - rotor thrust magnitudes num_acts = 12 self.cfg["env"]["numObservations"] = num_obs self.cfg["env"]["numActions"] = num_acts super().__init__(config=self.cfg, rl_device=rl_device, sim_device=sim_device, graphics_device_id=graphics_device_id, headless=headless, virtual_screen_capture=virtual_screen_capture, force_render=force_render) self.root_tensor = self.gym.acquire_actor_root_state_tensor(self.sim) self.dof_state_tensor = self.gym.acquire_dof_state_tensor(self.sim) vec_root_tensor = gymtorch.wrap_tensor(self.root_tensor).view(self.num_envs, 13) vec_dof_tensor = gymtorch.wrap_tensor(self.dof_state_tensor).view(self.num_envs, dofs_per_env, 2) self.root_states = vec_root_tensor self.root_positions = vec_root_tensor[..., 0:3] self.root_quats = vec_root_tensor[..., 3:7] self.root_linvels = vec_root_tensor[..., 7:10] self.root_angvels = vec_root_tensor[..., 10:13] self.dof_states = vec_dof_tensor self.dof_positions = vec_dof_tensor[..., 0] self.dof_velocities = vec_dof_tensor[..., 1] self.gym.refresh_actor_root_state_tensor(self.sim) self.gym.refresh_dof_state_tensor(self.sim) self.initial_root_states = vec_root_tensor.clone() self.initial_dof_states = vec_dof_tensor.clone() max_thrust = 2 self.thrust_lower_limits = torch.zeros(4, device=self.device, dtype=torch.float32) self.thrust_upper_limits = max_thrust * torch.ones(4, device=self.device, dtype=torch.float32) # control tensors self.dof_position_targets = torch.zeros((self.num_envs, dofs_per_env), dtype=torch.float32, device=self.device, requires_grad=False) self.thrusts = torch.zeros((self.num_envs, 4), dtype=torch.float32, device=self.device, requires_grad=False) self.forces = torch.zeros((self.num_envs, bodies_per_env, 3), dtype=torch.float32, device=self.device, requires_grad=False) self.all_actor_indices = torch.arange(self.num_envs, dtype=torch.int32, device=self.device) if self.viewer: cam_pos = gymapi.Vec3(1.0, 1.0, 1.8) cam_target = gymapi.Vec3(2.2, 2.0, 1.0) self.gym.viewer_camera_look_at(self.viewer, None, cam_pos, cam_target) # need rigid body states for visualizing thrusts self.rb_state_tensor = self.gym.acquire_rigid_body_state_tensor(self.sim) self.rb_states = gymtorch.wrap_tensor(self.rb_state_tensor).view(self.num_envs, bodies_per_env, 13) self.rb_positions = self.rb_states[..., 0:3] self.rb_quats = self.rb_states[..., 3:7] def create_sim(self): self.sim_params.up_axis = gymapi.UP_AXIS_Z self.sim_params.gravity.x = 0 self.sim_params.gravity.y = 0 self.sim_params.gravity.z = -9.81 self.sim = super().create_sim(self.device_id, self.graphics_device_id, self.physics_engine, self.sim_params) self.dt = self.sim_params.dt self._create_quadcopter_asset() self._create_ground_plane() self._create_envs(self.num_envs, self.cfg["env"]['envSpacing'], int(np.sqrt(self.num_envs))) def _create_quadcopter_asset(self): chassis_radius = 0.1 chassis_thickness = 0.03 rotor_radius = 0.04 rotor_thickness = 0.01 rotor_arm_radius = 0.01 root = ET.Element('mujoco') root.attrib["model"] = "Quadcopter" compiler = ET.SubElement(root, "compiler") compiler.attrib["angle"] = "degree" compiler.attrib["coordinate"] = "local" compiler.attrib["inertiafromgeom"] = "true" worldbody = ET.SubElement(root, "worldbody") chassis = ET.SubElement(worldbody, "body") chassis.attrib["name"] = "chassis" chassis.attrib["pos"] = "%g %g %g" % (0, 0, 0) chassis_geom = ET.SubElement(chassis, "geom") chassis_geom.attrib["type"] = "cylinder" chassis_geom.attrib["size"] = "%g %g" % (chassis_radius, 0.5 * chassis_thickness) chassis_geom.attrib["pos"] = "0 0 0" chassis_geom.attrib["density"] = "50" chassis_joint = ET.SubElement(chassis, "joint") chassis_joint.attrib["name"] = "root_joint" chassis_joint.attrib["type"] = "free" zaxis = gymapi.Vec3(0, 0, 1) rotor_arm_offset = gymapi.Vec3(chassis_radius + 0.25 * rotor_arm_radius, 0, 0) pitch_joint_offset = gymapi.Vec3(0, 0, 0) rotor_offset = gymapi.Vec3(rotor_radius + 0.25 * rotor_arm_radius, 0, 0) rotor_angles = [0.25 * math.pi, 0.75 * math.pi, 1.25 * math.pi, 1.75 * math.pi] for i in range(len(rotor_angles)): angle = rotor_angles[i] rotor_arm_quat = gymapi.Quat.from_axis_angle(zaxis, angle) rotor_arm_pos = rotor_arm_quat.rotate(rotor_arm_offset) pitch_joint_pos = pitch_joint_offset rotor_pos = rotor_offset rotor_quat = gymapi.Quat() rotor_arm = ET.SubElement(chassis, "body") rotor_arm.attrib["name"] = "rotor_arm" + str(i) rotor_arm.attrib["pos"] = "%g %g %g" % (rotor_arm_pos.x, rotor_arm_pos.y, rotor_arm_pos.z) rotor_arm.attrib["quat"] = "%g %g %g %g" % (rotor_arm_quat.w, rotor_arm_quat.x, rotor_arm_quat.y, rotor_arm_quat.z) rotor_arm_geom = ET.SubElement(rotor_arm, "geom") rotor_arm_geom.attrib["type"] = "sphere" rotor_arm_geom.attrib["size"] = "%g" % rotor_arm_radius rotor_arm_geom.attrib["density"] = "200" pitch_joint = ET.SubElement(rotor_arm, "joint") pitch_joint.attrib["name"] = "rotor_pitch" + str(i) pitch_joint.attrib["type"] = "hinge" pitch_joint.attrib["pos"] = "%g %g %g" % (0, 0, 0) pitch_joint.attrib["axis"] = "0 1 0" pitch_joint.attrib["limited"] = "true" pitch_joint.attrib["range"] = "-30 30" rotor = ET.SubElement(rotor_arm, "body") rotor.attrib["name"] = "rotor" + str(i) rotor.attrib["pos"] = "%g %g %g" % (rotor_pos.x, rotor_pos.y, rotor_pos.z) rotor.attrib["quat"] = "%g %g %g %g" % (rotor_quat.w, rotor_quat.x, rotor_quat.y, rotor_quat.z) rotor_geom = ET.SubElement(rotor, "geom") rotor_geom.attrib["type"] = "cylinder" rotor_geom.attrib["size"] = "%g %g" % (rotor_radius, 0.5 * rotor_thickness) #rotor_geom.attrib["type"] = "box" #rotor_geom.attrib["size"] = "%g %g %g" % (rotor_radius, rotor_radius, 0.5 * rotor_thickness) rotor_geom.attrib["density"] = "1000" roll_joint = ET.SubElement(rotor, "joint") roll_joint.attrib["name"] = "rotor_roll" + str(i) roll_joint.attrib["type"] = "hinge" roll_joint.attrib["pos"] = "%g %g %g" % (0, 0, 0) roll_joint.attrib["axis"] = "1 0 0" roll_joint.attrib["limited"] = "true" roll_joint.attrib["range"] = "-30 30" gymutil._indent_xml(root) ET.ElementTree(root).write("quadcopter.xml") def _create_ground_plane(self): plane_params = gymapi.PlaneParams() plane_params.normal = gymapi.Vec3(0.0, 0.0, 1.0) self.gym.add_ground(self.sim, plane_params) def _create_envs(self, num_envs, spacing, num_per_row): lower = gymapi.Vec3(-spacing, -spacing, 0.0) upper = gymapi.Vec3(spacing, spacing, spacing) asset_root = "." asset_file = "quadcopter.xml" asset_options = gymapi.AssetOptions() asset_options.fix_base_link = False asset_options.angular_damping = 0.0 asset_options.max_angular_velocity = 4 * math.pi asset_options.slices_per_cylinder = 40 asset = self.gym.load_asset(self.sim, asset_root, asset_file, asset_options) self.num_dofs = self.gym.get_asset_dof_count(asset) dof_props = self.gym.get_asset_dof_properties(asset) self.dof_lower_limits = [] self.dof_upper_limits = [] for i in range(self.num_dofs): self.dof_lower_limits.append(dof_props['lower'][i]) self.dof_upper_limits.append(dof_props['upper'][i]) self.dof_lower_limits = to_torch(self.dof_lower_limits, device=self.device) self.dof_upper_limits = to_torch(self.dof_upper_limits, device=self.device) self.dof_ranges = self.dof_upper_limits - self.dof_lower_limits default_pose = gymapi.Transform() default_pose.p.z = 1.0 self.envs = [] for i in range(self.num_envs): # create env instance env = self.gym.create_env(self.sim, lower, upper, num_per_row) actor_handle = self.gym.create_actor(env, asset, default_pose, "quadcopter", i, 1, 0) dof_props = self.gym.get_actor_dof_properties(env, actor_handle) dof_props['driveMode'].fill(gymapi.DOF_MODE_POS) dof_props['stiffness'].fill(1000.0) dof_props['damping'].fill(0.0) self.gym.set_actor_dof_properties(env, actor_handle, dof_props) # pretty colors chassis_color = gymapi.Vec3(0.8, 0.6, 0.2) rotor_color = gymapi.Vec3(0.1, 0.2, 0.6) arm_color = gymapi.Vec3(0.0, 0.0, 0.0) self.gym.set_rigid_body_color(env, actor_handle, 0, gymapi.MESH_VISUAL_AND_COLLISION, chassis_color) self.gym.set_rigid_body_color(env, actor_handle, 1, gymapi.MESH_VISUAL_AND_COLLISION, arm_color) self.gym.set_rigid_body_color(env, actor_handle, 3, gymapi.MESH_VISUAL_AND_COLLISION, arm_color) self.gym.set_rigid_body_color(env, actor_handle, 5, gymapi.MESH_VISUAL_AND_COLLISION, arm_color) self.gym.set_rigid_body_color(env, actor_handle, 7, gymapi.MESH_VISUAL_AND_COLLISION, arm_color) self.gym.set_rigid_body_color(env, actor_handle, 2, gymapi.MESH_VISUAL_AND_COLLISION, rotor_color) self.gym.set_rigid_body_color(env, actor_handle, 4, gymapi.MESH_VISUAL_AND_COLLISION, rotor_color) self.gym.set_rigid_body_color(env, actor_handle, 6, gymapi.MESH_VISUAL_AND_COLLISION, rotor_color) self.gym.set_rigid_body_color(env, actor_handle, 8, gymapi.MESH_VISUAL_AND_COLLISION, rotor_color) #self.gym.set_rigid_body_color(env, actor_handle, 2, gymapi.MESH_VISUAL_AND_COLLISION, gymapi.Vec3(1, 0, 0)) #self.gym.set_rigid_body_color(env, actor_handle, 4, gymapi.MESH_VISUAL_AND_COLLISION, gymapi.Vec3(0, 1, 0)) #self.gym.set_rigid_body_color(env, actor_handle, 6, gymapi.MESH_VISUAL_AND_COLLISION, gymapi.Vec3(0, 0, 1)) #self.gym.set_rigid_body_color(env, actor_handle, 8, gymapi.MESH_VISUAL_AND_COLLISION, gymapi.Vec3(1, 1, 0)) self.envs.append(env) if self.debug_viz: # need env offsets for the rotors self.rotor_env_offsets = torch.zeros((self.num_envs, 4, 3), device=self.device) for i in range(self.num_envs): env_origin = self.gym.get_env_origin(self.envs[i]) self.rotor_env_offsets[i, ..., 0] = env_origin.x self.rotor_env_offsets[i, ..., 1] = env_origin.y self.rotor_env_offsets[i, ..., 2] = env_origin.z def reset_idx(self, env_ids): num_resets = len(env_ids) self.dof_states[env_ids] = self.initial_dof_states[env_ids] actor_indices = self.all_actor_indices[env_ids].flatten() self.root_states[env_ids] = self.initial_root_states[env_ids] self.root_states[env_ids, 0] += torch_rand_float(-1.5, 1.5, (num_resets, 1), self.device).flatten() self.root_states[env_ids, 1] += torch_rand_float(-1.5, 1.5, (num_resets, 1), self.device).flatten() self.root_states[env_ids, 2] += torch_rand_float(-0.2, 1.5, (num_resets, 1), self.device).flatten() self.gym.set_actor_root_state_tensor_indexed(self.sim, self.root_tensor, gymtorch.unwrap_tensor(actor_indices), num_resets) self.dof_positions[env_ids] = torch_rand_float(-0.2, 0.2, (num_resets, 8), self.device) self.dof_velocities[env_ids] = 0.0 self.gym.set_dof_state_tensor_indexed(self.sim, self.dof_state_tensor, gymtorch.unwrap_tensor(actor_indices), num_resets) self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def pre_physics_step(self, _actions): # resets reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) actions = _actions.to(self.device) dof_action_speed_scale = 8 * math.pi self.dof_position_targets += self.dt * dof_action_speed_scale * actions[:, 0:8] self.dof_position_targets[:] = tensor_clamp(self.dof_position_targets, self.dof_lower_limits, self.dof_upper_limits) thrust_action_speed_scale = 200 self.thrusts += self.dt * thrust_action_speed_scale * actions[:, 8:12] self.thrusts[:] = tensor_clamp(self.thrusts, self.thrust_lower_limits, self.thrust_upper_limits) self.forces[:, 2, 2] = self.thrusts[:, 0] self.forces[:, 4, 2] = self.thrusts[:, 1] self.forces[:, 6, 2] = self.thrusts[:, 2] self.forces[:, 8, 2] = self.thrusts[:, 3] # clear actions for reset envs self.thrusts[reset_env_ids] = 0.0 self.forces[reset_env_ids] = 0.0 self.dof_position_targets[reset_env_ids] = self.dof_positions[reset_env_ids] # apply actions self.gym.set_dof_position_target_tensor(self.sim, gymtorch.unwrap_tensor(self.dof_position_targets)) self.gym.apply_rigid_body_force_tensors(self.sim, gymtorch.unwrap_tensor(self.forces), None, gymapi.LOCAL_SPACE) def post_physics_step(self): self.progress_buf += 1 self.gym.refresh_actor_root_state_tensor(self.sim) self.gym.refresh_dof_state_tensor(self.sim) self.compute_observations() self.compute_reward() # debug viz if self.viewer and self.debug_viz: # compute start and end positions for visualizing thrust lines self.gym.refresh_rigid_body_state_tensor(self.sim) rotor_indices = torch.LongTensor([2, 4, 6, 8]) quats = self.rb_quats[:, rotor_indices] dirs = -quat_axis(quats.view(self.num_envs * 4, 4), 2).view(self.num_envs, 4, 3) starts = self.rb_positions[:, rotor_indices] + self.rotor_env_offsets ends = starts + 0.1 * self.thrusts.view(self.num_envs, 4, 1) * dirs # submit debug line geometry verts = torch.stack([starts, ends], dim=2).cpu().numpy() colors = np.zeros((self.num_envs * 4, 3), dtype=np.float32) colors[..., 0] = 1.0 self.gym.clear_lines(self.viewer) self.gym.add_lines(self.viewer, None, self.num_envs * 4, verts, colors) def compute_observations(self): target_x = 0.0 target_y = 0.0 target_z = 1.0 self.obs_buf[..., 0] = (target_x - self.root_positions[..., 0]) / 3 self.obs_buf[..., 1] = (target_y - self.root_positions[..., 1]) / 3 self.obs_buf[..., 2] = (target_z - self.root_positions[..., 2]) / 3 self.obs_buf[..., 3:7] = self.root_quats self.obs_buf[..., 7:10] = self.root_linvels / 2 self.obs_buf[..., 10:13] = self.root_angvels / math.pi self.obs_buf[..., 13:21] = self.dof_positions return self.obs_buf def compute_reward(self): self.rew_buf[:], self.reset_buf[:] = compute_quadcopter_reward( self.root_positions, self.root_quats, self.root_linvels, self.root_angvels, self.reset_buf, self.progress_buf, self.max_episode_length ) ##################################################################### ###=========================jit functions=========================### ##################################################################### @torch.jit.script def compute_quadcopter_reward(root_positions, root_quats, root_linvels, root_angvels, reset_buf, progress_buf, max_episode_length): # type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, float) -> Tuple[Tensor, Tensor] # distance to target target_dist = torch.sqrt(root_positions[..., 0] * root_positions[..., 0] + root_positions[..., 1] * root_positions[..., 1] + (1 - root_positions[..., 2]) * (1 - root_positions[..., 2])) pos_reward = 1.0 / (1.0 + target_dist * target_dist) # uprightness ups = quat_axis(root_quats, 2) tiltage = torch.abs(1 - ups[..., 2]) up_reward = 1.0 / (1.0 + tiltage * tiltage) # spinning spinnage = torch.abs(root_angvels[..., 2]) spinnage_reward = 1.0 / (1.0 + spinnage * spinnage) # combined reward # uprigness and spinning only matter when close to the target reward = pos_reward + pos_reward * (up_reward + spinnage_reward) # resets due to misbehavior ones = torch.ones_like(reset_buf) die = torch.zeros_like(reset_buf) die = torch.where(target_dist > 3.0, ones, die) die = torch.where(root_positions[..., 2] < 0.3, ones, die) # resets due to episode length reset = torch.where(progress_buf >= max_episode_length - 1, ones, die) return reward, reset
19,725
Python
46.078759
217
0.61308
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/tasks/ingenuity.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import os import torch import xml.etree.ElementTree as ET from isaacgymenvs.utils.torch_jit_utils import * from .base.vec_task import VecTask from isaacgym import gymutil, gymtorch, gymapi class Ingenuity(VecTask): def __init__(self, cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render): self.cfg = cfg self.max_episode_length = self.cfg["env"]["maxEpisodeLength"] self.debug_viz = self.cfg["env"]["enableDebugVis"] # Observations: # 0:13 - root state self.cfg["env"]["numObservations"] = 13 # Actions: # 0:3 - xyz force vector for lower rotor # 4:6 - xyz force vector for upper rotor self.cfg["env"]["numActions"] = 6 super().__init__(config=self.cfg, rl_device=rl_device, sim_device=sim_device, graphics_device_id=graphics_device_id, headless=headless, virtual_screen_capture=virtual_screen_capture, force_render=force_render) dofs_per_env = 4 bodies_per_env = 6 self.root_tensor = self.gym.acquire_actor_root_state_tensor(self.sim) self.dof_state_tensor = self.gym.acquire_dof_state_tensor(self.sim) vec_root_tensor = gymtorch.wrap_tensor(self.root_tensor).view(self.num_envs, 2, 13) vec_dof_tensor = gymtorch.wrap_tensor(self.dof_state_tensor).view(self.num_envs, dofs_per_env, 2) self.root_states = vec_root_tensor[:, 0, :] self.root_positions = self.root_states[:, 0:3] self.target_root_positions = torch.zeros((self.num_envs, 3), device=self.device, dtype=torch.float32) self.target_root_positions[:, 2] = 1 self.root_quats = self.root_states[:, 3:7] self.root_linvels = self.root_states[:, 7:10] self.root_angvels = self.root_states[:, 10:13] self.marker_states = vec_root_tensor[:, 1, :] self.marker_positions = self.marker_states[:, 0:3] self.dof_states = vec_dof_tensor self.dof_positions = vec_dof_tensor[..., 0] self.dof_velocities = vec_dof_tensor[..., 1] self.gym.refresh_actor_root_state_tensor(self.sim) self.gym.refresh_dof_state_tensor(self.sim) self.initial_root_states = self.root_states.clone() self.initial_dof_states = self.dof_states.clone() self.thrust_lower_limit = 0 self.thrust_upper_limit = 2000 self.thrust_lateral_component = 0.2 # control tensors self.thrusts = torch.zeros((self.num_envs, 2, 3), dtype=torch.float32, device=self.device, requires_grad=False) self.forces = torch.zeros((self.num_envs, bodies_per_env, 3), dtype=torch.float32, device=self.device, requires_grad=False) self.all_actor_indices = torch.arange(self.num_envs * 2, dtype=torch.int32, device=self.device).reshape((self.num_envs, 2)) if self.viewer: cam_pos = gymapi.Vec3(2.25, 2.25, 3.0) cam_target = gymapi.Vec3(3.5, 4.0, 1.9) self.gym.viewer_camera_look_at(self.viewer, None, cam_pos, cam_target) # need rigid body states for visualizing thrusts self.rb_state_tensor = self.gym.acquire_rigid_body_state_tensor(self.sim) self.rb_states = gymtorch.wrap_tensor(self.rb_state_tensor).view(self.num_envs, bodies_per_env, 13) self.rb_positions = self.rb_states[..., 0:3] self.rb_quats = self.rb_states[..., 3:7] def create_sim(self): self.sim_params.up_axis = gymapi.UP_AXIS_Z # Mars gravity self.sim_params.gravity.x = 0 self.sim_params.gravity.y = 0 self.sim_params.gravity.z = -3.721 self.sim = super().create_sim(self.device_id, self.graphics_device_id, self.physics_engine, self.sim_params) self.dt = self.sim_params.dt self._create_ingenuity_asset() self._create_ground_plane() self._create_envs(self.num_envs, self.cfg["env"]['envSpacing'], int(np.sqrt(self.num_envs))) def _create_ingenuity_asset(self): chassis_size = 0.06 rotor_axis_length = 0.2 rotor_radius = 0.15 rotor_thickness = 0.01 rotor_arm_radius = 0.01 root = ET.Element('mujoco') root.attrib["model"] = "Ingenuity" compiler = ET.SubElement(root, "compiler") compiler.attrib["angle"] = "degree" compiler.attrib["coordinate"] = "local" compiler.attrib["inertiafromgeom"] = "true" mesh_asset = ET.SubElement(root, "asset") model_path = "../assets/glb/ingenuity/" mesh = ET.SubElement(mesh_asset, "mesh") mesh.attrib["file"] = model_path + "chassis.glb" mesh.attrib["name"] = "ingenuity_mesh" lower_prop_mesh = ET.SubElement(mesh_asset, "mesh") lower_prop_mesh.attrib["file"] = model_path + "lower_prop.glb" lower_prop_mesh.attrib["name"] = "lower_prop_mesh" upper_prop_mesh = ET.SubElement(mesh_asset, "mesh") upper_prop_mesh.attrib["file"] = model_path + "upper_prop.glb" upper_prop_mesh.attrib["name"] = "upper_prop_mesh" worldbody = ET.SubElement(root, "worldbody") chassis = ET.SubElement(worldbody, "body") chassis.attrib["name"] = "chassis" chassis.attrib["pos"] = "%g %g %g" % (0, 0, 0) chassis_geom = ET.SubElement(chassis, "geom") chassis_geom.attrib["type"] = "box" chassis_geom.attrib["size"] = "%g %g %g" % (chassis_size, chassis_size, chassis_size) chassis_geom.attrib["pos"] = "0 0 0" chassis_geom.attrib["density"] = "50" mesh_quat = gymapi.Quat.from_euler_zyx(0.5 * math.pi, 0, 0) mesh_geom = ET.SubElement(chassis, "geom") mesh_geom.attrib["type"] = "mesh" mesh_geom.attrib["quat"] = "%g %g %g %g" % (mesh_quat.w, mesh_quat.x, mesh_quat.y, mesh_quat.z) mesh_geom.attrib["mesh"] = "ingenuity_mesh" mesh_geom.attrib["pos"] = "%g %g %g" % (0, 0, 0) mesh_geom.attrib["contype"] = "0" mesh_geom.attrib["conaffinity"] = "0" chassis_joint = ET.SubElement(chassis, "joint") chassis_joint.attrib["name"] = "root_joint" chassis_joint.attrib["type"] = "hinge" chassis_joint.attrib["limited"] = "true" chassis_joint.attrib["range"] = "0 0" zaxis = gymapi.Vec3(0, 0, 1) low_rotor_pos = gymapi.Vec3(0, 0, 0) rotor_separation = gymapi.Vec3(0, 0, 0.025) for i, mesh_name in enumerate(["lower_prop_mesh", "upper_prop_mesh"]): angle = 0 rotor_quat = gymapi.Quat.from_axis_angle(zaxis, angle) rotor_pos = low_rotor_pos + (rotor_separation * i) rotor = ET.SubElement(chassis, "body") rotor.attrib["name"] = "rotor_physics_" + str(i) rotor.attrib["pos"] = "%g %g %g" % (rotor_pos.x, rotor_pos.y, rotor_pos.z) rotor.attrib["quat"] = "%g %g %g %g" % (rotor_quat.w, rotor_quat.x, rotor_quat.y, rotor_quat.z) rotor_geom = ET.SubElement(rotor, "geom") rotor_geom.attrib["type"] = "cylinder" rotor_geom.attrib["size"] = "%g %g" % (rotor_radius, 0.5 * rotor_thickness) rotor_geom.attrib["density"] = "1000" roll_joint = ET.SubElement(rotor, "joint") roll_joint.attrib["name"] = "rotor_roll" + str(i) roll_joint.attrib["type"] = "hinge" roll_joint.attrib["limited"] = "true" roll_joint.attrib["range"] = "0 0" roll_joint.attrib["pos"] = "%g %g %g" % (0, 0, 0) rotor_dummy = ET.SubElement(chassis, "body") rotor_dummy.attrib["name"] = "rotor_visual_" + str(i) rotor_dummy.attrib["pos"] = "%g %g %g" % (rotor_pos.x, rotor_pos.y, rotor_pos.z) rotor_dummy.attrib["quat"] = "%g %g %g %g" % (rotor_quat.w, rotor_quat.x, rotor_quat.y, rotor_quat.z) rotor_mesh_geom = ET.SubElement(rotor_dummy, "geom") rotor_mesh_geom.attrib["type"] = "mesh" rotor_mesh_geom.attrib["mesh"] = mesh_name rotor_mesh_quat = gymapi.Quat.from_euler_zyx(0.5 * math.pi, 0, 0) rotor_mesh_geom.attrib["quat"] = "%g %g %g %g" % (rotor_mesh_quat.w, rotor_mesh_quat.x, rotor_mesh_quat.y, rotor_mesh_quat.z) rotor_mesh_geom.attrib["contype"] = "0" rotor_mesh_geom.attrib["conaffinity"] = "0" dummy_roll_joint = ET.SubElement(rotor_dummy, "joint") dummy_roll_joint.attrib["name"] = "rotor_roll" + str(i) dummy_roll_joint.attrib["type"] = "hinge" dummy_roll_joint.attrib["axis"] = "0 0 1" dummy_roll_joint.attrib["pos"] = "%g %g %g" % (0, 0, 0) gymutil._indent_xml(root) ET.ElementTree(root).write("ingenuity.xml") def _create_ground_plane(self): plane_params = gymapi.PlaneParams() plane_params.normal = gymapi.Vec3(0.0, 0.0, 1.0) self.gym.add_ground(self.sim, plane_params) def _create_envs(self, num_envs, spacing, num_per_row): lower = gymapi.Vec3(-spacing, -spacing, 0.0) upper = gymapi.Vec3(spacing, spacing, spacing) asset_root = "./" asset_file = "ingenuity.xml" asset_options = gymapi.AssetOptions() asset_options.fix_base_link = False asset_options.angular_damping = 0.0 asset_options.max_angular_velocity = 4 * math.pi asset_options.slices_per_cylinder = 40 asset = self.gym.load_asset(self.sim, asset_root, asset_file, asset_options) asset_options.fix_base_link = True marker_asset = self.gym.create_sphere(self.sim, 0.1, asset_options) default_pose = gymapi.Transform() default_pose.p.z = 1.0 self.envs = [] self.actor_handles = [] for i in range(self.num_envs): # create env instance env = self.gym.create_env(self.sim, lower, upper, num_per_row) actor_handle = self.gym.create_actor(env, asset, default_pose, "ingenuity", i, 1, 1) dof_props = self.gym.get_actor_dof_properties(env, actor_handle) dof_props['stiffness'].fill(0) dof_props['damping'].fill(0) self.gym.set_actor_dof_properties(env, actor_handle, dof_props) marker_handle = self.gym.create_actor(env, marker_asset, default_pose, "marker", i, 1, 1) self.gym.set_rigid_body_color(env, marker_handle, 0, gymapi.MESH_VISUAL_AND_COLLISION, gymapi.Vec3(1, 0, 0)) self.actor_handles.append(actor_handle) self.envs.append(env) if self.debug_viz: # need env offsets for the rotors self.rotor_env_offsets = torch.zeros((self.num_envs, 2, 3), device=self.device) for i in range(self.num_envs): env_origin = self.gym.get_env_origin(self.envs[i]) self.rotor_env_offsets[i, ..., 0] = env_origin.x self.rotor_env_offsets[i, ..., 1] = env_origin.y self.rotor_env_offsets[i, ..., 2] = env_origin.z def set_targets(self, env_ids): num_sets = len(env_ids) # set target position randomly with x, y in (-5, 5) and z in (1, 2) self.target_root_positions[env_ids, 0:2] = (torch.rand(num_sets, 2, device=self.device) * 10) - 5 self.target_root_positions[env_ids, 2] = torch.rand(num_sets, device=self.device) + 1 self.marker_positions[env_ids] = self.target_root_positions[env_ids] # copter "position" is at the bottom of the legs, so shift the target up so it visually aligns better self.marker_positions[env_ids, 2] += 0.4 actor_indices = self.all_actor_indices[env_ids, 1].flatten() return actor_indices def reset_idx(self, env_ids): # set rotor speeds self.dof_velocities[:, 1] = -50 self.dof_velocities[:, 3] = 50 num_resets = len(env_ids) target_actor_indices = self.set_targets(env_ids) actor_indices = self.all_actor_indices[env_ids, 0].flatten() self.root_states[env_ids] = self.initial_root_states[env_ids] self.root_states[env_ids, 0] += torch_rand_float(-1.5, 1.5, (num_resets, 1), self.device).flatten() self.root_states[env_ids, 1] += torch_rand_float(-1.5, 1.5, (num_resets, 1), self.device).flatten() self.root_states[env_ids, 2] += torch_rand_float(-0.2, 1.5, (num_resets, 1), self.device).flatten() self.gym.set_dof_state_tensor_indexed(self.sim, self.dof_state_tensor, gymtorch.unwrap_tensor(actor_indices), num_resets) self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 return torch.unique(torch.cat([target_actor_indices, actor_indices])) def pre_physics_step(self, _actions): # resets set_target_ids = (self.progress_buf % 500 == 0).nonzero(as_tuple=False).squeeze(-1) target_actor_indices = torch.tensor([], device=self.device, dtype=torch.int32) if len(set_target_ids) > 0: target_actor_indices = self.set_targets(set_target_ids) reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) actor_indices = torch.tensor([], device=self.device, dtype=torch.int32) if len(reset_env_ids) > 0: actor_indices = self.reset_idx(reset_env_ids) reset_indices = torch.unique(torch.cat([target_actor_indices, actor_indices])) if len(reset_indices) > 0: self.gym.set_actor_root_state_tensor_indexed(self.sim, self.root_tensor, gymtorch.unwrap_tensor(reset_indices), len(reset_indices)) actions = _actions.to(self.device) thrust_action_speed_scale = 2000 vertical_thrust_prop_0 = torch.clamp(actions[:, 2] * thrust_action_speed_scale, -self.thrust_upper_limit, self.thrust_upper_limit) vertical_thrust_prop_1 = torch.clamp(actions[:, 5] * thrust_action_speed_scale, -self.thrust_upper_limit, self.thrust_upper_limit) lateral_fraction_prop_0 = torch.clamp(actions[:, 0:2], -self.thrust_lateral_component, self.thrust_lateral_component) lateral_fraction_prop_1 = torch.clamp(actions[:, 3:5], -self.thrust_lateral_component, self.thrust_lateral_component) self.thrusts[:, 0, 2] = self.dt * vertical_thrust_prop_0 self.thrusts[:, 0, 0:2] = self.thrusts[:, 0, 2, None] * lateral_fraction_prop_0 self.thrusts[:, 1, 2] = self.dt * vertical_thrust_prop_1 self.thrusts[:, 1, 0:2] = self.thrusts[:, 1, 2, None] * lateral_fraction_prop_1 self.forces[:, 1] = self.thrusts[:, 0] self.forces[:, 3] = self.thrusts[:, 1] # clear actions for reset envs self.thrusts[reset_env_ids] = 0.0 self.forces[reset_env_ids] = 0.0 # apply actions self.gym.apply_rigid_body_force_tensors(self.sim, gymtorch.unwrap_tensor(self.forces), None, gymapi.LOCAL_SPACE) def post_physics_step(self): self.progress_buf += 1 self.gym.refresh_actor_root_state_tensor(self.sim) self.gym.refresh_dof_state_tensor(self.sim) self.compute_observations() self.compute_reward() # debug viz if self.viewer and self.debug_viz: # compute start and end positions for visualizing thrust lines self.gym.refresh_rigid_body_state_tensor(self.sim) rotor_indices = torch.LongTensor([2, 4, 6, 8]) quats = self.rb_quats[:, rotor_indices] dirs = -quat_axis(quats.view(self.num_envs * 4, 4), 2).view(self.num_envs, 4, 3) starts = self.rb_positions[:, rotor_indices] + self.rotor_env_offsets ends = starts + 0.1 * self.thrusts.view(self.num_envs, 4, 1) * dirs # submit debug line geometry verts = torch.stack([starts, ends], dim=2).cpu().numpy() colors = np.zeros((self.num_envs * 4, 3), dtype=np.float32) colors[..., 0] = 1.0 self.gym.clear_lines(self.viewer) self.gym.add_lines(self.viewer, None, self.num_envs * 4, verts, colors) def compute_observations(self): self.obs_buf[..., 0:3] = (self.target_root_positions - self.root_positions) / 3 self.obs_buf[..., 3:7] = self.root_quats self.obs_buf[..., 7:10] = self.root_linvels / 2 self.obs_buf[..., 10:13] = self.root_angvels / math.pi return self.obs_buf def compute_reward(self): self.rew_buf[:], self.reset_buf[:] = compute_ingenuity_reward( self.root_positions, self.target_root_positions, self.root_quats, self.root_linvels, self.root_angvels, self.reset_buf, self.progress_buf, self.max_episode_length ) ##################################################################### ###=========================jit functions=========================### ##################################################################### @torch.jit.script def compute_ingenuity_reward(root_positions, target_root_positions, root_quats, root_linvels, root_angvels, reset_buf, progress_buf, max_episode_length): # type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, float) -> Tuple[Tensor, Tensor] # distance to target target_dist = torch.sqrt(torch.square(target_root_positions - root_positions).sum(-1)) pos_reward = 1.0 / (1.0 + target_dist * target_dist) # uprightness ups = quat_axis(root_quats, 2) tiltage = torch.abs(1 - ups[..., 2]) up_reward = 5.0 / (1.0 + tiltage * tiltage) # spinning spinnage = torch.abs(root_angvels[..., 2]) spinnage_reward = 1.0 / (1.0 + spinnage * spinnage) # combined reward # uprigness and spinning only matter when close to the target reward = pos_reward + pos_reward * (up_reward + spinnage_reward) # resets due to misbehavior ones = torch.ones_like(reset_buf) die = torch.zeros_like(reset_buf) die = torch.where(target_dist > 8.0, ones, die) die = torch.where(root_positions[..., 2] < 0.5, ones, die) # resets due to episode length reset = torch.where(progress_buf >= max_episode_length - 1, ones, die) return reward, reset
19,671
Python
43.60771
217
0.614763
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/tasks/anymal.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np import os import torch from isaacgym import gymtorch from isaacgym import gymapi from isaacgymenvs.utils.torch_jit_utils import to_torch, get_axis_params, torch_rand_float, quat_rotate, quat_rotate_inverse from isaacgymenvs.tasks.base.vec_task import VecTask from typing import Tuple, Dict class Anymal(VecTask): def __init__(self, cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render): self.cfg = cfg # normalization self.lin_vel_scale = self.cfg["env"]["learn"]["linearVelocityScale"] self.ang_vel_scale = self.cfg["env"]["learn"]["angularVelocityScale"] self.dof_pos_scale = self.cfg["env"]["learn"]["dofPositionScale"] self.dof_vel_scale = self.cfg["env"]["learn"]["dofVelocityScale"] self.action_scale = self.cfg["env"]["control"]["actionScale"] # reward scales self.rew_scales = {} self.rew_scales["lin_vel_xy"] = self.cfg["env"]["learn"]["linearVelocityXYRewardScale"] self.rew_scales["ang_vel_z"] = self.cfg["env"]["learn"]["angularVelocityZRewardScale"] self.rew_scales["torque"] = self.cfg["env"]["learn"]["torqueRewardScale"] # randomization self.randomization_params = self.cfg["task"]["randomization_params"] self.randomize = self.cfg["task"]["randomize"] # command ranges self.command_x_range = self.cfg["env"]["randomCommandVelocityRanges"]["linear_x"] self.command_y_range = self.cfg["env"]["randomCommandVelocityRanges"]["linear_y"] self.command_yaw_range = self.cfg["env"]["randomCommandVelocityRanges"]["yaw"] # plane params self.plane_static_friction = self.cfg["env"]["plane"]["staticFriction"] self.plane_dynamic_friction = self.cfg["env"]["plane"]["dynamicFriction"] self.plane_restitution = self.cfg["env"]["plane"]["restitution"] # base init state pos = self.cfg["env"]["baseInitState"]["pos"] rot = self.cfg["env"]["baseInitState"]["rot"] v_lin = self.cfg["env"]["baseInitState"]["vLinear"] v_ang = self.cfg["env"]["baseInitState"]["vAngular"] state = pos + rot + v_lin + v_ang self.base_init_state = state # default joint positions self.named_default_joint_angles = self.cfg["env"]["defaultJointAngles"] self.cfg["env"]["numObservations"] = 48 self.cfg["env"]["numActions"] = 12 super().__init__(config=self.cfg, rl_device=rl_device, sim_device=sim_device, graphics_device_id=graphics_device_id, headless=headless, virtual_screen_capture=virtual_screen_capture, force_render=force_render) # other self.dt = self.sim_params.dt self.max_episode_length_s = self.cfg["env"]["learn"]["episodeLength_s"] self.max_episode_length = int(self.max_episode_length_s / self.dt + 0.5) self.Kp = self.cfg["env"]["control"]["stiffness"] self.Kd = self.cfg["env"]["control"]["damping"] for key in self.rew_scales.keys(): self.rew_scales[key] *= self.dt if self.viewer != None: p = self.cfg["env"]["viewer"]["pos"] lookat = self.cfg["env"]["viewer"]["lookat"] cam_pos = gymapi.Vec3(p[0], p[1], p[2]) cam_target = gymapi.Vec3(lookat[0], lookat[1], lookat[2]) self.gym.viewer_camera_look_at(self.viewer, None, cam_pos, cam_target) # get gym state tensors actor_root_state = self.gym.acquire_actor_root_state_tensor(self.sim) dof_state_tensor = self.gym.acquire_dof_state_tensor(self.sim) net_contact_forces = self.gym.acquire_net_contact_force_tensor(self.sim) torques = self.gym.acquire_dof_force_tensor(self.sim) self.gym.refresh_dof_state_tensor(self.sim) self.gym.refresh_actor_root_state_tensor(self.sim) self.gym.refresh_net_contact_force_tensor(self.sim) self.gym.refresh_dof_force_tensor(self.sim) # create some wrapper tensors for different slices self.root_states = gymtorch.wrap_tensor(actor_root_state) self.dof_state = gymtorch.wrap_tensor(dof_state_tensor) self.dof_pos = self.dof_state.view(self.num_envs, self.num_dof, 2)[..., 0] self.dof_vel = self.dof_state.view(self.num_envs, self.num_dof, 2)[..., 1] self.contact_forces = gymtorch.wrap_tensor(net_contact_forces).view(self.num_envs, -1, 3) # shape: num_envs, num_bodies, xyz axis self.torques = gymtorch.wrap_tensor(torques).view(self.num_envs, self.num_dof) self.commands = torch.zeros(self.num_envs, 3, dtype=torch.float, device=self.device, requires_grad=False) self.commands_y = self.commands.view(self.num_envs, 3)[..., 1] self.commands_x = self.commands.view(self.num_envs, 3)[..., 0] self.commands_yaw = self.commands.view(self.num_envs, 3)[..., 2] self.default_dof_pos = torch.zeros_like(self.dof_pos, dtype=torch.float, device=self.device, requires_grad=False) for i in range(self.cfg["env"]["numActions"]): name = self.dof_names[i] angle = self.named_default_joint_angles[name] self.default_dof_pos[:, i] = angle # initialize some data used later on self.extras = {} self.initial_root_states = self.root_states.clone() self.initial_root_states[:] = to_torch(self.base_init_state, device=self.device, requires_grad=False) self.gravity_vec = to_torch(get_axis_params(-1., self.up_axis_idx), device=self.device).repeat((self.num_envs, 1)) self.actions = torch.zeros(self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False) self.reset_idx(torch.arange(self.num_envs, device=self.device)) def create_sim(self): self.up_axis_idx = 2 # index of up axis: Y=1, Z=2 self.sim = super().create_sim(self.device_id, self.graphics_device_id, self.physics_engine, self.sim_params) self._create_ground_plane() self._create_envs(self.num_envs, self.cfg["env"]['envSpacing'], int(np.sqrt(self.num_envs))) # If randomizing, apply once immediately on startup before the fist sim step if self.randomize: self.apply_randomizations(self.randomization_params) def _create_ground_plane(self): plane_params = gymapi.PlaneParams() plane_params.normal = gymapi.Vec3(0.0, 0.0, 1.0) plane_params.static_friction = self.plane_static_friction plane_params.dynamic_friction = self.plane_dynamic_friction self.gym.add_ground(self.sim, plane_params) def _create_envs(self, num_envs, spacing, num_per_row): asset_root = os.path.join(os.path.dirname(os.path.abspath(__file__)), '../../assets') asset_file = "urdf/anymal_c/urdf/anymal.urdf" asset_options = gymapi.AssetOptions() asset_options.default_dof_drive_mode = gymapi.DOF_MODE_NONE asset_options.collapse_fixed_joints = True asset_options.replace_cylinder_with_capsule = True asset_options.flip_visual_attachments = True asset_options.fix_base_link = self.cfg["env"]["urdfAsset"]["fixBaseLink"] asset_options.density = 0.001 asset_options.angular_damping = 0.0 asset_options.linear_damping = 0.0 asset_options.armature = 0.0 asset_options.thickness = 0.01 asset_options.disable_gravity = False anymal_asset = self.gym.load_asset(self.sim, asset_root, asset_file, asset_options) self.num_dof = self.gym.get_asset_dof_count(anymal_asset) self.num_bodies = self.gym.get_asset_rigid_body_count(anymal_asset) start_pose = gymapi.Transform() start_pose.p = gymapi.Vec3(*self.base_init_state[:3]) body_names = self.gym.get_asset_rigid_body_names(anymal_asset) self.dof_names = self.gym.get_asset_dof_names(anymal_asset) extremity_name = "SHANK" if asset_options.collapse_fixed_joints else "FOOT" feet_names = [s for s in body_names if extremity_name in s] self.feet_indices = torch.zeros(len(feet_names), dtype=torch.long, device=self.device, requires_grad=False) knee_names = [s for s in body_names if "THIGH" in s] self.knee_indices = torch.zeros(len(knee_names), dtype=torch.long, device=self.device, requires_grad=False) self.base_index = 0 dof_props = self.gym.get_asset_dof_properties(anymal_asset) for i in range(self.num_dof): dof_props['driveMode'][i] = gymapi.DOF_MODE_POS dof_props['stiffness'][i] = self.cfg["env"]["control"]["stiffness"] #self.Kp dof_props['damping'][i] = self.cfg["env"]["control"]["damping"] #self.Kd env_lower = gymapi.Vec3(-spacing, -spacing, 0.0) env_upper = gymapi.Vec3(spacing, spacing, spacing) self.anymal_handles = [] self.envs = [] for i in range(self.num_envs): # create env instance env_ptr = self.gym.create_env(self.sim, env_lower, env_upper, num_per_row) anymal_handle = self.gym.create_actor(env_ptr, anymal_asset, start_pose, "anymal", i, 1, 0) self.gym.set_actor_dof_properties(env_ptr, anymal_handle, dof_props) self.gym.enable_actor_dof_force_sensors(env_ptr, anymal_handle) self.envs.append(env_ptr) self.anymal_handles.append(anymal_handle) for i in range(len(feet_names)): self.feet_indices[i] = self.gym.find_actor_rigid_body_handle(self.envs[0], self.anymal_handles[0], feet_names[i]) for i in range(len(knee_names)): self.knee_indices[i] = self.gym.find_actor_rigid_body_handle(self.envs[0], self.anymal_handles[0], knee_names[i]) self.base_index = self.gym.find_actor_rigid_body_handle(self.envs[0], self.anymal_handles[0], "base") def pre_physics_step(self, actions): self.actions = actions.clone().to(self.device) targets = self.action_scale * self.actions + self.default_dof_pos self.gym.set_dof_position_target_tensor(self.sim, gymtorch.unwrap_tensor(targets)) def post_physics_step(self): self.progress_buf += 1 env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(env_ids) > 0: self.reset_idx(env_ids) self.compute_observations() self.compute_reward(self.actions) def compute_reward(self, actions): self.rew_buf[:], self.reset_buf[:] = compute_anymal_reward( # tensors self.root_states, self.commands, self.torques, self.contact_forces, self.knee_indices, self.progress_buf, # Dict self.rew_scales, # other self.base_index, self.max_episode_length, ) def compute_observations(self): self.gym.refresh_dof_state_tensor(self.sim) # done in step self.gym.refresh_actor_root_state_tensor(self.sim) self.gym.refresh_net_contact_force_tensor(self.sim) self.gym.refresh_dof_force_tensor(self.sim) self.obs_buf[:] = compute_anymal_observations( # tensors self.root_states, self.commands, self.dof_pos, self.default_dof_pos, self.dof_vel, self.gravity_vec, self.actions, # scales self.lin_vel_scale, self.ang_vel_scale, self.dof_pos_scale, self.dof_vel_scale ) def reset_idx(self, env_ids): # Randomization can happen only at reset time, since it can reset actor positions on GPU if self.randomize: self.apply_randomizations(self.randomization_params) positions_offset = torch_rand_float(0.5, 1.5, (len(env_ids), self.num_dof), device=self.device) velocities = torch_rand_float(-0.1, 0.1, (len(env_ids), self.num_dof), device=self.device) self.dof_pos[env_ids] = self.default_dof_pos[env_ids] * positions_offset self.dof_vel[env_ids] = velocities env_ids_int32 = env_ids.to(dtype=torch.int32) self.gym.set_actor_root_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.initial_root_states), gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32)) self.gym.set_dof_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.dof_state), gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32)) self.commands_x[env_ids] = torch_rand_float(self.command_x_range[0], self.command_x_range[1], (len(env_ids), 1), device=self.device).squeeze() self.commands_y[env_ids] = torch_rand_float(self.command_y_range[0], self.command_y_range[1], (len(env_ids), 1), device=self.device).squeeze() self.commands_yaw[env_ids] = torch_rand_float(self.command_yaw_range[0], self.command_yaw_range[1], (len(env_ids), 1), device=self.device).squeeze() self.progress_buf[env_ids] = 0 self.reset_buf[env_ids] = 1 ##################################################################### ###=========================jit functions=========================### ##################################################################### @torch.jit.script def compute_anymal_reward( # tensors root_states, commands, torques, contact_forces, knee_indices, episode_lengths, # Dict rew_scales, # other base_index, max_episode_length ): # (reward, reset, feet_in air, feet_air_time, episode sums) # type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Dict[str, float], int, int) -> Tuple[Tensor, Tensor] # prepare quantities (TODO: return from obs ?) base_quat = root_states[:, 3:7] base_lin_vel = quat_rotate_inverse(base_quat, root_states[:, 7:10]) base_ang_vel = quat_rotate_inverse(base_quat, root_states[:, 10:13]) # velocity tracking reward lin_vel_error = torch.sum(torch.square(commands[:, :2] - base_lin_vel[:, :2]), dim=1) ang_vel_error = torch.square(commands[:, 2] - base_ang_vel[:, 2]) rew_lin_vel_xy = torch.exp(-lin_vel_error/0.25) * rew_scales["lin_vel_xy"] rew_ang_vel_z = torch.exp(-ang_vel_error/0.25) * rew_scales["ang_vel_z"] # torque penalty rew_torque = torch.sum(torch.square(torques), dim=1) * rew_scales["torque"] total_reward = rew_lin_vel_xy + rew_ang_vel_z + rew_torque total_reward = torch.clip(total_reward, 0., None) # reset agents reset = torch.norm(contact_forces[:, base_index, :], dim=1) > 1. reset = reset | torch.any(torch.norm(contact_forces[:, knee_indices, :], dim=2) > 1., dim=1) time_out = episode_lengths >= max_episode_length - 1 # no terminal reward for time-outs reset = reset | time_out return total_reward.detach(), reset @torch.jit.script def compute_anymal_observations(root_states, commands, dof_pos, default_dof_pos, dof_vel, gravity_vec, actions, lin_vel_scale, ang_vel_scale, dof_pos_scale, dof_vel_scale ): # type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, float, float, float, float) -> Tensor base_quat = root_states[:, 3:7] base_lin_vel = quat_rotate_inverse(base_quat, root_states[:, 7:10]) * lin_vel_scale base_ang_vel = quat_rotate_inverse(base_quat, root_states[:, 10:13]) * ang_vel_scale projected_gravity = quat_rotate(base_quat, gravity_vec) dof_pos_scaled = (dof_pos - default_dof_pos) * dof_pos_scale commands_scaled = commands*torch.tensor([lin_vel_scale, lin_vel_scale, ang_vel_scale], requires_grad=False, device=commands.device) obs = torch.cat((base_lin_vel, base_ang_vel, projected_gravity, commands_scaled, dof_pos_scaled, dof_vel*dof_vel_scale, actions ), dim=-1) return obs
18,546
Python
46.925064
217
0.602071
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/tasks/dextreme/allegro_hand_dextreme.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import os from typing import Tuple, List import itertools from itertools import permutations from tkinter import W from typing import Tuple, Dict, List, Set import numpy as np import torch from isaacgym import gymapi from isaacgym import gymtorch from isaacgymenvs.utils.torch_jit_utils import scale, unscale, quat_mul, quat_conjugate, quat_from_angle_axis, \ to_torch, get_axis_params, torch_rand_float, tensor_clamp from torch import Tensor from isaacgymenvs.tasks.dextreme.adr_vec_task import ADRVecTask from isaacgymenvs.utils.torch_jit_utils import quaternion_to_matrix, matrix_to_quaternion from isaacgymenvs.utils.rna_util import RandomNetworkAdversary class AllegroHandDextreme(ADRVecTask): dict_obs_cls = True def __init__(self, cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render): ''' obligatory constructor to fill-in class variables and setting up the simulation. self._read_cfg() is about initialising class variables from a config file. self._init_pre_sim_buffers() initialises particular tensors that are useful in storing various states randomised or otherwise self._init_post_sim_buffers() initialises the root tensors and other auxiliary variables that can be provided as input to the controller or the value function ''' self.cfg = cfg # Read the task config file and store all the relevant variables in the class self._read_cfg() self.fingertips = [s+"_link_3" for s in ["index", "middle", "ring", "thumb"]] self.num_fingertips = len(self.fingertips) num_dofs = 16 self.num_obs_dict = self.get_num_obs_dict(num_dofs) self.cfg["env"]["obsDims"] = {} for o in self.num_obs_dict.keys(): if o not in self.num_obs_dict: raise Exception(f"Unknown type of observation {o}!") self.cfg["env"]["obsDims"][o] = (self.num_obs_dict[o],) self.up_axis = 'z' self.use_vel_obs = False self.fingertip_obs = True self.asymmetric_obs = self.cfg["env"]["asymmetric_observations"] self.cfg["env"]["numActions"] = 16 self.sim_device = sim_device rl_device = self.cfg.get("rl_device", "cuda:0") self._init_pre_sim_buffers() super().__init__(config=self.cfg, rl_device=rl_device, sim_device=sim_device, graphics_device_id=graphics_device_id, headless=headless, use_dict_obs=True) self._init_post_sim_buffers() reward_keys = ['dist_rew', 'rot_rew', 'action_penalty', 'action_delta_penalty', 'velocity_penalty', 'reach_goal_rew', 'fall_rew', 'timeout_rew'] self.rewards_episode = {key: torch.zeros(self.num_envs, dtype=torch.float, device=self.device) for key in reward_keys} if self.use_adr: self.apply_reset_buf = torch.zeros(self.num_envs, dtype=torch.long, device=self.device) if self.print_success_stat: self.last_success_step = torch.zeros(self.num_envs, dtype=torch.float, device=self.device) self.success_time = torch.zeros(self.num_envs, dtype=torch.float, device=self.device) self.last_ep_successes = torch.zeros(self.num_envs, dtype=torch.float, device=self.device) self.total_num_resets = torch.zeros(self.num_envs, dtype=torch.float, device=self.device) self.successes_count = torch.zeros(self.max_consecutive_successes + 1, dtype=torch.float, device=self.device) from tensorboardX import SummaryWriter self.eval_summary_dir = './eval_summaries' # remove the old directory if it exists if os.path.exists(self.eval_summary_dir): import shutil shutil.rmtree(self.eval_summary_dir) self.eval_summaries = SummaryWriter(self.eval_summary_dir, flush_secs=3) def get_env_state(self): env_dict=dict(act_moving_average=self.act_moving_average) if self.use_adr: env_dict = dict(**env_dict, **super().get_env_state()) return env_dict def get_save_tensors(self): if hasattr(self, 'actions'): actions = self.actions else: actions = torch.zeros((self.num_envs, self.cfg["env"]["numActions"])).to(self.device) # scale is [-1, 1] -> [low, upper] # unscale is [low, upper] -> [-1, 1] # self.actions are in [-1, 1] as they are raw # actions returned by the policy return { # 'observations': self.obs_buf, 'actions': actions, 'cube_state': self.root_state_tensor[self.object_indices], 'goal_state': self.goal_states, 'joint_positions': self.dof_pos, 'joint_velocities': self.dof_vel, 'root_state': self.root_state_tensor[self.hand_indices], } def save_step(self): self.capture.append_experience(self.get_save_tensors()) def get_num_obs_dict(self, num_dofs): # This is what we use for ADR num_obs = { "dof_pos": num_dofs, "dof_pos_randomized": num_dofs, "dof_vel": num_dofs, "dof_force": num_dofs, # generalised forces "object_vels": 6, "last_actions": num_dofs, "cube_random_params": 3, "hand_random_params": 1, "gravity_vec": 3, "ft_states": 13 * self.num_fingertips, # (pos, quat, linvel, angvel) per fingertip "ft_force_torques": 6 * self.num_fingertips, # wrenches "rb_forces": 3, # random forces being applied to the cube "rot_dist": 2, "stochastic_delay_params": 4, # cube obs + action delay prob, action fixed latency, pose refresh rate "affine_params": 16*2 + 7*2 + 16*2, "object_pose": 7, "goal_pose": 7, "goal_relative_rot": 4, "object_pose_cam_randomized": 7, "goal_relative_rot_cam_randomized": 4, } return num_obs def create_sim(self): self.dt = self.sim_params.dt self.up_axis_idx = 2 # index of up axis: Y=1, Z=2 self.sim = super().create_sim(self.device_id, self.graphics_device_id, self.physics_engine, self.sim_params) self._create_ground_plane() self._create_envs(self.num_envs, self.cfg["env"]['envSpacing'], int(np.sqrt(self.num_envs))) def _create_ground_plane(self): plane_params = gymapi.PlaneParams() plane_params.normal = gymapi.Vec3(0.0, 0.0, 1.0) self.gym.add_ground(self.sim, plane_params) def _create_envs(self, num_envs, spacing, num_per_row): lower = gymapi.Vec3(-spacing, -spacing, 0.0) upper = gymapi.Vec3(spacing, spacing, spacing) asset_root = os.path.join(os.path.dirname(os.path.abspath(__file__)), '../../../assets') hand_asset_file = "urdf/kuka_allegro_description/allegro.urdf" if "asset" in self.cfg["env"]: asset_root = self.cfg["env"]["asset"].get("assetRoot", asset_root) hand_asset_file = self.cfg["env"]["asset"].get("assetFileName", hand_asset_file) object_asset_file = self.asset_files_dict[self.object_type] # load allegro hand_ asset asset_options = gymapi.AssetOptions() asset_options.flip_visual_attachments = False asset_options.fix_base_link = True asset_options.collapse_fixed_joints = False asset_options.disable_gravity = False asset_options.thickness = 0.001 asset_options.angular_damping = 0.01 if self.physics_engine == gymapi.SIM_PHYSX: asset_options.use_physx_armature = True # The control interface i.e. we will be sending target positions to the robot asset_options.default_dof_drive_mode = gymapi.DOF_MODE_POS hand_asset = self.gym.load_asset(self.sim, asset_root, hand_asset_file, asset_options) self.num_hand_bodies = self.gym.get_asset_rigid_body_count(hand_asset) self.num_hand_shapes = self.gym.get_asset_rigid_shape_count(hand_asset) self.num_hand_dofs = self.gym.get_asset_dof_count(hand_asset) print("Num dofs: ", self.num_hand_dofs) self.num_hand_actuators = self.num_hand_dofs self.actuated_dof_indices = [i for i in range(self.num_hand_dofs)] # set allegro_hand dof properties hand_dof_props = self.gym.get_asset_dof_properties(hand_asset) self.hand_dof_lower_limits = [] self.hand_dof_upper_limits = [] self.hand_dof_default_pos = [] self.hand_dof_default_vel = [] self.sensors = [] sensor_pose = gymapi.Transform() self.fingertip_handles = [self.gym.find_asset_rigid_body_index(hand_asset, name) for name in self.fingertips] # create fingertip force sensors sensor_pose = gymapi.Transform() for ft_handle in self.fingertip_handles: self.gym.create_asset_force_sensor(hand_asset, ft_handle, sensor_pose) for i in range(self.num_hand_dofs): self.hand_dof_lower_limits.append(hand_dof_props['lower'][i]) self.hand_dof_upper_limits.append(hand_dof_props['upper'][i]) self.hand_dof_default_pos.append(0.0) self.hand_dof_default_vel.append(0.0) hand_dof_props['effort'][i] = self.max_effort hand_dof_props['stiffness'][i] = 2 hand_dof_props['damping'][i] = 0.1 hand_dof_props['friction'][i] = 0.01 hand_dof_props['armature'][i] = 0.002 self.actuated_dof_indices = to_torch(self.actuated_dof_indices, dtype=torch.long, device=self.device) self.hand_dof_lower_limits = to_torch(self.hand_dof_lower_limits, device=self.device) self.hand_dof_upper_limits = to_torch(self.hand_dof_upper_limits, device=self.device) self.hand_dof_default_pos = to_torch(self.hand_dof_default_pos, device=self.device) self.hand_dof_default_vel = to_torch(self.hand_dof_default_vel, device=self.device) # load manipulated object and goal assets object_asset_options = gymapi.AssetOptions() object_asset = self.gym.load_asset(self.sim, asset_root, object_asset_file, object_asset_options) object_asset_options.disable_gravity = True goal_asset = self.gym.load_asset(self.sim, asset_root, object_asset_file, object_asset_options) hand_start_pose = gymapi.Transform() hand_start_pose.p = gymapi.Vec3(*get_axis_params(0.5, self.up_axis_idx)) hand_start_pose.r = gymapi.Quat.from_axis_angle(gymapi.Vec3(0, 1, 0), np.pi) * \ gymapi.Quat.from_axis_angle(gymapi.Vec3(1, 0, 0), 0.47 * np.pi) * \ gymapi.Quat.from_axis_angle(gymapi.Vec3(0, 0, 1), 0.25 * np.pi) object_start_pose = gymapi.Transform() object_start_pose.p = gymapi.Vec3() object_start_pose.p.x = hand_start_pose.p.x pose_dy, pose_dz = self.start_object_pose_dy, self.start_object_pose_dz object_start_pose.p.y = hand_start_pose.p.y + pose_dy object_start_pose.p.z = hand_start_pose.p.z + pose_dz self.goal_displacement = gymapi.Vec3(-0.2, -0.06, 0.12) self.goal_displacement_tensor = to_torch( [self.goal_displacement.x, self.goal_displacement.y, self.goal_displacement.z], device=self.device) goal_start_pose = gymapi.Transform() goal_start_pose.p = object_start_pose.p + self.goal_displacement goal_start_pose.p.y -= 0.02 goal_start_pose.p.z -= 0.04 # compute aggregate size max_agg_bodies = self.num_hand_bodies + 2 max_agg_shapes = self.num_hand_shapes + 2 self.allegro_hands = [] self.object_handles = [] self.envs = [] self.object_init_state = [] self.hand_start_states = [] self.hand_indices = [] self.fingertip_indices = [] self.object_indices = [] self.goal_object_indices = [] self.fingertip_handles = [self.gym.find_asset_rigid_body_index(hand_asset, name) for name in self.fingertips] hand_rb_count = self.gym.get_asset_rigid_body_count(hand_asset) object_rb_count = self.gym.get_asset_rigid_body_count(object_asset) self.object_rb_handles = list(range(hand_rb_count, hand_rb_count + object_rb_count)) for i in range(self.num_envs): # create env instance env_ptr = self.gym.create_env( self.sim, lower, upper, num_per_row ) if self.aggregate_mode >= 1: self.gym.begin_aggregate(env_ptr, max_agg_bodies, max_agg_shapes, True) # add hand - collision filter = -1 to use asset collision filters set in mjcf loader hand_actor = self.gym.create_actor(env_ptr, hand_asset, hand_start_pose, "hand", i, -1, 0) self.hand_start_states.append([hand_start_pose.p.x, hand_start_pose.p.y, hand_start_pose.p.z, hand_start_pose.r.x, hand_start_pose.r.y, hand_start_pose.r.z, hand_start_pose.r.w, 0, 0, 0, 0, 0, 0]) self.gym.set_actor_dof_properties(env_ptr, hand_actor, hand_dof_props) hand_idx = self.gym.get_actor_index(env_ptr, hand_actor, gymapi.DOMAIN_SIM) self.hand_indices.append(hand_idx) self.gym.enable_actor_dof_force_sensors(env_ptr, hand_actor) # add object object_handle = self.gym.create_actor(env_ptr, object_asset, object_start_pose, "object", i, 0, 0) self.object_init_state.append([object_start_pose.p.x, object_start_pose.p.y, object_start_pose.p.z, object_start_pose.r.x, object_start_pose.r.y, object_start_pose.r.z, object_start_pose.r.w, 0, 0, 0, 0, 0, 0]) object_idx = self.gym.get_actor_index(env_ptr, object_handle, gymapi.DOMAIN_SIM) self.object_indices.append(object_idx) # add goal object goal_handle = self.gym.create_actor(env_ptr, goal_asset, goal_start_pose, "goal_object", i + self.num_envs, 0, 0) goal_object_idx = self.gym.get_actor_index(env_ptr, goal_handle, gymapi.DOMAIN_SIM) self.goal_object_indices.append(goal_object_idx) if self.object_type != "block": self.gym.set_rigid_body_color( env_ptr, object_handle, 0, gymapi.MESH_VISUAL, gymapi.Vec3(0.6, 0.72, 0.98)) self.gym.set_rigid_body_color( env_ptr, goal_handle, 0, gymapi.MESH_VISUAL, gymapi.Vec3(0.6, 0.72, 0.98)) if self.aggregate_mode > 0: self.gym.end_aggregate(env_ptr) self.envs.append(env_ptr) self.allegro_hands.append(hand_actor) self.object_handles.append(object_handle) self.palm_link_handle = self.gym.find_actor_rigid_body_handle(env_ptr, hand_actor, "palm_link"), object_rb_props = self.gym.get_actor_rigid_body_properties(env_ptr, object_handle) self.object_rb_masses = [prop.mass for prop in object_rb_props] self.object_init_state = to_torch(self.object_init_state, device=self.device, dtype=torch.float).view(self.num_envs, 13) self.goal_states = self.object_init_state.clone() self.goal_states[:, self.up_axis_idx] -= 0.04 self.goal_init_state = self.goal_states.clone() self.hand_start_states = to_torch(self.hand_start_states, device=self.device).view(self.num_envs, 13) self.goal_pose = self.goal_states[:, 0:7] self.goal_pos = self.goal_states[:, 0:3] self.goal_rot = self.goal_states[:, 3:7] self.object_rb_handles = to_torch(self.object_rb_handles, dtype=torch.long, device=self.device) self.object_rb_masses = to_torch(self.object_rb_masses, dtype=torch.float, device=self.device) self.hand_indices = to_torch(self.hand_indices, dtype=torch.long, device=self.device) self.object_indices = to_torch(self.object_indices, dtype=torch.long, device=self.device) self.goal_object_indices = to_torch(self.goal_object_indices, dtype=torch.long, device=self.device) # Random Network Adversary # As mentioned in OpenAI et al. 2019 (Appendix B.3) https://arxiv.org/abs/1910.07113 # and DeXtreme, 2022 (Section 2.6.2) https://arxiv.org/abs/2210.13702 if self.enable_rna: softmax_bins = 32 num_dofs = len(self.hand_dof_lower_limits) self.discretised_dofs = torch.zeros((num_dofs, softmax_bins)).to(self.device) # Discretising the joing angles into 32 bins for i in range(0, len(self.hand_dof_lower_limits)): self.discretised_dofs[i] = torch.linspace(self.hand_dof_lower_limits[i], self.hand_dof_upper_limits[i], steps=softmax_bins).to(self.device) # input is the joint angles and cube pose (pos: 3 + quat: 4), therefore a total of 16+7 dimensions self.rna_network = RandomNetworkAdversary(num_envs=self.num_envs, in_dims=num_dofs+7, \ out_dims=num_dofs, softmax_bins=softmax_bins, device=self.device) # Random cube observations. Need this tensor for Random Cube Pose Injection self.random_cube_poses = torch.zeros(self.num_envs, 7, device=self.device) def compute_reward(self, actions): self.rew_buf[:], self.reset_buf[:], self.reset_goal_buf[:], self.progress_buf[:], \ self.hold_count_buf[:], self.successes[:], self.consecutive_successes[:], \ dist_rew, rot_rew, action_penalty, action_delta_penalty, velocity_penalty, reach_goal_rew, fall_rew, timeout_rew = compute_hand_reward( self.rew_buf, self.reset_buf, self.reset_goal_buf, self.progress_buf, self.hold_count_buf, self.cur_targets, self.prev_targets, self.dof_vel, self.successes, self.consecutive_successes, self.max_episode_length, self.object_pos, self.object_rot, self.goal_pos, self.goal_rot, self.dist_reward_scale, self.rot_reward_scale, self.rot_eps, self.actions, self.action_penalty_scale, self.action_delta_penalty_scale, self.success_tolerance, self.reach_goal_bonus, self.fall_dist, self.fall_penalty, self.max_consecutive_successes, self.av_factor, self.num_success_hold_steps ) # update best rotation distance in the current episode self.best_rotation_dist = torch.minimum(self.best_rotation_dist, self.curr_rotation_dist) self.extras['consecutive_successes'] = self.consecutive_successes.mean() self.extras['true_objective'] = self.successes episode_cumulative = dict() episode_cumulative['dist_rew'] = dist_rew episode_cumulative['rot_rew'] = rot_rew episode_cumulative['action_penalty'] = action_penalty episode_cumulative['action_delta_penalty'] = action_delta_penalty episode_cumulative['velocity_penalty'] = velocity_penalty episode_cumulative['reach_goal_rew'] = reach_goal_rew episode_cumulative['fall_rew'] = fall_rew episode_cumulative['timeout_rew'] = timeout_rew self.extras['episode_cumulative'] = episode_cumulative if self.print_success_stat: is_success = self.reset_goal_buf.to(torch.bool) frame_ = torch.empty_like(self.last_success_step).fill_(self.frame) self.success_time = torch.where(is_success, frame_ - self.last_success_step, self.success_time) self.last_success_step = torch.where(is_success, frame_, self.last_success_step) mask_ = self.success_time > 0 if any(mask_): avg_time_mean = ((self.success_time * mask_).sum(dim=0) / mask_.sum(dim=0)).item() else: avg_time_mean = math.nan envs_reset = self.reset_buf if self.use_adr: envs_reset = self.reset_buf & ~self.apply_reset_buf self.total_resets = self.total_resets + envs_reset.sum() direct_average_successes = self.total_successes + self.successes.sum() self.total_successes = self.total_successes + (self.successes * envs_reset).sum() self.total_num_resets += envs_reset self.last_ep_successes = torch.where(envs_reset > 0, self.successes, self.last_ep_successes) reset_ids = envs_reset.nonzero().squeeze() last_successes = self.successes[reset_ids].long() self.successes_count[last_successes] += 1 if self.frame % 100 == 0: # The direct average shows the overall result more quickly, but slightly undershoots long term # policy performance. print("Direct average consecutive successes = {:.1f}".format(direct_average_successes/(self.total_resets + self.num_envs))) if self.total_resets > 0: print("Post-Reset average consecutive successes = {:.1f}".format(self.total_successes/self.total_resets)) print(f"Max num successes: {self.successes.max().item()}") print(f"Average consecutive successes: {self.consecutive_successes.mean().item():.2f}") print(f"Total num resets: {self.total_num_resets.sum().item()} --> {self.total_num_resets}") print(f"Reset percentage: {(self.total_num_resets > 0).sum() / self.num_envs:.2%}") print(f"Last ep successes: {self.last_ep_successes.mean().item():.2f} {self.last_ep_successes}") self.eval_summaries.add_scalar("consecutive_successes", self.consecutive_successes.mean().item(), self.frame) self.eval_summaries.add_scalar("last_ep_successes", self.last_ep_successes.mean().item(), self.frame) self.eval_summaries.add_scalar("reset_stats/reset_percentage", (self.total_num_resets > 0).sum() / self.num_envs, self.frame) self.eval_summaries.add_scalar("reset_stats/min_num_resets", self.total_num_resets.min().item(), self.frame) self.eval_summaries.add_scalar("policy_speed/avg_success_time_frames", avg_time_mean, self.frame) frame_time = self.control_freq_inv * self.dt self.eval_summaries.add_scalar("policy_speed/avg_success_time_seconds", avg_time_mean * frame_time, self.frame) self.eval_summaries.add_scalar("policy_speed/avg_success_per_minute", 60.0 / (avg_time_mean * frame_time), self.frame) print(f"Policy speed (successes per minute): {60.0 / (avg_time_mean * frame_time):.2f}") dof_delta = self.dof_delta.abs() print(f"Max dof deltas: {dof_delta.max(dim=0).values}, max across dofs: {self.dof_delta.abs().max().item():.2f}, mean: {self.dof_delta.abs().mean().item():.2f}") print(f"Max dof delta radians per sec: {dof_delta.max().item() / frame_time:.2f}, mean: {dof_delta.mean().item() / frame_time:.2f}") # create a matplotlib bar chart of the self.successes_count import matplotlib.pyplot as plt plt.bar(list(range(self.max_consecutive_successes + 1)), self.successes_count.cpu().numpy()) plt.title("Successes histogram") plt.xlabel("Successes") plt.ylabel("Frequency") plt.savefig(f"{self.eval_summary_dir}/successes_histogram.png") plt.clf() def compute_poses_wrt_wrist(self, object_pose, palm_link_pose, goal_pose=None): object_pos = object_pose[:, 0:3] object_rot = object_pose[:, 3:7] palm_link_pos = palm_link_pose[:, 0:3] palm_link_quat_xyzw = palm_link_pose[:, 3:7] palm_link_quat_wxyz = palm_link_quat_xyzw[:, [3, 0, 1, 2]] R_W_P = quaternion_to_matrix(palm_link_quat_wxyz) T_W_P = torch.eye(4).repeat(R_W_P.shape[0], 1, 1).to(R_W_P.device) T_W_P[:, 0:3, 0:3] = R_W_P T_W_P[:, 0:3, 3] = palm_link_pos object_quat_xyzw = object_rot object_quat_wxyz = object_quat_xyzw[:, [3, 0, 1, 2]] R_W_O = quaternion_to_matrix(object_quat_wxyz) T_W_O = torch.eye(4).repeat(R_W_O.shape[0], 1, 1).to(R_W_O.device) T_W_O[:, 0:3, 0:3] = R_W_O T_W_O[:, 0:3, 3] = object_pos relative_pose = torch.matmul(torch.inverse(T_W_P), T_W_O) relative_translation = relative_pose[:, 0:3, 3] relative_quat_wxyz = matrix_to_quaternion(relative_pose[:, 0:3, 0:3]) relative_quat_xyzw = relative_quat_wxyz[:, [1, 2, 3, 0]] object_pos_wrt_wrist = relative_translation object_quat_wrt_wrist = relative_quat_xyzw object_pose_wrt_wrist = torch.cat((object_pos_wrt_wrist, object_quat_wrt_wrist), axis=-1) if goal_pose == None: return object_pose_wrt_wrist goal_pos = goal_pose[:, 0:3] goal_quat_xyzw = goal_pose[:, 3:7] goal_quat_wxyz = goal_quat_xyzw[:, [3, 0, 1, 2]] R_W_G = quaternion_to_matrix(goal_quat_wxyz) T_W_G = torch.eye(4).repeat(R_W_G.shape[0], 1, 1).to(R_W_G.device) T_W_G[:, 0:3, 0:3] = R_W_G T_W_G[:, 0:3, 3] = goal_pos relative_goal_pose = torch.matmul(torch.inverse(T_W_P), T_W_G) relative_goal_translation = relative_goal_pose[:, 0:3, 3] relative_goal_quat_wxyz = matrix_to_quaternion(relative_goal_pose[:, 0:3, 0:3]) relative_goal_quat_xyzw = relative_goal_quat_wxyz[:, [1, 2, 3, 0]] goal_pose_wrt_wrist = torch.cat((relative_goal_translation, relative_goal_quat_xyzw), axis=-1) return object_pose_wrt_wrist, goal_pose_wrt_wrist def convert_pos_quat_to_mat(self, obj_pose_pos_quat): pos = obj_pose_pos_quat[:, 0:3] quat_xyzw = obj_pose_pos_quat[:, 3:7] quat_wxyz = quat_xyzw[:, [3, 0, 1, 2]] R = quaternion_to_matrix(quat_wxyz) T = torch.eye(4).repeat(R.shape[0], 1, 1).to(R.device) T[:, 0:3, 0:3] = R T[:, 0:3, 3] = pos return T def compute_observations(self): self.gym.refresh_dof_state_tensor(self.sim) self.gym.refresh_actor_root_state_tensor(self.sim) self.gym.refresh_rigid_body_state_tensor(self.sim) self.gym.refresh_force_sensor_tensor(self.sim) self.gym.refresh_dof_force_tensor(self.sim) self.object_pose = self.root_state_tensor[self.object_indices, 0:7] self.object_pos = self.root_state_tensor[self.object_indices, 0:3] self.object_rot = self.root_state_tensor[self.object_indices, 3:7] self.object_linvel = self.root_state_tensor[self.object_indices, 7:10] self.object_angvel = self.root_state_tensor[self.object_indices, 10:13] self.goal_pose = self.goal_states[:, 0:7] self.goal_pos = self.goal_states[:, 0:3] self.goal_rot = self.goal_states[:, 3:7] # Need to update the pose of the cube so that it is represented wrt wrist self.palm_link_pose = self.rigid_body_states[:, self.palm_link_handle, 0:7].view(-1, 7) self.object_pose_wrt_wrist, self.goal_pose_wrt_wrist = self.compute_poses_wrt_wrist(self.object_pose, self.palm_link_pose, self.goal_pose) self.goal_wrt_wrist_rot = self.goal_pose_wrt_wrist[:, 3:7] self.fingertip_state = self.rigid_body_states[:, self.fingertip_handles][:, :, 0:13] self.fingertip_pos = self.rigid_body_states[:, self.fingertip_handles][:, :, 0:3] if not self.use_adr and self.randomize: update_freq = torch.remainder(self.frame + self.cube_pose_refresh_offset, self.cube_pose_refresh_rates) == 0 self.obs_object_pose_freq[update_freq] = self.object_pose_wrt_wrist[update_freq] # simulate adding delay update_delay = torch.randn(self.num_envs, device=self.device) > self.cube_obs_delay_prob self.obs_object_pose[update_delay] = self.obs_object_pose_freq[update_delay] # increment the frame counter both for manual DR and ADR self.frame += 1 cube_scale = self.cube_random_params[:, 0] cube_scale = cube_scale.reshape(-1, 1) # unscale is [low, upper] -> [-1, 1] self.obs_dict["dof_pos"][:] = unscale(self.dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits) self.obs_dict["dof_vel"][:] = self.dof_vel self.obs_dict["dof_force"][:] = self.force_torque_obs_scale * self.dof_force_tensor self.obs_dict["object_pose"][:] = self.object_pose_wrt_wrist self.obs_dict["object_vels"][:, 0:3] = self.object_linvel self.obs_dict["object_vels"][:, 3:6] = self.vel_obs_scale * self.object_angvel self.obs_dict["goal_pose"][:] = self.goal_pose_wrt_wrist self.obs_dict["goal_relative_rot"][:] = quat_mul(self.object_pose_wrt_wrist[:, 3:7], quat_conjugate(self.goal_wrt_wrist_rot)) # This is only needed for manul DR experiments if not self.use_adr: self.obs_dict["object_pose_cam"][:] = self.obs_object_pose self.obs_dict["goal_relative_rot_cam"][:] = quat_mul(self.obs_object_pose[:, 3:7], quat_conjugate(self.goal_wrt_wrist_rot)) self.obs_dict["ft_states"][:] = self.fingertip_state.reshape(self.num_envs, 13 * self.num_fingertips) self.obs_dict["ft_force_torques"][:] = self.force_torque_obs_scale * self.vec_sensor_tensor # wrenches self.obs_dict["rb_forces"] = self.rb_forces[:, self.object_rb_handles, :].view(-1, 3) self.obs_dict["last_actions"][:] = self.actions if self.randomize: self.obs_dict["cube_random_params"][:] = self.cube_random_params self.obs_dict["hand_random_params"][:] = self.hand_random_params self.obs_dict["gravity_vec"][:] = self.gravity_vec quat_diff = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) self.curr_rotation_dist = 2.0 * torch.asin(torch.clamp(torch.norm(quat_diff[:, 0:3], p=2, dim=-1), max=1.0)) self.best_rotation_dist = torch.where(self.best_rotation_dist < 0.0, self.curr_rotation_dist, self.best_rotation_dist) # add rotation distances to the observations so that critic could predict the rewards better self.obs_dict["rot_dist"][:, 0] = self.curr_rotation_dist self.obs_dict["rot_dist"][:, 1] = self.best_rotation_dist def get_random_quat(self, env_ids): # https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py # https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L261 uvw = torch_rand_float(0, 1.0, (len(env_ids), 3), device=self.device) q_w = torch.sqrt(1.0 - uvw[:, 0]) * (torch.sin(2 * np.pi * uvw[:, 1])) q_x = torch.sqrt(1.0 - uvw[:, 0]) * (torch.cos(2 * np.pi * uvw[:, 1])) q_y = torch.sqrt(uvw[:, 0]) * (torch.sin(2 * np.pi * uvw[:, 2])) q_z = torch.sqrt(uvw[:, 0]) * (torch.cos(2 * np.pi * uvw[:, 2])) new_rot = torch.cat((q_x.unsqueeze(-1), q_y.unsqueeze(-1), q_z.unsqueeze(-1), q_w.unsqueeze(-1)), dim=-1) return new_rot def reset_target_pose(self, env_ids, apply_reset=False): rand_floats = torch_rand_float(-1.0, 1.0, (len(env_ids), 4), device=self.device) if self.apply_random_quat: new_rot = self.get_random_quat(env_ids) else: new_rot = randomize_rotation(rand_floats[:, 0], rand_floats[:, 1], self.x_unit_tensor[env_ids], self.y_unit_tensor[env_ids]) self.goal_states[env_ids, 0:3] = self.goal_init_state[env_ids, 0:3] self.goal_states[env_ids, 3:7] = new_rot self.root_state_tensor[self.goal_object_indices[env_ids], 0:3] = self.goal_states[env_ids, 0:3] + self.goal_displacement_tensor self.root_state_tensor[self.goal_object_indices[env_ids], 3:7] = self.goal_states[env_ids, 3:7] self.root_state_tensor[self.goal_object_indices[env_ids], 7:13] = torch.zeros_like(self.root_state_tensor[self.goal_object_indices[env_ids], 7:13]) if apply_reset: goal_object_indices = self.goal_object_indices[env_ids].to(torch.int32) self.gym.set_actor_root_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.root_state_tensor), gymtorch.unwrap_tensor(goal_object_indices), len(env_ids)) self.reset_goal_buf[env_ids] = 0 # change back to non-initialized state self.best_rotation_dist[env_ids] = -1 def get_relative_rot(self, obj_rot, goal_rot): return quat_mul(obj_rot, quat_conjugate(goal_rot)) def get_random_cube_observation(self, current_cube_pose): ''' This function replaces cube pose in some environments with a random cube pose to simulate noisy perception estimates in the real world. It is also called random cube pose injection. ''' env_ids = np.arange(0, self.num_envs) rand_floats = torch_rand_float(-1.0, 1.0, (len(env_ids), 5), device=self.device) if self.apply_random_quat: new_object_rot = self.get_random_quat(env_ids) else: new_object_rot = randomize_rotation(rand_floats[:, 3], rand_floats[:, 4], self.x_unit_tensor[env_ids], self.y_unit_tensor[env_ids]) self.random_cube_poses[:, 0:2] = self.object_init_state[env_ids, 0:2] +\ 0.5 * rand_floats[:, 0:2] self.random_cube_poses[:, 2] = self.object_init_state[env_ids, 2] + \ 0.5 * rand_floats[:, 2] self.random_cube_poses[:, 3:7] = new_object_rot random_cube_pose_mask = torch.rand(len(env_ids), 1, device=self.device) < self.random_cube_pose_prob current_cube_pose = current_cube_pose * ~random_cube_pose_mask + self.random_cube_poses * random_cube_pose_mask return current_cube_pose def reset_idx(self, env_ids, goal_env_ids): # generate random values rand_floats = torch_rand_float(-1.0, 1.0, (len(env_ids), self.num_hand_dofs * 2 + 5), device=self.device) # randomize start object poses self.reset_target_pose(env_ids) # reset rigid body forces self.rb_forces[env_ids, :, :] = 0.0 # reset object self.root_state_tensor[self.object_indices[env_ids]] = self.object_init_state[env_ids].clone() self.root_state_tensor[self.object_indices[env_ids], 0:2] = self.object_init_state[env_ids, 0:2] + \ self.reset_position_noise * rand_floats[:, 0:2] self.root_state_tensor[self.object_indices[env_ids], self.up_axis_idx] = self.object_init_state[env_ids, self.up_axis_idx] + \ self.reset_position_noise_z * rand_floats[:, self.up_axis_idx] if self.apply_random_quat: new_object_rot = self.get_random_quat(env_ids) else: new_object_rot = randomize_rotation(rand_floats[:, 3], rand_floats[:, 4], self.x_unit_tensor[env_ids], self.y_unit_tensor[env_ids]) self.root_state_tensor[self.object_indices[env_ids], 3:7] = new_object_rot self.root_state_tensor[self.object_indices[env_ids], 7:13] = torch.zeros_like(self.root_state_tensor[self.object_indices[env_ids], 7:13]) object_indices = torch.unique(torch.cat([self.object_indices[env_ids], self.goal_object_indices[env_ids], self.goal_object_indices[goal_env_ids]]).to(torch.int32)) self.gym.set_actor_root_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.root_state_tensor), gymtorch.unwrap_tensor(object_indices), len(object_indices)) # reset random force probabilities self.random_force_prob[env_ids] = torch.exp((torch.log(self.force_prob_range[0]) - torch.log(self.force_prob_range[1])) * torch.rand(len(env_ids), device=self.device) + torch.log(self.force_prob_range[1])) # reset allegro hand delta_max = self.hand_dof_upper_limits - self.hand_dof_default_pos delta_min = self.hand_dof_lower_limits - self.hand_dof_default_pos rand_floats_dof_pos = (rand_floats[:, 5:5+self.num_hand_dofs] + 1) / 2 rand_delta = delta_min + (delta_max - delta_min) * rand_floats_dof_pos pos = self.hand_default_dof_pos + self.reset_dof_pos_noise * rand_delta self.dof_pos[env_ids, :] = pos self.dof_vel[env_ids, :] = self.hand_dof_default_vel + \ self.reset_dof_vel_noise * rand_floats[:, 5+self.num_hand_dofs:5+self.num_hand_dofs*2] self.prev_targets[env_ids, :self.num_hand_dofs] = pos self.cur_targets[env_ids, :self.num_hand_dofs] = pos self.prev_prev_targets[env_ids, :self.num_hand_dofs] = pos hand_indices = self.hand_indices[env_ids].to(torch.int32) self.gym.set_dof_position_target_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.prev_targets), gymtorch.unwrap_tensor(hand_indices), len(env_ids)) self.gym.set_dof_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.dof_state), gymtorch.unwrap_tensor(hand_indices), len(env_ids)) # Need to update the pose of the cube so that it is represented wrt wrist self.palm_link_pose = self.rigid_body_states[:, self.palm_link_handle, 0:7].view(-1, 7) self.object_pose_wrt_wrist = self.compute_poses_wrt_wrist(self.object_pose, self.palm_link_pose) # object pose is represented with respect to the wrist self.obs_object_pose[env_ids] = self.object_pose_wrt_wrist[env_ids].clone() self.obs_object_pose_freq[env_ids] = self.object_pose_wrt_wrist[env_ids].clone() if self.use_adr and len(env_ids) == self.num_envs: self.progress_buf = torch.randint(0, self.max_episode_length, size=(self.num_envs,), dtype=torch.long, device=self.device) else: self.progress_buf[env_ids] = 0 self.reset_buf[env_ids] = 0 if self.use_adr: self.apply_reset_buf[env_ids] = 0 self.successes[env_ids] = 0 self.best_rotation_dist[env_ids] = -1 self.hold_count_buf[env_ids] = 0 def get_rna_alpha(self): """Function to get RNA alpha value.""" raise NotImplementedError def get_random_network_adversary_action(self, canonical_action): if self.enable_rna: if self.last_step > 0 and self.last_step % self.random_adversary_weight_sample_freq == 0: self.rna_network._refresh() rand_action_softmax = self.rna_network(torch.cat([self.dof_pos, self.object_pose_wrt_wrist], axis=-1)) rand_action_inds = torch.argmax(rand_action_softmax, axis=-1) rand_action_inds = torch.permute(rand_action_inds, (1, 0)) rand_perturbation = torch.gather(self.discretised_dofs, 1, rand_action_inds) rand_perturbation = torch.permute(rand_perturbation, (1, 0)) # unscale it first (normalise it to [-1, 1]) rand_perturbation = unscale(rand_perturbation, self.hand_dof_lower_limits[self.actuated_dof_indices], self.hand_dof_upper_limits[self.actuated_dof_indices]) if not self.use_adr: action_perturb_mask = torch.rand(self.num_envs, 1, device=self.device) < self.action_perturb_prob rand_perturbation = ~action_perturb_mask * canonical_action + action_perturb_mask * rand_perturbation rna_alpha = self.get_rna_alpha() rand_perturbation = rna_alpha * rand_perturbation + (1 - rna_alpha) * canonical_action return rand_perturbation else: return canonical_action def update_action_moving_average(self): # scheduling action moving average if self.last_step > 0 and self.last_step % self.act_moving_average_scheduled_freq == 0: sched_scaling = 1.0 / self.act_moving_average_scheduled_steps * min(self.last_step, self.act_moving_average_scheduled_steps) self.act_moving_average = self.act_moving_average_upper + (self.act_moving_average_lower - self.act_moving_average_upper) * \ sched_scaling print('action moving average: {}'.format(self.act_moving_average)) print('last_step: {}'.format(self.last_step), ' scheduled steps: {}'.format(self.act_moving_average_scheduled_steps)) self.extras['annealing/action_moving_average_scalar'] = self.act_moving_average def pre_physics_step(self, actions): # Anneal action moving average self.update_action_moving_average() env_ids_reset = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) goal_env_ids = self.reset_goal_buf.nonzero(as_tuple=False).squeeze(-1) if self.randomize and not self.use_adr: self.apply_randomizations(dr_params=self.randomization_params, randomisation_callback=self.randomisation_callback) elif self.randomize and self.use_adr: # NB - when we are daing ADR, we must calculate the ADR or new DR vals one step BEFORE applying randomisations # this is because reset needs to be applied on the next step for it to take effect env_mask_randomize = (self.reset_buf & ~self.apply_reset_buf).bool() env_ids_reset = self.apply_reset_buf.nonzero(as_tuple=False).flatten() if len(env_mask_randomize.nonzero(as_tuple=False).flatten()) > 0: self.apply_randomizations(dr_params=self.randomization_params, randomize_buf=env_mask_randomize, adr_objective=self.successes, randomisation_callback=self.randomisation_callback) self.apply_reset_buf[env_mask_randomize] = 1 # if only goals need reset, then call set API if len(goal_env_ids) > 0 and len(env_ids_reset) == 0: self.reset_target_pose(goal_env_ids, apply_reset=True) # if goals need reset in addition to other envs, call set API in reset() elif len(goal_env_ids) > 0: self.reset_target_pose(goal_env_ids) if len(env_ids_reset) > 0: self.reset_idx(env_ids_reset, goal_env_ids) self.apply_actions(actions) self.apply_random_forces() def apply_action_noise_latency(self): return self.actions def apply_actions(self, actions): self.actions = actions.clone().to(self.device) refreshed = self.progress_buf == 0 self.prev_actions_queue[refreshed] = unscale(self.dof_pos[refreshed], self.hand_dof_lower_limits, self.hand_dof_upper_limits).view(-1, 1, self.num_actions) # Needed for the first step and every refresh # you don't want to mix with zeros self.prev_actions[refreshed] = unscale(self.dof_pos[refreshed], self.hand_dof_lower_limits, self.hand_dof_upper_limits).view(-1, self.num_actions) # update the actions queue self.prev_actions_queue[:, 1:] = self.prev_actions_queue[:, :-1].detach() self.prev_actions_queue[:, 0, :] = self.actions # apply action delay actions_delayed = self.apply_action_noise_latency() # apply random network adversary actions_delayed = self.get_random_network_adversary_action(actions_delayed) if self.use_relative_control: targets = self.prev_targets[:, self.actuated_dof_indices] + self.hand_dof_speed_scale * self.dt * actions_delayed self.cur_targets[:, self.actuated_dof_indices] = targets elif self.use_capped_dof_control: # This is capping the maximum dof velocity targets = scale(actions_delayed, self.hand_dof_lower_limits[self.actuated_dof_indices], self.hand_dof_upper_limits[self.actuated_dof_indices]) delta = targets[:, self.actuated_dof_indices] - self.prev_targets[:, self.actuated_dof_indices] max_dof_delta = self.max_dof_radians_per_second * self.dt * self.control_freq_inv delta = torch.clamp_(delta, -max_dof_delta, max_dof_delta) self.cur_targets[:, self.actuated_dof_indices] = self.prev_targets[:, self.actuated_dof_indices] + delta else: self.cur_targets[:, self.actuated_dof_indices] = scale(actions_delayed, self.hand_dof_lower_limits[self.actuated_dof_indices], self.hand_dof_upper_limits[self.actuated_dof_indices]) self.cur_targets[:, self.actuated_dof_indices] = self.act_moving_average * self.cur_targets[:,self.actuated_dof_indices] + \ (1.0 - self.act_moving_average) * self.prev_targets[:, self.actuated_dof_indices] self.cur_targets[:, self.actuated_dof_indices] = tensor_clamp(self.cur_targets[:, self.actuated_dof_indices], self.hand_dof_lower_limits[self.actuated_dof_indices], self.hand_dof_upper_limits[self.actuated_dof_indices]) self.dof_delta = self.cur_targets[:, self.actuated_dof_indices] - self.prev_targets[:, self.actuated_dof_indices] self.gym.set_dof_position_target_tensor(self.sim, gymtorch.unwrap_tensor(self.cur_targets)) self.prev_actions[:] = self.actions.clone() def apply_random_forces(self): """Applies random forces to the object. Forces are applied as in https://arxiv.org/abs/1808.00177 """ if self.force_scale > 0.0: self.rb_forces *= torch.pow(self.force_decay, self.dt / self.force_decay_interval) # apply new forces force_indices = (torch.rand(self.num_envs, device=self.device) < self.random_force_prob).nonzero() self.rb_forces[force_indices, self.object_rb_handles, :] = torch.randn( self.rb_forces[force_indices, self.object_rb_handles, :].shape, device=self.device) * self.object_rb_masses * self.force_scale self.gym.apply_rigid_body_force_tensors(self.sim, gymtorch.unwrap_tensor(self.rb_forces), None, gymapi.LOCAL_SPACE) def post_physics_step(self): self.progress_buf += 1 # This is for manual DR so ADR has to be OFF if self.randomize and not self.use_adr: # This buffer is needed for manual DR randomisation self.randomize_buf += 1 self.compute_observations() self.compute_reward(self.actions) # update the previous targets self.prev_targets[:, self.actuated_dof_indices] = self.cur_targets[:, self.actuated_dof_indices] # save and viz dr params changing on the fly self.track_dr_params() if self.viewer and self.debug_viz: # draw axes on target object self.gym.clear_lines(self.viewer) self.gym.refresh_rigid_body_state_tensor(self.sim) for i in range(self.num_envs): targetx = (self.goal_pos[i] + quat_apply(self.goal_rot[i], to_torch([1, 0, 0], device=self.device) * 0.2)).cpu().numpy() targety = (self.goal_pos[i] + quat_apply(self.goal_rot[i], to_torch([0, 1, 0], device=self.device) * 0.2)).cpu().numpy() targetz = (self.goal_pos[i] + quat_apply(self.goal_rot[i], to_torch([0, 0, 1], device=self.device) * 0.2)).cpu().numpy() p0 = self.goal_pos[i].cpu().numpy() + self.goal_displacement_tensor.cpu().numpy() self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], targetx[0], targetx[1], targetx[2]], [0.85, 0.1, 0.1]) self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], targety[0], targety[1], targety[2]], [0.1, 0.85, 0.1]) self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], targetz[0], targetz[1], targetz[2]], [0.1, 0.1, 0.85]) objectx = (self.object_pos[i] + quat_apply(self.object_rot[i], to_torch([1, 0, 0], device=self.device) * 0.2)).cpu().numpy() objecty = (self.object_pos[i] + quat_apply(self.object_rot[i], to_torch([0, 1, 0], device=self.device) * 0.2)).cpu().numpy() objectz = (self.object_pos[i] + quat_apply(self.object_rot[i], to_torch([0, 0, 1], device=self.device) * 0.2)).cpu().numpy() p0 = self.object_pos[i].cpu().numpy() self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], objectx[0], objectx[1], objectx[2]], [0.85, 0.1, 0.1]) self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], objecty[0], objecty[1], objecty[2]], [0.1, 0.85, 0.1]) self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], objectz[0], objectz[1], objectz[2]], [0.1, 0.1, 0.85]) def track_dr_params(self): ''' Track the parameters you wish to here ''' pass def _read_cfg(self): ''' reads various variables from the config file ''' self.randomize = self.cfg["task"]["randomize"] self.randomization_params = self.cfg["task"]["randomization_params"] self.aggregate_mode = self.cfg["env"]["aggregateMode"] self.dist_reward_scale = self.cfg["env"]["distRewardScale"] self.rot_reward_scale = self.cfg["env"]["rotRewardScale"] self.action_penalty_scale = self.cfg["env"]["actionPenaltyScale"] self.action_delta_penalty_scale = self.cfg["env"]["actionDeltaPenaltyScale"] self.success_tolerance = self.cfg["env"]["successTolerance"] self.reach_goal_bonus = self.cfg["env"]["reachGoalBonus"] self.fall_dist = self.cfg["env"]["fallDistance"] self.fall_penalty = self.cfg["env"]["fallPenalty"] self.rot_eps = self.cfg["env"]["rotEps"] self.vel_obs_scale = 0.2 # scale factor of velocity based observations self.force_torque_obs_scale = 10.0 # scale factor of velocity based observations if "max_effort" in self.cfg["env"]: self.max_effort = self.cfg["env"]["max_effort"] else: self.max_effort = 0.35 self.reset_position_noise = self.cfg["env"]["resetPositionNoise"] self.reset_position_noise_z = self.cfg["env"]["resetPositionNoiseZ"] self.reset_rotation_noise = self.cfg["env"]["resetRotationNoise"] self.reset_dof_pos_noise = self.cfg["env"]["resetDofPosRandomInterval"] self.reset_dof_vel_noise = self.cfg["env"]["resetDofVelRandomInterval"] self.start_object_pose_dy = self.cfg["env"]["startObjectPoseDY"] self.start_object_pose_dz = self.cfg["env"]["startObjectPoseDZ"] self.force_scale = self.cfg["env"].get("forceScale", 0.0) self.force_prob_range = self.cfg["env"].get("forceProbRange", [0.001, 0.1]) self.force_decay = self.cfg["env"].get("forceDecay", 0.99) self.force_decay_interval = self.cfg["env"].get("forceDecayInterval", 0.08) self.dof_speed_scale = self.cfg["env"]["dofSpeedScale"] self.use_relative_control = self.cfg["env"]["useRelativeControl"] self.use_capped_dof_control = self.cfg["env"]["use_capped_dof_control"] self.max_dof_radians_per_second = self.cfg["env"]["max_dof_radians_per_second"] self.num_success_hold_steps = self.cfg["env"].get("num_success_hold_steps", 1) # Moving average related self.act_moving_average_range = self.cfg["env"]["actionsMovingAverage"]["range"] self.act_moving_average_scheduled_steps = self.cfg["env"]["actionsMovingAverage"]["schedule_steps"] self.act_moving_average_scheduled_freq = self.cfg["env"]["actionsMovingAverage"]["schedule_freq"] self.act_moving_average_lower = self.act_moving_average_range[0] self.act_moving_average_upper = self.act_moving_average_range[1] self.act_moving_average = self.act_moving_average_upper # Random cube observation has_random_cube_obs = 'random_cube_observation' in self.cfg["env"] if has_random_cube_obs: self.enable_random_obs = self.cfg["env"]["random_cube_observation"]["enable"] self.random_cube_pose_prob = self.cfg["env"]["random_cube_observation"]["prob"] else: self.enable_random_obs = False # We have two ways to sample quaternions where one of the samplings is biased # If this flag is enabled, the sampling will be UNBIASED self.apply_random_quat = self.cfg['env'].get("apply_random_quat", True) self.debug_viz = self.cfg["env"]["enableDebugVis"] self.max_episode_length = self.cfg["env"]["episodeLength"] self.reset_time = self.cfg["env"].get("resetTime", -1.0) self.print_success_stat = self.cfg["env"]["printNumSuccesses"] self.eval_stats_name = self.cfg["env"].get("evalStatsName", '') self.num_eval_frames = self.cfg["env"].get("numEvalFrames", None) self.max_consecutive_successes = self.cfg["env"]["maxConsecutiveSuccesses"] self.av_factor = self.cfg["env"].get("averFactor", 0.1) self.cube_obs_delay_prob = self.cfg["env"].get("cubeObsDelayProb", 0.0) # Action delay self.action_delay_prob_max = self.cfg["env"]["actionDelayProbMax"] self.action_latency_max = self.cfg["env"]["actionLatencyMax"] self.action_latency_scheduled_steps = self.cfg["env"]["actionLatencyScheduledSteps"] self.frame = 0 self.max_skip_obs = self.cfg["env"].get("maxObjectSkipObs", 1) self.object_type = self.cfg["env"]["objectType"] assert self.object_type in ["block", "egg"] self.asset_files_dict = { "block": "urdf/objects/cube_multicolor.urdf", # "block": "urdf/objects/cube_multicolor_sdf.urdf", "egg": "mjcf/open_ai_assets/hand/egg.xml", } if "asset" in self.cfg["env"]: self.asset_files_dict["block"] = self.cfg["env"]["asset"].get("assetFileNameBlock", self.asset_files_dict["block"]) self.asset_files_dict["egg"] = self.cfg["env"]["asset"].get("assetFileNameEgg", self.asset_files_dict["egg"]) # Random Network Adversary self.enable_rna = "random_network_adversary" in self.cfg["env"] and self.cfg["env"]["random_network_adversary"]["enable"] if self.enable_rna: if "prob" in self.cfg["env"]["random_network_adversary"]: self.action_perturb_prob = self.cfg["env"]["random_network_adversary"]["prob"] # how often we want to resample the weights of the random neural network self.random_adversary_weight_sample_freq = self.cfg["env"]["random_network_adversary"]["weight_sample_freq"] def _init_pre_sim_buffers(self): """Initialise buffers that must be initialised before sim startup.""" # 0 - scale, 1 - mass, 2 - friction self.cube_random_params = torch.zeros((self.cfg["env"]["numEnvs"], 3), dtype=torch.float, device=self.sim_device) # 0 - scale self.hand_random_params = torch.zeros((self.cfg["env"]["numEnvs"], 1), dtype=torch.float, device=self.sim_device) self.gravity_vec = torch.zeros((self.cfg["env"]["numEnvs"], 3), dtype=torch.float, device=self.sim_device) def _init_post_sim_buffers(self): """Initialise buffers that must be initialised after sim startup.""" self.dt = self.sim_params.dt control_freq_inv = self.cfg["env"].get("controlFrequencyInv", 1) if self.reset_time > 0.0: self.max_episode_length = int(round(self.reset_time/(control_freq_inv * self.dt))) print("Reset time: ", self.reset_time) print("New episode length: ", self.max_episode_length) if self.viewer != None: cam_pos = gymapi.Vec3(10.0, 5.0, 1.0) cam_target = gymapi.Vec3(6.0, 5.0, 0.0) self.gym.viewer_camera_look_at(self.viewer, None, cam_pos, cam_target) # get gym GPU state tensors actor_root_state_tensor = self.gym.acquire_actor_root_state_tensor(self.sim) dof_state_tensor = self.gym.acquire_dof_state_tensor(self.sim) rigid_body_tensor = self.gym.acquire_rigid_body_state_tensor(self.sim) sensor_tensor = self.gym.acquire_force_sensor_tensor(self.sim) self.vec_sensor_tensor = gymtorch.wrap_tensor(sensor_tensor).view(self.num_envs, self.num_fingertips * 6) dof_force_tensor = self.gym.acquire_dof_force_tensor(self.sim) self.dof_force_tensor = gymtorch.wrap_tensor(dof_force_tensor).view(self.num_envs, self.num_hand_dofs) self.gym.refresh_actor_root_state_tensor(self.sim) self.gym.refresh_dof_state_tensor(self.sim) self.gym.refresh_rigid_body_state_tensor(self.sim) # create some wrapper tensors for different slices self.hand_default_dof_pos = torch.zeros(self.num_hand_dofs, dtype=torch.float, device=self.device) self.dof_state = gymtorch.wrap_tensor(dof_state_tensor) self.dof_state = self.dof_state.view(self.num_envs, -1, 2)[:, :self.num_hand_dofs] self.dof_pos = self.dof_state[..., 0] self.dof_vel = self.dof_state[..., 1] self.rigid_body_states = gymtorch.wrap_tensor(rigid_body_tensor).view(self.num_envs, -1, 13) self.num_bodies = self.rigid_body_states.shape[1] self.root_state_tensor = gymtorch.wrap_tensor(actor_root_state_tensor).view(-1, 13) self.num_dofs = self.gym.get_sim_dof_count(self.sim) // self.num_envs print("Num dofs: ", self.num_dofs) self.prev_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device) self.cur_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device) self.prev_prev_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device) self.global_indices = torch.arange(self.num_envs * 3, dtype=torch.int32, device=self.device).view(self.num_envs, -1) self.x_unit_tensor = to_torch([1, 0, 0], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.y_unit_tensor = to_torch([0, 1, 0], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.z_unit_tensor = to_torch([0, 0, 1], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.reset_goal_buf = self.reset_buf.clone() self.hold_count_buf = self.progress_buf.clone() self.successes = torch.zeros(self.num_envs, dtype=torch.float, device=self.device) self.consecutive_successes = torch.zeros(1, dtype=torch.float, device=self.device) self.av_factor = to_torch(self.av_factor, dtype=torch.float, device=self.device) self.total_successes = 0 self.total_resets = 0 # object apply random forces parameters self.force_decay = to_torch(self.force_decay, dtype=torch.float, device=self.device) self.force_prob_range = to_torch(self.force_prob_range, dtype=torch.float, device=self.device) self.random_force_prob = torch.exp((torch.log(self.force_prob_range[0]) - torch.log(self.force_prob_range[1])) * torch.rand(self.num_envs, device=self.device) + torch.log(self.force_prob_range[1])) self.rb_forces = torch.zeros((self.num_envs, self.num_bodies, 3), dtype=torch.float, device=self.device) # object observations parameters self.object_pose = self.root_state_tensor[self.object_indices, 0:7] self.object_pos = self.root_state_tensor[self.object_indices, 0:3] self.object_rot = self.root_state_tensor[self.object_indices, 3:7] self.object_linvel = self.root_state_tensor[self.object_indices, 7:10] self.object_angvel = self.root_state_tensor[self.object_indices, 10:13] # buffer storing object poses which are only refreshed every n steps self.obs_object_pose_freq = self.object_pose.clone() # buffer storing object poses with added delay which are only refreshed every n steps self.obs_object_pose = self.object_pose.clone() self.current_object_pose = self.object_pose.clone() self.object_pose_wrt_wrist = torch.zeros_like(self.object_pose) self.object_pose_wrt_wrist[:, 6] = 1.0 self.prev_object_pose = self.object_pose.clone() # inverse refresh rate for each environment self.cube_pose_refresh_rates = torch.randint(1, self.max_skip_obs+1, size=(self.num_envs,), device=self.device) # offset so not all the environments have it each time self.cube_pose_refresh_offset = torch.randint(0, self.max_skip_obs, size=(self.num_envs,), device=self.device) self.prev_actions = torch.zeros(self.num_envs, self.num_actions, dtype=torch.float, device=self.device) # Related to action delay self.prev_actions_queue = torch.zeros(self.cfg["env"]["numEnvs"], \ self.action_latency_max+1, self.cfg["env"]["numActions"], dtype=torch.float, device=self.sim_device) # We have action latency MIN and MAX (declared in _read_cfg() function reading from a config file) self.action_latency_min = 1 self.action_latency = torch.randint(0, self.action_latency_min + 1, \ size=(self.cfg["env"]["numEnvs"],), dtype=torch.long, device=self.device) # tensors for rotation approach reward (-1 stands for not initialized) self.curr_rotation_dist = None self.best_rotation_dist = -torch.ones(self.num_envs, dtype=torch.float, device=self.device) self.unique_cube_rotations = torch.tensor(unique_cube_rotations_3d(), dtype=torch.float, device=self.device) self.unique_cube_rotations = matrix_to_quaternion(self.unique_cube_rotations) self.num_unique_cube_rotations = self.unique_cube_rotations.shape[0] def randomisation_callback(self, param_name, param_val, env_id=None, actor=None): if param_name == "gravity": self.gravity_vec[:, 0] = param_val.x self.gravity_vec[:, 1] = param_val.y self.gravity_vec[:, 2] = param_val.z elif param_name == "scale" and actor == "object": self.cube_random_params[env_id, 0] = param_val.mean() elif param_name == "mass" and actor == "object": self.cube_random_params[env_id, 1] = np.mean(param_val) elif param_name == "friction" and actor == "object": self.cube_random_params[env_id, 2] = np.mean(param_val) elif param_name == "scale" and actor == "hand": self.hand_random_params[env_id, 0] = param_val.mean() class AllegroHandDextremeADR(AllegroHandDextreme): def _init_pre_sim_buffers(self): super()._init_pre_sim_buffers() """Initialise buffers that must be initialised before sim startup.""" self.cube_pose_refresh_rate = torch.zeros(self.cfg["env"]["numEnvs"], device=self.sim_device, dtype=torch.long) # offset so not all the environments have it each time self.cube_pose_refresh_offset = torch.zeros(self.cfg["env"]["numEnvs"], device=self.sim_device, dtype=torch.long) # stores previous actions self.prev_actions_queue = torch.zeros(self.cfg["env"]["numEnvs"], self.action_latency_max + 1, self.cfg["env"]["numActions"], dtype=torch.float, device=self.sim_device) # tensors to store random affine transforms self.affine_actions_scaling = torch.ones(self.cfg["env"]["numEnvs"], self.cfg["env"]["numActions"], dtype=torch.float, device=self.sim_device) self.affine_actions_additive = torch.zeros(self.cfg["env"]["numEnvs"], self.cfg["env"]["numActions"], dtype=torch.float, device=self.sim_device) self.affine_cube_pose_scaling = torch.ones(self.cfg["env"]["numEnvs"], 7, dtype=torch.float, device=self.sim_device) self.affine_cube_pose_additive = torch.zeros(self.cfg["env"]["numEnvs"], 7, dtype=torch.float, device=self.sim_device) self.affine_dof_pos_scaling = torch.ones(self.cfg["env"]["numEnvs"], 16, dtype=torch.float, device=self.sim_device) self.affine_dof_pos_additive = torch.zeros(self.cfg["env"]["numEnvs"], 16, dtype=torch.float, device=self.sim_device) self.action_latency = torch.zeros(self.cfg["env"]["numEnvs"], dtype=torch.long, device=self.sim_device) def sample_discrete_adr(self, param_name, env_ids): """Samples a discrete value from ADR continuous distribution. Eg, given a parameter with uniform sampling range [0, 0.4] Will sample 0 with 40% probability and 1 with 60% probability. """ adr_value = self.get_adr_tensor(param_name, env_ids=env_ids) continuous_fuzzed = adr_value + (- (torch.rand_like(adr_value) - 0.5)) return continuous_fuzzed.round().long() def sample_gaussian_adr(self, param_name, env_ids, trailing_dim=1): adr_value = self.get_adr_tensor(param_name, env_ids=env_ids).view(-1, 1) nonlinearity = torch.exp(torch.pow(adr_value, 2.)) - 1. stdev = torch.where(adr_value > 0, nonlinearity, torch.zeros_like(adr_value)) return torch.randn(len(env_ids), trailing_dim, device=self.device, dtype=torch.float) * stdev def get_rna_alpha(self): return self.get_adr_tensor('rna_alpha').view(-1, 1) def apply_randomizations(self, dr_params, randomize_buf, adr_objective=None, randomisation_callback=None): super().apply_randomizations(dr_params, randomize_buf, adr_objective, randomisation_callback=self.randomisation_callback) randomize_env_ids = randomize_buf.nonzero(as_tuple=False).squeeze(-1) self.action_latency[randomize_env_ids] = self.sample_discrete_adr("action_latency", randomize_env_ids) self.cube_pose_refresh_rate[randomize_env_ids] = self.sample_discrete_adr("cube_pose_refresh_rate", randomize_env_ids) # Nb - code is to generate uniform from 1 to max_skip_obs (inclusive), but cant use # torch.uniform as it doesn't support a different max/min value on each self.cube_pose_refresh_offset[randomize_buf] = \ (torch.rand(randomize_env_ids.shape, device=self.device, dtype=torch.float) \ * (self.cube_pose_refresh_rate[randomize_env_ids].view(-1).float()) - 0.5).round().long() # offset range shifted back by one self.affine_actions_scaling[randomize_env_ids] = 1. + self.sample_gaussian_adr("affine_action_scaling", randomize_env_ids, trailing_dim=self.num_actions) self.affine_actions_additive[randomize_env_ids] = self.sample_gaussian_adr("affine_action_additive", randomize_env_ids, trailing_dim=self.num_actions) self.affine_cube_pose_scaling[randomize_env_ids] = 1. + self.sample_gaussian_adr("affine_cube_pose_scaling", randomize_env_ids, trailing_dim=7) self.affine_cube_pose_additive[randomize_env_ids] = self.sample_gaussian_adr("affine_cube_pose_additive", randomize_env_ids, trailing_dim=7) self.affine_dof_pos_scaling[randomize_env_ids] = 1. + self.sample_gaussian_adr("affine_dof_pos_scaling", randomize_env_ids, trailing_dim=16) self.affine_dof_pos_additive[randomize_env_ids] = self.sample_gaussian_adr("affine_dof_pos_additive", randomize_env_ids, trailing_dim=16) def create_sim(self): super().create_sim() # If randomizing, apply once immediately on startup before the fist sim step if self.randomize and self.use_adr: adr_objective = torch.zeros(self.num_envs, dtype=float, device=self.device) if self.use_adr else None apply_rand_ones = torch.ones(self.num_envs, dtype=bool, device=self.device) self.apply_randomizations(self.randomization_params, apply_rand_ones, adr_objective=adr_objective, randomisation_callback=self.randomisation_callback) def apply_action_noise_latency(self): action_delay_mask = (torch.rand(self.num_envs, device=self.device) < self.get_adr_tensor("action_delay_prob")).view(-1, 1) actions = \ self.prev_actions_queue[torch.arange(self.prev_actions_queue.shape[0]), self.action_latency] * ~action_delay_mask \ + self.prev_actions * action_delay_mask white_noise = self.sample_gaussian_adr("affine_action_white", self.all_env_ids, trailing_dim=self.num_actions) actions = self.affine_actions_scaling * actions + self.affine_actions_additive + white_noise return actions def compute_observations(self): super().compute_observations() update_freq = torch.remainder(self.frame + self.cube_pose_refresh_offset, self.cube_pose_refresh_rate) == 0 # get white noise white_noise_pose = self.sample_gaussian_adr("affine_cube_pose_white", self.all_env_ids, trailing_dim=7) # compute noisy object pose as a stochatsic affine transform of actual noisy_object_pose = self.get_random_cube_observation( self.affine_cube_pose_scaling * self.object_pose_wrt_wrist + self.affine_cube_pose_additive + white_noise_pose ) self.obs_object_pose_freq[update_freq] = noisy_object_pose[update_freq] # simulate adding delay cube_obs_delay_prob = self.get_adr_tensor("cube_obs_delay_prob", self.all_env_ids).view(self.num_envs,) update_delay = torch.rand(self.num_envs, device=self.device) < cube_obs_delay_prob # update environments that are NOT delayed self.obs_object_pose[~update_delay] = self.obs_object_pose_freq[~update_delay] white_noise_dof_pos = self.sample_gaussian_adr("affine_dof_pos_white", self.all_env_ids, trailing_dim=16) self.dof_pos_randomized = self.affine_dof_pos_scaling * self.dof_pos + self.affine_dof_pos_additive + white_noise_dof_pos cube_scale = self.cube_random_params[:, 0] cube_scale = cube_scale.reshape(-1, 1) self.obs_dict["dof_pos_randomized"][:] = unscale(self.dof_pos_randomized, self.hand_dof_lower_limits, self.hand_dof_upper_limits) self.obs_dict["object_pose_cam_randomized"][:] = self.obs_object_pose self.obs_dict["goal_relative_rot_cam_randomized"][:] = quat_mul(self.obs_object_pose[:, 3:7], quat_conjugate(self.goal_wrt_wrist_rot)) self.obs_dict["stochastic_delay_params"][:] = torch.stack([ self.get_adr_tensor("cube_obs_delay_prob"), self.cube_pose_refresh_rate.float() / 6.0, self.get_adr_tensor("action_delay_prob"), self.action_latency.float() / 60.0, ], dim=1) self.obs_dict["affine_params"][:] = torch.cat([ self.affine_actions_scaling, self.affine_actions_additive, self.affine_cube_pose_scaling, self.affine_cube_pose_additive, self.affine_dof_pos_scaling, self.affine_dof_pos_additive ], dim=-1) def _read_cfg(self): super()._read_cfg() self.vel_obs_scale = 1.0 # scale factor of velocity based observations self.force_torque_obs_scale = 1.0 # scale factor of velocity based observations return class AllegroHandDextremeManualDR(AllegroHandDextreme): def _init_post_sim_buffers(self): super()._init_post_sim_buffers() # We could potentially update this regularly self.action_delay_prob = self.action_delay_prob_max * \ torch.rand(self.cfg["env"]["numEnvs"], dtype=torch.float, device=self.device) # inverse refresh rate for each environment self.cube_pose_refresh_rate = torch.randint(1, self.max_skip_obs+1, size=(self.num_envs,), device=self.device) # offset so not all the environments have it each time self.cube_pose_refresh_offset = torch.randint(0, self.max_skip_obs, size=(self.num_envs,), device=self.device) def get_num_obs_dict(self, num_dofs=16): return {"dof_pos": num_dofs, "dof_vel": num_dofs, "dof_force": num_dofs, # generalised forces "object_pose": 7, "object_vels": 6, "goal_pose": 7, "goal_relative_rot": 4, "object_pose_cam": 7, "goal_relative_rot_cam": 4, "last_actions": num_dofs, "cube_random_params": 3, "hand_random_params": 1, "gravity_vec": 3, "rot_dist": 2, "ft_states": 13 * self.num_fingertips, # (pos, quat, linvel, angvel) per fingertip "ft_force_torques": 6 * self.num_fingertips, # wrenches } def get_rna_alpha(self): if self.randomize: return torch.rand(self.num_envs, 1, device=self.device) else: return torch.zeros(self.num_envs, 1, device=self.device) def create_sim(self): super().create_sim() # If randomizing, apply once immediately on startup before the fist sim step # ADR has its own create_sim and randomisation is called there with appropriate # inputs if self.randomize and not self.use_adr: self.apply_randomizations(self.randomization_params, randomisation_callback=self.randomisation_callback) def apply_randomizations(self, dr_params, randomize_buf=None, adr_objective=None, randomisation_callback=None): super().apply_randomizations(dr_params, randomize_buf=None, adr_objective=None, randomisation_callback=self.randomisation_callback) def apply_action_noise_latency(self): # anneal action latency if self.randomize: self.cur_action_latency = 1.0 / self.action_latency_scheduled_steps \ * min(self.last_step, self.action_latency_scheduled_steps) self.cur_action_latency = min(max(int(self.cur_action_latency), self.action_latency_min), self.action_latency_max) self.extras['annealing/cur_action_latency_max'] = self.cur_action_latency self.action_latency = torch.randint(0, self.cur_action_latency + 1, \ size=(self.cfg["env"]["numEnvs"],), dtype=torch.long, device=self.device) # probability of not updating the action this step (on top of the delay) action_delay_mask = (torch.rand(self.num_envs, device=self.device) > self.action_delay_prob).view(-1, 1) actions_delayed = \ self.prev_actions_queue[torch.arange(self.prev_actions_queue.shape[0]), self.action_latency] * action_delay_mask \ + self.prev_actions * ~action_delay_mask return actions_delayed def compute_observations(self): super().compute_observations() ##################################################################### ###=========================jit functions=========================### ##################################################################### @torch.jit.script def compute_hand_reward( rew_buf, reset_buf, reset_goal_buf, progress_buf, hold_count_buf, cur_targets, prev_targets, hand_dof_vel, successes, consecutive_successes, max_episode_length: float, object_pos, object_rot, target_pos, target_rot, dist_reward_scale: float, rot_reward_scale: float, rot_eps: float, actions, action_penalty_scale: float, action_delta_penalty_scale: float, #max_velocity: float, success_tolerance: float, reach_goal_bonus: float, fall_dist: float, fall_penalty: float, max_consecutive_successes: int, av_factor: float, num_success_hold_steps: int ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]: # Distance from the hand to the object goal_dist = torch.norm(object_pos - target_pos, p=2, dim=-1) # Orientation alignment for the cube in hand and goal cube quat_diff = quat_mul(object_rot, quat_conjugate(target_rot)) rot_dist = 2.0 * torch.asin(torch.clamp(torch.norm(quat_diff[:, 0:3], p=2, dim=-1), max=1.0)) dist_rew = goal_dist * dist_reward_scale rot_rew = 1.0/(torch.abs(rot_dist) + rot_eps) * rot_reward_scale action_penalty = action_penalty_scale * torch.sum(actions ** 2, dim=-1) action_delta_penalty = action_delta_penalty_scale * torch.sum((cur_targets - prev_targets) ** 2, dim=-1) max_velocity = 5.0 #rad/s vel_tolerance = 1.0 velocity_penalty_coef = -0.05 # todo add actions regularization velocity_penalty = velocity_penalty_coef * torch.sum((hand_dof_vel/(max_velocity - vel_tolerance)) ** 2, dim=-1) # Find out which envs hit the goal and update successes count goal_reached = torch.where(torch.abs(rot_dist) <= success_tolerance, torch.ones_like(reset_goal_buf), reset_goal_buf) hold_count_buf = torch.where(goal_reached, hold_count_buf + 1, torch.zeros_like(goal_reached)) goal_resets = torch.where(hold_count_buf > num_success_hold_steps, torch.ones_like(reset_goal_buf), reset_goal_buf) successes = successes + goal_resets # Success bonus: orientation is within `success_tolerance` of goal orientation reach_goal_rew = (goal_resets == 1) * reach_goal_bonus # Fall penalty: distance to the goal is larger than a threashold fall_rew = (goal_dist >= fall_dist) * fall_penalty # Check env termination conditions, including maximum success number resets = torch.where(goal_dist >= fall_dist, torch.ones_like(reset_buf), reset_buf) if max_consecutive_successes > 0: # Reset progress buffer on goal envs if max_consecutive_successes > 0 progress_buf = torch.where(torch.abs(rot_dist) <= success_tolerance, torch.zeros_like(progress_buf), progress_buf) resets = torch.where(successes >= max_consecutive_successes, torch.ones_like(resets), resets) timed_out = progress_buf >= max_episode_length - 1 resets = torch.where(timed_out, torch.ones_like(resets), resets) # Apply penalty for not reaching the goal timeout_rew = timed_out * 0.5 * fall_penalty # Total reward is: position distance + orientation alignment + action regularization + success bonus + fall penalty reward = dist_rew + rot_rew + action_penalty + action_delta_penalty + velocity_penalty + reach_goal_rew + fall_rew + timeout_rew num_resets = torch.sum(resets) finished_cons_successes = torch.sum(successes * resets.float()) cons_successes = torch.where(num_resets > 0, av_factor*finished_cons_successes/num_resets + (1.0 - av_factor)*consecutive_successes, consecutive_successes) return reward, resets, goal_resets, progress_buf, hold_count_buf, successes, cons_successes, \ dist_rew, rot_rew, action_penalty, action_delta_penalty, velocity_penalty, reach_goal_rew, fall_rew, timeout_rew # return individual rewards for visualization @torch.jit.script def randomize_rotation(rand0, rand1, x_unit_tensor, y_unit_tensor): return quat_mul(quat_from_angle_axis(rand0 * np.pi, x_unit_tensor), quat_from_angle_axis(rand1 * np.pi, y_unit_tensor)) def unique_cube_rotations_3d() -> List[np.ndarray]: """ Returns the list of all possible 90-degree cube rotations in 3D. Based on https://stackoverflow.com/a/70413438/1645784 """ all_rotations = [] for x, y, z in permutations([0, 1, 2]): for sx, sy, sz in itertools.product([-1, 1], repeat=3): rotation_matrix = np.zeros((3, 3)) rotation_matrix[0, x] = sx rotation_matrix[1, y] = sy rotation_matrix[2, z] = sz if np.linalg.det(rotation_matrix) == 1: all_rotations.append(rotation_matrix) return all_rotations
83,095
Python
48.198342
183
0.619592
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/tasks/dextreme/adr_vec_task.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import copy from typing import Dict, Any, Tuple, List, Set import gym from gym import spaces from isaacgym import gymtorch, gymapi from isaacgymenvs.utils.dr_utils import get_property_setter_map, get_property_getter_map, \ get_default_setter_args, apply_random_samples, check_buckets, generate_random_samples import torch import numpy as np import operator, random from copy import deepcopy from isaacgymenvs.utils.utils import nested_dict_get_attr, nested_dict_set_attr from collections import deque from enum import Enum import sys import abc from abc import ABC from omegaconf import ListConfig class RolloutWorkerModes: ADR_ROLLOUT = 0 # rollout with current ADR params ADR_BOUNDARY = 1 # rollout with params on boundaries of ADR, used to decide whether to expand ranges TEST_ENV = 2 # rollout wit default DR params, used to measure overall success rate. (currently unused) from isaacgymenvs.tasks.base.vec_task import Env, VecTask class EnvDextreme(Env): def __init__(self, config: Dict[str, Any], rl_device: str, sim_device: str, graphics_device_id: int, headless: bool, use_dict_obs: bool): Env.__init__(self, config, rl_device, sim_device, graphics_device_id, headless) self.use_dict_obs = use_dict_obs if self.use_dict_obs: self.obs_dims = config["env"]["obsDims"] self.obs_space = spaces.Dict( { k: spaces.Box( np.ones(shape=dims) * -np.Inf, np.ones(shape=dims) * np.Inf ) for k, dims in self.obs_dims.items() } ) else: self.num_observations = config["env"]["numObservations"] self.num_states = config["env"].get("numStates", 0) self.obs_space = spaces.Box(np.ones(self.num_obs) * -np.Inf, np.ones(self.num_obs) * np.Inf) self.state_space = spaces.Box(np.ones(self.num_states) * -np.Inf, np.ones(self.num_states) * np.Inf) def get_env_state(self): """ Return serializable environment state to be saved to checkpoint. Can be used for stateful training sessions, i.e. with adaptive curriculums. """ return None def set_env_state(self, env_state): pass class VecTaskDextreme(EnvDextreme, VecTask): def __init__(self, config, rl_device, sim_device, graphics_device_id, headless, use_dict_obs=False): """Initialise the `VecTask`. Args: config: config dictionary for the environment. sim_device: the device to simulate physics on. eg. 'cuda:0' or 'cpu' graphics_device_id: the device ID to render with. headless: Set to False to disable viewer rendering. """ EnvDextreme.__init__(self, config, rl_device, sim_device, graphics_device_id, headless, use_dict_obs=use_dict_obs) self.sim_params = self._VecTask__parse_sim_params(self.cfg["physics_engine"], self.cfg["sim"]) if self.cfg["physics_engine"] == "physx": self.physics_engine = gymapi.SIM_PHYSX elif self.cfg["physics_engine"] == "flex": self.physics_engine = gymapi.SIM_FLEX else: msg = f"Invalid physics engine backend: {self.cfg['physics_engine']}" raise ValueError(msg) self.virtual_display = None # optimization flags for pytorch JIT torch._C._jit_set_profiling_mode(False) torch._C._jit_set_profiling_executor(False) self.gym = gymapi.acquire_gym() self.first_randomization = True self.randomize = self.cfg["task"]["randomize"] self.randomize_obs_builtin = "observations" in self.cfg["task"].get("randomization_params", {}) self.randomize_act_builtin = "actions" in self.cfg["task"].get("randomization_params", {}) self.randomized_suffix = "randomized" if self.use_dict_obs and self.randomize and self.randomize_obs_builtin: self.randomisation_obs = set(self.obs_space.keys()).intersection(set(self.randomization_params['observations'].keys())) for obs_name in self.randomisation_obs: self.obs_space[f"{obs_name}_{self.randomized_suffix}"] = self.obs_space[obs_name] self.obs_dims[f"{obs_name}_{self.randomized_suffix}"] = self.obs_dims[obs_name] self.obs_randomizations = {} elif self.randomize_obs_builtin: self.obs_randomizations = None self.action_randomizations = None self.original_props = {} self.actor_params_generator = None self.extern_actor_params = {} self.last_step = -1 self.last_rand_step = -1 for env_id in range(self.num_envs): self.extern_actor_params[env_id] = None # create envs, sim and viewer self.sim_initialized = False self.create_sim() self.gym.prepare_sim(self.sim) self.sim_initialized = True self.set_viewer() self.allocate_buffers() def allocate_buffers(self): """Allocate the observation, states, etc. buffers. These are what is used to set observations and states in the environment classes which inherit from this one, and are read in `step` and other related functions. """ # allocate buffers if self.use_dict_obs: self.obs_dict = { k: torch.zeros( (self.num_envs, *dims), device=self.device, dtype=torch.float ) for k, dims in self.obs_dims.items() } print("Obs dictinary: ") print(self.obs_dims) # print(self.obs_dict) for k, dims in self.obs_dims.items(): print("1") print(dims) self.obs_dict_repeat = { k: torch.zeros( (self.num_envs, *dims), device=self.device, dtype=torch.float ) for k, dims in self.obs_dims.items() } else: self.obs_dict = {} self.obs_buf = torch.zeros( (self.num_envs, self.num_obs), device=self.device, dtype=torch.float) self.states_buf = torch.zeros( (self.num_envs, self.num_states), device=self.device, dtype=torch.float) self.rew_buf = torch.zeros( self.num_envs, device=self.device, dtype=torch.float) self.reset_buf = torch.ones( self.num_envs, device=self.device, dtype=torch.long) self.timeout_buf = torch.zeros( self.num_envs, device=self.device, dtype=torch.long) self.progress_buf = torch.zeros( self.num_envs, device=self.device, dtype=torch.long) self.randomize_buf = torch.zeros( self.num_envs, device=self.device, dtype=torch.long) self.extras = {} def create_sim(self, compute_device: int, graphics_device: int, physics_engine, sim_params: gymapi.SimParams): """Create an Isaac Gym sim object. Args: compute_device: ID of compute device to use. graphics_device: ID of graphics device to use. physics_engine: physics engine to use (`gymapi.SIM_PHYSX` or `gymapi.SIM_FLEX`) sim_params: sim params to use. Returns: the Isaac Gym sim object. """ sim = self.gym.create_sim(compute_device, graphics_device, physics_engine, sim_params) if sim is None: print("*** Failed to create sim") quit() return sim def get_state(self): """Returns the state buffer of the environment (the priviledged observations for asymmetric training).""" if self.use_dict_obs: raise NotImplementedError("No states in vec task when `use_dict_obs=True`") return torch.clamp(self.states_buf, -self.clip_obs, self.clip_obs).to(self.rl_device) @abc.abstractmethod def pre_physics_step(self, actions: torch.Tensor): """Apply the actions to the environment (eg by setting torques, position targets). Args: actions: the actions to apply """ @abc.abstractmethod def post_physics_step(self): """Compute reward and observations, reset any environments that require it.""" def step(self, actions: torch.Tensor) -> Tuple[Dict[str, torch.Tensor], torch.Tensor, torch.Tensor, Dict[str, Any]]: """Step the physics of the environment. Args: actions: actions to apply Returns: Observations, rewards, resets, info Observations are dict of observations (currently only one member called 'obs') """ # randomize actions if self.action_randomizations is not None and self.randomize_act_builtin: actions = self.action_randomizations['noise_lambda'](actions) action_tensor = torch.clamp(actions, -self.clip_actions, self.clip_actions) # apply actions self.pre_physics_step(action_tensor) # step physics and render each frame for i in range(self.control_freq_inv): self.render() self.gym.simulate(self.sim) if self.device == 'cpu': self.gym.fetch_results(self.sim, True) # compute observations, rewards, resets, ... self.post_physics_step() # fill time out buffer: set to 1 if we reached the max episode length AND the reset buffer is 1. Timeout == 1 makes sense only if the reset buffer is 1. self.timeout_buf = (self.progress_buf >= self.max_episode_length - 1) & (self.reset_buf != 0) # randomize observations # cannot randomise in the env because of missing suffix in the observation dict if self.randomize and self.randomize_obs_builtin and self.use_dict_obs and len(self.obs_randomizations) > 0: for obs_name, v in self.obs_randomizations.items(): self.obs_dict[f"{obs_name}_{self.randomized_suffix}"] = v['noise_lambda'](self.obs_dict[obs_name]) # Random cube pose if hasattr(self, 'enable_random_obs') and self.enable_random_obs and obs_name == 'object_pose_cam': self.obs_dict[f"{obs_name}_{self.randomized_suffix}"] \ = self.get_random_cube_observation(self.obs_dict[f"{obs_name}_{self.randomized_suffix}"]) if hasattr(self, 'enable_random_obs') and self.enable_random_obs: relative_rot = self.get_relative_rot(self.obs_dict['object_pose_cam_'+ self.randomized_suffix][:, 3:7], self.obs_dict['goal_pose'][:, 3:7]) v = self.obs_randomizations['goal_relative_rot_cam'] self.obs_dict["goal_relative_rot_cam_" + self.randomized_suffix] = v['noise_lambda'](relative_rot) elif self.randomize and self.randomize_obs_builtin and not self.use_dict_obs and self.obs_randomizations is not None: self.obs_buf = self.obs_randomizations['noise_lambda'](self.obs_buf) self.extras["time_outs"] = self.timeout_buf.to(self.rl_device) if self.use_dict_obs: obs_dict_ret = { k: torch.clone(torch.clamp(t, -self.clip_obs, self.clip_obs)).to( self.rl_device ) for k, t in self.obs_dict.items() } return obs_dict_ret, self.rew_buf.to(self.rl_device), self.reset_buf.to(self.rl_device), self.extras else: self.obs_dict["obs"] = torch.clamp(self.obs_buf, -self.clip_obs, self.clip_obs).to(self.rl_device) # asymmetric actor-critic if self.num_states > 0: self.obs_dict["states"] = self.get_state() return self.obs_dict, self.rew_buf.to(self.rl_device), self.reset_buf.to(self.rl_device), self.extras def reset(self) -> torch.Tensor: """Reset the environment. Returns: Observation dictionary """ zero_actions = self.zero_actions() # step the simulator self.step(zero_actions) if self.use_dict_obs: obs_dict_ret = { k: torch.clone( torch.clamp(t, -self.clip_obs, self.clip_obs).to(self.rl_device) ) for k, t in self.obs_dict.items() } return obs_dict_ret else: self.obs_dict["obs"] = torch.clamp(self.obs_buf, -self.clip_obs, self.clip_obs).to(self.rl_device) # asymmetric actor-critic if self.num_states > 0: self.obs_dict["states"] = self.get_state() return self.obs_dict """ Domain Randomization methods """ def get_env_state(self): """ Return serializable environment state to be saved to checkpoint. Can be used for stateful training sessions, i.e. with adaptive curriculums. """ if self.use_adr: return dict(adr_params=self.adr_params) else: return {} def set_env_state(self, env_state): if env_state is None: return for key in self.get_env_state().keys(): if key == "adr_params" and self.use_adr and not self.adr_load_from_checkpoint: print("Skipping loading ADR params from checkpoint...") continue value = env_state.get(key, None) if value is None: continue self.__dict__[key] = value print(f'Loaded env state value {key}:{value}') if self.use_adr: print(f'ADR Params after loading from checkpoint: {self.adr_params}') def get_randomization_dict(self, dr_params, obs_shape): dist = dr_params["distribution"] op_type = dr_params["operation"] sched_type = dr_params["schedule"] if "schedule" in dr_params else None sched_step = dr_params["schedule_steps"] if "schedule" in dr_params else None op = operator.add if op_type == 'additive' else operator.mul if not self.use_adr: apply_white_noise_prob = dr_params.get("apply_white_noise", 0.5) if sched_type == 'linear': sched_scaling = 1.0 / sched_step * \ min(self.last_step, sched_step) elif sched_type == 'constant': sched_scaling = 0 if self.last_step < sched_step else 1 else: sched_scaling = 1 if dist == 'gaussian': mu, var = dr_params["range"] mu_corr, var_corr = dr_params.get("range_correlated", [0., 0.]) if op_type == 'additive': mu *= sched_scaling var *= sched_scaling mu_corr *= sched_scaling var_corr *= sched_scaling elif op_type == 'scaling': var = var * sched_scaling # scale up var over time mu = mu * sched_scaling + 1.0 * \ (1.0 - sched_scaling) # linearly interpolate var_corr = var_corr * sched_scaling # scale up var over time mu_corr = mu_corr * sched_scaling + 1.0 * \ (1.0 - sched_scaling) # linearly interpolate local_params = { 'mu': mu, 'var': var, 'mu_corr': mu_corr, 'var_corr': var_corr, 'corr': torch.randn(self.num_envs, *obs_shape, device=self.device) } if not self.use_adr: local_params['apply_white_noise_mask'] = (torch.rand(self.num_envs, device=self.device) < apply_white_noise_prob).float() def noise_lambda(tensor, params=local_params): corr = local_params['corr'] corr = corr * params['var_corr'] + params['mu_corr'] if self.use_adr: return op( tensor, corr + torch.randn_like(tensor) * params['var'] + params['mu']) else: return op( tensor, corr + torch.randn_like(tensor) * params['apply_white_noise_mask'].view(-1, 1) * params['var'] + params['mu']) elif dist == 'uniform': lo, hi = dr_params["range"] lo_corr, hi_corr = dr_params.get("range_correlated", [0., 0.]) if op_type == 'additive': lo *= sched_scaling hi *= sched_scaling lo_corr *= sched_scaling hi_corr *= sched_scaling elif op_type == 'scaling': lo = lo * sched_scaling + 1.0 * (1.0 - sched_scaling) hi = hi * sched_scaling + 1.0 * (1.0 - sched_scaling) lo_corr = lo_corr * sched_scaling + 1.0 * (1.0 - sched_scaling) hi_corr = hi_corr * sched_scaling + 1.0 * (1.0 - sched_scaling) local_params = {'lo': lo, 'hi': hi, 'lo_corr': lo_corr, 'hi_corr': hi_corr, 'corr': torch.rand(self.num_envs, *obs_shape, device=self.device) } if not self.use_adr: local_params['apply_white_noise_mask'] = (torch.rand(self.num_envs, device=self.device) < apply_white_noise_prob).float() def noise_lambda(tensor, params=local_params): corr = params['corr'] corr = corr * (params['hi_corr'] - params['lo_corr']) + params['lo_corr'] if self.use_adr: return op(tensor, corr + torch.rand_like(tensor) * (params['hi'] - params['lo']) + params['lo']) else: return op(tensor, corr + torch.rand_like(tensor) * params['apply_white_noise_mask'].view(-1, 1) * (params['hi'] - params['lo']) + params['lo']) else: raise NotImplementedError # return {'lo': lo, 'hi': hi, 'lo_corr': lo_corr, 'hi_corr': hi_corr, 'noise_lambda': noise_lambda} return {'noise_lambda': noise_lambda, 'corr_val': local_params['corr']} class ADRVecTask(VecTaskDextreme): def __init__(self, config, rl_device, sim_device, graphics_device_id, headless, use_dict_obs=False): self.adr_cfg = self.cfg["task"].get("adr", {}) self.use_adr = self.adr_cfg.get("use_adr", False) self.all_env_ids = torch.tensor(list(range(self.cfg["env"]["numEnvs"])), dtype=torch.long, device=sim_device) if self.use_adr: self.worker_adr_boundary_fraction = self.adr_cfg["worker_adr_boundary_fraction"] self.adr_queue_threshold_length = self.adr_cfg["adr_queue_threshold_length"] self.adr_objective_threshold_low = self.adr_cfg["adr_objective_threshold_low"] self.adr_objective_threshold_high = self.adr_cfg["adr_objective_threshold_high"] self.adr_extended_boundary_sample = self.adr_cfg["adr_extended_boundary_sample"] self.adr_rollout_perf_alpha = self.adr_cfg["adr_rollout_perf_alpha"] self.update_adr_ranges = self.adr_cfg["update_adr_ranges"] self.adr_clear_other_queues = self.adr_cfg["clear_other_queues"] self.adr_rollout_perf_last = None self.adr_load_from_checkpoint = self.adr_cfg["adr_load_from_checkpoint"] assert self.randomize, "Worker mode currently only supported when Domain Randomization is turned on" # 0 = rollout worker # 1 = ADR worker (see https://arxiv.org/pdf/1910.07113.pdf Section 5) # 2 = eval worker # rollout type is selected when an environment gets randomized self.worker_types = torch.zeros(self.cfg["env"]["numEnvs"], dtype=torch.long, device=sim_device) self.adr_tensor_values = {} self.adr_params = self.adr_cfg["params"] self.adr_params_keys = list(self.adr_params.keys()) # list of params which rely on patching the built in domain randomisation self.adr_params_builtin_keys = [] for k in self.adr_params: self.adr_params[k]["range"] = self.adr_params[k]["init_range"] if "limits" not in self.adr_params[k]: self.adr_params[k]["limits"] = [None, None] if "delta_style" in self.adr_params[k]: assert self.adr_params[k]["delta_style"] in ["additive", "multiplicative"] else: self.adr_params[k]["delta_style"] = "additive" if "range_path" in self.adr_params[k]: self.adr_params_builtin_keys.append(k) else: # normal tensorised ADR param param_type = self.adr_params[k].get("type", "uniform") dtype = torch.long if param_type == "categorical" else torch.float self.adr_tensor_values[k] = torch.zeros(self.cfg["env"]["numEnvs"], device=sim_device, dtype=dtype) self.num_adr_params = len(self.adr_params) # modes for ADR workers. # there are 2n modes, where mode 2n is lower range and mode 2n+1 is upper range for DR parameter n self.adr_modes = torch.zeros(self.cfg["env"]["numEnvs"], dtype=torch.long, device=sim_device) self.adr_objective_queues = [deque(maxlen=self.adr_queue_threshold_length) for _ in range(2*self.num_adr_params)] super().__init__(config, rl_device, sim_device, graphics_device_id, headless, use_dict_obs=use_dict_obs) def get_current_adr_params(self, dr_params): """Splices the current ADR parameters into the requried ranges""" current_adr_params = copy.deepcopy(dr_params) for k in self.adr_params_builtin_keys: nested_dict_set_attr(current_adr_params, self.adr_params[k]["range_path"], self.adr_params[k]["range"]) return current_adr_params def get_dr_params_by_env_id(self, env_id, default_dr_params, current_adr_params): """Returns the (dictionary) DR params for a particular env ID. (only applies to env randomisations, for tensor randomisations see `sample_adr_tensor`.) Params: env_id: which env ID to get the dict for. default_dr_params: environment default DR params. current_adr_params: current dictionary of DR params with current ADR ranges patched in. Returns: a patched dictionary with the env randomisations corresponding to the env ID. """ env_type = self.worker_types[env_id] if env_type == RolloutWorkerModes.ADR_ROLLOUT: # rollout worker, uses current ADR params return current_adr_params elif env_type == RolloutWorkerModes.ADR_BOUNDARY: # ADR worker, substitute upper or lower bound as entire range for this env adr_mode = int(self.adr_modes[env_id]) env_adr_params = copy.deepcopy(current_adr_params) adr_id = adr_mode // 2 # which adr parameter adr_bound = adr_mode % 2 # 0 = lower, 1 = upper param_name = self.adr_params_keys[adr_id] # this DR parameter is randomised as a tensor not through normal DR api # if not "range_path" in self.adr_params[self.adr_params_keys[adr_id]]: if not param_name in self.adr_params_builtin_keys: return env_adr_params if self.adr_extended_boundary_sample: boundary_value = self.adr_params[param_name]["next_limits"][adr_bound] else: boundary_value = self.adr_params[param_name]["range"][adr_bound] new_range = [boundary_value, boundary_value] nested_dict_set_attr(env_adr_params, self.adr_params[param_name]["range_path"], new_range) return env_adr_params elif env_type == RolloutWorkerModes.TEST_ENV: # eval worker, uses default fixed params return default_dr_params else: raise NotImplementedError def modify_adr_param(self, param, direction, adr_param_dict, param_limit=None): """Modify an ADR param. Args: param: current value of the param. direction: what direction to move the ADR parameter ('up' or 'down') adr_param_dict: dictionary of ADR parameter, used to read delta and method of applying delta param_limit: limit of the parameter (upper bound for 'up' and lower bound for 'down' mode) Returns: whether the param was updated """ op = adr_param_dict["delta_style"] delta = adr_param_dict["delta"] if direction == 'up': if op == "additive": new_val = param + delta elif op == "multiplicative": assert delta > 1.0, "Must have delta>1 for multiplicative ADR update." new_val = param * delta else: raise NotImplementedError if param_limit is not None: new_val = min(new_val, param_limit) changed = abs(new_val - param) > 1e-9 return new_val, changed elif direction == 'down': if op == "additive": new_val = param - delta elif op == "multiplicative": assert delta > 1.0, "Must have delta>1 for multiplicative ADR update." new_val = param / delta else: raise NotImplementedError if param_limit is not None: new_val = max(new_val, param_limit) changed = abs(new_val - param) > 1e-9 return new_val, changed else: raise NotImplementedError @staticmethod def env_ids_from_mask(mask): return torch.nonzero(mask, as_tuple=False).squeeze(-1) def sample_adr_tensor(self, param_name, env_ids=None): """Samples the values for a particular ADR parameter as a tensor. Sets the value as a side-effect in the dictionary of current adr tensors. Args: param_name: name of the parameter to sample env_ids: env ids to sample Returns: (len(env_ids), tensor_dim) tensor of sampled parameter values, where tensor_dim is the trailing dimension of the generated tensor as specifide in the ADR conifg """ if env_ids is None: env_ids = self.all_env_ids sample_mask = torch.zeros(self.num_envs, dtype=torch.bool, device=self.device) sample_mask[env_ids] = True params = self.adr_params[param_name] param_range = params["range"] next_limits = params.get("next_limits", None) param_type = params.get("type", "uniform") n = self.adr_params_keys.index(param_name) low_idx = 2*n high_idx = 2*n + 1 adr_workers_low_mask = (self.worker_types == RolloutWorkerModes.ADR_BOUNDARY) & (self.adr_modes == low_idx) & sample_mask adr_workers_high_mask = (self.worker_types == RolloutWorkerModes.ADR_BOUNDARY) & (self.adr_modes == high_idx) & sample_mask rollout_workers_mask = (~adr_workers_low_mask) & (~adr_workers_high_mask) & sample_mask rollout_workers_env_ids = self.env_ids_from_mask(rollout_workers_mask) if param_type == "uniform": result = torch.zeros((len(env_ids),), device=self.device, dtype=torch.float) uniform_noise_rollout_workers = \ torch.rand((rollout_workers_env_ids.shape[0],), device=self.device, dtype=torch.float) \ * (param_range[1] - param_range[0]) + param_range[0] result[rollout_workers_mask[env_ids]] = uniform_noise_rollout_workers if self.adr_extended_boundary_sample: result[adr_workers_low_mask[env_ids]] = next_limits[0] result[adr_workers_high_mask[env_ids]] = next_limits[1] else: result[adr_workers_low_mask[env_ids]] = param_range[0] result[adr_workers_high_mask[env_ids]] = param_range[1] elif param_type == "categorical": result = torch.zeros((len(env_ids), ), device=self.device, dtype=torch.long) uniform_noise_rollout_workers = torch.randint(int(param_range[0]), int(param_range[1])+1, size=(rollout_workers_env_ids.shape[0], ), device=self.device) result[rollout_workers_mask[env_ids]] = uniform_noise_rollout_workers result[adr_workers_low_mask[env_ids]] = int(next_limits[0] if self.adr_extended_boundary_sample else param_range[0]) result[adr_workers_high_mask[env_ids]] = int(next_limits[1] if self.adr_extended_boundary_sample else param_range[1]) else: raise NotImplementedError(f"Unknown distribution type {param_type}") self.adr_tensor_values[param_name][env_ids] = result return result def get_adr_tensor(self, param_name, env_ids=None): """Returns the current value of an ADR tensor. """ if env_ids is None: return self.adr_tensor_values[param_name] else: return self.adr_tensor_values[param_name][env_ids] def recycle_envs(self, recycle_envs): """Recycle the workers that have finished their episodes or to be reassigned etc. Args: recycle_envs: env_ids of environments to be recycled """ worker_types_rand = torch.rand(len(recycle_envs), device=self.device, dtype=torch.float) new_worker_types = torch.zeros(len(recycle_envs), device=self.device, dtype=torch.long) # Choose new types for wokrers new_worker_types[(worker_types_rand < self.worker_adr_boundary_fraction)] = RolloutWorkerModes.ADR_ROLLOUT new_worker_types[(worker_types_rand >= self.worker_adr_boundary_fraction)] = RolloutWorkerModes.ADR_BOUNDARY self.worker_types[recycle_envs] = new_worker_types # resample the ADR modes (which boundary values to sample) for the given environments (only applies to ADR_BOUNDARY mode) self.adr_modes[recycle_envs] = torch.randint(0, self.num_adr_params * 2, (len(recycle_envs),), dtype=torch.long, device=self.device) def adr_update(self, rand_envs, adr_objective): """Performs ADR update step (implements algorithm 1 from https://arxiv.org/pdf/1910.07113.pdf). """ rand_env_mask = torch.zeros(self.num_envs, dtype=torch.bool, device=self.device) rand_env_mask[rand_envs] = True total_nats = 0.0 # measuring entropy if self.update_adr_ranges: adr_params_iter = list(enumerate(self.adr_params)) random.shuffle(adr_params_iter) # only recycle once already_recycled = False for n, adr_param_name in adr_params_iter: # mode index for environments evaluating lower ADR bound low_idx = 2*n # mode index for environments evaluating upper ADR bound high_idx = 2*n+1 adr_workers_low = (self.worker_types == RolloutWorkerModes.ADR_BOUNDARY) & (self.adr_modes == low_idx) adr_workers_high = (self.worker_types == RolloutWorkerModes.ADR_BOUNDARY) & (self.adr_modes == high_idx) # environments which will be evaluated for ADR (finished the episode) and which are evaluating performance at the # lower and upper boundaries adr_done_low = rand_env_mask & adr_workers_low adr_done_high = rand_env_mask & adr_workers_high # objective value at environments which have been evaluating the lower bound of ADR param n objective_low_bounds = adr_objective[adr_done_low] # objective value at environments which have been evaluating the upper bound of ADR param n objective_high_bounds = adr_objective[adr_done_high] # add the success of objectives to queues self.adr_objective_queues[low_idx].extend(objective_low_bounds.cpu().numpy().tolist()) self.adr_objective_queues[high_idx].extend(objective_high_bounds.cpu().numpy().tolist()) low_queue = self.adr_objective_queues[low_idx] high_queue = self.adr_objective_queues[high_idx] mean_low = np.mean(low_queue) if len(low_queue) > 0 else 0. mean_high = np.mean(high_queue) if len(high_queue) > 0 else 0. current_range = self.adr_params[adr_param_name]["range"] range_lower = current_range[0] range_upper = current_range[1] range_limits = self.adr_params[adr_param_name]["limits"] init_range = self.adr_params[adr_param_name]["init_range"] # one step beyond the current ADR values [next_limit_lower, next_limit_upper] = self.adr_params[adr_param_name].get("next_limits", [None, None]) changed_low, changed_high = False, False if len(low_queue) >= self.adr_queue_threshold_length: changed_low = False if mean_low < self.adr_objective_threshold_low: # increase lower bound range_lower, changed_low = self.modify_adr_param( range_lower, 'up', self.adr_params[adr_param_name], param_limit=init_range[0] ) elif mean_low > self.adr_objective_threshold_high: # reduce lower bound range_lower, changed_low = self.modify_adr_param( range_lower, 'down', self.adr_params[adr_param_name], param_limit=range_limits[0] ) # if the ADR boundary is changed, workers working from the old paremeters become invalid. # Therefore, while we use the data from them to train, we can no longer use them to evaluate DR at the boundary if changed_low: print(f'Changing {adr_param_name} lower bound. Queue length {len(self.adr_objective_queues[low_idx])}. Mean perf: {mean_low}. Old val: {current_range[0]}. New val: {range_lower}') self.adr_objective_queues[low_idx].clear() self.worker_types[adr_workers_low] = RolloutWorkerModes.ADR_ROLLOUT if len(high_queue) >= self.adr_queue_threshold_length: if mean_high < self.adr_objective_threshold_low: # reduce upper bound range_upper, changed_high = self.modify_adr_param( range_upper, 'down', self.adr_params[adr_param_name], param_limit=init_range[1] ) elif mean_high > self.adr_objective_threshold_high: # increase upper bound range_upper, changed_high = self.modify_adr_param( range_upper, 'up', self.adr_params[adr_param_name], param_limit=range_limits[1] ) # if the ADR boundary is changed, workers working from the old paremeters become invalid. # Therefore, while we use the data from them to train, we can no longer use them to evaluate DR at the boundary if changed_high: print(f'Changing upper bound {adr_param_name}. Queue length {len(self.adr_objective_queues[high_idx])}. Mean perf {mean_high}. Old val: {current_range[1]}. New val: {range_upper}') self.adr_objective_queues[high_idx].clear() self.worker_types[adr_workers_high] = RolloutWorkerModes.ADR_ROLLOUT if changed_low or next_limit_lower is None: next_limit_lower, _ = self.modify_adr_param(range_lower, 'down', self.adr_params[adr_param_name], param_limit=range_limits[0]) if changed_high or next_limit_upper is None: next_limit_upper, _ = self.modify_adr_param(range_upper, 'up', self.adr_params[adr_param_name], param_limit=range_limits[1]) self.adr_params[adr_param_name]["range"] = [range_lower, range_upper] if not self.adr_params[adr_param_name]["delta"] < 1e-9: # disabled upper_lower_delta = range_upper - range_lower if upper_lower_delta < 1e-3: upper_lower_delta = 1e-3 nats = np.log(upper_lower_delta) total_nats += nats # print(f'nats {nats} delta {upper_lower_delta} range lower {range_lower} range upper {range_upper}') self.adr_params[adr_param_name]["next_limits"] = [next_limit_lower, next_limit_upper] if hasattr(self, 'extras') and ((changed_high or changed_low) or self.last_step % 100 == 0): # only log so often to prevent huge log files with ADR vars self.extras[f'adr/params/{adr_param_name}/lower'] = range_lower self.extras[f'adr/params/{adr_param_name}/upper'] = range_upper self.extras[f'adr/objective_perf/boundary/{adr_param_name}/lower/value'] = mean_low self.extras[f'adr/objective_perf/boundary/{adr_param_name}/lower/queue_len'] = len(low_queue) self.extras[f'adr/objective_perf/boundary/{adr_param_name}/upper/value'] = mean_high self.extras[f'adr/objective_perf/boundary/{adr_param_name}/upper/queue_len'] = len(high_queue) if self.adr_clear_other_queues and (changed_low or changed_high): for q in self.adr_objective_queues: q.clear() recycle_envs = torch.nonzero((self.worker_types == RolloutWorkerModes.ADR_BOUNDARY), as_tuple=False).squeeze(-1) self.recycle_envs(recycle_envs) already_recycled = True break if hasattr(self, 'extras') and self.last_step % 100 == 0: # only log so often to prevent huge log files with ADR vars mean_perf = adr_objective[rand_env_mask & (self.worker_types == RolloutWorkerModes.ADR_ROLLOUT)].mean() if self.adr_rollout_perf_last is None: self.adr_rollout_perf_last = mean_perf else: self.adr_rollout_perf_last = self.adr_rollout_perf_last * self.adr_rollout_perf_alpha + mean_perf * (1-self.adr_rollout_perf_alpha) self.extras[f'adr/objective_perf/rollouts'] = self.adr_rollout_perf_last self.extras[f'adr/npd'] = total_nats / len(self.adr_params) if not already_recycled: self.recycle_envs(rand_envs) else: self.worker_types[rand_envs] = RolloutWorkerModes.ADR_ROLLOUT # ensure tensors get re-sampled before new episode for k in self.adr_tensor_values: self.sample_adr_tensor(k, rand_envs) def apply_randomizations(self, dr_params, randomize_buf, adr_objective=None, randomisation_callback=None): """Apply domain randomizations to the environment. Note that currently we can only apply randomizations only on resets, due to current PhysX limitations Args: dr_params: parameters for domain randomization to use. randomize_buf: selective randomisation of environments adr_objective: consecutive successes scalar randomisation_callback: callbacks we may want to use from the environment class """ # If we don't have a randomization frequency, randomize every step rand_freq = dr_params.get("frequency", 1) # First, determine what to randomize: # - non-environment parameters when > frequency steps have passed since the last non-environment # - physical environments in the reset buffer, which have exceeded the randomization frequency threshold # - on the first call, randomize everything self.last_step = self.gym.get_frame_count(self.sim) # for ADR if self.use_adr: if self.first_randomization: adr_env_ids = list(range(self.num_envs)) else: adr_env_ids = torch.nonzero(randomize_buf, as_tuple=False).squeeze(-1).tolist() self.adr_update(adr_env_ids, adr_objective) current_adr_params = self.get_current_adr_params(dr_params) if self.first_randomization: do_nonenv_randomize = True env_ids = list(range(self.num_envs)) else: do_nonenv_randomize = (self.last_step - self.last_rand_step) >= rand_freq env_ids = torch.nonzero(randomize_buf, as_tuple=False).squeeze(-1).tolist() if do_nonenv_randomize: self.last_rand_step = self.last_step # For Manual DR if not self.use_adr: if self.first_randomization: do_nonenv_randomize = True env_ids = list(range(self.num_envs)) else: # randomise if the number of steps since the last randomization is greater than the randomization frequency do_nonenv_randomize = (self.last_step - self.last_rand_step) >= rand_freq rand_envs = torch.where(self.randomize_buf >= rand_freq, torch.ones_like(self.randomize_buf), torch.zeros_like(self.randomize_buf)) rand_envs = torch.logical_and(rand_envs, self.reset_buf) env_ids = torch.nonzero(rand_envs, as_tuple=False).squeeze(-1).tolist() self.randomize_buf[rand_envs] = 0 if do_nonenv_randomize: self.last_rand_step = self.last_step # We don't use it for ADR(!) if self.randomize_act_builtin: self.action_randomizations = self.get_randomization_dict(dr_params['actions'], (self.num_actions,)) if self.use_dict_obs and self.randomize_obs_builtin: for nonphysical_param in self.randomisation_obs: self.obs_randomizations[nonphysical_param] = self.get_randomization_dict(dr_params['observations'][nonphysical_param], self.obs_space[nonphysical_param].shape) elif self.randomize_obs_builtin: self.observation_randomizations = self.get_randomization_dict(dr_params['observations'], self.obs_space.shape) param_setters_map = get_property_setter_map(self.gym) param_setter_defaults_map = get_default_setter_args(self.gym) param_getters_map = get_property_getter_map(self.gym) # On first iteration, check the number of buckets if self.first_randomization: check_buckets(self.gym, self.envs, dr_params) # Randomize non-environment parameters e.g. gravity, timestep, rest_offset etc. if "sim_params" in dr_params and do_nonenv_randomize: prop_attrs = dr_params["sim_params"] prop = self.gym.get_sim_params(self.sim) # Get the list of original paramters set in the yaml and we do add/scale # on these values if self.first_randomization: self.original_props["sim_params"] = { attr: getattr(prop, attr) for attr in dir(prop)} # Get prop attrs randomised by add/scale of the original_props values # attr is [gravity, reset_offset, ... ] # attr_randomization_params can be {'range': [0, 0.5], 'operation': 'additive', 'distribution': 'gaussian'} # therefore, prop.val = original_val <operator> random sample # where operator is add/mul for attr, attr_randomization_params in prop_attrs.items(): apply_random_samples( prop, self.original_props["sim_params"], attr, attr_randomization_params, self.last_step) if attr == "gravity": randomisation_callback('gravity', prop.gravity) # Randomize physical environments # if self.last_step % 10 == 0 and self.last_step > 0: # print('random rest offset = ', prop.physx.rest_offset) self.gym.set_sim_params(self.sim, prop) # If self.actor_params_generator is initialized: use it to # sample actor simulation params. This gives users the # freedom to generate samples from arbitrary distributions, # e.g. use full-covariance distributions instead of the DR's # default of treating each simulation parameter independently. extern_offsets = {} if self.actor_params_generator is not None: for env_id in env_ids: self.extern_actor_params[env_id] = \ self.actor_params_generator.sample() extern_offsets[env_id] = 0 # randomise all attributes of each actor (hand, cube etc..) # actor_properties are (stiffness, damping etc..) # Loop over envs, then loop over actors, then loop over their props # and lastly loop over the ranges of the params for i_, env_id in enumerate(env_ids): if self.use_adr: # need to generate a custom dictionary for ADR parameters env_dr_params = self.get_dr_params_by_env_id(env_id, dr_params, current_adr_params) else: env_dr_params = dr_params for actor, actor_properties in env_dr_params["actor_params"].items(): if self.first_randomization and i_ % 1000 == 0: print(f'Initializing domain randomization for {actor} env={i_}') env = self.envs[env_id] handle = self.gym.find_actor_handle(env, actor) extern_sample = self.extern_actor_params[env_id] # randomise dof_props, rigid_body, rigid_shape properties # all obtained from the YAML file # EXAMPLE: prop name: dof_properties, rigid_body_properties, rigid_shape properties # prop_attrs: # {'damping': {'range': [0.3, 3.0], 'operation': 'scaling', 'distribution': 'loguniform'} # {'stiffness': {'range': [0.75, 1.5], 'operation': 'scaling', 'distribution': 'loguniform'} for prop_name, prop_attrs in actor_properties.items(): # These properties are to do with whole obj mesh related if prop_name == 'color': num_bodies = self.gym.get_actor_rigid_body_count( env, handle) for n in range(num_bodies): self.gym.set_rigid_body_color(env, handle, n, gymapi.MESH_VISUAL, gymapi.Vec3(random.uniform(0, 1), random.uniform(0, 1), random.uniform(0, 1))) continue if prop_name == 'scale': setup_only = prop_attrs.get('setup_only', False) if (setup_only and not self.sim_initialized) or not setup_only: attr_randomization_params = prop_attrs sample = generate_random_samples(attr_randomization_params, 1, self.last_step, None) og_scale = 1 if attr_randomization_params['operation'] == 'scaling': new_scale = og_scale * sample elif attr_randomization_params['operation'] == 'additive': new_scale = og_scale + sample self.gym.set_actor_scale(env, handle, new_scale) if hasattr(self, 'cube_random_params') and actor == 'object': randomisation_callback('scale', new_scale, actor=actor, env_id=env_id) if hasattr(self, 'hand_random_params') and actor == 'object': self.hand_random_params[env_id, 0] = new_scale.mean() continue # Get the properties from the sim API # prop_names is dof_properties, rigid_body_properties, rigid_shape_properties prop = param_getters_map[prop_name](env, handle) set_random_properties = True # if list it is likely to be # - rigid_body_properties # - rigid_shape_properties if isinstance(prop, list): # Read the original values; remember that # randomised_prop_val = original_prop_val <operator> random sample if self.first_randomization: self.original_props[prop_name] = [ {attr: getattr(p, attr) for attr in dir(p)} for p in prop] # # list to record value of attr for each body. # recorded_attrs = {"mass": [], "friction": []} # Loop over all the rigid bodies of the actor and then the corresponding # attribute ranges for attr, attr_randomization_params_cfg in prop_attrs.items(): # for curr_prop, og_p in zip(prop, self.original_props[prop_name]): for body_idx, (p, og_p) in enumerate(zip(prop, self.original_props[prop_name])): curr_prop = p if self.use_adr and isinstance(attr_randomization_params_cfg['range'], dict): # we have custom ranges for different bodies in this actor # first: let's find out which group of bodies this body belongs to body_group_name = None for group_name, list_of_bodies in self.custom_body_handles[actor].items(): if body_idx in list_of_bodies: body_group_name = group_name break if body_group_name is None: raise ValueError( f'Could not find body group for body {body_idx} in actor {actor}.\n' f'Body groups: {self.custom_body_handles}', ) # now: get the range for this body group rand_range = attr_randomization_params_cfg['range'][body_group_name] attr_randomization_params = copy.deepcopy(attr_randomization_params_cfg) attr_randomization_params['range'] = rand_range # we need to sore original params as ADR generated samples need to be bucketed original_randomization_params = copy.deepcopy(dr_params['actor_params'][actor][prop_name][attr]) original_randomization_params['range'] = original_randomization_params['range'][body_group_name] else: attr_randomization_params = attr_randomization_params_cfg # we need to sore original params as ADR generated samples need to be bucketed original_randomization_params = dr_params['actor_params'][actor][prop_name][attr] assert isinstance(attr_randomization_params['range'], (list, tuple, ListConfig)), \ f'range for {prop_name} must be a list or tuple, got {attr_randomization_params["range"]}' # attrs: # if rigid_body_properties, it is mass # if rigid_shape_properties it is friction etc. setup_only = attr_randomization_params.get('setup_only', False) if (setup_only and not self.sim_initialized) or not setup_only: smpl = None if self.actor_params_generator is not None: smpl, extern_offsets[env_id] = get_attr_val_from_sample( extern_sample, extern_offsets[env_id], curr_prop, attr) # generate the samples and add them to props # e.g. curr_prop is rigid_body_properties # attr is 'mass' (string) # mass_val = getattr(curr_prop, 'mass') # new_mass_val = mass_val <operator> sample # setattr(curr_prop, 'mass', new_mass_val) apply_random_samples( curr_prop, og_p, attr, attr_randomization_params, self.last_step, smpl, bucketing_randomization_params=original_randomization_params) # if attr in recorded_attrs: # recorded_attrs[attr] = getattr(curr_prop, attr) if hasattr(self, 'cube_random_params') and actor == 'object': assert len(self.original_props[prop_name]) == 1 if attr == 'mass': self.cube_random_params[env_id, 1] = p.mass elif attr == 'friction': self.cube_random_params[env_id, 2] = p.friction else: set_random_properties = False # # call the callback with the list of attr values that have just been set (for each rigid body / shape in the actor) # for attr, val_list in recorded_attrs.items(): # randomisation_callback(attr, val_list, actor=actor, env_id=env_id) # if it is not a list, it is likely an array # which means it is for dof_properties else: # prop_name is e.g. dof_properties with corresponding meta-data if self.first_randomization: self.original_props[prop_name] = deepcopy(prop) # attrs is damping, stiffness etc. # attrs_randomisation_params is range, distr, schedule for attr, attr_randomization_params in prop_attrs.items(): setup_only = attr_randomization_params.get('setup_only', False) if (setup_only and not self.sim_initialized) or not setup_only: smpl = None if self.actor_params_generator is not None: smpl, extern_offsets[env_id] = get_attr_val_from_sample( extern_sample, extern_offsets[env_id], prop, attr) # we need to sore original params as ADR generated samples need to be bucketed original_randomization_params = dr_params['actor_params'][actor][prop_name][attr] # generate random samples and add them to props # and we set the props back in sim later on apply_random_samples( prop, self.original_props[prop_name], attr, attr_randomization_params, self.last_step, smpl, bucketing_randomization_params=original_randomization_params) else: set_random_properties = False if set_random_properties: setter = param_setters_map[prop_name] default_args = param_setter_defaults_map[prop_name] setter(env, handle, prop, *default_args) if self.actor_params_generator is not None: for env_id in env_ids: # check that we used all dims in sample if extern_offsets[env_id] > 0: extern_sample = self.extern_actor_params[env_id] if extern_offsets[env_id] != extern_sample.shape[0]: print('env_id', env_id, 'extern_offset', extern_offsets[env_id], 'vs extern_sample.shape', extern_sample.shape) raise Exception("Invalid extern_sample size") self.first_randomization = False
60,236
Python
47.151079
204
0.55671
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/tasks/base/vec_task.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os import time from datetime import datetime from os.path import join from typing import Dict, Any, Tuple, List, Set import gym from gym import spaces from isaacgym import gymtorch, gymapi from isaacgymenvs.utils.torch_jit_utils import to_torch from isaacgymenvs.utils.dr_utils import get_property_setter_map, get_property_getter_map, \ get_default_setter_args, apply_random_samples, check_buckets, generate_random_samples import torch import numpy as np import operator, random from copy import deepcopy from isaacgymenvs.utils.utils import nested_dict_get_attr, nested_dict_set_attr from collections import deque import sys import abc from abc import ABC EXISTING_SIM = None SCREEN_CAPTURE_RESOLUTION = (1027, 768) def _create_sim_once(gym, *args, **kwargs): global EXISTING_SIM if EXISTING_SIM is not None: return EXISTING_SIM else: EXISTING_SIM = gym.create_sim(*args, **kwargs) return EXISTING_SIM class Env(ABC): def __init__(self, config: Dict[str, Any], rl_device: str, sim_device: str, graphics_device_id: int, headless: bool): """Initialise the env. Args: config: the configuration dictionary. sim_device: the device to simulate physics on. eg. 'cuda:0' or 'cpu' graphics_device_id: the device ID to render with. headless: Set to False to disable viewer rendering. """ split_device = sim_device.split(":") self.device_type = split_device[0] self.device_id = int(split_device[1]) if len(split_device) > 1 else 0 self.device = "cpu" if config["sim"]["use_gpu_pipeline"]: if self.device_type.lower() == "cuda" or self.device_type.lower() == "gpu": self.device = "cuda" + ":" + str(self.device_id) else: print("GPU Pipeline can only be used with GPU simulation. Forcing CPU Pipeline.") config["sim"]["use_gpu_pipeline"] = False self.rl_device = rl_device # Rendering # if training in a headless mode self.headless = headless enable_camera_sensors = config["env"].get("enableCameraSensors", False) self.graphics_device_id = graphics_device_id if enable_camera_sensors == False and self.headless == True: self.graphics_device_id = -1 self.num_environments = config["env"]["numEnvs"] self.num_agents = config["env"].get("numAgents", 1) # used for multi-agent environments self.num_observations = config["env"].get("numObservations", 0) self.num_states = config["env"].get("numStates", 0) self.obs_space = spaces.Box(np.ones(self.num_obs) * -np.Inf, np.ones(self.num_obs) * np.Inf) self.state_space = spaces.Box(np.ones(self.num_states) * -np.Inf, np.ones(self.num_states) * np.Inf) self.num_actions = config["env"]["numActions"] self.control_freq_inv = config["env"].get("controlFrequencyInv", 1) self.act_space = spaces.Box(np.ones(self.num_actions) * -1., np.ones(self.num_actions) * 1.) self.clip_obs = config["env"].get("clipObservations", np.Inf) self.clip_actions = config["env"].get("clipActions", np.Inf) # Total number of training frames since the beginning of the experiment. # We get this information from the learning algorithm rather than tracking ourselves. # The learning algorithm tracks the total number of frames since the beginning of training and accounts for # experiments restart/resumes. This means this number can be > 0 right after initialization if we resume the # experiment. self.total_train_env_frames: int = 0 # number of control steps self.control_steps: int = 0 self.render_fps: int = config["env"].get("renderFPS", -1) self.last_frame_time: float = 0.0 self.record_frames: bool = False self.record_frames_dir = join("recorded_frames", datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) @abc.abstractmethod def allocate_buffers(self): """Create torch buffers for observations, rewards, actions dones and any additional data.""" @abc.abstractmethod def step(self, actions: torch.Tensor) -> Tuple[Dict[str, torch.Tensor], torch.Tensor, torch.Tensor, Dict[str, Any]]: """Step the physics of the environment. Args: actions: actions to apply Returns: Observations, rewards, resets, info Observations are dict of observations (currently only one member called 'obs') """ @abc.abstractmethod def reset(self)-> Dict[str, torch.Tensor]: """Reset the environment. Returns: Observation dictionary """ @abc.abstractmethod def reset_idx(self, env_ids: torch.Tensor): """Reset environments having the provided indices. Args: env_ids: environments to reset """ @property def observation_space(self) -> gym.Space: """Get the environment's observation space.""" return self.obs_space @property def action_space(self) -> gym.Space: """Get the environment's action space.""" return self.act_space @property def num_envs(self) -> int: """Get the number of environments.""" return self.num_environments @property def num_acts(self) -> int: """Get the number of actions in the environment.""" return self.num_actions @property def num_obs(self) -> int: """Get the number of observations in the environment.""" return self.num_observations def set_train_info(self, env_frames, *args, **kwargs): """ Send the information in the direction algo->environment. Most common use case: tell the environment how far along we are in the training process. This is useful for implementing curriculums and things such as that. """ self.total_train_env_frames = env_frames # print(f'env_frames updated to {self.total_train_env_frames}') def get_env_state(self): """ Return serializable environment state to be saved to checkpoint. Can be used for stateful training sessions, i.e. with adaptive curriculums. """ return None def set_env_state(self, env_state): pass class VecTask(Env): metadata = {"render.modes": ["human", "rgb_array"], "video.frames_per_second": 24} def __init__(self, config, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture: bool = False, force_render: bool = False): """Initialise the `VecTask`. Args: config: config dictionary for the environment. sim_device: the device to simulate physics on. eg. 'cuda:0' or 'cpu' graphics_device_id: the device ID to render with. headless: Set to False to disable viewer rendering. virtual_screen_capture: Set to True to allow the users get captured screen in RGB array via `env.render(mode='rgb_array')`. force_render: Set to True to always force rendering in the steps (if the `control_freq_inv` is greater than 1 we suggest stting this arg to True) """ # super().__init__(config, rl_device, sim_device, graphics_device_id, headless, use_dict_obs) super().__init__(config, rl_device, sim_device, graphics_device_id, headless) self.virtual_screen_capture = virtual_screen_capture self.virtual_display = None if self.virtual_screen_capture: from pyvirtualdisplay.smartdisplay import SmartDisplay self.virtual_display = SmartDisplay(size=SCREEN_CAPTURE_RESOLUTION) self.virtual_display.start() self.force_render = force_render self.sim_params = self.__parse_sim_params(self.cfg["physics_engine"], self.cfg["sim"]) if self.cfg["physics_engine"] == "physx": self.physics_engine = gymapi.SIM_PHYSX elif self.cfg["physics_engine"] == "flex": self.physics_engine = gymapi.SIM_FLEX else: msg = f"Invalid physics engine backend: {self.cfg['physics_engine']}" raise ValueError(msg) self.dt: float = self.sim_params.dt # optimization flags for pytorch JIT torch._C._jit_set_profiling_mode(False) torch._C._jit_set_profiling_executor(False) self.gym = gymapi.acquire_gym() self.first_randomization = True self.original_props = {} self.dr_randomizations = {} self.actor_params_generator = None self.extern_actor_params = {} self.last_step = -1 self.last_rand_step = -1 for env_id in range(self.num_envs): self.extern_actor_params[env_id] = None # create envs, sim and viewer self.sim_initialized = False self.create_sim() self.gym.prepare_sim(self.sim) self.sim_initialized = True self.set_viewer() self.allocate_buffers() self.obs_dict = {} def set_viewer(self): """Create the viewer.""" # todo: read from config self.enable_viewer_sync = True self.viewer = None # if running with a viewer, set up keyboard shortcuts and camera if self.headless == False: # subscribe to keyboard shortcuts self.viewer = self.gym.create_viewer( self.sim, gymapi.CameraProperties()) self.gym.subscribe_viewer_keyboard_event( self.viewer, gymapi.KEY_ESCAPE, "QUIT") self.gym.subscribe_viewer_keyboard_event( self.viewer, gymapi.KEY_V, "toggle_viewer_sync") self.gym.subscribe_viewer_keyboard_event( self.viewer, gymapi.KEY_R, "record_frames") # set the camera position based on up axis sim_params = self.gym.get_sim_params(self.sim) if sim_params.up_axis == gymapi.UP_AXIS_Z: cam_pos = gymapi.Vec3(20.0, 25.0, 3.0) cam_target = gymapi.Vec3(10.0, 15.0, 0.0) else: cam_pos = gymapi.Vec3(20.0, 3.0, 25.0) cam_target = gymapi.Vec3(10.0, 0.0, 15.0) self.gym.viewer_camera_look_at( self.viewer, None, cam_pos, cam_target) def allocate_buffers(self): """Allocate the observation, states, etc. buffers. These are what is used to set observations and states in the environment classes which inherit from this one, and are read in `step` and other related functions. """ # allocate buffers self.obs_buf = torch.zeros( (self.num_envs, self.num_obs), device=self.device, dtype=torch.float) self.states_buf = torch.zeros( (self.num_envs, self.num_states), device=self.device, dtype=torch.float) self.rew_buf = torch.zeros( self.num_envs, device=self.device, dtype=torch.float) self.reset_buf = torch.ones( self.num_envs, device=self.device, dtype=torch.long) self.timeout_buf = torch.zeros( self.num_envs, device=self.device, dtype=torch.long) self.progress_buf = torch.zeros( self.num_envs, device=self.device, dtype=torch.long) self.randomize_buf = torch.zeros( self.num_envs, device=self.device, dtype=torch.long) self.extras = {} def create_sim(self, compute_device: int, graphics_device: int, physics_engine, sim_params: gymapi.SimParams): """Create an Isaac Gym sim object. Args: compute_device: ID of compute device to use. graphics_device: ID of graphics device to use. physics_engine: physics engine to use (`gymapi.SIM_PHYSX` or `gymapi.SIM_FLEX`) sim_params: sim params to use. Returns: the Isaac Gym sim object. """ sim = _create_sim_once(self.gym, compute_device, graphics_device, physics_engine, sim_params) if sim is None: print("*** Failed to create sim") quit() return sim def get_state(self): """Returns the state buffer of the environment (the privileged observations for asymmetric training).""" return torch.clamp(self.states_buf, -self.clip_obs, self.clip_obs).to(self.rl_device) @abc.abstractmethod def pre_physics_step(self, actions: torch.Tensor): """Apply the actions to the environment (eg by setting torques, position targets). Args: actions: the actions to apply """ @abc.abstractmethod def post_physics_step(self): """Compute reward and observations, reset any environments that require it.""" def step(self, actions: torch.Tensor) -> Tuple[Dict[str, torch.Tensor], torch.Tensor, torch.Tensor, Dict[str, Any]]: """Step the physics of the environment. Args: actions: actions to apply Returns: Observations, rewards, resets, info Observations are dict of observations (currently only one member called 'obs') """ # randomize actions if self.dr_randomizations.get('actions', None): actions = self.dr_randomizations['actions']['noise_lambda'](actions) action_tensor = torch.clamp(actions, -self.clip_actions, self.clip_actions) # apply actions self.pre_physics_step(action_tensor) # step physics and render each frame for i in range(self.control_freq_inv): if self.force_render: self.render() self.gym.simulate(self.sim) # to fix! if self.device == 'cpu': self.gym.fetch_results(self.sim, True) # compute observations, rewards, resets, ... self.post_physics_step() self.control_steps += 1 # fill time out buffer: set to 1 if we reached the max episode length AND the reset buffer is 1. Timeout == 1 makes sense only if the reset buffer is 1. self.timeout_buf = (self.progress_buf >= self.max_episode_length - 1) & (self.reset_buf != 0) # randomize observations if self.dr_randomizations.get('observations', None): self.obs_buf = self.dr_randomizations['observations']['noise_lambda'](self.obs_buf) self.extras["time_outs"] = self.timeout_buf.to(self.rl_device) self.obs_dict["obs"] = torch.clamp(self.obs_buf, -self.clip_obs, self.clip_obs).to(self.rl_device) # asymmetric actor-critic if self.num_states > 0: self.obs_dict["states"] = self.get_state() return self.obs_dict, self.rew_buf.to(self.rl_device), self.reset_buf.to(self.rl_device), self.extras def zero_actions(self) -> torch.Tensor: """Returns a buffer with zero actions. Returns: A buffer of zero torch actions """ actions = torch.zeros([self.num_envs, self.num_actions], dtype=torch.float32, device=self.rl_device) return actions def reset_idx(self, env_idx): """Reset environment with indces in env_idx. Should be implemented in an environment class inherited from VecTask. """ pass def reset(self): """Is called only once when environment starts to provide the first observations. Doesn't calculate observations. Actual reset and observation calculation need to be implemented by user. Returns: Observation dictionary """ self.obs_dict["obs"] = torch.clamp(self.obs_buf, -self.clip_obs, self.clip_obs).to(self.rl_device) # asymmetric actor-critic if self.num_states > 0: self.obs_dict["states"] = self.get_state() return self.obs_dict def reset_done(self): """Reset the environment. Returns: Observation dictionary, indices of environments being reset """ done_env_ids = self.reset_buf.nonzero(as_tuple=False).flatten() if len(done_env_ids) > 0: self.reset_idx(done_env_ids) self.obs_dict["obs"] = torch.clamp(self.obs_buf, -self.clip_obs, self.clip_obs).to(self.rl_device) # asymmetric actor-critic if self.num_states > 0: self.obs_dict["states"] = self.get_state() return self.obs_dict, done_env_ids def render(self, mode="rgb_array"): """Draw the frame to the viewer, and check for keyboard events.""" if self.viewer: # check for window closed if self.gym.query_viewer_has_closed(self.viewer): sys.exit() # check for keyboard events for evt in self.gym.query_viewer_action_events(self.viewer): if evt.action == "QUIT" and evt.value > 0: sys.exit() elif evt.action == "toggle_viewer_sync" and evt.value > 0: self.enable_viewer_sync = not self.enable_viewer_sync elif evt.action == "record_frames" and evt.value > 0: self.record_frames = not self.record_frames # fetch results if self.device != 'cpu': self.gym.fetch_results(self.sim, True) # step graphics if self.enable_viewer_sync: self.gym.step_graphics(self.sim) self.gym.draw_viewer(self.viewer, self.sim, True) # Wait for dt to elapse in real time. # This synchronizes the physics simulation with the rendering rate. self.gym.sync_frame_time(self.sim) # it seems like in some cases sync_frame_time still results in higher-than-realtime framerate # this code will slow down the rendering to real time now = time.time() delta = now - self.last_frame_time if self.render_fps < 0: # render at control frequency render_dt = self.dt * self.control_freq_inv # render every control step else: render_dt = 1.0 / self.render_fps if delta < render_dt: time.sleep(render_dt - delta) self.last_frame_time = time.time() else: self.gym.poll_viewer_events(self.viewer) if self.record_frames: if not os.path.isdir(self.record_frames_dir): os.makedirs(self.record_frames_dir, exist_ok=True) self.gym.write_viewer_image_to_file(self.viewer, join(self.record_frames_dir, f"frame_{self.control_steps}.png")) if self.virtual_display and mode == "rgb_array": img = self.virtual_display.grab() return np.array(img) def __parse_sim_params(self, physics_engine: str, config_sim: Dict[str, Any]) -> gymapi.SimParams: """Parse the config dictionary for physics stepping settings. Args: physics_engine: which physics engine to use. "physx" or "flex" config_sim: dict of sim configuration parameters Returns IsaacGym SimParams object with updated settings. """ sim_params = gymapi.SimParams() # check correct up-axis if config_sim["up_axis"] not in ["z", "y"]: msg = f"Invalid physics up-axis: {config_sim['up_axis']}" print(msg) raise ValueError(msg) # assign general sim parameters sim_params.dt = config_sim["dt"] sim_params.num_client_threads = config_sim.get("num_client_threads", 0) sim_params.use_gpu_pipeline = config_sim["use_gpu_pipeline"] sim_params.substeps = config_sim.get("substeps", 2) # assign up-axis if config_sim["up_axis"] == "z": sim_params.up_axis = gymapi.UP_AXIS_Z else: sim_params.up_axis = gymapi.UP_AXIS_Y # assign gravity sim_params.gravity = gymapi.Vec3(*config_sim["gravity"]) # configure physics parameters if physics_engine == "physx": # set the parameters if "physx" in config_sim: for opt in config_sim["physx"].keys(): if opt == "contact_collection": setattr(sim_params.physx, opt, gymapi.ContactCollection(config_sim["physx"][opt])) else: setattr(sim_params.physx, opt, config_sim["physx"][opt]) else: # set the parameters if "flex" in config_sim: for opt in config_sim["flex"].keys(): setattr(sim_params.flex, opt, config_sim["flex"][opt]) # return the configured params return sim_params """ Domain Randomization methods """ def get_actor_params_info(self, dr_params: Dict[str, Any], env): """Generate a flat array of actor params, their names and ranges. Returns: The array """ if "actor_params" not in dr_params: return None params = [] names = [] lows = [] highs = [] param_getters_map = get_property_getter_map(self.gym) for actor, actor_properties in dr_params["actor_params"].items(): handle = self.gym.find_actor_handle(env, actor) for prop_name, prop_attrs in actor_properties.items(): if prop_name == 'color': continue # this is set randomly props = param_getters_map[prop_name](env, handle) if not isinstance(props, list): props = [props] for prop_idx, prop in enumerate(props): for attr, attr_randomization_params in prop_attrs.items(): name = prop_name+'_' + str(prop_idx) + '_'+attr lo_hi = attr_randomization_params['range'] distr = attr_randomization_params['distribution'] if 'uniform' not in distr: lo_hi = (-1.0*float('Inf'), float('Inf')) if isinstance(prop, np.ndarray): for attr_idx in range(prop[attr].shape[0]): params.append(prop[attr][attr_idx]) names.append(name+'_'+str(attr_idx)) lows.append(lo_hi[0]) highs.append(lo_hi[1]) else: params.append(getattr(prop, attr)) names.append(name) lows.append(lo_hi[0]) highs.append(lo_hi[1]) return params, names, lows, highs def apply_randomizations(self, dr_params): """Apply domain randomizations to the environment. Note that currently we can only apply randomizations only on resets, due to current PhysX limitations Args: dr_params: parameters for domain randomization to use. """ # If we don't have a randomization frequency, randomize every step rand_freq = dr_params.get("frequency", 1) # First, determine what to randomize: # - non-environment parameters when > frequency steps have passed since the last non-environment # - physical environments in the reset buffer, which have exceeded the randomization frequency threshold # - on the first call, randomize everything self.last_step = self.gym.get_frame_count(self.sim) if self.first_randomization: do_nonenv_randomize = True env_ids = list(range(self.num_envs)) else: do_nonenv_randomize = (self.last_step - self.last_rand_step) >= rand_freq rand_envs = torch.where(self.randomize_buf >= rand_freq, torch.ones_like(self.randomize_buf), torch.zeros_like(self.randomize_buf)) rand_envs = torch.logical_and(rand_envs, self.reset_buf) env_ids = torch.nonzero(rand_envs, as_tuple=False).squeeze(-1).tolist() self.randomize_buf[rand_envs] = 0 if do_nonenv_randomize: self.last_rand_step = self.last_step param_setters_map = get_property_setter_map(self.gym) param_setter_defaults_map = get_default_setter_args(self.gym) param_getters_map = get_property_getter_map(self.gym) # On first iteration, check the number of buckets if self.first_randomization: check_buckets(self.gym, self.envs, dr_params) for nonphysical_param in ["observations", "actions"]: if nonphysical_param in dr_params and do_nonenv_randomize: dist = dr_params[nonphysical_param]["distribution"] op_type = dr_params[nonphysical_param]["operation"] sched_type = dr_params[nonphysical_param]["schedule"] if "schedule" in dr_params[nonphysical_param] else None sched_step = dr_params[nonphysical_param]["schedule_steps"] if "schedule" in dr_params[nonphysical_param] else None op = operator.add if op_type == 'additive' else operator.mul if sched_type == 'linear': sched_scaling = 1.0 / sched_step * \ min(self.last_step, sched_step) elif sched_type == 'constant': sched_scaling = 0 if self.last_step < sched_step else 1 else: sched_scaling = 1 if dist == 'gaussian': mu, var = dr_params[nonphysical_param]["range"] mu_corr, var_corr = dr_params[nonphysical_param].get("range_correlated", [0., 0.]) if op_type == 'additive': mu *= sched_scaling var *= sched_scaling mu_corr *= sched_scaling var_corr *= sched_scaling elif op_type == 'scaling': var = var * sched_scaling # scale up var over time mu = mu * sched_scaling + 1.0 * \ (1.0 - sched_scaling) # linearly interpolate var_corr = var_corr * sched_scaling # scale up var over time mu_corr = mu_corr * sched_scaling + 1.0 * \ (1.0 - sched_scaling) # linearly interpolate def noise_lambda(tensor, param_name=nonphysical_param): params = self.dr_randomizations[param_name] corr = params.get('corr', None) if corr is None: corr = torch.randn_like(tensor) params['corr'] = corr corr = corr * params['var_corr'] + params['mu_corr'] return op( tensor, corr + torch.randn_like(tensor) * params['var'] + params['mu']) self.dr_randomizations[nonphysical_param] = {'mu': mu, 'var': var, 'mu_corr': mu_corr, 'var_corr': var_corr, 'noise_lambda': noise_lambda} elif dist == 'uniform': lo, hi = dr_params[nonphysical_param]["range"] lo_corr, hi_corr = dr_params[nonphysical_param].get("range_correlated", [0., 0.]) if op_type == 'additive': lo *= sched_scaling hi *= sched_scaling lo_corr *= sched_scaling hi_corr *= sched_scaling elif op_type == 'scaling': lo = lo * sched_scaling + 1.0 * (1.0 - sched_scaling) hi = hi * sched_scaling + 1.0 * (1.0 - sched_scaling) lo_corr = lo_corr * sched_scaling + 1.0 * (1.0 - sched_scaling) hi_corr = hi_corr * sched_scaling + 1.0 * (1.0 - sched_scaling) def noise_lambda(tensor, param_name=nonphysical_param): params = self.dr_randomizations[param_name] corr = params.get('corr', None) if corr is None: corr = torch.randn_like(tensor) params['corr'] = corr corr = corr * (params['hi_corr'] - params['lo_corr']) + params['lo_corr'] return op(tensor, corr + torch.rand_like(tensor) * (params['hi'] - params['lo']) + params['lo']) self.dr_randomizations[nonphysical_param] = {'lo': lo, 'hi': hi, 'lo_corr': lo_corr, 'hi_corr': hi_corr, 'noise_lambda': noise_lambda} if "sim_params" in dr_params and do_nonenv_randomize: prop_attrs = dr_params["sim_params"] prop = self.gym.get_sim_params(self.sim) if self.first_randomization: self.original_props["sim_params"] = { attr: getattr(prop, attr) for attr in dir(prop)} for attr, attr_randomization_params in prop_attrs.items(): apply_random_samples( prop, self.original_props["sim_params"], attr, attr_randomization_params, self.last_step) self.gym.set_sim_params(self.sim, prop) # If self.actor_params_generator is initialized: use it to # sample actor simulation params. This gives users the # freedom to generate samples from arbitrary distributions, # e.g. use full-covariance distributions instead of the DR's # default of treating each simulation parameter independently. extern_offsets = {} if self.actor_params_generator is not None: for env_id in env_ids: self.extern_actor_params[env_id] = \ self.actor_params_generator.sample() extern_offsets[env_id] = 0 # randomise all attributes of each actor (hand, cube etc..) # actor_properties are (stiffness, damping etc..) # Loop over actors, then loop over envs, then loop over their props # and lastly loop over the ranges of the params for actor, actor_properties in dr_params["actor_params"].items(): # Loop over all envs as this part is not tensorised yet for env_id in env_ids: env = self.envs[env_id] handle = self.gym.find_actor_handle(env, actor) extern_sample = self.extern_actor_params[env_id] # randomise dof_props, rigid_body, rigid_shape properties # all obtained from the YAML file # EXAMPLE: prop name: dof_properties, rigid_body_properties, rigid_shape properties # prop_attrs: # {'damping': {'range': [0.3, 3.0], 'operation': 'scaling', 'distribution': 'loguniform'} # {'stiffness': {'range': [0.75, 1.5], 'operation': 'scaling', 'distribution': 'loguniform'} for prop_name, prop_attrs in actor_properties.items(): if prop_name == 'color': num_bodies = self.gym.get_actor_rigid_body_count( env, handle) for n in range(num_bodies): self.gym.set_rigid_body_color(env, handle, n, gymapi.MESH_VISUAL, gymapi.Vec3(random.uniform(0, 1), random.uniform(0, 1), random.uniform(0, 1))) continue if prop_name == 'scale': setup_only = prop_attrs.get('setup_only', False) if (setup_only and not self.sim_initialized) or not setup_only: attr_randomization_params = prop_attrs sample = generate_random_samples(attr_randomization_params, 1, self.last_step, None) og_scale = 1 if attr_randomization_params['operation'] == 'scaling': new_scale = og_scale * sample elif attr_randomization_params['operation'] == 'additive': new_scale = og_scale + sample self.gym.set_actor_scale(env, handle, new_scale) continue prop = param_getters_map[prop_name](env, handle) set_random_properties = True if isinstance(prop, list): if self.first_randomization: self.original_props[prop_name] = [ {attr: getattr(p, attr) for attr in dir(p)} for p in prop] for p, og_p in zip(prop, self.original_props[prop_name]): for attr, attr_randomization_params in prop_attrs.items(): setup_only = attr_randomization_params.get('setup_only', False) if (setup_only and not self.sim_initialized) or not setup_only: smpl = None if self.actor_params_generator is not None: smpl, extern_offsets[env_id] = get_attr_val_from_sample( extern_sample, extern_offsets[env_id], p, attr) apply_random_samples( p, og_p, attr, attr_randomization_params, self.last_step, smpl) else: set_random_properties = False else: if self.first_randomization: self.original_props[prop_name] = deepcopy(prop) for attr, attr_randomization_params in prop_attrs.items(): setup_only = attr_randomization_params.get('setup_only', False) if (setup_only and not self.sim_initialized) or not setup_only: smpl = None if self.actor_params_generator is not None: smpl, extern_offsets[env_id] = get_attr_val_from_sample( extern_sample, extern_offsets[env_id], prop, attr) apply_random_samples( prop, self.original_props[prop_name], attr, attr_randomization_params, self.last_step, smpl) else: set_random_properties = False if set_random_properties: setter = param_setters_map[prop_name] default_args = param_setter_defaults_map[prop_name] setter(env, handle, prop, *default_args) if self.actor_params_generator is not None: for env_id in env_ids: # check that we used all dims in sample if extern_offsets[env_id] > 0: extern_sample = self.extern_actor_params[env_id] if extern_offsets[env_id] != extern_sample.shape[0]: print('env_id', env_id, 'extern_offset', extern_offsets[env_id], 'vs extern_sample.shape', extern_sample.shape) raise Exception("Invalid extern_sample size") self.first_randomization = False
37,452
Python
43.586905
160
0.569476
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/tasks/factory/factory_base.py
# Copyright (c) 2021-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Factory: base class. Inherits Gym's VecTask class and abstract base class. Inherited by environment classes. Not directly executed. Configuration defined in FactoryBase.yaml. Asset info defined in factory_asset_info_franka_table.yaml. """ import hydra import math import numpy as np import os import sys import torch from gym import logger from isaacgym import gymapi, gymtorch from isaacgymenvs.utils import torch_jit_utils as torch_utils from isaacgymenvs.tasks.base.vec_task import VecTask import isaacgymenvs.tasks.factory.factory_control as fc from isaacgymenvs.tasks.factory.factory_schema_class_base import FactoryABCBase from isaacgymenvs.tasks.factory.factory_schema_config_base import FactorySchemaConfigBase class FactoryBase(VecTask, FactoryABCBase): def __init__(self, cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render): """Initialize instance variables. Initialize VecTask superclass.""" self.cfg = cfg self.cfg['headless'] = headless self._get_base_yaml_params() if self.cfg_base.mode.export_scene: sim_device = 'cpu' super().__init__(cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render) # create_sim() is called here def _get_base_yaml_params(self): """Initialize instance variables from YAML files.""" cs = hydra.core.config_store.ConfigStore.instance() cs.store(name='factory_schema_config_base', node=FactorySchemaConfigBase) config_path = 'task/FactoryBase.yaml' # relative to Gym's Hydra search path (cfg dir) self.cfg_base = hydra.compose(config_name=config_path) self.cfg_base = self.cfg_base['task'] # strip superfluous nesting asset_info_path = '../../assets/factory/yaml/factory_asset_info_franka_table.yaml' # relative to Gym's Hydra search path (cfg dir) self.asset_info_franka_table = hydra.compose(config_name=asset_info_path) self.asset_info_franka_table = self.asset_info_franka_table['']['']['']['']['']['']['assets']['factory']['yaml'] # strip superfluous nesting def create_sim(self): """Set sim and PhysX params. Create sim object, ground plane, and envs.""" if self.cfg_base.mode.export_scene: self.sim_params.use_gpu_pipeline = False self.sim = super().create_sim(compute_device=self.device_id, graphics_device=self.graphics_device_id, physics_engine=self.physics_engine, sim_params=self.sim_params) self._create_ground_plane() self.create_envs() # defined in subclass def _create_ground_plane(self): """Set ground plane params. Add plane.""" plane_params = gymapi.PlaneParams() plane_params.normal = gymapi.Vec3(0.0, 0.0, 1.0) plane_params.distance = 0.0 # default = 0.0 plane_params.static_friction = 1.0 # default = 1.0 plane_params.dynamic_friction = 1.0 # default = 1.0 plane_params.restitution = 0.0 # default = 0.0 self.gym.add_ground(self.sim, plane_params) def import_franka_assets(self): """Set Franka and table asset options. Import assets.""" urdf_root = os.path.join(os.path.dirname(__file__), '..', '..', '..', 'assets', 'factory', 'urdf') franka_file = 'factory_franka.urdf' franka_options = gymapi.AssetOptions() franka_options.flip_visual_attachments = True franka_options.fix_base_link = True franka_options.collapse_fixed_joints = False franka_options.thickness = 0.0 # default = 0.02 franka_options.density = 1000.0 # default = 1000.0 franka_options.armature = 0.01 # default = 0.0 franka_options.use_physx_armature = True if self.cfg_base.sim.add_damping: franka_options.linear_damping = 1.0 # default = 0.0; increased to improve stability franka_options.max_linear_velocity = 1.0 # default = 1000.0; reduced to prevent CUDA errors franka_options.angular_damping = 5.0 # default = 0.5; increased to improve stability franka_options.max_angular_velocity = 2 * math.pi # default = 64.0; reduced to prevent CUDA errors else: franka_options.linear_damping = 0.0 # default = 0.0 franka_options.max_linear_velocity = 1000.0 # default = 1000.0 franka_options.angular_damping = 0.5 # default = 0.5 franka_options.max_angular_velocity = 64.0 # default = 64.0 franka_options.disable_gravity = True franka_options.enable_gyroscopic_forces = True franka_options.default_dof_drive_mode = gymapi.DOF_MODE_NONE franka_options.use_mesh_materials = True if self.cfg_base.mode.export_scene: franka_options.mesh_normal_mode = gymapi.COMPUTE_PER_FACE table_options = gymapi.AssetOptions() table_options.flip_visual_attachments = False # default = False table_options.fix_base_link = True table_options.thickness = 0.0 # default = 0.02 table_options.density = 1000.0 # default = 1000.0 table_options.armature = 0.0 # default = 0.0 table_options.use_physx_armature = True table_options.linear_damping = 0.0 # default = 0.0 table_options.max_linear_velocity = 1000.0 # default = 1000.0 table_options.angular_damping = 0.0 # default = 0.5 table_options.max_angular_velocity = 64.0 # default = 64.0 table_options.disable_gravity = False table_options.enable_gyroscopic_forces = True table_options.default_dof_drive_mode = gymapi.DOF_MODE_NONE table_options.use_mesh_materials = False if self.cfg_base.mode.export_scene: table_options.mesh_normal_mode = gymapi.COMPUTE_PER_FACE franka_asset = self.gym.load_asset(self.sim, urdf_root, franka_file, franka_options) table_asset = self.gym.create_box(self.sim, self.asset_info_franka_table.table_depth, self.asset_info_franka_table.table_width, self.cfg_base.env.table_height, table_options) return franka_asset, table_asset def acquire_base_tensors(self): """Acquire and wrap tensors. Create views.""" _root_state = self.gym.acquire_actor_root_state_tensor(self.sim) # shape = (num_envs * num_actors, 13) _body_state = self.gym.acquire_rigid_body_state_tensor(self.sim) # shape = (num_envs * num_bodies, 13) _dof_state = self.gym.acquire_dof_state_tensor(self.sim) # shape = (num_envs * num_dofs, 2) _dof_force = self.gym.acquire_dof_force_tensor(self.sim) # shape = (num_envs * num_dofs, 1) _contact_force = self.gym.acquire_net_contact_force_tensor(self.sim) # shape = (num_envs * num_bodies, 3) _jacobian = self.gym.acquire_jacobian_tensor(self.sim, 'franka') # shape = (num envs, num_bodies, 6, num_dofs) _mass_matrix = self.gym.acquire_mass_matrix_tensor(self.sim, 'franka') # shape = (num_envs, num_dofs, num_dofs) self.root_state = gymtorch.wrap_tensor(_root_state) self.body_state = gymtorch.wrap_tensor(_body_state) self.dof_state = gymtorch.wrap_tensor(_dof_state) self.dof_force = gymtorch.wrap_tensor(_dof_force) self.contact_force = gymtorch.wrap_tensor(_contact_force) self.jacobian = gymtorch.wrap_tensor(_jacobian) self.mass_matrix = gymtorch.wrap_tensor(_mass_matrix) self.root_pos = self.root_state.view(self.num_envs, self.num_actors, 13)[..., 0:3] self.root_quat = self.root_state.view(self.num_envs, self.num_actors, 13)[..., 3:7] self.root_linvel = self.root_state.view(self.num_envs, self.num_actors, 13)[..., 7:10] self.root_angvel = self.root_state.view(self.num_envs, self.num_actors, 13)[..., 10:13] self.body_pos = self.body_state.view(self.num_envs, self.num_bodies, 13)[..., 0:3] self.body_quat = self.body_state.view(self.num_envs, self.num_bodies, 13)[..., 3:7] self.body_linvel = self.body_state.view(self.num_envs, self.num_bodies, 13)[..., 7:10] self.body_angvel = self.body_state.view(self.num_envs, self.num_bodies, 13)[..., 10:13] self.dof_pos = self.dof_state.view(self.num_envs, self.num_dofs, 2)[..., 0] self.dof_vel = self.dof_state.view(self.num_envs, self.num_dofs, 2)[..., 1] self.dof_force_view = self.dof_force.view(self.num_envs, self.num_dofs, 1)[..., 0] self.contact_force = self.contact_force.view(self.num_envs, self.num_bodies, 3)[..., 0:3] self.arm_dof_pos = self.dof_pos[:, 0:7] self.arm_mass_matrix = self.mass_matrix[:, 0:7, 0:7] # for Franka arm (not gripper) self.hand_pos = self.body_pos[:, self.hand_body_id_env, 0:3] self.hand_quat = self.body_quat[:, self.hand_body_id_env, 0:4] self.hand_linvel = self.body_linvel[:, self.hand_body_id_env, 0:3] self.hand_angvel = self.body_angvel[:, self.hand_body_id_env, 0:3] self.hand_jacobian = self.jacobian[:, self.hand_body_id_env - 1, 0:6, 0:7] # minus 1 because base is fixed self.left_finger_pos = self.body_pos[:, self.left_finger_body_id_env, 0:3] self.left_finger_quat = self.body_quat[:, self.left_finger_body_id_env, 0:4] self.left_finger_linvel = self.body_linvel[:, self.left_finger_body_id_env, 0:3] self.left_finger_angvel = self.body_angvel[:, self.left_finger_body_id_env, 0:3] self.left_finger_jacobian = self.jacobian[:, self.left_finger_body_id_env - 1, 0:6, 0:7] # minus 1 because base is fixed self.right_finger_pos = self.body_pos[:, self.right_finger_body_id_env, 0:3] self.right_finger_quat = self.body_quat[:, self.right_finger_body_id_env, 0:4] self.right_finger_linvel = self.body_linvel[:, self.right_finger_body_id_env, 0:3] self.right_finger_angvel = self.body_angvel[:, self.right_finger_body_id_env, 0:3] self.right_finger_jacobian = self.jacobian[:, self.right_finger_body_id_env - 1, 0:6, 0:7] # minus 1 because base is fixed self.left_finger_force = self.contact_force[:, self.left_finger_body_id_env, 0:3] self.right_finger_force = self.contact_force[:, self.right_finger_body_id_env, 0:3] self.gripper_dof_pos = self.dof_pos[:, 7:9] self.fingertip_centered_pos = self.body_pos[:, self.fingertip_centered_body_id_env, 0:3] self.fingertip_centered_quat = self.body_quat[:, self.fingertip_centered_body_id_env, 0:4] self.fingertip_centered_linvel = self.body_linvel[:, self.fingertip_centered_body_id_env, 0:3] self.fingertip_centered_angvel = self.body_angvel[:, self.fingertip_centered_body_id_env, 0:3] self.fingertip_centered_jacobian = self.jacobian[:, self.fingertip_centered_body_id_env - 1, 0:6, 0:7] # minus 1 because base is fixed self.fingertip_midpoint_pos = self.fingertip_centered_pos.detach().clone() # initial value self.fingertip_midpoint_quat = self.fingertip_centered_quat # always equal self.fingertip_midpoint_linvel = self.fingertip_centered_linvel.detach().clone() # initial value # From sum of angular velocities (https://physics.stackexchange.com/questions/547698/understanding-addition-of-angular-velocity), # angular velocity of midpoint w.r.t. world is equal to sum of # angular velocity of midpoint w.r.t. hand and angular velocity of hand w.r.t. world. # Midpoint is in sliding contact (i.e., linear relative motion) with hand; angular velocity of midpoint w.r.t. hand is zero. # Thus, angular velocity of midpoint w.r.t. world is equal to angular velocity of hand w.r.t. world. self.fingertip_midpoint_angvel = self.fingertip_centered_angvel # always equal self.fingertip_midpoint_jacobian = (self.left_finger_jacobian + self.right_finger_jacobian) * 0.5 # approximation self.dof_torque = torch.zeros((self.num_envs, self.num_dofs), device=self.device) self.fingertip_contact_wrench = torch.zeros((self.num_envs, 6), device=self.device) self.ctrl_target_fingertip_midpoint_pos = torch.zeros((self.num_envs, 3), device=self.device) self.ctrl_target_fingertip_midpoint_quat = torch.zeros((self.num_envs, 4), device=self.device) self.ctrl_target_dof_pos = torch.zeros((self.num_envs, self.num_dofs), device=self.device) self.ctrl_target_gripper_dof_pos = torch.zeros((self.num_envs, 2), device=self.device) self.ctrl_target_fingertip_contact_wrench = torch.zeros((self.num_envs, 6), device=self.device) self.prev_actions = torch.zeros((self.num_envs, self.num_actions), device=self.device) def refresh_base_tensors(self): """Refresh tensors.""" # NOTE: Tensor refresh functions should be called once per step, before setters. self.gym.refresh_dof_state_tensor(self.sim) self.gym.refresh_actor_root_state_tensor(self.sim) self.gym.refresh_rigid_body_state_tensor(self.sim) self.gym.refresh_dof_force_tensor(self.sim) self.gym.refresh_net_contact_force_tensor(self.sim) self.gym.refresh_jacobian_tensors(self.sim) self.gym.refresh_mass_matrix_tensors(self.sim) self.finger_midpoint_pos = (self.left_finger_pos + self.right_finger_pos) * 0.5 self.fingertip_midpoint_pos = fc.translate_along_local_z(pos=self.finger_midpoint_pos, quat=self.hand_quat, offset=self.asset_info_franka_table.franka_finger_length, device=self.device) # TODO: Add relative velocity term (see https://dynamicsmotioncontrol487379916.files.wordpress.com/2020/11/21-me258pointmovingrigidbody.pdf) self.fingertip_midpoint_linvel = self.fingertip_centered_linvel + torch.cross(self.fingertip_centered_angvel, (self.fingertip_midpoint_pos - self.fingertip_centered_pos), dim=1) self.fingertip_midpoint_jacobian = (self.left_finger_jacobian + self.right_finger_jacobian) * 0.5 # approximation def parse_controller_spec(self): """Parse controller specification into lower-level controller configuration.""" cfg_ctrl_keys = {'num_envs', 'jacobian_type', 'gripper_prop_gains', 'gripper_deriv_gains', 'motor_ctrl_mode', 'gain_space', 'ik_method', 'joint_prop_gains', 'joint_deriv_gains', 'do_motion_ctrl', 'task_prop_gains', 'task_deriv_gains', 'do_inertial_comp', 'motion_ctrl_axes', 'do_force_ctrl', 'force_ctrl_method', 'wrench_prop_gains', 'force_ctrl_axes'} self.cfg_ctrl = {cfg_ctrl_key: None for cfg_ctrl_key in cfg_ctrl_keys} self.cfg_ctrl['num_envs'] = self.num_envs self.cfg_ctrl['jacobian_type'] = self.cfg_task.ctrl.all.jacobian_type self.cfg_ctrl['gripper_prop_gains'] = torch.tensor(self.cfg_task.ctrl.all.gripper_prop_gains, device=self.device).repeat((self.num_envs, 1)) self.cfg_ctrl['gripper_deriv_gains'] = torch.tensor(self.cfg_task.ctrl.all.gripper_deriv_gains, device=self.device).repeat((self.num_envs, 1)) ctrl_type = self.cfg_task.ctrl.ctrl_type if ctrl_type == 'gym_default': self.cfg_ctrl['motor_ctrl_mode'] = 'gym' self.cfg_ctrl['gain_space'] = 'joint' self.cfg_ctrl['ik_method'] = self.cfg_task.ctrl.gym_default.ik_method self.cfg_ctrl['joint_prop_gains'] = torch.tensor(self.cfg_task.ctrl.gym_default.joint_prop_gains, device=self.device).repeat((self.num_envs, 1)) self.cfg_ctrl['joint_deriv_gains'] = torch.tensor(self.cfg_task.ctrl.gym_default.joint_deriv_gains, device=self.device).repeat((self.num_envs, 1)) self.cfg_ctrl['gripper_prop_gains'] = torch.tensor(self.cfg_task.ctrl.gym_default.gripper_prop_gains, device=self.device).repeat((self.num_envs, 1)) self.cfg_ctrl['gripper_deriv_gains'] = torch.tensor(self.cfg_task.ctrl.gym_default.gripper_deriv_gains, device=self.device).repeat((self.num_envs, 1)) elif ctrl_type == 'joint_space_ik': self.cfg_ctrl['motor_ctrl_mode'] = 'manual' self.cfg_ctrl['gain_space'] = 'joint' self.cfg_ctrl['ik_method'] = self.cfg_task.ctrl.joint_space_ik.ik_method self.cfg_ctrl['joint_prop_gains'] = torch.tensor(self.cfg_task.ctrl.joint_space_ik.joint_prop_gains, device=self.device).repeat((self.num_envs, 1)) self.cfg_ctrl['joint_deriv_gains'] = torch.tensor(self.cfg_task.ctrl.joint_space_ik.joint_deriv_gains, device=self.device).repeat((self.num_envs, 1)) self.cfg_ctrl['do_inertial_comp'] = False elif ctrl_type == 'joint_space_id': self.cfg_ctrl['motor_ctrl_mode'] = 'manual' self.cfg_ctrl['gain_space'] = 'joint' self.cfg_ctrl['ik_method'] = self.cfg_task.ctrl.joint_space_id.ik_method self.cfg_ctrl['joint_prop_gains'] = torch.tensor(self.cfg_task.ctrl.joint_space_id.joint_prop_gains, device=self.device).repeat((self.num_envs, 1)) self.cfg_ctrl['joint_deriv_gains'] = torch.tensor(self.cfg_task.ctrl.joint_space_id.joint_deriv_gains, device=self.device).repeat((self.num_envs, 1)) self.cfg_ctrl['do_inertial_comp'] = True elif ctrl_type == 'task_space_impedance': self.cfg_ctrl['motor_ctrl_mode'] = 'manual' self.cfg_ctrl['gain_space'] = 'task' self.cfg_ctrl['do_motion_ctrl'] = True self.cfg_ctrl['task_prop_gains'] = torch.tensor(self.cfg_task.ctrl.task_space_impedance.task_prop_gains, device=self.device).repeat((self.num_envs, 1)) self.cfg_ctrl['task_deriv_gains'] = torch.tensor(self.cfg_task.ctrl.task_space_impedance.task_deriv_gains, device=self.device).repeat((self.num_envs, 1)) self.cfg_ctrl['do_inertial_comp'] = False self.cfg_ctrl['motion_ctrl_axes'] = torch.tensor(self.cfg_task.ctrl.task_space_impedance.motion_ctrl_axes, device=self.device).repeat((self.num_envs, 1)) self.cfg_ctrl['do_force_ctrl'] = False elif ctrl_type == 'operational_space_motion': self.cfg_ctrl['motor_ctrl_mode'] = 'manual' self.cfg_ctrl['gain_space'] = 'task' self.cfg_ctrl['do_motion_ctrl'] = True self.cfg_ctrl['task_prop_gains'] = torch.tensor(self.cfg_task.ctrl.operational_space_motion.task_prop_gains, device=self.device).repeat((self.num_envs, 1)) self.cfg_ctrl['task_deriv_gains'] = torch.tensor( self.cfg_task.ctrl.operational_space_motion.task_deriv_gains, device=self.device).repeat( (self.num_envs, 1)) self.cfg_ctrl['do_inertial_comp'] = True self.cfg_ctrl['motion_ctrl_axes'] = torch.tensor( self.cfg_task.ctrl.operational_space_motion.motion_ctrl_axes, device=self.device).repeat( (self.num_envs, 1)) self.cfg_ctrl['do_force_ctrl'] = False elif ctrl_type == 'open_loop_force': self.cfg_ctrl['motor_ctrl_mode'] = 'manual' self.cfg_ctrl['gain_space'] = 'task' self.cfg_ctrl['do_motion_ctrl'] = False self.cfg_ctrl['do_force_ctrl'] = True self.cfg_ctrl['force_ctrl_method'] = 'open' self.cfg_ctrl['force_ctrl_axes'] = torch.tensor(self.cfg_task.ctrl.open_loop_force.force_ctrl_axes, device=self.device).repeat((self.num_envs, 1)) elif ctrl_type == 'closed_loop_force': self.cfg_ctrl['motor_ctrl_mode'] = 'manual' self.cfg_ctrl['gain_space'] = 'task' self.cfg_ctrl['do_motion_ctrl'] = False self.cfg_ctrl['do_force_ctrl'] = True self.cfg_ctrl['force_ctrl_method'] = 'closed' self.cfg_ctrl['wrench_prop_gains'] = torch.tensor(self.cfg_task.ctrl.closed_loop_force.wrench_prop_gains, device=self.device).repeat((self.num_envs, 1)) self.cfg_ctrl['force_ctrl_axes'] = torch.tensor(self.cfg_task.ctrl.closed_loop_force.force_ctrl_axes, device=self.device).repeat((self.num_envs, 1)) elif ctrl_type == 'hybrid_force_motion': self.cfg_ctrl['motor_ctrl_mode'] = 'manual' self.cfg_ctrl['gain_space'] = 'task' self.cfg_ctrl['do_motion_ctrl'] = True self.cfg_ctrl['task_prop_gains'] = torch.tensor(self.cfg_task.ctrl.hybrid_force_motion.task_prop_gains, device=self.device).repeat((self.num_envs, 1)) self.cfg_ctrl['task_deriv_gains'] = torch.tensor(self.cfg_task.ctrl.hybrid_force_motion.task_deriv_gains, device=self.device).repeat((self.num_envs, 1)) self.cfg_ctrl['do_inertial_comp'] = True self.cfg_ctrl['motion_ctrl_axes'] = torch.tensor(self.cfg_task.ctrl.hybrid_force_motion.motion_ctrl_axes, device=self.device).repeat((self.num_envs, 1)) self.cfg_ctrl['do_force_ctrl'] = True self.cfg_ctrl['force_ctrl_method'] = 'closed' self.cfg_ctrl['wrench_prop_gains'] = torch.tensor(self.cfg_task.ctrl.hybrid_force_motion.wrench_prop_gains, device=self.device).repeat((self.num_envs, 1)) self.cfg_ctrl['force_ctrl_axes'] = torch.tensor(self.cfg_task.ctrl.hybrid_force_motion.force_ctrl_axes, device=self.device).repeat((self.num_envs, 1)) if self.cfg_ctrl['motor_ctrl_mode'] == 'gym': prop_gains = torch.cat((self.cfg_ctrl['joint_prop_gains'], self.cfg_ctrl['gripper_prop_gains']), dim=-1).to('cpu') deriv_gains = torch.cat((self.cfg_ctrl['joint_deriv_gains'], self.cfg_ctrl['gripper_deriv_gains']), dim=-1).to('cpu') # No tensor API for getting/setting actor DOF props; thus, loop required for env_ptr, franka_handle, prop_gain, deriv_gain in zip(self.env_ptrs, self.franka_handles, prop_gains, deriv_gains): franka_dof_props = self.gym.get_actor_dof_properties(env_ptr, franka_handle) franka_dof_props['driveMode'][:] = gymapi.DOF_MODE_POS franka_dof_props['stiffness'] = prop_gain franka_dof_props['damping'] = deriv_gain self.gym.set_actor_dof_properties(env_ptr, franka_handle, franka_dof_props) elif self.cfg_ctrl['motor_ctrl_mode'] == 'manual': # No tensor API for getting/setting actor DOF props; thus, loop required for env_ptr, franka_handle in zip(self.env_ptrs, self.franka_handles): franka_dof_props = self.gym.get_actor_dof_properties(env_ptr, franka_handle) franka_dof_props['driveMode'][:] = gymapi.DOF_MODE_EFFORT franka_dof_props['stiffness'][:] = 0.0 # zero passive stiffness franka_dof_props['damping'][:] = 0.0 # zero passive damping self.gym.set_actor_dof_properties(env_ptr, franka_handle, franka_dof_props) def generate_ctrl_signals(self): """Get Jacobian. Set Franka DOF position targets or DOF torques.""" # Get desired Jacobian if self.cfg_ctrl['jacobian_type'] == 'geometric': self.fingertip_midpoint_jacobian_tf = self.fingertip_midpoint_jacobian elif self.cfg_ctrl['jacobian_type'] == 'analytic': self.fingertip_midpoint_jacobian_tf = fc.get_analytic_jacobian( fingertip_quat=self.fingertip_quat, fingertip_jacobian=self.fingertip_midpoint_jacobian, num_envs=self.num_envs, device=self.device) # Set PD joint pos target or joint torque if self.cfg_ctrl['motor_ctrl_mode'] == 'gym': self._set_dof_pos_target() elif self.cfg_ctrl['motor_ctrl_mode'] == 'manual': self._set_dof_torque() def _set_dof_pos_target(self): """Set Franka DOF position target to move fingertips towards target pose.""" self.ctrl_target_dof_pos = fc.compute_dof_pos_target( cfg_ctrl=self.cfg_ctrl, arm_dof_pos=self.arm_dof_pos, fingertip_midpoint_pos=self.fingertip_midpoint_pos, fingertip_midpoint_quat=self.fingertip_midpoint_quat, jacobian=self.fingertip_midpoint_jacobian_tf, ctrl_target_fingertip_midpoint_pos=self.ctrl_target_fingertip_midpoint_pos, ctrl_target_fingertip_midpoint_quat=self.ctrl_target_fingertip_midpoint_quat, ctrl_target_gripper_dof_pos=self.ctrl_target_gripper_dof_pos, device=self.device) self.gym.set_dof_position_target_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.ctrl_target_dof_pos), gymtorch.unwrap_tensor(self.franka_actor_ids_sim), len(self.franka_actor_ids_sim)) def _set_dof_torque(self): """Set Franka DOF torque to move fingertips towards target pose.""" self.dof_torque = fc.compute_dof_torque( cfg_ctrl=self.cfg_ctrl, dof_pos=self.dof_pos, dof_vel=self.dof_vel, fingertip_midpoint_pos=self.fingertip_midpoint_pos, fingertip_midpoint_quat=self.fingertip_midpoint_quat, fingertip_midpoint_linvel=self.fingertip_midpoint_linvel, fingertip_midpoint_angvel=self.fingertip_midpoint_angvel, left_finger_force=self.left_finger_force, right_finger_force=self.right_finger_force, jacobian=self.fingertip_midpoint_jacobian_tf, arm_mass_matrix=self.arm_mass_matrix, ctrl_target_gripper_dof_pos=self.ctrl_target_gripper_dof_pos, ctrl_target_fingertip_midpoint_pos=self.ctrl_target_fingertip_midpoint_pos, ctrl_target_fingertip_midpoint_quat=self.ctrl_target_fingertip_midpoint_quat, ctrl_target_fingertip_contact_wrench=self.ctrl_target_fingertip_contact_wrench, device=self.device) self.gym.set_dof_actuation_force_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.dof_torque), gymtorch.unwrap_tensor(self.franka_actor_ids_sim), len(self.franka_actor_ids_sim)) def print_sdf_warning(self): """Generate SDF warning message.""" logger.warn('Please be patient: SDFs may be generating, which may take a few minutes. Terminating prematurely may result in a corrupted SDF cache.') def enable_gravity(self, gravity_mag): """Enable gravity.""" sim_params = self.gym.get_sim_params(self.sim) sim_params.gravity.z = -gravity_mag self.gym.set_sim_params(self.sim, sim_params) def disable_gravity(self): """Disable gravity.""" sim_params = self.gym.get_sim_params(self.sim) sim_params.gravity.z = 0.0 self.gym.set_sim_params(self.sim, sim_params) def export_scene(self, label): """Export scene to USD.""" usd_export_options = gymapi.UsdExportOptions() usd_export_options.export_physics = False usd_exporter = self.gym.create_usd_exporter(usd_export_options) self.gym.export_usd_sim(usd_exporter, self.sim, label) sys.exit() def extract_poses(self): """Extract poses of all bodies.""" if not hasattr(self, 'export_pos'): self.export_pos = [] self.export_rot = [] self.frame_count = 0 pos = self.body_pos rot = self.body_quat self.export_pos.append(pos.cpu().numpy().copy()) self.export_rot.append(rot.cpu().numpy().copy()) self.frame_count += 1 if len(self.export_pos) == self.max_episode_length: output_dir = self.__class__.__name__ save_dir = os.path.join('usd', output_dir) os.makedirs(output_dir, exist_ok=True) print(f'Exporting poses to {output_dir}...') np.save(os.path.join(save_dir, 'body_position.npy'), np.array(self.export_pos)) np.save(os.path.join(save_dir, 'body_rotation.npy'), np.array(self.export_rot)) print('Export completed.') sys.exit()
32,041
Python
58.668529
156
0.601635
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/tasks/factory/factory_env_gears.py
# Copyright (c) 2021-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Factory: class for gears env. Inherits base class and abstract environment class. Inherited by gear task class. Not directly executed. Configuration defined in FactoryEnvGears.yaml. Asset info defined in factory_asset_info_gears.yaml. """ import hydra import numpy as np import os import torch from isaacgym import gymapi from isaacgymenvs.tasks.factory.factory_base import FactoryBase import isaacgymenvs.tasks.factory.factory_control as fc from isaacgymenvs.tasks.factory.factory_schema_class_env import FactoryABCEnv from isaacgymenvs.tasks.factory.factory_schema_config_env import FactorySchemaConfigEnv class FactoryEnvGears(FactoryBase, FactoryABCEnv): def __init__(self, cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render): """Initialize instance variables. Initialize environment superclass. Acquire tensors.""" self._get_env_yaml_params() super().__init__(cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render) self.acquire_base_tensors() # defined in superclass self._acquire_env_tensors() self.refresh_base_tensors() # defined in superclass self.refresh_env_tensors() def _get_env_yaml_params(self): """Initialize instance variables from YAML files.""" cs = hydra.core.config_store.ConfigStore.instance() cs.store(name='factory_schema_config_env', node=FactorySchemaConfigEnv) config_path = 'task/FactoryEnvGears.yaml' # relative to Gym's Hydra search path (cfg dir) self.cfg_env = hydra.compose(config_name=config_path) self.cfg_env = self.cfg_env['task'] # strip superfluous nesting asset_info_path = '../../assets/factory/yaml/factory_asset_info_gears.yaml' # relative to Hydra search path (cfg dir) self.asset_info_gears = hydra.compose(config_name=asset_info_path) self.asset_info_gears = self.asset_info_gears['']['']['']['']['']['']['assets']['factory']['yaml'] # strip superfluous nesting def create_envs(self): """Set env options. Import assets. Create actors.""" lower = gymapi.Vec3(-self.cfg_base.env.env_spacing, -self.cfg_base.env.env_spacing, 0.0) upper = gymapi.Vec3(self.cfg_base.env.env_spacing, self.cfg_base.env.env_spacing, self.cfg_base.env.env_spacing) num_per_row = int(np.sqrt(self.num_envs)) self.print_sdf_warning() franka_asset, table_asset = self.import_franka_assets() gear_small_asset, gear_medium_asset, gear_large_asset, base_asset = self._import_env_assets() self._create_actors(lower, upper, num_per_row, franka_asset, gear_small_asset, gear_medium_asset, gear_large_asset, base_asset, table_asset) def _import_env_assets(self): """Set gear and base asset options. Import assets.""" urdf_root = os.path.join(os.path.dirname(__file__), '..', '..', '..', 'assets', 'factory', 'urdf') gear_small_file = 'factory_gear_small.urdf' gear_medium_file = 'factory_gear_medium.urdf' gear_large_file = 'factory_gear_large.urdf' if self.cfg_env.env.tight_or_loose == 'tight': base_file = 'factory_gear_base_tight.urdf' elif self.cfg_env.env.tight_or_loose == 'loose': base_file = 'factory_gear_base_loose.urdf' gear_options = gymapi.AssetOptions() gear_options.flip_visual_attachments = False gear_options.fix_base_link = False gear_options.thickness = 0.0 # default = 0.02 gear_options.density = self.cfg_env.env.gears_density # default = 1000.0 gear_options.armature = 0.0 # default = 0.0 gear_options.use_physx_armature = True gear_options.linear_damping = 0.0 # default = 0.0 gear_options.max_linear_velocity = 1000.0 # default = 1000.0 gear_options.angular_damping = 0.0 # default = 0.5 gear_options.max_angular_velocity = 64.0 # default = 64.0 gear_options.disable_gravity = False gear_options.enable_gyroscopic_forces = True gear_options.default_dof_drive_mode = gymapi.DOF_MODE_NONE gear_options.use_mesh_materials = False if self.cfg_base.mode.export_scene: gear_options.mesh_normal_mode = gymapi.COMPUTE_PER_FACE base_options = gymapi.AssetOptions() base_options.flip_visual_attachments = False base_options.fix_base_link = True base_options.thickness = 0.0 # default = 0.02 base_options.density = self.cfg_env.env.base_density # default = 1000.0 base_options.armature = 0.0 # default = 0.0 base_options.use_physx_armature = True base_options.linear_damping = 0.0 # default = 0.0 base_options.max_linear_velocity = 1000.0 # default = 1000.0 base_options.angular_damping = 0.0 # default = 0.5 base_options.max_angular_velocity = 64.0 # default = 64.0 base_options.disable_gravity = False base_options.enable_gyroscopic_forces = True base_options.default_dof_drive_mode = gymapi.DOF_MODE_NONE base_options.use_mesh_materials = False if self.cfg_base.mode.export_scene: base_options.mesh_normal_mode = gymapi.COMPUTE_PER_FACE gear_small_asset = self.gym.load_asset(self.sim, urdf_root, gear_small_file, gear_options) gear_medium_asset = self.gym.load_asset(self.sim, urdf_root, gear_medium_file, gear_options) gear_large_asset = self.gym.load_asset(self.sim, urdf_root, gear_large_file, gear_options) base_asset = self.gym.load_asset(self.sim, urdf_root, base_file, base_options) return gear_small_asset, gear_medium_asset, gear_large_asset, base_asset def _create_actors(self, lower, upper, num_per_row, franka_asset, gear_small_asset, gear_medium_asset, gear_large_asset, base_asset, table_asset): """Set initial actor poses. Create actors. Set shape and DOF properties.""" franka_pose = gymapi.Transform() franka_pose.p.x = self.cfg_base.env.franka_depth franka_pose.p.y = 0.0 franka_pose.p.z = 0.0 franka_pose.r = gymapi.Quat(0.0, 0.0, 1.0, 0.0) gear_pose = gymapi.Transform() gear_pose.p.x = 0.0 gear_pose.p.y = self.cfg_env.env.gears_lateral_offset gear_pose.p.z = self.cfg_base.env.table_height gear_pose.r = gymapi.Quat(0.0, 0.0, 0.0, 1.0) base_pose = gymapi.Transform() base_pose.p.x = 0.0 base_pose.p.y = 0.0 base_pose.p.z = self.cfg_base.env.table_height base_pose.r = gymapi.Quat(0.0, 0.0, 0.0, 1.0) table_pose = gymapi.Transform() table_pose.p.x = 0.0 table_pose.p.y = 0.0 table_pose.p.z = self.cfg_base.env.table_height * 0.5 table_pose.r = gymapi.Quat(0.0, 0.0, 0.0, 1.0) self.env_ptrs = [] self.franka_handles = [] self.gear_small_handles = [] self.gear_medium_handles = [] self.gear_large_handles = [] self.base_handles = [] self.table_handles = [] self.shape_ids = [] self.franka_actor_ids_sim = [] # within-sim indices self.gear_small_actor_ids_sim = [] # within-sim indices self.gear_medium_actor_ids_sim = [] # within-sim indices self.gear_large_actor_ids_sim = [] # within-sim indices self.base_actor_ids_sim = [] # within-sim indices self.table_actor_ids_sim = [] # within-sim indices actor_count = 0 for i in range(self.num_envs): env_ptr = self.gym.create_env(self.sim, lower, upper, num_per_row) if self.cfg_env.sim.disable_franka_collisions: franka_handle = self.gym.create_actor(env_ptr, franka_asset, franka_pose, 'franka', i + self.num_envs, 0, 0) else: franka_handle = self.gym.create_actor(env_ptr, franka_asset, franka_pose, 'franka', i, 0, 0) self.franka_actor_ids_sim.append(actor_count) actor_count += 1 gear_small_handle = self.gym.create_actor(env_ptr, gear_small_asset, gear_pose, 'gear_small', i, 0, 0) self.gear_small_actor_ids_sim.append(actor_count) actor_count += 1 gear_medium_handle = self.gym.create_actor(env_ptr, gear_medium_asset, gear_pose, 'gear_medium', i, 0, 0) self.gear_medium_actor_ids_sim.append(actor_count) actor_count += 1 gear_large_handle = self.gym.create_actor(env_ptr, gear_large_asset, gear_pose, 'gear_large', i, 0, 0) self.gear_large_actor_ids_sim.append(actor_count) actor_count += 1 base_handle = self.gym.create_actor(env_ptr, base_asset, base_pose, 'base', i, 0, 0) self.base_actor_ids_sim.append(actor_count) actor_count += 1 table_handle = self.gym.create_actor(env_ptr, table_asset, table_pose, 'table', i, 0, 0) self.table_actor_ids_sim.append(actor_count) actor_count += 1 link7_id = self.gym.find_actor_rigid_body_index(env_ptr, franka_handle, 'panda_link7', gymapi.DOMAIN_ACTOR) hand_id = self.gym.find_actor_rigid_body_index(env_ptr, franka_handle, 'panda_hand', gymapi.DOMAIN_ACTOR) left_finger_id = self.gym.find_actor_rigid_body_index(env_ptr, franka_handle, 'panda_leftfinger', gymapi.DOMAIN_ACTOR) right_finger_id = self.gym.find_actor_rigid_body_index(env_ptr, franka_handle, 'panda_rightfinger', gymapi.DOMAIN_ACTOR) self.shape_ids = [link7_id, hand_id, left_finger_id, right_finger_id] franka_shape_props = self.gym.get_actor_rigid_shape_properties(env_ptr, franka_handle) for shape_id in self.shape_ids: franka_shape_props[shape_id].friction = self.cfg_base.env.franka_friction franka_shape_props[shape_id].rolling_friction = 0.0 # default = 0.0 franka_shape_props[shape_id].torsion_friction = 0.0 # default = 0.0 franka_shape_props[shape_id].restitution = 0.0 # default = 0.0 franka_shape_props[shape_id].compliance = 0.0 # default = 0.0 franka_shape_props[shape_id].thickness = 0.0 # default = 0.0 self.gym.set_actor_rigid_shape_properties(env_ptr, franka_handle, franka_shape_props) gear_small_shape_props = self.gym.get_actor_rigid_shape_properties(env_ptr, gear_small_handle) gear_small_shape_props[0].friction = self.cfg_env.env.gears_friction gear_small_shape_props[0].rolling_friction = 0.0 # default = 0.0 gear_small_shape_props[0].torsion_friction = 0.0 # default = 0.0 gear_small_shape_props[0].restitution = 0.0 # default = 0.0 gear_small_shape_props[0].compliance = 0.0 # default = 0.0 gear_small_shape_props[0].thickness = 0.0 # default = 0.0 self.gym.set_actor_rigid_shape_properties(env_ptr, gear_small_handle, gear_small_shape_props) gear_medium_shape_props = self.gym.get_actor_rigid_shape_properties(env_ptr, gear_medium_handle) gear_medium_shape_props[0].friction = self.cfg_env.env.gears_friction gear_medium_shape_props[0].rolling_friction = 0.0 # default = 0.0 gear_medium_shape_props[0].torsion_friction = 0.0 # default = 0.0 gear_medium_shape_props[0].restitution = 0.0 # default = 0.0 gear_medium_shape_props[0].compliance = 0.0 # default = 0.0 gear_medium_shape_props[0].thickness = 0.0 # default = 0.0 self.gym.set_actor_rigid_shape_properties(env_ptr, gear_medium_handle, gear_medium_shape_props) gear_large_shape_props = self.gym.get_actor_rigid_shape_properties(env_ptr, gear_large_handle) gear_large_shape_props[0].friction = self.cfg_env.env.gears_friction gear_large_shape_props[0].rolling_friction = 0.0 # default = 0.0 gear_large_shape_props[0].torsion_friction = 0.0 # default = 0.0 gear_large_shape_props[0].restitution = 0.0 # default = 0.0 gear_large_shape_props[0].compliance = 0.0 # default = 0.0 gear_large_shape_props[0].thickness = 0.0 # default = 0.0 self.gym.set_actor_rigid_shape_properties(env_ptr, gear_large_handle, gear_large_shape_props) base_shape_props = self.gym.get_actor_rigid_shape_properties(env_ptr, base_handle) base_shape_props[0].friction = self.cfg_env.env.base_friction base_shape_props[0].rolling_friction = 0.0 # default = 0.0 base_shape_props[0].torsion_friction = 0.0 # default = 0.0 base_shape_props[0].restitution = 0.0 # default = 0.0 base_shape_props[0].compliance = 0.0 # default = 0.0 base_shape_props[0].thickness = 0.0 # default = 0.0 self.gym.set_actor_rigid_shape_properties(env_ptr, base_handle, base_shape_props) table_shape_props = self.gym.get_actor_rigid_shape_properties(env_ptr, table_handle) table_shape_props[0].friction = self.cfg_base.env.table_friction table_shape_props[0].rolling_friction = 0.0 # default = 0.0 table_shape_props[0].torsion_friction = 0.0 # default = 0.0 table_shape_props[0].restitution = 0.0 # default = 0.0 table_shape_props[0].compliance = 0.0 # default = 0.0 table_shape_props[0].thickness = 0.0 # default = 0.0 self.gym.set_actor_rigid_shape_properties(env_ptr, table_handle, table_shape_props) self.franka_num_dofs = self.gym.get_actor_dof_count(env_ptr, franka_handle) self.gym.enable_actor_dof_force_sensors(env_ptr, franka_handle) self.env_ptrs.append(env_ptr) self.franka_handles.append(franka_handle) self.gear_small_handles.append(gear_small_handle) self.gear_medium_handles.append(gear_medium_handle) self.gear_large_handles.append(gear_large_handle) self.base_handles.append(base_handle) self.table_handles.append(table_handle) self.num_actors = int(actor_count / self.num_envs) # per env self.num_bodies = self.gym.get_env_rigid_body_count(env_ptr) # per env self.num_dofs = self.gym.get_env_dof_count(env_ptr) # per env # For setting targets self.franka_actor_ids_sim = torch.tensor(self.franka_actor_ids_sim, dtype=torch.int32, device=self.device) self.gear_small_actor_ids_sim = torch.tensor(self.gear_small_actor_ids_sim, dtype=torch.int32, device=self.device) self.gear_medium_actor_ids_sim = torch.tensor(self.gear_medium_actor_ids_sim, dtype=torch.int32, device=self.device) self.gear_large_actor_ids_sim = torch.tensor(self.gear_large_actor_ids_sim, dtype=torch.int32, device=self.device) self.base_actor_ids_sim = torch.tensor(self.base_actor_ids_sim, dtype=torch.int32, device=self.device) # For extracting root pos/quat self.gear_small_actor_id_env = self.gym.find_actor_index(env_ptr, 'gear_small', gymapi.DOMAIN_ENV) self.gear_medium_actor_id_env = self.gym.find_actor_index(env_ptr, 'gear_medium', gymapi.DOMAIN_ENV) self.gear_large_actor_id_env = self.gym.find_actor_index(env_ptr, 'gear_large', gymapi.DOMAIN_ENV) self.base_actor_id_env = self.gym.find_actor_index(env_ptr, 'base', gymapi.DOMAIN_ENV) # For extracting body pos/quat, force, and Jacobian self.gear_small_body_id_env = self.gym.find_actor_rigid_body_index(env_ptr, gear_small_handle, 'gear_small', gymapi.DOMAIN_ENV) self.gear_mediums_body_id_env = self.gym.find_actor_rigid_body_index(env_ptr, gear_medium_handle, 'gear_small', gymapi.DOMAIN_ENV) self.gear_large_body_id_env = self.gym.find_actor_rigid_body_index(env_ptr, gear_large_handle, 'gear_small', gymapi.DOMAIN_ENV) self.base_body_id_env = self.gym.find_actor_rigid_body_index(env_ptr, base_handle, 'base', gymapi.DOMAIN_ENV) self.hand_body_id_env = self.gym.find_actor_rigid_body_index(env_ptr, franka_handle, 'panda_hand', gymapi.DOMAIN_ENV) self.left_finger_body_id_env = self.gym.find_actor_rigid_body_index(env_ptr, franka_handle, 'panda_leftfinger', gymapi.DOMAIN_ENV) self.right_finger_body_id_env = self.gym.find_actor_rigid_body_index(env_ptr, franka_handle, 'panda_rightfinger', gymapi.DOMAIN_ENV) self.fingertip_centered_body_id_env = self.gym.find_actor_rigid_body_index(env_ptr, franka_handle, 'panda_fingertip_centered', gymapi.DOMAIN_ENV) def _acquire_env_tensors(self): """Acquire and wrap tensors. Create views.""" self.gear_small_pos = self.root_pos[:, self.gear_small_actor_id_env, 0:3] self.gear_small_quat = self.root_quat[:, self.gear_small_actor_id_env, 0:4] self.gear_small_linvel = self.root_linvel[:, self.gear_small_actor_id_env, 0:3] self.gear_small_angvel = self.root_angvel[:, self.gear_small_actor_id_env, 0:3] self.gear_medium_pos = self.root_pos[:, self.gear_medium_actor_id_env, 0:3] self.gear_medium_quat = self.root_quat[:, self.gear_medium_actor_id_env, 0:4] self.gear_medium_linvel = self.root_linvel[:, self.gear_medium_actor_id_env, 0:3] self.gear_medium_angvel = self.root_angvel[:, self.gear_medium_actor_id_env, 0:3] self.gear_large_pos = self.root_pos[:, self.gear_large_actor_id_env, 0:3] self.gear_large_quat = self.root_quat[:, self.gear_large_actor_id_env, 0:4] self.gear_large_linvel = self.root_linvel[:, self.gear_large_actor_id_env, 0:3] self.gear_large_angvel = self.root_angvel[:, self.gear_large_actor_id_env, 0:3] self.base_pos = self.root_pos[:, self.base_actor_id_env, 0:3] self.base_quat = self.root_quat[:, self.base_actor_id_env, 0:4] self.gear_small_com_pos = fc.translate_along_local_z(pos=self.gear_small_pos, quat=self.gear_small_quat, offset=self.asset_info_gears.gear_base_height + self.asset_info_gears.gear_height * 0.5, device=self.device) self.gear_small_com_quat = self.gear_small_quat # always equal self.gear_small_com_linvel = self.gear_small_linvel + torch.cross(self.gear_small_angvel, (self.gear_small_com_pos - self.gear_small_pos), dim=1) self.gear_small_com_angvel = self.gear_small_angvel # always equal self.gear_medium_com_pos = fc.translate_along_local_z(pos=self.gear_medium_pos, quat=self.gear_medium_quat, offset=self.asset_info_gears.gear_base_height + self.asset_info_gears.gear_height * 0.5, device=self.device) self.gear_medium_com_quat = self.gear_medium_quat # always equal self.gear_medium_com_linvel = self.gear_medium_linvel + torch.cross(self.gear_medium_angvel, (self.gear_medium_com_pos - self.gear_medium_pos), dim=1) self.gear_medium_com_angvel = self.gear_medium_angvel # always equal self.gear_large_com_pos = fc.translate_along_local_z(pos=self.gear_large_pos, quat=self.gear_large_quat, offset=self.asset_info_gears.gear_base_height + self.asset_info_gears.gear_height * 0.5, device=self.device) self.gear_large_com_quat = self.gear_large_quat # always equal self.gear_large_com_linvel = self.gear_large_linvel + torch.cross(self.gear_large_angvel, (self.gear_large_com_pos - self.gear_large_pos), dim=1) self.gear_large_com_angvel = self.gear_large_angvel # always equal def refresh_env_tensors(self): """Refresh tensors.""" # NOTE: Tensor refresh functions should be called once per step, before setters. self.gear_small_com_pos = fc.translate_along_local_z(pos=self.gear_small_pos, quat=self.gear_small_quat, offset=self.asset_info_gears.gear_base_height + self.asset_info_gears.gear_height * 0.5, device=self.device) self.gear_small_com_linvel = self.gear_small_linvel + torch.cross(self.gear_small_angvel, (self.gear_small_com_pos - self.gear_small_pos), dim=1) self.gear_medium_com_pos = fc.translate_along_local_z(pos=self.gear_medium_pos, quat=self.gear_medium_quat, offset=self.asset_info_gears.gear_base_height + self.asset_info_gears.gear_height * 0.5, device=self.device) self.gear_medium_com_linvel = self.gear_medium_linvel + torch.cross(self.gear_medium_angvel, (self.gear_medium_com_pos - self.gear_medium_pos), dim=1) self.gear_large_com_pos = fc.translate_along_local_z(pos=self.gear_large_pos, quat=self.gear_large_quat, offset=self.asset_info_gears.gear_base_height + self.asset_info_gears.gear_height * 0.5, device=self.device) self.gear_large_com_linvel = self.gear_large_linvel + torch.cross(self.gear_large_angvel, (self.gear_large_com_pos - self.gear_large_pos), dim=1)
25,262
Python
60.617073
150
0.586731
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/tasks/factory/factory_task_nut_bolt_place.py
# Copyright (c) 2021-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Factory: Class for nut-bolt place task. Inherits nut-bolt environment class and abstract task class (not enforced). Can be executed with python train.py task=FactoryTaskNutBoltPlace """ import hydra import math import omegaconf import os import torch from isaacgym import gymapi, gymtorch from isaacgymenvs.utils import torch_jit_utils as torch_utils import isaacgymenvs.tasks.factory.factory_control as fc from isaacgymenvs.tasks.factory.factory_env_nut_bolt import FactoryEnvNutBolt from isaacgymenvs.tasks.factory.factory_schema_class_task import FactoryABCTask from isaacgymenvs.tasks.factory.factory_schema_config_task import FactorySchemaConfigTask from isaacgymenvs.utils import torch_jit_utils class FactoryTaskNutBoltPlace(FactoryEnvNutBolt, FactoryABCTask): def __init__(self, cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render): """Initialize instance variables. Initialize environment superclass.""" super().__init__(cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render) self.cfg = cfg self._get_task_yaml_params() self._acquire_task_tensors() self.parse_controller_spec() if self.cfg_task.sim.disable_gravity: self.disable_gravity() if self.viewer is not None: self._set_viewer_params() def _get_task_yaml_params(self): """Initialize instance variables from YAML files.""" cs = hydra.core.config_store.ConfigStore.instance() cs.store(name='factory_schema_config_task', node=FactorySchemaConfigTask) self.cfg_task = omegaconf.OmegaConf.create(self.cfg) self.max_episode_length = self.cfg_task.rl.max_episode_length # required instance var for VecTask asset_info_path = '../../assets/factory/yaml/factory_asset_info_nut_bolt.yaml' # relative to Gym's Hydra search path (cfg dir) self.asset_info_nut_bolt = hydra.compose(config_name=asset_info_path) self.asset_info_nut_bolt = self.asset_info_nut_bolt['']['']['']['']['']['']['assets']['factory']['yaml'] # strip superfluous nesting ppo_path = 'train/FactoryTaskNutBoltPlacePPO.yaml' # relative to Gym's Hydra search path (cfg dir) self.cfg_ppo = hydra.compose(config_name=ppo_path) self.cfg_ppo = self.cfg_ppo['train'] # strip superfluous nesting def _acquire_task_tensors(self): """Acquire tensors.""" # Nut-bolt tensors self.nut_base_pos_local = \ self.bolt_head_heights * torch.tensor([0.0, 0.0, 1.0], device=self.device).repeat((self.num_envs, 1)) bolt_heights = self.bolt_head_heights + self.bolt_shank_lengths self.bolt_tip_pos_local = \ bolt_heights * torch.tensor([0.0, 0.0, 1.0], device=self.device).repeat((self.num_envs, 1)) # Keypoint tensors self.keypoint_offsets = \ self._get_keypoint_offsets(self.cfg_task.rl.num_keypoints) * self.cfg_task.rl.keypoint_scale self.keypoints_nut = torch.zeros((self.num_envs, self.cfg_task.rl.num_keypoints, 3), dtype=torch.float32, device=self.device) self.keypoints_bolt = torch.zeros_like(self.keypoints_nut, device=self.device) self.identity_quat = \ torch.tensor([0.0, 0.0, 0.0, 1.0], device=self.device).unsqueeze(0).repeat(self.num_envs, 1) self.actions = torch.zeros((self.num_envs, self.cfg_task.env.numActions), device=self.device) def _refresh_task_tensors(self): """Refresh tensors.""" # Compute pos of keypoints on gripper, nut, and bolt in world frame for idx, keypoint_offset in enumerate(self.keypoint_offsets): self.keypoints_nut[:, idx] = torch_jit_utils.tf_combine(self.nut_quat, self.nut_pos, self.identity_quat, (keypoint_offset + self.nut_base_pos_local))[1] self.keypoints_bolt[:, idx] = torch_jit_utils.tf_combine(self.bolt_quat, self.bolt_pos, self.identity_quat, (keypoint_offset + self.bolt_tip_pos_local))[1] def pre_physics_step(self, actions): """Reset environments. Apply actions from policy. Simulation step called after this method.""" env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(env_ids) > 0: self.reset_idx(env_ids) self.actions = actions.clone().to(self.device) # shape = (num_envs, num_actions); values = [-1, 1] self._apply_actions_as_ctrl_targets(actions=self.actions, ctrl_target_gripper_dof_pos=0.0, do_scale=True) def post_physics_step(self): """Step buffers. Refresh tensors. Compute observations and reward. Reset environments.""" self.progress_buf[:] += 1 self.refresh_base_tensors() self.refresh_env_tensors() self._refresh_task_tensors() self.compute_observations() self.compute_reward() def compute_observations(self): """Compute observations.""" # Shallow copies of tensors obs_tensors = [self.fingertip_midpoint_pos, self.fingertip_midpoint_quat, self.fingertip_midpoint_linvel, self.fingertip_midpoint_angvel, self.nut_pos, self.nut_quat, self.bolt_pos, self.bolt_quat] if self.cfg_task.rl.add_obs_bolt_tip_pos: obs_tensors += [self.bolt_tip_pos_local] self.obs_buf = torch.cat(obs_tensors, dim=-1) # shape = (num_envs, num_observations) return self.obs_buf def compute_reward(self): """Update reward and reset buffers.""" self._update_reset_buf() self._update_rew_buf() def _update_reset_buf(self): """Assign environments for reset if successful or failed.""" # If max episode length has been reached self.reset_buf[:] = torch.where(self.progress_buf[:] >= self.cfg_task.rl.max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf) def _update_rew_buf(self): """Compute reward at current timestep.""" keypoint_reward = -self._get_keypoint_dist() action_penalty = torch.norm(self.actions, p=2, dim=-1) * self.cfg_task.rl.action_penalty_scale self.rew_buf[:] = keypoint_reward * self.cfg_task.rl.keypoint_reward_scale \ - action_penalty * self.cfg_task.rl.action_penalty_scale # In this policy, episode length is constant across all envs is_last_step = (self.progress_buf[0] == self.max_episode_length - 1) if is_last_step: # Check if nut is close enough to bolt is_nut_close_to_bolt = self._check_nut_close_to_bolt() self.rew_buf[:] += is_nut_close_to_bolt * self.cfg_task.rl.success_bonus self.extras['successes'] = torch.mean(is_nut_close_to_bolt.float()) def reset_idx(self, env_ids): """Reset specified environments.""" self._reset_franka(env_ids) self._reset_object(env_ids) # Close gripper onto nut self.disable_gravity() # to prevent nut from falling for _ in range(self.cfg_task.env.num_gripper_close_sim_steps): self.ctrl_target_dof_pos[env_ids, 7:9] = 0.0 delta_hand_pose = torch.zeros((self.num_envs, self.cfg_task.env.numActions), device=self.device) # no arm motion self._apply_actions_as_ctrl_targets(actions=delta_hand_pose, ctrl_target_gripper_dof_pos=0.0, do_scale=False) self.gym.simulate(self.sim) self.render() self.enable_gravity(gravity_mag=abs(self.cfg_base.sim.gravity[2])) self._randomize_gripper_pose(env_ids, sim_steps=self.cfg_task.env.num_gripper_move_sim_steps) self._reset_buffers(env_ids) def _reset_franka(self, env_ids): """Reset DOF states and DOF targets of Franka.""" self.dof_pos[env_ids] = \ torch.cat((torch.tensor(self.cfg_task.randomize.franka_arm_initial_dof_pos, device=self.device).repeat((len(env_ids), 1)), (self.nut_widths_max * 0.5) * 1.1, # buffer on gripper DOF pos to prevent initial contact (self.nut_widths_max * 0.5) * 1.1), # buffer on gripper DOF pos to prevent initial contact dim=-1) # shape = (num_envs, num_dofs) self.dof_vel[env_ids] = 0.0 # shape = (num_envs, num_dofs) self.ctrl_target_dof_pos[env_ids] = self.dof_pos[env_ids] multi_env_ids_int32 = self.franka_actor_ids_sim[env_ids].flatten() self.gym.set_dof_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.dof_state), gymtorch.unwrap_tensor(multi_env_ids_int32), len(multi_env_ids_int32)) def _reset_object(self, env_ids): """Reset root states of nut and bolt.""" # shape of root_pos = (num_envs, num_actors, 3) # shape of root_quat = (num_envs, num_actors, 4) # shape of root_linvel = (num_envs, num_actors, 3) # shape of root_angvel = (num_envs, num_actors, 3) # Randomize root state of nut within gripper self.root_pos[env_ids, self.nut_actor_id_env, 0] = 0.0 self.root_pos[env_ids, self.nut_actor_id_env, 1] = 0.0 fingertip_midpoint_pos_reset = 0.58781 # self.fingertip_midpoint_pos at reset nut_base_pos_local = self.bolt_head_heights.squeeze(-1) self.root_pos[env_ids, self.nut_actor_id_env, 2] = fingertip_midpoint_pos_reset - nut_base_pos_local nut_noise_pos_in_gripper = \ 2 * (torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device) - 0.5) # [-1, 1] nut_noise_pos_in_gripper = nut_noise_pos_in_gripper @ torch.diag( torch.tensor(self.cfg_task.randomize.nut_noise_pos_in_gripper, device=self.device)) self.root_pos[env_ids, self.nut_actor_id_env, :] += nut_noise_pos_in_gripper[env_ids] nut_rot_euler = torch.tensor([0.0, 0.0, math.pi * 0.5], device=self.device).repeat(len(env_ids), 1) nut_noise_rot_in_gripper = \ 2 * (torch.rand(self.num_envs, dtype=torch.float32, device=self.device) - 0.5) # [-1, 1] nut_noise_rot_in_gripper *= self.cfg_task.randomize.nut_noise_rot_in_gripper nut_rot_euler[:, 2] += nut_noise_rot_in_gripper nut_rot_quat = torch_utils.quat_from_euler_xyz(nut_rot_euler[:, 0], nut_rot_euler[:, 1], nut_rot_euler[:, 2]) self.root_quat[env_ids, self.nut_actor_id_env] = nut_rot_quat # Randomize root state of bolt bolt_noise_xy = 2 * (torch.rand((self.num_envs, 2), dtype=torch.float32, device=self.device) - 0.5) # [-1, 1] bolt_noise_xy = bolt_noise_xy @ torch.diag( torch.tensor(self.cfg_task.randomize.bolt_pos_xy_noise, dtype=torch.float32, device=self.device)) self.root_pos[env_ids, self.bolt_actor_id_env, 0] = self.cfg_task.randomize.bolt_pos_xy_initial[0] + \ bolt_noise_xy[env_ids, 0] self.root_pos[env_ids, self.bolt_actor_id_env, 1] = self.cfg_task.randomize.bolt_pos_xy_initial[1] + \ bolt_noise_xy[env_ids, 1] self.root_pos[env_ids, self.bolt_actor_id_env, 2] = self.cfg_base.env.table_height self.root_quat[env_ids, self.bolt_actor_id_env] = torch.tensor([0.0, 0.0, 0.0, 1.0], dtype=torch.float32, device=self.device).repeat(len(env_ids), 1) self.root_linvel[env_ids, self.bolt_actor_id_env] = 0.0 self.root_angvel[env_ids, self.bolt_actor_id_env] = 0.0 nut_bolt_actor_ids_sim = torch.cat((self.nut_actor_ids_sim[env_ids], self.bolt_actor_ids_sim[env_ids]), dim=0) self.gym.set_actor_root_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.root_state), gymtorch.unwrap_tensor(nut_bolt_actor_ids_sim), len(nut_bolt_actor_ids_sim)) def _reset_buffers(self, env_ids): """Reset buffers. """ self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def _set_viewer_params(self): """Set viewer parameters.""" cam_pos = gymapi.Vec3(-1.0, -1.0, 1.0) cam_target = gymapi.Vec3(0.0, 0.0, 0.5) self.gym.viewer_camera_look_at(self.viewer, None, cam_pos, cam_target) def _apply_actions_as_ctrl_targets(self, actions, ctrl_target_gripper_dof_pos, do_scale): """Apply actions from policy as position/rotation targets.""" # Interpret actions as target pos displacements and set pos target pos_actions = actions[:, 0:3] if do_scale: pos_actions = pos_actions @ torch.diag(torch.tensor(self.cfg_task.rl.pos_action_scale, device=self.device)) self.ctrl_target_fingertip_midpoint_pos = self.fingertip_midpoint_pos + pos_actions # Interpret actions as target rot (axis-angle) displacements rot_actions = actions[:, 3:6] if do_scale: rot_actions = rot_actions @ torch.diag(torch.tensor(self.cfg_task.rl.rot_action_scale, device=self.device)) # Convert to quat and set rot target angle = torch.norm(rot_actions, p=2, dim=-1) axis = rot_actions / angle.unsqueeze(-1) rot_actions_quat = torch_utils.quat_from_angle_axis(angle, axis) if self.cfg_task.rl.clamp_rot: rot_actions_quat = torch.where(angle.unsqueeze(-1).repeat(1, 4) > self.cfg_task.rl.clamp_rot_thresh, rot_actions_quat, torch.tensor([0.0, 0.0, 0.0, 1.0], device=self.device).repeat(self.num_envs, 1)) self.ctrl_target_fingertip_midpoint_quat = torch_utils.quat_mul(rot_actions_quat, self.fingertip_midpoint_quat) if self.cfg_ctrl['do_force_ctrl']: # Interpret actions as target forces and target torques force_actions = actions[:, 6:9] if do_scale: force_actions = force_actions @ torch.diag( torch.tensor(self.cfg_task.rl.force_action_scale, device=self.device)) torque_actions = actions[:, 9:12] if do_scale: torque_actions = torque_actions @ torch.diag( torch.tensor(self.cfg_task.rl.torque_action_scale, device=self.device)) self.ctrl_target_fingertip_contact_wrench = torch.cat((force_actions, torque_actions), dim=-1) self.ctrl_target_gripper_dof_pos = ctrl_target_gripper_dof_pos self.generate_ctrl_signals() def _open_gripper(self, sim_steps=20): """Fully open gripper using controller. Called outside RL loop (i.e., after last step of episode).""" self._move_gripper_to_dof_pos(gripper_dof_pos=0.1, sim_steps=sim_steps) def _move_gripper_to_dof_pos(self, gripper_dof_pos, sim_steps=20): """Move gripper fingers to specified DOF position using controller.""" delta_hand_pose = torch.zeros((self.num_envs, self.cfg_task.env.numActions), device=self.device) # no arm motion self._apply_actions_as_ctrl_targets(delta_hand_pose, gripper_dof_pos, do_scale=False) # Step sim for _ in range(sim_steps): self.render() self.gym.simulate(self.sim) def _lift_gripper(self, gripper_dof_pos=0.0, lift_distance=0.3, sim_steps=20): """Lift gripper by specified distance. Called outside RL loop (i.e., after last step of episode).""" delta_hand_pose = torch.zeros([self.num_envs, 6], device=self.device) delta_hand_pose[:, 2] = lift_distance # lift along z # Step sim for _ in range(sim_steps): self._apply_actions_as_ctrl_targets(delta_hand_pose, gripper_dof_pos, do_scale=False) self.render() self.gym.simulate(self.sim) def _get_keypoint_offsets(self, num_keypoints): """Get uniformly-spaced keypoints along a line of unit length, centered at 0.""" keypoint_offsets = torch.zeros((num_keypoints, 3), device=self.device) keypoint_offsets[:, -1] = torch.linspace(0.0, 1.0, num_keypoints, device=self.device) - 0.5 return keypoint_offsets def _get_keypoint_dist(self): """Get keypoint distances.""" keypoint_dist = torch.sum(torch.norm(self.keypoints_bolt - self.keypoints_nut, p=2, dim=-1), dim=-1) return keypoint_dist def _check_nut_close_to_bolt(self): """Check if nut is close to bolt.""" keypoint_dist = torch.norm(self.keypoints_bolt - self.keypoints_nut, p=2, dim=-1) is_nut_close_to_bolt = torch.where(torch.sum(keypoint_dist, dim=-1) < self.cfg_task.rl.close_error_thresh, torch.ones_like(self.progress_buf), torch.zeros_like(self.progress_buf)) return is_nut_close_to_bolt def _randomize_gripper_pose(self, env_ids, sim_steps): """Move gripper to random pose.""" # Set target pos above table self.ctrl_target_fingertip_midpoint_pos = \ torch.tensor([0.0, 0.0, self.cfg_base.env.table_height], device=self.device) \ + torch.tensor(self.cfg_task.randomize.fingertip_midpoint_pos_initial, device=self.device) self.ctrl_target_fingertip_midpoint_pos = self.ctrl_target_fingertip_midpoint_pos.unsqueeze(0).repeat( self.num_envs, 1) fingertip_midpoint_pos_noise = \ 2 * (torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device) - 0.5) # [-1, 1] fingertip_midpoint_pos_noise = fingertip_midpoint_pos_noise @ torch.diag( torch.tensor(self.cfg_task.randomize.fingertip_midpoint_pos_noise, device=self.device)) self.ctrl_target_fingertip_midpoint_pos += fingertip_midpoint_pos_noise # Set target rot ctrl_target_fingertip_midpoint_euler = torch.tensor(self.cfg_task.randomize.fingertip_midpoint_rot_initial, device=self.device).unsqueeze(0).repeat(self.num_envs, 1) fingertip_midpoint_rot_noise = \ 2 * (torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device) - 0.5) # [-1, 1] fingertip_midpoint_rot_noise = fingertip_midpoint_rot_noise @ torch.diag( torch.tensor(self.cfg_task.randomize.fingertip_midpoint_rot_noise, device=self.device)) ctrl_target_fingertip_midpoint_euler += fingertip_midpoint_rot_noise self.ctrl_target_fingertip_midpoint_quat = torch_utils.quat_from_euler_xyz( ctrl_target_fingertip_midpoint_euler[:, 0], ctrl_target_fingertip_midpoint_euler[:, 1], ctrl_target_fingertip_midpoint_euler[:, 2]) # Step sim and render for _ in range(sim_steps): self.refresh_base_tensors() self.refresh_env_tensors() self._refresh_task_tensors() pos_error, axis_angle_error = fc.get_pose_error( fingertip_midpoint_pos=self.fingertip_midpoint_pos, fingertip_midpoint_quat=self.fingertip_midpoint_quat, ctrl_target_fingertip_midpoint_pos=self.ctrl_target_fingertip_midpoint_pos, ctrl_target_fingertip_midpoint_quat=self.ctrl_target_fingertip_midpoint_quat, jacobian_type=self.cfg_ctrl['jacobian_type'], rot_error_type='axis_angle') delta_hand_pose = torch.cat((pos_error, axis_angle_error), dim=-1) actions = torch.zeros((self.num_envs, self.cfg_task.env.numActions), device=self.device) actions[:, :6] = delta_hand_pose self._apply_actions_as_ctrl_targets(actions=actions, ctrl_target_gripper_dof_pos=0.0, do_scale=False) self.gym.simulate(self.sim) self.render() self.dof_vel[env_ids, :] = torch.zeros_like(self.dof_vel[env_ids]) # Set DOF state multi_env_ids_int32 = self.franka_actor_ids_sim[env_ids].flatten() self.gym.set_dof_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.dof_state), gymtorch.unwrap_tensor(multi_env_ids_int32), len(multi_env_ids_int32))
23,304
Python
49.226293
141
0.596421
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/tasks/factory/factory_task_nut_bolt_screw.py
# Copyright (c) 2021-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Factory: Class for nut-bolt screw task. Inherits nut-bolt environment class and abstract task class (not enforced). Can be executed with python train.py task=FactoryTaskNutBoltScrew Initial Franka/nut states are ideal for M16 nut-and-bolt. In this example, initial state randomization is not applied; thus, policy should succeed almost instantly. """ import hydra import math import omegaconf import os import torch from isaacgym import gymapi, gymtorch from isaacgymenvs.utils import torch_jit_utils as torch_utils import isaacgymenvs.tasks.factory.factory_control as fc from isaacgymenvs.tasks.factory.factory_env_nut_bolt import FactoryEnvNutBolt from isaacgymenvs.tasks.factory.factory_schema_class_task import FactoryABCTask from isaacgymenvs.tasks.factory.factory_schema_config_task import FactorySchemaConfigTask class FactoryTaskNutBoltScrew(FactoryEnvNutBolt, FactoryABCTask): def __init__(self, cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render): """Initialize instance variables. Initialize environment superclass.""" super().__init__(cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render) self.cfg = cfg self._get_task_yaml_params() self._acquire_task_tensors() self.parse_controller_spec() if self.cfg_task.sim.disable_gravity: self.disable_gravity() if self.viewer != None: self._set_viewer_params() def _get_task_yaml_params(self): """Initialize instance variables from YAML files.""" cs = hydra.core.config_store.ConfigStore.instance() cs.store(name='factory_schema_config_task', node=FactorySchemaConfigTask) self.cfg_task = omegaconf.OmegaConf.create(self.cfg) self.max_episode_length = self.cfg_task.rl.max_episode_length # required instance var for VecTask asset_info_path = '../../assets/factory/yaml/factory_asset_info_nut_bolt.yaml' # relative to Gym's Hydra search path (cfg dir) self.asset_info_nut_bolt = hydra.compose(config_name=asset_info_path) self.asset_info_nut_bolt = self.asset_info_nut_bolt['']['']['']['']['']['']['assets']['factory']['yaml'] # strip superfluous nesting ppo_path = 'train/FactoryTaskNutBoltScrewPPO.yaml' # relative to Gym's Hydra search path (cfg dir) self.cfg_ppo = hydra.compose(config_name=ppo_path) self.cfg_ppo = self.cfg_ppo['train'] # strip superfluous nesting def _acquire_task_tensors(self): """Acquire tensors.""" target_heights = self.cfg_base.env.table_height + self.bolt_head_heights + self.nut_heights * 0.5 self.target_pos = target_heights * torch.tensor([0.0, 0.0, 1.0], device=self.device).repeat((self.num_envs, 1)) def _refresh_task_tensors(self): """Refresh tensors.""" self.fingerpad_midpoint_pos = fc.translate_along_local_z(pos=self.finger_midpoint_pos, quat=self.hand_quat, offset=self.asset_info_franka_table.franka_finger_length - self.asset_info_franka_table.franka_fingerpad_length * 0.5, device=self.device) self.finger_nut_keypoint_dist = self._get_keypoint_dist(body='finger_nut') self.nut_keypoint_dist = self._get_keypoint_dist(body='nut') self.nut_dist_to_target = torch.norm(self.target_pos - self.nut_com_pos, p=2, dim=-1) # distance between nut COM and target self.nut_dist_to_fingerpads = torch.norm(self.fingerpad_midpoint_pos - self.nut_com_pos, p=2, dim=-1) # distance between nut COM and midpoint between centers of fingerpads def pre_physics_step(self, actions): """Reset environments. Apply actions from policy. Simulation step called after this method.""" env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(env_ids) > 0: self.reset_idx(env_ids) self.actions = actions.clone().to(self.device) # shape = (num_envs, num_actions); values = [-1, 1] self._apply_actions_as_ctrl_targets(actions=self.actions, ctrl_target_gripper_dof_pos=0.0, do_scale=True) def post_physics_step(self): """Step buffers. Refresh tensors. Compute observations and reward. Reset environments.""" self.progress_buf[:] += 1 self.refresh_base_tensors() self.refresh_env_tensors() self._refresh_task_tensors() self.compute_observations() self.compute_reward() def compute_observations(self): """Compute observations.""" # Shallow copies of tensors obs_tensors = [self.fingertip_midpoint_pos, self.fingertip_midpoint_quat, self.fingertip_midpoint_linvel, self.fingertip_midpoint_angvel, self.nut_com_pos, self.nut_com_quat, self.nut_com_linvel, self.nut_com_angvel] if self.cfg_task.rl.add_obs_finger_force: obs_tensors += [self.left_finger_force, self.right_finger_force] obs_tensors = torch.cat(obs_tensors, dim=-1) self.obs_buf[:, :obs_tensors.shape[-1]] = obs_tensors # shape = (num_envs, num_observations) return self.obs_buf def compute_reward(self): """Detect successes and failures. Update reward and reset buffers.""" # Get successful and failed envs at current timestep curr_successes = self._get_curr_successes() curr_failures = self._get_curr_failures(curr_successes) self._update_reset_buf(curr_successes, curr_failures) self._update_rew_buf(curr_successes) def _update_reset_buf(self, curr_successes, curr_failures): """Assign environments for reset if successful or failed.""" self.reset_buf[:] = torch.logical_or(curr_successes, curr_failures) def _update_rew_buf(self, curr_successes): """Compute reward at current timestep.""" keypoint_reward = -(self.nut_keypoint_dist + self.finger_nut_keypoint_dist) action_penalty = torch.norm(self.actions, p=2, dim=-1) self.rew_buf[:] = keypoint_reward * self.cfg_task.rl.keypoint_reward_scale \ - action_penalty * self.cfg_task.rl.action_penalty_scale \ + curr_successes * self.cfg_task.rl.success_bonus def reset_idx(self, env_ids): """Reset specified environments. Zero buffers.""" self._reset_franka(env_ids) self._reset_object(env_ids) self._reset_buffers(env_ids) def _reset_franka(self, env_ids): """Reset DOF states and DOF targets of Franka.""" self.dof_pos[env_ids] = torch.cat((torch.tensor(self.cfg_task.randomize.franka_arm_initial_dof_pos, device=self.device).repeat((len(env_ids), 1)), (self.nut_widths_max[env_ids] * 0.5) * 1.1, # buffer on gripper DOF pos to prevent initial contact (self.nut_widths_max[env_ids] * 0.5) * 1.1), # buffer on gripper DOF pos to prevent initial contact dim=-1) # shape = (num_envs, num_dofs) self.dof_vel[env_ids] = 0.0 # shape = (num_envs, num_dofs) self.ctrl_target_dof_pos[env_ids] = self.dof_pos[env_ids] multi_env_ids_int32 = self.franka_actor_ids_sim[env_ids].flatten() self.gym.set_dof_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.dof_state), gymtorch.unwrap_tensor(multi_env_ids_int32), len(multi_env_ids_int32)) def _reset_object(self, env_ids): """Reset root state of nut.""" # shape of root_pos = (num_envs, num_actors, 3) # shape of root_quat = (num_envs, num_actors, 4) # shape of root_linvel = (num_envs, num_actors, 3) # shape of root_angvel = (num_envs, num_actors, 3) nut_pos = self.cfg_base.env.table_height + self.bolt_shank_lengths[env_ids] self.root_pos[env_ids, self.nut_actor_id_env] = \ nut_pos * torch.tensor([0.0, 0.0, 1.0], device=self.device).repeat(len(env_ids), 1) nut_rot = self.cfg_task.randomize.nut_rot_initial * torch.ones((len(env_ids), 1), device=self.device) * math.pi / 180.0 self.root_quat[env_ids, self.nut_actor_id_env] = torch.cat((torch.zeros((len(env_ids), 1), device=self.device), torch.zeros((len(env_ids), 1), device=self.device), torch.sin(nut_rot * 0.5), torch.cos(nut_rot * 0.5)), dim=-1) self.root_linvel[env_ids, self.nut_actor_id_env] = 0.0 self.root_angvel[env_ids, self.nut_actor_id_env] = 0.0 self.gym.set_actor_root_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.root_state), gymtorch.unwrap_tensor(self.nut_actor_ids_sim), len(self.nut_actor_ids_sim)) def _reset_buffers(self, env_ids): """Reset buffers.""" self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def _set_viewer_params(self): """Set viewer parameters.""" cam_pos = gymapi.Vec3(-1.0, -1.0, 1.0) cam_target = gymapi.Vec3(0.0, 0.0, 0.5) self.gym.viewer_camera_look_at(self.viewer, None, cam_pos, cam_target) def _apply_actions_as_ctrl_targets(self, actions, ctrl_target_gripper_dof_pos, do_scale): """Apply actions from policy as position/rotation targets or force/torque targets.""" # Interpret actions as target pos displacements and set pos target pos_actions = actions[:, 0:3] if do_scale: pos_actions = pos_actions @ torch.diag(torch.tensor(self.cfg_task.rl.pos_action_scale, device=self.device)) self.ctrl_target_fingertip_midpoint_pos = self.fingertip_midpoint_pos + pos_actions # Interpret actions as target rot (axis-angle) displacements rot_actions = actions[:, 3:6] if self.cfg_task.rl.unidirectional_rot: rot_actions[:, 2] = -(rot_actions[:, 2] + 1.0) * 0.5 # [-1, 0] if do_scale: rot_actions = rot_actions @ torch.diag(torch.tensor(self.cfg_task.rl.rot_action_scale, device=self.device)) # Convert to quat and set rot target angle = torch.norm(rot_actions, p=2, dim=-1) axis = rot_actions / angle.unsqueeze(-1) rot_actions_quat = torch_utils.quat_from_angle_axis(angle, axis) if self.cfg_task.rl.clamp_rot: rot_actions_quat = torch.where(angle.unsqueeze(-1).repeat(1, 4) > self.cfg_task.rl.clamp_rot_thresh, rot_actions_quat, torch.tensor([0.0, 0.0, 0.0, 1.0], device=self.device).repeat(self.num_envs, 1)) self.ctrl_target_fingertip_midpoint_quat = torch_utils.quat_mul(rot_actions_quat, self.fingertip_midpoint_quat) if self.cfg_ctrl['do_force_ctrl']: # Interpret actions as target forces and target torques force_actions = actions[:, 6:9] if self.cfg_task.rl.unidirectional_force: force_actions[:, 2] = -(force_actions[:, 2] + 1.0) * 0.5 # [-1, 0] if do_scale: force_actions = force_actions @ torch.diag( torch.tensor(self.cfg_task.rl.force_action_scale, device=self.device)) torque_actions = actions[:, 9:12] if do_scale: torque_actions = torque_actions @ torch.diag( torch.tensor(self.cfg_task.rl.torque_action_scale, device=self.device)) self.ctrl_target_fingertip_contact_wrench = torch.cat((force_actions, torque_actions), dim=-1) self.ctrl_target_gripper_dof_pos = ctrl_target_gripper_dof_pos self.generate_ctrl_signals() def _get_keypoint_dist(self, body): """Get keypoint distances.""" axis_length = self.asset_info_franka_table.franka_hand_length + self.asset_info_franka_table.franka_finger_length if body == 'finger' or body == 'nut': # Keypoint distance between finger/nut and target if body == 'finger': self.keypoint1 = self.fingertip_midpoint_pos self.keypoint2 = fc.translate_along_local_z(pos=self.keypoint1, quat=self.fingertip_midpoint_quat, offset=-axis_length, device=self.device) elif body == 'nut': self.keypoint1 = self.nut_com_pos self.keypoint2 = fc.translate_along_local_z(pos=self.nut_com_pos, quat=self.nut_com_quat, offset=axis_length, device=self.device) self.keypoint1_targ = self.target_pos self.keypoint2_targ = self.keypoint1_targ + torch.tensor([0.0, 0.0, axis_length], device=self.device) elif body == 'finger_nut': # Keypoint distance between finger and nut self.keypoint1 = self.fingerpad_midpoint_pos self.keypoint2 = fc.translate_along_local_z(pos=self.keypoint1, quat=self.fingertip_midpoint_quat, offset=-axis_length, device=self.device) self.keypoint1_targ = self.nut_com_pos self.keypoint2_targ = fc.translate_along_local_z(pos=self.nut_com_pos, quat=self.nut_com_quat, offset=axis_length, device=self.device) self.keypoint3 = self.keypoint1 + (self.keypoint2 - self.keypoint1) * 1.0 / 3.0 self.keypoint4 = self.keypoint1 + (self.keypoint2 - self.keypoint1) * 2.0 / 3.0 self.keypoint3_targ = self.keypoint1_targ + (self.keypoint2_targ - self.keypoint1_targ) * 1.0 / 3.0 self.keypoint4_targ = self.keypoint1_targ + (self.keypoint2_targ - self.keypoint1_targ) * 2.0 / 3.0 keypoint_dist = torch.norm(self.keypoint1_targ - self.keypoint1, p=2, dim=-1) \ + torch.norm(self.keypoint2_targ - self.keypoint2, p=2, dim=-1) \ + torch.norm(self.keypoint3_targ - self.keypoint3, p=2, dim=-1) \ + torch.norm(self.keypoint4_targ - self.keypoint4, p=2, dim=-1) return keypoint_dist def _get_curr_successes(self): """Get success mask at current timestep.""" curr_successes = torch.zeros((self.num_envs,), dtype=torch.bool, device=self.device) # If nut is close enough to target pos is_close = torch.where(self.nut_dist_to_target < self.thread_pitches.squeeze(-1), torch.ones_like(curr_successes), torch.zeros_like(curr_successes)) curr_successes = torch.logical_or(curr_successes, is_close) return curr_successes def _get_curr_failures(self, curr_successes): """Get failure mask at current timestep.""" curr_failures = torch.zeros((self.num_envs,), dtype=torch.bool, device=self.device) # If max episode length has been reached self.is_expired = torch.where(self.progress_buf[:] >= self.cfg_task.rl.max_episode_length, torch.ones_like(curr_failures), curr_failures) # If nut is too far from target pos self.is_far = torch.where(self.nut_dist_to_target > self.cfg_task.rl.far_error_thresh, torch.ones_like(curr_failures), curr_failures) # If nut has slipped (distance-based definition) self.is_slipped = \ torch.where( self.nut_dist_to_fingerpads > self.asset_info_franka_table.franka_fingerpad_length * 0.5 + self.nut_heights.squeeze(-1) * 0.5, torch.ones_like(curr_failures), curr_failures) self.is_slipped = torch.logical_and(self.is_slipped, torch.logical_not(curr_successes)) # ignore slip if successful # If nut has fallen (i.e., if nut XY pos has drifted from center of bolt and nut Z pos has drifted below top of bolt) self.is_fallen = torch.logical_and( torch.norm(self.nut_com_pos[:, 0:2], p=2, dim=-1) > self.bolt_widths.squeeze(-1) * 0.5, self.nut_com_pos[:, 2] < self.cfg_base.env.table_height + self.bolt_head_heights.squeeze( -1) + self.bolt_shank_lengths.squeeze(-1) + self.nut_heights.squeeze(-1) * 0.5) curr_failures = torch.logical_or(curr_failures, self.is_expired) curr_failures = torch.logical_or(curr_failures, self.is_far) curr_failures = torch.logical_or(curr_failures, self.is_slipped) curr_failures = torch.logical_or(curr_failures, self.is_fallen) return curr_failures
19,807
Python
50.183462
183
0.584238
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/tasks/factory/factory_task_insertion.py
# Copyright (c) 2021-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Factory: Class for insertion task. Inherits insertion environment class and abstract task class (not enforced). Can be executed with python train.py task=FactoryTaskInsertion Only the environment is provided; training a successful RL policy is an open research problem left to the user. """ import hydra import math import omegaconf import os import torch from isaacgym import gymapi, gymtorch from isaacgymenvs.tasks.factory.factory_env_insertion import FactoryEnvInsertion from isaacgymenvs.tasks.factory.factory_schema_class_task import FactoryABCTask from isaacgymenvs.tasks.factory.factory_schema_config_task import FactorySchemaConfigTask class FactoryTaskInsertion(FactoryEnvInsertion, FactoryABCTask): def __init__(self, cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render): """Initialize instance variables. Initialize task superclass.""" super().__init__(cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render) self.cfg = cfg self._get_task_yaml_params() if self.viewer != None: self._set_viewer_params() if self.cfg_base.mode.export_scene: self.export_scene(label='franka_task_insertion') def _get_task_yaml_params(self): """Initialize instance variables from YAML files.""" cs = hydra.core.config_store.ConfigStore.instance() cs.store(name='factory_schema_config_task', node=FactorySchemaConfigTask) self.cfg_task = omegaconf.OmegaConf.create(self.cfg) self.max_episode_length = self.cfg_task.rl.max_episode_length # required instance var for VecTask asset_info_path = '../../assets/factory/yaml/factory_asset_info_insertion.yaml' # relative to Gym's Hydra search path (cfg dir) self.asset_info_insertion = hydra.compose(config_name=asset_info_path) self.asset_info_insertion = self.asset_info_insertion['']['']['']['']['']['']['assets']['factory']['yaml'] # strip superfluous nesting ppo_path = 'train/FactoryTaskInsertionPPO.yaml' # relative to Gym's Hydra search path (cfg dir) self.cfg_ppo = hydra.compose(config_name=ppo_path) self.cfg_ppo = self.cfg_ppo['train'] # strip superfluous nesting def _acquire_task_tensors(self): """Acquire tensors.""" pass def _refresh_task_tensors(self): """Refresh tensors.""" pass def pre_physics_step(self, actions): """Reset environments. Apply actions from policy as position/rotation targets, force/torque targets, and/or PD gains.""" env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(env_ids) > 0: self.reset_idx(env_ids) self._actions = actions.clone().to(self.device) # shape = (num_envs, num_actions); values = [-1, 1] def post_physics_step(self): """Step buffers. Refresh tensors. Compute observations and reward.""" self.progress_buf[:] += 1 self.refresh_base_tensors() self.refresh_env_tensors() self._refresh_task_tensors() self.compute_observations() self.compute_reward() def compute_observations(self): """Compute observations.""" return self.obs_buf # shape = (num_envs, num_observations) def compute_reward(self): """Detect successes and failures. Update reward and reset buffers.""" self._update_rew_buf() self._update_reset_buf() def _update_rew_buf(self): """Compute reward at current timestep.""" pass def _update_reset_buf(self): """Assign environments for reset if successful or failed.""" pass def reset_idx(self, env_ids): """Reset specified environments.""" self._reset_franka(env_ids) self._reset_object(env_ids) self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def _reset_franka(self, env_ids): """Reset DOF states and DOF targets of Franka.""" # shape of dof_pos = (num_envs, num_dofs) # shape of dof_vel = (num_envs, num_dofs) # Initialize Franka to middle of joint limits, plus joint noise franka_dof_props = self.gym.get_actor_dof_properties(self.env_ptrs[0], self.franka_handles[0]) # same across all envs lower_lims = franka_dof_props['lower'] upper_lims = franka_dof_props['upper'] self.dof_pos[:, 0:self.franka_num_dofs] = torch.tensor((lower_lims + upper_lims) * 0.5, device=self.device) \ + (torch.rand((self.num_envs, 1), device=self.device) * 2.0 - 1.0) * self.cfg_task.randomize.joint_noise * math.pi / 180 self.dof_vel[env_ids, 0:self.franka_num_dofs] = 0.0 franka_actor_ids_sim_int32 = self.franka_actor_ids_sim.to(dtype=torch.int32, device=self.device)[env_ids] self.gym.set_dof_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.dof_state), gymtorch.unwrap_tensor(franka_actor_ids_sim_int32), len(franka_actor_ids_sim_int32)) self.ctrl_target_dof_pos[env_ids, 0:self.franka_num_dofs] = self.dof_pos[env_ids, 0:self.franka_num_dofs] self.gym.set_dof_position_target_tensor(self.sim, gymtorch.unwrap_tensor(self.ctrl_target_dof_pos)) def _reset_object(self, env_ids): """Reset root state of plug.""" # shape of root_pos = (num_envs, num_actors, 3) # shape of root_quat = (num_envs, num_actors, 4) # shape of root_linvel = (num_envs, num_actors, 3) # shape of root_angvel = (num_envs, num_actors, 3) if self.cfg_task.randomize.initial_state == 'random': self.root_pos[env_ids, self.plug_actor_id_env] = \ torch.cat(((torch.rand((self.num_envs, 1), device=self.device) * 2.0 - 1.0) * self.cfg_task.randomize.plug_noise_xy, self.cfg_task.randomize.plug_bias_y + (torch.rand((self.num_envs, 1), device=self.device) * 2.0 - 1.0) * self.cfg_task.randomize.plug_noise_xy, torch.ones((self.num_envs, 1), device=self.device) * (self.cfg_base.env.table_height + self.cfg_task.randomize.plug_bias_z)), dim=1) elif self.cfg_task.randomize.initial_state == 'goal': self.root_pos[env_ids, self.plug_actor_id_env] = torch.tensor([0.0, 0.0, self.cfg_base.env.table_height], device=self.device) self.root_linvel[env_ids, self.plug_actor_id_env] = 0.0 self.root_angvel[env_ids, self.plug_actor_id_env] = 0.0 plug_actor_ids_sim_int32 = self.plug_actor_ids_sim.to(dtype=torch.int32, device=self.device) self.gym.set_actor_root_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.root_state), gymtorch.unwrap_tensor(plug_actor_ids_sim_int32[env_ids]), len(plug_actor_ids_sim_int32[env_ids])) def _reset_buffers(self, env_ids): """Reset buffers. """ self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def _set_viewer_params(self): """Set viewer parameters.""" cam_pos = gymapi.Vec3(-1.0, -1.0, 1.0) cam_target = gymapi.Vec3(0.0, 0.0, 0.5) self.gym.viewer_camera_look_at(self.viewer, None, cam_pos, cam_target)
9,283
Python
45.42
170
0.636971