file_path
stringlengths
21
202
content
stringlengths
13
1.02M
size
int64
13
1.02M
lang
stringclasses
9 values
avg_line_length
float64
5.43
98.5
max_line_length
int64
12
993
alphanum_fraction
float64
0.27
0.91
NVIDIA-Omniverse/kit-extension-sample-ui-scene/exts/omni.example.ui_scene.object_info/omni/example/ui_scene/object_info/object_info_manipulator.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. __all__ = ["ObjectInfoManipulator"] from omni.ui import color as cl from omni.ui import scene as sc import omni.ui as ui LEADER_LINE_CIRCLE_RADIUS = 2 LEADER_LINE_THICKNESS = 2 LEADER_LINE_SEGMENT_LENGTH = 20 VERTICAL_MULT = 1.5 HORIZ_TEXT_OFFSET = 5 LINE1_OFFSET = 3 LINE2_OFFSET = 0 class ObjectInfoManipulator(sc.Manipulator): """Manipulator that displays the object path and material assignment with a leader line to the top of the object's bounding box. """ def on_build(self): """Called when the model is changed and rebuilds the whole manipulator""" if not self.model: return # If we don't have a selection then just return if self.model.get_item("name") == "": return position = self.model.get_as_floats(self.model.get_item("position")) # Move everything to where the object is with sc.Transform(transform=sc.Matrix44.get_translation_matrix(*position)): # Rotate everything to face the camera with sc.Transform(look_at=sc.Transform.LookAt.CAMERA): # Leader lines with a small circle on the end sc.Arc(LEADER_LINE_CIRCLE_RADIUS, axis=2, color=cl.yellow) sc.Line([0, 0, 0], [0, LEADER_LINE_SEGMENT_LENGTH, 0], color=cl.yellow, thickness=LEADER_LINE_THICKNESS) sc.Line([0, LEADER_LINE_SEGMENT_LENGTH, 0], [LEADER_LINE_SEGMENT_LENGTH, LEADER_LINE_SEGMENT_LENGTH * VERTICAL_MULT, 0], color=cl.yellow, thickness=LEADER_LINE_THICKNESS) # Shift text to the end of the leader line with some offset with sc.Transform(transform=sc.Matrix44.get_translation_matrix( LEADER_LINE_SEGMENT_LENGTH + HORIZ_TEXT_OFFSET, LEADER_LINE_SEGMENT_LENGTH * VERTICAL_MULT, 0)): with sc.Transform(scale_to=sc.Space.SCREEN): # Offset each Label vertically in screen space with sc.Transform(transform=sc.Matrix44.get_translation_matrix(0, LINE1_OFFSET, 0)): sc.Label(f"Path: {self.model.get_item('name')}", alignment=ui.Alignment.LEFT_BOTTOM) with sc.Transform(transform=sc.Matrix44.get_translation_matrix(0, LINE2_OFFSET, 0)): sc.Label(f"Material: {self.model.get_item('material')}", alignment=ui.Alignment.LEFT_TOP) def on_model_updated(self, item): # Regenerate the manipulator self.invalidate()
3,114
Python
44.808823
108
0.621387
NVIDIA-Omniverse/kit-extension-sample-ui-scene/exts/omni.example.ui_scene.object_info/docs/CHANGELOG.md
# Changelog omni.example.ui_scene.object_info ## [1.0.0] - 2022-5-1 ### Added - The initial version
102
Markdown
11.874999
33
0.666667
NVIDIA-Omniverse/kit-extension-sample-ui-scene/exts/omni.example.ui_scene.object_info/docs/README.md
# Object Info (omni.example.ui_scene.object_info) ![](https://github.com/NVIDIA-Omniverse/kit-extension-sample-ui-scene/raw/main/exts/omni.example.ui_scene.object_info/Tutorial/Images/objectinfo_finished.gif) ​ ## Overview This Extension displays the selected prim's Path and Type. ​ ## [Tutorial](../Tutorial/object_info.tutorial.md) This extension sample also includes a step-by-step tutorial to accelerate your growth as you learn to build your own Omniverse Kit extensions. Learn how to create an extension from the Extension Manager in Omniverse Code, set up your files, and use Omniverse's Library. Additionally, the tutorial has a `Final Scripts` folder to use as a reference as you go along. ​[Get started with the tutorial here.](../Tutorial/object_info.tutorial.md) ## Usage Once the extension is enabled in the *Extension Manager*, go to your *Viewport* and right-click to create a prim - such as a cube, sphere, cyclinder, etc. Then, left-click/select it to view the Object Info. ​
1,003
Markdown
51.842103
222
0.768694
NVIDIA-Omniverse/kit-extension-sample-ui-scene/exts/omni.example.ui_scene.widget_info/Tutorial/object.info.widget.tutorial.md
# How to make a Object Info Widget Extension This guide will provide you with a starting point for displaying Object Info and nesting these modules into a Widget. A Widget is a useful utility in `Omniverse Kit` that can be used to add features such as buttons and sliders. # Learning Objectives In this guide you will learn how to: - Create a Widget Extension - Use Omniverse UI Framework - Create a label - (optional) Create a toggle button feature - (optional) Create a slider # Prerequisites It is recommended that you have completed the following: - [Extension Enviroment Tutorial](https://github.com/NVIDIA-Omniverse/ExtensionEnvironmentTutorial) - [How to make an extension to display Object Info](../../omni.example.ui_scene.object_info/Tutorial/object_info.tutorial.md) # Step 1: Create a Widget Module In this series of steps, you will be setting up your Extension to create a module needed for a widget. ## Step 1.1: Clone Slider Tutorial Branch Clone the `slider-tutorial-start` branch of the `kit-extension-sample-ui-scene` [github respositiory](https://github.com/NVIDIA-Omniverse/kit-extension-sample-ui-scene) to get the assets needed for this hands-on lab. ## Step 1.2: Add Extension Path to Extension Manager Open the `Extensions Manager` in `Omniverse Code` Select gear icon to display `Extension Search Paths`. Use the <span style="color:green">green</span> :heavy_plus_sign: to add the path to `exts/slider-tutorial-start` from the cloned directory. ![](./Images/add_ext.PNG) :memo: Check that the `UI Scene Object Info` Extension is enabled in the `Extensions Manager` and working by creating a new primitive in the `Viewport` and selecting it, the object's path and info should be displayed above the object. ## Step 1.3 Open VS Code with Shortcut Open `VS Code` directly from the `Extension Manager` ![](./Images/openVS.PNG) :bulb:If you would like to know more about how to create the modules for displaying Object Info, [check out the guide here.](../../omni.example.ui_scene.object_info/Tutorial/object_info.tutorial.md) ## Step 1.4: Create the Module Create a new module called `object_info_widget.py` in the `exts` hierarchy that our other modules are located in. This will be our widget module. `object_info_widget.py` will be building off the Object Info modules provided for you. You will see these modules as `object_info_manipulator.py`, `object_info_model.py`, `viewport_scene.py`, and an updated `extension.py`. :memo: Visual Studio Code (VS Code) is our preferred IDE, hence forth referred to throughout this guide. ## Step 1.5: Set up Widget Class Inside of the `object_info_widget.py`, import `omni.ui` then create the `WidgetInfoManipulator` class to nest our functions. After, initialize our methods, as so: ```python from omni.ui import scene as sc from omni.ui import color as cl import omni.ui as ui class WidgetInfoManipulator(sc.Manipulator): def __init__(self, **kwargs) -> None: super().__init__(**kwargs) self.destroy() def destroy(self): self._root = None self._name_label = None ``` This widget will house our widget info to make the information contrasted in the viewport and add other utilities later on. You will accomplish this by creating a box for the label with a background color. ## Step 1.6: Build the widget Let's define this as `on_build_widgets` and use the `Omniverse UI Framework` to create the label for this widget in a `ZStack`. [See here for more documentation on Omniverse UI Framework](https://docs.omniverse.nvidia.com/py/kit/source/extensions/omni.ui/docs/index.html). ```python ... def on_build_widgets(self): with ui.ZStack(): ``` Once you have established the UI layout, you can create the background for the widget using `ui.Rectangle` and set the border attributes and background color. You can then create the `ui.Label` and set its alignment, as so: ```python ... def on_build_widgets(self): with ui.ZStack(): ui.Rectangle(style={ "background_color": cl(0.2), "border_color": cl(0.7), "border_width": 2, "border_radius": 4, }) self._name_label = ui.Label("", height=0, alignment=ui.Alignment.CENTER) ``` ## Step 1.7: Create Manipulator Functions With a Manipulator, you need to define an `on_build` function. This function is called when the model is changed so that the widget is rebuilt. [You can find more information about the Manipulator here.](https://docs.omniverse.nvidia.com/py/kit/source/extensions/omni.ui.scene/docs/Manipulator.html) ```python ... self.on_model_updated(None) def on_build(self): """Called when the model is changed and rebuilds the whole slider""" self._root = sc.Transform(visible=False) with self._root: with sc.Transform(scale_to=sc.Space.SCREEN): with sc.Transform(transform=sc.Matrix44.get_translation_matrix(0, 100, 0)): self._widget = sc.Widget(500, 150, update_policy=sc.Widget.UpdatePolicy.ON_MOUSE_HOVERED) self._widget.frame.set_build_fn(self.on_build_widgets) ``` Now define `on_model_updated()` that was called above. In this function you need to establish what happens if nothing is selected, when to update the prims, and when to update the prim name, as so: ```python ... def on_model_updated(self, _): # if you don't have selection then show nothing if not self.model or not self.model.get_item("name"): self._root.visible = False return # Update the shapes position = self.model.get_as_floats(self.model.get_item("position")) if self._root: self._root.transform = sc.Matrix44.get_translation_matrix(*position) self._root.visible = True # Update the shape name if self._name_label: self._name_label.text = f"Prim:{self.model.get_item('name')}" ``` <details> <summary>Click here for the end code of <b>widget_info_manipulator.py</b></summary> ```python from omni.ui import scene as sc from omni.ui import color as cl import omni.ui as ui class WidgetInfoManipulator(sc.Manipulator): def __init__(self, **kwargs) -> None: super().__init__(**kwargs) self.destroy() def destroy(self): self._root = None self._name_label = None def on_build_widgets(self): with ui.ZStack(): ui.Rectangle(style={ "background_color": cl(0.2), "border_color": cl(0.7), "border_width": 2, "border_radius": 4, }) self._name_label = ui.Label("", height=0, alignment=ui.Alignment.CENTER) self.on_model_updated(None) def on_build(self): """Called when the model is changed and rebuilds the whole slider""" self._root = sc.Transform(visible=False) with self._root: with sc.Transform(scale_to=sc.Space.SCREEN): with sc.Transform(transform=sc.Matrix44.get_translation_matrix(0, 100, 0)): self._widget = sc.Widget(500, 150, update_policy=sc.Widget.UpdatePolicy.ON_MOUSE_HOVERED) self._widget.frame.set_build_fn(self.on_build_widgets) def on_model_updated(self, _): # if you don't have selection then show nothing if not self.model or not self.model.get_item("name"): self._root.visible = False return # Update the shapes position = self.model.get_as_floats(self.model.get_item("position")) if self._root: self._root.transform = sc.Matrix44.get_translation_matrix(*position) self._root.visible = True # Update the shape name if self._name_label: self._name_label.text = f"Prim:{self.model.get_item('name')}" ``` </details> # Step 2: Update Viewport and Extension Now that you have created a new module, it is important for us to bring this information into `viewport_scene.py` and update `extension.py` to reflect these new changes. ## Step 2.1: Import Widget Info Begin by updating `viewport_scene.py` and importing `WidgetInfoManipulator` at the top of the file with the other imports. ```python from omni.ui import scene as sc import omni.ui as ui from .object_info_manipulator import ObjInfoManipulator from .object_info_model import ObjInfoModel # NEW from .widget_info_manipulator import WidgetInfoManipulator # END NEW ``` ### Step 2.2: Add Display Widget Inside the `ViewportSceneInfo` class, you will add a `display_widget` parameter to `__init__()`: ```python ... class ViewportSceneInfo(): # NEW PARAMETER: display_widget def __init__(self, viewport_window, ext_id, display_widget) -> None: self.scene_view = None self.viewport_window = viewport_window ... ``` ### Step 2.3: Use `display_widget` Use `display_widget` to control whether to show `WidgetInfoManipulator` or `ObjInfoManipulator` as so: ```python ... class ViewportSceneInfo(): # NEW PARAMETER: display_widget def __init__(self, viewport_window, ext_id, display_widget) -> None: self.scene_view = None self.viewport_window = viewport_window with self.viewport_window.get_frame(ext_id): self.scene_view = sc.SceneView() with self.scene_view.scene: # NEW if display_widget: WidgetInfoManipulator(model=ObjInfoModel()) else: # END NEW ObjInfoManipulator(model=ObjInfoModel()) ... ``` <details> <summary>Click here for the updated <b>viewport_scene.py</b></summary> ```python from omni.ui import scene as sc import omni.ui as ui from .object_info_manipulator import ObjInfoManipulator from .object_info_model import ObjInfoModel from .widget_info_manipulator import WidgetInfoManipulator class ViewportSceneInfo(): def __init__(self, viewport_window, ext_id, display_widget) -> None: self.scene_view = None self.viewport_window = viewport_window with self.viewport_window.get_frame(ext_id): self.scene_view = sc.SceneView() with self.scene_view.scene: if display_widget: WidgetInfoManipulator(model=ObjInfoModel()) else: ObjInfoManipulator(model=ObjInfoModel()) self.viewport_window.viewport_api.add_scene_view(self.scene_view) def __del__(self): self.destroy() def destroy(self): if self.scene_view: self.scene_view.scene.clear() if self.viewport_window: self.viewport_window.viewport_api.remove_scene_view(self.scene_view) self.viewport_window = None self.scene_view = None ``` </details> <br> ## Step 3: Update `extension.py` Now that you have created the widget and passed it into the viewport, you need to call this in the `extension.py` module for it to function. ### Step 3.1: Edit the Class Name Start by changing the class name of `extension.py` from `MyExtension` to something more descriptive, like `ObjectInfoWidget`: ```python ... ## Replace ## class MyExtension(omni.ext.IExt): ## With ## class ObjectInfoWidget(omni.ext.IExt): ## END ## def __init__(self) -> None: super().__init__() self.viewportScene = None ``` ### Step 3.2: Pass the Parameter Pass the new parameter in `on_startup()` as follows: ```python ... def on_startup(self, ext_id): #Grab a reference to the viewport viewport_window = get_active_viewport_window() # NEW PARAMETER PASSED self.viewportScene = ViewportSceneInfo(viewport_window, ext_id, True) ... ``` <details> <summary>Click here for the updated <b>extension.py</b> module </summary> ```python import omni.ext import omni.ui as ui from omni.ui import scene as sc from omni.ui import color as cl from omni.kit.viewport.utility import get_active_viewport_window from .viewport_scene import ViewportSceneInfo class ObjectInfoWidget(omni.ext.IExt): def __init__(self) -> None: super().__init__() self.viewportScene = None def on_startup(self, ext_id): #Grab a reference to the viewport viewport_window = get_active_viewport_window() self.viewportScene = ViewportSceneInfo(viewport_window, ext_id, True) def on_shutdown(self): if self.viewportScene: self.viewportScene.destroy() self.viewportScene = None ``` </details> Excellent, You should now see these updates in Omniverse Code at this point. ![](./Images/step2_complete.gif) ## Step 4: Create a Toggle Button In this section you will create a button that enables us to turn the object info widget on and off in the viewport. This feature is built in `extension.py` and is an optional section. If you do not want the toggle button, feel free to skip this part. ## Step 4.1: Add the button to `extension.py` First define new properties in `extension.py` for `viewport_scene`,`widget_view`, and `ext_id`, as follows: ```python ... class ObjectInfoWidget(omni.ext.IExt): def __init__(self) -> None: super().__init__() # NEW VALUES self.viewport_scene = None self.widget_view_on = False self.ext_id = None # END NEW ``` ### Step 4.2 Update Startup Update `on_startup()` to create a new window for the button. ### Step 4.3 Passs `self.widget_view_on` into ViewportSceneInfo ```python ... def on_startup(self, ext_id): # NEW: Window with a label and button to toggle the widget / info self.window = ui.Window("Toggle Widget View", width=300, height=300) self.ext_id = ext_id with self.window.frame: with ui.HStack(height=0): ui.Label("Toggle Widget View", alignment=ui.Alignment.CENTER_TOP, style={"margin": 5}) ui.Button("Toggle Widget", clicked_fn=self.toggle_view) # END NEW #Grab a reference to the viewport viewport_window = get_active_viewport_window() # NEW: passed in our new value self.widget_view_on self.viewport_scene = ViewportSceneInfo(viewport_window, ext_id, self.widget_view_on) ... ``` ### Step 4.4 Create the Toggle Define `toggle_view()`. This function will be bound to the button's clicked function, thus requiring an `if` statement to check when the button is on/off: ```python ... # NEW: New function that is binded to our button's clicked_fn def toggle_view(self): self.reset_viewport_scene() self.widget_view_on = not self.widget_view_on if self.widget_view_on: self._toggle_button.text = "Toggle Widget Info Off" else: self._toggle_button.text = "Toggle Widget Info On" viewport_window = get_active_viewport_window() self.viewport_scene = ViewportSceneInfo(viewport_window, self.ext_id, self.widget_view_on) # END NEW ... ``` ### Step 4.5: Create Reset Viewport Scene Function This button is used in more than one spot, therefore define `reset_viewport_scene()`. This function will purge our viewport scene when the button is reset. ```python ... # NEW: New function for resetting the viewport scene (since this will be used in more than one spot) def reset_viewport_scene(self): if self.viewport_scene: self.viewport_scene.destroy() self.viewport_scene = None # END NEW ... ``` ### Step 4.6: Reset Viewport Scene on Shutdown Update `on_shutdown` to remove the `viewport_scene` parameters you moved into the reset function and then call that function. ```python ... def on_shutdown(self): # NEW: Moved code block to a function and call it self.reset_viewport_scene() # END NEW ``` <br> <details> <summary>Click here for the updated <b>extension.py</b> module </summary> ```python import omni.ext import omni.ui as ui from omni.kit.viewport.utility import get_active_viewport_window from .viewport_scene import ViewportSceneInfo class ObjectInfoWidget(omni.ext.IExt): def __init__(self) -> None: super().__init__() self.viewport_scene = None self.widget_view_on = False self.ext_id = None def on_startup(self, ext_id): self.window = ui.Window("Toggle Widget View", width=300, height=300) self.ext_id = ext_id with self.window.frame: with ui.HStack(height=0): ui.Label("Toggle Widget View", alignment=ui.Alignment.CENTER_TOP, style={"margin": 5}) ui.Button("Toggle Widget", clicked_fn=self.toggle_view) #Grab a reference to the viewport viewport_window = get_active_viewport_window() self.viewport_scene = ViewportSceneInfo(viewport_window, ext_id, self.widget_view_on) def toggle_view(self): self.reset_viewport_scene() self.widget_view_on = not self.widget_view_on if self.widget_view_on: self._toggle_button.text = "Toggle Widget Info Off" else: self._toggle_button.text = "Toggle Widget Info On" viewport_window = get_active_viewport_window() self.viewport_scene = ViewportSceneInfo(viewport_window, self.ext_id, self.widget_view_on) def reset_viewport_scene(self): if self.viewport_scene: self.viewport_scene.destroy() self.viewport_scene = None def on_shutdown(self): self.reset_viewport_scene() ``` </details> <br> Here is what you should see in the viewport at this point: <br> ![](./Images/togglewidget_window.gif) ## Step 5: Add a Slider In this step, you will be adding a slider to the widget. This slider will change the scale of the object. This is an optional step and may be skipped as it is just to showcase a simple addition of what a widget can do. For a more complex slider, [check out the guide to `Slider Manipulator` here.](https://github.com/NVIDIA-Omniverse/kit-extension-sample-ui-scene/blob/main/exts/omni.example.ui_scene.slider_manipulator/Tutorial/slider_Manipulator_Tutorial.md) ### Step 5.1: Add to `widget_info_manipulator.py` Use `omni.ui` to build the framework for the slider in the function `on_build_widgets()`. This slider is an optional feature to the widget but is a great way to add utility. ```python ... def on_build_widgets(self): with ui.ZStack(): ui.Rectangle(style={ "background_color": cl(0.2), "border_color": cl(0.7), "border_width": 2, "border_radius": 4, }) # NEW: Adding the Slider to the widget in the scene with ui.VStack(style={"font_size": 24}): self._name_label = ui.Label("", height=0, alignment=ui.Alignment.CENTER) # setup some model, just for simple demonstration here self._slider_model = ui.SimpleFloatModel() ui.Spacer(height=5) with ui.HStack(): ui.Spacer(width=10) ui.Label("scale", height=0, width=0) ui.Spacer(width=5) ui.FloatSlider(self._slider_model) ui.Spacer(width=5) ui.Spacer(height=5) # END NEW self.on_model_updated(None) ... ``` ### Step 5.2: Update the Scale with a Slider Function Add a new function that will scale the model when the slider is dragged. Define this function after `on_model_updated` and name it `update_scale`. ```python ... def on_model_updated(self, _): # if you don't have selection then show nothing if not self.model or not self.model.get_item("name"): self._root.visible = False return # Update the shapes position = self.model.get_as_floats(self.model.get_item("position")) if self._root: self._root.transform = sc.Matrix44.get_translation_matrix(*position) self._root.visible = True # NEW # Update the slider def update_scale(prim_name, value): print(f"changing scale of {prim_name}, {value}") stage = self.model.usd_context.get_stage() prim = stage.GetPrimAtPath(self.model.current_path) scale = prim.GetAttribute("xformOp:scale") scale.Set(Gf.Vec3d(value, value, value)) if self._slider_model: self._slider_subscription = None self._slider_model.as_float = 1.0 self._slider_subscription = self._slider_model.subscribe_value_changed_fn( lambda m, p=self.model.get_item("name"): update_scale(p, m.as_float) ) # END NEW ... ``` <details> <summary>Click here for the updated <b>widget_info_manipulator.py</b> module </summary> ```python from omni.ui import scene as sc from omni.ui import color as cl import omni.ui as ui from pxr import Gf class WidgetInfoManipulator(sc.Manipulator): def __init__(self, **kwargs) -> None: super().__init__(**kwargs) self.destroy() def destroy(self): self._root = None self._name_label = None self._slider_model = None def on_build_widgets(self): with ui.ZStack(): ui.Rectangle(style={ "background_color": cl(0.2), "border_color": cl(0.7), "border_width": 2, "border_radius": 4, }) with ui.VStack(): self._name_label = ui.Label("", height=0, alignment=ui.Alignment.CENTER) # setup some model, just for simple demonstration here self._slider_model = ui.SimpleFloatModel() ui.Spacer(height=5) with ui.HStack(): ui.Spacer(width=10) ui.Label("scale", height=0, width=0) ui.Spacer(width=5) ui.FloatSlider(self._slider_model) ui.Spacer(width=5) ui.Spacer(height=5) self.on_model_updated(None) def on_build(self): """Called when the model is changed and rebuilds the whole slider""" self._root = sc.Transform(visibile=False) with self._root: with sc.Transform(scale_to=sc.Space.SCREEN): with sc.Transform(transform=sc.Matrix44.get_translation_matrix(0, 100, 0)): self._widget = sc.Widget(500, 150, update_policy=sc.Widget.UpdatePolicy.ON_MOUSE_HOVERED) self._widget.frame.set_build_fn(self.on_build_widgets) def on_model_updated(self, _): # if you don't have selection then show nothing if not self.model or not self.model.get_item("name"): self._root.visible = False return # Update the shapes position = self.model.get_as_floats(self.model.get_item("position")) if self._root: self._root.transform = sc.Matrix44.get_translation_matrix(*position) self._root.visible = True # Update the slider def update_scale(prim_name, value): print(f"changing scale of {prim_name}, {value}") stage = self.model.usd_context.get_stage() prim = stage.GetPrimAtPath(self.model.current_path) scale = prim.GetAttribute("xformOp:scale") scale.Set(Gf.Vec3d(value, value, value)) if self._slider_model: self._slider_subscription = None self._slider_model.as_float = 1.0 self._slider_subscription = self._slider_model.subscribe_value_changed_fn( lambda m, p=self.model.get_item("name"): update_scale(p, m.as_float) ) # Update the shape name if self._name_label: self._name_label.text = f"Prim:{self.model.get_item('name')}" ``` </details> <br> Here is what is created in the viewport of Omniverse Code: <br> ![](./Images/sliderWorking.gif) # Congratulations! You have successfully created a Widget Info Extension!
24,282
Markdown
33.201408
460
0.640763
NVIDIA-Omniverse/kit-extension-sample-ui-scene/exts/omni.example.ui_scene.widget_info/omni/example/ui_scene/widget_info/widget_info_manipulator.py
## Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. ## ## NVIDIA CORPORATION and its licensors retain all intellectual property ## and proprietary rights in and to this software, related documentation ## and any modifications thereto. Any use, reproduction, disclosure or ## distribution of this software and related documentation without an express ## license agreement from NVIDIA CORPORATION is strictly prohibited. ## __all__ = ["WidgetInfoManipulator"] from omni.ui import color as cl from omni.ui import scene as sc import omni.ui as ui class _ViewportLegacyDisableSelection: """Disables selection in the Viewport Legacy""" def __init__(self): self._focused_windows = None focused_windows = [] try: # For some reason is_focused may return False, when a Window is definitely in fact is the focused window! # And there's no good solution to this when mutliple Viewport-1 instances are open; so we just have to # operate on all Viewports for a given usd_context. import omni.kit.viewport_legacy as vp vpi = vp.acquire_viewport_interface() for instance in vpi.get_instance_list(): window = vpi.get_viewport_window(instance) if not window: continue focused_windows.append(window) if focused_windows: self._focused_windows = focused_windows for window in self._focused_windows: # Disable the selection_rect, but enable_picking for snapping window.disable_selection_rect(True) except Exception: pass class _DragPrioritize(sc.GestureManager): """Refuses preventing _DragGesture.""" def can_be_prevented(self, gesture): # Never prevent in the middle of drag return gesture.state != sc.GestureState.CHANGED def should_prevent(self, gesture, preventer): if preventer.state == sc.GestureState.BEGAN or preventer.state == sc.GestureState.CHANGED: return True class _DragGesture(sc.DragGesture): """"Gesture to disable rectangle selection in the viewport legacy""" def __init__(self): super().__init__(manager=_DragPrioritize()) def on_began(self): # When the user drags the slider, we don't want to see the selection # rect. In Viewport Next, it works well automatically because the # selection rect is a manipulator with its gesture, and we add the # slider manipulator to the same SceneView. # In Viewport Legacy, the selection rect is not a manipulator. Thus it's # not disabled automatically, and we need to disable it with the code. self.__disable_selection = _ViewportLegacyDisableSelection() def on_ended(self): # This re-enables the selection in the Viewport Legacy self.__disable_selection = None class WidgetInfoManipulator(sc.Manipulator): def __init__(self, **kwargs): super().__init__(**kwargs) self.destroy() self._radius = 2 self._distance_to_top = 5 self._thickness = 2 self._radius_hovered = 20 def destroy(self): self._root = None self._slider_subscription = None self._slider_model = None self._name_label = None def _on_build_widgets(self): with ui.ZStack(): ui.Rectangle( style={ "background_color": cl(0.2), "border_color": cl(0.7), "border_width": 2, "border_radius": 4, } ) with ui.VStack(style={"font_size": 24}): ui.Spacer(height=4) with ui.ZStack(style={"margin": 1}, height=30): ui.Rectangle( style={ "background_color": cl(0.0), } ) ui.Line(style={"color": cl(0.7), "border_width": 2}, alignment=ui.Alignment.BOTTOM) ui.Label("Hello world, I am a scene.Widget!", height=0, alignment=ui.Alignment.CENTER) ui.Spacer(height=4) self._name_label = ui.Label("", height=0, alignment=ui.Alignment.CENTER) # setup some model, just for simple demonstration here self._slider_model = ui.SimpleFloatModel() ui.Spacer(height=10) with ui.HStack(): ui.Spacer(width=10) ui.Label("scale", height=0, width=0) ui.Spacer(width=5) ui.FloatSlider(self._slider_model) ui.Spacer(width=10) ui.Spacer(height=4) ui.Spacer() self.on_model_updated(None) # Additional gesture that prevents Viewport Legacy selection self._widget.gestures += [_DragGesture()] def on_build(self): """Called when the model is chenged and rebuilds the whole slider""" self._root = sc.Transform(visible=False) with self._root: with sc.Transform(scale_to=sc.Space.SCREEN): with sc.Transform(transform=sc.Matrix44.get_translation_matrix(0, 100, 0)): # Label with sc.Transform(look_at=sc.Transform.LookAt.CAMERA): self._widget = sc.Widget(500, 150, update_policy=sc.Widget.UpdatePolicy.ON_MOUSE_HOVERED) self._widget.frame.set_build_fn(self._on_build_widgets) def on_model_updated(self, _): # if we don't have selection then show nothing if not self.model or not self.model.get_item("name"): self._root.visible = False return # Update the shapes position = self.model.get_as_floats(self.model.get_item("position")) self._root.transform = sc.Matrix44.get_translation_matrix(*position) self._root.visible = True # Update the slider def update_scale(prim_name, value): print(f"changing scale of {prim_name}, {value}") if self._slider_model: self._slider_subscription = None self._slider_model.as_float = 1.0 self._slider_subscription = self._slider_model.subscribe_value_changed_fn( lambda m, p=self.model.get_item("name"): update_scale(p, m.as_float) ) # Update the shape name if self._name_label: self._name_label.text = f"Prim:{self.model.get_item('name')}"
6,631
Python
38.011764
117
0.58513
NVIDIA-Omniverse/kit-extension-sample-ui-scene/exts/omni.example.ui_scene.widget_info/omni/example/ui_scene/widget_info/widget_info_extension.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # __all__ = ["WidgetInfoExtension"] from .widget_info_scene import WidgetInfoScene from omni.kit.viewport.utility import get_active_viewport_window import carb import omni.ext class WidgetInfoExtension(omni.ext.IExt): """The entry point to the extension""" def on_startup(self, ext_id): # Get the active (which at startup is the default Viewport) viewport_window = get_active_viewport_window() # Issue an error if there is no Viewport if not viewport_window: carb.log_warn(f"No Viewport Window to add {ext_id} scene to") self._widget_info_viewport = None return # Build out the scene self._widget_info_viewport = WidgetInfoScene(viewport_window, ext_id) def on_shutdown(self): if self._widget_info_viewport: self._widget_info_viewport.destroy() self._widget_info_viewport = None
1,340
Python
35.243242
77
0.706716
NVIDIA-Omniverse/kit-extension-sample-ui-scene/exts/omni.example.ui_scene.widget_info/omni/example/ui_scene/widget_info/tests/test_info.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # __all__ = ["TestInfo"] from omni.example.ui_scene.widget_info.widget_info_manipulator import WidgetInfoManipulator from omni.ui import scene as sc from omni.ui.tests.test_base import OmniUiTest from pathlib import Path import omni.kit.app import omni.kit.test EXTENSION_FOLDER_PATH = Path(omni.kit.app.get_app().get_extension_manager().get_extension_path_by_module(__name__)) TEST_DATA_PATH = EXTENSION_FOLDER_PATH.joinpath("data/tests") class WidgetInfoTestModelItem(sc.AbstractManipulatorItem): pass class WidgetInfoTestModel(sc.AbstractManipulatorModel): def __init__(self): super().__init__() self.position = WidgetInfoTestModelItem() def get_item(self, identifier): if identifier == "position": return self.position if identifier == "name": return "Name" if identifier == "material": return "Material" def get_as_floats(self, item): if item == self.position: return [0, 0, 0] class TestInfo(OmniUiTest): async def test_general(self): """Testing general look of the item""" window = await self.create_test_window(width=256, height=256) with window.frame: # Camera matrices projection = [1e-2, 0, 0, 0] projection += [0, 1e-2, 0, 0] projection += [0, 0, -2e-7, 0] projection += [0, 0, 1, 1] view = sc.Matrix44.get_translation_matrix(0, 0, 0) scene_view = sc.SceneView(sc.CameraModel(projection, view)) with scene_view.scene: # The manipulator model = WidgetInfoTestModel() WidgetInfoManipulator(model=model) await omni.kit.app.get_app().next_update_async() model._item_changed(None) for _ in range(10): await omni.kit.app.get_app().next_update_async() await self.finalize_test(threshold=100, golden_img_dir=TEST_DATA_PATH, golden_img_name="general.png")
2,430
Python
32.763888
115
0.653909
NVIDIA-Omniverse/kit-extension-sample-ui-scene/exts/omni.example.ui_scene.widget_info/docs/CHANGELOG.md
# Changelog omni.ui.scene.object_info ## [1.0.1] - 2022-06-01 ### Changed - It doesn't recreate sc.Widget to avoid crash ## [1.0.0] - 2022-5-1 ### Added - The initial version
178
Markdown
13.916666
46
0.646067
NVIDIA-Omniverse/kit-extension-sample-ui-scene/exts/omni.example.ui_scene.widget_info/docs/README.md
# Widget Info (omni.example.ui_scene.widget_info) ![](https://github.com/NVIDIA-Omniverse/kit-extension-sample-ui-scene/raw/main/exts/omni.example.ui_scene.widget_info/data/preview.png) ​ ## Overview In the example, we show how to leverage `ui.scene.Widget` item to create a `ui.Widget` that is in 3D space. The Widget can have any type of `omni.ui` element, including being interactive, as shown with the slider. ​ ## [Tutorial](https://github.com/NVIDIA-Omniverse/kit-extension-sample-ui-scene/blob/main/exts/omni.example.ui_scene.widget_info/Tutorial/object.info.widget.tutorial.md) This extension sample also includes a step-by-step tutorial to accelerate your growth as you learn to build your own Omniverse Kit extensions. In the tutorial you will learn how to build from existing modules to create a Widget. A Widget is a useful utility in `Omniverse Kit` that can be used to add features such as buttons and sliders. ​[Get started with the tutorial here.](https://github.com/NVIDIA-Omniverse/kit-extension-sample-ui-scene/blob/main/exts/omni.example.ui_scene.widget_info/Tutorial/object.info.widget.tutorial.md) ## Usage Once the extension is enabled in the `Extension Manager`, go to your `Viewport` and right-click to create a primitive - such as a cube, sphere, cyclinder, etc. Then, left-click/select the primitive to view the Object Info. The Path and Type of the Object will be displayed inside of a Widget. ​ ## The extension showcases view concepts Similarly to the other `ui.scene` example it shows you how to set up the viewport scene in `viewport_scene.py`. Then there is the Manipulator object that manages the presentation of the item `widget_info_manipulator.py`. Finally, the `widget_info_model.py` contains the model that connects the world with the manipulator. ## Overlaying with the viewport We use `sc.Manipulator` with `sc.Widget` to draw `omni.ui` widgets in 3D view. To show it in the viewport, we overlay `sc.SceneView` with our `sc.Manipulator` on top of the viewport window. ```python from omni.kit.viewport.utility import get_active_viewport_window viewport_window = get_active_viewport_window() # Create a unique frame for our SceneView with viewport_window.get_frame(ext_id): # Create a default SceneView (it has a default camera-model) self._scene_view = sc.SceneView() # Add the manipulator into the SceneView's scene with self._scene_view.scene: WidgetInfoManipulator(model=WidgetInfoModel()) ``` To synchronize the projection and view matrices, `omni.kit.viewport.utility` has the method `add_scene_view`, which replaces the camera model, and the manipulator visually looks like it's in the main viewport. ```python # Register the SceneView with the Viewport to get projection and view updates viewport_window.viewport_api.add_scene_view(self._scene_view) ```
2,840
Markdown
47.982758
292
0.772183
NVIDIA-Omniverse/IsaacSim-Automator/CONTRUBUTING.md
# Isaac Automation OSS Contribution Rules - [Development Tips](#development-tips) - [Updating Pre-Built VM Images](#updating-pre-built-vm-images) - [Azure](#azure) - [Issue Tracking](#issue-tracking) - [Coding Guidelines](#coding-guidelines) - [Formatting and Linting](#formatting-and-linting) - [General](#general) - [Pull Requests](#pull-requests) - [Signing Your Work](#signing-your-work) ## Development Tips ### Updating Pre-Built VM Images Pre-built VM images are created using [Packer](https://www.packer.io/) and can be used to accelerate deployment of the app instances by skipping the time-consuming installation and configuration steps. To use pre-built images, add `--from-image` flag to the `deploy-*` commands. ```sh #### AWS Refer to [../src/packer/aws/README.md](src/packer/aws/README.md) for pre-requisites. Then: ```sh packer build -force /app/src/packer/aws/isaac ... ``` #### Azure Refer to [../src/packer/azure/README.md](src/packer/azure/README.md) for pre-requisites. Then: ```sh packer build -force /app/src/packer/azure/isaac ... ``` ## Issue Tracking - All enhancement, bugfix, or change requests must begin with the creation of a [Isaac Automation Issue Request](https://github.com/nvidia/Isaac-Automation/issues). - The issue request must be reviewed by Isaac Automation engineers and approved prior to code review. ## Coding Guidelines Please follow the existing conventions in the relevant file, submodule, module, and project when you add new code or when you extend/fix existing functionality. ### Formatting and Linting - Make sure your editor is using the included `.editorconfig` file for indentation, line endings, etc. - Use the following formatters and linting tools for the respective languages: - Python: [black](<https://github.com/psf/black>), [isort](<https://github.com/pycqa/isort/>), [flake8](https://github.com/pycqa/flake8) - Terraform: [terraform fmt](<https://www.terraform.io/docs/commands/fmt.html>) - Ansible: [ansible-lint](<https://github.com/ansible/ansible-lint>) - Packer: [packer fmt](<https://www.packer.io/docs/commands/fmt.html>) Project includes settings and recommended extensions for [Visual Studio Code](https://code.visualstudio.com/) which make it easier following the formatting linting and guidelines. ### General - Avoid introducing unnecessary complexity into existing code so that maintainability and readability are preserved. - Try to keep pull requests (PRs) as concise as possible: - Avoid committing commented-out code. - Wherever possible, each PR should address a single concern. If there are several otherwise-unrelated things that should be fixed to reach a desired endpoint, our recommendation is to open several PRs and indicate the dependencies in the description. The more complex the changes are in a single PR, the more time it will take to review those changes. - Write commit titles using imperative mood and [these rules](https://chris.beams.io/posts/git-commit/), and reference the Issue number corresponding to the PR. Following is the recommended format for commit texts: ```text #<Issue Number> - <Commit Title> <Commit Body> ``` - All OSS components must contain accompanying documentation (READMEs) describing the functionality, dependencies, and known issues. - Accompanying tests are highly desireable and recommended. If the test is not possible or not feasible to implement, please provide a sample usage information. - Make sure that you can contribute your work to open source (no license and/or patent conflict is introduced by your code). You will need to [`sign`](#signing-your-work) your commit. - Thanks in advance for your patience as we review your contributions; we do appreciate them! ## Pull Requests Developer workflow for code contributions is as follows: 1. Developers must first [fork](https://help.github.com/en/articles/fork-a-repo) the [upstream](https://github.com/nvidia/Isaac-Automation) Isaac Automation OSS repository. 1. Git clone the forked repository and push changes to the personal fork. ```bash git clone https://github.com/YOUR_USERNAME/YOUR_FORK.git Isaac-Automation # Checkout the targeted branch and commit changes # Push the commits to a branch on the fork (remote). git push -u origin <local-branch>:<remote-branch> ``` 1. Once the code changes are staged on the fork and ready for review, a [Pull Request](https://help.github.com/en/articles/about-pull-requests) (PR) can be [requested](https://help.github.com/en/articles/creating-a-pull-request) to merge the changes from a branch of the fork into a selected branch of upstream. ## Signing Your Work - We require that all contributors "sign-off" on their commits. This certifies that the contribution is your original work, or you have rights to submit it under the same license, or a compatible license. - Any contribution which contains commits that are not Signed-Off will not be accepted. - To sign off on a commit you simply use the `--signoff` (or `-s`) option when committing your changes: ```bash git commit -s -m "Add cool feature." ``` This will append the following to your commit message: ```text Signed-off-by: Your Name <[email protected]> ``` - Full text of the DCO: ```text Developer Certificate of Origin Version 1.1 Copyright (C) 2004, 2006 The Linux Foundation and its contributors. 1 Letterman Drive Suite D4700 San Francisco, CA, 94129 Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Developer's Certificate of Origin 1.1 By making a contribution to this project, I certify that: (a) The contribution was created in whole or in part by me and I have the right to submit it under the open source license indicated in the file; or (b) The contribution is based upon previous work that, to the best of my knowledge, is covered under an appropriate open source license and I have the right under that license to submit that work with modifications, whether created in whole or in part by me, under the same open source license (unless I am permitted to submit under a different license), as indicated in the file; or (c) The contribution was provided directly to me by some other person who certified (a), (b) or (c) and I have not modified it. (d) I understand and agree that this project and the contribution are public and that a record of the contribution (including all personal information I submit with it, including my sign-off) is maintained indefinitely and may be redistributed consistent with this project or the open source license(s) involved. ```
6,699
Markdown
44.578231
385
0.754292
NVIDIA-Omniverse/IsaacSim-Automator/README.md
# Isaac Sim Automator - [Installation](#installation) - [Installing Docker](#installing-docker) - [Obtaining NGC API Key](#obtaining-ngc-api-key) - [Building the Container](#building-the-container) - [Usage](#usage) - [Tip: Running the Automator Commands](#tip-running-the-automator-commands) - [Deploying Isaac Sim](#deploying-isaac-sim) - [AWS](#aws) - [GCP](#gcp) - [Azure](#azure) - [Alibaba Cloud](#alibaba-cloud) - [Connecting to Deployed Instances](#connecting-to-deployed-instances) - [Running Applications](#running-applications) - [Isaac Sim](#isaac-sim) - [Shell in Isaac Sim Container](#shell-in-isaac-sim-container) - [Omniverse Isaac Gym Environments](#omniverse-isaac-gym-environments) - [Isaac Orbit](#isaac-orbit) - [Mapped Folders](#mapped-folders) - [Pausing and Resuming](#pausing-and-resuming) - [Uploading Data](#uploading-data) - [Downloading Data](#downloading-data) - [Repairing](#repairing) - [Destroying](#destroying) This tool automates deployment of [Isaac Sim](https://developer.nvidia.com/isaac-sim) to public clouds. ## Installation ### Installing Docker `docker` should be present on your system. Visit <https://docs.docker.com/engine/install/> for installation instructions. ### Obtaining NGC API Key **NGC API Key** allows you to download docker images from <https://ngc.nvidia.com/>. Please prepare one or obtain it at <https://ngc.nvidia.com/setup/api-key>. ### Building the Container Please enter the following command in the project root directory to build the container: ```sh ./build ``` This will build the Isaac Sim Automator container and tag it as `isa`. ## Usage ### Tip: Running the Automator Commands There are two ways to run the automator commands: 1. First enter the automator container and then run the command inside the container: ```sh # enter the automator container ./run # inside container: ./someconnad ``` 2. Simply prepend the command with `./run` like so: ```sh ./run ./somecommand <parameters> ``` for example: ```sh ./run ./deploy-aws ./run ./destroy my-deployment ``` ### Deploying Isaac Sim #### AWS <details> <a name="#aws-permissions"></a> <summary>Enabling Access Permissions</summary> You need _AmazonEC2FullAccess_ permissions enabled for your AWS user. You can enable those in [Identity and Access Management (IAM) Section](https://console.aws.amazon.com/iamv2/home#/home) in AWS console like so: 1. Go to <https://console.aws.amazon.com/iamv2/home#/home> 2. Click "Access Management" \> "Users" in the left menu 3. Search for your user name 4. Under "Permissions" tab click "Add permissions" 5. Choose "Attach existing policies directly" 6. Search for _AmazonEC2FullAccess_, check the box next to it, click "Next" 7. Click "Add permissions" </details> <details> <a name="#aws-access-creds"></a> <summary>Getting Access Credentials</summary> You will need _AWS Access Key_ and _AWS Secret Key_ for an existing account. You can obtain those in <a href="https://console.aws.amazon.com/iamv2/home#/home">Identity and Access Management (IAM) Section</a> in the AWS console. </details> If yoou have completed the above steps or already have your permissions and credentials set up, run the following command in the project root directory: ```sh # enter the automator container ./run # inside container: ./deploy-aws ``` Tip: Run `./deploy-aws --help` to see more options. #### GCP ```sh # enter the automator container ./run # inside container: ./deploy-gcp ``` Tip: Run `./deploy-gcp --help` to see more options. #### Azure If You Have Single Subscription: ```sh # enter the automator container ./run # inside container: ./deploy-azure ``` If You Have Multiple Subscriptions: ```sh # enter the automator container ./run # inside container: az login # login az account show --output table # list subscriptions az account set --subscription "<subscription_name>" ./deploy-azure --no-login ``` Tip: Run `./deploy-azure --help` to see more options. #### Alibaba Cloud <details> <a name="#alicloud-access-creds"></a> <summary>Getting Access Credentials</summary> You will need <i>Access Key</i> and <i>Secret Key</i> for an existing AliCloud account. You can obtain those in <a href="https://usercenter.console.aliyun.com/#/manage/ak">AccessKey Management</a> section in the Alibaba Cloud console. </details> Once you have prepared the access credentials, run the following command in the project root directory: ```sh # enter the automator container ./run # inside container: ./deploy-alicloud ``` Tip: Run `./deploy-alicloud --help` to see more options. GPU-accelerated instances with NVIDIA A100, A10 and T4 GPUs are supported. You can find the complete list of instance types, availability and pricing at <https://www.alibabacloud.com/help/en/ecs/user-guide/gpu-accelerated-compute-optimized-and-vgpu-accelerated-instance-families-1>. Please note that vGPU instances are not supported. ### Connecting to Deployed Instances Deployed Isaac Sim instances can be accessed via: - SSH - noVNC (browser-based VNC client) - NoMachine (remote desktop client) Look for the connection instructions at the end of the deploymnt command output. Additionally, this info is saved in `state/<deployment-name>/info.txt` file. You can view available arguments with `--help` switch for the start scripts, in most cases you wouldn't need to change the defaults. Tip: You can use `./connect <deployment-name>` helper command to connect to the deployed instance via ssh. ### Running Applications To use installed applications, connect to the deployed instance using noVNC or NoMachine. You can find the connection instructions at the end of the deployment command output. Additionally, this info is saved in `state/<deployment-name>/info.txt` file. #### Isaac Sim Isaac Sim will be automatically started when cloud VM is deployed. Alternatively you can click "Isaac Sim" icon on the desktop or run the following command in the terminal on the deployed instance or launch it from the terminal as follows: ```sh ~/Desktop/isaacsim.sh ``` #### Shell in Isaac Sim Container To get a shell inside Isaac Sim container, click "Isaac Sim Shell" icon on the desktop. Alternatively you can run the following command in the terminal on the deployed instance: ```sh ~/Desktop/isaacsim-shell.sh ``` #### Omniverse Isaac Gym Environments [Omniverse Isaac Gym Reinforcement Learning Environments for Isaac Sim](https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs) ("Omni Isaac Gym Envs") can be pre-installed on the deployed Isaac instances. To run Omniverse Isaac Gym Environments click "Omni Isaac Gym Envs" icon on the desktop or run the following command in the terminal: ```sh ~/Desktop/omni-isaac-gym-envs.sh ``` Default output directory (`/OmniIsaacGymEnvs/omniisaacgymenvs/runs`) in the OmniIsaacGymEnvs contaner will be linked to the default results directory (`/home/ubuntu/results`) on the deployed instance. You can download the contents of this directory to your local machine using `./download <deployment_name>` command. Tip: To install a specific git reference of OmniIsaacGymEnvs, provide valid reference from <https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs> as a value of `--oige` parameter to the deployment command. For example, to install `devel` branch on an AWS instance, run the following command: ```sh ./deploy-aws --oige devel ``` #### Isaac Orbit *Isaac Orbit is still experimental and intended for preview purposes only.* [Isaac Orbit](https://isaac-orbit.github.io/orbit/index.html) can be pre-installed on the deployed Isaac instances. To run Isaac Orbit click "Isaac Orbit" icon on the desktop or run the following command in the terminal: ```sh ~/Desktop/isaac-orbit.sh ``` Tip: To install a specific git reference of Isaac Orbit, provide valid git reference from <https://github.com/NVIDIA-Omniverse/Orbit> as a value of `--orbit` parameter to the deployment command. For example, to install `devel` branch on an AWS instance, run the following command: ```sh ./deploy-aws --orbit devel ``` ### Mapped Folders The following folders are mapped to the running Isaac Sim container by default (container paths may be different for specific applications): - `/home/ubuntu/uploads` (host) --> `/uploads` (container) - user data uploaded to the deployment with `./upload` command or automatically from local `uploads/` folder - `/home/ubuntu/results` (host) --> `/results` (container) - results of the applications run on the deployment, can be downloaded from the deployed machine with `./download` command - `/home/ubuntu/workspace` (host) --> `/workspace` (container) - workspace folder, can be used to exchange data between the host and the container. ### Pausing and Resuming You can stop and re-start instances to save on cloud costs. To do so, run the following commands: ```sh # enter the automator container ./run # inside container: ./stop <deployment-name> ./start <deployment-name> ``` ### Uploading Data You can upload user data from `uploads/` folder (in the project root) to the deployment by running the following command: ```sh # enter the automator container ./run # inside container: ./upload <deployment-name> ``` Data will be uploaded to `/home/ubuntu/uploads` directory by default to all deployed instances. You can change this by passing `--remote-dir` argument to the command. Run `./upload --help` to see more options. ### Downloading Data You can download user data to `results/` folder (in the project root) from deployed instances by running the following command: ```sh # enter the automator container ./run # inside container: ./download <deployment-name> ``` Data will be downloaded from `/home/ubuntu/results` directory by default. You can change this by passing `--remote-dir` argument to the command. Run `./download --help` to see more options. ### Repairing If for some reason the deployment cloud resouces or software configuration get corrupted, you can attempt to repair the deployment by running the following command: ```sh # run both terraform and ansible ./repair <deployment-name> # just run terraform to try fixing the cloud resources ./repair <deployment-name> --no-ansible # just run ansible to try fixing the software configuration ./repair <deployment-name> --no-terraform ``` ### Destroying To destroy a deployment, run the following command: ```sh # enter the automator container ./run # inside container: ./destroy <deployment-name> ``` You will be prompted to enter the deployment name to destroy. *Please note that information about the deployed cloud resources is stored in `state/` directory. Do not delete this directory ever.*
10,734
Markdown
33.187898
333
0.74483
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/isaac.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion - name: Wait for the instance to become available hosts: isaac gather_facts: false tasks: - wait_for_connection: timeout=300 tags: # packer checks connectivity beforehand - skip_in_image - on_stop_start - name: Deploy Isaac Sim hosts: isaac gather_facts: true vars: in_china: False application_name: isaac prompt_ansi_color: 36 # cyan roles: - isaac handlers: - include: roles/rdesktop/handlers/main.yml - include: roles/system/handlers/main.yml
1,119
YAML
27.717948
74
0.726542
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/ovami.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion - name: Wait for the instance to become available hosts: ovami gather_facts: false tasks: - wait_for_connection: timeout=300 tags: # packer checks connectivity beforehand - skip_in_ovami - name: OV AMI hosts: ovami gather_facts: true vars: in_china: False application_name: ovami prompt_ansi_color: 34 # bright blue roles: - ovami handlers: - include: roles/rdesktop/handlers/main.yml - include: roles/system/handlers/main.yml
1,096
YAML
27.86842
74
0.729015
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/nvidia/tasks/ngc.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion --- - name: Install packages apt: name={{ item }} state=latest update_cache=yes with_items: - unzip - name: Download and extract NGC client unarchive: src: https://ngc.nvidia.com/downloads/ngccli_cat_linux.zip dest: /opt remote_src: yes - name: Add ngc cli to PATH lineinfile: dest: "/etc/profile.d/ngc-cli.sh" line: export PATH="$PATH:/opt/ngc-cli" create: yes
1,022
YAML
27.416666
74
0.716243
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/nvidia/tasks/nvidia-docker.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion --- - name: Add repository shell: "rm -f /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg && rm -f /etc/apt/sources.list.d/nvidia-container-toolkit.list && distribution=$(. /etc/os-release;echo $ID$VERSION_ID) && curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg && curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list" - name: Install nvidia-docker2 apt: name={{ item }} state=latest update_cache=yes with_items: - nvidia-docker2 - name: Restart docker service service: > name=docker state=restarted
1,461
YAML
44.687499
610
0.742642
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/nvidia/tasks/nvidia-driver.azure.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion --- # @see https://learn.microsoft.com/en-us/azure/virtual-machines/linux/n-series-driver-setup#install-grid-drivers-on-nv-or-nvv3-series-vms - name: Azure / Prerequisites (APT) apt: name={{ item }} state=latest update_cache=yes install_recommends=no with_items: - build-essential - ubuntu-desktop - linux-azure # reqd by asible get_url - python3-pip # reqd by driver runfile - pkg-config - libglvnd-dev - name: Azure /Prerequisites (PIP) pip: # older version is needed by ansible get_url for some reason name: requests==2.20.1 executable: pip3 - name: Azure / Blacklist nouveau kernel_blacklist: name={{ item }} state=present with_items: - nouveau - lbs-nouveau - name: Azure / Fix 3818429 kernel_blacklist: name=hyperv_drm state=present - name: Azure / Check if reboot required stat: path: /var/run/reboot-required register: reboot_required_file - name: Azure / Reboot and wait reboot: post_reboot_delay: 5 connect_timeout: 3 reboot_timeout: 600 when: reboot_required_file.stat.exists == true # download driver, timeout 3 min, 5 retries # @see https://github.com/Azure/azhpc-extensions/blob/master/NvidiaGPU/resources.json#L275 - name: Azure / Download GRID driver get_url: url: https://go.microsoft.com/fwlink/?linkid=874272 dest: /tmp/nvidia_grid_azure_driver.run mode: "0755" timeout: 180 retries: 5 - name: Azure / Install GRID driver shell: "/tmp/nvidia_grid_azure_driver.run --run-nvidia-xconfig --disable-nouveau --no-questions --silent" - name: Azure / Enable persistent mode for the driver shell: nvidia-smi -pm ENABLED - name: Azure / Copy grid.conf copy: > src=/etc/nvidia/gridd.conf.template dest=/etc/nvidia/gridd.conf remote_src=true force=no - name: Azure / Update GRID config [1] lineinfile: path: /etc/nvidia/gridd.conf line: "{{ item }}" state: present with_items: - "IgnoreSP=FALSE" - "EnableUI=FALSE" - name: Azure / Update GRID config [2] lineinfile: path: /etc/nvidia/gridd.conf regexp: "^FeatureType=(.*)$" line: '# FeatureType=\1' state: present backrefs: yes
2,805
YAML
26.509804
137
0.693761
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/nvidia/tasks/nvidia-driver.gcp.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion # @see https://cloud.google.com/compute/docs/gpus/install-grid-drivers - name: GCP / Prerequisites (APT) apt: name={{ item }} state=latest update_cache=yes install_recommends=no with_items: - build-essential - python3-pip # required by asible get_url - name: GCP / Prerequisites (PIP) pip: # older version is needed by ansible get_url for some reason name: requests==2.20.1 executable: pip3 # download driver - name: GCP / Download GRID driver get_url: url: "{{ gcp_driver_url }}" dest: /tmp/nvidia_driver.run mode: 0755 - name: GCP / Install GRID driver shell: "/tmp/nvidia_driver.run \ --x-module-path=/usr/lib/xorg/modules/drivers \ --run-nvidia-xconfig \ --disable-nouveau \ --no-questions \ --silent" - name: GCP / Enable persistent mode for the driver shell: nvidia-smi -pm ENABLED - name: GCP / Copy gridd.conf copy: > src=/etc/nvidia/gridd.conf.template dest=/etc/nvidia/gridd.conf remote_src=true force=no - name: GCP / Update GRID config [1] lineinfile: path: /etc/nvidia/gridd.conf line: "{{ item }}" state: present with_items: - "IgnoreSP=FALSE" - "EnableUI=TRUE" - name: GCP / Update GRID config [2] lineinfile: path: /etc/nvidia/gridd.conf regexp: "^FeatureType=(.*)$" line: 'FeatureType=\2' state: present backrefs: yes
1,998
YAML
25.653333
74
0.680681
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/nvidia/tasks/main.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion --- # driver - name: Detect if the driver is already installed shell: lsmod | grep nvidia_drm | wc -l register: driver_installed - import_tasks: nvidia-driver.azure.yml when: driver_installed.stdout == "0" and cloud == "azure" - import_tasks: nvidia-driver.generic.yml when: driver_installed.stdout == "0" and (cloud == "aws" or cloud == "alicloud") - import_tasks: nvidia-driver.gcp.yml when: driver_installed.stdout == "0" and cloud == "gcp" # Disable ECC # Needs to be done after restoring from image or from scratch - name: Detect ECC status shell: nvidia-smi --query-gpu="ecc.mode.current" --format="csv,noheader" -i 0 register: ecc_status tags: on_stop_start - debug: msg: "ECC status: {{ ecc_status.stdout }}" # - name: Disable ECC shell: nvidia-smi --ecc-config=0 when: ecc_status.stdout == 'Enabled' tags: on_stop_start # - name: Reboot and wait reboot: post_reboot_delay=5 connect_timeout=3 reboot_timeout=600 when: ecc_status.stdout == 'Enabled' tags: on_stop_start # nvidia-docker2 - package_facts: manager=apt - import_tasks: nvidia-docker.yml when: '"nvidia-docker2" not in ansible_facts.packages'
1,768
YAML
29.499999
82
0.721154
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/nvidia/tasks/nvidia-driver.generic.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion --- - name: NVIDIA GPU Driver / Add CUDA keyring apt: deb: https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-keyring_1.1-1_all.deb - name: NVIDIA GPU Driver / Blacklist the nouveau driver module kernel_blacklist: name=nouveau state=present - name: NVIDIA GPU Driver / Install pre-requisites apt: name={{ item }} state=latest update_cache=yes with_items: - xserver-xorg - "{{ generic_driver_apt_package }}" - name: NVIDIA GPU Driver / Enable persistent mode shell: nvidia-smi -pm ENABLED - name: NVIDIA GPU Driver / Check if reboot is needed stat: path: /var/run/reboot-required register: reboot_required_file - name: AWS / Reboot and wait reboot: post_reboot_delay: 5 connect_timeout: 3 reboot_timeout: 600 when: reboot_required_file.stat.exists == true
1,461
YAML
29.458333
110
0.726899
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/isaac/tasks/icon.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion - name: Make sure dirs exist file: path: "{{ item }}" state: directory owner: "{{ ansible_user }}" group: "{{ ansible_user }}" mode: 0755 with_items: - /home/{{ ansible_user }}/Pictures - /home/{{ ansible_user }}/Desktop - name: Upload icon copy: src: "{{ item }}" dest: /home/{{ ansible_user }}/Pictures/isaacsim-{{ item }} owner: "{{ ansible_user }}" group: "{{ ansible_user }}" mode: 0644 with_items: - icon.png - icon-shell.png - name: Create desktop icon copy: src: "{{ item }}" dest: /home/{{ ansible_user }}/Desktop/{{ item }} owner: "{{ ansible_user }}" group: "{{ ansible_user }}" mode: 0644 with_items: - isaacsim.desktop - isaacsim-shell.desktop - name: Allow execution of desktop icon shell: gio set /home/{{ ansible_user }}/Desktop/{{ item }} metadata::trusted true become_user: "{{ ansible_user }}" with_items: - isaacsim.desktop - isaacsim-shell.desktop - name: Set permissions for desktop icon file: path: /home/{{ ansible_user }}/Desktop/{{ item }} mode: 0755 owner: "{{ ansible_user }}" group: "{{ ansible_user }}" with_items: - isaacsim.desktop - isaacsim-shell.desktop
1,845
YAML
26.969697
83
0.645528
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/isaac/tasks/wallpaper.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion - name: Make sure wallpaper dir exists file: path: /home/{{ ansible_user }}/Pictures state: directory owner: "{{ ansible_user }}" group: "{{ ansible_user }}" mode: 0755 - name: Upload wallpaper copy: src: wallpaper.png dest: /home/{{ ansible_user }}/Pictures/wallpaper.png owner: "{{ ansible_user }}" group: "{{ ansible_user }}" mode: 0644 - name: Set wallpaper shell: gsettings set org.gnome.desktop.background picture-uri file:///home/{{ ansible_user }}/Pictures/wallpaper.png become_user: "{{ ansible_user }}"
1,177
YAML
31.722221
118
0.705183
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/isaac/tasks/isaac_app.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion - name: Create cache directory file: path: "{{ isaac_cache_dir }}" state: directory owner: "{{ ansible_user }}" group: "{{ ansible_user }}" mode: 0777 - name: Launch scripts [1] file: path: /home/ubuntu/Desktop state: directory owner: ubuntu group: ubuntu - name: Launch scripts [2] template: src={{ item }} dest=/home/ubuntu/Desktop/{{ item }} mode=755 owner=ubuntu group=ubuntu with_items: - isaacsim.sh - isaacsim-shell.sh - name: Log into nvcr.io shell: until docker login -u "\$oauthtoken" --password "{{ ngc_api_key }}" nvcr.io; do sleep 10; done ignore_errors: true become_user: "{{ item }}" with_items: - root - ubuntu timeout: 60 # for each item when: ngc_api_key != "none" tags: - skip_in_ovami - name: Pull Isaac Sim image docker_image: name: "{{ isaac_image }}" repository: nvcr.io source: pull ignore_errors: true when: ngc_api_key != "none" tags: - skip_in_ovami - name: Log out from nvcr.io shell: docker logout nvcr.io become_user: "{{ item }}" with_items: - root - ubuntu when: ngc_api_key != "none" tags: - never - cleanup - name: Start Isaac Sim shell: | export DISPLAY=":0" gnome-terminal -- bash -c "./isaacsim.sh; exec bash" args: chdir: /home/{{ ansible_user }}/Desktop become_user: "{{ ansible_user }}" when: ngc_api_key != "none" tags: - skip_in_image - on_stop_start
2,087
YAML
23.279069
103
0.647341
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/isaac/tasks/main.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion - name: Prerequisites apt: name: "{{ item }}" state: latest with_items: - libvulkan-dev - name: Wallpaper import_tasks: wallpaper.yml - name: Desktop Icon import_tasks: icon.yml - name: Isaac App import_tasks: isaac_app.yml # https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs - name: Omni Isaac Gym Envs import_tasks: omni_isaac_gym_envs.yml when: omni_isaac_gym_envs_git_checkpoint != 'no' # https://isaac-orbit.github.io/orbit/index.html - name: Orbit import_tasks: orbit.yml when: orbit_git_checkpoint != 'no' tags: __orbit - name: Restart NX server meta: noop notify: nx_restart
1,243
YAML
25.468085
74
0.726468
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/isaac/defaults/main.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion deployment_name: isaac_image: isaac_cache_dir: /home/{{ ansible_user }}/isaac # OmniIsaacGymEnvs omni_isaac_gym_envs_dir: /opt/omni-isaac-gym-envs omni_isaac_gym_envs_git_checkpoint: main # Orbit orbit_dir: /opt/orbit orbit_git_checkpoint: devel # "none" skips login/pull ngc_api_key: # directory to output results to results_dir: /home/{{ ansible_user }}/results workspace_dir: /home/{{ ansible_user }}/results uploads_dir: /home/{{ ansible_user }}/uploads omniverse_user: omniverse_password: nucleus_uri:
1,128
YAML
25.880952
74
0.75266
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/ovami/tasks/nice_dcv.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion # install nice dcv # @see https://docs.aws.amazon.com/dcv/latest/adminguide/setting-up-installing-linux-prereq.html # @see https://docs.aws.amazon.com/dcv/latest/adminguide/setting-up-installing-linux-server.html # prerequisites - name: Install prerequisites for NICE DCV apt: name: "{{ item }}" state: latest with_items: - rpm # needed for rpm_key ansible module - mesa-utils # import GPG key - name: Import GPG key for NICE DCV rpm_key: key: https://d1uj6qtbmh3dt5.cloudfront.net/NICE-GPG-KEY state: present # download nice dcv - name: Download NICE DCV get_url: url: https://d1uj6qtbmh3dt5.cloudfront.net/nice-dcv-ubuntu{{ ansible_distribution_version | replace('.', '') }}-{{ ansible_machine }}.tgz dest: /tmp/nice-dcv.tgz mode: 0644 # download and unzip nice dcv - name: Unarchive NICE DCV unarchive: src: /tmp/nice-dcv.tgz remote_src: yes dest: /tmp extra_opts: [--strip-components=1] # find .deb for nice dcv installer - name: Find .deb for NICE DCV Server installer find: paths: /tmp patterns: "nice-dcv-server*.deb" register: nice_dcv_deb # install nice dcv .deb file - name: Install NICE DCV Server apt: deb: "{{ nice_dcv_deb.files[0].path }}" state: present # find .deb for nice xdcv - name: Find .deb for NICE XDCV find: paths: /tmp patterns: "nice-xdcv*.deb" register: nice_xdcv_deb # install nice xdcv - name: Install NICE XDCV apt: deb: "{{ nice_xdcv_deb.files[0].path }}" state: present # print nice_dcv_unarchive - name: Print nice_dcv_unarchive debug: msg: "{{ nice_dcv_deb.files[0].path }}" # add the dcv user to the video group - name: Add "dcv" user to "video" group user: name: dcv groups: video append: yes # find nice-dcv-gl .deb file - name: Find .deb for NICE DCV GL find: paths: /tmp patterns: "nice-dcv-gl*.deb" register: nice_dcv_gl_deb # print nice_dcv_gl_deb - name: Print nice_dcv_gl_deb debug: msg: "{{ nice_dcv_gl_deb.files[0].path }}" # install nice-dcv-gl from .deb file - name: Install NICE DCV GL apt: deb: "{{ nice_dcv_gl_deb.files[0].path }}" state: present # post-install steps # @see https://docs.aws.amazon.com/dcv/latest/adminguide/setting-up-installing-linux-checks.html # configure dcvgladmin - name: Post-install confgiuration of NICE DCV GL shell: | systemctl isolate multi-user.target dcvgladmin disable dcvgladmin enable systemctl isolate graphical.target # configure dcvserver - name: Configure NICE DCV Server ini_file: section: "{{ item.section }}" path: /etc/dcv/dcv.conf option: "{{ item.key }}" value: "{{ item.value }}" no_extra_spaces: true with_items: - { section: "security", key: "authentication", value: "{{ dcv_authentication_method }}", } - { section: "session-management", key: "create-session", value: "true" } - { section: "session-management/automatic-console-session", key: "owner", value: "{{ ansible_user }}", } - { section: "display", key: "default-layout", value: "[{'w':<1920>, 'h':<1200>, 'x':<0>,'y':<0>}]", } # start dcvserver, reboot - name: Start/Restart/Enable NICE DCV Server systemd: name: dcvserver state: restarted enabled: yes - name: Reboot reboot: post_reboot_delay=5 connect_timeout=3 reboot_timeout=600
4,042
YAML
25.424836
141
0.664028
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/ovami/tasks/vscode.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion # @see https://code.visualstudio.com/docs/setup/linux - name: Prerequisites for VS Code apt: name: "{{ item }}" state: latest with_items: - wget - gpg - apt-transport-https - name: Install VSC sources shell: | wget -qO- https://packages.microsoft.com/keys/microsoft.asc | gpg --dearmor > packages.microsoft.gpg install -D -o root -g root -m 644 packages.microsoft.gpg /etc/apt/keyrings/packages.microsoft.gpg sh -c 'echo "deb [arch=amd64,arm64,armhf signed-by=/etc/apt/keyrings/packages.microsoft.gpg] https://packages.microsoft.com/repos/code stable main" > /etc/apt/sources.list.d/vscode.list' args: creates: /etc/apt/sources.list.d/vscode.list - name: Install VS Code apt: name: code update_cache: yes state: latest - name: Add desktop icon copy: src: /usr/share/applications/code.desktop remote_src: yes dest: /home/{{ ansible_user }}/Desktop/code.desktop mode: 0644 - name: Allow execution of VSC desktop icon shell: gio set /home/{{ ansible_user }}/Desktop/{{ item }} metadata::trusted true become_user: "{{ ansible_user }}" with_items: - code.desktop - name: Set permissions for VSC desktop icon file: path: /home/{{ ansible_user }}/Desktop/{{ item }} mode: 0755 owner: "{{ ansible_user }}" group: "{{ ansible_user }}" with_items: - code.desktop
1,983
YAML
30.492063
190
0.695411
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/ovami/tasks/ov_launcher.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion - name: Make sure dirs exist file: path: "{{ item }}" state: directory owner: "{{ ansible_user }}" group: "{{ ansible_user }}" mode: 0755 with_items: - /home/{{ ansible_user }}/Pictures - /home/{{ ansible_user }}/Desktop - name: Upload OV Icon copy: src: "{{ item }}" dest: "/home/{{ ansible_user }}/Pictures/{{ item }}" mode: 0644 with_items: - ov-icon.png - name: Download OV Launcher get_url: url: https://install.launcher.omniverse.nvidia.com/installers/omniverse-launcher-linux.AppImage dest: "/home/{{ ansible_user }}/Omniverse.AppImage" mode: 0755 become_user: "{{ ansible_user }}" - name: Create desktop icon copy: content: | [Desktop Entry] Name=Omniverse Launcher Comment=Omniverse Launcher Exec=/home/{{ ansible_user }}/Omniverse.AppImage Icon=/home/{{ ansible_user }}/Pictures/ov-icon.png Terminal=false Type=Application Categories=Utility; dest: /home/{{ ansible_user }}/Desktop/ovl.desktop mode: 0644 - name: Allow execution of OVL desktop icon shell: gio set /home/{{ ansible_user }}/Desktop/{{ item }} metadata::trusted true become_user: "{{ ansible_user }}" with_items: - ovl.desktop - name: Set permissions for OVL desktop icon file: path: /home/{{ ansible_user }}/Desktop/{{ item }} mode: 0755 owner: "{{ ansible_user }}" group: "{{ ansible_user }}" with_items: - ovl.desktop
2,078
YAML
28.28169
99
0.662656
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/ovami/tasks/main.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion # this role is meant to be executed while creating # the OV AMI, so no skip tags are present # for NV-use only, don't try to make too much sense of it - name: Prerequisites apt: name: "{{ item }}" state: latest with_items: - libvulkan-dev - firefox - xdg-utils - name: NICE DCV import_tasks: nice_dcv.yml - name: OV Launcher import_tasks: ov_launcher.yml - name: Install VS Code import_tasks: vscode.yml - name: Set wallpaper import_tasks: wallpaper.yml - name: Configure cloud-init import_tasks: cloud_init.yml
1,167
YAML
24.955555
74
0.725793
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/docker/tasks/main.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion --- - name: Add Docker apt key apt_key: url="https://download.docker.com/linux/ubuntu/gpg" state=present - name: Add Docker apt package repository apt_repository: repo="deb https://download.docker.com/linux/ubuntu {{ ansible_distribution_release }} stable" state=present mode=644 - name: Install docker packages apt: name={{ item }} state=latest update_cache=yes with_items: - docker-ce - docker-ce-cli - docker-compose - name: Create docker group group: name=docker state=present - name: Add user ubuntu to docker group user: name=ubuntu groups=docker append=yes state=present - name: Reset connection so docker group is picked up meta: reset_connection
1,340
YAML
26.367346
97
0.724627
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/system/tasks/id.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion --- # change color of the bash prompt - name: Enable color of the bash prompt lineinfile: path: /home/{{ ansible_user }}/.bashrc line: "force_color_prompt=yes" insertbefore: if \[ \-n \"\$force_color_prompt\" backup: yes - name: Change color of the bash prompt lineinfile: path: /home/{{ ansible_user }}/.bashrc regexp: "^ PS1='\\${debian_chroot:\\+\\(\\$debian_chroot\\)}\\\\\\[\\\\033\\[01;32m\\\\\\]\\\\u@\\\\h\\\\\\[\\\\033\\[00m\\\\\\]:\\\\\\[\\\\033\\[01;34m\\\\\\]\\\\w\\\\\\[\\\\033\\[00m\\\\\\]\\\\\\$ '" line: " PS1='${debian_chroot:+($debian_chroot)}\\[\\033[01;{{ prompt_ansi_color }}m\\]\\u\\[\\033[01;{{ prompt_ansi_color }}m\\]@\\h\\[\\033[00m\\]:\\[\\033[01;34m\\]\\w\\[\\033[00m\\]\\$ '" backup: yes # set hostname - set_fact: hostname: "{{ (application_name + '-' + deployment_name) | replace('_', '-') }}" - debug: msg: "hostname: {{ hostname }}" - name: Set hostname [1] hostname: name: "{{ hostname }}" - name: Set hostname [2] lineinfile: path: /etc/hosts line: "127.0.0.1 {{ hostname }}"
1,698
YAML
32.979999
208
0.61013
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/system/tasks/swap.yml
- name: Disable swap and remove /swapfile shell: "[[ -f /swapfile ]] && (swapoff -a && rm -f /swapfile) || echo 'no swap file found'" - name: Create /swapfile shell: "fallocate -l {{ swap_size }} /swapfile" - name: Set permissions on /swapfile shell: "chmod 600 /swapfile" - name: Make swap in /swapfile shell: "mkswap /swapfile" - name: Add /swapfile to fstab lineinfile: path: /etc/fstab line: "/swapfile none swap sw 0 0" - name: Enable swap shell: "swapon -a"
489
YAML
23.499999
93
0.648262
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/system/tasks/password.yml
# set ubuntu user password to "ubuntu" # this is supposed to change with userdata - name: Create password hash shell: python3 -c "import crypt; print(crypt.crypt('{{ system_user_password }}'))" register: system_user_password_hash - name: Set password for "{{ ansible_user }}" user user: name: "{{ ansible_user }}" password: "{{ system_user_password_hash.stdout }}"
381
YAML
30.833331
84
0.682415
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/system/tasks/main.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion --- - name: Check OS name and version assert: that="ansible_distribution == 'Ubuntu'" # add extra ssh ports - name: Change SSH port to {{ ssh_port }} include: custom_ssh.yml when: ssh_port != 22 - name: Upgrade the OS (apt-get dist-upgrade) apt: upgrade=dist update_cache=yes - name: Set OS user password include: password.yml - name: Disable IPv6 for apt-get copy: dest: /etc/apt/apt.conf.d/99force-ipv4 src: etc.apt.apt.conf.d.99force-ipv4 mode: 0644 - name: Disable unattended upgrades copy: src: etc.apt.apt.conf.d.20auto-upgrades dest: /etc/apt/apt.conf.d/20auto-upgrades mode: 0644 # add packages for convinience - name: Install common apt packages apt: name=htop state=latest - name: Add user ubuntu to sudo group user: name=ubuntu groups=sudo append=yes state=present - name: Check if reboot required stat: path: /var/run/reboot-required register: reboot_required_file - name: Reboot and wait reboot: post_reboot_delay: 5 connect_timeout: 3 reboot_timeout: 600 when: reboot_required_file.stat.exists == true # - set hostname # - set prompt color and hostname - include: id.yml # swap - name: Check if swap is enabled shell: "swapon -s | wc -l" register: swap_enabled tags: - skip_in_image - import_tasks: swap.yml when: swap_enabled.stdout | int == 0 tags: - skip_in_image
2,012
YAML
22.964285
74
0.704274
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/system/tasks/custom_ssh.yml
# change ssh port to custom value - name: Set SSH port to {{ ssh_port }} lineinfile: path: /etc/ssh/sshd_config line: "Port {{ item }}" state: present mode: 0644 with_items: - "22" - "{{ ssh_port }}" - name: Create ufw profile for the custom ssh port template: src=custom_ssh.ufwprofile dest=/etc/ufw/applications.d/custom_ssh mode=644 - name: Allow incoming connections to the custom ssh port ufw: rule=allow name=custom_ssh - name: Restart sshd service: name=sshd state=restarted - name: Make Ansible to use new ssh port set_fact: ansible_port: "{{ ssh_port }}"
617
YAML
21.888888
57
0.659643
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/rdesktop/tasks/novnc.yml
# Install noVNC - name: Prerequisites apt: name: snapd state: latest # Install noVNC via snap package - name: Install noVNC snap: name: novnc state: present - name: Add noVNC systemd config template: src=novnc.service dest=/etc/systemd/system mode=0444 owner=root group=root - name: Start noVNC systemd: name=novnc daemon_reload=yes enabled=yes state=restarted
417
YAML
15.076922
32
0.676259
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/rdesktop/tasks/busid.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion # update BusID in xorg.conf before GDM start # executed from /etc/gdm3/PreSession/Default - name: Create BusID updater copy: content: | #!/bin/bash BUS_ID=$(nvidia-xconfig --query-gpu-info | grep 'PCI BusID' | head -n 1 | cut -c15-) sed -i "s/BusID.*$/BusID \"$BUS_ID\"/" /etc/X11/xorg.conf dest: /opt/update-busid mode: 0755 # add /opt/update-busid to /etc/gdm3/PreSession/Default - name: Add BusID updater to /etc/gdm3/PreSession/Default lineinfile: path: /etc/gdm3/PreSession/Default line: /opt/update-busid insertafter: EOF state: present
1,209
YAML
32.61111
90
0.715467
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/rdesktop/tasks/vnc.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion --- - name: Prerequisites (PIP packages) pip: name: "{{ item }}" state: latest with_items: - pexpect - name: Install x11vnc and helper util apt: name={{ item }} update_cache=yes state=latest with_items: - x11vnc - expect - name: Add x11vnc systemd config template: src=x11vnc-ubuntu.service dest=/etc/systemd/system mode=0444 owner=root group=root - name: Start x11vnc systemd: name=x11vnc-ubuntu daemon_reload=yes enabled=yes state=restarted - name: Clear VNC password file: path: /home/ubuntu/.vnc/passwd state: absent - name: Set VNC password expect: command: /usr/bin/x11vnc -storepasswd responses: (?i).*password:.*: "{{ vnc_password }}\r" (?i)write.*: "y\r" creates: /home/ubuntu/.vnc/passwd become_user: ubuntu tags: - skip_in_image - name: Cleanup VNC password file: path: /home/ubuntu/.vnc/passwd state: absent tags: - never - cleanup
1,596
YAML
22.144927
74
0.679825
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/rdesktop/tasks/utils.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion # install extra packages - name: Install extra packages apt: name={{ item }} state=latest update_cache=yes install_recommends=no with_items: - eog # EOG image viewer (https://help.gnome.org/users/eog/stable/)
843
YAML
32.759999
74
0.742586
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/rdesktop/tasks/vscode.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion - name: Prerequisites apt: name: snapd state: latest # install visual studio code - name: Install Visual Studio Code snap: name: code state: present classic: yes # install remote development extension pack - name: Install Remote Development extension pack shell: code --install-extension ms-vscode-remote.vscode-remote-extensionpack become_user: "{{ ansible_user }}" # make sure desktop directory exists - name: Make sure desktop directory exists file: path: /home/{{ ansible_user }}/Desktop state: directory mode: 0755 owner: "{{ ansible_user }}" group: "{{ ansible_user }}" # create a desktop shortcut for visual studio code - name: Create desktop shortcut for Visual Studio Code copy: dest: /home/{{ ansible_user }}/Desktop/vscode.desktop mode: 0755 owner: "{{ ansible_user }}" group: "{{ ansible_user }}" content: | [Desktop Entry] Version=1.0 Type=Application Name=Visual Studio Code GenericName=Text Editor Comment=Edit text files Exec=/snap/bin/code --no-sandbox --unity-launch %F Icon=/snap/code/current/meta/gui/vscode.png StartupWMClass=Code StartupNotify=true Terminal=false Categories=Utility;TextEditor;Development;IDE; MimeType=text/plain;inode/directory; Actions=new-empty-window; Keywords=vscode; become_user: "{{ ansible_user }}" - name: Allow execution of desktop icon for Orbit shell: gio set "/home/{{ ansible_user }}/Desktop/{{ item }}" metadata::trusted true become_user: "{{ ansible_user }}" with_items: - vscode.desktop
2,237
YAML
29.657534
85
0.698257
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/rdesktop/tasks/nomachine.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion --- # @see https://downloads.nomachine.com/download/?id=2 for new versions - name: Download NoMachine server get_url: url: https://download.nomachine.com/download/8.9/Linux/nomachine_8.9.1_1_amd64.deb dest: /tmp/nomachine.deb mode: 0644 timeout: 600 # 10 minutes - name: Install NoMachine server apt: deb: /tmp/nomachine.deb state: present - name: Create NX config dir file: > path=/home/ubuntu/.nx/config state=directory owner=ubuntu group=ubuntu - name: Link authorized keys to NX config file: > src=/home/ubuntu/.ssh/authorized_keys dest=/home/ubuntu/.nx/config/authorized.crt state=link owner=ubuntu group=ubuntu notify: nx_restart # add env var DISPLAY to /usr/lib/systemd/system/nxserver.service - name: Add DISPLAY env var to nxserver.service lineinfile: path: /usr/lib/systemd/system/nxserver.service line: Environment="DISPLAY=:0" insertafter: "\\[Service\\]" state: present # restart nxserver.service on GDM init (fix for "no display detected" error) - name: Restart nxserver.service on GDM init lineinfile: path: /etc/gdm3/PreSession/Default line: (/usr/bin/sleep 5 && /usr/bin/systemctl restart nxserver.service) & insertafter: EOF state: present - name: Do daemon-reload systemd: daemon_reload: yes
1,946
YAML
28.059701
86
0.717883
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/rdesktop/tasks/virtual-display.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion --- - name: Copy EDID file template: src=vdisplay.edid dest=/etc/X11/vdisplay.edid mode=644 notify: reboot - name: Get PCI Bus ID of the first GPU shell: nvidia-xconfig --query-gpu-info | grep 'PCI BusID' | head -n 1 | cut -c15- register: GPU0_PCI_BUS_ID - name: Write X11 config template: src=xorg.conf dest=/etc/X11/xorg.conf mode=644 notify: reboot - name: Create Xauthority file file: path: /home/{{ ansible_user }}/.Xauthority state: touch owner: "{{ ansible_user }}" group: "{{ ansible_user }}" mode: 0666
1,179
YAML
27.780487
83
0.706531
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/rdesktop/tasks/main.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion --- # check if we need to skip stuff - name: Check installed services service_facts: - name: Prerequisites (1) apt: | name="{{ item }}" state=latest update_cache=yes install_recommends=no with_items: - ubuntu-desktop - python3-pip # install only if ubuntu 20 - name: Prerequisites (2) apt: name=yaru-theme-gtk state=latest when: ansible_distribution_release == "focal" - name: Configure desktop environment import_tasks: desktop.yml - name: Virtual display import_tasks: virtual-display.yml # updates bus id of the gpu in the xorg.conf file # needed for starting from the image without ansible - name: Bus ID updater import_tasks: busid.yml # install misc utils - name: Misc utils import_tasks: utils.yml # install visual studio code - name: Visual Studio Code import_tasks: vscode.yml tags: - __vscode # VNC - name: VNC server import_tasks: vnc.yml # NoMachine - name: NoMachine server import_tasks: nomachine.yml when: "'nxserver.service' not in ansible_facts.services" tags: - skip_in_ovami # NoVNC - name: NoVNC server import_tasks: novnc.yml # do reboots if needed - name: Reboot if needed meta: flush_handlers
1,808
YAML
22.493506
74
0.724004
NVIDIA-Omniverse/IsaacSim-Automator/src/ansible/roles/rdesktop/tasks/desktop.yml
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion --- # # Good desktop experience # - name: Configure auto login [1] lineinfile: path: /etc/gdm3/custom.conf state: present line: "AutomaticLoginEnable=true" insertafter: "\\[daemon\\]" notify: reboot - name: Configure auto login [2] lineinfile: path: /etc/gdm3/custom.conf state: present line: "AutomaticLogin=ubuntu" insertafter: "\\[daemon\\]" notify: reboot # disable blank screen - name: Mask sleep targets shell: systemctl mask sleep.target suspend.target hibernate.target hybrid-sleep.target notify: reboot # disable screen lock - name: Disable screen lock shell: "{{ item }}" with_items: - gsettings set org.gnome.desktop.session idle-delay 0 - gsettings set org.gnome.desktop.screensaver lock-enabled 'false' - gsettings set org.gnome.desktop.lockdown disable-lock-screen 'true' - gsettings set org.gnome.desktop.screensaver idle-activation-enabled 'false' - gsettings set org.gnome.settings-daemon.plugins.power sleep-inactive-battery-timeout 0 become_user: "{{ ansible_user }}" notify: reboot # increase font size - name: Set font size to 125% shell: gsettings set org.gnome.desktop.interface text-scaling-factor 1.25 become_user: "{{ ansible_user }}" # enable dark theme - name: Make it dark shell: gsettings set org.gnome.desktop.interface gtk-theme 'Yaru-dark' become_user: "{{ ansible_user }}" # fix terminal font - name: Fix terminal font shell: "{{ item }}" become_user: "{{ ansible_user }}" with_items: - gsettings set org.gnome.Terminal.Legacy.Profile:/org/gnome/terminal/legacy/profiles:/:$(gsettings get org.gnome.Terminal.ProfilesList default|tr -d \')/ use-system-font false - gsettings set org.gnome.Terminal.Legacy.Profile:/org/gnome/terminal/legacy/profiles:/:$(gsettings get org.gnome.Terminal.ProfilesList default|tr -d \')/ font "Monospace 12" # make terminal semi-transparent - name: Make terminal semi-transparent shell: "{{ item }}" become_user: "{{ ansible_user }}" with_items: - gsettings set org.gnome.Terminal.Legacy.Profile:/org/gnome/terminal/legacy/profiles:/:$(gsettings get org.gnome.Terminal.ProfilesList default|tr -d \')/ background-transparency-percent 12 - gsettings set org.gnome.Terminal.Legacy.Profile:/org/gnome/terminal/legacy/profiles:/:$(gsettings get org.gnome.Terminal.ProfilesList default|tr -d \')/ use-transparent-background true # disable new ubuntu version prompt - name: Disable new ubuntu version prompt lineinfile: path: /etc/update-manager/release-upgrades regexp: "Prompt=.*" line: "Prompt=never" notify: reboot
3,223
YAML
35.224719
193
0.730686
NVIDIA-Omniverse/IsaacSim-Automator/src/packer/aws/README.md
# Running packer for AWS Set env vars with credentials: ```sh export AWS_ACCESS_KEY_ID ="..." export AWS_SECRET_ACCESS_KEY ="..." export NGC_API_KEY="..." # optional ``` Alternatively you can pass them as variables in the packer command (`packer -var=varname=value...`). Then launch image builds with: ```sh packer build [-force] [-var=aws_region="us-east-1"] [-var=image_name="..."] [-var=system_user_password="..."] [-var=vnc_password="..."] <folder>/ ``` For example: ```sh packer build -force -var=isaac_image="nvcr.io/nvidia/isaac-sim:2023.1.0-hotfix.1" /app/src/packer/aws/isaac ``` ```sh packer build -force \ -var=aws_region="us-east-1" \ -var=image_name=ovami-test-1 \ -var=system_user_password="nvidia123" \ -var=vnc_password="nvidia123" \ /app/src/packer/aws/ovami ```
788
Markdown
22.90909
145
0.673858
NVIDIA-Omniverse/IsaacSim-Automator/src/packer/azure/README.md
# Running packer for Azure See <https://learn.microsoft.com/en-us/azure/virtual-machines/linux/build-image-with-packer> ## 1. Create resource group for packer output ```sh az group create -n isa.packer -l westus3 ``` ## 2. Create Azure service principal ```sh export AZURE_SUBSCRIPTION_ID=`az account list | jq -r .[0].id` az ad sp create-for-rbac \ --role Contributor \ --scopes /subscriptions/$AZURE_SUBSCRIPTION_ID \ --query "{ client_id: appId, client_secret: password, tenant_id: tenant }" ``` ## 3. Build image Set env vars with credentials: ```sh export AZURE_SUBSCRIPTION_ID="..." export AZURE_TENANT_ID="..." export AZURE_SP_CLIENT_ID="..." export AZURE_SP_CLIENT_SECRET="..." export NGC_API_KEY="..." ``` Alternatively you can pass them as variables in the packer command (`packer -var=varname=value...`). Then launch image builds with: ```sh packer build [-var=image_name=...] <folder>/ ``` For example: ```sh packer build isaac/ packer build -var=image_name=my_image_1 isaac/ ```
1,011
Markdown
20.531914
100
0.693373
NVIDIA-Omniverse/IsaacSim-Automator/src/python/config.py
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion from typing import Any, Dict c: Dict[str, Any] = {} # paths c["app_dir"] = "/app" c["state_dir"] = "/app/state" c["results_dir"] = "/app/results" c["uploads_dir"] = "/app/uploads" c["tests_dir"] = "/app/src/tests" c["ansible_dir"] = "/app/src/ansible" c["terraform_dir"] = "/app/src/terraform" # app image name c["app_image_name"] = "isa" # gcp driver # @see https://cloud.google.com/compute/docs/gpus/grid-drivers-table c[ "gcp_driver_url" ] = "https://storage.googleapis.com/nvidia-drivers-us-public/GRID/vGPU16.2/NVIDIA-Linux-x86_64-535.129.03-grid.run" # aws/alicloud driver c["generic_driver_apt_package"] = "nvidia-driver-535-server" # default remote dirs c["default_remote_uploads_dir"] = "/home/ubuntu/uploads" c["default_remote_results_dir"] = "/home/ubuntu/results" c["default_remote_workspace_dir"] = "/home/ubuntu/workspace" # defaults # --isaac-image c["default_isaac_image"] = "nvcr.io/nvidia/isaac-sim:2023.1.1" # --ssh-port c["default_ssh_port"] = 22 # --from-image c["azure_default_from_image"] = False c["aws_default_from_image"] = False # --omniverse-user c["default_omniverse_user"] = "omniverse" # --remote-dir c["default_remote_uploads_dir"] = "/home/ubuntu/uploads" c["default_remote_results_dir"] = "/home/ubuntu/results" # --isaac-instance-type c["aws_default_isaac_instance_type"] = "g5.2xlarge" # str, 1-index in DeployAzureCommand.AZURE_OVKIT_INSTANCE_TYPES c["azure_default_isaac_instance_type"] = "2" c["gcp_default_isaac_instance_type"] = "g2-standard-8" c["alicloud_default_isaac_instance_type"] = "ecs.gn7i-c16g1.4xlarge" # --isaac-gpu-count c["gcp_default_isaac_gpu_count"] = 1 # --region c["alicloud_default_region"] = "us-east-1" # --prefix for the created cloud resources c["default_prefix"] = "isa" # --oige c["default_oige_git_checkpoint"] = "main" # --orbit c["default_orbit_git_checkpoint"] = "devel"
2,478
Python
27.494253
115
0.705408
NVIDIA-Omniverse/IsaacSim-Automator/src/python/aws.py
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion """ Utils for AWS """ from src.python.utils import read_meta, shell_command def aws_configure_cli( deployment_name, verbose=False, ): """ Configure AWS CLI for deployment """ meta = read_meta(deployment_name) aws_access_key_id = meta["params"]["aws_access_key_id"] aws_secret_access_key = meta["params"]["aws_secret_access_key"] region = meta["params"]["region"] shell_command( f"aws configure set aws_access_key_id '{aws_access_key_id}'", verbose=verbose, exit_on_error=True, capture_output=True, ) shell_command( f"aws configure set aws_secret_access_key '{aws_secret_access_key}'", verbose=verbose, exit_on_error=True, capture_output=True, ) shell_command( f"aws configure set region '{region}'", verbose=verbose, exit_on_error=True, capture_output=True, ) def aws_stop_instance(instance_id, verbose=False): shell_command( f"aws ec2 stop-instances --instance-ids '{instance_id}'", verbose=verbose, exit_on_error=True, capture_output=True, ) def aws_start_instance(instance_id, verbose=False): shell_command( f"aws ec2 start-instances --instance-ids '{instance_id}'", verbose=verbose, exit_on_error=True, capture_output=True, ) def aws_get_instance_status(instance_id, verbose=False): """ Query instance status Returns: "stopping" | "stopped" | "pending" | "running" """ status = ( shell_command( f"aws ec2 describe-instances --instance-ids '{instance_id}'" + " | jq -r .Reservations[0].Instances[0].State.Name", verbose=verbose, exit_on_error=True, capture_output=True, ) .stdout.decode() .strip() ) return status
2,500
Python
25.606383
77
0.632
NVIDIA-Omniverse/IsaacSim-Automator/src/python/ngc.py
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion import pathlib import subprocess SELF_DIR = pathlib.Path(__file__).parent.resolve() def check_ngc_access(ngc_api_key, org="", team="", verbose=False): """ Checks if NGC API key is valid and user has access to DRIVE Sim. Returns: - 0 - all is fine - 100 - invalid api key - 102 - user is not in the team """ proc = subprocess.run( [f"{SELF_DIR}/ngc_check.expect", ngc_api_key, org, team], capture_output=not verbose, timeout=60, ) if proc.returncode not in [0, 100, 101, 102]: raise RuntimeError( f"Error checking NGC API Key. Return code: {proc.returncode}" ) return proc.returncode
1,301
Python
27.304347
74
0.680246
NVIDIA-Omniverse/IsaacSim-Automator/src/python/alicloud.py
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion """ Utils for AliCloud """ from src.python.utils import read_meta, shell_command def alicloud_configure_cli( deployment_name, verbose=False, ): """ Configure Aliyun CLI """ meta = read_meta(deployment_name) aliyun_access_key = meta["params"]["aliyun_access_key"] aliyun_secret_key = meta["params"]["aliyun_secret_key"] region = meta["params"]["region"] shell_command( "aliyun configure set " + f"--access-key-id '{aliyun_access_key}'" + f" --access-key-secret '{aliyun_secret_key}'" + f" --region '{region}'", verbose=verbose, exit_on_error=True, capture_output=True, ) def alicloud_start_instance(vm_id, verbose=False): """ Start VM """ shell_command( f"aliyun ecs StartInstance --InstanceId '{vm_id}'", verbose=verbose, exit_on_error=True, capture_output=True, ) def alicloud_stop_instance(vm_id, verbose=False): """ Stop VM """ shell_command( f"aliyun ecs StopInstance --InstanceId '{vm_id}'", verbose=verbose, exit_on_error=True, capture_output=True, ) def alicloud_get_instance_status(vm_id, verbose=False): """ Query VM status Returns: "Stopping" | "Stopped" | "Starting" | "Running" """ status = ( shell_command( f"aliyun ecs DescribeInstances --InstanceIds '[\"{vm_id}\"]'" + " | jq -r .Instances.Instance[0].Status", verbose=verbose, exit_on_error=True, capture_output=True, ) .stdout.decode() .strip() ) return status def alicloud_list_regions( aliyun_access_key, aliyun_secret_key, verbose=False, ): """ List regions """ res = ( shell_command( f"aliyun --access-key-id {aliyun_access_key}" + f" --access-key-secret {aliyun_secret_key}" + " --region cn-beijing ecs DescribeRegions" + " | jq -r '.Regions.Region[].RegionId'", capture_output=True, exit_on_error=True, verbose=verbose, ) .stdout.decode() .strip() ) valid_regions = res.split("\n") return valid_regions
2,886
Python
23.675213
74
0.596674
NVIDIA-Omniverse/IsaacSim-Automator/src/python/deployer.py
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion import json import os import re import shlex import sys from pathlib import Path import click from src.python.utils import ( colorize_error, colorize_info, colorize_prompt, colorize_result, read_meta, shell_command, ) from src.python.debug import debug_break # noqa from src.python.ngc import check_ngc_access class Deployer: def __init__(self, params, config): self.tf_outputs = {} self.params = params self.config = config self.existing_behavior = None # save original params so we can recreate command line self.input_params = params.copy() # convert "in_china" self.params["in_china"] = {"yes": True, "no": False, "auto": False}[ self.params["in_china"] ] # create state directory if it doesn't exist os.makedirs(self.config["state_dir"], exist_ok=True) # print complete command line if self.params["debug"]: click.echo(colorize_info("* Command:\n" + self.recreate_command_line())) def __del__(self): # update meta info self.save_meta() def save_meta(self): """ Save command parameters in json file, just in case """ meta_file = ( f"{self.config['state_dir']}/{self.params['deployment_name']}/meta.json" ) data = { "command": self.recreate_command_line(separator=" "), "input_params": self.input_params, "params": self.params, "config": self.config, } Path(meta_file).parent.mkdir(parents=True, exist_ok=True) Path(meta_file).write_text(json.dumps(data, indent=4)) if self.params["debug"]: click.echo(colorize_info(f"* Meta info saved to '{meta_file}'")) def read_meta(self): return read_meta( self.params["deployment_name"], self.params["debug"], ) def recreate_command_line(self, separator=" \\\n"): """ Recreate command line """ command_line = sys.argv[0] for k, v in self.input_params.items(): k = k.replace("_", "-") if isinstance(v, bool): if v: command_line += separator + "--" + k else: not_prefix = "--no-" if k in ["from-image"]: not_prefix = "--not-" command_line += separator + not_prefix + k else: command_line += separator + "--" + k + " " if isinstance(v, str): command_line += "'" + shlex.quote(v) + "'" else: command_line += str(v) return command_line def ask_existing_behavior(self): """ Ask what to do if deployment already exists """ deployment_name = self.params["deployment_name"] existing = self.params["existing"] self.existing_behavior = existing if existing == "ask" and os.path.isfile( f"{self.config['state_dir']}/{deployment_name}/.tfvars" ): self.existing_behavior = click.prompt( text=colorize_prompt( "* Deploymemnt exists, what would you like to do? See --help for details." ), type=click.Choice(["repair", "modify", "replace", "run_ansible"]), default="replace", ) if ( self.existing_behavior == "repair" or self.existing_behavior == "run_ansible" ): # restore params from meta file r = self.read_meta() self.params = r["params"] click.echo( colorize_info( f"* Repairing existing deployment \"{self.params['deployment_name']}\"..." ) ) # update meta info (with new value for existing_behavior) self.save_meta() # destroy existing deployment`` if self.existing_behavior == "replace": debug = self.params["debug"] click.echo(colorize_info("* Deleting existing deployment...")) shell_command( command=f'{self.config["app_dir"]}/destroy "{deployment_name}" --yes' + f' {"--debug" if debug else ""}', verbose=debug, ) # update meta info if deployment was destroyed self.save_meta() def validate_ngc_api_key(self, image, restricted_image=False): """ Check if NGC API key allows to log in and has access to appropriate NGC image @param image: NGC image to check access to @param restricted_image: If image is restricted to specific org/team? """ debug = self.params["debug"] ngc_api_key = self.params["ngc_api_key"] ngc_api_key_check = self.params["ngc_api_key_check"] # extract org and team from the image path r = re.findall( "^nvcr\\.io/([a-z0-9\\-_]+)/([a-z0-9\\-_]+/)?[a-z0-9\\-_]+:[a-z0-9\\-_.]+$", image, ) ngc_org, ngc_team = r[0] ngc_team = ngc_team.rstrip("/") if ngc_org == "nvidia": click.echo( colorize_info( "* Access to docker image can't be checked for NVIDIA org. But you'll be fine. Fingers crossed." ) ) return if debug: click.echo(colorize_info(f'* Will check access to NGC Org: "{ngc_org}"')) click.echo(colorize_info(f'* Will check access to NGC Team: "{ngc_team}"')) if ngc_api_key_check and ngc_api_key != "none": click.echo(colorize_info("* Validating NGC API key... ")) r = check_ngc_access( ngc_api_key=ngc_api_key, org=ngc_org, team=ngc_team, verbose=debug ) if r == 100: raise Exception(colorize_error("NGC API key is invalid.")) # only check access to org/team if restricted image is deployed elif restricted_image and (r == 101 or r == 102): raise Exception( colorize_error( f'NGC API key is valid but you don\'t have access to image "{image}".' ) ) click.echo(colorize_info(("* NGC API Key is valid!"))) def create_tfvars(self, tfvars: dict = {}): """ - Check if deployment with this deployment_name exists and deal with it - Create/update tfvars file Expected values for "existing_behavior" arg: - repair: keep tfvars/tfstate, don't ask for user input - modify: keep tfstate file, update tfvars file with user input - replace: delete tfvars/tfstate files - run_ansible: keep tfvars/tfstate, don't ask for user input, skip terraform steps """ # default values common for all clouds tfvars.update( { "isaac_enabled": self.params["isaac"] if "isaac" in self.params else False, # "isaac_instance_type": self.params["isaac_instance_type"] if "isaac_instance_type" in self.params else "none", # "prefix": self.params["prefix"], "ssh_port": self.params["ssh_port"], # "from_image": self.params["from_image"] if "from_image" in self.params else False, # "deployment_name": self.params["deployment_name"], } ) debug = self.params["debug"] deployment_name = self.params["deployment_name"] # deal with existing deployment: tfvars_file = f"{self.config['state_dir']}/{deployment_name}/.tfvars" tfstate_file = f"{self.config['state_dir']}/{deployment_name}/.tfstate" # tfvars if os.path.exists(tfvars_file): if ( self.existing_behavior == "modify" or self.existing_behavior == "overwrite" ): os.remove(tfvars_file) if debug: click.echo(colorize_info(f'* Deleted "{tfvars_file}"...')) # tfstate if os.path.exists(tfstate_file): if self.existing_behavior == "overwrite": os.remove(tfstate_file) if debug: click.echo(colorize_info(f'* Deleted "{tfstate_file}"...')) # create tfvars file if ( self.existing_behavior == "modify" or self.existing_behavior == "overwrite" or not os.path.exists(tfvars_file) ): self._write_tfvars_file(path=tfvars_file, tfvars=tfvars) def _write_tfvars_file(self, path: str, tfvars: dict): """ Write tfvars file """ debug = self.params["debug"] if debug: click.echo(colorize_info(f'* Created tfvars file "{path}"')) # create <dn>/ directory if it doesn't exist Path(path).parent.mkdir(parents=True, exist_ok=True) with open(path, "w") as f: for key, value in tfvars.items(): # convert booleans to strings if isinstance(value, bool): value = { True: "true", False: "false", }[value] # format key names key = key.replace("-", "_") # write values if isinstance(value, str): value = value.replace('"', '\\"') f.write(f'{key} = "{value}"\n') elif isinstance(value, list): f.write(f"{key} = " + str(value).replace("'", '"') + "\n") else: f.write(f"{key} = {value}\n") def create_ansible_inventory(self, write: bool = True): """ Create Ansible inventory, return it as text Write to file if write=True """ debug = self.params["debug"] deployment_name = self.params["deployment_name"] ansible_vars = self.params.copy() # add config ansible_vars["config"] = self.config # get missing values from terraform for k in [ "isaac_ip", "ovami_ip", "cloud", ]: if k not in self.params or ansible_vars[k] is None: ansible_vars[k] = self.tf_output(k) # convert booleans to ansible format ansible_booleans = {True: "true", False: "false"} for k, v in ansible_vars.items(): if isinstance(v, bool): ansible_vars[k] = ansible_booleans[v] template = Path(f"{self.config['ansible_dir']}/inventory.template").read_text() res = template.format(**ansible_vars) # write to file if write: inventory_file = f"{self.config['state_dir']}/{deployment_name}/.inventory" Path(inventory_file).parent.mkdir(parents=True, exist_ok=True) # create dir Path(inventory_file).write_text(res) # write file if debug: click.echo( colorize_info( f'* Created Ansible inventory file "{inventory_file}"' ) ) return res def initialize_terraform(self, cwd: str): """ Initialize Terraform via shell command cwd: directory where terraform scripts are located """ debug = self.params["debug"] shell_command( f"terraform init -upgrade -no-color -input=false {' > /dev/null' if not debug else ''}", verbose=debug, cwd=cwd, ) def run_terraform(self, cwd: str): """ Apply Terraform via shell command cwd: directory where terraform scripts are located """ debug = self.params["debug"] deployment_name = self.params["deployment_name"] shell_command( "terraform apply -auto-approve " + f"-state={self.config['state_dir']}/{deployment_name}/.tfstate " + f"-var-file={self.config['state_dir']}/{deployment_name}/.tfvars", cwd=cwd, verbose=debug, ) def export_ssh_key(self): """ Export SSH key from Terraform state """ debug = self.params["debug"] deployment_name = self.params["deployment_name"] shell_command( f"terraform output -state={self.config['state_dir']}/{deployment_name}/.tfstate -raw ssh_key" + f" > {self.config['state_dir']}/{deployment_name}/key.pem && " + f"chmod 0600 {self.config['state_dir']}/{deployment_name}/key.pem", verbose=debug, ) def run_ansible(self, playbook_name: str, cwd: str): """ Run Ansible playbook via shell command """ debug = self.params["debug"] deployment_name = self.params["deployment_name"] shell_command( f"ansible-playbook -i {self.config['state_dir']}/{deployment_name}/.inventory " + f"{playbook_name}.yml {'-vv' if self.params['debug'] else ''}", cwd=cwd, verbose=debug, ) def run_all_ansible(self): # run ansible for isaac if "isaac" in self.params and self.params["isaac"]: click.echo(colorize_info("* Running Ansible for Isaac Sim...")) self.run_ansible(playbook_name="isaac", cwd=f"{self.config['ansible_dir']}") # run ansible for ovami # todo: move to ./deploy-aws if "ovami" in self.params and self.params["ovami"]: click.echo(colorize_info("* Running Ansible for OV AMI...")) self.run_ansible(playbook_name="ovami", cwd=f"{self.config['ansible_dir']}") def tf_output(self, key: str, default: str = ""): """ Read Terraform output. Cache read values in self._tf_outputs. """ if key not in self.tf_outputs: debug = self.params["debug"] deployment_name = self.params["deployment_name"] r = shell_command( f"terraform output -state='{self.config['state_dir']}/{deployment_name}/.tfstate' -raw '{key}'", capture_output=True, exit_on_error=False, verbose=debug, ) if r.returncode == 0: self.tf_outputs[key] = r.stdout.decode() else: if self.params["debug"]: click.echo( colorize_error( f"* Warning: Terraform output '{key}' cannot be read." ), err=True, ) self.tf_outputs[key] = default # update meta file to reflect tf outputs self.save_meta() return self.tf_outputs[key] def upload_user_data(self): shell_command( f'./upload "{self.params["deployment_name"]}" ' + f'{"--debug" if self.params["debug"] else ""}', cwd=self.config["app_dir"], verbose=self.params["debug"], exit_on_error=True, capture_output=False, ) # generate ssh connection command for the user def ssh_connection_command(self, ip: str): r = f"ssh -i state/{self.params['deployment_name']}/key.pem " r += f"-o StrictHostKeyChecking=no ubuntu@{ip}" if self.params["ssh_port"] != 22: r += f" -p {self.params['ssh_port']}" return r def output_deployment_info(self, extra_text: str = "", print_text=True): """ Print connection info for the user Save info to file (_state_dir_/_deployment_name_/info.txt) """ isaac = "isaac" in self.params and self.params["isaac"] ovami = "ovami" in self.params and self.params["ovami"] vnc_password = self.params["vnc_password"] deployment_name = self.params["deployment_name"] # templates nomachine_instruction = f"""* To connect to __app__ via NoMachine: 0. Download NoMachine client at https://downloads.nomachine.com/, install and launch it. 1. Click "Add" button. 2. Enter Host: "__ip__". 3. In "Configuration" > "Use key-based authentication with a key you provide", select file "state/{deployment_name}/key.pem". 4. Click "Connect" button. 5. Enter "ubuntu" as a username when prompted. """ vnc_instruction = f"""* To connect to __app__ via VNC: - IP: __ip__ - Port: 5900 - Password: {vnc_password}""" nonvc_instruction = f"""* To connect to __app__ via noVNC: 1. Open http://__ip__:6080/vnc.html?host=__ip__&port=6080 in your browser. 2. Click "Connect" and use password \"{vnc_password}\"""" # print connection info instructions_file = f"{self.config['state_dir']}/{deployment_name}/info.txt" instructions = "" if isaac: instructions += f"""{'*' * (29+len(self.tf_output('isaac_ip')))} * Isaac Sim is deployed at {self.tf_output('isaac_ip')} * {'*' * (29+len(self.tf_output('isaac_ip')))} * To connect to Isaac Sim via SSH: {self.ssh_connection_command(self.tf_output('isaac_ip'))} {nonvc_instruction} {nomachine_instruction}""".replace( "__app__", "Isaac Sim" ).replace( "__ip__", self.tf_output("isaac_ip") ) # todo: move to ./deploy-aws if ovami: instructions += f"""\n * OV AMI is deployed at {self.tf_output('ovami_ip')} * To connect to OV AMI via SSH: {self.ssh_connection_command(self.tf_output('ovami_ip'))} * To connect to OV AMI via NICE DCV: - IP: __ip__ {vnc_instruction} {nomachine_instruction} """.replace( "__app__", "OV AMI" ).replace( "__ip__", self.tf_output("ovami_ip") ) # extra text if len(extra_text) > 0: instructions += extra_text + "\n" # print instructions for the user if print_text: click.echo(colorize_result("\n" + instructions)) # create <dn>/ directory if it doesn't exist Path(instructions_file).parent.mkdir(parents=True, exist_ok=True) # write file Path(instructions_file).write_text(instructions) return instructions
19,262
Python
31.760204
116
0.53224
NVIDIA-Omniverse/IsaacSim-Automator/src/python/utils.py
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion """ CLI Utils """ import json import os import subprocess from glob import glob from pathlib import Path import click from src.python.config import c as config def colorize_prompt(text): return click.style(text, fg="bright_cyan", italic=True) def colorize_error(text): return click.style(text, fg="bright_red", italic=True) def colorize_info(text): return click.style(text, fg="bright_magenta", italic=True) def colorize_result(text): return click.style(text, fg="bright_green", italic=True) def shell_command( command, verbose=False, cwd=None, exit_on_error=True, capture_output=False ): """ Execute shell command, print it if debug is enabled """ if verbose: if cwd is not None: click.echo(colorize_info(f"* Running `(cd {cwd} && {command})`...")) else: click.echo(colorize_info(f"* Running `{command}`...")) res = subprocess.run( command, shell=True, cwd=cwd, capture_output=capture_output, ) if res.returncode == 0: if verbose and res.stdout is not None: click.echo(res.stdout.decode()) elif exit_on_error: if res.stderr is not None: click.echo( colorize_error(f"Error: {res.stderr.decode()}"), err=True, ) exit(1) return res def deployments(): """List existing deployments by name""" state_dir = config["state_dir"] deployments = sorted( [ os.path.basename(os.path.dirname(d)) for d in glob(os.path.join(state_dir, "*/")) ] ) return deployments def read_meta(deployment_name: str, verbose: bool = False): """ Read metadata from json file """ meta_file = f"{config['state_dir']}/{deployment_name}/meta.json" if os.path.isfile(meta_file): data = json.loads(Path(meta_file).read_text()) if verbose: click.echo(colorize_info(f"* Meta info loaded from '{meta_file}'")) return data raise Exception(f"Meta file '{meta_file}' not found") def read_tf_output(deployment_name, output, verbose=False): """ Read terraform output from tfstate file """ return ( shell_command( f"terraform output -state={config['state_dir']}/{deployment_name}/.tfstate -raw {output}", capture_output=True, exit_on_error=False, verbose=verbose, ) .stdout.decode() .strip() ) def format_app_name(app_name): """ Format app name for user output """ formatted = { "isaac": "Isaac Sim", "ovami": "OV AMI", } if app_name in formatted: return formatted[app_name] return app_name def format_cloud_name(cloud_name): """ Format cloud name for user output """ formatted = { "aws": "AWS", "azure": "Azure", "gcp": "GCP", "alicloud": "Alibaba Cloud", } if cloud_name in formatted: return formatted[cloud_name] return cloud_name def gcp_login(verbose=False): """ Log into GCP """ # detect if we need to re-login click.echo(colorize_info("* Checking GCP login status..."), nl=False) res = shell_command( "gcloud auth application-default print-access-token 2>&1 > /dev/null", verbose=verbose, exit_on_error=False, capture_output=True, ) logged_in = res.returncode == 0 if logged_in: click.echo(colorize_info(" logged in!")) if not logged_in: click.echo(colorize_info(" not logged in")) shell_command( "gcloud auth application-default login --no-launch-browser --disable-quota-project --verbosity none", verbose=verbose, )
4,426
Python
22.42328
113
0.608676
NVIDIA-Omniverse/IsaacSim-Automator/src/python/azure.py
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion """ Utils for Azure """ import click from src.python.utils import colorize_info, read_meta, shell_command def azure_login(verbose=False): """ Log into Azure """ # detect if we need to re-login logged_in = ( '"Enabled"' == shell_command( "az account show --query state", verbose=verbose, exit_on_error=False, capture_output=True, ) .stdout.decode() .strip() ) if not logged_in: click.echo(colorize_info("* Logging into Azure...")) shell_command("az login --use-device-code", verbose=verbose) def azure_stop_instance(vm_id, verbose=False): shell_command( f"az vm deallocate --ids {vm_id}", verbose=verbose, exit_on_error=True, capture_output=False, ) def azure_start_instance(vm_id, verbose=False): shell_command( f"az vm start --ids {vm_id}", verbose=verbose, exit_on_error=True, capture_output=False, )
1,639
Python
24.230769
74
0.640635
NVIDIA-Omniverse/IsaacSim-Automator/src/python/deploy_command.py
# region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion """ Base deploy- command """ import os import re import click import randomname from pwgen import pwgen from src.python.config import c as config from src.python.debug import debug_break # noqa from src.python.utils import colorize_error, colorize_prompt class DeployCommand(click.core.Command): """ Defines common cli options for "deploy-*" commands. """ @staticmethod def isaac_callback(ctx, param, value): """ Called after --isaac option is parsed """ # disable isaac instance type selection if isaac is disabled if value is False: for p in ctx.command.params: if p.name.startswith("isaac"): p.prompt = None return value @staticmethod def deployment_name_callback(ctx, param, value): # validate if not re.match("^[a-z0-9\\-]{1,32}$", value): raise click.BadParameter( colorize_error( "Only lower case letters, numbers and '-' are allowed." + f" Length should be between 1 and 32 characters ({len(value)} provided)." ) ) return value @staticmethod def ngc_api_key_callback(ctx, param, value): """ Validate NGC API key """ # fix click bug if value is None: return value # allow "none" as a special value if "none" == value: return value # check if it contains what's allowed if not re.match("^[A-Za-z0-9]{32,}$", value): raise click.BadParameter( colorize_error("Key contains invalid characters or too short.") ) return value @staticmethod def ngc_image_callback(ctx, param, value): """ Called after parsing --isaac-image options are parsed """ # ignore case value = value.lower() if not re.match( "^nvcr\\.io/[a-z0-9\\-_]+/([a-z0-9\\-_]+/)?[a-z0-9\\-_]+:[a-z0-9\\-_.]+$", value, ): raise click.BadParameter( colorize_error( "Invalid image name. " + "Expected: nvcr.io/<org>/[<team>/]<image>:<tag>" ) ) return value @staticmethod def oige_callback(ctx, param, value): """ Called after parsing --oige option """ if "" == value: return config["default_oige_git_checkpoint"] return value @staticmethod def orbit_callback(ctx, param, value): """ Called after parsing --orbit option """ if "" == value: return config["default_orbit_git_checkpoint"] return value def param_index(self, param_name): """ Return index of parameter with given name. Useful for inserting new parameters at a specific position. """ return list( filter( lambda param: param[1].name == param_name, enumerate(self.params), ) )[0][0] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # add common options self.params.insert( len(self.params), click.core.Option( ("--debug/--no-debug",), default=False, show_default=True, help="Enable debug output.", ), ) # --prefix self.params.insert( len(self.params), click.core.Option( ("--prefix",), default=config["default_prefix"], show_default=True, help="Prefix for all cloud resources.", ), ) # --from-image/--not-from-image self.params.insert( len(self.params), click.core.Option( ("--from-image/--not-from-image",), default=False, show_default=True, help="Deploy from pre-built image, from bare OS otherwise.", ), ) # --in-china self.params.insert( len(self.params), click.core.Option( ("--in-china",), type=click.Choice(["auto", "yes", "no"]), prompt=False, default="auto", show_default=True, help="Is deployment in China? (Local mirrors will be used.)", ), ) self.params.insert( len(self.params), click.core.Option( ("--deployment-name", "--dn"), prompt=colorize_prompt( '* Deployment Name (lower case letters, numbers and "-")' ), default=randomname.get_name, callback=DeployCommand.deployment_name_callback, show_default="<randomly generated>", help="Name of the deployment. Used to identify the created cloud resources and files.", ), ) self.params.insert( len(self.params), click.core.Option( ("--existing",), type=click.Choice( ["ask", "repair", "modify", "replace", "run_ansible"] ), default="ask", show_default=True, help="""What to do if deployment already exists: \n* 'repair' will try to fix broken deployment without applying new user parameters. \n* 'modify' will update user selected parameters and attempt to update existing cloud resources. \n* 'replace' will attempt to delete old deployment's cloud resources first. \n* 'run_ansible' will re-run Ansible playbooks.""", ), ) self.params.insert( len(self.params), click.core.Option( ("--isaac/--no-isaac",), default=True, show_default="yes", prompt=colorize_prompt("* Deploy Isaac Sim?"), callback=DeployCommand.isaac_callback, help="Deploy Isaac Sim (BETA)?", ), ) self.params.insert( len(self.params), click.core.Option( ("--isaac-image",), default=config["default_isaac_image"], prompt=colorize_prompt("* Isaac Sim docker image"), show_default=True, callback=DeployCommand.ngc_image_callback, help="Isaac Sim docker image to use.", ), ) # --oige help = ( "Install Omni Isaac Gym Envs? Valid values: 'no', " + "or <git ref in github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs>" ) self.params.insert( len(self.params), click.core.Option( ("--oige",), help=help, default="main", show_default=True, prompt=colorize_prompt("* " + help), callback=DeployCommand.oige_callback, ), ) # --orbit help = ( "[EXPERIMENTAL] Install Isaac Sim Orbit? Valid values: 'no', " + "or <git ref in github.com/NVIDIA-Omniverse/orbit>" ) self.params.insert( len(self.params), click.core.Option( ("--orbit",), help=help, default="no", show_default=True, prompt=colorize_prompt("* " + help), callback=DeployCommand.orbit_callback, ), ) self.params.insert( len(self.params), click.core.Option( ("--ngc-api-key",), type=str, prompt=colorize_prompt( "* NGC API Key (can be obtained at https://ngc.nvidia.com/setup/api-key)" ), default=os.environ.get("NGC_API_KEY", ""), show_default='"NGC_API_KEY" environment variable', help="NGC API Key (can be obtained at https://ngc.nvidia.com/setup/api-key)", callback=DeployCommand.ngc_api_key_callback, ), ) self.params.insert( len(self.params), click.core.Option( ("--ngc-api-key-check/--no-ngc-api-key-check",), default=True, help="Skip NGC API key validity check.", ), ) self.params.insert( len(self.params), click.core.Option( ("--vnc-password",), default=lambda: pwgen(10), help="Password for VNC access to DRIVE Sim/Isaac Sim/etc.", show_default="<randomly generated>", ), ) self.params.insert( len(self.params), click.core.Option( ("--system-user-password",), default=lambda: pwgen(10), help="System user password", show_default="<randomly generated>", ), ) self.params.insert( len(self.params), click.core.Option( ("--ssh-port",), default=config["default_ssh_port"], help="SSH port for connecting to the deployed machines.", show_default=True, ), ) # --upload/--no-upload self.params.insert( len(self.params), click.core.Option( ("--upload/--no-upload",), prompt=False, default=True, show_default=True, help=f"Upload user data from \"{config['uploads_dir']}\" to cloud " + f"instances (to \"{config['default_remote_uploads_dir']}\")?", ), ) default_nucleus_admin_password = pwgen(10) # --omniverse-user self.params.insert( len(self.params), click.core.Option( ("--omniverse-user",), default=config["default_omniverse_user"], help="Username for accessing content on the Nucleus server.", show_default=True, ), ) # --omniverse-password self.params.insert( len(self.params), click.core.Option( ("--omniverse-password",), default=default_nucleus_admin_password, help="Password for accessing content on the Nucleus server.", show_default="<randomly generated>", ), )
11,460
Python
29.975676
113
0.494503
NVIDIA-Omniverse/IsaacSim-Automator/src/python/ngc.test.py
#!/usr/bin/env python3 # region copyright # Copyright 2023 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # endregion import os import unittest from src.python.ngc import check_ngc_access class Test_NGC_Key_Validation(unittest.TestCase): INVALID_KEY = "__invalid__" VALID_KEY = os.environ.get("NGC_API_KEY", "__none__") def test_invalid_key(self): """Test invalid key""" r = check_ngc_access(self.INVALID_KEY) self.assertEqual(r, 100) def test_valid_key(self): """Test valid key (should be set in NGC_API_KEY env var)""" if "__none__" == self.VALID_KEY: self.skipTest("No NGC_API_KEY env var set") return r = check_ngc_access(self.VALID_KEY) self.assertEqual(r, 0) if __name__ == "__main__": unittest.main()
1,337
Python
27.468085
74
0.672401
NVIDIA-Omniverse/IsaacSim-Automator/src/tests/deployer.test.py
#!/usr/bin/env python3 import unittest from src.python.config import c from src.python.deployer import Deployer from pathlib import Path class Test_Deployer(unittest.TestCase): def setUp(self): self.config = c self.config["state_dir"] = f"{c['tests_dir']}/res/state" self.deployer = Deployer( params={ "debug": False, "prefix": "isa", "from_image": False, "deployment_name": "test-1", "existing": "ask", "region": "us-east-1", "isaac": True, "isaac_instance_type": "g5.2xlarge", "isaac_image": "nvcr.io/nvidia/isaac-sim:2022.2.0", "ngc_api_key": "__ngc_api_key__", "ngc_api_key_check": True, "vnc_password": "__vnc_password__", "omniverse_user": "ovuser", "omniverse_password": "__omniverse_password__", "ssh_port": 22, "upload": True, "aws_access_key_id": "__aws_access_key_id__", "aws_secret_access_key": "__aws_secret_access_key__", }, config=self.config, ) def tearDown(self): self.deployer = None def test_output_deployment_info(self): self.deployer.output_deployment_info(print_text=False) file_generated = f"{self.config['state_dir']}/test-1/info.txt" file_expected = f"{self.config['state_dir']}/test-1/info.expected.txt" file_generated = Path(file_generated).read_text() file_expected = Path(file_expected).read_text() self.assertEqual(file_generated, file_expected) if __name__ == "__main__": unittest.main()
1,760
Python
29.894736
78
0.526136
NVIDIA-Omniverse/synthetic-data-examples/README.md
# Synthetic Data Examples This public repository is for examples of the generation and/or use of synthetic data, primarily using tools like [NVIDIA Omniverse](https://www.nvidia.com/en-us/omniverse/), [Omniverse Replicator](https://docs.omniverse.nvidia.com/prod_extensions/prod_extensions/ext_replicator.html), [NVIDIA Tao](https://developer.nvidia.com/tao-toolkit), and [NVIDIA NGC](https://www.nvidia.com/en-us/gpu-cloud/). ## Synthetic Data Blogs & Repositories * [Blog - How to Train Autonomous Mobile Robots to Detect Warehouse Pallet Jacks](https://developer.nvidia.com/blog/how-to-train-autonomous-mobile-robots-to-detect-warehouse-pallet-jacks-using-synthetic-data/) [GitHub](https://github.com/NVIDIA-AI-IOT/synthetic_data_generation_training_workflow) * [Blog - Developing a Pallet Detection Model Using OpenUSD and Synthetic Data](https://developer.nvidia.com/blog/developing-a-pallet-detection-model-using-openusd-and-synthetic-data/) [GitHub](https://github.com/NVIDIA-AI-IOT/sdg_pallet_model)
1,020
Markdown
67.066662
400
0.781373
NVIDIA-Omniverse/synthetic-data-examples/omni.replicator/README.md
# Omniverse Replicator Examples Code here requires the installation of[NVIDIA Omniverse](https://www.nvidia.com/en-us/omniverse/) and [Omniverse Replicator](https://docs.omniverse.nvidia.com/prod_extensions/prod_extensions/ext_replicator.html).
246
Markdown
60.749985
212
0.808943
NVIDIA-Omniverse/synthetic-data-examples/omni.replicator/snippets/replicator_trigger_intervals.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-License-Identifier: BSD-3-Clause # # Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import omni.replicator.core as rep with rep.new_layer(): camera = rep.create.camera(position=(0, 500, 1000), look_at=(0, 0, 0)) # Create simple shapes to manipulate plane = rep.create.plane( semantics=[("class", "plane")], position=(0, -100, 0), scale=(100, 1, 100) ) spheres = rep.create.sphere( semantics=[("class", "sphere")], position=(0, 0, 100), count=6 ) # Modify the position every 5 frames with rep.trigger.on_frame(num_frames=10, interval=5): with spheres: rep.modify.pose( position=rep.distribution.uniform((-300, 0, -300), (300, 0, 300)), scale=rep.distribution.uniform(0.1, 2), ) # Modify color every frame for 50 frames with rep.trigger.on_frame(num_frames=50): with spheres: rep.randomizer.color( colors=rep.distribution.normal((0.1, 0.1, 0.1), (1.0, 1.0, 1.0)) ) render_product = rep.create.render_product(camera, (512, 512)) writer = rep.WriterRegistry.get("BasicWriter") writer.initialize( output_dir="trigger_intervals", rgb=True, ) writer.attach([render_product])
2,854
Python
41.61194
84
0.709881
NVIDIA-Omniverse/synthetic-data-examples/omni.replicator/snippets/replicator_multiple_semantic_classes.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-License-Identifier: BSD-3-Clause # # Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import omni.replicator.core as rep with rep.new_layer(): sphere = rep.create.sphere(semantics=[("class", "sphere")], position=(0, 100, 100)) cube = rep.create.cube(semantics=[("class2", "cube")], position=(200, 200, 100)) plane = rep.create.plane(semantics=[("class3", "plane")], scale=10) def get_shapes(): shapes = rep.get.prims(semantics=[("class", "cube"), ("class", "sphere")]) with shapes: rep.modify.pose( position=rep.distribution.uniform((-500, 50, -500), (500, 50, 500)), rotation=rep.distribution.uniform((0, -180, 0), (0, 180, 0)), scale=rep.distribution.normal(1, 0.5), ) return shapes.node with rep.trigger.on_frame(num_frames=2): rep.randomizer.register(get_shapes) # Setup Camera camera = rep.create.camera(position=(500, 500, 500), look_at=(0, 0, 0)) render_product = rep.create.render_product(camera, (512, 512)) writer = rep.WriterRegistry.get("BasicWriter") writer.initialize( output_dir="semantics_classes", rgb=True, semantic_segmentation=True, colorize_semantic_segmentation=True, semantic_types=["class", "class2", "class3"], ) writer.attach([render_product]) rep.orchestrator.run()
2,956
Python
41.855072
87
0.715832
NVIDIA-Omniverse/synthetic-data-examples/omni.replicator/snippets/replicator_scatter_multi_trigger.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # """ This snippet shows how to setup multiple independent triggers that happen at different intervals in the simulation. """ import omni.graph.core as og import omni.replicator.core as rep # A light to see distance_light = rep.create.light(rotation=(-45, 0, 0), light_type="distant") # Create a plane to sample on plane_samp = rep.create.plane(scale=4, rotation=(20, 0, 0)) # Create a larger sphere to sample on the surface of sphere_samp = rep.create.sphere(scale=2.4, position=(0, 100, -180)) # Create a larger cylinder we do not want to collide with cylinder = rep.create.cylinder(semantics=[("class", "cylinder")], scale=(2, 1, 2)) def randomize_spheres(): # create small spheres to sample inside the plane spheres = rep.create.sphere(scale=0.4, count=60) # scatter small spheres with spheres: rep.randomizer.scatter_2d( surface_prims=[plane_samp, sphere_samp], no_coll_prims=[cylinder], check_for_collisions=True, ) # Add color to small spheres rep.randomizer.color( colors=rep.distribution.uniform((0.2, 0.2, 0.2), (1, 1, 1)) ) return spheres.node rep.randomizer.register(randomize_spheres) # Trigger will execute 5 times, every-other-frame (interval=2) with rep.trigger.on_frame(num_frames=5, interval=2): rep.randomizer.randomize_spheres() # Trigger will execute 10 times, once every frame with rep.trigger.on_frame(num_frames=10): with cylinder: rep.modify.visibility(rep.distribution.sequence([True, False])) og.Controller.evaluate_sync() # Only for snippet demonstration preview, not needed for production rep.orchestrator.preview() # Only for snippet demonstration preview, not needed for production rp = rep.create.render_product("/OmniverseKit_Persp", (1024, 768)) # Initialize and attach writer writer = rep.WriterRegistry.get("BasicWriter") writer.initialize(output_dir="scatter_example", rgb=True) writer.attach([rp]) rep.orchestrator.run()
3,612
Python
40.056818
98
0.745847
NVIDIA-Omniverse/synthetic-data-examples/omni.replicator/snippets/replicator_writer_segmentation_colors.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-License-Identifier: BSD-3-Clause # # Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """ A snippet showing to how create a custom writer to output specific colors in the semantic annotator output image. """ import omni.replicator.core as rep from omni.replicator.core import Writer, BackendDispatch, WriterRegistry class MyWriter(Writer): def __init__(self, output_dir: str): self._frame_id = 0 self.backend = BackendDispatch({"paths": {"out_dir": output_dir}}) self.annotators = ["rgb", "semantic_segmentation"] # Dictionary mapping of label to RGBA color self.CUSTOM_LABELS = { "unlabelled": (0, 0, 0, 0), "sphere": (128, 64, 128, 255), "cube": (244, 35, 232, 255), "plane": (102, 102, 156, 255), } def write(self, data): render_products = [k for k in data.keys() if k.startswith("rp_")] self._write_rgb(data, "rgb") self._write_segmentation(data, "semantic_segmentation") self._frame_id += 1 def _write_rgb(self, data, annotator: str): # Save the rgb data under the correct path rgb_file_path = f"rgb_{self._frame_id}.png" self.backend.write_image(rgb_file_path, data[annotator]) def _write_segmentation(self, data, annotator: str): seg_filepath = f"seg_{self._frame_id}.png" semantic_seg_data_colorized = rep.tools.colorize_segmentation( data[annotator]["data"], data[annotator]["info"]["idToLabels"], mapping=self.CUSTOM_LABELS, ) self.backend.write_image(seg_filepath, semantic_seg_data_colorized) def on_final_frame(self): self.backend.sync_pending_paths() # Register new writer WriterRegistry.register(MyWriter) # Create a new layer for our work to be performed in. # This is a good habit to develop for later when working on existing Usd scenes with rep.new_layer(): light = rep.create.light(light_type="dome") # Create a simple camera with a position and a point to look at camera = rep.create.camera(position=(0, 500, 1000), look_at=(0, 0, 0)) # Create some simple shapes to manipulate plane = rep.create.plane( semantics=[("class", "plane")], position=(0, -100, 0), scale=(100, 1, 100) ) torus = rep.create.torus(position=(200, 0, 100)) # Torus will be unlabeled sphere = rep.create.sphere(semantics=[("class", "sphere")], position=(0, 0, 100)) cube = rep.create.cube(semantics=[("class", "cube")], position=(-200, 0, 100)) # Randomize position and scale of each object on each frame with rep.trigger.on_frame(num_frames=10): # Creating a group so that our modify.pose operation works on all the shapes at once with rep.create.group([torus, sphere, cube]): rep.modify.pose( position=rep.distribution.uniform((-300, 0, -300), (300, 0, 300)), scale=rep.distribution.uniform(0.1, 2), ) # Initialize render product and attach a writer render_product = rep.create.render_product(camera, (1024, 1024)) writer = rep.WriterRegistry.get("MyWriter") writer.initialize(output_dir="myWriter_output") writer.attach([render_product]) rep.orchestrator.run() # Run the simulation
4,866
Python
43.245454
92
0.690506
NVIDIA-Omniverse/synthetic-data-examples/omni.replicator/snippets/replicator_remove_semantics.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-License-Identifier: BSD-3-Clause # # Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import omni.graph.core as og import omni.replicator.core as rep from omni.usd._impl.utils import get_prim_at_path from pxr import Semantics from semantics.schema.editor import remove_prim_semantics # Setup simple scene with rep.new_layer(): # Simple scene setup camera = rep.create.camera(position=(0, 500, 1000), look_at=(0, 0, 0)) # Create simple shapes to manipulate plane = rep.create.plane( semantics=[("class", "plane")], position=(0, -100, 0), scale=(100, 1, 100) ) cubes = rep.create.cube( semantics=[("class", "cube")], position=rep.distribution.uniform((-300, 0, -300), (300, 0, 300)), count=6, ) spheres = rep.create.sphere( semantics=[("class", "sphere")], position=rep.distribution.uniform((-300, 0, -300), (300, 0, 300)), count=6, ) # Get prims to remove semantics on - Execute this first by itself my_spheres = rep.get.prims(semantics=[("class", "sphere")]) og.Controller.evaluate_sync() # Trigger an OmniGraph evaluation of the graph to set the values get_targets = rep.utils.get_node_targets(my_spheres.node, "outputs_prims") print(get_targets) # [Sdf.Path('/Replicator/Sphere_Xform'), Sdf.Path('/Replicator/Sphere_Xform_01'), Sdf.Path('/Replicator/Sphere_Xform_02'), Sdf.Path('/Replicator/Sphere_Xform_03'), Sdf.Path('/Replicator/Sphere_Xform_04'), Sdf.Path('/Replicator/Sphere_Xform_05')] # Loop through each prim_path and remove all semantic data for prim_path in get_targets: prim = get_prim_at_path(prim_path) # print(prim.HasAPI(Semantics.SemanticsAPI)) result = remove_prim_semantics(prim) # To remove all semantics # result = remove_prim_semantics(prim, label_type='class') # To remove only 'class' semantics print(result)
3,457
Python
45.729729
245
0.731559
NVIDIA-Omniverse/synthetic-data-examples/omni.replicator/snippets/replcator_clear_layer.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-License-Identifier: BSD-3-Clause # # Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import omni.usd stage = omni.usd.get_context().get_stage() for layer in stage.GetLayerStack(): if layer.GetDisplayName() == "test": # del layer layer.Clear()
1,868
Python
46.923076
84
0.770343
NVIDIA-Omniverse/synthetic-data-examples/omni.replicator/snippets/replicator_annotator_segmentation.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-License-Identifier: BSD-3-Clause # # Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """ This is an example of how to view annotator data if needed. """ import asyncio import omni.replicator.core as rep import omni.syntheticdata as sd async def test_semantics(): cone = rep.create.cone(semantics=[("prim", "cone")], position=(100, 0, 0)) sphere = rep.create.sphere(semantics=[("prim", "sphere")], position=(-100, 0, 0)) invalid_type = rep.create.cube(semantics=[("shape", "boxy")], position=(0, 100, 0)) # Setup semantic filter # sd.SyntheticData.Get().set_instance_mapping_semantic_filter("prim:*") cam = rep.create.camera(position=(500, 500, 500), look_at=(0, 0, 0)) rp = rep.create.render_product(cam, (1024, 512)) segmentation = rep.AnnotatorRegistry.get_annotator("semantic_segmentation") segmentation.attach(rp) # step_async() tells Omniverse to update, otherwise the annoation buffer could be empty await rep.orchestrator.step_async() data = segmentation.get_data() print(data) # Example Output: # { # "data": array( # [ # [0, 0, 0, ..., 0, 0, 0], # [0, 0, 0, ..., 0, 0, 0], # [0, 0, 0, ..., 0, 0, 0], # ..., # [0, 0, 0, ..., 0, 0, 0], # [0, 0, 0, ..., 0, 0, 0], # [0, 0, 0, ..., 0, 0, 0], # ], # dtype=uint32, # ), # "info": { # "_uniqueInstanceIDs": array([1, 1, 1], dtype=uint8), # "idToLabels": { # "0": {"class": "BACKGROUND"}, # "2": {"prim": "cone"}, # "3": {"prim": "sphere"}, # "4": {"shape": "boxy"}, # }, # }, # } asyncio.ensure_future(test_semantics())
3,332
Python
38.211764
91
0.653962
NVIDIA-Omniverse/synthetic-data-examples/omni.replicator/snippets/replicator_multi_object_visibility_toggle.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-License-Identifier: BSD-3-Clause # # Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """This will create a group from a list of objects and 1. Render all the objects together 2. Toggle sole visiblity for each object & render 3. Randomize pose for all objects, repeat This can be useful for training on object occlusions. """ import omni.replicator.core as rep NUM_POSE_RANDOMIZATIONS = 10 # Make a list-of-lists of True/False for each object # In this example of 3 objects: # [[True, True, True] # [True, False, False] # [False, True, False] # [False, False, True]] def make_visibility_lists(num_objects): visib = [] # Make an all-visible first pass visib.append(tuple([True for x in range(num_objects)])) # List to toggle one object visible at a time for x in range(num_objects): sub_vis = [] for i in range(num_objects): if x == i: sub_vis.append(True) else: sub_vis.append(False) visib.append(tuple(sub_vis)) return visib with rep.new_layer(): # Setup camera and simple light camera = rep.create.camera(position=(0, 500, 1000), look_at=(0, 0, 0)) light = rep.create.light(rotation=(-45, 45, 0)) # Create simple shapes to manipulate plane = rep.create.plane( semantics=[("class", "plane")], position=(0, -100, 0), scale=(100, 1, 100) ) torus = rep.create.torus(semantics=[("class", "torus")], position=(200, 0, 100)) sphere = rep.create.sphere(semantics=[("class", "sphere")], position=(0, 0, 100)) cube = rep.create.cube(semantics=[("class", "cube")], position=(-200, 0, 100)) # Create a group of the objects we will be manipulating # Leaving-out camera, light, and plane from visibility toggling and pose randomization object_group = rep.create.group([torus, sphere, cube]) # Get the number of objects to toggle, can work with any number of objects num_objects_to_toggle = len(object_group.get_output_prims()["prims"]) # Create our lists-of-lists for visibility visibility_sequence = make_visibility_lists(num_objects_to_toggle) # Trigger to toggle visibility one at a time with rep.trigger.on_frame( max_execs=(num_objects_to_toggle + 1) * NUM_POSE_RANDOMIZATIONS ): with object_group: rep.modify.visibility(rep.distribution.sequence(visibility_sequence)) # Trigger to randomize position and scale, interval set to number of objects +1(1 extra for the "all visible" frame) with rep.trigger.on_frame( max_execs=NUM_POSE_RANDOMIZATIONS, interval=num_objects_to_toggle + 1 ): with object_group: rep.modify.pose( position=rep.distribution.uniform((-300, 0, -300), (300, 0, 300)), scale=rep.distribution.uniform(0.1, 2), ) # Initialize render product and attach writer render_product = rep.create.render_product(camera, (512, 512)) writer = rep.WriterRegistry.get("BasicWriter") writer.initialize( output_dir="toggle_multi_visibility", rgb=True, semantic_segmentation=True, ) writer.attach([render_product]) rep.orchestrator.run()
4,759
Python
40.391304
120
0.703929
NVIDIA-Omniverse/synthetic-data-examples/omni.replicator/snippets/surface_scratches/scratches_randomization.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-License-Identifier: BSD-3-Clause # # Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from pathlib import Path import carb import omni.replicator.core as rep import omni.usd from pxr import Sdf, UsdGeom """ Instructions: Open the example scene file "scratches_randomization.usda", located adjacent to this script, in Omniverse prior to using this script """ # Get the current Usd "stage". This is where all the scene objects live stage = omni.usd.get_context().get_stage() with rep.new_layer(): camera = rep.create.camera(position=(-30, 38, 60), look_at=(0, 0, 0)) render_product = rep.create.render_product(camera, (1280, 720)) # Get Scene cube cube_prim = stage.GetPrimAtPath("/World/RoundedCube2/Cube/Cube") # Set the primvars on the cubes once primvars_api = UsdGeom.PrimvarsAPI(cube_prim) primvars_api.CreatePrimvar("random_color", Sdf.ValueTypeNames.Float3).Set( (1.0, 1.0, 1.0) ) primvars_api.CreatePrimvar("random_intensity", Sdf.ValueTypeNames.Float3).Set( (1.0, 1.0, 1.0) ) def change_colors(): # Change color primvars cubes = rep.get.prims( path_pattern="/World/RoundedCube2/Cube/Cube", prim_types=["Mesh"] ) with cubes: rep.modify.attribute( "primvars:random_color", rep.distribution.uniform((0.0, 0.0, 0.0), (1.0, 1.0, 1.0)), attribute_type="float3", ) rep.modify.attribute( "primvars:random_intensity", rep.distribution.uniform((0.0, 0.0, 0.0), (10.0, 10.0, 10.0)), attribute_type="float3", ) return cubes.node rep.randomizer.register(change_colors) # Setup randomization of colors, different each frame with rep.trigger.on_frame(num_frames=10): rep.randomizer.change_colors() # (optional) Write output images to disk writer = rep.WriterRegistry.get("BasicWriter") writer.initialize( output_dir="~/replicator_examples/box_scratches", rgb=True, bounding_box_2d_tight=True, semantic_segmentation=True, distance_to_image_plane=True, ) writer.attach([render_product]) carb.log_info("scratches randomization complete")
3,884
Python
37.465346
84
0.697477
NVIDIA-Omniverse/synthetic-data-examples/omni.replicator/tutorials/fall_2022_DLI/22_Change_Textures.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-License-Identifier: BSD-3-Clause # # Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import omni.replicator.core as rep # create new objects to be used in the dataset with rep.new_layer(): sphere = rep.create.sphere( semantics=[("class", "sphere")], position=(0, 100, 100), count=5 ) cube = rep.create.cube( semantics=[("class", "cube")], position=(200, 200, 100), count=5 ) cone = rep.create.cone( semantics=[("class", "cone")], position=(200, 400, 200), count=10 ) cylinder = rep.create.cylinder( semantics=[("class", "cylinder")], position=(200, 100, 200), count=5 ) # create new camera & render product and attach to camera camera = rep.create.camera(position=(0, 0, 1000)) render_product = rep.create.render_product(camera, (1024, 1024)) # create plane if needed (but unused here) plane = rep.create.plane(scale=10) # function to get shapes that you've created above, via their semantic labels def get_shapes(): shapes = rep.get.prims( semantics=[ ("class", "cube"), ("class", "sphere"), ("class", "cone"), ("class", "cylinder"), ] ) with shapes: # assign textures to the different objects rep.randomizer.texture( textures=[ "omniverse://localhost/NVIDIA/Materials/vMaterials_2/Ground/textures/aggregate_exposed_diff.jpg", "omniverse://localhost/NVIDIA/Materials/vMaterials_2/Ground/textures/gravel_track_ballast_diff.jpg", "omniverse://localhost/NVIDIA/Materials/vMaterials_2/Ground/textures/gravel_track_ballast_multi_R_rough_G_ao.jpg", "omniverse://localhost/NVIDIA/Materials/vMaterials_2/Ground/textures/rough_gravel_rough.jpg", ] ) # modify pose and distribution rep.modify.pose( position=rep.distribution.uniform((-500, 50, -500), (500, 50, 500)), rotation=rep.distribution.uniform((0, -180, 0), (0, 180, 0)), scale=rep.distribution.normal(1, 0.5), ) return shapes.node # register the get shapes function as a randomizer function rep.randomizer.register(get_shapes) # Setup randomization. 100 variations here from 'num_frames' with rep.trigger.on_frame(num_frames=100): rep.randomizer.get_shapes() # Initialize and attach writer writer = rep.WriterRegistry.get("BasicWriter") writer.initialize(output_dir="~/replicator_examples/dli_example_22", rgb=True) writer.attach([render_product]) rep.orchestrator.run()
4,321
Python
43.556701
134
0.672992
NVIDIA-Omniverse/synthetic-data-examples/omni.replicator/tutorials/fall_2022_DLI/03_replicator_advanced.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-License-Identifier: BSD-3-Clause # # Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import omni.replicator.core as rep with rep.new_layer(): def dome_lights(): lights = rep.create.light( light_type="Dome", rotation=(270, 0, 0), texture=rep.distribution.choice( [ "omniverse://localhost/NVIDIA/Assets/Skies/Indoor/ZetoCGcom_ExhibitionHall_Interior1.hdr", "omniverse://localhost/NVIDIA/Assets/Skies/Indoor/ZetoCG_com_WarehouseInterior2b.hdr", ] ), ) return lights.node rep.randomizer.register(dome_lights) conference_tables = ( "omniverse://localhost/NVIDIA/Assets/ArchVis/Commercial/Conference/" ) # create randomizer function conference table assets. # This randomization includes placement and rotation of the assets on the surface. def env_conference_table(size=5): confTable = rep.randomizer.instantiate( rep.utils.get_usd_files(conference_tables, recursive=False), size=size, mode="scene_instance", ) with confTable: rep.modify.pose( position=rep.distribution.uniform((-500, 0, -500), (500, 0, 500)), rotation=rep.distribution.uniform((-90, -180, 0), (-90, 180, 0)), ) return confTable.node # Register randomization rep.randomizer.register(env_conference_table) # Setup camera and attach it to render product camera = rep.create.camera() render_product = rep.create.render_product(camera, resolution=(1024, 1024)) surface = rep.create.disk(scale=100, visible=False) # trigger on frame for an interval with rep.trigger.on_frame(5): rep.randomizer.env_conference_table(2) rep.randomizer.dome_lights() with camera: rep.modify.pose( position=rep.distribution.uniform((-500, 200, 1000), (500, 500, 1500)), look_at=surface, ) # Initialize and attach writer writer = rep.WriterRegistry.get("BasicWriter") writer.initialize(output_dir="~/replicator_examples/dli_example_3", rgb=True) writer.attach([render_product])
3,860
Python
40.074468
110
0.688083
NVIDIA-Omniverse/synthetic-data-examples/omni.replicator/tutorials/fall_2022_DLI/01_hello_replicator.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-License-Identifier: BSD-3-Clause # # Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import omni.replicator.core as rep # Create a new layer for our work to be performed in. # This is a good habit to develop for later when working on existing Usd scenes with rep.new_layer(): # Create a simple camera with a position and a point to look at camera = rep.create.camera(position=(0, 500, 1000), look_at=(0, 0, 0)) # Create some simple shapes to manipulate plane = rep.create.plane( semantics=[("class", "plane")], position=(0, -100, 0), scale=(100, 1, 100) ) torus = rep.create.torus(semantics=[("class", "torus")], position=(200, 0, 100)) sphere = rep.create.sphere(semantics=[("class", "sphere")], position=(0, 0, 100)) cube = rep.create.cube(semantics=[("class", "cube")], position=(-200, 0, 100)) # Randomize position and scale of each object on each frame with rep.trigger.on_frame(num_frames=10): # Creating a group so that our modify.pose operation works on all the shapes at once with rep.create.group([torus, sphere, cube]): rep.modify.pose( position=rep.distribution.uniform((-300, 0, -300), (300, 0, 300)), scale=rep.distribution.uniform(0.1, 2), ) # Initialize render product and attach a writer render_product = rep.create.render_product(camera, (1024, 1024)) writer = rep.WriterRegistry.get("BasicWriter") writer.initialize( output_dir="~/replicator_examples/dli_hello_replicator/", rgb=True, semantic_segmentation=True, bounding_box_2d_tight=True, ) writer.attach([render_product]) rep.orchestrator.run()
3,261
Python
46.970588
92
0.726771
NVIDIA-Omniverse/synthetic-data-examples/omni.replicator/tutorials/fall_2022_DLI/physics.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-License-Identifier: BSD-3-Clause # # Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import omni.replicator.core as rep with rep.new_layer(): # Define paths for the character, the props, the environment and the surface where the assets will be scattered in. PROPS = "omniverse://localhost/NVIDIA/Assets/Isaac/2022.1/Isaac/Props/YCB/Axis_Aligned_Physics" SURFACE = ( "omniverse://localhost/NVIDIA/Assets/Scenes/Templates/Basic/display_riser.usd" ) ENVS = "omniverse://localhost/NVIDIA/Assets/Scenes/Templates/Interior/ZetCG_ExhibitionHall.usd" # Define randomizer function for Base assets. This randomization includes placement and rotation of the assets on the surface. def env_props(size=50): instances = rep.randomizer.instantiate( rep.utils.get_usd_files(PROPS, recursive=True), size=size, mode="scene_instance", ) with instances: rep.modify.pose( position=rep.distribution.uniform((-50, 5, -50), (50, 20, 50)), rotation=rep.distribution.uniform((0, -180, 0), (0, 180, 0)), scale=100, ) rep.physics.rigid_body( velocity=rep.distribution.uniform((-0, 0, -0), (0, 0, 0)), angular_velocity=rep.distribution.uniform((-0, 0, -100), (0, 0, 0)), ) return instances.node # Register randomization rep.randomizer.register(env_props) # Setup the static elements env = rep.create.from_usd(ENVS) surface = rep.create.from_usd(SURFACE) with surface: rep.physics.collider() # Setup camera and attach it to render product camera = rep.create.camera() render_product = rep.create.render_product(camera, resolution=(1024, 1024)) # sphere lights for extra randomization def sphere_lights(num): lights = rep.create.light( light_type="Sphere", temperature=rep.distribution.normal(6500, 500), intensity=rep.distribution.normal(35000, 5000), position=rep.distribution.uniform((-300, -300, -300), (300, 300, 300)), scale=rep.distribution.uniform(50, 100), count=num, ) return lights.node rep.randomizer.register(sphere_lights) # trigger on frame for an interval with rep.trigger.on_time(interval=2, num=10): rep.randomizer.env_props(10) rep.randomizer.sphere_lights(10) with camera: rep.modify.pose( position=rep.distribution.uniform((-50, 20, 100), (50, 50, 150)), look_at=surface, ) # Initialize and attach writer writer = rep.WriterRegistry.get("BasicWriter") writer.initialize( output_dir="~/replicator_examples/dli_physics", rgb=True, bounding_box_2d_tight=True, ) writer.attach([render_product])
4,509
Python
41.952381
130
0.681082
NVIDIA-Omniverse/synthetic-data-examples/omni.replicator/tutorials/fall_2022_DLI/02_background_randomization.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-License-Identifier: BSD-3-Clause # # Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import omni.replicator.core as rep with rep.new_layer(): def dome_lights(): lights = rep.create.light( light_type="Dome", rotation=(270, 0, 0), texture=rep.distribution.choice( [ "omniverse://localhost/NVIDIA/Assets/Skies/Cloudy/champagne_castle_1_4k.hdr", "omniverse://localhost/NVIDIA/Assets/Skies/Clear/evening_road_01_4k.hdr", "omniverse://localhost/NVIDIA/Assets/Skies/Cloudy/kloofendal_48d_partly_cloudy_4k.hdr", "omniverse://localhost/NVIDIA/Assets/Skies/Clear/qwantani_4k.hdr", ] ), ) return lights.node rep.randomizer.register(dome_lights) torus = rep.create.torus(semantics=[("class", "torus")], position=(0, -200, 100)) # create surface surface = rep.create.disk(scale=5, visible=False) # create camera & render product for the scene camera = rep.create.camera() render_product = rep.create.render_product(camera, resolution=(1024, 1024)) with rep.trigger.on_frame(num_frames=10, interval=10): rep.randomizer.dome_lights() with rep.create.group([torus]): rep.modify.pose( position=rep.distribution.uniform((-100, -100, -100), (200, 200, 200)), scale=rep.distribution.uniform(0.1, 2), ) with camera: rep.modify.pose( position=rep.distribution.uniform((-500, 200, 1000), (500, 500, 1500)), look_at=surface, ) # Initialize and attach writer writer = rep.WriterRegistry.get("BasicWriter") writer.initialize(output_dir="~/replicator_examples/dli_example_02", rgb=True) writer.attach([render_product]) # Run Replicator # rep.orchestrator.run()
3,520
Python
41.421686
107
0.685227
NVIDIA-Omniverse/synthetic-data-examples/omni.replicator_yaml/tutorial_randomizer_materials.yaml
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-License-Identifier: BSD-3-Clause # # Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # Default scene settings. This script default is 1 (IsaacSim), so if you change # the meters per unit or up axis, you need to alter the coordinates and rotations. # IsaacSim default is 1, Code is 0.01 stage_unit_setting: settings.set_stage_meters_per_unit: meters_per_unit: 1 # IsaacSim default is "Z"", Code is "Y" stage_up_axis_setting: settings.set_stage_up_axis: up_axis: "Z" # This YAML script example demonstrates: # Creating materials, and applying them to objects in a scene with a randomizer # Create the materials to apply to the objects mats: create.material_omnipbr: diffuse: distribution.uniform: lower: [0, 0, 0] upper: [1, 1, 1] count: 100 # Create the objects in the scene spheres: create.sphere: scale: 0.2 position: distribution.uniform: lower: [-1, -1, -1] upper: [1, 1, 1] count: 100 plane: create.plane: semantics: [["class", "plane"]] position: [0, 0, -1.5] visible: true scale: 100 # Create the camera and render product camera: create.camera: position: [5, 0, 0] render_product: create.render_product: camera: camera resolution: [1024, 1024] # Create the writer and initialize writer: writers.get: name: "BasicWriter" init_params: output_dir: "_output_yaml/TutorialRandomizerMaterials/" rgb: True writer_attach: writer.attach: render_products: render_product # Register a randomizer that sets the materials of the spheres register_materials: randomizer.register: get_spheres: inputs: spheres: null mats: null with.spheres: randomizer.materials: materials: mats # Set the trigger as on_frame, setting subframes to accumulate frames for a # higher quality render trigger: trigger.on_frame: max_execs: 20 rt_subframes: 3 # When the trigger executes, apply the randomizer with_trigger: with.trigger: randomizer.get_spheres: spheres: spheres mats: mats
3,700
YAML
29.841666
84
0.721892
NVIDIA-Omniverse/synthetic-data-examples/end-to-end-workflows/palletjack_with_tao/CLA.md
## Individual Contributor License Agreement (CLA) **Thank you for submitting your contributions to this project.** By signing this CLA, you agree that the following terms apply to all of your past, present and future contributions to the project. ### License. You hereby represent that all present, past and future contributions are governed by the [MIT License](https://opensource.org/licenses/MIT) copyright statement. This entails that to the extent possible under law, you transfer all copyright and related or neighboring rights of the code or documents you contribute to the project itself or its maintainers. Furthermore you also represent that you have the authority to perform the above waiver with respect to the entirety of you contributions. ### Moral Rights. To the fullest extent permitted under applicable law, you hereby waive, and agree not to assert, all of your “moral rights” in or relating to your contributions for the benefit of the project. ### Third Party Content. If your Contribution includes or is based on any source code, object code, bug fixes, configuration changes, tools, specifications, documentation, data, materials, feedback, information or other works of authorship that were not authored by you (“Third Party Content”) or if you are aware of any third party intellectual property or proprietary rights associated with your Contribution (“Third Party Rights”), then you agree to include with the submission of your Contribution full details respecting such Third Party Content and Third Party Rights, including, without limitation, identification of which aspects of your Contribution contain Third Party Content or are associated with Third Party Rights, the owner/author of the Third Party Content and Third Party Rights, where you obtained the Third Party Content, and any applicable third party license terms or restrictions respecting the Third Party Content and Third Party Rights. For greater certainty, the foregoing obligations respecting the identification of Third Party Content and Third Party Rights do not apply to any portion of a Project that is incorporated into your Contribution to that same Project. ### Representations. You represent that, other than the Third Party Content and Third Party Rights identified by you in accordance with this Agreement, you are the sole author of your Contributions and are legally entitled to grant the foregoing licenses and waivers in respect of your Contributions. If your Contributions were created in the course of your employment with your past or present employer(s), you represent that such employer(s) has authorized you to make your Contributions on behalf of such employer(s) or such employer (s) has waived all of their right, title or interest in or to your Contributions. ### Disclaimer. To the fullest extent permitted under applicable law, your Contributions are provided on an "as is" basis, without any warranties or conditions, express or implied, including, without limitation, any implied warranties or conditions of non-infringement, merchantability or fitness for a particular purpose. You are not required to provide support for your Contributions, except to the extent you desire to provide support. ### No Obligation. You acknowledge that the maintainers of this project are under no obligation to use or incorporate your contributions into the project. The decision to use or incorporate your contributions into the project will be made at the sole discretion of the maintainers or their authorized delegates.
3,543
Markdown
60.103447
117
0.812024
NVIDIA-Omniverse/synthetic-data-examples/end-to-end-workflows/palletjack_with_tao/README.md
# Synthetic Data Generation and Training with Sim Ready Assets This project provides a workflow for Training Computer Vision models with Synthetic Data. We will use Isaac Sim with Omniverse Replicator to generate data for our use case and objects of interest. To ensure seamless compatibility with model training, the data generated is in the KITTI format. These steps can be followed on a Cloud/remote GPU instance or locally ## How to use this repository - [Guide](local/README.md) for running the workflow locally - [Guide](cloud/README.md) for running on a cloud/remote instance ## Workflow Components: * Generating Data: Use Isaac Sim to generate data * Training: We will use TAO toolkit, however users can train a model in a framework of their choice with data generated ### SDG - Using the `palletjack` assets from the Warehouse Sim Ready Asset collection - Carry out Domain Randomization in the scene with Replicator: - Various attributes of the scene like lighting, textures, object pose and materials can be modified - Important to generate a good quality dataset to ensure model detects objects in the real world - Data output KITTI format - We will use the KITTI Writer for generating annotations - Possible to implement a custom writer (can be useful when data is expected in a certain format for your model) - Sample generated images: <p> <img src="images/sample_synthetic/21.png" height="256"/> <img src="images/sample_synthetic/653.png" height="256"/> </p> <p> <img src="images/sample_synthetic/896.png" height="256"/> <img src="images/sample_synthetic/1545.png" height="256"/> </p> ### Training - TAO: Outline of steps - Generating Tfrecords - Model training and evaluation - Model backbone selction - Hyperparameters specified via `spec` file (provided with repo) - Running inference with trained model - Sample real world detections on LOCO dataset images: <p> <img src="images/real_world_results/1564562568.298206.jpg" height="256"/> <img src="images/real_world_results/1564562843.0618184.jpg" height="256"/> </p> <p> <img src="images/real_world_results/593768,3659.jpg" height="256"/> <img src="images/real_world_results/510196244,1362.jpg" height="256"/> </p> <p> <img src="images/real_world_results/1574675156.7667925.jpg" height="256"/> <img src="images/real_world_results/426023,9672.jpg" height="256"/> </p> ### Deployment - Perform Optimizations: Pruning and QAT with TAO to reduce model size and improve performance - Deploy on NVIDIA Jetson powered Robot with Isaac ROS or Deepstream ## References: - Real world images from the [LOCO dataset](https://github.com/tum-fml/loco) are used for visualizing model performance
2,771
Markdown
36.972602
294
0.738001
NVIDIA-Omniverse/synthetic-data-examples/end-to-end-workflows/palletjack_with_tao/LICENSE.md
SPDX-FileCopyrightText: Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. SPDX-License-Identifier: MIT Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
1,167
Markdown
54.619045
97
0.796058
NVIDIA-Omniverse/synthetic-data-examples/end-to-end-workflows/palletjack_with_tao/cloud/README.md
# Requirements - Access to a cloud/remote GPU instance (workflow tested on a `g4dn` AWS EC2 instance with T4 GPU) - Docker setup instructions are provided in the notebooks - Entire workflow can be run in `headless` mode (SDG script and training) ## Synthetic Data Generation - Use the Isaac Sim docker container for running the Data Generation [script](../palletjack_sdg/palletjack_datagen.sh) - We will generate data for warehouse `palletjack` objects in KITTI format - Follow the steps in the `cloud_sdg` notebook - This generated data can be used to train your own model (framework and architecture of your choice), in this workflow we demonstrate using TAO for training ## Training with TAO Toolkit - The `training/cloud_train` notebook provides a walkthrough of the steps: - Setting up TAO docker container - Downloading pre-trained model, we will use the `DetectNet_v2` model with a `resnet_18` backbone - Running TAO training with `spec` files provided - Visualizing model performance on real world data - Visualize model metric with Tensorboard <img src="../images/tensorboard/tensorboard_resized_palletjack.png"/> ## Next steps ### Generating Synthetic Data for your use case - Make changes in the Domain Randomization under the Synthetic Data Generation [script](../palletjack_sdg/standalone_palletjack_sdg.py) - Add additional objects of interest in the scene (similar to how palletjacks are added, you can add forklifts, ladders etc.) to generate dataUse different models for training with TAO (for object detection, you can use YOLO, SSD, EfficientDet) - Replicator provides Semantic Segmentation, Instance Segmentation, Depth and various other ground truth annotations along with RGB. You can also write your own ground truth annotator (eg: Pose Estimation: Refer to [sample](https://docs.omniverse.nvidia.com/isaacsim/latest/tutorial_replicator_offline_pose_estimation.html) These can be used for training a model of your own framework and choice) - Exploring the option of using Synthetic + Real data for training a network. Can be particularly useful for generating more data around particular corner cases ### Deploying Trained Models - The trained model can be pruned and optimized for inference with TAO - This can then be deployed on a robot with NVIDIA Jetson
2,308
Markdown
66.911763
396
0.786395
NVIDIA-Omniverse/synthetic-data-examples/end-to-end-workflows/palletjack_with_tao/local/README.md
# Requirements - Install [Isaac Sim](https://docs.omniverse.nvidia.com/isaacsim/latest/install_workstation.html) - Training via TAO Toolkit Docker container (TAO setup instructions in `local_train` notebook) ## Synthetic Data Generation - Provide the path of your Isaac Sim installation folder in the `generate_data.sh` script - Make the script an executable after adding the Isaac Sim Path (`chmod +x generate_data.sh`) - Run the script (`./generate_data.sh`) - We will generate data for the `palletjack` class of objects with annotations in KITTI format - This generated data can be used to train your own model (framework and architecture of your choice) ## Training with TAO Toolkit - The data generated in the previus step can be directly fed to TAO for training - The `local_train` notebook provides a walkthrough of the steps: - Setting up TAO docker container - Downloading pre-trained model, we will use the `DetectNet_v2` model with a `resnet_18` backbone - Running TAO training with `spec` files provided - Visualizing model performance on real world data - Visualize model metric with Tensorboard <img src="../images/tensorboard/tensorboard_resized_palletjack.png"/> ## Next steps ### Generating Synthetic Data for your use case - Make changes in the Domain Randomization under the Synthetic Data Generation [script](../palletjack_sdg/standalone_palletjack_sdg.py) - Add additional objects of interest in the scene (similar to how palletjacks are added, you can add forklifts, ladders etc.) to generate dataUse different models for training with TAO (for object detection, you can use YOLO, SSD, EfficientDet) - Replicator provides Semantic Segmentation, Instance Segmentation, Depth and various other ground truth annotations along with RGB. You can also write your own ground truth annotator (eg: Pose Estimation: Refer to [sample](https://docs.omniverse.nvidia.com/isaacsim/latest/tutorial_replicator_offline_pose_estimation.html) These can be used for training a model of your own framework and choice) - Exploring the option of using Synthetic + Real data for training a network. Can be particularly useful for generating more data around particular corner cases ### Deploying Trained Models - The trained model can be pruned and optimized for inference with TAO - This can then be deployed on a robot with NVIDIA Jetson
2,370
Markdown
66.742855
396
0.7827
NVIDIA-Omniverse/synthetic-data-examples/end-to-end-workflows/palletjack_with_tao/palletjack_sdg/standalone_palletjack_sdg.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # SPDX-FileCopyrightText: Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: MIT # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. from omni.isaac.kit import SimulationApp import os import argparse parser = argparse.ArgumentParser("Dataset generator") parser.add_argument("--headless", type=bool, default=False, help="Launch script headless, default is False") parser.add_argument("--height", type=int, default=544, help="Height of image") parser.add_argument("--width", type=int, default=960, help="Width of image") parser.add_argument("--num_frames", type=int, default=1000, help="Number of frames to record") parser.add_argument("--distractors", type=str, default="warehouse", help="Options are 'warehouse' (default), 'additional' or None") parser.add_argument("--data_dir", type=str, default=os.getcwd() + "/_palletjack_data", help="Location where data will be output") args, unknown_args = parser.parse_known_args() # This is the config used to launch simulation. CONFIG = {"renderer": "RayTracedLighting", "headless": args.headless, "width": args.width, "height": args.height, "num_frames": args.num_frames} simulation_app = SimulationApp(launch_config=CONFIG) ## This is the path which has the background scene in which objects will be added. ENV_URL = "/Isaac/Environments/Simple_Warehouse/warehouse.usd" import carb import omni import omni.usd from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import get_current_stage, open_stage from pxr import Semantics import omni.replicator.core as rep from omni.isaac.core.utils.semantics import get_semantics # Increase subframes if shadows/ghosting appears of moving objects # See known issues: https://docs.omniverse.nvidia.com/prod_extensions/prod_extensions/ext_replicator.html#known-issues rep.settings.carb_settings("/omni/replicator/RTSubframes", 4) # This is the location of the palletjacks in the simready asset library PALLETJACKS = ["http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/DigitalTwin/Assets/Warehouse/Equipment/Pallet_Trucks/Scale_A/PalletTruckScale_A01_PR_NVD_01.usd", "http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/DigitalTwin/Assets/Warehouse/Equipment/Pallet_Trucks/Heavy_Duty_A/HeavyDutyPalletTruck_A01_PR_NVD_01.usd", "http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/DigitalTwin/Assets/Warehouse/Equipment/Pallet_Trucks/Low_Profile_A/LowProfilePalletTruck_A01_PR_NVD_01.usd"] # The warehouse distractors which will be added to the scene and randomized DISTRACTORS_WAREHOUSE = 2 * ["/Isaac/Environments/Simple_Warehouse/Props/S_TrafficCone.usd", "/Isaac/Environments/Simple_Warehouse/Props/S_WetFloorSign.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_BarelPlastic_A_01.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_BarelPlastic_A_02.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_BarelPlastic_A_03.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_BarelPlastic_B_01.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_BarelPlastic_B_01.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_BarelPlastic_B_03.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_BarelPlastic_C_02.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_BottlePlasticA_02.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_BottlePlasticB_01.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_BottlePlasticA_02.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_BottlePlasticA_02.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_BottlePlasticD_01.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_BottlePlasticE_01.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_BucketPlastic_B.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_CardBoxB_01_1262.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_CardBoxB_01_1268.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_CardBoxB_01_1482.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_CardBoxB_01_1683.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_CardBoxB_01_291.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_CardBoxD_01_1454.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_CardBoxD_01_1513.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_CratePlastic_A_04.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_CratePlastic_B_03.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_CratePlastic_B_05.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_CratePlastic_C_02.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_CratePlastic_E_02.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_PushcartA_02.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_RackPile_04.usd", "/Isaac/Environments/Simple_Warehouse/Props/SM_RackPile_03.usd"] ## Additional distractors which can be added to the scene DISTRACTORS_ADDITIONAL = ["/Isaac/Environments/Hospital/Props/Pharmacy_Low.usd", "/Isaac/Environments/Hospital/Props/SM_BedSideTable_01b.usd", "/Isaac/Environments/Hospital/Props/SM_BooksSet_26.usd", "/Isaac/Environments/Hospital/Props/SM_BottleB.usd", "/Isaac/Environments/Hospital/Props/SM_BottleA.usd", "/Isaac/Environments/Hospital/Props/SM_BottleC.usd", "/Isaac/Environments/Hospital/Props/SM_Cart_01a.usd", "/Isaac/Environments/Hospital/Props/SM_Chair_02a.usd", "/Isaac/Environments/Hospital/Props/SM_Chair_01a.usd", "/Isaac/Environments/Hospital/Props/SM_Computer_02b.usd", "/Isaac/Environments/Hospital/Props/SM_Desk_04a.usd", "/Isaac/Environments/Hospital/Props/SM_DisposalStand_02.usd", "/Isaac/Environments/Hospital/Props/SM_FirstAidKit_01a.usd", "/Isaac/Environments/Hospital/Props/SM_GasCart_01c.usd", "/Isaac/Environments/Hospital/Props/SM_Gurney_01b.usd", "/Isaac/Environments/Hospital/Props/SM_HospitalBed_01b.usd", "/Isaac/Environments/Hospital/Props/SM_MedicalBag_01a.usd", "/Isaac/Environments/Hospital/Props/SM_Mirror.usd", "/Isaac/Environments/Hospital/Props/SM_MopSet_01b.usd", "/Isaac/Environments/Hospital/Props/SM_SideTable_02a.usd", "/Isaac/Environments/Hospital/Props/SM_SupplyCabinet_01c.usd", "/Isaac/Environments/Hospital/Props/SM_SupplyCart_01e.usd", "/Isaac/Environments/Hospital/Props/SM_TrashCan.usd", "/Isaac/Environments/Hospital/Props/SM_Washbasin.usd", "/Isaac/Environments/Hospital/Props/SM_WheelChair_01a.usd", "/Isaac/Environments/Office/Props/SM_WaterCooler.usd", "/Isaac/Environments/Office/Props/SM_TV.usd", "/Isaac/Environments/Office/Props/SM_TableC.usd", "/Isaac/Environments/Office/Props/SM_Recliner.usd", "/Isaac/Environments/Office/Props/SM_Personenleitsystem_Red1m.usd", "/Isaac/Environments/Office/Props/SM_Lamp02_162.usd", "/Isaac/Environments/Office/Props/SM_Lamp02.usd", "/Isaac/Environments/Office/Props/SM_HandDryer.usd", "/Isaac/Environments/Office/Props/SM_Extinguisher.usd"] # The textures which will be randomized for the wall and floor TEXTURES = ["/Isaac/Materials/Textures/Patterns/nv_asphalt_yellow_weathered.jpg", "/Isaac/Materials/Textures/Patterns/nv_tile_hexagonal_green_white.jpg", "/Isaac/Materials/Textures/Patterns/nv_rubber_woven_charcoal.jpg", "/Isaac/Materials/Textures/Patterns/nv_granite_tile.jpg", "/Isaac/Materials/Textures/Patterns/nv_tile_square_green.jpg", "/Isaac/Materials/Textures/Patterns/nv_marble.jpg", "/Isaac/Materials/Textures/Patterns/nv_brick_reclaimed.jpg", "/Isaac/Materials/Textures/Patterns/nv_concrete_aged_with_lines.jpg", "/Isaac/Materials/Textures/Patterns/nv_wooden_wall.jpg", "/Isaac/Materials/Textures/Patterns/nv_stone_painted_grey.jpg", "/Isaac/Materials/Textures/Patterns/nv_wood_shingles_brown.jpg", "/Isaac/Materials/Textures/Patterns/nv_tile_hexagonal_various.jpg", "/Isaac/Materials/Textures/Patterns/nv_carpet_abstract_pattern.jpg", "/Isaac/Materials/Textures/Patterns/nv_wood_siding_weathered_green.jpg", "/Isaac/Materials/Textures/Patterns/nv_animalfur_pattern_greys.jpg", "/Isaac/Materials/Textures/Patterns/nv_artificialgrass_green.jpg", "/Isaac/Materials/Textures/Patterns/nv_bamboo_desktop.jpg", "/Isaac/Materials/Textures/Patterns/nv_brick_reclaimed.jpg", "/Isaac/Materials/Textures/Patterns/nv_brick_red_stacked.jpg", "/Isaac/Materials/Textures/Patterns/nv_fireplace_wall.jpg", "/Isaac/Materials/Textures/Patterns/nv_fabric_square_grid.jpg", "/Isaac/Materials/Textures/Patterns/nv_granite_tile.jpg", "/Isaac/Materials/Textures/Patterns/nv_marble.jpg", "/Isaac/Materials/Textures/Patterns/nv_gravel_grey_leaves.jpg", "/Isaac/Materials/Textures/Patterns/nv_plastic_blue.jpg", "/Isaac/Materials/Textures/Patterns/nv_stone_red_hatch.jpg", "/Isaac/Materials/Textures/Patterns/nv_stucco_red_painted.jpg", "/Isaac/Materials/Textures/Patterns/nv_rubber_woven_charcoal.jpg", "/Isaac/Materials/Textures/Patterns/nv_stucco_smooth_blue.jpg", "/Isaac/Materials/Textures/Patterns/nv_wood_shingles_brown.jpg", "/Isaac/Materials/Textures/Patterns/nv_wooden_wall.jpg"] def update_semantics(stage, keep_semantics=[]): """ Remove semantics from the stage except for keep_semantic classes""" for prim in stage.Traverse(): if prim.HasAPI(Semantics.SemanticsAPI): processed_instances = set() for property in prim.GetProperties(): is_semantic = Semantics.SemanticsAPI.IsSemanticsAPIPath(property.GetPath()) if is_semantic: instance_name = property.SplitName()[1] if instance_name in processed_instances: # Skip repeated instance, instances are iterated twice due to their two semantic properties (class, data) continue processed_instances.add(instance_name) sem = Semantics.SemanticsAPI.Get(prim, instance_name) type_attr = sem.GetSemanticTypeAttr() data_attr = sem.GetSemanticDataAttr() for semantic_class in keep_semantics: # Check for our data classes needed for the model if data_attr.Get() == semantic_class: continue else: # remove semantics of all other prims prim.RemoveProperty(type_attr.GetName()) prim.RemoveProperty(data_attr.GetName()) prim.RemoveAPI(Semantics.SemanticsAPI, instance_name) # needed for loading textures correctly def prefix_with_isaac_asset_server(relative_path): assets_root_path = get_assets_root_path() if assets_root_path is None: raise Exception("Nucleus server not found, could not access Isaac Sim assets folder") return assets_root_path + relative_path def full_distractors_list(distractor_type="warehouse"): """Distractor type allowed are warehouse, additional or None. They load corresponding objects and add them to the scene for DR""" full_dist_list = [] if distractor_type == "warehouse": for distractor in DISTRACTORS_WAREHOUSE: full_dist_list.append(prefix_with_isaac_asset_server(distractor)) elif distractor_type == "additional": for distractor in DISTRACTORS_ADDITIONAL: full_dist_list.append(prefix_with_isaac_asset_server(distractor)) else: print("No Distractors being added to the current scene for SDG") return full_dist_list def full_textures_list(): full_tex_list = [] for texture in TEXTURES: full_tex_list.append(prefix_with_isaac_asset_server(texture)) return full_tex_list def add_palletjacks(): rep_obj_list = [rep.create.from_usd(palletjack_path, semantics=[("class", "palletjack")], count=2) for palletjack_path in PALLETJACKS] rep_palletjack_group = rep.create.group(rep_obj_list) return rep_palletjack_group def add_distractors(distractor_type="warehouse"): full_distractors = full_distractors_list(distractor_type) distractors = [rep.create.from_usd(distractor_path, count=1) for distractor_path in full_distractors] distractor_group = rep.create.group(distractors) return distractor_group # This will handle replicator def run_orchestrator(): rep.orchestrator.run() # Wait until started while not rep.orchestrator.get_is_started(): simulation_app.update() # Wait until stopped while rep.orchestrator.get_is_started(): simulation_app.update() rep.BackendDispatch.wait_until_done() rep.orchestrator.stop() def main(): # Open the environment in a new stage print(f"Loading Stage {ENV_URL}") open_stage(prefix_with_isaac_asset_server(ENV_URL)) stage = get_current_stage() # Run some app updates to make sure things are properly loaded for i in range(100): if i % 10 == 0: print(f"App uppdate {i}..") simulation_app.update() textures = full_textures_list() rep_palletjack_group = add_palletjacks() rep_distractor_group = add_distractors(distractor_type=args.distractors) # We only need labels for the palletjack objects update_semantics(stage=stage, keep_semantics=["palletjack"]) # Create camera with Replicator API for gathering data cam = rep.create.camera(clipping_range=(0.1, 1000000)) # trigger replicator pipeline with rep.trigger.on_frame(num_frames=CONFIG["num_frames"]): # Move the camera around in the scene, focus on the center of warehouse with cam: rep.modify.pose(position=rep.distribution.uniform((-9.2, -11.8, 0.4), (7.2, 15.8, 4)), look_at=(0, 0, 0)) # Get the Palletjack body mesh and modify its color with rep.get.prims(path_pattern="SteerAxles"): rep.randomizer.color(colors=rep.distribution.uniform((0, 0, 0), (1, 1, 1))) # Randomize the pose of all the added palletjacks with rep_palletjack_group: rep.modify.pose(position=rep.distribution.uniform((-6, -6, 0), (6, 12, 0)), rotation=rep.distribution.uniform((0, 0, 0), (0, 0, 360)), scale=rep.distribution.uniform((0.01, 0.01, 0.01), (0.01, 0.01, 0.01))) # Modify the pose of all the distractors in the scene with rep_distractor_group: rep.modify.pose(position=rep.distribution.uniform((-6, -6, 0), (6, 12, 0)), rotation=rep.distribution.uniform((0, 0, 0), (0, 0, 360)), scale=rep.distribution.uniform(1, 1.5)) # Randomize the lighting of the scene with rep.get.prims(path_pattern="RectLight"): rep.modify.attribute("color", rep.distribution.uniform((0, 0, 0), (1, 1, 1))) rep.modify.attribute("intensity", rep.distribution.normal(100000.0, 600000.0)) rep.modify.visibility(rep.distribution.choice([True, False, False, False, False, False, False])) # select floor material random_mat_floor = rep.create.material_omnipbr(diffuse_texture=rep.distribution.choice(textures), roughness=rep.distribution.uniform(0, 1), metallic=rep.distribution.choice([0, 1]), emissive_texture=rep.distribution.choice(textures), emissive_intensity=rep.distribution.uniform(0, 1000),) with rep.get.prims(path_pattern="SM_Floor"): rep.randomizer.materials(random_mat_floor) # select random wall material random_mat_wall = rep.create.material_omnipbr(diffuse_texture=rep.distribution.choice(textures), roughness=rep.distribution.uniform(0, 1), metallic=rep.distribution.choice([0, 1]), emissive_texture=rep.distribution.choice(textures), emissive_intensity=rep.distribution.uniform(0, 1000),) with rep.get.prims(path_pattern="SM_Wall"): rep.randomizer.materials(random_mat_wall) # Set up the writer writer = rep.WriterRegistry.get("KittiWriter") # output directory of writer output_directory = args.data_dir print("Outputting data to ", output_directory) # use writer for bounding boxes, rgb and segmentation writer.initialize(output_dir=output_directory, omit_semantic_type=True,) # attach camera render products to wrieter so that data is outputted RESOLUTION = (CONFIG["width"], CONFIG["height"]) render_product = rep.create.render_product(cam, RESOLUTION) writer.attach(render_product) # run rep pipeline run_orchestrator() simulation_app.update() if __name__ == "__main__": try: main() except Exception as e: carb.log_error(f"Exception: {e}") import traceback traceback.print_exc() finally: simulation_app.close()
20,199
Python
52.439153
191
0.634388
NVIDIA-Omniverse/synthetic-data-examples/end-to-end-workflows/object_detection_fruit/docker-compose.yml
version: '3' services: deployment: build: deployment # Access the lab with: http://127.0.0.1:8884/lab?token=nvsecuretoken2 command: jupyter lab -y --allow-root --no-browser --ip=0.0.0.0 --port=8884 --notebook-dir=/opt/project/ --NotebookApp.token='nvsecuretoken2' --NotebookApp.password='nvsecurepassword' shm_size: '2gb' volumes: - './deployment/code/:/opt/project/' - './models:/opt/models/' ports: - "8884:8884" training: build: training # Access the lab with: http://127.0.0.1:8883/lab?token=nvsecuretoken1 command: jupyter lab -y --allow-root --no-browser --ip=0.0.0.0 --port=8883 --notebook-dir=/opt/project/ --NotebookApp.token='nvsecuretoken1' --NotebookApp.password='nvsecurepassword' volumes: - './training/code/:/opt/project/' ports: - "8883:8883" data-generation: build: data_generation # Access the lab with: http://127.0.0.1:8882/lab?token=nvsecuretoken0s command: jupyter lab -y --allow-root --no-browser --ip=0.0.0.0 --port=8882 --notebook-dir=/opt/project/ --NotebookApp.token='nvsecuretoken0' --NotebookApp.password='nvsecurepassword' volumes: - './data_generation/code/:/opt/project/' ports: - "8882:8882"
1,238
YAML
40.299999
186
0.661551
NVIDIA-Omniverse/synthetic-data-examples/end-to-end-workflows/object_detection_fruit/README.md
## Getting started ### Install Dependencies - [`docker-compose`](https://docs.docker.com/compose/install/) - [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html) ### Run the labs ``` bash run.sh ``` ### Access the labs Part 1: Generate synthetic data with Omnvierse - [http://127.0.0.1:8882/lab?token=nvsecuretoken0](http://127.0.0.1:8882/lab?token=nvsecuretoken0) \ Part 2: Training a model with synthetic data - [http://127.0.0.1:8883/lab?token=nvsecuretoken1](http://127.0.0.1:8883/lab?token=nvsecuretoken1) \ Part 3: Deploy model to Triton - [http://127.0.0.1:8884/lab?token=nvsecuretoken2](http://127.0.0.1:8884/lab?token=nvsecuretoken2)
708
Markdown
38.388887
147
0.731638
NVIDIA-Omniverse/synthetic-data-examples/end-to-end-workflows/object_detection_fruit/training/code/visualize.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-License-Identifier: BSD-3-Clause # # Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import os import json import hashlib from PIL import Image import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches from optparse import OptionParser """ Takes in the data from a specific label id and maps it to the proper color for the bounding box """ def data_to_colour(data): if isinstance(data, str): data = bytes(data, "utf-8") else: data = bytes(data) m = hashlib.sha256() m.update(data) key = int(m.hexdigest()[:8], 16) r = ((((key >> 0) & 0xFF) + 1) * 33) % 255 g = ((((key >> 8) & 0xFF) + 1) * 33) % 255 b = ((((key >> 16) & 0xFF) + 1) * 33) % 255 # illumination normalization to 128 inv_norm_i = 128 * (3.0 / (r + g + b)) return ( int(r * inv_norm_i) / 255, int(g * inv_norm_i) / 255, int(b * inv_norm_i) / 255, ) """ Takes in the path to the rgb image for the background, then it takes bounding box data, the labels and the place to store the visualization. It outputs a colorized bounding box. """ def colorize_bbox_2d(rgb_path, data, id_to_labels, file_path): rgb_img = Image.open(rgb_path) colors = [data_to_colour(bbox["semanticId"]) for bbox in data] fig, ax = plt.subplots(figsize=(10, 10)) ax.imshow(rgb_img) for bbox_2d, color, index in zip(data, colors, range(len(data))): labels = id_to_labels[str(index)] rect = patches.Rectangle( xy=(bbox_2d["x_min"], bbox_2d["y_min"]), width=bbox_2d["x_max"] - bbox_2d["x_min"], height=bbox_2d["y_max"] - bbox_2d["y_min"], edgecolor=color, linewidth=2, label=labels, fill=False, ) ax.add_patch(rect) plt.legend(loc="upper left") plt.savefig(file_path) """ Parses command line options. Requires input directory, output directory, and number for image to use. """ def parse_input(): usage = "usage: visualize.py [options] arg1 arg2 arg3" parser = OptionParser(usage) parser.add_option( "-d", "--data_dir", dest="data_dir", help="Directory location for Omniverse synthetic data", ) parser.add_option( "-o", "--out_dir", dest="out_dir", help="Directory location for output image" ) parser.add_option( "-n", "--number", dest="number", help="Number of image to use for visualization" ) (options, args) = parser.parse_args() return options, args def main(): options, args = parse_input() out_dir = options.data_dir rgb = "png/rgb_" + options.number + ".png" rgb_path = os.path.join(out_dir, rgb) bbox2d_tight_file_name = "npy/bounding_box_2d_tight_" + options.number + ".npy" data = np.load(os.path.join(options.data_dir, bbox2d_tight_file_name)) # Check for labels bbox2d_tight_labels_file_name = ( "json/bounding_box_2d_tight_labels_" + options.number + ".json" ) with open( os.path.join(options.data_dir, bbox2d_tight_labels_file_name), "r" ) as json_data: bbox2d_tight_id_to_labels = json.load(json_data) # colorize and save image colorize_bbox_2d( rgb_path, data, bbox2d_tight_id_to_labels, os.path.join(options.out_dir, "bbox2d_tight.png"), ) if __name__ == "__main__": main()
5,013
Python
32.651006
177
0.658687
NVIDIA-Omniverse/synthetic-data-examples/end-to-end-workflows/object_detection_fruit/training/code/export.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-License-Identifier: BSD-3-Clause # # Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import os import torch import torchvision from optparse import OptionParser def parse_input(): usage = "usage: export.py [options] arg1 " parser = OptionParser(usage) parser.add_option( "-d", "--pytorch_dir", dest="pytorch_dir", help="Location of output PyTorch model", ) parser.add_option( "-o", "--output_dir", dest="output_dir", help="Export and save ONNX model to this path", ) (options, args) = parser.parse_args() return options, args def main(): torch.manual_seed(0) options, args = parse_input() model = torch.load(options.pytorch_dir) model.eval() OUTPUT_DIR = options.output_dir os.makedirs(OUTPUT_DIR, exist_ok=True) model = torchvision.models.detection.fasterrcnn_resnet50_fpn( weights="DEFAULT", num_classes=91 ) model.eval() dummy_input = torch.rand(1, 3, 1024, 1024) torch.onnx.export( model, dummy_input, os.path.join(OUTPUT_DIR, "model.onnx"), opset_version=11, input_names=["input"], output_names=["output"], ) if __name__ == "__main__": main()
2,865
Python
33.119047
84
0.704363
NVIDIA-Omniverse/synthetic-data-examples/end-to-end-workflows/object_detection_fruit/training/code/train.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-License-Identifier: BSD-3-Clause # # Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from PIL import Image import os import numpy as np import torch import torch.utils.data import torchvision from torchvision.models.detection.faster_rcnn import FastRCNNPredictor from torchvision import transforms as T import json import shutil from optparse import OptionParser from torch.utils.tensorboard import SummaryWriter class FruitDataset(torch.utils.data.Dataset): def __init__(self, root, transforms): self.root = root self.transforms = transforms list_ = os.listdir(root) for file_ in list_: name, ext = os.path.splitext(file_) ext = ext[1:] if ext == "": continue if os.path.exists(root + "/" + ext): shutil.move(root + "/" + file_, root + "/" + ext + "/" + file_) else: os.makedirs(root + "/" + ext) shutil.move(root + "/" + file_, root + "/" + ext + "/" + file_) self.imgs = list(sorted(os.listdir(os.path.join(root, "png")))) self.label = list(sorted(os.listdir(os.path.join(root, "json")))) self.box = list(sorted(os.listdir(os.path.join(root, "npy")))) def __getitem__(self, idx): img_path = os.path.join(self.root, "png", self.imgs[idx]) img = Image.open(img_path).convert("RGB") label_path = os.path.join(self.root, "json", self.label[idx]) with open(os.path.join("root", label_path), "r") as json_data: json_labels = json.load(json_data) box_path = os.path.join(self.root, "npy", self.box[idx]) dat = np.load(str(box_path)) boxes = [] labels = [] for i in dat: obj_val = i[0] xmin = torch.as_tensor(np.min(i[1]), dtype=torch.float32) xmax = torch.as_tensor(np.max(i[3]), dtype=torch.float32) ymin = torch.as_tensor(np.min(i[2]), dtype=torch.float32) ymax = torch.as_tensor(np.max(i[4]), dtype=torch.float32) if (ymax > ymin) & (xmax > xmin): boxes.append([xmin, ymin, xmax, ymax]) area = (xmax - xmin) * (ymax - ymin) labels += [json_labels.get(str(obj_val)).get("class")] label_dict = {} static_labels = { "apple": 0, "avocado": 1, "kiwi": 2, "lime": 3, "lychee": 4, "pomegranate": 5, "onion": 6, "strawberry": 7, "lemon": 8, "orange": 9, } labels_out = [] for i in range(len(labels)): label_dict[i] = labels[i] for i in label_dict: fruit = label_dict[i] final_fruit_label = static_labels[fruit] labels_out += [final_fruit_label] target = {} target["boxes"] = torch.as_tensor(boxes, dtype=torch.float32) target["labels"] = torch.as_tensor(labels_out, dtype=torch.int64) target["image_id"] = torch.tensor([idx]) target["area"] = area if self.transforms is not None: img = self.transforms(img) return img, target def __len__(self): return len(self.imgs) """ Parses command line options. Requires input data directory, output torch file, and number epochs used to train. """ def parse_input(): usage = "usage: train.py [options] arg1 arg2 " parser = OptionParser(usage) parser.add_option( "-d", "--data_dir", dest="data_dir", help="Directory location for Omniverse synthetic data.", ) parser.add_option( "-o", "--output_file", dest="output_file", help="Save torch model to this file and location (file ending in .pth)", ) parser.add_option( "-e", "--epochs", dest="epochs", help="Give number of epochs to be used for training", ) (options, args) = parser.parse_args() return options, args def get_transform(train): transforms = [] transforms.append(T.PILToTensor()) transforms.append(T.ConvertImageDtype(torch.float)) return T.Compose(transforms) def collate_fn(batch): return tuple(zip(*batch)) def create_model(num_classes): model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights="DEFAULT") in_features = model.roi_heads.box_predictor.cls_score.in_features model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes) return model def main(): writer = SummaryWriter() options, args = parse_input() dataset = FruitDataset(options.data_dir, get_transform(train=True)) train_size = int(len(dataset) * 0.7) valid_size = int(len(dataset) * 0.2) test_size = len(dataset) - valid_size - train_size train, valid, test = torch.utils.data.random_split( dataset, [train_size, valid_size, test_size] ) data_loader = torch.utils.data.DataLoader( dataset, batch_size=16, shuffle=True, num_workers=4, collate_fn=collate_fn ) validloader = torch.utils.data.DataLoader( valid, batch_size=16, shuffle=True, num_workers=4, collate_fn=collate_fn ) device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") num_classes = 10 num_epochs = int(options.epochs) model = create_model(num_classes) model.to(device) params = [p for p in model.parameters() if p.requires_grad] optimizer = torch.optim.SGD(params, lr=0.001) len_dataloader = len(data_loader) model.train() for epoch in range(num_epochs): optimizer.zero_grad() i = 0 for imgs, annotations in data_loader: i += 1 imgs = list(img.to(device) for img in imgs) annotations = [{k: v.to(device) for k, v in t.items()} for t in annotations] loss_dict = model(imgs, annotations) losses = sum(loss for loss in loss_dict.values()) writer.add_scalar("Loss/train", losses, epoch) losses.backward() optimizer.step() print(f"Iteration: {i}/{len_dataloader}, Loss: {losses}") writer.close() torch.save(model, options.output_file) if __name__ == "__main__": main()
7,902
Python
32.487288
111
0.621362
NVIDIA-Omniverse/synthetic-data-examples/end-to-end-workflows/object_detection_fruit/data_generation/code/generate_data_gui.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-License-Identifier: BSD-3-Clause # # Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import datetime now = datetime.datetime.now() from functools import partial import omni.replicator.core as rep with rep.new_layer(): # Define paths for the character, the props, the environment and the surface where the assets will be scattered in. CRATE = "omniverse://localhost/NVIDIA/Samples/Marbles/assets/standalone/SM_room_crate_3/SM_room_crate_3.usd" SURFACE = ( "omniverse://localhost/NVIDIA/Assets/Scenes/Templates/Basic/display_riser.usd" ) ENVS = "omniverse://localhost/NVIDIA/Assets/Scenes/Templates/Interior/ZetCG_ExhibitionHall.usd" FRUIT_PROPS = { "apple": "omniverse://localhost/NVIDIA/Assets/ArchVis/Residential/Food/Fruit/Apple.usd", "avocado": "omniverse://localhost/NVIDIA/Assets/ArchVis/Residential/Food/Fruit/Avocado01.usd", "kiwi": "omniverse://localhost/NVIDIA/Assets/ArchVis/Residential/Food/Fruit/Kiwi01.usd", "lime": "omniverse://localhost/NVIDIA/Assets/ArchVis/Residential/Food/Fruit/Lime01.usd", "lychee": "omniverse://localhost/NVIDIA/Assets/ArchVis/Residential/Food/Fruit/Lychee01.usd", "pomegranate": "omniverse://localhost/NVIDIA/Assets/ArchVis/Residential/Food/Fruit/Pomegranate01.usd", "onion": "omniverse://localhost/NVIDIA/Assets/ArchVis/Residential/Food/Vegetables/RedOnion.usd", "strawberry": "omniverse://localhost/NVIDIA/Assets/ArchVis/Residential/Food/Berries/strawberry.usd", "lemon": "omniverse://localhost/NVIDIA/Assets/ArchVis/Residential/Decor/Tchotchkes/Lemon_01.usd", "orange": "omniverse://localhost/NVIDIA/Assets/ArchVis/Residential/Decor/Tchotchkes/Orange_01.usd", } # Define randomizer function for Base assets. This randomization includes placement and rotation of the assets on the surface. def random_props(file_name, class_name, max_number=1, one_in_n_chance=3): instances = rep.randomizer.instantiate( file_name, size=max_number, mode="scene_instance" ) print(file_name) with instances: rep.modify.semantics([("class", class_name)]) rep.modify.pose( position=rep.distribution.uniform((-8, 5, -25), (8, 30, 25)), rotation=rep.distribution.uniform((-180, -180, -180), (180, 180, 180)), scale=rep.distribution.uniform((0.8), (1.2)), ) rep.modify.visibility( rep.distribution.choice([True], [False] * (one_in_n_chance)) ) return instances.node # Define randomizer function for sphere lights. def sphere_lights(num): lights = rep.create.light( light_type="Sphere", temperature=rep.distribution.normal(6500, 500), intensity=rep.distribution.normal(30000, 5000), position=rep.distribution.uniform((-300, -300, -300), (300, 300, 300)), scale=rep.distribution.uniform(50, 100), count=num, ) return lights.node rep.randomizer.register(random_props) # Setup the static elements env = rep.create.from_usd(ENVS) surface = rep.create.from_usd(SURFACE) with surface: rep.physics.collider() crate = rep.create.from_usd(CRATE) with crate: rep.physics.collider("none") rep.physics.mass(mass=10000) rep.modify.pose(position=(0, 20, 0), rotation=(0, 0, 90)) # Setup camera and attach it to render product camera = rep.create.camera() render_product = rep.create.render_product(camera, resolution=(1024, 1024)) rep.randomizer.register(sphere_lights) # trigger on frame for an interval with rep.trigger.on_frame(num_frames=100): for n, f in FRUIT_PROPS.items(): random_props(f, n) rep.randomizer.sphere_lights(5) with camera: rep.modify.pose( position=rep.distribution.uniform((-3, 114, -17), (-1, 116, -15)), look_at=(0, 20, 0), ) # Initialize and attach writer writer = rep.WriterRegistry.get("BasicWriter") now = now.strftime("%Y-%m-%d") output_dir = "fruit_data_" + now writer.initialize(output_dir=output_dir, rgb=True, bounding_box_2d_tight=True) writer.attach([render_product])
5,923
Python
47.162601
130
0.690866
NVIDIA-Omniverse/synthetic-data-examples/end-to-end-workflows/object_detection_fruit/deployment/code/deploy.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-License-Identifier: BSD-3-Clause # # Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import tritonclient.grpc as grpcclient from optparse import OptionParser # load image data import cv2 import numpy as np from matplotlib import pyplot as plt import subprocess def install(name): subprocess.call(["pip", "install", name]) """ Parses command line options. Requires input sample png """ def parse_input(): usage = "usage: deploy.py [options] arg1 " parser = OptionParser(usage) parser.add_option( "-p", "--png", dest="png", help="Directory location for single sample image." ) (options, args) = parser.parse_args() return options, args def main(): options, args = parse_input() target_width, target_height = 1024, 1024 # add path to test image image_sample = options.png image_bgr = cv2.imread(image_sample) image_bgr image_bgr = cv2.resize(image_bgr, (target_width, target_height)) image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB) image = np.float32(image_rgb) # preprocessing image = image / 255 image = np.moveaxis(image, -1, 0) # HWC to CHW image = image[np.newaxis, :] # add batch dimension image = np.float32(image) plt.imshow(image_rgb) inference_server_url = "0.0.0.0:9001" triton_client = grpcclient.InferenceServerClient(url=inference_server_url) # find out info about model model_name = "fasterrcnn_resnet50" triton_client.get_model_config(model_name) # create input input_name = "input" inputs = [grpcclient.InferInput(input_name, image.shape, "FP32")] inputs[0].set_data_from_numpy(image) output_name = "output" outputs = [grpcclient.InferRequestedOutput("output")] results = triton_client.infer(model_name, inputs, outputs=outputs) output = results.as_numpy("output") # annotate annotated_image = image_bgr.copy() if output.size > 0: # ensure something is found for box in output: box_top_left = int(box[0]), int(box[1]) box_bottom_right = int(box[2]), int(box[3]) text_origin = int(box[0]), int(box[3]) border_color = (50, 0, 100) text_color = (255, 255, 255) font_scale = 0.9 thickness = 1 # bounding box cv2.rectangle( annotated_image, box_top_left, box_bottom_right, border_color, thickness=5, lineType=cv2.LINE_8, ) plt.imshow(cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)) if __name__ == "__main__": main()
4,261
Python
31.287879
85
0.680357
NVIDIA-Omniverse/synthetic-data-examples/end-to-end-workflows/object_detection_fruit/docs/part_2.md
# Part 2: Training a model with synthetic data ## Setup training To use the training script you can see required parameters by running -`python train.py --help` - Example command: - `python train.py -d /home/omni.replicator_out/fruit_data_$DATE/ -o /home/model.pth -e 10` ## Visualize training We have included a visdualization script to run after your first training. This will show how Omniverse generates the labeled data. To see required parameters - `python visualize.py --help` - Example command: - `python visualize.py -d /home/$USER/omni.replicator_out/fruit_data_$DATE -o /home/$USER -n 0` ## Export model - To use the export script you can see required parameters by running - `python export.py --help` - Example command, make sure to dave to the `models/fasterrcnn_resnet50/1` - `python export.py -d /home/out.pth -o /home/models/fasterrcnn_resnet50/1`
874
Markdown
38.772726
158
0.744851
NVIDIA-Omniverse/synthetic-data-examples/end-to-end-workflows/object_detection_fruit/docs/part_3.md
# Part 3: Deploy model to Triton ## Start triton server When we start the server we want our model to be properly located in the `/models/fasterrcnn_resnet50/1` folder. `sudo docker run --gpus=1 --rm -p9000:8000 -p9001:8001 -p9002:8002 -v /home/$USER/sdg_workflow/models/:/models nvcr.io/nvidia/tritonserver:23.01-py3 tritonserver --model-repository=/models` Once started, you should see: ``` +---------------------+---------+--------+ | Model | Version | Status | +---------------------+---------+--------+ | fasterrcnn_resnet50 | 1 | READY | +---------------------+---------+--------+ ``` ## Start triton client In another terminal window, with your server running start your client - `sudo docker run -it --rm --net=host -v /home/zoe/Desktop/sdg_workflow:/workspace nvcr.io/nvidia/tritonserver:23.01-py3-sdk` - To use the deploy script you can see required parameters by running - `python deploy.py --help` - Example command: - ` python deploy.py -p /workspace/rgb_0.png`
1,006
Markdown
34.964284
189
0.622266
NVIDIA-Omniverse/synthetic-data-examples/end-to-end-workflows/object_detection_fruit/docs/part_1.md
# Part 1: Generate synthetic data with Omnvierse ## Install Dependencies In this section you can generate your synthetic data using the Omniverse GUI or as a headless version in your local terminal. Either option requires an Omniverse install. - [Install Omniverse Launcher](https://docs.omniverse.nvidia.com/prod_install-guide/prod_install-guide/overview.html#omniverse-install-guide) ## Omniverse Launcher & Code - [Install Omniverse Code](https://docs.omniverse.nvidia.com/prod_workflows/prod_workflows/extensions/environment_configuration.html#step-2-install-omniverse-code) from the `Exchange` tab within Omniverse Launcher ## Generate data in Omniverse GUI Copy the contents of the generate_data.py script into the Script Editor tab in the bottom section of the Code window. Press the RUn1 button or ctrl + Enter on your keyboard to load the scene in the Viewport. From there you can preview a single scene in the Replciator tab at the top by clicking Preview or run the full script by clicking Run. If you make no changes to this script it will generate 100 frames. - From inside the Code GUI using the [script editor](https://docs.omniverse.nvidia.com/app_code/prod_extensions/ext_script-editor.html) - If using Linux, copy code from `generate_data_gui.py` into the Script Editor window -Execute code by clicking the `Run` button or pressing `ctrl+Enter` - To preview what the scene will look like click Replicator then `Preview` in the top bar of your Omniverse Code window - When you are ready to generate all your data go ahead and click `Replicator` and then `Run`, this will generate the designated number of frames and drop the RGB, bounding box data, and labels into the desired folder ## Generate data headlessly Follow the documentation guidelines to launch a terminal in the correct folder location. The correct script to pass to your --/omni/replicator.scrip is generate_data_headless.py. This will generate and save the synthetic data in the same way as before, without utilizing the Omniverse GUI. - [How to run](https://docs.omniverse.nvidia.com/prod_extensions/prod_extensions/ext_replicator/headless_example.html) - Script location: `/FruitBasketOVEReplicatorDemo/data_generation/code/generate_data_headless.py` - We need to locate `omni.code.replicator.sh` To find look for where Omniverse ode is locally installed - Run (script dictates where the output data is stored): `./omni.code.replicator.sh --no-window --/omni/replicator/script= “/FruitBasketOVEReplicatorDemo/data_generation/code/generate_data_headless.py”`
2,562
Markdown
72.228569
411
0.79313
NVIDIA-Omniverse/synthetic-data-examples/training_examples/sdg_pallet_model/predict.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import utils import cv2 import torch if __name__ == "__main__": # Parse command line arguments parser = argparse.ArgumentParser() parser.add_argument( "engine", type=str, help="The file path of the TensorRT engine." ) parser.add_argument( "image", type=str, help="The file path of the image provided as input for inference." ) parser.add_argument( "--output", type=str, default=None, help="The path to output the inference visualization." ) parser.add_argument( "--inference-size", type=str, default="512x512", help="The height and width that the image is resized to for inference." " Denoted as (height)x(width)." ) parser.add_argument( "--peak-window", type=str, default="7x7", help="The size of the window used when finding local peaks. Denoted as " " (window_height)x(window_width)." ) parser.add_argument( '--peak-threshold', type=float, default=0.5, help="The heatmap threshold to use when finding peaks. Values must be " " larger than this value to be considered peaks." ) parser.add_argument( '--line-thickness', type=int, default=1, help="The line thickness for drawn boxes" ) args = parser.parse_args() # Parse inference height, width from arguments inference_size = tuple(int(x) for x in args.inference_size.split('x')) peak_window = tuple(int(x) for x in args.peak_window.split('x')) if args.output is None: output_path = '.'.join(args.image.split('.')[:-1]) + "_output.jpg" else: output_path = args.output # Create offset grid offset_grid = utils.make_offset_grid(inference_size).to("cuda") # Load model model = utils.load_trt_engine_wrapper( args.engine, input_names=["input"], output_names=["heatmap", "vectormap"] ) # Load image image = cv2.imread(args.image) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Pad and resize image (aspect ratio preserving resize) image, _, _ = utils.pad_resize(image, inference_size) with torch.no_grad(): # Format image for inference x = utils.format_bgr8_image(image) x = x.to("cuda") # Execute model heatmap, vectormap = model(x) # Scale and offset vectormap keypointmap = utils.vectormap_to_keypointmap( offset_grid, vectormap ) # Find local peaks peak_mask = utils.find_heatmap_peak_mask( heatmap, peak_window, args.peak_threshold ) # Extract keypoints at local peak keypoints = keypointmap[0][peak_mask[0, 0]] # Draw vis_image = utils.draw_box( image, keypoints, color=(118, 186, 0), thickness=args.line_thickness ) vis_image = cv2.cvtColor(vis_image, cv2.COLOR_RGB2BGR) cv2.imwrite(output_path, vis_image)
3,833
Python
26.191489
98
0.610749
NVIDIA-Omniverse/synthetic-data-examples/training_examples/sdg_pallet_model/utils.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn.functional as F import numpy as np import cv2 import einops import tensorrt as trt import torch2trt from typing import Sequence BOX_EDGES = [ [0, 1], [1, 5], [5, 4], [4, 0], [2, 3], [3, 7], [7, 6], [6, 2], [0, 2], [1, 3], [4, 6], [5, 7] ] def make_offset_grid( size, stride=(1, 1) ): grid = torch.stack( torch.meshgrid( stride[0] * (torch.arange(size[0]) + 0.5), stride[1] * (torch.arange(size[1]) + 0.5) ), dim=-1 ) return grid def vectormap_to_keypointmap( offset_grid, vector_map, vector_scale: float = 1./256. ): vector_map = vector_map / vector_scale keypoint_map = einops.rearrange(vector_map, "b (k d) h w -> b h w k d", d=2) keypoint_map = keypoint_map + offset_grid[:, :, None, :] # yx -> xy keypoint_map = keypoint_map[..., [1, 0]] return keypoint_map def find_heatmap_peak_mask(heatmap, window=3, threshold=0.5): all_indices = torch.arange( heatmap.numel(), device=heatmap.device ) all_indices = all_indices.reshape(heatmap.shape) if isinstance(window, int): window = (window, window) values, max_indices = F.max_pool2d_with_indices( heatmap, kernel_size=window, stride=1, padding=(window[0] // 2, window[1] // 2) ) is_above_threshold = heatmap >= threshold is_max = max_indices == all_indices is_peak = is_above_threshold & is_max return is_peak def draw_box(image_bgr, keypoints, color=(118, 186, 0), thickness=1): num_objects = int(keypoints.shape[0]) for i in range(num_objects): keypoints_i = keypoints[i] kps_i = [(int(x), int(y)) for x, y in keypoints_i] edges = BOX_EDGES for e in edges: cv2.line( image_bgr, kps_i[e[0]], kps_i[e[1]], (118, 186, 0), thickness=thickness ) return image_bgr def pad_resize(image, output_shape): ar_i = image.shape[1] / image.shape[0] ar_o = output_shape[1] / output_shape[0] # resize if ar_i > ar_o: w_i = output_shape[1] h_i = min(int(w_i / ar_i), output_shape[0]) else: h_i = output_shape[0] w_i = min(int(h_i * ar_i), output_shape[1]) # paste pad_left = (output_shape[1] - w_i) // 2 pad_top = (output_shape[0] - h_i) // 2 image_resize = cv2.resize(image, (w_i, h_i)) out = np.zeros_like( image, shape=(output_shape[0], output_shape[1], image.shape[2]) ) out[pad_top:pad_top + h_i, pad_left:pad_left + w_i] = image_resize pad = (pad_top, pad_left) scale = (image.shape[0] / h_i, image.shape[1] / w_i) return out, pad, scale def load_trt_engine(path: str): with trt.Logger() as logger, trt.Runtime(logger) as runtime: with open(path, 'rb') as f: engine_bytes = f.read() engine = runtime.deserialize_cuda_engine(engine_bytes) return engine def load_trt_engine_wrapper( path: str, input_names: Sequence, output_names: Sequence ): engine = load_trt_engine(path) wrapper = torch2trt.TRTModule( engine=engine, input_names=input_names, output_names=output_names ) return wrapper def format_bgr8_image(image, device="cuda"): x = torch.from_numpy(image) x = x.permute(2, 0, 1)[None, ...] x = (x / 255 - 0.45) / 0.25 return x
4,290
Python
22.194594
98
0.577156
NVIDIA-Omniverse/synthetic-data-examples/training_examples/sdg_pallet_model/README.md
# SDG Pallet Model <img src="images/test_image_1_output.jpg" height="256"/> This repository contains code for performing optimized TensorRT inference with a pre-trained pallet detection model that was trained using synthetic data with [NVIDIA Omniverse Replicator](https://developer.nvidia.com/omniverse/replicator). The model takes as input a monocular RGB image, and outputs the pallet box estimates. The box esimates are defined for each pallet side face. So a single pallet may have multiple box estimates. If you have any questions, please feel free to reach out by opening an issue! ## Instructions ### Step 1 - Install dependencies Assumes you've already set up your system with OpenCV, PyTorch and numpy. Install einops for some utility functions. ```bash pip3 install einops ``` Install [torch2trt](https://github.com/NVIDIA-AI-IOT/torch2trt). This is used for the ``TRTModule`` class which simplifies engine inference. ```bash git clone https://github.com/NVIDIA-AI-IOT/torch2trt cd torch2trt python3 setup.py develop ``` ### Step 2 - Download the ONNX model Download the pallet model ONNX file. | Model | Notes | Links | |-------|-------|-------| | pallet_model_v1_all | Trained for wood and other pallets (metal, plastic). | [onnx](https://drive.google.com/file/d/1Vsl7s5YhBFxkTkd3UYYgPWFCLNRm_O_Q/view?usp=share_link) | | pallet_model_v1_wood | Trained only for wood pallets. | [onnx](https://drive.google.com/file/d/1Fd1gS7NYkWHPhUn7iZLK43hLQ1qDkuvb/view?usp=share_link) | ### Step 3 - Build the TensorRT engine #### Option 1 (*recommended*) - Build the FP16 engine To build the FP16 engine, call the following: ```bash ./build_trt_fp16.sh <onnx_path> <engine_output_path> ``` #### Option 2 - Build the INT8 engine > The INT8 model instructions do not yet include calibration. Please only use > this model for throughput profiling. The accuracy is likely to vary from > FP32/FP16 models. However, once calibration is included, this may become > the recommended option given the improved throughput results. To build the INT8 engine, call the following: ```bash ./build_trt_int8.sh <onnx_path> <engine_output_path> ``` We hope to provide instructions for using the Deep Learning Accelerator (DLA) on Jetson AGX Orin, and INT8 calibration soon. ### Step 3 - Profile the engine To profile the engine with the ``trtexec`` tool, call the following: ```bash ./profile_engine.sh <engine_path> ``` Here are the results for a model inference at 256x256 resolution, profiled on Jetson AGX Orin. <a id="throughput_results"/> | Precision | Throughput (FPS) | |-----------|------------------| | FP16 | 465 | | INT8 | 710 | Notes: - Called ``jetson_clocks`` before running - Using MAXN power mode by calling ``sudo nvpmodel -m0`` - Batch size 1 - ``--useSpinWait`` flag enabled to stabilize timings - ``--useCudaGraph`` flag enabled to use CUDA graph optimizations. Cuda graph isn't yet used in the predict function. ### Step 4 - Run inference on an example image. ```bash python3 predict.py <engine_path> <image_path> --output=<output_path> ``` For more options ``` python3 predict.py --help ``` ### Next Steps Try modifying the predict.py code to visualize inference on a live camera feed.
3,292
Markdown
27.634782
174
0.717801
NVIDIA-Omniverse/synthetic-data-examples/training_examples/sdg_pallet_model/LICENSE.md
SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0 Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
654
Markdown
42.666664
96
0.801223
NVIDIA-Omniverse/IsaacSim-ros_workspaces/README.md
# Isaac Sim ROS & ROS2 Workspaces This repository contains three workspaces: `noetic_ws` (ROS Noetic), `foxy_ws` (ROS2 Foxy) and `humble_ws` (ROS2 Humble). [Click here for usage and installation instructions with Isaac Sim](https://docs.omniverse.nvidia.com/isaacsim/latest/installation/install_ros.html) When cloning this repository, all three workspaces are downloaded. Depending on which ROS distro you are using, follow the [setup instructions](https://docs.omniverse.nvidia.com/isaacsim/latest/installation/install_ros.html#setting-up-workspaces) for building your specific workspace.
593
Markdown
83.857131
284
0.797639
NVIDIA-Omniverse/IsaacSim-ros_workspaces/foxy_ws/src/isaac_tutorials/scripts/ros2_publisher.py
#!/usr/bin/env python3 # Copyright (c) 2020-2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import rclpy from rclpy.node import Node from sensor_msgs.msg import JointState import numpy as np import time class TestROS2Bridge(Node): def __init__(self): super().__init__("test_ros2bridge") # Create the publisher. This publisher will publish a JointState message to the /joint_command topic. self.publisher_ = self.create_publisher(JointState, "joint_command", 10) # Create a JointState message self.joint_state = JointState() self.joint_state.name = [ "panda_joint1", "panda_joint2", "panda_joint3", "panda_joint4", "panda_joint5", "panda_joint6", "panda_joint7", "panda_finger_joint1", "panda_finger_joint2", ] num_joints = len(self.joint_state.name) # make sure kit's editor is playing for receiving messages self.joint_state.position = np.array([0.0] * num_joints, dtype=np.float64).tolist() self.default_joints = [0.0, -1.16, -0.0, -2.3, -0.0, 1.6, 1.1, 0.4, 0.4] # limiting the movements to a smaller range (this is not the range of the robot, just the range of the movement self.max_joints = np.array(self.default_joints) + 0.5 self.min_joints = np.array(self.default_joints) - 0.5 # position control the robot to wiggle around each joint self.time_start = time.time() timer_period = 0.05 # seconds self.timer = self.create_timer(timer_period, self.timer_callback) def timer_callback(self): self.joint_state.header.stamp = self.get_clock().now().to_msg() joint_position = ( np.sin(time.time() - self.time_start) * (self.max_joints - self.min_joints) * 0.5 + self.default_joints ) self.joint_state.position = joint_position.tolist() # Publish the message to the topic self.publisher_.publish(self.joint_state) def main(args=None): rclpy.init(args=args) ros2_publisher = TestROS2Bridge() rclpy.spin(ros2_publisher) # Destroy the node explicitly ros2_publisher.destroy_node() rclpy.shutdown() if __name__ == "__main__": main()
2,662
Python
31.084337
119
0.644252
NVIDIA-Omniverse/IsaacSim-ros_workspaces/foxy_ws/src/navigation/carter_navigation/launch/carter_navigation.launch.py
## Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. ## NVIDIA CORPORATION and its licensors retain all intellectual property ## and proprietary rights in and to this software, related documentation ## and any modifications thereto. Any use, reproduction, disclosure or ## distribution of this software and related documentation without an express ## license agreement from NVIDIA CORPORATION is strictly prohibited. import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import DeclareLaunchArgument from launch.actions import IncludeLaunchDescription from launch.launch_description_sources import PythonLaunchDescriptionSource from launch.substitutions import LaunchConfiguration from launch_ros.actions import Node def generate_launch_description(): use_sim_time = LaunchConfiguration("use_sim_time", default="True") map_dir = LaunchConfiguration( "map", default=os.path.join( get_package_share_directory("carter_navigation"), "maps", "carter_warehouse_navigation.yaml" ), ) param_dir = LaunchConfiguration( "params_file", default=os.path.join( get_package_share_directory("carter_navigation"), "params", "carter_navigation_params.yaml" ), ) nav2_bringup_launch_dir = os.path.join(get_package_share_directory("nav2_bringup"), "launch") rviz_config_dir = os.path.join(get_package_share_directory("carter_navigation"), "rviz2", "carter_navigation.rviz") return LaunchDescription( [ DeclareLaunchArgument("map", default_value=map_dir, description="Full path to map file to load"), DeclareLaunchArgument( "params_file", default_value=param_dir, description="Full path to param file to load" ), DeclareLaunchArgument( "use_sim_time", default_value="true", description="Use simulation (Omniverse Isaac Sim) clock if true" ), IncludeLaunchDescription( PythonLaunchDescriptionSource(os.path.join(nav2_bringup_launch_dir, "rviz_launch.py")), launch_arguments={"namespace": "", "use_namespace": "False", "rviz_config": rviz_config_dir}.items(), ), IncludeLaunchDescription( PythonLaunchDescriptionSource([nav2_bringup_launch_dir, "/bringup_launch.py"]), launch_arguments={"map": map_dir, "use_sim_time": use_sim_time, "params_file": param_dir}.items(), ), Node( package='pointcloud_to_laserscan', executable='pointcloud_to_laserscan_node', remappings=[('cloud_in', ['/front_3d_lidar/point_cloud']), ('scan', ['/scan'])], parameters=[{ 'target_frame': 'front_3d_lidar', 'transform_tolerance': 0.01, 'min_height': -0.4, 'max_height': 1.5, 'angle_min': -1.5708, # -M_PI/2 'angle_max': 1.5708, # M_PI/2 'angle_increment': 0.0087, # M_PI/360.0 'scan_time': 0.3333, 'range_min': 0.05, 'range_max': 100.0, 'use_inf': True, 'inf_epsilon': 1.0, # 'concurrency_level': 1, }], name='pointcloud_to_laserscan' ) ] )
3,521
Python
42.481481
119
0.601534
NVIDIA-Omniverse/IsaacSim-ros_workspaces/foxy_ws/src/navigation/carter_navigation/launch/carter_navigation_individual.launch.py
## Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. ## NVIDIA CORPORATION and its licensors retain all intellectual property ## and proprietary rights in and to this software, related documentation ## and any modifications thereto. Any use, reproduction, disclosure or ## distribution of this software and related documentation without an express ## license agreement from NVIDIA CORPORATION is strictly prohibited. import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import DeclareLaunchArgument, ExecuteProcess, IncludeLaunchDescription from launch.conditions import IfCondition from launch.launch_description_sources import PythonLaunchDescriptionSource from launch.substitutions import LaunchConfiguration, PythonExpression, TextSubstitution from launch_ros.actions import Node def generate_launch_description(): # Get the launch directory nav2_launch_dir = os.path.join(get_package_share_directory("nav2_bringup"), "launch") # Create the launch configuration variables slam = LaunchConfiguration("slam") namespace = LaunchConfiguration("namespace") use_namespace = LaunchConfiguration("use_namespace") map_yaml_file = LaunchConfiguration("map") use_sim_time = LaunchConfiguration("use_sim_time") params_file = LaunchConfiguration("params_file") default_bt_xml_filename = LaunchConfiguration("default_bt_xml_filename") autostart = LaunchConfiguration("autostart") # Declare the launch arguments declare_namespace_cmd = DeclareLaunchArgument("namespace", default_value="", description="Top-level namespace") declare_use_namespace_cmd = DeclareLaunchArgument( "use_namespace", default_value="false", description="Whether to apply a namespace to the navigation stack" ) declare_slam_cmd = DeclareLaunchArgument("slam", default_value="False", description="Whether run a SLAM") declare_map_yaml_cmd = DeclareLaunchArgument( "map", default_value=os.path.join(nav2_launch_dir, "maps", "carter_warehouse_navigation.yaml"), description="Full path to map file to load", ) declare_use_sim_time_cmd = DeclareLaunchArgument( "use_sim_time", default_value="True", description="Use simulation (Isaac Sim) clock if true" ) declare_params_file_cmd = DeclareLaunchArgument( "params_file", default_value=os.path.join(nav2_launch_dir, "params", "nav2_params.yaml"), description="Full path to the ROS2 parameters file to use for all launched nodes", ) declare_bt_xml_cmd = DeclareLaunchArgument( "default_bt_xml_filename", default_value=os.path.join( get_package_share_directory("nav2_bt_navigator"), "behavior_trees", "navigate_w_replanning_and_recovery.xml" ), description="Full path to the behavior tree xml file to use", ) declare_autostart_cmd = DeclareLaunchArgument( "autostart", default_value="true", description="Automatically startup the nav2 stack" ) bringup_cmd = IncludeLaunchDescription( PythonLaunchDescriptionSource(os.path.join(nav2_launch_dir, "bringup_launch.py")), launch_arguments={ "namespace": namespace, "use_namespace": use_namespace, "slam": slam, "map": map_yaml_file, "use_sim_time": use_sim_time, "params_file": params_file, "default_bt_xml_filename": default_bt_xml_filename, "autostart": autostart, }.items(), ) # Create the launch description and populate ld = LaunchDescription() # Declare the launch options ld.add_action(declare_namespace_cmd) ld.add_action(declare_use_namespace_cmd) ld.add_action(declare_slam_cmd) ld.add_action(declare_map_yaml_cmd) ld.add_action(declare_use_sim_time_cmd) ld.add_action(declare_params_file_cmd) ld.add_action(declare_bt_xml_cmd) ld.add_action(declare_autostart_cmd) ld.add_action(bringup_cmd) return ld
4,076
Python
39.366336
120
0.711237
NVIDIA-Omniverse/IsaacSim-ros_workspaces/foxy_ws/src/navigation/carter_navigation/launch/multiple_robot_carter_navigation_hospital.launch.py
## Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. ## NVIDIA CORPORATION and its licensors retain all intellectual property ## and proprietary rights in and to this software, related documentation ## and any modifications thereto. Any use, reproduction, disclosure or ## distribution of this software and related documentation without an express ## license agreement from NVIDIA CORPORATION is strictly prohibited. """ Example for spawing multiple robots in Gazebo. This is an example on how to create a launch file for spawning multiple robots into Gazebo and launch multiple instances of the navigation stack, each controlling one robot. The robots co-exist on a shared environment and are controlled by independent nav stacks """ import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import DeclareLaunchArgument, ExecuteProcess, GroupAction, IncludeLaunchDescription, LogInfo from launch.conditions import IfCondition from launch.launch_description_sources import PythonLaunchDescriptionSource from launch.substitutions import LaunchConfiguration, TextSubstitution from launch_ros.actions import Node def generate_launch_description(): # Get the launch and rviz directories carter_nav2_bringup_dir = get_package_share_directory("carter_navigation") nav2_bringup_dir = get_package_share_directory("nav2_bringup") nav2_bringup_launch_dir = os.path.join(nav2_bringup_dir, "launch") rviz_config_dir = os.path.join(carter_nav2_bringup_dir, "rviz2", "carter_navigation_namespaced.rviz") # Names and poses of the robots robots = [{"name": "carter1"}, {"name": "carter2"}, {"name": "carter3"}] # Common settings ENV_MAP_FILE = "carter_hospital_navigation.yaml" use_sim_time = LaunchConfiguration("use_sim_time", default="True") map_yaml_file = LaunchConfiguration("map") default_bt_xml_filename = LaunchConfiguration("default_bt_xml_filename") autostart = LaunchConfiguration("autostart") rviz_config_file = LaunchConfiguration("rviz_config") use_rviz = LaunchConfiguration("use_rviz") log_settings = LaunchConfiguration("log_settings", default="true") # Declare the launch arguments declare_map_yaml_cmd = DeclareLaunchArgument( "map", default_value=os.path.join(carter_nav2_bringup_dir, "maps", ENV_MAP_FILE), description="Full path to map file to load", ) declare_robot1_params_file_cmd = DeclareLaunchArgument( "carter1_params_file", default_value=os.path.join( carter_nav2_bringup_dir, "params", "hospital", "multi_robot_carter_navigation_params_1.yaml" ), description="Full path to the ROS2 parameters file to use for robot1 launched nodes", ) declare_robot2_params_file_cmd = DeclareLaunchArgument( "carter2_params_file", default_value=os.path.join( carter_nav2_bringup_dir, "params", "hospital", "multi_robot_carter_navigation_params_2.yaml" ), description="Full path to the ROS2 parameters file to use for robot2 launched nodes", ) declare_robot3_params_file_cmd = DeclareLaunchArgument( "carter3_params_file", default_value=os.path.join( carter_nav2_bringup_dir, "params", "hospital", "multi_robot_carter_navigation_params_3.yaml" ), description="Full path to the ROS2 parameters file to use for robot3 launched nodes", ) declare_bt_xml_cmd = DeclareLaunchArgument( "default_bt_xml_filename", default_value=os.path.join( get_package_share_directory("nav2_bt_navigator"), "behavior_trees", "navigate_w_replanning_and_recovery.xml" ), description="Full path to the behavior tree xml file to use", ) declare_autostart_cmd = DeclareLaunchArgument( "autostart", default_value="True", description="Automatically startup the stacks" ) declare_rviz_config_file_cmd = DeclareLaunchArgument( "rviz_config", default_value=rviz_config_dir, description="Full path to the RVIZ config file to use." ) declare_use_rviz_cmd = DeclareLaunchArgument("use_rviz", default_value="True", description="Whether to start RVIZ") # Define commands for launching the navigation instances nav_instances_cmds = [] for robot in robots: params_file = LaunchConfiguration(robot["name"] + "_params_file") group = GroupAction( [ IncludeLaunchDescription( PythonLaunchDescriptionSource(os.path.join(nav2_bringup_launch_dir, "rviz_launch.py")), condition=IfCondition(use_rviz), launch_arguments={ "namespace": TextSubstitution(text=robot["name"]), "use_namespace": "True", "rviz_config": rviz_config_file, }.items(), ), IncludeLaunchDescription( PythonLaunchDescriptionSource( os.path.join(carter_nav2_bringup_dir, "launch", "carter_navigation_individual.launch.py") ), launch_arguments={ "namespace": robot["name"], "use_namespace": "True", "map": map_yaml_file, "use_sim_time": use_sim_time, "params_file": params_file, "default_bt_xml_filename": default_bt_xml_filename, "autostart": autostart, "use_rviz": "False", "use_simulator": "False", "headless": "False", }.items(), ), Node( package='pointcloud_to_laserscan', executable='pointcloud_to_laserscan_node', remappings=[('cloud_in', ['front_3d_lidar/point_cloud']), ('scan', ['scan'])], parameters=[{ 'target_frame': 'front_3d_lidar', 'transform_tolerance': 0.01, 'min_height': -0.4, 'max_height': 1.5, 'angle_min': -1.5708, # -M_PI/2 'angle_max': 1.5708, # M_PI/2 'angle_increment': 0.0087, # M_PI/360.0 'scan_time': 0.3333, 'range_min': 0.05, 'range_max': 100.0, 'use_inf': True, 'inf_epsilon': 1.0, # 'concurrency_level': 1, }], name='pointcloud_to_laserscan', namespace = robot["name"] ), LogInfo(condition=IfCondition(log_settings), msg=["Launching ", robot["name"]]), LogInfo(condition=IfCondition(log_settings), msg=[robot["name"], " map yaml: ", map_yaml_file]), LogInfo(condition=IfCondition(log_settings), msg=[robot["name"], " params yaml: ", params_file]), LogInfo( condition=IfCondition(log_settings), msg=[robot["name"], " behavior tree xml: ", default_bt_xml_filename], ), LogInfo( condition=IfCondition(log_settings), msg=[robot["name"], " rviz config file: ", rviz_config_file] ), LogInfo(condition=IfCondition(log_settings), msg=[robot["name"], " autostart: ", autostart]), ] ) nav_instances_cmds.append(group) # Create the launch description and populate ld = LaunchDescription() # Declare the launch options ld.add_action(declare_map_yaml_cmd) ld.add_action(declare_robot1_params_file_cmd) ld.add_action(declare_robot2_params_file_cmd) ld.add_action(declare_robot3_params_file_cmd) ld.add_action(declare_bt_xml_cmd) ld.add_action(declare_use_rviz_cmd) ld.add_action(declare_autostart_cmd) ld.add_action(declare_rviz_config_file_cmd) for simulation_instance_cmd in nav_instances_cmds: ld.add_action(simulation_instance_cmd) return ld
8,338
Python
42.432291
120
0.601823
NVIDIA-Omniverse/IsaacSim-ros_workspaces/foxy_ws/src/navigation/carter_navigation/maps/carter_office_navigation.yaml
image: carter_office_navigation.png resolution: 0.05 origin: [-29.975, -39.975, 0.0000] negate: 0 occupied_thresh: 0.65 free_thresh: 0.196
139
YAML
18.999997
35
0.733813
NVIDIA-Omniverse/IsaacSim-ros_workspaces/foxy_ws/src/navigation/carter_navigation/maps/carter_hospital_navigation.yaml
image: carter_hospital_navigation.png resolution: 0.05 origin: [-49.625, -4.675, 0.0000] negate: 0 occupied_thresh: 0.65 free_thresh: 0.196
140
YAML
19.142854
37
0.735714
NVIDIA-Omniverse/IsaacSim-ros_workspaces/foxy_ws/src/navigation/carter_navigation/maps/carter_warehouse_navigation.yaml
image: carter_warehouse_navigation.png resolution: 0.05 origin: [-11.975, -17.975, 0.0000] negate: 0 occupied_thresh: 0.65 free_thresh: 0.196
142
YAML
19.428569
38
0.739437