file_path
stringlengths
21
224
content
stringlengths
0
80.8M
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/IndustRealBase.yaml
# See schema in factory_schema_config_base.py for descriptions of parameters. defaults: - _self_ mode: export_scene: False export_states: False sim: dt: 0.016667 substeps: 2 up_axis: "z" use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_damping: True disable_franka_collisions: False physx: solver_type: ${....solver_type} num_threads: ${....num_threads} num_subscenes: ${....num_subscenes} use_gpu: ${contains:"cuda",${....sim_device}} num_position_iterations: 16 num_velocity_iterations: 0 contact_offset: 0.01 rest_offset: 0.0 bounce_threshold_velocity: 0.2 max_depenetration_velocity: 5.0 friction_offset_threshold: 0.01 friction_correlation_distance: 0.00625 max_gpu_contact_pairs: 6553600 # 50 * 1024 * 1024 default_buffer_size_multiplier: 8.0 contact_collection: 1 # 0: CC_NEVER (don't collect contact info), 1: CC_LAST_SUBSTEP (collect only contacts on last substep), 2: CC_ALL_SUBSTEPS (broken - do not use!) env: env_spacing: 0.7 franka_depth: 0.37 # Franka origin 37 cm behind table midpoint table_height: 1.04 franka_friction: 4.0 table_friction: 0.3
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/Ant.yaml
# used to create the object name: Ant physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 5 episodeLength: 1000 enableDebugVis: False clipActions: 1.0 powerScale: 1.0 controlFrequencyInv: 1 # 60 Hz # reward parameters headingWeight: 0.5 upWeight: 0.1 # cost parameters actionsCost: 0.005 energyCost: 0.05 dofVelocityScale: 0.2 contactForceScale: 0.1 jointsAtLimitCost: 0.1 deathCost: -2.0 terminationHeight: 0.31 plane: staticFriction: 1.0 dynamicFriction: 1.0 restitution: 0.0 asset: assetFileName: "mjcf/nv_ant.xml" # set to True if you use camera sensors in the environment enableCameraSensors: False sim: dt: 0.0166 # 1/60 s substeps: 2 up_axis: "z" use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] physx: num_threads: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${contains:"cuda",${....sim_device}} # set to False to run on CPU num_position_iterations: 4 num_velocity_iterations: 0 contact_offset: 0.02 rest_offset: 0.0 bounce_threshold_velocity: 0.2 max_depenetration_velocity: 10.0 default_buffer_size_multiplier: 5.0 max_gpu_contact_pairs: 8388608 # 8*1024*1024 num_subscenes: ${....num_subscenes} contact_collection: 0 # 0: CC_NEVER (don't collect contact info), 1: CC_LAST_SUBSTEP (collect only contacts on last substep), 2: CC_ALL_SUBSTEPS (broken - do not use!) task: randomize: False randomization_params: # specify which attributes to randomize for each actor type and property frequency: 600 # Define how many environment steps between generating new randomizations observations: range: [0, .002] # range for the white noise operation: "additive" distribution: "gaussian" actions: range: [0., .02] operation: "additive" distribution: "gaussian" actor_params: ant: color: True rigid_body_properties: mass: range: [0.5, 1.5] operation: "scaling" distribution: "uniform" setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info. dof_properties: damping: range: [0.5, 1.5] operation: "scaling" distribution: "uniform" stiffness: range: [0.5, 1.5] operation: "scaling" distribution: "uniform" lower: range: [0, 0.01] operation: "additive" distribution: "gaussian" upper: range: [0, 0.01] operation: "additive" distribution: "gaussian"
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/FrankaCubeStack.yaml
# used to create the object name: FrankaCubeStack physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:8192,${...num_envs}} envSpacing: 1.5 episodeLength: 300 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 startPositionNoise: 0.25 startRotationNoise: 0.785 frankaPositionNoise: 0.0 frankaRotationNoise: 0.0 frankaDofNoise: 0.25 aggregateMode: 3 actionScale: 1.0 distRewardScale: 0.1 liftRewardScale: 1.5 alignRewardScale: 2.0 stackRewardScale: 16.0 controlType: osc # options are {joint_tor, osc} asset: assetRoot: "../../assets" assetFileNameFranka: "urdf/franka_description/robots/franka_panda_gripper.urdf" # set to True if you use camera sensors in the environment enableCameraSensors: False sim: dt: 0.01667 # 1/60 substeps: 2 up_axis: "z" use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] physx: num_threads: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${contains:"cuda",${....sim_device}} # set to False to run on CPU num_position_iterations: 8 num_velocity_iterations: 1 contact_offset: 0.005 rest_offset: 0.0 bounce_threshold_velocity: 0.2 max_depenetration_velocity: 1000.0 default_buffer_size_multiplier: 5.0 max_gpu_contact_pairs: 1048576 # 1024*1024 num_subscenes: ${....num_subscenes} contact_collection: 0 # 0: CC_NEVER (don't collect contact info), 1: CC_LAST_SUBSTEP (collect only contacts on last substep), 2: CC_ALL_SUBSTEPS (broken - do not use!) task: randomize: False
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/AllegroHandDextremeManualDR.yaml
# used to create the object name: AllegroHandManualDR physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:16384,${...num_envs}} envSpacing: 0.75 episodeLength: 320 # Not used, but would be 8 sec if resetTime is not set resetTime: 8 # Max time till reset, in seconds, if a goal wasn't achieved. Will overwrite the episodeLength if is > 0. enableDebugVis: False aggregateMode: 1 #clipObservations: 5.0 clipActions: 1.0 stiffnessScale: 1.0 forceLimitScale: 1.0 useRelativeControl: False dofSpeedScale: 20.0 use_capped_dof_control: False max_dof_radians_per_second: 3.1415 # This is to generate correct random goals apply_random_quat: True actionsMovingAverage: range: [0.15, 0.35] schedule_steps: 1000_000 schedule_freq: 500 # schedule every 500 steps for stability controlFrequencyInv: 2 #2 # 30 Hz #3 # 20 Hz cubeObsDelayProb: 0.3 maxObjectSkipObs: 2 # Action Delay related # right now the schedule steps are so big that # it virtually never changes the latency # our best seed came out of this config file # so for now keeping it as it is, will look into it in future actionDelayProbMax: 0.3 actionLatencyMax: 15 actionLatencyScheduledSteps: 10_000_000 startPositionNoise: 0.01 startRotationNoise: 0.0 resetPositionNoise: 0.03 resetPositionNoiseZ: 0.01 resetRotationNoise: 0.0 resetDofPosRandomInterval: 0.5 resetDofVelRandomInterval: 0.0 startObjectPoseDY: -0.19 startObjectPoseDZ: 0.06 # Random forces applied to the object forceScale: 2.0 forceProbRange: [0.001, 0.1] forceDecay: 0.99 forceDecayInterval: 0.08 # Random Adversarial Perturbations random_network_adversary: enable: True prob: 0.15 weight_sample_freq: 1000 # steps # Provide random cube observations to model pose jumps in the real random_cube_observation: enable: True prob: 0.3 # reward -> dictionary distRewardScale: -10.0 rotRewardScale: 1.0 rotEps: 0.1 actionPenaltyScale: -0.0001 actionDeltaPenaltyScale: -0.01 reachGoalBonus: 250 fallDistance: 0.24 fallPenalty: 0.0 objectType: "block" # can be block, egg or pen observationType: "no_vel" #"full_state" # can be "no_vel", "full_state" asymmetric_observations: True successTolerance: 0.4 printNumSuccesses: False maxConsecutiveSuccesses: 50 asset: assetFileName: "urdf/kuka_allegro_description/allegro_touch_sensor.urdf" assetFileNameBlock: "urdf/objects/cube_multicolor_allegro.urdf" assetFileNameEgg: "mjcf/open_ai_assets/hand/egg.xml" assetFileNamePen: "mjcf/open_ai_assets/hand/pen.xml" # set to True if you use camera sensors in the environment enableCameraSensors: False task: randomize: True randomization_params: frequency: 720 # Define how many simulation steps between generating new randomizations observations: # There is a hidden variable `apply_white_noise_prob` which is set to 0.5 # so that the observation noise is added only 50% of the time. dof_pos: range: [0, .005] # range for the white noise range_correlated: [0, .01 ] # range for correlated noise, refreshed with freq `frequency` operation: "additive" distribution: "gaussian" # schedule: "linear" # "constant" is to turn on noise after `schedule_steps` num steps # schedule_steps: 40000 object_pose_cam: range: [0, .005] # range for the white noise range_correlated: [0, .01 ] # range for correlated noise, refreshed with freq `frequency` operation: "additive" distribution: "gaussian" # schedule: "linear" # "constant" is to turn on noise after `schedule_steps` num steps # schedule_steps: 40000 goal_pose: range: [0, .005] # range for the white noise range_correlated: [0, .01 ] # range for correlated noise, refreshed with freq `frequency` operation: "additive" distribution: "gaussian" # schedule: "linear" # "constant" is to turn on noise after `schedule_steps` num steps # schedule_steps: 40000 goal_relative_rot_cam: range: [0, .005] # range for the white noise range_correlated: [0, .01 ] # range for correlated noise, refreshed with freq `frequency` operation: "additive" distribution: "gaussian" # schedule: "linear" # "constant" is to turn on noise after `schedule_steps` num steps # schedule_steps: 40000 last_actions: range: [0, .005] # range for the white noise range_correlated: [0, .01 ] # range for correlated noise, refreshed with freq `frequency` operation: "additive" distribution: "gaussian" # schedule: "linear" # "constant" is to turn on noise after `schedule_steps` num steps # schedule_steps: 40000 actions: range: [0., .05] range_correlated: [0, .02] # range for correlated noise, refreshed with freq `frequency` operation: "additive" distribution: "gaussian" # schedule: "linear" # "linear" will linearly interpolate between no rand and max rand # schedule_steps: 40000 sim_params: gravity: range: [0, 0.5] operation: "additive" distribution: "gaussian" actor_params: hand: color: True dof_properties: damping: range: [0.3, 3.0] operation: "scaling" distribution: "loguniform" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 stiffness: range: [0.75, 1.5] operation: "scaling" distribution: "loguniform" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 lower: range: [0, 0.01] operation: "additive" distribution: "gaussian" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 upper: range: [0, 0.01] operation: "additive" distribution: "gaussian" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 rigid_body_properties: mass: range: [0.5, 2.0] operation: "scaling" distribution: "uniform" setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info. # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 rigid_shape_properties: friction: num_buckets: 250 range: [0.2, 1.2] #[0.7, 1.3] operation: "scaling" distribution: "uniform" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 restitution: num_buckets: 100 range: [0.0, 0.4] operation: "additive" distribution: "uniform" object: scale: range: [0.95, 1.05] operation: "scaling" distribution: "uniform" setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info. # schedule: "linear" # "linear" will scale the current random sample by ``min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 rigid_body_properties: mass: range: [0.5, 1.5] operation: "scaling" distribution: "uniform" setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info. # schedule: "linear" # "linear" will scale the current random sample by ``min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 rigid_shape_properties: friction: num_buckets: 250 range: [0.2, 1.2] #[0.7, 1.3] operation: "scaling" distribution: "uniform" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 restitution: num_buckets: 100 range: [0.0, 0.4] operation: "additive" distribution: "uniform" sim: dt: 0.01667 # 1/60 substeps: 2 up_axis: "z" use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] physx: num_threads: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${contains:"cuda",${....sim_device}} # set to False to run on CPU num_position_iterations: 8 num_velocity_iterations: 0 max_gpu_contact_pairs: 8388608 # 8*1024*1024 num_subscenes: ${....num_subscenes} contact_offset: 0.005 rest_offset: 0.0 bounce_threshold_velocity: 0.2 max_depenetration_velocity: 1.0 #1000.0 default_buffer_size_multiplier: 75.0 contact_collection: 0 # 0: CC_NEVER (don't collect contact info), 1: CC_LAST_SUBSTEP (collect only contacts on last substep), 2: CC_ALL_SUBSTEPS (broken - do not use!)
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/HumanoidAMP.yaml
# used to create the object name: HumanoidAMP physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 5 episodeLength: 300 cameraFollow: True # if the camera follows humanoid or not enableDebugVis: False pdControl: True powerScale: 1.0 controlFrequencyInv: 2 # 30 Hz stateInit: "Random" hybridInitProb: 0.5 numAMPObsSteps: 2 localRootObs: False contactBodies: ["right_foot", "left_foot"] terminationHeight: 0.5 enableEarlyTermination: True # animation files to learn from # these motions should use hyperparameters from HumanoidAMPPPO.yaml #motion_file: "amp_humanoid_walk.npy" motion_file: "amp_humanoid_run.npy" #motion_file: "amp_humanoid_dance.npy" # these motions should use hyperparameters from HumanoidAMPPPOLowGP.yaml #motion_file: "amp_humanoid_hop.npy" #motion_file: "amp_humanoid_backflip.npy" asset: assetFileName: "mjcf/amp_humanoid.xml" plane: staticFriction: 1.0 dynamicFriction: 1.0 restitution: 0.0 sim: dt: 0.0166 # 1/60 s substeps: 2 up_axis: "z" use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] physx: num_threads: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${contains:"cuda",${....sim_device}} # set to False to run on CPU num_position_iterations: 4 num_velocity_iterations: 0 contact_offset: 0.02 rest_offset: 0.0 bounce_threshold_velocity: 0.2 max_depenetration_velocity: 10.0 default_buffer_size_multiplier: 5.0 max_gpu_contact_pairs: 8388608 # 8*1024*1024 num_subscenes: ${....num_subscenes} contact_collection: 2 # 0: CC_NEVER (don't collect contact info), 1: CC_LAST_SUBSTEP (collect only contacts on last substep), 2: CC_ALL_SUBSTEPS (broken - do not use!) task: randomize: False randomization_params: # specify which attributes to randomize for each actor type and property frequency: 600 # Define how many environment steps between generating new randomizations observations: range: [0, .002] # range for the white noise operation: "additive" distribution: "gaussian" actions: range: [0., .02] operation: "additive" distribution: "gaussian" sim_params: gravity: range: [0, 0.4] operation: "additive" distribution: "gaussian" schedule: "linear" # "linear" will linearly interpolate between no rand and max rand schedule_steps: 3000 actor_params: humanoid: color: True rigid_body_properties: mass: range: [0.5, 1.5] operation: "scaling" distribution: "uniform" setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info. schedule: "linear" # "linear" will linearly interpolate between no rand and max rand schedule_steps: 3000 rigid_shape_properties: friction: num_buckets: 500 range: [0.7, 1.3] operation: "scaling" distribution: "uniform" schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` schedule_steps: 3000 restitution: range: [0., 0.7] operation: "scaling" distribution: "uniform" schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` schedule_steps: 3000 dof_properties: damping: range: [0.5, 1.5] operation: "scaling" distribution: "uniform" schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` schedule_steps: 3000 stiffness: range: [0.5, 1.5] operation: "scaling" distribution: "uniform" schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` schedule_steps: 3000 lower: range: [0, 0.01] operation: "additive" distribution: "gaussian" schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` schedule_steps: 3000 upper: range: [0, 0.01] operation: "additive" distribution: "gaussian" schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` schedule_steps: 3000
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/AnymalTerrain.yaml
# used to create the object name: AnymalTerrain physics_engine: 'physx' env: numEnvs: ${resolve_default:4096,${...num_envs}} numObservations: 188 numActions: 12 envSpacing: 3. # [m] enableDebugVis: False terrain: terrainType: trimesh # none, plane, or trimesh staticFriction: 1.0 # [-] dynamicFriction: 1.0 # [-] restitution: 0. # [-] # rough terrain only: curriculum: true maxInitMapLevel: 0 mapLength: 8. mapWidth: 8. numLevels: 10 numTerrains: 20 # terrain types: [smooth slope, rough slope, stairs up, stairs down, discrete] terrainProportions: [0.1, 0.1, 0.35, 0.25, 0.2] # tri mesh only: slopeTreshold: 0.5 baseInitState: pos: [0.0, 0.0, 0.62] # x,y,z [m] rot: [0.0, 0.0, 0.0, 1.0] # x,y,z,w [quat] vLinear: [0.0, 0.0, 0.0] # x,y,z [m/s] vAngular: [0.0, 0.0, 0.0] # x,y,z [rad/s] randomCommandVelocityRanges: # train linear_x: [-1., 1.] # min max [m/s] linear_y: [-1., 1.] # min max [m/s] yaw: [-3.14, 3.14] # min max [rad/s] control: # PD Drive parameters: stiffness: 80.0 # [N*m/rad] damping: 2.0 # [N*m*s/rad] # action scale: target angle = actionScale * action + defaultAngle actionScale: 0.5 # decimation: Number of control action updates @ sim DT per policy DT decimation: 4 defaultJointAngles: # = target angles when action = 0.0 LF_HAA: 0.03 # [rad] LH_HAA: 0.03 # [rad] RF_HAA: -0.03 # [rad] RH_HAA: -0.03 # [rad] LF_HFE: 0.4 # [rad] LH_HFE: -0.4 # [rad] RF_HFE: 0.4 # [rad] RH_HFE: -0.4 # [rad] LF_KFE: -0.8 # [rad] LH_KFE: 0.8 # [rad] RF_KFE: -0.8 # [rad] RH_KFE: 0.8 # [rad] urdfAsset: file: "urdf/anymal_c/urdf/anymal_minimal.urdf" footName: SHANK # SHANK if collapsing fixed joint, FOOT otherwise kneeName: THIGH collapseFixedJoints: True fixBaseLink: false defaultDofDriveMode: 4 # see GymDofDriveModeFlags (0 is none, 1 is pos tgt, 2 is vel tgt, 4 effort) learn: allowKneeContacts: true # rewards terminalReward: 0.0 linearVelocityXYRewardScale: 1.0 linearVelocityZRewardScale: -4.0 angularVelocityXYRewardScale: -0.05 angularVelocityZRewardScale: 0.5 orientationRewardScale: -0. #-1. torqueRewardScale: -0.00002 # -0.000025 jointAccRewardScale: -0.0005 # -0.0025 baseHeightRewardScale: -0.0 #5 feetAirTimeRewardScale: 1.0 kneeCollisionRewardScale: -0.25 feetStumbleRewardScale: -0. #-2.0 actionRateRewardScale: -0.01 # cosmetics hipRewardScale: -0. #25 # normalization linearVelocityScale: 2.0 angularVelocityScale: 0.25 dofPositionScale: 1.0 dofVelocityScale: 0.05 heightMeasurementScale: 5.0 # noise addNoise: true noiseLevel: 1.0 # scales other values dofPositionNoise: 0.01 dofVelocityNoise: 1.5 linearVelocityNoise: 0.1 angularVelocityNoise: 0.2 gravityNoise: 0.05 heightMeasurementNoise: 0.06 #randomization randomizeFriction: true frictionRange: [0.5, 1.25] pushRobots: true pushInterval_s: 15 # episode length in seconds episodeLength_s: 20 # viewer cam: viewer: refEnv: 0 pos: [0, 0, 10] # [m] lookat: [1., 1, 9] # [m] # set to True if you use camera sensors in the environment enableCameraSensors: False sim: dt: 0.005 substeps: 1 up_axis: "z" use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] physx: num_threads: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${contains:"cuda",${....sim_device}} # set to False to run on CPU num_position_iterations: 4 num_velocity_iterations: 1 contact_offset: 0.02 rest_offset: 0.0 bounce_threshold_velocity: 0.2 max_depenetration_velocity: 100.0 default_buffer_size_multiplier: 5.0 max_gpu_contact_pairs: 8388608 # 8*1024*1024 num_subscenes: ${....num_subscenes} contact_collection: 1 # 0: CC_NEVER (don't collect contact info), 1: CC_LAST_SUBSTEP (collect only contacts on last substep), 2: CC_ALL_SUBSTEPS (broken - do not use!) task: randomize: False
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/BallBalance.yaml
# used to create the object name: BallBalance physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 2.0 maxEpisodeLength: 500 actionSpeedScale: 20 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 # set to True if you use camera sensors in the environment enableCameraSensors: False sim: dt: 0.01 substeps: 1 up_axis: "z" use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] physx: num_threads: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${contains:"cuda",${....sim_device}} # set to False to run on CPU num_position_iterations: 8 num_velocity_iterations: 0 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 max_depenetration_velocity: 1000.0 default_buffer_size_multiplier: 5.0 max_gpu_contact_pairs: 8388608 # 8*1024*1024 num_subscenes: ${....num_subscenes} contact_collection: 0 # 0: CC_NEVER (don't collect contact info), 1: CC_LAST_SUBSTEP (collect only contacts on last substep), 2: CC_ALL_SUBSTEPS (broken - do not use!) task: randomize: False
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/AllegroHandLSTM_Big.yaml
defaults: - AllegroHandLSTM - _self_
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/IndustRealEnvGears.yaml
# See schema in factory_schema_config_env.py for descriptions of common parameters. defaults: - IndustRealBase - _self_ - /factory_schema_config_env env: env_name: 'IndustRealEnvGears' gears_lateral_offset: 0.1 # Y-axis offset of gears before initial reset to prevent initial interpenetration with base plate gears_friction: 0.5 # coefficient of friction associated with gears base_friction: 0.5 # coefficient of friction associated with base plate
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/AllegroHandLSTM.yaml
# used to create the object name: AllegroHand physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:16384,${...num_envs}} envSpacing: 0.75 episodeLength: 320 # Not used, but would be 8 sec if resetTime is not set resetTime: 16 # Max time till reset, in seconds, if a goal wasn't achieved. Will overwrite the episodeLength if is > 0. enableDebugVis: False aggregateMode: 1 clipActions: 1.0 stiffnessScale: 1.0 forceLimitScale: 1.0 useRelativeControl: False dofSpeedScale: 20.0 use_capped_dof_control: False max_dof_radians_per_second: 3.1415 # This is to generate correct random goals apply_random_quat: False actionsMovingAverage: range: [0.15, 0.35] schedule_steps: 1000_000 #schedule_steps: 300_000 schedule_freq: 500 # schedule every 500 steps for stability controlFrequencyInv: 2 #2 # 30 Hz #3 # 20 Hz cubeObsDelayProb: 0.3 maxObjectSkipObs: 2 # Action Delay related # right now the schedule steps are so big that # it virtually never changes the latency # our best seed came out of this config file # so for now keeping it as it is, will look into it in future actionDelayProbMax: 0.3 actionLatencyMax: 15 actionLatencyScheduledSteps: 10_000_000 startPositionNoise: 0.01 startRotationNoise: 0.0 resetPositionNoise: 0.03 resetPositionNoiseZ: 0.01 resetRotationNoise: 0.0 resetDofPosRandomInterval: 0.5 resetDofVelRandomInterval: 0.0 startObjectPoseDY: -0.19 startObjectPoseDZ: 0.06 # Random forces applied to the object forceScale: 2.0 forceProbRange: [0.001, 0.1] forceDecay: 0.99 forceDecayInterval: 0.08 # Random Adversarial Perturbations random_network_adversary: enable: True prob: 0.15 weight_sample_freq: 1000 # steps # Provide random cube observations to model pose jumps in the real random_cube_observation: enable: True prob: 0.3 # reward -> dictionary distRewardScale: -10.0 rotRewardScale: 1.0 rotEps: 0.1 actionPenaltyScale: -0.0001 actionDeltaPenaltyScale: -0.01 reachGoalBonus: 250 fallDistance: 0.24 fallPenalty: 0.0 objectType: "block" # can be block, egg or pen observationType: "no_vel" #"full_state" # can be "no_vel", "full_state" asymmetric_observations: True successTolerance: 0.4 printNumSuccesses: False maxConsecutiveSuccesses: 50 asset: assetFileName: "urdf/kuka_allegro_description/allegro.urdf" # assetFileNameBlock: "urdf/objects/cube_multicolor_dextreme.urdf" # assetFileNameBlock: "urdf/objects/cube_multicolor_allegro.urdf" assetFileNameEgg: "mjcf/open_ai_assets/hand/egg.xml" assetFileNamePen: "mjcf/open_ai_assets/hand/pen.xml" # set to True if you use camera sensors in the environment enableCameraSensors: False task: randomize: True randomization_params: frequency: 720 # Define how many simulation steps between generating new randomizations observations: # There is a hidden variable `apply_white_noise_prob` which is set to 0.5 # so that the observation noise is added only 50% of the time. dof_pos: range: [0, .005] # range for the white noise range_correlated: [0, .01 ] # range for correlated noise, refreshed with freq `frequency` operation: "additive" distribution: "gaussian" # schedule: "linear" # "constant" is to turn on noise after `schedule_steps` num steps # schedule_steps: 40000 object_pose_cam: range: [0, .005] # range for the white noise range_correlated: [0, .01 ] # range for correlated noise, refreshed with freq `frequency` operation: "additive" distribution: "gaussian" # schedule: "linear" # "constant" is to turn on noise after `schedule_steps` num steps # schedule_steps: 40000 goal_pose: range: [0, .005] # range for the white noise range_correlated: [0, .01 ] # range for correlated noise, refreshed with freq `frequency` operation: "additive" distribution: "gaussian" # schedule: "linear" # "constant" is to turn on noise after `schedule_steps` num steps # schedule_steps: 40000 goal_relative_rot_cam: range: [0, .005] # range for the white noise range_correlated: [0, .01 ] # range for correlated noise, refreshed with freq `frequency` operation: "additive" distribution: "gaussian" # schedule: "linear" # "constant" is to turn on noise after `schedule_steps` num steps # schedule_steps: 40000 last_actions: range: [0, .005] # range for the white noise range_correlated: [0, .01 ] # range for correlated noise, refreshed with freq `frequency` operation: "additive" distribution: "gaussian" # schedule: "linear" # "constant" is to turn on noise after `schedule_steps` num steps # schedule_steps: 40000 actions: range: [0., .05] range_correlated: [0, .02] # range for correlated noise, refreshed with freq `frequency` operation: "additive" distribution: "gaussian" # schedule: "linear" # "linear" will linearly interpolate between no rand and max rand # schedule_steps: 40000 sim_params: gravity: range: [0, 0.5] operation: "additive" distribution: "gaussian" # schedule: "linear" # "linear" will linearly interpolate between no rand and max rand # schedule_steps: 40000 #rest_offset: #range: [0, 0.007] #operation: "additive" #distribution: "uniform" #schedule: "linear" #schedule_steps: 6000 actor_params: hand: # scale: # range: [0.95, 1.05] # operation: "scaling" # distribution: "uniform" # setup_only: True color: True dof_properties: damping: range: [0.3, 3.0] operation: "scaling" distribution: "loguniform" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 stiffness: range: [0.75, 1.5] operation: "scaling" distribution: "loguniform" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 lower: range: [0, 0.01] operation: "additive" distribution: "gaussian" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 upper: range: [0, 0.01] operation: "additive" distribution: "gaussian" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 rigid_body_properties: mass: range: [0.5, 2.0] operation: "scaling" distribution: "uniform" setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info. # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 rigid_shape_properties: friction: num_buckets: 250 range: [0.2, 1.2] #[0.7, 1.3] operation: "scaling" distribution: "uniform" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 restitution: num_buckets: 100 range: [0.0, 0.4] operation: "additive" distribution: "uniform" object: scale: range: [0.95, 1.05] operation: "scaling" distribution: "uniform" setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info. # schedule: "linear" # "linear" will scale the current random sample by ``min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 rigid_body_properties: mass: range: [0.5, 1.5] operation: "scaling" distribution: "uniform" setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info. # schedule: "linear" # "linear" will scale the current random sample by ``min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 rigid_shape_properties: friction: num_buckets: 250 range: [0.2, 1.2] #[0.7, 1.3] operation: "scaling" distribution: "uniform" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 restitution: num_buckets: 100 range: [0.0, 0.4] operation: "additive" distribution: "uniform" sim: dt: 0.01667 # 1/60 substeps: 2 up_axis: "z" use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] physx: num_threads: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${contains:"cuda",${....sim_device}} # set to False to run on CPU num_position_iterations: 8 num_velocity_iterations: 0 max_gpu_contact_pairs: 8388608 # 8*1024*1024 num_subscenes: ${....num_subscenes} contact_offset: 0.005 rest_offset: 0.0 bounce_threshold_velocity: 0.2 max_depenetration_velocity: 1.0 #1000.0 default_buffer_size_multiplier: 75.0 contact_collection: 0 # 0: CC_NEVER (don't collect contact info), 1: CC_LAST_SUBSTEP (collect only contacts on last substep), 2: CC_ALL_SUBSTEPS ((broken - do not use!)
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/FactoryBase.yaml
# See schema in factory_schema_config_base.py for descriptions of parameters. defaults: - _self_ #- /factory_schema_config_base mode: export_scene: False export_states: False sim: dt: 0.016667 substeps: 2 up_axis: "z" use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_damping: True physx: solver_type: ${....solver_type} num_threads: ${....num_threads} num_subscenes: ${....num_subscenes} use_gpu: ${contains:"cuda",${....sim_device}} num_position_iterations: 16 num_velocity_iterations: 0 contact_offset: 0.005 rest_offset: 0.0 bounce_threshold_velocity: 0.2 max_depenetration_velocity: 5.0 friction_offset_threshold: 0.01 friction_correlation_distance: 0.00625 max_gpu_contact_pairs: 1048576 # 1024 * 1024 default_buffer_size_multiplier: 8.0 contact_collection: 1 # 0: CC_NEVER (don't collect contact info), 1: CC_LAST_SUBSTEP (collect only contacts on last substep), 2: CC_ALL_SUBSTEPS (broken - do not use!) env: env_spacing: 0.5 franka_depth: 0.5 table_height: 0.4 franka_friction: 1.0 table_friction: 0.3
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/Humanoid.yaml
# used to create the object name: Humanoid physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 5 episodeLength: 1000 enableDebugVis: False clipActions: 1.0 powerScale: 1.0 # reward parameters headingWeight: 0.5 upWeight: 0.1 # cost parameters actionsCost: 0.01 energyCost: 0.05 dofVelocityScale: 0.1 angularVelocityScale: 0.25 contactForceScale: 0.01 jointsAtLimitCost: 0.25 deathCost: -1.0 terminationHeight: 0.8 asset: assetFileName: "mjcf/nv_humanoid.xml" plane: staticFriction: 1.0 dynamicFriction: 1.0 restitution: 0.0 # set to True if you use camera sensors in the environment enableCameraSensors: False sim: dt: 0.0166 # 1/60 s substeps: 2 up_axis: "z" use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] physx: num_threads: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${contains:"cuda",${....sim_device}} # set to False to run on CPU num_position_iterations: 4 num_velocity_iterations: 0 contact_offset: 0.02 rest_offset: 0.0 bounce_threshold_velocity: 0.2 max_depenetration_velocity: 10.0 default_buffer_size_multiplier: 5.0 max_gpu_contact_pairs: 8388608 # 8*1024*1024 num_subscenes: ${....num_subscenes} contact_collection: 0 # 0: CC_NEVER (don't collect contact info), 1: CC_LAST_SUBSTEP (collect only contacts on last substep), 2: CC_ALL_SUBSTEPS (broken - do not use!) task: randomize: False randomization_params: # specify which attributes to randomize for each actor type and property frequency: 600 # Define how many environment steps between generating new randomizations observations: range: [0, .002] # range for the white noise operation: "additive" distribution: "gaussian" actions: range: [0., .02] operation: "additive" distribution: "gaussian" sim_params: gravity: range: [0, 0.4] operation: "additive" distribution: "gaussian" schedule: "linear" # "linear" will linearly interpolate between no rand and max rand schedule_steps: 3000 actor_params: humanoid: color: True rigid_body_properties: mass: range: [0.5, 1.5] operation: "scaling" distribution: "uniform" setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info. schedule: "linear" # "linear" will linearly interpolate between no rand and max rand schedule_steps: 3000 rigid_shape_properties: friction: num_buckets: 500 range: [0.7, 1.3] operation: "scaling" distribution: "uniform" schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` schedule_steps: 3000 restitution: range: [0., 0.7] operation: "scaling" distribution: "uniform" schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` schedule_steps: 3000 dof_properties: damping: range: [0.5, 1.5] operation: "scaling" distribution: "uniform" schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` schedule_steps: 3000 stiffness: range: [0.5, 1.5] operation: "scaling" distribution: "uniform" schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` schedule_steps: 3000 lower: range: [0, 0.01] operation: "additive" distribution: "gaussian" schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` schedule_steps: 3000 upper: range: [0, 0.01] operation: "additive" distribution: "gaussian" schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` schedule_steps: 3000
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/FactoryEnvGears.yaml
# See schema in factory_schema_config_env.py for descriptions of common parameters. defaults: - FactoryBase - _self_ - /factory_schema_config_env sim: disable_franka_collisions: False env: env_name: 'FactoryEnvGears' tight_or_loose: loose # use assets with loose (maximal clearance) or tight (minimal clearance) shafts gears_lateral_offset: 0.1 # Y-axis offset of gears before initial reset to prevent initial interpenetration with base plate gears_density: 1000.0 # density of gears base_density: 2700.0 # density of base plate gears_friction: 0.3 # coefficient of friction associated with gears base_friction: 0.3 # coefficient of friction associated with base plate
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/AllegroHand.yaml
# used to create the object name: AllegroHand physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:16384,${...num_envs}} envSpacing: 0.75 episodeLength: 600 enableDebugVis: False aggregateMode: 1 clipObservations: 5.0 clipActions: 1.0 stiffnessScale: 1.0 forceLimitScale: 1.0 useRelativeControl: False dofSpeedScale: 20.0 actionsMovingAverage: 1.0 controlFrequencyInv: 2 # 30 Hz startPositionNoise: 0.01 startRotationNoise: 0.0 resetPositionNoise: 0.01 resetRotationNoise: 0.0 resetDofPosRandomInterval: 0.2 resetDofVelRandomInterval: 0.0 startObjectPoseDY: -0.19 startObjectPoseDZ: 0.06 # Random forces applied to the object forceScale: 0.0 forceProbRange: [0.001, 0.1] forceDecay: 0.99 forceDecayInterval: 0.08 # reward -> dictionary distRewardScale: -10.0 rotRewardScale: 1.0 rotEps: 0.1 actionPenaltyScale: -0.0002 reachGoalBonus: 250 fallDistance: 0.24 fallPenalty: 0.0 objectType: "block" # can be block, egg or pen observationType: "full_state" # can be "no_vel", "full_state" asymmetric_observations: False successTolerance: 0.1 printNumSuccesses: False maxConsecutiveSuccesses: 0 asset: assetFileName: "urdf/kuka_allegro_description/allegro_touch_sensor.urdf" assetFileNameBlock: "urdf/objects/cube_multicolor_allegro.urdf" assetFileNameEgg: "mjcf/open_ai_assets/hand/egg.xml" assetFileNamePen: "mjcf/open_ai_assets/hand/pen.xml" # set to True if you use camera sensors in the environment enableCameraSensors: False task: randomize: False randomization_params: frequency: 720 # Define how many simulation steps between generating new randomizations observations: range: [0, .002] # range for the white noise range_correlated: [0, .001 ] # range for correlated noise, refreshed with freq `frequency` operation: "additive" distribution: "gaussian" # schedule: "linear" # "constant" is to turn on noise after `schedule_steps` num steps # schedule_steps: 40000 actions: range: [0., .05] range_correlated: [0, .015] # range for correlated noise, refreshed with freq `frequency` operation: "additive" distribution: "gaussian" # schedule: "linear" # "linear" will linearly interpolate between no rand and max rand # schedule_steps: 40000 sim_params: gravity: range: [0, 0.4] operation: "additive" distribution: "gaussian" # schedule: "linear" # "linear" will linearly interpolate between no rand and max rand # schedule_steps: 40000 actor_params: hand: color: True dof_properties: damping: range: [0.3, 3.0] operation: "scaling" distribution: "loguniform" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 stiffness: range: [0.75, 1.5] operation: "scaling" distribution: "loguniform" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 lower: range: [0, 0.01] operation: "additive" distribution: "gaussian" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 upper: range: [0, 0.01] operation: "additive" distribution: "gaussian" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 rigid_body_properties: mass: range: [0.5, 1.5] operation: "scaling" distribution: "uniform" setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info. # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 rigid_shape_properties: friction: num_buckets: 250 range: [0.7, 1.3] operation: "scaling" distribution: "uniform" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 object: scale: range: [0.95, 1.05] operation: "scaling" distribution: "uniform" setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info. # schedule: "linear" # "linear" will scale the current random sample by ``min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 rigid_body_properties: mass: range: [0.5, 1.5] operation: "scaling" distribution: "uniform" setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info. # schedule: "linear" # "linear" will scale the current random sample by ``min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 rigid_shape_properties: friction: num_buckets: 250 range: [0.7, 1.3] operation: "scaling" distribution: "uniform" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 sim: dt: 0.01667 # 1/60 substeps: 2 up_axis: "z" use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] physx: num_threads: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${contains:"cuda",${....sim_device}} # set to False to run on CPU num_position_iterations: 8 num_velocity_iterations: 0 max_gpu_contact_pairs: 8388608 # 8*1024*1024 num_subscenes: ${....num_subscenes} contact_offset: 0.002 rest_offset: 0.0 bounce_threshold_velocity: 0.2 max_depenetration_velocity: 1000.0 default_buffer_size_multiplier: 5.0 contact_collection: 0 # 0: CC_NEVER (don't collect contact info), 1: CC_LAST_SUBSTEP (collect only contacts on last substep), 2: CC_ALL_SUBSTEPS (broken - do not use!)
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/FactoryTaskNutBoltPick.yaml
# See schema in factory_schema_config_task.py for descriptions of common parameters. defaults: - FactoryBase - _self_ # - /factory_schema_config_task name: FactoryTaskNutBoltPick physics_engine: ${..physics_engine} sim: disable_gravity: False env: numEnvs: ${resolve_default:128,${...num_envs}} numObservations: 20 numActions: 12 close_and_lift: True # close gripper and lift after last step of episode num_gripper_move_sim_steps: 20 # number of timesteps to reserve for moving gripper before first step of episode num_gripper_close_sim_steps: 25 # number of timesteps to reserve for closing gripper after last step of episode num_gripper_lift_sim_steps: 25 # number of timesteps to reserve for lift after last step of episode randomize: franka_arm_initial_dof_pos: [0.3413, -0.8011, -0.0670, -1.8299, 0.0266, 1.0185, 1.0927] fingertip_midpoint_pos_initial: [0.0, -0.2, 0.2] # initial position of hand above table fingertip_midpoint_pos_noise: [0.2, 0.2, 0.1] # noise on hand position fingertip_midpoint_rot_initial: [3.1416, 0, 3.1416] # initial rotation of fingertips (Euler) fingertip_midpoint_rot_noise: [0.3, 0.3, 1] # noise on rotation nut_pos_xy_initial: [0.0, -0.3] # initial XY position of nut on table nut_pos_xy_initial_noise: [0.1, 0.1] # noise on nut position bolt_pos_xy_initial: [0.0, 0.0] # initial position of bolt on table bolt_pos_xy_noise: [0.1, 0.1] # noise on bolt position rl: pos_action_scale: [0.1, 0.1, 0.1] rot_action_scale: [0.1, 0.1, 0.1] force_action_scale: [1.0, 1.0, 1.0] torque_action_scale: [1.0, 1.0, 1.0] clamp_rot: True clamp_rot_thresh: 1.0e-6 num_keypoints: 4 # number of keypoints used in reward keypoint_scale: 0.5 # length of line of keypoints keypoint_reward_scale: 1.0 # scale on keypoint-based reward action_penalty_scale: 0.0 # scale on action penalty max_episode_length: 100 success_bonus: 0.0 # bonus if nut has been lifted ctrl: ctrl_type: joint_space_id # {gym_default, # joint_space_ik, joint_space_id, # task_space_impedance, operational_space_motion, # open_loop_force, closed_loop_force, # hybrid_force_motion} all: jacobian_type: geometric gripper_prop_gains: [50, 50] gripper_deriv_gains: [2, 2] gym_default: ik_method: dls joint_prop_gains: [40, 40, 40, 40, 40, 40, 40] joint_deriv_gains: [8, 8, 8, 8, 8, 8, 8] gripper_prop_gains: [500, 500] gripper_deriv_gains: [20, 20] joint_space_ik: ik_method: dls joint_prop_gains: [1, 1, 1, 1, 1, 1, 1] joint_deriv_gains: [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] joint_space_id: ik_method: dls joint_prop_gains: [40, 40, 40, 40, 40, 40, 40] joint_deriv_gains: [8, 8, 8, 8, 8, 8, 8] task_space_impedance: motion_ctrl_axes: [1, 1, 1, 1, 1, 1] task_prop_gains: [40, 40, 40, 40, 40, 40] task_deriv_gains: [8, 8, 8, 8, 8, 8] operational_space_motion: motion_ctrl_axes: [1, 1, 1, 1, 1, 1] task_prop_gains: [1, 1, 1, 1, 1, 1] task_deriv_gains: [1, 1, 1, 1, 1, 1] open_loop_force: force_ctrl_axes: [0, 0, 1, 0, 0, 0] closed_loop_force: force_ctrl_axes: [0, 0, 1, 0, 0, 0] wrench_prop_gains: [0.1, 0.1, 0.1, 0.1, 0.1, 0.1] hybrid_force_motion: motion_ctrl_axes: [1, 1, 0, 1, 1, 1] task_prop_gains: [40, 40, 40, 40, 40, 40] task_deriv_gains: [8, 8, 8, 8, 8, 8] force_ctrl_axes: [0, 0, 1, 0, 0, 0] wrench_prop_gains: [0.1, 0.1, 0.1, 0.1, 0.1, 0.1]
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/HumanoidSAC.yaml
# used to create the object defaults: - Humanoid - _self_ # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:64,${...num_envs}}
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/FactoryTaskInsertion.yaml
# See schema in factory_schema_config_task.py for descriptions of common parameters. defaults: - FactoryBase - _self_ # - /factory_schema_config_task name: FactoryTaskInsertion physics_engine: ${..physics_engine} env: numEnvs: ${resolve_default:128,${...num_envs}} numObservations: 32 numActions: 12 randomize: joint_noise: 0.0 # noise on Franka DOF positions [deg] initial_state: random # initialize plugs in random state or goal state {random, goal} plug_bias_y: -0.1 # if random, Y-axis offset of plug during each reset to prevent initial interpenetration with socket plug_bias_z: 0.0 # if random, Z-axis offset of plug during each reset to prevent initial interpenetration with ground plane plug_noise_xy: 0.05 # if random, XY-axis noise on plug position during each reset rl: max_episode_length: 1024
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/FactoryEnvInsertion.yaml
# See schema in factory_schema_config_env.py for descriptions of common parameters. defaults: - FactoryBase - _self_ - /factory_schema_config_env sim: disable_franka_collisions: False env: env_name: 'FactoryEnvInsertion' desired_subassemblies: ['round_peg_hole_4mm_loose', 'round_peg_hole_8mm_loose', 'round_peg_hole_12mm_loose', 'round_peg_hole_16mm_loose', 'rectangular_peg_hole_4mm_loose', 'rectangular_peg_hole_8mm_loose', 'rectangular_peg_hole_12mm_loose', 'rectangular_peg_hole_16mm_loose'] plug_lateral_offset: 0.1 # Y-axis offset of plug before initial reset to prevent initial interpenetration with socket # Subassembly options: # {round_peg_hole_4mm_tight, round_peg_hole_4mm_loose, # round_peg_hole_8mm_tight, round_peg_hole_8mm_loose, # round_peg_hole_12mm_tight, round_peg_hole_12mm_loose, # round_peg_hole_16mm_tight, round_peg_hole_16mm_loose, # rectangular_peg_hole_4mm_tight, rectangular_peg_hole_4mm_loose, # rectangular_peg_hole_8mm_tight, rectangular_peg_hole_8mm_loose, # rectangular_peg_hole_12mm_tight, rectangular_peg_hole_12mm_loose, # rectangular_peg_hole_16mm_tight, rectangular_peg_hole_16mm_loose, # bnc, dsub, usb} # # NOTE: BNC, D-sub, and USB are currently unavailable while we await approval from manufacturers.
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/Ingenuity.yaml
# used to create the object name: Ingenuity physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 2.5 maxEpisodeLength: 2000 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 # set to True if you use camera sensors in the environment enableCameraSensors: False sim: dt: 0.01 substeps: 2 up_axis: "z" use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] physx: num_threads: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${contains:"cuda",${....sim_device}} # set to False to run on CPU num_position_iterations: 6 num_velocity_iterations: 0 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 max_depenetration_velocity: 1000.0 default_buffer_size_multiplier: 5.0 max_gpu_contact_pairs: 1048576 # 1024*1024 num_subscenes: ${....num_subscenes} contact_collection: 0 # 0: CC_NEVER (don't collect contact info), 1: CC_LAST_SUBSTEP (collect only contacts on last substep), 2: CC_ALL_SUBSTEPS (broken - do not use!) task: randomize: False
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/Quadcopter.yaml
# used to create the object name: Quadcopter physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:8192,${...num_envs}} envSpacing: 1.25 maxEpisodeLength: 500 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 # set to True if you use camera sensors in the environment enableCameraSensors: False sim: dt: 0.01 substeps: 2 up_axis: "z" use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] physx: num_threads: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${contains:"cuda",${....sim_device}} # set to False to run on CPU num_position_iterations: 4 num_velocity_iterations: 0 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 max_depenetration_velocity: 1000.0 default_buffer_size_multiplier: 5.0 max_gpu_contact_pairs: 1048576 # 1024*1024 num_subscenes: ${....num_subscenes} contact_collection: 0 # 0: CC_NEVER (don't collect contact info), 1: CC_LAST_SUBSTEP (collect only contacts on last substep), 2: CC_ALL_SUBSTEPS (broken - do not use!) task: randomize: False
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/Trifinger.yaml
name: Trifinger physics_engine: ${..physics_engine} env: aggregate_mode: True control_decimation: 1 envSpacing: 1.0 numEnvs: ${resolve_default:16384,${...num_envs}} episodeLength: 750 clipObservations: 5.0 clipActions: 1.0 task_difficulty: 4 enable_ft_sensors: false asymmetric_obs: true normalize_obs: true apply_safety_damping: true command_mode: torque normalize_action: true cube_obs_keypoints: true reset_distribution: object_initial_state: type: random robot_initial_state: dof_pos_stddev: 0.4 dof_vel_stddev: 0.2 type: default reward_terms: finger_move_penalty: activate: true weight: -0.5 finger_reach_object_rate: activate: true norm_p: 2 weight: -250 object_dist: activate: false weight: 2000 object_rot: activate: false weight: 2000 keypoints_dist: activate: true weight: 2000 termination_conditions: success: orientation_tolerance: 0.4 position_tolerance: 0.02 # set to True if you use camera sensors in the environment enableCameraSensors: False sim: dt: 0.02 substeps: 4 up_axis: z use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: - 0.0 - 0.0 - -9.81 physx: num_threads: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${contains:"cuda",${....sim_device}} # set to False to run on CPU num_position_iterations: 8 num_velocity_iterations: 0 contact_offset: 0.002 rest_offset: 0.0 bounce_threshold_velocity: 0.5 max_depenetration_velocity: 1000.0 default_buffer_size_multiplier: 5.0 max_gpu_contact_pairs: 8388608 # 8*1024*1024 num_subscenes: ${....num_subscenes} contact_collection: 0 # 0: CC_NEVER (don't collect contact info), 1: CC_LAST_SUBSTEP (collect only contacts on last substep), 2: CC_ALL_SUBSTEPS (broken - do not use!) task: randomize: True randomization_params: frequency: 750 # Define how many simulation steps between generating new randomizations observations: range: [0, .002] # range for the white noise range_correlated: [0, .000 ] # range for correlated noise, refreshed with freq `frequency` operation: "additive" distribution: "gaussian" # schedule: "linear" # "constant" is to turn on noise after `schedule_steps` num steps # schedule_steps: 40000 actions: range: [0., .02] range_correlated: [0, .01] # range for correlated noise, refreshed with freq `frequency` operation: "additive" distribution: "gaussian" # schedule: "linear" # "linear" will linearly interpolate between no rand and max rand # schedule_steps: 40000 sim_params: gravity: range: [0, 0.4] operation: "additive" distribution: "gaussian" # schedule: "linear" # "linear" will linearly interpolate between no rand and max rand # schedule_steps: 40000 actor_params: robot: color: True dof_properties: lower: range: [0, 0.01] operation: "additive" distribution: "gaussian" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 upper: range: [0, 0.01] operation: "additive" distribution: "gaussian" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 object: scale: range: [0.97, 1.03] operation: "scaling" distribution: "uniform" setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info. # schedule: "linear" # "linear" will scale the current random sample by ``min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 rigid_body_properties: mass: range: [0.7, 1.3] operation: "scaling" distribution: "uniform" setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info. # schedule: "linear" # "linear" will scale the current random sample by ``min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 rigid_shape_properties: friction: num_buckets: 250 range: [0.7, 1.3] operation: "scaling" distribution: "uniform" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 table: rigid_shape_properties: friction: num_buckets: 250 range: [0.5, 1.5] operation: "scaling" distribution: "uniform"
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/FactoryTaskNutBoltPlace.yaml
# See schema in factory_schema_config_task.py for descriptions of common parameters. defaults: - FactoryBase - _self_ # - /factory_schema_config_task name: FactoryTaskNutBoltPlace physics_engine: ${..physics_engine} sim: disable_gravity: True env: numEnvs: ${resolve_default:128,${...num_envs}} numObservations: 27 numActions: 12 num_gripper_move_sim_steps: 40 # number of timesteps to reserve for moving gripper before first step of episode num_gripper_close_sim_steps: 50 # number of timesteps to reserve for closing gripper onto nut during each reset randomize: franka_arm_initial_dof_pos: [0.00871, -0.10368, -0.00794, -1.49139, -0.00083, 1.38774, 0.7861] fingertip_midpoint_pos_initial: [0.0, 0.0, 0.2] # initial position of midpoint between fingertips above table fingertip_midpoint_pos_noise: [0.2, 0.2, 0.1] # noise on fingertip pos fingertip_midpoint_rot_initial: [3.1416, 0, 3.1416] # initial rotation of fingertips (Euler) fingertip_midpoint_rot_noise: [0.3, 0.3, 1] # noise on rotation nut_noise_pos_in_gripper: [0.0, 0.0, 0.01] # noise on nut position within gripper nut_noise_rot_in_gripper: 0.0 # noise on nut rotation within gripper bolt_pos_xy_initial: [0.0, 0.0] # initial XY position of nut on table bolt_pos_xy_noise: [0.1, 0.1] # noise on nut position rl: pos_action_scale: [0.1, 0.1, 0.1] rot_action_scale: [0.1, 0.1, 0.1] force_action_scale: [1.0, 1.0, 1.0] torque_action_scale: [1.0, 1.0, 1.0] clamp_rot: True clamp_rot_thresh: 1.0e-6 add_obs_bolt_tip_pos: False # add observation of bolt tip position num_keypoints: 4 # number of keypoints used in reward keypoint_scale: 0.5 # length of line of keypoints keypoint_reward_scale: 1.0 # scale on keypoint-based reward action_penalty_scale: 0.0 # scale on action penalty max_episode_length: 200 close_error_thresh: 0.1 # threshold below which nut is considered close enough to bolt success_bonus: 0.0 # bonus if nut is close enough to bolt ctrl: ctrl_type: joint_space_id # {gym_default, # joint_space_ik, joint_space_id, # task_space_impedance, operational_space_motion, # open_loop_force, closed_loop_force, # hybrid_force_motion} all: jacobian_type: geometric gripper_prop_gains: [100, 100] gripper_deriv_gains: [2, 2] gym_default: ik_method: dls joint_prop_gains: [40, 40, 40, 40, 40, 40, 40] joint_deriv_gains: [8, 8, 8, 8, 8, 8, 8] gripper_prop_gains: [500, 500] gripper_deriv_gains: [20, 20] joint_space_ik: ik_method: dls joint_prop_gains: [1, 1, 1, 1, 1, 1, 1] joint_deriv_gains: [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] joint_space_id: ik_method: dls joint_prop_gains: [40, 40, 40, 40, 40, 40, 40] joint_deriv_gains: [8, 8, 8, 8, 8, 8, 8] task_space_impedance: motion_ctrl_axes: [1, 1, 1, 1, 1, 1] task_prop_gains: [40, 40, 40, 40, 40, 40] task_deriv_gains: [8, 8, 8, 8, 8, 8] operational_space_motion: motion_ctrl_axes: [1, 1, 1, 1, 1, 1] task_prop_gains: [1, 1, 1, 1, 1, 1] task_deriv_gains: [1, 1, 1, 1, 1, 1] open_loop_force: force_ctrl_axes: [0, 0, 1, 0, 0, 0] closed_loop_force: force_ctrl_axes: [0, 0, 1, 0, 0, 0] wrench_prop_gains: [0.1, 0.1, 0.1, 0.1, 0.1, 0.1] hybrid_force_motion: motion_ctrl_axes: [1, 1, 0, 1, 1, 1] task_prop_gains: [40, 40, 40, 40, 40, 40] task_deriv_gains: [8, 8, 8, 8, 8, 8] force_ctrl_axes: [0, 0, 1, 0, 0, 0] wrench_prop_gains: [0.1, 0.1, 0.1, 0.1, 0.1, 0.1]
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/HumanoidAMPHands.yaml
# used to create the object name: HumanoidAMP physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 5 episodeLength: 300 cameraFollow: True # if the camera follows humanoid or not enableDebugVis: False pdControl: True powerScale: 1.0 controlFrequencyInv: 2 # 30 Hz stateInit: "Random" hybridInitProb: 0.5 numAMPObsSteps: 2 localRootObs: False contactBodies: ["right_foot", "left_foot", "right_hand", "left_hand"] terminationHeight: 0.5 enableEarlyTermination: True # animation files to learn from motion_file: "amp_humanoid_cartwheel.npy" asset: assetFileName: "mjcf/amp_humanoid.xml" plane: staticFriction: 1.0 dynamicFriction: 1.0 restitution: 0.0 sim: dt: 0.0166 # 1/60 s substeps: 2 up_axis: "z" use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] physx: num_threads: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${contains:"cuda",${....sim_device}} # set to False to run on CPU num_position_iterations: 4 num_velocity_iterations: 0 contact_offset: 0.02 rest_offset: 0.0 bounce_threshold_velocity: 0.2 max_depenetration_velocity: 10.0 default_buffer_size_multiplier: 5.0 max_gpu_contact_pairs: 8388608 # 8*1024*1024 num_subscenes: ${....num_subscenes} contact_collection: 1 # 0: CC_NEVER (don't collect contact info), 1: CC_LAST_SUBSTEP (collect only contacts on last substep), 2: CC_ALL_SUBSTEPS (broken - do not use!) task: randomize: False randomization_params: # specify which attributes to randomize for each actor type and property frequency: 600 # Define how many environment steps between generating new randomizations observations: range: [0, .002] # range for the white noise operation: "additive" distribution: "gaussian" actions: range: [0., .02] operation: "additive" distribution: "gaussian" sim_params: gravity: range: [0, 0.4] operation: "additive" distribution: "gaussian" schedule: "linear" # "linear" will linearly interpolate between no rand and max rand schedule_steps: 3000 actor_params: humanoid: color: True rigid_body_properties: mass: range: [0.5, 1.5] operation: "scaling" distribution: "uniform" setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info. schedule: "linear" # "linear" will linearly interpolate between no rand and max rand schedule_steps: 3000 rigid_shape_properties: friction: num_buckets: 500 range: [0.7, 1.3] operation: "scaling" distribution: "uniform" schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` schedule_steps: 3000 restitution: range: [0., 0.7] operation: "scaling" distribution: "uniform" schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` schedule_steps: 3000 dof_properties: damping: range: [0.5, 1.5] operation: "scaling" distribution: "uniform" schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` schedule_steps: 3000 stiffness: range: [0.5, 1.5] operation: "scaling" distribution: "uniform" schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` schedule_steps: 3000 lower: range: [0, 0.01] operation: "additive" distribution: "gaussian" schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` schedule_steps: 3000 upper: range: [0, 0.01] operation: "additive" distribution: "gaussian" schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` schedule_steps: 3000
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/FactoryTaskGears.yaml
# See schema in factory_schema_config_task.py for descriptions of common parameters. defaults: - FactoryBase - _self_ # - /factory_schema_config_task name: FactoryTaskGears physics_engine: ${..physics_engine} env: numEnvs: ${resolve_default:128,${...num_envs}} numObservations: 32 numActions: 12 randomize: joint_noise: 0.0 # noise on Franka DOF positions [deg] initial_state: random # initialize gears in random state or goal state {random, goal} gears_bias_y: -0.1 # if random, Y-axis offset of gears during each reset to prevent initial interpenetration with base plate gears_bias_z: 0.0 # if random, Z-axis offset of gears during each reset to prevent initial interpenetration with ground plane gears_noise_xy: 0.05 # if random, XY-axis noise on gears during each reset rl: max_episode_length: 1024
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/IndustRealEnvPegs.yaml
# See schema in factory_schema_config_env.py for descriptions of common parameters. defaults: - IndustRealBase - _self_ - /factory_schema_config_env env: env_name: 'IndustRealEnvPegs' desired_subassemblies: ['round_peg_hole_8mm', 'round_peg_hole_12mm', 'round_peg_hole_16mm', 'rectangular_peg_hole_8mm', 'rectangular_peg_hole_12mm', 'rectangular_peg_hole_16mm'] plug_lateral_offset: 0.1 # Y-axis offset of plug before initial reset to prevent initial interpenetration with socket # Density and friction values are specified in industreal_asset_info_pegs.yaml
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/ShadowHand.yaml
# used to create the object name: ShadowHand physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:16384,${...num_envs}} envSpacing: 0.75 episodeLength: 600 enableDebugVis: False aggregateMode: 1 clipObservations: 5.0 clipActions: 1.0 stiffnessScale: 1.0 forceLimitScale: 1.0 useRelativeControl: False dofSpeedScale: 20.0 actionsMovingAverage: 1.0 controlFrequencyInv: 1 # 60 Hz startPositionNoise: 0.01 startRotationNoise: 0.0 resetPositionNoise: 0.01 resetRotationNoise: 0.0 resetDofPosRandomInterval: 0.2 resetDofVelRandomInterval: 0.0 # Random forces applied to the object forceScale: 0.0 forceProbRange: [0.001, 0.1] forceDecay: 0.99 forceDecayInterval: 0.08 # reward -> dictionary distRewardScale: -10.0 rotRewardScale: 1.0 rotEps: 0.1 actionPenaltyScale: -0.0002 reachGoalBonus: 250 fallDistance: 0.24 fallPenalty: 0.0 objectType: "block" # can be block, egg or pen observationType: "full_state" # can be "openai", "full_no_vel", "full", "full_state" asymmetric_observations: False successTolerance: 0.1 printNumSuccesses: False maxConsecutiveSuccesses: 0 asset: assetFileName: "mjcf/open_ai_assets/hand/shadow_hand.xml" assetFileNameBlock: "urdf/objects/cube_multicolor.urdf" assetFileNameEgg: "mjcf/open_ai_assets/hand/egg.xml" assetFileNamePen: "mjcf/open_ai_assets/hand/pen.xml" # set to True if you use camera sensors in the environment enableCameraSensors: False task: randomize: False randomization_params: frequency: 720 # Define how many simulation steps between generating new randomizations observations: range: [0, .002] # range for the white noise range_correlated: [0, .001] # range for correlated noise, refreshed with freq `frequency` operation: "additive" distribution: "gaussian" # schedule: "linear" # "constant" is to turn on noise after `schedule_steps` num steps # schedule_steps: 40000 actions: range: [0., .05] range_correlated: [0, .015] # range for correlated noise, refreshed with freq `frequency` operation: "additive" distribution: "gaussian" # schedule: "linear" # "linear" will linearly interpolate between no rand and max rand # schedule_steps: 40000 sim_params: gravity: range: [0, 0.4] operation: "additive" distribution: "gaussian" # schedule: "linear" # "linear" will linearly interpolate between no rand and max rand # schedule_steps: 40000 actor_params: hand: color: True tendon_properties: damping: range: [0.3, 3.0] operation: "scaling" distribution: "loguniform" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 stiffness: range: [0.75, 1.5] operation: "scaling" distribution: "loguniform" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 dof_properties: damping: range: [0.3, 3.0] operation: "scaling" distribution: "loguniform" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 stiffness: range: [0.75, 1.5] operation: "scaling" distribution: "loguniform" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 lower: range: [0, 0.01] operation: "additive" distribution: "gaussian" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 upper: range: [0, 0.01] operation: "additive" distribution: "gaussian" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 rigid_body_properties: mass: range: [0.5, 1.5] operation: "scaling" distribution: "uniform" setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info. # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 rigid_shape_properties: friction: num_buckets: 250 range: [0.7, 1.3] operation: "scaling" distribution: "uniform" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 object: scale: range: [0.95, 1.05] operation: "scaling" distribution: "uniform" setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info. # schedule: "linear" # "linear" will scale the current random sample by ``min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 rigid_body_properties: mass: range: [0.5, 1.5] operation: "scaling" distribution: "uniform" setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info. # schedule: "linear" # "linear" will scale the current random sample by ``min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 rigid_shape_properties: friction: num_buckets: 250 range: [0.7, 1.3] operation: "scaling" distribution: "uniform" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 sim: dt: 0.01667 # 1/60 substeps: 2 up_axis: "z" use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] physx: num_threads: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${contains:"cuda",${....sim_device}} # set to False to run on CPU num_position_iterations: 8 num_velocity_iterations: 0 max_gpu_contact_pairs: 8388608 # 8*1024*1024 num_subscenes: ${....num_subscenes} contact_offset: 0.002 rest_offset: 0.0 bounce_threshold_velocity: 0.2 max_depenetration_velocity: 1000.0 default_buffer_size_multiplier: 5.0 contact_collection: 0 # 0: CC_NEVER (don't collect contact info), 1: CC_LAST_SUBSTEP (collect only contacts on last substep), 2: CC_ALL_SUBSTEPS (broken - do not use!)
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/IndustRealTaskGearsInsert.yaml
# See schema in factory_schema_config_task.py for descriptions of common parameters. defaults: - IndustRealBase - _self_ # - /factory_schema_config_task name: IndustRealTaskGearsInsert physics_engine: ${..physics_engine} env: numEnvs: 128 numObservations: 24 numStates: 47 numActions: 6 gear_medium_pos_offset: [-0.05, -0.02, 0.03] num_gripper_move_sim_steps: 120 # number of timesteps to reserve for moving gripper before first step of episode num_gripper_close_sim_steps: 60 # number of timesteps to reserve for closing gripper onto gear during each reset base_pos_obs_noise: [0.001, 0.001, 0.0] base_rot_obs_noise: [0.0, 0.0, 0.0] randomize: franka_arm_initial_dof_pos: [-1.7574766278484677, 0.8403247702305783, 2.015877580177467, -2.0924931236718334, -0.7379389376686856, 1.6256438760537268, 1.2689337870766628] fingertip_centered_pos_initial: [0.0, 0.0, 0.2] # initial position of midpoint between fingertips above table fingertip_centered_pos_noise: [0.0, 0.0, 0.0] # noise on fingertip pos fingertip_centered_rot_initial: [3.141593, 0.0, 0.0] # initial rotation of fingertips (Euler) fingertip_centered_rot_noise: [0.0, 0.0, 0.0] # noise on fingertip rotation base_pos_xy_initial: [0.5, 0.0, 1.0781] # initial position of gear base on table base_pos_xy_noise: [0.1, 0.1, 0.0381] # noise on gear base position base_pos_z_noise_bounds: [0.0, 0.05] # noise on gear base offset from table gear_pos_xyz_noise: [0.01, 0.01, 0.0] # noise on gear position gear_rot_noise: 0.0872665 # noise on gear rotation rl: pos_action_scale: [0.01, 0.01, 0.01] rot_action_scale: [0.01, 0.01, 0.01] force_action_scale: [1.0, 1.0, 1.0] torque_action_scale: [1.0, 1.0, 1.0] unidirectional_rot: True # constrain Franka Z-rot to be unidirectional unidirectional_force: False # constrain Franka Z-force to be unidirectional (useful for debugging) clamp_rot: True clamp_rot_thresh: 1.0e-6 num_keypoints: 4 # number of keypoints used in reward keypoint_scale: 0.5 # length of line of keypoints max_episode_length: 128 # SAPU interpen_thresh: 0.001 # max allowed interpenetration between gear and shaft # SDF-Based Reward sdf_reward_scale: 10.0 sdf_reward_num_samples: 5000 # SBC initial_max_disp: 0.01 # max initial downward displacement of gear at beginning of curriculum curriculum_success_thresh: 0.6 # success rate threshold for increasing curriculum difficulty curriculum_failure_thresh: 0.3 # success rate threshold for decreasing curriculum difficulty curriculum_height_step: [-0.005, 0.002] # how much to increase max initial downward displacement after hitting success or failure thresh curriculum_height_bound: [-0.005, 0.015] # max initial downward displacement of gear at hardest and easiest stages of curriculum # Success bonus close_error_thresh: 0.1 # threshold distance below which gear is considered close to shaft success_height_thresh: 0.01 # threshold distance below which gear is considered successfully inserted engagement_bonus: 10.0 # bonus if gear is engaged (partially inserted) with shaft ctrl: ctrl_type: task_space_impedance # {gym_default, # joint_space_ik, joint_space_id, # task_space_impedance, operational_space_motion, # open_loop_force, closed_loop_force, # hybrid_force_motion} all: jacobian_type: geometric gripper_prop_gains: [500, 500] gripper_deriv_gains: [2, 2] gym_default: ik_method: dls joint_prop_gains: [40, 40, 40, 40, 40, 40, 40] joint_deriv_gains: [8, 8, 8, 8, 8, 8, 8] gripper_prop_gains: [500, 500] gripper_deriv_gains: [20, 20] joint_space_ik: ik_method: dls joint_prop_gains: [1, 1, 1, 1, 1, 1, 1] joint_deriv_gains: [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] joint_space_id: ik_method: dls joint_prop_gains: [40, 40, 40, 40, 40, 40, 40] joint_deriv_gains: [8, 8, 8, 8, 8, 8, 8] task_space_impedance: motion_ctrl_axes: [1, 1, 1, 1, 1, 1] task_prop_gains: [300, 300, 600, 50, 50, 50] task_deriv_gains: [34, 34, 34, 1.4, 1.4, 1.4] operational_space_motion: motion_ctrl_axes: [1, 1, 1, 1, 1, 1] task_prop_gains: [20, 20, 100, 0, 0, 100] task_deriv_gains: [1, 1, 1, 1, 1, 1] open_loop_force: force_ctrl_axes: [0, 0, 1, 0, 0, 0] closed_loop_force: force_ctrl_axes: [0, 0, 1, 0, 0, 0] wrench_prop_gains: [0.1, 0.1, 0.1, 0.1, 0.1, 0.1] hybrid_force_motion: motion_ctrl_axes: [1, 1, 0, 1, 1, 1] task_prop_gains: [40, 40, 40, 40, 40, 40] task_deriv_gains: [8, 8, 8, 8, 8, 8] force_ctrl_axes: [0, 0, 1, 0, 0, 0] wrench_prop_gains: [0.1, 0.1, 0.1, 0.1, 0.1, 0.1]
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/FactoryEnvNutBolt.yaml
# See schema in factory_schema_config_env.py for descriptions of common parameters. defaults: - FactoryBase - _self_ - /factory_schema_config_env sim: disable_franka_collisions: False disable_nut_collisions: False disable_bolt_collisions: False env: env_name: 'FactoryEnvNutBolt' desired_subassemblies: ['nut_bolt_m16_tight', 'nut_bolt_m16_loose'] nut_lateral_offset: 0.1 # Y-axis offset of nut before initial reset to prevent initial interpenetration with bolt nut_bolt_density: 7850.0 nut_bolt_friction: 0.3 # Subassembly options: # {nut_bolt_m4_tight, nut_bolt_m4_loose, # nut_bolt_m8_tight, nut_bolt_m8_loose, # nut_bolt_m12_tight, nut_bolt_m12_loose, # nut_bolt_m16_tight, nut_bolt_m16_loose, # nut_bolt_m20_tight, nut_bolt_m20_loose}
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/ShadowHandTest.yaml
# used to create the object name: ShadowHand physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:256,${...num_envs}} envSpacing: 0.75 episodeLength: 1600 # 80 sec resetTime: 80 # Max time till reset, if goal wasn't achieved. In sec, if >0 will overwrite the episodeLength enableDebugVis: False aggregateMode: 1 clipObservations: 5.0 clipActions: 1.0 stiffnessScale: 1.0 forceLimitScale: 1.0 useRelativeControl: False dofSpeedScale: 20.0 actionsMovingAverage: 0.3 controlFrequencyInv: 3 # 20 Hz startPositionNoise: 0.01 startRotationNoise: 0.0 resetPositionNoise: 0.01 resetRotationNoise: 0.0 resetDofPosRandomInterval: 0.2 resetDofVelRandomInterval: 0.0 # Random forces applied to the object forceScale: 0.0 forceProbRange: [0.001, 0.1] forceDecay: 0.99 forceDecayInterval: 0.08 distRewardScale: -10.0 rotRewardScale: 1.0 rotEps: 0.1 actionPenaltyScale: -0.0002 reachGoalBonus: 250 fallDistance: 0.24 fallPenalty: -50.0 objectType: "block" # can be block, egg or pen observationType: "openai" # can be "openai", "full_no_vel", "full", "full_state" asymmetric_observations: True successTolerance: 0.4 printNumSuccesses: True maxConsecutiveSuccesses: 50 averFactor: 0.1 # running mean factor for consecutive successes calculation asset: assetRoot: "../assets" assetFileName: "mjcf/open_ai_assets/hand/shadow_hand.xml" assetFileNameBlock: "urdf/objects/cube_multicolor.urdf" assetFileNameEgg: "mjcf/open_ai_assets/hand/egg.xml" assetFileNamePen: "mjcf/open_ai_assets/hand/pen.xml" # set to True if you use camera sensors in the environment enableCameraSensors: False task: randomize: True randomization_params: frequency: 480000 # Define how many simulation steps between generating new randomizations observations: range: [0, .002] # range for the white noise range_correlated: [0, .001 ] # range for correlated noise, refreshed with freq `frequency` operation: "additive" distribution: "gaussian" schedule: "constant" # "constant" is to turn on noise after `schedule_steps` num steps schedule_steps: 1 actions: range: [0., .05] range_correlated: [0, .015] # range for correlated noise, refreshed with freq `frequency` operation: "additive" distribution: "gaussian" schedule: "constant" # "linear" will linearly interpolate between no rand and max rand schedule_steps: 1 sim_params: gravity: range: [0, 0.4] operation: "additive" distribution: "gaussian" schedule: "constant" # "linear" will linearly interpolate between no rand and max rand schedule_steps: 1 actor_params: hand: color: True tendon_properties: damping: range: [0.3, 3.0] operation: "scaling" distribution: "loguniform" stiffness: range: [0.75, 1.5] operation: "scaling" distribution: "loguniform" dof_properties: damping: range: [0.3, 3.0] operation: "scaling" distribution: "loguniform" stiffness: range: [0.75, 1.5] operation: "scaling" distribution: "loguniform" lower: range: [0, 0.01] operation: "additive" distribution: "gaussian" upper: range: [0, 0.01] operation: "additive" distribution: "gaussian" rigid_body_properties: mass: range: [0.5, 1.5] operation: "scaling" distribution: "uniform" setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info. rigid_shape_properties: friction: num_buckets: 250 range: [0.7, 1.3] operation: "scaling" distribution: "uniform" object: scale: range: [0.95, 1.05] operation: "scaling" distribution: "uniform" setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info. rigid_body_properties: mass: range: [0.5, 1.5] operation: "scaling" distribution: "uniform" setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info. rigid_shape_properties: friction: num_buckets: 250 range: [0.7, 1.3] operation: "scaling" distribution: "uniform" sim: dt: 0.01667 # 1/60 substeps: 2 up_axis: "z" use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] physx: num_threads: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${contains:"cuda",${....sim_device}} # set to False to run on CPU num_position_iterations: 8 num_velocity_iterations: 0 max_gpu_contact_pairs: 8388608 # 8*1024*1024 contact_offset: 0.002 rest_offset: 0.0 bounce_threshold_velocity: 0.2 max_depenetration_velocity: 1000.0 num_subscenes: ${....num_subscenes} default_buffer_size_multiplier: 5.0 contact_collection: 0 # 0: CC_NEVER (don't collect contact info), 1: CC_LAST_SUBSTEP (collect only contacts on last substep), 2: CC_ALL_SUBSTEPS (broken - do not use!)
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/AntSAC.yaml
# used to create the object defaults: - Ant - _self_ # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:64,${...num_envs}}
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/Cartpole.yaml
# used to create the object name: Cartpole physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:512,${...num_envs}} envSpacing: 4.0 resetDist: 3.0 maxEffort: 400.0 clipObservations: 5.0 clipActions: 1.0 asset: assetRoot: "../../assets" assetFileName: "urdf/cartpole.urdf" # set to True if you use camera sensors in the environment enableCameraSensors: False sim: dt: 0.0166 # 1/60 s substeps: 2 up_axis: "z" use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] physx: num_threads: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${contains:"cuda",${....sim_device}} # set to False to run on CPU num_position_iterations: 4 num_velocity_iterations: 0 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 max_depenetration_velocity: 100.0 default_buffer_size_multiplier: 2.0 max_gpu_contact_pairs: 1048576 # 1024*1024 num_subscenes: ${....num_subscenes} contact_collection: 0 # 0: CC_NEVER (don't collect contact info), 1: CC_LAST_SUBSTEP (collect only contacts on last substep), 2: CC_ALL_SUBSTEPS (broken - do not use!) task: randomize: False
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/IndustRealTaskPegsInsert.yaml
# See schema in factory_schema_config_task.py for descriptions of common parameters. defaults: - IndustRealBase - _self_ # - /factory_schema_config_task name: IndustRealTaskPegsInsert physics_engine: ${..physics_engine} env: numEnvs: 128 numObservations: 24 numStates: 47 numActions: 6 socket_base_height: 0.003 num_gripper_move_sim_steps: 120 # number of timesteps to reserve for moving gripper before first step of episode num_gripper_close_sim_steps: 60 # number of timesteps to reserve for closing gripper onto plug during each reset socket_pos_obs_noise: [0.001, 0.001, 0.0] socket_rot_obs_noise: [0.0, 0.0, 0.0] randomize: franka_arm_initial_dof_pos: [-1.7574766278484677, 0.8403247702305783, 2.015877580177467, -2.0924931236718334, -0.7379389376686856, 1.6256438760537268, 1.2689337870766628] # initial joint angles after reset; FrankX home pose fingertip_centered_pos_initial: [0.0, 0.0, 0.2] # initial position of midpoint between fingertips above table fingertip_centered_pos_noise: [0.0, 0.0, 0.0] # noise on fingertip pos fingertip_centered_rot_initial: [3.141593, 0.0, 0.0] # initial rotation of fingertips (Euler) fingertip_centered_rot_noise: [0.0, 0.0, 0.0] # noise on fingertip rotation socket_pos_xy_initial: [0.5, 0.0] # initial position of socket on table socket_pos_xy_noise: [0.1, 0.1] # noise on socket position socket_pos_z_noise_bounds: [0.0, 0.05] # noise on socket offset from table socket_rot_noise: [0.0, 0.0, 0.0872665] # noise on socket rotation plug_pos_xy_noise: [0.01, 0.01] # noise on plug position rl: pos_action_scale: [0.01, 0.01, 0.01] rot_action_scale: [0.01, 0.01, 0.01] force_action_scale: [1.0, 1.0, 1.0] torque_action_scale: [1.0, 1.0, 1.0] unidirectional_rot: True # constrain Franka Z-rot to be unidirectional unidirectional_force: False # constrain Franka Z-force to be unidirectional (useful for debugging) clamp_rot: True clamp_rot_thresh: 1.0e-6 num_keypoints: 4 # number of keypoints used in reward keypoint_scale: 0.5 # length of line of keypoints max_episode_length: 256 # SAPU interpen_thresh: 0.001 # SAPU: max allowed interpenetration between plug and socket # SDF-Based Reward sdf_reward_scale: 10.0 sdf_reward_num_samples: 1000 # SBC initial_max_disp: 0.01 # max initial downward displacement of plug at beginning of curriculum curriculum_success_thresh: 0.75 # success rate threshold for increasing curriculum difficulty curriculum_failure_thresh: 0.5 # success rate threshold for decreasing curriculum difficulty curriculum_height_step: [-0.005, 0.003] # how much to increase max initial downward displacement after hitting success or failure thresh curriculum_height_bound: [-0.01, 0.01] # max initial downward displacement of plug at hardest and easiest stages of curriculum # Success bonus close_error_thresh: 0.15 # threshold below which plug is considered close to socket success_height_thresh: 0.003 # threshold distance below which plug is considered successfully inserted engagement_bonus: 10.0 # bonus if plug is engaged (partially inserted) with socket ctrl: ctrl_type: task_space_impedance # {gym_default, # joint_space_ik, joint_space_id, # task_space_impedance, operational_space_motion, # open_loop_force, closed_loop_force, # hybrid_force_motion} all: jacobian_type: geometric gripper_prop_gains: [500, 500] gripper_deriv_gains: [2, 2] gym_default: ik_method: dls joint_prop_gains: [40, 40, 40, 40, 40, 40, 40] joint_deriv_gains: [8, 8, 8, 8, 8, 8, 8] gripper_prop_gains: [500, 500] gripper_deriv_gains: [20, 20] joint_space_ik: ik_method: dls joint_prop_gains: [1, 1, 1, 1, 1, 1, 1] joint_deriv_gains: [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] joint_space_id: ik_method: dls joint_prop_gains: [40, 40, 40, 40, 40, 40, 40] joint_deriv_gains: [8, 8, 8, 8, 8, 8, 8] task_space_impedance: motion_ctrl_axes: [1, 1, 1, 1, 1, 1] task_prop_gains: [300, 300, 300, 50, 50, 50] task_deriv_gains: [34, 34, 34, 1.4, 1.4, 1.4] operational_space_motion: motion_ctrl_axes: [1, 1, 1, 1, 1, 1] task_prop_gains: [60, 60, 60, 5, 5, 5] task_deriv_gains: [15.5, 15.5, 15.5, 4.5, 4.5, 4.5] open_loop_force: force_ctrl_axes: [0, 0, 1, 0, 0, 0] closed_loop_force: force_ctrl_axes: [0, 0, 1, 0, 0, 0] wrench_prop_gains: [0.1, 0.1, 0.1, 0.1, 0.1, 0.1] hybrid_force_motion: motion_ctrl_axes: [1, 1, 1, 1, 1, 1] task_prop_gains: [40, 40, 40, 40, 40, 40] task_deriv_gains: [8, 8, 8, 8, 8, 8] force_ctrl_axes: [0, 0, 1, 0, 0, 0] wrench_prop_gains: [0.1, 0.1, 0.1, 0.1, 0.1, 0.1]
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/ShadowHandOpenAI_FF.yaml
# used to create the object name: ShadowHand physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:16384,${...num_envs}} envSpacing: 0.75 episodeLength: 160 # Not used, but would be 8 sec if resetTime is not set resetTime: 8 # Max time till reset, in seconds, if a goal wasn't achieved. Will overwrite the episodeLength if is > 0. enableDebugVis: False aggregateMode: 1 clipObservations: 5.0 clipActions: 1.0 stiffnessScale: 1.0 forceLimitScale: 1.0 useRelativeControl: False dofSpeedScale: 20.0 actionsMovingAverage: 0.3 controlFrequencyInv: 3 # 20 Hz startPositionNoise: 0.01 startRotationNoise: 0.0 resetPositionNoise: 0.01 resetRotationNoise: 0.0 resetDofPosRandomInterval: 0.2 resetDofVelRandomInterval: 0.0 # Random forces applied to the object forceScale: 1.0 forceProbRange: [0.001, 0.1] forceDecay: 0.99 forceDecayInterval: 0.08 distRewardScale: -10.0 rotRewardScale: 1.0 rotEps: 0.1 actionPenaltyScale: -0.0002 reachGoalBonus: 250 fallDistance: 0.24 fallPenalty: -50.0 objectType: "block" # can be block, egg or pen observationType: "openai" # can be "openai", "full_no_vel", "full","full_state" asymmetric_observations: True successTolerance: 0.4 printNumSuccesses: False maxConsecutiveSuccesses: 50 averFactor: 0.1 # running mean factor for consecutive successes calculation asset: assetRoot: "../assets" assetFileName: "mjcf/open_ai_assets/hand/shadow_hand.xml" assetFileNameBlock: "urdf/objects/cube_multicolor.urdf" assetFileNameEgg: "mjcf/open_ai_assets/hand/egg.xml" assetFileNamePen: "mjcf/open_ai_assets/hand/pen.xml" # set to True if you use camera sensors in the environment enableCameraSensors: False task: randomize: True randomization_params: frequency: 720 # Define how many simulation steps between generating new randomizations observations: range: [0, .002] # range for the white noise range_correlated: [0, .001 ] # range for correlated noise, refreshed with freq `frequency` operation: "additive" distribution: "gaussian" # schedule: "linear" # "constant" is to turn on noise after `schedule_steps` num steps # schedule_steps: 40000 actions: range: [0., .05] range_correlated: [0, .015] # range for correlated noise, refreshed with freq `frequency` operation: "additive" distribution: "gaussian" # schedule: "linear" # "linear" will linearly interpolate between no rand and max rand # schedule_steps: 40000 sim_params: gravity: range: [0, 0.4] operation: "additive" distribution: "gaussian" # schedule: "linear" # "linear" will linearly interpolate between no rand and max rand # schedule_steps: 40000 actor_params: hand: color: True tendon_properties: damping: range: [0.3, 3.0] operation: "scaling" distribution: "loguniform" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 stiffness: range: [0.75, 1.5] operation: "scaling" distribution: "loguniform" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 dof_properties: damping: range: [0.3, 3.0] operation: "scaling" distribution: "loguniform" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 stiffness: range: [0.75, 1.5] operation: "scaling" distribution: "loguniform" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 lower: range: [0, 0.01] operation: "additive" distribution: "gaussian" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 upper: range: [0, 0.01] operation: "additive" distribution: "gaussian" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 rigid_body_properties: mass: range: [0.5, 1.5] operation: "scaling" distribution: "uniform" setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info. # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 rigid_shape_properties: friction: num_buckets: 250 range: [0.7, 1.3] operation: "scaling" distribution: "uniform" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 object: scale: range: [0.95, 1.05] operation: "scaling" distribution: "uniform" setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info. # schedule: "linear" # "linear" will scale the current random sample by ``min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 rigid_body_properties: mass: range: [0.5, 1.5] operation: "scaling" distribution: "uniform" setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info. # schedule: "linear" # "linear" will scale the current random sample by ``min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 rigid_shape_properties: friction: num_buckets: 250 range: [0.7, 1.3] operation: "scaling" distribution: "uniform" # schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` # schedule_steps: 30000 sim: dt: 0.01667 # 1/60 substeps: 2 up_axis: "z" use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] physx: num_threads: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${contains:"cuda",${....sim_device}} # set to False to run on CPU num_position_iterations: 8 num_velocity_iterations: 0 max_gpu_contact_pairs: 8388608 # 8*1024*1024 num_subscenes: ${....num_subscenes} contact_offset: 0.002 rest_offset: 0.0 bounce_threshold_velocity: 0.2 max_depenetration_velocity: 1000.0 default_buffer_size_multiplier: 5.0 contact_collection: 0 # 0: CC_NEVER (don't collect contact info), 1: CC_LAST_SUBSTEP (collect only contacts on last substep), 2: CC_ALL_SUBSTEPS (broken - do not use!)
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/Anymal.yaml
# used to create the object name: Anymal physics_engine: ${..physics_engine} env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 4. # [m] clipObservations: 5.0 clipActions: 1.0 plane: staticFriction: 1.0 # [-] dynamicFriction: 1.0 # [-] restitution: 0. # [-] baseInitState: pos: [0.0, 0.0, 0.62] # x,y,z [m] rot: [0.0, 0.0, 0.0, 1.0] # x,y,z,w [quat] vLinear: [0.0, 0.0, 0.0] # x,y,z [m/s] vAngular: [0.0, 0.0, 0.0] # x,y,z [rad/s] randomCommandVelocityRanges: linear_x: [-2., 2.] # min max [m/s] linear_y: [-1., 1.] # min max [m/s] yaw: [-1., 1.] # min max [rad/s] control: # PD Drive parameters: stiffness: 85.0 # [N*m/rad] damping: 2.0 # [N*m*s/rad] actionScale: 0.5 controlFrequencyInv: 1 # 60 Hz defaultJointAngles: # = target angles when action = 0.0 LF_HAA: 0.03 # [rad] LH_HAA: 0.03 # [rad] RF_HAA: -0.03 # [rad] RH_HAA: -0.03 # [rad] LF_HFE: 0.4 # [rad] LH_HFE: -0.4 # [rad] RF_HFE: 0.4 # [rad] RH_HFE: -0.4 # [rad] LF_KFE: -0.8 # [rad] LH_KFE: 0.8 # [rad] RF_KFE: -0.8 # [rad] RH_KFE: 0.8 # [rad] urdfAsset: collapseFixedJoints: True fixBaseLink: False defaultDofDriveMode: 4 # see GymDofDriveModeFlags (0 is none, 1 is pos tgt, 2 is vel tgt, 4 effort) learn: # rewards linearVelocityXYRewardScale: 1.0 angularVelocityZRewardScale: 0.5 torqueRewardScale: -0.000025 # normalization linearVelocityScale: 2.0 angularVelocityScale: 0.25 dofPositionScale: 1.0 dofVelocityScale: 0.05 # episode length in seconds episodeLength_s: 50 # viewer cam: viewer: refEnv: 0 pos: [0, 0, 4] # [m] lookat: [1., 1, 3.3] # [m] # set to True if you use camera sensors in the environment enableCameraSensors: False sim: dt: 0.02 substeps: 2 up_axis: "z" use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] physx: num_threads: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${contains:"cuda",${....sim_device}} # set to False to run on CPU num_position_iterations: 4 num_velocity_iterations: 1 contact_offset: 0.02 rest_offset: 0.0 bounce_threshold_velocity: 0.2 max_depenetration_velocity: 100.0 default_buffer_size_multiplier: 5.0 max_gpu_contact_pairs: 8388608 # 8*1024*1024 num_subscenes: ${....num_subscenes} contact_collection: 1 # 0: CC_NEVER (don't collect contact info), 1: CC_LAST_SUBSTEP (collect only contacts on last substep), 2: CC_ALL_SUBSTEPS (broken - do not use!) task: randomize: False randomization_params: frequency: 600 # Define how many environment steps between generating new randomizations observations: range: [0, .002] # range for the white noise operation: "additive" distribution: "gaussian" actions: range: [0., .02] operation: "additive" distribution: "gaussian" sim_params: gravity: range: [0, 0.4] operation: "additive" distribution: "gaussian" schedule: "linear" # "linear" will linearly interpolate between no rand and max rand schedule_steps: 3000 actor_params: anymal: color: True rigid_body_properties: mass: range: [0.5, 1.5] operation: "scaling" distribution: "uniform" setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info. schedule: "linear" # "linear" will linearly interpolate between no rand and max rand schedule_steps: 3000 rigid_shape_properties: friction: num_buckets: 500 range: [0.7, 1.3] operation: "scaling" distribution: "uniform" schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` schedule_steps: 3000 restitution: range: [0., 0.7] operation: "scaling" distribution: "uniform" schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` schedule_steps: 3000 dof_properties: damping: range: [0.5, 1.5] operation: "scaling" distribution: "uniform" schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` schedule_steps: 3000 stiffness: range: [0.5, 1.5] operation: "scaling" distribution: "uniform" schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` schedule_steps: 3000 lower: range: [0, 0.01] operation: "additive" distribution: "gaussian" schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` schedule_steps: 3000 upper: range: [0, 0.01] operation: "additive" distribution: "gaussian" schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps` schedule_steps: 3000
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/ShadowHandOpenAI_LSTM.yaml
# specifies what the config is when running `ShadowHandOpenAI` in LSTM mode defaults: - ShadowHandOpenAI_FF - _self_ env: numEnvs: ${resolve_default:8192,${...num_envs}}
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/env/regrasping.yaml
subtask: "regrasping" episodeLength: 300 # requires holding a grasp for a whole second, thus trained policies develop a robust grasp successSteps: 30
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/env/throw.yaml
subtask: "throw" episodeLength: 300 forceScale: 0.0 # random forces don't allow us to throw precisely so we turn them off # curriculum not needed - if we hit a bin, that's good! successTolerance: 0.075 targetSuccessTolerance: 0.075 # adds a small pause every time we hit a target successSteps: 5 # throwing big objects is hard and they don't fit in the bin, so focus on randomized but smaller objects withSmallCuboids: True withBigCuboids: False withSticks: False
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/task/env/reorientation.yaml
# reorientation is a default task subtask: "reorientation"
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/FactoryTaskGearsPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:FactoryTaskGears,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: fixed schedule_type: standard kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:8192,${....max_iterations}} save_best_after: 50 save_frequency: 100 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: False e_clip: 0.2 horizon_length: 32 minibatch_size: 512 # batch size = num_envs * horizon_length; minibatch_size = batch_size / num_minibatches mini_epochs: 8 critic_coef: 2 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/ShadowHandOpenAI_FFPPO.yaml
# specifies what the default training mode is when # running `ShadowHandOpenAI_FF` (version with DR and asymmetric observations and feedforward network) # (currently defaults to asymmetric training) defaults: - ShadowHandPPOAsymm - _self_
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/AnymalTerrainPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0. # std = 1. fixed_sigma: True mlp: units: [512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None # rnn: # name: lstm # units: 128 # layers: 1 # before_mlp: True # concat_input: True # layer_norm: False load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:AnymalTerrain,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu ppo: True multi_gpu: ${....multi_gpu} mixed_precision: True normalize_input: True normalize_value: True normalize_advantage: True value_bootstrap: True clip_actions: False num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 gamma: 0.99 tau: 0.95 e_clip: 0.2 entropy_coef: 0.001 learning_rate: 3.e-4 # overwritten by adaptive lr_schedule lr_schedule: adaptive kl_threshold: 0.008 # target kl for adaptive lr truncate_grads: True grad_norm: 1. horizon_length: 24 minibatch_size: 16384 mini_epochs: 5 critic_coef: 2 clip_value: True seq_len: 4 # only for rnn bounds_loss_coef: 0. max_epochs: ${resolve_default:1500,${....max_iterations}} save_best_after: 100 score_to_win: 20000 save_frequency: 50 print_stats: True
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/AllegroKukaTwoArmsLSTMPPO.yaml
defaults: - AllegroKukaLSTMPPO - _self_ # TODO: try bigger network for two hands? params: network: mlp: units: [768, 512, 256] activation: elu d2rl: False initializer: name: default regularizer: name: None rnn: name: lstm units: 768 layers: 1 before_mlp: True layer_norm: True config: name: ${resolve_default:AllegroKukaTwoArmsLSTMPPO,${....experiment}} minibatch_size: 32768 mini_epochs: 2
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/HumanoidPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [400, 200, 100] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Humanoid,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu multi_gpu: ${....multi_gpu} mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: ${resolve_default:1000,${....max_iterations}} save_best_after: 200 save_frequency: 100 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True ppo: True e_clip: 0.2 horizon_length: 32 minibatch_size: 32768 mini_epochs: 5 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/AllegroHandDextremeManualDRPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True inputs: dof_pos_randomized: { } object_pose_cam_randomized: { } goal_pose_randomized: { } goal_relative_rot_cam_randomized: { } last_actions_randomized: { } mlp: units: [256] activation: elu d2rl: False initializer: name: default regularizer: name: None rnn: name: lstm units: 512 layers: 1 before_mlp: True layer_norm: True load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:AllegroHandManualDRAsymmLSTM,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True value_bootstrap: False num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.998 tau: 0.95 learning_rate: 1e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 score_to_win: 100000 max_epochs: ${resolve_default:50000,${....max_iterations}} save_best_after: 200 save_frequency: 500 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 4 critic_coef: 4 clip_value: True seq_length: 16 bounds_loss_coef: 0.0001 zero_rnn_on_done: False central_value_config: minibatch_size: 16384 mini_epochs: 4 learning_rate: 1e-4 kl_threshold: 0.016 clip_value: True normalize_input: True truncate_grads: True network: name: actor_critic central_value: True inputs: dof_pos: { } dof_vel: { } dof_force: { } object_pose: { } object_pose_cam_randomized: { } object_vels: { } goal_pose: { } goal_relative_rot: {} last_actions: { } ft_force_torques: {} gravity_vec: {} ft_states: {} mlp: units: [512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None player: deterministic: True use_vecenv: True games_num: 1000000 print_stats: False
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/IndustRealTaskPegsInsertPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None rnn: name: lstm units: 256 layers: 2 before_mlp: True concat_input: True layer_norm: False load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:IndustRealTaskPegsInsert,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu multi_gpu: False ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.998 tau: 0.95 learning_rate: 1e-3 lr_schedule: linear schedule_type: standard kl_threshold: 0.016 score_to_win: 200000 max_epochs: ${resolve_default:8192,${....max_iterations}} save_best_after: 10 save_frequency: 100 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: False e_clip: 0.2 horizon_length: 128 minibatch_size: 8192 # batch size = num_envs * horizon_length; minibatch_size = batch_size / num_minibatches mini_epochs: 8 critic_coef: 2 clip_value: True seq_len: 8 bounds_loss_coef: 0.0001 central_value_config: minibatch_size: 256 mini_epochs: 4 learning_rate: 1e-3 lr_schedule: linear kl_threshold: 0.016 clip_value: True normalize_input: True truncate_grads: True network: name: actor_critic central_value: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None # rnn: # name: lstm # units: 256 # layers: 2 # before_mlp: True # concat_input: True # layer_norm: False
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/ShadowHandPPOAsymmLSTM.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [512] activation: relu d2rl: False initializer: name: default regularizer: name: None rnn: name: lstm units: 1024 layers: 1 before_mlp: True layer_norm: True load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:ShadowHandAsymmLSTM,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.998 tau: 0.95 learning_rate: 1e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 score_to_win: 100000 max_epochs: ${resolve_default:10000,${....max_iterations}} save_best_after: 500 save_frequency: 500 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 4 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001 central_value_config: minibatch_size: 32768 mini_epochs: 4 learning_rate: 1e-4 kl_threshold: 0.016 clip_value: True normalize_input: True truncate_grads: True network: name: actor_critic central_value: True mlp: units: [512] activation: relu d2rl: False initializer: name: default regularizer: name: None rnn: name: lstm units: 1024 layers: 1 before_mlp: True layer_norm: True player: #render: True deterministic: True games_num: 1000000 print_stats: False
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/FactoryTaskInsertionPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:FactoryTaskInsertion,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: fixed schedule_type: standard kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:8192,${....max_iterations}} save_best_after: 50 save_frequency: 100 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: False e_clip: 0.2 horizon_length: 32 minibatch_size: 512 # batch size = num_envs * horizon_length; minibatch_size = batch_size / num_minibatches mini_epochs: 8 critic_coef: 2 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/AllegroHandDextremeADRPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True inputs: dof_pos_randomized: {} object_pose_cam_randomized: { } goal_pose: { } goal_relative_rot_cam_randomized: { } last_actions: { } mlp: units: [512, 512] activation: elu d2rl: False initializer: name: default regularizer: name: None rnn: name: lstm units: 1024 layers: 1 before_mlp: True layer_norm: True load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:AllegroHandADRAsymmLSTM,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True value_bootstrap: False num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.998 tau: 0.95 learning_rate: 1e-4 lr_schedule: linear #adaptive schedule_type: standard kl_threshold: 0.01 score_to_win: 1000000 max_epochs: ${resolve_default:1000_000,${....max_iterations}} save_best_after: 10000 save_frequency: 500 print_stats: True grad_norm: 1.0 entropy_coef: 0.002 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 4 critic_coef: 4 clip_value: True seq_length: 16 bound_loss_type: regularization bounds_loss_coef: 0.005 zero_rnn_on_done: False # optimize summaries to prevent tf.event files from growing to gigabytes force_interval_writer: True central_value_config: minibatch_size: 16384 mini_epochs: 4 learning_rate: 5e-5 kl_threshold: 0.016 clip_value: True normalize_input: True truncate_grads: True network: name: actor_critic central_value: True inputs: dof_pos: { } dof_vel: { } dof_force: { } object_pose: { } object_pose_cam_randomized: { } object_vels: { } goal_pose: { } goal_relative_rot: {} last_actions: { } stochastic_delay_params: { } affine_params: { } cube_random_params: {} hand_random_params: {} ft_force_torques: {} gravity_vec: {} ft_states: {} rot_dist: {} rb_forces: {} mlp: units: [1024, 512] activation: elu d2rl: False initializer: name: default regularizer: name: None rnn: name: lstm units: 2048 layers: 1 before_mlp: True layer_norm: True player: deterministic: True use_vecenv: True games_num: 1000000 print_stats: False
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/AllegroKukaPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [1024, 1024, 512, 512] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:AllegroKukaPPO,${....experiment}} # full_experiment_name: ${.name} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: True normalize_input: True normalize_value: True normalize_advantage: True reward_shaper: scale_value: 0.01 num_actors: ${....task.env.numEnvs} gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 score_to_win: 1000000 max_epochs: 100000 max_frames: 10_000_000_000 save_best_after: 100 save_frequency: 5000 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.1 minibatch_size: 32768 mini_epochs: 4 critic_coef: 4.0 clip_value: True horizon_length: 16 seq_length: 16 # SampleFactory currently gives better results without bounds loss but I don't think this loss matters too much # bounds_loss_coef: 0.0 bounds_loss_coef: 0.0001 # optimize summaries to prevent tf.event files from growing to gigabytes defer_summaries_sec: ${if:${....pbt},240,5} summaries_interval_sec_min: ${if:${....pbt},60,5} summaries_interval_sec_max: 300 player: #render: True deterministic: False # be careful there's a typo in older versions of rl_games in this parameter name ("determenistic") games_num: 100000 print_stats: False
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/ShadowHandPPOAsymm.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [400, 400, 200, 100] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:ShadowHandAsymm,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True reward_shaper: scale_value: 0.01 normalize_advantage: True num_actors: ${....task.env.numEnvs} gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 score_to_win: 100000 max_epochs: ${resolve_default:10000,${....max_iterations}} save_best_after: 500 save_frequency: 200 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 8 minibatch_size: 16384 mini_epochs: 8 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001 central_value_config: minibatch_size: 16384 mini_epochs: 8 learning_rate: 5e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 clip_value: True normalize_input: True truncate_grads: True network: name: actor_critic central_value: True mlp: units: [512, 512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None player: #render: True deterministic: True games_num: 1000000 print_stats: False
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/ShadowHandPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [512, 512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:ShadowHand,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 score_to_win: 100000 max_epochs: ${resolve_default:5000,${....max_iterations}} save_best_after: 100 save_frequency: 200 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 8 minibatch_size: 32768 mini_epochs: 5 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001 player: #render: True deterministic: True games_num: 100000 print_stats: True
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/AllegroHandLSTM_BigPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: complex_net separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True inputs: dof_pos_offset_randomized: {} object_pose_delayed_randomized: {} goal_pose: {} goal_relative_rot_delayed_randomized: {} last_actions: {} mlp: units: [512] activation: elu d2rl: False initializer: name: default regularizer: name: None rnn: name: lstm units: 1024 layers: 1 before_mlp: True layer_norm: True load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:AllegroHandAsymmLSTM,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True use_smooth_clamp: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.998 tau: 0.95 learning_rate: 1e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 score_to_win: 100000 max_epochs: ${resolve_default:1000000,${....max_iterations}} save_best_after: 200 save_frequency: 500 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 4 critic_coef: 4 clip_value: True seq_length: 16 bounds_loss_coef: 0.0001 central_value_config: minibatch_size: 16384 #32768 mini_epochs: 4 learning_rate: 1e-4 kl_threshold: 0.016 clip_value: True normalize_input: True truncate_grads: True use_smooth_clamp: True network: name: complex_net central_value: True inputs: dof_pos: {} dof_pos_offset_randomized: {} dof_vel: {} dof_torque: {} object_pose: {} object_vels: {} goal_pose: {} goal_relative_rot: {} object_pose_delayed_randomized: {} goal_relative_rot_delayed_randomized: {} object_obs_delayed_age: {} # ft_states: {} # ft_force_torques: {} last_actions: {} mlp: units: [512, 512, 256, 128] #[256] # activation: elu d2rl: False initializer: name: default regularizer: name: None # rnn: # name: lstm # units: 512 # layers: 1 # before_mlp: True # layer_norm: True player: deterministic: True use_vecenv: True games_num: 1000000 print_stats: False
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/AllegroHandLSTMPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True inputs: dof_pos_randomized: { } object_pose_cam_randomized: { } goal_pose_randomized: { } goal_relative_rot_cam_randomized: { } last_actions_randomized: { } mlp: units: [256] activation: elu d2rl: False initializer: name: default regularizer: name: None rnn: name: lstm units: 512 layers: 1 before_mlp: True layer_norm: True load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:AllegroHandAsymmLSTM,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True value_bootstrap: False # TODO: enable bootstrap? num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.998 tau: 0.95 learning_rate: 1e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 score_to_win: 100000 max_epochs: ${resolve_default:50000,${....max_iterations}} save_best_after: 200 save_frequency: 500 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 4 critic_coef: 4 clip_value: True seq_length: 16 bounds_loss_coef: 0.0001 # optimize summaries to prevent tf.event files from growing to gigabytes defer_summaries_sec: ${if:${....pbt},150,5} summaries_interval_sec_min: ${if:${....pbt},20,5} summaries_interval_sec_max: 100 central_value_config: minibatch_size: 16384 #32768 mini_epochs: 4 learning_rate: 1e-4 kl_threshold: 0.016 clip_value: True normalize_input: True truncate_grads: True network: name: actor_critic central_value: True inputs: dof_pos: { } dof_vel: { } dof_force: { } object_pose: { } object_pose_cam_randomized: { } object_vels: { } goal_pose: { } goal_relative_rot: {} last_actions: { } ft_force_torques: {} gravity_vec: {} ft_states: {} mlp: units: [512, 256, 128] #[256] # activation: elu d2rl: False initializer: name: default regularizer: name: None rnn: name: lstm units: 512 layers: 1 before_mlp: True layer_norm: True player: deterministic: True use_vecenv: True games_num: 1000000 print_stats: False
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/HumanoidAMPPPO.yaml
params: seed: ${...seed} algo: name: amp_continuous model: name: continuous_amp network: name: amp separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: -2.9 fixed_sigma: True learn_sigma: False mlp: units: [1024, 512] activation: relu d2rl: False initializer: name: default regularizer: name: None disc: units: [1024, 512] activation: relu initializer: name: default load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:HumanoidAMP,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu ppo: True multi_gpu: ${....multi_gpu} mixed_precision: False normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-5 lr_schedule: constant kl_threshold: 0.008 score_to_win: 20000 max_epochs: ${resolve_default:5000,${....max_iterations}} save_best_after: 100 save_frequency: 50 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: False e_clip: 0.2 horizon_length: 16 minibatch_size: 32768 mini_epochs: 6 critic_coef: 5 clip_value: False seq_len: 4 bounds_loss_coef: 10 amp_obs_demo_buffer_size: 200000 amp_replay_buffer_size: 1000000 amp_replay_keep_prob: 0.01 amp_batch_size: 512 amp_minibatch_size: 4096 disc_coef: 5 disc_logit_reg: 0.05 disc_grad_penalty: 5 disc_reward_scale: 2 disc_weight_decay: 0.0001 normalize_amp_input: True task_reward_w: 0.0 disc_reward_w: 1.0
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/AnymalTerrainPPO_LSTM.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0. # std = 1. fixed_sigma: True mlp: units: [512] #, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None rnn: name: lstm units: 256 #128 layers: 1 before_mlp: False #True concat_input: True layer_norm: False load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:AnymalTerrain,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: True normalize_input: True normalize_value: True normalize_advantage: True value_bootstrap: True clip_actions: False num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 gamma: 0.99 tau: 0.95 e_clip: 0.2 entropy_coef: 0.001 learning_rate: 3.e-4 # overwritten by adaptive lr_schedule lr_schedule: adaptive kl_threshold: 0.008 # target kl for adaptive lr truncate_grads: True grad_norm: 1. horizon_length: 24 minibatch_size: 16384 mini_epochs: 5 critic_coef: 2 clip_value: True seq_len: 4 # only for rnn bounds_loss_coef: 0. max_epochs: ${resolve_default:750,${....max_iterations}} save_best_after: 100 score_to_win: 20000 save_frequency: 50 print_stats: True
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/FrankaCubeStackPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:FrankaCubeStack,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.008 score_to_win: 10000 max_epochs: ${resolve_default:10000,${....max_iterations}} save_best_after: 200 save_frequency: 100 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 32 minibatch_size: 16384 mini_epochs: 5 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/HumanoidSAC.yaml
params: seed: ${...seed} algo: name: sac model: name: soft_actor_critic network: name: soft_actor_critic separate: True space: continuous: mlp: units: [512, 256] activation: relu initializer: name: default log_std_bounds: [-5, 2] load_checkpoint: False load_path: nn/Ant.pth config: name: ${resolve_default:HumanoidSAC,${....experiment}} env_name: rlgpu multi_gpu: ${....multi_gpu} normalize_input: True reward_shaper: scale_value: 1.0 max_epochs: 50000 num_steps_per_episode: 8 save_best_after: 100 save_frequency: 1000 gamma: 0.99 init_alpha: 1.0 alpha_lr: 0.005 actor_lr: 0.0005 critic_lr: 0.0005 critic_tau: 0.005 batch_size: 4096 learnable_temperature: true num_seed_steps: 5 num_warmup_steps: 10 replay_buffer_size: 1000000 num_actors: ${....task.env.numEnvs}
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/ShadowHandOpenAI_LSTMPPO.yaml
# specifies what the default training mode is when # running `ShadowHandOpenAI_LSTM` (version with DR and asymmetric observations, and LSTM) defaults: - ShadowHandPPOAsymmLSTM - _self_
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/IngenuityPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Ingenuity,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-3 lr_schedule: adaptive kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:500,${....max_iterations}} save_best_after: 50 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 8 critic_coef: 2 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/QuadcopterPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Quadcopter,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-3 lr_schedule: adaptive kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:500,${....max_iterations}} save_best_after: 50 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 8 minibatch_size: 16384 mini_epochs: 8 critic_coef: 2 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/FactoryTaskNutBoltScrewPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:FactoryTaskNutBoltScrew,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1.0e-4 lr_schedule: fixed schedule_type: standard kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:1024,${....max_iterations}} save_best_after: 50 save_frequency: 100 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: False e_clip: 0.2 horizon_length: 128 minibatch_size: 512 # batch size = num_envs * horizon_length; minibatch_size = batch_size / num_minibatches mini_epochs: 8 critic_coef: 2 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/ShadowHandPPOLSTM.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [512, 512, 256] activation: elu d2rl: False initializer: name: default regularizer: name: None rnn: name: lstm units: 256 layers: 1 before_mlp: False concat_input: True layer_norm: True load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:ShadowHandLSTM,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 score_to_win: 100000 save_best_after: 500 save_frequency: 100 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 32 minibatch_size: 16384 mini_epochs: ${resolve_default:4,${....max_iterations}} critic_coef: 4 clip_value: False seq_len: 4 bounds_loss_coef: 0.0001 player: #render: True deterministic: True games_num: 100000 print_stats: True
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/BallBalancePPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [128, 64, 32] activation: elu initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:BallBalance,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: ${resolve_default:250,${....max_iterations}} save_best_after: 50 save_frequency: 100 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 8192 mini_epochs: 8 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/FactoryTaskNutBoltPlacePPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:FactoryTaskNutBoltPlace,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: fixed schedule_type: standard kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:1024,${....max_iterations}} save_best_after: 50 save_frequency: 100 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: False e_clip: 0.2 horizon_length: 120 minibatch_size: 512 mini_epochs: 8 critic_coef: 2 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/IndustRealTaskGearsInsertPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None rnn: name: lstm units: 256 layers: 2 before_mlp: True concat_input: True layer_norm: False load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:IndustRealTaskGearsInsert,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu multi_gpu: False ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.998 tau: 0.95 learning_rate: 1e-4 lr_schedule: linear schedule_type: standard kl_threshold: 0.008 score_to_win: 20000 max_epochs: ${resolve_default:8192,${....max_iterations}} save_best_after: 50 save_frequency: 1000 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: False e_clip: 0.2 horizon_length: 128 minibatch_size: 8 # batch size = num_envs * horizon_length; minibatch_size = batch_size / num_minibatches mini_epochs: 8 critic_coef: 2 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001 central_value_config: minibatch_size: 8 mini_epochs: 4 learning_rate: 1e-3 lr_schedule: linear kl_threshold: 0.016 clip_value: True normalize_input: True truncate_grads: True network: name: actor_critic central_value: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/AntPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Ant,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive schedule_type: legacy kl_threshold: 0.008 score_to_win: 20000 max_epochs: ${resolve_default:500,${....max_iterations}} save_best_after: 200 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: False e_clip: 0.2 horizon_length: 16 minibatch_size: 32768 mini_epochs: 4 critic_coef: 2 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/FrankaCabinetPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:FrankaCabinet,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 10000 max_epochs: ${resolve_default:1500,${....max_iterations}} save_best_after: 200 save_frequency: 100 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 8192 mini_epochs: 8 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/AntSAC.yaml
params: seed: ${...seed} algo: name: sac model: name: soft_actor_critic network: name: soft_actor_critic separate: True space: continuous: mlp: units: [512, 256] activation: relu initializer: name: default log_std_bounds: [-5, 2] load_checkpoint: False load_path: nn/Ant.pth config: name: ${resolve_default:AntSAC,${....experiment}} env_name: rlgpu multi_gpu: ${....multi_gpu} normalize_input: True reward_shaper: scale_value: 1.0 max_epochs: 20000 num_steps_per_episode: 8 save_best_after: 100 save_frequency: 1000 gamma: 0.99 init_alpha: 1.0 alpha_lr: 0.005 actor_lr: 0.0005 critic_lr: 0.0005 critic_tau: 0.005 batch_size: 4096 learnable_temperature: true num_seed_steps: 5 num_warmup_steps: 10 replay_buffer_size: 1000000 num_actors: ${....task.env.numEnvs}
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/AllegroKukaLSTMPPO.yaml
defaults: - AllegroKukaPPO - _self_ params: network: mlp: units: [768, 512, 256] activation: elu d2rl: False initializer: name: default regularizer: name: None rnn: name: lstm units: 768 layers: 1 before_mlp: True layer_norm: True config: name: ${resolve_default:AllegroKukaLSTMPPO,${....experiment}} minibatch_size: 32768 mini_epochs: 2
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/AllegroHandPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:AllegroHand,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 score_to_win: 100000 max_epochs: ${resolve_default:5000,${....max_iterations}} save_best_after: 500 save_frequency: 200 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 8 minibatch_size: 32768 mini_epochs: 5 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001 player: #render: True deterministic: True games_num: 100000 print_stats: True
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/TrifingerPPO.yaml
asymmetric_obs: true params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: false space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: true mlp: units: [256, 256, 128, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Trifinger,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: true mixed_precision: false normalize_input: true normalize_value: true reward_shaper: scale_value: 0.01 normalize_advantage: true gamma: 0.99 tau: 0.95 learning_rate: 0.0003 lr_schedule: constant use_experimental_cv: true schedule_type: standard kl_threshold: 0.016 score_to_win: 500000 max_epochs: ${resolve_default:20000,${....max_iterations}} save_best_after: 100 save_frequency: 100 print_stats: true grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: true e_clip: 0.2 horizon_length: 8 minibatch_size: ${.num_actors} mini_epochs: 4 critic_coef: 4 clip_value: true seq_len: 4 bounds_loss_coef: 0.0001 central_value_config: minibatch_size: ${..num_actors} mini_epochs: ${..mini_epochs} learning_rate: 0.0005 lr_schedule: linear schedule_type: standard kl_threshold: 0.016 clip_value: true normalize_input: true truncate_grads: true network: name: actor_critic central_value: true mlp: units: [512, 512, 256, 128] activation: elu d2rl: false initializer: name: default regularizer: name: None player: deterministic: true games_num: 1000000 print_stats: false num_actors: ${....task.env.numEnvs}
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/AnymalPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0. # std = 1. fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Anymal,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 e_clip: 0.2 entropy_coef: 0.0 learning_rate: 3.e-4 # overwritten by adaptive lr_schedule lr_schedule: adaptive kl_threshold: 0.008 # target kl for adaptive lr truncate_grads: True grad_norm: 1. horizon_length: 24 minibatch_size: 32768 mini_epochs: 5 critic_coef: 2 clip_value: True seq_len: 4 # only for rnn bounds_loss_coef: 0.001 max_epochs: ${resolve_default:1000,${....max_iterations}} save_best_after: 200 score_to_win: 20000 save_frequency: 50 print_stats: True
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/CartpolePPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [32, 32] activation: elu initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Cartpole,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: ${resolve_default:100,${....max_iterations}} save_best_after: 50 save_frequency: 25 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 8192 mini_epochs: 8 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/ShadowHandOpenAIPPO.yaml
# specifies what the default training mode is when # running `ShadowHandOpenAI` (version with DR and asymmetric observations) # (currently defaults to asymmetric training) defaults: - ShadowHandPPOAsymm - _self_
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/FactoryTaskNutBoltPickPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:FactoryTaskNutBoltPick,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: fixed schedule_type: standard kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:1024,${....max_iterations}} save_best_after: 50 save_frequency: 100 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: False e_clip: 0.2 horizon_length: 120 minibatch_size: 512 mini_epochs: 8 critic_coef: 2 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/train/HumanoidAMPPPOLowGP.yaml
params: seed: ${...seed} algo: name: amp_continuous model: name: continuous_amp network: name: amp separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: -2.9 fixed_sigma: True learn_sigma: False mlp: units: [1024, 512] activation: relu d2rl: False initializer: name: default regularizer: name: None disc: units: [1024, 512] activation: relu initializer: name: default load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:HumanoidAMP,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu ppo: True multi_gpu: ${....multi_gpu} mixed_precision: False normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-5 lr_schedule: constant kl_threshold: 0.008 score_to_win: 20000 max_epochs: ${resolve_default:5000,${....max_iterations}} save_best_after: 100 save_frequency: 50 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: False e_clip: 0.2 horizon_length: 16 minibatch_size: 32768 mini_epochs: 6 critic_coef: 5 clip_value: False seq_len: 4 bounds_loss_coef: 10 amp_obs_demo_buffer_size: 200000 amp_replay_buffer_size: 1000000 amp_replay_keep_prob: 0.01 amp_batch_size: 512 amp_minibatch_size: 4096 disc_coef: 5 disc_logit_reg: 0.05 disc_grad_penalty: 0.2 disc_reward_scale: 2 disc_weight_decay: 0.0001 normalize_amp_input: True task_reward_w: 0.0 disc_reward_w: 1.0
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/pbt/pbt_default.yaml
defaults: - mutation: default_mutation enabled: True policy_idx: 0 # policy index in a population: should always be specified explicitly! Each run in a population should have a unique idx from [0..N-1] num_policies: 8 # total number of policies in the population, the total number of learners. Override through CLI! workspace: "pbt_workspace" # suffix of the workspace dir name inside train_dir, used to distinguish different PBT runs with the same experiment name. Recommended to specify a unique name # special mode that enables PBT features for debugging even if only one policy is present. Never enable in actual experiments dbg_mode: False # PBT hyperparams interval_steps: 10000000 # Interval in env steps between PBT iterations (checkpointing, mutation, etc.) start_after: 10000000 # Start PBT after this many env frames are collected, this applies to all experiment restarts, i.e. when we resume training after the weights are mutated initial_delay: 20000000 # This is a separate delay for when we're just starting the training session. It makes sense to give policies a bit more time to develop different behaviors # Fraction of the underperforming policies whose weights are to be replaced by better performing policies # This is rounded up, i.e. for 8 policies and fraction 0.3 we replace ceil(0.3*8)=3 worst policies replace_fraction_worst: 0.125 # Fraction of agents used to sample weights from when we replace an underperforming agent # This is also rounded up replace_fraction_best: 0.3 # Replace an underperforming policy only if its reward is lower by at least this fraction of standard deviation # within the population. replace_threshold_frac_std: 0.5 # Replace an underperforming policy only if its reward is lower by at least this fraction of the absolute value # of the objective of a better policy replace_threshold_frac_absolute: 0.05 # Probability to mutate a certain parameter mutation_rate: 0.15 # min and max values for the mutation of a parameter # The mutation is performed by multiplying or dividing (randomly) the parameter value by a value sampled from [change_min, change_max] change_min: 1.1 change_max: 1.5
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/pbt/no_pbt.yaml
enabled: False
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/pbt/mutation/ant_mutation.yaml
task.env.headingWeight: "mutate_float" task.env.upWeight: "mutate_float" train.params.config.grad_norm: "mutate_float" train.params.config.entropy_coef: "mutate_float" train.params.config.critic_coef: "mutate_float" train.params.config.bounds_loss_coef: "mutate_float" train.params.config.kl_threshold: "mutate_float" train.params.config.e_clip: "mutate_eps_clip" train.params.config.mini_epochs: "mutate_mini_epochs" train.params.config.gamma: "mutate_discount" train.params.config.tau: "mutate_discount"
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/pbt/mutation/humanoid_mutation.yaml
task.env.headingWeight: "mutate_float" task.env.upWeight: "mutate_float" task.env.fingertipDeltaRewScale: "mutate_float" task.env.liftingRewScale: "mutate_float" task.env.liftingBonus: "mutate_float" task.env.keypointRewScale: "mutate_float" task.env.reachGoalBonus: "mutate_float" task.env.kukaActionsPenaltyScale: "mutate_float" task.env.allegroActionsPenaltyScale: "mutate_float" train.params.config.reward_shaper.scale_value: "mutate_float" train.params.config.learning_rate: "mutate_float" train.params.config.grad_norm: "mutate_float" train.params.config.entropy_coef: "mutate_float" train.params.config.critic_coef: "mutate_float" train.params.config.bounds_loss_coef: "mutate_float" train.params.config.e_clip: "mutate_eps_clip" train.params.config.mini_epochs: "mutate_mini_epochs" train.params.config.gamma: "mutate_discount"
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/pbt/mutation/default_mutation.yaml
train.params.config.reward_shaper.scale_value: "mutate_float" train.params.config.learning_rate: "mutate_float" train.params.config.grad_norm: "mutate_float" train.params.config.entropy_coef: "mutate_float" train.params.config.critic_coef: "mutate_float" train.params.config.bounds_loss_coef: "mutate_float" train.params.config.e_clip: "mutate_eps_clip" train.params.config.mini_epochs: "mutate_mini_epochs" train.params.config.gamma: "mutate_discount"
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/pbt/mutation/allegro_hand_mutation.yaml
task.env.dist_reward_scale: "mutate_float" task.env.rot_reward_scale: "mutate_float" task.env.rot_eps: "mutate_float" task.env.reach_goal_bonus: "mutate_float" # Could be additionally mutated #task.env.actionPenaltyScale: "mutate_float" #task.env.actionDeltaPenaltyScale: "mutate_float" #task.env.startObjectPoseDY: "mutate_float" #task.env.startObjectPoseDZ: "mutate_float" #task.env.fallDistance: "mutate_float" train.params.config.learning_rate: "mutate_float" train.params.config.grad_norm: "mutate_float" train.params.config.entropy_coef: "mutate_float" train.params.config.critic_coef: "mutate_float" train.params.config.bounds_loss_coef: "mutate_float" train.params.config.kl_threshold: "mutate_float" train.params.config.e_clip: "mutate_eps_clip" train.params.config.mini_epochs: "mutate_mini_epochs" train.params.config.gamma: "mutate_discount" # These would require special mutation rules # 'train.params.config.steps_num': 8 # 'train.params.config.minibatch_size': 256
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/cfg/pbt/mutation/allegro_kuka_mutation.yaml
task.env.distRewardScale: "mutate_float" task.env.rotRewardScale: "mutate_float" task.env.actionPenaltyScale: "mutate_float" task.env.liftingRewScale: "mutate_float" task.env.liftingBonus: "mutate_float" task.env.liftingBonusThreshold: "mutate_float" task.env.keypointRewScale: "mutate_float" task.env.distanceDeltaRewScale: "mutate_float" task.env.reachGoalBonus: "mutate_float" task.env.kukaActionsPenaltyScale: "mutate_float" task.env.allegroActionsPenaltyScale: "mutate_float" task.env.fallDistance: "mutate_float" # Could be additionally mutated #train.params.config.learning_rate: "mutate_float" #train.params.config.entropy_coef: "mutate_float" # this is 0, no reason to mutate train.params.config.grad_norm: "mutate_float" train.params.config.critic_coef: "mutate_float" train.params.config.bounds_loss_coef: "mutate_float" train.params.config.kl_threshold: "mutate_float" train.params.config.e_clip: "mutate_eps_clip" train.params.config.mini_epochs: "mutate_mini_epochs" train.params.config.gamma: "mutate_discount" # These would require special mutation rules # 'train.params.config.steps_num': 8 # 'train.params.config.minibatch_size': 256
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/pbt/__init__.py
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/pbt/pbt.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import os import random import shutil import sys import time from os.path import join from typing import Any, Dict, List, Optional import numpy as np import torch import yaml from omegaconf import DictConfig from rl_games.algos_torch.torch_ext import safe_filesystem_op, safe_save from rl_games.common.algo_observer import AlgoObserver from isaacgymenvs.pbt.mutation import mutate from isaacgymenvs.utils.reformat import omegaconf_to_dict from isaacgymenvs.utils.utils import flatten_dict, project_tmp_dir, safe_ensure_dir_exists # i.e. value for target objective when it is not known _UNINITIALIZED_VALUE = float(-1e9) def _checkpnt_name(iteration): return f"{iteration:06d}.yaml" def _model_checkpnt_name(iteration): return f"{iteration:06d}.pth" def _flatten_params(params: Dict, prefix="", separator=".") -> Dict: all_params = flatten_dict(params, prefix, separator) return all_params def _filter_params(params: Dict, params_to_mutate: Dict) -> Dict: filtered_params = dict() for key, value in params.items(): if key in params_to_mutate: if isinstance(value, str): try: # trying to convert values such as "1e-4" to floats because yaml fails to recognize them as such float_value = float(value) value = float_value except ValueError: pass filtered_params[key] = value return filtered_params class PbtParams: def __init__(self, cfg: DictConfig): params: Dict = omegaconf_to_dict(cfg) pbt_params = params["pbt"] self.replace_fraction_best = pbt_params["replace_fraction_best"] self.replace_fraction_worst = pbt_params["replace_fraction_worst"] self.replace_threshold_frac_std = pbt_params["replace_threshold_frac_std"] self.replace_threshold_frac_absolute = pbt_params["replace_threshold_frac_absolute"] self.mutation_rate = pbt_params["mutation_rate"] self.change_min = pbt_params["change_min"] self.change_max = pbt_params["change_max"] self.task_name = params["task"]["name"] self.dbg_mode = pbt_params["dbg_mode"] self.policy_idx = pbt_params["policy_idx"] self.num_policies = pbt_params["num_policies"] self.num_envs = params["task"]["env"]["numEnvs"] self.workspace = pbt_params["workspace"] self.interval_steps = pbt_params["interval_steps"] self.start_after_steps = pbt_params["start_after"] self.initial_delay_steps = pbt_params["initial_delay"] self.params_to_mutate = pbt_params["mutation"] mutable_params = _flatten_params(params) self.mutable_params = _filter_params(mutable_params, self.params_to_mutate) self.with_wandb = params["wandb_activate"] RLAlgo = Any # just for readability def _restart_process_with_new_params( policy_idx: int, new_params: Dict, restart_from_checkpoint: Optional[str], experiment_name: Optional[str], algo: Optional[RLAlgo], with_wandb: bool, ) -> None: cli_args = sys.argv modified_args = [cli_args[0]] # initialize with path to the Python script for arg in cli_args[1:]: if "=" not in arg: modified_args.append(arg) else: assert "=" in arg arg_name, arg_value = arg.split("=") if arg_name in new_params or arg_name in [ "checkpoint", "+full_experiment_name", "hydra.run.dir", "++pbt_restart", ]: # skip this parameter, it will be added later! continue modified_args.append(f"{arg_name}={arg_value}") modified_args.append(f"hydra.run.dir={os.getcwd()}") modified_args.append(f"++pbt_restart=True") if experiment_name is not None: modified_args.append(f"+full_experiment_name={experiment_name}") if restart_from_checkpoint is not None: modified_args.append(f"checkpoint={restart_from_checkpoint}") # add all the new (possibly mutated) parameters for param, value in new_params.items(): modified_args.append(f"{param}={value}") if algo is not None: algo.writer.flush() algo.writer.close() if with_wandb: try: import wandb wandb.run.finish() except Exception as exc: print(f"Policy {policy_idx}: Exception {exc} in wandb.run.finish()") return print(f"Policy {policy_idx}: Restarting self with args {modified_args}", flush=True) os.execv(sys.executable, ["python3"] + modified_args) def initial_pbt_check(cfg: DictConfig): assert cfg.pbt.enabled if hasattr(cfg, "pbt_restart") and cfg.pbt_restart: print(f"PBT job restarted from checkpoint, keep going...") return print("PBT run without 'pbt_restart=True' - must be the very start of the experiment!") print("Mutating initial set of hyperparameters!") pbt_params = PbtParams(cfg) new_params = mutate( pbt_params.mutable_params, pbt_params.params_to_mutate, pbt_params.mutation_rate, pbt_params.change_min, pbt_params.change_max, ) _restart_process_with_new_params(pbt_params.policy_idx, new_params, None, None, None, False) class PbtAlgoObserver(AlgoObserver): def __init__(self, cfg: DictConfig): super().__init__() self.pbt_params: PbtParams = PbtParams(cfg) self.policy_idx: int = self.pbt_params.policy_idx self.num_envs: int = self.pbt_params.num_envs self.pbt_num_policies: int = self.pbt_params.num_policies self.algo: Optional[RLAlgo] = None self.pbt_workspace_dir = self.curr_policy_workspace_dir = None self.pbt_iteration = -1 # dummy value, stands for "not initialized" self.initial_env_frames = -1 # env frames at the beginning of the experiment, can be > 0 if we resume self.finished_agents = set() self.last_target_objectives = [_UNINITIALIZED_VALUE] * self.pbt_params.num_envs self.curr_target_objective_value: float = _UNINITIALIZED_VALUE self.target_objective_known = False # switch to true when we have enough data to calculate target objective # keep track of objective values in the current iteration # we use best value reached in the current iteration to decide whether to be replaced by another policy # this reduces the noisiness of evolutionary pressure by reducing the number of situations where a policy # gets replaced just due to a random minor dip in performance self.best_objective_curr_iteration: Optional[float] = None self.experiment_start = time.time() self.with_wandb = self.pbt_params.with_wandb def after_init(self, algo): self.algo = algo self.pbt_workspace_dir = join(algo.train_dir, self.pbt_params.workspace) self.curr_policy_workspace_dir = self._policy_workspace_dir(self.pbt_params.policy_idx) os.makedirs(self.curr_policy_workspace_dir, exist_ok=True) def process_infos(self, infos, done_indices): if "true_objective" in infos: done_indices_lst = done_indices.squeeze(-1).tolist() self.finished_agents.update(done_indices_lst) for done_idx in done_indices_lst: true_objective_value = infos["true_objective"][done_idx].item() self.last_target_objectives[done_idx] = true_objective_value # last result for all episodes self.target_objective_known = len(self.finished_agents) >= self.pbt_params.num_envs if self.target_objective_known: self.curr_target_objective_value = float(np.mean(self.last_target_objectives)) else: # environment does not specify "true objective", use regular reward # in this case, be careful not to include reward shaping coefficients into the mutation config self.target_objective_known = self.algo.game_rewards.current_size >= self.algo.games_to_track if self.target_objective_known: self.curr_target_objective_value = float(self.algo.mean_rewards) if self.target_objective_known: if ( self.best_objective_curr_iteration is None or self.curr_target_objective_value > self.best_objective_curr_iteration ): print( f"Policy {self.policy_idx}: New best objective value {self.curr_target_objective_value} in iteration {self.pbt_iteration}" ) self.best_objective_curr_iteration = self.curr_target_objective_value def after_steps(self): if self.pbt_iteration == -1: self.pbt_iteration = self.algo.frame // self.pbt_params.interval_steps self.initial_env_frames = self.algo.frame print( f"Policy {self.policy_idx}: PBT init. Env frames: {self.algo.frame}, pbt_iteration: {self.pbt_iteration}" ) env_frames: int = self.algo.frame iteration = env_frames // self.pbt_params.interval_steps print( f"Policy {self.policy_idx}: Env frames {env_frames}, iteration {iteration}, self iteration {self.pbt_iteration}" ) if iteration <= self.pbt_iteration: return if not self.target_objective_known: # not enough data yet to calcuate avg true_objective print( f"Policy {self.policy_idx}: Not enough episodes finished, wait for more data ({len(self.finished_agents)}/{self.num_envs})..." ) return assert self.curr_target_objective_value != _UNINITIALIZED_VALUE assert self.best_objective_curr_iteration is not None best_objective_curr_iteration: float = self.best_objective_curr_iteration # reset for the next iteration self.best_objective_curr_iteration = None self.target_objective_known = False sec_since_experiment_start = time.time() - self.experiment_start pbt_start_after_sec = 1 if self.pbt_params.dbg_mode else 30 if sec_since_experiment_start < pbt_start_after_sec: print( f"Policy {self.policy_idx}: Not enough time passed since experiment start {sec_since_experiment_start}" ) return print(f"Policy {self.policy_idx}: New pbt iteration {iteration}!") self.pbt_iteration = iteration try: self._save_pbt_checkpoint() except Exception as exc: print(f"Policy {self.policy_idx}: Exception {exc} when saving PBT checkpoint!") return try: checkpoints = self._load_population_checkpoints() except Exception as exc: print(f"Policy {self.policy_idx}: Exception {exc} when loading checkpoints!") return try: self._cleanup(checkpoints) except Exception as exc: print(f"Policy {self.policy_idx}: Exception {exc} during cleanup!") policies = list(range(self.pbt_num_policies)) target_objectives = [] for p in policies: if checkpoints[p] is None: target_objectives.append(_UNINITIALIZED_VALUE) else: target_objectives.append(checkpoints[p]["true_objective"]) policies_sorted = sorted(zip(target_objectives, policies), reverse=True) objectives = [objective for objective, p in policies_sorted] best_objective = objectives[0] policies_sorted = [p for objective, p in policies_sorted] best_policy = policies_sorted[0] self._maybe_save_best_policy(best_objective, best_policy, checkpoints[best_policy]) objectives_filtered = [o for o in objectives if o > _UNINITIALIZED_VALUE] try: self._pbt_summaries(self.pbt_params.mutable_params, best_objective) except Exception as exc: print(f"Policy {self.policy_idx}: Exception {exc} when writing summaries!") return if ( env_frames - self.initial_env_frames < self.pbt_params.start_after_steps or env_frames < self.pbt_params.initial_delay_steps ): print( f"Policy {self.policy_idx}: Not enough experience collected to replace weights. " f"Giving this policy more time to adjust to the latest parameters... " f"env_frames={env_frames} started_at={self.initial_env_frames} " f"restart_delay={self.pbt_params.start_after_steps} initial_delay={self.pbt_params.initial_delay_steps}" ) return replace_worst = math.ceil(self.pbt_params.replace_fraction_worst * self.pbt_num_policies) replace_best = math.ceil(self.pbt_params.replace_fraction_best * self.pbt_num_policies) best_policies = policies_sorted[:replace_best] worst_policies = policies_sorted[-replace_worst:] print(f"Policy {self.policy_idx}: PBT best_policies={best_policies}, worst_policies={worst_policies}") if self.policy_idx not in worst_policies and not self.pbt_params.dbg_mode: # don't touch the policies that are doing okay print(f"Current policy {self.policy_idx} is doing well, not among the worst_policies={worst_policies}") return if best_objective_curr_iteration is not None and not self.pbt_params.dbg_mode: if best_objective_curr_iteration >= min(objectives[:replace_best]): print( f"Policy {self.policy_idx}: best_objective={best_objective_curr_iteration} " f"is better than some of the top policies {objectives[:replace_best]}. " f"This policy should keep training for now, it is doing okay." ) return if len(objectives_filtered) <= max(2, self.pbt_num_policies // 2) and not self.pbt_params.dbg_mode: print(f"Policy {self.policy_idx}: Not enough data to start PBT, {objectives_filtered}") return print(f"Current policy {self.policy_idx} is among the worst_policies={worst_policies}, consider replacing weights") print( f"Policy {self.policy_idx} objective: {self.curr_target_objective_value}, best_objective={best_objective} (best_policy={best_policy})." ) replacement_policy_candidate = random.choice(best_policies) candidate_objective = checkpoints[replacement_policy_candidate]["true_objective"] targ_objective_value = self.curr_target_objective_value objective_delta = candidate_objective - targ_objective_value num_outliers = int(math.floor(0.2 * len(objectives_filtered))) print(f"Policy {self.policy_idx} num outliers: {num_outliers}") if len(objectives_filtered) > num_outliers: objectives_filtered_sorted = sorted(objectives_filtered) # remove the worst policies from the std calculation, this will allow us to keep improving even if 1-2 policies # crashed and can't keep improving. Otherwise, std value will be too large. objectives_std = np.std(objectives_filtered_sorted[num_outliers:]) else: objectives_std = np.std(objectives_filtered) objective_threshold = self.pbt_params.replace_threshold_frac_std * objectives_std absolute_threshold = self.pbt_params.replace_threshold_frac_absolute * abs(candidate_objective) if objective_delta > objective_threshold and objective_delta > absolute_threshold: # replace this policy with a candidate replacement_policy = replacement_policy_candidate print(f"Replacing underperforming policy {self.policy_idx} with {replacement_policy}") else: print( f"Policy {self.policy_idx}: Difference in objective value ({candidate_objective} vs {targ_objective_value}) is not sufficient to justify replacement," f"{objective_delta}, {objectives_std}, {objective_threshold}, {absolute_threshold}" ) # replacing with "self": keep the weights but mutate the hyperparameters replacement_policy = self.policy_idx # Decided to replace the policy weights! # we can either copy parameters from the checkpoint we're restarting from, or keep our parameters and # further mutate them. if random.random() < 0.5: new_params = checkpoints[replacement_policy]["params"] else: new_params = self.pbt_params.mutable_params new_params = mutate( new_params, self.pbt_params.params_to_mutate, self.pbt_params.mutation_rate, self.pbt_params.change_min, self.pbt_params.change_max, ) experiment_name = checkpoints[self.policy_idx]["experiment_name"] try: self._pbt_summaries(new_params, best_objective) except Exception as exc: print(f"Policy {self.policy_idx}: Exception {exc} when writing summaries!") return try: restart_checkpoint = os.path.abspath(checkpoints[replacement_policy]["checkpoint"]) # delete previous tempdir to make sure we don't grow too big checkpoint_tmp_dir = join(project_tmp_dir(), f"{experiment_name}_p{self.policy_idx}") if os.path.isdir(checkpoint_tmp_dir): shutil.rmtree(checkpoint_tmp_dir) checkpoint_tmp_dir = safe_ensure_dir_exists(checkpoint_tmp_dir) restart_checkpoint_tmp = join(checkpoint_tmp_dir, os.path.basename(restart_checkpoint)) # copy the checkpoint file to the temp dir to make sure it does not get deleted while we're restarting shutil.copyfile(restart_checkpoint, restart_checkpoint_tmp) except Exception as exc: print(f"Policy {self.policy_idx}: Exception {exc} when copying checkpoint file for restart") # perhaps checkpoint file was deleted before we could make a copy. Abort the restart. return # try to load the checkpoint file and if it fails, abandon the restart try: self._rewrite_checkpoint(restart_checkpoint_tmp, env_frames) except Exception as exc: # this should happen infrequently so should not affect training in any significant way print( f"Policy {self.policy_idx}: Exception {exc} when loading checkpoint file for restart." f"Aborting restart. Continue training with the existing set of weights!" ) return print( f"Policy {self.policy_idx}: Preparing to restart the process with mutated parameters! " f"Checkpoint {restart_checkpoint_tmp}" ) _restart_process_with_new_params( self.policy_idx, new_params, restart_checkpoint_tmp, experiment_name, self.algo, self.with_wandb ) def _rewrite_checkpoint(self, restart_checkpoint_tmp: str, env_frames: int) -> None: state = torch.load(restart_checkpoint_tmp) print(f"Policy {self.policy_idx}: restarting from checkpoint {restart_checkpoint_tmp}, {state['frame']}") print(f"Replacing {state['frame']} with {env_frames}...") state["frame"] = env_frames pbt_history = state.get("pbt_history", []) print(f"PBT history: {pbt_history}") pbt_history.append((self.policy_idx, env_frames, self.curr_target_objective_value)) state["pbt_history"] = pbt_history torch.save(state, restart_checkpoint_tmp) print(f"Policy {self.policy_idx}: checkpoint rewritten to {restart_checkpoint_tmp}!") def _save_pbt_checkpoint(self): """Save PBT-specific information including iteration number, policy index and hyperparameters.""" checkpoint_file = join(self.curr_policy_workspace_dir, _model_checkpnt_name(self.pbt_iteration)) algo_state = self.algo.get_full_state_weights() safe_save(algo_state, checkpoint_file) pbt_checkpoint_file = join(self.curr_policy_workspace_dir, _checkpnt_name(self.pbt_iteration)) pbt_checkpoint = { "iteration": self.pbt_iteration, "true_objective": self.curr_target_objective_value, "frame": self.algo.frame, "params": self.pbt_params.mutable_params, "checkpoint": os.path.abspath(checkpoint_file), "pbt_checkpoint": os.path.abspath(pbt_checkpoint_file), "experiment_name": self.algo.experiment_name, } with open(pbt_checkpoint_file, "w") as fobj: print(f"Policy {self.policy_idx}: Saving {pbt_checkpoint_file}...") yaml.dump(pbt_checkpoint, fobj) def _policy_workspace_dir(self, policy_idx): return join(self.pbt_workspace_dir, f"{policy_idx:03d}") def _load_population_checkpoints(self): """ Load checkpoints for other policies in the population. Pick the newest checkpoint, but not newer than our current iteration. """ checkpoints = dict() for policy_idx in range(self.pbt_num_policies): checkpoints[policy_idx] = None policy_workspace_dir = self._policy_workspace_dir(policy_idx) if not os.path.isdir(policy_workspace_dir): continue pbt_checkpoint_files = [f for f in os.listdir(policy_workspace_dir) if f.endswith(".yaml")] pbt_checkpoint_files.sort(reverse=True) for pbt_checkpoint_file in pbt_checkpoint_files: iteration_str = pbt_checkpoint_file.split(".")[0] iteration = int(iteration_str) if iteration <= self.pbt_iteration: with open(join(policy_workspace_dir, pbt_checkpoint_file), "r") as fobj: print(f"Policy {self.policy_idx}: Loading policy-{policy_idx} {pbt_checkpoint_file}") checkpoints[policy_idx] = safe_filesystem_op(yaml.load, fobj, Loader=yaml.FullLoader) break else: # print(f'Policy {self.policy_idx}: Ignoring {pbt_checkpoint_file} because it is newer than our current iteration') pass assert self.policy_idx in checkpoints.keys() return checkpoints def _maybe_save_best_policy(self, best_objective, best_policy_idx: int, best_policy_checkpoint): # make a directory containing the best policy checkpoints using safe_filesystem_op best_policy_workspace_dir = join(self.pbt_workspace_dir, f"best{self.policy_idx}") safe_filesystem_op(os.makedirs, best_policy_workspace_dir, exist_ok=True) best_objective_so_far = _UNINITIALIZED_VALUE best_policy_checkpoint_files = [f for f in os.listdir(best_policy_workspace_dir) if f.endswith(".yaml")] best_policy_checkpoint_files.sort(reverse=True) if best_policy_checkpoint_files: with open(join(best_policy_workspace_dir, best_policy_checkpoint_files[0]), "r") as fobj: best_policy_checkpoint_so_far = safe_filesystem_op(yaml.load, fobj, Loader=yaml.FullLoader) best_objective_so_far = best_policy_checkpoint_so_far["true_objective"] if best_objective_so_far >= best_objective: # don't save the checkpoint if it is worse than the best checkpoint so far return print(f"Policy {self.policy_idx}: New best objective: {best_objective}!") # save the best policy checkpoint to this folder best_policy_checkpoint_name = f"{self.pbt_params.task_name}_best_obj_{best_objective:015.5f}_iter_{self.pbt_iteration:04d}_policy{best_policy_idx:03d}_frame{self.algo.frame}" # copy the checkpoint file to the best policy directory try: shutil.copy( best_policy_checkpoint["checkpoint"], join(best_policy_workspace_dir, f"{best_policy_checkpoint_name}.pth"), ) shutil.copy( best_policy_checkpoint["pbt_checkpoint"], join(best_policy_workspace_dir, f"{best_policy_checkpoint_name}.yaml"), ) # cleanup older best policy checkpoints, we want to keep only N latest files best_policy_checkpoint_files = [f for f in os.listdir(best_policy_workspace_dir)] best_policy_checkpoint_files.sort(reverse=True) n_to_keep = 6 for best_policy_checkpoint_file in best_policy_checkpoint_files[n_to_keep:]: os.remove(join(best_policy_workspace_dir, best_policy_checkpoint_file)) except Exception as exc: print(f"Policy {self.policy_idx}: Exception {exc} when copying best checkpoint!") # no big deal if this fails, hopefully the next time we will succeeed return def _pbt_summaries(self, params, best_objective): for param, value in params.items(): self.algo.writer.add_scalar(f"pbt/{param}", value, self.algo.frame) self.algo.writer.add_scalar(f"pbt/00_best_objective", best_objective, self.algo.frame) self.algo.writer.flush() def _cleanup(self, checkpoints): iterations = [] for policy_idx, checkpoint in checkpoints.items(): if checkpoint is None: iterations.append(0) else: iterations.append(checkpoint["iteration"]) oldest_iteration = sorted(iterations)[0] cleanup_threshold = oldest_iteration - 20 print( f"Policy {self.policy_idx}: Oldest iteration in population is {oldest_iteration}, removing checkpoints older than {cleanup_threshold} iteration" ) pbt_checkpoint_files = [f for f in os.listdir(self.curr_policy_workspace_dir)] for f in pbt_checkpoint_files: if "." in f: iteration_idx = int(f.split(".")[0]) if iteration_idx <= cleanup_threshold: print(f"Policy {self.policy_idx}: PBT cleanup: removing checkpoint {f}") # we catch all exceptions in this function so no need to use safe_filesystem_op os.remove(join(self.curr_policy_workspace_dir, f)) # Sometimes, one of the PBT processes can get stuck, or crash, or be scheduled significantly later on Slurm # or a similar cluster management system. # In that case, we will accumulate a lot of older checkpoints. In order to keep the number of older checkpoints # under control (to avoid running out of disk space) we implement the following logic: # when we have more than N checkpoints, we delete half of the oldest checkpoints. This caps the max amount of # disk space used, and still allows older policies to participate in PBT max_old_checkpoints = 25 while True: pbt_checkpoint_files = [f for f in os.listdir(self.curr_policy_workspace_dir) if f.endswith(".yaml")] if len(pbt_checkpoint_files) <= max_old_checkpoints: break if not self._delete_old_checkpoint(pbt_checkpoint_files): break def _delete_old_checkpoint(self, pbt_checkpoint_files: List[str]) -> bool: """ Delete the checkpoint that results in the smallest max gap between the remaining checkpoints. Do not delete any of the last N checkpoints. """ pbt_checkpoint_files.sort() n_latest_to_keep = 10 candidates = pbt_checkpoint_files[:-n_latest_to_keep] num_candidates = len(candidates) if num_candidates < 3: return False def _iter(f): return int(f.split(".")[0]) best_gap = 1e9 best_candidate = 1 for i in range(1, num_candidates - 1): prev_iteration = _iter(candidates[i - 1]) next_iteration = _iter(candidates[i + 1]) # gap is we delete the ith candidate gap = next_iteration - prev_iteration if gap < best_gap: best_gap = gap best_candidate = i # delete the best candidate best_candidate_file = candidates[best_candidate] files_to_remove = [best_candidate_file, _model_checkpnt_name(_iter(best_candidate_file))] for file_to_remove in files_to_remove: print( f"Policy {self.policy_idx}: PBT cleanup old checkpoints, removing checkpoint {file_to_remove} (best gap {best_gap})" ) os.remove(join(self.curr_policy_workspace_dir, file_to_remove)) return True
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/pbt/mutation.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import copy import random def mutate_float(x, change_min=1.1, change_max=1.5): perturb_amount = random.uniform(change_min, change_max) # mutation direction new_value = x / perturb_amount if random.random() < 0.5 else x * perturb_amount return new_value def mutate_float_min_1(x, **kwargs): new_value = mutate_float(x, **kwargs) new_value = max(1.0, new_value) return new_value def mutate_eps_clip(x, **kwargs): new_value = mutate_float(x, **kwargs) new_value = max(0.01, new_value) new_value = min(0.3, new_value) return new_value def mutate_mini_epochs(x, **kwargs): change_amount = 1 new_value = x + change_amount if random.random() < 0.5 else x - change_amount new_value = max(1, new_value) new_value = min(8, new_value) return new_value def mutate_discount(x, **kwargs): """Special mutation func for parameters such as gamma (discount factor).""" inv_x = 1.0 - x # very conservative, large changes in gamma can lead to very different critic estimates new_inv_x = mutate_float(inv_x, change_min=1.1, change_max=1.2) new_value = 1.0 - new_inv_x return new_value def get_mutation_func(mutation_func_name): try: func = eval(mutation_func_name) except Exception as exc: print(f'Exception {exc} while trying to find the mutation func {mutation_func_name}.') raise Exception(f'Could not find mutation func {mutation_func_name}') return func def mutate(params, mutations, mutation_rate, pbt_change_min, pbt_change_max): mutated_params = copy.deepcopy(params) for param, param_value in params.items(): # toss a coin whether we perturb the parameter at all if random.random() > mutation_rate: continue mutation_func_name = mutations[param] mutation_func = get_mutation_func(mutation_func_name) mutated_value = mutation_func(param_value, change_min=pbt_change_min, change_max=pbt_change_max) mutated_params[param] = mutated_value print(f'Param {param} mutated to value {mutated_value}') return mutated_params
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/pbt/experiments/ant_pbt.py
from isaacgymenvs.pbt.launcher.run_description import ParamGrid, RunDescription, Experiment from isaacgymenvs.pbt.experiments.run_utils import version _env = 'ant' _name = f'{_env}_{version}' _iterations = 10000 _pbt_num_policies = 3 _params = ParamGrid([ ('pbt.policy_idx', list(range(_pbt_num_policies))), ]) _wandb_activate = True _wandb_group = f'pbt_{_name}' _wandb_entity = 'your_wandb_entity' _wandb_project = 'your_wandb_project' _experiments = [ Experiment( f'{_name}', f'python -m isaacgymenvs.train task=Ant headless=True ' f'max_iterations={_iterations} num_envs=2048 seed=-1 train.params.config.save_frequency=2000 ' f'wandb_activate={_wandb_activate} wandb_group={_wandb_group} wandb_entity={_wandb_entity} wandb_project={_wandb_project} ' f'pbt=pbt_default pbt.num_policies={_pbt_num_policies} pbt.workspace=workspace_{_name} ' f'pbt.initial_delay=10000000 pbt.interval_steps=5000000 pbt.start_after=10000000 pbt/mutation=ant_mutation', _params.generate_params(randomize=False), ), ] RUN_DESCRIPTION = RunDescription( f'{_name}', experiments=_experiments, experiment_arg_name='experiment', experiment_dir_arg_name='hydra.run.dir', param_prefix='', customize_experiment_name=False, )
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/pbt/experiments/allegro_kuka_two_arms_reorientation_lstm.py
from isaacgymenvs.pbt.launcher.run_description import ParamGrid, RunDescription, Experiment from isaacgymenvs.pbt.experiments.run_utils import version, seeds, default_num_frames kuka_env = 'allegro_kuka_two_arms_reorientation' _frames = default_num_frames _name = f'{kuka_env}_{version}' _params = ParamGrid([ ('seed', seeds(8)), ]) _wandb_activate = True _wandb_group = f'pbt_{_name}' _wandb_entity = 'your_wandb_entity' _wandb_project = 'your_wandb_project' cli = f'python -m isaacgymenvs.train ' \ f'train.params.config.max_frames={_frames} headless=True ' \ f'task=AllegroKukaTwoArmsLSTM task/env=reorientation ' \ f'wandb_project={_wandb_project} wandb_entity={_wandb_entity} wandb_activate={_wandb_activate} wandb_group={_wandb_group}' RUN_DESCRIPTION = RunDescription( f'{_name}', experiments=[Experiment(f'{_name}', cli, _params.generate_params(randomize=False))], experiment_arg_name='experiment', experiment_dir_arg_name='hydra.run.dir', param_prefix='', customize_experiment_name=False, )
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/pbt/experiments/allegro_kuka_throw_lstm.py
from isaacgymenvs.pbt.launcher.run_description import ParamGrid, RunDescription, Experiment from isaacgymenvs.pbt.experiments.run_utils import version, seeds, default_num_frames kuka_env = 'allegro_kuka_throw' _frames = default_num_frames _name = f'{kuka_env}_{version}' _params = ParamGrid([ ('seed', seeds(8)), ]) _wandb_activate = True _wandb_group = f'pbt_{_name}' _wandb_entity = 'your_wandb_entity' _wandb_project = 'your_wandb_project' cli = f'python -m isaacgymenvs.train seed=-1 ' \ f'train.params.config.max_frames={_frames} headless=True ' \ f'task=AllegroKukaLSTM task/env=throw ' \ f'wandb_project={_wandb_project} wandb_entity={_wandb_entity} wandb_activate={_wandb_activate} wandb_group={_wandb_group}' RUN_DESCRIPTION = RunDescription( f'{_name}', experiments=[Experiment(f'{_name}', cli, _params.generate_params(randomize=False))], experiment_arg_name='experiment', experiment_dir_arg_name='hydra.run.dir', param_prefix='', customize_experiment_name=False, )
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/pbt/experiments/run_utils.py
import random from typing import List # Versioning -- you can change this number and keep a changelog below to keep track of your experiments as you go. version = "v1" def seeds(num_seeds) -> List[int]: return [random.randrange(1000000, 9999999) for _ in range(num_seeds)] default_num_frames: int = 10_000_000_000
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/pbt/experiments/allegro_kuka_reorientation_lstm.py
from isaacgymenvs.pbt.launcher.run_description import ParamGrid, RunDescription, Experiment from isaacgymenvs.pbt.experiments.run_utils import version, seeds, default_num_frames kuka_env = 'allegro_kuka_reorientation' _frames = default_num_frames _name = f'{kuka_env}_{version}' _wandb_activate = True _wandb_group = f'pbt_{_name}' _wandb_entity = 'your_wandb_entity' _wandb_project = 'your_wandb_project' _params = ParamGrid([ ('seed', seeds(8)), ]) cli = f'python -m isaacgymenvs.train seed=-1 ' \ f'train.params.config.max_frames={_frames} headless=True ' \ f'task=AllegroKukaLSTM task/env=reorientation ' \ f'wandb_project={_wandb_project} wandb_entity={_wandb_entity} wandb_activate={_wandb_activate} wandb_group={_wandb_group}' RUN_DESCRIPTION = RunDescription( f'{_name}', experiments=[Experiment(f'{_name}', cli, _params.generate_params(randomize=False))], experiment_arg_name='experiment', experiment_dir_arg_name='hydra.run.dir', param_prefix='', customize_experiment_name=False, )
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/pbt/experiments/allegro_kuka_two_arms_regrasping_pbt_lstm.py
from isaacgymenvs.pbt.launcher.run_description import ParamGrid, RunDescription, Experiment from isaacgymenvs.pbt.experiments.allegro_kuka_pbt_base import kuka_base_cli from isaacgymenvs.pbt.experiments.run_utils import version env = 'allegro_kuka_two_arms_regrasp' _pbt_num_policies = 8 _name = f'{env}_{version}_pbt_{_pbt_num_policies}p' _wandb_group = f'pbt_{_name}' _params = ParamGrid([ ('pbt.policy_idx', list(range(_pbt_num_policies))), ]) cli = kuka_base_cli + f' task=AllegroKukaTwoArmsLSTM task/env=regrasping task.env.episodeLength=400 wandb_activate=True wandb_group={_wandb_group} pbt.num_policies={_pbt_num_policies}' RUN_DESCRIPTION = RunDescription( f'{_name}', experiments=[Experiment(f'{_name}', cli, _params.generate_params(randomize=False))], experiment_arg_name='experiment', experiment_dir_arg_name='hydra.run.dir', param_prefix='', customize_experiment_name=False, )
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/pbt/experiments/__init__.py
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/pbt/experiments/allegro_kuka_regrasping_pbt_lstm.py
from isaacgymenvs.pbt.launcher.run_description import ParamGrid, RunDescription, Experiment from isaacgymenvs.pbt.experiments.allegro_kuka_pbt_base import kuka_env, kuka_base_cli from isaacgymenvs.pbt.experiments.run_utils import version _pbt_num_policies = 8 _name = f'{kuka_env}_regrasp_{version}_pbt_{_pbt_num_policies}p' _wandb_group = f'pbt_{_name}' _params = ParamGrid([ ('pbt.policy_idx', list(range(_pbt_num_policies))), ]) cli = kuka_base_cli + f' task=AllegroKukaLSTM task/env=regrasping wandb_activate=True wandb_group={_wandb_group} pbt.num_policies={_pbt_num_policies}' RUN_DESCRIPTION = RunDescription( f'{_name}', experiments=[Experiment(f'{_name}', cli, _params.generate_params(randomize=False))], experiment_arg_name='experiment', experiment_dir_arg_name='hydra.run.dir', param_prefix='', customize_experiment_name=False, )
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/pbt/experiments/allegro_kuka_two_arms_regrasping_lstm.py
from isaacgymenvs.pbt.launcher.run_description import ParamGrid, RunDescription, Experiment from isaacgymenvs.pbt.experiments.run_utils import version, seeds, default_num_frames kuka_env = 'allegro_kuka_two_arms_regrasp' _frames = default_num_frames _name = f'{kuka_env}_{version}' _params = ParamGrid([ ('seed', seeds(8)), ]) _wandb_activate = True _wandb_group = f'pbt_{_name}' _wandb_entity = 'your_wandb_entity' _wandb_project = 'your_wandb_project' cli = f'python -m isaacgymenvs.train seed=-1 ' \ f'train.params.config.max_frames={_frames} headless=True ' \ f'task=AllegroKukaTwoArmsLSTM task/env=regrasping ' \ f'task.env.episodeLength=400 ' \ f'wandb_project={_wandb_project} wandb_entity={_wandb_entity} wandb_activate={_wandb_activate} wandb_group={_wandb_group}' RUN_DESCRIPTION = RunDescription( f'{_name}', experiments=[Experiment(f'{_name}', cli, _params.generate_params(randomize=False))], experiment_arg_name='experiment', experiment_dir_arg_name='hydra.run.dir', param_prefix='', customize_experiment_name=False, )
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/pbt/experiments/allegro_kuka_reorientation_lstm_8gpu.py
from isaacgymenvs.pbt.launcher.run_description import ParamGrid, RunDescription, Experiment from isaacgymenvs.pbt.experiments.run_utils import version, seeds, default_num_frames kuka_env = 'allegro_kuka_reorientation' _num_gpus = 8 _frames = default_num_frames * _num_gpus _name = f'{kuka_env}_{version}_{_num_gpus}gpu' _params = ParamGrid([ ('seed', seeds(1)), ]) _wandb_activate = True _wandb_group = f'rlgames_{_name}' _wandb_entity = 'your_wandb_entity' _wandb_project = 'your_wandb_project' cli = f'train.py multi_gpu=True ' \ f'train.params.config.max_frames={_frames} headless=True ' \ f'task=AllegroKukaLSTM task/env=reorientation ' \ f'wandb_project={_wandb_project} wandb_entity={_wandb_entity} wandb_activate={_wandb_activate} wandb_group={_wandb_group}' RUN_DESCRIPTION = RunDescription( f'{_name}', experiments=[Experiment(f'{_name}', cli, _params.generate_params(randomize=False))], experiment_arg_name='experiment', experiment_dir_arg_name='hydra.run.dir', param_prefix='', customize_experiment_name=False, )
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/pbt/experiments/allegro_kuka_regrasping_lstm.py
from isaacgymenvs.pbt.launcher.run_description import ParamGrid, RunDescription, Experiment from isaacgymenvs.pbt.experiments.run_utils import version, seeds, default_num_frames kuka_env = 'allegro_kuka_regrasp' _frames = default_num_frames _name = f'{kuka_env}_{version}' _params = ParamGrid([ ('seed', seeds(8)), ]) _wandb_activate = True _wandb_group = f'pbt_{_name}' _wandb_entity = 'your_wandb_entity' _wandb_project = 'your_wandb_project' cli = f'python -m isaacgymenvs.train seed=-1 ' \ f'train.params.config.max_frames={_frames} headless=True ' \ f'task=AllegroKukaLSTM task/env=regrasping ' \ f'wandb_project={_wandb_project} wandb_entity={_wandb_entity} wandb_activate={_wandb_activate} wandb_group={_wandb_group}' RUN_DESCRIPTION = RunDescription( f'{_name}', experiments=[Experiment(f'{_name}', cli, _params.generate_params(randomize=False))], experiment_arg_name='experiment', experiment_dir_arg_name='hydra.run.dir', param_prefix='', customize_experiment_name=False, )
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/pbt/experiments/allegro_kuka_reorientation_pbt_lstm.py
from isaacgymenvs.pbt.launcher.run_description import ParamGrid, RunDescription, Experiment from isaacgymenvs.pbt.experiments.allegro_kuka_pbt_base import kuka_env, kuka_base_cli from isaacgymenvs.pbt.experiments.run_utils import version _pbt_num_policies = 8 _name = f'{kuka_env}_manip_{version}_pbt_{_pbt_num_policies}p' _params = ParamGrid([ ('pbt.policy_idx', list(range(_pbt_num_policies))), ]) _wandb_activate = True _wandb_group = f'pbt_{_name}' _wandb_entity = 'your_wandb_entity' _wandb_project = 'your_wandb_project' cli = kuka_base_cli + f' task=AllegroKukaLSTM task/env=reorientation ' \ f'wandb_project={_wandb_project} wandb_entity={_wandb_entity} wandb_activate={_wandb_activate} wandb_group={_wandb_group}' RUN_DESCRIPTION = RunDescription( f'{_name}', experiments=[Experiment(f'{_name}', cli, _params.generate_params(randomize=False))], experiment_arg_name='experiment', experiment_dir_arg_name='hydra.run.dir', param_prefix='', customize_experiment_name=False, )
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/pbt/experiments/allegro_kuka_throw_pbt_lstm.py
from isaacgymenvs.pbt.launcher.run_description import ParamGrid, RunDescription, Experiment from isaacgymenvs.pbt.experiments.allegro_kuka_pbt_base import kuka_env, kuka_base_cli from isaacgymenvs.pbt.experiments.run_utils import version _pbt_num_policies = 8 _name = f'{kuka_env}_throw_{version}_pbt_{_pbt_num_policies}p' _params = ParamGrid([ ('pbt.policy_idx', list(range(_pbt_num_policies))), ]) _wandb_activate = True _wandb_group = f'pbt_{_name}' _wandb_entity = 'your_wandb_entity' _wandb_project = 'your_wandb_project' cli = kuka_base_cli + \ f' task=AllegroKukaLSTM ' \ f'task/env=throw wandb_activate=True pbt.num_policies={_pbt_num_policies} ' \ f'wandb_project={_wandb_project} wandb_entity={_wandb_entity} wandb_activate={_wandb_activate} wandb_group={_wandb_group}' RUN_DESCRIPTION = RunDescription( f'{_name}', experiments=[Experiment(f'{_name}', cli, _params.generate_params(randomize=False))], experiment_arg_name='experiment', experiment_dir_arg_name='hydra.run.dir', param_prefix='', customize_experiment_name=False, )
NVIDIA-Omniverse/IsaacGymEnvs/isaacgymenvs/pbt/experiments/allegro_kuka_two_arms_reorientation_pbt_lstm.py
from isaacgymenvs.pbt.launcher.run_description import ParamGrid, RunDescription, Experiment from isaacgymenvs.pbt.experiments.allegro_kuka_pbt_base import kuka_base_cli from isaacgymenvs.pbt.experiments.run_utils import version env = 'allegro_kuka_two_arms_reorientation' _pbt_num_policies = 8 _name = f'{env}_{version}_pbt_{_pbt_num_policies}p' _wandb_group = f'pbt_{_name}' _params = ParamGrid([ ('pbt.policy_idx', list(range(_pbt_num_policies))), ]) cli = kuka_base_cli + f' task=AllegroKukaTwoArmsLSTM task/env=reorientation wandb_activate=True wandb_group={_wandb_group} pbt.num_policies={_pbt_num_policies}' RUN_DESCRIPTION = RunDescription( f'{_name}', experiments=[Experiment(f'{_name}', cli, _params.generate_params(randomize=False))], experiment_arg_name='experiment', experiment_dir_arg_name='hydra.run.dir', param_prefix='', customize_experiment_name=False, )