file_path
stringlengths 20
207
| content
stringlengths 5
3.85M
| size
int64 5
3.85M
| lang
stringclasses 9
values | avg_line_length
float64 1.33
100
| max_line_length
int64 4
993
| alphanum_fraction
float64 0.26
0.93
|
---|---|---|---|---|---|---|
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/common/ivecenv.py
|
class IVecEnv:
def step(self, actions):
raise NotImplementedError
def reset(self):
raise NotImplementedError
def has_action_masks(self):
return False
def get_number_of_agents(self):
return 1
def get_env_info(self):
pass
def set_train_info(self, env_frames, *args, **kwargs):
"""
Send the information in the direction algo->environment.
Most common use case: tell the environment how far along we are in the training process. This is useful
for implementing curriculums and things such as that.
"""
pass
def get_env_state(self):
"""
Return serializable environment state to be saved to checkpoint.
Can be used for stateful training sessions, i.e. with adaptive curriculums.
"""
return None
def set_env_state(self, env_state):
pass
| 905 |
Python
| 25.647058 | 111 | 0.624309 |
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/common/vecenv.py
|
import ray
from rl_games.common.ivecenv import IVecEnv
from rl_games.common.env_configurations import configurations
from rl_games.common.tr_helpers import dicts_to_dict_with_arrays
import numpy as np
import gym
from time import sleep
class RayWorker:
def __init__(self, config_name, config):
self.env = configurations[config_name]['env_creator'](**config)
#self.obs = self.env.reset()
def step(self, action):
next_state, reward, is_done, info = self.env.step(action)
if np.isscalar(is_done):
episode_done = is_done
else:
episode_done = is_done.all()
if episode_done:
next_state = self.reset()
if isinstance(next_state, dict):
for k,v in next_state.items():
if isinstance(v, dict):
for dk,dv in v.items():
if dv.dtype == np.float64:
v[dk] = dv.astype(np.float32)
else:
if v.dtype == np.float64:
next_state[k] = v.astype(np.float32)
else:
if next_state.dtype == np.float64:
next_state = next_state.astype(np.float32)
return next_state, reward, is_done, info
def render(self):
self.env.render()
def reset(self):
self.obs = self.env.reset()
return self.obs
def get_action_mask(self):
return self.env.get_action_mask()
def get_number_of_agents(self):
if hasattr(self.env, 'get_number_of_agents'):
return self.env.get_number_of_agents()
else:
return 1
def set_weights(self, weights):
self.env.update_weights(weights)
def can_concat_infos(self):
if hasattr(self.env, 'concat_infos'):
return self.env.concat_infos
else:
return False
def get_env_info(self):
info = {}
observation_space = self.env.observation_space
#if isinstance(observation_space, gym.spaces.dict.Dict):
# observation_space = observation_space['observations']
info['action_space'] = self.env.action_space
info['observation_space'] = observation_space
info['state_space'] = None
info['use_global_observations'] = False
info['agents'] = self.get_number_of_agents()
info['value_size'] = 1
if hasattr(self.env, 'use_central_value'):
info['use_global_observations'] = self.env.use_central_value
if hasattr(self.env, 'value_size'):
info['value_size'] = self.env.value_size
if hasattr(self.env, 'state_space'):
info['state_space'] = self.env.state_space
return info
class RayVecEnv(IVecEnv):
def __init__(self, config_name, num_actors, **kwargs):
self.config_name = config_name
self.num_actors = num_actors
self.use_torch = False
self.remote_worker = ray.remote(RayWorker)
self.workers = [self.remote_worker.remote(self.config_name, kwargs) for i in range(self.num_actors)]
res = self.workers[0].get_number_of_agents.remote()
self.num_agents = ray.get(res)
res = self.workers[0].get_env_info.remote()
env_info = ray.get(res)
res = self.workers[0].can_concat_infos.remote()
can_concat_infos = ray.get(res)
self.use_global_obs = env_info['use_global_observations']
self.concat_infos = can_concat_infos
self.obs_type_dict = type(env_info.get('observation_space')) is gym.spaces.Dict
self.state_type_dict = type(env_info.get('state_space')) is gym.spaces.Dict
if self.num_agents == 1:
self.concat_func = np.stack
else:
self.concat_func = np.concatenate
def step(self, actions):
newobs, newstates, newrewards, newdones, newinfos = [], [], [], [], []
res_obs = []
if self.num_agents == 1:
for (action, worker) in zip(actions, self.workers):
res_obs.append(worker.step.remote(action))
else:
for num, worker in enumerate(self.workers):
res_obs.append(worker.step.remote(actions[self.num_agents * num: self.num_agents * num + self.num_agents]))
all_res = ray.get(res_obs)
for res in all_res:
cobs, crewards, cdones, cinfos = res
if self.use_global_obs:
newobs.append(cobs["obs"])
newstates.append(cobs["state"])
else:
newobs.append(cobs)
newrewards.append(crewards)
newdones.append(cdones)
newinfos.append(cinfos)
if self.obs_type_dict:
ret_obs = dicts_to_dict_with_arrays(newobs, self.num_agents == 1)
else:
ret_obs = self.concat_func(newobs)
if self.use_global_obs:
newobsdict = {}
newobsdict["obs"] = ret_obs
if self.state_type_dict:
newobsdict["states"] = dicts_to_dict_with_arrays(newstates, True)
else:
newobsdict["states"] = np.stack(newstates)
ret_obs = newobsdict
if self.concat_infos:
newinfos = dicts_to_dict_with_arrays(newinfos, False)
return ret_obs, self.concat_func(newrewards), self.concat_func(newdones), newinfos
def get_env_info(self):
res = self.workers[0].get_env_info.remote()
return ray.get(res)
def set_weights(self, indices, weights):
res = []
for ind in indices:
res.append(self.workers[ind].set_weights.remote(weights))
ray.get(res)
def has_action_masks(self):
return True
def get_action_masks(self):
mask = [worker.get_action_mask.remote() for worker in self.workers]
return np.asarray(ray.get(mask), dtype=np.int32)
def reset(self):
res_obs = [worker.reset.remote() for worker in self.workers]
newobs, newstates = [],[]
for res in res_obs:
cobs = ray.get(res)
if self.use_global_obs:
newobs.append(cobs["obs"])
newstates.append(cobs["state"])
else:
newobs.append(cobs)
if self.obs_type_dict:
ret_obs = dicts_to_dict_with_arrays(newobs, self.num_agents == 1)
else:
ret_obs = self.concat_func(newobs)
if self.use_global_obs:
newobsdict = {}
newobsdict["obs"] = ret_obs
if self.state_type_dict:
newobsdict["states"] = dicts_to_dict_with_arrays(newstates, True)
else:
newobsdict["states"] = np.stack(newstates)
ret_obs = newobsdict
return ret_obs
# todo rename multi-agent
class RayVecSMACEnv(IVecEnv):
def __init__(self, config_name, num_actors, **kwargs):
self.config_name = config_name
self.num_actors = num_actors
self.remote_worker = ray.remote(RayWorker)
self.workers = [self.remote_worker.remote(self.config_name, kwargs) for i in range(self.num_actors)]
res = self.workers[0].get_number_of_agents.remote()
self.num_agents = ray.get(res)
res = self.workers[0].get_env_info.remote()
env_info = ray.get(res)
self.use_global_obs = env_info['use_global_observations']
def get_env_info(self):
res = self.workers[0].get_env_info.remote()
return ray.get(res)
def get_number_of_agents(self):
return self.num_agents
def step(self, actions):
newobs, newstates, newrewards, newdones, newinfos = [], [], [], [], []
newobsdict = {}
res_obs, res_state = [], []
for num, worker in enumerate(self.workers):
res_obs.append(worker.step.remote(actions[self.num_agents * num: self.num_agents * num + self.num_agents]))
for res in res_obs:
cobs, crewards, cdones, cinfos = ray.get(res)
if self.use_global_obs:
newobs.append(cobs["obs"])
newstates.append(cobs["state"])
else:
newobs.append(cobs)
newrewards.append(crewards)
newdones.append(cdones)
newinfos.append(cinfos)
if self.use_global_obs:
newobsdict["obs"] = np.concatenate(newobs, axis=0)
newobsdict["states"] = np.asarray(newstates)
ret_obs = newobsdict
else:
ret_obs = np.concatenate(newobs, axis=0)
return ret_obs, np.concatenate(newrewards, axis=0), np.concatenate(newdones, axis=0), newinfos
def has_action_masks(self):
return True
def get_action_masks(self):
mask = [worker.get_action_mask.remote() for worker in self.workers]
masks = ray.get(mask)
return np.concatenate(masks, axis=0)
def reset(self):
res_obs = [worker.reset.remote() for worker in self.workers]
if self.use_global_obs:
newobs, newstates = [],[]
for res in res_obs:
cobs = ray.get(res)
if self.use_global_obs:
newobs.append(cobs["obs"])
newstates.append(cobs["state"])
else:
newobs.append(cobs)
newobsdict = {}
newobsdict["obs"] = np.concatenate(newobs, axis=0)
newobsdict["states"] = np.asarray(newstates)
ret_obs = newobsdict
else:
ret_obs = ray.get(res_obs)
ret_obs = np.concatenate(ret_obs, axis=0)
return ret_obs
vecenv_config = {}
def register(config_name, func):
vecenv_config[config_name] = func
def create_vec_env(config_name, num_actors, **kwargs):
vec_env_name = configurations[config_name]['vecenv_type']
return vecenv_config[vec_env_name](config_name, num_actors, **kwargs)
register('RAY', lambda config_name, num_actors, **kwargs: RayVecEnv(config_name, num_actors, **kwargs))
register('RAY_SMAC', lambda config_name, num_actors, **kwargs: RayVecSMACEnv(config_name, num_actors, **kwargs))
from rl_games.envs.brax import BraxEnv
register('BRAX', lambda config_name, num_actors, **kwargs: BraxEnv(config_name, num_actors, **kwargs))
| 10,351 |
Python
| 34.696552 | 123 | 0.571539 |
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/common/tr_helpers.py
|
import numpy as np
from collections import defaultdict
class LinearValueProcessor:
def __init__(self, start_eps, end_eps, end_eps_frames):
self.start_eps = start_eps
self.end_eps = end_eps
self.end_eps_frames = end_eps_frames
def __call__(self, frame):
if frame >= self.end_eps_frames:
return self.end_eps
df = frame / self.end_eps_frames
return df * self.end_eps + (1.0 - df) * self.start_eps
class DefaultRewardsShaper:
def __init__(self, scale_value = 1, shift_value = 0, min_val=-np.inf, max_val=np.inf, is_torch=True):
self.scale_value = scale_value
self.shift_value = shift_value
self.min_val = min_val
self.max_val = max_val
self.is_torch = is_torch
def __call__(self, reward):
reward = reward + self.shift_value
reward = reward * self.scale_value
if self.is_torch:
import torch
reward = torch.clamp(reward, self.min_val, self.max_val)
else:
reward = np.clip(reward, self.min_val, self.max_val)
return reward
def dicts_to_dict_with_arrays(dicts, add_batch_dim = True):
def stack(v):
if len(np.shape(v)) == 1:
return np.array(v)
else:
return np.stack(v)
def concatenate(v):
if len(np.shape(v)) == 1:
return np.array(v)
else:
return np.concatenate(v)
dicts_len = len(dicts)
if(dicts_len <= 1):
return dicts
res = defaultdict(list)
{ res[key].append(sub[key]) for sub in dicts for key in sub }
if add_batch_dim:
concat_func = stack
else:
concat_func = concatenate
res = {k : concat_func(v) for k,v in res.items()}
return res
def unsqueeze_obs(obs):
if type(obs) is dict:
for k,v in obs.items():
obs[k] = unsqueeze_obs(v)
else:
obs = obs.unsqueeze(0)
return obs
def flatten_first_two_dims(arr):
if arr.ndim > 2:
return arr.reshape(-1, *arr.shape[-(arr.ndim-2):])
else:
return arr.reshape(-1)
def free_mem():
import ctypes
ctypes.CDLL('libc.so.6').malloc_trim(0)
| 2,203 |
Python
| 26.898734 | 105 | 0.568316 |
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/common/object_factory.py
|
class ObjectFactory:
def __init__(self):
self._builders = {}
def register_builder(self, name, builder):
self._builders[name] = builder
def set_builders(self, builders):
self._builders = builders
def create(self, name, **kwargs):
builder = self._builders.get(name)
if not builder:
raise ValueError(name)
return builder(**kwargs)
| 414 |
Python
| 26.666665 | 46 | 0.584541 |
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/common/transforms/soft_augmentation.py
|
from rl_games.common.transforms import transforms
import torch
class SoftAugmentation():
def __init__(self, **kwargs):
self.transform_config = kwargs.pop('transform')
self.aug_coef = kwargs.pop('aug_coef', 0.001)
print('aug coef:', self.aug_coef)
self.name = self.transform_config['name']
#TODO: remove hardcode
self.transform = transforms.ImageDatasetTransform(**self.transform_config)
def get_coef(self):
return self.aug_coef
def get_loss(self, p_dict, model, input_dict, loss_type = 'both'):
'''
loss_type: 'critic', 'policy', 'both'
'''
if self.transform:
input_dict = self.transform(input_dict)
loss = 0
q_dict = model(input_dict)
if loss_type == 'policy' or loss_type == 'both':
p_dict['logits'] = p_dict['logits'].detach()
loss = model.kl(p_dict, q_dict)
if loss_type == 'critic' or loss_type == 'both':
p_value = p_dict['value'].detach()
q_value = q_dict['value']
loss = loss + (0.5 * (p_value - q_value)**2).sum(dim=-1)
return loss
| 1,165 |
Python
| 34.333332 | 82 | 0.559657 |
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/common/transforms/transforms.py
|
import torch
from torch import nn
class DatasetTransform(nn.Module):
def __init__(self):
super().__init__()
def forward(self, dataset):
return dataset
class ImageDatasetTransform(DatasetTransform):
def __init__(self, **kwargs):
super().__init__()
import kornia
self.transform = torch.nn.Sequential(
nn.ReplicationPad2d(4),
kornia.augmentation.RandomCrop((84,84))
#kornia.augmentation.RandomErasing(p=0.2),
#kornia.augmentation.RandomAffine(degrees=0, translate=(2.0/84,2.0/84), p=1),
#kornia.augmentation.RandomCrop((84,84))
)
def forward(self, dataset):
dataset['obs'] = self.transform(dataset['obs'])
return dataset
| 746 |
Python
| 27.730768 | 85 | 0.619303 |
RoboticExplorationLab/CGAC/dflex/setup.py
|
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import setuptools
setuptools.setup(
name="dflex",
version="0.0.1",
author="NVIDIA",
author_email="[email protected]",
description="Differentiable Multiphysics for Python",
long_description="",
long_description_content_type="text/markdown",
# url="https://github.com/pypa/sampleproject",
packages=setuptools.find_packages(),
package_data={"": ["*.h"]},
classifiers=[
"Programming Language :: Python :: 3",
"Operating System :: OS Independent",
],
install_requires=["ninja", "torch"],
)
| 983 |
Python
| 35.444443 | 76 | 0.713123 |
RoboticExplorationLab/CGAC/dflex/README.md
|
# A Differentiable Multiphysics Engine for PyTorch
dFlex is a physics engine for Python. It is written entirely in PyTorch and supports reverse mode differentiation w.r.t. to any simulation inputs.
It includes a USD-based visualization library (`dflex.render`), which can generate time-sampled USD files, or update an existing stage on-the-fly.
## Prerequisites
* Python 3.6
* PyTorch 1.4.0 or higher
* Pixar USD lib (for visualization)
Pre-built USD Python libraries can be downloaded from https://developer.nvidia.com/usd, once they are downloaded you should follow the instructions to add them to your PYTHONPATH environment variable.
## Using the built-in backend
By default dFlex uses the built-in PyTorch cpp-extensions mechanism to compile auto-generated simulation kernels.
- Windows users should ensure they have Visual Studio 2019 installed
## Setup and Running
To use the engine you can import first the simulation module:
```python
import dflex.sim
```
To build physical models there is a helper class available in `dflex.sim.ModelBuilder`. This can be used to create models programmatically from Python. For example, to create a chain of particles:
```python
builder = dflex.sim.ModelBuilder()
# anchor point (zero mass)
builder.add_particle((0, 1.0, 0.0), (0.0, 0.0, 0.0), 0.0)
# build chain
for i in range(1,10):
builder.add_particle((i, 1.0, 0.0), (0.0, 0.0, 0.0), 1.0)
builder.add_spring(i-1, i, 1.e+3, 0.0, 0)
# add ground plane
builder.add_shape_plane((0.0, 1.0, 0.0, 0.0), 0)
```
Once you have built your model you must convert it to a finalized PyTorch simulation data structure using `finalize()`:
```python
model = builder.finalize('cpu')
```
The model object represents static (non-time varying) data such as constraints, collision shapes, etc. The model is stored in PyTorch tensors, allowing differentiation with respect to both model and state.
## Time Stepping
To advance the simulation forward in time (forward dynamics), we use an `integrator` object. dFlex currently offers semi-implicit and fully implicit (planned), via. the `dflex.sim.ExplicitIntegrator`, and `dflex.sim.ImplicitIntegrator` classes as follows:
```python
sim_dt = 1.0/60.0
sim_steps = 100
integrator = dflex.sim.ExplicitIntegrator()
for i in range(0, sim_steps):
state = integrator.forward(model, state, sim_dt)
```
## Rendering
To visualize the scene dFlex supports a USD-based update via. the `dflex.render.UsdRenderer` class. To create a renderer you must first create the USD stage, and the physical model.
```python
import dflex.render
stage = Usd.Stage.CreateNew("test.usda")
renderer = dflex.render.UsdRenderer(model, stage)
renderer.draw_points = True
renderer.draw_springs = True
renderer.draw_shapes = True
```
Each frame the renderer should be updated with the current model state and the current elapsed simulation time:
```python
renderer.update(state, sim_time)
```
## Contact
Miles Macklin ([email protected])
| 3,065 |
Markdown
| 32.326087 | 255 | 0.730832 |
RoboticExplorationLab/CGAC/dflex/extension/dflex.py
|
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""dFlex Kit extension
Allows setting up, training, and running inference on dFlex optimization environments.
"""
import os
import subprocess
import carb
import carb.input
import math
import numpy as np
import omni.kit.ui
import omni.appwindow
import omni.kit.editor
import omni.timeline
import omni.usd
import omni.ui as ui
from pathlib import Path
ICON_PATH = Path(__file__).parent.parent.joinpath("icons")
from pxr import Usd, UsdGeom, Sdf, Gf
import torch
from omni.kit.settings import create_setting_widget, create_setting_widget_combo, SettingType, get_settings_interface
KIT_GREEN = 0xFF8A8777
LABEL_PADDING = 120
DARK_WINDOW_STYLE = {
"Button": {"background_color": 0xFF292929, "margin": 3, "padding": 3, "border_radius": 2},
"Button.Label": {"color": 0xFFCCCCCC},
"Button:hovered": {"background_color": 0xFF9E9E9E},
"Button:pressed": {"background_color": 0xC22A8778},
"VStack::main_v_stack": {"secondary_color": 0x0, "margin_width": 10, "margin_height": 0},
"VStack::frame_v_stack": {"margin_width": 15, "margin_height": 10},
"Rectangle::frame_background": {"background_color": 0xFF343432, "border_radius": 5},
"Field::models": {"background_color": 0xFF23211F, "font_size": 14, "color": 0xFFAAAAAA, "border_radius": 4.0},
"Frame": {"background_color": 0xFFAAAAAA},
"Label": {"font_size": 14, "color": 0xFF8A8777},
"Label::status": {"font_size": 14, "color": 0xFF8AFF77}
}
CollapsableFrame_style = {
"CollapsableFrame": {
"background_color": 0xFF343432,
"secondary_color": 0xFF343432,
"color": 0xFFAAAAAA,
"border_radius": 4.0,
"border_color": 0x0,
"border_width": 0,
"font_size": 14,
"padding": 0,
},
"HStack::header": {"margin": 5},
"CollapsableFrame:hovered": {"secondary_color": 0xFF3A3A3A},
"CollapsableFrame:pressed": {"secondary_color": 0xFF343432},
}
experiment = None
class Extension:
def __init__(self):
self.MENU_SHOW_WINDOW = "Window/dFlex"
self.MENU_INSERT_REFERENCE = "Utilities/Insert Reference"
self._editor_window = None
self._window_Frame = None
self.time = 0.0
self.plot = None
self.log = None
self.status = None
self.mode = 'stopped'
self.properties = {}
# add some helper menus
self.menus = []
def on_shutdown(self):
self._editor_window = None
self.menus = []
#self.input.unsubscribe_to_keyboard_events(self.appwindow.get_keyboard(), self.key_sub)
def on_startup(self):
self.appwindow = omni.appwindow.get_default_app_window()
self.editor = omni.kit.editor.get_editor_interface()
self.input = carb.input.acquire_input_interface()
self.timeline = omni.timeline.get_timeline_interface()
self.usd_context = omni.usd.get_context()
# event subscriptions
self.stage_sub = self.usd_context.get_stage_event_stream().create_subscription_to_pop(self.on_stage, name="dFlex")
self.update_sub = self.editor.subscribe_to_update_events(self.on_update)
#self.key_sub = self.input.subscribe_to_keyboard_events(self.appwindow.get_keyboard(), self.on_key)
self.menus.append(omni.kit.ui.get_editor_menu().add_item(self.MENU_SHOW_WINDOW, self.ui_on_menu, True, 11))
self.menus.append(omni.kit.ui.get_editor_menu().add_item(self.MENU_INSERT_REFERENCE, self.ui_on_menu))
self.reload()
self.build_ui()
def format(self, s):
return s.replace("_", " ").title()
def add_float_field(self, label, x, low=0.0, high=1.0):
with ui.HStack():
ui.Label(self.format(label), width=120)
self.add_property(label, ui.FloatSlider(name="value", width=150, min=low, max=high), x)
def add_int_field(self, label, x, low=0, high=100):
with ui.HStack():
ui.Label(self.format(label), width=120)
self.add_property(label, ui.IntSlider(name="value", width=150, min=low, max=high), x)
def add_combo_field(self, label, i, options):
with ui.HStack():
ui.Label(self.format(label), width=120)
ui.ComboBox(i, *options, width=150) # todo: how does the model work for combo boxes in omni.ui
def add_bool_field(self, label, b):
with ui.HStack():
ui.Label(self.format(label), width=120)
self.add_property(label, ui.CheckBox(width=10), b)
def add_property(self, label, widget, value):
self.properties[label] = widget
widget.model.set_value(value)
def ui_on_menu(self, menu, value):
if menu == self.MENU_SHOW_WINDOW:
if self.window:
if value:
self.window.show()
else:
self.window.hide()
omni.kit.ui.get_editor_menu().set_value(self.STAGE_SCRIPT_WINDOW_MENU, value)
if menu == self.MENU_INSERT_REFERENCE:
self.file_pick = omni.kit.ui.FilePicker("Select USD File", file_type=omni.kit.ui.FileDialogSelectType.FILE)
self.file_pick.set_file_selected_fn(self.ui_on_select_ref_fn)
self.file_pick.show(omni.kit.ui.FileDialogDataSource.LOCAL)
def ui_on_select_ref_fn(self, real_path):
file = os.path.normpath(real_path)
name = os.path.basename(file)
stem = os.path.splitext(name)[0]
stage = self.usd_context.get_stage()
stage_path = stage.GetRootLayer().realPath
base = os.path.commonpath([real_path, stage_path])
rel_path = os.path.relpath(real_path, base)
over = stage.OverridePrim('/' + stem)
over.GetReferences().AddReference(rel_path)
def ui_on_select_script_fn(self):
# file picker
self.file_pick = omni.kit.ui.FilePicker("Select Python Script", file_type=omni.kit.ui.FileDialogSelectType.FILE)
self.file_pick.set_file_selected_fn(self.set_stage_script)
self.file_pick.add_filter("Python Files (*.py)", ".*.py")
self.file_pick.show(omni.kit.ui.FileDialogDataSource.LOCAL)
def ui_on_clear_script_fn(self, widget):
self.clear_stage_script()
def ui_on_select_network_fn(self):
# file picker
self.file_pick = omni.kit.ui.FilePicker("Select Model", file_type=omni.kit.ui.FileDialogSelectType.FILE)
self.file_pick.set_file_selected_fn(self.set_network)
self.file_pick.add_filter("PyTorch Files (*.pt)", ".*.pt")
self.file_pick.show(omni.kit.ui.FileDialogDataSource.LOCAL)
# build panel
def build_ui(self):
stage = self.usd_context.get_stage()
self._editor_window = ui.Window("dFlex", width=450, height=800)
self._editor_window.frame.set_style(DARK_WINDOW_STYLE)
with self._editor_window.frame:
with ui.VStack():
self._window_Frame = ui.ScrollingFrame(
name="canvas",
horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_OFF,
)
with self._window_Frame:
with ui.VStack(spacing=6, name="main_v_stack"):
ui.Spacer(height=5)
with ui.CollapsableFrame(title="Experiment", height=60, style=CollapsableFrame_style):
with ui.VStack(spacing=4, name="frame_v_stack"):
with ui.HStack():
ui.Label("Script", name="label", width=120)
s = ""
if (self.get_stage_script() != None):
s = self.get_stage_script()
ui.StringField(name="models", tooltip="Training Python script").model.set_value(self.get_stage_script())
ui.Button("", image_url="resources/icons/folder.png", width=15, image_width=15, clicked_fn=self.ui_on_select_script_fn)
ui.Button("Clear", width=15, clicked_fn=self.clear_stage_script)
ui.Button("Reload", width=15, clicked_fn=self.reload)
with ui.HStack():
ui.Label("Hot Reload", width=100)
ui.CheckBox(width=10).model.set_value(False)
if (experiment):
with ui.CollapsableFrame(height=60, title="Simulation Settings", style=CollapsableFrame_style):
with ui.VStack(spacing=4, name="frame_v_stack"):
self.add_int_field("sim_substeps", 4, 1, 100)
self.add_float_field("sim_duration", 5.0, 0.0, 30.0)
with ui.CollapsableFrame(title="Training Settings", height=60, style=CollapsableFrame_style):
with ui.VStack(spacing=4, name="frame_v_stack"):
self.add_int_field("train_iters", 64, 1, 100)
self.add_float_field("train_rate", 0.1, 0.0, 10.0)
self.add_combo_field("train_optimizer", 0, ["GD", "SGD", "L-BFGS"])
with ui.CollapsableFrame(title="Actions", height=10, style=CollapsableFrame_style):
with ui.VStack(spacing=4, name="frame_v_stack"):
with ui.HStack():
ui.Label("Network", name="label", width=120)
s = ""
if (self.get_network() != None):
s = self.get_network()
ui.StringField(name="models", tooltip="Pretrained PyTorch network").model.set_value(s)
ui.Button("", image_url="resources/icons/folder.png", width=15, image_width=15, clicked_fn=self.ui_on_select_network_fn)
ui.Button("Clear", width=15, clicked_fn=self.clear_network)
with ui.HStack():
p = (1.0/6.0)*100.0
ui.Button("Run", width=ui.Percent(p), clicked_fn=self.run)
ui.Button("Train", width=ui.Percent(p), clicked_fn=self.train)
ui.Button("Stop", width=ui.Percent(p), clicked_fn=self.stop)
ui.Button("Reset", width=ui.Percent(p), clicked_fn=self.reset)
self.add_bool_field("record", True)
with ui.HStack():
ui.Label("Status: ", width=120)
self.status = ui.Label("", name="status", width=200)
with ui.CollapsableFrame(title="Loss", style=CollapsableFrame_style):
data = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0]
self.plot = ui.Plot(ui.Type.LINE, -1.0, 1.0, *data, height=200, style={"color": 0xff00ffFF})
# with ui.ScrollingFrame(
# name="log",
# horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_OFF,
# height=200,
# width=ui.Percent(95)
# ):
with ui.CollapsableFrame(title="Log", style=CollapsableFrame_style):
with ui.VStack(spacing=4, name="frame_v_stack"):
self.log = ui.Label("", height=200)
def reload(self):
path = self.get_stage_script()
if (path):
# read code to string
file = open(path)
code = file.read()
file.close()
# run it in the local environment
exec(code, globals(), globals())
self.build_ui()
# methods for storing script in stage metadata
def get_stage_script(self):
stage = self.usd_context.get_stage()
custom_data = stage.GetEditTarget().GetLayer().customLayerData
print(custom_data)
if "script" in custom_data:
return custom_data["script"]
else:
return None
def set_stage_script(self, real_path):
path = os.path.normpath(real_path)
print("Setting stage script to: " + str(path))
stage = self.usd_context.get_stage()
with Sdf.ChangeBlock():
custom_data = stage.GetEditTarget().GetLayer().customLayerData
custom_data["script"] = path
stage.GetEditTarget().GetLayer().customLayerData = custom_data
# rebuild ui
self.build_ui()
def clear_stage_script(self):
stage = self.usd_context.get_stage()
with Sdf.ChangeBlock():
custom_data = stage.GetEditTarget().GetLayer().customLayerData
if "script" in custom_data:
del custom_data["script"]
stage.GetEditTarget().GetLayer().customLayerData = custom_data
self.build_ui()
def set_network(self, real_path):
path = os.path.normpath(real_path)
experiment.network_file = path
self.build_ui()
def get_network(self):
return experiment.network_file
def clear_network(self):
experiment.network_file = None
self.build_ui()
def on_key(self, event, *args, **kwargs):
# if event.keyboard == self.appwindow.get_keyboard():
# if event.type == carb.input.KeyboardEventType.KEY_PRESS:
# if event.input == carb.input.KeyboardInput.ESCAPE:
# self.stop()
# return True
pass
def on_stage(self, stage_event):
if stage_event.type == int(omni.usd.StageEventType.OPENED):
self.build_ui()
self.reload()
def on_update(self, dt):
if (experiment):
stage = self.usd_context.get_stage()
stage.SetStartTimeCode(0.0)
stage.SetEndTimeCode(experiment.render_time*60.0)
stage.SetTimeCodesPerSecond(60.0)
# pass parameters to the experiment
if ('record' in self.properties):
experiment.record = self.properties['record'].model.get_value_as_bool()
# experiment.train_rate = self.get_property('train_rate')
# experiment.train_iters = self.get_property('train_iters')
# experiment.sim_duration = self.get_property('sim_duration')
# experiment.sim_substeps = self.get_property('sim_substeps')
if (self.mode == 'training'):
experiment.train()
# update error plot
if (self.plot):
self.plot.scale_min = np.min(experiment.train_loss)
self.plot.scale_max = np.max(experiment.train_loss)
self.plot.set_data(*experiment.train_loss)
elif (self.mode == 'inference'):
experiment.run()
# update stage time (allow scrubbing while stopped)
if (self.mode != 'stopped'):
self.timeline.set_current_time(experiment.render_time*60.0)
# update log
if (self.log):
self.log.text = df.util.log_output
def set_status(self, str):
self.status.text = str
def train(self):
experiment.reset()
self.mode = 'training'
# update status
self.set_status('Training in progress, press [ESC] to cancel')
def run(self):
experiment.reset()
self.mode = 'inference'
# update status
self.set_status('Inference in progress, press [ESC] to cancel')
def stop(self):
self.mode = 'stopped'
# update status
self.set_status('Stopped')
def reset(self):
experiment.reset()
self.stop()
def get_extension():
return Extension()
| 16,913 |
Python
| 35.689805 | 160 | 0.549814 |
RoboticExplorationLab/CGAC/dflex/dflex/mat33.h
|
#pragma once
//----------------------------------------------------------
// mat33
struct mat33
{
inline CUDA_CALLABLE mat33(float3 c0, float3 c1, float3 c2)
{
data[0][0] = c0.x;
data[1][0] = c0.y;
data[2][0] = c0.z;
data[0][1] = c1.x;
data[1][1] = c1.y;
data[2][1] = c1.z;
data[0][2] = c2.x;
data[1][2] = c2.y;
data[2][2] = c2.z;
}
inline CUDA_CALLABLE mat33(float m00=0.0f, float m01=0.0f, float m02=0.0f,
float m10=0.0f, float m11=0.0f, float m12=0.0f,
float m20=0.0f, float m21=0.0f, float m22=0.0f)
{
data[0][0] = m00;
data[1][0] = m10;
data[2][0] = m20;
data[0][1] = m01;
data[1][1] = m11;
data[2][1] = m21;
data[0][2] = m02;
data[1][2] = m12;
data[2][2] = m22;
}
CUDA_CALLABLE float3 get_row(int index) const
{
return (float3&)data[index];
}
CUDA_CALLABLE void set_row(int index, const float3& v)
{
(float3&)data[index] = v;
}
CUDA_CALLABLE float3 get_col(int index) const
{
return float3(data[0][index], data[1][index], data[2][index]);
}
CUDA_CALLABLE void set_col(int index, const float3& v)
{
data[0][index] = v.x;
data[1][index] = v.y;
data[2][index] = v.z;
}
// row major storage assumed to be compatible with PyTorch
float data[3][3];
};
#ifdef CUDA
inline __device__ void atomic_add(mat33 * addr, mat33 value) {
atomicAdd(&((addr -> data)[0][0]), value.data[0][0]);
atomicAdd(&((addr -> data)[1][0]), value.data[1][0]);
atomicAdd(&((addr -> data)[2][0]), value.data[2][0]);
atomicAdd(&((addr -> data)[0][1]), value.data[0][1]);
atomicAdd(&((addr -> data)[1][1]), value.data[1][1]);
atomicAdd(&((addr -> data)[2][1]), value.data[2][1]);
atomicAdd(&((addr -> data)[0][2]), value.data[0][2]);
atomicAdd(&((addr -> data)[1][2]), value.data[1][2]);
atomicAdd(&((addr -> data)[2][2]), value.data[2][2]);
}
#endif
inline CUDA_CALLABLE void adj_mat33(float3 c0, float3 c1, float3 c2,
float3& a0, float3& a1, float3& a2,
const mat33& adj_ret)
{
// column constructor
a0 += adj_ret.get_col(0);
a1 += adj_ret.get_col(1);
a2 += adj_ret.get_col(2);
}
inline CUDA_CALLABLE void adj_mat33(float m00, float m01, float m02,
float m10, float m11, float m12,
float m20, float m21, float m22,
float& a00, float& a01, float& a02,
float& a10, float& a11, float& a12,
float& a20, float& a21, float& a22,
const mat33& adj_ret)
{
printf("todo\n");
}
inline CUDA_CALLABLE float index(const mat33& m, int row, int col)
{
return m.data[row][col];
}
inline CUDA_CALLABLE mat33 add(const mat33& a, const mat33& b)
{
mat33 t;
for (int i=0; i < 3; ++i)
{
for (int j=0; j < 3; ++j)
{
t.data[i][j] = a.data[i][j] + b.data[i][j];
}
}
return t;
}
inline CUDA_CALLABLE mat33 mul(const mat33& a, float b)
{
mat33 t;
for (int i=0; i < 3; ++i)
{
for (int j=0; j < 3; ++j)
{
t.data[i][j] = a.data[i][j]*b;
}
}
return t;
}
inline CUDA_CALLABLE float3 mul(const mat33& a, const float3& b)
{
float3 r = a.get_col(0)*b.x +
a.get_col(1)*b.y +
a.get_col(2)*b.z;
return r;
}
inline CUDA_CALLABLE mat33 mul(const mat33& a, const mat33& b)
{
mat33 t;
for (int i=0; i < 3; ++i)
{
for (int j=0; j < 3; ++j)
{
for (int k=0; k < 3; ++k)
{
t.data[i][j] += a.data[i][k]*b.data[k][j];
}
}
}
return t;
}
inline CUDA_CALLABLE mat33 transpose(const mat33& a)
{
mat33 t;
for (int i=0; i < 3; ++i)
{
for (int j=0; j < 3; ++j)
{
t.data[i][j] = a.data[j][i];
}
}
return t;
}
inline CUDA_CALLABLE float determinant(const mat33& m)
{
return dot(float3(m.data[0]), cross(float3(m.data[1]), float3(m.data[2])));
}
inline CUDA_CALLABLE mat33 outer(const float3& a, const float3& b)
{
return mat33(a*b.x, a*b.y, a*b.z);
}
inline CUDA_CALLABLE mat33 skew(const float3& a)
{
mat33 out(0.0f, -a.z, a.y,
a.z, 0.0f, -a.x,
-a.y, a.x, 0.0f);
return out;
}
inline void CUDA_CALLABLE adj_index(const mat33& m, int row, int col, mat33& adj_m, int& adj_row, int& adj_col, float adj_ret)
{
adj_m.data[row][col] += adj_ret;
}
inline CUDA_CALLABLE void adj_add(const mat33& a, const mat33& b, mat33& adj_a, mat33& adj_b, const mat33& adj_ret)
{
for (int i=0; i < 3; ++i)
{
for (int j=0; j < 3; ++j)
{
adj_a.data[i][j] += adj_ret.data[i][j];
adj_b.data[i][j] += adj_ret.data[i][j];
}
}
}
inline CUDA_CALLABLE void adj_mul(const mat33& a, float b, mat33& adj_a, float& adj_b, const mat33& adj_ret)
{
for (int i=0; i < 3; ++i)
{
for (int j=0; j < 3; ++j)
{
adj_a.data[i][j] += b*adj_ret.data[i][j];
adj_b += a.data[i][j]*adj_ret.data[i][j];
}
}
}
inline CUDA_CALLABLE void adj_mul(const mat33& a, const float3& b, mat33& adj_a, float3& adj_b, const float3& adj_ret)
{
adj_a += outer(adj_ret, b);
adj_b += mul(transpose(a), adj_ret);
}
inline CUDA_CALLABLE void adj_mul(const mat33& a, const mat33& b, mat33& adj_a, mat33& adj_b, const mat33& adj_ret)
{
adj_a += mul(adj_ret, transpose(b));
adj_b += mul(transpose(a), adj_ret);
}
inline CUDA_CALLABLE void adj_transpose(const mat33& a, mat33& adj_a, const mat33& adj_ret)
{
adj_a += transpose(adj_ret);
}
inline CUDA_CALLABLE void adj_determinant(const mat33& m, mat33& adj_m, float adj_ret)
{
(float3&)adj_m.data[0] += cross(m.get_row(1), m.get_row(2))*adj_ret;
(float3&)adj_m.data[1] += cross(m.get_row(2), m.get_row(0))*adj_ret;
(float3&)adj_m.data[2] += cross(m.get_row(0), m.get_row(1))*adj_ret;
}
inline CUDA_CALLABLE void adj_skew(const float3& a, float3& adj_a, const mat33& adj_ret)
{
mat33 out(0.0f, -a.z, a.y,
a.z, 0.0f, -a.x,
-a.y, a.x, 0.0f);
adj_a.x += adj_ret.data[2][1] - adj_ret.data[1][2];
adj_a.y += adj_ret.data[0][2] - adj_ret.data[2][0];
adj_a.z += adj_ret.data[1][0] - adj_ret.data[0][1];
}
| 6,549 |
C
| 24.192308 | 126 | 0.505726 |
RoboticExplorationLab/CGAC/dflex/dflex/spatial.h
|
#pragma once
//---------------------------------------------------------------------------------
// Represents a twist in se(3)
struct spatial_vector
{
float3 w;
float3 v;
CUDA_CALLABLE inline spatial_vector(float a, float b, float c, float d, float e, float f) : w(a, b, c), v(d, e, f) {}
CUDA_CALLABLE inline spatial_vector(float3 w=float3(), float3 v=float3()) : w(w), v(v) {}
CUDA_CALLABLE inline spatial_vector(float a) : w(a, a, a), v(a, a, a) {}
CUDA_CALLABLE inline float operator[](int index) const
{
assert(index < 6);
return (&w.x)[index];
}
CUDA_CALLABLE inline float& operator[](int index)
{
assert(index < 6);
return (&w.x)[index];
}
};
CUDA_CALLABLE inline spatial_vector operator - (spatial_vector a)
{
return spatial_vector(-a.w, -a.v);
}
CUDA_CALLABLE inline spatial_vector add(const spatial_vector& a, const spatial_vector& b)
{
return { a.w + b.w, a.v + b.v };
}
CUDA_CALLABLE inline spatial_vector sub(const spatial_vector& a, const spatial_vector& b)
{
return { a.w - b.w, a.v - b.v };
}
CUDA_CALLABLE inline spatial_vector mul(const spatial_vector& a, float s)
{
return { a.w*s, a.v*s };
}
CUDA_CALLABLE inline float spatial_dot(const spatial_vector& a, const spatial_vector& b)
{
return dot(a.w, b.w) + dot(a.v, b.v);
}
CUDA_CALLABLE inline spatial_vector spatial_cross(const spatial_vector& a, const spatial_vector& b)
{
float3 w = cross(a.w, b.w);
float3 v = cross(a.v, b.w) + cross(a.w, b.v);
return spatial_vector(w, v);
}
CUDA_CALLABLE inline spatial_vector spatial_cross_dual(const spatial_vector& a, const spatial_vector& b)
{
float3 w = cross(a.w, b.w) + cross(a.v, b.v);
float3 v = cross(a.w, b.v);
return spatial_vector(w, v);
}
CUDA_CALLABLE inline float3 spatial_top(const spatial_vector& a)
{
return a.w;
}
CUDA_CALLABLE inline float3 spatial_bottom(const spatial_vector& a)
{
return a.v;
}
// adjoint methods
CUDA_CALLABLE inline void adj_spatial_vector(
float a, float b, float c,
float d, float e, float f,
float& adj_a, float& adj_b, float& adj_c,
float& adj_d, float& adj_e,float& adj_f,
const spatial_vector& adj_ret)
{
adj_a += adj_ret.w.x;
adj_b += adj_ret.w.y;
adj_c += adj_ret.w.z;
adj_d += adj_ret.v.x;
adj_e += adj_ret.v.y;
adj_f += adj_ret.v.z;
}
CUDA_CALLABLE inline void adj_spatial_vector(const float3& w, const float3& v, float3& adj_w, float3& adj_v, const spatial_vector& adj_ret)
{
adj_w += adj_ret.w;
adj_v += adj_ret.v;
}
CUDA_CALLABLE inline void adj_add(const spatial_vector& a, const spatial_vector& b, spatial_vector& adj_a, spatial_vector& adj_b, const spatial_vector& adj_ret)
{
adj_add(a.w, b.w, adj_a.w, adj_b.w, adj_ret.w);
adj_add(a.v, b.v, adj_a.v, adj_b.v, adj_ret.v);
}
CUDA_CALLABLE inline void adj_sub(const spatial_vector& a, const spatial_vector& b, spatial_vector& adj_a, spatial_vector& adj_b, const spatial_vector& adj_ret)
{
adj_sub(a.w, b.w, adj_a.w, adj_b.w, adj_ret.w);
adj_sub(a.v, b.v, adj_a.v, adj_b.v, adj_ret.v);
}
CUDA_CALLABLE inline void adj_mul(const spatial_vector& a, float s, spatial_vector& adj_a, float& adj_s, const spatial_vector& adj_ret)
{
adj_mul(a.w, s, adj_a.w, adj_s, adj_ret.w);
adj_mul(a.v, s, adj_a.v, adj_s, adj_ret.v);
}
CUDA_CALLABLE inline void adj_spatial_dot(const spatial_vector& a, const spatial_vector& b, spatial_vector& adj_a, spatial_vector& adj_b, const float& adj_ret)
{
adj_dot(a.w, b.w, adj_a.w, adj_b.w, adj_ret);
adj_dot(a.v, b.v, adj_a.v, adj_b.v, adj_ret);
}
CUDA_CALLABLE inline void adj_spatial_cross(const spatial_vector& a, const spatial_vector& b, spatial_vector& adj_a, spatial_vector& adj_b, const spatial_vector& adj_ret)
{
adj_cross(a.w, b.w, adj_a.w, adj_b.w, adj_ret.w);
adj_cross(a.v, b.w, adj_a.v, adj_b.w, adj_ret.v);
adj_cross(a.w, b.v, adj_a.w, adj_b.v, adj_ret.v);
}
CUDA_CALLABLE inline void adj_spatial_cross_dual(const spatial_vector& a, const spatial_vector& b, spatial_vector& adj_a, spatial_vector& adj_b, const spatial_vector& adj_ret)
{
adj_cross(a.w, b.w, adj_a.w, adj_b.w, adj_ret.w);
adj_cross(a.v, b.v, adj_a.v, adj_b.v, adj_ret.w);
adj_cross(a.w, b.v, adj_a.w, adj_b.v, adj_ret.v);
}
CUDA_CALLABLE inline void adj_spatial_top(const spatial_vector& a, spatial_vector& adj_a, const float3& adj_ret)
{
adj_a.w += adj_ret;
}
CUDA_CALLABLE inline void adj_spatial_bottom(const spatial_vector& a, spatial_vector& adj_a, const float3& adj_ret)
{
adj_a.v += adj_ret;
}
#ifdef CUDA
inline __device__ void atomic_add(spatial_vector* addr, const spatial_vector& value) {
atomic_add(&addr->w, value.w);
atomic_add(&addr->v, value.v);
}
#endif
//---------------------------------------------------------------------------------
// Represents a rigid body transformation
struct spatial_transform
{
float3 p;
quat q;
CUDA_CALLABLE inline spatial_transform(float3 p=float3(), quat q=quat()) : p(p), q(q) {}
CUDA_CALLABLE inline spatial_transform(float) {} // helps uniform initialization
};
CUDA_CALLABLE inline spatial_transform spatial_transform_identity()
{
return spatial_transform(float3(), quat_identity());
}
CUDA_CALLABLE inline float3 spatial_transform_get_translation(const spatial_transform& t)
{
return t.p;
}
CUDA_CALLABLE inline quat spatial_transform_get_rotation(const spatial_transform& t)
{
return t.q;
}
CUDA_CALLABLE inline spatial_transform spatial_transform_multiply(const spatial_transform& a, const spatial_transform& b)
{
return { rotate(a.q, b.p) + a.p, mul(a.q, b.q) };
}
/*
CUDA_CALLABLE inline spatial_transform spatial_transform_inverse(const spatial_transform& t)
{
quat q_inv = inverse(t.q);
return spatial_transform(-rotate(q_inv, t.p), q_inv);
}
*/
CUDA_CALLABLE inline float3 spatial_transform_vector(const spatial_transform& t, const float3& x)
{
return rotate(t.q, x);
}
CUDA_CALLABLE inline float3 spatial_transform_point(const spatial_transform& t, const float3& x)
{
return t.p + rotate(t.q, x);
}
// Frank & Park definition 3.20, pg 100
CUDA_CALLABLE inline spatial_vector spatial_transform_twist(const spatial_transform& t, const spatial_vector& x)
{
float3 w = rotate(t.q, x.w);
float3 v = rotate(t.q, x.v) + cross(t.p, w);
return spatial_vector(w, v);
}
CUDA_CALLABLE inline spatial_vector spatial_transform_wrench(const spatial_transform& t, const spatial_vector& x)
{
float3 v = rotate(t.q, x.v);
float3 w = rotate(t.q, x.w) + cross(t.p, v);
return spatial_vector(w, v);
}
CUDA_CALLABLE inline spatial_transform add(const spatial_transform& a, const spatial_transform& b)
{
return { a.p + b.p, a.q + b.q };
}
CUDA_CALLABLE inline spatial_transform sub(const spatial_transform& a, const spatial_transform& b)
{
return { a.p - b.p, a.q - b.q };
}
CUDA_CALLABLE inline spatial_transform mul(const spatial_transform& a, float s)
{
return { a.p*s, a.q*s };
}
// adjoint methods
CUDA_CALLABLE inline void adj_add(const spatial_transform& a, const spatial_transform& b, spatial_transform& adj_a, spatial_transform& adj_b, const spatial_transform& adj_ret)
{
adj_add(a.p, b.p, adj_a.p, adj_b.p, adj_ret.p);
adj_add(a.q, b.q, adj_a.q, adj_b.q, adj_ret.q);
}
CUDA_CALLABLE inline void adj_sub(const spatial_transform& a, const spatial_transform& b, spatial_transform& adj_a, spatial_transform& adj_b, const spatial_transform& adj_ret)
{
adj_sub(a.p, b.p, adj_a.p, adj_b.p, adj_ret.p);
adj_sub(a.q, b.q, adj_a.q, adj_b.q, adj_ret.q);
}
CUDA_CALLABLE inline void adj_mul(const spatial_transform& a, float s, spatial_transform& adj_a, float& adj_s, const spatial_transform& adj_ret)
{
adj_mul(a.p, s, adj_a.p, adj_s, adj_ret.p);
adj_mul(a.q, s, adj_a.q, adj_s, adj_ret.q);
}
#ifdef CUDA
inline __device__ void atomic_add(spatial_transform* addr, const spatial_transform& value) {
atomic_add(&addr->p, value.p);
atomic_add(&addr->q, value.q);
}
#endif
CUDA_CALLABLE inline void adj_spatial_transform(const float3& p, const quat& q, float3& adj_p, quat& adj_q, const spatial_transform& adj_ret)
{
adj_p += adj_ret.p;
adj_q += adj_ret.q;
}
CUDA_CALLABLE inline void adj_spatial_transform_identity(const spatial_transform& adj_ret)
{
// nop
}
CUDA_CALLABLE inline void adj_spatial_transform_get_translation(const spatial_transform& t, spatial_transform& adj_t, const float3& adj_ret)
{
adj_t.p += adj_ret;
}
CUDA_CALLABLE inline void adj_spatial_transform_get_rotation(const spatial_transform& t, spatial_transform& adj_t, const quat& adj_ret)
{
adj_t.q += adj_ret;
}
/*
CUDA_CALLABLE inline void adj_spatial_transform_inverse(const spatial_transform& t, spatial_transform& adj_t, const spatial_transform& adj_ret)
{
//quat q_inv = inverse(t.q);
//return spatial_transform(-rotate(q_inv, t.p), q_inv);
quat q_inv = inverse(t.q);
float3 p = rotate(q_inv, t.p);
float3 np = -p;
quat adj_q_inv = 0.0f;
quat adj_q = 0.0f;
float3 adj_p = 0.0f;
float3 adj_np = 0.0f;
adj_spatial_transform(np, q_inv, adj_np, adj_q_inv, adj_ret);
adj_p = -adj_np;
adj_rotate(q_inv, t.p, adj_q_inv, adj_t.p, adj_p);
adj_inverse(t.q, adj_t.q, adj_q_inv);
}
*/
CUDA_CALLABLE inline void adj_spatial_transform_multiply(const spatial_transform& a, const spatial_transform& b, spatial_transform& adj_a, spatial_transform& adj_b, const spatial_transform& adj_ret)
{
// translational part
adj_rotate(a.q, b.p, adj_a.q, adj_b.p, adj_ret.p);
adj_a.p += adj_ret.p;
// rotational part
adj_mul(a.q, b.q, adj_a.q, adj_b.q, adj_ret.q);
}
CUDA_CALLABLE inline void adj_spatial_transform_vector(const spatial_transform& t, const float3& x, spatial_transform& adj_t, float3& adj_x, const float3& adj_ret)
{
adj_rotate(t.q, x, adj_t.q, adj_x, adj_ret);
}
CUDA_CALLABLE inline void adj_spatial_transform_point(const spatial_transform& t, const float3& x, spatial_transform& adj_t, float3& adj_x, const float3& adj_ret)
{
adj_rotate(t.q, x, adj_t.q, adj_x, adj_ret);
adj_t.p += adj_ret;
}
CUDA_CALLABLE inline void adj_spatial_transform_twist(const spatial_transform& a, const spatial_vector& s, spatial_transform& adj_a, spatial_vector& adj_s, const spatial_vector& adj_ret)
{
printf("todo, %s, %d\n", __FILE__, __LINE__);
// float3 w = rotate(t.q, x.w);
// float3 v = rotate(t.q, x.v) + cross(t.p, w);
// return spatial_vector(w, v);
}
CUDA_CALLABLE inline void adj_spatial_transform_wrench(const spatial_transform& t, const spatial_vector& x, spatial_transform& adj_t, spatial_vector& adj_x, const spatial_vector& adj_ret)
{
printf("todo, %s, %d\n", __FILE__, __LINE__);
// float3 v = rotate(t.q, x.v);
// float3 w = rotate(t.q, x.w) + cross(t.p, v);
// return spatial_vector(w, v);
}
/*
// should match model.py
#define JOINT_PRISMATIC 0
#define JOINT_REVOLUTE 1
#define JOINT_FIXED 2
#define JOINT_FREE 3
CUDA_CALLABLE inline spatial_transform spatial_jcalc(int type, float* joint_q, float3 axis, int start)
{
if (type == JOINT_REVOLUTE)
{
float q = joint_q[start];
spatial_transform X_jc = spatial_transform(float3(), quat_from_axis_angle(axis, q));
return X_jc;
}
else if (type == JOINT_PRISMATIC)
{
float q = joint_q[start];
spatial_transform X_jc = spatial_transform(axis*q, quat_identity());
return X_jc;
}
else if (type == JOINT_FREE)
{
float px = joint_q[start+0];
float py = joint_q[start+1];
float pz = joint_q[start+2];
float qx = joint_q[start+3];
float qy = joint_q[start+4];
float qz = joint_q[start+5];
float qw = joint_q[start+6];
spatial_transform X_jc = spatial_transform(float3(px, py, pz), quat(qx, qy, qz, qw));
return X_jc;
}
// JOINT_FIXED
return spatial_transform(float3(), quat_identity());
}
CUDA_CALLABLE inline void adj_spatial_jcalc(int type, float* q, float3 axis, int start, int& adj_type, float* adj_q, float3& adj_axis, int& adj_start, const spatial_transform& adj_ret)
{
if (type == JOINT_REVOLUTE)
{
adj_quat_from_axis_angle(axis, q[start], adj_axis, adj_q[start], adj_ret.q);
}
else if (type == JOINT_PRISMATIC)
{
adj_mul(axis, q[start], adj_axis, adj_q[start], adj_ret.p);
}
else if (type == JOINT_FREE)
{
adj_q[start+0] += adj_ret.p.x;
adj_q[start+1] += adj_ret.p.y;
adj_q[start+2] += adj_ret.p.z;
adj_q[start+3] += adj_ret.q.x;
adj_q[start+4] += adj_ret.q.y;
adj_q[start+5] += adj_ret.q.z;
adj_q[start+6] += adj_ret.q.w;
}
}
*/
struct spatial_matrix
{
float data[6][6] = { { 0 } };
CUDA_CALLABLE inline spatial_matrix(float f=0.0f)
{
}
CUDA_CALLABLE inline spatial_matrix(
float a00, float a01, float a02, float a03, float a04, float a05,
float a10, float a11, float a12, float a13, float a14, float a15,
float a20, float a21, float a22, float a23, float a24, float a25,
float a30, float a31, float a32, float a33, float a34, float a35,
float a40, float a41, float a42, float a43, float a44, float a45,
float a50, float a51, float a52, float a53, float a54, float a55)
{
data[0][0] = a00;
data[0][1] = a01;
data[0][2] = a02;
data[0][3] = a03;
data[0][4] = a04;
data[0][5] = a05;
data[1][0] = a10;
data[1][1] = a11;
data[1][2] = a12;
data[1][3] = a13;
data[1][4] = a14;
data[1][5] = a15;
data[2][0] = a20;
data[2][1] = a21;
data[2][2] = a22;
data[2][3] = a23;
data[2][4] = a24;
data[2][5] = a25;
data[3][0] = a30;
data[3][1] = a31;
data[3][2] = a32;
data[3][3] = a33;
data[3][4] = a34;
data[3][5] = a35;
data[4][0] = a40;
data[4][1] = a41;
data[4][2] = a42;
data[4][3] = a43;
data[4][4] = a44;
data[4][5] = a45;
data[5][0] = a50;
data[5][1] = a51;
data[5][2] = a52;
data[5][3] = a53;
data[5][4] = a54;
data[5][5] = a55;
}
};
inline CUDA_CALLABLE float index(const spatial_matrix& m, int row, int col)
{
return m.data[row][col];
}
inline CUDA_CALLABLE spatial_matrix add(const spatial_matrix& a, const spatial_matrix& b)
{
spatial_matrix out;
for (int i=0; i < 6; ++i)
for (int j=0; j < 6; ++j)
out.data[i][j] = a.data[i][j] + b.data[i][j];
return out;
}
inline CUDA_CALLABLE spatial_vector mul(const spatial_matrix& a, const spatial_vector& b)
{
spatial_vector out;
for (int i=0; i < 6; ++i)
for (int j=0; j < 6; ++j)
out[i] += a.data[i][j]*b[j];
return out;
}
inline CUDA_CALLABLE spatial_matrix mul(const spatial_matrix& a, const spatial_matrix& b)
{
spatial_matrix out;
for (int i=0; i < 6; ++i)
{
for (int j=0; j < 6; ++j)
{
for (int k=0; k < 6; ++k)
{
out.data[i][j] += a.data[i][k]*b.data[k][j];
}
}
}
return out;
}
inline CUDA_CALLABLE spatial_matrix transpose(const spatial_matrix& a)
{
spatial_matrix out;
for (int i=0; i < 6; i++)
for (int j=0; j < 6; j++)
out.data[i][j] = a.data[j][i];
return out;
}
inline CUDA_CALLABLE spatial_matrix outer(const spatial_vector& a, const spatial_vector& b)
{
spatial_matrix out;
for (int i=0; i < 6; i++)
for (int j=0; j < 6; j++)
out.data[i][j] = a[i]*b[j];
return out;
}
CUDA_CALLABLE void print(spatial_transform t);
CUDA_CALLABLE void print(spatial_matrix m);
inline CUDA_CALLABLE spatial_matrix spatial_adjoint(const mat33& R, const mat33& S)
{
spatial_matrix adT;
// T = [R 0]
// [skew(p)*R R]
// diagonal blocks
for (int i=0; i < 3; ++i)
{
for (int j=0; j < 3; ++j)
{
adT.data[i][j] = R.data[i][j];
adT.data[i+3][j+3] = R.data[i][j];
}
}
// lower off diagonal
for (int i=0; i < 3; ++i)
{
for (int j=0; j < 3; ++j)
{
adT.data[i+3][j] = S.data[i][j];
}
}
return adT;
}
inline CUDA_CALLABLE void adj_spatial_adjoint(const mat33& R, const mat33& S, mat33& adj_R, mat33& adj_S, const spatial_matrix& adj_ret)
{
// diagonal blocks
for (int i=0; i < 3; ++i)
{
for (int j=0; j < 3; ++j)
{
adj_R.data[i][j] += adj_ret.data[i][j];
adj_R.data[i][j] += adj_ret.data[i+3][j+3];
}
}
// lower off diagonal
for (int i=0; i < 3; ++i)
{
for (int j=0; j < 3; ++j)
{
adj_S.data[i][j] += adj_ret.data[i+3][j];
}
}
}
/*
// computes adj_t^-T*I*adj_t^-1 (tensor change of coordinates), Frank & Park, section 8.2.3, pg 290
inline CUDA_CALLABLE spatial_matrix spatial_transform_inertia(const spatial_transform& t, const spatial_matrix& I)
{
spatial_transform t_inv = spatial_transform_inverse(t);
float3 r1 = rotate(t_inv.q, float3(1.0, 0.0, 0.0));
float3 r2 = rotate(t_inv.q, float3(0.0, 1.0, 0.0));
float3 r3 = rotate(t_inv.q, float3(0.0, 0.0, 1.0));
mat33 R(r1, r2, r3);
mat33 S = mul(skew(t_inv.p), R);
spatial_matrix T = spatial_adjoint(R, S);
// first quadratic form, for derivation of the adjoint see https://people.maths.ox.ac.uk/gilesm/files/AD2008.pdf, section 2.3.2
return mul(mul(transpose(T), I), T);
}
*/
inline CUDA_CALLABLE void adj_add(const spatial_matrix& a, const spatial_matrix& b, spatial_matrix& adj_a, spatial_matrix& adj_b, const spatial_matrix& adj_ret)
{
adj_a += adj_ret;
adj_b += adj_ret;
}
inline CUDA_CALLABLE void adj_mul(const spatial_matrix& a, const spatial_vector& b, spatial_matrix& adj_a, spatial_vector& adj_b, const spatial_vector& adj_ret)
{
adj_a += outer(adj_ret, b);
adj_b += mul(transpose(a), adj_ret);
}
inline CUDA_CALLABLE void adj_mul(const spatial_matrix& a, const spatial_matrix& b, spatial_matrix& adj_a, spatial_matrix& adj_b, const spatial_matrix& adj_ret)
{
adj_a += mul(adj_ret, transpose(b));
adj_b += mul(transpose(a), adj_ret);
}
inline CUDA_CALLABLE void adj_transpose(const spatial_matrix& a, spatial_matrix& adj_a, const spatial_matrix& adj_ret)
{
adj_a += transpose(adj_ret);
}
inline CUDA_CALLABLE void adj_spatial_transform_inertia(
const spatial_transform& xform, const spatial_matrix& I,
const spatial_transform& adj_xform, const spatial_matrix& adj_I,
spatial_matrix& adj_ret)
{
//printf("todo, %s, %d\n", __FILE__, __LINE__);
}
inline void CUDA_CALLABLE adj_index(const spatial_matrix& m, int row, int col, spatial_matrix& adj_m, int& adj_row, int& adj_col, float adj_ret)
{
adj_m.data[row][col] += adj_ret;
}
#ifdef CUDA
inline __device__ void atomic_add(spatial_matrix* addr, const spatial_matrix& value)
{
for (int i=0; i < 6; ++i)
{
for (int j=0; j < 6; ++j)
{
atomicAdd(&addr->data[i][j], value.data[i][j]);
}
}
}
#endif
CUDA_CALLABLE inline int row_index(int stride, int i, int j)
{
return i*stride + j;
}
// builds spatial Jacobian J which is an (joint_count*6)x(dof_count) matrix
CUDA_CALLABLE inline void spatial_jacobian(
const spatial_vector* S,
const int* joint_parents,
const int* joint_qd_start,
int joint_start, // offset of the first joint for the articulation
int joint_count,
int J_start,
float* J)
{
const int articulation_dof_start = joint_qd_start[joint_start];
const int articulation_dof_end = joint_qd_start[joint_start + joint_count];
const int articulation_dof_count = articulation_dof_end-articulation_dof_start;
// shift output pointers
const int S_start = articulation_dof_start;
S += S_start;
J += J_start;
for (int i=0; i < joint_count; ++i)
{
const int row_start = i * 6;
int j = joint_start + i;
while (j != -1)
{
const int joint_dof_start = joint_qd_start[j];
const int joint_dof_end = joint_qd_start[j+1];
const int joint_dof_count = joint_dof_end-joint_dof_start;
// fill out each row of the Jacobian walking up the tree
//for (int col=dof_start; col < dof_end; ++col)
for (int dof=0; dof < joint_dof_count; ++dof)
{
const int col = (joint_dof_start-articulation_dof_start) + dof;
J[row_index(articulation_dof_count, row_start+0, col)] = S[col].w.x;
J[row_index(articulation_dof_count, row_start+1, col)] = S[col].w.y;
J[row_index(articulation_dof_count, row_start+2, col)] = S[col].w.z;
J[row_index(articulation_dof_count, row_start+3, col)] = S[col].v.x;
J[row_index(articulation_dof_count, row_start+4, col)] = S[col].v.y;
J[row_index(articulation_dof_count, row_start+5, col)] = S[col].v.z;
}
j = joint_parents[j];
}
}
}
CUDA_CALLABLE inline void adj_spatial_jacobian(
const spatial_vector* S,
const int* joint_parents,
const int* joint_qd_start,
const int joint_start,
const int joint_count,
const int J_start,
const float* J,
// adjs
spatial_vector* adj_S,
int* adj_joint_parents,
int* adj_joint_qd_start,
int& adj_joint_start,
int& adj_joint_count,
int& adj_J_start,
const float* adj_J)
{
const int articulation_dof_start = joint_qd_start[joint_start];
const int articulation_dof_end = joint_qd_start[joint_start + joint_count];
const int articulation_dof_count = articulation_dof_end-articulation_dof_start;
// shift output pointers
const int S_start = articulation_dof_start;
S += S_start;
J += J_start;
adj_S += S_start;
adj_J += J_start;
for (int i=0; i < joint_count; ++i)
{
const int row_start = i * 6;
int j = joint_start + i;
while (j != -1)
{
const int joint_dof_start = joint_qd_start[j];
const int joint_dof_end = joint_qd_start[j+1];
const int joint_dof_count = joint_dof_end-joint_dof_start;
// fill out each row of the Jacobian walking up the tree
//for (int col=dof_start; col < dof_end; ++col)
for (int dof=0; dof < joint_dof_count; ++dof)
{
const int col = (joint_dof_start-articulation_dof_start) + dof;
adj_S[col].w.x += adj_J[row_index(articulation_dof_count, row_start+0, col)];
adj_S[col].w.y += adj_J[row_index(articulation_dof_count, row_start+1, col)];
adj_S[col].w.z += adj_J[row_index(articulation_dof_count, row_start+2, col)];
adj_S[col].v.x += adj_J[row_index(articulation_dof_count, row_start+3, col)];
adj_S[col].v.y += adj_J[row_index(articulation_dof_count, row_start+4, col)];
adj_S[col].v.z += adj_J[row_index(articulation_dof_count, row_start+5, col)];
}
j = joint_parents[j];
}
}
}
CUDA_CALLABLE inline void spatial_mass(const spatial_matrix* I_s, int joint_start, int joint_count, int M_start, float* M)
{
const int stride = joint_count*6;
for (int l=0; l < joint_count; ++l)
{
for (int i=0; i < 6; ++i)
{
for (int j=0; j < 6; ++j)
{
M[M_start + row_index(stride, l*6 + i, l*6 + j)] = I_s[joint_start + l].data[i][j];
}
}
}
}
CUDA_CALLABLE inline void adj_spatial_mass(
const spatial_matrix* I_s,
const int joint_start,
const int joint_count,
const int M_start,
const float* M,
spatial_matrix* adj_I_s,
int& adj_joint_start,
int& adj_joint_count,
int& adj_M_start,
const float* adj_M)
{
const int stride = joint_count*6;
for (int l=0; l < joint_count; ++l)
{
for (int i=0; i < 6; ++i)
{
for (int j=0; j < 6; ++j)
{
adj_I_s[joint_start + l].data[i][j] += adj_M[M_start + row_index(stride, l*6 + i, l*6 + j)];
}
}
}
}
| 24,501 |
C
| 28.099762 | 198 | 0.594057 |
RoboticExplorationLab/CGAC/dflex/dflex/mat22.h
|
#pragma once
//----------------------------------------------------------
// mat22
struct mat22
{
inline CUDA_CALLABLE mat22(float m00=0.0f, float m01=0.0f, float m10=0.0f, float m11=0.0f)
{
data[0][0] = m00;
data[1][0] = m10;
data[0][1] = m01;
data[1][1] = m11;
}
// row major storage assumed to be compatible with PyTorch
float data[2][2];
};
#ifdef CUDA
inline __device__ void atomic_add(mat22 * addr, mat22 value) {
// *addr += value;
atomicAdd(&((addr -> data)[0][0]), value.data[0][0]);
atomicAdd(&((addr -> data)[0][1]), value.data[0][1]);
atomicAdd(&((addr -> data)[1][0]), value.data[1][0]);
atomicAdd(&((addr -> data)[1][1]), value.data[1][1]);
}
#endif
inline CUDA_CALLABLE void adj_mat22(float m00, float m01, float m10, float m11, float& adj_m00, float& adj_m01, float& adj_m10, float& adj_m11, const mat22& adj_ret)
{
printf("todo\n");
}
inline CUDA_CALLABLE float index(const mat22& m, int row, int col)
{
return m.data[row][col];
}
inline CUDA_CALLABLE mat22 add(const mat22& a, const mat22& b)
{
mat22 t;
for (int i=0; i < 2; ++i)
{
for (int j=0; j < 2; ++j)
{
t.data[i][j] = a.data[i][j] + b.data[i][j];
}
}
return t;
}
inline CUDA_CALLABLE mat22 mul(const mat22& a, float b)
{
mat22 t;
for (int i=0; i < 2; ++i)
{
for (int j=0; j < 2; ++j)
{
t.data[i][j] = a.data[i][j]*b;
}
}
return t;
}
inline CUDA_CALLABLE mat22 mul(const mat22& a, const mat22& b)
{
mat22 t;
for (int i=0; i < 2; ++i)
{
for (int j=0; j < 2; ++j)
{
for (int k=0; k < 2; ++k)
{
t.data[i][j] += a.data[i][k]*b.data[k][j];
}
}
}
return t;
}
inline CUDA_CALLABLE mat22 transpose(const mat22& a)
{
mat22 t;
for (int i=0; i < 2; ++i)
{
for (int j=0; j < 2; ++j)
{
t.data[i][j] = a.data[j][i];
}
}
return t;
}
inline CUDA_CALLABLE float determinant(const mat22& m)
{
return m.data[0][0]*m.data[1][1] - m.data[1][0]*m.data[0][1];
}
inline void CUDA_CALLABLE adj_index(const mat22& m, int row, int col, mat22& adj_m, int& adj_row, int& adj_col, float adj_ret)
{
adj_m.data[row][col] += adj_ret;
}
inline CUDA_CALLABLE void adj_add(const mat22& a, const mat22& b, mat22& adj_a, mat22& adj_b, const mat22& adj_ret)
{
for (int i=0; i < 2; ++i)
{
for (int j=0; j < 2; ++j)
{
adj_a.data[i][j] = adj_ret.data[i][j];
adj_b.data[i][j] = adj_ret.data[i][j];
}
}
}
inline CUDA_CALLABLE void adj_mul(const mat22& a, const mat22& b, mat22& adj_a, mat22& adj_b, const mat22& adj_ret)
{
printf("todo\n");
}
inline CUDA_CALLABLE void adj_transpose(const mat22& a, mat22& adj_a, const mat22& adj_ret)
{
printf("todo\n");
}
inline CUDA_CALLABLE void adj_determinant(const mat22& m, mat22& adj_m, float adj_ret)
{
adj_m.data[0][0] += m.data[1][1]*adj_ret;
adj_m.data[1][1] += m.data[0][0]*adj_ret;
adj_m.data[0][1] -= m.data[1][0]*adj_ret;
adj_m.data[1][0] -= m.data[0][1]*adj_ret;
}
| 3,206 |
C
| 21.744681 | 165 | 0.515908 |
RoboticExplorationLab/CGAC/dflex/dflex/vec2.h
|
#pragma once
struct float2
{
float x;
float y;
};
| 58 |
C
| 7.42857 | 13 | 0.586207 |
RoboticExplorationLab/CGAC/dflex/dflex/util.py
|
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import timeit
import math
import numpy as np
import gc
import torch
import cProfile
log_output = ""
def log(s):
print(s)
global log_output
log_output = log_output + s + "\n"
# short hands
def length(a):
return np.linalg.norm(a)
def length_sq(a):
return np.dot(a, a)
# NumPy has no normalize() method..
def normalize(v):
norm = np.linalg.norm(v)
if norm == 0.0:
return v
return v / norm
def skew(v):
return np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]])
# math utils
def quat(i, j, k, w):
return np.array([i, j, k, w])
def quat_identity():
return np.array((0.0, 0.0, 0.0, 1.0))
def quat_inverse(q):
return np.array((-q[0], -q[1], -q[2], q[3]))
def quat_from_axis_angle(axis, angle):
v = np.array(axis)
half = angle * 0.5
w = math.cos(half)
sin_theta_over_two = math.sin(half)
v *= sin_theta_over_two
return np.array((v[0], v[1], v[2], w))
# rotate a vector
def quat_rotate(q, x):
x = np.array(x)
axis = np.array((q[0], q[1], q[2]))
return x * (2.0 * q[3] * q[3] - 1.0) + np.cross(axis, x) * q[3] * 2.0 + axis * np.dot(axis, x) * 2.0
# multiply two quats
def quat_multiply(a, b):
return np.array((a[3] * b[0] + b[3] * a[0] + a[1] * b[2] - b[1] * a[2],
a[3] * b[1] + b[3] * a[1] + a[2] * b[0] - b[2] * a[0],
a[3] * b[2] + b[3] * a[2] + a[0] * b[1] - b[0] * a[1],
a[3] * b[3] - a[0] * b[0] - a[1] * b[1] - a[2] * b[2]))
# convert to mat33
def quat_to_matrix(q):
c1 = quat_rotate(q, np.array((1.0, 0.0, 0.0)))
c2 = quat_rotate(q, np.array((0.0, 1.0, 0.0)))
c3 = quat_rotate(q, np.array((0.0, 0.0, 1.0)))
return np.array([c1, c2, c3]).T
def quat_rpy(roll, pitch, yaw):
cy = math.cos(yaw * 0.5)
sy = math.sin(yaw * 0.5)
cr = math.cos(roll * 0.5)
sr = math.sin(roll * 0.5)
cp = math.cos(pitch * 0.5)
sp = math.sin(pitch * 0.5)
w = (cy * cr * cp + sy * sr * sp)
x = (cy * sr * cp - sy * cr * sp)
y = (cy * cr * sp + sy * sr * cp)
z = (sy * cr * cp - cy * sr * sp)
return (x, y, z, w)
def quat_from_matrix(m):
tr = m[0, 0] + m[1, 1] + m[2, 2]
h = 0.0
if(tr >= 0.0):
h = math.sqrt(tr + 1.0)
w = 0.5 * h
h = 0.5 / h
x = (m[2, 1] - m[1, 2]) * h
y = (m[0, 2] - m[2, 0]) * h
z = (m[1, 0] - m[0, 1]) * h
else:
i = 0;
if(m[1, 1] > m[0, 0]):
i = 1;
if(m[2, 2] > m[i, i]):
i = 2;
if (i == 0):
h = math.sqrt((m[0, 0] - (m[1, 1] + m[2, 2])) + 1.0)
x = 0.5 * h
h = 0.5 / h
y = (m[0, 1] + m[1, 0]) * h
z = (m[2, 0] + m[0, 2]) * h
w = (m[2, 1] - m[1, 2]) * h
elif (i == 1):
h = sqrtf((m[1, 1] - (m[2, 2] + m[0, 0])) + 1.0)
y = 0.5 * h
h = 0.5 / h
z = (m[1, 2] + m[2, 1]) * h
x = (m[0, 1] + m[1, 0]) * h
w = (m[0, 2] - m[2, 0]) * h
elif (i == 2):
h = sqrtf((m[2, 2] - (m[0, 0] + m[1, 1])) + 1.0)
z = 0.5 * h
h = 0.5 / h
x = (m[2, 0] + m[0, 2]) * h
y = (m[1, 2] + m[2, 1]) * h
w = (m[1, 0] - m[0, 1]) * h
return normalize(quat(x, y, z, w))
# rigid body transform
def transform(x, r):
return (np.array(x), np.array(r))
def transform_identity():
return (np.array((0.0, 0.0, 0.0)), quat_identity())
# se(3) -> SE(3), Park & Lynch pg. 105, screw in [w, v] normalized form
def transform_exp(s, angle):
w = np.array(s[0:3])
v = np.array(s[3:6])
if (length(w) < 1.0):
r = quat_identity()
else:
r = quat_from_axis_angle(w, angle)
t = v * angle + (1.0 - math.cos(angle)) * np.cross(w, v) + (angle - math.sin(angle)) * np.cross(w, np.cross(w, v))
return (t, r)
def transform_inverse(t):
q_inv = quat_inverse(t[1])
return (-quat_rotate(q_inv, t[0]), q_inv)
def transform_vector(t, v):
return quat_rotate(t[1], v)
def transform_point(t, p):
return np.array(t[0]) + quat_rotate(t[1], p)
def transform_multiply(t, u):
return (quat_rotate(t[1], u[0]) + t[0], quat_multiply(t[1], u[1]))
# flatten an array of transforms (p,q) format to a 7-vector
def transform_flatten(t):
return np.array([*t[0], *t[1]])
# expand a 7-vec to a tuple of arrays
def transform_expand(t):
return (np.array(t[0:3]), np.array(t[3:7]))
# convert array of transforms to a array of 7-vecs
def transform_flatten_list(xforms):
exp = lambda t: transform_flatten(t)
return list(map(exp, xforms))
def transform_expand_list(xforms):
exp = lambda t: transform_expand(t)
return list(map(exp, xforms))
def transform_inertia(m, I, p, q):
R = quat_to_matrix(q)
# Steiner's theorem
return R * I * R.T + m * (np.dot(p, p) * np.eye(3) - np.outer(p, p))
# spatial operators
# AdT
def spatial_adjoint(t):
R = quat_to_matrix(t[1])
w = skew(t[0])
A = np.zeros((6, 6))
A[0:3, 0:3] = R
A[3:6, 0:3] = np.dot(w, R)
A[3:6, 3:6] = R
return A
# (AdT)^-T
def spatial_adjoint_dual(t):
R = quat_to_matrix(t[1])
w = skew(t[0])
A = np.zeros((6, 6))
A[0:3, 0:3] = R
A[0:3, 3:6] = np.dot(w, R)
A[3:6, 3:6] = R
return A
# AdT*s
def transform_twist(t_ab, s_b):
return np.dot(spatial_adjoint(t_ab), s_b)
# AdT^{-T}*s
def transform_wrench(t_ab, f_b):
return np.dot(spatial_adjoint_dual(t_ab), f_b)
# transform spatial inertia (6x6) in b frame to a frame
def transform_spatial_inertia(t_ab, I_b):
t_ba = transform_inverse(t_ab)
# todo: write specialized method
I_a = np.dot(np.dot(spatial_adjoint(t_ba).T, I_b), spatial_adjoint(t_ba))
return I_a
def translate_twist(p_ab, s_b):
w = s_b[0:3]
v = np.cross(p_ab, s_b[0:3]) + s_b[3:6]
return np.array((*w, *v))
def translate_wrench(p_ab, s_b):
w = s_b[0:3] + np.cross(p_ab, s_b[3:6])
v = s_b[3:6]
return np.array((*w, *v))
def spatial_vector(v=(0.0, 0.0, 0.0, 0.0, 0.0, 0.0)):
return np.array(v)
# ad_V pg. 289 L&P, pg. 25 Featherstone
def spatial_cross(a, b):
w = np.cross(a[0:3], b[0:3])
v = np.cross(a[3:6], b[0:3]) + np.cross(a[0:3], b[3:6])
return np.array((*w, *v))
# ad_V^T pg. 290 L&P, pg. 25 Featurestone, note this does not includes the sign flip in the definition
def spatial_cross_dual(a, b):
w = np.cross(a[0:3], b[0:3]) + np.cross(a[3:6], b[3:6])
v = np.cross(a[0:3], b[3:6])
return np.array((*w, *v))
def spatial_dot(a, b):
return np.dot(a, b)
def spatial_outer(a, b):
return np.outer(a, b)
def spatial_matrix():
return np.zeros((6, 6))
def spatial_matrix_from_inertia(I, m):
G = spatial_matrix()
G[0:3, 0:3] = I
G[3, 3] = m
G[4, 4] = m
G[5, 5] = m
return G
# solves x = I^(-1)b
def spatial_solve(I, b):
return np.dot(np.linalg.inv(I), b)
def rpy2quat(roll, pitch, yaw):
cy = math.cos(yaw * 0.5)
sy = math.sin(yaw * 0.5)
cr = math.cos(roll * 0.5)
sr = math.sin(roll * 0.5)
cp = math.cos(pitch * 0.5)
sp = math.sin(pitch * 0.5)
w = cy * cr * cp + sy * sr * sp
x = cy * sr * cp - sy * cr * sp
y = cy * cr * sp + sy * sr * cp
z = sy * cr * cp - cy * sr * sp
return (x, y, z, w)
# helper to retrive body angular velocity from a twist v_s in se(3)
def get_body_angular_velocity(v_s):
return v_s[0:3]
# helper to compute velocity of a point p on a body given it's spatial twist v_s
def get_body_linear_velocity(v_s, p):
dpdt = v_s[3:6] + torch.cross(v_s[0:3], p)
return dpdt
# helper to build a body twist given the angular and linear velocity of
# the center of mass specified in the world frame, returns the body
# twist with respect to the origin (v_s)
def get_body_twist(w_m, v_m, p_m):
lin = v_m + torch.cross(p_m, w_m)
return (*w_m, *lin)
# timer utils
class ScopedTimer:
indent = -1
enabled = True
def __init__(self, name, active=True, detailed=False):
self.name = name
self.active = active and self.enabled
self.detailed = detailed
def __enter__(self):
if (self.active):
self.start = timeit.default_timer()
ScopedTimer.indent += 1
if (self.detailed):
self.cp = cProfile.Profile()
self.cp.clear()
self.cp.enable()
def __exit__(self, exc_type, exc_value, traceback):
if (self.detailed):
self.cp.disable()
self.cp.print_stats(sort='tottime')
if (self.active):
elapsed = (timeit.default_timer() - self.start) * 1000.0
indent = ""
for i in range(ScopedTimer.indent):
indent += "\t"
log("{}{} took {:.2f} ms".format(indent, self.name, elapsed))
ScopedTimer.indent -= 1
# code snippet for invoking cProfile
# cp = cProfile.Profile()
# cp.enable()
# for i in range(1000):
# self.state = self.integrator.forward(self.model, self.state, self.sim_dt)
# cp.disable()
# cp.print_stats(sort='tottime')
# exit(0)
# represent an edge between v0, v1 with connected faces f0, f1, and opposite vertex o0, and o1
# winding is such that first tri can be reconstructed as {v0, v1, o0}, and second tri as { v1, v0, o1 }
class MeshEdge:
def __init__(self, v0, v1, o0, o1, f0, f1):
self.v0 = v0 # vertex 0
self.v1 = v1 # vertex 1
self.o0 = o0 # opposite vertex 1
self.o1 = o1 # opposite vertex 2
self.f0 = f0 # index of tri1
self.f1 = f1 # index of tri2
class MeshAdjacency:
def __init__(self, indices, num_tris):
# map edges (v0, v1) to faces (f0, f1)
self.edges = {}
self.indices = indices
for index, tri in enumerate(indices):
self.add_edge(tri[0], tri[1], tri[2], index)
self.add_edge(tri[1], tri[2], tri[0], index)
self.add_edge(tri[2], tri[0], tri[1], index)
def add_edge(self, i0, i1, o, f): # index1, index2, index3, index of triangle
key = (min(i0, i1), max(i0, i1))
edge = None
if key in self.edges:
edge = self.edges[key]
if (edge.f1 != -1):
print("Detected non-manifold edge")
return
else:
# update other side of the edge
edge.o1 = o
edge.f1 = f
else:
# create new edge with opposite yet to be filled
edge = MeshEdge(i0, i1, o, -1, f, -1)
self.edges[key] = edge
def opposite_vertex(self, edge):
pass
def mem_report():
'''Report the memory usage of the tensor.storage in pytorch
Both on CPUs and GPUs are reported'''
def _mem_report(tensors, mem_type):
'''Print the selected tensors of type
There are two major storage types in our major concern:
- GPU: tensors transferred to CUDA devices
- CPU: tensors remaining on the system memory (usually unimportant)
Args:
- tensors: the tensors of specified type
- mem_type: 'CPU' or 'GPU' in current implementation '''
total_numel = 0
total_mem = 0
visited_data = []
for tensor in tensors:
if tensor.is_sparse:
continue
# a data_ptr indicates a memory block allocated
data_ptr = tensor.storage().data_ptr()
if data_ptr in visited_data:
continue
visited_data.append(data_ptr)
numel = tensor.storage().size()
total_numel += numel
element_size = tensor.storage().element_size()
mem = numel*element_size /1024/1024 # 32bit=4Byte, MByte
total_mem += mem
element_type = type(tensor).__name__
size = tuple(tensor.size())
# print('%s\t\t%s\t\t%.2f' % (
# element_type,
# size,
# mem) )
print('Type: %s Total Tensors: %d \tUsed Memory Space: %.2f MBytes' % (mem_type, total_numel, total_mem) )
gc.collect()
LEN = 65
objects = gc.get_objects()
#print('%s\t%s\t\t\t%s' %('Element type', 'Size', 'Used MEM(MBytes)') )
tensors = [obj for obj in objects if torch.is_tensor(obj)]
cuda_tensors = [t for t in tensors if t.is_cuda]
host_tensors = [t for t in tensors if not t.is_cuda]
_mem_report(cuda_tensors, 'GPU')
_mem_report(host_tensors, 'CPU')
print('='*LEN)
| 13,134 |
Python
| 23.056777 | 118 | 0.522994 |
RoboticExplorationLab/CGAC/dflex/dflex/adjoint.h
|
#pragma once
#include <cmath>
#include <stdio.h>
#ifdef CPU
#define CUDA_CALLABLE
#define __device__
#define __host__
#define __constant__
#elif defined(CUDA)
#define CUDA_CALLABLE __device__
#include <cuda.h>
#include <cuda_runtime_api.h>
#define check_cuda(code) { check_cuda_impl(code, __FILE__, __LINE__); }
void check_cuda_impl(cudaError_t code, const char* file, int line)
{
if (code != cudaSuccess)
{
printf("CUDA Error: %s %s %d\n", cudaGetErrorString(code), file, line);
}
}
void print_device()
{
int currentDevice;
cudaError_t err = cudaGetDevice(¤tDevice);
cudaDeviceProp props;
err = cudaGetDeviceProperties(&props, currentDevice);
if (err != cudaSuccess)
printf("CUDA error: %d\n", err);
else
printf("%s\n", props.name);
}
#endif
#ifdef _WIN32
#define __restrict__ __restrict
#endif
#define FP_CHECK 0
namespace df
{
template <typename T>
CUDA_CALLABLE float cast_float(T x) { return (float)(x); }
template <typename T>
CUDA_CALLABLE int cast_int(T x) { return (int)(x); }
template <typename T>
CUDA_CALLABLE void adj_cast_float(T x, T& adj_x, float adj_ret) { adj_x += adj_ret; }
template <typename T>
CUDA_CALLABLE void adj_cast_int(T x, T& adj_x, int adj_ret) { adj_x += adj_ret; }
// avoid namespacing of float type for casting to float type, this is to avoid wp::float(x), which is not valid in C++
#define float(x) cast_float(x)
#define adj_float(x, adj_x, adj_ret) adj_cast_float(x, adj_x, adj_ret)
#define int(x) cast_int(x)
#define adj_int(x, adj_x, adj_ret) adj_cast_int(x, adj_x, adj_ret)
#define kEps 0.0f
// basic ops for integer types
inline CUDA_CALLABLE int mul(int a, int b) { return a*b; }
inline CUDA_CALLABLE int div(int a, int b) { return a/b; }
inline CUDA_CALLABLE int add(int a, int b) { return a+b; }
inline CUDA_CALLABLE int sub(int a, int b) { return a-b; }
inline CUDA_CALLABLE int mod(int a, int b) { return a % b; }
inline CUDA_CALLABLE void adj_mul(int a, int b, int& adj_a, int& adj_b, int adj_ret) { }
inline CUDA_CALLABLE void adj_div(int a, int b, int& adj_a, int& adj_b, int adj_ret) { }
inline CUDA_CALLABLE void adj_add(int a, int b, int& adj_a, int& adj_b, int adj_ret) { }
inline CUDA_CALLABLE void adj_sub(int a, int b, int& adj_a, int& adj_b, int adj_ret) { }
inline CUDA_CALLABLE void adj_mod(int a, int b, int& adj_a, int& adj_b, int adj_ret) { }
// basic ops for float types
inline CUDA_CALLABLE float mul(float a, float b) { return a*b; }
inline CUDA_CALLABLE float div(float a, float b) { return a/b; }
inline CUDA_CALLABLE float add(float a, float b) { return a+b; }
inline CUDA_CALLABLE float sub(float a, float b) { return a-b; }
inline CUDA_CALLABLE float min(float a, float b) { return a<b?a:b; }
inline CUDA_CALLABLE float max(float a, float b) { return a>b?a:b; }
inline CUDA_CALLABLE float leaky_min(float a, float b, float r) { return min(a, b); }
inline CUDA_CALLABLE float leaky_max(float a, float b, float r) { return max(a, b); }
inline CUDA_CALLABLE float clamp(float x, float a, float b) { return min(max(a, x), b); }
inline CUDA_CALLABLE float step(float x) { return x < 0.0 ? 1.0 : 0.0; }
inline CUDA_CALLABLE float sign(float x) { return x < 0.0 ? -1.0 : 1.0; }
inline CUDA_CALLABLE float abs(float x) { return fabsf(x); }
inline CUDA_CALLABLE float nonzero(float x) { return x == 0.0 ? 0.0 : 1.0; }
inline CUDA_CALLABLE float acos(float x) { return std::acos(std::min(std::max(x, -1.0f), 1.0f)); }
inline CUDA_CALLABLE float sin(float x) { return std::sin(x); }
inline CUDA_CALLABLE float cos(float x) { return std::cos(x); }
inline CUDA_CALLABLE float sqrt(float x) { return std::sqrt(x); }
inline CUDA_CALLABLE void adj_mul(float a, float b, float& adj_a, float& adj_b, float adj_ret) { adj_a += b*adj_ret; adj_b += a*adj_ret; }
inline CUDA_CALLABLE void adj_div(float a, float b, float& adj_a, float& adj_b, float adj_ret) { adj_a += adj_ret/b; adj_b -= adj_ret*(a/b)/b; }
inline CUDA_CALLABLE void adj_add(float a, float b, float& adj_a, float& adj_b, float adj_ret) { adj_a += adj_ret; adj_b += adj_ret; }
inline CUDA_CALLABLE void adj_sub(float a, float b, float& adj_a, float& adj_b, float adj_ret) { adj_a += adj_ret; adj_b -= adj_ret; }
// inline CUDA_CALLABLE bool lt(float a, float b) { return a < b; }
// inline CUDA_CALLABLE bool gt(float a, float b) { return a > b; }
// inline CUDA_CALLABLE bool lte(float a, float b) { return a <= b; }
// inline CUDA_CALLABLE bool gte(float a, float b) { return a >= b; }
// inline CUDA_CALLABLE bool eq(float a, float b) { return a == b; }
// inline CUDA_CALLABLE bool neq(float a, float b) { return a != b; }
// inline CUDA_CALLABLE bool adj_lt(float a, float b, float & adj_a, float & adj_b, bool & adj_ret) { }
// inline CUDA_CALLABLE bool adj_gt(float a, float b, float & adj_a, float & adj_b, bool & adj_ret) { }
// inline CUDA_CALLABLE bool adj_lte(float a, float b, float & adj_a, float & adj_b, bool & adj_ret) { }
// inline CUDA_CALLABLE bool adj_gte(float a, float b, float & adj_a, float & adj_b, bool & adj_ret) { }
// inline CUDA_CALLABLE bool adj_eq(float a, float b, float & adj_a, float & adj_b, bool & adj_ret) { }
// inline CUDA_CALLABLE bool adj_neq(float a, float b, float & adj_a, float & adj_b, bool & adj_ret) { }
inline CUDA_CALLABLE void adj_min(float a, float b, float& adj_a, float& adj_b, float adj_ret)
{
if (a < b)
adj_a += adj_ret;
else
adj_b += adj_ret;
}
inline CUDA_CALLABLE void adj_max(float a, float b, float& adj_a, float& adj_b, float adj_ret)
{
if (a > b)
adj_a += adj_ret;
else
adj_b += adj_ret;
}
inline CUDA_CALLABLE void adj_leaky_min(float a, float b, float r, float& adj_a, float& adj_b, float& adj_r, float adj_ret)
{
if (a < b)
adj_a += adj_ret;
else
{
adj_a += r*adj_ret;
adj_b += adj_ret;
}
}
inline CUDA_CALLABLE void adj_leaky_max(float a, float b, float r, float& adj_a, float& adj_b, float& adj_r, float adj_ret)
{
if (a > b)
adj_a += adj_ret;
else
{
adj_a += r*adj_ret;
adj_b += adj_ret;
}
}
inline CUDA_CALLABLE void adj_clamp(float x, float a, float b, float& adj_x, float& adj_a, float& adj_b, float adj_ret)
{
if (x < a)
adj_a += adj_ret;
else if (x > b)
adj_b += adj_ret;
else
adj_x += adj_ret;
}
inline CUDA_CALLABLE void adj_step(float x, float& adj_x, float adj_ret)
{
// nop
}
inline CUDA_CALLABLE void adj_nonzero(float x, float& adj_x, float adj_ret)
{
// nop
}
inline CUDA_CALLABLE void adj_sign(float x, float& adj_x, float adj_ret)
{
// nop
}
inline CUDA_CALLABLE void adj_abs(float x, float& adj_x, float adj_ret)
{
if (x < 0.0)
adj_x -= adj_ret;
else
adj_x += adj_ret;
}
inline CUDA_CALLABLE void adj_acos(float x, float& adj_x, float adj_ret)
{
float d = sqrt(1.0-x*x);
if (d > 0.0)
adj_x -= (1.0/d)*adj_ret;
}
inline CUDA_CALLABLE void adj_sin(float x, float& adj_x, float adj_ret)
{
adj_x += std::cos(x)*adj_ret;
}
inline CUDA_CALLABLE void adj_cos(float x, float& adj_x, float adj_ret)
{
adj_x -= std::sin(x)*adj_ret;
}
inline CUDA_CALLABLE void adj_sqrt(float x, float& adj_x, float adj_ret)
{
adj_x += 0.5f*(1.0/std::sqrt(x))*adj_ret;
}
template <typename T>
CUDA_CALLABLE inline T select(bool cond, const T& a, const T& b) { return cond?b:a; }
template <typename T>
CUDA_CALLABLE inline void adj_select(bool cond, const T& a, const T& b, bool& adj_cond, T& adj_a, T& adj_b, const T& adj_ret)
{
if (cond)
adj_b += adj_ret;
else
adj_a += adj_ret;
}
// some helpful operator overloads (just for C++ use, these are not adjointed)
template <typename T>
CUDA_CALLABLE T& operator += (T& a, const T& b) { a = add(a, b); return a; }
template <typename T>
CUDA_CALLABLE T& operator -= (T& a, const T& b) { a = sub(a, b); return a; }
template <typename T>
CUDA_CALLABLE T operator*(const T& a, float s) { return mul(a, s); }
template <typename T>
CUDA_CALLABLE T operator/(const T& a, float s) { return div(a, s); }
template <typename T>
CUDA_CALLABLE T operator+(const T& a, const T& b) { return add(a, b); }
template <typename T>
CUDA_CALLABLE T operator-(const T& a, const T& b) { return sub(a, b); }
// for single thread CPU only
static int s_threadIdx;
inline CUDA_CALLABLE int tid()
{
#ifdef CPU
return s_threadIdx;
#elif defined(CUDA)
return blockDim.x * blockIdx.x + threadIdx.x;
#endif
}
#include "vec2.h"
#include "vec3.h"
#include "mat22.h"
#include "mat33.h"
#include "matnn.h"
#include "quat.h"
#include "spatial.h"
//--------------
template<typename T>
inline CUDA_CALLABLE T load(T* buf, int index)
{
assert(buf);
return buf[index];
}
template<typename T>
inline CUDA_CALLABLE void store(T* buf, int index, T value)
{
// allow NULL buffers for case where gradients are not required
if (buf)
{
buf[index] = value;
}
}
#ifdef CUDA
template<typename T>
inline __device__ void atomic_add(T* buf, T value)
{
atomicAdd(buf, value);
}
#endif
template<typename T>
inline __device__ void atomic_add(T* buf, int index, T value)
{
if (buf)
{
// CPU mode is sequential so just add
#ifdef CPU
buf[index] += value;
#elif defined(CUDA)
atomic_add(buf + index, value);
#endif
}
}
template<typename T>
inline __device__ void atomic_sub(T* buf, int index, T value)
{
if (buf)
{
// CPU mode is sequential so just add
#ifdef CPU
buf[index] -= value;
#elif defined(CUDA)
atomic_add(buf + index, -value);
#endif
}
}
template <typename T>
inline CUDA_CALLABLE void adj_load(T* buf, int index, T* adj_buf, int& adj_index, const T& adj_output)
{
// allow NULL buffers for case where gradients are not required
if (adj_buf) {
#ifdef CPU
adj_buf[index] += adj_output; // does not need to be atomic if single-threaded
#elif defined(CUDA)
atomic_add(adj_buf, index, adj_output);
#endif
}
}
template <typename T>
inline CUDA_CALLABLE void adj_store(T* buf, int index, T value, T* adj_buf, int& adj_index, T& adj_value)
{
adj_value += adj_buf[index]; // doesn't need to be atomic because it's used to load from a buffer onto the stack
}
template<typename T>
inline CUDA_CALLABLE void adj_atomic_add(T* buf, int index, T value, T* adj_buf, int& adj_index, T& adj_value)
{
if (adj_buf) { // cannot be atomic because used locally
adj_value += adj_buf[index];
}
}
template<typename T>
inline CUDA_CALLABLE void adj_atomic_sub(T* buf, int index, T value, T* adj_buf, int& adj_index, T& adj_value)
{
if (adj_buf) { // cannot be atomic because used locally
adj_value -= adj_buf[index];
}
}
//-------------------------
// Texture methods
inline CUDA_CALLABLE float sdf_sample(float3 x)
{
return 0.0;
}
inline CUDA_CALLABLE float3 sdf_grad(float3 x)
{
return float3();
}
inline CUDA_CALLABLE void adj_sdf_sample(float3 x, float3& adj_x, float adj_ret)
{
}
inline CUDA_CALLABLE void adj_sdf_grad(float3 x, float3& adj_x, float3& adj_ret)
{
}
inline CUDA_CALLABLE void print(int i)
{
printf("%d\n", i);
}
inline CUDA_CALLABLE void print(float i)
{
printf("%f\n", i);
}
inline CUDA_CALLABLE void print(float3 i)
{
printf("%f %f %f\n", i.x, i.y, i.z);
}
inline CUDA_CALLABLE void print(quat i)
{
printf("%f %f %f %f\n", i.x, i.y, i.z, i.w);
}
inline CUDA_CALLABLE void print(mat22 m)
{
printf("%f %f\n%f %f\n", m.data[0][0], m.data[0][1],
m.data[1][0], m.data[1][1]);
}
inline CUDA_CALLABLE void print(mat33 m)
{
printf("%f %f %f\n%f %f %f\n%f %f %f\n", m.data[0][0], m.data[0][1], m.data[0][2],
m.data[1][0], m.data[1][1], m.data[1][2],
m.data[2][0], m.data[2][1], m.data[2][2]);
}
inline CUDA_CALLABLE void print(spatial_transform t)
{
printf("(%f %f %f) (%f %f %f %f)\n", t.p.x, t.p.y, t.p.z, t.q.x, t.q.y, t.q.z, t.q.w);
}
inline CUDA_CALLABLE void print(spatial_vector v)
{
printf("(%f %f %f) (%f %f %f)\n", v.w.x, v.w.y, v.w.z, v.v.x, v.v.y, v.v.z);
}
inline CUDA_CALLABLE void print(spatial_matrix m)
{
printf("%f %f %f %f %f %f\n"
"%f %f %f %f %f %f\n"
"%f %f %f %f %f %f\n"
"%f %f %f %f %f %f\n"
"%f %f %f %f %f %f\n"
"%f %f %f %f %f %f\n",
m.data[0][0], m.data[0][1], m.data[0][2], m.data[0][3], m.data[0][4], m.data[0][5],
m.data[1][0], m.data[1][1], m.data[1][2], m.data[1][3], m.data[1][4], m.data[1][5],
m.data[2][0], m.data[2][1], m.data[2][2], m.data[2][3], m.data[2][4], m.data[2][5],
m.data[3][0], m.data[3][1], m.data[3][2], m.data[3][3], m.data[3][4], m.data[3][5],
m.data[4][0], m.data[4][1], m.data[4][2], m.data[4][3], m.data[4][4], m.data[4][5],
m.data[5][0], m.data[5][1], m.data[5][2], m.data[5][3], m.data[5][4], m.data[5][5]);
}
inline CUDA_CALLABLE void adj_print(int i, int& adj_i) { printf("%d adj: %d\n", i, adj_i); }
inline CUDA_CALLABLE void adj_print(float i, float& adj_i) { printf("%f adj: %f\n", i, adj_i); }
inline CUDA_CALLABLE void adj_print(float3 i, float3& adj_i) { printf("%f %f %f adj: %f %f %f \n", i.x, i.y, i.z, adj_i.x, adj_i.y, adj_i.z); }
inline CUDA_CALLABLE void adj_print(quat i, quat& adj_i) { }
inline CUDA_CALLABLE void adj_print(mat22 m, mat22& adj_m) { }
inline CUDA_CALLABLE void adj_print(mat33 m, mat33& adj_m) { }
inline CUDA_CALLABLE void adj_print(spatial_transform t, spatial_transform& adj_t) {}
inline CUDA_CALLABLE void adj_print(spatial_vector t, spatial_vector& adj_t) {}
inline CUDA_CALLABLE void adj_print(spatial_matrix t, spatial_matrix& adj_t) {}
} // namespace df
| 13,946 |
C
| 29.05819 | 144 | 0.608992 |
RoboticExplorationLab/CGAC/dflex/dflex/config.py
|
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
no_grad = False # disable adjoint tracking
check_grad = False # will perform numeric gradient checking after each launch
verify_fp = False # verify inputs and outputs are finite after each launch
| 650 |
Python
| 49.076919 | 82 | 0.783077 |
RoboticExplorationLab/CGAC/dflex/dflex/quat.h
|
#pragma once
struct quat
{
// imaginary part
float x;
float y;
float z;
// real part
float w;
inline CUDA_CALLABLE quat(float x=0.0f, float y=0.0f, float z=0.0f, float w=0.0) : x(x), y(y), z(z), w(w) {}
explicit inline CUDA_CALLABLE quat(const float3& v, float w=0.0f) : x(v.x), y(v.y), z(v.z), w(w) {}
};
#ifdef CUDA
inline __device__ void atomic_add(quat * addr, quat value) {
atomicAdd(&(addr -> x), value.x);
atomicAdd(&(addr -> y), value.y);
atomicAdd(&(addr -> z), value.z);
atomicAdd(&(addr -> w), value.w);
}
#endif
inline CUDA_CALLABLE void adj_quat(float x, float y, float z, float w, float& adj_x, float& adj_y, float& adj_z, float& adj_w, quat adj_ret)
{
adj_x += adj_ret.x;
adj_y += adj_ret.y;
adj_z += adj_ret.z;
adj_w += adj_ret.w;
}
inline CUDA_CALLABLE void adj_quat(const float3& v, float w, float3& adj_v, float& adj_w, quat adj_ret)
{
adj_v.x += adj_ret.x;
adj_v.y += adj_ret.y;
adj_v.z += adj_ret.z;
adj_w += adj_ret.w;
}
// foward methods
inline CUDA_CALLABLE quat quat_from_axis_angle(const float3& axis, float angle)
{
float half = angle*0.5f;
float w = cosf(half);
float sin_theta_over_two = sinf(half);
float3 v = axis*sin_theta_over_two;
return quat(v.x, v.y, v.z, w);
}
inline CUDA_CALLABLE quat quat_identity()
{
return quat(0.0f, 0.0f, 0.0f, 1.0f);
}
inline CUDA_CALLABLE float dot(const quat& a, const quat& b)
{
return a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w;
}
inline CUDA_CALLABLE float length(const quat& q)
{
return sqrtf(dot(q, q));
}
inline CUDA_CALLABLE quat normalize(const quat& q)
{
float l = length(q);
if (l > kEps)
{
float inv_l = 1.0f/l;
return quat(q.x*inv_l, q.y*inv_l, q.z*inv_l, q.w*inv_l);
}
else
{
return quat(0.0f, 0.0f, 0.0f, 1.0f);
}
}
inline CUDA_CALLABLE quat inverse(const quat& q)
{
return quat(-q.x, -q.y, -q.z, q.w);
}
inline CUDA_CALLABLE quat add(const quat& a, const quat& b)
{
return quat(a.x+b.x, a.y+b.y, a.z+b.z, a.w+b.w);
}
inline CUDA_CALLABLE quat sub(const quat& a, const quat& b)
{
return quat(a.x-b.x, a.y-b.y, a.z-b.z, a.w-b.w);}
inline CUDA_CALLABLE quat mul(const quat& a, const quat& b)
{
return quat(a.w*b.x + b.w*a.x + a.y*b.z - b.y*a.z,
a.w*b.y + b.w*a.y + a.z*b.x - b.z*a.x,
a.w*b.z + b.w*a.z + a.x*b.y - b.x*a.y,
a.w*b.w - a.x*b.x - a.y*b.y - a.z*b.z);
}
inline CUDA_CALLABLE quat mul(const quat& a, float s)
{
return quat(a.x*s, a.y*s, a.z*s, a.w*s);
}
inline CUDA_CALLABLE float3 rotate(const quat& q, const float3& x)
{
return x*(2.0f*q.w*q.w-1.0f) + cross(float3(&q.x), x)*q.w*2.0f + float3(&q.x)*dot(float3(&q.x), x)*2.0f;
}
inline CUDA_CALLABLE float3 rotate_inv(const quat& q, const float3& x)
{
return x*(2.0f*q.w*q.w-1.0f) - cross(float3(&q.x), x)*q.w*2.0f + float3(&q.x)*dot(float3(&q.x), x)*2.0f;
}
inline CUDA_CALLABLE float index(const quat& a, int idx)
{
#if FP_CHECK
if (idx < 0 || idx > 3)
{
printf("quat index %d out of bounds at %s %d", idx, __FILE__, __LINE__);
exit(1);
}
#endif
return (&a.x)[idx];
}
inline CUDA_CALLABLE void adj_index(const quat& a, int idx, quat& adj_a, int & adj_idx, float & adj_ret)
{
#if FP_CHECK
if (idx < 0 || idx > 3)
{
printf("quat index %d out of bounds at %s %d", idx, __FILE__, __LINE__);
exit(1);
}
#endif
(&adj_a.x)[idx] += adj_ret;
}
// backward methods
inline CUDA_CALLABLE void adj_quat_from_axis_angle(const float3& axis, float angle, float3& adj_axis, float& adj_angle, const quat& adj_ret)
{
float3 v = float3(adj_ret.x, adj_ret.y, adj_ret.z);
float s = sinf(angle*0.5f);
float c = cosf(angle*0.5f);
quat dqda = quat(axis.x*c, axis.y*c, axis.z*c, -s)*0.5f;
adj_axis += v*s;
adj_angle += dot(dqda, adj_ret);
}
inline CUDA_CALLABLE void adj_quat_identity(const quat& adj_ret)
{
// nop
}
inline CUDA_CALLABLE void adj_dot(const quat& a, const quat& b, quat& adj_a, quat& adj_b, const float adj_ret)
{
adj_a += b*adj_ret;
adj_b += a*adj_ret;
}
inline CUDA_CALLABLE void adj_length(const quat& a, quat& adj_a, const float adj_ret)
{
adj_a += normalize(a)*adj_ret;
}
inline CUDA_CALLABLE void adj_normalize(const quat& q, quat& adj_q, const quat& adj_ret)
{
float l = length(q);
if (l > kEps)
{
float l_inv = 1.0f/l;
adj_q += adj_ret*l_inv - q*(l_inv*l_inv*l_inv*dot(q, adj_ret));
}
}
inline CUDA_CALLABLE void adj_inverse(const quat& q, quat& adj_q, const quat& adj_ret)
{
adj_q.x -= adj_ret.x;
adj_q.y -= adj_ret.y;
adj_q.z -= adj_ret.z;
adj_q.w += adj_ret.w;
}
// inline void adj_normalize(const quat& a, quat& adj_a, const quat& adj_ret)
// {
// float d = length(a);
// if (d > kEps)
// {
// float invd = 1.0f/d;
// quat ahat = normalize(a);
// adj_a += (adj_ret - ahat*(dot(ahat, adj_ret))*invd);
// //if (!isfinite(adj_a))
// // printf("%s:%d - adj_normalize((%f %f %f), (%f %f %f), (%f, %f, %f))\n", __FILE__, __LINE__, a.x, a.y, a.z, adj_a.x, adj_a.y, adj_a.z, adj_ret.x, adj_ret.y, adj_ret.z);
// }
// }
inline CUDA_CALLABLE void adj_add(const quat& a, const quat& b, quat& adj_a, quat& adj_b, const quat& adj_ret)
{
adj_a += adj_ret;
adj_b += adj_ret;
}
inline CUDA_CALLABLE void adj_sub(const quat& a, const quat& b, quat& adj_a, quat& adj_b, const quat& adj_ret)
{
adj_a += adj_ret;
adj_b -= adj_ret;
}
inline CUDA_CALLABLE void adj_mul(const quat& a, const quat& b, quat& adj_a, quat& adj_b, const quat& adj_ret)
{
// shorthand
const quat& r = adj_ret;
adj_a += quat(b.w*r.x - b.x*r.w + b.y*r.z - b.z*r.y,
b.w*r.y - b.y*r.w - b.x*r.z + b.z*r.x,
b.w*r.z + b.x*r.y - b.y*r.x - b.z*r.w,
b.w*r.w + b.x*r.x + b.y*r.y + b.z*r.z);
adj_b += quat(a.w*r.x - a.x*r.w - a.y*r.z + a.z*r.y,
a.w*r.y - a.y*r.w + a.x*r.z - a.z*r.x,
a.w*r.z - a.x*r.y + a.y*r.x - a.z*r.w,
a.w*r.w + a.x*r.x + a.y*r.y + a.z*r.z);
}
inline CUDA_CALLABLE void adj_mul(const quat& a, float s, quat& adj_a, float& adj_s, const quat& adj_ret)
{
adj_a += adj_ret*s;
adj_s += dot(a, adj_ret);
}
inline CUDA_CALLABLE void adj_rotate(const quat& q, const float3& p, quat& adj_q, float3& adj_p, const float3& adj_ret)
{
const float3& r = adj_ret;
{
float t2 = p.z*q.z*2.0f;
float t3 = p.y*q.w*2.0f;
float t4 = p.x*q.w*2.0f;
float t5 = p.x*q.x*2.0f;
float t6 = p.y*q.y*2.0f;
float t7 = p.z*q.y*2.0f;
float t8 = p.x*q.z*2.0f;
float t9 = p.x*q.y*2.0f;
float t10 = p.y*q.x*2.0f;
adj_q.x += r.z*(t3+t8)+r.x*(t2+t6+p.x*q.x*4.0f)+r.y*(t9-p.z*q.w*2.0f);
adj_q.y += r.y*(t2+t5+p.y*q.y*4.0f)+r.x*(t10+p.z*q.w*2.0f)-r.z*(t4-p.y*q.z*2.0f);
adj_q.z += r.y*(t4+t7)+r.z*(t5+t6+p.z*q.z*4.0f)-r.x*(t3-p.z*q.x*2.0f);
adj_q.w += r.x*(t7+p.x*q.w*4.0f-p.y*q.z*2.0f)+r.y*(t8+p.y*q.w*4.0f-p.z*q.x*2.0f)+r.z*(-t9+t10+p.z*q.w*4.0f);
}
{
float t2 = q.w*q.w;
float t3 = t2*2.0f;
float t4 = q.w*q.z*2.0f;
float t5 = q.x*q.y*2.0f;
float t6 = q.w*q.y*2.0f;
float t7 = q.w*q.x*2.0f;
float t8 = q.y*q.z*2.0f;
adj_p.x += r.y*(t4+t5)+r.x*(t3+(q.x*q.x)*2.0f-1.0f)-r.z*(t6-q.x*q.z*2.0f);
adj_p.y += r.z*(t7+t8)-r.x*(t4-t5)+r.y*(t3+(q.y*q.y)*2.0f-1.0f);
adj_p.z += -r.y*(t7-t8)+r.z*(t3+(q.z*q.z)*2.0f-1.0f)+r.x*(t6+q.x*q.z*2.0f);
}
}
inline CUDA_CALLABLE void adj_rotate_inv(const quat& q, const float3& p, quat& adj_q, float3& adj_p, const float3& adj_ret)
{
const float3& r = adj_ret;
{
float t2 = p.z*q.w*2.0f;
float t3 = p.z*q.z*2.0f;
float t4 = p.y*q.w*2.0f;
float t5 = p.x*q.w*2.0f;
float t6 = p.x*q.x*2.0f;
float t7 = p.y*q.y*2.0f;
float t8 = p.y*q.z*2.0f;
float t9 = p.z*q.x*2.0f;
float t10 = p.x*q.y*2.0f;
adj_q.x += r.y*(t2+t10)+r.x*(t3+t7+p.x*q.x*4.0f)-r.z*(t4-p.x*q.z*2.0f);
adj_q.y += r.z*(t5+t8)+r.y*(t3+t6+p.y*q.y*4.0f)-r.x*(t2-p.y*q.x*2.0f);
adj_q.z += r.x*(t4+t9)+r.z*(t6+t7+p.z*q.z*4.0f)-r.y*(t5-p.z*q.y*2.0f);
adj_q.w += r.x*(t8+p.x*q.w*4.0f-p.z*q.y*2.0f)+r.y*(t9+p.y*q.w*4.0f-p.x*q.z*2.0f)+r.z*(t10-p.y*q.x*2.0f+p.z*q.w*4.0f);
}
{
float t2 = q.w*q.w;
float t3 = t2*2.0f;
float t4 = q.w*q.z*2.0f;
float t5 = q.w*q.y*2.0f;
float t6 = q.x*q.z*2.0f;
float t7 = q.w*q.x*2.0f;
adj_p.x += r.z*(t5+t6)+r.x*(t3+(q.x*q.x)*2.0f-1.0f)-r.y*(t4-q.x*q.y*2.0f);
adj_p.y += r.y*(t3+(q.y*q.y)*2.0f-1.0f)+r.x*(t4+q.x*q.y*2.0f)-r.z*(t7-q.y*q.z*2.0f);
adj_p.z += -r.x*(t5-t6)+r.z*(t3+(q.z*q.z)*2.0f-1.0f)+r.y*(t7+q.y*q.z*2.0f);
}
}
| 8,985 |
C
| 26.993769 | 184 | 0.522315 |
RoboticExplorationLab/CGAC/dflex/dflex/vec3.h
|
#pragma once
struct float3
{
float x;
float y;
float z;
inline CUDA_CALLABLE float3(float x=0.0f, float y=0.0f, float z=0.0f) : x(x), y(y), z(z) {}
explicit inline CUDA_CALLABLE float3(const float* p) : x(p[0]), y(p[1]), z(p[2]) {}
};
//--------------
// float3 methods
inline CUDA_CALLABLE float3 operator - (float3 a)
{
return { -a.x, -a.y, -a.z };
}
inline CUDA_CALLABLE float3 mul(float3 a, float s)
{
return { a.x*s, a.y*s, a.z*s };
}
inline CUDA_CALLABLE float3 div(float3 a, float s)
{
return { a.x/s, a.y/s, a.z/s };
}
inline CUDA_CALLABLE float3 add(float3 a, float3 b)
{
return { a.x+b.x, a.y+b.y, a.z+b.z };
}
inline CUDA_CALLABLE float3 add(float3 a, float s)
{
return { a.x + s, a.y + s, a.z + s };
}
inline CUDA_CALLABLE float3 sub(float3 a, float3 b)
{
return { a.x-b.x, a.y-b.y, a.z-b.z };
}
inline CUDA_CALLABLE float dot(float3 a, float3 b)
{
return a.x*b.x + a.y*b.y + a.z*b.z;
}
inline CUDA_CALLABLE float3 cross(float3 a, float3 b)
{
float3 c;
c.x = a.y*b.z - a.z*b.y;
c.y = a.z*b.x - a.x*b.z;
c.z = a.x*b.y - a.y*b.x;
return c;
}
inline CUDA_CALLABLE float index(const float3 & a, int idx)
{
#if FP_CHECK
if (idx < 0 || idx > 2)
{
printf("float3 index %d out of bounds at %s %d\n", idx, __FILE__, __LINE__);
exit(1);
}
#endif
return (&a.x)[idx];
}
inline CUDA_CALLABLE void adj_index(const float3 & a, int idx, float3 & adj_a, int & adj_idx, float & adj_ret)
{
#if FP_CHECK
if (idx < 0 || idx > 2)
{
printf("float3 index %d out of bounds at %s %d\n", idx, __FILE__, __LINE__);
exit(1);
}
#endif
(&adj_a.x)[idx] += adj_ret;
}
inline CUDA_CALLABLE float length(float3 a)
{
return sqrtf(dot(a, a));
}
inline CUDA_CALLABLE float3 normalize(float3 a)
{
float l = length(a);
if (l > kEps)
return div(a,l);
else
return float3();
}
inline bool CUDA_CALLABLE isfinite(float3 x)
{
return std::isfinite(x.x) && std::isfinite(x.y) && std::isfinite(x.z);
}
// adjoint float3 constructor
inline CUDA_CALLABLE void adj_float3(float x, float y, float z, float& adj_x, float& adj_y, float& adj_z, const float3& adj_ret)
{
adj_x += adj_ret.x;
adj_y += adj_ret.y;
adj_z += adj_ret.z;
}
inline CUDA_CALLABLE void adj_mul(float3 a, float s, float3& adj_a, float& adj_s, const float3& adj_ret)
{
adj_a.x += s*adj_ret.x;
adj_a.y += s*adj_ret.y;
adj_a.z += s*adj_ret.z;
adj_s += dot(a, adj_ret);
#if FP_CHECK
if (!isfinite(a) || !isfinite(s) || !isfinite(adj_a) || !isfinite(adj_s) || !isfinite(adj_ret))
printf("adj_mul((%f %f %f), %f, (%f %f %f), %f, (%f %f %f)\n", a.x, a.y, a.z, s, adj_a.x, adj_a.y, adj_a.z, adj_s, adj_ret.x, adj_ret.y, adj_ret.z);
#endif
}
inline CUDA_CALLABLE void adj_div(float3 a, float s, float3& adj_a, float& adj_s, const float3& adj_ret)
{
adj_s += dot(- a / (s * s), adj_ret); // - a / s^2
adj_a.x += adj_ret.x / s;
adj_a.y += adj_ret.y / s;
adj_a.z += adj_ret.z / s;
#if FP_CHECK
if (!isfinite(a) || !isfinite(s) || !isfinite(adj_a) || !isfinite(adj_s) || !isfinite(adj_ret))
printf("adj_div((%f %f %f), %f, (%f %f %f), %f, (%f %f %f)\n", a.x, a.y, a.z, s, adj_a.x, adj_a.y, adj_a.z, adj_s, adj_ret.x, adj_ret.y, adj_ret.z);
#endif
}
inline CUDA_CALLABLE void adj_add(float3 a, float3 b, float3& adj_a, float3& adj_b, const float3& adj_ret)
{
adj_a += adj_ret;
adj_b += adj_ret;
}
inline CUDA_CALLABLE void adj_add(float3 a, float s, float3& adj_a, float& adj_s, const float3& adj_ret)
{
adj_a += adj_ret;
adj_s += adj_ret.x + adj_ret.y + adj_ret.z;
}
inline CUDA_CALLABLE void adj_sub(float3 a, float3 b, float3& adj_a, float3& adj_b, const float3& adj_ret)
{
adj_a += adj_ret;
adj_b -= adj_ret;
}
inline CUDA_CALLABLE void adj_dot(float3 a, float3 b, float3& adj_a, float3& adj_b, const float adj_ret)
{
adj_a += b*adj_ret;
adj_b += a*adj_ret;
#if FP_CHECK
if (!isfinite(a) || !isfinite(b) || !isfinite(adj_a) || !isfinite(adj_b) || !isfinite(adj_ret))
printf("adj_dot((%f %f %f), (%f %f %f), (%f %f %f), (%f %f %f), %f)\n", a.x, a.y, a.z, b.x, b.y, b.z, adj_a.x, adj_a.y, adj_a.z, adj_b.x, adj_b.y, adj_b.z, adj_ret);
#endif
}
inline CUDA_CALLABLE void adj_cross(float3 a, float3 b, float3& adj_a, float3& adj_b, const float3& adj_ret)
{
// todo: sign check
adj_a += cross(b, adj_ret);
adj_b -= cross(a, adj_ret);
}
#ifdef CUDA
inline __device__ void atomic_add(float3 * addr, float3 value) {
// *addr += value;
atomicAdd(&(addr -> x), value.x);
atomicAdd(&(addr -> y), value.y);
atomicAdd(&(addr -> z), value.z);
}
#endif
inline CUDA_CALLABLE void adj_length(float3 a, float3& adj_a, const float adj_ret)
{
adj_a += normalize(a)*adj_ret;
#if FP_CHECK
if (!isfinite(adj_a))
printf("%s:%d - adj_length((%f %f %f), (%f %f %f), (%f))\n", __FILE__, __LINE__, a.x, a.y, a.z, adj_a.x, adj_a.y, adj_a.z, adj_ret);
#endif
}
inline CUDA_CALLABLE void adj_normalize(float3 a, float3& adj_a, const float3& adj_ret)
{
float d = length(a);
if (d > kEps)
{
float invd = 1.0f/d;
float3 ahat = normalize(a);
adj_a += (adj_ret*invd - ahat*(dot(ahat, adj_ret))*invd);
#if FP_CHECK
if (!isfinite(adj_a))
printf("%s:%d - adj_normalize((%f %f %f), (%f %f %f), (%f, %f, %f))\n", __FILE__, __LINE__, a.x, a.y, a.z, adj_a.x, adj_a.y, adj_a.z, adj_ret.x, adj_ret.y, adj_ret.z);
#endif
}
}
| 5,542 |
C
| 23.745536 | 179 | 0.560628 |
RoboticExplorationLab/CGAC/dflex/dflex/sim.py
|
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""This module contains time-integration objects for simulating
models + state forward in time.
"""
import math
import torch
import numpy as np
import dflex.util
import dflex.adjoint as df
import dflex.config
from dflex.model import *
import time
import ipdb
# Todo
#-----
#
# [x] Spring model
# [x] 2D FEM model
# [x] 3D FEM model
# [x] Cloth
# [x] Wind/Drag model
# [x] Bending model
# [x] Triangle collision
# [x] Rigid body model
# [x] Rigid shape contact
# [x] Sphere
# [x] Capsule
# [x] Box
# [ ] Convex
# [ ] SDF
# [ ] Implicit solver
# [x] USD import
# [x] USD export
# -----
# externally compiled kernels module (C++/CUDA code with PyBind entry points)
kernels = None
@df.func
def test(c: float):
x = 1.0
y = float(2)
z = int(3.0)
print(y)
print(z)
if (c < 3.0):
x = 2.0
return x*6.0
def kernel_init():
global kernels
kernels = df.compile()
@df.kernel
def integrate_particles(x: df.tensor(df.float3),
v: df.tensor(df.float3),
f: df.tensor(df.float3),
w: df.tensor(float),
gravity: df.tensor(df.float3),
dt: float,
x_new: df.tensor(df.float3),
v_new: df.tensor(df.float3)):
tid = df.tid()
x0 = df.load(x, tid)
v0 = df.load(v, tid)
f0 = df.load(f, tid)
inv_mass = df.load(w, tid)
g = df.load(gravity, 0)
# simple semi-implicit Euler. v1 = v0 + a dt, x1 = x0 + v1 dt
v1 = v0 + (f0 * inv_mass + g * df.step(0.0 - inv_mass)) * dt
x1 = x0 + v1 * dt
df.store(x_new, tid, x1)
df.store(v_new, tid, v1)
# semi-implicit Euler integration
@df.kernel
def integrate_rigids(rigid_x: df.tensor(df.float3),
rigid_r: df.tensor(df.quat),
rigid_v: df.tensor(df.float3),
rigid_w: df.tensor(df.float3),
rigid_f: df.tensor(df.float3),
rigid_t: df.tensor(df.float3),
inv_m: df.tensor(float),
inv_I: df.tensor(df.mat33),
gravity: df.tensor(df.float3),
dt: float,
rigid_x_new: df.tensor(df.float3),
rigid_r_new: df.tensor(df.quat),
rigid_v_new: df.tensor(df.float3),
rigid_w_new: df.tensor(df.float3)):
tid = df.tid()
# positions
x0 = df.load(rigid_x, tid)
r0 = df.load(rigid_r, tid)
# velocities
v0 = df.load(rigid_v, tid)
w0 = df.load(rigid_w, tid) # angular velocity
# forces
f0 = df.load(rigid_f, tid)
t0 = df.load(rigid_t, tid)
# masses
inv_mass = df.load(inv_m, tid) # 1 / mass
inv_inertia = df.load(inv_I, tid) # inverse of 3x3 inertia matrix
g = df.load(gravity, 0)
# linear part
v1 = v0 + (f0 * inv_mass + g * df.nonzero(inv_mass)) * dt # linear integral (linear position/velocity)
x1 = x0 + v1 * dt
# angular part
# so reverse multiplication by r0 takes you from global coordinates into local coordinates
# because it's covector and thus gets pulled back rather than pushed forward
wb = df.rotate_inv(r0, w0) # angular integral (angular velocity and rotation), rotate into object reference frame
tb = df.rotate_inv(r0, t0) # also rotate torques into local coordinates
# I^{-1} torque = angular acceleration and inv_inertia is always going to be in the object frame.
# So we need to rotate into that frame, and then back into global.
w1 = df.rotate(r0, wb + inv_inertia * tb * dt) # I^-1 * torque * dt., then go back into global coordinates
r1 = df.normalize(r0 + df.quat(w1, 0.0) * r0 * 0.5 * dt) # rotate around w1 by dt
df.store(rigid_x_new, tid, x1)
df.store(rigid_r_new, tid, r1)
df.store(rigid_v_new, tid, v1)
df.store(rigid_w_new, tid, w1)
@df.kernel
def eval_springs(x: df.tensor(df.float3),
v: df.tensor(df.float3),
spring_indices: df.tensor(int),
spring_rest_lengths: df.tensor(float),
spring_stiffness: df.tensor(float),
spring_damping: df.tensor(float),
f: df.tensor(df.float3)):
tid = df.tid()
i = df.load(spring_indices, tid * 2 + 0)
j = df.load(spring_indices, tid * 2 + 1)
ke = df.load(spring_stiffness, tid)
kd = df.load(spring_damping, tid)
rest = df.load(spring_rest_lengths, tid)
xi = df.load(x, i)
xj = df.load(x, j)
vi = df.load(v, i)
vj = df.load(v, j)
xij = xi - xj
vij = vi - vj
l = length(xij)
l_inv = 1.0 / l
# normalized spring direction
dir = xij * l_inv
c = l - rest
dcdt = dot(dir, vij)
# damping based on relative velocity.
fs = dir * (ke * c + kd * dcdt)
df.atomic_sub(f, i, fs)
df.atomic_add(f, j, fs)
@df.kernel
def eval_triangles(x: df.tensor(df.float3),
v: df.tensor(df.float3),
indices: df.tensor(int),
pose: df.tensor(df.mat22),
activation: df.tensor(float),
k_mu: float,
k_lambda: float,
k_damp: float,
k_drag: float,
k_lift: float,
f: df.tensor(df.float3)):
tid = df.tid()
i = df.load(indices, tid * 3 + 0)
j = df.load(indices, tid * 3 + 1)
k = df.load(indices, tid * 3 + 2)
p = df.load(x, i) # point zero
q = df.load(x, j) # point one
r = df.load(x, k) # point two
vp = df.load(v, i) # vel zero
vq = df.load(v, j) # vel one
vr = df.load(v, k) # vel two
qp = q - p # barycentric coordinates (centered at p)
rp = r - p
Dm = df.load(pose, tid)
inv_rest_area = df.determinant(Dm) * 2.0 # 1 / det(A) = det(A^-1)
rest_area = 1.0 / inv_rest_area
# scale stiffness coefficients to account for area
k_mu = k_mu * rest_area
k_lambda = k_lambda * rest_area
k_damp = k_damp * rest_area
# F = Xs*Xm^-1
f1 = qp * Dm[0, 0] + rp * Dm[1, 0]
f2 = qp * Dm[0, 1] + rp * Dm[1, 1]
#-----------------------------
# St. Venant-Kirchoff
# # Green strain, F'*F-I
# e00 = dot(f1, f1) - 1.0
# e10 = dot(f2, f1)
# e01 = dot(f1, f2)
# e11 = dot(f2, f2) - 1.0
# E = df.mat22(e00, e01,
# e10, e11)
# # local forces (deviatoric part)
# T = df.mul(E, df.transpose(Dm))
# # spatial forces, F*T
# fq = (f1*T[0,0] + f2*T[1,0])*k_mu*2.0
# fr = (f1*T[0,1] + f2*T[1,1])*k_mu*2.0
# alpha = 1.0
#-----------------------------
# Baraff & Witkin, note this model is not isotropic
# c1 = length(f1) - 1.0
# c2 = length(f2) - 1.0
# f1 = normalize(f1)*c1*k1
# f2 = normalize(f2)*c2*k1
# fq = f1*Dm[0,0] + f2*Dm[0,1]
# fr = f1*Dm[1,0] + f2*Dm[1,1]
#-----------------------------
# Neo-Hookean (with rest stability)
# force = mu*F*Dm'
fq = (f1 * Dm[0, 0] + f2 * Dm[0, 1]) * k_mu
fr = (f1 * Dm[1, 0] + f2 * Dm[1, 1]) * k_mu
alpha = 1.0 + k_mu / k_lambda
#-----------------------------
# Area Preservation
n = df.cross(qp, rp)
area = df.length(n) * 0.5
# actuation
act = df.load(activation, tid)
# J-alpha
c = area * inv_rest_area - alpha + act
# dJdx
n = df.normalize(n)
dcdq = df.cross(rp, n) * inv_rest_area * 0.5
dcdr = df.cross(n, qp) * inv_rest_area * 0.5
f_area = k_lambda * c
#-----------------------------
# Area Damping
dcdt = dot(dcdq, vq) + dot(dcdr, vr) - dot(dcdq + dcdr, vp)
f_damp = k_damp * dcdt
fq = fq + dcdq * (f_area + f_damp)
fr = fr + dcdr * (f_area + f_damp)
fp = fq + fr
#-----------------------------
# Lift + Drag
vmid = (vp + vr + vq) * 0.3333
vdir = df.normalize(vmid)
f_drag = vmid * (k_drag * area * df.abs(df.dot(n, vmid)))
f_lift = n * (k_lift * area * (1.57079 - df.acos(df.dot(n, vdir)))) * dot(vmid, vmid)
# note reversed sign due to atomic_add below.. need to write the unary op -
fp = fp - f_drag - f_lift
fq = fq + f_drag + f_lift
fr = fr + f_drag + f_lift
# apply forces
df.atomic_add(f, i, fp)
df.atomic_sub(f, j, fq)
df.atomic_sub(f, k, fr)
@df.func
def triangle_closest_point_barycentric(a: df.float3, b: df.float3, c: df.float3, p: df.float3):
ab = b - a
ac = c - a
ap = p - a
d1 = df.dot(ab, ap)
d2 = df.dot(ac, ap)
if (d1 <= 0.0 and d2 <= 0.0):
return float3(1.0, 0.0, 0.0)
bp = p - b
d3 = df.dot(ab, bp)
d4 = df.dot(ac, bp)
if (d3 >= 0.0 and d4 <= d3):
return float3(0.0, 1.0, 0.0)
vc = d1 * d4 - d3 * d2
v = d1 / (d1 - d3)
if (vc <= 0.0 and d1 >= 0.0 and d3 <= 0.0):
return float3(1.0 - v, v, 0.0)
cp = p - c
d5 = dot(ab, cp)
d6 = dot(ac, cp)
if (d6 >= 0.0 and d5 <= d6):
return float3(0.0, 0.0, 1.0)
vb = d5 * d2 - d1 * d6
w = d2 / (d2 - d6)
if (vb <= 0.0 and d2 >= 0.0 and d6 <= 0.0):
return float3(1.0 - w, 0.0, w)
va = d3 * d6 - d5 * d4
w = (d4 - d3) / ((d4 - d3) + (d5 - d6))
if (va <= 0.0 and (d4 - d3) >= 0.0 and (d5 - d6) >= 0.0):
return float3(0.0, w, 1.0 - w)
denom = 1.0 / (va + vb + vc)
v = vb * denom
w = vc * denom
return float3(1.0 - v - w, v, w)
@df.kernel
def eval_triangles_contact(
# idx : df.tensor(int), # list of indices for colliding particles
num_particles: int, # size of particles
x: df.tensor(df.float3),
v: df.tensor(df.float3),
indices: df.tensor(int),
pose: df.tensor(df.mat22),
activation: df.tensor(float),
k_mu: float,
k_lambda: float,
k_damp: float,
k_drag: float,
k_lift: float,
f: df.tensor(df.float3)):
tid = df.tid()
face_no = tid // num_particles # which face
particle_no = tid % num_particles # which particle
# index = df.load(idx, tid)
pos = df.load(x, particle_no) # at the moment, just one particle
# vel0 = df.load(v, 0)
i = df.load(indices, face_no * 3 + 0)
j = df.load(indices, face_no * 3 + 1)
k = df.load(indices, face_no * 3 + 2)
if (i == particle_no or j == particle_no or k == particle_no):
return
p = df.load(x, i) # point zero
q = df.load(x, j) # point one
r = df.load(x, k) # point two
# vp = df.load(v, i) # vel zero
# vq = df.load(v, j) # vel one
# vr = df.load(v, k) # vel two
# qp = q-p # barycentric coordinates (centered at p)
# rp = r-p
bary = triangle_closest_point_barycentric(p, q, r, pos)
closest = p * bary[0] + q * bary[1] + r * bary[2]
diff = pos - closest
dist = df.dot(diff, diff)
n = df.normalize(diff)
c = df.min(dist - 0.01, 0.0) # 0 unless within 0.01 of surface
#c = df.leaky_min(dot(n, x0)-0.01, 0.0, 0.0)
fn = n * c * 1e5
df.atomic_sub(f, particle_no, fn)
# # apply forces (could do - f / 3 here)
df.atomic_add(f, i, fn * bary[0])
df.atomic_add(f, j, fn * bary[1])
df.atomic_add(f, k, fn * bary[2])
@df.kernel
def eval_triangles_rigid_contacts(
num_particles: int, # number of particles (size of contact_point)
x: df.tensor(df.float3), # position of particles
v: df.tensor(df.float3),
indices: df.tensor(int), # triangle indices
rigid_x: df.tensor(df.float3), # rigid body positions
rigid_r: df.tensor(df.quat),
rigid_v: df.tensor(df.float3),
rigid_w: df.tensor(df.float3),
contact_body: df.tensor(int),
contact_point: df.tensor(df.float3), # position of contact points relative to body
contact_dist: df.tensor(float),
contact_mat: df.tensor(int),
materials: df.tensor(float),
# rigid_f : df.tensor(df.float3),
# rigid_t : df.tensor(df.float3),
tri_f: df.tensor(df.float3)):
tid = df.tid()
face_no = tid // num_particles # which face
particle_no = tid % num_particles # which particle
# -----------------------
# load rigid body point
c_body = df.load(contact_body, particle_no)
c_point = df.load(contact_point, particle_no)
c_dist = df.load(contact_dist, particle_no)
c_mat = df.load(contact_mat, particle_no)
# hard coded surface parameter tensor layout (ke, kd, kf, mu)
ke = df.load(materials, c_mat * 4 + 0) # restitution coefficient
kd = df.load(materials, c_mat * 4 + 1) # damping coefficient
kf = df.load(materials, c_mat * 4 + 2) # friction coefficient
mu = df.load(materials, c_mat * 4 + 3) # coulomb friction
x0 = df.load(rigid_x, c_body) # position of colliding body
r0 = df.load(rigid_r, c_body) # orientation of colliding body
v0 = df.load(rigid_v, c_body)
w0 = df.load(rigid_w, c_body)
# transform point to world space
pos = x0 + df.rotate(r0, c_point)
# use x0 as center, everything is offset from center of mass
# moment arm
r = pos - x0 # basically just c_point in the new coordinates
rhat = df.normalize(r)
pos = pos + rhat * c_dist # add on 'thickness' of shape, e.g.: radius of sphere/capsule
# contact point velocity
dpdt = v0 + df.cross(w0, r) # this is rigid velocity cross offset, so it's the velocity of the contact point.
# -----------------------
# load triangle
i = df.load(indices, face_no * 3 + 0)
j = df.load(indices, face_no * 3 + 1)
k = df.load(indices, face_no * 3 + 2)
p = df.load(x, i) # point zero
q = df.load(x, j) # point one
r = df.load(x, k) # point two
vp = df.load(v, i) # vel zero
vq = df.load(v, j) # vel one
vr = df.load(v, k) # vel two
bary = triangle_closest_point_barycentric(p, q, r, pos)
closest = p * bary[0] + q * bary[1] + r * bary[2]
diff = pos - closest # vector from tri to point
dist = df.dot(diff, diff) # squared distance
n = df.normalize(diff) # points into the object
c = df.min(dist - 0.05, 0.0) # 0 unless within 0.05 of surface
#c = df.leaky_min(dot(n, x0)-0.01, 0.0, 0.0)
# fn = n * c * 1e6 # points towards cloth (both n and c are negative)
# df.atomic_sub(tri_f, particle_no, fn)
fn = c * ke # normal force (restitution coefficient * how far inside for ground) (negative)
vtri = vp * bary[0] + vq * bary[1] + vr * bary[2] # bad approximation for centroid velocity
vrel = vtri - dpdt
vn = dot(n, vrel) # velocity component of rigid in negative normal direction
vt = vrel - n * vn # velocity component not in normal direction
# contact damping
fd = 0.0 - df.max(vn, 0.0) * kd * df.step(c) # again, negative, into the ground
# # viscous friction
# ft = vt*kf
# Coulomb friction (box)
lower = mu * (fn + fd)
upper = 0.0 - lower # workaround because no unary ops yet
nx = cross(n, float3(0.0, 0.0, 1.0)) # basis vectors for tangent
nz = cross(n, float3(1.0, 0.0, 0.0))
vx = df.clamp(dot(nx * kf, vt), lower, upper)
vz = df.clamp(dot(nz * kf, vt), lower, upper)
ft = (nx * vx + nz * vz) * (0.0 - df.step(c)) # df.float3(vx, 0.0, vz)*df.step(c)
# # Coulomb friction (smooth, but gradients are numerically unstable around |vt| = 0)
# #ft = df.normalize(vt)*df.min(kf*df.length(vt), 0.0 - mu*c*ke)
f_total = n * (fn + fd) + ft
df.atomic_add(tri_f, i, f_total * bary[0])
df.atomic_add(tri_f, j, f_total * bary[1])
df.atomic_add(tri_f, k, f_total * bary[2])
@df.kernel
def eval_bending(
x: df.tensor(df.float3), v: df.tensor(df.float3), indices: df.tensor(int), rest: df.tensor(float), ke: float, kd: float, f: df.tensor(df.float3)):
tid = df.tid()
i = df.load(indices, tid * 4 + 0)
j = df.load(indices, tid * 4 + 1)
k = df.load(indices, tid * 4 + 2)
l = df.load(indices, tid * 4 + 3)
rest_angle = df.load(rest, tid)
x1 = df.load(x, i)
x2 = df.load(x, j)
x3 = df.load(x, k)
x4 = df.load(x, l)
v1 = df.load(v, i)
v2 = df.load(v, j)
v3 = df.load(v, k)
v4 = df.load(v, l)
n1 = df.cross(x3 - x1, x4 - x1) # normal to face 1
n2 = df.cross(x4 - x2, x3 - x2) # normal to face 2
n1_length = df.length(n1)
n2_length = df.length(n2)
rcp_n1 = 1.0 / n1_length
rcp_n2 = 1.0 / n2_length
cos_theta = df.dot(n1, n2) * rcp_n1 * rcp_n2
n1 = n1 * rcp_n1 * rcp_n1
n2 = n2 * rcp_n2 * rcp_n2
e = x4 - x3
e_hat = df.normalize(e)
e_length = df.length(e)
s = df.sign(df.dot(df.cross(n2, n1), e_hat))
angle = df.acos(cos_theta) * s
d1 = n1 * e_length
d2 = n2 * e_length
d3 = n1 * df.dot(x1 - x4, e_hat) + n2 * df.dot(x2 - x4, e_hat)
d4 = n1 * df.dot(x3 - x1, e_hat) + n2 * df.dot(x3 - x2, e_hat)
# elastic
f_elastic = ke * (angle - rest_angle)
# damping
f_damp = kd * (df.dot(d1, v1) + df.dot(d2, v2) + df.dot(d3, v3) + df.dot(d4, v4))
# total force, proportional to edge length
f_total = 0.0 - e_length * (f_elastic + f_damp)
df.atomic_add(f, i, d1 * f_total)
df.atomic_add(f, j, d2 * f_total)
df.atomic_add(f, k, d3 * f_total)
df.atomic_add(f, l, d4 * f_total)
@df.kernel
def eval_tetrahedra(x: df.tensor(df.float3),
v: df.tensor(df.float3),
indices: df.tensor(int),
pose: df.tensor(df.mat33),
activation: df.tensor(float),
materials: df.tensor(float),
f: df.tensor(df.float3)):
tid = df.tid()
i = df.load(indices, tid * 4 + 0)
j = df.load(indices, tid * 4 + 1)
k = df.load(indices, tid * 4 + 2)
l = df.load(indices, tid * 4 + 3)
act = df.load(activation, tid)
k_mu = df.load(materials, tid * 3 + 0)
k_lambda = df.load(materials, tid * 3 + 1)
k_damp = df.load(materials, tid * 3 + 2)
x0 = df.load(x, i)
x1 = df.load(x, j)
x2 = df.load(x, k)
x3 = df.load(x, l)
v0 = df.load(v, i)
v1 = df.load(v, j)
v2 = df.load(v, k)
v3 = df.load(v, l)
x10 = x1 - x0
x20 = x2 - x0
x30 = x3 - x0
v10 = v1 - v0
v20 = v2 - v0
v30 = v3 - v0
Ds = df.mat33(x10, x20, x30)
Dm = df.load(pose, tid)
inv_rest_volume = df.determinant(Dm) * 6.0
rest_volume = 1.0 / inv_rest_volume
alpha = 1.0 + k_mu / k_lambda - k_mu / (4.0 * k_lambda)
# scale stiffness coefficients to account for area
k_mu = k_mu * rest_volume
k_lambda = k_lambda * rest_volume
k_damp = k_damp * rest_volume
# F = Xs*Xm^-1
F = Ds * Dm
dFdt = df.mat33(v10, v20, v30) * Dm
col1 = df.float3(F[0, 0], F[1, 0], F[2, 0])
col2 = df.float3(F[0, 1], F[1, 1], F[2, 1])
col3 = df.float3(F[0, 2], F[1, 2], F[2, 2])
#-----------------------------
# Neo-Hookean (with rest stability [Smith et al 2018])
Ic = dot(col1, col1) + dot(col2, col2) + dot(col3, col3)
# deviatoric part
P = F * k_mu * (1.0 - 1.0 / (Ic + 1.0)) + dFdt * k_damp
H = P * df.transpose(Dm)
f1 = df.float3(H[0, 0], H[1, 0], H[2, 0])
f2 = df.float3(H[0, 1], H[1, 1], H[2, 1])
f3 = df.float3(H[0, 2], H[1, 2], H[2, 2])
#-----------------------------
# C_spherical
# r_s = df.sqrt(dot(col1, col1) + dot(col2, col2) + dot(col3, col3))
# r_s_inv = 1.0/r_s
# C = r_s - df.sqrt(3.0)
# dCdx = F*df.transpose(Dm)*r_s_inv
# grad1 = float3(dCdx[0,0], dCdx[1,0], dCdx[2,0])
# grad2 = float3(dCdx[0,1], dCdx[1,1], dCdx[2,1])
# grad3 = float3(dCdx[0,2], dCdx[1,2], dCdx[2,2])
# f1 = grad1*C*k_mu
# f2 = grad2*C*k_mu
# f3 = grad3*C*k_mu
#----------------------------
# C_D
# r_s = df.sqrt(dot(col1, col1) + dot(col2, col2) + dot(col3, col3))
# C = r_s*r_s - 3.0
# dCdx = F*df.transpose(Dm)*2.0
# grad1 = float3(dCdx[0,0], dCdx[1,0], dCdx[2,0])
# grad2 = float3(dCdx[0,1], dCdx[1,1], dCdx[2,1])
# grad3 = float3(dCdx[0,2], dCdx[1,2], dCdx[2,2])
# f1 = grad1*C*k_mu
# f2 = grad2*C*k_mu
# f3 = grad3*C*k_mu
# hydrostatic part
J = df.determinant(F)
#print(J)
s = inv_rest_volume / 6.0
dJdx1 = df.cross(x20, x30) * s
dJdx2 = df.cross(x30, x10) * s
dJdx3 = df.cross(x10, x20) * s
f_volume = (J - alpha + act) * k_lambda
f_damp = (df.dot(dJdx1, v1) + df.dot(dJdx2, v2) + df.dot(dJdx3, v3)) * k_damp
f_total = f_volume + f_damp
f1 = f1 + dJdx1 * f_total
f2 = f2 + dJdx2 * f_total
f3 = f3 + dJdx3 * f_total
f0 = (f1 + f2 + f3) * (0.0 - 1.0)
# apply forces
df.atomic_sub(f, i, f0)
df.atomic_sub(f, j, f1)
df.atomic_sub(f, k, f2)
df.atomic_sub(f, l, f3)
@df.kernel
def eval_contacts(x: df.tensor(df.float3), v: df.tensor(df.float3), ke: float, kd: float, kf: float, mu: float, f: df.tensor(df.float3)):
tid = df.tid() # this just handles contact of particles with the ground plane, nothing else.
x0 = df.load(x, tid)
v0 = df.load(v, tid)
n = float3(0.0, 1.0, 0.0) # why is the normal always y? Ground is always (0, 1, 0) normal
c = df.min(dot(n, x0) - 0.01, 0.0) # 0 unless within 0.01 of surface
#c = df.leaky_min(dot(n, x0)-0.01, 0.0, 0.0)
vn = dot(n, v0)
vt = v0 - n * vn
fn = n * c * ke
# contact damping
fd = n * df.min(vn, 0.0) * kd
# viscous friction
#ft = vt*kf
# Coulomb friction (box)
lower = mu * c * ke
upper = 0.0 - lower
vx = clamp(dot(float3(kf, 0.0, 0.0), vt), lower, upper)
vz = clamp(dot(float3(0.0, 0.0, kf), vt), lower, upper)
ft = df.float3(vx, 0.0, vz)
# Coulomb friction (smooth, but gradients are numerically unstable around |vt| = 0)
#ft = df.normalize(vt)*df.min(kf*df.length(vt), 0.0 - mu*c*ke)
ftotal = fn + (fd + ft) * df.step(c)
df.atomic_sub(f, tid, ftotal)
@df.func
def sphere_sdf(center: df.float3, radius: float, p: df.float3):
return df.length(p-center) - radius
@df.func
def sphere_sdf_grad(center: df.float3, radius: float, p: df.float3):
return df.normalize(p-center)
@df.func
def box_sdf(upper: df.float3, p: df.float3):
# adapted from https://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm
qx = abs(p[0])-upper[0]
qy = abs(p[1])-upper[1]
qz = abs(p[2])-upper[2]
e = df.float3(df.max(qx, 0.0), df.max(qy, 0.0), df.max(qz, 0.0))
return df.length(e) + df.min(df.max(qx, df.max(qy, qz)), 0.0)
@df.func
def box_sdf_grad(upper: df.float3, p: df.float3):
qx = abs(p[0])-upper[0]
qy = abs(p[1])-upper[1]
qz = abs(p[2])-upper[2]
# exterior case
if (qx > 0.0 or qy > 0.0 or qz > 0.0):
x = df.clamp(p[0], 0.0-upper[0], upper[0])
y = df.clamp(p[1], 0.0-upper[1], upper[1])
z = df.clamp(p[2], 0.0-upper[2], upper[2])
return df.normalize(p - df.float3(x, y, z))
sx = df.sign(p[0])
sy = df.sign(p[1])
sz = df.sign(p[2])
# x projection
if (qx > qy and qx > qz):
return df.float3(sx, 0.0, 0.0)
# y projection
if (qy > qx and qy > qz):
return df.float3(0.0, sy, 0.0)
# z projection
if (qz > qx and qz > qy):
return df.float3(0.0, 0.0, sz)
@df.func
def capsule_sdf(radius: float, half_width: float, p: df.float3):
if (p[0] > half_width):
return length(df.float3(p[0] - half_width, p[1], p[2])) - radius
if (p[0] < 0.0 - half_width):
return length(df.float3(p[0] + half_width, p[1], p[2])) - radius
return df.length(df.float3(0.0, p[1], p[2])) - radius
@df.func
def capsule_sdf_grad(radius: float, half_width: float, p: df.float3):
if (p[0] > half_width):
return normalize(df.float3(p[0] - half_width, p[1], p[2]))
if (p[0] < 0.0 - half_width):
return normalize(df.float3(p[0] + half_width, p[1], p[2]))
return normalize(df.float3(0.0, p[1], p[2]))
@df.kernel
def eval_soft_contacts(
num_particles: int,
particle_x: df.tensor(df.float3),
particle_v: df.tensor(df.float3),
body_X_sc: df.tensor(df.spatial_transform),
body_v_sc: df.tensor(df.spatial_vector),
shape_X_co: df.tensor(df.spatial_transform),
shape_body: df.tensor(int),
shape_geo_type: df.tensor(int),
shape_geo_src: df.tensor(int),
shape_geo_scale: df.tensor(df.float3),
shape_materials: df.tensor(float),
ke: float,
kd: float,
kf: float,
mu: float,
# outputs
particle_f: df.tensor(df.float3),
body_f: df.tensor(df.spatial_vector)):
tid = df.tid()
shape_index = tid // num_particles # which shape
particle_index = tid % num_particles # which particle
rigid_index = df.load(shape_body, shape_index)
px = df.load(particle_x, particle_index)
pv = df.load(particle_v, particle_index)
#center = float3(0.0, 0.5, 0.0)
#radius = 0.25
#margin = 0.01
# sphere collider
# c = df.min(sphere_sdf(center, radius, x0)-margin, 0.0)
# n = sphere_sdf_grad(center, radius, x0)
# box collider
#c = df.min(box_sdf(df.float3(radius, radius, radius), x0-center)-margin, 0.0)
#n = box_sdf_grad(df.float3(radius, radius, radius), x0-center)
X_sc = df.spatial_transform_identity()
if (rigid_index >= 0):
X_sc = df.load(body_X_sc, rigid_index)
X_co = df.load(shape_X_co, shape_index)
X_so = df.spatial_transform_multiply(X_sc, X_co)
X_os = df.spatial_transform_inverse(X_so)
# transform particle position to shape local space
x_local = df.spatial_transform_point(X_os, px)
# geo description
geo_type = df.load(shape_geo_type, shape_index)
geo_scale = df.load(shape_geo_scale, shape_index)
margin = 0.01
# evaluate shape sdf
c = 0.0
n = df.float3(0.0, 0.0, 0.0)
# GEO_SPHERE (0)
if (geo_type == 0):
c = df.min(sphere_sdf(df.float3(0.0, 0.0, 0.0), geo_scale[0], x_local)-margin, 0.0)
n = df.spatial_transform_vector(X_so, sphere_sdf_grad(df.float3(0.0, 0.0, 0.0), geo_scale[0], x_local))
# GEO_BOX (1)
if (geo_type == 1):
c = df.min(box_sdf(geo_scale, x_local)-margin, 0.0)
n = df.spatial_transform_vector(X_so, box_sdf_grad(geo_scale, x_local))
# GEO_CAPSULE (2)
if (geo_type == 2):
c = df.min(capsule_sdf(geo_scale[0], geo_scale[1], x_local)-margin, 0.0)
n = df.spatial_transform_vector(X_so, capsule_sdf_grad(geo_scale[0], geo_scale[1], x_local))
# rigid velocity
rigid_v_s = df.spatial_vector()
if (rigid_index >= 0):
rigid_v_s = df.load(body_v_sc, rigid_index)
rigid_w = df.spatial_top(rigid_v_s)
rigid_v = df.spatial_bottom(rigid_v_s)
# compute the body velocity at the particle position
bv = rigid_v + df.cross(rigid_w, px)
# relative velocity
v = pv - bv
# decompose relative velocity
vn = dot(n, v)
vt = v - n * vn
# contact elastic
fn = n * c * ke
# contact damping
fd = n * df.min(vn, 0.0) * kd
# viscous friction
#ft = vt*kf
# Coulomb friction (box)
lower = mu * c * ke
upper = 0.0 - lower
vx = clamp(dot(float3(kf, 0.0, 0.0), vt), lower, upper)
vz = clamp(dot(float3(0.0, 0.0, kf), vt), lower, upper)
ft = df.float3(vx, 0.0, vz)
# Coulomb friction (smooth, but gradients are numerically unstable around |vt| = 0)
#ft = df.normalize(vt)*df.min(kf*df.length(vt), 0.0 - mu*c*ke)
f_total = fn + (fd + ft) * df.step(c)
t_total = df.cross(px, f_total)
df.atomic_sub(particle_f, particle_index, f_total)
if (rigid_index >= 0):
df.atomic_sub(body_f, rigid_index, df.spatial_vector(t_total, f_total))
@df.kernel
def eval_rigid_contacts(rigid_x: df.tensor(df.float3),
rigid_r: df.tensor(df.quat),
rigid_v: df.tensor(df.float3),
rigid_w: df.tensor(df.float3),
contact_body: df.tensor(int),
contact_point: df.tensor(df.float3),
contact_dist: df.tensor(float),
contact_mat: df.tensor(int),
materials: df.tensor(float),
rigid_f: df.tensor(df.float3),
rigid_t: df.tensor(df.float3)):
tid = df.tid()
c_body = df.load(contact_body, tid)
c_point = df.load(contact_point, tid)
c_dist = df.load(contact_dist, tid)
c_mat = df.load(contact_mat, tid)
# hard coded surface parameter tensor layout (ke, kd, kf, mu)
ke = df.load(materials, c_mat * 4 + 0) # restitution coefficient
kd = df.load(materials, c_mat * 4 + 1) # damping coefficient
kf = df.load(materials, c_mat * 4 + 2) # friction coefficient
mu = df.load(materials, c_mat * 4 + 3) # coulomb friction
x0 = df.load(rigid_x, c_body) # position of colliding body
r0 = df.load(rigid_r, c_body) # orientation of colliding body
v0 = df.load(rigid_v, c_body)
w0 = df.load(rigid_w, c_body)
n = float3(0.0, 1.0, 0.0)
# transform point to world space
p = x0 + df.rotate(r0, c_point) - n * c_dist # add on 'thickness' of shape, e.g.: radius of sphere/capsule
# use x0 as center, everything is offset from center of mass
# moment arm
r = p - x0 # basically just c_point in the new coordinates
# contact point velocity
dpdt = v0 + df.cross(w0, r) # this is rigid velocity cross offset, so it's the velocity of the contact point.
# check ground contact
c = df.min(dot(n, p), 0.0) # check if we're inside the ground
vn = dot(n, dpdt) # velocity component out of the ground
vt = dpdt - n * vn # velocity component not into the ground
fn = c * ke # normal force (restitution coefficient * how far inside for ground)
# contact damping
fd = df.min(vn, 0.0) * kd * df.step(c) # again, velocity into the ground, negative
# viscous friction
#ft = vt*kf
# Coulomb friction (box)
lower = mu * (fn + fd) # negative
upper = 0.0 - lower # positive, workaround for no unary ops
vx = df.clamp(dot(float3(kf, 0.0, 0.0), vt), lower, upper)
vz = df.clamp(dot(float3(0.0, 0.0, kf), vt), lower, upper)
ft = df.float3(vx, 0.0, vz) * df.step(c)
# Coulomb friction (smooth, but gradients are numerically unstable around |vt| = 0)
#ft = df.normalize(vt)*df.min(kf*df.length(vt), 0.0 - mu*c*ke)
f_total = n * (fn + fd) + ft
t_total = df.cross(r, f_total)
df.atomic_sub(rigid_f, c_body, f_total)
df.atomic_sub(rigid_t, c_body, t_total)
# # Frank & Park definition 3.20, pg 100
@df.func
def spatial_transform_twist(t: df.spatial_transform, x: df.spatial_vector):
q = spatial_transform_get_rotation(t)
p = spatial_transform_get_translation(t)
w = spatial_top(x)
v = spatial_bottom(x)
w = rotate(q, w)
v = rotate(q, v) + cross(p, w)
return spatial_vector(w, v)
@df.func
def spatial_transform_wrench(t: df.spatial_transform, x: df.spatial_vector):
q = spatial_transform_get_rotation(t)
p = spatial_transform_get_translation(t)
w = spatial_top(x)
v = spatial_bottom(x)
v = rotate(q, v)
w = rotate(q, w) + cross(p, v)
return spatial_vector(w, v)
@df.func
def spatial_transform_inverse(t: df.spatial_transform):
p = spatial_transform_get_translation(t)
q = spatial_transform_get_rotation(t)
q_inv = inverse(q)
return spatial_transform(rotate(q_inv, p)*(0.0 - 1.0), q_inv);
# computes adj_t^-T*I*adj_t^-1 (tensor change of coordinates), Frank & Park, section 8.2.3, pg 290
@df.func
def spatial_transform_inertia(t: df.spatial_transform, I: df.spatial_matrix):
t_inv = spatial_transform_inverse(t)
q = spatial_transform_get_rotation(t_inv)
p = spatial_transform_get_translation(t_inv)
r1 = rotate(q, float3(1.0, 0.0, 0.0))
r2 = rotate(q, float3(0.0, 1.0, 0.0))
r3 = rotate(q, float3(0.0, 0.0, 1.0))
R = mat33(r1, r2, r3)
S = mul(skew(p), R)
T = spatial_adjoint(R, S)
return mul(mul(transpose(T), I), T)
@df.kernel
def eval_rigid_contacts_art(
body_X_s: df.tensor(df.spatial_transform),
body_v_s: df.tensor(df.spatial_vector),
contact_body: df.tensor(int),
contact_point: df.tensor(df.float3),
contact_dist: df.tensor(float),
contact_mat: df.tensor(int),
materials: df.tensor(float),
body_f_s: df.tensor(df.spatial_vector)):
tid = df.tid()
c_body = df.load(contact_body, tid)
c_point = df.load(contact_point, tid)
c_dist = df.load(contact_dist, tid)
c_mat = df.load(contact_mat, tid)
# hard coded surface parameter tensor layout (ke, kd, kf, mu)
ke = df.load(materials, c_mat * 4 + 0) # restitution coefficient
kd = df.load(materials, c_mat * 4 + 1) # damping coefficient
kf = df.load(materials, c_mat * 4 + 2) # friction coefficient
mu = df.load(materials, c_mat * 4 + 3) # coulomb friction
X_s = df.load(body_X_s, c_body) # position of colliding body
v_s = df.load(body_v_s, c_body) # orientation of colliding body
n = float3(0.0, 1.0, 0.0)
# transform point to world space
p = df.spatial_transform_point(X_s, c_point) - n * c_dist # add on 'thickness' of shape, e.g.: radius of sphere/capsule
w = df.spatial_top(v_s)
v = df.spatial_bottom(v_s)
# contact point velocity
dpdt = v + df.cross(w, p)
# check ground contact
c = df.dot(n, p) # check if we're inside the ground
if (c >= 0.0):
return
vn = dot(n, dpdt) # velocity component out of the ground
vt = dpdt - n * vn # velocity component not into the ground
fn = c * ke # normal force (restitution coefficient * how far inside for ground)
# contact damping
fd = df.min(vn, 0.0) * kd * df.step(c) * (0.0 - c)
# viscous friction
#ft = vt*kf
# Coulomb friction (box)
lower = mu * (fn + fd) # negative
upper = 0.0 - lower # positive, workaround for no unary ops
vx = df.clamp(dot(float3(kf, 0.0, 0.0), vt), lower, upper)
vz = df.clamp(dot(float3(0.0, 0.0, kf), vt), lower, upper)
# Coulomb friction (smooth, but gradients are numerically unstable around |vt| = 0)
ft = df.normalize(vt)*df.min(kf*df.length(vt), 0.0 - mu*c*ke) * df.step(c)
f_total = n * (fn + fd) + ft
t_total = df.cross(p, f_total)
df.atomic_add(body_f_s, c_body, df.spatial_vector(t_total, f_total))
@df.func
def compute_muscle_force(
i: int,
body_X_s: df.tensor(df.spatial_transform),
body_v_s: df.tensor(df.spatial_vector),
muscle_links: df.tensor(int),
muscle_points: df.tensor(df.float3),
muscle_activation: float,
body_f_s: df.tensor(df.spatial_vector)):
link_0 = df.load(muscle_links, i)
link_1 = df.load(muscle_links, i+1)
if (link_0 == link_1):
return 0
r_0 = df.load(muscle_points, i)
r_1 = df.load(muscle_points, i+1)
xform_0 = df.load(body_X_s, link_0)
xform_1 = df.load(body_X_s, link_1)
pos_0 = df.spatial_transform_point(xform_0, r_0)
pos_1 = df.spatial_transform_point(xform_1, r_1)
n = df.normalize(pos_1 - pos_0)
# todo: add passive elastic and viscosity terms
f = n * muscle_activation
df.atomic_sub(body_f_s, link_0, df.spatial_vector(df.cross(pos_0, f), f))
df.atomic_add(body_f_s, link_1, df.spatial_vector(df.cross(pos_1, f), f))
return 0
@df.kernel
def eval_muscles(
body_X_s: df.tensor(df.spatial_transform),
body_v_s: df.tensor(df.spatial_vector),
muscle_start: df.tensor(int),
muscle_params: df.tensor(float),
muscle_links: df.tensor(int),
muscle_points: df.tensor(df.float3),
muscle_activation: df.tensor(float),
# output
body_f_s: df.tensor(df.spatial_vector)):
tid = df.tid()
m_start = df.load(muscle_start, tid)
m_end = df.load(muscle_start, tid+1) - 1
activation = df.load(muscle_activation, tid)
for i in range(m_start, m_end):
compute_muscle_force(i, body_X_s, body_v_s, muscle_links, muscle_points, activation, body_f_s)
# compute transform across a joint
@df.func
def jcalc_transform(type: int, axis: df.float3, joint_q: df.tensor(float), start: int):
# prismatic
if (type == 0):
q = df.load(joint_q, start)
X_jc = spatial_transform(axis * q, quat_identity())
return X_jc
# revolute
if (type == 1):
q = df.load(joint_q, start)
X_jc = spatial_transform(float3(0.0, 0.0, 0.0), quat_from_axis_angle(axis, q))
return X_jc
# ball
if (type == 2):
qx = df.load(joint_q, start + 0)
qy = df.load(joint_q, start + 1)
qz = df.load(joint_q, start + 2)
qw = df.load(joint_q, start + 3)
X_jc = spatial_transform(float3(0.0, 0.0, 0.0), quat(qx, qy, qz, qw))
return X_jc
# fixed
if (type == 3):
X_jc = spatial_transform_identity()
return X_jc
# free
if (type == 4):
px = df.load(joint_q, start + 0)
py = df.load(joint_q, start + 1)
pz = df.load(joint_q, start + 2)
qx = df.load(joint_q, start + 3)
qy = df.load(joint_q, start + 4)
qz = df.load(joint_q, start + 5)
qw = df.load(joint_q, start + 6)
X_jc = spatial_transform(float3(px, py, pz), quat(qx, qy, qz, qw))
return X_jc
# default case
return spatial_transform_identity()
# compute motion subspace and velocity for a joint
@df.func
def jcalc_motion(type: int, axis: df.float3, X_sc: df.spatial_transform, joint_S_s: df.tensor(df.spatial_vector), joint_qd: df.tensor(float), joint_start: int):
# prismatic
if (type == 0):
S_s = df.spatial_transform_twist(X_sc, spatial_vector(float3(0.0, 0.0, 0.0), axis))
v_j_s = S_s * df.load(joint_qd, joint_start)
df.store(joint_S_s, joint_start, S_s)
return v_j_s
# revolute
if (type == 1):
S_s = df.spatial_transform_twist(X_sc, spatial_vector(axis, float3(0.0, 0.0, 0.0)))
v_j_s = S_s * df.load(joint_qd, joint_start)
df.store(joint_S_s, joint_start, S_s)
return v_j_s
# ball
if (type == 2):
w = float3(df.load(joint_qd, joint_start + 0),
df.load(joint_qd, joint_start + 1),
df.load(joint_qd, joint_start + 2))
S_0 = df.spatial_transform_twist(X_sc, spatial_vector(1.0, 0.0, 0.0, 0.0, 0.0, 0.0))
S_1 = df.spatial_transform_twist(X_sc, spatial_vector(0.0, 1.0, 0.0, 0.0, 0.0, 0.0))
S_2 = df.spatial_transform_twist(X_sc, spatial_vector(0.0, 0.0, 1.0, 0.0, 0.0, 0.0))
# write motion subspace
df.store(joint_S_s, joint_start + 0, S_0)
df.store(joint_S_s, joint_start + 1, S_1)
df.store(joint_S_s, joint_start + 2, S_2)
return S_0*w[0] + S_1*w[1] + S_2*w[2]
# fixed
if (type == 3):
return spatial_vector()
# free
if (type == 4):
v_j_s = spatial_vector(df.load(joint_qd, joint_start + 0),
df.load(joint_qd, joint_start + 1),
df.load(joint_qd, joint_start + 2),
df.load(joint_qd, joint_start + 3),
df.load(joint_qd, joint_start + 4),
df.load(joint_qd, joint_start + 5))
# write motion subspace
df.store(joint_S_s, joint_start + 0, spatial_vector(1.0, 0.0, 0.0, 0.0, 0.0, 0.0))
df.store(joint_S_s, joint_start + 1, spatial_vector(0.0, 1.0, 0.0, 0.0, 0.0, 0.0))
df.store(joint_S_s, joint_start + 2, spatial_vector(0.0, 0.0, 1.0, 0.0, 0.0, 0.0))
df.store(joint_S_s, joint_start + 3, spatial_vector(0.0, 0.0, 0.0, 1.0, 0.0, 0.0))
df.store(joint_S_s, joint_start + 4, spatial_vector(0.0, 0.0, 0.0, 0.0, 1.0, 0.0))
df.store(joint_S_s, joint_start + 5, spatial_vector(0.0, 0.0, 0.0, 0.0, 0.0, 1.0))
return v_j_s
# default case
return spatial_vector()
# # compute the velocity across a joint
# #@df.func
# def jcalc_velocity(self, type, S_s, joint_qd, start):
# # prismatic
# if (type == 0):
# v_j_s = df.load(S_s, start)*df.load(joint_qd, start)
# return v_j_s
# # revolute
# if (type == 1):
# v_j_s = df.load(S_s, start)*df.load(joint_qd, start)
# return v_j_s
# # fixed
# if (type == 2):
# v_j_s = spatial_vector()
# return v_j_s
# # free
# if (type == 3):
# v_j_s = S_s[start+0]*joint_qd[start+0]
# v_j_s += S_s[start+1]*joint_qd[start+1]
# v_j_s += S_s[start+2]*joint_qd[start+2]
# v_j_s += S_s[start+3]*joint_qd[start+3]
# v_j_s += S_s[start+4]*joint_qd[start+4]
# v_j_s += S_s[start+5]*joint_qd[start+5]
# return v_j_s
# computes joint space forces/torques in tau
@df.func
def jcalc_tau(
type: int,
target_k_e: float,
target_k_d: float,
limit_k_e: float,
limit_k_d: float,
joint_S_s: df.tensor(spatial_vector),
joint_q: df.tensor(float),
joint_qd: df.tensor(float),
joint_act: df.tensor(float),
joint_target: df.tensor(float),
joint_limit_lower: df.tensor(float),
joint_limit_upper: df.tensor(float),
coord_start: int,
dof_start: int,
body_f_s: spatial_vector,
tau: df.tensor(float)):
# prismatic / revolute
if (type == 0 or type == 1):
S_s = df.load(joint_S_s, dof_start)
q = df.load(joint_q, coord_start)
qd = df.load(joint_qd, dof_start)
act = df.load(joint_act, dof_start)
target = df.load(joint_target, coord_start)
lower = df.load(joint_limit_lower, coord_start)
upper = df.load(joint_limit_upper, coord_start)
limit_f = 0.0
# compute limit forces, damping only active when limit is violated
if (q < lower):
limit_f = limit_k_e*(lower-q)
if (q > upper):
limit_f = limit_k_e*(upper-q)
damping_f = (0.0 - limit_k_d) * qd
# total torque / force on the joint
t = 0.0 - spatial_dot(S_s, body_f_s) - target_k_e*(q - target) - target_k_d*qd + act + limit_f + damping_f
df.store(tau, dof_start, t)
# ball
if (type == 2):
# elastic term.. this is proportional to the
# imaginary part of the relative quaternion
r_j = float3(df.load(joint_q, coord_start + 0),
df.load(joint_q, coord_start + 1),
df.load(joint_q, coord_start + 2))
# angular velocity for damping
w_j = float3(df.load(joint_qd, dof_start + 0),
df.load(joint_qd, dof_start + 1),
df.load(joint_qd, dof_start + 2))
for i in range(0, 3):
S_s = df.load(joint_S_s, dof_start+i)
w = w_j[i]
r = r_j[i]
df.store(tau, dof_start+i, 0.0 - spatial_dot(S_s, body_f_s) - w*target_k_d - r*target_k_e)
# fixed
# if (type == 3)
# pass
# free
if (type == 4):
for i in range(0, 6):
S_s = df.load(joint_S_s, dof_start+i)
df.store(tau, dof_start+i, 0.0 - spatial_dot(S_s, body_f_s))
return 0
@df.func
def jcalc_integrate(
type: int,
joint_q: df.tensor(float),
joint_qd: df.tensor(float),
joint_qdd: df.tensor(float),
coord_start: int,
dof_start: int,
dt: float,
joint_q_new: df.tensor(float),
joint_qd_new: df.tensor(float)):
# prismatic / revolute
if (type == 0 or type == 1):
qdd = df.load(joint_qdd, dof_start)
qd = df.load(joint_qd, dof_start)
q = df.load(joint_q, coord_start)
qd_new = qd + qdd*dt
q_new = q + qd_new*dt
df.store(joint_qd_new, dof_start, qd_new)
df.store(joint_q_new, coord_start, q_new)
# ball
if (type == 2):
m_j = float3(df.load(joint_qdd, dof_start + 0),
df.load(joint_qdd, dof_start + 1),
df.load(joint_qdd, dof_start + 2))
w_j = float3(df.load(joint_qd, dof_start + 0),
df.load(joint_qd, dof_start + 1),
df.load(joint_qd, dof_start + 2))
r_j = quat(df.load(joint_q, coord_start + 0),
df.load(joint_q, coord_start + 1),
df.load(joint_q, coord_start + 2),
df.load(joint_q, coord_start + 3))
# symplectic Euler
w_j_new = w_j + m_j*dt
drdt_j = mul(quat(w_j_new, 0.0), r_j) * 0.5
# new orientation (normalized)
r_j_new = normalize(r_j + drdt_j * dt)
# update joint coords
df.store(joint_q_new, coord_start + 0, r_j_new[0])
df.store(joint_q_new, coord_start + 1, r_j_new[1])
df.store(joint_q_new, coord_start + 2, r_j_new[2])
df.store(joint_q_new, coord_start + 3, r_j_new[3])
# update joint vel
df.store(joint_qd_new, dof_start + 0, w_j_new[0])
df.store(joint_qd_new, dof_start + 1, w_j_new[1])
df.store(joint_qd_new, dof_start + 2, w_j_new[2])
# fixed joint
#if (type == 3)
# pass
# free joint
if (type == 4):
# dofs: qd = (omega_x, omega_y, omega_z, vel_x, vel_y, vel_z)
# coords: q = (trans_x, trans_y, trans_z, quat_x, quat_y, quat_z, quat_w)
# angular and linear acceleration
m_s = float3(df.load(joint_qdd, dof_start + 0),
df.load(joint_qdd, dof_start + 1),
df.load(joint_qdd, dof_start + 2))
a_s = float3(df.load(joint_qdd, dof_start + 3),
df.load(joint_qdd, dof_start + 4),
df.load(joint_qdd, dof_start + 5))
# angular and linear velocity
w_s = float3(df.load(joint_qd, dof_start + 0),
df.load(joint_qd, dof_start + 1),
df.load(joint_qd, dof_start + 2))
v_s = float3(df.load(joint_qd, dof_start + 3),
df.load(joint_qd, dof_start + 4),
df.load(joint_qd, dof_start + 5))
# symplectic Euler
w_s = w_s + m_s*dt
v_s = v_s + a_s*dt
# translation of origin
p_s = float3(df.load(joint_q, coord_start + 0),
df.load(joint_q, coord_start + 1),
df.load(joint_q, coord_start + 2))
# linear vel of origin (note q/qd switch order of linear angular elements)
# note we are converting the body twist in the space frame (w_s, v_s) to compute center of mass velcity
dpdt_s = v_s + cross(w_s, p_s)
# quat and quat derivative
r_s = quat(df.load(joint_q, coord_start + 3),
df.load(joint_q, coord_start + 4),
df.load(joint_q, coord_start + 5),
df.load(joint_q, coord_start + 6))
drdt_s = mul(quat(w_s, 0.0), r_s) * 0.5
# new orientation (normalized)
p_s_new = p_s + dpdt_s * dt
r_s_new = normalize(r_s + drdt_s * dt)
# update transform
df.store(joint_q_new, coord_start + 0, p_s_new[0])
df.store(joint_q_new, coord_start + 1, p_s_new[1])
df.store(joint_q_new, coord_start + 2, p_s_new[2])
df.store(joint_q_new, coord_start + 3, r_s_new[0])
df.store(joint_q_new, coord_start + 4, r_s_new[1])
df.store(joint_q_new, coord_start + 5, r_s_new[2])
df.store(joint_q_new, coord_start + 6, r_s_new[3])
# update joint_twist
df.store(joint_qd_new, dof_start + 0, w_s[0])
df.store(joint_qd_new, dof_start + 1, w_s[1])
df.store(joint_qd_new, dof_start + 2, w_s[2])
df.store(joint_qd_new, dof_start + 3, v_s[0])
df.store(joint_qd_new, dof_start + 4, v_s[1])
df.store(joint_qd_new, dof_start + 5, v_s[2])
return 0
@df.func
def compute_link_transform(i: int,
joint_type: df.tensor(int),
joint_parent: df.tensor(int),
joint_q_start: df.tensor(int),
joint_qd_start: df.tensor(int),
joint_q: df.tensor(float),
joint_X_pj: df.tensor(df.spatial_transform),
joint_X_cm: df.tensor(df.spatial_transform),
joint_axis: df.tensor(df.float3),
body_X_sc: df.tensor(df.spatial_transform),
body_X_sm: df.tensor(df.spatial_transform)):
# parent transform
parent = load(joint_parent, i)
# parent transform in spatial coordinates
X_sp = spatial_transform_identity()
if (parent >= 0):
X_sp = load(body_X_sc, parent)
type = load(joint_type, i)
axis = load(joint_axis, i)
coord_start = load(joint_q_start, i)
dof_start = load(joint_qd_start, i)
# compute transform across joint
X_jc = jcalc_transform(type, axis, joint_q, coord_start)
X_pj = load(joint_X_pj, i)
X_sc = spatial_transform_multiply(X_sp, spatial_transform_multiply(X_pj, X_jc))
# compute transform of center of mass
X_cm = load(joint_X_cm, i)
X_sm = spatial_transform_multiply(X_sc, X_cm)
# store geometry transforms
store(body_X_sc, i, X_sc)
store(body_X_sm, i, X_sm)
return 0
@df.kernel
def eval_rigid_fk(articulation_start: df.tensor(int),
joint_type: df.tensor(int),
joint_parent: df.tensor(int),
joint_q_start: df.tensor(int),
joint_qd_start: df.tensor(int),
joint_q: df.tensor(float),
joint_X_pj: df.tensor(df.spatial_transform),
joint_X_cm: df.tensor(df.spatial_transform),
joint_axis: df.tensor(df.float3),
body_X_sc: df.tensor(df.spatial_transform),
body_X_sm: df.tensor(df.spatial_transform)):
# one thread per-articulation
index = tid()
start = df.load(articulation_start, index)
end = df.load(articulation_start, index+1)
for i in range(start, end):
compute_link_transform(i,
joint_type,
joint_parent,
joint_q_start,
joint_qd_start,
joint_q,
joint_X_pj,
joint_X_cm,
joint_axis,
body_X_sc,
body_X_sm)
@df.func
def compute_link_velocity(i: int,
joint_type: df.tensor(int),
joint_parent: df.tensor(int),
joint_qd_start: df.tensor(int),
joint_qd: df.tensor(float),
joint_axis: df.tensor(df.float3),
body_I_m: df.tensor(df.spatial_matrix),
body_X_sc: df.tensor(df.spatial_transform),
body_X_sm: df.tensor(df.spatial_transform),
joint_X_pj: df.tensor(df.spatial_transform),
gravity: df.tensor(df.float3),
# outputs
joint_S_s: df.tensor(df.spatial_vector),
body_I_s: df.tensor(df.spatial_matrix),
body_v_s: df.tensor(df.spatial_vector),
body_f_s: df.tensor(df.spatial_vector),
body_a_s: df.tensor(df.spatial_vector)):
type = df.load(joint_type, i)
axis = df.load(joint_axis, i)
parent = df.load(joint_parent, i)
dof_start = df.load(joint_qd_start, i)
X_sc = df.load(body_X_sc, i)
# parent transform in spatial coordinates
X_sp = spatial_transform_identity()
if (parent >= 0):
X_sp = load(body_X_sc, parent)
X_pj = load(joint_X_pj, i)
X_sj = spatial_transform_multiply(X_sp, X_pj)
# compute motion subspace and velocity across the joint (also stores S_s to global memory)
v_j_s = jcalc_motion(type, axis, X_sj, joint_S_s, joint_qd, dof_start)
# parent velocity
v_parent_s = spatial_vector()
a_parent_s = spatial_vector()
if (parent >= 0):
v_parent_s = df.load(body_v_s, parent)
a_parent_s = df.load(body_a_s, parent)
# body velocity, acceleration
v_s = v_parent_s + v_j_s
a_s = a_parent_s + spatial_cross(v_s, v_j_s) # + self.joint_S_s[i]*self.joint_qdd[i]
# compute body forces
X_sm = df.load(body_X_sm, i)
I_m = df.load(body_I_m, i)
# gravity and external forces (expressed in frame aligned with s but centered at body mass)
g = df.load(gravity, 0)
m = I_m[3, 3]
f_g_m = spatial_vector(float3(), g) * m
f_g_s = spatial_transform_wrench(spatial_transform(spatial_transform_get_translation(X_sm), quat_identity()), f_g_m)
#f_ext_s = df.load(body_f_s, i) + f_g_s
# body forces
I_s = spatial_transform_inertia(X_sm, I_m)
f_b_s = df.mul(I_s, a_s) + spatial_cross_dual(v_s, df.mul(I_s, v_s))
df.store(body_v_s, i, v_s)
df.store(body_a_s, i, a_s)
df.store(body_f_s, i, f_b_s - f_g_s)
df.store(body_I_s, i, I_s)
return 0
@df.func
def compute_link_tau(offset: int,
joint_end: int,
joint_type: df.tensor(int),
joint_parent: df.tensor(int),
joint_q_start: df.tensor(int),
joint_qd_start: df.tensor(int),
joint_q: df.tensor(float),
joint_qd: df.tensor(float),
joint_act: df.tensor(float),
joint_target: df.tensor(float),
joint_target_ke: df.tensor(float),
joint_target_kd: df.tensor(float),
joint_limit_lower: df.tensor(float),
joint_limit_upper: df.tensor(float),
joint_limit_ke: df.tensor(float),
joint_limit_kd: df.tensor(float),
joint_S_s: df.tensor(df.spatial_vector),
body_fb_s: df.tensor(df.spatial_vector),
# outputs
body_ft_s: df.tensor(df.spatial_vector),
tau: df.tensor(float)):
# for backwards traversal
i = joint_end-offset-1
type = df.load(joint_type, i)
parent = df.load(joint_parent, i)
dof_start = df.load(joint_qd_start, i)
coord_start = df.load(joint_q_start, i)
target_k_e = df.load(joint_target_ke, i)
target_k_d = df.load(joint_target_kd, i)
limit_k_e = df.load(joint_limit_ke, i)
limit_k_d = df.load(joint_limit_kd, i)
# total forces on body
f_b_s = df.load(body_fb_s, i)
f_t_s = df.load(body_ft_s, i)
f_s = f_b_s + f_t_s
# compute joint-space forces, writes out tau
jcalc_tau(type, target_k_e, target_k_d, limit_k_e, limit_k_d, joint_S_s, joint_q, joint_qd, joint_act, joint_target, joint_limit_lower, joint_limit_upper, coord_start, dof_start, f_s, tau)
# update parent forces, todo: check that this is valid for the backwards pass
if (parent >= 0):
df.atomic_add(body_ft_s, parent, f_s)
return 0
@df.kernel
def eval_rigid_id(articulation_start: df.tensor(int),
joint_type: df.tensor(int),
joint_parent: df.tensor(int),
joint_q_start: df.tensor(int),
joint_qd_start: df.tensor(int),
joint_q: df.tensor(float),
joint_qd: df.tensor(float),
joint_axis: df.tensor(df.float3),
joint_target_ke: df.tensor(float),
joint_target_kd: df.tensor(float),
body_I_m: df.tensor(df.spatial_matrix),
body_X_sc: df.tensor(df.spatial_transform),
body_X_sm: df.tensor(df.spatial_transform),
joint_X_pj: df.tensor(df.spatial_transform),
gravity: df.tensor(df.float3),
# outputs
joint_S_s: df.tensor(df.spatial_vector),
body_I_s: df.tensor(df.spatial_matrix),
body_v_s: df.tensor(df.spatial_vector),
body_f_s: df.tensor(df.spatial_vector),
body_a_s: df.tensor(df.spatial_vector)):
# one thread per-articulation
index = tid()
start = df.load(articulation_start, index)
end = df.load(articulation_start, index+1)
count = end-start
# compute link velocities and coriolis forces
for i in range(start, end):
compute_link_velocity(
i,
joint_type,
joint_parent,
joint_qd_start,
joint_qd,
joint_axis,
body_I_m,
body_X_sc,
body_X_sm,
joint_X_pj,
gravity,
joint_S_s,
body_I_s,
body_v_s,
body_f_s,
body_a_s)
@df.kernel
def eval_rigid_tau(articulation_start: df.tensor(int),
joint_type: df.tensor(int),
joint_parent: df.tensor(int),
joint_q_start: df.tensor(int),
joint_qd_start: df.tensor(int),
joint_q: df.tensor(float),
joint_qd: df.tensor(float),
joint_act: df.tensor(float),
joint_target: df.tensor(float),
joint_target_ke: df.tensor(float),
joint_target_kd: df.tensor(float),
joint_limit_lower: df.tensor(float),
joint_limit_upper: df.tensor(float),
joint_limit_ke: df.tensor(float),
joint_limit_kd: df.tensor(float),
joint_axis: df.tensor(df.float3),
joint_S_s: df.tensor(df.spatial_vector),
body_fb_s: df.tensor(df.spatial_vector),
# outputs
body_ft_s: df.tensor(df.spatial_vector),
tau: df.tensor(float)):
# one thread per-articulation
index = tid()
start = df.load(articulation_start, index)
end = df.load(articulation_start, index+1)
count = end-start
# compute joint forces
for i in range(0, count):
compute_link_tau(
i,
end,
joint_type,
joint_parent,
joint_q_start,
joint_qd_start,
joint_q,
joint_qd,
joint_act,
joint_target,
joint_target_ke,
joint_target_kd,
joint_limit_lower,
joint_limit_upper,
joint_limit_ke,
joint_limit_kd,
joint_S_s,
body_fb_s,
body_ft_s,
tau)
@df.kernel
def eval_rigid_jacobian(
articulation_start: df.tensor(int),
articulation_J_start: df.tensor(int),
joint_parent: df.tensor(int),
joint_qd_start: df.tensor(int),
joint_S_s: df.tensor(spatial_vector),
# outputs
J: df.tensor(float)):
# one thread per-articulation
index = tid()
joint_start = df.load(articulation_start, index)
joint_end = df.load(articulation_start, index+1)
joint_count = joint_end-joint_start
J_offset = df.load(articulation_J_start, index)
# in spatial.h
spatial_jacobian(joint_S_s, joint_parent, joint_qd_start, joint_start, joint_count, J_offset, J)
# @df.kernel
# def eval_rigid_jacobian(
# articulation_start: df.tensor(int),
# articulation_J_start: df.tensor(int),
# joint_parent: df.tensor(int),
# joint_qd_start: df.tensor(int),
# joint_S_s: df.tensor(spatial_vector),
# # outputs
# J: df.tensor(float)):
# # one thread per-articulation
# index = tid()
# joint_start = df.load(articulation_start, index)
# joint_end = df.load(articulation_start, index+1)
# joint_count = joint_end-joint_start
# dof_start = df.load(joint_qd_start, joint_start)
# dof_end = df.load(joint_qd_start, joint_end)
# dof_count = dof_end-dof_start
# #(const spatial_vector* S, const int* joint_parents, const int* joint_qd_start, int num_links, int num_dofs, float* J)
# spatial_jacobian(joint_S_s, joint_parent, joint_qd_start, joint_count, dof_count, J)
@df.kernel
def eval_rigid_mass(
articulation_start: df.tensor(int),
articulation_M_start: df.tensor(int),
body_I_s: df.tensor(spatial_matrix),
# outputs
M: df.tensor(float)):
# one thread per-articulation
index = tid()
joint_start = df.load(articulation_start, index)
joint_end = df.load(articulation_start, index+1)
joint_count = joint_end-joint_start
M_offset = df.load(articulation_M_start, index)
# in spatial.h
spatial_mass(body_I_s, joint_start, joint_count, M_offset, M)
@df.kernel
def eval_dense_gemm(m: int, n: int, p: int, t1: int, t2: int, A: df.tensor(float), B: df.tensor(float), C: df.tensor(float)):
dense_gemm(m, n, p, t1, t2, A, B, C)
@df.kernel
def eval_dense_gemm_batched(m: df.tensor(int), n: df.tensor(int), p: df.tensor(int), t1: int, t2: int, A_start: df.tensor(int), B_start: df.tensor(int), C_start: df.tensor(int), A: df.tensor(float), B: df.tensor(float), C: df.tensor(float)):
dense_gemm_batched(m, n, p, t1, t2, A_start, B_start, C_start, A, B, C)
@df.kernel
def eval_dense_cholesky(n: int, A: df.tensor(float), regularization: df.tensor(float), L: df.tensor(float)):
dense_chol(n, A, regularization, L)
@df.kernel
def eval_dense_cholesky_batched(A_start: df.tensor(int), A_dim: df.tensor(int), A: df.tensor(float), regularization: df.tensor(float), L: df.tensor(float)):
dense_chol_batched(A_start, A_dim, A, regularization, L)
@df.kernel
def eval_dense_subs(n: int, L: df.tensor(float), b: df.tensor(float), x: df.tensor(float)):
dense_subs(n, L, b, x)
# helper that propagates gradients back to A, treating L as a constant / temporary variable
# allows us to reuse the Cholesky decomposition from the forward pass
@df.kernel
def eval_dense_solve(n: int, A: df.tensor(float), L: df.tensor(float), b: df.tensor(float), tmp: df.tensor(float), x: df.tensor(float)):
dense_solve(n, A, L, b, tmp, x)
# helper that propagates gradients back to A, treating L as a constant / temporary variable
# allows us to reuse the Cholesky decomposition from the forward pass
@df.kernel
def eval_dense_solve_batched(b_start: df.tensor(int), A_start: df.tensor(int), A_dim: df.tensor(int), A: df.tensor(float), L: df.tensor(float), b: df.tensor(float), tmp: df.tensor(float), x: df.tensor(float)):
dense_solve_batched(b_start, A_start, A_dim, A, L, b, tmp, x)
@df.kernel
def eval_rigid_integrate(
joint_type: df.tensor(int),
joint_q_start: df.tensor(int),
joint_qd_start: df.tensor(int),
joint_q: df.tensor(float),
joint_qd: df.tensor(float),
joint_qdd: df.tensor(float),
dt: float,
# outputs
joint_q_new: df.tensor(float),
joint_qd_new: df.tensor(float)):
# one thread per-articulation
index = tid()
type = df.load(joint_type, index)
coord_start = df.load(joint_q_start, index)
dof_start = df.load(joint_qd_start, index)
jcalc_integrate(
type,
joint_q,
joint_qd,
joint_qdd,
coord_start,
dof_start,
dt,
joint_q_new,
joint_qd_new)
g_state_out = None
# define PyTorch autograd op to wrap simulate func
class SimulateFunc(torch.autograd.Function):
"""PyTorch autograd function representing a simulation stpe
Note:
This node will be inserted into the computation graph whenever
`forward()` is called on an integrator object. It should not be called
directly by the user.
"""
@staticmethod
def forward(ctx, integrator, model, state_in, dt, substeps, mass_matrix_freq, *tensors):
# record launches
ctx.tape = df.Tape()
ctx.inputs = tensors
#ctx.outputs = df.to_weak_list(state_out.flatten())
actuation = state_in.joint_act
# simulate
for i in range(substeps):
# ensure actuation is set on all substeps
state_in.joint_act = actuation
state_out = model.state()
integrator._simulate(ctx.tape, model, state_in, state_out, dt/float(substeps), update_mass_matrix=((i%mass_matrix_freq)==0))
# swap states
state_in = state_out
# use global to pass state object back to caller
global g_state_out
g_state_out = state_out
ctx.outputs = df.to_weak_list(state_out.flatten())
return tuple(state_out.flatten())
@staticmethod
def backward(ctx, *grads):
# ensure grads are contiguous in memory
adj_outputs = df.make_contiguous(grads)
# register outputs with tape
outputs = df.to_strong_list(ctx.outputs)
for o in range(len(outputs)):
ctx.tape.adjoints[outputs[o]] = adj_outputs[o]
# replay launches backwards
ctx.tape.replay()
# find adjoint of inputs
adj_inputs = []
for i in ctx.inputs:
if i in ctx.tape.adjoints:
adj_inputs.append(ctx.tape.adjoints[i])
else:
adj_inputs.append(None)
# free the tape
ctx.tape.reset()
# filter grads to replace empty tensors / no grad / constant params with None
return (None, None, None, None, None, None, *df.filter_grads(adj_inputs))
class SemiImplicitIntegrator:
"""A semi-implicit integrator using symplectic Euler
After constructing `Model` and `State` objects this time-integrator
may be used to advance the simulation state forward in time.
Semi-implicit time integration is a variational integrator that
preserves energy, however it not unconditionally stable, and requires a time-step
small enough to support the required stiffness and damping forces.
See: https://en.wikipedia.org/wiki/Semi-implicit_Euler_method
Example:
>>> integrator = df.SemiImplicitIntegrator()
>>>
>>> # simulation loop
>>> for i in range(100):
>>> state = integrator.forward(model, state, dt)
"""
def __init__(self):
pass
def forward(self, model: Model, state_in: State, dt: float, substeps: int, mass_matrix_freq: int) -> State:
"""Performs a single integration step forward in time
This method inserts a node into the PyTorch computational graph with
references to all model and state tensors such that gradients
can be propagrated back through the simulation step.
Args:
model: Simulation model
state: Simulation state at the start the time-step
dt: The simulation time-step (usually in seconds)
Returns:
The state of the system at the end of the time-step
"""
if dflex.config.no_grad:
# if no gradient required then do inplace update
for i in range(substeps):
self._simulate(df.Tape(), model, state_in, state_in, dt/float(substeps), update_mass_matrix=(i%mass_matrix_freq)==0)
return state_in
else:
# get list of inputs and outputs for PyTorch tensor tracking
inputs = [*state_in.flatten(), *model.flatten()]
# run sim as a PyTorch op
tensors = SimulateFunc.apply(self, model, state_in, dt, substeps, mass_matrix_freq, *inputs)
global g_state_out
state_out = g_state_out
g_state_out = None # null reference
return state_out
def _simulate(self, tape, model, state_in, state_out, dt, update_mass_matrix=True):
with dflex.util.ScopedTimer("simulate", False):
# alloc particle force buffer
if (model.particle_count):
state_out.particle_f.zero_()
if (model.link_count):
state_out.body_ft_s = torch.zeros((model.link_count, 6), dtype=torch.float32, device=model.adapter, requires_grad=True)
state_out.body_f_ext_s = torch.zeros((model.link_count, 6), dtype=torch.float32, device=model.adapter, requires_grad=True)
# damped springs
if (model.spring_count):
tape.launch(func=eval_springs,
dim=model.spring_count,
inputs=[state_in.particle_q, state_in.particle_qd, model.spring_indices, model.spring_rest_length, model.spring_stiffness, model.spring_damping],
outputs=[state_out.particle_f],
adapter=model.adapter)
# triangle elastic and lift/drag forces
if (model.tri_count and model.tri_ke > 0.0):
tape.launch(func=eval_triangles,
dim=model.tri_count,
inputs=[
state_in.particle_q,
state_in.particle_qd,
model.tri_indices,
model.tri_poses,
model.tri_activations,
model.tri_ke,
model.tri_ka,
model.tri_kd,
model.tri_drag,
model.tri_lift
],
outputs=[state_out.particle_f],
adapter=model.adapter)
# triangle/triangle contacts
if (model.enable_tri_collisions and model.tri_count and model.tri_ke > 0.0):
tape.launch(func=eval_triangles_contact,
dim=model.tri_count * model.particle_count,
inputs=[
model.particle_count,
state_in.particle_q,
state_in.particle_qd,
model.tri_indices,
model.tri_poses,
model.tri_activations,
model.tri_ke,
model.tri_ka,
model.tri_kd,
model.tri_drag,
model.tri_lift
],
outputs=[state_out.particle_f],
adapter=model.adapter)
# triangle bending
if (model.edge_count):
tape.launch(func=eval_bending,
dim=model.edge_count,
inputs=[state_in.particle_q, state_in.particle_qd, model.edge_indices, model.edge_rest_angle, model.edge_ke, model.edge_kd],
outputs=[state_out.particle_f],
adapter=model.adapter)
# particle ground contact
if (model.ground and model.particle_count):
tape.launch(func=eval_contacts,
dim=model.particle_count,
inputs=[state_in.particle_q, state_in.particle_qd, model.contact_ke, model.contact_kd, model.contact_kf, model.contact_mu],
outputs=[state_out.particle_f],
adapter=model.adapter)
# tetrahedral FEM
if (model.tet_count):
tape.launch(func=eval_tetrahedra,
dim=model.tet_count,
inputs=[state_in.particle_q, state_in.particle_qd, model.tet_indices, model.tet_poses, model.tet_activations, model.tet_materials],
outputs=[state_out.particle_f],
adapter=model.adapter)
#----------------------------
# articulations
if (model.link_count):
# evaluate body transforms
tape.launch(
func=eval_rigid_fk,
dim=model.articulation_count,
inputs=[
model.articulation_joint_start,
model.joint_type,
model.joint_parent,
model.joint_q_start,
model.joint_qd_start,
state_in.joint_q,
model.joint_X_pj,
model.joint_X_cm,
model.joint_axis
],
outputs=[
state_out.body_X_sc,
state_out.body_X_sm
],
adapter=model.adapter,
preserve_output=True)
# evaluate joint inertias, motion vectors, and forces
tape.launch(
func=eval_rigid_id,
dim=model.articulation_count,
inputs=[
model.articulation_joint_start,
model.joint_type,
model.joint_parent,
model.joint_q_start,
model.joint_qd_start,
state_in.joint_q,
state_in.joint_qd,
model.joint_axis,
model.joint_target_ke,
model.joint_target_kd,
model.body_I_m,
state_out.body_X_sc,
state_out.body_X_sm,
model.joint_X_pj,
model.gravity
],
outputs=[
state_out.joint_S_s,
state_out.body_I_s,
state_out.body_v_s,
state_out.body_f_s,
state_out.body_a_s,
],
adapter=model.adapter,
preserve_output=True)
if (model.ground and model.contact_count > 0):
# evaluate contact forces
tape.launch(
func=eval_rigid_contacts_art,
dim=model.contact_count,
inputs=[
state_out.body_X_sc,
state_out.body_v_s,
model.contact_body0,
model.contact_point0,
model.contact_dist,
model.contact_material,
model.shape_materials
],
outputs=[
state_out.body_f_s
],
adapter=model.adapter,
preserve_output=True)
# particle shape contact
if (model.particle_count):
# tape.launch(func=eval_soft_contacts,
# dim=model.particle_count*model.shape_count,
# inputs=[state_in.particle_q, state_in.particle_qd, model.contact_ke, model.contact_kd, model.contact_kf, model.contact_mu],
# outputs=[state_out.particle_f],
# adapter=model.adapter)
tape.launch(func=eval_soft_contacts,
dim=model.particle_count*model.shape_count,
inputs=[
model.particle_count,
state_in.particle_q,
state_in.particle_qd,
state_in.body_X_sc,
state_in.body_v_s,
model.shape_transform,
model.shape_body,
model.shape_geo_type,
torch.Tensor(),
model.shape_geo_scale,
model.shape_materials,
model.contact_ke,
model.contact_kd,
model.contact_kf,
model.contact_mu],
# outputs
outputs=[
state_out.particle_f,
state_out.body_f_s],
adapter=model.adapter)
# evaluate muscle actuation
tape.launch(
func=eval_muscles,
dim=model.muscle_count,
inputs=[
state_out.body_X_sc,
state_out.body_v_s,
model.muscle_start,
model.muscle_params,
model.muscle_links,
model.muscle_points,
model.muscle_activation
],
outputs=[
state_out.body_f_s
],
adapter=model.adapter,
preserve_output=True)
# evaluate joint torques
tape.launch(
func=eval_rigid_tau,
dim=model.articulation_count,
inputs=[
model.articulation_joint_start,
model.joint_type,
model.joint_parent,
model.joint_q_start,
model.joint_qd_start,
state_in.joint_q,
state_in.joint_qd,
state_in.joint_act,
model.joint_target,
model.joint_target_ke,
model.joint_target_kd,
model.joint_limit_lower,
model.joint_limit_upper,
model.joint_limit_ke,
model.joint_limit_kd,
model.joint_axis,
state_out.joint_S_s,
state_out.body_f_s
],
outputs=[
state_out.body_ft_s,
state_out.joint_tau
],
adapter=model.adapter,
preserve_output=True)
if (update_mass_matrix):
model.alloc_mass_matrix()
# build J
tape.launch(
func=eval_rigid_jacobian,
dim=model.articulation_count,
inputs=[
# inputs
model.articulation_joint_start,
model.articulation_J_start,
model.joint_parent,
model.joint_qd_start,
state_out.joint_S_s
],
outputs=[
model.J
],
adapter=model.adapter,
preserve_output=True)
# build M
tape.launch(
func=eval_rigid_mass,
dim=model.articulation_count,
inputs=[
# inputs
model.articulation_joint_start,
model.articulation_M_start,
state_out.body_I_s
],
outputs=[
model.M
],
adapter=model.adapter,
preserve_output=True)
# form P = M*J
df.matmul_batched(
tape,
model.articulation_count,
model.articulation_M_rows,
model.articulation_J_cols,
model.articulation_J_rows,
0,
0,
model.articulation_M_start,
model.articulation_J_start,
model.articulation_J_start, # P start is the same as J start since it has the same dims as J
model.M,
model.J,
model.P,
adapter=model.adapter)
# form H = J^T*P
df.matmul_batched(
tape,
model.articulation_count,
model.articulation_J_cols,
model.articulation_J_cols,
model.articulation_J_rows, # P rows is the same as J rows
1,
0,
model.articulation_J_start,
model.articulation_J_start, # P start is the same as J start since it has the same dims as J
model.articulation_H_start,
model.J,
model.P,
model.H,
adapter=model.adapter)
# compute decomposition
tape.launch(
func=eval_dense_cholesky_batched,
dim=model.articulation_count,
inputs=[
model.articulation_H_start,
model.articulation_H_rows,
model.H,
model.joint_armature
],
outputs=[
model.L
],
adapter=model.adapter,
skip_check_grad=True)
tmp = torch.zeros_like(state_out.joint_tau)
# solve for qdd
tape.launch(
func=eval_dense_solve_batched,
dim=model.articulation_count,
inputs=[
model.articulation_dof_start,
model.articulation_H_start,
model.articulation_H_rows,
model.H,
model.L,
state_out.joint_tau,
tmp
],
outputs=[
state_out.joint_qdd
],
adapter=model.adapter,
skip_check_grad=True)
# integrate joint dofs -> joint coords
tape.launch(
func=eval_rigid_integrate,
dim=model.link_count,
inputs=[
model.joint_type,
model.joint_q_start,
model.joint_qd_start,
state_in.joint_q,
state_in.joint_qd,
state_out.joint_qdd,
dt
],
outputs=[
state_out.joint_q,
state_out.joint_qd
],
adapter=model.adapter)
#----------------------------
# integrate particles
if (model.particle_count):
tape.launch(func=integrate_particles,
dim=model.particle_count,
inputs=[state_in.particle_q, state_in.particle_qd, state_out.particle_f, model.particle_inv_mass, model.gravity, dt],
outputs=[state_out.particle_q, state_out.particle_qd],
adapter=model.adapter)
return state_out
@df.kernel
def solve_springs(x: df.tensor(df.float3),
v: df.tensor(df.float3),
invmass: df.tensor(float),
spring_indices: df.tensor(int),
spring_rest_lengths: df.tensor(float),
spring_stiffness: df.tensor(float),
spring_damping: df.tensor(float),
dt: float,
delta: df.tensor(df.float3)):
tid = df.tid()
i = df.load(spring_indices, tid * 2 + 0)
j = df.load(spring_indices, tid * 2 + 1)
ke = df.load(spring_stiffness, tid)
kd = df.load(spring_damping, tid)
rest = df.load(spring_rest_lengths, tid)
xi = df.load(x, i)
xj = df.load(x, j)
vi = df.load(v, i)
vj = df.load(v, j)
xij = xi - xj
vij = vi - vj
l = length(xij)
l_inv = 1.0 / l
# normalized spring direction
dir = xij * l_inv
c = l - rest
dcdt = dot(dir, vij)
# damping based on relative velocity.
#fs = dir * (ke * c + kd * dcdt)
wi = df.load(invmass, i)
wj = df.load(invmass, j)
denom = wi + wj
alpha = 1.0/(ke*dt*dt)
multiplier = c / (denom)# + alpha)
xd = dir*multiplier
df.atomic_sub(delta, i, xd*wi)
df.atomic_add(delta, j, xd*wj)
@df.kernel
def solve_tetrahedra(x: df.tensor(df.float3),
v: df.tensor(df.float3),
inv_mass: df.tensor(float),
indices: df.tensor(int),
pose: df.tensor(df.mat33),
activation: df.tensor(float),
materials: df.tensor(float),
dt: float,
relaxation: float,
delta: df.tensor(df.float3)):
tid = df.tid()
i = df.load(indices, tid * 4 + 0)
j = df.load(indices, tid * 4 + 1)
k = df.load(indices, tid * 4 + 2)
l = df.load(indices, tid * 4 + 3)
act = df.load(activation, tid)
k_mu = df.load(materials, tid * 3 + 0)
k_lambda = df.load(materials, tid * 3 + 1)
k_damp = df.load(materials, tid * 3 + 2)
x0 = df.load(x, i)
x1 = df.load(x, j)
x2 = df.load(x, k)
x3 = df.load(x, l)
v0 = df.load(v, i)
v1 = df.load(v, j)
v2 = df.load(v, k)
v3 = df.load(v, l)
w0 = df.load(inv_mass, i)
w1 = df.load(inv_mass, j)
w2 = df.load(inv_mass, k)
w3 = df.load(inv_mass, l)
x10 = x1 - x0
x20 = x2 - x0
x30 = x3 - x0
v10 = v1 - v0
v20 = v2 - v0
v30 = v3 - v0
Ds = df.mat33(x10, x20, x30)
Dm = df.load(pose, tid)
inv_rest_volume = df.determinant(Dm) * 6.0
rest_volume = 1.0 / inv_rest_volume
# F = Xs*Xm^-1
F = Ds * Dm
f1 = df.float3(F[0, 0], F[1, 0], F[2, 0])
f2 = df.float3(F[0, 1], F[1, 1], F[2, 1])
f3 = df.float3(F[0, 2], F[1, 2], F[2, 2])
# C_sqrt
tr = dot(f1, f1) + dot(f2, f2) + dot(f3, f3)
r_s = df.sqrt(abs(tr - 3.0))
C = r_s
if (r_s == 0.0):
return
if (tr < 3.0):
r_s = 0.0 - r_s
dCdx = F*df.transpose(Dm)*(1.0/r_s)
alpha = 1.0 + k_mu / k_lambda
# C_Neo
# r_s = df.sqrt(dot(f1, f1) + dot(f2, f2) + dot(f3, f3))
# r_s_inv = 1.0/r_s
# C = r_s
# dCdx = F*df.transpose(Dm)*r_s_inv
# alpha = 1.0 + k_mu / k_lambda
# C_Spherical
# r_s = df.sqrt(dot(f1, f1) + dot(f2, f2) + dot(f3, f3))
# r_s_inv = 1.0/r_s
# C = r_s - df.sqrt(3.0)
# dCdx = F*df.transpose(Dm)*r_s_inv
# alpha = 1.0
# C_D
#r_s = df.sqrt(dot(f1, f1) + dot(f2, f2) + dot(f3, f3))
#C = r_s*r_s - 3.0
#dCdx = F*df.transpose(Dm)*2.0
#alpha = 1.0
grad1 = float3(dCdx[0,0], dCdx[1,0], dCdx[2,0])
grad2 = float3(dCdx[0,1], dCdx[1,1], dCdx[2,1])
grad3 = float3(dCdx[0,2], dCdx[1,2], dCdx[2,2])
grad0 = (grad1 + grad2 + grad3)*(0.0 - 1.0)
denom = dot(grad0,grad0)*w0 + dot(grad1,grad1)*w1 + dot(grad2,grad2)*w2 + dot(grad3,grad3)*w3
multiplier = C/(denom + 1.0/(k_mu*dt*dt*rest_volume))
delta0 = grad0*multiplier
delta1 = grad1*multiplier
delta2 = grad2*multiplier
delta3 = grad3*multiplier
# hydrostatic part
J = df.determinant(F)
C_vol = J - alpha
# dCdx = df.mat33(cross(f2, f3), cross(f3, f1), cross(f1, f2))*df.transpose(Dm)
# grad1 = float3(dCdx[0,0], dCdx[1,0], dCdx[2,0])
# grad2 = float3(dCdx[0,1], dCdx[1,1], dCdx[2,1])
# grad3 = float3(dCdx[0,2], dCdx[1,2], dCdx[2,2])
# grad0 = (grad1 + grad2 + grad3)*(0.0 - 1.0)
s = inv_rest_volume / 6.0
grad1 = df.cross(x20, x30) * s
grad2 = df.cross(x30, x10) * s
grad3 = df.cross(x10, x20) * s
grad0 = (grad1 + grad2 + grad3)*(0.0 - 1.0)
denom = dot(grad0, grad0)*w0 + dot(grad1, grad1)*w1 + dot(grad2, grad2)*w2 + dot(grad3, grad3)*w3
multiplier = C_vol/(denom + 1.0/(k_lambda*dt*dt*rest_volume))
delta0 = delta0 + grad0 * multiplier
delta1 = delta1 + grad1 * multiplier
delta2 = delta2 + grad2 * multiplier
delta3 = delta3 + grad3 * multiplier
# apply forces
df.atomic_sub(delta, i, delta0*w0*relaxation)
df.atomic_sub(delta, j, delta1*w1*relaxation)
df.atomic_sub(delta, k, delta2*w2*relaxation)
df.atomic_sub(delta, l, delta3*w3*relaxation)
@df.kernel
def solve_contacts(
x: df.tensor(df.float3),
v: df.tensor(df.float3),
inv_mass: df.tensor(float),
mu: float,
dt: float,
delta: df.tensor(df.float3)):
tid = df.tid()
x0 = df.load(x, tid)
v0 = df.load(v, tid)
w0 = df.load(inv_mass, tid)
n = df.float3(0.0, 1.0, 0.0)
c = df.dot(n, x0) - 0.01
if (c > 0.0):
return
# normal
lambda_n = c
delta_n = n*lambda_n
# friction
vn = df.dot(n, v0)
vt = v0 - n * vn
lambda_f = df.max(mu*lambda_n, 0.0 - df.length(vt)*dt)
delta_f = df.normalize(vt)*lambda_f
df.atomic_add(delta, tid, delta_f - delta_n)
@df.kernel
def apply_deltas(x_orig: df.tensor(df.float3),
v_orig: df.tensor(df.float3),
x_pred: df.tensor(df.float3),
delta: df.tensor(df.float3),
dt: float,
x_out: df.tensor(df.float3),
v_out: df.tensor(df.float3)):
tid = df.tid()
x0 = df.load(x_orig, tid)
xp = df.load(x_pred, tid)
# constraint deltas
d = df.load(delta, tid)
x_new = xp + d
v_new = (x_new - x0)/dt
df.store(x_out, tid, x_new)
df.store(v_out, tid, v_new)
class XPBDIntegrator:
"""A implicit integrator using XPBD
After constructing `Model` and `State` objects this time-integrator
may be used to advance the simulation state forward in time.
Semi-implicit time integration is a variational integrator that
preserves energy, however it not unconditionally stable, and requires a time-step
small enough to support the required stiffness and damping forces.
See: https://en.wikipedia.org/wiki/Semi-implicit_Euler_method
Example:
>>> integrator = df.SemiImplicitIntegrator()
>>>
>>> # simulation loop
>>> for i in range(100):
>>> state = integrator.forward(model, state, dt)
"""
def __init__(self):
pass
def forward(self, model: Model, state_in: State, dt: float) -> State:
"""Performs a single integration step forward in time
This method inserts a node into the PyTorch computational graph with
references to all model and state tensors such that gradients
can be propagrated back through the simulation step.
Args:
model: Simulation model
state: Simulation state at the start the time-step
dt: The simulation time-step (usually in seconds)
Returns:
The state of the system at the end of the time-step
"""
if dflex.config.no_grad:
# if no gradient required then do inplace update
self._simulate(df.Tape(), model, state_in, state_in, dt)
return state_in
else:
# get list of inputs and outputs for PyTorch tensor tracking
inputs = [*state_in.flatten(), *model.flatten()]
# allocate new output
state_out = model.state()
# run sim as a PyTorch op
tensors = SimulateFunc.apply(self, model, state_in, state_out, dt, *inputs)
return state_out
def _simulate(self, tape, model, state_in, state_out, dt):
with dflex.util.ScopedTimer("simulate", False):
# alloc particle force buffer
if (model.particle_count):
state_out.particle_f.zero_()
q_pred = torch.zeros_like(state_in.particle_q)
qd_pred = torch.zeros_like(state_in.particle_qd)
#----------------------------
# integrate particles
if (model.particle_count):
tape.launch(func=integrate_particles,
dim=model.particle_count,
inputs=[state_in.particle_q, state_in.particle_qd, state_out.particle_f, model.particle_inv_mass, model.gravity, dt],
outputs=[q_pred, qd_pred],
adapter=model.adapter)
# contacts
if (model.particle_count and model.ground):
tape.launch(func=solve_contacts,
dim=model.particle_count,
inputs=[q_pred, qd_pred, model.particle_inv_mass, model.contact_mu, dt],
outputs=[state_out.particle_f],
adapter=model.adapter)
# damped springs
if (model.spring_count):
tape.launch(func=solve_springs,
dim=model.spring_count,
inputs=[q_pred, qd_pred, model.particle_inv_mass, model.spring_indices, model.spring_rest_length, model.spring_stiffness, model.spring_damping, dt],
outputs=[state_out.particle_f],
adapter=model.adapter)
# tetrahedral FEM
if (model.tet_count):
tape.launch(func=solve_tetrahedra,
dim=model.tet_count,
inputs=[q_pred, qd_pred, model.particle_inv_mass, model.tet_indices, model.tet_poses, model.tet_activations, model.tet_materials, dt, model.relaxation],
outputs=[state_out.particle_f],
adapter=model.adapter)
# apply updates
tape.launch(func=apply_deltas,
dim=model.particle_count,
inputs=[state_in.particle_q,
state_in.particle_qd,
q_pred,
state_out.particle_f,
dt],
outputs=[state_out.particle_q,
state_out.particle_qd],
adapter=model.adapter)
return state_out
| 97,150 |
Python
| 31.329784 | 241 | 0.512527 |
RoboticExplorationLab/CGAC/dflex/dflex/matnn.h
|
#pragma once
CUDA_CALLABLE inline int dense_index(int stride, int i, int j)
{
return i*stride + j;
}
template <bool transpose>
CUDA_CALLABLE inline int dense_index(int rows, int cols, int i, int j)
{
if (transpose)
return j*rows + i;
else
return i*cols + j;
}
#ifdef CPU
const int kNumThreadsPerBlock = 1;
template <bool t1, bool t2, bool add>
CUDA_CALLABLE inline void dense_gemm_impl(int m, int n, int p, const float* __restrict__ A, const float* __restrict__ B, float* __restrict__ C)
{
for (int i=0; i < m; i++)
{
for (int j=0; j < n; ++j)
{
float sum = 0.0f;
for (int k=0; k < p; ++k)
{
sum += A[dense_index<t1>(m, p, i, k)]*B[dense_index<t2>(p, n, k, j)];
}
if (add)
C[i*n + j] += sum;
else
C[i*n + j] = sum;
}
}
}
#else
const int kNumThreadsPerBlock = 256;
template <bool t1, bool t2, bool add>
CUDA_CALLABLE inline void dense_gemm_impl(int m, int n, int p, const float* __restrict__ A, const float* __restrict__ B, float* __restrict__ C)
{
// each thread in the block calculates an output (or more if output dim > block dim)
for (int e=threadIdx.x; e < m*n; e += blockDim.x)
{
const int i=e/n;
const int j=e%n;
float sum = 0.0f;
for (int k=0; k < p; ++k)
{
sum += A[dense_index<t1>(m, p, i, k)]*B[dense_index<t2>(p, n, k, j)];
}
if (add)
C[i*n + j] += sum;
else
C[i*n + j] = sum;
}
}
#endif
template <bool add=false>
CUDA_CALLABLE inline void dense_gemm(int m, int n, int p, int t1, int t2, const float* __restrict__ A, const float* __restrict__ B, float* __restrict__ C)
{
if (t1 == 0 && t2 == 0)
dense_gemm_impl<false, false, add>(m, n, p, A, B, C);
else if (t1 == 1 && t2 == 0)
dense_gemm_impl<true, false, add>(m, n, p, A, B, C);
else if (t1 == 0 && t2 == 1)
dense_gemm_impl<false, true, add>(m, n, p, A, B, C);
else if (t1 == 1 && t2 == 1)
dense_gemm_impl<true, true, add>(m, n, p, A, B, C);
}
template <bool add=false>
CUDA_CALLABLE inline void dense_gemm_batched(
const int* __restrict__ m, const int* __restrict__ n, const int* __restrict__ p, int t1, int t2,
const int* __restrict__ A_start, const int* __restrict__ B_start, const int* __restrict__ C_start,
const float* __restrict__ A, const float* __restrict__ B, float* __restrict__ C)
{
// on the CPU each thread computes the whole matrix multiply
// on the GPU each block computes the multiply with one output per-thread
const int batch = tid()/kNumThreadsPerBlock;
dense_gemm<add>(m[batch], n[batch], p[batch], t1, t2, A+A_start[batch], B+B_start[batch], C+C_start[batch]);
}
// computes c = b^T*a*b, with a and b being stored in row-major layout
CUDA_CALLABLE inline void dense_quadratic()
{
}
// CUDA_CALLABLE inline void dense_chol(int n, const float* A, float* L)
// {
// // for each column
// for (int j=0; j < n; ++j)
// {
// for (int i=j; i < n; ++i)
// {
// L[dense_index(n, i, j)] = A[dense_index(n, i, j)];
// }
// for (int k = 0; k < j; ++k)
// {
// const float p = L[dense_index(n, j, k)];
// for (int i=j; i < n; ++i)
// {
// L[dense_index(n, i, j)] -= p*L[dense_index(n, i, k)];
// }
// }
// // scale
// const float d = L[dense_index(n, j, j)];
// const float s = 1.0f/sqrtf(d);
// for (int i=j; i < n; ++i)
// {
// L[dense_index(n, i, j)] *=s;
// }
// }
// }
void CUDA_CALLABLE inline dense_chol(int n, const float* __restrict__ A, const float* __restrict__ regularization, float* __restrict__ L)
{
for (int j=0; j < n; ++j)
{
float s = A[dense_index(n, j, j)] + regularization[j];
for (int k=0; k < j; ++k)
{
float r = L[dense_index(n, j, k)];
s -= r*r;
}
s = sqrtf(s);
const float invS = 1.0f/s;
L[dense_index(n, j, j)] = s;
for (int i=j+1; i < n; ++i)
{
s = A[dense_index(n, i, j)];
for (int k=0; k < j; ++k)
{
s -= L[dense_index(n, i, k)]*L[dense_index(n, j, k)];
}
L[dense_index(n, i, j)] = s*invS;
}
}
}
void CUDA_CALLABLE inline dense_chol_batched(const int* __restrict__ A_start, const int* __restrict__ A_dim, const float* __restrict__ A, const float* __restrict__ regularization, float* __restrict__ L)
{
const int batch = tid();
const int n = A_dim[batch];
const int offset = A_start[batch];
dense_chol(n, A + offset, regularization + n*batch, L + offset);
}
// Solves (L*L^T)x = b given the Cholesky factor L
CUDA_CALLABLE inline void dense_subs(int n, const float* __restrict__ L, const float* __restrict__ b, float* __restrict__ x)
{
// forward substitution
for (int i=0; i < n; ++i)
{
float s = b[i];
for (int j=0; j < i; ++j)
{
s -= L[dense_index(n, i, j)]*x[j];
}
x[i] = s/L[dense_index(n, i, i)];
}
// backward substitution
for (int i=n-1; i >= 0; --i)
{
float s = x[i];
for (int j=i+1; j < n; ++j)
{
s -= L[dense_index(n, j, i)]*x[j];
}
x[i] = s/L[dense_index(n, i, i)];
}
}
CUDA_CALLABLE inline void dense_solve(int n, const float* __restrict__ A, const float* __restrict__ L, const float* __restrict__ b, float* __restrict__ tmp, float* __restrict__ x)
{
dense_subs(n, L, b, x);
}
CUDA_CALLABLE inline void dense_solve_batched(
const int* __restrict__ b_start, const int* A_start, const int* A_dim,
const float* __restrict__ A, const float* __restrict__ L,
const float* __restrict__ b, float* __restrict__ tmp, float* __restrict__ x)
{
const int batch = tid();
dense_solve(A_dim[batch], A + A_start[batch], L + A_start[batch], b + b_start[batch], NULL, x + b_start[batch]);
}
CUDA_CALLABLE inline void print_matrix(const char* name, int m, int n, const float* data)
{
printf("%s = [", name);
for (int i=0; i < m; ++i)
{
for (int j=0; j < n; ++j)
{
printf("%f ", data[dense_index(n, i, j)]);
}
printf(";\n");
}
printf("]\n");
}
// adjoint methods
CUDA_CALLABLE inline void adj_dense_gemm(
int m, int n, int p, int t1, int t2, const float* A, const float* B, float* C,
int adj_m, int adj_n, int adj_p, int adj_t1, int adj_t2, float* adj_A, float* adj_B, const float* adj_C)
{
// print_matrix("A", m, p, A);
// print_matrix("B", p, n, B);
// printf("t1: %d t2: %d\n", t1, t2);
if (t1)
{
dense_gemm<true>(p, m, n, 0, 1, B, adj_C, adj_A);
dense_gemm<true>(p, n, m, int(!t1), 0, A, adj_C, adj_B);
}
else
{
dense_gemm<true>(m, p, n, 0, int(!t2), adj_C, B, adj_A);
dense_gemm<true>(p, n, m, int(!t1), 0, A, adj_C, adj_B);
}
}
CUDA_CALLABLE inline void adj_dense_gemm_batched(
const int* __restrict__ m, const int* __restrict__ n, const int* __restrict__ p, int t1, int t2,
const int* __restrict__ A_start, const int* __restrict__ B_start, const int* __restrict__ C_start,
const float* __restrict__ A, const float* __restrict__ B, float* __restrict__ C,
// adj
int* __restrict__ adj_m, int* __restrict__ adj_n, int* __restrict__ adj_p, int adj_t1, int adj_t2,
int* __restrict__ adj_A_start, int* __restrict__ adj_B_start, int* __restrict__ adj_C_start,
float* __restrict__ adj_A, float* __restrict__ adj_B, const float* __restrict__ adj_C)
{
const int batch = tid()/kNumThreadsPerBlock;
adj_dense_gemm(m[batch], n[batch], p[batch], t1, t2, A+A_start[batch], B+B_start[batch], C+C_start[batch],
0, 0, 0, 0, 0, adj_A+A_start[batch], adj_B+B_start[batch], adj_C+C_start[batch]);
}
CUDA_CALLABLE inline void adj_dense_chol(
int n, const float* A, const float* __restrict__ regularization, float* L,
int adj_n, const float* adj_A, const float* __restrict__ adj_regularization, float* adj_L)
{
// nop, use dense_solve to differentiate through (A^-1)b = x
}
CUDA_CALLABLE inline void adj_dense_chol_batched(
const int* __restrict__ A_start, const int* __restrict__ A_dim, const float* __restrict__ A, const float* __restrict__ regularization, float* __restrict__ L,
const int* __restrict__ adj_A_start, const int* __restrict__ adj_A_dim, const float* __restrict__ adj_A, const float* __restrict__ adj_regularization, float* __restrict__ adj_L)
{
// nop, use dense_solve to differentiate through (A^-1)b = x
}
CUDA_CALLABLE inline void adj_dense_subs(
int n, const float* L, const float* b, float* x,
int adj_n, const float* adj_L, const float* adj_b, float* adj_x)
{
// nop, use dense_solve to differentiate through (A^-1)b = x
}
CUDA_CALLABLE inline void adj_dense_solve(
int n, const float* __restrict__ A, const float* __restrict__ L, const float* __restrict__ b, float* __restrict__ tmp, const float* __restrict__ x,
int adj_n, float* __restrict__ adj_A, float* __restrict__ adj_L, float* __restrict__ adj_b, float* __restrict__ adj_tmp, const float* __restrict__ adj_x)
{
for (int i=0; i < n; ++i)
{
tmp[i] = 0.0f;
}
dense_subs(n, L, adj_x, tmp);
for (int i=0; i < n; ++i)
{
adj_b[i] += tmp[i];
}
//dense_subs(n, L, adj_x, adj_b);
// A* = -adj_b*x^T
for (int i=0; i < n; ++i)
{
for (int j=0; j < n; ++j)
{
adj_A[dense_index(n, i, j)] += -tmp[i]*x[j];
}
}
}
CUDA_CALLABLE inline void adj_dense_solve_batched(
const int* __restrict__ b_start, const int* A_start, const int* A_dim,
const float* __restrict__ A, const float* __restrict__ L,
const float* __restrict__ b, float* __restrict__ tmp, float* __restrict__ x,
// adj
int* __restrict__ adj_b_start, int* __restrict__ adj_A_start, int* __restrict__ adj_A_dim,
float* __restrict__ adj_A, float* __restrict__ adj_L,
float* __restrict__ adj_b, float* __restrict__ adj_tmp, const float* __restrict__ adj_x)
{
const int batch = tid();
adj_dense_solve(A_dim[batch], A + A_start[batch], L + A_start[batch], b + b_start[batch], tmp + b_start[batch], x + b_start[batch],
0, adj_A + A_start[batch], adj_L + A_start[batch], adj_b + b_start[batch], tmp + b_start[batch], adj_x + b_start[batch]);
}
| 10,723 |
C
| 29.379603 | 202 | 0.531847 |
RoboticExplorationLab/CGAC/dflex/dflex/__init__.py
|
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from dflex.sim import *
from dflex.render import *
from dflex.adjoint import compile
from dflex.util import *
# compiles kernels
kernel_init()
| 569 |
Python
| 34.624998 | 76 | 0.804921 |
RoboticExplorationLab/CGAC/dflex/dflex/render.py
|
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""This optional module contains a built-in renderer for the USD data
format that can be used to visualize time-sampled simulation data.
Users should create a simulation model and integrator and periodically
call :func:`UsdRenderer.update()` to write time-sampled simulation data to the USD stage.
Example:
>>> # construct a new USD stage
>>> stage = Usd.Stage.CreateNew("my_stage.usda")
>>> renderer = df.render.UsdRenderer(model, stage)
>>>
>>> time = 0.0
>>>
>>> for i in range(100):
>>>
>>> # update simulation here
>>> # ....
>>>
>>> # update renderer
>>> stage.update(state, time)
>>> time += dt
>>>
>>> # write stage to file
>>> stage.Save()
Note:
You must have the Pixar USD bindings installed to use this module
please see https://developer.nvidia.com/usd to obtain precompiled
USD binaries and installation instructions.
"""
try:
from pxr import Usd, UsdGeom, Gf, Sdf
except ModuleNotFoundError:
print("No pxr package")
import dflex.sim
import dflex.util
import math
def _usd_add_xform(prim):
prim.ClearXformOpOrder()
t = prim.AddTranslateOp()
r = prim.AddOrientOp()
s = prim.AddScaleOp()
def _usd_set_xform(xform, transform, scale, time):
xform_ops = xform.GetOrderedXformOps()
pos = tuple(transform[0])
rot = tuple(transform[1])
xform_ops[0].Set(Gf.Vec3d(pos), time)
xform_ops[1].Set(Gf.Quatf(rot[3], rot[0], rot[1], rot[2]), time)
xform_ops[2].Set(Gf.Vec3d(scale), time)
# transforms a cylinder such that it connects the two points pos0, pos1
def _compute_segment_xform(pos0, pos1):
mid = (pos0 + pos1) * 0.5
height = (pos1 - pos0).GetLength()
dir = (pos1 - pos0) / height
rot = Gf.Rotation()
rot.SetRotateInto((0.0, 0.0, 1.0), Gf.Vec3d(dir))
scale = Gf.Vec3f(1.0, 1.0, height)
return (mid, Gf.Quath(rot.GetQuat()), scale)
class UsdRenderer:
"""A USD renderer
"""
def __init__(self, model: dflex.model.Model, stage):
"""Construct a UsdRenderer object
Args:
model: A simulation model
stage (Usd.Stage): A USD stage (either in memory or on disk)
"""
self.stage = stage
self.model = model
self.draw_points = True
self.draw_springs = False
self.draw_triangles = False
if (stage.GetPrimAtPath("/root")):
stage.RemovePrim("/root")
self.root = UsdGeom.Xform.Define(stage, '/root')
# add sphere instancer for particles
self.particle_instancer = UsdGeom.PointInstancer.Define(stage, self.root.GetPath().AppendChild("particle_instancer"))
self.particle_instancer_sphere = UsdGeom.Sphere.Define(stage, self.particle_instancer.GetPath().AppendChild("sphere"))
self.particle_instancer_sphere.GetRadiusAttr().Set(model.particle_radius)
self.particle_instancer.CreatePrototypesRel().SetTargets([self.particle_instancer_sphere.GetPath()])
self.particle_instancer.CreateProtoIndicesAttr().Set([0] * model.particle_count)
# add line instancer
if (self.model.spring_count > 0):
self.spring_instancer = UsdGeom.PointInstancer.Define(stage, self.root.GetPath().AppendChild("spring_instancer"))
self.spring_instancer_cylinder = UsdGeom.Capsule.Define(stage, self.spring_instancer.GetPath().AppendChild("cylinder"))
self.spring_instancer_cylinder.GetRadiusAttr().Set(0.01)
self.spring_instancer.CreatePrototypesRel().SetTargets([self.spring_instancer_cylinder.GetPath()])
self.spring_instancer.CreateProtoIndicesAttr().Set([0] * model.spring_count)
self.stage.SetDefaultPrim(self.root.GetPrim())
# time codes
try:
self.stage.SetStartTimeCode(0.0)
self.stage.SetEndTimeCode(0.0)
self.stage.SetTimeCodesPerSecond(1.0)
except:
pass
# add dynamic cloth mesh
if (model.tri_count > 0):
self.cloth_mesh = UsdGeom.Mesh.Define(stage, self.root.GetPath().AppendChild("cloth"))
self.cloth_remap = {}
self.cloth_verts = []
self.cloth_indices = []
# USD needs a contiguous vertex buffer, use a dict to map from simulation indices->render indices
indices = self.model.tri_indices.flatten().tolist()
for i in indices:
if i not in self.cloth_remap:
# copy vertex
new_index = len(self.cloth_verts)
self.cloth_verts.append(self.model.particle_q[i].tolist())
self.cloth_indices.append(new_index)
self.cloth_remap[i] = new_index
else:
self.cloth_indices.append(self.cloth_remap[i])
self.cloth_mesh.GetPointsAttr().Set(self.cloth_verts)
self.cloth_mesh.GetFaceVertexIndicesAttr().Set(self.cloth_indices)
self.cloth_mesh.GetFaceVertexCountsAttr().Set([3] * model.tri_count)
else:
self.cloth_mesh = None
# built-in ground plane
if (model.ground):
size = 10.0
mesh = UsdGeom.Mesh.Define(stage, self.root.GetPath().AppendChild("plane_0"))
mesh.CreateDoubleSidedAttr().Set(True)
points = ((-size, 0.0, -size), (size, 0.0, -size), (size, 0.0, size), (-size, 0.0, size))
normals = ((0.0, 1.0, 0.0), (0.0, 1.0, 0.0), (0.0, 1.0, 0.0), (0.0, 1.0, 0.0))
counts = (4, )
indices = [0, 1, 2, 3]
mesh.GetPointsAttr().Set(points)
mesh.GetNormalsAttr().Set(normals)
mesh.GetFaceVertexCountsAttr().Set(counts)
mesh.GetFaceVertexIndicesAttr().Set(indices)
# add rigid bodies xform root
for b in range(model.link_count):
xform = UsdGeom.Xform.Define(stage, self.root.GetPath().AppendChild("body_" + str(b)))
_usd_add_xform(xform)
# add rigid body shapes
for s in range(model.shape_count):
parent_path = self.root.GetPath()
if model.shape_body[s] >= 0:
parent_path = parent_path.AppendChild("body_" + str(model.shape_body[s].item()))
geo_type = model.shape_geo_type[s].item()
geo_scale = model.shape_geo_scale[s].tolist()
geo_src = model.shape_geo_src[s]
# shape transform in body frame
X_bs = dflex.util.transform_expand(model.shape_transform[s].tolist())
if (geo_type == dflex.sim.GEO_PLANE):
# plane mesh
size = 1000.0
mesh = UsdGeom.Mesh.Define(stage, parent_path.AppendChild("plane_" + str(s)))
mesh.CreateDoubleSidedAttr().Set(True)
points = ((-size, 0.0, -size), (size, 0.0, -size), (size, 0.0, size), (-size, 0.0, size))
normals = ((0.0, 1.0, 0.0), (0.0, 1.0, 0.0), (0.0, 1.0, 0.0), (0.0, 1.0, 0.0))
counts = (4, )
indices = [0, 1, 2, 3]
mesh.GetPointsAttr().Set(points)
mesh.GetNormalsAttr().Set(normals)
mesh.GetFaceVertexCountsAttr().Set(counts)
mesh.GetFaceVertexIndicesAttr().Set(indices)
elif (geo_type == dflex.sim.GEO_SPHERE):
mesh = UsdGeom.Sphere.Define(stage, parent_path.AppendChild("sphere_" + str(s)))
mesh.GetRadiusAttr().Set(geo_scale[0])
_usd_add_xform(mesh)
_usd_set_xform(mesh, X_bs, (1.0, 1.0, 1.0), 0.0)
elif (geo_type == dflex.sim.GEO_CAPSULE):
mesh = UsdGeom.Capsule.Define(stage, parent_path.AppendChild("capsule_" + str(s)))
mesh.GetRadiusAttr().Set(geo_scale[0])
mesh.GetHeightAttr().Set(geo_scale[1] * 2.0)
# geometry transform w.r.t shape, convert USD geometry to physics engine convention
X_sg = dflex.util.transform((0.0, 0.0, 0.0), dflex.util.quat_from_axis_angle((0.0, 1.0, 0.0), math.pi * 0.5))
X_bg = dflex.util.transform_multiply(X_bs, X_sg)
_usd_add_xform(mesh)
_usd_set_xform(mesh, X_bg, (1.0, 1.0, 1.0), 0.0)
elif (geo_type == dflex.sim.GEO_BOX):
mesh = UsdGeom.Cube.Define(stage, parent_path.AppendChild("box_" + str(s)))
#mesh.GetSizeAttr().Set((geo_scale[0], geo_scale[1], geo_scale[2]))
_usd_add_xform(mesh)
_usd_set_xform(mesh, X_bs, (geo_scale[0], geo_scale[1], geo_scale[2]), 0.0)
elif (geo_type == dflex.sim.GEO_MESH):
mesh = UsdGeom.Mesh.Define(stage, parent_path.AppendChild("mesh_" + str(s)))
mesh.GetPointsAttr().Set(geo_src.vertices)
mesh.GetFaceVertexIndicesAttr().Set(geo_src.indices)
mesh.GetFaceVertexCountsAttr().Set([3] * int(len(geo_src.indices) / 3))
_usd_add_xform(mesh)
_usd_set_xform(mesh, X_bs, (geo_scale[0], geo_scale[1], geo_scale[2]), 0.0)
elif (geo_type == dflex.sim.GEO_SDF):
pass
def update(self, state: dflex.model.State, time: float):
"""Update the USD stage with latest simulation data
Args:
state: Current state of the simulation
time: The current time to update at in seconds
"""
try:
self.stage.SetEndTimeCode(time)
except:
pass
# convert to list
if self.model.particle_count:
particle_q = state.particle_q.tolist()
particle_orientations = [Gf.Quath(1.0, 0.0, 0.0, 0.0)] * self.model.particle_count
self.particle_instancer.GetPositionsAttr().Set(particle_q, time)
self.particle_instancer.GetOrientationsAttr().Set(particle_orientations, time)
# update cloth
if (self.cloth_mesh):
for k, v in self.cloth_remap.items():
self.cloth_verts[v] = particle_q[k]
self.cloth_mesh.GetPointsAttr().Set(self.cloth_verts, time)
# update springs
if (self.model.spring_count > 0):
line_positions = []
line_rotations = []
line_scales = []
for i in range(self.model.spring_count):
index0 = self.model.spring_indices[i * 2 + 0]
index1 = self.model.spring_indices[i * 2 + 1]
pos0 = particle_q[index0]
pos1 = particle_q[index1]
(pos, rot, scale) = _compute_segment_xform(Gf.Vec3f(pos0), Gf.Vec3f(pos1))
line_positions.append(pos)
line_rotations.append(rot)
line_scales.append(scale)
self.spring_instancer.GetPositionsAttr().Set(line_positions, time)
self.spring_instancer.GetOrientationsAttr().Set(line_rotations, time)
self.spring_instancer.GetScalesAttr().Set(line_scales, time)
# rigids
for b in range(self.model.link_count):
#xform = UsdGeom.Xform.Define(self.stage, self.root.GetPath().AppendChild("body_" + str(b)))
node = UsdGeom.Xform(self.stage.GetPrimAtPath(self.root.GetPath().AppendChild("body_" + str(b))))
# unpack rigid spatial_transform
X_sb = dflex.util.transform_expand(state.body_X_sc[b].tolist())
_usd_set_xform(node, X_sb, (1.0, 1.0, 1.0), time)
def add_sphere(self, pos: tuple, radius: float, name: str, time: float=0.0):
"""Debug helper to add a sphere for visualization
Args:
pos: The position of the sphere
radius: The radius of the sphere
name: A name for the USD prim on the stage
"""
sphere_path = self.root.GetPath().AppendChild(name)
sphere = UsdGeom.Sphere.Get(self.stage, sphere_path)
if not sphere:
sphere = UsdGeom.Sphere.Define(self.stage, sphere_path)
sphere.GetRadiusAttr().Set(radius, time)
mat = Gf.Matrix4d()
mat.SetIdentity()
mat.SetTranslateOnly(Gf.Vec3d(pos))
op = sphere.MakeMatrixXform()
op.Set(mat, time)
def add_box(self, pos: tuple, extents: float, name: str, time: float=0.0):
"""Debug helper to add a box for visualization
Args:
pos: The position of the sphere
extents: The radius of the sphere
name: A name for the USD prim on the stage
"""
sphere_path = self.root.GetPath().AppendChild(name)
sphere = UsdGeom.Cube.Get(self.stage, sphere_path)
if not sphere:
sphere = UsdGeom.Cube.Define(self.stage, sphere_path)
#sphere.GetSizeAttr().Set((extents[0]*2.0, extents[1]*2.0, extents[2]*2.0), time)
mat = Gf.Matrix4d()
mat.SetIdentity()
mat.SetScale(extents)
mat.SetTranslateOnly(Gf.Vec3d(pos))
op = sphere.MakeMatrixXform()
op.Set(mat, time)
def add_mesh(self, name: str, path: str, transform, scale, time: float):
ref_path = "/root/" + name
ref = UsdGeom.Xform.Get(self.stage, ref_path)
if not ref:
ref = UsdGeom.Xform.Define(self.stage, ref_path)
ref.GetPrim().GetReferences().AddReference(path)
_usd_add_xform(ref)
# update transform
_usd_set_xform(ref, transform, scale, time)
def add_line_list(self, vertices, color, time, name, radius):
"""Debug helper to add a line list as a set of capsules
Args:
vertices: The vertices of the line-strip
color: The color of the line
time: The time to update at
"""
num_lines = int(len(vertices)/2)
if (num_lines < 1):
return
# look up rope point instancer
instancer_path = self.root.GetPath().AppendChild(name)
instancer = UsdGeom.PointInstancer.Get(self.stage, instancer_path)
if not instancer:
instancer = UsdGeom.PointInstancer.Define(self.stage, instancer_path)
instancer_capsule = UsdGeom.Capsule.Define(self.stage, instancer.GetPath().AppendChild("capsule"))
instancer_capsule.GetRadiusAttr().Set(radius)
instancer.CreatePrototypesRel().SetTargets([instancer_capsule.GetPath()])
instancer.CreatePrimvar("displayColor", Sdf.ValueTypeNames.Float3Array, "constant", 1)
line_positions = []
line_rotations = []
line_scales = []
# line_colors = []
for i in range(num_lines):
pos0 = vertices[i*2+0]
pos1 = vertices[i*2+1]
(pos, rot, scale) = _compute_segment_xform(Gf.Vec3f(pos0), Gf.Vec3f(pos1))
line_positions.append(pos)
line_rotations.append(rot)
line_scales.append(scale)
#line_colors.append(Gf.Vec3f((float(i)/num_lines, 0.5, 0.5)))
instancer.GetPositionsAttr().Set(line_positions, time)
instancer.GetOrientationsAttr().Set(line_rotations, time)
instancer.GetScalesAttr().Set(line_scales, time)
instancer.GetProtoIndicesAttr().Set([0] * num_lines, time)
# instancer.GetPrimvar("displayColor").Set(line_colors, time)
def add_line_strip(self, vertices: dflex.sim.List[dflex.sim.Vec3], color: tuple, time: float, name: str, radius: float=0.01):
"""Debug helper to add a line strip as a connected list of capsules
Args:
vertices: The vertices of the line-strip
color: The color of the line
time: The time to update at
"""
num_lines = int(len(vertices)-1)
if (num_lines < 1):
return
# look up rope point instancer
instancer_path = self.root.GetPath().AppendChild(name)
instancer = UsdGeom.PointInstancer.Get(self.stage, instancer_path)
if not instancer:
instancer = UsdGeom.PointInstancer.Define(self.stage, instancer_path)
instancer_capsule = UsdGeom.Capsule.Define(self.stage, instancer.GetPath().AppendChild("capsule"))
instancer_capsule.GetRadiusAttr().Set(radius)
instancer.CreatePrototypesRel().SetTargets([instancer_capsule.GetPath()])
line_positions = []
line_rotations = []
line_scales = []
for i in range(num_lines):
pos0 = vertices[i]
pos1 = vertices[i+1]
(pos, rot, scale) = _compute_segment_xform(Gf.Vec3f(pos0), Gf.Vec3f(pos1))
line_positions.append(pos)
line_rotations.append(rot)
line_scales.append(scale)
instancer.GetPositionsAttr().Set(line_positions, time)
instancer.GetOrientationsAttr().Set(line_rotations, time)
instancer.GetScalesAttr().Set(line_scales, time)
instancer.GetProtoIndicesAttr().Set([0] * num_lines, time)
instancer_capsule = UsdGeom.Capsule.Get(self.stage, instancer.GetPath().AppendChild("capsule"))
instancer_capsule.GetDisplayColorAttr().Set([Gf.Vec3f(color)], time)
| 17,760 |
Python
| 34.808468 | 131 | 0.586768 |
RoboticExplorationLab/CGAC/dflex/dflex/model.py
|
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""A module for building simulation models and state.
"""
import math
import torch
import numpy as np
from typing import Tuple
from typing import List
Vec3 = List[float]
Vec4 = List[float]
Quat = List[float]
Mat33 = List[float]
Transform = Tuple[Vec3, Quat]
from dflex.util import *
# shape geometry types
GEO_SPHERE = 0
GEO_BOX = 1
GEO_CAPSULE = 2
GEO_MESH = 3
GEO_SDF = 4
GEO_PLANE = 5
GEO_NONE = 6
# body joint types
JOINT_PRISMATIC = 0
JOINT_REVOLUTE = 1
JOINT_BALL = 2
JOINT_FIXED = 3
JOINT_FREE = 4
class Mesh:
"""Describes a triangle collision mesh for simulation
Attributes:
vertices (List[Vec3]): Mesh vertices
indices (List[int]): Mesh indices
I (Mat33): Inertia tensor of the mesh assuming density of 1.0 (around the center of mass)
mass (float): The total mass of the body assuming density of 1.0
com (Vec3): The center of mass of the body
"""
def __init__(self, vertices: List[Vec3], indices: List[int]):
"""Construct a Mesh object from a triangle mesh
The mesh center of mass and inertia tensor will automatically be
calculated using a density of 1.0. This computation is only valid
if the mesh is closed (two-manifold).
Args:
vertices: List of vertices in the mesh
indices: List of triangle indices, 3 per-element
"""
self.vertices = vertices
self.indices = indices
# compute com and inertia (using density=1.0)
com = np.mean(vertices, 0)
num_tris = int(len(indices) / 3)
# compute signed inertia for each tetrahedron
# formed with the interior point, using an order-2
# quadrature: https://www.sciencedirect.com/science/article/pii/S0377042712001604#br000040
weight = 0.25
alpha = math.sqrt(5.0) / 5.0
I = np.zeros((3, 3))
mass = 0.0
for i in range(num_tris):
p = np.array(vertices[indices[i * 3 + 0]])
q = np.array(vertices[indices[i * 3 + 1]])
r = np.array(vertices[indices[i * 3 + 2]])
mid = (com + p + q + r) / 4.0
pcom = p - com
qcom = q - com
rcom = r - com
Dm = np.matrix((pcom, qcom, rcom)).T
volume = np.linalg.det(Dm) / 6.0
# quadrature points lie on the line between the
# centroid and each vertex of the tetrahedron
quads = (mid + (p - mid) * alpha, mid + (q - mid) * alpha, mid + (r - mid) * alpha, mid + (com - mid) * alpha)
for j in range(4):
# displacement of quadrature point from COM
d = quads[j] - com
I += weight * volume * (length_sq(d) * np.eye(3, 3) - np.outer(d, d))
mass += weight * volume
self.I = I
self.mass = mass
self.com = com
class State:
"""The State object holds all *time-varying* data for a model.
Time-varying data includes particle positions, velocities, rigid body states, and
anything that is output from the integrator as derived data, e.g.: forces.
The exact attributes depend on the contents of the model. State objects should
generally be created using the :func:`Model.state()` function.
Attributes:
particle_q (torch.Tensor): Tensor of particle positions
particle_qd (torch.Tensor): Tensor of particle velocities
joint_q (torch.Tensor): Tensor of joint coordinates
joint_qd (torch.Tensor): Tensor of joint velocities
joint_act (torch.Tensor): Tensor of joint actuation values
"""
def __init__(self):
self.particle_count = 0
self.link_count = 0
# def flatten(self):
# """Returns a list of Tensors stored by the state
# This function is intended to be used internal-only but can be used to obtain
# a set of all tensors owned by the state.
# """
# tensors = []
# # particles
# if (self.particle_count):
# tensors.append(self.particle_q)
# tensors.append(self.particle_qd)
# # articulations
# if (self.link_count):
# tensors.append(self.joint_q)
# tensors.append(self.joint_qd)
# tensors.append(self.joint_act)
# return tensors
def flatten(self):
"""Returns a list of Tensors stored by the state
This function is intended to be used internal-only but can be used to obtain
a set of all tensors owned by the state.
"""
tensors = []
# build a list of all tensor attributes
for attr, value in self.__dict__.items():
if (torch.is_tensor(value)):
tensors.append(value)
return tensors
class Model:
"""Holds the definition of the simulation model
This class holds the non-time varying description of the system, i.e.:
all geometry, constraints, and parameters used to describe the simulation.
Attributes:
particle_q (torch.Tensor): Particle positions, shape [particle_count, 3], float
particle_qd (torch.Tensor): Particle velocities, shape [particle_count, 3], float
particle_mass (torch.Tensor): Particle mass, shape [particle_count], float
particle_inv_mass (torch.Tensor): Particle inverse mass, shape [particle_count], float
shape_transform (torch.Tensor): Rigid shape transforms, shape [shape_count, 7], float
shape_body (torch.Tensor): Rigid shape body index, shape [shape_count], int
shape_geo_type (torch.Tensor): Rigid shape geometry type, [shape_count], int
shape_geo_src (torch.Tensor): Rigid shape geometry source, shape [shape_count], int
shape_geo_scale (torch.Tensor): Rigid shape geometry scale, shape [shape_count, 3], float
shape_materials (torch.Tensor): Rigid shape contact materials, shape [shape_count, 4], float
spring_indices (torch.Tensor): Particle spring indices, shape [spring_count*2], int
spring_rest_length (torch.Tensor): Particle spring rest length, shape [spring_count], float
spring_stiffness (torch.Tensor): Particle spring stiffness, shape [spring_count], float
spring_damping (torch.Tensor): Particle spring damping, shape [spring_count], float
spring_control (torch.Tensor): Particle spring activation, shape [spring_count], float
tri_indices (torch.Tensor): Triangle element indices, shape [tri_count*3], int
tri_poses (torch.Tensor): Triangle element rest pose, shape [tri_count, 2, 2], float
tri_activations (torch.Tensor): Triangle element activations, shape [tri_count], float
edge_indices (torch.Tensor): Bending edge indices, shape [edge_count*2], int
edge_rest_angle (torch.Tensor): Bending edge rest angle, shape [edge_count], float
tet_indices (torch.Tensor): Tetrahedral element indices, shape [tet_count*4], int
tet_poses (torch.Tensor): Tetrahedral rest poses, shape [tet_count, 3, 3], float
tet_activations (torch.Tensor): Tetrahedral volumetric activations, shape [tet_count], float
tet_materials (torch.Tensor): Tetrahedral elastic parameters in form :math:`k_{mu}, k_{lambda}, k_{damp}`, shape [tet_count, 3]
body_X_cm (torch.Tensor): Rigid body center of mass (in local frame), shape [link_count, 7], float
body_I_m (torch.Tensor): Rigid body inertia tensor (relative to COM), shape [link_count, 3, 3], float
articulation_start (torch.Tensor): Articulation start offset, shape [num_articulations], int
joint_q (torch.Tensor): Joint coordinate, shape [joint_coord_count], float
joint_qd (torch.Tensor): Joint velocity, shape [joint_dof_count], float
joint_type (torch.Tensor): Joint type, shape [joint_count], int
joint_parent (torch.Tensor): Joint parent, shape [joint_count], int
joint_X_pj (torch.Tensor): Joint transform in parent frame, shape [joint_count, 7], float
joint_X_cm (torch.Tensor): Joint mass frame in child frame, shape [joint_count, 7], float
joint_axis (torch.Tensor): Joint axis in child frame, shape [joint_count, 3], float
joint_q_start (torch.Tensor): Joint coordinate offset, shape [joint_count], int
joint_qd_start (torch.Tensor): Joint velocity offset, shape [joint_count], int
joint_armature (torch.Tensor): Armature for each joint, shape [joint_count], float
joint_target_ke (torch.Tensor): Joint stiffness, shape [joint_count], float
joint_target_kd (torch.Tensor): Joint damping, shape [joint_count], float
joint_target (torch.Tensor): Joint target, shape [joint_count], float
particle_count (int): Total number of particles in the system
joint_coord_count (int): Total number of joint coordinates in the system
joint_dof_count (int): Total number of joint dofs in the system
link_count (int): Total number of links in the system
shape_count (int): Total number of shapes in the system
tri_count (int): Total number of triangles in the system
tet_count (int): Total number of tetrahedra in the system
edge_count (int): Total number of edges in the system
spring_count (int): Total number of springs in the system
contact_count (int): Total number of contacts in the system
Note:
It is strongly recommended to use the ModelBuilder to construct a simulation rather
than creating your own Model object directly, however it is possible to do so if
desired.
"""
def __init__(self, adapter):
self.particle_q = None
self.particle_qd = None
self.particle_mass = None
self.particle_inv_mass = None
self.shape_transform = None
self.shape_body = None
self.shape_geo_type = None
self.shape_geo_src = None
self.shape_geo_scale = None
self.shape_materials = None
self.spring_indices = None
self.spring_rest_length = None
self.spring_stiffness = None
self.spring_damping = None
self.spring_control = None
self.tri_indices = None
self.tri_poses = None
self.tri_activations = None
self.edge_indices = None
self.edge_rest_angle = None
self.tet_indices = None
self.tet_poses = None
self.tet_activations = None
self.tet_materials = None
self.body_X_cm = None
self.body_I_m = None
self.articulation_start = None
self.joint_q = None
self.joint_qd = None
self.joint_type = None
self.joint_parent = None
self.joint_X_pj = None
self.joint_X_cm = None
self.joint_axis = None
self.joint_q_start = None
self.joint_qd_start = None
self.joint_armature = None
self.joint_target_ke = None
self.joint_target_kd = None
self.joint_target = None
self.particle_count = 0
self.joint_coord_count = 0
self.joint_dof_count = 0
self.link_count = 0
self.shape_count = 0
self.tri_count = 0
self.tet_count = 0
self.edge_count = 0
self.spring_count = 0
self.contact_count = 0
self.gravity = torch.tensor((0.0, -9.8, 0.0), dtype=torch.float32, device=adapter)
self.contact_distance = 0.1
self.contact_ke = 1.e+3
self.contact_kd = 0.0
self.contact_kf = 1.e+3
self.contact_mu = 0.5
self.tri_ke = 100.0
self.tri_ka = 100.0
self.tri_kd = 10.0
self.tri_kb = 100.0
self.tri_drag = 0.0
self.tri_lift = 0.0
self.edge_ke = 100.0
self.edge_kd = 0.0
self.particle_radius = 0.1
self.adapter = adapter
def state(self) -> State:
"""Returns a state object for the model
The returned state will be initialized with the initial configuration given in
the model description.
"""
s = State()
s.particle_count = self.particle_count
s.link_count = self.link_count
#--------------------------------
# dynamic state (input, output)
# particles
if (self.particle_count):
s.particle_q = torch.clone(self.particle_q)
s.particle_qd = torch.clone(self.particle_qd)
# articulations
if (self.link_count):
s.joint_q = torch.clone(self.joint_q)
s.joint_qd = torch.clone(self.joint_qd)
s.joint_act = torch.zeros_like(self.joint_qd)
s.joint_q.requires_grad = True
s.joint_qd.requires_grad = True
#--------------------------------
# derived state (output only)
if (self.particle_count):
s.particle_f = torch.empty_like(self.particle_qd, requires_grad=True)
if (self.link_count):
# joints
s.joint_qdd = torch.empty_like(self.joint_qd, requires_grad=True)
s.joint_tau = torch.empty_like(self.joint_qd, requires_grad=True)
s.joint_S_s = torch.empty((self.joint_dof_count, 6), dtype=torch.float32, device=self.adapter, requires_grad=True)
# derived rigid body data (maximal coordinates)
s.body_X_sc = torch.empty((self.link_count, 7), dtype=torch.float32, device=self.adapter, requires_grad=True)
s.body_X_sm = torch.empty((self.link_count, 7), dtype=torch.float32, device=self.adapter, requires_grad=True)
s.body_I_s = torch.empty((self.link_count, 6, 6), dtype=torch.float32, device=self.adapter, requires_grad=True)
s.body_v_s = torch.empty((self.link_count, 6), dtype=torch.float32, device=self.adapter, requires_grad=True)
s.body_a_s = torch.empty((self.link_count, 6), dtype=torch.float32, device=self.adapter, requires_grad=True)
s.body_f_s = torch.zeros((self.link_count, 6), dtype=torch.float32, device=self.adapter, requires_grad=True)
#s.body_ft_s = torch.zeros((self.link_count, 6), dtype=torch.float32, device=self.adapter, requires_grad=True)
#s.body_f_ext_s = torch.zeros((self.link_count, 6), dtype=torch.float32, device=self.adapter, requires_grad=True)
return s
def alloc_mass_matrix(self):
if (self.link_count):
# system matrices
self.M = torch.zeros(self.M_size, dtype=torch.float32, device=self.adapter, requires_grad=True)
self.J = torch.zeros(self.J_size, dtype=torch.float32, device=self.adapter, requires_grad=True)
self.P = torch.empty(self.J_size, dtype=torch.float32, device=self.adapter, requires_grad=True)
self.H = torch.empty(self.H_size, dtype=torch.float32, device=self.adapter, requires_grad=True)
# zero since only upper triangle is set which can trigger NaN detection
self.L = torch.zeros(self.H_size, dtype=torch.float32, device=self.adapter, requires_grad=True)
def flatten(self):
"""Returns a list of Tensors stored by the model
This function is intended to be used internal-only but can be used to obtain
a set of all tensors owned by the model.
"""
tensors = []
# build a list of all tensor attributes
for attr, value in self.__dict__.items():
if (torch.is_tensor(value)):
tensors.append(value)
return tensors
# builds contacts
def collide(self, state: State):
"""Constructs a set of contacts between rigid bodies and ground
This method performs collision detection between rigid body vertices in the scene and updates
the model's set of contacts stored as the following attributes:
* **contact_body0**: Tensor of ints with first rigid body index
* **contact_body1**: Tensor of ints with second rigid body index (currently always -1 to indicate ground)
* **contact_point0**: Tensor of Vec3 representing contact point in local frame of body0
* **contact_dist**: Tensor of float values representing the distance to maintain
* **contact_material**: Tensor contact material indices
Args:
state: The state of the simulation at which to perform collision detection
Note:
Currently this method uses an 'all pairs' approach to contact generation that is
state indepdendent. In the future this will change and will create a node in
the computational graph to propagate gradients as a function of state.
Todo:
Only ground-plane collision is currently implemented. Since the ground is static
it is acceptable to call this method once at initialization time.
"""
body0 = []
body1 = []
point = []
dist = []
mat = []
def add_contact(b0, b1, t, p0, d, m):
body0.append(b0)
body1.append(b1)
point.append(transform_point(t, np.array(p0)))
dist.append(d)
mat.append(m)
for i in range(self.shape_count):
# transform from shape to body
X_bs = transform_expand(self.shape_transform[i].tolist())
geo_type = self.shape_geo_type[i].item()
if (geo_type == GEO_SPHERE):
radius = self.shape_geo_scale[i][0].item()
add_contact(self.shape_body[i], -1, X_bs, (0.0, 0.0, 0.0), radius, i)
elif (geo_type == GEO_CAPSULE):
radius = self.shape_geo_scale[i][0].item()
half_width = self.shape_geo_scale[i][1].item()
add_contact(self.shape_body[i], -1, X_bs, (-half_width, 0.0, 0.0), radius, i)
add_contact(self.shape_body[i], -1, X_bs, (half_width, 0.0, 0.0), radius, i)
elif (geo_type == GEO_BOX):
edges = self.shape_geo_scale[i].tolist()
add_contact(self.shape_body[i], -1, X_bs, (-edges[0], -edges[1], -edges[2]), 0.0, i)
add_contact(self.shape_body[i], -1, X_bs, ( edges[0], -edges[1], -edges[2]), 0.0, i)
add_contact(self.shape_body[i], -1, X_bs, (-edges[0], edges[1], -edges[2]), 0.0, i)
add_contact(self.shape_body[i], -1, X_bs, (edges[0], edges[1], -edges[2]), 0.0, i)
add_contact(self.shape_body[i], -1, X_bs, (-edges[0], -edges[1], edges[2]), 0.0, i)
add_contact(self.shape_body[i], -1, X_bs, (edges[0], -edges[1], edges[2]), 0.0, i)
add_contact(self.shape_body[i], -1, X_bs, (-edges[0], edges[1], edges[2]), 0.0, i)
add_contact(self.shape_body[i], -1, X_bs, (edges[0], edges[1], edges[2]), 0.0, i)
elif (geo_type == GEO_MESH):
mesh = self.shape_geo_src[i]
scale = self.shape_geo_scale[i]
for v in mesh.vertices:
p = (v[0] * scale[0], v[1] * scale[1], v[2] * scale[2])
add_contact(self.shape_body[i], -1, X_bs, p, 0.0, i)
# send to torch
self.contact_body0 = torch.tensor(body0, dtype=torch.int32, device=self.adapter)
self.contact_body1 = torch.tensor(body1, dtype=torch.int32, device=self.adapter)
self.contact_point0 = torch.tensor(point, dtype=torch.float32, device=self.adapter)
self.contact_dist = torch.tensor(dist, dtype=torch.float32, device=self.adapter)
self.contact_material = torch.tensor(mat, dtype=torch.int32, device=self.adapter)
self.contact_count = len(body0)
class ModelBuilder:
"""A helper class for building simulation models at runtime.
Use the ModelBuilder to construct a simulation scene. The ModelBuilder
is independent of PyTorch and builds the scene representation using
standard Python data structures, this means it is not differentiable. Once :func:`finalize()`
has been called the ModelBuilder transfers all data to Torch tensors and returns
an object that may be used for simulation.
Example:
>>> import dflex as df
>>>
>>> builder = df.ModelBuilder()
>>>
>>> # anchor point (zero mass)
>>> builder.add_particle((0, 1.0, 0.0), (0.0, 0.0, 0.0), 0.0)
>>>
>>> # build chain
>>> for i in range(1,10):
>>> builder.add_particle((i, 1.0, 0.0), (0.0, 0.0, 0.0), 1.0)
>>> builder.add_spring(i-1, i, 1.e+3, 0.0, 0)
>>>
>>> # create model
>>> model = builder.finalize()
Note:
It is strongly recommended to use the ModelBuilder to construct a simulation rather
than creating your own Model object directly, however it is possible to do so if
desired.
"""
def __init__(self):
# particles
self.particle_q = []
self.particle_qd = []
self.particle_mass = []
# shapes
self.shape_transform = []
self.shape_body = []
self.shape_geo_type = []
self.shape_geo_scale = []
self.shape_geo_src = []
self.shape_materials = []
# geometry
self.geo_meshes = []
self.geo_sdfs = []
# springs
self.spring_indices = []
self.spring_rest_length = []
self.spring_stiffness = []
self.spring_damping = []
self.spring_control = []
# triangles
self.tri_indices = []
self.tri_poses = []
self.tri_activations = []
# edges (bending)
self.edge_indices = []
self.edge_rest_angle = []
# tetrahedra
self.tet_indices = []
self.tet_poses = []
self.tet_activations = []
self.tet_materials = []
# muscles
self.muscle_start = []
self.muscle_params = []
self.muscle_activation = []
self.muscle_links = []
self.muscle_points = []
# rigid bodies
self.joint_parent = [] # index of the parent body (constant)
self.joint_child = [] # index of the child body (constant)
self.joint_axis = [] # joint axis in child joint frame (constant)
self.joint_X_pj = [] # frame of joint in parent (constant)
self.joint_X_cm = [] # frame of child com (in child coordinates) (constant)
self.joint_q_start = [] # joint offset in the q array
self.joint_qd_start = [] # joint offset in the qd array
self.joint_type = []
self.joint_armature = []
self.joint_target_ke = []
self.joint_target_kd = []
self.joint_target = []
self.joint_limit_lower = []
self.joint_limit_upper = []
self.joint_limit_ke = []
self.joint_limit_kd = []
self.joint_q = [] # generalized coordinates (input)
self.joint_qd = [] # generalized velocities (input)
self.joint_qdd = [] # generalized accelerations (id,fd)
self.joint_tau = [] # generalized actuation (input)
self.joint_u = [] # generalized total torque (fd)
self.body_mass = []
self.body_inertia = []
self.body_com = []
self.articulation_start = []
def add_articulation(self) -> int:
"""Add an articulation object, all subsequently added links (see: :func:`add_link`) will belong to this articulation object.
Calling this method multiple times 'closes' any previous articulations and begins a new one.
Returns:
The index of the articulation
"""
self.articulation_start.append(len(self.joint_type))
return len(self.articulation_start)-1
# rigids, register a rigid body and return its index.
def add_link(
self,
parent : int,
X_pj : Transform,
axis : Vec3,
type : int,
armature: float=0.01,
stiffness: float=0.0,
damping: float=0.0,
limit_lower: float=-1.e+3,
limit_upper: float=1.e+3,
limit_ke: float=100.0,
limit_kd: float=10.0,
com: Vec3=np.zeros(3),
I_m: Mat33=np.zeros((3, 3)),
m: float=0.0) -> int:
"""Adds a rigid body to the model.
Args:
parent: The index of the parent body
X_pj: The location of the joint in the parent's local frame connecting this body
axis: The joint axis
type: The type of joint, should be one of: JOINT_PRISMATIC, JOINT_REVOLUTE, JOINT_BALL, JOINT_FIXED, or JOINT_FREE
armature: Additional inertia around the joint axis
stiffness: Spring stiffness that attempts to return joint to zero position
damping: Spring damping that attempts to remove joint velocity
com: The center of mass of the body w.r.t its origin
I_m: The 3x3 inertia tensor of the body (specified relative to the center of mass)
m: The mass of the body
Returns:
The index of the body in the model
Note:
If the mass (m) is zero then the body is treated as kinematic with no dynamics
"""
# joint data
self.joint_type.append(type)
self.joint_axis.append(np.array(axis))
self.joint_parent.append(parent)
self.joint_X_pj.append(X_pj)
self.joint_target_ke.append(stiffness)
self.joint_target_kd.append(damping)
self.joint_limit_ke.append(limit_ke)
self.joint_limit_kd.append(limit_kd)
self.joint_q_start.append(len(self.joint_q))
self.joint_qd_start.append(len(self.joint_qd))
if (type == JOINT_PRISMATIC):
self.joint_q.append(0.0)
self.joint_qd.append(0.0)
self.joint_target.append(0.0)
self.joint_armature.append(armature)
self.joint_limit_lower.append(limit_lower)
self.joint_limit_upper.append(limit_upper)
elif (type == JOINT_REVOLUTE):
self.joint_q.append(0.0)
self.joint_qd.append(0.0)
self.joint_target.append(0.0)
self.joint_armature.append(armature)
self.joint_limit_lower.append(limit_lower)
self.joint_limit_upper.append(limit_upper)
elif (type == JOINT_BALL):
# quaternion
self.joint_q.append(0.0)
self.joint_q.append(0.0)
self.joint_q.append(0.0)
self.joint_q.append(1.0)
# angular velocity
self.joint_qd.append(0.0)
self.joint_qd.append(0.0)
self.joint_qd.append(0.0)
# pd targets
self.joint_target.append(0.0)
self.joint_target.append(0.0)
self.joint_target.append(0.0)
self.joint_target.append(0.0)
self.joint_armature.append(armature)
self.joint_armature.append(armature)
self.joint_armature.append(armature)
self.joint_limit_lower.append(limit_lower)
self.joint_limit_lower.append(limit_lower)
self.joint_limit_lower.append(limit_lower)
self.joint_limit_lower.append(0.0)
self.joint_limit_upper.append(limit_upper)
self.joint_limit_upper.append(limit_upper)
self.joint_limit_upper.append(limit_upper)
self.joint_limit_upper.append(0.0)
elif (type == JOINT_FIXED):
pass
elif (type == JOINT_FREE):
# translation
self.joint_q.append(0.0)
self.joint_q.append(0.0)
self.joint_q.append(0.0)
# quaternion
self.joint_q.append(0.0)
self.joint_q.append(0.0)
self.joint_q.append(0.0)
self.joint_q.append(1.0)
# note armature for free joints should always be zero, better to modify the body inertia directly
self.joint_armature.append(0.0)
self.joint_armature.append(0.0)
self.joint_armature.append(0.0)
self.joint_armature.append(0.0)
self.joint_armature.append(0.0)
self.joint_armature.append(0.0)
self.joint_target.append(0.0)
self.joint_target.append(0.0)
self.joint_target.append(0.0)
self.joint_target.append(0.0)
self.joint_target.append(0.0)
self.joint_target.append(0.0)
self.joint_target.append(0.0)
self.joint_limit_lower.append(0.0)
self.joint_limit_lower.append(0.0)
self.joint_limit_lower.append(0.0)
self.joint_limit_lower.append(0.0)
self.joint_limit_lower.append(0.0)
self.joint_limit_lower.append(0.0)
self.joint_limit_lower.append(0.0)
self.joint_limit_upper.append(0.0)
self.joint_limit_upper.append(0.0)
self.joint_limit_upper.append(0.0)
self.joint_limit_upper.append(0.0)
self.joint_limit_upper.append(0.0)
self.joint_limit_upper.append(0.0)
self.joint_limit_upper.append(0.0)
# joint velocities
for i in range(6):
self.joint_qd.append(0.0)
self.body_inertia.append(np.zeros((3, 3)))
self.body_mass.append(0.0)
self.body_com.append(np.zeros(3))
# return index of body
return len(self.joint_type) - 1
# muscles
def add_muscle(self, links: List[int], positions: List[Vec3], f0: float, lm: float, lt: float, lmax: float, pen: float) -> float:
"""Adds a muscle-tendon activation unit
Args:
links: A list of link indices for each waypoint
positions: A list of positions of each waypoint in the link's local frame
f0: Force scaling
lm: Muscle length
lt: Tendon length
lmax: Maximally efficient muscle length
Returns:
The index of the muscle in the model
"""
n = len(links)
self.muscle_start.append(len(self.muscle_links))
self.muscle_params.append((f0, lm, lt, lmax, pen))
self.muscle_activation.append(0.0)
for i in range(n):
self.muscle_links.append(links[i])
self.muscle_points.append(positions[i])
# return the index of the muscle
return len(self.muscle_start)-1
# shapes
def add_shape_plane(self, plane: Vec4=(0.0, 1.0, 0.0, 0.0), ke: float=1.e+5, kd: float=1000.0, kf: float=1000.0, mu: float=0.5):
"""Adds a plane collision shape
Args:
plane: The plane equation in form a*x + b*y + c*z + d = 0
ke: The contact elastic stiffness
kd: The contact damping stiffness
kf: The contact friction stiffness
mu: The coefficient of friction
"""
self._add_shape(-1, (0.0, 0.0, 0.0), (0.0, 0.0, 0.0), GEO_PLANE, plane, None, 0.0, ke, kd, kf, mu)
def add_shape_sphere(self, body, pos: Vec3=(0.0, 0.0, 0.0), rot: Quat=(0.0, 0.0, 0.0, 1.0), radius: float=1.0, density: float=1000.0, ke: float=1.e+5, kd: float=1000.0, kf: float=1000.0, mu: float=0.5):
"""Adds a sphere collision shape to a link.
Args:
body: The index of the parent link this shape belongs to
pos: The location of the shape with respect to the parent frame
rot: The rotation of the shape with respect to the parent frame
radius: The radius of the sphere
density: The density of the shape
ke: The contact elastic stiffness
kd: The contact damping stiffness
kf: The contact friction stiffness
mu: The coefficient of friction
"""
self._add_shape(body, pos, rot, GEO_SPHERE, (radius, 0.0, 0.0, 0.0), None, density, ke, kd, kf, mu)
def add_shape_box(self,
body : int,
pos: Vec3=(0.0, 0.0, 0.0),
rot: Quat=(0.0, 0.0, 0.0, 1.0),
hx: float=0.5,
hy: float=0.5,
hz: float=0.5,
density: float=1000.0,
ke: float=1.e+5,
kd: float=1000.0,
kf: float=1000.0,
mu: float=0.5):
"""Adds a box collision shape to a link.
Args:
body: The index of the parent link this shape belongs to
pos: The location of the shape with respect to the parent frame
rot: The rotation of the shape with respect to the parent frame
hx: The half-extents along the x-axis
hy: The half-extents along the y-axis
hz: The half-extents along the z-axis
density: The density of the shape
ke: The contact elastic stiffness
kd: The contact damping stiffness
kf: The contact friction stiffness
mu: The coefficient of friction
"""
self._add_shape(body, pos, rot, GEO_BOX, (hx, hy, hz, 0.0), None, density, ke, kd, kf, mu)
def add_shape_capsule(self,
body: int,
pos: Vec3=(0.0, 0.0, 0.0),
rot: Quat=(0.0, 0.0, 0.0, 1.0),
radius: float=1.0,
half_width: float=0.5,
density: float=1000.0,
ke: float=1.e+5,
kd: float=1000.0,
kf: float=1000.0,
mu: float=0.5):
"""Adds a capsule collision shape to a link.
Args:
body: The index of the parent link this shape belongs to
pos: The location of the shape with respect to the parent frame
rot: The rotation of the shape with respect to the parent frame
radius: The radius of the capsule
half_width: The half length of the center cylinder along the x-axis
density: The density of the shape
ke: The contact elastic stiffness
kd: The contact damping stiffness
kf: The contact friction stiffness
mu: The coefficient of friction
"""
self._add_shape(body, pos, rot, GEO_CAPSULE, (radius, half_width, 0.0, 0.0), None, density, ke, kd, kf, mu)
def add_shape_mesh(self,
body: int,
pos: Vec3=(0.0, 0.0, 0.0),
rot: Quat=(0.0, 0.0, 0.0, 1.0),
mesh: Mesh=None,
scale: Vec3=(1.0, 1.0, 1.0),
density: float=1000.0,
ke: float=1.e+5,
kd: float=1000.0,
kf: float=1000.0,
mu: float=0.5):
"""Adds a triangle mesh collision shape to a link.
Args:
body: The index of the parent link this shape belongs to
pos: The location of the shape with respect to the parent frame
rot: The rotation of the shape with respect to the parent frame
mesh: The mesh object
scale: Scale to use for the collider
density: The density of the shape
ke: The contact elastic stiffness
kd: The contact damping stiffness
kf: The contact friction stiffness
mu: The coefficient of friction
"""
self._add_shape(body, pos, rot, GEO_MESH, (scale[0], scale[1], scale[2], 0.0), mesh, density, ke, kd, kf, mu)
def _add_shape(self, body , pos, rot, type, scale, src, density, ke, kd, kf, mu):
self.shape_body.append(body)
self.shape_transform.append(transform(pos, rot))
self.shape_geo_type.append(type)
self.shape_geo_scale.append((scale[0], scale[1], scale[2]))
self.shape_geo_src.append(src)
self.shape_materials.append((ke, kd, kf, mu))
(m, I) = self._compute_shape_mass(type, scale, src, density)
self._update_body_mass(body, m, I, np.array(pos), np.array(rot))
# particles
def add_particle(self, pos : Vec3, vel : Vec3, mass : float) -> int:
"""Adds a single particle to the model
Args:
pos: The initial position of the particle
vel: The initial velocity of the particle
mass: The mass of the particle
Note:
Set the mass equal to zero to create a 'kinematic' particle that does is not subject to dynamics.
Returns:
The index of the particle in the system
"""
self.particle_q.append(pos)
self.particle_qd.append(vel)
self.particle_mass.append(mass)
return len(self.particle_q) - 1
def add_spring(self, i : int, j, ke : float, kd : float, control: float):
"""Adds a spring between two particles in the system
Args:
i: The index of the first particle
j: The index of the second particle
ke: The elastic stiffness of the spring
kd: The damping stiffness of the spring
control: The actuation level of the spring
Note:
The spring is created with a rest-length based on the distance
between the particles in their initial configuration.
"""
self.spring_indices.append(i)
self.spring_indices.append(j)
self.spring_stiffness.append(ke)
self.spring_damping.append(kd)
self.spring_control.append(control)
# compute rest length
p = self.particle_q[i]
q = self.particle_q[j]
delta = np.subtract(p, q)
l = np.sqrt(np.dot(delta, delta))
self.spring_rest_length.append(l)
def add_triangle(self, i : int, j : int, k : int) -> float:
"""Adds a trianglular FEM element between three particles in the system.
Triangles are modeled as viscoelastic elements with elastic stiffness and damping
Parameters specfied on the model. See model.tri_ke, model.tri_kd.
Args:
i: The index of the first particle
j: The index of the second particle
k: The index of the third particle
Return:
The area of the triangle
Note:
The triangle is created with a rest-length based on the distance
between the particles in their initial configuration.
Todo:
* Expose elastic paramters on a per-element basis
"""
# compute basis for 2D rest pose
p = np.array(self.particle_q[i])
q = np.array(self.particle_q[j])
r = np.array(self.particle_q[k])
qp = q - p
rp = r - p
# construct basis aligned with the triangle
n = normalize(np.cross(qp, rp))
e1 = normalize(qp)
e2 = normalize(np.cross(n, e1))
R = np.matrix((e1, e2))
M = np.matrix((qp, rp))
D = R * M.T
inv_D = np.linalg.inv(D)
area = np.linalg.det(D) / 2.0
if (area < 0.0):
print("inverted triangle element")
self.tri_indices.append((i, j, k))
self.tri_poses.append(inv_D.tolist())
self.tri_activations.append(0.0)
return area
def add_tetrahedron(self, i: int, j: int, k: int, l: int, k_mu: float=1.e+3, k_lambda: float=1.e+3, k_damp: float=0.0) -> float:
"""Adds a tetrahedral FEM element between four particles in the system.
Tetrahdera are modeled as viscoelastic elements with a NeoHookean energy
density based on [Smith et al. 2018].
Args:
i: The index of the first particle
j: The index of the second particle
k: The index of the third particle
l: The index of the fourth particle
k_mu: The first elastic Lame parameter
k_lambda: The second elastic Lame parameter
k_damp: The element's damping stiffness
Return:
The volume of the tetrahedron
Note:
The tetrahedron is created with a rest-pose based on the particle's initial configruation
"""
# compute basis for 2D rest pose
p = np.array(self.particle_q[i])
q = np.array(self.particle_q[j])
r = np.array(self.particle_q[k])
s = np.array(self.particle_q[l])
qp = q - p
rp = r - p
sp = s - p
Dm = np.matrix((qp, rp, sp)).T
volume = np.linalg.det(Dm) / 6.0
if (volume <= 0.0):
print("inverted tetrahedral element")
else:
inv_Dm = np.linalg.inv(Dm)
self.tet_indices.append((i, j, k, l))
self.tet_poses.append(inv_Dm.tolist())
self.tet_activations.append(0.0)
self.tet_materials.append((k_mu, k_lambda, k_damp))
return volume
def add_edge(self, i: int, j: int, k: int, l: int, rest: float=None):
"""Adds a bending edge element between four particles in the system.
Bending elements are designed to be between two connected triangles. Then
bending energy is based of [Bridson et al. 2002]. Bending stiffness is controlled
by the `model.tri_kb` parameter.
Args:
i: The index of the first particle
j: The index of the second particle
k: The index of the third particle
l: The index of the fourth particle
rest: The rest angle across the edge in radians, if not specified it will be computed
Note:
The edge lies between the particles indexed by 'k' and 'l' parameters with the opposing
vertices indexed by 'i' and 'j'. This defines two connected triangles with counter clockwise
winding: (i, k, l), (j, l, k).
"""
# compute rest angle
if (rest == None):
x1 = np.array(self.particle_q[i])
x2 = np.array(self.particle_q[j])
x3 = np.array(self.particle_q[k])
x4 = np.array(self.particle_q[l])
n1 = normalize(np.cross(x3 - x1, x4 - x1))
n2 = normalize(np.cross(x4 - x2, x3 - x2))
e = normalize(x4 - x3)
d = np.clip(np.dot(n2, n1), -1.0, 1.0)
angle = math.acos(d)
sign = np.sign(np.dot(np.cross(n2, n1), e))
rest = angle * sign
self.edge_indices.append((i, j, k, l))
self.edge_rest_angle.append(rest)
def add_cloth_grid(self,
pos: Vec3,
rot: Quat,
vel: Vec3,
dim_x: int,
dim_y: int,
cell_x: float,
cell_y: float,
mass: float,
reverse_winding: bool=False,
fix_left: bool=False,
fix_right: bool=False,
fix_top: bool=False,
fix_bottom: bool=False):
"""Helper to create a regular planar cloth grid
Creates a rectangular grid of particles with FEM triangles and bending elements
automatically.
Args:
pos: The position of the cloth in world space
rot: The orientation of the cloth in world space
vel: The velocity of the cloth in world space
dim_x_: The number of rectangular cells along the x-axis
dim_y: The number of rectangular cells along the y-axis
cell_x: The width of each cell in the x-direction
cell_y: The width of each cell in the y-direction
mass: The mass of each particle
reverse_winding: Flip the winding of the mesh
fix_left: Make the left-most edge of particles kinematic (fixed in place)
fix_right: Make the right-most edge of particles kinematic
fix_top: Make the top-most edge of particles kinematic
fix_bottom: Make the bottom-most edge of particles kinematic
"""
def grid_index(x, y, dim_x):
return y * dim_x + x
start_vertex = len(self.particle_q)
start_tri = len(self.tri_indices)
for y in range(0, dim_y + 1):
for x in range(0, dim_x + 1):
g = np.array((x * cell_x, y * cell_y, 0.0))
p = quat_rotate(rot, g) + pos
m = mass
if (x == 0 and fix_left):
m = 0.0
elif (x == dim_x and fix_right):
m = 0.0
elif (y == 0 and fix_bottom):
m = 0.0
elif (y == dim_y and fix_top):
m = 0.0
self.add_particle(p, vel, m)
if (x > 0 and y > 0):
if (reverse_winding):
tri1 = (start_vertex + grid_index(x - 1, y - 1, dim_x + 1),
start_vertex + grid_index(x, y - 1, dim_x + 1),
start_vertex + grid_index(x, y, dim_x + 1))
tri2 = (start_vertex + grid_index(x - 1, y - 1, dim_x + 1),
start_vertex + grid_index(x, y, dim_x + 1),
start_vertex + grid_index(x - 1, y, dim_x + 1))
self.add_triangle(*tri1)
self.add_triangle(*tri2)
else:
tri1 = (start_vertex + grid_index(x - 1, y - 1, dim_x + 1),
start_vertex + grid_index(x, y - 1, dim_x + 1),
start_vertex + grid_index(x - 1, y, dim_x + 1))
tri2 = (start_vertex + grid_index(x, y - 1, dim_x + 1),
start_vertex + grid_index(x, y, dim_x + 1),
start_vertex + grid_index(x - 1, y, dim_x + 1))
self.add_triangle(*tri1)
self.add_triangle(*tri2)
end_vertex = len(self.particle_q)
end_tri = len(self.tri_indices)
# bending constraints, could create these explicitly for a grid but this
# is a good test of the adjacency structure
adj = MeshAdjacency(self.tri_indices[start_tri:end_tri], end_tri - start_tri)
for k, e in adj.edges.items():
# skip open edges
if (e.f0 == -1 or e.f1 == -1):
continue
self.add_edge(e.o0, e.o1, e.v0, e.v1) # opposite 0, opposite 1, vertex 0, vertex 1
def add_cloth_mesh(self, pos: Vec3, rot: Quat, scale: float, vel: Vec3, vertices: List[Vec3], indices: List[int], density: float, edge_callback=None, face_callback=None):
"""Helper to create a cloth model from a regular triangle mesh
Creates one FEM triangle element and one bending element for every face
and edge in the input triangle mesh
Args:
pos: The position of the cloth in world space
rot: The orientation of the cloth in world space
vel: The velocity of the cloth in world space
vertices: A list of vertex positions
indices: A list of triangle indices, 3 entries per-face
density: The density per-area of the mesh
edge_callback: A user callback when an edge is created
face_callback: A user callback when a face is created
Note:
The mesh should be two manifold.
"""
num_tris = int(len(indices) / 3)
start_vertex = len(self.particle_q)
start_tri = len(self.tri_indices)
# particles
for i, v in enumerate(vertices):
p = quat_rotate(rot, v * scale) + pos
self.add_particle(p, vel, 0.0)
# triangles
for t in range(num_tris):
i = start_vertex + indices[t * 3 + 0]
j = start_vertex + indices[t * 3 + 1]
k = start_vertex + indices[t * 3 + 2]
if (face_callback):
face_callback(i, j, k)
area = self.add_triangle(i, j, k)
# add area fraction to particles
if (area > 0.0):
self.particle_mass[i] += density * area / 3.0
self.particle_mass[j] += density * area / 3.0
self.particle_mass[k] += density * area / 3.0
end_vertex = len(self.particle_q)
end_tri = len(self.tri_indices)
adj = MeshAdjacency(self.tri_indices[start_tri:end_tri], end_tri - start_tri)
# bend constraints
for k, e in adj.edges.items():
# skip open edges
if (e.f0 == -1 or e.f1 == -1):
continue
if (edge_callback):
edge_callback(e.f0, e.f1)
self.add_edge(e.o0, e.o1, e.v0, e.v1)
def add_soft_grid(self,
pos: Vec3,
rot: Quat,
vel: Vec3,
dim_x: int,
dim_y: int,
dim_z: int,
cell_x: float,
cell_y: float,
cell_z: float,
density: float,
k_mu: float,
k_lambda: float,
k_damp: float,
fix_left: bool=False,
fix_right: bool=False,
fix_top: bool=False,
fix_bottom: bool=False):
"""Helper to create a rectangular tetrahedral FEM grid
Creates a regular grid of FEM tetrhedra and surface triangles. Useful for example
to create beams and sheets. Each hexahedral cell is decomposed into 5
tetrahedral elements.
Args:
pos: The position of the solid in world space
rot: The orientation of the solid in world space
vel: The velocity of the solid in world space
dim_x_: The number of rectangular cells along the x-axis
dim_y: The number of rectangular cells along the y-axis
dim_z: The number of rectangular cells along the z-axis
cell_x: The width of each cell in the x-direction
cell_y: The width of each cell in the y-direction
cell_z: The width of each cell in the z-direction
density: The density of each particle
k_mu: The first elastic Lame parameter
k_lambda: The second elastic Lame parameter
k_damp: The damping stiffness
fix_left: Make the left-most edge of particles kinematic (fixed in place)
fix_right: Make the right-most edge of particles kinematic
fix_top: Make the top-most edge of particles kinematic
fix_bottom: Make the bottom-most edge of particles kinematic
"""
start_vertex = len(self.particle_q)
mass = cell_x * cell_y * cell_z * density
for z in range(dim_z + 1):
for y in range(dim_y + 1):
for x in range(dim_x + 1):
v = np.array((x * cell_x, y * cell_y, z * cell_z))
m = mass
if (fix_left and x == 0):
m = 0.0
if (fix_right and x == dim_x):
m = 0.0
if (fix_top and y == dim_y):
m = 0.0
if (fix_bottom and y == 0):
m = 0.0
p = quat_rotate(rot, v) + pos
self.add_particle(p, vel, m)
# dict of open faces
faces = {}
def add_face(i: int, j: int, k: int):
key = tuple(sorted((i, j, k)))
if key not in faces:
faces[key] = (i, j, k)
else:
del faces[key]
def add_tet(i: int, j: int, k: int, l: int):
self.add_tetrahedron(i, j, k, l, k_mu, k_lambda, k_damp)
add_face(i, k, j)
add_face(j, k, l)
add_face(i, j, l)
add_face(i, l, k)
def grid_index(x, y, z):
return (dim_x + 1) * (dim_y + 1) * z + (dim_x + 1) * y + x
for z in range(dim_z):
for y in range(dim_y):
for x in range(dim_x):
v0 = grid_index(x, y, z) + start_vertex
v1 = grid_index(x + 1, y, z) + start_vertex
v2 = grid_index(x + 1, y, z + 1) + start_vertex
v3 = grid_index(x, y, z + 1) + start_vertex
v4 = grid_index(x, y + 1, z) + start_vertex
v5 = grid_index(x + 1, y + 1, z) + start_vertex
v6 = grid_index(x + 1, y + 1, z + 1) + start_vertex
v7 = grid_index(x, y + 1, z + 1) + start_vertex
if (((x & 1) ^ (y & 1) ^ (z & 1))):
add_tet(v0, v1, v4, v3)
add_tet(v2, v3, v6, v1)
add_tet(v5, v4, v1, v6)
add_tet(v7, v6, v3, v4)
add_tet(v4, v1, v6, v3)
else:
add_tet(v1, v2, v5, v0)
add_tet(v3, v0, v7, v2)
add_tet(v4, v7, v0, v5)
add_tet(v6, v5, v2, v7)
add_tet(v5, v2, v7, v0)
# add triangles
for k, v in faces.items():
self.add_triangle(v[0], v[1], v[2])
def add_soft_mesh(self, pos: Vec3, rot: Quat, scale: float, vel: Vec3, vertices: List[Vec3], indices: List[int], density: float, k_mu: float, k_lambda: float, k_damp: float):
"""Helper to create a tetrahedral model from an input tetrahedral mesh
Args:
pos: The position of the solid in world space
rot: The orientation of the solid in world space
vel: The velocity of the solid in world space
vertices: A list of vertex positions
indices: A list of tetrahedron indices, 4 entries per-element
density: The density per-area of the mesh
k_mu: The first elastic Lame parameter
k_lambda: The second elastic Lame parameter
k_damp: The damping stiffness
"""
num_tets = int(len(indices) / 4)
start_vertex = len(self.particle_q)
start_tri = len(self.tri_indices)
# dict of open faces
faces = {}
def add_face(i, j, k):
key = tuple(sorted((i, j, k)))
if key not in faces:
faces[key] = (i, j, k)
else:
del faces[key]
# add particles
for v in vertices:
p = quat_rotate(rot, v * scale) + pos
self.add_particle(p, vel, 0.0)
# add tetrahedra
for t in range(num_tets):
v0 = start_vertex + indices[t * 4 + 0]
v1 = start_vertex + indices[t * 4 + 1]
v2 = start_vertex + indices[t * 4 + 2]
v3 = start_vertex + indices[t * 4 + 3]
volume = self.add_tetrahedron(v0, v1, v2, v3, k_mu, k_lambda, k_damp)
# distribute volume fraction to particles
if (volume > 0.0):
self.particle_mass[v0] += density * volume / 4.0
self.particle_mass[v1] += density * volume / 4.0
self.particle_mass[v2] += density * volume / 4.0
self.particle_mass[v3] += density * volume / 4.0
# build open faces
add_face(v0, v2, v1)
add_face(v1, v2, v3)
add_face(v0, v1, v3)
add_face(v0, v3, v2)
# add triangles
for k, v in faces.items():
try:
self.add_triangle(v[0], v[1], v[2])
except np.linalg.LinAlgError:
continue
def compute_sphere_inertia(self, density: float, r: float) -> tuple:
"""Helper to compute mass and inertia of a sphere
Args:
density: The sphere density
r: The sphere radius
Returns:
A tuple of (mass, inertia) with inertia specified around the origin
"""
v = 4.0 / 3.0 * math.pi * r * r * r
m = density * v
Ia = 2.0 / 5.0 * m * r * r
I = np.array([[Ia, 0.0, 0.0], [0.0, Ia, 0.0], [0.0, 0.0, Ia]])
return (m, I)
def compute_capsule_inertia(self, density: float, r: float, l: float) -> tuple:
"""Helper to compute mass and inertia of a capsule
Args:
density: The capsule density
r: The capsule radius
l: The capsule length (full width of the interior cylinder)
Returns:
A tuple of (mass, inertia) with inertia specified around the origin
"""
ms = density * (4.0 / 3.0) * math.pi * r * r * r
mc = density * math.pi * r * r * l
# total mass
m = ms + mc
# adapted from ODE
Ia = mc * (0.25 * r * r + (1.0 / 12.0) * l * l) + ms * (0.4 * r * r + 0.375 * r * l + 0.25 * l * l)
Ib = (mc * 0.5 + ms * 0.4) * r * r
I = np.array([[Ib, 0.0, 0.0], [0.0, Ia, 0.0], [0.0, 0.0, Ia]])
return (m, I)
def compute_box_inertia(self, density: float, w: float, h: float, d: float) -> tuple:
"""Helper to compute mass and inertia of a box
Args:
density: The box density
w: The box width along the x-axis
h: The box height along the y-axis
d: The box depth along the z-axis
Returns:
A tuple of (mass, inertia) with inertia specified around the origin
"""
v = w * h * d
m = density * v
Ia = 1.0 / 12.0 * m * (h * h + d * d)
Ib = 1.0 / 12.0 * m * (w * w + d * d)
Ic = 1.0 / 12.0 * m * (w * w + h * h)
I = np.array([[Ia, 0.0, 0.0], [0.0, Ib, 0.0], [0.0, 0.0, Ic]])
return (m, I)
def _compute_shape_mass(self, type, scale, src, density):
if density == 0: # zero density means fixed
return 0, np.zeros((3, 3))
if (type == GEO_SPHERE):
return self.compute_sphere_inertia(density, scale[0])
elif (type == GEO_BOX):
return self.compute_box_inertia(density, scale[0] * 2.0, scale[1] * 2.0, scale[2] * 2.0)
elif (type == GEO_CAPSULE):
return self.compute_capsule_inertia(density, scale[0], scale[1] * 2.0)
elif (type == GEO_MESH):
#todo: non-uniform scale of inertia tensor
s = scale[0] # eventually want to compute moment of inertia for mesh.
return (density * src.mass * s * s * s, density * src.I * s * s * s * s * s)
# incrementally updates rigid body mass with additional mass and inertia expressed at a local to the body
def _update_body_mass(self, i, m, I, p, q):
if (i == -1):
return
# find new COM
new_mass = self.body_mass[i] + m
if new_mass == 0.0: # no mass
return
new_com = (self.body_com[i] * self.body_mass[i] + p * m) / new_mass
# shift inertia to new COM
com_offset = new_com - self.body_com[i]
shape_offset = new_com - p
new_inertia = transform_inertia(self.body_mass[i], self.body_inertia[i], com_offset, quat_identity()) + transform_inertia(
m, I, shape_offset, q)
self.body_mass[i] = new_mass
self.body_inertia[i] = new_inertia
self.body_com[i] = new_com
# returns a (model, state) pair given the description
def finalize(self, adapter: str) -> Model:
"""Convert this builder object to a concrete model for simulation.
After building simulation elements this method should be called to transfer
all data to PyTorch tensors ready for simulation.
Args:
adapter: The simulation adapter to use, e.g.: 'cpu', 'cuda'
Returns:
A model object.
"""
# construct particle inv masses
particle_inv_mass = []
for m in self.particle_mass:
if (m > 0.0):
particle_inv_mass.append(1.0 / m)
else:
particle_inv_mass.append(0.0)
#-------------------------------------
# construct Model (non-time varying) data
m = Model(adapter)
#---------------------
# particles
# state (initial)
m.particle_q = torch.tensor(self.particle_q, dtype=torch.float32, device=adapter)
m.particle_qd = torch.tensor(self.particle_qd, dtype=torch.float32, device=adapter)
# model
m.particle_mass = torch.tensor(self.particle_mass, dtype=torch.float32, device=adapter)
m.particle_inv_mass = torch.tensor(particle_inv_mass, dtype=torch.float32, device=adapter)
#---------------------
# collision geometry
m.shape_transform = torch.tensor(np.array(transform_flatten_list(self.shape_transform)), dtype=torch.float32, device=adapter)
m.shape_body = torch.tensor(self.shape_body, dtype=torch.int32, device=adapter)
m.shape_geo_type = torch.tensor(self.shape_geo_type, dtype=torch.int32, device=adapter)
m.shape_geo_src = self.shape_geo_src
m.shape_geo_scale = torch.tensor(self.shape_geo_scale, dtype=torch.float32, device=adapter)
m.shape_materials = torch.tensor(self.shape_materials, dtype=torch.float32, device=adapter)
#---------------------
# springs
m.spring_indices = torch.tensor(self.spring_indices, dtype=torch.int32, device=adapter)
m.spring_rest_length = torch.tensor(self.spring_rest_length, dtype=torch.float32, device=adapter)
m.spring_stiffness = torch.tensor(self.spring_stiffness, dtype=torch.float32, device=adapter)
m.spring_damping = torch.tensor(self.spring_damping, dtype=torch.float32, device=adapter)
m.spring_control = torch.tensor(self.spring_control, dtype=torch.float32, device=adapter)
#---------------------
# triangles
m.tri_indices = torch.tensor(self.tri_indices, dtype=torch.int32, device=adapter)
m.tri_poses = torch.tensor(self.tri_poses, dtype=torch.float32, device=adapter)
m.tri_activations = torch.tensor(self.tri_activations, dtype=torch.float32, device=adapter)
#---------------------
# edges
m.edge_indices = torch.tensor(self.edge_indices, dtype=torch.int32, device=adapter)
m.edge_rest_angle = torch.tensor(self.edge_rest_angle, dtype=torch.float32, device=adapter)
#---------------------
# tetrahedra
m.tet_indices = torch.tensor(self.tet_indices, dtype=torch.int32, device=adapter)
m.tet_poses = torch.tensor(self.tet_poses, dtype=torch.float32, device=adapter)
m.tet_activations = torch.tensor(self.tet_activations, dtype=torch.float32, device=adapter)
m.tet_materials = torch.tensor(self.tet_materials, dtype=torch.float32, device=adapter)
#-----------------------
# muscles
muscle_count = len(self.muscle_start)
# close the muscle waypoint indices
self.muscle_start.append(len(self.muscle_links))
m.muscle_start = torch.tensor(self.muscle_start, dtype=torch.int32, device=adapter)
m.muscle_params = torch.tensor(self.muscle_params, dtype=torch.float32, device=adapter)
m.muscle_links = torch.tensor(self.muscle_links, dtype=torch.int32, device=adapter)
m.muscle_points = torch.tensor(np.array(self.muscle_points), dtype=torch.float32, device=adapter)
m.muscle_activation = torch.tensor(self.muscle_activation, dtype=torch.float32, device=adapter)
#--------------------------------------
# articulations
# build 6x6 spatial inertia and COM transform
body_X_cm = []
body_I_m = []
for i in range(len(self.body_inertia)):
body_I_m.append(spatial_matrix_from_inertia(self.body_inertia[i], self.body_mass[i]))
body_X_cm.append(transform(self.body_com[i], quat_identity()))
m.body_I_m = torch.tensor(body_I_m, dtype=torch.float32, device=adapter)
articulation_count = len(self.articulation_start)
joint_coord_count = len(self.joint_q)
joint_dof_count = len(self.joint_qd)
# 'close' the start index arrays with a sentinel value
self.joint_q_start.append(len(self.joint_q))
self.joint_qd_start.append(len(self.joint_qd))
self.articulation_start.append(len(self.joint_type))
# calculate total size and offsets of Jacobian and mass matrices for entire system
m.J_size = 0
m.M_size = 0
m.H_size = 0
articulation_J_start = []
articulation_M_start = []
articulation_H_start = []
articulation_M_rows = []
articulation_H_rows = []
articulation_J_rows = []
articulation_J_cols = []
articulation_dof_start = []
articulation_coord_start = []
for i in range(articulation_count):
first_joint = self.articulation_start[i]
last_joint = self.articulation_start[i+1]
first_coord = self.joint_q_start[first_joint]
last_coord = self.joint_q_start[last_joint]
first_dof = self.joint_qd_start[first_joint]
last_dof = self.joint_qd_start[last_joint]
joint_count = last_joint-first_joint
dof_count = last_dof-first_dof
coord_count = last_coord-first_coord
articulation_J_start.append(m.J_size)
articulation_M_start.append(m.M_size)
articulation_H_start.append(m.H_size)
articulation_dof_start.append(first_dof)
articulation_coord_start.append(first_coord)
# bit of data duplication here, but will leave it as such for clarity
articulation_M_rows.append(joint_count*6)
articulation_H_rows.append(dof_count)
articulation_J_rows.append(joint_count*6)
articulation_J_cols.append(dof_count)
m.J_size += 6*joint_count*dof_count
m.M_size += 6*joint_count*6*joint_count
m.H_size += dof_count*dof_count
m.articulation_joint_start = torch.tensor(self.articulation_start, dtype=torch.int32, device=adapter)
# matrix offsets for batched gemm
m.articulation_J_start = torch.tensor(articulation_J_start, dtype=torch.int32, device=adapter)
m.articulation_M_start = torch.tensor(articulation_M_start, dtype=torch.int32, device=adapter)
m.articulation_H_start = torch.tensor(articulation_H_start, dtype=torch.int32, device=adapter)
m.articulation_M_rows = torch.tensor(articulation_M_rows, dtype=torch.int32, device=adapter)
m.articulation_H_rows = torch.tensor(articulation_H_rows, dtype=torch.int32, device=adapter)
m.articulation_J_rows = torch.tensor(articulation_J_rows, dtype=torch.int32, device=adapter)
m.articulation_J_cols = torch.tensor(articulation_J_cols, dtype=torch.int32, device=adapter)
m.articulation_dof_start = torch.tensor(articulation_dof_start, dtype=torch.int32, device=adapter)
m.articulation_coord_start = torch.tensor(articulation_coord_start, dtype=torch.int32, device=adapter)
# state (initial)
m.joint_q = torch.tensor(self.joint_q, dtype=torch.float32, device=adapter)
m.joint_qd = torch.tensor(self.joint_qd, dtype=torch.float32, device=adapter)
# model
m.joint_type = torch.tensor(self.joint_type, dtype=torch.int32, device=adapter)
m.joint_parent = torch.tensor(self.joint_parent, dtype=torch.int32, device=adapter)
m.joint_X_pj = torch.tensor(transform_flatten_list(self.joint_X_pj), dtype=torch.float32, device=adapter)
m.joint_X_cm = torch.tensor(transform_flatten_list(body_X_cm), dtype=torch.float32, device=adapter)
m.joint_axis = torch.tensor(self.joint_axis, dtype=torch.float32, device=adapter)
m.joint_q_start = torch.tensor(self.joint_q_start, dtype=torch.int32, device=adapter)
m.joint_qd_start = torch.tensor(self.joint_qd_start, dtype=torch.int32, device=adapter)
# dynamics properties
m.joint_armature = torch.tensor(self.joint_armature, dtype=torch.float32, device=adapter)
m.joint_target = torch.tensor(self.joint_target, dtype=torch.float32, device=adapter)
m.joint_target_ke = torch.tensor(self.joint_target_ke, dtype=torch.float32, device=adapter)
m.joint_target_kd = torch.tensor(self.joint_target_kd, dtype=torch.float32, device=adapter)
m.joint_limit_lower = torch.tensor(self.joint_limit_lower, dtype=torch.float32, device=adapter)
m.joint_limit_upper = torch.tensor(self.joint_limit_upper, dtype=torch.float32, device=adapter)
m.joint_limit_ke = torch.tensor(self.joint_limit_ke, dtype=torch.float32, device=adapter)
m.joint_limit_kd = torch.tensor(self.joint_limit_kd, dtype=torch.float32, device=adapter)
# counts
m.particle_count = len(self.particle_q)
m.articulation_count = articulation_count
m.joint_coord_count = joint_coord_count
m.joint_dof_count = joint_dof_count
m.muscle_count = muscle_count
m.link_count = len(self.joint_type)
m.shape_count = len(self.shape_geo_type)
m.tri_count = len(self.tri_poses)
m.tet_count = len(self.tet_poses)
m.edge_count = len(self.edge_rest_angle)
m.spring_count = len(self.spring_rest_length)
m.contact_count = 0
# store refs to geometry
m.geo_meshes = self.geo_meshes
m.geo_sdfs = self.geo_sdfs
# enable ground plane
m.ground = True
m.enable_tri_collisions = False
m.gravity = torch.tensor((0.0, -9.8, 0.0), dtype=torch.float32, device=adapter)
# allocate space for mass / jacobian matrices
m.alloc_mass_matrix()
return m
| 71,080 |
Python
| 36.809043 | 206 | 0.562085 |
RoboticExplorationLab/CGAC/dflex/dflex/adjoint.py
|
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
import imp
import ast
import math
import inspect
import typing
import weakref
import numpy as np
import torch
import torch.utils.cpp_extension
import dflex.config
import copy
# Todo
#-----
#
# [ ] Unary ops (e.g.: -)
# [ ] Inplace ops (e.g.: +=, -=)
# [ ] Conditionals
# [ ] Loops (unrolled)
# [ ] Auto-gen PyTorch operator
# [ ] CUDA kernel code gen + dynamic compilation
# -----
operators = {}
functions = {}
cuda_functions = {}
kernels = {}
#----------------------
# built-in types
class float3:
def __init__(self):
x = 0.0
y = 0.0
z = 0.0
class float4:
def __init__(self):
x = 0.0
y = 0.0
z = 0.0
w = 0.0
class quat:
def __init__(self):
x = 0.0
y = 0.0
z = 0.0
w = 1.0
class mat22:
def __init__(self):
pass
class mat33:
def __init__(self):
pass
class spatial_vector:
def __init__(self):
pass
class spatial_matrix:
def __init__(self):
pass
class spatial_transform:
def __init__(self):
pass
class void:
def __init__(self):
pass
class tensor:
def __init__(self, type):
self.type = type
self.requires_grad = True
self.__name__ = "tensor<" + type.__name__ + ">"
#----------------------
# register built-in function
def builtin(key):
def insert(func):
func.key = key
func.prefix = "df::"
functions[key] = func
return func
return insert
#---------------------------------
# built-in operators +,-,*,/
@builtin("add")
class AddFunc:
@staticmethod
def value_type(args):
return args[0].type
@builtin("sub")
class SubFunc:
@staticmethod
def value_type(args):
return args[0].type
@builtin("mod")
class ModFunc:
@staticmethod
def value_type(args):
return args[0].type
@builtin("mul")
class MulFunc:
@staticmethod
def value_type(args):
# todo: encode type operator type globally
if (args[0].type == mat33 and args[1].type == float3):
return float3
if (args[0].type == spatial_matrix and args[1].type == spatial_vector):
return spatial_vector
else:
return args[0].type
@builtin("div")
class DivFunc:
@staticmethod
def value_type(args):
return args[0].type
#----------------------
# map operator nodes to builtin
operators[ast.Add] = "add"
operators[ast.Sub] = "sub"
operators[ast.Mult] = "mul"
operators[ast.Div] = "div"
operators[ast.FloorDiv] = "div"
operators[ast.Mod] = "mod"
operators[ast.Gt] = ">"
operators[ast.Lt] = "<"
operators[ast.GtE] = ">="
operators[ast.LtE] = "<="
operators[ast.Eq] = "=="
operators[ast.NotEq] = "!="
#----------------------
# built-in functions
@builtin("min")
class MinFunc:
@staticmethod
def value_type(args):
return float
@builtin("max")
class MaxFunc:
@staticmethod
def value_type(args):
return float
@builtin("leaky_max")
class LeakyMaxFunc:
@staticmethod
def value_type(args):
return float
@builtin("leaky_min")
class LeakyMinFunc:
@staticmethod
def value_type(args):
return float
@builtin("clamp")
class ClampFunc:
@staticmethod
def value_type(args):
return float
@builtin("step")
class StepFunc:
@staticmethod
def value_type(args):
return float
@builtin("nonzero")
class NonZeroFunc:
@staticmethod
def value_type(args):
return float
@builtin("sign")
class SignFunc:
@staticmethod
def value_type(args):
return float
@builtin("abs")
class AbsFunc:
@staticmethod
def value_type(args):
return float
@builtin("sin")
class SinFunc:
@staticmethod
def value_type(args):
return float
@builtin("cos")
class CosFunc:
@staticmethod
def value_type(args):
return float
@builtin("acos")
class ACosFunc:
@staticmethod
def value_type(args):
return float
@builtin("sin")
class SinFunc:
@staticmethod
def value_type(args):
return float
@builtin("cos")
class CosFunc:
@staticmethod
def value_type(args):
return float
@builtin("sqrt")
class SqrtFunc:
@staticmethod
def value_type(args):
return float
@builtin("dot")
class DotFunc:
@staticmethod
def value_type(args):
return float
@builtin("cross")
class CrossFunc:
@staticmethod
def value_type(args):
return float3
@builtin("skew")
class SkewFunc:
@staticmethod
def value_type(args):
return mat33
@builtin("length")
class LengthFunc:
@staticmethod
def value_type(args):
return float
@builtin("normalize")
class NormalizeFunc:
@staticmethod
def value_type(args):
return args[0].type
@builtin("select")
class SelectFunc:
@staticmethod
def value_type(args):
return args[1].type
@builtin("rotate")
class RotateFunc:
@staticmethod
def value_type(args):
return float3
@builtin("rotate_inv")
class RotateInvFunc:
@staticmethod
def value_type(args):
return float3
@builtin("determinant")
class DeterminantFunc:
@staticmethod
def value_type(args):
return float
@builtin("transpose")
class TransposeFunc:
@staticmethod
def value_type(args):
return args[0].type
@builtin("load")
class LoadFunc:
@staticmethod
def value_type(args):
if (type(args[0].type) != tensor):
raise Exception("Load input 0 must be a tensor")
if (args[1].type != int):
raise Exception("Load input 1 must be a int")
return args[0].type.type
@builtin("store")
class StoreFunc:
@staticmethod
def value_type(args):
if (type(args[0].type) != tensor):
raise Exception("Store input 0 must be a tensor")
if (args[1].type != int):
raise Exception("Store input 1 must be a int")
if (args[2].type != args[0].type.type):
raise Exception("Store input 2 must be of the same type as the tensor")
return None
@builtin("atomic_add")
class AtomicAddFunc:
@staticmethod
def value_type(args):
return None
@builtin("atomic_sub")
class AtomicSubFunc:
@staticmethod
def value_type(args):
return None
@builtin("tid")
class ThreadIdFunc:
@staticmethod
def value_type(args):
return int
# type construtors
@builtin("float")
class floatFunc:
@staticmethod
def value_type(args):
return float
@builtin("int")
class IntFunc:
@staticmethod
def value_type(args):
return int
@builtin("float3")
class Float3Func:
@staticmethod
def value_type(args):
return float3
@builtin("quat")
class QuatFunc:
@staticmethod
def value_type(args):
return quat
@builtin("quat_identity")
class QuatIdentityFunc:
@staticmethod
def value_type(args):
return quat
@builtin("quat_from_axis_angle")
class QuatAxisAngleFunc:
@staticmethod
def value_type(args):
return quat
@builtin("mat22")
class Mat22Func:
@staticmethod
def value_type(args):
return mat22
@builtin("mat33")
class Mat33Func:
@staticmethod
def value_type(args):
return mat33
@builtin("spatial_vector")
class SpatialVectorFunc:
@staticmethod
def value_type(args):
return spatial_vector
# built-in spatial operators
@builtin("spatial_transform")
class TransformFunc:
@staticmethod
def value_type(args):
return spatial_transform
@builtin("spatial_transform_identity")
class TransformIdentity:
@staticmethod
def value_type(args):
return spatial_transform
@builtin("inverse")
class Inverse:
@staticmethod
def value_type(args):
return quat
# @builtin("spatial_transform_inverse")
# class TransformInverse:
# @staticmethod
# def value_type(args):
# return spatial_transform
@builtin("spatial_transform_get_translation")
class TransformGetTranslation:
@staticmethod
def value_type(args):
return float3
@builtin("spatial_transform_get_rotation")
class TransformGetRotation:
@staticmethod
def value_type(args):
return quat
@builtin("spatial_transform_multiply")
class TransformMulFunc:
@staticmethod
def value_type(args):
return spatial_transform
# @builtin("spatial_transform_inertia")
# class TransformInertiaFunc:
# @staticmethod
# def value_type(args):
# return spatial_matrix
@builtin("spatial_adjoint")
class SpatialAdjoint:
@staticmethod
def value_type(args):
return spatial_matrix
@builtin("spatial_dot")
class SpatialDotFunc:
@staticmethod
def value_type(args):
return float
@builtin("spatial_cross")
class SpatialDotFunc:
@staticmethod
def value_type(args):
return spatial_vector
@builtin("spatial_cross_dual")
class SpatialDotFunc:
@staticmethod
def value_type(args):
return spatial_vector
@builtin("spatial_transform_point")
class SpatialTransformPointFunc:
@staticmethod
def value_type(args):
return float3
@builtin("spatial_transform_vector")
class SpatialTransformVectorFunc:
@staticmethod
def value_type(args):
return float3
@builtin("spatial_top")
class SpatialTopFunc:
@staticmethod
def value_type(args):
return float3
@builtin("spatial_bottom")
class SpatialBottomFunc:
@staticmethod
def value_type(args):
return float3
@builtin("spatial_jacobian")
class SpatialJacobian:
@staticmethod
def value_type(args):
return None
@builtin("spatial_mass")
class SpatialMass:
@staticmethod
def value_type(args):
return None
@builtin("dense_gemm")
class DenseGemm:
@staticmethod
def value_type(args):
return None
@builtin("dense_gemm_batched")
class DenseGemmBatched:
@staticmethod
def value_type(args):
return None
@builtin("dense_chol")
class DenseChol:
@staticmethod
def value_type(args):
return None
@builtin("dense_chol_batched")
class DenseCholBatched:
@staticmethod
def value_type(args):
return None
@builtin("dense_subs")
class DenseSubs:
@staticmethod
def value_type(args):
return None
@builtin("dense_solve")
class DenseSolve:
@staticmethod
def value_type(args):
return None
@builtin("dense_solve_batched")
class DenseSolve:
@staticmethod
def value_type(args):
return None
# helpers
@builtin("index")
class IndexFunc:
@staticmethod
def value_type(args):
return float
@builtin("print")
class PrintFunc:
@staticmethod
def value_type(args):
return None
class Var:
def __init__(adj, label, type, requires_grad=False, constant=None):
adj.label = label
adj.type = type
adj.requires_grad = requires_grad
adj.constant = constant
def __str__(adj):
return adj.label
def ctype(self):
if (isinstance(self.type, tensor)):
if self.type.type == float3:
return str("df::" + self.type.type.__name__) + "*"
return str(self.type.type.__name__) + "*"
elif self.type == float3:
return "df::" + str(self.type.__name__)
else:
return str(self.type.__name__)
#--------------------
# Storage class for partial AST up to a return statement.
class Stmt:
def __init__(self, cond, forward, forward_replay, reverse, ret_forward, ret_line):
self.cond = cond # condition, can be None
self.forward = forward # all forward code outside of conditional branch *since last return*
self.forward_replay = forward_replay
self.reverse = reverse # all reverse code including the reverse of any code in ret_forward
self.ret_forward = ret_forward # all forward commands in the return statement except the actual return statement
self.ret_line = ret_line # actual return statement
#------------------------------------------------------------------------
# Source code transformer, this class takes a Python function and
# computes its adjoint using single-pass translation of the function's AST
class Adjoint:
def __init__(adj, func, device='cpu'):
adj.func = func
adj.device = device
adj.symbols = {} # map from symbols to adjoint variables
adj.variables = [] # list of local variables (in order)
adj.args = [] # list of function arguments (in order)
adj.cond = None # condition variable if in branch
adj.return_var = None # return type for function or kernel
# build AST from function object
adj.source = inspect.getsource(func)
adj.tree = ast.parse(adj.source)
# parse argument types
arg_types = typing.get_type_hints(func)
# add variables and symbol map for each argument
for name, t in arg_types.items():
adj.symbols[name] = Var(name, t, False)
# build ordered list of args
for a in adj.tree.body[0].args.args:
adj.args.append(adj.symbols[a.arg])
# primal statements (allows different statements in replay)
adj.body_forward = []
adj.body_forward_replay = []
adj.body_reverse = []
adj.output = []
adj.indent_count = 0
adj.label_count = 0
# recursively evaluate function body
adj.eval(adj.tree.body[0])
# code generation methods
def format_template(adj, template, input_vars, output_var):
# output var is always the 0th index
args = [output_var] + input_vars
s = template.format(*args)
return s
# generates a comma separated list of args
def format_args(adj, prefix, indices):
args = ""
sep = ""
for i in indices:
args += sep + prefix + str(i)
sep = ", "
return args
def add_var(adj, type=None, constant=None):
index = len(adj.variables)
v = Var(str(index), type=type, constant=constant)
adj.variables.append(v)
return v
def add_constant(adj, n):
output = adj.add_var(type=type(n), constant=n)
#adj.add_forward("var_{} = {};".format(output, n))
return output
def add_load(adj, input):
output = adj.add_var(input.type)
adj.add_forward("var_{} = {};".format(output, input))
adj.add_reverse("adj_{} += adj_{};".format(input, output))
return output
def add_operator(adj, op, inputs):
# todo: just using first input as the output type, would need some
# type inference here to support things like float3 = float*float3
output = adj.add_var(inputs[0].type)
transformer = operators[op.__class__]
for t in transformer.forward():
adj.add_forward(adj.format_template(t, inputs, output))
for t in transformer.reverse():
adj.add_reverse(adj.format_template(t, inputs, output))
return output
def add_comp(adj, op_strings, left, comps):
output = adj.add_var(bool)
s = "var_" + str(output) + " = " + ("(" * len(comps)) + "var_" + str(left) + " "
for op, comp in zip(op_strings, comps):
s += op + " var_" + str(comp) + ") "
s = s.rstrip() + ";"
adj.add_forward(s)
return output
def add_bool_op(adj, op_string, exprs):
output = adj.add_var(bool)
command = "var_" + str(output) + " = " + (" " + op_string + " ").join(["var_" + str(expr) for expr in exprs]) + ";"
adj.add_forward(command)
return output
def add_call(adj, func, inputs, prefix='df::'):
# expression (zero output), e.g.: tid()
if (func.value_type(inputs) == None):
forward_call = prefix + "{}({});".format(func.key, adj.format_args("var_", inputs))
adj.add_forward(forward_call)
if (len(inputs)):
reverse_call = prefix + "{}({}, {});".format("adj_" + func.key, adj.format_args("var_", inputs), adj.format_args("adj_", inputs))
adj.add_reverse(reverse_call)
return None
# function (one output)
else:
output = adj.add_var(func.value_type(inputs))
forward_call = "var_{} = ".format(output) + prefix + "{}({});".format(func.key, adj.format_args("var_", inputs))
adj.add_forward(forward_call)
if (len(inputs)):
reverse_call = prefix + "{}({}, {}, {});".format(
"adj_" + func.key, adj.format_args("var_", inputs), adj.format_args("adj_", inputs), adj.format_args("adj_", [output]))
adj.add_reverse(reverse_call)
return output
def add_return(adj, var):
if (var == None):
adj.add_forward("return;".format(var), "goto label{};".format(adj.label_count))
else:
adj.add_forward("return var_{};".format(var), "goto label{};".format(adj.label_count))
adj.add_reverse("adj_" + str(var) + " += adj_ret;")
adj.add_reverse("label{}:;".format(adj.label_count))
adj.label_count += 1
# define an if statement
def begin_if(adj, cond):
adj.add_forward("if (var_{}) {{".format(cond))
adj.add_reverse("}")
adj.indent_count += 1
def end_if(adj, cond):
adj.indent_count -= 1
adj.add_forward("}")
adj.add_reverse("if (var_{}) {{".format(cond))
# define a for-loop
def begin_for(adj, iter, start, end):
# note that dynamic for-loops must not mutate any previous state, so we don't need to re-run them in the reverse pass
adj.add_forward("for (var_{0}=var_{1}; var_{0} < var_{2}; ++var_{0}) {{".format(iter, start, end), "if (false) {")
adj.add_reverse("}")
adj.indent_count += 1
def end_for(adj, iter, start, end):
adj.indent_count -= 1
adj.add_forward("}")
adj.add_reverse("for (var_{0}=var_{2}-1; var_{0} >= var_{1}; --var_{0}) {{".format(iter, start, end))
# append a statement to the forward pass
def add_forward(adj, statement, statement_replay=None):
prefix = ""
for i in range(adj.indent_count):
prefix += "\t"
adj.body_forward.append(prefix + statement)
# allow for different statement in reverse kernel replay
if (statement_replay):
adj.body_forward_replay.append(prefix + statement_replay)
else:
adj.body_forward_replay.append(prefix + statement)
# append a statement to the reverse pass
def add_reverse(adj, statement):
prefix = ""
for i in range(adj.indent_count):
prefix += "\t"
adj.body_reverse.append(prefix + statement)
def eval(adj, node):
try:
if (isinstance(node, ast.FunctionDef)):
out = None
for f in node.body:
out = adj.eval(f)
if 'return' in adj.symbols and adj.symbols['return'] is not None:
out = adj.symbols['return']
stmt = Stmt(None, adj.body_forward, adj.body_forward_replay, reversed(adj.body_reverse), [], "")
adj.output.append(stmt)
else:
stmt = Stmt(None, adj.body_forward, adj.body_forward_replay, reversed(adj.body_reverse), [], "")
adj.output.append(stmt)
return out
elif (isinstance(node, ast.If)): # if statement
if len(node.orelse) != 0:
raise SyntaxError("Else statements not currently supported")
if len(node.body) == 0:
return None
# save symbol map
symbols_prev = adj.symbols.copy()
# eval condition
cond = adj.eval(node.test)
# eval body
adj.begin_if(cond)
for stmt in node.body:
adj.eval(stmt)
adj.end_if(cond)
# detect symbols with conflicting definitions (assigned inside the branch)
for items in symbols_prev.items():
sym = items[0]
var1 = items[1]
var2 = adj.symbols[sym]
if var1 != var2:
# insert a phi function that
# selects var1, var2 based on cond
out = adj.add_call(functions["select"], [cond, var1, var2])
adj.symbols[sym] = out
return None
elif (isinstance(node, ast.Compare)):
# node.left, node.ops (list of ops), node.comparators (things to compare to)
# e.g. (left ops[0] node.comparators[0]) ops[1] node.comparators[1]
left = adj.eval(node.left)
comps = [adj.eval(comp) for comp in node.comparators]
op_strings = [operators[type(op)] for op in node.ops]
out = adj.add_comp(op_strings, left, comps)
return out
elif (isinstance(node, ast.BoolOp)):
# op, expr list values (e.g. and and a list of things anded together)
op = node.op
if isinstance(op, ast.And):
func = "&&"
elif isinstance(op, ast.Or):
func = "||"
else:
raise KeyError("Op {} is not supported".format(op))
out = adj.add_bool_op(func, [adj.eval(expr) for expr in node.values])
# import pdb
# pdb.set_trace()
return out
elif (isinstance(node, ast.Name)):
# lookup symbol, if it has already been assigned to a variable then return the existing mapping
if (node.id in adj.symbols):
return adj.symbols[node.id]
else:
raise KeyError("Referencing undefined symbol: " + str(node.id))
elif (isinstance(node, ast.Num)):
# lookup constant, if it has already been assigned then return existing var
# currently disabled, since assigning constant in a branch means it
key = (node.n, type(node.n))
if (key in adj.symbols):
return adj.symbols[key]
else:
out = adj.add_constant(node.n)
adj.symbols[key] = out
return out
#out = adj.add_constant(node.n)
#return out
elif (isinstance(node, ast.BinOp)):
# evaluate binary operator arguments
left = adj.eval(node.left)
right = adj.eval(node.right)
name = operators[type(node.op)]
func = functions[name]
out = adj.add_call(func, [left, right])
return out
elif (isinstance(node, ast.UnaryOp)):
# evaluate unary op arguments
arg = adj.eval(node.operand)
out = adj.add_operator(node.op, [arg])
return out
elif (isinstance(node, ast.For)):
if (len(node.iter.args) != 2):
raise Exception("For loop ranges must be of form range(start, end) with both start and end specified and no skip specifier.")
# check if loop range is compile time constant
unroll = True
for a in node.iter.args:
if (isinstance(a, ast.Num) == False):
unroll = False
break
if (unroll):
# constant loop, unroll
start = node.iter.args[0].n
end = node.iter.args[1].n
for i in range(start, end):
var_iter = adj.add_constant(i)
adj.symbols[node.target.id] = var_iter
# eval body
for s in node.body:
adj.eval(s)
else:
# dynamic loop, body must be side-effect free, i.e.: not
# overwrite memory locations used by previous operations
start = adj.eval(node.iter.args[0])
end = adj.eval(node.iter.args[1])
# add iterator variable
iter = adj.add_var(int)
adj.symbols[node.target.id] = iter
adj.begin_for(iter, start, end)
# eval body
for s in node.body:
adj.eval(s)
adj.end_for(iter, start, end)
elif (isinstance(node, ast.Expr)):
return adj.eval(node.value)
elif (isinstance(node, ast.Call)):
name = None
# determine if call is to a builtin (attribute), or to a user-func (name)
if (isinstance(node.func, ast.Attribute)):
name = node.func.attr
elif (isinstance(node.func, ast.Name)):
name = node.func.id
# check it exists
if name not in functions:
raise KeyError("Could not find function {}".format(name))
if adj.device == 'cuda' and name in cuda_functions:
func = cuda_functions[name]
else:
func = functions[name]
args = []
# eval all arguments
for arg in node.args:
var = adj.eval(arg)
args.append(var)
# add var with value type from the function
out = adj.add_call(func, args, prefix=func.prefix)
return out
elif (isinstance(node, ast.Subscript)):
target = adj.eval(node.value)
indices = []
if isinstance(node.slice.value, ast.Tuple):
# handles the M[i, j] case
for arg in node.slice.value.elts:
var = adj.eval(arg)
indices.append(var)
else:
# simple expression
var = adj.eval(node.slice.value)
indices.append(var)
out = adj.add_call(functions["index"], [target, *indices])
return out
elif (isinstance(node, ast.Assign)):
# if adj.cond is not None:
# raise SyntaxError("error, cannot assign variables in a conditional branch")
# evaluate rhs
out = adj.eval(node.value)
# update symbol map (assumes lhs is a Name node)
adj.symbols[node.targets[0].id] = out
return out
elif (isinstance(node, ast.Return)):
cond = adj.cond # None if not in branch, else branch boolean
out = adj.eval(node.value)
adj.symbols['return'] = out
if out is not None: # set return type of function
return_var = out
if adj.return_var is not None and adj.return_var.ctype() != return_var.ctype():
raise TypeError("error, function returned different types")
adj.return_var = return_var
adj.add_return(out)
return out
elif node is None:
return None
else:
print("[WARNING] ast node of type {} not supported".format(type(node)))
except Exception as e:
# print error / line number
lines = adj.source.splitlines()
print("Error: {} while transforming node {} in func: {} at line: {} col: {}: \n {}".format(e, type(node), adj.func.__name__, node.lineno, node.col_offset, lines[max(node.lineno-1, 0)]))
raise
#----------------
# code generation
cpu_module_header = '''
#define CPU
#include "adjoint.h"
using namespace df;
template <typename T>
T cast(torch::Tensor t)
{{
return (T)(t.data_ptr());
}}
'''
cuda_module_header = '''
#define CUDA
#include "adjoint.h"
using namespace df;
template <typename T>
T cast(torch::Tensor t)
{{
return (T)(t.data_ptr());
}}
'''
cpu_function_template = '''
{return_type} {name}_cpu_func({forward_args})
{{
{forward_body}
}}
void adj_{name}_cpu_func({forward_args}, {reverse_args})
{{
{reverse_body}
}}
'''
cuda_function_template = '''
CUDA_CALLABLE {return_type} {name}_cuda_func({forward_args})
{{
{forward_body}
}}
CUDA_CALLABLE void adj_{name}_cuda_func({forward_args}, {reverse_args})
{{
{reverse_body}
}}
'''
cuda_kernel_template = '''
__global__ void {name}_cuda_kernel_forward(int dim, {forward_args})
{{
{forward_body}
}}
__global__ void {name}_cuda_kernel_backward(int dim, {forward_args}, {reverse_args})
{{
{reverse_body}
}}
'''
cpu_kernel_template = '''
void {name}_cpu_kernel_forward({forward_args})
{{
{forward_body}
}}
void {name}_cpu_kernel_backward({forward_args}, {reverse_args})
{{
{reverse_body}
}}
'''
cuda_module_template = '''
// Python entry points
void {name}_cuda_forward(int dim, {forward_args})
{{
{name}_cuda_kernel_forward<<<(dim + 256 - 1) / 256, 256>>>(dim, {forward_params});
//check_cuda(cudaPeekAtLastError());
//check_cuda(cudaDeviceSynchronize());
}}
void {name}_cuda_backward(int dim, {forward_args}, {reverse_args})
{{
{name}_cuda_kernel_backward<<<(dim + 256 - 1) / 256, 256>>>(dim, {forward_params}, {reverse_params});
//check_cuda(cudaPeekAtLastError());
//check_cuda(cudaDeviceSynchronize());
}}
'''
cpu_module_template = '''
// Python entry points
void {name}_cpu_forward(int dim, {forward_args})
{{
for (int i=0; i < dim; ++i)
{{
s_threadIdx = i;
{name}_cpu_kernel_forward({forward_params});
}}
}}
void {name}_cpu_backward(int dim, {forward_args}, {reverse_args})
{{
for (int i=0; i < dim; ++i)
{{
s_threadIdx = i;
{name}_cpu_kernel_backward({forward_params}, {reverse_params});
}}
}}
'''
cuda_module_header_template = '''
// Python entry points
void {name}_cuda_forward(int dim, {forward_args});
void {name}_cuda_backward(int dim, {forward_args}, {reverse_args});
'''
cpu_module_header_template = '''
// Python entry points
void {name}_cpu_forward(int dim, {forward_args});
void {name}_cpu_backward(int dim, {forward_args}, {reverse_args});
'''
def indent(args, stops=1):
sep = "\n"
for i in range(stops):
sep += "\t"
return sep + args.replace(", ", "," + sep)
def codegen_func_forward_body(adj, device='cpu', indent=4):
body = []
indent_block = " " * indent
for stmt in adj.output:
for f in stmt.forward:
body += [f + "\n"]
if stmt.cond is not None:
body += ["if (" + str(stmt.cond) + ") {\n"]
for l in stmt.ret_forward:
body += [indent_block + l + "\n"]
body += [indent_block + stmt.ret_line + "\n"]
body += ["}\n"]
else:
for l in stmt.ret_forward:
body += [l + "\n"]
body += [stmt.ret_line + "\n"]
break # break once unconditional return is encountered
return "".join([indent_block + l for l in body])
def codegen_func_forward(adj, func_type='kernel', device='cpu'):
s = ""
# primal vars
s += " //---------\n"
s += " // primal vars\n"
for var in adj.variables:
if var.constant == None:
s += " " + var.ctype() + " var_" + str(var.label) + ";\n"
else:
s += " const " + var.ctype() + " var_" + str(var.label) + " = " + str(var.constant) + ";\n"
# forward pass
s += " //---------\n"
s += " // forward\n"
if device == 'cpu':
s += codegen_func_forward_body(adj, device=device, indent=4)
elif device == 'cuda':
if func_type == 'kernel':
s += " int var_idx = blockDim.x * blockIdx.x + threadIdx.x;\n"
s += " if (var_idx < dim) {\n"
s += codegen_func_forward_body(adj, device=device, indent=8)
s += " }\n"
else:
s += codegen_func_forward_body(adj, device=device, indent=4)
return s
def codegen_func_reverse_body(adj, device='cpu', indent=4):
body = []
indent_block = " " * indent
for stmt in adj.output:
# forward pass
body += ["//---------\n"]
body += ["// forward\n"]
for f in stmt.forward_replay:
body += [f + "\n"]
if stmt.cond is not None:
body += ["if (" + str(stmt.cond) + ") {\n"]
for l in stmt.ret_forward:
body += [indent_block + l + "\n"]
# reverse pass
body += [indent_block + "//---------\n"]
body += [indent_block + "// reverse\n"]
for l in stmt.reverse:
body += [indent_block + l + "\n"]
body += [indent_block + "return;\n"]
body += ["}\n"]
else:
for l in stmt.ret_forward:
body += [l + "\n"]
# reverse pass
body += ["//---------\n"]
body += ["// reverse\n"]
for l in stmt.reverse:
body += [l + "\n"]
body += ["return;\n"]
break # break once unconditional return is encountered
return "".join([indent_block + l for l in body])
def codegen_func_reverse(adj, func_type='kernel', device='cpu'):
s = ""
# primal vars
s += " //---------\n"
s += " // primal vars\n"
for var in adj.variables:
if var.constant == None:
s += " " + var.ctype() + " var_" + str(var.label) + ";\n"
else:
s += " const " + var.ctype() + " var_" + str(var.label) + " = " + str(var.constant) + ";\n"
# dual vars
s += " //---------\n"
s += " // dual vars\n"
for var in adj.variables:
s += " " + var.ctype() + " adj_" + str(var.label) + " = 0;\n"
if device == 'cpu':
s += codegen_func_reverse_body(adj, device=device, indent=4)
elif device == 'cuda':
if func_type == 'kernel':
s += " int var_idx = blockDim.x * blockIdx.x + threadIdx.x;\n"
s += " if (var_idx < dim) {\n"
s += codegen_func_reverse_body(adj, device=device, indent=8)
s += " }\n"
else:
s += codegen_func_reverse_body(adj, device=device, indent=4)
else:
raise ValueError("Device {} not supported for codegen".format(device))
return s
def codegen_func(adj, device='cpu'):
# forward header
# return_type = "void"
return_type = 'void' if adj.return_var is None else adj.return_var.ctype()
# s = "{} {}_forward(".format(return_type, adj.func.__name__)
# sep = ""
# for arg in adj.args:
# if (arg.label != 'return'):
# s += sep + str(arg.type.__name__) + " var_" + arg.label
# sep = ", "
# reverse header
# s = "void {}_reverse(".format(adj.func.__name__)
# return s
forward_args = ""
reverse_args = ""
# s = ""
# forward args
sep = ""
for arg in adj.args:
forward_args += sep + arg.ctype() + " var_" + arg.label
sep = ", "
# reverse args
sep = ""
for arg in adj.args:
if "*" in arg.ctype():
reverse_args += sep + arg.ctype() + " adj_" + arg.label
else:
reverse_args += sep + arg.ctype() + " & adj_" + arg.label
sep = ", "
reverse_args += sep + return_type + " & adj_ret"
# reverse args
# add primal version of parameters
# sep = ""
# for var in adj.args:
# if (var.label != 'return'):
# s += sep + var.ctype() + " var_" + var.label
# sep = ", "
# # add adjoint version of parameters
# for var in adj.args:
# if (var.label != 'return'):
# s += sep + var.ctype() + "& adj_" + var.label
# sep = ", "
# # add adjoint of output
# if ('return' in adj.symbols and adj.symbols['return'] != None):
# s += sep + str(adj.symbols['return'].type.__name__) + " adj_" + str(adj.symbols['return'])
# codegen body
forward_body = codegen_func_forward(adj, func_type='function', device=device)
reverse_body = codegen_func_reverse(adj, func_type='function', device=device)
if device == 'cpu':
template = cpu_function_template
elif device == 'cuda':
template = cuda_function_template
else:
raise ValueError("Device {} is not supported".format(device))
s = template.format(name=adj.func.__name__,
return_type=return_type,
forward_args=indent(forward_args),
reverse_args=indent(reverse_args),
forward_body=forward_body,
reverse_body=reverse_body)
return s
def codegen_kernel(adj, device='cpu'):
forward_args = ""
reverse_args = ""
# forward args
sep = ""
for arg in adj.args:
forward_args += sep + arg.ctype() + " var_" + arg.label
sep = ", "
# reverse args
sep = ""
for arg in adj.args:
reverse_args += sep + arg.ctype() + " adj_" + arg.label
sep = ", "
# codegen body
forward_body = codegen_func_forward(adj, func_type='kernel', device=device)
reverse_body = codegen_func_reverse(adj, func_type='kernel', device=device)
# import pdb
# pdb.set_trace()
if device == 'cpu':
template = cpu_kernel_template
elif device == 'cuda':
template = cuda_kernel_template
else:
raise ValueError("Device {} is not supported".format(device))
s = template.format(name=adj.func.__name__,
forward_args=indent(forward_args),
reverse_args=indent(reverse_args),
forward_body=forward_body,
reverse_body=reverse_body)
return s
def codegen_module(adj, device='cpu'):
forward_args = ""
reverse_args = ""
forward_params = ""
reverse_params = ""
sep = ""
for arg in adj.args:
if (isinstance(arg.type, tensor)):
forward_args += sep + "torch::Tensor var_" + arg.label
forward_params += sep + "cast<" + arg.ctype() + ">(var_" + arg.label + ")"
else:
forward_args += sep + arg.ctype() + " var_" + arg.label
forward_params += sep + "var_" + arg.label
sep = ", "
sep = ""
for arg in adj.args:
if (isinstance(arg.type, tensor)):
reverse_args += sep + "torch::Tensor adj_" + arg.label
reverse_params += sep + "cast<" + arg.ctype() + ">(adj_" + arg.label + ")"
else:
reverse_args += sep + arg.ctype() + " adj_" + arg.label
reverse_params += sep + "adj_" + arg.label
sep = ", "
if device == 'cpu':
template = cpu_module_template
elif device == 'cuda':
template = cuda_module_template
else:
raise ValueError("Device {} is not supported".format(device))
s = template.format(name=adj.func.__name__,
forward_args=indent(forward_args),
reverse_args=indent(reverse_args),
forward_params=indent(forward_params, 3),
reverse_params=indent(reverse_params, 3))
return s
def codegen_module_decl(adj, device='cpu'):
forward_args = ""
reverse_args = ""
forward_params = ""
reverse_params = ""
sep = ""
for arg in adj.args:
if (isinstance(arg.type, tensor)):
forward_args += sep + "torch::Tensor var_" + arg.label
forward_params += sep + "cast<" + arg.ctype() + ">(var_" + arg.label + ")"
else:
forward_args += sep + arg.ctype() + " var_" + arg.label
forward_params += sep + "var_" + arg.label
sep = ", "
sep = ""
for arg in adj.args:
if (isinstance(arg.type, tensor)):
reverse_args += sep + "torch::Tensor adj_" + arg.label
reverse_params += sep + "cast<" + arg.ctype() + ">(adj_" + arg.label + ")"
else:
reverse_args += sep + arg.ctype() + " adj_" + arg.label
reverse_params += sep + "adj_" + arg.label
sep = ", "
if device == 'cpu':
template = cpu_module_header_template
elif device == 'cuda':
template = cuda_module_header_template
else:
raise ValueError("Device {} is not supported".format(device))
s = template.format(name=adj.func.__name__, forward_args=indent(forward_args), reverse_args=indent(reverse_args))
return s
# runs vcvars and copies back the build environment, PyTorch should really be doing this
def set_build_env():
if os.name == 'nt':
# VS2019 (required for PyTorch headers)
vcvars_path = "C:\\Program Files (x86)\\Microsoft Visual Studio\\2019\\Community\\VC\\Auxiliary\Build\\vcvars64.bat"
s = '"{}" && set'.format(vcvars_path)
output = os.popen(s).read()
for line in output.splitlines():
pair = line.split("=", 1)
if (len(pair) >= 2):
os.environ[pair[0]] = pair[1]
else: # nothing needed for Linux or Mac
pass
def import_module(module_name, path):
# https://stackoverflow.com/questions/67631/how-to-import-a-module-given-the-full-path
file, path, description = imp.find_module(module_name, [path])
# Close the .so file after load.
with file:
return imp.load_module(module_name, file, path, description)
def rename(name, return_type):
def func(cls):
cls.__name__ = name
cls.key = name
cls.prefix = ""
cls.return_type = return_type
return cls
return func
user_funcs = {}
user_kernels = {}
def func(f):
user_funcs[f.__name__] = f
# adj = Adjoint(f)
# print(adj.codegen_forward())
# print(adj.codegen_reverse())
# set_build_env()
# include_path = os.path.dirname(os.path.realpath(__file__))
# # requires PyTorch hotfix https://github.com/pytorch/pytorch/pull/33002
# test_cuda = torch.utils.cpp_extension.load_inline('test_cuda', [cpp_template], None, ["test_forward_1", "test_backward_1"], extra_include_paths=include_path, verbose=True)
# help(test_cuda)
def kernel(f):
# stores source and compiled entry points for a kernel (will be populated after module loads)
class Kernel:
def __init__(self, f):
self.func = f
def register(self, module):
# lookup entry points based on name
self.forward_cpu = eval("module." + self.func.__name__ + "_cpu_forward")
self.backward_cpu = eval("module." + self.func.__name__ + "_cpu_backward")
if (torch.cuda.is_available()):
self.forward_cuda = eval("module." + self.func.__name__ + "_cuda_forward")
self.backward_cuda = eval("module." + self.func.__name__ + "_cuda_backward")
k = Kernel(f)
# register globally
user_kernels[f.__name__] = k
return k
def compile():
use_cuda = torch.cuda.is_available()
if not use_cuda:
print("[INFO] CUDA support not found. Disabling CUDA kernel compilation.")
cpp_source = ""
cuda_source = ""
cpp_source += cpu_module_header
cuda_source += cuda_module_header
# kernels
entry_points = []
# functions
for name, func in user_funcs.items():
adj = Adjoint(func, device='cpu')
cpp_source += codegen_func(adj, device='cpu')
adj = Adjoint(func, device='cuda')
cuda_source += codegen_func(adj, device='cuda')
# import pdb
# pdb.set_trace()
import copy
@rename(func.__name__ + "_cpu_func", adj.return_var.type)
class Func:
@classmethod
def value_type(cls, *args):
return cls.return_type
functions[func.__name__] = Func
@rename(func.__name__ + "_cuda_func", adj.return_var.type)
class CUDAFunc:
@classmethod
def value_type(cls, *args):
return cls.return_type
cuda_functions[func.__name__] = CUDAFunc
for name, kernel in user_kernels.items():
if use_cuda:
# each kernel gets an entry point in the module
entry_points.append(name + "_cuda_forward")
entry_points.append(name + "_cuda_backward")
# each kernel gets an entry point in the module
entry_points.append(name + "_cpu_forward")
entry_points.append(name + "_cpu_backward")
if use_cuda:
adj = Adjoint(kernel.func, device='cuda')
cuda_source += codegen_kernel(adj, device='cuda')
cuda_source += codegen_module(adj, device='cuda')
cpp_source += codegen_module_decl(adj, device='cuda')
adj = Adjoint(kernel.func, device='cpu')
cpp_source += codegen_kernel(adj, device='cpu')
cpp_source += codegen_module(adj, device='cpu')
cpp_source += codegen_module_decl(adj, device='cpu')
include_path = os.path.dirname(os.path.realpath(__file__))
build_path = os.path.dirname(os.path.realpath(__file__)) + "/kernels"
cache_file = build_path + "/adjoint.gen"
if (os.path.exists(build_path) == False):
os.mkdir(build_path)
# test cache
if (os.path.exists(cache_file)):
f = open(cache_file, 'r')
cache_string = f.read()
f.close()
if (cache_string == cpp_source):
print("Using cached kernels")
module = import_module("kernels", build_path)
# register kernel methods
for k in user_kernels.values():
k.register(module)
return module
# print("ignoring rebuild, using stale kernels")
# module = import_module("kernels", build_path)
# return module
# cache stale, rebuild
print("Rebuilding kernels")
set_build_env()
# debug config
#module = torch.utils.cpp_extension.load_inline('kernels', [cpp_source], None, entry_points, extra_cflags=["/Zi", "/Od"], extra_ldflags=["/DEBUG"], build_directory=build_path, extra_include_paths=[include_path], verbose=True)
if os.name == 'nt':
cpp_flags = ["/Ox", "-DNDEBUG", "/fp:fast"]
ld_flags = ["-DNDEBUG"]
# cpp_flags = ["/Zi", "/Od", "/DEBUG"]
# ld_flags = ["/DEBUG"]
else:
cpp_flags = ["-Z", "-O2", "-DNDEBUG"]
ld_flags = ["-DNDEBUG"]
# just use minimum to ensure compatability
cuda_flags = ['-gencode=arch=compute_35,code=compute_35']
# release config
if use_cuda:
module = torch.utils.cpp_extension.load_inline('kernels',
cpp_sources=[cpp_source],
cuda_sources=[cuda_source],
functions=entry_points,
extra_cflags=cpp_flags,
extra_ldflags=ld_flags,
extra_cuda_cflags=cuda_flags,
build_directory=build_path,
extra_include_paths=[include_path],
verbose=True,
with_pytorch_error_handling=False)
else:
module = torch.utils.cpp_extension.load_inline('kernels',
cpp_sources=[cpp_source],
cuda_sources=[],
functions=entry_points,
extra_cflags=cpp_flags,
extra_ldflags=ld_flags,
extra_cuda_cflags=cuda_flags,
build_directory=build_path,
extra_include_paths=[include_path],
verbose=True,
with_pytorch_error_handling=False)
# update cache
f = open(cache_file, 'w')
f.write(cpp_source)
f.close()
# register kernel methods
for k in user_kernels.values():
k.register(module)
return module
#---------------------------------------------
# Helper functions for launching kernels as Torch ops
def check_adapter(l, a):
for t in l:
if torch.is_tensor(t):
assert(t.device.type == a)
def check_finite(l):
for t in l:
if torch.is_tensor(t):
assert(t.is_contiguous())
if (torch.isnan(t).any() == True):
print(t)
assert(torch.isnan(t).any() == False)
else:
assert(math.isnan(t) == False)
def filter_grads(grads):
"""helper that takes a list of gradient tensors and makes non-outputs None
as required by PyTorch when returning from a custom op
"""
outputs = []
for g in grads:
if torch.is_tensor(g) and len(g) > 0:
outputs.append(g)
else:
outputs.append(None)
return tuple(outputs)
def make_empty(outputs, device):
empty = []
for o in outputs:
empty.append(torch.FloatTensor().to(device))
return empty
def make_contiguous(grads):
ret = []
for g in grads:
ret.append(g.contiguous())
return ret
def copy_params(params):
out = []
for p in params:
if torch.is_tensor(p):
c = p.clone()
if c.dtype == torch.float32:
c.requires_grad_()
out.append(c)
else:
out.append(p)
return out
def assert_device(device, inputs):
"""helper that asserts that all Tensors in inputs reside on the specified
device (device should be cpu or cuda). Also checks that dtypes are correct.
"""
for arg in inputs:
if isinstance(arg, torch.Tensor):
if (arg.dtype == torch.float64) or (arg.dtype == torch.float16):
raise TypeError("Tensor {arg} has invalid dtype {dtype}".format(arg=arg, dtype=arg.dtype))
if device == 'cpu':
if arg.is_cuda: # make sure all tensors are on the right device. Can fail silently in the CUDA kernel.
raise TypeError("Tensor {arg} is using CUDA but was expected to be on the CPU.".format(arg=arg))
elif torch.device(device).type == 'cuda': #elif device.startswith('cuda'):
if not arg.is_cuda:
raise TypeError("Tensor {arg} is not on a CUDA device but was expected to be using CUDA.".format(arg=arg))
else:
raise ValueError("Device {} is not supported".format(device))
def to_weak_list(s):
w = []
for o in s:
w.append(weakref.ref(o))
return w
def to_strong_list(w):
s = []
for o in w:
s.append(o())
return s
# standalone method to launch a kernel using PyTorch graph (skip custom tape)
def launch_torch(func, dim, inputs, outputs, adapter, preserve_output=False, check_grad=False, no_grad=False):
num_inputs = len(inputs)
num_outputs = len(outputs)
# define autograd type
class TorchFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, *args):
#local_inputs = args[0:num_inputs]
#local_outputs = args[num_inputs:len(args)]
# save for backward
#ctx.inputs = list(local_inputs)
ctx.inputs = args
local_outputs = []
for o in outputs:
local_outputs.append(torch.zeros_like(o, requires_grad=True))
ctx.outputs = local_outputs
# ensure inputs match adapter
assert_device(adapter, args)
# launch
if adapter == 'cpu':
func.forward_cpu(*[dim, *args, *ctx.outputs])
elif torch.device(adapter).type == 'cuda': #elif adapter.startswith('cuda'):
func.forward_cuda(*[dim, *args, *ctx.outputs])
ret = tuple(ctx.outputs)
return ret
@staticmethod
def backward(ctx, *grads):
# ensure grads are contiguous in memory
adj_outputs = make_contiguous(grads)
# alloc grads
adj_inputs = alloc_grads(ctx.inputs, adapter)
# if we don't need outputs then make empty tensors to skip the write
local_outputs = ctx.outputs
# if preserve_output == True:
# local_outputs = ctx.outputs
# else:
# local_outputs = []
# for o in range(num_outputs):
# local_outputs.append(torch.FloatTensor().to(adapter))
# print("backward")
# print("--------")
# print (" inputs")
# for i in ctx.inputs:
# print(i)
# print (" outputs")
# for o in ctx.outputs:
# print(o)
# print (" adj_inputs")
# for adj_i in adj_inputs:
# print(adj_i)
# print (" adj_outputs")
# for adj_o in adj_outputs:
# print(adj_o)
# launch
if adapter == 'cpu':
func.backward_cpu(*[dim, *ctx.inputs, *local_outputs, *adj_inputs, *adj_outputs])
elif torch.device(adapter).type == 'cuda': #elif adapter.startswith('cuda'):
func.backward_cuda(*[dim, *ctx.inputs, *local_outputs, *adj_inputs, *adj_outputs])
# filter grads replaces empty tensors / constant params with None
ret = list(filter_grads(adj_inputs))
for i in range(num_outputs):
ret.append(None)
return tuple(ret)
# run
params = [*inputs]
torch.set_printoptions(edgeitems=3)
if (check_grad == True and no_grad == False):
try:
torch.autograd.gradcheck(TorchFunc.apply, params, eps=1e-2, atol=1e-3, rtol=1.e-3, raise_exception=True)
except Exception as e:
print(str(func.func.__name__) + " failed: " + str(e))
output = TorchFunc.apply(*params)
return output
class Tape:
def __init__(self):
self.launches = []
# dictionary mapping Tensor inputs to their adjoint
self.adjoints = {}
def launch(self, func, dim, inputs, outputs, adapter, preserve_output=False, skip_check_grad=False):
if (dim > 0):
# run kernel
if adapter == 'cpu':
func.forward_cpu(*[dim, *inputs, *outputs])
elif torch.device(adapter).type == 'cuda': #adapter.startswith('cuda'):
func.forward_cuda(*[dim, *inputs, *outputs])
if dflex.config.verify_fp:
check_adapter(inputs, adapter)
check_adapter(outputs, adapter)
check_finite(inputs)
check_finite(outputs)
# record launch
if dflex.config.no_grad == False:
self.launches.append([func, dim, inputs, outputs, adapter, preserve_output])
# optionally run grad check
if dflex.config.check_grad == True and skip_check_grad == False:
# copy inputs and outputs to avoid disturbing the computational graph
inputs_copy = copy_params(inputs)
outputs_copy = copy_params(outputs)
launch_torch(func, dim, inputs_copy, outputs_copy, adapter, preserve_output, check_grad=True)
def replay(self):
for kernel in reversed(self.launches):
func = kernel[0]
dim = kernel[1]
inputs = kernel[2]
#outputs = to_strong_list(kernel[3])
outputs = kernel[3]
adapter = kernel[4]
# lookup adj_inputs
adj_inputs = []
adj_outputs = []
# build input adjoints
for i in inputs:
if i in self.adjoints:
adj_inputs.append(self.adjoints[i])
else:
if torch.is_tensor(i):
adj_inputs.append(self.alloc_grad(i))
else:
adj_inputs.append(type(i)())
# build output adjoints
for o in outputs:
if o in self.adjoints:
adj_outputs.append(self.adjoints[o])
else:
# no output adjoint means the output wasn't used in the loss function so
# allocate a zero tensor (they will still be read by the kernels)
adj_outputs.append(self.alloc_grad(o))
# launch reverse
if adapter == 'cpu':
func.backward_cpu(*[dim, *inputs, *outputs, *adj_inputs, *adj_outputs])
elif torch.device(adapter).type == 'cuda': #elif adapter.startswith('cuda'):
func.backward_cuda(*[dim, *inputs, *outputs, *adj_inputs, *adj_outputs])
if dflex.config.verify_fp:
check_finite(inputs)
check_finite(outputs)
check_finite(adj_inputs)
check_finite(adj_outputs)
def reset(self):
self.adjoints = {}
self.launches = []
def alloc_grad(self, t):
if t.dtype == torch.float32 and t.requires_grad:
# zero tensor
self.adjoints[t] = torch.zeros_like(t)
return self.adjoints[t]
else:
# null tensor
return torch.FloatTensor().to(t.device)
# helper that given a set of inputs, will generate a set of output grad buffers
def alloc_grads(inputs, adapter):
"""helper that generates output grad buffers for a set of inputs
on the specified device.
Args:
inputs (iterable of Tensors, other literals): list of Tensors
to generate gradient buffers for. Non-tensors are ignored.
adapter (str, optional): name of torch device for storage location
of allocated gradient buffers. Defaults to 'cpu'.
"""
grads = []
for arg in inputs:
if (torch.is_tensor(arg)):
if (arg.requires_grad and arg.dtype == torch.float):
grads.append(torch.zeros_like(arg, device=adapter))
#grads.append(lookup_grad(arg))
else:
grads.append(torch.FloatTensor().to(adapter))
else:
grads.append(type(arg)())
return grads
def matmul(tape, m, n, k, t1, t2, A, B, C, adapter):
if (adapter == 'cpu'):
threads = 1
else:
threads = 256 # should match the threadblock size
tape.launch(
func=dflex.eval_dense_gemm,
dim=threads,
inputs=[
m,
n,
k,
t1,
t2,
A,
B,
],
outputs=[
C
],
adapter=adapter,
preserve_output=False)
def matmul_batched(tape, batch_count, m, n, k, t1, t2, A_start, B_start, C_start, A, B, C, adapter):
if (adapter == 'cpu'):
threads = batch_count
else:
threads = 256*batch_count # must match the threadblock size used in adjoint.py
tape.launch(
func=dflex.eval_dense_gemm_batched,
dim=threads,
inputs=[
m,
n,
k,
t1,
t2,
A_start,
B_start,
C_start,
A,
B,
],
outputs=[
C
],
adapter=adapter,
preserve_output=False)
| 61,332 |
Python
| 25.68973 | 229 | 0.535283 |
RoboticExplorationLab/CGAC/dflex/docs/index.rst
|
Welcome to dFlex's documentation!
==================================
dFlex is a differentiable multiphysics engine for PyTorch. It is written entirely in Python and supports reverse mode differentiation w.r.t. to any simulation inputs.
It includes a USD-based visualization module (:class:`dflex.render`), which can generate time-sampled USD files, or update an existing stage on-the-fly.
Prerequisites
-------------
* Python 3.6
* PyTorch 1.4.0 or higher
* Pixar USD lib (for visualization)
Pre-built USD Python libraries can be downloaded from https://developer.nvidia.com/usd, once they are downloaded you should follow the instructions to add them to your PYTHONPATH environment variable.
.. toctree::
:maxdepth: 3
:caption: Contents:
modules/model
modules/sim
modules/render
Quick Start
-----------------
First ensure that the package is installed in your local Python environment (use the -e option if you will be doing development):
.. code-block::
pip install -e dflex
Then, to use the engine you can import the simulation module as follows:
.. code-block::
import dflex
To build physical models there is a helper class available in :class:`dflex.model.ModelBuilder`. This can be used to create models programmatically from Python. For example, to create a chain of particles:
.. code-block::
builder = dflex.model.ModelBuilder()
# anchor point (zero mass)
builder.add_particle((0, 1.0, 0.0), (0.0, 0.0, 0.0), 0.0)
# build chain
for i in range(1,10):
builder.add_particle((i, 1.0, 0.0), (0.0, 0.0, 0.0), 1.0)
builder.add_spring(i-1, i, 1.e+3, 0.0, 0)
# add ground plane
builder.add_shape_plane((0.0, 1.0, 0.0, 0.0), 0)
Once you have built your model you must convert it to a finalized PyTorch simulation data structure using :func:`dflex.model.ModelBuilder.finalize()`:
.. code-block::
model = builder.finalize('cpu')
The model object represents static (non-time varying) data such as constraints, collision shapes, etc. The model is stored in PyTorch tensors, allowing differentiation with respect to both model and state.
Time Stepping
-------------
To advance the simulation forward in time (forward dynamics), we use an `integrator` object. dFlex currently offers semi-implicit and fully implicit (planned), via. the :class:`dflex.sim.SemiImplicitIntegrator` class as follows:
.. code-block::
sim_dt = 1.0/60.0
sim_steps = 100
integrator = dflex.sim.SemiImplicitIntegrator()
for i in range(0, sim_steps):
state = integrator.forward(model, state, sim_dt)
Rendering
---------
To visualize the scene dFlex supports a USD-based update via. the :class:`dflex.render.UsdRenderer` class. To create a renderer you must first create the USD stage, and the physical model.
.. code-block::
import dflex.render
stage = Usd.Stage.CreateNew("test.usda")
renderer = dflex.render.UsdRenderer(model, stage)
renderer.draw_points = True
renderer.draw_springs = True
renderer.draw_shapes = True
Each frame the renderer should be updated with the current model state and the current elapsed simulation time:
.. code-block::
renderer.update(state, sim_time)
Indices and tables
==================
* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`
| 3,311 |
reStructuredText
| 27.8 | 228 | 0.700393 |
RoboticExplorationLab/CGAC/dflex/docs/conf.py
|
# Configuration file for the Sphinx documentation builder.
#
# This file only contains a selection of the most common options. For a full
# list see the documentation:
# https://www.sphinx-doc.org/en/master/usage/configuration.html
# -- Path setup --------------------------------------------------------------
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
import os
import sys
sys.path.insert(0, os.path.abspath('../dflex'))
# -- Project information -----------------------------------------------------
project = 'dFlex'
copyright = '2020, NVIDIA'
author = 'NVIDIA'
# -- General configuration ---------------------------------------------------
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = [
'sphinx.ext.autodoc',
'sphinx.ext.napoleon',
'sphinx.ext.intersphinx',
# 'sphinx.ext.autosummary',
'sphinx.ext.todo',
'autodocsumm'
]
# put type hints inside the description instead of the signature (easier to read)
autodoc_typehints = 'description'
# document class *and* __init__ methods
autoclass_content = 'both' #
todo_include_todos = True
intersphinx_mapping = {
'python': ("https://docs.python.org/3", None),
'numpy': ('http://docs.scipy.org/doc/numpy/', None),
'PyTorch': ('http://pytorch.org/docs/master/', None),
}
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This pattern also affects html_static_path and html_extra_path.
exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store']
# -- Options for HTML output -------------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
import sphinx_rtd_theme
html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]
html_theme = "sphinx_rtd_theme"
# html_theme = 'alabaster'
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = []
| 2,515 |
Python
| 32.105263 | 81 | 0.659245 |
RoboticExplorationLab/CGAC/dflex/docs/modules/sim.rst
|
dflex.sim
===========
.. currentmodule:: dflex.sim
.. toctree::
:maxdepth: 2
.. automodule:: dflex.sim
:members:
:undoc-members:
:show-inheritance:
| 171 |
reStructuredText
| 12.230768 | 28 | 0.567251 |
RoboticExplorationLab/CGAC/dflex/docs/modules/model.rst
|
dflex.model
===========
.. currentmodule:: dflex.model
.. toctree::
:maxdepth: 2
model.modelbuilder
model.model
model.state
| 151 |
reStructuredText
| 10.692307 | 30 | 0.569536 |
RoboticExplorationLab/CGAC/dflex/docs/modules/model.model.rst
|
dflex.model.Model
========================
.. autoclasssumm:: dflex.model.Model
.. autoclass:: dflex.model.Model
:members:
:undoc-members:
:show-inheritance:
| 173 |
reStructuredText
| 14.81818 | 36 | 0.583815 |
RoboticExplorationLab/CGAC/dflex/docs/modules/render.rst
|
dflex.render
============
.. currentmodule:: dflex.render
.. toctree::
:maxdepth: 2
.. automodule:: dflex.render
:members:
:undoc-members:
:show-inheritance:
| 178 |
reStructuredText
| 11.785713 | 31 | 0.595506 |
RoboticExplorationLab/CGAC/dflex/docs/modules/model.state.rst
|
dflex.model.State
========================
.. autoclasssumm:: dflex.model.State
.. autoclass:: dflex.model.State
:members:
:undoc-members:
:show-inheritance:
| 173 |
reStructuredText
| 14.81818 | 36 | 0.583815 |
RoboticExplorationLab/CGAC/dflex/docs/modules/model.modelbuilder.rst
|
dflex.model.ModelBuilder
========================
.. autoclasssumm:: dflex.model.ModelBuilder
.. autoclass:: dflex.model.ModelBuilder
:members:
:undoc-members:
:show-inheritance:
| 194 |
reStructuredText
| 16.727271 | 43 | 0.628866 |
RoboticExplorationLab/CGAC/utils/common.py
|
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import sys
# if there's overlap between args_list and commandline input, use commandline input
def solve_argv_conflict(args_list):
arguments_to_be_removed = []
arguments_size = []
for argv in sys.argv[1:]:
if argv.startswith('-'):
size_count = 1
for i, args in enumerate(args_list):
if args == argv:
arguments_to_be_removed.append(args)
for more_args in args_list[i+1:]:
if not more_args.startswith('-'):
size_count += 1
else:
break
arguments_size.append(size_count)
break
for args, size in zip(arguments_to_be_removed, arguments_size):
args_index = args_list.index(args)
for _ in range(size):
args_list.pop(args_index)
def print_error(*message):
print('\033[91m', 'ERROR ', *message, '\033[0m')
raise RuntimeError
def print_ok(*message):
print('\033[92m', *message, '\033[0m')
def print_warning(*message):
print('\033[93m', *message, '\033[0m')
def print_info(*message):
print('\033[96m', *message, '\033[0m')
from datetime import datetime
def get_time_stamp():
now = datetime.now()
year = now.strftime('%Y')
month = now.strftime('%m')
day = now.strftime('%d')
hour = now.strftime('%H')
minute = now.strftime('%M')
second = now.strftime('%S')
return '{}-{}-{}-{}-{}-{}'.format(month, day, year, hour, minute, second)
import argparse
def parse_model_args(model_args_path):
fp = open(model_args_path, 'r')
model_args = eval(fp.read())
model_args = argparse.Namespace(**model_args)
return model_args
import torch
import numpy as np
import random
import os
def seeding(seed=0, torch_deterministic=False):
print("Setting seed: {}".format(seed))
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if torch_deterministic:
# refer to https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.use_deterministic_algorithms(True)
else:
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
return seed
| 2,965 |
Python
| 31.23913 | 91 | 0.629005 |
RoboticExplorationLab/CGAC/utils/torch_utils.py
|
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import timeit
import math
import numpy as np
import gc
import torch
import cProfile
log_output = ""
def log(s):
print(s)
global log_output
log_output = log_output + s + "\n"
# short hands
# torch quat/vector utils
def to_torch(x, dtype=torch.float, device='cuda:0', requires_grad=False):
return torch.tensor(x, dtype=dtype, device=device, requires_grad=requires_grad)
@torch.jit.script
def quat_mul(a, b):
assert a.shape == b.shape
shape = a.shape
a = a.reshape(-1, 4)
b = b.reshape(-1, 4)
x1, y1, z1, w1 = a[:, 0], a[:, 1], a[:, 2], a[:, 3]
x2, y2, z2, w2 = b[:, 0], b[:, 1], b[:, 2], b[:, 3]
ww = (z1 + x1) * (x2 + y2)
yy = (w1 - y1) * (w2 + z2)
zz = (w1 + y1) * (w2 - z2)
xx = ww + yy + zz
qq = 0.5 * (xx + (z1 - x1) * (x2 - y2))
w = qq - ww + (z1 - y1) * (y2 - z2)
x = qq - xx + (x1 + w1) * (x2 + w2)
y = qq - yy + (w1 - x1) * (y2 + z2)
z = qq - zz + (z1 + y1) * (w2 - x2)
quat = torch.stack([x, y, z, w], dim=-1).view(shape)
return quat
@torch.jit.script
def normalize(x, eps: float = 1e-9):
return x / x.norm(p=2, dim=-1).clamp(min=eps, max=None).unsqueeze(-1)
@torch.jit.script
def quat_apply(a, b):
shape = b.shape
a = a.reshape(-1, 4)
b = b.reshape(-1, 3)
xyz = a[:, :3]
t = xyz.cross(b, dim=-1) * 2
return (b + a[:, 3:] * t + xyz.cross(t, dim=-1)).view(shape)
@torch.jit.script
def quat_rotate(q, v):
shape = q.shape
q_w = q[:, -1]
q_vec = q[:, :3]
a = v * (2.0 * q_w ** 2 - 1.0).unsqueeze(-1)
b = torch.cross(q_vec, v, dim=-1) * q_w.unsqueeze(-1) * 2.0
c = q_vec * \
torch.bmm(q_vec.view(shape[0], 1, 3), v.view(
shape[0], 3, 1)).squeeze(-1) * 2.0
return a + b + c
@torch.jit.script
def quat_rotate_inverse(q, v):
shape = q.shape
q_w = q[:, -1]
q_vec = q[:, :3]
a = v * (2.0 * q_w ** 2 - 1.0).unsqueeze(-1)
b = torch.cross(q_vec, v, dim=-1) * q_w.unsqueeze(-1) * 2.0
c = q_vec * \
torch.bmm(q_vec.view(shape[0], 1, 3), v.view(
shape[0], 3, 1)).squeeze(-1) * 2.0
return a - b + c
@torch.jit.script
def quat_axis(q, axis=0):
# type: (Tensor, int) -> Tensor
basis_vec = torch.zeros(q.shape[0], 3, device=q.device)
basis_vec[:, axis] = 1
return quat_rotate(q, basis_vec)
@torch.jit.script
def quat_conjugate(a):
shape = a.shape
a = a.reshape(-1, 4)
return torch.cat((-a[:, :3], a[:, -1:]), dim=-1).view(shape)
@torch.jit.script
def quat_unit(a):
return normalize(a)
@torch.jit.script
def quat_from_angle_axis(angle, axis):
theta = (angle / 2).unsqueeze(-1)
xyz = normalize(axis) * theta.sin()
w = theta.cos()
return quat_unit(torch.cat([xyz, w], dim=-1))
@torch.jit.script
def normalize_angle(x):
return torch.atan2(torch.sin(x), torch.cos(x))
@torch.jit.script
def tf_inverse(q, t):
q_inv = quat_conjugate(q)
return q_inv, -quat_apply(q_inv, t)
@torch.jit.script
def tf_apply(q, t, v):
return quat_apply(q, v) + t
@torch.jit.script
def tf_vector(q, v):
return quat_apply(q, v)
@torch.jit.script
def tf_combine(q1, t1, q2, t2):
return quat_mul(q1, q2), quat_apply(q1, t2) + t1
@torch.jit.script
def get_basis_vector(q, v):
return quat_rotate(q, v)
def mem_report():
'''Report the memory usage of the tensor.storage in pytorch
Both on CPUs and GPUs are reported'''
def _mem_report(tensors, mem_type):
'''Print the selected tensors of type
There are two major storage types in our major concern:
- GPU: tensors transferred to CUDA devices
- CPU: tensors remaining on the system memory (usually unimportant)
Args:
- tensors: the tensors of specified type
- mem_type: 'CPU' or 'GPU' in current implementation '''
total_numel = 0
total_mem = 0
visited_data = []
for tensor in tensors:
if tensor.is_sparse:
continue
# a data_ptr indicates a memory block allocated
data_ptr = tensor.storage().data_ptr()
if data_ptr in visited_data:
continue
visited_data.append(data_ptr)
numel = tensor.storage().size()
total_numel += numel
element_size = tensor.storage().element_size()
mem = numel*element_size /1024/1024 # 32bit=4Byte, MByte
total_mem += mem
element_type = type(tensor).__name__
size = tuple(tensor.size())
# print('%s\t\t%s\t\t%.2f' % (
# element_type,
# size,
# mem) )
print('Type: %s Total Tensors: %d \tUsed Memory Space: %.2f MBytes' % (mem_type, total_numel, total_mem) )
gc.collect()
LEN = 65
objects = gc.get_objects()
#print('%s\t%s\t\t\t%s' %('Element type', 'Size', 'Used MEM(MBytes)') )
tensors = [obj for obj in objects if torch.is_tensor(obj)]
cuda_tensors = [t for t in tensors if t.is_cuda]
host_tensors = [t for t in tensors if not t.is_cuda]
_mem_report(cuda_tensors, 'GPU')
_mem_report(host_tensors, 'CPU')
print('='*LEN)
def grad_norm(params):
grad_norm = 0.
for p in params:
if p.grad is not None:
grad_norm += torch.sum(p.grad ** 2)
return torch.sqrt(grad_norm)
def print_leaf_nodes(grad_fn, id_set):
if grad_fn is None:
return
if hasattr(grad_fn, 'variable'):
mem_id = id(grad_fn.variable)
if not(mem_id in id_set):
print('is leaf:', grad_fn.variable.is_leaf)
print(grad_fn.variable)
id_set.add(mem_id)
# print(grad_fn)
for i in range(len(grad_fn.next_functions)):
print_leaf_nodes(grad_fn.next_functions[i][0], id_set)
def policy_kl(p0_mu, p0_sigma, p1_mu, p1_sigma):
c1 = torch.log(p1_sigma/p0_sigma + 1e-5)
c2 = (p0_sigma**2 + (p1_mu - p0_mu)**2)/(2.0 * (p1_sigma**2 + 1e-5))
c3 = -1.0 / 2.0
kl = c1 + c2 + c3
kl = kl.sum(dim=-1) # returning mean between all steps of sum between all actions
return kl.mean()
| 6,536 |
Python
| 27.176724 | 114 | 0.568696 |
RoboticExplorationLab/CGAC/utils/average_meter.py
|
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import torch
import torch.nn as nn
import numpy as np
class AverageMeter(nn.Module):
def __init__(self, in_shape, max_size):
super(AverageMeter, self).__init__()
self.max_size = max_size
self.current_size = 0
self.register_buffer("mean", torch.zeros(in_shape, dtype = torch.float32))
def update(self, values):
size = values.size()[0]
if size == 0:
return
new_mean = torch.mean(values.float(), dim=0)
size = np.clip(size, 0, self.max_size)
old_size = min(self.max_size - size, self.current_size)
size_sum = old_size + size
self.current_size = size_sum
self.mean = (self.mean * old_size + new_mean * size) / size_sum
def clear(self):
self.current_size = 0
self.mean.fill_(0)
def __len__(self):
return self.current_size
def get_mean(self):
return self.mean.squeeze(0).cpu().numpy()
| 1,368 |
Python
| 34.102563 | 82 | 0.65424 |
RoboticExplorationLab/CGAC/utils/load_utils.py
|
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import urdfpy
import math
import numpy as np
import os
import torch
import random
import xml.etree.ElementTree as ET
import dflex as df
def set_np_formatting():
np.set_printoptions(edgeitems=30, infstr='inf',
linewidth=4000, nanstr='nan', precision=2,
suppress=False, threshold=10000, formatter=None)
def set_seed(seed, torch_deterministic=False):
if seed == -1 and torch_deterministic:
seed = 42
elif seed == -1:
seed = np.random.randint(0, 10000)
print("Setting seed: {}".format(seed))
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if torch_deterministic:
# refer to https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.use_deterministic_algorithms(True)
else:
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
return seed
def urdf_add_collision(builder, link, collisions, shape_ke, shape_kd, shape_kf, shape_mu):
# add geometry
for collision in collisions:
origin = urdfpy.matrix_to_xyz_rpy(collision.origin)
pos = origin[0:3]
rot = df.rpy2quat(*origin[3:6])
geo = collision.geometry
if (geo.box):
builder.add_shape_box(
link,
pos,
rot,
geo.box.size[0]*0.5,
geo.box.size[1]*0.5,
geo.box.size[2]*0.5,
ke=shape_ke,
kd=shape_kd,
kf=shape_kf,
mu=shape_mu)
if (geo.sphere):
builder.add_shape_sphere(
link,
pos,
rot,
geo.sphere.radius,
ke=shape_ke,
kd=shape_kd,
kf=shape_kf,
mu=shape_mu)
if (geo.cylinder):
# cylinders in URDF are aligned with z-axis, while dFlex uses x-axis
r = df.quat_from_axis_angle((0.0, 1.0, 0.0), math.pi*0.5)
builder.add_shape_capsule(
link,
pos,
df.quat_multiply(rot, r),
geo.cylinder.radius,
geo.cylinder.length*0.5,
ke=shape_ke,
kd=shape_kd,
kf=shape_kf,
mu=shape_mu)
if (geo.mesh):
for m in geo.mesh.meshes:
faces = []
vertices = []
for v in m.vertices:
vertices.append(np.array(v))
for f in m.faces:
faces.append(int(f[0]))
faces.append(int(f[1]))
faces.append(int(f[2]))
mesh = df.Mesh(vertices, faces)
builder.add_shape_mesh(
link,
pos,
rot,
mesh,
ke=shape_ke,
kd=shape_kd,
kf=shape_kf,
mu=shape_mu)
def urdf_load(
builder,
filename,
xform,
floating=False,
armature=0.0,
shape_ke=1.e+4,
shape_kd=1.e+4,
shape_kf=1.e+2,
shape_mu=0.25,
limit_ke=100.0,
limit_kd=1.0):
robot = urdfpy.URDF.load(filename)
# maps from link name -> link index
link_index = {}
builder.add_articulation()
# add base
if (floating):
root = builder.add_link(-1, df.transform_identity(), (0,0,0), df.JOINT_FREE)
# set dofs to transform
start = builder.joint_q_start[root]
builder.joint_q[start + 0] = xform[0][0]
builder.joint_q[start + 1] = xform[0][1]
builder.joint_q[start + 2] = xform[0][2]
builder.joint_q[start + 3] = xform[1][0]
builder.joint_q[start + 4] = xform[1][1]
builder.joint_q[start + 5] = xform[1][2]
builder.joint_q[start + 6] = xform[1][3]
else:
root = builder.add_link(-1, xform, (0,0,0), df.JOINT_FIXED)
urdf_add_collision(builder, root, robot.links[0].collisions, shape_ke, shape_kd, shape_kf, shape_mu)
link_index[robot.links[0].name] = root
# add children
for joint in robot.joints:
type = None
axis = (0.0, 0.0, 0.0)
if (joint.joint_type == "revolute" or joint.joint_type == "continuous"):
type = df.JOINT_REVOLUTE
axis = joint.axis
if (joint.joint_type == "prismatic"):
type = df.JOINT_PRISMATIC
axis = joint.axis
if (joint.joint_type == "fixed"):
type = df.JOINT_FIXED
if (joint.joint_type == "floating"):
type = df.JOINT_FREE
parent = -1
if joint.parent in link_index:
parent = link_index[joint.parent]
origin = urdfpy.matrix_to_xyz_rpy(joint.origin)
pos = origin[0:3]
rot = df.rpy2quat(*origin[3:6])
lower = -1.e+3
upper = 1.e+3
damping = 0.0
# limits
if (joint.limit):
if (joint.limit.lower != None):
lower = joint.limit.lower
if (joint.limit.upper != None):
upper = joint.limit.upper
# damping
if (joint.dynamics):
if (joint.dynamics.damping):
damping = joint.dynamics.damping
# add link
link = builder.add_link(
parent=parent,
X_pj=df.transform(pos, rot),
axis=axis,
type=type,
limit_lower=lower,
limit_upper=upper,
limit_ke=limit_ke,
limit_kd=limit_kd,
damping=damping)
# add collisions
urdf_add_collision(builder, link, robot.link_map[joint.child].collisions, shape_ke, shape_kd, shape_kf, shape_mu)
# add ourselves to the index
link_index[joint.child] = link
# build an articulated tree
def build_tree(
builder,
angle,
max_depth,
width=0.05,
length=0.25,
density=1000.0,
joint_stiffness=0.0,
joint_damping=0.0,
shape_ke = 1.e+4,
shape_kd = 1.e+3,
shape_kf = 1.e+2,
shape_mu = 0.5,
floating=False):
def build_recursive(parent, depth):
if (depth >= max_depth):
return
X_pj = df.transform((length * 2.0, 0.0, 0.0), df.quat_from_axis_angle((0.0, 0.0, 1.0), angle))
type = df.JOINT_REVOLUTE
axis = (0.0, 0.0, 1.0)
if (depth == 0 and floating == True):
X_pj = df.transform((0.0, 0.0, 0.0), df.quat_identity())
type = df.JOINT_FREE
link = builder.add_link(
parent,
X_pj,
axis,
type,
stiffness=joint_stiffness,
damping=joint_damping)
# capsule
shape = builder.add_shape_capsule(
link,
pos=(length, 0.0, 0.0),
radius=width,
half_width=length,
ke=shape_ke,
kd=shape_kd,
kf=shape_kf,
mu=shape_mu)
# recurse
#build_tree_recursive(builder, link, angle, width, depth + 1, max_depth, shape_ke, shape_kd, shape_kf, shape_mu, floating)
build_recursive(link, depth + 1)
#
build_recursive(-1, 0)
# Mujoco file format parser
def parse_mjcf(
filename,
builder,
density=1000.0,
stiffness=0.0,
damping=1.0,
contact_ke=1e4,
contact_kd=1e4,
contact_kf=1e3,
contact_mu=0.5,
limit_ke=100.0,
limit_kd=10.0,
armature=0.01,
radians=False,
load_stiffness=False,
load_armature=False):
file = ET.parse(filename)
root = file.getroot()
type_map = {
"ball": df.JOINT_BALL,
"hinge": df.JOINT_REVOLUTE,
"slide": df.JOINT_PRISMATIC,
"free": df.JOINT_FREE,
"fixed": df.JOINT_FIXED
}
def parse_float(node, key, default):
if key in node.attrib:
return float(node.attrib[key])
else:
return default
def parse_bool(node, key, default):
if key in node.attrib:
if node.attrib[key] == "true":
return True
else:
return False
else:
return default
def parse_vec(node, key, default):
if key in node.attrib:
return np.fromstring(node.attrib[key], sep=" ")
else:
return np.array(default)
def parse_body(body, parent, last_joint_pos):
body_name = body.attrib["name"]
body_pos = np.fromstring(body.attrib["pos"], sep=" ")
# last_joint_pos = np.zeros(3)
#-----------------
# add body for each joint, we assume the joints attached to one body have the same joint_pos
for i, joint in enumerate(body.findall("joint")):
joint_name = joint.attrib["name"]
joint_type = type_map[joint.attrib.get("type", 'hinge')]
joint_axis = parse_vec(joint, "axis", (0.0, 0.0, 0.0))
joint_pos = parse_vec(joint, "pos", (0.0, 0.0, 0.0))
joint_limited = parse_bool(joint, "limited", True)
if joint_limited:
if radians:
joint_range = parse_vec(joint, "range", (np.deg2rad(-170.), np.deg2rad(170.)))
else:
joint_range = np.deg2rad(parse_vec(joint, "range", (-170.0, 170.0)))
else:
joint_range = np.array([-1.e+6, 1.e+6])
if load_stiffness:
joint_stiffness = parse_float(joint, 'stiffness', stiffness)
else:
joint_stiffness = stiffness
joint_damping = parse_float(joint, 'damping', damping)
if load_armature:
joint_armature = parse_float(joint, "armature", armature)
else:
joint_armature = armature
joint_axis = df.normalize(joint_axis)
if (parent == -1):
body_pos = np.array((0.0, 0.0, 0.0))
#-----------------
# add body
link = builder.add_link(
parent,
X_pj=df.transform(body_pos + joint_pos - last_joint_pos, df.quat_identity()),
axis=joint_axis,
type=joint_type,
limit_lower=joint_range[0],
limit_upper=joint_range[1],
limit_ke=limit_ke,
limit_kd=limit_kd,
stiffness=joint_stiffness,
damping=joint_damping,
armature=joint_armature)
# assume that each joint is one body in simulation
parent = link
body_pos = [0.0, 0.0, 0.0]
last_joint_pos = joint_pos
#-----------------
# add shapes to the last joint in the body
for geom in body.findall("geom"):
geom_name = geom.attrib["name"]
geom_type = geom.attrib["type"]
geom_size = parse_vec(geom, "size", [1.0])
geom_pos = parse_vec(geom, "pos", (0.0, 0.0, 0.0))
geom_rot = parse_vec(geom, "quat", (0.0, 0.0, 0.0, 1.0))
if (geom_type == "sphere"):
builder.add_shape_sphere(
link,
pos=geom_pos - last_joint_pos, # position relative to the parent frame
rot=geom_rot,
radius=geom_size[0],
density=density,
ke=contact_ke,
kd=contact_kd,
kf=contact_kf,
mu=contact_mu)
elif (geom_type == "capsule"):
if ("fromto" in geom.attrib):
geom_fromto = parse_vec(geom, "fromto", (0.0, 0.0, 0.0, 1.0, 0.0, 0.0))
start = geom_fromto[0:3]
end = geom_fromto[3:6]
# compute rotation to align dflex capsule (along x-axis), with mjcf fromto direction
axis = df.normalize(end-start)
angle = math.acos(np.dot(axis, (1.0, 0.0, 0.0)))
axis = df.normalize(np.cross(axis, (1.0, 0.0, 0.0)))
geom_pos = (start + end)*0.5
geom_rot = df.quat_from_axis_angle(axis, -angle)
geom_radius = geom_size[0]
geom_width = np.linalg.norm(end-start)*0.5
else:
geom_radius = geom_size[0]
geom_width = geom_size[1]
geom_pos = parse_vec(geom, "pos", (0.0, 0.0, 0.0))
if ("axisangle" in geom.attrib):
axis_angle = parse_vec(geom, "axisangle", (0.0, 1.0, 0.0, 0.0))
geom_rot = df.quat_from_axis_angle(axis_angle[0:3], axis_angle[3])
if ("quat" in geom.attrib):
q = parse_vec(geom, "quat", df.quat_identity())
geom_rot = q
geom_rot = df.quat_multiply(geom_rot, df.quat_from_axis_angle((0.0, 1.0, 0.0), -math.pi*0.5))
builder.add_shape_capsule(
link,
pos=geom_pos - last_joint_pos,
rot=geom_rot,
radius=geom_radius,
half_width=geom_width,
density=density,
ke=contact_ke,
kd=contact_kd,
kf=contact_kf,
mu=contact_mu)
else:
print("Type: " + geom_type + " unsupported")
#-----------------
# recurse
for child in body.findall("body"):
parse_body(child, link, last_joint_pos)
#-----------------
# start articulation
builder.add_articulation()
world = root.find("worldbody")
for body in world.findall("body"):
parse_body(body, -1, np.zeros(3))
# SNU file format parser
class MuscleUnit:
def __init__(self):
self.name = ""
self.bones = []
self.points = []
self.muscle_strength = 0.0
class Skeleton:
def __init__(self, skeleton_file, muscle_file, builder,
filter={},
visualize_shapes=True,
stiffness=5.0,
damping=2.0,
contact_ke=5000.0,
contact_kd=2000.0,
contact_kf=1000.0,
contact_mu=0.5,
limit_ke=1000.0,
limit_kd=10.0,
armature = 0.05):
self.armature = armature
self.stiffness = stiffness
self.damping = damping
self.contact_ke = contact_ke
self.contact_kd = contact_kd
self.contact_kf = contact_kf
self.limit_ke = limit_ke
self.limit_kd = limit_kd
self.contact_mu = contact_mu
self.visualize_shapes = visualize_shapes
self.parse_skeleton(skeleton_file, builder, filter)
if muscle_file != None:
self.parse_muscles(muscle_file, builder)
def parse_skeleton(self, filename, builder, filter):
file = ET.parse(filename)
root = file.getroot()
self.node_map = {} # map node names to link indices
self.xform_map = {} # map node names to parent transforms
self.mesh_map = {} # map mesh names to link indices objects
self.coord_start = len(builder.joint_q)
self.dof_start = len(builder.joint_qd)
type_map = {
"Ball": df.JOINT_BALL,
"Revolute": df.JOINT_REVOLUTE,
"Prismatic": df.JOINT_PRISMATIC,
"Free": df.JOINT_FREE,
"Fixed": df.JOINT_FIXED
}
builder.add_articulation()
for child in root:
if (child.tag == "Node"):
body = child.find("Body")
joint = child.find("Joint")
name = child.attrib["name"]
parent = child.attrib["parent"]
parent_X_s = df.transform_identity()
if parent in self.node_map:
parent_link = self.node_map[parent]
parent_X_s = self.xform_map[parent]
else:
parent_link = -1
body_xform = body.find("Transformation")
joint_xform = joint.find("Transformation")
body_mesh = body.attrib["obj"]
body_size = np.fromstring(body.attrib["size"], sep=" ")
body_type = body.attrib["type"]
body_mass = float(body.attrib["mass"])
x=body_size[0]
y=body_size[1]
z=body_size[2]
density = body_mass / (x*y*z)
max_body_mass = 15.0
mass_scale = body_mass / max_body_mass
body_R_s = np.fromstring(body_xform.attrib["linear"], sep=" ").reshape((3,3))
body_t_s = np.fromstring(body_xform.attrib["translation"], sep=" ")
joint_R_s = np.fromstring(joint_xform.attrib["linear"], sep=" ").reshape((3,3))
joint_t_s = np.fromstring(joint_xform.attrib["translation"], sep=" ")
joint_type = type_map[joint.attrib["type"]]
joint_lower = -1.e+3
joint_upper = 1.e+3
if (joint_type == type_map["Revolute"]):
if ("lower" in joint.attrib):
joint_lower = np.fromstring(joint.attrib["lower"], sep=" ")[0]
if ("upper" in joint.attrib):
joint_upper = np.fromstring(joint.attrib["upper"], sep=" ")[0]
# print(joint_type, joint_lower, joint_upper)
if ("axis" in joint.attrib):
joint_axis = np.fromstring(joint.attrib["axis"], sep=" ")
else:
joint_axis = np.array((0.0, 0.0, 0.0))
body_X_s = df.transform(body_t_s, df.quat_from_matrix(body_R_s))
joint_X_s = df.transform(joint_t_s, df.quat_from_matrix(joint_R_s))
mesh_base = os.path.splitext(body_mesh)[0]
mesh_file = mesh_base + ".usd"
link = -1
if len(filter) == 0 or name in filter:
joint_X_p = df.transform_multiply(df.transform_inverse(parent_X_s), joint_X_s)
body_X_c = df.transform_multiply(df.transform_inverse(joint_X_s), body_X_s)
if (parent_link == -1):
joint_X_p = df.transform_identity()
# add link
link = builder.add_link(
parent=parent_link,
X_pj=joint_X_p,
axis=joint_axis,
type=joint_type,
limit_lower=joint_lower,
limit_upper=joint_upper,
limit_ke=self.limit_ke * mass_scale,
limit_kd=self.limit_kd * mass_scale,
damping=self.damping,
stiffness=self.stiffness * math.sqrt(mass_scale),
armature=self.armature)
# armature=self.armature * math.sqrt(mass_scale))
# add shape
shape = builder.add_shape_box(
body=link,
pos=body_X_c[0],
rot=body_X_c[1],
hx=x*0.5,
hy=y*0.5,
hz=z*0.5,
density=density,
ke=self.contact_ke,
kd=self.contact_kd,
kf=self.contact_kf,
mu=self.contact_mu)
# add lookup in name->link map
# save parent transform
self.xform_map[name] = joint_X_s
self.node_map[name] = link
self.mesh_map[mesh_base] = link
def parse_muscles(self, filename, builder):
# list of MuscleUnits
muscles = []
file = ET.parse(filename)
root = file.getroot()
self.muscle_start = len(builder.muscle_activation)
for child in root:
if (child.tag == "Unit"):
unit_name = child.attrib["name"]
unit_f0 = float(child.attrib["f0"])
unit_lm = float(child.attrib["lm"])
unit_lt = float(child.attrib["lt"])
unit_lmax = float(child.attrib["lmax"])
unit_pen = float(child.attrib["pen_angle"])
m = MuscleUnit()
m.name = unit_name
m.muscle_strength = unit_f0
incomplete = False
for waypoint in child.iter("Waypoint"):
way_bone = waypoint.attrib["body"]
way_link = self.node_map[way_bone]
way_loc = np.fromstring(waypoint.attrib["p"], sep=" ", dtype=np.float32)
if (way_link == -1):
incomplete = True
break
# transform loc to joint local space
joint_X_s = self.xform_map[way_bone]
way_loc = df.transform_point(df.transform_inverse(joint_X_s), way_loc)
m.bones.append(way_link)
m.points.append(way_loc)
if not incomplete:
muscles.append(m)
builder.add_muscle(m.bones, m.points, f0=unit_f0, lm=unit_lm, lt=unit_lt, lmax=unit_lmax, pen=unit_pen)
self.muscles = muscles
| 22,759 |
Python
| 30.523546 | 130 | 0.482622 |
RoboticExplorationLab/CGAC/utils/dataset.py
|
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import numpy as np
class CriticDataset:
def __init__(self, batch_size, obs, target_values, states_grad=None, states_joint=None, early_term=None, shuffle = False, drop_last = False):
self.obs = obs.view(-1, obs.shape[-1])
if states_joint is not None:
self.states = states_joint.view(-1, states_joint.shape[-1])
else:
self.states = states_joint
if states_grad is not None:
self.states_grad = states_grad.view(-1, states_grad.shape[-1])
else:
self.states_grad = states_grad
if early_term is not None:
self.early_term = early_term.view(-1)
self.target_values = target_values.view(-1)
self.batch_size = batch_size
if shuffle:
self.shuffle()
if drop_last:
self.length = self.obs.shape[0] // self.batch_size
else:
self.length = ((self.obs.shape[0] - 1) // self.batch_size) + 1
def shuffle(self):
index = np.random.permutation(self.obs.shape[0])
self.obs = self.obs[index, :]
self.target_values = self.target_values[index]
if self.states is not None:
self.states = self.states[index]
self.states_grad = self.states_grad[index]
self.early_term = self.early_term[index]
def __len__(self):
return self.length
def __getitem__(self, index):
start_idx = index * self.batch_size
end_idx = min((index + 1) * self.batch_size, self.obs.shape[0])
if self.states is not None:
return {'obs': self.obs[start_idx:end_idx, :], 'target_values': self.target_values[start_idx:end_idx], 'states': self.states[start_idx:end_idx], 'states_grad': self.states_grad[start_idx:end_idx], 'early_term': self.early_term[start_idx:end_idx]}
else:
return {'obs': self.obs[start_idx:end_idx, :], 'target_values': self.target_values[start_idx:end_idx]}
| 2,391 |
Python
| 43.296295 | 258 | 0.627771 |
RoboticExplorationLab/CGAC/utils/time_report.py
|
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import time
from utils.common import *
class Timer:
def __init__(self, name):
self.name = name
self.start_time = None
self.time_total = 0.
def on(self):
assert self.start_time is None, "Timer {} is already turned on!".format(self.name)
self.start_time = time.time()
def off(self):
assert self.start_time is not None, "Timer {} not started yet!".format(self.name)
self.time_total += time.time() - self.start_time
self.start_time = None
def report(self):
print_info('Time report [{}]: {:.2f} seconds'.format(self.name, self.time_total))
def clear(self):
self.start_time = None
self.time_total = 0.
class TimeReport:
def __init__(self):
self.timers = {}
def add_timer(self, name):
assert name not in self.timers, "Timer {} already exists!".format(name)
self.timers[name] = Timer(name = name)
def start_timer(self, name):
assert name in self.timers, "Timer {} does not exist!".format(name)
self.timers[name].on()
def end_timer(self, name):
assert name in self.timers, "Timer {} does not exist!".format(name)
self.timers[name].off()
def report(self, name = None):
if name is not None:
assert name in self.timers, "Timer {} does not exist!".format(name)
self.timers[name].report()
else:
print_info("------------Time Report------------")
for timer_name in self.timers.keys():
self.timers[timer_name].report()
print_info("-----------------------------------")
def clear_timer(self, name = None):
if name is not None:
assert name in self.timers, "Timer {} does not exist!".format(name)
self.timers[name].clear()
else:
for timer_name in self.timers.keys():
self.timers[timer_name].clear()
def pop_timer(self, name = None):
if name is not None:
assert name in self.timers, "Timer {} does not exist!".format(name)
self.timers[name].report()
del self.timers[name]
else:
self.report()
self.timers = {}
| 2,688 |
Python
| 34.853333 | 90 | 0.58631 |
RoboticExplorationLab/CGAC/utils/running_mean_std.py
|
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from typing import Tuple
import torch
class RunningMeanStd(object):
def __init__(self, epsilon: float = 1e-4, shape: Tuple[int, ...] = (), device = 'cuda:0'):
"""
Calulates the running mean and std of a data stream
https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm
:param epsilon: helps with arithmetic issues
:param shape: the shape of the data stream's output
"""
self.mean = torch.zeros(shape, dtype = torch.float32, device = device)
self.var = torch.ones(shape, dtype = torch.float32, device = device)
self.count = epsilon
def to(self, device):
rms = RunningMeanStd(device = device)
rms.mean = self.mean.to(device).clone()
rms.var = self.var.to(device).clone()
rms.count = self.count
return rms
@torch.no_grad()
def update(self, arr: torch.tensor) -> None:
batch_mean = torch.mean(arr, dim = 0)
batch_var = torch.var(arr, dim = 0, unbiased = False)
batch_count = arr.shape[0]
self.update_from_moments(batch_mean, batch_var, batch_count)
def update_from_moments(self, batch_mean: torch.tensor, batch_var: torch.tensor, batch_count: int) -> None:
delta = batch_mean - self.mean
tot_count = self.count + batch_count
new_mean = self.mean + delta * batch_count / tot_count
m_a = self.var * self.count
m_b = batch_var * batch_count
m_2 = m_a + m_b + torch.square(delta) * self.count * batch_count / (self.count + batch_count)
new_var = m_2 / (self.count + batch_count)
new_count = batch_count + self.count
self.mean = new_mean
self.var = new_var
self.count = new_count
def normalize(self, arr:torch.tensor, un_norm = False) -> torch.tensor:
if not un_norm:
result = (arr - self.mean) / torch.sqrt(self.var + 1e-5)
else:
result = arr * torch.sqrt(self.var + 1e-5) + self.mean
return result
| 2,462 |
Python
| 40.745762 | 111 | 0.638099 |
RoboticExplorationLab/CGAC/cgac/main.py
|
import sys, os
import argparse
import datetime
import time
import numpy as np
import itertools
project_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
sys.path.append(project_dir)
parser = argparse.ArgumentParser(description='PyTorch Soft Actor-Critic Args')
parser.add_argument('--env-name', default="SNUHumanoidEnv", choices=["AntEnv", "HumanoidEnv", "SNUHumanoidEnv", "CartPoleSwingUpEnv", "CheetahEnv", "HopperEnv", "AllegroHand"])
parser.add_argument('--policy', default="Gaussian", help='Policy Type: Gaussian | Deterministic (default: Gaussian)')
parser.add_argument('--gamma', type=float, default=0.99, metavar='G', help='discount factor for reward (default: 0.99)')
parser.add_argument('--tau_value', type=float, default=0.005, metavar='G', help='target smoothing coefficient(τ) (default: 0.005)')
parser.add_argument('--tau_policy', type=float, default=0.001)
parser.add_argument('--lr', type=float, default=0.002)
parser.add_argument('--final_lr', type=float, default=1e-4)
parser.add_argument('--alpha', type=float, default=0.1, metavar='G', help='Temperature parameter α determines the relative importance of the entropy term against the reward (default: 0.2)')
parser.add_argument('--alpha_final', type=float, default=2e-5)
parser.add_argument('--no_automatic_entropy_tuning', action="store_true", help='Automaically adjust α (default: False)')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--batch_size_update', type=int, default=8192*2)
parser.add_argument('--num_actors', type=int, default=4096)
parser.add_argument('--num_steps', type=int, default=500000001)
parser.add_argument('--critic_hidden', nargs='+', type=int, default=[512, 512, 256])
parser.add_argument('--actor_hidden', nargs='+', type=int, default=[512, 256])
parser.add_argument('--critic_act', type=str, default='elu', choices=['elu', 'tanh', 'relu'])
parser.add_argument('--actor_act', type=str, default='elu', choices=['elu', 'tanh', 'relu'])
parser.add_argument('--num_critic_updates', type=int, default=2)
parser.add_argument('--val_horizon', type=int, default=32)
parser.add_argument('--num_steps_buffer', type=int, default=32)
parser.add_argument('--betas', nargs='+', type=float, default=[0.9, 0.999])
parser.add_argument('--lam', type=float, default=0.95)
parser.add_argument('--no_const_std', action='store_true')
parser.add_argument('--grad_norm', type=float, default=20)
parser.add_argument('--actor_grad_norm', type=float, default=4)
parser.add_argument('--clip_actor_gn', action='store_true')
parser.add_argument('--max_updates', type=int, default=20000)
parser.add_argument('--lr_schedule', type=str, default='linear', choices=['linear', 'decay', 'constant'])
parser.add_argument('--alpha_schedule', type=str, default='linear', choices=['linear', 'decay', 'constant'])
parser.add_argument('--final_targ_ent_coeff', type=float, default=3.5)
parser.add_argument('--init_targ_ent_coeff', type=float, default=0.2)
parser.add_argument('--peak_expected_reward', type=float, default=7.5)
parser.add_argument('--init_expected_reward', type=float, default=1.5)
parser.add_argument('--critic_method', type=str, default='gae-return', choices=['gae-return', 'td-lambda', 'one-step'])
parser.add_argument('--episode_length', type=int, default=1000)
parser.add_argument('--no_stochastic_init', action='store_true')
parser.add_argument('--policy_clip', action='store_true')
parser.add_argument('--cuda', action="store_true")
parser.add_argument('--target_update_interval', type=int, default=1, metavar='N', help='Value target update per no. of updates per step (default: 1)')
parser.add_argument('--id', type=str, default='0')
parser.add_argument('--desc', type=str, default='')
parser.add_argument('--final', action='store_true')
parser.add_argument('--start_steps', type=int, default=80000, metavar='N', help='Steps sampling random actions (default: 10000)')
parser.add_argument('--replay_size', type=int, default=1000000)
parser.add_argument('--test', action="store_true")
parser.add_argument('--eval', type=bool, default=True, help='Evaluates a policy a policy every 10 episode (default: True)')
parser.add_argument('--on_policy_update', action='store_true')
parser.add_argument('--reduction_rate_updates', type=int, default=8000)
# parser.add_argument('--num_steps_buffer', type=int, default=32)
parser.add_argument('--max_updates_alpha', type=int, default=8000)
parser.add_argument('--decay_steps', type=int, default=2000)
parser.add_argument('--lr_update_freq', type=int, default=1000)
parser.add_argument('--lr_decay_rate', type=float, default=0.75)
args = parser.parse_args()
args.automatic_entropy_tuning = not args.no_automatic_entropy_tuning
args.batch_size = args.num_actors
args.critic_lr = args.lr
args.actor_lr = args.lr
args.alpha_lr = args.lr*10
args.alpha_init = args.alpha*4
# args.alpha_final = args.alpha/4
args.max_rand_resets = args.batch_size//args.episode_length
args.horizon_shrink_steps = 12000/args.num_steps_buffer
args.const_std = not args.no_const_std
args.no_grad_train = not args.grad_train
args.stochastic_init = not args.no_stochastic_init
device_str = "cuda:0" if args.cuda else "cpu"
device = args.device = device_str
if args.env_name=='AllegroHand':
rl_games_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '../../rl_games/'))
sys.path.append(rl_games_dir)
import isaacgym
import isaacgymenvs
import torch
env = isaacgymenvs.make(
args.seed,
args.env_name,
args.batch_size,
device_str,
device_str,
graphics_device_id=0,
headless=True)
env.actions = torch.zeros((env.num_envs, env.num_actions), device=device, dtype=torch.float)
args.episode_length = 600
args.max_rand_resets = 0
else:
import dflex as df
import envs
import torch
from utils.common import *
if args.env_name == "HumanoidEnv":
args.MM_caching_frequency = 48
elif args.env_name == "SNUHumanoidEnv":
args.MM_caching_frequency = 8
elif args.env_name == "AntEnv":
args.MM_caching_frequency = 16
seeding(args.seed)
env_fn = getattr(envs, args.env_name)
env = env_fn(num_envs = args.batch_size, \
device = args.device, \
render = False, \
seed = args.seed, \
episode_length=args.episode_length, \
stochastic_init = args.stochastic_init, \
MM_caching_frequency = args.MM_caching_frequency, \
no_grad=args.no_grad_train)
from cgac.cgac import CGAC
from torch.utils.tensorboard import SummaryWriter
from replay_memory import VectorizedReplayBufferIsaacSAC
from utils_cgac import *
from utils.common import *
seeding(args.seed)
memory_cgac = VectorizedReplayBufferIsaacSAC(env.obs_space.shape, env.act_space.shape, args.batch_size, args.num_steps_buffer, args.device, gamma=args.gamma, lam=args.lam, horizon=args.val_horizon, critic_method=args.critic_method)
agent = CGAC(env.obs_space.shape[0], env.act_space, args, memory_cgac, env)
if not args.test:
save_dir = f'runs/hp/{args.env_name}/RL_final/tauval{args.tau_value}pi{args.tau_policy}_{args.actor_act}{args.actor_hidden}_\
{args.critic_act}{args.critic_hidden}_actors{args.num_actors}bszup{args.batch_size_update}_alphaautolin{int(args.final_targ_ent_coeff)}_\
{args.alpha}fin{args.alpha_final}_criticups{args.num_critic_updates}_bufs{args.num_steps_buffer}h{args.val_horizon}_seed{args.seed}_\
piclip{args.policy_clip}_{args.desc}'
print('save_dir : ', save_dir)
writer = SummaryWriter(save_dir)
if args.env_name=='AllegroHand':
RL_update_func = agent.update_parameters_and_collect_buffer_RL_isaac
else:
RL_update_func = agent.update_parameters_and_collect_buffer_RL
# Training Loop
total_numsteps = 0
updates = 0
total_updates = 0
num_episodes = 0
episode_steps = np.zeros(args.num_actors)
episode_rewards = torch.zeros(args.num_actors).to(device)
total_episode_reward_hist = []
episode_len_hist = []
agent.times = []
last = time.time()
start_time = time.time()
for i_episode in itertools.count(1):
critic_1_grad_state_loss = None
critic_1_loss, critic_2_loss, policy_loss, ent_loss, alpha, log_pi, min_qf_pi, next_values, \
qf_loss_batch, actor_grad_norm, critic_grad_norm, = RL_update_func(memory_cgac, args.batch_size, updates)
if not args.test and not args.final:
writer.add_scalar('loss/critic_1', critic_1_loss, updates)
writer.add_scalar('loss/critic_2', critic_2_loss, updates)
writer.add_scalar('loss/policy', policy_loss, updates)
writer.add_scalar('loss/entropy_loss', ent_loss, updates)
writer.add_scalar('loss/log_pi', log_pi, updates)
writer.add_scalar('loss/min_qf_pi', min_qf_pi, updates)
writer.add_scalar('entropy_temprature/alpha', alpha, updates)
writer.add_scalar('entropy_temprature/actor_grad_norm', actor_grad_norm, updates)
writer.add_scalar('entropy_temprature/critic_grad_norm', critic_grad_norm, updates)
writer.add_scalar('losses/val_targ_max', next_values.max().item(), updates)
writer.add_scalar('losses/val_targ_mean', next_values.mean().item(), updates)
writer.add_scalar('losses/val_targ_min', next_values.min().item(), updates)
writer.add_scalar('losses/loss_qf_max', qf_loss_batch.max().item(), updates)
writer.add_scalar('losses/loss_qf_mean', qf_loss_batch.mean().item(), updates)
writer.add_scalar('losses/loss_qf_min', qf_loss_batch.min().item(), updates)
writer.add_scalar('losses/loss_qf_median', qf_loss_batch.median().item(), updates)
writer.add_scalar('entropy_temprature/num_nans', agent.num_nans, updates)
writer.add_scalar('agent_rewards/rew1', agent.episode_rewards[0], i_episode)
writer.add_scalar('agent_rewards/rew10', agent.episode_rewards[10], i_episode)
writer.add_scalar('agent_rewards/rew100', agent.episode_rewards[20], i_episode)
writer.add_scalar('agent_rewards/rew1k', agent.episode_rewards[40], i_episode)
writer.add_scalar('agent_rewards/eplenavg', agent.env_train.progress_buf.clone().float().mean().item(), i_episode)
writer.add_scalar('agent_done_stats/done_len', agent.len_dones, i_episode)
writer.add_scalar('agent_done_stats/queue_len', agent.len_queue, i_episode)
writer.add_scalar('agent_done_stats/env_thres', agent.env_thres, i_episode)
writer.add_scalar('agent_done_stats/memory_cgac_horizon', memory_cgac.h, i_episode)
writer.add_scalar('agent_done_stats/sum_episode_wts', (1-agent.episode_wts).sum(), i_episode)
writer.add_scalar('agent_done_stats/agent_curr_rew', agent.reward_batch_curr, i_episode)
updates += 1
total_updates += args.num_critic_updates
total_numsteps = updates*args.batch_size
if total_numsteps > args.num_steps:
break
if i_episode%100 == 0:
time_taken = time.time() - last
last = time.time()
total_time = time.time() - start_time
if len(agent.total_episode_reward_hist)>0:
num_test_avg = 100
if not args.test:
writer.add_scalar('reward/train', np.array(agent.total_episode_reward_hist[-num_test_avg:]).mean(), i_episode)
writer.add_scalar('reward/train_recent', agent.total_episode_reward_hist[-1], i_episode)
writer.add_scalar('reward/ep_len', np.array(agent.episode_len_hist[-num_test_avg:]).mean(), i_episode)
writer.add_scalar('reward/rew_eplen', np.array(agent.total_episode_reward_hist[-num_test_avg:]).mean()/np.array(agent.episode_len_hist[-num_test_avg:]).mean(), i_episode)
writer.add_scalar('reward/train_agent', np.array(agent.total_episode_reward_hist[-num_test_avg:]).mean(), i_episode)
writer.add_scalar('reward/ep_len_agent', np.array(agent.episode_len_hist[-num_test_avg:]).mean(), i_episode)
writer.add_scalar('reward/rew_eplen_agent', np.array(agent.total_episode_reward_hist[-num_test_avg:]).mean()/np.array(agent.episode_len_hist[-num_test_avg:]).mean(), i_episode)
writer.add_scalar('reward/train_time', np.array(agent.total_episode_reward_hist[-num_test_avg:]).mean(), total_time)
writer.add_scalar('reward/ep_len_time', np.array(agent.episode_len_hist[-num_test_avg:]).mean(), total_time)
writer.add_scalar('reward/train_steps', np.array(agent.total_episode_reward_hist[-num_test_avg:]).mean(), total_numsteps)
writer.add_scalar('reward/ep_len_steps', np.array(agent.episode_len_hist[-num_test_avg:]).mean(), total_numsteps)
# writer.add_scalar('variance/snr_q', agent.snr_q, total_numsteps)
# writer.add_scalar('variance/snr_q_iter', agent.snr_q, i_episode)
# writer.add_scalar('variance/ppo_snr', agent.ppo_snr, total_numsteps)
# writer.add_scalar('variance/ppo_snr_iter', agent.ppo_snr, i_episode)
# writer.add_scalar('variance/ppo_snr_adv', agent.ppo_snr_adv, total_numsteps)
# writer.add_scalar('variance/ppo_snr_adv_iter', agent.ppo_snr_adv, i_episode)
print(f"iters: {i_episode}, total numsteps: {total_numsteps}, num ep: {agent.num_episodes}, episode steps: {np.array(agent.episode_len_hist[-num_test_avg:]).mean()}, reward: {np.array(agent.total_episode_reward_hist[-num_test_avg:]).mean()}, progress_buf: {env.progress_buf.min()}, time: {time_taken}, lr: {agent.lr}, num_nans: {agent.num_nans}")
else:
print(f"iters: {i_episode}, total numsteps: {total_numsteps}, num ep: {agent.num_episodes}, progress_buf: {env.progress_buf.min()}, time: {time_taken}, lr: {agent.lr}, num_nans: {agent.num_nans}")
print(agent.alpha)
env.close()
| 13,888 |
Python
| 57.851695 | 358 | 0.682316 |
RoboticExplorationLab/CGAC/cgac/replay_memory.py
|
import random
import numpy as np
import torch
import ipdb
class VectorizedReplayBufferIsaacSAC:
def __init__(self, obs_shape, action_shape, batch_size, num_steps, device, gamma=0.99, lam=0.95, horizon=200000, critic_method='td-lambda'):#
"""Create Vectorized Replay buffer.
Parameters
----------
size: int
Max number of transitions to store in the buffer. When the buffer
overflows the old memories are dropped.
See Also
--------
ReplayBuffer.__init__
"""
self.device = device
self.out_device = device
self.batch_size = batch_size
self.num_steps = num_steps
self.critic_method = critic_method
capacity = batch_size*num_steps
self.lam = lam
self.gamma = gamma
self.h = min(horizon, num_steps)
self.minhorizon = 1
self.actions = torch.empty((num_steps, batch_size, *action_shape), dtype=torch.float32, device=self.device)
self.rewards = torch.empty((num_steps, batch_size, 1), dtype=torch.float32, device=self.device)
self.masks = torch.empty((num_steps, batch_size, 1), dtype=torch.float32, device=self.device)
self.term_masks = torch.empty((num_steps, batch_size, 1), dtype=torch.float32, device=self.device)
self.next_values = torch.empty((num_steps, batch_size, 1), dtype=torch.float32, device=self.device)
self.next_state_log_pi = torch.empty((num_steps, batch_size, 1), dtype=torch.float32, device=self.device)
self.states = torch.empty((num_steps, batch_size, *obs_shape), dtype=torch.float32, device=self.device)
self.episode_wts = torch.empty((num_steps, batch_size, 1), dtype=torch.float32, device=self.device)
self.val_cur = torch.empty((num_steps, batch_size, 1), dtype=torch.float32, device=self.device)
self.gamma_k = torch.ones((num_steps, batch_size, 1), dtype=torch.float32, device=self.device)
self.sigmar = torch.zeros((num_steps, batch_size, 1), dtype=torch.float32, device=self.device)
self.Vt_new = torch.zeros((num_steps, batch_size, 1), dtype=torch.float32, device=self.device)
self.lam_t = torch.ones((num_steps, batch_size, 1), dtype=torch.float32, device=self.device)
self.Vt_out = torch.zeros((num_steps, batch_size, 1), dtype=torch.float32, device=self.device)
self.mask_t = torch.ones((num_steps, batch_size, 1), dtype=torch.float32, device=self.device)
self.sigmaG = torch.zeros((num_steps, batch_size, 1), dtype=torch.float32, device=self.device)
self.G_prev = torch.zeros((num_steps, batch_size, 1), dtype=torch.float32, device=self.device)
self.gamma_lam_k = torch.zeros((num_steps, batch_size, 1), dtype=torch.float32, device=self.device)
self.sample_start_idxs = torch.zeros((batch_size,), dtype=torch.float32, device=self.device)
self.num_episodes_passed = torch.zeros((batch_size,), dtype=torch.float32, device=self.device)
self.capacity = capacity
self.idx = 0
self.full = False
@torch.no_grad()
def add(self, states, actions, rewards, next_q_value, masks, term_masks, next_state_log_pi, alpha, episode_wts, updates):
num_observations = self.batch_size
if self.idx >= self.num_steps:
self.full = True
self.idx = 0
self.actions[self.idx, :] = actions
self.states[self.idx, :] = states
self.rewards[self.idx, :] = rewards
self.masks[self.idx, :] = masks
self.term_masks[self.idx, :] = term_masks
self.next_values[self.idx, :] = next_q_value
self.next_state_log_pi[self.idx, :] = next_state_log_pi
self.episode_wts[self.idx, :] = episode_wts
self.alpha = alpha
self.compute_target_values()
self.idx += 1
@torch.no_grad()
def sample(self, batch_size):
"""Sample a batch of experiences.
Parameters
----------
batch_size: int
How many transitions to sample.
Returns
-------
obses: torch tensor
batch of observations
actions: torch tensor
batch of actions executed given obs
rewards: torch tensor
rewards received as results of executing act_batch
next_obses: torch tensor
next set of observations seen after executing act_batch
not_dones: torch tensor
inverse of whether the episode ended at this tuple of (observation, action) or not
not_dones_no_max: torch tensor
inverse of whether the episode ended at this tuple of (observation, action) or not, specifically exlcuding maximum episode steps
"""
idxs_steps = torch.randint(0,
self.num_steps if self.full else self.idx,
(batch_size,), device=self.device)
idxs_bsz = torch.randint(0,
self.batch_size,
(batch_size,), device=self.device)
states = self.states[idxs_steps, idxs_bsz]
actions = self.actions[idxs_steps, idxs_bsz]
rewards = self.rewards[idxs_steps, idxs_bsz]
masks = self.masks[idxs_steps, idxs_bsz]
target_val = self.Vt_out[idxs_steps, idxs_bsz]
episode_wts = self.episode_wts[idxs_steps, idxs_bsz]
return states, actions, rewards, target_val, masks, episode_wts
def __len__(self):
return self.idx
@torch.no_grad()
def compute_target_values(self):
if self.critic_method == 'one-step':
self.Vt_out[self.idx] = self.rewards[self.idx] + self.gamma * self.next_values[self.idx] * self.masks[self.idx]
elif self.critic_method == 'td-lambda':
if self.full:
if self.idx>=self.h-1:
start_idx = self.idx - self.h + 1
else:
start_idx = 0
end_idx = self.idx - self.h + 1
mask = self.masks[self.idx]
self.sigmar[end_idx:] = self.sigmar[end_idx:] + self.gamma_k[end_idx:]*self.rewards[self.idx].unsqueeze(0)
G_new = self.sigmar[end_idx:] + self.gamma*self.gamma_k[end_idx:]*(self.next_values[self.idx]*mask).unsqueeze(0)
self.G_prev[end_idx:] = G_new.clone().detach()
self.gamma_k[end_idx:] = self.gamma*self.gamma_k[end_idx:]
Vt_new = (1-self.lam)*self.sigmaG[end_idx:] + self.lam_t[end_idx:]*G_new
self.sigmaG[end_idx:] = self.sigmaG[end_idx:] + self.lam_t[end_idx:]*G_new
self.lam_t[end_idx:] = self.lam_t[end_idx:]*self.lam
self.Vt_out[end_idx:] = self.Vt_out[end_idx:]*(1-self.mask_t[end_idx:]) + Vt_new*self.mask_t[end_idx:]
self.mask_t[end_idx:] = self.mask_t[end_idx:]*(self.grad_masks[self.idx].unsqueeze(0))
if self.idx>0:
mask = self.masks[self.idx]
self.sigmar[start_idx:self.idx] = self.sigmar[start_idx:self.idx] + self.gamma_k[start_idx:self.idx]*self.rewards[self.idx].unsqueeze(0)
G_new = self.sigmar[start_idx:self.idx] + self.gamma*self.gamma_k[start_idx:self.idx]*(self.next_values[self.idx]*mask).unsqueeze(0)
self.G_prev[start_idx:self.idx] = G_new.clone().detach()
self.gamma_k[start_idx:self.idx] = self.gamma*self.gamma_k[start_idx:self.idx]
Vt_new = (1-self.lam)*self.sigmaG[start_idx:self.idx] + self.lam_t[start_idx:self.idx]*G_new
self.sigmaG[start_idx:self.idx] = self.sigmaG[start_idx:self.idx] + self.lam_t[start_idx:self.idx]*G_new
self.lam_t[start_idx:self.idx] = self.lam_t[start_idx:self.idx]*self.lam
self.Vt_out[start_idx:self.idx] = self.Vt_out[start_idx:self.idx]*(1-self.mask_t[start_idx:self.idx]) + Vt_new*self.mask_t[start_idx:self.idx]
self.mask_t[start_idx:self.idx] = self.mask_t[start_idx:self.idx]*(self.grad_masks[self.idx].unsqueeze(0))
else:
if self.idx > 0:
mask = self.masks[self.idx]
self.sigmar[:self.idx] = self.sigmar[:self.idx] + self.gamma_k[:self.idx]*self.rewards[self.idx].unsqueeze(0)
G_new = self.sigmar[:self.idx] + self.gamma*self.gamma_k[:self.idx]*(self.next_values[self.idx]*mask).unsqueeze(0)
self.G_prev[:self.idx] = G_new.clone().detach()
self.gamma_k[:self.idx] = self.gamma*self.gamma_k[:self.idx]
Vt_new = (1-self.lam)*self.sigmaG[:self.idx] + self.lam_t[:self.idx]*G_new
self.sigmaG[:self.idx] = self.sigmaG[:self.idx] + self.lam_t[:self.idx]*G_new
self.lam_t[:self.idx] = self.lam_t[:self.idx]*self.lam
self.Vt_out[:self.idx] = self.Vt_out[:self.idx]*(1-self.mask_t[:self.idx]) + Vt_new*self.mask_t[:self.idx]
self.mask_t[:self.idx]= self.mask_t[:self.idx]*(self.grad_masks[self.idx].unsqueeze(0))
## Initializing for self.idx
mask = self.masks[self.idx]
self.sigmar[self.idx] = self.rewards[self.idx].clone()
G_new = self.sigmar[self.idx] + self.gamma*self.next_values[self.idx]*mask
self.G_prev[self.idx] = G_new.clone().detach()
self.gamma_k[self.idx] = self.gamma
self.sigmaG[self.idx] = G_new.clone().detach()
Vt_new = G_new
self.lam_t[self.idx] = self.lam
self.Vt_out[self.idx] = Vt_new
self.mask_t[self.idx] = self.grad_masks[self.idx].clone().detach()
elif self.critic_method == 'gae-return':
if self.full:
# If the buffer is full, compute the start and end indices for the horizon to compute the gae-return
# After exceeding the buffer length, the experiences wrap around to the beginning of the buffer
if self.idx >= self.h-1:
start_idx = self.idx - self.h + 1
else:
# Accounting for the wrap around of the buffer. We want to update end_idx:end and start_idx:self.idx
start_idx = 0
end_idx = self.idx - self.h + 1
mask = self.masks[self.idx]
delta_gamma_k = self.gamma_lam_k[end_idx:] * (self.rewards[self.idx] - self.next_values[self.idx-1] + self.gamma * self.next_values[self.idx] * mask).unsqueeze(0)
self.Vt_out[end_idx:] = self.Vt_out[end_idx:] + delta_gamma_k * self.mask_t[end_idx:]
self.gamma_lam_k[end_idx:] = self.gamma_lam_k[end_idx:] * self.gamma * self.lam
self.mask_t[end_idx:] = self.mask_t[end_idx:] * self.term_masks[self.idx].unsqueeze(0)
if self.idx > 0:
mask = self.masks[self.idx]
delta_gamma_k = self.gamma_lam_k[start_idx:self.idx] * (self.rewards[self.idx] - self.next_values[self.idx-1] + self.gamma * self.next_values[self.idx] * mask).unsqueeze(0)
self.Vt_out[start_idx:self.idx] = self.Vt_out[start_idx:self.idx] + delta_gamma_k * self.mask_t[start_idx:self.idx]
self.gamma_lam_k[start_idx:self.idx] = self.gamma_lam_k[start_idx:self.idx] * self.gamma * self.lam
self.mask_t[start_idx:self.idx] = self.mask_t[start_idx:self.idx] * self.term_masks[self.idx].unsqueeze(0)
else:
# If the buffer is not full, only need to update start_idx:self.idx
start_idx = max(0, self.idx - self.h + 1)
mask = self.masks[self.idx]
delta_gamma_k = self.gamma_lam_k[start_idx:self.idx] * (self.rewards[self.idx] - self.next_values[self.idx-1] + self.gamma * self.next_values[self.idx] * mask).unsqueeze(0)
self.Vt_out[start_idx:self.idx] = self.Vt_out[start_idx:self.idx] + delta_gamma_k * self.mask_t[start_idx:self.idx]
self.gamma_lam_k[start_idx:self.idx] = self.gamma_lam_k[start_idx:self.idx] * self.gamma * self.lam
self.mask_t[start_idx:self.idx] = self.mask_t[start_idx:self.idx] * self.term_masks[self.idx].unsqueeze(0)
# Update Vt_out, gamma_lam_k, and mask_t for the current timestep
mask = self.masks[self.idx]
delta_gamma_k = self.rewards[self.idx] + self.gamma * self.next_values[self.idx] * mask
self.Vt_out[self.idx] = delta_gamma_k
self.gamma_lam_k[self.idx] = self.gamma * self.lam
self.mask_t[self.idx] = self.term_masks[self.idx].clone().detach()
else:
raise NotImplementedError
| 12,832 |
Python
| 58.688372 | 193 | 0.584165 |
RoboticExplorationLab/CGAC/cgac/cgac.py
|
import os
import torch
import torch.nn.functional as F
from torch.optim import Adam
from utils_cgac import *
from model import GaussianPolicy, QNetwork, DeterministicPolicy
import gc
import ipdb
from torch.nn.utils.clip_grad import clip_grad_norm_
import numpy as np
import time
from torch.distributions import Normal
class CGAC(object):
def __init__(self, num_inputs, action_space, args, memory_cgac, env=None):
self.gamma = args.gamma
self.tau = args.tau_value
self.alpha = args.alpha
self.args = args
if self.args.on_policy_update:
self.env_train = env
if args.env_name!='AllegroHand':
self.env_train.clear_grad()
self.env_train.reset()
self.state_batch = self.env_train.obs_buf
self.policy_type = args.policy
self.target_update_interval = args.target_update_interval
self.automatic_entropy_tuning = args.automatic_entropy_tuning
self.lr = args.actor_lr
self.device = torch.device("cuda" if args.cuda else "cpu")
self.rms_obs = RunningMeanStd((num_inputs,)).to(self.device)
self.val_running_median = 1.
self.act_running_median = 1.
self.state_running_median = 1.
self.memory_cgac = memory_cgac
self.critic = QNetwork(num_inputs, action_space.shape[0], args.critic_hidden, args).to(device=self.device)
self.critic_optim = Adam(self.critic.parameters(), lr=args.critic_lr, betas = args.betas)
self.critic_target = QNetwork(num_inputs, action_space.shape[0], args.critic_hidden, args).to(self.device)
hard_update(self.critic_target, self.critic)
self.episode_steps = np.zeros(args.batch_size)
self.episode_rewards = torch.zeros(args.batch_size).to(self.device)
self.total_episode_reward_hist = []
self.episode_len_hist = []
self.num_episodes = 0
self.total_numsteps = 0
self.episode_wts = torch.ones(args.batch_size, 1).to(self.device)
self.queue_ids = set([])
self.num_nans = 0
self.rewards_moving_avg = 0.0
self.targ_ent_coeff = 1.0
self.mean_ratio = 100
self.ep_lens = torch.zeros_like(self.env_train.progress_buf) + 10
self.obs_dict = {}
if self.policy_type == "Gaussian":
# Target Entropy = −dim(A) (e.g. , -6 for HalfCheetah-v2) as given in the paper
if self.automatic_entropy_tuning is True:
self.target_entropy = -torch.prod(torch.Tensor(action_space.shape).to(self.device)).item()
self.log_alpha = torch.zeros(1, requires_grad=True, device=self.device)
self.log_alpha.data[0] = np.log(self.alpha)
self.alpha_optim = Adam([self.log_alpha], lr=args.alpha_lr)
self.policy = GaussianPolicy(num_inputs, action_space.shape[0], args.actor_hidden, args, action_space, const_std=args.const_std).to(self.device)
self.policy_optim = Adam(self.policy.parameters(), lr=args.actor_lr, betas = args.betas)
self.policy_avg = GaussianPolicy(num_inputs, action_space.shape[0], args.actor_hidden, args, action_space, const_std=args.const_std).to(self.device)
hard_update(self.policy_avg, self.policy)
else:
self.alpha = 0
self.automatic_entropy_tuning = False
self.policy = DeterministicPolicy(num_inputs, action_space.shape[0], args.actor_hidden, action_space).to(self.device)
self.policy_optim = Adam(self.policy.parameters(), lr=args.actor_lr)
def select_action(self, state, evaluate=False):
if evaluate is False:
action, _, _ = self.policy.sample(state)
else:
_, _, action = self.policy.sample(state)
return action.detach()
def compute_loss(self, out, targ):
"""
Computes the loss for the critic network.
Hinge loss for TD error with hinge at 4*median.
"""
diff = torch.abs(out - targ)
median = diff.median(dim=0)[0].detach().clone().unsqueeze(0)
mask = (diff < 4*median).float()
cost = torch.square(out - targ)*(mask) + diff*8*median*(1-mask)
cost = torch.mean(cost)
return cost
def update_parameters_and_collect_buffer_RL(self, memory, batch_size, updates):
### Learning rate schedule for the actor and critic networks ###
if self.args.lr_schedule == 'linear':
final_lr = self.args.final_lr
actor_lr = max((final_lr - self.args.actor_lr) * float((updates) / self.args.max_updates) + self.args.actor_lr, final_lr)
for param_group in self.policy_optim.param_groups:
param_group['lr'] = actor_lr
self.lr = actor_lr
critic_lr = max((final_lr - self.args.critic_lr) * float((updates) / self.args.max_updates) + self.args.critic_lr, final_lr)
for param_group in self.critic_optim.param_groups:
param_group['lr'] = critic_lr
elif self.args.lr_schedule == 'step':
final_lr = self.args.final_lr
exp = updates//self.args.lr_update_freq
actor_lr = max(self.args.actor_lr * (self.args.lr_decay_rate**exp), final_lr)
for param_group in self.policy_optim.param_groups:
param_group['lr'] = actor_lr
self.lr = actor_lr
critic_lr = max(self.args.critic_lr * (self.args.lr_decay_rate**exp), final_lr)
for param_group in self.critic_optim.param_groups:
param_group['lr'] = critic_lr
else:
self.lr = self.args.actor_lr
### Schedule for alpha or target entropy for policy ###
if self.args.alpha_schedule == 'linear':
if self.automatic_entropy_tuning:
self.targ_ent_coeff = (self.args.final_targ_ent_coeff - self.args.init_targ_ent_coeff)*(self.rewards_moving_avg - self.args.init_expected_reward)/\
(self.args.peak_expected_reward - self.args.init_expected_reward) + self.args.init_targ_ent_coeff
else:
self.alpha = max((self.args.alpha_final - self.args.alpha_init) * float((updates) / self.args.max_updates_alpha) + self.args.alpha_init, self.args.alpha_final)
elif self.args.alpha_schedule == 'decay':
if updates % self.args.decay_steps == 0:
self.alpha = max(self.args.alpha_init/(2**(updates/self.args.decay_steps)), self.args.alpha_final)
### Update Obs statistics and get obs ###
self.rms_obs.update(self.env_train.obs_buf.detach().clone())
obs_batch = self.rms_obs(self.env_train.obs_buf)
### Sample actions and execute it in the environment ###
with torch.no_grad():
action, _, _ = self.policy_avg.sample(obs_batch)
action_batch = action
with torch.no_grad():
next_obs_batch, reward_batch, done_batch, info = self.env_train.step(action_batch, force_done_ids)
next_obs_batch = self.rms_obs(next_obs_batch)
mask_batch = (1-done_batch.unsqueeze(-1)).float()
done_env_ids = done_batch.nonzero(as_tuple = False).squeeze(-1).cpu().numpy()
### Update reward statistics ###
self.episode_steps += 1
self.total_numsteps += self.args.batch_size
self.episode_rewards += reward_batch
reward_batch = reward_batch.unsqueeze(-1)
self.reward_batch_curr = (reward_batch.clone().detach()*self.episode_wts).sum()/self.episode_wts.sum()
self.rewards_moving_avg = 0.95*self.rewards_moving_avg + 0.05*self.reward_batch_curr
### Handling Env Terminations ###
if len(done_env_ids) > 0:
self.total_episode_reward_hist += self.episode_rewards[done_env_ids].cpu().numpy().tolist()
self.episode_len_hist += self.episode_steps[done_env_ids].tolist()
self.episode_rewards[done_env_ids] = 0
self.episode_steps[done_env_ids] = 0
self.num_episodes += len(done_env_ids)
inv_mask = torch.logical_or(
torch.logical_or(
torch.isnan(info['obs_before_reset'][done_env_ids]).sum(dim=-1) > 0,
torch.isinf(info['obs_before_reset'][done_env_ids]).sum(dim=-1) > 0),
(torch.abs(info['obs_before_reset'][done_env_ids]) > 1e6).sum(dim=-1) > 0
)
self.num_nans += inv_mask.float().sum()
eplen_mask = self.env_train.progress_buf_mask[done_env_ids] == self.env_train.episode_length
if eplen_mask.float().sum() >0:
eplen_done_ids = done_env_ids[eplen_mask.cpu().numpy()]
inv_mask = torch.logical_or(
torch.logical_or(
torch.isnan(info['obs_before_reset'][eplen_done_ids]).sum(dim=-1) > 0,
torch.isinf(info['obs_before_reset'][eplen_done_ids]).sum(dim=-1) > 0),
(torch.abs(info['obs_before_reset'][eplen_done_ids]) > 1e6).sum(dim=-1) > 0
)
valid_mask = torch.logical_not(inv_mask)
val_done_ids = eplen_done_ids[valid_mask.cpu().numpy()]
if len(val_done_ids)>0:
mask_batch[val_done_ids] = 1.
next_obs_batch[val_done_ids] = self.rms_obs(info['obs_before_reset'][val_done_ids])
### Compute next state Q values ###
with torch.no_grad():
next_state_action1, next_state_log_pi, _ = self.policy_avg.sample(next_obs_batch.detach(), 1)
qf1_next_target1, qf2_next_target1 = self.critic_target(next_obs_batch, next_state_action1)
min_qf_next = torch.min(qf1_next_target1, qf2_next_target1)
term_mask = mask_batch.clone().detach()
### Update replay buffer ###
self.memory_cgac.add(obs_batch, action_batch, reward_batch, min_qf_next.detach().clone(), mask_batch, term_mask, next_state_log_pi.detach().clone(), self.alpha, self.episode_wts.clone().detach(), updates)
### Prevent suddent collapse and reset of too many envs - This can skew the distribution ###
### This is done by keeping a count of finished episodes and performing resets at a specific rate ###
### The finished episodes until they are reset are ignored for training ###
env_thres_stop = self.env_thres = (self.args.batch_size)/(self.env_train.ep_lens[:200].float().mean()+1e-8)
env_thres_start = max((self.args.batch_size)/(self.env_train.ep_lens.float().mean()+1e-8), 1)
self.len_dones = len(done_env_ids)
force_done_ids = None
done_env_ids_resets = list(set(done_env_ids).difference(self.queue_ids))
if len(done_env_ids_resets) > int(env_thres_stop) + 1:
env_thres_int = int(env_thres_stop) + 1
self.episode_wts[done_env_ids_resets[env_thres_int:]] = 0
self.queue_ids.update(list(done_env_ids_resets[env_thres_int:]))
if len(done_env_ids_resets) < int(env_thres_start):
env_thres_int = int(env_thres_start)
num_resets = min(env_thres_int-len(done_env_ids_resets), len(self.queue_ids)+self.args.max_rand_resets)
num_rand_resets = max(min(num_resets - len(self.queue_ids), self.args.max_rand_resets),0)
nids = min(env_thres_int-len(done_env_ids_resets), len(self.queue_ids))
queue_ids = list(self.queue_ids)
if num_rand_resets>0:
rand_reset_ids = list(np.random.randint(self.args.batch_size, size=(num_rand_resets,)))
reset_ids = rand_reset_ids + queue_ids
self.memory_cgac.mask_t[:, rand_reset_ids] *= 0
else:
reset_ids = queue_ids[:nids]
self.episode_wts[reset_ids] = 1
force_done_ids = torch.tensor(reset_ids).long()
self.queue_ids = set(queue_ids[nids:]).difference(reset_ids)
self.env_train.reset(force_done_ids, eplenupdate=False)
self.episode_rewards[force_done_ids] = 0
self.episode_steps[force_done_ids] = 0
self.len_queue = len(self.queue_ids)
### Update critic parameters if num_critic_updates > 1 ###
for i in range(self.args.num_critic_updates-1):
self.update_parameters_with_RL(updates, critic_update_only=True)
updates += 1
### Update critic params, actor params and alpha ###
return self.update_parameters_with_RL(updates)
def update_parameters_with_RL(self, updates, critic_update_only=False):
obs_batch_new, action_batch, reward_batch, next_q_value, mask_batch, episode_wts = self.memory_cgac.sample(self.args.batch_size_update)
episode_wts = episode_wts/episode_wts.mean()
qf1, qf2 = self.critic(obs_batch_new, action_batch) # Two Q-functions to mitigate positive bias in the policy improvement step
### CRITIC UPDATE ###
### Computing hinge TD errors. episode_wts are used to ignore transitions ###
qf1_loss = self.compute_loss(qf1*episode_wts, next_q_value*episode_wts) # JQ = 𝔼(st,at)~D[0.5(Q1(st,at) - r(st,at) - γ(𝔼st+1~p[V(st+1)]))^2]
qf2_loss = self.compute_loss(qf2*episode_wts, next_q_value*episode_wts) # JQ = 𝔼(st,at)~D[0.5(Q1(st,at) - r(st,at) - γ(𝔼st+1~p[V(st+1)]))^2]
qf_loss = qf1_loss + qf2_loss
qf1_loss_batch = (qf1*episode_wts - next_q_value*episode_wts)**2
qf2_loss_batch = (qf2*episode_wts - next_q_value*episode_wts)**2
qf_loss_batch = qf1_loss_batch + qf2_loss_batch
qf_loss_full = qf_loss
self.critic_optim.zero_grad()
qf_loss_full.backward()
critic_grad_norm = clip_grad_norm_(self.critic.parameters(), self.args.grad_norm)
self.critic_optim.step()
### Update actor and alpha if critic_update_only is not True ###
if not critic_update_only:
### ACTOR UPDATE ###
pi, log_pi, _, x_t = self.policy.sample(obs_batch_new.detach().clone(), with_xt=True)
qf1_pi, qf2_pi = self.critic(obs_batch_new.detach().clone(), pi)
min_qf_pi = torch.min(qf1_pi,qf2_pi)*episode_wts
if self.args.clip_actor_gn:
qpi_grad = torch.autograd.grad(min_qf_pi.mean(), pi, retain_graph=True)[0]
ratio = (qpi_grad.abs().max(dim=0)[0]/qpi_grad.abs().median(dim=0)[0]).mean()
self.mean_ratio = 0.95*self.mean_ratio + 0.05*ratio
if ratio > self.mean_ratio*2:
qpi_grad = torch.clamp(qpi_grad, min=torch.quantile(qpi_grad, 0.5, dim=0), max=torch.quantile(qpi_grad, 0.95, dim=0)).detach().clone()
policy_loss = (self.alpha * log_pi*episode_wts).mean() - (qpi_grad*pi).sum()# # Jπ = 𝔼st∼D,εt∼N[α * logπ(f(εt;st)|st) − Q(st,f(εt;st))]
else:
policy_loss = ((self.alpha * log_pi*episode_wts) - min_qf_pi).mean()
# pol_grad = torch.autograd.grad(policy_loss, pi, retain_graph=True)[0]
# self.snr_q = (pol_grad.mean(dim=0).abs()/pol_grad.std(dim=0)).mean()
self.policy_optim.zero_grad()
policy_loss.backward()
actor_grad_norm = self.policy.layers[3].weight.grad.norm().item()
self.policy_optim.step()
### ALPHA UPDATE ###
if self.automatic_entropy_tuning:
alpha_loss = -(self.log_alpha * (log_pi*episode_wts + self.targ_ent_coeff*self.target_entropy).detach()).mean()
self.alpha_optim.zero_grad()
alpha_loss.backward()
self.alpha_optim.step()
self.alpha = min(self.log_alpha.exp().detach().item(), self.alpha)
self.log_alpha.data[0] = np.log(self.alpha)
alpha_tlogs = self.alpha # For TensorboardX logs
else:
alpha_loss = torch.tensor(0.).to(self.device)
alpha_tlogs = torch.tensor(self.alpha) # For TensorboardX logs
### Update target network and policy avg network ###
if updates % self.target_update_interval == 0:
soft_update(self.critic_target, self.critic, self.args.tau_value)
soft_update(self.policy_avg, self.policy, self.args.tau_policy)
return qf1_loss.item(), qf2_loss.item(), policy_loss.item(), alpha_loss.item(), alpha_tlogs, log_pi.mean().item(), min_qf_pi.mean().item(), next_q_value.detach().cpu(), \
qf_loss_batch.detach().cpu(), actor_grad_norm, critic_grad_norm
return None
def update_parameters_and_collect_buffer_RL_isaac(self, memory, batch_size, updates):
### Learning rate schedule for the actor and critic networks ###
if self.args.lr_schedule == 'linear':
final_lr = self.args.final_lr
actor_lr = max((final_lr - self.args.actor_lr) * float((updates) / self.args.max_updates) + self.args.actor_lr, final_lr)
for param_group in self.policy_optim.param_groups:
param_group['lr'] = actor_lr
self.lr = actor_lr
critic_lr = max((final_lr - self.args.critic_lr) * float((updates) / self.args.max_updates) + self.args.critic_lr, final_lr)
for param_group in self.critic_optim.param_groups:
param_group['lr'] = critic_lr
elif self.args.lr_schedule == 'step':
final_lr = self.args.final_lr
exp = updates//self.args.lr_update_freq
actor_lr = max(self.args.actor_lr * (self.args.lr_decay_rate**exp), final_lr)
for param_group in self.policy_optim.param_groups:
param_group['lr'] = actor_lr
self.lr = actor_lr
critic_lr = max(self.args.critic_lr * (self.args.lr_decay_rate**exp), final_lr)
for param_group in self.critic_optim.param_groups:
param_group['lr'] = critic_lr
else:
self.lr = self.args.actor_lr
### Schedule for alpha or target entropy for policy ###
if self.args.alpha_schedule == 'linear':
if self.automatic_entropy_tuning:
self.targ_ent_coeff = max((self.args.final_targ_ent_coeff - self.args.init_targ_ent_coeff)*(self.rewards_moving_avg - self.args.init_expected_reward)/\
(self.args.peak_expected_reward - self.args.init_expected_reward) + self.args.init_targ_ent_coeff, -0.4)#, self.targ_ent_coeff)#self.args.final_targ_ent_coeff)
# if self.rewards_moving_avg > self.args.peak_expected_reward:
# self.alpha = min(self.alpha, 1e-5)
else:
self.alpha = max((self.args.alpha_final - self.args.alpha_init) * float((updates) / self.args.max_updates_alpha) + self.args.alpha_init, self.args.alpha_final)
elif self.args.alpha_schedule == 'decay':
if updates % self.args.decay_steps == 0:
self.alpha = max(self.args.alpha_init/(2**(updates/self.args.decay_steps)), self.args.alpha_final)
### Update Obs statistics and get obs ###
obs_dict, dones = self._env_reset_done()
obs_buf = obs_dict['obs']
self.rms_obs.update(obs_buf)
obs_batch = self.rms_obs(obs_buf)
### Sample actions and execute it in the environment ###
with torch.no_grad():
action, _, _ = self.policy_avg.sample(obs_batch)
action_batch = action
next_obs_batch, reward_batch, done_batch, info = self.env_train.step(action_batch)
next_obs_batch = next_obs_batch['obs']
next_obs_batch = self.rms_obs(next_obs_batch)
mask_batch = (1-done_batch.unsqueeze(-1)).float()
done_env_ids = done_batch.nonzero(as_tuple = False).squeeze(-1).cpu().numpy()
term_mask = mask_batch.clone()
### Update reward statistics ###
self.episode_steps += 1
self.total_numsteps += self.args.batch_size
self.episode_rewards += reward_batch.detach().clone()
reward_batch = reward_batch.unsqueeze(-1)
self.reward_batch_curr = (reward_batch.clone().detach()*self.episode_wts).sum()/self.episode_wts.sum()
self.rewards_moving_avg = 0.95*self.rewards_moving_avg + 0.05*self.reward_batch_curr
### Handling Env Terminations
if len(done_env_ids) > 0:
self.total_episode_reward_hist += self.episode_rewards[done_env_ids].cpu().numpy().tolist()
self.episode_len_hist += self.episode_steps[done_env_ids].tolist()
self.episode_rewards[done_env_ids] = 0
self.episode_steps[done_env_ids] = 0
self.num_episodes += len(done_env_ids)
inv_mask = torch.logical_or(
torch.logical_or(
torch.isnan(next_obs_batch[done_env_ids]).sum(dim=-1) > 0,
torch.isinf(next_obs_batch[done_env_ids]).sum(dim=-1) > 0),
(torch.abs(next_obs_batch[done_env_ids]) > 1e6).sum(dim=-1) > 0
)
self.num_nans += inv_mask.float().sum()
self.ep_lens = torch.cat([self.env_train.progress_buf[done_env_ids].clone(), self.ep_lens], dim=0)[:200]
eplen_mask = self.env_train.progress_buf[done_env_ids] == self.env_train.max_episode_length # Need to check
if eplen_mask.float().sum() >0:
eplen_done_ids = done_env_ids[eplen_mask.cpu().numpy()]
inv_mask = torch.logical_or(
torch.logical_or(
torch.isnan(next_obs_batch[eplen_done_ids]).sum(dim=-1) > 0,
torch.isinf(next_obs_batch[eplen_done_ids]).sum(dim=-1) > 0),
(torch.abs(next_obs_batch[eplen_done_ids]) > 1e6).sum(dim=-1) > 0
)
valid_mask = torch.logical_not(inv_mask)
val_done_ids = eplen_done_ids[valid_mask.cpu().numpy()]
if len(val_done_ids)>0:
mask_batch[val_done_ids] = 1.
### Compute next state Q values ###
with torch.no_grad():
next_state_action1, next_state_log_pi, _ = self.policy_avg.sample(next_obs_batch.detach(), 1)
qf1_next_target1, qf2_next_target1 = self.critic_target(next_obs_batch, next_state_action1)
min_qf_next = torch.min(qf1_next_target1, qf2_next_target1)
### Update replay buffer ###
self.memory_cgac.add(obs_batch, action_batch, reward_batch, min_qf_next.detach().clone(), mask_batch, term_mask, next_state_log_pi.detach().clone(), self.alpha, self.episode_wts.clone().detach(), updates)
### Prevent suddent collapse and reset of too many envs - This can skew the distribution ###
### This is done by keeping a count of finished episodes and performing resets at a specific rate ###
### The finished episodes until they are reset are ignored for training ###
env_thres_stop = self.env_thres = (self.args.batch_size)/(self.ep_lens[:200].float().mean()+1e-8)
env_thres_start = (self.args.batch_size)/(self.ep_lens.float().mean()+1e-8)
self.len_dones = len(done_env_ids)
done_env_ids_resets = list(set(done_env_ids).difference(self.queue_ids))
force_done_ids = None
if len(done_env_ids_resets) > int(env_thres_stop) + 1:
env_thres_int = int(env_thres_stop) + 1
self.episode_wts[done_env_ids_resets[env_thres_int:]] = 0
self.queue_ids.update(list(done_env_ids_resets[env_thres_int:]))
if len(done_env_ids_resets) < int(env_thres_start):
env_thres_int = int(env_thres_start)
num_resets = min(env_thres_int-len(done_env_ids_resets), len(self.queue_ids)+self.args.max_rand_resets)
num_rand_resets = max(min(num_resets - len(self.queue_ids), self.args.max_rand_resets),0)
nids = min(env_thres_int-len(done_env_ids_resets), len(self.queue_ids))
queue_ids = list(self.queue_ids)
if num_rand_resets>0:
rand_reset_ids = list(np.random.randint(self.args.batch_size, size=(num_rand_resets,)))
reset_ids = rand_reset_ids + queue_ids
self.memory_cgac.mask_t[:, rand_reset_ids] *= 0
else:
reset_ids = queue_ids[:nids]
if len(reset_ids) > 0:
self.episode_wts[reset_ids] = 1
force_done_ids = torch.tensor(reset_ids).long()
self.queue_ids = set(queue_ids[nids:]).difference(reset_ids)
self.env_train.reset_idx(force_done_ids, force_done_ids)
self.episode_rewards[force_done_ids] = 0
self.episode_steps[force_done_ids] = 0
self.len_queue = len(self.queue_ids)
### Update critic parameters if num_critic_updates > 1 ###
for i in range(self.args.num_critic_updates-1):
self.update_parameters_with_RL_isaac(updates, critic_update_only=True)
updates += 1
### Update critic params, actor params and alpha ###
return self.update_parameters_with_RL_isaac(updates)
def update_parameters_with_RL_isaac(self, updates, critic_update_only=False):
obs_batch_new, action_batch, reward_batch, next_q_value, mask_batch, episode_wts = self.memory_cgac.sample(self.args.batch_size_update)
episode_wts = episode_wts/episode_wts.mean()
qf1, qf2 = self.critic(obs_batch_new, action_batch) # Two Q-functions to mitigate positive bias in the policy improvement step
### CRITIC UPDATE ###
### Computing hinge TD errors. episode_wts are used to ignore transitions ###
qf1_loss = self.compute_loss(qf1*episode_wts, next_q_value*episode_wts)
qf2_loss = self.compute_loss(qf2*episode_wts, next_q_value*episode_wts)
qf_loss = qf1_loss + qf2_loss
qf1_loss_batch = (qf1*episode_wts - next_q_value*episode_wts)**2
qf2_loss_batch = (qf2*episode_wts - next_q_value*episode_wts)**2
qf_loss_batch = qf1_loss_batch + qf2_loss_batch
qf_loss_full = qf_loss
self.critic_optim.zero_grad()
qf_loss_full.backward()
critic_grad_norm = clip_grad_norm_(self.critic.parameters(), self.args.grad_norm)
self.critic_optim.step()
### Update actor and alpha if critic_update_only is not True ###
if not critic_update_only:
### ACTOR UPDATE ###
pi, log_pi, _ = self.policy.sample(obs_batch_new.detach().clone())
qf1_pi, qf2_pi = self.critic(obs_batch_new.detach().clone(), pi)
min_qf_pi = torch.min(qf1_pi,qf2_pi)*episode_wts
if self.args.clip_actor_gn:
qpi_grad = torch.autograd.grad(min_qf_pi.mean(), pi, retain_graph=True)[0]
ratio = (qpi_grad.abs().max(dim=0)[0]/qpi_grad.abs().median(dim=0)[0]).mean()
self.mean_ratio = 0.95*self.mean_ratio + 0.05*ratio
if ratio > self.mean_ratio*2:
qpi_grad = torch.clamp(qpi_grad, min=torch.quantile(qpi_grad, 0.5, dim=0), max=torch.quantile(qpi_grad, 0.95, dim=0)).detach().clone()
policy_loss = (self.alpha * log_pi*episode_wts).mean() - (qpi_grad*pi).sum()# # Jπ = 𝔼st∼D,εt∼N[α * logπ(f(εt;st)|st) − Q(st,f(εt;st))]
else:
policy_loss = ((self.alpha * log_pi*episode_wts) - min_qf_pi).mean()
self.policy_optim.zero_grad()
policy_loss.backward()
actor_grad_norm = self.policy.layers[3].weight.grad.norm().item()
self.policy_optim.step()
### ALPHA UPDATE ###
if self.automatic_entropy_tuning:
alpha_loss = -(self.log_alpha * (log_pi*episode_wts + self.targ_ent_coeff*self.target_entropy).detach()).mean()
self.alpha_optim.zero_grad()
alpha_loss.backward()
self.alpha_optim.step()
self.alpha = min(self.log_alpha.exp().detach().item(), self.alpha)
self.log_alpha.data[0] = np.log(self.alpha)
alpha_tlogs = self.alpha # For TensorboardX logs
else:
alpha_loss = torch.tensor(0.).to(self.device)
alpha_tlogs = torch.tensor(self.alpha) # For TensorboardX logs
### Update target network and policy avg network ###
if updates % self.target_update_interval == 0:
soft_update(self.critic_target, self.critic, self.args.tau_value)
soft_update(self.policy_avg, self.policy, self.args.tau_policy)
return qf1_loss.item(), qf2_loss.item(), policy_loss.item(), alpha_loss.item(), alpha_tlogs, log_pi.mean().item(), min_qf_pi.mean().item(), next_q_value.detach().cpu(), \
qf_loss_batch.detach().cpu(), actor_grad_norm, critic_grad_norm
return None
def _env_reset_done(self):
"""Reset the environment.
Returns:
Observation dictionary, indices of environments being reset
"""
done_env_ids = self.env_train.reset_buf.nonzero(as_tuple=False).flatten()
goal_env_ids = self.env_train.reset_goal_buf.nonzero(as_tuple=False).squeeze(-1)
# if only goals need reset, then call set API
if len(goal_env_ids) > 0 and len(done_env_ids) == 0:
self.env_train.reset_target_pose(goal_env_ids, apply_reset=True)
# if goals need reset in addition to other envs, call set API in reset()
elif len(goal_env_ids) > 0:
self.env_train.reset_target_pose(goal_env_ids)
if len(done_env_ids) > 0:
self.env_train.reset_idx(done_env_ids, goal_env_ids)
if len(goal_env_ids) > 0 or len(done_env_ids) > 0:
self.env_train.compute_observations()
self.obs_dict["obs"] = torch.clamp(self.env_train.obs_buf, -self.env_train.clip_obs, self.env_train.clip_obs).to(self.env_train.rl_device)
return self.obs_dict, done_env_ids
# Save model parameters
def save_checkpoint(self, env_name, suffix="", ckpt_path=None):
if not os.path.exists('checkpoints/'):
os.makedirs('checkpoints/')
if ckpt_path is None:
ckpt_path = "checkpoints/cgac_checkpoint_{}_{}".format(env_name, suffix)
print('Saving models to {}'.format(ckpt_path))
torch.save({'policy_state_dict': self.policy.state_dict(),
'critic_state_dict': self.critic.state_dict(),
'critic_target_state_dict': self.critic_target.state_dict(),
'critic_optimizer_state_dict': self.critic_optim.state_dict(),
'policy_optimizer_state_dict': self.policy_optim.state_dict()}, ckpt_path)
# Load model parameters
def load_checkpoint(self, ckpt_path, evaluate=False):
print('Loading models from {}'.format(ckpt_path))
if ckpt_path is not None:
checkpoint = torch.load(ckpt_path)
self.policy.load_state_dict(checkpoint['policy_state_dict'])
self.critic.load_state_dict(checkpoint['critic_state_dict'])
self.critic_target.load_state_dict(checkpoint['critic_target_state_dict'])
self.critic_optim.load_state_dict(checkpoint['critic_optimizer_state_dict'])
self.policy_optim.load_state_dict(checkpoint['policy_optimizer_state_dict'])
if evaluate:
self.policy.eval()
self.critic.eval()
self.critic_target.eval()
else:
self.policy.train()
self.critic.train()
self.critic_target.train()
| 31,804 |
Python
| 52.543771 | 212 | 0.590272 |
RoboticExplorationLab/CGAC/cgac/utils_cgac.py
|
import math
import torch
import torch.nn as nn
import numpy as np
def create_log_gaussian(mean, log_std, t):
"""Creates a log probability for a Gaussian distribution."""
quadratic = -((0.5 * (t - mean) / (log_std.exp())).pow(2))
l = mean.shape
log_z = log_std
z = l[-1] * math.log(2 * math.pi)
log_p = quadratic.sum(dim=-1) - log_z.sum(dim=-1) - 0.5 * z
return log_p
def logsumexp(inputs, dim=None, keepdim=False):
"""Numerically stable logsumexp."""
if dim is None:
inputs = inputs.view(-1)
dim = 0
s, _ = torch.max(inputs, dim=dim, keepdim=True)
outputs = s + (inputs - s).exp().sum(dim=dim, keepdim=True).log()
if not keepdim:
outputs = outputs.squeeze(dim)
return outputs
def soft_update(target, source, tau):
for target_param, param in zip(target.parameters(), source.parameters()):
target_param.data.copy_(target_param.data * (1.0 - tau) + param.data * tau)
def hard_update(target, source):
for target_param, param in zip(target.parameters(), source.parameters()):
target_param.data.copy_(param.data)
def rand_sample(act_space, bsz):
return torch.rand((bsz,act_space.shape[0]))*(act_space.high-act_space.low) + act_space.low
def grad_norm(params):
"""Computes the norm of gradients for a group of parameters."""
grad_norm = 0.
for p in params:
if p.grad is not None:
grad_norm += torch.sum(p.grad ** 2)
return torch.sqrt(grad_norm)
class dotdict(dict):
"""dot.notation access to dictionary attributes"""
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
'''
updates statistic from a full data
'''
class RunningMeanStd(nn.Module):
def __init__(self, insize, epsilon=1e-05, per_channel=False, norm_only=False):
super(RunningMeanStd, self).__init__()
print('RunningMeanStd: ', insize)
self.insize = insize
self.epsilon = epsilon
self.norm_only = norm_only
self.per_channel = per_channel
if per_channel:
if len(self.insize) == 3:
self.axis = [0,2,3]
if len(self.insize) == 2:
self.axis = [0,2]
if len(self.insize) == 1:
self.axis = [0]
in_size = self.insize[0]
else:
self.axis = [0]
in_size = insize
self.register_buffer("running_mean", torch.zeros(in_size, dtype = torch.float64))
self.register_buffer("running_var", torch.ones(in_size, dtype = torch.float64))
self.register_buffer("count", torch.ones((), dtype = torch.float64))
def _update_mean_var_count_from_moments(self, mean, var, count, batch_mean, batch_var, batch_count):
delta = batch_mean - mean
tot_count = count + batch_count
new_mean = mean + delta * batch_count / tot_count
m_a = var * count
m_b = batch_var * batch_count
M2 = m_a + m_b + delta**2 * count * batch_count / tot_count
new_var = M2 / tot_count
new_count = tot_count
return new_mean, new_var, new_count
def update(self, input):
mean = input.mean(self.axis) # along channel axis
var = input.var(self.axis)
self.running_mean, self.running_var, self.count = self._update_mean_var_count_from_moments(self.running_mean, self.running_var, self.count,
mean, var, input.size()[0] )
def forward(self, input, unnorm=False):
# change shape
if self.per_channel:
if len(self.insize) == 3:
current_mean = self.running_mean.detach().view([1, self.insize[0], 1, 1]).expand_as(input)
current_var = self.running_var.detach().view([1, self.insize[0], 1, 1]).expand_as(input)
if len(self.insize) == 2:
current_mean = self.running_mean.detach().view([1, self.insize[0], 1]).expand_as(input)
current_var = self.running_var.detach().view([1, self.insize[0], 1]).expand_as(input)
if len(self.insize) == 1:
current_mean = self.running_mean.detach().view([1, self.insize[0]]).expand_as(input)
current_var = self.running_var.detach().view([1, self.insize[0]]).expand_as(input)
else:
current_mean = self.running_mean.detach()
current_var = self.running_var.detach()
# get output
if unnorm:
y = torch.clamp(input, min=-5.0, max=5.0)
y = torch.sqrt(current_var.float() + self.epsilon)*y + current_mean.float()
else:
if self.norm_only:
y = input/ torch.sqrt(current_var.float() + self.epsilon)
else:
y = (input - current_mean.float()) / torch.sqrt(current_var.float() + self.epsilon)
y = torch.clamp(y, min=-5.0, max=5.0)
return y
'''
updates statistic from a full data
'''
class RunningGradMag(nn.Module):
def __init__(self, insize, epsilon=1e-05, per_channel=False, norm_only=False, const=1):
super(RunningGradMag, self).__init__()
print('RunningGradMag: ', insize)
self.insize = insize
self.epsilon = epsilon
self.const = const
self.norm_only = norm_only
self.per_channel = per_channel
if per_channel:
if len(self.insize) == 3:
self.axis = [0,2,3]
if len(self.insize) == 2:
self.axis = [0,2]
if len(self.insize) == 1:
self.axis = [0]
in_size = self.insize[0]
else:
self.axis = [0]
in_size = insize
self.register_buffer("running_absmean", torch.ones(in_size, dtype = torch.float64))
self.register_buffer("count", torch.ones((), dtype = torch.float64))
def _update_mean_var_count_from_moments(self, mean, count, batch_mean, batch_count):
delta = batch_mean - mean
tot_count = count + batch_count
new_mean = mean + delta * batch_count / tot_count
new_count = tot_count
return new_mean, new_count
def update(self, input):
mean = input.abs().mean(self.axis) # along channel axis
self.running_absmean, self.count = self._update_mean_var_count_from_moments(self.running_absmean, self.count,
mean, input.size()[0] )
def forward(self, input, unnorm=False):
# change shape
if self.per_channel:
if len(self.insize) == 3:
current_mean = self.running_absmean.detach().view([1, self.insize[0], 1, 1]).expand_as(input)
if len(self.insize) == 2:
current_mean = self.running_absmean.detach().view([1, self.insize[0], 1]).expand_as(input)
if len(self.insize) == 1:
current_mean = self.running_absmean.detach().view([1, self.insize[0]]).expand_as(input)
else:
current_mean = self.running_absmean.detach()
# get output
if unnorm:
y = input/self.const#(current_mean.float())
else:
y = input*self.const#(current_mean.float())
return y
class RunningMeanStdObs(nn.Module):
def __init__(self, insize, epsilon=1e-05, per_channel=False, norm_only=False):
assert(insize is dict)
super(RunningMeanStdObs, self).__init__()
self.running_mean_std = nn.ModuleDict({
k : RunningMeanStd(v, epsilon, per_channel, norm_only) for k,v in insize.items()
})
def forward(self, input, unnorm=False):
res = {k : self.running_mean_std(v, unnorm) for k,v in input.items()}
return res
class DummyRMS(nn.Module):
def __init__(self, insize, epsilon=1e-05, per_channel=False, norm_only=False):
super(DummyRMS, self).__init__()
print('DummyRMS: ', insize)
self.insize = insize
self.epsilon = epsilon
def forward(self, input, unnorm=False):
return input
def update(self, input):
return None
| 8,104 |
Python
| 37.051643 | 152 | 0.572804 |
RoboticExplorationLab/CGAC/cgac/model.py
|
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Normal
LOG_SIG_MAX = 2
LOG_SIG_MIN = -5
epsilon = 1e-6
activations_dict = {'elu': nn.ELU(),
'relu': nn.ReLU(),
'tanh': nn.Tanh()}
# Initialize Policy weights
def weights_init_(m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight, gain=1)
torch.nn.init.constant_(m.bias, 0)
class QNetwork(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_dim, args):
super(QNetwork, self).__init__()
if isinstance(hidden_dim, int):
hidden_dim = [hidden_dim, hidden_dim]
layer_sizes = [num_inputs + num_actions,]+hidden_dim
activation = activations_dict[args.critic_act]
# Q1 architecture
layers1 = []
for i in range(len(layer_sizes)-1):
layers1.append(nn.Linear(layer_sizes[i], layer_sizes[i+1]))
layers1.append(activation)
layers1.append(nn.Identity())
self.layers1 = nn.Sequential(*layers1)
self.layer_out1 = nn.Linear(layer_sizes[-1], 1)
# Q2 architecture
layers2 = []
for i in range(len(layer_sizes)-1):
layers2.append(nn.Linear(layer_sizes[i], layer_sizes[i+1]))
layers2.append(activation)
layers2.append(nn.Identity())
self.layers2 = nn.Sequential(*layers2)
self.layer_out2 = nn.Linear(layer_sizes[-1], 1)
self.apply(weights_init_)
def forward(self, state, action):
xu = torch.cat([state, action], 1)
x1 = self.layers1(xu)
x1 = self.layer_out1(x1)
x2 = self.layers2(xu)
x2 = self.layer_out2(x2)
return x1, x2
class GaussianPolicy(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_dim, args, action_space=None, const_std=False):
super(GaussianPolicy, self).__init__()
if isinstance(hidden_dim, int):
hidden_dim = [hidden_dim, hidden_dim]
layer_sizes = [num_inputs,]+hidden_dim
activation = activations_dict[args.actor_act]
layers = []
for i in range(len(layer_sizes)-1):
layers.append(nn.Linear(layer_sizes[i], layer_sizes[i+1]))
layers.append(activation)
layers.append(nn.Identity())
self.layers = nn.Sequential(*layers)
self.mean_linear = nn.Linear(layer_sizes[-1], num_actions)
self.const_std = const_std
if const_std:
logstd = -1.0#'actor_logstd_init'
self.logstd = torch.nn.Parameter(torch.ones(num_actions, dtype=torch.float32) * logstd)
else:
self.log_std_linear = nn.Linear(layer_sizes[-1], num_actions)
self.apply(weights_init_)
# action rescaling
if action_space is None:
self.action_scale = torch.tensor(1.)
self.action_bias = torch.tensor(0.)
else:
self.action_scale = torch.FloatTensor(
(action_space.high - action_space.low) / 2.)
self.action_bias = torch.FloatTensor(
(action_space.high + action_space.low) / 2.)
def forward(self, state):
x = self.layers(state)
mean = self.mean_linear(x)
if self.const_std:
log_std = self.logstd
else:
log_std = self.log_std_linear(x)
log_std = torch.clamp(log_std, min=LOG_SIG_MIN, max=LOG_SIG_MAX)
return mean, log_std
def log_prob(self, state, action, x_t):
mean, log_std = self.forward(state)
std = log_std.exp()
normal = Normal(mean, std)
y_t = (action - self.action_bias)/self.action_scale
log_prob = normal.log_prob(x_t)
log_prob -= torch.log(self.action_scale * (1 - y_t.pow(2)) + epsilon)
log_prob = log_prob.sum(1, keepdim=True)
return log_prob
def sample(self, state, netid=1, with_xt=False):
mean, log_std = self.forward(state)
std = log_std.exp()
normal = Normal(mean, std)
x_t = normal.rsample() # for reparameterization trick (mean + std * N(0,1))
y_t = torch.tanh(x_t)
action = y_t * self.action_scale + self.action_bias
log_prob = normal.log_prob(x_t)
# Enforcing Action Bound
log_prob -= torch.log(self.action_scale * (1 - y_t.pow(2)) + epsilon)
log_prob = log_prob.sum(1, keepdim=True)
mean = torch.tanh(mean) * self.action_scale + self.action_bias
if with_xt:
return action, log_prob, mean, x_t
else:
return action, log_prob, mean
def to(self, device):
self.action_scale = self.action_scale.to(device)
self.action_bias = self.action_bias.to(device)
return super(GaussianPolicy, self).to(device)
class DeterministicPolicy(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_dim, action_space=None):
super(DeterministicPolicy, self).__init__()
if isinstance(hidden_dim, int):
hidden_dim = [hidden_dim, hidden_dim]
layer_sizes = [num_inputs,]+hidden_dim
layers = []
for i in range(len(layer_sizes)-1):
layers.append(nn.Linear(layer_sizes[i], layer_sizes[i+1]))
layers.append(nn.ReLU())
self.layers = nn.Sequential(*layers)
self.mean = nn.Linear(layer_sizes[-1], num_actions)
self.noise = torch.Tensor(num_actions)
self.apply(weights_init_)
# action rescaling
if action_space is None:
self.action_scale = 1.
self.action_bias = 0.
else:
self.action_scale = torch.FloatTensor(
(action_space.high - action_space.low) / 2.)
self.action_bias = torch.FloatTensor(
(action_space.high + action_space.low) / 2.)
def forward(self, state):
x = self.layers(state)
mean = torch.tanh(self.mean(x)) * self.action_scale + self.action_bias
return mean
def sample(self, state):
mean = self.forward(state)
noise = self.noise.normal_(0., std=0.1)
noise = noise.clamp(-0.25, 0.25)
action = mean + noise
return action, torch.tensor(0.), mean
def to(self, device):
self.action_scale = self.action_scale.to(device)
self.action_bias = self.action_bias.to(device)
self.noise = self.noise.to(device)
return super(DeterministicPolicy, self).to(device)
| 6,511 |
Python
| 34.9779 | 102 | 0.58071 |
shikimori/shikimori/CONTRIBUTING.md
|
* [Fork](https://help.github.com/articles/fork-a-repo) the project on GitHub.
* Make your feature addition or bug fix in a feature branch. (Include a description of your changes)
* Push your feature branch to GitHub.
* Send a [Pull Request](https://help.github.com/articles/using-pull-requests).
After opening your pull request, ensure all tests pass on Circle CI. If a test fails and you believe it is unrelated to your change, leave a comment on the pull request explaining why.
| 482 |
Markdown
| 67.99999 | 184 | 0.76971 |
shikimori/shikimori/README.md
|
[](https://github.com/shikimori/shikimori/actions/workflows/rspec.yml)
## Contributing
Feel free to open tickets or send pull requests with improvements. Thanks in advance for your help!
Please follow the [contribution guidelines](https://github.com/shikimori/shikimori/blob/master/CONTRIBUTING.md).
## Requirements
OSX or Linux
PostgreSQL >= 10.0, Ruby >= 2.6, NodeJS >= 10.0, Elasticsearch 6.x (7.0 not supported), Memcached, Redis
## Issues Board (Agile Season)
https://agileseason.com/#/shared/board/098d2e36dff32f296d7815cf943ac8eb
## Requirements
### Checkout all projects
```sh
git clone [email protected]:shikimori/shikimori.git
git clone [email protected]:shikimori/neko-achievements.git
cd neko-achievements
mix local.hex --force
mix deps.get
cd ..
git clone [email protected]:shikimori/camo-server.git
cd camo-server
yarn
cd ..
git clone [email protected]:shikimori/faye-server.git
cd faye-server
yarn
cd ..
cd shikimori
```
### Install `yarn`, `tmux` and `overmind` via Homebrew (OSX)
```sh
brew install yarn tmux overmind
```
In linux you have to install them another way.
### Install dependent gems and npm packages
```sh
yarn install
bundle install
```
## PostgreSQL
### DB
```sh
psql -d postgres
```
```sql
create user shikimori_development;
create user shikimori_test;
alter user shikimori_development createdb;
alter user shikimori_test createdb;
alter user shikimori_development with superuser;
alter user shikimori_test with superuser;
```
### Create databases
Make sure `en_US.UTF-8` database collation is set [https://gist.github.com/ffmike/877447#gistcomment-2851598](https://gist.github.com/morr/9507173acfd504837a7feb4485a5f669)
Or you manually initialize new database with command
```sh
initdb --pgdata=/usr/local/var/postgres-16 -E 'UTF-8' --lc-collate='en_US.UTF-8' --lc-ctype='en_US.UTF-8'
```
Or initdb for apple M1
```sh
initdb --pgdata=/usr/local/var/postgresql@16 -E 'UTF-8' --lc-collate='en_US.UTF-8' --lc-ctype='en_US.UTF-8'
```
Create rails databases
```sh
rails db:create
```
## Local Run
Everything you need to run is listed in [Procfile](https://github.com/shikimori/shikimori/blob/master/Procfile).
Shikimori uses [Overmind](https://github.com/DarthSim/overmind) to execute `Procfile`.
### Restore from a backup
```sh
rails db:drop && rails db:create
unzip -d db/ db/dump.sql.zip
psql -U shikimori_development -d shikimori_development -f db/dump.sql
rm db/dump.sql
RAILS_ENV=test rails db:schema:load
# migrate dump to latest schema
rails db:migrate
```
### Start rails server
```sh
rails server
```
### Start related services
```sh
overmind start
```
### Start some of related services
```sh
OVERMIND_PROCESSES=camo,faye overmind start
```
## Elasticsearch
In rails console:
```
Elasticsearch::RebuildIndexes.new.perform
```
## Elasticsearch fix on OSX
https://github.com/Homebrew/homebrew-core/issues/100260#issuecomment-1137067501
```
I've finally made it work, but I'm not sure this is the right call:
I've edited the service plist at /usr/local/Cellar/elasticsearch@6/6.8.23/[email protected]:
<key>ProgramArguments</key>
<array>
<string>/usr/local/opt/elasticsearch@6/bin/elasticsearch</string>
</array>
<key>EnvironmentVariables</key>
<dict>
+ <key>JAVA_HOME</key>
+ <string>'/usr/libexec/java_home -v 17'</string>
</dict>
I had to edit the plist in the Cellar folder instead of the one in ~/Library/LaunchAgents because brew services is overwriting it at every start.
```
## Update neko rules
```sh
rails neko:update
```
## Other
### Make a backup
```sh
pg_dump -c shikimori_development > db/dump.sql
```
### Autorun rspec & rubocop
```sh
guard
```
### Record apipie docs
```sh
APIPIE_RECORD=all rspec spec/controllers/api/**
```
### Add new video hosting
```ruby
# app/services/video_extractor/player_url_extractor.rb
```
### Run locally in production mode
```sh
RAILS_ENV=production rails assets:precompile && IS_LOCAL_RUN=true RAILS_ENV=production rails server
```
### Webpack debugger
https://nodejs.org/en/docs/inspector/
Install the Chrome Extension NIM (Node Inspector Manager): https://chrome.google.com/webstore/detail/nim-node-inspector-manage/gnhhdgbaldcilmgcpfddgdbkhjohddkj
```sh
RAILS_ENV=development NODE_ENV=development NODE_PATH=node_modules node --inspect-brk node_modules/.bin/webpack-dev-server --progress --color --config config/webpack/development.js
```
### Shakapacker debugger
https://nodejs.org/en/docs/inspector/
Install the Chrome Extension NIM (Node Inspector Manager): https://chrome.google.com/webstore/detail/nim-node-inspector-manage/gnhhdgbaldcilmgcpfddgdbkhjohddkj
```sh
./bin/shakapacker-dev-server --debug-shakapacker
```
### Webpack visualizer
https://chrisbateman.github.io/webpack-visualizer/
### Dependabot
```
@dependabot ignore this dependency
```
## [Sandboxes](/doc/sandboxes.md)
| 4,968 |
Markdown
| 24.482051 | 179 | 0.741143 |
shikimori/shikimori/config/i18n.yml
|
---
translations:
- file: "app/packs/javascripts/i18n/translations.json"
patterns:
- '*.activerecord.attributes.user_rate.*'
- '*.activerecord.attributes.collection_link.*'
- '*.activerecord.attributes.external_link.url'
- '*.activerecord.attributes.user_rate.statuses.anime.*'
- '*.activerecord.attributes.user_rate.statuses.manga.*'
- '*.frontend.*'
| 394 |
YAML
| 34.909088 | 62 | 0.659898 |
shikimori/shikimori/config/cable.yml
|
development:
adapter: async
test:
adapter: test
production:
adapter: redis
url: <%= ENV.fetch("REDIS_URL") { "redis://localhost:6379/1" } %>
channel_prefix: shikimori_production
| 190 |
YAML
| 16.363635 | 67 | 0.684211 |
shikimori/shikimori/config/appsignal.yml
|
default: &defaults
# Your push api key, it is possible to set this dynamically using ERB:
# push_api_key: "<%= ENV['APPSIGNAL_PUSH_API_KEY'] %>"
push_api_key: '3b66a159-85bd-43dc-acc4-b43750364cdc'
# Your app's name
name: 'App'
# Actions that should not be monitored by AppSignal
# ignore_actions:
# - ApplicationController#isup
# Errors that should not be recorded by AppSignal
# For more information see our docs:
# https://docs.appsignal.com/ruby/configuration/ignore-errors.html
ignore_errors:
- AbstractController::ActionNotFound
- ActionController::InvalidAuthenticityToken
- ActionController::ParameterMissing
- ActionController::RoutingError
- ActionController::UnknownFormat
- ActionController::UnknownHttpMethod
- ActionController::BadRequest
- ActionDispatch::RemoteIp::IpSpoofAttackError
- ActiveRecord::PreparedStatementCacheExpired
- ActiveRecord::RecordNotFound
- CanCan::AccessDenied
- I18n::InvalidLocale
- Unicorn::ClientShutdown
- AgeRestricted
- MismatchedEntries
- InvalidEpisodesError
- CopyrightedResource
- Net::SMTPServerBusy
- Net::SMTPFatalError
- Interrupt
- Apipie::ParamMissing
- InvalidIdError
- InvalidParameterError
- EmptyContentError
- MalParser::RecordNotFound
- Errors::NotIdentifiedByImageMagickError
- Sidekiq::Shutdown
- Terrapin::ExitStatusError
# See http://docs.appsignal.com/ruby/configuration/options.html for
# all configuration options.
# Configuration per environment, leave out an environment or set active
# to false to not push metrics for that environment.
beta:
<<: *defaults
active: false
development:
<<: *defaults
active: false
production:
<<: *defaults
active: true
| 1,784 |
YAML
| 27.790322 | 72 | 0.727018 |
shikimori/shikimori/config/database.yml
|
development: &defaults
adapter: postgresql
encoding: utf8
database: <%= ENV['POSTGRES_DEV_DB'] %>
username: <%= ENV['POSTGRES_DEV_USER'] %>
password: <%= ENV['POSTGRES_DEV_PASSWORD'].presence %>
host: <%= ENV['POSTGRES_DEV_HOST'] %>
pool: 100
timeout: 5000
encoding: utf8
collation: ru_RU.UTF-8
ctype: ru_RU.UTF-8
template: template0
production:
<<: *defaults
test:
<<: *defaults
database: <%= ENV['POSTGRES_TEST_DB'] %><%=ENV['TEST_ENV_NUMBER'] %>
username: <%= ENV['POSTGRES_TEST_USER'] %>
password: <%= ENV['POSTGRES_TEST_PASSWORD'].presence %>
host: <%= ENV['POSTGRES_TEST_HOST'] %>
| 625 |
YAML
| 25.083332 | 70 | 0.632 |
shikimori/shikimori/config/chewy.yml
|
# config/chewy.yml
# separate environment configs
development: &development
host: 'localhost:9200'
prefix: 'shikimori_development'
test:
host: 'localhost:9200'
prefix: 'shikimori_test'
production:
host: 'localhost:9200'
prefix: <%=ENV['USER'] != 'morr' ? 'shikimori_production' : 'shikimori_development' %>
| 319 |
YAML
| 25.666665 | 88 | 0.714734 |
shikimori/shikimori/config/sidekiq.yml
|
:concurrency: 5
:pidfile: tmp/pids/sidekiq.pid
staging:
:concurrency: 5
production:
:concurrency: 80
:queues:
- [high_priority, 8]
- [critical, 10]
- [push_notifications, 2]
- [default, 5]
- [episode_notifications, 5]
- [cpu_intensive, 5]
- [slow_parsers, 5]
- [torrents_parsers, 5]
- [mal_parsers, 3]
- [anime365_parsers, 3]
- [webm_thumbnails, 5]
- [history_jobs, 5]
- [scores_jobs, 4]
- [low_priority, 1]
- [cleanup_jobs, 1]
- [mailers, 5]
- [imports, 4]
- [achievements, 6]
- [chewy, 10]
- [dangerous_actions, 8]
:limits:
cpu_intensive: 2
slow_parsers: 2
torrents_parsers: 1
webm_thumbnails: 1
history_jobs: 1
scores_jobs: 40
cleanup_jobs: 1
mal_parsers: 40
anime365_parsers: 3
push_notifications: 5
imports: 2
achievements: 50
episode_notifications: 1
dangerous_actions: 1
| 854 |
YAML
| 17.191489 | 30 | 0.633489 |
shikimori/shikimori/config/secrets.yml
|
# Be sure to restart your server when you modify this file.
# Your secret key is used for verifying the integrity of signed cookies.
# If you change this key, all old signed cookies will become invalid!
# Make sure the secret is at least 30 characters and all random,
# no regular words or you'll be exposed to dictionary attacks.
# You can use `rails secret` to generate a secure secret key.
# Make sure the secrets in this file are kept private
# if you're sharing your code publicly.
# Do not keep production secrets in the repository,
# instead read values from the environment.
development: &defaults
secret_key_base: fd4e8a95884930c25ebfc3020c53b1f4c128912e33c677f7a5139axx0c01b2ef5de41496e446abd4733ad2a3f51404c712acca297d967d651bddfcfd1c1f55aa
devise:
:secret_key: 2345678fg67fydg9843uitfgr9udfg8ui3ed89fiyucdv8uifgre80tfhgjv9oaf1324346dtyusfjkdsf8sd976732yhjkkednsc78sgcjhb7wyubhjdf867234ingp
:pepper: 8d33d1cb74746054xx09e1bccfc63a82fc9aa251cbe03e3d813985040a88cd37c63c35a6af657f9bb30719f243cee977ff0a431d628657e5e44046e178c3096a
recaptcha:
:v2:
:site_key: 6Le4Q58UAAAAAPykYvE5itXM04NSOsYeQUXzowWM
:secret_key: 6Le4Q58UAAAAAJ0ylh5Zx3GRIJMtfQoZSqNeVpwt
:v3:
:site_key: 6LePQ58UAAAAAJ7HyOCd3Y9VtF5Co8I_2kyQJW9y
:secret_key: 6LePQ58UAAAAALIpZbycjL-IZZtsp6ZtNg_PFi39
oauth:
:facebook:
:app_id: 337441442986680
:app_secret: 6750e33a1997602a019e30cdcd79ea13
:app_permissions: ""
:vkontakte:
:app_id: 2722473
:app_secret: G48K2YtxMajMo67ExE7a
:app_permissions: ""
:twitter:
:secret_key: U8CPcoMCerH9Dqct3sG1XDqBd47XJAroMSuf8Eucjl9YLM49ci
:consumer_key: JEukEItluUpRTJB7Tvd9uU9Sb
mailgun:
:login: xxxxxxxxxxxxxxxxxx
:password: xxxxxxxxxxxxxxxxxxxxxxxx
s3:
connection:
:server: s3-eu-west-1.amazonaws.com
:access_key_id: xxxxxxxxxxxxxxxxxxxx
:secret_access_key: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
:use_ssl: true
# :persistent: true
bucket: d.shikimori.org
max_file_size: 10485760
acl: public-read
access_key_id: xxxxxxxxxxxxxxxxxxxx
secret_access_key: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
gcm:
:token: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx1
api:
:anime_videos:
:token: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
camo:
:host: localhost:5566
:port: 5566
:key: abc
:endpoint_path: '/'
faye:
:host: localhost:9292
:port: 9292
:endpoint_path: '/'
:token: xxxxxxxxxxxxxxxxxxxx
# https://proxy6.net/user/proxy
proxy:
:url: <%= ENV['PROXY_URL'] %>
:login: <%= ENV['PROXY_LOGIN'] %>
:password: <%= ENV['PROXY_PASSWORD'] %>
:vkontakte:
# https://oauth.vk.com/authorize?client_id=2427019&scope=video,offline&redirect_uri=http://api.vk.com/blank.html&display=page&response_type=token
:user_access_token: <%= ENV['VK_USER_ACCESS_TOKEN'] %>
vimeo:
:app_access_token: <%= ENV['VIMEO_APP_ACCESS_TOKEN'] %>
turnstile:
:site_key: <%= ENV['TURNSTILE_SITE_KEY'] %>
:secret_key: <%= ENV['TURNSTILE_SECRET_KEY'] %>
yandex_metrika:
:oauth_token: <%= ENV['YANDEX_METRIKA_OAUTH_TOKEN'] %>
test:
<<: *defaults
vkontakte:
:user_access_token: USER_ACCESS_TOKEN_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
vimeo:
:app_access_token: USER_ACCESS_TOKEN_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
production:
<<: *defaults
| 3,454 |
YAML
| 35.755319 | 149 | 0.739722 |
shikimori/shikimori/config/honeybadger.yml
|
---
# For more options, see https://docs.honeybadger.io/lib/ruby/gem-reference/configuration
api_key: 'hbp_tObQMWZaPeNe3kVaGAUZVUc8BAscDg3WQff7'
# The environment your app is running in.
env: "<%= Rails.env %>"
# The absolute path to your project folder.
root: "<%= Rails.root.to_s %>"
# Honeybadger won't report errors in these environments.
development_environments:
- test
- development
- cucumber
exceptions:
ignore:
- AbstractController::ActionNotFound
- ActionController::InvalidAuthenticityToken
- ActionController::ParameterMissing
- ActionController::RoutingError
- ActionController::UnknownFormat
- ActionController::UnknownHttpMethod
- ActionController::BadRequest
- ActionDispatch::RemoteIp::IpSpoofAttackError
- ActiveRecord::PreparedStatementCacheExpired
- ActiveRecord::RecordNotFound
- CanCan::AccessDenied
- I18n::InvalidLocale
- Unicorn::ClientShutdown
- AgeRestricted
- RknBanned
- MismatchedEntries
- InvalidEpisodesError
- CopyrightedResource
- Net::SMTPServerBusy
- Net::SMTPFatalError
- Interrupt
- Apipie::ParamMissing
- InvalidIdError
- InvalidParameterError
- EmptyContentError
- MalParser::RecordNotFound
- Errors::NotIdentifiedByImageMagickError
- Sidekiq::Shutdown
- Terrapin::ExitStatusError
# By default, Honeybadger won't report errors in the development_environments.
# You can override this by explicitly setting report_data to true or false.
# report_data: true
# The current Git revision of your project. Defaults to the last commit hash.
# revision: null
# Enable verbose debug logging (useful for troubleshooting).
debug: false
| 1,692 |
YAML
| 27.694915 | 88 | 0.74409 |
shikimori/shikimori/config/storage.yml
|
test:
service: Disk
root: <%= Rails.root.join("tmp/storage") %>
local:
service: Disk
root: <%= Rails.root.join("storage") %>
# Use rails credentials:edit to set the AWS secrets (as aws:access_key_id|secret_access_key)
# amazon:
# service: S3
# access_key_id: <%= Rails.application.credentials.dig(:aws, :access_key_id) %>
# secret_access_key: <%= Rails.application.credentials.dig(:aws, :secret_access_key) %>
# region: us-east-1
# bucket: your_own_bucket
# Remember not to checkin your GCS keyfile to a repository
# google:
# service: GCS
# project: your_project
# credentials: <%= Rails.root.join("path/to/gcs.keyfile") %>
# bucket: your_own_bucket
# Use rails credentials:edit to set the Azure Storage secret (as azure_storage:storage_access_key)
# microsoft:
# service: AzureStorage
# storage_account_name: your_account_name
# storage_access_key: <%= Rails.application.credentials.dig(:azure_storage, :storage_access_key) %>
# container: your_container_name
# mirror:
# service: Mirror
# primary: local
# mirrors: [ amazon, google, microsoft ]
| 1,093 |
YAML
| 30.257142 | 101 | 0.693504 |
shikimori/shikimori/config/locales/services.en.yml
|
en:
list_compare_service:
group_by_key:
both: In both lists
user_only: "In %{nickname}'s list only"
user_rate_status:
planned: planned
dropped: dropped
messages/create_notification:
nickname_changed: >-
Your friend %{old_nickname} changed nickname to %{new_nickname}.
user_registered_message: >-
Welcome!
[url=%{faq_url}]Here[/url]
you'll find the answers to most frequently asked questions.
You can import anime and manga lists from
[url=http://myanimelist.net]myanimelist.net[/url] in your
[url=/%{settings_path}/edit/account]profile settings[/url].
You can change your nickname there as well.
Before you start posting on the forum we recommend you get familiar with our
[url=%{site_rules_url}]site rules[/url].
If you have any questions or suggestions
feel free to post them on the forum - we'll try to help you.
moderatable_banned:
without_reason: >-
Your [entry=%{topic_id}]%{entry_name}[/entry] was moved to offtopic
reason: >-
because of [quote=%{approver_nickname}]%{reason}[/quote]
bad_email_message: >-
Our mail delivery service couldn't deliver mail to your
email %{email}.
You have either specified not existing email in profile settings
or marked one of our delivered mails as spam.
We recommend that you change your email in profile settings,
or else you won't be able to restore your account
if you forget you password.
omniauth_service:
new_user: New user
bb_codes/tags/replies_tag:
reply: 'Reply: '
replies: 'Replies: '
bb_codes/tags/contest_status_tag:
started: started
finished: finished
bb_codes/tags/contest_round_status_tag:
started: started
finished: finished
messages/generate_body:
profile_comment: >-
Left a comment in your
<a class='b-link' href='%{profile_url}'>profile</a>.
friend_request:
add: Add @{f:her|m:him} to your friend list as well?
added: Has added you to @{f:her|m:him} friend list.
quoted_by_user: >-
You have been <a class="b-link" href="%{comment_url}">mentioned</a>
%{linked_name}
anons: '%{linked_name} anime announced'
ongoing: '%{linked_name} anime airing'
episode: '%{linked_name} episode %{episode} released'
released: '%{linked_name} anime released'
subscription_commented: New messages %{linked_name}
warned:
target: >-
You have been warned for
posting a %{target_type_name} %{linked_name}.
missing: >-
You have been warned for
posting a %{target_type_name} (<em>removed</em>).
Reason: "%{reason}".
other: >-
You have been warned. Reason: "%{reason}".
banned:
target: >-
You have been banned for %{duration} for
posting a %{target_type_name} %{linked_name}.
missing: >-
You have been banned for %{duration} for
posting a %{target_type_name} (<em>removed</em>).
Reason: "%{reason}".
other: >-
You have been banned for %{duration}. Reason: "%{reason}".
club_request: Invitation to join the club [club]%{club_id}[/club].
version_accepted: >-
Your [version=%{version_id}]content change[/version] for
[%{item_type}]%{item_id}[/%{item_type}] was accepted.
version_rejected: >-
Your [version=%{version_id}]content change[/version] for
[%{item_type}]%{item_id}[/%{item_type}] was rejected.
version_rejected_with_reason: >-
Your [version=%{version_id}]content change[/version] for
[%{item_type}]%{item_id}[/%{item_type}] was rejected because of
[quote=%{moderator}]%{reason}[/quote]
messages/mention_source:
simple_mention:
nil: <em>deleted</em>
topic: &default_simple_mention <a href="%{url}"%{bubble}>%{name}</a>
profile: *default_simple_mention
review: *default_simple_mention
critique: *default_simple_mention
article: *default_simple_mention
collection: *default_simple_mention
text_mention:
nil: in <em>deleted</em>.
topic: in topic <a href="%{url}"%{bubble}>%{name}</a>.
profile: in <a href="%{url}"%{bubble}>%{name}</a>'s profile.
review: in review for <a href="%{url}"%{bubble}>%{name}</a>.
messages/check_spam_abuse:
ban_text: >-
You are banned for spam.
Send a word to %{email} in case if you are innocent.
users/check_hacked:
lock_text: >-
This account was used to spam on the site. Account access has been blocked.
To recover access, use the password recovery page. %{recovery_url}
In order to avoid such situations in the future,
we recommend that you do not use simple passwords like "123", "qwerty", "anime", "naruto", etc.
moderations/banhammer:
ban_reason: '[url=%{url}]site rule #3[/url]'
| 4,892 |
YAML
| 36.068182 | 101 | 0.632461 |
shikimori/shikimori/config/locales/value_objects.en.yml
|
en:
titles/season_title:
anime: &anime_season_titles
catalog:
season:
winter: Winter %{year}
spring: Spring %{year}
summer: Summer %{year}
fall: Fall %{year}
year: '%{year} year'
decade: '%{decade}0s'
ancient: Older
short:
season :
winter: Winter Season
spring: Spring Season
summer: Summer Season
fall: Fall Season
year: '%{year} year'
full:
season:
winter: Winter %{year} Anime
spring: Spring %{year} Anime
summer: Summer %{year} Anime
fall: Fall %{year} Anime
year: Anime %{year}
manga: &manga_season_titles
<<: *anime_season_titles
full:
season:
winter: Winter %{year} Manga
spring: Spring %{year} Manga
summer: Summer %{year} Manga
fall: Fall %{year} Manga
year: Manga %{year}
ranobe:
<<: *manga_season_titles
titles/status_title:
anime: &anime_status_titles
anons: Planned
ongoing: Airing
released: Released
latest: Aired recently
manga: &manga_status_titles
<<: &anime_status_titles
ongoing: Publishing
latest: Published recently
ranobe:
<<: *manga_status_titles
| 1,323 |
YAML
| 24.960784 | 38 | 0.538171 |
shikimori/shikimori/config/locales/decorators.ru.yml
|
ru:
db_entry_decorator: &db_entry_decorator
no_description: Нет описания
ani_manga_decorator: &ani_manga_decorator
<<: *db_entry_decorator
time_ago_format: '%s назад'
anime_decorator:
<<: *ani_manga_decorator
anime_video_preview_decorator:
score:
excellent: отлично
good: хорошо
okay: нормально
character_decorator:
<<: *db_entry_decorator
job_title:
character: Персонаж
anime: Персонаж аниме
anime_manga: Персонаж аниме и манги
anime_manga_ranobe: Персонаж аниме, манги и ранобэ
anime_ranobe: Персонаж аниме и ранобэ
manga: Персонаж манги
manga_ranobe: Персонаж манги и ранобэ
ranobe: Персонаж ранобэ
contest_decorator:
<<: *db_entry_decorator
club_decorator:
<<: *db_entry_decorator
manga_decorator:
<<: *ani_manga_decorator
person_decorator: &person_decorator
<<: *db_entry_decorator
job_title:
producer: Режиссёр аниме
mangaka: Автор манги
composer: Композитор
vocalist: Вокалист
seyu: Сэйю
anime_manga_projects_participant: Участник аниме и манга проектов
# anime_manga_ranobe_projects_participant: Участник аниме, манга и ранобэ проектов
anime_projects_participant: Участник аниме проектов
# anime_ranobe_projects_participant: Участник аниме и ранобэ проектов
manga_projects_participant: Участник манга проектов
# manga_ranobe_projects_participant: Участник манга и ранобэ проектов
# ranobe_projects_participant: Участник ранобэ проектов
_projects_participant: ''
seyu_decorator:
<<: *person_decorator
collection_decorator:
<<: *db_entry_decorator
user_decorator: &user_decorator
always_online: всегда на сайте
always_online_bot: всегда на сайте (бот)
online: сейчас на сайте
offline: 'в сети: %{time_ago}%{ago}'
ago: назад
registration_formats:
full: '%e %B %Y г.'
month_year: '%d %B %Y г.'
year: '%Y г.'
user_history_decorator:
actions:
add: Добавлено в список
delete: Удалено из списка
complete_with_score: '%{status_name} и оценено на <b>%{score}</b>'
episodes:
completed_movie: Просмотрен фильм
completed_anime: Просмотрены все эпизоды
completed_novel: Прочитана новелла
completed_manga: Прочитана манга
reset_anime: Сброшено число эпизодов
reset_manga: Сброшено число томов и глав
rate:
cancelled: Отменена оценка
changed: Изменена оценка c <b>%{prior_score}</b> на <b>%{score}</b>
rated: Оценено на <b>%{score}</b>
import:
anime: Импортировано аниме - %{records}
manga: Импортирована манга - %{records}
registration: Регистрация на сайте
anime_history_clear: Очистка истории аниме
manga_history_clear: Очистка истории манги
time_ago: '%{time_ago} назад'
watched_one_episode: '%{watched} %{number}%{suffix} %{division}'
watched_two_episodes: '%{watched} %{number_first}%{suffix} и %{number_second}%{suffix} %{division}'
watched_three_episodes: '%{watched} %{number_first}%{suffix}, %{number_second}%{suffix} и %{number_third}%{suffix} %{division}'
watched_episodes_range: '%{watched} с %{number_first}%{suffix_first} по %{number_last}%{suffix_last} %{division}'
watched_first_episodes: '%{watched} %{number}%{suffix} %{division}'
user_profile_decorator:
<<: *user_decorator
version_decorator:
field_name:
screenshots_upload: Загрузка кадров
screenshots_delete: Удаление кадров
screenshots_reposition: Порядок кадров
poster_upload: Загрузка постера
poster_delete: Удаление постера
video_upload: Загрузка видео
video_delete: Удаление видео
role_add: Добавление роли
role_remove: Удаление роли
| 3,807 |
YAML
| 36.333333 | 131 | 0.669031 |
shikimori/shikimori/config/locales/phrases.en.yml
|
en:
actions:
accept: Accept
actions: Actions
add: Add
apply: Apply
cancel: Cancel
confirm: This action is irreversible. Are you sure?
confirm_delete: Confirm deletion
confirm_sync: Confirm sync
confirm_simple: Are you sure?
cancel_delete: Cancel deletion
create: Create
delete: Delete
delete_all: Delete All
edit: Edit
ignore: Ignore
markers:
summary:
add: Add summary mark
remove: Remove summary mark
confirm_add: Add summary mark?
confirm_remove: Remove summary mark?
offtopic:
add: Add offtopic mark
remove: Remove offtopic mark
confirm_add: Add offtopic mark?
confirm_remove: Remove offtopic mark?
review:
convert_to_comment: Convert review into comment?
comment:
convert_to_review: Convert comment into review?
moderate: Moderate
moderation:
non_strict_moderation: This comment must be moderated only in case of laws violence
abuse: Abuse
laws_abuse: Russian law abuse
ban: Ban
hide_to_spoiler: Hide to spoiler
not_offtopic: It's not offtopic
not_summary: It's not summary
not_review: It's not review
offtopic: It's offtopic
spoiler: It's spoiler
summary: It's summary
review: It's review
explain:
abuse: Please describe (optional)
spoiler: Please describe (optional)
edition: Edition
increment: Increment (+)
preview: Preview
quote: Quote
reject: Reject
reply: Reply
rollback: Rollback (-)
save_apply: Save & Apply
start: Start
stop: Stop
take: Take
upload: Upload
upload_image: Upload image
write: Write
by:
id: By ID
aired_on: By release date
date_added: By date added
date_updated: By date updated
kind: By type
name: In alphabetical order
chapters: By number of chapters
episodes: By number of episodes
volumes: By number of volumes
popularity: By popularity
ranked: By rank
random: By random
ranked_random: By random
ranked_shiki: By Shikimori ranking
score: By score
status: By status
answers:
'no': 'no'
'yes': 'yes'
about_site: About site
anime_industry: Anime industry
anime_list: Anime List
anime_title: Anime title
back: back
back_to_page: Back to page
calendar: Calendar
changes_not_saved: Changes not saved!
changes_saved: Changes saved
character_name: Character name
club_name: Club name
collection_name: Collection name
collapse: collapse
cosplay: Cosplay
deleted:
anime: Deleted anime
character: Deleted character
manga: Deleted manga
critique: Deleted critique
video: Deleted video
anime_video: Deleted video
user: Deleted user
error: error
female: female
forum: Forum
gallery: Gallery
goto: Goto
imageboard_art: Imageboard art
in_clubs: In Clubs
in_collections: In Collections
in_english: In English
in_favorites: In favorites
in_japanese: In Japanese
in_russian: In Russian
information: Information
loading: Loading...
previous_value: Previous value
markers:
abuse: abuse
new: new
offtopic: offtopic
spoiler: spoiler
convert_review: review
summary: summary
mail: Mail
male: male
manga_list: Manga List
manga_title: Manga title
mangaka: Mangaka
moderators_only: For moderators only
news: News
no_synopsis: No synopsis
no_comments: No comments
no_collections: No collections
no_critiques: No critiques
no_summaries: No summaries
no_topics: No topics
no_reviews: No reviews
nothing_found: Nothing found
nothing_here: Nothing here
notifications: Notifications
of: of
for: for
page: Page %{page}
page_not_found: Page not found
pagination:
back: Back
next: Next
person: Person
person_name: Person name
producer: Director
ranobe_title: Light Novel title
settings: Settings
seyu: Seiyu
share: Share
search:
search: Search...
title: Search by title...
name: Search by name...
text: Search by text...
shikimori: Shikimori
source: Source
sponsors: Sponsors
this:
anime: this anime
manga: this manga
this_action_cant_be_undone: This action can't be undone!
tournament_bracket: Tournament bracket
total: Total
username: User name
under_development: Under development
page_under_development: This page is not completed and is under development
yes_i_confirm: Yes, I confirm
date_field: Date
navigation: Navigation
form_errors: Errors
'yes': 'Yes'
'no': 'No'
is_deleted: Deleted
facebook: 'Meta Platforms**, as well as its social network Facebook* : ** recognized as an extremist organization, its activities are banned in Russia. * banned in Russia'
facebook_html: 'Meta Platforms**, as well as its social network Facebook*:<br>** recognized as an extremist organization, its activities are banned in Russia.<br>* banned in Russia'
| 4,991 |
YAML
| 25.983784 | 183 | 0.685634 |
shikimori/shikimori/config/locales/helpers.en.yml
|
en:
anime_helper:
minute: min.
hour:
zero: hours
one: hour
other: hours
| 100 |
YAML
| 11.624999 | 18 | 0.52 |
shikimori/shikimori/config/locales/services.ru.yml
|
ru:
list_compare_service:
group_by_key:
both: В обоих списках
user_only: Только в списке %{nickname}
user_rate_status:
planned: в планах
dropped: брошено
messages/create_notification:
nickname_changed: >-
@{f:Твоя|m:Твой} @{f:подруга|m:друг} %{old_nickname}
@{f:изменила|m:изменил} никнейм на %{new_nickname}.
user_registered_message: >-
Добро пожаловать.
[url=%{faq_url}]Здесь[/url]
находятся ответы на наиболее часто задаваемые вопросы.
Импортировать список аниме и манги из
[url=http://myanimelist.net]myanimelist.net[/url] можно в
[url=/%{settings_path}/edit/account]настройках профиля[/url].
Там же можно изменить свой никнейм.
Перед публикацией на форуме рекомендуем ознакомиться с
[url=%{site_rules_url}]правилами сайта[/url].
Если возникнут вопросы или пожелания - пиши на форуме,
мы постараемся тебе ответить.
moderatable_banned:
without_reason: >-
Твоя [entry=%{topic_id}]%{entry_name}[/entry] перенесена в оффтоп
reason: >-
по причине [quote=%{approver_nickname}]%{reason}[/quote]
bad_email_message: >-
Наш почтовый сервис не смог доставить письмо на твою почту %{email}.
Ты либо @{f:указала|m:указал} несуществующий почтовый ящик,
либо когда-то @{f:пометила|m:пометил} одно из наших писем как спам.
Рекомендуем сменить электронный адрес в настройках профиля,
иначе при утрате пароля ты не сможешь восстановить пароль от аккаунта.
omniauth_service:
new_user: Новый пользователь
bb_codes/tags/replies_tag:
reply: 'Ответ: '
replies: 'Ответы: '
bb_codes/tags/contest_status_tag:
started: начат
finished: завершён
bb_codes/tags/contest_round_status_tag:
started: начат
finished: завершён
messages/generate_body:
profile_comment: >-
@{f:Написала|m:Написал} что-то в твоём
<a class='b-link' href='%{profile_url}'>профиле</a>.
friend_request:
add: Добавить @{f:её|m:его} в твой список друзей в ответ?
added: "@{f:Добавила|m:Добавил} тебя в список друзей."
quoted_by_user: >-
@{f:Написала|m:Написал} <a class="b-link" href="%{comment_url}">что-то</a>
тебе %{linked_name}
anons: Анонсировано аниме %{linked_name}
ongoing: Начат показ аниме %{linked_name}
episode: Вышел %{episode} эпизод аниме %{linked_name}
released: Завершён показ аниме %{linked_name}
subscription_commented: Новые сообщения %{linked_name}
warned:
target: >-
Тебе вынесено предупреждение за
%{target_type_name} %{linked_name}.
missing: >-
Тебе вынесено предупреждение за
%{target_type_name} (<em>удалён</em>).
Причина: "%{reason}".
other: >-
Тебе вынесено предупреждение. Причина: "%{reason}".
banned:
target: >-
Ты @{f:забанена|m:забанен} на %{duration} за
%{target_type_name} %{linked_name}.
missing: >-
Ты @{f:забанена|m:забанен} на %{duration} за
%{target_type_name} (<em>удалён</em>).
Причина: "%{reason}".
other: >-
Ты @{f:забанена|m:забанен} на %{duration}. Причина: "%{reason}".
club_request: Приглашение на вступление в клуб [club]%{club_id}[/club].
version_accepted: >-
Твоя [version=%{version_id}]правка[/version] для
[%{item_type}]%{item_id}[/%{item_type}] принята.
version_rejected: >-
Твоя [version=%{version_id}]правка[/version] для
[%{item_type}]%{item_id}[/%{item_type}] отклонена.
version_rejected_with_reason: >-
Твоя [version=%{version_id}]правка[/version] для
[%{item_type}]%{item_id}[/%{item_type}] отклонена по причине:
[quote=%{moderator}]%{reason}[/quote]
messages/mention_source:
simple_mention:
nil: <em>удалено</em>
topic: &default_simple_mention <a href="%{url}"%{bubble}>%{name}</a>
profile: *default_simple_mention
review: *default_simple_mention
critique: *default_simple_mention
article: *default_simple_mention
collection: *default_simple_mention
text_mention:
nil: в <em>удалено</em>.
topic: в топике <a href="%{url}"%{bubble}>%{name}</a>.
profile: в профиле пользователя <a href="%{url}"%{bubble}>%{name}</a>.
review: в отзыве к <a href="%{url}"%{bubble}>%{name}</a>.
messages/check_spam_abuse:
ban_text: >-
Ты @{f:забанена|m:забанен} за спам.
Напиши на %{email}, если ты @{f:невиновна|m:невиновен}.
users/check_hacked:
lock_text: >-
С этого аккаунта на сайте рассылается спам. Доступ к аккаунту забанен.
Для восстановления доступа воспользуйтесь страницей восстановления пароля. %{recovery_url}
Чтобы в дальнейшем избежать подобных ситуаций,
рекомендуем не использовать простые пароли вроде "123", "qwerty", "anime", "naruto" и т.п.
moderations/banhammer:
ban_reason: п.3 [url=%{url}]правил сайта[/url]
| 4,947 |
YAML
| 36.484848 | 96 | 0.639377 |
shikimori/shikimori/config/locales/verbs.en.yml
|
en:
verbs:
watched_episodes:
zero: watched
one: watched
other: watched
read_volumes:
zero: read
one: read
other: read
read_chapters:
zero: read
one: read
other: read
added_by:
zero: added by
one: added by
other: added by
wrote:
zero: wrote
one: wrote
other: wrote
| 376 |
YAML
| 15.391304 | 21 | 0.526596 |
shikimori/shikimori/config/locales/inflections.en.yml
|
en:
inflections:
years_old:
zero: yo
one: yo
other: yo
datetime:
second:
zero: seconds
one: second
other: seconds
minute:
zero: minutes
one: minute
other: minutes
hour:
zero: hours
one: hour
other: hours
day:
zero: days
one: day
other: days
week:
zero: weeks
one: week
other: weeks
month:
zero: months
one: month
other: months
year:
zero: years
one: year
other: years
ordinal:
studio:
one: publisher
few: publishers
ranobe:
zero: light novels
one: light novel
other: light novels
inflections:
user_signed_in:
signed_in: signed in
not_signed_in: not signed in
| 875 |
YAML
| 15.846154 | 36 | 0.482286 |
shikimori/shikimori/config/locales/devise.en.yml
|
# Additional translations at https://github.com/plataformatec/devise/wiki/I18n
en:
devise:
confirmations:
confirmed: "Your email address has been successfully confirmed."
send_instructions: "You will receive an email with instructions for how to confirm your email address in a few minutes."
send_paranoid_instructions: "If your email address exists in our database, you will receive an email with instructions for how to confirm your email address in a few minutes."
failure:
already_authenticated: "You are already signed in."
inactive: "Your account is not activated yet."
invalid: "Invalid %{authentication_keys} or password."
locked: "Your account is locked."
last_attempt: "You have one more attempt before your account is locked."
not_found_in_database: "Invalid %{authentication_keys} or password."
timeout: "Your session expired. Please sign in again to continue."
unauthenticated: "You need to sign in or sign up before continuing."
unconfirmed: "You have to confirm your email address before continuing."
mailer:
confirmation_instructions:
subject: "Confirmation instructions"
reset_password_instructions:
subject: "Reset password instructions"
unlock_instructions:
subject: "Unlock instructions"
email_changed:
subject: "Email Changed"
password_change:
subject: "Password Changed"
omniauth_callbacks:
register: "Successfully registered from %{kind} account."
failure: "Could not authenticate you from %{kind} because \"%{reason}\"."
success: "Successfully authenticated from %{kind} account."
passwords:
no_token: "You can't access this page without coming from a password reset email. If you do come from a password reset email, please make sure you used the full URL provided."
send_instructions: "You will receive an email with instructions on how to reset your password in a few minutes."
send_paranoid_instructions: "If your email address exists in our database, you will receive a password recovery link at your email address in a few minutes."
updated: "Your password has been changed successfully. You are now signed in."
updated_not_active: "Your password has been changed successfully."
registrations:
destroyed: "Bye! Your account has been successfully cancelled. We hope to see you again soon."
signed_up: "Welcome! You have signed up successfully."
signed_up_but_inactive: "You have signed up successfully. However, we could not sign you in because your account is not yet activated."
signed_up_but_locked: "You have signed up successfully. However, we could not sign you in because your account is locked."
signed_up_but_unconfirmed: "A message with a confirmation link has been sent to your email address. Please follow the link to activate your account."
update_needs_confirmation: "You updated your account successfully, but we need to verify your new email address. Please check your email and follow the confirm link to confirm your new email address."
updated: "Your account has been updated successfully."
sessions:
signed_in: "Signed in successfully."
signed_out: "Signed out successfully."
already_signed_out: "Signed out successfully."
user:
already_signed_out: :devise.sessions.signed_out
signed_in: :devise.sessions.signed_in
signed_out: :devise.sessions.signed_out
unlocks:
send_instructions: "You will receive an email with instructions for how to unlock your account in a few minutes."
send_paranoid_instructions: "If your account exists, you will receive an email with instructions for how to unlock it in a few minutes."
unlocked: "Your account has been unlocked successfully. Please sign in to continue."
errors:
messages:
already_confirmed: "was already confirmed, please try signing in"
confirmation_period_expired: "needs to be confirmed within %{period}, please request a new one"
expired: "has expired, please request a new one"
not_found: "not found"
not_locked: "was not locked"
not_saved:
one: "1 error prohibited this %{resource} from being saved:"
other: "%{count} errors prohibited this %{resource} from being saved:"
| 4,356 |
YAML
| 61.242856 | 206 | 0.719467 |
shikimori/shikimori/config/locales/achievements.en.yml
|
en:
achievements:
group:
common: Common
genre: By Genres
franchise: By Franchises
author: By Authors
neko_name:
action: Action
animelist: Anime List
comedy: Comedy
dementia_psychological: Dementia / Psychological
drama: Drama
fantasy: Fantasy
fujoshi: Fujoshi
gar: GAR
historical: Historical
horror_thriller: Horror / Thriller
josei: Josei
kids: For Kids
kuudere: Kuudere
longshounen: Long Title
mahou_shoujo: Mahou Shoujo
mecha: Mecha
military: Military
moe: Moe
music: Music
mystery: Mystery
oldfag: Classic
oniichan: Forbidden love
otaku: Art historian
police: Police
romance: Romance
scifi: Sci-Fi
seinen: Seinen
shortie: Short film
slice_of_life: Slice of Life
sovietanime: \"Our"\ anime
stop_motion: Stop Motion
space: Space
sports: Sport
supernatural: Supernatural
test: Unknown achievement
tsundere: Tsundere
yandere: Yandere
yuuri: Yuri
genki: Genki
world_masterpiece_theater: World Masterpiece Theater
hint:
default: '%{neko_name} level %{level}'
animelist: '%{threshold} anime watched'
| 1,287 |
YAML
| 23.76923 | 58 | 0.616939 |
shikimori/shikimori/config/locales/roles.en.yml
|
en:
role:
2nd Key Animation: 2nd Key Animation
ADR Director: ADR Director
Animation Check: Animation Check
Animation Director: Animation Director
Art Director: Art Director
Art: Art
Assistant Animation Director: Assistant Animation Director
Assistant Director: Assistant Director
Assistant Engineer: Assistant Engineer
Assistant Producer: Assistant Producer
Assistant Production Coordinat: Assistant Production Coordinat
Associate Casting Director: Associate Casting Director
Associate Producer: Associate Producer
Background Art: Background Art
Brazilian: Seiyu (BR)
Casting Director: Casting Director
Character Design: Character Design
Chief Animation Director: Chief Animation Director
Chief Producer: Chief Producer
Co-Director: Co-Director
Co-Producer: Co-Producer
Color Design: Color Design
Color Setting: Color Setting
Creator: Creator
Dialogue Editing: Dialogue Editing
Digital Paint: Digital Paint
Director of Photography: Director of Photography
Director: Director
Editing: Editing
English: Seiyu (EN)
Episode Director: Episode Director
Executive Producer: Executive Producer
French: Seiyu (FR)
German: Seiyu (DE)
Hebrew: Seiyu (IL)
Hungarian: Seiyu (HU)
In-Between Animation: In-Between Animation
Inserted Song Performance: Inserted Song Performance
Italian: Seiyu (IT)
Japanese: Seiyu
Key Animation: Key Animation
Korean: Seiyu (KR)
Layout: Layout
Mandarin: Seiyu (CH)
Mechanical Design: Mechanical Design
Music: Music
Online Editing Supervision: Online Editing Supervision
Online Editor: Online Editor
Original Character Design: Original Character Design
Original Creator: Original Creator
Planning Producer: Planning Producer
Planning: Planning
Portuguese (BR): Seiyu (BR)
Post-Production Assistant: Post-Production Assistant
Principle Drawing: Principle Drawing
Producer: Producer
Production Assistant: Production Assistant
Production Coordination: Production Coordination
Production Manager: Production Manager
Publicity: Publicity
Re-Recording Mixing: Re-Recording Mixing
Recording Assistant: Recording Assistant
Recording Engineer: Recording Engineer
Recording: Recording
Screenplay: Screenplay
Script: Script
Series Composition: Series Composition
Series Production Director: Series Production Director
Setting Manager: Setting Manager
Setting: Setting
Sound Director: Sound Director
Sound Effects: Sound Effects
Sound Manager: Sound Manager
Sound Supervisor: Sound Supervisor
Spanish: Seiyu (ES)
Special Effects: Special Effects
Spotting: Spotting
Story & Art: Story & Art
Story: Story
Storyboard: Storyboard
Theme Song Arrangement: Theme Song Arrangement
Theme Song Composition: Theme Song Composition
Theme Song Lyrics: Theme Song Lyrics
Theme Song Performance: Theme Song Performance
| 3,045 |
YAML
| 34.011494 | 66 | 0.743842 |
shikimori/shikimori/config/locales/verbs.ru.yml
|
ru:
verbs:
watched_episodes:
one: просмотрен
few: просмотрены
many: просмотрено
read_volumes:
one: прочитан
few: прочитаны
many: прочитано
read_chapters:
one: прочитана
few: прочитаны
many: прочитано
added_by:
one: '@{f:добавила|m:добавил}'
few: добавили
many: добавили
wrote:
one: '@{f:написала|m:написал}'
few: написали
many: написали
| 449 |
YAML
| 18.565217 | 36 | 0.57461 |
shikimori/shikimori/config/locales/value_objects.ru.yml
|
ru:
titles/season_title:
anime: &anime_season_titles
catalog:
season:
winter: Зима %{year}
spring: Весна %{year}
summer: Лето %{year}
fall: Осень %{year}
year: '%{year} год'
decade: '%{decade}0-е годы'
ancient: Более старые
short:
season:
winter: Зимний сезон
spring: Весенний сезон
summer: Летний сезон
fall: Осенний сезон
year: '%{year} год'
full:
season:
winter: Зимний сезон %{year} года
spring: Весенний сезон %{year} года
summer: Летний сезон %{year} года
fall: Осенний сезон %{year} года
year: Аниме %{year} года
manga: &manga_season_titles
<<: *anime_season_titles
full:
season:
winter: Зимний сезон %{year} года
spring: Весенний сезон %{year} года
summer: Летний сезон %{year} года
fall: Осенний сезон %{year} года
year: Манга %{year} года
ranobe:
<<: *manga_season_titles
titles/status_title:
anime: &anime_status_titles
anons: Анонсы
ongoing: Онгоинги
released: Вышедшее
latest: Недавно вышедшее
manga: &manga_status_titles
<<: &anime_status_titles
ongoing: Выходящее
ranobe:
<<: *manga_status_titles
ongoing: Онгоинги
| 1,383 |
YAML
| 26.137254 | 45 | 0.550253 |
shikimori/shikimori/config/locales/roles.ru.yml
|
ru:
role:
2nd Key Animation: Второстепен. анимация
ADR Director: Режиссёр перевода
Animation Check: Контроль анимации
Animation Director: Режиссёр анимации
Art Director: Арт-директор
Art: Рисовка
Assistant Animation Director: Помощник режиссёра анимации
Assistant Director: Помощник режиссёра
Assistant Engineer: Инженер-ассистент
Assistant Producer: Ассистент продюсера
Assistant Production Coordinat: Координация работ
Associate Casting Director: Помощник директора по кастингу
Associate Producer: Помощник продюсера
Background Art: Фоновая рисовка
Brazilian: Сэйю (BR)
Casting Director: Директор по кастингу
Character Design: Дизайн персонажей
Chief Animation Director: Главный аниматор
Chief Producer: Главный продюсер
Co-Director: Второй режиссёр
Co-Producer: Второй продюсер
Color Design: Дизайн цвета
Color Setting: Настройка цвета
Creator: Автор
Dialogue Editing: Редактор диалогов
Digital Paint: Компьютерная рисовка
Director of Photography: Оператор-постановщик
Director: Режиссёр
Editing: Монтаж
English: Сэйю (EN)
Episode Director: Режиссёр эпизодов
Executive Producer: Исполнительн. продюсер
French: Сэйю (FR)
German: Сэйю (DE)
Hebrew: Сэйю (IL)
Hungarian: Сэйю (HU)
In-Between Animation: Промежуточ. анимация
Inserted Song Performance: Музыкальное сопровождение
Italian: Сэйю (IT)
Japanese: Сэйю
Key Animation: Ключевая анимация
Korean: Сэйю (KR)
Layout: Вёрстка
Mandarin: Сэйю (CH)
Mechanical Design: Дизайн макетов
Music: Музыка
Online Editing Supervision: Надзор за редакторами
Online Editor: Редактор
Original Character Design: Оригинал. дизайн персонажей
Original Creator: Автор оригинала
Planning Producer: Продюсер планирования
Planning: Планирование
Portuguese (BR): Португальский (BR)
Post-Production Assistant: Пост-продакшн
Principle Drawing: Принцип рисовки
Producer: Продюсер
Production Assistant: Ассистент по производству
Production Coordination: Координация работы
Production Manager: Менеджер по производству
Publicity: Реклама
Re-Recording Mixing: Микширование звука
Recording Assistant: Помощник звукооператора
Recording Engineer: Звукооператор
Recording: Звукооператор
Screenplay: Сценарий
Script: Сценарий
Series Composition: Компоновка серий
Series Production Director: Директор по производству
Setting Manager: Менеджер по настройке
Setting: Настройка
Sound Director: Звукорежиссёр
Sound Effects: Звуковые эффекты
Sound Manager: Звукорежиссёр
Sound Supervisor: Звукорежиссёр
Spanish: Сэйю (ES)
Special Effects: Спецэффекты
Spotting: Корректировка
Story & Art: Сюжет и иллюстрации
Story: Сюжет
Storyboard: Раскадровка
Theme Song Arrangement: Аранжировка гл. муз. темы
Theme Song Composition: Композитор гл. муз. темы
Theme Song Lyrics: Лирика гл. муз. темы
Theme Song Performance: Исполнение гл. муз. темы
| 3,080 |
YAML
| 34.413793 | 62 | 0.744805 |
shikimori/shikimori/config/locales/decorators.en.yml
|
en:
db_entry_decorator: &db_entry_decorator
no_description: No description
ani_manga_decorator: &ani_manga_decorator
<<: *db_entry_decorator
time_ago_format: '%s ago'
anime_decorator:
<<: *ani_manga_decorator
anime_video_preview_decorator:
score:
excellent: excellent
good: good
okay: okay
character_decorator:
<<: *db_entry_decorator
job_title:
character: Character
anime: Anime character
anime_manga: Anime & Manga Character
anime_manga_ranobe: Anime & Manga & Light Novel character
anime_ranobe: Anime & Light Novel character
manga: Manga character
manga_ranobe: Manga & Light Novel character
ranobe: Light Novel character
contest_decorator:
<<: *db_entry_decorator
club_decorator:
<<: *db_entry_decorator
manga_decorator:
<<: *ani_manga_decorator
person_decorator: &person_decorator
<<: *db_entry_decorator
job_title:
producer: Producer
mangaka: Mangaka
composer: Composer
seyu: Seiyu
vocalist: Vocalist
anime_manga_projects_participant: Anime & Manga projects participant
# anime_manga_ranobe_projects_participant: Anime, Manga & Light novel projects participant
anime_projects_participant: Anime projects participant
# anime_ranobe_projects_participant: Anime & Light novel projects participant
manga_projects_participant: Manga projects participant
# manga_ranobe_projects_participant: Manga & Light novel projects participant
# ranobe_projects_participant: Light novel projects participant
_projects_participant: ''
seyu_decorator:
<<: *person_decorator
collection_decorator:
<<: *db_entry_decorator
user_decorator: &user_decorator
always_online: always online
always_online_bot: always online (bot)
online: online
offline: last online %{time_ago}%{ago}
ago: ago
registration_formats:
full: '%B %e, %Y'
month_year: '%B %Y'
year: '%Y'
user_history_decorator:
actions:
add: Added to list
delete: Removed from list
complete_with_score: '%{status_name} and rated <b>%{score}</b>'
episodes:
completed_movie: Watched movie
completed_anime: Watched all episodes
completed_novel: Read novel
completed_manga: Read manga
reset_anime: Reset episodes count
reset_manga: Reset volumes and chapters count
rate:
cancelled: Score removed
changed: Score changed from <b>%{prior_score}</b> to <b>%{score}</b>
rated: Rated <b>%{score}</b>
import:
anime: Anime imported - %{records}
manga: Manga imported - %{records}
registration: Registration
anime_history_clear: Anime history cleared
manga_history_clear: Manga history cleared
time_ago: '%{time_ago} ago'
watched_one_episode: '%{watched} %{division} %{number}'
watched_two_episodes: '%{watched} %{number_first} and %{number_second} %{division}'
watched_three_episodes: '%{watched} %{number_first}, %{number_second} and %{number_third} %{division}'
watched_episodes_range: '%{watched} %{division} %{number_first}-%{number_last}'
watched_first_episodes: '%{watched} %{number} %{division}'
user_profile_decorator:
<<: *user_decorator
version_decorator:
field_name:
screenshots_upload: Screenshots upload
screenshots_delete: Screenshots delete
screenshots_reposition: Screenshots order
poster_upload: Poster upload
poster_delete: Poster delete
video_upload: Video upload
video_delete: Video delete
role_add: Role add
role_remove: Role remove
| 3,684 |
YAML
| 35.127451 | 106 | 0.66721 |
shikimori/shikimori/config/locales/datetime.en.yml
|
en:
date:
formats: &date_formats
full: '%d.%m.%Y %H:%M'
human: '%B %e, %Y'
human_short: '%b %e, %Y'
human_day_month: '%B %e'
human_month_year: '%B %Y'
short: '%d.%m.%Y'
day_month_human: '%B %e'
month_year_human: '%B %Y'
ongoing: '%A, %B %e, %Y'
ongoing_short: '%A, %B %e, %Y'
time:
formats:
<<: *date_formats
#momentjs: '%Y-%m-%d %H:%M:%S'
datetime:
intervals:
today: today
yesterday: yesterday
during_week: during this week
week: one week ago
two_weeks: two weeks ago
three_weeks: three weeks ago
month: one month ago
two_months: two months ago
three_months: three months ago
four_months: four months ago
five_months: five months ago
half_year: half a year ago
year: one year ago
two_years: two years ago
many_years: a long time ago
release_dates:
date: '%{date}'
for_date: for %{date}
in_years: in %{from_date}-%{to_date}
since_date: since %{date}
since_till_date: '%{from_date} to %{to_date}'
till_date: till %{date}
parts:
second:
zero: seconds
one: second
other: seconds
minute:
zero: minutes
one: minute
other: minutes
hour:
zero: hours
one: hour
other: hours
day:
zero: days
one: day
other: days
week:
zero: weeks
one: week
other: weeks
month:
zero: months
one: month
other: months
year:
zero: years
one: year
other: years
| 1,668 |
YAML
| 21.253333 | 51 | 0.506595 |
shikimori/shikimori/config/locales/achievements.ru.yml
|
ru:
achievements:
group:
common: Общие
genre: Жанровые
franchise: Франшизы
author: Авторы
neko_name:
action: Боевик
animelist: Список аниме
comedy: Комедия
dementia_psychological: Безумие / Психологическое
drama: Драма
fantasy: Фэнтези
fujoshi: Фудзёси
gar: ГАР
historical: Историческое
horror_thriller: Хоррор / Триллер
josei: Дзёсей
kids: Детское
kuudere: Кудере
longshounen: Длиннотайтлы
mahou_shoujo: Махо-сёдзё
mecha: Меха
military: Военное
moe: Моэ
music: Музыка
mystery: Детектив
oldfag: Классика
oniichan: Запретная любовь
otaku: Искусствовед
police: Полиция
romance: Романтика
scifi: Фантастика
seinen: Сейнен
shortie: Короткометражки
slice_of_life: Повседневность
sovietanime: Наши в аниме
stop_motion: Покадровая анимация
space: Космос
sports: Спорт
supernatural: Сверхъестественное
test: Неизвестное достижение
tsundere: Цундере
yandere: Яндере
yuuri: Юри
genki: Генки
world_masterpiece_theater: Театр Мировых Шедевров
hint:
default: '%{neko_name} %{level}-го уровня'
animelist: '%{threshold} просмотренных аниме'
| 1,316 |
YAML
| 24.326923 | 55 | 0.634498 |
shikimori/shikimori/config/locales/views.yml
|
ru:
animes:
page:
kind: &video_kinds
raw: оригинал
subtitles: субтитры
fandub: озвучка
unknown: озвучка
new:
kind:
<<: *video_kinds
edit:
kind:
<<: *video_kinds
| 241 |
YAML
| 15.133332 | 27 | 0.481328 |
shikimori/shikimori/config/locales/devise.ru.yml
|
# Русский перевод для https://github.com/plataformatec/devise/tree/v4.3.0
# Другие переводы на http://github.com/plataformatec/devise/wiki/I18n
ru:
devise:
confirmations:
confirmed: "Твой аккаунт подтверждён."
send_instructions: "В течение нескольких минут ты получишь письмо с инструкцией по подтверждению аккаунта."
send_paranoid_instructions: "Если твоя почта есть в базе сайта, то в течение нескольких минут ты получишь письмо с инструкцией по подтверждению аккаунта."
failure:
already_authenticated: "Ты уже в системе."
inactive: "Твой аккаунт ещё не подтверждён."
invalid: "Неверный пароль или: %{authentication_keys}."
locked: "Твой аккаунт заблокирован."
last_attempt: "У тебя осталась ещё одна попытка ввести пароль до блокировки."
not_found_in_database: "Неверный пароль или: %{authentication_keys}."
timeout: "Твой сеанс закончился. Войди в систему снова."
unauthenticated: "Тебе необходимо войти в систему или зарегистрироваться."
unconfirmed: "Тебе нужно подтвердить твой аккаунт."
mailer:
confirmation_instructions:
subject: "Инструкция по подтверждению аккаунта"
reset_password_instructions:
subject: "Инструкция по восстановлению пароля"
unlock_instructions:
subject: "Инструкция по разблокировке аккаунта"
email_changed:
subject: "Почта была изменена"
password_change:
subject: "Пароль был изменён"
omniauth_callbacks:
register: 'Успешная регистрация через аккаунт %{kind}.'
failure: "Ты не можешь войти в систему с аккаунтом из %{kind}, так как \"%{reason}\"."
success: "Вход в систему выполнен с аккаунтом из %{kind}."
passwords:
no_token: "Эта страница доступна только при переходе по ссылке для сброса пароля. Если вы перешли по ссылке из письма, убедитесь, что вы использовали полный URL."
send_instructions: "В течение нескольких минут ты получишь письмо с инструкцией по восстановлению пароля."
send_paranoid_instructions: "Если твоя почта есть в базе сайта, то в течение нескольких минут ты получишь письмо с инструкцией по восстановлению пароля."
updated: "Твой пароль изменён"
updated_not_active: "Пароль изменён"
registrations:
destroyed: "Скатертью дорога! Твой аккаунт удалён."
signed_up: "Добро пожаловать! Регистрация завершена."
signed_up_but_inactive: "Вы зарегистрировались. Тем не менее, вы не можете войти, потому что ваш аккаунт ещё не подтверждён."
signed_up_but_locked: "Вы зарегистрировались. Тем не менее, вы не можете войти, потому что ваш аккаунт забанен."
signed_up_but_unconfirmed: "В течение нескольких минут ты получишь письмо с инструкцией по подтверждению аккаунта."
update_needs_confirmation: "Твой аккаунт обновлён, но необходимо подтвердить твою новую почту. Проверь свою почту и нажми на ссылку \"Подтвердить\", чтобы завершить обновление."
updated: "Твой аккаунт изменён"
sessions:
signed_in: "Вход на сайт выполнен"
signed_out: "Выход из сайта выполнен"
already_signed_out: "Выход из сайта выполнен"
unlocks:
send_instructions: "В течение нескольких минут ты получишь письмо с инструкцией по разблокировке аккаунта."
send_paranoid_instructions: "Если твой аккаунт существует, то в течение нескольких минут ты получишь письмо с инструкцией по его разблокировке."
unlocked: "Ваш аккаунт разблокирован. Теперь вы авторизованы."
user:
already_signed_out: :devise.sessions.signed_out
signed_in: :devise.sessions.signed_in
signed_out: :devise.sessions.signed_out
errors:
messages:
already_confirmed: "уже подтверждена. Пожалуйста, попробуй войти на сайт"
confirmation_period_expired: "должен быть подтверждён в течении %{period}, запроси подтверждение ещё раз"
expired: "устарела. Запроси новую"
not_found: "не найден"
not_locked: "не заблокирован"
not_saved:
one: "%{resource}: сохранение не удалось из-за %{count} ошибки"
few: "%{resource}: сохранение не удалось из-за %{count} ошибок"
many: "%{resource}: сохранение не удалось из-за %{count} ошибок"
other: "%{resource}: сохранение не удалось из-за %{count} ошибки"
| 4,267 |
YAML
| 58.277777 | 183 | 0.718069 |
shikimori/shikimori/config/locales/datetime.ru.yml
|
ru:
date:
formats: &date_formats
full: '%H:%M %d.%m.%Y'
human: '%e %B %Y'
human_short: '%e %b %Y'
human_day_month: '%e %B'
human_month_year: '%B %Y'
short: '%d.%m.%Y'
day_month_human: '%e %B'
month_year_human: '%B %Y'
ongoing: '%A, %e %B %Y'
ongoing_short: '%A, %e %B'
time:
formats:
<<: *date_formats
#momentjs: '%Y-%m-%d %H:%M:%S'
datetime:
intervals:
today: сегодня
yesterday: вчера
during_week: в течение недели
week: неделя назад
two_weeks: две недели назад
three_weeks: три недели назад
month: месяц назад
two_months: два месяца назад
three_months: три месяца назад
four_months: четыре месяца назад
five_months: пять месяцев назад
half_year: более полугода назад
year: год назад
two_years: два года назад
many_years: совсем давно
release_dates:
date: '%{date} г.'
for_date: на %{date} г.
in_years: в %{from_date}-%{to_date} гг.
since_date: с %{date} г.
since_till_date: с %{from_date} г. по %{to_date} г.
till_date: до %{date} г.
parts:
second:
one: секунда
few: секунды
many: секунд
other: секунды
minute:
one: минута
few: минуты
many: минут
other: минуты
hour:
one: час
few: часа
many: часов
other: часа
day:
one: день
few: дня
many: дней
other: дня
week:
one: неделя
few: недели
many: недель
other: недели
month:
one: месяц
few: месяца
many: месяцев
other: месяца
year:
one: год
few: года
many: лет
other: года
| 1,814 |
YAML
| 21.134146 | 57 | 0.503308 |
shikimori/shikimori/config/locales/mailers.ru.yml
|
ru:
shiki_mailer:
private_message_email:
subject: Личное сообщение
body: |-
%{nickname}, у тебя 1 новое сообщение на %{site_link} от пользователя %{from_nickname}.
Прочитать можно тут: %{private_message_link}
Отписаться от уведомлений можно по ссылке:
%{unsubscribe_link}
reset_password_instructions:
subject: Инструкция по сбросу пароля
body: |-
Привет!
Кто-то задействовал процедуру сброса пароля для твоего аккаунта на %{site_link}.
Твой логин - %{nickname}.
Изменить пароль можно, перейдя по ссылке: %{reset_password_link}
Если тебе пришло несколько писем о восстановлении пароля, то переходить на страницу сброса пароля нужно обязательно по ссылке из самого последнего письма.
Если ты не запрашивал(-а) сброс пароля, то просто проигнорируй это письмо.
Твой пароль не будет изменён до тех пор, пока ты не перейдёшь по указанной выше ссылке.
| 976 |
YAML
| 32.689654 | 162 | 0.683402 |
shikimori/shikimori/config/locales/simple_form.en.yml
|
en:
simple_form:
yes: Yes
no: No
required:
text: 'required'
mark: '*'
# You can uncomment the line below if you need to overwrite the whole required html.
# When using html, text and mark won't be used.
# html: '<abbr title="required">*</abbr>'
error_notification:
default_message: "Please critique the problems below:"
# Labels and hints examples
# labels:
# defaults:
# password: 'Password'
# user:
# new:
# email: 'E-mail to sign in.'
# edit:
# email: 'E-mail.'
# hints:
# defaults:
# username: 'User name to sign in.'
# password: 'No special characters, please.'
labels:
user:
nickname: Login (nickname)
anime_video:
author_name: Author (dubbing, subtitles)
anime_video_author_id: Author (dubbing, subtitles)
placeholders:
topic:
title: Topic title
options:
topic:
type:
Topic: Topic
Topics::NewsTopic: News topic
user:
sex:
male: male
female: female
hints:
user:
nickname: Case sensitive
password: Case sensitive
email: Case sensitive
user_preferences:
apply_user_styles: >-
Other site users can define their own styles
(change the appearance of the site) for the pages of their profile and
clubs. If you disable this setting, you will always see standard site
style.
favorites_in_profile: >-
Changing it will break your default profile layout.
<br>You may want to change it if you have custom styles in profile.
version:
reason: &optional Optional
anime: &anime_hints
description_ru_source: *optional
description_en_source: *optional
episodes: It must be "0" for ongoings with an unknown total number of episodes
more_info: >-
Text imported from MAL is not displayed until the marker
<code class="b-code_inline">[MAL]</code> is removed from the text
manga:
<<: *anime_hints
volumes: It must be "0" for ongoings with an unknown total number of volumes
chapters: It must be "0" for ongoings with an unknown total number of chapters
anime_video:
author_name: >-
Формат записи: Название_проекта/студии (Ник_даббера1 & Ник_даббера2)
list_import:
list: Import supports Shikimori JSON and MyAnimeList XML lists (15mb max)
club:
is_censored: Required option for clubs with "adult" images and texts
is_private: Club content is only visible to club members and moderators
is_non_thematic: Non thematic clubs are not displayed on anime and manga pages
is_shadowbanned: Hides the club from everyone except its members
club_page:
parent_page_id: Inside which page the page is displayed
magic_submit:
devise:
sessions:
new: &sign_in
submit: Sign in
disable_with: Signing in…
users:
registrations:
new:
submit: Register
disable_with: Registering…
passwords:
new:
submit: Send instructions
disable_with: Sending instructions…
sessions:
new:
<<: *sign_in
dashboards:
show:
<<: *sign_in
club_invite: &send
submit: Send
disable_with: Sending…
comment: &comment
submit: Send
disable_with: Posting…
message:
<<: *comment
anime_video_report:
index:
<<: *send
list_import:
submit: Import
disable_with: Importing…
default:
submit: Save
retry: Try saving once again
disable_with: Saving…
new:
submit: Create
retry: Try again
edit:
submit: Save
feedback:
<<: *comment
| 4,093 |
YAML
| 24.116564 | 90 | 0.571463 |
shikimori/shikimori/config/locales/mailers.en.yml
|
en:
shiki_mailer:
private_message_email:
subject: Private message
body: |-
%{nickname}, you have 1 new message on %{site_link} from %{from_nickname}.
Read the message: %{private_message_link}
To unsubscribe from notification emails click here:
%{unsubscribe_link}
reset_password_instructions:
subject: Reset password instructions
body: |-
Hi!
We have received a request to reset your account password on %{site_link}.
Your account login is %{nickname}.
To reset you password click this link: %{reset_password_link}
If you didn't make a request to reset your password just ignore this message.
Your password will not change until you click the link above.
| 777 |
YAML
| 27.814814 | 85 | 0.65251 |
shikimori/shikimori/config/locales/simple_form.ru.yml
|
ru:
simple_form:
yes: Да
no: Нет
required:
text: 'Обязательное поле'
mark: '*'
# You can uncomment the line below if you need to overwrite the whole required html.
# When using html, text and mark won't be used.
# html: '<abbr title="required">*</abbr>'
error_notification:
default_message: "Пожалуйста, исправьте следующие ошибки:"
# Labels and hints examples
# labels:
# defaults:
# password: 'Password'
# user:
# new:
# email: 'E-mail to sign in.'
# edit:
# email: 'E-mail.'
# hints:
# defaults:
# username: 'User name to sign in.'
# password: 'No special characters, please.'
labels:
user:
nickname: Логин (никнейм)
anime_video:
author_name: Автор (озвучки, субтитров)
anime_video_author_id: Автор (озвучки, субтитров)
placeholders:
topic:
title: Название топика
options:
topic:
type:
Topic: Топик
Topics::NewsTopic: Новостной топик
user:
sex:
male: муж.
female: жен.
hints:
user:
nickname: Чувствителен к регистру
password: Чувствителен к регистру
email: >-
Чувствителен к регистру<br>
Письма на<span class="b-tag narrow">@mail.ru</span><span class="b-tag narrow">@inbox.ru</span><span class="b-tag narrow">@list.ru</span><span class="b-tag narrow">@bk.ru</span>
могут попадать в спам, проверяй в этой папке тоже.
user_preferences:
apply_user_styles: >-
Другие пользователи сайта могут задавать собственные стили
(изменять внешний вид сайта) для страниц своего профиля и
клубов.<br>Отключив эту настройку, вы всегда будете видеть
стандартный стиль сайта.
favorites_in_profile: >-
Изменение этой настройки поломает стандартную вёрстку профиля.
<br>Можно менять, если у тебя собственные стили в профиле.
version:
reason: &optional Не обязательно
anime: &anime_hints
description_ru_source: *optional
description_en_source: *optional
episodes: Для онгоингов с неизвестным числом эпизодов ставь "0"
more_info: >-
Импортированные с MAL тексты не отображаются, пока из текста не удалён маркер
<code class="b-code_inline">[MAL]</code>
manga:
<<: *anime_hints
volumes: Для онгоингов с неизвестным числом томов ставь "0"
chapters: Для онгоингов с неизвестным числом глав ставь "0"
anime_video:
author_name: >-
Формат записи: Название_проекта/студии (Ник_даббера1 & Ник_даббера2)
list_import:
list: Поддерживает Shikimori JSON и MyAnimeList XML списки (до 15mb)
club:
is_censored: Обязательная настройка для клубов со "взрослыми" картинками и текстами
is_private: Содержимое клуба видно только участникам клуба и модераторам
is_non_thematic: Не тематические клубы не отображаются на страницах аниме и манги
is_shadowbanned: Скрывает клуб для всех, кроме его участников
club_page:
parent_page_id: Внутри какой страницы отображается страница
magic_submit:
devise:
sessions:
new: &sign_in
submit: Войти
disable_with: Вход…
users:
registrations:
new:
submit: Зарегистрироваться
disable_with: Регистрация…
passwords:
new:
submit: Отправить инструкцию
disable_with: Отправляем инструкцию…
sessions:
new:
<<: *sign_in
dashboards:
dynamic:
<<: *sign_in
club_invite: &send
submit: Отправить
disable_with: Отправка…
comment: &comment
submit: Написать
disable_with: Отправка…
message:
<<: *comment
anime_video_report:
index:
<<: *send
list_import:
submit: Импортировать
disable_with: Импорт…
default:
submit: Сохранить
retry: Попробовать ещё раз
disable_with: Сохранение…
new:
submit: Создать
edit:
submit: Сохранить
feedback:
<<: *comment
helpers:
submit:
user: &user_buttons
create: Сохранить
update: Сохранить
user_preferences:
<<: *user_buttons
topic:
<<: *user_buttons
critique:
<<: *user_buttons
| 4,607 |
YAML
| 27.269938 | 186 | 0.585196 |
shikimori/shikimori/config/locales/frontend/edit_field.ru.yml
|
ru:
frontend:
synonyms: &synonyms
nothing_here: Нет названий
name: Название
licensors:
<<: *synonyms
coub_tags:
<<: *synonyms
fansubbers:
<<: *synonyms
fandubbers:
<<: *synonyms
desynced:
nothing_here: Нет поля
name: Название поля
options:
nothing_here: Нет настроек
name: Настройка
| 373 |
YAML
| 17.699999 | 32 | 0.571046 |
shikimori/shikimori/config/locales/frontend/about.ru.yml
|
ru:
frontend:
about:
views: Просмотры
visits: Посещения
unique_visitors: Уникальные посетители
comments_per_day: Комментариев за день
new_users_per_day: Новых пользователей за день
| 217 |
YAML
| 23.22222 | 52 | 0.682028 |
shikimori/shikimori/config/locales/frontend/search.ru.yml
|
ru:
frontend:
search:
nothing_found: Ничего не найдено.
mode:
index: Текущая страница
anime: Аниме
manga: Манга
ranobe: Ранобэ
character: Персонаж
person: Человек
| 229 |
YAML
| 18.166665 | 39 | 0.563319 |
shikimori/shikimori/config/locales/frontend/collections.en.yml
|
en:
frontend:
collections:
kind:
anime: Anime
manga: Manga
ranobe: Light Novel and Novel
character: Characters
person: People
group_name: Group name
disabled_add_group_hint: >-
To add a new group, fill in the blank group name
json_warning: >-
Do not edit this if you are not sure what you are doing!
Inserting invalid data will break the page.
autocomplete:
anime: Anime title
manga: Manga title
ranobe: Light Novel title
character: Character name
person: Person name
| 608 |
YAML
| 26.681817 | 64 | 0.601974 |
shikimori/shikimori/config/locales/frontend/pages.en.yml
|
en:
frontend:
pages:
# p-animes.coffee
p_animes:
hentai: Hentai / Roskomnadzor
licensed: Licensed in Russia
no_data: No data
watch_online: Watch Online
# p-contests
p_contests:
# p-contests/_form.coffee
candidate:
one: '%{count} candidate'
few: '%{count} candidates'
many: '%{count} candidates'
other: '%{count} candidates'
# p-profiles
p_profiles:
# p-profiles/ban.coffee
page_is_reloading: Page is reloading...
# p-profiles/show.coffee
hour:
one: hour
few: hours
many: hours
day:
one: day
few: days
many: days
label:
full: >-
%{hours} %{hourWord} since %{fromDate} till %{toDate}
(%{days} %{dayWord})
short: >-
%{hours} %{hourWord} on %{date}
# p-user_rates
p_user_rates:
# p-user_rates/index.coffee
insufficient_data: Insufficient data
error_occurred: Error occurred
changes_saved: Changes saved
rewatch:
one: rewatch
few: rewatches
many: rewatches
reread:
one: re-read
few: re-reads
many: re-reads
# p-recommendations-index.coffee
p_recommendations_index:
dont_recommend_franchise: Don't recommend this franchise any more
| 1,465 |
YAML
| 23.847457 | 73 | 0.517406 |
shikimori/shikimori/config/locales/frontend/collections.ru.yml
|
ru:
frontend:
collections:
kind:
anime: Аниме
manga: Манга
ranobe: Ранобэ и новеллы
character: Персонажи
person: Люди
group_name: Название группы
disabled_add_group_hint: >-
Для добавления следующей группы заполните пустое название группы
json_warning: >-
Не редактируй это, если не уверен(-а) в том, что делаешь!
Вставка неправильных данных сломает работу страницы.
autocomplete:
anime: Название аниме
manga: Название манги
ranobe: Название ранобэ
character: Имя персонажа
person: Имя человека
| 635 |
YAML
| 27.90909 | 72 | 0.626772 |
shikimori/shikimori/config/locales/frontend/statistics.ru.yml
|
ru:
frontend:
statistics:
number: Количество
anime_with_score: <b>%{count}</b> аниме с оценкой <b>%{score}</b>
anime_of_type: <b>%{count}</b> аниме типа <b>%{type}</b>
anime_in_year: '%{count} %{type} за %{year} год'
anime_with_rating_in_year: '%{count} аниме у %{rating} за %{year} год'
share: Процент
ratings_share: '%{percent}% у %{rating} за %{year} год'
genres_share: '%{percent}% у %{genre} за %{year} год'
| 467 |
YAML
| 37.999997 | 76 | 0.569593 |
shikimori/shikimori/config/locales/frontend/achievements.en.yml
|
en:
frontend:
achievements:
title:
gained: Achievement Gained
lost: Achievement Lost
| 113 |
YAML
| 15.285712 | 34 | 0.610619 |
shikimori/shikimori/config/locales/frontend/pages.ru.yml
|
ru:
frontend:
pages:
# p-animes.coffee
p_animes:
hentai: Хентай / Роскомнадзор
licensed: Лицензировано в РФ
no_data: Нет данных
watch_online: Смотреть онлайн
# p-contests
p_contests:
# p-contests/_form.coffee
candidate:
one: '%{count} участник'
few: '%{count} участника'
many: '%{count} участников'
other: '%{count} участников'
# p-profiles
p_profiles:
# p_profiles/ban.coffee
page_is_reloading: Перезагрузка страницы...
# p-profiles/show.coffee
hour:
one: час
few: часа
many: часов
day:
one: день
few: дня
many: дней
label:
full: >-
%{hours} %{hourWord} с %{fromDate} по %{toDate}
(%{days} %{dayWord})
short: >-
%{hours} %{hourWord} %{date}
# p_user-rates
p_user_rates:
# p_user-rates/index.coffee
insufficient_data: Недостаточно данных
error_occurred: Произошла ошибка
changes_saved: Изменения сохранены
rewatch:
one: повторный просмотр
few: повторных просмотра
many: повторных просмотров
reread:
one: повторное прочтение
few: повторных прочтения
many: повторных прочтений
# p-recommendations-index.coffee
p_recommendations_index:
dont_recommend_franchise: Больше не рекомендовать эту франшизу
| 1,535 |
YAML
| 25.033898 | 70 | 0.540065 |
shikimori/shikimori/config/locales/frontend/search.en.yml
|
en:
frontend:
search:
nothing_found: Nothing found.
mode:
index: This page
anime: Anime
manga: Manga
ranobe: Light novel
character: Character
person: Person
| 223 |
YAML
| 17.666665 | 35 | 0.55157 |
shikimori/shikimori/config/locales/frontend/external_links.ru.yml
|
ru:
frontend:
external_links:
nothing_here: Нет ссылок
groups:
links: Ссылки
watch_online: Онлайн-просмотр
warn:
youtube: Ссылка на официальный канал, где выложены серии для онлайн-просмотра
watch_online: Ссылка на плейлист/страницу с плеером/официальный канал с онлайн-просмотром
| 337 |
YAML
| 29.72727 | 97 | 0.682493 |
shikimori/shikimori/config/locales/frontend/about.en.yml
|
en:
frontend:
about:
views: Views
visits: Visits
unique_visitors: Unique visitors
comments_per_day: Comments per day
new_users_per_day: New users per day
| 190 |
YAML
| 20.22222 | 42 | 0.636842 |
shikimori/shikimori/config/locales/frontend/shiki_editor.en.yml
|
en:
frontend:
shiki_editor:
not_available: Commenting will be available one day after registering
text_cant_be_blank: Text can't be blank
file: file
bold: Bold
italic: Italic
underline: Underlined
strike: Strikethrough
color: Color
undo: Undo last change
redo: Redo last change
spoiler: Spoiler
spoiler_inline: Spoiler
code_inline: Code
link: Link
smiley: Smiley
shiki_link: Shiki link
image: Image by link
upload: Images upload
spoiler_block: Spoiler block
code_block: Code block
bullet_list: List
headline: Headline
blockquote: Quote
prompt:
image_url: Image URL
link_url: Link URL
spoiler_label: Spoiler label
preview: Preview
source: Source code
huge_content_mode: Text is too large. The visual editor will fail and has therefore been disabled.
huge_content_pasted: Text is too large. The visual editor will fail and therefore paste has been cancelled.
normal_content_mode: The visual editor is available again
unsaved_content:
label: The editor has unsaved draft. Restore it?
draft: Draft
'yes': Yes
'no': No
colors:
yellow: Yellow
orange: Orange
red: Red
pink: Pink
violet: Violet
blue: Blue
green: Green
brown: Brown
gray: Gray
black: Black
headlines:
header_1: '# Large header'
header_2: '## Medium header'
header_3: '### Small header'
headline: '#### Headline'
midheadline: '##### Subheadline'
| 1,677 |
YAML
| 27.931034 | 113 | 0.60167 |
shikimori/shikimori/config/locales/frontend/images.ru.yml
|
ru:
frontend:
images:
delete: Удалить
confirm: Подтвердить
cancel: Отменить
| 100 |
YAML
| 13.42857 | 26 | 0.61 |
shikimori/shikimori/config/locales/frontend/achievements.ru.yml
|
ru:
frontend:
achievements:
title:
gained: Открыто достижение
lost: Потеряно достижение
| 116 |
YAML
| 15.714283 | 34 | 0.62069 |
shikimori/shikimori/config/locales/frontend/application.ru.yml
|
ru:
frontend:
application:
sure_to_leave_page: |-
Здесь написан и не сохранён какой-то комментарий!
Точно покинуть страницу?
| 153 |
YAML
| 20.999997 | 57 | 0.640523 |
shikimori/shikimori/config/locales/frontend/statistics.en.yml
|
en:
frontend:
statistics:
number: Number
anime_with_score: <b>%{count}</b> anime scored <b>%{score}</b>
anime_of_type: <b>%{count}</b> anime of type <b>%{type}</b>
anime_in_year: '%{count} %{type} in %{year}'
anime_with_rating_in_year: '%{count} %{rating} anime in %{year}'
share: Share
ratings_share: '%{percent}% share of %{rating} in %{year}'
genres_share: '%{percent}% share of %{genre} in %{year}'
| 457 |
YAML
| 37.166664 | 70 | 0.56674 |
shikimori/shikimori/config/locales/frontend/user_rates.ru.yml
|
ru:
frontend:
user_rates:
button:
add_to_list: Добавить в список
remove_from_my_list: Удалить из списка
| 132 |
YAML
| 17.999997 | 46 | 0.606061 |
shikimori/shikimori/config/locales/frontend/application.en.yml
|
en:
frontend:
application:
sure_to_leave_page: |-
You have not saved your comment!
Are you sure you want to leave this page?
| 153 |
YAML
| 20.999997 | 49 | 0.614379 |
shikimori/shikimori/config/locales/frontend/dynamic_elements.en.yml
|
en:
frontend:
dynamic_elements:
check_height:
expand: expand
shiki_editable:
your_request_will_be_considered: >-
Your request will be considered. Domo arigato.
topic:
load_comments: Load next %{comment_count} %{of_total_comments} %{comment_word}
type_label: Topic
of: of
comment:
one: comment
few: comments
many: comments
new_message_added:
one: '%{count} new message added'
few: '%{count} new messages added'
many: '%{count} new messages added'
new_comment_added:
one: '%{count} new comment added'
few: '%{count} new comments added'
many: '%{count} new comments added'
comment:
type_label: Comment
marked_as_offtopic: Comment has been marked as offtopic
multiple_marked_as_offtopic: Comments have been marked as offtopic
marked_as_summary: Comment has been marked as summary
not_marked_as_offtopic: Removed offtopic marking
not_marked_as_summary: Removed summary marking
dialog:
type_label: Dialog
message:
type_label: Message
review:
type_label: Review
authorized_action:
register_to_complete_action: >-
Please <a href="/users/sign_up">register</a>
to complete this action.
day_registered_action:
action_will_be_available: >-
Action will be available one day after
<a href="/users/sign_up">registration</a>.
week_registered_action:
action_will_be_available: >-
Action will be available one day after
<a href="/users/sign_up">registration</a>.
not_implemented_yet_action: This action is temporarily not available
| 1,816 |
YAML
| 28.786885 | 86 | 0.598568 |
shikimori/shikimori/config/locales/frontend/dynamic_elements.ru.yml
|
ru:
frontend:
dynamic_elements:
check_height:
expand: развернуть
shiki_editable:
your_request_will_be_considered: >-
Твой запрос будет рассмотрен. Домо аригато.
topic:
load_comments: Загрузить ещё %{comment_count} %{of_total_comments} %{comment_word}
type_label: Топик
of: из
comment:
one: комментарий
few: комментария
many: комментариев
new_message_added:
one: Добавлено %{count} новое сообщение
few: Добавлено %{count} новых сообщения
many: Добавлено %{count} новых сообщений
new_comment_added:
one: Добавлен %{count} новый комментарий
few: Добавлено %{count} новых комментария
many: Добавлено %{count} новых комментариев
comment:
type_label: Комментарий
marked_as_offtopic: Комментарий помечен оффтопиком
multiple_marked_as_offtopic: Комментарии помечены оффтопиком
marked_as_summary: Комментарий помечен отзывом
not_marked_as_offtopic: Метка оффтопика снята
not_marked_as_summary: Метка отзыва снята
dialog:
type_label: Диалог
message:
type_label: Сообщение
review:
type_label: Отзыв
authorized_action:
register_to_complete_action: >-
Для этого действия тебе необходима
<a href="/users/sign_up">регистрация</a> на сайте.
day_registered_action:
action_will_be_available: >-
Действие станет доступно через сутки после
<a href="/users/sign_up">регистрации</a>.
week_registered_action:
action_will_be_available: >-
Действие станет доступно через неделю после
<a href="/users/sign_up">регистрации</a>.
not_implemented_yet_action: Это действие временно недоступно
| 1,864 |
YAML
| 29.57377 | 90 | 0.621781 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.