file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/label_equivalence_relation.h
#ifndef MERGE_AND_SHRINK_LABEL_EQUIVALENCE_RELATION_H #define MERGE_AND_SHRINK_LABEL_EQUIVALENCE_RELATION_H #include "types.h" #include <list> #include <unordered_set> #include <vector> namespace merge_and_shrink { class Labels; using LabelIter = std::list<int>::iterator; using LabelConstIter = std::list<int>::const_iterator; class LabelGroup { /* A label group contains a set of locally equivalent labels, possibly of different cost, and stores the minimum cost of all labels of the group. */ std::list<int> labels; int cost; public: LabelGroup() : cost(INF) { } void set_cost(int cost_) { cost = cost_; } LabelIter insert(int label) { return labels.insert(labels.end(), label); } void erase(LabelIter pos) { labels.erase(pos); } void clear() { labels.clear(); } LabelConstIter begin() const { return labels.begin(); } LabelConstIter end() const { return labels.end(); } bool empty() const { return labels.empty(); } int get_cost() const { return cost; } }; class LabelEquivalenceRelation { /* This class groups labels together and allows easy access to the group and position within a group for every label. It is used by the class TransitionSystem to group locally equivalent labels. Label groups have implicit IDs defined by their index in grouped_labels. */ const Labels &labels; std::vector<LabelGroup> grouped_labels; /* Maps each label to its group's ID (index in grouped_labels) and its iterator within the group. */ std::vector<std::pair<int, LabelIter>> label_to_positions; void add_label_to_group(int group_id, int label_no); public: LabelEquivalenceRelation( const Labels &labels, const std::vector<std::vector<int>> &label_groups); /* NOTE: we need a custom copy constructor here because we need to fill label_to_positions with correct LabelIter objects that point to the copied LabelGroup objects rather than to those of the given LabelEquivalenceRelation other. */ LabelEquivalenceRelation(const LabelEquivalenceRelation &other); /* The given label mappings (from label reduction) contain the new label and the old labels that were reduced to the new one. If affected_group_ids is not given, then all old labels must have been in the same group before, and the new labels are added to this group. Otherwise, all old labels are removed from their group(s) and the new label is added to a new group. Furthermore, the costs of the affected groups are recomputed. */ void apply_label_mapping( const std::vector<std::pair<int, std::vector<int>>> &label_mapping, const std::unordered_set<int> *affected_group_ids = nullptr); // Moves all labels from one group into the other. void move_group_into_group(int from_group_id, int to_group_id); int add_label_group(const std::vector<int> &new_labels); bool is_empty_group(int group_id) const { return grouped_labels[group_id].empty(); } int get_group_id(int label_no) const { return label_to_positions[label_no].first; } int get_size() const { return grouped_labels.size(); } const LabelGroup &get_group(int group_id) const { return grouped_labels.at(group_id); } }; } #endif
3,474
C
27.252032
81
0.661773
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/merge_strategy_factory_stateless.h
#ifndef MERGE_AND_SHRINK_MERGE_STRATEGY_FACTORY_STATELESS_H #define MERGE_AND_SHRINK_MERGE_STRATEGY_FACTORY_STATELESS_H #include "merge_strategy_factory.h" namespace options { class Options; } namespace merge_and_shrink { class MergeSelector; class MergeStrategyFactoryStateless : public MergeStrategyFactory { std::shared_ptr<MergeSelector> merge_selector; protected: virtual std::string name() const override; virtual void dump_strategy_specific_options() const override; public: explicit MergeStrategyFactoryStateless(options::Options &options); virtual ~MergeStrategyFactoryStateless() override = default; virtual std::unique_ptr<MergeStrategy> compute_merge_strategy( const TaskProxy &task_proxy, const FactoredTransitionSystem &fts) override; virtual bool requires_init_distances() const override; virtual bool requires_goal_distances() const override; }; } #endif
923
C
30.862068
70
0.772481
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/merge_scoring_function_miasm.h
#ifndef MERGE_AND_SHRINK_MERGE_SCORING_FUNCTION_MIASM_H #define MERGE_AND_SHRINK_MERGE_SCORING_FUNCTION_MIASM_H #include "merge_scoring_function.h" #include <memory> namespace options { class Options; } namespace merge_and_shrink { class ShrinkStrategy; class MergeScoringFunctionMIASM : public MergeScoringFunction { std::shared_ptr<ShrinkStrategy> shrink_strategy; const int max_states; const int max_states_before_merge; const int shrink_threshold_before_merge; protected: virtual std::string name() const override; public: explicit MergeScoringFunctionMIASM(const options::Options &options); virtual ~MergeScoringFunctionMIASM() override = default; virtual std::vector<double> compute_scores( const FactoredTransitionSystem &fts, const std::vector<std::pair<int, int>> &merge_candidates) override; virtual bool requires_init_distances() const override { return true; } virtual bool requires_goal_distances() const override { return true; } }; } #endif
1,043
C
25.76923
75
0.732502
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/label_equivalence_relation.cc
#include "label_equivalence_relation.h" #include "labels.h" #include <cassert> using namespace std; namespace merge_and_shrink { LabelEquivalenceRelation::LabelEquivalenceRelation( const Labels &labels, const vector<vector<int>> &label_groups) : labels(labels) { /* In the worst case, each label forms a singleton group, and thus with label reduction, we could have labels.get_max_size() many groups. */ grouped_labels.reserve(labels.get_max_size()); label_to_positions.resize(labels.get_max_size()); for (const vector<int> &label_group : label_groups) { add_label_group(label_group); } } LabelEquivalenceRelation::LabelEquivalenceRelation( const LabelEquivalenceRelation &other) : labels(other.labels) { // For the reserve call, see the comment in the constructor above. grouped_labels.reserve(labels.get_max_size()); /* Note that we do not copy label_to_positions because copying iterators from potentially uninitialized iterators causes problems in debug mode. This also means that label_to_positions contains uninitialized values at all positions corresponding to already reduced labels (inactive labels). */ label_to_positions.resize(other.label_to_positions.size()); for (size_t other_group_id = 0; other_group_id < other.grouped_labels.size(); ++other_group_id) { // Add a new empty label group. int group_id = grouped_labels.size(); assert(group_id == static_cast<int>(other_group_id)); grouped_labels.push_back(LabelGroup()); LabelGroup &label_group = grouped_labels.back(); /* Go over the other label group, add all labels to this group. To obtain exact copies of the label groups with the same cost, we do not use add_label_to_group, which would recompute costs based on given labels and leave cost=infinity for empty groups, but we manually set the group's cost to match the other group's cost. */ const LabelGroup &other_label_group = other.grouped_labels[other_group_id]; for (int other_label_no : other_label_group) { LabelIter label_it = label_group.insert(other_label_no); assert(*label_it == other_label_no); label_to_positions[other_label_no] = make_pair(group_id, label_it); } label_group.set_cost(other_label_group.get_cost()); } } void LabelEquivalenceRelation::add_label_to_group(int group_id, int label_no) { LabelIter label_it = grouped_labels[group_id].insert(label_no); label_to_positions[label_no] = make_pair(group_id, label_it); int label_cost = labels.get_label_cost(label_no); if (label_cost < grouped_labels[group_id].get_cost()) grouped_labels[group_id].set_cost(label_cost); } void LabelEquivalenceRelation::apply_label_mapping( const vector<pair<int, vector<int>>> &label_mapping, const unordered_set<int> *affected_group_ids) { for (const pair<int, vector<int>> &mapping : label_mapping) { int new_label_no = mapping.first; const vector<int> &old_label_nos = mapping.second; // Add new label to group int canonical_group_id = get_group_id(old_label_nos.front()); if (!affected_group_ids) { add_label_to_group(canonical_group_id, new_label_no); } else { add_label_group({new_label_no}); } // Remove old labels from group for (int old_label_no : old_label_nos) { if (!affected_group_ids) { assert(canonical_group_id == get_group_id(old_label_no)); } LabelIter label_it = label_to_positions[old_label_no].second; grouped_labels[get_group_id(old_label_no)].erase(label_it); } } if (affected_group_ids) { // Recompute the cost of all affected label groups. const unordered_set<int> &group_ids = *affected_group_ids; for (int group_id : group_ids) { LabelGroup &label_group = grouped_labels[group_id]; // Setting cost to infinity for empty groups does not hurt. label_group.set_cost(INF); for (int label_no : label_group) { int cost = labels.get_label_cost(label_no); if (cost < label_group.get_cost()) { label_group.set_cost(cost); } } } } } void LabelEquivalenceRelation::move_group_into_group( int from_group_id, int to_group_id) { assert(!is_empty_group(from_group_id)); assert(!is_empty_group(to_group_id)); LabelGroup &from_group = grouped_labels[from_group_id]; for (int label_no : from_group) { add_label_to_group(to_group_id, label_no); } from_group.clear(); } int LabelEquivalenceRelation::add_label_group(const vector<int> &new_labels) { int new_group_id = grouped_labels.size(); grouped_labels.push_back(LabelGroup()); for (int label_no : new_labels) { add_label_to_group(new_group_id, label_no); } return new_group_id; } }
5,185
C++
37.414815
79
0.627965
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/utils.cc
#include "utils.h" #include "distances.h" #include "factored_transition_system.h" #include "shrink_strategy.h" #include "transition_system.h" #include "../utils/logging.h" #include "../utils/math.h" #include <algorithm> #include <cassert> #include <cmath> using namespace std; namespace merge_and_shrink { pair<int, int> compute_shrink_sizes( int size1, int size2, int max_states_before_merge, int max_states_after_merge) { // Bound both sizes by max allowed size before merge. int new_size1 = min(size1, max_states_before_merge); int new_size2 = min(size2, max_states_before_merge); if (!utils::is_product_within_limit( new_size1, new_size2, max_states_after_merge)) { int balanced_size = int(sqrt(max_states_after_merge)); if (new_size1 <= balanced_size) { // Size of the first transition system is small enough. Use whatever // is left for the second transition system. new_size2 = max_states_after_merge / new_size1; } else if (new_size2 <= balanced_size) { // Inverted case as before. new_size1 = max_states_after_merge / new_size2; } else { // Both transition systems are too big. We set both target sizes // to balanced_size. An alternative would be to set one to // N1 = balanced_size and the other to N2 = max_states_after_merge / // balanced_size, to get closer to the allowed maximum. // However, this would make little difference (N2 would // always be N1, N1 + 1 or N1 + 2), and our solution has the // advantage of treating the transition systems symmetrically. new_size1 = balanced_size; new_size2 = balanced_size; } } assert(new_size1 <= size1 && new_size2 <= size2); assert(new_size1 <= max_states_before_merge); assert(new_size2 <= max_states_before_merge); assert(new_size1 * new_size2 <= max_states_after_merge); return make_pair(new_size1, new_size2); } /* This method checks if the transition system of the factor at index violates the size limit given via new_size (e.g. as computed by compute_shrink_sizes) or the threshold shrink_threshold_before_merge that triggers shrinking even if the size limit is not violated. If so, trigger the shrinking process. Return true iff the factor was actually shrunk. */ bool shrink_factor( FactoredTransitionSystem &fts, int index, int new_size, int shrink_threshold_before_merge, const ShrinkStrategy &shrink_strategy, utils::Verbosity verbosity) { /* TODO: think about factoring out common logic of this function and the function copy_and_shrink_ts in merge_scoring_function_miasm_utils.cc. */ const TransitionSystem &ts = fts.get_transition_system(index); int num_states = ts.get_size(); if (num_states > min(new_size, shrink_threshold_before_merge)) { if (verbosity >= utils::Verbosity::VERBOSE) { utils::g_log << ts.tag() << "current size: " << num_states; if (new_size < num_states) utils::g_log << " (new size limit: " << new_size; else utils::g_log << " (shrink threshold: " << shrink_threshold_before_merge; utils::g_log << ")" << endl; } const Distances &distances = fts.get_distances(index); StateEquivalenceRelation equivalence_relation = shrink_strategy.compute_equivalence_relation(ts, distances, new_size); // TODO: We currently violate this; see issue250 //assert(equivalence_relation.size() <= target_size); return fts.apply_abstraction(index, equivalence_relation, verbosity); } return false; } bool shrink_before_merge_step( FactoredTransitionSystem &fts, int index1, int index2, int max_states, int max_states_before_merge, int shrink_threshold_before_merge, const ShrinkStrategy &shrink_strategy, utils::Verbosity verbosity) { /* Compute the size limit for both transition systems as imposed by max_states and max_states_before_merge. */ pair<int, int> new_sizes = compute_shrink_sizes( fts.get_transition_system(index1).get_size(), fts.get_transition_system(index2).get_size(), max_states_before_merge, max_states); /* For both transition systems, possibly compute and apply an abstraction. TODO: we could better use the given limit by increasing the size limit for the second shrinking if the first shrinking was larger than required. */ bool shrunk1 = shrink_factor( fts, index1, new_sizes.first, shrink_threshold_before_merge, shrink_strategy, verbosity); if (verbosity >= utils::Verbosity::VERBOSE && shrunk1) { fts.statistics(index1); } bool shrunk2 = shrink_factor( fts, index2, new_sizes.second, shrink_threshold_before_merge, shrink_strategy, verbosity); if (verbosity >= utils::Verbosity::VERBOSE && shrunk2) { fts.statistics(index2); } return shrunk1 || shrunk2; } bool prune_step( FactoredTransitionSystem &fts, int index, bool prune_unreachable_states, bool prune_irrelevant_states, utils::Verbosity verbosity) { assert(prune_unreachable_states || prune_irrelevant_states); const TransitionSystem &ts = fts.get_transition_system(index); const Distances &distances = fts.get_distances(index); int num_states = ts.get_size(); StateEquivalenceRelation state_equivalence_relation; state_equivalence_relation.reserve(num_states); int unreachable_count = 0; int irrelevant_count = 0; int dead_count = 0; for (int state = 0; state < num_states; ++state) { /* If pruning both unreachable and irrelevant states, a state which is dead is counted for both statistics! */ bool prune_state = false; if (prune_unreachable_states) { assert(distances.are_init_distances_computed()); if (distances.get_init_distance(state) == INF) { ++unreachable_count; prune_state = true; } } if (prune_irrelevant_states) { assert(distances.are_goal_distances_computed()); if (distances.get_goal_distance(state) == INF) { ++irrelevant_count; prune_state = true; } } if (prune_state) { ++dead_count; } else { StateEquivalenceClass state_equivalence_class; state_equivalence_class.push_front(state); state_equivalence_relation.push_back(state_equivalence_class); } } if (verbosity >= utils::Verbosity::VERBOSE && (unreachable_count || irrelevant_count)) { utils::g_log << ts.tag() << "unreachable: " << unreachable_count << " states, " << "irrelevant: " << irrelevant_count << " states (" << "total dead: " << dead_count << " states)" << endl; } return fts.apply_abstraction(index, state_equivalence_relation, verbosity); } vector<int> compute_abstraction_mapping( int num_states, const StateEquivalenceRelation &equivalence_relation) { vector<int> abstraction_mapping(num_states, PRUNED_STATE); for (size_t class_no = 0; class_no < equivalence_relation.size(); ++class_no) { const StateEquivalenceClass &state_equivalence_class = equivalence_relation[class_no]; for (int state : state_equivalence_class) { assert(abstraction_mapping[state] == PRUNED_STATE); abstraction_mapping[state] = class_no; } } return abstraction_mapping; } bool is_goal_relevant(const TransitionSystem &ts) { int num_states = ts.get_size(); for (int state = 0; state < num_states; ++state) { if (!ts.is_goal_state(state)) { return true; } } return false; } }
8,123
C++
35.594594
88
0.623661
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/utils.h
#ifndef MERGE_AND_SHRINK_UTILS_H #define MERGE_AND_SHRINK_UTILS_H #include "types.h" #include <memory> #include <vector> namespace utils { enum class Verbosity; } namespace merge_and_shrink { class FactoredTransitionSystem; class ShrinkStrategy; class TransitionSystem; /* Compute target sizes for shrinking two transition systems with sizes size1 and size2 before they are merged. Use the following rules: 1) Right before merging, the transition systems may have at most max_states_before_merge states. 2) Right after merging, the product may have most max_states_after_merge states. 3) Transition systems are shrunk as little as necessary to satisfy the above constraints. (If possible, neither is shrunk at all.) There is often a Pareto frontier of solutions following these rules. In this case, balanced solutions (where the target sizes are close to each other) are preferred over less balanced ones. */ extern std::pair<int, int> compute_shrink_sizes( int size1, int size2, int max_states_before_merge, int max_states_after_merge); /* This function first determines if any of the two factors at indices index1 and index2 must be shrunk according to the given size limits max_states and max_states_before_merge, using the function compute_shrink_sizes (see above). If not, then the function further checks if any of the two factors has a size larger than shrink_treshold_before_merge, in which case shrinking is still triggered. If shrinking is triggered, apply the abstraction to the two factors within the factored transition system. Return true iff at least one of the factors was shrunk. */ extern bool shrink_before_merge_step( FactoredTransitionSystem &fts, int index1, int index2, int max_states, int max_states_before_merge, int shrink_threshold_before_merge, const ShrinkStrategy &shrink_strategy, utils::Verbosity verbosity); /* Prune unreachable and/or irrelevant states of the factor at index. This requires that init and/or goal distances have been computed accordingly. Return true iff any states have been pruned. TODO: maybe this functionality belongs to a new class PruneStrategy. */ extern bool prune_step( FactoredTransitionSystem &fts, int index, bool prune_unreachable_states, bool prune_irrelevant_states, utils::Verbosity verbosity); /* Compute the abstraction mapping based on the given state equivalence relation. */ extern std::vector<int> compute_abstraction_mapping( int num_states, const StateEquivalenceRelation &equivalence_relation); extern bool is_goal_relevant(const TransitionSystem &ts); } #endif
2,687
C
30.623529
79
0.756978
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/types.cc
#include "types.h" #include <limits> using namespace std; namespace merge_and_shrink { const int INF = numeric_limits<int>::max(); const int MINUSINF = numeric_limits<int>::min(); const int PRUNED_STATE = -1; }
214
C++
16.916665
48
0.705607
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/merge_scoring_function_single_random.h
#ifndef MERGE_AND_SHRINK_MERGE_SCORING_FUNCTION_SINGLE_RANDOM_H #define MERGE_AND_SHRINK_MERGE_SCORING_FUNCTION_SINGLE_RANDOM_H #include "merge_scoring_function.h" #include <memory> namespace options { class Options; } namespace utils { class RandomNumberGenerator; } namespace merge_and_shrink { class TransitionSystem; class MergeScoringFunctionSingleRandom : public MergeScoringFunction { int random_seed; // only for dump options std::shared_ptr<utils::RandomNumberGenerator> rng; protected: virtual std::string name() const override; virtual void dump_function_specific_options() const override; public: explicit MergeScoringFunctionSingleRandom(const options::Options &options); virtual ~MergeScoringFunctionSingleRandom() override = default; virtual std::vector<double> compute_scores( const FactoredTransitionSystem &fts, const std::vector<std::pair<int, int>> &merge_candidates) override; virtual bool requires_init_distances() const override { return false; } virtual bool requires_goal_distances() const override { return false; } }; } #endif
1,138
C
26.119047
79
0.744288
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/merge_scoring_function_miasm.cc
#include "merge_scoring_function_miasm.h" #include "distances.h" #include "factored_transition_system.h" #include "merge_and_shrink_algorithm.h" #include "shrink_strategy.h" #include "transition_system.h" #include "merge_scoring_function_miasm_utils.h" #include "../options/option_parser.h" #include "../options/options.h" #include "../options/plugin.h" #include "../utils/logging.h" #include "../utils/markup.h" using namespace std; namespace merge_and_shrink { MergeScoringFunctionMIASM::MergeScoringFunctionMIASM( const options::Options &options) : shrink_strategy(options.get<shared_ptr<ShrinkStrategy>>("shrink_strategy")), max_states(options.get<int>("max_states")), max_states_before_merge(options.get<int>("max_states_before_merge")), shrink_threshold_before_merge(options.get<int>("threshold_before_merge")) { } vector<double> MergeScoringFunctionMIASM::compute_scores( const FactoredTransitionSystem &fts, const vector<pair<int, int>> &merge_candidates) { vector<double> scores; scores.reserve(merge_candidates.size()); for (pair<int, int> merge_candidate : merge_candidates) { int index1 = merge_candidate.first; int index2 = merge_candidate.second; unique_ptr<TransitionSystem> product = shrink_before_merge_externally( fts, index1, index2, *shrink_strategy, max_states, max_states_before_merge, shrink_threshold_before_merge); // Compute distances for the product and count the alive states. unique_ptr<Distances> distances = utils::make_unique_ptr<Distances>(*product); const bool compute_init_distances = true; const bool compute_goal_distances = true; const utils::Verbosity verbosity = utils::Verbosity::SILENT; distances->compute_distances(compute_init_distances, compute_goal_distances, verbosity); int num_states = product->get_size(); int alive_states_count = 0; for (int state = 0; state < num_states; ++state) { if (distances->get_init_distance(state) != INF && distances->get_goal_distance(state) != INF) { ++alive_states_count; } } /* Compute the score as the ratio of alive states of the product compared to the number of states of the full product. */ assert(num_states); double score = static_cast<double>(alive_states_count) / static_cast<double>(num_states); scores.push_back(score); } return scores; } string MergeScoringFunctionMIASM::name() const { return "miasm"; } static shared_ptr<MergeScoringFunction>_parse(options::OptionParser &parser) { parser.document_synopsis( "MIASM", "This scoring function favors merging transition systems such that in " "their product, there are many dead states, which can then be pruned " "without sacrificing information. In particular, the score it assigns " "to a product is the ratio of alive states to the total number of " "states. To compute this score, this class thus computes the product " "of all pairs of transition systems, potentially copying and shrinking " "the transition systems before if otherwise their product would exceed " "the specified size limits. A stateless merge strategy using this " "scoring function is called dyn-MIASM (nowadays also called sbMIASM " "for score-based MIASM) and is described in the following paper:" + utils::format_conference_reference( {"Silvan Sievers", "Martin Wehrle", "Malte Helmert"}, "An Analysis of Merge Strategies for Merge-and-Shrink Heuristics", "https://ai.dmi.unibas.ch/papers/sievers-et-al-icaps2016.pdf", "Proceedings of the 26th International Conference on Planning and " "Scheduling (ICAPS 2016)", "2358-2366", "AAAI Press", "2016")); parser.document_note( "Note", "To obtain the configurations called dyn-MIASM described in the paper, " "use the following configuration of the merge-and-shrink heuristic " "and adapt the tie-breaking criteria of {{{total_order}}} as desired:\n " "{{{\nmerge_and_shrink(merge_strategy=merge_stateless(merge_selector=" "score_based_filtering(scoring_functions=[sf_miasm(shrink_strategy=" "shrink_bisimulation(greedy=false),max_states=50000," "threshold_before_merge=1),total_order(atomic_ts_order=reverse_level," "product_ts_order=new_to_old,atomic_before_product=true)]))," "shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=" "exact(before_shrinking=true,before_merging=false),max_states=50000," "threshold_before_merge=1)\n}}}"); parser.document_note( "Note", "Unless you know what you are doing, we recommend using the same " "options related to shrinking for {{{sf_miasm}}} as for {{{" "merge_and_shrink}}}, i.e. the options {{{shrink_strategy}}}, {{{" "max_states}}}, and {{{threshold_before_merge}}} should be set " "identically. Furthermore, as this scoring function maximizes the " "amount of possible pruning, merge-and-shrink should be configured to " "use full pruning, i.e. {{{prune_unreachable_states=true}}} and {{{" "prune_irrelevant_states=true}}} (the default)."); // TODO: use shrink strategy and limit options from MergeAndShrinkHeuristic // instead of having the identical options here again. parser.add_option<shared_ptr<ShrinkStrategy>>( "shrink_strategy", "We recommend setting this to match the shrink strategy configuration " "given to {{{merge_and_shrink}}}, see note below."); add_transition_system_size_limit_options_to_parser(parser); options::Options options = parser.parse(); if (parser.help_mode()) { return nullptr; } handle_shrink_limit_options_defaults(options); if (parser.dry_run()) { return nullptr; } else { return make_shared<MergeScoringFunctionMIASM>(options); } } static options::Plugin<MergeScoringFunction> _plugin("sf_miasm", _parse); }
6,323
C++
42.315068
96
0.659023
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/factored_transition_system.cc
#include "factored_transition_system.h" #include "distances.h" #include "labels.h" #include "merge_and_shrink_representation.h" #include "transition_system.h" #include "utils.h" #include "../utils/collections.h" #include "../utils/logging.h" #include "../utils/memory.h" #include "../utils/system.h" #include <cassert> using namespace std; namespace merge_and_shrink { FTSConstIterator::FTSConstIterator( const FactoredTransitionSystem &fts, bool end) : fts(fts), current_index((end ? fts.get_size() : 0)) { next_valid_index(); } void FTSConstIterator::next_valid_index() { while (current_index < fts.get_size() && !fts.is_active(current_index)) { ++current_index; } } void FTSConstIterator::operator++() { ++current_index; next_valid_index(); } FactoredTransitionSystem::FactoredTransitionSystem( unique_ptr<Labels> labels, vector<unique_ptr<TransitionSystem>> &&transition_systems, vector<unique_ptr<MergeAndShrinkRepresentation>> &&mas_representations, vector<unique_ptr<Distances>> &&distances, const bool compute_init_distances, const bool compute_goal_distances, utils::Verbosity verbosity) : labels(move(labels)), transition_systems(move(transition_systems)), mas_representations(move(mas_representations)), distances(move(distances)), compute_init_distances(compute_init_distances), compute_goal_distances(compute_goal_distances), num_active_entries(this->transition_systems.size()) { for (size_t index = 0; index < this->transition_systems.size(); ++index) { if (compute_init_distances || compute_goal_distances) { this->distances[index]->compute_distances( compute_init_distances, compute_goal_distances, verbosity); } assert(is_component_valid(index)); } } FactoredTransitionSystem::FactoredTransitionSystem(FactoredTransitionSystem &&other) : labels(move(other.labels)), transition_systems(move(other.transition_systems)), mas_representations(move(other.mas_representations)), distances(move(other.distances)), compute_init_distances(move(other.compute_init_distances)), compute_goal_distances(move(other.compute_goal_distances)), num_active_entries(move(other.num_active_entries)) { /* This is just a default move constructor. Unfortunately Visual Studio does not support "= default" for move construction or move assignment as of this writing. */ } FactoredTransitionSystem::~FactoredTransitionSystem() { } void FactoredTransitionSystem::assert_index_valid(int index) const { assert(utils::in_bounds(index, transition_systems)); assert(utils::in_bounds(index, mas_representations)); assert(utils::in_bounds(index, distances)); if (!(transition_systems[index] && mas_representations[index] && distances[index]) && !(!transition_systems[index] && !mas_representations[index] && !distances[index])) { cerr << "Factor at index is in an inconsistent state!" << endl; utils::exit_with(utils::ExitCode::SEARCH_CRITICAL_ERROR); } } bool FactoredTransitionSystem::is_component_valid(int index) const { assert(is_active(index)); if (compute_init_distances && !distances[index]->are_init_distances_computed()) { return false; } if (compute_goal_distances && !distances[index]->are_goal_distances_computed()) { return false; } return transition_systems[index]->are_transitions_sorted_unique() && transition_systems[index]->in_sync_with_label_equivalence_relation(); } void FactoredTransitionSystem::assert_all_components_valid() const { for (size_t index = 0; index < transition_systems.size(); ++index) { if (transition_systems[index]) { assert(is_component_valid(index)); } } } void FactoredTransitionSystem::apply_label_mapping( const vector<pair<int, vector<int>>> &label_mapping, int combinable_index) { assert_all_components_valid(); for (const auto &new_label_old_labels : label_mapping) { assert(new_label_old_labels.first == labels->get_size()); labels->reduce_labels(new_label_old_labels.second); } for (size_t i = 0; i < transition_systems.size(); ++i) { if (transition_systems[i]) { transition_systems[i]->apply_label_reduction( label_mapping, static_cast<int>(i) != combinable_index); } } assert_all_components_valid(); } bool FactoredTransitionSystem::apply_abstraction( int index, const StateEquivalenceRelation &state_equivalence_relation, utils::Verbosity verbosity) { assert(is_component_valid(index)); int new_num_states = state_equivalence_relation.size(); if (new_num_states == transition_systems[index]->get_size()) { return false; } vector<int> abstraction_mapping = compute_abstraction_mapping( transition_systems[index]->get_size(), state_equivalence_relation); transition_systems[index]->apply_abstraction( state_equivalence_relation, abstraction_mapping, verbosity); if (compute_init_distances || compute_goal_distances) { distances[index]->apply_abstraction( state_equivalence_relation, compute_init_distances, compute_goal_distances, verbosity); } mas_representations[index]->apply_abstraction_to_lookup_table( abstraction_mapping); /* If distances need to be recomputed, this already happened in the Distances object. */ assert(is_component_valid(index)); return true; } int FactoredTransitionSystem::merge( int index1, int index2, utils::Verbosity verbosity) { assert(is_component_valid(index1)); assert(is_component_valid(index2)); transition_systems.push_back( TransitionSystem::merge( *labels, *transition_systems[index1], *transition_systems[index2], verbosity)); distances[index1] = nullptr; distances[index2] = nullptr; transition_systems[index1] = nullptr; transition_systems[index2] = nullptr; mas_representations.push_back( utils::make_unique_ptr<MergeAndShrinkRepresentationMerge>( move(mas_representations[index1]), move(mas_representations[index2]))); mas_representations[index1] = nullptr; mas_representations[index2] = nullptr; const TransitionSystem &new_ts = *transition_systems.back(); distances.push_back(utils::make_unique_ptr<Distances>(new_ts)); int new_index = transition_systems.size() - 1; // Restore the invariant that distances are computed. if (compute_init_distances || compute_goal_distances) { distances[new_index]->compute_distances( compute_init_distances, compute_goal_distances, verbosity); } --num_active_entries; assert(is_component_valid(new_index)); return new_index; } pair<unique_ptr<MergeAndShrinkRepresentation>, unique_ptr<Distances>> FactoredTransitionSystem::extract_factor(int index) { assert(is_component_valid(index)); return make_pair(move(mas_representations[index]), move(distances[index])); } void FactoredTransitionSystem::statistics(int index) const { assert(is_component_valid(index)); const TransitionSystem &ts = *transition_systems[index]; ts.statistics(); const Distances &dist = *distances[index]; dist.statistics(); } void FactoredTransitionSystem::dump(int index) const { assert_index_valid(index); transition_systems[index]->dump_labels_and_transitions(); mas_representations[index]->dump(); } void FactoredTransitionSystem::dump() const { for (int index : *this) { dump(index); } } bool FactoredTransitionSystem::is_factor_solvable(int index) const { assert(is_component_valid(index)); return transition_systems[index]->is_solvable(*distances[index]); } bool FactoredTransitionSystem::is_factor_trivial(int index) const { assert(is_component_valid(index)); if (!mas_representations[index]->is_total()) { return false; } const TransitionSystem &ts = *transition_systems[index]; for (int state = 0; state < ts.get_size(); ++state) { if (!ts.is_goal_state(state)) { return false; } } return true; } bool FactoredTransitionSystem::is_active(int index) const { assert_index_valid(index); return transition_systems[index] != nullptr; } }
8,533
C++
33.550607
92
0.677019
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/merge_scoring_function_miasm_utils.h
#ifndef MERGE_AND_SHRINK_MERGE_SCORING_FUNCTION_MIASM_UTILS_H #define MERGE_AND_SHRINK_MERGE_SCORING_FUNCTION_MIASM_UTILS_H #include <memory> namespace merge_and_shrink { class FactoredTransitionSystem; class ShrinkStrategy; class TransitionSystem; /* Copy the two transition systems at the given indices, possibly shrink them according to the same rules as merge-and-shrink does, and return their product. */ extern std::unique_ptr<TransitionSystem> shrink_before_merge_externally( const FactoredTransitionSystem &fts, int index1, int index2, const ShrinkStrategy &shrink_strategy, int max_states, int max_states_before_merge, int shrink_threshold_before_merge); } #endif
711
C
25.370369
76
0.767932
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/merge_scoring_function_goal_relevance.h
#ifndef MERGE_AND_SHRINK_MERGE_SCORING_FUNCTION_GOAL_RELEVANCE_H #define MERGE_AND_SHRINK_MERGE_SCORING_FUNCTION_GOAL_RELEVANCE_H #include "merge_scoring_function.h" namespace merge_and_shrink { class MergeScoringFunctionGoalRelevance : public MergeScoringFunction { protected: virtual std::string name() const override; public: MergeScoringFunctionGoalRelevance() = default; virtual ~MergeScoringFunctionGoalRelevance() override = default; virtual std::vector<double> compute_scores( const FactoredTransitionSystem &fts, const std::vector<std::pair<int, int>> &merge_candidates) override; virtual bool requires_init_distances() const override { return false; } virtual bool requires_goal_distances() const override { return false; } }; } #endif
815
C
28.142856
75
0.736196
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/merge_scoring_function_total_order.h
#ifndef MERGE_AND_SHRINK_MERGE_SCORING_FUNCTION_TOTAL_ORDER_H #define MERGE_AND_SHRINK_MERGE_SCORING_FUNCTION_TOTAL_ORDER_H #include "merge_scoring_function.h" #include <memory> namespace options { class OptionParser; class Options; } namespace utils { class RandomNumberGenerator; } namespace merge_and_shrink { class MergeScoringFunctionTotalOrder : public MergeScoringFunction { enum class AtomicTSOrder { REVERSE_LEVEL, LEVEL, RANDOM }; AtomicTSOrder atomic_ts_order; enum class ProductTSOrder { OLD_TO_NEW, NEW_TO_OLD, RANDOM }; ProductTSOrder product_ts_order; bool atomic_before_product; int random_seed; // only for dump options std::shared_ptr<utils::RandomNumberGenerator> rng; std::vector<std::pair<int, int>> merge_candidate_order; protected: virtual std::string name() const override; virtual void dump_function_specific_options() const override; public: explicit MergeScoringFunctionTotalOrder(const options::Options &options); virtual ~MergeScoringFunctionTotalOrder() override = default; virtual std::vector<double> compute_scores( const FactoredTransitionSystem &fts, const std::vector<std::pair<int, int>> &merge_candidates) override; virtual void initialize(const TaskProxy &task_proxy) override; static void add_options_to_parser(options::OptionParser &parser); virtual bool requires_init_distances() const override { return false; } virtual bool requires_goal_distances() const override { return false; } }; } #endif
1,610
C
26.775862
77
0.711801
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/merge_and_shrink_algorithm.h
#ifndef MERGE_AND_SHRINK_MERGE_AND_SHRINK_ALGORITHM_H #define MERGE_AND_SHRINK_MERGE_AND_SHRINK_ALGORITHM_H #include <memory> class TaskProxy; namespace options { class OptionParser; class Options; } namespace utils { class CountdownTimer; enum class Verbosity; } namespace merge_and_shrink { class FactoredTransitionSystem; class LabelReduction; class MergeStrategyFactory; class ShrinkStrategy; class MergeAndShrinkAlgorithm { // TODO: when the option parser supports it, the following should become // unique pointers. std::shared_ptr<MergeStrategyFactory> merge_strategy_factory; std::shared_ptr<ShrinkStrategy> shrink_strategy; std::shared_ptr<LabelReduction> label_reduction; // Options for shrinking // Hard limit: the maximum size of a transition system at any point. const int max_states; // Hard limit: the maximum size of a transition system before being merged. const int max_states_before_merge; /* A soft limit for triggering shrinking even if the hard limits max_states and max_states_before_merge are not violated. */ const int shrink_threshold_before_merge; // Options for pruning const bool prune_unreachable_states; const bool prune_irrelevant_states; const utils::Verbosity verbosity; const double main_loop_max_time; long starting_peak_memory; void report_peak_memory_delta(bool final = false) const; void dump_options() const; void warn_on_unusual_options() const; bool ran_out_of_time(const utils::CountdownTimer &timer) const; void statistics(int maximum_intermediate_size) const; void main_loop( FactoredTransitionSystem &fts, const TaskProxy &task_proxy); public: explicit MergeAndShrinkAlgorithm(const options::Options &opts); FactoredTransitionSystem build_factored_transition_system(const TaskProxy &task_proxy); }; extern void add_merge_and_shrink_algorithm_options_to_parser(options::OptionParser &parser); extern void add_transition_system_size_limit_options_to_parser(options::OptionParser &parser); extern void handle_shrink_limit_options_defaults(options::Options &opts); } #endif
2,156
C
30.720588
94
0.752319
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/fts_factory.h
#ifndef MERGE_AND_SHRINK_FTS_FACTORY_H #define MERGE_AND_SHRINK_FTS_FACTORY_H /* Factory for factored transition systems. Takes a planning task and produces a factored transition system that represents the planning task. This provides the main bridge from planning tasks to the concepts on which merge-and-shrink abstractions are based (transition systems, labels, etc.). The "internal" classes of merge-and-shrink should not need to know about planning task concepts. */ class TaskProxy; namespace utils { enum class Verbosity; } namespace merge_and_shrink { class FactoredTransitionSystem; extern FactoredTransitionSystem create_factored_transition_system( const TaskProxy &task_proxy, bool compute_init_distances, bool compute_goal_distances, utils::Verbosity verbosity); } #endif
819
C
25.451612
73
0.777778
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/merge_and_shrink_representation.h
#ifndef MERGE_AND_SHRINK_MERGE_AND_SHRINK_REPRESENTATION_H #define MERGE_AND_SHRINK_MERGE_AND_SHRINK_REPRESENTATION_H #include <memory> #include <vector> class State; namespace merge_and_shrink { class Distances; class MergeAndShrinkRepresentation { protected: int domain_size; public: explicit MergeAndShrinkRepresentation(int domain_size); virtual ~MergeAndShrinkRepresentation() = 0; int get_domain_size() const; // Store distances instead of abstract state numbers. virtual void set_distances(const Distances &) = 0; virtual void apply_abstraction_to_lookup_table( const std::vector<int> &abstraction_mapping) = 0; /* Return the value that state is mapped to. This is either an abstract state (if set_distances has not been called) or a distance (if it has). If the represented function is not total, the returned value is DEAD_END if the abstract state is PRUNED_STATE or if the (distance) value is INF. */ virtual int get_value(const State &state) const = 0; /* Return true iff the represented function is total, i.e., does not map to PRUNED_STATE. */ virtual bool is_total() const = 0; virtual void dump() const = 0; }; class MergeAndShrinkRepresentationLeaf : public MergeAndShrinkRepresentation { const int var_id; std::vector<int> lookup_table; public: MergeAndShrinkRepresentationLeaf(int var_id, int domain_size); virtual ~MergeAndShrinkRepresentationLeaf() = default; virtual void set_distances(const Distances &) override; virtual void apply_abstraction_to_lookup_table( const std::vector<int> &abstraction_mapping) override; virtual int get_value(const State &state) const override; virtual bool is_total() const override; virtual void dump() const override; }; class MergeAndShrinkRepresentationMerge : public MergeAndShrinkRepresentation { std::unique_ptr<MergeAndShrinkRepresentation> left_child; std::unique_ptr<MergeAndShrinkRepresentation> right_child; std::vector<std::vector<int>> lookup_table; public: MergeAndShrinkRepresentationMerge( std::unique_ptr<MergeAndShrinkRepresentation> left_child, std::unique_ptr<MergeAndShrinkRepresentation> right_child); virtual ~MergeAndShrinkRepresentationMerge() = default; virtual void set_distances(const Distances &distances) override; virtual void apply_abstraction_to_lookup_table( const std::vector<int> &abstraction_mapping) override; virtual int get_value(const State &state) const override; virtual bool is_total() const override; virtual void dump() const override; }; } #endif
2,662
C
34.039473
79
0.732156
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/shrink_strategy.h
#ifndef MERGE_AND_SHRINK_SHRINK_STRATEGY_H #define MERGE_AND_SHRINK_SHRINK_STRATEGY_H #include "types.h" #include <string> #include <vector> namespace merge_and_shrink { class Distances; class TransitionSystem; class ShrinkStrategy { protected: virtual std::string name() const = 0; virtual void dump_strategy_specific_options() const = 0; public: ShrinkStrategy() = default; virtual ~ShrinkStrategy() = default; /* Compute a state equivalence relation over the states of the given transition system such that its new number of states after abstracting it according to this equivalence relation is at most target_size (currently violated; see issue250). dist must be the distances information associated with the given transition system. Note that if target_size equals the current size of the transition system, the shrink strategy is not required to compute an equivalence relation that results in actually shrinking the size of the transition system. However, it may attempt to e.g. compute an equivalence relation that results in shrinking the transition system in an information-preserving way. */ virtual StateEquivalenceRelation compute_equivalence_relation( const TransitionSystem &ts, const Distances &distances, int target_size) const = 0; virtual bool requires_init_distances() const = 0; virtual bool requires_goal_distances() const = 0; void dump_options() const; std::string get_name() const; }; } #endif
1,561
C
31.541666
80
0.724536
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/merge_strategy_factory_sccs.cc
#include "merge_strategy_factory_sccs.h" #include "merge_strategy_sccs.h" #include "merge_selector.h" #include "merge_tree_factory.h" #include "transition_system.h" #include "../task_proxy.h" #include "../algorithms/sccs.h" #include "../options/option_parser.h" #include "../options/options.h" #include "../options/plugin.h" #include "../task_utils/causal_graph.h" #include "../utils/logging.h" #include "../utils/markup.h" #include "../utils/system.h" #include <algorithm> #include <cassert> #include <iostream> using namespace std; namespace merge_and_shrink { bool compare_sccs_increasing(const vector<int> &lhs, const vector<int> &rhs) { return lhs.size() < rhs.size(); } bool compare_sccs_decreasing(const vector<int> &lhs, const vector<int> &rhs) { return lhs.size() > rhs.size(); } MergeStrategyFactorySCCs::MergeStrategyFactorySCCs(const options::Options &options) : order_of_sccs(options.get<OrderOfSCCs>("order_of_sccs")), merge_tree_factory(nullptr), merge_selector(nullptr) { if (options.contains("merge_tree")) { merge_tree_factory = options.get<shared_ptr<MergeTreeFactory>>("merge_tree"); } if (options.contains("merge_selector")) { merge_selector = options.get<shared_ptr<MergeSelector>>("merge_selector"); } } unique_ptr<MergeStrategy> MergeStrategyFactorySCCs::compute_merge_strategy( const TaskProxy &task_proxy, const FactoredTransitionSystem &fts) { VariablesProxy vars = task_proxy.get_variables(); int num_vars = vars.size(); // Compute SCCs of the causal graph. vector<vector<int>> cg; cg.reserve(num_vars); for (VariableProxy var : vars) { const vector<int> &successors = task_proxy.get_causal_graph().get_successors(var.get_id()); cg.push_back(successors); } vector<vector<int>> sccs(sccs::compute_maximal_sccs(cg)); // Put the SCCs in the desired order. switch (order_of_sccs) { case OrderOfSCCs::TOPOLOGICAL: // SCCs are computed in topological order. break; case OrderOfSCCs::REVERSE_TOPOLOGICAL: // SCCs are computed in topological order. reverse(sccs.begin(), sccs.end()); break; case OrderOfSCCs::DECREASING: sort(sccs.begin(), sccs.end(), compare_sccs_decreasing); break; case OrderOfSCCs::INCREASING: sort(sccs.begin(), sccs.end(), compare_sccs_increasing); break; } /* Compute the indices at which the merged SCCs can be found when all SCCs have been merged. */ int index = num_vars - 1; utils::g_log << "SCCs of the causal graph:" << endl; vector<vector<int>> non_singleton_cg_sccs; vector<int> indices_of_merged_sccs; indices_of_merged_sccs.reserve(sccs.size()); for (const vector<int> &scc : sccs) { utils::g_log << scc << endl; int scc_size = scc.size(); if (scc_size == 1) { indices_of_merged_sccs.push_back(scc.front()); } else { index += scc_size - 1; indices_of_merged_sccs.push_back(index); non_singleton_cg_sccs.push_back(scc); } } if (sccs.size() == 1) { utils::g_log << "Only one single SCC" << endl; } if (static_cast<int>(sccs.size()) == num_vars) { utils::g_log << "Only singleton SCCs" << endl; assert(non_singleton_cg_sccs.empty()); } if (merge_selector) { merge_selector->initialize(task_proxy); } return utils::make_unique_ptr<MergeStrategySCCs>( fts, task_proxy, merge_tree_factory, merge_selector, move(non_singleton_cg_sccs), move(indices_of_merged_sccs)); } bool MergeStrategyFactorySCCs::requires_init_distances() const { if (merge_tree_factory) { return merge_tree_factory->requires_init_distances(); } else { return merge_selector->requires_init_distances(); } } bool MergeStrategyFactorySCCs::requires_goal_distances() const { if (merge_tree_factory) { return merge_tree_factory->requires_goal_distances(); } else { return merge_selector->requires_goal_distances(); } } void MergeStrategyFactorySCCs::dump_strategy_specific_options() const { utils::g_log << "Merge order of sccs: "; switch (order_of_sccs) { case OrderOfSCCs::TOPOLOGICAL: utils::g_log << "topological"; break; case OrderOfSCCs::REVERSE_TOPOLOGICAL: utils::g_log << "reverse topological"; break; case OrderOfSCCs::DECREASING: utils::g_log << "decreasing"; break; case OrderOfSCCs::INCREASING: utils::g_log << "increasing"; break; } utils::g_log << endl; utils::g_log << "Merge strategy for merging within sccs: " << endl; if (merge_tree_factory) { merge_tree_factory->dump_options(); } if (merge_selector) { merge_selector->dump_options(); } } string MergeStrategyFactorySCCs::name() const { return "sccs"; } static shared_ptr<MergeStrategyFactory>_parse(options::OptionParser &parser) { parser.document_synopsis( "Merge strategy SSCs", "This merge strategy implements the algorithm described in the paper " + utils::format_conference_reference( {"Silvan Sievers", "Martin Wehrle", "Malte Helmert"}, "An Analysis of Merge Strategies for Merge-and-Shrink Heuristics", "https://ai.dmi.unibas.ch/papers/sievers-et-al-icaps2016.pdf", "Proceedings of the 26th International Conference on Planning and " "Scheduling (ICAPS 2016)", "2358-2366", "AAAI Press", "2016") + "In a nutshell, it computes the maximal SCCs of the causal graph, " "obtaining a partitioning of the task's variables. Every such " "partition is then merged individually, using the specified fallback " "merge strategy, considering the SCCs in a configurable order. " "Afterwards, all resulting composite abstractions are merged to form " "the final abstraction, again using the specified fallback merge " "strategy and the configurable order of the SCCs."); vector<string> order_of_sccs; order_of_sccs.push_back("topological"); order_of_sccs.push_back("reverse_topological"); order_of_sccs.push_back("decreasing"); order_of_sccs.push_back("increasing"); parser.add_enum_option<OrderOfSCCs>( "order_of_sccs", order_of_sccs, "choose an ordering of the SCCs: topological/reverse_topological or " "decreasing/increasing in the size of the SCCs. The former two options " "refer to the directed graph where each obtained SCC is a " "'supervertex'. For the latter two options, the tie-breaking is to " "use the topological order according to that same graph of SCC " "supervertices.", "topological"); parser.add_option<shared_ptr<MergeTreeFactory>>( "merge_tree", "the fallback merge strategy to use if a precomputed strategy should " "be used.", options::OptionParser::NONE); parser.add_option<shared_ptr<MergeSelector>>( "merge_selector", "the fallback merge strategy to use if a stateless strategy should " "be used.", options::OptionParser::NONE); options::Options options = parser.parse(); if (parser.help_mode()) { return nullptr; } else if (parser.dry_run()) { bool merge_tree = options.contains("merge_tree"); bool merge_selector = options.contains("merge_selector"); if ((merge_tree && merge_selector) || (!merge_tree && !merge_selector)) { cerr << "You have to specify exactly one of the options merge_tree " "and merge_selector!" << endl; utils::exit_with(utils::ExitCode::SEARCH_INPUT_ERROR); } return nullptr; } else { return make_shared<MergeStrategyFactorySCCs>(options); } } static options::Plugin<MergeStrategyFactory> _plugin("merge_sccs", _parse); }
8,099
C++
33.913793
85
0.63514
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/shrink_random.cc
#include "shrink_random.h" #include "factored_transition_system.h" #include "transition_system.h" #include "../option_parser.h" #include "../plugin.h" #include <cassert> #include <memory> using namespace std; namespace merge_and_shrink { ShrinkRandom::ShrinkRandom(const Options &opts) : ShrinkBucketBased(opts) { } vector<ShrinkBucketBased::Bucket> ShrinkRandom::partition_into_buckets( const TransitionSystem &ts, const Distances &) const { vector<Bucket> buckets; buckets.resize(1); Bucket &big_bucket = buckets.back(); big_bucket.reserve(ts.get_size()); int num_states = ts.get_size(); for (int state = 0; state < num_states; ++state) big_bucket.push_back(state); assert(!big_bucket.empty()); return buckets; } string ShrinkRandom::name() const { return "random"; } static shared_ptr<ShrinkStrategy>_parse(OptionParser &parser) { parser.document_synopsis("Random", ""); ShrinkBucketBased::add_options_to_parser(parser); Options opts = parser.parse(); if (parser.help_mode()) return nullptr; if (parser.dry_run()) return nullptr; else return make_shared<ShrinkRandom>(opts); } static Plugin<ShrinkStrategy> _plugin("shrink_random", _parse); }
1,260
C++
23.25
71
0.678571
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/merge_strategy_sccs.cc
#include "merge_strategy_sccs.h" #include "factored_transition_system.h" #include "merge_selector.h" #include "merge_tree.h" #include "merge_tree_factory.h" #include "transition_system.h" #include <algorithm> #include <cassert> #include <iostream> using namespace std; namespace merge_and_shrink { MergeStrategySCCs::MergeStrategySCCs( const FactoredTransitionSystem &fts, const TaskProxy &task_proxy, const shared_ptr<MergeTreeFactory> &merge_tree_factory, const shared_ptr<MergeSelector> &merge_selector, vector<vector<int>> non_singleton_cg_sccs, vector<int> indices_of_merged_sccs) : MergeStrategy(fts), task_proxy(task_proxy), merge_tree_factory(merge_tree_factory), merge_selector(merge_selector), non_singleton_cg_sccs(move(non_singleton_cg_sccs)), indices_of_merged_sccs(move(indices_of_merged_sccs)), current_merge_tree(nullptr) { } MergeStrategySCCs::~MergeStrategySCCs() { } pair<int, int> MergeStrategySCCs::get_next() { // We did not already start merging an SCC/all finished SCCs, so we // do not have a current set of indices we want to finish merging. if (current_ts_indices.empty()) { // Get the next indices we need to merge if (non_singleton_cg_sccs.empty()) { assert(indices_of_merged_sccs.size() > 1); current_ts_indices = move(indices_of_merged_sccs); } else { vector<int> &current_scc = non_singleton_cg_sccs.front(); assert(current_scc.size() > 1); current_ts_indices = move(current_scc); non_singleton_cg_sccs.erase(non_singleton_cg_sccs.begin()); } // If using a merge tree factory, compute a merge tree for this set if (merge_tree_factory) { current_merge_tree = merge_tree_factory->compute_merge_tree( task_proxy, fts, current_ts_indices); } } else { // Add the most recent merge to the current indices set current_ts_indices.push_back(fts.get_size() - 1); } // Select the next merge for the current set of indices, either using the // tree or the selector. pair<int, int > next_pair; int merged_ts_index = fts.get_size(); if (current_merge_tree) { assert(!current_merge_tree->done()); next_pair = current_merge_tree->get_next_merge(merged_ts_index); if (current_merge_tree->done()) { current_merge_tree = nullptr; } } else { assert(merge_selector); next_pair = merge_selector->select_merge(fts, current_ts_indices); } // Remove the two merged indices from the current set of indices. for (vector<int>::iterator it = current_ts_indices.begin(); it != current_ts_indices.end();) { if (*it == next_pair.first || *it == next_pair.second) { it = current_ts_indices.erase(it); } else { ++it; } } return next_pair; } }
2,967
C++
33.114942
77
0.630266
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/types.h
#ifndef MERGE_AND_SHRINK_TYPES_H #define MERGE_AND_SHRINK_TYPES_H #include <forward_list> #include <list> #include <vector> namespace merge_and_shrink { // Positive infinity. The name "INFINITY" is taken by an ISO C99 macro. extern const int INF; extern const int MINUSINF; extern const int PRUNED_STATE; /* An equivalence class is a set of abstract states that shall be mapped (shrunk) to the same abstract state. An equivalence relation is a partitioning of states into equivalence classes. It may omit certain states entirely; these will be dropped completely and receive an h value of infinity. */ using StateEquivalenceClass = std::forward_list<int>; using StateEquivalenceRelation = std::vector<StateEquivalenceClass>; } #endif
749
C
26.777777
71
0.771696
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/merge_tree_factory.cc
#include "merge_tree_factory.h" #include "merge_tree.h" #include "../options/option_parser.h" #include "../options/plugin.h" #include "../utils/logging.h" #include "../utils/rng_options.h" #include "../utils/system.h" #include <iostream> using namespace std; namespace merge_and_shrink { MergeTreeFactory::MergeTreeFactory(const options::Options &options) : rng(utils::parse_rng_from_options(options)), update_option(options.get<UpdateOption>("update_option")) { } void MergeTreeFactory::dump_options() const { utils::g_log << "Merge tree options: " << endl; utils::g_log << "Type: " << name() << endl; utils::g_log << "Update option: "; switch (update_option) { case UpdateOption::USE_FIRST: utils::g_log << "use first"; break; case UpdateOption::USE_SECOND: utils::g_log << "use second"; break; case UpdateOption::USE_RANDOM: utils::g_log << "use random"; break; } utils::g_log << endl; dump_tree_specific_options(); } unique_ptr<MergeTree> MergeTreeFactory::compute_merge_tree( const TaskProxy &, const FactoredTransitionSystem &, const vector<int> &) { cerr << "This merge tree does not support being computed on a subset " "of indices for a given factored transition system!" << endl; utils::exit_with(utils::ExitCode::SEARCH_CRITICAL_ERROR); } void MergeTreeFactory::add_options_to_parser(options::OptionParser &parser) { utils::add_rng_options(parser); vector<string> update_option; update_option.push_back("use_first"); update_option.push_back("use_second"); update_option.push_back("use_random"); parser.add_enum_option<UpdateOption>( "update_option", update_option, "When the merge tree is used within another merge strategy, how " "should it be updated when a merge different to a merge from the " "tree is performed: choose among use_first, use_second, and " "use_random to choose which node of the tree should survive and " "represent the new merged index. Specify use_first (use_second) to " "let the node represententing the index that would have been merged " "earlier (later) survive. use_random chooses a random node.", "use_random"); } static options::PluginTypePlugin<MergeTreeFactory> _type_plugin( "MergeTree", "This page describes the available merge trees that can be used to " "precompute a merge strategy, either for the entire task or a given " "subset of transition systems of a given factored transition system.\n" "Merge trees are typically used in the merge strategy of type " "'precomputed', but they can also be used as fallback merge strategies in " "'combined' merge strategies."); }
2,787
C++
34.743589
79
0.672049
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/merge_scoring_function_single_random.cc
#include "merge_scoring_function_single_random.h" #include "types.h" #include "../options/option_parser.h" #include "../options/options.h" #include "../options/plugin.h" #include "../utils/logging.h" #include "../utils/rng.h" #include "../utils/rng_options.h" #include <cassert> using namespace std; namespace merge_and_shrink { MergeScoringFunctionSingleRandom::MergeScoringFunctionSingleRandom( const options::Options &options) : random_seed(options.get<int>("random_seed")), rng(utils::parse_rng_from_options(options)) { } vector<double> MergeScoringFunctionSingleRandom::compute_scores( const FactoredTransitionSystem &, const vector<pair<int, int>> &merge_candidates) { int chosen_index = (*rng)(merge_candidates.size()); vector<double> scores; scores.reserve(merge_candidates.size()); for (size_t candidate_index = 0; candidate_index < merge_candidates.size(); ++candidate_index) { if (static_cast<int>(candidate_index) == chosen_index) { scores.push_back(0); } else { scores.push_back(INF); } } return scores; } string MergeScoringFunctionSingleRandom::name() const { return "single random"; } void MergeScoringFunctionSingleRandom::dump_function_specific_options() const { utils::g_log << "Random seed: " << random_seed << endl; } static shared_ptr<MergeScoringFunction>_parse(options::OptionParser &parser) { parser.document_synopsis( "Single random", "This scoring function assigns exactly one merge candidate a score of " "0, chosen randomly, and infinity to all others."); utils::add_rng_options(parser); options::Options options = parser.parse(); if (parser.dry_run()) return nullptr; else return make_shared<MergeScoringFunctionSingleRandom>(options); } static options::Plugin<MergeScoringFunction> _plugin("single_random", _parse); }
1,932
C++
28.738461
79
0.684783
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/shrink_bucket_based.cc
#include "shrink_bucket_based.h" #include "../utils/logging.h" #include "../utils/rng.h" #include "../utils/rng_options.h" #include <cassert> #include <iostream> #include <vector> using namespace std; namespace merge_and_shrink { ShrinkBucketBased::ShrinkBucketBased(const options::Options &opts) : rng(utils::parse_rng_from_options(opts)) { } void ShrinkBucketBased::add_options_to_parser(options::OptionParser &parser) { utils::add_rng_options(parser); } StateEquivalenceRelation ShrinkBucketBased::compute_abstraction( const vector<Bucket> &buckets, int target_size) const { bool show_combine_buckets_warning = true; StateEquivalenceRelation equiv_relation; equiv_relation.reserve(target_size); size_t num_states_to_go = 0; for (size_t bucket_no = 0; bucket_no < buckets.size(); ++bucket_no) num_states_to_go += buckets[bucket_no].size(); for (size_t bucket_no = 0; bucket_no < buckets.size(); ++bucket_no) { const vector<int> &bucket = buckets[bucket_no]; int states_used_up = static_cast<int>(equiv_relation.size()); int remaining_state_budget = target_size - states_used_up; num_states_to_go -= bucket.size(); int budget_for_this_bucket = remaining_state_budget - num_states_to_go; if (budget_for_this_bucket >= static_cast<int>(bucket.size())) { // Each state in bucket can become a singleton group. for (size_t i = 0; i < bucket.size(); ++i) { StateEquivalenceClass group; group.push_front(bucket[i]); equiv_relation.push_back(group); } } else if (budget_for_this_bucket <= 1) { // The whole bucket must form one group. int remaining_buckets = buckets.size() - bucket_no; if (remaining_state_budget >= remaining_buckets) { equiv_relation.push_back(StateEquivalenceClass()); } else { if (bucket_no == 0) equiv_relation.push_back(StateEquivalenceClass()); if (show_combine_buckets_warning) { show_combine_buckets_warning = false; utils::g_log << "Very small node limit, must combine buckets." << endl; } } StateEquivalenceClass &group = equiv_relation.back(); group.insert_after(group.before_begin(), bucket.begin(), bucket.end()); } else { // Complicated case: must combine until bucket budget is met. // First create singleton groups. vector<StateEquivalenceClass> groups(bucket.size()); for (size_t i = 0; i < bucket.size(); ++i) groups[i].push_front(bucket[i]); // Then combine groups until required size is reached. assert(budget_for_this_bucket >= 2 && budget_for_this_bucket < static_cast<int>(groups.size())); while (static_cast<int>(groups.size()) > budget_for_this_bucket) { auto it1 = rng->choose(groups); auto it2 = it1; while (it1 == it2) { it2 = rng->choose(groups); } it1->splice_after(it1->before_begin(), *it2); swap(*it2, groups.back()); assert(groups.back().empty()); groups.pop_back(); } // Finally add these groups to the result. for (size_t i = 0; i < groups.size(); ++i) { equiv_relation.push_back(StateEquivalenceClass()); equiv_relation.back().swap(groups[i]); } } } return equiv_relation; } StateEquivalenceRelation ShrinkBucketBased::compute_equivalence_relation( const TransitionSystem &ts, const Distances &distances, int target_size) const { vector<Bucket> buckets = partition_into_buckets(ts, distances); return compute_abstraction(buckets, target_size); } }
4,024
C++
38.460784
83
0.578777
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/fts_factory.cc
#include "fts_factory.h" #include "distances.h" #include "factored_transition_system.h" #include "label_equivalence_relation.h" #include "labels.h" #include "merge_and_shrink_representation.h" #include "transition_system.h" #include "types.h" #include "../task_proxy.h" #include "../utils/collections.h" #include "../utils/logging.h" #include "../utils/memory.h" #include <algorithm> #include <cassert> #include <unordered_map> #include <vector> using namespace std; namespace merge_and_shrink { class FTSFactory { const TaskProxy &task_proxy; struct TransitionSystemData { // The following two attributes are only used for statistics int num_variables; vector<int> incorporated_variables; unique_ptr<LabelEquivalenceRelation> label_equivalence_relation; vector<vector<int>> label_groups; vector<vector<Transition>> transitions_by_group_id; vector<bool> relevant_labels; int num_states; vector<bool> goal_states; int init_state; TransitionSystemData(TransitionSystemData &&other) : num_variables(other.num_variables), incorporated_variables(move(other.incorporated_variables)), label_equivalence_relation(move(other.label_equivalence_relation)), label_groups(move(other.label_groups)), transitions_by_group_id(move(other.transitions_by_group_id)), relevant_labels(move(other.relevant_labels)), num_states(other.num_states), goal_states(move(other.goal_states)), init_state(other.init_state) { } TransitionSystemData() = default; TransitionSystemData(TransitionSystemData &other) = delete; TransitionSystemData &operator=(TransitionSystemData &other) = delete; }; vector<TransitionSystemData> transition_system_data_by_var; // see TODO in build_transitions() int task_has_conditional_effects; vector<unique_ptr<Label>> create_labels(); void build_state_data(VariableProxy var); void initialize_transition_system_data(const Labels &labels); bool is_relevant(int var_no, int label_no) const; void mark_as_relevant(int var_no, int label_no); unordered_map<int, int> compute_preconditions(OperatorProxy op); void handle_operator_effect( OperatorProxy op, EffectProxy effect, const unordered_map<int, int> &pre_val, vector<bool> &has_effect_on_var, vector<vector<Transition>> &transitions_by_var); void handle_operator_precondition( OperatorProxy op, FactProxy precondition, const vector<bool> &has_effect_on_var, vector<vector<Transition>> &transitions_by_var); void build_transitions_for_operator(OperatorProxy op); void build_transitions_for_irrelevant_ops(VariableProxy variable); void build_transitions(); vector<unique_ptr<TransitionSystem>> create_transition_systems(const Labels &labels); vector<unique_ptr<MergeAndShrinkRepresentation>> create_mas_representations() const; vector<unique_ptr<Distances>> create_distances( const vector<unique_ptr<TransitionSystem>> &transition_systems) const; public: explicit FTSFactory(const TaskProxy &task_proxy); ~FTSFactory(); /* Note: create() may only be called once. We don't worry about misuse because the class is only used internally in this file. */ FactoredTransitionSystem create( bool compute_init_distances, bool compute_goal_distances, utils::Verbosity verbosity); }; FTSFactory::FTSFactory(const TaskProxy &task_proxy) : task_proxy(task_proxy), task_has_conditional_effects(false) { } FTSFactory::~FTSFactory() { } vector<unique_ptr<Label>> FTSFactory::create_labels() { vector<unique_ptr<Label>> result; int num_ops = task_proxy.get_operators().size(); if (num_ops > 0) { int max_num_labels = 2 * num_ops - 1; result.reserve(max_num_labels); } for (OperatorProxy op : task_proxy.get_operators()) { result.push_back(utils::make_unique_ptr<Label>(op.get_cost())); } return result; } void FTSFactory::build_state_data(VariableProxy var) { int var_id = var.get_id(); TransitionSystemData &ts_data = transition_system_data_by_var[var_id]; ts_data.init_state = task_proxy.get_initial_state()[var_id].get_value(); int range = task_proxy.get_variables()[var_id].get_domain_size(); ts_data.num_states = range; int goal_value = -1; GoalsProxy goals = task_proxy.get_goals(); for (FactProxy goal : goals) { if (goal.get_variable().get_id() == var_id) { assert(goal_value == -1); goal_value = goal.get_value(); break; } } ts_data.goal_states.resize(range, false); for (int value = 0; value < range; ++value) { if (value == goal_value || goal_value == -1) { ts_data.goal_states[value] = true; } } } void FTSFactory::initialize_transition_system_data(const Labels &labels) { VariablesProxy variables = task_proxy.get_variables(); int num_labels = task_proxy.get_operators().size(); transition_system_data_by_var.resize(variables.size()); for (VariableProxy var : variables) { TransitionSystemData &ts_data = transition_system_data_by_var[var.get_id()]; ts_data.num_variables = variables.size(); ts_data.incorporated_variables.push_back(var.get_id()); ts_data.transitions_by_group_id.reserve(labels.get_max_size()); ts_data.relevant_labels.resize(num_labels, false); build_state_data(var); } } bool FTSFactory::is_relevant(int var_no, int label_no) const { return transition_system_data_by_var[var_no].relevant_labels[label_no]; } void FTSFactory::mark_as_relevant(int var_no, int label_no) { transition_system_data_by_var[var_no].relevant_labels[label_no] = true; } unordered_map<int, int> FTSFactory::compute_preconditions(OperatorProxy op) { unordered_map<int, int> pre_val; for (FactProxy precondition : op.get_preconditions()) pre_val[precondition.get_variable().get_id()] = precondition.get_value(); return pre_val; } void FTSFactory::handle_operator_effect( OperatorProxy op, EffectProxy effect, const unordered_map<int, int> &pre_val, vector<bool> &has_effect_on_var, vector<vector<Transition>> &transitions_by_var) { int label_no = op.get_id(); FactProxy fact = effect.get_fact(); VariableProxy var = fact.get_variable(); int var_no = var.get_id(); has_effect_on_var[var_no] = true; int post_value = fact.get_value(); // Determine possible values that var can have when this // operator is applicable. int pre_value = -1; auto pre_val_it = pre_val.find(var_no); if (pre_val_it != pre_val.end()) pre_value = pre_val_it->second; int pre_value_min, pre_value_max; if (pre_value == -1) { pre_value_min = 0; pre_value_max = var.get_domain_size(); } else { pre_value_min = pre_value; pre_value_max = pre_value + 1; } /* cond_effect_pre_value == x means that the effect has an effect condition "var == x". cond_effect_pre_value == -1 means no effect condition on var. has_other_effect_cond is true iff there exists an effect condition on a variable other than var. */ EffectConditionsProxy effect_conditions = effect.get_conditions(); int cond_effect_pre_value = -1; bool has_other_effect_cond = false; for (FactProxy condition : effect_conditions) { if (condition.get_variable() == var) { cond_effect_pre_value = condition.get_value(); } else { has_other_effect_cond = true; } } // Handle transitions that occur when the effect triggers. for (int value = pre_value_min; value < pre_value_max; ++value) { /* Only add a transition if it is possible that the effect triggers. We can rule out that the effect triggers if it has a condition on var and this condition is not satisfied. */ if (cond_effect_pre_value == -1 || cond_effect_pre_value == value) transitions_by_var[var_no].emplace_back(value, post_value); } // Handle transitions that occur when the effect does not trigger. if (!effect_conditions.empty()) { for (int value = pre_value_min; value < pre_value_max; ++value) { /* Add self-loop if the effect might not trigger. If the effect has a condition on another variable, then it can fail to trigger no matter which value var has. If it only has a condition on var, then the effect fails to trigger if this condition is false. */ if (has_other_effect_cond || value != cond_effect_pre_value) transitions_by_var[var_no].emplace_back(value, value); } task_has_conditional_effects = true; } mark_as_relevant(var_no, label_no); } void FTSFactory::handle_operator_precondition( OperatorProxy op, FactProxy precondition, const vector<bool> &has_effect_on_var, vector<vector<Transition>> &transitions_by_var) { int label_no = op.get_id(); int var_no = precondition.get_variable().get_id(); if (!has_effect_on_var[var_no]) { int value = precondition.get_value(); transitions_by_var[var_no].emplace_back(value, value); mark_as_relevant(var_no, label_no); } } void FTSFactory::build_transitions_for_operator(OperatorProxy op) { /* - Mark op as relevant in the transition systems corresponding to variables on which it has a precondition or effect. - Add transitions induced by op in these transition systems. */ unordered_map<int, int> pre_val = compute_preconditions(op); int num_variables = task_proxy.get_variables().size(); vector<bool> has_effect_on_var(task_proxy.get_variables().size(), false); vector<vector<Transition>> transitions_by_var(num_variables); for (EffectProxy effect : op.get_effects()) handle_operator_effect(op, effect, pre_val, has_effect_on_var, transitions_by_var); /* We must handle preconditions *after* effects because handling the effects sets has_effect_on_var. */ for (FactProxy precondition : op.get_preconditions()) handle_operator_precondition(op, precondition, has_effect_on_var, transitions_by_var); int label_no = op.get_id(); for (int var_no = 0; var_no < num_variables; ++var_no) { if (!is_relevant(var_no, label_no)) { /* We do not want to add transitions of irrelevant labels here, since they are handled together in a separate step. */ continue; } vector<Transition> &transitions = transitions_by_var[var_no]; /* TODO: Our method for generating transitions is only guarantueed to generate sorted and unique transitions if the task has no conditional effects. */ if (task_has_conditional_effects) { utils::sort_unique(transitions); } else { assert(utils::is_sorted_unique(transitions)); } vector<vector<Transition>> &existing_transitions_by_group_id = transition_system_data_by_var[var_no].transitions_by_group_id; vector<vector<int>> &label_groups = transition_system_data_by_var[var_no].label_groups; assert(existing_transitions_by_group_id.size() == label_groups.size()); bool found_locally_equivalent_label_group = false; for (size_t group_id = 0; group_id < existing_transitions_by_group_id.size(); ++group_id) { const vector<Transition> &group_transitions = existing_transitions_by_group_id[group_id]; if (transitions == group_transitions) { label_groups[group_id].push_back(label_no); found_locally_equivalent_label_group = true; break; } } if (!found_locally_equivalent_label_group) { existing_transitions_by_group_id.push_back(move(transitions)); label_groups.push_back({label_no}); } } } void FTSFactory::build_transitions_for_irrelevant_ops(VariableProxy variable) { int var_no = variable.get_id(); int num_states = variable.get_domain_size(); int num_labels = task_proxy.get_operators().size(); // Collect all irrelevant labels for this variable. vector<int> irrelevant_labels; for (int label_no = 0; label_no < num_labels; ++label_no) { if (!is_relevant(var_no, label_no)) { irrelevant_labels.push_back(label_no); } } TransitionSystemData &ts_data = transition_system_data_by_var[var_no]; if (!irrelevant_labels.empty()) { vector<Transition> transitions; transitions.reserve(num_states); for (int state = 0; state < num_states; ++state) transitions.emplace_back(state, state); ts_data.label_groups.push_back(move(irrelevant_labels)); ts_data.transitions_by_group_id.push_back(move(transitions)); } } void FTSFactory::build_transitions() { /* - Compute all transitions of all operators for all variables, grouping transitions of locally equivalent labels for a given variable. - Computes relevant operator information as a side effect. */ for (OperatorProxy op : task_proxy.get_operators()) build_transitions_for_operator(op); /* Compute transitions of irrelevant operators for each variable only once and put the labels into a single label group. */ for (VariableProxy variable : task_proxy.get_variables()) build_transitions_for_irrelevant_ops(variable); } vector<unique_ptr<TransitionSystem>> FTSFactory::create_transition_systems(const Labels &labels) { // Create the actual TransitionSystem objects. int num_variables = task_proxy.get_variables().size(); // We reserve space for the transition systems added later by merging. vector<unique_ptr<TransitionSystem>> result; assert(num_variables >= 1); result.reserve(num_variables * 2 - 1); for (int var_no = 0; var_no < num_variables; ++var_no) { TransitionSystemData &ts_data = transition_system_data_by_var[var_no]; /* Construct the label equivalence relation from the previously computed label groups. */ ts_data.label_equivalence_relation = utils::make_unique_ptr<LabelEquivalenceRelation>( labels, ts_data.label_groups); result.push_back(utils::make_unique_ptr<TransitionSystem>( ts_data.num_variables, move(ts_data.incorporated_variables), move(ts_data.label_equivalence_relation), move(ts_data.transitions_by_group_id), ts_data.num_states, move(ts_data.goal_states), ts_data.init_state )); } return result; } vector<unique_ptr<MergeAndShrinkRepresentation>> FTSFactory::create_mas_representations() const { // Create the actual MergeAndShrinkRepresentation objects. int num_variables = task_proxy.get_variables().size(); // We reserve space for the transition systems added later by merging. vector<unique_ptr<MergeAndShrinkRepresentation>> result; assert(num_variables >= 1); result.reserve(num_variables * 2 - 1); for (int var_no = 0; var_no < num_variables; ++var_no) { int range = task_proxy.get_variables()[var_no].get_domain_size(); result.push_back( utils::make_unique_ptr<MergeAndShrinkRepresentationLeaf>(var_no, range)); } return result; } vector<unique_ptr<Distances>> FTSFactory::create_distances( const vector<unique_ptr<TransitionSystem>> &transition_systems) const { // Create the actual Distances objects. int num_variables = task_proxy.get_variables().size(); // We reserve space for the transition systems added later by merging. vector<unique_ptr<Distances>> result; assert(num_variables >= 1); result.reserve(num_variables * 2 - 1); for (int var_no = 0; var_no < num_variables; ++var_no) { result.push_back( utils::make_unique_ptr<Distances>(*transition_systems[var_no])); } return result; } FactoredTransitionSystem FTSFactory::create( const bool compute_init_distances, const bool compute_goal_distances, utils::Verbosity verbosity) { if (verbosity >= utils::Verbosity::NORMAL) { utils::g_log << "Building atomic transition systems... " << endl; } unique_ptr<Labels> labels = utils::make_unique_ptr<Labels>(create_labels()); initialize_transition_system_data(*labels); build_transitions(); vector<unique_ptr<TransitionSystem>> transition_systems = create_transition_systems(*labels); vector<unique_ptr<MergeAndShrinkRepresentation>> mas_representations = create_mas_representations(); vector<unique_ptr<Distances>> distances = create_distances(transition_systems); return FactoredTransitionSystem( move(labels), move(transition_systems), move(mas_representations), move(distances), compute_init_distances, compute_goal_distances, verbosity); } FactoredTransitionSystem create_factored_transition_system( const TaskProxy &task_proxy, const bool compute_init_distances, const bool compute_goal_distances, utils::Verbosity verbosity) { return FTSFactory(task_proxy).create( compute_init_distances, compute_goal_distances, verbosity); } }
17,939
C++
37.170213
101
0.646915
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/merge_selector.cc
#include "merge_selector.h" #include "factored_transition_system.h" #include "../options/plugin.h" #include "../utils/logging.h" #include <cassert> #include <iostream> using namespace std; namespace merge_and_shrink { vector<pair<int, int>> MergeSelector::compute_merge_candidates( const FactoredTransitionSystem &fts, const vector<int> &indices_subset) const { vector<pair<int, int>> merge_candidates; if (indices_subset.empty()) { for (int ts_index1 = 0; ts_index1 < fts.get_size(); ++ts_index1) { if (fts.is_active(ts_index1)) { for (int ts_index2 = ts_index1 + 1; ts_index2 < fts.get_size(); ++ts_index2) { if (fts.is_active(ts_index2)) { merge_candidates.emplace_back(ts_index1, ts_index2); } } } } } else { assert(indices_subset.size() > 1); for (size_t i = 0; i < indices_subset.size(); ++i) { int ts_index1 = indices_subset[i]; assert(fts.is_active(ts_index1)); for (size_t j = i + 1; j < indices_subset.size(); ++j) { int ts_index2 = indices_subset[j]; assert(fts.is_active(ts_index2)); merge_candidates.emplace_back(ts_index1, ts_index2); } } } return merge_candidates; } void MergeSelector::dump_options() const { utils::g_log << "Merge selector options:" << endl; utils::g_log << "Name: " << name() << endl; dump_specific_options(); } static options::PluginTypePlugin<MergeSelector> _type_plugin( "MergeSelector", "This page describes the available merge selectors. They are used to " "compute the next merge purely based on the state of the given factored " "transition system. They are used in the merge strategy of type " "'stateless', but they can also easily be used in different 'combined' " "merged strategies."); }
1,984
C++
32.644067
79
0.584173
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/merge_strategy_stateless.cc
#include "merge_strategy_stateless.h" #include "merge_selector.h" using namespace std; namespace merge_and_shrink { MergeStrategyStateless::MergeStrategyStateless( const FactoredTransitionSystem &fts, const shared_ptr<MergeSelector> &merge_selector) : MergeStrategy(fts), merge_selector(merge_selector) { } pair<int, int> MergeStrategyStateless::get_next() { return merge_selector->select_merge(fts); } }
431
C++
21.736841
52
0.74478
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/merge_scoring_function_dfp.h
#ifndef MERGE_AND_SHRINK_MERGE_SCORING_FUNCTION_DFP_H #define MERGE_AND_SHRINK_MERGE_SCORING_FUNCTION_DFP_H #include "merge_scoring_function.h" namespace merge_and_shrink { class TransitionSystem; class MergeScoringFunctionDFP : public MergeScoringFunction { std::vector<int> compute_label_ranks( const FactoredTransitionSystem &fts, int index) const; protected: virtual std::string name() const override; public: MergeScoringFunctionDFP() = default; virtual ~MergeScoringFunctionDFP() override = default; virtual std::vector<double> compute_scores( const FactoredTransitionSystem &fts, const std::vector<std::pair<int, int>> &merge_candidates) override; virtual bool requires_init_distances() const override { return false; } virtual bool requires_goal_distances() const override { return true; } }; } #endif
891
C
27.774193
75
0.722783
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/merge_and_shrink/merge_scoring_function_goal_relevance.cc
#include "merge_scoring_function_goal_relevance.h" #include "factored_transition_system.h" #include "transition_system.h" #include "utils.h" #include "../options/option_parser.h" #include "../options/plugin.h" using namespace std; namespace merge_and_shrink { vector<double> MergeScoringFunctionGoalRelevance::compute_scores( const FactoredTransitionSystem &fts, const vector<pair<int, int>> &merge_candidates) { int num_ts = fts.get_size(); vector<bool> goal_relevant(num_ts, false); for (int ts_index : fts) { const TransitionSystem &ts = fts.get_transition_system(ts_index); if (is_goal_relevant(ts)) { goal_relevant[ts_index] = true; } } vector<double> scores; scores.reserve(merge_candidates.size()); for (pair<int, int> merge_candidate : merge_candidates) { int ts_index1 = merge_candidate.first; int ts_index2 = merge_candidate.second; int score = INF; if (goal_relevant[ts_index1] || goal_relevant[ts_index2]) { score = 0; } scores.push_back(score); } return scores; } string MergeScoringFunctionGoalRelevance::name() const { return "goal relevance"; } static shared_ptr<MergeScoringFunction>_parse(options::OptionParser &parser) { parser.document_synopsis( "Goal relevance scoring", "This scoring function assigns a merge candidate a value of 0 iff at " "least one of the two transition systems of the merge candidate is " "goal relevant in the sense that there is an abstract non-goal state. " "All other candidates get a score of positive infinity."); if (parser.dry_run()) return nullptr; else return make_shared<MergeScoringFunctionGoalRelevance>(); } static options::Plugin<MergeScoringFunction> _plugin("goal_relevance", _parse); }
1,867
C++
31.206896
79
0.670595
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/open_lists/best_first_open_list.cc
#include "best_first_open_list.h" #include "../evaluator.h" #include "../open_list.h" #include "../option_parser.h" #include "../plugin.h" #include "../utils/memory.h" #include <cassert> #include <deque> #include <map> using namespace std; namespace standard_scalar_open_list { template<class Entry> class BestFirstOpenList : public OpenList<Entry> { typedef deque<Entry> Bucket; map<int, Bucket> buckets; int size; shared_ptr<Evaluator> evaluator; protected: virtual void do_insertion(EvaluationContext &eval_context, const Entry &entry) override; public: explicit BestFirstOpenList(const Options &opts); BestFirstOpenList(const shared_ptr<Evaluator> &eval, bool preferred_only); virtual ~BestFirstOpenList() override = default; virtual Entry remove_min() override; virtual bool empty() const override; virtual void clear() override; virtual void get_path_dependent_evaluators(set<Evaluator *> &evals) override; virtual bool is_dead_end( EvaluationContext &eval_context) const override; virtual bool is_reliable_dead_end( EvaluationContext &eval_context) const override; }; template<class Entry> BestFirstOpenList<Entry>::BestFirstOpenList(const Options &opts) : OpenList<Entry>(opts.get<bool>("pref_only")), size(0), evaluator(opts.get<shared_ptr<Evaluator>>("eval")) { } template<class Entry> BestFirstOpenList<Entry>::BestFirstOpenList( const shared_ptr<Evaluator> &evaluator, bool preferred_only) : OpenList<Entry>(preferred_only), size(0), evaluator(evaluator) { } template<class Entry> void BestFirstOpenList<Entry>::do_insertion( EvaluationContext &eval_context, const Entry &entry) { int key = eval_context.get_evaluator_value(evaluator.get()); buckets[key].push_back(entry); ++size; } template<class Entry> Entry BestFirstOpenList<Entry>::remove_min() { assert(size > 0); auto it = buckets.begin(); assert(it != buckets.end()); Bucket &bucket = it->second; assert(!bucket.empty()); Entry result = bucket.front(); bucket.pop_front(); if (bucket.empty()) buckets.erase(it); --size; return result; } template<class Entry> bool BestFirstOpenList<Entry>::empty() const { return size == 0; } template<class Entry> void BestFirstOpenList<Entry>::clear() { buckets.clear(); size = 0; } template<class Entry> void BestFirstOpenList<Entry>::get_path_dependent_evaluators( set<Evaluator *> &evals) { evaluator->get_path_dependent_evaluators(evals); } template<class Entry> bool BestFirstOpenList<Entry>::is_dead_end( EvaluationContext &eval_context) const { return eval_context.is_evaluator_value_infinite(evaluator.get()); } template<class Entry> bool BestFirstOpenList<Entry>::is_reliable_dead_end( EvaluationContext &eval_context) const { return is_dead_end(eval_context) && evaluator->dead_ends_are_reliable(); } BestFirstOpenListFactory::BestFirstOpenListFactory( const Options &options) : options(options) { } unique_ptr<StateOpenList> BestFirstOpenListFactory::create_state_open_list() { return utils::make_unique_ptr<BestFirstOpenList<StateOpenListEntry>>(options); } unique_ptr<EdgeOpenList> BestFirstOpenListFactory::create_edge_open_list() { return utils::make_unique_ptr<BestFirstOpenList<EdgeOpenListEntry>>(options); } static shared_ptr<OpenListFactory> _parse(OptionParser &parser) { parser.document_synopsis( "Best-first open list", "Open list that uses a single evaluator and FIFO tiebreaking."); parser.document_note( "Implementation Notes", "Elements with the same evaluator value are stored in double-ended " "queues, called \"buckets\". The open list stores a map from evaluator " "values to buckets. Pushing and popping from a bucket runs in constant " "time. Therefore, inserting and removing an entry from the open list " "takes time O(log(n)), where n is the number of buckets."); parser.add_option<shared_ptr<Evaluator>>("eval", "evaluator"); parser.add_option<bool>( "pref_only", "insert only nodes generated by preferred operators", "false"); Options opts = parser.parse(); if (parser.dry_run()) return nullptr; else return make_shared<BestFirstOpenListFactory>(opts); } static Plugin<OpenListFactory> _plugin("single", _parse); }
4,462
C++
28.169934
82
0.697221
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/open_lists/tiebreaking_open_list.cc
#include "tiebreaking_open_list.h" #include "../evaluator.h" #include "../open_list.h" #include "../option_parser.h" #include "../plugin.h" #include "../utils/memory.h" #include <cassert> #include <deque> #include <map> #include <utility> #include <vector> using namespace std; namespace tiebreaking_open_list { template<class Entry> class TieBreakingOpenList : public OpenList<Entry> { using Bucket = deque<Entry>; map<const vector<int>, Bucket> buckets; int size; vector<shared_ptr<Evaluator>> evaluators; /* If allow_unsafe_pruning is true, we ignore (don't insert) states which the first evaluator considers a dead end, even if it is not a safe heuristic. */ bool allow_unsafe_pruning; int dimension() const; protected: virtual void do_insertion(EvaluationContext &eval_context, const Entry &entry) override; public: explicit TieBreakingOpenList(const Options &opts); virtual ~TieBreakingOpenList() override = default; virtual Entry remove_min() override; virtual bool empty() const override; virtual void clear() override; virtual void get_path_dependent_evaluators(set<Evaluator *> &evals) override; virtual bool is_dead_end( EvaluationContext &eval_context) const override; virtual bool is_reliable_dead_end( EvaluationContext &eval_context) const override; }; template<class Entry> TieBreakingOpenList<Entry>::TieBreakingOpenList(const Options &opts) : OpenList<Entry>(opts.get<bool>("pref_only")), size(0), evaluators(opts.get_list<shared_ptr<Evaluator>>("evals")), allow_unsafe_pruning(opts.get<bool>("unsafe_pruning")) { } template<class Entry> void TieBreakingOpenList<Entry>::do_insertion( EvaluationContext &eval_context, const Entry &entry) { vector<int> key; key.reserve(evaluators.size()); for (const shared_ptr<Evaluator> &evaluator : evaluators) key.push_back(eval_context.get_evaluator_value_or_infinity(evaluator.get())); buckets[key].push_back(entry); ++size; } template<class Entry> Entry TieBreakingOpenList<Entry>::remove_min() { assert(size > 0); typename map<const vector<int>, Bucket>::iterator it; it = buckets.begin(); assert(it != buckets.end()); assert(!it->second.empty()); --size; Entry result = it->second.front(); it->second.pop_front(); if (it->second.empty()) buckets.erase(it); return result; } template<class Entry> bool TieBreakingOpenList<Entry>::empty() const { return size == 0; } template<class Entry> void TieBreakingOpenList<Entry>::clear() { buckets.clear(); size = 0; } template<class Entry> int TieBreakingOpenList<Entry>::dimension() const { return evaluators.size(); } template<class Entry> void TieBreakingOpenList<Entry>::get_path_dependent_evaluators( set<Evaluator *> &evals) { for (const shared_ptr<Evaluator> &evaluator : evaluators) evaluator->get_path_dependent_evaluators(evals); } template<class Entry> bool TieBreakingOpenList<Entry>::is_dead_end( EvaluationContext &eval_context) const { // TODO: Properly document this behaviour. // If one safe heuristic detects a dead end, return true. if (is_reliable_dead_end(eval_context)) return true; // If the first heuristic detects a dead-end and we allow "unsafe // pruning", return true. if (allow_unsafe_pruning && eval_context.is_evaluator_value_infinite(evaluators[0].get())) return true; // Otherwise, return true if all heuristics agree this is a dead-end. for (const shared_ptr<Evaluator> &evaluator : evaluators) if (!eval_context.is_evaluator_value_infinite(evaluator.get())) return false; return true; } template<class Entry> bool TieBreakingOpenList<Entry>::is_reliable_dead_end( EvaluationContext &eval_context) const { for (const shared_ptr<Evaluator> &evaluator : evaluators) if (eval_context.is_evaluator_value_infinite(evaluator.get()) && evaluator->dead_ends_are_reliable()) return true; return false; } TieBreakingOpenListFactory::TieBreakingOpenListFactory(const Options &options) : options(options) { } unique_ptr<StateOpenList> TieBreakingOpenListFactory::create_state_open_list() { return utils::make_unique_ptr<TieBreakingOpenList<StateOpenListEntry>>(options); } unique_ptr<EdgeOpenList> TieBreakingOpenListFactory::create_edge_open_list() { return utils::make_unique_ptr<TieBreakingOpenList<EdgeOpenListEntry>>(options); } static shared_ptr<OpenListFactory> _parse(OptionParser &parser) { parser.document_synopsis("Tie-breaking open list", ""); parser.add_list_option<shared_ptr<Evaluator>>("evals", "evaluators"); parser.add_option<bool>( "pref_only", "insert only nodes generated by preferred operators", "false"); parser.add_option<bool>( "unsafe_pruning", "allow unsafe pruning when the main evaluator regards a state a dead end", "true"); Options opts = parser.parse(); opts.verify_list_non_empty<shared_ptr<Evaluator>>("evals"); if (parser.dry_run()) return nullptr; else return make_shared<TieBreakingOpenListFactory>(opts); } static Plugin<OpenListFactory> _plugin("tiebreaking", _parse); }
5,348
C++
29.565714
85
0.690912
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/open_lists/tiebreaking_open_list.h
#ifndef OPEN_LISTS_TIEBREAKING_OPEN_LIST_H #define OPEN_LISTS_TIEBREAKING_OPEN_LIST_H #include "../open_list_factory.h" #include "../option_parser_util.h" namespace tiebreaking_open_list { class TieBreakingOpenListFactory : public OpenListFactory { Options options; public: explicit TieBreakingOpenListFactory(const Options &options); virtual ~TieBreakingOpenListFactory() override = default; virtual std::unique_ptr<StateOpenList> create_state_open_list() override; virtual std::unique_ptr<EdgeOpenList> create_edge_open_list() override; }; } #endif
575
C
27.799999
77
0.763478
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/open_lists/pareto_open_list.h
#ifndef OPEN_LISTS_PARETO_OPEN_LIST_H #define OPEN_LISTS_PARETO_OPEN_LIST_H #include "../open_list_factory.h" #include "../option_parser_util.h" namespace pareto_open_list { class ParetoOpenListFactory : public OpenListFactory { Options options; public: explicit ParetoOpenListFactory(const Options &options); virtual ~ParetoOpenListFactory() override = default; virtual std::unique_ptr<StateOpenList> create_state_open_list() override; virtual std::unique_ptr<EdgeOpenList> create_edge_open_list() override; }; } #endif
545
C
26.299999
77
0.750459
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/open_lists/type_based_open_list.cc
#include "type_based_open_list.h" #include "../evaluator.h" #include "../open_list.h" #include "../option_parser.h" #include "../plugin.h" #include "../utils/collections.h" #include "../utils/hash.h" #include "../utils/markup.h" #include "../utils/memory.h" #include "../utils/rng.h" #include "../utils/rng_options.h" #include <memory> #include <unordered_map> #include <vector> using namespace std; namespace type_based_open_list { template<class Entry> class TypeBasedOpenList : public OpenList<Entry> { shared_ptr<utils::RandomNumberGenerator> rng; vector<shared_ptr<Evaluator>> evaluators; using Key = vector<int>; using Bucket = vector<Entry>; vector<pair<Key, Bucket>> keys_and_buckets; utils::HashMap<Key, int> key_to_bucket_index; protected: virtual void do_insertion( EvaluationContext &eval_context, const Entry &entry) override; public: explicit TypeBasedOpenList(const Options &opts); virtual ~TypeBasedOpenList() override = default; virtual Entry remove_min() override; virtual bool empty() const override; virtual void clear() override; virtual bool is_dead_end(EvaluationContext &eval_context) const override; virtual bool is_reliable_dead_end( EvaluationContext &eval_context) const override; virtual void get_path_dependent_evaluators(set<Evaluator *> &evals) override; }; template<class Entry> void TypeBasedOpenList<Entry>::do_insertion( EvaluationContext &eval_context, const Entry &entry) { vector<int> key; key.reserve(evaluators.size()); for (const shared_ptr<Evaluator> &evaluator : evaluators) { key.push_back( eval_context.get_evaluator_value_or_infinity(evaluator.get())); } auto it = key_to_bucket_index.find(key); if (it == key_to_bucket_index.end()) { key_to_bucket_index[key] = keys_and_buckets.size(); keys_and_buckets.push_back(make_pair(move(key), Bucket({entry}))); } else { size_t bucket_index = it->second; assert(utils::in_bounds(bucket_index, keys_and_buckets)); keys_and_buckets[bucket_index].second.push_back(entry); } } template<class Entry> TypeBasedOpenList<Entry>::TypeBasedOpenList(const Options &opts) : rng(utils::parse_rng_from_options(opts)), evaluators(opts.get_list<shared_ptr<Evaluator>>("evaluators")) { } template<class Entry> Entry TypeBasedOpenList<Entry>::remove_min() { size_t bucket_id = (*rng)(keys_and_buckets.size()); auto &key_and_bucket = keys_and_buckets[bucket_id]; const Key &min_key = key_and_bucket.first; Bucket &bucket = key_and_bucket.second; int pos = (*rng)(bucket.size()); Entry result = utils::swap_and_pop_from_vector(bucket, pos); if (bucket.empty()) { // Swap the empty bucket with the last bucket, then delete it. key_to_bucket_index[keys_and_buckets.back().first] = bucket_id; key_to_bucket_index.erase(min_key); utils::swap_and_pop_from_vector(keys_and_buckets, bucket_id); } return result; } template<class Entry> bool TypeBasedOpenList<Entry>::empty() const { return keys_and_buckets.empty(); } template<class Entry> void TypeBasedOpenList<Entry>::clear() { keys_and_buckets.clear(); key_to_bucket_index.clear(); } template<class Entry> bool TypeBasedOpenList<Entry>::is_dead_end( EvaluationContext &eval_context) const { // If one evaluator is sure we have a dead end, return true. if (is_reliable_dead_end(eval_context)) return true; // Otherwise, return true if all evaluators agree this is a dead-end. for (const shared_ptr<Evaluator> &evaluator : evaluators) { if (!eval_context.is_evaluator_value_infinite(evaluator.get())) return false; } return true; } template<class Entry> bool TypeBasedOpenList<Entry>::is_reliable_dead_end( EvaluationContext &eval_context) const { for (const shared_ptr<Evaluator> &evaluator : evaluators) { if (evaluator->dead_ends_are_reliable() && eval_context.is_evaluator_value_infinite(evaluator.get())) return true; } return false; } template<class Entry> void TypeBasedOpenList<Entry>::get_path_dependent_evaluators( set<Evaluator *> &evals) { for (const shared_ptr<Evaluator> &evaluator : evaluators) { evaluator->get_path_dependent_evaluators(evals); } } TypeBasedOpenListFactory::TypeBasedOpenListFactory( const Options &options) : options(options) { } unique_ptr<StateOpenList> TypeBasedOpenListFactory::create_state_open_list() { return utils::make_unique_ptr<TypeBasedOpenList<StateOpenListEntry>>(options); } unique_ptr<EdgeOpenList> TypeBasedOpenListFactory::create_edge_open_list() { return utils::make_unique_ptr<TypeBasedOpenList<EdgeOpenListEntry>>(options); } static shared_ptr<OpenListFactory> _parse(OptionParser &parser) { parser.document_synopsis( "Type-based open list", "Uses multiple evaluators to assign entries to buckets. " "All entries in a bucket have the same evaluator values. " "When retrieving an entry, a bucket is chosen uniformly at " "random and one of the contained entries is selected " "uniformly randomly. " "The algorithm is based on" + utils::format_conference_reference( {"Fan Xie", "Martin Mueller", "Robert Holte", "Tatsuya Imai"}, "Type-Based Exploration with Multiple Search Queues for" " Satisficing Planning", "http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8472/8705", "Proceedings of the Twenty-Eigth AAAI Conference Conference" " on Artificial Intelligence (AAAI 2014)", "2395-2401", "AAAI Press", "2014")); parser.add_list_option<shared_ptr<Evaluator>>( "evaluators", "Evaluators used to determine the bucket for each entry."); utils::add_rng_options(parser); Options opts = parser.parse(); opts.verify_list_non_empty<shared_ptr<Evaluator>>("evaluators"); if (parser.dry_run()) return nullptr; else return make_shared<TypeBasedOpenListFactory>(opts); } static Plugin<OpenListFactory> _plugin("type_based", _parse); }
6,251
C++
32.433155
82
0.677812
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/open_lists/best_first_open_list.h
#ifndef OPEN_LISTS_BEST_FIRST_OPEN_LIST_H #define OPEN_LISTS_BEST_FIRST_OPEN_LIST_H #include "../open_list_factory.h" #include "../option_parser_util.h" /* Open list indexed by a single int, using FIFO tie-breaking. Implemented as a map from int to deques. */ namespace standard_scalar_open_list { class BestFirstOpenListFactory : public OpenListFactory { Options options; public: explicit BestFirstOpenListFactory(const Options &options); virtual ~BestFirstOpenListFactory() override = default; virtual std::unique_ptr<StateOpenList> create_state_open_list() override; virtual std::unique_ptr<EdgeOpenList> create_edge_open_list() override; }; } #endif
685
C
24.407407
77
0.745985
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/open_lists/alternation_open_list.h
#ifndef OPEN_LISTS_ALTERNATION_OPEN_LIST_H #define OPEN_LISTS_ALTERNATION_OPEN_LIST_H #include "../open_list_factory.h" #include "../option_parser_util.h" namespace alternation_open_list { class AlternationOpenListFactory : public OpenListFactory { Options options; public: explicit AlternationOpenListFactory(const Options &options); virtual ~AlternationOpenListFactory() override = default; virtual std::unique_ptr<StateOpenList> create_state_open_list() override; virtual std::unique_ptr<EdgeOpenList> create_edge_open_list() override; }; } #endif
575
C
27.799999
77
0.763478
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/open_lists/epsilon_greedy_open_list.cc
#include "epsilon_greedy_open_list.h" #include "../evaluator.h" #include "../open_list.h" #include "../option_parser.h" #include "../plugin.h" #include "../utils/collections.h" #include "../utils/markup.h" #include "../utils/memory.h" #include "../utils/rng.h" #include "../utils/rng_options.h" #include <functional> #include <memory> using namespace std; namespace epsilon_greedy_open_list { template<class Entry> class EpsilonGreedyOpenList : public OpenList<Entry> { shared_ptr<utils::RandomNumberGenerator> rng; struct HeapNode { int id; int h; Entry entry; HeapNode(int id, int h, const Entry &entry) : id(id), h(h), entry(entry) { } bool operator>(const HeapNode &other) const { return make_pair(h, id) > make_pair(other.h, other.id); } }; vector<HeapNode> heap; shared_ptr<Evaluator> evaluator; double epsilon; int size; int next_id; protected: virtual void do_insertion(EvaluationContext &eval_context, const Entry &entry) override; public: explicit EpsilonGreedyOpenList(const Options &opts); virtual ~EpsilonGreedyOpenList() override = default; virtual Entry remove_min() override; virtual bool is_dead_end( EvaluationContext &eval_context) const override; virtual bool is_reliable_dead_end( EvaluationContext &eval_context) const override; virtual void get_path_dependent_evaluators(set<Evaluator *> &evals) override; virtual bool empty() const override; virtual void clear() override; }; template<class HeapNode> static void adjust_heap_up(vector<HeapNode> &heap, size_t pos) { assert(utils::in_bounds(pos, heap)); while (pos != 0) { size_t parent_pos = (pos - 1) / 2; if (heap[pos] > heap[parent_pos]) { break; } swap(heap[pos], heap[parent_pos]); pos = parent_pos; } } template<class Entry> void EpsilonGreedyOpenList<Entry>::do_insertion( EvaluationContext &eval_context, const Entry &entry) { heap.emplace_back( next_id++, eval_context.get_evaluator_value(evaluator.get()), entry); push_heap(heap.begin(), heap.end(), greater<HeapNode>()); ++size; } template<class Entry> EpsilonGreedyOpenList<Entry>::EpsilonGreedyOpenList(const Options &opts) : OpenList<Entry>(opts.get<bool>("pref_only")), rng(utils::parse_rng_from_options(opts)), evaluator(opts.get<shared_ptr<Evaluator>>("eval")), epsilon(opts.get<double>("epsilon")), size(0), next_id(0) { } template<class Entry> Entry EpsilonGreedyOpenList<Entry>::remove_min() { assert(size > 0); if ((*rng)() < epsilon) { int pos = (*rng)(size); heap[pos].h = numeric_limits<int>::min(); adjust_heap_up(heap, pos); } pop_heap(heap.begin(), heap.end(), greater<HeapNode>()); HeapNode heap_node = heap.back(); heap.pop_back(); --size; return heap_node.entry; } template<class Entry> bool EpsilonGreedyOpenList<Entry>::is_dead_end( EvaluationContext &eval_context) const { return eval_context.is_evaluator_value_infinite(evaluator.get()); } template<class Entry> bool EpsilonGreedyOpenList<Entry>::is_reliable_dead_end( EvaluationContext &eval_context) const { return is_dead_end(eval_context) && evaluator->dead_ends_are_reliable(); } template<class Entry> void EpsilonGreedyOpenList<Entry>::get_path_dependent_evaluators( set<Evaluator *> &evals) { evaluator->get_path_dependent_evaluators(evals); } template<class Entry> bool EpsilonGreedyOpenList<Entry>::empty() const { return size == 0; } template<class Entry> void EpsilonGreedyOpenList<Entry>::clear() { heap.clear(); size = 0; next_id = 0; } EpsilonGreedyOpenListFactory::EpsilonGreedyOpenListFactory( const Options &options) : options(options) { } unique_ptr<StateOpenList> EpsilonGreedyOpenListFactory::create_state_open_list() { return utils::make_unique_ptr<EpsilonGreedyOpenList<StateOpenListEntry>>(options); } unique_ptr<EdgeOpenList> EpsilonGreedyOpenListFactory::create_edge_open_list() { return utils::make_unique_ptr<EpsilonGreedyOpenList<EdgeOpenListEntry>>(options); } static shared_ptr<OpenListFactory> _parse(OptionParser &parser) { parser.document_synopsis( "Epsilon-greedy open list", "Chooses an entry uniformly randomly with probability " "'epsilon', otherwise it returns the minimum entry. " "The algorithm is based on" + utils::format_conference_reference( {"Richard Valenzano", "Nathan R. Sturtevant", "Jonathan Schaeffer", "Fan Xie"}, "A Comparison of Knowledge-Based GBFS Enhancements and" " Knowledge-Free Exploration", "http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7943/8066", "Proceedings of the Twenty-Fourth International Conference" " on Automated Planning and Scheduling (ICAPS 2014)", "375-379", "AAAI Press", "2014")); parser.add_option<shared_ptr<Evaluator>>("eval", "evaluator"); parser.add_option<bool>( "pref_only", "insert only nodes generated by preferred operators", "false"); parser.add_option<double>( "epsilon", "probability for choosing the next entry randomly", "0.2", Bounds("0.0", "1.0")); utils::add_rng_options(parser); Options opts = parser.parse(); if (parser.dry_run()) { return nullptr; } else { return make_shared<EpsilonGreedyOpenListFactory>(opts); } } static Plugin<OpenListFactory> _plugin("epsilon_greedy", _parse); }
5,716
C++
28.776042
86
0.655003
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/open_lists/epsilon_greedy_open_list.h
#ifndef OPEN_LISTS_EPSILON_GREEDY_OPEN_LIST_H #define OPEN_LISTS_EPSILON_GREEDY_OPEN_LIST_H #include "../open_list_factory.h" #include "../option_parser_util.h" /* Epsilon-greedy open list based on Valenzano et al. (ICAPS 2014). With probability epsilon the next entry is selected uniformly randomly, otherwise the minimum entry is chosen. While the original implementation by Valenzano et al. is based on buckets (personal communication with the authors), this implementation stores entries in a heap. It is usually desirable to let open lists break ties in FIFO order. When using a heap, this can be achieved without using significantly more time by assigning increasing IDs to new entries and using the IDs as tiebreakers for entries with identical values. On the other hand, FIFO tiebreaking induces a substantial worst-case runtime penalty for bucket-based implementations. In the table below we list the worst-case time complexities for the discussed implementation strategies. n: number of entries m: number of buckets Buckets Buckets (no FIFO) Heap Insert entry O(log(m)) O(log(m)) O(log(n)) Remove random entry O(m + n) O(m) O(log(n)) Remove minimum entry O(log(m)) O(log(m)) O(log(n)) These results assume that the buckets are implemented as deques and are stored in a sorted dictionary, mapping from evaluator values to buckets. For inserting a new entry and removing the minimum entry the bucket-based implementations need to find the correct bucket (O(log(m))) and can then push or pop from one end of the deque (O(1)). For returning a random entry, bucket-based implementations need to loop over all buckets (O(m)) to find the one that contains the randomly selected entry. If FIFO ordering is ignored, one can use swap-and-pop to remove the entry in constant time. Otherwise, the removal is linear in the number of entries in the bucket (O(n), since there could be only one bucket). */ namespace epsilon_greedy_open_list { class EpsilonGreedyOpenListFactory : public OpenListFactory { Options options; public: explicit EpsilonGreedyOpenListFactory(const Options &options); virtual ~EpsilonGreedyOpenListFactory() override = default; virtual std::unique_ptr<StateOpenList> create_state_open_list() override; virtual std::unique_ptr<EdgeOpenList> create_edge_open_list() override; }; } #endif
2,574
C
43.396551
77
0.707848
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/open_lists/alternation_open_list.cc
#include "alternation_open_list.h" #include "../open_list.h" #include "../option_parser.h" #include "../plugin.h" #include "../utils/memory.h" #include "../utils/system.h" #include <cassert> #include <memory> #include <vector> using namespace std; using utils::ExitCode; namespace alternation_open_list { template<class Entry> class AlternationOpenList : public OpenList<Entry> { vector<unique_ptr<OpenList<Entry>>> open_lists; vector<int> priorities; const int boost_amount; protected: virtual void do_insertion(EvaluationContext &eval_context, const Entry &entry) override; public: explicit AlternationOpenList(const Options &opts); virtual ~AlternationOpenList() override = default; virtual Entry remove_min() override; virtual bool empty() const override; virtual void clear() override; virtual void boost_preferred() override; virtual void get_path_dependent_evaluators( set<Evaluator *> &evals) override; virtual bool is_dead_end( EvaluationContext &eval_context) const override; virtual bool is_reliable_dead_end( EvaluationContext &eval_context) const override; }; template<class Entry> AlternationOpenList<Entry>::AlternationOpenList(const Options &opts) : boost_amount(opts.get<int>("boost")) { vector<shared_ptr<OpenListFactory>> open_list_factories( opts.get_list<shared_ptr<OpenListFactory>>("sublists")); open_lists.reserve(open_list_factories.size()); for (const auto &factory : open_list_factories) open_lists.push_back(factory->create_open_list<Entry>()); priorities.resize(open_lists.size(), 0); } template<class Entry> void AlternationOpenList<Entry>::do_insertion( EvaluationContext &eval_context, const Entry &entry) { for (const auto &sublist : open_lists) sublist->insert(eval_context, entry); } template<class Entry> Entry AlternationOpenList<Entry>::remove_min() { int best = -1; for (size_t i = 0; i < open_lists.size(); ++i) { if (!open_lists[i]->empty() && (best == -1 || priorities[i] < priorities[best])) { best = i; } } assert(best != -1); const auto &best_list = open_lists[best]; assert(!best_list->empty()); ++priorities[best]; return best_list->remove_min(); } template<class Entry> bool AlternationOpenList<Entry>::empty() const { for (const auto &sublist : open_lists) if (!sublist->empty()) return false; return true; } template<class Entry> void AlternationOpenList<Entry>::clear() { for (const auto &sublist : open_lists) sublist->clear(); } template<class Entry> void AlternationOpenList<Entry>::boost_preferred() { for (size_t i = 0; i < open_lists.size(); ++i) if (open_lists[i]->only_contains_preferred_entries()) priorities[i] -= boost_amount; } template<class Entry> void AlternationOpenList<Entry>::get_path_dependent_evaluators( set<Evaluator *> &evals) { for (const auto &sublist : open_lists) sublist->get_path_dependent_evaluators(evals); } template<class Entry> bool AlternationOpenList<Entry>::is_dead_end( EvaluationContext &eval_context) const { // If one sublist is sure we have a dead end, return true. if (is_reliable_dead_end(eval_context)) return true; // Otherwise, return true if all sublists agree this is a dead-end. for (const auto &sublist : open_lists) if (!sublist->is_dead_end(eval_context)) return false; return true; } template<class Entry> bool AlternationOpenList<Entry>::is_reliable_dead_end( EvaluationContext &eval_context) const { for (const auto &sublist : open_lists) if (sublist->is_reliable_dead_end(eval_context)) return true; return false; } AlternationOpenListFactory::AlternationOpenListFactory(const Options &options) : options(options) { } unique_ptr<StateOpenList> AlternationOpenListFactory::create_state_open_list() { return utils::make_unique_ptr<AlternationOpenList<StateOpenListEntry>>(options); } unique_ptr<EdgeOpenList> AlternationOpenListFactory::create_edge_open_list() { return utils::make_unique_ptr<AlternationOpenList<EdgeOpenListEntry>>(options); } static shared_ptr<OpenListFactory> _parse(OptionParser &parser) { parser.document_synopsis("Alternation open list", "alternates between several open lists."); parser.add_list_option<shared_ptr<OpenListFactory>>( "sublists", "open lists between which this one alternates"); parser.add_option<int>( "boost", "boost value for contained open lists that are restricted " "to preferred successors", "0"); Options opts = parser.parse(); opts.verify_list_non_empty<shared_ptr<OpenListFactory>>("sublists"); if (parser.dry_run()) return nullptr; else return make_shared<AlternationOpenListFactory>(opts); } static Plugin<OpenListFactory> _plugin("alt", _parse); }
5,060
C++
29.305389
84
0.674901
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/open_lists/type_based_open_list.h
#ifndef OPEN_LISTS_TYPE_BASED_OPEN_LIST_H #define OPEN_LISTS_TYPE_BASED_OPEN_LIST_H #include "../open_list_factory.h" #include "../option_parser_util.h" /* Type-based open list based on Xie et al. (AAAI 2014; see detailed reference in plug-in documentation). The original implementation uses a std::map for storing and looking up buckets. Our implementation stores the buckets in a std::vector and uses a std::unordered_map for looking up indexes in the vector. In the table below we list the amortized worst-case time complexities for the original implementation and the version below. n = number of entries m = number of buckets Original Code below Insert entry O(log(m)) O(1) Remove entry O(m) O(1) # both use swap+pop */ namespace type_based_open_list { class TypeBasedOpenListFactory : public OpenListFactory { Options options; public: explicit TypeBasedOpenListFactory(const Options &options); virtual ~TypeBasedOpenListFactory() override = default; virtual std::unique_ptr<StateOpenList> create_state_open_list() override; virtual std::unique_ptr<EdgeOpenList> create_edge_open_list() override; }; } #endif
1,243
C
30.099999
77
0.69992
makolon/hsr_isaac_tamp/hsr_tamp/downward/src/search/open_lists/pareto_open_list.cc
#include "pareto_open_list.h" #include "../evaluator.h" #include "../open_list.h" #include "../option_parser.h" #include "../plugin.h" #include "../utils/hash.h" #include "../utils/memory.h" #include "../utils/rng.h" #include "../utils/rng_options.h" #include <cassert> #include <deque> #include <set> #include <unordered_map> #include <utility> #include <vector> using namespace std; namespace pareto_open_list { template<class Entry> class ParetoOpenList : public OpenList<Entry> { shared_ptr<utils::RandomNumberGenerator> rng; using Bucket = deque<Entry>; using KeyType = vector<int>; using BucketMap = utils::HashMap<KeyType, Bucket>; using KeySet = set<KeyType>; BucketMap buckets; KeySet nondominated; bool state_uniform_selection; vector<shared_ptr<Evaluator>> evaluators; bool dominates(const KeyType &v1, const KeyType &v2) const; bool is_nondominated( const KeyType &vec, KeySet &domination_candidates) const; void remove_key(const KeyType &key); protected: virtual void do_insertion(EvaluationContext &eval_context, const Entry &entry) override; public: explicit ParetoOpenList(const Options &opts); virtual ~ParetoOpenList() override = default; virtual Entry remove_min() override; virtual bool empty() const override; virtual void clear() override; virtual void get_path_dependent_evaluators(set<Evaluator *> &evals) override; virtual bool is_dead_end( EvaluationContext &eval_context) const override; virtual bool is_reliable_dead_end( EvaluationContext &eval_context) const override; static OpenList<Entry> *_parse(OptionParser &p); }; template<class Entry> ParetoOpenList<Entry>::ParetoOpenList(const Options &opts) : OpenList<Entry>(opts.get<bool>("pref_only")), rng(utils::parse_rng_from_options(opts)), state_uniform_selection(opts.get<bool>("state_uniform_selection")), evaluators(opts.get_list<shared_ptr<Evaluator>>("evals")) { } template<class Entry> bool ParetoOpenList<Entry>::dominates( const KeyType &v1, const KeyType &v2) const { assert(v1.size() == v2.size()); bool are_different = false; for (size_t i = 0; i < v1.size(); ++i) { if (v1[i] > v2[i]) return false; else if (v1[i] < v2[i]) are_different = true; } return are_different; } template<class Entry> bool ParetoOpenList<Entry>::is_nondominated( const KeyType &vec, KeySet &domination_candidates) const { for (const KeyType &candidate : domination_candidates) if (dominates(candidate, vec)) return false; return true; } template<class Entry> void ParetoOpenList<Entry>::remove_key(const KeyType &key) { /* We must copy the key because it is likely to live inside the data structures from which we remove it here and hence becomes invalid at that point. */ vector<int> copied_key(key); nondominated.erase(copied_key); buckets.erase(copied_key); KeySet candidates; for (const auto &bucket_pair : buckets) { const KeyType &bucket_key = bucket_pair.first; /* If the estimate vector of the bucket is not already in the set of nondominated estimate vectors and the vector was previously dominated by key and the estimate vector is not dominated by any vector from the set of nondominated vectors, we add it to the candidates. */ if (!nondominated.count(bucket_key) && dominates(copied_key, bucket_key) && is_nondominated(bucket_key, nondominated)) candidates.insert(bucket_key); } for (const KeyType &candidate : candidates) if (is_nondominated(candidate, candidates)) nondominated.insert(candidate); } template<class Entry> void ParetoOpenList<Entry>::do_insertion( EvaluationContext &eval_context, const Entry &entry) { vector<int> key; key.reserve(evaluators.size()); for (const shared_ptr<Evaluator> &evaluator : evaluators) key.push_back(eval_context.get_evaluator_value_or_infinity(evaluator.get())); Bucket &bucket = buckets[key]; bool newkey = bucket.empty(); bucket.push_back(entry); if (newkey && is_nondominated(key, nondominated)) { /* Delete previously nondominated keys that are now dominated by key. Note: this requires that nondominated is a "normal" set (no hash set) because then iterators are not invalidated by erase(it). */ auto it = nondominated.begin(); while (it != nondominated.end()) { if (dominates(key, *it)) { auto tmp_it = it; ++it; nondominated.erase(tmp_it); } else { ++it; } } // Insert new key. nondominated.insert(key); } } template<class Entry> Entry ParetoOpenList<Entry>::remove_min() { typename KeySet::iterator selected = nondominated.begin(); int seen = 0; for (typename KeySet::iterator it = nondominated.begin(); it != nondominated.end(); ++it) { int numerator; if (state_uniform_selection) numerator = it->size(); else numerator = 1; seen += numerator; if ((*rng)(seen) < numerator) selected = it; } Bucket &bucket = buckets[*selected]; Entry result = bucket.front(); bucket.pop_front(); if (bucket.empty()) remove_key(*selected); return result; } template<class Entry> bool ParetoOpenList<Entry>::empty() const { return nondominated.empty(); } template<class Entry> void ParetoOpenList<Entry>::clear() { buckets.clear(); nondominated.clear(); } template<class Entry> void ParetoOpenList<Entry>::get_path_dependent_evaluators( set<Evaluator *> &evals) { for (const shared_ptr<Evaluator> &evaluator : evaluators) evaluator->get_path_dependent_evaluators(evals); } template<class Entry> bool ParetoOpenList<Entry>::is_dead_end( EvaluationContext &eval_context) const { // TODO: Document this behaviour. // If one safe heuristic detects a dead end, return true. if (is_reliable_dead_end(eval_context)) return true; // Otherwise, return true if all heuristics agree this is a dead-end. for (const shared_ptr<Evaluator> &evaluator : evaluators) if (!eval_context.is_evaluator_value_infinite(evaluator.get())) return false; return true; } template<class Entry> bool ParetoOpenList<Entry>::is_reliable_dead_end( EvaluationContext &eval_context) const { for (const shared_ptr<Evaluator> &evaluator : evaluators) if (eval_context.is_evaluator_value_infinite(evaluator.get()) && evaluator->dead_ends_are_reliable()) return true; return false; } ParetoOpenListFactory::ParetoOpenListFactory( const Options &options) : options(options) { } unique_ptr<StateOpenList> ParetoOpenListFactory::create_state_open_list() { return utils::make_unique_ptr<ParetoOpenList<StateOpenListEntry>>(options); } unique_ptr<EdgeOpenList> ParetoOpenListFactory::create_edge_open_list() { return utils::make_unique_ptr<ParetoOpenList<EdgeOpenListEntry>>(options); } static shared_ptr<OpenListFactory> _parse(OptionParser &parser) { parser.document_synopsis( "Pareto open list", "Selects one of the Pareto-optimal (regarding the sub-evaluators) " "entries for removal."); parser.add_list_option<shared_ptr<Evaluator>>("evals", "evaluators"); parser.add_option<bool>( "pref_only", "insert only nodes generated by preferred operators", "false"); parser.add_option<bool>( "state_uniform_selection", "When removing an entry, we select a non-dominated bucket " "and return its oldest entry. If this option is false, we select " "uniformly from the non-dominated buckets; if the option is true, " "we weight the buckets with the number of entries.", "false"); utils::add_rng_options(parser); Options opts = parser.parse(); if (parser.dry_run()) return nullptr; else return make_shared<ParetoOpenListFactory>(opts); } static Plugin<OpenListFactory> _plugin("pareto", _parse); }
8,406
C++
30.369403
85
0.652629
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue880/parser.py
#! /usr/bin/env python import logging import re from lab.parser import Parser class CommonParser(Parser): def add_difference(self, diff, val1, val2): def diff_func(content, props): if props.get(val1) is None or props.get(val2) is None: diff_val = None else: diff_val = props.get(val1) - props.get(val2) props[diff] = diff_val self.add_function(diff_func) def _get_flags(self, flags_string): flags = 0 for char in flags_string: flags |= getattr(re, char) return flags def add_repeated_pattern( self, name, regex, file="run.log", required=False, type=int, flags=""): def find_all_occurences(content, props): matches = re.findall(regex, content, flags=self._get_flags(flags)) if required and not matches: logging.error("Pattern {0} not found in file {1}".format(regex, file)) props[name] = [type(m) for m in matches] self.add_function(find_all_occurences, file=file) def add_pattern(self, name, regex, file="run.log", required=False, type=int, flags=""): Parser.add_pattern(self, name, regex, file=file, required=required, type=type, flags=flags) def add_bottom_up_pattern(self, name, regex, file="run.log", required=True, type=int, flags=""): def search_from_bottom(content, props): reversed_content = "\n".join(reversed(content.splitlines())) match = re.search(regex, reversed_content, flags=self._get_flags(flags)) if required and not match: logging.error("Pattern {0} not found in file {1}".format(regex, file)) if match: props[name] = type(match.group(1)) self.add_function(search_from_bottom, file=file) def no_search(content, props): if "search_start_time" not in props: error = props.get("error") if error is not None and error != "incomplete-search-found-no-plan": props["error"] = "no-search-due-to-" + error REFINEMENT_ATTRIBUTES = [ ("time_for_finding_traces", r"Time for finding abstract traces: (.+)s"), ("time_for_finding_flaws", r"Time for finding flaws: (.+)s"), ("time_for_splitting_states", r"Time for splitting states: (.+)s"), ] def compute_total_times(content, props): for attribute, pattern in REFINEMENT_ATTRIBUTES: props["total_" + attribute] = sum(props[attribute]) def add_time_analysis(content, props): init_time = props.get("init_time") if not init_time: return parts = [] parts.append("{init_time:.2f}:".format(**props)) for attribute, pattern in REFINEMENT_ATTRIBUTES: time = props["total_" + attribute] relative_time = time / init_time print time, type(time) parts.append("{:.2f} ({:.2f})".format(time, relative_time)) props["time_analysis"] = " ".join(parts) def main(): parser = CommonParser() parser.add_pattern("search_start_time", r"\[g=0, 1 evaluated, 0 expanded, t=(.+)s, \d+ KB\]", type=float) parser.add_pattern("search_start_memory", r"\[g=0, 1 evaluated, 0 expanded, t=.+s, (\d+) KB\]", type=int) parser.add_pattern("init_time", r"Time for initializing additive Cartesian heuristic: (.+)s", type=float) parser.add_pattern("cartesian_states", r"^Cartesian states: (\d+)\n", type=int) for attribute, pattern in REFINEMENT_ATTRIBUTES: parser.add_repeated_pattern(attribute, pattern, type=float, required=False) parser.add_function(no_search) parser.add_function(compute_total_times) parser.add_function(add_time_analysis) parser.parse() if __name__ == "__main__": main()
3,743
Python
34.657143
109
0.617686
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue880/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport from relativescatter import RelativeScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'agricola-opt18-strips', 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'data-network-opt18-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'organic-synthesis-opt18-strips', 'organic-synthesis-split-opt18-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'petri-net-alignment-opt18-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'snake-opt18-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'spider-opt18-strips', 'storage', 'termes-opt18-strips', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'agricola-sat18-strips', 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'caldera-sat18-adl', 'caldera-split-sat18-adl', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'data-network-sat18-strips', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'flashfill-sat18-adl', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'nurikabe-sat18-adl', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'organic-synthesis-sat18-strips', 'organic-synthesis-split-sat18-strips', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'settlers-sat18-adl', 'snake-sat18-strips', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'spider-sat18-strips', 'storage', 'termes-sat18-strips', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return node.endswith(".scicore.unibas.ch") or node.endswith(".cluster.bc2.ch") def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["depot:p01.pddl", "gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "planner_memory", "planner_time", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step( 'publish-absolute-report', subprocess.call, ['publish', outfile]) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step("make-comparison-tables", make_comparison_tables) self.add_step( "publish-comparison-tables", publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if relative: report_class = RelativeScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: report_class = ScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "{}-{}".format(rev1, config_nick) algo2 = "{}-{}".format(rev2, config_nick) report = report_class( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(step_name, make_scatter_plots)
14,786
Python
36.435443
82
0.618355
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue880/v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] BUILD = "release64" REVISIONS = ["issue880-base", "issue880-v1"] DRIVER_OPTIONS = ["--build", BUILD] CONFIGS = [ IssueConfig( nick + "-" + max_transitions_nick, config, build_options=[BUILD], driver_options=DRIVER_OPTIONS) for max_transitions_nick, max_transitions in [("1M", 1000000), ("10M", 10000000)] for nick, config in [ ("cegar-original", ["--search", "astar(cegar(subtasks=[original()], max_transitions={max_transitions}))".format(**locals())]), ("cegar-landmarks-goals", ["--search", "astar(cegar(max_transitions={max_transitions}))".format(**locals())]), ] ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = [ #"depot:p02.pddl", "gripper:prob01.pddl"] ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) #exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_parser(os.path.join(DIR, "parser.py")) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') REFINEMENT_ATTRIBUTES = [ "time_for_finding_traces", "time_for_finding_flaws", "time_for_splitting_states", ] attributes = ( IssueExperiment.DEFAULT_TABLE_ATTRIBUTES + ["search_start_memory", "init_time", "time_analysis"] + REFINEMENT_ATTRIBUTES + ["total_" + attr for attr in REFINEMENT_ATTRIBUTES]) #exp.add_absolute_report_step(attributes=attributes) exp.add_comparison_table_step(attributes=attributes) if len(REVISIONS) == 2: for attribute in ["init_time", "expansions_until_last_jump", "total_time_for_splitting_states", "total_time_for_finding_traces"]: for config in CONFIGS: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_algorithm=["{}-{}".format(rev, config.nick) for rev in REVISIONS], get_category=lambda run1, run2: run1.get("domain")), outfile="{}-{}-{}-{}-{}.png".format(exp.name, attribute, config.nick, *REVISIONS)) exp.run_steps()
2,796
Python
33.109756
134
0.670601
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue880/v2-max-transitions.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] BUILD = "release64" REVISIONS = ["issue880-base", "issue880-v2"] DRIVER_OPTIONS = ["--build", BUILD] CONFIGS = [ IssueConfig( "{nick}-{million_transitions}M".format(**locals()), config, build_options=[BUILD], driver_options=DRIVER_OPTIONS) for million_transitions in [1, 2, 5, 10] for nick, config in [ ("cegar-original", ["--search", "astar(cegar(subtasks=[original()], max_transitions={max_transitions}))".format(max_transitions=million_transitions * 10**6)]), ("cegar-landmarks-goals", ["--search", "astar(cegar(max_transitions={max_transitions}))".format(max_transitions=million_transitions * 10**6)]), ] ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = [ "depot:p01.pddl", "gripper:prob01.pddl"] ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) #exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_parser(os.path.join(DIR, "parser.py")) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') REFINEMENT_ATTRIBUTES = [ "time_for_finding_traces", "time_for_finding_flaws", "time_for_splitting_states", ] attributes = ( IssueExperiment.DEFAULT_TABLE_ATTRIBUTES + ["search_start_memory", "init_time", "time_analysis"] + ["total_" + attr for attr in REFINEMENT_ATTRIBUTES]) #exp.add_absolute_report_step(attributes=attributes) exp.add_comparison_table_step(attributes=attributes) if len(REVISIONS) == 2: for attribute in ["init_time", "expansions_until_last_jump"]: for config in CONFIGS: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_algorithm=["{}-{}".format(rev, config.nick) for rev in REVISIONS], get_category=lambda run1, run2: run1.get("domain")), outfile="{}-{}-{}-{}-{}.png".format(exp.name, attribute, config.nick, *REVISIONS)) exp.run_steps()
2,741
Python
32.851851
167
0.673112
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue880/v2-900s.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] BUILD = "release64" REVISIONS = ["issue880-base", "issue880-v2"] DRIVER_OPTIONS = ["--build", BUILD] CONFIGS = [ IssueConfig( nick, config, build_options=[BUILD], driver_options=DRIVER_OPTIONS) for nick, config in [ ("cegar-original-900s", ["--search", "astar(cegar(subtasks=[original()], max_transitions=infinity, max_time=900))".format(**locals())]), ] ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_1", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = [ "depot:p01.pddl", "gripper:prob01.pddl"] ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) #exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_parser(os.path.join(DIR, "parser.py")) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') REFINEMENT_ATTRIBUTES = [ "time_for_finding_traces", "time_for_finding_flaws", "time_for_splitting_states", ] attributes = ( IssueExperiment.DEFAULT_TABLE_ATTRIBUTES + ["search_start_memory", "init_time", "time_analysis"] + REFINEMENT_ATTRIBUTES + ["total_" + attr for attr in REFINEMENT_ATTRIBUTES]) #exp.add_absolute_report_step(attributes=attributes) exp.add_comparison_table_step(attributes=attributes) if len(REVISIONS) == 2: for attribute in ["init_time", "expansions_until_last_jump"]: for config in CONFIGS: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_algorithm=["{}-{}".format(rev, config.nick) for rev in REVISIONS], get_category=lambda run1, run2: run1.get("domain")), outfile="{}-{}-{}-{}-{}.png".format(exp.name, attribute, config.nick, *REVISIONS)) exp.run_steps()
2,503
Python
30.3
144
0.671594
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue880/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter( axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows a relative comparison of two algorithms with regard to the given attribute. The attribute value of algorithm 1 is shown on the x-axis and the relation to the value of algorithm 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['algorithm'] == self.algorithms[0] and run2['algorithm'] == self.algorithms[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if not val1 or not val2: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.algorithms[0], val1) assert val2 > 0, (domain, problem, self.algorithms[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlot uses log-scaling on the x-axis by default. PlotReport._set_scales( self, xscale or self.attribute.scale or 'log', 'log')
3,867
Python
35.490566
78
0.598397
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue880/v2.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] BUILD = "release64" REVISIONS = ["issue880-v1", "issue880-v2"] DRIVER_OPTIONS = ["--build", BUILD] CONFIGS = [ IssueConfig( nick + "-" + max_transitions_nick, config, build_options=[BUILD], driver_options=DRIVER_OPTIONS) for max_transitions_nick, max_transitions in [("1M", 1000000)] for nick, config in [ ("cegar-original", ["--search", "astar(cegar(subtasks=[original()], max_transitions={max_transitions}))".format(**locals())]), #("cegar-landmarks-goals", ["--search", "astar(cegar(max_transitions={max_transitions}))".format(**locals())]), ] ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = [ "depot:p01.pddl", "gripper:prob01.pddl"] ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) #exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_parser(os.path.join(DIR, "parser.py")) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') REFINEMENT_ATTRIBUTES = [ "time_for_finding_traces", "time_for_finding_flaws", "time_for_splitting_states", ] attributes = ( IssueExperiment.DEFAULT_TABLE_ATTRIBUTES + ["search_start_memory", "init_time", "time_analysis"] + REFINEMENT_ATTRIBUTES + ["total_" + attr for attr in REFINEMENT_ATTRIBUTES]) #exp.add_absolute_report_step(attributes=attributes) exp.add_comparison_table_step(attributes=attributes) if len(REVISIONS) == 2: for attribute in ["init_time", "expansions_until_last_jump"]: for config in CONFIGS: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_algorithm=["{}-{}".format(rev, config.nick) for rev in REVISIONS], get_category=lambda run1, run2: run1.get("domain")), outfile="{}-{}-{}-{}-{}.png".format(exp.name, attribute, config.nick, *REVISIONS)) exp.run_steps()
2,707
Python
32.02439
134
0.668637
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue635/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab.steps import Step from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareConfigsReport from downward.reports.scatter import ScatterPlotReport from relativescatter import RelativeScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ( "cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step(Step( 'publish-absolute-report', subprocess.call, ['publish', outfile])) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = CompareConfigsReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step(Step("make-comparison-tables", make_comparison_tables)) self.add_step(Step( "publish-comparison-tables", publish_comparison_tables)) def add_scatter_plot_step(self, relative=False, attributes=None): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if relative: report_class = RelativeScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: report_class = ScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "{}-{}".format(rev1, config_nick) algo2 = "{}-{}".format(rev2, config_nick) report = report_class( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(Step(step_name, make_scatter_plots))
11,446
Python
33.068452
79
0.597152
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue635/v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, MaiaEnvironment from common_setup import IssueConfig, IssueExperiment, is_test_run BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue635-base", "issue635-v1"] CONFIGS = [ IssueConfig( heuristic, ["--search", "astar({})".format(heuristic)], driver_options=["--search-time-limit", "10m"]) for heuristic in ["hm(m=2)", "ipdb()", "cea()", "cg()"] ] SUITE = [ 'airport', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'depot', 'driverlog', 'elevators-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'parcprinter-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-opt11-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-opt11-strips', 'sokoban-opt11-strips', 'storage', 'tetris-opt14-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt14-strips', 'woodworking-opt11-strips', 'zenotravel'] ENVIRONMENT = MaiaEnvironment( priority=0, email="[email protected]") if is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_absolute_report_step() exp.add_comparison_table_step() exp.add_scatter_plot_step(relative=True, attributes=["memory", "total_time"]) exp()
1,814
Python
33.245282
77
0.684675
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue635/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter( axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows how a specific attribute in two configurations. The attribute value in config 1 is shown on the x-axis and the relation to the value in config 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['config'] == self.configs[0] and run2['config'] == self.configs[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.configs[0], val1) assert val2 > 0, (domain, problem, self.configs[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlots use log-scaling on the x-axis by default. default_xscale = 'log' if self.attribute and self.attribute in self.LINEAR: default_xscale = 'linear' PlotReport._set_scales(self, xscale or default_xscale, 'log')
3,921
Python
35.654205
78
0.597042
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue635/v3.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, MaiaEnvironment from common_setup import IssueConfig, IssueExperiment, is_test_run BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue635-base", "issue635-v3"] CONFIGS = [ IssueConfig( heuristic, ["--search", "astar({})".format(heuristic)], driver_options=["--search-time-limit", "10m"]) for heuristic in ["hm(m=2)"] ] SUITE = [ 'airport', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'depot', 'driverlog', 'elevators-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'parcprinter-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-opt11-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-opt11-strips', 'sokoban-opt11-strips', 'storage', 'tetris-opt14-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt14-strips', 'woodworking-opt11-strips', 'zenotravel'] ENVIRONMENT = MaiaEnvironment( priority=0, email="[email protected]") if is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_absolute_report_step() exp.add_comparison_table_step() exp.add_scatter_plot_step(relative=True, attributes=["memory", "total_time"]) exp()
1,787
Python
32.735848
77
0.689983
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue635/v2.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, MaiaEnvironment from common_setup import IssueConfig, IssueExperiment, is_test_run BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue635-base", "issue635-v2"] CONFIGS = [ IssueConfig( heuristic, ["--search", "astar({})".format(heuristic)], driver_options=["--search-time-limit", "10m"]) for heuristic in ["hm(m=2)"] ] SUITE = [ 'airport', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'depot', 'driverlog', 'elevators-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'parcprinter-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-opt11-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-opt11-strips', 'sokoban-opt11-strips', 'storage', 'tetris-opt14-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt14-strips', 'woodworking-opt11-strips', 'zenotravel'] ENVIRONMENT = MaiaEnvironment( priority=0, email="[email protected]") if is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_absolute_report_step() exp.add_comparison_table_step() exp.add_scatter_plot_step(relative=True, attributes=["memory", "total_time"]) exp()
1,787
Python
32.735848
77
0.689983
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v4-single-cegar-allow-merging-options.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from average_report import AverageAlgorithmReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v4"] random_seed=2018 CONFIGS = [ ### cpdbs IssueConfig('cpdbs-singlecegar-wildcardplans-allowmergingall-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', 'astar(cpdbs(single_cegar(max_refinements=infinity,allow_merging=all_flaws,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={},verbosity=normal)),verbosity=silent)'.format(random_seed)]), IssueConfig('cpdbs-singlecegar-wildcardplans-allowmergingprec-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', 'astar(cpdbs(single_cegar(max_refinements=infinity,allow_merging=precondition_flaws,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={},verbosity=normal)),verbosity=silent)'.format(random_seed)]), IssueConfig('cpdbs-singlecegar-wildcardplans-forbidmerging-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', 'astar(cpdbs(single_cegar(max_refinements=infinity,allow_merging=never,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={},verbosity=normal)),verbosity=silent)'.format(random_seed)]), ### pho IssueConfig('pho-singlecegar-wildcardplans-allowmergingall-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', 'astar(operatorcounting(constraint_generators=[pho_constraints(patterns=single_cegar(max_refinements=infinity,allow_merging=all_flaws,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={},verbosity=normal))]),verbosity=silent)'.format(random_seed)]), IssueConfig('pho-singlecegar-wildcardplans-allowmergingprec-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', 'astar(operatorcounting(constraint_generators=[pho_constraints(patterns=single_cegar(max_refinements=infinity,allow_merging=precondition_flaws,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={},verbosity=normal))]),verbosity=silent)'.format(random_seed)]), IssueConfig('pho-singlecegar-wildcardplans-forbidmerging-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', 'astar(operatorcounting(constraint_generators=[pho_constraints(patterns=single_cegar(max_refinements=infinity,allow_merging=never,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={},verbosity=normal))]),verbosity=silent)'.format(random_seed)]), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_parser('v3-parser.py') attributes=exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend([ 'single_cegar_pdbs_solved_without_search', 'single_cegar_pdbs_computation_time', 'single_cegar_pdbs_timed_out', 'single_cegar_pdbs_num_iterations', 'single_cegar_pdbs_collection_num_patterns', 'single_cegar_pdbs_collection_summed_pdb_size', ]) exp.add_absolute_report_step(attributes=attributes) exp.add_comparison_table_step(attributes=attributes) exp.run_steps()
4,453
Python
61.732393
425
0.777229
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v16-v17-ipdb-sys.py
#! /usr/bin/env python3 import itertools import math import os import subprocess from lab.environments import LocalEnvironment, BaselSlurmEnvironment from lab.reports import Attribute from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-base-v2", "issue1007-v16", "issue1007-v17"] random_seed=2018 MAX_TIME=900 if common_setup.is_test_run(): MAX_TIME=2 CONFIGS = [ IssueConfig(f'cpdbs-hillclimbing-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(hillclimbing(max_time={MAX_TIME},pdb_max_size=1000000,collection_max_size=10000000,random_seed={random_seed})),verbosity=silent)']), IssueConfig('cpdbs-sys2', ['--search', 'astar(cpdbs(systematic(pattern_max_size=2)),verbosity=silent)']), IssueConfig('cpdbs-sys3', ['--search', 'astar(cpdbs(systematic(pattern_max_size=3)),verbosity=silent)']), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_parser('cpdbs-parser.py') cpdbs_num_patterns = Attribute('cpdbs_num_patterns', absolute=False, min_wins=True) cpdbs_total_pdb_size = Attribute('cpdbs_total_pdb_size', absolute=False, min_wins=True) cpdbs_computation_time = Attribute('cpdbs_computation_time', absolute=False, min_wins=True) score_cpdbs_computation_time = Attribute('score_cpdbs_computation_time', absolute=True, min_wins=False) attributes = [ cpdbs_num_patterns, cpdbs_total_pdb_size, cpdbs_computation_time, score_cpdbs_computation_time, ] attributes.extend(exp.DEFAULT_TABLE_ATTRIBUTES) attributes.append('initial_h_value') def add_computation_time_score(run): """ Convert cegar/cpdbs computation time into scores in the range [0, 1]. Best possible performance in a task is counted as 1, while failure to construct the heuristic and worst performance are counted as 0. """ def log_score(value, min_bound, max_bound): assert min_bound < max_bound if value is None: return 0 value = max(value, min_bound) value = min(value, max_bound) raw_score = math.log(value) - math.log(max_bound) best_raw_score = math.log(min_bound) - math.log(max_bound) return raw_score / best_raw_score run['score_cpdbs_computation_time'] = log_score(run.get('cpdbs_computation_time'), min_bound=1.0, max_bound=MAX_TIME) return run exp.add_absolute_report_step(attributes=attributes,filter=[add_computation_time_score]) exp.add_fetcher('data/issue1007-v15-ipdb-sys-eval', filter_algorithm=[ f'issue1007-v15-cpdbs-hillclimbing-pdb1m-pdbs10m-t100-s{random_seed}', f'issue1007-v15-cpdbs-sys2', f'issue1007-v15-cpdbs-sys3', ],merge=True) exp.add_comparison_table_step_for_revision_pairs( revision_pairs=[ ("issue1007-v15", "issue1007-v16"), ("issue1007-v16", "issue1007-v17"), ("issue1007-v15", "issue1007-v17"), ("issue1007-base-v2", "issue1007-v16"), ("issue1007-base-v2", "issue1007-v17"), ], attributes=attributes, filter=[add_computation_time_score], ) exp.run_steps()
4,860
Python
39.173553
808
0.717695
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v4.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v4"] random_seed=2018 CONFIGS = [ ### single cegar IssueConfig('cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', 'astar(cpdbs(single_cegar(max_refinements=infinity,allow_merging=all_flaws,wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={},verbosity=normal)),verbosity=silent)'.format(random_seed)]), IssueConfig('cpdbs-singlecegar-wildcardplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', 'astar(cpdbs(single_cegar(max_refinements=infinity,allow_merging=all_flaws,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={},verbosity=normal)),verbosity=silent)'.format(random_seed)]), ### multiple cegar IssueConfig('cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', "astar(cpdbs(multiple_cegar(max_refinements=infinity,allow_merging=all_flaws,wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,initial_random_seed={},total_collection_max_size=10000000,total_time_limit=100,stagnation_limit=infinity,blacklist_trigger_time=1,blacklist_on_stagnation=false,verbosity=silent)),verbosity=silent)".format(random_seed)]), IssueConfig('cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{}'.format(random_seed), ['--search', "astar(cpdbs(multiple_cegar(max_refinements=infinity,allow_merging=all_flaws,wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,initial_random_seed={},total_collection_max_size=10000000,total_time_limit=100,stagnation_limit=20,blacklist_trigger_time=0.75,blacklist_on_stagnation=true,verbosity=silent)),verbosity=silent)".format(random_seed)]), IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', "astar(cpdbs(multiple_cegar(max_refinements=infinity,allow_merging=all_flaws,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,initial_random_seed={},total_collection_max_size=10000000,total_time_limit=100,stagnation_limit=infinity,blacklist_trigger_time=1,blacklist_on_stagnation=false,verbosity=silent)),verbosity=silent)".format(random_seed)]), IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{}'.format(random_seed), ['--search', "astar(cpdbs(multiple_cegar(max_refinements=infinity,allow_merging=all_flaws,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,initial_random_seed={},total_collection_max_size=10000000,total_time_limit=100,stagnation_limit=20,blacklist_trigger_time=0.75,blacklist_on_stagnation=true,verbosity=silent)),verbosity=silent)".format(random_seed)]), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step() exp.run_steps()
4,902
Python
72.179103
808
0.771114
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v14-fixed-seed.py
#! /usr/bin/env python3 import itertools import math import os import subprocess from lab.environments import LocalEnvironment, BaselSlurmEnvironment from lab.reports import Attribute from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v8c", "issue1007-v14"] random_seed=2018 MAX_TIME=100 if common_setup.is_test_run(): MAX_TIME=2 CONFIGS = [ ### ipdb IssueConfig(f'cpdbs-hillclimbing-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(hillclimbing(max_time={MAX_TIME},pdb_max_size=1000000,collection_max_size=10000000,random_seed={random_seed})),verbosity=silent)']), ### single cegar IssueConfig(f'cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(wildcard_plans=false,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)']), IssueConfig(f'cpdbs-singlecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(wildcard_plans=true,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)']), ### multiple cegar IssueConfig(f'cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=infinity,blacklist_trigger_percentage=1,blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=20,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=infinity,blacklist_trigger_percentage=1,blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=20,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)"]), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_parser('cpdbs-parser.py') exp.add_parser('cegar-parser.py') cpdbs_num_patterns = Attribute('cpdbs_num_patterns', absolute=False, min_wins=True) cpdbs_total_pdb_size = Attribute('cpdbs_total_pdb_size', absolute=False, min_wins=True) cpdbs_computation_time = Attribute('cpdbs_computation_time', absolute=False, min_wins=True) score_cpdbs_computation_time = Attribute('score_cpdbs_computation_time', absolute=True, min_wins=False) cegar_num_iterations = Attribute('cegar_num_iterations', absolute=False, min_wins=True) cegar_num_patterns = Attribute('cegar_num_patterns', absolute=False, min_wins=True) cegar_total_pdb_size = Attribute('cegar_total_pdb_size', absolute=False, min_wins=True) cegar_computation_time = Attribute('cegar_computation_time', absolute=False, min_wins=True) score_cegar_computation_time = Attribute('score_cegar_computation_time', absolute=True, min_wins=False) attributes = [ cpdbs_num_patterns, cpdbs_total_pdb_size, cpdbs_computation_time, score_cpdbs_computation_time, cegar_num_iterations, cegar_num_patterns, cegar_total_pdb_size, cegar_computation_time, score_cegar_computation_time, ] attributes.extend(exp.DEFAULT_TABLE_ATTRIBUTES) attributes.append('initial_h_value') def add_computation_time_score(run): """ Convert cegar/cpdbs computation time into scores in the range [0, 1]. Best possible performance in a task is counted as 1, while failure to construct the heuristic and worst performance are counted as 0. """ def log_score(value, min_bound, max_bound): assert min_bound < max_bound if value is None: return 0 value = max(value, min_bound) value = min(value, max_bound) raw_score = math.log(value) - math.log(max_bound) best_raw_score = math.log(min_bound) - math.log(max_bound) return raw_score / best_raw_score run['score_cegar_computation_time'] = log_score(run.get('cegar_computation_time'), min_bound=1.0, max_bound=MAX_TIME) run['score_cpdbs_computation_time'] = log_score(run.get('cpdbs_computation_time'), min_bound=1.0, max_bound=MAX_TIME) return run exp.add_absolute_report_step(attributes=attributes) outfile = os.path.join( exp.eval_dir, f"{exp.name}-{REVISIONS[0]}-{REVISIONS[1]}-compare-hillclimbing.html") name="make-comparison-tables-hillclimbing" exp.add_report( ComparativeReport( [ (f'{REVISIONS[0]}-cpdbs-hillclimbing-pdb1m-pdbs10m-t100-s{random_seed}', f'{REVISIONS[1]}-cpdbs-hillclimbing-pdb1m-pdbs10m-t100-s{random_seed}'), ], attributes=attributes, filter=[add_computation_time_score], ), name=name, outfile=outfile, ) exp.add_step( f"publish-{name}", subprocess.call, ["publish", outfile], ) outfile = os.path.join( exp.eval_dir, f"{exp.name}-{REVISIONS[0]}-{REVISIONS[1]}-compare-cegar.html") name="make-comparison-tables-cegar" exp.add_report( ComparativeReport( [ (f'{REVISIONS[0]}-cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', f'{REVISIONS[1]}-cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}'), (f'{REVISIONS[0]}-cpdbs-singlecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', f'{REVISIONS[1]}-cpdbs-singlecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}'), (f'{REVISIONS[0]}-cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', f'{REVISIONS[1]}-cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}'), (f'{REVISIONS[0]}-cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', f'{REVISIONS[1]}-cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}'), (f'{REVISIONS[0]}-cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', f'{REVISIONS[1]}-cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}'), (f'{REVISIONS[0]}-cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', f'{REVISIONS[1]}-cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}'), ], attributes=attributes, filter=[add_computation_time_score], ), name=name, outfile=outfile, ) exp.add_step( f"publish-{name}", subprocess.call, ["publish", outfile], ) exp.run_steps()
9,274
Python
53.239766
808
0.735497
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v5.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v5"] random_seed=2018 CONFIGS = [ ### single cegar IssueConfig('cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', 'astar(cpdbs(single_cegar(max_refinements=infinity,wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={},verbosity=normal)),verbosity=silent)'.format(random_seed)]), IssueConfig('cpdbs-singlecegar-wildcardplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', 'astar(cpdbs(single_cegar(max_refinements=infinity,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={},verbosity=normal)),verbosity=silent)'.format(random_seed)]), ### multiple cegar IssueConfig('cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', "astar(cpdbs(multiple_cegar(max_refinements=infinity,wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,initial_random_seed={},total_collection_max_size=10000000,total_time_limit=100,stagnation_limit=infinity,blacklist_trigger_time=1,blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)".format(random_seed)]), IssueConfig('cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{}'.format(random_seed), ['--search', "astar(cpdbs(multiple_cegar(max_refinements=infinity,wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,initial_random_seed={},total_collection_max_size=10000000,total_time_limit=100,stagnation_limit=20,blacklist_trigger_time=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)".format(random_seed)]), IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', "astar(cpdbs(multiple_cegar(max_refinements=infinity,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,initial_random_seed={},total_collection_max_size=10000000,total_time_limit=100,stagnation_limit=infinity,blacklist_trigger_time=1,blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)".format(random_seed)]), IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{}'.format(random_seed), ['--search', "astar(cpdbs(multiple_cegar(max_refinements=infinity,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,initial_random_seed={},total_collection_max_size=10000000,total_time_limit=100,stagnation_limit=20,blacklist_trigger_time=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)".format(random_seed)]), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step() exp.add_fetcher('data/issue1007-v4-eval', merge=True) exp._revisions = ["issue1007-v4", "issue1007-v5"] exp.add_comparison_table_step() exp.run_steps()
4,895
Python
67.957746
808
0.768131
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v9-multiple-seeds.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from average_report import AverageAlgorithmReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v8c", "issue1007-v9"] MAX_TIME=20 if common_setup.is_test_run(): MAX_TIME=1 CONFIGS = [] for random_seed in range(2018, 2028): ### ipdb CONFIGS.append(IssueConfig(f'cpdbs-hillclimbing-pdb1m-pdbs10m-t20-s{random_seed}', ['--search', f'astar(cpdbs(hillclimbing(max_time={MAX_TIME},pdb_max_size=1000000,collection_max_size=10000000,random_seed={random_seed})),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])), ### single cegar CONFIGS.append(IssueConfig(f'cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t20-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(wildcard_plans=false,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])) ### multiple cegar CONFIGS.append(IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t20-blacklist0.75-stag4-s{random_seed}', ['--search', f'astar(cpdbs(multiple_cegar(wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},total_max_time={MAX_TIME},stagnation_limit=4,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])) SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step(attributes=['coverage']) exp.add_report( AverageAlgorithmReport( algo_name_suffixes=['-s{}'.format(seed) for seed in range(2018,2028)], attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump', 'score_search_time', 'score_total_time', 'score_memory'], ), outfile=os.path.join(exp.eval_dir, "average", "properties"), name="report-average" ) exp.add_fetcher(os.path.join(exp.eval_dir, 'average'), merge=True) exp._configs = [ IssueConfig('cpdbs-hillclimbing-pdb1m-pdbs10m-t20', []), IssueConfig('cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t20', []), IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t20-blacklist0.75-stag4', []), ] exp.add_comparison_table_step_for_revision_pairs( revision_pairs=[ ("issue1007-v8c", "issue1007-v9"), ], attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump', 'score_search_time', 'score_total_time', 'score_memory'], ) exp.run_steps()
4,494
Python
46.819148
808
0.727414
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v10-fixed-seed.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v8c", "issue1007-v10"] random_seed=2018 MAX_TIME=100 if common_setup.is_test_run(): MAX_TIME=2 CONFIGS = [ ### ipdb IssueConfig(f'cpdbs-hillclimbing-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(hillclimbing(max_time={MAX_TIME},pdb_max_size=1000000,collection_max_size=10000000,random_seed={random_seed})),verbosity=silent)']), ### single cegar IssueConfig(f'cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(wildcard_plans=false,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)']), IssueConfig(f'cpdbs-singlecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(wildcard_plans=true,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)']), ### multiple cegar IssueConfig(f'cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=infinity,blacklist_trigger_percentage=1,blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=20,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=infinity,blacklist_trigger_percentage=1,blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=20,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)"]), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step() exp.add_comparison_table_step() exp.run_steps()
4,870
Python
64.824323
808
0.76345
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v7-v7b-v7c.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from average_report import AverageAlgorithmReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v7", "issue1007-v7b", "issue1007-v7c"] MAX_TIME=20 if common_setup.is_test_run(): MAX_TIME=2 CONFIGS = [] for random_seed in range(2018, 2028): ### single cegar CONFIGS.append(IssueConfig(f'cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t20-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(wildcard_plans=false,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])) ### multiple cegar CONFIGS.append(IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t20-blacklist0.75-stag4-s{random_seed}', ['--search', f'astar(cpdbs(multiple_cegar(wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},total_max_time={MAX_TIME},stagnation_limit=4,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])) SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step(attributes=['coverage']) exp.add_report( AverageAlgorithmReport( algo_name_suffixes=['-s{}'.format(seed) for seed in range(2018,2028)], attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump', 'score_search_time', 'score_total_time', 'score_memory'], ), outfile=os.path.join(exp.eval_dir, "average", "properties"), name="report-average" ) exp.add_fetcher(os.path.join(exp.eval_dir, 'average'), merge=True) exp._configs = [ IssueConfig('cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t20', []), IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t20-blacklist0.75-stag4', []), ] exp.add_comparison_table_step_for_revision_pairs( revision_pairs=[ ("issue1007-v7", "issue1007-v7b"), ("issue1007-v7b", "issue1007-v7c"), ], attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump', 'score_search_time', 'score_total_time', 'score_memory'], ) exp.run_steps()
4,186
Python
45.010989
808
0.72623
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v7-v7b-v7c-fixed-seed.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v7", "issue1007-v7b", "issue1007-v7c"] random_seed=2018 MAX_TIME=100 if common_setup.is_test_run(): MAX_TIME=2 CONFIGS = [ ### single cegar IssueConfig(f'cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(wildcard_plans=false,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)']), IssueConfig(f'cpdbs-singlecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(wildcard_plans=true,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)']), ### multiple cegar IssueConfig(f'cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=infinity,blacklist_trigger_percentage=1,blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=20,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=infinity,blacklist_trigger_percentage=1,blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=20,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)"]), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step() exp.add_comparison_table_step() exp.run_steps()
4,639
Python
64.352112
808
0.765036
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'agricola-opt18-strips', 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'data-network-opt18-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'organic-synthesis-opt18-strips', 'organic-synthesis-split-opt18-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways', 'pegsol-08-strips', 'pegsol-opt11-strips', 'petri-net-alignment-opt18-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'snake-opt18-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'spider-opt18-strips', 'storage', 'termes-opt18-strips', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'agricola-sat18-strips', 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'caldera-sat18-adl', 'caldera-split-sat18-adl', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'data-network-sat18-strips', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'flashfill-sat18-adl', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'nurikabe-sat18-adl', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'organic-synthesis-sat18-strips', 'organic-synthesis-split-sat18-strips', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'settlers-sat18-adl', 'snake-sat18-strips', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'spider-sat18-strips', 'storage', 'termes-sat18-strips', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".git" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".git")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return node.endswith(".scicore.unibas.ch") or node.endswith(".cluster.bc2.ch") def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["depot:p01.pddl", "gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "planner_memory", "planner_time", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step( 'publish-absolute-report', subprocess.call, ['publish', outfile]) def add_comparison_table_step(self, name="make-comparison-tables", revisions=[], **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) if not revisions: revisions = self._revisions def make_comparison_tables(): for rev1, rev2 in itertools.combinations(revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step(name, make_comparison_tables) self.add_step( f"publish-{name}", publish_comparison_tables) def add_comparison_table_step_for_revision_pairs( self, revision_pairs, name="make-comparison-tables-for-revision-pairs", **kwargs): kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in revision_pairs: compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in revision_pairs: outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step(name, make_comparison_tables) self.add_step( f"publish-{name}", publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None, additional=[]): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if relative: scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute, config_nick2=None): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) if config_nick2 is not None: name += "-" + config_nick2 print("Make scatter plot for", name) algo1 = get_algo_nick(rev1, config_nick) algo2 = get_algo_nick(rev2, config_nick if config_nick2 is None else config_nick2) report = ScatterPlotReport( filter_algorithm=[algo1, algo2], attributes=[attribute], relative=relative, get_category=lambda run1, run2: run1["domain"]) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) for nick1, nick2, rev1, rev2, attribute in additional: make_scatter_plot(nick1, rev1, rev2, attribute, config_nick2=nick2) self.add_step(step_name, make_scatter_plots)
16,361
Python
37.228972
95
0.607848
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v4-a-multiple-seeds.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from average_report import AverageAlgorithmReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v4-a"] CONFIGS = [] for random_seed in range(2018, 2028): ### single cegar CONFIGS.append(IssueConfig('cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', 'astar(cpdbs(single_cegar(max_refinements=infinity,allow_merging=all_flaws,wildcard_plans=false,max_time=20,max_pdb_size=1000000,max_collection_size=10000000,random_seed={},verbosity=normal)),verbosity=silent)'.format(random_seed)], driver_options=['--search-time-limit', '5m'])) ### multiple cegar CONFIGS.append(IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag4-s{}'.format(random_seed), ['--search', "astar(cpdbs(multiple_cegar(max_refinements=infinity,allow_merging=all_flaws,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,initial_random_seed={},total_collection_max_size=10000000,total_time_limit=20,stagnation_limit=4,blacklist_trigger_time=0.75,blacklist_on_stagnation=true,verbosity=silent)),verbosity=silent)".format(random_seed)], driver_options=['--search-time-limit', '5m'])) SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_fetcher('data/issue1007-v4-multiple-seeds-eval',merge=True,filter_algorithm=[ 'issue1007-v4-cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed) for random_seed in range(2018, 2028) ] + [ 'issue1007-v4-cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag4-s{}'.format(random_seed) for random_seed in range(2018, 2028) ]) exp._revisions=["issue1007-v4", "issue1007-v4-a"] exp.add_absolute_report_step(attributes=['coverage']) exp.add_report( AverageAlgorithmReport( algo_name_suffixes=['-s{}'.format(seed) for seed in range(2018,2028)], attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump'] ), outfile=os.path.join(exp.eval_dir, "average", "properties"), name="report-average" ) exp.add_fetcher('data/issue1007-v4-a-multiple-seeds-eval/average', merge=True) exp._configs = [ IssueConfig('cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100', []), IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag4', []), ] exp.add_comparison_table_step( attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump'] ) exp.run_steps()
4,432
Python
48.808988
808
0.742329
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v6.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v5", "issue1007-v6"] random_seed=2018 CONFIGS = [ ### single cegar IssueConfig('cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', 'astar(cpdbs(single_cegar(max_refinements=infinity,wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={},verbosity=normal)),verbosity=silent)'.format(random_seed)]), IssueConfig('cpdbs-singlecegar-wildcardplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', 'astar(cpdbs(single_cegar(max_refinements=infinity,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={},verbosity=normal)),verbosity=silent)'.format(random_seed)]), ### multiple cegar IssueConfig('cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', "astar(cpdbs(multiple_cegar(max_refinements=infinity,wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,initial_random_seed={},total_collection_max_size=10000000,total_time_limit=100,stagnation_limit=infinity,blacklist_trigger_time=1,blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)".format(random_seed)]), IssueConfig('cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{}'.format(random_seed), ['--search', "astar(cpdbs(multiple_cegar(max_refinements=infinity,wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,initial_random_seed={},total_collection_max_size=10000000,total_time_limit=100,stagnation_limit=20,blacklist_trigger_time=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)".format(random_seed)]), IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', "astar(cpdbs(multiple_cegar(max_refinements=infinity,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,initial_random_seed={},total_collection_max_size=10000000,total_time_limit=100,stagnation_limit=infinity,blacklist_trigger_time=1,blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)".format(random_seed)]), IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{}'.format(random_seed), ['--search', "astar(cpdbs(multiple_cegar(max_refinements=infinity,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,initial_random_seed={},total_collection_max_size=10000000,total_time_limit=100,stagnation_limit=20,blacklist_trigger_time=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)".format(random_seed)]), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step() exp.add_comparison_table_step() exp.run_steps()
4,806
Python
69.691175
808
0.769039
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v7-v8-v8b-fixed-seed.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v7", "issue1007-v8", "issue1007-v8b"] random_seed=2018 MAX_TIME=100 if common_setup.is_test_run(): MAX_TIME=2 CONFIGS = [ ### single cegar IssueConfig(f'cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(wildcard_plans=false,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)']), IssueConfig(f'cpdbs-singlecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(wildcard_plans=true,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)']), ### multiple cegar IssueConfig(f'cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=infinity,blacklist_trigger_percentage=1,blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=20,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=infinity,blacklist_trigger_percentage=1,blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=20,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)"]), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step() exp.add_comparison_table_step() exp.run_steps()
4,638
Python
64.338027
808
0.764985
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v18-multiple-seeds.py
#! /usr/bin/env python3 import itertools import math import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from lab.reports import Attribute from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from average_report import AverageAlgorithmReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v17", "issue1007-v18"] MAX_TIME=20 if common_setup.is_test_run(): MAX_TIME=1 CONFIGS = [] for random_seed in range(2018, 2028): ### single cegar CONFIGS.append(IssueConfig(f'cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t20-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(use_wildcard_plans=false,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])) ### multiple cegar CONFIGS.append(IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t20-blacklist0.75-stag4-s{random_seed}', ['--search', f'astar(cpdbs(multiple_cegar(use_wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},total_max_time={MAX_TIME},stagnation_limit=4,blacklist_trigger_percentage=0.75,enable_blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])) SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_parser('cpdbs-parser.py') exp.add_parser('cegar-parser.py') cpdbs_num_patterns = Attribute('cpdbs_num_patterns', absolute=False, min_wins=True) cpdbs_total_pdb_size = Attribute('cpdbs_total_pdb_size', absolute=False, min_wins=True) cpdbs_computation_time = Attribute('cpdbs_computation_time', absolute=False, min_wins=True) score_cpdbs_computation_time = Attribute('score_cpdbs_computation_time', absolute=True, min_wins=False) cegar_num_iterations = Attribute('cegar_num_iterations', absolute=False, min_wins=True) cegar_num_patterns = Attribute('cegar_num_patterns', absolute=False, min_wins=True) cegar_total_pdb_size = Attribute('cegar_total_pdb_size', absolute=False, min_wins=True) cegar_computation_time = Attribute('cegar_computation_time', absolute=False, min_wins=True) score_cegar_computation_time = Attribute('score_cegar_computation_time', absolute=True, min_wins=False) exp.add_absolute_report_step(attributes=['coverage']) def add_computation_time_score(run): """ Convert cegar/cpdbs computation time into scores in the range [0, 1]. Best possible performance in a task is counted as 1, while failure to construct the heuristic and worst performance are counted as 0. """ def log_score(value, min_bound, max_bound): assert min_bound < max_bound if value is None: return 0 value = max(value, min_bound) value = min(value, max_bound) raw_score = math.log(value) - math.log(max_bound) best_raw_score = math.log(min_bound) - math.log(max_bound) return raw_score / best_raw_score run['score_cegar_computation_time'] = log_score(run.get('cegar_computation_time'), min_bound=1.0, max_bound=MAX_TIME) run['score_cpdbs_computation_time'] = log_score(run.get('cpdbs_computation_time'), min_bound=1.0, max_bound=MAX_TIME) return run exp.add_report( AverageAlgorithmReport( algo_name_suffixes=['-s{}'.format(seed) for seed in range(2018,2028)], attributes=[ 'coverage', 'search_time', 'total_time', 'expansions_until_last_jump', 'score_search_time', 'score_total_time', 'score_memory', 'score_expansions', 'initial_h_value', cpdbs_num_patterns, cpdbs_total_pdb_size, cpdbs_computation_time, score_cpdbs_computation_time, cegar_num_iterations, cegar_num_patterns, cegar_total_pdb_size, cegar_computation_time, score_cegar_computation_time, ], filter=[add_computation_time_score], ), outfile=os.path.join(exp.eval_dir, "average", "properties"), name="report-average" ) exp.add_fetcher(os.path.join(exp.eval_dir, 'average'), merge=True) exp._configs = [ IssueConfig('cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t20', []), IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t20-blacklist0.75-stag4', []), ] exp.add_comparison_table_step( attributes=[ 'coverage', 'search_time', 'total_time', 'expansions_until_last_jump', 'score_search_time', 'score_total_time', 'score_memory', 'score_expansions', 'initial_h_value', cpdbs_num_patterns, cpdbs_total_pdb_size, cpdbs_computation_time, score_cpdbs_computation_time, cegar_num_iterations, cegar_num_patterns, cegar_total_pdb_size, cegar_computation_time, score_cegar_computation_time, ], filter=[add_computation_time_score], ) exp.run_steps()
6,635
Python
47.086956
808
0.716654
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/cpdbs-parser.py
#! /usr/bin/env python from lab.parser import Parser parser = Parser() parser.add_pattern('cpdbs_num_patterns', 'Canonical PDB heuristic number of patterns: (\d+)', required=False, type=int) parser.add_pattern('cpdbs_total_pdb_size', 'Canonical PDB heuristic total PDB size: (\d+)', required=False, type=int) parser.add_pattern('cpdbs_computation_time', 'Canonical PDB heuristic computation time: (.+)s', required=False, type=float) parser.parse()
451
Python
40.090905
123
0.742794
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v3-parser.py
#! /usr/bin/env python from lab.parser import Parser parser = Parser() parser.add_pattern('single_cegar_pdbs_computation_time', 'CEGAR_PDBs: computation time: (.+)s', required=False, type=float) parser.add_pattern('single_cegar_pdbs_num_iterations', 'CEGAR_PDBs: number of iterations: (\d+)', required=False, type=int) parser.add_pattern('single_cegar_pdbs_collection_num_patterns', 'CEGAR_PDBs: final collection number of patterns: (.+)', required=False, type=int) parser.add_pattern('single_cegar_pdbs_collection_summed_pdb_size', 'CEGAR_PDBs: final collection summed PDB sizes: (.+)', required=False, type=int) def parse_lines(content, props): single_cegar_pdbs_timed_out = False single_cegar_pdbs_solved_without_search = False for line in content.split('\n'): if line == 'CEGAR_PDBs: time limit reached': single_cegar_pdbs_timed_out = True if line == 'CEGAR_PDBs: task solved during computation of abstract solutions': single_cegar_pdbs_solved_without_search = True props['single_cegar_pdbs_timed_out'] = single_cegar_pdbs_timed_out props['single_cegar_pdbs_solved_without_search'] = single_cegar_pdbs_solved_without_search parser.add_function(parse_lines) parser.parse()
1,241
Python
48.679998
147
0.720387
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v13-multiple-seeds.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from lab.reports import Attribute from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from average_report import AverageAlgorithmReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v8c", "issue1007-v13"] MAX_TIME=20 if common_setup.is_test_run(): MAX_TIME=1 CONFIGS = [] for random_seed in range(2018, 2028): ### ipdb CONFIGS.append(IssueConfig(f'cpdbs-hillclimbing-pdb1m-pdbs10m-t20-s{random_seed}', ['--search', f'astar(cpdbs(hillclimbing(max_time={MAX_TIME},pdb_max_size=1000000,collection_max_size=10000000,random_seed={random_seed})),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])), ### single cegar CONFIGS.append(IssueConfig(f'cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t20-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(wildcard_plans=false,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])) ### multiple cegar CONFIGS.append(IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t20-blacklist0.75-stag4-s{random_seed}', ['--search', f'astar(cpdbs(multiple_cegar(wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},total_max_time={MAX_TIME},stagnation_limit=4,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])) SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_parser('cpdbs-parser.py') exp.add_parser('cegar-parser.py') cegar_num_iterations = Attribute('cegar_num_iterations', absolute=False, min_wins=True) cegar_num_patterns = Attribute('cegar_num_patterns', absolute=False, min_wins=True) cegar_total_pdb_size = Attribute('cegar_total_pdb_size', absolute=False, min_wins=True) cegar_computation_time = Attribute('cegar_computation_time', absolute=False, min_wins=True) exp.add_parse_again_step() exp.add_absolute_report_step(attributes=['coverage']) exp.add_report( AverageAlgorithmReport( algo_name_suffixes=['-s{}'.format(seed) for seed in range(2018,2028)], attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump', 'score_search_time', 'score_total_time', 'score_memory', cegar_num_iterations, cegar_num_patterns, cegar_total_pdb_size, cegar_computation_time], ), outfile=os.path.join(exp.eval_dir, "average", "properties"), name="report-average" ) exp.add_fetcher(os.path.join(exp.eval_dir, 'average'), merge=True) exp._configs = [ IssueConfig('cpdbs-hillclimbing-pdb1m-pdbs10m-t20', []), IssueConfig('cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t20', []), IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t20-blacklist0.75-stag4', []), ] exp.add_comparison_table_step_for_revision_pairs( revision_pairs=[ ("issue1007-v8c", "issue1007-v13"), ], attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump', 'score_search_time', 'score_total_time', 'score_memory', cegar_num_iterations, cegar_num_patterns, cegar_total_pdb_size, cegar_computation_time], ) exp.run_steps()
5,167
Python
47.754717
808
0.732727
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v4-b-multiple-seeds.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from average_report import AverageAlgorithmReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v4-b"] CONFIGS = [] for random_seed in range(2018, 2028): ### single cegar CONFIGS.append(IssueConfig('cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', 'astar(cpdbs(single_cegar(max_refinements=infinity,wildcard_plans=false,max_time=20,max_pdb_size=1000000,max_collection_size=10000000,random_seed={},verbosity=normal)),verbosity=silent)'.format(random_seed)], driver_options=['--search-time-limit', '5m'])) ### multiple cegar CONFIGS.append(IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag4-s{}'.format(random_seed), ['--search', "astar(cpdbs(multiple_cegar(max_refinements=infinity,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,initial_random_seed={},total_collection_max_size=10000000,total_time_limit=20,stagnation_limit=4,blacklist_trigger_time=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)".format(random_seed)], driver_options=['--search-time-limit', '5m'])) SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_fetcher('data/issue1007-v4-a-multiple-seeds-eval',merge=True,filter_algorithm=[ 'issue1007-v4-a-cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed) for random_seed in range(2018, 2028) ] + [ 'issue1007-v4-a-cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag4-s{}'.format(random_seed) for random_seed in range(2018, 2028) ]) exp._revisions=["issue1007-v4-a", "issue1007-v4-b"] exp.add_absolute_report_step(attributes=['coverage']) exp.add_report( AverageAlgorithmReport( algo_name_suffixes=['-s{}'.format(seed) for seed in range(2018,2028)], attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump'] ), outfile=os.path.join(exp.eval_dir, "average", "properties"), name="report-average" ) exp.add_fetcher('data/issue1007-v4-b-multiple-seeds-eval/average', merge=True) exp._configs = [ IssueConfig('cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100', []), IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag4', []), ] exp.add_comparison_table_step( attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump'] ) exp.run_steps()
4,392
Python
48.35955
808
0.740893
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v4-multiple-seeds.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from average_report import AverageAlgorithmReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v4"] CONFIGS = [] for random_seed in range(2018, 2028): ### single cegar CONFIGS.append(IssueConfig('cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', 'astar(cpdbs(single_cegar(max_refinements=infinity,allow_merging=all_flaws,wildcard_plans=false,max_time=20,max_pdb_size=1000000,max_collection_size=10000000,random_seed={},verbosity=normal)),verbosity=silent)'.format(random_seed)], driver_options=['--search-time-limit', '5m'])) ### multiple cegar CONFIGS.append(IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag4-s{}'.format(random_seed), ['--search', "astar(cpdbs(multiple_cegar(max_refinements=infinity,allow_merging=all_flaws,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,initial_random_seed={},total_collection_max_size=10000000,total_time_limit=20,stagnation_limit=4,blacklist_trigger_time=0.75,blacklist_on_stagnation=true,verbosity=silent)),verbosity=silent)".format(random_seed)], driver_options=['--search-time-limit', '5m'])) SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step(attributes=['coverage']) exp.run_steps()
3,284
Python
51.98387
808
0.75335
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v5-multiple-seeds.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from average_report import AverageAlgorithmReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v5"] CONFIGS = [] for random_seed in range(2018, 2028): ### single cegar CONFIGS.append(IssueConfig('cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', 'astar(cpdbs(single_cegar(max_refinements=infinity,wildcard_plans=false,max_time=20,max_pdb_size=1000000,max_collection_size=10000000,random_seed={},verbosity=normal)),verbosity=silent)'.format(random_seed)], driver_options=['--search-time-limit', '5m'])) ### multiple cegar CONFIGS.append(IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag4-s{}'.format(random_seed), ['--search', "astar(cpdbs(multiple_cegar(max_refinements=infinity,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,initial_random_seed={},total_collection_max_size=10000000,total_time_limit=20,stagnation_limit=4,blacklist_trigger_time=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)".format(random_seed)], driver_options=['--search-time-limit', '5m'])) SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step(attributes=['coverage']) ### compare against v4 exp.add_fetcher('data/issue1007-v4-multiple-seeds-eval',merge=True,filter_algorithm=[ 'issue1007-v4-cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed) for random_seed in range(2018, 2028) ] + [ 'issue1007-v4-cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag4-s{}'.format(random_seed) for random_seed in range(2018, 2028) ]) exp.add_report( AverageAlgorithmReport( algo_name_suffixes=['-s{}'.format(seed) for seed in range(2018,2028)], attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump'], filter_algorithm=[ 'issue1007-v4-cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed) for random_seed in range(2018, 2028) ] + [ 'issue1007-v4-cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag4-s{}'.format(random_seed) for random_seed in range(2018, 2028) ] + [ 'issue1007-v5-cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed) for random_seed in range(2018, 2028) ] + [ 'issue1007-v5-cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag4-s{}'.format(random_seed) for random_seed in range(2018, 2028) ], ), outfile=os.path.join(exp.eval_dir, "average-v4-v5", "properties"), name="report-average-v4-v5" ) exp.add_fetcher('data/issue1007-v5-multiple-seeds-eval/average-v4-v5', merge=True) exp._configs = [ IssueConfig('cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100', []), IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag4', []), ] exp.add_comparison_table_step( attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump'], name="compare-v4-v5", revisions=["issue1007-v4", "issue1007-v5"], ) ### compare against v4-b exp.add_fetcher('data/issue1007-v4-b-multiple-seeds-eval',merge=True,filter_algorithm=[ 'issue1007-v4-b-cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed) for random_seed in range(2018, 2028) ] + [ 'issue1007-v4-b-cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag4-s{}'.format(random_seed) for random_seed in range(2018, 2028) ]) exp.add_report( AverageAlgorithmReport( algo_name_suffixes=['-s{}'.format(seed) for seed in range(2018,2028)], attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump'], filter_algorithm=[ 'issue1007-v4-b-cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed) for random_seed in range(2018, 2028) ] + [ 'issue1007-v4-b-cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag4-s{}'.format(random_seed) for random_seed in range(2018, 2028) ] + [ 'issue1007-v5-cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed) for random_seed in range(2018, 2028) ] + [ 'issue1007-v5-cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag4-s{}'.format(random_seed) for random_seed in range(2018, 2028) ], ), outfile=os.path.join(exp.eval_dir, "average-v4-b-v5", "properties"), name="report-average-v4-b-v5" ) exp.add_fetcher('data/issue1007-v5-multiple-seeds-eval/average-v4-b-v5', merge=True) exp._configs = [ IssueConfig('cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100', []), IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag4', []), ] exp.add_comparison_table_step( attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump'], name="compare-v4-b-v5", revisions=["issue1007-v4-b", "issue1007-v5"], ) exp.run_steps()
7,036
Python
49.992753
808
0.719301
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v18-fixed-seed.py
#! /usr/bin/env python3 import itertools import math import os import subprocess from lab.environments import LocalEnvironment, BaselSlurmEnvironment from lab.reports import Attribute from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v17", "issue1007-v18"] random_seed=2018 MAX_TIME=100 if common_setup.is_test_run(): MAX_TIME=2 CONFIGS = [ ### single cegar IssueConfig(f'cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(use_wildcard_plans=false,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)']), IssueConfig(f'cpdbs-singlecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(use_wildcard_plans=true,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)']), ### multiple cegar IssueConfig(f'cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(use_wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=infinity,blacklist_trigger_percentage=1,enable_blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(use_wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=20,blacklist_trigger_percentage=0.75,enable_blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(use_wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=infinity,blacklist_trigger_percentage=1,enable_blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(use_wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=20,blacklist_trigger_percentage=0.75,enable_blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)"]), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_parser('cpdbs-parser.py') exp.add_parser('cegar-parser.py') cpdbs_num_patterns = Attribute('cpdbs_num_patterns', absolute=False, min_wins=True) cpdbs_total_pdb_size = Attribute('cpdbs_total_pdb_size', absolute=False, min_wins=True) cpdbs_computation_time = Attribute('cpdbs_computation_time', absolute=False, min_wins=True) score_cpdbs_computation_time = Attribute('score_cpdbs_computation_time', absolute=True, min_wins=False) cegar_num_iterations = Attribute('cegar_num_iterations', absolute=False, min_wins=True) cegar_num_patterns = Attribute('cegar_num_patterns', absolute=False, min_wins=True) cegar_total_pdb_size = Attribute('cegar_total_pdb_size', absolute=False, min_wins=True) cegar_computation_time = Attribute('cegar_computation_time', absolute=False, min_wins=True) score_cegar_computation_time = Attribute('score_cegar_computation_time', absolute=True, min_wins=False) attributes = [ cpdbs_num_patterns, cpdbs_total_pdb_size, cpdbs_computation_time, score_cpdbs_computation_time, cegar_num_iterations, cegar_num_patterns, cegar_total_pdb_size, cegar_computation_time, score_cegar_computation_time, ] attributes.extend(exp.DEFAULT_TABLE_ATTRIBUTES) attributes.append('initial_h_value') def add_computation_time_score(run): """ Convert cegar/cpdbs computation time into scores in the range [0, 1]. Best possible performance in a task is counted as 1, while failure to construct the heuristic and worst performance are counted as 0. """ def log_score(value, min_bound, max_bound): assert min_bound < max_bound if value is None: return 0 value = max(value, min_bound) value = min(value, max_bound) raw_score = math.log(value) - math.log(max_bound) best_raw_score = math.log(min_bound) - math.log(max_bound) return raw_score / best_raw_score run['score_cegar_computation_time'] = log_score(run.get('cegar_computation_time'), min_bound=1.0, max_bound=MAX_TIME) run['score_cpdbs_computation_time'] = log_score(run.get('cpdbs_computation_time'), min_bound=1.0, max_bound=MAX_TIME) return run exp.add_absolute_report_step(attributes=attributes,filter=[add_computation_time_score]) exp.add_comparison_table_step( attributes=attributes, filter=[add_computation_time_score], ) exp.run_steps()
7,019
Python
54.714285
808
0.751674
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v10-multiple-seeds.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from average_report import AverageAlgorithmReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v8c", "issue1007-v10"] MAX_TIME=20 if common_setup.is_test_run(): MAX_TIME=1 CONFIGS = [] for random_seed in range(2018, 2028): ### ipdb CONFIGS.append(IssueConfig(f'cpdbs-hillclimbing-pdb1m-pdbs10m-t20-s{random_seed}', ['--search', f'astar(cpdbs(hillclimbing(max_time={MAX_TIME},pdb_max_size=1000000,collection_max_size=10000000,random_seed={random_seed})),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])), ### single cegar CONFIGS.append(IssueConfig(f'cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t20-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(wildcard_plans=false,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])) ### multiple cegar CONFIGS.append(IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t20-blacklist0.75-stag4-s{random_seed}', ['--search', f'astar(cpdbs(multiple_cegar(wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},total_max_time={MAX_TIME},stagnation_limit=4,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])) SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step(attributes=['coverage']) exp.add_report( AverageAlgorithmReport( algo_name_suffixes=['-s{}'.format(seed) for seed in range(2018,2028)], attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump', 'score_search_time', 'score_total_time', 'score_memory'], ), outfile=os.path.join(exp.eval_dir, "average", "properties"), name="report-average" ) exp.add_fetcher(os.path.join(exp.eval_dir, 'average'), merge=True) exp._configs = [ IssueConfig('cpdbs-hillclimbing-pdb1m-pdbs10m-t20', []), IssueConfig('cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t20', []), IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t20-blacklist0.75-stag4', []), ] exp.add_comparison_table_step_for_revision_pairs( revision_pairs=[ ("issue1007-v8c", "issue1007-v10"), ], attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump', 'score_search_time', 'score_total_time', 'score_memory'], ) exp.run_steps()
4,496
Python
46.840425
808
0.727536
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v3-single-cegar-wildcard.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from average_report import AverageAlgorithmReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v2", "issue1007-v3"] CONFIGS = [] for random_seed in range(2018, 2028): CONFIGS.append(IssueConfig('cpdbs-single-cegar-allgoals-wildcardplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', 'astar(cpdbs(single_cegar(max_refinements=infinity,ignore_goal_violations=false,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={},verbosity=normal)),verbosity=silent)'.format(random_seed)])) SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_parser('v3-parser.py') attributes=exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend([ 'single_cegar_pdbs_solved_without_search', 'single_cegar_pdbs_computation_time', 'single_cegar_pdbs_timed_out', 'single_cegar_pdbs_num_iterations', 'single_cegar_pdbs_collection_num_patterns', 'single_cegar_pdbs_collection_summed_pdb_size', ]) exp.add_absolute_report_step() report = AverageAlgorithmReport( algo_name_suffixes=['-s{}'.format(seed) for seed in range(2018,2028)], directory=os.path.join('data', exp.name + '-average-eval'), attributes=['coverage', 'single_cegar_pdbs_solved_without_search', 'single_cegar_pdbs_computation_time', 'search_time', 'total_time', 'expansions_until_last_jump'] ) outfile = os.path.join(exp.eval_dir, "dummy.txt") exp.add_report(report, outfile=outfile, name="report-average") exp.run_steps()
2,897
Python
39.249999
414
0.751467
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v7-multiple-seeds.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from average_report import AverageAlgorithmReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v7"] CONFIGS = [] for random_seed in range(2018, 2028): ### single cegar CONFIGS.append(IssueConfig('cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', 'astar(cpdbs(single_cegar(max_refinements=infinity,wildcard_plans=false,max_time=20,max_pdb_size=1000000,max_collection_size=10000000,random_seed={},verbosity=normal)),verbosity=silent)'.format(random_seed)], driver_options=['--search-time-limit', '5m'])) ### multiple cegar CONFIGS.append(IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag4-s{}'.format(random_seed), ['--search', "astar(cpdbs(multiple_cegar(max_refinements=infinity,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={},total_max_time=20,stagnation_limit=4,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)".format(random_seed)], driver_options=['--search-time-limit', '5m'])) SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step(attributes=['coverage']) ### compare against v6 exp.add_fetcher('data/issue1007-v6-multiple-seeds-eval',merge=True,filter_algorithm=[ 'issue1007-v6-cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed) for random_seed in range(2018, 2028) ] + [ 'issue1007-v6-cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag4-s{}'.format(random_seed) for random_seed in range(2018, 2028) ]) exp.add_report( AverageAlgorithmReport( algo_name_suffixes=['-s{}'.format(seed) for seed in range(2018,2028)], attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump'], filter_algorithm=[ 'issue1007-v6-cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed) for random_seed in range(2018, 2028) ] + [ 'issue1007-v6-cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag4-s{}'.format(random_seed) for random_seed in range(2018, 2028) ] + [ 'issue1007-v7-cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed) for random_seed in range(2018, 2028) ] + [ 'issue1007-v7-cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag4-s{}'.format(random_seed) for random_seed in range(2018, 2028) ], ), outfile=os.path.join(exp.eval_dir, "average-v6-v7", "properties"), name="report-average-v6-v7" ) exp.add_fetcher('data/issue1007-v7-multiple-seeds-eval/average-v6-v7', merge=True) exp._configs = [ IssueConfig('cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100', []), IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag4', []), ] exp.add_comparison_table_step( attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump'], name="compare-v6-v7", revisions=["issue1007-v6", "issue1007-v7"], ) exp.run_steps()
5,086
Python
49.87
808
0.729257
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/cegar-parser.py
#! /usr/bin/env python from lab.parser import Parser parser = Parser() parser.add_pattern('cegar_num_iterations', 'CEGAR number of iterations: (\d+)', required=False, type=int) parser.add_pattern('cegar_num_patterns', 'CEGAR number of patterns: (\d+)', required=False, type=int) parser.add_pattern('cegar_total_pdb_size', 'CEGAR total PDB size: (\d+)', required=False, type=int) parser.add_pattern('cegar_computation_time', 'CEGAR computation time: (.+)s', required=False, type=float) parser.parse()
503
Python
40.999997
105
0.725646
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v14-multiple-seeds.py
#! /usr/bin/env python3 import itertools import math import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from lab.reports import Attribute from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from average_report import AverageAlgorithmReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v8c", "issue1007-v14"] MAX_TIME=20 if common_setup.is_test_run(): MAX_TIME=1 CONFIGS = [] for random_seed in range(2018, 2028): ### ipdb CONFIGS.append(IssueConfig(f'cpdbs-hillclimbing-pdb1m-pdbs10m-t20-s{random_seed}', ['--search', f'astar(cpdbs(hillclimbing(max_time={MAX_TIME},pdb_max_size=1000000,collection_max_size=10000000,random_seed={random_seed})),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])), ### single cegar CONFIGS.append(IssueConfig(f'cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t20-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(wildcard_plans=false,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])) ### multiple cegar CONFIGS.append(IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t20-blacklist0.75-stag4-s{random_seed}', ['--search', f'astar(cpdbs(multiple_cegar(wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},total_max_time={MAX_TIME},stagnation_limit=4,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])) SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_parser('cpdbs-parser.py') exp.add_parser('cegar-parser.py') cpdbs_num_patterns = Attribute('cpdbs_num_patterns', absolute=False, min_wins=True) cpdbs_total_pdb_size = Attribute('cpdbs_total_pdb_size', absolute=False, min_wins=True) cpdbs_computation_time = Attribute('cpdbs_computation_time', absolute=False, min_wins=True) score_cpdbs_computation_time = Attribute('score_cpdbs_computation_time', absolute=True, min_wins=False) cegar_num_iterations = Attribute('cegar_num_iterations', absolute=False, min_wins=True) cegar_num_patterns = Attribute('cegar_num_patterns', absolute=False, min_wins=True) cegar_total_pdb_size = Attribute('cegar_total_pdb_size', absolute=False, min_wins=True) cegar_computation_time = Attribute('cegar_computation_time', absolute=False, min_wins=True) score_cegar_computation_time = Attribute('score_cegar_computation_time', absolute=True, min_wins=False) exp.add_absolute_report_step(attributes=['coverage']) def add_computation_time_score(run): """ Convert cegar/cpdbs computation time into scores in the range [0, 1]. Best possible performance in a task is counted as 1, while failure to construct the heuristic and worst performance are counted as 0. """ def log_score(value, min_bound, max_bound): assert min_bound < max_bound if value is None: return 0 value = max(value, min_bound) value = min(value, max_bound) raw_score = math.log(value) - math.log(max_bound) best_raw_score = math.log(min_bound) - math.log(max_bound) return raw_score / best_raw_score run['score_cegar_computation_time'] = log_score(run.get('cegar_computation_time'), min_bound=1.0, max_bound=MAX_TIME) run['score_cpdbs_computation_time'] = log_score(run.get('cpdbs_computation_time'), min_bound=1.0, max_bound=MAX_TIME) return run exp.add_report( AverageAlgorithmReport( algo_name_suffixes=['-s{}'.format(seed) for seed in range(2018,2028)], attributes=[ 'coverage', 'search_time', 'total_time', 'expansions_until_last_jump', 'score_search_time', 'score_total_time', 'score_memory', 'score_expansions', 'initial_h_value', cpdbs_num_patterns, cpdbs_total_pdb_size, cpdbs_computation_time, score_cpdbs_computation_time, cegar_num_iterations, cegar_num_patterns, cegar_total_pdb_size, cegar_computation_time, score_cegar_computation_time, ], filter=[add_computation_time_score], ), outfile=os.path.join(exp.eval_dir, "average", "properties"), name="report-average" ) exp.add_fetcher(os.path.join(exp.eval_dir, 'average'), merge=True) exp._configs = [ IssueConfig('cpdbs-hillclimbing-pdb1m-pdbs10m-t20', []), IssueConfig('cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t20', []), IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t20-blacklist0.75-stag4', []), ] exp.add_comparison_table_step_for_revision_pairs( revision_pairs=[ (f"{REVISIONS[0]}", f"{REVISIONS[1]}"), ], attributes=[ 'coverage', 'search_time', 'total_time', 'expansions_until_last_jump', 'score_search_time', 'score_total_time', 'score_memory', 'score_expansions', 'initial_h_value', cpdbs_num_patterns, cpdbs_total_pdb_size, cpdbs_computation_time, score_cpdbs_computation_time, cegar_num_iterations, cegar_num_patterns, cegar_total_pdb_size, cegar_computation_time, score_cegar_computation_time, ], ) exp.run_steps()
7,043
Python
47.916666
808
0.714184
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v7c-v8.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from average_report import AverageAlgorithmReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v7c", "issue1007-v8"] MAX_TIME=20 if common_setup.is_test_run(): MAX_TIME=2 CONFIGS = [] for random_seed in range(2018, 2028): ### single cegar CONFIGS.append(IssueConfig(f'cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t20-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(wildcard_plans=false,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])) ### multiple cegar CONFIGS.append(IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t20-blacklist0.75-stag4-s{random_seed}', ['--search', f'astar(cpdbs(multiple_cegar(wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},total_max_time={MAX_TIME},stagnation_limit=4,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])) SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step(attributes=['coverage']) exp.add_report( AverageAlgorithmReport( algo_name_suffixes=['-s{}'.format(seed) for seed in range(2018,2028)], attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump', 'score_search_time', 'score_total_time', 'score_memory'], ), outfile=os.path.join(exp.eval_dir, "average", "properties"), name="report-average" ) exp.add_fetcher(os.path.join(exp.eval_dir, 'average'), merge=True) exp._configs = [ IssueConfig('cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t20', []), IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t20-blacklist0.75-stag4', []), ] exp.add_comparison_table_step_for_revision_pairs( revision_pairs=[ ("issue1007-v7c", "issue1007-v8"), ], attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump', 'score_search_time', 'score_total_time', 'score_memory'], ) exp.run_steps()
4,125
Python
44.844444
808
0.728242
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v1.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-base", "issue1007-v1"] random_seed=2018 CONFIGS = [ ### single cegar IssueConfig('cpdbs-single-cegar-allgoals-regularplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', 'astar(cpdbs(single_cegar(max_refinements=infinity,ignore_goal_violations=false,wildcard_plans=false,initial=all_goals,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={},verbosity=silent)))'.format(random_seed)]), IssueConfig('cpdbs-single-cegar-allgoals-wildcardplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', 'astar(cpdbs(single_cegar(max_refinements=infinity,ignore_goal_violations=false,wildcard_plans=true,initial=all_goals,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={},verbosity=silent)))'.format(random_seed)]), ### multiple cegar IssueConfig('cpdbs-multiple-cegar-regularplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', "astar(cpdbs(multiple_cegar(max_refinements=infinity,wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,initial_random_seed={},total_collection_max_size=10000000,total_time_limit=100,stagnation_limit=infinity,blacklist_trigger_time=1,blacklist_on_stagnation=false,verbosity=silent)))".format(random_seed)]), IssueConfig('cpdbs-multiple-cegar-regularplans-pdb1m-pdbs10m-t100-stag20-s{}'.format(random_seed), ['--search', "astar(cpdbs(multiple_cegar(max_refinements=infinity,wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,initial_random_seed={},total_collection_max_size=10000000,total_time_limit=100,stagnation_limit=20,blacklist_trigger_time=1,blacklist_on_stagnation=false,verbosity=silent)))".format(random_seed)]), IssueConfig('cpdbs-multiple-cegar-regularplans-pdb1m-pdbs10m-t100-blacklist0.75-s{}'.format(random_seed), ['--search', "astar(cpdbs(multiple_cegar(max_refinements=infinity,wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,initial_random_seed={},total_collection_max_size=10000000,total_time_limit=100,stagnation_limit=infinity,blacklist_trigger_time=0.75,blacklist_on_stagnation=true,verbosity=silent)))".format(random_seed)]), IssueConfig('cpdbs-multiple-cegar-regularplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{}'.format(random_seed), ['--search', "astar(cpdbs(multiple_cegar(max_refinements=infinity,wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,initial_random_seed={},total_collection_max_size=10000000,total_time_limit=100,stagnation_limit=20,blacklist_trigger_time=0.75,blacklist_on_stagnation=true,verbosity=silent)))".format(random_seed)]), IssueConfig('cpdbs-multiple-cegar-wildcardplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', "astar(cpdbs(multiple_cegar(max_refinements=infinity,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,initial_random_seed={},total_collection_max_size=10000000,total_time_limit=100,stagnation_limit=infinity,blacklist_trigger_time=1,blacklist_on_stagnation=false,verbosity=silent)))".format(random_seed)]), IssueConfig('cpdbs-multiple-cegar-wildcardplans-pdb1m-pdbs10m-t100-stag20-s{}'.format(random_seed), ['--search', "astar(cpdbs(multiple_cegar(max_refinements=infinity,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,initial_random_seed={},total_collection_max_size=10000000,total_time_limit=100,stagnation_limit=20,blacklist_trigger_time=1,blacklist_on_stagnation=false,verbosity=silent)))".format(random_seed)]), IssueConfig('cpdbs-multiple-cegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-s{}'.format(random_seed), ['--search', "astar(cpdbs(multiple_cegar(max_refinements=infinity,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,initial_random_seed={},total_collection_max_size=10000000,total_time_limit=100,stagnation_limit=infinity,blacklist_trigger_time=0.75,blacklist_on_stagnation=true,verbosity=silent)))".format(random_seed)]), IssueConfig('cpdbs-multiple-cegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{}'.format(random_seed), ['--search', "astar(cpdbs(multiple_cegar(max_refinements=infinity,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,initial_random_seed={},total_collection_max_size=10000000,total_time_limit=100,stagnation_limit=20,blacklist_trigger_time=0.75,blacklist_on_stagnation=true,verbosity=silent)))".format(random_seed)]), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') #exp.add_absolute_report_step() exp.add_comparison_table_step() exp.run_steps()
6,096
Python
91.378786
466
0.784121
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v16-v17-multiple-seeds.py
#! /usr/bin/env python3 import itertools import math import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from lab.reports import Attribute from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from average_report import AverageAlgorithmReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v16", "issue1007-v17"] MAX_TIME=20 if common_setup.is_test_run(): MAX_TIME=1 CONFIGS = [] for random_seed in range(2018, 2028): ### single cegar CONFIGS.append(IssueConfig(f'cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t20-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(use_wildcard_plans=false,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])) ### multiple cegar CONFIGS.append(IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t20-blacklist0.75-stag4-s{random_seed}', ['--search', f'astar(cpdbs(multiple_cegar(use_wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},total_max_time={MAX_TIME},stagnation_limit=4,blacklist_trigger_percentage=0.75,enable_blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])) SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_parser('cpdbs-parser.py') exp.add_parser('cegar-parser.py') cpdbs_num_patterns = Attribute('cpdbs_num_patterns', absolute=False, min_wins=True) cpdbs_total_pdb_size = Attribute('cpdbs_total_pdb_size', absolute=False, min_wins=True) cpdbs_computation_time = Attribute('cpdbs_computation_time', absolute=False, min_wins=True) score_cpdbs_computation_time = Attribute('score_cpdbs_computation_time', absolute=True, min_wins=False) cegar_num_iterations = Attribute('cegar_num_iterations', absolute=False, min_wins=True) cegar_num_patterns = Attribute('cegar_num_patterns', absolute=False, min_wins=True) cegar_total_pdb_size = Attribute('cegar_total_pdb_size', absolute=False, min_wins=True) cegar_computation_time = Attribute('cegar_computation_time', absolute=False, min_wins=True) score_cegar_computation_time = Attribute('score_cegar_computation_time', absolute=True, min_wins=False) exp.add_absolute_report_step(attributes=['coverage']) ### compare against v15 exp.add_fetcher('data/issue1007-v15-multiple-seeds-eval',merge=True,filter_algorithm=[ 'issue1007-v15-cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t20-s{}'.format(random_seed) for random_seed in range(2018, 2028) ] + [ 'issue1007-v15-cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t20-blacklist0.75-stag4-s{}'.format(random_seed) for random_seed in range(2018, 2028) ]) def add_computation_time_score(run): """ Convert cegar/cpdbs computation time into scores in the range [0, 1]. Best possible performance in a task is counted as 1, while failure to construct the heuristic and worst performance are counted as 0. """ def log_score(value, min_bound, max_bound): assert min_bound < max_bound if value is None: return 0 value = max(value, min_bound) value = min(value, max_bound) raw_score = math.log(value) - math.log(max_bound) best_raw_score = math.log(min_bound) - math.log(max_bound) return raw_score / best_raw_score run['score_cegar_computation_time'] = log_score(run.get('cegar_computation_time'), min_bound=1.0, max_bound=MAX_TIME) run['score_cpdbs_computation_time'] = log_score(run.get('cpdbs_computation_time'), min_bound=1.0, max_bound=MAX_TIME) return run exp.add_report( AverageAlgorithmReport( algo_name_suffixes=['-s{}'.format(seed) for seed in range(2018,2028)], attributes=[ 'coverage', 'search_time', 'total_time', 'expansions_until_last_jump', 'score_search_time', 'score_total_time', 'score_memory', 'score_expansions', 'initial_h_value', cpdbs_num_patterns, cpdbs_total_pdb_size, cpdbs_computation_time, score_cpdbs_computation_time, cegar_num_iterations, cegar_num_patterns, cegar_total_pdb_size, cegar_computation_time, score_cegar_computation_time, ], filter=[add_computation_time_score], ), outfile=os.path.join(exp.eval_dir, "average", "properties"), name="report-average" ) exp.add_fetcher(os.path.join(exp.eval_dir, 'average'), merge=True) exp._configs = [ IssueConfig('cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t20', []), IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t20-blacklist0.75-stag4', []), ] exp.add_comparison_table_step_for_revision_pairs( revision_pairs=[ ("issue1007-v15", "issue1007-v16"), ("issue1007-v15", "issue1007-v17"), ("issue1007-v16", "issue1007-v17"), ], attributes=[ 'coverage', 'search_time', 'total_time', 'expansions_until_last_jump', 'score_search_time', 'score_total_time', 'score_memory', 'score_expansions', 'initial_h_value', cpdbs_num_patterns, cpdbs_total_pdb_size, cpdbs_computation_time, score_cpdbs_computation_time, cegar_num_iterations, cegar_num_patterns, cegar_total_pdb_size, cegar_computation_time, score_cegar_computation_time, ], filter=[add_computation_time_score], ) exp.run_steps()
7,218
Python
47.126666
808
0.715295
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v16-v17-fixed-seed.py
#! /usr/bin/env python3 import itertools import math import os import subprocess from lab.environments import LocalEnvironment, BaselSlurmEnvironment from lab.reports import Attribute from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v16", "issue1007-v17"] random_seed=2018 MAX_TIME=100 if common_setup.is_test_run(): MAX_TIME=2 CONFIGS = [ ### single cegar IssueConfig(f'cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(use_wildcard_plans=false,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)']), IssueConfig(f'cpdbs-singlecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(use_wildcard_plans=true,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)']), ### multiple cegar IssueConfig(f'cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(use_wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=infinity,blacklist_trigger_percentage=1,enable_blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(use_wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=20,blacklist_trigger_percentage=0.75,enable_blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(use_wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=infinity,blacklist_trigger_percentage=1,enable_blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(use_wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=20,blacklist_trigger_percentage=0.75,enable_blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)"]), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_parser('cpdbs-parser.py') exp.add_parser('cegar-parser.py') cpdbs_num_patterns = Attribute('cpdbs_num_patterns', absolute=False, min_wins=True) cpdbs_total_pdb_size = Attribute('cpdbs_total_pdb_size', absolute=False, min_wins=True) cpdbs_computation_time = Attribute('cpdbs_computation_time', absolute=False, min_wins=True) score_cpdbs_computation_time = Attribute('score_cpdbs_computation_time', absolute=True, min_wins=False) cegar_num_iterations = Attribute('cegar_num_iterations', absolute=False, min_wins=True) cegar_num_patterns = Attribute('cegar_num_patterns', absolute=False, min_wins=True) cegar_total_pdb_size = Attribute('cegar_total_pdb_size', absolute=False, min_wins=True) cegar_computation_time = Attribute('cegar_computation_time', absolute=False, min_wins=True) score_cegar_computation_time = Attribute('score_cegar_computation_time', absolute=True, min_wins=False) attributes = [ cpdbs_num_patterns, cpdbs_total_pdb_size, cpdbs_computation_time, score_cpdbs_computation_time, cegar_num_iterations, cegar_num_patterns, cegar_total_pdb_size, cegar_computation_time, score_cegar_computation_time, ] attributes.extend(exp.DEFAULT_TABLE_ATTRIBUTES) attributes.append('initial_h_value') def add_computation_time_score(run): """ Convert cegar/cpdbs computation time into scores in the range [0, 1]. Best possible performance in a task is counted as 1, while failure to construct the heuristic and worst performance are counted as 0. """ def log_score(value, min_bound, max_bound): assert min_bound < max_bound if value is None: return 0 value = max(value, min_bound) value = min(value, max_bound) raw_score = math.log(value) - math.log(max_bound) best_raw_score = math.log(min_bound) - math.log(max_bound) return raw_score / best_raw_score run['score_cegar_computation_time'] = log_score(run.get('cegar_computation_time'), min_bound=1.0, max_bound=MAX_TIME) run['score_cpdbs_computation_time'] = log_score(run.get('cpdbs_computation_time'), min_bound=1.0, max_bound=MAX_TIME) return run exp.add_absolute_report_step(attributes=attributes,filter=[add_computation_time_score]) exp.add_fetcher('data/issue1007-v15-fixed-seed-eval', filter_algorithm=[ f'issue1007-v15-cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', f'issue1007-v15-cpdbs-singlecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', f'issue1007-v15-cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', f'issue1007-v15-cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', f'issue1007-v15-cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', f'issue1007-v15-cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', ],merge=True) exp.add_comparison_table_step_for_revision_pairs( revision_pairs=[ ("issue1007-v15", "issue1007-v16"), ("issue1007-v15", "issue1007-v17"), ("issue1007-v16", "issue1007-v17"), ], attributes=attributes, filter=[add_computation_time_score], ) exp.run_steps()
7,861
Python
55.157142
808
0.750286
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v3-single-cegar-wildcard-average.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from average_report import AverageAlgorithmReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] REVISIONS = ["issue1007-v2", "issue1007-v3"] CONFIGS = [ IssueConfig('cpdbs-single-cegar-allgoals-wildcardplans-pdb1m-pdbs10m-t100', []), ] exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, ) exp.add_comparison_table_step( attributes=['coverage', 'single_cegar_pdbs_solved_without_search', 'single_cegar_pdbs_computation_time', 'search_time', 'total_time', 'expansions_until_last_jump'] ) exp.run_steps()
858
Python
25.030302
84
0.754079
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v7-v8-v8b.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from average_report import AverageAlgorithmReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v7", "issue1007-v8", "issue1007-v8b"] MAX_TIME=20 if common_setup.is_test_run(): MAX_TIME=2 CONFIGS = [] for random_seed in range(2018, 2028): ### single cegar CONFIGS.append(IssueConfig(f'cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t20-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(wildcard_plans=false,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])) ### multiple cegar CONFIGS.append(IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t20-blacklist0.75-stag4-s{random_seed}', ['--search', f'astar(cpdbs(multiple_cegar(wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},total_max_time={MAX_TIME},stagnation_limit=4,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])) SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step(attributes=['coverage']) exp.add_report( AverageAlgorithmReport( algo_name_suffixes=['-s{}'.format(seed) for seed in range(2018,2028)], attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump', 'score_search_time', 'score_total_time', 'score_memory'], ), outfile=os.path.join(exp.eval_dir, "average", "properties"), name="report-average" ) exp.add_fetcher(os.path.join(exp.eval_dir, 'average'), merge=True) exp._configs = [ IssueConfig('cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t20', []), IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t20-blacklist0.75-stag4', []), ] exp.add_comparison_table_step_for_revision_pairs( revision_pairs=[ ("issue1007-v7", "issue1007-v8"), ("issue1007-v8", "issue1007-v8b"), ], attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump', 'score_search_time', 'score_total_time', 'score_memory'], ) exp.run_steps()
4,183
Python
44.978021
808
0.726034
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v9-fixed-seed.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v8c", "issue1007-v9"] random_seed=2018 MAX_TIME=100 if common_setup.is_test_run(): MAX_TIME=2 CONFIGS = [ ### ipdb IssueConfig(f'cpdbs-hillclimbing-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(hillclimbing(max_time={MAX_TIME},pdb_max_size=1000000,collection_max_size=10000000,random_seed={random_seed})),verbosity=silent)']), ### single cegar IssueConfig(f'cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(wildcard_plans=false,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)']), IssueConfig(f'cpdbs-singlecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(wildcard_plans=true,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)']), ### multiple cegar IssueConfig(f'cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=infinity,blacklist_trigger_percentage=1,blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=20,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=infinity,blacklist_trigger_percentage=1,blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=20,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)"]), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step() exp.add_comparison_table_step() exp.run_steps()
4,869
Python
64.81081
808
0.763401
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v15-multiple-seeds.py
#! /usr/bin/env python3 import itertools import math import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from lab.reports import Attribute from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from average_report import AverageAlgorithmReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v15"] MAX_TIME=20 if common_setup.is_test_run(): MAX_TIME=1 CONFIGS = [] for random_seed in range(2018, 2028): ### single cegar CONFIGS.append(IssueConfig(f'cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t20-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(use_wildcard_plans=false,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])) ### multiple cegar CONFIGS.append(IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t20-blacklist0.75-stag4-s{random_seed}', ['--search', f'astar(cpdbs(multiple_cegar(use_wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},total_max_time={MAX_TIME},stagnation_limit=4,blacklist_trigger_percentage=0.75,enable_blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])) SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_parser('cpdbs-parser.py') exp.add_parser('cegar-parser.py') cpdbs_num_patterns = Attribute('cpdbs_num_patterns', absolute=False, min_wins=True) cpdbs_total_pdb_size = Attribute('cpdbs_total_pdb_size', absolute=False, min_wins=True) cpdbs_computation_time = Attribute('cpdbs_computation_time', absolute=False, min_wins=True) score_cpdbs_computation_time = Attribute('score_cpdbs_computation_time', absolute=True, min_wins=False) cegar_num_iterations = Attribute('cegar_num_iterations', absolute=False, min_wins=True) cegar_num_patterns = Attribute('cegar_num_patterns', absolute=False, min_wins=True) cegar_total_pdb_size = Attribute('cegar_total_pdb_size', absolute=False, min_wins=True) cegar_computation_time = Attribute('cegar_computation_time', absolute=False, min_wins=True) score_cegar_computation_time = Attribute('score_cegar_computation_time', absolute=True, min_wins=False) exp.add_absolute_report_step(attributes=['coverage']) ### compare against v14 exp.add_fetcher('data/issue1007-v14-multiple-seeds-eval',merge=True,filter_algorithm=[ 'issue1007-v14-cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t20-s{}'.format(random_seed) for random_seed in range(2018, 2028) ] + [ 'issue1007-v14-cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t20-blacklist0.75-stag4-s{}'.format(random_seed) for random_seed in range(2018, 2028) ]) def add_computation_time_score(run): """ Convert cegar/cpdbs computation time into scores in the range [0, 1]. Best possible performance in a task is counted as 1, while failure to construct the heuristic and worst performance are counted as 0. """ def log_score(value, min_bound, max_bound): assert min_bound < max_bound if value is None: return 0 value = max(value, min_bound) value = min(value, max_bound) raw_score = math.log(value) - math.log(max_bound) best_raw_score = math.log(min_bound) - math.log(max_bound) return raw_score / best_raw_score run['score_cegar_computation_time'] = log_score(run.get('cegar_computation_time'), min_bound=1.0, max_bound=MAX_TIME) run['score_cpdbs_computation_time'] = log_score(run.get('cpdbs_computation_time'), min_bound=1.0, max_bound=MAX_TIME) return run exp.add_report( AverageAlgorithmReport( algo_name_suffixes=['-s{}'.format(seed) for seed in range(2018,2028)], attributes=[ 'coverage', 'search_time', 'total_time', 'expansions_until_last_jump', 'score_search_time', 'score_total_time', 'score_memory', 'score_expansions', 'initial_h_value', cpdbs_num_patterns, cpdbs_total_pdb_size, cpdbs_computation_time, score_cpdbs_computation_time, cegar_num_iterations, cegar_num_patterns, cegar_total_pdb_size, cegar_computation_time, score_cegar_computation_time, ], filter=[add_computation_time_score], ), outfile=os.path.join(exp.eval_dir, "average", "properties"), name="report-average" ) exp.add_fetcher(os.path.join(exp.eval_dir, 'average'), merge=True) exp._configs = [ IssueConfig('cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t20', []), IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t20-blacklist0.75-stag4', []), ] exp.add_comparison_table_step_for_revision_pairs( revision_pairs=[ ("issue1007-v14", "issue1007-v15"), ], attributes=[ 'coverage', 'search_time', 'total_time', 'expansions_until_last_jump', 'score_search_time', 'score_total_time', 'score_memory', 'score_expansions', 'initial_h_value', cpdbs_num_patterns, cpdbs_total_pdb_size, cpdbs_computation_time, score_cpdbs_computation_time, cegar_num_iterations, cegar_num_patterns, cegar_total_pdb_size, cegar_computation_time, score_cegar_computation_time, ], filter=[add_computation_time_score], ) exp.run_steps()
7,113
Python
47.067567
808
0.717419
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v6-multiple-seeds.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from average_report import AverageAlgorithmReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v5", "issue1007-v6"] CONFIGS = [] for random_seed in range(2018, 2028): ### single cegar CONFIGS.append(IssueConfig('cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', 'astar(cpdbs(single_cegar(max_refinements=infinity,wildcard_plans=false,max_time=20,max_pdb_size=1000000,max_collection_size=10000000,random_seed={},verbosity=normal)),verbosity=silent)'.format(random_seed)], driver_options=['--search-time-limit', '5m'])) ### multiple cegar CONFIGS.append(IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag4-s{}'.format(random_seed), ['--search', "astar(cpdbs(multiple_cegar(max_refinements=infinity,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,initial_random_seed={},total_collection_max_size=10000000,total_time_limit=20,stagnation_limit=4,blacklist_trigger_time=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)".format(random_seed)], driver_options=['--search-time-limit', '5m'])) SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step(attributes=['coverage']) exp.add_report( AverageAlgorithmReport( algo_name_suffixes=['-s{}'.format(seed) for seed in range(2018,2028)], attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump'] ), outfile=os.path.join(exp.eval_dir, "average", "properties"), name="report-average" ) exp.add_fetcher('data/issue1007-v6-multiple-seeds-eval/average', merge=True) exp._configs = [ IssueConfig('cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100', []), IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag4', []), ] exp.add_comparison_table_step( attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump'] ) exp.run_steps()
3,967
Python
47.390243
808
0.739854
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v2-best-average.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from average_report import AverageAlgorithmReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] REVISIONS = ["issue1007-v1", "issue1007-v2"] CONFIGS = [ IssueConfig('cpdbs-multiple-cegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20', []), ] exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, ) exp.add_comparison_table_step( attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump'] ) exp.run_steps()
783
Python
24.290322
98
0.759898
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/average_report.py
# -*- coding: utf-8 -*- from downward.reports import PlanningReport from lab import tools from lab.reports import geometric_mean import os DEBUG=False class AverageAlgorithmReport(PlanningReport): """ This currently only works for some hard-coded attributes. """ def __init__(self, algo_name_suffixes, **kwargs): PlanningReport.__init__(self, **kwargs) self.algo_name_suffixes=algo_name_suffixes def get_text(self): if not self.outfile.endswith("properties"): raise ValueError("outfile must be a path to a properties file") algo_infixes = set() for algo in self.algorithms: for suffix in self.algo_name_suffixes: if suffix in algo: algo_infixes.add(algo.replace(suffix, '')) break # print(algo_infixes) # print(self.algo_name_suffixes) props = tools.Properties(self.outfile) for domain, problem in self.problem_runs.keys(): if DEBUG: print(domain, problem) for algo in algo_infixes: if DEBUG: print("Consider ", algo) properties_key = algo + '-' + domain + '-' + problem average_algo_dict = {} average_algo_dict['algorithm'] = algo average_algo_dict['domain'] = domain average_algo_dict['problem'] = problem average_algo_dict['id'] = [algo, domain, problem] for attribute in self.attributes: if DEBUG: print("Consider ", attribute) values = [] for suffix in self.algo_name_suffixes: real_algo = algo + suffix # if DEBUG: # print("Composed algo ", real_algo) real_algo_run = self.runs[(domain, problem, real_algo)] values.append(real_algo_run.get(attribute)) if DEBUG: print(values) values_without_none = [value for value in values if value is not None] if attribute in [ 'coverage', 'cegar_num_iterations', 'cegar_num_patterns', 'cegar_total_pdb_size', 'initial_h_value' 'coverage', 'initial_h_value', 'cpdbs_num_patterns', 'cpdbs_total_pdb_size', 'cegar_num_iterations', 'cegar_num_patterns', 'cegar_total_pdb_size', ] or 'score' in attribute: # if 'score' not in attribute: # assert len(values_without_none) == 10 # does not hold for scores average_value = sum(values_without_none)/float(len(values)) elif 'time' in attribute or 'expansions' in attribute: if len(values_without_none) == 10: average_value = geometric_mean(values_without_none) else: average_value = None else: print("Don't know how to handle {}".format(attribute)) exit(1) average_algo_dict[attribute] = average_value props[properties_key] = average_algo_dict return str(props)
3,535
Python
43.759493
94
0.490523
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v13-fixed-seed.py
#! /usr/bin/env python3 import itertools import os import subprocess from lab.environments import LocalEnvironment, BaselSlurmEnvironment from lab.reports import Attribute from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v8c", "issue1007-v13"] random_seed=2018 MAX_TIME=100 if common_setup.is_test_run(): MAX_TIME=2 CONFIGS = [ ### ipdb IssueConfig(f'cpdbs-hillclimbing-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(hillclimbing(max_time={MAX_TIME},pdb_max_size=1000000,collection_max_size=10000000,random_seed={random_seed})),verbosity=silent)']), ### single cegar IssueConfig(f'cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(wildcard_plans=false,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)']), IssueConfig(f'cpdbs-singlecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(wildcard_plans=true,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)']), ### multiple cegar IssueConfig(f'cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=infinity,blacklist_trigger_percentage=1,blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=20,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=infinity,blacklist_trigger_percentage=1,blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=20,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)"]), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_parser('cpdbs-parser.py') exp.add_parser('cegar-parser.py') cpdbs_num_patterns = Attribute('cpdbs_num_patterns', absolute=False, min_wins=True) cpdbs_total_pdb_size = Attribute('cpdbs_total_pdb_size', absolute=False, min_wins=True) cpdbs_computation_time = Attribute('cpdbs_computation_time', absolute=False, min_wins=True) cegar_num_iterations = Attribute('cegar_num_iterations', absolute=False, min_wins=True) cegar_num_patterns = Attribute('cegar_num_patterns', absolute=False, min_wins=True) cegar_total_pdb_size = Attribute('cegar_total_pdb_size', absolute=False, min_wins=True) cegar_computation_time = Attribute('cegar_computation_time', absolute=False, min_wins=True) attributes = [ cpdbs_num_patterns, cpdbs_total_pdb_size, cpdbs_computation_time, cegar_num_iterations, cegar_num_patterns, cegar_total_pdb_size, cegar_computation_time, ] attributes.extend(exp.DEFAULT_TABLE_ATTRIBUTES) attributes.append('initial_h_value') exp.add_parse_again_step() exp.add_absolute_report_step(attributes=attributes) outfile = os.path.join( exp.eval_dir, f"{exp.name}-{REVISIONS[0]}-{REVISIONS[1]}-compare-hillclimbing.html") name="make-comparison-tables-hillclimbing" exp.add_report( ComparativeReport( [ (f'{REVISIONS[0]}-cpdbs-hillclimbing-pdb1m-pdbs10m-t100-s{random_seed}', f'{REVISIONS[1]}-cpdbs-hillclimbing-pdb1m-pdbs10m-t100-s{random_seed}'), ], attributes=attributes, ), name=name, outfile=outfile, ) exp.add_step( f"publish-{name}", subprocess.call, ["publish", outfile], ) outfile = os.path.join( exp.eval_dir, f"{exp.name}-{REVISIONS[0]}-{REVISIONS[1]}-compare-cegar.html") name="make-comparison-tables-cegar" exp.add_report( ComparativeReport( [ (f'{REVISIONS[0]}-cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', f'{REVISIONS[1]}-cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}'), (f'{REVISIONS[0]}-cpdbs-singlecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', f'{REVISIONS[1]}-cpdbs-singlecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}'), (f'{REVISIONS[0]}-cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', f'{REVISIONS[1]}-cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}'), (f'{REVISIONS[0]}-cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', f'{REVISIONS[1]}-cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}'), (f'{REVISIONS[0]}-cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', f'{REVISIONS[1]}-cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}'), (f'{REVISIONS[0]}-cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', f'{REVISIONS[1]}-cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}'), ], attributes=attributes, ), name=name, outfile=outfile, ) exp.add_step( f"publish-{name}", subprocess.call, ["publish", outfile], ) exp.run_steps()
8,017
Python
54.680555
808
0.743794
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v11-v12-fixed-seed.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v8c", "issue1007-v10", "issue1007-v11", "issue1007-v12"] random_seed=2018 MAX_TIME=100 if common_setup.is_test_run(): MAX_TIME=2 CONFIGS = [ ### ipdb IssueConfig(f'cpdbs-hillclimbing-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(hillclimbing(max_time={MAX_TIME},pdb_max_size=1000000,collection_max_size=10000000,random_seed={random_seed})),verbosity=silent)']), ### single cegar IssueConfig(f'cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(wildcard_plans=false,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)']), IssueConfig(f'cpdbs-singlecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(wildcard_plans=true,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)']), ### multiple cegar IssueConfig(f'cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=infinity,blacklist_trigger_percentage=1,blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=20,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=infinity,blacklist_trigger_percentage=1,blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=20,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)"]), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step() exp.add_comparison_table_step_for_revision_pairs( revision_pairs=[ ("issue1007-v10", "issue1007-v11"), ("issue1007-v11", "issue1007-v12"), ("issue1007-v8c", "issue1007-v12"), ], ) exp.run_steps()
5,084
Python
62.562499
808
0.755901
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v2-best.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from average_report import AverageAlgorithmReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v1", "issue1007-v2"] CONFIGS = [] for random_seed in range(2018, 2028): CONFIGS.append(IssueConfig('cpdbs-multiple-cegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{}'.format(random_seed), ['--search', "astar(cpdbs(multiple_cegar(max_refinements=infinity,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,initial_random_seed={},total_collection_max_size=10000000,total_time_limit=100,stagnation_limit=20,blacklist_trigger_time=0.75,blacklist_on_stagnation=true,verbosity=silent)),verbosity=silent)".format(random_seed)])) SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step() report = AverageAlgorithmReport( algo_name_suffixes=['-s{}'.format(seed) for seed in range(2018,2028)], directory=os.path.join('data', exp.name + '-average-eval'), attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump']) outfile = os.path.join(exp.eval_dir, "dummy.txt") exp.add_report(report, outfile=outfile, name="report-average") exp.run_steps()
2,576
Python
42.677965
498
0.760481
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v3.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v2", "issue1007-v3"] random_seed=2018 CONFIGS = [ ### single cegar IssueConfig('cpdbs-single-cegar-allgoals-regularplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', 'astar(cpdbs(single_cegar(max_refinements=infinity,ignore_goal_violations=false,wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={},verbosity=silent)),verbosity=silent)'.format(random_seed)]), IssueConfig('cpdbs-single-cegar-allgoals-wildcardplans-pdb1m-pdbs10m-t100-s{}'.format(random_seed), ['--search', 'astar(cpdbs(single_cegar(max_refinements=infinity,ignore_goal_violations=false,wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={},verbosity=silent)),verbosity=silent)'.format(random_seed)]), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') #exp.add_absolute_report_step() exp.add_comparison_table_step() exp.run_steps()
2,399
Python
42.636363
414
0.764068
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v11-v12-multiple-seeds.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from average_report import AverageAlgorithmReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v11", "issue1007-v12"] MAX_TIME=20 if common_setup.is_test_run(): MAX_TIME=1 CONFIGS = [] for random_seed in range(2018, 2028): ### ipdb CONFIGS.append(IssueConfig(f'cpdbs-hillclimbing-pdb1m-pdbs10m-t20-s{random_seed}', ['--search', f'astar(cpdbs(hillclimbing(max_time={MAX_TIME},pdb_max_size=1000000,collection_max_size=10000000,random_seed={random_seed})),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])), ### single cegar CONFIGS.append(IssueConfig(f'cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t20-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(wildcard_plans=false,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])) ### multiple cegar CONFIGS.append(IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t20-blacklist0.75-stag4-s{random_seed}', ['--search', f'astar(cpdbs(multiple_cegar(wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},total_max_time={MAX_TIME},stagnation_limit=4,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])) SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step(attributes=['coverage']) exp.add_report( AverageAlgorithmReport( algo_name_suffixes=['-s{}'.format(seed) for seed in range(2018,2028)], attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump', 'score_search_time', 'score_total_time', 'score_memory'], ), outfile=os.path.join(exp.eval_dir, "average", "properties"), name="report-average" ) exp.add_fetcher(os.path.join(exp.eval_dir, 'average'), merge=True) exp._configs = [ IssueConfig('cpdbs-hillclimbing-pdb1m-pdbs10m-t20', []), IssueConfig('cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t20', []), IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t20-blacklist0.75-stag4', []), ] exp.add_comparison_table_step_for_revision_pairs( revision_pairs=[ ("issue1007-v11", "issue1007-v12"), ], attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump', 'score_search_time', 'score_total_time', 'score_memory'], ) exp.run_steps()
4,496
Python
46.840425
808
0.727536
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v8b-v8c-v8d.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from average_report import AverageAlgorithmReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v8b", "issue1007-v8c", "issue1007-v8d"] MAX_TIME=20 if common_setup.is_test_run(): MAX_TIME=2 CONFIGS = [] for random_seed in range(2018, 2028): ### single cegar CONFIGS.append(IssueConfig(f'cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t20-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(wildcard_plans=false,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])) ### multiple cegar CONFIGS.append(IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t20-blacklist0.75-stag4-s{random_seed}', ['--search', f'astar(cpdbs(multiple_cegar(wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},total_max_time={MAX_TIME},stagnation_limit=4,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)'], driver_options=['--search-time-limit', '5m'])) SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step(attributes=['coverage']) exp.add_report( AverageAlgorithmReport( algo_name_suffixes=['-s{}'.format(seed) for seed in range(2018,2028)], attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump', 'score_search_time', 'score_total_time', 'score_memory'], ), outfile=os.path.join(exp.eval_dir, "average", "properties"), name="report-average" ) exp.add_fetcher(os.path.join(exp.eval_dir, 'average'), merge=True) exp._configs = [ IssueConfig('cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t20', []), IssueConfig('cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t20-blacklist0.75-stag4', []), ] exp.add_comparison_table_step_for_revision_pairs( revision_pairs=[ ("issue1007-v8b", "issue1007-v8c"), ("issue1007-v8c", "issue1007-v8d"), ], attributes=['coverage', 'search_time', 'total_time', 'expansions_until_last_jump', 'score_search_time', 'score_total_time', 'score_memory'], ) exp.run_steps()
4,188
Python
45.032967
808
0.726361
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v8b-v8c-v8d-fixed-seed.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v8b", "issue1007-v8c", "issue1007-v8d"] random_seed=2018 MAX_TIME=100 if common_setup.is_test_run(): MAX_TIME=2 CONFIGS = [ ### single cegar IssueConfig(f'cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(wildcard_plans=false,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)']), IssueConfig(f'cpdbs-singlecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(wildcard_plans=true,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)']), ### multiple cegar IssueConfig(f'cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=infinity,blacklist_trigger_percentage=1,blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=20,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=infinity,blacklist_trigger_percentage=1,blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=20,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)"]), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step() exp.add_comparison_table_step() exp.run_steps()
4,640
Python
64.366196
808
0.765086
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v15-fixed-seed.py
#! /usr/bin/env python3 import itertools import math import os import subprocess from lab.environments import LocalEnvironment, BaselSlurmEnvironment from lab.reports import Attribute from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v15"] random_seed=2018 MAX_TIME=100 if common_setup.is_test_run(): MAX_TIME=2 CONFIGS = [ ### single cegar IssueConfig(f'cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(use_wildcard_plans=false,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)']), IssueConfig(f'cpdbs-singlecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(use_wildcard_plans=true,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)']), ### multiple cegar IssueConfig(f'cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(use_wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=infinity,blacklist_trigger_percentage=1,enable_blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(use_wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=20,blacklist_trigger_percentage=0.75,enable_blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(use_wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=infinity,blacklist_trigger_percentage=1,enable_blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(use_wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=20,blacklist_trigger_percentage=0.75,enable_blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)"]), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_parser('cpdbs-parser.py') exp.add_parser('cegar-parser.py') cpdbs_num_patterns = Attribute('cpdbs_num_patterns', absolute=False, min_wins=True) cpdbs_total_pdb_size = Attribute('cpdbs_total_pdb_size', absolute=False, min_wins=True) cpdbs_computation_time = Attribute('cpdbs_computation_time', absolute=False, min_wins=True) score_cpdbs_computation_time = Attribute('score_cpdbs_computation_time', absolute=True, min_wins=False) cegar_num_iterations = Attribute('cegar_num_iterations', absolute=False, min_wins=True) cegar_num_patterns = Attribute('cegar_num_patterns', absolute=False, min_wins=True) cegar_total_pdb_size = Attribute('cegar_total_pdb_size', absolute=False, min_wins=True) cegar_computation_time = Attribute('cegar_computation_time', absolute=False, min_wins=True) score_cegar_computation_time = Attribute('score_cegar_computation_time', absolute=True, min_wins=False) attributes = [ cpdbs_num_patterns, cpdbs_total_pdb_size, cpdbs_computation_time, score_cpdbs_computation_time, cegar_num_iterations, cegar_num_patterns, cegar_total_pdb_size, cegar_computation_time, score_cegar_computation_time, ] attributes.extend(exp.DEFAULT_TABLE_ATTRIBUTES) attributes.append('initial_h_value') def add_computation_time_score(run): """ Convert cegar/cpdbs computation time into scores in the range [0, 1]. Best possible performance in a task is counted as 1, while failure to construct the heuristic and worst performance are counted as 0. """ def log_score(value, min_bound, max_bound): assert min_bound < max_bound if value is None: return 0 value = max(value, min_bound) value = min(value, max_bound) raw_score = math.log(value) - math.log(max_bound) best_raw_score = math.log(min_bound) - math.log(max_bound) return raw_score / best_raw_score run['score_cegar_computation_time'] = log_score(run.get('cegar_computation_time'), min_bound=1.0, max_bound=MAX_TIME) run['score_cpdbs_computation_time'] = log_score(run.get('cpdbs_computation_time'), min_bound=1.0, max_bound=MAX_TIME) return run exp.add_absolute_report_step(attributes=attributes,filter=[add_computation_time_score]) exp.add_fetcher('data/issue1007-v14-fixed-seed-eval', filter_algorithm=[ f'issue1007-v14-cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', f'issue1007-v14-cpdbs-singlecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', f'issue1007-v14-cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', f'issue1007-v14-cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', f'issue1007-v14-cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', f'issue1007-v14-cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', ],merge=True) exp.add_comparison_table_step_for_revision_pairs( revision_pairs=[ ("issue1007-v14", "issue1007-v15"), ], attributes=attributes, filter=[add_computation_time_score], ) exp.run_steps()
7,756
Python
55.210145
808
0.752708
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v15-ipdb-sys.py
#! /usr/bin/env python3 import itertools import math import os import subprocess from lab.environments import LocalEnvironment, BaselSlurmEnvironment from lab.reports import Attribute from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-base-v2", "issue1007-v15"] random_seed=2018 MAX_TIME=900 if common_setup.is_test_run(): MAX_TIME=2 CONFIGS = [ IssueConfig(f'cpdbs-hillclimbing-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(hillclimbing(max_time={MAX_TIME},pdb_max_size=1000000,collection_max_size=10000000,random_seed={random_seed})),verbosity=silent)']), IssueConfig('cpdbs-sys2', ['--search', 'astar(cpdbs(systematic(pattern_max_size=2)),verbosity=silent)']), IssueConfig('cpdbs-sys3', ['--search', 'astar(cpdbs(systematic(pattern_max_size=3)),verbosity=silent)']), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_parser('cpdbs-parser.py') cpdbs_num_patterns = Attribute('cpdbs_num_patterns', absolute=False, min_wins=True) cpdbs_total_pdb_size = Attribute('cpdbs_total_pdb_size', absolute=False, min_wins=True) cpdbs_computation_time = Attribute('cpdbs_computation_time', absolute=False, min_wins=True) score_cpdbs_computation_time = Attribute('score_cpdbs_computation_time', absolute=True, min_wins=False) attributes = [ cpdbs_num_patterns, cpdbs_total_pdb_size, cpdbs_computation_time, score_cpdbs_computation_time, ] attributes.extend(exp.DEFAULT_TABLE_ATTRIBUTES) attributes.append('initial_h_value') def add_computation_time_score(run): """ Convert cegar/cpdbs computation time into scores in the range [0, 1]. Best possible performance in a task is counted as 1, while failure to construct the heuristic and worst performance are counted as 0. """ def log_score(value, min_bound, max_bound): assert min_bound < max_bound if value is None: return 0 value = max(value, min_bound) value = min(value, max_bound) raw_score = math.log(value) - math.log(max_bound) best_raw_score = math.log(min_bound) - math.log(max_bound) return raw_score / best_raw_score run['score_cpdbs_computation_time'] = log_score(run.get('cpdbs_computation_time'), min_bound=1.0, max_bound=MAX_TIME) return run exp.add_absolute_report_step(attributes=attributes,filter=[add_computation_time_score]) exp.add_comparison_table_step(attributes=attributes,filter=[add_computation_time_score]) exp.run_steps()
4,328
Python
40.625
808
0.729205
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue1007/v7c-v8-fixed-seed.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue1007-v7c", "issue1007-v8"] random_seed=2018 MAX_TIME=100 if common_setup.is_test_run(): MAX_TIME=2 CONFIGS = [ ### single cegar IssueConfig(f'cpdbs-singlecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(wildcard_plans=false,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)']), IssueConfig(f'cpdbs-singlecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f'astar(cpdbs(single_cegar(wildcard_plans=true,max_time={MAX_TIME},max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},verbosity=normal)),verbosity=silent)']), ### multiple cegar IssueConfig(f'cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=infinity,blacklist_trigger_percentage=1,blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-regularplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=false,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=20,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=infinity,blacklist_trigger_percentage=1,blacklist_on_stagnation=false,verbosity=normal)),verbosity=silent)"]), IssueConfig(f'cpdbs-multiplecegar-wildcardplans-pdb1m-pdbs10m-t100-blacklist0.75-stag20-s{random_seed}', ['--search', f"astar(cpdbs(multiple_cegar(wildcard_plans=true,max_time=100,max_pdb_size=1000000,max_collection_size=10000000,random_seed={random_seed},max_collection_size=10000000,total_max_time={MAX_TIME},stagnation_limit=20,blacklist_trigger_percentage=0.75,blacklist_on_stagnation=true,verbosity=normal)),verbosity=silent)"]), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", partition="infai_2", export=[], # paths obtained via: # module purge # module -q load CMake/3.15.3-GCCcore-8.3.0 # module -q load GCC/8.3.0 # echo $PATH # echo $LD_LIBRARY_PATH setup='export PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/bin:/scicore/soft/apps/CMake/3.15.3-GCCcore-8.3.0/bin:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/bin:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/bin:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/bin:/scicore/soft/apps/GCCcore/8.3.0/bin:/infai/sieverss/repos/bin:/infai/sieverss/local:/export/soft/lua_lmod/centos7/lmod/lmod/libexec:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:$PATH\nexport LD_LIBRARY_PATH=/scicore/soft/apps/binutils/2.32-GCCcore-8.3.0/lib:/scicore/soft/apps/cURL/7.66.0-GCCcore-8.3.0/lib:/scicore/soft/apps/bzip2/1.0.8-GCCcore-8.3.0/lib:/scicore/soft/apps/zlib/1.2.11-GCCcore-8.3.0/lib:/scicore/soft/apps/ncurses/6.1-GCCcore-8.3.0/lib:/scicore/soft/apps/GCCcore/8.3.0/lib64:/scicore/soft/apps/GCCcore/8.3.0/lib') if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step() exp.add_comparison_table_step() exp.run_steps()
4,622
Python
64.112675
808
0.765253