file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue627/merge-v3-v4.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from common_setup_no_benchmarks import IssueConfig, IssueExperiment, get_script_dir from relativescatter import RelativeScatterPlotReport import os def main(revisions=None): exp = IssueExperiment(benchmarks_dir=".", suite=[]) exp.add_fetcher( os.path.join(get_script_dir(), "data", "issue627-v3-eval"), filter=lambda(run): "base" not in run["config"], ) exp.add_fetcher( os.path.join(get_script_dir(), "data", "issue627-v4-eval"), filter=lambda(run): "base" not in run["config"], ) for config_nick in ['astar-blind', 'astar-lmcut', 'astar-ipdb', 'astar-cegar-original', 'astar-cegar-lm-goals']: exp.add_report( RelativeScatterPlotReport( attributes=["memory"], filter_config=["issue627-v3-%s" % config_nick, "issue627-v4-%s" % config_nick], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue627_v3_v4_memory_%s.png' % config_nick ) exp.add_report( RelativeScatterPlotReport( attributes=["total_time"], filter_config=["issue627-v3-%s" % config_nick, "issue627-v4-%s" % config_nick], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue627_v3_v4_total_time_%s.png' % config_nick ) exp() main(revisions=['issue627-v3', 'issue627-v4'])
1,574
Python
32.510638
116
0.568615
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue627/v1-noise.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport def main(revisions=None): suite = suites.suite_optimal_with_ipc11() configs = { IssueConfig('astar-cegar-original-10000', ['--search', 'astar(cegar(subtasks=[original()],max_states=10000,max_time=infinity))']), IssueConfig('astar-cegar-lm-goals-10000', ['--search', 'astar(cegar(subtasks=[landmarks(),goals()],max_states=10000,max_time=infinity))']), } exp = IssueExperiment( revisions=revisions, configs=configs, suite=suite, test_suite=['depot:pfile1'], processes=4, email='[email protected]', ) exp.add_comparison_table_step() for config in configs: exp.add_report( RelativeScatterPlotReport( attributes=["memory"], filter_config=["issue627-base-%s" % config.nick, "4ed2abfab4ba-%s" % config.nick], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue627_base_memory_%s.png' % config.nick ) exp.add_report( RelativeScatterPlotReport( attributes=["total_time"], filter_config=["issue627-base-%s" % config.nick, "4ed2abfab4ba-%s" % config.nick], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue627_base_total_time_%s.png' % config.nick ) exp() main(revisions=['issue627-base', '4ed2abfab4ba'])
1,696
Python
31.634615
147
0.581368
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue627/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.steps import Step from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareConfigsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ( "cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Wrapper for FastDownwardExperiment with a few convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, suite, revisions=[], configs={}, grid_priority=None, path=None, test_suite=None, email=None, processes=1, **kwargs): """Create a DownwardExperiment with some convenience features. If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) *configs* must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(..., suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(..., suite=suites.suite_all()) IssueExperiment(..., suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(..., suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(..., grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(..., test_suite=["depot:pfile1", "tpp:p01.pddl"]) If *email* is specified, it should be an email address. This email address will be notified upon completion of the experiments if it is run on the cluster. """ if is_test_run(): kwargs["environment"] = LocalEnvironment(processes=processes) suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment( priority=grid_priority, email=email) path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) repo = get_repo_base() for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), repo, rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self.add_suite(os.path.join(repo, "benchmarks"), suite) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join(self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step(Step('publish-absolute-report', subprocess.call, ['publish', outfile])) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = CompareConfigsReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare" % (self.name, rev1, rev2) + "." + report.output_format) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare" % (self.name, rev1, rev2) + ".html") subprocess.call(['publish', outfile]) self.add_step(Step("make-comparison-tables", make_comparison_tables)) self.add_step(Step("publish-comparison-tables", publish_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(Step("make-scatter-plots", make_scatter_plots))
12,539
Python
34.027933
83
0.59606
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue627/merge-v3-v5.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from common_setup_no_benchmarks import IssueConfig, IssueExperiment, get_script_dir from relativescatter import RelativeScatterPlotReport import os def main(revisions=None): exp = IssueExperiment(benchmarks_dir=".", suite=[]) exp.add_fetcher( os.path.join(get_script_dir(), "data", "issue627-v3-eval"), filter=lambda(run): "base" not in run["config"], ) exp.add_fetcher( os.path.join(get_script_dir(), "data", "issue627-v5-eval"), filter=lambda(run): "base" not in run["config"], ) for config_nick in ['astar-blind', 'astar-lmcut', 'astar-ipdb', 'astar-cegar-original', 'astar-cegar-lm-goals']: exp.add_report( RelativeScatterPlotReport( attributes=["memory"], filter_config=["issue627-v3-%s" % config_nick, "issue627-v5-%s" % config_nick], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue627_v3_v5_memory_%s.png' % config_nick ) exp.add_report( RelativeScatterPlotReport( attributes=["total_time"], filter_config=["issue627-v3-%s" % config_nick, "issue627-v5-%s" % config_nick], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue627_v3_v5_total_time_%s.png' % config_nick ) exp() main(revisions=['issue627-v3', 'issue627-v5'])
1,574
Python
32.510638
116
0.568615
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue627/v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport def main(revisions=None): suite = suites.suite_optimal_with_ipc11() configs = { IssueConfig('astar-cegar-original', ['--search', 'astar(cegar(subtasks=[original()]))']), IssueConfig('astar-cegar-lm-goals', ['--search', 'astar(cegar(subtasks=[landmarks(),goals()]))']), } exp = IssueExperiment( revisions=revisions, configs=configs, suite=suite, test_suite=['depot:pfile1'], processes=4, email='[email protected]', ) exp.add_comparison_table_step() for config in configs: exp.add_report( RelativeScatterPlotReport( attributes=["memory"], filter_config=["issue627-base-%s" % config.nick, "issue627-v1-%s" % config.nick], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue627_base_v1_memory_%s.png' % config.nick ) exp.add_report( RelativeScatterPlotReport( attributes=["total_time"], filter_config=["issue627-base-%s" % config.nick, "issue627-v1-%s" % config.nick], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue627_base_v1_total_time_%s.png' % config.nick ) exp() main(revisions=['issue627-base', 'issue627-v1'])
1,621
Python
30.192307
106
0.565083
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue627/v1-limit.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport def main(revisions=None): suite = suites.suite_optimal_with_ipc11() configs = { IssueConfig('astar-cegar-original-10000', ['--search', 'astar(cegar(subtasks=[original()],max_states=10000,max_time=infinity))']), IssueConfig('astar-cegar-lm-goals-10000', ['--search', 'astar(cegar(subtasks=[landmarks(),goals()],max_states=10000,max_time=infinity))']), } exp = IssueExperiment( revisions=revisions, configs=configs, suite=suite, test_suite=['depot:pfile1'], processes=4, email='[email protected]', ) exp.add_comparison_table_step() for config in configs: exp.add_report( RelativeScatterPlotReport( attributes=["memory"], filter_config=["issue627-base-%s" % config.nick, "issue627-v1-%s" % config.nick], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue627_base_v1_memory_%s.png' % config.nick ) exp.add_report( RelativeScatterPlotReport( attributes=["total_time"], filter_config=["issue627-base-%s" % config.nick, "issue627-v1-%s" % config.nick], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue627_base_v1_total_time_%s.png' % config.nick ) exp() main(revisions=['issue627-base', 'issue627-v1'])
1,699
Python
31.692307
147
0.579164
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue627/v5-sat.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from common_setup_no_benchmarks import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport def main(revisions=None): suite = suites.suite_satisficing_with_ipc11() configs = { IssueConfig('lazy-greedy-ff', [ '--heuristic', 'h=ff()', '--search', 'lazy_greedy(h, preferred=h)' ]), IssueConfig('lama-first', [], driver_options=['--alias', 'lama-first'] ), IssueConfig('eager_greedy_cg', [ '--heuristic', 'h=cg()', '--search', 'eager_greedy(h, preferred=h)' ]), IssueConfig('eager_greedy_cea', [ '--heuristic', 'h=cea()', '--search', 'eager_greedy(h, preferred=h)' ]), } exp = IssueExperiment( benchmarks_dir="/infai/pommeren/projects/downward/benchmarks/", revisions=revisions, configs=configs, suite=suite, test_suite=['depot:pfile1'], processes=4, email='[email protected]', ) exp.add_comparison_table_step() for config in configs: exp.add_report( RelativeScatterPlotReport( attributes=["memory"], filter_config=["issue627-v3-base-%s" % config.nick, "issue627-v5-%s" % config.nick], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue627_base_v5_sat_memory_%s.png' % config.nick ) exp.add_report( RelativeScatterPlotReport( attributes=["total_time"], filter_config=["issue627-v3-base-%s" % config.nick, "issue627-v5-%s" % config.nick], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue627_base_v5_sat_total_time_%s.png' % config.nick ) exp() main(revisions=['issue627-v3-base', 'issue627-v5'])
2,128
Python
28.569444
74
0.520677
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue627/relativescatter.py
# -*- coding: utf-8 -*- # # downward uses the lab package to conduct experiments with the # Fast Downward planning system. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from collections import defaultdict import os from lab import tools from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter(axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows how a specific attribute in two configurations. The attribute value in config 1 is shown on the x-axis and the relation to the value in config 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['config'] == self.configs[0] and run2['config'] == self.configs[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.configs[0], val1) assert val2 > 0, (domain, problem, self.configs[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlots use log-scaling on the x-axis by default. default_xscale = 'log' if self.attribute and self.attribute in self.LINEAR: default_xscale = 'linear' PlotReport._set_scales(self, xscale or default_xscale, 'log')
4,690
Python
35.937008
84
0.624947
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue627/common_setup_no_benchmarks.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.steps import Step from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareConfigsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ( "cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, benchmarks_dir, suite, revisions=[], configs={}, grid_priority=None, path=None, test_suite=None, email=None, processes=None, **kwargs): """ If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) *configs* must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(..., suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(..., suite=suites.suite_all()) IssueExperiment(..., suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(..., suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(..., grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(..., test_suite=["depot:pfile1", "tpp:p01.pddl"]) If *email* is specified, it should be an email address. This email address will be notified upon completion of the experiments if it is run on the cluster. """ if is_test_run(): kwargs["environment"] = LocalEnvironment(processes=processes) suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment( priority=grid_priority, email=email) path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) repo = get_repo_base() for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), repo, rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self.add_suite(benchmarks_dir, suite) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join(self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step(Step('publish-absolute-report', subprocess.call, ['publish', outfile])) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = CompareConfigsReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare" % (self.name, rev1, rev2) + "." + report.output_format) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare" % (self.name, rev1, rev2) + ".html") subprocess.call(['publish', outfile]) self.add_step(Step("make-comparison-tables", make_comparison_tables)) self.add_step(Step("publish-comparison-tables", publish_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(Step("make-scatter-plots", make_scatter_plots))
12,496
Python
33.907821
83
0.59435
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue627/v3.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from common_setup_no_benchmarks import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport def main(revisions=None): suite = suites.suite_optimal_with_ipc11() configs = { IssueConfig('astar-blind', ['--search', 'astar(blind())']), IssueConfig('astar-lmcut', ['--search', 'astar(lmcut())']), IssueConfig('astar-ipdb', ['--search', 'astar(ipdb())']), IssueConfig('astar-cegar-original', ['--search', 'astar(cegar(subtasks=[original()], max_states=10000, max_time=infinity))']), IssueConfig('astar-cegar-lm-goals', ['--search', 'astar(cegar(subtasks=[landmarks(),goals()], max_states=10000, max_time=infinity))']), } exp = IssueExperiment( benchmarks_dir="/infai/pommeren/projects/downward/benchmarks/", revisions=revisions, configs=configs, suite=suite, test_suite=['depot:pfile1'], processes=4, email='[email protected]', ) exp.add_comparison_table_step() for config in configs: exp.add_report( RelativeScatterPlotReport( attributes=["memory"], filter_config=["issue627-v3-base-%s" % config.nick, "issue627-v3-%s" % config.nick], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue627_base_v3_memory_%s.png' % config.nick ) exp.add_report( RelativeScatterPlotReport( attributes=["total_time"], filter_config=["issue627-v3-base-%s" % config.nick, "issue627-v3-%s" % config.nick], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue627_base_v3_total_time_%s.png' % config.nick ) exp() main(revisions=['issue627-v3-base', 'issue627-v3'])
1,988
Python
34.517857
143
0.57998
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue627/v2.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport def main(revisions=None): suite = suites.suite_optimal_with_ipc11() configs = { IssueConfig('astar-blind', ['--search', 'astar(blind())']), IssueConfig('astar-lmcut', ['--search', 'astar(lmcut())']), IssueConfig('astar-ipdb', ['--search', 'astar(ipdb())']), IssueConfig('astar-cegar-original', ['--search', 'astar(cegar(subtasks=[original()]))']), IssueConfig('astar-cegar-lm-goals', ['--search', 'astar(cegar(subtasks=[landmarks(),goals()]))']), } exp = IssueExperiment( revisions=revisions, configs=configs, suite=suite, test_suite=['depot:pfile1'], processes=4, email='[email protected]', ) exp.add_comparison_table_step() for config in configs: exp.add_report( RelativeScatterPlotReport( attributes=["memory"], filter_config=["issue627-base-%s" % config.nick, "issue627-v2-%s" % config.nick], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue627_base_v2_memory_%s.png' % config.nick ) exp.add_report( RelativeScatterPlotReport( attributes=["total_time"], filter_config=["issue627-base-%s" % config.nick, "issue627-v2-%s" % config.nick], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue627_base_v2_total_time_%s.png' % config.nick ) exp() main(revisions=['issue627-base', 'issue627-v2'])
1,819
Python
32.090909
106
0.563496
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue511/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.steps import Step from downward.experiments import DownwardExperiment, _get_rev_nick from downward.checkouts import Translator, Preprocessor, Planner from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareRevisionsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" import __main__ return __main__.__file__ def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ("cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or (ARGS.test_run == "auto" and not is_running_on_cluster()) class IssueExperiment(DownwardExperiment): """Wrapper for DownwardExperiment with a few convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "plan_length", ] def __init__(self, configs, suite, grid_priority=None, path=None, repo=None, revisions=None, search_revisions=None, test_suite=None, **kwargs): """Create a DownwardExperiment with some convenience features. *configs* must be a non-empty dict of {nick: cmdline} pairs that sets the planner configurations to test. :: IssueExperiment(configs={ "lmcut": ["--search", "astar(lmcut())"], "ipdb": ["--search", "astar(ipdb())"]}) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(suite=suites.suite_all()) IssueExperiment(suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ If *repo* is specified, it must be the path to the root of a local Fast Downward repository. If omitted, the repository is derived automatically from the main script's path. Example:: script = /path/to/fd-repo/experiments/issue123/exp01.py --> repo = /path/to/fd-repo If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"]) If *search_revisions* is specified, it should be a non-empty list of revisions, which specify which search component versions to use in the experiment. All runs use the translator and preprocessor component of the first revision. :: IssueExperiment(search_revisions=["default", "issue123"]) If you really need to specify the (translator, preprocessor, planner) triples manually, use the *combinations* parameter from the base class (might be deprecated soon). The options *revisions*, *search_revisions* and *combinations* can be freely mixed, but at least one of them must be given. Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(test_suite=["depot:pfile1", "tpp:p01.pddl"]) """ if is_test_run(): kwargs["environment"] = LocalEnvironment() suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment(priority=grid_priority) if path is None: path = get_data_dir() if repo is None: repo = get_repo_base() kwargs.setdefault("combinations", []) if not any([revisions, search_revisions, kwargs["combinations"]]): raise ValueError('At least one of "revisions", "search_revisions" ' 'or "combinations" must be given') if revisions: kwargs["combinations"].extend([ (Translator(repo, rev), Preprocessor(repo, rev), Planner(repo, rev)) for rev in revisions]) if search_revisions: base_rev = search_revisions[0] # Use the same nick for all parts to get short revision nick. kwargs["combinations"].extend([ (Translator(repo, base_rev, nick=rev), Preprocessor(repo, base_rev, nick=rev), Planner(repo, rev, nick=rev)) for rev in search_revisions]) DownwardExperiment.__init__(self, path=path, repo=repo, **kwargs) self._config_nicks = [] for nick, config in configs.items(): self.add_config(nick, config) self.add_suite(suite) @property def revision_nicks(self): # TODO: Once the add_algorithm() API is available we should get # rid of the call to _get_rev_nick() and avoid inspecting the # list of combinations by setting and saving the algorithm nicks. return [_get_rev_nick(*combo) for combo in self.combinations] def add_config(self, nick, config, timeout=None): DownwardExperiment.add_config(self, nick, config, timeout=timeout) self._config_nicks.append(nick) def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = get_experiment_name() + "." + report.output_format self.add_report(report, outfile=outfile) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revision triples. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareRevisionsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self.revision_nicks, 2): report = CompareRevisionsReport(rev1, rev2, **kwargs) outfile = os.path.join(self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) report(self.eval_dir, outfile) self.add_step(Step("make-comparison-tables", make_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revision pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def is_portfolio(config_nick): return "fdss" in config_nick def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report(self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config_nick in self._config_nicks: if is_portfolio(config_nick): valid_attributes = [ attr for attr in attributes if attr in self.PORTFOLIO_ATTRIBUTES] else: valid_attributes = attributes for rev1, rev2 in itertools.combinations( self.revision_nicks, 2): for attribute in valid_attributes: make_scatter_plot(config_nick, rev1, rev2, attribute) self.add_step(Step("make-scatter-plots", make_scatter_plots))
12,755
Python
35.135977
79
0.610349
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue511/opt-v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites import common_setup REVS = ["issue511-base", "issue511-v1"] LIMITS = {"search_time": 1800} SUITE = suites.suite_optimal_with_ipc11() CONFIGS = { "astar_blind": ["--search", "astar(blind())"], "astar_hmax": ["--search", "astar(hmax())"], } exp = common_setup.IssueExperiment( search_revisions=REVS, configs=CONFIGS, suite=SUITE, limits=LIMITS, ) exp.add_comparison_table_step() exp()
492
Python
17.961538
50
0.636179
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue511/sat-v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites import common_setup REVS = ["issue511-base", "issue511-v1"] LIMITS = {"search_time": 1800} SUITE = suites.suite_satisficing_with_ipc11() CONFIGS = { "eager_greedy_add": [ "--heuristic", "h=add()", "--search", "eager_greedy(h, preferred=h)"], "lazy_greedy_ff": [ "--heuristic", "h=ff()", "--search", "lazy_greedy(h, preferred=h)"], } exp = common_setup.IssueExperiment( search_revisions=REVS, configs=CONFIGS, suite=SUITE, limits=LIMITS, ) exp.add_comparison_table_step() exp()
650
Python
18.147058
45
0.573846
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue684/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab.steps import Step from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareConfigsReport from downward.reports.scatter import ScatterPlotReport from relativescatter import RelativeScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ( "cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step(Step( 'publish-absolute-report', subprocess.call, ['publish', outfile])) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = CompareConfigsReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step(Step("make-comparison-tables", make_comparison_tables)) self.add_step(Step( "publish-comparison-tables", publish_comparison_tables)) def add_scatter_plot_step(self, relative=False, attributes=None): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if relative: report_class = RelativeScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: report_class = ScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "{}-{}".format(rev1, config_nick) algo2 = "{}-{}".format(rev2, config_nick) report = report_class( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(Step(step_name, make_scatter_plots))
11,446
Python
33.068452
79
0.597152
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue684/v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, MaiaEnvironment from common_setup import IssueConfig, IssueExperiment, is_test_run BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue684-base", "issue684-v1"] CONFIGS = [ IssueConfig( alias, [], driver_options=["--alias", alias, "--search-time-limit", "60s"]) for alias in [ "seq-sat-fd-autotune-1", "seq-sat-fd-autotune-2", "seq-sat-fdss-1", "seq-sat-fdss-2", "seq-sat-fdss-2014", "seq-sat-lama-2011", "lama-first"] ] SUITE = [ 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'storage', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] ENVIRONMENT = MaiaEnvironment( priority=0, email="[email protected]") if is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_absolute_report_step() exp.add_comparison_table_step() exp()
2,500
Python
37.476923
83
0.6844
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue684/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter( axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows how a specific attribute in two configurations. The attribute value in config 1 is shown on the x-axis and the relation to the value in config 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['config'] == self.configs[0] and run2['config'] == self.configs[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.configs[0], val1) assert val2 > 0, (domain, problem, self.configs[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlots use log-scaling on the x-axis by default. default_xscale = 'log' if self.attribute and self.attribute in self.LINEAR: default_xscale = 'linear' PlotReport._set_scales(self, xscale or default_xscale, 'log')
3,921
Python
35.654205
78
0.597042
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue714/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport from relativescatter import RelativeScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'storage', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'storage', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ( "cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step( 'publish-absolute-report', subprocess.call, ['publish', outfile]) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step("make-comparison-tables", make_comparison_tables) self.add_step( "publish-comparison-tables", publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if relative: report_class = RelativeScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: report_class = ScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "{}-{}".format(rev1, config_nick) algo2 = "{}-{}".format(rev2, config_nick) report = report_class( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(step_name, make_scatter_plots)
14,171
Python
35.715026
79
0.613859
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue714/v1-portfolios.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, MaiaEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue714-base", "issue714-v1"] CONFIGS = [ IssueConfig(alias, [], driver_options=["--alias", alias]) for alias in [ "seq-sat-fdss-1", "seq-sat-fdss-2", "seq-sat-fdss-2014", "seq-sat-fd-autotune-1", "seq-sat-fd-autotune-2"] ] SUITE = common_setup.DEFAULT_SATISFICING_SUITE ENVIRONMENT = MaiaEnvironment( priority=0, email="[email protected]") if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_absolute_report_step(attributes=IssueExperiment.PORTFOLIO_ATTRIBUTES) exp.add_comparison_table_step(attributes=IssueExperiment.PORTFOLIO_ATTRIBUTES) exp.run_steps()
1,128
Python
27.948717
78
0.73227
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue714/v1-configs.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import itertools import os from lab.environments import LocalEnvironment, MaiaEnvironment from downward.reports import compare import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] SUITE = common_setup.DEFAULT_SATISFICING_SUITE ENVIRONMENT = MaiaEnvironment( priority=0, email="[email protected]") if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=[], configs=[], environment=ENVIRONMENT, ) compared_algorithms = [] for search in ["eager_greedy", "lazy_greedy"]: for h1, h2 in itertools.permutations(["cea", "cg", "ff"], 2): rev = "issue714-base" config_nick = "-".join([search, h1, h2]) algo1 = common_setup.get_algo_nick(rev, config_nick) exp.add_algorithm( algo1, common_setup.get_repo_base(), rev, [ "--heuristic", "h{h1}={h1}".format(**locals()), "--heuristic", "h{h2}={h2}".format(**locals()), "--search", "{search}(h{h1}, h{h2}, preferred=[h{h1},h{h2}])".format(**locals())], driver_options=["--search-time-limit", "1m"]) rev = "issue714-v1" config_nick = "-".join([search, h1, h2]) algo2 = common_setup.get_algo_nick(rev, config_nick) exp.add_algorithm( algo2, common_setup.get_repo_base(), rev, [ "--heuristic", "h{h1}={h1}".format(**locals()), "--heuristic", "h{h2}={h2}".format(**locals()), "--search", "{search}([h{h1},h{h2}], preferred=[h{h1},h{h2}])".format(**locals())], driver_options=["--search-time-limit", "1m"]) compared_algorithms.append([algo1, algo2, "Diff ({config_nick})".format(**locals())]) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_absolute_report_step() exp.add_report(compare.ComparativeReport( compared_algorithms, attributes=IssueExperiment.DEFAULT_TABLE_ATTRIBUTES), name=common_setup.get_experiment_name() + "-comparison") exp.run_steps()
2,299
Python
31.857142
99
0.599391
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue714/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter( axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows a relative comparison of two algorithms with regard to the given attribute. The attribute value of algorithm 1 is shown on the x-axis and the relation to the value of algorithm 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['algorithm'] == self.algorithms[0] and run2['algorithm'] == self.algorithms[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.algorithms[0], val1) assert val2 > 0, (domain, problem, self.algorithms[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlot uses log-scaling on the x-axis by default. PlotReport._set_scales( self, xscale or self.attribute.scale or 'log', 'log')
3,875
Python
35.566037
78
0.59871
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue887/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport from relativescatter import RelativeScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'agricola-opt18-strips', 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'data-network-opt18-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'organic-synthesis-opt18-strips', 'organic-synthesis-split-opt18-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'petri-net-alignment-opt18-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'snake-opt18-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'spider-opt18-strips', 'storage', 'termes-opt18-strips', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'agricola-sat18-strips', 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'caldera-sat18-adl', 'caldera-split-sat18-adl', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'data-network-sat18-strips', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'flashfill-sat18-adl', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'nurikabe-sat18-adl', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'organic-synthesis-sat18-strips', 'organic-synthesis-split-sat18-strips', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'settlers-sat18-adl', 'snake-sat18-strips', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'spider-sat18-strips', 'storage', 'termes-sat18-strips', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return node.endswith(".scicore.unibas.ch") or node.endswith(".cluster.bc2.ch") def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["depot:p01.pddl", "gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "planner_memory", "planner_time", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, outfile=None, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = outfile or os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step( 'publish-' + os.path.basename(outfile), subprocess.call, ['publish', outfile]) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. Use *suffix* to denote a step name and filename suffix if you want to add multiple different comparison table steps. All *kwargs* except *suffix* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) suffix = kwargs.pop("suffix", "") if suffix: suffix = "-" + suffix def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare%s.%s" % ( self.name, rev1, rev2, suffix, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare%s.html" % (self.name, rev1, rev2, suffix)) subprocess.call(["publish", outfile]) self.add_step("make-comparison-tables%s" % suffix, make_comparison_tables) self.add_step( "publish-comparison-tables%s" % suffix, publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if relative: report_class = RelativeScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: report_class = ScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "{}-{}".format(rev1, config_nick) algo2 = "{}-{}".format(rev2, config_nick) report = report_class( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(step_name, make_scatter_plots)
15,119
Python
36.61194
90
0.618096
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue887/translator_additional_parser.py
#!/usr/bin/env python import hashlib from lab.parser import Parser def add_hash_value(content, props): props['translator_output_sas_hash'] = hashlib.sha512(content).hexdigest() parser = Parser() parser.add_function(add_hash_value, file="output.sas") parser.parse()
273
Python
20.076922
77
0.739927
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue887/v1.py
#! /usr/bin/env python2 # -*- coding: utf-8 -*- from collections import defaultdict import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from lab import tools from downward.reports.compare import ComparativeReport from downward.reports import PlanningReport import common_setup from common_setup import IssueConfig, IssueExperiment EXPNAME = common_setup.get_experiment_name() DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue887-base", "issue887-v1"] CONFIGS = [ IssueConfig( "translate-only", [], driver_options=["--translate"]) ] ENVIRONMENT = BaselSlurmEnvironment( partition="infai_1", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) # This was generated by running "./suites.py all" in the benchmarks # repository. SUITE = [ 'agricola-opt18-strips', 'agricola-sat18-strips', 'airport', 'airport-adl', 'assembly', 'barman-mco14-strips', 'barman-opt11-strips', 'barman-opt14-strips', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'caldera-opt18-adl', 'caldera-sat18-adl', 'caldera-split-opt18-adl', 'caldera-split-sat18-adl', 'cavediving-14-adl', 'childsnack-opt14-strips', 'childsnack-sat14-strips', 'citycar-opt14-adl', 'citycar-sat14-adl', 'data-network-opt18-strips', 'data-network-sat18-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'elevators-sat08-strips', 'elevators-sat11-strips', 'flashfill-sat18-adl', 'floortile-opt11-strips', 'floortile-opt14-strips', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-opt14-strips', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-agl14-strips', 'hiking-opt14-strips', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-opt14-adl', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'no-mprime', 'no-mystery', 'nomystery-opt11-strips', 'nomystery-sat11-strips', 'nurikabe-opt18-adl', 'nurikabe-sat18-adl', 'openstacks', 'openstacks-agl14-strips', 'openstacks-opt08-adl', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'organic-synthesis-opt18-strips', 'organic-synthesis-sat18-strips', 'organic-synthesis-split-opt18-strips', 'organic-synthesis-split-sat18-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parcprinter-sat11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'pegsol-sat11-strips', 'petri-net-alignment-opt18-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'scanalyzer-sat11-strips', 'schedule', 'settlers-opt18-adl', 'settlers-sat18-adl', 'snake-opt18-strips', 'snake-sat18-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'spider-opt18-strips', 'spider-sat18-strips', 'storage', 'termes-opt18-strips', 'termes-sat18-strips', 'tetris-opt14-strips', 'tetris-sat14-strips', 'thoughtful-mco14-strips', 'thoughtful-sat14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel', ] if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_parser("translator_additional_parser.py") del exp.commands['remove-output-sas'] class TranslatorDiffReport(PlanningReport): def get_cell(self, run): return ";".join(run.get(attr) for attr in self.attributes) def get_text(self): lines = [] for runs in self.problem_runs.values(): hashes = set([r.get("translator_output_sas_hash") for r in runs]) if len(hashes) > 1 or None in hashes: lines.append(";".join([self.get_cell(r) for r in runs])) return "\n".join(lines) class SameValueFilters(object): """Ignore runs for a task where all algorithms have the same value.""" def __init__(self, attribute): self._attribute = attribute self._tasks_to_values = defaultdict(list) def _get_task(self, run): return (run['domain'], run['problem']) def store_values(self, run): value = run.get(self._attribute) self._tasks_to_values[self._get_task(run)].append(value) # Don't filter this run, yet. return True def filter_tasks_with_equal_values(self, run): values = self._tasks_to_values[self._get_task(run)] return len(set(values)) != 1 exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_parse_again_step() exp.add_fetcher(name='fetch') ATTRIBUTES = ["error", "run_dir", "translator_*", "translator_output_sas_hash"] # exp.add_absolute_report_step( # outfile=os.path.join(exp.eval_dir, "{EXPNAME}.html".format(**locals())), # attributes=ATTRIBUTES) exp.add_comparison_table_step( attributes=ATTRIBUTES) same_value_filters = SameValueFilters("translator_output_sas_hash") # exp.add_absolute_report_step( # outfile=os.path.join(exp.eval_dir, "{EXPNAME}-filtered.html".format(**locals())), # attributes=ATTRIBUTES, # filter=[same_value_filters.store_values, same_value_filters.filter_tasks_with_equal_values]) exp.add_comparison_table_step( suffix="filtered", attributes=ATTRIBUTES, filter=[same_value_filters.store_values, same_value_filters.filter_tasks_with_equal_values]) exp.add_report(TranslatorDiffReport( attributes=["domain", "problem", "algorithm", "run_dir"] ), outfile="different_output_sas.csv" ) exp.run_steps()
7,093
Python
27.376
97
0.660087
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue887/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter( axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows a relative comparison of two algorithms with regard to the given attribute. The attribute value of algorithm 1 is shown on the x-axis and the relation to the value of algorithm 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['algorithm'] == self.algorithms[0] and run2['algorithm'] == self.algorithms[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.algorithms[0], val1) assert val2 > 0, (domain, problem, self.algorithms[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlot uses log-scaling on the x-axis by default. PlotReport._set_scales( self, xscale or self.attribute.scale or 'log', 'log')
3,875
Python
35.566037
78
0.59871
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue768/v1-opt.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue768-base", "issue768-v1"] CONFIGS = [ IssueConfig('ipdb', ['--search', 'astar(ipdb(max_time=900))']), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) #exp.add_absolute_report_step() exp.add_comparison_table_step() for attribute in ["memory", "total_time"]: for config in CONFIGS: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_algorithm=["{}-{}".format(rev, config.nick) for rev in REVISIONS], get_category=lambda run1, run2: run1.get("domain"), ), outfile="{}-{}-{}-{}-{}.png".format(exp.name, attribute, config.nick, *REVISIONS) ) exp.run_steps()
1,443
Python
29.083333
93
0.678448
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue768/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport from relativescatter import RelativeScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'storage', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'storage', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ( "cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step( 'publish-absolute-report', subprocess.call, ['publish', outfile]) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step("make-comparison-tables", make_comparison_tables) self.add_step( "publish-comparison-tables", publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if relative: report_class = RelativeScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: report_class = ScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "{}-{}".format(rev1, config_nick) algo2 = "{}-{}".format(rev2, config_nick) report = report_class( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(step_name, make_scatter_plots)
14,171
Python
35.715026
79
0.613859
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue768/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter( axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows a relative comparison of two algorithms with regard to the given attribute. The attribute value of algorithm 1 is shown on the x-axis and the relation to the value of algorithm 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['algorithm'] == self.algorithms[0] and run2['algorithm'] == self.algorithms[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.algorithms[0], val1) assert val2 > 0, (domain, problem, self.algorithms[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlot uses log-scaling on the x-axis by default. PlotReport._set_scales( self, xscale or self.attribute.scale or 'log', 'log')
3,875
Python
35.566037
78
0.59871
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue680/v1-potential.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os import suites from lab.reports import Attribute, gm from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport def main(revisions=None): benchmarks_dir=os.path.expanduser('~/projects/downward/benchmarks') suite=suites.suite_optimal() configs = [] for osi in ['103', '107']: for cplex in ['1251', '1263']: if osi == '107' and cplex == '1251': # incompatible versions continue configs += [ IssueConfig( 'astar_initial_state_potential_OSI%s_CPLEX%s' % (osi, cplex), ['--search', 'astar(initial_state_potential())'], build_options=['issue680_OSI%s_CPLEX%s' % (osi, cplex)], driver_options=['--build=issue680_OSI%s_CPLEX%s' % (osi, cplex)] ), IssueConfig( 'astar_sample_based_potentials_OSI%s_CPLEX%s' % (osi, cplex), ['--search', 'astar(sample_based_potentials())'], build_options=['issue680_OSI%s_CPLEX%s' % (osi, cplex)], driver_options=['--build=issue680_OSI%s_CPLEX%s' % (osi, cplex)] ), IssueConfig( 'astar_all_states_potential_OSI%s_CPLEX%s' % (osi, cplex), ['--search', 'astar(all_states_potential())'], build_options=['issue680_OSI%s_CPLEX%s' % (osi, cplex)], driver_options=['--build=issue680_OSI%s_CPLEX%s' % (osi, cplex)] ), ] exp = IssueExperiment( benchmarks_dir=benchmarks_dir, suite=suite, revisions=revisions, configs=configs, test_suite=['depot:p01.pddl', 'gripper:prob01.pddl'], processes=4, email='[email protected]', ) attributes = exp.DEFAULT_TABLE_ATTRIBUTES domains = suites.suite_optimal_strips() exp.add_absolute_report_step(filter_domain=domains) for attribute in ["memory", "total_time"]: for config in ['astar_initial_state_potential', 'astar_sample_based_potentials', 'astar_all_states_potential']: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_config=["{}-{}_OSI{}_CPLEX1263".format(revisions[0], config, osi) for osi in ['103', '107']], filter_domain=domains, get_category=lambda run1, run2: run1.get("domain"), ), outfile="{}-{}-{}_CPLEX1263.png".format(exp.name, attribute, config) ) exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_config=["{}-{}_OSI103_CPLEX{}".format(revisions[0], config, cplex) for cplex in ['1251', '1263']], filter_domain=domains, get_category=lambda run1, run2: run1.get("domain"), ), outfile="{}-{}-{}_OSI103.png".format(exp.name, attribute, config) ) exp() main(revisions=['issue680-v1'])
3,252
Python
38.192771
125
0.531673
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue680/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.steps import Step from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareConfigsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ( "cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, benchmarks_dir, suite, revisions=[], configs={}, grid_priority=None, path=None, test_suite=None, email=None, processes=None, **kwargs): """ If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) *configs* must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(..., suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(..., suite=suites.suite_all()) IssueExperiment(..., suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(..., suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(..., grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(..., test_suite=["depot:pfile1", "tpp:p01.pddl"]) If *email* is specified, it should be an email address. This email address will be notified upon completion of the experiments if it is run on the cluster. """ if is_test_run(): kwargs["environment"] = LocalEnvironment(processes=processes) suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment( priority=grid_priority, email=email) path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) repo = get_repo_base() for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), repo, rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self.add_suite(benchmarks_dir, suite) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join(self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step(Step('publish-absolute-report', subprocess.call, ['publish', outfile])) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = CompareConfigsReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare" % (self.name, rev1, rev2) + "." + report.output_format) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare" % (self.name, rev1, rev2) + ".html") subprocess.call(['publish', outfile]) self.add_step(Step("make-comparison-tables", make_comparison_tables)) self.add_step(Step("publish-comparison-tables", publish_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(Step("make-scatter-plots", make_scatter_plots))
12,496
Python
33.907821
83
0.59435
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue680/suites.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import argparse import textwrap HELP = "Convert suite name to list of domains or tasks." def suite_alternative_formulations(): return ['airport-adl', 'no-mprime', 'no-mystery'] def suite_ipc98_to_ipc04_adl(): return [ 'assembly', 'miconic-fulladl', 'miconic-simpleadl', 'optical-telegraphs', 'philosophers', 'psr-large', 'psr-middle', 'schedule', ] def suite_ipc98_to_ipc04_strips(): return [ 'airport', 'blocks', 'depot', 'driverlog', 'freecell', 'grid', 'gripper', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'pipesworld-notankage', 'psr-small', 'satellite', 'zenotravel', ] def suite_ipc98_to_ipc04(): # All IPC1-4 domains, including the trivial Movie. return sorted(suite_ipc98_to_ipc04_adl() + suite_ipc98_to_ipc04_strips()) def suite_ipc06_adl(): return [ 'openstacks', 'pathways', 'trucks', ] def suite_ipc06_strips_compilations(): return [ 'openstacks-strips', 'pathways-noneg', 'trucks-strips', ] def suite_ipc06_strips(): return [ 'pipesworld-tankage', 'rovers', 'storage', 'tpp', ] def suite_ipc06(): return sorted(suite_ipc06_adl() + suite_ipc06_strips()) def suite_ipc08_common_strips(): return [ 'parcprinter-08-strips', 'pegsol-08-strips', 'scanalyzer-08-strips', ] def suite_ipc08_opt_adl(): return ['openstacks-opt08-adl'] def suite_ipc08_opt_strips(): return sorted(suite_ipc08_common_strips() + [ 'elevators-opt08-strips', 'openstacks-opt08-strips', 'sokoban-opt08-strips', 'transport-opt08-strips', 'woodworking-opt08-strips', ]) def suite_ipc08_opt(): return sorted(suite_ipc08_opt_strips() + suite_ipc08_opt_adl()) def suite_ipc08_sat_adl(): return ['openstacks-sat08-adl'] def suite_ipc08_sat_strips(): return sorted(suite_ipc08_common_strips() + [ # Note: cyber-security is missing. 'elevators-sat08-strips', 'openstacks-sat08-strips', 'sokoban-sat08-strips', 'transport-sat08-strips', 'woodworking-sat08-strips', ]) def suite_ipc08_sat(): return sorted(suite_ipc08_sat_strips() + suite_ipc08_sat_adl()) def suite_ipc08(): return sorted(set(suite_ipc08_opt() + suite_ipc08_sat())) def suite_ipc11_opt(): return [ 'barman-opt11-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'nomystery-opt11-strips', 'openstacks-opt11-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'pegsol-opt11-strips', 'scanalyzer-opt11-strips', 'sokoban-opt11-strips', 'tidybot-opt11-strips', 'transport-opt11-strips', 'visitall-opt11-strips', 'woodworking-opt11-strips', ] def suite_ipc11_sat(): return [ 'barman-sat11-strips', 'elevators-sat11-strips', 'floortile-sat11-strips', 'nomystery-sat11-strips', 'openstacks-sat11-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'pegsol-sat11-strips', 'scanalyzer-sat11-strips', 'sokoban-sat11-strips', 'tidybot-sat11-strips', 'transport-sat11-strips', 'visitall-sat11-strips', 'woodworking-sat11-strips', ] def suite_ipc11(): return sorted(suite_ipc11_opt() + suite_ipc11_sat()) def suite_ipc14_agl_adl(): return [ 'cavediving-14-adl', 'citycar-sat14-adl', 'maintenance-sat14-adl', ] def suite_ipc14_agl_strips(): return [ 'barman-sat14-strips', 'childsnack-sat14-strips', 'floortile-sat14-strips', 'ged-sat14-strips', 'hiking-agl14-strips', 'openstacks-agl14-strips', 'parking-sat14-strips', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'transport-sat14-strips', 'visitall-sat14-strips', ] def suite_ipc14_agl(): return sorted(suite_ipc14_agl_adl() + suite_ipc14_agl_strips()) def suite_ipc14_mco_adl(): return [ 'cavediving-14-adl', 'citycar-sat14-adl', 'maintenance-sat14-adl', ] def suite_ipc14_mco_strips(): return [ 'barman-mco14-strips', 'childsnack-sat14-strips', 'floortile-sat14-strips', 'ged-sat14-strips', 'hiking-sat14-strips', 'openstacks-sat14-strips', 'parking-sat14-strips', 'tetris-sat14-strips', 'thoughtful-mco14-strips', 'transport-sat14-strips', 'visitall-sat14-strips', ] def suite_ipc14_mco(): return sorted(suite_ipc14_mco_adl() + suite_ipc14_mco_strips()) def suite_ipc14_opt_adl(): return [ 'cavediving-14-adl', 'citycar-opt14-adl', 'maintenance-opt14-adl', ] def suite_ipc14_opt_strips(): return [ 'barman-opt14-strips', 'childsnack-opt14-strips', 'floortile-opt14-strips', 'ged-opt14-strips', 'hiking-opt14-strips', 'openstacks-opt14-strips', 'parking-opt14-strips', 'tetris-opt14-strips', 'tidybot-opt14-strips', 'transport-opt14-strips', 'visitall-opt14-strips', ] def suite_ipc14_opt(): return sorted(suite_ipc14_opt_adl() + suite_ipc14_opt_strips()) def suite_ipc14_sat_adl(): return [ 'cavediving-14-adl', 'citycar-sat14-adl', 'maintenance-sat14-adl', ] def suite_ipc14_sat_strips(): return [ 'barman-sat14-strips', 'childsnack-sat14-strips', 'floortile-sat14-strips', 'ged-sat14-strips', 'hiking-sat14-strips', 'openstacks-sat14-strips', 'parking-sat14-strips', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'transport-sat14-strips', 'visitall-sat14-strips', ] def suite_ipc14_sat(): return sorted(suite_ipc14_sat_adl() + suite_ipc14_sat_strips()) def suite_ipc14(): return sorted(set( suite_ipc14_agl() + suite_ipc14_mco() + suite_ipc14_opt() + suite_ipc14_sat())) def suite_unsolvable(): return sorted( ['mystery:prob%02d.pddl' % index for index in [4, 5, 7, 8, 12, 16, 18, 21, 22, 23, 24]] + ['miconic-fulladl:f21-3.pddl', 'miconic-fulladl:f30-2.pddl']) def suite_optimal_adl(): return sorted( suite_ipc98_to_ipc04_adl() + suite_ipc06_adl() + suite_ipc08_opt_adl() + suite_ipc14_opt_adl()) def suite_optimal_strips(): return sorted( suite_ipc98_to_ipc04_strips() + suite_ipc06_strips() + suite_ipc06_strips_compilations() + suite_ipc08_opt_strips() + suite_ipc11_opt() + suite_ipc14_opt_strips()) def suite_optimal(): return sorted(suite_optimal_adl() + suite_optimal_strips()) def suite_satisficing_adl(): return sorted( suite_ipc98_to_ipc04_adl() + suite_ipc06_adl() + suite_ipc08_sat_adl() + suite_ipc14_sat_adl()) def suite_satisficing_strips(): return sorted( suite_ipc98_to_ipc04_strips() + suite_ipc06_strips() + suite_ipc06_strips_compilations() + suite_ipc08_sat_strips() + suite_ipc11_sat() + suite_ipc14_sat_strips()) def suite_satisficing(): return sorted(suite_satisficing_adl() + suite_satisficing_strips()) def suite_all(): return sorted( suite_ipc98_to_ipc04() + suite_ipc06() + suite_ipc06_strips_compilations() + suite_ipc08() + suite_ipc11() + suite_ipc14() + suite_alternative_formulations()) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("suite", help="suite name") return parser.parse_args() def main(): prefix = "suite_" suite_names = [ name[len(prefix):] for name in sorted(globals().keys()) if name.startswith(prefix)] parser = argparse.ArgumentParser(description=HELP) parser.add_argument("suite", choices=suite_names, help="suite name") parser.add_argument( "--width", default=72, type=int, help="output line width (default: %(default)s). Use 1 for single " "column.") args = parser.parse_args() suite_func = globals()[prefix + args.suite] print(textwrap.fill( str(suite_func()), width=args.width, break_long_words=False, break_on_hyphens=False)) if __name__ == "__main__": main()
8,551
Python
23.364672
77
0.595954
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue680/v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os import suites from lab.reports import Attribute, gm from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport def main(revisions=None): benchmarks_dir=os.path.expanduser('~/projects/downward/benchmarks') suite=suites.suite_optimal() configs = [] for osi in ['103', '107']: for cplex in ['1251', '1263']: if osi == '107' and cplex == '1251': # incompatible versions continue configs += [ IssueConfig( 'astar_seq_landmarks_OSI%s_CPLEX%s' % (osi, cplex), ['--search', 'astar(operatorcounting([state_equation_constraints(), lmcut_constraints()]))'], build_options=['issue680_OSI%s_CPLEX%s' % (osi, cplex)], driver_options=['--build=issue680_OSI%s_CPLEX%s' % (osi, cplex)] ), IssueConfig( 'astar_diverse_potentials_OSI%s_CPLEX%s' % (osi, cplex), ['--search', 'astar(diverse_potentials())'], build_options=['issue680_OSI%s_CPLEX%s' % (osi, cplex)], driver_options=['--build=issue680_OSI%s_CPLEX%s' % (osi, cplex)] ), IssueConfig( 'astar_lmcount_OSI%s_CPLEX%s' % (osi, cplex), ['--search', 'astar(lmcount(lm_merged([lm_rhw(),lm_hm(m=1)]),admissible=true,optimal=true),mpd=true)'], build_options=['issue680_OSI%s_CPLEX%s' % (osi, cplex)], driver_options=['--build=issue680_OSI%s_CPLEX%s' % (osi, cplex)] ), ] exp = IssueExperiment( benchmarks_dir=benchmarks_dir, suite=suite, revisions=revisions, configs=configs, test_suite=['depot:p01.pddl', 'gripper:prob01.pddl'], processes=4, email='[email protected]', ) attributes = exp.DEFAULT_TABLE_ATTRIBUTES domains = suites.suite_optimal_strips() exp.add_absolute_report_step(filter_domain=domains) for attribute in ["memory", "total_time"]: for config in ['astar_seq_landmarks', 'astar_diverse_potentials', 'astar_lmcount']: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_config=["{}-{}_OSI{}_CPLEX1263".format(revisions[0], config, osi) for osi in ['103', '107']], filter_domain=domains, get_category=lambda run1, run2: run1.get("domain"), ), outfile="{}-{}-{}_CPLEX1263.png".format(exp.name, attribute, config) ) exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_config=["{}-{}_OSI103_CPLEX{}".format(revisions[0], config, cplex) for cplex in ['1251', '1263']], filter_domain=domains, get_category=lambda run1, run2: run1.get("domain"), ), outfile="{}-{}-{}_OSI103.png".format(exp.name, attribute, config) ) exp() main(revisions=['issue680-v1'])
3,292
Python
38.674698
125
0.532199
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue680/v2-potential.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os import suites from lab.reports import Attribute, gm from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport def main(revisions=None): benchmarks_dir=os.path.expanduser('~/projects/downward/benchmarks') suite=suites.suite_optimal() configs = [] for osi in ['103', '107']: for cplex in ['1251', '1263']: if osi == '107' and cplex == '1251': # incompatible versions continue configs += [ IssueConfig( 'astar_initial_state_potential_OSI%s_CPLEX%s' % (osi, cplex), ['--search', 'astar(initial_state_potential())'], build_options=['issue680_OSI%s_CPLEX%s' % (osi, cplex)], driver_options=['--build=issue680_OSI%s_CPLEX%s' % (osi, cplex)] ), IssueConfig( 'astar_sample_based_potentials_OSI%s_CPLEX%s' % (osi, cplex), ['--search', 'astar(sample_based_potentials())'], build_options=['issue680_OSI%s_CPLEX%s' % (osi, cplex)], driver_options=['--build=issue680_OSI%s_CPLEX%s' % (osi, cplex)] ), IssueConfig( 'astar_all_states_potential_OSI%s_CPLEX%s' % (osi, cplex), ['--search', 'astar(all_states_potential())'], build_options=['issue680_OSI%s_CPLEX%s' % (osi, cplex)], driver_options=['--build=issue680_OSI%s_CPLEX%s' % (osi, cplex)] ), ] exp = IssueExperiment( benchmarks_dir=benchmarks_dir, suite=suite, revisions=revisions, configs=configs, test_suite=['depot:p01.pddl', 'gripper:prob01.pddl'], processes=4, email='[email protected]', ) attributes = exp.DEFAULT_TABLE_ATTRIBUTES domains = suites.suite_optimal_strips() exp.add_absolute_report_step(filter_domain=domains) for attribute in ["memory", "total_time"]: for config in ['astar_initial_state_potential', 'astar_sample_based_potentials', 'astar_all_states_potential']: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_config=["{}-{}_OSI{}_CPLEX1263".format(revisions[0], config, osi) for osi in ['103', '107']], filter_domain=domains, get_category=lambda run1, run2: run1.get("domain"), ), outfile="{}-{}-{}_CPLEX1263.png".format(exp.name, attribute, config) ) exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_config=["{}-{}_OSI103_CPLEX{}".format(revisions[0], config, cplex) for cplex in ['1251', '1263']], filter_domain=domains, get_category=lambda run1, run2: run1.get("domain"), ), outfile="{}-{}-{}_OSI103.png".format(exp.name, attribute, config) ) exp() main(revisions=['issue680-v2'])
3,252
Python
38.192771
125
0.531673
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue680/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter(axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows how a specific attribute in two configurations. The attribute value in config 1 is shown on the x-axis and the relation to the value in config 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['config'] == self.configs[0] and run2['config'] == self.configs[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.configs[0], val1) assert val2 > 0, (domain, problem, self.configs[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlots use log-scaling on the x-axis by default. default_xscale = 'log' if self.attribute and self.attribute in self.LINEAR: default_xscale = 'linear' PlotReport._set_scales(self, xscale or default_xscale, 'log')
3,921
Python
35.654205
84
0.597042
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue680/v2.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os import suites from lab.reports import Attribute, gm from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport def main(revisions=None): benchmarks_dir=os.path.expanduser('~/projects/downward/benchmarks') suite=suites.suite_optimal() configs = [] for osi in ['103', '107']: for cplex in ['1251', '1263']: if osi == '107' and cplex == '1251': # incompatible versions continue configs += [ IssueConfig( 'astar_seq_landmarks_OSI%s_CPLEX%s' % (osi, cplex), ['--search', 'astar(operatorcounting([state_equation_constraints(), lmcut_constraints()]))'], build_options=['issue680_OSI%s_CPLEX%s' % (osi, cplex)], driver_options=['--build=issue680_OSI%s_CPLEX%s' % (osi, cplex)] ), IssueConfig( 'astar_diverse_potentials_OSI%s_CPLEX%s' % (osi, cplex), ['--search', 'astar(diverse_potentials())'], build_options=['issue680_OSI%s_CPLEX%s' % (osi, cplex)], driver_options=['--build=issue680_OSI%s_CPLEX%s' % (osi, cplex)] ), IssueConfig( 'astar_lmcount_OSI%s_CPLEX%s' % (osi, cplex), ['--search', 'astar(lmcount(lm_merged([lm_rhw(),lm_hm(m=1)]),admissible=true,optimal=true),mpd=true)'], build_options=['issue680_OSI%s_CPLEX%s' % (osi, cplex)], driver_options=['--build=issue680_OSI%s_CPLEX%s' % (osi, cplex)] ), ] exp = IssueExperiment( benchmarks_dir=benchmarks_dir, suite=suite, revisions=revisions, configs=configs, test_suite=['depot:p01.pddl', 'gripper:prob01.pddl'], processes=4, email='[email protected]', ) attributes = exp.DEFAULT_TABLE_ATTRIBUTES domains = suites.suite_optimal_strips() exp.add_absolute_report_step(filter_domain=domains) for attribute in ["memory", "total_time"]: for config in ['astar_seq_landmarks', 'astar_diverse_potentials', 'astar_lmcount']: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_config=["{}-{}_OSI{}_CPLEX1263".format(revisions[0], config, osi) for osi in ['103', '107']], filter_domain=domains, get_category=lambda run1, run2: run1.get("domain"), ), outfile="{}-{}-{}_CPLEX1263.png".format(exp.name, attribute, config) ) exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_config=["{}-{}_OSI103_CPLEX{}".format(revisions[0], config, cplex) for cplex in ['1251', '1263']], filter_domain=domains, get_category=lambda run1, run2: run1.get("domain"), ), outfile="{}-{}-{}_OSI103.png".format(exp.name, attribute, config) ) exp() main(revisions=['issue680-v2'])
3,292
Python
38.674698
125
0.532199
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue528/issue528.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import configs, suites from downward.reports.scatter import ScatterPlotReport import common_setup SEARCH_REVS = ["issue528-base", "issue528-v1", "issue528-v2"] SUITE = suites.suite_optimal_with_ipc11() CONFIGS = { "astar_lmcut": ["--search", "astar(lmcut())"] } exp = common_setup.IssueExperiment( revisions=SEARCH_REVS, configs=CONFIGS, suite=SUITE, ) exp.add_absolute_report_step() exp.add_comparison_table_step() for attr in ("memory", "total_time"): exp.add_report( ScatterPlotReport( attributes=[attr], filter_config=[ "issue528-base-astar_lmcut", "issue528-v2-astar_lmcut", ], ), outfile='issue528_base_v2_%s.png' % attr ) exp()
825
Python
20.179487
61
0.609697
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue528/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.reports import Table from lab.steps import Step from downward.experiments import DownwardExperiment, _get_rev_nick from downward.checkouts import Translator, Preprocessor, Planner from downward.reports import PlanningReport from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareRevisionsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" import __main__ return __main__.__file__ def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ("cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or (ARGS.test_run == "auto" and not is_running_on_cluster()) class IssueExperiment(DownwardExperiment): """Wrapper for DownwardExperiment with a few convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" # TODO: Add something about errors/exit codes. DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "plan_length", ] def __init__(self, configs, suite, grid_priority=None, path=None, repo=None, revisions=None, search_revisions=None, test_suite=None, **kwargs): """Create a DownwardExperiment with some convenience features. *configs* must be a non-empty dict of {nick: cmdline} pairs that sets the planner configurations to test. :: IssueExperiment(configs={ "lmcut": ["--search", "astar(lmcut())"], "ipdb": ["--search", "astar(ipdb())"]}) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(suite=suites.suite_all()) IssueExperiment(suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ If *repo* is specified, it must be the path to the root of a local Fast Downward repository. If omitted, the repository is derived automatically from the main script's path. Example:: script = /path/to/fd-repo/experiments/issue123/exp01.py --> repo = /path/to/fd-repo If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"]) If *search_revisions* is specified, it should be a non-empty list of revisions, which specify which search component versions to use in the experiment. All runs use the translator and preprocessor component of the first revision. :: IssueExperiment(search_revisions=["default", "issue123"]) If you really need to specify the (translator, preprocessor, planner) triples manually, use the *combinations* parameter from the base class (might be deprecated soon). The options *revisions*, *search_revisions* and *combinations* can be freely mixed, but at least one of them must be given. Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(test_suite=["depot:pfile1", "tpp:p01.pddl"]) """ if is_test_run(): kwargs["environment"] = LocalEnvironment() suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment(priority=grid_priority) if path is None: path = get_data_dir() if repo is None: repo = get_repo_base() kwargs.setdefault("combinations", []) if not any([revisions, search_revisions, kwargs["combinations"]]): raise ValueError('At least one of "revisions", "search_revisions" ' 'or "combinations" must be given') if revisions: kwargs["combinations"].extend([ (Translator(repo, rev), Preprocessor(repo, rev), Planner(repo, rev)) for rev in revisions]) if search_revisions: base_rev = search_revisions[0] # Use the same nick for all parts to get short revision nick. kwargs["combinations"].extend([ (Translator(repo, base_rev, nick=rev), Preprocessor(repo, base_rev, nick=rev), Planner(repo, rev, nick=rev)) for rev in search_revisions]) DownwardExperiment.__init__(self, path=path, repo=repo, **kwargs) self._config_nicks = [] for nick, config in configs.items(): self.add_config(nick, config) self.add_suite(suite) @property def revision_nicks(self): # TODO: Once the add_algorithm() API is available we should get # rid of the call to _get_rev_nick() and avoid inspecting the # list of combinations by setting and saving the algorithm nicks. return [_get_rev_nick(*combo) for combo in self.combinations] def add_config(self, nick, config, timeout=None): DownwardExperiment.add_config(self, nick, config, timeout=timeout) self._config_nicks.append(nick) def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = get_experiment_name() + "." + report.output_format self.add_report(report, outfile=outfile) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revision triples. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareRevisionsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self.revision_nicks, 2): report = CompareRevisionsReport(rev1, rev2, **kwargs) outfile = os.path.join(self.eval_dir, "%s-%s-compare.html" % (rev1, rev2)) report(self.eval_dir, outfile) self.add_step(Step("make-comparison-tables", make_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revision pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def is_portfolio(config_nick): return "fdss" in config_nick def make_scatter_plots(): for config_nick in self._config_nicks: for rev1, rev2 in itertools.combinations( self.revision_nicks, 2): algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) if is_portfolio(config_nick): valid_attributes = [ attr for attr in attributes if attr in self.PORTFOLIO_ATTRIBUTES] else: valid_attributes = attributes for attribute in valid_attributes: name = "-".join([rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report(self.eval_dir, os.path.join(scatter_dir, name)) self.add_step(Step("make-scatter-plots", make_scatter_plots)) class RegressionReport(PlanningReport): """ Compare revisions for tasks on which the first revision performs better than other revisions. *revision_nicks* must be a list of revision_nicks, e.g. ["default", "issue123"]. *config_nicks* must be a list of configuration nicknames, e.g. ["eager_greedy_ff", "eager_greedy_add"]. *regression_attribute* is the attribute that we compare between different revisions. It defaults to "coverage". Example comparing search_time for tasks were we lose coverage:: exp.add_report(RegressionReport(revision_nicks=["default", "issue123"], config_nicks=["eager_greedy_ff"], regression_attribute="coverage", attributes="search_time")) """ def __init__(self, revision_nicks, config_nicks, regression_attribute="coverage", **kwargs): PlanningReport.__init__(self, **kwargs) assert revision_nicks self.revision_nicks = revision_nicks assert config_nicks self.config_nicks = config_nicks self.regression_attribute = regression_attribute def get_markup(self): tables = [] for (domain, problem) in self.problems: for config_nick in self.config_nicks: runs = [self.runs[(domain, problem, rev + "-" + config_nick)] for rev in self.revision_nicks] if any(runs[0][self.regression_attribute] > runs[i][self.regression_attribute] for i in range(1, len(self.revision_nicks))): print "\"%s:%s\"," % (domain, problem) table = Table() for rev, run in zip(self.revision_nicks, runs): for attr in self.attributes: table.add_cell(rev, attr, run.get(attr)) table_name = ":".join((domain, problem, config_nick)) tables.append((table_name, table)) return "\n".join(name + "\n" + str(table) for name, table in tables)
14,920
Python
36.3025
79
0.601475
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue528/issue528-v3.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import configs, suites from downward.reports.scatter import ScatterPlotReport import common_setup SEARCH_REVS = ["issue528-base", "issue528-v3"] SUITE = suites.suite_optimal_with_ipc11() CONFIGS = { "astar_lmcut": ["--search", "astar(lmcut())"] } exp = common_setup.IssueExperiment( revisions=SEARCH_REVS, configs=CONFIGS, suite=SUITE, ) exp.add_absolute_report_step() exp.add_comparison_table_step() for attr in ("memory", "total_time"): exp.add_report( ScatterPlotReport( attributes=[attr], filter_config=[ "issue528-base-astar_lmcut", "issue528-v3-astar_lmcut", ], ), outfile='issue528_base_v3_%s.png' % attr ) exp()
810
Python
19.794871
54
0.608642
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue499/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.steps import Step from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareConfigsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ( "cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Wrapper for FastDownwardExperiment with a few convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, suite, revisions=[], configs={}, grid_priority=None, path=None, test_suite=None, email=None, processes=1, **kwargs): """Create a DownwardExperiment with some convenience features. If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) *configs* must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(..., suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(..., suite=suites.suite_all()) IssueExperiment(..., suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(..., suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(..., grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(..., test_suite=["depot:pfile1", "tpp:p01.pddl"]) If *email* is specified, it should be an email address. This email address will be notified upon completion of the experiments if it is run on the cluster. """ if is_test_run(): kwargs["environment"] = LocalEnvironment(processes=processes) suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment( priority=grid_priority, email=email) path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) repo = get_repo_base() for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), repo, rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self.add_suite(os.path.join(repo, "benchmarks"), suite) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join(self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step(Step('publish-absolute-report', subprocess.call, ['publish', outfile])) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = CompareConfigsReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare" % (self.name, rev1, rev2) + "." + report.output_format) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare" % (self.name, rev1, rev2) + ".html") subprocess.call(['publish', outfile]) self.add_step(Step("make-comparison-tables", make_comparison_tables)) self.add_step(Step("publish-comparison-tables", publish_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(Step("make-scatter-plots", make_scatter_plots))
12,539
Python
34.027933
83
0.59606
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue499/v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from lab.reports import Attribute, gm from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport def main(revisions=None): suite = suites.suite_optimal_with_ipc11() configs = { IssueConfig('astar-lmcut', ['--search', 'astar(lmcut())']), } exp = IssueExperiment( revisions=revisions, configs=configs, suite=suite, test_suite=['depot:pfile1'], processes=4, email='[email protected]', ) exp.add_comparison_table_step() exp.add_report( RelativeScatterPlotReport( attributes=["memory"], filter_config=["issue499-base-astar-lmcut", "issue499-v1-astar-lmcut"], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue499_base_v1_memory.png' ) exp.add_report( RelativeScatterPlotReport( attributes=["total_time"], filter_config=["issue499-base-astar-lmcut", "issue499-v1-astar-lmcut"], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue499_base_v1_total_time.png' ) exp.add_report( RelativeScatterPlotReport( attributes=["expansions_until_last_jump"], filter_config=["issue499-base-astar-lmcut", "issue499-v1-astar-lmcut"], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue499_base_v1_expansions_until_last_jump.png' ) exp() main(revisions=['issue499-base', 'issue499-v1'])
1,655
Python
27.551724
83
0.613897
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue499/relativescatter.py
# -*- coding: utf-8 -*- # # downward uses the lab package to conduct experiments with the # Fast Downward planning system. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from collections import defaultdict import os from lab import tools from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter(axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows how a specific attribute in two configurations. The attribute value in config 1 is shown on the x-axis and the relation to the value in config 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['config'] == self.configs[0] and run2['config'] == self.configs[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.configs[0], val1) assert val2 > 0, (domain, problem, self.configs[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlots use log-scaling on the x-axis by default. default_xscale = 'log' if self.attribute and self.attribute in self.LINEAR: default_xscale = 'linear' PlotReport._set_scales(self, xscale or default_xscale, 'log')
4,690
Python
35.937008
84
0.624947
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue851/v4.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from lab.reports import Attribute, geometric_mean from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from generalscatter import GeneralScatterPlotReport from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue851-base-v2", "issue851-v3", "issue851-v4"] BUILDS = ["release32"] CONFIG_NICKS = [ ('dfp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_stateless(merge_selector=score_based_filtering(scoring_functions=[goal_relevance,dfp,total_order])),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), # ('rl-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_precomputed(merge_tree=linear(variable_order=reverse_level)),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), # ('sbmiasm-b50k', ['--search', 'astar(merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false),merge_strategy=merge_stateless(merge_selector=score_based_filtering(scoring_functions=[sf_miasm(shrink_strategy=shrink_bisimulation(greedy=false),max_states=50000,threshold_before_merge=1),total_order(atomic_ts_order=reverse_level,product_ts_order=new_to_old,atomic_before_product=false)])),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), # ('sccs-dfp-b50k', ['--search', 'astar(merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false),merge_strategy=merge_sccs(order_of_sccs=topological,merge_selector=score_based_filtering(scoring_functions=[goal_relevance,dfp,total_order(atomic_ts_order=reverse_level,product_ts_order=new_to_old,atomic_before_product=false)])),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), ] CONFIGS = [ IssueConfig( config_nick, config, build_options=[build], driver_options=["--build", build]) for build in BUILDS for config_nick, config in CONFIG_NICKS ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_parser('ms-parser.py') exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) # m&s attributes ms_construction_time = Attribute('ms_construction_time', absolute=False, min_wins=True, functions=[geometric_mean]) ms_atomic_construction_time = Attribute('ms_atomic_construction_time', absolute=False, min_wins=True, functions=[geometric_mean]) ms_abstraction_constructed = Attribute('ms_abstraction_constructed', absolute=True, min_wins=False) ms_atomic_fts_constructed = Attribute('ms_atomic_fts_constructed', absolute=True, min_wins=False) ms_final_size = Attribute('ms_final_size', absolute=False, min_wins=True) ms_out_of_memory = Attribute('ms_out_of_memory', absolute=True, min_wins=True) ms_out_of_time = Attribute('ms_out_of_time', absolute=True, min_wins=True) search_out_of_memory = Attribute('search_out_of_memory', absolute=True, min_wins=True) search_out_of_time = Attribute('search_out_of_time', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, ms_construction_time, ms_atomic_construction_time, ms_abstraction_constructed, ms_atomic_fts_constructed, ms_final_size, ms_out_of_memory, ms_out_of_time, search_out_of_memory, search_out_of_time, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_comparison_table_step(attributes=attributes) exp.add_scatter_plot_step(attributes=[ms_atomic_construction_time]) for algo_nick in ['dfp-b50k']: # 'rl-b50k', 'sbmiasm-b50k', 'sccs-dfp-b50k']: algo = "issue851-v2-{}".format(algo_nick) exp.add_report( GeneralScatterPlotReport( x_algo = algo, y_algo = algo, x_attribute='ms_atomic_construction_time', y_attribute='total_time', filter_algorithm=[algo], attributes=['total_time'], get_category=lambda run1, run2: run1["domain"], ), outfile='{}-total_time_vs_ms_atomic_construction_time.png'.format(algo), ) exp.run_steps()
5,287
Python
44.982608
514
0.73955
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue851/generalscatter.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from collections import defaultdict import logging import math import os from lab import tools from downward.reports.plot import MatplotlibPlot, Matplotlib, PgfPlots, \ PlotReport, MIN_AXIS class ScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': # TODO: assert that both are linear or log plot_size = max(report.x_missing_val * 1.01, report.y_missing_val * 1.01) else: plot_size = max(report.x_missing_val * 1.5, report.y_missing_val * 1.5) # Plot a diagonal black line. Starting at (0,0) often raises errors. axes.plot([0.001, plot_size], [0.001, plot_size], 'k') axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) # axes.set_xlim(report.xlim_left, report.xlim_right) # axes.set_ylim(report.ylim_bottom, report.ylim_top) for axis in [axes.xaxis, axes.yaxis]: # MatplotlibPlot.change_axis_formatter( # axis, report.missing_val if report.show_missing else None) MatplotlibPlot.change_axis_formatter(axes.xaxis, report.x_missing_val if report.show_missing else None) MatplotlibPlot.change_axis_formatter(axes.yaxis, report.y_missing_val if report.show_missing else None) return has_points class ScatterPgfPlots(PgfPlots): @classmethod def _format_coord(cls, coord): def format_value(v): return str(v) if isinstance(v, int) else '%f' % v return '(%s, %s)' % (format_value(coord[0]), format_value(coord[1])) @classmethod def _get_plot(cls, report): lines = [] options = cls._get_axis_options(report) lines.append('\\begin{axis}[%s]' % cls._format_options(options)) for category, coords in sorted(report.categories.items()): plot = {'only marks': True} lines.append( '\\addplot+[%s] coordinates {\n%s\n};' % ( cls._format_options(plot), ' '.join(cls._format_coord(c) for c in coords))) if category: lines.append('\\addlegendentry{%s}' % category) elif report.has_multiple_categories: # None is treated as the default category if using multiple # categories. Add a corresponding entry to the legend. lines.append('\\addlegendentry{default}') # Add black line. start = min(report.min_x, report.min_y) if report.xlim_left is not None: start = min(start, report.xlim_left) if report.ylim_bottom is not None: start = min(start, report.ylim_bottom) end = max(report.max_x, report.max_y) if report.xlim_right: end = max(end, report.xlim_right) if report.ylim_top: end = max(end, report.ylim_top) if report.show_missing: end = max(end, report.missing_val) lines.append( '\\addplot[color=black] coordinates {(%f, %f) (%d, %d)};' % (start, start, end, end)) lines.append('\\end{axis}') return lines @classmethod def _get_axis_options(cls, report): opts = PgfPlots._get_axis_options(report) # Add line for missing values. for axis in ['x', 'y']: opts['extra %s ticks' % axis] = report.missing_val opts['extra %s tick style' % axis] = 'grid=major' return opts class GeneralScatterPlotReport(PlotReport): """ Generate a scatter plot for a specific attribute. """ def __init__(self, x_algo, y_algo, x_attribute, y_attribute, show_missing=True, get_category=None, **kwargs): """ See :class:`.PlotReport` for inherited arguments. The keyword argument *attributes* must contain exactly one attribute. Use the *filter_algorithm* keyword argument to select exactly two algorithms. If only one of the two algorithms has a value for a run, only add a coordinate if *show_missing* is True. *get_category* can be a function that takes **two** runs (dictionaries of properties) and returns a category name. This name is used to group the points in the plot. If there is more than one group, a legend is automatically added. Runs for which this function returns None are shown in a default category and are not contained in the legend. For example, to group by domain: >>> def domain_as_category(run1, run2): ... # run2['domain'] has the same value, because we always ... # compare two runs of the same problem. ... return run1['domain'] Example grouping by difficulty: >>> def improvement(run1, run2): ... time1 = run1.get('search_time', 1800) ... time2 = run2.get('search_time', 1800) ... if time1 > time2: ... return 'better' ... if time1 == time2: ... return 'equal' ... return 'worse' >>> from downward.experiment import FastDownwardExperiment >>> exp = FastDownwardExperiment() >>> exp.add_report(ScatterPlotReport( ... attributes=['search_time'], ... get_category=improvement)) Example comparing the number of expanded states for two algorithms: >>> exp.add_report(ScatterPlotReport( ... attributes=["expansions_until_last_jump"], ... filter_algorithm=["algorithm-1", "algorithm-2"], ... get_category=domain_as_category, ... format="png", # Use "tex" for pgfplots output. ... ), ... name="scatterplot-expansions") """ # If the size has not been set explicitly, make it a square. matplotlib_options = kwargs.get('matplotlib_options', {}) matplotlib_options.setdefault('figure.figsize', [8, 8]) kwargs['matplotlib_options'] = matplotlib_options PlotReport.__init__(self, **kwargs) if not self.attribute: logging.critical('ScatterPlotReport needs exactly one attribute') # By default all values are in the same category. self.get_category = get_category or (lambda run1, run2: None) self.show_missing = show_missing self.xlim_left = self.xlim_left or MIN_AXIS self.ylim_bottom = self.ylim_bottom or MIN_AXIS if self.output_format == 'tex': self.writer = ScatterPgfPlots else: self.writer = ScatterMatplotlib self.x_algo = x_algo self.y_algo = y_algo self.x_attribute = x_attribute self.y_attribute = y_attribute def _set_scales(self, xscale, yscale): PlotReport._set_scales(self, xscale or self.attribute.scale or 'log', yscale) if self.xscale != self.yscale: logging.critical('Scatterplots must use the same scale on both axes.') def _get_missing_val(self, max_value, scale): """ Separate the missing values by plotting them at (max_value * 10) rounded to the next power of 10. """ assert max_value is not None # HACK! max_value = 1800 if scale == 'linear': return max_value * 1.1 return int(10 ** math.ceil(math.log10(max_value))) def _handle_none_values(self, X, Y, replacement_x, replacement_y): assert len(X) == len(Y), (X, Y) if self.show_missing: return ([x if x is not None else replacement_x for x in X], [y if y is not None else replacement_y for y in Y]) return zip(*[(x, y) for x, y in zip(X, Y) if x is not None and y is not None]) def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) x_count = 0 y_count = 0 x_none_count = 0 y_none_count = 0 for (domain, problem), runs in self.problem_runs.items(): run1 = next((run for run in runs if run['algorithm'] == self.x_algo), None) run2 = next((run for run in runs if run['algorithm'] == self.y_algo), None) if run1 is None or run2 is None: continue assert (run1['algorithm'] == self.x_algo and run2['algorithm'] == self.y_algo) val1 = run1.get(self.x_attribute) val2 = run2.get(self.y_attribute) x_count += 1 y_count += 1 if val1 is None: x_none_count += 1 if val2 is None: y_none_count += 1 # print val1, val2 if val1 is None and val2 is None: continue category = self.get_category(run1, run2) categories[category].append((val1, val2)) # print x_count, y_count # print x_none_count, y_none_count # print len(categories[None]) # print categories[None] return categories def _get_limit(self, varlist, limit_type): assert limit_type == 'max' or limit_type == 'min' varlist = [x for x in varlist if x is not None] if(limit_type == 'max'): return max(varlist) else: return min(varlist) def _get_plot_size(self, missing_val, scale): if scale == 'linear': return missing_val * 1.01 else: return missing_val * 1.25 def _prepare_categories(self, categories): categories = PlotReport._prepare_categories(self, categories) # Find max-value to fit plot and to draw missing values. # self.missing_val = self._get_missing_val(max(self.max_x, self.max_y)) self.x_missing_val = self._get_missing_val(self.max_x, self.xscale) self.y_missing_val = self._get_missing_val(self.max_y, self.yscale) # print self.x_missing_val, self.y_missing_val # set minima self.xlim_left = self._get_limit([self.xlim_left, self.min_x],'min') self.ylim_bottom = self._get_limit([self.ylim_bottom, self.min_y],'min') # set maxima x_plot_size = y_plot_size = None if self.show_missing: x_plot_size = self._get_plot_size(self.x_missing_val, self.xscale) y_plot_size = self._get_plot_size(self.y_missing_val, self.yscale) self.xlim_right = self._get_limit([self.xlim_right, self.max_x, x_plot_size], 'max') self.ylim_top = self._get_limit([self.ylim_top, self.max_y, y_plot_size], 'max') # self.diagonal_start = self.diagonal_end = None # if self.show_diagonal: # self.diagonal_start = max(self.xlim_left, self.ylim_bottom) # self.diagonal_end = min(self.xlim_right, self.ylim_top) new_categories = {} for category, coords in categories.items(): X, Y = zip(*coords) # X, Y = self._handle_none_values(X, Y, self.missing_val) X, Y = self._handle_none_values(X, Y, self.x_missing_val, self.y_missing_val) coords = zip(X, Y) new_categories[category] = coords # print len(new_categories[None]) # print new_categories[None] return new_categories def write(self): if not (len(self.algorithms) == 1 and self.x_algo == self.algorithms[0] and self.y_algo == self.algorithms[0]): logging.critical( 'Scatter plots need exactly 1 algorithm that must match x_algo and y_algo: %s, %s, %s' % (self.algorithms, self.x_algo, self.y_algo)) self.xlabel = self.xlabel or self.x_algo + ": " + self.x_attribute self.ylabel = self.ylabel or self.y_algo + ": " + self.y_attribute suffix = '.' + self.output_format if not self.outfile.endswith(suffix): self.outfile += suffix tools.makedirs(os.path.dirname(self.outfile)) self._write_plot(self.runs.values(), self.outfile)
12,617
Python
40.235294
149
0.580407
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue851/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport from relativescatter import RelativeScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'agricola-opt18-strips', 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'data-network-opt18-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'organic-synthesis-opt18-strips', 'organic-synthesis-split-opt18-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'petri-net-alignment-opt18-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'snake-opt18-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'spider-opt18-strips', 'storage', 'termes-opt18-strips', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'agricola-sat18-strips', 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'caldera-sat18-adl', 'caldera-split-sat18-adl', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'data-network-sat18-strips', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'flashfill-sat18-adl', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'nurikabe-sat18-adl', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'organic-synthesis-sat18-strips', 'organic-synthesis-split-sat18-strips', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'settlers-sat18-adl', 'snake-sat18-strips', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'spider-sat18-strips', 'storage', 'termes-sat18-strips', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return node.endswith(".scicore.unibas.ch") or node.endswith(".cluster.bc2.ch") def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["depot:p01.pddl", "gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "planner_memory", "planner_time", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step( 'publish-absolute-report', subprocess.call, ['publish', outfile]) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step("make-comparison-tables", make_comparison_tables) self.add_step( "publish-comparison-tables", publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if relative: report_class = RelativeScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: report_class = ScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "{}-{}".format(rev1, config_nick) algo2 = "{}-{}".format(rev2, config_nick) report = report_class( filter_algorithm=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], # legend_location=(1.3, 0.5), ) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(step_name, make_scatter_plots)
14,809
Python
36.39899
82
0.617597
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue851/v3-debug.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from lab.reports import Attribute, geometric_mean from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from generalscatter import GeneralScatterPlotReport from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue851-v3"] BUILDS = ["debug32"] CONFIG_NICKS = [ ('dfp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_stateless(merge_selector=score_based_filtering(scoring_functions=[goal_relevance,dfp,total_order])),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), # ('rl-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_precomputed(merge_tree=linear(variable_order=reverse_level)),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), # ('sbmiasm-b50k', ['--search', 'astar(merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false),merge_strategy=merge_stateless(merge_selector=score_based_filtering(scoring_functions=[sf_miasm(shrink_strategy=shrink_bisimulation(greedy=false),max_states=50000,threshold_before_merge=1),total_order(atomic_ts_order=reverse_level,product_ts_order=new_to_old,atomic_before_product=false)])),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), # ('sccs-dfp-b50k', ['--search', 'astar(merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false),merge_strategy=merge_sccs(order_of_sccs=topological,merge_selector=score_based_filtering(scoring_functions=[goal_relevance,dfp,total_order(atomic_ts_order=reverse_level,product_ts_order=new_to_old,atomic_before_product=false)])),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), ] CONFIGS = [ IssueConfig( config_nick, config, build_options=[build], driver_options=["--build", build]) for build in BUILDS for config_nick, config in CONFIG_NICKS ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_parser('ms-parser.py') exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) # m&s attributes ms_construction_time = Attribute('ms_construction_time', absolute=False, min_wins=True, functions=[geometric_mean]) ms_atomic_construction_time = Attribute('ms_atomic_construction_time', absolute=False, min_wins=True, functions=[geometric_mean]) ms_abstraction_constructed = Attribute('ms_abstraction_constructed', absolute=True, min_wins=False) ms_atomic_fts_constructed = Attribute('ms_atomic_fts_constructed', absolute=True, min_wins=False) ms_final_size = Attribute('ms_final_size', absolute=False, min_wins=True) ms_out_of_memory = Attribute('ms_out_of_memory', absolute=True, min_wins=True) ms_out_of_time = Attribute('ms_out_of_time', absolute=True, min_wins=True) search_out_of_memory = Attribute('search_out_of_memory', absolute=True, min_wins=True) search_out_of_time = Attribute('search_out_of_time', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, ms_construction_time, ms_atomic_construction_time, ms_abstraction_constructed, ms_atomic_fts_constructed, ms_final_size, ms_out_of_memory, ms_out_of_time, search_out_of_memory, search_out_of_time, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_absolute_report_step(attributes=attributes) exp.run_steps()
4,620
Python
46.153061
514
0.761255
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue851/ms-parser.py
#! /usr/bin/env python from lab.parser import Parser parser = Parser() parser.add_pattern('ms_final_size', 'Final transition system size: (\d+)', required=False, type=int) parser.add_pattern('ms_construction_time', 'Merge-and-shrink algorithm runtime: (.+)s', required=False, type=float) parser.add_pattern('ms_atomic_construction_time', 't=(.+)s \(after computation of atomic transition systems\)', required=False, type=float) parser.add_pattern('ms_memory_delta', 'Final peak memory increase of merge-and-shrink computation: (\d+) KB', required=False, type=int) def check_ms_constructed(content, props): ms_construction_time = props.get('ms_construction_time') abstraction_constructed = False if ms_construction_time is not None: abstraction_constructed = True props['ms_abstraction_constructed'] = abstraction_constructed parser.add_function(check_ms_constructed) def check_atomic_fts_constructed(content, props): ms_atomic_construction_time = props.get('ms_atomic_construction_time') ms_atomic_fts_constructed = False if ms_atomic_construction_time is not None: ms_atomic_fts_constructed = True props['ms_atomic_fts_constructed'] = ms_atomic_fts_constructed parser.add_function(check_atomic_fts_constructed) def check_planner_exit_reason(content, props): ms_abstraction_constructed = props.get('ms_abstraction_constructed') error = props.get('error') if error != 'success' and error != 'timeout' and error != 'out-of-memory': print 'error: %s' % error return # Check whether merge-and-shrink computation or search ran out of # time or memory. ms_out_of_time = False ms_out_of_memory = False search_out_of_time = False search_out_of_memory = False if ms_abstraction_constructed == False: if error == 'timeout': ms_out_of_time = True elif error == 'out-of-memory': ms_out_of_memory = True elif ms_abstraction_constructed == True: if error == 'timeout': search_out_of_time = True elif error == 'out-of-memory': search_out_of_memory = True props['ms_out_of_time'] = ms_out_of_time props['ms_out_of_memory'] = ms_out_of_memory props['search_out_of_time'] = search_out_of_time props['search_out_of_memory'] = search_out_of_memory parser.add_function(check_planner_exit_reason) def check_perfect_heuristic(content, props): plan_length = props.get('plan_length') expansions = props.get('expansions') if plan_length != None: perfect_heuristic = False if plan_length + 1 == expansions: perfect_heuristic = True props['perfect_heuristic'] = perfect_heuristic parser.add_function(check_perfect_heuristic) parser.parse()
2,776
Python
38.112676
139
0.681916
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue851/v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from lab.reports import Attribute, geometric_mean from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from generalscatter import GeneralScatterPlotReport from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue851-base", "issue851-v1"] BUILDS = ["release32"] CONFIG_NICKS = [ ('dfp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_stateless(merge_selector=score_based_filtering(scoring_functions=[goal_relevance,dfp,total_order])),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), ('rl-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_precomputed(merge_tree=linear(variable_order=reverse_level)),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), ('sccs-dfp-b50k', ['--search', 'astar(merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false),merge_strategy=merge_sccs(order_of_sccs=topological,merge_selector=score_based_filtering(scoring_functions=[goal_relevance,dfp,total_order(atomic_ts_order=reverse_level,product_ts_order=new_to_old,atomic_before_product=false)])),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), ] CONFIGS = [ IssueConfig( config_nick, config, build_options=[build], driver_options=["--build", build]) for build in BUILDS for config_nick, config in CONFIG_NICKS ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_parser('ms-parser.py') exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) # m&s attributes ms_construction_time = Attribute('ms_construction_time', absolute=False, min_wins=True, functions=[geometric_mean]) ms_atomic_construction_time = Attribute('ms_atomic_construction_time', absolute=False, min_wins=True, functions=[geometric_mean]) ms_abstraction_constructed = Attribute('ms_abstraction_constructed', absolute=True, min_wins=False) ms_atomic_fts_constructed = Attribute('ms_atomic_fts_constructed', absolute=True, min_wins=False) ms_final_size = Attribute('ms_final_size', absolute=False, min_wins=True) ms_out_of_memory = Attribute('ms_out_of_memory', absolute=True, min_wins=True) ms_out_of_time = Attribute('ms_out_of_time', absolute=True, min_wins=True) search_out_of_memory = Attribute('search_out_of_memory', absolute=True, min_wins=True) search_out_of_time = Attribute('search_out_of_time', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, ms_construction_time, ms_atomic_construction_time, ms_abstraction_constructed, ms_atomic_fts_constructed, ms_final_size, ms_out_of_memory, ms_out_of_time, search_out_of_memory, search_out_of_time, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) # TODO: remove this filter when re-running experiments def check_atomic_fts_constructed(run): ms_atomic_construction_time = run.get('ms_atomic_construction_time') ms_atomic_fts_constructed = False if ms_atomic_construction_time is not None: ms_atomic_fts_constructed = True run['ms_atomic_fts_constructed'] = ms_atomic_fts_constructed return run exp.add_comparison_table_step(attributes=attributes,filter=[check_atomic_fts_constructed]) exp.add_scatter_plot_step(attributes=[ms_atomic_construction_time]) for algo_nick in ['dfp-b50k', 'rl-b50k', 'sccs-dfp-b50k']: algo = "issue851-v1-{}".format(algo_nick) exp.add_report( GeneralScatterPlotReport( x_algo = algo, y_algo = algo, x_attribute='ms_atomic_construction_time', y_attribute='total_time', filter_algorithm=[algo], attributes=['total_time'], get_category=lambda run1, run2: run1["domain"], ), outfile='{}-total_time_vs_ms_atomic_construction_time.png'.format(algo), ) exp.run_steps()
5,144
Python
40.829268
451
0.734837
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue851/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter( axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows a relative comparison of two algorithms with regard to the given attribute. The attribute value of algorithm 1 is shown on the x-axis and the relation to the value of algorithm 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['algorithm'] == self.algorithms[0] and run2['algorithm'] == self.algorithms[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.algorithms[0], val1) assert val2 > 0, (domain, problem, self.algorithms[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlot uses log-scaling on the x-axis by default. PlotReport._set_scales( self, xscale or self.attribute.scale or 'log', 'log')
3,875
Python
35.566037
78
0.59871
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue851/v3.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from lab.reports import Attribute, geometric_mean from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from generalscatter import GeneralScatterPlotReport from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue851-base-v2", "issue851-v2", "issue851-v3"] BUILDS = ["release32"] CONFIG_NICKS = [ ('dfp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_stateless(merge_selector=score_based_filtering(scoring_functions=[goal_relevance,dfp,total_order])),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), # ('rl-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_precomputed(merge_tree=linear(variable_order=reverse_level)),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), # ('sbmiasm-b50k', ['--search', 'astar(merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false),merge_strategy=merge_stateless(merge_selector=score_based_filtering(scoring_functions=[sf_miasm(shrink_strategy=shrink_bisimulation(greedy=false),max_states=50000,threshold_before_merge=1),total_order(atomic_ts_order=reverse_level,product_ts_order=new_to_old,atomic_before_product=false)])),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), # ('sccs-dfp-b50k', ['--search', 'astar(merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false),merge_strategy=merge_sccs(order_of_sccs=topological,merge_selector=score_based_filtering(scoring_functions=[goal_relevance,dfp,total_order(atomic_ts_order=reverse_level,product_ts_order=new_to_old,atomic_before_product=false)])),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), ] CONFIGS = [ IssueConfig( config_nick, config, build_options=[build], driver_options=["--build", build]) for build in BUILDS for config_nick, config in CONFIG_NICKS ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_parser('ms-parser.py') exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) # m&s attributes ms_construction_time = Attribute('ms_construction_time', absolute=False, min_wins=True, functions=[geometric_mean]) ms_atomic_construction_time = Attribute('ms_atomic_construction_time', absolute=False, min_wins=True, functions=[geometric_mean]) ms_abstraction_constructed = Attribute('ms_abstraction_constructed', absolute=True, min_wins=False) ms_atomic_fts_constructed = Attribute('ms_atomic_fts_constructed', absolute=True, min_wins=False) ms_final_size = Attribute('ms_final_size', absolute=False, min_wins=True) ms_out_of_memory = Attribute('ms_out_of_memory', absolute=True, min_wins=True) ms_out_of_time = Attribute('ms_out_of_time', absolute=True, min_wins=True) search_out_of_memory = Attribute('search_out_of_memory', absolute=True, min_wins=True) search_out_of_time = Attribute('search_out_of_time', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, ms_construction_time, ms_atomic_construction_time, ms_abstraction_constructed, ms_atomic_fts_constructed, ms_final_size, ms_out_of_memory, ms_out_of_time, search_out_of_memory, search_out_of_time, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_comparison_table_step(attributes=attributes) exp.add_scatter_plot_step(attributes=[ms_atomic_construction_time]) for algo_nick in ['dfp-b50k']: # 'rl-b50k', 'sbmiasm-b50k', 'sccs-dfp-b50k']: algo = "issue851-v2-{}".format(algo_nick) exp.add_report( GeneralScatterPlotReport( x_algo = algo, y_algo = algo, x_attribute='ms_atomic_construction_time', y_attribute='total_time', filter_algorithm=[algo], attributes=['total_time'], get_category=lambda run1, run2: run1["domain"], ), outfile='{}-total_time_vs_ms_atomic_construction_time.png'.format(algo), ) exp.run_steps()
5,287
Python
44.982608
514
0.73955
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue851/v2.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from lab.reports import Attribute, geometric_mean from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from generalscatter import GeneralScatterPlotReport from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue851-base-v2", "issue851-v2"] BUILDS = ["release32"] CONFIG_NICKS = [ ('dfp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_stateless(merge_selector=score_based_filtering(scoring_functions=[goal_relevance,dfp,total_order])),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), # ('rl-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_precomputed(merge_tree=linear(variable_order=reverse_level)),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), # ('sbmiasm-b50k', ['--search', 'astar(merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false),merge_strategy=merge_stateless(merge_selector=score_based_filtering(scoring_functions=[sf_miasm(shrink_strategy=shrink_bisimulation(greedy=false),max_states=50000,threshold_before_merge=1),total_order(atomic_ts_order=reverse_level,product_ts_order=new_to_old,atomic_before_product=false)])),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), # ('sccs-dfp-b50k', ['--search', 'astar(merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false),merge_strategy=merge_sccs(order_of_sccs=topological,merge_selector=score_based_filtering(scoring_functions=[goal_relevance,dfp,total_order(atomic_ts_order=reverse_level,product_ts_order=new_to_old,atomic_before_product=false)])),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), ] CONFIGS = [ IssueConfig( config_nick, config, build_options=[build], driver_options=["--build", build]) for build in BUILDS for config_nick, config in CONFIG_NICKS ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_parser('ms-parser.py') exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) # m&s attributes ms_construction_time = Attribute('ms_construction_time', absolute=False, min_wins=True, functions=[geometric_mean]) ms_atomic_construction_time = Attribute('ms_atomic_construction_time', absolute=False, min_wins=True, functions=[geometric_mean]) ms_abstraction_constructed = Attribute('ms_abstraction_constructed', absolute=True, min_wins=False) ms_atomic_fts_constructed = Attribute('ms_atomic_fts_constructed', absolute=True, min_wins=False) ms_final_size = Attribute('ms_final_size', absolute=False, min_wins=True) ms_out_of_memory = Attribute('ms_out_of_memory', absolute=True, min_wins=True) ms_out_of_time = Attribute('ms_out_of_time', absolute=True, min_wins=True) search_out_of_memory = Attribute('search_out_of_memory', absolute=True, min_wins=True) search_out_of_time = Attribute('search_out_of_time', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, ms_construction_time, ms_atomic_construction_time, ms_abstraction_constructed, ms_atomic_fts_constructed, ms_final_size, ms_out_of_memory, ms_out_of_time, search_out_of_memory, search_out_of_time, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_comparison_table_step(attributes=attributes) exp.add_scatter_plot_step(attributes=[ms_atomic_construction_time]) for algo_nick in ['dfp-b50k']: # 'rl-b50k', 'sbmiasm-b50k', 'sccs-dfp-b50k']: algo = "issue851-v2-{}".format(algo_nick) exp.add_report( GeneralScatterPlotReport( x_algo = algo, y_algo = algo, x_attribute='ms_atomic_construction_time', y_attribute='total_time', filter_algorithm=[algo], attributes=['total_time'], get_category=lambda run1, run2: run1["domain"], ), outfile='{}-total_time_vs_ms_atomic_construction_time.png'.format(algo), ) exp.run_steps()
5,272
Python
44.852174
514
0.739757
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue311/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport from relativescatter import RelativeScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'storage', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'storage', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return node.endswith(".scicore.unibas.ch") or node.endswith(".cluster.bc2.ch") def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["depot:p01.pddl", "gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "planner_memory", "planner_time", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step( 'publish-absolute-report', subprocess.call, ['publish', outfile]) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step("make-comparison-tables", make_comparison_tables) self.add_step( "publish-comparison-tables", publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if relative: report_class = RelativeScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: report_class = ScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "{}-{}".format(rev1, config_nick) algo2 = "{}-{}".format(rev2, config_nick) report = report_class( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(step_name, make_scatter_plots)
14,203
Python
35.893506
82
0.614729
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue311/v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- ''' Script to check correctness of eager_wastar. Comparing eager_wastar with the equivalent version using eager(single(w*h), reopen_closed=true). Results should be the same for a given same value w. ''' import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue311"] CONFIGS = [ IssueConfig('eager_wastar_w1', ['--search', 'eager_wastar([lmcut], w=1)'], [], driver_options=['--overall-time-limit', '5m']), IssueConfig('eager_wastar_w2', ['--search', 'eager_wastar([lmcut], w=2)'], [], driver_options=['--overall-time-limit', '5m']), IssueConfig('eager_wastar_w5', ['--search', 'eager_wastar([lmcut], w=5)'], [], driver_options=['--overall-time-limit', '5m']), IssueConfig('eager_wastar_w100', ['--search', 'eager_wastar([lmcut], w=100)'], [], driver_options=['--overall-time-limit', '5m']), IssueConfig('eager_single_openlist_w1', ['--search', 'eager(single(sum([g(), weight(lmcut, 1)])), reopen_closed=true)'], [], driver_options=['--overall-time-limit', '5m']), IssueConfig('eager_single_openlist_w2', ['--search', 'eager(single(sum([g(), weight(lmcut, 2)])), reopen_closed=true)'], [], driver_options=['--overall-time-limit', '5m']), IssueConfig('eager_single_openlist_w5', ['--search', 'eager(single(sum([g(), weight(lmcut, 5)])), reopen_closed=true)'], [], driver_options=['--overall-time-limit', '5m']), IssueConfig('eager_single_openlist_w100', ['--search', 'eager(single(sum([g(), weight(lmcut, 100)])), reopen_closed=true)'], [], driver_options=['--overall-time-limit', '5m']), ] SUITE = common_setup.DEFAULT_SATISFICING_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_1", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step() exp.add_comparison_table_step() exp.run_steps()
2,597
Python
38.96923
180
0.691952
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue311/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter( axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows a relative comparison of two algorithms with regard to the given attribute. The attribute value of algorithm 1 is shown on the x-axis and the relation to the value of algorithm 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['algorithm'] == self.algorithms[0] and run2['algorithm'] == self.algorithms[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.algorithms[0], val1) assert val2 > 0, (domain, problem, self.algorithms[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlot uses log-scaling on the x-axis by default. PlotReport._set_scales( self, xscale or self.attribute.scale or 'log', 'log')
3,875
Python
35.566037
78
0.59871
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue311/v3.py
#! /usr/bin/env python # -*- coding: utf-8 -*- ''' Script to test possible eager version of LAMA ''' import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue311"] CONFIGS = [ IssueConfig('lama', [], driver_options=["--alias", "seq-sat-lama-2011"]), IssueConfig('eager_lama', [ "--if-unit-cost", "--evaluator", "hlm=lama_synergy(lm_rhw(reasonable_orders=true))", "--evaluator", "hff=ff_synergy(hlm)", "--search", """iterated([ lazy_greedy([hff,hlm],preferred=[hff,hlm]), eager_wastar([hff,hlm],preferred=[hff,hlm],w=5), eager_wastar([hff,hlm],preferred=[hff,hlm],w=3), eager_wastar([hff,hlm],preferred=[hff,hlm],w=2), eager_wastar([hff,hlm],preferred=[hff,hlm],w=1) ],repeat_last=true,continue_on_fail=true)""", "--if-non-unit-cost", "--evaluator", "hlm1=lama_synergy(lm_rhw(reasonable_orders=true," " lm_cost_type=one),transform=adapt_costs(one))", "--evaluator", "hff1=ff_synergy(hlm1)", "--evaluator", "hlm2=lama_synergy(lm_rhw(reasonable_orders=true," " lm_cost_type=plusone),transform=adapt_costs(plusone))", "--evaluator", "hff2=ff_synergy(hlm2)", "--search", """iterated([ lazy_greedy([hff1,hlm1],preferred=[hff1,hlm1], cost_type=one,reopen_closed=false), lazy_greedy([hff2,hlm2],preferred=[hff2,hlm2], reopen_closed=false), eager_wastar([hff2,hlm2],preferred=[hff2,hlm2],w=5), eager_wastar([hff2,hlm2],preferred=[hff2,hlm2],w=3), eager_wastar([hff2,hlm2],preferred=[hff2,hlm2],w=2), eager_wastar([hff2,hlm2],preferred=[hff2,hlm2],w=1) ],repeat_last=true,continue_on_fail=true)""", "--always" ]) ] SUITE = common_setup.DEFAULT_SATISFICING_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_1", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.ANYTIME_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step() exp.add_comparison_table_step() exp.run_steps()
2,846
Python
32.104651
91
0.643008
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue311/v2.py
#! /usr/bin/env python # -*- coding: utf-8 -*- ''' Script to compare WA* versions with w=1 with A* Results should be slightly different because of the tie-breaking strategy used by the astar search ''' import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue311"] CONFIGS = [ IssueConfig('eager_wastar_w1', ['--search', 'eager_wastar([lmcut], w=1)'], [], driver_options=['--overall-time-limit', '5m']), IssueConfig('eager_single_openlist_w1', ['--search', 'eager(single(sum([g(), weight(lmcut, 1)])), reopen_closed=true)'], [], driver_options=['--overall-time-limit', '5m']), IssueConfig('astar', ['--search', 'astar(lmcut)'], [], driver_options=['--overall-time-limit', '5m']), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_1", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step() exp.add_comparison_table_step() exp.run_steps()
1,720
Python
28.169491
176
0.719767
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue548/mas-refetch.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from lab.reports import Attribute, gm import common_setup REVS = ["issue548-base", "issue548-v1"] LIMITS = {"search_time": 1800} SUITE = suites.suite_optimal_with_ipc11() B_CONFIGS = { 'rl-b50k': ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=reverse_level),shrink_strategy=shrink_bisimulation(max_states=50000,threshold=1,greedy=false),label_reduction=label_reduction(before_shrinking=true,before_merging=false)))'], 'cggl-b50k': ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=cg_goal_level),shrink_strategy=shrink_bisimulation(max_states=50000,threshold=1,greedy=false),label_reduction=label_reduction(before_shrinking=true,before_merging=false)))'], 'dfp-b50k': ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_bisimulation(max_states=50000,threshold=1,greedy=false),label_reduction=label_reduction(before_shrinking=true,before_merging=false)))'], } G_CONFIGS = { 'rl-ginf': ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=reverse_level),shrink_strategy=shrink_bisimulation(max_states=infinity,threshold=1,greedy=true),label_reduction=label_reduction(before_shrinking=true,before_merging=false)))'], 'cggl-ginf': ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=cg_goal_level),shrink_strategy=shrink_bisimulation(max_states=infinity,threshold=1,greedy=true),label_reduction=label_reduction(before_shrinking=true,before_merging=false)))'], 'dfp-ginf': ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_bisimulation(max_states=infinity,threshold=1,greedy=true),label_reduction=label_reduction(before_shrinking=true,before_merging=false)))'], } F_CONFIGS = { 'rl-f50k': ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=reverse_level),shrink_strategy=shrink_fh(max_states=50000),label_reduction=label_reduction(before_shrinking=false,before_merging=true)))'], 'cggl-f50k': ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=cg_goal_level),shrink_strategy=shrink_fh(max_states=50000),label_reduction=label_reduction(before_shrinking=false,before_merging=true)))'], 'dfp-f50k': ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_fh(max_states=50000),label_reduction=label_reduction(before_shrinking=false,before_merging=true)))'], } CONFIGS = dict(B_CONFIGS) CONFIGS.update(G_CONFIGS) CONFIGS.update(F_CONFIGS) exp = common_setup.IssueExperiment( search_revisions=REVS, configs=CONFIGS, suite=SUITE, limits=LIMITS, test_suite=['depot:pfile1'], processes=4, email='[email protected]', ) # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) proved_unsolvability = Attribute('proved_unsolvability', absolute=True, min_wins=False) actual_search_time = Attribute('actual_search_time', absolute=False, min_wins=True, functions=[gm]) # m&s attributes ms_construction_time = Attribute('ms_construction_time', absolute=False, min_wins=True, functions=[gm]) ms_abstraction_constructed = Attribute('ms_abstraction_constructed', absolute=True, min_wins=False) ms_final_size = Attribute('ms_final_size', absolute=False, min_wins=True) ms_out_of_memory = Attribute('ms_out_of_memory', absolute=True, min_wins=True) ms_out_of_time = Attribute('ms_out_of_time', absolute=True, min_wins=True) search_out_of_memory = Attribute('search_out_of_memory', absolute=True, min_wins=True) search_out_of_time = Attribute('search_out_of_time', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, proved_unsolvability, actual_search_time, ms_construction_time, ms_abstraction_constructed, ms_final_size, ms_out_of_memory, ms_out_of_time, search_out_of_memory, search_out_of_time, actual_search_time, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_fetcher('data/issue548-mas', parsers='ms-parser.py') exp.add_comparison_table_step(attributes=attributes) exp()
4,244
Python
53.423076
273
0.753299
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue548/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.steps import Step from downward.experiments import DownwardExperiment, _get_rev_nick from downward.checkouts import Translator, Preprocessor, Planner from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareRevisionsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" import __main__ return __main__.__file__ def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ("cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or (ARGS.test_run == "auto" and not is_running_on_cluster()) class IssueExperiment(DownwardExperiment): """Wrapper for DownwardExperiment with a few convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "plan_length", ] def __init__(self, configs, suite, grid_priority=None, path=None, repo=None, revisions=None, search_revisions=None, test_suite=None, email=None, processes=1, **kwargs): """Create a DownwardExperiment with some convenience features. *configs* must be a non-empty dict of {nick: cmdline} pairs that sets the planner configurations to test. :: IssueExperiment(configs={ "lmcut": ["--search", "astar(lmcut())"], "ipdb": ["--search", "astar(ipdb())"]}) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(suite=suites.suite_all()) IssueExperiment(suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ If *repo* is specified, it must be the path to the root of a local Fast Downward repository. If omitted, the repository is derived automatically from the main script's path. Example:: script = /path/to/fd-repo/experiments/issue123/exp01.py --> repo = /path/to/fd-repo If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"]) If *search_revisions* is specified, it should be a non-empty list of revisions, which specify which search component versions to use in the experiment. All runs use the translator and preprocessor component of the first revision. :: IssueExperiment(search_revisions=["default", "issue123"]) If you really need to specify the (translator, preprocessor, planner) triples manually, use the *combinations* parameter from the base class (might be deprecated soon). The options *revisions*, *search_revisions* and *combinations* can be freely mixed, but at least one of them must be given. Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(test_suite=["depot:pfile1", "tpp:p01.pddl"]) """ if is_test_run(): kwargs["environment"] = LocalEnvironment(processes=processes) suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment(priority=grid_priority, email=email) if path is None: path = get_data_dir() if repo is None: repo = get_repo_base() kwargs.setdefault("combinations", []) if not any([revisions, search_revisions, kwargs["combinations"]]): raise ValueError('At least one of "revisions", "search_revisions" ' 'or "combinations" must be given') if revisions: kwargs["combinations"].extend([ (Translator(repo, rev), Preprocessor(repo, rev), Planner(repo, rev)) for rev in revisions]) if search_revisions: base_rev = search_revisions[0] # Use the same nick for all parts to get short revision nick. kwargs["combinations"].extend([ (Translator(repo, base_rev, nick=rev), Preprocessor(repo, base_rev, nick=rev), Planner(repo, rev, nick=rev)) for rev in search_revisions]) DownwardExperiment.__init__(self, path=path, repo=repo, **kwargs) self._config_nicks = [] for nick, config in configs.items(): self.add_config(nick, config) self.add_suite(suite) @property def revision_nicks(self): # TODO: Once the add_algorithm() API is available we should get # rid of the call to _get_rev_nick() and avoid inspecting the # list of combinations by setting and saving the algorithm nicks. return [_get_rev_nick(*combo) for combo in self.combinations] def add_config(self, nick, config, timeout=None): DownwardExperiment.add_config(self, nick, config, timeout=timeout) self._config_nicks.append(nick) def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = get_experiment_name() + "." + report.output_format self.add_report(report, outfile=outfile) self.add_step(Step('publish-absolute-report', call, ['publish', outfile])) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revision triples. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareRevisionsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self.revision_nicks, 2): report = CompareRevisionsReport(rev1, rev2, **kwargs) outfile = os.path.join(self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) report(self.eval_dir, outfile) self.add_step(Step("make-comparison-tables", make_comparison_tables)) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self.revision_nicks, 2): outfile = os.path.join(self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(['publish', outfile]) self.add_step(Step('publish-comparison-reports', publish_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revision pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def is_portfolio(config_nick): return "fdss" in config_nick def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report(self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config_nick in self._config_nicks: if is_portfolio(config_nick): valid_attributes = [ attr for attr in attributes if attr in self.PORTFOLIO_ATTRIBUTES] else: valid_attributes = attributes for rev1, rev2 in itertools.combinations( self.revision_nicks, 2): for attribute in valid_attributes: make_scatter_plot(config_nick, rev1, rev2, attribute) self.add_step(Step("make-scatter-plots", make_scatter_plots))
13,408
Python
35.736986
84
0.606205
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue548/mas.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites import common_setup REVS = ["issue548-base", "issue548-v1"] LIMITS = {"search_time": 1800} SUITE = suites.suite_optimal_with_ipc11() B_CONFIGS = { 'rl-b50k': ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=reverse_level),shrink_strategy=shrink_bisimulation(max_states=50000,threshold=1,greedy=false),label_reduction=label_reduction(before_shrinking=true,before_merging=false)))'], 'cggl-b50k': ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=cg_goal_level),shrink_strategy=shrink_bisimulation(max_states=50000,threshold=1,greedy=false),label_reduction=label_reduction(before_shrinking=true,before_merging=false)))'], 'dfp-b50k': ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_bisimulation(max_states=50000,threshold=1,greedy=false),label_reduction=label_reduction(before_shrinking=true,before_merging=false)))'], } G_CONFIGS = { 'rl-ginf': ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=reverse_level),shrink_strategy=shrink_bisimulation(max_states=infinity,threshold=1,greedy=true),label_reduction=label_reduction(before_shrinking=true,before_merging=false)))'], 'cggl-ginf': ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=cg_goal_level),shrink_strategy=shrink_bisimulation(max_states=infinity,threshold=1,greedy=true),label_reduction=label_reduction(before_shrinking=true,before_merging=false)))'], 'dfp-ginf': ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_bisimulation(max_states=infinity,threshold=1,greedy=true),label_reduction=label_reduction(before_shrinking=true,before_merging=false)))'], } F_CONFIGS = { 'rl-f50k': ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=reverse_level),shrink_strategy=shrink_fh(max_states=50000),label_reduction=label_reduction(before_shrinking=false,before_merging=true)))'], 'cggl-f50k': ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=cg_goal_level),shrink_strategy=shrink_fh(max_states=50000),label_reduction=label_reduction(before_shrinking=false,before_merging=true)))'], 'dfp-f50k': ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_fh(max_states=50000),label_reduction=label_reduction(before_shrinking=false,before_merging=true)))'], } CONFIGS = dict(B_CONFIGS) CONFIGS.update(G_CONFIGS) CONFIGS.update(F_CONFIGS) exp = common_setup.IssueExperiment( search_revisions=REVS, configs=CONFIGS, suite=SUITE, limits=LIMITS, test_suite=['depot:pfile1'], processes=4, email='[email protected]', ) exp.add_comparison_table_step() exp()
2,834
Python
63.431817
273
0.755116
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue548/ms-parser.py
#! /usr/bin/env python from lab.parser import Parser parser = Parser() parser.add_pattern('initial_h_value', 'initial h value: (\d+)', required=False, type=int) parser.add_pattern('ms_final_size', 'Final transition system size: (\d+)', required=False, type=int) parser.add_pattern('ms_construction_time', 'Done initializing merge-and-shrink heuristic \[(.+)s\]', required=False, type=float) def check_ms_constructed(content, props): ms_construction_time = props.get('ms_construction_time') abstraction_constructed = False if ms_construction_time is not None: abstraction_constructed = True props['ms_abstraction_constructed'] = abstraction_constructed parser.add_function(check_ms_constructed) def check_proved_unsolvability(content, props): proved_unsolvability = False if props['coverage'] == 0: for line in content.splitlines(): if line == 'Completely explored state space -- no solution!': proved_unsolvability = True break props['proved_unsolvability'] = proved_unsolvability parser.add_function(check_proved_unsolvability) def check_planner_exit_reason(content, props): ms_abstraction_constructed = props.get('ms_abstraction_constructed') error = props.get('error') if error != 'none' and error != 'timeout' and error != 'out-of-memory': print 'error: %s' % error return # Check whether merge-and-shrink computation or search ran out of # time or memory. ms_out_of_time = False ms_out_of_memory = False search_out_of_time = False search_out_of_memory = False if ms_abstraction_constructed == False: if error == 'timeout': ms_out_of_time = True elif error == 'out-of-memory': ms_out_of_memory = True elif ms_abstraction_constructed == True: if error == 'timeout': search_out_of_time = True elif error == 'out-of-memory': search_out_of_memory = True props['ms_out_of_time'] = ms_out_of_time props['ms_out_of_memory'] = ms_out_of_memory props['search_out_of_time'] = search_out_of_time props['search_out_of_memory'] = search_out_of_memory # Compute actual search time if ms_abstraction_constructed == True and props.get('search_time') is not None: difference = props.get('search_time') - props.get('ms_construction_time') props['actual_search_time'] = difference parser.add_function(check_planner_exit_reason) def check_perfect_heuristic(content, props): plan_length = props.get('plan_length') expansions = props.get('expansions') if plan_length != None: perfect_heuristic = False if plan_length + 1 == expansions: perfect_heuristic = True props['perfect_heuristic'] = perfect_heuristic parser.add_function(check_perfect_heuristic) parser.parse()
2,879
Python
36.402597
128
0.663077
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue548/base-v2.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from lab.reports import Attribute, gm import common_setup REVS = ["issue548-base", "issue548-v2"] LIMITS = {"search_time": 1800} SUITE = suites.suite_optimal_with_ipc11() B_CONFIGS = { 'rl-b50k': ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=reverse_level),shrink_strategy=shrink_bisimulation(max_states=50000,threshold=1,greedy=false),label_reduction=label_reduction(before_shrinking=true,before_merging=false)))'], 'cggl-b50k': ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=cg_goal_level),shrink_strategy=shrink_bisimulation(max_states=50000,threshold=1,greedy=false),label_reduction=label_reduction(before_shrinking=true,before_merging=false)))'], 'dfp-b50k': ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_bisimulation(max_states=50000,threshold=1,greedy=false),label_reduction=label_reduction(before_shrinking=true,before_merging=false)))'], } G_CONFIGS = { 'rl-ginf': ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=reverse_level),shrink_strategy=shrink_bisimulation(max_states=infinity,threshold=1,greedy=true),label_reduction=label_reduction(before_shrinking=true,before_merging=false)))'], 'cggl-ginf': ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=cg_goal_level),shrink_strategy=shrink_bisimulation(max_states=infinity,threshold=1,greedy=true),label_reduction=label_reduction(before_shrinking=true,before_merging=false)))'], 'dfp-ginf': ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_bisimulation(max_states=infinity,threshold=1,greedy=true),label_reduction=label_reduction(before_shrinking=true,before_merging=false)))'], } F_CONFIGS = { 'rl-f50k': ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=reverse_level),shrink_strategy=shrink_fh(max_states=50000),label_reduction=label_reduction(before_shrinking=false,before_merging=true)))'], 'cggl-f50k': ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=cg_goal_level),shrink_strategy=shrink_fh(max_states=50000),label_reduction=label_reduction(before_shrinking=false,before_merging=true)))'], 'dfp-f50k': ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_fh(max_states=50000),label_reduction=label_reduction(before_shrinking=false,before_merging=true)))'], } CONFIGS = dict(B_CONFIGS) CONFIGS.update(G_CONFIGS) CONFIGS.update(F_CONFIGS) exp = common_setup.IssueExperiment( search_revisions=REVS, configs=CONFIGS, suite=SUITE, limits=LIMITS, test_suite=['depot:pfile1'], processes=4, email='[email protected]', ) exp.add_search_parser('ms-parser.py') # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) proved_unsolvability = Attribute('proved_unsolvability', absolute=True, min_wins=False) actual_search_time = Attribute('actual_search_time', absolute=False, min_wins=True, functions=[gm]) # m&s attributes ms_construction_time = Attribute('ms_construction_time', absolute=False, min_wins=True, functions=[gm]) ms_abstraction_constructed = Attribute('ms_abstraction_constructed', absolute=True, min_wins=False) ms_final_size = Attribute('ms_final_size', absolute=False, min_wins=True) ms_out_of_memory = Attribute('ms_out_of_memory', absolute=True, min_wins=True) ms_out_of_time = Attribute('ms_out_of_time', absolute=True, min_wins=True) search_out_of_memory = Attribute('search_out_of_memory', absolute=True, min_wins=True) search_out_of_time = Attribute('search_out_of_time', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, proved_unsolvability, actual_search_time, ms_construction_time, ms_abstraction_constructed, ms_final_size, ms_out_of_memory, ms_out_of_time, search_out_of_memory, search_out_of_time, actual_search_time, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_comparison_table_step(attributes=attributes) exp()
4,221
Python
53.128204
273
0.753376
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue482/issue482.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites import common_setup CONFIGS = { 'astar_gapdb': [ '--search', 'astar(gapdb())'], } exp = common_setup.IssueExperiment( search_revisions=["issue482-base", "issue482-v1"], configs=CONFIGS, suite=suites.suite_optimal_with_ipc11(), ) exp.add_comparison_table_step() exp()
396
Python
16.260869
54
0.603535
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue482/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.steps import Step from downward.experiments import DownwardExperiment, _get_rev_nick from downward.checkouts import Translator, Preprocessor, Planner from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareRevisionsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" import __main__ return __main__.__file__ def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return (node.endswith("cluster.bc2.ch") or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or (ARGS.test_run == "auto" and not is_running_on_cluster()) class IssueExperiment(DownwardExperiment): """Wrapper for DownwardExperiment with a few convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" # TODO: Once we have reference results, we should add "quality". # TODO: Add something about errors/exit codes. DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "plan_length", ] def __init__(self, configs, suite, grid_priority=None, path=None, repo=None, revisions=None, search_revisions=None, test_suite=None, **kwargs): """Create a DownwardExperiment with some convenience features. *configs* must be a non-empty dict of {nick: cmdline} pairs that sets the planner configurations to test. :: IssueExperiment(configs={ "lmcut": ["--search", "astar(lmcut())"], "ipdb": ["--search", "astar(ipdb())"]}) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(suite=suites.suite_all()) IssueExperiment(suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ If *repo* is specified, it must be the path to the root of a local Fast Downward repository. If omitted, the repository is derived automatically from the main script's path. Example:: script = /path/to/fd-repo/experiments/issue123/exp01.py --> repo = /path/to/fd-repo If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"]) If *search_revisions* is specified, it should be a non-empty list of revisions, which specify which search component versions to use in the experiment. All runs use the translator and preprocessor component of the first revision. :: IssueExperiment(search_revisions=["default", "issue123"]) If you really need to specify the (translator, preprocessor, planner) triples manually, use the *combinations* parameter from the base class (might be deprecated soon). The options *revisions*, *search_revisions* and *combinations* can be freely mixed, but at least one of them must be given. Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(test_suite=["depot:pfile1", "tpp:p01.pddl"]) """ if is_test_run(): kwargs["environment"] = LocalEnvironment() suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment(priority=grid_priority) if path is None: path = get_data_dir() if repo is None: repo = get_repo_base() kwargs.setdefault("combinations", []) if not any([revisions, search_revisions, kwargs["combinations"]]): raise ValueError('At least one of "revisions", "search_revisions" ' 'or "combinations" must be given') if revisions: kwargs["combinations"].extend([ (Translator(repo, rev), Preprocessor(repo, rev), Planner(repo, rev)) for rev in revisions]) if search_revisions: base_rev = search_revisions[0] # Use the same nick for all parts to get short revision nick. kwargs["combinations"].extend([ (Translator(repo, base_rev, nick=rev), Preprocessor(repo, base_rev, nick=rev), Planner(repo, rev, nick=rev)) for rev in search_revisions]) DownwardExperiment.__init__(self, path=path, repo=repo, **kwargs) self._config_nicks = [] for nick, config in configs.items(): self.add_config(nick, config) self.add_suite(suite) @property def revision_nicks(self): # TODO: Once the add_algorithm() API is available we should get # rid of the call to _get_rev_nick() and avoid inspecting the # list of combinations by setting and saving the algorithm nicks. return [_get_rev_nick(*combo) for combo in self.combinations] def add_config(self, nick, config, timeout=None): DownwardExperiment.add_config(self, nick, config, timeout=timeout) self._config_nicks.append(nick) def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = get_experiment_name() + "." + report.output_format self.add_report(report, outfile=outfile) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revision triples. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareRevisionsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self.revision_nicks, 2): report = CompareRevisionsReport(rev1, rev2, **kwargs) outfile = os.path.join(self.eval_dir, "%s-%s-compare.html" % (rev1, rev2)) report(self.eval_dir, outfile) self.add_step(Step("make-comparison-tables", make_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revision pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def is_portfolio(config_nick): return "fdss" in config_nick def make_scatter_plots(): for config_nick in self._config_nicks: for rev1, rev2 in itertools.combinations( self.revision_nicks, 2): algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) if is_portfolio(config_nick): valid_attributes = [ attr for attr in attributes if attr in self.PORTFOLIO_ATTRIBUTES] else: valid_attributes = attributes for attribute in valid_attributes: name = "-".join([rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report(self.eval_dir, os.path.join(scatter_dir, name)) self.add_step(Step("make-scatter-plots", make_scatter_plots))
12,741
Python
35.614942
79
0.608743
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue443/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.steps import Step from downward.experiments import DownwardExperiment, _get_rev_nick from downward.checkouts import Translator, Preprocessor, Planner from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareRevisionsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" import __main__ return __main__.__file__ def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return (node.endswith("cluster.bc2.ch") or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or (ARGS.test_run == "auto" and not is_running_on_cluster()) class IssueExperiment(DownwardExperiment): """Wrapper for DownwardExperiment with a few convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" # TODO: Once we have reference results, we should add "quality". # TODO: Add something about errors/exit codes. DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "plan_length", ] def __init__(self, configs, suite, grid_priority=None, path=None, repo=None, revisions=None, search_revisions=None, test_suite=None, **kwargs): """Create a DownwardExperiment with some convenience features. *configs* must be a non-empty dict of {nick: cmdline} pairs that sets the planner configurations to test. :: IssueExperiment(configs={ "lmcut": ["--search", "astar(lmcut())"], "ipdb": ["--search", "astar(ipdb())"]}) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(suite=suites.suite_all()) IssueExperiment(suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ If *repo* is specified, it must be the path to the root of a local Fast Downward repository. If omitted, the repository is derived automatically from the main script's path. Example:: script = /path/to/fd-repo/experiments/issue123/exp01.py --> repo = /path/to/fd-repo If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"]) If *search_revisions* is specified, it should be a non-empty list of revisions, which specify which search component versions to use in the experiment. All runs use the translator and preprocessor component of the first revision. :: IssueExperiment(search_revisions=["default", "issue123"]) If you really need to specify the (translator, preprocessor, planner) triples manually, use the *combinations* parameter from the base class (might be deprecated soon). The options *revisions*, *search_revisions* and *combinations* can be freely mixed, but at least one of them must be given. Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(test_suite=["depot:pfile1", "tpp:p01.pddl"]) """ if is_test_run(): kwargs["environment"] = LocalEnvironment() suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment(priority=grid_priority) if path is None: path = get_data_dir() if repo is None: repo = get_repo_base() kwargs.setdefault("combinations", []) if not any([revisions, search_revisions, kwargs["combinations"]]): raise ValueError('At least one of "revisions", "search_revisions" ' 'or "combinations" must be given') if revisions: kwargs["combinations"].extend([ (Translator(repo, rev), Preprocessor(repo, rev), Planner(repo, rev)) for rev in revisions]) if search_revisions: base_rev = search_revisions[0] # Use the same nick for all parts to get short revision nick. kwargs["combinations"].extend([ (Translator(repo, base_rev, nick=rev), Preprocessor(repo, base_rev, nick=rev), Planner(repo, rev, nick=rev)) for rev in search_revisions]) DownwardExperiment.__init__(self, path=path, repo=repo, **kwargs) self._config_nicks = [] for nick, config in configs.items(): self.add_config(nick, config) self.add_suite(suite) @property def revision_nicks(self): # TODO: Once the add_algorithm() API is available we should get # rid of the call to _get_rev_nick() and avoid inspecting the # list of combinations by setting and saving the algorithm nicks. return [_get_rev_nick(*combo) for combo in self.combinations] def add_config(self, nick, config, timeout=None): DownwardExperiment.add_config(self, nick, config, timeout=timeout) self._config_nicks.append(nick) def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = get_experiment_name() + "." + report.output_format self.add_report(report, outfile=outfile) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revision triples. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareRevisionsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self.revision_nicks, 2): report = CompareRevisionsReport(rev1, rev2, **kwargs) outfile = os.path.join(self.eval_dir, "%s-%s-compare.html" % (rev1, rev2)) report(self.eval_dir, outfile) self.add_step(Step("make-comparison-tables", make_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revision pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def is_portfolio(config_nick): return "fdss" in config_nick def make_scatter_plots(): for config_nick in self._config_nicks: for rev1, rev2 in itertools.combinations( self.revision_nicks, 2): algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) if is_portfolio(config_nick): valid_attributes = [ attr for attr in attributes if attr in self.PORTFOLIO_ATTRIBUTES] else: valid_attributes = attributes for attribute in valid_attributes: name = "-".join([rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report(self.eval_dir, os.path.join(scatter_dir, name)) self.add_step(Step("make-scatter-plots", make_scatter_plots))
12,741
Python
35.614942
79
0.608743
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue443/issue443-v3.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites import common_setup CONFIGS = { 'astar_lmcount': [ '--search', 'astar(lmcount(lm_merged([lm_rhw(),lm_hm(m=1)]),admissible=true,optimal=true),mpd=true)'], } exp = common_setup.IssueExperiment( search_revisions=["issue443-base", "issue443-v3"], configs=CONFIGS, suite=suites.suite_optimal_with_ipc11(), ) exp.add_comparison_table_step() exp()
470
Python
19.47826
102
0.625532
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue443/issue443-v4.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites import common_setup CONFIGS = { 'astar_lmcount': [ '--search', 'astar(lmcount(lm_merged([lm_rhw(),lm_hm(m=1)]),admissible=true,optimal=true),mpd=true)'], } exp = common_setup.IssueExperiment( search_revisions=["issue443-v4-base", "issue443-v4"], configs=CONFIGS, suite=suites.suite_optimal_with_ipc11(), ) exp.add_comparison_table_step() exp()
473
Python
19.608695
102
0.625793
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue443/issue443-v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites import common_setup CONFIGS = { 'astar_lmcount': [ '--search', 'astar(lmcount(lm_merged([lm_rhw(),lm_hm(m=1)]),admissible=true,optimal=true),mpd=true)'], } exp = common_setup.IssueExperiment( search_revisions=["issue443-base", "issue443-v1"], configs=CONFIGS, suite=suites.suite_optimal_with_ipc11(), ) exp.add_comparison_table_step() exp()
470
Python
19.47826
102
0.625532
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue443/issue443-v2.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites import common_setup CONFIGS = { 'astar_lmcount': [ '--search', 'astar(lmcount(lm_merged([lm_rhw(),lm_hm(m=1)]),admissible=true,optimal=true),mpd=true)'], } exp = common_setup.IssueExperiment( search_revisions=["issue443-base", "issue443-v2"], configs=CONFIGS, suite=suites.suite_optimal_with_ipc11(), ) exp.add_comparison_table_step() exp()
470
Python
19.47826
102
0.625532
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue547/issue547-v2-sat.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from downward.reports.scatter import ScatterPlotReport import common_setup from relativescatter import RelativeScatterPlotReport SEARCH_REVS = ["issue547-base", "issue547-v2"] SUITE = suites.suite_satisficing_with_ipc11() CONFIGS = { 'astar_blind': [ '--search', 'astar(blind())'], 'lazy_greedy_cg': [ '--heuristic', 'h=cg()', '--search', 'lazy_greedy(h, preferred=h)'], 'lazy_greedy_cg_randomized': [ '--heuristic', 'h=cg()', '--search', 'lazy_greedy(h, preferred=h, randomize_successors=true)'], 'eager_greedy_ff': [ '--heuristic', 'h=ff()', '--search', 'eager_greedy(h, preferred=h)'], } exp = common_setup.IssueExperiment( revisions=SEARCH_REVS, configs=CONFIGS, suite=SUITE, ) exp.add_search_parser("custom-parser.py") attributes = attributes=exp.DEFAULT_TABLE_ATTRIBUTES + ["successor_generator_time", "reopened_until_last_jump"] exp.add_comparison_table_step(attributes=attributes) for conf in CONFIGS: for attr in ("memory", "search_time"): exp.add_report( RelativeScatterPlotReport( attributes=[attr], get_category=lambda run1, run2: run1.get("domain"), filter_config=["issue547-base-%s" % conf, "issue547-v2-%s" % conf] ), outfile='issue547_base_v2-sat_%s_%s.png' % (conf, attr) ) exp()
1,529
Python
25.842105
111
0.59189
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue547/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.reports import Table from lab.steps import Step from downward.experiments import DownwardExperiment, _get_rev_nick from downward.checkouts import Translator, Preprocessor, Planner from downward.reports import PlanningReport from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareRevisionsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" import __main__ return __main__.__file__ def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ("cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or (ARGS.test_run == "auto" and not is_running_on_cluster()) class IssueExperiment(DownwardExperiment): """Wrapper for DownwardExperiment with a few convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" # TODO: Add something about errors/exit codes. DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "plan_length", ] def __init__(self, configs, suite, grid_priority=None, path=None, repo=None, revisions=None, search_revisions=None, test_suite=None, **kwargs): """Create a DownwardExperiment with some convenience features. *configs* must be a non-empty dict of {nick: cmdline} pairs that sets the planner configurations to test. :: IssueExperiment(configs={ "lmcut": ["--search", "astar(lmcut())"], "ipdb": ["--search", "astar(ipdb())"]}) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(suite=suites.suite_all()) IssueExperiment(suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ If *repo* is specified, it must be the path to the root of a local Fast Downward repository. If omitted, the repository is derived automatically from the main script's path. Example:: script = /path/to/fd-repo/experiments/issue123/exp01.py --> repo = /path/to/fd-repo If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"]) If *search_revisions* is specified, it should be a non-empty list of revisions, which specify which search component versions to use in the experiment. All runs use the translator and preprocessor component of the first revision. :: IssueExperiment(search_revisions=["default", "issue123"]) If you really need to specify the (translator, preprocessor, planner) triples manually, use the *combinations* parameter from the base class (might be deprecated soon). The options *revisions*, *search_revisions* and *combinations* can be freely mixed, but at least one of them must be given. Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(test_suite=["depot:pfile1", "tpp:p01.pddl"]) """ if is_test_run(): kwargs["environment"] = LocalEnvironment() suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment(priority=grid_priority) if path is None: path = get_data_dir() if repo is None: repo = get_repo_base() kwargs.setdefault("combinations", []) if not any([revisions, search_revisions, kwargs["combinations"]]): raise ValueError('At least one of "revisions", "search_revisions" ' 'or "combinations" must be given') if revisions: kwargs["combinations"].extend([ (Translator(repo, rev), Preprocessor(repo, rev), Planner(repo, rev)) for rev in revisions]) if search_revisions: base_rev = search_revisions[0] # Use the same nick for all parts to get short revision nick. kwargs["combinations"].extend([ (Translator(repo, base_rev, nick=rev), Preprocessor(repo, base_rev, nick=rev), Planner(repo, rev, nick=rev)) for rev in search_revisions]) DownwardExperiment.__init__(self, path=path, repo=repo, **kwargs) self._config_nicks = [] for nick, config in configs.items(): self.add_config(nick, config) self.add_suite(suite) @property def revision_nicks(self): # TODO: Once the add_algorithm() API is available we should get # rid of the call to _get_rev_nick() and avoid inspecting the # list of combinations by setting and saving the algorithm nicks. return [_get_rev_nick(*combo) for combo in self.combinations] def add_config(self, nick, config, timeout=None): DownwardExperiment.add_config(self, nick, config, timeout=timeout) self._config_nicks.append(nick) def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = get_experiment_name() + "." + report.output_format self.add_report(report, outfile=outfile) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revision triples. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareRevisionsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self.revision_nicks, 2): report = CompareRevisionsReport(rev1, rev2, **kwargs) outfile = os.path.join(self.eval_dir, "%s-%s-compare.html" % (rev1, rev2)) report(self.eval_dir, outfile) self.add_step(Step("make-comparison-tables", make_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revision pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def is_portfolio(config_nick): return "fdss" in config_nick def make_scatter_plots(): for config_nick in self._config_nicks: for rev1, rev2 in itertools.combinations( self.revision_nicks, 2): algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) if is_portfolio(config_nick): valid_attributes = [ attr for attr in attributes if attr in self.PORTFOLIO_ATTRIBUTES] else: valid_attributes = attributes for attribute in valid_attributes: name = "-".join([rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report(self.eval_dir, os.path.join(scatter_dir, name)) self.add_step(Step("make-scatter-plots", make_scatter_plots)) class RegressionReport(PlanningReport): """ Compare revisions for tasks on which the first revision performs better than other revisions. *revision_nicks* must be a list of revision_nicks, e.g. ["default", "issue123"]. *config_nicks* must be a list of configuration nicknames, e.g. ["eager_greedy_ff", "eager_greedy_add"]. *regression_attribute* is the attribute that we compare between different revisions. It defaults to "coverage". Example comparing search_time for tasks were we lose coverage:: exp.add_report(RegressionReport(revision_nicks=["default", "issue123"], config_nicks=["eager_greedy_ff"], regression_attribute="coverage", attributes="search_time")) """ def __init__(self, revision_nicks, config_nicks, regression_attribute="coverage", **kwargs): PlanningReport.__init__(self, **kwargs) assert revision_nicks self.revision_nicks = revision_nicks assert config_nicks self.config_nicks = config_nicks self.regression_attribute = regression_attribute def get_markup(self): tables = [] for (domain, problem) in self.problems: for config_nick in self.config_nicks: runs = [self.runs[(domain, problem, rev + "-" + config_nick)] for rev in self.revision_nicks] if any(runs[0][self.regression_attribute] > runs[i][self.regression_attribute] for i in range(1, len(self.revision_nicks))): print "\"%s:%s\"," % (domain, problem) table = Table() for rev, run in zip(self.revision_nicks, runs): for attr in self.attributes: table.add_cell(rev, attr, run.get(attr)) table_name = ":".join((domain, problem, config_nick)) tables.append((table_name, table)) return "\n".join(name + "\n" + str(table) for name, table in tables)
14,920
Python
36.3025
79
0.601475
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue547/issue547.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import configs, suites from downward.reports.scatter import ScatterPlotReport # Cactus plots are experimental in lab, and require some changes to # classes in lab, so we cannot add them es external files here. try: from downward.reports.cactus import CactusPlotReport has_cactus_plot = True except: has_cactus_plot = False from lab.experiment import Step from lab.fetcher import Fetcher import common_setup from relativescatter import RelativeScatterPlotReport SEARCH_REVS = ["issue547-base", "issue547-v1"] SUITE = suites.suite_optimal_with_ipc11() CONFIGS = { 'astar_blind': [ '--search', 'astar(blind())'], 'astar_ipdb': [ '--search', 'astar(ipdb())'], 'astar_lmcut': [ '--search', 'astar(lmcut())'], 'astar_pdb': [ '--search', 'astar(pdb())'], } exp = common_setup.IssueExperiment( revisions=SEARCH_REVS, configs=CONFIGS, suite=SUITE, ) exp.add_search_parser("custom-parser.py") exp.add_step(Step('refetch', Fetcher(), exp.path, parsers=['custom-parser.py'])) attributes = attributes=exp.DEFAULT_TABLE_ATTRIBUTES + ["successor_generator_time", "reopened_until_last_jump"] exp.add_comparison_table_step(attributes=attributes) for conf in CONFIGS: for attr in ("memory", "search_time"): exp.add_report( RelativeScatterPlotReport( attributes=[attr], get_category=lambda run1, run2: run1.get("domain"), filter_config=["issue547-base-%s" % conf, "issue547-v1-%s" % conf] ), outfile='issue547_base_v1_%s_%s.png' % (conf, attr) ) if has_cactus_plot: exp.add_report(CactusPlotReport(attributes=['successor_generator_time'], filter_config_nick="astar_blind", ylabel='successor_generator_time', get_category=lambda run: run['config_nick'], category_styles={'astar_blind': {'linestyle': '-', 'c':'red'}} )) exp()
2,079
Python
28.714285
111
0.620972
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue547/custom-parser.py
#! /usr/bin/env python from lab.parser import Parser class CustomParser(Parser): def __init__(self): Parser.__init__(self) self.add_pattern( "successor_generator_time", "Building successor generator...done! \[t=(.+)s\]", required=False, type=float) if __name__ == "__main__": parser = CustomParser() print "Running custom parser" parser.parse()
430
Python
20.549999
63
0.560465
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue547/issue547-v2-opt.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from downward.reports.scatter import ScatterPlotReport import common_setup from relativescatter import RelativeScatterPlotReport SEARCH_REVS = ["issue547-base", "issue547-v2"] SUITE = suites.suite_optimal_with_ipc11() CONFIGS = { 'astar_ipdb': [ '--search', 'astar(ipdb())'], } exp = common_setup.IssueExperiment( revisions=SEARCH_REVS, configs=CONFIGS, suite=SUITE, ) exp.add_search_parser("custom-parser.py") attributes = attributes=exp.DEFAULT_TABLE_ATTRIBUTES + ["successor_generator_time", "reopened_until_last_jump"] exp.add_comparison_table_step(attributes=attributes) for conf in CONFIGS: for attr in ("memory", "search_time"): exp.add_report( RelativeScatterPlotReport( attributes=[attr], get_category=lambda run1, run2: run1.get("domain"), filter_config=["issue547-base-%s" % conf, "issue547-v2-%s" % conf] ), outfile='issue547_base_v2_%s_%s.png' % (conf, attr) ) exp()
1,104
Python
25.309523
111
0.641304
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue547/issue547-v2-lama.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from downward.reports.scatter import ScatterPlotReport import common_setup from relativescatter import RelativeScatterPlotReport SEARCH_REVS = ["issue547-base", "issue547-v2"] SUITE = suites.suite_satisficing_with_ipc11() CONFIGS = { 'lama-2011-first': [ "--if-unit-cost", "--heuristic", "hlm,hff=lm_ff_syn(lm_rhw(reasonable_orders=true))", "--search", "lazy_greedy([hff,hlm],preferred=[hff,hlm])", "--if-non-unit-cost", "--heuristic", "hlm1,hff1=lm_ff_syn(lm_rhw(reasonable_orders=true," " lm_cost_type=one,cost_type=one))", "--heuristic", "hlm2,hff2=lm_ff_syn(lm_rhw(reasonable_orders=true," " lm_cost_type=plusone,cost_type=plusone))", "--search", "lazy_greedy([hff1,hlm1],preferred=[hff1,hlm1], cost_type=one,reopen_closed=false)", ], } exp = common_setup.IssueExperiment( revisions=SEARCH_REVS, configs=CONFIGS, suite=SUITE, ) exp.add_search_parser("custom-parser.py") attributes = attributes=exp.DEFAULT_TABLE_ATTRIBUTES + ["successor_generator_time", "reopened_until_last_jump"] exp.add_comparison_table_step(attributes=attributes) for conf in CONFIGS: for attr in ("memory", "search_time"): exp.add_report( RelativeScatterPlotReport( attributes=[attr], get_category=lambda run1, run2: run1.get("domain"), filter_config=["issue547-base-%s" % conf, "issue547-v2-%s" % conf] ), outfile='issue547_base_v2-sat_%s_%s.png' % (conf, attr) ) exp()
1,723
Python
30.345454
111
0.600116
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue547/relativescatter.py
# -*- coding: utf-8 -*- # # downward uses the lab package to conduct experiments with the # Fast Downward planning system. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from collections import defaultdict import os from lab import tools from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter(axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows how a specific attribute in two configurations. The attribute value in config 1 is shown on the x-axis and the relation to the value in config 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['config'] == self.configs[0] and run2['config'] == self.configs[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.configs[0], val1) assert val2 > 0, (domain, problem, self.configs[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlots use log-scaling on the x-axis by default. default_xscale = 'log' if self.attribute and self.attribute in self.LINEAR: default_xscale = 'linear' PlotReport._set_scales(self, xscale or default_xscale, 'log')
4,690
Python
35.937008
84
0.624947
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue744/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport from relativescatter import RelativeScatterPlotReport from sortedreport import SortedReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'agricola-opt18-strips', 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'data-network-opt18-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'organic-synthesis-opt18-strips', 'organic-synthesis-split-opt18-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'petri-net-alignment-opt18-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'snake-opt18-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'spider-opt18-strips', 'storage', 'termes-opt18-strips', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'agricola-sat18-strips', 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'caldera-sat18-adl', 'caldera-split-sat18-adl', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'data-network-sat18-strips', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'flashfill-sat18-adl', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'nurikabe-sat18-adl', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'organic-synthesis-sat18-strips', 'organic-synthesis-split-sat18-strips', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'settlers-sat18-adl', 'snake-sat18-strips', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'spider-sat18-strips', 'storage', 'termes-sat18-strips', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return node.endswith(".scicore.unibas.ch") or node.endswith(".cluster.bc2.ch") def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["depot:p01.pddl", "gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "planner_memory", "planner_time", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "quality", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step( 'publish-absolute-report', subprocess.call, ['publish', outfile]) def add_sorted_report_step(self, sort_spec, name=None, **kwargs): """Add step that makes a sorted report. """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = SortedReport(sort_spec, **kwargs) name = name or "sorted" name = "-" + name outfile = os.path.join( self.eval_dir, get_experiment_name() + name + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step( 'publish{}-report'.format(name), subprocess.call, ['publish', outfile]) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step("make-comparison-tables", make_comparison_tables) self.add_step( "publish-comparison-tables", publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if relative: report_class = RelativeScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: report_class = ScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print("Make scatter plot for", name) algo1 = "{}-{}".format(rev1, config_nick) algo2 = "{}-{}".format(rev2, config_nick) report = report_class( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(step_name, make_scatter_plots)
15,419
Python
36.518248
83
0.617485
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue744/custom-parser.py
#! /usr/bin/env python from lab.parser import Parser def compute_log_size(content, props): props["log_size"] = len(content) def main(): parser = Parser() parser.add_function(compute_log_size) parser.parse() main()
234
Python
15.785713
41
0.666667
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue744/base-sat-30min.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import itertools import os import subprocess from lab.environments import LocalEnvironment, BaselSlurmEnvironment from lab.reports import Attribute import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport EXPNAME = common_setup.get_experiment_name() DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue744-base"] CONFIG_DICT = { "eager_greedy_ff": [ "--evaluator", "h=ff()", "--search", "eager_greedy([h], preferred=[h])"], "eager_greedy_cea": [ "--evaluator", "h=cea()", "--search", "eager_greedy([h], preferred=[h])"], "lazy_greedy_add": [ "--evaluator", "h=add()", "--search", "lazy_greedy([h], preferred=[h])"], "lazy_greedy_cg": [ "--evaluator", "h=cg()", "--search", "lazy_greedy([h], preferred=[h])"], "lama-first": [ "--evaluator", "hlm=lmcount(lm_factory=lm_rhw(reasonable_orders=true),transform=adapt_costs(one),pref=false)", "--evaluator", "hff=ff(transform=adapt_costs(one))", "--search", """lazy_greedy([hff,hlm],preferred=[hff,hlm], cost_type=one,reopen_closed=false)"""], "lama-first-typed": [ "--evaluator", "hlm=lmcount(lm_factory=lm_rhw(reasonable_orders=true),transform=adapt_costs(one),pref=false)", "--evaluator", "hff=ff(transform=adapt_costs(one))", "--search", "lazy(alt([single(hff), single(hff, pref_only=true)," "single(hlm), single(hlm, pref_only=true), type_based([hff, g()])], boost=1000)," "preferred=[hff,hlm], cost_type=one, reopen_closed=false, randomize_successors=true," "preferred_successors_first=false)"], } CONFIGS = [ IssueConfig(config_nick, config, driver_options=["--overall-time-limit", "30m"]) for rev in REVISIONS for config_nick, config in CONFIG_DICT.items() ] SUITE = common_setup.DEFAULT_SATISFICING_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_parser('custom-parser.py') exp.add_step("build", exp.build) exp.add_step("start", exp.start_runs) exp.add_fetcher(name="fetch") log_size = Attribute('log_size') attributes = IssueExperiment.DEFAULT_TABLE_ATTRIBUTES + [log_size] exp.add_absolute_report_step(attributes=attributes) #exp.add_comparison_table_step() sort_spec = [('log_size', 'desc')] attributes = ['run_dir', 'log_size'] exp.add_sorted_report_step(attributes=attributes, sort_spec=sort_spec) exp.run_steps()
3,211
Python
30.80198
103
0.644348
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue744/base-opt-30min.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import itertools import os import subprocess from lab.environments import LocalEnvironment, BaselSlurmEnvironment from lab.reports import Attribute from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport EXPNAME = common_setup.get_experiment_name() DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue744-base"] SEARCHES = [ ("bjolp", [ "--evaluator", "lmc=lmcount(lm_merged([lm_rhw(),lm_hm(m=1)]),admissible=true)", "--search", "astar(lmc,lazy_evaluator=lmc)"]), ("blind", ["--search", "astar(blind())"]), ("cegar", ["--search", "astar(cegar())"]), ("divpot", ["--search", "astar(diverse_potentials())"]), ("ipdb", ["--search", "astar(ipdb())"]), ("lmcut", ["--search", "astar(lmcut())"]), ("mas", [ "--search", "astar(merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false)," " merge_strategy=merge_sccs(order_of_sccs=topological," " merge_selector=score_based_filtering(scoring_functions=[goal_relevance, dfp, total_order]))," " label_reduction=exact(before_shrinking=true, before_merging=false)," " max_states=50000, threshold_before_merge=1))"]), ("seq+lmcut", ["--search", "astar(operatorcounting([state_equation_constraints(), lmcut_constraints()]))"]), ("h2", ["--search", "astar(hm(m=2))"]), ("hmax", ["--search", "astar(hmax())"]), ] CONFIGS = [ IssueConfig(search_nick, search, driver_options=["--overall-time-limit", "30m"]) for rev in REVISIONS for search_nick, search in SEARCHES ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_parser('custom-parser.py') exp.add_step("build", exp.build) exp.add_step("start", exp.start_runs) exp.add_fetcher(name="fetch") log_size = Attribute('log_size') attributes = IssueExperiment.DEFAULT_TABLE_ATTRIBUTES + [log_size] exp.add_absolute_report_step(attributes=attributes) #exp.add_comparison_table_step() sort_spec = [('log_size', 'desc')] attributes = ['run_dir', 'log_size'] exp.add_sorted_report_step(attributes=attributes, sort_spec=sort_spec) exp.run_steps()
2,858
Python
33.035714
112
0.688943
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue744/v1-opt-30min.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import itertools import os import subprocess from lab.environments import LocalEnvironment, BaselSlurmEnvironment from lab.reports import Attribute from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport EXPNAME = common_setup.get_experiment_name() DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue744-v1"] SEARCHES = [ ("bjolp-silent", [ "--evaluator", "lmc=lmcount(lm_merged([lm_rhw(),lm_hm(m=1)]),admissible=true)", "--search", "astar(lmc,lazy_evaluator=lmc, verbosity=silent)"]), ("blind-silent", ["--search", "astar(blind(), verbosity=silent)"]), ("cegar-silent", ["--search", "astar(cegar(), verbosity=silent)"]), # ("divpot", ["--search", "astar(diverse_potentials(), verbosity=silent)"]), ("ipdb-silent", ["--search", "astar(ipdb(), verbosity=silent)"]), ("lmcut-silent", ["--search", "astar(lmcut(), verbosity=silent)"]), ("mas-silent", [ "--search", "astar(merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false)," " merge_strategy=merge_sccs(order_of_sccs=topological," " merge_selector=score_based_filtering(scoring_functions=[goal_relevance, dfp, total_order]))," " label_reduction=exact(before_shrinking=true, before_merging=false)," " max_states=50000, threshold_before_merge=1, verbosity=normal), verbosity=silent)"]), # ("seq+lmcut", ["--search", "astar(operatorcounting([state_equation_constraints(), lmcut_constraints()]), verbosity=silent)"]), ("h2-silent", ["--search", "astar(hm(m=2), verbosity=silent)"]), ("hmax-silent", ["--search", "astar(hmax(), verbosity=silent)"]), ("bjolp-normal", [ "--evaluator", "lmc=lmcount(lm_merged([lm_rhw(),lm_hm(m=1)]),admissible=true)", "--search", "astar(lmc,lazy_evaluator=lmc, verbosity=normal)"]), ("blind-normal", ["--search", "astar(blind(), verbosity=normal)"]), ("cegar-normal", ["--search", "astar(cegar(), verbosity=normal)"]), # ("divpot", ["--search", "astar(diverse_potentials(), verbosity=normal)"]), ("ipdb-normal", ["--search", "astar(ipdb(), verbosity=normal)"]), ("lmcut-normal", ["--search", "astar(lmcut(), verbosity=normal)"]), ("mas-normal", [ "--search", "astar(merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false)," " merge_strategy=merge_sccs(order_of_sccs=topological," " merge_selector=score_based_filtering(scoring_functions=[goal_relevance, dfp, total_order]))," " label_reduction=exact(before_shrinking=true, before_merging=false)," " max_states=50000, threshold_before_merge=1, verbosity=normal), verbosity=normal)"]), # ("seq+lmcut", ["--search", "astar(operatorcounting([state_equation_constraints(), lmcut_constraints()]), verbosity=normal)"]), ("h2-normal", ["--search", "astar(hm(m=2), verbosity=normal)"]), ("hmax-normal", ["--search", "astar(hmax(), verbosity=normal)"]), ] CONFIGS = [ IssueConfig(search_nick, search, driver_options=["--overall-time-limit", "30m"]) for rev in REVISIONS for search_nick, search in SEARCHES ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_parser('custom-parser.py') exp.add_step("build", exp.build) exp.add_step("start", exp.start_runs) exp.add_fetcher(name="fetch") exp.add_parse_again_step() log_size = Attribute('log_size') attributes = IssueExperiment.DEFAULT_TABLE_ATTRIBUTES + [log_size] exp.add_absolute_report_step(attributes=attributes) #exp.add_comparison_table_step() sort_spec = [('log_size', 'desc')] attributes = ['run_dir', 'log_size'] exp.add_sorted_report_step(attributes=attributes, sort_spec=sort_spec,filter_algorithm=[ "{}-bjolp-silent".format(REVISIONS[0]), "{}-blind-silent".format(REVISIONS[0]), "{}-cegar-silent".format(REVISIONS[0]), "{}-ipdb-silent".format(REVISIONS[0]), "{}-lmcut-silent".format(REVISIONS[0]), "{}-mas-silent".format(REVISIONS[0]), "{}-h2-silent".format(REVISIONS[0]), "{}-hmax-silent".format(REVISIONS[0]), ],name="silent") exp.add_sorted_report_step(attributes=attributes, sort_spec=sort_spec,filter_algorithm=[ "{}-bjolp-normal".format(REVISIONS[0]), "{}-blind-normal".format(REVISIONS[0]), "{}-cegar-normal".format(REVISIONS[0]), "{}-ipdb-normal".format(REVISIONS[0]), "{}-lmcut-normal".format(REVISIONS[0]), "{}-mas-normal".format(REVISIONS[0]), "{}-h2-normal".format(REVISIONS[0]), "{}-hmax-normal".format(REVISIONS[0]), ],name="normal") exp.run_steps()
5,254
Python
42.07377
132
0.67244
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue744/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter( axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows a relative comparison of two algorithms with regard to the given attribute. The attribute value of algorithm 1 is shown on the x-axis and the relation to the value of algorithm 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['algorithm'] == self.algorithms[0] and run2['algorithm'] == self.algorithms[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.algorithms[0], val1) assert val2 > 0, (domain, problem, self.algorithms[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlot uses log-scaling on the x-axis by default. PlotReport._set_scales( self, xscale or self.attribute.scale or 'log', 'log')
3,875
Python
35.566037
78
0.59871
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue744/sortedreport.py
# -*- coding: utf-8 -*- # # Downward Lab uses the Lab package to conduct experiments with the # Fast Downward planning system. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from operator import itemgetter import logging from lab.reports import Table, DynamicDataModule from downward.reports import PlanningReport class SortedReport(PlanningReport): def __init__(self, sort_spec, **kwargs): PlanningReport.__init__(self, **kwargs) self._sort_spec = sort_spec def get_markup(self): """ Return `txt2tags <http://txt2tags.org/>`_ markup for the report. """ table = Table() row_sort_module = RowSortModule(self._sort_spec) table.dynamic_data_modules.append(row_sort_module) for run_id, run in self.props.items(): row = {} for key, value in run.items(): if key not in self.attributes: continue if isinstance(value, (list, tuple)): key = '-'.join([str(item) for item in value]) row[key] = value table.add_row(run_id, row) return str(table) class RowSortModule(DynamicDataModule): def __init__(self, sort_spec): self._sort_spec = sort_spec def modify_printable_row_order(self, table, row_order): col_names = [None] + table.col_names entries = [] for row_name in row_order: if row_name == 'column names (never printed)': continue entry = [row_name] + table.get_row(row_name) entries.append(tuple(entry)) for attribute, desc in reversed(self._sort_spec): index = col_names.index(attribute) reverse = desc == 'desc' entries.sort(key=itemgetter(index), reverse=reverse) new_row_order = ['column names (never printed)'] + [i[0] for i in entries] return new_row_order
2,524
Python
32.223684
82
0.62916
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue744/v1-sat-30min.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import itertools import os import subprocess from lab.environments import LocalEnvironment, BaselSlurmEnvironment from lab.reports import Attribute import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport EXPNAME = common_setup.get_experiment_name() DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue744-v1"] CONFIG_DICT = { "eager-greedy-ff-silent": [ "--evaluator", "h=ff()", "--search", "eager_greedy([h], preferred=[h], verbosity=silent)"], "eager-greedy-cea-silent": [ "--evaluator", "h=cea()", "--search", "eager_greedy([h], preferred=[h], verbosity=silent)"], "lazy-greedy-add-silent": [ "--evaluator", "h=add()", "--search", "lazy_greedy([h], preferred=[h], verbosity=silent)"], "lazy-greedy-cg-silent": [ "--evaluator", "h=cg()", "--search", "lazy_greedy([h], preferred=[h], verbosity=silent)"], "lama-first-silent": [ "--evaluator", "hlm=lmcount(lm_factory=lm_rhw(reasonable_orders=true),transform=adapt_costs(one),pref=false)", "--evaluator", "hff=ff(transform=adapt_costs(one))", "--search", """lazy_greedy([hff,hlm],preferred=[hff,hlm], cost_type=one,reopen_closed=false, verbosity=silent)"""], "lama-first-typed-silent": [ "--evaluator", "hlm=lmcount(lm_factory=lm_rhw(reasonable_orders=true),transform=adapt_costs(one),pref=false)", "--evaluator", "hff=ff(transform=adapt_costs(one))", "--search", "lazy(alt([single(hff), single(hff, pref_only=true)," "single(hlm), single(hlm, pref_only=true), type_based([hff, g()])], boost=1000)," "preferred=[hff,hlm], cost_type=one, reopen_closed=false, randomize_successors=true," "preferred_successors_first=false, verbosity=silent)"], "eager-greedy-ff-normal": [ "--evaluator", "h=ff()", "--search", "eager_greedy([h], preferred=[h], verbosity=normal)"], "eager-greedy-cea-normal": [ "--evaluator", "h=cea()", "--search", "eager_greedy([h], preferred=[h], verbosity=normal)"], "lazy-greedy-add-normal": [ "--evaluator", "h=add()", "--search", "lazy_greedy([h], preferred=[h], verbosity=normal)"], "lazy-greedy-cg-normal": [ "--evaluator", "h=cg()", "--search", "lazy_greedy([h], preferred=[h], verbosity=normal)"], "lama-first-normal": [ "--evaluator", "hlm=lmcount(lm_factory=lm_rhw(reasonable_orders=true),transform=adapt_costs(one),pref=false)", "--evaluator", "hff=ff(transform=adapt_costs(one))", "--search", """lazy_greedy([hff,hlm],preferred=[hff,hlm], cost_type=one,reopen_closed=false, verbosity=normal)"""], "lama-first-typed-normal": [ "--evaluator", "hlm=lmcount(lm_factory=lm_rhw(reasonable_orders=true),transform=adapt_costs(one),pref=false)", "--evaluator", "hff=ff(transform=adapt_costs(one))", "--search", "lazy(alt([single(hff), single(hff, pref_only=true)," "single(hlm), single(hlm, pref_only=true), type_based([hff, g()])], boost=1000)," "preferred=[hff,hlm], cost_type=one, reopen_closed=false, randomize_successors=true," "preferred_successors_first=false, verbosity=normal)"], } CONFIGS = [ IssueConfig(config_nick, config, driver_options=["--overall-time-limit", "30m"]) for rev in REVISIONS for config_nick, config in CONFIG_DICT.items() ] SUITE = common_setup.DEFAULT_SATISFICING_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_parser('custom-parser.py') exp.add_step("build", exp.build) exp.add_step("start", exp.start_runs) exp.add_fetcher(name="fetch") exp.add_parse_again_step() log_size = Attribute('log_size') attributes = IssueExperiment.DEFAULT_TABLE_ATTRIBUTES + [log_size] exp.add_absolute_report_step(attributes=attributes) #exp.add_comparison_table_step() sort_spec = [('log_size', 'desc')] attributes = ['run_dir', 'log_size'] exp.add_sorted_report_step(attributes=attributes, sort_spec=sort_spec,filter_algorithm=[ "{}-eager-greedy-ff-silent".format(REVISIONS[0]), "{}-eager-greedy-cea-silent".format(REVISIONS[0]), "{}-lazy-greedy-add-silent".format(REVISIONS[0]), "{}-lazy-greedy-cg-silent".format(REVISIONS[0]), "{}-lama-first-silent".format(REVISIONS[0]), "{}-lama-first-typed-silent".format(REVISIONS[0]), ],name="silent") exp.add_sorted_report_step(attributes=attributes, sort_spec=sort_spec,filter_algorithm=[ "{}-eager-greedy-ff-normal".format(REVISIONS[0]), "{}-eager-greedy-cea-normal".format(REVISIONS[0]), "{}-lazy-greedy-add-normal".format(REVISIONS[0]), "{}-lazy-greedy-cg-normal".format(REVISIONS[0]), "{}-lama-first-normal".format(REVISIONS[0]), "{}-lama-first-typed-normal".format(REVISIONS[0]), ],name="normal") exp.run_steps()
5,733
Python
36.477124
103
0.626374
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue422/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.steps import Step from downward.experiments import DownwardExperiment, _get_rev_nick from downward.checkouts import Translator, Preprocessor, Planner from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareRevisionsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" import __main__ return __main__.__file__ def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return (node.endswith("cluster") or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or (ARGS.test_run == "auto" and not is_running_on_cluster()) class IssueExperiment(DownwardExperiment): """Wrapper for DownwardExperiment with a few convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" # TODO: Once we have reference results, we should add "quality". # TODO: Add something about errors/exit codes. DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "plan_length", ] def __init__(self, configs, suite, grid_priority=None, path=None, repo=None, revisions=None, search_revisions=None, test_suite=None, **kwargs): """Create a DownwardExperiment with some convenience features. *configs* must be a non-empty dict of {nick: cmdline} pairs that sets the planner configurations to test. :: IssueExperiment(configs={ "lmcut": ["--search", "astar(lmcut())"], "ipdb": ["--search", "astar(ipdb())"]}) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(suite=suites.suite_all()) IssueExperiment(suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ If *repo* is specified, it must be the path to the root of a local Fast Downward repository. If omitted, the repository is derived automatically from the main script's path. Example:: script = /path/to/fd-repo/experiments/issue123/exp01.py --> repo = /path/to/fd-repo If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"]) If *search_revisions* is specified, it should be a non-empty list of revisions, which specify which search component versions to use in the experiment. All runs use the translator and preprocessor component of the first revision. :: IssueExperiment(search_revisions=["default", "issue123"]) If you really need to specify the (translator, preprocessor, planner) triples manually, use the *combinations* parameter from the base class (might be deprecated soon). The options *revisions*, *search_revisions* and *combinations* can be freely mixed, but at least one of them must be given. Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(test_suite=["depot:pfile1", "tpp:p01.pddl"]) """ if is_test_run(): kwargs["environment"] = LocalEnvironment() suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment(priority=grid_priority) if path is None: path = get_data_dir() if repo is None: repo = get_repo_base() kwargs.setdefault("combinations", []) if not any([revisions, search_revisions, kwargs["combinations"]]): raise ValueError('At least one of "revisions", "search_revisions" ' 'or "combinations" must be given') if revisions: kwargs["combinations"].extend([ (Translator(repo, rev), Preprocessor(repo, rev), Planner(repo, rev)) for rev in revisions]) if search_revisions: base_rev = search_revisions[0] # Use the same nick for all parts to get short revision nick. kwargs["combinations"].extend([ (Translator(repo, base_rev, nick=rev), Preprocessor(repo, base_rev, nick=rev), Planner(repo, rev, nick=rev)) for rev in search_revisions]) DownwardExperiment.__init__(self, path=path, repo=repo, **kwargs) self._config_nicks = [] for nick, config in configs.items(): self.add_config(nick, config) self.add_suite(suite) @property def revision_nicks(self): # TODO: Once the add_algorithm() API is available we should get # rid of the call to _get_rev_nick() and avoid inspecting the # list of combinations by setting and saving the algorithm nicks. return [_get_rev_nick(*combo) for combo in self.combinations] def add_config(self, nick, config, timeout=None): DownwardExperiment.add_config(self, nick, config, timeout=timeout) self._config_nicks.append(nick) def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = get_experiment_name() + "." + report.output_format self.add_report(report, outfile=outfile) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revision triples. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareRevisionsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self.revision_nicks, 2): report = CompareRevisionsReport(rev1, rev2, **kwargs) outfile = os.path.join(self.eval_dir, "%s-%s-compare.html" % (rev1, rev2)) report(self.eval_dir, outfile) self.add_step(Step("make-comparison-tables", make_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revision pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def is_portfolio(config_nick): return "fdss" in config_nick def make_scatter_plots(): for config_nick in self._config_nicks: for rev1, rev2 in itertools.combinations( self.revision_nicks, 2): algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) if is_portfolio(config_nick): valid_attributes = [ attr for attr in attributes if attr in self.PORTFOLIO_ATTRIBUTES] else: valid_attributes = attributes for attribute in valid_attributes: name = "-".join([rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report(self.eval_dir, os.path.join(scatter_dir, name)) self.add_step(Step("make-scatter-plots", make_scatter_plots))
12,734
Python
35.594827
79
0.608685
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue422/issue422.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites import common_setup exp = common_setup.IssueExperiment( search_revisions=["issue422-base", "issue422-v1"], configs={"lmcut": ["--search", "astar(lmcut())"]}, suite=suites.suite_optimal_with_ipc11(), ) exp.add_absolute_report_step() exp.add_comparison_table_step() exp.add_scatter_plot_step() exp()
394
Python
19.789473
54
0.672589
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue899/v1-opt.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue899-base", "issue899-v1"] CONFIGS = [ IssueConfig("seq-opt-bjolp", [], driver_options=["--alias", "seq-opt-bjolp"]), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') #exp.add_absolute_report_step() exp.add_comparison_table_step() exp.add_scatter_plot_step(relative=True, attributes=["search_time", "total_time"]) exp.run_steps()
1,444
Python
26.788461
82
0.750693
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue899/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport from relativescatter import RelativeScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'agricola-opt18-strips', 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'data-network-opt18-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'organic-synthesis-opt18-strips', 'organic-synthesis-split-opt18-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'petri-net-alignment-opt18-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'snake-opt18-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'spider-opt18-strips', 'storage', 'termes-opt18-strips', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'agricola-sat18-strips', 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'caldera-sat18-adl', 'caldera-split-sat18-adl', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'data-network-sat18-strips', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'flashfill-sat18-adl', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'nurikabe-sat18-adl', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'organic-synthesis-sat18-strips', 'organic-synthesis-split-sat18-strips', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'settlers-sat18-adl', 'snake-sat18-strips', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'spider-sat18-strips', 'storage', 'termes-sat18-strips', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return node.endswith(".scicore.unibas.ch") or node.endswith(".cluster.bc2.ch") def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["depot:p01.pddl", "gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "planner_memory", "planner_time", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step( 'publish-absolute-report', subprocess.call, ['publish', outfile]) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step("make-comparison-tables", make_comparison_tables) self.add_step( "publish-comparison-tables", publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if relative: report_class = RelativeScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: report_class = ScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print("Make scatter plot for", name) algo1 = get_algo_nick(rev1, config_nick) algo2 = get_algo_nick(rev2, config_nick) report = report_class( filter_algorithm=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"]) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(step_name, make_scatter_plots)
14,744
Python
36.423858
82
0.619778
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue899/v1-sat.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue899-base", "issue899-v1"] CONFIGS = [ IssueConfig("lama-first", [], driver_options=["--alias", "lama-first"]), IssueConfig("lm_hm", [ "--landmarks", "lm=lm_hm(2)", "--heuristic", "hlm=lmcount(lm)", "--search", "lazy_greedy([hlm])"]), IssueConfig("lm_exhaust", [ "--landmarks", "lm=lm_exhaust()", "--heuristic", "hlm=lmcount(lm)", "--search", "lazy_greedy([hlm])"]), IssueConfig("lm_rhw", [ "--landmarks", "lm=lm_rhw()", "--heuristic", "hlm=lmcount(lm)", "--search", "lazy_greedy([hlm])"]), IssueConfig("lm_zg", [ "--landmarks", "lm=lm_zg()", "--heuristic", "hlm=lmcount(lm)", "--search", "lazy_greedy([hlm])"]), ] SUITE = common_setup.DEFAULT_SATISFICING_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_1", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') #exp.add_absolute_report_step() exp.add_comparison_table_step() exp.run_steps()
1,972
Python
28.447761
76
0.666836
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue899/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter( axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows a relative comparison of two algorithms with regard to the given attribute. The attribute value of algorithm 1 is shown on the x-axis and the relation to the value of algorithm 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['algorithm'] == self.algorithms[0] and run2['algorithm'] == self.algorithms[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.algorithms[0], val1) assert val2 > 0, (domain, problem, self.algorithms[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlot uses log-scaling on the x-axis by default. PlotReport._set_scales( self, xscale or self.attribute.scale or 'log', 'log')
3,875
Python
35.566037
78
0.59871
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue778/v1-opt.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue778-base", "issue778-v1"] CONFIGS = [ IssueConfig('lmcut-sss-ratio-0.2', ['--search', 'astar(lmcut(), pruning=stubborn_sets_simple(min_required_pruning_ratio=0.2))']), IssueConfig('lmcut-ssec-ratio-0.2', ['--search', 'astar(lmcut(), pruning=stubborn_sets_simple(min_required_pruning_ratio=0.2))']), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_1", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser('lab_driver_parser', exp.LAB_DRIVER_PARSER) exp.add_parser('exitcode_parser', exp.EXITCODE_PARSER) #exp.add_parser('translator_parser', exp.TRANSLATOR_PARSER) exp.add_parser('single_search_parser', exp.SINGLE_SEARCH_PARSER) #exp.add_absolute_report_step() exp.add_comparison_table_step() for attribute in ["memory", "total_time"]: for config in CONFIGS: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_algorithm=["{}-{}".format(rev, config.nick) for rev in REVISIONS], get_category=lambda run1, run2: run1.get("domain"), ), outfile="{}-{}-{}-{}-{}.png".format(exp.name, attribute, config.nick, *REVISIONS) ) exp.run_steps()
1,910
Python
33.124999
134
0.693717
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue778/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport from relativescatter import RelativeScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'storage', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'storage', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return node.endswith(".scicore.unibas.ch") or node.endswith(".cluster.bc2.ch") def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["depot:p01.pddl", "gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step( 'publish-absolute-report', subprocess.call, ['publish', outfile]) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step("make-comparison-tables", make_comparison_tables) self.add_step( "publish-comparison-tables", publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if relative: report_class = RelativeScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: report_class = ScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "{}-{}".format(rev1, config_nick) algo2 = "{}-{}".format(rev2, config_nick) report = report_class( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(step_name, make_scatter_plots)
14,153
Python
35.955613
82
0.615205
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue778/v1-no-min-ratio.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue778-base", "issue778-v1"] CONFIGS = [ IssueConfig( heuristic + "-" + pruning, ["--search", "astar({heuristic}(), pruning=stubborn_sets_{pruning}())".format(**locals())]) for heuristic in ["blind", "lmcut"] for pruning in ["ec", "simple"] ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_1", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser('lab_driver_parser', exp.LAB_DRIVER_PARSER) exp.add_parser('exitcode_parser', exp.EXITCODE_PARSER) #exp.add_parser('translator_parser', exp.TRANSLATOR_PARSER) exp.add_parser('single_search_parser', exp.SINGLE_SEARCH_PARSER) #exp.add_absolute_report_step() exp.add_comparison_table_step() for attribute in ["memory", "total_time"]: for config in CONFIGS: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_algorithm=["{}-{}".format(rev, config.nick) for rev in REVISIONS], get_category=lambda run1, run2: run1.get("domain"), ), outfile="{}-{}-{}-{}-{}.png".format(exp.name, attribute, config.nick, *REVISIONS) ) exp.run_steps()
1,869
Python
30.694915
99
0.678973
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue778/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter( axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows a relative comparison of two algorithms with regard to the given attribute. The attribute value of algorithm 1 is shown on the x-axis and the relation to the value of algorithm 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['algorithm'] == self.algorithms[0] and run2['algorithm'] == self.algorithms[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.algorithms[0], val1) assert val2 > 0, (domain, problem, self.algorithms[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlot uses log-scaling on the x-axis by default. PlotReport._set_scales( self, xscale or self.attribute.scale or 'log', 'log')
3,875
Python
35.566037
78
0.59871
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue794/v1-opt.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue794-base", "issue794-v1"] CONFIGS = [ IssueConfig('blind', ['--search', 'astar(blind())']), ] SUITE = [ 'assembly', 'miconic-fulladl', 'openstacks', 'openstacks-sat08-adl', 'optical-telegraphs', 'philosophers', 'psr-large', 'psr-middle', 'trucks', ] ENVIRONMENT = BaselSlurmEnvironment( partition="infai_1", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_parser("axiom_time_parser.py") exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_comparison_table_step(attributes=exp.DEFAULT_TABLE_ATTRIBUTES + ["axiom_time_inner", "axiom_time_outer"]) for attribute in ["axiom_time_inner", "axiom_time_outer"]: for config in CONFIGS: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_algorithm=["{}-{}".format(rev, config.nick) for rev in REVISIONS], get_category=lambda run1, run2: run1.get("domain"), ), outfile="{}-{}-{}-{}-{}.png".format(exp.name, attribute, config.nick, *REVISIONS) ) exp.run_steps()
1,948
Python
29.936507
113
0.686858
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue794/axiom_time_parser.py
#! /usr/bin/env python from lab.parser import Parser print 'Running axiom evaluation time parser' parser = Parser() parser.add_pattern('axiom_time_inner', r'AxiomEvaluator time in inner evaluate: (.+)', type=float) parser.add_pattern('axiom_time_outer', r'AxiomEvaluator time in outer evaluate: (.+)', type=float) parser.parse()
332
Python
29.272725
98
0.740964
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue794/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport from relativescatter import RelativeScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'storage', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'storage', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return node.endswith(".scicore.unibas.ch") or node.endswith(".cluster.bc2.ch") def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["depot:p01.pddl", "gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step( 'publish-absolute-report', subprocess.call, ['publish', outfile]) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step("make-comparison-tables", make_comparison_tables) self.add_step( "publish-comparison-tables", publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if relative: report_class = RelativeScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: report_class = ScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "{}-{}".format(rev1, config_nick) algo2 = "{}-{}".format(rev2, config_nick) report = report_class( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(step_name, make_scatter_plots)
14,153
Python
35.955613
82
0.615205
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue794/v3-opt.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue794-base", "issue794-v3"] CONFIGS = [ IssueConfig('blind', ['--search', 'astar(blind())']), ] SUITE = [ 'assembly', 'miconic-fulladl', 'openstacks', 'openstacks-sat08-adl', 'optical-telegraphs', 'philosophers', 'psr-large', 'psr-middle', 'trucks', ] ENVIRONMENT = BaselSlurmEnvironment( partition="infai_1", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_parser("axiom_time_parser.py") exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_comparison_table_step(attributes=exp.DEFAULT_TABLE_ATTRIBUTES + ["axiom_time_inner", "axiom_time_outer"]) for attribute in ["axiom_time_inner", "axiom_time_outer"]: for config in CONFIGS: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_algorithm=["{}-{}".format(rev, config.nick) for rev in REVISIONS], get_category=lambda run1, run2: run1.get("domain"), ), outfile="{}-{}-{}-{}-{}.png".format(exp.name, attribute, config.nick, *REVISIONS) ) exp.run_steps()
1,948
Python
29.936507
113
0.686858
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue794/v4-opt.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue794-v1", "issue794-v4"] CONFIGS = [ IssueConfig('blind', ['--search', 'astar(blind())']), ] SUITE = [ 'assembly', 'miconic-fulladl', 'openstacks', 'openstacks-sat08-adl', 'optical-telegraphs', 'philosophers', 'psr-large', 'psr-middle', 'trucks', ] ENVIRONMENT = BaselSlurmEnvironment( partition="infai_1", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_parser("axiom_time_parser.py") exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_comparison_table_step(attributes=exp.DEFAULT_TABLE_ATTRIBUTES + ["axiom_time_inner", "axiom_time_outer"]) for attribute in ["axiom_time_inner", "axiom_time_outer"]: for config in CONFIGS: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_algorithm=["{}-{}".format(rev, config.nick) for rev in REVISIONS], get_category=lambda run1, run2: run1.get("domain"), ), outfile="{}-{}-{}-{}-{}.png".format(exp.name, attribute, config.nick, *REVISIONS) ) exp.run_steps()
1,946
Python
29.904761
113
0.686536
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue794/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter( axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows a relative comparison of two algorithms with regard to the given attribute. The attribute value of algorithm 1 is shown on the x-axis and the relation to the value of algorithm 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['algorithm'] == self.algorithms[0] and run2['algorithm'] == self.algorithms[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.algorithms[0], val1) assert val2 > 0, (domain, problem, self.algorithms[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlot uses log-scaling on the x-axis by default. PlotReport._set_scales( self, xscale or self.attribute.scale or 'log', 'log')
3,875
Python
35.566037
78
0.59871
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue794/v2-opt.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue794-base", "issue794-v2"] CONFIGS = [ IssueConfig('blind', ['--search', 'astar(blind())']), ] SUITE = [ 'assembly', 'miconic-fulladl', 'openstacks', 'openstacks-sat08-adl', 'optical-telegraphs', 'philosophers', 'psr-large', 'psr-middle', 'trucks', ] ENVIRONMENT = BaselSlurmEnvironment( partition="infai_1", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_parser("axiom_time_parser.py") exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_comparison_table_step(attributes=exp.DEFAULT_TABLE_ATTRIBUTES + ["axiom_time_inner", "axiom_time_outer"]) for attribute in ["axiom_time_inner", "axiom_time_outer"]: for config in CONFIGS: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_algorithm=["{}-{}".format(rev, config.nick) for rev in REVISIONS], get_category=lambda run1, run2: run1.get("domain"), ), outfile="{}-{}-{}-{}-{}.png".format(exp.name, attribute, config.nick, *REVISIONS) ) exp.run_steps()
1,948
Python
29.936507
113
0.686858
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue470/issue470.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites import common_setup CONFIGS = { 'astar_merge_and_shrink_bisim': [ '--search', 'astar(merge_and_shrink(' + 'merge_strategy=merge_linear(variable_order=reverse_level),' + 'shrink_strategy=shrink_bisimulation(max_states=200000,greedy=false,' + 'group_by_h=true)))'], 'astar_merge_and_shrink_greedy_bisim': [ '--search', 'astar(merge_and_shrink(' + 'merge_strategy=merge_linear(variable_order=reverse_level),' + 'shrink_strategy=shrink_bisimulation(max_states=infinity,threshold=1,' + 'greedy=true,group_by_h=false)))'], 'astar_merge_and_shrink_dfp_bisim': [ '--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,' + 'shrink_strategy=shrink_bisimulation(max_states=50000,threshold=1,' + 'greedy=false,group_by_h=true)))'], 'astar_ipdb': [ '--search', 'astar(ipdb())'], 'astar_pdb': [ '--search', 'astar(pdb())'], 'astar_gapdb': [ '--search', 'astar(gapdb())'], } exp = common_setup.IssueExperiment( search_revisions=["issue470-base", "issue470-v1"], configs=CONFIGS, suite=suites.suite_optimal_with_ipc11(), ) exp.add_comparison_table_step() exp()
1,436
Python
30.23913
84
0.550836