file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/assets/asset_base.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import inspect import re import weakref from abc import ABC, abstractmethod from collections.abc import Sequence from typing import TYPE_CHECKING, Any import omni.kit.app import omni.timeline import omni.isaac.lab.sim as sim_utils if TYPE_CHECKING: from .asset_base_cfg import AssetBaseCfg class AssetBase(ABC): """The base interface class for assets. An asset corresponds to any physics-enabled object that can be spawned in the simulation. These include rigid objects, articulated objects, deformable objects etc. The core functionality of an asset is to provide a set of buffers that can be used to interact with the simulator. The buffers are updated by the asset class and can be written into the simulator using the their respective ``write`` methods. This allows a convenient way to perform post-processing operations on the buffers before writing them into the simulator and obtaining the corresponding simulation results. The class handles both the spawning of the asset into the USD stage as well as initialization of necessary physics handles to interact with the asset. Upon construction of the asset instance, the prim corresponding to the asset is spawned into the USD stage if the spawn configuration is not None. The spawn configuration is defined in the :attr:`AssetBaseCfg.spawn` attribute. In case the configured :attr:`AssetBaseCfg.prim_path` is an expression, then the prim is spawned at all the matching paths. Otherwise, a single prim is spawned at the configured path. For more information on the spawn configuration, see the :mod:`omni.isaac.lab.sim.spawners` module. Unlike Isaac Sim interface, where one usually needs to call the :meth:`omni.isaac.core.prims.XFormPrimView.initialize` method to initialize the PhysX handles, the asset class automatically initializes and invalidates the PhysX handles when the stage is played/stopped. This is done by registering callbacks for the stage play/stop events. Additionally, the class registers a callback for debug visualization of the asset if a debug visualization is implemented in the asset class. This can be enabled by setting the :attr:`AssetBaseCfg.debug_vis` attribute to True. The debug visualization is implemented through the :meth:`_set_debug_vis_impl` and :meth:`_debug_vis_callback` methods. """ def __init__(self, cfg: AssetBaseCfg): """Initialize the asset base. Args: cfg: The configuration class for the asset. Raises: RuntimeError: If no prims found at input prim path or prim path expression. """ # store inputs self.cfg = cfg # flag for whether the asset is initialized self._is_initialized = False # check if base asset path is valid # note: currently the spawner does not work if there is a regex pattern in the leaf # For example, if the prim path is "/World/Robot_[1,2]" since the spawner will not # know which prim to spawn. This is a limitation of the spawner and not the asset. asset_path = self.cfg.prim_path.split("/")[-1] asset_path_is_regex = re.match(r"^[a-zA-Z0-9/_]+$", asset_path) is None # spawn the asset if self.cfg.spawn is not None and not asset_path_is_regex: self.cfg.spawn.func( self.cfg.prim_path, self.cfg.spawn, translation=self.cfg.init_state.pos, orientation=self.cfg.init_state.rot, ) # check that spawn was successful matching_prims = sim_utils.find_matching_prims(self.cfg.prim_path) if len(matching_prims) == 0: raise RuntimeError(f"Could not find prim with path {self.cfg.prim_path}.") # note: Use weakref on all callbacks to ensure that this object can be deleted when its destructor is called. # add callbacks for stage play/stop # The order is set to 10 which is arbitrary but should be lower priority than the default order of 0 timeline_event_stream = omni.timeline.get_timeline_interface().get_timeline_event_stream() self._initialize_handle = timeline_event_stream.create_subscription_to_pop_by_type( int(omni.timeline.TimelineEventType.PLAY), lambda event, obj=weakref.proxy(self): obj._initialize_callback(event), order=10, ) self._invalidate_initialize_handle = timeline_event_stream.create_subscription_to_pop_by_type( int(omni.timeline.TimelineEventType.STOP), lambda event, obj=weakref.proxy(self): obj._invalidate_initialize_callback(event), order=10, ) # add handle for debug visualization (this is set to a valid handle inside set_debug_vis) self._debug_vis_handle = None # set initial state of debug visualization self.set_debug_vis(self.cfg.debug_vis) def __del__(self): """Unsubscribe from the callbacks.""" # clear physics events handles if self._initialize_handle: self._initialize_handle.unsubscribe() self._initialize_handle = None if self._invalidate_initialize_handle: self._invalidate_initialize_handle.unsubscribe() self._invalidate_initialize_handle = None # clear debug visualization if self._debug_vis_handle: self._debug_vis_handle.unsubscribe() self._debug_vis_handle = None """ Properties """ @property @abstractmethod def num_instances(self) -> int: """Number of instances of the asset. This is equal to the number of asset instances per environment multiplied by the number of environments. """ return NotImplementedError @property def device(self) -> str: """Memory device for computation.""" return self._device @property @abstractmethod def data(self) -> Any: """Data related to the asset.""" return NotImplementedError @property def has_debug_vis_implementation(self) -> bool: """Whether the asset has a debug visualization implemented.""" # check if function raises NotImplementedError source_code = inspect.getsource(self._set_debug_vis_impl) return "NotImplementedError" not in source_code """ Operations. """ def set_debug_vis(self, debug_vis: bool) -> bool: """Sets whether to visualize the asset data. Args: debug_vis: Whether to visualize the asset data. Returns: Whether the debug visualization was successfully set. False if the asset does not support debug visualization. """ # check if debug visualization is supported if not self.has_debug_vis_implementation: return False # toggle debug visualization objects self._set_debug_vis_impl(debug_vis) # toggle debug visualization handles if debug_vis: # create a subscriber for the post update event if it doesn't exist if self._debug_vis_handle is None: app_interface = omni.kit.app.get_app_interface() self._debug_vis_handle = app_interface.get_post_update_event_stream().create_subscription_to_pop( lambda event, obj=weakref.proxy(self): obj._debug_vis_callback(event) ) else: # remove the subscriber if it exists if self._debug_vis_handle is not None: self._debug_vis_handle.unsubscribe() self._debug_vis_handle = None # return success return True @abstractmethod def reset(self, env_ids: Sequence[int] | None = None): """Resets all internal buffers of selected environments. Args: env_ids: The indices of the object to reset. Defaults to None (all instances). """ raise NotImplementedError @abstractmethod def write_data_to_sim(self): """Writes data to the simulator.""" raise NotImplementedError @abstractmethod def update(self, dt: float): """Update the internal buffers. The time step ``dt`` is used to compute numerical derivatives of quantities such as joint accelerations which are not provided by the simulator. Args: dt: The amount of time passed from last ``update`` call. """ raise NotImplementedError """ Implementation specific. """ @abstractmethod def _initialize_impl(self): """Initializes the PhysX handles and internal buffers.""" raise NotImplementedError def _set_debug_vis_impl(self, debug_vis: bool): """Set debug visualization into visualization objects. This function is responsible for creating the visualization objects if they don't exist and input ``debug_vis`` is True. If the visualization objects exist, the function should set their visibility into the stage. """ raise NotImplementedError(f"Debug visualization is not implemented for {self.__class__.__name__}.") def _debug_vis_callback(self, event): """Callback for debug visualization. This function calls the visualization objects and sets the data to visualize into them. """ raise NotImplementedError(f"Debug visualization is not implemented for {self.__class__.__name__}.") """ Internal simulation callbacks. """ def _initialize_callback(self, event): """Initializes the scene elements. Note: PhysX handles are only enabled once the simulator starts playing. Hence, this function needs to be called whenever the simulator "plays" from a "stop" state. """ if not self._is_initialized: # obtain simulation related information sim = sim_utils.SimulationContext.instance() if sim is None: raise RuntimeError("SimulationContext is not initialized! Please initialize SimulationContext first.") self._backend = sim.backend self._device = sim.device # initialize the asset self._initialize_impl() # set flag self._is_initialized = True def _invalidate_initialize_callback(self, event): """Invalidates the scene elements.""" self._is_initialized = False
10,684
Python
39.782443
118
0.658929
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/assets/rigid_object/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module for rigid object assets.""" from .rigid_object import RigidObject from .rigid_object_cfg import RigidObjectCfg from .rigid_object_data import RigidObjectData
300
Python
26.363634
60
0.776667
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/assets/rigid_object/rigid_object_cfg.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.lab.utils import configclass from ..asset_base_cfg import AssetBaseCfg from .rigid_object import RigidObject @configclass class RigidObjectCfg(AssetBaseCfg): """Configuration parameters for a rigid object.""" @configclass class InitialStateCfg(AssetBaseCfg.InitialStateCfg): """Initial state of the rigid body.""" lin_vel: tuple[float, float, float] = (0.0, 0.0, 0.0) """Linear velocity of the root in simulation world frame. Defaults to (0.0, 0.0, 0.0).""" ang_vel: tuple[float, float, float] = (0.0, 0.0, 0.0) """Angular velocity of the root in simulation world frame. Defaults to (0.0, 0.0, 0.0).""" ## # Initialize configurations. ## class_type: type = RigidObject init_state: InitialStateCfg = InitialStateCfg() """Initial state of the rigid object. Defaults to identity pose with zero velocity."""
1,031
Python
30.272726
98
0.680892
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/assets/rigid_object/rigid_object_data.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import torch from dataclasses import dataclass @dataclass class RigidObjectData: """Data container for a rigid object.""" ## # Properties. ## body_names: list[str] = None """Body names in the order parsed by the simulation view.""" ## # Default states. ## default_root_state: torch.Tensor = None """Default root state ``[pos, quat, lin_vel, ang_vel]`` in local environment frame. Shape is (num_instances, 13).""" ## # Frame states. ## root_state_w: torch.Tensor = None """Root state ``[pos, quat, lin_vel, ang_vel]`` in simulation world frame. Shape is (num_instances, 13).""" root_vel_b: torch.Tensor = None """Root velocity `[lin_vel, ang_vel]` in base frame. Shape is (num_instances, 6).""" projected_gravity_b: torch.Tensor = None """Projection of the gravity direction on base frame. Shape is (num_instances, 3).""" heading_w: torch.Tensor = None """Yaw heading of the base frame (in radians). Shape is (num_instances,). Note: This quantity is computed by assuming that the forward-direction of the base frame is along x-direction, i.e. :math:`(1, 0, 0)`. """ body_state_w: torch.Tensor = None """State of all bodies `[pos, quat, lin_vel, ang_vel]` in simulation world frame. Shape is (num_instances, num_bodies, 13).""" body_acc_w: torch.Tensor = None """Acceleration of all bodies. Shape is (num_instances, num_bodies, 6). Note: This quantity is computed based on the rigid body state from the last step. """ ## # Default rigid body properties ## default_mass: torch.Tensor = None """ Default mass provided by simulation. Shape is (num_instances, num_bodies).""" """ Properties """ @property def root_pos_w(self) -> torch.Tensor: """Root position in simulation world frame. Shape is (num_instances, 3).""" return self.root_state_w[:, :3] @property def root_quat_w(self) -> torch.Tensor: """Root orientation (w, x, y, z) in simulation world frame. Shape is (num_instances, 4).""" return self.root_state_w[:, 3:7] @property def root_vel_w(self) -> torch.Tensor: """Root velocity in simulation world frame. Shape is (num_instances, 6).""" return self.root_state_w[:, 7:13] @property def root_lin_vel_w(self) -> torch.Tensor: """Root linear velocity in simulation world frame. Shape is (num_instances, 3).""" return self.root_state_w[:, 7:10] @property def root_ang_vel_w(self) -> torch.Tensor: """Root angular velocity in simulation world frame. Shape is (num_instances, 3).""" return self.root_state_w[:, 10:13] @property def root_lin_vel_b(self) -> torch.Tensor: """Root linear velocity in base frame. Shape is (num_instances, 3).""" return self.root_vel_b[:, 0:3] @property def root_ang_vel_b(self) -> torch.Tensor: """Root angular velocity in base world frame. Shape is (num_instances, 3).""" return self.root_vel_b[:, 3:6] @property def body_pos_w(self) -> torch.Tensor: """Positions of all bodies in simulation world frame. Shape is (num_instances, num_bodies, 3).""" return self.body_state_w[..., :3] @property def body_quat_w(self) -> torch.Tensor: """Orientation (w, x, y, z) of all bodies in simulation world frame. Shape is (num_instances, num_bodies, 4).""" return self.body_state_w[..., 3:7] @property def body_vel_w(self) -> torch.Tensor: """Velocity of all bodies in simulation world frame. Shape is (num_instances, num_bodies, 6).""" return self.body_state_w[..., 7:13] @property def body_lin_vel_w(self) -> torch.Tensor: """Linear velocity of all bodies in simulation world frame. Shape is (num_instances, num_bodies, 3).""" return self.body_state_w[..., 7:10] @property def body_ang_vel_w(self) -> torch.Tensor: """Angular velocity of all bodies in simulation world frame. Shape is (num_instances, num_bodies, 3).""" return self.body_state_w[..., 10:13] @property def body_lin_acc_w(self) -> torch.Tensor: """Linear acceleration of all bodies in simulation world frame. Shape is (num_instances, num_bodies, 3).""" return self.body_acc_w[..., 0:3] @property def body_ang_acc_w(self) -> torch.Tensor: """Angular acceleration of all bodies in simulation world frame. Shape is (num_instances, num_bodies, 3).""" return self.body_acc_w[..., 3:6]
4,738
Python
32.85
120
0.622415
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/assets/rigid_object/rigid_object.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch import warnings from collections.abc import Sequence from typing import TYPE_CHECKING import carb import omni.physics.tensors.impl.api as physx from pxr import UsdPhysics import omni.isaac.lab.sim as sim_utils import omni.isaac.lab.utils.math as math_utils import omni.isaac.lab.utils.string as string_utils from ..asset_base import AssetBase from .rigid_object_data import RigidObjectData if TYPE_CHECKING: from .rigid_object_cfg import RigidObjectCfg class RigidObject(AssetBase): """A rigid object asset class. Rigid objects are assets comprising of rigid bodies. They can be used to represent dynamic objects such as boxes, spheres, etc. A rigid body is described by its pose, velocity and mass distribution. For an asset to be considered a rigid object, the root prim of the asset must have the `USD RigidBodyAPI`_ applied to it. This API is used to define the simulation properties of the rigid body. On playing the simulation, the physics engine will automatically register the rigid body and create a corresponding rigid body handle. This handle can be accessed using the :attr:`root_physx_view` attribute. .. note:: For users familiar with Isaac Sim, the PhysX view class API is not the exactly same as Isaac Sim view class API. Similar to Isaac Lab, Isaac Sim wraps around the PhysX view API. However, as of now (2023.1 release), we see a large difference in initializing the view classes in Isaac Sim. This is because the view classes in Isaac Sim perform additional USD-related operations which are slow and also not required. .. _`USD RigidBodyAPI`: https://openusd.org/dev/api/class_usd_physics_rigid_body_a_p_i.html """ cfg: RigidObjectCfg """Configuration instance for the rigid object.""" def __init__(self, cfg: RigidObjectCfg): """Initialize the rigid object. Args: cfg: A configuration instance. """ super().__init__(cfg) # container for data access self._data = RigidObjectData() """ Properties """ @property def data(self) -> RigidObjectData: return self._data @property def num_instances(self) -> int: return self.root_physx_view.count @property def num_bodies(self) -> int: """Number of bodies in the asset.""" return 1 @property def body_names(self) -> list[str]: """Ordered names of bodies in articulation.""" prim_paths = self.root_physx_view.prim_paths[: self.num_bodies] return [path.split("/")[-1] for path in prim_paths] @property def root_physx_view(self) -> physx.RigidBodyView: """Rigid body view for the asset (PhysX). Note: Use this view with caution. It requires handling of tensors in a specific way. """ return self._root_physx_view @property def body_physx_view(self) -> physx.RigidBodyView: """Rigid body view for the asset (PhysX). .. deprecated:: v0.3.0 The attribute 'body_physx_view' will be removed in v0.4.0. Please use :attr:`root_physx_view` instead. """ dep_msg = "The attribute 'body_physx_view' will be removed in v0.4.0. Please use 'root_physx_view' instead." warnings.warn(dep_msg, DeprecationWarning) carb.log_error(dep_msg) return self.root_physx_view """ Operations. """ def reset(self, env_ids: Sequence[int] | None = None): # resolve all indices if env_ids is None: env_ids = slice(None) # reset external wrench self._external_force_b[env_ids] = 0.0 self._external_torque_b[env_ids] = 0.0 # reset last body vel self._last_body_vel_w[env_ids] = 0.0 def write_data_to_sim(self): """Write external wrench to the simulation. Note: We write external wrench to the simulation here since this function is called before the simulation step. This ensures that the external wrench is applied at every simulation step. """ # write external wrench if self.has_external_wrench: self.root_physx_view.apply_forces_and_torques_at_position( force_data=self._external_force_b.view(-1, 3), torque_data=self._external_torque_b.view(-1, 3), position_data=None, indices=self._ALL_BODY_INDICES, is_global=False, ) def update(self, dt: float): # -- root-state (note: we roll the quaternion to match the convention used in Isaac Sim -- wxyz) self._data.root_state_w[:, :7] = self.root_physx_view.get_transforms() self._data.root_state_w[:, 3:7] = math_utils.convert_quat(self._data.root_state_w[:, 3:7], to="wxyz") self._data.root_state_w[:, 7:] = self.root_physx_view.get_velocities() # -- body-state (note: for rigid objects, we only have one body so we just copy the root state) self._data.body_state_w[:] = self._data.root_state_w.view(-1, self.num_bodies, 13) # -- update common data self._update_common_data(dt) def find_bodies(self, name_keys: str | Sequence[str], preserve_order: bool = False) -> tuple[list[int], list[str]]: """Find bodies in the articulation based on the name keys. Please check the :meth:`omni.isaac.lab.utils.string_utils.resolve_matching_names` function for more information on the name matching. Args: name_keys: A regular expression or a list of regular expressions to match the body names. preserve_order: Whether to preserve the order of the name keys in the output. Defaults to False. Returns: A tuple of lists containing the body indices and names. """ return string_utils.resolve_matching_names(name_keys, self.body_names, preserve_order) """ Operations - Write to simulation. """ def write_root_state_to_sim(self, root_state: torch.Tensor, env_ids: Sequence[int] | None = None): """Set the root state over selected environment indices into the simulation. The root state comprises of the cartesian position, quaternion orientation in (w, x, y, z), and linear and angular velocity. All the quantities are in the simulation frame. Args: root_state: Root state in simulation frame. Shape is (len(env_ids), 13). env_ids: Environment indices. If None, then all indices are used. """ # set into simulation self.write_root_pose_to_sim(root_state[:, :7], env_ids=env_ids) self.write_root_velocity_to_sim(root_state[:, 7:], env_ids=env_ids) def write_root_pose_to_sim(self, root_pose: torch.Tensor, env_ids: Sequence[int] | None = None): """Set the root pose over selected environment indices into the simulation. The root pose comprises of the cartesian position and quaternion orientation in (w, x, y, z). Args: root_pose: Root poses in simulation frame. Shape is (len(env_ids), 7). env_ids: Environment indices. If None, then all indices are used. """ # resolve all indices physx_env_ids = env_ids if env_ids is None: env_ids = slice(None) physx_env_ids = self._ALL_INDICES # note: we need to do this here since tensors are not set into simulation until step. # set into internal buffers self._data.root_state_w[env_ids, :7] = root_pose.clone() # convert root quaternion from wxyz to xyzw root_poses_xyzw = self._data.root_state_w[:, :7].clone() root_poses_xyzw[:, 3:] = math_utils.convert_quat(root_poses_xyzw[:, 3:], to="xyzw") # set into simulation self.root_physx_view.set_transforms(root_poses_xyzw, indices=physx_env_ids) def write_root_velocity_to_sim(self, root_velocity: torch.Tensor, env_ids: Sequence[int] | None = None): """Set the root velocity over selected environment indices into the simulation. Args: root_velocity: Root velocities in simulation frame. Shape is (len(env_ids), 6). env_ids: Environment indices. If None, then all indices are used. """ # resolve all indices physx_env_ids = env_ids if env_ids is None: env_ids = slice(None) physx_env_ids = self._ALL_INDICES # note: we need to do this here since tensors are not set into simulation until step. # set into internal buffers self._data.root_state_w[env_ids, 7:] = root_velocity.clone() # set into simulation self.root_physx_view.set_velocities(self._data.root_state_w[:, 7:], indices=physx_env_ids) """ Operations - Setters. """ def set_external_force_and_torque( self, forces: torch.Tensor, torques: torch.Tensor, body_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None, ): """Set external force and torque to apply on the asset's bodies in their local frame. For many applications, we want to keep the applied external force on rigid bodies constant over a period of time (for instance, during the policy control). This function allows us to store the external force and torque into buffers which are then applied to the simulation at every step. .. caution:: If the function is called with empty forces and torques, then this function disables the application of external wrench to the simulation. .. code-block:: python # example of disabling external wrench asset.set_external_force_and_torque(forces=torch.zeros(0, 3), torques=torch.zeros(0, 3)) .. note:: This function does not apply the external wrench to the simulation. It only fills the buffers with the desired values. To apply the external wrench, call the :meth:`write_data_to_sim` function right before the simulation step. Args: forces: External forces in bodies' local frame. Shape is (len(env_ids), len(body_ids), 3). torques: External torques in bodies' local frame. Shape is (len(env_ids), len(body_ids), 3). body_ids: Body indices to apply external wrench to. Defaults to None (all bodies). env_ids: Environment indices to apply external wrench to. Defaults to None (all instances). """ if forces.any() or torques.any(): self.has_external_wrench = True # resolve all indices # -- env_ids if env_ids is None: env_ids = self._ALL_INDICES elif not isinstance(env_ids, torch.Tensor): env_ids = torch.tensor(env_ids, dtype=torch.long, device=self.device) # -- body_ids if body_ids is None: body_ids = torch.arange(self.num_bodies, dtype=torch.long, device=self.device) elif isinstance(body_ids, slice): body_ids = torch.arange(self.num_bodies, dtype=torch.long, device=self.device)[body_ids] elif not isinstance(body_ids, torch.Tensor): body_ids = torch.tensor(body_ids, dtype=torch.long, device=self.device) # note: we need to do this complicated indexing since torch doesn't support multi-indexing # create global body indices from env_ids and env_body_ids # (env_id * total_bodies_per_env) + body_id indices = body_ids.repeat(len(env_ids), 1) + env_ids.unsqueeze(1) * self.num_bodies indices = indices.view(-1) # set into internal buffers # note: these are applied in the write_to_sim function self._external_force_b.flatten(0, 1)[indices] = forces.flatten(0, 1) self._external_torque_b.flatten(0, 1)[indices] = torques.flatten(0, 1) else: self.has_external_wrench = False """ Internal helper. """ def _initialize_impl(self): # create simulation view self._physics_sim_view = physx.create_simulation_view(self._backend) self._physics_sim_view.set_subspace_roots("/") # obtain the first prim in the regex expression (all others are assumed to be a copy of this) template_prim = sim_utils.find_first_matching_prim(self.cfg.prim_path) if template_prim is None: raise RuntimeError(f"Failed to find prim for expression: '{self.cfg.prim_path}'.") template_prim_path = template_prim.GetPath().pathString # find rigid root prims root_prims = sim_utils.get_all_matching_child_prims( template_prim_path, predicate=lambda prim: prim.HasAPI(UsdPhysics.RigidBodyAPI) ) if len(root_prims) == 0: raise RuntimeError( f"Failed to find a rigid body when resolving '{self.cfg.prim_path}'." " Please ensure that the prim has 'USD RigidBodyAPI' applied." ) if len(root_prims) > 1: raise RuntimeError( f"Failed to find a single rigid body when resolving '{self.cfg.prim_path}'." f" Found multiple '{root_prims}' under '{template_prim_path}'." " Please ensure that there is only one rigid body in the prim path tree." ) # resolve root prim back into regex expression root_prim_path = root_prims[0].GetPath().pathString root_prim_path_expr = self.cfg.prim_path + root_prim_path[len(template_prim_path) :] # -- object view self._root_physx_view = self._physics_sim_view.create_rigid_body_view(root_prim_path_expr.replace(".*", "*")) # log information about the articulation carb.log_info(f"Rigid body initialized at: {self.cfg.prim_path} with root '{root_prim_path_expr}'.") carb.log_info(f"Number of instances: {self.num_instances}") carb.log_info(f"Number of bodies: {self.num_bodies}") carb.log_info(f"Body names: {self.body_names}") # create buffers self._create_buffers() # process configuration self._process_cfg() # update the rigid body data self.update(0.0) def _create_buffers(self): """Create buffers for storing data.""" # constants self._ALL_INDICES = torch.arange(self.num_instances, dtype=torch.long, device=self.device) self._ALL_BODY_INDICES = torch.arange( self.root_physx_view.count * self.num_bodies, dtype=torch.long, device=self.device ) self.GRAVITY_VEC_W = torch.tensor((0.0, 0.0, -1.0), device=self.device).repeat(self.num_instances, 1) self.FORWARD_VEC_B = torch.tensor((1.0, 0.0, 0.0), device=self.device).repeat(self.num_instances, 1) # external forces and torques self.has_external_wrench = False self._external_force_b = torch.zeros((self.num_instances, self.num_bodies, 3), device=self.device) self._external_torque_b = torch.zeros_like(self._external_force_b) # asset data # -- properties self._data.body_names = self.body_names # -- root states self._data.root_state_w = torch.zeros(self.num_instances, 13, device=self.device) self._data.root_state_w[:, 3] = 1.0 # set default quaternion to (1, 0, 0, 0) self._data.default_root_state = torch.zeros_like(self._data.root_state_w) self._data.default_root_state[:, 3] = 1.0 # set default quaternion to (1, 0, 0, 0) # -- body states self._data.body_state_w = torch.zeros(self.num_instances, self.num_bodies, 13, device=self.device) self._data.body_state_w[:, :, 3] = 1.0 # set default quaternion to (1, 0, 0, 0) # -- post-computed self._data.root_vel_b = torch.zeros(self.num_instances, 6, device=self.device) self._data.projected_gravity_b = torch.zeros(self.num_instances, 3, device=self.device) self._data.heading_w = torch.zeros(self.num_instances, device=self.device) self._data.body_acc_w = torch.zeros(self.num_instances, self.num_bodies, 6, device=self.device) # history buffers for quantities # -- used to compute body accelerations numerically self._last_body_vel_w = torch.zeros(self.num_instances, self.num_bodies, 6, device=self.device) # mass self._data.default_mass = self.root_physx_view.get_masses().clone() def _process_cfg(self): """Post processing of configuration parameters.""" # default state # -- root state # note: we cast to tuple to avoid torch/numpy type mismatch. default_root_state = ( tuple(self.cfg.init_state.pos) + tuple(self.cfg.init_state.rot) + tuple(self.cfg.init_state.lin_vel) + tuple(self.cfg.init_state.ang_vel) ) default_root_state = torch.tensor(default_root_state, dtype=torch.float, device=self.device) self._data.default_root_state = default_root_state.repeat(self.num_instances, 1) def _update_common_data(self, dt: float): """Update common quantities related to rigid objects. Note: This has been separated from the update function to allow for the child classes to override the update function without having to worry about updating the common data. """ # -- body acceleration if dt > 0.0: self._data.body_acc_w[:] = (self._data.body_state_w[..., 7:] - self._last_body_vel_w) / dt self._last_body_vel_w[:] = self._data.body_state_w[..., 7:] # -- root state in body frame self._data.root_vel_b[:, 0:3] = math_utils.quat_rotate_inverse( self._data.root_quat_w, self._data.root_lin_vel_w ) self._data.root_vel_b[:, 3:6] = math_utils.quat_rotate_inverse( self._data.root_quat_w, self._data.root_ang_vel_w ) self._data.projected_gravity_b[:] = math_utils.quat_rotate_inverse(self._data.root_quat_w, self.GRAVITY_VEC_W) # -- heading direction of root forward_w = math_utils.quat_apply(self._data.root_quat_w, self.FORWARD_VEC_B) self._data.heading_w[:] = torch.atan2(forward_w[:, 1], forward_w[:, 0]) """ Internal simulation callbacks. """ def _invalidate_initialize_callback(self, event): """Invalidates the scene elements.""" # call parent super()._invalidate_initialize_callback(event) # set all existing views to None to invalidate them self._physics_sim_view = None self._root_physx_view = None
18,928
Python
43.538823
120
0.629808
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/assets/articulation/articulation_data.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import torch from dataclasses import dataclass from ..rigid_object import RigidObjectData @dataclass class ArticulationData(RigidObjectData): """Data container for an articulation.""" ## # Properties. ## joint_names: list[str] = None """Joint names in the order parsed by the simulation view.""" ## # Default states. ## default_joint_pos: torch.Tensor = None """Default joint positions of all joints. Shape is (num_instances, num_joints).""" default_joint_vel: torch.Tensor = None """Default joint velocities of all joints. Shape is (num_instances, num_joints).""" ## # Joint states <- From simulation. ## joint_pos: torch.Tensor = None """Joint positions of all joints. Shape is (num_instances, num_joints).""" joint_vel: torch.Tensor = None """Joint velocities of all joints. Shape is (num_instances, num_joints).""" joint_acc: torch.Tensor = None """Joint acceleration of all joints. Shape is (num_instances, num_joints).""" ## # Joint commands -- Set into simulation. ## joint_pos_target: torch.Tensor = None """Joint position targets commanded by the user. Shape is (num_instances, num_joints). For an implicit actuator model, the targets are directly set into the simulation. For an explicit actuator model, the targets are used to compute the joint torques (see :attr:`applied_torque`), which are then set into the simulation. """ joint_vel_target: torch.Tensor = None """Joint velocity targets commanded by the user. Shape is (num_instances, num_joints). For an implicit actuator model, the targets are directly set into the simulation. For an explicit actuator model, the targets are used to compute the joint torques (see :attr:`applied_torque`), which are then set into the simulation. """ joint_effort_target: torch.Tensor = None """Joint effort targets commanded by the user. Shape is (num_instances, num_joints). For an implicit actuator model, the targets are directly set into the simulation. For an explicit actuator model, the targets are used to compute the joint torques (see :attr:`applied_torque`), which are then set into the simulation. """ ## # Joint properties. ## joint_stiffness: torch.Tensor = None """Joint stiffness provided to simulation. Shape is (num_instances, num_joints).""" joint_damping: torch.Tensor = None """Joint damping provided to simulation. Shape is (num_instances, num_joints).""" joint_armature: torch.Tensor = None """Joint armature provided to simulation. Shape is (num_instances, num_joints).""" joint_friction: torch.Tensor = None """Joint friction provided to simulation. Shape is (num_instances, num_joints).""" joint_limits: torch.Tensor = None """Joint limits provided to simulation. Shape is (num_instances, num_joints, 2).""" ## # Default joint properties ## default_joint_stiffness: torch.Tensor = None """Default joint stiffness of all joints. Shape is (num_instances, num_joints).""" default_joint_damping: torch.Tensor = None """Default joint damping of all joints. Shape is (num_instances, num_joints).""" default_joint_armature: torch.Tensor = None """Default joint armature of all joints. Shape is (num_instances, num_joints).""" default_joint_friction: torch.Tensor = None """Default joint friction of all joints. Shape is (num_instances, num_joints).""" default_joint_limits: torch.Tensor = None """Default joint limits of all joints. Shape is (num_instances, num_joints, 2).""" ## # Joint commands -- Explicit actuators. ## computed_torque: torch.Tensor = None """Joint torques computed from the actuator model (before clipping). Shape is (num_instances, num_joints). This quantity is the raw torque output from the actuator mode, before any clipping is applied. It is exposed for users who want to inspect the computations inside the actuator model. For instance, to penalize the learning agent for a difference between the computed and applied torques. Note: The torques are zero for implicit actuator models. """ applied_torque: torch.Tensor = None """Joint torques applied from the actuator model (after clipping). Shape is (num_instances, num_joints). These torques are set into the simulation, after clipping the :attr:`computed_torque` based on the actuator model. Note: The torques are zero for implicit actuator models. """ ## # Fixed tendon properties. ## fixed_tendon_stiffness: torch.Tensor = None """Fixed tendon stiffness provided to simulation. Shape is (num_instances, num_fixed_tendons).""" fixed_tendon_damping: torch.Tensor = None """Fixed tendon damping provided to simulation. Shape is (num_instances, num_fixed_tendons).""" fixed_tendon_limit_stiffness: torch.Tensor = None """Fixed tendon limit stiffness provided to simulation. Shape is (num_instances, num_fixed_tendons).""" fixed_tendon_rest_length: torch.Tensor = None """Fixed tendon rest length provided to simulation. Shape is (num_instances, num_fixed_tendons).""" fixed_tendon_offset: torch.Tensor = None """Fixed tendon offset provided to simulation. Shape is (num_instances, num_fixed_tendons).""" fixed_tendon_limit: torch.Tensor = None """Fixed tendon limits provided to simulation. Shape is (num_instances, num_fixed_tendons, 2).""" ## # Default fixed tendon properties ## default_fixed_tendon_stiffness: torch.Tensor = None """Default tendon stiffness of all tendons. Shape is (num_instances, num_fixed_tendons).""" default_fixed_tendon_damping: torch.Tensor = None """Default tendon damping of all tendons. Shape is (num_instances, num_fixed_tendons).""" default_fixed_tendon_limit_stiffness: torch.Tensor = None """Default tendon limit stiffness of all tendons. Shape is (num_instances, num_fixed_tendons).""" default_fixed_tendon_rest_length: torch.Tensor = None """Default tendon rest length of all tendons. Shape is (num_instances, num_fixed_tendons).""" default_fixed_tendon_offset: torch.Tensor = None """Default tendon offset of all tendons. Shape is (num_instances, num_fixed_tendons).""" default_fixed_tendon_limit: torch.Tensor = None """Default tendon limits of all tendons. Shape is (num_instances, num_fixed_tendons, 2).""" ## # Other Data. ## soft_joint_pos_limits: torch.Tensor = None """Joint positions limits for all joints. Shape is (num_instances, num_joints, 2).""" soft_joint_vel_limits: torch.Tensor = None """Joint velocity limits for all joints. Shape is (num_instances, num_joints).""" gear_ratio: torch.Tensor = None """Gear ratio for relating motor torques to applied Joint torques. Shape is (num_instances, num_joints)."""
7,088
Python
36.115183
115
0.693567
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/assets/articulation/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module for rigid articulated assets.""" from .articulation import Articulation from .articulation_cfg import ArticulationCfg from .articulation_data import ArticulationData
308
Python
27.090907
60
0.792208
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/assets/articulation/articulation.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # Flag for pyright to ignore type errors in this file. # pyright: reportPrivateUsage=false from __future__ import annotations import torch import warnings from collections.abc import Sequence from prettytable import PrettyTable from typing import TYPE_CHECKING import carb import omni.isaac.core.utils.stage as stage_utils import omni.physics.tensors.impl.api as physx from omni.isaac.core.utils.types import ArticulationActions from pxr import PhysxSchema, UsdPhysics import omni.isaac.lab.sim as sim_utils import omni.isaac.lab.utils.math as math_utils import omni.isaac.lab.utils.string as string_utils from omni.isaac.lab.actuators import ActuatorBase, ActuatorBaseCfg, ImplicitActuator from ..rigid_object import RigidObject from .articulation_data import ArticulationData if TYPE_CHECKING: from .articulation_cfg import ArticulationCfg class Articulation(RigidObject): """An articulation asset class. An articulation is a collection of rigid bodies connected by joints. The joints can be either fixed or actuated. The joints can be of different types, such as revolute, prismatic, D-6, etc. However, the articulation class has currently been tested with revolute and prismatic joints. The class supports both floating-base and fixed-base articulations. The type of articulation is determined based on the root joint of the articulation. If the root joint is fixed, then the articulation is considered a fixed-base system. Otherwise, it is considered a floating-base system. This can be checked using the :attr:`Articulation.is_fixed_base` attribute. For an asset to be considered an articulation, the root prim of the asset must have the `USD ArticulationRootAPI`_. This API is used to define the sub-tree of the articulation using the reduced coordinate formulation. On playing the simulation, the physics engine parses the articulation root prim and creates the corresponding articulation in the physics engine. The articulation root prim can be specified using the :attr:`AssetBaseCfg.prim_path` attribute. The articulation class is a subclass of the :class:`RigidObject` class. Therefore, it inherits all the functionality of the rigid object class. In case of an articulation, the :attr:`root_physx_view` attribute corresponds to the articulation root view and can be used to access the articulation related data. The articulation class also provides the functionality to augment the simulation of an articulated system with custom actuator models. These models can either be explicit or implicit, as detailed in the :mod:`omni.isaac.lab.actuators` module. The actuator models are specified using the :attr:`ArticulationCfg.actuators` attribute. These are then parsed and used to initialize the corresponding actuator models, when the simulation is played. During the simulation step, the articulation class first applies the actuator models to compute the joint commands based on the user-specified targets. These joint commands are then applied into the simulation. The joint commands can be either position, velocity, or effort commands. As an example, the following snippet shows how this can be used for position commands: .. code-block:: python # an example instance of the articulation class my_articulation = Articulation(cfg) # set joint position targets my_articulation.set_joint_position_target(position) # propagate the actuator models and apply the computed commands into the simulation my_articulation.write_data_to_sim() # step the simulation using the simulation context sim_context.step() # update the articulation state, where dt is the simulation time step my_articulation.update(dt) .. _`USD ArticulationRootAPI`: https://openusd.org/dev/api/class_usd_physics_articulation_root_a_p_i.html """ cfg: ArticulationCfg """Configuration instance for the articulations.""" def __init__(self, cfg: ArticulationCfg): """Initialize the articulation. Args: cfg: A configuration instance. """ super().__init__(cfg) # container for data access self._data = ArticulationData() # data for storing actuator group self.actuators: dict[str, ActuatorBase] = dict.fromkeys(self.cfg.actuators.keys()) """ Properties """ @property def data(self) -> ArticulationData: return self._data @property def is_fixed_base(self) -> bool: """Whether the articulation is a fixed-base or floating-base system.""" return self.root_physx_view.shared_metatype.fixed_base @property def num_joints(self) -> int: """Number of joints in articulation.""" return self.root_physx_view.shared_metatype.dof_count @property def num_fixed_tendons(self) -> int: """Number of fixed tendons in articulation.""" return self.root_physx_view.max_fixed_tendons @property def num_bodies(self) -> int: """Number of bodies in articulation.""" return self.root_physx_view.shared_metatype.link_count @property def joint_names(self) -> list[str]: """Ordered names of joints in articulation.""" return self.root_physx_view.shared_metatype.dof_names @property def body_names(self) -> list[str]: """Ordered names of bodies in articulation.""" return self.root_physx_view.shared_metatype.link_names @property def root_physx_view(self) -> physx.ArticulationView: """Articulation view for the asset (PhysX). Note: Use this view with caution. It requires handling of tensors in a specific way. """ return self._root_physx_view @property def body_physx_view(self) -> physx.RigidBodyView: """Rigid body view for the asset (PhysX). .. deprecated:: v0.3.0 In previous versions, this attribute returned the rigid body view over all the links of the articulation. However, this led to confusion with the link ordering as they were not ordered in the same way as the articulation view. Therefore, this attribute will be removed in v0.4.0. Please use the :attr:`root_physx_view` attribute instead. """ dep_msg = "The attribute 'body_physx_view' will be removed in v0.4.0. Please use 'root_physx_view' instead." warnings.warn(dep_msg, DeprecationWarning) carb.log_error(dep_msg) return self._body_physx_view """ Operations. """ def reset(self, env_ids: Sequence[int] | None = None): super().reset(env_ids) # use ellipses object to skip initial indices. if env_ids is None: env_ids = slice(None) # reset actuators for actuator in self.actuators.values(): actuator.reset(env_ids) def write_data_to_sim(self): """Write external wrenches and joint commands to the simulation. If any explicit actuators are present, then the actuator models are used to compute the joint commands. Otherwise, the joint commands are directly set into the simulation. """ # write external wrench if self.has_external_wrench: # apply external forces and torques self._body_physx_view.apply_forces_and_torques_at_position( force_data=self._external_force_body_view_b.view(-1, 3), torque_data=self._external_torque_body_view_b.view(-1, 3), position_data=None, indices=self._ALL_BODY_INDICES, is_global=False, ) # apply actuator models self._apply_actuator_model() # write actions into simulation self.root_physx_view.set_dof_actuation_forces(self._joint_effort_target_sim, self._ALL_INDICES) # position and velocity targets only for implicit actuators if self._has_implicit_actuators: self.root_physx_view.set_dof_position_targets(self._joint_pos_target_sim, self._ALL_INDICES) self.root_physx_view.set_dof_velocity_targets(self._joint_vel_target_sim, self._ALL_INDICES) def update(self, dt: float): # -- root state (note: we roll the quaternion to match the convention used in Isaac Sim -- wxyz) self._data.root_state_w[:, :7] = self.root_physx_view.get_root_transforms() self._data.root_state_w[:, 3:7] = math_utils.convert_quat(self._data.root_state_w[:, 3:7], to="wxyz") self._data.root_state_w[:, 7:] = self.root_physx_view.get_root_velocities() # -- body-state (note: we roll the quaternion to match the convention used in Isaac Sim -- wxyz) self._data.body_state_w[..., :7] = self.root_physx_view.get_link_transforms() self._data.body_state_w[..., 3:7] = math_utils.convert_quat(self._data.body_state_w[..., 3:7], to="wxyz") self._data.body_state_w[..., 7:] = self.root_physx_view.get_link_velocities() # -- joint states self._data.joint_pos[:] = self.root_physx_view.get_dof_positions() self._data.joint_vel[:] = self.root_physx_view.get_dof_velocities() if dt > 0.0: self._data.joint_acc[:] = (self._data.joint_vel - self._previous_joint_vel) / dt # -- update common data # note: these are computed in the base class self._update_common_data(dt) # -- update history buffers self._previous_joint_vel[:] = self._data.joint_vel[:] def find_joints( self, name_keys: str | Sequence[str], joint_subset: list[str] | None = None, preserve_order: bool = False ) -> tuple[list[int], list[str]]: """Find joints in the articulation based on the name keys. Please see the :func:`omni.isaac.lab.utils.string.resolve_matching_names` function for more information on the name matching. Args: name_keys: A regular expression or a list of regular expressions to match the joint names. joint_subset: A subset of joints to search for. Defaults to None, which means all joints in the articulation are searched. preserve_order: Whether to preserve the order of the name keys in the output. Defaults to False. Returns: A tuple of lists containing the joint indices and names. """ if joint_subset is None: joint_subset = self.joint_names # find joints return string_utils.resolve_matching_names(name_keys, joint_subset, preserve_order) def find_fixed_tendons( self, name_keys: str | Sequence[str], tendon_subsets: list[str] | None = None, preserve_order: bool = False ) -> tuple[list[int], list[str]]: """Find fixed tendons in the articulation based on the name keys. Please see the :func:`omni.isaac.orbit.utils.string.resolve_matching_names` function for more information on the name matching. Args: name_keys: A regular expression or a list of regular expressions to match the joint names with fixed tendons. tendon_subsets: A subset of joints with fixed tendons to search for. Defaults to None, which means all joints in the articulation are searched. preserve_order: Whether to preserve the order of the name keys in the output. Defaults to False. Returns: A tuple of lists containing the tendon indices and names. """ if tendon_subsets is None: # tendons follow the joint names they are attached to tendon_subsets = self.fixed_tendon_names # find tendons return string_utils.resolve_matching_names(name_keys, tendon_subsets, preserve_order) """ Operations - Setters. """ def set_external_force_and_torque( self, forces: torch.Tensor, torques: torch.Tensor, body_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None, ): # call parent to set the external forces and torques into buffers super().set_external_force_and_torque(forces, torques, body_ids, env_ids) # reordering of the external forces and torques to match the body view ordering if self.has_external_wrench: self._external_force_body_view_b = self._external_force_b[:, self._body_view_ordering] self._external_torque_body_view_b = self._external_torque_b[:, self._body_view_ordering] """ Operations - Writers. """ def write_root_pose_to_sim(self, root_pose: torch.Tensor, env_ids: Sequence[int] | None = None): # resolve all indices physx_env_ids = env_ids if env_ids is None: env_ids = slice(None) physx_env_ids = self._ALL_INDICES # note: we need to do this here since tensors are not set into simulation until step. # set into internal buffers self._data.root_state_w[env_ids, :7] = root_pose.clone() # convert root quaternion from wxyz to xyzw root_poses_xyzw = self._data.root_state_w[:, :7].clone() root_poses_xyzw[:, 3:] = math_utils.convert_quat(root_poses_xyzw[:, 3:], to="xyzw") # set into simulation self.root_physx_view.set_root_transforms(root_poses_xyzw, indices=physx_env_ids) def write_root_velocity_to_sim(self, root_velocity: torch.Tensor, env_ids: Sequence[int] | None = None): # resolve all indices physx_env_ids = env_ids if env_ids is None: env_ids = slice(None) physx_env_ids = self._ALL_INDICES # note: we need to do this here since tensors are not set into simulation until step. # set into internal buffers self._data.root_state_w[env_ids, 7:] = root_velocity.clone() # set into simulation self.root_physx_view.set_root_velocities(self._data.root_state_w[:, 7:], indices=physx_env_ids) def write_joint_state_to_sim( self, position: torch.Tensor, velocity: torch.Tensor, joint_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | slice | None = None, ): """Write joint positions and velocities to the simulation. Args: position: Joint positions. Shape is (len(env_ids), len(joint_ids)). velocity: Joint velocities. Shape is (len(env_ids), len(joint_ids)). joint_ids: The joint indices to set the targets for. Defaults to None (all joints). env_ids: The environment indices to set the targets for. Defaults to None (all environments). """ # resolve indices physx_env_ids = env_ids if env_ids is None: env_ids = slice(None) physx_env_ids = self._ALL_INDICES if joint_ids is None: joint_ids = slice(None) elif env_ids != slice(None): env_ids = env_ids[:, None] # set into internal buffers self._data.joint_pos[env_ids, joint_ids] = position self._data.joint_vel[env_ids, joint_ids] = velocity self._previous_joint_vel[env_ids, joint_ids] = velocity self._data.joint_acc[env_ids, joint_ids] = 0.0 # set into simulation self.root_physx_view.set_dof_positions(self._data.joint_pos, indices=physx_env_ids) self.root_physx_view.set_dof_velocities(self._data.joint_vel, indices=physx_env_ids) def write_joint_stiffness_to_sim( self, stiffness: torch.Tensor | float, joint_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None, ): """Write joint stiffness into the simulation. Args: stiffness: Joint stiffness. Shape is (len(env_ids), len(joint_ids)). joint_ids: The joint indices to set the stiffness for. Defaults to None (all joints). env_ids: The environment indices to set the stiffness for. Defaults to None (all environments). """ # note: This function isn't setting the values for actuator models. (#128) # resolve indices physx_env_ids = env_ids if env_ids is None: env_ids = slice(None) physx_env_ids = self._ALL_INDICES if joint_ids is None: joint_ids = slice(None) elif env_ids != slice(None): env_ids = env_ids[:, None] # set into internal buffers self._data.joint_stiffness[env_ids, joint_ids] = stiffness # set into simulation self.root_physx_view.set_dof_stiffnesses(self._data.joint_stiffness.cpu(), indices=physx_env_ids.cpu()) def write_joint_damping_to_sim( self, damping: torch.Tensor | float, joint_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None, ): """Write joint damping into the simulation. Args: damping: Joint damping. Shape is (len(env_ids), len(joint_ids)). joint_ids: The joint indices to set the damping for. Defaults to None (all joints). env_ids: The environment indices to set the damping for. Defaults to None (all environments). """ # note: This function isn't setting the values for actuator models. (#128) # resolve indices physx_env_ids = env_ids if env_ids is None: env_ids = slice(None) physx_env_ids = self._ALL_INDICES if joint_ids is None: joint_ids = slice(None) elif env_ids != slice(None): env_ids = env_ids[:, None] # set into internal buffers self._data.joint_damping[env_ids, joint_ids] = damping # set into simulation self.root_physx_view.set_dof_dampings(self._data.joint_damping.cpu(), indices=physx_env_ids.cpu()) def write_joint_effort_limit_to_sim( self, limits: torch.Tensor | float, joint_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None, ): """Write joint effort limits into the simulation. Args: limits: Joint torque limits. Shape is (len(env_ids), len(joint_ids)). joint_ids: The joint indices to set the joint torque limits for. Defaults to None (all joints). env_ids: The environment indices to set the joint torque limits for. Defaults to None (all environments). """ # note: This function isn't setting the values for actuator models. (#128) # resolve indices physx_env_ids = env_ids if env_ids is None: env_ids = slice(None) physx_env_ids = self._ALL_INDICES if joint_ids is None: joint_ids = slice(None) elif env_ids != slice(None): env_ids = env_ids[:, None] # move tensor to cpu if needed if isinstance(limits, torch.Tensor): limits = limits.cpu() # set into internal buffers torque_limit_all = self.root_physx_view.get_dof_max_forces() torque_limit_all[env_ids, joint_ids] = limits # set into simulation self.root_physx_view.set_dof_max_forces(torque_limit_all.cpu(), indices=physx_env_ids.cpu()) def write_joint_armature_to_sim( self, armature: torch.Tensor | float, joint_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None, ): """Write joint armature into the simulation. Args: armature: Joint armature. Shape is (len(env_ids), len(joint_ids)). joint_ids: The joint indices to set the joint torque limits for. Defaults to None (all joints). env_ids: The environment indices to set the joint torque limits for. Defaults to None (all environments). """ # resolve indices physx_env_ids = env_ids if env_ids is None: env_ids = slice(None) physx_env_ids = self._ALL_INDICES if joint_ids is None: joint_ids = slice(None) elif env_ids != slice(None): env_ids = env_ids[:, None] # set into internal buffers self._data.joint_armature[env_ids, joint_ids] = armature # set into simulation self.root_physx_view.set_dof_armatures(self._data.joint_armature.cpu(), indices=physx_env_ids.cpu()) def write_joint_friction_to_sim( self, joint_friction: torch.Tensor | float, joint_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None, ): """Write joint friction into the simulation. Args: joint_friction: Joint friction. Shape is (len(env_ids), len(joint_ids)). joint_ids: The joint indices to set the joint torque limits for. Defaults to None (all joints). env_ids: The environment indices to set the joint torque limits for. Defaults to None (all environments). """ # resolve indices physx_env_ids = env_ids if env_ids is None: env_ids = slice(None) physx_env_ids = self._ALL_INDICES if joint_ids is None: joint_ids = slice(None) elif env_ids != slice(None): env_ids = env_ids[:, None] # set into internal buffers self._data.joint_friction[env_ids, joint_ids] = joint_friction # set into simulation self.root_physx_view.set_dof_friction_coefficients(self._data.joint_friction.cpu(), indices=physx_env_ids.cpu()) def write_joint_limits_to_sim( self, limits: torch.Tensor | float, joint_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None, ): """Write joint limits into the simulation. Args: limits: Joint limits. Shape is (len(env_ids), len(joint_ids), 2). joint_ids: The joint indices to set the limits for. Defaults to None (all joints). env_ids: The environment indices to set the limits for. Defaults to None (all environments). """ # note: This function isn't setting the values for actuator models. (#128) # resolve indices physx_env_ids = env_ids if env_ids is None: env_ids = slice(None) physx_env_ids = self._ALL_INDICES if joint_ids is None: joint_ids = slice(None) elif env_ids != slice(None): env_ids = env_ids[:, None] # set into internal buffers self._data.joint_limits[env_ids, joint_ids] = limits # set into simulation self.root_physx_view.set_dof_limits(self._data.joint_limits.cpu(), indices=physx_env_ids.cpu()) """ Operations - State. """ def set_joint_position_target( self, target: torch.Tensor, joint_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None ): """Set joint position targets into internal buffers. .. note:: This function does not apply the joint targets to the simulation. It only fills the buffers with the desired values. To apply the joint targets, call the :meth:`write_data_to_sim` function. Args: target: Joint position targets. Shape is (len(env_ids), len(joint_ids)). joint_ids: The joint indices to set the targets for. Defaults to None (all joints). env_ids: The environment indices to set the targets for. Defaults to None (all environments). """ # resolve indices if env_ids is None: env_ids = slice(None) if joint_ids is None: joint_ids = slice(None) elif env_ids != slice(None): env_ids = env_ids[:, None] # set targets self._data.joint_pos_target[env_ids, joint_ids] = target def set_joint_velocity_target( self, target: torch.Tensor, joint_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None ): """Set joint velocity targets into internal buffers. .. note:: This function does not apply the joint targets to the simulation. It only fills the buffers with the desired values. To apply the joint targets, call the :meth:`write_data_to_sim` function. Args: target: Joint velocity targets. Shape is (len(env_ids), len(joint_ids)). joint_ids: The joint indices to set the targets for. Defaults to None (all joints). env_ids: The environment indices to set the targets for. Defaults to None (all environments). """ # resolve indices if env_ids is None: env_ids = slice(None) if joint_ids is None: joint_ids = slice(None) elif env_ids != slice(None): env_ids = env_ids[:, None] # set targets self._data.joint_vel_target[env_ids, joint_ids] = target def set_joint_effort_target( self, target: torch.Tensor, joint_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None ): """Set joint efforts into internal buffers. .. note:: This function does not apply the joint targets to the simulation. It only fills the buffers with the desired values. To apply the joint targets, call the :meth:`write_data_to_sim` function. Args: target: Joint effort targets. Shape is (len(env_ids), len(joint_ids)). joint_ids: The joint indices to set the targets for. Defaults to None (all joints). env_ids: The environment indices to set the targets for. Defaults to None (all environments). """ # resolve indices if env_ids is None: env_ids = slice(None) if joint_ids is None: joint_ids = slice(None) elif env_ids != slice(None): env_ids = env_ids[:, None] # set targets self._data.joint_effort_target[env_ids, joint_ids] = target def set_fixed_tendon_stiffness( self, stiffness: torch.Tensor, fixed_tendon_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None, ): """Set fixed tendon stiffness into internal buffers. .. note:: This function does not apply the tendon stiffness to the simulation. It only fills the buffers with the desired values. To apply the tendon stiffness, call the :meth:`write_fixed_tendon_properties_to_sim` function. Args: stiffness: Fixed tendon stiffness. Shape is (len(env_ids), len(fixed_tendon_ids)). fixed_tendon_ids: The tendon indices to set the stiffness for. Defaults to None (all fixed tendons). env_ids: The environment indices to set the stiffness for. Defaults to None (all environments). """ # resolve indices if env_ids is None: env_ids = slice(None) if fixed_tendon_ids is None: fixed_tendon_ids = slice(None) elif env_ids != slice(None): env_ids = env_ids[:, None] # set stiffness self._data.fixed_tendon_stiffness[env_ids, fixed_tendon_ids] = stiffness def set_fixed_tendon_damping( self, damping: torch.Tensor, fixed_tendon_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None, ): """Set fixed tendon damping into internal buffers. .. note:: This function does not apply the tendon damping to the simulation. It only fills the buffers with the desired values. To apply the tendon damping, call the :meth:`write_fixed_tendon_properties_to_sim` function. Args: damping: Fixed tendon damping. Shape is (len(env_ids), len(fixed_tendon_ids)). fixed_tendon_ids: The tendon indices to set the damping for. Defaults to None (all fixed tendons). env_ids: The environment indices to set the damping for. Defaults to None (all environments). """ # resolve indices if env_ids is None: env_ids = slice(None) if fixed_tendon_ids is None: fixed_tendon_ids = slice(None) elif env_ids != slice(None): env_ids = env_ids[:, None] # set damping self._data.fixed_tendon_damping[env_ids, fixed_tendon_ids] = damping def set_fixed_tendon_limit_stiffness( self, limit_stiffness: torch.Tensor, fixed_tendon_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None, ): """Set fixed tendon limit stiffness efforts into internal buffers. .. note:: This function does not apply the tendon limit stiffness to the simulation. It only fills the buffers with the desired values. To apply the tendon limit stiffness, call the :meth:`write_fixed_tendon_properties_to_sim` function. Args: limit_stiffness: Fixed tendon limit stiffness. Shape is (len(env_ids), len(fixed_tendon_ids)). fixed_tendon_ids: The tendon indices to set the limit stiffness for. Defaults to None (all fixed tendons). env_ids: The environment indices to set the limit stiffness for. Defaults to None (all environments). """ # resolve indices if env_ids is None: env_ids = slice(None) if fixed_tendon_ids is None: fixed_tendon_ids = slice(None) elif env_ids != slice(None): env_ids = env_ids[:, None] # set limit_stiffness self._data.fixed_tendon_limit_stiffness[env_ids, fixed_tendon_ids] = limit_stiffness def set_fixed_tendon_limit( self, limit: torch.Tensor, fixed_tendon_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None, ): """Set fixed tendon limit efforts into internal buffers. .. note:: This function does not apply the tendon limit to the simulation. It only fills the buffers with the desired values. To apply the tendon limit, call the :meth:`write_fixed_tendon_properties_to_sim` function. Args: limit: Fixed tendon limit. Shape is (len(env_ids), len(fixed_tendon_ids)). fixed_tendon_ids: The tendon indices to set the limit for. Defaults to None (all fixed tendons). env_ids: The environment indices to set the limit for. Defaults to None (all environments). """ # resolve indices if env_ids is None: env_ids = slice(None) if fixed_tendon_ids is None: fixed_tendon_ids = slice(None) elif env_ids != slice(None): env_ids = env_ids[:, None] # set limit self._data.fixed_tendon_limit[env_ids, fixed_tendon_ids] = limit def set_fixed_tendon_rest_length( self, rest_length: torch.Tensor, fixed_tendon_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None, ): """Set fixed tendon rest length efforts into internal buffers. .. note:: This function does not apply the tendon rest length to the simulation. It only fills the buffers with the desired values. To apply the tendon rest length, call the :meth:`write_fixed_tendon_properties_to_sim` function. Args: rest_length: Fixed tendon rest length. Shape is (len(env_ids), len(fixed_tendon_ids)). fixed_tendon_ids: The tendon indices to set the rest length for. Defaults to None (all fixed tendons). env_ids: The environment indices to set the rest length for. Defaults to None (all environments). """ # resolve indices if env_ids is None: env_ids = slice(None) if fixed_tendon_ids is None: fixed_tendon_ids = slice(None) elif env_ids != slice(None): env_ids = env_ids[:, None] # set rest_length self._data.fixed_tendon_rest_length[env_ids, fixed_tendon_ids] = rest_length def set_fixed_tendon_offset( self, offset: torch.Tensor, fixed_tendon_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None, ): """Set fixed tendon offset efforts into internal buffers. .. note:: This function does not apply the tendon offset to the simulation. It only fills the buffers with the desired values. To apply the tendon offset, call the :meth:`write_fixed_tendon_properties_to_sim` function. Args: offset: Fixed tendon offset. Shape is (len(env_ids), len(fixed_tendon_ids)). fixed_tendon_ids: The tendon indices to set the offset for. Defaults to None (all fixed tendons). env_ids: The environment indices to set the offset for. Defaults to None (all environments). """ # resolve indices if env_ids is None: env_ids = slice(None) if fixed_tendon_ids is None: fixed_tendon_ids = slice(None) elif env_ids != slice(None): env_ids = env_ids[:, None] # set offset self._data.fixed_tendon_offset[env_ids, fixed_tendon_ids] = offset def write_fixed_tendon_properties_to_sim( self, fixed_tendon_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None, ): """Write fixed tendon properties into the simulation. Args: fixed_tendon_ids: The fixed tendon indices to set the limits for. Defaults to None (all fixed tendons). env_ids: The environment indices to set the limits for. Defaults to None (all environments). """ # resolve indices physx_env_ids = env_ids if env_ids is None: physx_env_ids = self._ALL_INDICES if fixed_tendon_ids is None: fixed_tendon_ids = slice(None) # set into simulation self.root_physx_view.set_fixed_tendon_properties( self._data.fixed_tendon_stiffness, self._data.fixed_tendon_damping, self._data.fixed_tendon_limit_stiffness, self._data.fixed_tendon_limit, self._data.fixed_tendon_rest_length, self._data.fixed_tendon_offset, indices=physx_env_ids, ) """ Internal helper. """ def _initialize_impl(self): # create simulation view self._physics_sim_view = physx.create_simulation_view(self._backend) self._physics_sim_view.set_subspace_roots("/") # obtain the first prim in the regex expression (all others are assumed to be a copy of this) template_prim = sim_utils.find_first_matching_prim(self.cfg.prim_path) if template_prim is None: raise RuntimeError(f"Failed to find prim for expression: '{self.cfg.prim_path}'.") template_prim_path = template_prim.GetPath().pathString # find articulation root prims root_prims = sim_utils.get_all_matching_child_prims( template_prim_path, predicate=lambda prim: prim.HasAPI(UsdPhysics.ArticulationRootAPI) ) if len(root_prims) == 0: raise RuntimeError( f"Failed to find an articulation when resolving '{self.cfg.prim_path}'." " Please ensure that the prim has 'USD ArticulationRootAPI' applied." ) if len(root_prims) > 1: raise RuntimeError( f"Failed to find a single articulation when resolving '{self.cfg.prim_path}'." f" Found multiple '{root_prims}' under '{template_prim_path}'." " Please ensure that there is only one articulation in the prim path tree." ) # resolve articulation root prim back into regex expression root_prim_path = root_prims[0].GetPath().pathString root_prim_path_expr = self.cfg.prim_path + root_prim_path[len(template_prim_path) :] # -- articulation self._root_physx_view = self._physics_sim_view.create_articulation_view(root_prim_path_expr.replace(".*", "*")) # -- link views # note: we use the root view to get the body names, but we use the body view to get the # actual data. This is mainly needed to apply external forces to the bodies. physx_body_names = self.root_physx_view.shared_metatype.link_names body_names_regex = r"(" + "|".join(physx_body_names) + r")" body_names_regex = f"{self.cfg.prim_path}/{body_names_regex}" self._body_physx_view = self._physics_sim_view.create_rigid_body_view(body_names_regex.replace(".*", "*")) # create ordering from articulation view to body view for body names # note: we need to do this since the body view is not ordered in the same way as the articulation view # -- root view root_view_body_names = self.body_names # -- body view prim_paths = self._body_physx_view.prim_paths[: self.num_bodies] body_view_body_names = [path.split("/")[-1] for path in prim_paths] # -- mapping from articulation view to body view self._body_view_ordering = [body_view_body_names.index(name) for name in root_view_body_names] self._body_view_ordering = torch.tensor(self._body_view_ordering, dtype=torch.long, device=self.device) # log information about the articulation carb.log_info(f"Articulation initialized at: {self.cfg.prim_path} with root '{root_prim_path_expr}'.") carb.log_info(f"Is fixed root: {self.is_fixed_base}") carb.log_info(f"Number of bodies: {self.num_bodies}") carb.log_info(f"Body names: {self.body_names}") carb.log_info(f"Number of joints: {self.num_joints}") carb.log_info(f"Joint names: {self.joint_names}") carb.log_info(f"Number of fixed tendons: {self.num_fixed_tendons}") # -- assert that parsing was successful if set(physx_body_names) != set(self.body_names): raise RuntimeError("Failed to parse all bodies properly in the articulation.") # create buffers self._create_buffers() # process configuration self._process_cfg() self._process_actuators_cfg() self._process_fixed_tendons() # validate configuration self._validate_cfg() # update the robot data self.update(0.0) # log joint information self._log_articulation_joint_info() def _create_buffers(self): # allocate buffers super()._create_buffers() # history buffers self._previous_joint_vel = torch.zeros(self.num_instances, self.num_joints, device=self.device) # asset data # -- properties self._data.joint_names = self.joint_names # -- joint states self._data.joint_pos = torch.zeros(self.num_instances, self.num_joints, device=self.device) self._data.joint_vel = torch.zeros_like(self._data.joint_pos) self._data.joint_acc = torch.zeros_like(self._data.joint_pos) self._data.default_joint_pos = torch.zeros_like(self._data.joint_pos) self._data.default_joint_vel = torch.zeros_like(self._data.joint_pos) # -- joint commands self._data.joint_pos_target = torch.zeros_like(self._data.joint_pos) self._data.joint_vel_target = torch.zeros_like(self._data.joint_pos) self._data.joint_effort_target = torch.zeros_like(self._data.joint_pos) self._data.joint_stiffness = torch.zeros_like(self._data.joint_pos) self._data.joint_damping = torch.zeros_like(self._data.joint_pos) self._data.joint_armature = torch.zeros_like(self._data.joint_pos) self._data.joint_friction = torch.zeros_like(self._data.joint_pos) self._data.joint_limits = torch.zeros(self.num_instances, self.num_joints, 2, device=self.device) # -- joint commands (explicit) self._data.computed_torque = torch.zeros_like(self._data.joint_pos) self._data.applied_torque = torch.zeros_like(self._data.joint_pos) # -- tendons if self.num_fixed_tendons > 0: self._data.fixed_tendon_stiffness = torch.zeros( self.num_instances, self.num_fixed_tendons, device=self.device ) self._data.fixed_tendon_damping = torch.zeros( self.num_instances, self.num_fixed_tendons, device=self.device ) self._data.fixed_tendon_limit_stiffness = torch.zeros( self.num_instances, self.num_fixed_tendons, device=self.device ) self._data.fixed_tendon_limit = torch.zeros( self.num_instances, self.num_fixed_tendons, 2, device=self.device ) self._data.fixed_tendon_rest_length = torch.zeros( self.num_instances, self.num_fixed_tendons, device=self.device ) self._data.fixed_tendon_offset = torch.zeros(self.num_instances, self.num_fixed_tendons, device=self.device) # -- other data self._data.soft_joint_pos_limits = torch.zeros(self.num_instances, self.num_joints, 2, device=self.device) self._data.soft_joint_vel_limits = torch.zeros(self.num_instances, self.num_joints, device=self.device) self._data.gear_ratio = torch.ones(self.num_instances, self.num_joints, device=self.device) # -- initialize default buffers self._data.default_joint_stiffness = torch.zeros(self.num_instances, self.num_joints, device=self.device) self._data.default_joint_damping = torch.zeros(self.num_instances, self.num_joints, device=self.device) self._data.default_joint_armature = torch.zeros(self.num_instances, self.num_joints, device=self.device) self._data.default_joint_friction = torch.zeros(self.num_instances, self.num_joints, device=self.device) self._data.default_joint_limits = torch.zeros(self.num_instances, self.num_joints, 2, device=self.device) if self.num_fixed_tendons > 0: self._data.default_fixed_tendon_stiffness = torch.zeros( self.num_instances, self.num_fixed_tendons, device=self.device ) self._data.default_fixed_tendon_damping = torch.zeros( self.num_instances, self.num_fixed_tendons, device=self.device ) self._data.default_fixed_tendon_limit_stiffness = torch.zeros( self.num_instances, self.num_fixed_tendons, device=self.device ) self._data.default_fixed_tendon_limit = torch.zeros( self.num_instances, self.num_fixed_tendons, 2, device=self.device ) self._data.default_fixed_tendon_rest_length = torch.zeros( self.num_instances, self.num_fixed_tendons, device=self.device ) self._data.default_fixed_tendon_offset = torch.zeros( self.num_instances, self.num_fixed_tendons, device=self.device ) # soft joint position limits (recommended not to be too close to limits). joint_pos_limits = self.root_physx_view.get_dof_limits() joint_pos_mean = (joint_pos_limits[..., 0] + joint_pos_limits[..., 1]) / 2 joint_pos_range = joint_pos_limits[..., 1] - joint_pos_limits[..., 0] soft_limit_factor = self.cfg.soft_joint_pos_limit_factor # add to data self._data.soft_joint_pos_limits[..., 0] = joint_pos_mean - 0.5 * joint_pos_range * soft_limit_factor self._data.soft_joint_pos_limits[..., 1] = joint_pos_mean + 0.5 * joint_pos_range * soft_limit_factor # create buffers to store processed actions from actuator models self._joint_pos_target_sim = torch.zeros_like(self._data.joint_pos_target) self._joint_vel_target_sim = torch.zeros_like(self._data.joint_pos_target) self._joint_effort_target_sim = torch.zeros_like(self._data.joint_pos_target) def _process_cfg(self): """Post processing of configuration parameters.""" # default state super()._process_cfg() # -- joint state # joint pos indices_list, _, values_list = string_utils.resolve_matching_names_values( self.cfg.init_state.joint_pos, self.joint_names ) self._data.default_joint_pos[:, indices_list] = torch.tensor(values_list, device=self.device) # joint vel indices_list, _, values_list = string_utils.resolve_matching_names_values( self.cfg.init_state.joint_vel, self.joint_names ) self._data.default_joint_vel[:, indices_list] = torch.tensor(values_list, device=self.device) self._data.default_joint_limits = self.root_physx_view.get_dof_limits().to(device=self.device).clone() self._data.joint_limits = self._data.default_joint_limits.clone() """ Internal helpers -- Actuators. """ def _process_actuators_cfg(self): """Process and apply articulation joint properties.""" # flag for implicit actuators # if this is false, we by-pass certain checks when doing actuator-related operations self._has_implicit_actuators = False # cache the values coming from the usd usd_stiffness = self.root_physx_view.get_dof_stiffnesses().clone() usd_damping = self.root_physx_view.get_dof_dampings().clone() usd_armature = self.root_physx_view.get_dof_armatures().clone() usd_friction = self.root_physx_view.get_dof_friction_coefficients().clone() usd_effort_limit = self.root_physx_view.get_dof_max_forces().clone() usd_velocity_limit = self.root_physx_view.get_dof_max_velocities().clone() # iterate over all actuator configurations for actuator_name, actuator_cfg in self.cfg.actuators.items(): # type annotation for type checkers actuator_cfg: ActuatorBaseCfg # create actuator group joint_ids, joint_names = self.find_joints(actuator_cfg.joint_names_expr) # check if any joints are found if len(joint_names) == 0: raise ValueError( f"No joints found for actuator group: {actuator_name} with joint name expression:" f" {actuator_cfg.joint_names_expr}." ) # create actuator collection # note: for efficiency avoid indexing when over all indices actuator: ActuatorBase = actuator_cfg.class_type( cfg=actuator_cfg, joint_names=joint_names, joint_ids=slice(None) if len(joint_names) == self.num_joints else joint_ids, num_envs=self.num_instances, device=self.device, stiffness=usd_stiffness[:, joint_ids], damping=usd_damping[:, joint_ids], armature=usd_armature[:, joint_ids], friction=usd_friction[:, joint_ids], effort_limit=usd_effort_limit[:, joint_ids], velocity_limit=usd_velocity_limit[:, joint_ids], ) # log information on actuator groups carb.log_info( f"Actuator collection: {actuator_name} with model '{actuator_cfg.class_type.__name__}' and" f" joint names: {joint_names} [{joint_ids}]." ) # store actuator group self.actuators[actuator_name] = actuator # set the passed gains and limits into the simulation if isinstance(actuator, ImplicitActuator): self._has_implicit_actuators = True # the gains and limits are set into the simulation since actuator model is implicit self.write_joint_stiffness_to_sim(actuator.stiffness, joint_ids=actuator.joint_indices) self.write_joint_damping_to_sim(actuator.damping, joint_ids=actuator.joint_indices) self.write_joint_effort_limit_to_sim(actuator.effort_limit, joint_ids=actuator.joint_indices) self.write_joint_armature_to_sim(actuator.armature, joint_ids=actuator.joint_indices) self.write_joint_friction_to_sim(actuator.friction, joint_ids=actuator.joint_indices) else: # the gains and limits are processed by the actuator model # we set gains to zero, and torque limit to a high value in simulation to avoid any interference self.write_joint_stiffness_to_sim(0.0, joint_ids=actuator.joint_indices) self.write_joint_damping_to_sim(0.0, joint_ids=actuator.joint_indices) self.write_joint_effort_limit_to_sim(1.0e9, joint_ids=actuator.joint_indices) self.write_joint_armature_to_sim(actuator.armature, joint_ids=actuator.joint_indices) self.write_joint_friction_to_sim(actuator.friction, joint_ids=actuator.joint_indices) # set the default joint parameters based on the changes from the actuators self._data.default_joint_stiffness = self.root_physx_view.get_dof_stiffnesses().to(device=self.device).clone() self._data.default_joint_damping = self.root_physx_view.get_dof_dampings().to(device=self.device).clone() self._data.default_joint_armature = self.root_physx_view.get_dof_armatures().to(device=self.device).clone() self._data.default_joint_friction = ( self.root_physx_view.get_dof_friction_coefficients().to(device=self.device).clone() ) # perform some sanity checks to ensure actuators are prepared correctly total_act_joints = sum(actuator.num_joints for actuator in self.actuators.values()) if total_act_joints != (self.num_joints - self.num_fixed_tendons): carb.log_warn( "Not all actuators are configured! Total number of actuated joints not equal to number of" f" joints available: {total_act_joints} != {self.num_joints}." ) def _process_fixed_tendons(self): """Process fixed tendons.""" self.fixed_tendon_names = list() if self.num_fixed_tendons > 0: stage = stage_utils.get_current_stage() for j in range(self.num_joints): usd_joint_path = self.root_physx_view.dof_paths[0][j] # check whether joint has tendons - tendon name follows the joint name it is attached to joint = UsdPhysics.Joint.Get(stage, usd_joint_path) if joint.GetPrim().HasAPI(PhysxSchema.PhysxTendonAxisRootAPI): joint_name = usd_joint_path.split("/")[-1] self.fixed_tendon_names.append(joint_name) self._data.default_fixed_tendon_stiffness = self.root_physx_view.get_fixed_tendon_stiffnesses().clone() self._data.default_fixed_tendon_damping = self.root_physx_view.get_fixed_tendon_dampings().clone() self._data.default_fixed_tendon_limit_stiffness = ( self.root_physx_view.get_fixed_tendon_limit_stiffnesses().clone() ) self._data.default_fixed_tendon_limit = self.root_physx_view.get_fixed_tendon_limits().clone() self._data.default_fixed_tendon_rest_length = self.root_physx_view.get_fixed_tendon_rest_lengths().clone() self._data.default_fixed_tendon_offset = self.root_physx_view.get_fixed_tendon_offsets().clone() def _apply_actuator_model(self): """Processes joint commands for the articulation by forwarding them to the actuators. The actions are first processed using actuator models. Depending on the robot configuration, the actuator models compute the joint level simulation commands and sets them into the PhysX buffers. """ # process actions per group for actuator in self.actuators.values(): # prepare input for actuator model based on cached data # TODO : A tensor dict would be nice to do the indexing of all tensors together control_action = ArticulationActions( joint_positions=self._data.joint_pos_target[:, actuator.joint_indices], joint_velocities=self._data.joint_vel_target[:, actuator.joint_indices], joint_efforts=self._data.joint_effort_target[:, actuator.joint_indices], joint_indices=actuator.joint_indices, ) # compute joint command from the actuator model control_action = actuator.compute( control_action, joint_pos=self._data.joint_pos[:, actuator.joint_indices], joint_vel=self._data.joint_vel[:, actuator.joint_indices], ) # update targets (these are set into the simulation) if control_action.joint_positions is not None: self._joint_pos_target_sim[:, actuator.joint_indices] = control_action.joint_positions if control_action.joint_velocities is not None: self._joint_vel_target_sim[:, actuator.joint_indices] = control_action.joint_velocities if control_action.joint_efforts is not None: self._joint_effort_target_sim[:, actuator.joint_indices] = control_action.joint_efforts # update state of the actuator model # -- torques self._data.computed_torque[:, actuator.joint_indices] = actuator.computed_effort self._data.applied_torque[:, actuator.joint_indices] = actuator.applied_effort # -- actuator data self._data.soft_joint_vel_limits[:, actuator.joint_indices] = actuator.velocity_limit # TODO: find a cleaner way to handle gear ratio. Only needed for variable gear ratio actuators. if hasattr(actuator, "gear_ratio"): self._data.gear_ratio[:, actuator.joint_indices] = actuator.gear_ratio """ Internal helpers -- Debugging. """ def _validate_cfg(self): """Validate the configuration after processing. Note: This function should be called only after the configuration has been processed and the buffers have been created. Otherwise, some settings that are altered during processing may not be validated. For instance, the actuator models may change the joint max velocity limits. """ # check that the default values are within the limits joint_pos_limits = self.root_physx_view.get_dof_limits()[0].to(self.device) out_of_range = self._data.default_joint_pos[0] < joint_pos_limits[:, 0] out_of_range |= self._data.default_joint_pos[0] > joint_pos_limits[:, 1] violated_indices = torch.nonzero(out_of_range, as_tuple=False).squeeze(-1) # throw error if any of the default joint positions are out of the limits if len(violated_indices) > 0: # prepare message for violated joints msg = "The following joints have default positions out of the limits: \n" for idx in violated_indices: joint_name = self.data.joint_names[idx] joint_limits = joint_pos_limits[idx] joint_pos = self.data.default_joint_pos[0, idx] # add to message msg += f"\t- '{joint_name}': {joint_pos:.3f} not in [{joint_limits[0]:.3f}, {joint_limits[1]:.3f}]\n" raise ValueError(msg) # check that the default joint velocities are within the limits joint_max_vel = self.root_physx_view.get_dof_max_velocities()[0].to(self.device) out_of_range = torch.abs(self._data.default_joint_vel[0]) > joint_max_vel violated_indices = torch.nonzero(out_of_range, as_tuple=False).squeeze(-1) if len(violated_indices) > 0: # prepare message for violated joints msg = "The following joints have default velocities out of the limits: \n" for idx in violated_indices: joint_name = self.data.joint_names[idx] joint_limits = [-joint_max_vel[idx], joint_max_vel[idx]] joint_vel = self.data.default_joint_vel[0, idx] # add to message msg += f"\t- '{joint_name}': {joint_vel:.3f} not in [{joint_limits[0]:.3f}, {joint_limits[1]:.3f}]\n" raise ValueError(msg) def _log_articulation_joint_info(self): """Log information about the articulation's simulated joints.""" # read out all joint parameters from simulation # -- gains stiffnesses = self.root_physx_view.get_dof_stiffnesses()[0].tolist() dampings = self.root_physx_view.get_dof_dampings()[0].tolist() # -- properties armatures = self.root_physx_view.get_dof_armatures()[0].tolist() frictions = self.root_physx_view.get_dof_friction_coefficients()[0].tolist() # -- limits position_limits = self.root_physx_view.get_dof_limits()[0].tolist() velocity_limits = self.root_physx_view.get_dof_max_velocities()[0].tolist() effort_limits = self.root_physx_view.get_dof_max_forces()[0].tolist() # create table for term information table = PrettyTable(float_format=".3f") table.title = f"Simulation Joint Information (Prim path: {self.cfg.prim_path})" table.field_names = [ "Index", "Name", "Stiffness", "Damping", "Armature", "Friction", "Position Limits", "Velocity Limits", "Effort Limits", ] # set alignment of table columns table.align["Name"] = "l" # add info on each term for index, name in enumerate(self.joint_names): table.add_row([ index, name, stiffnesses[index], dampings[index], armatures[index], frictions[index], position_limits[index], velocity_limits[index], effort_limits[index], ]) # convert table to string carb.log_info(f"Simulation parameters for joints in {self.cfg.prim_path}:\n" + table.get_string()) # read out all tendon parameters from simulation if self.num_fixed_tendons > 0: # -- gains ft_stiffnesses = self.root_physx_view.get_fixed_tendon_stiffnesses()[0].tolist() ft_dampings = self.root_physx_view.get_fixed_tendon_dampings()[0].tolist() # -- limits ft_limit_stiffnesses = self.root_physx_view.get_fixed_tendon_limit_stiffnesses()[0].tolist() ft_limits = self.root_physx_view.get_fixed_tendon_limits()[0].tolist() ft_rest_lengths = self.root_physx_view.get_fixed_tendon_rest_lengths()[0].tolist() ft_offsets = self.root_physx_view.get_fixed_tendon_offsets()[0].tolist() # create table for term information tendon_table = PrettyTable(float_format=".3f") tendon_table.title = f"Simulation Tendon Information (Prim path: {self.cfg.prim_path})" tendon_table.field_names = [ "Index", "Stiffness", "Damping", "Limit Stiffness", "Limit", "Rest Length", "Offset", ] # add info on each term for index in range(self.num_fixed_tendons): tendon_table.add_row([ index, ft_stiffnesses[index], ft_dampings[index], ft_limit_stiffnesses[index], ft_limits[index], ft_rest_lengths[index], ft_offsets[index], ]) # convert table to string carb.log_info(f"Simulation parameters for tendons in {self.cfg.prim_path}:\n" + tendon_table.get_string())
60,258
Python
47.015139
132
0.623204
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/assets/articulation/articulation_cfg.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from dataclasses import MISSING from omni.isaac.lab.actuators import ActuatorBaseCfg from omni.isaac.lab.utils import configclass from ..rigid_object import RigidObjectCfg from .articulation import Articulation @configclass class ArticulationCfg(RigidObjectCfg): """Configuration parameters for an articulation.""" class_type: type = Articulation @configclass class InitialStateCfg(RigidObjectCfg.InitialStateCfg): """Initial state of the articulation.""" # root position joint_pos: dict[str, float] = {".*": 0.0} """Joint positions of the joints. Defaults to 0.0 for all joints.""" joint_vel: dict[str, float] = {".*": 0.0} """Joint velocities of the joints. Defaults to 0.0 for all joints.""" ## # Initialize configurations. ## init_state: InitialStateCfg = InitialStateCfg() """Initial state of the articulated object. Defaults to identity pose with zero velocity and zero joint state.""" soft_joint_pos_limit_factor: float = 1.0 """Fraction specifying the range of DOF position limits (parsed from the asset) to use. Defaults to 1.0.""" actuators: dict[str, ActuatorBaseCfg] = MISSING """Actuators for the robot with corresponding joint names."""
1,391
Python
32.142856
117
0.701653
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/markers/visualization_markers.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """A class to coordinate groups of visual markers (such as spheres, frames or arrows) using `UsdGeom.PointInstancer`_ class. The class :class:`VisualizationMarkers` is used to create a group of visual markers and visualize them in the viewport. The markers are represented as :class:`UsdGeom.PointInstancer` prims in the USD stage. The markers are created as prototypes in the :class:`UsdGeom.PointInstancer` prim and are instanced in the :class:`UsdGeom.PointInstancer` prim. The markers can be visualized by passing the indices of the marker prototypes and their translations, orientations and scales. The marker prototypes can be configured with the :class:`VisualizationMarkersCfg` class. .. _UsdGeom.PointInstancer: https://graphics.pixar.com/usd/dev/api/class_usd_geom_point_instancer.html """ # needed to import for allowing type-hinting: np.ndarray | torch.Tensor | None from __future__ import annotations import numpy as np import torch from dataclasses import MISSING import omni.isaac.core.utils.stage as stage_utils import omni.kit.commands import omni.physx.scripts.utils as physx_utils from pxr import Gf, PhysxSchema, Sdf, Usd, UsdGeom, UsdPhysics, Vt import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.sim.spawners import SpawnerCfg from omni.isaac.lab.utils.configclass import configclass from omni.isaac.lab.utils.math import convert_quat @configclass class VisualizationMarkersCfg: """A class to configure a :class:`VisualizationMarkers`.""" prim_path: str = MISSING """The prim path where the :class:`UsdGeom.PointInstancer` will be created.""" markers: dict[str, SpawnerCfg] = MISSING """The dictionary of marker configurations. The key is the name of the marker, and the value is the configuration of the marker. The key is used to identify the marker in the class. """ class VisualizationMarkers: """A class to coordinate groups of visual markers (loaded from USD). This class allows visualization of different UI markers in the scene, such as points and frames. The class wraps around the `UsdGeom.PointInstancer`_ for efficient handling of objects in the stage via instancing the created marker prototype prims. A marker prototype prim is a reusable template prim used for defining variations of objects in the scene. For example, a sphere prim can be used as a marker prototype prim to create multiple sphere prims in the scene at different locations. Thus, prototype prims are useful for creating multiple instances of the same prim in the scene. The class parses the configuration to create different the marker prototypes into the stage. Each marker prototype prim is created as a child of the :class:`UsdGeom.PointInstancer` prim. The prim path for the the marker prim is resolved using the key of the marker in the :attr:`VisualizationMarkersCfg.markers` dictionary. The marker prototypes are created using the :meth:`omni.isaac.core.utils.create_prim` function, and then then instanced using :class:`UsdGeom.PointInstancer` prim to allow creating multiple instances of the marker prims. Switching between different marker prototypes is possible by calling the :meth:`visualize` method with the prototype indices corresponding to the marker prototype. The prototype indices are based on the order in the :attr:`VisualizationMarkersCfg.markers` dictionary. For example, if the dictionary has two markers, "marker1" and "marker2", then their prototype indices are 0 and 1 respectively. The prototype indices can be passed as a list or array of integers. Usage: The following snippet shows how to create 24 sphere markers with a radius of 1.0 at random translations within the range [-1.0, 1.0]. The first 12 markers will be colored red and the rest will be colored green. .. code-block:: python import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.markers import VisualizationMarkersCfg, VisualizationMarkers # Create the markers configuration # This creates two marker prototypes, "marker1" and "marker2" which are spheres with a radius of 1.0. # The color of "marker1" is red and the color of "marker2" is green. cfg = VisualizationMarkersCfg( prim_path="/World/Visuals/testMarkers", markers={ "marker1": sim_utils.SphereCfg( radius=1.0, visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(1.0, 0.0, 0.0)), ), "marker2": VisualizationMarkersCfg.SphereCfg( radius=1.0, visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 1.0, 0.0)), ), } ) # Create the markers instance # This will create a UsdGeom.PointInstancer prim at the given path along with the marker prototypes. marker = VisualizationMarkers(cfg) # Set position of the marker # -- randomly sample translations between -1.0 and 1.0 marker_translations = np.random.uniform(-1.0, 1.0, (24, 3)) # -- this will create 24 markers at the given translations # note: the markers will all be `marker1` since the marker indices are not given marker.visualize(translations=marker_translations) # alter the markers based on their prototypes indices # first 12 markers will be marker1 and the rest will be marker2 # 0 -> marker1, 1 -> marker2 marker_indices = [0] * 12 + [1] * 12 # this will change the marker prototypes at the given indices # note: the translations of the markers will not be changed from the previous call # since the translations are not given. marker.visualize(marker_indices=marker_indices) # alter the markers based on their prototypes indices and translations marker.visualize(marker_indices=marker_indices, translations=marker_translations) .. _UsdGeom.PointInstancer: https://graphics.pixar.com/usd/dev/api/class_usd_geom_point_instancer.html """ def __init__(self, cfg: VisualizationMarkersCfg): """Initialize the class. When the class is initialized, the :class:`UsdGeom.PointInstancer` is created into the stage and the marker prims are registered into it. .. note:: If a prim already exists at the given path, the function will find the next free path and create the :class:`UsdGeom.PointInstancer` prim there. Args: cfg: The configuration for the markers. Raises: ValueError: When no markers are provided in the :obj:`cfg`. """ # get next free path for the prim prim_path = stage_utils.get_next_free_path(cfg.prim_path) # create a new prim stage = stage_utils.get_current_stage() self._instancer_manager = UsdGeom.PointInstancer.Define(stage, prim_path) # store inputs self.prim_path = prim_path self.cfg = cfg # check if any markers is provided if len(self.cfg.markers) == 0: raise ValueError(f"The `cfg.markers` cannot be empty. Received: {self.cfg.markers}") # create a child prim for the marker self._add_markers_prototypes(self.cfg.markers) # Note: We need to do this the first time to initialize the instancer. # Otherwise, the instancer will not be "created" and the function `GetInstanceIndices()` will fail. self._instancer_manager.GetProtoIndicesAttr().Set(list(range(self.num_prototypes))) self._instancer_manager.GetPositionsAttr().Set([Gf.Vec3f(0.0)] * self.num_prototypes) self._count = self.num_prototypes def __str__(self) -> str: """Return: A string representation of the class.""" msg = f"VisualizationMarkers(prim_path={self.prim_path})" msg += f"\n\tCount: {self.count}" msg += f"\n\tNumber of prototypes: {self.num_prototypes}" msg += "\n\tMarkers Prototypes:" for index, (name, marker) in enumerate(self.cfg.markers.items()): msg += f"\n\t\t[Index: {index}]: {name}: {marker.to_dict()}" return msg """ Properties. """ @property def num_prototypes(self) -> int: """The number of marker prototypes available.""" return len(self.cfg.markers) @property def count(self) -> int: """The total number of marker instances.""" # TODO: Update this when the USD API is available (Isaac Sim 2023.1) # return self._instancer_manager.GetInstanceCount() return self._count """ Operations. """ def set_visibility(self, visible: bool): """Sets the visibility of the markers. The method does this through the USD API. Args: visible: flag to set the visibility. """ imageable = UsdGeom.Imageable(self._instancer_manager) if visible: imageable.MakeVisible() else: imageable.MakeInvisible() def is_visible(self) -> bool: """Checks the visibility of the markers. Returns: True if the markers are visible, False otherwise. """ return self._instancer_manager.GetVisibilityAttr().Get() != UsdGeom.Tokens.invisible def visualize( self, translations: np.ndarray | torch.Tensor | None = None, orientations: np.ndarray | torch.Tensor | None = None, scales: np.ndarray | torch.Tensor | None = None, marker_indices: list[int] | np.ndarray | torch.Tensor | None = None, ): """Update markers in the viewport. .. note:: If the prim `PointInstancer` is hidden in the stage, the function will simply return without updating the markers. This helps in unnecessary computation when the markers are not visible. Whenever updating the markers, the input arrays must have the same number of elements in the first dimension. If the number of elements is different, the `UsdGeom.PointInstancer` will raise an error complaining about the mismatch. Additionally, the function supports dynamic update of the markers. This means that the number of markers can change between calls. For example, if you have 24 points that you want to visualize, you can pass 24 translations, orientations, and scales. If you want to visualize only 12 points, you can pass 12 translations, orientations, and scales. The function will automatically update the number of markers in the scene. The function will also update the marker prototypes based on their prototype indices. For instance, if you have two marker prototypes, and you pass the following marker indices: [0, 1, 0, 1], the function will update the first and third markers with the first prototype, and the second and fourth markers with the second prototype. This is useful when you want to visualize different markers in the same scene. The list of marker indices must have the same number of elements as the translations, orientations, or scales. If the number of elements is different, the function will raise an error. .. caution:: This function will update all the markers instanced from the prototypes. That means if you have 24 markers, you will need to pass 24 translations, orientations, and scales. If you want to update only a subset of the markers, you will need to handle the indices yourself and pass the complete arrays to this function. Args: translations: Translations w.r.t. parent prim frame. Shape is (M, 3). Defaults to None, which means left unchanged. orientations: Quaternion orientations (w, x, y, z) w.r.t. parent prim frame. Shape is (M, 4). Defaults to None, which means left unchanged. scales: Scale applied before any rotation is applied. Shape is (M, 3). Defaults to None, which means left unchanged. marker_indices: Decides which marker prototype to visualize. Shape is (M). Defaults to None, which means left unchanged provided that the total number of markers is the same as the previous call. If the number of markers is different, the function will update the number of markers in the scene. Raises: ValueError: When input arrays do not follow the expected shapes. ValueError: When the function is called with all None arguments. """ # check if it is visible (if not then let's not waste time) if not self.is_visible(): return # check if we have any markers to visualize num_markers = 0 # resolve inputs # -- position if translations is not None: if isinstance(translations, torch.Tensor): translations = translations.detach().cpu().numpy() # check that shape is correct if translations.shape[1] != 3 or len(translations.shape) != 2: raise ValueError(f"Expected `translations` to have shape (M, 3). Received: {translations.shape}.") # apply translations self._instancer_manager.GetPositionsAttr().Set(Vt.Vec3fArray.FromNumpy(translations)) # update number of markers num_markers = translations.shape[0] # -- orientation if orientations is not None: if isinstance(orientations, torch.Tensor): orientations = orientations.detach().cpu().numpy() # check that shape is correct if orientations.shape[1] != 4 or len(orientations.shape) != 2: raise ValueError(f"Expected `orientations` to have shape (M, 4). Received: {orientations.shape}.") # roll orientations from (w, x, y, z) to (x, y, z, w) # internally USD expects (x, y, z, w) orientations = convert_quat(orientations, to="xyzw") # apply orientations self._instancer_manager.GetOrientationsAttr().Set(Vt.QuathArray.FromNumpy(orientations)) # update number of markers num_markers = orientations.shape[0] # -- scales if scales is not None: if isinstance(scales, torch.Tensor): scales = scales.detach().cpu().numpy() # check that shape is correct if scales.shape[1] != 3 or len(scales.shape) != 2: raise ValueError(f"Expected `scales` to have shape (M, 3). Received: {scales.shape}.") # apply scales self._instancer_manager.GetScalesAttr().Set(Vt.Vec3fArray.FromNumpy(scales)) # update number of markers num_markers = scales.shape[0] # -- status if marker_indices is not None or num_markers != self._count: # apply marker indices if marker_indices is not None: if isinstance(marker_indices, torch.Tensor): marker_indices = marker_indices.detach().cpu().numpy() elif isinstance(marker_indices, list): marker_indices = np.array(marker_indices) # check that shape is correct if len(marker_indices.shape) != 1: raise ValueError(f"Expected `marker_indices` to have shape (M,). Received: {marker_indices.shape}.") # apply proto indices self._instancer_manager.GetProtoIndicesAttr().Set(Vt.IntArray.FromNumpy(marker_indices)) # update number of markers num_markers = marker_indices.shape[0] else: # check that number of markers is not zero if num_markers == 0: raise ValueError("Number of markers cannot be zero! Hint: The function was called with no inputs?") # set all markers to be the first prototype self._instancer_manager.GetProtoIndicesAttr().Set([0] * num_markers) # set number of markers self._count = num_markers """ Helper functions. """ def _add_markers_prototypes(self, markers_cfg: dict[str, sim_utils.SpawnerCfg]): """Adds markers prototypes to the scene and sets the markers instancer to use them.""" # add markers based on config for name, cfg in markers_cfg.items(): # resolve prim path marker_prim_path = f"{self.prim_path}/{name}" # create a child prim for the marker prim = cfg.func(prim_path=marker_prim_path, cfg=cfg) # make the asset uninstanceable (in case it is) # point instancer defines its own prototypes so if an asset is already instanced, this doesn't work. self._process_prototype_prim(prim) # remove any physics on the markers because they are only for visualization! physx_utils.removeRigidBodySubtree(prim) # add child reference to point instancer self._instancer_manager.GetPrototypesRel().AddTarget(marker_prim_path) # check that we loaded all the prototypes prototypes = self._instancer_manager.GetPrototypesRel().GetTargets() if len(prototypes) != len(markers_cfg): raise RuntimeError( f"Failed to load all the prototypes. Expected: {len(markers_cfg)}. Received: {len(prototypes)}." ) def _process_prototype_prim(self, prim: Usd.Prim): """Process a prim and its descendants to make them suitable for defining prototypes. Point instancer defines its own prototypes so if an asset is already instanced, this doesn't work. This function checks if the prim at the specified prim path and its descendants are instanced. If so, it makes the respective prim uninstanceable by disabling instancing on the prim. Additionally, it makes the prim invisible to secondary rays. This is useful when we do not want to see the marker prims on camera images. Args: prim_path: The prim path to check. stage: The stage where the prim exists. Defaults to None, in which case the current stage is used. """ # check if prim is valid if not prim.IsValid(): raise ValueError(f"Prim at path '{prim.GetPrimAtPath()}' is not valid.") # iterate over all prims under prim-path all_prims = [prim] while len(all_prims) > 0: # get current prim child_prim = all_prims.pop(0) # check if it is physics body -> if so, remove it if child_prim.HasAPI(UsdPhysics.ArticulationRootAPI): child_prim.RemoveAPI(UsdPhysics.ArticulationRootAPI) child_prim.RemoveAPI(PhysxSchema.PhysxArticulationAPI) if child_prim.HasAPI(UsdPhysics.RigidBodyAPI): child_prim.RemoveAPI(UsdPhysics.RigidBodyAPI) child_prim.RemoveAPI(PhysxSchema.PhysxRigidBodyAPI) if child_prim.IsA(UsdPhysics.Joint): child_prim.GetAttribute("physics:jointEnabled").Set(False) # check if prim is instanced -> if so, make it uninstanceable if child_prim.IsInstance(): child_prim.SetInstanceable(False) # check if prim is a mesh -> if so, make it invisible to secondary rays if child_prim.IsA(UsdGeom.Gprim): # invisible to secondary rays such as depth images omni.kit.commands.execute( "ChangePropertyCommand", prop_path=Sdf.Path(f"{child_prim.GetPrimPath().pathString}.primvars:invisibleToSecondaryRays"), value=True, prev=None, type_to_create_if_not_exist=Sdf.ValueTypeNames.Bool, ) # add children to list all_prims += child_prim.GetChildren()
20,433
Python
48.839024
120
0.646895
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/markers/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-package for marker utilities to simplify creation of UI elements in the GUI. Currently, the sub-package provides the following classes: * :class:`VisualizationMarkers` for creating a group of markers using `UsdGeom.PointInstancer <https://graphics.pixar.com/usd/dev/api/class_usd_geom_point_instancer.html>`_. .. note:: For some simple use-cases, it may be sufficient to use the debug drawing utilities from Isaac Sim. The debug drawing API is available in the `omni.isaac.debug_drawing`_ module. It allows drawing of points and splines efficiently on the UI. .. _omni.isaac.debug_drawing: https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/ext_omni_isaac_debug_drawing.html """ from .config import * # noqa: F401, F403 from .visualization_markers import VisualizationMarkers, VisualizationMarkersCfg
971
Python
36.384614
127
0.762101
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/markers/config/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.markers.visualization_markers import VisualizationMarkersCfg from omni.isaac.lab.utils.assets import ISAAC_NUCLEUS_DIR ## # Sensors. ## RAY_CASTER_MARKER_CFG = VisualizationMarkersCfg( markers={ "hit": sim_utils.SphereCfg( radius=0.02, visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(1.0, 0.0, 0.0)), ), }, ) """Configuration for the ray-caster marker.""" CONTACT_SENSOR_MARKER_CFG = VisualizationMarkersCfg( markers={ "contact": sim_utils.SphereCfg( radius=0.02, visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(1.0, 0.0, 0.0)), ), "no_contact": sim_utils.SphereCfg( radius=0.02, visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 1.0, 0.0)), visible=False, ), }, ) """Configuration for the contact sensor marker.""" ## # Frames. ## FRAME_MARKER_CFG = VisualizationMarkersCfg( markers={ "frame": sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/UIElements/frame_prim.usd", scale=(0.5, 0.5, 0.5), ) } ) """Configuration for the frame marker.""" RED_ARROW_X_MARKER_CFG = VisualizationMarkersCfg( markers={ "arrow": sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/UIElements/arrow_x.usd", scale=(1.0, 0.1, 0.1), visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(1.0, 0.0, 0.0)), ) } ) """Configuration for the red arrow marker (along x-direction).""" BLUE_ARROW_X_MARKER_CFG = VisualizationMarkersCfg( markers={ "arrow": sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/UIElements/arrow_x.usd", scale=(1.0, 0.1, 0.1), visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 0.0, 1.0)), ) } ) """Configuration for the blue arrow marker (along x-direction).""" GREEN_ARROW_X_MARKER_CFG = VisualizationMarkersCfg( markers={ "arrow": sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/UIElements/arrow_x.usd", scale=(1.0, 0.1, 0.1), visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 1.0, 0.0)), ) } ) """Configuration for the green arrow marker (along x-direction).""" ## # Goals. ## CUBOID_MARKER_CFG = VisualizationMarkersCfg( markers={ "cuboid": sim_utils.CuboidCfg( size=(0.1, 0.1, 0.1), visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(1.0, 0.0, 0.0)), ), } ) """Configuration for the cuboid marker.""" POSITION_GOAL_MARKER_CFG = VisualizationMarkersCfg( markers={ "target_far": sim_utils.SphereCfg( radius=0.01, visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(1.0, 0.0, 0.0)), ), "target_near": sim_utils.SphereCfg( radius=0.01, visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 1.0, 0.0)), ), "target_invisible": sim_utils.SphereCfg( radius=0.01, visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 0.0, 1.0)), visible=False, ), } ) """Configuration for the end-effector tracking marker."""
3,509
Python
27.536585
87
0.609005
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/docs/CHANGELOG.rst
Changelog --------- 0.17.11 (2024-05-30) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed :class:`omni.isaac.lab.sensor.ContactSensor` not loading correctly in extension mode. Earlier, the :attr:`omni.isaac.lab.sensor.ContactSensor.body_physx_view` was not initialized when :meth:`omni.isaac.lab.sensor.ContactSensor._debug_vis_callback` is called which references it. 0.17.10 (2024-05-30) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed compound classes being directly assigned in ``default_factory`` generator method :meth:`omni.isaac.lab.utils.configclass._return_f`, which resulted in shared references such that modifications to compound objects were reflected across all instances generated from the same ``default_factory`` method. 0.17.9 (2024-05-30) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added ``variants`` attribute to the :class:`omni.isaac.lab.sim.from_files.UsdFileCfg` class to select USD variants when loading assets from USD files. 0.17.8 (2024-05-28) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Implemented the reset methods in the action terms to avoid returning outdated data. 0.17.7 (2024-05-28) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added debug visualization utilities in the :class:`omni.isaac.lab.managers.ActionManager` class. 0.17.6 (2024-05-27) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added ``wp.init()`` call in Warp utils. 0.17.5 (2024-05-22) ~~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Websocket livestreaming is no longer supported. Valid livestream options are {0, 1, 2}. * WebRTC livestream is now set with livestream=2. 0.17.4 (2024-05-17) ~~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Modified the noise functions to also support add, scale, and abs operations on the data. Added aliases to ensure backward compatibility with the previous functions. * Added :attr:`omni.isaac.lab.utils.noise.NoiseCfg.operation` for the different operations. * Renamed ``constant_bias_noise`` to :func:`omni.isaac.lab.utils.noise.constant_noise`. * Renamed ``additive_uniform_noise`` to :func:`omni.isaac.lab.utils.noise.uniform_noise`. * Renamed ``additive_gaussian_noise`` to :func:`omni.isaac.lab.utils.noise.gaussian_noise`. 0.17.3 (2024-05-15) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Set ``hide_ui`` flag in the app launcher for livestream. * Fix native client livestream extensions. 0.17.2 (2024-05-09) ~~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Renamed ``_range`` to ``distribution_params`` in ``events.py`` for methods that defined a distribution. * Apply additive/scaling randomization noise on default data instead of current data. * Changed material bucketing logic to prevent exceeding 64k materials. Fixed ^^^^^ * Fixed broadcasting issues with indexing when environment and joint IDs are provided. * Fixed incorrect tensor dimensions when setting a subset of environments. Added ^^^^^ * Added support for randomization of fixed tendon parameters. * Added support for randomization of dof limits. * Added support for randomization of gravity. * Added support for Gaussian sampling. * Added default buffers to Articulation/Rigid object data classes for randomization. 0.17.1 (2024-05-10) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Added attribute :attr:`omni.isaac.lab.sim.converters.UrdfConverterCfg.override_joint_dynamics` to properly parse joint dynamics in :class:`omni.isaac.lab.sim.converters.UrdfConverter`. 0.17.0 (2024-05-07) ~~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Renamed ``BaseEnv`` to :class:`omni.isaac.lab.envs.ManagerBasedEnv`. * Renamed ``base_env.py`` to ``manager_based_env.py``. * Renamed ``BaseEnvCfg`` to :class:`omni.isaac.lab.envs.ManagerBasedEnvCfg`. * Renamed ``RLTaskEnv`` to :class:`omni.isaac.lab.envs.ManagerBasedRLEnv`. * Renamed ``rl_task_env.py`` to ``manager_based_rl_env.py``. * Renamed ``RLTaskEnvCfg`` to :class:`omni.isaac.lab.envs.ManagerBasedRLEnvCfg`. * Renamed ``rl_task_env_cfg.py`` to ``rl_env_cfg.py``. * Renamed ``OIGEEnv`` to :class:`omni.isaac.lab.envs.DirectRLEnv`. * Renamed ``oige_env.py`` to ``direct_rl_env.py``. * Renamed ``RLTaskEnvWindow`` to :class:`omni.isaac.lab.envs.ui.ManagerBasedRLEnvWindow`. * Renamed ``rl_task_env_window.py`` to ``manager_based_rl_env_window.py``. * Renamed all references of ``BaseEnv``, ``BaseEnvCfg``, ``RLTaskEnv``, ``RLTaskEnvCfg``, ``OIGEEnv``, and ``RLTaskEnvWindow``. Added ^^^^^ * Added direct workflow base class :class:`omni.isaac.lab.envs.DirectRLEnv`. 0.16.4 (2024-05-06) ~~~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Added :class:`omni.isaac.lab.sensors.TiledCamera` to support tiled rendering with RGB and depth. 0.16.3 (2024-04-26) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed parsing of filter prim path expressions in the :class:`omni.isaac.lab.sensors.ContactSensor` class. Earlier, the filter prim paths given to the physics view was not being parsed since they were specified as regex expressions instead of glob expressions. 0.16.2 (2024-04-25) ~~~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Simplified the installation procedure, isaaclab -e is no longer needed * Updated torch dependency to 2.2.2 0.16.1 (2024-04-20) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added attribute :attr:`omni.isaac.lab.sim.ArticulationRootPropertiesCfg.fix_root_link` to fix the root link of an articulation to the world frame. 0.16.0 (2024-04-16) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the function :meth:`omni.isaac.lab.utils.math.quat_unique` to standardize quaternion representations, i.e. always have a non-negative real part. * Added events terms for randomizing mass by scale, simulation joint properties (stiffness, damping, armature, and friction) Fixed ^^^^^ * Added clamping of joint positions and velocities in event terms for resetting joints. The simulation does not throw an error if the set values are out of their range. Hence, users are expected to clamp them before setting. * Fixed :class:`omni.isaac.lab.envs.mdp.EMAJointPositionToLimitsActionCfg` to smoothen the actions at environment frequency instead of simulation frequency. * Renamed the following functions in :meth:`omni.isaac.lab.envs.mdp` to avoid confusions: * Observation: :meth:`joint_pos_norm` -> :meth:`joint_pos_limit_normalized` * Action: :class:`ExponentialMovingAverageJointPositionAction` -> :class:`EMAJointPositionToLimitsAction` * Termination: :meth:`base_height` -> :meth:`root_height_below_minimum` * Termination: :meth:`joint_pos_limit` -> :meth:`joint_pos_out_of_limit` * Termination: :meth:`joint_pos_manual_limit` -> :meth:`joint_pos_out_of_manual_limit` * Termination: :meth:`joint_vel_limit` -> :meth:`joint_vel_out_of_limit` * Termination: :meth:`joint_vel_manual_limit` -> :meth:`joint_vel_out_of_manual_limit` * Termination: :meth:`joint_torque_limit` -> :meth:`joint_effort_out_of_limit` Deprecated ^^^^^^^^^^ * Deprecated the function :meth:`omni.isaac.lab.envs.mdp.add_body_mass` in favor of :meth:`omni.isaac.lab.envs.mdp.randomize_rigid_body_mass`. This supports randomizing the mass based on different operations (add, scale, or set) and sampling distributions. 0.15.13 (2024-04-16) ~~~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Improved startup performance by enabling rendering-based extensions only when necessary and caching of nucleus directory. * Renamed the flag ``OFFSCREEN_RENDER`` or ``--offscreen_render`` to ``ENABLE_CAMERAS`` or ``--enable_cameras`` respectively. 0.15.12 (2024-04-16) ~~~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Replaced calls to the ``check_file_path`` function in the :mod:`omni.isaac.lab.sim.spawners.from_files` with the USD stage resolve identifier function. This helps speed up the loading of assets from file paths by avoiding Nucleus server calls. 0.15.11 (2024-04-15) ~~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the :meth:`omni.isaac.lab.sim.SimulationContext.has_rtx_sensors` method to check if any RTX-related sensors such as cameras have been created in the simulation. This is useful to determine if simulation requires RTX rendering during step or not. Fixed ^^^^^ * Fixed the rendering of RTX-related sensors such as cameras inside the :class:`omni.isaac.lab.envs.RLTaskEnv` class. Earlier the rendering did not happen inside the step function, which caused the sensor data to be empty. 0.15.10 (2024-04-11) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed sharing of the same memory address between returned tensors from observation terms in the :class:`omni.isaac.lab.managers.ObservationManager` class. Earlier, the returned tensors could map to the same memory address, causing issues when the tensors were modified during scaling, clipping or other operations. 0.15.9 (2024-04-04) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed assignment of individual termination terms inside the :class:`omni.isaac.lab.managers.TerminationManager` class. Earlier, the terms were being assigned their values through an OR operation which resulted in incorrect values. This regression was introduced in version 0.15.1. 0.15.8 (2024-04-02) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added option to define ordering of points for the mesh-grid generation in the :func:`omni.isaac.lab.sensors.ray_caster.patterns.grid_pattern`. This parameter defaults to 'xy' for backward compatibility. 0.15.7 (2024-03-28) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Adds option to return indices/data in the specified query keys order in :class:`omni.isaac.lab.managers.SceneEntityCfg` class, and the respective :func:`omni.isaac.lab.utils.string.resolve_matching_names_values` and :func:`omni.isaac.lab.utils.string.resolve_matching_names` functions. 0.15.6 (2024-03-28) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Extended the :class:`omni.isaac.lab.app.AppLauncher` class to support the loading of experience files from the command line. This allows users to load a specific experience file when running the application (such as for multi-camera rendering or headless mode). Changed ^^^^^^^ * Changed default loading of experience files in the :class:`omni.isaac.lab.app.AppLauncher` class from the ones provided by Isaac Sim to the ones provided in Isaac Lab's ``source/apps`` directory. 0.15.5 (2024-03-23) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the env origins in :meth:`_compute_env_origins_grid` of :class:`omni.isaac.lab.terrain.TerrainImporter` to match that obtained from the Isaac Sim :class:`omni.isaac.cloner.GridCloner` class. Added ^^^^^ * Added unit test to ensure consistency between environment origins generated by IsaacSim's Grid Cloner and those produced by the TerrainImporter. 0.15.4 (2024-03-22) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the :class:`omni.isaac.lab.envs.mdp.actions.NonHolonomicActionCfg` class to use the correct variable when applying actions. 0.15.3 (2024-03-21) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added unit test to check that :class:`omni.isaac.lab.scene.InteractiveScene` entity data is not shared between separate instances. Fixed ^^^^^ * Moved class variables in :class:`omni.isaac.lab.scene.InteractiveScene` to correctly be assigned as instance variables. * Removed custom ``__del__`` magic method from :class:`omni.isaac.lab.scene.InteractiveScene`. 0.15.2 (2024-03-21) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Added resolving of relative paths for the main asset USD file when using the :class:`omni.isaac.lab.sim.converters.UrdfConverter` class. This is to ensure that the material paths are resolved correctly when the main asset file is moved to a different location. 0.15.1 (2024-03-19) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the imitation learning workflow example script, updating Isaac Lab and Robomimic API calls. * Removed the resetting of :attr:`_term_dones` in the :meth:`omni.isaac.lab.managers.TerminationManager.reset`. Previously, the environment cleared out all the terms. However, it impaired reading the specific term's values externally. 0.15.0 (2024-03-17) ~~~~~~~~~~~~~~~~~~~ Deprecated ^^^^^^^^^^ * Renamed :class:`omni.isaac.lab.managers.RandomizationManager` to :class:`omni.isaac.lab.managers.EventManager` class for clarification as the manager takes care of events such as reset in addition to pure randomizations. * Renamed :class:`omni.isaac.lab.managers.RandomizationTermCfg` to :class:`omni.isaac.lab.managers.EventTermCfg` for consistency with the class name change. 0.14.1 (2024-03-16) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added simulation schemas for joint drive and fixed tendons. These can be configured for assets imported from file formats. * Added logging of tendon properties to the articulation class (if they are present in the USD prim). 0.14.0 (2024-03-15) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the ordering of body names used in the :class:`omni.isaac.lab.assets.Articulation` class. Earlier, the body names were not following the same ordering as the bodies in the articulation. This led to issues when using the body names to access data related to the links from the articulation view (such as Jacobians, mass matrices, etc.). Removed ^^^^^^^ * Removed the attribute :attr:`body_physx_view` from the :class:`omni.isaac.lab.assets.RigidObject` and :class:`omni.isaac.lab.assets.Articulation` classes. These were causing confusions when used with articulation view since the body names were not following the same ordering. 0.13.1 (2024-03-14) ~~~~~~~~~~~~~~~~~~~ Removed ^^^^^^^ * Removed the :mod:`omni.isaac.lab.compat` module. This module was used to provide compatibility with older versions of Isaac Sim. It is no longer needed since we have most of the functionality absorbed into the main classes. 0.13.0 (2024-03-12) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added support for the following data types inside the :class:`omni.isaac.lab.sensors.Camera` class: ``instance_segmentation_fast`` and ``instance_id_segmentation_fast``. These are GPU-supported annotations and are faster than the regular annotations. Fixed ^^^^^ * Fixed handling of semantic filtering inside the :class:`omni.isaac.lab.sensors.Camera` class. Earlier, the annotator was given ``semanticTypes`` as an argument. However, with Isaac Sim 2023.1, the annotator does not accept this argument. Instead the mapping needs to be set to the synthetic data interface directly. * Fixed the return shape of colored images for segmentation data types inside the :class:`omni.isaac.lab.sensors.Camera` class. Earlier, the images were always returned as ``int32``. Now, they are casted to ``uint8`` 4-channel array before returning if colorization is enabled for the annotation type. Removed ^^^^^^^ * Dropped support for ``instance_segmentation`` and ``instance_id_segmentation`` annotations in the :class:`omni.isaac.lab.sensors.Camera` class. Their "fast" counterparts should be used instead. * Renamed the argument :attr:`omni.isaac.lab.sensors.CameraCfg.semantic_types` to :attr:`omni.isaac.lab.sensors.CameraCfg.semantic_filter`. This is more aligned with Replicator's terminology for semantic filter predicates. * Replaced the argument :attr:`omni.isaac.lab.sensors.CameraCfg.colorize` with separate colorized arguments for each annotation type (:attr:`~omni.isaac.lab.sensors.CameraCfg.colorize_instance_segmentation`, :attr:`~omni.isaac.lab.sensors.CameraCfg.colorize_instance_id_segmentation`, and :attr:`~omni.isaac.lab.sensors.CameraCfg.colorize_semantic_segmentation`). 0.12.4 (2024-03-11) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Adapted randomization terms to deal with ``slice`` for the body indices. Earlier, the terms were not able to handle the slice object and were throwing an error. * Added ``slice`` type-hinting to all body and joint related methods in the rigid body and articulation classes. This is to make it clear that the methods can handle both list of indices and slices. 0.12.3 (2024-03-11) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Added signal handler to the :class:`omni.isaac.lab.app.AppLauncher` class to catch the ``SIGINT`` signal and close the application gracefully. This is to prevent the application from crashing when the user presses ``Ctrl+C`` to close the application. 0.12.2 (2024-03-10) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added observation terms for states of a rigid object in world frame. * Added randomization terms to set root state with randomized orientation and joint state within user-specified limits. * Added reward term for penalizing specific termination terms. Fixed ^^^^^ * Improved sampling of states inside randomization terms. Earlier, the code did multiple torch calls for sampling different components of the vector. Now, it uses a single call to sample the entire vector. 0.12.1 (2024-03-09) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added an option to the last actions observation term to get a specific term by name from the action manager. If None, the behavior remains the same as before (the entire action is returned). 0.12.0 (2024-03-08) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added functionality to sample flat patches on a generated terrain. This can be configured using :attr:`omni.isaac.lab.terrains.SubTerrainBaseCfg.flat_patch_sampling` attribute. * Added a randomization function for setting terrain-aware root state. Through this, an asset can be reset to a randomly sampled flat patches. Fixed ^^^^^ * Separated normal and terrain-base position commands. The terrain based commands rely on the terrain to sample flat patches for setting the target position. * Fixed command resample termination function. Changed ^^^^^^^ * Added the attribute :attr:`omni.isaac.lab.envs.mdp.commands.UniformVelocityCommandCfg.heading_control_stiffness` to control the stiffness of the heading control term in the velocity command term. Earlier, this was hard-coded to 0.5 inside the term. Removed ^^^^^^^ * Removed the function :meth:`sample_new_targets` in the terrain importer. Instead the attribute :attr:`omni.isaac.lab.terrains.TerrainImporter.flat_patches` should be used to sample new targets. 0.11.3 (2024-03-04) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Corrects the functions :func:`omni.isaac.lab.utils.math.axis_angle_from_quat` and :func:`omni.isaac.lab.utils.math.quat_error_magnitude` to accept tensors of the form (..., 4) instead of (N, 4). This brings us in line with our documentation and also upgrades one of our functions to handle higher dimensions. 0.11.2 (2024-03-04) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added checks for default joint position and joint velocity in the articulation class. This is to prevent users from configuring values for these quantities that might be outside the valid range from the simulation. 0.11.1 (2024-02-29) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Replaced the default values for ``joint_ids`` and ``body_ids`` from ``None`` to ``slice(None)`` in the :class:`omni.isaac.lab.managers.SceneEntityCfg`. * Adapted rewards and observations terms so that the users can query a subset of joints and bodies. 0.11.0 (2024-02-27) ~~~~~~~~~~~~~~~~~~~ Removed ^^^^^^^ * Dropped support for Isaac Sim<=2022.2. As part of this, removed the components of :class:`omni.isaac.lab.app.AppLauncher` which handled ROS extension loading. We no longer need them in Isaac Sim>=2023.1 to control the load order to avoid crashes. * Upgraded Dockerfile to use ISAACSIM_VERSION=2023.1.1 by default. 0.10.28 (2024-02-29) ~~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Implemented relative and moving average joint position action terms. These allow the user to specify the target joint positions as relative to the current joint positions or as a moving average of the joint positions over a window of time. 0.10.27 (2024-02-28) ~~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added UI feature to start and stop animation recording in the stage when running an environment. To enable this feature, please pass the argument ``--disable_fabric`` to the environment script to allow USD read/write operations. Be aware that this will slow down the simulation. 0.10.26 (2024-02-26) ~~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added a viewport camera controller class to the :class:`omni.isaac.lab.envs.BaseEnv`. This is useful for applications where the user wants to render the viewport from different perspectives even when the simulation is running in headless mode. 0.10.25 (2024-02-26) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Ensures that all path arguments in :mod:`omni.isaac.lab.sim.utils` are cast to ``str``. Previously, we had handled path types as strings without casting. 0.10.24 (2024-02-26) ~~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added tracking of contact time in the :class:`omni.isaac.lab.sensors.ContactSensor` class. Previously, only the air time was being tracked. * Added contact force threshold, :attr:`omni.isaac.lab.sensors.ContactSensorCfg.force_threshold`, to detect when the contact sensor is in contact. Previously, this was set to hard-coded 1.0 in the sensor class. 0.10.23 (2024-02-21) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixes the order of size arguments in :meth:`omni.isaac.lab.terrains.height_field.random_uniform_terrain`. Previously, the function would crash if the size along x and y were not the same. 0.10.22 (2024-02-14) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed "divide by zero" bug in :class:`~omni.isaac.lab.sim.SimulationContext` when setting gravity vector. Now, it is correctly disabled when the gravity vector is set to zero. 0.10.21 (2024-02-12) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the printing of articulation joint information when the articulation has only one joint. Earlier, the function was performing a squeeze operation on the tensor, which caused an error when trying to index the tensor of shape (1,). 0.10.20 (2024-02-12) ~~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Adds :attr:`omni.isaac.lab.sim.PhysxCfg.enable_enhanced_determinism` to enable improved determinism from PhysX. Please note this comes at the expense of performance. 0.10.19 (2024-02-08) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed environment closing so that articulations, objects, and sensors are cleared properly. 0.10.18 (2024-02-05) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Pinned :mod:`torch` version to 2.0.1 in the setup.py to keep parity version of :mod:`torch` supplied by Isaac 2023.1.1, and prevent version incompatibility between :mod:`torch` ==2.2 and :mod:`typing-extensions` ==3.7.4.3 0.10.17 (2024-02-02) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^^ * Fixed carb setting ``/app/livestream/enabled`` to be set as False unless live-streaming is specified by :class:`omni.isaac.lab.app.AppLauncher` settings. This fixes the logic of :meth:`SimulationContext.render`, which depended on the config in previous versions of Isaac defaulting to false for this setting. 0.10.16 (2024-01-29) ~~~~~~~~~~~~~~~~~~~~ Added ^^^^^^ * Added an offset parameter to the height scan observation term. This allows the user to specify the height offset of the scan from the tracked body. Previously it was hard-coded to be 0.5. 0.10.15 (2024-01-29) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed joint torque computation for implicit actuators. Earlier, the torque was always zero for implicit actuators. Now, it is computed approximately by applying the PD law. 0.10.14 (2024-01-22) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the tensor shape of :attr:`omni.isaac.lab.sensors.ContactSensorData.force_matrix_w`. Earlier, the reshaping led to a mismatch with the data obtained from PhysX. 0.10.13 (2024-01-15) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed running of environments with a single instance even if the :attr:`replicate_physics`` flag is set to True. 0.10.12 (2024-01-10) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed indexing of source and target frames in the :class:`omni.isaac.lab.sensors.FrameTransformer` class. Earlier, it always assumed that the source frame body is at index 0. Now, it uses the body index of the source frame to compute the transformation. Deprecated ^^^^^^^^^^ * Renamed quantities in the :class:`omni.isaac.lab.sensors.FrameTransformerData` class to be more consistent with the terminology used in the asset classes. The following quantities are deprecated: * ``target_rot_w`` -> ``target_quat_w`` * ``source_rot_w`` -> ``source_quat_w`` * ``target_rot_source`` -> ``target_quat_source`` 0.10.11 (2024-01-08) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed attribute error raised when calling the :class:`omni.isaac.lab.envs.mdp.TerrainBasedPositionCommand` command term. * Added a dummy function in :class:`omni.isaac.lab.terrain.TerrainImporter` that returns environment origins as terrain-aware sampled targets. This function should be implemented by child classes based on the terrain type. 0.10.10 (2023-12-21) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed reliance on non-existent ``Viewport`` in :class:`omni.isaac.lab.sim.SimulationContext` when loading livestreaming by ensuring that the extension ``omni.kit.viewport.window`` is enabled in :class:`omni.isaac.lab.app.AppLauncher` when livestreaming is enabled 0.10.9 (2023-12-21) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed invalidation of physics views inside the asset and sensor classes. Earlier, they were left initialized even when the simulation was stopped. This caused issues when closing the application. 0.10.8 (2023-12-20) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the :class:`omni.isaac.lab.envs.mdp.actions.DifferentialInverseKinematicsAction` class to account for the offset pose of the end-effector. 0.10.7 (2023-12-19) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Added a check to ray-cast and camera sensor classes to ensure that the sensor prim path does not have a regex expression at its leaf. For instance, ``/World/Robot/camera_.*`` is not supported for these sensor types. This behavior needs to be fixed in the future. 0.10.6 (2023-12-19) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added support for using articulations as visualization markers. This disables all physics APIs from the articulation and allows the user to use it as a visualization marker. It is useful for creating visualization markers for the end-effectors or base of the robot. Fixed ^^^^^ * Fixed hiding of debug markers from secondary images when using the :class:`omni.isaac.lab.markers.VisualizationMarkers` class. Earlier, the properties were applied on the XForm prim instead of the Mesh prim. 0.10.5 (2023-12-18) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed test ``check_base_env_anymal_locomotion.py``, which previously called :func:`torch.jit.load` with the path to a policy (which would work for a local file), rather than calling :func:`omni.isaac.lab.utils.assets.read_file` on the path to get the file itself. 0.10.4 (2023-12-14) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed potentially breaking import of omni.kit.widget.toolbar by ensuring that if live-stream is enabled, then the :mod:`omni.kit.widget.toolbar` extension is loaded. 0.10.3 (2023-12-12) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the attribute :attr:`omni.isaac.lab.actuators.ActuatorNetMLPCfg.input_order` to specify the order of the input tensors to the MLP network. Fixed ^^^^^ * Fixed computation of metrics for the velocity command term. Earlier, the norm was being computed over the entire batch instead of the last dimension. * Fixed the clipping inside the :class:`omni.isaac.lab.actuators.DCMotor` class. Earlier, it was not able to handle the case when configured saturation limit was set to None. 0.10.2 (2023-12-12) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Added a check in the simulation stop callback in the :class:`omni.isaac.lab.sim.SimulationContext` class to not render when an exception is raised. The while loop in the callback was preventing the application from closing when an exception was raised. 0.10.1 (2023-12-06) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added command manager class with terms defined by :class:`omni.isaac.lab.managers.CommandTerm`. This allow for multiple types of command generators to be used in the same environment. 0.10.0 (2023-12-04) ~~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Modified the sensor and asset base classes to use the underlying PhysX views instead of Isaac Sim views. Using Isaac Sim classes led to a very high load time (of the order of minutes) when using a scene with many assets. This is because Isaac Sim supports USD paths which are slow and not required. Added ^^^^^ * Added faster implementation of USD stage traversal methods inside the :class:`omni.isaac.lab.sim.utils` module. * Added properties :attr:`omni.isaac.lab.assets.AssetBase.num_instances` and :attr:`omni.isaac.lab.sensor.SensorBase.num_instances` to obtain the number of instances of the asset or sensor in the simulation respectively. Removed ^^^^^^^ * Removed dependencies on Isaac Sim view classes. It is no longer possible to use :attr:`root_view` and :attr:`body_view`. Instead use :attr:`root_physx_view` and :attr:`body_physx_view` to access the underlying PhysX views. 0.9.55 (2023-12-03) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the Nucleus directory path in the :attr:`omni.isaac.lab.utils.assets.NVIDIA_NUCLEUS_DIR`. Earlier, it was referring to the ``NVIDIA/Assets`` directory instead of ``NVIDIA``. 0.9.54 (2023-11-29) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed pose computation in the :class:`omni.isaac.lab.sensors.Camera` class to obtain them from XFormPrimView instead of using ``UsdGeomCamera.ComputeLocalToWorldTransform`` method. The latter is not updated correctly during GPU simulation. * Fixed initialization of the annotator info in the class :class:`omni.isaac.lab.sensors.Camera`. Previously all dicts had the same memory address which caused all annotators to have the same info. * Fixed the conversion of ``uint32`` warp arrays inside the :meth:`omni.isaac.lab.utils.array.convert_to_torch` method. PyTorch does not support this type, so it is converted to ``int32`` before converting to PyTorch tensor. * Added render call inside :meth:`omni.isaac.lab.sim.SimulationContext.reset` to initialize Replicator buffers when the simulation is reset. 0.9.53 (2023-11-29) ~~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Changed the behavior of passing :obj:`None` to the :class:`omni.isaac.lab.actuators.ActuatorBaseCfg` class. Earlier, they were resolved to fixed default values. Now, they imply that the values are loaded from the USD joint drive configuration. Added ^^^^^ * Added setting of joint armature and friction quantities to the articulation class. 0.9.52 (2023-11-29) ~~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Changed the warning print in :meth:`omni.isaac.lab.sim.utils.apply_nested` method to be more descriptive. Earlier, it was printing a warning for every instanced prim. Now, it only prints a warning if it could not apply the attribute to any of the prims. Added ^^^^^ * Added the method :meth:`omni.isaac.lab.utils.assets.retrieve_file_path` to obtain the absolute path of a file on the Nucleus server or locally. Fixed ^^^^^ * Fixed hiding of STOP button in the :class:`AppLauncher` class when running the simulation in headless mode. * Fixed a bug with :meth:`omni.isaac.lab.sim.utils.clone` failing when the input prim path had no parent (example: "/Table"). 0.9.51 (2023-11-29) ~~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Changed the :meth:`omni.isaac.lab.sensor.SensorBase.update` method to always recompute the buffers if the sensor is in visualization mode. Added ^^^^^ * Added available entities to the error message when accessing a non-existent entity in the :class:`InteractiveScene` class. * Added a warning message when the user tries to reference an invalid prim in the :class:`FrameTransformer` sensor. 0.9.50 (2023-11-28) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Hid the ``STOP`` button in the UI when running standalone Python scripts. This is to prevent users from accidentally clicking the button and stopping the simulation. They should only be able to play and pause the simulation from the UI. Removed ^^^^^^^ * Removed :attr:`omni.isaac.lab.sim.SimulationCfg.shutdown_app_on_stop`. The simulation is always rendering if it is stopped from the UI. The user needs to close the window or press ``Ctrl+C`` to close the simulation. 0.9.49 (2023-11-27) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added an interface class, :class:`omni.isaac.lab.managers.ManagerTermBase`, to serve as the parent class for term implementations that are functional classes. * Adapted all managers to support terms that are classes and not just functions clearer. This allows the user to create more complex terms that require additional state information. 0.9.48 (2023-11-24) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed initialization of drift in the :class:`omni.isaac.lab.sensors.RayCasterCamera` class. 0.9.47 (2023-11-24) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Automated identification of the root prim in the :class:`omni.isaac.lab.assets.RigidObject` and :class:`omni.isaac.lab.assets.Articulation` classes. Earlier, the root prim was hard-coded to the spawn prim path. Now, the class searches for the root prim under the spawn prim path. 0.9.46 (2023-11-24) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed a critical issue in the asset classes with writing states into physics handles. Earlier, the states were written over all the indices instead of the indices of the asset that were being updated. This caused the physics handles to refresh the states of all the assets in the scene, which is not desirable. 0.9.45 (2023-11-24) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added :class:`omni.isaac.lab.command_generators.UniformPoseCommandGenerator` to generate poses in the asset's root frame by uniformly sampling from a given range. 0.9.44 (2023-11-16) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added methods :meth:`reset` and :meth:`step` to the :class:`omni.isaac.lab.envs.BaseEnv`. This unifies the environment interface for simple standalone applications with the class. 0.9.43 (2023-11-16) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Replaced subscription of physics play and stop events in the :class:`omni.isaac.lab.assets.AssetBase` and :class:`omni.isaac.lab.sensors.SensorBase` classes with subscription to time-line play and stop events. This is to prevent issues in cases where physics first needs to perform mesh cooking and handles are not available immediately. For instance, with deformable meshes. 0.9.42 (2023-11-16) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed setting of damping values from the configuration for :class:`ActuatorBase` class. Earlier, the stiffness values were being set into damping when a dictionary configuration was passed to the actuator model. * Added dealing with :class:`int` and :class:`float` values in the configurations of :class:`ActuatorBase`. Earlier, a type-error was thrown when integer values were passed to the actuator model. 0.9.41 (2023-11-16) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the naming and shaping issues in the binary joint action term. 0.9.40 (2023-11-09) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Simplified the manual initialization of Isaac Sim :class:`ArticulationView` class. Earlier, we basically copied the code from the Isaac Sim source code. Now, we just call their initialize method. Changed ^^^^^^^ * Changed the name of attribute :attr:`default_root_state_w` to :attr:`default_root_state`. The latter is more correct since the data is actually in the local environment frame and not the simulation world frame. 0.9.39 (2023-11-08) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Changed the reference of private ``_body_view`` variable inside the :class:`RigidObject` class to the public ``body_view`` property. For a rigid object, the private variable is not defined. 0.9.38 (2023-11-07) ~~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Upgraded the :class:`omni.isaac.lab.envs.RLTaskEnv` class to support Gym 0.29.0 environment definition. Added ^^^^^ * Added computation of ``time_outs`` and ``terminated`` signals inside the termination manager. These follow the definition mentioned in `Gym 0.29.0 <https://gymnasium.farama.org/tutorials/gymnasium_basics/handling_time_limits/>`_. * Added proper handling of observation and action spaces in the :class:`omni.isaac.lab.envs.RLTaskEnv` class. These now follow closely to how Gym VecEnv handles the spaces. 0.9.37 (2023-11-06) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed broken visualization in :mod:`omni.isaac.lab.sensors.FrameTramsformer` class by overwriting the correct ``_debug_vis_callback`` function. * Moved the visualization marker configurations of sensors to their respective sensor configuration classes. This allows users to set these configurations from the configuration object itself. 0.9.36 (2023-11-03) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Added explicit deleting of different managers in the :class:`omni.isaac.lab.envs.BaseEnv` and :class:`omni.isaac.lab.envs.RLTaskEnv` classes. This is required since deleting the managers is order-sensitive (many managers need to be deleted before the scene is deleted). 0.9.35 (2023-11-02) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the error: ``'str' object has no attribute '__module__'`` introduced by adding the future import inside the :mod:`omni.isaac.lab.utils.warp.kernels` module. Warp language does not support the ``__future__`` imports. 0.9.34 (2023-11-02) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Added missing import of ``from __future__ import annotations`` in the :mod:`omni.isaac.lab.utils.warp` module. This is needed to have a consistent behavior across Python versions. 0.9.33 (2023-11-02) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the :class:`omni.isaac.lab.command_generators.NullCommandGenerator` class. Earlier, it was having a runtime error due to infinity in the resampling time range. Now, the class just overrides the parent methods to perform no operations. 0.9.32 (2023-11-02) ~~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Renamed the :class:`omni.isaac.lab.envs.RLEnv` class to :class:`omni.isaac.lab.envs.RLTaskEnv` to avoid confusions in terminologies between environments and tasks. 0.9.31 (2023-11-02) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the :class:`omni.isaac.lab.sensors.RayCasterCamera` class, as a ray-casting based camera for "distance_to_camera", "distance_to_image_plane" and "normals" annotations. It has the same interface and functionalities as the USD Camera while it is on average 30% faster. 0.9.30 (2023-11-01) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Added skipping of None values in the :class:`InteractiveScene` class when creating the scene from configuration objects. Earlier, it was throwing an error when the user passed a None value for a scene element. * Added ``kwargs`` to the :class:`RLEnv` class to allow passing additional arguments from gym registry function. This is now needed since the registry function passes args beyond the ones specified in the constructor. 0.9.29 (2023-11-01) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the material path resolution inside the :class:`omni.isaac.lab.sim.converters.UrdfConverter` class. With Isaac Sim 2023.1, the material paths from the importer are always saved as absolute paths. This caused issues when the generated USD file was moved to a different location. The fix now resolves the material paths relative to the USD file location. 0.9.28 (2023-11-01) ~~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Changed the way the :func:`omni.isaac.lab.sim.spawners.from_files.spawn_ground_plane` function sets the height of the ground. Earlier, it was reading the height from the configuration object. Now, it expects the desired transformation as inputs to the function. This makes it consistent with the other spawner functions. 0.9.27 (2023-10-31) ~~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Removed the default value of the argument ``camel_case`` in setters of USD attributes. This is to avoid confusion with the naming of the attributes in the USD file. Fixed ^^^^^ * Fixed the selection of material prim in the :class:`omni.isaac.lab.sim.spawners.materials.spawn_preview_surface` method. Earlier, the created prim was being selected in the viewport which interfered with the selection of prims by the user. * Updated :class:`omni.isaac.lab.sim.converters.MeshConverter` to use a different stage than the default stage for the conversion. This is to avoid the issue of the stage being closed when the conversion is done. 0.9.26 (2023-10-31) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the sensor implementation for :class:`omni.isaac.lab.sensors.FrameTransformer` class. Currently, it handles obtaining the transformation between two frames in the same articulation. 0.9.25 (2023-10-27) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the :mod:`omni.isaac.lab.envs.ui` module to put all the UI-related classes in one place. This currently implements the :class:`omni.isaac.lab.envs.ui.BaseEnvWindow` and :class:`omni.isaac.lab.envs.ui.RLEnvWindow` classes. Users can inherit from these classes to create their own UI windows. * Added the attribute :attr:`omni.isaac.lab.envs.BaseEnvCfg.ui_window_class_type` to specify the UI window class to be used for the environment. This allows the user to specify their own UI window class to be used for the environment. 0.9.24 (2023-10-27) ~~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Changed the behavior of setting up debug visualization for assets, sensors and command generators. Earlier it was raising an error if debug visualization was not enabled in the configuration object. Now it checks whether debug visualization is implemented and only sets up the callback if it is implemented. 0.9.23 (2023-10-27) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed a typo in the :class:`AssetBase` and :class:`SensorBase` that effected the class destructor. Earlier, a tuple was being created in the constructor instead of the actual object. 0.9.22 (2023-10-26) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added a :class:`omni.isaac.lab.command_generators.NullCommandGenerator` class for no command environments. This is easier to work with than having checks for :obj:`None` in the command generator. Fixed ^^^^^ * Moved the randomization manager to the :class:`omni.isaac.lab.envs.BaseEnv` class with the default settings to reset the scene to the defaults specified in the configurations of assets. * Moved command generator to the :class:`omni.isaac.lab.envs.RlEnv` class to have all task-specification related classes in the same place. 0.9.21 (2023-10-26) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Decreased the priority of callbacks in asset and sensor base classes. This may help in preventing crashes when warm starting the simulation. * Fixed no rendering mode when running the environment from the GUI. Earlier the function :meth:`SimulationContext.set_render_mode` was erroring out. 0.9.20 (2023-10-25) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Changed naming in :class:`omni.isaac.lab.sim.SimulationContext.RenderMode` to use ``NO_GUI_OR_RENDERING`` and ``NO_RENDERING`` instead of ``HEADLESS`` for clarity. * Changed :class:`omni.isaac.lab.sim.SimulationContext` to be capable of handling livestreaming and offscreen rendering. * Changed :class:`omni.isaac.lab.app.AppLauncher` envvar ``VIEWPORT_RECORD`` to the more descriptive ``OFFSCREEN_RENDER``. 0.9.19 (2023-10-25) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added Gym observation and action spaces for the :class:`omni.isaac.lab.envs.RLEnv` class. 0.9.18 (2023-10-23) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Created :class:`omni.isaac.lab.sim.converters.asset_converter.AssetConverter` to serve as a base class for all asset converters. * Added :class:`omni.isaac.lab.sim.converters.mesh_converter.MeshConverter` to handle loading and conversion of mesh files (OBJ, STL and FBX) into USD format. * Added script ``convert_mesh.py`` to ``source/tools`` to allow users to convert a mesh to USD via command line arguments. Changed ^^^^^^^ * Renamed the submodule :mod:`omni.isaac.lab.sim.loaders` to :mod:`omni.isaac.lab.sim.converters` to be more general with the functionality of the module. * Updated ``check_instanceable.py`` script to convert relative paths to absolute paths. 0.9.17 (2023-10-22) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added setters and getters for term configurations in the :class:`RandomizationManager`, :class:`RewardManager` and :class:`TerminationManager` classes. This allows the user to modify the term configurations after the manager has been created. * Added the method :meth:`compute_group` to the :class:`omni.isaac.lab.managers.ObservationManager` class to compute the observations for only a given group. * Added the curriculum term for modifying reward weights after certain environment steps. 0.9.16 (2023-10-22) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added support for keyword arguments for terms in the :class:`omni.isaac.lab.managers.ManagerBase`. Fixed ^^^^^ * Fixed resetting of buffers in the :class:`TerminationManager` class. Earlier, the values were being set to ``0.0`` instead of ``False``. 0.9.15 (2023-10-22) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added base yaw heading and body acceleration into :class:`omni.isaac.lab.assets.RigidObjectData` class. These quantities are computed inside the :class:`RigidObject` class. Fixed ^^^^^ * Fixed the :meth:`omni.isaac.lab.assets.RigidObject.set_external_force_and_torque` method to correctly deal with the body indices. * Fixed a bug in the :meth:`omni.isaac.lab.utils.math.wrap_to_pi` method to prevent self-assignment of the input tensor. 0.9.14 (2023-10-21) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added 2-D drift (i.e. along x and y) to the :class:`omni.isaac.lab.sensors.RayCaster` class. * Added flags to the :class:`omni.isaac.lab.sensors.ContactSensorCfg` to optionally obtain the sensor origin and air time information. Since these are not required by default, they are disabled by default. Fixed ^^^^^ * Fixed the handling of contact sensor history buffer in the :class:`omni.isaac.lab.sensors.ContactSensor` class. Earlier, the buffer was not being updated correctly. 0.9.13 (2023-10-20) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the issue with double :obj:`Ellipsis` when indexing tensors with multiple dimensions. The fix now uses :obj:`slice(None)` instead of :obj:`Ellipsis` to index the tensors. 0.9.12 (2023-10-18) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed bugs in actuator model implementation for actuator nets. Earlier the DC motor clipping was not working. * Fixed bug in applying actuator model in the :class:`omni.isaac.lab.asset.Articulation` class. The new implementation caches the outputs from explicit actuator model into the ``joint_pos_*_sim`` buffer to avoid feedback loops in the tensor operation. 0.9.11 (2023-10-17) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the support for semantic tags into the :class:`omni.isaac.lab.sim.spawner.SpawnerCfg` class. This allows the user to specify the semantic tags for a prim when spawning it into the scene. It follows the same format as Omniverse Replicator. 0.9.10 (2023-10-16) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added ``--livestream`` and ``--ros`` CLI args to :class:`omni.isaac.lab.app.AppLauncher` class. * Added a static function :meth:`omni.isaac.lab.app.AppLauncher.add_app_launcher_args`, which appends the arguments needed for :class:`omni.isaac.lab.app.AppLauncher` to the argument parser. Changed ^^^^^^^ * Within :class:`omni.isaac.lab.app.AppLauncher`, removed ``REMOTE_DEPLOYMENT`` env-var processing in the favor of ``HEADLESS`` and ``LIVESTREAM`` env-vars. These have clearer uses and better parity with the CLI args. 0.9.9 (2023-10-12) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the property :attr:`omni.isaac.lab.assets.Articulation.is_fixed_base` to the articulation class to check if the base of the articulation is fixed or floating. * Added the task-space action term corresponding to the differential inverse-kinematics controller. Fixed ^^^^^ * Simplified the :class:`omni.isaac.lab.controllers.DifferentialIKController` to assume that user provides the correct end-effector poses and Jacobians. Earlier it was doing internal frame transformations which made the code more complicated and error-prone. 0.9.8 (2023-09-30) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the boundedness of class objects that register callbacks into the simulator. These include devices, :class:`AssetBase`, :class:`SensorBase` and :class:`CommandGenerator`. The fix ensures that object gets deleted when the user deletes the object. 0.9.7 (2023-09-26) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Modified the :class:`omni.isaac.lab.markers.VisualizationMarkers` to use the :class:`omni.isaac.lab.sim.spawner.SpawnerCfg` class instead of their own configuration objects. This makes it consistent with the other ways to spawn assets in the scene. Added ^^^^^ * Added the method :meth:`copy` to configclass to allow copying of configuration objects. 0.9.6 (2023-09-26) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Changed class-level configuration classes to refer to class types using ``class_type`` attribute instead of ``cls`` or ``cls_name``. 0.9.5 (2023-09-25) ~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Added future import of ``annotations`` to have a consistent behavior across Python versions. * Removed the type-hinting from docstrings to simplify maintenance of the documentation. All type-hints are now in the code itself. 0.9.4 (2023-08-29) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added :class:`omni.isaac.lab.scene.InteractiveScene`, as the central scene unit that contains all entities that are part of the simulation. These include the terrain, sensors, articulations, rigid objects etc. The scene groups the common operations of these entities and allows to access them via their unique names. * Added :mod:`omni.isaac.lab.envs` module that contains environment definitions that encapsulate the different general (scene, action manager, observation manager) and RL-specific (reward and termination manager) managers. * Added :class:`omni.isaac.lab.managers.SceneEntityCfg` to handle which scene elements are required by the manager's terms. This allows the manager to parse useful information from the scene elements, such as the joint and body indices, and pass them to the term. * Added :class:`omni.isaac.lab.sim.SimulationContext.RenderMode` to handle different rendering modes based on what the user wants to update (viewport, cameras, or UI elements). Fixed ^^^^^ * Fixed the :class:`omni.isaac.lab.command_generators.CommandGeneratorBase` to register a debug visualization callback similar to how sensors and robots handle visualization. 0.9.3 (2023-08-23) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Enabled the `faulthander <https://docs.python.org/3/library/faulthandler.html>`_ to catch segfaults and print the stack trace. This is enabled by default in the :class:`omni.isaac.lab.app.AppLauncher` class. Fixed ^^^^^ * Re-added the :mod:`omni.isaac.lab.utils.kit` to the ``compat`` directory and fixed all the references to it. * Fixed the deletion of Replicator nodes for the :class:`omni.isaac.lab.sensors.Camera` class. Earlier, the Replicator nodes were not being deleted when the camera was deleted. However, this does not prevent the random crashes that happen when the camera is deleted. * Fixed the :meth:`omni.isaac.lab.utils.math.convert_quat` to support both numpy and torch tensors. Changed ^^^^^^^ * Renamed all the scripts inside the ``test`` directory to follow the convention: * ``test_<module_name>.py``: Tests for the module ``<module_name>`` using unittest. * ``check_<module_name>``: Check for the module ``<module_name>`` using python main function. 0.9.2 (2023-08-22) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the ability to color meshes in the :class:`omni.isaac.lab.terrain.TerrainGenerator` class. Currently, it only supports coloring the mesh randomly (``"random"``), based on the terrain height (``"height"``), and no coloring (``"none"``). Fixed ^^^^^ * Modified the :class:`omni.isaac.lab.terrain.TerrainImporter` class to configure visual and physics materials based on the configuration object. 0.9.1 (2023-08-18) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Introduced three different rotation conventions in the :class:`omni.isaac.lab.sensors.Camera` class. These conventions are: * ``opengl``: the camera is looking down the -Z axis with the +Y axis pointing up * ``ros``: the camera is looking down the +Z axis with the +Y axis pointing down * ``world``: the camera is looking along the +X axis with the -Z axis pointing down These can be used to declare the camera offset in :class:`omni.isaac.lab.sensors.CameraCfg.OffsetCfg` class and in :meth:`omni.isaac.lab.sensors.Camera.set_world_pose` method. Additionally, all conventions are saved to :class:`omni.isaac.lab.sensors.CameraData` class for easy access. Changed ^^^^^^^ * Adapted all the sensor classes to follow a structure similar to the :class:`omni.isaac.lab.assets.AssetBase`. Hence, the spawning and initialization of sensors manually by the users is avoided. * Removed the :meth:`debug_vis` function since that this functionality is handled by a render callback automatically (based on the passed configuration for the :class:`omni.isaac.lab.sensors.SensorBaseCfg.debug_vis` flag). 0.9.0 (2023-08-18) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Introduces a new set of asset interfaces. These interfaces simplify the spawning of assets into the scene and initializing the physics handle by putting that inside post-startup physics callbacks. With this, users no longer need to worry about the :meth:`spawn` and :meth:`initialize` calls. * Added utility methods to :mod:`omni.isaac.lab.utils.string` module that resolve regex expressions based on passed list of target keys. Changed ^^^^^^^ * Renamed all references of joints in an articulation from "dof" to "joint". This makes it consistent with the terminology used in robotics. Deprecated ^^^^^^^^^^ * Removed the previous modules for objects and robots. Instead the :class:`Articulation` and :class:`RigidObject` should be used. 0.8.12 (2023-08-18) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added other properties provided by ``PhysicsScene`` to the :class:`omni.isaac.lab.sim.SimulationContext` class to allow setting CCD, solver iterations, etc. * Added commonly used functions to the :class:`SimulationContext` class itself to avoid having additional imports from Isaac Sim when doing simple tasks such as setting camera view or retrieving the simulation settings. Fixed ^^^^^ * Switched the notations of default buffer values in :class:`omni.isaac.lab.sim.PhysxCfg` from multiplication to scientific notation to avoid confusion with the values. 0.8.11 (2023-08-18) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Adds utility functions and configuration objects in the :mod:`omni.isaac.lab.sim.spawners` to create the following prims in the scene: * :mod:`omni.isaac.lab.sim.spawners.from_file`: Create a prim from a USD/URDF file. * :mod:`omni.isaac.lab.sim.spawners.shapes`: Create USDGeom prims for shapes (box, sphere, cylinder, capsule, etc.). * :mod:`omni.isaac.lab.sim.spawners.materials`: Create a visual or physics material prim. * :mod:`omni.isaac.lab.sim.spawners.lights`: Create a USDLux prim for different types of lights. * :mod:`omni.isaac.lab.sim.spawners.sensors`: Create a USD prim for supported sensors. Changed ^^^^^^^ * Modified the :class:`SimulationContext` class to take the default physics material using the material spawn configuration object. 0.8.10 (2023-08-17) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added methods for defining different physics-based schemas in the :mod:`omni.isaac.lab.sim.schemas` module. These methods allow creating the schema if it doesn't exist at the specified prim path and modify its properties based on the configuration object. 0.8.9 (2023-08-09) ~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Moved the :class:`omni.isaac.lab.asset_loader.UrdfLoader` class to the :mod:`omni.isaac.lab.sim.loaders` module to make it more accessible to the user. 0.8.8 (2023-08-09) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added configuration classes and functions for setting different physics-based schemas in the :mod:`omni.isaac.lab.sim.schemas` module. These allow modifying properties of the physics solver on the asset using configuration objects. 0.8.7 (2023-08-03) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Added support for `__post_init__ <https://docs.python.org/3/library/dataclasses.html#post-init-processing>`_ in the :class:`omni.isaac.lab.utils.configclass` decorator. 0.8.6 (2023-08-03) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added support for callable classes in the :class:`omni.isaac.lab.managers.ManagerBase`. 0.8.5 (2023-08-03) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the :class:`omni.isaac.lab.markers.Visualizationmarkers` class so that the markers are not visible in camera rendering mode. Changed ^^^^^^^ * Simplified the creation of the point instancer in the :class:`omni.isaac.lab.markers.Visualizationmarkers` class. It now creates a new prim at the next available prim path if a prim already exists at the given path. 0.8.4 (2023-08-02) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the :class:`omni.isaac.lab.sim.SimulationContext` class to the :mod:`omni.isaac.lab.sim` module. This class inherits from the :class:`omni.isaac.core.simulation_context.SimulationContext` class and adds the ability to create a simulation context from a configuration object. 0.8.3 (2023-08-02) ~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Moved the :class:`ActuatorBase` class to the :mod:`omni.isaac.lab.actuators.actuator_base` module. * Renamed the :mod:`omni.isaac.lab.actuators.actuator` module to :mod:`omni.isaac.lab.actuators.actuator_pd` to make it more explicit that it contains the PD actuator models. 0.8.2 (2023-08-02) ~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Cleaned up the :class:`omni.isaac.lab.terrain.TerrainImporter` class to take all the parameters from the configuration object. This makes it consistent with the other classes in the package. * Moved the configuration classes for terrain generator and terrain importer into separate files to resolve circular dependency issues. 0.8.1 (2023-08-02) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Added a hack into :class:`omni.isaac.lab.app.AppLauncher` class to remove Isaac Lab packages from the path before launching the simulation application. This prevents the warning messages that appears when the user launches the ``SimulationApp``. Added ^^^^^ * Enabled necessary viewport extensions in the :class:`omni.isaac.lab.app.AppLauncher` class itself if ``VIEWPORT_ENABLED`` flag is true. 0.8.0 (2023-07-26) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the :class:`ActionManager` class to the :mod:`omni.isaac.lab.managers` module to handle actions in the environment through action terms. * Added contact force history to the :class:`omni.isaac.lab.sensors.ContactSensor` class. The history is stored in the ``net_forces_w_history`` attribute of the sensor data. Changed ^^^^^^^ * Implemented lazy update of buffers in the :class:`omni.isaac.lab.sensors.SensorBase` class. This allows the user to update the sensor data only when required, i.e. when the data is requested by the user. This helps avoid double computation of sensor data when a reset is called in the environment. Deprecated ^^^^^^^^^^ * Removed the support for different backends in the sensor class. We only use Pytorch as the backend now. * Removed the concept of actuator groups. They are now handled by the :class:`omni.isaac.lab.managers.ActionManager` class. The actuator models are now directly handled by the robot class itself. 0.7.4 (2023-07-26) ~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Changed the behavior of the :class:`omni.isaac.lab.terrains.TerrainImporter` class. It now expects the terrain type to be specified in the configuration object. This allows the user to specify everything in the configuration object and not have to do an explicit call to import a terrain. Fixed ^^^^^ * Fixed setting of quaternion orientations inside the :class:`omni.isaac.lab.markers.Visualizationmarkers` class. Earlier, the orientation was being set into the point instancer in the wrong order (``wxyz`` instead of ``xyzw``). 0.7.3 (2023-07-25) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the issue with multiple inheritance in the :class:`omni.isaac.lab.utils.configclass` decorator. Earlier, if the inheritance tree was more than one level deep and the lowest level configuration class was not updating its values from the middle level classes. 0.7.2 (2023-07-24) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the method :meth:`replace` to the :class:`omni.isaac.lab.utils.configclass` decorator to allow creating a new configuration object with values replaced from keyword arguments. This function internally calls the `dataclasses.replace <https://docs.python.org/3/library/dataclasses.html#dataclasses.replace>`_. Fixed ^^^^^ * Fixed the handling of class types as member values in the :meth:`omni.isaac.lab.utils.configclass`. Earlier it was throwing an error since class types were skipped in the if-else block. 0.7.1 (2023-07-22) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the :class:`TerminationManager`, :class:`CurriculumManager`, and :class:`RandomizationManager` classes to the :mod:`omni.isaac.lab.managers` module to handle termination, curriculum, and randomization respectively. 0.7.0 (2023-07-22) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Created a new :mod:`omni.isaac.lab.managers` module for all the managers related to the environment / scene. This includes the :class:`omni.isaac.lab.managers.ObservationManager` and :class:`omni.isaac.lab.managers.RewardManager` classes that were previously in the :mod:`omni.isaac.lab.utils.mdp` module. * Added the :class:`omni.isaac.lab.managers.ManagerBase` class to handle the creation of managers. * Added configuration classes for :class:`ObservationTermCfg` and :class:`RewardTermCfg` to allow easy creation of observation and reward terms. Changed ^^^^^^^ * Changed the behavior of :class:`ObservationManager` and :class:`RewardManager` classes to accept the key ``func`` in each configuration term to be a callable. This removes the need to inherit from the base class and allows more reusability of the functions across different environments. * Moved the old managers to the :mod:`omni.isaac.lab.compat.utils.mdp` module. * Modified the necessary scripts to use the :mod:`omni.isaac.lab.compat.utils.mdp` module. 0.6.2 (2023-07-21) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the :mod:`omni.isaac.lab.command_generators` to generate different commands based on the desired task. It allows the user to generate commands for different tasks in the same environment without having to write custom code for each task. 0.6.1 (2023-07-16) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the :meth:`omni.isaac.lab.utils.math.quat_apply_yaw` to compute the yaw quaternion correctly. Added ^^^^^ * Added functions to convert string and callable objects in :mod:`omni.isaac.lab.utils.string`. 0.6.0 (2023-07-16) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the argument :attr:`sort_keys` to the :meth:`omni.isaac.lab.utils.io.yaml.dump_yaml` method to allow enabling/disabling of sorting of keys in the output yaml file. Fixed ^^^^^ * Fixed the ordering of terms in :mod:`omni.isaac.lab.utils.configclass` to be consistent in the order in which they are defined. Previously, the ordering was done alphabetically which made it inconsistent with the order in which the parameters were defined. Changed ^^^^^^^ * Changed the default value of the argument :attr:`sort_keys` in the :meth:`omni.isaac.lab.utils.io.yaml.dump_yaml` method to ``False``. * Moved the old config classes in :mod:`omni.isaac.lab.utils.configclass` to :mod:`omni.isaac.lab.compat.utils.configclass` so that users can still run their old code where alphabetical ordering was used. 0.5.0 (2023-07-04) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added a generalized :class:`omni.isaac.lab.sensors.SensorBase` class that leverages the ideas of views to handle multiple sensors in a single class. * Added the classes :class:`omni.isaac.lab.sensors.RayCaster`, :class:`omni.isaac.lab.sensors.ContactSensor`, and :class:`omni.isaac.lab.sensors.Camera` that output a batched tensor of sensor data. Changed ^^^^^^^ * Renamed the parameter ``sensor_tick`` to ``update_freq`` to make it more intuitive. * Moved the old sensors in :mod:`omni.isaac.lab.sensors` to :mod:`omni.isaac.lab.compat.sensors`. * Modified the standalone scripts to use the :mod:`omni.isaac.lab.compat.sensors` module. 0.4.4 (2023-07-05) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the :meth:`omni.isaac.lab.terrains.trimesh.utils.make_plane` method to handle the case when the plane origin does not need to be centered. * Added the :attr:`omni.isaac.lab.terrains.TerrainGeneratorCfg.seed` to make generation of terrains reproducible. The default value is ``None`` which means that the seed is not set. Changed ^^^^^^^ * Changed the saving of ``origins`` in :class:`omni.isaac.lab.terrains.TerrainGenerator` class to be in CSV format instead of NPY format. 0.4.3 (2023-06-28) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the :class:`omni.isaac.lab.markers.PointInstancerMarker` class that wraps around `UsdGeom.PointInstancer <https://graphics.pixar.com/usd/dev/api/class_usd_geom_point_instancer.html>`_ to directly work with torch and numpy arrays. Changed ^^^^^^^ * Moved the old markers in :mod:`omni.isaac.lab.markers` to :mod:`omni.isaac.lab.compat.markers`. * Modified the standalone scripts to use the :mod:`omni.isaac.lab.compat.markers` module. 0.4.2 (2023-06-28) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the sub-module :mod:`omni.isaac.lab.terrains` to allow procedural generation of terrains and supporting importing of terrains from different sources (meshes, usd files or default ground plane). 0.4.1 (2023-06-27) ~~~~~~~~~~~~~~~~~~ * Added the :class:`omni.isaac.lab.app.AppLauncher` class to allow controlled instantiation of the `SimulationApp <https://docs.omniverse.nvidia.com/py/isaacsim/source/extensions/omni.isaac.kit/docs/index.html>`_ and extension loading for remote deployment and ROS bridges. Changed ^^^^^^^ * Modified all standalone scripts to use the :class:`omni.isaac.lab.app.AppLauncher` class. 0.4.0 (2023-05-27) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added a helper class :class:`omni.isaac.lab.asset_loader.UrdfLoader` that converts a URDF file to instanceable USD file based on the input configuration object. 0.3.2 (2023-04-27) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Added safe-printing of functions while using the :meth:`omni.isaac.lab.utils.dict.print_dict` function. 0.3.1 (2023-04-23) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added a modified version of ``lula_franka_gen.urdf`` which includes an end-effector frame. * Added a standalone script ``play_rmpflow.py`` to show RMPFlow controller. Fixed ^^^^^ * Fixed the splitting of commands in the :meth:`ActuatorGroup.compute` method. Earlier it was reshaping the commands to the shape ``(num_actuators, num_commands)`` which was causing the commands to be split incorrectly. * Fixed the processing of actuator command in the :meth:`RobotBase._process_actuators_cfg` to deal with multiple command types when using "implicit" actuator group. 0.3.0 (2023-04-20) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Added the destructor to the keyboard devices to unsubscribe from carb. Added ^^^^^ * Added the :class:`Se2Gamepad` and :class:`Se3Gamepad` for gamepad teleoperation support. 0.2.8 (2023-04-10) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed bugs in :meth:`axis_angle_from_quat` in the ``omni.isaac.lab.utils.math`` to handle quaternion with negative w component. * Fixed bugs in :meth:`subtract_frame_transforms` in the ``omni.isaac.lab.utils.math`` by adding the missing final rotation. 0.2.7 (2023-04-07) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed repetition in applying mimic multiplier for "p_abs" in the :class:`GripperActuatorGroup` class. * Fixed bugs in :meth:`reset_buffers` in the :class:`RobotBase` and :class:`LeggedRobot` classes. 0.2.6 (2023-03-16) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the :class:`CollisionPropertiesCfg` to rigid/articulated object and robot base classes. * Added the :class:`PhysicsMaterialCfg` to the :class:`SingleArm` class for tool sites. Changed ^^^^^^^ * Changed the default control mode of the :obj:`PANDA_HAND_MIMIC_GROUP_CFG` to be from ``"v_abs"`` to ``"p_abs"``. Using velocity control for the mimic group can cause the hand to move in a jerky manner. 0.2.5 (2023-03-08) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the indices used for the Jacobian and dynamics quantities in the :class:`MobileManipulator` class. 0.2.4 (2023-03-04) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added :meth:`apply_nested_physics_material` to the ``omni.isaac.lab.utils.kit``. * Added the :meth:`sample_cylinder` to sample points from a cylinder's surface. * Added documentation about the issue in using instanceable asset as markers. Fixed ^^^^^ * Simplified the physics material application in the rigid object and legged robot classes. Removed ^^^^^^^ * Removed the ``geom_prim_rel_path`` argument in the :class:`RigidObjectCfg.MetaInfoCfg` class. 0.2.3 (2023-02-24) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the end-effector body index used for getting the Jacobian in the :class:`SingleArm` and :class:`MobileManipulator` classes. 0.2.2 (2023-01-27) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the :meth:`set_world_pose_ros` and :meth:`set_world_pose_from_view` in the :class:`Camera` class. Deprecated ^^^^^^^^^^ * Removed the :meth:`set_world_pose_from_ypr` method from the :class:`Camera` class. 0.2.1 (2023-01-26) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the :class:`Camera` class to support different fisheye projection types. 0.2.0 (2023-01-25) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added support for warp backend in camera utilities. * Extended the ``play_camera.py`` with ``--gpu`` flag to use GPU replicator backend. 0.1.1 (2023-01-24) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed setting of physics material on the ground plane when using :meth:`omni.isaac.lab.utils.kit.create_ground_plane` function. 0.1.0 (2023-01-17) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Initial release of the extension with experimental API. * Available robot configurations: * **Quadrupeds:** Unitree A1, ANYmal B, ANYmal C * **Single-arm manipulators:** Franka Emika arm, UR5 * **Mobile manipulators:** Clearpath Ridgeback with Franka Emika arm or UR5
70,832
reStructuredText
29.544631
189
0.70982
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/docs/README.md
# Isaac Lab: Framework Isaac Lab includes its own set of interfaces and wrappers around Isaac Sim classes. One of the main goals behind this decision is to have a unified description for different systems. While isaac Sim tries to be general for a wider variety of simulation requires, our goal has been to specialize these for learning requirements. These include features such as augmenting simulators with non-ideal actuator models, managing different observation and reward settings, integrate different sensors, as well as provide interfaces to features that are currently not available in Isaac Sim but are available from the physics side (such as deformable bodies). We recommend the users to try out the demo scripts present in `standalone/demos` that display how different parts of the framework can be integrated together.
835
Markdown
68.666661
117
0.821557
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/pyproject.toml
[build-system] requires = ["setuptools", "wheel", "toml"] build-backend = "setuptools.build_meta"
98
TOML
23.749994
42
0.704082
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/setup.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Installation script for the 'omni.isaac.lab_tasks' python package.""" import itertools import os import platform import toml from setuptools import setup # Obtain the extension data from the extension.toml file EXTENSION_PATH = os.path.dirname(os.path.realpath(__file__)) # Read the extension.toml file EXTENSION_TOML_DATA = toml.load(os.path.join(EXTENSION_PATH, "config", "extension.toml")) # Minimum dependencies required prior to installation INSTALL_REQUIRES = [ # generic "numpy", "torch>=2.2.2", "torchvision>=0.14.1", # ensure compatibility with torch 1.13.1 # 5.26.0 introduced a breaking change, so we restricted it for now. # See issue https://github.com/tensorflow/tensorboard/issues/6808 for details. "protobuf>=3.20.2, < 5.0.0", # data collection "h5py", # basic logger "tensorboard", # video recording "moviepy", ] # Extra dependencies for RL agents EXTRAS_REQUIRE = { "sb3": ["stable-baselines3>=2.1"], "skrl": ["skrl>=1.1.0"], "rl-games": ["rl-games==1.6.1", "gym"], # rl-games still needs gym :( "rsl-rl": ["rsl-rl@git+https://github.com/leggedrobotics/rsl_rl.git"], "robomimic": [], } # Check if the platform is Linux and add the dependency if platform.system() == "Linux": EXTRAS_REQUIRE["robomimic"].append("robomimic@git+https://github.com/ARISE-Initiative/robomimic.git") # cumulation of all extra-requires EXTRAS_REQUIRE["all"] = list(itertools.chain.from_iterable(EXTRAS_REQUIRE.values())) # Installation operation setup( name="omni-isaac-lab_tasks", author="Isaac Lab Project Developers", maintainer="Isaac Lab Project Developers", url=EXTENSION_TOML_DATA["package"]["repository"], version=EXTENSION_TOML_DATA["package"]["version"], description=EXTENSION_TOML_DATA["package"]["description"], keywords=EXTENSION_TOML_DATA["package"]["keywords"], include_package_data=True, python_requires=">=3.10", install_requires=INSTALL_REQUIRES, extras_require=EXTRAS_REQUIRE, packages=["omni.isaac.lab_tasks"], classifiers=[ "Natural Language :: English", "Programming Language :: Python :: 3.10", "Isaac Sim :: 4.0.0", "Isaac Sim :: 2023.1.1", ], zip_safe=False, )
2,389
Python
30.447368
105
0.678527
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/test/test_environments.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.lab.app import AppLauncher, run_tests # launch the simulator app_launcher = AppLauncher(headless=True, enable_cameras=True) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import torch import unittest import omni.usd from omni.isaac.lab.envs import ManagerBasedRLEnv, ManagerBasedRLEnvCfg import omni.isaac.lab_tasks # noqa: F401 from omni.isaac.lab_tasks.utils.parse_cfg import parse_env_cfg class TestEnvironments(unittest.TestCase): """Test cases for all registered environments.""" @classmethod def setUpClass(cls): # acquire all Isaac environments names cls.registered_tasks = list() for task_spec in gym.registry.values(): if "Isaac" in task_spec.id and not task_spec.id.endswith("Play-v0"): cls.registered_tasks.append(task_spec.id) # sort environments by name cls.registered_tasks.sort() # print all existing task names print(">>> All registered environments:", cls.registered_tasks) """ Test fixtures. """ def test_multiple_instances_gpu(self): """Run all environments with multiple instances and check environments return valid signals.""" # common parameters num_envs = 32 use_gpu = True # iterate over all registered environments for task_name in self.registered_tasks: with self.subTest(task_name=task_name): print(f">>> Running test for environment: {task_name}") # check environment self._check_random_actions(task_name, use_gpu, num_envs, num_steps=100) # close the environment print(f">>> Closing environment: {task_name}") print("-" * 80) def test_single_instance_gpu(self): """Run all environments with single instance and check environments return valid signals.""" # common parameters num_envs = 1 use_gpu = True # iterate over all registered environments for task_name in self.registered_tasks: with self.subTest(task_name=task_name): print(f">>> Running test for environment: {task_name}") # check environment self._check_random_actions(task_name, use_gpu, num_envs, num_steps=100) # close the environment print(f">>> Closing environment: {task_name}") print("-" * 80) """ Helper functions. """ def _check_random_actions(self, task_name: str, use_gpu: bool, num_envs: int, num_steps: int = 1000): """Run random actions and check environments return valid signals.""" # create a new stage omni.usd.get_context().new_stage() # parse configuration env_cfg: ManagerBasedRLEnvCfg = parse_env_cfg(task_name, use_gpu=use_gpu, num_envs=num_envs) # create environment env: ManagerBasedRLEnv = gym.make(task_name, cfg=env_cfg) # reset environment obs, _ = env.reset() # check signal self.assertTrue(self._check_valid_tensor(obs)) # simulate environment for num_steps steps with torch.inference_mode(): for _ in range(num_steps): # sample actions from -1 to 1 actions = 2 * torch.rand(env.action_space.shape, device=env.unwrapped.device) - 1 # apply actions transition = env.step(actions) # check signals for data in transition: self.assertTrue(self._check_valid_tensor(data), msg=f"Invalid data: {data}") # close the environment env.close() @staticmethod def _check_valid_tensor(data: torch.Tensor | dict) -> bool: """Checks if given data does not have corrupted values. Args: data: Data buffer. Returns: True if the data is valid. """ if isinstance(data, torch.Tensor): return not torch.any(torch.isnan(data)) elif isinstance(data, dict): valid_tensor = True for value in data.values(): if isinstance(value, dict): valid_tensor &= TestEnvironments._check_valid_tensor(value) elif isinstance(value, torch.Tensor): valid_tensor &= not torch.any(torch.isnan(value)) return valid_tensor else: raise ValueError(f"Input data of invalid type: {type(data)}.") if __name__ == "__main__": run_tests()
4,769
Python
34.333333
105
0.604949
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/test/test_data_collector.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.lab.app import AppLauncher, run_tests # launch the simulator app_launcher = AppLauncher(headless=True) simulation_app = app_launcher.app """Rest everything follows.""" import os import torch import unittest from omni.isaac.lab_tasks.utils.data_collector import RobomimicDataCollector class TestRobomimicDataCollector(unittest.TestCase): """Test dataset flushing behavior of robomimic data collector.""" def test_basic_flushing(self): """Adds random data into the collector and checks saving of the data.""" # name of the environment (needed by robomimic) task_name = "My-Task-v0" # specify directory for logging experiments test_dir = os.path.dirname(os.path.abspath(__file__)) log_dir = os.path.join(test_dir, "output", "demos") # name of the file to save data filename = "hdf_dataset.hdf5" # number of episodes to collect num_demos = 10 # number of environments to simulate num_envs = 4 # create data-collector collector_interface = RobomimicDataCollector(task_name, log_dir, filename, num_demos) # reset the collector collector_interface.reset() while not collector_interface.is_stopped(): # generate random data to store # -- obs obs = {"joint_pos": torch.randn(num_envs, 7), "joint_vel": torch.randn(num_envs, 7)} # -- actions actions = torch.randn(num_envs, 7) # -- next obs next_obs = {"joint_pos": torch.randn(num_envs, 7), "joint_vel": torch.randn(num_envs, 7)} # -- rewards rewards = torch.randn(num_envs) # -- dones dones = torch.rand(num_envs) > 0.5 # store signals # -- obs for key, value in obs.items(): collector_interface.add(f"obs/{key}", value) # -- actions collector_interface.add("actions", actions) # -- next_obs for key, value in next_obs.items(): collector_interface.add(f"next_obs/{key}", value.cpu().numpy()) # -- rewards collector_interface.add("rewards", rewards) # -- dones collector_interface.add("dones", dones) # flush data from collector for successful environments # note: in this case we flush all the time reset_env_ids = dones.nonzero(as_tuple=False).squeeze(-1) collector_interface.flush(reset_env_ids) # close collector collector_interface.close() # TODO: Add inspection of the saved dataset as part of the test. if __name__ == "__main__": run_tests()
2,906
Python
32.802325
101
0.602202
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/test/test_record_video.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.lab.app import AppLauncher, run_tests # launch the simulator app_launcher = AppLauncher(headless=True, enable_cameras=True) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import os import torch import unittest import omni.usd from omni.isaac.lab.envs import ManagerBasedRLEnvCfg import omni.isaac.lab_tasks # noqa: F401 from omni.isaac.lab_tasks.utils import parse_env_cfg class TestRecordVideoWrapper(unittest.TestCase): """Test recording videos using the RecordVideo wrapper.""" @classmethod def setUpClass(cls): # acquire all Isaac environments names cls.registered_tasks = list() for task_spec in gym.registry.values(): if "Isaac" in task_spec.id: cls.registered_tasks.append(task_spec.id) # sort environments by name cls.registered_tasks.sort() # print all existing task names print(">>> All registered environments:", cls.registered_tasks) # directory to save videos cls.videos_dir = os.path.join(os.path.dirname(__file__), "output", "videos") def setUp(self) -> None: # common parameters self.num_envs = 16 self.use_gpu = True # video parameters self.step_trigger = lambda step: step % 225 == 0 self.video_length = 200 def test_record_video(self): """Run random actions agent with recording of videos.""" for task_name in self.registered_tasks: with self.subTest(task_name=task_name): print(f">>> Running test for environment: {task_name}") # create a new stage omni.usd.get_context().new_stage() # parse configuration env_cfg: ManagerBasedRLEnvCfg = parse_env_cfg(task_name, use_gpu=self.use_gpu, num_envs=self.num_envs) # create environment env = gym.make(task_name, cfg=env_cfg, render_mode="rgb_array") # directory to save videos videos_dir = os.path.join(self.videos_dir, task_name) # wrap environment to record videos env = gym.wrappers.RecordVideo( env, videos_dir, step_trigger=self.step_trigger, video_length=self.video_length, disable_logger=True, ) # reset environment env.reset() # simulate environment with torch.inference_mode(): for _ in range(500): # compute zero actions actions = 2 * torch.rand(env.action_space.shape, device=env.unwrapped.device) - 1 # apply actions _ = env.step(actions) # close the simulator env.close() if __name__ == "__main__": run_tests()
3,137
Python
32.031579
118
0.58081
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/test/wrappers/test_rsl_rl_wrapper.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.lab.app import AppLauncher, run_tests # launch the simulator app_launcher = AppLauncher(headless=True, enable_cameras=True) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import torch import unittest import omni.usd from omni.isaac.lab.envs import ManagerBasedRLEnvCfg import omni.isaac.lab_tasks # noqa: F401 from omni.isaac.lab_tasks.utils.parse_cfg import parse_env_cfg from omni.isaac.lab_tasks.utils.wrappers.rsl_rl import RslRlVecEnvWrapper class TestRslRlVecEnvWrapper(unittest.TestCase): """Test that RSL-RL VecEnv wrapper works as expected.""" @classmethod def setUpClass(cls): # acquire all Isaac environments names cls.registered_tasks = list() for task_spec in gym.registry.values(): if "Isaac" in task_spec.id: cfg_entry_point = gym.spec(task_spec.id).kwargs.get("rsl_rl_cfg_entry_point") if cfg_entry_point is not None: cls.registered_tasks.append(task_spec.id) # sort environments by name cls.registered_tasks.sort() cls.registered_tasks = cls.registered_tasks[:4] # print all existing task names print(">>> All registered environments:", cls.registered_tasks) def setUp(self) -> None: # common parameters self.num_envs = 64 self.use_gpu = True def test_random_actions(self): """Run random actions and check environments return valid signals.""" for task_name in self.registered_tasks: with self.subTest(task_name=task_name): print(f">>> Running test for environment: {task_name}") # create a new stage omni.usd.get_context().new_stage() # parse configuration env_cfg: ManagerBasedRLEnvCfg = parse_env_cfg(task_name, use_gpu=self.use_gpu, num_envs=self.num_envs) # create environment env = gym.make(task_name, cfg=env_cfg) # wrap environment env = RslRlVecEnvWrapper(env) # reset environment obs, extras = env.reset() # check signal self.assertTrue(self._check_valid_tensor(obs)) self.assertTrue(self._check_valid_tensor(extras)) # simulate environment for 1000 steps with torch.inference_mode(): for _ in range(1000): # sample actions from -1 to 1 actions = 2 * torch.rand(env.action_space.shape, device=env.unwrapped.device) - 1 # apply actions transition = env.step(actions) # check signals for data in transition: self.assertTrue(self._check_valid_tensor(data), msg=f"Invalid data: {data}") # close the environment print(f">>> Closing environment: {task_name}") env.close() def test_no_time_outs(self): """Check that environments with finite horizon do not send time-out signals.""" for task_name in self.registered_tasks: with self.subTest(task_name=task_name): print(f">>> Running test for environment: {task_name}") # create a new stage omni.usd.get_context().new_stage() # parse configuration env_cfg: ManagerBasedRLEnvCfg = parse_env_cfg(task_name, use_gpu=self.use_gpu, num_envs=self.num_envs) # change to finite horizon env_cfg.is_finite_horizon = True # create environment env = gym.make(task_name, cfg=env_cfg) # wrap environment env = RslRlVecEnvWrapper(env) # reset environment _, extras = env.reset() # check signal self.assertNotIn("time_outs", extras, msg="Time-out signal found in finite horizon environment.") # simulate environment for 10 steps with torch.inference_mode(): for _ in range(10): # sample actions from -1 to 1 actions = 2 * torch.rand(env.action_space.shape, device=env.unwrapped.device) - 1 # apply actions extras = env.step(actions)[-1] # check signals self.assertNotIn( "time_outs", extras, msg="Time-out signal found in finite horizon environment." ) # close the environment print(f">>> Closing environment: {task_name}") env.close() """ Helper functions. """ @staticmethod def _check_valid_tensor(data: torch.Tensor | dict) -> bool: """Checks if given data does not have corrupted values. Args: data: Data buffer. Returns: True if the data is valid. """ if isinstance(data, torch.Tensor): return not torch.any(torch.isnan(data)) elif isinstance(data, dict): valid_tensor = True for value in data.values(): if isinstance(value, dict): valid_tensor &= TestRslRlVecEnvWrapper._check_valid_tensor(value) elif isinstance(value, torch.Tensor): valid_tensor &= not torch.any(torch.isnan(value)) return valid_tensor else: raise ValueError(f"Input data of invalid type: {type(data)}.") if __name__ == "__main__": run_tests()
5,925
Python
36.745223
118
0.56
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/test/wrappers/test_rl_games_wrapper.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.lab.app import AppLauncher, run_tests # launch the simulator app_launcher = AppLauncher(headless=True, enable_cameras=True) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import torch import unittest import omni.usd from omni.isaac.lab.envs import ManagerBasedRLEnvCfg import omni.isaac.lab_tasks # noqa: F401 from omni.isaac.lab_tasks.utils.parse_cfg import parse_env_cfg from omni.isaac.lab_tasks.utils.wrappers.rl_games import RlGamesVecEnvWrapper class TestRlGamesVecEnvWrapper(unittest.TestCase): """Test that RL-Games VecEnv wrapper works as expected.""" @classmethod def setUpClass(cls): # acquire all Isaac environments names cls.registered_tasks = list() for task_spec in gym.registry.values(): if "Isaac" in task_spec.id: cfg_entry_point = gym.spec(task_spec.id).kwargs.get("rl_games_cfg_entry_point") if cfg_entry_point is not None: cls.registered_tasks.append(task_spec.id) # sort environments by name cls.registered_tasks.sort() cls.registered_tasks = cls.registered_tasks[:4] # print all existing task names print(">>> All registered environments:", cls.registered_tasks) def setUp(self) -> None: # common parameters self.num_envs = 64 self.use_gpu = True def test_random_actions(self): """Run random actions and check environments return valid signals.""" for task_name in self.registered_tasks: with self.subTest(task_name=task_name): print(f">>> Running test for environment: {task_name}") # create a new stage omni.usd.get_context().new_stage() # parse configuration env_cfg: ManagerBasedRLEnvCfg = parse_env_cfg(task_name, use_gpu=self.use_gpu, num_envs=self.num_envs) # create environment env = gym.make(task_name, cfg=env_cfg) # wrap environment env = RlGamesVecEnvWrapper(env, "cuda:0", 100, 100) # reset environment obs = env.reset() # check signal self.assertTrue(self._check_valid_tensor(obs)) # simulate environment for 100 steps with torch.inference_mode(): for _ in range(100): # sample actions from -1 to 1 actions = 2 * torch.rand(env.num_envs, *env.action_space.shape, device=env.device) - 1 # apply actions transition = env.step(actions) # check signals for data in transition: self.assertTrue(self._check_valid_tensor(data), msg=f"Invalid data: {data}") # close the environment print(f">>> Closing environment: {task_name}") env.close() """ Helper functions. """ @staticmethod def _check_valid_tensor(data: torch.Tensor | dict) -> bool: """Checks if given data does not have corrupted values. Args: data: Data buffer. Returns: True if the data is valid. """ if isinstance(data, torch.Tensor): return not torch.any(torch.isnan(data)) elif isinstance(data, dict): valid_tensor = True for value in data.values(): if isinstance(value, dict): valid_tensor &= TestRlGamesVecEnvWrapper._check_valid_tensor(value) elif isinstance(value, torch.Tensor): valid_tensor &= not torch.any(torch.isnan(value)) return valid_tensor else: raise ValueError(f"Input data of invalid type: {type(data)}.") if __name__ == "__main__": run_tests()
4,120
Python
33.923729
118
0.583495
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/test/wrappers/test_sb3_wrapper.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.lab.app import AppLauncher, run_tests # launch the simulator app_launcher = AppLauncher(headless=True, enable_cameras=True) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import numpy as np import torch import unittest import omni.usd from omni.isaac.lab.envs import ManagerBasedRLEnvCfg import omni.isaac.lab_tasks # noqa: F401 from omni.isaac.lab_tasks.utils.parse_cfg import parse_env_cfg from omni.isaac.lab_tasks.utils.wrappers.sb3 import Sb3VecEnvWrapper class TestStableBaselines3VecEnvWrapper(unittest.TestCase): """Test that SB3 VecEnv wrapper works as expected.""" @classmethod def setUpClass(cls): # acquire all Isaac environments names cls.registered_tasks = list() for task_spec in gym.registry.values(): if "Isaac" in task_spec.id: cfg_entry_point = gym.spec(task_spec.id).kwargs.get("sb3_cfg_entry_point") if cfg_entry_point is not None: cls.registered_tasks.append(task_spec.id) # sort environments by name cls.registered_tasks.sort() cls.registered_tasks = cls.registered_tasks[:4] # print all existing task names print(">>> All registered environments:", cls.registered_tasks) def setUp(self) -> None: # common parameters self.num_envs = 64 self.use_gpu = True def test_random_actions(self): """Run random actions and check environments return valid signals.""" for task_name in self.registered_tasks: with self.subTest(task_name=task_name): print(f">>> Running test for environment: {task_name}") # create a new stage omni.usd.get_context().new_stage() # parse configuration env_cfg: ManagerBasedRLEnvCfg = parse_env_cfg(task_name, use_gpu=self.use_gpu, num_envs=self.num_envs) # create environment env = gym.make(task_name, cfg=env_cfg) # wrap environment env = Sb3VecEnvWrapper(env) # reset environment obs = env.reset() # check signal self.assertTrue(self._check_valid_array(obs)) # simulate environment for 1000 steps with torch.inference_mode(): for _ in range(1000): # sample actions from -1 to 1 actions = 2 * np.random.rand(env.num_envs, *env.action_space.shape) - 1 # apply actions transition = env.step(actions) # check signals for data in transition: self.assertTrue(self._check_valid_array(data), msg=f"Invalid data: {data}") # close the environment print(f">>> Closing environment: {task_name}") env.close() """ Helper functions. """ @staticmethod def _check_valid_array(data: np.ndarray | dict | list) -> bool: """Checks if given data does not have corrupted values. Args: data: Data buffer. Returns: True if the data is valid. """ if isinstance(data, np.ndarray): return not np.any(np.isnan(data)) elif isinstance(data, dict): valid_array = True for value in data.values(): if isinstance(value, dict): valid_array &= TestStableBaselines3VecEnvWrapper._check_valid_array(value) elif isinstance(value, np.ndarray): valid_array &= not np.any(np.isnan(value)) return valid_array elif isinstance(data, list): valid_array = True for value in data: valid_array &= TestStableBaselines3VecEnvWrapper._check_valid_array(value) return valid_array else: raise ValueError(f"Input data of invalid type: {type(data)}.") if __name__ == "__main__": run_tests()
4,303
Python
33.709677
118
0.581687
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/test/wrappers/test_skrl_wrapper.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.lab.app import AppLauncher, run_tests # launch the simulator app_launcher = AppLauncher(headless=True, enable_cameras=True) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import torch import unittest import omni.usd from omni.isaac.lab.envs import ManagerBasedRLEnvCfg import omni.isaac.lab_tasks # noqa: F401 from omni.isaac.lab_tasks.utils.parse_cfg import parse_env_cfg from omni.isaac.lab_tasks.utils.wrappers.skrl import SkrlVecEnvWrapper class TestSKRLVecEnvWrapper(unittest.TestCase): """Test that SKRL VecEnv wrapper works as expected.""" @classmethod def setUpClass(cls): # acquire all Isaac environments names cls.registered_tasks = list() for task_spec in gym.registry.values(): if "Isaac" in task_spec.id: cfg_entry_point = gym.spec(task_spec.id).kwargs.get("skrl_cfg_entry_point") if cfg_entry_point is not None: cls.registered_tasks.append(task_spec.id) # sort environments by name cls.registered_tasks.sort() cls.registered_tasks = cls.registered_tasks[:4] # print all existing task names print(">>> All registered environments:", cls.registered_tasks) def setUp(self) -> None: # common parameters self.num_envs = 64 self.use_gpu = True def test_random_actions(self): """Run random actions and check environments return valid signals.""" for task_name in self.registered_tasks: with self.subTest(task_name=task_name): print(f">>> Running test for environment: {task_name}") # create a new stage omni.usd.get_context().new_stage() # parse configuration env_cfg: ManagerBasedRLEnvCfg = parse_env_cfg(task_name, use_gpu=self.use_gpu, num_envs=self.num_envs) # create environment env = gym.make(task_name, cfg=env_cfg) # wrap environment env = SkrlVecEnvWrapper(env) # reset environment obs, extras = env.reset() # check signal self.assertTrue(self._check_valid_tensor(obs)) self.assertTrue(self._check_valid_tensor(extras)) # simulate environment for 1000 steps with torch.inference_mode(): for _ in range(1000): # sample actions from -1 to 1 actions = ( 2 * torch.rand(self.num_envs, *env.action_space.shape, device=env.unwrapped.device) - 1 ) # apply actions transition = env.step(actions) # check signals for data in transition: self.assertTrue(self._check_valid_tensor(data), msg=f"Invalid data: {data}") # close the environment print(f">>> Closing environment: {task_name}") env.close() """ Helper functions. """ @staticmethod def _check_valid_tensor(data: torch.Tensor | dict) -> bool: """Checks if given data does not have corrupted values. Args: data: Data buffer. Returns: True if the data is valid. """ if isinstance(data, torch.Tensor): return not torch.any(torch.isnan(data)) elif isinstance(data, dict): valid_tensor = True for value in data.values(): if isinstance(value, dict): valid_tensor &= TestSKRLVecEnvWrapper._check_valid_tensor(value) elif isinstance(value, torch.Tensor): valid_tensor &= not torch.any(torch.isnan(value)) return valid_tensor else: raise ValueError(f"Input data of invalid type: {type(data)}.") if __name__ == "__main__": run_tests()
4,219
Python
33.876033
118
0.575966
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/config/extension.toml
[package] # Note: Semantic Versioning is used: https://semver.org/ version = "0.7.5" # Description title = "Isaac Lab Environments" description="Extension containing suite of environments for robot learning." readme = "docs/README.md" repository = "https://github.com/isaac-sim/IsaacLab" category = "robotics" keywords = ["robotics", "rl", "il", "learning"] [dependencies] "omni.isaac.lab" = {} "omni.isaac.lab_assets" = {} "omni.isaac.core" = {} "omni.isaac.gym" = {} "omni.replicator.isaac" = {} [[python.module]] name = "omni.isaac.lab_tasks"
551
TOML
22.999999
76
0.69147
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Package containing task implementations for various robotic environments.""" import os import toml # Conveniences to other module directories via relative paths ISAACLAB_TASKS_EXT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../../")) """Path to the extension source directory.""" ISAACLAB_TASKS_METADATA = toml.load(os.path.join(ISAACLAB_TASKS_EXT_DIR, "config", "extension.toml")) """Extension metadata dictionary parsed from the extension.toml file.""" # Configure the module-level variables __version__ = ISAACLAB_TASKS_METADATA["package"]["version"] ## # Register Gym environments. ## from .utils import import_packages # The blacklist is used to prevent importing configs from sub-packages _BLACKLIST_PKGS = ["utils"] # Import all configs in this package import_packages(__name__, _BLACKLIST_PKGS)
962
Python
30.064515
101
0.745322
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Direct workflow environments. """ import gymnasium as gym
190
Python
16.363635
60
0.736842
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/ant/ant_env.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from omni.isaac.lab_assets.ant import ANT_CFG import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.assets import ArticulationCfg from omni.isaac.lab.envs import DirectRLEnvCfg from omni.isaac.lab.scene import InteractiveSceneCfg from omni.isaac.lab.sim import SimulationCfg from omni.isaac.lab.terrains import TerrainImporterCfg from omni.isaac.lab.utils import configclass from omni.isaac.lab_tasks.direct.locomotion.locomotion_env import LocomotionEnv @configclass class AntEnvCfg(DirectRLEnvCfg): # simulation sim: SimulationCfg = SimulationCfg(dt=1 / 120) terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="plane", collision_group=-1, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="average", restitution_combine_mode="average", static_friction=1.0, dynamic_friction=1.0, restitution=0.0, ), debug_vis=False, ) # scene scene: InteractiveSceneCfg = InteractiveSceneCfg(num_envs=4096, env_spacing=4.0, replicate_physics=True) # robot robot: ArticulationCfg = ANT_CFG.replace(prim_path="/World/envs/env_.*/Robot") joint_gears: list = [15, 15, 15, 15, 15, 15, 15, 15] # env episode_length_s = 15.0 decimation = 2 action_scale = 0.5 num_actions = 8 num_observations = 36 num_states = 0 heading_weight: float = 0.5 up_weight: float = 0.1 energy_cost_scale: float = 0.05 actions_cost_scale: float = 0.005 alive_reward_scale: float = 0.5 dof_vel_scale: float = 0.2 death_cost: float = -2.0 termination_height: float = 0.31 angular_velocity_scale: float = 1.0 contact_force_scale: float = 0.1 class AntEnv(LocomotionEnv): cfg: AntEnvCfg def __init__(self, cfg: AntEnvCfg, render_mode: str | None = None, **kwargs): super().__init__(cfg, render_mode, **kwargs)
2,110
Python
27.527027
108
0.674408
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/ant/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Ant locomotion environment. """ import gymnasium as gym from . import agents from .ant_env import AntEnv, AntEnvCfg ## # Register Gym environments. ## gym.register( id="Isaac-Ant-Direct-v0", entry_point="omni.isaac.lab_tasks.direct.ant:AntEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": AntEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.AntPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", }, )
707
Python
22.599999
79
0.666195
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/ant/agents/rsl_rl_ppo_cfg.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.lab.utils import configclass from omni.isaac.lab_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class AntPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 32 max_iterations = 1000 save_interval = 50 experiment_name = "ant_direct" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[400, 200, 100], critic_hidden_dims=[400, 200, 100], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.0, num_learning_epochs=5, num_mini_batches=4, learning_rate=5.0e-4, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, )
1,075
Python
24.619047
60
0.64186
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/ant/agents/skrl_ppo_cfg.yaml
seed: 42 # Models are instantiated using skrl's model instantiator utility # https://skrl.readthedocs.io/en/latest/api/utils/model_instantiators.html models: separate: False policy: # see skrl.utils.model_instantiators.torch.gaussian_model for parameter details clip_actions: True clip_log_std: True initial_log_std: 0 min_log_std: -20.0 max_log_std: 2.0 input_shape: "Shape.STATES" hiddens: [256, 128, 64] hidden_activation: ["elu", "elu", "elu"] output_shape: "Shape.ACTIONS" output_activation: "tanh" output_scale: 1.0 value: # see skrl.utils.model_instantiators.torch.deterministic_model for parameter details clip_actions: False input_shape: "Shape.STATES" hiddens: [256, 128, 64] hidden_activation: ["elu", "elu", "elu"] output_shape: "Shape.ONE" output_activation: "" output_scale: 1.0 # PPO agent configuration (field names are from PPO_DEFAULT_CONFIG) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html agent: rollouts: 16 learning_epochs: 8 mini_batches: 4 discount_factor: 0.99 lambda: 0.95 learning_rate: 3.e-4 learning_rate_scheduler: "KLAdaptiveLR" learning_rate_scheduler_kwargs: kl_threshold: 0.008 state_preprocessor: "RunningStandardScaler" state_preprocessor_kwargs: null value_preprocessor: "RunningStandardScaler" value_preprocessor_kwargs: null random_timesteps: 0 learning_starts: 0 grad_norm_clip: 1.0 ratio_clip: 0.2 value_clip: 0.2 clip_predicted_values: True entropy_loss_scale: 0.0 value_loss_scale: 1.0 kl_threshold: 0 rewards_shaper_scale: 0.6 # logging and checkpoint experiment: directory: "ant_direct" experiment_name: "" write_interval: 40 checkpoint_interval: 400 # Sequential trainer # https://skrl.readthedocs.io/en/latest/api/trainers/sequential.html trainer: timesteps: 8000 environment_info: "log"
1,904
YAML
27.014705
94
0.709034
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/ant/agents/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_ppo_cfg
156
Python
21.428568
60
0.737179
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/ant/agents/rl_games_ppo_cfg.yaml
params: seed: 42 # environment wrapper clipping env: clip_actions: 1.0 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False # flag which sets whether to load the checkpoint load_path: '' # path to the checkpoint to load config: name: ant_direct env_name: rlgpu device: 'cuda:0' device_name: 'cuda:0' multi_gpu: False ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: -1 # configured from the script (based on num_envs) reward_shaper: scale_value: 0.6 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive schedule_type: legacy kl_threshold: 0.008 score_to_win: 20000 max_epochs: 500 save_best_after: 100 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 32768 mini_epochs: 4 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,559
YAML
19.25974
73
0.606799
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/quadcopter/quadcopter_env.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.assets import Articulation, ArticulationCfg from omni.isaac.lab.envs import DirectRLEnv, DirectRLEnvCfg from omni.isaac.lab.envs.ui import BaseEnvWindow from omni.isaac.lab.markers import VisualizationMarkers from omni.isaac.lab.scene import InteractiveSceneCfg from omni.isaac.lab.sim import SimulationCfg from omni.isaac.lab.terrains import TerrainImporterCfg from omni.isaac.lab.utils import configclass from omni.isaac.lab.utils.math import subtract_frame_transforms ## # Pre-defined configs ## from omni.isaac.lab_assets import CRAZYFLIE_CFG # isort: skip from omni.isaac.lab.markers import CUBOID_MARKER_CFG # isort: skip class QuadcopterEnvWindow(BaseEnvWindow): """Window manager for the Quadcopter environment.""" def __init__(self, env: QuadcopterEnv, window_name: str = "IsaacLab"): """Initialize the window. Args: env: The environment object. window_name: The name of the window. Defaults to "IsaacLab". """ # initialize base window super().__init__(env, window_name) # add custom UI elements with self.ui_window_elements["main_vstack"]: with self.ui_window_elements["debug_frame"]: with self.ui_window_elements["debug_vstack"]: # add command manager visualization self._create_debug_vis_ui_element("targets", self.env) @configclass class QuadcopterEnvCfg(DirectRLEnvCfg): ui_window_class_type = QuadcopterEnvWindow # simulation sim: SimulationCfg = SimulationCfg( dt=1 / 100, disable_contact_processing=True, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="multiply", restitution_combine_mode="multiply", static_friction=1.0, dynamic_friction=1.0, restitution=0.0, ), ) terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="plane", collision_group=-1, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="multiply", restitution_combine_mode="multiply", static_friction=1.0, dynamic_friction=1.0, restitution=0.0, ), debug_vis=False, ) # scene scene: InteractiveSceneCfg = InteractiveSceneCfg(num_envs=4096, env_spacing=2.5, replicate_physics=True) # robot robot: ArticulationCfg = CRAZYFLIE_CFG.replace(prim_path="/World/envs/env_.*/Robot") thrust_to_weight = 1.9 moment_scale = 0.01 # env episode_length_s = 10.0 decimation = 2 num_actions = 4 num_observations = 12 num_states = 0 debug_vis = True # reward scales lin_vel_reward_scale = -0.05 ang_vel_reward_scale = -0.01 distance_to_goal_reward_scale = 15.0 class QuadcopterEnv(DirectRLEnv): cfg: QuadcopterEnvCfg def __init__(self, cfg: QuadcopterEnvCfg, render_mode: str | None = None, **kwargs): super().__init__(cfg, render_mode, **kwargs) # Total thrust and moment applied to the base of the quadcopter self._actions = torch.zeros(self.num_envs, self.cfg.num_actions, device=self.device) self._thrust = torch.zeros(self.num_envs, 1, 3, device=self.device) self._moment = torch.zeros(self.num_envs, 1, 3, device=self.device) # Goal position self._desired_pos_w = torch.zeros(self.num_envs, 3, device=self.device) # Logging self._episode_sums = { key: torch.zeros(self.num_envs, dtype=torch.float, device=self.device) for key in [ "lin_vel", "ang_vel", "distance_to_goal", ] } # Get specific body indices self._body_id = self._robot.find_bodies("body")[0] self._robot_mass = self._robot.root_physx_view.get_masses()[0].sum() self._gravity_magnitude = torch.tensor(self.sim.cfg.gravity, device=self.device).norm() self._robot_weight = (self._robot_mass * self._gravity_magnitude).item() # add handle for debug visualization (this is set to a valid handle inside set_debug_vis) self.set_debug_vis(self.cfg.debug_vis) def _setup_scene(self): self._robot = Articulation(self.cfg.robot) self.scene.articulations["robot"] = self._robot self.cfg.terrain.num_envs = self.scene.cfg.num_envs self.cfg.terrain.env_spacing = self.scene.cfg.env_spacing self._terrain = self.cfg.terrain.class_type(self.cfg.terrain) # clone, filter, and replicate self.scene.clone_environments(copy_from_source=False) self.scene.filter_collisions(global_prim_paths=[self.cfg.terrain.prim_path]) # add lights light_cfg = sim_utils.DomeLightCfg(intensity=2000.0, color=(0.75, 0.75, 0.75)) light_cfg.func("/World/Light", light_cfg) def _pre_physics_step(self, actions: torch.Tensor): self._actions = actions.clone().clamp(-1.0, 1.0) self._thrust[:, 0, 2] = self.cfg.thrust_to_weight * self._robot_weight * (self._actions[:, 0] + 1.0) / 2.0 self._moment[:, 0, :] = self.cfg.moment_scale * self._actions[:, 1:] def _apply_action(self): self._robot.set_external_force_and_torque(self._thrust, self._moment, body_ids=self._body_id) def _get_observations(self) -> dict: desired_pos_b, _ = subtract_frame_transforms( self._robot.data.root_state_w[:, :3], self._robot.data.root_state_w[:, 3:7], self._desired_pos_w ) obs = torch.cat( [ self._robot.data.root_lin_vel_b, self._robot.data.root_ang_vel_b, self._robot.data.projected_gravity_b, desired_pos_b, ], dim=-1, ) observations = {"policy": obs} return observations def _get_rewards(self) -> torch.Tensor: lin_vel = torch.sum(torch.square(self._robot.data.root_lin_vel_b), dim=1) ang_vel = torch.sum(torch.square(self._robot.data.root_ang_vel_b), dim=1) distance_to_goal = torch.linalg.norm(self._desired_pos_w - self._robot.data.root_pos_w, dim=1) distance_to_goal_mapped = 1 - torch.tanh(distance_to_goal / 0.8) rewards = { "lin_vel": lin_vel * self.cfg.lin_vel_reward_scale * self.step_dt, "ang_vel": ang_vel * self.cfg.ang_vel_reward_scale * self.step_dt, "distance_to_goal": distance_to_goal_mapped * self.cfg.distance_to_goal_reward_scale * self.step_dt, } reward = torch.sum(torch.stack(list(rewards.values())), dim=0) # Logging for key, value in rewards.items(): self._episode_sums[key] += value return reward def _get_dones(self) -> tuple[torch.Tensor, torch.Tensor]: time_out = self.episode_length_buf >= self.max_episode_length - 1 died = torch.logical_or(self._robot.data.root_pos_w[:, 2] < 0.1, self._robot.data.root_pos_w[:, 2] > 2.0) return died, time_out def _reset_idx(self, env_ids: torch.Tensor | None): if env_ids is None or len(env_ids) == self.num_envs: env_ids = self._robot._ALL_INDICES # Logging final_distance_to_goal = torch.linalg.norm( self._desired_pos_w[env_ids] - self._robot.data.root_pos_w[env_ids], dim=1 ).mean() extras = dict() for key in self._episode_sums.keys(): episodic_sum_avg = torch.mean(self._episode_sums[key][env_ids]) extras["Episode Reward/" + key] = episodic_sum_avg / self.max_episode_length_s self._episode_sums[key][env_ids] = 0.0 self.extras["log"] = dict() self.extras["log"].update(extras) extras = dict() extras["Episode Termination/died"] = torch.count_nonzero(self.reset_terminated[env_ids]).item() extras["Episode Termination/time_out"] = torch.count_nonzero(self.reset_time_outs[env_ids]).item() extras["Metrics/final_distance_to_goal"] = final_distance_to_goal.item() self.extras["log"].update(extras) self._robot.reset(env_ids) super()._reset_idx(env_ids) if len(env_ids) == self.num_envs: # Spread out the resets to avoid spikes in training when many environments reset at a similar time self.episode_length_buf = torch.randint_like(self.episode_length_buf, high=int(self.max_episode_length)) self._actions[env_ids] = 0.0 # Sample new commands self._desired_pos_w[env_ids, :2] = torch.zeros_like(self._desired_pos_w[env_ids, :2]).uniform_(-2.0, 2.0) self._desired_pos_w[env_ids, :2] += self._terrain.env_origins[env_ids, :2] self._desired_pos_w[env_ids, 2] = torch.zeros_like(self._desired_pos_w[env_ids, 2]).uniform_(0.5, 1.5) # Reset robot state joint_pos = self._robot.data.default_joint_pos[env_ids] joint_vel = self._robot.data.default_joint_vel[env_ids] default_root_state = self._robot.data.default_root_state[env_ids] default_root_state[:, :3] += self._terrain.env_origins[env_ids] self._robot.write_root_pose_to_sim(default_root_state[:, :7], env_ids) self._robot.write_root_velocity_to_sim(default_root_state[:, 7:], env_ids) self._robot.write_joint_state_to_sim(joint_pos, joint_vel, None, env_ids) def _set_debug_vis_impl(self, debug_vis: bool): # create markers if necessary for the first tome if debug_vis: if not hasattr(self, "goal_pos_visualizer"): marker_cfg = CUBOID_MARKER_CFG.copy() marker_cfg.markers["cuboid"].size = (0.05, 0.05, 0.05) # -- goal pose marker_cfg.prim_path = "/Visuals/Command/goal_position" self.goal_pos_visualizer = VisualizationMarkers(marker_cfg) # set their visibility to true self.goal_pos_visualizer.set_visibility(True) else: if hasattr(self, "goal_pos_visualizer"): self.goal_pos_visualizer.set_visibility(False) def _debug_vis_callback(self, event): # update the markers self.goal_pos_visualizer.visualize(self._desired_pos_w)
10,494
Python
41.148594
116
0.621307
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/quadcopter/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Quacopter environment. """ import gymnasium as gym from . import agents from .quadcopter_env import QuadcopterEnv, QuadcopterEnvCfg ## # Register Gym environments. ## gym.register( id="Isaac-Quadcopter-Direct-v0", entry_point="omni.isaac.lab_tasks.direct.quadcopter:QuadcopterEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": QuadcopterEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.QuadcopterPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", }, )
758
Python
24.299999
79
0.689974
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/quadcopter/agents/rsl_rl_ppo_cfg.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.lab.utils import configclass from omni.isaac.lab_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class QuadcopterPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 24 max_iterations = 200 save_interval = 50 experiment_name = "quadcopter_direct" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[64, 64], critic_hidden_dims=[64, 64], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.0, num_learning_epochs=5, num_mini_batches=4, learning_rate=5.0e-4, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, )
1,074
Python
24.595238
60
0.645251
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/quadcopter/agents/skrl_ppo_cfg.yaml
seed: 42 # Models are instantiated using skrl's model instantiator utility # https://skrl.readthedocs.io/en/latest/api/utils/model_instantiators.html models: separate: False policy: # see skrl.utils.model_instantiators.torch.gaussian_model for parameter details clip_actions: True clip_log_std: True initial_log_std: 0 min_log_std: -20.0 max_log_std: 2.0 input_shape: "Shape.STATES" hiddens: [64, 64] hidden_activation: ["elu", "elu", "elu"] output_shape: "Shape.ACTIONS" output_activation: "tanh" output_scale: 1.0 value: # see skrl.utils.model_instantiators.torch.deterministic_model for parameter details clip_actions: False input_shape: "Shape.STATES" hiddens: [64, 64] hidden_activation: ["elu", "elu", "elu"] output_shape: "Shape.ONE" output_activation: "" output_scale: 1.0 # PPO agent configuration (field names are from PPO_DEFAULT_CONFIG) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html agent: rollouts: 24 learning_epochs: 5 mini_batches: 4 discount_factor: 0.99 lambda: 0.95 learning_rate: 5.e-4 learning_rate_scheduler: "KLAdaptiveLR" learning_rate_scheduler_kwargs: kl_threshold: 0.016 state_preprocessor: "RunningStandardScaler" state_preprocessor_kwargs: null value_preprocessor: "RunningStandardScaler" value_preprocessor_kwargs: null random_timesteps: 0 learning_starts: 0 grad_norm_clip: 1.0 ratio_clip: 0.2 value_clip: 0.2 clip_predicted_values: True entropy_loss_scale: 0.0 value_loss_scale: 1.0 kl_threshold: 0 rewards_shaper_scale: 0.01 # logging and checkpoint experiment: directory: "quadcopter_direct" experiment_name: "" write_interval: 24 checkpoint_interval: 240 # Sequential trainer # https://skrl.readthedocs.io/en/latest/api/trainers/sequential.html trainer: timesteps: 4800 environment_info: "log"
1,900
YAML
26.955882
94
0.710526
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/quadcopter/agents/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_ppo_cfg
156
Python
21.428568
60
0.737179
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/quadcopter/agents/rl_games_ppo_cfg.yaml
params: seed: 42 # environment wrapper clipping env: clip_actions: 1.0 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [64, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False # flag which sets whether to load the checkpoint load_path: '' # path to the checkpoint to load config: name: quadcopter_direct env_name: rlgpu device: 'cuda:0' device_name: 'cuda:0' multi_gpu: False ppo: True mixed_precision: False normalize_input: True normalize_value: True value_bootstrap: True num_actors: -1 # configured from the script (based on num_envs) reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive schedule_type: legacy kl_threshold: 0.016 score_to_win: 20000 max_epochs: 200 save_best_after: 100 save_frequency: 25 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 24 minibatch_size: 24576 mini_epochs: 5 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,562
YAML
19.298701
73
0.608835
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/cartpole/cartpole_camera_env.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import gymnasium as gym import math import numpy as np import torch from collections.abc import Sequence from omni.isaac.lab_assets.cartpole import CARTPOLE_CFG import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.assets import Articulation, ArticulationCfg from omni.isaac.lab.envs import DirectRLEnv, DirectRLEnvCfg, ViewerCfg from omni.isaac.lab.scene import InteractiveSceneCfg from omni.isaac.lab.sensors import TiledCamera, TiledCameraCfg from omni.isaac.lab.sim import SimulationCfg from omni.isaac.lab.sim.spawners.from_files import GroundPlaneCfg, spawn_ground_plane from omni.isaac.lab.utils import configclass from omni.isaac.lab.utils.math import sample_uniform @configclass class CartpoleRGBCameraEnvCfg(DirectRLEnvCfg): # simulation sim: SimulationCfg = SimulationCfg(dt=1 / 120) # robot robot_cfg: ArticulationCfg = CARTPOLE_CFG.replace(prim_path="/World/envs/env_.*/Robot") cart_dof_name = "slider_to_cart" pole_dof_name = "cart_to_pole" # camera tiled_camera: TiledCameraCfg = TiledCameraCfg( prim_path="/World/envs/env_.*/Camera", offset=TiledCameraCfg.OffsetCfg(pos=(-7.0, 0.0, 3.0), rot=(0.9945, 0.0, 0.1045, 0.0), convention="world"), data_types=["rgb"], spawn=sim_utils.PinholeCameraCfg( focal_length=24.0, focus_distance=400.0, horizontal_aperture=20.955, clipping_range=(0.1, 20.0) ), width=80, height=80, ) # change viewer settings viewer = ViewerCfg(eye=(20.0, 20.0, 20.0)) # scene scene: InteractiveSceneCfg = InteractiveSceneCfg(num_envs=256, env_spacing=20.0, replicate_physics=True) # env decimation = 2 episode_length_s = 5.0 action_scale = 100.0 # [N] num_actions = 1 num_channels = 3 num_observations = num_channels * tiled_camera.height * tiled_camera.width num_states = 0 # reset max_cart_pos = 3.0 # the cart is reset if it exceeds that position [m] initial_pole_angle_range = [-0.125, 0.125] # the range in which the pole angle is sampled from on reset [rad] # reward scales rew_scale_alive = 1.0 rew_scale_terminated = -2.0 rew_scale_pole_pos = -1.0 rew_scale_cart_vel = -0.01 rew_scale_pole_vel = -0.005 class CartpoleDepthCameraEnvCfg(CartpoleRGBCameraEnvCfg): # camera tiled_camera: TiledCameraCfg = TiledCameraCfg( prim_path="/World/envs/env_.*/Camera", offset=TiledCameraCfg.OffsetCfg(pos=(-7.0, 0.0, 3.0), rot=(0.9945, 0.0, 0.1045, 0.0), convention="world"), data_types=["depth"], spawn=sim_utils.PinholeCameraCfg( focal_length=24.0, focus_distance=400.0, horizontal_aperture=20.955, clipping_range=(0.1, 20.0) ), width=80, height=80, ) # env num_channels = 1 num_observations = num_channels * tiled_camera.height * tiled_camera.width class CartpoleCameraEnv(DirectRLEnv): cfg: CartpoleRGBCameraEnvCfg | CartpoleDepthCameraEnvCfg def __init__( self, cfg: CartpoleRGBCameraEnvCfg | CartpoleDepthCameraEnvCfg, render_mode: str | None = None, **kwargs ): super().__init__(cfg, render_mode, **kwargs) self._cart_dof_idx, _ = self._cartpole.find_joints(self.cfg.cart_dof_name) self._pole_dof_idx, _ = self._cartpole.find_joints(self.cfg.pole_dof_name) self.action_scale = self.cfg.action_scale self.joint_pos = self._cartpole.data.joint_pos self.joint_vel = self._cartpole.data.joint_vel if len(self.cfg.tiled_camera.data_types) != 1: raise ValueError( "The Cartpole camera environment only supports one image type at a time but the following were" f" provided: {self.cfg.tiled_camera.data_types}" ) def close(self): """Cleanup for the environment.""" super().close() def _configure_gym_env_spaces(self): """Configure the action and observation spaces for the Gym environment.""" # observation space (unbounded since we don't impose any limits) self.num_actions = self.cfg.num_actions self.num_observations = self.cfg.num_observations self.num_states = self.cfg.num_states # set up spaces self.single_observation_space = gym.spaces.Dict() self.single_observation_space["policy"] = gym.spaces.Box( low=-np.inf, high=np.inf, shape=(self.cfg.tiled_camera.height, self.cfg.tiled_camera.width, self.cfg.num_channels), ) if self.num_states > 0: self.single_observation_space["critic"] = gym.spaces.Box( low=-np.inf, high=np.inf, shape=(self.cfg.tiled_camera.height, self.cfg.tiled_camera.width, self.cfg.num_channels), ) self.single_action_space = gym.spaces.Box(low=-np.inf, high=np.inf, shape=(self.num_actions,)) # batch the spaces for vectorized environments self.observation_space = gym.vector.utils.batch_space(self.single_observation_space, self.num_envs) self.action_space = gym.vector.utils.batch_space(self.single_action_space, self.num_envs) # RL specifics self.actions = torch.zeros(self.num_envs, self.num_actions, device=self.sim.device) def _setup_scene(self): """Setup the scene with the cartpole and camera.""" self._cartpole = Articulation(self.cfg.robot_cfg) self._tiled_camera = TiledCamera(self.cfg.tiled_camera) # add ground plane spawn_ground_plane(prim_path="/World/ground", cfg=GroundPlaneCfg(size=(500, 500))) # clone, filter, and replicate self.scene.clone_environments(copy_from_source=False) self.scene.filter_collisions(global_prim_paths=[]) # add articultion and sensors to scene self.scene.articulations["cartpole"] = self._cartpole self.scene.sensors["tiled_camera"] = self._tiled_camera # add lights light_cfg = sim_utils.DomeLightCfg(intensity=2000.0, color=(0.75, 0.75, 0.75)) light_cfg.func("/World/Light", light_cfg) def _pre_physics_step(self, actions: torch.Tensor) -> None: self.actions = self.action_scale * actions.clone() def _apply_action(self) -> None: self._cartpole.set_joint_effort_target(self.actions, joint_ids=self._cart_dof_idx) def _get_observations(self) -> dict: data_type = "rgb" if "rgb" in self.cfg.tiled_camera.data_types else "depth" observations = {"policy": self._tiled_camera.data.output[data_type].clone()} return observations def _get_rewards(self) -> torch.Tensor: total_reward = compute_rewards( self.cfg.rew_scale_alive, self.cfg.rew_scale_terminated, self.cfg.rew_scale_pole_pos, self.cfg.rew_scale_cart_vel, self.cfg.rew_scale_pole_vel, self.joint_pos[:, self._pole_dof_idx[0]], self.joint_vel[:, self._pole_dof_idx[0]], self.joint_pos[:, self._cart_dof_idx[0]], self.joint_vel[:, self._cart_dof_idx[0]], self.reset_terminated, ) return total_reward def _get_dones(self) -> tuple[torch.Tensor, torch.Tensor]: self.joint_pos = self._cartpole.data.joint_pos self.joint_vel = self._cartpole.data.joint_vel time_out = self.episode_length_buf >= self.max_episode_length - 1 out_of_bounds = torch.any(torch.abs(self.joint_pos[:, self._cart_dof_idx]) > self.cfg.max_cart_pos, dim=1) out_of_bounds = out_of_bounds | torch.any(torch.abs(self.joint_pos[:, self._pole_dof_idx]) > math.pi / 2, dim=1) return out_of_bounds, time_out def _reset_idx(self, env_ids: Sequence[int] | None): if env_ids is None: env_ids = self._cartpole._ALL_INDICES super()._reset_idx(env_ids) joint_pos = self._cartpole.data.default_joint_pos[env_ids] joint_pos[:, self._pole_dof_idx] += sample_uniform( self.cfg.initial_pole_angle_range[0] * math.pi, self.cfg.initial_pole_angle_range[1] * math.pi, joint_pos[:, self._pole_dof_idx].shape, joint_pos.device, ) joint_vel = self._cartpole.data.default_joint_vel[env_ids] default_root_state = self._cartpole.data.default_root_state[env_ids] default_root_state[:, :3] += self.scene.env_origins[env_ids] self.joint_pos[env_ids] = joint_pos self.joint_vel[env_ids] = joint_vel self._cartpole.write_root_pose_to_sim(default_root_state[:, :7], env_ids) self._cartpole.write_root_velocity_to_sim(default_root_state[:, 7:], env_ids) self._cartpole.write_joint_state_to_sim(joint_pos, joint_vel, None, env_ids) @torch.jit.script def compute_rewards( rew_scale_alive: float, rew_scale_terminated: float, rew_scale_pole_pos: float, rew_scale_cart_vel: float, rew_scale_pole_vel: float, pole_pos: torch.Tensor, pole_vel: torch.Tensor, cart_pos: torch.Tensor, cart_vel: torch.Tensor, reset_terminated: torch.Tensor, ): rew_alive = rew_scale_alive * (1.0 - reset_terminated.float()) rew_termination = rew_scale_terminated * reset_terminated.float() rew_pole_pos = rew_scale_pole_pos * torch.sum(torch.square(pole_pos).unsqueeze(dim=1), dim=-1) rew_cart_vel = rew_scale_cart_vel * torch.sum(torch.abs(cart_vel).unsqueeze(dim=1), dim=-1) rew_pole_vel = rew_scale_pole_vel * torch.sum(torch.abs(pole_vel).unsqueeze(dim=1), dim=-1) total_reward = rew_alive + rew_termination + rew_pole_pos + rew_cart_vel + rew_pole_vel return total_reward
9,829
Python
38.959349
120
0.64676
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/cartpole/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Cartpole balancing environment. """ import gymnasium as gym from . import agents from .cartpole_camera_env import CartpoleCameraEnv, CartpoleDepthCameraEnvCfg, CartpoleRGBCameraEnvCfg from .cartpole_env import CartpoleEnv, CartpoleEnvCfg ## # Register Gym environments. ## gym.register( id="Isaac-Cartpole-Direct-v0", entry_point="omni.isaac.lab_tasks.direct.cartpole:CartpoleEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": CartpoleEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.CartpolePPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", "sb3_cfg_entry_point": f"{agents.__name__}:sb3_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Cartpole-RGB-Camera-Direct-v0", entry_point="omni.isaac.lab_tasks.direct.cartpole:CartpoleCameraEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": CartpoleRGBCameraEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_camera_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Cartpole-Depth-Camera-Direct-v0", entry_point="omni.isaac.lab_tasks.direct.cartpole:CartpoleCameraEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": CartpoleDepthCameraEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_camera_ppo_cfg.yaml", }, )
1,588
Python
29.557692
102
0.688287
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/cartpole/cartpole_env.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import math import torch from collections.abc import Sequence from omni.isaac.lab_assets.cartpole import CARTPOLE_CFG import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.assets import Articulation, ArticulationCfg from omni.isaac.lab.envs import DirectRLEnv, DirectRLEnvCfg from omni.isaac.lab.scene import InteractiveSceneCfg from omni.isaac.lab.sim import SimulationCfg from omni.isaac.lab.sim.spawners.from_files import GroundPlaneCfg, spawn_ground_plane from omni.isaac.lab.utils import configclass from omni.isaac.lab.utils.math import sample_uniform @configclass class CartpoleEnvCfg(DirectRLEnvCfg): # simulation sim: SimulationCfg = SimulationCfg(dt=1 / 120) # robot robot_cfg: ArticulationCfg = CARTPOLE_CFG.replace(prim_path="/World/envs/env_.*/Robot") cart_dof_name = "slider_to_cart" pole_dof_name = "cart_to_pole" # scene scene: InteractiveSceneCfg = InteractiveSceneCfg(num_envs=4096, env_spacing=4.0, replicate_physics=True) # env decimation = 2 episode_length_s = 5.0 action_scale = 100.0 # [N] num_actions = 1 num_observations = 4 num_states = 0 # reset max_cart_pos = 3.0 # the cart is reset if it exceeds that position [m] initial_pole_angle_range = [-0.25, 0.25] # the range in which the pole angle is sampled from on reset [rad] # reward scales rew_scale_alive = 1.0 rew_scale_terminated = -2.0 rew_scale_pole_pos = -1.0 rew_scale_cart_vel = -0.01 rew_scale_pole_vel = -0.005 class CartpoleEnv(DirectRLEnv): cfg: CartpoleEnvCfg def __init__(self, cfg: CartpoleEnvCfg, render_mode: str | None = None, **kwargs): super().__init__(cfg, render_mode, **kwargs) self._cart_dof_idx, _ = self.cartpole.find_joints(self.cfg.cart_dof_name) self._pole_dof_idx, _ = self.cartpole.find_joints(self.cfg.pole_dof_name) self.action_scale = self.cfg.action_scale self.joint_pos = self.cartpole.data.joint_pos self.joint_vel = self.cartpole.data.joint_vel def _setup_scene(self): self.cartpole = Articulation(self.cfg.robot_cfg) # add ground plane spawn_ground_plane(prim_path="/World/ground", cfg=GroundPlaneCfg()) # clone, filter, and replicate self.scene.clone_environments(copy_from_source=False) self.scene.filter_collisions(global_prim_paths=[]) # add articultion to scene self.scene.articulations["cartpole"] = self.cartpole # add lights light_cfg = sim_utils.DomeLightCfg(intensity=2000.0, color=(0.75, 0.75, 0.75)) light_cfg.func("/World/Light", light_cfg) def _pre_physics_step(self, actions: torch.Tensor) -> None: self.actions = self.action_scale * actions.clone() def _apply_action(self) -> None: self.cartpole.set_joint_effort_target(self.actions, joint_ids=self._cart_dof_idx) def _get_observations(self) -> dict: obs = torch.cat( ( self.joint_pos[:, self._pole_dof_idx[0]].unsqueeze(dim=1), self.joint_vel[:, self._pole_dof_idx[0]].unsqueeze(dim=1), self.joint_pos[:, self._cart_dof_idx[0]].unsqueeze(dim=1), self.joint_vel[:, self._cart_dof_idx[0]].unsqueeze(dim=1), ), dim=-1, ) observations = {"policy": obs} return observations def _get_rewards(self) -> torch.Tensor: total_reward = compute_rewards( self.cfg.rew_scale_alive, self.cfg.rew_scale_terminated, self.cfg.rew_scale_pole_pos, self.cfg.rew_scale_cart_vel, self.cfg.rew_scale_pole_vel, self.joint_pos[:, self._pole_dof_idx[0]], self.joint_vel[:, self._pole_dof_idx[0]], self.joint_pos[:, self._cart_dof_idx[0]], self.joint_vel[:, self._cart_dof_idx[0]], self.reset_terminated, ) return total_reward def _get_dones(self) -> tuple[torch.Tensor, torch.Tensor]: self.joint_pos = self.cartpole.data.joint_pos self.joint_vel = self.cartpole.data.joint_vel time_out = self.episode_length_buf >= self.max_episode_length - 1 out_of_bounds = torch.any(torch.abs(self.joint_pos[:, self._cart_dof_idx]) > self.cfg.max_cart_pos, dim=1) out_of_bounds = out_of_bounds | torch.any(torch.abs(self.joint_pos[:, self._pole_dof_idx]) > math.pi / 2, dim=1) return out_of_bounds, time_out def _reset_idx(self, env_ids: Sequence[int] | None): if env_ids is None: env_ids = self.cartpole._ALL_INDICES super()._reset_idx(env_ids) joint_pos = self.cartpole.data.default_joint_pos[env_ids] joint_pos[:, self._pole_dof_idx] += sample_uniform( self.cfg.initial_pole_angle_range[0] * math.pi, self.cfg.initial_pole_angle_range[1] * math.pi, joint_pos[:, self._pole_dof_idx].shape, joint_pos.device, ) joint_vel = self.cartpole.data.default_joint_vel[env_ids] default_root_state = self.cartpole.data.default_root_state[env_ids] default_root_state[:, :3] += self.scene.env_origins[env_ids] self.joint_pos[env_ids] = joint_pos self.joint_vel[env_ids] = joint_vel self.cartpole.write_root_pose_to_sim(default_root_state[:, :7], env_ids) self.cartpole.write_root_velocity_to_sim(default_root_state[:, 7:], env_ids) self.cartpole.write_joint_state_to_sim(joint_pos, joint_vel, None, env_ids) @torch.jit.script def compute_rewards( rew_scale_alive: float, rew_scale_terminated: float, rew_scale_pole_pos: float, rew_scale_cart_vel: float, rew_scale_pole_vel: float, pole_pos: torch.Tensor, pole_vel: torch.Tensor, cart_pos: torch.Tensor, cart_vel: torch.Tensor, reset_terminated: torch.Tensor, ): rew_alive = rew_scale_alive * (1.0 - reset_terminated.float()) rew_termination = rew_scale_terminated * reset_terminated.float() rew_pole_pos = rew_scale_pole_pos * torch.sum(torch.square(pole_pos).unsqueeze(dim=1), dim=-1) rew_cart_vel = rew_scale_cart_vel * torch.sum(torch.abs(cart_vel).unsqueeze(dim=1), dim=-1) rew_pole_vel = rew_scale_pole_vel * torch.sum(torch.abs(pole_vel).unsqueeze(dim=1), dim=-1) total_reward = rew_alive + rew_termination + rew_pole_pos + rew_cart_vel + rew_pole_vel return total_reward
6,598
Python
37.590643
120
0.642316
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/cartpole/agents/rsl_rl_ppo_cfg.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.lab.utils import configclass from omni.isaac.lab_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class CartpolePPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 16 max_iterations = 150 save_interval = 50 experiment_name = "cartpole_direct" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[32, 32], critic_hidden_dims=[32, 32], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.005, num_learning_epochs=5, num_mini_batches=4, learning_rate=1.0e-3, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, )
1,072
Python
24.547618
60
0.64459
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/cartpole/agents/rl_games_camera_ppo_cfg.yaml
params: seed: 42 # environment wrapper clipping env: # added to the wrapper clip_observations: 5.0 # can make custom wrapper? clip_actions: 1.0 algo: name: a2c_continuous model: name: continuous_a2c_logstd # doesn't have this fine grained control but made it close network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True cnn: type: conv2d activation: relu initializer: name: default regularizer: name: None convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: elu initializer: name: default load_checkpoint: False # flag which sets whether to load the checkpoint load_path: '' # path to the checkpoint to load config: name: cartpole_camera_direct env_name: rlgpu device: 'cuda:0' device_name: 'cuda:0' multi_gpu: False ppo: True mixed_precision: False normalize_input: False normalize_value: True num_actors: -1 # configured from the script (based on num_envs) reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau : 0.95 learning_rate: 1e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 500 save_best_after: 50 save_frequency: 25 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 64 minibatch_size: 2048 mini_epochs: 4 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
2,015
YAML
20
73
0.580645
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/cartpole/agents/skrl_ppo_cfg.yaml
seed: 42 # Models are instantiated using skrl's model instantiator utility # https://skrl.readthedocs.io/en/latest/api/utils/model_instantiators.html models: separate: False policy: # see skrl.utils.model_instantiators.torch.gaussian_model for parameter details clip_actions: True clip_log_std: True initial_log_std: 0 min_log_std: -20.0 max_log_std: 2.0 input_shape: "Shape.STATES" hiddens: [32, 32] hidden_activation: ["elu", "elu"] output_shape: "Shape.ACTIONS" output_activation: "tanh" output_scale: 1.0 value: # see skrl.utils.model_instantiators.torch.deterministic_model for parameter details clip_actions: False input_shape: "Shape.STATES" hiddens: [32, 32] hidden_activation: ["elu", "elu"] output_shape: "Shape.ONE" output_activation: "" output_scale: 1.0 # PPO agent configuration (field names are from PPO_DEFAULT_CONFIG) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html agent: rollouts: 16 learning_epochs: 8 mini_batches: 1 discount_factor: 0.99 lambda: 0.95 learning_rate: 3.e-4 learning_rate_scheduler: "KLAdaptiveLR" learning_rate_scheduler_kwargs: kl_threshold: 0.008 state_preprocessor: "RunningStandardScaler" state_preprocessor_kwargs: null value_preprocessor: "RunningStandardScaler" value_preprocessor_kwargs: null random_timesteps: 0 learning_starts: 0 grad_norm_clip: 1.0 ratio_clip: 0.2 value_clip: 0.2 clip_predicted_values: True entropy_loss_scale: 0.0 value_loss_scale: 2.0 kl_threshold: 0 rewards_shaper_scale: 1.0 # logging and checkpoint experiment: directory: "cartpole_direct" experiment_name: "" write_interval: 16 checkpoint_interval: 80 # Sequential trainer # https://skrl.readthedocs.io/en/latest/api/trainers/sequential.html trainer: timesteps: 1600 environment_info: "log"
1,882
YAML
26.691176
94
0.712009
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/cartpole/agents/sb3_ppo_cfg.yaml
# Reference: https://github.com/DLR-RM/rl-baselines3-zoo/blob/master/hyperparams/ppo.yml#L32 seed: 42 n_timesteps: !!float 1e6 policy: 'MlpPolicy' n_steps: 16 batch_size: 4096 gae_lambda: 0.95 gamma: 0.99 n_epochs: 20 ent_coef: 0.01 learning_rate: !!float 3e-4 clip_range: !!float 0.2 policy_kwargs: "dict( activation_fn=nn.ELU, net_arch=[32, 32], squash_output=False, )" vf_coef: 1.0 max_grad_norm: 1.0 device: "cuda:0"
492
YAML
21.40909
92
0.611789
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/cartpole/agents/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_ppo_cfg # noqa: F401, F403
176
Python
24.285711
60
0.721591
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/cartpole/agents/rl_games_ppo_cfg.yaml
params: seed: 42 # environment wrapper clipping env: # added to the wrapper clip_observations: 5.0 # can make custom wrapper? clip_actions: 1.0 algo: name: a2c_continuous model: name: continuous_a2c_logstd # doesn't have this fine grained control but made it close network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [32, 32] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False # flag which sets whether to load the checkpoint load_path: '' # path to the checkpoint to load config: name: cartpole_direct env_name: rlgpu device: 'cuda:0' device_name: 'cuda:0' multi_gpu: False ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: -1 # configured from the script (based on num_envs) reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau : 0.95 learning_rate: 5e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 150 save_best_after: 50 save_frequency: 25 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 32 minibatch_size: 16384 mini_epochs: 8 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,653
YAML
19.936709
73
0.61222
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/humanoid/humanoid_env.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from omni.isaac.lab_assets import HUMANOID_CFG import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.assets import ArticulationCfg from omni.isaac.lab.envs import DirectRLEnvCfg from omni.isaac.lab.scene import InteractiveSceneCfg from omni.isaac.lab.sim import SimulationCfg from omni.isaac.lab.terrains import TerrainImporterCfg from omni.isaac.lab.utils import configclass from omni.isaac.lab_tasks.direct.locomotion.locomotion_env import LocomotionEnv @configclass class HumanoidEnvCfg(DirectRLEnvCfg): # simulation sim: SimulationCfg = SimulationCfg(dt=1 / 120) terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="plane", collision_group=-1, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="average", restitution_combine_mode="average", static_friction=1.0, dynamic_friction=1.0, restitution=0.0, ), debug_vis=False, ) # scene scene: InteractiveSceneCfg = InteractiveSceneCfg(num_envs=4096, env_spacing=4.0, replicate_physics=True) # robot robot: ArticulationCfg = HUMANOID_CFG.replace(prim_path="/World/envs/env_.*/Robot") joint_gears: list = [ 67.5000, # lower_waist 67.5000, # lower_waist 67.5000, # right_upper_arm 67.5000, # right_upper_arm 67.5000, # left_upper_arm 67.5000, # left_upper_arm 67.5000, # pelvis 45.0000, # right_lower_arm 45.0000, # left_lower_arm 45.0000, # right_thigh: x 135.0000, # right_thigh: y 45.0000, # right_thigh: z 45.0000, # left_thigh: x 135.0000, # left_thigh: y 45.0000, # left_thigh: z 90.0000, # right_knee 90.0000, # left_knee 22.5, # right_foot 22.5, # right_foot 22.5, # left_foot 22.5, # left_foot ] # env episode_length_s = 15.0 decimation = 2 action_scale = 1.0 num_actions = 21 num_observations = 75 num_states = 0 heading_weight: float = 0.5 up_weight: float = 0.1 energy_cost_scale: float = 0.05 actions_cost_scale: float = 0.01 alive_reward_scale: float = 2.0 dof_vel_scale: float = 0.1 death_cost: float = -1.0 termination_height: float = 0.8 angular_velocity_scale: float = 0.25 contact_force_scale: float = 0.01 class HumanoidEnv(LocomotionEnv): cfg: HumanoidEnvCfg def __init__(self, cfg: HumanoidEnvCfg, render_mode: str | None = None, **kwargs): super().__init__(cfg, render_mode, **kwargs)
2,796
Python
28.135416
108
0.631617
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/humanoid/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Humanoid locomotion environment. """ import gymnasium as gym from . import agents from .humanoid_env import HumanoidEnv, HumanoidEnvCfg ## # Register Gym environments. ## gym.register( id="Isaac-Humanoid-Direct-v0", entry_point="omni.isaac.lab_tasks.direct.humanoid:HumanoidEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": HumanoidEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.HumanoidPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", }, )
752
Python
24.099999
79
0.68617
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/humanoid/agents/rsl_rl_ppo_cfg.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.lab.utils import configclass from omni.isaac.lab_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class HumanoidPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 32 max_iterations = 1000 save_interval = 50 experiment_name = "humanoid_direct" empirical_normalization = True policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[400, 200, 100], critic_hidden_dims=[400, 200, 100], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.0, num_learning_epochs=5, num_mini_batches=4, learning_rate=1.0e-4, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.008, max_grad_norm=1.0, )
1,085
Python
24.857142
60
0.645161
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/humanoid/agents/skrl_ppo_cfg.yaml
seed: 42 # Models are instantiated using skrl's model instantiator utility # https://skrl.readthedocs.io/en/latest/api/utils/model_instantiators.html models: separate: False policy: # see skrl.utils.model_instantiators.torch.gaussian_model for parameter details clip_actions: True clip_log_std: True initial_log_std: 0 min_log_std: -20.0 max_log_std: 2.0 input_shape: "Shape.STATES" hiddens: [400, 200, 100] hidden_activation: ["elu", "elu", "elu"] output_shape: "Shape.ACTIONS" output_activation: "tanh" output_scale: 1.0 value: # see skrl.utils.model_instantiators.torch.deterministic_model for parameter details clip_actions: False input_shape: "Shape.STATES" hiddens: [400, 200, 100] hidden_activation: ["elu", "elu", "elu"] output_shape: "Shape.ONE" output_activation: "" output_scale: 1.0 # PPO agent configuration (field names are from PPO_DEFAULT_CONFIG) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html agent: rollouts: 32 learning_epochs: 5 mini_batches: 4 discount_factor: 0.99 lambda: 0.95 learning_rate: 1.e-4 learning_rate_scheduler: "KLAdaptiveLR" learning_rate_scheduler_kwargs: kl_threshold: 0.008 state_preprocessor: "RunningStandardScaler" state_preprocessor_kwargs: null value_preprocessor: "RunningStandardScaler" value_preprocessor_kwargs: null random_timesteps: 0 learning_starts: 0 grad_norm_clip: 1.0 ratio_clip: 0.2 value_clip: 0.2 clip_predicted_values: True entropy_loss_scale: 0.0 value_loss_scale: 2.0 kl_threshold: 0 rewards_shaper_scale: 0.01 # logging and checkpoint experiment: directory: "humanoid_direct" experiment_name: "" write_interval: 160 checkpoint_interval: 1600 # Sequential trainer # https://skrl.readthedocs.io/en/latest/api/trainers/sequential.html trainer: timesteps: 32000 environment_info: "log"
1,915
YAML
27.17647
94
0.710705
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/humanoid/agents/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_ppo_cfg
156
Python
21.428568
60
0.737179
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/humanoid/agents/rl_games_ppo_cfg.yaml
params: seed: 42 # environment wrapper clipping env: clip_actions: 1.0 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [400, 200, 100] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False # flag which sets whether to load the checkpoint load_path: '' # path to the checkpoint to load config: name: humanoid_direct env_name: rlgpu device: 'cuda:0' device_name: 'cuda:0' multi_gpu: False ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: -1 # configured from the script (based on num_envs) reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 1000 save_best_after: 100 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 32 minibatch_size: 32768 mini_epochs: 5 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,541
YAML
19.289473
73
0.607398
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/shadow_hand/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Cartpole balancing environment. """ import gymnasium as gym from . import agents from .shadow_hand_env import ShadowHandEnv from .shadow_hand_env_cfg import ShadowHandEnvCfg, ShadowHandOpenAIEnvCfg ## # Register Gym environments. ## gym.register( id="Isaac-Shadow-Hand-Direct-v0", entry_point="omni.isaac.lab_tasks.direct.shadow_hand:ShadowHandEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": ShadowHandEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.ShadowHandPPORunnerCfg, }, ) gym.register( id="Isaac-Shadow-Hand-OpenAI-FF-Direct-v0", entry_point="omni.isaac.lab_tasks.direct.shadow_hand:ShadowHandEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": ShadowHandOpenAIEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_ff_cfg.yaml", "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.ShadowHandAsymFFPPORunnerCfg, }, ) gym.register( id="Isaac-Shadow-Hand-OpenAI-LSTM-Direct-v0", entry_point="omni.isaac.lab_tasks.direct.shadow_hand:ShadowHandEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": ShadowHandOpenAIEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_lstm_cfg.yaml", }, )
1,496
Python
28.352941
85
0.691176
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/shadow_hand/shadow_hand_env.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import numpy as np import torch from collections.abc import Sequence import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.assets import Articulation, RigidObject from omni.isaac.lab.envs import DirectRLEnv from omni.isaac.lab.markers import VisualizationMarkers from omni.isaac.lab.sim.spawners.from_files import GroundPlaneCfg, spawn_ground_plane from omni.isaac.lab.utils.math import quat_conjugate, quat_from_angle_axis, quat_mul, sample_uniform, saturate from .shadow_hand_env_cfg import ShadowHandEnvCfg class ShadowHandEnv(DirectRLEnv): cfg: ShadowHandEnvCfg def __init__(self, cfg: ShadowHandEnvCfg, render_mode: str | None = None, **kwargs): super().__init__(cfg, render_mode, **kwargs) self.num_hand_dofs = self.hand.num_joints # buffers for position targets self.hand_dof_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device) self.prev_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device) self.cur_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device) # list of actuated joints self.actuated_dof_indices = list() for joint_name in cfg.actuated_joint_names: self.actuated_dof_indices.append(self.hand.joint_names.index(joint_name)) self.actuated_dof_indices.sort() # finger bodies self.finger_bodies = list() for body_name in self.cfg.fingertip_body_names: self.finger_bodies.append(self.hand.body_names.index(body_name)) self.finger_bodies.sort() self.num_fingertips = len(self.finger_bodies) # joint limits joint_pos_limits = self.hand.root_physx_view.get_dof_limits().to(self.device) self.hand_dof_lower_limits = joint_pos_limits[..., 0] self.hand_dof_upper_limits = joint_pos_limits[..., 1] # track goal resets self.reset_goal_buf = torch.zeros(self.num_envs, dtype=torch.bool, device=self.device) # used to compare object position self.in_hand_pos = self.object.data.default_root_state[:, 0:3].clone() self.in_hand_pos[:, 2] -= 0.04 # default goal positions self.goal_rot = torch.zeros((self.num_envs, 4), dtype=torch.float, device=self.device) self.goal_rot[:, 0] = 1.0 self.goal_pos = torch.zeros((self.num_envs, 3), dtype=torch.float, device=self.device) self.goal_pos[:, :] = torch.tensor([-0.2, -0.45, 0.68], device=self.device) # initialize goal marker self.goal_markers = VisualizationMarkers(self.cfg.goal_object_cfg) # track successes self.successes = torch.zeros(self.num_envs, dtype=torch.float, device=self.device) self.consecutive_successes = torch.zeros(1, dtype=torch.float, device=self.device) # unit tensors self.x_unit_tensor = torch.tensor([1, 0, 0], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.y_unit_tensor = torch.tensor([0, 1, 0], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.z_unit_tensor = torch.tensor([0, 0, 1], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) def _setup_scene(self): # add hand, in-hand object, and goal object self.hand = Articulation(self.cfg.robot_cfg) self.object = RigidObject(self.cfg.object_cfg) # add ground plane spawn_ground_plane(prim_path="/World/ground", cfg=GroundPlaneCfg()) # clone and replicate (no need to filter for this environment) self.scene.clone_environments(copy_from_source=False) # add articultion to scene - we must register to scene to randomize with EventManager self.scene.articulations["robot"] = self.hand self.scene.rigid_objects["object"] = self.object # add lights light_cfg = sim_utils.DomeLightCfg(intensity=2000.0, color=(0.75, 0.75, 0.75)) light_cfg.func("/World/Light", light_cfg) def _pre_physics_step(self, actions: torch.Tensor) -> None: self.actions = actions.clone() def _apply_action(self) -> None: self.cur_targets[:, self.actuated_dof_indices] = scale( self.actions, self.hand_dof_lower_limits[:, self.actuated_dof_indices], self.hand_dof_upper_limits[:, self.actuated_dof_indices], ) self.cur_targets[:, self.actuated_dof_indices] = ( self.cfg.act_moving_average * self.cur_targets[:, self.actuated_dof_indices] + (1.0 - self.cfg.act_moving_average) * self.prev_targets[:, self.actuated_dof_indices] ) self.cur_targets[:, self.actuated_dof_indices] = saturate( self.cur_targets[:, self.actuated_dof_indices], self.hand_dof_lower_limits[:, self.actuated_dof_indices], self.hand_dof_upper_limits[:, self.actuated_dof_indices], ) self.prev_targets[:, self.actuated_dof_indices] = self.cur_targets[:, self.actuated_dof_indices] self.hand.set_joint_position_target( self.cur_targets[:, self.actuated_dof_indices], joint_ids=self.actuated_dof_indices ) def _get_observations(self) -> dict: if self.cfg.asymmetric_obs: self.fingertip_force_sensors = self.hand.root_physx_view.get_link_incoming_joint_force()[ :, self.finger_bodies ] if self.cfg.obs_type == "openai": obs = self.compute_reduced_observations() elif self.cfg.obs_type == "full": obs = self.compute_full_observations() else: print("Unknown observations type!") if self.cfg.asymmetric_obs: states = self.compute_full_state() observations = {"policy": obs} if self.cfg.asymmetric_obs: observations = {"policy": obs, "critic": states} return observations def _get_rewards(self) -> torch.Tensor: ( total_reward, self.reset_goal_buf, self.successes[:], self.consecutive_successes[:], ) = compute_rewards( self.reset_buf, self.reset_goal_buf, self.successes, self.consecutive_successes, self.max_episode_length, self.object_pos, self.object_rot, self.in_hand_pos, self.goal_rot, self.cfg.dist_reward_scale, self.cfg.rot_reward_scale, self.cfg.rot_eps, self.actions, self.cfg.action_penalty_scale, self.cfg.success_tolerance, self.cfg.reach_goal_bonus, self.cfg.fall_dist, self.cfg.fall_penalty, self.cfg.av_factor, ) if "log" not in self.extras: self.extras["log"] = dict() self.extras["log"]["consecutive_successes"] = self.consecutive_successes.mean() # reset goals if the goal has been reached goal_env_ids = self.reset_goal_buf.nonzero(as_tuple=False).squeeze(-1) if len(goal_env_ids) > 0: self._reset_target_pose(goal_env_ids) return total_reward def _get_dones(self) -> tuple[torch.Tensor, torch.Tensor]: self._compute_intermediate_values() # reset when cube has fallen goal_dist = torch.norm(self.object_pos - self.in_hand_pos, p=2, dim=-1) out_of_reach = goal_dist >= self.cfg.fall_dist if self.cfg.max_consecutive_success > 0: # Reset progress (episode length buf) on goal envs if max_consecutive_success > 0 rot_dist = rotation_distance(self.object_rot, self.goal_rot) self.episode_length_buf = torch.where( torch.abs(rot_dist) <= self.cfg.success_tolerance, torch.zeros_like(self.episode_length_buf), self.episode_length_buf, ) max_success_reached = self.successes >= self.cfg.max_consecutive_success time_out = self.episode_length_buf >= self.max_episode_length - 1 if self.cfg.max_consecutive_success > 0: time_out = time_out | max_success_reached return out_of_reach, time_out def _reset_idx(self, env_ids: Sequence[int] | None): if env_ids is None: env_ids = self.hand._ALL_INDICES # resets articulation and rigid body attributes super()._reset_idx(env_ids) # reset goals self._reset_target_pose(env_ids) # reset object object_default_state = self.object.data.default_root_state.clone()[env_ids] pos_noise = sample_uniform(-1.0, 1.0, (len(env_ids), 3), device=self.device) # global object positions object_default_state[:, 0:3] = ( object_default_state[:, 0:3] + self.cfg.reset_position_noise * pos_noise + self.scene.env_origins[env_ids] ) rot_noise = sample_uniform(-1.0, 1.0, (len(env_ids), 2), device=self.device) # noise for X and Y rotation object_default_state[:, 3:7] = randomize_rotation( rot_noise[:, 0], rot_noise[:, 1], self.x_unit_tensor[env_ids], self.y_unit_tensor[env_ids] ) object_default_state[:, 7:] = torch.zeros_like(self.object.data.default_root_state[env_ids, 7:]) self.object.write_root_state_to_sim(object_default_state, env_ids) # reset hand delta_max = self.hand_dof_upper_limits[env_ids] - self.hand.data.default_joint_pos[env_ids] delta_min = self.hand_dof_lower_limits[env_ids] - self.hand.data.default_joint_pos[env_ids] dof_pos_noise = sample_uniform(-1.0, 1.0, (len(env_ids), self.num_hand_dofs), device=self.device) rand_delta = delta_min + (delta_max - delta_min) * 0.5 * dof_pos_noise dof_pos = self.hand.data.default_joint_pos[env_ids] + self.cfg.reset_dof_pos_noise * rand_delta dof_vel_noise = sample_uniform(-1.0, 1.0, (len(env_ids), self.num_hand_dofs), device=self.device) dof_vel = self.hand.data.default_joint_vel[env_ids] + self.cfg.reset_dof_vel_noise * dof_vel_noise self.prev_targets[env_ids] = dof_pos self.cur_targets[env_ids] = dof_pos self.hand_dof_targets[env_ids] = dof_pos self.hand.set_joint_position_target(dof_pos, env_ids=env_ids) self.hand.write_joint_state_to_sim(dof_pos, dof_vel, env_ids=env_ids) self.successes[env_ids] = 0 self._compute_intermediate_values() def _reset_target_pose(self, env_ids): # reset goal rotation rand_floats = sample_uniform(-1.0, 1.0, (len(env_ids), 2), device=self.device) new_rot = randomize_rotation( rand_floats[:, 0], rand_floats[:, 1], self.x_unit_tensor[env_ids], self.y_unit_tensor[env_ids] ) # update goal pose and markers self.goal_rot[env_ids] = new_rot goal_pos = self.goal_pos + self.scene.env_origins self.goal_markers.visualize(goal_pos, self.goal_rot) self.reset_goal_buf[env_ids] = 0 def _compute_intermediate_values(self): # data for hand self.fingertip_pos = self.hand.data.body_pos_w[:, self.finger_bodies] self.fingertip_rot = self.hand.data.body_quat_w[:, self.finger_bodies] self.fingertip_pos -= self.scene.env_origins.repeat((1, self.num_fingertips)).reshape( self.num_envs, self.num_fingertips, 3 ) self.fingertip_velocities = self.hand.data.body_vel_w[:, self.finger_bodies] self.hand_dof_pos = self.hand.data.joint_pos self.hand_dof_vel = self.hand.data.joint_vel # data for object self.object_pos = self.object.data.root_pos_w - self.scene.env_origins self.object_rot = self.object.data.root_quat_w self.object_velocities = self.object.data.root_vel_w self.object_linvel = self.object.data.root_lin_vel_w self.object_angvel = self.object.data.root_ang_vel_w def compute_reduced_observations(self): # Per https://arxiv.org/pdf/1808.00177.pdf Table 2 # Fingertip positions # Object Position, but not orientation # Relative target orientation obs = torch.cat( ( self.fingertip_pos.view(self.num_envs, self.num_fingertips * 3), # 0:15 self.object_pos, # 15:18 quat_mul(self.object_rot, quat_conjugate(self.goal_rot)), # 18:22 self.actions, # 22:42 ), dim=-1, ) return obs def compute_full_observations(self): obs = torch.cat( ( # hand unscale(self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits), # 0:24 self.cfg.vel_obs_scale * self.hand_dof_vel, # 24:48 # object self.object_pos, # 48:51 self.object_rot, # 51:55 self.object_linvel, # 55:58 self.cfg.vel_obs_scale * self.object_angvel, # 58:61 # goal self.in_hand_pos, # 61:64 self.goal_rot, # 64:68 quat_mul(self.object_rot, quat_conjugate(self.goal_rot)), # 68:72 # fingertips self.fingertip_pos.view(self.num_envs, self.num_fingertips * 3), # 72:87 self.fingertip_rot.view(self.num_envs, self.num_fingertips * 4), # 87:107 self.fingertip_velocities.view(self.num_envs, self.num_fingertips * 6), # 107:137 # actions self.actions, # 137:157 ), dim=-1, ) return obs def compute_full_state(self): states = torch.cat( ( # hand unscale(self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits), # 0:24 self.cfg.vel_obs_scale * self.hand_dof_vel, # 24:48 # object self.object_pos, # 48:51 self.object_rot, # 51:55 self.object_linvel, # 55:58 self.cfg.vel_obs_scale * self.object_angvel, # 58:61 # goal self.in_hand_pos, # 61:64 self.goal_rot, # 64:68 quat_mul(self.object_rot, quat_conjugate(self.goal_rot)), # 68:72 # fingertips self.fingertip_pos.view(self.num_envs, self.num_fingertips * 3), # 72:87 self.fingertip_rot.view(self.num_envs, self.num_fingertips * 4), # 87:107 self.fingertip_velocities.view(self.num_envs, self.num_fingertips * 6), # 107:137 self.cfg.force_torque_obs_scale * self.fingertip_force_sensors.view(self.num_envs, self.num_fingertips * 6), # 137:167 # actions self.actions, # 167:187 ), dim=-1, ) return states @torch.jit.script def scale(x, lower, upper): return 0.5 * (x + 1.0) * (upper - lower) + lower @torch.jit.script def unscale(x, lower, upper): return (2.0 * x - upper - lower) / (upper - lower) @torch.jit.script def randomize_rotation(rand0, rand1, x_unit_tensor, y_unit_tensor): return quat_mul( quat_from_angle_axis(rand0 * np.pi, x_unit_tensor), quat_from_angle_axis(rand1 * np.pi, y_unit_tensor) ) @torch.jit.script def rotation_distance(object_rot, target_rot): # Orientation alignment for the cube in hand and goal cube quat_diff = quat_mul(object_rot, quat_conjugate(target_rot)) return 2.0 * torch.asin(torch.clamp(torch.norm(quat_diff[:, 1:4], p=2, dim=-1), max=1.0)) # changed quat convention @torch.jit.script def compute_rewards( reset_buf: torch.Tensor, reset_goal_buf: torch.Tensor, successes: torch.Tensor, consecutive_successes: torch.Tensor, max_episode_length: float, object_pos: torch.Tensor, object_rot: torch.Tensor, target_pos: torch.Tensor, target_rot: torch.Tensor, dist_reward_scale: float, rot_reward_scale: float, rot_eps: float, actions: torch.Tensor, action_penalty_scale: float, success_tolerance: float, reach_goal_bonus: float, fall_dist: float, fall_penalty: float, av_factor: float, ): goal_dist = torch.norm(object_pos - target_pos, p=2, dim=-1) rot_dist = rotation_distance(object_rot, target_rot) dist_rew = goal_dist * dist_reward_scale rot_rew = 1.0 / (torch.abs(rot_dist) + rot_eps) * rot_reward_scale action_penalty = torch.sum(actions**2, dim=-1) # Total reward is: position distance + orientation alignment + action regularization + success bonus + fall penalty reward = dist_rew + rot_rew + action_penalty * action_penalty_scale # Find out which envs hit the goal and update successes count goal_resets = torch.where(torch.abs(rot_dist) <= success_tolerance, torch.ones_like(reset_goal_buf), reset_goal_buf) successes = successes + goal_resets # Success bonus: orientation is within `success_tolerance` of goal orientation reward = torch.where(goal_resets == 1, reward + reach_goal_bonus, reward) # Fall penalty: distance to the goal is larger than a threshold reward = torch.where(goal_dist >= fall_dist, reward + fall_penalty, reward) # Check env termination conditions, including maximum success number resets = torch.where(goal_dist >= fall_dist, torch.ones_like(reset_buf), reset_buf) num_resets = torch.sum(resets) finished_cons_successes = torch.sum(successes * resets.float()) cons_successes = torch.where( num_resets > 0, av_factor * finished_cons_successes / num_resets + (1.0 - av_factor) * consecutive_successes, consecutive_successes, ) return reward, goal_resets, successes, cons_successes
18,039
Python
40.953488
120
0.613615
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/shadow_hand/shadow_hand_env_cfg.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.lab_assets.shadow_hand import SHADOW_HAND_CFG import omni.isaac.lab.envs.mdp as mdp import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.assets import ArticulationCfg, RigidObjectCfg from omni.isaac.lab.envs import DirectRLEnvCfg from omni.isaac.lab.managers import EventTermCfg as EventTerm from omni.isaac.lab.managers import SceneEntityCfg from omni.isaac.lab.markers import VisualizationMarkersCfg from omni.isaac.lab.scene import InteractiveSceneCfg from omni.isaac.lab.sim import PhysxCfg, SimulationCfg from omni.isaac.lab.sim.spawners.materials.physics_materials_cfg import RigidBodyMaterialCfg from omni.isaac.lab.utils import configclass from omni.isaac.lab.utils.assets import ISAAC_NUCLEUS_DIR from omni.isaac.lab.utils.noise import GaussianNoiseCfg, NoiseModelWithAdditiveBiasCfg @configclass class EventCfg: """Configuration for randomization.""" # -- robot robot_physics_material = EventTerm( func=mdp.randomize_rigid_body_material, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot", body_names=".*"), "static_friction_range": (0.7, 1.3), "dynamic_friction_range": (1.0, 1.0), "restitution_range": (1.0, 1.0), "num_buckets": 250, }, ) robot_joint_stiffness_and_damping = EventTerm( func=mdp.randomize_actuator_gains, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot", joint_names=".*"), "stiffness_distribution_params": (0.75, 1.5), "damping_distribution_params": (0.3, 3.0), "operation": "scale", "distribution": "log_uniform", }, ) robot_joint_limits = EventTerm( func=mdp.randomize_joint_parameters, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot", joint_names=".*"), "lower_limit_distribution_params": (0.00, 0.01), "upper_limit_distribution_params": (0.00, 0.01), "operation": "add", "distribution": "gaussian", }, ) robot_tendon_properties = EventTerm( func=mdp.randomize_fixed_tendon_parameters, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot", fixed_tendon_names=".*"), "stiffness_distribution_params": (0.75, 1.5), "damping_distribution_params": (0.3, 3.0), "operation": "scale", "distribution": "log_uniform", }, ) # -- object object_physics_material = EventTerm( func=mdp.randomize_rigid_body_material, mode="reset", params={ "asset_cfg": SceneEntityCfg("object", body_names=".*"), "static_friction_range": (0.7, 1.3), "dynamic_friction_range": (1.0, 1.0), "restitution_range": (1.0, 1.0), "num_buckets": 250, }, ) object_scale_mass = EventTerm( func=mdp.randomize_rigid_body_mass, mode="reset", params={ "asset_cfg": SceneEntityCfg("object"), "mass_distribution_params": (0.5, 1.5), "operation": "scale", "distribution": "uniform", }, ) # -- scene reset_gravity = EventTerm( func=mdp.randomize_physics_scene_gravity, mode="interval", is_global_time=True, interval_range_s=(36.0, 36.0), # time_s = num_steps * (decimation * dt) params={ "gravity_distribution_params": ([0.0, 0.0, 0.0], [0.0, 0.0, 0.4]), "operation": "add", "distribution": "gaussian", }, ) @configclass class ShadowHandEnvCfg(DirectRLEnvCfg): # simulation sim: SimulationCfg = SimulationCfg( dt=1 / 120, physics_material=RigidBodyMaterialCfg( static_friction=1.0, dynamic_friction=1.0, ), physx=PhysxCfg( bounce_threshold_velocity=0.2, ), ) # robot robot_cfg: ArticulationCfg = SHADOW_HAND_CFG.replace(prim_path="/World/envs/env_.*/Robot").replace( init_state=ArticulationCfg.InitialStateCfg( pos=(0.0, 0.0, 0.5), rot=(1.0, 0.0, 0.0, 0.0), joint_pos={".*": 0.0}, ) ) actuated_joint_names = [ "robot0_WRJ1", "robot0_WRJ0", "robot0_FFJ3", "robot0_FFJ2", "robot0_FFJ1", "robot0_MFJ3", "robot0_MFJ2", "robot0_MFJ1", "robot0_RFJ3", "robot0_RFJ2", "robot0_RFJ1", "robot0_LFJ4", "robot0_LFJ3", "robot0_LFJ2", "robot0_LFJ1", "robot0_THJ4", "robot0_THJ3", "robot0_THJ2", "robot0_THJ1", "robot0_THJ0", ] fingertip_body_names = [ "robot0_ffdistal", "robot0_mfdistal", "robot0_rfdistal", "robot0_lfdistal", "robot0_thdistal", ] # in-hand object object_cfg: RigidObjectCfg = RigidObjectCfg( prim_path="/World/envs/env_.*/object", spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Blocks/DexCube/dex_cube_instanceable.usd", rigid_props=sim_utils.RigidBodyPropertiesCfg( kinematic_enabled=False, disable_gravity=False, enable_gyroscopic_forces=True, solver_position_iteration_count=8, solver_velocity_iteration_count=0, sleep_threshold=0.005, stabilization_threshold=0.0025, max_depenetration_velocity=1000.0, ), mass_props=sim_utils.MassPropertiesCfg(density=567.0), ), init_state=RigidObjectCfg.InitialStateCfg(pos=(0.0, -0.39, 0.6), rot=(1.0, 0.0, 0.0, 0.0)), ) # goal object goal_object_cfg: VisualizationMarkersCfg = VisualizationMarkersCfg( prim_path="/Visuals/goal_marker", markers={ "goal": sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Blocks/DexCube/dex_cube_instanceable.usd", scale=(1.0, 1.0, 1.0), ) }, ) # scene scene: InteractiveSceneCfg = InteractiveSceneCfg(num_envs=8192, env_spacing=0.75, replicate_physics=True) # env decimation = 2 episode_length_s = 10.0 num_actions = 20 num_observations = 157 # (full) num_states = 0 asymmetric_obs = False obs_type = "full" # reset reset_position_noise = 0.01 # range of position at reset reset_dof_pos_noise = 0.2 # range of dof pos at reset reset_dof_vel_noise = 0.0 # range of dof vel at reset # reward scales dist_reward_scale = -10.0 rot_reward_scale = 1.0 rot_eps = 0.1 action_penalty_scale = -0.0002 reach_goal_bonus = 250 fall_penalty = 0 fall_dist = 0.24 vel_obs_scale = 0.2 success_tolerance = 0.1 max_consecutive_success = 0 av_factor = 0.1 act_moving_average = 1.0 force_torque_obs_scale = 10.0 @configclass class ShadowHandOpenAIEnvCfg(ShadowHandEnvCfg): # simulation sim: SimulationCfg = SimulationCfg( dt=1 / 60, physics_material=RigidBodyMaterialCfg( static_friction=1.0, dynamic_friction=1.0, ), physx=PhysxCfg( bounce_threshold_velocity=0.2, gpu_max_rigid_contact_count=2**23, gpu_max_rigid_patch_count=2**23, ), ) # env decimation = 3 episode_length_s = 8.0 num_actions = 20 num_observations = 42 num_states = 187 asymmetric_obs = True obs_type = "openai" # reset reset_position_noise = 0.01 # range of position at reset reset_dof_pos_noise = 0.2 # range of dof pos at reset reset_dof_vel_noise = 0.0 # range of dof vel at reset # reward scales dist_reward_scale = -10.0 rot_reward_scale = 1.0 rot_eps = 0.1 action_penalty_scale = -0.0002 reach_goal_bonus = 250 fall_penalty = -50 fall_dist = 0.24 vel_obs_scale = 0.2 success_tolerance = 0.4 max_consecutive_success = 50 av_factor = 0.1 act_moving_average = 0.3 force_torque_obs_scale = 10.0 # domain randomization config events: EventCfg = EventCfg() # at every time-step add gaussian noise + bias. The bias is a gaussian sampled at reset action_noise_model: NoiseModelWithAdditiveBiasCfg = NoiseModelWithAdditiveBiasCfg( noise_cfg=GaussianNoiseCfg(mean=0.0, std=0.05, operation="add"), bias_noise_cfg=GaussianNoiseCfg(mean=0.0, std=0.015, operation="abs"), ) # at every time-step add gaussian noise + bias. The bias is a gaussian sampled at reset observation_noise_model: NoiseModelWithAdditiveBiasCfg = NoiseModelWithAdditiveBiasCfg( noise_cfg=GaussianNoiseCfg(mean=0.0, std=0.002, operation="add"), bias_noise_cfg=GaussianNoiseCfg(mean=0.0, std=0.0001, operation="abs"), )
9,087
Python
32.167883
109
0.592165
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/shadow_hand/agents/rsl_rl_ppo_cfg.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.lab.utils import configclass from omni.isaac.lab_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class ShadowHandPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 16 max_iterations = 10000 save_interval = 250 experiment_name = "shadow_hand" empirical_normalization = True policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[512, 512, 256, 128], critic_hidden_dims=[512, 512, 256, 128], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.005, num_learning_epochs=5, num_mini_batches=4, learning_rate=5.0e-4, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.016, max_grad_norm=1.0, ) @configclass class ShadowHandAsymFFPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 16 max_iterations = 10000 save_interval = 250 experiment_name = "shadow_hand_openai_ff" empirical_normalization = True policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[400, 400, 200, 100], critic_hidden_dims=[512, 512, 256, 128], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.005, num_learning_epochs=4, num_mini_batches=4, learning_rate=5.0e-4, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, )
1,895
Python
25.704225
60
0.626913
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/shadow_hand/agents/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_ppo_cfg
156
Python
21.428568
60
0.737179
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/shadow_hand/agents/rl_games_ppo_lstm_cfg.yaml
params: seed: 42 # environment wrapper clipping env: # added to the wrapper clip_observations: 5.0 # can make custom wrapper? clip_actions: 1.0 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [512] activation: relu d2rl: False initializer: name: default regularizer: name: None rnn: name: lstm units: 1024 layers: 1 before_mlp: True layer_norm: True load_checkpoint: False # flag which sets whether to load the checkpoint load_path: '' # path to the checkpoint to load config: name: shadow_hand_openai_lstm env_name: rlgpu device: 'cuda:0' device_name: 'cuda:0' multi_gpu: False ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: -1 # configured from the script (based on num_envs) reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.998 tau: 0.95 learning_rate: 1e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 score_to_win: 100000 max_epochs: 10000 save_best_after: 100 save_frequency: 200 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 4 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001 central_value_config: minibatch_size: 32768 mini_epochs: 4 learning_rate: 1e-4 kl_threshold: 0.016 clip_value: True normalize_input: True truncate_grads: True network: name: actor_critic central_value: True mlp: units: [512] activation: relu d2rl: False initializer: name: default regularizer: name: None rnn: name: lstm units: 1024 layers: 1 before_mlp: True layer_norm: True zero_rnn_on_done: False player: deterministic: True games_num: 100000 print_stats: True
2,468
YAML
19.747899
73
0.577796
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/shadow_hand/agents/rl_games_ppo_cfg.yaml
params: seed: 42 # environment wrapper clipping env: # added to the wrapper clip_observations: 5.0 # can make custom wrapper? clip_actions: 1.0 algo: name: a2c_continuous model: name: continuous_a2c_logstd # doesn't have this fine grained control but made it close network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [512, 512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False # flag which sets whether to load the checkpoint load_path: '' # path to the checkpoint to load config: name: shadow_hand env_name: rlgpu device: 'cuda:0' device_name: 'cuda:0' multi_gpu: False ppo: True mixed_precision: False normalize_input: True normalize_value: True value_bootstrap: True num_actors: -1 # configured from the script (based on num_envs) reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau : 0.95 learning_rate: 5e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 score_to_win: 100000 max_epochs: 5000 save_best_after: 100 save_frequency: 200 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 32768 mini_epochs: 5 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001 player: deterministic: True games_num: 100000 print_stats: True
1,829
YAML
20.034483
73
0.614543
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/shadow_hand/agents/rl_games_ppo_ff_cfg.yaml
params: seed: 42 # environment wrapper clipping env: # added to the wrapper clip_observations: 5.0 # can make custom wrapper? clip_actions: 1.0 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [400, 400, 200, 100] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False # flag which sets whether to load the checkpoint load_path: '' # path to the checkpoint to load config: name: shadow_hand_openai_ff env_name: rlgpu device: 'cuda:0' device_name: 'cuda:0' multi_gpu: False ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: -1 reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.998 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 score_to_win: 100000 max_epochs: 10000 save_best_after: 100 save_frequency: 200 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 4 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001 central_value_config: minibatch_size: 32864 mini_epochs: 4 learning_rate: 5e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 clip_value: True normalize_input: True truncate_grads: True network: name: actor_critic central_value: True mlp: units: [512, 512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None player: deterministic: True games_num: 100000 print_stats: True
2,232
YAML
19.675926
73
0.590054
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/franka_cabinet/franka_cabinet_env.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.torch.transformations import tf_combine, tf_inverse, tf_vector from pxr import UsdGeom import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.actuators.actuator_cfg import ImplicitActuatorCfg from omni.isaac.lab.assets import Articulation, ArticulationCfg from omni.isaac.lab.envs import DirectRLEnv, DirectRLEnvCfg from omni.isaac.lab.scene import InteractiveSceneCfg from omni.isaac.lab.sim import SimulationCfg from omni.isaac.lab.terrains import TerrainImporterCfg from omni.isaac.lab.utils import configclass from omni.isaac.lab.utils.assets import ISAAC_NUCLEUS_DIR from omni.isaac.lab.utils.math import sample_uniform @configclass class FrankaCabinetEnvCfg(DirectRLEnvCfg): # env episode_length_s = 8.3333 # 500 timesteps decimation = 2 num_actions = 9 num_observations = 23 num_states = 0 action_scale = 7.5 dof_velocity_scale = 0.1 # simulation sim: SimulationCfg = SimulationCfg( dt=1 / 120, disable_contact_processing=True, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="multiply", restitution_combine_mode="multiply", static_friction=1.0, dynamic_friction=1.0, restitution=0.0, ), ) # scene scene: InteractiveSceneCfg = InteractiveSceneCfg(num_envs=4096, env_spacing=3.0, replicate_physics=True) # robot robot = ArticulationCfg( prim_path="/World/envs/env_.*/Robot", spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Robots/Franka/franka_instanceable.usd", activate_contact_sensors=False, rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=False, max_depenetration_velocity=5.0, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=False, solver_position_iteration_count=12, solver_velocity_iteration_count=1 ), ), init_state=ArticulationCfg.InitialStateCfg( joint_pos={ "panda_joint1": 1.157, "panda_joint2": -1.066, "panda_joint3": -0.155, "panda_joint4": -2.239, "panda_joint5": -1.841, "panda_joint6": 1.003, "panda_joint7": 0.469, "panda_finger_joint.*": 0.035, }, pos=(1.0, 0.0, 0.0), rot=(0.0, 0.0, 0.0, 1.0), ), actuators={ "panda_shoulder": ImplicitActuatorCfg( joint_names_expr=["panda_joint[1-4]"], effort_limit=87.0, velocity_limit=2.175, stiffness=80.0, damping=4.0, ), "panda_forearm": ImplicitActuatorCfg( joint_names_expr=["panda_joint[5-7]"], effort_limit=12.0, velocity_limit=2.61, stiffness=80.0, damping=4.0, ), "panda_hand": ImplicitActuatorCfg( joint_names_expr=["panda_finger_joint.*"], effort_limit=200.0, velocity_limit=0.2, stiffness=2e3, damping=1e2, ), }, ) # cabinet cabinet = ArticulationCfg( prim_path="/World/envs/env_.*/Cabinet", spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Sektion_Cabinet/sektion_cabinet_instanceable.usd", activate_contact_sensors=False, ), init_state=ArticulationCfg.InitialStateCfg( pos=(0.0, 0, 0.4), rot=(0.1, 0.0, 0.0, 0.0), joint_pos={ "door_left_joint": 0.0, "door_right_joint": 0.0, "drawer_bottom_joint": 0.0, "drawer_top_joint": 0.0, }, ), actuators={ "drawers": ImplicitActuatorCfg( joint_names_expr=["drawer_top_joint", "drawer_bottom_joint"], effort_limit=87.0, velocity_limit=100.0, stiffness=10.0, damping=1.0, ), "doors": ImplicitActuatorCfg( joint_names_expr=["door_left_joint", "door_right_joint"], effort_limit=87.0, velocity_limit=100.0, stiffness=10.0, damping=2.5, ), }, ) # ground plane terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="plane", collision_group=-1, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="multiply", restitution_combine_mode="multiply", static_friction=1.0, dynamic_friction=1.0, restitution=0.0, ), ) # reward scales dist_reward_scale = 2.0 rot_reward_scale = 0.5 around_handle_reward_scale = 0.0 open_reward_scale = 7.5 action_penalty_scale = 0.01 finger_dist_reward_scale = 0.0 finger_close_reward_scale = 10.0 class FrankaCabinetEnv(DirectRLEnv): # pre-physics step calls # |-- _pre_physics_step(action) # |-- _apply_action() # post-physics step calls # |-- _get_dones() # |-- _get_rewards() # |-- _reset_idx(env_ids) # |-- _get_observations() cfg: FrankaCabinetEnvCfg def __init__(self, cfg: FrankaCabinetEnvCfg, render_mode: str | None = None, **kwargs): super().__init__(cfg, render_mode, **kwargs) def get_env_local_pose(env_pos: torch.Tensor, xformable: UsdGeom.Xformable, device: torch.device): """Compute pose in env-local coordinates""" world_transform = xformable.ComputeLocalToWorldTransform(0) world_pos = world_transform.ExtractTranslation() world_quat = world_transform.ExtractRotationQuat() px = world_pos[0] - env_pos[0] py = world_pos[1] - env_pos[1] pz = world_pos[2] - env_pos[2] qx = world_quat.imaginary[0] qy = world_quat.imaginary[1] qz = world_quat.imaginary[2] qw = world_quat.real return torch.tensor([px, py, pz, qw, qx, qy, qz], device=device) self.dt = self.cfg.sim.dt * self.cfg.decimation # create auxiliary variables for computing applied action, observations and rewards self.robot_dof_lower_limits = self._robot.data.soft_joint_pos_limits[0, :, 0].to(device=self.device) self.robot_dof_upper_limits = self._robot.data.soft_joint_pos_limits[0, :, 1].to(device=self.device) self.robot_dof_speed_scales = torch.ones_like(self.robot_dof_lower_limits) self.robot_dof_speed_scales[self._robot.find_joints("panda_finger_joint1")[0]] = 0.1 self.robot_dof_speed_scales[self._robot.find_joints("panda_finger_joint2")[0]] = 0.1 self.robot_dof_targets = torch.zeros((self.num_envs, self._robot.num_joints), device=self.device) stage = get_current_stage() hand_pose = get_env_local_pose( self.scene.env_origins[0], UsdGeom.Xformable(stage.GetPrimAtPath("/World/envs/env_0/Robot/panda_link7")), self.device, ) lfinger_pose = get_env_local_pose( self.scene.env_origins[0], UsdGeom.Xformable(stage.GetPrimAtPath("/World/envs/env_0/Robot/panda_leftfinger")), self.device, ) rfinger_pose = get_env_local_pose( self.scene.env_origins[0], UsdGeom.Xformable(stage.GetPrimAtPath("/World/envs/env_0/Robot/panda_rightfinger")), self.device, ) finger_pose = torch.zeros(7, device=self.device) finger_pose[0:3] = (lfinger_pose[0:3] + rfinger_pose[0:3]) / 2.0 finger_pose[3:7] = lfinger_pose[3:7] hand_pose_inv_rot, hand_pose_inv_pos = tf_inverse(hand_pose[3:7], hand_pose[0:3]) robot_local_grasp_pose_rot, robot_local_pose_pos = tf_combine( hand_pose_inv_rot, hand_pose_inv_pos, finger_pose[3:7], finger_pose[0:3] ) robot_local_pose_pos += torch.tensor([0, 0.04, 0], device=self.device) self.robot_local_grasp_pos = robot_local_pose_pos.repeat((self.num_envs, 1)) self.robot_local_grasp_rot = robot_local_grasp_pose_rot.repeat((self.num_envs, 1)) drawer_local_grasp_pose = torch.tensor([0.3, 0.01, 0.0, 1.0, 0.0, 0.0, 0.0], device=self.device) self.drawer_local_grasp_pos = drawer_local_grasp_pose[0:3].repeat((self.num_envs, 1)) self.drawer_local_grasp_rot = drawer_local_grasp_pose[3:7].repeat((self.num_envs, 1)) self.gripper_forward_axis = torch.tensor([0, 0, 1], device=self.device, dtype=torch.float32).repeat( (self.num_envs, 1) ) self.drawer_inward_axis = torch.tensor([-1, 0, 0], device=self.device, dtype=torch.float32).repeat( (self.num_envs, 1) ) self.gripper_up_axis = torch.tensor([0, 1, 0], device=self.device, dtype=torch.float32).repeat( (self.num_envs, 1) ) self.drawer_up_axis = torch.tensor([0, 0, 1], device=self.device, dtype=torch.float32).repeat( (self.num_envs, 1) ) self.hand_link_idx = self._robot.find_bodies("panda_link7")[0][0] self.left_finger_link_idx = self._robot.find_bodies("panda_leftfinger")[0][0] self.right_finger_link_idx = self._robot.find_bodies("panda_rightfinger")[0][0] self.drawer_link_idx = self._cabinet.find_bodies("drawer_top")[0][0] self.robot_grasp_rot = torch.zeros((self.num_envs, 4), device=self.device) self.robot_grasp_pos = torch.zeros((self.num_envs, 3), device=self.device) self.drawer_grasp_rot = torch.zeros((self.num_envs, 4), device=self.device) self.drawer_grasp_pos = torch.zeros((self.num_envs, 3), device=self.device) def _setup_scene(self): self._robot = Articulation(self.cfg.robot) self._cabinet = Articulation(self.cfg.cabinet) self.scene.articulations["robot"] = self._robot self.scene.articulations["cabinet"] = self._cabinet self.cfg.terrain.num_envs = self.scene.cfg.num_envs self.cfg.terrain.env_spacing = self.scene.cfg.env_spacing self._terrain = self.cfg.terrain.class_type(self.cfg.terrain) # clone, filter, and replicate self.scene.clone_environments(copy_from_source=False) self.scene.filter_collisions(global_prim_paths=[self.cfg.terrain.prim_path]) # add lights light_cfg = sim_utils.DomeLightCfg(intensity=2000.0, color=(0.75, 0.75, 0.75)) light_cfg.func("/World/Light", light_cfg) # pre-physics step calls def _pre_physics_step(self, actions: torch.Tensor): self.actions = actions.clone().clamp(-1.0, 1.0) targets = self.robot_dof_targets + self.robot_dof_speed_scales * self.dt * self.actions * self.cfg.action_scale self.robot_dof_targets[:] = torch.clamp(targets, self.robot_dof_lower_limits, self.robot_dof_upper_limits) def _apply_action(self): self._robot.set_joint_position_target(self.robot_dof_targets) # post-physics step calls def _get_dones(self) -> tuple[torch.Tensor, torch.Tensor]: terminated = self._cabinet.data.joint_pos[:, 3] > 0.39 truncated = self.episode_length_buf >= self.max_episode_length - 1 return terminated, truncated def _get_rewards(self) -> torch.Tensor: # Refresh the intermediate values after the physics steps self._compute_intermediate_values() robot_left_finger_pos = self._robot.data.body_pos_w[:, self.left_finger_link_idx] robot_right_finger_pos = self._robot.data.body_pos_w[:, self.right_finger_link_idx] return self._compute_rewards( self.actions, self._cabinet.data.joint_pos, self.robot_grasp_pos, self.drawer_grasp_pos, self.robot_grasp_rot, self.drawer_grasp_rot, robot_left_finger_pos, robot_right_finger_pos, self.gripper_forward_axis, self.drawer_inward_axis, self.gripper_up_axis, self.drawer_up_axis, self.num_envs, self.cfg.dist_reward_scale, self.cfg.rot_reward_scale, self.cfg.around_handle_reward_scale, self.cfg.open_reward_scale, self.cfg.finger_dist_reward_scale, self.cfg.action_penalty_scale, self._robot.data.joint_pos, self.cfg.finger_close_reward_scale, ) def _reset_idx(self, env_ids: torch.Tensor | None): super()._reset_idx(env_ids) # robot state joint_pos = self._robot.data.default_joint_pos[env_ids] + sample_uniform( -0.125, 0.125, (len(env_ids), self._robot.num_joints), self.device, ) joint_pos = torch.clamp(joint_pos, self.robot_dof_lower_limits, self.robot_dof_upper_limits) joint_vel = torch.zeros_like(joint_pos) self._robot.set_joint_position_target(joint_pos, env_ids=env_ids) self._robot.write_joint_state_to_sim(joint_pos, joint_vel, env_ids=env_ids) # cabinet state zeros = torch.zeros((len(env_ids), self._cabinet.num_joints), device=self.device) self._cabinet.write_joint_state_to_sim(zeros, zeros, env_ids=env_ids) # Need to refresh the intermediate values so that _get_observations() can use the latest values self._compute_intermediate_values(env_ids) def _get_observations(self) -> dict: dof_pos_scaled = ( 2.0 * (self._robot.data.joint_pos - self.robot_dof_lower_limits) / (self.robot_dof_upper_limits - self.robot_dof_lower_limits) - 1.0 ) to_target = self.drawer_grasp_pos - self.robot_grasp_pos obs = torch.cat( ( dof_pos_scaled, self._robot.data.joint_vel * self.cfg.dof_velocity_scale, to_target, self._cabinet.data.joint_pos[:, 3].unsqueeze(-1), self._cabinet.data.joint_vel[:, 3].unsqueeze(-1), ), dim=-1, ) return {"policy": torch.clamp(obs, -5.0, 5.0)} # auxiliary methods def _compute_intermediate_values(self, env_ids: torch.Tensor | None = None): if env_ids is None: env_ids = self._robot._ALL_INDICES hand_pos = self._robot.data.body_pos_w[env_ids, self.hand_link_idx] hand_rot = self._robot.data.body_quat_w[env_ids, self.hand_link_idx] drawer_pos = self._cabinet.data.body_pos_w[env_ids, self.drawer_link_idx] drawer_rot = self._cabinet.data.body_quat_w[env_ids, self.drawer_link_idx] ( self.robot_grasp_rot[env_ids], self.robot_grasp_pos[env_ids], self.drawer_grasp_rot[env_ids], self.drawer_grasp_pos[env_ids], ) = self._compute_grasp_transforms( hand_rot, hand_pos, self.robot_local_grasp_rot[env_ids], self.robot_local_grasp_pos[env_ids], drawer_rot, drawer_pos, self.drawer_local_grasp_rot[env_ids], self.drawer_local_grasp_pos[env_ids], ) def _compute_rewards( self, actions, cabinet_dof_pos, franka_grasp_pos, drawer_grasp_pos, franka_grasp_rot, drawer_grasp_rot, franka_lfinger_pos, franka_rfinger_pos, gripper_forward_axis, drawer_inward_axis, gripper_up_axis, drawer_up_axis, num_envs, dist_reward_scale, rot_reward_scale, around_handle_reward_scale, open_reward_scale, finger_dist_reward_scale, action_penalty_scale, joint_positions, finger_close_reward_scale, ): # distance from hand to the drawer d = torch.norm(franka_grasp_pos - drawer_grasp_pos, p=2, dim=-1) dist_reward = 1.0 / (1.0 + d**2) dist_reward *= dist_reward dist_reward = torch.where(d <= 0.02, dist_reward * 2, dist_reward) axis1 = tf_vector(franka_grasp_rot, gripper_forward_axis) axis2 = tf_vector(drawer_grasp_rot, drawer_inward_axis) axis3 = tf_vector(franka_grasp_rot, gripper_up_axis) axis4 = tf_vector(drawer_grasp_rot, drawer_up_axis) dot1 = ( torch.bmm(axis1.view(num_envs, 1, 3), axis2.view(num_envs, 3, 1)).squeeze(-1).squeeze(-1) ) # alignment of forward axis for gripper dot2 = ( torch.bmm(axis3.view(num_envs, 1, 3), axis4.view(num_envs, 3, 1)).squeeze(-1).squeeze(-1) ) # alignment of up axis for gripper # reward for matching the orientation of the hand to the drawer (fingers wrapped) rot_reward = 0.5 * (torch.sign(dot1) * dot1**2 + torch.sign(dot2) * dot2**2) # bonus if left finger is above the drawer handle and right below around_handle_reward = torch.zeros_like(rot_reward) around_handle_reward = torch.where( franka_lfinger_pos[:, 2] > drawer_grasp_pos[:, 2], torch.where( franka_rfinger_pos[:, 2] < drawer_grasp_pos[:, 2], around_handle_reward + 0.5, around_handle_reward ), around_handle_reward, ) # reward for distance of each finger from the drawer finger_dist_reward = torch.zeros_like(rot_reward) lfinger_dist = torch.abs(franka_lfinger_pos[:, 2] - drawer_grasp_pos[:, 2]) rfinger_dist = torch.abs(franka_rfinger_pos[:, 2] - drawer_grasp_pos[:, 2]) finger_dist_reward = torch.where( franka_lfinger_pos[:, 2] > drawer_grasp_pos[:, 2], torch.where( franka_rfinger_pos[:, 2] < drawer_grasp_pos[:, 2], (0.04 - lfinger_dist) + (0.04 - rfinger_dist), finger_dist_reward, ), finger_dist_reward, ) finger_close_reward = torch.zeros_like(rot_reward) finger_close_reward = torch.where( d <= 0.03, (0.04 - joint_positions[:, 7]) + (0.04 - joint_positions[:, 8]), finger_close_reward ) # regularization on the actions (summed for each environment) action_penalty = torch.sum(actions**2, dim=-1) # how far the cabinet has been opened out open_reward = cabinet_dof_pos[:, 3] * around_handle_reward + cabinet_dof_pos[:, 3] # drawer_top_joint rewards = ( dist_reward_scale * dist_reward + rot_reward_scale * rot_reward + around_handle_reward_scale * around_handle_reward + open_reward_scale * open_reward + finger_dist_reward_scale * finger_dist_reward - action_penalty_scale * action_penalty + finger_close_reward * finger_close_reward_scale ) self.extras["log"] = { "dist_reward": (dist_reward_scale * dist_reward).mean(), "rot_reward": (rot_reward_scale * rot_reward).mean(), "around_handle_reward": (around_handle_reward_scale * around_handle_reward).mean(), "open_reward": (open_reward_scale * open_reward).mean(), "finger_dist_reward": (finger_dist_reward_scale * finger_dist_reward).mean(), "action_penalty": (action_penalty_scale * action_penalty).mean(), "finger_close_reward": (finger_close_reward * finger_close_reward_scale).mean(), } # bonus for opening drawer properly rewards = torch.where(cabinet_dof_pos[:, 3] > 0.01, rewards + 0.5, rewards) rewards = torch.where(cabinet_dof_pos[:, 3] > 0.2, rewards + around_handle_reward, rewards) rewards = torch.where(cabinet_dof_pos[:, 3] > 0.39, rewards + (2.0 * around_handle_reward), rewards) return rewards def _compute_grasp_transforms( self, hand_rot, hand_pos, franka_local_grasp_rot, franka_local_grasp_pos, drawer_rot, drawer_pos, drawer_local_grasp_rot, drawer_local_grasp_pos, ): global_franka_rot, global_franka_pos = tf_combine( hand_rot, hand_pos, franka_local_grasp_rot, franka_local_grasp_pos ) global_drawer_rot, global_drawer_pos = tf_combine( drawer_rot, drawer_pos, drawer_local_grasp_rot, drawer_local_grasp_pos ) return global_franka_rot, global_franka_pos, global_drawer_rot, global_drawer_pos
20,965
Python
39.087954
119
0.587455
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/franka_cabinet/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Franka-Cabinet environment. """ import gymnasium as gym from . import agents from .franka_cabinet_env import FrankaCabinetEnv, FrankaCabinetEnvCfg ## # Register Gym environments. ## gym.register( id="Isaac-Franka-Cabinet-Direct-v0", entry_point="omni.isaac.lab_tasks.direct.franka_cabinet:FrankaCabinetEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": FrankaCabinetEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.FrankaCabinetPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", }, )
789
Python
26.241378
82
0.698352
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/franka_cabinet/agents/rsl_rl_ppo_cfg.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.lab.utils import configclass from omni.isaac.lab_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class FrankaCabinetPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 16 max_iterations = 1500 save_interval = 50 experiment_name = "franka_cabinet_direct" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[256, 128, 64], critic_hidden_dims=[256, 128, 64], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.0, num_learning_epochs=8, num_mini_batches=8, learning_rate=5.0e-4, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.008, max_grad_norm=1.0, )
1,095
Python
25.095237
60
0.647489
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/franka_cabinet/agents/skrl_ppo_cfg.yaml
seed: 42 # Models are instantiated using skrl's model instantiator utility # https://skrl.readthedocs.io/en/develop/api/utils/model_instantiators.html models: separate: False policy: # see 'skrl.utils.model_instantiators.torch.gaussian_model' for parameter details clip_actions: False clip_log_std: True initial_log_std: 0 min_log_std: -20.0 max_log_std: 2.0 input_shape: "Shape.STATES" hiddens: [256, 128, 64] hidden_activation: ["elu", "elu", "elu"] output_shape: "Shape.ACTIONS" output_activation: "" output_scale: 1.0 value: # see 'skrl.utils.model_instantiators.torch.deterministic_model' for parameter details clip_actions: False input_shape: "Shape.STATES" hiddens: [256, 128, 64] hidden_activation: ["elu", "elu", "elu"] output_shape: "Shape.ONE" output_activation: "" output_scale: 1.0 # PPO agent configuration (field names are from PPO_DEFAULT_CONFIG) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html agent: rollouts: 16 learning_epochs: 8 mini_batches: 8 discount_factor: 0.99 lambda: 0.95 learning_rate: 5.e-4 learning_rate_scheduler: "KLAdaptiveLR" learning_rate_scheduler_kwargs: kl_threshold: 0.008 state_preprocessor: "RunningStandardScaler" state_preprocessor_kwargs: null value_preprocessor: "RunningStandardScaler" value_preprocessor_kwargs: null random_timesteps: 0 learning_starts: 0 grad_norm_clip: 1.0 ratio_clip: 0.2 value_clip: 0.2 clip_predicted_values: True entropy_loss_scale: 0.0 value_loss_scale: 2.0 kl_threshold: 0 rewards_shaper_scale: 0.01 # logging and checkpoint experiment: directory: "franka_cabinet_direct" experiment_name: "" write_interval: 120 checkpoint_interval: 1200 # Sequential trainer # https://skrl.readthedocs.io/en/latest/api/trainers/sequential.html trainer: timesteps: 24000 environment_info: "log"
1,921
YAML
27.264705
96
0.709006
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/franka_cabinet/agents/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_ppo_cfg
156
Python
21.428568
60
0.737179
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/franka_cabinet/agents/rl_games_ppo_cfg.yaml
params: seed: 42 # environment wrapper clipping env: clip_actions: 1.0 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False # flag which sets whether to load the checkpoint load_path: '' # path to the checkpoint to load config: name: franka_cabinet_direct env_name: rlgpu device: 'cuda:0' device_name: 'cuda:0' multi_gpu: False ppo: True mixed_precision: False normalize_input: True normalize_value: True # value_bootstrap: True num_actors: -1 # configured from the script (based on num_envs) reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 100000000 max_epochs: 1500 save_best_after: 200 save_frequency: 100 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 8192 mini_epochs: 8 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,553
YAML
19.447368
73
0.6085
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/locomotion/locomotion_env.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch import omni.isaac.core.utils.torch as torch_utils from omni.isaac.core.utils.torch.rotations import compute_heading_and_up, compute_rot, quat_conjugate import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.assets import Articulation from omni.isaac.lab.envs import DirectRLEnv, DirectRLEnvCfg def normalize_angle(x): return torch.atan2(torch.sin(x), torch.cos(x)) class LocomotionEnv(DirectRLEnv): cfg: DirectRLEnvCfg def __init__(self, cfg: DirectRLEnvCfg, render_mode: str | None = None, **kwargs): super().__init__(cfg, render_mode, **kwargs) self.action_scale = self.cfg.action_scale self.joint_gears = torch.tensor(self.cfg.joint_gears, dtype=torch.float32, device=self.sim.device) self.motor_effort_ratio = torch.ones_like(self.joint_gears, device=self.sim.device) self._joint_dof_idx, _ = self.robot.find_joints(".*") self.potentials = torch.zeros(self.num_envs, dtype=torch.float32, device=self.sim.device) self.prev_potentials = torch.zeros_like(self.potentials) self.targets = torch.tensor([1000, 0, 0], dtype=torch.float32, device=self.sim.device).repeat( (self.num_envs, 1) ) self.targets += self.scene.env_origins self.start_rotation = torch.tensor([1, 0, 0, 0], device=self.sim.device, dtype=torch.float32) self.up_vec = torch.tensor([0, 0, 1], dtype=torch.float32, device=self.sim.device).repeat((self.num_envs, 1)) self.heading_vec = torch.tensor([1, 0, 0], dtype=torch.float32, device=self.sim.device).repeat( (self.num_envs, 1) ) self.inv_start_rot = quat_conjugate(self.start_rotation).repeat((self.num_envs, 1)) self.basis_vec0 = self.heading_vec.clone() self.basis_vec1 = self.up_vec.clone() def _setup_scene(self): self.robot = Articulation(self.cfg.robot) # add ground plane self.cfg.terrain.num_envs = self.scene.cfg.num_envs self.cfg.terrain.env_spacing = self.scene.cfg.env_spacing self.terrain = self.cfg.terrain.class_type(self.cfg.terrain) # clone, filter, and replicate self.scene.clone_environments(copy_from_source=False) self.scene.filter_collisions(global_prim_paths=[self.cfg.terrain.prim_path]) # add articultion to scene self.scene.articulations["robot"] = self.robot # add lights light_cfg = sim_utils.DomeLightCfg(intensity=2000.0, color=(0.75, 0.75, 0.75)) light_cfg.func("/World/Light", light_cfg) def _pre_physics_step(self, actions: torch.Tensor): self.actions = actions.clone() def _apply_action(self): forces = self.action_scale * self.joint_gears * self.actions self.robot.set_joint_effort_target(forces, joint_ids=self._joint_dof_idx) def _compute_intermediate_values(self): self.torso_position, self.torso_rotation = self.robot.data.root_pos_w, self.robot.data.root_quat_w self.velocity, self.ang_velocity = self.robot.data.root_lin_vel_w, self.robot.data.root_ang_vel_w self.dof_pos, self.dof_vel = self.robot.data.joint_pos, self.robot.data.joint_vel ( self.up_proj, self.heading_proj, self.up_vec, self.heading_vec, self.vel_loc, self.angvel_loc, self.roll, self.pitch, self.yaw, self.angle_to_target, self.dof_pos_scaled, self.prev_potentials, self.potentials, ) = compute_intermediate_values( self.targets, self.torso_position, self.torso_rotation, self.velocity, self.ang_velocity, self.dof_pos, self.robot.data.soft_joint_pos_limits[0, :, 0], self.robot.data.soft_joint_pos_limits[0, :, 1], self.inv_start_rot, self.basis_vec0, self.basis_vec1, self.potentials, self.prev_potentials, self.cfg.sim.dt, ) def _get_observations(self) -> dict: obs = torch.cat( ( self.torso_position[:, 2].view(-1, 1), self.vel_loc, self.angvel_loc * self.cfg.angular_velocity_scale, normalize_angle(self.yaw).unsqueeze(-1), normalize_angle(self.roll).unsqueeze(-1), normalize_angle(self.angle_to_target).unsqueeze(-1), self.up_proj.unsqueeze(-1), self.heading_proj.unsqueeze(-1), self.dof_pos_scaled, self.dof_vel * self.cfg.dof_vel_scale, self.actions, ), dim=-1, ) observations = {"policy": obs} return observations def _get_rewards(self) -> torch.Tensor: total_reward = compute_rewards( self.actions, self.reset_terminated, self.cfg.up_weight, self.cfg.heading_weight, self.heading_proj, self.up_proj, self.dof_vel, self.dof_pos_scaled, self.potentials, self.prev_potentials, self.cfg.actions_cost_scale, self.cfg.energy_cost_scale, self.cfg.dof_vel_scale, self.cfg.death_cost, self.cfg.alive_reward_scale, self.motor_effort_ratio, ) return total_reward def _get_dones(self) -> tuple[torch.Tensor, torch.Tensor]: self._compute_intermediate_values() time_out = self.episode_length_buf >= self.max_episode_length - 1 died = self.torso_position[:, 2] < self.cfg.termination_height return died, time_out def _reset_idx(self, env_ids: torch.Tensor | None): if env_ids is None or len(env_ids) == self.num_envs: env_ids = self.robot._ALL_INDICES self.robot.reset(env_ids) super()._reset_idx(env_ids) joint_pos = self.robot.data.default_joint_pos[env_ids] joint_vel = self.robot.data.default_joint_vel[env_ids] default_root_state = self.robot.data.default_root_state[env_ids] default_root_state[:, :3] += self.scene.env_origins[env_ids] self.robot.write_root_pose_to_sim(default_root_state[:, :7], env_ids) self.robot.write_root_velocity_to_sim(default_root_state[:, 7:], env_ids) self.robot.write_joint_state_to_sim(joint_pos, joint_vel, None, env_ids) to_target = self.targets[env_ids] - default_root_state[:, :3] to_target[:, 2] = 0.0 self.potentials[env_ids] = -torch.norm(to_target, p=2, dim=-1) / self.cfg.sim.dt self._compute_intermediate_values() @torch.jit.script def compute_rewards( actions: torch.Tensor, reset_terminated: torch.Tensor, up_weight: float, heading_weight: float, heading_proj: torch.Tensor, up_proj: torch.Tensor, dof_vel: torch.Tensor, dof_pos_scaled: torch.Tensor, potentials: torch.Tensor, prev_potentials: torch.Tensor, actions_cost_scale: float, energy_cost_scale: float, dof_vel_scale: float, death_cost: float, alive_reward_scale: float, motor_effort_ratio: torch.Tensor, ): heading_weight_tensor = torch.ones_like(heading_proj) * heading_weight heading_reward = torch.where(heading_proj > 0.8, heading_weight_tensor, heading_weight * heading_proj / 0.8) # aligning up axis of robot and environment up_reward = torch.zeros_like(heading_reward) up_reward = torch.where(up_proj > 0.93, up_reward + up_weight, up_reward) # energy penalty for movement actions_cost = torch.sum(actions**2, dim=-1) electricity_cost = torch.sum( torch.abs(actions * dof_vel * dof_vel_scale) * motor_effort_ratio.unsqueeze(0), dim=-1, ) # dof at limit cost dof_at_limit_cost = torch.sum(dof_pos_scaled > 0.98, dim=-1) # reward for duration of staying alive alive_reward = torch.ones_like(potentials) * alive_reward_scale progress_reward = potentials - prev_potentials total_reward = ( progress_reward + alive_reward + up_reward + heading_reward - actions_cost_scale * actions_cost - energy_cost_scale * electricity_cost - dof_at_limit_cost ) # adjust reward for fallen agents total_reward = torch.where(reset_terminated, torch.ones_like(total_reward) * death_cost, total_reward) return total_reward @torch.jit.script def compute_intermediate_values( targets: torch.Tensor, torso_position: torch.Tensor, torso_rotation: torch.Tensor, velocity: torch.Tensor, ang_velocity: torch.Tensor, dof_pos: torch.Tensor, dof_lower_limits: torch.Tensor, dof_upper_limits: torch.Tensor, inv_start_rot: torch.Tensor, basis_vec0: torch.Tensor, basis_vec1: torch.Tensor, potentials: torch.Tensor, prev_potentials: torch.Tensor, dt: float, ): to_target = targets - torso_position to_target[:, 2] = 0.0 torso_quat, up_proj, heading_proj, up_vec, heading_vec = compute_heading_and_up( torso_rotation, inv_start_rot, to_target, basis_vec0, basis_vec1, 2 ) vel_loc, angvel_loc, roll, pitch, yaw, angle_to_target = compute_rot( torso_quat, velocity, ang_velocity, targets, torso_position ) dof_pos_scaled = torch_utils.maths.unscale(dof_pos, dof_lower_limits, dof_upper_limits) to_target = targets - torso_position to_target[:, 2] = 0.0 prev_potentials[:] = potentials potentials = -torch.norm(to_target, p=2, dim=-1) / dt return ( up_proj, heading_proj, up_vec, heading_vec, vel_loc, angvel_loc, roll, pitch, yaw, angle_to_target, dof_pos_scaled, prev_potentials, potentials, )
10,072
Python
35.103943
117
0.615469
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/locomotion/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause
126
Python
24.399995
60
0.746032
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/anymal_c/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Ant locomotion environment. """ import gymnasium as gym from . import agents from .anymal_c_env import AnymalCEnv, AnymalCFlatEnvCfg, AnymalCRoughEnvCfg ## # Register Gym environments. ## gym.register( id="Isaac-Velocity-Flat-Anymal-C-Direct-v0", entry_point="omni.isaac.lab_tasks.direct.anymal_c:AnymalCEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": AnymalCFlatEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_flat_ppo_cfg.yaml", "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.AnymalCFlatPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_flat_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Velocity-Rough-Anymal-C-Direct-v0", entry_point="omni.isaac.lab_tasks.direct.anymal_c:AnymalCEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": AnymalCRoughEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_rough_ppo_cfg.yaml", "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.AnymalCRoughPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_rough_ppo_cfg.yaml", }, )
1,279
Python
29.47619
85
0.679437
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/anymal_c/anymal_c_env.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.assets import Articulation, ArticulationCfg from omni.isaac.lab.envs import DirectRLEnv, DirectRLEnvCfg from omni.isaac.lab.scene import InteractiveSceneCfg from omni.isaac.lab.sensors import ContactSensor, ContactSensorCfg, RayCaster, RayCasterCfg, patterns from omni.isaac.lab.sim import SimulationCfg from omni.isaac.lab.terrains import TerrainImporterCfg from omni.isaac.lab.utils import configclass ## # Pre-defined configs ## from omni.isaac.lab_assets.anymal import ANYMAL_C_CFG # isort: skip from omni.isaac.lab.terrains.config.rough import ROUGH_TERRAINS_CFG # isort: skip @configclass class AnymalCFlatEnvCfg(DirectRLEnvCfg): # simulation sim: SimulationCfg = SimulationCfg( dt=1 / 200, disable_contact_processing=True, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="multiply", restitution_combine_mode="multiply", static_friction=1.0, dynamic_friction=1.0, restitution=0.0, ), ) terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="plane", collision_group=-1, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="multiply", restitution_combine_mode="multiply", static_friction=1.0, dynamic_friction=1.0, restitution=0.0, ), debug_vis=False, ) # scene scene: InteractiveSceneCfg = InteractiveSceneCfg(num_envs=4096, env_spacing=4.0, replicate_physics=True) # robot robot: ArticulationCfg = ANYMAL_C_CFG.replace(prim_path="/World/envs/env_.*/Robot") contact_sensor: ContactSensorCfg = ContactSensorCfg( prim_path="/World/envs/env_.*/Robot/.*", history_length=3, update_period=0.005, track_air_time=True ) # env episode_length_s = 20.0 decimation = 4 action_scale = 0.5 num_actions = 12 num_observations = 48 num_states = 0 # reward scales lin_vel_reward_scale = 1.0 yaw_rate_reward_scale = 0.5 z_vel_reward_scale = -2.0 ang_vel_reward_scale = -0.05 joint_torque_reward_scale = -2.5e-5 joint_accel_reward_scale = -2.5e-7 action_rate_reward_scale = -0.01 feet_air_time_reward_scale = 0.5 undersired_contact_reward_scale = -1.0 flat_orientation_reward_scale = -5.0 @configclass class AnymalCRoughEnvCfg(AnymalCFlatEnvCfg): # env num_observations = 235 terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="generator", terrain_generator=ROUGH_TERRAINS_CFG, max_init_terrain_level=9, collision_group=-1, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="multiply", restitution_combine_mode="multiply", static_friction=1.0, dynamic_friction=1.0, ), visual_material=sim_utils.MdlFileCfg( mdl_path="{NVIDIA_NUCLEUS_DIR}/Materials/Base/Architecture/Shingles_01.mdl", project_uvw=True, ), debug_vis=False, ) # we add a height scanner for perceptive locomotion height_scanner = RayCasterCfg( prim_path="/World/envs/env_.*/Robot/base", offset=RayCasterCfg.OffsetCfg(pos=(0.0, 0.0, 20.0)), attach_yaw_only=True, pattern_cfg=patterns.GridPatternCfg(resolution=0.1, size=[1.6, 1.0]), debug_vis=False, mesh_prim_paths=["/World/ground"], ) # reward scales (override from flat config) flat_orientation_reward_scale = 0.0 class AnymalCEnv(DirectRLEnv): cfg: AnymalCFlatEnvCfg | AnymalCRoughEnvCfg def __init__(self, cfg: AnymalCFlatEnvCfg | AnymalCRoughEnvCfg, render_mode: str | None = None, **kwargs): super().__init__(cfg, render_mode, **kwargs) # Joint position command (deviation from default joint positions) self._actions = torch.zeros(self.num_envs, self.cfg.num_actions, device=self.device) self._previous_actions = torch.zeros(self.num_envs, self.cfg.num_actions, device=self.device) # X/Y linear velocity and yaw angular velocity commands self._commands = torch.zeros(self.num_envs, 3, device=self.device) # Logging self._episode_sums = { key: torch.zeros(self.num_envs, dtype=torch.float, device=self.device) for key in [ "track_lin_vel_xy_exp", "track_ang_vel_z_exp", "lin_vel_z_l2", "ang_vel_xy_l2", "dof_torques_l2", "dof_acc_l2", "action_rate_l2", "feet_air_time", "undesired_contacts", "flat_orientation_l2", ] } # Get specific body indices self._base_id, _ = self._contact_sensor.find_bodies("base") self._feet_ids, _ = self._contact_sensor.find_bodies(".*FOOT") self._underisred_contact_body_ids, _ = self._contact_sensor.find_bodies(".*THIGH") # Randomize robot friction env_ids = self._robot._ALL_INDICES mat_props = self._robot.root_physx_view.get_material_properties() mat_props[:, :, :2].uniform_(0.6, 0.8) self._robot.root_physx_view.set_material_properties(mat_props, env_ids.cpu()) # Randomize base mass base_id, _ = self._robot.find_bodies("base") masses = self._robot.root_physx_view.get_masses() masses[:, base_id] += torch.zeros_like(masses[:, base_id]).uniform_(-5.0, 5.0) self._robot.root_physx_view.set_masses(masses, env_ids.cpu()) def _setup_scene(self): self._robot = Articulation(self.cfg.robot) self.scene.articulations["robot"] = self._robot self._contact_sensor = ContactSensor(self.cfg.contact_sensor) self.scene.sensors["contact_sensor"] = self._contact_sensor if isinstance(self.cfg, AnymalCRoughEnvCfg): # we add a height scanner for perceptive locomotion self._height_scanner = RayCaster(self.cfg.height_scanner) self.scene.sensors["height_scanner"] = self._height_scanner self.cfg.terrain.num_envs = self.scene.cfg.num_envs self.cfg.terrain.env_spacing = self.scene.cfg.env_spacing self._terrain = self.cfg.terrain.class_type(self.cfg.terrain) # clone, filter, and replicate self.scene.clone_environments(copy_from_source=False) self.scene.filter_collisions(global_prim_paths=[self.cfg.terrain.prim_path]) # add lights light_cfg = sim_utils.DomeLightCfg(intensity=2000.0, color=(0.75, 0.75, 0.75)) light_cfg.func("/World/Light", light_cfg) def _pre_physics_step(self, actions: torch.Tensor): self._actions = actions.clone() self._processed_actions = self.cfg.action_scale * self._actions + self._robot.data.default_joint_pos def _apply_action(self): self._robot.set_joint_position_target(self._processed_actions) def _get_observations(self) -> dict: self._previous_actions = self._actions.clone() height_data = None if isinstance(self.cfg, AnymalCRoughEnvCfg): height_data = ( self._height_scanner.data.pos_w[:, 2].unsqueeze(1) - self._height_scanner.data.ray_hits_w[..., 2] - 0.5 ).clip(-1.0, 1.0) obs = torch.cat( [ tensor for tensor in ( self._robot.data.root_lin_vel_b, self._robot.data.root_ang_vel_b, self._robot.data.projected_gravity_b, self._commands, self._robot.data.joint_pos - self._robot.data.default_joint_pos, self._robot.data.joint_vel, height_data, self._actions, ) if tensor is not None ], dim=-1, ) observations = {"policy": obs} return observations def _get_rewards(self) -> torch.Tensor: # linear velocity tracking lin_vel_error = torch.sum(torch.square(self._commands[:, :2] - self._robot.data.root_lin_vel_b[:, :2]), dim=1) lin_vel_error_mapped = torch.exp(-lin_vel_error / 0.25) # yaw rate tracking yaw_rate_error = torch.square(self._commands[:, 2] - self._robot.data.root_ang_vel_b[:, 2]) yaw_rate_error_mapped = torch.exp(-yaw_rate_error / 0.25) # z velocity tracking z_vel_error = torch.square(self._robot.data.root_lin_vel_b[:, 2]) # angular velocity x/y ang_vel_error = torch.sum(torch.square(self._robot.data.root_ang_vel_b[:, :2]), dim=1) # joint torques joint_torques = torch.sum(torch.square(self._robot.data.applied_torque), dim=1) # joint acceleration joint_accel = torch.sum(torch.square(self._robot.data.joint_acc), dim=1) # action rate action_rate = torch.sum(torch.square(self._actions - self._previous_actions), dim=1) # feet air time first_contact = self._contact_sensor.compute_first_contact(self.step_dt)[:, self._feet_ids] last_air_time = self._contact_sensor.data.last_air_time[:, self._feet_ids] air_time = torch.sum((last_air_time - 0.5) * first_contact, dim=1) * ( torch.norm(self._commands[:, :2], dim=1) > 0.1 ) # undersired contacts net_contact_forces = self._contact_sensor.data.net_forces_w_history is_contact = ( torch.max(torch.norm(net_contact_forces[:, :, self._underisred_contact_body_ids], dim=-1), dim=1)[0] > 1.0 ) contacts = torch.sum(is_contact, dim=1) # flat orientation flat_orientation = torch.sum(torch.square(self._robot.data.projected_gravity_b[:, :2]), dim=1) rewards = { "track_lin_vel_xy_exp": lin_vel_error_mapped * self.cfg.lin_vel_reward_scale * self.step_dt, "track_ang_vel_z_exp": yaw_rate_error_mapped * self.cfg.yaw_rate_reward_scale * self.step_dt, "lin_vel_z_l2": z_vel_error * self.cfg.z_vel_reward_scale * self.step_dt, "ang_vel_xy_l2": ang_vel_error * self.cfg.ang_vel_reward_scale * self.step_dt, "dof_torques_l2": joint_torques * self.cfg.joint_torque_reward_scale * self.step_dt, "dof_acc_l2": joint_accel * self.cfg.joint_accel_reward_scale * self.step_dt, "action_rate_l2": action_rate * self.cfg.action_rate_reward_scale * self.step_dt, "feet_air_time": air_time * self.cfg.feet_air_time_reward_scale * self.step_dt, "undesired_contacts": contacts * self.cfg.undersired_contact_reward_scale * self.step_dt, "flat_orientation_l2": flat_orientation * self.cfg.flat_orientation_reward_scale * self.step_dt, } reward = torch.sum(torch.stack(list(rewards.values())), dim=0) # Logging for key, value in rewards.items(): self._episode_sums[key] += value return reward def _get_dones(self) -> tuple[torch.Tensor, torch.Tensor]: time_out = self.episode_length_buf >= self.max_episode_length - 1 net_contact_forces = self._contact_sensor.data.net_forces_w_history died = torch.any(torch.max(torch.norm(net_contact_forces[:, :, self._base_id], dim=-1), dim=1)[0] > 1.0, dim=1) return died, time_out def _reset_idx(self, env_ids: torch.Tensor | None): if env_ids is None or len(env_ids) == self.num_envs: env_ids = self._robot._ALL_INDICES self._robot.reset(env_ids) super()._reset_idx(env_ids) if len(env_ids) == self.num_envs: # Spread out the resets to avoid spikes in training when many environments reset at a similar time self.episode_length_buf[:] = torch.randint_like(self.episode_length_buf, high=int(self.max_episode_length)) self._actions[env_ids] = 0.0 self._previous_actions[env_ids] = 0.0 # Sample new commands self._commands[env_ids] = torch.zeros_like(self._commands[env_ids]).uniform_(-1.0, 1.0) # Reset robot state joint_pos = self._robot.data.default_joint_pos[env_ids] joint_vel = self._robot.data.default_joint_vel[env_ids] default_root_state = self._robot.data.default_root_state[env_ids] default_root_state[:, :3] += self._terrain.env_origins[env_ids] self._robot.write_root_pose_to_sim(default_root_state[:, :7], env_ids) self._robot.write_root_velocity_to_sim(default_root_state[:, 7:], env_ids) self._robot.write_joint_state_to_sim(joint_pos, joint_vel, None, env_ids) # Logging extras = dict() for key in self._episode_sums.keys(): episodic_sum_avg = torch.mean(self._episode_sums[key][env_ids]) extras["Episode Reward/" + key] = episodic_sum_avg / self.max_episode_length_s self._episode_sums[key][env_ids] = 0.0 self.extras["log"] = dict() self.extras["log"].update(extras) extras = dict() extras["Episode Termination/base_contact"] = torch.count_nonzero(self.reset_terminated[env_ids]).item() extras["Episode Termination/time_out"] = torch.count_nonzero(self.reset_time_outs[env_ids]).item() self.extras["log"].update(extras)
13,576
Python
42.938511
119
0.617045
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/anymal_c/agents/rsl_rl_ppo_cfg.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.lab.utils import configclass from omni.isaac.lab_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class AnymalCFlatPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 24 max_iterations = 500 save_interval = 50 experiment_name = "anymal_c_flat_direct" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[128, 128, 128], critic_hidden_dims=[128, 128, 128], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.005, num_learning_epochs=5, num_mini_batches=4, learning_rate=1.0e-3, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, ) @configclass class AnymalCRoughPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 24 max_iterations = 1500 save_interval = 50 experiment_name = "anymal_c_rough_direct" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[512, 256, 128], critic_hidden_dims=[512, 256, 128], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.005, num_learning_epochs=5, num_mini_batches=4, learning_rate=1.0e-3, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, )
1,877
Python
25.450704
60
0.626532
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/anymal_c/agents/rl_games_flat_ppo_cfg.yaml
params: seed: 42 # environment wrapper clipping env: clip_actions: 1.0 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [128, 128, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False # flag which sets whether to load the checkpoint load_path: '' # path to the checkpoint to load config: name: anymal_c_flat_direct env_name: rlgpu device: 'cuda:0' device_name: 'cuda:0' multi_gpu: False ppo: True mixed_precision: True normalize_input: False normalize_value: True value_bootstrap: True num_actors: -1 # configured from the script (based on num_envs) reward_shaper: scale_value: 0.6 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-3 lr_schedule: adaptive schedule_type: legacy kl_threshold: 0.01 score_to_win: 20000 max_epochs: 1500 save_best_after: 100 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.005 truncate_grads: True e_clip: 0.2 horizon_length: 24 minibatch_size: 24576 mini_epochs: 5 critic_coef: 2.0 clip_value: True seq_length: 4 bounds_loss_coef: 0.0
1,572
YAML
19.428571
73
0.608142
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/anymal_c/agents/rl_games_rough_ppo_cfg.yaml
params: seed: 42 # environment wrapper clipping env: clip_actions: 1.0 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False # flag which sets whether to load the checkpoint load_path: '' # path to the checkpoint to load config: name: anymal_c_rough_direct env_name: rlgpu device: 'cuda:0' device_name: 'cuda:0' multi_gpu: False ppo: True mixed_precision: True normalize_input: False normalize_value: True value_bootstrap: True num_actors: -1 # configured from the script (based on num_envs) reward_shaper: scale_value: 0.6 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-3 lr_schedule: adaptive schedule_type: legacy kl_threshold: 0.01 score_to_win: 20000 max_epochs: 1500 save_best_after: 100 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.005 truncate_grads: True e_clip: 0.2 horizon_length: 24 minibatch_size: 24576 mini_epochs: 5 critic_coef: 2.0 clip_value: True seq_length: 4 bounds_loss_coef: 0.0
1,573
YAML
19.441558
73
0.608392
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/anymal_c/agents/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_ppo_cfg
156
Python
21.428568
60
0.737179
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/anymal_c/agents/skrl_rough_ppo_cfg.yaml
seed: 42 # Models are instantiated using skrl's model instantiator utility # https://skrl.readthedocs.io/en/latest/api/utils/model_instantiators.html models: separate: False policy: # see skrl.utils.model_instantiators.torch.gaussian_model for parameter details clip_actions: True clip_log_std: True initial_log_std: 0 min_log_std: -20.0 max_log_std: 2.0 input_shape: "Shape.STATES" hiddens: [512, 256, 128] hidden_activation: ["elu", "elu"] output_shape: "Shape.ACTIONS" output_activation: "" output_scale: 1.0 value: # see skrl.utils.model_instantiators.torch.deterministic_model for parameter details clip_actions: False input_shape: "Shape.STATES" hiddens: [512, 256, 128] hidden_activation: ["elu", "elu"] output_shape: "Shape.ONE" output_activation: "" output_scale: 1.0 # PPO agent configuration (field names are from PPO_DEFAULT_CONFIG) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html agent: rollouts: 24 learning_epochs: 5 mini_batches: 4 discount_factor: 0.99 lambda: 0.95 learning_rate: 1.e-3 learning_rate_scheduler: "KLAdaptiveLR" learning_rate_scheduler_kwargs: kl_threshold: 0.01 state_preprocessor: "RunningStandardScaler" state_preprocessor_kwargs: null value_preprocessor: "RunningStandardScaler" value_preprocessor_kwargs: null random_timesteps: 0 learning_starts: 0 grad_norm_clip: 1.0 ratio_clip: 0.2 value_clip: 0.2 clip_predicted_values: True entropy_loss_scale: 0.005 value_loss_scale: 1.0 kl_threshold: 0 rewards_shaper_scale: 0.6 # logging and checkpoint experiment: directory: "anymal_c_rough_direct" experiment_name: "" write_interval: 180 checkpoint_interval: 1800 # Sequential trainer # https://skrl.readthedocs.io/en/latest/api/trainers/sequential.html trainer: timesteps: 36000 environment_info: "log"
1,903
YAML
27
94
0.712034
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/anymal_c/agents/skrl_flat_ppo_cfg.yaml
seed: 42 # Models are instantiated using skrl's model instantiator utility # https://skrl.readthedocs.io/en/latest/api/utils/model_instantiators.html models: separate: False policy: # see skrl.utils.model_instantiators.torch.gaussian_model for parameter details clip_actions: True clip_log_std: True initial_log_std: 0 min_log_std: -20.0 max_log_std: 2.0 input_shape: "Shape.STATES" hiddens: [128, 128, 128] hidden_activation: ["elu", "elu"] output_shape: "Shape.ACTIONS" output_activation: "" output_scale: 1.0 value: # see skrl.utils.model_instantiators.torch.deterministic_model for parameter details clip_actions: False input_shape: "Shape.STATES" hiddens: [128, 128, 128] hidden_activation: ["elu", "elu"] output_shape: "Shape.ONE" output_activation: "" output_scale: 1.0 # PPO agent configuration (field names are from PPO_DEFAULT_CONFIG) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html agent: rollouts: 24 learning_epochs: 5 mini_batches: 4 discount_factor: 0.99 lambda: 0.95 learning_rate: 1.e-3 learning_rate_scheduler: "KLAdaptiveLR" learning_rate_scheduler_kwargs: kl_threshold: 0.01 state_preprocessor: "RunningStandardScaler" state_preprocessor_kwargs: null value_preprocessor: "RunningStandardScaler" value_preprocessor_kwargs: null random_timesteps: 0 learning_starts: 0 grad_norm_clip: 1.0 ratio_clip: 0.2 value_clip: 0.2 clip_predicted_values: True entropy_loss_scale: 0.005 value_loss_scale: 1.0 kl_threshold: 0 rewards_shaper_scale: 0.6 # logging and checkpoint experiment: directory: "anymal_c_flat_direct" experiment_name: "" write_interval: 60 checkpoint_interval: 600 # Sequential trainer # https://skrl.readthedocs.io/en/latest/api/trainers/sequential.html trainer: timesteps: 12000 environment_info: "log"
1,900
YAML
26.955882
94
0.711579
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Config-based workflow environments. """ import gymnasium as gym
196
Python
16.909089
60
0.739796
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/classic/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Classic environments for control. These environments are based on the MuJoCo environments provided by OpenAI. Reference: https://github.com/openai/gym/tree/master/gym/envs/mujoco """
319
Python
23.615383
75
0.758621
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/classic/ant/ant_env_cfg.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.assets import AssetBaseCfg from omni.isaac.lab.envs import ManagerBasedRLEnvCfg from omni.isaac.lab.managers import EventTermCfg as EventTerm from omni.isaac.lab.managers import ObservationGroupCfg as ObsGroup from omni.isaac.lab.managers import ObservationTermCfg as ObsTerm from omni.isaac.lab.managers import RewardTermCfg as RewTerm from omni.isaac.lab.managers import SceneEntityCfg from omni.isaac.lab.managers import TerminationTermCfg as DoneTerm from omni.isaac.lab.scene import InteractiveSceneCfg from omni.isaac.lab.terrains import TerrainImporterCfg from omni.isaac.lab.utils import configclass import omni.isaac.lab_tasks.manager_based.classic.humanoid.mdp as mdp ## # Pre-defined configs ## from omni.isaac.lab_assets.ant import ANT_CFG # isort: skip @configclass class MySceneCfg(InteractiveSceneCfg): """Configuration for the terrain scene with an ant robot.""" # terrain terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="plane", collision_group=-1, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="average", restitution_combine_mode="average", static_friction=1.0, dynamic_friction=1.0, restitution=0.0, ), debug_vis=False, ) # robot robot = ANT_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") # lights light = AssetBaseCfg( prim_path="/World/light", spawn=sim_utils.DistantLightCfg(color=(0.75, 0.75, 0.75), intensity=3000.0), ) ## # MDP settings ## @configclass class CommandsCfg: """Command terms for the MDP.""" # no commands for this MDP null = mdp.NullCommandCfg() @configclass class ActionsCfg: """Action specifications for the MDP.""" joint_effort = mdp.JointEffortActionCfg(asset_name="robot", joint_names=[".*"], scale=7.5) @configclass class ObservationsCfg: """Observation specifications for the MDP.""" @configclass class PolicyCfg(ObsGroup): """Observations for the policy.""" base_height = ObsTerm(func=mdp.base_pos_z) base_lin_vel = ObsTerm(func=mdp.base_lin_vel) base_ang_vel = ObsTerm(func=mdp.base_ang_vel) base_yaw_roll = ObsTerm(func=mdp.base_yaw_roll) base_angle_to_target = ObsTerm(func=mdp.base_angle_to_target, params={"target_pos": (1000.0, 0.0, 0.0)}) base_up_proj = ObsTerm(func=mdp.base_up_proj) base_heading_proj = ObsTerm(func=mdp.base_heading_proj, params={"target_pos": (1000.0, 0.0, 0.0)}) joint_pos_norm = ObsTerm(func=mdp.joint_pos_limit_normalized) joint_vel_rel = ObsTerm(func=mdp.joint_vel_rel, scale=0.2) feet_body_forces = ObsTerm( func=mdp.body_incoming_wrench, scale=0.1, params={ "asset_cfg": SceneEntityCfg( "robot", body_names=["front_left_foot", "front_right_foot", "left_back_foot", "right_back_foot"] ) }, ) actions = ObsTerm(func=mdp.last_action) def __post_init__(self): self.enable_corruption = False self.concatenate_terms = True # observation groups policy: PolicyCfg = PolicyCfg() @configclass class EventCfg: """Configuration for events.""" reset_base = EventTerm( func=mdp.reset_root_state_uniform, mode="reset", params={"pose_range": {}, "velocity_range": {}}, ) reset_robot_joints = EventTerm( func=mdp.reset_joints_by_offset, mode="reset", params={ "position_range": (-0.2, 0.2), "velocity_range": (-0.1, 0.1), }, ) @configclass class RewardsCfg: """Reward terms for the MDP.""" # (1) Reward for moving forward progress = RewTerm(func=mdp.progress_reward, weight=1.0, params={"target_pos": (1000.0, 0.0, 0.0)}) # (2) Stay alive bonus alive = RewTerm(func=mdp.is_alive, weight=0.5) # (3) Reward for non-upright posture upright = RewTerm(func=mdp.upright_posture_bonus, weight=0.1, params={"threshold": 0.93}) # (4) Reward for moving in the right direction move_to_target = RewTerm( func=mdp.move_to_target_bonus, weight=0.5, params={"threshold": 0.8, "target_pos": (1000.0, 0.0, 0.0)} ) # (5) Penalty for large action commands action_l2 = RewTerm(func=mdp.action_l2, weight=-0.005) # (6) Penalty for energy consumption energy = RewTerm(func=mdp.power_consumption, weight=-0.05, params={"gear_ratio": {".*": 15.0}}) # (7) Penalty for reaching close to joint limits joint_limits = RewTerm( func=mdp.joint_limits_penalty_ratio, weight=-0.1, params={"threshold": 0.99, "gear_ratio": {".*": 15.0}} ) @configclass class TerminationsCfg: """Termination terms for the MDP.""" # (1) Terminate if the episode length is exceeded time_out = DoneTerm(func=mdp.time_out, time_out=True) # (2) Terminate if the robot falls torso_height = DoneTerm(func=mdp.root_height_below_minimum, params={"minimum_height": 0.31}) @configclass class CurriculumCfg: """Curriculum terms for the MDP.""" pass @configclass class AntEnvCfg(ManagerBasedRLEnvCfg): """Configuration for the MuJoCo-style Ant walking environment.""" # Scene settings scene: MySceneCfg = MySceneCfg(num_envs=4096, env_spacing=5.0) # Basic settings observations: ObservationsCfg = ObservationsCfg() actions: ActionsCfg = ActionsCfg() commands: CommandsCfg = CommandsCfg() # MDP settings rewards: RewardsCfg = RewardsCfg() terminations: TerminationsCfg = TerminationsCfg() events: EventCfg = EventCfg() curriculum: CurriculumCfg = CurriculumCfg() def __post_init__(self): """Post initialization.""" # general settings self.decimation = 2 self.episode_length_s = 16.0 # simulation settings self.sim.dt = 1 / 120.0 self.sim.physx.bounce_threshold_velocity = 0.2 # default friction material self.sim.physics_material.static_friction = 1.0 self.sim.physics_material.dynamic_friction = 1.0 self.sim.physics_material.restitution = 0.0
6,402
Python
30.69802
116
0.652921
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/classic/ant/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Ant locomotion environment (similar to OpenAI Gym Ant-v2). """ import gymnasium as gym from . import agents, ant_env_cfg ## # Register Gym environments. ## gym.register( id="Isaac-Ant-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": ant_env_cfg.AntEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.AntPPORunnerCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", "sb3_cfg_entry_point": f"{agents.__name__}:sb3_ppo_cfg.yaml", }, )
786
Python
25.233332
79
0.656489
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/classic/ant/agents/rsl_rl_ppo_cfg.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.lab.utils import configclass from omni.isaac.lab_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class AntPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 32 max_iterations = 1000 save_interval = 50 experiment_name = "ant" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[400, 200, 100], critic_hidden_dims=[400, 200, 100], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.0, num_learning_epochs=5, num_mini_batches=4, learning_rate=5.0e-4, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, )
1,068
Python
24.45238
60
0.640449
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/classic/ant/agents/skrl_ppo_cfg.yaml
seed: 42 # Models are instantiated using skrl's model instantiator utility # https://skrl.readthedocs.io/en/latest/api/utils/model_instantiators.html models: separate: False policy: # see skrl.utils.model_instantiators.torch.gaussian_model for parameter details clip_actions: True clip_log_std: True initial_log_std: 0 min_log_std: -20.0 max_log_std: 2.0 input_shape: "Shape.STATES" hiddens: [256, 128, 64] hidden_activation: ["elu", "elu", "elu"] output_shape: "Shape.ACTIONS" output_activation: "tanh" output_scale: 1.0 value: # see skrl.utils.model_instantiators.torch.deterministic_model for parameter details clip_actions: False input_shape: "Shape.STATES" hiddens: [256, 128, 64] hidden_activation: ["elu", "elu", "elu"] output_shape: "Shape.ONE" output_activation: "" output_scale: 1.0 # PPO agent configuration (field names are from PPO_DEFAULT_CONFIG) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html agent: rollouts: 16 learning_epochs: 8 mini_batches: 4 discount_factor: 0.99 lambda: 0.95 learning_rate: 3.e-4 learning_rate_scheduler: "KLAdaptiveLR" learning_rate_scheduler_kwargs: kl_threshold: 0.008 state_preprocessor: "RunningStandardScaler" state_preprocessor_kwargs: null value_preprocessor: "RunningStandardScaler" value_preprocessor_kwargs: null random_timesteps: 0 learning_starts: 0 grad_norm_clip: 1.0 ratio_clip: 0.2 value_clip: 0.2 clip_predicted_values: True entropy_loss_scale: 0.0 value_loss_scale: 1.0 kl_threshold: 0 rewards_shaper_scale: 0.01 # logging and checkpoint experiment: directory: "ant" experiment_name: "" write_interval: 40 checkpoint_interval: 400 # Sequential trainer # https://skrl.readthedocs.io/en/latest/api/trainers/sequential.html trainer: timesteps: 8000 environment_info: "log"
1,898
YAML
26.92647
94
0.708641
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/classic/ant/agents/sb3_ppo_cfg.yaml
# Reference: https://github.com/DLR-RM/rl-baselines3-zoo/blob/master/hyperparams/ppo.yml#L161 seed: 42 n_timesteps: !!float 1e7 policy: 'MlpPolicy' batch_size: 128 n_steps: 512 gamma: 0.99 gae_lambda: 0.9 n_epochs: 20 ent_coef: 0.0 sde_sample_freq: 4 max_grad_norm: 0.5 vf_coef: 0.5 learning_rate: !!float 3e-5 use_sde: True clip_range: 0.4 device: "cuda:0" policy_kwargs: "dict( log_std_init=-1, ortho_init=False, activation_fn=nn.ReLU, net_arch=dict(pi=[256, 256], vf=[256, 256]) )"
574
YAML
21.999999
93
0.599303
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/classic/ant/agents/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_ppo_cfg
156
Python
21.428568
60
0.737179
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/classic/ant/agents/rl_games_ppo_cfg.yaml
params: seed: 42 # environment wrapper clipping env: clip_actions: 1.0 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False # flag which sets whether to load the checkpoint load_path: '' # path to the checkpoint to load config: name: ant env_name: rlgpu device: 'cuda:0' device_name: 'cuda:0' multi_gpu: False ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: -1 reward_shaper: scale_value: 0.6 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive schedule_type: legacy kl_threshold: 0.008 score_to_win: 20000 max_epochs: 500 save_best_after: 100 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 32768 mini_epochs: 4 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,502
YAML
18.51948
73
0.601198
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/classic/cartpole/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Cartpole balancing environment. """ import gymnasium as gym from . import agents from .cartpole_env_cfg import CartpoleEnvCfg ## # Register Gym environments. ## gym.register( id="Isaac-Cartpole-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": CartpoleEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.CartpolePPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", "sb3_cfg_entry_point": f"{agents.__name__}:sb3_ppo_cfg.yaml", }, )
794
Python
24.64516
79
0.670025
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/classic/cartpole/cartpole_env_cfg.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import math import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.assets import ArticulationCfg, AssetBaseCfg from omni.isaac.lab.envs import ManagerBasedRLEnvCfg from omni.isaac.lab.managers import EventTermCfg as EventTerm from omni.isaac.lab.managers import ObservationGroupCfg as ObsGroup from omni.isaac.lab.managers import ObservationTermCfg as ObsTerm from omni.isaac.lab.managers import RewardTermCfg as RewTerm from omni.isaac.lab.managers import SceneEntityCfg from omni.isaac.lab.managers import TerminationTermCfg as DoneTerm from omni.isaac.lab.scene import InteractiveSceneCfg from omni.isaac.lab.utils import configclass import omni.isaac.lab_tasks.manager_based.classic.cartpole.mdp as mdp ## # Pre-defined configs ## from omni.isaac.lab_assets.cartpole import CARTPOLE_CFG # isort:skip ## # Scene definition ## @configclass class CartpoleSceneCfg(InteractiveSceneCfg): """Configuration for a cart-pole scene.""" # ground plane ground = AssetBaseCfg( prim_path="/World/ground", spawn=sim_utils.GroundPlaneCfg(size=(100.0, 100.0)), ) # cartpole robot: ArticulationCfg = CARTPOLE_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") # lights dome_light = AssetBaseCfg( prim_path="/World/DomeLight", spawn=sim_utils.DomeLightCfg(color=(0.9, 0.9, 0.9), intensity=500.0), ) distant_light = AssetBaseCfg( prim_path="/World/DistantLight", spawn=sim_utils.DistantLightCfg(color=(0.9, 0.9, 0.9), intensity=2500.0), init_state=AssetBaseCfg.InitialStateCfg(rot=(0.738, 0.477, 0.477, 0.0)), ) ## # MDP settings ## @configclass class CommandsCfg: """Command terms for the MDP.""" # no commands for this MDP null = mdp.NullCommandCfg() @configclass class ActionsCfg: """Action specifications for the MDP.""" joint_effort = mdp.JointEffortActionCfg(asset_name="robot", joint_names=["slider_to_cart"], scale=100.0) @configclass class ObservationsCfg: """Observation specifications for the MDP.""" @configclass class PolicyCfg(ObsGroup): """Observations for policy group.""" # observation terms (order preserved) joint_pos_rel = ObsTerm(func=mdp.joint_pos_rel) joint_vel_rel = ObsTerm(func=mdp.joint_vel_rel) def __post_init__(self) -> None: self.enable_corruption = False self.concatenate_terms = True # observation groups policy: PolicyCfg = PolicyCfg() @configclass class EventCfg: """Configuration for events.""" # reset reset_cart_position = EventTerm( func=mdp.reset_joints_by_offset, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot", joint_names=["slider_to_cart"]), "position_range": (-1.0, 1.0), "velocity_range": (-0.5, 0.5), }, ) reset_pole_position = EventTerm( func=mdp.reset_joints_by_offset, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot", joint_names=["cart_to_pole"]), "position_range": (-0.25 * math.pi, 0.25 * math.pi), "velocity_range": (-0.25 * math.pi, 0.25 * math.pi), }, ) @configclass class RewardsCfg: """Reward terms for the MDP.""" # (1) Constant running reward alive = RewTerm(func=mdp.is_alive, weight=1.0) # (2) Failure penalty terminating = RewTerm(func=mdp.is_terminated, weight=-2.0) # (3) Primary task: keep pole upright pole_pos = RewTerm( func=mdp.joint_pos_target_l2, weight=-1.0, params={"asset_cfg": SceneEntityCfg("robot", joint_names=["cart_to_pole"]), "target": 0.0}, ) # (4) Shaping tasks: lower cart velocity cart_vel = RewTerm( func=mdp.joint_vel_l1, weight=-0.01, params={"asset_cfg": SceneEntityCfg("robot", joint_names=["slider_to_cart"])}, ) # (5) Shaping tasks: lower pole angular velocity pole_vel = RewTerm( func=mdp.joint_vel_l1, weight=-0.005, params={"asset_cfg": SceneEntityCfg("robot", joint_names=["cart_to_pole"])}, ) @configclass class TerminationsCfg: """Termination terms for the MDP.""" # (1) Time out time_out = DoneTerm(func=mdp.time_out, time_out=True) # (2) Cart out of bounds cart_out_of_bounds = DoneTerm( func=mdp.joint_pos_out_of_manual_limit, params={"asset_cfg": SceneEntityCfg("robot", joint_names=["slider_to_cart"]), "bounds": (-3.0, 3.0)}, ) @configclass class CurriculumCfg: """Configuration for the curriculum.""" pass ## # Environment configuration ## @configclass class CartpoleEnvCfg(ManagerBasedRLEnvCfg): """Configuration for the locomotion velocity-tracking environment.""" # Scene settings scene: CartpoleSceneCfg = CartpoleSceneCfg(num_envs=4096, env_spacing=4.0) # Basic settings observations: ObservationsCfg = ObservationsCfg() actions: ActionsCfg = ActionsCfg() events: EventCfg = EventCfg() # MDP settings curriculum: CurriculumCfg = CurriculumCfg() rewards: RewardsCfg = RewardsCfg() terminations: TerminationsCfg = TerminationsCfg() # No command generator commands: CommandsCfg = CommandsCfg() # Post initialization def __post_init__(self) -> None: """Post initialization.""" # general settings self.decimation = 2 self.episode_length_s = 5 # viewer settings self.viewer.eye = (8.0, 0.0, 5.0) # simulation settings self.sim.dt = 1 / 120
5,686
Python
26.877451
109
0.653535
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/classic/cartpole/agents/rsl_rl_ppo_cfg.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.lab.utils import configclass from omni.isaac.lab_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class CartpolePPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 16 max_iterations = 150 save_interval = 50 experiment_name = "cartpole" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[32, 32], critic_hidden_dims=[32, 32], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.005, num_learning_epochs=5, num_mini_batches=4, learning_rate=1.0e-3, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, )
1,065
Python
24.380952
60
0.643192
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/classic/cartpole/agents/skrl_ppo_cfg.yaml
seed: 42 # Models are instantiated using skrl's model instantiator utility # https://skrl.readthedocs.io/en/latest/api/utils/model_instantiators.html models: separate: False policy: # see skrl.utils.model_instantiators.torch.gaussian_model for parameter details clip_actions: True clip_log_std: True initial_log_std: 0 min_log_std: -20.0 max_log_std: 2.0 input_shape: "Shape.STATES" hiddens: [32, 32] hidden_activation: ["elu", "elu"] output_shape: "Shape.ACTIONS" output_activation: "tanh" output_scale: 1.0 value: # see skrl.utils.model_instantiators.torch.deterministic_model for parameter details clip_actions: False input_shape: "Shape.STATES" hiddens: [32, 32] hidden_activation: ["elu", "elu"] output_shape: "Shape.ONE" output_activation: "" output_scale: 1.0 # PPO agent configuration (field names are from PPO_DEFAULT_CONFIG) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html agent: rollouts: 16 learning_epochs: 5 mini_batches: 4 discount_factor: 0.99 lambda: 0.95 learning_rate: 1.e-3 learning_rate_scheduler: "KLAdaptiveLR" learning_rate_scheduler_kwargs: kl_threshold: 0.01 state_preprocessor: "RunningStandardScaler" state_preprocessor_kwargs: null value_preprocessor: "RunningStandardScaler" value_preprocessor_kwargs: null random_timesteps: 0 learning_starts: 0 grad_norm_clip: 1.0 ratio_clip: 0.2 value_clip: 0.2 clip_predicted_values: True entropy_loss_scale: 0.0 value_loss_scale: 2.0 kl_threshold: 0 rewards_shaper_scale: 1.0 # logging and checkpoint experiment: directory: "cartpole" experiment_name: "" write_interval: 12 checkpoint_interval: 120 # Sequential trainer # https://skrl.readthedocs.io/en/latest/api/trainers/sequential.html trainer: timesteps: 2400 environment_info: "log"
1,875
YAML
26.588235
94
0.711467
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/classic/cartpole/agents/sb3_ppo_cfg.yaml
# Reference: https://github.com/DLR-RM/rl-baselines3-zoo/blob/master/hyperparams/ppo.yml#L32 seed: 42 n_timesteps: !!float 1e6 policy: 'MlpPolicy' n_steps: 16 batch_size: 4096 gae_lambda: 0.95 gamma: 0.99 n_epochs: 20 ent_coef: 0.01 learning_rate: !!float 3e-4 clip_range: !!float 0.2 policy_kwargs: "dict( activation_fn=nn.ELU, net_arch=[32, 32], squash_output=False, )" vf_coef: 1.0 max_grad_norm: 1.0 device: "cuda:0"
492
YAML
21.40909
92
0.611789
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/classic/cartpole/agents/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_ppo_cfg # noqa: F401, F403
176
Python
24.285711
60
0.721591
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/classic/cartpole/agents/rl_games_ppo_cfg.yaml
params: seed: 42 # environment wrapper clipping env: # added to the wrapper clip_observations: 5.0 # can make custom wrapper? clip_actions: 1.0 algo: name: a2c_continuous model: name: continuous_a2c_logstd # doesn't have this fine grained control but made it close network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [32, 32] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False # flag which sets whether to load the checkpoint load_path: '' # path to the checkpoint to load config: name: cartpole env_name: rlgpu device: 'cuda:0' device_name: 'cuda:0' multi_gpu: False ppo: True mixed_precision: False normalize_input: False normalize_value: False num_actors: -1 # configured from the script (based on num_envs) reward_shaper: scale_value: 1.0 normalize_advantage: False gamma: 0.99 tau : 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 150 save_best_after: 50 save_frequency: 25 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 8192 mini_epochs: 8 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,648
YAML
19.873417
73
0.61165
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/classic/cartpole/mdp/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """This sub-module contains the functions that are specific to the cartpole environments.""" from omni.isaac.lab.envs.mdp import * # noqa: F401, F403 from .rewards import * # noqa: F401, F403
323
Python
28.454543
92
0.733746
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/classic/cartpole/mdp/rewards.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from typing import TYPE_CHECKING from omni.isaac.lab.assets import Articulation from omni.isaac.lab.managers import SceneEntityCfg from omni.isaac.lab.utils.math import wrap_to_pi if TYPE_CHECKING: from omni.isaac.lab.envs import ManagerBasedRLEnv def joint_pos_target_l2(env: ManagerBasedRLEnv, target: float, asset_cfg: SceneEntityCfg) -> torch.Tensor: """Penalize joint position deviation from a target value.""" # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # wrap the joint positions to (-pi, pi) joint_pos = wrap_to_pi(asset.data.joint_pos[:, asset_cfg.joint_ids]) # compute the reward return torch.sum(torch.square(joint_pos - target), dim=1)
919
Python
33.074073
106
0.744287
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/classic/humanoid/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Humanoid locomotion environment (similar to OpenAI Gym Humanoid-v2). """ import gymnasium as gym from . import agents, humanoid_env_cfg ## # Register Gym environments. ## gym.register( id="Isaac-Humanoid-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": humanoid_env_cfg.HumanoidEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.HumanoidPPORunnerCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", "sb3_cfg_entry_point": f"{agents.__name__}:sb3_ppo_cfg.yaml", }, )
821
Python
26.399999
79
0.671133
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/classic/humanoid/humanoid_env_cfg.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.actuators import ImplicitActuatorCfg from omni.isaac.lab.assets import ArticulationCfg, AssetBaseCfg from omni.isaac.lab.envs import ManagerBasedRLEnvCfg from omni.isaac.lab.managers import EventTermCfg as EventTerm from omni.isaac.lab.managers import ObservationGroupCfg as ObsGroup from omni.isaac.lab.managers import ObservationTermCfg as ObsTerm from omni.isaac.lab.managers import RewardTermCfg as RewTerm from omni.isaac.lab.managers import SceneEntityCfg from omni.isaac.lab.managers import TerminationTermCfg as DoneTerm from omni.isaac.lab.scene import InteractiveSceneCfg from omni.isaac.lab.terrains import TerrainImporterCfg from omni.isaac.lab.utils import configclass from omni.isaac.lab.utils.assets import ISAAC_NUCLEUS_DIR import omni.isaac.lab_tasks.manager_based.classic.humanoid.mdp as mdp ## # Scene definition ## @configclass class MySceneCfg(InteractiveSceneCfg): """Configuration for the terrain scene with a humanoid robot.""" # terrain terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="plane", collision_group=-1, physics_material=sim_utils.RigidBodyMaterialCfg(static_friction=1.0, dynamic_friction=1.0, restitution=0.0), debug_vis=False, ) # robot robot = ArticulationCfg( prim_path="{ENV_REGEX_NS}/Robot", spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Robots/Humanoid/humanoid_instanceable.usd", rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=None, max_depenetration_velocity=10.0, enable_gyroscopic_forces=True, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=True, solver_position_iteration_count=4, solver_velocity_iteration_count=0, sleep_threshold=0.005, stabilization_threshold=0.001, ), copy_from_source=False, ), init_state=ArticulationCfg.InitialStateCfg( pos=(0.0, 0.0, 1.34), joint_pos={".*": 0.0}, ), actuators={ "body": ImplicitActuatorCfg( joint_names_expr=[".*"], stiffness={ ".*_waist.*": 20.0, ".*_upper_arm.*": 10.0, "pelvis": 10.0, ".*_lower_arm": 2.0, ".*_thigh:0": 10.0, ".*_thigh:1": 20.0, ".*_thigh:2": 10.0, ".*_shin": 5.0, ".*_foot.*": 2.0, }, damping={ ".*_waist.*": 5.0, ".*_upper_arm.*": 5.0, "pelvis": 5.0, ".*_lower_arm": 1.0, ".*_thigh:0": 5.0, ".*_thigh:1": 5.0, ".*_thigh:2": 5.0, ".*_shin": 0.1, ".*_foot.*": 1.0, }, ), }, ) # lights light = AssetBaseCfg( prim_path="/World/light", spawn=sim_utils.DistantLightCfg(color=(0.75, 0.75, 0.75), intensity=3000.0), ) ## # MDP settings ## @configclass class CommandsCfg: """Command terms for the MDP.""" # no commands for this MDP null = mdp.NullCommandCfg() @configclass class ActionsCfg: """Action specifications for the MDP.""" joint_effort = mdp.JointEffortActionCfg( asset_name="robot", joint_names=[".*"], scale={ ".*_waist.*": 67.5, ".*_upper_arm.*": 67.5, "pelvis": 67.5, ".*_lower_arm": 45.0, ".*_thigh:0": 45.0, ".*_thigh:1": 135.0, ".*_thigh:2": 45.0, ".*_shin": 90.0, ".*_foot.*": 22.5, }, ) @configclass class ObservationsCfg: """Observation specifications for the MDP.""" @configclass class PolicyCfg(ObsGroup): """Observations for the policy.""" base_height = ObsTerm(func=mdp.base_pos_z) base_lin_vel = ObsTerm(func=mdp.base_lin_vel) base_ang_vel = ObsTerm(func=mdp.base_ang_vel, scale=0.25) base_yaw_roll = ObsTerm(func=mdp.base_yaw_roll) base_angle_to_target = ObsTerm(func=mdp.base_angle_to_target, params={"target_pos": (1000.0, 0.0, 0.0)}) base_up_proj = ObsTerm(func=mdp.base_up_proj) base_heading_proj = ObsTerm(func=mdp.base_heading_proj, params={"target_pos": (1000.0, 0.0, 0.0)}) joint_pos_norm = ObsTerm(func=mdp.joint_pos_limit_normalized) joint_vel_rel = ObsTerm(func=mdp.joint_vel_rel, scale=0.1) feet_body_forces = ObsTerm( func=mdp.body_incoming_wrench, scale=0.01, params={"asset_cfg": SceneEntityCfg("robot", body_names=["left_foot", "right_foot"])}, ) actions = ObsTerm(func=mdp.last_action) def __post_init__(self): self.enable_corruption = False self.concatenate_terms = True # observation groups policy: PolicyCfg = PolicyCfg() @configclass class EventCfg: """Configuration for events.""" reset_base = EventTerm( func=mdp.reset_root_state_uniform, mode="reset", params={"pose_range": {}, "velocity_range": {}}, ) reset_robot_joints = EventTerm( func=mdp.reset_joints_by_offset, mode="reset", params={ "position_range": (-0.2, 0.2), "velocity_range": (-0.1, 0.1), }, ) @configclass class RewardsCfg: """Reward terms for the MDP.""" # (1) Reward for moving forward progress = RewTerm(func=mdp.progress_reward, weight=1.0, params={"target_pos": (1000.0, 0.0, 0.0)}) # (2) Stay alive bonus alive = RewTerm(func=mdp.is_alive, weight=2.0) # (3) Reward for non-upright posture upright = RewTerm(func=mdp.upright_posture_bonus, weight=0.1, params={"threshold": 0.93}) # (4) Reward for moving in the right direction move_to_target = RewTerm( func=mdp.move_to_target_bonus, weight=0.5, params={"threshold": 0.8, "target_pos": (1000.0, 0.0, 0.0)} ) # (5) Penalty for large action commands action_l2 = RewTerm(func=mdp.action_l2, weight=-0.01) # (6) Penalty for energy consumption energy = RewTerm( func=mdp.power_consumption, weight=-0.005, params={ "gear_ratio": { ".*_waist.*": 67.5, ".*_upper_arm.*": 67.5, "pelvis": 67.5, ".*_lower_arm": 45.0, ".*_thigh:0": 45.0, ".*_thigh:1": 135.0, ".*_thigh:2": 45.0, ".*_shin": 90.0, ".*_foot.*": 22.5, } }, ) # (7) Penalty for reaching close to joint limits joint_limits = RewTerm( func=mdp.joint_limits_penalty_ratio, weight=-0.25, params={ "threshold": 0.98, "gear_ratio": { ".*_waist.*": 67.5, ".*_upper_arm.*": 67.5, "pelvis": 67.5, ".*_lower_arm": 45.0, ".*_thigh:0": 45.0, ".*_thigh:1": 135.0, ".*_thigh:2": 45.0, ".*_shin": 90.0, ".*_foot.*": 22.5, }, }, ) @configclass class TerminationsCfg: """Termination terms for the MDP.""" # (1) Terminate if the episode length is exceeded time_out = DoneTerm(func=mdp.time_out, time_out=True) # (2) Terminate if the robot falls torso_height = DoneTerm(func=mdp.root_height_below_minimum, params={"minimum_height": 0.8}) @configclass class CurriculumCfg: """Curriculum terms for the MDP.""" pass @configclass class HumanoidEnvCfg(ManagerBasedRLEnvCfg): """Configuration for the MuJoCo-style Humanoid walking environment.""" # Scene settings scene: MySceneCfg = MySceneCfg(num_envs=4096, env_spacing=5.0) # Basic settings observations: ObservationsCfg = ObservationsCfg() actions: ActionsCfg = ActionsCfg() commands: CommandsCfg = CommandsCfg() # MDP settings rewards: RewardsCfg = RewardsCfg() terminations: TerminationsCfg = TerminationsCfg() events: EventCfg = EventCfg() curriculum: CurriculumCfg = CurriculumCfg() def __post_init__(self): """Post initialization.""" # general settings self.decimation = 2 self.episode_length_s = 16.0 # simulation settings self.sim.dt = 1 / 120.0 self.sim.physx.bounce_threshold_velocity = 0.2 # default friction material self.sim.physics_material.static_friction = 1.0 self.sim.physics_material.dynamic_friction = 1.0 self.sim.physics_material.restitution = 0.0
9,092
Python
30.682927
116
0.558513
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/classic/humanoid/agents/rsl_rl_ppo_cfg.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.lab.utils import configclass from omni.isaac.lab_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class HumanoidPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 32 max_iterations = 1000 save_interval = 50 experiment_name = "humanoid" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[400, 200, 100], critic_hidden_dims=[400, 200, 100], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.0, num_learning_epochs=5, num_mini_batches=4, learning_rate=5.0e-4, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, )
1,078
Python
24.690476
60
0.643785
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/classic/humanoid/agents/skrl_ppo_cfg.yaml
seed: 42 # Models are instantiated using skrl's model instantiator utility # https://skrl.readthedocs.io/en/latest/api/utils/model_instantiators.html models: separate: False policy: # see skrl.utils.model_instantiators.torch.gaussian_model for parameter details clip_actions: True clip_log_std: True initial_log_std: 0 min_log_std: -20.0 max_log_std: 2.0 input_shape: "Shape.STATES" hiddens: [400, 200, 100] hidden_activation: ["elu", "elu", "elu"] output_shape: "Shape.ACTIONS" output_activation: "tanh" output_scale: 1.0 value: # see skrl.utils.model_instantiators.torch.deterministic_model for parameter details clip_actions: False input_shape: "Shape.STATES" hiddens: [400, 200, 100] hidden_activation: ["elu", "elu", "elu"] output_shape: "Shape.ONE" output_activation: "" output_scale: 1.0 # PPO agent configuration (field names are from PPO_DEFAULT_CONFIG) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html agent: rollouts: 32 learning_epochs: 8 mini_batches: 8 discount_factor: 0.99 lambda: 0.95 learning_rate: 3.e-4 learning_rate_scheduler: "KLAdaptiveLR" learning_rate_scheduler_kwargs: kl_threshold: 0.008 state_preprocessor: "RunningStandardScaler" state_preprocessor_kwargs: null value_preprocessor: "RunningStandardScaler" value_preprocessor_kwargs: null random_timesteps: 0 learning_starts: 0 grad_norm_clip: 1.0 ratio_clip: 0.2 value_clip: 0.2 clip_predicted_values: True entropy_loss_scale: 0.0 value_loss_scale: 1.0 kl_threshold: 0 rewards_shaper_scale: 0.01 # logging and checkpoint experiment: directory: "humanoid" experiment_name: "" write_interval: 80 checkpoint_interval: 800 # Sequential trainer # https://skrl.readthedocs.io/en/latest/api/trainers/sequential.html trainer: timesteps: 16000 environment_info: "log"
1,906
YAML
27.044117
94
0.709864
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/classic/humanoid/agents/sb3_ppo_cfg.yaml
# Reference: https://github.com/DLR-RM/rl-baselines3-zoo/blob/master/hyperparams/ppo.yml#L245 seed: 42 policy: 'MlpPolicy' n_timesteps: !!float 5e7 batch_size: 256 n_steps: 512 gamma: 0.99 learning_rate: !!float 2.5e-4 ent_coef: 0.0 clip_range: 0.2 n_epochs: 10 gae_lambda: 0.95 max_grad_norm: 1.0 vf_coef: 0.5 device: "cuda:0" policy_kwargs: "dict( log_std_init=-1, ortho_init=False, activation_fn=nn.ReLU, net_arch=dict(pi=[256, 256], vf=[256, 256]) )"
544
YAML
22.695651
93
0.591912