file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
michaltakac/nerf-toy-car-aerodynamics/toy-car/toy_car_runner.py
import sys, os import torch import modulus from sympy import Symbol, Eq, Abs, tanh import numpy as np import logging from typing import List, Dict, Union from pathlib import Path from modulus.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.models.fully_connected import FullyConnectedArch from modulus.domain.inferencer import ( OVVoxelInferencer, ) from modulus_ext.ui.scenario import ModulusOVProgressBar from modulus.key import Key from modulus.key import Key from modulus.eq.pdes.navier_stokes import NavierStokes from modulus.eq.pdes.basic import NormalDotVec from modulus.geometry.tessellation import Tessellation from .constants import bounds from .src.geometry import ToyCarDomain class ModulusToyCarRunner(object): """Toy car simulator inference runner for OV scenario Args: cfg (ModulusConfig): Parsed Modulus config """ def __init__( self, cfg: ModulusConfig, progress_bar: ModulusOVProgressBar, mask_value: float = -100, ): logging.getLogger().addHandler(logging.StreamHandler()) ############################## # Nondimensionalization Params ############################## # fluid params # Water at 20°C (https://wiki.anton-paar.com/en/water/) # https://en.wikipedia.org/wiki/Viscosity#Kinematic_viscosity self.nu = 1.787e-06 # m2 * s-1 self.inlet_vel = Symbol("inlet_velocity") self.rho = 1 self.scale = 1.0 self.cfg = cfg self.progress_bar = progress_bar self._eco = False self._inferencer = None self.bounds = bounds self.mask_value = mask_value @property def eco(self): return self._eco @eco.setter def eco(self, value: bool): self._eco = value if self._inferencer: self._inferencer.eco = value def load_inferencer(self, checkpoint_dir: Union[str, None] = None): """Create Modulus Toy Car simulator inferencer object. This can take time since it will initialize the model Parameters ---------- checkpoint_dir : Union[str, None], optional Directory to modulus checkpoint """ # make list of nodes to unroll graph on ns = NavierStokes(nu=self.nu * self.scale, rho=self.rho, dim=3, time=False) normal_dot_vel = NormalDotVec(["u", "v", "w"]) self.progress_bar.value = 0.025 equation_nodes = ( ns.make_nodes() + normal_dot_vel.make_nodes() ) # determine inputs outputs of the network input_keys = [Key("x"), Key("y"), Key("z")] input_keys += [Key("inlet_velocity")] output_keys = [Key("u"), Key("v"), Key("w"), Key("p")] # select the network and the specific configs flow_net = FullyConnectedArch( input_keys=input_keys, output_keys=output_keys, ) self.flow_nodes = equation_nodes + [ flow_net.make_node(name="flow_network", jit=self.cfg.jit) ] invar_keys = [ Key.from_str("x"), Key.from_str("y"), Key.from_str("z"), Key.from_str("inlet_velocity"), ] outvar_keys = [ Key.from_str("u"), Key.from_str("v"), Key.from_str("w"), Key.from_str("p"), ] self._inferencer = OVVoxelInferencer( nodes=self.flow_nodes, input_keys=invar_keys, output_keys=outvar_keys, mask_value=self.mask_value, requires_grad=False, eco=False, progress_bar=self.progress_bar, ) # Load checkpointed model if checkpoint_dir is not None: absolute_checkpoint_dir = Path(__file__).parent / checkpoint_dir if absolute_checkpoint_dir.resolve().is_dir(): self._inferencer.load_models(absolute_checkpoint_dir.resolve()) else: print("Could not find checkpointed model") # Set eco self._inferencer.eco = self.eco def load_geometry(self): # normalize meshes def normalize_mesh(mesh, center, scale): mesh = mesh.translate([-c for c in center]) mesh = mesh.scale(scale) return mesh stl_path = Path(self.data_path) / Path("stl_files") self.car_mesh = Tessellation.from_stl( Path(stl_path) / Path("toy_bmw.stl"), airtight=True ) center = (0, 0, 0) scale = 1.0 self.car_mesh = normalize_mesh(self.car_mesh, center, scale) def run_inference( self, inlet_velocity: float, resolution: List[int] = [256, 256, 256], ) -> Dict[str, np.array]: """Runs inference for toy car simulator Args: resolution (List[int], optional): Voxel resolution. Defaults to [256, 256, 256]. Returns: Dict[str, np.array]: Predicted output variables """ self.progress_bar.value = 0 if self._inferencer is None: print("Loading toy car inferencer") self.load_inferencer(checkpoint_dir="./checkpoints") self.progress_bar.value = 0.05 print("Loading toy car geometry") self.load_geometry() self.progress_bar.value = 0.1 # Eco mode settings if self._inferencer.eco: batch_size = 512 memory_fraction = 0.1 else: vram_gb = torch.cuda.get_device_properties(0).total_memory / 10**9 batch_size = int((vram_gb // 6) * 16 * 1024) memory_fraction = 1.0 mask_fn = ( lambda x, y, z: self.car_mesh.sdf({"x": x, "y": y, "z": z}, {})["sdf"] < 0 ) sp_array = np.ones((np.prod(resolution), 1)) specific_params = { "inlet_velocity": inlet_velocity * sp_array, } # Set up the voxel sample domain self._inferencer.setup_voxel_domain( bounds=self.bounds, npoints=resolution, invar=specific_params, batch_size=batch_size, mask_fn=mask_fn, ) self.progress_bar.value = 0.2 # Perform inference invar, predvar = self._inferencer.query(memory_fraction) # TODO: Remove should be changed to inside inferencer self.progress_bar._prev_step = 0.0 self.progress_bar.value = 0.9 return predvar @property def data_path(self): data_dir = Path(os.path.dirname(__file__)) / Path("../data") return str(data_dir)
6,706
Python
30.050926
92
0.567253
michaltakac/nerf-toy-car-aerodynamics/toy-car/constants.py
# Extension constants bounds = [[-2, 2], [-1, 1], [-3, 3]] resolution = (200, 200, 200)
88
Python
21.249995
36
0.556818
michaltakac/nerf-toy-car-aerodynamics/toy-car/extension.py
import os import torch import shutil import asyncio import traceback import omni.ext import omni.usd import omni.ui as ui import numpy as np from pathlib import Path from modulus.hydra.utils import compose from modulus_ext.ui.scenario import ( ModulusOVScenario, ModulusOVButton, ModulusOVFloatSlider, ModulusOVIntSlider, ModulusOVToggle, ModulusOVRow, ModulusOVText, ModulusOVProgressBar, ) from .visualizer import Visualizer from .toy_car_runner import ModulusToyCarRunner from .constants import bounds from .src.toy_car import inlet_vel_range class ToyCarScenario(ModulusOVScenario): def __init__(self): self._init_task = asyncio.ensure_future(self.deferred_init()) async def deferred_init(self): super().__init__(name="Toy car aerodynamics simulator Omniverse Extension") # Need to be a few frames in before init can occur. # This is required for auto-loading of the extension for i in range(15): await omni.kit.app.get_app().next_update_async() self.solver_train_initialized = False self.solver_eval_initialized = False self._eval_complete = False self.resolution = [128, 128, 128] vram_gb = torch.cuda.get_device_properties(0).total_memory / 10**9 eco = vram_gb < 13 # 12 Gb and below GPUs, turn on eco mode self.inlet_velocity = 1.5 self.visualizer = Visualizer() self._usd_context = omni.usd.get_context() if self._usd_context.is_new_stage(): self.load_template() param_text = ModulusOVText( desc="Input Parameters", ) self.add(param_text) height_slider = ModulusOVFloatSlider( name="Inlet Velocity", desc="Inlet velocity from the top for Inference", default_value=self.inlet_velocity, bounds=inlet_vel_range, update_func=self.update_inlet_velocity, ) self.add(height_slider) # Inference controls self.inf_button = ModulusOVButton( name="Inference", desc="Perform Inference", update_func=self.run_inference, ) self.inf_button.run_in_main_thread = False self.add(self.inf_button) self.inf_progress = ModulusOVProgressBar( desc="Inference Progress", default_value=0.0 ) self.inf_progress.inference_scale = 0.7 self.add(self.inf_progress) # Visualization actions isosurfaceButton = ModulusOVButton( name="Isosurface", desc="Generate Isosurface Visualization", update_func=self.generate_isosurface, ) streamlineButton = ModulusOVButton( name="Streamline", desc="Generate Streamline Visualization", update_func=self.generate_streamlines, ) sliceButton = ModulusOVButton( name="Slice", desc="Generate Slice Visualization", update_func=self.generate_slices, ) button_row = ModulusOVRow( elements=[isosurfaceButton, streamlineButton, sliceButton] ) self.add(button_row) # Isosuface controls control_text = ModulusOVText( desc="Isosurface Controls", ) self.add(control_text) slider = ModulusOVFloatSlider( name="Isovalue", desc="Isosurface visualization isovalue", default_value=0.001, bounds=(0.001, 1.0), update_func=self.update_isovalue, ) self.add(slider) # Streamline controls control_text = ModulusOVText( desc="Streamline Controls", ) self.add(control_text) slider = ModulusOVIntSlider( name="Streamline Count", desc="Streamline visualization count", default_value=200, bounds=(1, 400), update_func=self.update_streamline_count, ) self.add(slider) slider = ModulusOVFloatSlider( name="Streamline Step Size", desc="Step Size used for Calculating Streamlines", default_value=0.01, bounds=(0.001, 0.1), update_func=self.update_streamline_step_size, ) self.add(slider) slider = ModulusOVIntSlider( name="Streamline Step Count", desc="Number of Integration Steps to Calculate Streamlines", default_value=1000, bounds=(1, 2000), update_func=self.update_streamline_step_count, ) self.add(slider) slider = ModulusOVFloatSlider( name="Streamline Radius", desc="Radius of Streamline Tubes", default_value=0.02, bounds=(0.0001, 0.1), update_func=self.update_streamline_radius, ) self.add(slider) # Slice controls control_text = ModulusOVText( desc="Slice Controls", ) self.add(control_text) slider = ModulusOVFloatSlider( name="Slice X Offset", desc="Contour slice X offset from domain center", default_value=0.0, bounds=[bounds[0][0], bounds[0][1]], update_func=self.update_slice_x_offset, ) self.add(slider) slider = ModulusOVFloatSlider( name="Slice Y Offset", desc="Contour slice Y offset from domain center", default_value=0.0, bounds=[bounds[1][0], bounds[1][1]], update_func=self.update_slice_y_offset, ) self.add(slider) slider = ModulusOVFloatSlider( name="Slice Z Offset", desc="Contour slice Z offset from domain center", default_value=0.0, bounds=[bounds[2][0], bounds[2][1]], update_func=self.update_slice_z_offset, ) self.add(slider) eco_toggle = ModulusOVToggle( name="Eco Mode", desc="For cards with limited memory", default_value=eco, update_func=self.toggle_eco, ) self.add(eco_toggle) self.register() cfg = compose(config_name="config", config_path="conf", job_name="ToyCar") self.simulator_runner = ModulusToyCarRunner( cfg, progress_bar=self.inf_progress ) self.simulator_runner.eco = eco def load_template(self): print("loading template") usd_context = omni.usd.get_context() template_file = Path(os.path.dirname(__file__)) / Path( "../data/toy_car_template.usda" ) self.template_temp_file = str( Path(os.path.dirname(__file__)) / Path("../data/toy_car_template_temp.usda") ) shutil.copyfile(template_file, self.template_temp_file) usd_context.open_stage(self.template_temp_file) def toggle_eco(self, value): print(f"Eco mode set to {value}") self.simulator_runner.eco = value def run_inference(self): self.inf_button.text = "Running Inference..." print("Toy car simulator inferencer started") if self.simulator_runner.eco: resolution_x = 64 resolution_y = 32 resolution_z = 64 else: resolution_x = 128 resolution_y = 128 resolution_z = 128 if (resolution_x, resolution_y, resolution_z) != self.resolution: print( f"Initializing inferencer with a resolution of {resolution_x}*{resolution_y}*{resolution_z}" ) self.resolution = [resolution_x, resolution_y, resolution_z] print( f"Will run inferencing for inlet_velocity={self.inlet_velocity}" ) pred_vars = self.simulator_runner.run_inference( inlet_velocity=self.inlet_velocity, resolution=list(self.resolution), ) shape = tuple(self.resolution) u = pred_vars["u"].reshape(shape) v = pred_vars["v"].reshape(shape) w = pred_vars["w"].reshape(shape) velocity = np.stack([u, v, w], axis=-1) if velocity.dtype != np.float32: velocity = velocity.astype(np.float32) if velocity.shape != shape + (3,): raise RuntimeError(f"expected shape: {shape + (3,)}; got: {velocity.shape}") # Change to z axis first for VTK input (not sure why) # Tensor comes out of inferencer in ij index form velocity = np.ascontiguousarray(velocity.transpose(2, 1, 0, 3)) self.inf_progress.value = 0.95 np.seterr(invalid="ignore") mask = np.where(velocity == self.simulator_runner.mask_value) velocity[mask] = 0.0 velmag = np.linalg.norm(velocity, axis=3) # velmag = velmag / np.amax(velmag) minval = np.amin(velmag) maxval = np.amax(velmag) print("Test", maxval, minval) self._velocity = velocity self._velmag = velmag # self._mask = spatial_mask self._vel_mask = mask self._bounds = np.array(self.simulator_runner.bounds).flatten() print("ToyCarScenario inference ended") self._eval_complete = True self.inf_progress.value = 1.0 self.inf_button.text = "Inference" def update_vis_data(self): if not all(v is not None for v in [self._velocity, self._velmag, self._bounds]): return self.visualizer.update_data( self._velocity, self._velmag, self._bounds, self._vel_mask, self.resolution ) def update_inlet_velocity(self, value: float): self.inlet_velocity = value def update_isovalue(self, isovalue): print(f"Updating isovalue: {isovalue}") self.visualizer.parameters.isovalue = isovalue self.visualizer.update_generated() def update_streamline_count(self, streamline_count): print(f"Updating streamline_count: {streamline_count}") self.visualizer.parameters.streamline_count = streamline_count self.visualizer.update_generated() def update_streamline_step_size(self, streamline_step_size): print(f"Updating streamline_step_size: {streamline_step_size}") self.visualizer.parameters.streamline_step_size = streamline_step_size self.visualizer.update_generated() def update_streamline_step_count(self, streamline_step_count): print(f"Updating streamline_step_count: {streamline_step_count}") self.visualizer.parameters.streamline_step_count = streamline_step_count self.visualizer.update_generated() def update_streamline_radius(self, streamline_radius): print(f"Updating streamline_radius: {streamline_radius}") self.visualizer.parameters.streamline_radius = streamline_radius self.visualizer.update_generated() def update_slice_x_offset(self, slice_x_offset): print(f"Updating slice_x_offset: {slice_x_offset}") self.visualizer.parameters.slice_x_pos = slice_x_offset self.visualizer.update_generated() def update_slice_y_offset(self, slice_y_offset): print(f"Updating slice_y_offset: {slice_y_offset}") self.visualizer.parameters.slice_y_pos = slice_y_offset self.visualizer.update_generated() def update_slice_z_offset(self, slice_z_offset): print(f"Updating slice_z_offset: {slice_z_offset}") self.visualizer.parameters.slice_z_pos = slice_z_offset self.visualizer.update_generated() def generate_isosurface(self): if not self._eval_complete: print("Need to run inferencer first!") return self.update_vis_data() self.visualizer.generate_isosurface() def generate_streamlines(self): if not self._eval_complete: print("Need to run inferencer first!") return self.update_vis_data() self.visualizer.generate_streamlines() def generate_slices(self): if not self._eval_complete: print("Need to run inferencer first!") return self.update_vis_data() self.visualizer.generate_slices() # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class ToyCarExt(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[modulus.scenario.ToyCar] Toy car aerodynamics scenario startup") self.scenario = ToyCarScenario() def on_shutdown(self): self.scenario.__del__() print("[modulus.scenario.ToyCar] Toy car aerodynamics scenario shutdown")
13,049
Python
33.8
119
0.609242
michaltakac/nerf-toy-car-aerodynamics/toy-car/__init__.py
from .extension import *
24
Python
23.999976
24
0.791667
michaltakac/nerf-toy-car-aerodynamics/toy-car/inferencer.py
from modulus.hydra import to_yaml from modulus.hydra.utils import compose from modulus.solver import Solver from modulus.domain import Domain from modulus.domain.inferencer import PointwiseInferencer, VoxelInferencer from src.geometry import ToyCarDomain from src.toy_car import network, constraints, inlet_vel from src.plotter import generate_velocity_profile_3d, InferencerSlicePlotter2D cfg = compose(config_path="conf", config_name="config_eval", job_name="toy_car_inference") print(to_yaml(cfg)) def run(): geo = ToyCarDomain() domain = Domain() nodes = network(cfg, scale=geo.scale) constraints(cfg, geo=geo, nodes=nodes, domain=domain) inlet_vel_inference = 0.1 inferencer = PointwiseInferencer( nodes=nodes, invar=geo.interior_mesh.sample_interior(1000000, parameterization={inlet_vel: inlet_vel_inference}), output_names=["u", "v", "w", "p"], batch_size=1024, requires_grad=False, plotter=InferencerSlicePlotter2D() ) domain.add_inferencer(inferencer, "simulation") # add meshgrid inferencer mask_fn = lambda x, y, z: geo.interior_mesh.sdf({"x": x, "y": y, "z": z})[0] < 0 voxel_inference = VoxelInferencer( bounds=[[-3, 3], [-3, 3], [-3, 3]], npoints=[128, 128, 128], nodes=nodes, output_names=["u", "v", "w", "p"], export_map={"u": ["u", "v", "w"], "p": ["p"]}, mask_fn=mask_fn, batch_size=1024, requires_grad=False, ) domain.add_inferencer(voxel_inference, "simulation_voxel") # make solver slv = Solver(cfg, domain) # start solver slv.solve() # generate velocity profile with magnitude (it has V = [u, v, w] in one array) generate_velocity_profile_3d() if __name__ == "__main__": run()
1,808
Python
29.15
108
0.642146
michaltakac/nerf-toy-car-aerodynamics/toy-car/visualizer.py
import omni.usd import omni.timeline # Import the HPC visualization pipeline from hpcvis.vtkm_bridge.core import get_bridge_interface import numpy as np from pxr import Sdf, Usd, UsdGeom, UsdUtils import types from dataclasses import dataclass from typing import List from .constants import bounds # Put interface object publicly to use in our API _vtkm_bridge = None class VisParameters: def __init__(self): self.bounds = np.array(bounds).flatten() self.isovalue = 0.001 self.streamline_count = 200 self.streamline_step_size = 0.01 self.streamline_step_count = 750 self.streamline_radius = 0.02 self.streamline_height = 0.0 self._slice_x_pos = 0.5 self._slice_y_pos = 0.5 self._slice_z_pos = 0.5 @property def slice_x_pos(self): return self._slice_x_pos @slice_x_pos.setter def slice_x_pos(self, offset): self._slice_x_pos = max( min((offset - self.bounds[0]) / (self.bounds[1] - self.bounds[0]), 1), 0 ) @property def slice_y_pos(self): return self._slice_y_pos @slice_y_pos.setter def slice_y_pos(self, offset): self._slice_y_pos = max( min((offset - self.bounds[2]) / (self.bounds[3] - self.bounds[2]), 1), 0 ) @property def slice_z_pos(self): return self._slice_z_pos @slice_z_pos.setter def slice_z_pos(self, offset): self._slice_z_pos = max( min((offset - self.bounds[4]) / (self.bounds[5] - self.bounds[4]), 1), 0 ) class Visualizer: def __init__(self): # Get the vtkm bridge context self._vtkm_bridge = None print( f"[modulus_ext.scenario.toy_car.visualizer]_vtkm_bridge interface: {self._vtkm_bridge}" ) self.parameters = VisParameters() self.velocity = None self.all_points = None self.bounds = None self._stage_id = None self._isosurface_primname = None self._streamlines_primname = None self._slice_primname_x = None self._slice_primname_y = None self._slice_primname_z = None self._seedpoints = None self._usd_context = None self.timeline = omni.timeline.acquire_timeline_interface() def get_geometry_prim(self, bridge_prim_name: str): stage = self._usd_context.get_stage() new_suffix = "_geometry" prim_name = bridge_prim_name.rsplit("_", maxsplit=1)[0] + new_suffix return stage.GetPrimAtPath(f"/RootClass/geometries/{prim_name}") def focus_prim(self, prim: Usd.Prim): if not prim.IsValid(): return self._usd_context.get_selection().set_selected_prim_paths( [str(prim.GetPath())], True ) try: import omni.kit.viewport_legacy viewport = omni.kit.viewport_legacy.get_viewport_interface() if viewport: viewport.get_viewport_window().focus_on_selected() except: raise pass def update_data( self, velocity: np.ndarray, velmag: np.ndarray, bounds: List[int], mask: np.ndarray = None, resolution: List[int] = [190, 190, 190], ): self.velocity = velocity self.bounds = bounds self.velmag = velmag def nan_ptp(a): return np.ptp(a[np.isfinite(a)]) self.velmag = (self.velmag - np.nanmin(self.velmag))/nan_ptp(self.velmag) coords_x = np.linspace(self.bounds[0], self.bounds[1], resolution[0]) coords_y = np.linspace(self.bounds[2], self.bounds[3], resolution[1]) coords_z = np.linspace(self.bounds[4], self.bounds[5], resolution[2]) Z, Y, X = np.meshgrid(coords_z, coords_y, coords_x, indexing="ij") self.all_points = np.array( np.transpose([C.flatten() for C in [X, Y, Z]]), copy=True, order="C", dtype=np.float32, ) duplicated_velmag = np.expand_dims(self.velmag, axis=-1) np.seterr(invalid="ignore") self.normalized_velocity = self.velocity / duplicated_velmag #self.normalized_velocity = self.velocity / np.amax(self.velocity) self.normalized_velocity[mask] = 0 self.update_stage() self._vtkm_bridge.set_field_data("toy_car_velocity", velocity, n_components=3) self._vtkm_bridge.set_field_data( "toy_car_normalized_velocity", self.normalized_velocity, n_components=3 ) self._vtkm_bridge.set_field_data("toy_car_velmag", velmag, n_components=1) self._vtkm_bridge.set_regular_grid_bounds("toy_car", *bounds) self._vtkm_bridge.set_regular_grid_extent( "toy_car", *tuple(reversed(velmag.shape[:3])) ) if self._seedpoints is not None: self._vtkm_bridge.set_points("toy_car_points", self._seedpoints) self.update_generated() def update_generated(self): if self._isosurface_primname: self.generate_isosurface() if self._streamlines_primname: self.generate_streamlines() if self._slice_primname_x or self._slice_primname_y or self._slice_primname_z: self.generate_slices() def update_stage(self): if self._vtkm_bridge is None: self._vtkm_bridge = get_bridge_interface() # Use the bridge to generate an isosurface on the data if self._usd_context is None: self._usd_context = omni.usd.get_context() stage = self._usd_context.get_stage() stage_cache = UsdUtils.StageCache.Get() stage_id = stage_cache.GetId(stage).ToLongInt() if stage_id == self._stage_id: return self._stage_id = stage_id self._vtkm_bridge.set_stage(stage_id) def random_subset(self, points, values, npoints=25): nonzero_selection = self.velmag.ravel() > 0.001 # Only points with some velocity points_nonzero = points[nonzero_selection] velmag_nonzero = self.velmag.ravel()[nonzero_selection] print(f"points_nonzero: {points_nonzero[:10]}") print(f"velmag_nonzero: {velmag_nonzero[:10]}") points_nonzero_shuffle = np.random.shuffle(points_nonzero) points_subset = points_nonzero[:npoints] velmag_subset = velmag_nonzero[:npoints] return points_subset def generate_streamlines(self): self.update_stage() # Use the bridge to generate streamlines on the data np.random.seed(42) self._seedpoints = self.random_subset( self.all_points, self.velocity, npoints=self.parameters.streamline_count ) self._vtkm_bridge.set_points("toy_car_points", self._seedpoints) temp = self._streamlines_primname self._streamlines_primname = self._vtkm_bridge.visualize_streamlines( enabled=True, streamline_name="toy_car_streamlines", velocity_grid_name="toy_car", velocity_data_array_name="toy_car_normalized_velocity", sample_quantity_name="toy_car_velmag", seed_points_name="toy_car_points", step_size=self.parameters.streamline_step_size, n_steps=int(self.parameters.streamline_step_count), enable_tube_filter=True, tube_radius=self.parameters.streamline_radius, ) if not self._streamlines_primname: print("Problem with streamline generation. Keeping old primname.") self._streamlines_primname = temp print(f"visualized streamlines: {self._streamlines_primname}") if not temp and self._streamlines_primname: prim = self.get_geometry_prim(self._streamlines_primname) self.focus_prim(prim) self.timeline.set_end_time(10) def generate_isosurface(self): self.update_stage() # velocity magnitude isosurface isosurface_prim = self._vtkm_bridge.visualize_isosurface( enabled=True, isosurface_name="toy_car_isosurface", regular_grid_name="toy_car", field_data_name="toy_car_velmag", sample_quantity_name="toy_car_velmag", isovalue=self.parameters.isovalue, ) print(f"visualized isosurface: {self._isosurface_primname}") if not self._isosurface_primname: print("Problem with isosurface generation. Keeping old primname.") self._isosurface_primname = isosurface_prim if not isosurface_prim and self._isosurface_primname: prim = self.get_geometry_prim(self._isosurface_primname) self.focus_prim(prim) def generate_slices(self): self.update_stage() temp_x = self._slice_primname_x temp_y = self._slice_primname_y temp_z = self._slice_primname_z # Use the bridge to generate slices for the data self._slice_primname_x = self._vtkm_bridge.visualize_slice( enabled=True, slice_name="toy_car_slice_x", regular_grid_name="toy_car", field_data_name="toy_car_velmag", az=90., el=0.0, pos=self.parameters.slice_x_pos, ) print(f"visualized slice: {self._slice_primname_x}") self._slice_primname_y = self._vtkm_bridge.visualize_slice( enabled=True, slice_name="toy_car_slice_y", regular_grid_name="toy_car", field_data_name="toy_car_velmag", az=0.0, el=0.0, pos=self.parameters.slice_y_pos, ) print(f"visualized slice: {self._slice_primname_y}") self._slice_primname_z = self._vtkm_bridge.visualize_slice( enabled=True, slice_name="toy_car_slice_z", regular_grid_name="toy_car", field_data_name="toy_car_velmag", az=0.0, el=90, pos=self.parameters.slice_z_pos, ) print(f"visualized slice: {self._slice_primname_z}") if not self._slice_primname_x: print("Problem with slice generation. Keeping old primname.") self._slice_primname_x = temp_x if not self._slice_primname_y: print("Problem with slice generation. Keeping old primname.") self._slice_primname_y = temp_y if not self._slice_primname_z: print("Problem with slice generation. Keeping old primname.") self._slice_primname_z = temp_z if not temp_z and self._slice_primname_z: prim = self.get_geometry_prim(self._slice_primname_z) self.focus_prim(prim)
10,751
Python
34.022801
99
0.596317
michaltakac/nerf-toy-car-aerodynamics/toy-car/trainer.py
from modulus.hydra import to_yaml from modulus.hydra.utils import compose from modulus.solver import Solver from modulus.domain import Domain from modulus.domain.inferencer import PointwiseInferencer from src.geometry import ToyCarDomain from src.toy_car import network, constraints, inlet_vel cfg = compose(config_path="conf", config_name="config", job_name="toy_car_training") print(to_yaml(cfg)) def run(): geo = ToyCarDomain() domain = Domain() nodes = network(cfg, scale=geo.scale) constraints(cfg, geo=geo, nodes=nodes, domain=domain) inlet_vel_inference = 1.5 # add inferencer inferencer = PointwiseInferencer( nodes=nodes, invar=geo.interior_mesh.sample_interior(1000000, parameterization={inlet_vel: inlet_vel_inference}), output_names=["u", "v", "w", "p"], batch_size=4096, ) domain.add_inferencer(inferencer, "inf_data") inferencer = PointwiseInferencer( nodes=nodes, invar=geo.interior_mesh.sample_interior(5000, parameterization={inlet_vel: inlet_vel_inference}), output_names=["u", "v", "w", "p"], batch_size=256, ) domain.add_inferencer(inferencer, "inf_data_small") # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
1,325
Python
26.624999
108
0.672453
michaltakac/nerf-toy-car-aerodynamics/toy-car/src/geometry.py
import numpy as np from sympy import sqrt, Max from modulus.hydra import to_absolute_path from modulus.geometry.tessellation import Tessellation from modulus.geometry.primitives_3d import Box, Channel, Plane class ToyCarDomain: """Toy car geometry inside channel""" def __init__(self): # read stl files to make geometry point_path = to_absolute_path("./stl_files") car_mesh = Tessellation.from_stl( point_path + "/toy_bmw.stl", airtight=True ) # scale and normalize mesh and openfoam data self.center = (0, 0, 0) self.scale = 1.0 self.car_mesh = self.normalize_mesh(car_mesh, self.center, self.scale) # geometry params for domain channel_origin = (-2.5, -0.5, -0.5625) channel_dim = (5.0, 1.0, 1.125) # channel channel = Channel( channel_origin, ( channel_origin[0] + channel_dim[0], channel_origin[1] + channel_dim[1], channel_origin[2] + channel_dim[2], ), ) # normalize meshes def normalize_mesh(self, mesh, center, scale): mesh = mesh.translate([-c for c in center]) mesh = mesh.scale(scale) return mesh
1,267
Python
26.565217
78
0.5809
michaltakac/nerf-toy-car-aerodynamics/toy-car/src/toy_car.py
from sympy import Symbol, Eq from modulus.hydra import instantiate_arch, ModulusConfig from modulus.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, ) from modulus.key import Key from modulus.eq.pdes.navier_stokes import NavierStokes from modulus.eq.pdes.turbulence_zero_eq import ZeroEquation from modulus.eq.pdes.basic import NormalDotVec # params for simulation ############# # Real Params ############# # fluid params fluid_viscosity = 1.84e-05 # kg/m-s fluid_density = 1.1614 # kg/m3 # boundary params length_scale = 0.04 # m inlet_velocity = 5.24386 # m/s ############################## # Nondimensionalization Params ############################## # fluid params nu = fluid_viscosity / (fluid_density * inlet_velocity * length_scale) rho = 1 normalize_inlet_vel = 1.0 # heat params D_solid = 0.1 D_fluid = 0.02 inlet_T = 0 source_grad = 1.5 source_area = source_dim[0] * source_dim[2] u_profile = ( normalize_inlet_vel * tanh((0.5 - Abs(y)) / 0.02) * tanh((0.5625 - Abs(z)) / 0.02) ) volumetric_flow = 1.0668 # value via integration of inlet profile inlet_vel = Symbol("inlet_velocity") x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # parameterization inlet_vel_range = (0.05, 10.0) inlet_vel_params = {inlet_vel: inlet_vel_range} def network(cfg: ModulusConfig, scale): # make list of nodes to unroll graph on ze = ZeroEquation(nu=nu, dim=3, time=False, max_distance=0.5) ns = NavierStokes(nu=ze.equations["nu"], rho=1.0, dim=3, time=False) normal_dot_vel = NormalDotVec(["u", "v", "w"]) flow_net = instantiate_arch( input_keys=[Key("x"), Key("y"), Key("z"), Key("inlet_velocity")], output_keys=[Key("u"), Key("v"), Key("w"), Key("p")], cfg=cfg.arch.fully_connected, ) return ( ns.make_nodes() + normal_dot_vel.make_nodes() + [flow_net.make_node(name="flow_network", jit=cfg.jit)] ) def constraints(cfg: ModulusConfig, geo, nodes, domain): # add constraints to solver # inlet constraint_inlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo.inlet, outvar={"u": u_profile, "v": 0, "w": 0}, batch_size=cfg.batch_size.inlet, criteria=Eq(x, channel_origin[0]), lambda_weighting={"u": 1.0, "v": 1.0, "w": 1.0}, batch_per_epoch=5000, ) domain.add_constraint(constraint_inlet, "inlet") # outlet constraint_outlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=outlet, outvar={"p": 0}, batch_size=cfg.batch_size.outlet, criteria=Eq(x, channel_origin[0] + channel_dim[0]), batch_per_epoch=5000, ) domain.add_constraint(constraint_outlet, "outlet") # no slip no_slip = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo.noslip_mesh, outvar={"u": 0, "v": 0, "w": 0}, batch_size=cfg.batch_size.no_slip, parameterization=inlet_vel_params ) domain.add_constraint(no_slip, "no_slip") # interior interior = PointwiseInteriorConstraint( nodes=nodes, geometry=geo.interior_mesh, outvar={"continuity": 0, "momentum_x": 0, "momentum_y": 0, "momentum_z": 0}, batch_size=cfg.batch_size.interior, parameterization=inlet_vel_params ) domain.add_constraint(interior, "interior") # integral continuity def integral_criteria(invar, params): sdf = geo.sdf(invar, params) return np.greater(sdf["sdf"], 0) integral_continuity = IntegralBoundaryConstraint( nodes=nodes, geometry=integral_plane, outvar={"normal_dot_vel": volumetric_flow}, batch_size=cfg.batch_size.num_integral_continuity, integral_batch_size=cfg.batch_size.integral_continuity, criteria=integral_criteria, lambda_weighting={"normal_dot_vel": 1.0}, parameterization={**x_pos_range, **param_ranges}, batch_per_epoch=5000, ) flow_domain.add_constraint(integral_continuity, "integral_continuity") # add pressure monitor invar_front_pressure = integral_plane.sample_boundary( 1024, parameterization={ x_pos: heat_sink_base_origin[0] - 0.65, **fixed_param_ranges, }, ) pressure_monitor = PointwiseMonitor( invar_front_pressure, output_names=["p"], metrics={"front_pressure": lambda var: torch.mean(var["p"])}, nodes=flow_nodes, ) domain.add_monitor(pressure_monitor) invar_back_pressure = integral_plane.sample_boundary( 1024, parameterization={ x_pos: heat_sink_base_origin[0] + 2 * 0.65, **fixed_param_ranges, }, ) pressure_monitor = PointwiseMonitor( invar_back_pressure, output_names=["p"], metrics={"back_pressure": lambda var: torch.mean(var["p"])}, nodes=flow_nodes, ) domain.add_monitor(pressure_monitor)
5,031
Python
28.952381
84
0.619758
michaltakac/nerf-toy-car-aerodynamics/toy-car/src/plotter.py
import numpy as np import scipy.interpolate import matplotlib.pyplot as plt from modulus.hydra import to_absolute_path from modulus.utils.io.vtk import var_to_polyvtk from modulus.utils.io import InferencerPlotter def generate_velocity_profile_3d(): data = np.load(to_absolute_path("outputs/toy_car/inferencers/simulation.npz"), allow_pickle=True) data = np.atleast_1d(data.f.arr_0)[0] # velocity in 3D pos = np.dstack((data["x"], data["y"], data["z"])) V = np.dstack((data["u"], data["v"], data["w"])) save_var = { "x": data["x"], "y": data["y"], "z": data["z"], "p": data["p"], "pos": pos, "V": V, } var_to_polyvtk(save_var, to_absolute_path("outputs/toy_car/inferencers/velocity_profile")) class InferencerSlicePlotter2D(InferencerPlotter): "Default plotter class for inferencer" def __call__(self, invar, outvar): "Default function for plotting inferencer data" # get input variables x, y = invar["x"][:, 0], invar["y"][:, 0] bounds = (x.min(), x.max(), y.min(), y.max()) extent, outvar = self.interpolate_output(100, x, y, bounds, outvar) # make plots fs = [] for k in outvar: f = plt.figure(figsize=(5, 4), dpi=144) plt.imshow(outvar[k].T, origin="lower", extent=extent, cmap="jet") plt.xlabel("x") plt.ylabel("y") plt.colorbar(location="bottom") plt.title(k) plt.tight_layout() fs.append((f, k)) return fs @staticmethod def interpolate_output(size, x, y, extent, *outvars): "Interpolates irregular points onto a mesh" # define mesh to interpolate onto xyi = np.meshgrid( np.linspace(extent[0], extent[1], size), np.linspace(extent[2], extent[3], size), indexing="ij", ) # interpolate outvars onto mesh outvars_interp = [] for outvar in outvars: outvar_interp = {} for k in outvar: outvar_interp[k] = scipy.interpolate.griddata( (x, y), outvar[k][:, 0], tuple(xyi) ) outvars_interp.append(outvar_interp) return [extent] + outvars_interp
2,310
Python
29.407894
101
0.55974
michaltakac/nerf-toy-car-aerodynamics/toy-car/conf/config.yaml
defaults : - modulus_default - arch: - fully_connected - scheduler: tf_exponential_lr - optimizer: adam - loss: sum - _self_ save_filetypes: "vtk,np" scheduler: decay_rate: 0.95 decay_steps: 15000 training: rec_results_freq : 200 rec_constraint_freq: 50000 max_steps : 1500000 batch_size: inlet: 650 outlet: 650 no_slip: 5200 interior: 6000 integral_continuity: 310
407
YAML
14.692307
32
0.670762
michaltakac/nerf-toy-car-aerodynamics/toy-car/conf/config_eval.yaml
defaults : - modulus_default - arch: - fully_connected - scheduler: tf_exponential_lr - optimizer: adam - loss: sum - _self_ run_mode: "eval" save_filetypes: "vtk,np" network_dir: 'checkpoints' initialization_network_dir: 'checkpoints' scheduler: decay_rate: 0.95 decay_steps: 15000 training: rec_results_freq : 200 rec_constraint_freq: 50000 max_steps : 1500000 batch_size: inlet: 650 outlet: 650 no_slip: 5200 interior: 6000 integral_continuity: 310
494
YAML
15.499999
41
0.688259
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/main.py
from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from robot.scene.task import Env from UOC.app import Segmenter from VM.matcher import VisualMatcher from ui import WidgetsExtension image_folder = "E:/workspace/visual_match/images" def save_rgbs(rgbs, folder, prefix): import cv2 import os for i, rgb in enumerate(rgbs): f = os.path.join(folder, f"{prefix}_{i}.png") cv2.imwrite(f, rgb) matcher = VisualMatcher() seger = Segmenter() env = Env(save_folder=image_folder) ext = WidgetsExtension() ext.init_window(env, image_folder) if simulation_app.is_running(): env.reset() env.move_to_init() while not env.is_start: env.idle(1) env.scene.load_objects() env.idle(200) tg_data = env.save_images('tg') ext.show_target_img() print("Segment target") tg_rgbs, tg_bbox = seger.segment_and_crop( tg_data[0], tg_data[1], tg_data[2] ) tg_pcs = seger.crop_point_cloud(tg_data[1], tg_data[2], tg_bbox) # save_rgbs(tg_rgbs, image_folder, 'tg') env.reset() env.scene.load_objects_2() env.idle(200) sc_data = env.save_images('sc') ext.show_source_img() print("Segment source") sc_rgbs, sc_bbox = seger.segment_and_crop( sc_data[0], sc_data[1], sc_data[2] ) sc_pcs = seger.crop_point_cloud(sc_data[1], sc_data[2], sc_bbox) # save_rgbs(sc_rgbs, image_folder, 'sc') print("Match objects") s_list, t_list = matcher.match_images(sc_rgbs, tg_rgbs, env.scene.names) print(s_list) print(t_list) # generate grasp print("Compute pick poses") sc_mats = env.get_pick_mat(sc_pcs) tg_mats = env.get_pick_mat(tg_pcs) min_num = len(s_list) if len(s_list) > len(t_list): min_num = len(t_list) for index in range(min_num): env.move_to_mat(sc_mats[ index ], 0.3) env.gripper_close() env.move_up(0.3) mat = tg_mats[ t_list[index] ] mat[:3, 3][2] += 0.05 env.move_to_mat(mat, 0.3) env.gripper_open() env.idle(20) env.move_up(0.3) env.move_to_left() env.idle(50) fin_data = env.save_images('fin') ext.show_final_img() env.world.pause() while simulation_app.is_running(): env.world.step(render=True) simulation_app.close()
2,319
Python
23.946236
83
0.62182
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/evaluate_lvis.py
import os import numpy as np from VM.lvis import Lvis from VM.matcher import VisualMatcher if __name__ == "__main__": dataset = Lvis() matcher = VisualMatcher() np.random.seed(6) task_num = 1 num_per_task = 8 all_rate = [] test_mode = 'CLIP_V' test_mode = 'CLIP_K' # test_mode = 'CLIP_N' all_test = ['CLIP_N', 'CLIP_K', 'CLIP_V'] all_test = ['CLIP_N'] for test_mode in all_test: total_rate = [] for data in dataset.random_test(task_num, num_per_task): source_list, target_list, label_list = data use_text = True if test_mode == 'CLIP_V': use_text = False elif test_mode == 'CLIP_K': label_list = dataset.cat_names source_ids, target_ids = matcher.match_images( source_list, target_list, label_list, use_text ) match_rate = sum(source_ids == target_ids) / num_per_task total_rate.append(match_rate) rate = np.mean(total_rate) all_rate.append(rate) print( f"Total categories: {dataset.cat_num}" ) print( f" Task num : {task_num}" ) print( f" Num pre task: {num_per_task}" ) print( "-"*20 ) for i in range(len(all_rate)): print("%7s: %.3f" % (all_test[i], all_rate[i])) A = 1 # Total categories: 414 # Task num : 200 # Num pre task: 20 # -------------------- # CLIP_N: 0.577 # CLIP_K: 0.541 # CLIP_V: 0.403 # Total categories: 414 # Task num : 500 # Num pre task: 8 # -------------------- # CLIP_N: 0.771 # CLIP_K: 0.724 # CLIP_V: 0.542
1,626
Python
21.915493
107
0.523985
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/test.py
import os, sys import numpy as np from PIL import Image import matplotlib.pyplot as plt from UOC.app import Segmenter from robot.tools import pv_tools if __name__ == "__main__": seg = Segmenter() rgb = np.array(Image.open("./images/sc_rgb.png"))[:,:,:3][:,:,::-1].copy() dep = np.load("./images/sc_dep.npy") cam = np.load("./images/sc_cam.npy") c2w = np.load("./images/sc_c2w.npy") camera_params = {} # camera_params['x_offset'] = cam[0,0] # camera_params['y_offset'] = cam[1,1] # camera_params['fx'] = cam[0,2] # camera_params['fy'] = cam[1,2] camera_params['c2w'] = c2w camera_params['cam'] = cam print(c2w) print(cam) all_rgb, all_bbox = seg.segment_and_crop(rgb, dep, camera_params) all_points = seg.crop_point_cloud(dep, camera_params, all_bbox) all_pc = [] for points in all_points: all_pc.append(pv_tools.get_pc(points)) mat = np.eye(4) mat[:3,3] = c2w[:3,3] cam_ax = pv_tools.get_axis(mat) ax = pv_tools.get_axis() all_pc.append(cam_ax) all_pc.append(ax) pv_tools.show_mesh(all_pc) a = 1
1,138
Python
22.244898
78
0.580844
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/README.md
## 计算机前沿技术课程 复现工作 ## 复现论文:Semantically Grounded Object Matching for Robust Robotic Scene Rearrangement [🧷](https://arxiv.org/abs/2111.07975) ### 只进行物体匹配: > 环境依赖 python >= 3.6 pytorch >= 1.7.1 clip (https://github.com/openai/CLIP) > 核心代码 物体匹配的复现代码在`VM`(visual matching)文件夹下,其中[`matcher.py`](./VM/matcher.py)里面实现了物体匹配的算法,你可以参考`evaluate_lvis.py`。 ```python from VM.matcher import VisualMatcher matcher = VisualMatcher() source_list = xxx # sourse images target_list = xxx # goal images label_list = xxx # object labels use_text = True source_ids, target_ids = matcher.match_images( source_list, target_list, label_list, use_text ) ``` > 测试数据集 请参考`VM/data/README.md`下载数据集后进行处理。 ### 进行机器人重排列实验: > 环境依赖 python >= 3.6 pyvista pytorch >= 1.7.1 clip (https://github.com/openai/CLIP) > 安装模拟环境(要求RTX显卡): omiverse isaac sim (https://developer.nvidia.com/isaac-sim) > 核心代码 `robot`:内是isaac sim的模拟环境控制代码 `UOC`:修改自[https://github.com/NVlabs/UnseenObjectClustering](https://github.com/NVlabs/UnseenObjectClustering)的代码,我在里面写了个`app.py`,从中提取出了一个`Segmenter`类作为实例分割模块。使用前请下载好他们的训练权重,放到`UOC/data/checkpoints`下 `main.py`:机器人重排列的主代码 `ui.py`:设置isaac sim的界面代码 `run.bat`:执行`main.py`的命令
1,219
Markdown
18.365079
198
0.71534
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/ui.py
import omni.ext import omni.ui import numpy as np import os def add_separator(height=4, width=2, color=0xff202020): omni.ui.Spacer(height=height) omni.ui.Line(style={"border_width":width, "color":color}) omni.ui.Spacer(height=height) def add_label(text): # with omni.ui.HStack(width=0): omni.ui.Spacer(width=8) label = omni.ui.Label(text) label.alignment = omni.ui._ui.Alignment.H_CENTER omni.ui.Spacer(width=4) return label def add_btn(text, enabled=True, scale=1): omni.ui.Spacer(height=4) btn = omni.ui.Button(text) btn.height *= scale omni.ui.Spacer(height=4) btn.enabled = enabled return btn # ----------------------------------------------------------. class WidgetsExtension(omni.ext.IExt): # ------------------------------------------------. # Init window. # ------------------------------------------------. def init_window (self, env=None, image_folder=None): self.env = env self.image_folder = image_folder # Create new window. self._window = omni.ui.Window("Widgets Window", width=340, height=600) # ------------------------------------------. with self._window.frame: # Create window UI. with omni.ui.VStack(height=0): self.btn = add_btn(" START ", scale=3) self.btn.set_clicked_fn(self.onButtonClicked) add_separator(8) self.target_label = add_btn("Target", False) self.target_image = omni.ui.Image("", width=280, height=180) # Separator. add_separator(8) self.source_label = add_btn("Source", False) self.source_image = omni.ui.Image("", width=280, height=180) # Separator. add_separator(8) self.final_label = add_btn("Final", False) self.final_image = omni.ui.Image("", width=280, height=180) def onButtonClicked(self): if self.env is not None: self.env.is_start = True self.btn.enabled = False # index = np.random.random_integers(0,5) # folder = f"E:/workspace/visual_match/images/sc_{index}.png" # if index == 4: # folder = f"E:/workspace/visual_match/images/sc_rgb.png" # print( type(self.source_label.alignment) ) # self.source_image.source_url = folder def show_source_img(self): self.source_image.source_url = os.path.join(self.image_folder, "sc_rgb.png") def show_target_img(self): self.target_image.source_url = os.path.join(self.image_folder, "tg_rgb.png") def show_final_img(self): self.final_image.source_url = os.path.join(self.image_folder, "fin_rgb.png") # ------------------------------------------------. # Term window. # ------------------------------------------------. def term_window (self): if self._window != None: self._window = None # ------------------------------------------------. # Startup. # ------------------------------------------------. def on_startup(self, ext_id=0): self.init_window() # ------------------------------------------------. # Shutdown. # ------------------------------------------------. def on_shutdown(self): self.term_window()
3,385
Python
33.55102
84
0.49099
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/robot/test.py
from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) # 28.53s: False # 27.53s: True import omni from omni.isaac.core import World import numpy as np import os from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.utils.prims import create_prim from pxr import Gf, UsdPhysics from pxr import UsdPhysics, PhysxSchema, UsdGeom, Gf, UsdLux, Usd, Sdf from omni.isaac.core.robots import Robot from omni.isaac.manipulators.grippers import ParallelGripper from omni.isaac.surface_gripper._surface_gripper import Surface_Gripper_Properties, Surface_Gripper from omni.isaac.dynamic_control import _dynamic_control from robot.tools.omni_tools import * # from tools.ycb import get_random_name from tools.graspnet import get_random_name import time from omni.isaac.core.utils.prims import is_prim_path_valid start = time.time() my_world = World(stage_units_in_meters=1.0, physics_prim_path="/World/physicsScene") my_world.scene.add_default_ground_plane() def test_gripper(): stage = omni.usd.get_context().get_stage() prim_path = "/World/defaultGroundPlane/tmp" tmp = stage.DefinePrim( prim_path, "Xform") set_translate(tmp, [0, 0.5, 0]) prim_path = "/World/defaultGroundPlane/tmp/a" tmp = stage.DefinePrim( prim_path, "Xform") set_translate(tmp, [0, 0, 0]) add_box(stage, prim_path + "/vc", [0.04, 0.04, 0.04], [0, 0, 0.08], [1,0,0,0], [1,1,0], True, True ) add_box(stage, prim_path + "/obj", [0.04, 0.04, 0.04], [0.0, 0, 0.02], [1,0,0,0], [1,0,0], True, True ) # Gripper properties sgp = Surface_Gripper_Properties() sgp.d6JointPath = prim_path + "/vc/APP" sgp.parentPath = prim_path + "/vc" sgp.offset = _dynamic_control.Transform() # sgp.offset.p.x = 0 sgp.offset.p.z = -0.0201 sgp.offset.r = [0.7071, 0, 0.7071, 0] # Rotate to point gripper in Z direction sgp.gripThreshold = 0.02 sgp.forceLimit = 1.0e2 sgp.torqueLimit = 1.0e3 sgp.bendAngle = np.pi / 4 sgp.stiffness = 1.0e4 sgp.damping = 1.0e3 dc = _dynamic_control.acquire_dynamic_control_interface() print(dc) gripper = Surface_Gripper(dc) gripper.initialize(sgp) return gripper from omni.isaac.dynamic_control import _dynamic_control from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.core.controllers import BaseController import numpy as np class CoolController(BaseController): def __init__(self): super().__init__(name="my_cool_controller") # An open loop controller that uses a unicycle model return def forward(self, command): # A controller has to return an ArticulationAction return ArticulationAction(joint_positions=command) def set_drive_parameters(drive, target_type, target_value, stiffness=None, damping=None, max_force=None): """Enable velocity drive for a given joint""" if target_type == "position": if not drive.GetTargetPositionAttr(): drive.CreateTargetPositionAttr(target_value) else: drive.GetTargetPositionAttr().Set(target_value) elif target_type == "velocity": if not drive.GetTargetVelocityAttr(): drive.CreateTargetVelocityAttr(target_value) else: drive.GetTargetVelocityAttr().Set(target_value) if stiffness is not None: if not drive.GetStiffnessAttr(): drive.CreateStiffnessAttr(stiffness) else: drive.GetStiffnessAttr().Set(stiffness) if damping is not None: if not drive.GetDampingAttr(): drive.CreateDampingAttr(damping) else: drive.GetDampingAttr().Set(damping) if max_force is not None: if not drive.GetMaxForceAttr(): drive.CreateMaxForceAttr(max_force) else: drive.GetMaxForceAttr().Set(max_force) class DataGenerate(object): def __init__(self, world, ycb_folder="E:/dataset/ycb", save_folder="E:/dataset/tap/train", object_num=10, sample_range=[0,6], start_num=0) -> None: self.world = world self.save_folder = save_folder self.ycb_folder = ycb_folder self.object_num = object_num self.sample_range = sample_range self.all_prims = [] self.all_paths = [] self.names = [] self.state_num = start_num # def set_controller(self): # dc = _dynamic_control.acquire_dynamic_control_interface() # articulation = dc.get_articulation(path) # # Call this each frame of simulation step if the state of the articulation is changing. # self.dc = dc # self.articulation = articulation # self.articulation = self.robot.get_articulation_controller() def config(self): stage = omni.usd.get_context().get_stage() PhysxSchema.PhysxArticulationAPI.Get(stage, "/World/pusher").CreateSolverPositionIterationCountAttr(64) PhysxSchema.PhysxArticulationAPI.Get(stage, "/World/pusher").CreateSolverVelocityIterationCountAttr(64) self.gripper_left = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath( f"/World/pusher/center/c_left"), "linear") self.gripper_right = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath( f"/World/pusher/center/c_right"), "linear") self.gripper_top = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath( f"/World/pusher/center/c_top"), "linear") self.gripper_down = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath( f"/World/pusher/center/c_down"), "linear") def init_pusher(self): set_drive_parameters(self.gripper_left, "position", 0 ) set_drive_parameters(self.gripper_right, "position", 0 ) set_drive_parameters(self.gripper_top, "position", 0 ) set_drive_parameters(self.gripper_down, "position", 0 ) def close(self): pos = self.gripper_left.GetTargetPositionAttr().Get() step = 0.001 pos = pos-step min_value = -0.05 if pos < min_value: pos = min_value set_drive_parameters(self.gripper_left, "position", pos ) set_drive_parameters(self.gripper_right, "position", pos ) set_drive_parameters(self.gripper_top, "position", pos ) set_drive_parameters(self.gripper_down, "position", pos ) def open(self): pos = self.gripper_left.GetTargetPositionAttr().Get() step = 0.001 pos = pos + step if pos > 0.3: pos = 0.3 set_drive_parameters(self.gripper_left, "position", pos ) set_drive_parameters(self.gripper_right, "position", pos ) set_drive_parameters(self.gripper_top, "position", pos ) set_drive_parameters(self.gripper_down, "position", pos ) def add_model(self, obj_name, position=[0,0,0], orientation=[1, 0, 0, 0], scale=[1,1,1]): YCB_DIRECTORY = "E:/dataset/ycb" if 'ycb' in self.ycb_folder: usd_path = f'{self.ycb_folder}/{obj_name}/google_16k/text.usd' else: usd_path = f'{self.ycb_folder}/{obj_name}/omni/simple.usd' prim_path = f"/World/obj_{obj_name}" prim = load_obj_usd(usd_path, prim_path, position, orientation, scale, set_rigid=True, kinematic=False) return prim def generate_ycb(self): remove(self.all_paths) w_range = 0.3 o_range = 0.25 container_weight = 0.05 support_translate = np.array([0,0,0]) stage = omni.usd.get_context().get_stage() height = w_range * 4 half_height = height/2 pusher_path = "/World/pusher" if not is_prim_path_valid(pusher_path): # w1 = create_pusher( stage, "/World/W1", pos=support_translate + [ w_range/2 + container_weight*2, 0, half_height ], size=[ container_weight, w_range * 1, height] , axis='X') # w2 = create_pusher( stage, "/World/W2", pos=support_translate - [ w_range/2 + container_weight*2, 0, -(half_height) ], size=[ container_weight, w_range * 1, height] , axis='X') # w3 = create_pusher( stage, "/World/W3", pos=support_translate + [ 0, w_range/2 + container_weight*2, half_height ], size=[w_range * 1, container_weight, height] , axis='Y') # w4 = create_pusher( stage, "/World/W4", pos=support_translate - [ 0, w_range/2 + container_weight*2, -(half_height) ], size=[w_range * 1, container_weight, height], axis='Y' ) # self.articulation = CoolController() pusher = load_obj_usd("./assets/pusher/pusher/pusher.usd", pusher_path, scale=(1, 1, 1), translate=[0, 0, w_range]) # self.robot = self.world.scene.add(Robot(prim_path=pusher_path, name='pusher')) self.config() # self.walls = [w1,w2,w3,w4] # add_box( stage, "/World/W1", position=support_translate + [ w_range/2 + container_weight*2, 0, half_height ], orientation=[1,0,0,0], size=[ container_weight, w_range*2, height], color=[0,0.1,0.7] ) # add_box( stage, "/World/W2", position=support_translate - [ w_range/2 + container_weight*2, 0, -(half_height) ], orientation=[1,0,0,0], size=[ container_weight, w_range*2, height], color=[0,0.1,0.7] ) # add_box( stage, "/World/W3", position=support_translate + [ 0, w_range/2 + container_weight*2, half_height ], orientation=[1,0,0,0], size=[w_range*2, container_weight, height], color=[0,0.1,0.7] ) # add_box( stage, "/World/W4", position=support_translate - [ 0, w_range/2 + container_weight*2, -(half_height) ], orientation=[1,0,0,0], size=[w_range*2, container_weight, height], color=[0,0.1,0.7] ) names = get_random_name( self.sample_range, self.object_num) all_paths = [] all_prims = [] for i, name in enumerate(names): rand_pos = (np.random.rand(3) - 0.5) * o_range rand_pos[2] = 0.2 * i + 0.25 prim = self.add_model(name, rand_pos + support_translate) all_prims.append(prim) all_paths.append(prim.GetPrimPath()) self.all_prims = all_prims self.all_paths = all_paths self.names = names def load_ycb(self, data_index, offset=[0,0,0]): data_path = os.path.join(self.save_folder, "%d.npy" % data_index) data = np.load(data_path, allow_pickle=True).item() names = data['name'] mats = data['mat'] remove(self.all_paths) all_paths = [] all_prims = [] for i, name in enumerate(names): mat = mats[i] mat[:3,3] += offset prim = self.add_model(name) set_transform(prim, mat) all_prims.append(prim) all_paths.append(prim.GetPrimPath()) self.all_prims = all_prims self.all_paths = all_paths self.names = names def remove_walls(self): remove(["/World/W1", "/World/W2", "/World/W3", "/World/W4"]) def record_state(self): if not os.path.exists(self.save_folder): os.makedirs(self.save_folder, exist_ok=True) save_path = os.path.join(self.save_folder, "%s" % (self.state_num)) state = {} state['mat'] = [] state['name'] = self.names for i, prim in enumerate(self.all_prims): mat = get_transform(prim) state['mat'].append(mat) np.save( save_path, state) self.state_num += 1 train_num = 2 # data = DataGenerate("E:/dataset/ycb", "E:/dataset/tap/train/") data = DataGenerate( my_world, "E:/dataset/grasp_net/models", "E:/dataset/tap/train", start_num=5) my_world.reset() is_load = False i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() if not is_load: if train_num > 0: i += 1 if i == 1: data.generate_ycb() data.init_pusher() # my_world.pause() elif i < 200: continue elif i < 500: data.close() elif i < 700: data.open() elif i < 1000: data.close() elif i < 1200: data.open() elif i == 1200: print(train_num, ' ====') # data.record_state() # elif i == 2000: i = 0 train_num -= 1 else: data.load_ycb(0, [0, 0, 0]) print(time.time() - start, " s ---------------") simulation_app.close()
12,713
Python
36.952239
214
0.599544
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/robot/tools/pv_tools.py
import pyvista as pv from matplotlib.cm import get_cmap import numpy as np def bbox(mesh:pv.PolyData): min_x, max_x, min_y, max_y, min_z, max_z = mesh.bounds w = max_x - min_x l = max_y - min_y h = max_z - min_z size = np.array([w,l,h]) return size def get_pc(points): pc = pv.PolyData(points) pc['pos'] = points return pc def get_axis(mat=np.eye(4)): axes = get_pc(np.zeros((3,3)) + mat[:3,3]) axes['norm'] = mat[:3,:3] axes_arrows = axes.glyph( orient='norm', scale=False, factor=0.08, ) return axes_arrows def get_color(value): cmap = get_cmap("nipy_spectral") colors = ( np.array(cmap(value))[:3] * 255.0).astype(np.uint8) return colors def show_mesh(meshes, colors=None): plotter = pv.Plotter() plotter.add_axes() main_axes = get_axis() for i, m in enumerate(meshes): if colors is not None: c = colors[i] else: c = get_color( np.random.rand() ) # plotter.add_mesh(m, scalars='pos') plotter.add_mesh(m, color=c) plotter.add_mesh(main_axes, color='red') plotter.show()
1,174
Python
22.039215
66
0.561329
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/robot/tools/usd_convert.py
# --------------------------------------------------. # obj to usd conversion. # See : https://docs.omniverse.nvidia.com/app_create/prod_extensions/ext_asset-converter.html # >>> https://github.com/ft-lab/omniverse_sample_scripts/blob/main/AssetConverter/importObjToUSD.py # !!! run in script windows in isaac sim # --------------------------------------------------. import carb import omni import asyncio # import omni.kit.asset_converter import os # Progress of processing. def progress_callback (current_step: int, total: int): # Show progress print(f"{current_step} of {total}") # Convert asset file(obj/fbx/glTF, etc) to usd.async async def convert_asset_to_usd (input_asset: str, output_usd: str): print("here") # Input options are defaults. converter_context = omni.kit.asset_converter.AssetConverterContext() converter_context.ignore_materials = False converter_context.ignore_camera = True converter_context.ignore_animations = True converter_context.ignore_light = True converter_context.export_preview_surface = False converter_context.use_meter_as_world_unit = False converter_context.create_world_as_default_root_prim = True converter_context.embed_textures = True converter_context.convert_fbx_to_y_up = False converter_context.convert_fbx_to_z_up = False converter_context.merge_all_meshes = False converter_context.use_double_precision_to_usd_transform_op = False converter_context.ignore_pivots = False converter_context.keep_all_materials = True converter_context.smooth_normals = True instance = omni.kit.asset_converter.get_instance() task = instance.create_converter_task(input_asset, output_usd, progress_callback, converter_context) # Wait for completion. success = await task.wait_until_finished() if not success: print(input_asset) carb.log_error(task.get_status(), task.get_detailed_error()) print("converting done") def ycb(): YCB_DIRECTORY = "E:/dataset/ycb" # usd_path = f'{YCB_DIRECTORY}/{obj_name}/google_16k/ for model_folder in os.listdir(YCB_DIRECTORY): #for model_folder in ["007_tuna_fish_can"]: mf = os.path.join(YCB_DIRECTORY, model_folder, "google_16k") tf = os.path.join(YCB_DIRECTORY, model_folder, "google_16k", "textures") if os.path.exists(mf) and not os.path.exists(tf): print(model_folder) input_obj = os.path.join(mf, "textured.obj") output_usd = os.path.join(mf, "text.usd") # convert_asset_to_usd(input_obj, output_usd) asyncio.ensure_future( convert_asset_to_usd(input_obj, output_usd)) GN_DIRECTORY = "E:/dataset/grasp_net/models" for model_folder in os.listdir(GN_DIRECTORY): #for model_folder in ["022"]: mf = os.path.join(GN_DIRECTORY, model_folder) if not os.path.isdir(mf): continue tf = os.path.join(mf, "omni", "textures") if os.path.exists(mf) and not os.path.exists(tf): print(model_folder) input_obj = os.path.join(mf, "simple.dae") output_usd = os.path.join(mf, "omni", "simple.usd") # convert_asset_to_usd(input_obj, output_usd) asyncio.ensure_future( convert_asset_to_usd(input_obj, output_usd))
3,310
Python
37.5
104
0.655287
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/robot/tools/graspnet.py
import os import numpy as np import os GN_DIRECTORY = "E:/dataset/grasp_net/models" def get_random_name(sample_range=[0, 13], sample_num=10): valid_list = np.load("./data/valid_grasp.npy") invalid_list = [] for v in valid_list: if v == 0: invalid_list.append(v) invalid_list.append(5) # banana ids = [i for i in range(sample_range[0], sample_range[1]) if i not in invalid_list] sample_ids = np.random.choice(ids, sample_num) ret = [] for sid in sample_ids: ret.append("%03d" % sid) return ret def convert(): import pybullet as p import os for index in range(0, 88): # for index in [82]: obj_name = "%03d" % index name_in = os.path.join(GN_DIRECTORY, obj_name, "textured.obj") name_out = os.path.join(GN_DIRECTORY, obj_name, "vhacd.obj") name_log = os.path.join("./log") p.vhacd( name_in, name_out, name_log, resolution=500000, depth=5) def volume(): all = [] import pyvista as pv for index in range(0, 88): # for index in [82]: obj_name = "%03d" % index name_in = os.path.join(GN_DIRECTORY, obj_name, "textured.obj") mesh = pv.read(name_in) data = pv.MultiBlock([mesh]) volume = data.volume all.append(volume) print(index, volume) np.save("./data/volume", all) if __name__ == '__main__': volume()
1,430
Python
24.553571
87
0.572727
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/robot/tools/ycb.py
import os import numpy as np YCB_DIRECTORY = "E:/dataset/ycb" ycb_list = [ "002_master_chef_can", "003_cracker_box", "004_sugar_box", "005_tomato_soup_can", "006_mustard_bottle", "007_tuna_fish_can", "008_pudding_box", "009_gelatin_box", "010_potted_meat_can", "011_banana", "013_apple", "014_lemon", "015_peach", "016_pear", "017_orange", "018_plum", "019_pitcher_base", "021_bleach_cleanser", "024_bowl", "025_mug", "036_wood_block", "046_plastic_bolt", "052_extra_large_clamp", "053_mini_soccer_ball", "054_softball", "055_baseball", "056_tennis_ball", "057_racquetball", "058_golf_ball", "065-a_cups", "065-b_cups", "065-c_cups", "065-d_cups", "077_rubiks_cube" ] def get_random_name(sample_range=[0,6], sample_num=10): ids = [i for i in range(sample_range[0], sample_range[1])] sample_ids = np.random.choice(ids, sample_num) ret = [] for sid in sample_ids: ret.append(ycb_list[sid]) return ret def convert(): import pybullet as p import os for obj_name in ycb_list: name_in = os.path.join(YCB_DIRECTORY, obj_name, "google_16k", "textured.obj") name_out = os.path.join(YCB_DIRECTORY, obj_name, "google_16k", "vhacd.obj") name_log = os.path.join("./log") p.vhacd( name_in, name_out, name_log, resolution=500000, depth=1) if __name__ == "__main__": convert()
1,481
Python
21.8
85
0.577988
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/robot/tools/omni_tools.py
import omni from pxr import UsdPhysics, UsdGeom, Gf, Sdf, Usd from omni.isaac.core.utils.string import find_unique_string_name from omni.isaac.core.utils.prims import is_prim_path_valid from omni.isaac.core.objects.cuboid import VisualCuboid from omni.physx.scripts import utils from scipy.spatial.transform import Rotation import carb import carb.events # from omni.debugdraw import _debugDraw import math import numpy as np def set_drive_parameters(drive, target_type, target_value, stiffness=None, damping=None, max_force=None): """Enable velocity drive for a given joint""" if target_type == "position": if not drive.GetTargetPositionAttr(): drive.CreateTargetPositionAttr(target_value) else: drive.GetTargetPositionAttr().Set(target_value) elif target_type == "velocity": if not drive.GetTargetVelocityAttr(): drive.CreateTargetVelocityAttr(target_value) else: drive.GetTargetVelocityAttr().Set(target_value) if stiffness is not None: if not drive.GetStiffnessAttr(): drive.CreateStiffnessAttr(stiffness) else: drive.GetStiffnessAttr().Set(stiffness) if damping is not None: if not drive.GetDampingAttr(): drive.CreateDampingAttr(damping) else: drive.GetDampingAttr().Set(damping) if max_force is not None: if not drive.GetMaxForceAttr(): drive.CreateMaxForceAttr(max_force) else: drive.GetMaxForceAttr().Set(max_force) def clean_transform(prim): # prim.RemoveProperty("xformOp:translate") # prim.RemoveProperty("xformOp:orient") # prim.RemoveProperty("xformOp:scale") prim.GetAttribute("xformOpOrder").Set(['xformOp:translate', 'xformOp:rotateXYZ', 'xformOp:orient', 'xformOp:scale']) set_translate(prim, [0,0,0]) set_orientation(prim, [1,0,0,0]) set_scale(prim, [1,1,1]) def get_prim_path(prim): return prim.GetPrimPath() def get_attr(prim, op_name, data_type): xform_ops = prim.GetAttribute("xformOpOrder").Get() if xform_ops is None: xform = UsdGeom.Xformable(prim) prim.GetAttribute("xformOpOrder").Set([op_name]) attr = prim.GetAttribute(op_name).Get() if attr is None: prim.CreateAttribute(op_name, data_type, False) attr = prim.GetAttribute(op_name).Get() return attr def set_orientation(prim, orientation, use_quatd=True): orientation = np.array(orientation).astype("float") op_name = "xformOp:rotateXYZ" attr = get_attr(prim, op_name, Sdf.ValueTypeNames.Float3) op_name = "xformOp:orient" attr = get_attr(prim, op_name, Sdf.ValueTypeNames.Quatd) if attr is not None: if type(attr) == Gf.Quatd: orient = Gf.Quatd(orientation[0], orientation[1], orientation[2], orientation[3]) else: orient = Gf.Quatf(orientation[0], orientation[1], orientation[2], orientation[3]) prim.GetAttribute(op_name).Set( orient ) def set_rotation(prim, orientation): orientation = np.array(orientation).astype("float") op_name = "xformOp:rotateXYZ" attr = get_attr(prim, op_name, Sdf.ValueTypeNames.Float3) if attr is not None: if type(attr) == Gf.Vec3f: orient = Gf.Vec3f(orientation[0], orientation[1], orientation[2]) else: orient = Gf.Vec3d(orientation[0], orientation[1], orientation[2]) prim.GetAttribute(op_name).Set( orient ) def set_transform(prim, mat): # TODO translate = mat[:3,3] rot = mat[:3,:3] x,y,z,w=Rotation.from_matrix(rot).as_quat() set_translate(prim, translate) set_orientation(prim, [w,x,y,z]) # prim.CreateAttribute("xformOp:transform", Sdf.ValueTypeNames.Matrix4d, False).Set(Gf.Matrix4d(mat)) def set_translate(prim, translate): translate = np.array(translate).astype("float") op_name = "xformOp:translate" attr = get_attr(prim, op_name, Sdf.ValueTypeNames.Float3) if type(attr) == Gf.Vec3f: trans = Gf.Vec3f(translate[0], translate[1], translate[2]) else: trans = Gf.Vec3d(translate[0], translate[1], translate[2]) prim.GetAttribute(op_name).Set( trans ) def set_scale(prim, scale): scale = np.array(scale).astype("float") op_name = "xformOp:scale" attr = get_attr(prim, op_name, Sdf.ValueTypeNames.Float3) if type(attr) == Gf.Vec3f: s = Gf.Vec3f(scale[0], scale[1], scale[2]) else: s = Gf.Vec3d(scale[0], scale[1], scale[2]) prim.GetAttribute(op_name).Set(s) def get_orientation(prim): orient = prim.GetAttribute("xformOp:orient").Get() real = [orient.GetReal()] img = list(orient.GetImaginary()) return np.array(real + img) def get_transform(prim): translate = get_translate(prim) w,x,y,z = get_orientation(prim) ret = np.eye(4) mat = Rotation.from_quat([x,y,z,w]).as_matrix() ret[:3,3] = translate ret[:3,:3] = mat return ret def get_translate(prim): translate = prim.GetAttribute("xformOp:translate").Get() return np.array(translate) def get_scale(prim): return prim.GetAttribute("xformOp:scale").Get() def get_prim(prim_path): stage = omni.usd.get_context().get_stage() prim = stage.GetPrimAtPath(prim_path) return prim def get_unique_path(prim_path): prim_path = find_unique_string_name( initial_name=prim_path, is_unique_fn=lambda x: not is_prim_path_valid(x) ) return prim_path def get_unique_name(scene, name): ret = find_unique_string_name( initial_name=name, is_unique_fn=lambda x: not scene.object_exists(x) ) return ret def load_obj_usd(usd_path, prim_path, translate=[0,0,0], orientation=[1,0,0,0], scale=[1,1,1], set_rigid=False, kinematic=False, set_collision='convexDecomposition'): # set_collision / approximationShape: # "none", "convexHull", "convexDecomposition", "boundingCube", "boundingSphere", "meshSimplification" stage = omni.usd.get_context().get_stage() prim_path = get_unique_path(prim_path) prim = stage.GetPrimAtPath(usd_path) if not prim.IsValid(): prim = stage.DefinePrim( prim_path, "Xform") prim.GetReferences().AddReference(usd_path) if set_rigid: utils.setRigidBody(prim, set_collision, kinematic) elif set_collision is not None: utils.setStaticCollider(prim, set_collision) clean_transform(prim) set_translate(prim, translate) set_orientation(prim, orientation) set_scale(prim, scale) return prim def add_box(stage, primPath, size, position, orientation, color, collision=True, rigid=False): # defaultPrimPath = str(stage.GetDefaultPrim().GetPath()) cubePrimPath = primPath position = Gf.Vec3f( position[0], position[1], position[2]) orientation = Gf.Quatf(orientation[0], orientation[1], orientation[2], orientation[3]) color = Gf.Vec3f(color[0], color[1], color[2]) cubeGeom = UsdGeom.Cube.Define(stage, cubePrimPath) cubePrim = stage.GetPrimAtPath(cubePrimPath) cubeGeom.CreateSizeAttr(1) scale = Gf.Vec3f( list(size) ) cubeGeom.AddTranslateOp().Set(position) cubeGeom.AddOrientOp().Set(orientation) cubeGeom.AddScaleOp().Set(scale) cubeGeom.CreateDisplayColorAttr().Set([color]) if collision: UsdPhysics.CollisionAPI.Apply(cubePrim) UsdPhysics.MassAPI.Apply(cubePrim) if rigid: utils.setRigidBody(cubePrim, 'convexHull', False) return cubePrim def set_visible(prim, visible=True): if visible: prim.GetAttribute("visibility").Set("inherited") else: print prim.GetAttribute("visibility").Set("invisible") def remove(primPath): omni.kit.commands.execute("DeletePrims", paths=primPath) def set_view_reso(w=640, h=480): viewport = omni.kit.viewport_legacy.get_viewport_interface() # acquire the viewport window viewport_handle = viewport.get_instance("Viewport") viewport_window = viewport.get_viewport_window(viewport_handle) # Set viewport resolution, changes will occur on next frame viewport_window.set_texture_resolution(w, h) def vec_to_mat(fromVector, toVector): # https://blog.csdn.net/doubtfire/article/details/122100943 fromVector = np.array(fromVector) fromVector_e = fromVector / np.linalg.norm(fromVector) toVector = np.array(toVector) toVector_e = toVector / np.linalg.norm(toVector) cross = np.cross(fromVector_e, toVector_e) cross_e = cross / np.linalg.norm(cross) dot = np.dot(fromVector_e, toVector_e) angle = math.acos(dot) if angle == 0 or angle == math.pi: print("两个向量处于一条直线") return [1, 0,0,0] else: quat = [math.cos(angle/2), cross_e[0]*math.sin(angle/2), cross_e[1]*math.sin(angle/2), cross_e[2]*math.sin(angle/2)] # return Rotation.from_quat(quat).as_matrix() return quat def vec_to_matrix( from_v, to_v ): from_v = np.array(from_v) fromVector_e = from_v / np.linalg.norm(from_v) to_v = np.array(to_v) toVector_e = to_v / np.linalg.norm(to_v) cross = np.cross(fromVector_e, toVector_e) vec = cross / np.linalg.norm(cross) dot = np.dot(fromVector_e, toVector_e) theta = np.math.acos(dot) rot = np.zeros((3,3)) x, y, z = vec xx = x**2 yy = y**2 zz = z**2 xy = x*y xz = x*z yz = z*y cost = np.math.cos(theta) sint = np.math.sin(theta) rot[0,0] = xx*(1-cost) + cost rot[0,1] = xy*(1-cost) + z*sint rot[0,2] = xz*(1-cost) - y*sint rot[1,0] = xy*(1-cost) - z*sint rot[1,1] = yy*(1-cost) + cost rot[1,2] = yz*(1-cost) + x*sint rot[2,0] = xz*(1-cost) + y*sint rot[2,1] = yz*(1-cost) - x*sint rot[2,2] = zz*(1-cost) + cost return rot def add_arrow(stage, primPath, start_pos=None, end_pos=None, mat=None, arrow_len=None, radius=0.01, color=[1,0,0]): line_path = primPath + '_line' arrow_path = primPath + '_arrrow' if mat is None: start_pos = np.array(start_pos) end_pos = np.array(end_pos) direct = end_pos - start_pos arrow_len = np.linalg.norm(direct) else: start_pos = mat[:3,3] direct = mat[:3,:3] @ np.array([0,0,1]) end_pos = start_pos + direct * arrow_len orientation = vec_to_mat([0,0,1], direct / arrow_len) position = start_pos + direct / 2 end_pos += direct / arrow_len * radius end_position = Gf.Vec3f( end_pos[0], end_pos[1], end_pos[2] ) position = Gf.Vec3f( position[0], position[1], position[2]) orientation = Gf.Quatf(orientation[0], orientation[1], orientation[2], orientation[3]) color = Gf.Vec3f(color[0], color[1], color[2]) line_geom = UsdGeom.Cylinder.Define(stage, line_path) cone_geom = UsdGeom.Cone.Define(stage, arrow_path) # line_geom.GetExtentAttr('radius').Set( radius * 1.5 ) # line_geom.GetExtentAttr('height').Set( radius * 3 ) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path( line_path + '.radius'), value=radius, prev=1) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path( line_path + '.height'), value=arrow_len, prev=1) line_geom.AddTranslateOp().Set(position) line_geom.AddOrientOp().Set(orientation) line_geom.CreateDisplayColorAttr().Set([color]) line_geom.AddScaleOp().Set(Gf.Vec3f(1.,1.,1.)) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path( arrow_path + '.radius'), value=radius * 1.5, prev=2) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path( arrow_path + '.height'), value=radius * 3, prev=2) cone_geom.AddTranslateOp().Set(end_position) cone_geom.AddOrientOp().Set(orientation) cone_geom.AddScaleOp().Set(Gf.Vec3f(1.,1.,1.)) cone_geom.CreateDisplayColorAttr().Set([color]) line_prim = stage.GetPrimAtPath(line_path) return line_prim def drawArrow (p1, p2, color=0xffffc000): # https://github.com/ft-lab/omniverse_sample_scripts/blob/7f4406520da9abcb93c5ffa73bdcff8a2dfad7e5/UI/DebugDraw/UseDebugDraw.py _debugDraw = _debugDraw.acquire_debug_draw_interface() _debugDraw.draw_line(carb.Float3(p1[0], p1[1], p1[2]), color, carb.Float3(p2[0], p2[1], p2[2]), color) P1 = Gf.Vec3f(p1[0], p1[1], p1[2]) P2 = Gf.Vec3f(p2[0], p2[1], p2[2]) vDir = P2 - P1 lenV = vDir.GetLength() vDir /= lenV v1_2 = Gf.Vec4f(vDir[0], vDir[1], vDir[2], 1.0) v2_2 = Gf.Vec4f(0, 1, 0, 1.0) v3_2 = Gf.HomogeneousCross(v1_2, v2_2) vDirX = Gf.Vec3f(v3_2[0], v3_2[1], v3_2[2]).GetNormalized() vD1 = (vDir + vDirX).GetNormalized() * (lenV * 0.1) vD2 = (vDir - vDirX).GetNormalized() * (lenV * 0.1) pp = P1 + vD1 _debugDraw.draw_line(carb.Float3(pp[0], pp[1], pp[2]), color, carb.Float3(P1[0], P1[1], P1[2]), color) pp = P1 + vD2 _debugDraw.draw_line(carb.Float3(pp[0], pp[1], pp[2]), color, carb.Float3(P1[0], P1[1], P1[2]), color) pp = P2 - vD1 _debugDraw.draw_line(carb.Float3(pp[0], pp[1], pp[2]), color, carb.Float3(P2[0], P2[1], P2[2]), color) pp = P2 - vD2 _debugDraw.draw_line(carb.Float3(pp[0], pp[1], pp[2]), color, carb.Float3(P2[0], P2[1], P2[2]), color)
13,288
Python
31.333333
166
0.642083
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/robot/tools/omni_env.py
import os """ change the omniverse_path to your own, then open a terminal: mkdir .vscode & python omni_env.py > .vscode/settings.json """ omniverse_path = "C:/omniverse/pkg/isaac_sim-2022.1.1" python_path = os.path.join( omniverse_path, "kit/python/python.exe" ).replace("\\", "/" ) def log_import_path(path, ret=""): folders = os.listdir(path) for f in folders: ret += " \"" + os.path.join(path, f).replace("\\", "/" ) + "\",\n" return ret # add omni path path = os.path.join( omniverse_path, "kit/extscore") ret = log_import_path(path) path = os.path.join( omniverse_path, "exts") ret = log_import_path(path, ret) path = os.path.join( omniverse_path, "kit/extsphysics") ret = log_import_path(path, ret) ret += " \"" + os.path.join( omniverse_path, "kit/extsphysics/omni.usd.schema.physx/pxr").replace("\\", "/" ) + "\",\n" ret += " \"" + os.path.join( omniverse_path, "kit/plugins/bindings-python").replace("\\", "/" ) + "\",\n" # add pip-module path, like numpy ret += " \"" + os.path.join( omniverse_path, "kit/extscore/omni.kit.pip_archive/pip_prebundle").replace("\\", "/" ) + "\"" # set json str final_ret = ''' { "python.defaultInterpreterPath": "%s", "python.autoComplete.extraPaths": [ %s ], "python.analysis.extraPaths": [ %s ] } ''' % ( python_path, ret, ret, ) print(final_ret)
1,387
Python
24.236363
129
0.599135
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/robot/scene/camera.py
import omni import math import omni.kit.commands from pxr import Sdf, Gf import omni.replicator.core as rep import numpy as np from robot.tools.omni_tools import * class Camera(object): def __init__(self, stage, prim_path, translate, orientation, focal_length=18.14, focus_distance=400, resolution=(640, 480)) -> None: self.prim_path = prim_path self.stage = stage self.resolution = resolution self.camera = self.add_camera(stage, prim_path, translate, orientation, focal_length, focus_distance) self.render_product = rep.create.render_product(prim_path, resolution=resolution) self.rgb_anno = rep.AnnotatorRegistry.get_annotator("rgb") self.dep_anno = rep.AnnotatorRegistry.get_annotator("distance_to_image_plane") self.rgb_anno.attach([self.render_product]) self.dep_anno.attach([self.render_product]) def add_camera(self, stage, prim_path, translate, orientation, focal_length, focus_distance): cameraGeom = UsdGeom.Camera.Define(stage, prim_path) cam = get_prim(prim_path) cam.GetAttribute('focalLength').Set(focal_length) cam.GetAttribute('focusDistance').Set(focus_distance) cam.GetAttribute('fStop').Set(0.0) cam.GetAttribute('projection').Set('perspective') cam.GetAttribute('clippingRange').Set(Gf.Vec2f(0.01, 10000)) if len(orientation) == 4: w,x,y,z = orientation orientation = list(Rotation.from_quat([x,y,z,w]).as_euler('XYZ')) orientation = [ np.rad2deg(ang) for ang in orientation ] rotation = Rotation.from_euler('XYZ', [ np.deg2rad(ang) for ang in orientation ]).as_matrix() # Set position. UsdGeom.XformCommonAPI(cameraGeom).SetTranslate(list(translate)) # Set rotation. UsdGeom.XformCommonAPI(cameraGeom).SetRotate(list(orientation), UsdGeom.XformCommonAPI.RotationOrderXYZ) # Set scale. UsdGeom.XformCommonAPI(cameraGeom).SetScale((1, 1, 1)) # omni.kit.commands.execute('ChangeProperty', # prop_path=Sdf.Path(f'{prim_path}.xformOp:rotateXYZ'), # value=Gf.Vec3d(orientation), # prev=Gf.Vec3d(0,0,0)) width, height = self.resolution horiz_aperture = cam.GetAttribute("horizontalAperture").Get() # https://forums.developer.nvidia.com/t/creating-a-custom-camera-on-isaac-sim-app/187375/2 # https://forums.developer.nvidia.com/t/camera-intrinsic-matrix/213799 horizontal_fov = 2 * math.atan(horiz_aperture / (2 * focal_length)) vertical_fov = (height / width * horizontal_fov) focal_x = (width / 2.0) / np.tan(horizontal_fov / 2.0) focal_y = (height / 2.0) / np.tan(vertical_fov / 2.0) center_x = width * 0.5 center_y = height * 0.5 self.intrinsic = np.array([ [focal_x, 0, center_x], [0, focal_y, center_y], [0, 0, 1]]) self.extrinsic = np.eye(4) self.extrinsic[:3,:3] = rotation self.extrinsic[:3,3] = translate return cam def take_rgb(self): rgb_data = self.rgb_anno.get_data() rgb_image_data = np.frombuffer(rgb_data, dtype=np.uint8).reshape(*rgb_data.shape) return rgb_image_data def take_dep(self): data = self.dep_anno.get_data() # Get size. hei, wid = data.shape[:2] # Store data (buff[hei][wid]). buff = np.frombuffer(data, np.float32).reshape(hei, wid) buff[buff == buff.max()] = 0 return buff def cam_to_world(self, points): rot = self.extrinsic[:3,:3] pos = self.extrinsic[:3, 3] points = (rot @ points.transpose()).transpose() + pos return points def get_camera(self): # viewport = omni.kit.viewport_legacy.get_viewport_interface() # viewportWindow = viewport.get_viewport_window() # cameraPath = viewportWindow.get_active_camera() # Get stage. # stage = omni.usd.get_context().get_stage() #time_code = omni.timeline.get_timeline_interface().get_current_time() * stage.GetTimeCodesPerSecond() time_code = Usd.TimeCode.Default() # Get active camera. cameraPrim = self.stage.GetPrimAtPath(self.prim_path) if cameraPrim.IsValid(): camera = UsdGeom.Camera(cameraPrim) # UsdGeom.Camera cameraV = camera.GetCamera(time_code) # Gf.Camera print("Aspect : " + str(cameraV.aspectRatio)) print("fov(H) : " + str(cameraV.GetFieldOfView(Gf.Camera.FOVHorizontal))) print("fov(V) : " + str(cameraV.GetFieldOfView(Gf.Camera.FOVVertical))) print("FocalLength : " + str(cameraV.focalLength)) print("World to camera matrix : " + str(cameraV.transform)) viewMatrix = cameraV.frustum.ComputeViewMatrix() print("View matrix : " + str(viewMatrix)) viewInv = viewMatrix.GetInverse() # Camera position(World). cameraPos = viewInv.Transform(Gf.Vec3f(0, 0, 0)) print("Camera position(World) : " + str(cameraPos)) # Camera vector(World). cameraVector = viewInv.TransformDir(Gf.Vec3f(0, 0, -1)) print("Camera vector(World) : " + str(cameraVector)) projectionMatrix = cameraV.frustum.ComputeProjectionMatrix() print("Projection matrix : " + str(projectionMatrix)) #cv = CameraUtil.ScreenWindowParameters(cameraV) #print(cv.screenWindow) print(self.intrinsic) print(self.extrinsic)
5,774
Python
38.827586
136
0.602875
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/robot/scene/scene.py
import omni from robot.scene.camera import Camera from robot.scene.robot import UR5 import numpy as np import os from robot.tools.omni_tools import * YCB_DIRECTORY = "E:/dataset/ycb" # GN_DIRECTORY = "E:/dataset/grasp_net/models" ASSETS_DIR = "E:/workspace/visual_match/robot/assets" class Scene(object): def __init__(self, world, robot_height=0.2, offset=[0,0,0]): self.task_prim_path = '/World/Scene' self.world = world self.stage = omni.usd.get_context().get_stage() self.offset = np.array(offset).astype("float") self.robot_height = robot_height self.all_prims = [] self.all_paths = [] self.names = [] # support size self.support_translate = np.array([0.6, 0, -self.robot_height/2]) self.support_size = np.array([0.7, 0.7, 1]) def init_scene(self): self.scene_prim = self.stage.DefinePrim( self.task_prim_path, "Xform") clean_transform(self.scene_prim) self.add_robot() self.add_support() self.add_camera() self.obj_prim_path = f"{self.robot.prim_path}/OBJ" self.obs_prim_path = f"{self.robot.prim_path}/OBS" def add_robot(self): self.robot = UR5( ASSETS_DIR, self.world, self.task_prim_path, position=[0, 0, self.robot_height], offset=self.offset) self.base_position = self.robot.position base_pos = self.base_position - [0,0, self.robot_height/2.0] add_box(self.stage, self.task_prim_path + "/ur5_base", [0.2, 0.2, self.robot_height], base_pos, [1,0,0,0], [0.8,0.8,0.8]) self.obs_prim = self.stage.DefinePrim( self.robot.prim_path + "/OBS", "Xform") self.robot.to_init_state() def set_obs_visible(self, visible=True): set_visible(self.obs_prim, visible) def add_model(self, obj_name, position=[0,0,0], orientation=[1, 0, 0, 0], scale=[1,1,1], use_convert=False): if use_convert: usd_path = f'{YCB_DIRECTORY}/{obj_name}/google_16k/_converted/text.usd' else: usd_path = f'{YCB_DIRECTORY}/{obj_name}/google_16k/text.usd' prim_path = f"{self.robot.prim_path}/OBJ/obj_{obj_name}" prim = load_obj_usd(usd_path, prim_path, position, orientation, scale, set_rigid=True, kinematic=False) prim_path = get_prim_path(prim) self.all_prims.append(prim) self.all_paths.append(prim_path) self.names.append(obj_name[4:].replace('_', ' ')) return prim def load_objects(self): center = self.support_translate + [0, 0, 0.2] # self.add_model('026_sponge', position= center+[-0.1, -0.15, 0.05], orientation=[1,0,0,0] ) self.add_model('008_pudding_box', position= center+[0.1, -0.2, 0.1] ) self.add_model('011_banana', position= center+[0, -0.1, 0.1] ) self.add_model('013_apple', position= center+[-0.1, 0, 0.1] ) self.add_model('014_lemon', position= center+[-0.22, 0.0, 0.1] ) def load_objects_2(self): center = self.support_translate + [0, 0, 0.2] # self.add_model('026_sponge', position= center+[0.07, -0.15, 0.05], orientation=[1,0,0,0] ) self.add_model('008_pudding_box', position= center+[0.15, 0.16, 0.05], orientation=[0.62,0,0,0.78], use_convert=True ) self.add_model('011_banana', position= center+[-0.16, 0.2, 0.05], orientation=[0.89,0,0,-0.438], use_convert=True ) self.add_model('013_apple', position= center+[-0.15, 0.1, 0.05], use_convert=True ) self.add_model('014_lemon', position= center+[-0.05, 0.13, 0.05], orientation=[-0.597, 0, 0, 0.797], use_convert=True ) def add_support(self): # object support init_support_size = np.array([1, 1, self.robot_height]) load_obj_usd( os.path.join( ASSETS_DIR, "support", "support_flat.usd"), \ self.robot.prim_path + "/BASE/support", self.support_translate, scale=self.support_size, set_rigid=False, kinematic=False, set_collision="none") collision_cube = get_prim(self.robot.prim_path + "/BASE/support/geo/geo") collision_cube.GetAttribute("physics:approximation").Set("none") self.add_obstacle("SUP", self.support_translate, scale=init_support_size * self.support_size ) def add_obstacle(self, name, translate, orientation=[1,0,0,0], scale=[0.1,0.1,0.1]): obs_prim_path = self.robot.prim_path + "/OBS/" + name obs = omni.isaac.core.objects.cuboid.VisualCuboid( obs_prim_path, translation=translate, orientation=orientation, color=np.array([0, 1.,0]), size=1) set_scale( get_prim(obs_prim_path), scale) self.robot.add_obstacle(obs) def add_camera(self): container_translate = self.support_translate + [0, 0, 0.6] self.cam_observe = Camera(self.stage, self.robot.prim_path + '/CAM/camera_observe', [1.14, 0.95, 1.69], [ 37, 0, 140], resolution=(1500, 900) ) self.cam = Camera(self.stage, self.robot.prim_path + '/CAM/camera', container_translate, [0,0, 90], focal_length=12 ) def take_images(self, types=['rgb', 'dep']): ret = [] if 'rgb' in types: ret.append( self.cam.take_rgb() ) if 'dep' in types: ret.append( self.cam.take_dep() ) return ret def update_state(self): self.robot.update_state() def reset(self): remove(self.all_paths) self.all_prims = [] self.all_paths = [] self.names = [] # self.load_objects() # scene_id = np.random.choice(self.scene_list) # self.load_scene_objs(scene_id)
5,664
Python
39.177305
156
0.597811
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/robot/scene/robot.py
from omni.isaac.motion_generation.lula import RmpFlow from omni.isaac.motion_generation import ArticulationMotionPolicy from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.manipulators.grippers import ParallelGripper from omni.isaac.surface_gripper._surface_gripper import Surface_Gripper_Properties, Surface_Gripper from omni.isaac.dynamic_control import _dynamic_control from omni.isaac.core.robots import Robot from omni.isaac.manipulators import SingleManipulator from scipy.spatial.transform import Rotation as R import os import numpy as np import omni from robot.tools.omni_tools import * class UR5(object): def __init__(self, assets, world, task_prim_path, position=[0,0,0], orientation=[1,0,0,0], scale=[1,1,1], offset=[0,0,0]) -> None: self.MOVING_STATE = { "to_offset": 0, "to_target": 1, "stop": 2 } # TODO add attach method self.use_parallel = False self.name = get_unique_name( world.scene, "ur5") rmp_config_dir = os.path.join(assets, "ur5") if self.use_parallel: self.urdf_path = os.path.join(rmp_config_dir, "ur5_gripper.urdf") self.usd_path = os.path.join(rmp_config_dir, "usd", "ur5_gripper.usd") else: self.urdf_path = os.path.join(rmp_config_dir, "ur5_suction.urdf") self.usd_path = os.path.join(rmp_config_dir, "usd", "ur5_suction.usd") self.robot_description_path = os.path.join(rmp_config_dir, "config", 'robot_descriptor.yaml') self.rmpflow_config_path = os.path.join(rmp_config_dir, "config", 'rmpflow_config.yaml') self.end_effector_frame_name = "gripper_center" self.world = world self.task_prim_path = task_prim_path self.offset = offset self.position = np.array(position).astype('float') + offset self.orientation = np.array(orientation).astype('float') self.scale = np.array(scale).astype('float') self.gripper_state = 0 self.target_state = None self.moving_state = self.MOVING_STATE['to_offset'] self.obstacles = [] self.init_state = np.array([0, -np.deg2rad(30), -np.deg2rad(100), -np.deg2rad(120), np.deg2rad(90), 0]) self.load_robot() self.set_controller() def load_robot(self): self.prim_path = self.task_prim_path + "/ur5" self.target_prim_path = self.task_prim_path + "/ur5_target" stage = omni.usd.get_context().get_stage() self.prim = load_obj_usd( usd_path=self.usd_path, prim_path=self.prim_path, \ translate=self.position, orientation=self.orientation, scale=self.scale ) self.gripper_center_prim = get_prim( self.prim_path + "/" + self.end_effector_frame_name ) set_translate(self.gripper_center_prim, [0,0,0.02]) # add target self.target_prim = stage.DefinePrim( self.target_prim_path, "Xform") set_translate(self.target_prim, [ 0, 0, 0 ]) def set_controller(self): from omni.isaac.universal_robots.controllers import StackingController as UR10StackingController if self.use_parallel: gripper = ParallelGripper( #We chose the following values while inspecting the articulation end_effector_prim_path= self.prim_path + "/gripper_base" , joint_prim_names=["gb_gl", "gb_gr"], joint_opened_positions=np.array([0, 0]), joint_closed_positions=np.array([0.0275, 0.0275]), action_deltas=np.array([-0.0275, -0.0275]), ) #define the manipulator self.robot = self.world.scene.add( SingleManipulator(prim_path=self.prim_path, name=self.name, end_effector_prim_name="gripper_base", gripper=gripper)) else: # Gripper properties sgp = Surface_Gripper_Properties() sgp.d6JointPath = self.prim_path + "/gripper_vacuum/SurfaceGripper" sgp.parentPath = self.prim_path + "/gripper_vacuum" sgp.offset = _dynamic_control.Transform() sgp.offset.p.x = 0 sgp.offset.p.y = 0 sgp.offset.p.z = 0.005 + 0.02 sgp.offset.r = [0.7071, 0, 0.7071, 0] # Rotate to point gripper in Z direction sgp.gripThreshold = 0.02 sgp.forceLimit = 1.0e3 sgp.torqueLimit = 1.0e4 # sgp.forceLimit = 1.0e2 # sgp.torqueLimit = 1.0e3 sgp.bendAngle = np.pi / 2 sgp.stiffness = 1.0e4 sgp.damping = 1.0e3 dc = _dynamic_control.acquire_dynamic_control_interface() gripper = Surface_Gripper(dc) gripper.initialize(sgp) self.robot = self.world.scene.add(Robot(prim_path=self.prim_path, name=self.name)) self.robot.gripper = gripper self.rmpflow = RmpFlow( robot_description_path = self.robot_description_path, urdf_path = self.urdf_path, rmpflow_config_path = self.rmpflow_config_path, end_effector_frame_name = self.end_effector_frame_name, evaluations_per_frame = 5, ignore_robot_state_updates=True ) self.rmpflow.set_robot_base_pose( get_translate(self.prim), get_orientation(self.prim) ) # self.rmpflow.visualize_collision_spheres() # self.rmpflow.visualize_end_effector_position() physics_dt = 1/60. self.articulation_rmpflow = ArticulationMotionPolicy(self.robot, self.rmpflow, physics_dt) self.articulation_controller = self.robot.get_articulation_controller() def set_gripper_open(self): self.set_gripper_state(1) def set_gripper_close(self): self.set_gripper_state(-1) def set_gripper_stop(self): self.set_gripper_state(0) def set_gripper_state(self, state: int): self.gripper_state = state def gripper_close(self): if self.use_parallel: gripper_positions = self.robot.gripper.get_joint_positions() self.robot.gripper.apply_action( ArticulationAction(joint_positions=[gripper_positions[0] + 0.0001, gripper_positions[1] + 0.0001])) # ArticulationAction(joint_positions=[0.008, 0.008])) else: self.robot.gripper.close() def gripper_open(self): # gripper_positions = self.robot.gripper.get_joint_positions() # self.robot.gripper.apply_action( # ArticulationAction(joint_positions=[gripper_positions[0] - 0.0001, gripper_positions[1] - 0.0001])) self.robot.gripper.open() def add_obstacle(self, prim): self.obstacles.append(prim) self.rmpflow.add_obstacle(prim) def remove_obstacle(self, prim): self.obstacles.remove(prim) self.rmpflow.remove_obstacle(prim) def to_init_state(self): if self.target_state is None and self.moving_state != self.MOVING_STATE['stop']: self.set_target(target_joints=self.init_state) self.moving_state = self.MOVING_STATE['stop'] def set_target(self, target_position=None, target_orientation=None, target_joints=None): if target_joints is not None: self.target_state = np.array(target_joints) else: end_prim = get_prim(self.prim_path + "/gripper_center") if target_position is None: position = get_translate(end_prim) target_position = position + self.position else: target_position = np.array(target_position).astype('float') + self.position set_translate( self.target_prim, target_position ) if target_orientation is None: target_orientation = get_orientation(end_prim) else: target_orientation = np.array(target_orientation).astype('float') set_orientation( self.target_prim, target_orientation ) self.target_state = [ target_position, target_orientation ] def move_to_mat(self, mat, offset=0): x,y,z,w = Rotation.from_matrix(mat[:3,:3]).as_quat() target_position = mat[:3,3] target_orientation = np.array([w,x,y,z]) self.move_to(target_position, target_orientation, offset) def move_to(self, target_position, target_orientation, offset=0): if self.target_state is None and self.moving_state != self.MOVING_STATE['stop']: if self.moving_state == self.MOVING_STATE['to_offset'] and offset != 0: w, x, y, z = target_orientation rot = R.from_quat([x,y,z,w]) # this use x,y,z,w z = np.array([0,0,-1]) direction = rot.apply(z) offset_pos = target_position + direction * offset self.set_target(offset_pos, target_orientation) self.moving_state = self.MOVING_STATE['to_target'] else: # print("setting") self.set_target(target_position, target_orientation) self.moving_state = self.MOVING_STATE['stop'] def move_up(self, z_offset): if self.target_state is None and self.moving_state != self.MOVING_STATE['stop']: end_prim = get_prim(self.prim_path + "/gripper_center") position = get_translate(end_prim) position[2] += z_offset self.move_to(position, None) def moving_on(self): self.moving_state = self.MOVING_STATE['to_offset'] def stop(self): self.moving_state = self.MOVING_STATE['stop'] def is_stop(self): return self.moving_state == self.MOVING_STATE['stop'] def check_valid_target(self, position, quat, joint_name='gripper_center'): # quat = w,x,y,z ret = self.rmpflow.get_kinematics_solver().compute_inverse_kinematics(joint_name, np.array(position), np.array(quat)) return ret[1] def update_state(self): if self.target_state is not None: if len(self.target_state) == 2: self.rmpflow.set_end_effector_target( target_position=self.target_state[0], target_orientation=self.target_state[1] ) else: self.rmpflow.set_cspace_target( self.target_state ) self.rmpflow.update_world(self.obstacles) actions = self.articulation_rmpflow.get_next_articulation_action() count = len(actions.joint_velocities) for v in actions.joint_velocities: if v is None or abs(v) < 1e-2: count -= 1 if count == 0: # print('stop') self.target_state = None else: self.articulation_controller.apply_action(actions) if self.gripper_state != 0: if self.gripper_state == 1: self.gripper_open() elif self.gripper_state == -1: self.gripper_close()
11,177
Python
38.638298
134
0.595867
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/robot/scene/task.py
import os import numpy as np from PIL import Image from scipy.spatial.transform import Rotation from robot.tools.omni_tools import * from robot.scene.scene import Scene from omni.isaac.core import World class Env(object): def __init__(self, render=True, save_folder="./images") -> None: self.save_folder = save_folder world = World(stage_units_in_meters=1.0, physics_prim_path="/World/physicsScene") world.scene.add_default_ground_plane() self.world = world self.max_loop_num = 1000 self.scene = Scene(world) self.use_robot = True self.render = render self.scene.init_scene() self.scene.set_obs_visible(False) self.world.reset() self.is_start = False def reset(self): self.scene.reset() def world_step(self, step=1, render=True): if self.world.is_playing(): for _ in range(step): self.world.step(render=render) def idle(self, step=1, render=True): if self.use_robot: self.scene.update_state() self.world_step(step, render) def robot_on(self): self.scene.robot.moving_on() def save_images(self, prefix="cam"): print("Take image") rgb, dep = self.scene.take_images() cam = self.scene.cam.intrinsic.copy() c2w = self.scene.cam.extrinsic.copy() os.makedirs(self.save_folder, exist_ok=True) np.save( os.path.join(self.save_folder, f'{prefix}_cam.npy'), cam ) np.save( os.path.join(self.save_folder, f'{prefix}_c2w.npy'), c2w ) np.save( os.path.join(self.save_folder, f'{prefix}_dep.npy'), dep ) Image.fromarray(rgb, mode='RGBA').save( os.path.join(self.save_folder, f'{prefix}_rgb.png') ) camera_params = {} # camera_params['x_offset'] = cam[0,0] # camera_params['y_offset'] = cam[1,1] # camera_params['fx'] = cam[0,2] # camera_params['fy'] = cam[1,2] camera_params['c2w'] = c2w camera_params['cam'] = cam return rgb[:,:,:3][:,:,::-1].copy(), dep, camera_params def move_up(self, offset=0.1, render=True): self.robot_on() is_stop = False loop_num = 0 while is_stop == False and loop_num < self.max_loop_num: self.scene.robot.move_up(offset) is_stop = self.scene.robot.target_state is None self.scene.update_state() self.world_step(render=render) loop_num += 1 def move_to_init(self, render=True): self.robot_on() is_stop = False loop_num = 0 while is_stop == False and loop_num < self.max_loop_num: self.scene.robot.to_init_state() is_stop = self.scene.robot.target_state is None self.scene.update_state() self.world_step(render=render) loop_num += 1 def move_to_mat(self, mat, offset=0, render=True): self.robot_on() is_stop = False loop_num = 0 while is_stop is False and loop_num < self.max_loop_num: self.scene.robot.move_to_mat(mat, offset) is_stop = self.scene.robot.target_state is None self.scene.update_state() self.world_step(render=render) loop_num += 1 def pick_and_placce(self, grasp_mat, place_mat, render=True): self.move_to_mat(grasp_mat, 0.1, render=render) self.gripper_close(render=render) self.move_up(0.3, render=render) self.move_to_mat(place_mat, 0.4, render=render) self.gripper_open(render=render) self.move_up(0.3, render=render) def gripper_close(self, render=True): self.scene.robot.set_gripper_close() self.idle(20, render) def gripper_open(self, render=True): self.scene.robot.set_gripper_open() self.idle(1, render) self.scene.robot.set_gripper_stop() def move_to_left(self): mat = np.eye(4) mat[:3,3] = (0.127126, 0.126619, 0.445994) mat[:3,:3] = Rotation.from_rotvec(np.pi * np.array([1,0,0])).as_matrix() self.move_to_mat(mat) def get_pick_mat(self, points_list): pick_mats = [] for points in points_list: p = points[points[:,2] > 0.01] z = p[:,2].max() x, y = p[:,:2].mean(axis=0) pick_pos = np.array([x,y,z]) mat = np.eye(4) mat[:3,:3] = Rotation.from_rotvec(np.pi * np.array([1,0,0])).as_matrix() mat[:3,3] = pick_pos pick_mats.append(mat) return pick_mats def test(self): mat = np.eye(4) mat[:3,3] = [0.4319, -0.008, 0.0906] mat[:3,:3] = Rotation.from_rotvec(np.pi * np.array([1,0,0])).as_matrix() self.move_to_mat(mat) self.gripper_close() self.idle(200) self.move_up() self.move_to_left() self.gripper_open() def run(self): self.reset() self.scene.load_objects() self.idle(200) self.save_images('tg') self.move_to_left() self.reset() self.scene.load_objects_2() self.idle(200) self.save_images('sc') self.world.pause()
5,294
Python
28.747191
101
0.555912
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/robot/assets/ur5/config/rmpflow_config.yaml
# Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # Artificially limit the robot joints. For example: # A joint with range +-pi would be limited to +-(pi-.01) joint_limit_buffers: [.01, .01, .01, .01, .01, .01] # RMPflow has many modifiable parameters, but these serve as a great start. # Most parameters will not need to be modified rmp_params: cspace_target_rmp: metric_scalar: 50. position_gain: 100. damping_gain: 50. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 100. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 3.6 velocity_damping_region: 0.8 damping_gain: 1000.0 metric_weight: 100. target_rmp: accel_p_gain: 30. accel_d_gain: 85. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000 min_metric_scalar: 2500 proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 xi_estimator_gate_std_dev: 20000. accept_user_weights: false axis_target_rmp: accel_p_gain: 110. # default 210 accel_d_gain: 60. metric_scalar: 10 proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .08 xi_estimator_gate_std_dev: 20000. accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 800. repulsion_std_dev: .01 metric_modulation_radius: .5 metric_scalar: 10000. metric_exploder_std_dev: .02 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 30. metric_scalar: 50. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false # body_cylinders are used to promote self-collision avoidance between the robot and its base # The example below defines the robot base to be a capsule defined by the absolute coordinates pt1 and pt2. # The semantic name provided for each body_cylinder does not need to be present in the robot URDF. body_cylinders: - name: base_link pt1: [0, 0, 0.22] pt2: [0, 0, 0] radius: .1 # - name: base # pt1: [0,0,.20] # pt2: [0,0,0.] # radius: .1 # body_collision_controllers defines spheres located at specified frames in the robot URDF # These spheres will not be allowed to collide with the capsules enumerated under body_cylinders # By design, most frames in industrial robots are kinematically unable to collide with the robot base. # It is often only necessary to define body_collision_controllers near the end effector body_collision_controllers: - name: forearm_link radius: .04 - name: wrist_2_link radius: .04 - name: wrist_3_link radius: .04 - name: gripper_base radius: .02
3,871
YAML
33.265486
107
0.64867
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/robot/assets/ur5/config/robot_descriptor.yaml
# Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # The robot descriptor defines the generalized coordinates and how to map those # to the underlying URDF dofs. api_version: 1.0 # Defines the generalized coordinates. Each generalized coordinate is assumed # to have an entry in the URDF. # RMPflow will only use these joints to control the robot position. # # Global frame of the URDF # root_link: world # # The default cspace position of this robot # default_q: [ # 0.00, 0.00, 0.00, 0.00, 0.00, 0.00 # ] cspace: - shoulder_pan_joint - shoulder_lift_joint - elbow_joint - wrist_1_joint - wrist_2_joint - wrist_3_joint root_link: world subtree_root_link: base_link default_q: [-1.57, -1.57, -1.57, -1.57, 1.57, 0] # Most dimensions of the cspace have a direct corresponding element # in the URDF. This list of rules defines how unspecified coordinates # should be extracted or how values in the URDF should be overwritten. cspace_to_urdf_rules: # - {name: fixed_joint, rule: fixed, value: 0.025} # RMPflow uses collision spheres to define the robot geometry in order to avoid # collisions with external obstacles. If no spheres are specified, RMPflow will # not be able to avoid obstacles. # The example spheres specified are translated along the z axis of the link0 frame by # .05 and .1 m respectively. collision_spheres: - base_link: - "center": [0.0, 0.0, 0.06] "radius": 0.06 - "center": [0.0, 0.0, 0.14] "radius": 0.06 - shoulder_link: - "center": [0.0, 0.06, 0.0] "radius": 0.05 - "center": [0.0, 0.12, 0.0] "radius": 0.05 - upper_arm_link: - "center": [0.0, 0.0, 0.07] "radius": 0.06 - "center": [0.0, 0.0, 0.14] "radius": 0.06 - "center": [0.0, 0.0, 0.21] "radius": 0.06 - "center": [0.0, 0.0, 0.28] "radius": 0.06 - "center": [0.0, 0.0, 0.35] "radius": 0.06 - "center": [0.0, 0.0, 0.42] "radius": 0.06 - forearm_link: - "center": [0.0, 0.0, 0.0] "radius": 0.045 - "center": [0.0, 0.0, 0.05] "radius": 0.045 - "center": [0.0, 0.0, 0.1] "radius": 0.045 - "center": [0.0, 0.0, 0.15] "radius": 0.045 - "center": [0.0, 0.0, 0.20] "radius": 0.045 - "center": [0.0, 0.0, 0.25] "radius": 0.045 - "center": [0.0, 0.0, 0.30] "radius": 0.045 - "center": [0.0, 0.0, 0.35] "radius": 0.045 - "center": [0.0, 0.0, 0.40] "radius": 0.045 - wrist_1_link: - "center": [0.0, -0.02, 0.0] "radius": 0.03 - "center": [0.0, 0.05, 0.0] "radius": 0.045 - "center": [0.0, 0.1, 0.0] "radius": 0.045 - wrist_2_link: - "center": [0.0, 0.0, -0.025] "radius": 0.04 - "center": [0.0, 0.0, 0.05] "radius": 0.04 - wrist_3_link: - "center": [0.0, -0.025, 0.0] "radius": 0.04 - "center": [0.0, 0.05, 0.0] "radius": 0.04 - gripper_base: - "center": [0.0, 0, 0.02] "radius": 0.035 - "center": [0.0, 0, 0.06] "radius": 0.035 # - "center": [0.015, 0.0, 0.0] # "radius": 0.03 # - "center": [-0.015, 0.0, 0.0] # "radius": 0.03 # - gripper_left: # - "center": [0.0, 0, -0.0075] # "radius": 0.0075 # - "center": [0.0, 0, 0.0075] # "radius": 0.0075 # - "center": [0.0, -0.0075, -0.0075] # "radius": 0.0075 # - "center": [0.0, -0.0075, 0.0075] # "radius": 0.0075 # - "center": [0.0, 0.0075, -0.0075] # "radius": 0.0075 # - "center": [0.0, 0.0075, 0.0075] # "radius": 0.0075 # - gripper_right: # - "center": [0.0, 0, -0.0075] # "radius": 0.0075 # - "center": [0.0, 0, 0.0075] # "radius": 0.0075 # - "center": [0.0, -0.0075, -0.0075] # "radius": 0.0075 # - "center": [0.0, -0.0075, 0.0075] # "radius": 0.0075 # - "center": [0.0, 0.0075, -0.0075] # "radius": 0.0075 # - "center": [0.0, 0.0075, 0.0075] # "radius": 0.0075 # This argument is no longer supported, but is required for legacy reasons. # There is no need to change it. composite_task_spaces: []
4,811
YAML
30.045161
85
0.523384
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/robot/assets/ur5/gripper/README.md
## Robotiq 2F 85 gripper For this gripper, the following Github repo can be used as a reference: https://github.com/Shreeyak/robotiq.git ### mimic tag in URDF This gripper is developed for ROS and uses the `mimic` tag within the URDF files to make the gripper move. From our research `mimic` tag within URDF is not supported by pybullet. To overcome this, one can use the `createConstraint` function. Please refer to [this](https://github.com/bulletphysics/bullet3/blob/master/examples/pybullet/examples/mimicJointConstraint.py) example from the bullet3 repo to see how to replicate a `mimic` joint: ```python #a mimic joint can act as a gear between two joints #you can control the gear ratio in magnitude and sign (>0 reverses direction) import pybullet as p import time p.connect(p.GUI) p.loadURDF("plane.urdf",0,0,-2) wheelA = p.loadURDF("differential/diff_ring.urdf",[0,0,0]) for i in range(p.getNumJoints(wheelA)): print(p.getJointInfo(wheelA,i)) p.setJointMotorControl2(wheelA,i,p.VELOCITY_CONTROL,targetVelocity=0,force=0) c = p.createConstraint(wheelA,1,wheelA,3,jointType=p.JOINT_GEAR,jointAxis =[0,1,0],parentFramePosition=[0,0,0],childFramePosition=[0,0,0]) p.changeConstraint(c,gearRatio=1, maxForce=10000) c = p.createConstraint(wheelA,2,wheelA,4,jointType=p.JOINT_GEAR,jointAxis =[0,1,0],parentFramePosition=[0,0,0],childFramePosition=[0,0,0]) p.changeConstraint(c,gearRatio=-1, maxForce=10000) c = p.createConstraint(wheelA,1,wheelA,4,jointType=p.JOINT_GEAR,jointAxis =[0,1,0],parentFramePosition=[0,0,0],childFramePosition=[0,0,0]) p.changeConstraint(c,gearRatio=-1, maxForce=10000) p.setRealTimeSimulation(1) while(1): p.setGravity(0,0,-10) time.sleep(0.01) #p.removeConstraint(c) ``` Details on `createConstraint` can be found in the pybullet [getting started](https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#heading=h.fq749wu22x4c) guide. ### Files in folder Since parameters like gear ratio and direction are required, one can find the `robotiq_2f_85_mimic_joints.urdf` which contains the mimic tags as in original URDF, which can be used as a reference. It was generated from `robotiq/robotiq_2f_robot/robot/simple_rq2f85_pybullet.urdf.xacro` as so: ``` rosrun xacro xacro --inorder simple_rq2f85_pybullet.urdf.xacro adaptive_transmission:="true" > robotiq_2f_85_mimic_joints.urdf ``` The URDF meant for use in pybullet is `robotiq_2f_85.urdf` and it is generated in a similar manner as above by running: ``` rosrun xacro xacro --inorder simple_rq2f85_pybullet.urdf.xacro > robotiq_2f_85.urdf ```
2,574
Markdown
47.584905
440
0.773116
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/app.py
#!/usr/bin/env python3 # Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md """Test a PoseCNN on images""" import torch import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.utils.data import os, sys import numpy as np from PIL import Image import json from scipy.spatial.transform import Rotation import UOC.tools._init_paths from fcn.test_module import img_segment, img_process, compute_xyz, depth_to_pc import networks as networks UOC_path = "E:/workspace/visual_match/UOC" def get_cam(): filename = f'{UOC_path}/data/demo/camera_params.json' if os.path.exists(filename): with open(filename) as f: camera_params = json.load(f) else: camera_params = None return camera_params def get_network(): gpu_id = 0 pretrained = f'{UOC_path}/data/checkpoints/seg_resnet34_8s_embedding_cosine_rgbd_add_sampling_epoch_16.checkpoint.pth' pretrained_crop = f'{UOC_path}/data/checkpoints/seg_resnet34_8s_embedding_cosine_rgbd_add_crop_sampling_epoch_16.checkpoint.pth' # pretrained = f'{UOC_path}/data/checkpoints/seg_resnet34_8s_embedding_cosine_color_sampling_epoch_16.checkpoint.pth' # pretrained_crop = f'{UOC_path}/data/checkpoints/seg_resnet34_8s_embedding_cosine_color_crop_sampling_epoch_16.checkpoint.pth' network_name = 'seg_resnet34_8s_embedding' # device device = torch.device('cuda:{:d}'.format(gpu_id)) num_classes = 2 train_num_unit = 64 network_data = torch.load(pretrained) network = networks.__dict__[network_name](num_classes, train_num_unit, network_data).cuda(device=device) network = torch.nn.DataParallel(network, device_ids=[gpu_id]).cuda(device=device) cudnn.benchmark = True network.eval() network_data_crop = torch.load(pretrained_crop) network_crop = networks.__dict__[network_name](num_classes, train_num_unit, network_data_crop).cuda(device=device) network_crop = torch.nn.DataParallel(network_crop, device_ids=[gpu_id]).cuda(device=device) network_crop.eval() return network, network_crop, device class Segmenter(object): def __init__(self) -> None: network, network_crop, device = get_network() self.network = network self.network_crop = network_crop self.device = device def segment(self, rgb: np.array, dep:np.array, camera_params:dict): # dep is meter rgb_batch, dep_batch = img_process(rgb, dep, camera_params) out_label, out_label_refined = img_segment(rgb_batch, dep_batch, self.network, self.network_crop, self.device, False) return out_label[0], out_label_refined[0] def crop(self, rgb, label): all_ids = np.unique(label) all_imgs = [] bboxes = [] for i in list(all_ids): if i == 0: continue if torch.sum(label == i) < 32*32: continue x, y = np.where(label == i) min_x = x.min() max_x = x.max() min_y = y.min() max_y = y.max() if (max_x - min_x) * (max_x - min_x) > 250**2: continue img = rgb[min_x:max_x, min_y:max_y] all_imgs.append(img) bboxes.append([min_x,max_x, min_y,max_y]) return all_imgs, bboxes def segment_and_crop(self, rgb: np.array, dep:np.array, camera_params:dict): label, label_refined = self.segment(rgb, dep, camera_params) all_rgb, bbox = self.crop(rgb, label) return all_rgb, bbox def crop_point_cloud(self, dep, camera_params, bboxes): c2w = camera_params['c2w'] cam = camera_params['cam'] # 因为 omniverse 里面的相机坐标系,和相机在世界坐标系中的坐标系是不一样的,相机朝向是Z轴负方向 # 所以 深度图计算出在相机坐标系内的点后,需要两步的坐标系转换, # 从相机坐标系 --> 在世界坐标系中的相机坐标系(也就是绕x轴转180) --> 世界坐标系 rot_x = Rotation.from_rotvec(np.pi * np.array([1,0,0])).as_matrix() c2w[:3,:3] = c2w[:3,:3] @ rot_x pc = depth_to_pc(dep, cam, c2w) ret = [] for bbox in bboxes: min_x, max_x, min_y, max_y = bbox points = pc[min_x:max_x, min_y:max_y] points = points.reshape(-1,3) ret.append(points) return ret if __name__ == '__main__': np.random.seed(3) # list images images_color = [] images_depth = [] network, network_crop, device = get_network() # camera_params = get_cam() # rgb = cv2.imread("./data/demo/000002-color.png", cv2.COLOR_BGR2RGB) # dep = cv2.imread("./data/demo/000002-depth.png", cv2.IMREAD_ANYDEPTH) # dep = dep.astype(np.float32) / 1000.0 # rgb = cv2.imread("../robot/images/sc_rgb.png", cv2.COLOR_BGR2RGB) rgb = np.array(Image.open("../robot/images/sc_rgb.png"))[:,:,:3][:,:,::-1].copy() dep = np.load("../robot/images/sc_dep.npy") cam = np.load("../robot/images/sc_cam.npy") camera_params = {} camera_params['x_offset'] = cam[0,0] camera_params['y_offset'] = cam[1,1] camera_params['fx'] = cam[0,2] camera_params['fy'] = cam[1,2] # dep = None rgb_batch, dep_batch = img_process(rgb, dep, camera_params) rgb_batch = torch.cat([rgb_batch], dim=0) dep_batch = torch.cat([dep_batch], dim=0) # if dep_batch is not None: out_label, out_label_refined = img_segment(rgb_batch, dep_batch, network, network_crop, device, True)
5,556
Python
31.121387
132
0.614651
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/README.md
# 代码修改自:https://github.com/NVlabs/UnseenObjectClustering # Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation ### Introduction In this work, we propose a new method for unseen object instance segmentation by learning RGB-D feature embeddings from synthetic data. A metric learning loss functionis utilized to learn to produce pixel-wise feature embeddings such that pixels from the same object are close to each other and pixels from different objects are separated in the embedding space. With the learned feature embeddings, a mean shift clustering algorithm can be applied to discover and segment unseen objects. We further improve the segmentation accuracy with a new two-stage clustering algorithm. Our method demonstrates that non-photorealistic synthetic RGB and depth images can be used to learn feature embeddings that transfer well to real-world images for unseen object instance segmentation. [arXiv](https://arxiv.org/pdf/2007.15157.pdf), [Talk video](https://youtu.be/pxma-x0BGpU) <p align="center"><img src="./data/pics/network.png" width="750" height="200"/></p> ### License Unseen Object Clustering is released under the NVIDIA Source Code License (refer to the LICENSE file for details). ### Citation If you find Unseen Object Clustering useful in your research, please consider citing: @inproceedings{xiang2020learning, Author = {Yu Xiang and Christopher Xie and Arsalan Mousavian and Dieter Fox}, Title = {Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation}, booktitle = {Conference on Robot Learning (CoRL)}, Year = {2020} } ### Required environment - Ubuntu 16.04 or above - PyTorch 0.4.1 or above - CUDA 9.1 or above ### Installation 1. Install [PyTorch](https://pytorch.org/). 2. Install python packages ```Shell pip install -r requirement.txt ``` ### Download - Download our trained checkpoints from [here](https://drive.google.com/file/d/1O-ymMGD_qDEtYxRU19zSv17Lgg6fSinQ/view?usp=sharing), save to $ROOT/data. ### Running the demo 1. Download our trained checkpoints first. 2. Run the following script for testing on images under $ROOT/data/demo. ```Shell ./experiments/scripts/demo_rgbd_add.sh ``` <p align="center"><img src="./data/pics/demo_rgbd_add.png" width="640" height="360"/></p> ### Training and testing on the Tabletop Object Dataset (TOD) 1. Download the Tabletop Object Dataset (TOD) from [here](https://drive.google.com/uc?export=download&id=1Du309Ye8J7v2c4fFGuyPGjf-C3-623vw) (34G). 2. Create a symlink for the TOD dataset ```Shell cd $ROOT/data ln -s $TOD_DATA tabletop ``` 3. Training and testing on the TOD dataset ```Shell cd $ROOT # multi-gpu training, we used 4 GPUs ./experiments/scripts/seg_resnet34_8s_embedding_cosine_rgbd_add_train_tabletop.sh # testing, $GPU_ID can be 0, 1, etc. ./experiments/scripts/seg_resnet34_8s_embedding_cosine_rgbd_add_test_tabletop.sh $GPU_ID $EPOCH ``` ### Testing on the OCID dataset and the OSD dataset 1. Download the OCID dataset from [here](https://www.acin.tuwien.ac.at/en/vision-for-robotics/software-tools/object-clutter-indoor-dataset/), and create a symbol link: ```Shell cd $ROOT/data ln -s $OCID_dataset OCID ``` 2. Download the OSD dataset from [here](https://www.acin.tuwien.ac.at/en/vision-for-robotics/software-tools/osd/), and create a symbol link: ```Shell cd $ROOT/data ln -s $OSD_dataset OSD ``` 3. Check scripts in experiments/scripts with name test_ocid or test_ocd. Make sure the path of the trained checkpoints exist. ```Shell experiments/scripts/seg_resnet34_8s_embedding_cosine_rgbd_add_test_ocid.sh experiments/scripts/seg_resnet34_8s_embedding_cosine_rgbd_add_test_osd.sh ``` ### Running with ROS on a Realsense camera for real-world unseen object instance segmentation - Python2 is needed for ROS. - Make sure our pretrained checkpoints are downloaded. ```Shell # start realsense roslaunch realsense2_camera rs_aligned_depth.launch tf_prefix:=measured/camera # start rviz rosrun rviz rviz -d ./ros/segmentation.rviz # run segmentation, $GPU_ID can be 0, 1, etc. ./experiments/scripts/ros_seg_rgbd_add_test_segmentation_realsense.sh $GPU_ID ``` Our example: <p align="center"><img src="./data/pics/unseen_clustering.gif"/></p>
4,436
Markdown
35.07317
866
0.731064
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/LICENSE.md
# NVIDIA Source Code License for Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation ## 1. Definitions “Licensor” means any person or entity that distributes its Work. “Software” means the original work of authorship made available under this License. “Work” means the Software and any additions to or derivative works of the Software that are made available under this License. “Nvidia Processors” means any central processing unit (CPU), graphics processing unit (GPU), field-programmable gate array (FPGA), application-specific integrated circuit (ASIC) or any combination thereof designed, made, sold, or provided by Nvidia or its affiliates. The terms “reproduce,” “reproduction,” “derivative works,” and “distribution” have the meaning as provided under U.S. copyright law; provided, however, that for the purposes of this License, derivative works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work. Works, including the Software, are “made available” under this License by including in or with the Work either (a) a copyright notice referencing the applicability of this License to the Work, or (b) a copy of this License. ## 2. License Grants ### 2.1 Copyright Grant. Subject to the terms and conditions of this License, each Licensor grants to you a perpetual, worldwide, non-exclusive, royalty-free, copyright license to reproduce, prepare derivative works of, publicly display, publicly perform, sublicense and distribute its Work and any resulting derivative works in any form. ## 3. Limitations ### 3.1 Redistribution. You may reproduce or distribute the Work only if (a) you do so under this License, (b) you include a complete copy of this License with your distribution, and (c) you retain without modification any copyright, patent, trademark, or attribution notices that are present in the Work. ### 3.2 Derivative Works. You may specify that additional or different terms apply to the use, reproduction, and distribution of your derivative works of the Work (“Your Terms”) only if (a) Your Terms provide that the use limitation in Section 3.3 applies to your derivative works, and (b) you identify the specific derivative works that are subject to Your Terms. Notwithstanding Your Terms, this License (including the redistribution requirements in Section 3.1) will continue to apply to the Work itself. ### 3.3 Use Limitation. The Work and any derivative works thereof only may be used or intended for use non-commercially. The Work or derivative works thereof may be used or intended for use by Nvidia or its affiliates commercially or non-commercially. As used herein, “non-commercially” means for research or evaluation purposes only. ### 3.4 Patent Claims. If you bring or threaten to bring a patent claim against any Licensor (including any claim, cross-claim or counterclaim in a lawsuit) to enforce any patents that you allege are infringed by any Work, then your rights under this License from such Licensor (including the grants in Sections 2.1 and 2.2) will terminate immediately. ### 3.5 Trademarks. This License does not grant any rights to use any Licensor’s or its affiliates’ names, logos, or trademarks, except as necessary to reproduce the notices described in this License. ### 3.6 Termination. If you violate any term of this License, then your rights under this License (including the grants in Sections 2.1 and 2.2) will terminate immediately. ## 4. Disclaimer of Warranty. THE WORK IS PROVIDED “AS IS” WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF M ERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER THIS LICENSE. ## 5. Limitation of Liability. EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK (INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION, LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER COMM ERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
4,469
Markdown
90.224488
593
0.791005
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/tools/test_net.py
#!/usr/bin/env python3 # Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md """Test a DeepIM network on an image database.""" import torch import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.utils.data import argparse import pprint import time, os, sys import os.path as osp import numpy as np import random import scipy.io import _init_paths from fcn.test_dataset import test_segnet from fcn.config import cfg, cfg_from_file, get_output_dir from datasets.factory import get_dataset import networks def parse_args(): """ Parse input arguments """ parser = argparse.ArgumentParser(description='Test a Unseen Clustering Network') parser.add_argument('--gpu', dest='gpu_id', help='GPU id to use', default=0, type=int) parser.add_argument('--pretrained', dest='pretrained', help='initialize with pretrained checkpoint', default=None, type=str) parser.add_argument('--pretrained_crop', dest='pretrained_crop', help='initialize with pretrained checkpoint for crops', default=None, type=str) parser.add_argument('--cfg', dest='cfg_file', help='optional config file', default=None, type=str) parser.add_argument('--dataset', dest='dataset_name', help='dataset to train on', default='shapenet_scene_train', type=str) parser.add_argument('--rand', dest='randomize', help='randomize (do not use a fixed seed)', action='store_true') parser.add_argument('--network', dest='network_name', help='name of the network', default=None, type=str) if len(sys.argv) == 1: parser.print_help() sys.exit(1) args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() print('Called with args:') print(args) if args.cfg_file is not None: cfg_from_file(args.cfg_file) if len(cfg.TEST.CLASSES) == 0: cfg.TEST.CLASSES = cfg.TRAIN.CLASSES print('Using config:') pprint.pprint(cfg) if not args.randomize: # fix the random seeds (numpy and caffe) for reproducibility np.random.seed(cfg.RNG_SEED) # device cfg.gpu_id = 0 cfg.device = torch.device('cuda:{:d}'.format(cfg.gpu_id)) print('GPU device {:d}'.format(args.gpu_id)) # prepare dataset if cfg.TEST.VISUALIZE: shuffle = True np.random.seed() else: shuffle = False cfg.MODE = 'TEST' dataset = get_dataset(args.dataset_name) worker_init_fn = dataset.worker_init_fn if hasattr(dataset, 'worker_init_fn') else None num_workers = 1 dataloader = torch.utils.data.DataLoader(dataset, batch_size=cfg.TEST.IMS_PER_BATCH, shuffle=shuffle, num_workers=num_workers, worker_init_fn=worker_init_fn) print('Use dataset `{:s}` for training'.format(dataset.name)) # overwrite intrinsics if len(cfg.INTRINSICS) > 0: K = np.array(cfg.INTRINSICS).reshape(3, 3) dataset._intrinsic_matrix = K print(dataset._intrinsic_matrix) output_dir = get_output_dir(dataset, None) print('Output will be saved to `{:s}`'.format(output_dir)) if not os.path.exists(output_dir): os.makedirs(output_dir) # prepare network if args.pretrained: network_data = torch.load(args.pretrained) if isinstance(network_data, dict) and 'model' in network_data: network_data = network_data['model'] print("=> using pre-trained network '{}'".format(args.pretrained)) else: network_data = None print("no pretrained network specified") sys.exit() network = networks.__dict__[args.network_name](dataset.num_classes, cfg.TRAIN.NUM_UNITS, network_data).cuda(device=cfg.device) network = torch.nn.DataParallel(network, device_ids=[cfg.gpu_id]).cuda(device=cfg.device) cudnn.benchmark = True if args.pretrained_crop: network_data_crop = torch.load(args.pretrained_crop) network_crop = networks.__dict__[args.network_name](dataset.num_classes, cfg.TRAIN.NUM_UNITS, network_data_crop).cuda(device=cfg.device) network_crop = torch.nn.DataParallel(network_crop, device_ids=[cfg.gpu_id]).cuda(device=cfg.device) else: network_crop = None # test network test_segnet(dataloader, network, output_dir, network_crop)
4,656
Python
34.280303
144
0.635309
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/tools/view_tabletop_data.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md import os import os.path import torch import cv2 import numpy as np import glob import random import math from transforms3d.quaternions import mat2quat, quat2mat import _init_paths from datasets import TableTopObject import matplotlib.pyplot as plt from utils import mask as util_ if __name__ == '__main__': tabletop = TableTopObject('train') num = tabletop._size index = np.random.permutation(num) for idx in index: # Get scene directory, crop dose not use background scene_idx = idx // tabletop.NUM_VIEWS_PER_SCENE scene_dir = tabletop.scene_dirs[scene_idx] # Get view number view_num = idx % tabletop.NUM_VIEWS_PER_SCENE # Label foreground_labels_filename = os.path.join(scene_dir, 'segmentation_%05d.png' % view_num) # label = util_.imread_indexed(foreground_labels_filename) label = cv2.imread(foreground_labels_filename) # BGR image filename = os.path.join(scene_dir, 'rgb_%05d.jpeg' % view_num) im = cv2.imread(filename) # Depth image depth_img_filename = os.path.join(scene_dir, 'depth_%05d.png' % view_num) im_depth = cv2.imread(depth_img_filename, cv2.IMREAD_ANYDEPTH) # visualization fig = plt.figure() ax = fig.add_subplot(1, 3, 1) plt.imshow(im[:, :, (2, 1, 0)]) plt.axis('off') ax = fig.add_subplot(1, 3, 2) plt.imshow(im_depth) plt.axis('off') ax = fig.add_subplot(1, 3, 3) plt.imshow(label[:, :, (2, 1, 0)]) plt.axis('off') plt.show()
1,774
Python
28.583333
96
0.632469
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/tools/test_images.py
#!/usr/bin/env python3 # Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md """Test a PoseCNN on images""" import torch import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.utils.data import argparse import pprint import time, os, sys import os.path as osp import numpy as np import cv2 import scipy.io import glob import json import _init_paths from fcn.test_dataset import test_sample from fcn.config import cfg, cfg_from_file, get_output_dir import networks from utils.blob import pad_im from utils import mask as util_ def parse_args(): """ Parse input arguments """ parser = argparse.ArgumentParser(description='Test a PoseCNN network') parser.add_argument('--gpu', dest='gpu_id', help='GPU id to use', default=0, type=int) parser.add_argument('--pretrained', dest='pretrained', help='initialize with pretrained checkpoint', default=None, type=str) parser.add_argument('--pretrained_crop', dest='pretrained_crop', help='initialize with pretrained checkpoint for crops', default=None, type=str) parser.add_argument('--cfg', dest='cfg_file', help='optional config file', default=None, type=str) parser.add_argument('--dataset', dest='dataset_name', help='dataset to train on', default='shapenet_scene_train', type=str) parser.add_argument('--depth', dest='depth_name', help='depth image pattern', default='*depth.png', type=str) parser.add_argument('--color', dest='color_name', help='color image pattern', default='*color.png', type=str) parser.add_argument('--imgdir', dest='imgdir', help='path of the directory with the test images', default=None, type=str) parser.add_argument('--rand', dest='randomize', help='randomize (do not use a fixed seed)', action='store_true') parser.add_argument('--network', dest='network_name', help='name of the network', default=None, type=str) parser.add_argument('--image_path', dest='image_path', help='path to images', default=None, type=str) if len(sys.argv) == 1: parser.print_help() sys.exit(1) args = parser.parse_args() return args # save data def save_data(file_rgb, out_label_refined, roi, features_crop): # meta data ''' meta = {'roi': roi, 'features': features_crop.cpu().detach().numpy(), 'labels': out_label_refined.cpu().detach().numpy()} filename = file_rgb[:-9] + 'meta.mat' scipy.io.savemat(filename, meta, do_compression=True) print('save data to {}'.format(filename)) ''' # segmentation labels label_save = out_label_refined.cpu().detach().numpy()[0] label_save = np.clip(label_save, 0, 1) * 255 label_save = label_save.astype(np.uint8) filename = file_rgb[:-4] + '-label.png' cv2.imwrite(filename, label_save) print('save data to {}'.format(filename)) def compute_xyz(depth_img, fx, fy, px, py, height, width): indices = util_.build_matrix_of_indices(height, width) z_e = depth_img x_e = (indices[..., 1] - px) * z_e / fx y_e = (indices[..., 0] - py) * z_e / fy xyz_img = np.stack([x_e, y_e, z_e], axis=-1) # Shape: [H x W x 3] return xyz_img def read_sample(filename_color, filename_depth, camera_params): # bgr image im = cv2.imread(filename_color) if cfg.INPUT == 'DEPTH' or cfg.INPUT == 'RGBD': # depth image depth_img = cv2.imread(filename_depth, cv2.IMREAD_ANYDEPTH) depth = depth_img.astype(np.float32) / 1000.0 height = depth.shape[0] width = depth.shape[1] fx = camera_params['fx'] fy = camera_params['fy'] px = camera_params['x_offset'] py = camera_params['y_offset'] xyz_img = compute_xyz(depth, fx, fy, px, py, height, width) else: xyz_img = None im_tensor = torch.from_numpy(im) / 255.0 pixel_mean = torch.tensor(cfg.PIXEL_MEANS / 255.0).float() im_tensor -= pixel_mean image_blob = im_tensor.permute(2, 0, 1) sample = {'image_color': image_blob.unsqueeze(0)} if cfg.INPUT == 'DEPTH' or cfg.INPUT == 'RGBD': depth_blob = torch.from_numpy(xyz_img).permute(2, 0, 1) sample['depth'] = depth_blob.unsqueeze(0) return sample if __name__ == '__main__': args = parse_args() print('Called with args:') print(args) if args.cfg_file is not None: cfg_from_file(args.cfg_file) if len(cfg.TEST.CLASSES) == 0: cfg.TEST.CLASSES = cfg.TRAIN.CLASSES print('Using config:') pprint.pprint(cfg) if not args.randomize: # fix the random seeds (numpy and caffe) for reproducibility np.random.seed(cfg.RNG_SEED) # device cfg.gpu_id = 0 cfg.device = torch.device('cuda:{:d}'.format(cfg.gpu_id)) cfg.instance_id = 0 num_classes = 2 cfg.MODE = 'TEST' print('GPU device {:d}'.format(args.gpu_id)) # list images images_color = [] filename = os.path.join(args.imgdir, args.color_name) files = glob.glob(filename) for i in range(len(files)): filename = files[i] images_color.append(filename) images_color.sort() images_depth = [] filename = os.path.join(args.imgdir, args.depth_name) files = glob.glob(filename) for i in range(len(files)): filename = files[i] images_depth.append(filename) images_depth.sort() # check if intrinsics available filename = os.path.join(args.imgdir, 'camera_params.json') if os.path.exists(filename): with open(filename) as f: camera_params = json.load(f) else: camera_params = None # prepare network if args.pretrained: network_data = torch.load(args.pretrained) print("=> using pre-trained network '{}'".format(args.pretrained)) else: network_data = None print("no pretrained network specified") sys.exit() network = networks.__dict__[args.network_name](num_classes, cfg.TRAIN.NUM_UNITS, network_data).cuda(device=cfg.device) network = torch.nn.DataParallel(network, device_ids=[cfg.gpu_id]).cuda(device=cfg.device) cudnn.benchmark = True network.eval() if args.pretrained_crop: network_data_crop = torch.load(args.pretrained_crop) network_crop = networks.__dict__[args.network_name](num_classes, cfg.TRAIN.NUM_UNITS, network_data_crop).cuda(device=cfg.device) network_crop = torch.nn.DataParallel(network_crop, device_ids=[cfg.gpu_id]).cuda(device=cfg.device) network_crop.eval() else: network_crop = None if cfg.TEST.VISUALIZE: index_images = np.random.permutation(len(images_color)) else: index_images = range(len(images_color)) for i in index_images: if os.path.exists(images_color[i]): print(images_color[i]) # read sample sample = read_sample(images_color[i], images_depth[i], camera_params) # run network out_label, out_label_refined = test_sample(sample, network, network_crop) else: print('files not exist %s' % (images_color[i]))
7,617
Python
32.707964
136
0.604306
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/tools/train_net.py
#!/usr/bin/env python3 # Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md """Train a UCN on image segmentation database.""" import torch import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data import argparse import pprint import numpy as np import sys import os import os.path as osp import cv2 import _init_paths import datasets import networks from fcn.config import cfg, cfg_from_file, get_output_dir from fcn.train import train_segnet from datasets.factory import get_dataset def parse_args(): """ Parse input arguments """ parser = argparse.ArgumentParser(description='Train a PoseCNN network') parser.add_argument('--epochs', dest='epochs', help='number of epochs to train', default=40000, type=int) parser.add_argument('--startepoch', dest='startepoch', help='the starting epoch', default=0, type=int) parser.add_argument('--pretrained', dest='pretrained', help='initialize with pretrained checkpoint', default=None, type=str) parser.add_argument('--cfg', dest='cfg_file', help='optional config file', default=None, type=str) parser.add_argument('--solver', dest='solver', help='solver type', default='sgd', type=str) parser.add_argument('--dataset', dest='dataset_name', help='dataset to train on', default='shapenet_scene_train', type=str) parser.add_argument('--dataset_background', dest='dataset_background_name', help='background dataset to train on', default='background_nvidia', type=str) parser.add_argument('--rand', dest='randomize', help='randomize (do not use a fixed seed)', action='store_true') parser.add_argument('--network', dest='network_name', help='name of the network', default=None, type=str) parser.add_argument('--cad', dest='cad_name', help='name of the CAD files', default=None, type=str) parser.add_argument('--pose', dest='pose_name', help='name of the pose files', default=None, type=str) if len(sys.argv) == 1: parser.print_help() sys.exit(1) args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() print('Called with args:') print(args) if args.cfg_file is not None: cfg_from_file(args.cfg_file) print('Using config:') pprint.pprint(cfg) if not args.randomize: # fix the random seeds (numpy and caffe) for reproducibility np.random.seed(cfg.RNG_SEED) # prepare dataset cfg.MODE = 'TRAIN' dataset = get_dataset(args.dataset_name) worker_init_fn = dataset.worker_init_fn if hasattr(dataset, 'worker_init_fn') else None num_workers = 4 dataloader = torch.utils.data.DataLoader(dataset, batch_size=cfg.TRAIN.IMS_PER_BATCH, shuffle=True, num_workers=num_workers, worker_init_fn=worker_init_fn) print('Use dataset `{:s}` for training'.format(dataset.name)) # overwrite intrinsics if len(cfg.INTRINSICS) > 0: K = np.array(cfg.INTRINSICS).reshape(3, 3) dataset._intrinsic_matrix = K print(dataset._intrinsic_matrix) output_dir = get_output_dir(dataset, None) print('Output will be saved to `{:s}`'.format(output_dir)) if not os.path.exists(output_dir): os.makedirs(output_dir) # prepare network if args.pretrained: network_data = torch.load(args.pretrained) if isinstance(network_data, dict) and 'model' in network_data: network_data = network_data['model'] print("=> using pre-trained network '{}'".format(args.network_name)) else: network_data = None print("=> creating network '{}'".format(args.network_name)) network = networks.__dict__[args.network_name](dataset.num_classes, cfg.TRAIN.NUM_UNITS, network_data).cuda() if torch.cuda.device_count() > 1: cfg.TRAIN.GPUNUM = torch.cuda.device_count() print("Let's use", torch.cuda.device_count(), "GPUs!") network = torch.nn.DataParallel(network).cuda() cudnn.benchmark = True # prepare optimizer assert(args.solver in ['adam', 'sgd']) print('=> setting {} solver'.format(args.solver)) param_groups = [{'params': network.module.bias_parameters(), 'weight_decay': cfg.TRAIN.WEIGHT_DECAY}, {'params': network.module.weight_parameters(), 'weight_decay': cfg.TRAIN.WEIGHT_DECAY}] if args.solver == 'adam': optimizer = torch.optim.Adam(param_groups, cfg.TRAIN.LEARNING_RATE, betas=(cfg.TRAIN.MOMENTUM, cfg.TRAIN.BETA)) elif args.solver == 'sgd': optimizer = torch.optim.SGD(param_groups, cfg.TRAIN.LEARNING_RATE, momentum=cfg.TRAIN.MOMENTUM) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[m - args.startepoch for m in cfg.TRAIN.MILESTONES], gamma=cfg.TRAIN.GAMMA) cfg.epochs = args.epochs # main loop for epoch in range(args.startepoch, args.epochs): if args.solver == 'sgd': scheduler.step() # train for one epoch train_segnet(dataloader, network, optimizer, epoch) # save checkpoint if (epoch+1) % cfg.TRAIN.SNAPSHOT_EPOCHS == 0 or epoch == args.epochs - 1: state = network.module.state_dict() infix = ('_' + cfg.TRAIN.SNAPSHOT_INFIX if cfg.TRAIN.SNAPSHOT_INFIX != '' else '') filename = (cfg.TRAIN.SNAPSHOT_PREFIX + infix + '_epoch_{:d}'.format(epoch+1) + '.checkpoint.pth') torch.save(state, os.path.join(output_dir, filename)) print(filename)
6,221
Python
37.645962
154
0.602636
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/tools/plot_epochs.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md import numpy as np import matplotlib.pyplot as plt import numpy as np from matplotlib import rc t = np.arange(start=1, stop=17, step=1) rc('font', weight='bold') # UCN RGB F1_overlap_rgb = (0.206197, 0.357676, 0.345578, 0.455547, 0.457957, 0.502031, 0.457381, 0.518946, 0.552038, 0.520665, \ 0.50691, 0.519003, 0.550123, 0.514964, 0.514002, 0.593742) F1_boundary_rgb = (0.094635, 0.167361, 0.172439, 0.237247, 0.244162, 0.270599, 0.258174, 0.309146, 0.327651, 0.316562, \ 0.322138, 0.311927, 0.344229, 0.308593, 0.329168, 0.364516) percentage_rgb = (0.263843, 0.355614, 0.356287, 0.414091, 0.405764, 0.431488, 0.435723, 0.464883, 0.471861, 0.475419, \ 0.503157, 0.497285, 0.506068, 0.473288, 0.497579, 0.480164) # UCN Depth F1_overlap_depth = (0.632557, 0.745917, 0.775232, 0.802915, 0.82635, 0.834976, 0.843941, 0.836614, 0.857734, 0.858773, \ 0.846244, 0.853272, 0.843275, 0.8384, 0.846614, 0.864338) F1_boundary_depth = (0.219215, 0.327336, 0.414885, 0.471119, 0.590424, 0.615502, 0.668548, 0.656816, 0.714789, 0.726485, \ 0.721683, 0.717682, 0.723354, 0.724921, 0.738028, 0.756031) percentage_depth = (0.463543, 0.572034, 0.607148, 0.654096, 0.700107, 0.700688, 0.72621, 0.719467, 0.76059, 0.751082, \ 0.733714, 0.735936, 0.712744, 0.723239, 0.726254, 0.753693) # UCN RGBD early F1_overlap_rgbd_early = (0.357674, 0.553803, 0.607327, 0.661596, 0.707028, 0.721938, 0.741733, 0.77255, 0.795557, 0.735402, \ 0.806955, 0.758339, 0.800102, 0.815694, 0.799456, 0.828135) F1_boundary_rgbd_early = (0.128438, 0.281023, 0.362007, 0.432142, 0.481427, 0.476286, 0.510337, 0.559285, 0.595986, 0.535778, \ 0.621609, 0.593379, 0.59994, 0.646276, 0.637706, 0.672144) percentage_rgbd_early = (0.290032, 0.420344, 0.497644, 0.555368, 0.597204, 0.576219, 0.598361, 0.665128, 0.687534, 0.635226, \ 0.683646, 0.670646, 0.677623, 0.698645, 0.716388, 0.735246) # UCN RGBD add F1_overlap_rgbd_add = (0.514279, 0.662002, 0.795837, 0.788407, 0.795113, 0.842289, 0.824394, 0.854453, 0.847598, 0.865754, \ 0.855248, 0.85502, 0.857568, 0.856234, 0.840809, 0.884881) F1_boundary_rgbd_add = (0.245276, 0.324417, 0.549822, 0.534663, 0.576119, 0.679746, 0.639074, 0.705335, 0.722362, 0.742819, \ 0.749845, 0.73857, 0.758677, 0.755076, 0.739145, 0.787763) percentage_rgbd_add = (0.491431, 0.538068, 0.661125, 0.675489, 0.695592, 0.742781, 0.731744, 0.744917, 0.736696, 0.766834, \ 0.747862, 0.741274, 0.76629, 0.747441, 0.723242, 0.821638) # UCN RGBD cat F1_overlap_rgbd_cat = (0.441337, 0.591691, 0.747262, 0.727342, 0.807502, 0.817291, 0.816996, 0.827194, 0.831351, 0.841048, \ 0.808059, 0.834401, 0.835638, 0.835728, 0.806224, 0.828991) F1_boundary_rgbd_cat = (0.190999, 0.286006, 0.397822, 0.452141, 0.567425, 0.576083, 0.598294, 0.645848, 0.670346, 0.682605, \ 0.587685, 0.674055, 0.713088, 0.700418, 0.607698, 0.685053) percentage_rgbd_cat = (0.475042, 0.531699, 0.617873, 0.639375, 0.673361, 0.678608, 0.677335, 0.701095, 0.705839, 0.709701, \ 0.662733, 0.7124, 0.724381, 0.71867, 0.676644, 0.682604) # create plot size = 12 fig = plt.figure() ax = fig.add_subplot(1, 1, 1) plt.plot(t, F1_overlap_rgb, marker='o', color='r') plt.plot(t, F1_overlap_depth, marker='o', color='g') plt.plot(t, F1_overlap_rgbd_early, marker='o', color='b') plt.plot(t, F1_overlap_rgbd_add, marker='o', color='c') plt.plot(t, F1_overlap_rgbd_cat, marker='o', color='y') ax.set_title('F Overlap', fontsize=size, fontweight='bold') plt.xticks(t, fontsize=size) plt.yticks(fontsize=size) plt.xlabel('epoch', fontsize=size, fontweight='bold') ax.legend(['UCN RGB', 'UCN Depth', 'UCN RGBD early', 'UCN RGBD add', 'UCN RGBD concat'], fontsize=size) plt.show() fig = plt.figure() ax = fig.add_subplot(1, 1, 1) plt.plot(t, F1_boundary_rgb, marker='o', color='r') plt.plot(t, F1_boundary_depth, marker='o', color='g') plt.plot(t, F1_boundary_rgbd_early, marker='o', color='b') plt.plot(t, F1_boundary_rgbd_add, marker='o', color='c') plt.plot(t, F1_boundary_rgbd_cat, marker='o', color='y') ax.set_title('F Boundary', fontsize=size, fontweight='bold') plt.xticks(t, fontsize=size) plt.yticks(fontsize=size) plt.xlabel('epoch', fontsize=size, fontweight='bold') ax.legend(['UCN RGB', 'UCN Depth', 'UCN RGBD early', 'UCN RGBD add', 'UCN RGBD concat'], fontsize=size) plt.show() fig = plt.figure() ax = fig.add_subplot(1, 1, 1) plt.plot(t, percentage_rgb, marker='o', color='r') plt.plot(t, percentage_depth, marker='o', color='g') plt.plot(t, percentage_rgbd_early, marker='o', color='b') plt.plot(t, percentage_rgbd_add, marker='o', color='c') plt.plot(t, percentage_rgbd_cat, marker='o', color='y') ax.set_title('%75', fontsize=size, fontweight='bold') plt.xticks(t, fontsize=size) plt.yticks(fontsize=size) plt.xlabel('epoch', fontsize=size, fontweight='bold') ax.legend(['UCN RGB', 'UCN Depth', 'UCN RGBD early', 'UCN RGBD add', 'UCN RGBD concat'], fontsize=size) plt.show()
5,347
Python
48.06422
127
0.649523
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/tools/_init_paths.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md """Set up paths for UCN""" import os.path as osp import sys def add_path(path): if path not in sys.path: sys.path.insert(0, path) this_dir = osp.dirname(__file__) # Add lib to PYTHONPATH lib_path = osp.join(this_dir, '..', 'lib') add_path(lib_path)
446
Python
22.526315
83
0.690583
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/tools/plot_bar_charts.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md import numpy as np import matplotlib.pyplot as plt # data to plot n_groups = 4 # F1_maskrcnn = (62.7, 84.7, 78.1, 76.6, 76.0) # F1_ours = (59.4, 86.4, 82.8, 88.5, 82.9) # F1_maskrcnn = (54.6, 78.8, 70.8, 64.3, 64.7) # F1_ours = (36.5, 75.6, 67.2, 78.8, 68.5) # F1_maskrcnn = (59.4, 86.4, 82.8, 88.5, 82.9) # F1_ours = (58.1, 86.4, 84.0, 87.8, 85.1) # F1_maskrcnn = (36.5, 75.6, 67.2, 78.8, 68.5) # F1_ours = (40.8, 79.6, 72.5, 82.3, 78.3) # F1_overlap = (84.7, 81.7, 86.4, 87.8) # F1_boundary = (78.8, 71.4, 76.2, 82.3) # percentage = (72.7, 69.1, 77.2, 85.6) F1_overlap = (80.6, 79.9, 83.3, 87.4) F1_boundary = (54.6, 65.6, 71.2, 69.4) percentage = (77.6, 71.9, 73.8, 83.2) # create plot fig, ax = plt.subplots() index = np.arange(n_groups) bar_width = 0.2 opacity = 0.8 rects1 = plt.bar(index, F1_overlap, bar_width, alpha=opacity, color='b', label='F1_overlap') rects2 = plt.bar(index + bar_width, F1_boundary, bar_width, alpha=opacity, color='g', label='F1_boundary') rects3 = plt.bar(index + 2 * bar_width, percentage, bar_width, alpha=opacity, color='r', label='%75') plt.xlabel('Methods') # plt.ylabel('F1 boundary') plt.title('OSD (111 images)') plt.xticks(index + bar_width, ('MRCNN Depth', 'UOIS-2D', 'UOIS-3D', 'Ours')) plt.legend(loc='lower left') labels = F1_overlap for i, v in enumerate(labels): ax.text(i-.2, v+1, labels[i], fontsize=12, color='k') labels = F1_boundary for i, v in enumerate(labels): ax.text(i+.1, v+1, labels[i], fontsize=12, color='k') labels = percentage for i, v in enumerate(labels): ax.text(i+.35, v+1, labels[i], fontsize=12, color='k') plt.tight_layout() plt.show()
1,952
Python
22.817073
83
0.587602
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/tools/dataset_statistics.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md import os import os.path import torch import cv2 import numpy as np import glob import random import math from transforms3d.quaternions import mat2quat, quat2mat import _init_paths from datasets import OCIDObject, OSDObject import matplotlib.pyplot as plt from utils import mask as util_ if __name__ == '__main__': dataset = OSDObject('test') num = dataset._size num_objects = [] for i in range(num): filename = str(dataset.image_files[i]) # labels_filename = filename.replace('rgb', 'label') labels_filename = filename.replace('image_color', 'annotation') foreground_labels = util_.imread_indexed(labels_filename) # mask table as background foreground_labels[foreground_labels == 1] = 0 if 'table' in labels_filename: foreground_labels[foreground_labels == 2] = 0 foreground_labels = dataset.process_label(foreground_labels) n = len(np.unique(foreground_labels)) - 1 num_objects.append(n) print(labels_filename, n) nums = np.array(num_objects) print('min: %d' % (np.min(nums))) print('max: %d' % (np.max(nums))) print('mean: %f' % (np.mean(nums)))
1,366
Python
30.790697
83
0.669839
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/tools/test_npy.py
#!/usr/bin/env python3 # Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md """Test a PoseCNN on images""" import torch import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.utils.data import argparse import pprint import time, os, sys import os.path as osp import numpy as np import cv2 import scipy.io import glob import json import _init_paths from fcn.test_dataset import test_sample from fcn.config import cfg, cfg_from_file, get_output_dir import networks from utils.blob import pad_im from utils import mask as util_ def parse_args(): """ Parse input arguments """ parser = argparse.ArgumentParser(description='Test a Unseen Clustering Network') parser.add_argument('--gpu', dest='gpu_id', help='GPU id to use', default=0, type=int) parser.add_argument('--pretrained', dest='pretrained', help='initialize with pretrained checkpoint', default=None, type=str) parser.add_argument('--pretrained_crop', dest='pretrained_crop', help='initialize with pretrained checkpoint for crops', default=None, type=str) parser.add_argument('--cfg', dest='cfg_file', help='optional config file', default=None, type=str) parser.add_argument('--dataset', dest='dataset_name', help='dataset to train on', default='shapenet_scene_train', type=str) parser.add_argument('--imgdir', dest='imgdir', help='path of the directory with the test images', default=None, type=str) parser.add_argument('--rand', dest='randomize', help='randomize (do not use a fixed seed)', action='store_true') parser.add_argument('--network', dest='network_name', help='name of the network', default=None, type=str) parser.add_argument('--network_cor', dest='network_name_cor', help='name of the network correspondences', default=None, type=str) parser.add_argument('--background', dest='background_name', help='name of the background file', default=None, type=str) parser.add_argument('--image_path', dest='image_path', help='path to images', default=None, type=str) if len(sys.argv) == 1: parser.print_help() sys.exit(1) args = parser.parse_args() return args # save data def save_data(file_rgb, out_label_refined, roi, features_crop): # meta data ''' meta = {'roi': roi, 'features': features_crop.cpu().detach().numpy(), 'labels': out_label_refined.cpu().detach().numpy()} filename = file_rgb[:-9] + 'meta.mat' scipy.io.savemat(filename, meta, do_compression=True) print('save data to {}'.format(filename)) ''' # segmentation labels label_save = out_label_refined.cpu().detach().numpy()[0] label_save = np.clip(label_save, 0, 1) * 255 label_save = label_save.astype(np.uint8) filename = file_rgb[:-4] + '-label.png' cv2.imwrite(filename, label_save) print('save data to {}'.format(filename)) def compute_xyz(depth_img, fx, fy, px, py, height, width): indices = util_.build_matrix_of_indices(height, width) z_e = depth_img x_e = (indices[..., 1] - px) * z_e / fx y_e = (indices[..., 0] - py) * z_e / fy xyz_img = np.stack([x_e, y_e, z_e], axis=-1) # Shape: [H x W x 3] return xyz_img def read_sample(filename, camera_params): # support two types of npy files here d = np.load(filename, allow_pickle=True, encoding="latin1").item() if "debug_info" in d.keys(): intrinsics = d["debug_info"]["intrinsics"] depth_img = d["debug_info"]["depth_image"] rgb_image = d["debug_info"]["rgb"] fx = intrinsics[0, 0] fy = intrinsics[1, 1] px = intrinsics[0, 2] py = intrinsics[1, 2] else: depth_img = d['depth'].astype(np.float32) / 1000.0 rgb_image = d['rgb'] fx = camera_params['fx'] fy = camera_params['fy'] px = camera_params['x_offset'] py = camera_params['y_offset'] height = rgb_image.shape[0] width = rgb_image.shape[1] # bgr image im = rgb_image.astype(np.float32) im = im[:, :, (2, 1, 0)] # xyz image xyz_img = compute_xyz(depth_img, fx, fy, px, py, height, width) im_tensor = torch.from_numpy(im) / 255.0 pixel_mean = torch.tensor(cfg.PIXEL_MEANS / 255.0).float() im_tensor -= pixel_mean image_blob = im_tensor.permute(2, 0, 1) sample = {'image_color': image_blob.unsqueeze(0)} if cfg.INPUT == 'DEPTH' or cfg.INPUT == 'RGBD': depth_blob = torch.from_numpy(xyz_img).permute(2, 0, 1) sample['depth'] = depth_blob.unsqueeze(0) return sample if __name__ == '__main__': args = parse_args() print('Called with args:') print(args) if args.cfg_file is not None: cfg_from_file(args.cfg_file) if len(cfg.TEST.CLASSES) == 0: cfg.TEST.CLASSES = cfg.TRAIN.CLASSES print('Using config:') pprint.pprint(cfg) if not args.randomize: # fix the random seeds (numpy and caffe) for reproducibility np.random.seed(cfg.RNG_SEED) # device cfg.gpu_id = 0 cfg.device = torch.device('cuda:{:d}'.format(cfg.gpu_id)) cfg.instance_id = 0 num_classes = 2 cfg.MODE = 'TEST' print('GPU device {:d}'.format(args.gpu_id)) # list images images = [] filename = os.path.join(args.imgdir, '*.npy') files = glob.glob(filename) for i in range(len(files)): filename = files[i] images.append(filename) images.sort() # check if intrinsics available filename = os.path.join(args.imgdir, 'camera_params.json') if os.path.exists(filename): with open(filename) as f: camera_params = json.load(f) else: camera_params = None # prepare network if args.pretrained: network_data = torch.load(args.pretrained) print("=> using pre-trained network '{}'".format(args.pretrained)) else: network_data = None print("no pretrained network specified") sys.exit() network = networks.__dict__[args.network_name](num_classes, cfg.TRAIN.NUM_UNITS, network_data).cuda(device=cfg.device) network = torch.nn.DataParallel(network, device_ids=[cfg.gpu_id]).cuda(device=cfg.device) cudnn.benchmark = True network.eval() if args.pretrained_crop: network_data_crop = torch.load(args.pretrained_crop) network_crop = networks.__dict__[args.network_name](num_classes, cfg.TRAIN.NUM_UNITS, network_data_crop).cuda(device=cfg.device) network_crop = torch.nn.DataParallel(network_crop, device_ids=[cfg.gpu_id]).cuda(device=cfg.device) network_crop.eval() else: network_crop = None if cfg.TEST.VISUALIZE: index_images = np.random.permutation(len(images)) else: index_images = range(len(images)) for i in index_images: if os.path.exists(images[i]): # read sample sample = read_sample(images[i], camera_params) # run network out_label, out_label_refined = test_sample(sample, network, network_crop) else: print('files not exist %s' % (images[i]))
7,619
Python
32.716814
136
0.60021
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/experiments/cfgs/seg_resnet34_8s_embedding_cosine_rgbd_add_crop_tabletop.yml
EXP_DIR: tabletop_object INPUT: RGBD TRAIN: TRAINABLE: True WEIGHT_DECAY: 0.0005 LEARNING_RATE: 0.00001 MILESTONES: !!python/tuple [3] MOMENTUM: 0.9 BETA: 0.999 GAMMA: 0.1 SCALES_BASE: !!python/tuple [1.0] IMS_PER_BATCH: 16 NUM_UNITS: 64 HARD_LABEL_THRESHOLD: 0.9 HARD_LABEL_SAMPLING: 0.0 HARD_ANGLE: 5.0 HOUGH_LABEL_THRESHOLD: 100 HOUGH_VOTING_THRESHOLD: 10 HOUGH_SKIP_PIXELS: 10 FG_THRESH: 0.5 FG_THRESH_POSE: 0.5 SNAPSHOT_INFIX: resnet34_8s_embedding_cosine_rgbd_add_crop_sampling SNAPSHOT_EPOCHS: 1 SNAPSHOT_PREFIX: seg USE_FLIPPED: False CHROMATIC: True ADD_NOISE: True VISUALIZE: False VERTEX_REG: True POSE_REG: False # no rotation regression SLIM: True CHANGE_BACKGROUND: False FUSION_TYPE: add # synthetic data SYN_CROP: True SYN_CROP_SIZE: 224 min_padding_percentage: 0.1 max_padding_percentage: 0.5 SYNTHESIZE: True SYNNUM: 80000 SYN_RATIO: 5 SYN_BACKGROUND_SPECIFIC: False SYN_BACKGROUND_SUBTRACT_MEAN: True SYN_BACKGROUND_CONSTANT_PROB: 0.2 SYN_TABLE_PROB: 0.9 SYN_SAMPLE_OBJECT: True SYN_SAMPLE_POSE: False SYN_MIN_OBJECT: 3 SYN_MAX_OBJECT: 5 SYN_TNEAR: 0.2 SYN_TFAR: 0.6 SYN_BOUND: 0.05 SYN_STD_ROTATION: 15 SYN_STD_TRANSLATION: 0.05 # embedding training parameters EMBEDDING_PRETRAIN: True EMBEDDING_SAMPLING: True EMBEDDING_SAMPLING_NUM: 1000 EMBEDDING_NORMALIZATION: True EMBEDDING_METRIC: cosine EMBEDDING_ALPHA: 0.02 EMBEDDING_DELTA: 0.5 EMBEDDING_LAMBDA_INTRA: 10.0 EMBEDDING_LAMBDA_INTER: 10.0 TEST: SINGLE_FRAME: True HOUGH_LABEL_THRESHOLD: 400 HOUGH_VOTING_THRESHOLD: 10 IMS_PER_BATCH: 1 HOUGH_SKIP_PIXELS: 10 DET_THRESHOLD: 0.1 SCALES_BASE: !!python/tuple [1.0] VISUALIZE: False SYNTHESIZE: True POSE_REFINE: False ROS_CAMERA: D415
1,807
YAML
22.480519
69
0.71057
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/experiments/cfgs/seg_resnet34_8s_embedding_cosine_rgbd_early_tabletop.yml
EXP_DIR: tabletop_object INPUT: RGBD TRAIN: TRAINABLE: True WEIGHT_DECAY: 0.0005 LEARNING_RATE: 0.00001 MILESTONES: !!python/tuple [3] MOMENTUM: 0.9 BETA: 0.999 GAMMA: 0.1 SCALES_BASE: !!python/tuple [1.0] IMS_PER_BATCH: 16 NUM_UNITS: 64 HARD_LABEL_THRESHOLD: 0.9 HARD_LABEL_SAMPLING: 0.0 HARD_ANGLE: 5.0 HOUGH_LABEL_THRESHOLD: 100 HOUGH_VOTING_THRESHOLD: 10 HOUGH_SKIP_PIXELS: 10 FG_THRESH: 0.5 FG_THRESH_POSE: 0.5 SNAPSHOT_INFIX: resnet34_8s_embedding_cosine_rgbd_early_sampling SNAPSHOT_EPOCHS: 1 SNAPSHOT_PREFIX: seg USE_FLIPPED: False CHROMATIC: True ADD_NOISE: True VISUALIZE: False VERTEX_REG: True POSE_REG: False # no rotation regression SLIM: True CHANGE_BACKGROUND: False FUSION_TYPE: early # synthetic data SYNTHESIZE: True SYNNUM: 80000 SYN_RATIO: 5 SYN_BACKGROUND_SPECIFIC: False SYN_BACKGROUND_SUBTRACT_MEAN: True SYN_BACKGROUND_CONSTANT_PROB: 0.2 SYN_TABLE_PROB: 0.9 SYN_SAMPLE_OBJECT: True SYN_SAMPLE_POSE: False SYN_MIN_OBJECT: 3 SYN_MAX_OBJECT: 5 SYN_TNEAR: 0.2 SYN_TFAR: 0.6 SYN_BOUND: 0.05 SYN_STD_ROTATION: 15 SYN_STD_TRANSLATION: 0.05 # embedding training parameters EMBEDDING_PRETRAIN: False EMBEDDING_SAMPLING: True EMBEDDING_SAMPLING_NUM: 1000 EMBEDDING_NORMALIZATION: True EMBEDDING_METRIC: cosine EMBEDDING_ALPHA: 0.02 EMBEDDING_DELTA: 0.5 EMBEDDING_LAMBDA_INTRA: 10.0 EMBEDDING_LAMBDA_INTER: 10.0 TEST: SINGLE_FRAME: True HOUGH_LABEL_THRESHOLD: 400 HOUGH_VOTING_THRESHOLD: 10 IMS_PER_BATCH: 1 HOUGH_SKIP_PIXELS: 10 DET_THRESHOLD: 0.1 SCALES_BASE: !!python/tuple [1.0] VISUALIZE: True SYNTHESIZE: True POSE_REFINE: False ROS_CAMERA: D415
1,708
YAML
22.410959
66
0.711358
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/experiments/cfgs/seg_resnet34_8s_embedding_cosine_rgbd_add_tabletop.yml
EXP_DIR: tabletop_object INPUT: RGBD TRAIN: TRAINABLE: True WEIGHT_DECAY: 0.0005 LEARNING_RATE: 0.00001 MILESTONES: !!python/tuple [3] MOMENTUM: 0.9 BETA: 0.999 GAMMA: 0.1 SCALES_BASE: !!python/tuple [1.0] IMS_PER_BATCH: 16 NUM_UNITS: 64 HARD_LABEL_THRESHOLD: 0.9 HARD_LABEL_SAMPLING: 0.0 HARD_ANGLE: 5.0 HOUGH_LABEL_THRESHOLD: 100 HOUGH_VOTING_THRESHOLD: 10 HOUGH_SKIP_PIXELS: 10 FG_THRESH: 0.5 FG_THRESH_POSE: 0.5 SNAPSHOT_INFIX: resnet34_8s_embedding_cosine_rgbd_add_sampling SNAPSHOT_EPOCHS: 1 SNAPSHOT_PREFIX: seg USE_FLIPPED: False CHROMATIC: True ADD_NOISE: True VISUALIZE: False VERTEX_REG: True POSE_REG: False # no rotation regression SLIM: True CHANGE_BACKGROUND: False FUSION_TYPE: add # synthetic data SYNTHESIZE: True SYNNUM: 80000 SYN_RATIO: 5 SYN_BACKGROUND_SPECIFIC: False SYN_BACKGROUND_SUBTRACT_MEAN: True SYN_BACKGROUND_CONSTANT_PROB: 0.2 SYN_TABLE_PROB: 0.9 SYN_SAMPLE_OBJECT: True SYN_SAMPLE_POSE: False SYN_MIN_OBJECT: 3 SYN_MAX_OBJECT: 5 SYN_TNEAR: 0.2 SYN_TFAR: 0.6 SYN_BOUND: 0.05 SYN_STD_ROTATION: 15 SYN_STD_TRANSLATION: 0.05 # embedding training parameters EMBEDDING_PRETRAIN: True EMBEDDING_SAMPLING: True EMBEDDING_SAMPLING_NUM: 1000 EMBEDDING_NORMALIZATION: True EMBEDDING_METRIC: cosine EMBEDDING_ALPHA: 0.02 EMBEDDING_DELTA: 0.5 EMBEDDING_LAMBDA_INTRA: 10.0 EMBEDDING_LAMBDA_INTER: 10.0 TEST: SINGLE_FRAME: True HOUGH_LABEL_THRESHOLD: 400 HOUGH_VOTING_THRESHOLD: 10 IMS_PER_BATCH: 1 HOUGH_SKIP_PIXELS: 10 DET_THRESHOLD: 0.1 SCALES_BASE: !!python/tuple [1.0] VISUALIZE: True SYNTHESIZE: True POSE_REFINE: False ROS_CAMERA: D415
1,703
YAML
22.342465
64
0.710511
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/experiments/cfgs/seg_resnet34_8s_embedding_cosine_depth_crop_tabletop.yml
EXP_DIR: tabletop_object INPUT: DEPTH TRAIN: TRAINABLE: True WEIGHT_DECAY: 0.0005 LEARNING_RATE: 0.00001 MILESTONES: !!python/tuple [3] MOMENTUM: 0.9 BETA: 0.999 GAMMA: 0.1 SCALES_BASE: !!python/tuple [1.0] IMS_PER_BATCH: 16 NUM_UNITS: 64 HARD_LABEL_THRESHOLD: 0.9 HARD_LABEL_SAMPLING: 0.0 HARD_ANGLE: 5.0 HOUGH_LABEL_THRESHOLD: 100 HOUGH_VOTING_THRESHOLD: 10 HOUGH_SKIP_PIXELS: 10 FG_THRESH: 0.5 FG_THRESH_POSE: 0.5 SNAPSHOT_INFIX: resnet34_8s_embedding_cosine_depth_crop_sampling SNAPSHOT_EPOCHS: 1 SNAPSHOT_PREFIX: seg USE_FLIPPED: False CHROMATIC: True ADD_NOISE: True VISUALIZE: False VERTEX_REG: True POSE_REG: False # no rotation regression SLIM: True CHANGE_BACKGROUND: False # synthetic data SYN_CROP: True SYN_CROP_SIZE: 224 min_padding_percentage: 0.1 max_padding_percentage: 0.5 SYNTHESIZE: True SYNNUM: 80000 SYN_RATIO: 5 SYN_BACKGROUND_SPECIFIC: False SYN_BACKGROUND_SUBTRACT_MEAN: True SYN_BACKGROUND_CONSTANT_PROB: 0.2 SYN_TABLE_PROB: 0.9 SYN_SAMPLE_OBJECT: True SYN_SAMPLE_POSE: False SYN_MIN_OBJECT: 3 SYN_MAX_OBJECT: 5 SYN_TNEAR: 0.2 SYN_TFAR: 0.6 SYN_BOUND: 0.05 SYN_STD_ROTATION: 15 SYN_STD_TRANSLATION: 0.05 # embedding training parameters EMBEDDING_PRETRAIN: False EMBEDDING_SAMPLING: True EMBEDDING_SAMPLING_NUM: 1000 EMBEDDING_NORMALIZATION: True EMBEDDING_METRIC: cosine EMBEDDING_ALPHA: 0.02 EMBEDDING_DELTA: 0.5 EMBEDDING_LAMBDA_INTRA: 10.0 EMBEDDING_LAMBDA_INTER: 10.0 TEST: SINGLE_FRAME: True HOUGH_LABEL_THRESHOLD: 400 HOUGH_VOTING_THRESHOLD: 10 IMS_PER_BATCH: 1 HOUGH_SKIP_PIXELS: 10 DET_THRESHOLD: 0.1 SCALES_BASE: !!python/tuple [1.0] VISUALIZE: False SYNTHESIZE: True POSE_REFINE: False ROS_CAMERA: D415
1,787
YAML
22.526315
66
0.711248
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/experiments/cfgs/seg_resnet34_8s_embedding_cosine_rgbd_cat_crop_tabletop.yml
EXP_DIR: tabletop_object INPUT: RGBD TRAIN: TRAINABLE: True WEIGHT_DECAY: 0.0005 LEARNING_RATE: 0.00001 MILESTONES: !!python/tuple [3] MOMENTUM: 0.9 BETA: 0.999 GAMMA: 0.1 SCALES_BASE: !!python/tuple [1.0] IMS_PER_BATCH: 16 NUM_UNITS: 64 HARD_LABEL_THRESHOLD: 0.9 HARD_LABEL_SAMPLING: 0.0 HARD_ANGLE: 5.0 HOUGH_LABEL_THRESHOLD: 100 HOUGH_VOTING_THRESHOLD: 10 HOUGH_SKIP_PIXELS: 10 FG_THRESH: 0.5 FG_THRESH_POSE: 0.5 SNAPSHOT_INFIX: resnet34_8s_embedding_cosine_rgbd_cat_crop_sampling SNAPSHOT_EPOCHS: 1 SNAPSHOT_PREFIX: seg USE_FLIPPED: False CHROMATIC: True ADD_NOISE: True VISUALIZE: False VERTEX_REG: True POSE_REG: False # no rotation regression SLIM: True CHANGE_BACKGROUND: False FUSION_TYPE: cat # synthetic data SYN_CROP: True SYN_CROP_SIZE: 224 min_padding_percentage: 0.1 max_padding_percentage: 0.5 SYNTHESIZE: True SYNNUM: 80000 SYN_RATIO: 5 SYN_BACKGROUND_SPECIFIC: False SYN_BACKGROUND_SUBTRACT_MEAN: True SYN_BACKGROUND_CONSTANT_PROB: 0.2 SYN_TABLE_PROB: 0.9 SYN_SAMPLE_OBJECT: True SYN_SAMPLE_POSE: False SYN_MIN_OBJECT: 3 SYN_MAX_OBJECT: 5 SYN_TNEAR: 0.2 SYN_TFAR: 0.6 SYN_BOUND: 0.05 SYN_STD_ROTATION: 15 SYN_STD_TRANSLATION: 0.05 # embedding training parameters EMBEDDING_PRETRAIN: True EMBEDDING_SAMPLING: True EMBEDDING_SAMPLING_NUM: 1000 EMBEDDING_NORMALIZATION: True EMBEDDING_METRIC: cosine EMBEDDING_ALPHA: 0.02 EMBEDDING_DELTA: 0.5 EMBEDDING_LAMBDA_INTRA: 10.0 EMBEDDING_LAMBDA_INTER: 10.0 TEST: SINGLE_FRAME: True HOUGH_LABEL_THRESHOLD: 400 HOUGH_VOTING_THRESHOLD: 10 IMS_PER_BATCH: 1 HOUGH_SKIP_PIXELS: 10 DET_THRESHOLD: 0.1 SCALES_BASE: !!python/tuple [1.0] VISUALIZE: True SYNTHESIZE: True POSE_REFINE: False ROS_CAMERA: D415
1,806
YAML
22.467532
69
0.71041
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/experiments/cfgs/seg_resnet34_8s_embedding_cosine_rgbd_early_crop_tabletop.yml
EXP_DIR: tabletop_object INPUT: RGBD TRAIN: TRAINABLE: True WEIGHT_DECAY: 0.0005 LEARNING_RATE: 0.00001 MILESTONES: !!python/tuple [3] MOMENTUM: 0.9 BETA: 0.999 GAMMA: 0.1 SCALES_BASE: !!python/tuple [1.0] IMS_PER_BATCH: 16 NUM_UNITS: 64 HARD_LABEL_THRESHOLD: 0.9 HARD_LABEL_SAMPLING: 0.0 HARD_ANGLE: 5.0 HOUGH_LABEL_THRESHOLD: 100 HOUGH_VOTING_THRESHOLD: 10 HOUGH_SKIP_PIXELS: 10 FG_THRESH: 0.5 FG_THRESH_POSE: 0.5 SNAPSHOT_INFIX: resnet34_8s_embedding_cosine_rgbd_early_crop_sampling SNAPSHOT_EPOCHS: 1 SNAPSHOT_PREFIX: seg USE_FLIPPED: False CHROMATIC: True ADD_NOISE: True VISUALIZE: False VERTEX_REG: True POSE_REG: False # no rotation regression SLIM: True CHANGE_BACKGROUND: False FUSION_TYPE: early # synthetic data SYN_CROP: True SYN_CROP_SIZE: 224 min_padding_percentage: 0.1 max_padding_percentage: 0.5 SYNTHESIZE: True SYNNUM: 80000 SYN_RATIO: 5 SYN_BACKGROUND_SPECIFIC: False SYN_BACKGROUND_SUBTRACT_MEAN: True SYN_BACKGROUND_CONSTANT_PROB: 0.2 SYN_TABLE_PROB: 0.9 SYN_SAMPLE_OBJECT: True SYN_SAMPLE_POSE: False SYN_MIN_OBJECT: 3 SYN_MAX_OBJECT: 5 SYN_TNEAR: 0.2 SYN_TFAR: 0.6 SYN_BOUND: 0.05 SYN_STD_ROTATION: 15 SYN_STD_TRANSLATION: 0.05 # embedding training parameters EMBEDDING_PRETRAIN: False EMBEDDING_SAMPLING: True EMBEDDING_SAMPLING_NUM: 1000 EMBEDDING_NORMALIZATION: True EMBEDDING_METRIC: cosine EMBEDDING_ALPHA: 0.02 EMBEDDING_DELTA: 0.5 EMBEDDING_LAMBDA_INTRA: 10.0 EMBEDDING_LAMBDA_INTER: 10.0 TEST: SINGLE_FRAME: True HOUGH_LABEL_THRESHOLD: 400 HOUGH_VOTING_THRESHOLD: 10 IMS_PER_BATCH: 1 HOUGH_SKIP_PIXELS: 10 DET_THRESHOLD: 0.1 SCALES_BASE: !!python/tuple [1.0] VISUALIZE: True SYNTHESIZE: True POSE_REFINE: False ROS_CAMERA: D415
1,811
YAML
22.532467
71
0.711209
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/experiments/cfgs/seg_resnet34_8s_embedding_cosine_color_crop_tabletop.yml
EXP_DIR: tabletop_object INPUT: COLOR TRAIN: TRAINABLE: True WEIGHT_DECAY: 0.0005 LEARNING_RATE: 0.00001 MILESTONES: !!python/tuple [3] MOMENTUM: 0.9 BETA: 0.999 GAMMA: 0.1 SCALES_BASE: !!python/tuple [1.0] IMS_PER_BATCH: 16 NUM_UNITS: 64 HARD_LABEL_THRESHOLD: 0.9 HARD_LABEL_SAMPLING: 0.0 HARD_ANGLE: 5.0 HOUGH_LABEL_THRESHOLD: 100 HOUGH_VOTING_THRESHOLD: 10 HOUGH_SKIP_PIXELS: 10 FG_THRESH: 0.5 FG_THRESH_POSE: 0.5 SNAPSHOT_INFIX: resnet34_8s_embedding_cosine_color_crop_sampling SNAPSHOT_EPOCHS: 1 SNAPSHOT_PREFIX: seg USE_FLIPPED: False CHROMATIC: True ADD_NOISE: True VISUALIZE: False VERTEX_REG: True POSE_REG: False # no rotation regression SLIM: True CHANGE_BACKGROUND: False # synthetic data SYN_CROP: True SYN_CROP_SIZE: 224 min_padding_percentage: 0.1 max_padding_percentage: 0.5 SYNTHESIZE: True SYNNUM: 80000 SYN_RATIO: 5 SYN_BACKGROUND_SPECIFIC: False SYN_BACKGROUND_SUBTRACT_MEAN: True SYN_BACKGROUND_CONSTANT_PROB: 0.2 SYN_TABLE_PROB: 0.9 SYN_SAMPLE_OBJECT: True SYN_SAMPLE_POSE: False SYN_MIN_OBJECT: 3 SYN_MAX_OBJECT: 5 SYN_TNEAR: 0.2 SYN_TFAR: 0.6 SYN_BOUND: 0.05 SYN_STD_ROTATION: 15 SYN_STD_TRANSLATION: 0.05 # embedding training parameters EMBEDDING_PRETRAIN: True EMBEDDING_SAMPLING: True EMBEDDING_SAMPLING_NUM: 1000 EMBEDDING_NORMALIZATION: True EMBEDDING_METRIC: cosine EMBEDDING_ALPHA: 0.02 EMBEDDING_DELTA: 0.5 EMBEDDING_LAMBDA_INTRA: 10.0 EMBEDDING_LAMBDA_INTER: 10.0 TEST: SINGLE_FRAME: True HOUGH_LABEL_THRESHOLD: 400 HOUGH_VOTING_THRESHOLD: 10 IMS_PER_BATCH: 1 HOUGH_SKIP_PIXELS: 10 DET_THRESHOLD: 0.1 SCALES_BASE: !!python/tuple [1.0] VISUALIZE: False SYNTHESIZE: True POSE_REFINE: False ROS_CAMERA: D415
1,786
YAML
22.513158
66
0.711086
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/experiments/cfgs/seg_resnet34_8s_embedding_cosine_color_tabletop.yml
EXP_DIR: tabletop_object INPUT: COLOR TRAIN: TRAINABLE: True WEIGHT_DECAY: 0.0005 LEARNING_RATE: 0.00001 MILESTONES: !!python/tuple [3] MOMENTUM: 0.9 BETA: 0.999 GAMMA: 0.1 SCALES_BASE: !!python/tuple [1.0] IMS_PER_BATCH: 16 NUM_UNITS: 64 HARD_LABEL_THRESHOLD: 0.9 HARD_LABEL_SAMPLING: 0.0 HARD_ANGLE: 5.0 HOUGH_LABEL_THRESHOLD: 100 HOUGH_VOTING_THRESHOLD: 10 HOUGH_SKIP_PIXELS: 10 FG_THRESH: 0.5 FG_THRESH_POSE: 0.5 SNAPSHOT_INFIX: resnet34_8s_embedding_cosine_color_sampling SNAPSHOT_EPOCHS: 1 SNAPSHOT_PREFIX: seg USE_FLIPPED: False CHROMATIC: True ADD_NOISE: True VISUALIZE: False VERTEX_REG: True POSE_REG: False # no rotation regression SLIM: True CHANGE_BACKGROUND: False # synthetic data SYNTHESIZE: True SYNNUM: 80000 SYN_RATIO: 5 SYN_BACKGROUND_SPECIFIC: False SYN_BACKGROUND_SUBTRACT_MEAN: True SYN_BACKGROUND_CONSTANT_PROB: 0.2 SYN_TABLE_PROB: 0.9 SYN_SAMPLE_OBJECT: True SYN_SAMPLE_POSE: False SYN_MIN_OBJECT: 3 SYN_MAX_OBJECT: 5 SYN_TNEAR: 0.2 SYN_TFAR: 0.6 SYN_BOUND: 0.05 SYN_STD_ROTATION: 15 SYN_STD_TRANSLATION: 0.05 # embedding training parameters EMBEDDING_PRETRAIN: True EMBEDDING_SAMPLING: True EMBEDDING_SAMPLING_NUM: 1000 EMBEDDING_NORMALIZATION: True EMBEDDING_METRIC: cosine EMBEDDING_ALPHA: 0.02 EMBEDDING_DELTA: 0.5 EMBEDDING_LAMBDA_INTRA: 10.0 EMBEDDING_LAMBDA_INTER: 10.0 TEST: SINGLE_FRAME: True HOUGH_LABEL_THRESHOLD: 400 HOUGH_VOTING_THRESHOLD: 10 IMS_PER_BATCH: 1 HOUGH_SKIP_PIXELS: 10 DET_THRESHOLD: 0.1 SCALES_BASE: !!python/tuple [1.0] VISUALIZE: True SYNTHESIZE: True POSE_REFINE: False ROS_CAMERA: D415
1,682
YAML
22.375
61
0.711058
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/experiments/cfgs/seg_resnet34_8s_embedding_cosine_depth_tabletop.yml
EXP_DIR: tabletop_object INPUT: DEPTH TRAIN: TRAINABLE: True WEIGHT_DECAY: 0.0005 LEARNING_RATE: 0.00001 MILESTONES: !!python/tuple [3] MOMENTUM: 0.9 BETA: 0.999 GAMMA: 0.1 SCALES_BASE: !!python/tuple [1.0] IMS_PER_BATCH: 16 NUM_UNITS: 64 HARD_LABEL_THRESHOLD: 0.9 HARD_LABEL_SAMPLING: 0.0 HARD_ANGLE: 5.0 HOUGH_LABEL_THRESHOLD: 100 HOUGH_VOTING_THRESHOLD: 10 HOUGH_SKIP_PIXELS: 10 FG_THRESH: 0.5 FG_THRESH_POSE: 0.5 SNAPSHOT_INFIX: resnet34_8s_embedding_cosine_depth_sampling SNAPSHOT_EPOCHS: 1 SNAPSHOT_PREFIX: seg USE_FLIPPED: False CHROMATIC: True ADD_NOISE: True VISUALIZE: False VERTEX_REG: True POSE_REG: False # no rotation regression SLIM: True CHANGE_BACKGROUND: False # synthetic data SYNTHESIZE: True SYNNUM: 80000 SYN_RATIO: 5 SYN_BACKGROUND_SPECIFIC: False SYN_BACKGROUND_SUBTRACT_MEAN: True SYN_BACKGROUND_CONSTANT_PROB: 0.2 SYN_TABLE_PROB: 0.9 SYN_SAMPLE_OBJECT: True SYN_SAMPLE_POSE: False SYN_MIN_OBJECT: 3 SYN_MAX_OBJECT: 5 SYN_TNEAR: 0.2 SYN_TFAR: 0.6 SYN_BOUND: 0.05 SYN_STD_ROTATION: 15 SYN_STD_TRANSLATION: 0.05 # embedding training parameters EMBEDDING_PRETRAIN: False EMBEDDING_SAMPLING: True EMBEDDING_SAMPLING_NUM: 1000 EMBEDDING_NORMALIZATION: True EMBEDDING_METRIC: cosine EMBEDDING_ALPHA: 0.02 EMBEDDING_DELTA: 0.5 EMBEDDING_LAMBDA_INTRA: 10.0 EMBEDDING_LAMBDA_INTER: 10.0 TEST: SINGLE_FRAME: True HOUGH_LABEL_THRESHOLD: 400 HOUGH_VOTING_THRESHOLD: 10 IMS_PER_BATCH: 1 HOUGH_SKIP_PIXELS: 10 DET_THRESHOLD: 0.1 SCALES_BASE: !!python/tuple [1.0] VISUALIZE: True SYNTHESIZE: True POSE_REFINE: False ROS_CAMERA: D415
1,683
YAML
22.388889
61
0.71123
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/experiments/cfgs/seg_resnet34_8s_embedding_cosine_rgbd_cat_tabletop.yml
EXP_DIR: tabletop_object INPUT: RGBD TRAIN: TRAINABLE: True WEIGHT_DECAY: 0.0005 LEARNING_RATE: 0.00001 MILESTONES: !!python/tuple [3] MOMENTUM: 0.9 BETA: 0.999 GAMMA: 0.1 SCALES_BASE: !!python/tuple [1.0] IMS_PER_BATCH: 12 NUM_UNITS: 64 HARD_LABEL_THRESHOLD: 0.9 HARD_LABEL_SAMPLING: 0.0 HARD_ANGLE: 5.0 HOUGH_LABEL_THRESHOLD: 100 HOUGH_VOTING_THRESHOLD: 10 HOUGH_SKIP_PIXELS: 10 FG_THRESH: 0.5 FG_THRESH_POSE: 0.5 SNAPSHOT_INFIX: resnet34_8s_embedding_cosine_rgbd_cat_sampling SNAPSHOT_EPOCHS: 1 SNAPSHOT_PREFIX: seg USE_FLIPPED: False CHROMATIC: True ADD_NOISE: True VISUALIZE: False VERTEX_REG: True POSE_REG: False # no rotation regression SLIM: True CHANGE_BACKGROUND: False FUSION_TYPE: cat # synthetic data SYNTHESIZE: True SYNNUM: 80000 SYN_RATIO: 5 SYN_BACKGROUND_SPECIFIC: False SYN_BACKGROUND_SUBTRACT_MEAN: True SYN_BACKGROUND_CONSTANT_PROB: 0.2 SYN_TABLE_PROB: 0.9 SYN_SAMPLE_OBJECT: True SYN_SAMPLE_POSE: False SYN_MIN_OBJECT: 3 SYN_MAX_OBJECT: 5 SYN_TNEAR: 0.2 SYN_TFAR: 0.6 SYN_BOUND: 0.05 SYN_STD_ROTATION: 15 SYN_STD_TRANSLATION: 0.05 # embedding training parameters EMBEDDING_PRETRAIN: True EMBEDDING_SAMPLING: True EMBEDDING_SAMPLING_NUM: 1000 EMBEDDING_NORMALIZATION: True EMBEDDING_METRIC: cosine EMBEDDING_ALPHA: 0.02 EMBEDDING_DELTA: 0.5 EMBEDDING_LAMBDA_INTRA: 10.0 EMBEDDING_LAMBDA_INTER: 10.0 TEST: SINGLE_FRAME: True HOUGH_LABEL_THRESHOLD: 400 HOUGH_VOTING_THRESHOLD: 10 IMS_PER_BATCH: 1 HOUGH_SKIP_PIXELS: 10 DET_THRESHOLD: 0.1 SCALES_BASE: !!python/tuple [1.0] VISUALIZE: True SYNTHESIZE: True POSE_REFINE: False ROS_CAMERA: D415
1,703
YAML
22.342465
64
0.710511
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/datasets/__init__.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md from .imdb import imdb from .tabletop_object import TableTopObject from .osd_object import OSDObject from .ocid_object import OCIDObject import os.path as osp ROOT_DIR = osp.join(osp.dirname(__file__), '..', '..')
396
Python
32.083331
83
0.752525
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/datasets/factory.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md """Factory method for easily getting imdbs by name.""" __sets = {} import datasets.tabletop_object import datasets.osd_object import datasets.ocid_object import numpy as np # tabletop object dataset for split in ['train', 'test', 'all']: name = 'tabletop_object_{}'.format(split) print(name) __sets[name] = (lambda split=split: datasets.TableTopObject(split)) # OSD object dataset for split in ['test']: name = 'osd_object_{}'.format(split) print(name) __sets[name] = (lambda split=split: datasets.OSDObject(split)) # OCID object dataset for split in ['test']: name = 'ocid_object_{}'.format(split) print(name) __sets[name] = (lambda split=split: datasets.OCIDObject(split)) def get_dataset(name): """Get an imdb (image database) by name.""" if name not in __sets: raise KeyError('Unknown dataset: {}'.format(name)) return __sets[name]() def list_datasets(): """List all registered imdbs.""" return __sets.keys()
1,201
Python
26.318181
83
0.65612
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/datasets/tabletop_object.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md import torch import torch.utils.data as data import os, math import sys import time import random import numpy as np import numpy.random as npr import cv2 import glob import matplotlib.pyplot as plt import datasets from fcn.config import cfg from utils.blob import chromatic_transform, add_noise from utils import augmentation from utils import mask as util_ data_loading_params = { # Camera/Frustum parameters 'img_width' : 640, 'img_height' : 480, 'near' : 0.01, 'far' : 100, 'fov' : 45, # vertical field of view in degrees 'use_data_augmentation' : True, # Multiplicative noise 'gamma_shape' : 1000., 'gamma_scale' : 0.001, # Additive noise 'gaussian_scale' : 0.005, # 5mm standard dev 'gp_rescale_factor' : 4, # Random ellipse dropout 'ellipse_dropout_mean' : 10, 'ellipse_gamma_shape' : 5.0, 'ellipse_gamma_scale' : 1.0, # Random high gradient dropout 'gradient_dropout_left_mean' : 15, 'gradient_dropout_alpha' : 2., 'gradient_dropout_beta' : 5., # Random pixel dropout 'pixel_dropout_alpha' : 1., 'pixel_dropout_beta' : 10., } def compute_xyz(depth_img, camera_params): """ Compute ordered point cloud from depth image and camera parameters. If focal lengths fx,fy are stored in the camera_params dictionary, use that. Else, assume camera_params contains parameters used to generate synthetic data (e.g. fov, near, far, etc) @param depth_img: a [H x W] numpy array of depth values in meters @param camera_params: a dictionary with parameters of the camera used """ # Compute focal length from camera parameters if 'fx' in camera_params and 'fy' in camera_params: fx = camera_params['fx'] fy = camera_params['fy'] else: # simulated data aspect_ratio = camera_params['img_width'] / camera_params['img_height'] e = 1 / (np.tan(np.radians(camera_params['fov']/2.))) t = camera_params['near'] / e; b = -t r = t * aspect_ratio; l = -r alpha = camera_params['img_width'] / (r-l) # pixels per meter focal_length = camera_params['near'] * alpha # focal length of virtual camera (frustum camera) fx = focal_length; fy = focal_length if 'x_offset' in camera_params and 'y_offset' in camera_params: x_offset = camera_params['x_offset'] y_offset = camera_params['y_offset'] else: # simulated data x_offset = camera_params['img_width']/2 y_offset = camera_params['img_height']/2 indices = util_.build_matrix_of_indices(camera_params['img_height'], camera_params['img_width']) z_e = depth_img x_e = (indices[..., 1] - x_offset) * z_e / fx y_e = (indices[..., 0] - y_offset) * z_e / fy xyz_img = np.stack([x_e, y_e, z_e], axis=-1) # Shape: [H x W x 3] return xyz_img class TableTopObject(data.Dataset, datasets.imdb): def __init__(self, image_set, tabletop_object_path = None): self._name = 'tabletop_object_' + image_set self._image_set = image_set self._tabletop_object_path = self._get_default_path() if tabletop_object_path is None \ else tabletop_object_path self._classes_all = ('__background__', 'foreground') self._classes = self._classes_all self._pixel_mean = torch.tensor(cfg.PIXEL_MEANS / 255.0).float() self.params = data_loading_params # crop dose not use background if cfg.TRAIN.SYN_CROP: self.NUM_VIEWS_PER_SCENE = 5 else: self.NUM_VIEWS_PER_SCENE = 7 # get a list of all scenes if image_set == 'train': data_path = os.path.join(self._tabletop_object_path, 'training_set') self.scene_dirs = sorted(glob.glob(data_path + '/*')) elif image_set == 'test': data_path = os.path.join(self._tabletop_object_path, 'test_set') print(data_path) self.scene_dirs = sorted(glob.glob(data_path + '/*')) elif image_set == 'all': data_path = os.path.join(self._tabletop_object_path, 'training_set') scene_dirs_train = sorted(glob.glob(data_path + '/*')) data_path = os.path.join(self._tabletop_object_path, 'test_set') scene_dirs_test = sorted(glob.glob(data_path + '/*')) self.scene_dirs = scene_dirs_train + scene_dirs_test print('%d scenes for dataset %s' % (len(self.scene_dirs), self._name)) self._size = len(self.scene_dirs) * self.NUM_VIEWS_PER_SCENE assert os.path.exists(self._tabletop_object_path), \ 'tabletop_object path does not exist: {}'.format(self._tabletop_object_path) def process_depth(self, depth_img): """ Process depth channel - change from millimeters to meters - cast to float32 data type - add random noise - compute xyz ordered point cloud """ # millimeters -> meters depth_img = (depth_img / 1000.).astype(np.float32) # add random noise to depth if self.params['use_data_augmentation']: depth_img = augmentation.add_noise_to_depth(depth_img, self.params) depth_img = augmentation.dropout_random_ellipses(depth_img, self.params) # Compute xyz ordered point cloud and add noise xyz_img = compute_xyz(depth_img, self.params) if self.params['use_data_augmentation']: xyz_img = augmentation.add_noise_to_xyz(xyz_img, depth_img, self.params) return xyz_img def process_label(self, foreground_labels): """ Process foreground_labels - Map the foreground_labels to {0, 1, ..., K-1} @param foreground_labels: a [H x W] numpy array of labels @return: foreground_labels """ # Find the unique (nonnegative) foreground_labels, map them to {0, ..., K-1} unique_nonnegative_indices = np.unique(foreground_labels) mapped_labels = foreground_labels.copy() for k in range(unique_nonnegative_indices.shape[0]): mapped_labels[foreground_labels == unique_nonnegative_indices[k]] = k foreground_labels = mapped_labels return foreground_labels def pad_crop_resize(self, img, label, depth): """ Crop the image around the label mask, then resize to 224x224 """ H, W, _ = img.shape # sample an object to crop K = np.max(label) while True: if K > 0: idx = np.random.randint(1, K+1) else: idx = 0 foreground = (label == idx).astype(np.float32) # get tight box around label/morphed label x_min, y_min, x_max, y_max = util_.mask_to_tight_box(foreground) cx = (x_min + x_max) / 2 cy = (y_min + y_max) / 2 # make bbox square x_delta = x_max - x_min y_delta = y_max - y_min if x_delta > y_delta: y_min = cy - x_delta / 2 y_max = cy + x_delta / 2 else: x_min = cx - y_delta / 2 x_max = cx + y_delta / 2 sidelength = x_max - x_min padding_percentage = np.random.uniform(cfg.TRAIN.min_padding_percentage, cfg.TRAIN.max_padding_percentage) padding = int(round(sidelength * padding_percentage)) if padding == 0: padding = 25 # Pad and be careful of boundaries x_min = max(int(x_min - padding), 0) x_max = min(int(x_max + padding), W-1) y_min = max(int(y_min - padding), 0) y_max = min(int(y_max + padding), H-1) # crop if (y_min == y_max) or (x_min == x_max): continue img_crop = img[y_min:y_max+1, x_min:x_max+1] label_crop = label[y_min:y_max+1, x_min:x_max+1] roi = [x_min, y_min, x_max, y_max] if depth is not None: depth_crop = depth[y_min:y_max+1, x_min:x_max+1] break # resize s = cfg.TRAIN.SYN_CROP_SIZE img_crop = cv2.resize(img_crop, (s, s)) label_crop = cv2.resize(label_crop, (s, s), interpolation=cv2.INTER_NEAREST) if depth is not None: depth_crop = cv2.resize(depth_crop, (s, s), interpolation=cv2.INTER_NEAREST) else: depth_crop = None return img_crop, label_crop, depth_crop # sample num of pixel for clustering instead of using all def sample_pixels(self, labels, num=1000): # -1 ignore labels_new = -1 * np.ones_like(labels) K = np.max(labels) for i in range(K+1): index = np.where(labels == i) n = len(index[0]) if n <= num: labels_new[index[0], index[1]] = i else: perm = np.random.permutation(n) selected = perm[:num] labels_new[index[0][selected], index[1][selected]] = i return labels_new def __getitem__(self, idx): # Get scene directory, crop dose not use background scene_idx = idx // self.NUM_VIEWS_PER_SCENE scene_dir = self.scene_dirs[scene_idx] # Get view number view_num = idx % self.NUM_VIEWS_PER_SCENE if cfg.TRAIN.SYN_CROP: view_num += 2 # Label foreground_labels_filename = os.path.join(scene_dir, 'segmentation_%05d.png' % view_num) foreground_labels = util_.imread_indexed(foreground_labels_filename) # mask table as background foreground_labels[foreground_labels == 1] = 0 foreground_labels = self.process_label(foreground_labels) # BGR image filename = os.path.join(scene_dir, 'rgb_%05d.jpeg' % view_num) im = cv2.imread(filename) if cfg.INPUT == 'DEPTH' or cfg.INPUT == 'RGBD': # Depth image depth_img_filename = os.path.join(scene_dir, 'depth_%05d.png' % view_num) depth_img = cv2.imread(depth_img_filename, cv2.IMREAD_ANYDEPTH) # This reads a 16-bit single-channel image. Shape: [H x W] xyz_img = self.process_depth(depth_img) else: xyz_img = None # crop if cfg.TRAIN.SYN_CROP: im, foreground_labels, xyz_img = self.pad_crop_resize(im, foreground_labels, xyz_img) foreground_labels = self.process_label(foreground_labels) # sample labels if cfg.TRAIN.EMBEDDING_SAMPLING: foreground_labels = self.sample_pixels(foreground_labels, cfg.TRAIN.EMBEDDING_SAMPLING_NUM) label_blob = torch.from_numpy(foreground_labels).unsqueeze(0) sample = {'label': label_blob} if cfg.TRAIN.CHROMATIC and cfg.MODE == 'TRAIN' and np.random.rand(1) > 0.1: im = chromatic_transform(im) if cfg.TRAIN.ADD_NOISE and cfg.MODE == 'TRAIN' and np.random.rand(1) > 0.1: im = add_noise(im) im_tensor = torch.from_numpy(im) / 255.0 im_tensor -= self._pixel_mean image_blob = im_tensor.permute(2, 0, 1) sample['image_color'] = image_blob if cfg.INPUT == 'DEPTH' or cfg.INPUT == 'RGBD': depth_blob = torch.from_numpy(xyz_img).permute(2, 0, 1) sample['depth'] = depth_blob return sample def __len__(self): return self._size def _get_default_path(self): """ Return the default path where tabletop_object is expected to be installed. """ return os.path.join(datasets.ROOT_DIR, 'data', 'tabletop')
11,898
Python
35.725309
134
0.579089
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/datasets/ocid_object.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md import torch import torch.utils.data as data import os, math import sys import time import random import numpy as np import cv2 import glob import matplotlib.pyplot as plt import datasets import pcl from pathlib import Path from fcn.config import cfg from utils.blob import chromatic_transform, add_noise from utils import mask as util_ class OCIDObject(data.Dataset, datasets.imdb): def __init__(self, image_set, ocid_object_path = None): self._name = 'ocid_object_' + image_set self._image_set = image_set self._ocid_object_path = self._get_default_path() if ocid_object_path is None \ else ocid_object_path self._classes_all = ('__background__', 'foreground') self._classes = self._classes_all self._pixel_mean = torch.tensor(cfg.PIXEL_MEANS / 255.0).float() self._width = 640 self._height = 480 self.image_paths = self.list_dataset() print('%d images for dataset %s' % (len(self.image_paths), self._name)) self._size = len(self.image_paths) assert os.path.exists(self._ocid_object_path), \ 'ocid_object path does not exist: {}'.format(self._ocid_object_path) def list_dataset(self): data_path = Path(self._ocid_object_path) seqs = list(Path(data_path).glob('**/*seq*')) image_paths = [] for seq in seqs: paths = sorted(list((seq / 'rgb').glob('*.png'))) image_paths += paths return image_paths def process_label(self, foreground_labels): """ Process foreground_labels - Map the foreground_labels to {0, 1, ..., K-1} @param foreground_labels: a [H x W] numpy array of labels @return: foreground_labels """ # Find the unique (nonnegative) foreground_labels, map them to {0, ..., K-1} unique_nonnegative_indices = np.unique(foreground_labels) mapped_labels = foreground_labels.copy() for k in range(unique_nonnegative_indices.shape[0]): mapped_labels[foreground_labels == unique_nonnegative_indices[k]] = k foreground_labels = mapped_labels return foreground_labels def __getitem__(self, idx): # BGR image filename = str(self.image_paths[idx]) im = cv2.imread(filename) if cfg.TRAIN.CHROMATIC and cfg.MODE == 'TRAIN' and np.random.rand(1) > 0.1: im = chromatic_transform(im) if cfg.TRAIN.ADD_NOISE and cfg.MODE == 'TRAIN' and np.random.rand(1) > 0.1: im = add_noise(im) im_tensor = torch.from_numpy(im) / 255.0 im_tensor_bgr = im_tensor.clone() im_tensor_bgr = im_tensor_bgr.permute(2, 0, 1) im_tensor -= self._pixel_mean image_blob = im_tensor.permute(2, 0, 1) # Label labels_filename = filename.replace('rgb', 'label') foreground_labels = util_.imread_indexed(labels_filename) # mask table as background foreground_labels[foreground_labels == 1] = 0 if 'table' in labels_filename: foreground_labels[foreground_labels == 2] = 0 foreground_labels = self.process_label(foreground_labels) label_blob = torch.from_numpy(foreground_labels).unsqueeze(0) index = filename.find('OCID') sample = {'image_color': image_blob, 'image_color_bgr': im_tensor_bgr, 'label': label_blob, 'filename': filename[index+5:]} # Depth image if cfg.INPUT == 'DEPTH' or cfg.INPUT == 'RGBD': pcd_filename = filename.replace('rgb', 'pcd') pcd_filename = pcd_filename.replace('png', 'pcd') pcloud = pcl.load(pcd_filename).to_array() pcloud[np.isnan(pcloud)] = 0 xyz_img = pcloud.reshape((self._height, self._width, 3)) depth_blob = torch.from_numpy(xyz_img).permute(2, 0, 1) sample['depth'] = depth_blob return sample def __len__(self): return self._size def _get_default_path(self): """ Return the default path where ocid_object is expected to be installed. """ return os.path.join(datasets.ROOT_DIR, 'data', 'OCID')
4,437
Python
34.222222
87
0.601533
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/datasets/osd_object.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md import torch import torch.utils.data as data import os, math import sys import time import random import numpy as np import cv2 import glob import matplotlib.pyplot as plt import datasets import pcl from fcn.config import cfg from utils.blob import chromatic_transform, add_noise from utils import mask as util_ class OSDObject(data.Dataset, datasets.imdb): def __init__(self, image_set, osd_object_path = None): self._name = 'osd_object_' + image_set self._image_set = image_set self._osd_object_path = self._get_default_path() if osd_object_path is None \ else osd_object_path self._classes_all = ('__background__', 'foreground') self._classes = self._classes_all self._pixel_mean = torch.tensor(cfg.PIXEL_MEANS / 255.0).float() self._width = 640 self._height = 480 # get all images data_path = os.path.join(self._osd_object_path, 'image_color') self.image_files = sorted(glob.glob(data_path + '/*.png')) print('%d images for dataset %s' % (len(self.image_files), self._name)) self._size = len(self.image_files) assert os.path.exists(self._osd_object_path), \ 'osd_object path does not exist: {}'.format(self._osd_object_path) def process_label(self, foreground_labels): """ Process foreground_labels - Map the foreground_labels to {0, 1, ..., K-1} @param foreground_labels: a [H x W] numpy array of labels @return: foreground_labels """ # Find the unique (nonnegative) foreground_labels, map them to {0, ..., K-1} unique_nonnegative_indices = np.unique(foreground_labels) mapped_labels = foreground_labels.copy() for k in range(unique_nonnegative_indices.shape[0]): mapped_labels[foreground_labels == unique_nonnegative_indices[k]] = k foreground_labels = mapped_labels return foreground_labels def __getitem__(self, idx): # BGR image filename = self.image_files[idx] im = cv2.imread(filename) if cfg.TRAIN.CHROMATIC and cfg.MODE == 'TRAIN' and np.random.rand(1) > 0.1: im = chromatic_transform(im) if cfg.TRAIN.ADD_NOISE and cfg.MODE == 'TRAIN' and np.random.rand(1) > 0.1: im = add_noise(im) im_tensor = torch.from_numpy(im) / 255.0 im_tensor_bgr = im_tensor.clone() im_tensor_bgr = im_tensor_bgr.permute(2, 0, 1) im_tensor -= self._pixel_mean image_blob = im_tensor.permute(2, 0, 1) # Label labels_filename = filename.replace('image_color', 'annotation') foreground_labels = util_.imread_indexed(labels_filename) foreground_labels = self.process_label(foreground_labels) label_blob = torch.from_numpy(foreground_labels).unsqueeze(0) index = filename.find('OSD') sample = {'image_color': image_blob, 'image_color_bgr': im_tensor_bgr, 'label': label_blob, 'filename': filename[index+4:]} # Depth image if cfg.INPUT == 'DEPTH' or cfg.INPUT == 'RGBD': pcd_filename = filename.replace('image_color', 'pcd') pcd_filename = pcd_filename.replace('png', 'pcd') pcloud = pcl.load(pcd_filename).to_array() pcloud[np.isnan(pcloud)] = 0 xyz_img = pcloud.reshape((self._height, self._width, 3)) depth_blob = torch.from_numpy(xyz_img).permute(2, 0, 1) sample['depth'] = depth_blob return sample def __len__(self): return self._size def _get_default_path(self): """ Return the default path where osd_object is expected to be installed. """ return os.path.join(datasets.ROOT_DIR, 'data', 'OSD')
4,042
Python
34.464912
85
0.606383
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/datasets/imdb.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md import os import os.path as osp import numpy as np import datasets import math import glob from fcn.config import cfg class imdb(object): """Image database.""" def __init__(self): self._name = '' self._num_classes = 0 self._classes = [] self._class_colors = [] @property def name(self): return self._name @property def num_classes(self): return len(self._classes) @property def classes(self): return self._classes @property def class_colors(self): return self._class_colors @property def cache_path(self): cache_path = osp.abspath(osp.join(datasets.ROOT_DIR, 'data', 'cache')) if not os.path.exists(cache_path): os.makedirs(cache_path) return cache_path # backproject pixels into 3D points in camera's coordinate system def backproject(self, depth_cv, intrinsic_matrix, factor): depth = depth_cv.astype(np.float32, copy=True) / factor index = np.where(~np.isfinite(depth)) depth[index[0], index[1]] = 0 # get intrinsic matrix K = intrinsic_matrix Kinv = np.linalg.inv(K) # compute the 3D points width = depth.shape[1] height = depth.shape[0] # construct the 2D points matrix x, y = np.meshgrid(np.arange(width), np.arange(height)) ones = np.ones((height, width), dtype=np.float32) x2d = np.stack((x, y, ones), axis=2).reshape(width*height, 3) # backprojection R = np.dot(Kinv, x2d.transpose()) # compute the 3D points X = np.multiply(np.tile(depth.reshape(1, width*height), (3, 1)), R) return np.array(X).transpose().reshape((height, width, 3)) def _build_uniform_poses(self): self.eulers = [] interval = cfg.TRAIN.UNIFORM_POSE_INTERVAL for yaw in range(-180, 180, interval): for pitch in range(-90, 90, interval): for roll in range(-180, 180, interval): self.eulers.append([yaw, pitch, roll]) # sample indexes num_poses = len(self.eulers) num_classes = len(self._classes_all) - 1 # no background self.pose_indexes = np.zeros((num_classes, ), dtype=np.int32) self.pose_lists = [] for i in range(num_classes): self.pose_lists.append(np.random.permutation(np.arange(num_poses))) def _build_background_images(self): backgrounds_color = [] backgrounds_depth = [] if cfg.TRAIN.SYN_BACKGROUND_SPECIFIC: # NVIDIA ''' allencenter = os.path.join(self.cache_path, '../AllenCenter/data') subdirs = os.listdir(allencenter) for i in xrange(len(subdirs)): subdir = subdirs[i] files = os.listdir(os.path.join(allencenter, subdir)) for j in range(len(files)): filename = os.path.join(allencenter, subdir, files[j]) backgrounds_color.append(filename) ''' comotion = os.path.join(self.cache_path, '../D435-data-with-depth/data') subdirs = os.listdir(comotion) for i in xrange(len(subdirs)): subdir = subdirs[i] files = os.listdir(os.path.join(comotion, subdir)) for j in range(len(files)): filename = os.path.join(comotion, subdir, files[j]) if 'depth.png' in filename: backgrounds_depth.append(filename) else: backgrounds_color.append(filename) backgrounds_color.sort() backgrounds_depth.sort() else: ''' # SUN 2012 root = os.path.join(self.cache_path, '../SUN2012/data/Images') subdirs = os.listdir(root) for i in xrange(len(subdirs)): subdir = subdirs[i] names = os.listdir(os.path.join(root, subdir)) for j in xrange(len(names)): name = names[j] if os.path.isdir(os.path.join(root, subdir, name)): files = os.listdir(os.path.join(root, subdir, name)) for k in range(len(files)): if os.path.isdir(os.path.join(root, subdir, name, files[k])): filenames = os.listdir(os.path.join(root, subdir, name, files[k])) for l in range(len(filenames)): filename = os.path.join(root, subdir, name, files[k], filenames[l]) backgrounds.append(filename) else: filename = os.path.join(root, subdir, name, files[k]) backgrounds.append(filename) else: filename = os.path.join(root, subdir, name) backgrounds.append(filename) # ObjectNet3D objectnet3d = os.path.join(self.cache_path, '../ObjectNet3D/data') files = os.listdir(objectnet3d) for i in range(len(files)): filename = os.path.join(objectnet3d, files[i]) backgrounds.append(filename) ''' # PASCAL 2012 pascal = os.path.join(self.cache_path, '../PASCAL2012/data') files = os.listdir(pascal) for i in range(len(files)): filename = os.path.join(pascal, files[i]) backgrounds_color.append(filename) ''' # YCB Background ycb = os.path.join(self.cache_path, '../YCB_Background') files = os.listdir(ycb) for i in range(len(files)): filename = os.path.join(ycb, files[i]) backgrounds.append(filename) ''' # depth background kinect = os.path.join(self.cache_path, '../Kinect') subdirs = os.listdir(kinect) for i in xrange(len(subdirs)): subdir = subdirs[i] files = glob.glob(os.path.join(self.cache_path, '../Kinect', subdir, '*depth*')) for j in range(len(files)): filename = os.path.join(self.cache_path, '../Kinect', subdir, files[j]) backgrounds_depth.append(filename) for i in xrange(len(backgrounds_color)): if not os.path.isfile(backgrounds_color[i]): print('file not exist {}'.format(backgrounds_color[i])) for i in xrange(len(backgrounds_depth)): if not os.path.isfile(backgrounds_depth[i]): print('file not exist {}'.format(backgrounds_depth[i])) self._backgrounds_color = backgrounds_color self._backgrounds_depth = backgrounds_depth print('build color background images finished, {:d} images'.format(len(backgrounds_color))) print('build depth background images finished, {:d} images'.format(len(backgrounds_depth)))
7,307
Python
36.096447
103
0.542904
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/fcn/test_common.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md import torch import time import sys, os import numpy as np import matplotlib.pyplot as plt from fcn.config import cfg from utils.mask import visualize_segmentation def normalize_descriptor(res, stats=None): """ Normalizes the descriptor into RGB color space :param res: numpy.array [H,W,D] Output of the network, per-pixel dense descriptor :param stats: dict, with fields ['min', 'max', 'mean'], which are used to normalize descriptor :return: numpy.array normalized descriptor """ if stats is None: res_min = res.min() res_max = res.max() else: res_min = np.array(stats['min']) res_max = np.array(stats['max']) normed_res = np.clip(res, res_min, res_max) eps = 1e-10 scale = (res_max - res_min) + eps normed_res = (normed_res - res_min) / scale return normed_res def _vis_features(features, labels, rgb, intial_labels, selected_pixels=None): num = features.shape[0] height = features.shape[2] width = features.shape[3] fig = plt.figure() start = 1 m = np.ceil((num * 4 ) / 8.0) n = 8 im_blob = rgb.cpu().numpy() for i in range(num): if i < m * n / 4: # show image im = im_blob[i, :3, :, :].copy() im = im.transpose((1, 2, 0)) * 255.0 im += cfg.PIXEL_MEANS im = im[:, :, (2, 1, 0)] im = np.clip(im, 0, 255) im = im.astype(np.uint8) ax = fig.add_subplot(m, n, start) start += 1 plt.imshow(im) ax.set_title('image') plt.axis('off') ''' if selected_pixels is not None: selected_indices = selected_pixels[i] for j in range(len(selected_indices)): index = selected_indices[j] y = index / width x = index % width plt.plot(x, y, 'ro', markersize=1.0) ''' im = torch.cuda.FloatTensor(height, width, 3) for j in range(3): im[:, :, j] = torch.sum(features[i, j::3, :, :], dim=0) im = normalize_descriptor(im.detach().cpu().numpy()) im *= 255 im = im.astype(np.uint8) ax = fig.add_subplot(m, n, start) start += 1 plt.imshow(im) ax.set_title('features') plt.axis('off') ax = fig.add_subplot(m, n, start) start += 1 label = labels[i].detach().cpu().numpy() plt.imshow(label) ax.set_title('labels') plt.axis('off') ax = fig.add_subplot(m, n, start) start += 1 label = intial_labels[i].detach().cpu().numpy() plt.imshow(label) ax.set_title('intial labels') plt.axis('off') plt.show() def _vis_minibatch_segmentation_final(image, depth, label, out_label=None, out_label_refined=None, features=None, ind=None, selected_pixels=None, bbox=None): if depth is None: im_blob = image.cpu().numpy() else: im_blob = image.cpu().numpy() depth_blob = depth.cpu().numpy() num = im_blob.shape[0] height = im_blob.shape[2] width = im_blob.shape[3] if label is not None: label_blob = label.cpu().numpy() if out_label is not None: out_label_blob = out_label.cpu().numpy() if out_label_refined is not None: out_label_refined_blob = out_label_refined.cpu().numpy() m = 2 n = 3 for i in range(num): # image im = im_blob[i, :3, :, :].copy() im = im.transpose((1, 2, 0)) * 255.0 im += cfg.PIXEL_MEANS im = im[:, :, (2, 1, 0)] im = np.clip(im, 0, 255) im = im.astype(np.uint8) fig = plt.figure() start = 1 ax = fig.add_subplot(m, n, start) start += 1 plt.imshow(im) ax.set_title('image') plt.axis('off') # depth if depth is not None: depth = depth_blob[i][2] ax = fig.add_subplot(m, n, start) start += 1 plt.imshow(depth) ax.set_title('depth') plt.axis('off') # feature if features is not None: im_feature = torch.cuda.FloatTensor(height, width, 3) for j in range(3): im_feature[:, :, j] = torch.sum(features[i, j::3, :, :], dim=0) im_feature = normalize_descriptor(im_feature.detach().cpu().numpy()) im_feature *= 255 im_feature = im_feature.astype(np.uint8) ax = fig.add_subplot(m, n, start) start += 1 plt.imshow(im_feature) ax.set_title('feature map') plt.axis('off') # initial seeds if selected_pixels is not None: ax = fig.add_subplot(m, n, start) start += 1 plt.imshow(im) ax.set_title('initial seeds') plt.axis('off') selected_indices = selected_pixels[i] for j in range(len(selected_indices)): index = selected_indices[j] y = index / width x = index % width plt.plot(x, y, 'ro', markersize=2.0) # intial mask mask = out_label_blob[i, :, :] im_label = visualize_segmentation(im, mask, return_rgb=True) ax = fig.add_subplot(m, n, start) start += 1 plt.imshow(im_label) ax.set_title('initial label') plt.axis('off') # refined mask if out_label_refined is not None: mask = out_label_refined_blob[i, :, :] im_label = visualize_segmentation(im, mask, return_rgb=True) ax = fig.add_subplot(m, n, start) start += 1 plt.imshow(im_label) ax.set_title('refined label') plt.axis('off') elif label is not None: # show gt label mask = label_blob[i, 0, :, :] im_label = visualize_segmentation(im, mask, return_rgb=True) ax = fig.add_subplot(m, n, start) start += 1 plt.imshow(im_label) ax.set_title('gt label') plt.axis('off') if ind is not None: mng = plt.get_current_fig_manager() mng.resize(*mng.window.maxsize()) plt.pause(0.001) # plt.show(block=False) filename = 'output/images/%06d.png' % ind fig.savefig(filename) plt.close() else: plt.show() def _vis_minibatch_segmentation(image, depth, label, out_label=None, out_label_refined=None, features=None, ind=None, selected_pixels=None, bbox=None): if depth is None: im_blob = image.cpu().numpy() m = 2 n = 3 else: im_blob = image.cpu().numpy() depth_blob = depth.cpu().numpy() m = 3 n = 3 num = im_blob.shape[0] height = im_blob.shape[2] width = im_blob.shape[3] if label is not None: label_blob = label.cpu().numpy() if out_label is not None: out_label_blob = out_label.cpu().numpy() if out_label_refined is not None: out_label_refined_blob = out_label_refined.cpu().numpy() for i in range(num): # image im = im_blob[i, :3, :, :].copy() im = im.transpose((1, 2, 0)) * 255.0 im += cfg.PIXEL_MEANS im = im[:, :, (2, 1, 0)] im = np.clip(im, 0, 255) im = im.astype(np.uint8) ''' if out_label_refined is not None: mask = out_label_refined_blob[i, :, :] visualize_segmentation(im, mask) #''' # show image fig = plt.figure() start = 1 ax = fig.add_subplot(m, n, start) start += 1 plt.imshow(im) ax.set_title('image') plt.axis('off') ax = fig.add_subplot(m, n, start) start += 1 plt.imshow(im) plt.axis('off') if bbox is not None: boxes = bbox[i].numpy() for j in range(boxes.shape[0]): x1 = boxes[j, 0] y1 = boxes[j, 1] x2 = boxes[j, 2] y2 = boxes[j, 3] plt.gca().add_patch( plt.Rectangle((x1, y1), x2-x1, y2-y1, fill=False, edgecolor='g', linewidth=3)) if selected_pixels is not None: selected_indices = selected_pixels[i] for j in range(len(selected_indices)): index = selected_indices[j] y = index / width x = index % width plt.plot(x, y, 'ro', markersize=1.0) if im_blob.shape[1] == 4: label = im_blob[i, 3, :, :] ax = fig.add_subplot(m, n, start) start += 1 plt.imshow(label) ax.set_title('initial label') if depth is not None: depth = depth_blob[i] ax = fig.add_subplot(m, n, start) start += 1 plt.imshow(depth[0]) ax.set_title('depth X') plt.axis('off') ax = fig.add_subplot(m, n, start) start += 1 plt.imshow(depth[1]) ax.set_title('depth Y') plt.axis('off') ax = fig.add_subplot(m, n, start) start += 1 plt.imshow(depth[2]) ax.set_title('depth Z') plt.axis('off') # show label if label is not None: label = label_blob[i, 0, :, :] ax = fig.add_subplot(m, n, start) start += 1 plt.imshow(label) ax.set_title('gt label') plt.axis('off') # show out label if out_label is not None: label = out_label_blob[i, :, :] ax = fig.add_subplot(m, n, start) start += 1 plt.imshow(label) ax.set_title('out label') plt.axis('off') # show out label refined if out_label_refined is not None: label = out_label_refined_blob[i, :, :] ax = fig.add_subplot(m, n, start) start += 1 plt.imshow(label) ax.set_title('out label refined') plt.axis('off') if features is not None: im = torch.cuda.FloatTensor(height, width, 3) for j in range(3): im[:, :, j] = torch.sum(features[i, j::3, :, :], dim=0) im = normalize_descriptor(im.detach().cpu().numpy()) im *= 255 im = im.astype(np.uint8) ax = fig.add_subplot(m, n, start) start += 1 plt.imshow(im) ax.set_title('features') plt.axis('off') if ind is not None: mng = plt.get_current_fig_manager() plt.show() filename = 'output/images/%06d.png' % ind fig.savefig(filename) plt.show()
11,242
Python
30.144044
98
0.491727
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/fcn/test_imageset.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md import torch import torch.nn.functional as F import time import sys, os import cv2 import numpy as np import matplotlib.pyplot as plt from fcn.config import cfg from fcn.test_common import normalize_descriptor from transforms3d.quaternions import mat2quat, quat2mat, qmult from utils.se3 import * from utils.mean_shift import mean_shift_smart_init def test_image_segmentation(ind, network, dataset, img, segmentor): """test on a single image""" height = img.shape[0] width = img.shape[1] # compute image blob inputs = img.astype(np.float32, copy=True) inputs -= cfg.PIXEL_MEANS inputs = np.transpose(inputs / 255.0, (2, 0, 1)) inputs = inputs[np.newaxis, :, :, :] inputs = torch.from_numpy(inputs).cuda() # use fake label blob label = torch.cuda.FloatTensor(1, 2, height, width) # run network if network.module.embedding: features = network(inputs, label) out_label = torch.zeros((features.shape[0], height, width)) # mean shift clustering num_seeds = 20 kappa = 20 for i in range(features.shape[0]): X = features[i].view(features.shape[1], -1) X = torch.transpose(X, 0, 1) cluster_labels, selected_indices = mean_shift_smart_init(X, kappa=kappa, num_seeds=num_seeds, max_iters=10, metric='cosine') out_label[i] = cluster_labels.view(height, width) else: out_label = network(inputs, label) # mask refinement if segmentor is not None: out_label_refined, out_label_crop, rgb_crop, roi = segmentor.refine(inputs, out_label.clone()) else: out_label_refined = None roi = None if cfg.TEST.VISUALIZE: fig = plt.figure() m = 2 n = 3 start = 1 if network.module.embedding: ax = fig.add_subplot(m, n, start) start += 1 plt.imshow(img[:, :, (2, 1, 0)]) for i in range(num_seeds): index = selected_indices[i] y = index / width x = index % width plt.plot(x, y, 'ro') ax.set_title('input') im = torch.cuda.FloatTensor(height, width, 3) for i in range(3): im[:, :, i] = torch.sum(features[0, i::3, :, :], dim=0) im = normalize_descriptor(im.detach().cpu().numpy()) im *= 255 im = im.astype(np.uint8) ax = fig.add_subplot(m, n, start) start += 1 plt.imshow(im) ax.set_title('features') ax = fig.add_subplot(m, n, start) start += 1 out_label_blob = out_label.cpu().numpy() label = out_label_blob[0, :, :] plt.imshow(label) ax.set_title('cluster labels') if roi is not None: ax = fig.add_subplot(m, n, start) start += 1 plt.imshow(img[:, :, (2, 1, 0)]) for i in range(roi.shape[0]): x1 = roi[i, 0] y1 = roi[i, 1] x2 = roi[i, 2] y2 = roi[i, 3] plt.gca().add_patch( plt.Rectangle((x1, y1), x2-x1, y2-y1, fill=False, edgecolor='g', linewidth=3)) if segmentor is not None: ax = fig.add_subplot(m, n, start) start += 1 out_label_blob = out_label_refined.cpu().numpy() label = out_label_blob[0, :, :] plt.imshow(label) ax.set_title('cluster labels refined') # mng = plt.get_current_fig_manager() # filename = 'output/images/%06d.png' % ind # fig.savefig(filename) plt.show() else: ax = fig.add_subplot(1, 2, 1) plt.imshow(img[:, :, (2, 1, 0)]) # show out label out_label_blob = out_label.cpu().numpy() label = out_label_blob[0, :, :] ax = fig.add_subplot(1, 2, 2) plt.imshow(label) ax.set_title('out label') plt.show() return out_label, out_label_refined, roi
4,367
Python
32.343511
136
0.529196
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/fcn/config.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md """UCN config system. This file specifies default config options for Fast R-CNN. You should not change values in this file. Instead, you should write a config file (in yaml) and use cfg_from_file(yaml_file) to load it and override the default options. Most tools in $ROOT/tools take a --cfg option to specify an override file. - See tools/{train,test}_net.py for example code that uses cfg_from_file() - See experiments/cfgs/*.yml for example YAML config override files """ import os import os.path as osp import numpy as np import math # `pip install easydict` if you don't have it from easydict import EasyDict as edict __C = edict() # Consumers can get config by: # from fast_rcnn_config import cfg cfg = __C __C.FLIP_X = False __C.INPUT = 'RGBD' __C.NETWORK = 'VGG16' __C.RIG = '' __C.CAD = '' __C.POSE = '' __C.BACKGROUND = '' __C.USE_GPU_NMS = True __C.MODE = 'TRAIN' __C.INTRINSICS = () __C.DATA_PATH = '' __C.FLOW_HEIGHT = 512 __C.FLOW_WIDTH = 640 # Anchor scales for RPN __C.ANCHOR_SCALES = (8,16,32) # Anchor ratios for RPN __C.ANCHOR_RATIOS = (0.5,1,2) __C.FEATURE_STRIDE = 16 __C.gpu_id = 0 __C.instance_id = 0 # # Training options # __C.TRAIN = edict() __C.TRAIN.WEIGHT_DECAY = 0.0001 __C.TRAIN.SEGMENTATION = True __C.TRAIN.ITERNUM = 4 __C.TRAIN.HEATUP = 4 __C.TRAIN.GPUNUM = 1 __C.TRAIN.CLASSES = (0,1,2,3) __C.TRAIN.SYMMETRY = (0,0,0,0) __C.TRAIN.SLIM = False __C.TRAIN.SINGLE_FRAME = False __C.TRAIN.TRAINABLE = True __C.TRAIN.VERTEX_REG = True __C.TRAIN.VERTEX_REG_DELTA = False __C.TRAIN.POSE_REG = True __C.TRAIN.LABEL_W = 1.0 __C.TRAIN.VERTEX_W = 1.0 __C.TRAIN.VERTEX_W_INSIDE = 10.0 __C.TRAIN.POSE_W = 1.0 __C.TRAIN.BOX_W = 1.0 __C.TRAIN.HARD_LABEL_THRESHOLD = 1.0 __C.TRAIN.HARD_LABEL_SAMPLING = 1.0 __C.TRAIN.HARD_ANGLE = 15.0 __C.TRAIN.VISUALIZE = False __C.TRAIN.GAN = False __C.TRAIN.MATCHING = False __C.TRAIN.NOISE_LEVEL = 0.05 __C.TRAIN.FREEZE_LAYERS = True __C.TRAIN.MAX_ITERS_PER_EPOCH = 1000000 __C.TRAIN.UNIFORM_POSE_INTERVAL = 15 __C.TRAIN.AFFINE = False __C.TRAIN.CHANGE_BACKGROUND = False __C.TRAIN.FUSION_TYPE = 'add' # Hough voting __C.TRAIN.HOUGH_LABEL_THRESHOLD = 100 __C.TRAIN.HOUGH_VOTING_THRESHOLD = -1 __C.TRAIN.HOUGH_SKIP_PIXELS = -1 __C.TRAIN.HOUGH_INLIER_THRESHOLD = 0.9 # synthetic training __C.TRAIN.SYNTHESIZE = False __C.TRAIN.SYN_ONLINE = False __C.TRAIN.SYN_WIDTH = 640 __C.TRAIN.SYN_HEIGHT = 480 __C.TRAIN.SYNROOT = '/var/Projects/Deep_Pose/data/LOV/data_syn/' if not os.path.exists(__C.TRAIN.SYNROOT): __C.TRAIN.SYNROOT = '/home/yuxiang/Projects/Deep_Pose/data/LOV/data_syn/' __C.TRAIN.SYNITER = 0 __C.TRAIN.SYNNUM = 80000 __C.TRAIN.SYN_RATIO = 1 __C.TRAIN.SYN_CLASS_INDEX = 1 __C.TRAIN.SYN_TNEAR = 0.5 __C.TRAIN.SYN_TFAR = 2.0 __C.TRAIN.SYN_BACKGROUND_SPECIFIC = False __C.TRAIN.SYN_BACKGROUND_SUBTRACT_MEAN = False __C.TRAIN.SYN_BACKGROUND_CONSTANT_PROB = 0.1 __C.TRAIN.SYN_BACKGROUND_AFFINE = False __C.TRAIN.SYN_SAMPLE_OBJECT = True __C.TRAIN.SYN_SAMPLE_POSE = True __C.TRAIN.SYN_STD_ROTATION = 15 __C.TRAIN.SYN_STD_TRANSLATION = 0.05 __C.TRAIN.SYN_MIN_OBJECT = 5 __C.TRAIN.SYN_MAX_OBJECT = 8 __C.TRAIN.SYN_TNEAR = 0.5 __C.TRAIN.SYN_TFAR = 2.0 __C.TRAIN.SYN_BOUND = 0.4 __C.TRAIN.SYN_SAMPLE_DISTRACTOR = True __C.TRAIN.SYN_CROP = False __C.TRAIN.SYN_CROP_SIZE = 224 __C.TRAIN.SYN_TABLE_PROB = 0.8 # autoencoder __C.TRAIN.BOOSTRAP_PIXELS = 20 # domain adaptation __C.TRAIN.ADAPT = False __C.TRAIN.ADAPT_ROOT = '' __C.TRAIN.ADAPT_NUM = 400 __C.TRAIN.ADAPT_RATIO = 1 __C.TRAIN.ADAPT_WEIGHT = 0.1 # learning rate __C.TRAIN.OPTIMIZER = 'MOMENTUM' __C.TRAIN.LEARNING_RATE = 0.0001 __C.TRAIN.MILESTONES = (100, 150, 200) __C.TRAIN.MOMENTUM = 0.9 __C.TRAIN.BETA = 0.999 __C.TRAIN.GAMMA = 0.1 __C.TRAIN.SYMSIZE = 0 # voxel grid size __C.TRAIN.GRID_SIZE = 256 # Scales to compute real features __C.TRAIN.SCALES_BASE = (0.25, 0.5, 1.0, 2.0, 3.0) # parameters for data augmentation __C.TRAIN.CHROMATIC = True __C.TRAIN.ADD_NOISE = False # Images to use per minibatch __C.TRAIN.IMS_PER_BATCH = 2 __C.TRAIN.NUM_STEPS = 5 __C.TRAIN.NUM_UNITS = 64 # Use horizontally-flipped images during training? __C.TRAIN.USE_FLIPPED = True # Iterations between snapshots __C.TRAIN.SNAPSHOT_EPOCHS = 1 # solver.prototxt specifies the snapshot path prefix, this adds an optional # infix to yield the path: <prefix>[_<infix>]_iters_XYZ.caffemodel __C.TRAIN.SNAPSHOT_PREFIX = 'caffenet_fast_rcnn' __C.TRAIN.SNAPSHOT_INFIX = '' __C.TRAIN.DISPLAY = 20 __C.TRAIN.ITERS = 0 # Whether to add ground truth boxes to the pool when sampling regions __C.TRAIN.USE_GT = False # Minibatch size (number of regions of interest [ROIs]) __C.TRAIN.BATCH_SIZE = 128 # Fraction of minibatch that is labeled foreground (i.e. class > 0) __C.TRAIN.FG_FRACTION = 0.25 # Overlap threshold for a ROI to be considered foreground (if >= FG_THRESH) __C.TRAIN.FG_THRESH = 0.5 __C.TRAIN.FG_THRESH_POSE = 0.2 # Overlap threshold for a ROI to be considered background (class = 0 if # overlap in [LO, HI)) __C.TRAIN.BG_THRESH_HI = 0.5 __C.TRAIN.BG_THRESH_LO = 0.1 # Use RPN to detect objects __C.TRAIN.HAS_RPN = True # IOU >= thresh: positive example __C.TRAIN.RPN_POSITIVE_OVERLAP = 0.7 # IOU < thresh: negative example __C.TRAIN.RPN_NEGATIVE_OVERLAP = 0.3 # If an anchor satisfied by positive and negative conditions set to negative __C.TRAIN.RPN_CLOBBER_POSITIVES = False # Max number of foreground examples __C.TRAIN.RPN_FG_FRACTION = 0.5 # Total number of examples __C.TRAIN.RPN_BATCHSIZE = 256 # NMS threshold used on RPN proposals __C.TRAIN.RPN_NMS_THRESH = 0.7 # Number of top scoring boxes to keep before apply NMS to RPN proposals __C.TRAIN.RPN_PRE_NMS_TOP_N = 12000 # Number of top scoring boxes to keep after applying NMS to RPN proposals __C.TRAIN.RPN_POST_NMS_TOP_N = 2000 # Deprecated (outside weights) __C.TRAIN.RPN_BBOX_INSIDE_WEIGHTS = (1.0, 1.0, 1.0, 1.0) # Give the positive RPN examples weight of p * 1 / {num positives} # and give negatives a weight of (1 - p) # Set to -1.0 to use uniform example weighting __C.TRAIN.RPN_POSITIVE_WEIGHT = -1.0 # Normalize the targets (subtract empirical mean, divide by empirical stddev) __C.TRAIN.BBOX_NORMALIZE_TARGETS = True # Deprecated (inside weights) __C.TRAIN.BBOX_INSIDE_WEIGHTS = (1.0, 1.0, 1.0, 1.0) # Normalize the targets using "precomputed" (or made up) means and stdevs # (BBOX_NORMALIZE_TARGETS must also be True) __C.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED = True __C.TRAIN.BBOX_NORMALIZE_MEANS = (0.0, 0.0, 0.0, 0.0) __C.TRAIN.BBOX_NORMALIZE_STDS = (0.1, 0.1, 0.2, 0.2) # embedding learning __C.TRAIN.EMBEDDING_PRETRAIN = True __C.TRAIN.EMBEDDING_SAMPLING = False __C.TRAIN.EMBEDDING_SAMPLING_NUM = 1000 __C.TRAIN.EMBEDDING_ALPHA = 0.02 __C.TRAIN.EMBEDDING_DELTA = 0.5 __C.TRAIN.EMBEDDING_LAMBDA_INTRA = 1.0 __C.TRAIN.EMBEDDING_LAMBDA_INTER = 1.0 __C.TRAIN.EMBEDDING_CONTRASTIVE = False __C.TRAIN.EMBEDDING_PIXELWISE = False __C.TRAIN.EMBEDDING_PROTOTYPE = False __C.TRAIN.EMBEDDING_METRIC = 'euclidean' __C.TRAIN.EMBEDDING_NORMALIZATION = True __C.TRAIN.EMBEDDING_LOSS_WEIGHT_MATCH = 1.0 __C.TRAIN.EMBEDDING_LOSS_WEIGHT_NONMATCH = 1.0 __C.TRAIN.EMBEDDING_LOSS_WEIGHT_BACKGROUND = 1.0 # region refinement network data processing __C.TRAIN.max_augmentation_tries = 10 # Padding __C.TRAIN.padding_alpha = 1.0 __C.TRAIN.padding_beta = 4.0 __C.TRAIN.min_padding_percentage = 0.05 __C.TRAIN.max_padding_percentage = 0.5 # Erosion/Dilation __C.TRAIN.rate_of_morphological_transform = 0.9 __C.TRAIN.label_dilation_alpha = 1.0 __C.TRAIN.label_dilation_beta = 19.0 __C.TRAIN.morphology_max_iters = 3 # Translation __C.TRAIN.rate_of_translation = 0.7 __C.TRAIN.translation_alpha = 1.0 __C.TRAIN.translation_beta = 19.0 __C.TRAIN.translation_percentage_min = 0.05 # Rotation __C.TRAIN.rate_of_rotation = 0.7 __C.TRAIN.rotation_angle_max = 10 # ADD __C.TRAIN.rate_of_label_adding = 0.5 __C.TRAIN.add_percentage_min = 0.1 __C.TRAIN.add_percentage_max = 0.4 # CUTTING __C.TRAIN.rate_of_label_cutting = 0.3 __C.TRAIN.cut_percentage_min = 0.25 __C.TRAIN.cut_percentage_max = 0.5 # Ellipses __C.TRAIN.rate_of_ellipses = 0.8 __C.TRAIN.num_ellipses_mean = 3 __C.TRAIN.ellipse_gamma_base_shape = 1.0 __C.TRAIN.ellipse_gamma_base_scale = 1.0 __C.TRAIN.ellipse_size_percentage = 0.1 # # Testing options # __C.TEST = edict() __C.TEST.GLOBAL_SEARCH = False __C.TEST.SEGMENTATION = True __C.TEST.SINGLE_FRAME = False __C.TEST.VERTEX_REG_2D = False __C.TEST.VERTEX_REG_3D = False __C.TEST.VISUALIZE = False __C.TEST.RANSAC = False __C.TEST.GAN = False __C.TEST.POSE_REG = False __C.TEST.POSE_REFINE = False __C.TEST.POSE_SDF = True __C.TEST.POSE_CODEBOOK = False __C.TEST.SYNTHESIZE = False __C.TEST.ROS_CAMERA = 'camera' __C.TEST.DET_THRESHOLD = 0.5 __C.TEST.BUILD_CODEBOOK = False __C.TEST.IMS_PER_BATCH = 1 __C.TEST.MEAN_SHIFT = False __C.TEST.CHECK_SIZE = False __C.TEST.NUM_SDF_ITERATIONS_INIT = 100 __C.TEST.NUM_SDF_ITERATIONS_TRACKING = 50 __C.TEST.SDF_TRANSLATION_REG = 10.0 __C.TEST.SDF_ROTATION_REG = 0.1 __C.TEST.NUM_LOST = 3 __C.TEST.ALIGN_Z_AXIS = False __C.TEST.GEN_DATA = False # Hough voting __C.TEST.HOUGH_LABEL_THRESHOLD = 100 __C.TEST.HOUGH_VOTING_THRESHOLD = -1 __C.TEST.HOUGH_SKIP_PIXELS = -1 __C.TEST.HOUGH_INLIER_THRESHOLD = 0.9 __C.TEST.CLASSES = (0,1,2,3) __C.TEST.SYMMETRY = (0,0,0,0) __C.TEST.ITERNUM = 4 # Scales to compute real features __C.TEST.SCALES_BASE = (0.25, 0.5, 1.0, 2.0, 3.0) # voxel grid size __C.TEST.GRID_SIZE = 256 ## NMS threshold used on RPN proposals __C.TEST.RPN_NMS_THRESH = 0.7 # Number of top scoring boxes to keep before apply NMS to RPN proposals __C.TEST.RPN_PRE_NMS_TOP_N = 6000 # Number of top scoring boxes to keep after applying NMS to RPN proposals __C.TEST.RPN_POST_NMS_TOP_N = 300 # Test using bounding-box regressors __C.TEST.BBOX_REG = True # Overlap threshold used for non-maximum suppression (suppress boxes with # IoU >= this threshold) __C.TEST.NMS = 0.3 # Pixel mean values (BGR order) as a (1, 1, 3) array # These are the values originally used for training VGG16 __C.PIXEL_MEANS = np.array([[[102.9801, 115.9465, 122.7717]]]) # For reproducibility __C.RNG_SEED = 3 # A small number that's used many times __C.EPS = 1e-14 # Root directory of project __C.ROOT_DIR = osp.abspath(osp.join(osp.dirname(__file__), '..', '..')) # Place outputs under an experiments directory __C.EXP_DIR = 'default' # Default GPU device id __C.GPU_ID = 0 def get_output_dir(imdb, net): """Return the directory where experimental artifacts are placed. A canonical path is built using the name from an imdb and a network (if not None). """ path = osp.abspath(osp.join(__C.ROOT_DIR, 'output', __C.EXP_DIR, imdb.name)) if net is None: return path else: return osp.join(path, net) def _merge_a_into_b(a, b): """Merge config dictionary a into config dictionary b, clobbering the options in b whenever they are also specified in a. """ if type(a) is not edict: return for k, v in a.items(): # a must specify keys that are in b if k not in b: raise KeyError('{} is not a valid config key'.format(k)) # the types must match, too if type(b[k]) is not type(v): raise ValueError(('Type mismatch ({} vs. {}) ' 'for config key: {}').format(type(b[k]), type(v), k)) # recursively merge dicts if type(v) is edict: try: _merge_a_into_b(a[k], b[k]) except: print('Error under config key: {}'.format(k)) raise else: b[k] = v def cfg_from_file(filename): """Load a config file and merge it into the default options.""" import yaml with open(filename, 'r') as f: yaml_cfg = edict(yaml.load(f)) _merge_a_into_b(yaml_cfg, __C) def yaml_from_file(filename): """Load a config file and merge it into the default options.""" import yaml with open(filename, 'r') as f: yaml_cfg = edict(yaml.load(f)) return yaml_cfg
12,238
Python
26.197778
83
0.672741
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/fcn/test_module.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md import torch import torch.nn.functional as F import numpy as np from fcn.test_common import _vis_minibatch_segmentation_final from utils.mean_shift import mean_shift_smart_init import utils.mask as util_ class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __repr__(self): return '{:.3f} ({:.3f})'.format(self.val, self.avg) def clustering_features(features, num_seeds=100): metric = 'euclidean' # NOTE height = features.shape[2] width = features.shape[3] out_label = torch.zeros((features.shape[0], height, width)) # mean shift clustering kappa = 20 selected_pixels = [] for j in range(features.shape[0]): X = features[j].view(features.shape[1], -1) X = torch.transpose(X, 0, 1) cluster_labels, selected_indices = mean_shift_smart_init(X, kappa=kappa, num_seeds=num_seeds, max_iters=10, metric=metric) out_label[j] = cluster_labels.view(height, width) selected_pixels.append(selected_indices) return out_label, selected_pixels def crop_rois(rgb, initial_masks, depth): device = torch.device('cuda:0') N, H, W = initial_masks.shape crop_size = 224 # NOTE padding_percentage = 0.25 mask_ids = torch.unique(initial_masks[0]) if mask_ids[0] == 0: mask_ids = mask_ids[1:] num = mask_ids.shape[0] rgb_crops = torch.zeros((num, 3, crop_size, crop_size), device=device) rois = torch.zeros((num, 4), device=device) mask_crops = torch.zeros((num, crop_size, crop_size), device=device) if depth is not None: depth_crops = torch.zeros((num, 3, crop_size, crop_size), device=device) else: depth_crops = None for index, mask_id in enumerate(mask_ids): mask = (initial_masks[0] == mask_id).float() # Shape: [H x W] x_min, y_min, x_max, y_max = util_.mask_to_tight_box(mask) x_padding = int(torch.round((x_max - x_min).float() * padding_percentage).item()) y_padding = int(torch.round((y_max - y_min).float() * padding_percentage).item()) # pad and be careful of boundaries x_min = max(x_min - x_padding, 0) x_max = min(x_max + x_padding, W-1) y_min = max(y_min - y_padding, 0) y_max = min(y_max + y_padding, H-1) rois[index, 0] = x_min rois[index, 1] = y_min rois[index, 2] = x_max rois[index, 3] = y_max # crop rgb_crop = rgb[0, :, y_min:y_max+1, x_min:x_max+1] # [3 x crop_H x crop_W] mask_crop = mask[y_min:y_max+1, x_min:x_max+1] # [crop_H x crop_W] if depth is not None: depth_crop = depth[0, :, y_min:y_max+1, x_min:x_max+1] # [3 x crop_H x crop_W] # resize new_size = (crop_size, crop_size) rgb_crop = F.upsample_bilinear(rgb_crop.unsqueeze(0), new_size)[0] # Shape: [3 x new_H x new_W] rgb_crops[index] = rgb_crop mask_crop = F.upsample_nearest(mask_crop.unsqueeze(0).unsqueeze(0), new_size)[0,0] # Shape: [new_H, new_W] mask_crops[index] = mask_crop if depth is not None: depth_crop = F.upsample_bilinear(depth_crop.unsqueeze(0), new_size)[0] # Shape: [3 x new_H x new_W] depth_crops[index] = depth_crop return rgb_crops, mask_crops, rois, depth_crops # labels_crop is the clustering labels from the local patch def match_label_crop(initial_masks, labels_crop, out_label_crop, rois, depth_crop): num = labels_crop.shape[0] for i in range(num): mask_ids = torch.unique(labels_crop[i]) for index, mask_id in enumerate(mask_ids): mask = (labels_crop[i] == mask_id).float() overlap = mask * out_label_crop[i] percentage = torch.sum(overlap) / torch.sum(mask) if percentage < 0.5: labels_crop[i][labels_crop[i] == mask_id] = -1 # sort the local labels sorted_ids = [] for i in range(num): if depth_crop is not None: if torch.sum(labels_crop[i] > -1) > 0: roi_depth = depth_crop[i, 2][labels_crop[i] > -1] else: roi_depth = depth_crop[i, 2] avg_depth = torch.mean(roi_depth[roi_depth > 0]) sorted_ids.append((i, avg_depth)) else: x_min = rois[i, 0] y_min = rois[i, 1] x_max = rois[i, 2] y_max = rois[i, 3] orig_H = y_max - y_min + 1 orig_W = x_max - x_min + 1 roi_size = orig_H * orig_W sorted_ids.append((i, roi_size)) sorted_ids = sorted(sorted_ids, key=lambda x : x[1], reverse=True) sorted_ids = [x[0] for x in sorted_ids] # combine the local labels refined_masks = torch.zeros_like(initial_masks).float() count = 0 for index in sorted_ids: mask_ids = torch.unique(labels_crop[index]) if mask_ids[0] == -1: mask_ids = mask_ids[1:] # mapping label_crop = torch.zeros_like(labels_crop[index]) for mask_id in mask_ids: count += 1 label_crop[labels_crop[index] == mask_id] = count # resize back to original size x_min = int(rois[index, 0].item()) y_min = int(rois[index, 1].item()) x_max = int(rois[index, 2].item()) y_max = int(rois[index, 3].item()) orig_H = int(y_max - y_min + 1) orig_W = int(x_max - x_min + 1) mask = label_crop.unsqueeze(0).unsqueeze(0).float() resized_mask = F.upsample_nearest(mask, (orig_H, orig_W))[0, 0] # Set refined mask h_idx, w_idx = torch.nonzero(resized_mask).t() refined_masks[0, y_min:y_max+1, x_min:x_max+1][h_idx, w_idx] = resized_mask[h_idx, w_idx].cpu() return refined_masks, labels_crop # filter labels on zero depths def filter_labels_depth(labels, depth, threshold): labels_new = labels.clone() for i in range(labels.shape[0]): label = labels[i] mask_ids = torch.unique(label) if mask_ids[0] == 0: mask_ids = mask_ids[1:] for index, mask_id in enumerate(mask_ids): mask = (label == mask_id).float() roi_depth = depth[i, 2][label == mask_id] depth_percentage = torch.sum(roi_depth > 0).float() / torch.sum(mask) if depth_percentage < threshold: labels_new[i][label == mask_id] = 0 return labels_new # filter labels inside boxes def filter_labels(labels, bboxes): labels_new = labels.clone() height = labels.shape[1] width = labels.shape[2] for i in range(labels.shape[0]): label = labels[i] bbox = bboxes[i].numpy() bbox_mask = torch.zeros_like(label) for j in range(bbox.shape[0]): x1 = max(int(bbox[j, 0]), 0) y1 = max(int(bbox[j, 1]), 0) x2 = min(int(bbox[j, 2]), width-1) y2 = min(int(bbox[j, 3]), height-1) bbox_mask[y1:y2, x1:x2] = 1 mask_ids = torch.unique(label) if mask_ids[0] == 0: mask_ids = mask_ids[1:] for index, mask_id in enumerate(mask_ids): mask = (label == mask_id).float() percentage = torch.sum(mask * bbox_mask) / torch.sum(mask) if percentage > 0.8: labels_new[i][label == mask_id] = 0 return labels_new def compute_xyz(depth_img, fx, fy, px, py, height, width): indices = util_.build_matrix_of_indices(height, width) z_e = depth_img x_e = (indices[..., 1] - px) * z_e / fx y_e = (indices[..., 0] - py) * z_e / fy xyz_img = np.stack([x_e, y_e, z_e], axis=-1) # Shape: [H x W x 3] return xyz_img def transform_by_matrix( points, mat, is_vec=False, is_point_image=False ): """ Args: points: np.array [N, 3] mat: np.array [4, 4] is_vec: bool Returns: trans_points: np.array [N, 3] """ rot = mat[:3, :3] w, h = mat.shape if w == 3 and h == 3: m = np.identity(4) m[:3,:3] = rot mat = m if is_point_image: trans_points = np.einsum('ij,abj->abi', rot, points ) else: trans_points = np.einsum('ij,aj->ai', rot, points ) if not is_vec: trans = mat[:3, 3] trans_points += trans return trans_points def depth_to_pc(depth, cam_intrinsic, cam_to_world=None): """ Args: depth: np.array [w, h, 3] cam_intrinsic: np.array [3, 3] cam_to_world: np.array [3, 3] with_noise: bool Returns: pointcloud: np.array [w, h, 3] """ depth = depth.transpose(1, 0) w, h = depth.shape u0 = cam_intrinsic[0,2] v0 = cam_intrinsic[1,2] fx = cam_intrinsic[0, 0] fy = cam_intrinsic[1, 1] v, u = np.meshgrid( range(h), range(w) ) z = depth x = (u - u0) * z / fx y = (v - v0) * z / fy z = z.reshape(w, h, 1) x = x.reshape(w, h, 1) y = y.reshape(w, h, 1) depth = depth.transpose(1, 0) # 640 * 480 * 3 ret = np.concatenate([x,y,z], axis=-1).astype('float32') # translate to world coordinate if cam_to_world is not None: ret = transform_by_matrix(ret, cam_to_world, is_point_image=True) ret = ret.transpose(1, 0, 2) return ret def img_process(rgb, depth, camera_params): PIXEL_MEANS = np.array([[[102.9801, 115.9465, 122.7717]]]) im_tensor = torch.from_numpy(rgb) / 255.0 pixel_mean = torch.tensor(PIXEL_MEANS / 255.0).float() im_tensor -= pixel_mean image_blob = im_tensor.permute(2, 0, 1) image_blob = image_blob.unsqueeze(0) # bgr image # bgr ? # dep xxx m if depth is not None: # height = depth.shape[0] # width = depth.shape[1] # fx = camera_params['fx'] # fy = camera_params['fy'] # px = camera_params['x_offset'] # py = camera_params['y_offset'] # xyz_img = compute_xyz(depth, fx, fy, px, py, height, width) xyz_img = depth_to_pc(depth, camera_params['cam']) depth_blob = torch.from_numpy(xyz_img).permute(2, 0, 1) depth_blob = depth_blob.unsqueeze(0) else: depth_blob = None return image_blob, depth_blob def img_segment(rgb, dep, network, network_crop, device, visual=False): # construct input image = rgb.cuda(device=device) if dep is not None: depth = dep.cuda(device=device) else: depth = None label = None # run network features = network(image, label, depth).detach() out_label, selected_pixels = clustering_features(features, num_seeds=100) if depth is not None: # filter labels on zero depth out_label = filter_labels_depth(out_label, depth, 0.8) # zoom in refinement out_label_refined = None if network_crop is not None: rgb_crop, out_label_crop, rois, depth_crop = crop_rois(image, out_label.clone(), depth) if rgb_crop.shape[0] > 0: features_crop = network_crop(rgb_crop, out_label_crop, depth_crop) labels_crop, selected_pixels_crop = clustering_features(features_crop) out_label_refined, labels_crop = match_label_crop(out_label, labels_crop.cuda(), out_label_crop, rois, depth_crop) if visual: bbox = None _vis_minibatch_segmentation_final(image, depth, label, out_label, out_label_refined, features, selected_pixels=selected_pixels, bbox=bbox) return out_label, out_label_refined
11,962
Python
31.508152
130
0.568467
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/fcn/__init__.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md
180
Python
44.249989
83
0.772222
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/fcn/test_dataset.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md import torch import torch.nn as nn import torch.nn.functional as F import time import sys, os import numpy as np import cv2 import scipy import matplotlib.pyplot as plt from fcn.config import cfg from fcn.test_common import _vis_minibatch_segmentation, _vis_features, _vis_minibatch_segmentation_final from transforms3d.quaternions import mat2quat, quat2mat, qmult from utils.mean_shift import mean_shift_smart_init from utils.evaluation import multilabel_metrics import utils.mask as util_ class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __repr__(self): return '{:.3f} ({:.3f})'.format(self.val, self.avg) def clustering_features(features, num_seeds=100): metric = cfg.TRAIN.EMBEDDING_METRIC height = features.shape[2] width = features.shape[3] out_label = torch.zeros((features.shape[0], height, width)) # mean shift clustering kappa = 20 selected_pixels = [] for j in range(features.shape[0]): X = features[j].view(features.shape[1], -1) X = torch.transpose(X, 0, 1) cluster_labels, selected_indices = mean_shift_smart_init(X, kappa=kappa, num_seeds=num_seeds, max_iters=10, metric=metric) out_label[j] = cluster_labels.view(height, width) selected_pixels.append(selected_indices) return out_label, selected_pixels def crop_rois(rgb, initial_masks, depth): N, H, W = initial_masks.shape crop_size = cfg.TRAIN.SYN_CROP_SIZE padding_percentage = 0.25 mask_ids = torch.unique(initial_masks[0]) if mask_ids[0] == 0: mask_ids = mask_ids[1:] num = mask_ids.shape[0] rgb_crops = torch.zeros((num, 3, crop_size, crop_size), device=cfg.device) rois = torch.zeros((num, 4), device=cfg.device) mask_crops = torch.zeros((num, crop_size, crop_size), device=cfg.device) if depth is not None: depth_crops = torch.zeros((num, 3, crop_size, crop_size), device=cfg.device) else: depth_crops = None for index, mask_id in enumerate(mask_ids): mask = (initial_masks[0] == mask_id).float() # Shape: [H x W] x_min, y_min, x_max, y_max = util_.mask_to_tight_box(mask) x_padding = int(torch.round((x_max - x_min).float() * padding_percentage).item()) y_padding = int(torch.round((y_max - y_min).float() * padding_percentage).item()) # pad and be careful of boundaries x_min = max(x_min - x_padding, 0) x_max = min(x_max + x_padding, W-1) y_min = max(y_min - y_padding, 0) y_max = min(y_max + y_padding, H-1) rois[index, 0] = x_min rois[index, 1] = y_min rois[index, 2] = x_max rois[index, 3] = y_max # crop rgb_crop = rgb[0, :, y_min:y_max+1, x_min:x_max+1] # [3 x crop_H x crop_W] mask_crop = mask[y_min:y_max+1, x_min:x_max+1] # [crop_H x crop_W] if depth is not None: depth_crop = depth[0, :, y_min:y_max+1, x_min:x_max+1] # [3 x crop_H x crop_W] # resize new_size = (crop_size, crop_size) rgb_crop = F.upsample_bilinear(rgb_crop.unsqueeze(0), new_size)[0] # Shape: [3 x new_H x new_W] rgb_crops[index] = rgb_crop mask_crop = F.upsample_nearest(mask_crop.unsqueeze(0).unsqueeze(0), new_size)[0,0] # Shape: [new_H, new_W] mask_crops[index] = mask_crop if depth is not None: depth_crop = F.upsample_bilinear(depth_crop.unsqueeze(0), new_size)[0] # Shape: [3 x new_H x new_W] depth_crops[index] = depth_crop return rgb_crops, mask_crops, rois, depth_crops # labels_crop is the clustering labels from the local patch def match_label_crop(initial_masks, labels_crop, out_label_crop, rois, depth_crop): num = labels_crop.shape[0] for i in range(num): mask_ids = torch.unique(labels_crop[i]) for index, mask_id in enumerate(mask_ids): mask = (labels_crop[i] == mask_id).float() overlap = mask * out_label_crop[i] percentage = torch.sum(overlap) / torch.sum(mask) if percentage < 0.5: labels_crop[i][labels_crop[i] == mask_id] = -1 # sort the local labels sorted_ids = [] for i in range(num): if depth_crop is not None: if torch.sum(labels_crop[i] > -1) > 0: roi_depth = depth_crop[i, 2][labels_crop[i] > -1] else: roi_depth = depth_crop[i, 2] avg_depth = torch.mean(roi_depth[roi_depth > 0]) sorted_ids.append((i, avg_depth)) else: x_min = rois[i, 0] y_min = rois[i, 1] x_max = rois[i, 2] y_max = rois[i, 3] orig_H = y_max - y_min + 1 orig_W = x_max - x_min + 1 roi_size = orig_H * orig_W sorted_ids.append((i, roi_size)) sorted_ids = sorted(sorted_ids, key=lambda x : x[1], reverse=True) sorted_ids = [x[0] for x in sorted_ids] # combine the local labels refined_masks = torch.zeros_like(initial_masks).float() count = 0 for index in sorted_ids: mask_ids = torch.unique(labels_crop[index]) if mask_ids[0] == -1: mask_ids = mask_ids[1:] # mapping label_crop = torch.zeros_like(labels_crop[index]) for mask_id in mask_ids: count += 1 label_crop[labels_crop[index] == mask_id] = count # resize back to original size x_min = int(rois[index, 0].item()) y_min = int(rois[index, 1].item()) x_max = int(rois[index, 2].item()) y_max = int(rois[index, 3].item()) orig_H = int(y_max - y_min + 1) orig_W = int(x_max - x_min + 1) mask = label_crop.unsqueeze(0).unsqueeze(0).float() resized_mask = F.upsample_nearest(mask, (orig_H, orig_W))[0, 0] # Set refined mask h_idx, w_idx = torch.nonzero(resized_mask).t() refined_masks[0, y_min:y_max+1, x_min:x_max+1][h_idx, w_idx] = resized_mask[h_idx, w_idx].cpu() return refined_masks, labels_crop # filter labels on zero depths def filter_labels_depth(labels, depth, threshold): labels_new = labels.clone() for i in range(labels.shape[0]): label = labels[i] mask_ids = torch.unique(label) if mask_ids[0] == 0: mask_ids = mask_ids[1:] for index, mask_id in enumerate(mask_ids): mask = (label == mask_id).float() roi_depth = depth[i, 2][label == mask_id] depth_percentage = torch.sum(roi_depth > 0).float() / torch.sum(mask) if depth_percentage < threshold: labels_new[i][label == mask_id] = 0 return labels_new # filter labels inside boxes def filter_labels(labels, bboxes): labels_new = labels.clone() height = labels.shape[1] width = labels.shape[2] for i in range(labels.shape[0]): label = labels[i] bbox = bboxes[i].numpy() bbox_mask = torch.zeros_like(label) for j in range(bbox.shape[0]): x1 = max(int(bbox[j, 0]), 0) y1 = max(int(bbox[j, 1]), 0) x2 = min(int(bbox[j, 2]), width-1) y2 = min(int(bbox[j, 3]), height-1) bbox_mask[y1:y2, x1:x2] = 1 mask_ids = torch.unique(label) if mask_ids[0] == 0: mask_ids = mask_ids[1:] for index, mask_id in enumerate(mask_ids): mask = (label == mask_id).float() percentage = torch.sum(mask * bbox_mask) / torch.sum(mask) if percentage > 0.8: labels_new[i][label == mask_id] = 0 return labels_new # test a single sample def test_sample(sample, network, network_crop): # construct input image = sample['image_color'].cuda() if cfg.INPUT == 'DEPTH' or cfg.INPUT == 'RGBD': depth = sample['depth'].cuda() else: depth = None if 'label' in sample: label = sample['label'].cuda() else: label = None # run network features = network(image, label, depth).detach() out_label, selected_pixels = clustering_features(features, num_seeds=100) if depth is not None: # filter labels on zero depth out_label = filter_labels_depth(out_label, depth, 0.8) # zoom in refinement out_label_refined = None if network_crop is not None: rgb_crop, out_label_crop, rois, depth_crop = crop_rois(image, out_label.clone(), depth) if rgb_crop.shape[0] > 0: features_crop = network_crop(rgb_crop, out_label_crop, depth_crop) labels_crop, selected_pixels_crop = clustering_features(features_crop) out_label_refined, labels_crop = match_label_crop(out_label, labels_crop.cuda(), out_label_crop, rois, depth_crop) if cfg.TEST.VISUALIZE: bbox = None _vis_minibatch_segmentation_final(image, depth, label, out_label, out_label_refined, features, selected_pixels=selected_pixels, bbox=bbox) return out_label, out_label_refined # test a dataset def test_segnet(test_loader, network, output_dir, network_crop): batch_time = AverageMeter() epoch_size = len(test_loader) # switch to test mode network.eval() if network_crop is not None: network_crop.eval() metrics_all = [] metrics_all_refined = [] for i, sample in enumerate(test_loader): end = time.time() # construct input image = sample['image_color'].cuda() if cfg.INPUT == 'DEPTH' or cfg.INPUT == 'RGBD': depth = sample['depth'].cuda() else: depth = None label = sample['label'].cuda() # run network features = network(image, label, depth).detach() out_label, selected_pixels = clustering_features(features, num_seeds=100) if 'ocid' in test_loader.dataset.name and depth is not None: # filter labels on zero depth out_label = filter_labels_depth(out_label, depth, 0.5) if 'osd' in test_loader.dataset.name and depth is not None: # filter labels on zero depth out_label = filter_labels_depth(out_label, depth, 0.8) # evaluation gt = sample['label'].squeeze().numpy() prediction = out_label.squeeze().detach().cpu().numpy() metrics = multilabel_metrics(prediction, gt) metrics_all.append(metrics) print(metrics) # zoom in refinement out_label_refined = None if network_crop is not None: rgb_crop, out_label_crop, rois, depth_crop = crop_rois(image, out_label.clone(), depth) if rgb_crop.shape[0] > 0: features_crop = network_crop(rgb_crop, out_label_crop, depth_crop) labels_crop, selected_pixels_crop = clustering_features(features_crop) out_label_refined, labels_crop = match_label_crop(out_label, labels_crop.cuda(), out_label_crop, rois, depth_crop) # evaluation if out_label_refined is not None: prediction_refined = out_label_refined.squeeze().detach().cpu().numpy() else: prediction_refined = prediction.copy() metrics_refined = multilabel_metrics(prediction_refined, gt) metrics_all_refined.append(metrics_refined) print(metrics_refined) if cfg.TEST.VISUALIZE: _vis_minibatch_segmentation(image, depth, label, out_label, out_label_refined, features, selected_pixels=selected_pixels, bbox=None) else: # save results result = {'labels': prediction, 'labels_refined': prediction_refined, 'filename': sample['filename']} filename = os.path.join(output_dir, '%06d.mat' % i) print(filename) scipy.io.savemat(filename, result, do_compression=True) # measure elapsed time batch_time.update(time.time() - end) print('[%d/%d], batch time %.2f' % (i, epoch_size, batch_time.val)) # sum the values with same keys print('========================================================') result = {} num = len(metrics_all) print('%d images' % num) print('========================================================') for metrics in metrics_all: for k in metrics.keys(): result[k] = result.get(k, 0) + metrics[k] for k in sorted(result.keys()): result[k] /= num print('%s: %f' % (k, result[k])) print('%.6f' % (result['Objects Precision'])) print('%.6f' % (result['Objects Recall'])) print('%.6f' % (result['Objects F-measure'])) print('%.6f' % (result['Boundary Precision'])) print('%.6f' % (result['Boundary Recall'])) print('%.6f' % (result['Boundary F-measure'])) print('%.6f' % (result['obj_detected_075_percentage'])) print('========================================================') print(result) print('====================Refined=============================') result_refined = {} for metrics in metrics_all_refined: for k in metrics.keys(): result_refined[k] = result_refined.get(k, 0) + metrics[k] for k in sorted(result_refined.keys()): result_refined[k] /= num print('%s: %f' % (k, result_refined[k])) print(result_refined) print('========================================================')
13,840
Python
35.232984
130
0.575795
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/fcn/train.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md import torch import torch.nn as nn import time import sys, os import numpy as np import matplotlib.pyplot as plt from fcn.config import cfg from fcn.test_common import _vis_minibatch_segmentation class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __repr__(self): return '{:.3f} ({:.3f})'.format(self.val, self.avg) def train_segnet(train_loader, network, optimizer, epoch): batch_time = AverageMeter() epoch_size = len(train_loader) # switch to train mode network.train() for i, sample in enumerate(train_loader): end = time.time() # construct input image = sample['image_color'].cuda() if cfg.INPUT == 'DEPTH' or cfg.INPUT == 'RGBD': depth = sample['depth'].cuda() else: depth = None label = sample['label'].cuda() loss, intra_cluster_loss, inter_cluster_loss, features = network(image, label, depth) loss = torch.sum(loss) intra_cluster_loss = torch.sum(intra_cluster_loss) inter_cluster_loss = torch.sum(inter_cluster_loss) out_label = None if cfg.TRAIN.VISUALIZE: _vis_minibatch_segmentation(image, depth, label, out_label, features=features) # compute gradient and do optimization step optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) print('[%d/%d][%d/%d], loss %.4f, loss intra: %.4f, loss_inter %.4f, lr %.6f, time %.2f' \ % (epoch, cfg.epochs, i, epoch_size, loss, intra_cluster_loss, inter_cluster_loss, optimizer.param_groups[0]['lr'], batch_time.val)) cfg.TRAIN.ITERS += 1
2,231
Python
27.987013
144
0.609592
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/networks/embedding.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md import sys, os import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable ########## Embedding Loss ########## def zero_diagonal(x): """ Sets diagonal elements of x to 0 @param x: a [batch_size x S x S] torch.FloatTensor """ S = x.shape[1] return x * (1- torch.eye(S).to(x.device)) def compute_cluster_mean(x, cluster_masks, K, normalize): """ Computes the spherical mean of a set of unit vectors. This is a PyTorch implementation The definition of spherical mean is minimizes cosine similarity to a set of points instead of squared error. Solves this problem: argmax_{||w||^2 <= 1} (sum_i x_i)^T w Turns out the solution is: S_n / ||S_n||, where S_n = sum_i x_i. If S_n = 0, w can be anything. @param x: a [batch_size x C x H x W] torch.FloatTensor of N NORMALIZED C-dimensional unit vectors @param cluster_masks: a [batch_size x K x H x W] torch.FloatTensor of ground truth cluster assignments in {0, ..., K-1}. Note: cluster -1 (i.e. no cluster assignment) is ignored @param K: number of clusters @return: a [batch_size x C x K] torch.FloatTensor of NORMALIZED cluster means """ batch_size, C = x.shape[:2] cluster_means = torch.zeros((batch_size, C, K), device=x.device) for k in range(K): mask = (cluster_masks == k).float() # Shape: [batch_size x 1 x H x W] # adding 1e-10 because if mask has nothing, it'll hit NaNs # * here is broadcasting cluster_means[:,:,k] = torch.sum(x * mask, dim=[2, 3]) / (torch.sum(mask, dim=[2, 3]) + 1e-10) # normalize to compute spherical mean if normalize: cluster_means = F.normalize(cluster_means, p=2, dim=1) # Note, if any vector is zeros, F.normalize will return the zero vector return cluster_means class EmbeddingLoss(nn.Module): def __init__(self, alpha, delta, lambda_intra, lambda_inter, metric='cosine', normalize=True): super(EmbeddingLoss, self).__init__() self.alpha = alpha self.delta = delta self.lambda_intra = lambda_intra self.lambda_inter = lambda_inter self.metric = metric self.normalize = normalize def forward(self, x, cluster_masks): """ Compute the clustering loss. Assumes the batch is a sequence of consecutive frames @param x: a [batch_size x C x H x W] torch.FloatTensor of pixel embeddings @param cluster_masks: a [batch_size x 1 x H x W] torch.FloatTensor of ground truth cluster assignments in {0, ..., K-1} """ batch_size = x.shape[0] K = int(cluster_masks.max().item()) + 1 # Compute cluster means across batch dimension cluster_means = compute_cluster_mean(x, cluster_masks, K, self.normalize) # Shape: [batch_size x C x K] ### Intra cluster loss ### # Tile the cluster means appropriately. Also calculate number of pixels per mask for pixel weighting tiled_cluster_means = torch.zeros_like(x, device=x.device) # Shape: [batch_size x C x H x W] for k in range(K): mask = (cluster_masks == k).float() # Shape: [batch_size x 1 x H x W] tiled_cluster_means += mask * cluster_means[:,:,k].unsqueeze(2).unsqueeze(3) # ignore label -1 labeled_embeddings = (cluster_masks >= 0).squeeze(1).float() # Shape: [batch_size x H x W] # Compute distance to cluster center if self.metric == 'cosine': intra_cluster_distances = labeled_embeddings * (0.5 * (1 - torch.sum(x * tiled_cluster_means, dim=1))) # Shape: [batch_size x H x W] elif self.metric == 'euclidean': intra_cluster_distances = labeled_embeddings * (torch.norm(x - tiled_cluster_means, dim=1)) # Hard Negative Mining intra_cluster_mask = (intra_cluster_distances - self.alpha) > 0 intra_cluster_mask = intra_cluster_mask.float() if torch.sum(intra_cluster_mask) > 0: intra_cluster_loss = torch.pow(intra_cluster_distances, 2) # calculate datapoint_weights datapoint_weights = torch.zeros((batch_size,) + intra_cluster_distances.shape[1:], device=x.device) for k in range(K): # find number of datapoints in cluster k that are > alpha away from cluster center mask = (cluster_masks == k).float().squeeze(1) # Shape: [batch_size x H x W] N_k = torch.sum((intra_cluster_distances > self.alpha).float() * mask, dim=[1, 2], keepdim=True) # Shape: [batch_size x 1 x 1] datapoint_weights += mask * N_k datapoint_weights = torch.max(datapoint_weights, torch.FloatTensor([50]).to(x.device)) # Max it with 50 so it doesn't get too small datapoint_weights *= K intra_cluster_loss = torch.sum(intra_cluster_loss / datapoint_weights) / batch_size else: intra_cluster_loss = torch.sum(Variable(torch.zeros(1, device=x.device), requires_grad=True)) intra_cluster_loss = self.lambda_intra * intra_cluster_loss ### Inter cluster loss ### if K > 1: if self.metric == 'cosine': # Shape: [batch_size x K x K] inter_cluster_distances = .5 * (1 - torch.sum(cluster_means.unsqueeze(2) * cluster_means.unsqueeze(3), dim=1)) elif self.metric == 'euclidean': inter_cluster_distances = torch.norm(cluster_means.unsqueeze(2) - cluster_means.unsqueeze(3), dim=1) inter_cluster_loss = torch.sum(torch.pow(torch.clamp(zero_diagonal(self.delta - inter_cluster_distances), min=0), 2)) / (K*(K-1)/2 * batch_size) inter_cluster_loss = self.lambda_inter * inter_cluster_loss else: inter_cluster_loss = torch.sum(Variable(torch.zeros(1, device=x.device), requires_grad=True)) loss = intra_cluster_loss + inter_cluster_loss return loss, intra_cluster_loss, inter_cluster_loss
6,266
Python
45.768656
156
0.620811
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/networks/resnet.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md import torch.nn as nn import math import torch.utils.model_zoo as model_zoo import numpy as np __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152'] model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } def conv3x3(in_planes, out_planes, stride=1, dilation=1): "3x3 convolution with padding" kernel_size = np.asarray((3, 3)) # Compute the size of the upsampled filter with # a specified dilation rate. upsampled_kernel_size = (kernel_size - 1) * (dilation - 1) + kernel_size # Determine the padding that is necessary for full padding, # meaning the output spatial size is equal to input spatial size full_padding = (upsampled_kernel_size - 1) // 2 # Conv2d doesn't accept numpy arrays as arguments full_padding, kernel_size = tuple(full_padding), tuple(kernel_size) return nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=full_padding, dilation=dilation, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride, dilation=dilation) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes, dilation=dilation) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = conv3x3(planes, planes, stride=stride, dilation=dilation) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, fully_conv=False, remove_avg_pool_layer=False, output_stride=32, input_channels=3, additional_blocks=0, multi_grid=(1,1,1) ): # Add additional variables to track # output stride. Necessary to achieve # specified output stride. self.output_stride = output_stride self.current_stride = 4 self.current_dilation = 1 self.remove_avg_pool_layer = remove_avg_pool_layer self.inplanes = 64 self.fully_conv = fully_conv super(ResNet, self).__init__() self.conv1 = nn.Conv2d(input_channels, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, multi_grid=multi_grid) self.additional_blocks = additional_blocks if additional_blocks == 1: self.layer5 = self._make_layer(block, 512, layers[3], stride=2, multi_grid=multi_grid) if additional_blocks == 2: self.layer5 = self._make_layer(block, 512, layers[3], stride=2, multi_grid=multi_grid) self.layer6 = self._make_layer(block, 512, layers[3], stride=2, multi_grid=multi_grid) if additional_blocks == 3: self.layer5 = self._make_layer(block, 512, layers[3], stride=2, multi_grid=multi_grid) self.layer6 = self._make_layer(block, 512, layers[3], stride=2, multi_grid=multi_grid) self.layer7 = self._make_layer(block, 512, layers[3], stride=2, multi_grid=multi_grid) self.avgpool = nn.AvgPool2d(7) self.fc = nn.Linear(512 * block.expansion, num_classes) if self.fully_conv: self.avgpool = nn.AvgPool2d(7, padding=3, stride=1) # In the latest unstable torch 4.0 the tensor.copy_ # method was changed and doesn't work as it used to be #self.fc = nn.Conv2d(512 * block.expansion, num_classes, 1) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1, multi_grid=None): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: # Check if we already achieved desired output stride. if self.current_stride == self.output_stride: # If so, replace subsampling with a dilation to preserve # current spatial resolution. self.current_dilation = self.current_dilation * stride stride = 1 else: # If not, perform subsampling and update current # new output stride. self.current_stride = self.current_stride * stride # We don't dilate 1x1 convolution. downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] dilation = multi_grid[0] * self.current_dilation if multi_grid else self.current_dilation layers.append(block(self.inplanes, planes, stride, downsample, dilation=dilation)) self.inplanes = planes * block.expansion for i in range(1, blocks): dilation = multi_grid[i] * self.current_dilation if multi_grid else self.current_dilation layers.append(block(self.inplanes, planes, dilation=dilation)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) if self.additional_blocks == 1: x = self.layer5(x) if self.additional_blocks == 2: x = self.layer5(x) x = self.layer6(x) if self.additional_blocks == 3: x = self.layer5(x) x = self.layer6(x) x = self.layer7(x) if not self.remove_avg_pool_layer: x = self.avgpool(x) if not self.fully_conv: x = x.view(x.size(0), -1) x = self.fc(x) return x def resnet18(pretrained=False, **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) if pretrained: if model.additional_blocks: model.load_state_dict(model_zoo.load_url(model_urls['resnet18']), strict=False) return model model.load_state_dict(model_zoo.load_url(model_urls['resnet18'])) return model def update_model_print(model, data): model_dict = model.state_dict() print('model keys') print('=================================================') for k, v in model_dict.items(): print(k) print('=================================================') if data is not None: print('data keys') print('=================================================') for k, v in data.items(): print(k) print('=================================================') pretrained_dict = {k: v for k, v in data.items() if k in model_dict and v.size() == model_dict[k].size()} print('load the following keys from the pretrained model') print('=================================================') for k, v in pretrained_dict.items(): print(k) print('=================================================') model_dict.update(pretrained_dict) model.load_state_dict(model_dict) def update_model(model, data): model_dict = model.state_dict() if data is not None: pretrained_dict = {k: v for k, v in data.items() if k in model_dict and v.size() == model_dict[k].size()} model_dict.update(pretrained_dict) model.load_state_dict(model_dict) def resnet34(pretrained=False, **kwargs): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) if pretrained: if model.additional_blocks: model.load_state_dict(model_zoo.load_url(model_urls['resnet34']), strict=False) return model # model.load_state_dict(model_zoo.load_url(model_urls['resnet34'])) data = model_zoo.load_url(model_urls['resnet34']) update_model(model, data) else: print('=============no pretrained weights===============') return model def resnet50(pretrained=False, **kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) if pretrained: if model.additional_blocks: model.load_state_dict(model_zoo.load_url(model_urls['resnet50']), strict=False) return model model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) return model def resnet101(pretrained=False, **kwargs): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) if pretrained: if model.additional_blocks: model.load_state_dict(model_zoo.load_url(model_urls['resnet101']), strict=False) return model model.load_state_dict(model_zoo.load_url(model_urls['resnet101'])) return model def resnet152(pretrained=False, **kwargs): """Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet152'])) return model
13,087
Python
31.078431
113
0.548254
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/networks/unets.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md import torch import torch.nn as nn import utils as util_ class Conv2d_GN_ReLU(nn.Module): """ Implements a module that performs conv2d + groupnorm + ReLU + Assumes kernel size is odd """ def __init__(self, in_channels, out_channels, num_groups, ksize=3, stride=1): super(Conv2d_GN_ReLU, self).__init__() padding = 0 if ksize < 2 else ksize//2 self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=ksize, stride=stride, padding=padding, bias=False) self.gn1 = nn.GroupNorm(num_groups, out_channels) self.relu1 = nn.ReLU(inplace=True) def forward(self, x): out = self.conv1(x) out = self.gn1(out) out = self.relu1(out) return out class Conv2d_GN_ReLUx2(nn.Module): """ Implements a module that performs conv2d + groupnorm + ReLU + conv2d + groupnorm + ReLU (and a possible downsampling operation) Assumes kernel size is odd """ def __init__(self, in_channels, out_channels, num_groups, ksize=3, stride=1): super(Conv2d_GN_ReLUx2, self).__init__() self.layer1 = Conv2d_GN_ReLU(in_channels, out_channels, num_groups, ksize=ksize, stride=stride) self.layer2 = Conv2d_GN_ReLU(out_channels, out_channels, num_groups, ksize=ksize, stride=stride) def forward(self, x): out = self.layer1(x) out = self.layer2(out) return out class Upsample_Concat_Conv2d_GN_ReLU_Multi_Branch(nn.Module): """ Implements a module that performs Upsample (reduction: conv2d + groupnorm + ReLU + bilinear_sampling) + concat + conv2d + groupnorm + ReLU for the U-Net decoding architecture with an arbitrary number of encoders The Upsample operation consists of a Conv2d_GN_ReLU that reduces the channels by 2, followed by bilinear sampling Note: in_channels is number of channels of ONE of the inputs to the concatenation """ def __init__(self, in_channels, out_channels, num_groups, num_encoders, ksize=3, stride=1): super(Upsample_Concat_Conv2d_GN_ReLU_Multi_Branch, self).__init__() self.channel_reduction_layer = Conv2d_GN_ReLU(in_channels, in_channels//2, num_groups) self.upsample = nn.Upsample(scale_factor=2, mode='bilinear') self.conv_gn_relu = Conv2d_GN_ReLU(int(in_channels//2 * (num_encoders+1)), out_channels, num_groups) def forward(self, x, skips): """ Forward module @param skips: a list of intermediate skip-layer torch tensors from each encoder """ x = self.channel_reduction_layer(x) x = self.upsample(x) out = torch.cat([x] + skips, dim=1) # Concat on channels dimension out = self.conv_gn_relu(out) return out def maxpool2x2(input, ksize=2, stride=2): """2x2 max pooling""" return nn.MaxPool2d(ksize, stride=stride)(input) # another way to build encoder/decoder def make_encoder_layers(cfg, in_channels=3, batch_norm=False): layers = [] output_scale = 1.0 for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] output_scale /= 2.0 else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.LeakyReLU(negative_slope=0.2,inplace=True)] else: layers += [conv2d, nn.LeakyReLU(negative_slope=0.2,inplace=True)] in_channels = v return nn.Sequential(*layers), in_channels, output_scale def make_decoder_layers(cfg, in_channels, batch_norm=False): layers = [] for i in range(len(cfg)): v = cfg[i] if type(v) is str: if v[0] == 'd': v = int(v[1:]) convtrans2d = nn.ConvTranspose2d(in_channels, v, kernel_size=4, stride=2, padding=1) if batch_norm: layers += [convtrans2d, nn.BatchNorm2d(v), nn.LeakyReLU(negative_slope=0.2, inplace=True)] else: layers += [convtrans2d, nn.LeakyReLU(negative_slope=0.2, inplace=True)] in_channels = v elif v[0] == 'c': v = int(v[1:]) layers += [nn.Conv2d(in_channels, v, kernel_size=3, padding=1)] elif v[0] == 'D': layers += [nn.Dropout(p=0.2)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.LeakyReLU(negative_slope=0.2, inplace=True)] else: # no relu for the last layer for embedding if i == len(cfg) - 1: layers += [conv2d] else: layers += [conv2d, nn.LeakyReLU(negative_slope=0.2, inplace=True)] in_channels = v return nn.Sequential(*layers) ################## Network Definitions ################## class UNet_Encoder(nn.Module): def __init__(self, input_channels, feature_dim): super(UNet_Encoder, self).__init__() self.ic = input_channels self.fd = feature_dim self.build_network() def build_network(self): """ Build encoder network Uses a U-Net-like architecture """ ### Encoder ### self.layer1 = Conv2d_GN_ReLUx2(self.ic, self.fd, self.fd) self.layer2 = Conv2d_GN_ReLUx2(self.fd, self.fd*2, self.fd) self.layer3 = Conv2d_GN_ReLUx2(self.fd*2, self.fd*4, self.fd) self.layer4 = Conv2d_GN_ReLUx2(self.fd*4, self.fd*8, self.fd) self.last_layer = Conv2d_GN_ReLU(self.fd*8, self.fd*16, self.fd) def forward(self, images): x1 = self.layer1(images) mp_x1 = maxpool2x2(x1) x2 = self.layer2(mp_x1) mp_x2 = maxpool2x2(x2) x3 = self.layer3(mp_x2) mp_x3 = maxpool2x2(x3) x4 = self.layer4(mp_x3) mp_x4 = maxpool2x2(x4) x5 = self.last_layer(mp_x4) return x5, [x1, x2, x3, x4] class UNet_Decoder(nn.Module): """ A U-Net decoder that allows for multiple encoders """ def __init__(self, num_encoders, feature_dim, coordconv=False): super(UNet_Decoder, self).__init__() self.ne = num_encoders self.fd = feature_dim self.coordconv = coordconv self.build_network() def build_network(self): """ Build a decoder network Uses a U-Net-like architecture """ # Fusion layer self.fuse_layer = Conv2d_GN_ReLU(self.fd*16 * self.ne, self.fd*16, self.fd, ksize=1) # Decoding self.layer1 = Upsample_Concat_Conv2d_GN_ReLU_Multi_Branch(self.fd*16, self.fd*8, self.fd, self.ne) self.layer2 = Upsample_Concat_Conv2d_GN_ReLU_Multi_Branch(self.fd*8, self.fd*4, self.fd, self.ne) self.layer3 = Upsample_Concat_Conv2d_GN_ReLU_Multi_Branch(self.fd*4, self.fd*2, self.fd, self.ne) self.layer4 = Upsample_Concat_Conv2d_GN_ReLU_Multi_Branch(self.fd*2, self.fd, self.fd, self.ne) # Final layer self.layer5 = Conv2d_GN_ReLU(self.fd, self.fd, self.fd) if self.coordconv: # Extra 1x1 Conv layers for CoordConv self.layer6 = Conv2d_GN_ReLUx2(self.fd+2, self.fd, self.fd, ksize=1) self.layer7 = Conv2d_GN_ReLUx2(self.fd, self.fd, self.fd, ksize=1) # This puts features everywhere, not just nonnegative orthant self.last_conv = nn.Conv2d(self.fd, self.fd, kernel_size=3, stride=1, padding=1, bias=True) def forward(self, encoder_list): """ Forward module @param encoder_list: a list of tuples each tuple includes 2 elements: - output of encoder: an [N x C x H x W] torch tensor - list of intermediate outputs: a list of 4 torch tensors """ # Apply fusion layer to the concatenation of encoder outputs out = torch.cat([x[0] for x in encoder_list], dim=1) # Concatenate on channels dimension out = self.fuse_layer(out) out = self.layer1(out, [x[1][3] for x in encoder_list]) out = self.layer2(out, [x[1][2] for x in encoder_list]) out = self.layer3(out, [x[1][1] for x in encoder_list]) out = self.layer4(out, [x[1][0] for x in encoder_list]) out = self.layer5(out) if self.coordconv: out = util_.concatenate_spatial_coordinates(out) out = self.layer6(out) out = self.layer7(out) out = self.last_conv(out) return out
9,089
Python
36.561983
110
0.57355
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/networks/resnet_dilated.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md import numpy as np import torch.nn as nn from . import resnet as models def adjust_input_image_size_for_proper_feature_alignment(input_img_batch, output_stride=8): """Resizes the input image to allow proper feature alignment during the forward propagation. Resizes the input image to a closest multiple of `output_stride` + 1. This allows the proper alignment of features. To get more details, read here: https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v1.py#L159 Parameters ---------- input_img_batch : torch.Tensor Tensor containing a single input image of size (1, 3, h, w) output_stride : int Output stride of the network where the input image batch will be fed. Returns ------- input_img_batch_new_size : torch.Tensor Resized input image batch tensor """ input_spatial_dims = np.asarray( input_img_batch.shape[2:], dtype=np.float ) # Comments about proper alignment can be found here # https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v1.py#L159 new_spatial_dims = np.ceil(input_spatial_dims / output_stride).astype(np.int) * output_stride + 1 # Converting the numpy to list, torch.nn.functional.upsample_bilinear accepts # size in the list representation. new_spatial_dims = list(new_spatial_dims) input_img_batch_new_size = nn.functional.upsample_bilinear(input=input_img_batch, size=new_spatial_dims) return input_img_batch_new_size class Resnet101_8s(nn.Module): def __init__(self, num_classes=1000): super(Resnet101_8s, self).__init__() # Load the pretrained weights, remove avg pool # layer and get the output stride of 8 resnet101_8s = models.resnet101(fully_conv=True, pretrained=True, output_stride=8, remove_avg_pool_layer=True) # Randomly initialize the 1x1 Conv scoring layer resnet101_8s.fc = nn.Conv2d(resnet101_8s.inplanes, num_classes, 1) self.resnet101_8s = resnet101_8s self._normal_initialization(self.resnet101_8s.fc) def _normal_initialization(self, layer): layer.weight.data.normal_(0, 0.01) layer.bias.data.zero_() def forward(self, x): input_spatial_dim = x.size()[2:] x = self.resnet101_8s(x) x = nn.functional.upsample_bilinear(input=x, size=input_spatial_dim) return x class Resnet18_8s(nn.Module): def __init__(self, num_classes=1000): super(Resnet18_8s, self).__init__() # Load the pretrained weights, remove avg pool # layer and get the output stride of 8 resnet18_8s = models.resnet18(fully_conv=True, pretrained=True, output_stride=8, remove_avg_pool_layer=True) # Randomly initialize the 1x1 Conv scoring layer resnet18_8s.fc = nn.Conv2d(resnet18_8s.inplanes, num_classes, 1) self.resnet18_8s = resnet18_8s self._normal_initialization(self.resnet18_8s.fc) def _normal_initialization(self, layer): layer.weight.data.normal_(0, 0.01) layer.bias.data.zero_() def forward(self, x, feature_alignment=False): input_spatial_dim = x.size()[2:] if feature_alignment: x = adjust_input_image_size_for_proper_feature_alignment(x, output_stride=8) x = self.resnet18_8s(x) x = nn.functional.upsample(x, size=input_spatial_dim, mode='bilinear', align_corners=True) #x = nn.functional.upsample_bilinear(input=x, size=input_spatial_dim)#, align_corners=False) return x class Resnet18_16s(nn.Module): def __init__(self, num_classes=1000): super(Resnet18_16s, self).__init__() # Load the pretrained weights, remove avg pool # layer and get the output stride of 16 resnet18_16s = models.resnet18(fully_conv=True, pretrained=True, output_stride=16, remove_avg_pool_layer=True) # Randomly initialize the 1x1 Conv scoring layer resnet18_16s.fc = nn.Conv2d(resnet18_16s.inplanes, num_classes, 1) self.resnet18_16s = resnet18_16s self._normal_initialization(self.resnet18_16s.fc) def _normal_initialization(self, layer): layer.weight.data.normal_(0, 0.01) layer.bias.data.zero_() def forward(self, x): input_spatial_dim = x.size()[2:] x = self.resnet18_16s(x) x = nn.functional.upsample_bilinear(input=x, size=input_spatial_dim) return x class Resnet18_32s(nn.Module): def __init__(self, num_classes=1000): super(Resnet18_32s, self).__init__() # Load the pretrained weights, remove avg pool # layer and get the output stride of 8 resnet18_32s = models.resnet18(fully_conv=True, pretrained=True, output_stride=32, remove_avg_pool_layer=True) # Randomly initialize the 1x1 Conv scoring layer resnet18_32s.fc = nn.Conv2d(resnet18_32s.inplanes, num_classes, 1) self.resnet18_32s = resnet18_32s self._normal_initialization(self.resnet18_32s.fc) def _normal_initialization(self, layer): layer.weight.data.normal_(0, 0.01) layer.bias.data.zero_() def forward(self, x): input_spatial_dim = x.size()[2:] x = self.resnet18_32s(x) x = nn.functional.upsample_bilinear(input=x, size=input_spatial_dim) return x class Resnet34_32s(nn.Module): def __init__(self, num_classes=1000): super(Resnet34_32s, self).__init__() # Load the pretrained weights, remove avg pool # layer and get the output stride of 8 resnet34_32s = models.resnet34(fully_conv=True, pretrained=True, output_stride=32, remove_avg_pool_layer=True) # Randomly initialize the 1x1 Conv scoring layer resnet34_32s.fc = nn.Conv2d(resnet34_32s.inplanes, num_classes, 1) self.resnet34_32s = resnet34_32s self._normal_initialization(self.resnet34_32s.fc) def _normal_initialization(self, layer): layer.weight.data.normal_(0, 0.01) layer.bias.data.zero_() def forward(self, x): input_spatial_dim = x.size()[2:] x = self.resnet34_32s(x) x = nn.functional.upsample_bilinear(input=x, size=input_spatial_dim) return x class Resnet34_16s(nn.Module): def __init__(self, num_classes=1000): super(Resnet34_16s, self).__init__() # Load the pretrained weights, remove avg pool # layer and get the output stride of 8 resnet34_16s = models.resnet34(fully_conv=True, pretrained=True, output_stride=16, remove_avg_pool_layer=True) # Randomly initialize the 1x1 Conv scoring layer resnet34_16s.fc = nn.Conv2d(resnet34_16s.inplanes, num_classes, 1) self.resnet34_16s = resnet34_16s self._normal_initialization(self.resnet34_16s.fc) def _normal_initialization(self, layer): layer.weight.data.normal_(0, 0.01) layer.bias.data.zero_() def forward(self, x): input_spatial_dim = x.size()[2:] x = self.resnet34_16s(x) x = nn.functional.upsample_bilinear(input=x, size=input_spatial_dim) return x class Resnet34_8s(nn.Module): def __init__(self, num_classes=1000, input_channels=3, pretrained=True): super(Resnet34_8s, self).__init__() # Load the pretrained weights, remove avg pool # layer and get the output stride of 8 resnet34_8s = models.resnet34(fully_conv=True, pretrained=pretrained, output_stride=8, input_channels=input_channels, remove_avg_pool_layer=True) # Randomly initialize the 1x1 Conv scoring layer resnet34_8s.fc = nn.Conv2d(resnet34_8s.inplanes, num_classes, 1) self.resnet34_8s = resnet34_8s self._normal_initialization(self.resnet34_8s.fc) def _normal_initialization(self, layer): layer.weight.data.normal_(0, 0.01) layer.bias.data.zero_() def forward(self, x, feature_alignment=False): input_spatial_dim = x.size()[2:] if feature_alignment: x = adjust_input_image_size_for_proper_feature_alignment(x, output_stride=8) x = self.resnet34_8s(x) x = nn.functional.upsample_bilinear(input=x, size=input_spatial_dim) return x class Resnet34_8s_fc(nn.Module): def __init__(self, num_classes=1000): super(Resnet34_8s_fc, self).__init__() # Load the pretrained weights, remove avg pool # layer and get the output stride of 8 resnet34_8s = models.resnet34(fully_conv=False, pretrained=True, output_stride=8, remove_avg_pool_layer=False) # Randomly initialize the new fc layer resnet34_8s.fc = nn.Linear(resnet34_8s.inplanes * 4, num_classes) self.resnet34_8s = resnet34_8s self._normal_initialization(self.resnet34_8s.fc) def _normal_initialization(self, layer): layer.weight.data.normal_(0, 0.01) layer.bias.data.zero_() def forward(self, x, feature_alignment=False): if feature_alignment: x = adjust_input_image_size_for_proper_feature_alignment(x, output_stride=8) x = self.resnet34_8s(x) return x class Resnet50_32s(nn.Module): def __init__(self, num_classes=1000): super(Resnet50_32s, self).__init__() # Load the pretrained weights, remove avg pool # layer and get the output stride of 8 resnet50_32s = models.resnet50(fully_conv=True, pretrained=True, output_stride=32, remove_avg_pool_layer=True) # Randomly initialize the 1x1 Conv scoring layer resnet50_32s.fc = nn.Conv2d(resnet50_32s.inplanes, num_classes, 1) self.resnet50_32s = resnet50_32s self._normal_initialization(self.resnet50_32s.fc) def _normal_initialization(self, layer): layer.weight.data.normal_(0, 0.01) layer.bias.data.zero_() def forward(self, x): input_spatial_dim = x.size()[2:] x = self.resnet50_32s(x) x = nn.functional.upsample_bilinear(input=x, size=input_spatial_dim) return x class Resnet50_16s(nn.Module): def __init__(self, num_classes=1000): super(Resnet50_16s, self).__init__() # Load the pretrained weights, remove avg pool # layer and get the output stride of 16 resnet50_8s = models.resnet50(fully_conv=True, pretrained=True, output_stride=16, remove_avg_pool_layer=True) # Randomly initialize the 1x1 Conv scoring layer resnet50_8s.fc = nn.Conv2d(resnet50_8s.inplanes, num_classes, 1) self.resnet50_8s = resnet50_8s self._normal_initialization(self.resnet50_8s.fc) def _normal_initialization(self, layer): layer.weight.data.normal_(0, 0.01) layer.bias.data.zero_() def forward(self, x): input_spatial_dim = x.size()[2:] x = self.resnet50_8s(x) x = nn.functional.upsample_bilinear(input=x, size=input_spatial_dim) return x class Resnet50_8s(nn.Module): def __init__(self, num_classes=1000): super(Resnet50_8s, self).__init__() # Load the pretrained weights, remove avg pool # layer and get the output stride of 8 resnet50_8s = models.resnet50(fully_conv=True, pretrained=True, output_stride=8, remove_avg_pool_layer=True) # Randomly initialize the 1x1 Conv scoring layer resnet50_8s.fc = nn.Conv2d(resnet50_8s.inplanes, num_classes, 1) self.resnet50_8s = resnet50_8s self._normal_initialization(self.resnet50_8s.fc) def _normal_initialization(self, layer): layer.weight.data.normal_(0, 0.01) layer.bias.data.zero_() def forward(self, x): input_spatial_dim = x.size()[2:] x = self.resnet50_8s(x) x = nn.functional.upsample_bilinear(input=x, size=input_spatial_dim) return x class Resnet9_8s(nn.Module): # Gets ~ 46 MIOU on Pascal Voc def __init__(self, num_classes=1000): super(Resnet9_8s, self).__init__() # Load the pretrained weights, remove avg pool # layer and get the output stride of 8 resnet18_8s = models.resnet18(fully_conv=True, pretrained=True, output_stride=8, remove_avg_pool_layer=True) # Randomly initialize the 1x1 Conv scoring layer resnet18_8s.fc = nn.Conv2d(resnet18_8s.inplanes, num_classes, 1) self.resnet18_8s = resnet18_8s self._normal_initialization(self.resnet18_8s.fc) def _normal_initialization(self, layer): layer.weight.data.normal_(0, 0.01) layer.bias.data.zero_() def forward(self, x): input_spatial_dim = x.size()[2:] x = self.resnet18_8s.conv1(x) x = self.resnet18_8s.bn1(x) x = self.resnet18_8s.relu(x) x = self.resnet18_8s.maxpool(x) x = self.resnet18_8s.layer1[0](x) x = self.resnet18_8s.layer2[0](x) x = self.resnet18_8s.layer3[0](x) x = self.resnet18_8s.layer4[0](x) x = self.resnet18_8s.fc(x) x = nn.functional.upsample_bilinear(input=x, size=input_spatial_dim) return x
16,162
Python
30.142582
101
0.53205
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/networks/__init__.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md from .SEG import *
200
Python
32.499995
83
0.76
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/networks/utils.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md import torch def log_softmax_high_dimension(input): num_classes = input.size()[1] m = torch.max(input, dim=1, keepdim=True)[0] if input.dim() == 4: d = input - m.repeat(1, num_classes, 1, 1) else: d = input - m.repeat(1, num_classes) e = torch.exp(d) s = torch.sum(e, dim=1, keepdim=True) if input.dim() == 4: output = d - torch.log(s.repeat(1, num_classes, 1, 1)) else: output = d - torch.log(s.repeat(1, num_classes)) return output def softmax_high_dimension(input): num_classes = input.size()[1] m = torch.max(input, dim=1, keepdim=True)[0] if input.dim() == 4: e = torch.exp(input - m.repeat(1, num_classes, 1, 1)) else: e = torch.exp(input - m.repeat(1, num_classes)) s = torch.sum(e, dim=1, keepdim=True) if input.dim() == 4: output = torch.div(e, s.repeat(1, num_classes, 1, 1)) else: output = torch.div(e, s.repeat(1, num_classes)) return output def concatenate_spatial_coordinates(feature_map): """ Adds x,y coordinates as channels to feature map @param feature_map: a [T x C x H x W] torch tensor """ T, C, H, W = feature_map.shape # build matrix of indices. then replicated it T times MoI = build_matrix_of_indices(H, W) # Shape: [H, W, 2] MoI = np.tile(MoI, (T, 1, 1, 1)) # Shape: [T, H, W, 2] MoI[..., 0] = MoI[..., 0] / (H-1) * 2 - 1 # in [-1, 1] MoI[..., 1] = MoI[..., 1] / (W-1) * 2 - 1 MoI = torch.from_numpy(MoI).permute(0,3,1,2).to(feature_map.device) # Shape: [T, 2, H, W] # Concatenate on the channels dimension feature_map = torch.cat([feature_map, MoI], dim=1) return feature_map
1,881
Python
32.607142
93
0.58958
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/networks/SEG.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md import torch import torch.nn as nn import torch.nn.functional as F import torchvision import copy from fcn.config import cfg from networks.utils import log_softmax_high_dimension, softmax_high_dimension from networks.embedding import EmbeddingLoss from . import unets from . import resnet_dilated __all__ = [ 'seg_vgg_embedding', 'seg_unet_embedding', 'seg_resnet34_8s_embedding_early', 'seg_resnet34_8s_embedding', 'seg_resnet50_8s_embedding', ] encoder_archs = { 'vgg16-based-16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M', 1024, 1024] } # Segmentation Network class SEGNET(nn.Module): '''SEGNET a Encoder-Decoder for Object Segmentation.''' def __init__(self, init_weights=True, batch_norm=False, in_channels=3, network_name='vgg', num_units=64, use_coordconv=False): super(SEGNET, self).__init__() self.network_name = network_name self.in_channels = in_channels self.metric = cfg.TRAIN.EMBEDDING_METRIC self.normalize = cfg.TRAIN.EMBEDDING_NORMALIZATION self.input_type = cfg.INPUT self.fusion_type = cfg.TRAIN.FUSION_TYPE self.embedding_pretrain = cfg.TRAIN.EMBEDDING_PRETRAIN # embedding loss alpha = cfg.TRAIN.EMBEDDING_ALPHA delta = cfg.TRAIN.EMBEDDING_DELTA lambda_intra = cfg.TRAIN.EMBEDDING_LAMBDA_INTRA lambda_inter = cfg.TRAIN.EMBEDDING_LAMBDA_INTER self.embedding_loss = EmbeddingLoss(alpha, delta, lambda_intra, lambda_inter, self.metric, self.normalize) decoder_archs = { 'd16': [1024, 'd512', 512, 512, 'D', 'd512', 512, 512, 'D', 'd256', 256, 256, 'd128', 128, 128, 'd64', 64, 64, 'c2'], 'd16-embedding': [1024, 'd512', 512, 512, 'D', 'd512', 512, 512, 'D', 'd256', 256, 256, 'd128', 128, 128, 'd64', 64, num_units], } if network_name == 'vgg': # encoder en_layers, en_out_channels, en_output_scale = unets.make_encoder_layers(encoder_archs['vgg16-based-16'], in_channels=in_channels, batch_norm=batch_norm) self.features = en_layers # decoder de_in_channels = int(en_out_channels) de_layers = unets.make_decoder_layers(decoder_archs['d16-embedding'], de_in_channels, batch_norm=batch_norm) self.decoder = de_layers elif network_name == 'unet': # encoder self.encoder = unets.UNet_Encoder(input_channels=in_channels, feature_dim=num_units) # decoder self.decoder = unets.UNet_Decoder(num_encoders=1, feature_dim=num_units, coordconv=use_coordconv) else: self.fcn = getattr(resnet_dilated, network_name)(num_classes=num_units, input_channels=in_channels, pretrained=self.embedding_pretrain) if self.input_type == 'RGBD' and self.fusion_type != 'early': self.fcn_depth = getattr(resnet_dilated, network_name)(num_classes=num_units, input_channels=in_channels, pretrained=False) if init_weights: self._initialize_weights() def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): nn.init.xavier_normal_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, img, label, depth=None): if self.network_name == 'vgg': en = self.features(img) elif self.network_name == 'unet': en = [self.encoder(img)] if self.network_name == 'vgg' or self.network_name == 'unet': features = self.decoder(en) else: if self.input_type == 'DEPTH': features = self.fcn(depth) elif self.input_type == 'COLOR': features = self.fcn(img) elif self.input_type == 'RGBD' and self.fusion_type == 'early': inputs = torch.cat((img, depth), 1) features = self.fcn(inputs) else: features = self.fcn(img) features_depth = self.fcn_depth(depth) if self.fusion_type == 'add': features = features + features_depth else: features = torch.cat((features, features_depth), 1) # normalization if self.normalize: features = F.normalize(features, p=2, dim=1) if self.training: loss, intra_cluster_loss, inter_cluster_loss = self.embedding_loss(features, label) return loss, intra_cluster_loss, inter_cluster_loss, features else: return features def weight_parameters(self): return [param for name, param in self.named_parameters() if 'weight' in name] def bias_parameters(self): return [param for name, param in self.named_parameters() if 'bias' in name] ############################################################# def update_model_print(model, data): model_dict = model.state_dict() print('model keys') print('=================================================') for k, v in model_dict.items(): print(k) print('=================================================') if data is not None: print('data keys') print('=================================================') data_new = data.copy() for k, v in data.items(): print(k) # legency with the orignially trained model if 'module.' in k: data_new[k[7:]] = v if 'decoder.features.' in k: new_key = 'decoder.' + k[17:] data_new[new_key] = v print('=================================================') pretrained_dict = {k: v for k, v in data_new.items() if k in model_dict and v.size() == model_dict[k].size()} print('load the following keys from the pretrained model') print('=================================================') for k, v in pretrained_dict.items(): print(k) print('=================================================') model_dict.update(pretrained_dict) model.load_state_dict(model_dict) def update_model(model, data): model_dict = model.state_dict() if data is not None: data_new = data.copy() for k, v in data.items(): # legency with the orignially trained model if 'module.' in k: data_new[k[7:]] = v if 'decoder.features.' in k: new_key = 'decoder.' + k[17:] data_new[new_key] = v pretrained_dict = {k: v for k, v in data_new.items() if k in model_dict and v.size() == model_dict[k].size()} model_dict.update(pretrained_dict) model.load_state_dict(model_dict) # feature embedding learning network def seg_vgg_embedding(num_classes=2, num_units=64, data=None): model = SEGNET(in_channels=3, network_name='vgg', num_units=num_units) update_model(model, data) return model def seg_unet_embedding(num_classes=2, num_units=64, data=None): model = SEGNET(in_channels=3, network_name='unet', num_units=num_units) update_model(model, data) return model def seg_resnet34_8s_embedding(num_classes=2, num_units=64, data=None): model = SEGNET(in_channels=3, network_name='Resnet34_8s', num_units=num_units) update_model(model, data) return model def seg_resnet34_8s_embedding_early(num_classes=2, num_units=64, data=None): model = SEGNET(in_channels=6, network_name='Resnet34_8s', num_units=num_units) update_model(model, data) return model def seg_resnet50_8s_embedding(num_classes=2, num_units=64, data=None): model = SEGNET(in_channels=3, network_name='Resnet50_8s', num_units=num_units) update_model(model, data) return model
8,262
Python
39.504902
147
0.574316
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/utils/evaluation.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md import numpy as np import cv2 # My libraries from utils import munkres as munkres BACKGROUND_LABEL = 0 OBJECTS_LABEL = 1 # Code adapted from: https://github.com/davisvideochallenge/davis-2017/blob/master/python/lib/davis/measures/f_boundary.py def seg2bmap(seg,width=None,height=None): """ From a segmentation, compute a binary boundary map with 1 pixel wide boundaries. The boundary pixels are offset by 1/2 pixel towards the origin from the actual segment boundary. Arguments: seg : Segments labeled from 1..k. width : Width of desired bmap <= seg.shape[1] height : Height of desired bmap <= seg.shape[0] Returns: bmap (ndarray): Binary boundary map. David Martin <[email protected]> January 2003 """ seg = seg.astype(np.bool) seg[seg>0] = 1 assert np.atleast_3d(seg).shape[2] == 1 width = seg.shape[1] if width is None else width height = seg.shape[0] if height is None else height h,w = seg.shape[:2] ar1 = float(width) / float(height) ar2 = float(w) / float(h) assert not (width>w | height>h | abs(ar1-ar2)>0.01),\ 'Can''t convert %dx%d seg to %dx%d bmap.'%(w,h,width,height) e = np.zeros_like(seg) s = np.zeros_like(seg) se = np.zeros_like(seg) e[:,:-1] = seg[:,1:] s[:-1,:] = seg[1:,:] se[:-1,:-1] = seg[1:,1:] b = seg^e | seg^s | seg^se b[-1,:] = seg[-1,:]^e[-1,:] b[:,-1] = seg[:,-1]^s[:,-1] b[-1,-1] = 0 # from IPython import embed; embed() if w == width and h == height: bmap = b else: bmap = np.zeros((height,width)) for x in range(w): for y in range(h): if b[y,x]: j = 1+floor((y-1)+height / h) i = 1+floor((x-1)+width / h) bmap[j,i] = 1; return bmap # Code adapted from: https://github.com/davisvideochallenge/davis-2017/blob/master/python/lib/davis/measures/f_boundary.py def boundary_overlap(predicted_mask, gt_mask, bound_th=0.003): """ Compute true positives of overlapped masks, using dilated boundaries Arguments: predicted_mask (ndarray): binary segmentation image. gt_mask (ndarray): binary annotated image. Returns: overlap (float): IoU overlap of boundaries """ assert np.atleast_3d(predicted_mask).shape[2] == 1 bound_pix = bound_th if bound_th >= 1 else \ np.ceil(bound_th*np.linalg.norm(predicted_mask.shape)) # Get the pixel boundaries of both masks fg_boundary = seg2bmap(predicted_mask); gt_boundary = seg2bmap(gt_mask); from skimage.morphology import disk # Dilate segmentation boundaries gt_dil = cv2.dilate(gt_boundary.astype(np.uint8), disk(bound_pix), iterations=1) fg_dil = cv2.dilate(fg_boundary.astype(np.uint8), disk(bound_pix), iterations=1) # Get the intersection (true positives). Calculate true positives differently for # precision and recall since we have to dilated the boundaries fg_match = np.logical_and(fg_boundary, gt_dil) gt_match = np.logical_and(gt_boundary, fg_dil) # Return precision_tps, recall_tps (tps = true positives) return np.sum(fg_match), np.sum(gt_match) # This function is modeled off of P/R/F measure as described by Dave et al. (arXiv19) def multilabel_metrics(prediction, gt, obj_detect_threshold=0.75): """ Compute Overlap and Boundary Precision, Recall, F-measure Also compute #objects detected, #confident objects detected, #GT objects. It computes these measures only of objects (2+), not background (0) / table (1). Uses the Hungarian algorithm to match predicted masks with ground truth masks. A "confident object" is an object that is predicted with more than 0.75 F-measure @param gt: a [H x W] numpy.ndarray with ground truth masks @param prediction: a [H x W] numpy.ndarray with predicted masks @return: a dictionary with the metrics """ ### Compute F-measure, True Positive matrices ### # Get unique OBJECT labels from GT and prediction labels_gt = np.unique(gt) labels_gt = labels_gt[~np.isin(labels_gt, [BACKGROUND_LABEL])] num_labels_gt = labels_gt.shape[0] labels_pred = np.unique(prediction) labels_pred = labels_pred[~np.isin(labels_pred, [BACKGROUND_LABEL])] num_labels_pred = labels_pred.shape[0] # F-measure, True Positives, Boundary stuff F = np.zeros((num_labels_gt, num_labels_pred)) true_positives = np.zeros((num_labels_gt, num_labels_pred)) boundary_stuff = np.zeros((num_labels_gt, num_labels_pred, 2)) # Each item of "boundary_stuff" contains: precision true positives, recall true positives # Edge cases if (num_labels_pred == 0 and num_labels_gt > 0 ): # all false negatives return {'Objects F-measure' : 0., 'Objects Precision' : 1., 'Objects Recall' : 0., 'Boundary F-measure' : 0., 'Boundary Precision' : 1., 'Boundary Recall' : 0., 'obj_detected' : num_labels_pred, 'obj_detected_075' : 0., 'obj_gt' : num_labels_gt, 'obj_detected_075_percentage' : 0., } elif (num_labels_pred > 0 and num_labels_gt == 0 ): # all false positives return {'Objects F-measure' : 0., 'Objects Precision' : 0., 'Objects Recall' : 1., 'Boundary F-measure' : 0., 'Boundary Precision' : 0., 'Boundary Recall' : 1., 'obj_detected' : num_labels_pred, 'obj_detected_075' : 0., 'obj_gt' : num_labels_gt, 'obj_detected_075_percentage' : 0., } elif (num_labels_pred == 0 and num_labels_gt == 0 ): # correctly predicted nothing return {'Objects F-measure' : 1., 'Objects Precision' : 1., 'Objects Recall' : 1., 'Boundary F-measure' : 1., 'Boundary Precision' : 1., 'Boundary Recall' : 1., 'obj_detected' : num_labels_pred, 'obj_detected_075' : 0., 'obj_gt' : num_labels_gt, 'obj_detected_075_percentage' : 1., } # For every pair of GT label vs. predicted label, calculate stuff for i, gt_i in enumerate(labels_gt): gt_i_mask = (gt == gt_i) for j, pred_j in enumerate(labels_pred): pred_j_mask = (prediction == pred_j) ### Overlap Stuff ### # true positive A = np.logical_and(pred_j_mask, gt_i_mask) tp = np.int64(np.count_nonzero(A)) # Cast this to numpy.int64 so 0/0 = nan true_positives[i,j] = tp # precision prec = tp/np.count_nonzero(pred_j_mask) # recall rec = tp/np.count_nonzero(gt_i_mask) # F-measure if prec + rec > 0: F[i,j] = (2 * prec * rec) / (prec + rec) ### Boundary Stuff ### boundary_stuff[i,j] = boundary_overlap(pred_j_mask, gt_i_mask) ### More Boundary Stuff ### boundary_prec_denom = 0. # precision_tps + precision_fps for pred_j in labels_pred: pred_mask = (prediction == pred_j) boundary_prec_denom += np.sum(seg2bmap(pred_mask)) boundary_rec_denom = 0. # recall_tps + recall_fns for gt_i in labels_gt: gt_mask = (gt == gt_i) boundary_rec_denom += np.sum(seg2bmap(gt_mask)) ### Compute the Hungarian assignment ### F[np.isnan(F)] = 0 m = munkres.Munkres() assignments = m.compute(F.max() - F.copy()) # list of (y,x) indices into F (these are the matchings) ### Compute the number of "detected objects" ### num_obj_detected = 0 for a in assignments: if F[a] > obj_detect_threshold: num_obj_detected += 1 ### Compute metrics with assignments ### idx = tuple(np.array(assignments).T) # Overlap measures precision = np.sum(true_positives[idx]) / np.sum(prediction.clip(0,1) == OBJECTS_LABEL) recall = np.sum(true_positives[idx]) / np.sum(gt.clip(0,1) == OBJECTS_LABEL) F_measure = (2 * precision * recall) / (precision + recall) if np.isnan(F_measure): # b/c precision = recall = 0 F_measure = 0 # Boundary measures boundary_precision = np.sum(boundary_stuff[idx][:,0]) / boundary_prec_denom boundary_recall = np.sum(boundary_stuff[idx][:,1]) / boundary_rec_denom boundary_F_measure = (2 * boundary_precision * boundary_recall) / (boundary_precision + boundary_recall) if np.isnan(boundary_F_measure): # b/c/ precision = recall = 0 boundary_F_measure = 0 return {'Objects F-measure' : F_measure, 'Objects Precision' : precision, 'Objects Recall' : recall, 'Boundary F-measure' : boundary_F_measure, 'Boundary Precision' : boundary_precision, 'Boundary Recall' : boundary_recall, 'obj_detected' : num_labels_pred, 'obj_detected_075' : num_obj_detected, 'obj_gt' : num_labels_gt, 'obj_detected_075_percentage' : num_obj_detected / num_labels_gt, }
9,614
Python
36.267442
122
0.58394
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/utils/mean_shift.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md import sys import torch import torch.nn.functional as F import numpy as np from fcn.config import cfg def ball_kernel(Z, X, kappa, metric='cosine'): """ Computes pairwise ball kernel (without normalizing constant) (note this is kernel as defined in non-parametric statistics, not a kernel as in RKHS) @param Z: a [n x d] torch.FloatTensor of NORMALIZED datapoints - the seeds @param X: a [m x d] torch.FloatTensor of NORMALIZED datapoints - the points @return: a [n x m] torch.FloatTensor of pairwise ball kernel computations, without normalizing constant """ if metric == 'euclidean': distance = Z.unsqueeze(1) - X.unsqueeze(0) distance = torch.norm(distance, dim=2) kernel = torch.exp(-kappa * torch.pow(distance, 2)) elif metric == 'cosine': kernel = torch.exp(kappa * torch.mm(Z, X.t())) return kernel def get_label_mode(array): """ Computes the mode of elements in an array. Ties don't matter. Ties are broken by the smallest value (np.argmax defaults) @param array: a numpy array """ labels, counts = np.unique(array, return_counts=True) mode = labels[np.argmax(counts)].item() return mode def connected_components(Z, epsilon, metric='cosine'): """ For the connected components, we simply perform a nearest neighbor search in order: for each point, find the points that are up to epsilon away (in cosine distance) these points are labeled in the same cluster. @param Z: a [n x d] torch.FloatTensor of NORMALIZED datapoints @return: a [n] torch.LongTensor of cluster labels """ n, d = Z.shape K = 0 cluster_labels = torch.ones(n, dtype=torch.long) * -1 if Z.is_cuda: cluster_labels = cluster_labels.cuda() for i in range(n): if cluster_labels[i] == -1: if metric == 'euclidean': distances = Z.unsqueeze(1) - Z[i:i + 1].unsqueeze(0) # a are points, b are seeds distances = torch.norm(distances, dim=2) elif metric == 'cosine': distances = 0.5 * (1 - torch.mm(Z, Z[i:i+1].t())) component_seeds = distances[:, 0] <= epsilon # If at least one component already has a label, then use the mode of the label if torch.unique(cluster_labels[component_seeds]).shape[0] > 1: temp = cluster_labels[component_seeds].cpu().numpy() temp = temp[temp != -1] label = torch.tensor(get_label_mode(temp)) else: label = torch.tensor(K) K += 1 # Increment number of clusters cluster_labels[component_seeds] = label return cluster_labels def seed_hill_climbing_ball(X, Z, kappa, max_iters=10, metric='cosine'): """ Runs mean shift hill climbing algorithm on the seeds. The seeds climb the distribution given by the KDE of X @param X: a [n x d] torch.FloatTensor of d-dim unit vectors @param Z: a [m x d] torch.FloatTensor of seeds to run mean shift from @param dist_threshold: parameter for the ball kernel """ n, d = X.shape m = Z.shape[0] for _iter in range(max_iters): # Create a new object for Z new_Z = Z.clone() W = ball_kernel(Z, X, kappa, metric=metric) # use this allocated weight to compute the new center new_Z = torch.mm(W, X) # Shape: [n x d] # Normalize the update if metric == 'euclidean': summed_weights = W.sum(dim=1) summed_weights = summed_weights.unsqueeze(1) summed_weights = torch.clamp(summed_weights, min=1.0) Z = new_Z / summed_weights elif metric == 'cosine': Z = F.normalize(new_Z, p=2, dim=1) return Z def mean_shift_with_seeds(X, Z, kappa, max_iters=10, metric='cosine'): """ Runs mean-shift @param X: a [n x d] torch.FloatTensor of d-dim unit vectors @param Z: a [m x d] torch.FloatTensor of seeds to run mean shift from @param dist_threshold: parameter for the von Mises-Fisher distribution """ Z = seed_hill_climbing_ball(X, Z, kappa, max_iters=max_iters, metric=metric) # Connected components cluster_labels = connected_components(Z, 2 * cfg.TRAIN.EMBEDDING_ALPHA, metric=metric) # Set epsilon = 0.1 = 2*alpha return cluster_labels, Z def select_smart_seeds(X, num_seeds, return_selected_indices=False, init_seeds=None, num_init_seeds=None, metric='cosine'): """ Selects seeds that are as far away as possible @param X: a [n x d] torch.FloatTensor of d-dim unit vectors @param num_seeds: number of seeds to pick @param init_seeds: a [num_seeds x d] vector of initial seeds @param num_init_seeds: the number of seeds already chosen. the first num_init_seeds rows of init_seeds have been chosen already @return: a [num_seeds x d] matrix of seeds a [n x num_seeds] matrix of distances """ n, d = X.shape selected_indices = -1 * torch.ones(num_seeds, dtype=torch.long) # Initialize seeds matrix if init_seeds is None: seeds = torch.empty((num_seeds, d), device=X.device) num_chosen_seeds = 0 else: seeds = init_seeds num_chosen_seeds = num_init_seeds # Keep track of distances distances = torch.empty((n, num_seeds), device=X.device) if num_chosen_seeds == 0: # Select first seed if need to selected_seed_index = np.random.randint(0, n) selected_indices[0] = selected_seed_index selected_seed = X[selected_seed_index, :] seeds[0, :] = selected_seed if metric == 'euclidean': distances[:, 0] = torch.norm(X - selected_seed.unsqueeze(0), dim=1) elif metric == 'cosine': distances[:, 0] = 0.5 * (1 - torch.mm(X, selected_seed.unsqueeze(1))[:,0]) num_chosen_seeds += 1 else: # Calculate distance to each already chosen seed for i in range(num_chosen_seeds): if metric == 'euclidean': distances[:, i] = torch.norm(X - seeds[i:i+1, :], dim=1) elif metric == 'cosine': distances[:, i] = 0.5 * (1 - torch.mm(X, seeds[i:i+1, :].t())[:, 0]) # Select rest of seeds for i in range(num_chosen_seeds, num_seeds): # Find the point that has the furthest distance from the nearest seed distance_to_nearest_seed = torch.min(distances[:, :i], dim=1)[0] # Shape: [n] selected_seed_index = torch.argmax(distance_to_nearest_seed) selected_indices[i] = selected_seed_index selected_seed = torch.index_select(X, 0, selected_seed_index)[0, :] seeds[i, :] = selected_seed # Calculate distance to this selected seed if metric == 'euclidean': distances[:, i] = torch.norm(X - selected_seed.unsqueeze(0), dim=1) elif metric == 'cosine': distances[:, i] = 0.5 * (1 - torch.mm(X, selected_seed.unsqueeze(1))[:,0]) return_tuple = (seeds,) if return_selected_indices: return_tuple += (selected_indices,) return return_tuple def mean_shift_smart_init(X, kappa, num_seeds=100, max_iters=10, metric='cosine'): """ Runs mean shift with carefully selected seeds @param X: a [n x d] torch.FloatTensor of d-dim unit vectors @param dist_threshold: parameter for the von Mises-Fisher distribution @param num_seeds: number of seeds used for mean shift clustering @return: a [n] array of cluster labels """ n, d = X.shape seeds, selected_indices = select_smart_seeds(X, num_seeds, return_selected_indices=True, metric=metric) seed_cluster_labels, updated_seeds = mean_shift_with_seeds(X, seeds, kappa, max_iters=max_iters, metric=metric) # Get distances to updated seeds if metric == 'euclidean': distances = X.unsqueeze(1) - updated_seeds.unsqueeze(0) # a are points, b are seeds distances = torch.norm(distances, dim=2) elif metric == 'cosine': distances = 0.5 * (1 - torch.mm(X, updated_seeds.t())) # Shape: [n x num_seeds] # Get clusters by assigning point to closest seed closest_seed_indices = torch.argmin(distances, dim=1) # Shape: [n] cluster_labels = seed_cluster_labels[closest_seed_indices] # assign zero to the largest cluster num = len(torch.unique(seed_cluster_labels)) count = torch.zeros(num, dtype=torch.long) for i in range(num): count[i] = (cluster_labels == i).sum() label_max = torch.argmax(count) if label_max != 0: index1 = cluster_labels == 0 index2 = cluster_labels == label_max cluster_labels[index1] = label_max cluster_labels[index2] = 0 return cluster_labels, selected_indices
9,097
Python
37.880342
123
0.617236
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/utils/mask.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md import sys, os from itertools import compress import torch import numpy as np import matplotlib.pyplot as plt import scipy import scipy.io import cv2 from PIL import Image def get_color_mask(object_index, nc=None): """ Colors each index differently. Useful for visualizing semantic masks @param object_index: a [H x W] numpy array of ints from {0, ..., nc-1} @param nc: total number of colors. If None, this will be inferred by masks """ object_index = object_index.astype(int) if nc is None: NUM_COLORS = object_index.max() + 1 else: NUM_COLORS = nc cm = plt.get_cmap('gist_rainbow') colors = [cm(1. * i/NUM_COLORS) for i in range(NUM_COLORS)] color_mask = np.zeros(object_index.shape + (3,)).astype(np.uint8) for i in np.unique(object_index): if i == 0 or i == -1: continue color_mask[object_index == i, :] = np.array(colors[i][:3]) * 255 return color_mask def build_matrix_of_indices(height, width): """ Builds a [height, width, 2] numpy array containing coordinates. @return: 3d array B s.t. B[..., 0] contains y-coordinates, B[..., 1] contains x-coordinates """ return np.indices((height, width), dtype=np.float32).transpose(1,2,0) def visualize_segmentation(im, masks, nc=None, return_rgb=False, save_dir=None): """ Visualize segmentations nicely. Based on code from: https://github.com/roytseng-tw/Detectron.pytorch/blob/master/lib/utils/vis.py @param im: a [H x W x 3] RGB image. numpy array of dtype np.uint8 @param masks: a [H x W] numpy array of dtype np.uint8 with values in {0, ..., K} @param nc: total number of colors. If None, this will be inferred by masks """ from matplotlib.patches import Polygon masks = masks.astype(int) im = im.copy() if not return_rgb: fig = plt.figure() ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.axis('off') fig.add_axes(ax) ax.imshow(im) # Generate color mask if nc is None: NUM_COLORS = masks.max() + 1 else: NUM_COLORS = nc cm = plt.get_cmap('gist_rainbow') colors = [cm(1. * i/NUM_COLORS) for i in range(NUM_COLORS)] if not return_rgb: # matplotlib stuff fig = plt.figure() ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.axis('off') fig.add_axes(ax) # Mask imgMask = np.zeros(im.shape) # Draw color masks for i in np.unique(masks): if i == 0: # background continue # Get the color mask color_mask = np.array(colors[i][:3]) w_ratio = .4 for c in range(3): color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio e = (masks == i) # Add to the mask imgMask[e] = color_mask # Add the mask to the image imgMask = (imgMask * 255).round().astype(np.uint8) im = cv2.addWeighted(im, 0.5, imgMask, 0.5, 0.0) # Draw mask contours for i in np.unique(masks): if i == 0: # background continue # Get the color mask color_mask = np.array(colors[i][:3]) w_ratio = .4 for c in range(3): color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio e = (masks == i) # Find contours try: contour, hier = cv2.findContours( e.astype(np.uint8).copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE) except: im2, contour, hier = cv2.findContours( e.astype(np.uint8).copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE) # Plot the nice outline for c in contour: if save_dir is None and not return_rgb: polygon = Polygon(c.reshape((-1, 2)), fill=False, facecolor=color_mask, edgecolor='w', linewidth=1.2, alpha=0.5) ax.add_patch(polygon) else: cv2.drawContours(im, contour, -1, (255,255,255), 2) if save_dir is None and not return_rgb: ax.imshow(im) return fig elif return_rgb: return im elif save_dir is not None: # Save the image PIL_image = Image.fromarray(im) PIL_image.save(save_dir) return PIL_image ### These two functions were adatped from the DAVIS public dataset ### def imread_indexed(filename): """ Load segmentation image (with palette) given filename.""" im = Image.open(filename) annotation = np.array(im) return annotation def imwrite_indexed(filename,array): """ Save indexed png with palette.""" palette_abspath = '/data/tabletop_dataset_v5/palette.txt' # hard-coded filepath color_palette = np.loadtxt(palette_abspath, dtype=np.uint8).reshape(-1,3) if np.atleast_3d(array).shape[2] != 1: raise Exception("Saving indexed PNGs requires 2D array.") im = Image.fromarray(array) im.putpalette(color_palette.ravel()) im.save(filename, format='PNG') def mask_to_tight_box_numpy(mask): """ Return bbox given mask @param mask: a [H x W] numpy array """ a = np.transpose(np.nonzero(mask)) bbox = np.min(a[:, 1]), np.min(a[:, 0]), np.max(a[:, 1]), np.max(a[:, 0]) return bbox # x_min, y_min, x_max, y_max def mask_to_tight_box_pytorch(mask): """ Return bbox given mask @param mask: a [H x W] torch tensor """ a = torch.nonzero(mask) bbox = torch.min(a[:, 1]), torch.min(a[:, 0]), torch.max(a[:, 1]), torch.max(a[:, 0]) return bbox # x_min, y_min, x_max, y_max def mask_to_tight_box(mask): if type(mask) == torch.Tensor: return mask_to_tight_box_pytorch(mask) elif type(mask) == np.ndarray: return mask_to_tight_box_numpy(mask) else: raise Exception("Data type {type(mask)} not understood for mask_to_tight_box...")
6,026
Python
29.75
128
0.592765
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/utils/__init__.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md
180
Python
44.249989
83
0.772222
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/utils/munkres.py
#!/usr/bin/env python # -*- coding: iso-8859-1 -*- # Documentation is intended to be processed by Epydoc. """ Introduction ============ The Munkres module provides an implementation of the Munkres algorithm (also called the Hungarian algorithm or the Kuhn-Munkres algorithm), useful for solving the Assignment Problem. Assignment Problem ================== Let *C* be an *n*\ x\ *n* matrix representing the costs of each of *n* workers to perform any of *n* jobs. The assignment problem is to assign jobs to workers in a way that minimizes the total cost. Since each worker can perform only one job and each job can be assigned to only one worker the assignments represent an independent set of the matrix *C*. One way to generate the optimal set is to create all permutations of the indexes necessary to traverse the matrix so that no row and column are used more than once. For instance, given this matrix (expressed in Python):: matrix = [[5, 9, 1], [10, 3, 2], [8, 7, 4]] You could use this code to generate the traversal indexes:: def permute(a, results): if len(a) == 1: results.insert(len(results), a) else: for i in range(0, len(a)): element = a[i] a_copy = [a[j] for j in range(0, len(a)) if j != i] subresults = [] permute(a_copy, subresults) for subresult in subresults: result = [element] + subresult results.insert(len(results), result) results = [] permute(range(len(matrix)), results) # [0, 1, 2] for a 3x3 matrix After the call to permute(), the results matrix would look like this:: [[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1], [2, 1, 0]] You could then use that index matrix to loop over the original cost matrix and calculate the smallest cost of the combinations:: n = len(matrix) minval = sys.maxsize for row in range(n): cost = 0 for col in range(n): cost += matrix[row][col] minval = min(cost, minval) print minval While this approach works fine for small matrices, it does not scale. It executes in O(*n*!) time: Calculating the permutations for an *n*\ x\ *n* matrix requires *n*! operations. For a 12x12 matrix, that's 479,001,600 traversals. Even if you could manage to perform each traversal in just one millisecond, it would still take more than 133 hours to perform the entire traversal. A 20x20 matrix would take 2,432,902,008,176,640,000 operations. At an optimistic millisecond per operation, that's more than 77 million years. The Munkres algorithm runs in O(*n*\ ^3) time, rather than O(*n*!). This package provides an implementation of that algorithm. This version is based on http://www.public.iastate.edu/~ddoty/HungarianAlgorithm.html. This version was written for Python by Brian Clapper from the (Ada) algorithm at the above web site. (The ``Algorithm::Munkres`` Perl version, in CPAN, was clearly adapted from the same web site.) Usage ===== Construct a Munkres object:: from munkres import Munkres m = Munkres() Then use it to compute the lowest cost assignment from a cost matrix. Here's a sample program:: from munkres import Munkres, print_matrix matrix = [[5, 9, 1], [10, 3, 2], [8, 7, 4]] m = Munkres() indexes = m.compute(matrix) print_matrix(matrix, msg='Lowest cost through this matrix:') total = 0 for row, column in indexes: value = matrix[row][column] total += value print '(%d, %d) -> %d' % (row, column, value) print 'total cost: %d' % total Running that program produces:: Lowest cost through this matrix: [5, 9, 1] [10, 3, 2] [8, 7, 4] (0, 0) -> 5 (1, 1) -> 3 (2, 2) -> 4 total cost=12 The instantiated Munkres object can be used multiple times on different matrices. Non-square Cost Matrices ======================== The Munkres algorithm assumes that the cost matrix is square. However, it's possible to use a rectangular matrix if you first pad it with 0 values to make it square. This module automatically pads rectangular cost matrices to make them square. Notes: - The module operates on a *copy* of the caller's matrix, so any padding will not be seen by the caller. - The cost matrix must be rectangular or square. An irregular matrix will *not* work. Calculating Profit, Rather than Cost ==================================== The cost matrix is just that: A cost matrix. The Munkres algorithm finds the combination of elements (one from each row and column) that results in the smallest cost. It's also possible to use the algorithm to maximize profit. To do that, however, you have to convert your profit matrix to a cost matrix. The simplest way to do that is to subtract all elements from a large value. For example:: from munkres import Munkres, print_matrix matrix = [[5, 9, 1], [10, 3, 2], [8, 7, 4]] cost_matrix = [] for row in matrix: cost_row = [] for col in row: cost_row += [sys.maxsize - col] cost_matrix += [cost_row] m = Munkres() indexes = m.compute(cost_matrix) print_matrix(matrix, msg='Highest profit through this matrix:') total = 0 for row, column in indexes: value = matrix[row][column] total += value print '(%d, %d) -> %d' % (row, column, value) print 'total profit=%d' % total Running that program produces:: Highest profit through this matrix: [5, 9, 1] [10, 3, 2] [8, 7, 4] (0, 1) -> 9 (1, 0) -> 10 (2, 2) -> 4 total profit=23 The ``munkres`` module provides a convenience method for creating a cost matrix from a profit matrix. Since it doesn't know whether the matrix contains floating point numbers, decimals, or integers, you have to provide the conversion function; but the convenience method takes care of the actual creation of the cost matrix:: import munkres cost_matrix = munkres.make_cost_matrix(matrix, lambda cost: sys.maxsize - cost) So, the above profit-calculation program can be recast as:: from munkres import Munkres, print_matrix, make_cost_matrix matrix = [[5, 9, 1], [10, 3, 2], [8, 7, 4]] cost_matrix = make_cost_matrix(matrix, lambda cost: sys.maxsize - cost) m = Munkres() indexes = m.compute(cost_matrix) print_matrix(matrix, msg='Lowest cost through this matrix:') total = 0 for row, column in indexes: value = matrix[row][column] total += value print '(%d, %d) -> %d' % (row, column, value) print 'total profit=%d' % total References ========== 1. http://www.public.iastate.edu/~ddoty/HungarianAlgorithm.html 2. Harold W. Kuhn. The Hungarian Method for the assignment problem. *Naval Research Logistics Quarterly*, 2:83-97, 1955. 3. Harold W. Kuhn. Variants of the Hungarian method for assignment problems. *Naval Research Logistics Quarterly*, 3: 253-258, 1956. 4. Munkres, J. Algorithms for the Assignment and Transportation Problems. *Journal of the Society of Industrial and Applied Mathematics*, 5(1):32-38, March, 1957. 5. http://en.wikipedia.org/wiki/Hungarian_algorithm Copyright and License ===================== This software is released under a BSD license, adapted from <http://opensource.org/licenses/bsd-license.php> Copyright (c) 2008 Brian M. Clapper All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name "clapper.org" nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ __docformat__ = 'restructuredtext' # --------------------------------------------------------------------------- # Imports # --------------------------------------------------------------------------- import sys import copy import numpy as np # --------------------------------------------------------------------------- # Exports # --------------------------------------------------------------------------- __all__ = ['Munkres', 'make_cost_matrix'] # --------------------------------------------------------------------------- # Globals # --------------------------------------------------------------------------- # Info about the module __version__ = "1.0.6" __author__ = "Brian Clapper, [email protected]" __url__ = "http://software.clapper.org/munkres/" __copyright__ = "(c) 2008 Brian M. Clapper" __license__ = "BSD-style license" # --------------------------------------------------------------------------- # Classes # --------------------------------------------------------------------------- class Munkres: """ Calculate the Munkres solution to the classical assignment problem. See the module documentation for usage. """ def __init__(self): """Create a new instance""" self.C = None self.row_covered = [] self.col_covered = [] self.n = 0 self.Z0_r = 0 self.Z0_c = 0 self.marked = None self.path = None def make_cost_matrix(profit_matrix, inversion_function): """ **DEPRECATED** Please use the module function ``make_cost_matrix()``. """ import munkres return munkres.make_cost_matrix(profit_matrix, inversion_function) make_cost_matrix = staticmethod(make_cost_matrix) def pad_matrix(self, matrix, pad_value=0): """ Pad a possibly non-square matrix to make it square. :Parameters: matrix : list of lists matrix to pad pad_value : int value to use to pad the matrix :rtype: list of lists :return: a new, possibly padded, matrix """ # max_columns = 0 # total_rows = len(matrix) # for row in matrix: # max_columns = max(max_columns, len(row)) # total_rows = max(max_columns, total_rows) # new_matrix = [] # for row in matrix: # row_len = len(row) # new_row = row[:] # if total_rows > row_len: # # Row too short. Pad it. # new_row += [0] * (total_rows - row_len) # new_matrix += [new_row] # while len(new_matrix) < total_rows: # new_matrix += [[0] * total_rows] # return new_matrix import numpy as np min_sidelength = np.min(matrix.shape) max_sidelength = np.max(matrix.shape) argmin_sidelength = np.argmin(matrix.shape) if min_sidelength != max_sidelength: pad_vals = [(0,0), (0,0)] pad_vals[argmin_sidelength] = (0, max_sidelength - min_sidelength) new_cm = np.pad(matrix, pad_vals, 'constant') else: new_cm = matrix.copy() return new_cm def compute(self, cost_matrix): """ Compute the indexes for the lowest-cost pairings between rows and columns in the database. Returns a list of (row, column) tuples that can be used to traverse the matrix. :Parameters: cost_matrix : list of lists The cost matrix. If this cost matrix is not square, it will be padded with zeros, via a call to ``pad_matrix()``. (This method does *not* modify the caller's matrix. It operates on a copy of the matrix.) **WARNING**: This code handles square and rectangular matrices. It does *not* handle irregular matrices. :rtype: list :return: A list of ``(row, column)`` tuples that describe the lowest cost path through the matrix """ self.C = self.pad_matrix(cost_matrix) self.n = len(self.C) self.original_length = len(cost_matrix) self.original_width = len(cost_matrix[0]) self.row_covered = [False for i in range(self.n)] self.col_covered = [False for i in range(self.n)] self.Z0_r = 0 self.Z0_c = 0 self.path = self.__make_matrix(self.n * 2, 0) self.marked = self.__make_matrix(self.n, 0) done = False step = 1 steps = { 1 : self.__step1, 2 : self.__step2, 3 : self.__step3, 4 : self.__step4, 5 : self.__step5, 6 : self.__step6 } while not done: try: func = steps[step] step = func() except KeyError: done = True # Look for the starred columns results = [] for i in range(self.original_length): for j in range(self.original_width): if self.marked[i][j] == 1: results += [(i, j)] return results def __copy_matrix(self, matrix): """Return an exact copy of the supplied matrix""" return copy.deepcopy(matrix) def __make_matrix(self, n, val): """Create an *n*x*n* matrix, populating it with the specific value.""" matrix = [] for i in range(n): matrix += [[val for j in range(n)]] return matrix def __step1(self): """ For each row of the matrix, find the smallest element and subtract it from every element in its row. Go to Step 2. """ C = self.C n = self.n for i in range(n): minval = min(self.C[i]) # Find the minimum value for this row and subtract that minimum # from every element in the row. for j in range(n): self.C[i][j] -= minval return 2 def __step2(self): """ Find a zero (Z) in the resulting matrix. If there is no starred zero in its row or column, star Z. Repeat for each element in the matrix. Go to Step 3. """ n = self.n for i in range(n): for j in range(n): if (self.C[i][j] == 0) and \ (not self.col_covered[j]) and \ (not self.row_covered[i]): self.marked[i][j] = 1 self.col_covered[j] = True self.row_covered[i] = True self.__clear_covers() return 3 def __step3(self): """ Cover each column containing a starred zero. If K columns are covered, the starred zeros describe a complete set of unique assignments. In this case, Go to DONE, otherwise, Go to Step 4. """ n = self.n count = 0 for i in range(n): for j in range(n): if self.marked[i][j] == 1: self.col_covered[j] = True count += 1 if count >= n: step = 7 # done else: step = 4 return step def __step4(self): """ Find a noncovered zero and prime it. If there is no starred zero in the row containing this primed zero, Go to Step 5. Otherwise, cover this row and uncover the column containing the starred zero. Continue in this manner until there are no uncovered zeros left. Save the smallest uncovered value and Go to Step 6. """ step = 0 done = False row = -1 col = -1 star_col = -1 while not done: (row, col) = self.__find_a_zero() if row < 0: done = True step = 6 else: self.marked[row][col] = 2 star_col = self.__find_star_in_row(row) if star_col >= 0: col = star_col self.row_covered[row] = True self.col_covered[col] = False else: done = True self.Z0_r = row self.Z0_c = col step = 5 return step def __step5(self): """ Construct a series of alternating primed and starred zeros as follows. Let Z0 represent the uncovered primed zero found in Step 4. Let Z1 denote the starred zero in the column of Z0 (if any). Let Z2 denote the primed zero in the row of Z1 (there will always be one). Continue until the series terminates at a primed zero that has no starred zero in its column. Unstar each starred zero of the series, star each primed zero of the series, erase all primes and uncover every line in the matrix. Return to Step 3 """ count = 0 path = self.path path[count][0] = self.Z0_r path[count][1] = self.Z0_c done = False while not done: row = self.__find_star_in_col(path[count][1]) if row >= 0: count += 1 path[count][0] = row path[count][1] = path[count-1][1] else: done = True if not done: col = self.__find_prime_in_row(path[count][0]) count += 1 path[count][0] = path[count-1][0] path[count][1] = col self.__convert_path(path, count) self.__clear_covers() self.__erase_primes() return 3 def __step6(self): """ Add the value found in Step 4 to every element of each covered row, and subtract it from every element of each uncovered column. Return to Step 4 without altering any stars, primes, or covered lines. """ minval = self.__find_smallest() for i in range(self.n): for j in range(self.n): if self.row_covered[i]: self.C[i][j] += minval if not self.col_covered[j]: self.C[i][j] -= minval return 4 def __find_smallest(self): """Find the smallest uncovered value in the matrix.""" minval = sys.maxsize for i in range(self.n): for j in range(self.n): if (not self.row_covered[i]) and (not self.col_covered[j]): if minval > self.C[i][j]: minval = self.C[i][j] return minval def __find_a_zero(self): """Find the first uncovered element with value 0""" row = -1 col = -1 i = 0 n = self.n done = False while not done: j = 0 while True: if (self.C[i][j] == 0) and \ (not self.row_covered[i]) and \ (not self.col_covered[j]): row = i col = j done = True j += 1 if j >= n: break i += 1 if i >= n: done = True return (row, col) def __find_star_in_row(self, row): """ Find the first starred element in the specified row. Returns the column index, or -1 if no starred element was found. """ col = -1 for j in range(self.n): if self.marked[row][j] == 1: col = j break return col def __find_star_in_col(self, col): """ Find the first starred element in the specified row. Returns the row index, or -1 if no starred element was found. """ row = -1 for i in range(self.n): if self.marked[i][col] == 1: row = i break return row def __find_prime_in_row(self, row): """ Find the first prime element in the specified row. Returns the column index, or -1 if no starred element was found. """ col = -1 for j in range(self.n): if self.marked[row][j] == 2: col = j break return col def __convert_path(self, path, count): for i in range(count+1): if self.marked[path[i][0]][path[i][1]] == 1: self.marked[path[i][0]][path[i][1]] = 0 else: self.marked[path[i][0]][path[i][1]] = 1 def __clear_covers(self): """Clear all covered matrix cells""" for i in range(self.n): self.row_covered[i] = False self.col_covered[i] = False def __erase_primes(self): """Erase all prime markings""" for i in range(self.n): for j in range(self.n): if self.marked[i][j] == 2: self.marked[i][j] = 0 # --------------------------------------------------------------------------- # Functions # --------------------------------------------------------------------------- def make_cost_matrix(profit_matrix, inversion_function): """ Create a cost matrix from a profit matrix by calling 'inversion_function' to invert each value. The inversion function must take one numeric argument (of any type) and return another numeric argument which is presumed to be the cost inverse of the original profit. This is a static method. Call it like this: .. python:: cost_matrix = Munkres.make_cost_matrix(matrix, inversion_func) For example: .. python:: cost_matrix = Munkres.make_cost_matrix(matrix, lambda x : sys.maxsize - x) :Parameters: profit_matrix : list of lists The matrix to convert from a profit to a cost matrix inversion_function : function The function to use to invert each entry in the profit matrix :rtype: list of lists :return: The converted matrix """ cost_matrix = [] for row in profit_matrix: cost_matrix.append([inversion_function(value) for value in row]) return cost_matrix def print_matrix(matrix, msg=None): """ Convenience function: Displays the contents of a matrix of integers. :Parameters: matrix : list of lists Matrix to print msg : str Optional message to print before displaying the matrix """ import math if msg is not None: print(msg) # Calculate the appropriate format width. width = 0 for row in matrix: for val in row: width = max(width, int(math.log10(val)) + 1) # Make the format string format = '%%%dd' % width # Print the matrix for row in matrix: sep = '[' for val in row: sys.stdout.write(sep + format % val) sep = ', ' sys.stdout.write(']\n') def munkres_match(sts_true, sts_pred, K): """ Matches the set of states in sts_pred such that it minimizes the hamming distance between sts_pred and sts_true. We assume here that the states are labeled 0, ..., K - 1. This uses the Munkres algorithm to minimize the hamming distance which is must faster than match_state_seq. sts_true : A numpy array of integers. sts_pred : A numpy array of integers. K : Number of states in case sts_true doesn't cover all states. """ sts_true = sts_true.astype('int') sts_pred = sts_pred.astype('int') DM = np.zeros((K, K)) for k in xrange(K): iei = np.where(sts_pred == k)[0] for l in xrange(K): n_incorr = np.sum(sts_true[iei] == l) DM[k,l] = n_incorr cost_mat = 1 - (DM / np.sum(DM)) m = Munkres() indexes = m.compute(cost_mat) return np.array([x[1] for x in indexes]) # --------------------------------------------------------------------------- # Main # --------------------------------------------------------------------------- if __name__ == '__main__': matrices = [ # Square ([[400, 150, 400], [400, 450, 600], [300, 225, 300]], 850), # expected cost # Rectangular variant ([[400, 150, 400, 1], [400, 450, 600, 2], [300, 225, 300, 3]], 452), # expected cost # Square ([[10, 10, 8], [9, 8, 1], [9, 7, 4]], 18), # Rectangular variant ([[10, 10, 8, 11], [9, 8, 1, 1], [9, 7, 4, 10]], 15)] m = Munkres() for cost_matrix, expected_total in matrices: print_matrix(cost_matrix, msg='cost matrix') indexes = m.compute(cost_matrix) total_cost = 0 for r, c in indexes: x = cost_matrix[r][c] total_cost += x print('(%d, %d) -> %d' % (r, c, x)) print('lowest cost=%d' % total_cost) assert expected_total == total_cost
26,109
Python
33.720745
82
0.548661
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/utils/se3.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md import numpy as np from transforms3d.quaternions import mat2quat, quat2mat, qmult, qinverse from transforms3d.euler import quat2euler, mat2euler, euler2quat # RT is a 3x4 matrix def se3_inverse(RT): R = RT[0:3, 0:3] T = RT[0:3, 3].reshape((3,1)) RT_new = np.zeros((3, 4), dtype=np.float32) RT_new[0:3, 0:3] = R.transpose() RT_new[0:3, 3] = -1 * np.dot(R.transpose(), T).reshape((3)) return RT_new def se3_mul(RT1, RT2): R1 = RT1[0:3, 0:3] T1 = RT1[0:3, 3].reshape((3,1)) R2 = RT2[0:3, 0:3] T2 = RT2[0:3, 3].reshape((3,1)) RT_new = np.zeros((3, 4), dtype=np.float32) RT_new[0:3, 0:3] = np.dot(R1, R2) T_new = np.dot(R1, T2) + T1 RT_new[0:3, 3] = T_new.reshape((3)) return RT_new def egocentric2allocentric(qt, T): dx = np.arctan2(T[0], -T[2]) dy = np.arctan2(T[1], -T[2]) quat = euler2quat(-dy, -dx, 0, axes='sxyz') quat = qmult(qinverse(quat), qt) return quat def allocentric2egocentric(qt, T): dx = np.arctan2(T[0], -T[2]) dy = np.arctan2(T[1], -T[2]) quat = euler2quat(-dy, -dx, 0, axes='sxyz') quat = qmult(quat, qt) return quat def T_inv_transform(T_src, T_tgt): ''' :param T_src: :param T_tgt: :return: T_delta: delta in pixel ''' T_delta = np.zeros((3, ), dtype=np.float32) T_delta[0] = T_tgt[0] / T_tgt[2] - T_src[0] / T_src[2] T_delta[1] = T_tgt[1] / T_tgt[2] - T_src[1] / T_src[2] T_delta[2] = np.log(T_src[2] / T_tgt[2]) return T_delta def rotation_x(theta): t = theta * np.pi / 180.0 R = np.zeros((3, 3), dtype=np.float32) R[0, 0] = 1 R[1, 1] = np.cos(t) R[1, 2] = -np.sin(t) R[2, 1] = np.sin(t) R[2, 2] = np.cos(t) return R def rotation_y(theta): t = theta * np.pi / 180.0 R = np.zeros((3, 3), dtype=np.float32) R[0, 0] = np.cos(t) R[0, 2] = np.sin(t) R[1, 1] = 1 R[2, 0] = -np.sin(t) R[2, 2] = np.cos(t) return R def rotation_z(theta): t = theta * np.pi / 180.0 R = np.zeros((3, 3), dtype=np.float32) R[0, 0] = np.cos(t) R[0, 1] = -np.sin(t) R[1, 0] = np.sin(t) R[1, 1] = np.cos(t) R[2, 2] = 1 return R
2,351
Python
24.565217
83
0.548277
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/utils/augmentation.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md import torch import random import numpy as np import numbers from PIL import Image # PyTorch likes PIL instead of cv2 import cv2 # My libraries from utils import mask as util_ from fcn.config import cfg ##### Useful Utilities ##### def array_to_tensor(array): """ Converts a numpy.ndarray (N x H x W x C) to a torch.FloatTensor of shape (N x C x H x W) OR converts a nump.ndarray (H x W x C) to a torch.FloatTensor of shape (C x H x W) """ if array.ndim == 4: # NHWC tensor = torch.from_numpy(array).permute(0,3,1,2).float() elif array.ndim == 3: # HWC tensor = torch.from_numpy(array).permute(2,0,1).float() else: # everything else tensor = torch.from_numpy(array).float() return tensor def translate(img, tx, ty, interpolation=cv2.INTER_LINEAR): """ Translate img by tx, ty @param img: a [H x W x C] image (could be an RGB image, flow image, or label image) """ H, W = img.shape[:2] M = np.array([[1,0,tx], [0,1,ty]], dtype=np.float32) return cv2.warpAffine(img, M, (W, H), flags=interpolation) def rotate(img, angle, center=None, interpolation=cv2.INTER_LINEAR): """ Rotate img <angle> degrees counter clockwise w.r.t. center of image @param img: a [H x W x C] image (could be an RGB image, flow image, or label image) """ H, W = img.shape[:2] if center is None: center = (W//2, H//2) M = cv2.getRotationMatrix2D(center, angle, 1) return cv2.warpAffine(img, M, (W, H), flags=interpolation) ##### Depth Augmentations ##### def add_noise_to_depth(depth_img, noise_params): """ Distort depth image with multiplicative gamma noise. This is adapted from the DexNet 2.0 codebase. Their code: https://github.com/BerkeleyAutomation/gqcnn/blob/75040b552f6f7fb264c27d427b404756729b5e88/gqcnn/sgd_optimizer.py @param depth_img: a [H x W] set of depth z values """ depth_img = depth_img.copy() # Multiplicative noise: Gamma random variable multiplicative_noise = np.random.gamma(noise_params['gamma_shape'], noise_params['gamma_scale']) depth_img = multiplicative_noise * depth_img return depth_img def add_noise_to_xyz(xyz_img, depth_img, noise_params): """ Add (approximate) Gaussian Process noise to ordered point cloud. This is adapted from the DexNet 2.0 codebase. @param xyz_img: a [H x W x 3] ordered point cloud """ xyz_img = xyz_img.copy() H, W, C = xyz_img.shape # Additive noise: Gaussian process, approximated by zero-mean anisotropic Gaussian random variable, # which is rescaled with bicubic interpolation. small_H, small_W = (np.array([H, W]) / noise_params['gp_rescale_factor']).astype(int) additive_noise = np.random.normal(loc=0.0, scale=noise_params['gaussian_scale'], size=(small_H, small_W, C)) additive_noise = cv2.resize(additive_noise, (W, H), interpolation=cv2.INTER_CUBIC) xyz_img[depth_img > 0, :] += additive_noise[depth_img > 0, :] return xyz_img def dropout_random_ellipses(depth_img, noise_params): """ Randomly drop a few ellipses in the image for robustness. This is adapted from the DexNet 2.0 codebase. Their code: https://github.com/BerkeleyAutomation/gqcnn/blob/75040b552f6f7fb264c27d427b404756729b5e88/gqcnn/sgd_optimizer.py @param depth_img: a [H x W] set of depth z values """ depth_img = depth_img.copy() # Sample number of ellipses to dropout num_ellipses_to_dropout = np.random.poisson(noise_params['ellipse_dropout_mean']) # Sample ellipse centers nonzero_pixel_indices = np.array(np.where(depth_img > 0)).T # Shape: [#nonzero_pixels x 2] dropout_centers_indices = np.random.choice(nonzero_pixel_indices.shape[0], size=num_ellipses_to_dropout) dropout_centers = nonzero_pixel_indices[dropout_centers_indices, :] # Shape: [num_ellipses_to_dropout x 2] # Sample ellipse radii and angles x_radii = np.random.gamma(noise_params['ellipse_gamma_shape'], noise_params['ellipse_gamma_scale'], size=num_ellipses_to_dropout) y_radii = np.random.gamma(noise_params['ellipse_gamma_shape'], noise_params['ellipse_gamma_scale'], size=num_ellipses_to_dropout) angles = np.random.randint(0, 360, size=num_ellipses_to_dropout) # Dropout ellipses for i in range(num_ellipses_to_dropout): center = dropout_centers[i, :] x_radius = np.round(x_radii[i]).astype(int) y_radius = np.round(y_radii[i]).astype(int) angle = angles[i] # dropout the ellipse mask = np.zeros_like(depth_img) mask = cv2.ellipse(mask, tuple(center[::-1]), (x_radius, y_radius), angle=angle, startAngle=0, endAngle=360, color=1, thickness=-1) depth_img[mask == 1] = 0 return depth_img ##### RGB Augmentations ##### def standardize_image(image): """ Convert a numpy.ndarray [H x W x 3] of images to [0,1] range, and then standardizes @return: a [H x W x 3] numpy array of np.float32 """ image_standardized = np.zeros_like(image).astype(np.float32) mean=[0.485, 0.456, 0.406] std=[0.229, 0.224, 0.225] for i in range(3): image_standardized[...,i] = (image[...,i]/255. - mean[i]) / std[i] return image_standardized def random_color_warp(image, d_h=None, d_s=None, d_l=None): """ Given an RGB image [H x W x 3], add random hue, saturation and luminosity to the image Code adapted from: https://github.com/yuxng/PoseCNN/blob/master/lib/utils/blob.py """ H, W, _ = image.shape image_color_warped = np.zeros_like(image) # Set random hue, luminosity and saturation which ranges from -0.1 to 0.1 if d_h is None: d_h = (random.random() - 0.5) * 0.2 * 256 if d_l is None: d_l = (random.random() - 0.5) * 0.2 * 256 if d_s is None: d_s = (random.random() - 0.5) * 0.2 * 256 # Convert the RGB to HLS hls = cv2.cvtColor(image.round().astype(np.uint8), cv2.COLOR_RGB2HLS) h, l, s = cv2.split(hls) # Add the values to the image H, L, S new_h = (np.round((h + d_h)) % 256).astype(np.uint8) new_l = np.round(np.clip(l + d_l, 0, 255)).astype(np.uint8) new_s = np.round(np.clip(s + d_s, 0, 255)).astype(np.uint8) # Convert the HLS to RGB new_hls = cv2.merge((new_h, new_l, new_s)).astype(np.uint8) new_im = cv2.cvtColor(new_hls, cv2.COLOR_HLS2RGB) image_color_warped = new_im.astype(np.float32) return image_color_warped def random_horizontal_flip(image, label): """Randomly horizontally flip the image/label w.p. 0.5 @param image: a [H x W x 3] numpy array @param label: a [H x W] numpy array """ if random.random() > 0.5: image = np.fliplr(image).copy() label = np.fliplr(label).copy() return image, label ##### Label transformations ##### def random_morphological_transform(label): """ Randomly erode/dilate the label @param label: a [H x W] numpy array of {0, 1} """ num_tries = 0 valid_transform = False while not valid_transform: if num_tries >= cfg.TRAIN.max_augmentation_tries: print('Morph: Exhausted number of augmentation tries...') return label # Sample whether we do erosion or dilation, and kernel size for that x_min, y_min, x_max, y_max = util_.mask_to_tight_box(label) sidelength = np.mean([x_max - x_min, y_max - y_min]) morphology_kernel_size = 0; num_ksize_tries = 0; while morphology_kernel_size == 0: if num_ksize_tries >= 50: # 50 tries for this print('Morph: Exhausted number of augmentation tries... Sidelength: {sidelength}') return label dilation_percentage = np.random.beta(cfg.TRAIN.label_dilation_alpha, cfg.TRAIN.label_dilation_beta) morphology_kernel_size = int(round(sidelength * dilation_percentage)) num_ksize_tries += 1 iterations = np.random.randint(1, cfg.TRAIN.morphology_max_iters+1) # Erode/dilate the mask kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (morphology_kernel_size, morphology_kernel_size)) if np.random.rand() < 0.5: morphed_label = cv2.erode(label, kernel, iterations=iterations) else: morphed_label = cv2.dilate(label, kernel, iterations=iterations) # Make sure there the mass is reasonable if (np.count_nonzero(morphed_label) / morphed_label.size > 0.001) and \ (np.count_nonzero(morphed_label) / morphed_label.size < 0.98): valid_transform = True num_tries += 1 return morphed_label def random_ellipses(label): """ Randomly add/drop a few ellipses in the mask This is adapted from the DexNet 2.0 code. Their code: https://github.com/BerkeleyAutomation/gqcnn/blob/75040b552f6f7fb264c27d427b404756729b5e88/gqcnn/sgd_optimizer.py @param label: a [H x W] numpy array of {0, 1} """ H, W = label.shape num_tries = 0 valid_transform = False while not valid_transform: if num_tries >= cfg.TRAIN.max_augmentation_tries: print('Ellipse: Exhausted number of augmentation tries...') return label new_label = label.copy() # Sample number of ellipses to include/dropout num_ellipses = np.random.poisson(cfg.TRAIN.num_ellipses_mean) # Sample ellipse centers by sampling from Gaussian at object center pixel_indices = util_.build_matrix_of_indices(H, W) h_idx, w_idx = np.where(new_label) mu = np.mean(pixel_indices[h_idx, w_idx, :], axis=0) # Shape: [2]. y_center, x_center sigma = 2*np.cov(pixel_indices[h_idx, w_idx, :].T) # Shape: [2 x 2] if np.any(np.isnan(mu)) or np.any(np.isnan(sigma)): print(mu, sigma, h_idx, w_idx) ellipse_centers = np.random.multivariate_normal(mu, sigma, size=num_ellipses) # Shape: [num_ellipses x 2] ellipse_centers = np.round(ellipse_centers).astype(int) # Sample ellipse radii and angles x_min, y_min, x_max, y_max = util_.mask_to_tight_box(new_label) scale_factor = max(x_max - x_min, y_max - y_min) * cfg.TRAIN.ellipse_size_percentage # Mean of gamma r.v. x_radii = np.random.gamma(cfg.TRAIN.ellipse_gamma_base_shape * scale_factor, cfg.TRAIN.ellipse_gamma_base_scale, size=num_ellipses) y_radii = np.random.gamma(cfg.TRAIN.ellipse_gamma_base_shape * scale_factor, cfg.TRAIN.ellipse_gamma_base_scale, size=num_ellipses) angles = np.random.randint(0, 360, size=num_ellipses) # Dropout ellipses for i in range(num_ellipses): center = ellipse_centers[i, :] x_radius = np.round(x_radii[i]).astype(int) y_radius = np.round(y_radii[i]).astype(int) angle = angles[i] # include or dropout the ellipse mask = np.zeros_like(new_label) mask = cv2.ellipse(mask, tuple(center[::-1]), (x_radius, y_radius), angle=angle, startAngle=0, endAngle=360, color=1, thickness=-1) if np.random.rand() < 0.5: new_label[mask == 1] = 0 # Drop out ellipse else: new_label[mask == 1] = 1 # Add ellipse # Make sure the mass is reasonable if (np.count_nonzero(new_label) / new_label.size > 0.001) and \ (np.count_nonzero(new_label) / new_label.size < 0.98): valid_transform = True num_tries += 1 return new_label def random_translation(label): """ Randomly translate mask @param label: a [H x W] numpy array of {0, 1} """ num_tries = 0 valid_transform = False while not valid_transform: if num_tries >= cfg.TRAIN.max_augmentation_tries: print('Translate: Exhausted number of augmentation tries...') return label # Get tight bbox of mask x_min, y_min, x_max, y_max = util_.mask_to_tight_box(label) sidelength = max(x_max - x_min, y_max - y_min) # sample translation pixels translation_percentage = np.random.beta(cfg.TRAIN.translation_alpha, cfg.TRAIN.translation_beta) translation_percentage = max(translation_percentage, cfg.TRAIN.translation_percentage_min) translation_max = int(round(translation_percentage * sidelength)) translation_max = max(translation_max, 1) # To make sure things don't error out tx = np.random.randint(-translation_max, translation_max) ty = np.random.randint(-translation_max, translation_max) translated_label = translate(label, tx, ty, interpolation=cv2.INTER_NEAREST) # Make sure the mass is reasonable if (np.count_nonzero(translated_label) / translated_label.size > 0.001) and \ (np.count_nonzero(translated_label) / translated_label.size < 0.98): valid_transform = True num_tries += 1 return translated_label def random_rotation(label): """ Randomly rotate mask @param label: a [H x W] numpy array of {0, 1} """ H, W = label.shape num_tries = 0 valid_transform = False while not valid_transform: if num_tries >= cfg.TRAIN.max_augmentation_tries: print('Rotate: Exhausted number of augmentation tries...') return label # Rotate about center of box pixel_indices = util_.build_matrix_of_indices(H, W) h_idx, w_idx = np.where(label) mean = np.mean(pixel_indices[h_idx, w_idx, :], axis=0) # Shape: [2]. y_center, x_center # Sample an angle applied_angle = np.random.uniform(-cfg.TRAIN.rotation_angle_max, cfg.TRAIN.rotation_angle_max) rotated_label = rotate(label, applied_angle, center=tuple(mean[::-1]), interpolation=cv2.INTER_NEAREST) # Make sure the mass is reasonable if (np.count_nonzero(rotated_label) / rotated_label.size > 0.001) and \ (np.count_nonzero(rotated_label) / rotated_label.size < 0.98): valid_transform = True num_tries += 1 return rotated_label def random_cut(label): """ Randomly cut part of mask @param label: a [H x W] numpy array of {0, 1} """ H, W = label.shape num_tries = 0 valid_transform = False while not valid_transform: if num_tries >= cfg.TRAIN.max_augmentation_tries: print('Cut: Exhausted number of augmentation tries...') return label cut_label = label.copy() # Sample cut percentage cut_percentage = np.random.uniform(cfg.TRAIN.cut_percentage_min, cfg.TRAIN.cut_percentage_max) x_min, y_min, x_max, y_max = util_.mask_to_tight_box(label) if np.random.rand() < 0.5: # choose width sidelength = x_max - x_min if np.random.rand() < 0.5: # from the left x = int(round(cut_percentage * sidelength)) + x_min cut_label[y_min:y_max+1, x_min:x] = 0 else: # from the right x = x_max - int(round(cut_percentage * sidelength)) cut_label[y_min:y_max+1, x:x_max+1] = 0 else: # choose height sidelength = y_max - y_min if np.random.rand() < 0.5: # from the top y = int(round(cut_percentage * sidelength)) + y_min cut_label[y_min:y, x_min:x_max+1] = 0 else: # from the bottom y = y_max - int(round(cut_percentage * sidelength)) cut_label[y:y_max+1, x_min:x_max+1] = 0 # Make sure the mass is reasonable if (np.count_nonzero(cut_label) / cut_label.size > 0.001) and \ (np.count_nonzero(cut_label) / cut_label.size < 0.98): valid_transform = True num_tries += 1 return cut_label def random_add(label): """ Randomly add part of mask @param label: a [H x W] numpy array of {0, 1} """ H, W = label.shape num_tries = 0 valid_transform = False while not valid_transform: if num_tries >= cfg.TRAIN.max_augmentation_tries: print('Add: Exhausted number of augmentation tries...') return label added_label = label.copy() # Sample add percentage add_percentage = np.random.uniform(cfg.TRAIN.add_percentage_min, cfg.TRAIN.add_percentage_max) x_min, y_min, x_max, y_max = util_.mask_to_tight_box(label) # Sample translation from center translation_percentage_x = np.random.uniform(0, 2*add_percentage) tx = int(round( (x_max - x_min) * translation_percentage_x )) translation_percentage_y = np.random.uniform(0, 2*add_percentage) ty = int(round( (y_max - y_min) * translation_percentage_y )) if np.random.rand() < 0.5: # choose x direction sidelength = x_max - x_min ty = np.random.choice([-1, 1]) * ty # mask will be moved to the left/right. up/down doesn't matter if np.random.rand() < 0.5: # mask copied from the left. x = int(round(add_percentage * sidelength)) + x_min try: temp = added_label[y_min+ty : y_max+1+ty, x_min-tx : x-tx] added_label[y_min+ty : y_max+1+ty, x_min-tx : x-tx] = np.logical_or(temp, added_label[y_min : y_max+1, x_min : x]) except ValueError as e: # indices were out of bounds num_tries += 1 continue else: # mask copied from the right x = x_max - int(round(add_percentage * sidelength)) try: temp = added_label[y_min+ty : y_max+1+ty, x+tx : x_max+1+tx] added_label[y_min+ty : y_max+1+ty, x+tx : x_max+1+tx] = np.logical_or(temp, added_label[y_min : y_max+1, x : x_max+1]) except ValueError as e: # indices were out of bounds num_tries += 1 continue else: # choose y direction sidelength = y_max - y_min tx = np.random.choice([-1, 1]) * tx # mask will be moved up/down. lef/right doesn't matter if np.random.rand() < 0.5: # from the top y = int(round(add_percentage * sidelength)) + y_min try: temp = added_label[y_min-ty : y-ty, x_min+tx : x_max+1+tx] added_label[y_min-ty : y-ty, x_min+tx : x_max+1+tx] = np.logical_or(temp, added_label[y_min : y, x_min : x_max+1]) except ValueError as e: # indices were out of bounds num_tries += 1 continue else: # from the bottom y = y_max - int(round(add_percentage * sidelength)) try: temp = added_label[y+ty : y_max+1+ty, x_min+tx : x_max+1+tx] added_label[y+ty : y_max+1+ty, x_min+tx : x_max+1+tx] = np.logical_or(temp, added_label[y : y_max+1, x_min : x_max+1]) except ValueError as e: # indices were out of bounds num_tries += 1 continue # Make sure the mass is reasonable if (np.count_nonzero(added_label) / added_label.size > 0.001) and \ (np.count_nonzero(added_label) / added_label.size < 0.98): valid_transform = True num_tries += 1 return added_label
19,777
Python
37.780392
143
0.601254
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/UOC/lib/utils/blob.py
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md """Blob helper functions.""" import torch import torch.nn as nn import numpy as np import cv2 import random def im_list_to_blob(ims, num_channels): """Convert a list of images into a network input. Assumes images are already prepared (means subtracted, BGR order, ...). """ max_shape = np.array([im.shape for im in ims]).max(axis=0) num_images = len(ims) blob = np.zeros((num_images, max_shape[0], max_shape[1], num_channels), dtype=np.float32) for i in xrange(num_images): im = ims[i] if num_channels == 1: blob[i, 0:im.shape[0], 0:im.shape[1], :] = im[:,:,np.newaxis] else: blob[i, 0:im.shape[0], 0:im.shape[1], :] = im return blob def prep_im_for_blob(im, pixel_means, target_size, max_size): """Mean subtract and scale an image for use in a blob.""" im = im.astype(np.float32, copy=False) im -= pixel_means im_shape = im.shape im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) im_scale = float(target_size) / float(im_size_min) # Prevent the biggest axis from being more than MAX_SIZE if np.round(im_scale * im_size_max) > max_size: im_scale = float(max_size) / float(im_size_max) im = cv2.resize(im, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR) return im, im_scale def pad_im(im, factor, value=0): height = im.shape[0] width = im.shape[1] pad_height = int(np.ceil(height / float(factor)) * factor - height) pad_width = int(np.ceil(width / float(factor)) * factor - width) if len(im.shape) == 3: return np.lib.pad(im, ((0, pad_height), (0, pad_width), (0,0)), 'constant', constant_values=value) elif len(im.shape) == 2: return np.lib.pad(im, ((0, pad_height), (0, pad_width)), 'constant', constant_values=value) def unpad_im(im, factor): height = im.shape[0] width = im.shape[1] pad_height = int(np.ceil(height / float(factor)) * factor - height) pad_width = int(np.ceil(width / float(factor)) * factor - width) if len(im.shape) == 3: return im[0:height-pad_height, 0:width-pad_width, :] elif len(im.shape) == 2: return im[0:height-pad_height, 0:width-pad_width] def chromatic_transform(im, label=None, d_h=None, d_s=None, d_l=None): """ Given an image array, add the hue, saturation and luminosity to the image """ # Set random hue, luminosity and saturation which ranges from -0.1 to 0.1 if d_h is None: d_h = (np.random.rand(1) - 0.5) * 0.1 * 180 if d_l is None: d_l = (np.random.rand(1) - 0.5) * 0.2 * 256 if d_s is None: d_s = (np.random.rand(1) - 0.5) * 0.2 * 256 # Convert the BGR to HLS hls = cv2.cvtColor(im, cv2.COLOR_BGR2HLS) h, l, s = cv2.split(hls) # Add the values to the image H, L, S new_h = (h + d_h) % 180 new_l = np.clip(l + d_l, 0, 255) new_s = np.clip(s + d_s, 0, 255) # Convert the HLS to BGR new_hls = cv2.merge((new_h, new_l, new_s)).astype('uint8') new_im = cv2.cvtColor(new_hls, cv2.COLOR_HLS2BGR) if label is not None: I = np.where(label > 0) new_im[I[0], I[1], :] = im[I[0], I[1], :] return new_im def add_noise(image, level = 0.1): # random number r = np.random.rand(1) # gaussian noise if r < 0.9: row,col,ch= image.shape mean = 0 noise_level = random.uniform(0, level) sigma = np.random.rand(1) * noise_level * 256 gauss = sigma * np.random.randn(row,col) + mean gauss = np.repeat(gauss[:, :, np.newaxis], ch, axis=2) noisy = image + gauss noisy = np.clip(noisy, 0, 255) else: # motion blur sizes = [3, 5, 7, 9, 11, 15] size = sizes[int(np.random.randint(len(sizes), size=1))] kernel_motion_blur = np.zeros((size, size)) if np.random.rand(1) < 0.5: kernel_motion_blur[int((size-1)/2), :] = np.ones(size) else: kernel_motion_blur[:, int((size-1)/2)] = np.ones(size) kernel_motion_blur = kernel_motion_blur / size noisy = cv2.filter2D(image, -1, kernel_motion_blur) return noisy.astype('uint8') def add_noise_depth(image, level = 0.1): row,col,ch= image.shape noise_level = random.uniform(0, level) gauss = noise_level * np.random.randn(row,col) gauss = np.repeat(gauss[:, :, np.newaxis], ch, axis=2) noisy = image + gauss return noisy def add_noise_depth_cuda(image, level = 0.1): noise_level = random.uniform(0, level) gauss = torch.randn_like(image) * noise_level noisy = image + gauss return noisy def add_gaussian_noise_cuda(image, level = 0.1): # gaussian noise noise_level = random.uniform(0, level) gauss = torch.randn_like(image) * noise_level noisy = image + gauss noisy = torch.clamp(noisy, 0, 1.0) return noisy def add_noise_cuda(image, level = 0.1): # random number r = np.random.rand(1) # gaussian noise if r < 0.8: noise_level = random.uniform(0, level) gauss = torch.randn_like(image) * noise_level noisy = image + gauss noisy = torch.clamp(noisy, 0, 1.0) else: # motion blur sizes = [3, 5, 7, 9, 11, 15] size = sizes[int(np.random.randint(len(sizes), size=1))] kernel_motion_blur = torch.zeros((size, size)) if np.random.rand(1) < 0.5: kernel_motion_blur[int((size-1)/2), :] = torch.ones(size) else: kernel_motion_blur[:, int((size-1)/2)] = torch.ones(size) kernel_motion_blur = kernel_motion_blur.cuda() / size kernel_motion_blur = kernel_motion_blur.view(1, 1, size, size) kernel_motion_blur = kernel_motion_blur.repeat(image.size(2), 1, 1, 1) motion_blur_filter = nn.Conv2d(in_channels=image.size(2), out_channels=image.size(2), kernel_size=size, groups=image.size(2), bias=False, padding=int(size/2)) motion_blur_filter.weight.data = kernel_motion_blur motion_blur_filter.weight.requires_grad = False noisy = motion_blur_filter(image.permute(2, 0, 1).unsqueeze(0)) noisy = noisy.squeeze(0).permute(1, 2, 0) return noisy
6,632
Python
33.367875
106
0.579011
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/VM/lvis.py
import json import numpy as np import os from PIL import Image class Lvis(object): def __init__(self, json_path="E:/dataset/lvis/split_train/lvis_common_category.json", image_folders=["E:/dataset/lvis/train2017", "E:/dataset/lvis/val2017", "E:/dataset/lvis/test2017"]): self.json_path = json_path self.image_folders = image_folders with open(self.json_path, 'r') as f: data = json.load(f) self.data = data self.cat_ids = list(self.data.keys()) self.cat_num = len(self.cat_ids) names = [] for cat_id in self.cat_ids: cat_name = self.data[cat_id]['name'] names.append(cat_name) self.cat_names = names def random_images(self, index, num): cat_id = self.cat_ids[index] cat_name = self.data[cat_id]['name'] bbox_num = len(self.data[cat_id]['bboxes']) bbox_list = [i for i in range(bbox_num)] if bbox_num < num: num = bbox_num sample_ids = np.random.choice(bbox_list, num, replace=False) images = [] for sample_id in sample_ids: image_id = self.data[cat_id]['images'][sample_id] x,y,w,h = self.data[cat_id]['bboxes'][sample_id] for folder in self.image_folders: image_path = os.path.join( folder, "%012d.jpg" % image_id ) if os.path.exists(image_path): break img = Image.open( image_path ) # crop_img = img.crop([x, y, x+w, y+h]) # images.append(crop_img) images.append(img) return images, cat_name def random_test(self, task_num, img_num_pre_task): index_list = [ i for i in range(self.cat_num) ] for i in range(task_num): source_list = [] target_list = [] label_list = [] sample_ids = np.random.choice(index_list, img_num_pre_task, replace=False) for cat_id in sample_ids: images, cat_name = self.random_images(cat_id, 2) source_list.append(images[0]) target_list.append(images[1]) label_list.append(cat_name) yield source_list, target_list, label_list if __name__ == '__main__': dataset = Lvis() np.random.seed(6) images, cat_name = dataset.random_images(9, 2) a = 1
2,494
Python
28.702381
108
0.523256
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/VM/matcher.py
import torch import clip from scipy.optimize import linear_sum_assignment from torchvision.transforms import Compose, ToTensor, Normalize import numpy as np import cv2 def resize(img, size=(224,224)): img = cv2.resize(img, size, interpolation=cv2.INTER_CUBIC) # img = center_crop(img, size) return img def center_crop(img, dim): """Returns center cropped image Args: img: image to be center cropped dim: dimensions (width, height) to be cropped """ width, height = img.shape[1], img.shape[0] # process crop width and height for max available dimension crop_width = dim[0] if dim[0]<img.shape[1] else img.shape[1] crop_height = dim[1] if dim[1]<img.shape[0] else img.shape[0] mid_x, mid_y = int(width/2), int(height/2) cw2, ch2 = int(crop_width/2), int(crop_height/2) crop_img = img[mid_y-ch2:mid_y+ch2, mid_x-cw2:mid_x+cw2] return crop_img def _transform(): return Compose([ ToTensor(), Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ]) class VisualMatcher(object): def __init__(self) -> None: device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = clip.load("ViT-B/32", device=device) self.model = model self.preprocess = preprocess self.device = device def convert_images(self, images): data = [] for image in images: img_tensor = self.preprocess(image).unsqueeze(0).to(self.device) data.append(img_tensor) data = torch.cat(data, dim=0) return data def convert_rgb_arr(self, images): data = [] for image in images: image = resize(image) img_tensor = _transform()(image).unsqueeze(0).to(self.device) data.append(img_tensor) data = torch.cat(data, dim=0) return data def convert_texts(self, object_labels): texts = [] for label in object_labels: texts.append( f"A picture of a {label}" ) data = clip.tokenize(texts).to(self.device) return data def match_images(self, source_images, target_images, object_labels, use_text=True): with torch.no_grad(): if type(source_images[0]) == np.ndarray: convert_fn = self.convert_rgb_arr else: convert_fn = self.convert_images source_data = convert_fn(source_images) target_data = convert_fn(target_images) source_features = self.model.encode_image(source_data) target_features = self.model.encode_image(target_data) source_features /= source_features.norm(dim=-1, keepdim=True) target_features /= target_features.norm(dim=-1, keepdim=True) if use_text: text_data = self.convert_texts(object_labels) text_features = self.model.encode_text(text_data) text_features /= text_features.norm(dim=-1, keepdim=True) source_text = (100.0 * source_features @ text_features.T).softmax(dim=-1) target_text = (100.0 * target_features @ text_features.T).softmax(dim=-1) source_target = (100.0 * source_text @ target_text.T).softmax(dim=-1).cpu().numpy() else: source_target = (100.0 * source_features @ target_features.T).softmax(dim=-1).cpu().numpy() # https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.linear_sum_assignment.html source_target = -source_target source_ids, target_ids = linear_sum_assignment(source_target) return source_ids, target_ids def match(self, source_rgb, source_dep, target_rgb, target_dep, texts ): # UOC app pass
3,366
Python
30.467289
105
0.68984
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/VM/clip_test/predict.py
import os import clip import torch from torchvision.datasets import CIFAR100 # Load the model device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = clip.load('ViT-B/32', device) # Download the dataset cifar100 = CIFAR100(root=os.path.expanduser("./.cache"), download=True, train=False) # Prepare the inputs image, class_id = cifar100[3637] image_input = preprocess(image).unsqueeze(0).to(device) text_inputs = torch.cat([clip.tokenize(f"a photo of a {c}") for c in cifar100.classes]).to(device) # Calculate features with torch.no_grad(): image_features = model.encode_image(image_input) text_features = model.encode_text(text_inputs) # Pick the top 5 most similar labels for the image image_features /= image_features.norm(dim=-1, keepdim=True) text_features /= text_features.norm(dim=-1, keepdim=True) similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1) values, indices = similarity[0].topk(5) # Print the result print("\nTop predictions:\n") for value, index in zip(values, indices): print(f"{cifar100.classes[index]:>16s}: {100 * value.item():.2f}%")
1,113
Python
33.812499
98
0.727763
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/VM/clip_test/test.py
import torch import clip from PIL import Image import cv2 device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = clip.load("ViT-B/32", device=device) image_path = "./images/CLIP.png" image_path = 'E:/dataset/lvis/val2017/000000454750.jpg' image_path = 'E:/dataset/lvis/train2017/000000206427.jpg' image_path = "./a.png" texts = ["a zebra", 'artichoke', "a dog", "a diagram"] image = preprocess(Image.open(image_path)).unsqueeze(0).to(device) text = clip.tokenize(texts).to(device) with torch.no_grad(): image_features = model.encode_image(image) text_features = model.encode_text(text) logits_per_image, logits_per_text = model(image, text) probs = logits_per_image.softmax(dim=-1).cpu().numpy() print("Label probs:", probs) # prints: [[0.9927937 0.00421068 0.00299572]]
821
Python
29.444443
76
0.699147
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/VM/data/organize_by_cat.py
import json import os json_path = "./split_train/lvis_common.json" save_path = "./split_train/lvis_common_category.json" # image_folder = "./val2017" with open(json_path, 'r') as f: data = json.load(f) cats = data['categories'] annos = data['annotations'] images = data['images'] common_data = {} all_valid_ids = [] for cat in cats: # common, freq, rare if cat['frequency'] == 'c' and cat['image_count'] > 1: all_valid_ids.append(cat['id']) common_data[ cat['id'] ] = { 'name': cat['name'], 'synset': cat['synset'], 'images': [], 'bboxes': [] } for anno in annos: cat_id = anno['category_id'] if cat_id in all_valid_ids and anno['area'] > 32*32: # image_path = os.path.join( image_folder, '%012d.jpg' % anno['image_id'] ) # if os.path.exists(image_path): if True: common_data[cat_id]['images'].append( anno['image_id'] ) common_data[cat_id]['bboxes'].append( anno['bbox'] ) # remove empty list cat_ids = list(common_data.keys()) for cat_id in cat_ids: if len(common_data[cat_id]['images']) < 10: common_data.pop(cat_id) print(len(common_data.keys())) with open(save_path, "w") as fp: json.dump(common_data, fp)
1,342
Python
23.87037
83
0.544709
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/VM/data/split.py
import argparse import json import os # https://github.com/ucbdrive/few-shot-object-detection/blob/master/datasets/split_lvis_annotation.py def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "--data", type=str, default="data/lvis_v1_train.json", help="path to the annotation file", ) parser.add_argument( "--save-dir", type=str, default="split_train", help="path to the save directory", ) args = parser.parse_args() return args def split_annotation(args): with open(args.data) as fp: ann_train = json.load(fp) for s, name in [("f", "freq"), ("c", "common"), ("r", "rare")]: ann_s = { "info": ann_train["info"], # 'images': ann_train['images'], "categories": ann_train["categories"], "licenses": ann_train["licenses"], } ids = [ cat["id"] for cat in ann_train["categories"] if cat["frequency"] == s ] ann_s["annotations"] = [ ann for ann in ann_train["annotations"] if ann["category_id"] in ids ] img_ids = set([ann["image_id"] for ann in ann_s["annotations"]]) new_images = [ img for img in ann_train["images"] if img["id"] in img_ids ] ann_s["images"] = new_images save_path = os.path.join( args.save_dir, "lvis_{}.json".format(name) ) print("Saving {} annotations to {}.".format(name, save_path)) with open(save_path, "w") as fp: json.dump(ann_s, fp) if __name__ == "__main__": args = parse_args() split_annotation(args)
1,737
Python
27.032258
101
0.52274
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/VM/data/README.md
## 数据集 来自 LVIS > https://www.lvisdataset.org/dataset ## split.py 来自网上,这个数据集的类别根据频率(frequency)分为3种:common、frequency、rare,这个代码就是把json文件中的3个给分开 > https://github.com/ucbdrive/few-shot-object-detection/blob/master/datasets/split_lvis_annotation.py ## organize_by_cat.py 因为我想随机采样特定类物体的图片,就将json的数据按照类别整合,结构大概如下 ''' { 'xxxx cat_id': { name: images: [ xxx, xxx ] 'bbox': [ xxx, xxx ] } } ''' 然后我只把 common 类的物体取出来保存,都在 `split` 内
575
Markdown
16.999999
101
0.54087
SZU-AdvTech-2022/371-Semantically-Grounded-Object-Matching-for-Robust-Robotic-Scene-Rearrangement/VM/data/load_cat.py
import json import numpy as np import os from PIL import Image class Lvis(object): def __init__(self, json_path, image_folders) -> None: self.json_path = json_path self.image_folders = image_folders with open(self.json_path, 'r') as f: data = json.load(f) self.data = data self.cat_ids = list(self.data.keys()) self.cat_num = len(self.cat_ids) print(self.cat_num) def random_images(self, index, num): cat_id = self.cat_ids[index] cat_name = self.data[cat_id]['name'] bbox_num = len(self.data[cat_id]['bboxes']) bbox_list = [i for i in range(bbox_num)] if bbox_num < num: num = bbox_num sample_ids = np.random.choice(bbox_list, num, replace=False) images = [] for sample_id in sample_ids: image_id = self.data[cat_id]['images'][sample_id] x,y,w,h = self.data[cat_id]['bboxes'][sample_id] for folder in self.image_folders: image_path = os.path.join( folder, "%012d.jpg" % image_id ) if os.path.exists(image_path): break img = Image.open( image_path ) crop_img = img.crop([x, y, x+w, y+h]) images.append(crop_img) return images, cat_name if __name__ == '__main__': json_path = "./split_val/lvis_common_category.json" image_folders = ["./train2017", "./val2017", "./test2017"] dataset = Lvis(json_path, image_folders) np.random.seed(6) images, cat_name = dataset.random_images(3, 2) print(cat_name) a = 1
1,686
Python
27.116666
75
0.533215
mike-wise/kit-exts-spawn-prims/README.md
# Extension Project Template This project was automatically generated. - `app` - It is a folder link to the location of your *Omniverse Kit* based app. - `exts` - It is a folder where you can add new extensions. It was automatically added to extension search path. (Extension Manager -> Gear Icon -> Extension Search Path). Open this folder using Visual Studio Code. It will suggest you to install few extensions that will make python experience better. Look for "omni.example.spawn_prims" extension in extension manager and enable it. Try applying changes to any python files, it will hot-reload and you can observe results immediately. Alternatively, you can launch your app from console with this folder added to search path and your extension enabled, e.g.: ``` > app\omni.code.bat --ext-folder exts --enable company.hello.world ``` # App Link Setup If `app` folder link doesn't exist or broken it can be created again. For better developer experience it is recommended to create a folder link named `app` to the *Omniverse Kit* app installed from *Omniverse Launcher*. Convenience script to use is included. Run: ``` > link_app.bat ``` If successful you should see `app` folder link in the root of this repo. If multiple Omniverse apps is installed script will select recommended one. Or you can explicitly pass an app: ``` > link_app.bat --app create ``` You can also just pass a path to create link to: ``` > link_app.bat --path "C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4" ``` # Sharing Your Extensions This folder is ready to be pushed to any git repository. Once pushed direct link to a git repository can be added to *Omniverse Kit* extension search paths. Link might look like this: `git://github.com/[user]/[your_repo].git?branch=main&dir=exts` Notice `exts` is repo subfolder with extensions. More information can be found in "Git URL as Extension Search Paths" section of developers manual. To add a link to your *Omniverse Kit* based app go into: Extension Manager -> Gear Icon -> Extension Search Path
2,048
Markdown
37.660377
258
0.757324
mike-wise/kit-exts-spawn-prims/tools/scripts/link_app.py
import argparse import json import os import sys import packmanapi import urllib3 def find_omniverse_apps(): http = urllib3.PoolManager() try: r = http.request("GET", "http://127.0.0.1:33480/components") except Exception as e: print(f"Failed retrieving apps from an Omniverse Launcher, maybe it is not installed?\nError: {e}") sys.exit(1) apps = {} for x in json.loads(r.data.decode("utf-8")): latest = x.get("installedVersions", {}).get("latest", "") if latest: for s in x.get("settings", []): if s.get("version", "") == latest: root = s.get("launch", {}).get("root", "") apps[x["slug"]] = (x["name"], root) break return apps def create_link(src, dst): print(f"Creating a link '{src}' -> '{dst}'") packmanapi.link(src, dst) APP_PRIORITIES = ["code", "create", "view"] if __name__ == "__main__": parser = argparse.ArgumentParser(description="Create folder link to Kit App installed from Omniverse Launcher") parser.add_argument( "--path", help="Path to Kit App installed from Omniverse Launcher, e.g.: 'C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4'", required=False, ) parser.add_argument( "--app", help="Name of Kit App installed from Omniverse Launcher, e.g.: 'code', 'create'", required=False ) args = parser.parse_args() path = args.path if not path: print("Path is not specified, looking for Omniverse Apps...") apps = find_omniverse_apps() if len(apps) == 0: print( "Can't find any Omniverse Apps. Use Omniverse Launcher to install one. 'Code' is the recommended app for developers." ) sys.exit(0) print("\nFound following Omniverse Apps:") for i, slug in enumerate(apps): name, root = apps[slug] print(f"{i}: {name} ({slug}) at: '{root}'") if args.app: selected_app = args.app.lower() if selected_app not in apps: choices = ", ".join(apps.keys()) print(f"Passed app: '{selected_app}' is not found. Specify one of the following found Apps: {choices}") sys.exit(0) else: selected_app = next((x for x in APP_PRIORITIES if x in apps), None) if not selected_app: selected_app = next(iter(apps)) print(f"\nSelected app: {selected_app}") _, path = apps[selected_app] if not os.path.exists(path): print(f"Provided path doesn't exist: {path}") else: SCRIPT_ROOT = os.path.dirname(os.path.realpath(__file__)) create_link(f"{SCRIPT_ROOT}/../../app", path) print("Success!")
2,814
Python
32.117647
133
0.562189
mike-wise/kit-exts-spawn-prims/tools/packman/config.packman.xml
<config remotes="cloudfront"> <remote2 name="cloudfront"> <transport actions="download" protocol="https" packageLocation="d4i3qtqj3r0z5.cloudfront.net/${name}@${version}" /> </remote2> </config>
211
XML
34.333328
123
0.691943
mike-wise/kit-exts-spawn-prims/tools/packman/bootstrap/install_package.py
# Copyright 2019 NVIDIA CORPORATION # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import shutil import sys import tempfile import zipfile __author__ = "hfannar" logging.basicConfig(level=logging.WARNING, format="%(message)s") logger = logging.getLogger("install_package") class TemporaryDirectory: def __init__(self): self.path = None def __enter__(self): self.path = tempfile.mkdtemp() return self.path def __exit__(self, type, value, traceback): # Remove temporary data created shutil.rmtree(self.path) def install_package(package_src_path, package_dst_path): with zipfile.ZipFile(package_src_path, allowZip64=True) as zip_file, TemporaryDirectory() as temp_dir: zip_file.extractall(temp_dir) # Recursively copy (temp_dir will be automatically cleaned up on exit) try: # Recursive copy is needed because both package name and version folder could be missing in # target directory: shutil.copytree(temp_dir, package_dst_path) except OSError as exc: logger.warning("Directory %s already present, packaged installation aborted" % package_dst_path) else: logger.info("Package successfully installed to %s" % package_dst_path) install_package(sys.argv[1], sys.argv[2])
1,844
Python
33.166666
108
0.703362
mike-wise/kit-exts-spawn-prims/exts/omni.sphereflake/config/extension.toml
[package] # Semantic Versioning is used: https://semver.org/ version = "1.0.0" # Lists people or organizations that are considered the "authors" of the package. authors = ["mike-wise"] # The title and description fields are primarily for displaying extension info in UI title = "SphereFlake Proto-Benchmark" description="Spawn SphereFlakes in the scene using different techniques for benchmarking purposes - prototype" # Path (relative to the root) or content of readme markdown file for UI. readme = "docs/README.md" # URL of the extension source repository. repository = "" # One of categories for UI. category = "Other" # Keywords for the extension keywords = ["kit", "sphereflake", "benchmark"] # Location of change log file in target (final) folder of extension, relative to the root. # More info on writing changelog: https://keepachangelog.com/en/1.0.0/ changelog="docs/CHANGELOG.md" # Preview image and icon. Folder named "data" automatically goes in git lfs (see .gitattributes file). # Preview image is shown in "Overview" of Extensions window. Screenshot of an extension might be a good preview image. preview_image = "data/preview.png" # Icon is shown in Extensions window, it is recommended to be square, of size 256x256. icon = "data/icon.png" # Use omni.ui to build simple UI [dependencies] "omni.kit.uiapp" = {} # Main python module this extension provides [[python.module]] name = "omni.sphereflake" [[test]] # Extra dependencies only to be used during test run dependencies = [ "omni.kit.ui_test" # UI testing extension ] [python.pipapi] requirements = ["nvidia-smi","nvidia-ml-py3"] use_online_index = true
1,644
TOML
30.634615
118
0.74635
mike-wise/kit-exts-spawn-prims/exts/omni.sphereflake/omni/sphereflake/sfcontrols.py
import omni.kit.commands as okc import omni.usd import time import datetime import json import socket import psutil from pxr import Gf, Sdf, Usd, UsdGeom, UsdShade from .ovut import MatMan, delete_if_exists, write_out_syspath, truncf from .spheremesh import SphereMeshFactory from .sphereflake import SphereFlakeFactory import nvidia_smi # import multiprocessing import subprocess from omni.services.core import main import os from .ovut import get_setting, save_setting # import asyncio # fflake8: noqa def build_sf_set(sx: int = 0, nx: int = 1, nnx: int = 1, sy: int = 0, ny: int = 1, nny: int = 1, sz: int = 0, nz: int = 1, nnz: int = 1, matname: str = "Mirror"): # to test open a browser at http://localhost:8211/docs or 8011 or maybe 8111 stageid = omni.usd.get_context().get_stage_id() pid = os.getpid() msg = f"build_sf_set - x: {sx} {nx} {nnx} - y: {sy} {ny} {nny} - z: {sz} {nz} {nnz} mat:{matname}" msg += f" - stageid: {stageid} pid:{pid}" print(msg) matman = MatMan() smf = SphereMeshFactory(matman) sff = SphereFlakeFactory(matman, smf) sff.p_sf_matname = matname sff.p_nsfx = nnx sff.p_nsfy = nny sff.p_nsfz = nnz # sff.GenerateManySubcube(sx, sy, sz, nx, ny, nz) return msg # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class SfControls(): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. _stage = None _total_quads: int = 0 _matman: MatMan = None _floor_xdim = 5 _floor_zdim = 5 _bounds_visible = False _sf_size = 50 _vsc_test8 = False sfw = None # We can't give this a type because it would be a circular reference p_writelog = True p_logseriesname = "None" def __init__(self, matman: MatMan, smf: SphereMeshFactory, sff: SphereFlakeFactory): print("SfControls __init__ (trc)") self._matman = matman self._count = 0 self._current_material_name = "Mirror" self._current_alt_material_name = "Red_Glass" self._current_bbox_material_name = "Blue_Glass" self._current_floor_material_name = "Mirror" self._matkeys = self._matman.GetMaterialNames() self._total_quads = 0 self._sf_size = 50 # self._sf_matbox: ui.ComboBox = None self._prims = ["Sphere", "Cube", "Cone", "Torus", "Cylinder", "Plane", "Disk", "Capsule", "Billboard", "SphereMesh"] self._curprim = self._prims[0] self._sf_gen_modes = SphereFlakeFactory.GetGenModes() self._sf_gen_mode = self._sf_gen_modes[0] self._sf_gen_forms = SphereFlakeFactory.GetGenForms() self._sf_gen_form = self._sf_gen_forms[0] # self._genmodebox = ui.ComboBox(0, *self._sf_gen_modes).model # self._genformbox = ui.ComboBox(0, *self._sf_gen_forms).model self.smf = smf self.sff = sff self._write_out_syspath = False if self._write_out_syspath: write_out_syspath() self.LoadSettings() def LateInit(self): # Register endpoints try: # there seems to be no main until a window is created main.register_endpoint("get", "/sphereflake/build-sf-set", build_sf_set, tags=["Sphereflakes"]) except Exception as e: print(f"Exception registering endpoint: {e}") def Close(self): try: main.deregister_endpoint("get", "/sphereflake/build-sf-set") except Exception as e: print(f"Exception deregistering endpoint: {e}") print("SfControls close") def SaveSettings(self): print("SfControls SaveSettings (trc)") self.query_write_log() save_setting("write_log", self.p_writelog) save_setting("log_series_name", self.p_logseriesname) def LoadSettings(self): print("SfControls LoadSettings (trc)") self.p_writelog = get_setting("write_log", True) self.p_logseriesname = get_setting("log_series_name", "None") def setup_environment(self, extent3f: Gf.Vec3f, force: bool = False): ppathstr = "/World/Floor" if force: delete_if_exists(ppathstr) prim_path_sdf = Sdf.Path(ppathstr) prim: Usd.Prim = self._stage .GetPrimAtPath(prim_path_sdf) if not prim.IsValid(): okc.execute('CreateMeshPrimWithDefaultXform', prim_type="Plane", prim_path=ppathstr) floormatname = self.get_curfloormat_name() # omni.kit.commands.execute('BindMaterialCommand', prim_path='/World/Floor', # material_path=f'/World/Looks/{floormatname}') mtl = self._matman.GetMaterial(floormatname) stage = omni.usd.get_context().get_stage() prim: Usd.Prim = stage.GetPrimAtPath(ppathstr) UsdShade.MaterialBindingAPI(prim).Bind(mtl) # self._floor_xdim = extent3f[0] / 10 # self._floor_zdim = extent3f[2] / 10 self._floor_xdim = extent3f[0] / 100 self._floor_zdim = extent3f[2] / 100 okc.execute('TransformMultiPrimsSRTCpp', count=1, paths=[ppathstr], new_scales=[self._floor_xdim, 1, self._floor_zdim]) baseurl = 'https://omniverse-content-production.s3.us-west-2.amazonaws.com' okc.execute('CreateDynamicSkyCommand', sky_url=f'{baseurl}/Assets/Skies/2022_1/Skies/Dynamic/CumulusLight.usd', sky_path='/Environment/sky') # print(f"nvidia_smi.__file__:{nvidia_smi.__file__}") # print(f"omni.ui.__file__:{omni.ui.__file__}") # print(f"omni.ext.__file__:{omni.ext.__file__}") def ensure_stage(self): # print("ensure_stage") self._stage = omni.usd.get_context().get_stage() # if self._stage is None: # self._stage = omni.usd.get_context().get_stage() # # print(f"ensure_stage got stage:{self._stage}") # UsdGeom.SetStageUpAxis(self._stage, UsdGeom.Tokens.y) # self._total_quads = 0 # extent3f = self.sff.GetSphereFlakeBoundingBox() # self.setup_environment(extent3f) def create_billboard(self, primpath: str, w: float = 860, h: float = 290): UsdGeom.SetStageUpAxis(self._stage, UsdGeom.Tokens.y) billboard = UsdGeom.Mesh.Define(self._stage, primpath) w2 = w/2 h2 = h/2 pts = [(-w2, -h2, 0), (w2, -h2, 0), (w2, h2, 0), (-w2, h2, 0)] ext = [(-w2, -h2, 0), (w2, h2, 0)] billboard.CreatePointsAttr(pts) billboard.CreateFaceVertexCountsAttr([4]) billboard.CreateFaceVertexIndicesAttr([0, 1, 2, 3]) billboard.CreateExtentAttr(ext) texCoords = UsdGeom.PrimvarsAPI(billboard).CreatePrimvar("st", Sdf.ValueTypeNames.TexCoord2fArray, UsdGeom.Tokens.varying) texCoords.Set([(0, 0), (1, 0), (1, 1), (0, 1)]) return billboard self.ensure_stage() # Tore: # Remove _sf_size into smf (and sff?) # def get_bool_model(self, option_name: str): # bool_model = ui.SimpleBoolModel() # return bool_model def toggle_write_log(self): self.p_writelog = not self.p_writelog print(f"toggle_write_log is now:{self.p_writelog}") def query_write_log(self): self.p_writelog = self.sfw.writelog_checkbox_model.as_bool self.p_logseriesname = self.sfw.writelog_seriesname_model.as_string print(f"querey_write_log is now:{self.p_writelog} name:{self.p_logseriesname}") def toggle_bounds(self): self.ensure_stage() self._bounds_visible = not self._bounds_visible self.sfw._tog_bounds_but.text = f"Bounds:{self._bounds_visible}" self.sff.ToggleBoundsVisiblity() def on_click_billboard(self): self.ensure_stage() primpath = f"/World/Prim_Billboard_{self._count}" billboard = self.create_billboard(primpath) material = self.get_curmat_mat() UsdShade.MaterialBindingAPI(billboard).Bind(material) def on_click_spheremesh(self): self.ensure_stage() self.smf.GenPrep() matname = self.get_curmat_name() cpt = Gf.Vec3f(0, self._sf_size, 0) primpath = f"/World/SphereMesh_{self._count}" self._count += 1 self.smf.CreateMesh(primpath, matname, cpt, self._sf_size) def update_radratio(self): if self.sfw._sf_radratio_slider_model is not None: val = self.sfw._sf_radratio_slider_model.as_float self.sff.p_radratio = val def on_click_sphereflake(self): self.ensure_stage() start_time = time.time() sff = self.sff sff.p_genmode = self.get_sf_genmode() sff.p_genform = self.get_sf_genform() sff.p_rad = self._sf_size # print(f"slider: {type(self._sf_radratio_slider)}") # sff._radratio = self._sf_radratio_slider.get_value_as_float() self.update_radratio() sff.p_sf_matname = self.get_curmat_name() sff.p_sf_alt_matname = self.get_curaltmat_name() sff.p_bb_matname = self.get_curmat_bbox_name() cpt = Gf.Vec3f(0, self._sf_size, 0) primpath = f"/World/SphereFlake_{self._count}" self._count += 1 sff.Generate(primpath, cpt) elap = time.time() - start_time self.sfw._statuslabel.text = f"SphereFlake took elapsed: {elap:.2f} s" self.UpdateStuff() async def generate_sflakes(self): sff = self.sff sff._matman = self._matman sff.p_genmode = self.get_sf_genmode() sff.p_genform = self.get_sf_genform() sff.p_rad = self._sf_size self.update_radratio() sff.p_sf_matname = self.get_curmat_name() sff.p_sf_alt_matname = self.get_curaltmat_name() sff.p_make_bounds_visible = self._bounds_visible sff.p_bb_matname = self.get_curmat_bbox_name() if sff.p_parallelRender: await sff.GenerateManyParallel() new_count = sff.p_nsfx*sff.p_nsfy*sff.p_nsfz else: new_count = sff.GenerateMany() self._count += new_count sff.SaveSettings() def write_log(self, elap: float = 0.0): self.query_write_log() if self.p_writelog: nflakes = self.sff.p_nsfx * self.sff.p_nsfz ntris, nprims = self.sff.CalcTrisAndPrims() gpuinfo = self._gpuinfo om = float(1024*1024*1024) hostname = socket.gethostname() memused = psutil.virtual_memory().used memtot = psutil.virtual_memory().total memfree = psutil.virtual_memory().free cores = psutil.cpu_count() # msg = f"GPU Mem tot: {gpuinfo.total/om:.2f}: used: {gpuinfo.used/om:.2f} free: {gpuinfo.free/om:.2f} GB" # msg += f"\nCPU cores: {cores}" # msg += f"\nSys Mem tot: {memtot/om:.2f}: used: {memused/om:.2f} free: {memfree/om:.2f} GB" rundict = {"0-seriesname": self.p_logseriesname, "0-hostname": hostname, "0-date": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), "1-genmode": self.sff.p_genmode, "1-genform": self.sff.p_genform, "1-depth": self.sff.p_depth, "1-rad": self.sff.p_rad, "1-radratio": self.sff.p_radratio, "1-nsfx": self.sff.p_nsfx, "1-nsfy": self.sff.p_nsfy, "1-nsfz": self.sff.p_nsfz, "2-tris": ntris, "2-prims": nprims, "2-nflakes": nflakes, "2-elapsed": truncf(elap, 3), "3-gpu_gbmem_tot": truncf(gpuinfo.total/om, 3), "3-gpu_gbmem_used": truncf(gpuinfo.used/om, 3), "3-gpu_gbmem_free": truncf(gpuinfo.free/om, 3), "4-sys_gbmem_tot": truncf(memtot/om, 3), "4-sys_gbmem_used": truncf(memused/om, 3), "4-sys_gbmem_free": truncf(memfree/om, 3), "5-cpu_cores": cores, } self.WriteRunLog(rundict) async def on_click_multi_sphereflake(self): self.ensure_stage() # extent3f = self.sff.GetSphereFlakeBoundingBox() extent3f = self.sff.GetSphereFlakeBoundingBoxNxNyNz() self.setup_environment(extent3f, force=True) start_time = time.time() await self.generate_sflakes() elap = time.time() - start_time nflakes = self.sff.p_nsfx * self.sff.p_nsfz self.sfw._statuslabel.text = f"{nflakes} flakes took elapsed: {elap:.2f} s" self.UpdateStuff() self.write_log(elap) def spawnprim(self, primtype): self.ensure_stage() extent3f = self.sff.GetSphereFlakeBoundingBox() self.setup_environment(extent3f, force=True) if primtype == "Billboard": self.on_click_billboard() return elif primtype == "SphereMesh": self.on_click_spheremesh() return primpath = f"/World/Prim_{primtype}_{self._count}" okc.execute('CreateMeshPrimWithDefaultXform', prim_type=primtype, prim_path=primpath) material = self.get_curmat_mat() self._count += 1 okc.execute('TransformMultiPrimsSRTCpp', count=1, paths=[primpath], new_scales=[1, 1, 1], new_translations=[0, 50, 0]) prim: Usd.Prim = self._stage.GetPrimAtPath(primpath) UsdShade.MaterialBindingAPI(prim).Bind(material) def on_click_writerunlog(self): self.p_writelog = not self.p_writelog self.sfw._sf_writerunlog_but.text = f"Write Perf Log: {self.p_writelog}" def round_increment(self, val: int, butval: bool, maxval: int, minval: int = 0): inc = 1 if butval else -1 val += inc if val > maxval: val = minval if val < minval: val = maxval return val def UpdateStuff(self): self.UpdateNQuads() self.UpdateMQuads() self.UpdateGpuMemory() def on_click_sfdepth(self, x, y, button, modifier): depth = self.round_increment(self.sff.p_depth, button == 1, 5, 0) self.sfw._sf_depth_but.text = f"Depth:{depth}" self.sff.p_depth = depth self.UpdateStuff() def on_click_nlat(self, x, y, button, modifier): nlat = self.round_increment(self.smf.p_nlat, button == 1, 16, 3) self._sf_nlat_but.text = f"Nlat:{nlat}" self.smf.p_nlat = nlat self.UpdateStuff() def on_click_nlng(self, x, y, button, modifier): nlng = self.round_increment(self.smf.p_nlng, button == 1, 16, 3) self._sf_nlng_but.text = f"Nlng:{nlng}" self.smf.p_nlng = nlng self.UpdateStuff() def on_click_sfx(self, x, y, button, modifier): nsfx = self.round_increment(self.sff.p_nsfx, button == 1, 20, 1) self.sfw._nsf_x_but.text = f"SF - x:{nsfx}" self.sff.p_nsfx = nsfx self.UpdateStuff() def toggle_parallel_render(self): self.sff.p_parallelRender = not self.sff.p_parallelRender self.sfw._parallel_render_but.text = f"Parallel Render: {self.sff.p_parallelRender}" def on_click_parallel_nxbatch(self, x, y, button, modifier): tmp = self.round_increment(self.sff.p_parallel_nxbatch, button == 1, self.sff.p_nsfx, 1) self.sfw._parallel_nxbatch_but.text = f"SF batch x: {tmp}" self.sff.p_parallel_nxbatch = tmp print(f"on_click_parallel_nxbatch:{tmp}") self.UpdateStuff() def on_click_parallel_nybatch(self, x, y, button, modifier): tmp = self.round_increment(self.sff.p_parallel_nybatch, button == 1, self.sff.p_nsfy, 1) self.sfw._parallel_nybatch_but.text = f"SF batch y: {tmp}" self.sff.p_parallel_nybatch = tmp self.UpdateStuff() def on_click_parallel_nzbatch(self, x, y, button, modifier): tmp = self.round_increment(self.sff.p_parallel_nzbatch, button == 1, self.sff.p_nsfz, 1) self.sfw._parallel_nzbatch_but.text = f"SF batch z: {tmp}" self.sff.p_parallel_nzbatch = tmp self.UpdateStuff() def toggle_partial_render(self): self.sff.p_partialRender = not self.sff.p_partialRender self.sfw._partial_render_but.text = f"Partial Render: {self.sff.p_partialRender}" def on_click_parital_sfsx(self, x, y, button, modifier): tmp = self.round_increment(self.sff.p_partial_ssfx, button == 1, self.sff.p_nsfx-1, 0) self.sfw._part_nsf_sx_but.text = f"SF partial sx: {tmp}" self.sff.p_partial_ssfx = tmp self.UpdateStuff() def on_click_parital_sfsy(self, x, y, button, modifier): tmp = self.round_increment(self.sff.p_partial_ssfy, button == 1, self.sff.p_nsfy-1, 0) self.sfw._part_nsf_sy_but.text = f"SF partial sy: {tmp}" self.sff.p_partial_ssfy = tmp self.UpdateStuff() def on_click_parital_sfsz(self, x, y, button, modifier): tmp = self.round_increment(self.sff.p_partial_ssfz, button == 1, self.sff.p_nsfz-1, 0) self.sfw._part_nsf_sz_but.text = f"SF partial sz: {tmp}" self.sff.p_partial_ssfz = tmp self.UpdateStuff() def on_click_parital_sfnx(self, x, y, button, modifier): tmp = self.round_increment(self.sff.p_partial_nsfx, button == 1, self.sff.p_nsfx, 1) self.sfw._part_nsf_nx_but.text = f"SF partial nx: {tmp}" self.sff.p_partial_nsfx = tmp self.UpdateStuff() def on_click_parital_sfny(self, x, y, button, modifier): tmp = self.round_increment(self.sff.p_partial_nsfy, button == 1, self.sff.p_nsfy, 1) self.sfw._part_nsf_ny_but.text = f"SF partial ny: {tmp}" self.sff.p_partial_nsfy = tmp self.UpdateStuff() def on_click_parital_sfnz(self, x, y, button, modifier): tmp = self.round_increment(self.sff.p_partial_nsfz, button == 1, self.sff.p_nsfz, 1) self.sfw._part_nsf_nz_but.text = f"SF partial nz: {tmp}" self.sff.p_partial_nsfz = tmp self.UpdateStuff() def on_click_sfy(self, x, y, button, modifier): nsfy = self.round_increment(self.sff.p_nsfy, button == 1, 20, 1) self.sfw._nsf_y_but.text = f"SF - y:{nsfy}" self.sff.p_nsfy = nsfy self.UpdateStuff() def on_click_sfz(self, x, y, button, modifier): nsfz = self.round_increment(self.sff.p_nsfz, button == 1, 20, 1) self.sfw._nsf_z_but.text = f"SF - z:{nsfz}" self.sff.p_nsfz = nsfz self.UpdateStuff() def on_click_spawnprim(self): self.spawnprim(self._curprim) def xprocess(): pass # print("xprocess started") def on_click_launchxproc(self): self.ensure_stage() # cmdpath = "D:\\nv\\ov\\ext\\sphereflake-benchmark\\exts\\omni.sphereflake\\omni\\sphereflake" subprocess.call(["python.exe"]) # subprocess.call([cmdpath,"hello.py"]) # print("launching xproc") # p1 = multiprocessing.Process(target=self.xprocess) # p1.start() # Casues app to stop servicing events # self._xproc = XProcess(self._stage, self._curprim, self.smf, self.sff) # self._xproc.start() def on_click_clearprims(self): self.ensure_stage() # check and see what we have missed worldprim = self._stage.GetPrimAtPath("/World") for child_prim in worldprim.GetAllChildren(): cname = child_prim.GetName() prefix = cname.split("_")[0] dodelete = prefix in ["SphereFlake", "SphereMesh", "Prim"] if dodelete: # print(f"deleting {cname}") cpath = child_prim.GetPrimPath() self._stage.RemovePrim(cpath) # okc.execute("DeletePrimsCommand", paths=[cpath]) self.smf.Clear() self.sff.Clear() self._count = 0 def on_click_changeprim(self): idx = self._prims.index(self._curprim) + 1 if idx >= len(self._prims): idx = 0 self._curprim = self._prims[idx] self.sfw._sf_primtospawn_but.text = f"{self._curprim}" def UpdateNQuads(self): ntris, nprims = self.sff.CalcTrisAndPrims() elap = SphereFlakeFactory.GetLastGenTime() if self.sfw._sf_depth_but is not None: self.sfw._sf_spawn_but.text = f"Spawn ShereFlake\n tris:{ntris:,} prims:{nprims:,}\ngen: {elap:.2f} s" def UpdateMQuads(self): ntris, nprims = self.sff.CalcTrisAndPrims() tottris = ntris*self.sff.p_nsfx*self.sff.p_nsfz if self.sfw._msf_spawn_but is not None: self.sfw._msf_spawn_but.text = f"Multi ShereFlake\ntris:{tottris:,} prims:{nprims:,}" def UpdateGpuMemory(self): nvidia_smi.nvmlInit() handle = nvidia_smi.nvmlDeviceGetHandleByIndex(0) # card id 0 hardcoded here, there is also a call to get all available card ids, so we could iterate gpuinfo = nvidia_smi.nvmlDeviceGetMemoryInfo(handle) self._gpuinfo = gpuinfo om = float(1024*1024*1024) msg = f"GPU Mem tot: {gpuinfo.total/om:.2f}: used: {gpuinfo.used/om:.2f} free: {gpuinfo.free/om:.2f} GB" memused = psutil.virtual_memory().used memtot = psutil.virtual_memory().total memfree = psutil.virtual_memory().free msg += f"\nSys Mem tot: {memtot/om:.2f}: used: {memused/om:.2f} free: {memfree/om:.2f} GB" cores = psutil.cpu_count() msg += f"\nCPU cores: {cores}" refcnt = self._matman.refCount ftccnt = self._matman.fetchCount skpcnt = self._matman.skipCount msg += f"\n Materials ref: {refcnt} fetched: {ftccnt} skipped: {skpcnt}" self.sfw._memlabel.text = msg def get_curmat_mat(self): idx = self.sfw._sf_matbox_model.as_int self._current_material_name = self._matkeys[idx] return self._matman.GetMaterial(self._current_material_name) def get_curmat_name(self): idx = self.sfw._sf_matbox_model.as_int self._current_material_name = self._matkeys[idx] return self._current_material_name def get_curaltmat_mat(self): idx = self.sfw._sf_alt_matbox_model.as_int self._current_alt_material_name = self._matkeys[idx] return self._matman.GetMaterial(self._current_alt_material_name) def get_curaltmat_name(self): idx = self.sfw._sf_alt_matbox_model.as_int self._current_alt_material_name = self._matkeys[idx] return self._current_alt_material_name def get_curfloormat_mat(self): idx = self.sfw._sf_floor_matbox_model.as_int self._current_floor_material_name = self._matkeys[idx] return self._matman.GetMaterial(self._current_floor_material_name) def get_curmat_bbox_name(self): idx = self.sfw._bb_matbox_model.as_int self._current_bbox_material_name = self._matkeys[idx] return self._current_bbox_material_name def get_curmat_bbox_mat(self): idx = self.sfw._bb_matbox_model.as_int self._current_bbox_material_name = self._matkeys[idx] return self._matman.GetMaterial(self._current_bbox_material_name) def get_curfloormat_name(self): idx = self.sfw._sf_floor_matbox_model.as_int self._current_floor_material_name = self._matkeys[idx] return self._current_floor_material_name def get_sf_genmode(self): idx = self.sfw._genmodebox_model.as_int return self._sf_gen_modes[idx] def get_sf_genform(self): idx = self.sfw._genformbox_model.as_int return self._sf_gen_forms[idx] def WriteRunLog(self, rundict=None): if rundict is None: rundict = {} jline = json.dumps(rundict, sort_keys=True) fname = "d:/nv/ov/log.txt" with open(fname, "a") as f: f.write(f"{jline}\n") print("wrote log")
24,594
Python
38.415064
119
0.591811
mike-wise/kit-exts-spawn-prims/exts/omni.sphereflake/omni/sphereflake/demo.py
import carb import omni.ui as ui from ._widgets import CheckBoxGroup, CheckBoxGroupModel, TabGroup, BaseTab class DemoWindow(ui.Window): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) with self.frame: with ui.VStack(): model = CheckBoxGroupModel(["Red", "Blue", "Green"]) self.cb_group = CheckBoxGroup("My CheckBox Group", model) def checkbox_changed(option_name, value): carb.log_info("This checkbox changed.") carb.log_info(f"{option_name} is {value}") def checkbox_group_changed(values): carb.log_info("The state of my CheckBoxGroup is now:") for name, value in values: carb.log_info(f"{name} is {value}") model.subscribe_value_changed_fn(checkbox_changed) model.subscribe_group_changed_fn(checkbox_group_changed) tab_group = TabGroup([MyTab1("Tab Header 1"), MyTab2("Tab Header 2"), MyTab3("Tab Header 3"),]) def destroy(self) -> None: super().destroy() self.cb_group.destroy() class MyTab1(BaseTab): def build_fn(self): with ui.VStack(style={"margin":5}): ui.Label("Hello!", alignment=ui.Alignment.CENTER, height=25) ui.Label("Check out this TabGroup Widget.", alignment=ui.Alignment.CENTER) ui.Spacer(height=40) class MyTab2(BaseTab): def build_fn(self): with ui.VStack(style={"margin":5}): with ui.HStack(spacing=2): color_model = ui.ColorWidget(0.125, 0.25, 0.5, width=0, height=0).model for item in color_model.get_item_children(): component = color_model.get_item_value_model(item) ui.FloatDrag(component) class MyTab3(BaseTab): def build_fn(self): with ui.VStack(style={"margin":5}): with ui.HStack(): ui.Label("Red: ", height=25) ui.FloatSlider() with ui.HStack(): ui.Label("Green: ", height=25) ui.FloatSlider() with ui.HStack(): ui.Label("Blue: ", height=25) ui.FloatSlider()
2,279
Python
37.644067
111
0.548047
mike-wise/kit-exts-spawn-prims/exts/omni.sphereflake/omni/sphereflake/styles.py
import omni.ui as ui checkbox_group_style = { "HStack::checkbox_row" : { "margin_width": 18, "margin": 2 }, "Label::cb_label": { "margin_width": 10 } } tab_group_style = { "TabGroupBorder": { "background_color": ui.color.transparent, "border_color": ui.color(25), "border_width": 1 }, "Rectangle::TabGroupHeader" : { "background_color": ui.color(20), }, "ZStack::TabGroupHeader":{ "margin_width": 1 } } tab_style = { "" : { "background_color": ui.color(31), "corner_flag": ui.CornerFlag.TOP, "border_radius": 4, "color": ui.color(127) }, ":selected": { "background_color": ui.color(56), "color": ui.color(203) }, "Label": { "margin_width": 5, "margin_height": 3 } }
862
Python
19.547619
49
0.49768
mike-wise/kit-exts-spawn-prims/exts/omni.sphereflake/omni/sphereflake/sphereflake.py
import omni.kit.commands as okc import omni.usd import carb import time import asyncio import math from pxr import Gf, Usd, UsdGeom, UsdShade from .spheremesh import SphereMeshFactory from . import ovut from .ovut import MatMan, get_setting, save_setting # import omni.services.client import aiohttp latest_sf_gen_time = 0 class SphereFlakeFactory(): _matman: MatMan = None _smf: SphereMeshFactory = None p_genmode = "UsdSphere" p_genform = "Classic" p_depth = 1 p_rad = 50 p_radratio = 0.3 p_nsfx = 1 p_nsfy = 1 p_nsfz = 1 p_partialRender = False p_partial_ssfx = 0 p_partial_ssfy = 0 p_partial_ssfz = 0 p_partial_nsfx = 1 p_partial_nsfy = 1 p_partial_nsfz = 1 p_parallelRender = False p_parallel_nxbatch = 1 p_parallel_nybatch = 1 p_parallel_nzbatch = 1 p_sf_matname = "Mirror" p_sf_alt_matname = "Red_Glass" p_bb_matname = "Blue_Glass" p_make_bounds_visible = False _start_time = 0 _createlist: list = [] _bbcubelist: list = [] _org = Gf.Vec3f(0, 0, 0) _xax = Gf.Vec3f(1, 0, 0) _yax = Gf.Vec3f(0, 1, 0) _zax = Gf.Vec3f(0, 0, 1) def __init__(self, matman: MatMan, smf: SphereMeshFactory) -> None: # self._stage = omni.usd.get_context().get_stage() self._count = 0 self._matman = matman self._smf = smf def GenPrep(self): self._smf.GenPrep() pass def LoadSettings(self): print("SphereFlakeFactory.LoadSettings (trc)") self.p_genmode = get_setting("p_genmode", self.p_genmode) self.p_genform = get_setting("p_genform", self.p_genform) self.p_depth = get_setting("p_depth", self.p_depth) self.p_rad = get_setting("p_rad", self.p_rad) self.p_radratio = get_setting("p_radratio", self.p_radratio) self.p_nsfx = get_setting("p_nsfx", self.p_nsfx, db=True) self.p_nsfy = get_setting("p_nsfy", self.p_nsfy, db=True) self.p_nsfz = get_setting("p_nsfz", self.p_nsfz, db=True) self.p_partialRender = get_setting("p_partialRender", self.p_partialRender) self.p_partial_ssfx = get_setting("p_partial_ssfx", self.p_partial_ssfx) self.p_partial_ssfy = get_setting("p_partial_ssfy", self.p_partial_ssfy) self.p_partial_ssfz = get_setting("p_partial_ssfz", self.p_partial_ssfz) self.p_partial_nsfx = get_setting("p_partial_nsfx", self.p_partial_nsfx) self.p_partial_nsfy = get_setting("p_partial_nsfy", self.p_partial_nsfy) self.p_partial_nsfz = get_setting("p_partial_nsfz", self.p_partial_nsfz) self.p_parallelRender = get_setting("p_parallelRender", self.p_parallelRender) self.p_parallel_nxbatch = get_setting("p_parallel_nxbatch", self.p_parallel_nxbatch) self.p_parallel_nybatch = get_setting("p_parallel_nybatch", self.p_parallel_nybatch) self.p_parallel_nzbatch = get_setting("p_parallel_nzbatch", self.p_parallel_nzbatch) self.p_sf_matname = get_setting("p_sf_matname", self.p_sf_matname) self.p_sf_alt_matname = get_setting("p_sf_alt_matname", self.p_sf_alt_matname) self.p_bb_matname = get_setting("p_bb_matname", self.p_bb_matname) self.p_bb_matname = get_setting("p_bb_matname", self.p_bb_matname) self.p_make_bounds_visible = get_setting("p_make_bounds_visible", self.p_make_bounds_visible) print(f"SphereFlakeFactory.LoadSettings: p_nsfx:{self.p_nsfx} p_nsfy:{self.p_nsfy} p_nsfz:{self.p_nsfz}") def SaveSettings(self): print("SphereFlakeFactory.SaveSettings (trc)") save_setting("p_genmode", self.p_genmode) save_setting("p_genform", self.p_genform) save_setting("p_depth", self.p_depth) save_setting("p_rad", self.p_rad) save_setting("p_radratio", self.p_radratio) save_setting("p_nsfx", self.p_nsfx) save_setting("p_nsfy", self.p_nsfy) save_setting("p_nsfz", self.p_nsfz) save_setting("p_partialRender", self.p_partialRender) save_setting("p_partial_ssfx", self.p_partial_ssfx) save_setting("p_partial_ssfy", self.p_partial_ssfy) save_setting("p_partial_ssfz", self.p_partial_ssfz) save_setting("p_partial_nsfx", self.p_partial_nsfx) save_setting("p_partial_nsfy", self.p_partial_nsfy) save_setting("p_partial_nsfz", self.p_partial_nsfz) save_setting("p_parallelRender", self.p_parallelRender) save_setting("p_parallel_nxbatch", self.p_parallel_nxbatch) save_setting("p_parallel_nybatch", self.p_parallel_nybatch) save_setting("p_parallel_nzbatch", self.p_parallel_nzbatch) save_setting("p_sf_matname", self.p_sf_matname) save_setting("p_sf_alt_matname", self.p_sf_alt_matname) save_setting("p_bb_matname", self.p_bb_matname) save_setting("p_make_bounds_visible", self.p_make_bounds_visible) @staticmethod def GetGenModes(): return ["UsdSphere", "DirectMesh", "AsyncMesh", "OmniSphere"] @staticmethod def GetGenForms(): return ["Classic", "Flat-8"] def Clear(self): self._createlist = [] self._bbcubelist = [] def Set(self, attname: str, val: float): if hasattr(self, attname): self.__dict__[attname] = val else: carb.log.error(f"SphereFlakeFactory.Set: no attribute {attname}") def CalcQuadsAndPrims(self): nring = 9 if self.p_genform == "Classic" else 8 nlat = self._smf.p_nlat nlng = self._smf.p_nlng totquads = 0 totprims = 0 for i in range(self.p_depth+1): nspheres = nring**(i) nquads = nspheres * nlat * nlng totquads += nquads totprims += nspheres return totquads, totprims def CalcTrisAndPrims(self): totquads, totprims = self.CalcQuadsAndPrims() return totquads * 2, totprims def GetCenterPosition(self, ix: int, iy: int, iz: int, extentvec: Gf.Vec3f, gap: float = 1.1): nx = self.p_nsfx # ny = self.p_nsfy nz = self.p_nsfz ixoff = (nx-1)/2 iyoff = -0.28 # wierd offset to make it have the same height as single sphereflake izoff = (nz-1)/2 x = (ix-ixoff) * extentvec[0] * gap * 2 y = (iy-iyoff) * extentvec[1] * gap * 2 # y = extentvec[1] z = (iz-izoff) * extentvec[2] * gap * 2 return Gf.Vec3f(x, y, z) @staticmethod def GetLastGenTime(): global latest_sf_gen_time return latest_sf_gen_time def SpawnBBcube(self, primpath, cenpt, extent, bbmatname): stage = omni.usd.get_context().get_stage() xformPrim = UsdGeom.Xform.Define(stage, primpath) UsdGeom.XformCommonAPI(xformPrim).SetTranslate((cenpt[0], cenpt[1], cenpt[2])) UsdGeom.XformCommonAPI(xformPrim).SetScale((extent[0], extent[1], extent[2])) cube = UsdGeom.Cube.Define(stage, primpath) mtl = self._matman.GetMaterial(bbmatname) UsdShade.MaterialBindingAPI(cube).Bind(mtl) return cube def GetSphereFlakeBoundingBox(self) -> Gf.Vec3f: # sz = rad + (1+(radratio))**depth # old method sz = self.p_rad nrad = sz for i in range(self.p_depth): nrad = self.p_radratio*nrad sz += 2*nrad return Gf.Vec3f(sz, sz, sz) def GetSphereFlakeBoundingBoxNxNyNz(self, gap: float = 1.1) -> Gf.Vec3f: # sz = rad + (1+(radratio))**depth # old method ext = self.GetSphereFlakeBoundingBox() fx = -1 fy = -1 fz = -1 lx = self.p_nsfx ly = self.p_nsfy lz = self.p_nsfz lcorn = self.GetCenterPosition(fx, fy, fz, ext, gap) rcorn = self.GetCenterPosition(lx, ly, lz, ext, gap) rv = rcorn - lcorn return rv async def fetch(self, session, url): async with session.get(url) as response: return await response.text() async def GenerateManyParallel(self): nxchunk = math.ceil(self.p_nsfx / self.p_parallel_nxbatch) nychunk = math.ceil(self.p_nsfy / self.p_parallel_nybatch) nzchunk = math.ceil(self.p_nsfz / self.p_parallel_nzbatch) print(f"GenerateManyParallel: self.p_nsfx:{self.p_nsfx} self.p_nsfy:{self.p_nsfy} self.p_nsfz:{self.p_nsfz}") original_matname = self.p_sf_matname original_alt_matname = self.p_sf_alt_matname omatname = self.p_sf_matname amatname = self.p_sf_alt_matname ibatch = 0 sfcount = 0 print(f"GenerateManyParallel: nxchunk:{nxchunk} nychunk:{nychunk} nzchunk:{nzchunk}") # available_trans_sync = omni.services.client.get_available_transports(is_async=False) # available_trans_async = omni.services.client.get_available_transports(is_async=True) # # availprot = omni.services.client.get_available_protocols() # client = omni.services.client.AsyncClient("http://localhost:8211/sphereflake") self._createlist = [] self._bbcubelist = [] tasks = [] doremote = False if doremote: baseurl = "http://localhost:8211/sphereflake/build-sf-set" sess = aiohttp.ClientSession() for iix in range(self.p_parallel_nxbatch): for iiy in range(self.p_parallel_nybatch): for iiz in range(self.p_parallel_nzbatch): iixyz = iix + iiy + iiz if iixyz % 2 == 0: self.p_sf_matname = omatname else: self.p_sf_matname = amatname print(f" GenerateManyParallel: batch:{ibatch} mat:{self.p_sf_matname}") sx = iix*nxchunk sy = iiy*nychunk sz = iiz*nzchunk nx = nxchunk ny = nychunk nz = nzchunk nnx = self.p_nsfx nny = self.p_nsfy nnz = self.p_nsfz nx = min(nx, nnx-sx) ny = min(ny, nny-sy) nz = min(nz, nnz-sz) if doremote: url = f"{baseurl}?matname={self.p_sf_matname}" url += f"&sx={sx}&nx={nx}&nnx={nnx}" url += f"&sy={sy}&ny={ny}&nny={nny}" url += f"&sz={sz}&nz={nz}&nnz={nnz}" t = asyncio.create_task(self.fetch(sess, url)) t.add_done_callback(tasks.remove) tasks.append(t) print(f"GMP sf_ - url:{url}") sfcount += self.GenerateManySubcube(sx, sy, sz, nx, ny, nz) ibatch += 1 if doremote: print(f"GMP: sf_ waiting for tasks to complete ln:{len(tasks)}") txts = await asyncio.gather(*tasks) print(f"GMP: sf_ tasks completed") for txt in txts: print(f"GMP: sf_ txt:{txt}") await sess.close() self.p_sf_matname = original_matname self.p_sf_alt_matname = original_alt_matname return sfcount def GenerateMany(self): if self.p_partialRender: sx = self.p_partial_ssfx sy = self.p_partial_ssfy sz = self.p_partial_ssfz nx = self.p_partial_nsfx ny = self.p_partial_nsfy nz = self.p_partial_nsfz else: sx = 0 sy = 0 sz = 0 nx = self.p_nsfx ny = self.p_nsfy nz = self.p_nsfz self._createlist = [] self._bbcubelist = [] sfcount = self.GenerateManySubcube(sx, sy, sz, nx, ny, nz) return sfcount def GenerateManySubcube(self, sx: int, sy: int, sz: int, nx: int, ny: int, nz: int) -> int: self.GenPrep() cpt = Gf.Vec3f(0, self.p_rad, 0) # extentvec = self.GetFlakeExtent(depth, self._rad, self._radratio) extentvec = self.GetSphereFlakeBoundingBox() count = self._count for iix in range(nx): for iiy in range(ny): for iiz in range(nz): ix = iix+sx iy = iiy+sy iz = iiz+sz count += 1 # primpath = f"/World/SphereFlake_{count}" primpath = f"/World/SphereFlake_{ix}_{iy}_{iz}__{nx}_{ny}_{nz}" cpt = self.GetCenterPosition(ix, iy, iz, extentvec) self.Generate(primpath, cpt) self._createlist.append(primpath) bnd_cubepath = primpath+"/bounds" bnd_cube = self.SpawnBBcube(bnd_cubepath, cpt, extentvec, self.p_bb_matname) self._bbcubelist.append(bnd_cubepath) if self.p_make_bounds_visible: UsdGeom.Imageable(bnd_cube).MakeVisible() else: UsdGeom.Imageable(bnd_cube).MakeInvisible() return count def ToggleBoundsVisiblity(self): # print(f"ToggleBoundsVisiblity: {self._bbcubelist}") okc.execute('ToggleVisibilitySelectedPrims', selected_paths=self._bbcubelist) def Generate(self, sphflkname: str, cenpt: Gf.Vec3f): global latest_sf_gen_time self._start_time = time.time() self._total_quads = 0 self._nring = 8 ovut.delete_if_exists(sphflkname) stage = omni.usd.get_context().get_stage() xformPrim = UsdGeom.Xform.Define(stage, sphflkname) UsdGeom.XformCommonAPI(xformPrim).SetTranslate((0, 0, 0)) UsdGeom.XformCommonAPI(xformPrim).SetRotate((0, 0, 0)) mxdepth = self.p_depth basept = cenpt matname = self.p_sf_matname self.GenRecursively(sphflkname, matname, mxdepth, self.p_depth, basept, cenpt, self.p_rad) elap = time.time() - self._start_time # print(f"GenerateSF {sphflkname} {matname} {depth} {cenpt} totquads:{self._total_quads} in {elap:.3f} secs") latest_sf_gen_time = elap def GenRecursively(self, sphflkname: str, matname: str, mxdepth: int, depth: int, basept: Gf.Vec3f, cenpt: Gf.Vec3f, rad: float): # xformPrim = UsdGeom.Xform.Define(self._stage, sphflkname) # UsdGeom.XformCommonAPI(xformPrim).SetTranslate((0, 0, 0)) # UsdGeom.XformCommonAPI(xformPrim).SetRotate((0, 0, 0)) meshname = sphflkname + "/SphereMesh" # spheremesh = UsdGeom.Mesh.Define(self._stage, meshname) if self.p_genmode == "AsyncMesh": meshname = sphflkname + "/SphereMeshAsync" asyncio.ensure_future(self._smf.CreateMeshAsync(meshname, matname, cenpt, rad)) elif self.p_genmode == "DirectMesh": meshname = sphflkname + "/SphereMesh" self._smf.CreateMesh(meshname, matname, cenpt, rad) elif self.p_genmode == "OmniSphere": meshname = sphflkname + "/OmniSphere" okc.execute('CreateMeshPrimWithDefaultXform', prim_type="Sphere", prim_path=meshname) sz = rad/50 # 50 is the default radius of the sphere prim okc.execute('TransformMultiPrimsSRTCpp', count=1, paths=[meshname], new_scales=[sz, sz, sz], new_translations=[cenpt[0], cenpt[1], cenpt[2]]) mtl = self._matman.GetMaterial(matname) stage = omni.usd.get_context().get_stage() prim: Usd.Prim = stage.GetPrimAtPath(meshname) UsdShade.MaterialBindingAPI(prim).Bind(mtl) elif self.p_genmode == "UsdSphere": meshname = sphflkname + "/UsdSphere" stage = omni.usd.get_context().get_stage() xformPrim = UsdGeom.Xform.Define(stage, meshname) sz = rad UsdGeom.XformCommonAPI(xformPrim).SetTranslate((cenpt[0], cenpt[1], cenpt[2])) UsdGeom.XformCommonAPI(xformPrim).SetScale((sz, sz, sz)) spheremesh = UsdGeom.Sphere.Define(stage, meshname) mtl = self._matman.GetMaterial(matname) UsdShade.MaterialBindingAPI(spheremesh).Bind(mtl) if depth > 0: form = self.p_genform if form == "Classic": thoff = 0 phioff = -20*math.pi/180 self._nring = 6 self.GenRing(sphflkname, "r1", matname, mxdepth, depth, basept, cenpt, 6, rad, thoff, phioff) thoff = 30*math.pi/180 phioff = 55*math.pi/180 self._nring = 3 self.GenRing(sphflkname, "r2", matname, mxdepth, depth, basept, cenpt, 3, rad, thoff, phioff) else: thoff = 0 phioff = 0 self._nring = 8 self.GenRing(sphflkname, "r1", matname, mxdepth, depth, basept, cenpt, self._nring, rad, thoff, phioff) def GenRing(self, sphflkname: str, ringname: str, matname: str, mxdepth: int, depth: int, basept: Gf.Vec3f, cenpt: Gf.Vec3f, nring: int, rad: float, thoff: float, phioff: float): offvek = cenpt - basept len = offvek.GetLength() if len > 0: lxax = ovut.cross_product(offvek, self._yax) if lxax.GetLength() == 0: lxax = ovut.cross_product(offvek, self._zax) lxax.Normalize() lzax = ovut.cross_product(offvek, lxax) lzax.Normalize() lyax = offvek lyax.Normalize() else: lxax = self._xax lyax = self._yax lzax = self._zax nrad = rad * self.p_radratio offfak = 1 + self.p_radratio sphi = math.sin(phioff) cphi = math.cos(phioff) for i in range(nring): theta = thoff + (i*2*math.pi/nring) x = cphi*rad*math.sin(theta) y = sphi*rad z = cphi*rad*math.cos(theta) npt = x*lxax + y*lyax + z*lzax subname = f"{sphflkname}/{ringname}_sf_{i}" self.GenRecursively(subname, matname, mxdepth, depth-1, cenpt, cenpt+offfak*npt, nrad)
18,316
Python
39.886161
119
0.567264
mike-wise/kit-exts-spawn-prims/exts/omni.sphereflake/omni/sphereflake/extension.py
import omni.ext # this needs to be included in an extension's extension.py from .ovut import MatMan, write_out_syspath, write_out_path from .sphereflake import SphereMeshFactory, SphereFlakeFactory from .sfcontrols import SfControls from .sfwindow import SfcWindow import omni.usd # Omni imports import omni.client import omni.usd_resolver import os # import contextlib # @contextlib.asynccontextmanager # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class SphereflakeBenchmarkExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. _window_sfcon = None _matman: MatMan = None _smf: SphereMeshFactory = None _sff: SphereFlakeFactory = None _sfc: SfControls = None _sfw: SfcWindow = None _settings = None def on_stage(self, ext_id): print(f"[omni.sphereflake] SphereflakeBenchmarkExtension on_stage - ext_id: {ext_id} (trc)") _stageid = omni.usd.get_context().get_stage_id() self._stageid = _stageid pid = os.getpid() print(f"[omni.sphereflake] SphereflakeBenchmarkExtension on_stage - stageid: {_stageid} pid:{pid} (trc)") self._window_sfcon.ensure_stage() def WriteOutPathAndSysPath(self, basename="d:/nv/ov/sphereflake_benchmark"): write_out_syspath(f"{basename}_syspath.txt") write_out_path(f"{basename}_path.txt") def on_startup(self, ext_id): self._stageid = omni.usd.get_context().get_stage_id() pid = os.getpid() print(f"[omni.sphereflake] SphereflakeBenchmarkExtension on_startup - stageid:{self._stageid} pid:{pid} (trc)") # Write out syspath and path # self.WriteOutPathAndSysPath() # Model objects self._matman = MatMan() self._smf = SphereMeshFactory(self._matman) self._sff = SphereFlakeFactory(self._matman, self._smf) self._sff.LoadSettings() # Controller objects self._sfc = SfControls(self._matman, self._smf, self._sff) # View objects self._sfw = SfcWindow(sfc=self._sfc) self._sfw.DockWindow() print("[omni.sphereflake] SphereflakeBenchmarkExtension on_startup - done (trc))") def on_shutdown(self): print("[omni.sphereflake] SphereflakeBenchmarkExtension on_shutdown (trc)") self._sfc.SaveSettings() self._sfw.SaveSettings() self._sfc.Close() self._sfw.destroy()
2,727
Python
37.422535
119
0.682435
mike-wise/kit-exts-spawn-prims/exts/omni.sphereflake/omni/sphereflake/hello.py
print("Hello world")
21
Python
9.999995
20
0.714286