file_path
stringlengths 20
207
| content
stringlengths 5
3.85M
| size
int64 5
3.85M
| lang
stringclasses 9
values | avg_line_length
float64 1.33
100
| max_line_length
int64 4
993
| alphanum_fraction
float64 0.26
0.93
|
---|---|---|---|---|---|---|
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares_backup/ST/AI/Inc/layers_pad_dqnn.h | /**
******************************************************************************
* @file layers_pad_dqnn.h
* @author AIS
* @brief header file of AI platform DQNN padding datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_PADDING_DQNN_H
#define LAYERS_PADDING_DQNN_H
#pragma once
#include "layers_common.h"
#include "layers_generic.h"
/*!
* @defgroup layers_generic_dqnn Layers Definitions
* @brief definition
*
*/
AI_API_DECLARE_BEGIN
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Handles padding with binary input and binary output
* @ingroup layers_generic_dqnn
* @param layer pad layer
*/
AI_INTERNAL_API
void forward_pad_is1os1(ai_layer *pLayer);
AI_API_DECLARE_END
#endif /*LAYERS_PADDING_DQNN_H*/
| 1,499 | C | 26.777777 | 80 | 0.451634 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares_backup/ST/AI/Inc/lite_upsample.h | /**
******************************************************************************
* @file lite_upsample.h
* @author AIS
* @brief header file of AI platform lite pw kernel datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LITE_UPSAMPLE_H
#define LITE_UPSAMPLE_H
#pragma once
#include "ai_lite_interface.h"
void forward_lite_upsample_bilinear_if32of32(const ai_float* in_data,
ai_float* out_data,
const ai_size width_in,
const ai_size height_in,
const ai_float width_scale,
const ai_float height_scale,
const ai_size width_out,
const ai_size height_out,
const ai_bool center,
const ai_size n_channel);
void forward_lite_upsample_bilinear_is8os8(const ai_i8* in_data,
ai_i8* out_data,
const ai_size width_in,
const ai_size height_in,
const ai_float width_scale,
const ai_float height_scale,
const ai_size width_out,
const ai_size height_out,
const ai_bool center,
const ai_size n_channel);
void forward_lite_upsample_bilinear_iu8ou8(const ai_u8* in_data,
ai_u8* out_data,
const ai_size width_in,
const ai_size height_in,
const ai_float width_scale,
const ai_float height_scale,
const ai_size width_out,
const ai_size height_out,
const ai_bool center,
const ai_size n_channel);
void forward_lite_upsample_bilinear_is16os16(const ai_i16* in_data,
ai_i16* out_data,
const ai_size width_in,
const ai_size height_in,
const ai_float width_scale,
const ai_float height_scale,
const ai_size width_out,
const ai_size height_out,
const ai_bool center,
const ai_size n_channel);
void forward_lite_upsample_bilinear_iu16ou16(const ai_u16* in_data,
ai_u16* out_data,
const ai_size width_in,
const ai_size height_in,
const ai_float width_scale,
const ai_float height_scale,
const ai_size width_out,
const ai_size height_out,
const ai_bool center,
const ai_size n_channel);
#endif /*LITE_UPSAMPLE__H*/
| 3,970 | C | 48.024691 | 80 | 0.380605 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares_backup/ST/AI/Inc/layers_generic.h |
/**
******************************************************************************
* @file layers_generic.h
* @author AST Embedded Analytics Research Platform
* @brief header file of AI platform generic layers datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_GENERIC_H
#define LAYERS_GENERIC_H
#pragma once
#include "layers_common.h"
typedef enum {
KTfLiteNone = 0,
KTfLiteActRelu,
KTfLiteActRelu1,
KTfLiteActRelu6,
KTfLiteActTanh,
KTfLiteActSignBit,
KTfLiteActSigmoid
} ai_tflitefused_activation;
/*!
* @defgroup layers_generic Generic Layers Definitions
* @brief definition
*
*/
AI_API_DECLARE_BEGIN
/*!
* @struct ai_layer_time_delay
* @ingroup layers_generic
* @brief TimeDelay layer with sparse kernel
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_time_delay_ {
AI_LAYER_COMMON_FIELDS_DECLARE
AI_CONST ai_array* mask; /*!< sparse filter mask */
} ai_layer_time_delay;
/*!
* @struct ai_layer_split
* @ingroup layers_generic
* @brief Split layer definition
*
* This layer defines the params of a splitting layer. It is intended to be used
* by his associated forward function @ref forward_split
*/
//typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_split_ {
// AI_LAYER_COMMON_FIELDS_DECLARE
// ai_u16 out_layers_count; /*!< number of output layers to split*/
// ai_u16 out_layer_curr; /*!< current layer to split */
// ai_layer** out_layers; /*!< output layers list */
// ai_tensor** out_tensors; /*!< output tensors list */
// ai_tensor* in_tensor; /*!< input tensor */
// func_copy_tensor copy_to_out_tensor; /*!< pointer to copy tensor func
// (NULL = no copy) */
//} ai_layer_split;
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_split_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_shape_dimension axis;
//ai_tensor* num_or_size_splits;
} ai_layer_split;
/*!
* @struct ai_layer_topK
* @ingroup layers_generic
* @brief topK layer definition
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_topK_{
AI_LAYER_COMMON_FIELDS_DECLARE
ai_i16 axis;
ai_i16 largest;
} ai_layer_topK;
typedef AI_ALIGNED_TYPE(struct,4)ai_layer_svdf_{
AI_LAYER_COMMON_FIELDS_DECLARE
ai_size rank;
ai_tflitefused_activation activation;
} ai_layer_svdf;
/*!
* @struct ai_layer_slice
* @ingroup layers_generic
* @brief Slice layer definition
*
* This layer defines the params of a slicing layer. It is intended to be used
* by his associated forward function @ref forward_slice
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_slice_ {
AI_LAYER_COMMON_FIELDS_DECLARE
AI_CONST ai_array* axes; /*!< Axes that 'starts' and 'ends' apply to. It's optional*/
AI_CONST ai_array* starts; /*!< Starting indices of corrisponding axis in axes*/
AI_CONST ai_array* ends; /*!< Ending indices (exclusive) of corrisponding axis in axes*/
} ai_layer_slice;
/*!
* @struct ai_layer_gather
* @ingroup layers_generic
* @brief Gather layer definition
*
* This layer defines the params of a gathering layer. It is intended to be used
* by his associated forward function @ref forward_gather
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_gather_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_i16 axis; /*!< Which axis to gather on It's optional*/
ai_tensor* indices; /*!< Indices of corrisponding axis in axes*/
} ai_layer_gather;
/*!
* @struct ai_layer_tile
* @ingroup layers generic
* @brief Tile layer definition
*
* This layer defines the param of an tile layer. It constructs a tensor by tiling a
* given tensor. It is intended to be used by its associated forward function
* @ref forward_upsample
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_tile_{
AI_LAYER_COMMON_FIELDS_DECLARE
AI_CONST ai_array* repeats; /*!< numbers of repeated copies along each dimension */
} ai_layer_tile;
/*!
* @struct ai_layer_shape
* @ingroup layers generic
* @brief Shape layer definition
*
* This layer defines the param of a shape layer. It returns the shape of the
* input tensor. It is intended to be used by its associated forward function
* @ref forward_shape
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_shape_{
AI_LAYER_COMMON_FIELDS_DECLARE
} ai_layer_shape;
/*!
* @struct ai_layer_upsample
* @ingroup layers generic
* @brief Upsample layer definition
*
* This layer defines the param of an upsampling layer. It overloads its params
* to allow zeros upsampling, helpful traspose convolutions, for instance.
* It is intended to be used by its associated forward function @ref forward_upsample
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_upsample_{
AI_LAYER_COMMON_FIELDS_DECLARE
ai_upsample_mode mode; /*!< upsample mode */
ai_bool center; /*!< center pixels */
AI_CONST ai_array* scales; /*!< scale array along each dimension */
ai_nearest_mode nearest_mode; /*!< used in nearest mode */
} ai_layer_upsample;
/*!
* @struct ai_layer_resize
* @ingroup layers generic
* @brief Resize layer definition
*
* This layer defines the param of a resize layer.
* It is intended to be used by its associated forward function @ref forward_resize
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_resize_{
AI_LAYER_COMMON_FIELDS_DECLARE
ai_coord_transf_mode coord_transf_mode; /*!< coordinate tranformation mode */
ai_float cubic_coeff_a; /*!< the coefficient 'a' used in cubic interpolation */
ai_bool exclude_outside; /*!< exclude outside pixels flag */
ai_float extrapol_val; /*!< used in tf_crop_and_resize cas */
ai_resize_mode mode; /*!< resize mode */
ai_nearest_mode nearest_mode; /*!< used in nearest mode */
AI_CONST ai_array* scales; /*!< scale array along each dimension */
AI_CONST ai_array* roi; /*!< roi array, used in tf_crop_and_resize case */
} ai_layer_resize;
/*!
* @struct ai_layer_instanceNormalization
* @ingroup layers generic
* @brief instance normalization layer definition
*
* This layer defines the params of an instance normalization layer.
* It is intended to be used by its associated forward function @ref forward_instanceNormalization
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_instanceNormaization_{
AI_LAYER_COMMON_FIELDS_DECLARE
ai_float eps; /*!< epsilon value, to avoid by zero division */
} ai_layer_instanceNormalization;
/*!
* @struct ai_layer_mode
* @ingroup layers generic
* @brief Pad layer definition
*
* This layer defines the param of an pad layer. It pad a tensor.
* It is intended to be used by its associated forward function @ref forward_pad
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_pad_{
AI_LAYER_COMMON_FIELDS_DECLARE
ai_pad_mode mode; /*!< pad mode */
ai_shape pads; /*!< Number of padding to add or remove at the beginning and end of each axis */
const ai_array* value; /*!< Indicates the value to be filled */
} ai_layer_pad;
/*!
* @struct ai_layer_mode
* @ingroup layers generic
* @brief ConstantOfShape layer definition
*
* This layer defines the param of an constantofshape layer. It constantofshape a tensor.
* It is intended to be used by its associated forward function @ref forward_constantofshape
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_constantofshape_{
AI_LAYER_COMMON_FIELDS_DECLARE
const ai_array* value; /*!< Indicates the value to be filled */
} ai_layer_constantofshape;
/*!
* @struct ai_layer_add
* @ingroup layers_generic
* @brief Add layer definition
*
* This layer defines the params of an add layer.
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_add_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_u16 in_layers_count; /*!< number of input layers to concat */
ai_u16 in_layer_curr; /*!< current layer to concat */
ai_tensor** in_tensors; /*!< input tensors list (if NULL==no copy) */
ai_tensor* out_tensor; /*!< output tensor (if NULL==no copy) */
func_copy_tensor copy_to_out_tensor; /*!< pointer to copy tensor func
(NULL = no copy) */
ai_layer_base* split_layer; /*!< pointer to associated split layer */
ai_layer_base* next_layer; /*!< pointer to next layer to process */
} ai_layer_add;
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_argmax_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_i16 axis;
ai_i16 select_last_index;
} ai_layer_argmax;
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_argmin_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_i16 axis;
ai_i16 select_last_index;
} ai_layer_argmin;
// TODO: REMOVE This legacy
typedef ai_layer_argmax ai_layer_ArgMax;
typedef ai_layer_argmin ai_layer_ArgMin;
/*!
* @struct ai_layer_transpose
* @ingroup layers_generic
* @brief Transpose layer datastruct declaration. This defines the params of a
* transpose layer. It is intended to be used by his associated forward function
* @ref forward_transpose
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_transpose_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_shape out_mapping; /*!< transpose output mapping order. I.e. tt is a
permutation of the input tensor shape */
} ai_layer_transpose;
/*!
* @struct ai_layer_transpose_batch
* @ingroup layers_generic
* @brief Transpose batch layer datastruct declaration. This defines the params of a
* transpose layer. It is intended to be used by his associated forward function
* @ref forward_transpose_batch
*/
typedef ai_layer_base ai_layer_transpose_batch;
#define AI_TIME_DISTRIBUTED_AXIS (AI_SHAPE_HEIGHT)
/*!
* @struct ai_layer_time_distributed
* @ingroup layers_generic
* @brief Time distributed layer datastruct declaration. This defines the params
* of a time distributed layer. It is intended to be used by his associated
* forward function @ref forward_time_distributed
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_time_distributed_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_layer_base* inner_layer; /*!< inner layer to process */
} ai_layer_time_distributed;
/*!
* @struct ai_layer_concat
* @ingroup layers_generic
* @brief Concatenation layer
*
* Concat Layer.
* It is a sequential layer. see @ref ai_layer_sequential
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_concat_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_shape_dimension axis; /*!< which axis to concatenate on */
} ai_layer_concat;
/*!
* @struct ai_layer_pack
* @ingroup layers_generic
* @brief pack layer
*
* Pack Layer.
* It is a sequential layer. see @ref ai_layer_sequential
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_pack_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_shape_dimension axis; /*!< which axis to concatenate on */
} ai_layer_pack;
/*!
* @struct ai_layer_unpack
* @ingroup layers_generic
* @brief unpack layer
*
* Unpack Layer.
* It is a sequential layer. see @ref ai_layer_sequential
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_unpack_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_shape_dimension axis; /*!< which axis to concatenate on */
} ai_layer_unpack;
typedef void (*func_binary)(ai_handle out,const ai_handle a, const ai_handle b);
typedef void (*func_buffer_binary)(ai_handle out,const ai_handle a, const ai_handle b, const ai_size loop);
typedef void (*func_buffer_binary_integer)(ai_handle out,const ai_handle a, const ai_handle b, const ai_size loop,
const ai_handle scale1, const ai_handle zp1, const ai_handle scale2, const ai_handle zp2,
const ai_handle scaleout, const ai_handle zpout, const ai_i32 scalar_op);
/*!
* @struct ai_layer_eltwise
* @ingroup layers_generic
* @brief General element-wise transformation layer
*
* Elementwise Layer.
* It is a sequential layer. see @ref ai_layer_sequential
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_eltwise_ {
AI_LAYER_COMMON_FIELDS_DECLARE
func_binary operation; /*!< operation to apply elementwise */
func_buffer_binary buffer_operation; /*!< operation to apply elementwise */
} ai_layer_eltwise;
/*!
* @struct ai_layer_eltwise_integer
* @ingroup layers_generic
* @brief General element-wise transformation layer for integer data
*
* Elementwise Layer.
* It is a sequential layer. see @ref ai_layer_sequential
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_eltwise_integer_ {
AI_LAYER_COMMON_FIELDS_DECLARE
func_binary operation; /*!< operation to apply elementwise */
func_buffer_binary_integer buffer_operation; /*!< operation to apply elementwise */
} ai_layer_eltwise_integer;
/*!
* @struct ai_layer_reduce
* @ingroup layers_generic
* @brief General dimension reduction layer
*
* reduction Layer.
* It is a sequential layer. see @ref ai_layer_sequential
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_reduce_ {
AI_LAYER_COMMON_FIELDS_DECLARE
const ai_array* neutral_value; /*!< Initialization value for operation */
func_binary operation; /*!< operation to apply elementwise */
} ai_layer_reduce;
/*!
* @struct ai_layer_reduce_log_sum_exp
* @ingroup layers_generic
* @brief General dimension reduction layer
*
* reduction Layer.
* It is a sequential layer. see @ref ai_layer_sequential
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_reduce_log_sum_exp_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_shape_dimension axis;
} ai_layer_reduce_log_sum_exp;
/*!
* @struct ai_layer_reduce l1
* @ingroup layers_generic
* @brief General dimension reduction layer
*
* reduction Layer.
* It is a sequential layer. see @ref ai_layer_sequential
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_reduce_l1_ {
AI_LAYER_COMMON_FIELDS_DECLARE
AI_CONST ai_array* axes;
} ai_layer_reduce_l1;
/*!
* @struct ai_layer_reduce l2
* @ingroup layers_generic
* @brief General dimension reduction layer
*
* reduction Layer.
* It is a sequential layer. see @ref ai_layer_sequential
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_reduce_l2_ {
AI_LAYER_COMMON_FIELDS_DECLARE
AI_CONST ai_array* axes;
} ai_layer_reduce_l2;
/*!
* @struct ai_layer_where
* @ingroup layers generic
* @brief Where layer definition
*
* This layer operates on 3 input tensors: condition, X and Y.
* It return elements, either from X or Y, depending on condition
* (with Numpy-style broadcasting support).
* @ref forward_where
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_where_ {
AI_LAYER_COMMON_FIELDS_DECLARE
const ai_array *shapes_len;
ai_bool channel_first;
} ai_layer_where;
/*!
* @struct ai_layer_reverse
* @ingroup layers_reverse
* @brief Reverse layer
*
* The type of reverse function is handled by the specific forward function
* @ref forward_svm_regressor
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_reverse_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_i32 axis; /*!< selected axis to perform the operation */
} ai_layer_reverse;
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Dummy forward routine with no processing.
* @ingroup layers_generic
* @param generic layer handle
*/
AI_INTERNAL_API
void forward_nop(ai_layer* layer);
/*!
* @brief Computes the activations of a TimeDelay layer.
* @ingroup layers_generic
* @param layer the time delay layer
*/
AI_INTERNAL_API
void forward_time_delay(ai_layer* layer);
/*!
* @brief Split network computation in N parallel branches.
* @ingroup layers_generic
* @param layer the split layer
*/
AI_INTERNAL_API
void forward_split(ai_layer* layer);
/*!
* @brief Add network computation from N parallel branches.
* @ingroup layers_generic
* @param layer the add layer
*/
AI_INTERNAL_API
void forward_add(ai_layer* layer);
/*!
* @brief Compute the indices of the max elements of the input tensor's element along the provided axis.
* @ingroup layers_generic
* @param layer argmax layer
*/
AI_INTERNAL_API
void forward_argmax(ai_layer* layer);
/*!
* @brief Compute the indices of the min elements of the input tensor's element along the provided axis.
* @ingroup layers_generic
* @param layer argmin layer
*/
AI_INTERNAL_API
void forward_argmin(ai_layer* layer);
/*!
* @brief Svdf layer.
* @ingroup layers_generic
* @param layer svdf layer
*/
AI_INTERNAL_API
void forward_svdf(ai_layer* layer);
/*!
* @brief Transpose a tensor along a pivot and save transposed values into an output
* tensor
* @ingroup layers_generic
* @param layer the transpose layer
*/
AI_INTERNAL_API
void forward_transpose(ai_layer* layer);
/*!
* @brief Transpose batch and save transposed values of a determinate batch into an output
* tensor
* @ingroup layers_generic
* @param layer the transpose batch layer
*/
AI_INTERNAL_API
void forward_transpose_batch(ai_layer* layer);
/*!
* @brief TimeDistrubuted forward layer function. This forward function
* implements the timedistributed layer.
* @ingroup layers_generic
* @param layer the time distributed layer
*/
AI_INTERNAL_API
void forward_time_distributed(ai_layer* layer);
/*!
* @brief Packing a list of tensors in a single tensor
* @ingroup layers generic
* @param layer the packing layer
*/
AI_INTERNAL_API
void forward_pack(ai_layer* layer);
/*!
* @brief Unpacking a single of tensors in a list tensor
* @ingroup layers generic
* @param layer the unpacking layer
*/
AI_INTERNAL_API
void forward_unpack(ai_layer* layer);
/*!
* @brief Concatenates a list of tensors into a single tensor.
* @ingroup layers_generic
* @param layer the concatenation layer
*/
AI_INTERNAL_API
void forward_concat(ai_layer* layer);
/*!
* @brief Gather an input tensor
* @ingroup layers_generic
* @param layer the gathered layer
*/
AI_INTERNAL_API
void forward_gather(ai_layer* layer);
/*!
* @brief Slice an input tensors
* @ingroup layers_generic
* @param layer the sliced layer
*/
AI_INTERNAL_API
void forward_slice(ai_layer* layer);
/*!
* @brief Tile an input tensors
* @ingroup layers_generic
* @param layer the tiled layer
*/
AI_INTERNAL_API
void forward_tile(ai_layer* layer);
/*!
* @brief Returns the shape of an input tensors
* @ingroup layers_generic
* @param layer the Shape layer
*/
AI_INTERNAL_API
void forward_shape(ai_layer* layer);
/*!
* @brief TopK an input tensors
* @ingroup layers_generic
* @param layer the Topked layer
*/
AI_INTERNAL_API
void forward_topK(ai_layer* layer);
/*!
* @brief Pad an input tensors
* @ingroup layers_generic
* @param layer the pad layer
*/
AI_INTERNAL_API
void forward_pad(ai_layer* layer);
/*!
* @brief ConstantofShape an input tensors
* @ingroup layers_generic
* @param layer the constantofshape layer
*/
AI_INTERNAL_API
void forward_constantofshape(ai_layer* layer);
/*!
* @brief Upsample an input tensors
* @ingroup layers_generic
* @param layer the upsampled layer
*/
AI_INTERNAL_API
void forward_upsample(ai_layer* layer);
/*!
* @brief Resize an input tensors
* @ingroup layers_generic
* @param layer the resized layer
*/
AI_INTERNAL_API
void forward_resize(ai_layer* layer);
/*!
* @brief Instance Normalization on an input tensors
* @ingroup layers_generic
* @param layer the instance normalization layer
*/
AI_INTERNAL_API
void forward_instanceNormalization(ai_layer* layer);
/*!
* @brief Apply an elementwise transformation to the input tensors
* @ingroup layers_generic
* @param layer the elementwise layer
*/
AI_INTERNAL_API
void forward_eltwise(ai_layer* layer);
/*!
* @brief Apply an elementwise transformation to the integer input tensors
* @ingroup layers_generic
* @param layer the elementwise layer
*/
AI_INTERNAL_API
void forward_eltwise_integer(ai_layer* layer);
/*!
* @brief Apply an elementwise transformation to the signed integer input tensors
* @ingroup layers_generic
* @param layer the elementwise layer
*/
AI_INTERNAL_API
void forward_eltwise_integer_INT8(ai_layer* layer);
/*!
* @brief Apply an elementwise transformation to the unsigned integer input tensors
* @ingroup layers_generic
* @param layer the elementwise layer
*/
AI_INTERNAL_API
void forward_eltwise_integer_UINT8(ai_layer* layer);
/*!
* @brief Apply a reduce transformation to the input tensors
* @ingroup layers_generic
* @param layer the reduce layer
*/
AI_INTERNAL_API
void forward_reduce(ai_layer* layer);
/*!
* @brief Apply a reduce transformation to the input tensors
* @ingroup layers_generic
* @param layer the reduce layer
*/
AI_INTERNAL_API
void forward_reduce_log_sum_exp(ai_layer* layer);
/*!
* @brief Apply a reduce transformation to the input tensors
* @ingroup layers_generic
* @param layer the reduce layer
*/
AI_INTERNAL_API
void forward_reduce_l1(ai_layer* layer);
/*!
* @brief Apply a reduce transformation to the input tensors
* @ingroup layers_generic
* @param layer the reduce layer
*/
AI_INTERNAL_API
void forward_reduce_l2(ai_layer* layer);
/*!
* @brief Behave like numpy.where with Numpy-style broadcasting support
* @ingroup layers_generic
* @param layer the where layer
*/
AI_INTERNAL_API
void forward_where(ai_layer* layer);
/*!
* @brief Apply an elementwise addition to the input tensors
* @ingroup layers_generic
* @param layer the elementwise layer
*/
AI_INTERNAL_API
void forward_add_integer(ai_layer* layer);
/*!
* @brief Apply an elementwise addition to the input tensors
* with int8 I/O
* @ingroup layers_generic
* @param layer the elementwise layer
*/
AI_INTERNAL_API
void forward_add_integer_INT8(ai_layer* layer);
/*!
* @brief Apply an elementwise addition to the input tensors
* with uint8 I/O
* @ingroup layers_generic
* @param layer the elementwise layer
*/
AI_INTERNAL_API
void forward_add_integer_UINT8(ai_layer* layer);
/*!
* @brief Reverse layer.
* @ingroup layers_generic
* @param layer reverse layer
*/
AI_INTERNAL_API
void forward_reverse(ai_layer *pLayer);
/*!
* @brief Upsample an input tensors with unsigned 8-bit integer input,.
* It is to be used also for other formats, since the function only
* performs memory copy.
* @ingroup layers_generic
* @param layer the upsampled layer
*/
AI_INTERNAL_API
void forward_upsample_generic(ai_layer* layer);
AI_API_DECLARE_END
#endif /*LAYERS_GENERIC_H*/
| 22,964 | C | 28.292092 | 130 | 0.683505 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares_backup/ST/AI/Inc/ai_datatypes_defines.h | /**
******************************************************************************
* @file ai_datatypes_defines.h
* @author AST Embedded Analytics Research Platform
* @brief Definitions of AI platform private APIs types
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef AI_DATATYPES_DEFINES_H
#define AI_DATATYPES_DEFINES_H
#pragma once
#include "ai_platform.h"
/*!
* @defgroup datatypes_defines Internal Datatypes Defines Header
* @brief Data structures used internally to implement neural networks
*
*/
/* define to track datatypes used by codegen */
#define AI_INTERFACE_TYPE /* AI_INTERFACE_TYPE */
#define AI_INTERNAL_API /* AI_INTERNAL_API */
#define AI_CONST const
#define AI_STATIC static
#define AI_STATIC_CONST static const
/******************************************************************************/
/* NOP operation used by codegen */
#define AI_NOP /* NOP */
#define AI_WRAP_FUNC(fn_) do { fn_ } while (0);
#define AI_CAT(a, ...) AI_PRIMITIVE_CAT(a, __VA_ARGS__)
#define AI_PRIMITIVE_CAT(a, ...) a ## __VA_ARGS__
/******************************************************************************/
#ifdef HAS_AI_ASSERT
#include <assert.h>
#define AI_ASSERT(cond) \
{ assert(cond); }
#else
#define AI_ASSERT(cond) \
AI_WRAP_FUNC(/*AI_ASSERT*/)
#endif /*HAS_AI_ASSERT*/
/******************************************************************************/
#define AI_NO_PACKED_STRUCTS
/* Macro for defining packed structures (compiler dependent).
* This just reduces memory requirements, but is not required.
*/
#if defined(AI_NO_PACKED_STRUCTS)
/* Disable struct packing */
#define AI_PACKED_STRUCT_START /* AI_PACKED_STRUCT_START */
#define AI_PACKED_STRUCT_END /* AI_PACKED_STRUCT_END */
#define AI_PACKED /* AI_PACKED */
#elif defined(__GNUC__) || defined(__clang__)
/* For GCC and clang */
#define AI_PACKED_STRUCT_START /* AI_PACKED_STRUCT_START */
#define AI_PACKED_STRUCT_END /* AI_PACKED_STRUCT_END */
#define AI_PACKED __attribute__((packed))
#elif defined(__ICCARM__) || defined (__IAR_SYSTEMS_ICC__) || defined(__CC_ARM)
/* For IAR ARM and Keil MDK-ARM compilers */
#define AI_PACKED_STRUCT_START _Pragma("pack(push, 1)")
#define AI_PACKED_STRUCT_END _Pragma("pack(pop)")
#define AI_PACKED /* AI_PACKED */
#elif defined(_MSC_VER) && (_MSC_VER >= 1500)
/* For Microsoft Visual C++ */
#define AI_PACKED_STRUCT_START __pragma(pack(push, 1))
#define AI_PACKED_STRUCT_END __pragma(pack(pop))
#define AI_PACKED /* AI_PACKED */
#else
/* Unknown compiler */
#define AI_PACKED_STRUCT_START /* AI_PACKED_STRUCT_START */
#define AI_PACKED_STRUCT_END /* AI_PACKED_STRUCT_END */
#define AI_PACKED /* AI_PACKED */
#endif /* AI_NO_PACKED_STRUCTS */
/******************************************************************************/
#define AI_STRINGIFY_ARG(contents) # contents
#define AI_STRINGIFY(macro_or_string) AI_STRINGIFY_ARG (macro_or_string)
/******************************************************************************/
#if defined(_MSC_VER)
#define AI_DECLARE_STATIC static __inline
// #define AI_FORCE_INLINE static __forceinline
#define AI_FORCE_INLINE static __inline
#define AI_HINT_INLINE static __inline
#define AI_ALIGNED_TYPE(type, x) type __declspec(align(x))
#define AI_INTERFACE_ENTRY __declspec(dllexport)
#elif defined(__ICCARM__) || defined (__IAR_SYSTEMS_ICC__)
#define AI_DECLARE_STATIC static inline
// #define AI_FORCE_INLINE static _Pragma("inline=forced") // TODO: check this definition!
#define AI_FORCE_INLINE static inline
#define AI_HINT_INLINE static inline
#define AI_ALIGNED_TYPE(type, x) type
#define AI_INTERFACE_ENTRY /* AI_INTERFACE_ENTRY */
#elif defined(__GNUC__)
#define AI_DECLARE_STATIC static __inline
#define AI_FORCE_INLINE static __inline
#define AI_HINT_INLINE static __inline
#define AI_ALIGNED_TYPE(type, x) type __attribute__ ((aligned(x)))
#define AI_INTERFACE_ENTRY /* AI_INTERFACE_ENTRY */
#else /* _MSC_VER */
#define AI_DECLARE_STATIC static __inline
// #define AI_FORCE_INLINE static __forceinline
#define AI_FORCE_INLINE static __inline
#define AI_HINT_INLINE static __inline
#define AI_ALIGNED_TYPE(type, x) type __attribute__ ((aligned(x)))
#define AI_INTERFACE_ENTRY __attribute__((visibility("default")))
#endif /* _MSC_VER */
/******************************************************************************/
#define AI_ALIGN_MASKED(value, mask) ( ((value)+(mask))&(~(mask)) )
#define AI_GET_VERSION_STRING(major, minor, micro) \
AI_STRINGIFY_ARG(major) "." \
AI_STRINGIFY_ARG(minor) "." \
AI_STRINGIFY_ARG(micro) \
#define AI_PACK_TENSORS_PTR(...) \
AI_PACK(__VA_ARGS__)
#define AI_PACK_INFO(size_) (ai_tensor_info[1]) { { \
.buffer = (ai_buffer[size_])AI_STRUCT_INIT, \
.state = (ai_tensor_state[size_])AI_STRUCT_INIT, \
} }
#define AI_CR "\r\n"
#if (defined HAS_AI_DEBUG || defined HAS_DEBUG_LIB)
#include <stdio.h>
#define AI_DEBUG(...) __VA_ARGS__
#define AI_DEBUG_PRINT(fmt, ...) { printf(fmt, ##__VA_ARGS__); }
#else
#define AI_DEBUG(...) AI_WRAP_FUNC(/*AI_DEBUG*/)
#define AI_DEBUG_PRINT(fmt, ...) AI_WRAP_FUNC(/*AI_DEBUG_PRINT*/)
#endif
#define AI_FLAG_SET(mask, flag) (mask) |= (flag)
#define AI_FLAG_UNSET(mask, flag) (mask) &= (~(flag))
#define AI_FLAG_IS_SET(mask, flag) ((flag)==((mask)&(flag)))
#endif /*AI_DATATYPES_DEFINES_H*/
| 6,551 | C | 39.444444 | 105 | 0.526637 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares_backup/ST/AI/Inc/layers_dense_dqnn.h | /**
******************************************************************************
* @file layers_dense_dqnn.h
* @author AST Embedded Analytics Research Platform
* @brief header file of deeply quantized dense layers.
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_DENSE_DQNN_H
#define LAYERS_DENSE_DQNN_H
#pragma once
#include "layers_common.h"
/*!
* @defgroup layers_dense_dqnn Quantized Dense Layers definition.
* @brief Implements the kernels and the forward functions to implement
* dense layers with quantized inputs, weights, or outputs.
*/
AI_API_DECLARE_BEGIN
/*!
* @struct ai_layer_dense_dqnn
* @ingroup layers_dense_dqnn
* @brief Specific instance of deeply quantized dense layers.
*/
typedef ai_layer_base ai_layer_dense_dqnn;
/*****************************************************************************/
/* Forward Functions Section */
/*****************************************************************************/
/*!
* @brief Forward function for a dense layer with signed binary input,
* signed binary output, and signed binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1os1ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed binary input,
* signed binary output, and signed binary weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1os1ws1_bn(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed binary input,
* 8-bit signed output, and signed binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1os8ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed binary input,
* 8-bit signed output, and signed binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1os16ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed binary input,
* 32-bit floating point output, and signed binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1of32ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed binary input,
* 32-bit floating point output, and signed binary weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1of32ws1_bn(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed binary input,
* 32-bit floating point output, and 32-bit floating point weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1of32wf32(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed binary input,
* 32-bit floating point output, and 32-bit floating point weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1of32wf32_bn(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed binary input,
* 32-bit floating point output, and 8-bit signed weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1of32ws8(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed binary input,
* 32-bit floating point output, and 8-bit signed weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1of32ws8_bn(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed binary input,
* binary output, and 8-bit signed weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1os1ws8(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed binary input,
* binary output, and 8-bit signed weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1os1ws8_bn(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed binary input,
* 8-bit signed output, and 8-bit signed weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1os8ws8(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed binary input,
* 16-bit signed output, and 8-bit signed weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1os16ws8(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed 8-bit input,
* float output, and binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is8of32ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed 8-bit input,
* float output, and binary weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is8of32ws1_bn(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed 8-bit input,
* 1-bit signed output, and binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is8os1ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed 8-bit input,
* 1-bit signed output, and binary weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is8os1ws1_bn(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed 8-bit input,
* binary weights and binary output.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is8os1ws1_bn_fxp(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed 8-bit input,
* 8-bit signed output, and binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is8os8ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed 8-bit input,
* 16-bit signed output, and binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is8os16ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed 16-bit input,
* 1-bit signed output, and binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is16os1ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed 16-bit input,
* 1-bit signed output, and binary weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is16os1ws1_bn(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed 16-bit input,
* 8-bit signed output, and binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is16os8ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed 16-bit input,
* 16-bit signed output, and binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is16os16ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed 16-bit input,
* f32 output, and binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is16of32ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed 16-bit input,
* f32 output, and binary weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is16of32ws1_bn(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed f32 input,
* 1-bit signed output, and binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_if32os1ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed f32 input,
* 1-bit signed output, and binary weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_if32os1ws1_bn(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed f32 input,
* 8-bit signed output, and binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_if32os8ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed f32 input,
* 16-bit signed output, and binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_if32os16ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed f32 input,
* f32 output, and binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_if32of32ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed f32 input,
* f32 output, and binary weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_if32of32ws1_bn(ai_layer* layer);
AI_API_DECLARE_END
#endif /*LAYERS_DENSE_DQNN_H*/
| 14,182 | C | 34.546366 | 80 | 0.709632 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares_backup/ST/AI/Inc/ai_lite.h | /**
******************************************************************************
* @file ai_lite.h
* @author AST Embedded Analytics Research Platform
* @brief Definitions and implementations of runtime-lite public APIs
******************************************************************************
* @attention
*
* Copyright (c) 2022 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef AI_LITE_H
#define AI_LITE_H
#pragma once
#include "ai_platform.h"
#include "ai_lite_inspect.h"
#define LITE_API_ENTRY \
/* LITE_API_ENTRY */
#define LITE_GRAPH_INIT(_inputs, _outputs, _activations, _weights, _cb, _cb_cookie) { \
.inputs = (_inputs), \
.outputs = (_outputs), \
.activations = (_activations), \
.weights = (const ai_handle*)(_weights), \
.cb = ((ai_lite_inspect_cb)(_cb)), \
.cb_cookie = ((ai_handle)(_cb_cookie)), \
}
AI_API_DECLARE_BEGIN
typedef enum {
LITE_OK = 0,
LITE_KO_INPUTS,
LITE_KO_OUTPUTS,
LITE_KO_WEIGHTS,
LITE_KO_ACTIVATIONS,
LITE_KO_GRAPH,
} lite_result;
typedef struct {
ai_handle* inputs;
ai_handle* outputs;
ai_handle* activations;
const ai_handle* weights;
ai_lite_inspect_cb cb;
ai_handle cb_cookie;
} lite_graph;
AI_API_DECLARE_END
#endif /* AI_LITE_H */
| 1,699 | C | 25.5625 | 87 | 0.521483 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares_backup/ST/AI/Inc/layers_ml_linearclassifier.h | /**
******************************************************************************
* @file layers_ml_linearclassifier.h
* @author SRA
* @brief header file of AI platform LinearClassifier datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_LINEARCLASSIFIER_H
#define LAYERS_LINEARCLASSIFIER_H
#pragma once
#include "layers_common.h"
#include "layers_nl.h"
/*!
* @defgroup layers_linearclassifier Layers Definitions
* @brief definition
*
*/
AI_API_DECLARE_BEGIN
/*!
* @struct ai_layer_linearclassifier
* @ingroup layers_linearclassifier
* @brief Linearclassifier layer
*
* The type of svmreg function is handled by the specific forward function
* @ref forward_linearclassifier
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_linearclassifier_ {
AI_LAYER_COMMON_FIELDS_DECLARE
func_nl nl_func; /*!< function pointer to non linear transform */ \
ai_bool multi_class; /*!< Indicates whether to do OvR or multinomial */
ai_bool has_classlabels_int; /*!< if True, LinearClassifier returns classlabels int, else classlabels string */
} ai_layer_linearclassifier;
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Decodes the LinearClassifier ML operator.
* @ingroup layers_linaerclassifier
* @param layer linear classifier layer
*/
AI_INTERNAL_API
void forward_linearclassifier(ai_layer *pLayer);
AI_API_DECLARE_END
#endif /*LAYERS_LINEARCLASSIFIER_H*/
| 2,176 | C | 29.661971 | 118 | 0.542279 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares_backup/ST/AI/Inc/lite_nl_list.h | /**
******************************************************************************
* @file lite_nl_list.h
* @author AST Embedded Analytics Research Platform
* @brief header file of lite supported non-linearities routines
******************************************************************************
* @attention
*
* Copyright (c) 2022 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
// #define LITE_NL_ENTRY(nl_id_, nl_name_, nl_op_, nl_op_args_)
/* No sentry. This is deliberate!! */
LITE_NL_ENTRY(1, abs, AI_ABS, 1)
LITE_NL_ENTRY(2, acos, AI_MATH_ACOS, 1)
LITE_NL_ENTRY(3, acosh, AI_MATH_ACOSH, 1)
LITE_NL_ENTRY(4, asin, AI_MATH_ASIN, 1)
LITE_NL_ENTRY(5, asinh, AI_MATH_ASINH, 1)
LITE_NL_ENTRY(6, atan, AI_MATH_ATAN, 1)
LITE_NL_ENTRY(7, atanh, AI_MATH_ATANH, 1)
LITE_NL_ENTRY(8, ceil, AI_CEIL, 1)
LITE_NL_ENTRY(9, cos, AI_MATH_COS, 1)
LITE_NL_ENTRY(10, cosh, AI_MATH_COSH, 1)
LITE_NL_ENTRY(11, erf, AI_MATH_ERF, 1)
LITE_NL_ENTRY(12, exp, AI_MATH_EXP, 1)
LITE_NL_ENTRY(13, floor, AI_FLOOR, 1)
LITE_NL_ENTRY(14, hardmax, /**/, 0)
LITE_NL_ENTRY(15, log, AI_MATH_LOG, 1)
LITE_NL_ENTRY(16, logistic, AI_MATH_LOGISTIC, 1)
LITE_NL_ENTRY(17, neg, AI_NEG, 1)
LITE_NL_ENTRY(18, rsqrt, AI_MATH_RSQRT, 1)
LITE_NL_ENTRY(19, sin, AI_MATH_SIN, 1)
LITE_NL_ENTRY(20, sinh, AI_MATH_SINH, 1)
LITE_NL_ENTRY(21, tan, AI_MATH_TAN, 1)
LITE_NL_ENTRY(22, square, AI_MATH_SQUARE, 1)
LITE_NL_ENTRY(23, reciprocal, AI_RECIPROCAL, 1)
LITE_NL_ENTRY(24, round, AI_ROUND, 1)
LITE_NL_ENTRY(25, sigmoid, AI_MATH_SIGMOID, 1)
LITE_NL_ENTRY(26, swish, AI_MATH_SWISH, 1)
LITE_NL_ENTRY(27, hard_swish, AI_MATH_HARD_SWISH, 1)
LITE_NL_ENTRY(28, sign, AI_SIGN, 1)
LITE_NL_ENTRY(29, sqrt, AI_MATH_SQRT, 1)
// LITE_NL_ENTRY(30, softmax, /**/, 0) // for future changes
// LITE_NL_ENTRY(31, softmax_zero_channel, /**/, 0) // for future changes
LITE_NL_ENTRY(32, soft_plus, AI_MATH_SOFT_PLUS, 1)
LITE_NL_ENTRY(33, soft_sign, AI_MATH_SOFT_SIGN, 1)
LITE_NL_ENTRY(34, tanh, AI_MATH_TANH, 1)
LITE_NL_ENTRY(35, prelu, /**/, 0)
LITE_NL_ENTRY(36, relu, AI_MATH_RELU, 1)
LITE_NL_ENTRY(37, relu_generic, /**/, 0)
LITE_NL_ENTRY(101, elu, AI_MATH_ELU, 2)
LITE_NL_ENTRY(102, relu_thresholded, AI_MATH_RELU_THRESHOLDED, 2)
LITE_NL_ENTRY(201, clip, AI_CLAMP, 3)
LITE_NL_ENTRY(202, hard_sigmoid, AI_MATH_HARD_SIGMOID, 3)
LITE_NL_ENTRY(203, selu, AI_MATH_SELU, 3)
#undef LITE_NL_ENTRY
#undef LITE_NL_IIF_0
#undef LITE_NL_IIF_1
#undef LITE_NL_IIF_2
#undef LITE_NL_IIF_3
| 2,844 | C | 35.474359 | 80 | 0.60443 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares_backup/ST/AI/Inc/ai_math_helpers.h | /**
******************************************************************************
* @file ai_math_helpers.h
* @author AST Embedded Analytics Research Platform
* @brief Math helpers routines header file.
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef AI_MATH_HELPERS_H
#define AI_MATH_HELPERS_H
#include "ai_lite_math_helpers.h"
//#if defined(HAS_X86) || defined(__CC_ARM) || defined(CM4) || defined(CM7)
#define _AI_CONV_2D_LOOP_UNROLLING_OPTIM
//#endif
#define STM32_DOT_INLINE_OPTIM
/* Modes for element wise integer optimized implementation */
#define AI_ELTWISE_NO_SCALAR (0)
#define AI_ELTWISE_SCALAR1 (1)
#define AI_ELTWISE_SCALAR2 (2)
#define AI_ELTWISE_SCALAR_CH1 (3)
#define AI_ELTWISE_SCALAR_CH2 (4)
AI_API_DECLARE_BEGIN
/*!
* @typedef ai_vec4_float
* @ingroup ai_datatypes_internal
* @brief 32bit X 4 float (optimization for embedded MCU)
*/
typedef struct _ai_vec4_float {
ai_float a1;
ai_float a2;
ai_float a3;
ai_float a4;
} ai_vec4_float;
#define AI_VEC4_FLOAT(ptr_) \
_get_vec4_float((ai_handle)(ptr_))
AI_DECLARE_STATIC
ai_vec4_float _get_vec4_float(const ai_handle fptr)
{
return *((const ai_vec4_float*)fptr);
}
#if defined(STM32_DOT_INLINE_OPTIM)
AI_DECLARE_STATIC
void __ai_math_dot_array(
ai_float* out,
const ai_float* data0,
const ai_float* data1,
ai_size data_size)
{
register ai_float sum = 0.0f; /* Temporary result storage */
/* Run the below code for Cortex-M4 and Cortex-M3 */
#if defined(_AI_CONV_2D_LOOP_UNROLLING_OPTIM)
/* First part of the processing with loop unrolling. Compute 16 outputs at a time.
** a second loop below computes the remaining 1 to 15 samples. */
while (data_size >= 16u) {
register ai_vec4_float ch_in_f = AI_VEC4_FLOAT(data1);
register ai_vec4_float weights_in_f = AI_VEC4_FLOAT(data0);
sum += weights_in_f.a1 * ch_in_f.a1;
sum += weights_in_f.a2 * ch_in_f.a2;
sum += weights_in_f.a3 * ch_in_f.a3;
sum += weights_in_f.a4 * ch_in_f.a4;
data1 += 4;
data0 += 4;
ch_in_f = AI_VEC4_FLOAT(data1);
weights_in_f = AI_VEC4_FLOAT(data0);
sum += weights_in_f.a1 * ch_in_f.a1;
sum += weights_in_f.a2 * ch_in_f.a2;
sum += weights_in_f.a3 * ch_in_f.a3;
sum += weights_in_f.a4 * ch_in_f.a4;
data1 += 4;
data0 += 4;
ch_in_f = AI_VEC4_FLOAT(data1);
weights_in_f = AI_VEC4_FLOAT(data0);
sum += weights_in_f.a1 * ch_in_f.a1;
sum += weights_in_f.a2 * ch_in_f.a2;
sum += weights_in_f.a3 * ch_in_f.a3;
sum += weights_in_f.a4 * ch_in_f.a4;
data1 += 4;
data0 += 4;
ch_in_f = AI_VEC4_FLOAT(data1);
weights_in_f = AI_VEC4_FLOAT(data0);
sum += weights_in_f.a1 * ch_in_f.a1;
sum += weights_in_f.a2 * ch_in_f.a2;
sum += weights_in_f.a3 * ch_in_f.a3;
sum += weights_in_f.a4 * ch_in_f.a4;
data1 += 4;
data0 += 4;
data_size -= 16u;
}
#else
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while (data_size >= 4u) {
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Calculate dot product and then store the result in a temporary buffer */
sum += (*data0++) * (*data1++);
sum += (*data0++) * (*data1++);
sum += (*data0++) * (*data1++);
sum += (*data0++) * (*data1++);
/* Decrement the loop counter */
data_size -= 4u;
}
#endif
while (data_size > 0u) {
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Calculate dot product and then store the result in a temporary buffer. */
sum += (*data0++) * (*data1++);
/* Decrement the loop counter */
data_size--;
}
/* Directly accumulate the result back in the destination buffer */
*out += sum;
}
#undef AI_MATH_DOT_ARRAY
#define AI_MATH_DOT_ARRAY(dst, src0, src1, size) \
{ __ai_math_dot_array(dst, src0, src1, size); }
#else /* STM32_DOT_INLINE_OPTIM */
#undef AI_MATH_DOT_ARRAY
#define AI_MATH_DOT_ARRAY(dst, src0, src1, size) \
{ ai_math_dot_array(dst, src0, src1, size); }
#endif
/*!
* @defgroup math_helpers Math helpers
* @brief Common math functions
*
* Math functions are mapped to the underlying platform through those utility
* functions. On x86 and ARM v7 they are mapped to the float math functions in
* the C99 standard library; on MCUs they are mapped to the ARM DSP functions.
*/
/*!
* @brief platform optimized dot product of float vectors
*
* Computes the dot product between vectors and adds the result to out.
* @ingroup math_helpers
* @param out scalar result of the dot product
* @param data0 the first float vector
* @param data1 the second float vector
* @param data_size the size of both vectors
*/
AI_INTERFACE_ENTRY
void ai_math_dot_array(
ai_float* out,
const ai_float* data0,
const ai_float* data1,
const ai_size data_size);
/*!
* @brief ErfInv a float value
* @ingroup math_helpers
* @param x input value
* @return square root of the value
*/
AI_INTERFACE_ENTRY ai_float ai_math_erfinv(const ai_float x);
/*!
* @brief platform optimized exponential on a float value
* @ingroup math_helpers
* @param x input value
* @return exponential of the value
*/
AI_INTERFACE_ENTRY ai_float ai_math_exp(const ai_float x);
/*!
* @brief platform logical not
* @ingroup math_helpers
* @param x input value
* @return not of the value
*/
AI_INTERFACE_ENTRY ai_bool ai_logical_not(const ai_bool x);
/*!
* @brief platform optimized pow on a float value
* @ingroup math_helpers
* @param x input value
* @param e input value
* @return pow of the value ^ e
*/
AI_INTERFACE_ENTRY ai_float ai_math_pow(const ai_float x, const ai_float e);
/*!
* @brief platform optimized tangent on a float value
* @ingroup math_helpers
* @param x input value
* @return hyperbolic tangent of the value
*/
AI_INTERFACE_ENTRY ai_float ai_math_tanh(const ai_float x);
/*!
* @brief platform optimized relu on a float value
* @ingroup math_helpers
* @param x input value
* @return relu of the value ( x if x>0 else 0)
*/
AI_INTERFACE_ENTRY ai_float ai_math_relu(const ai_float x);
/*!
* @brief platform optimized parametric relu on a float value
* @ingroup math_helpers
* @param x input value
* @param slope input value
* @return parametric relu of the value
*/
AI_INTERFACE_ENTRY ai_float ai_math_prelu(const ai_float x, const ai_float slope);
/*!
* @brief platform optimized parametric sigmoid on a float value
* @ingroup math_helpers
* @param x input value
* @return sigmoid of the value
*/
AI_INTERFACE_ENTRY ai_float ai_math_sigmoid(const ai_float x);
/*!
* @brief platform optimized parametric hard sigmoid on a float value
* @ingroup math_helpers
* @param x input value
* @return hard sigmoid of the value
*/
AI_INTERFACE_ENTRY ai_float ai_math_hard_sigmoid(const ai_float x); // const ai_float alpha, const ai_float beta);
/*!
* @brief platform optimized parametric swish on a float value
* @ingroup math_helpers
* @param x input value
* @return swish of the value
*/
AI_INTERFACE_ENTRY ai_float ai_math_swish(const ai_float x);
/*!
* @brief platform optimized parametric hard_swish on a float value
* @ingroup math_helpers
* @param x input value
* @return hard_swish of the value
*/
AI_INTERFACE_ENTRY ai_float ai_math_hard_swish(const ai_float x);
/*!
* @brief platform optimized parametric sign function on a float value
* @ingroup math_helpers
* @param x input value
* @return sign of the value
*/
AI_INTERFACE_ENTRY ai_float ai_math_sign(const ai_float x);
/*!
* @brief optimized parametric rectified linear unit on a float value
* @ingroup math_helpers
* @param x input value
* @param slope parameter value
* @return x if x is positive and x*slope otherwise
*/
AI_INTERFACE_ENTRY ai_float ai_fast_prelu(const ai_float x, const ai_float slope);
AI_INTERFACE_ENTRY void ai_div(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_div_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_div_f32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_div_buffer_f32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_div_s32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_div_buffer_s32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_div_s16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_div_buffer_s16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_div_s8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_div_buffer_s8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_div_u32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_div_buffer_u32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_div_u16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_div_buffer_u16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_div_u8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_div_buffer_u8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_div_buffer_INT8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop,
const ai_handle pScale1, const ai_handle pZp1, const ai_handle pScale2, const ai_handle pZp2,
const ai_handle pScaleout, const ai_handle pZpout, const ai_i32 scalar_op);
AI_INTERFACE_ENTRY void ai_div_buffer_UINT8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop,
const ai_handle pScale1, const ai_handle pZp1, const ai_handle pScale2, const ai_handle pZp2,
const ai_handle pScaleout, const ai_handle pZpout, const ai_i32 scalar_op);
AI_INTERFACE_ENTRY void ai_bitshift_right(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_bitshift_right_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_bitshift_right_u32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_bitshift_right_buffer_u32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_bitshift_right_u16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_bitshift_right_buffer_u16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_bitshift_right_u8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_bitshift_right_buffer_u8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_bitshift_left(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_bitshift_left_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_bitshift_left_u32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_bitshift_left_buffer_u32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_bitshift_left_u16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_bitshift_left_buffer_u16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_bitshift_left_u8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_bitshift_left_buffer_u8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_floor_div(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_floor_div_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_floor_mod(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_floor_mod_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_max(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_max_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_max_f32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_max_buffer_f32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_max_s32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_max_buffer_s32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_max_s16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_max_buffer_s16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_max_s8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_max_buffer_s8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_max_u32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_max_buffer_u32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_max_u16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_max_buffer_u16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_max_u8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_max_buffer_u8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_max_buffer_INT8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop,
const ai_handle pScale1, const ai_handle pZp1, const ai_handle pScale2, const ai_handle pZp2,
const ai_handle pScaleout, const ai_handle pZpout, const ai_i32 scalar_op);
AI_INTERFACE_ENTRY void ai_max_buffer_UINT8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop,
const ai_handle pScale1, const ai_handle pZp1, const ai_handle pScale2, const ai_handle pZp2,
const ai_handle pScaleout, const ai_handle pZpout, const ai_i32 scalar_op);
AI_INTERFACE_ENTRY void ai_min(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_min_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_min_f32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_min_buffer_f32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_min_s32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_min_buffer_s32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_min_s16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_min_buffer_s16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_min_s8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_min_buffer_s8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_min_u32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_min_buffer_u32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_min_u16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_min_buffer_u16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_min_u8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_min_buffer_u8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_min_buffer_INT8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop,
const ai_handle pScale1, const ai_handle pZp1, const ai_handle pScale2, const ai_handle pZp2,
const ai_handle pScaleout, const ai_handle pZpout, const ai_i32 scalar_op);
AI_INTERFACE_ENTRY void ai_min_buffer_UINT8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop,
const ai_handle pScale1, const ai_handle pZp1, const ai_handle pScale2, const ai_handle pZp2,
const ai_handle pScaleout, const ai_handle pZpout, const ai_i32 scalar_op);
AI_INTERFACE_ENTRY void ai_mul(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_mul_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_mul_f32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_mul_buffer_f32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_mul_s32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_mul_buffer_s32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_mul_s16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_mul_buffer_s16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_mul_s8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_mul_buffer_s8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_mul_u32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_mul_buffer_u32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_mul_u16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_mul_buffer_u16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_mul_u8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_mul_buffer_u8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_mul_buffer_INT8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop,
const ai_handle pScale1, const ai_handle pZp1, const ai_handle pScale2, const ai_handle pZp2,
const ai_handle pScaleout, const ai_handle pZpout, const ai_i32 scalar_op);
AI_INTERFACE_ENTRY void ai_mul_buffer_UINT8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop,
const ai_handle pScale1, const ai_handle pZp1, const ai_handle pScale2, const ai_handle pZp2,
const ai_handle pScaleout, const ai_handle pZpout, const ai_i32 scalar_op);
AI_INTERFACE_ENTRY void ai_pow(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_pow_buffer(ai_handle out, const ai_handle b, const ai_handle e, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sub(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sub_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sub_f32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sub_buffer_f32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sub_s32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sub_buffer_s32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sub_s16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sub_buffer_s16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sub_s8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sub_buffer_s8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sub_u32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sub_buffer_u32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sub_u16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sub_buffer_u16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sub_u8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sub_buffer_u8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sub_buffer_INT8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop,
const ai_handle pScale1, const ai_handle pZp1, const ai_handle pScale2, const ai_handle pZp2,
const ai_handle pScaleout, const ai_handle pZpout, const ai_i32 scalar_op);
AI_INTERFACE_ENTRY void ai_sub_buffer_UINT8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop,
const ai_handle pScale1, const ai_handle pZp1, const ai_handle pScale2, const ai_handle pZp2,
const ai_handle pScaleout, const ai_handle pZpout, const ai_i32 scalar_op);
AI_INTERFACE_ENTRY void ai_sum(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sum_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sum_f32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sum_buffer_f32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sum_s32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sum_buffer_s32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sum_s16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sum_buffer_s16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sum_s8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sum_buffer_s8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sum_u32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sum_buffer_u32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sum_u16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sum_buffer_u16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sum_u8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sum_buffer_u8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sum_buffer_INT8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop,
const ai_handle pScale1, const ai_handle pZp1, const ai_handle pScale2, const ai_handle pZp2,
const ai_handle pScaleout, const ai_handle pZpout, const ai_i32 scalar_op);
AI_INTERFACE_ENTRY void ai_sum_buffer_UINT8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop,
const ai_handle pScale1, const ai_handle pZp1, const ai_handle pScale2, const ai_handle pZp2,
const ai_handle pScaleout, const ai_handle pZpout, const ai_i32 scalar_op);
AI_INTERFACE_ENTRY void ai_and(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_and_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_or(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_or_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_xor(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_xor_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_f32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_buffer_f32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_s32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_buffer_s32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_s16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_buffer_s16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_s8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_buffer_s8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_u32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_buffer_u32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_u16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_buffer_u16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_u8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_buffer_u8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_or_equal(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_or_equal_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_or_equal_f32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_or_equal_buffer_f32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_or_equal_s32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_or_equal_buffer_s32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_or_equal_s16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_or_equal_buffer_s16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_or_equal_s8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_or_equal_buffer_s8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_or_equal_u32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_or_equal_buffer_u32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_or_equal_u16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_or_equal_buffer_u16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_or_equal_u8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_or_equal_buffer_u8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_f32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_buffer_f32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_s32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_buffer_s32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_s16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_buffer_s16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_s8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_buffer_s8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_u32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_buffer_u32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_u16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_buffer_u16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_u8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_buffer_u8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_or_equal(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_or_equal_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_or_equal_f32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_or_equal_buffer_f32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_or_equal_s32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_or_equal_buffer_s32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_or_equal_s16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_or_equal_buffer_s16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_or_equal_s8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_or_equal_buffer_s8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_or_equal_u32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_or_equal_buffer_u32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_or_equal_u16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_or_equal_buffer_u16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_or_equal_u8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_or_equal_buffer_u8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_equal(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_equal_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_equal_f32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_equal_buffer_f32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_equal_s32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_equal_buffer_s32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_equal_s16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_equal_buffer_s16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_equal_s8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_equal_buffer_s8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_equal_u32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_equal_buffer_u32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_equal_u16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_equal_buffer_u16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_equal_u8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_equal_buffer_u8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_squared_diff(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_squared_diff_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_API_DECLARE_END
#endif /* AI_MATH_HELPERS_H */
| 34,676 | C | 61.820652 | 137 | 0.706252 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares_backup/ST/AI/Inc/layers_ml_treeensembleregressor.h | /**
******************************************************************************
* @file layers_svmregressor.h
* @author AIS
* @brief header file of AI platform SVM Regressor datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_TREE_ENSEMBLE_REGRESSOR_H
#define LAYERS_TREE_ENSEMBLE_REGRESSOR_H
#pragma once
#include "layers_common.h"
#include "layers_ml_treeensembleclassifier.h"
#include "layers_nl.h"
/*!
* @defgroup layers_svmreg Layers Definitions
* @brief definition
*
*/
AI_API_DECLARE_BEGIN
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_tree_ensemble_regressor_ {
AI_LAYER_COMMON_FIELDS_DECLARE
func_nl nl_func;
uint8_t all_weights_are_positive;
ai_float nodes_values_offset;
ai_float nodes_values_scale;
ai_float target_weights_offset;
ai_float target_weights_scale;
} ai_layer_tree_ensemble_regressor;
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Decodes the TreeEnsembleRegressor ML operator.
* @ingroup layers_svmreg
* @param layer tree ensemble regressor layer
*/
AI_INTERNAL_API
void forward_tree_ensemble_regressor(ai_layer *pLayer);
AI_API_DECLARE_END
#endif /*LAYERS_SVMREGRESSOR_H*/
| 1,923 | C | 29.0625 | 80 | 0.520021 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares_backup/ST/AI/Inc/lite_pool_f32.h | /**
******************************************************************************
* @file lite_maxpool_dqnn.h
* @author AIS
* @brief header file of AI platform lite maxpool kernel datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LITE_POOL_F32_H
#define LITE_POOL_F32_H
#include "ai_lite_interface.h"
#define FUNC_POOL(handle) \
((func_pool)(handle))
/*!
* @typedef (*func_pool)
* @ingroup layers_pool
* @brief Fuction pointer for generic pooling transform
* this function pointer abstracts a generic pooling layer.
* see @ref pool_func_ap_array_f32 as examples
*/
typedef void (*func_pool)(ai_float* in,
const ai_u16 dim_im_in_x, const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_u16 dim_kernel_x, const ai_u16 dim_kernel_y,
const ai_u16 padding_x, const ai_u16 padding_y,
const ai_u16 stride_x, const ai_u16 stride_y,
const ai_u16 dim_im_out_x, const ai_u16 dim_im_out_y,
ai_float* out);
/******************************************************************************/
/** Conv2d Functions Section **/
/******************************************************************************/
AI_INTERNAL_API
void pool_func_mp_array_f32(ai_float* pData_in,
const ai_u16 dim_im_in_x, const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_u16 dim_kernel_x, const ai_u16 dim_kernel_y,
const ai_u16 padding_x, const ai_u16 padding_y,
const ai_u16 stride_x, const ai_u16 stride_y,
const ai_u16 dim_im_out_x, const ai_u16 dim_im_out_y,
ai_float* pData_out);
AI_INTERNAL_API
void pool_func_ap_array_f32(ai_float *pData_in,
const ai_u16 dim_im_in_x, const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_u16 dim_kernel_x, const ai_u16 dim_kernel_y,
const ai_u16 padding_x, const ai_u16 padding_y,
const ai_u16 stride_x, const ai_u16 stride_y,
const ai_u16 dim_im_out_x, const ai_u16 dim_im_out_y,
ai_float *pData_out);
#endif // LITE_POOL_F32_H_
| 2,936 | C | 39.232876 | 80 | 0.466962 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares_backup/ST/AI/Inc/lite_gru_f32.h | #ifndef LITE_GRU_F32_H
#define LITE_GRU_F32_H
#pragma once
#include "ai_lite_interface.h"
/*!
* @brief Forward function for a stateless GRU (gate recurrent unit) layer with
* signed float input, signed float output, and float parameters.
* @ingroup lite_gru_f32
* @param output The pointer to output buffer.
* @param input The pointer to input buffer.
* @param gru_kernel The pointer to gru kernel param.
* @param gru_recurrent The pointer to gru recurrent param.
* @param gru_bias The pointer to bias.
* @param gru_scratch The pointer to GRU scratch.
* @param n_units The number of GRU cells (dimensionality of output space).
* @param n_timesteps The number of timesteps of the input sequence.
* @param n_features The number of features of the input sequence.
* @param activation_nl The activation function used to update memory state.
* @param recurrent_nl The activation function to use for the recurrent step.
* @param return_seq If True, returns the full output sequence, else only the last output.
* @param go_backwards If True, process the input sequence backwards.
* @param reverse_seq If True, reverse the input sequence
* @param reset_after Whether to apply reset gate after (True) or before (False) matmul.
* @param activation_param The parameters for activation_nl (can be NULL)
* @param recurrent_param The parameters for recurrent_nl (can be NULL)
*/
LITE_API_ENTRY
void forward_lite_gru_if32of32wf32(
ai_float* output, const ai_float* input, const ai_float* gru_kernel,
const ai_float* gru_recurrent, const ai_float* gru_bias, ai_float* gru_scratch,
const ai_u32 n_units, const ai_size n_timesteps, const ai_size n_features,
ai_handle activation_nl, ai_handle recurrent_nl, ai_bool return_seq,
ai_bool go_backwards, ai_bool reverse_seq, ai_bool reset_after,
const ai_float* activation_param, const ai_float* recurrent_param);
#endif /* LITE_GRU_F32_H */
| 1,910 | C | 46.774999 | 90 | 0.746597 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares_backup/ST/AI/Inc/lite_dense_is1.h | #ifndef _LITE_DENSE_IS1_H
#define _LITE_DENSE_IS1_H
#pragma once
#include "ai_lite_interface.h"
/*!
* @brief Forward function for a dense layer with signed binary input,
* signed float output, and float weights.
* @ingroup lite_dense_is1
* @param output The pointer to output buffer.
* @param input The pointer to input buffer.
* @param weights The pointer to weights.
* @param bias The pointer to bias (NULL if not available).
* @param scratch The pointer to the scratch buffer (unused).
* @param n_channel_in The number of channels of the input.
* @param n_channel_ouy The number of channels of the output, i.e.,
* the number of dense hidden neurons.
*/
LITE_API_ENTRY
void forward_lite_dense_is1of32wf32(
ai_float *output, const ai_pbits *input, const ai_float *weights,
const ai_float *bias, ai_float *scratch,
const ai_u32 n_channel_in, const ai_u32 n_channel_out
);
/*!
* @brief Forward function for a dense layer with signed binary input,
* signed float output, and float weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup lite_dense_is1
* @param output The pointer to output buffer.
* @param input The pointer to input buffer.
* @param weights The pointer to weights.
* @param scale The pointer to scale.
* @param offset The pointer to offset.
* @param scratch The pointer to the scratch buffer (unused).
* @param n_channel_in The number of channels of the input.
* @param n_channel_ouy The number of channels of the output, i.e.,
* the number of dense hidden neurons.
*/
LITE_API_ENTRY
void forward_lite_dense_is1of32wf32_bn(
ai_float *output, const ai_pbits *input, const ai_float *weights,
const ai_float *scale, const ai_float *offset, ai_float *scratch,
const ai_u32 n_channel_in, const ai_u32 n_channel_out
);
#endif /*_LITE_DENSE_IS1_H*/
| 2,078 | C | 36.799999 | 80 | 0.720404 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares_backup/ST/AI/Inc/lite_nl_generic_float.h | #ifndef LITE_NL_GENERIC_FLOAT_H
#define LITE_NL_GENERIC_FLOAT_H
#pragma once
#include "ai_lite_interface.h"
#define LITE_NL_ENTRY(nl_id_, nl_name_, nl_op_, nl_op_args_) \
/** \
* @brief lite function for a templated non-linearity nl_op_. \
* @ingroup lite_nl_generic_float \
* @param out_ptr The pointer to output buffer. \
* @param in_ptr The pointer to input buffer. \
* @param in_size. The size of the input. \
* @param params opaque handler to optional NL params (not used). \
*/ \
LITE_API_ENTRY \
void forward_lite_nl_ ## nl_name_ ## _if32of32( \
ai_handle out_ptr, const ai_handle in_ptr, const ai_i32 in_size, const ai_handle params);
#include "lite_nl_list.h"
/**
* @brief lite function for a float softmax non-linearity where the softmax is applied per channel.
* @ingroup lite_nl_generic_float
* @param output The pointer to output buffer.
* @param input The pointer to input buffer.
* @param in_size. The size of the input.
* @param channel_size The nsize of each channel.
* @param in_channel_step
* @param out_channel_step
*/
LITE_API_ENTRY
void forward_lite_nl_softmax_if32of32(
ai_handle out_ptr, const ai_handle in_ptr, const ai_i32 in_size, const ai_size ch_size,
const ai_i32 in_ch_step, const ai_i32 out_ch_step);
/**
* @brief lite function for a float softmax zero channel non-linearity where the softmax is applied per channel.
* @ingroup lite_nl_generic_float
* @param output The pointer to output buffer.
* @param input The pointer to input buffer.
* @param in_size. The size of the input.
* @param channel_size The nsize of each channel.
* @param in_channel_step
* @param out_channel_step
*/
LITE_API_ENTRY
void forward_lite_nl_softmax_zero_channel_if32of32(
ai_handle out_ptr, const ai_handle in_ptr, const ai_i32 in_size, const ai_size ch_size,
const ai_i32 in_ch_step, const ai_i32 out_ch_step);
#endif /* LITE_NL_GENERIC_FLOAT_H */
| 1,907 | C | 33.071428 | 112 | 0.708967 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares_backup/ST/AI/Inc/lite_pw.h | /**
******************************************************************************
* @file lite_pw.h
* @author AIS
* @brief header file of AI platform lite pw kernel datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LITE_PW_H
#define LITE_PW_H
#pragma once
#include "ai_lite_interface.h"
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Handles pw convolutions generic case
* @ingroup lite_pw
*/
LITE_API_ENTRY
void
forward_lite_pw_sssa8_ch(const ai_i8 *pData_in,
const ai_u16 width_in,
const ai_u16 height_in,
const ai_u16 n_channel_in,
const ai_i8 *pWeights,
const ai_u16 n_channel_out,
const ai_i32 *pBias,
const ai_i8 in_zeropoint,
const ai_i8 out_zeropoint,
const ai_layer_format_type out_ch_format,
ai_i8 *pData_out,
ai_u32 height_loop_cnt,
ai_u16 weights_prefetch_enabled,
ai_i32 scratch_size,
ai_i16 *pBuffer_a);
#endif /*LITE_PW_H*/
| 1,973 | C | 34.249999 | 80 | 0.387228 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares_backup/ST/AI/Inc/ai_lite_inspect.h | /**
******************************************************************************
* @file ai_lite_inspect.h
* @author AST Embedded Analytics Research Platform
* @brief Definitions and implementations of runtime-lite inspection routines
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef AI_LITE_INSPECT_H
#define AI_LITE_INSPECT_H
#pragma once
#include "ai_platform.h"
//#define HAS_LITE_INSPECT
AI_API_DECLARE_BEGIN
/* Types needed by inspect callback signature */
typedef ai_i32 ai_data_format;
typedef ai_i32 ai_data_id;
/* Lite inspect callback definition */
typedef void (*ai_lite_inspect_cb)(
const ai_handle cookie,
const ai_data_id node_id,
const ai_handle data, const ai_size data_size,
const ai_data_format data_fmt, const ai_data_id data_id);
#ifdef HAS_LITE_INSPECT
#define LITE_INSPECT_CB(_node_id, _data, _data_size, _data_fmt, _data_id) { \
if (graph->cb) { \
graph->cb(graph->cb_cookie, \
(ai_data_id)(_node_id), (ai_handle)(_data), (ai_size)(_data_size), \
(ai_data_format)(_data_fmt), (ai_data_id)(_data_id)); \
} \
}
#else
#define LITE_INSPECT_CB(_node_id, _data, _data_size, _data_fmt, _data_id) { \
do { /* LITE_INSPECT_CB() */ } while (0); \
}
#endif /* HAS_LITE_INSPECT */
AI_API_DECLARE_END
#endif /* AI_LITE_INSPECT_H */
| 1,858 | C | 28.507936 | 82 | 0.545748 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares_backup/ST/AI/Inc/lite_maxpool_dqnn.h | /**
******************************************************************************
* @file lite_maxpool_dqnn.h
* @author AIS
* @brief header file of AI platform lite maxpool kernel datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LITE_MAXPOOL_DQNN_H
#define LITE_MAXPOOL_DQNN_H
#pragma once
#include "ai_lite_interface.h"
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Handles maxpool with binary input and binary output - Lite I/F
* @ingroup lite_maxpool_dqnn
*/
LITE_API_ENTRY
void forward_lite_maxpool_is1os1(const ai_u32 *pDataIn_init,
ai_u32 *pDataOut_init,
const ai_i32 width_in,
const ai_i32 width_out,
const ai_i32 height_in,
const ai_i32 height_out,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 pool_width,
const ai_i32 pool_height,
const ai_i32 pool_pad_x,
const ai_i32 pool_pad_y,
const ai_i32 pool_stride_x,
const ai_i32 pool_stride_y,
const ai_u32 pool_pad_value,
ai_float *pScratch_32);
/*!
* @brief Handles maxpool with 8 bits signed input and output with a positive scale of the input- Lite I/F
* @ingroup lite_maxpool_dqnn
*/
LITE_API_ENTRY
void forward_lite_maxpool_is8os8_scalepos(const ai_i8 *pDataIn,
ai_i8 *pDataOut,
const ai_u16 dim_im_in_x, const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_u16 dim_kernel_x, const ai_u16 dim_kernel_y,
const ai_u16 padding_x, const ai_u16 padding_y,
const ai_u16 stride_x, const ai_u16 stride_y,
const ai_u16 dim_im_out_x, const ai_u16 dim_im_out_y,
const ai_float InOut_ScaleRatio,
const ai_i8 In_ZeroPoint,
const ai_i8 Out_ZeroPoint);
/*!
* @brief Handles maxpool with 8 bits signed input and output with a negative scale of the input- Lite I/F
* @ingroup lite_maxpool_dqnn
*/
LITE_API_ENTRY
void forward_lite_maxpool_is8os8_scaleneg(const ai_i8 *pDataIn,
ai_i8 *pDataOut,
const ai_u16 dim_im_in_x, const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_u16 dim_kernel_x, const ai_u16 dim_kernel_y,
const ai_u16 padding_x, const ai_u16 padding_y,
const ai_u16 stride_x, const ai_u16 stride_y,
const ai_u16 dim_im_out_x, const ai_u16 dim_im_out_y,
const ai_float InOut_ScaleRatio,
const ai_i8 In_ZeroPoint,
const ai_i8 Out_ZeroPoint);
/*!
* @brief Handles maxpool with 8 bits unsigned input and output with a positive scale of the input- Lite I/F
* @ingroup lite_maxpool_dqnn
*/
LITE_API_ENTRY
void forward_lite_maxpool_iu8ou8_scalepos(const ai_u8 *pDataIn,
ai_u8 *pDataOut,
const ai_u16 dim_im_in_x, const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_u16 dim_kernel_x, const ai_u16 dim_kernel_y,
const ai_u16 padding_x, const ai_u16 padding_y,
const ai_u16 stride_x, const ai_u16 stride_y,
const ai_u16 dim_im_out_x, const ai_u16 dim_im_out_y,
const ai_float InOut_ScaleRatio,
const ai_u8 In_ZeroPoint,
const ai_u8 Out_ZeroPoint);
/*!
* @brief Handles maxpool with 8 bits unsigned input and output with a negative scale of the input- Lite I/F
* @ingroup lite_maxpool_dqnn
*/
LITE_API_ENTRY
void forward_lite_maxpool_iu8ou8_scaleneg(const ai_u8 *pDataIn,
ai_u8 *pDataOut,
const ai_u16 dim_im_in_x, const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_u16 dim_kernel_x, const ai_u16 dim_kernel_y,
const ai_u16 padding_x, const ai_u16 padding_y,
const ai_u16 stride_x, const ai_u16 stride_y,
const ai_u16 dim_im_out_x, const ai_u16 dim_im_out_y,
const ai_float InOut_ScaleRatio,
const ai_u8 In_ZeroPoint,
const ai_u8 Out_ZeroPoint);
/*!
* @brief Handles maxpool with 16 bits signed input and output with a positive scale of the input- Lite I/F
* @ingroup lite_maxpool_dqnn
*/
LITE_API_ENTRY
void forward_lite_maxpool_is16os16_scalepos(const ai_i16 *pApInput,
ai_i16 *pApOutput,
const ai_u16 dim_im_in_x, const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_u16 dim_kernel_x, const ai_u16 dim_kernel_y,
const ai_u16 padding_x, const ai_u16 padding_y,
const ai_u16 stride_x, const ai_u16 stride_y,
const ai_u16 dim_im_out_x, const ai_u16 dim_im_out_y,
const ai_float InOut_ScaleRatio,
const ai_i16 In_ZeroPoint,
const ai_i16 Out_ZeroPoint);
/*!
* @brief Handles maxpool with 16 bits unsigned input and output with a positive scale of the input- Lite I/F
* @ingroup lite_maxpool_dqnn
*/
LITE_API_ENTRY
void forward_lite_maxpool_iu16ou16_scalepos(const ai_u16 *pApInput,
ai_u16 *pApOutput,
const ai_u16 dim_im_in_x, const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_u16 dim_kernel_x, const ai_u16 dim_kernel_y,
const ai_u16 padding_x, const ai_u16 padding_y,
const ai_u16 stride_x, const ai_u16 stride_y,
const ai_u16 dim_im_out_x, const ai_u16 dim_im_out_y,
const ai_float InOut_ScaleRatio,
const ai_u16 In_ZeroPoint,
const ai_u16 Out_ZeroPoint);
#endif /*LITE_MAXPOOL_DQNN_H*/
| 8,459 | C | 51.546584 | 109 | 0.422154 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares_backup/ST/AI/Inc/layers_common.h | /**
******************************************************************************
* @file layers_common.h
* @author AST Embedded Analytics Research Platform
* @brief header file of AI platform layers datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_COMMON_H
#define LAYERS_COMMON_H
#pragma once
// #include <stdlib.h>
#ifdef USE_CYCLE_MEASUREMENTS
#include "layers_cycles_estimation.h"
#endif
#include "ai_platform.h"
#include "ai_common_config.h"
#include "core_common.h"
/* optimizations */
#define AI_OPTIM_DICT8_DOT_ARRAY_F32 (1)
#define AI_OPTIM_DICT8_DTCM (1)
#define AI_OPTIM_FUNC_MP_ARRAY_F32 (0)
#define AI_LAYER_OBJ(obj_) \
((ai_layer_base*)(obj_))
#define AI_LAYER_FUNC(func_) \
((layer_func)(func_))
#define AI_LAYER_TYPE(type_) \
( (ai_layer_type)((ai_u32)(type_)&0xFFFF) )
#define AI_LAYER_TYPE_ENTRY(type_) \
AI_CONCAT(AI_CONCAT(AI_LAYER_, type_), _TYPE)
#define AI_LAYER_TYPE_NAME(type_) \
ai_layer_type_name(AI_LAYER_TYPE(type_))
#if (AI_TOOLS_API_VERSION <= AI_TOOLS_API_VERSION_1_3)
#pragma message ("Including deprecated AI_LAYER_OBJ_INIT, AI_LAYER_OBJ_DECLARE")
AI_DEPRECATED
#define AI_LAYER_OBJ_INIT(type_, id_, network_, \
next_, forward_, ...) \
{ \
AI_NODE_COMMON_INIT(AI_CONCAT(AI_LAYER_, type_), id_, 0x0, \
NULL, network_, next_, forward_), \
## __VA_ARGS__ \
}
AI_DEPRECATED
#define AI_LAYER_OBJ_DECLARE(varname_, id_, type_, struct_, forward_func_, \
network_, next_, attr_, ...) \
AI_ALIGNED(4) \
attr_ AI_CONCAT(ai_layer_, struct_) varname_ = \
AI_LAYER_OBJ_INIT(type_, id_, network_, \
next_, forward_func_, \
## __VA_ARGS__);
#else
#define AI_LAYER_OBJ_INIT(type_, id_, flags_, klass_, network_, \
next_, forward_, tensors_, ...) \
{ \
AI_NODE_COMMON_INIT(AI_CONCAT(AI_LAYER_, type_), id_, flags_, \
klass_, network_, next_, forward_), \
.tensors = (tensors_), \
## __VA_ARGS__ \
}
#define AI_LAYER_OBJ_DECLARE( \
varname_, id_, \
type_, flags_, klass_obj_, \
struct_, forward_func_, \
tensors_chain_, \
network_, next_, attr_, ...) \
AI_ALIGNED(4) \
attr_ AI_CONCAT(ai_layer_, struct_) varname_ = \
AI_LAYER_OBJ_INIT(type_, id_, flags_, klass_obj_, network_, \
next_, forward_func_, tensors_chain_, ## __VA_ARGS__);
#endif /* AI_TOOLS_API_VERSION_1_3 */
#ifdef HAS_AI_ASSERT
#define AI_LAYER_IO_GET(layer_, in_, out_) \
ASSERT_LAYER_SANITY(layer_) \
const ai_tensor* in_ = GET_TENSOR_IN((layer_)->tensors, 0); \
ai_tensor* out_ = GET_TENSOR_OUT((layer_)->tensors, 0); \
ASSERT_TENSOR_DATA_SANITY(in_) \
ASSERT_TENSOR_DATA_SANITY(out_)
#define AI_LAYER_TENSOR_LIST_IO_GET(layer_, tlist_in_, tlist_out_) \
ASSERT_LAYER_SANITY(layer_) \
const ai_tensor_list* tlist_in_ = GET_TENSOR_LIST_IN((layer_)->tensors); \
ai_tensor_list* tlist_out_ = GET_TENSOR_LIST_OUT((layer_)->tensors); \
ASSERT_TENSOR_LIST_SANITY(tlist_in_) \
ASSERT_TENSOR_LIST_SANITY(tlist_out_)
#define AI_LAYER_WEIGHTS_GET(layer_, weights_, bias_) \
const ai_tensor* weights_ = GET_TENSOR_WEIGHTS((layer_)->tensors, 0); \
const ai_tensor* bias_ = (GET_TENSOR_LIST_SIZE(GET_TENSOR_LIST_WEIGTHS((layer_)->tensors))>1) \
? GET_TENSOR_WEIGHTS((layer_)->tensors, 1) \
: NULL; \
ASSERT_TENSOR_DATA_SANITY(weights_) \
if (bias_) { ASSERT_TENSOR_DATA_SANITY(bias_) }
#else
#define AI_LAYER_IO_GET(layer_, in_, out_) \
const ai_tensor* in_ = GET_TENSOR_IN((layer_)->tensors, 0); \
ai_tensor* out_ = GET_TENSOR_OUT((layer_)->tensors, 0);
#define AI_LAYER_TENSOR_LIST_IO_GET(layer_, tlist_in_, tlist_out_) \
const ai_tensor_list* tlist_in_ = GET_TENSOR_LIST_IN((layer_)->tensors); \
ai_tensor_list* tlist_out_ = GET_TENSOR_LIST_OUT((layer_)->tensors);
#define AI_LAYER_WEIGHTS_GET(layer_, weights_, bias_) \
const ai_tensor* weights_ = GET_TENSOR_WEIGHTS((layer_)->tensors, 0); \
const ai_tensor* bias_ = (GET_TENSOR_LIST_SIZE(GET_TENSOR_LIST_WEIGTHS((layer_)->tensors))>1) \
? GET_TENSOR_WEIGHTS((layer_)->tensors, 1) \
: NULL; \
#endif /*HAS_AI_ASSERT*/
AI_API_DECLARE_BEGIN
/*!
* @defgroup layers_common Layers Common
* @brief Implementation of the common layers datastructures
* This header enumerates the layers specific definition implemented in the
* library toghether with the macros and datatypes used to manipulate them.
*/
/*!
* @typedef (*func_copy_tensor)
* @ingroup layers_common
* @brief Fuction pointer for generic tensor copy routines
* this function pointer abstracts a generic tensor copy routine.
*/
typedef ai_bool (*func_copy_tensor)(ai_tensor* dst, const ai_tensor* src);
/*!
* @enum ai_layer_type
* @ingroup layers_common
* @brief ai_tools supported layers type id
*/
typedef enum {
#define LAYER_ENTRY(type_, id_, struct_, forward_func_, init_func_, destroy_func_) \
AI_LAYER_TYPE_ENTRY(type_) = id_,
#include "layers_list.h"
} ai_layer_type;
#define AI_LAYER_COMMON_FIELDS_DECLARE \
AI_NODE_COMMON_FIELDS_DECLARE
#define AI_LAYER_STATEFUL_FIELDS_DECLARE \
AI_NODE_STATEFUL_FIELDS_DECLARE
/*!
* @typedef void (*layer_func)(struct ai_layer_* layer)
* @ingroup layers_common
* @brief Callback signatures for all layers forward functions
*/
typedef node_func layer_func;
/*!
* @struct ai_layer_base
* @ingroup layers_common
* @brief Structure encoding a base layer in the network
*
*/
typedef ai_node ai_layer_base;
/*!
* @struct ai_layer_stateful
* @ingroup layers_common
* @brief Structure encoding a stateful layer in the network
*
*/
typedef ai_node_stateful ai_layer_stateful;
/*!
* @brief Check the custom network types against the internally compiled ones
* Helper function to check if the private APIs where compiled with a different
* `datatypes_network.h` than the one provided to the caller.
* @ingroup layers_common
* @param signatures list of type sizes signatures (first element is the number of types)
* @return false if there is a type size mismatch
*/
AI_INTERNAL_API
ai_bool ai_check_custom_types(const ai_custom_type_signature* signatures);
/*!
* @brief Helper API to retrieve a human readable layer type from enum
* @ingroup layers_common
* @param type in type of layer
* @return string defining the type of the layer
*/
AI_INTERNAL_API
const char* ai_layer_type_name(const ai_layer_type type);
/*!
* @brief Helper API to check if a node is a valid layer type
* @ingroup layers_common
* @param type in type of layer
* @return true if the layer is one of the ones listed in the enum,
* false otherwise
*/
AI_INTERNAL_API
ai_bool ai_layer_type_is_valid(const ai_layer_type type);
#ifdef HAS_AI_ASSERT
/*!
* @brief chack scratch size computed with actual scratch buffer size
* @ingroup layers
* @param layer_type the layer type
* @param fmt buffers format
* @param filt_width filter width (when relevant)
* @param filt_height filter height (when relevant)
* @param n_channel_in the number of channels in
* @param n_channel_out the number of channels out
* @param is_pointwise is pointwise convulation (conv2d)
* @param is_rgb is rgb convolution (conv2d)
* @param is depthwise is depthwise convolution (conv2d)
* @param is_ch_wise has weights per channel
* @param is_sssa is signed
* @param p_tensor_scratch the scratch tensor
* @param p_function_name the name of the function
* @param line_nb the the line of the function
*/
AI_INTERNAL_API
ai_size ai_layer_get_scratch_size( ai_layer_type layer_type, ai_array_format fmt,
ai_size filt_width, ai_size filt_height,
ai_u16 n_channel_in, ai_u16 n_channel_out,
ai_bool is_pointwise, ai_bool is_rgb,
ai_bool is_depthwise, ai_bool is_ch1st, ai_bool is_ch_wise,
ai_bool is_sss);
/*!
* @brief chack scratch size computed with actual scratch buffer size
* @ingroup layers
* @param layer_type the layer type
* @param fmt buffers format
* @param filt_width filter width (when relevant)
* @param filt_height filter height (when relevant)
* @param n_channel_in the number of channels in
* @param n_channel_out the number of channels out
* @param is_pointwise is pointwise convulation (conv2d)
* @param is_rgb is rgb convolution (conv2d)
* @param is depthwise is depthwise convolution (conv2d)
* @param is_ch_wise has weights per channel
* @param is_sssa is signed
* @param p_tensor_scratch the scratch tensor
* @param p_function_name the name of the function
* @param line_nb the the line of the function
*/
AI_INTERNAL_API
void ai_layer_check_scratch_size( ai_layer_type layer_type, ai_array_format fmt,
ai_size filt_width, ai_size filt_height,
ai_u16 n_channel_in, ai_u16 n_channel_out,
ai_bool is_pointwise, ai_bool is_rgb,
ai_bool is_depthwise, ai_bool is_ch1st, ai_bool is_ch_wise,
ai_bool is_sssa, ai_tensor *p_tensor_scratch,
const char *p_function_name, int line_nb);
#define CHECK_SCRATCH_BUFFER_SIZE( layer_type, fmt, \
filt_width, filt_height, \
n_channel_in, n_channel_out, \
is_pointwise, is_rgb, \
is_depthwise, is_ch1st, is_ch_wise, \
is_sssa_ch, p_tensor_scratch) \
ai_layer_check_scratch_size(layer_type, fmt, \
filt_width, filt_height, \
n_channel_in, n_channel_out, \
is_pointwise, is_rgb, \
is_depthwise, is_ch1st, is_ch_wise, \
is_sssa_ch, p_tensor_scratch,\
__FUNCTION__, __LINE__);
#endif
AI_API_DECLARE_END
#endif /*LAYERS_COMMON_H*/
| 10,739 | C | 34.681063 | 99 | 0.607133 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/formats_list.h | /**
******************************************************************************
* @file format_list.h
* @author AST Embedded Analytics Research Platform
* @brief Definitions of AI platform public APIs types
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
/* FMT_ENTRY( exp_(0/1 only), name_, type_id_,
* sign_bit_, float_bit_, pmask_, bits_, fbits_, ldiv_bits_)
* Specifications (in order of the bit fields, little endian):
- name_ : it is the enum used to define both the ai_array_format and
ai_buffer_format.
- exp_ (1bit) : it is a boolean flag (0 or 1) indicating whether the format
is available as a public APIs ai_buffer format. in this case the field
exp_name_ indicates the enum name of the ai_buffer format
- (7 bits): reserved for flags
- sign_bit_ (1bit) : codes whether or not the format is of a signed type
- float_bit_ (1bit) : codes if the format is float
- ldiv_bits (2 bits) : right shift value for computing the byte size of the
format
- type_id_ (4bits) : it is used to define the "family" of the format:
see @ref AI_FMT_Q as an example. Currently supported types are:
AI_FMT_Q (fixed point types), AI_FMT_FLOAT (floating point values),
AI_FMT_LUT4 or AI_FMT_LUT8 (compressed formats)
- pmask_ (3bits) : padding mask bits for the format
- bits_ (7bits) : size in bits of the format (NB: integer+fractional bits)
- fbits_ (7bits) : number of fractional bits for the format
(for AI_FMT_Q only)
*/
/* Format none entry */
FMT_ENTRY(1, NONE, AI_FMT_NONE, 0, 0, 0x0, 0, 0, 0)
/* Floating point formats */
FMT_ENTRY(1, FLOAT, AI_FMT_FLOAT, 1, 1, 0x0, 32, 0, 0)
FMT_ENTRY(0, FLOAT64, AI_FMT_FLOAT, 1, 1, 0x0, 64, 0, 0)
FMT_ENTRY(0, FLOAT16, AI_FMT_FLOAT, 1, 1, 0x0, 16, 0, 0)
/* Integer formats (i.e. fractional bits = 0!) */
FMT_ENTRY(1, U8, AI_FMT_Q, 0, 0, 0x0, 8, 0, 0)
FMT_ENTRY(1, U16, AI_FMT_Q, 0, 0, 0x0, 16, 0, 0)
FMT_ENTRY(1, U32, AI_FMT_Q, 0, 0, 0x0, 32, 0, 0)
FMT_ENTRY(0, U64, AI_FMT_Q, 0, 0, 0x0, 64, 0, 0)
FMT_ENTRY(1, U1, AI_FMT_Q, 0, 0, 0x0, 1, 0, 0)
FMT_ENTRY(0, U4, AI_FMT_Q, 0, 0, 0x0, 4, 0, 0)
FMT_ENTRY(1, S8, AI_FMT_Q, 1, 0, 0x0, 8, 0, 0)
FMT_ENTRY(1, S16, AI_FMT_Q, 1, 0, 0x0, 16, 0, 0)
FMT_ENTRY(1, S32, AI_FMT_Q, 1, 0, 0x0, 32, 0, 0)
FMT_ENTRY(0, S64, AI_FMT_Q, 1, 0, 0x0, 64, 0, 0)
FMT_ENTRY(1, S1, AI_FMT_Q, 1, 0, 0x0, 1, 0, 0)
FMT_ENTRY(0, S4, AI_FMT_Q, 1, 0, 0x0, 4, 0, 0)
/* Fixed-point formats including ARM CMSIS Q7, Q15, Q31 ones */
FMT_ENTRY(1, Q, AI_FMT_Q, 1, 0, 0x0, 0, 0, 0)
FMT_ENTRY(1, Q7, AI_FMT_Q, 1, 0, 0x0, 8, 7, 0)
FMT_ENTRY(1, Q15, AI_FMT_Q, 1, 0, 0x0, 16, 15, 0)
FMT_ENTRY(0, Q31, AI_FMT_Q, 1, 0, 0x0, 32, 31, 0)
FMT_ENTRY(1, UQ, AI_FMT_Q, 0, 0, 0x0, 0, 0, 0)
FMT_ENTRY(1, UQ7, AI_FMT_Q, 0, 0, 0x0, 8, 7, 0)
FMT_ENTRY(1, UQ15, AI_FMT_Q, 0, 0, 0x0, 16, 15, 0)
FMT_ENTRY(0, UQ31, AI_FMT_Q, 0, 0, 0x0, 32, 31, 0)
/* Compressed formats */
FMT_ENTRY(0, LUT4_FLOAT, AI_FMT_LUT4, 1, 1, 0x0, 32, 0, 3)
FMT_ENTRY(0, LUT8_FLOAT, AI_FMT_LUT8, 1, 1, 0x0, 32, 0, 2)
FMT_ENTRY(0, LUT4_Q15, AI_FMT_LUT4, 1, 0, 0x0, 16, 15, 2)
FMT_ENTRY(0, LUT8_Q15, AI_FMT_LUT8, 1, 0, 0x0, 16, 15, 1)
FMT_ENTRY(0, LUT4_UQ15, AI_FMT_LUT4, 0, 0, 0x0, 16, 15, 2)
FMT_ENTRY(0, LUT8_UQ15, AI_FMT_LUT8, 0, 0, 0x0, 16, 15, 1)
/* Boolean format */
FMT_ENTRY(1, BOOL, AI_FMT_BOOL, 0, 0, 0x0, 8, 0, 0)
#undef FMT_ENTRY
| 3,930 | C | 41.72826 | 80 | 0.564885 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/core_convert.h | /**
******************************************************************************
* @file core_convert.h
* @author AST Embedded Analytics Research Platform
* @brief header file of core utils routines
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef CORE_CONVERT_H
#define CORE_CONVERT_H
#pragma once
#include "ai_platform.h"
#include "ai_platform_interface.h"
#include "core_common.h"
AI_API_DECLARE_BEGIN
/*!
* @defgroup core_convert Core Convert Routines
* @brief Implementation of core node format convertion routines
* (Q7 to float, ... etc.)
*/
/*!
* @brief Convert tensors from float to quantized or viceversa
* @ingroup core_convert
* @param[in] pNode in a handler to node (layer or operator)
*/
AI_INTERNAL_API
void node_convert(ai_node *pNode);
/*!
* @brief Convert integer tensors between QM.N formats (8/16 bits)
* @ingroup core_convert
* @param[in] pNode in a handler to node (layer or operator)
*/
AI_INTERNAL_API
void node_convert_fixed(ai_node *pNode);
/*!
* @brief Convert integer tensors between signed and usigned (int8/uint8) formats
* @ingroup core_convert
* @param[in] pNode in a handler to node (layer or operator)
*/
AI_INTERNAL_API
void node_convert_integer(ai_node *pNode);
/*!
* @brief Convert float tensor to binary
* @ingroup core_convert
* @param[in] pNode in a handler to node (layer or operator)
*/
AI_INTERNAL_API
void node_convert_if32os1(ai_node *pNode);
/*!
* @brief Convert binary tensor to float
* @ingroup core_convert
* @param[in] pNode in a handler to node (layer or operator)
*/
AI_INTERNAL_API
void node_convert_is8os1(ai_node *pNode);
/*!
* @brief Convert binary tensor to signed int 8 bit
* @ingroup core_convert
* @param[in] pNode in a handler to node (layer or operator)
*/
AI_INTERNAL_API
void node_convert_is1os8(ai_node *pNode);
/*!
* @brief Convert binary tensor to signed int 16 bit
* @ingroup core_convert
* @param[in] pNode in a handler to node (layer or operator)
*/
AI_INTERNAL_API
void node_convert_is1os16(ai_node *pNode);
/*!
* @brief Convert binary tensor to float
* @ingroup core_convert
* @param[in] pNode in a handler to node (layer or operator)
*/
AI_INTERNAL_API
void node_convert_is1of32(ai_node *pNode);
/*!
* @brief Convert signed int 16 bit tensor to float
* @ingroup core_convert
* @param[in] pNode in a handler to node (layer or operator)
*/
AI_INTERNAL_API
void node_convert_is16of32(ai_node *pNode);
/*!
* @brief Convert unsigned int 16 bit tensor to float
* @ingroup core_convert
* @param[in] pNode in a handler to node (layer or operator)
*/
AI_INTERNAL_API
void node_convert_iu16of32(ai_node *pNode);
/*!
* @brief Convert float tensor to signed int 16 bit
* @ingroup core_convert
* @param[in] pNode in a handler to node (layer or operator)
*/
AI_INTERNAL_API
void node_convert_if32os16(ai_node *pNode);
/*!
* @brief Convert float tensor to unsigned int 16 bit
* @ingroup core_convert
* @param[in] pNode in a handler to node (layer or operator)
*/
AI_INTERNAL_API
void node_convert_if32ou16(ai_node *pNode);
/*!
* @brief Convert signed int 16 bit tensor to unsigned int 16 bit
* @ingroup core_convert
* @param[in] pNode in a handler to node (layer or operator)
*/
AI_INTERNAL_API
void node_convert_is16ou16(ai_node *pNode);
/*!
* @brief Convert a shape struct into a stride struct
* @ingroup core_convert
* @param[in] in a pointer to a shape to convert
* @return a condverted stride datastruct
*/
AI_INTERNAL_API
void core_shape_to_stride(ai_stride* out, const ai_shape* in);
#endif /*CORE_CONVERT_H*/
| 4,123 | C | 23.993939 | 81 | 0.65171 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers_conv2d.h | /**
******************************************************************************
* @file layers_conv2d.h
* @author AST Embedded Analytics Research Platform
* @brief header file of AI platform conv2d layers datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_CONV2D_H
#define LAYERS_CONV2D_H
#pragma once
#include "layers_nl.h"
#include "layers_pool.h"
#define AI_LAYER_CONV2D_FIELDS_DECLARE \
AI_LAYER_COMMON_FIELDS_DECLARE \
ai_u32 groups; /*!< groups for separable convolution */ \
AI_CONST ai_array* nl_params; /*!< array pointer to non linear parameters */ \
func_nl nl_func; /*!< function pointer to non linear transform */ \
ai_shape_2d filter_stride; /*!< filter stride, how much the filter moves */ \
ai_shape_2d dilation; /*!< dilation value along axis of the filter */ \
ai_shape filter_pad; /*!< filter pad 4d */ \
ai_layer_format_type in_ch_format; /*!< Input format (Channel 1st vs Channel last */ \
ai_layer_format_type out_ch_format; /*!< Output format (Channel 1st vs Channel last */
/*!
* @defgroup layers_conv2d Convolutive Layers Definitions
* @brief definition
*
*/
AI_API_DECLARE_BEGIN
/*!
* @struct ai_layer_dense
* @ingroup layers_conv2d
* @brief Dense (fully connected) layer
*/
typedef ai_layer_base ai_layer_dense;
/*!
* @struct ai_layer_gemm
* @ingroup layers_conv2d
* @brief layer for General Matrix Multiplication
*
* Layer for General Matrix Multiplication (GEMM):
* \f{equation}{ Y = \alpha A \cdot B + \beta C \f}
* \f$\alpha\f$ and \f$\beta\f$ are paramaters, A and B are matrices,
* C is a matrix or an array. Size checks for A, B, C, and Y are performed and
* broadcast is applied on C if necessary.
* This is a sequential layer (see @ref ai_layer).
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_gemm_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_float alpha; /*!< alpha coefficient */
ai_float beta; /*!< beta coefficient */
ai_u8 tA; /*!< transpose A flag */
ai_u8 tB; /*!< transpose B flag */
} ai_layer_gemm;
/*!
* @struct ai_layer_conv2d
* @ingroup layers_conv2d
* @brief 2D convolutional layer with strides and pads
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_conv2d_ {
AI_LAYER_CONV2D_FIELDS_DECLARE
} ai_layer_conv2d;
/*!
* @struct ai_layer_conv2d_nl_pool
* @ingroup layers_conv2d
* @brief 2D convolutional layer + nl + pooling with strides and pads
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_conv2d_nl_pool_ {
AI_LAYER_CONV2D_FIELDS_DECLARE
ai_shape_2d pool_size; /*!< pooling size */
ai_shape_2d pool_stride; /*!< pooling stride */
ai_shape pool_pad; /*!< pooling pad */
ai_handle pool_func; /*!< function pointer to pooling transform */
} ai_layer_conv2d_nl_pool;
AI_INTERNAL_API
void ai_dict8_dot_array_f32(ai_handle out, ai_ptr_const data0, ai_ptr_const lut,
const ai_float* data1, const ai_size data_size);
AI_INTERNAL_API
void ai_dict4_dot_array_f32(ai_handle out, ai_ptr_const data0, ai_ptr_const lut,
const ai_float* data1, const ai_size data_size);
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Computes the activations of a floating point 32 2D convolutional layer.
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_if32of32wf32(ai_layer* layer);
/*!
* @brief Computes the activations of a floating point 32 2D dw layer.
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_dw_if32of32wf32(ai_layer* layer);
/*!
* @brief Computes the activations of a floating point 32 2D convolutional group layer.
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_if32of32wf32_group(ai_layer* layer);
/*!
* @brief Computes the activations of a 2D floating point 32 pool fused convolutional layer.
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_if32of32wf32_pool(ai_layer* layer);
/*!
* @brief Computes the activations of a 2D floating point 32 pool fused dw layer.
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_dw_if32of32wf32_pool(ai_layer* layer);
/*!
* @brief Computes the activations of a 2D floating point 32 pool fused convolutional group layer.
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_if32of32wf32_group_pool(ai_layer* layer);
/*!
* @brief Computes the activations of a GEMM layer.
* @ingroup layers
* @param layer the layer including output and input tensors
*/
AI_INTERNAL_API
void forward_gemm(ai_layer* layer);
/*!
* @brief Computes matmul layer, intended as numpy.matmul(A,B).
* @ingroup layers
* @param layer the layer including output and input tensors
*/
AI_INTERNAL_API
void forward_matmul(ai_layer* layer);
/*!
* @brief Computes the activations of a dense (fully connected) layer.
* @ingroup layers_conv2d
* @param layer the dense layer
*/
AI_INTERNAL_API
void forward_dense(ai_layer* layer);
/*!
* @brief Computes the activations of a fixed point 2D convolutional layer.
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_fixed(ai_layer *pLayer);
/*!
* @brief Computes the activations of a fixed point @ref ai_layer_conv2d_nl_pool
* layer.
* The @ref ai_layer_conv2d_nl_pool is a fused conv2D + optional nonlinear
* layer + optional pooling / nonlinearity (average, max)
* @ingroup layers_conv2d
* @param layer see @ai_layer_conv2d_nl_pool
*/
AI_INTERNAL_API
void forward_conv2d_nl_pool_fixed(ai_layer *pLayer);
/*!
* @brief Computes the activations of a integer quantized 2D convolutional layer.
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_integer(ai_layer *pLayer);
/*!
* @brief Computes the activations of a integer quantized 2D convolutional layer
* for SSSA per layer quantized scheme
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_integer_SSSA(ai_layer *pLayer);
/*!
* @brief Computes the activations of a integer quantized 2D convolutional layer
* for SSSA per channel quantized scheme
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_is8os8ws8_sssa_ch(ai_layer *pLayer);
/*!
* @brief Computes the activations of a int8 quantized DW layer
* for SSSA per channel quantized scheme
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_dw_sssa8_ch(ai_layer *pLayer);
/*!
* @brief Computes the activations of a int8 quantized DW layer
* for SSSA per channel quantized scheme, with 3x3 kernels
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_dw_3x3_sssa8_ch(ai_layer *pLayer);
/*!
* @brief Computes the activations of a int8 quantized DW layer
* for SSSA per channel quantized scheme, with 3x3 kernels and input are
* channel first
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_dw_3x3_ch1st_sssa8_ch(ai_layer *pLayer);
/*!
* @brief Computes the activations of a int8 quantized DW layer
* for SSSA per channel quantized scheme with depth multiplier > 1
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_dw_dm_sssa8_ch(ai_layer *pLayer);
/*!
* @brief Computes the activations of int8 quantized DW layers.
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_dw_all_sssa8_ch(ai_layer *pLayer);
/*!
* @brief Computes the activations of a int8 quantized PW layer
* for SSSA per channel quantized scheme
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_pw_sssa8_ch(ai_layer *pLayer);
/*!
* @brief Computes the activations of a int8 quantized dilated Conv2d layer
* for SSSA per channel quantized scheme (valid padding)
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_dilated_sssa8_ch(ai_layer *pLayer);
/*!
* @brief Computes the activations of a int8 non dilated Conv2d layer
* for SSSA per channel quantized scheme (valid padding)
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_deep_sssa8_ch(ai_layer *pLayer);
/*!
* @brief Computes the activations of a int8 non dilated Conv2d layer
* for SSSA per channel quantized scheme (valid padding)
* number of output channel is greater than 8
* Kernels shall be 3x3 and stride is (1,1)
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_deep_3x3_sssa8_ch(ai_layer *pLayer);
/*!
* @brief Computes the activations of a int8 non dilated Conv2d layer
* for SSSA per channel quantized scheme (valid or same padding)
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_sssa8_ch(ai_layer *pLayer);
/*!
* @brief Computes the activations of a int8 quantized Conv2d layer
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_all_sssa8_ch(ai_layer *pLayer);
/*!
* @brief Computes the activations of a int8 quantized RGB Conv2d layer
* for SSSA per channel quantized scheme
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_rgb_sssa8_ch(ai_layer *pLayer);
/*!
* @brief Computes the activations of a int8 quantized DW layer
* for SSSA per channel quantized scheme with pooling fused
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_dw_sssa8_ch_nl_pool(ai_layer *pLayer);
/*!
* @brief Computes the activations of a int8 quantized DW layer
* for SSSA per channel quantized scheme, with 3x3 kernels,
* with pooling fused
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_dw_3x3_sssa8_ch_nl_pool(ai_layer *pLayer);
/*!
* @brief Computes the activations of a int8 quantized DW layer
* for SSSA per channel quantized scheme, with 3x3 kernels,
* with pooling fused
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_dw_3x3_ch1st_sssa8_ch_nl_pool(ai_layer *pLayer);
/*!
* @brief Computes the activations of a int8 quantized DW layer
* for SSSA per channel quantized scheme with depth multiplier > 1
* with pooling fused
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_dw_dm_sssa8_ch_nl_pool(ai_layer *pLayer);
/*!
* @brief Computes the activations of int8 quantized DW layers, with pooling fused
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_dw_all_sssa8_ch_nl_pool(ai_layer *pLayer);
/*!
* @brief Computes the activations of a int8 quantized PW layer,
* with pooling fused
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_pw_sssa8_ch_nl_pool(ai_layer *pLayer);
/*!
* @brief Computes the activations of a int8 quantized dilated Conv2d layer
* for SSSA per channel quantized scheme (valid padding) and pooling fused
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_dilated_sssa8_ch_nl_pool(ai_layer *pLayer);
/*!
* @brief Computes the activations of a int8 quantized non dilated Conv2d layer
* for SSSA per channel quantized scheme (valid padding) and pooling fused
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_deep_sssa8_ch_nl_pool(ai_layer *pLayer);
/*!
* @brief Computes the activations of a int8 non dilated Conv2d layer
* for SSSA per channel quantized scheme (valid padding) and pooling fused
* number of output channel is greater than 8
* Kernels shall be 3x3 and stride is (1,1)
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_deep_3x3_sssa8_ch_nl_pool(ai_layer *pLayer);
/*!
* @brief Computes the activations of a int8 quantized non dilated Conv2d layer
* for SSSA per channel quantized scheme (valid or same padding) and pooling fused
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_sssa8_ch_nl_pool(ai_layer *pLayer);
/*!
* @brief Computes the activations of a int8 quantized Conv2d layer and pooling fused
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_all_sssa8_ch_nl_pool(ai_layer *pLayer);
/*!
* @brief Computes the activations of a integer quantized 2D convolutional layer
* for SSUA per layer quantized scheme
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_integer_SSUA(ai_layer *pLayer);
/*!
* @brief Computes the activations of a integer quantized 2D convolutional layer
* for SSUA per channel quantized scheme
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_integer_SSUA_ch(ai_layer *pLayer);
/*!
* @brief Computes the activations of a integer quantized 2D convolutional layer
* for UAUA per layer quantized scheme
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_integer_UAUA(ai_layer *pLayer);
/*!
* @brief Computes the activations of a integer quantized 2D convolutional layer
* for UAUA per channel quantized scheme
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_integer_UAUA_ch(ai_layer *pLayer);
/*!
* @brief Computes the activations of a integer @ref ai_layer_conv2d_nl_pool layer.
* The @ref ai_layer_conv2d_nl_pool is a fused conv2D + optional nonlinear
* layer + optional pooling / nonlinearity (average, max)
* @ingroup layers_conv2d
* @param layer see @ai_layer_conv2d_nl_pool
*/
AI_INTERNAL_API
void forward_conv2d_nl_pool_integer(ai_layer *pLayer);
/*!
* @brief Computes the activations of a integer @ref ai_layer_conv2d_nl_pool layer
* for SSSA per layer quantized scheme
* The @ref ai_layer_conv2d_nl_pool is a fused conv2D + optional nonlinear
* layer + optional pooling / nonlinearity (average, max)
* @ingroup layers_conv2d
* @param layer see @ai_layer_conv2d_nl_pool
*/
AI_INTERNAL_API
void forward_conv2d_nl_pool_integer_SSSA(ai_layer *pLayer);
/*!
* @brief Computes the activations of a integer @ref ai_layer_conv2d_nl_pool layer
* for SSSA per channel quantized scheme
* The @ref ai_layer_conv2d_nl_pool is a fused conv2D + optional nonlinear
* layer + optional pooling / nonlinearity (average, max)
* @ingroup layers_conv2d
* @param layer see @ai_layer_conv2d_nl_pool
*/
AI_INTERNAL_API
void forward_conv2d_nl_pool_integer_SSSA_ch(ai_layer *pLayer);
/*!
* @brief Computes the activations of a integer @ref ai_layer_conv2d_nl_pool layer
* for SSUA per layer quantized scheme
* The @ref ai_layer_conv2d_nl_pool is a fused conv2D + optional nonlinear
* layer + optional pooling / nonlinearity (average, max)
* @ingroup layers_conv2d
* @param layer see @ai_layer_conv2d_nl_pool
*/
AI_INTERNAL_API
void forward_conv2d_nl_pool_integer_SSUA(ai_layer *pLayer);
/*!
* @brief Computes the activations of a integer @ref ai_layer_conv2d_nl_pool layer
* for SSUA per channel quantized scheme
* The @ref ai_layer_conv2d_nl_pool is a fused conv2D + optional nonlinear
* layer + optional pooling / nonlinearity (average, max)
* @ingroup layers_conv2d
* @param layer see @ai_layer_conv2d_nl_pool
*/
AI_INTERNAL_API
void forward_conv2d_nl_pool_integer_SSUA_ch(ai_layer *pLayer);
/*!
* @brief Computes the activations of a integer @ref ai_layer_conv2d_nl_pool layer
* for UAUA per layer quantized scheme
* The @ref ai_layer_conv2d_nl_pool is a fused conv2D + optional nonlinear
* layer + optional pooling / nonlinearity (average, max)
* @ingroup layers_conv2d
* @param layer see @ai_layer_conv2d_nl_pool
*/
AI_INTERNAL_API
void forward_conv2d_nl_pool_integer_UAUA(ai_layer *pLayer);
/*!
* @brief Computes the activations of a integer @ref ai_layer_conv2d_nl_pool layer
* for UAUA per channel quantized scheme
* The @ref ai_layer_conv2d_nl_pool is a fused conv2D + optional nonlinear
* layer + optional pooling / nonlinearity (average, max)
* @ingroup layers_conv2d
* @param layer see @ai_layer_conv2d_nl_pool
*/
AI_INTERNAL_API
void forward_conv2d_nl_pool_integer_UAUA_ch(ai_layer *pLayer);
/*!
* @brief Computes the activations of a integer dense (fully connected) layer.
* @ingroup layers_dense
* @param layer the dense layer
*/
AI_INTERNAL_API
void forward_dense_integer(ai_layer *pLayer);
/*!
* @brief Computes the activations of a integer dense (fully connected) layer
* for SSSA per layer quantized scheme
* @ingroup layers_dense
* @param layer the dense layer
*/
AI_INTERNAL_API
void forward_dense_integer_SSSA(ai_layer *pLayer);
/*!
* @brief Computes the activations of a integer dense (fully connected) layer
* for SSSA per channel quantized scheme
* @ingroup layers_dense
* @param layer the dense layer
*/
AI_INTERNAL_API
void forward_dense_integer_SSSA_ch(ai_layer *pLayer);
/*!
* @brief Computes the activations of a integer dense (fully connected) layer
* for SSUA per layer quantized scheme
* @ingroup layers_dense
* @param layer the dense layer
*/
AI_INTERNAL_API
void forward_dense_integer_SSUA(ai_layer *pLayer);
/*!
* @brief Computes the activations of a integer dense (fully connected) layer
* for SSUA per channel quantized scheme
* @ingroup layers_dense
* @param layer the dense layer
*/
AI_INTERNAL_API
void forward_dense_integer_SSUA_ch(ai_layer *pLayer);
/*!
* @brief Computes the activations of a integer dense (fully connected) layer
* for UAUA per layer quantized scheme
* @ingroup layers_dense
* @param layer the dense layer
*/
AI_INTERNAL_API
void forward_dense_integer_UAUA(ai_layer *pLayer);
/*!
* @brief Computes the activations of a integer dense (fully connected) layer
* for UAUA per channel quantized scheme
* @ingroup layers_dense
* @param layer the dense layer
*/
AI_INTERNAL_API
void forward_dense_integer_UAUA_ch(ai_layer *pLayer);
AI_API_DECLARE_END
#endif /*LAYERS_CONV2D_H*/
| 19,921 | C | 30.8752 | 98 | 0.69359 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/ai_lite_math_helpers.h | #ifndef AI_LITE_MATH_HELPERS_H
#define AI_LITE_MATH_HELPERS_H
#include <math.h>
#include "ai_platform.h"
#include "ai_platform_interface.h"
#include "ai_datatypes_defines.h"
#define AI_FLOAT_TOLERANCE (6.19209290e-5F) /* Used for small calculation
noise issues */
#define AI_FLOAT_EPSILON (1.19209290e-7F)
#define AI_I8_EPSILON (0.00787401F) /* 1/(2^7 - 1) */
#define AI_I16_EPSILON (3.051851e-5F) /* 1/(2^15 - 1) */
#define AI_FLT_MAX (3.40282346638528859812e+38f)
#define AI_MIN(x,y) ( ((x)<(y)) ? (x) : (y) )
#define AI_MAX(x,y) ( ((x)>(y)) ? (x) : (y) )
#define AI_SIGN(x) (((x)>0) ? 1 : -1)
#define AI_CLAMP(x, min, max) AI_MIN(AI_MAX(x,min), max)
#define AI_ABS(x) fabsf(x)
#define AI_ABS_DIFF(x, y) ( ((x)>(y)) ? ((x)-(y)) : ((y)-(x)) )
#define AI_NEG(x) ( -1 * (x) )
#define AI_NOT(x) ( ((x)==true) ? false : true)
#define AI_RECIPROCAL(x) ( 1.0f / (x) )
#define AI_CEIL(x) ceilf(x)
#define AI_FLOOR(x) floorf(x)
#define AI_FLOOR_DIV(x, y) AI_FLOOR((x)/(y)) /* floor division: x // y */
#define AI_FLOOR_MOD(x, y) fmodf(x, y)
#define AI_ROUND(x) roundf(x)
#define AI_POW(x,y) powf(x, y)
#define AI_SQUARED_DIFF(x, y) (((x)-(y)) * ((x)-(y)))
#define AI_FLOAT_NEGATIVE_HALF (-0.5f + AI_FLOAT_EPSILON)
#define AI_FLOAT_POSITIVE_HALF (0.5f)
#define AI_MATH_ACOS(x) acosf(x)
#define AI_MATH_ACOSH(x) acoshf(x)
#define AI_MATH_ASIN(x) asinf(x)
#define AI_MATH_ASINH(x) asinhf(x)
#define AI_MATH_ATAN(x) atanf(x)
#define AI_MATH_ATANH(x) atanhf(x)
#define AI_MATH_COS(x) cosf(x)
#define AI_MATH_COSH(x) coshf(x)
#define AI_MATH_ERF(x) erff(x)
#define AI_MATH_EXP(x) expf(x)
#define AI_MATH_LOG(x) logf(x)
#define AI_MATH_POW(x, e) powf((x), (e))
#define AI_MATH_RSQRT(x) (1.0f / AI_MATH_SQRT(x))
#define AI_MATH_SIN(x) sinf(x)
#define AI_MATH_SINH(x) sinhf(x)
#define AI_MATH_SQRT(x) ai_math_sqrt(x)
#define AI_MATH_TAN(x) tanf(x)
#define AI_MATH_TANH(x) tanhf(x)
#define AI_MATH_SQUARE(x) AI_MATH_POW(x, 2.0f)
#define AI_MATH_ACOS(x) acosf(x)
#define AI_MATH_ACOSH(x) acoshf(x)
#define AI_MATH_ASIN(x) asinf(x)
#define AI_MATH_ASINH(x) asinhf(x)
#define AI_MATH_ATAN(x) atanf(x)
#define AI_MATH_ATANH(x) atanhf(x)
#define AI_MATH_COS(x) cosf(x)
#define AI_MATH_COSH(x) coshf(x)
#define AI_MATH_ERF(x) erff(x)
#define AI_MATH_EXP(x) expf(x)
#define AI_MATH_LOG(x) logf(x)
#define AI_MATH_POW(x, e) powf((x), (e))
#define AI_MATH_RSQRT(x) (1.0f / AI_MATH_SQRT(x))
#define AI_MATH_SIN(x) sinf(x)
#define AI_MATH_SINH(x) sinhf(x)
#define AI_MATH_SQRT(x) ai_math_sqrt(x)
#define AI_MATH_TAN(x) tanf(x)
#define AI_MATH_TANH(x) tanhf(x)
#define AI_MATH_SQUARE(x) AI_MATH_POW(x, 2.0f)
#define AI_MATH_RELU_TEST(x, thr, min, max) \
(((x)<=(thr)) ? (min) : (max))
#define AI_MATH_CLIP_LINEAR_REMAP(x, alpha, beta) \
(AI_MAX(0, AI_MIN(1, ((x) * (alpha) + (beta)))))
#define AI_MATH_RELU_GENERIC(x, thr, alpha, max) \
AI_MATH_RELU_TEST(x, max, AI_MATH_RELU_GENERIC_NO_MAX(x, thr, alpha), max)
#define AI_MATH_RELU_GENERIC_NO_MAX(x, thr, alpha) \
AI_MATH_RELU_TEST(x, thr, ((alpha)*((x)-(thr))), x)
#define AI_MATH_RELU_THRESHOLDED(x, thr) \
AI_MATH_RELU_TEST(x, thr, 0, (x))
#define AI_MATH_LEAKY_RELU(x, neg_slope, pos_slope) \
AI_MATH_RELU_TEST(x, 0, (x)*(neg_slope), (x)*(pos_slope))
// ( ((x)>0) ? (x)*(pos_slope) : (x)*(neg_slope) )
#define AI_MATH_PRELU(x, slope) \
AI_MATH_RELU_TEST(x, 0, (x)*(slope), (x))
// AI_MATH_LEAKY_RELU(x, slope, 1)
#define AI_MATH_RELU(x) \
AI_MATH_RELU_TEST(x, 0, 0, x)
// AI_MAX(x, 0)
#define AI_MATH_ELU(x, alpha) \
(AI_MAX(0.0f, (x)) + AI_MIN(0.0f, (alpha) * (AI_MATH_EXP(x)-1.0f)))
#define AI_MATH_SELU(x, alpha, scale) \
((scale)*AI_MATH_ELU(x, alpha))
#define AI_MATH_SCALED_TANH(x, alpha, beta) \
((alpha)*AI_MATH_TANH((beta)*(x)))
#define AI_MATH_SIGMOID(x) \
(1.0f / (1.0f + AI_MATH_EXP(-(x))))
#define AI_MATH_LOGISTIC(x)\
(x < 0) ? (1.0f -(1.0f / (1.0f + AI_MATH_EXP(-AI_ABS(x))))) :\
(1.0f / (1.0f + AI_MATH_EXP(-AI_ABS(x))))
#define AI_MATH_HARD_SIGMOID(x, alpha, beta) \
AI_MATH_CLIP_LINEAR_REMAP(x, alpha, beta)
/* Formula with higher accuracy */
#define AI_MATH_SWISH(x) \
((x) * AI_MATH_SIGMOID(x))
#define AI_MATH_HARD_SWISH(x) \
((x) * AI_MATH_CLIP_LINEAR_REMAP(x, 1.0f/6, 0.5f))
#define AI_MATH_SOFT_PLUS(x) \
AI_MATH_LOG(1.0f + AI_MATH_EXP(x))
#define AI_MATH_SOFT_SIGN(x) \
((x) / (1.0f + AI_ABS(x)))
AI_API_DECLARE_BEGIN
/*!
* @brief platform optimized square root on a float value
* @ingroup math_helpers
* @param x input value
* @return square root of the value
*/
AI_INTERFACE_ENTRY ai_float ai_math_sqrt(const ai_float x);
AI_API_DECLARE_END
#endif /* AI_LITE_MATH_HELPERS_H */
| 5,197 | C | 33.197368 | 79 | 0.556667 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/lite_pad_dqnn.h | /**
******************************************************************************
* @file lite_pad_dqnn.h
* @author AIS
* @brief header file of AI platform lite padding kernel datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LITE_PADDING_DQNN_H
#define LITE_PADDING_DQNN_H
#pragma once
#include "ai_lite_interface.h"
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Handles padding with binary input and binary output - Lite I/F
* @ingroup lite_padding_dqnn
*/
LITE_API_ENTRY
void forward_lite_pad_is1os1(const ai_u32 *pDataIn_init,
ai_u32 *pDataOut_init,
const ai_i32 width_in,
const ai_i32 width_out,
const ai_i32 height_in,
const ai_i32 height_out,
const ai_u32 n_channel_out,
const ai_i32 mode,
const ai_u16 pads_x,
const ai_u16 pads_y,
const ai_u16 pads_x_r,
const ai_u16 pads_y_b,
const ai_u32 pad_value);
#endif /*LITE_PADDING_DQNN_H*/
| 2,016 | C | 37.788461 | 80 | 0.381448 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/lite_conv2d_dqnn.h | /**
******************************************************************************
* @file lite_conv2d_dqnn.h
* @author AIS
* @brief header file of AI platform lite conv kernel datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LITE_CONV2D_DQNN_H
#define LITE_CONV2D_DQNN_H
#pragma once
#include "ai_lite_interface.h"
# define AI_16_OVERFLOW_CHECK(val_) (val_ <= 32767)
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
AI_API_DECLARE_BEGIN
/*!
* @brief Handles 2D convolution with binary input, binary output and
* binary weights - with 0 padding (QKeras like) - Lite I/F
* @ingroup lite_conv2d_dqnn
*/
LITE_API_ENTRY
void forward_lite_conv2d_is1os1ws1_bn_pad0(const ai_u32 *pDataIn_init,
ai_u32 *pDataOut_init,
const ai_u32 *pWeights_init,
ai_float *pScratch_32,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 width_in,
const ai_i32 height_in,
const ai_i32 width_out,
const ai_i32 height_out,
const ai_i32 filt_width,
const ai_i32 filt_height,
const ai_i32 filt_pad_x,
const ai_i32 filt_pad_y,
const ai_i32 filt_stride_x,
const ai_i32 filt_stride_y,
const ai_i32 *pThreshold);
/*!
* @brief Handles 2D convolution with binary input, binary output and
* binary weights - with 0 padding (QKeras like) - Lite I/F
* - Optimized thanks to Optim0 assumptions
* @ingroup lite_conv2d_dqnn
*/
LITE_API_ENTRY
void forward_lite_conv2d_is1os1ws1_bn_pad0_optim0(const ai_u32 *pDataIn_init,
ai_u32 *pDataOut_init,
const ai_u32 *pWeights_init,
ai_float *pScratch_32,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 width_in,
const ai_i32 height_in,
const ai_i32 width_out,
const ai_i32 height_out,
const ai_i32 filt_width,
const ai_i32 filt_height,
const ai_i32 filt_pad_x,
const ai_i32 filt_pad_y,
const ai_i32 filt_stride_x,
const ai_i32 filt_stride_y,
const ai_i32 *pThreshold);
/*!
* @brief Handles 2D convolution with binary input, 8-bits output and
* binary weights - with 0 padding (QKeras like) - Lite I/F
* @ingroup lite_conv2d_dqnn
*/
LITE_API_ENTRY
void forward_lite_conv2d_is1os8ws1_bn_pad0(const ai_u32 *pDataIn_init,
ai_i8 *pDataOut_init,
const ai_u32 *pWeights_init,
ai_float *pScratch_32,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 width_in,
const ai_i32 height_in,
const ai_i32 width_out,
const ai_i32 height_out,
const ai_i32 filt_width,
const ai_i32 filt_height,
const ai_i32 filt_pad_x,
const ai_i32 filt_pad_y,
const ai_i32 filt_stride_x,
const ai_i32 filt_stride_y,
const ai_float *pScale,
const ai_float *pOffset);
/*!
* @brief Handles 2D convolution with binary input, binary output and
* binary weights - with +1/-1 padding (Larq like) - Lite I/F
* @ingroup lite_conv2d_dqnn
*/
LITE_API_ENTRY
void forward_lite_conv2d_is1os1ws1_bn_pad1(const ai_u32 *pDataIn_init,
ai_u32 *pDataOut_init,
const ai_u32 *pWeights_init,
ai_float *pScratch_32,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 width_in,
const ai_i32 height_in,
const ai_i32 width_out,
const ai_i32 height_out,
const ai_i32 filt_width,
const ai_i32 filt_height,
const ai_i32 filt_pad_x,
const ai_i32 filt_pad_y,
const ai_i32 filt_stride_x,
const ai_i32 filt_stride_y,
const ai_i32 *pThreshold,
const ai_i32 pad_value);
/*!
* @brief Handles 2D convolution with binary input, binary output and
* binary weights - with +1/-1 padding (Larq like) - Lite I/F
* - Optimized thanks to Optim2 assumptions
* @ingroup lite_conv2d_dqnn
*/
LITE_API_ENTRY
void forward_lite_conv2d_is1os1ws1_bn_pad1_optim2(const ai_u32 *pDataIn_init,
ai_u32 *pDataOut_init,
const ai_u32 *pWeights_init,
ai_float *pScratch_32,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 width_in,
const ai_i32 height_in,
const ai_i32 width_out,
const ai_i32 height_out,
const ai_i32 filt_width,
const ai_i32 filt_height,
const ai_i32 filt_pad_x,
const ai_i32 filt_pad_y,
const ai_i32 filt_stride_x,
const ai_i32 filt_stride_y,
const ai_i32 *pThreshold,
const ai_i32 pad_value);
/*!
* @brief Handles 2D convolution with binary input, 8-bits output and
* binary weights - with +1/-1 padding (Larq like) - Lite I/F
* @ingroup lite_conv2d_dqnn
*/
LITE_API_ENTRY
void forward_lite_conv2d_is1os8ws1_bn_pad1(const ai_u32 *pDataIn_init,
ai_i8 *pDataOut_init,
const ai_u32 *pWeights_init,
ai_float *pScratch_32,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 width_in,
const ai_i32 height_in,
const ai_i32 width_out,
const ai_i32 height_out,
const ai_i32 filt_width,
const ai_i32 filt_height,
const ai_i32 filt_pad_x,
const ai_i32 filt_pad_y,
const ai_i32 filt_stride_x,
const ai_i32 filt_stride_y,
const ai_float *pScale,
const ai_float *pOffset,
const ai_i32 pad_value);
/*!
* @brief Handles 2D convolution with binary input, 8-bits output and
* binary weights - with +1/-1 padding (Larq like) - Lite I/F
* - Optimized thanks to Optim1 assumptions
* @ingroup lite_conv2d_dqnn
*/
LITE_API_ENTRY
void forward_lite_conv2d_is1os8ws1_bn_pad1_optim1(const ai_u32 *pDataIn_init,
ai_i8 *pDataOut_init,
const ai_u32 *pWeights_init,
ai_float *pScratch_32,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 width_in,
const ai_i32 height_in,
const ai_i32 width_out,
const ai_i32 height_out,
const ai_i32 filt_width,
const ai_i32 filt_height,
const ai_i32 filt_pad_x,
const ai_i32 filt_pad_y,
const ai_i32 filt_stride_x,
const ai_i32 filt_stride_y,
const ai_float *pScale,
const ai_float *pOffset,
const ai_i32 pad_value);
/**
* @brief Handles 2D convolution with binary input, fixed point 16-bits output and
* binary weights - with 0 padding (QKeras like) - Lite I/F
* @ingroup lite_conv2d_dqnn
*/
LITE_API_ENTRY
void forward_lite_conv2d_is1os16ws1_bn_pad0_fxp(const ai_u32 *pDataIn_init,
ai_i16 *pDataOut_init,
const ai_u32 *pWeights_init,
ai_float *pScratch_32,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 width_in,
const ai_i32 height_in,
const ai_i32 width_out,
const ai_i32 height_out,
const ai_i32 filt_width,
const ai_i32 filt_height,
const ai_i32 filt_pad_x,
const ai_i32 filt_pad_y,
const ai_i32 filt_stride_x,
const ai_i32 filt_stride_y,
const ai_float *pScale_init,
const ai_float *pOffset_init);
/*!
* @brief Handles 2D convolution with binary input, fixed point 16-bits output and
* binary weights - with +1/-1 padding (Larq like) - Lite I/F
*
* @ingroup lite_conv2d_dqnn
*/
LITE_API_ENTRY
void forward_lite_conv2d_is1os16ws1_bn_pad1_fxp(const ai_u32 *pDataIn_init,
ai_i16 *pDataOut_init,
const ai_u32 *pWeights_init,
ai_float *pScratch_32,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 width_in,
const ai_i32 height_in,
const ai_i32 width_out,
const ai_i32 height_out,
const ai_i32 filt_width,
const ai_i32 filt_height,
const ai_i32 filt_pad_x,
const ai_i32 filt_pad_y,
const ai_i32 filt_stride_x,
const ai_i32 filt_stride_y,
const ai_float *pScale_init,
const ai_float *pOffset_init,
const ai_i32 pad_value);
/*!
* @brief Handles 2D convolution with binary input, fixed point 16-bits output and
* binary weights - with +1/-1 padding (Larq like) - Lite I/F
* - Optimized thanks to Optim1 assumptions
*
* @ingroup lite_conv2d_dqnn
*/
LITE_API_ENTRY
void forward_lite_conv2d_is1os16ws1_bn_pad1_optim1_fxp(const ai_u32 *pDataIn_init,
ai_i16 *pDataOut_init,
const ai_u32 *pWeights_init,
ai_float *pScratch_32,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 width_in,
const ai_i32 height_in,
const ai_i32 width_out,
const ai_i32 height_out,
const ai_i32 filt_width,
const ai_i32 filt_height,
const ai_i32 filt_pad_x,
const ai_i32 filt_pad_y,
const ai_i32 filt_stride_x,
const ai_i32 filt_stride_y,
const ai_float *pScale_init,
const ai_float *pOffset_init,
const ai_i32 pad_value);
/**
* @brief Handles 2D convolution with binary input, fixed point 16-bits unsigned output and
* binary weights - with 0 padding (QKeras like) - Lite I/F
*
* @ingroup lite_conv2d_dqnn
*/
LITE_API_ENTRY
void forward_lite_conv2d_is1ou16ws1_bn_pad1_fxp(const ai_u32 *pDataIn_init,
ai_u16 *pDataOut_init,
const ai_u32 *pWeights_init,
ai_float *pScratch_32,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 width_in,
const ai_i32 height_in,
const ai_i32 width_out,
const ai_i32 height_out,
const ai_i32 filt_width,
const ai_i32 filt_height,
const ai_i32 filt_pad_x,
const ai_i32 filt_pad_y,
const ai_i32 filt_stride_x,
const ai_i32 filt_stride_y,
const ai_float *pScale_init,
const ai_float *pOffset_init,
const ai_i32 pad_value);
/*!
* @brief Handles 2D convolution with binary input, fixed point 16-bits unsigned output and
* binary weights - with +1/-1 padding (Larq like) - Lite I/F
*
* @ingroup lite_conv2d_dqnn
*/
LITE_API_ENTRY
void forward_lite_conv2d_is1ou16ws1_bn_pad0_fxp(const ai_u32 *pDataIn_init,
ai_u16 *pDataOut_init,
const ai_u32 *pWeights_init,
ai_float *pScratch_32,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 width_in,
const ai_i32 height_in,
const ai_i32 width_out,
const ai_i32 height_out,
const ai_i32 filt_width,
const ai_i32 filt_height,
const ai_i32 filt_pad_x,
const ai_i32 filt_pad_y,
const ai_i32 filt_stride_x,
const ai_i32 filt_stride_y,
const ai_float *pScale_init,
const ai_float *pOffset_init);
/*!
* @brief Handles 2D convolution with binary input, fixed point 16-bits unsigned output and
* binary weights - with +1/-1 padding (Larq like) - Lite I/F.
* - Optimized thanks to Optim1 assumptions
*
* @ingroup lite_conv2d_dqnn
*/
LITE_API_ENTRY
void forward_lite_conv2d_is1ou16ws1_bn_pad1_optim1_fxp(const ai_u32 *pDataIn_init,
ai_u16 *pDataOut_init,
const ai_u32 *pWeights_init,
ai_float *pScratch_32,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 width_in,
const ai_i32 height_in,
const ai_i32 width_out,
const ai_i32 height_out,
const ai_i32 filt_width,
const ai_i32 filt_height,
const ai_i32 filt_pad_x,
const ai_i32 filt_pad_y,
const ai_i32 filt_stride_x,
const ai_i32 filt_stride_y,
const ai_float *pScale_init,
const ai_float *pOffset_init,
const ai_i32 pad_value);
/*!
* @brief Handles 2D convolution with 8-bits quantized Input and weights and
* binary output - Lite I/F
* @ingroup lite_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
LITE_API_ENTRY
void forward_lite_conv2d_is8os1ws8(const ai_i8 *pDataIn_init,
ai_u32 *pDataOut_init,
const ai_i8 *pWeights_init,
ai_float *pScratch_32,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 width_in,
const ai_i32 height_in,
const ai_i32 width_out,
const ai_i32 height_out,
const ai_i32 filt_width,
const ai_i32 filt_height,
const ai_i32 filt_pad_x,
const ai_i32 filt_pad_y,
const ai_i32 filt_stride_x,
const ai_i32 filt_stride_y,
const ai_i32 *pThreshold,
const ai_i8 in_zeropoint);
/*!
* @brief Handles 2D convolution with 8-bits quantized Input and weights and
* binary output - Lite I/F - Optimized thanks to Optim2 assumptions
* @ingroup lite_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
LITE_API_ENTRY
void forward_lite_conv2d_is8os1ws8_optim2(const ai_i8 *pDataIn_init,
ai_u32 *pDataOut_init,
const ai_i8 *pWeights_init,
ai_float *pScratch_32,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 width_in,
const ai_i32 height_in,
const ai_i32 width_out,
const ai_i32 height_out,
const ai_i32 filt_width,
const ai_i32 filt_height,
const ai_i32 filt_pad_x,
const ai_i32 filt_pad_y,
const ai_i32 filt_stride_x,
const ai_i32 filt_stride_y,
const ai_i32 *pThreshold,
const ai_i8 in_zeropoint);
/*!
* @brief Handles 2D convolution with 8-bits quantized Input and weights and
* binary output - quantized with DoReFa SotA quantizer, lite I/F
* @ingroup lite_conv2d_dqnn
*/
LITE_API_ENTRY
void forward_lite_conv2d_dorefa_is8os1ws8(const ai_i8 *pDataIn_init,
ai_u32 *pDataOut_init,
const ai_u8 *pWeights_init,
ai_float *pScratch_32,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 width_in,
const ai_i32 height_in,
const ai_i32 width_out,
const ai_i32 height_out,
const ai_i32 filt_width,
const ai_i32 filt_height,
const ai_i32 filt_pad_x,
const ai_i32 filt_pad_y,
const ai_i32 filt_stride_x,
const ai_i32 filt_stride_y,
const ai_i32 *pThreshold,
const ai_i8 in_zeropoint);
/*!
* @brief Handles 2D convolution with 8-bits quantized input, output and weights
* - quantized with with different quantization for channel
* @ingroup lite_conv2d_dqnn
*/
LITE_API_ENTRY
void forward_lite_conv2d_is8os8ws8_sssa_ch(const ai_i8 *pData_in,
ai_i8 *pData_out,
const ai_i8 *pWeights,
const ai_i32 *pBias,
ai_u16 *pBuffer_a,
const ai_size width_in,
const ai_size height_in,
const ai_size width_out,
const ai_size height_out,
const ai_u16 n_channel_in,
const ai_u16 n_channel_out,
const ai_size filt_width,
const ai_size filt_height,
const ai_u16 filt_pad_x,
const ai_u16 filt_pad_y,
const ai_u16 filt_stride_x,
const ai_u16 filt_stride_y,
const ai_u16 dilation_x,
const ai_u16 dilation_y,
const ai_float in_scale,
const ai_float out_scale,
const ai_float *pWt_scale,
const ai_i8 in_zeropoint,
const ai_i8 out_zeropoint,
const ai_i32 scratch_size);
/*!
* @brief Handles 2D convolution with 16-bits quantized inputs, binary outputs and binary weights - Lite I/F.
* Vanilla version.
* @ingroup lite_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
LITE_API_ENTRY
void forward_lite_conv2d_is16os1ws1_bn_fxp(const ai_i16 *pIn,
ai_u32 *pOut_32,
const ai_u32 *pWeights,
const ai_i32 *pThreshold,
ai_i8 *pBufferA,
const ai_i32 dim_kernel,
const ai_i16 dim_im_in_x,
const ai_i16 dim_im_in_y,
const ai_i16 dim_im_out_x,
const ai_i16 dim_im_out_y,
const ai_i16 ch_im_in,
const ai_i16 ch_im_out,
const ai_i16 dim_kernel_x,
const ai_i16 dim_kernel_y,
const ai_i16 padding_x,
const ai_i16 padding_y,
const ai_i16 stride_x,
const ai_i16 stride_y,
const ai_i16 dilation_x,
const ai_i16 dilation_y,
const ai_i16 in_zeropoint);
/**
* @brief Handles 2D convolution with 16-bits quantized inputs, 16-bits quantized outputs and binary weights - Lite I/F
*
* @ingroup lite_conv2d_dqnn
*/
LITE_API_ENTRY
void forward_lite_conv2d_is16os16ws1_fxp(const ai_i16 *pIn,
ai_i16 *pOut,
const ai_u32 *pWeights,
ai_i8 *pBufferA,
const ai_i16 dim_im_in_x,
const ai_i16 dim_im_in_y,
const ai_i16 dim_im_out_x,
const ai_i16 dim_im_out_y,
const ai_i16 ch_im_in,
const ai_i16 ch_im_out,
const ai_u32 dim_kernel,
const ai_i16 dim_kernel_x,
const ai_i16 dim_kernel_y,
const ai_i16 padding_x,
const ai_i16 padding_y,
const ai_i16 stride_x,
const ai_i16 stride_y,
const ai_i16 dilation_x,
const ai_i16 dilation_y,
const ai_i16 in_zeropoint);
AI_API_DECLARE_END
#endif /*LITE_CONV2D_DQNN_H*/
| 30,870 | C | 55.333942 | 119 | 0.351085 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/core_private.h | /**
******************************************************************************
* @file core_private.h
* @author AST Embedded Analytics Research Platform
* @brief private header file of common private core module defines
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef CORE_PRIVATE_H
#define CORE_PRIVATE_H
#pragma once
#include "ai_math_helpers.h"
#include "ai_datatypes_internal.h"
#include "core_log.h"
/*!
* @defgroup core_private Core Library Private macros and datatypes
* @brief Common macros, datatypes and routines for core private rounites
* @details This module contains the definitons and implementations of some
* internal routines and datatypes that are supposed to not be exposed as
* public headers. So usually this file should be include only on .c files or
* headers that are private as well
*/
/*** Foreground Colors ****************************************************/
#define CORE_COLOR_BLACK "\x1b[30m"
#define CORE_COLOR_RED "\x1b[31m"
#define CORE_COLOR_GREEN "\x1b[32m"
#define CORE_COLOR_YELLOW "\x1b[33m"
#define CORE_COLOR_BLUE "\x1b[94m"
#define CORE_COLOR_MAGENTA "\x1b[35m"
#define CORE_COLOR_CYAN "\x1b[36m"
#define CORE_COLOR_WHYTE "\x1b[37m"
#define CORE_COLOR_DEFAULT "\x1b[39m"
#define CORE_COLOR_LGRAY "\x1b[90m"
#define CORE_COLOR_LRED "\x1b[91m"
#define CORE_COLOR_LGREEN "\x1b[92m"
#define CORE_COLOR_LYELLOW "\x1b[93m"
#define CORE_COLOR_LBLUE "\x1b[94m"
#define CORE_COLOR_LMAGENTA "\x1b[95m"
#define CORE_COLOR_LCYAN "\x1b[96m"
#define CORE_COLOR_LWHITE "\x1b[97m"
/*** Text Attributes Colors *********************************************/
#define CORE_COLOR_OFF "\x1b[0m"
#define CORE_COLOR_BOLD "\x1b[1m"
#define CORE_COLOR_UNDERLINE "\x1b[4m"
#define CORE_COLOR_BLINK "\x1b[5m"
#define CORE_COLOR_BOLD_OFF "\x1b[21m"
#define CORE_COLOR_UNDERLINE_OFF "\x1b[24m"
#define CORE_COLOR_BLINK_OFF "\x1b[25m"
/*** Background Colors ****************************************************/
#define CORE_COLOR_BG_BLACK "\x1b[40m"
#define CORE_COLOR_BG_RED "\x1b[41m"
#define CORE_COLOR_BG_GREEN "\x1b[42m"
#define CORE_COLOR_BG_YELLOW "\x1b[43m"
#define CORE_COLOR_BG_BLUE "\x1b[44m"
#define CORE_COLOR_BG_MAGENTA "\x1b[45m"
#define CORE_COLOR_BG_CYAN "\x1b[46m"
#define CORE_COLOR_BG_WHITE "\x1b[47m"
#define CORE_COLOR_BG_DEFAULT "\x1b[49m"
#define CORE_COLOR_BG_LGRAY "\x1b[100m"
#define CORE_COLOR_BG_LRED "\x1b[101m"
#define CORE_COLOR_BG_LGREEN "\x1b[102m"
#define CORE_COLOR_BG_LYELLOW "\x1b[103m"
#define CORE_COLOR_BG_LBLUE "\x1b[104m"
#define CORE_COLOR_BG_LMAGENTA "\x1b[105m"
#define CORE_COLOR_BG_LCYAN "\x1b[106m"
#define CORE_COLOR_BG_LWHITE "\x1b[107m"
/*****************************************************************************/
#define CORE_ADDRESS_RANGE_INIT(start_, end_) \
core_address_range_init(start_, end_)
#define CORE_GET_BUFFER_META_INFO(meta_info_, tensor_ptr_) \
core_get_buffer_meta_info(meta_info_, tensor_ptr_)
#define CORE_ADDRESS_RANGE_END(range_) \
( (ai_ptr)(((range_)->start)+((range_)->size)) )
#define CORE_ADDRESS_RANGE_OVERLAP(overlap_) \
( ((overlap_)->start) && (((overlap_)->size)>0) )
#define CORE_ADDRESS_RANGE_OVERLAP_PARTIAL(overlap_, ref_) \
( ((overlap_)->start) && (((overlap_)->size)<((ref_)->size)) )
#define CORE_MEMORY_OVERLAP_INIT(partial_, range_, chain_id_, tensor_id_) { \
.partial = (partial_), .range = AI_PACK(range_), \
.chain_id = (chain_id_), .tensor_id = (tensor_id_) \
}
#define CORE_OFFSET(offset_, max_) \
((ai_i32)(((offset_)<0) ? AI_MAX((max_) - (offset_), 0) : AI_MIN(offset_, max_)))
/*****************************************************************************/
/** Network Context Handlers **/
/*****************************************************************************/
/*****************************************************************************/
/** Network Tensors Handlers **/
/*****************************************************************************/
#define AI_TENSOR_HAS_INTQ_INFO \
AI_BUFFER_META_HAS_INTQ_INFO
#define CORE_TENSOR_GET_SHAPE_SIZE(tensor_) \
ai_shape_get_size(AI_TENSOR_SHAPE(tensor_))
#define CORE_ASSERT_SHAPE_MATCH(x, y) \
do { \
AI_ASSERT(AI_SHAPE_H(y) == 1 || AI_SHAPE_H(x)==1 || AI_SHAPE_H(y)==AI_SHAPE_H(x)) \
AI_ASSERT(AI_SHAPE_W(y) == 1 || AI_SHAPE_W(x)==1 || AI_SHAPE_W(y)==AI_SHAPE_W(x)) \
AI_ASSERT(AI_SHAPE_D(y) == 1 || AI_SHAPE_D(x)==1 || AI_SHAPE_D(y)==AI_SHAPE_D(x)) \
AI_ASSERT(AI_SHAPE_E(y) == 1 || AI_SHAPE_E(x)==1 || AI_SHAPE_E(y)==AI_SHAPE_E(x)) \
AI_ASSERT(AI_SHAPE_CH(y) == 1 || AI_SHAPE_CH(x)==1|| AI_SHAPE_CH(y)==AI_SHAPE_CH(x)) \
AI_ASSERT(AI_SHAPE_IN_CH(y) == 1 || AI_SHAPE_IN_CH(x)==1|| AI_SHAPE_IN_CH(y)==AI_SHAPE_IN_CH(x)) \
} while(0);
#define AI_TENSOR_ARRAY_BYTE_SIZE(t_) \
AI_ARRAY_OBJ_BYTE_SIZE(AI_ARRAY_OBJ(t_->data))
#define AI_TENSOR_ARRAY_GET_DATA_ADDR(t_) \
AI_HANDLE_PTR(AI_ARRAY_OBJ_DATA_START(t_->data, void))
#define AI_TENSOR_ARRAY_UPDATE_DATA_ADDR(t_, addr_) \
{ ai_array *arr_ = AI_ARRAY_OBJ(t_->data); \
const uintptr_t off_ = (uintptr_t)arr_->data - (uintptr_t)arr_->data_start; \
arr_->data_start = AI_PTR(addr_); \
arr_->data = AI_PTR((uintptr_t)addr_ + off_); \
}
#define AI_TENSOR_INTEGER_GET_SIZE(t_) \
((t_->klass) ? (AI_KLASS_GET_INTQ_INFO_LIST(t_))->size : 0)
#define AI_TENSOR_INTEGER_GET_SCALE(t_, idx_) \
AI_INTQ_INFO_LIST_SCALE(AI_KLASS_GET_INTQ_INFO_LIST(t_), ai_float, idx_)
#define AI_TENSOR_INTEGER_GET_ZEROPOINT_I8(t_, idx_) \
AI_INTQ_INFO_LIST_ZEROPOINT(AI_KLASS_GET_INTQ_INFO_LIST(t_), ai_i8, idx_)
#define AI_TENSOR_INTEGER_GET_ZEROPOINT_U8(t_, idx_) \
AI_INTQ_INFO_LIST_ZEROPOINT(AI_KLASS_GET_INTQ_INFO_LIST(t_), ai_u8, idx_)
#define AI_TENSOR_FMT_GET_SIGN(t_) \
AI_BUFFER_FMT_GET_SIGN(AI_ARRAY_OBJ(t_->data)->format)
#define AI_TENSOR_FMT_GET_BITS(t_) \
AI_BUFFER_FMT_GET_BITS(AI_ARRAY_OBJ(t_->data)->format)
#define AI_TENSOR_FMT_GET_FBITS(t_) \
AI_BUFFER_FMT_GET_FBITS(AI_ARRAY_OBJ(t_->data)->format)
#define AI_TENSOR_FMT_GET_TYPE(t_) \
AI_BUFFER_FMT_GET_TYPE(AI_ARRAY_OBJ(t_->data)->format)
#define AI_TENSOR_GET_FMT(t_) \
(AI_ARRAY_OBJ(t_->data)->format)
/*****************************************************************************/
/** Network Buffers Handlers **/
/*****************************************************************************/
#define AI_FOR_EACH_BUFFER_ARRAY_ITEM(buffer_ptr_, buffer_array_ptr_, start_pos_, end_pos_) \
ai_buffer* buffer_ptr_ = AI_BUFFER_ARRAY_ITEM(buffer_array_ptr_, \
CORE_OFFSET(end_pos_, AI_BUFFER_ARRAY_SIZE(buffer_array_ptr_))); \
for ( ; buffer_ptr_ && AI_BUFFER_ARRAY_SIZE(buffer_array_ptr_) && \
(buffer_ptr_>=AI_BUFFER_ARRAY_ITEM(buffer_array_ptr_, \
CORE_OFFSET(start_pos_, AI_BUFFER_ARRAY_SIZE(buffer_array_ptr_)))); buffer_ptr_--)
/*****************************************************************************/
/** Network Arrays Handlers **/
/*****************************************************************************/
#define AI_ARRAY_OBJ_FMT(array_) \
AI_CAST(ai_array_format, AI_ARRAY_OBJ(array_)->format)
#define AI_ARRAY_OBJ_SIZE(array_) \
(AI_ARRAY_OBJ(array_)->size)
#define AI_ARRAY_OBJ_BYTE_SIZE(array_) \
AI_SIZE(AI_ARRAY_GET_BYTE_SIZE(AI_ARRAY_OBJ_FMT(array_), \
AI_ARRAY_OBJ_SIZE(array_)))
#define AI_ARRAY_OBJ_DATA_SIZE(array_) \
AI_ARRAY_GET_DATA_BYTE_SIZE(AI_ARRAY_OBJ_FMT(array_), \
AI_ARRAY_OBJ_SIZE(array_))
#define AI_ARRAY_OBJ_DATA(array_, type_) \
AI_CAST(type_*, AI_ARRAY_OBJ(array_)->data)
#define AI_ARRAY_OBJ_DATA_START(array_, type_) \
AI_CAST(type_*, AI_ARRAY_OBJ(array_)->data_start)
#define AI_ARRAY_OBJ_ELEM(array_, type_, pos_) \
AI_ARRAY_OBJ_DATA(array_, type_)[(pos_)]
/*****************************************************************************/
/** Network Tensors Chains / Lists Handlers **/
/*****************************************************************************/
#define SET_TENSOR_IN(chain_, pos_) \
(GET_TENSOR_LIST_IN(chain_)->tensor[(pos_)])
#define SET_TENSOR_OUT(chain_, pos_) \
(GET_TENSOR_LIST_OUT(chain_)->tensor[(pos_)])
#define AI_NODE_IO_GET(node_, in_, out_) \
ASSERT_NODE_SANITY(node_) \
ai_tensor* in_ = GET_TENSOR_IN((node_)->tensors, 0); \
ai_tensor* out_ = GET_TENSOR_OUT((node_)->tensors, 0); \
ASSERT_TENSOR_SANITY(in_) \
ASSERT_TENSOR_SANITY(out_)
/*****************************************************************************/
#define AI_BITS_TO_BYTES(bits_) \
(((bits_)+0x7) >> 3)
#define AI_BYTES_TO_BITS(bytes_) \
((bytes_) << 3)
/*****************************************************************************/
/** Network Nodes Handlers **/
/*****************************************************************************/
#define AI_NODE_IS_FIRST(node) \
(AI_NODE_OBJ(node)==AI_NODE_OBJ(AI_NODE_OBJ(node)->network->input_node))
#define AI_NODE_IS_LAST(node_) \
((AI_NODE_OBJ(node_)==AI_NODE_OBJ(node_)->next) || \
(AI_NODE_OBJ(node_)->next==NULL))
#define AI_FOR_EACH_NODE_DO(node_, nodes_) \
for (ai_node* node_ = AI_NODE_OBJ(nodes_); (node_); \
node_ = ((AI_NODE_IS_LAST(node_)) ? NULL : (node_)->next))
/*****************************************************************************/
typedef struct {
ai_ptr start;
ai_size size;
} ai_address_range;
typedef struct {
ai_address_range range;
ai_u16 chain_id;
ai_u16 tensor_id;
ai_bool partial;
} ai_memory_overlap;
/*****************************************************************************/
AI_DECLARE_STATIC
ai_address_range core_address_range_init(
const ai_handle start, const ai_handle end)
{
ai_address_range r;
r.start = (start<end) ? start : end;
r.size = (ai_size) ((start<end)
? ((ai_uptr)end-(ai_uptr)start) : ((ai_uptr)start-(ai_uptr)end));
return r;
}
AI_DECLARE_STATIC
ai_buffer_meta_info* core_get_buffer_meta_info(
ai_buffer_meta_info* meta,
const ai_tensor* t)
{
if (!meta) return NULL;
AI_ASSERT(t && t->data)
ai_bool ok;
meta->flags = 0x0;
meta->intq_info = AI_KLASS_GET_INTQ_INFO_LIST(t);
ok = (meta->intq_info && (meta->intq_info->size>0));
meta->flags |= (ok) ? AI_BUFFER_META_HAS_INTQ_INFO : 0x0;
return (ok) ? meta : NULL;
}
#if 0
#include <stdio.h>
#include <stdarg.h>
AI_DECLARE_STATIC
void _dump_file_print(
const char* fname, const char* fmt, ...)
{
static FILE* fp = NULL;
if (fname) {
if (!fp) {
fp = fopen(fname, "a");
}
}
if (fp) {
va_list args;
va_start(args, fmt);
vfprintf(fp, fmt, args);
va_end(args);
fflush(fp);
}
}
AI_DECLARE_STATIC
void _dump_bytearray(
const char* fname,
const ai_handle src, const ai_size src_size, const ai_u8 src_id,
const char* name)
{
static FILE* fp = NULL;
if (fname && src && (src_size>0)) {
if (!fp) {
fp = fopen(fname, "a");
}
}
if (fp) {
switch (src_id) {
case 1:
{
const ai_float* src_value = (const ai_float*)src;
fprintf(fp, "ai_float %s[%u] = {%f", name, src_size, src_value[0]);
for (ai_size i=1; i<src_size; i++) { fprintf(fp, ", %f", src_value[i]); }
} break;
case 2:
{
const ai_i8* src_value = (const ai_i8*)src;
fprintf(fp, "ai_i8 %s[%u] = {%d", name, src_size, src_value[0]);
for (ai_size i=1; i<src_size; i++) { fprintf(fp, ", %d", src_value[i]); }
} break;
case 3:
{
const ai_u8* src_value = (const ai_u8*)src;
fprintf(fp, "ai_u8 %s[%u] = {%u", name, src_size, src_value[0]);
for (ai_size i=1; i<src_size; i++) { fprintf(fp, ", %u", src_value[i]); }
} break;
default:
fprintf(fp, "format not supported: %u {", src_id);
break;
}
fprintf(fp, "};\n");
fflush(fp);
}
}
#endif
#endif /* CORE_PRIVATE_H */
| 13,110 | C | 34.822404 | 114 | 0.510297 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/lite_operators.h | #ifndef LITE_OPERATORS_H
#define LITE_OPERATORS_H
#pragma once
#include "lite_bn_f32.h"
#include "lite_bn_integer.h"
#include "lite_conv2d.h"
#include "lite_conv2d_dqnn.h"
#include "lite_convert_dqnn.h"
#include "lite_dense_if32.h"
#include "lite_dense_is1.h"
#include "lite_dense_is1ws1.h"
#include "lite_dense_ws1.h"
#include "lite_gru_f32.h"
#include "lite_dw_dqnn.h"
#include "lite_pw_dqnn.h"
#include "lite_dense_is8os8ws8.h"
#include "lite_generic_float.h"
#include "lite_pool_f32.h"
#include "lite_maxpool_dqnn.h"
#include "lite_nl_generic_float.h"
#include "lite_nl_generic_integer.h"
#include "lite_pad_generic.h"
#include "lite_pad_dqnn.h"
#include "lite_upsample_generic.h"
#endif /* LITE_OPERATORS_H */
| 718 | C | 23.793103 | 36 | 0.727019 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers_norm.h | /**
******************************************************************************
* @file layers_norm.h
* @author AST Embedded Analytics Research Platform
* @brief header file of AI platform normalization layers datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_NORM_H
#define LAYERS_NORM_H
#pragma once
#include "layers_common.h"
/*!
* @defgroup layers_norm Normalization Layers Definitions
* @brief definition
*
*/
AI_API_DECLARE_BEGIN
/*!
* @struct ai_layer_bn
* @ingroup layers_norm
* @brief Batch normalization (scale with bias) layer
*/
typedef ai_layer_base ai_layer_bn;
/*!
* @struct ai_layer_lrn
* @ingroup layers_norm
* @brief Local Response Normalization layer
*
* Divides each element by a scale factor computed
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_lrn_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_u32 local_size; /*!< size of the normalization window */
ai_float k; /*!< bias term */
ai_float alpha; /*!< input scale */
ai_float beta; /*!< scale exponent */
} ai_layer_lrn;
/*!
* @enum ai_norm_type_e
* @ingroup layers_norm
* @brief store the type of normalization algorithm to apply
*/
typedef enum ai_norm_type_ {
NONE = 0,
L1 = 1,
L2 = 2,
MAX = 3,
} ai_norm_type_e;
/*!
* @struct ai_layer_norm
* @ingroup layers_norm
* @brief Lp Normalization layer
*
* Normalizes the tensor along the 'axis' direction using the Lp norm.
* Optionally divides the result by the number of the elements.
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_norm_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_shape_idx axis; /*! normalization axis */
ai_float exponent; /*!< normalization exponent p */
ai_bool scale; /*!< multiplies by the pth root of the number of elements */
ai_norm_type_e norm_type;
} ai_layer_norm;
/*!
* @brief Local response normalization computed on a float array
* @ingroup layers_norm
* @param out opaque handler to float output channel
* @param in opaque handler to float input channel
* @param pad amount of padding for the channels
*/
AI_INTERNAL_API
void func_lrn_array_f32(ai_handle out, const ai_handle in,
const ai_size in_size, const ai_size channel_size,
const ai_i32 pad, const ai_float k,
const ai_float alpha, const ai_float beta);
/*!
* @brief Lp normalization computed on a float array
* @ingroup layers_norm
* @param out opaque handler to float output channel
* @param in opaque handler to float input channel
* @param exponent p exponent for the Lp normalization
* @param axis_stride stride (in array elements) of the normalization axis
* @param axis_size size of the normalization axis
* @param outer_size number of tensor slices (including the normalization axis)
* on which compute the normalization
*/
AI_INTERNAL_API
void func_norm_array_f32(ai_handle out, const ai_handle in,
const ai_float exponent,
const ai_float norm,
const ai_size axis_stride,
const ai_size axis_size,
const ai_size outer_size);
/*!
* @brief Max normalization computed on float array
* @ingroup layers_norm
* @param out opaque handler to float output channel
* @param in opaque handler to float input channel
* @param axis_stride stride (in array elements) of the normalization axis
* @param axis_size size of the normalization axis
* @param outer_size number of tensor slices (including the normalization axis)
*/
AI_INTERNAL_API
void func_norm_max_array_f32(ai_handle out, const ai_handle in,
const ai_float norm,
const ai_size axis_size,
const ai_size n_el);
/*!
* @brief Fast L2 normalization computed on a float array
* @ingroup layers_norm
* @param out opaque handler to float output channel
* @param in opaque handler to float input channel
* @param axis_size size of the normalization axis
* @param n_el total number of elements in the tensor
*/
AI_INTERNAL_API
void func_norm_l2_fast_array_f32(ai_handle out, const ai_handle in,
const ai_float norm,
const ai_size axis_size,
const ai_size outer_size);
/*!
* @brief Fast L1 normalization computed on a float array
* @ingroup layers_norm
* @param out opaque handler to float output channel
* @param in opaque handler to float input channel
* @param axis_size size of the normalization axis
* @param n_el total number of elements in the tensor
*/
AI_INTERNAL_API
void func_norm_l1_fast_array_f32(ai_handle out, const ai_handle in,
const ai_float norm,
const ai_size axis_size,
const ai_size n_el);
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Computes the activations of a batchnorm (scale + bias) layer.
* @ingroup layers_norm
* @param layer the batch normalization (bn) layer
*/
AI_INTERNAL_API
void forward_bn(ai_layer* layer);
/*!
* @brief Computes the activations of a batchnorm (scale + bias) layer with
* integer format
* @ingroup layers_norm
* @param layer the batch normalization (bn) layer
*/
AI_INTERNAL_API
void forward_bn_integer(ai_layer* layer);
/*!
* @brief Computes the activations of a Local Response Normalization Layer.
* @ingroup layers_norm
* @param layer the local response normalization (lrn) layer
*/
AI_INTERNAL_API
void forward_lrn(ai_layer* layer);
/*!
* @brief Computes the activations of a normalization layer.
* @ingroup layers_norm
* @param layer the normalization (norm) layer
*/
AI_INTERNAL_API
void forward_norm(ai_layer* layer);
/*!
* @brief Batch Normalization with 16-bit input, 16-bit threshold and binary output.
* It is implemented using a threshold, and this is possible because the output is binary.
* @param layer the batch normalization layer
*/
AI_INTERNAL_API
void forward_bn_is16os1ws16(ai_layer *pLayer);
AI_API_DECLARE_END
#endif /*LAYERS_NORM_H*/
| 6,910 | C | 31.909524 | 97 | 0.612156 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers_conv2d_dqnn.h | /**
******************************************************************************
* @file layers_conv2d_dqnn.h
* @author AIS
* @brief header file of AI platform DQNN conv datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_CONV2D_DQNN_H
#define LAYERS_CONV2D_DQNN_H
#pragma once
#include "layers_common.h"
#include "layers_conv2d.h"
/*!
* @defgroup layers_conv2d_dqnn Layers Definitions
* @brief definition
*
*/
AI_API_DECLARE_BEGIN
#define AI_DQNN_PAD_1_KEY (1)
#define AI_DQNN_PAD_M1_KEY (-1)
#define AI_DQNN_PAD_0_KEY (0)
#define AI_DQNN_PAD_1_VALUE (0x0)
#define AI_DQNN_PAD_M1_VALUE (0xFFFFFFFF)
#define AI_DQNN_PAD_0_VALUE (0x2)
/*!
* @struct ai_layer_conv2d_dqnn
* @ingroup layers_conv2d_dqnn
* @brief conv2d_dqnn layer
*
* @ref forward_conv2d_is1os1ws1
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_conv2d_dqnn_ {
AI_LAYER_CONV2D_FIELDS_DECLARE
ai_i32 pad_value;
} ai_layer_conv2d_dqnn;
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Handles point wise convolution with binary input, binary output and
* binary weights
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_pw_is1os1ws1_bn(ai_layer *pLayer);
/*!
* @brief Handles point wise convolution with binary input, binary output and
* binary weights - Optimized thanks to Optim2 assumptions
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_pw_is1os1ws1_bn_optim2(ai_layer *pLayer);
/*!
* @brief Handles point wise convolution with binary input, 8-bits output and
* binary weights
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_pw_is1os8ws1_bn(ai_layer *pLayer);
/*!
* @brief Handles point wise convolution with binary input, 8-bits output and
* binary weights - Optimized thanks to Optim1 assumptions
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_pw_is1os8ws1_bn_optim1(ai_layer *pLayer);
/*!
* @brief Handles point-wise convolution with binary input, float32 output
* and binary weights
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_pw_is1of32ws1_bn(ai_layer *pLayer);
/*!
* @brief Handles point-wise convolution with binary input, float32 output
* and binary weights - Optimized thanks to Optim1 assumptions
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_pw_is1of32ws1_bn_optim1(ai_layer *pLayer);
/*!
* @brief Handles 2D convolution with binary input, binary output and
* binary weights
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_conv2d_is1os1ws1_bn(ai_layer *pLayer);
/*!
* @brief Handles 2D convolution with binary input, binary output and
* binary weights - Optimized thanks to Optim2 assumptions
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_conv2d_is1os1ws1_bn_optim2(ai_layer *pLayer);
/*!
* @brief Handles 2D convolution with binary input, 8-bits output and
* binary weights
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_conv2d_is1os8ws1_bn(ai_layer *pLayer);
/*!
* @brief Handles 2D convolution with binary input, 8-bits output and
* binary weights - Optimized thanks to Optim1 assumptions
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_conv2d_is1os8ws1_bn_optim1(ai_layer *pLayer);
/*!
* @brief Handles 2D convolution with binary input, binary output and
* binary weights - with 0 padding (QKeras like)
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_conv2d_is1os1ws1_bn_pad0(ai_layer *pLayer);
/*!
* @brief Handles 2D convolution with binary input, binary output and
* binary weights - with 0 padding (QKeras like) - Optimized thanks to
* Optim0 assumptions
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_conv2d_is1os1ws1_bn_pad0_optim0(ai_layer *pLayer);
/*!
* @brief Handles 2D convolution with binary input, 8-bits output and
* binary weights - with 0 padding (QKeras like)
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_conv2d_is1os8ws1_bn_pad0(ai_layer *pLayer);
/*!
* @brief Handles 2D convolution with binary input, binary output and
* binary weights - with +1/-1 padding (Larq like)
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_conv2d_is1os1ws1_bn_pad1(ai_layer *pLayer);
/*!
* @brief Handles 2D convolution with binary input, binary output and
* binary weights - with +1/-1 padding (Larq like) - Optimized thanks
* to Optim2 assumptions
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_conv2d_is1os1ws1_bn_pad1_optim2(ai_layer *pLayer);
/*!
* @brief Handles 2D convolution with binary input, 8-bits output and
* binary weights - with +1/-1 padding (Larq like)
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_conv2d_is1os8ws1_bn_pad1(ai_layer *pLayer);
/*!
* @brief Handles 2D convolution with binary input, 8-bits output and
* binary weights - with +1/-1 padding (Larq like) - Optimized thanks
* to Optim1 assumptions
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_conv2d_is1os8ws1_bn_pad1_optim1(ai_layer *pLayer);
/*!
* @brief Handles 2D convolution with 8-bits quantized Input and weights and
* binary output
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_conv2d_is8os1ws8(ai_layer *pLayer);
/*!
* @brief Handles 2D convolution with 8-bits quantized Input and weights and
* binary output - Optimized thanks to Optim2 assumptions
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_conv2d_is8os1ws8_optim2(ai_layer *pLayer);
/*!
* @brief Handles 2D convolution with 8-bits quantized Input and weights and
* binary output - quantized with DoReFa SotA quantizer
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_conv2d_dorefa_is8os1ws8(ai_layer *pLayer);
/*!
* @brief Handles 2D convolution with 16-bits quantized input, binary weights
and binary output
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_conv2d_is16os1ws1_bn_fxp(ai_layer *pLayer);
/*!
* @brief Handles 2D convolution with 16-bits quantized input, binary weights
and 16-bits quantized output
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_conv2d_is16os16ws1_fxp(ai_layer *pLayer);
/*!
* @brief Handles depth-wise convolution with binary input, binary output and
* binary weights
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_dw_is1os1ws1_bn(ai_layer *pLayer);
/*!
* @brief Handles depth-wise convolution with binary input, binary output and
* binary weights - Optimized thanks to Optim3 assumptions
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_dw_is1os1ws1_bn_optim3(ai_layer *pLayer);
/*!
* @brief Handles depth-wise convolution with binary input, binary output and
* binary weights - with 0 padding (QKeras like)
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_dw_is1os1ws1_bn_pad0(ai_layer *pLayer);
/*!
* @brief Handles depth-wise convolution with binary input, binary output and
* binary weights - with 0 padding (QKeras like) - Optimized thanks to
* Optim3 assumptions
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_dw_is1os1ws1_bn_pad0_optim3(ai_layer *pLayer);
/*!
* @brief Handles depth-wise convolution with binary input, binary output and
* binary weights - with +1/-1 padding (Larq like)
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_dw_is1os1ws1_bn_pad1(ai_layer *pLayer);
/*!
* @brief Handles depth-wise convolution with binary input, binary output and
* binary weights - with +1/-1 padding (Larq like) - Optimized thanks to
* Optim3 assumptions
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_dw_is1os1ws1_bn_pad1_optim3(ai_layer *pLayer);
/*!
* @brief Handles 2D convolution with 8-bits quantized Input and output and
* binary weights
* @ingroup layers_conv2d_dqnn
* @param layer conv2d_dqnn layer
*/
AI_INTERNAL_API
void forward_conv2d_is8os8ws1(ai_layer *pLayer);
/**
* @brief Handles 2D convolution with binary input, fixed point 16-bits output and
* binary weights - with 0 padding (QKeras like) - Lite I/F
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_is1os16ws1_bn_pad0_fxp(ai_layer *pLayer);
/*!
* @brief Handles 2D convolution with binary input, fixed point 16-bits output and
* binary weights - with +1/-1 padding (Larq like) - Lite I/F
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_is1os16ws1_bn_pad1_fxp(ai_layer *pLayer);
/*!
* @brief Handles 2D convolution with binary input, fixed point 16-bits output and
* binary weights - with +1/-1 padding (Larq like) - Lite I/F
* - Optimized thanks to Optim1 assumptions
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_is1os16ws1_bn_pad1_optim1_fxp(ai_layer *pLayer);
/*!
* @brief Handles 2D convolution with binary input, fixed point 16-bits unsigned output and
* binary weights - with 0 padding (QKeras like) - Lite I/F
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_is1ou16ws1_bn_pad0_fxp(ai_layer *pLayer);
/*!
* @brief Handles 2D convolution with binary input, fixed point 16-bits unsigned output and
* binary weights - with +1/-1 padding (Larq like) - Lite I/F
* @ingroup lite_conv2d_dqnn
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_is1ou16ws1_bn_pad1_fxp(ai_layer *pLayer);
/*!
* @brief Handles 2D convolution with binary input, fixed point 16-bits unsiged output and
* binary weights - with +1/-1 padding (Larq like) - Lite I/F
* - Optimized thanks to Optim1 assumptions
* @ingroup lite_conv2d_dqnn
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_is1ou16ws1_bn_pad1_optim1_fxp(ai_layer *pLayer);
/*!
* @brief Computes the activations of a integer quantized 2D convolutional layer
* for SSSA per channel quantized RGB scheme using n_channel_in = 3
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_conv2d_is8os8ws8_sssa_ch_rgb(const ai_i8 *pData_in,
ai_i8 *pData_out,
const ai_i8 *pWeights,
const ai_i32 *pBias,
ai_u16 *pBuffer_a,
const ai_size width_in,
const ai_size height_in,
const ai_size width_out,
const ai_size height_out,
const ai_u16 n_channel_in,
const ai_u16 n_channel_out,
const ai_size filt_width,
const ai_size filt_height,
const ai_u16 filt_pad_x,
const ai_u16 filt_pad_y,
const ai_u16 filt_stride_x,
const ai_u16 filt_stride_y,
const ai_float in_scale,
const ai_float out_scale,
const ai_float *pWt_scale,
const ai_i8 in_zeropoint,
const ai_i8 out_zeropoint,
const ai_bool out_ch_format,
ai_i16 *p_out_r_shift,
ai_i32 *p_out_factor);
/*!
* @brief Computes the activations of a point-wise integer quantized convolution
for SSSA per channel quantized scheme
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_pw_is8os8ws8_sssa_ch(const ai_i8 *pData_in,
ai_i8 *pData_out,
const ai_i8 *pWeights,
const ai_i32 *pBias,
ai_u16 *pBuffer_a,
const ai_size width_in,
const ai_size height_in,
const ai_size width_out,
const ai_size height_out,
const ai_u16 n_channel_in,
const ai_u16 n_channel_out,
const ai_size filt_width,
const ai_size filt_height,
const ai_u16 filt_pad_x,
const ai_u16 filt_pad_y,
const ai_u16 filt_stride_x,
const ai_u16 filt_stride_y,
const ai_u16 dilation_x,
const ai_u16 dilation_y,
const ai_float in_scale,
const ai_float out_scale,
const ai_float *pWt_scale,
const ai_i8 in_zeropoint,
const ai_i8 out_zeropoint,
ai_i16 *p_out_r_shift,
ai_i32 *p_out_factor,
ai_i32 AI_PWOverlay,
ai_i16 *bufferA,
ai_i32 scratch_size);
// st_nn_context_t context);
/*!
* @brief Computes the activations of a depth-wise integer quantized convolution
for SSSA per channel quantized scheme
* @ingroup layers_conv2d
* @param layer the convolutional (conv) layer
*/
AI_INTERNAL_API
void forward_dw_is8os8ws8_sssa_ch(const ai_i8 *pData_in,
ai_i8 *pData_out,
const ai_i8 *pWeights,
const ai_i32 *pBias,
ai_u16 *pBuffer_a,
const ai_size width_in,
const ai_size height_in,
const ai_size width_out,
const ai_size height_out,
const ai_u16 n_channel_in,
const ai_u16 n_channel_out,
const ai_size filt_width,
const ai_size filt_height,
const ai_u16 filt_pad_x,
const ai_u16 filt_pad_y,
const ai_u16 filt_stride_x,
const ai_u16 filt_stride_y,
const ai_u16 dilation_x,
const ai_u16 dilation_y,
const ai_float in_scale,
const ai_float out_scale,
const ai_float *pWt_scale,
const ai_i8 in_zeropoint,
const ai_i8 out_zeropoint,
ai_i16 *p_out_r_shift,
ai_i32 *p_out_factor);
AI_API_DECLARE_END
#endif /*LAYERS_CONV2D_DQNN_H*/
| 17,573 | C | 34.647059 | 91 | 0.579981 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers_upsample_generic.h | /**
******************************************************************************
* @file layers_upsample_generic.h
* @author Cyril Enault
* @brief header file of AI platform padding generic datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2022 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_UPSAMPLE_H
#define LAYERS_UPSAMPLE_H
#pragma once
#include "layers_generic.h"
/*!
* @defgroup layers_pad_generic Layers Definitions
* @brief definition
*
*/
AI_API_DECLARE_BEGIN
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Handles generic upsmapling in nearest mode
* @ingroup layers_generic
* @param layer upsample layer
*/
AI_INTERNAL_API
void forward_upsample_nearest(ai_layer *pLayer);
/*!
* @brief Handles generic upsmapling in zeros mode
* @ingroup layers_generic
* @param layer upsample layer
*/
AI_INTERNAL_API
void forward_upsample_zeros(ai_layer *pLayer);
/*!
* @brief Handles generic upsmapling in bilinear mode
* @ingroup layers_generic
* @param layer upsample layer
*/
AI_INTERNAL_API
void forward_upsample_bilinear(ai_layer *pLayer);
AI_API_DECLARE_END
#endif /*LAYERS_PAD_GENERIC_H*/
| 1,845 | C | 26.552238 | 80 | 0.509485 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/lite_bn_f32.h | #ifndef LITE_BN_F32_H
#define LITE_BN_F32_H
#pragma once
#include "ai_lite_interface.h"
/*!
* @brief Forward function for a batch normalization (BN) layer with
* signed float input, signed float output, and float parameters.
* @ingroup lite_bn_f32
* @param output The pointer to output buffer.
* @param input The pointer to input buffer.
* @param scale The pointer to BN scale param.
* @param bias The pointer to bias.
* @param n_elements The number of elements in the input tensor.
* @param n_channel_in The number of channel in the input tensor.
*/
LITE_API_ENTRY
void forward_lite_bn_if32of32wf32(
ai_float* output, const ai_float* input,
const ai_float* scale, const ai_float* bias,
const ai_u32 n_elements, const ai_u32 n_channel_in);
#endif /* LITE_BN_F32_H */
| 791 | C | 29.461537 | 69 | 0.718078 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/lite_dense_is1ws1.h | #ifndef _LITE_DENSE_IS1WS1_H
#define _LITE_DENSE_IS1WS1_H
#pragma once
#include "ai_lite_interface.h"
/*!
* @brief Forward function for a dense layer with signed binary input,
* signed binary output, and signed binary weights.
* @ingroup lite_dense_is1ws1
* @param output The pointer to output buffer.
* @param input The pointer to input buffer.
* @param weights The pointer to weights.
* @param bias The pointer to bias (NULL if not available).
* @param scratch The pointer to the scratch buffer.
* @param n_channel_in The number of channels of the input.
* @param n_channel_ouy The number of channels of the output, i.e.,
* the number of dense hidden neurons.
*/
LITE_API_ENTRY
void forward_lite_dense_is1os1ws1(
ai_pbits *output, const ai_pbits *input, const ai_pbits *weights,
const ai_pbits *bias, ai_i32 *scratch,
const ai_u32 n_channel_in, const ai_u32 n_channel_out
);
/*!
* @brief Forward function for a dense layer with signed binary input,
* signed binary output, and signed binary weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup lite_dense_is1ws1
* @param output The pointer to output buffer.
* @param input The pointer to input buffer.
* @param weights The pointer to weights.
* @param scale The pointer to scale.
* @param offset The pointer to offset.
* @param scratch The pointer to the scratch buffer.
* @param n_channel_in The number of channels of the input.
* @param n_channel_ouy The number of channels of the output, i.e.,
* the number of dense hidden neurons.
*/
LITE_API_ENTRY
void forward_lite_dense_is1os1ws1_bn(
ai_pbits *output, const ai_pbits *input, const ai_pbits *weights,
const ai_float *scale, const ai_float *offset, ai_i32 *scratch,
const ai_u32 n_channel_in, const ai_u32 n_channel_out
);
/*!
* @brief Forward function for a dense layer with signed binary input,
* signed binary output, and signed 16bit weights.
* @ingroup lite_dense_is1ws1
* @param output The pointer to output buffer.
* @param input The pointer to input buffer.
* @param weights The pointer to weights.
* @param bias The pointer to bias (NULL if not available).
* @param scratch The pointer to the scratch buffer (signed 32bit).
* @param n_channel_in The number of channels of the input.
* @param n_channel_ouy The number of channels of the output, i.e.,
* the number of dense hidden neurons.
*/
LITE_API_ENTRY
void forward_lite_dense_is1os16ws1(
ai_i16 *output, const ai_pbits *input, const ai_pbits *weights,
const ai_pbits *bias, ai_i32 *scratch,
const ai_u32 n_channel_in, const ai_u32 n_channel_out);
/*!
* @brief Forward function for a dense layer with signed binary input,
* signed binary output, and signed 16bit weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup lite_dense_is1ws1
* @param output The pointer to output buffer.
* @param input The pointer to input buffer.
* @param weights The pointer to weights.
* @param bias The pointer to bias (NULL if not available).
* @param scratch The pointer to the scratch buffer (signed 32bit).
* @param n_channel_in The number of channels of the input.
* @param n_channel_ouy The number of channels of the output, i.e.,
* the number of dense hidden neurons.
*/
LITE_API_ENTRY
void forward_lite_dense_is1os16ws1_bn(
ai_i16 *output, const ai_pbits *input, const ai_pbits *weights,
const ai_float *scale, const ai_float *offset, ai_i32 *scratch,
const ai_u32 n_channel_in, const ai_u32 n_channel_out);
/*!
* @brief Forward function for a dense layer with signed binary input,
* signed float output, and signed binary weights.
* @ingroup lite_dense_is1ws1
* @param output The pointer to output buffer.
* @param input The pointer to input buffer.
* @param weights The pointer to weights.
* @param bias The pointer to bias (NULL if not available).
* @param scratch The pointer to the scratch buffer (unused).
* @param n_channel_in The number of channels of the input.
* @param n_channel_ouy The number of channels of the output, i.e.,
* the number of dense hidden neurons.
*/
LITE_API_ENTRY
void forward_lite_dense_is1of32ws1(
ai_float *output, const ai_pbits *input, const ai_pbits *weights,
const ai_pbits *bias, ai_i32 *scratch,
const ai_u32 n_channel_in, const ai_u32 n_channel_out
);
/*!
* @brief Forward function for a dense layer with signed binary input,
* signed float output, and signed binary weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup lite_dense_is1ws1
* @param output The pointer to output buffer.
* @param input The pointer to input buffer.
* @param weights The pointer to weights.
* @param scale The pointer to scale.
* @param offset The pointer to offset.
* @param scratch The pointer to the scratch buffer (unused).
* @param n_channel_in The number of channels of the input.
* @param n_channel_out The number of channels of the output, i.e.,
* the number of dense hidden neurons.
*/
LITE_API_ENTRY
void forward_lite_dense_is1of32ws1_bn(
ai_float *output, const ai_pbits *input, const ai_pbits *weights,
const ai_float *scale, const ai_float *offset, ai_i32 *scratch,
const ai_u32 n_channel_in, const ai_u32 n_channel_out
);
#endif /*_LITE_DENSE_IS1WS1_H*/
| 5,999 | C | 40.666666 | 80 | 0.724287 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers_custom.h | /**
******************************************************************************
* @file layers_custom.h
* @author Marco Lattuada
* @brief header file of AI platform custom layers datatype
******************************************************************************
* @attention
*
* Copyright (c) 2020 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_CUSTOM_H
#define LAYERS_CUSTOM_H
#pragma once
#include "layers_common.h"
/*!
* @defgroup layers_custom Custom layer definitions
* @brief Definition of structures custom layers
*/
AI_API_DECLARE_BEGIN
/*!
* @struct ai_layer_custom
* @ingroup layers_custom
* @brief Custom layer wrapper
*
* The custom layer wrapper
*/
typedef ai_layer_stateful ai_layer_custom;
AI_API_DECLARE_END
#endif /*LAYERS_CUSTOM_H*/
| 1,217 | C | 24.914893 | 80 | 0.518488 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/lite_conv2d.h | /**
******************************************************************************
* @file lite_conv2d.h
* @author AIS
* @brief header file of AI platform lite conv2d kernel datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LITE_CONV2D_H
#define LITE_CONV2D_H
#pragma once
#include "ai_lite_interface.h"
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Handles 2D convolution with float input, float output and
* float weights
* @ingroup lite_conv2d
*/
LITE_API_ENTRY
void forward_lite_conv2d_if32of32wf32(const ai_float *pDataIn_init,
ai_float *pDataOut_init,
const ai_ptr_const pWeights_init,
const ai_ptr_const pBias_init,
const ai_size n_channel_in,
const ai_size n_channel_out,
const ai_size width_in,
const ai_size height_in,
const ai_size width_out,
const ai_size height_out,
const ai_size filt_width,
const ai_size filt_height,
const ai_u16 filt_pad_x,
const ai_u16 filt_pad_y,
const ai_u16 filt_stride_x,
const ai_u16 filt_stride_y,
const ai_size filt_height_dilated,
const ai_size filt_width_dilated,
const ai_u16 dilation_x,
const ai_u16 dilation_y,
const ai_size n_groups);
/*!
* @brief Handles 2D depthwise convolution with float input, float output and
* float weights
* @ingroup lite_conv2d
*/
LITE_API_ENTRY
void forward_lite_dw_if32of32wf32(const ai_float *pDataIn_init,
ai_float *pDataOut_init,
const ai_ptr_const pWeights_init,
const ai_ptr_const pBias_init,
const ai_size n_channel_in,
const ai_size n_channel_out,
const ai_size width_in,
const ai_size height_in,
const ai_size width_out,
const ai_size height_out,
const ai_size filt_width,
const ai_size filt_height,
const ai_u16 filt_pad_x,
const ai_u16 filt_pad_y,
const ai_u16 filt_stride_x,
const ai_u16 filt_stride_y,
const ai_size filt_height_dilated,
const ai_size filt_width_dilated,
const ai_u16 dilation_x,
const ai_u16 dilation_y,
const ai_size n_groups);
/*!
* @brief Handles 2D grouped convolution with float input, float output and
* float weights
* @ingroup lite_conv2d
*/
LITE_API_ENTRY
void forward_lite_conv2d_if32of32wf32_group(const ai_float *pDataIn_init,
ai_float *pDataOut_init,
const ai_ptr_const pWeights_init,
const ai_ptr_const pBias_init,
const ai_size n_channel_in,
const ai_size n_channel_out,
const ai_size width_in,
const ai_size height_in,
const ai_size width_out,
const ai_size height_out,
const ai_size filt_width,
const ai_size filt_height,
const ai_u16 filt_pad_x,
const ai_u16 filt_pad_y,
const ai_u16 filt_stride_x,
const ai_u16 filt_stride_y,
const ai_size filt_height_dilated,
const ai_size filt_width_dilated,
const ai_u16 dilation_x,
const ai_u16 dilation_y,
const ai_size n_groups);
/*!
* @brief Handles dilated conv2d convolutions (valid padding)
* @ingroup lite_conv2d
*/
LITE_API_ENTRY
void
forward_lite_conv2d_dilated_sssa8_ch(const ai_i8 *pData_in,
const ai_u16 dim_im_in_x,
const ai_u16 dim_im_in_y,
const ai_u16 n_channel_in,
const ai_i8 *pWeights,
const ai_u16 n_channel_out,
const ai_u16 dim_kernel_x,
const ai_u16 dim_kernel_y,
const ai_u16 stride_x,
const ai_u16 stride_y,
const ai_u16 dilation_x,
const ai_u16 dilation_y,
const ai_i32 *pBias,
const ai_i8 in_zeropoint,
const ai_i8 out_zeropoint,
const ai_layer_format_type out_ch_format,
ai_i8 *pData_out,
const ai_u16 dim_im_out_x,
const ai_u16 dim_im_out_y,
ai_u32 height_loop_cnt,
const ai_u16 weights_prefetch_enabled,
ai_i32 scratch_size,
ai_i16 *pBuffer_a);
/*!
* @brief Handles conv2d convolutions (valid padding) with number of channels >= 8
* @ingroup lite_conv2d
*/
LITE_API_ENTRY
void
forward_lite_conv2d_deep_sssa8_ch(const ai_i8 *pData_in,
const ai_u16 dim_im_in_x,
const ai_u16 dim_im_in_y,
const ai_u16 n_channel_in,
const ai_i8 *pWeights,
const ai_u16 n_channel_out,
const ai_u16 dim_kernel_x,
const ai_u16 dim_kernel_y,
const ai_u16 stride_x,
const ai_u16 stride_y,
const ai_i32 *pBias,
const ai_i8 in_zeropoint,
const ai_i8 out_zeropoint,
const ai_layer_format_type out_ch_format,
ai_i8 *pData_out,
const ai_u16 dim_im_out_x,
const ai_u16 dim_im_out_y,
ai_u32 height_loop_cnt,
const ai_u16 weights_prefetch_enabled,
ai_i32 scratch_size,
ai_i16 *pBuffer_a);
/*!
* @brief Handles conv2d convolutions (valid padding) with number of channels >= 8
* Special forward function for 3x3 kernels and Stride = 1
* @ingroup lite_conv2d
*/
LITE_API_ENTRY
void
forward_lite_conv2d_deep_3x3_sssa8_ch(const ai_i8 *pData_in,
const ai_u16 dim_im_in_x,
const ai_u16 dim_im_in_y,
const ai_u16 n_channel_in,
const ai_i8 *pWeights,
const ai_u16 n_channel_out,
const ai_i32 *pBias,
const ai_i8 in_zeropoint,
const ai_i8 out_zeropoint,
const ai_layer_format_type out_ch_format,
ai_i8 *pData_out,
const ai_u16 dim_im_out_x,
const ai_u16 dim_im_out_y,
ai_u32 height_loop_cnt,
ai_i32 scratch_size,
ai_i16 *pBuffer_a);
/*!
* @brief Handles conv2d convolutions with same padding or with number of channels < 8
* @ingroup lite_conv2d
*/
LITE_API_ENTRY
void
forward_lite_conv2d_sssa8_ch(const ai_i8 *pData_in,
const ai_u16 dim_im_in_x,
const ai_u16 dim_im_in_y,
const ai_u16 n_channel_in,
const ai_i8 *pWeights,
const ai_u16 n_channel_out,
const ai_u16 dim_kernel_x,
const ai_u16 dim_kernel_y,
const ai_u16 stride_x,
const ai_u16 stride_y,
const ai_u16 padding_x,
const ai_u16 padding_y,
const ai_i32 *pBias,
const ai_i8 in_zeropoint,
const ai_i8 out_zeropoint,
const ai_layer_format_type out_ch_format,
ai_i8 *pData_out,
const ai_u16 dim_im_out_x,
const ai_u16 dim_im_out_y,
const ai_u16 weights_prefetch_enabled,
ai_i32 scratch_size,
ai_i16 *pBuffer_a);
/*!
* @brief Handles rgb conv2d convolutions
* @ingroup lite_conv2d
*/
LITE_API_ENTRY
void
forward_lite_conv2d_rgb_sssa8_ch(const ai_i8 *pData_in,
const ai_u16 dim_im_in,
const ai_i8 *pWeights,
const ai_u16 n_channel_out,
const ai_u16 dim_kernel,
const ai_u16 padding,
const ai_u16 stride,
const ai_i32 *pBias,
const ai_i8 in_zeropoint,
const ai_i8 out_zeropoint,
const ai_layer_format_type out_ch_format,
ai_i8 *pData_out,
const ai_u16 dim_im_out,
ai_i32 scratch_size,
ai_i16 *pBuffer_a);
/*!
* @brief Handles 2D convolution with float input, float output and
* float weights with pool fused
* @ingroup lite_conv2d
*/
LITE_API_ENTRY
void forward_lite_conv2d_if32of32wf32_pool(const ai_float *pDataIn_init,
ai_float *pDataOut_init,
const ai_float * pWeights_init,
const ai_float *pBias_init,
ai_float *pScratch_init,
const ai_short_size n_channel_in,
const ai_short_size n_channel_out,
const ai_short_size width_in,
const ai_short_size height_in,
const ai_short_size width_out,
const ai_short_size height_out,
const ai_short_size filt_width,
const ai_short_size filt_height,
const ai_u16 filt_pad_x,
const ai_u16 filt_pad_y,
const ai_u16 filt_stride_x,
const ai_u16 filt_stride_y,
const ai_short_size filt_height_dilated,
const ai_short_size filt_width_dilated,
const ai_u16 dilation_x,
const ai_u16 dilation_y,
const ai_short_size n_groups,
const ai_short_size width_conv_out,
const ai_short_size height_conv_out,
ai_handle pool_func,
const ai_short_size pool_width,
const ai_short_size pool_height,
const ai_short_size pool_stride_x,
const ai_short_size pool_stride_y,
const ai_short_size pool_pad_x,
const ai_short_size pool_pad_y);
/*!
* @brief Handles 2D depthwise convolution with float input, float output and
* float weights with pool fused
* @ingroup lite_conv2d
*/
LITE_API_ENTRY
void forward_lite_dw_if32of32wf32_pool(const ai_float *pDataIn_init,
ai_float *pDataOut_init,
const ai_float *pWeights_init,
const ai_float *pBias_init,
ai_float *pScratch_init,
const ai_short_size n_channel_in,
const ai_short_size n_channel_out,
const ai_short_size width_in,
const ai_short_size height_in,
const ai_short_size width_out,
const ai_short_size height_out,
const ai_short_size filt_width,
const ai_short_size filt_height,
const ai_u16 filt_pad_x,
const ai_u16 filt_pad_y,
const ai_u16 filt_stride_x,
const ai_u16 filt_stride_y,
const ai_short_size filt_height_dilated,
const ai_short_size filt_width_dilated,
const ai_u16 dilation_x,
const ai_u16 dilation_y,
const ai_short_size n_groups,
const ai_short_size width_conv_out,
const ai_short_size height_conv_out,
ai_handle pool_func,
const ai_short_size pool_width,
const ai_short_size pool_height,
const ai_short_size pool_stride_x,
const ai_short_size pool_stride_y,
const ai_short_size pool_pad_x,
const ai_short_size pool_pad_y);
/*!
* @brief Handles 2D grouped convolution with float input, float output and
* float weights with pool fused
* @ingroup lite_conv2d
*/
LITE_API_ENTRY
void forward_lite_conv2d_if32of32wf32_group_pool(const ai_float *pDataIn_init,
ai_float *pDataOut_init,
const ai_float *pWeights_init,
const ai_float *pBias_init,
ai_float *pScratch_init,
const ai_short_size n_channel_in,
const ai_short_size n_channel_out,
const ai_short_size width_in,
const ai_short_size height_in,
const ai_short_size width_out,
const ai_short_size height_out,
const ai_short_size filt_width,
const ai_short_size filt_height,
const ai_u16 filt_pad_x,
const ai_u16 filt_pad_y,
const ai_u16 filt_stride_x,
const ai_u16 filt_stride_y,
const ai_short_size filt_height_dilated,
const ai_short_size filt_width_dilated,
const ai_u16 dilation_x,
const ai_u16 dilation_y,
const ai_short_size n_groups,
const ai_short_size width_conv_out,
const ai_short_size height_conv_out,
ai_handle pool_func,
const ai_short_size pool_width,
const ai_short_size pool_height,
const ai_short_size pool_stride_x,
const ai_short_size pool_stride_y,
const ai_short_size pool_pad_x,
const ai_short_size pool_pad_y);
#endif /*LITE_CONV2D_H*/
| 18,200 | C | 49.418282 | 86 | 0.398407 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers_formats_converters.h | /**
******************************************************************************
* @file layers_formats_converters.h
* @author AST Embedded Analytics Research Platform
* @brief header file of formats converters layers
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_FORMATS_CONVERTERS_H
#define LAYERS_FORMATS_CONVERTERS_H
#pragma once
#include "layers_common.h"
/*!
* @defgroup layers_formats_converters Formats Converters Layers Definition
* @brief this group implements formats converter layers (cast, etc.)
*
*/
AI_API_DECLARE_BEGIN
/*!
* @struct ai_layer_cast
* @ingroup layers_formats_converters
* @brief C Implementation of cast layer
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_cast_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_array_format to_format; /*!< cast output format */
} ai_layer_cast;
/*****************************************************************************/
/* Forward Functions Section */
/*****************************************************************************/
/*!
* @brief forward function for cast layer.
* @ingroup layers_
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_cast(ai_layer* layer);
AI_API_DECLARE_END
#endif /*LAYERS_FORMATS_CONVERTERS_H*/
| 1,862 | C | 29.048387 | 80 | 0.50913 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers_pool.h | /**
******************************************************************************
* @file layers_pool.h
* @author AST Embedded Analytics Research Platform
* @brief header file of AI platform pooling layers datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_POOL_H
#define LAYERS_POOL_H
#pragma once
#include "layers_common.h"
#include "lite_maxpool_dqnn.h"
#include "lite_pool_f32.h"
/*!
* @defgroup layers_pool Pooling Layers Definitions
* @brief definition
*
*/
AI_API_DECLARE_BEGIN
/*!
* @struct ai_layer_pool
* @ingroup layers_pool
* @brief Pooling layer
*
* The type of pooling function is handled by the specific forward function
* @ref forward_pool
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_pool_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_shape_2d pool_size; /*!< pooling size */
ai_shape_2d pool_stride; /*!< pooling stride */
ai_shape pool_pad; /*!< pooling pad, y,x border sizes */
ai_u8 count_include_pad; /*!< include pad flag */
} ai_layer_pool;
/*!
* @brief Max Pooling on a 8/16 bits fixed point data array
* @ingroup layers_pool
* @param in opaque handler to input data to process
* @param dim_im_in_x input feature map width
* @param dim_im_in_y input feature map height
* @param ch_im_in number of input channels
* @param dim_kernel_x kernel width
* @param dim_kernel_y kernel height
* @param padding_x right padding value
* @param padding_y top padding value
* @param stride_x stride value on x dimension
* @param stride_y stride value on y dimension
* @param dim_im_out_x output feature map width
* @param dim_im_out_y output feature map height
* @param out opaque handler to output data
*/
AI_INTERNAL_API
void pool_func_mp_array_fixed(ai_handle in,
const ai_u16 dim_im_in_x, const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_u16 dim_kernel_x, const ai_u16 dim_kernel_y,
const ai_u16 padding_x, const ai_u16 padding_y,
const ai_u16 stride_x, const ai_u16 stride_y,
const ai_u16 dim_im_out_x, const ai_u16 dim_im_out_y,
ai_handle out);
/*!
* @brief Max Pooling on a 8-bits integer quantized data array
* @ingroup layers_pool
* @param in opaque handler to input data to process
* @param dim_im_in_x input feature map width
* @param dim_im_in_y input feature map height
* @param ch_im_in number of input channels
* @param dim_kernel_x kernel width
* @param dim_kernel_y kernel height
* @param padding_x right padding value
* @param padding_y top padding value
* @param stride_x stride value on x dimension
* @param stride_y stride value on y dimension
* @param dim_im_out_x output feature map width
* @param dim_im_out_y output feature map height
* @param out opaque handler to output data
*/
AI_INTERNAL_API
void pool_func_mp_array_integer(ai_handle in,
const ai_u16 dim_im_in_x, const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_u16 dim_kernel_x, const ai_u16 dim_kernel_y,
const ai_u16 padding_x, const ai_u16 padding_y,
const ai_u16 stride_x, const ai_u16 stride_y,
const ai_u16 dim_im_out_x, const ai_u16 dim_im_out_y,
ai_handle out);
/*!
* @brief Max Pooling on a signed 8-bits integer quantized data array
* @ingroup layers_pool
* @param in opaque handler to input data to process
* @param dim_im_in_x input feature map width
* @param dim_im_in_y input feature map height
* @param ch_im_in number of input channels
* @param dim_kernel_x kernel width
* @param dim_kernel_y kernel height
* @param padding_x right padding value
* @param padding_y top padding value
* @param stride_x stride value on x dimension
* @param stride_y stride value on y dimension
* @param dim_im_out_x output feature map width
* @param dim_im_out_y output feature map height
* @param out opaque handler to output data
*/
AI_INTERNAL_API
void pool_func_mp_array_integer_INT8(ai_handle in,
const ai_u16 dim_im_in_x, const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_u16 dim_kernel_x, const ai_u16 dim_kernel_y,
const ai_u16 padding_x, const ai_u16 padding_y,
const ai_u16 stride_x, const ai_u16 stride_y,
const ai_u16 dim_im_out_x, const ai_u16 dim_im_out_y,
ai_handle out);
/*!
* @brief Max Pooling on a unsigned 8-bits integer quantized data array
* @ingroup layers_pool
* @param in opaque handler to input data to process
* @param dim_im_in_x input feature map width
* @param dim_im_in_y input feature map height
* @param ch_im_in number of input channels
* @param dim_kernel_x kernel width
* @param dim_kernel_y kernel height
* @param padding_x right padding value
* @param padding_y top padding value
* @param stride_x stride value on x dimension
* @param stride_y stride value on y dimension
* @param dim_im_out_x output feature map width
* @param dim_im_out_y output feature map height
* @param out opaque handler to output data
*/
AI_INTERNAL_API
void pool_func_mp_array_integer_UINT8(ai_handle in,
const ai_u16 dim_im_in_x, const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_u16 dim_kernel_x, const ai_u16 dim_kernel_y,
const ai_u16 padding_x, const ai_u16 padding_y,
const ai_u16 stride_x, const ai_u16 stride_y,
const ai_u16 dim_im_out_x, const ai_u16 dim_im_out_y,
ai_handle out);
/*!
* @brief Average Pooling on a 8/16 bits fixed point data array
* @ingroup layers_pool
* @param in opaque handler to input data to process
* @param dim_im_in_x input feature map width
* @param dim_im_in_y input feature map height
* @param ch_im_in number of input channels
* @param dim_kernel_x kernel width
* @param dim_kernel_y kernel height
* @param padding_x right padding value
* @param padding_y top padding value
* @param stride_x stride value on x dimension
* @param stride_y stride value on y dimension
* @param dim_im_out_x output feature map width
* @param dim_im_out_y output feature map height
* @param out opaque handler to scratch memory
*/
AI_INTERNAL_API
void pool_func_ap_array_fixed(ai_handle in,
const ai_u16 dim_im_in_x, const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_u16 dim_kernel_x, const ai_u16 dim_kernel_y,
const ai_u16 padding_x, const ai_u16 padding_y,
const ai_u16 stride_x, const ai_u16 stride_y,
const ai_u16 dim_im_out_x, const ai_u16 dim_im_out_y,
ai_handle out);
/*!
* @brief Average Pooling on a 8-bits integer quantized data array
* @ingroup layers_pool
* @param in opaque handler to input data to process
* @param dim_im_in_x input feature map width
* @param dim_im_in_y input feature map height
* @param ch_im_in number of input channels
* @param dim_kernel_x kernel width
* @param dim_kernel_y kernel height
* @param padding_x right padding value
* @param padding_y top padding value
* @param stride_x stride value on x dimension
* @param stride_y stride value on y dimension
* @param dim_im_out_x output feature map width
* @param dim_im_out_y output feature map height
* @param out opaque handler to scratch memory
*/
AI_INTERNAL_API
void pool_func_ap_array_integer(ai_handle in,
const ai_u16 dim_im_in_x, const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_u16 dim_kernel_x, const ai_u16 dim_kernel_y,
const ai_u16 padding_x, const ai_u16 padding_y,
const ai_u16 stride_x, const ai_u16 stride_y,
const ai_u16 dim_im_out_x, const ai_u16 dim_im_out_y,
ai_handle out);
/*!
* @brief Average Pooling on a signed 8-bits integer quantized data array
* @ingroup layers_pool
* @param in opaque handler to input data to process
* @param dim_im_in_x input feature map width
* @param dim_im_in_y input feature map height
* @param ch_im_in number of input channels
* @param dim_kernel_x kernel width
* @param dim_kernel_y kernel height
* @param padding_x right padding value
* @param padding_y top padding value
* @param stride_x stride value on x dimension
* @param stride_y stride value on y dimension
* @param dim_im_out_x output feature map width
* @param dim_im_out_y output feature map height
* @param out opaque handler to scratch memory
*/
AI_INTERNAL_API
void pool_func_ap_array_integer_INT8(ai_handle in,
const ai_u16 dim_im_in_x, const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_u16 dim_kernel_x, const ai_u16 dim_kernel_y,
const ai_u16 padding_x, const ai_u16 padding_y,
const ai_u16 stride_x, const ai_u16 stride_y,
const ai_u16 dim_im_out_x, const ai_u16 dim_im_out_y,
ai_handle out);
/*!
* @brief Average Pooling on a unsigned 8-bits integer quantized data array
* @ingroup layers_pool
* @param in opaque handler to input data to process
* @param dim_im_in_x input feature map width
* @param dim_im_in_y input feature map height
* @param ch_im_in number of input channels
* @param dim_kernel_x kernel width
* @param dim_kernel_y kernel height
* @param padding_x right padding value
* @param padding_y top padding value
* @param stride_x stride value on x dimension
* @param stride_y stride value on y dimension
* @param dim_im_out_x output feature map width
* @param dim_im_out_y output feature map height
* @param out opaque handler to scratch memory
*/
AI_INTERNAL_API
void pool_func_ap_array_integer_UINT8(ai_handle in,
const ai_u16 dim_im_in_x, const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_u16 dim_kernel_x, const ai_u16 dim_kernel_y,
const ai_u16 padding_x, const ai_u16 padding_y,
const ai_u16 stride_x, const ai_u16 stride_y,
const ai_u16 dim_im_out_x, const ai_u16 dim_im_out_y,
ai_handle out);
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Computes the activations of a max pooling layer.
* @ingroup layers_pool
* @param layer the pooling (pool) layer
*/
AI_INTERNAL_API
void forward_mp(ai_layer* layer);
/*!
* @brief Computes the activations of a fixed point max pooling layer.
* @ingroup layers_pool
* @param layer the pooling (pool) layer
*/
AI_INTERNAL_API
void forward_mp_fixed(ai_layer *pLayer);
/*!
* @brief Computes the activations of an integer-quantized max pooling layer.
* @ingroup layers_pool
* @param layer the pooling (pool) layer
*/
AI_INTERNAL_API
void forward_mp_integer(ai_layer *pLayer);
/*!
* @brief Computes the activations of an integer-quantized max pooling layer
* with int8 I/O
* @ingroup layers_pool
* @param layer the pooling (pool) layer
*/
AI_INTERNAL_API
void forward_mp_integer_INT8(ai_layer *pLayer);
/*!
* @brief Computes the activations of an integer-quantized max pooling layer
* with uint8 I/O
* @ingroup layers_pool
* @param layer the pooling (pool) layer
*/
AI_INTERNAL_API
void forward_mp_integer_UINT8(ai_layer *pLayer);
/*!
* @brief Computes the activations of an integer-quantized max pooling layer
* with int16 I/O
* @ingroup layers_pool
* @param layer the pooling (pool) layer
*/
AI_INTERNAL_API
void forward_mp_integer_INT16(ai_layer *pLayer);
/*!
* @brief Computes the activations of an integer-quantized max pooling layer
* with uint16 I/O
* @ingroup layers_pool
* @param layer the pooling (pool) layer
*/
AI_INTERNAL_API
void forward_mp_integer_UINT16(ai_layer *pLayer);
/*!
* @brief Computes the activations of an average pooling layer.
* @ingroup layers_pool
* @param layer the pooling (pool) layer
*/
AI_INTERNAL_API
void forward_ap(ai_layer* layer);
/*!
* @brief Computes the activations of a fixed point average pooling layer.
* @ingroup layers_pool
* @param layer the pooling (pool) layer
*/
AI_INTERNAL_API
void forward_ap_fixed(ai_layer *pLayer);
/*!
* @brief Computes the activations of an integer-quantized average pooling layer.
* @ingroup layers_pool
* @param layer the pooling (pool) layer
*/
AI_INTERNAL_API
void forward_ap_integer(ai_layer *pLayer);
/*!
* @brief Computes the activations of an integer-quantized average pooling layer
* with int8 I/O
* @ingroup layers_pool
* @param layer the pooling (pool) layer
*/
AI_INTERNAL_API
void forward_ap_integer_INT8(ai_layer *pLayer);
/*!
* @brief Computes the activations of an integer-quantized average pooling layer
* with uint8 I/O
* @ingroup layers_pool
* @param layer the pooling (pool) layer
*/
AI_INTERNAL_API
void forward_ap_integer_UINT8(ai_layer *pLayer);
AI_API_DECLARE_END
#endif /*LAYERS_POOL_H*/
| 14,171 | C | 36.294737 | 81 | 0.624656 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers_pad_generic.h | /**
******************************************************************************
* @file layers_pad_generic.h
* @author Marco Forleo
* @brief header file of AI platform padding generic datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2022 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_PADDING_DQNN_H
#define LAYERS_PADDING_DQNN_H
#pragma once
#include "layers_generic.h"
/*!
* @defgroup layers_pad_generic Layers Definitions
* @brief definition
*
*/
AI_API_DECLARE_BEGIN
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Handles generic padding in constant mode
* @ingroup layers_generic_dqnn
* @param layer pad layer
*/
AI_INTERNAL_API
void forward_pad_constant(ai_layer *pLayer);
/*!
* @brief Handles generic padding in edge mode
* @ingroup layers_generic_dqnn
* @param layer pad layer
*/
AI_INTERNAL_API
void forward_pad_edge(ai_layer *pLayer);
/*!
* @brief Handles generic padding in reflect mode
* @ingroup layers_generic_dqnn
* @param layer pad layer
*/
AI_INTERNAL_API
void forward_pad_reflect(ai_layer *pLayer);
/*!
* @brief Handles generic padding in constant mode Channel 1st 8bit
* @ingroup layers_generic_dqnn
* @param layer pad layer
*/
AI_INTERNAL_API
void forward_pad_8bit_ch1st_3x3_constant(ai_layer* pLayer);
AI_API_DECLARE_END
#endif /*LAYERS_PAD_GENERIC_H*/
| 2,034 | C | 25.776315 | 80 | 0.525074 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers_ml_treeensembleclassifier.h | /**
******************************************************************************
* @file layers_ml_treeensembleclassifier.h
* @author AIS
* @brief header file of AI platform TreeEnsembleClassifier datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021-2022 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_TREE_ENSEMBLE_CLASSIFIER_H
#define LAYERS_TREE_ENSEMBLE_CLASSIFIER_H
#pragma once
#include "layers_common.h"
#include "layers_nl.h"
/*!
* @defgroup layers_ml_treensembleclassifier Layers Definitions
* @brief definition
*
*/
AI_API_DECLARE_BEGIN
/* Error return codes */
#define AI_TREE_ENSEMBLE_CLASSIFIER_ERROR_NO 0
#define AI_TREE_ENSEMBLE_CLASSIFIER_ERROR_WRONG_IDX_FMT -1
#define AI_TREE_ENSEMBLE_CLASSIFIER_ERROR_UNFOUND_LEAF -2
#define AI_TREE_ENSEMBLE_CLASSIFIER_ERROR_UNSUPPORTED_BRANCH -3
#define AI_TREE_ENSEMBLE_CLASSIFIER_ERROR_UNSUPPORTED_FEATURE -4
#define AI_TREE_ENSEMBLE_CLASSIFIER_DEPTH_MAX 10000
/* Type of condition in the TreeEnsembleClassifier*/
typedef enum
{
AI_TREE_ENSEMBLE_CLASSIFIER_BRANCH_LT_IDX = 0,
AI_TREE_ENSEMBLE_CLASSIFIER_BRANCH_LEQ_IDX,
AI_TREE_ENSEMBLE_CLASSIFIER_BRANCH_EQ_IDX,
AI_TREE_ENSEMBLE_CLASSIFIER_BRANCH_END,
} ai_tree_ensenble_classifier_branch_e;
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_tree_ensemble_classifier_ {
AI_LAYER_COMMON_FIELDS_DECLARE
func_nl nl_func;
uint8_t all_weights_are_positive;
ai_float nodes_values_scale;
ai_float nodes_values_offset;
ai_float class_weights_scale;
ai_float class_weights_offset;
} ai_layer_tree_ensemble_classifier;
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Decodes the TreeEnsembleClassifier ML operator.
* @ingroup layers_svmreg
* @param layer tree ensemble classifier layer
*/
AI_INTERNAL_API
void forward_tree_ensemble_classifier(ai_layer *pLayer);
AI_INTERNAL_API
ai_i32 decodeEstimator_LEQ_8Bits(const ai_float *pDataIn,
ai_float *pOutDataScores,
const ai_u8 *pFeatureIdxForEstimator,
const ai_float *pValuesForEstimator,
const ai_u8 *pTrueIdxForEstimator,
const ai_u8 *pFalseIdxForEstimator,
const ai_handle pClassWeightsForEstimator,
const ai_array_format classWeightsFormat,
const ai_u8 *pClassNodeIdsForEstimator,
const ai_u16 nbClassWithCurrentEstimator,
const ai_u8 *pClassIdsForEstimator);
AI_INTERNAL_API
ai_i32 decodeEstimator_LEQ_16Bits(const ai_float *pDataIn,
ai_float *pOutDataScores,
const ai_u8 *pFeatureIdxForEstimator,
const ai_float *pValuesForEstimator,
const ai_u16 *pTrueIdxForEstimator,
const ai_u16 *pFalseIdxForEstimator,
ai_handle pClassWeightsForEstimator,
const ai_array_format classWeightsFormat,
const ai_u16 *pClassNodeIdsForEstimator,
const ai_u16 nbClassWithCurrentEstimator,
const ai_u16 *pClassIdsForEstimator);
AI_API_DECLARE_END
#endif /*LAYERS_TREE_ENSEMBLE_CLASSIFIER_H*/
| 4,238 | C | 36.513274 | 80 | 0.542237 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/lite_dense_is8os8ws8.h | /**
******************************************************************************
* @file lite_dense_is8os8ws8.h
* @author Marco Forleo
* @brief header file of AI platform lite dense kernel datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2022 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LITE_DENSE_IS8OS8WS8_H
#define LITE_DENSE_IS8OS8WS8_H
#pragma once
#include "ai_lite_interface.h"
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Forward function for a dense layer with signed input,
* signed output and signed weights all at 8 bits.
* @ingroup lite_dense_is8os8ws8
* @param input The pointer to input buffer.
* @param output The pointer to output buffer.
* @param weights The pointer to weights.
* @param bias The pointer to bias (NULL if not available).
* @param in_zeropoint The value of the zero point of the input.
* @param out_zeropoint TThe value of the zero point of the output.
* @param n_channel_in The number of channels of the input.
* @param n_channel_out The number of channels of the output, i.e.,
* the number of dense hidden neurons.
* @param n_pixels Total number of pixels.
*/
LITE_API_ENTRY
void forward_lite_dense_is8os8ws8(ai_i8 * pDataOut,
const ai_i8 *pDataIn,
const ai_i8 *pWeights,
const ai_i32 *pBias,
const ai_i8 in_zeropoint,
const ai_i8 out_zeropoint,
const ai_u16 n_channel_in,
const ai_u16 n_channel_out,
const ai_size n_pixels,
const ai_float in_scale,
const ai_float out_scale,
const ai_float Wt_scale,
ai_i16 *pBuffer_a);
void forward_lite_dense_is8os8ws8_ch(ai_i8 * pDataOut,
const ai_i8 *pDataIn,
const ai_i8 *pWeights,
const ai_i32 *pBias,
const ai_i8 in_zeropoint,
const ai_i8 out_zeropoint,
const ai_u16 n_channel_in,
const ai_u16 n_channel_out,
const ai_size n_pixels,
const ai_float in_scale,
const ai_float out_scale,
const ai_float *pWt_scale,
ai_i16 *pBuffer_a);
#endif /*LITE_DENSE_IS8OS8WS8_H*/
| 3,465 | C | 44.605263 | 80 | 0.43088 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/ai_platform_interface.h | /**
******************************************************************************
* @file ai_platform_interface.h
* @author AST Embedded Analytics Research Platform
* @brief Definitions of AI platform interface APIs types
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef AI_PLATFORM_INTERFACE_H
#define AI_PLATFORM_INTERFACE_H
#pragma once
#include "ai_platform.h"
#include "datatypes_network.h"
#include "ai_datatypes.h"
#include "ai_datatypes_format.h"
/*!
* @defgroup datatypes_interface Interface Datatypes
* @brief Data structures and defines used to implement neural networks
*/
/******************************************************************************/
#define AI_ERROR_TRAP(net_, type_, code_) \
ai_platform_network_set_error((net_), AI_CONCAT(AI_ERROR_,type_), \
AI_CONCAT(AI_ERROR_CODE_,code_))
/*! AI_PTR HANDLERS SECTION ************************************/
#define AI_PTR(ptr_) AI_CAST(ai_ptr, ptr_)
#define AI_PTR_CONST(ptr_) AI_CAST(ai_ptr_const, ptr_)
/*! STATIC ARRAYS ALLOCATOR SECTION ************************************/
#define AI_PACK_STORAGE_ARRAY(type_, dim_, ...) \
(type_[dim_]) { AI_PACK(__VA_ARGS__) }
/*! AI_STORAGE_KLASS SECTION ************************************/
#define AI_STORAGE_KLASS_PACK(type_, dim_, ...) \
AI_PACK_STORAGE_ARRAY(type_, dim_, __VA_ARGS__)
#define AI_STORAGE_KLASS_INIT(type_, size_, data_) \
{ \
.type = (type_), \
.size = (size_), \
.data = (ai_handle)(data_), \
}
/*!
* @enum ai_storage_klass_type
* @ingroup ai_platform_interface
* @brief @ref ai_storage_class types enum
*/
typedef enum {
AI_STORAGE_KLASS_NONE = 0x00,
AI_STORAGE_KLASS_SHAPE = 0x01,
AI_STORAGE_KLASS_STRIDE = 0x02,
} ai_storage_klass_type;
/*!
* @struct ai_storage_klass
* @ingroup ai_platform_interface
* @brief Generic "Template" klass for generic storage arrays containers
* from this klass several typed containers are derived (see e.g. @ref ai_shape)
*/
AI_PACKED_STRUCT_START
typedef AI_ALIGNED_TYPE(struct, 4) AI_PACKED ai_storage_klass_s {
ai_u32 type : 8;
ai_u32 size : 24;
ai_handle data;
} ai_storage_klass;
AI_PACKED_STRUCT_END
/*! AI_SHAPES SECTION ************************************/
#define AI_SHAPE_MAX_DIMENSION (6)
#define AI_SHAPE_2D_INIT(w_, h_) \
{ .data = { (w_), (h_) } }
#define AI_SHAPE_INIT(dim_, ...) \
AI_STORAGE_KLASS_INIT( \
AI_STORAGE_KLASS_SHAPE, \
dim_, \
AI_STORAGE_KLASS_PACK(ai_shape_dimension, dim_, ## __VA_ARGS__))
#define AI_SHAPE_INIT_FROM_BUFFER(dim_, buffer_) \
AI_STORAGE_KLASS_INIT( \
AI_STORAGE_KLASS_SHAPE, \
dim_, \
buffer_)
#define AI_SHAPE_ALLOCATE_STATIC(num_dim_) \
AI_SHAPE_INIT((num_dim_), 0)
typedef ai_u8 ai_shape_idx;
/*!
* @struct ai_shape
* @ingroup ai_platform_interface
* @brief Dimensions for generic 4D tensors
*/
typedef ai_storage_klass ai_shape;
/*! AI_STRIDES HANDLERS SECTION ************************************/
#define AI_STRIDE_INIT(dim_, ...) \
AI_STORAGE_KLASS_INIT( \
AI_STORAGE_KLASS_STRIDE, \
dim_, \
AI_STORAGE_KLASS_PACK(ai_stride_dimension, dim_, ## __VA_ARGS__))
#define AI_STRIDE_INIT_FROM_BUFFER(dim_, buffer_) \
AI_STORAGE_KLASS_INIT( \
AI_STORAGE_KLASS_STRIDE, \
dim_, \
buffer_)
#define AI_STRIDE_ALLOCATE_STATIC(num_dims_) \
AI_STRIDE_INIT((num_dims_), 0)
/*!
* @struct ai_stride
* @ingroup ai_platform_interface
* @brief Stride dimensions for generic 4D tensors (in number of elements)
*/
typedef ai_storage_klass ai_stride;
/*! BASIC_TYPES HANDLERS SECTION ************************************/
#define AI_SIZE(value_) \
AI_CAST(ai_size, value_)
/*! AI_KLASS_OBJ HANDLERS SECTION ************************************/
#define AI_KLASS_OBJ(obj_) \
AI_CAST(ai_klass_obj, obj_)
/*! GENERIC HANDLERS SECTION ************************************/
#define AI_OBJ_DATA(obj_, type_) \
AI_CAST(type_, (obj_)->data)
/*! AI_BUFFER HANDLERS SECTION ************************************/
#define AI_BUFFER_OBJ(ptr_) \
AI_CAST(ai_buffer*, ptr_)
/*! AI_ARRAY HANDLERS SECTION ************************************/
#define AI_ARRAY_OBJ(ptr_) \
AI_CAST(ai_array*, ptr_)
#define AI_ARRAY_OBJ_INIT_STATIC(type_, format_, size_, ...) { \
.format = AI_FMT_OBJ(format_), \
.size = (ai_array_size)(size_), \
.data = (ai_ptr)((type_[]){ __VA_ARGS__ }), \
.data_start = AI_PTR(0), \
}
#define AI_ARRAY_OBJ_INIT(format_, data_, data_start_, size_) { \
.format = AI_FMT_OBJ(format_), \
.size = AI_CAST(ai_array_size, size_), \
.data = AI_PTR(data_), \
.data_start = AI_PTR(data_start_) }
#define AI_ARRAY_OBJ_DECLARE_STATIC(name_, type_, format_, attr_, size_, ...) \
AI_ALIGNED(4) \
attr_ ai_array name_ = AI_ARRAY_OBJ_INIT_STATIC(type_, format_, size_, __VA_ARGS__);
#define AI_ARRAY_OBJ_DECLARE(name_, format_, data_, data_start_, size_, attr_) \
AI_ALIGNED(4) \
attr_ ai_array name_ = AI_ARRAY_OBJ_INIT(format_, data_, data_start_, size_);
/********************************* ai_array macros ***************************/
#define AI_PACK_ARRAYS(...) \
(ai_array[]) { AI_PACK(__VA_ARGS__) }
#define AI_ARRAY_LIST_OBJ_INIT(arrays_ptr_) \
((ai_array*)(arrays_ptr_))
#define AI_ARRAY_LIST_FLAGS(list_) \
((list_) ? (list_)->flags : 0x0)
#define AI_ARRAY_LIST_SIZE(list_) \
((list_) ? (list_)->size : 0)
#define AI_ARRAY_LIST_DATA(list_, pos_) \
((list_) ? &((list_)->data[pos_]) : NULL)
/********************************* ai_tensor macros **************************/
#define AI_TENSOR_OBJ(obj_) \
AI_CAST(ai_tensor*, obj_)
#define AI_TENSOR_INFO_OBJ_INIT(id_, flags_, data_size_) { \
.id = (id_), \
.flags = (flags_), \
.data_size = (data_size_) \
}
#define AI_TENSOR_OBJ_INIT(id_, flags_, shape_, stride_, arrays_size_, arrays_ptr_, klass_obj_) { \
.klass = (ai_klass_obj)(klass_obj_), \
.info = AI_TENSOR_INFO_OBJ_INIT(id_, flags_, arrays_size_), \
.shape = shape_, \
.stride = stride_, \
.data = AI_ARRAY_LIST_OBJ_INIT(AI_PACK(arrays_ptr_)), \
}
#define AI_TENSOR_OBJ_DECLARE(name_, attr_, id_, flags_, shape_, stride_, \
arrays_size_, arrays_ptr_, klass_obj_) \
AI_ALIGNED(4) \
attr_ ai_tensor name_ = AI_TENSOR_OBJ_INIT(id_, flags_, AI_PACK(shape_), AI_PACK(stride_), \
arrays_size_, AI_PACK(arrays_ptr_), AI_PACK(klass_obj_));
/********************************* TENSOR STATE MACROS ***********************/
#define AI_TENSOR_STATE_OBJ_INIT(end_ptr_ , curr_ptr_, stride_, size_) \
{ (end_ptr_), (curr_ptr_), (stride_), (size_) }
/********************************* TENSOR LIST MACROS ************************/
#if (AI_TOOLS_API_VERSION <= AI_TOOLS_API_VERSION_1_3)
#pragma message ("Including deprecated AI_TENSOR_LIST_ENTRY, AI_TENSOR_LIST_EMPTY, AI_TENSOR_LIST_IO_ENTRY")
AI_DEPRECATED
#define AI_TENSOR_LIST_EMPTY \
AI_TENSOR_LIST_OBJ_EMPTY
AI_DEPRECATED
#define AI_TENSOR_LIST_ENTRY(...) \
AI_TENSOR_LIST_OBJ_INIT(AI_FLAG_NONE, AI_NUMARGS(__VA_ARGS__), __VA_ARGS__)
AI_DEPRECATED
#define AI_TENSOR_LIST_IO_ENTRY(flags_, size_, ...) \
AI_TENSOR_LIST_IO_OBJ_INIT(flags_, size_, __VA_ARGS__)
#endif /* AI_TOOLS_API_VERSION_1_3 */
#define AI_TENSOR_LIST_OBJ_INIT(flags_, size_, ...) \
{ .size = (size_), .flags = (flags_), \
.tensor = (ai_tensor*[]) { __VA_ARGS__ }, .info = NULL \
}
#define AI_TENSOR_LIST_OBJ_EMPTY \
{ .size = 0, .flags = AI_FLAG_NONE, \
.tensor = (ai_tensor*[]) { NULL }, .info = NULL \
}
#define AI_TENSOR_LIST_OBJ_DECLARE(name_, attr_, flags_, size_, ...) \
AI_ALIGNED(4) \
attr_ ai_tensor_list name_ = AI_TENSOR_LIST_OBJ_INIT( \
flags_, size_, __VA_ARGS__);
/********************************* TENSOR LIST I/O MACROS ********************/
#define AI_TENSOR_LIST_IO_OBJ_INIT(flags_, size_, ...) \
{ .size = (size_), .flags = (flags_), \
.tensor = (ai_tensor*[]) { __VA_ARGS__ }, \
.info = (ai_tensor_list_info[1]) { { \
.buffer = (ai_buffer[size_]){AI_STRUCT_INIT}, \
.state = (ai_tensor_state[size_]){AI_STRUCT_INIT}, \
.meta = (ai_buffer_meta_info[size_]){AI_STRUCT_INIT} \
} } \
}
/********************************* TENSOR CHAIN MACROS ***********************/
#define AI_TENSOR_CHAIN_OBJ_INIT(flags_, size_, ...) \
{ .size = (size_), .flags = (flags_), \
.chain = (ai_tensor_list[]){ __VA_ARGS__ } }
#define AI_TENSOR_CHAIN_OBJ_DECLARE(name_, attr_, size_, ...) \
AI_ALIGNED(4) \
attr_ ai_tensor_chain name_ = \
AI_TENSOR_CHAIN_OBJ_INIT(AI_FLAG_NONE, size_, __VA_ARGS__);
/********************************* TENSOR CHAIN I/O MACROS *******************/
#define AI_TENSOR_CHAIN_IO_OBJ_INIT(flags_, in_tensor_list_, out_tensor_list_) \
{ .chain = (ai_tensor_list[]){ in_tensor_list_, out_tensor_list_ }, \
.size = 2, .flags = (flags_) }
#define AI_TENSOR_CHAIN_IO_OBJ_DECLARE( \
name_, attr_, flags_, in_tensor_list_, out_tensor_list_) \
AI_ALIGNED(4) \
attr_ ai_tensor_chain_io name_ = \
AI_TENSOR_CHAIN_IO_OBJ_INIT(flags_, in_tensor_list_, out_tensor_list_);
/******************************* NETWORK SECTION ****************************/
#define AI_NETWORK_OBJ(obj_) \
((ai_network*)(obj_))
#if (AI_TOOLS_API_VERSION < AI_TOOLS_API_VERSION_1_5)
AI_DEPRECATED
#define AI_NETWORK_OBJ_INIT( \
weights_buffer_, activations_buffer_, \
in_tensor_list_ptr_, out_tensor_list_ptr_, \
in_node_ptr_, signature_, klass_obj_) { \
.magic = 0x0, \
.signature = signature_, \
.klass = AI_KLASS_OBJ(klass_obj_), \
.flags = AI_FLAG_NONE, \
.error = AI_ERROR_INIT(NONE, NONE), \
.n_batches = 0, \
.batch_id = 0, \
.buffers = AI_NETWORK_BUFFERS_INIT( \
AI_BUFFER_ARRAY_OBJ_INIT_STATIC(AI_FLAG_NONE, 1, AI_PACK(weights_buffer_)), \
AI_BUFFER_ARRAY_OBJ_INIT_STATIC(AI_FLAG_NONE, 1, AI_PACK(activations_buffer_))), \
.tensors = AI_TENSOR_CHAIN_IO_OBJ_INIT(AI_FLAG_NONE, \
AI_PACK(in_tensor_list_ptr_), \
AI_PACK(out_tensor_list_ptr_)), \
.input_node = AI_NODE_OBJ(in_node_ptr_), \
.current_node = AI_NODE_OBJ(NULL), \
.on_node_exec = NULL, \
.data_exec = NULL, \
.lite_cb = NULL, \
}
#else
#define AI_NETWORK_OBJ_INIT( \
weights_buffer_, activations_buffer_, \
in_tensor_list_ptr_, out_tensor_list_ptr_, \
in_node_ptr_, signature_, klass_obj_) { \
.magic = 0x0, \
.signature = signature_, \
.klass = AI_KLASS_OBJ(klass_obj_), \
.flags = AI_FLAG_NONE, \
.error = AI_ERROR_INIT(NONE, NONE), \
.n_batches = 0, \
.batch_id = 0, \
.buffers = AI_NETWORK_BUFFERS_INIT(AI_PACK(weights_buffer_), \
AI_PACK(activations_buffer_)), \
.tensors = AI_TENSOR_CHAIN_IO_OBJ_INIT(AI_FLAG_NONE, \
AI_PACK(in_tensor_list_ptr_), \
AI_PACK(out_tensor_list_ptr_)), \
.input_node = AI_NODE_OBJ(in_node_ptr_), \
.current_node = AI_NODE_OBJ(NULL), \
.on_node_exec = NULL, \
.data_exec = NULL, \
.lite_cb = NULL, \
}
#endif // AI_TOOLS_API_VERSION
#define AI_NETWORK_OBJ_DECLARE( \
name_, attr_, \
weights_buffer_, activations_buffer_, \
in_tensor_list_ptr_, out_tensor_list_ptr_, \
in_node_ptr_, signature_, klass_obj_) \
AI_ALIGNED(4) \
attr_ ai_network name_ = AI_NETWORK_OBJ_INIT( \
AI_PACK(weights_buffer_), \
AI_PACK(activations_buffer_), \
AI_PACK(in_tensor_list_ptr_), \
AI_PACK(out_tensor_list_ptr_), \
(in_node_ptr_), (signature_), (klass_obj_));
#define AI_NETWORK_ACQUIRE_CTX(handle_) \
AI_NETWORK_OBJ(ai_platform_context_acquire(handle_))
/******************************************************************************/
AI_API_DECLARE_BEGIN
/*!
* @typedef ai_version
* @ingroup ai_platform_interface
* @brief Packed representation for @ref ai_platform_version
*/
typedef uint32_t ai_version;
/*!
* @typedef ai_klass_obj
* @ingroup ai_platform_interface
* @brief handler to (private) generic subclass derivatives implementation
*/
typedef void* ai_klass_obj;
/*!
* @typedef ai_ptr
* @ingroup ai_platform_interface
* @brief Byte pointer data addressing
*/
typedef uint8_t* ai_ptr;
/*!
* @typedef ai_ptr_const
* @ingroup ai_platform_interface
* @brief Constant byte pointer data addressing
*/
typedef const uint8_t* ai_ptr_const;
/*!
* @typedef ai_ptr_offset
* @ingroup ai_platform_interface
* @brief byte offset for computing strides
*/
typedef int32_t ai_ptr_offset;
/*!
* @typedef ai_magic
* @ingroup ai_platform_interface
* @brief magic field to mark internal datatstructures
*/
typedef uint32_t ai_magic;
/*!
* @typedef ai_any_ptr
* @ingroup ai_platform_interface
* @brief union for defining any pointer
*/
typedef union {
ai_handle handle;
ai_ptr ptr;
ai_float* float32;
ai_double* float64;
ai_u8* u8;
ai_i8* s8;
ai_u16* u16;
ai_i16* s16;
ai_u32* u32;
ai_i32* s32;
ai_u64* u64;
ai_i64* s64;
} ai_any_ptr;
#define AI_ANY_PTR_INIT(ptr_) \
{ .handle = (ai_handle)(ptr_) }
#define AI_CONTEXT_FIELDS \
ai_magic magic; /*!< magic word to mark valid contexts datastructs*/ \
ai_signature signature; /*!< 32bit signature for network consistency checks */
#define AI_CONTEXT_OBJ(obj) ((ai_context*)(obj))
/*!
* @typedef ai_context
* @ingroup ai_platform_interface
* @brief Abstract internal context header exposed to codegen interface
*/
AI_PACKED_STRUCT_START
typedef AI_ALIGNED_TYPE(struct, 4) AI_PACKED ai_context_ {
AI_CONTEXT_FIELDS
} ai_context;
AI_PACKED_STRUCT_END
/*!
* @enum ai_shape_2d_type
* @ingroup ai_platform_interface
* @brief Codes for the 2D tensor dimensions
*/
typedef enum {
AI_SHAPE_2D_MAX_DIMENSION = 0x2,
AI_SHAPE_2D_HEIGHT = 0x1,
AI_SHAPE_2D_WIDTH = 0x0,
} ai_shape_2d_type;
/*!
* @struct ai_shape_2d
* @ingroup ai_platform_interface
* @brief Dimensions for generic 2D tensors
*/
AI_PACKED_STRUCT_START
typedef AI_ALIGNED_TYPE(struct, 4) AI_PACKED ai_shape_2d_s {
ai_shape_dimension data[AI_SHAPE_2D_MAX_DIMENSION]; /*!< 2D tensor dimensions */
} ai_shape_2d;
AI_PACKED_STRUCT_END
/*!
* @struct ai_array
* @ingroup ai_platform_interface
* @brief Generic flattened array with size
* and (byte) stride of each item
*/
AI_PACKED_STRUCT_START
typedef AI_ALIGNED_TYPE(struct, 4) AI_PACKED ai_array_s {
ai_array_format format; /*!< array format (see @ref ai_array_format) */
ai_array_size size; /*!< number of elements in the array (NOT number
of bytes!). The size of the array could be
determine using @ref AI_ARRAY_GET_BYTE_SIZE
macro */
ai_ptr data; /*!< pointer to data */
ai_ptr data_start; /*!< pointer to parent's data start address */
} ai_array;
AI_PACKED_STRUCT_END
/*!
* @struct ai_tensor_info
* @ingroup ai_platform_interface
* @brief ai_tensor_info info structure for storing size of the array list,
* tensor dimensionality, etc.
*
*/
AI_PACKED_STRUCT_START
typedef AI_ALIGNED_TYPE(struct, 4) AI_PACKED ai_tensor_info_s {
ai_u16 id;
ai_u8 flags;
ai_u8 data_size;
} ai_tensor_info;
AI_PACKED_STRUCT_END
/*!
* @struct ai_tensor
* @ingroup ai_platform_interface
* @brief Generic tensor structure for storing parameters and activations
*
* The data is stored in a flattened array with an implicit order given by the
* reverse order in @ref ai_shape_dimension:
* in_channels, channels, width, height.
*/
AI_PACKED_STRUCT_START
typedef AI_ALIGNED_TYPE(struct, 4) AI_PACKED ai_tensor_s {
ai_klass_obj klass; /*!< opaque pointer to klass context */
ai_tensor_info info; /*!< tensor info metadata see @ref ai_tensor_info)*/
ai_shape shape; /*!< tensor shape see @ref ai_shape */
ai_stride stride; /*!< tensor stride see @ref ai_stride */
ai_array* data; /*!< flattened array pointer to tensor data */
} ai_tensor;
AI_PACKED_STRUCT_END
/*!
* @struct ai_tensor_state
* @ingroup ai_platform_interface
* @brief state context for tensor management (used for I/O network tensors)
*/
AI_PACKED_STRUCT_START
typedef AI_ALIGNED_TYPE(struct, 4) AI_PACKED ai_tensor_state_s {
ai_ptr end_ptr; /*!< end address of the I/O tensor data buffer */
ai_ptr curr_ptr; /*!< current address of the I/O tensor data buffer (for batching) */
ai_ptr_offset stride; /*!< single batch buffer size (in bytes) */
ai_size size; /*!< total size in bytes of the I/O tensor buffer */
} ai_tensor_state;
AI_PACKED_STRUCT_END
/*!
* @struct ai_tensor_list_info
* @ingroup ai_platform_interface
* @brief info metadata for tensor list management (used for I/O network tensors)
*/
AI_PACKED_STRUCT_START
typedef AI_ALIGNED_TYPE(struct, 4) AI_PACKED ai_tensor_list_info_s {
ai_tensor_state* state; /*!< I/O buffer internal pointers state */
ai_buffer* buffer; /*!< I/O buffer pointer */
ai_buffer_meta_info* meta; /*!< I/O buffer meta informations */
} ai_tensor_list_info;
AI_PACKED_STRUCT_END
/********************************* INTEGER QUANTIZATION DATATYPES ************/
#define AI_INTQ_INFO_OBJ_INIT(flags_, scale_ , zeropoint_) { \
.scale = (scale_), \
.zeropoint = (ai_handle)(zeropoint_), \
.flags = (flags_), \
}
#define AI_PACK_INTQ_INFO_LIST(...) \
(ai_intq_info_list[]) { AI_PACK(__VA_ARGS__) }
#define AI_PACK_INTQ_INFO(scale_, zp_) \
(INTQ_CONST ai_intq_info[1]) { { \
.scale = (INTQ_CONST ai_float*) AI_PACK(scale_), \
.zeropoint = (ai_handle) AI_PACK(zp_) \
} }
#define AI_PACK_INTQ_SCALE(...) \
(INTQ_CONST ai_float[]) { AI_PACK(__VA_ARGS__) }
#define AI_PACK_INTQ_ZP(...) \
(INTQ_CONST ai_i8[]) { AI_PACK(__VA_ARGS__) }
#define AI_PACK_UINTQ_ZP(...) \
(INTQ_CONST ai_u8[]) { AI_PACK(__VA_ARGS__) }
#define AI_PACK_INTQ_ZP16(...) \
(INTQ_CONST ai_i16[]) { AI_PACK(__VA_ARGS__) }
#define AI_PACK_UINTQ_ZP16(...) \
(INTQ_CONST ai_u16[]) { AI_PACK(__VA_ARGS__) }
#define AI_INTQ_INFO_LIST_OBJ_INIT(flags_, size_, info_) \
{ \
.flags = (flags_), \
.size = (size_), \
.info = (info_), \
}
#define AI_INTQ_INFO_LIST_OBJ_EMPTY { 0 }
#define AI_INTQ_INFO_LIST_OBJ_DECLARE(name_, attr_, flags_, size_, info_) \
AI_ALIGNED(4) \
attr_ ai_intq_info_list name_ = \
AI_INTQ_INFO_LIST_OBJ_INIT(flags_, size_, AI_PACK(info_));
#define AI_INTQ_INFO_LIST_OBJ_DECLARE_EMPTY(name_, attr_) \
AI_ALIGNED(4) \
attr_ ai_intq_info_list name_ = AI_INTQ_INFO_LIST_OBJ_EMPTY;
/********************************* TENSOR CHAINS DATATYPES *******************/
/*!
* @enum ai_tensor_chain_type
* @ingroup ai_platform_interface
* @brief Enum for the different tensor chains supported in the library
*/
typedef enum {
AI_TENSOR_CHAIN_INPUT = 0x0,
AI_TENSOR_CHAIN_OUTPUT = 0x1,
AI_TENSOR_CHAIN_WEIGHTS = 0x2,
AI_TENSOR_CHAIN_SCRATCH = 0x3,
AI_TENSOR_CHAIN_SIZE
} ai_tensor_chain_type;
/*!
* @struct ai_tensor_list
* @ingroup ai_platform_interface
* @brief list (in form of arrays) of internal nodes tensor pointers
*/
AI_PACKED_STRUCT_START
typedef AI_ALIGNED_TYPE(struct, 4) AI_PACKED ai_tensor_list_s {
ai_u16 size; /*!< number of elements in the the tensor list */
ai_u16 flags; /*!< optional flags to store tensor list attributes */
ai_tensor** tensor; /*!< array of linked tensor pointer */
ai_tensor_list_info* info; /*!< pointer to an array of metainfo associated to the tensors */
} ai_tensor_list;
AI_PACKED_STRUCT_END
/*!
* @struct ai_tensor_chain
* @ingroup ai_platform_interface
* @brief tensor chain datastruct for internal network nodes
*/
AI_PACKED_STRUCT_START
typedef AI_ALIGNED_TYPE(struct, 4) AI_PACKED ai_tensor_chain_s {
ai_u16 size;
ai_u16 flags;
ai_tensor_list* chain; /*!< pointer to a 4 sized array see @ref ai_tensor_chain_type */
} ai_tensor_chain;
AI_PACKED_STRUCT_END
/************************************** LAYER DATATYPES *******************/
/*!
* @struct ai_layer
* @ingroup ai_platform_interface
* @brief Structure encoding a generic opaque layer in the network
*
*/
typedef void ai_layer;
/************************************** OBSERVER DATATYPES *******************/
/* forward function */
struct ai_node_s;
/*!
* @struct ai_observer_node
* @ingroup ai_observer_interface
* @brief observer node data struct for internal network nodes
*/
AI_PACKED_STRUCT_START
typedef AI_ALIGNED_TYPE(struct, 4) AI_PACKED ai_observer_node_s {
ai_u16 c_idx; /*!< node index (position in the execution list) */
ai_u16 type; /*!< node type info @see ai_node datastruct */
ai_u16 id; /*!< node id assigned by codegen tool to identify the model layer*/
ai_u16 unused; /*!< unused field for alignment */
const ai_tensor_chain* inner_tensors; /*!< pointer to the inner tensor if available */
const ai_tensor_chain* tensors; /*!< pointer to a 4 sized array see @ref ai_tensor_chain_type */
} ai_observer_node;
AI_PACKED_STRUCT_END
#define AI_OBSERVER_NONE_EVT (0) /*!< No event */
#define AI_OBSERVER_INIT_EVT (1 << 0) /*!< called at the end of the init function */
#define AI_OBSERVER_PRE_EVT (1 << 1) /*!< before c-node execution */
#define AI_OBSERVER_POST_EVT (1 << 2) /*!< after c-node execution */
#define AI_OBSERVER_FIRST_EVT (1 << 8) /*!< indicate the first c-node */
#define AI_OBSERVER_LAST_EVT (1 << 9) /*!< indicate the last c-node */
#define AI_OBSERVER_REGISTERED (1 << 24) /*!< internal flag */
#define AI_OBSERVER_MASK_EVT (0xFF) /*!< mask for requested user event */
/* Client callback definition */
typedef ai_u32 (*ai_observer_node_cb)(
const ai_handle cookie,
const ai_u32 flags,
const ai_observer_node *node);
AI_PACKED_STRUCT_START
typedef AI_ALIGNED_TYPE(struct, 4) AI_PACKED ai_observer_exec_ctx_s {
ai_observer_node_cb on_node; /*!< registered user observer call-back function */
ai_handle cookie; /*!< reference of the user context */
ai_u32 flags; /*!< flags definition */
ai_u16 c_idx; /*!< store/indicate the index of the current c_node */
ai_u16 n_nodes; /*!< total number of c_node */
struct ai_node_s *cur; /*!< pointer of the current node (pre or post) */
} ai_observer_exec_ctx;
AI_PACKED_STRUCT_END
typedef enum {
AI_NODE_EXEC_INIT = 0x0,
AI_NODE_EXEC_START = 0x1,
AI_NODE_EXEC_PRE = 0x2,
AI_NODE_EXEC_POST = 0x3,
} ai_node_exec_state;
/* Internal/private definition of node execution callback */
typedef ai_u32 (*ai_node_exec_cb)(
const ai_node_exec_state state,
struct ai_node_s *cur,
const ai_handle ctx);
/********************************* NETWORK DATATYPES *************************/
/*!
* @struct ai_network
* @ingroup layers
* @brief Structure encoding a sequential neural network
*/
AI_PACKED_STRUCT_START
typedef AI_ALIGNED_TYPE(struct, 4) AI_PACKED ai_network_s {
AI_CONTEXT_FIELDS
ai_klass_obj klass; /*!< opaque handler to specific network implementations */
ai_flags flags; /*!< bitflags mask to track some network state info */
ai_error error; /*!< track 1st error code in the network */
ai_u16 n_batches; /*!< number of batches to process */
ai_u16 batch_id; /*!< current batch to to process btw [0, n_batches)*/
// New 6.1 context storing explicitly network buffers. This allow also management of network persistent state now
ai_network_buffers buffers; /*!< network buffers datastruct */
ai_tensor_chain tensors; /*!< I/O tensor chain list see @ref ai_tensor_list */
struct ai_node_s* input_node; /*!< first node to execute */
struct ai_node_s* current_node; /*!< current node to execute */
ai_node_exec_cb on_node_exec; /*!< registered call-back function called when
a node/operator is scheduled */
ai_handle data_exec; /*!< private reference for the runtime context */
ai_handle lite_cb; /*!< registered opaque call-back handler for lite APIs */
ai_version tool_api_version; /*! Tools Codegen API version */
} ai_network;
AI_PACKED_STRUCT_END
/*!
* @brief Get platform runtime lib revision version as string.
* @ingroup ai_platform_interface
* @return a string containing the revision of the runtime library
*/
AI_INTERFACE_TYPE
const char* ai_platform_runtime_get_revision(void);
/*!
* @brief Get platform runtime lib version as datastruct.
* @ingroup ai_platform_interface
* @return a datastruct containing the version of the runtime library
*/
AI_INTERFACE_TYPE
ai_platform_version ai_platform_runtime_get_version(void);
/*!
* @brief Get platform public APIs version as datastruct.
* @ingroup ai_platform_interface
* @return a datastruct containing the version of the public APIs
*/
AI_INTERFACE_TYPE
ai_platform_version ai_platform_api_get_version(void);
/*!
* @brief Get platform interface private APIs version as datastruct.
* @ingroup ai_platform_interface
* @return a datastruct containing the version of the interface private APIs
*/
AI_INTERFACE_TYPE
ai_platform_version ai_platform_interface_api_get_version(void);
/****************************************************************************
** Context APIs
****************************************************************************/
/*!
* @brief Get platform context.
* @ingroup ai_platform_interface
* @return a valid context handle or NULL otherwise
*/
AI_INTERFACE_TYPE
ai_context* ai_platform_context_acquire(const ai_handle handle);
/*!
* @brief Release platform context.
* @ingroup ai_platform_interface
* @return an opaque handle to the released object
*/
AI_INTERFACE_TYPE
ai_handle ai_platform_context_release(ai_context* ctx);
/****************************************************************************
** Platform Network Params APIs
****************************************************************************/
/*!
* @brief get the weights map from user provided network params info
* @ingroup ai_platform_interface
* @param params a pointer to ai_network_params struct
* @param map table pointer to the table map to initialize
* @param map_size the number of entries of the table to initialize
* @return true if initialization succeeded, false otherwise
*/
AI_INTERFACE_TYPE
ai_bool ai_platform_get_weights_map(
ai_ptr* map, const ai_size map_size, const ai_network_params* params);
/*!
* @brief get the activations map from user provided network params info
* @ingroup ai_platform_interface
* @param params a pointer to ai_network_params struct
* @param map table pointer to the table map to initialize
* @param map_size the number of entries of the table to initialize
* @return true if initialization succeeded, false otherwise
*/
AI_INTERFACE_TYPE
ai_bool ai_platform_get_activations_map(
ai_ptr* map, const ai_size map_size, const ai_network_params* params);
/*!
* @brief bind code generated weights and activations map arrays to ai_netwoek_params
* @ingroup ai_platform_interface
* @param[out] params the network params struct reporting binded params
* @param[in] map_weights pointer to the codegened weights map array to be bound
* @param[in] map_activations pointer to the codegened activation map array to be bound
* @return true if network parameters binding succeed, false otherwise
*/
AI_INTERFACE_TYPE
ai_bool ai_platform_bind_network_params(
ai_network_params* params,
const ai_buffer_array* map_weights, const ai_buffer_array* map_activations);
/****************************************************************************
** Platform Network APIs
****************************************************************************/
/*!
* @brief get **first** error tracked when using the network
* @ingroup ai_platform_interface
* @param network an opaque handler to the network context
* @return ai_error the FIRST error generated during network processing
*/
AI_INTERFACE_TYPE
ai_error ai_platform_network_get_error(ai_handle network);
/*!
* @brief Set specific error code of the network. if an error is already present
* keep it
* @ingroup ai_platform_interface
* @param net_ctx a pointer to the network context
* @param type error type as defined in @ref ai_error_type
* @param code error code as defined in @ref ai_error_code
* @return true if no previous errors where recorded, false if a previous error
* is present or context is invalid
*/
AI_INTERFACE_TYPE
ai_bool ai_platform_network_set_error(
ai_network* net_ctx, const ai_error_type type, const ai_error_code code);
/*!
* @brief Finalize network report datastruct with I/O buffer infos
* @ingroup ai_platform_interface
* @return bool if the report has been finalized correctly. false otherwise
*/
AI_INTERFACE_TYPE
ai_bool ai_platform_api_get_network_report(
ai_handle network, ai_network_report* r);
/*!
* @brief Get network inputs array pointer as a ai_buffer array pointer.
* @ingroup network
* @param network an opaque handler to the network context
* @param n_buffer optional parameter to return the number of inputs
* @return a ai_buffer pointer to the inputs arrays
*/
AI_INTERFACE_TYPE
ai_buffer* ai_platform_inputs_get(ai_handle network, ai_u16 *n_buffer);
/*!
* @brief Get network outputs array pointer as a ai_buffer array pointer.
* @ingroup network
* @param network an opaque handler to the network context
* @param n_buffer optional parameter to return the number of outputs
* @return a ai_buffer pointer to the inputs arrays
*/
AI_INTERFACE_TYPE
ai_buffer* ai_platform_outputs_get(ai_handle network, ai_u16 *n_buffer);
/*!
* @brief create a network context with some error check
* @ingroup ai_platform_interface
* @param a pointer to an opaque handle of the network context
* @param an (optional) pointer to the network config buffer info
* @param net_ctx a pointer to the network context structure to initialize
* @param tool_major major version id of the tool used to generate the network
* @param tool_minor minor version id of the tool used to generate the network
* @param tool_micro micro version id of the tool used to generate the network
* @return the error during network creation or error none if ok
*/
AI_INTERFACE_TYPE
ai_error ai_platform_network_create(
ai_handle* network, const ai_buffer* network_config,
ai_network* net_ctx,
const ai_u8 tool_major, const ai_u8 tool_minor, const ai_u8 tool_micro);
/*!
* @brief destroy a network context
* @ingroup ai_platform_interface
* @param network a pointer to an opaque handle of the network context
* @return AI_HANDLE_NULL if deallocation OK, same network handle if failed
*/
AI_INTERFACE_TYPE
ai_handle ai_platform_network_destroy(ai_handle network);
/*!
* @brief initialize the network context
* @ingroup ai_platform_interface
* @param network a pointer to an opaque handle of the network context
* @return a valid network context, NULL if initialization failed
*/
AI_INTERFACE_TYPE
ai_network* ai_platform_network_init(
ai_handle network, const ai_network_params* params);
/*!
* @brief post-initialize of the network context.
* @ingroup ai_platform_interface
* @param network a pointer to an opaque handle of the network context
* @return a valid network context, NULL if initialization failed
*/
AI_INTERFACE_TYPE
ai_bool ai_platform_network_post_init(ai_handle network);
/*!
* @brief main platform runtime execute of a network
* @ingroup ai_platform_interface
* @param network an opaque handler to the network context
* @param input a pointer to the input buffer data to process
* @param output a pointer to the output buffer
* @return the number of batches processed from the input. A result <=0 in case
* of error
*/
AI_INTERFACE_TYPE
ai_i32 ai_platform_network_process(
ai_handle network, const ai_buffer* input, ai_buffer* output);
/****************************************************************************
** Observer APIs
****************************************************************************/
/*!
* @brief Return the info of a requested c-node (defined by the
* c_idx field). Should be called after the initialization phase.
* @ingroup ai_platform_observer
* @param network a pointer to an opaque handle of the network context
* @param node_info a pointer to a reference of the node description
* @return true if the node_info->c_idx designates a valid index else
* false (network error is updated).
*/
AI_INTERFACE_TYPE
ai_bool ai_platform_observer_node_info(
ai_handle network, ai_observer_node *node_info);
/*!
* @brief Register an observer context. Allows to register a client CB which
* will be called before or/and after the execution of a c-node with
* the references of the used tensors (see @ref ai_observer_node).
* @ingroup ai_platform_observer
* @param network a pointer to an opaque handle of the network context
* @param cb reference of the user callback function
* @param cookie reference of a user object/ctx
* @param flags indicate expected events (see AI_OBSERVER_XX_EVT flag definition)
* @return false if the registration has failed (network error is updated) else true
* of error.
*/
AI_INTERFACE_TYPE
ai_bool ai_platform_observer_register(
ai_handle network,
ai_observer_node_cb cb,
ai_handle cookie,
ai_u32 flags);
AI_INTERFACE_TYPE
ai_bool ai_platform_observer_register_s(ai_handle network,
ai_observer_exec_ctx *ctx);
/*!
* @brief un-register the observer context.
* @ingroup ai_platform_observer
* @param network a pointer to an opaque handle of the network context
* @param ctx a pointer to a reference of the registered platform observer context
* @param cb reference of the registered user callback function
* @param cookie reference of the registered user object/ctx
* @return false if the un-registration has failed (network error is updated) else true
* of error.
*/
AI_INTERFACE_TYPE
ai_bool ai_platform_observer_unregister(ai_handle network,
ai_observer_node_cb cb, ai_handle cookie);
AI_INTERFACE_TYPE
ai_bool ai_platform_observer_unregister_s(ai_handle network,
ai_observer_exec_ctx *ctx);
AI_API_DECLARE_END
#endif /*AI_PLATFORM_INTERFACE_H*/
| 35,318 | C | 33.091699 | 115 | 0.615012 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/core_common.h | /**
******************************************************************************
* @file core_common.h
* @author AST Embedded Analytics Research Platform
* @brief header file of common core datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef CORE_COMMON_H
#define CORE_COMMON_H
#pragma once
#include "ai_platform.h"
#include "ai_platform_interface.h"
#include "core_datatypes.h"
// #include "core_log.h"
/*!
* @defgroup core_common Common Core Library Routines
* @brief Common macros, datatypes and routines of core common module
* @details This module contains the definitons and handling of the @ref ai_node
* datastructures. An ai_node is a generic abstraction for a network node that
* could be either a fixed function layer or an operator. Ideally the platform
* interface defined in api module should handle an process generic nodes in the
* network, not relying on the fact that they are layers or operators datastructs
* Specific implementative details should be kept inside layers and operators
* modules. The core module implements additionally common routines used in the
* layers and operators modules.
*/
/******************************************************************************/
#ifdef HAS_AI_ASSERT
#define ASSERT_ARRAY_SANITY(a_) \
AI_ASSERT((a_) && (a_)->size>0)
#define ASSERT_ARRAY_DATA_SANITY(a_) \
ASSERT_ARRAY_SANITY(a_) \
AI_ASSERT((a_)->data && (a_)->data_start)
#define ASSERT_TENSOR_SANITY(t_) \
AI_ASSERT((t_) && (t_)->data) \
AI_ASSERT(CORE_TENSOR_GET_SHAPE_SIZE(t_)>0) \
ASSERT_ARRAY_SANITY((t_)->data)
#define ASSERT_TENSOR_LIST_SANITY(tlist_) \
AI_ASSERT((tlist_) && (GET_TENSOR_LIST_SIZE(tlist_)>0)) \
#define ASSERT_TENSOR_DATA_SANITY(t_) \
ASSERT_TENSOR_SANITY(t_) \
ASSERT_ARRAY_DATA_SANITY((t_)->data)
#define ASSERT_NODE_SANITY(node_) \
do { \
AI_ASSERT(AI_NODE_OBJ(node_)->tensors && AI_NODE_OBJ(node_)->tensors->chain) \
ASSERT_TENSOR_SANITY(GET_TENSOR_IN(AI_NODE_OBJ(node_)->tensors, 0)) \
ASSERT_TENSOR_SANITY(GET_TENSOR_OUT(AI_NODE_OBJ(node_)->tensors, 0)) \
} while (0);
#else
#define ASSERT_ARRAY_SANITY(a_) /* ASSERT_ARRAY_SANITY */
#define ASSERT_ARRAY_DATA_SANITY(a_) /* ASSERT_ARRAY_DATA_SANITY */
#define ASSERT_TENSOR_SANITY(t_) /* ASSERT_TENSOR_SANITY */
#define ASSERT_TENSOR_LIST_SANITY(tlist_) /* ASSERT_TENSOR_LIST_SANITY */
#define ASSERT_TENSOR_DATA_SANITY(t_) /* ASSERT_TENSOR_DATA_SANITY */
#define ASSERT_NODE_SANITY(node_) /* ASSERT_NODE_SANITY */
#endif /*HAS_AI_ASSERT*/
#if defined(__GNUC__) || defined(__clang__)
/* Suppress unused function warnings */
#define AI_UNUSED_FUNCTION __attribute__((unused))
/* Manage false positives in address sanitizer */
#define AI_NO_SANITIZE_ADDRESS __attribute__((no_sanitize_address))
#else
#define AI_UNUSED_FUNCTION /* AI_UNUSED_FUNCTION */
#define AI_NO_SANITIZE_ADDRESS /* AI_NO_SANITIZE_ADDRESS */
#endif
/******************************************************************************/
#define AI_NODE_TYPE(type_) \
((ai_node_type)((ai_u32)(type_)&0xFFFF))
#define AI_NODE_OBJ(obj_) \
((ai_node*)(obj_))
#define AI_NODE_FUNC(func_) \
((node_func)(func_))
#define AI_NODE_COMMON_FIELDS_DECLARE \
ai_node_type type; /*!< node type id (see @ref ai_node_type) */ \
ai_id_obj id; /*!< node object instance id (see @ref ai_id_obj) */ \
ai_flags flags; /*!< node object flags */ \
ai_klass_obj klass; /*!< opaque handler to specific layer implementations */ \
struct ai_network_s* network; /*!< handle to global network context */ \
struct ai_node_s* next; /*!< the next node object in the sequence */ \
node_func forward; /*!< forward function for the node */ \
AI_CONST ai_tensor_chain* tensors; /*!< pointer to node tensor chain */
#define AI_NODE_STATEFUL_FIELDS_DECLARE \
AI_NODE_COMMON_FIELDS_DECLARE \
ai_handle state; \
node_func init; \
node_func update; \
node_func destroy;
#define AI_NODE_COMMON_INIT(type_, id_, flags_, klass_, network_, next_, forward_) \
.type = AI_NODE_TYPE(type_), \
.id = AI_ID_OBJ(id_), \
.flags = (flags_), \
.klass = AI_KLASS_OBJ(klass_), \
.network = AI_NETWORK_OBJ(network_), \
.next = AI_NODE_OBJ(next_), \
.forward = AI_NODE_FUNC(forward_)
/*****************************************************************************/
/** Network Tensors Chains / Lists Handlers **/
/*****************************************************************************/
#define AI_FOR_EACH_TENSOR_CHAIN_DO(tlist_ptr_, chain_) \
ai_tensor_list* tlist_ptr_ = (chain_)->chain; \
for (; tlist_ptr_<(((chain_)->chain)+((chain_)->size)); tlist_ptr_++)
#define AI_FOR_EACH_TENSOR_LIST_DO(idx_, t_ptr_, tlist_ptr_) \
ai_tensor* t_ptr_ = NULL; \
for (ai_size idx_ = 0; (idx_ < GET_TENSOR_LIST_SIZE(tlist_ptr_)) && \
((t_ptr_ = GET_TENSOR_LIST_ITEM(tlist_ptr_, idx_)) != NULL); ++idx_)
#define GET_TENSOR_LIST_INFO(list_) \
((list_)->info)
#define GET_TENSOR_LIST_META(list_, pos_) \
(&(GET_TENSOR_LIST_INFO(list_)->meta[pos_]))
#define GET_TENSOR_LIST_STATE(list_, pos_) \
(&(GET_TENSOR_LIST_INFO(list_)->state[pos_]))
#define GET_TENSOR_LIST_BUFFER(list_, pos_) \
(&(GET_TENSOR_LIST_INFO(list_)->buffer[pos_]))
#define GET_TENSOR_LIST_ITEM(list_, pos_) \
((NULL!=GET_TENSOR_LIST_ITEMS(list_)) \
? GET_TENSOR_LIST_ITEMS(list_)[(pos_)] : NULL)
#define GET_TENSOR_LIST_ITEMS(list_) \
((list_)->tensor)
#define GET_TENSOR_LIST_SIZE(list_) \
((NULL!=(list_)) ? (list_)->size : 0)
#define GET_TENSOR_CHAIN_SIZE(chain_) \
((NULL!=(chain_)) ? (chain_)->size : 0)
#define GET_TENSOR_LIST(chain_, type_) \
((AI_CONCAT(AI_TENSOR_CHAIN_, type_)<(chain_)->size) \
? &(chain_)->chain[AI_CONCAT(AI_TENSOR_CHAIN_, type_)] : NULL)
#define GET_TENSOR_LIST_IN(chain_) \
(GET_TENSOR_LIST(chain_, INPUT))
#define GET_TENSOR_LIST_OUT(chain_) \
(GET_TENSOR_LIST(chain_, OUTPUT))
#define GET_TENSOR_LIST_WEIGTHS(chain_) \
(GET_TENSOR_LIST(chain_, WEIGHTS))
#define GET_TENSOR_LIST_SCRATCH(chain_) \
(GET_TENSOR_LIST(chain_, SCRATCH))
#define GET_TENSOR_IN(chain_, pos_) \
(GET_TENSOR_LIST_ITEM(GET_TENSOR_LIST_IN(chain_), (pos_)))
#define GET_TENSOR_OUT(chain_, pos_) \
(GET_TENSOR_LIST_ITEM(GET_TENSOR_LIST_OUT(chain_), (pos_)))
#define GET_TENSOR_WEIGHTS(chain_, pos_) \
(GET_TENSOR_LIST_ITEM(GET_TENSOR_LIST_WEIGTHS(chain_), (pos_)))
#define GET_TENSOR_SCRATCH(chain_, pos_) \
(GET_TENSOR_LIST_ITEM(GET_TENSOR_LIST_SCRATCH(chain_), (pos_)))
/******************************************************************************/
#if 1
#define SECTION_SERIAL(expr) expr
#define SECTION_PARALLEL(expr)
#else
#define SECTION_SERIAL(expr)
#define SECTION_PARALLEL(expr) expr
#endif
AI_API_DECLARE_BEGIN
/*!
* @struct ai_node_type
* @ingroup core_common
* @brief generic network node numeric type ID
*
*/
typedef uint16_t ai_node_type;
/*!
* @typedef void (*node_func)(struct ai_node_s* node)
* @ingroup core_common
* @brief Callback signatures for all forward functions
*/
typedef void (*node_func)(struct ai_node_s* node);
/*!
* @typedef ai_float (*func_nl_el)(const ai_float x)
* @ingroup core_common
* @brief Fuction pointer for generic elementwise transforms
*
* This function pointer abstracts a generic nonlinear function applied to a
* single element. See @ref ai_math_sqrt in @ref math_helpers as examples.
*/
typedef ai_float (*func_nl_el)(const ai_float x);
/*!
* @struct ai_node
* @ingroup core_common
* @brief Structure encoding a generic node of the network
*
* The node struct includes information about the network it belong to, the
* next node in a sequential network and the forward function. The forward
* functions are implemented in the @ref layers module.
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_node_s {
AI_NODE_COMMON_FIELDS_DECLARE
} ai_node;
/*!
* @struct ai_node_stateful
* @ingroup core_common
* @brief Structure encoding a stateful node of the network
*
* The node struct includes information about the network it belong to, the
* next node in a sequential network and the init, update and forward functions.
* The node functions are implemented in the @ref layers module.
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_node_stateful_s {
AI_NODE_STATEFUL_FIELDS_DECLARE
} ai_node_stateful;
/*!
* @brief initialize core module
* @ingroup core_common
* @return false if initialization fails, false otherwise
*/
AI_INTERNAL_API
ai_bool core_init(void);
/*!
* @brief get 1st error raised during processing
* @ingroup core_common
* @param[out] error the @ref ai_error recorded during processing
* @return the 1st error generated during processing. If no errors AI_ERROR_NONE
*/
AI_INTERNAL_API
ai_error core_get_error(ai_error* error);
/*!
* @brief set error recorded during processing
* @ingroup core_common
* @param[out] error the @ref ai_error to set
* @param[in] type the specific error type to set
* @param[in] code the specific error code to set
* @return true if the error is set, false in case a precedent error was already
*/
AI_INTERNAL_API
ai_bool core_set_error(
ai_error* error, const ai_error_type type, const ai_error_code code);
AI_API_DECLARE_END
#endif /*CORE_COMMON_H*/
| 9,995 | C | 33.588235 | 92 | 0.615408 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers.h | /**
******************************************************************************
* @file layers.h
* @author AST Embedded Analytics Research Platform
* @brief header file of AI platform layers datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_H
#define LAYERS_H
#pragma once
#include "layers_common.h"
#include "layers_conv2d.h"
#include "layers_custom.h"
#include "layers_dense.h"
#include "layers_formats_converters.h"
#include "layers_generic.h"
#include "layers_lite_graph.h"
#include "layers_nl.h"
#include "layers_norm.h"
#include "layers_pad_dqnn.h"
#include "layers_pad_generic.h"
#include "layers_pool.h"
#include "layers_rnn.h"
#include "layers_upsample_generic.h"
#include "layers_sm.h"
#include "layers_ml.h"
#include "layers_ml_iforest.h"
#include "layers_ml_svc.h"
#include "layers_ml.h"
#include "layers_ml_linearclassifier.h"
#include "layers_ml_treeensembleclassifier.h"
#include "layers_ml_treeensembleregressor.h"
#include "layers_ml_svmregressor.h"
#include "layers_conv2d_dqnn.h"
#include "layers_dense_dqnn.h"
#include "layers_pool_dqnn.h"
#include "layers_generic_dqnn.h"
#include "layers_upsample_generic.h"
// #include "layers_template.h"
AI_API_DECLARE_BEGIN
/*!
* @struct ai_any_layer_ptr
* @ingroup layers
* @brief Generic union for typed layers pointers
*/
typedef struct {
ai_layer_type type; /*!< layer type id (see @ref ai_layer_type) */
union {
#define LAYER_ENTRY(type_, id_, struct_, forward_func_, init_func_, destroy_func_) \
AI_CONCAT(ai_layer_, struct_)* struct_;
#include "layers_list.h"
};
} ai_any_layer_ptr;
AI_API_DECLARE_END
#endif /*LAYERS_H*/
| 2,190 | C | 27.089743 | 84 | 0.603653 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/core_net_inspect_interface.h | /**
******************************************************************************
* @file core_net_inspect_interface.h
* @author AST Embedded Analytics Research Platform
* @brief header file of core network inspection interface APIs
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef __CORE_NET_INSPECT_INTERFACE_H_
#define __CORE_NET_INSPECT_INTERFACE_H_
#pragma once
#include "ai_platform.h"
AI_API_DECLARE_BEGIN
/*!
* @defgroup core_validation Validation Core
* @brief Implementation of the validation network interface headers
*/
/*!
* @struct ai_inspect_node_info
* @brief network node inspection context: there is one of this datastruct
* for each node of the network
*/
typedef struct ai_inspect_node_info_s {
ai_u16 type; /*!< node type info @see ai_node datastruct */
ai_u16 id; /*!< node id assigned by codegen tool to identify
the specific node instance */
ai_u16 batch_id; /*!< current node batch processed */
ai_u16 n_batches; /*!< total number of node batches to process */
ai_float elapsed_ms; /*!< node performance analysys: time in
milliseconds to execute the node forward
function */
ai_u16 in_size; /*!< number of node's input activation buffers */
ai_u16 out_size; /*!< number of node's output activation buffers */
ai_buffer* in; /*!< input node activation buffer see @ref ai_buffer */
ai_buffer* out; /*!< output node activation buffer see @ref ai_buffer */
} ai_inspect_node_info;
/*!
* @struct ai_inspect_net_report
* @brief network inspection report context
*/
typedef struct ai_inspect_net_report_s {
ai_u32 id; /*!< id of the report */
ai_signature signature; /*!< network identification checksum */
ai_u32 num_inferences; /*!< total number of inferences processed
during the inspection */
ai_u32 n_nodes; /*!< number of nodes in the network */
ai_float elapsed_ms; /*!< network total time (in ms) for processing
num_inferences inferences */
ai_inspect_node_info* node; /*!< pointer to the array of size n_nodes where
a single node report is reported. see @ref
ai_inspect_node_info datastruct */
} ai_inspect_net_report;
/*!
* @enum net inspector inspection mode
* @brief configuration flags to set net inspection mode
*/
typedef enum {
VALIDATION_INSPECT = (0x1<<0), /**< Network validation inspection mode */
STORE_ALL_IO_ACTIVATIONS = (0x1<<7), /**< Store all I/O activations on snapshot datastruct */
} ai_inspect_mode;
typedef enum {
AI_NODE_EXEC_PRE_FORWARD_STAGE = 0x0,
AI_NODE_EXEC_POST_FORWARD_STAGE = 0x1,
} ai_node_exec_stage;
/*!
* @brief function pointer to callback report
*/
typedef void (*ai_inspect_report_cb_func)(
const ai_handle cookie,
const ai_inspect_net_report* report);
/*!
* @brief function pointer to node execute
*/
typedef void (*ai_inspect_exec_node_cb_func)(
const ai_handle cookie,
const ai_inspect_node_info* node_info,
const ai_node_exec_stage stage);
/*!
* @struct ai_inspect_config
* @brief inspection config datastruct
*/
typedef struct ai_inspect_config_s {
ai_u8 validation_mode; /*!< validation mode flags
see @ref ai_inspect_mode */
ai_u8 log_level; /*!< log class level see @ref LOG_SUDO */
ai_bool log_quiet; /*!< log class quiet mode */
ai_inspect_report_cb_func on_report_destroy; /*!< callback function
called when a report datastruct
is released from memory */
ai_inspect_exec_node_cb_func on_exec_node; /*!< callback function
called when a node is executed (pre & post) */
ai_handle cookie;
} ai_inspect_config;
AI_API_DECLARE_END
#endif /*__CORE_NET_INSPECT_INTERFACE_H_*/
| 4,734 | C | 37.495935 | 98 | 0.562315 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers_rnn.h | /**
******************************************************************************
* @file layers_rnn.h
* @author AST Embedded Analytics Research Platform
* @brief header file of RNN layers
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_RNN_H
#define LAYERS_RNN_H
#pragma once
#include "layers_common.h"
#include "layers_nl.h"
AI_API_DECLARE_BEGIN
/*!
* @struct ai_layer_lstm
* @ingroup layers
* @brief LSTM layer with generic nonlinearities and peephole connections
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_lstm_ {
AI_LAYER_STATEFUL_FIELDS_DECLARE
ai_size n_units; /**< size of the hidden RNN state */
func_nl activation_nl; /**< activation nonlinearity (input to cell) */
func_nl recurrent_nl; /**< recurrent nonlinearity (hidden to cell) */
func_nl out_nl; /**< output nonlinearity (cell to hidden) */
ai_bool go_backwards; /**< process reversed input */
ai_bool return_state; /**< return state */
ai_bool reverse_seq; /**< reverse output sequence */
ai_float cell_clip; /**< cell clip value */
} ai_layer_lstm;
/*!
* @struct ai_layer_gru
* @ingroup layers
* @brief Gated Recurrent Unit (GRU) layer with generic nonlinearities
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_gru_ {
AI_LAYER_STATEFUL_FIELDS_DECLARE
ai_size n_units; /**< size of the hidden RNN state */
func_nl activation_nl; /**< activation nonlinearity (input to cell) */
func_nl recurrent_nl; /**< recurrent nonlinearity (hidden to cell) */
ai_bool reset_after;
ai_bool return_state;
ai_bool go_backwards; /**< process reversed input */
ai_bool reverse_seq; /**< reverse output sequence */
} ai_layer_gru;
/*!
* @struct ai_layer_rnn
* @ingroup layers
* @brief Simple Recurrent Neural Network (RNN) layer
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_rnn_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_size n_units; /**< size of the hidden RNN state */
func_nl activation_nl; /**< activation nonlinearity (input to hidden) */
ai_bool go_backwards; /**< process reversed input */
ai_bool reverse_seq; /**< reverse output sequence */
ai_bool return_state;
} ai_layer_rnn;
/*!
* @brief Initialize a Long-Short Term Memory (LSTM) layer.
* @ingroup layers
*
* Function used to initialize lstm internal state
*/
AI_INTERNAL_API
void init_lstm(ai_layer * layer);
/*!
* @brief Destroy a Long-Short Term Memory (LSTM) layer state.
* @ingroup layers
*
* Function used to destroy lstm internal state
*/
AI_INTERNAL_API
void destroy_lstm(ai_layer * layer);
/*!
* @brief Computes the activations of a Long-Short Term Memory (LSTM) layer.
* @ingroup layers
*
* Implements a Long-Short Term Layer with peephole connections:
* \f{eqnarray*}{
* i_t &=& \sigma_a(x_t W_{xi} + h_{t-1} W_{hi}
* + w_{ci} \odot c_{t-1} + b_i)\\
* f_t &=& \sigma_a(x_t W_{xf} + h_{t-1} W_{hf}
* + w_{cf} \odot c_{t-1} + b_f)\\
* c_t &=& f_t \odot c_{t - 1}
* + i_t \odot \sigma_r(x_t W_{xc} + h_{t-1} W_{hc} + b_c)\\
* o_t &=& \sigma_a(x_t W_{xo} + h_{t-1} W_{ho} + w_{co} \odot c_t + b_o)\\
* h_t &=& o_t \odot \sigma_o(c_t)
* \f}
* where \f$\sigma_a\f$ is the activation nonlinearity, \f$\sigma_r\f$ is the
* recurrent nonlinearity and \f$\sigma_o\f$ is the out nonlinearity. The
* \f$W_x\f$, \f$W_h\f$ and \f$W_c\f$ weights are sliced from the kernel,
* recurrent and peephole weights.
*
* @param layer the LSTM layer
*/
AI_INTERNAL_API
void forward_lstm(ai_layer * layer);
/*!
* @brief Initialize a Gated Recurrent Unit (GRU) layer.
* @ingroup layers
*
* Function used to initialize gru internal state
*/
AI_INTERNAL_API
void init_gru(ai_layer * layer);
/*!
* @brief Destroy a Gated Recurrent Unit (GRU) layer state.
* @ingroup layers
*
* Function used to destroy gru internal state
*/
AI_INTERNAL_API
void destroy_gru(ai_layer * layer);
/*!
* @brief Computes the activations of a Gated Recurrent Unit (GRU) layer.
* @ingroup layers
*
* Implements a Gated Recurrent Unit with the formula:
* \f{eqnarray*}{
* r_t &=& \sigma_a(x_t W_{xr} + h_{t - 1} W_{hr} + b_r) \\
* z_t &=& \sigma_a(x_t W_{xz} + h_{t - 1} W_{hz} + b_z) \\
* c_t &=& \sigma_r(x_t W_{xc} + r_t \odot (h_{t - 1} W_{hc} + b_{hc}) + b_c)
* \qquad \textnormal{when reset after is true} \\
* c_t &=& \sigma_r(x_t W_{xc} + (r_t \odot h_{t - 1}) W_{hc} + b_{hc} + b_c)
* \qquad \textnormal{when reset after is false (default)} \\
* h_t &=& (1 - z_t) \odot h_{t - 1} + z_t \odot c_t
* \f}
* where \f$\sigma_a\f$ is the activation nonlinearity and \f$\sigma_r\f$ is
* the recurrent nonlinearity. The weights are sliced from the kernel and
* recurrent weights.
*
* @param layer the GRU layer
*/
AI_INTERNAL_API
void forward_gru(ai_layer * layer);
/*!
* @brief Computes the activations of a Recurrent Neural Network (RNN) layer.
* @ingroup layers
*
* Implements a recurrent layer with the formula:
* \f{eqnarray*}{
* h_t &=& \sigma_a(x_t W_{xr} + h_{t - 1} W_{hr} + b_r)
* \f}
* where \f$\sigma_a\f$ is the activation nonlinearity. The weights are sliced
* from the kernel and recurrent weights.
*
* @param layer the RNN layer
*/
AI_INTERNAL_API
void forward_rnn(ai_layer * layer);
AI_API_DECLARE_END
#endif /* LAYERS_RNN_H */
| 5,866 | C | 30.713513 | 80 | 0.596147 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers_lite_graph.h | /**
******************************************************************************
* @file layers_lite_graph.h
* @author AST Embedded Analytics Research Platform
* @brief header file of AI platform lite graph layers wrapper interface
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_LITE_GRAPH_H
#define LAYERS_LITE_GRAPH_H
#pragma once
#include "core_common.h"
/*!
* @defgroup layers_lite_graph Lite Graph Wrapper Definitions
* @brief definition
*
*/
AI_API_DECLARE_BEGIN
/*!
* @struct ai_layer_lite_graph
* @ingroup layers_lite_graph
* @brief Generic Lite Graph Layer Wrapper
*
* The type of lite graph is handled by the specific forward lite graph function.
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_lite_graph_ {
AI_NODE_COMMON_FIELDS_DECLARE
ai_handle* activations_map; /*!< array of pointers to shared activations memory pools */
ai_handle* weights_map; /*!< array of pointers to shared weights memory pools */
} ai_layer_lite_graph;
AI_API_DECLARE_END
#endif /*LAYERS_LITE_GRAPH_H*/
| 1,598 | C | 29.169811 | 98 | 0.558824 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/core_datatypes.h | /**
******************************************************************************
* @file core_datatypes.h
* @author AST Embedded Analytics Research Platform
* @brief header file of core module private defines and datatypes
* to public nor codegen tool
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef AI_CORE_DATATYPES_H
#define AI_CORE_DATATYPES_H
#pragma once
#include <stdint.h>
/*!
* @defgroup Core Module Datatypes
* @brief Data structures and defines used by core module
*/
/*!
* @brief platform runtime core library version
*/
#define AI_PLATFORM_RUNTIME_MAJOR 8
#define AI_PLATFORM_RUNTIME_MINOR 1
#define AI_PLATFORM_RUNTIME_MICRO 0
#define AI_PLATFORM_RUNTIME_BUILD A1-SNAPSHOT
#define AI_MAGIC_CONTEXT_TOKEN (0xA1C00100) /*!< AI Cool! Magic Token */
#define AI_MAGIC_INSPECTOR_TOKEN (0xA1C00101) /*!< AI Cool! Magic Token */
#define AI_ID_OBJ(id) \
((ai_id_obj)(id))
#define AI_C_ARRAY_COUNT(array_) \
( sizeof(array_) / sizeof((array_)[0]) )
#define AI_C_ARRAY_BYTE_SIZE(array_) \
( sizeof(array_) )
/*!
* @typedef ai_id_obj
* @ingroup core_datatypes
* @brief numeric identifier for generic object instances (e.g. layers,
* operators, etc.) It is used by codegen tool to keep tracks of specific
* instances created
*/
typedef uint16_t ai_id_obj;
#endif /*AI_CORE_DATATYPES_H*/
| 1,901 | C | 27.818181 | 80 | 0.570752 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers_ml_svmregressor.h | /**
******************************************************************************
* @file layers_svmregressor.h
* @author AIS
* @brief header file of AI platform SVM Regressor datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_SVMREGRESSOR_H
#define LAYERS_SVMREGRESSOR_H
#pragma once
#include "layers_common.h"
/*!
* @defgroup layers_svmreg Layers Definitions
* @brief definition
*
*/
AI_API_DECLARE_BEGIN
/* SVM regressor kernel types */
typedef enum ai_svm_kernel_e_ {
AI_SVMREG_KERNEL_LINEAR = 0,
AI_SVMREG_KERNEL_POLYNOMIAL,
AI_SVMREG_KERNEL_RBF,
AI_SVMREG_KERNEL_SIGMOID,
AI_SVMREG_KERNEL_UNSUPPORTED,
} ai_svm_kernel_e;
/*!
* @struct ai_layer_svmreg
* @ingroup layers_svmreg
* @brief SVM Regressor layer
*
* The type of svmreg function is handled by the specific forward function
* @ref forward_svm_regressor
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_svmreg_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_float intercept; /*!< constant used in the decision function */
ai_float gamma; /*!< kernel coefficient for rbf, polynomial and sigmoid functions */
ai_float coef0; /*!< term in polynomial and sigmoid functions */
ai_u32 degree; /*!< polynomial function degree */
ai_svm_kernel_e kernel_type; /*!< kernel type : see ai_svm_kernel_e */
} ai_layer_svmreg;
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Decodes the SVM Regressor ML operator.
* @ingroup layers_svmreg
* @param layer svm regressor layer
*/
AI_INTERNAL_API
void forward_svm_regressor(ai_layer *pLayer);
AI_API_DECLARE_END
#endif /*LAYERS_SVMREGRESSOR_H*/
| 2,397 | C | 27.891566 | 96 | 0.53567 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/lite_bn_integer.h | #ifndef LITE_BN_INTEGER_H
#define LITE_BN_INTEGER_H
#pragma once
#include "ai_lite_interface.h"
/**
* @brief Batch Normalization with 16-bit input, 16-bit threshold and binary output.
* It is implemented using a threshold, and this is possible because the output is binary.
*
* @param[in] pIn Input data pointer
* @param[out] pOut_32 Output data pointer
* @param[in] pThreshold Thresholds pointer (one per channel)
* @param[in] dim_x X dimension
* @param[in] dim_y Y dimension
* @param[in] channels_num Channels number
*/
LITE_API_ENTRY
void forward_lite_bn_is16os1ws16(const ai_i16 *pIn,
ai_u32 *pOut_32,
const ai_i16 *pThreshold,
const ai_i16 dim_x,
const ai_i16 dim_y,
const ai_i16 channels_num);
#endif /* LITE_BN_INTEGER_H */
| 913 | C | 34.153845 | 90 | 0.591457 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/ai_datatypes_internal.h | /**
******************************************************************************
* @file ai_datatypes_internal.h
* @author AST Embedded Analytics Research Platform
* @brief Definitions of AI platform private APIs types
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef AI_DATATYPES_INTERNAL_H
#define AI_DATATYPES_INTERNAL_H
#pragma once
#include "ai_datatypes.h"
#include "ai_datatypes_defines.h"
/*!
* @defgroup datatypes_internal Internal Datatypes
* @brief Data structures used internally to implement neural networks
*
* The layers are defined as structs; a generic layer type defines the basic
* layer parameters and type-specific parameters are handled by specializations
* implemented as a C union. The layers keep also a pointer to the parent
* network and the next layer in the network.
* The input, output and parameters are tensor with an hard-coded maximum
* dimension of 4. Tensors are floating point arrays with a notion of size.
* The network is a linked list of layers, and thus it stores only the pointer
* to the first layer.
*/
/*!
* @section Offsets
* @ingroup datatypes_internal
* Macros to handle (byte) stride addressing on tensors. The `AI_PTR` macro
* is used to always cast a pointer to byte array. The macros `AI_OFFSET_X` are
* used to compute (byte) offsets of respectively adjacents row elements, col
* elements, channel elements and `channel_in` elements.
* @{
*/
/*! AI_STORAGE_KLASS SECTION ************************************/
#define AI_STORAGE_KLASS_TYPE(s_) \
( (s_)->type )
#define AI_STORAGE_KLASS_SIZE(s_) \
( (s_)->size )
#define AI_STORAGE_KLASS_DATA(s_, type_) \
( (type_*)((s_)->data) )
#define AI_STORAGE_KLASS_COPY(dst_, dst_type_, src_, src_type_) \
{ \
AI_ASSERT(AI_STORAGE_KLASS_SIZE(src_)>=AI_STORAGE_KLASS_SIZE(dst_)) \
AI_STORAGE_KLASS_SIZE(dst_) = AI_STORAGE_KLASS_SIZE(src_); \
for (ai_size i=0; i<AI_STORAGE_KLASS_SIZE(dst_); i++ ) { \
AI_STORAGE_KLASS_DATA(dst_, dst_type_)[i] = \
AI_STORAGE_KLASS_DATA(src_, src_type_)[i]; \
} \
}
#define AI_STORAGE_KLASS_DUMP(s_, pfx_, post_, fmt_, type_) \
{ \
AI_ASSERT(s_) \
AI_DEBUG_PRINT(pfx_, AI_STORAGE_KLASS_SIZE(s_)) \
for ( ai_u32 i=0; i<AI_STORAGE_KLASS_SIZE(s_); i++ ) { \
if ( (i % 8)==0 ) { AI_DEBUG_PRINT("\n ") } \
AI_DEBUG_PRINT(fmt_, AI_STORAGE_KLASS_DATA(s_, type_)[i]) \
} \
AI_DEBUG_PRINT(post_) \
}
/*! AI_SHAPES SECTION ************************************/
#define AI_SHAPE_2D_H(shape_) \
AI_SHAPE_ELEM(shape_, AI_SHAPE_2D_HEIGHT)
#define AI_SHAPE_2D_W(shape_) \
AI_SHAPE_ELEM(shape_, AI_SHAPE_2D_WIDTH)
#define AI_SHAPE_ELEM(shape_, pos_) \
AI_STORAGE_KLASS_DATA(shape_, ai_shape_dimension)[pos_]
#define AI_SHAPE_GET_ELEM(shape_, pos_) \
(((pos_) < AI_SHAPE_SIZE(shape_)) ? AI_SHAPE_ELEM(shape_, pos_) : 1)
#define AI_SHAPE_SET_ELEM(shape_, pos_, val_) \
if ((pos_) < AI_SHAPE_SIZE(shape_)) { AI_SHAPE_ELEM(shape_, pos_) = (val_); }
#define AI_SHAPE_TYPE(shape_) \
AI_STORAGE_KLASS_TYPE(shape_)
#define AI_SHAPE_SIZE(shape_) \
AI_STORAGE_KLASS_SIZE(shape_)
#define AI_SHAPE_CLONE(dst_, src_) \
AI_STORAGE_KLASS_COPY(dst_, ai_shape_dimension, src_, ai_shape_dimension)
#define AI_SHAPE_BCAST_CLONE(dst_, src_) \
{ \
for (ai_size i = 0; i < AI_SHAPE_SIZE(dst_); i++) { \
AI_SHAPE_SET_ELEM(dst_, i, AI_SHAPE_GET_ELEM(src_, i)); \
} \
}
//#define AI_SHAPE_BATCH(shape_) AI_SHAPE_ELEM((shape_), AI_SHAPE_BATCH_CHANNEL)
#define AI_SHAPE_H(shape_) AI_SHAPE_ELEM((shape_), AI_SHAPE_HEIGHT)
#define AI_SHAPE_W(shape_) AI_SHAPE_ELEM((shape_), AI_SHAPE_WIDTH)
#define AI_SHAPE_CH(shape_) AI_SHAPE_ELEM((shape_), AI_SHAPE_CHANNEL)
#define AI_SHAPE_IN_CH(shape_) AI_SHAPE_ELEM((shape_), AI_SHAPE_IN_CHANNEL)
#define AI_SHAPE_D(shape_) ((AI_SHAPE_SIZE((shape_)) > AI_SHAPE_DEPTH) \
? AI_SHAPE_ELEM((shape_), AI_SHAPE_DEPTH) : 1)
#define AI_SHAPE_E(shape_) ((AI_SHAPE_SIZE((shape_)) > AI_SHAPE_EXTENSION) \
? AI_SHAPE_ELEM((shape_), AI_SHAPE_EXTENSION) : 1)
#define AI_SHAPE_T(shape_) AI_SHAPE_ELEM((shape_), AI_SHAPE_TIME)
#define AI_CONV_SHAPE_H AI_SHAPE_W
#define AI_CONV_SHAPE_W AI_SHAPE_CH
#define AI_CONV_SHAPE_CH AI_SHAPE_H
#define AI_CONV_SHAPE_IN_CH AI_SHAPE_IN_CH
/*! AI_STRIDES SECTION ***********************************/
#define AI_STRIDE_2D_H(stride_) \
AI_STRIDE_ELEM((stride_), AI_SHAPE_2D_HEIGHT)
#define AI_STRIDE_2D_W(stride_) \
AI_STRIDE_ELEM((stride_), AI_SHAPE_2D_WIDTH)
#define AI_STRIDE_ELEM(stride_, pos_) \
AI_STORAGE_KLASS_DATA(stride_, ai_stride_dimension)[pos_]
#define AI_STRIDE_GET_ELEM(stride_, pos_) \
(((pos_) < AI_STRIDE_SIZE(stride_)) ? AI_STRIDE_ELEM(stride_, pos_) : 0)
#define AI_STRIDE_SET_ELEM(stride_, pos_, val_) \
if ((pos_) < AI_STRIDE_SIZE(stride_)) AI_STRIDE_ELEM(stride_, pos_) = (val_);
#define AI_STRIDE_TYPE(stride_) \
AI_STORAGE_KLASS_TYPE(stride_)
#define AI_STRIDE_SIZE(stride_) \
AI_STORAGE_KLASS_SIZE(stride_)
#define AI_STRIDE_CLONE(dst_, src_) \
AI_STORAGE_KLASS_COPY(dst_, ai_stride_dimension, src_, ai_stride_dimension)
#define AI_STRIDE_BCAST_CLONE(dst_, src_) \
{ \
for (ai_size i=0; i<AI_STRIDE_SIZE(dst_); i++) { \
AI_STRIDE_SET_ELEM(dst_, i, AI_STRIDE_GET_ELEM(src_, i)); \
} \
}
//#define AI_STRIDE_BATCH(stride) AI_STRIDE_ELEM((stride), AI_SHAPE_BATCH_CHANNEL)
#define AI_STRIDE_H(stride) AI_STRIDE_ELEM((stride), AI_SHAPE_HEIGHT)
#define AI_STRIDE_W(stride) AI_STRIDE_ELEM((stride), AI_SHAPE_WIDTH)
#define AI_STRIDE_CH(stride) AI_STRIDE_ELEM((stride), AI_SHAPE_CHANNEL)
#define AI_STRIDE_IN_CH(stride) AI_STRIDE_ELEM((stride), AI_SHAPE_IN_CHANNEL)
#define AI_STRIDE_D(stride) ((AI_STRIDE_SIZE((stride)) >= 5) ? AI_STRIDE_ELEM((stride), AI_SHAPE_DEPTH) : 0)
#define AI_STRIDE_E(stride) ((AI_STRIDE_SIZE((stride)) == 6) ? AI_STRIDE_ELEM((stride), AI_SHAPE_EXTENSION) : 0)
#define AI_STRIDE_T(stride) AI_STRIDE_ELEM((stride), AI_SHAPE_TIME)
#define AI_STRIDE_SET_H(stride, val) AI_STRIDE_SET_ELEM((stride), AI_SHAPE_HEIGHT, val)
#define AI_STRIDE_SET_W(stride, val) AI_STRIDE_SET_ELEM((stride), AI_SHAPE_WIDTH, val)
#define AI_STRIDE_SET_CH(stride, val) AI_STRIDE_SET_ELEM((stride), AI_SHAPE_CHANNEL, val)
#define AI_STRIDE_SET_IN_CH(stride, val) AI_STRIDE_SET_ELEM((stride), AI_SHAPE_IN_CHANNEL, val)
#define AI_STRIDE_SET_D(stride, val) if (AI_STRIDE_SIZE((stride)) >= 5) AI_STRIDE_SET_ELEM((stride), AI_SHAPE_DEPTH, val)
#define AI_STRIDE_SET_E(stride, val) if (AI_STRIDE_SIZE((stride)) == 6) AI_STRIDE_SET_ELEM((stride), AI_SHAPE_EXTENSION, val)
/*! AI_TENSORS SECTION ***********************************/
#define AI_TENSOR_KLASS(tensor_) \
((tensor_) ? (tensor_)->klass : NULL)
#define AI_TENSOR_SHAPE(tensor_) \
(&((tensor_)->shape))
#define AI_TENSOR_STRIDE(tensor_) \
(&((tensor_)->stride))
#define AI_TENSOR_INFO(tensor_) \
(&((tensor_)->info))
#define AI_TENSOR_ARRAY(tensor_) \
((tensor_) ? (tensor_)->data : NULL)
#define AI_TENSOR_ID(tensor_) \
((tensor_) ? AI_TENSOR_INFO(tensor_)->id : 0)
#define AI_TENSOR_FLAGS(tensor_) \
((tensor_) ? AI_TENSOR_INFO(tensor_)->flags : 0)
#define AI_TENSOR_DATA_SIZE(tensor_) \
((tensor_) ? AI_TENSOR_INFO(tensor_)->data_size : 0)
/*! AI_OFFSETS SECTION ***********************************/
//#define AI_OFFSET_BATCH(b, stride) ((ai_ptr_offset)(b) * AI_STRIDE_BATCH(stride))
#define AI_OFFSET_H(y, stride) ((ai_ptr_offset)(y) * AI_STRIDE_H(stride))
#define AI_OFFSET_W(x, stride) ((ai_ptr_offset)(x) * AI_STRIDE_W(stride))
#define AI_OFFSET_CH(ch, stride) ((ai_ptr_offset)(ch) * AI_STRIDE_CH(stride))
#define AI_OFFSET_IN_CH(in_ch, stride) ((ai_ptr_offset)(in_ch) * \
AI_STRIDE_IN_CH(stride))
#define AI_OFFSET_D(d, stride) ((ai_ptr_offset)(d) * AI_STRIDE_D(stride))
#define AI_OFFSET_E(e, stride) ((ai_ptr_offset)(e) * AI_STRIDE_E(stride))
#define AI_OFFSET_5D(y, x, d, e, ch, stride) ( \
AI_OFFSET_H((y), (stride)) + AI_OFFSET_W((x), (stride)) + \
AI_OFFSET_D((d), (stride)) + AI_OFFSET_E((e), (stride)) + \
AI_OFFSET_CH((ch), (stride)) )
#define AI_OFFSET(y, x, ch, z, stride) ( \
AI_OFFSET_H((y), (stride)) + AI_OFFSET_W((x), (stride)) + \
AI_OFFSET_CH((ch), (stride)) + \
((AI_STRIDE_SIZE((stride)) == 4) ? AI_OFFSET_IN_CH((z), (stride)) : AI_OFFSET_D((z), (stride))) )
/*! @} */
#define AI_GET_CONV_OUT_SIZE(in_size, filt_size, pad_l, pad_r, filt_stride) \
((((in_size) - (filt_size) + (pad_l) + (pad_r)) / (filt_stride)) + 1)
/** Tensors datatypes defines handlers ****************************************/
#define AI_TENSOR_SIZE(tensor_) \
get_tensor_size(tensor_, true)
#define AI_TENSOR_SIZE_UNPAD(tensor_) \
get_tensor_size(tensor_, false)
#define AI_TENSOR_BYTE_SIZE(tensor_) \
get_tensor_byte_size(tensor_)
/******************************************************************************/
#define AI_PLATFORM_VERSION_INIT(major_, minor_, micro_) \
{ .major = (major_), .minor = (minor_), .micro = (micro_), .reserved = 0x0 }
/** Integer tensor info extraction ********************************************/
#define AI_INTQ_INFO_LIST_SCALE_ARRAY(list_, type_) \
( ((list_) && (list_)->info) \
? ((type_*)((list_)->info->scale)) : NULL )
#define AI_INTQ_INFO_LIST_ZEROPOINT_ARRAY(list_, type_) \
( ((list_) && (list_)->info) \
? ((type_*)((list_)->info->zeropoint)) : NULL )
#define AI_KLASS_GET_INTQ_INFO_LIST(tensor_) \
((ai_intq_info_list*)((tensor_)->klass))
AI_API_DECLARE_BEGIN
/*!
* @brief Check whether 2 shapes have identical dimensions.
* @ingroup datatypes_internal
* @param shape0 the 1st tensor shape to compare
* @param shape1 the 2nd tensor shape to compare
* @return true if shape0 and shape1 have same dimensions. false otherwise
*/
AI_DECLARE_STATIC
ai_bool ai_shape_is_same(
const ai_shape* shape0, const ai_shape* shape1)
{
AI_ASSERT(shape0 && shape1)
if (AI_SHAPE_SIZE(shape0) != AI_SHAPE_SIZE(shape1))
return false;
ai_size dim = AI_SHAPE_SIZE(shape0);
while ( dim>0 ) {
dim--;
if ( AI_SHAPE_ELEM(shape0, dim)!=AI_SHAPE_ELEM(shape1, dim) )
return false;
}
return true;
}
/*!
* @brief Check whether the shapes is 1*1*1... for a scalar value content.
* @ingroup datatypes_internal
* @param shape the tensor shape to evaluate
* @return true if shape0 is scalar false otherwise
*/
AI_DECLARE_STATIC
ai_bool ai_shape_is_scalar(
const ai_shape* shape0)
{
ai_size dim = AI_SHAPE_SIZE(shape0);
while (dim>0) {
dim--;
if (AI_SHAPE_ELEM(shape0, dim) != 1)
return false;
}
return true;
}
/*!
* @brief Check if shape0 is a subshape of shape1
* @ingroup datatypes_internal
* @param shape0 the 1st tensor shape to compare
* @param shape1 the 2nd tensor shape to compare
* @return true if shape0 is a subshape of shape1 (all shape0 dimensions are
* smallers or equal of the shape1 ones). false otherwise
*/
AI_DECLARE_STATIC
ai_bool ai_shape_is_subshape(
const ai_shape* shape0, const ai_shape* shape1)
{
AI_ASSERT(shape0 && shape1)
AI_ASSERT(AI_SHAPE_SIZE(shape0)==AI_SHAPE_SIZE(shape1))
ai_size dim = AI_SHAPE_SIZE(shape0);
while (dim) {
dim--;
if ( AI_SHAPE_ELEM(shape0, dim)>AI_SHAPE_ELEM(shape1, dim) )
return false;
}
return true;
}
/*!
* @brief Computes the total size of a tensor given its dimensions.
* @ingroup datatypes_internal
* @param shape the tensor shape
*/
AI_DECLARE_STATIC
ai_size ai_shape_get_size(const ai_shape* shape)
{
AI_ASSERT(shape)
ai_size dim = AI_SHAPE_SIZE(shape);
ai_size size = 1;
while (dim>0) {
dim--;
size *= AI_SHAPE_ELEM(shape, dim);
}
return size;
}
/*!
* @brief Computes the size of the input image discarding the channels.
* @ingroup datatypes_internal
* @param shape the tensor shape
*/
AI_DECLARE_STATIC
ai_size ai_shape_get_npixels(const ai_shape* shape)
{
AI_ASSERT(shape)
const ai_size npixels = AI_SHAPE_W(shape) * AI_SHAPE_H(shape);
return npixels;
}
/** APIs Section *************************************************************/
/*!
* @brief Get packed version from major, minor, micro representaion.
* @ingroup datatypes_internal
* @param major major version value
* @param minor minor version value
* @param micro micro version value
* @return a packed version info obtained serializing input values
*/
AI_INTERNAL_API
ai_version ai_version_get(const ai_u8 major, const ai_u8 minor, const ai_u8 micro);
/*!
* @brief Get un-packed version from packed version representaion.
* @ingroup datatypes_internal
* @param version a packed varsion info
* @return struct with de-serialized major, minor, micro values
*/
AI_INTERNAL_API
ai_platform_version ai_platform_version_get(const ai_version version);
/*!
* @brief Map from ai_buffer data struct to ai_array data struct.
* @ingroup datatypes_internal
* @param buf a pointer to the ai_buffer to be mapped to ai_array
* @return an initialized @ref ai_array struct representing same data
*/
AI_INTERNAL_API
ai_array ai_from_buffer_to_array(const ai_buffer* buf);
/*!
* @brief Map from ai_array data struct to ai_buffer data struct.
* @ingroup datatypes_internal
* @param array a pointer to the ai_array to be mapped to ai_buffer
* @return an initialized @ref ai_buffer struct representing same data
*/
AI_INTERNAL_API
ai_buffer ai_from_array_to_buffer(const ai_array* array);
/*!
* @brief get the total number of elements of a n-dimensional tensor.
* @ingroup datatypes_internal
* @param t a pointer to an @ref ai_tensor
* @param with_padding when true it considers also padded elements
* @return the number of elements of the tensor (with/without padded ones)
*/
AI_INTERNAL_API
ai_size get_tensor_size(const ai_tensor* t, const ai_bool with_padding);
/*!
* @brief get the total size in bytes of elements of a n-dimensional tensor (excluding padded ones).
* @ingroup datatypes_internal
* @param t a pointer to an @ref ai_tensor
* @return the total size in bytes of elements of the tensor (excluding padded ones)
*/
AI_INTERNAL_API
ai_size get_tensor_byte_size(const ai_tensor* t);
AI_API_DECLARE_END
#endif /*AI_DATATYPES_INTERNAL_H*/
| 14,911 | C | 34.336493 | 133 | 0.62303 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/lite_dw_dqnn.h | /**
******************************************************************************
* @file lite_dw_dqnn.h
* @author AIS
* @brief header file of AI platform lite dw kernel datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LITE_DW_DQNN_H
#define LITE_DW_DQNN_H
#pragma once
#include "ai_lite_interface.h"
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Handles 2D DW convolution with binary input, binary output and
* binary weights - with 0 padding (QKeras like) - Lite I/F
* @ingroup lite_conv2d_dqnn
*/
LITE_API_ENTRY
void forward_lite_dw_is1os1ws1_bn_pad0(const ai_u32 *pDataIn_init,
ai_u32 * pDataOut_init,
const ai_u32 *pWeights_init,
ai_float *pScratch_32,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 width_in,
const ai_i32 height_in,
const ai_i32 width_out,
const ai_i32 height_out,
const ai_i32 filt_width,
const ai_i32 filt_height,
const ai_i32 filt_pad_x,
const ai_i32 filt_pad_y,
const ai_i32 filt_stride_x,
const ai_i32 filt_stride_y,
const ai_i32 *pThreshold);
/*!
* @brief Handles 2D DW convolution with binary input, binary output and
* binary weights - with 0 padding (QKeras like) - Lite I/F
* - Optimized thanks to Optim3 assumptions
* @ingroup lite_conv2d_dqnn
*/
LITE_API_ENTRY
void forward_lite_dw_is1os1ws1_bn_pad0_optim3(const ai_u32 *pDataIn_init,
ai_u32 * pDataOut_init,
const ai_u32 *pWeights_init,
ai_float *pScratch_32,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 width_in,
const ai_i32 height_in,
const ai_i32 width_out,
const ai_i32 height_out,
const ai_i32 filt_width,
const ai_i32 filt_height,
const ai_i32 filt_pad_x,
const ai_i32 filt_pad_y,
const ai_i32 filt_stride_x,
const ai_i32 filt_stride_y,
const ai_i32 *pThreshold);
/*!
* @brief Handles 2D convolution with binary input, binary output and
* binary weights - with +1/-1 padding (Larq like) - Lite I/F
* @ingroup lite_conv2d_dqnn
*/
LITE_API_ENTRY
void forward_lite_dw_is1os1ws1_bn_pad1(const ai_u32 *pDataIn_init,
ai_u32 * pDataOut_init,
const ai_u32 *pWeights_init,
ai_float *pScratch_32,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 width_in,
const ai_i32 height_in,
const ai_i32 width_out,
const ai_i32 height_out,
const ai_i32 filt_width,
const ai_i32 filt_height,
const ai_i32 filt_pad_x,
const ai_i32 filt_pad_y,
const ai_i32 filt_stride_x,
const ai_i32 filt_stride_y,
const ai_i32 *pThreshold,
const ai_i32 pad_value);
/*!
* @brief Handles 2D convolution with binary input, binary output and
* binary weights - with +1/-1 padding (Larq like) - Lite I/F
* - Optimized thanks to Optim3 assumptions
* @ingroup lite_conv2d_dqnn
*/
LITE_API_ENTRY
void forward_lite_dw_is1os1ws1_bn_pad1_optim3(const ai_u32 *pDataIn_init,
ai_u32 * pDataOut_init,
const ai_u32 *pWeights_init,
ai_float *pScratch_32,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 width_in,
const ai_i32 height_in,
const ai_i32 width_out,
const ai_i32 height_out,
const ai_i32 filt_width,
const ai_i32 filt_height,
const ai_i32 filt_pad_x,
const ai_i32 filt_pad_y,
const ai_i32 filt_stride_x,
const ai_i32 filt_stride_y,
const ai_i32 *pThreshold,
const ai_i32 pad_value);
#endif /*LITE_DW_DQNN_H*/
| 6,834 | C | 49.629629 | 80 | 0.362891 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/lite_upsample_generic.h | /**
******************************************************************************
* @file lite_upsample.h
* @author AIS
* @brief header file of AI platform lite pw kernel datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LITE_UPSAMPLE_GENERIC_H
#define LITE_UPSAMPLE_GENERIC_H
#pragma once
#include "ai_lite_interface.h"
void forward_lite_upsample_generic_nearest(const ai_u8* in_data,
ai_u8* out_data,
const ai_size width_in,
const ai_size width_out,
const ai_float width_scale,
const ai_size height_out,
const ai_float height_scale,
const ai_u32 output_tensor_w_stride,
const ai_float offset_round_coeff);
void forward_lite_upsample_nearest(ai_ptr in_data,
ai_ptr out_data,
const ai_size width_in,
const ai_float width_scale,
const ai_float height_scale,
const ai_size width_out,
const ai_size height_out,
const ai_ptr_offset stride_w,
const ai_float offset_round_coeff);
void forward_lite_upsample_zeros( ai_ptr in_data,
ai_ptr out_data,
const ai_size width_in,
const ai_size height_in,
const ai_float width_scale,
const ai_float height_scale,
const ai_size width_out,
const ai_size height_out,
const ai_ptr_offset stride_ch,
const ai_ptr_offset stride_w,
const ai_handle p_zero_value);
#endif /*LITE_UPSAMPLE_GENERIC_H*/
| 2,756 | C | 44.196721 | 80 | 0.394049 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/ai_lite_interface.h | /**
******************************************************************************
* @file ai_lite_interface.h
* @author AST Embedded Analytics Research Platform
* @brief Definitions and implementations of runtime-lite codegen APIs
******************************************************************************
* @attention
*
* Copyright (c) 2022 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef AI_LITE_INTERFACE_H
#define AI_LITE_INTERFACE_H
#pragma once
#include "ai_platform.h"
#include "ai_lite.h"
/*****************************************************************************/
/* Generic Codegen Section */
// #ifdef HAS_LOG
#if 0
#include "core_log.h"
#define LITE_GRAPH_START(_graph_name) \
AI_LOG_DEBUG("[LITE GRAPH START] : " _graph_name)
#define LITE_GRAPH_END(_graph_name) \
AI_LOG_DEBUG("[LITE GRAPH END] : " _graph_name)
#else
#define LITE_GRAPH_START(_graph_name) \
/* LITE_GRAPH_START() */
#define LITE_GRAPH_END(_graph_name) \
/* LITE_GRAPH_END() */
#endif /* HAS_LOG */
#ifdef HAS_AI_ASSERT
#include <assert.h>
#define LITE_ASSERT(_cond) \
{ assert(_cond); }
#else
#define LITE_ASSERT(_cond) \
do { /* LITE_ASSERT() */ } while (0);
#endif /*HAS_AI_ASSERT*/
/*****************************************************************************/
#if defined(_MSC_VER)
#define LITE_DECLARE_STATIC static __inline
#define LITE_HINT_INLINE static __inline
#define LITE_FORCE_INLINE static __inline
#elif defined(__ICCARM__) || defined (__IAR_SYSTEMS_ICC__)
#define LITE_DECLARE_STATIC static inline
#define LITE_HINT_INLINE static inline
#define LITE_FORCE_INLINE static inline
#elif defined(__GNUC__)
#define LITE_DECLARE_STATIC static __inline
#define LITE_HINT_INLINE static __inline
#define LITE_FORCE_INLINE static __inline
#else
#define LITE_DECLARE_STATIC static __inline
#define LITE_HINT_INLINE static __inline
#define LITE_FORCE_INLINE static __inline
#endif /* _MSC_VER */
#define LITE_API_ENTRY /* LITE_API_ENTRY */
#define LITE_PACK(...) \
__VA_ARGS__
#define LITE_UNUSED(_elem) \
((void)(_elem));
#define LITE_KERNEL_SECTION(_code_block) \
{ LITE_PACK(_code_block) }
/*****************************************************************************/
/* Arrays Section */
#define LITE_ARRAY_VALUES(...) \
{ LITE_PACK(__VA_ARGS__) }
#define LITE_ARRAY_DATA(_array, _type) \
((_type*)(_array)->data)
#define LITE_ARRAY_DATA_START(_array, _type) \
((_type*)(_array)->data_start)
/*****************************************************************************/
/* Tensors Section */
#define LITE_TENSOR_ARRAY(_tensor, _pos) \
(((_tensor)->data) + (_pos))
/*****************************************************************************/
/* Tensors List Section */
#define LITE_TENSOR_LIST(_chain, _pos) \
(&(_chain)->chain[_pos])
#define LITE_TENSOR_IN(_chain, _pos) \
(LITE_TENSOR_LIST(_chain, 0)->tensor[_pos])
#define LITE_TENSOR_OUT(_chain, _pos) \
(LITE_TENSOR_LIST(_chain, 1)->tensor[_pos])
#define LITE_TENSOR_WEIGHTS(_chain, _pos) \
(LITE_TENSOR_LIST(_chain, 2)->tensor[_pos])
#define LITE_TENSOR_SCRATCHS(_chain, _pos) \
(LITE_TENSOR_LIST(_chain, 3)->tensor[_pos])
/*****************************************************************************/
#define LITE_LAYER_ACQUIRE(name_, cast_type_, ptr_) \
LITE_ASSERT(ptr_) \
AI_CONCAT(ai_layer_, cast_type_)* name_ = \
(AI_CONCAT(ai_layer_, cast_type_)*)(ptr_);
#define LITE_LAYER_RELEASE(name_, cast_type_) \
/* LITE_LAYER_RELEASE() */
/*****************************************************************************/
AI_API_DECLARE_BEGIN
AI_API_DECLARE_END
#endif /* AI_LITE_INTERFACE_H */
| 4,226 | C | 28.767605 | 80 | 0.503076 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers_sm.h | /**
******************************************************************************
* @file layers_sm.h
* @author AST Embedded Analytics Research Platform
* @brief header file of AI platform non softmax layer datatype
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_SM_H
#define LAYERS_SM_H
#pragma once
#include "layers_common.h"
/*!
* @defgroup layers SoftMax Layer Definitions
* @brief definition
*
*/
AI_API_DECLARE_BEGIN
/*!
* @brief Softmax normalization computed on an array of fixed point channels
* @ingroup layers_sm
* @param out opaque handler to output channel array
* @param in opaque handler to input channel array
* @param in_size total size (number of elements) to process on the input
* @param channel_size number of elements of the input channel
* @param in_channel_step number of elements to move to next input element
* @param out_channel_step number of elements to move to next output element
*/
AI_INTERNAL_API
void sm_func_sm_array_fixed(ai_handle out, const ai_handle in,
const ai_size in_size,
const ai_size channel_size,
const ai_size in_channel_step,
const ai_size out_channel_step);
/*!
* @brief Computes the activations of a fixed point softmax nonlinear layer.
* @ingroup layers_sm
* @param layer the softmax (sm) layer
*/
AI_INTERNAL_API
void forward_sm_fixed(ai_layer *pLayer);
AI_API_DECLARE_END
#endif /*LAYERS_SM_H*/
| 2,051 | C | 30.56923 | 80 | 0.570453 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/datatypes_network.h | /**
******************************************************************************
* @file datatypes_network.h
* @author AST Embedded Analytics Research Platform
* @brief Definitions of code generated network types
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef DATATYPES_NETWORK_H
#define DATATYPES_NETWORK_H
#pragma once
/*
* Header to be overriden by the generated version
* by including with <> the include directories are searched in the order
* specified in the compiler
* To enable the override, put the generated path before the API path
*/
#include "ai_platform.h"
AI_API_DECLARE_BEGIN
#ifdef AI_OVERRIDE_CUSTOM_TYPES
#warning "Warning: Custom Types have been already defined!\n"
#endif
#define AI_CUSTOM_TYPES_COUNT (3)
#define AI_CUSTOM_TYPES_SIGNATURE_DECLARE(name) \
const ai_custom_type_signature name[AI_CUSTOM_TYPES_COUNT+1] = { \
AI_CUSTOM_TYPES_COUNT, \
AI_CUSTOM_SIZE(ai_shape_dimension), \
AI_CUSTOM_SIZE(ai_stride_dimension), \
AI_CUSTOM_SIZE(ai_array_size), \
};
typedef ai_i32 ai_stride_dimension;
typedef ai_u32 ai_array_size;
AI_API_DECLARE_END
#endif /*DATATYPES_NETWORK_H*/
| 1,694 | C | 27.728813 | 80 | 0.579103 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/ai_layer_custom_interface.h | /**
******************************************************************************
* @file ai_layer_custom_interface.h
* @author AST Embedded Analytics Research Platform
* @brief Definitions of AI platform custom layers interface APIs
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef AI_LAYER_CUSTOM_INTERFACE_H
#define AI_LAYER_CUSTOM_INTERFACE_H
#pragma once
#include "ai_platform.h"
#include "ai_platform_interface.h"
#include "layers_custom.h"
#define INTQ_SCALE_FLOAT (AI_BUFFER_META_FLAG_SCALE_FLOAT)
#define INTQ_ZEROPOINT_U8 (AI_BUFFER_META_FLAG_ZEROPOINT_U8)
#define INTQ_ZEROPOINT_S8 (AI_BUFFER_META_FLAG_ZEROPOINT_S8)
#define INTQ_ZEROPOINT_U16 (AI_BUFFER_META_FLAG_ZEROPOINT_U16)
#define INTQ_ZEROPOINT_S16 (AI_BUFFER_META_FLAG_ZEROPOINT_S16)
#define AI_TENSOR_HEIGHT (3)
#define AI_TENSOR_WIDTH (2)
#define AI_TENSOR_CHANNEL (1)
#define AI_TENSOR_IN_CHANNEL (0)
AI_API_DECLARE_BEGIN
typedef enum {
TYPE_NONE = 0x0,
TYPE_FLOAT,
TYPE_BOOL,
TYPE_INTEGER,
TYPE_SIGNED,
TYPE_UNSIGNED,
} ai_tensor_type;
typedef struct {
ai_tensor_type type;
ai_i8 bits;
ai_i8 fbits;
} ai_tensor_format;
typedef struct {
ai_u16 flags; /*!< optional flags to store intq info attributes */
ai_u16 size; /*!< number of elements in the the intq_info list */
ai_float* scale; /*!< array of scales factors */
union {
ai_u8* zeropoint_u8; /*!< array of zeropoints as unsigned */
ai_i8* zeropoint_s8; /*!< array of zeropoints as signed */
};
} ai_tensor_intq_info;
/****************************************************************************
** Layer Custom Interface APIs
****************************************************************************/
/*!
* @brief acquire the custom layer from its handle
* @ingroup ai_layer_custom_interface
* @param layer an opaque handler to the custom layer
* @return a pointer to ai_layer_custom if found and valid, else NULL
*/
AI_INTERFACE_TYPE
ai_layer_custom* ai_layer_custom_get(
ai_layer* layer);
/*!
* @brief release the custom layer provided its handle
* @ingroup ai_layer_custom_interface
* @param layer an opaque handler to the custom layer to release
*/
AI_INTERFACE_TYPE
void ai_layer_custom_release(
ai_layer* layer);
/*!
* @brief get the number of inputs tensors of a custom layer
* @ingroup ai_layer_custom_interface
* @param layer an opaque handler to the custom layer
* @return the number of input tensors of the layer. 0 if no input tensors or error
*/
AI_INTERFACE_TYPE
ai_size ai_layer_get_tensor_in_size(
const ai_layer* layer);
/*!
* @brief get the number of outputs tensors of a custom layer
* @ingroup ai_layer_custom_interface
* @param layer an opaque handler to the custom layer
* @return the number of outputs tensors of the layer. 0 if no outputs tensors or error
*/
AI_INTERFACE_TYPE
ai_size ai_layer_get_tensor_out_size(
const ai_layer* layer);
/*!
* @brief get the number of weights tensors of a custom layer
* @ingroup ai_layer_custom_interface
* @param layer an opaque handler to the custom layer
* @return the number of weights tensors of the layer. 0 if no weights tensors or error
*/
AI_INTERFACE_TYPE
ai_size ai_layer_get_tensor_weights_size(
const ai_layer* layer);
/*!
* @brief get the n-th (at index pos) input tensor pointer from a layer
* @ingroup ai_layer_custom_interface
* @param layer an opaque handler to the layer
* @param pos the index position in the tensor list
* @return a pointer to a tensor if found, else, if invalid or out-of-range NULL
*/
AI_INTERFACE_TYPE
ai_tensor* ai_layer_get_tensor_in(
const ai_layer* layer, const ai_u16 pos);
/*!
* @brief get the n-th (at index pos) output tensor pointer from a layer
* @ingroup ai_layer_custom_interface
* @param layer an opaque handler to the layer
* @param pos the index position in the tensor list
* @return a pointer to a tensor if found, else, if invalid or out-of-range NULL
*/
AI_INTERFACE_TYPE
ai_tensor* ai_layer_get_tensor_out(
const ai_layer* layer, const ai_u16 pos);
/*!
* @brief get the n-th (at index pos) weight tensor pointer from a layer
* @ingroup ai_layer_custom_interface
* @param layer an opaque handler to the layer
* @param pos the index position in the tensor list
* @return a pointer to a tensor if found, else, if invalid or out-of-range NULL
*/
AI_INTERFACE_TYPE
ai_tensor* ai_layer_get_tensor_weights(
const ai_layer* layer, const ai_u16 pos);
/**** Layer Tensors APIs ***************************************************/
/*!
* @brief check if the tensor has integer quantization informations @ref ai_tensor_intq_info
* @ingroup ai_layer_custom_interface
* @param tensor a pointer to the tensor
* @return true if tensot has integer quantization informations, false otherwise
*/
AI_INTERFACE_TYPE
ai_bool ai_tensor_has_intq(
const ai_tensor* t);
/*!
* @brief get the tensor integer quantization informations @ref ai_tensor_intq_info
* @ingroup ai_layer_custom_interface
* @param tensor a pointer to the tensor
* @return the integer quantization informations as a struct @ref ai_tensor_intq_info
*/
AI_INTERFACE_TYPE
ai_tensor_intq_info ai_tensor_get_intq(
const ai_tensor* t);
/*!
* @brief get the format of the tensor see @ref ai_tensor_format
* @ingroup ai_layer_custom_interface
* @param tensor a pointer to the tensor
* @return the tensor format
*/
AI_INTERFACE_TYPE
ai_tensor_format ai_tensor_get_format(
const ai_tensor* t);
/**** Shapes Getters ****/
/*!
* @brief get the dimensionality of the tensor shapes
* @ingroup ai_layer_custom_interface
* @param tensor a pointer to the tensor
* @return the dimensionality of the tensor shape
*/
AI_INTERFACE_TYPE
ai_size ai_tensor_get_shape_size(
const ai_tensor* t);
/*!
* @brief get the value of the shape dimensionality pos
* @ingroup ai_layer_custom_interface
* @param tensor a pointer to the tensor
* @return the value of the shape dimensionality at pos of the tensor
*/
AI_INTERFACE_TYPE
ai_shape_dimension ai_tensor_get_shape(
const ai_tensor* t, const ai_u16 pos);
/**** Strides Getters ****/
/*!
* @brief get the dimensionality of the tensor strides
* @ingroup ai_layer_custom_interface
* @param tensor a pointer to the tensor
* @return the dimensionality of the tensor strides @ref ai_stride
*/
AI_INTERFACE_TYPE
ai_size ai_tensor_get_stride_size(
const ai_tensor* t);
/*!
* @brief get the value of the stride dimensionality pos
* @ingroup ai_layer_custom_interface
* @param tensor a pointer to the tensor
* @return the value of the stride dimensionality at pos of the tensor
*/
AI_INTERFACE_TYPE
ai_stride_dimension ai_tensor_get_stride(
const ai_tensor* t, const ai_u16 pos);
/**** Data Storage Getters ****/
/*!
* @brief get tensor storage data buffer pointer
* @ingroup ai_layer_custom_interface
* @param tensor a pointer to the tensor
* @return a pointer to the tensor data buffer, set to NULL if error
*/
AI_INTERFACE_TYPE
ai_any_ptr ai_tensor_get_data(
const ai_tensor* t);
/*!
* @brief get number of tensor elements
* @ingroup ai_layer_custom_interface
* @param tensor a pointer to the tensor
* @return the number of tensor elements or 0 if error
*/
AI_INTERFACE_TYPE
ai_size ai_tensor_get_data_size(
const ai_tensor* t);
/*!
* @brief get the size in bytes of the tensor data buffer
* @ingroup ai_layer_custom_interface
* @param tensor a pointer to the tensor
* @return the size in bytes of the tensor data buffer. 0 if error
*/
AI_INTERFACE_TYPE
ai_size ai_tensor_get_data_byte_size(
const ai_tensor* t);
AI_API_DECLARE_END
#endif /*AI_LAYER_CUSTOM_INTERFACE_H*/
| 8,272 | C | 29.985019 | 92 | 0.66308 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers_pool_dqnn.h | /**
******************************************************************************
* @file layers_conv2d_dqnn.h
* @author AIS
* @brief header file of AI platform DQNN pool datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_POOL_DQNN_H
#define LAYERS_POOL_DQNN_H
#pragma once
#include "layers_common.h"
#include "layers_pool.h"
/*!
* @defgroup layers_pool_dqnn Layers Definitions
* @brief definition
*
*/
AI_API_DECLARE_BEGIN
/*!
* @struct ai_layer_pool_dqnn
* @ingroup layers_pool_dqnn
* @brief pool_dqnn layer
*
* @ref forward_maxpool_is1os1
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_pool_dqnn_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_shape_2d pool_size; /*!< pooling size */
ai_shape_2d pool_stride; /*!< pooling stride */
ai_shape pool_pad; /*!< pooling pad, y,x border sizes */
// ai_u32 pad_value; /*!< pooling pad value */
} ai_layer_pool_dqnn;
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Handles max pooling with binary input and binary output
* @ingroup layers_pool_dqnn
* @param layer conv2d_pool layer
*/
AI_INTERNAL_API
void forward_maxpool_is1os1(ai_layer *pLayer);
AI_API_DECLARE_END
#endif /*LAYERS_POOL_DQNN_H*/
| 1,996 | C | 26.356164 | 80 | 0.482966 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/lite_dw.h | /**
******************************************************************************
* @file lite_dw.h
* @author AIS
* @brief header file of AI platform lite dw kernel datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LITE_DW_H
#define LITE_DW_H
#pragma once
#include "ai_lite_interface.h"
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Handles dw convolutions generic case (supports depth multiplier >= 1)
* @ingroup lite_dw
*/
LITE_API_ENTRY
void
forward_lite_dw_dm_sssa8_ch(const ai_i8 *Im_in,
const ai_u16 dim_im_in_x,
const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_i8 *wt,
const ai_u16 ch_im_out,
const ai_u16 dim_kernel_x,
const ai_u16 dim_kernel_y,
const ai_u16 padding_x,
const ai_u16 padding_y,
const ai_u16 stride_x,
const ai_u16 stride_y,
const ai_i32 *bias,
const ai_i8 In_ZeroPoint,
const ai_i8 Out_ZeroPoint,
ai_i8 *Im_out,
const ai_u16 dim_im_out_x,
const ai_u16 dim_im_out_y,
const ai_i32 nl_pool_fused,
ai_i16 *bufferA);
/*!
* @brief Handles dw convolutions with depth multiplier = 1 only
* @ingroup lite_dw
*/
LITE_API_ENTRY
void
forward_lite_dw_sssa8_ch(const ai_i8 *Im_in,
const ai_u16 dim_im_in_x,
const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_i8 *wt,
const ai_u16 dim_kernel_x,
const ai_u16 dim_kernel_y,
const ai_u16 padding_x,
const ai_u16 padding_y,
const ai_u16 stride_x,
const ai_u16 stride_y,
const ai_i32 *bias,
const ai_i8 In_ZeroPoint,
const ai_i8 Out_ZeroPoint,
ai_i8 *Im_out,
const ai_u16 dim_im_out_x,
const ai_u16 dim_im_out_y,
const ai_i32 nl_pool_fused,
ai_i16 *bufferA);
/*!
* @brief Handles dw convolutions with depth multiplier = 1, valid padding
* and 3*3 kernel size
* @ingroup lite_dw
*/
LITE_API_ENTRY
void
forward_lite_dw_3x3_sssa8_ch(const ai_i8 *Im_in,
const ai_u16 dim_im_in_x,
const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_i8 *wt,
const ai_u16 stride_x,
const ai_u16 stride_y,
const ai_i32 *bias,
const ai_i8 In_ZeroPoint,
const ai_i8 Out_ZeroPoint,
ai_i8 *Im_out,
const ai_u16 dim_im_out_x,
const ai_u16 dim_im_out_y,
const ai_i32 nl_pool_fused,
ai_i16 *bufferA);
/*!
* @brief Handles dw convolutions with depth multiplier = 1, valid padding,
* 3*3 kernel size, stride_x = 1 and weights/input are channel first
* @ingroup lite_dw
*/
LITE_API_ENTRY
void
forward_lite_dw_3x3_ch1st_sssa8_ch(const ai_i8 *Im_in,
const ai_u16 dim_im_in_x,
const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_i8 *wt,
const ai_u16 stride_x,
const ai_u16 stride_y,
const ai_i32 *bias,
const ai_i8 In_ZeroPoint,
const ai_i8 Out_ZeroPoint,
ai_i8 *Im_out,
const ai_u16 dim_im_out_x,
const ai_u16 dim_im_out_y,
const ai_i32 nl_pool_fused,
ai_i16 *bufferA);
#endif /*LITE_DW_H*/
| 5,348 | C | 39.218045 | 80 | 0.382199 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers_ml.h | /**
******************************************************************************
* @file layers_ml.h
* @author AST Embedded Analytics Research Platform
* @brief header file of AI platform ml layers datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_ML_H
#define LAYERS_ML_H
#pragma once
#include "layers_common.h"
/*!
* @defgroup layers_generic ML Layers Definitions
* @brief definition
*
*/
AI_API_DECLARE_BEGIN
/*!
* @struct ai_layer_ArrayFeatureExtractor
* @ingroup layers_ml
* @brief ai_layer_ArrayFeatureExtractor layer definition
*
* This layer select elements of the input tensor based on the indices passed. It is intended to be used
* by his associated forward function @ref forward_arrayfeatureextractor
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_arrayfeatureextractor_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_tensor* indices; /*!< Indices of corrisponding axis in axes*/
} ai_layer_arrayfeatureextractor;
/*!
* @struct ai_layer_ZipMap
* @ingroup layers_ml
* @brief ai_layer_ZipMap layer definition
*
* This layer creates a map from the input and the attributes.
* The values are provided by the input tensor, while the keys are specified by the attributes.
* The user must provide keys in either classlabels_strings or classlabels_int64s (but not both).
* The columns of the tensor correspond one-by-one to the keys specified by the attributes.
* There must be as many columns as keys.
* It is intended to be used by his associated forward function @ref forward_zipmap.
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_zipmap_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_bool has_classlabels_int;
} ai_layer_zipmap;
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief select elements of the input tensor based on the indices passed.
* @ingroup layers_ml
* @param layer array feture extractor
*/
AI_INTERNAL_API
void forward_arrayfeatureextractor(ai_layer* layer);
/*!
* @brief creates a map from the inputs and the attributes
* @ingroup layers_ml
* @param layer zipmap
*/
AI_INTERNAL_API
void forward_zipmap(ai_layer* layer);
AI_API_DECLARE_END
#endif /*LAYERS_ML_H*/
| 2,899 | C | 28.896907 | 104 | 0.595378 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/lite_dense_is8os1ws1.h | /**
******************************************************************************
* @file lite_dense_is8os1ws1.h
* @author Marco Forleo
* @brief header file of AI platform lite dense kernel datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2023 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LITE_DENSE_IS8OS1WS1_H
#define LITE_DENSE_IS8OS1WS1_H
#pragma once
#include "ai_lite_interface.h"
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Forward function for a dense layer with signed 8 bits input,
* binary weights and binary output.
* @ingroup lite_dense_is8os1ws1
* @param out_ptr The pointer to output buffer.
*@param data_in_init_ptr The pointer to input buffer.
* @param weights_ptr The pointer to weights.
* @param scratch_ptr The pointer to scratch buffer.
* @param scratch_size The value of scratch tensor size.
* @param n_channel_out The number of channels of the output, i.e.,
* the number of dense hidden neurons.
* @param n_channel_in The number of channels of the input.
* @param scale_ptr The pointer to scale buffer of BN.
* @param offset_ptr The pointer to offset buffer of BN.
*/
LITE_API_ENTRY
void forward_lite_dense_is8os1ws1_bn_fxp(ai_pbits *out_ptr,
const ai_i8 *data_in_init_ptr,
const ai_pbits *weights_ptr,
ai_i32 *scratch_ptr,
const ai_u32 scratch_size,
const ai_u32 n_channel_out,
const ai_u32 n_channel_in,
const ai_i32 *threshold_ptr);
#endif /*LITE_DENSE_IS8OS1WS1_H*/
| 2,452 | C | 41.293103 | 80 | 0.472268 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers_list.h | /**
******************************************************************************
* @file layers_list.h
* @author AST Embedded Analytics Research Platform
* @brief header file of AI platform layers datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
/* No sentry. This is deliberate!! */
/* Template: LAYER_ENTRY(type_, id_, struct_, forward_func_, init_func_, destroy_func_)
* Where:
* - type_ is the (enum) type name of the layer. to have the complete enum
* value you should use the macro @ref AI_LAYER_TYPE_ENTRY(type_) that adds
* the specific prefix and postfix tokens to the type_
* - id_ is the numeric id of the layer
* - struct_ is the name of the datastruct of the layer without the ai_layer_
* prefix
* - forward_func_ is the forward function name of the routine implementing
* actual layer processing
* - init_func_ is the init function name of the routine implementing
* actual layer initialization
* - destroy_func_ is the destroy function name of the routine implementing
* actual layer de-initialization
*/
/* Layer IDs for stateless layers (bit 8 set) */
#define LAYER_ID(id_) \
(0x100 + (id_))
/* Layer IDs for stateful layers (bits 7 and 8 set) */
#define LAYER_STATEFUL_ID(id_) \
(0x180 + (id_))
/*!< Base layer */
LAYER_ENTRY(BASE, LAYER_ID(0), base, NULL, NULL, NULL)
/*!< Elementwise addition layer */
LAYER_ENTRY(ADD, LAYER_ID(1), add, forward_add, NULL, NULL)
/*!< Batch normalization layer */
LAYER_ENTRY(BN, LAYER_ID(2), bn, forward_bn, NULL, NULL)
/*!< 2D Convolutional layer */
LAYER_ENTRY(CONV2D, LAYER_ID(3), conv2d, forward_conv2d, NULL, NULL)
/*!< Dense layer */
LAYER_ENTRY(DENSE, LAYER_ID(4), dense, forward_dense, NULL, NULL)
/*!< Local Response Normalization layer */
LAYER_ENTRY(LRN, LAYER_ID(6), lrn, forward_lrn, NULL, NULL)
/*!< Nonlinearity layer */
LAYER_ENTRY(NL, LAYER_ID(7), nl, NULL, NULL, NULL)
/*!< Normalization layer */
LAYER_ENTRY(NORM, LAYER_ID(8), norm, forward_norm, NULL, NULL)
/*!< Merged Conv2d / Pool layer */
LAYER_ENTRY(OPTIMIZED_CONV2D, LAYER_ID(9), conv2d_nl_pool, forward_conv2d_nl_pool, NULL, NULL)
/*!< Transpose Tensor layer */
LAYER_ENTRY(TRANSPOSE, LAYER_ID(10), transpose, forward_transpose, NULL, NULL)
/*!< Pooling layer */
LAYER_ENTRY(POOL, LAYER_ID(11), pool, forward_pool, NULL, NULL)
/*!< Softmax layer */
LAYER_ENTRY(SM, LAYER_ID(12), sm, forward_sm, NULL, NULL)
/*!< Split layer */
LAYER_ENTRY(SPLIT, LAYER_ID(13), split, forward_split, NULL, NULL)
/*!< TimeDelay layer */
LAYER_ENTRY(TIME_DELAY, LAYER_ID(14), time_delay, forward_time_delay, NULL, NULL)
/*!< TimeDistributed layer */
LAYER_ENTRY(TIME_DISTRIBUTED, LAYER_ID(15), time_distributed, forward_time_distributed, NULL, NULL)
/*!< Concat Tensor layer */
LAYER_ENTRY(CONCAT, LAYER_ID(16), concat, forward_concat, NULL, NULL)
/*!< GEMM layer */
LAYER_ENTRY(GEMM, LAYER_ID(17), gemm, forward_gemm, NULL, NULL)
/*!< Upsample layer */
LAYER_ENTRY(UPSAMPLE, LAYER_ID(18), upsample, forward_upsample, NULL, NULL)
/*!< Container layer for eltwise operations */
LAYER_ENTRY(ELTWISE, LAYER_ID(19), eltwise, forward_eltwise, NULL, NULL)
/*!< Container layer for eltwise integer operations */
LAYER_ENTRY(ELTWISE_INTEGER, LAYER_ID(20), eltwise_integer, NULL, NULL, NULL)
/*!< InstanceNormalization layer */
LAYER_ENTRY(INSTANCENORMALIZATION, LAYER_ID(21), instanceNormalization, forward_instanceNormalization, NULL, NULL)
/*!< Pad layer */
LAYER_ENTRY(PAD, LAYER_ID(22), pad, forward_pad, NULL, NULL)
/*!< Slice layer */
LAYER_ENTRY(SLICE, LAYER_ID(23), slice, forward_slice, NULL, NULL)
/*!< Tile layer */
LAYER_ENTRY(TILE, LAYER_ID(24), tile, forward_tile, NULL, NULL)
/*!< Container layer for reduce operations */
LAYER_ENTRY(REDUCE, LAYER_ID(25), reduce, forward_reduce, NULL, NULL)
/*!< Recurrent Neural Network layer */
LAYER_ENTRY(RNN, LAYER_ID(26), rnn, forward_rnn, NULL, NULL)
/*!< Resize layer */
LAYER_ENTRY(RESIZE, LAYER_ID(27), resize, forward_resize, NULL, NULL)
/*!< Gather layer */
LAYER_ENTRY(GATHER, LAYER_ID(28), gather, forward_gather, NULL, NULL)
/*!< Pack layer */
LAYER_ENTRY(PACK, LAYER_ID(29), pack, forward_pack, NULL, NULL)
/*!< Unpack layer */
LAYER_ENTRY(UNPACK, LAYER_ID(30), unpack, forward_unpack, NULL, NULL)
/*!< ArgMax layer */
LAYER_ENTRY(ARGMAX, LAYER_ID(31), argmax, forward_argmax, NULL, NULL)
/*!< ArgMin layer */
LAYER_ENTRY(ARGMIN, LAYER_ID(32), argmin, forward_argmin, NULL, NULL)
/*!< Cast Neural Network Layer */
LAYER_ENTRY(CAST, LAYER_ID(33), cast, forward_cast, NULL, NULL)
/*!< iForest layer */
LAYER_ENTRY(IFOREST, LAYER_ID(34), iforest, forward_iforest, NULL, NULL)
/*!< SVM Regressor layer */
LAYER_ENTRY(SVMREG, LAYER_ID(35), svmreg, forward_svm_regressor, NULL, NULL)
/*!< ArrayFeatureExtractor layer */
LAYER_ENTRY(ARRAYFEATUREEXTRACTOR, LAYER_ID(36), arrayfeatureextractor, forward_arrayfeatureextractor, NULL, NULL)
/*!< SVM Classifier (SVC) layer */
LAYER_ENTRY(SVC, LAYER_ID(37), svc, forward_svc, NULL, NULL)
/*!< ZipMap layer */
LAYER_ENTRY(ZIPMAP, LAYER_ID(38), zipmap, forward_zipmap, NULL, NULL)
/*!< Where layer */
LAYER_ENTRY(WHERE, LAYER_ID(39), where, forward_where, NULL, NULL)
/*!< LinearClassifier layer */
LAYER_ENTRY(LINEARCLASSIFIER, LAYER_ID(42), linearclassifier, forward_linearclassifier, NULL, NULL)
/*!< TreeEnsembleClassifier layer */
LAYER_ENTRY(TREE_ENSEMBLE_CLASSIFIER, LAYER_ID(43), tree_ensemble_classifier, forward_tree_ensemble_classifier, NULL, NULL)
/*!< TopK layer */
LAYER_ENTRY(TOPK, LAYER_ID(45), topK, forward_topK, NULL, NULL)
/*!< ReduceLogSumExp layer */
LAYER_ENTRY(REDUCE_LOG_SUM_EXP, LAYER_ID(51), reduce_log_sum_exp, forward_reduce_log_sum_exp, NULL, NULL)
/*!< ReduceL1 layer */
LAYER_ENTRY(REDUCE_L1, LAYER_ID(52), reduce_l1, forward_reduce_l1, NULL, NULL)
/*!< Runtime Lite Graph Wrapper layer */
LAYER_ENTRY(LITE_GRAPH, LAYER_ID(63), lite_graph, NULL, NULL, NULL)
/*!< TreeEnsembleRegressor layer */
LAYER_ENTRY(TREE_ENSEMBLE_REGRESSOR, LAYER_ID(66), tree_ensemble_regressor, forward_tree_ensemble_regressor, NULL, NULL)
/*!< Deeply Quantized Dense Layers */
LAYER_ENTRY(CONV2D_DQNN, LAYER_ID(40), conv2d_dqnn, forward_pw_is1os1ws1_bn, NULL, NULL)
LAYER_ENTRY(POOL_DQNN, LAYER_ID(41), pool_dqnn, forward_maxpool_is1os1, NULL, NULL)
LAYER_ENTRY(DENSE_DQNN, LAYER_ID(44), dense_dqnn, forward_dense_is1os1ws1, NULL, NULL)
/*!< Reverse layer */
LAYER_ENTRY(REVERSE, LAYER_ID(50), reverse, forward_reverse, NULL, NULL)
/*****************************************************************************/
/*!< Base Stateful Layer type */
LAYER_ENTRY(STATEFUL, LAYER_STATEFUL_ID(0), stateful, NULL, NULL, NULL)
/*!< Long Short Time Memory layer */
LAYER_ENTRY(LSTM, LAYER_STATEFUL_ID(1), lstm, forward_lstm, init_lstm, destroy_lstm)
/*!< Custom layer */
LAYER_ENTRY(CUSTOM, LAYER_STATEFUL_ID(2), custom, NULL, NULL, NULL)
/*!< Gated Recurrent Unit layer */
LAYER_ENTRY(GRU, LAYER_STATEFUL_ID(3), gru, forward_gru, init_gru, destroy_gru)
/*!< Stateless Template layer declaration */
/* LAYER_ENTRY(TEMPLATE, LAYER_ID(XX), template, forward_template, NULL, NULL) */
/*!< Stateful Template layer declaration */
/* LAYER_ENTRY(TEMPLATE, LAYER_STATEFUL_ID(XX), template, forward_template, init_template, destroy_template) */
#undef LAYER_ENTRY
#undef LAYER_ID
#undef LAYER_STATEFUL_ID
| 7,821 | C | 45.838323 | 123 | 0.671781 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/lite_pad_generic.h | /**
******************************************************************************
* @file lite_pad_generic.h
* @author AIS
* @brief header file of AI platform lite padding kernel datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2022 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LITE_PADDING_DQNN_H
#define LITE_PADDING_DQNN_H
#pragma once
#include "ai_lite_interface.h"
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Handles padding with 8 bits input/output in constant mode - Lite I/F
* Channel 1st Format Input and Output
* @ingroup lite_padding_dqnn
*/
LITE_API_ENTRY
void forward_lite_pad_8bit_ch1st_3x3_constant(ai_ptr_const in_data_tensor,
ai_ptr out_data_tensor,
const ai_handle fill_value,
const ai_i32 height_in,
const ai_i32 channel_in,
const ai_ptr_offset ch_stride_in,
const ai_ptr_offset h_stride_in,
const ai_ptr_offset h_stride_pad);
/*!
* @brief Handles padding with 8 bits input/output in constant mode - Lite I/F
* @ingroup lite_padding_dqnn
*/
LITE_API_ENTRY
void forward_lite_pad_constant(ai_ptr_const in_data,
ai_ptr out_data,
const ai_handle fill_value,
const ai_i16 in_bits,
const ai_i32 height_in,
const ai_ptr_offset ch_stride_in,
const ai_ptr_offset h_stride_in,
const ai_ptr_offset h_stride_pad,
const ai_ptr_offset h_stride_pad_b,
const ai_ptr_offset w_stride_pad,
const ai_ptr_offset w_stride_pad_r);
/*!
* @brief Handles padding with 8 bits input/output in edge mode - Lite I/F
* @ingroup lite_padding_dqnn
*/
void forward_lite_pad_edge(ai_ptr_const in_data_tensor,
ai_ptr out_data,
const ai_i32 height_in,
const ai_i16 pads_y,
const ai_i16 pads_x_r,
const ai_ptr_offset h_stride_in,
const ai_ptr_offset w_stride_in,
const ai_ptr_offset h_stride_out,
const ai_ptr_offset h_stride_pad,
const ai_ptr_offset w_stride_pad,
const ai_ptr_offset h_stride_pad_b);
/*!
* @brief Handles padding with 8 bits input/output in reflect mode - Lite I/F
* @ingroup lite_padding_dqnn
*/
void forward_lite_pad_reflect(ai_ptr_const in_data,
ai_ptr out_data,
const ai_i32 depth,
const ai_i32 height_in,
const ai_i32 width_in,
const ai_i32 height_out,
const ai_i32 width_out,
const ai_ptr_offset h_stride_in,
const ai_ptr_offset w_stride_in,
const ai_ptr_offset h_stride_out,
const ai_ptr_offset w_stride_out,
const ai_i16 pads_x,
const ai_i16 pads_y,
const ai_i16 pads_y_b,
const ai_ptr_offset h_stride_pad,
const ai_ptr_offset w_stride_pad,
const ai_ptr_offset w_stride_pad_r);
#endif /*LITE_PADDING_GENERIC_H*/
| 4,546 | C | 43.145631 | 80 | 0.421909 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/ai_datatypes_format.h | /**
******************************************************************************
* @file ai_datatypes_format.h
* @author AST Embedded Analytics Research Platform
* @brief Definitions of AI platform private format handling routines
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef AI_DATATYPES_FORMAT_H
#define AI_DATATYPES_FORMAT_H
#pragma once
#include "ai_platform.h"
#include "ai_datatypes_defines.h"
// #include "core_datatypes.h"
/*!
* @defgroup ai_datatypes_format Definiton and Macro of array and buffer formats
* @brief Type definition and implementation of internal @ref ai_array and
* @ref ai_buffer formats.
* @details The library handles 2 different kind of formats: an internal format
* that is part of the @ref ai_array struct that is a packed 32bit representation
* of the format attributes, and a public format (used in public APIs) associated
* with @ref ai_buffer struct , defined as enum in @ref ai_platform.h,
* that is just an enum type. Converters are provided in this header file to
* convert from one format representation to another.
* Some MSB bits are reserved in both formats to code some bit flag useful to
* declare some special attribute. Three flags are actually implemented in both
* formats: the @ref AI_BUFFER_FMT_FLAG_CONST and @ref AI_FMT_FLAG_CONST used
* to tag read-only memory buffers, @ref AI_BUFFER_FMT_FLAG_STATIC and
* @ref AI_FMT_FLAG_STATIC to mark statically allocated memory buffers and
* @ref AI_FMT_FLAG_SCRATCH_BUFFER to tag temporary scratch buffers.
* All the formats are declared in a proper tuple organize table header named
* @ref format_lists.h that enumerates all the formats available for the library.
* A new format could be added easily by adding a new FMY_ENTRY() as required.
* The preprocessor automatically generates the code for the handling of the
* format according to this tuples entry. A rational for the methodology could
* be found here:
* - https://codecraft.co/2012/10/29/how-enums-spread-disease-and-how-to-cure-it/
*
* The 32bits internal format fields are organized as follows:
*
* MSB LSB
* 31 25 24 23 21 17 14 7 0
* /---------------------------------------------------------------------------/
* / ATTR. FLAGS | FLOAT | SIGN | LDIV | TYPE | PMASK | BITS | FBITS /
* /---------------------------------------------------------------------------/
* Where:
* - FLAGS: is the reserved bits to store additional format attributes (e.g.
* I/O / STATIC flags. etc.)
* - FLOAT: 1 bit mark the format as floating point type
* - SIGN : 1 bit mark the format as signed type
* - LDIV : 2 bits is a log2 value that is used to compute elements size
* with some special format such as the compressed ones. It is a shift
* factor usually set to zero
* - TYPE : 4 bits mark the format "family" type. Actually 5 families are coded,
* @ref AI_FMT_FLOAT (float types)
* @ref AI_FMT_Q (fixed-point types in Qm.n format)
* @ref AI_FMT_BOOL (boolean type)
* @ref AI_FMT_LUT4 (compressed lookup 16 formats)
* @ref AI_FMT_LUT8 (compressed lookup 256 formats)
* - PMASK 3 bits padding mask used to set the optional dimension for padding
* to handle special aligned formats/ E.g. a 1 bit format
* Usually this is set to 0x0
* - BITS 7 bits set the total number of bits of the element, padding bits
* excluded. The bits are thus = sign bit + fractional bits + integer bits
* The number of integer bits could thus be known using the @ref
* AI_FMT_GET_IBITS() macro.
* - FBITS 7 bits set the number of fractional bits in the format
*
*
* A reference code snippet for usage is the test unit that uses this header:
*
* \include test/test_lcut_formats.cpp
*
*/
/*!
* Format bitfields definition. NOTE: 7 MSB are masked off
* for (optional) atributes setting using flags. see @ref AI_FMT_FLAG_CONST that
* is used for marking a data as constant readonly
*/
/* 1 bit field to identify floating point values*/
#define _FMT_FLOAT_MASK (0x1)
#define _FMT_FLOAT_BITS (24)
/*! 1 bit sign info */
#define _FMT_SIGN_MASK (0x1)
#define _FMT_SIGN_BITS (23)
/*! fractional bits field (i.e. for Q formats see @ref AI_FMT_Q) */
#define _FMT_FBITS_MASK (0x7F)
#define _FMT_FBITS_BITS (0)
#define _FMT_FBITS_BIAS ((_FMT_FBITS_MASK+1) >> 1)
/*! TOTAL number of bits (fractional+integer+sign) (excluded padding ones) */
#define _FMT_BITS_MASK (0x7F)
#define _FMT_BITS_BITS (7)
#define _FMT_BITS_BIAS (0)
/*! Padding bits for handling formats not aligned to multiples of 8 bits */
#define _FMT_PMASK_MASK (0x7)
#define _FMT_PMASK_BITS (14)
/*! bits reserved for identifying the family format, e.g. float, fixed-point..*/
#define _FMT_TYPE_MASK (0xF)
#define _FMT_TYPE_BITS (17)
#define _FMT_LDIV_MASK (0x3)
#define _FMT_LDIV_BITS (21)
/******************************************************************************/
#define AI_FMT_OBJ(fmt_) ((ai_array_format)(fmt_))
/*!
* Only 25 LSB bits are used for storing actual format bits. 7 bits are reserved
* for format attributes, see @ref AI_FMT_FLAG_CONST flag
*/
#define AI_FMT_FLAG_BITS (25)
#define AI_FMT_MASK ((0x1<<AI_FMT_FLAG_BITS)-1)
#define AI_FMT_FLAG_CONST (0x1<<30)
#define AI_FMT_FLAG_STATIC (0x1<<29)
#define AI_FMT_FLAG_SCRATCH_BUFFER (0x1<<28)
#define AI_FMT_FLAG_IS_IO (0x1<<27)
#define AI_FMT_FLAG_VISITED (0x1<<26)
/******************************************************************************/
/*!
* Format "Class" type : this identify the family of the format:
* float, integer, fixed point (i.e. Q format), compressed via lookup table
*/
#define AI_FMT_NONE (0x0)
#define AI_FMT_FLOAT (0x1)
#define AI_FMT_Q (0x2)
#define AI_FMT_BOOL (0x3)
#define AI_FMT_LUT4 (0x4)
#define AI_FMT_LUT8 (0x8)
#define AI_FMT_QMASK \
( (_FMT_FBITS_MASK<<_FMT_FBITS_BITS) | \
(_FMT_BITS_MASK<<_FMT_BITS_BITS) | \
(_FMT_PMASK_MASK<<_FMT_PMASK_BITS) )
#define AI_FMT_BINARY_MASK \
(AI_FMT_MASK & (~(_FMT_SIGN_MASK<<_FMT_SIGN_BITS)))
#define AI_FMT_IS_BINARY(val_) \
(((val_) & AI_FMT_BINARY_MASK) == AI_ARRAY_FORMAT_U1)
#define AI_FMT_GET(val_) \
( (AI_FMT_OBJ(val_)) & AI_FMT_MASK )
#define AI_FMT_MASK_Q(val_) \
( AI_FMT_OBJ(val_) & (~(AI_FMT_QMASK)) )
#define AI_FMT_GET_Q(val_) \
( AI_FMT_MASK_Q(val_) | AI_FMT_SET_BITS(0) | AI_FMT_SET_FBITS(0) )
#define AI_FMT_GET_FLAGS(val_) \
( ((AI_FMT_OBJ(val_)) & (~AI_FMT_MASK)) >> AI_FMT_FLAG_BITS )
#define AI_FMT_SAME(fmt1_, fmt2_) \
( AI_FMT_GET(fmt1_) == AI_FMT_GET(fmt2_) )
#define _FMT_SET(val, mask, bits) AI_FMT_OBJ(((val)&(mask))<<(bits))
#define _FMT_GET(fmt, mask, bits) ((AI_FMT_OBJ(fmt)>>(bits))&(mask))
#define AI_FMT_SET_FLOAT(val) _FMT_SET(val, _FMT_FLOAT_MASK, _FMT_FLOAT_BITS)
#define AI_FMT_GET_FLOAT(fmt) _FMT_GET(fmt, _FMT_FLOAT_MASK, _FMT_FLOAT_BITS)
#define AI_FMT_SET_SIGN(val) _FMT_SET(val, _FMT_SIGN_MASK, _FMT_SIGN_BITS)
#define AI_FMT_GET_SIGN(fmt) _FMT_GET(fmt, _FMT_SIGN_MASK, _FMT_SIGN_BITS)
#define AI_FMT_SET_PMASK(val) _FMT_SET(val, _FMT_PMASK_MASK, _FMT_PMASK_BITS)
#define AI_FMT_GET_PMASK(fmt) _FMT_GET(fmt, _FMT_PMASK_MASK, _FMT_PMASK_BITS)
#define AI_FMT_SET_TYPE(val) _FMT_SET(val, _FMT_TYPE_MASK, _FMT_TYPE_BITS)
#define AI_FMT_GET_TYPE(fmt) _FMT_GET(fmt, _FMT_TYPE_MASK, _FMT_TYPE_BITS)
#define AI_FMT_SET_LDIV(val) _FMT_SET(val, _FMT_LDIV_MASK, _FMT_LDIV_BITS)
#define AI_FMT_GET_LDIV(fmt) _FMT_GET(fmt, _FMT_LDIV_MASK, _FMT_LDIV_BITS)
#define AI_FMT_SET_BITS(val) \
_FMT_SET((val) + _FMT_BITS_BIAS, _FMT_BITS_MASK, _FMT_BITS_BITS)
#define AI_FMT_GET_BITS(fmt) \
((ai_i8)_FMT_GET(fmt, _FMT_BITS_MASK, _FMT_BITS_BITS) - _FMT_BITS_BIAS)
#define AI_FMT_SET_FBITS(val) \
_FMT_SET((val) + _FMT_FBITS_BIAS, _FMT_FBITS_MASK, _FMT_FBITS_BITS)
#define AI_FMT_GET_FBITS(fmt) \
((ai_i8)_FMT_GET(fmt, _FMT_FBITS_MASK, _FMT_FBITS_BITS) - _FMT_FBITS_BIAS)
/*!
* The total number of bits for a given format is supposed to be the sum of the
* bits + padding bits. This means that the number of integer bits is derived
* as follow: int_bits = bits - fbits (fractional bits) - 1 (for the sign)
*/
#define AI_FMT_GET_BITS_SIZE(fmt_) \
AI_FMT_GET_BITS(fmt_)
/*! Macro used to compute the integer bits for a format */
#define AI_FMT_GET_IBITS(fmt_) \
((ai_i16)AI_FMT_GET_BITS(fmt_)-AI_FMT_GET_FBITS(fmt_)-AI_FMT_GET_SIGN(fmt_))
/*! ai_buffer format handlers section *****************************************/
#define AI_BUFFER_FMT_MASK_Q(fmt_) \
( AI_BUFFER_FMT_OBJ(fmt_) & 0xFFFFC000 )
#define AI_BUFFER_FMT_GET_Q(fmt_) \
( AI_BUFFER_FMT_MASK_Q(fmt_) | AI_BUFFER_FMT_SET_FBITS(0) | \
AI_BUFFER_FMT_SET_FBITS(0) )
#define AI_BUFFER_FMT_SET_Q(bits_, fbits_) \
AI_BUFFER_FMT_SET(AI_BUFFER_FMT_TYPE_Q, 1, 0, bits_, fbits_)
#define AI_BUFFER_FMT_IS_Q(fmt_) \
( (AI_BUFFER_FMT_TYPE_Q==AI_BUFFER_FMT_GET_TYPE(fmt_)) && \
(1==AI_BUFFER_FMT_GET_SIGN(fmt_)) )
#define AI_BUFFER_FMT_SET_UQ(bits_, fbits_) \
AI_BUFFER_FMT_SET(AI_BUFFER_FMT_TYPE_Q, 0, 0, bits_, fbits_)
#define AI_BUFFER_FMT_IS_UQ(fmt_) \
( (AI_BUFFER_FMT_TYPE_Q==AI_BUFFER_FMT_GET_TYPE(fmt_)) && \
(0==AI_BUFFER_FMT_GET_SIGN(fmt_)) )
/*! Q ai_array format handlers ************************************************/
#define AI_ARRAY_FMT_Q(bits_, fbits_) \
( AI_FMT_MASK_Q(AI_ARRAY_FORMAT_Q) | AI_FMT_SET_BITS(bits_) | AI_FMT_SET_FBITS(fbits_) )
#define AI_ARRAY_FMT_SET_Q(bits_, fbits_) \
AI_ARRAY_FMT_Q(bits_, fbits_)
#define AI_ARRAY_FMT_IS_Q(fmt_) \
( AI_FMT_GET(AI_FMT_MASK_Q(AI_ARRAY_FORMAT_Q))==AI_FMT_GET(AI_FMT_MASK_Q(fmt_)) )
#define AI_ARRAY_FMT_UQ(bits_, fbits_) \
( AI_FMT_MASK_Q(AI_ARRAY_FORMAT_UQ) | AI_FMT_SET_BITS(bits_) | AI_FMT_SET_FBITS(fbits_) )
#define AI_ARRAY_FMT_SET_UQ(bits_, fbits_) \
AI_ARRAY_FMT_UQ(bits_, fbits_)
#define AI_ARRAY_FMT_IS_UQ(fmt_) \
( AI_FMT_GET(AI_FMT_MASK_Q(AI_ARRAY_FORMAT_UQ))==AI_FMT_GET(AI_FMT_MASK_Q(fmt_)) )
AI_DEPRECATED
/* Alias for AI_ARRAY_FMT_SET_Q */
#define AI_ARRAY_FMT_SET_SQ(bits_, fbits_) \
AI_ARRAY_FMT_SET_Q(bits_, fbits_)
AI_DEPRECATED
/* Alias for AI_ARRAY_FMT_IS_Q */
#define AI_ARRAY_FMT_IS_SQ(fmt_) \
AI_ARRAY_FMT_IS_Q(fmt_)
/*! ai_array section **********************************************************/
#define AI_ARRAY_FMT_ENTRY(name_) \
AI_CONCAT(AI_ARRAY_FORMAT_, name_)
#define AI_ARRAY_FMT_NAME(fmt_) \
ai_array_fmt_name(fmt_)
#define AI_ARRAY_FMT_VALID(fmt_) \
ai_array_fmt_valid(fmt_)
#define AI_ARRAY_FMT_EXPORTED(fmt_) \
ai_array_fmt_exported(fmt_)
#define AI_ARRAY_FMT_GET_FORMATS(formats_) \
ai_array_fmt_get_formats(formats_)
#define AI_ARRAY_TO_BUFFER_FMT(fmt_) \
ai_array_to_buffer_fmt(fmt_)
#define AI_ARRAY_GET_BYTE_SIZE(fmt_, count_) \
ai_array_get_byte_size(fmt_, count_)
#define AI_ARRAY_GET_DATA_BYTE_SIZE(fmt_, count_) \
ai_array_get_data_byte_size(fmt_, count_)
#define AI_ARRAY_GET_ELEMS_FROM_SIZE(fmt_, size_) \
ai_array_get_elems_from_size(fmt_, size_)
AI_API_DECLARE_BEGIN
/*!
* @typedef ai_array_format
* @ingroup ai_datatypes_format
* @brief Generic Data Format Specifier for @ref ai_array (32bits packed info)
*/
typedef int32_t ai_array_format;
/*!
* @enum internal data format enums
* @ingroup ai_datatypes_format
* @brief Generic Data Format Specifier (32bits packed info)
*/
typedef enum {
#define FMT_ENTRY(exp_, name_, type_id_, sign_bit_, float_bit_, \
pmask_, bits_, fbits_, ldiv_bits_) \
AI_ARRAY_FMT_ENTRY(name_) = (AI_FMT_SET_FLOAT(float_bit_) | \
AI_FMT_SET_SIGN(sign_bit_) | \
AI_FMT_SET_BITS(bits_) | \
AI_FMT_SET_FBITS(fbits_) | \
AI_FMT_SET_PMASK(pmask_) | \
AI_FMT_SET_TYPE(type_id_) | \
AI_FMT_SET_LDIV(ldiv_bits_)),
#include "formats_list.h"
} ai_array_format_entry;
/*!
* @brief Get a human readable string from the format ID value
* @ingroup ai_datatypes_format
* @param[in] type the @ref ai_array_format to print out
* @return a string with a human readable name of the format
*/
AI_INTERNAL_API
const char* ai_array_fmt_name(const ai_array_format type);
/*!
* @brief Check if @ref ai_array_format is a exportable to an @ref ai_buffer_format
* @ingroup ai_datatypes_format
* @param[in] type the ai_array_format to check
* @return true if the format is exported, false otherwise
*/
AI_INTERNAL_API
ai_bool ai_array_fmt_exported(const ai_array_format type);
/*!
* @brief Check if @ref ai_array_format is a valid format present in the list of
* supported formats
* @ingroup ai_datatypes_format
* @param[in] type the ai_array_format to check
* @return true if the format is valid, false otherwise
*/
AI_INTERNAL_API
ai_bool ai_array_fmt_valid(const ai_array_format type);
/*!
* @brief Get the complete list of supported @ref ai_array_format formats
* @ingroup ai_datatypes_format
* @param[out] formats a pointer to an array withj all supported formats listed
* @return the number of supported formats
*/
AI_INTERNAL_API
ai_size ai_array_fmt_get_formats(const ai_array_format** formats);
/*! ai_buffer section *********************************************************
* Only 25 LSB bits are used for storing actual format bits. 7 bits are reserved
* for format atrtributes, see @ref AI_FMT_FLAG_CONST flag
*/
#define AI_BUFFER_FMT_ENTRY(name_) \
AI_CONCAT(AI_BUFFER_FORMAT_, name_)
#define AI_BUFFER_FMT_NAME(type_) \
ai_buffer_fmt_name(type_)
#define AI_BUFFER_FMT_VALID(type_) \
ai_buffer_fmt_valid(type_)
#define AI_BUFFER_FMT_GET_FORMATS(formats_) \
ai_buffer_fmt_get_formats(formats_)
#define AI_BUFFER_TO_ARRAY_FMT(fmt_) \
ai_buffer_to_array_fmt(fmt_)
#define AI_BUFFER_GET_BITS_SIZE(fmt) \
AI_ARRAY_GET_BITS_SIZE(AI_BUFFER_TO_ARRAY_FMT(fmt))
/*!
* @brief Get a human readable string from the format ID value
* @ingroup ai_datatypes_format
* @param[in] type the @ref ai_buffer_format to print out
* @return a string with a human readable name of the format
*/
AI_INTERNAL_API
const char* ai_buffer_fmt_name(
const ai_buffer_format type);
/*!
* @brief Check if @ref ai_buffer_format is a valid format present in the list
* of supported formats
* @ingroup ai_datatypes_format
* @param[in] type the @ref ai_buffer_format to check
* @return true if the format is valid, false otherwise
*/
AI_INTERNAL_API
ai_bool ai_buffer_fmt_valid(
const ai_buffer_format type);
/*!
* @brief Get the complete list of supported @ref ai_buffer_format formats
* @ingroup ai_datatypes_format
* @param[out] formats a pointer to an array with all supported formats listed
* @return the number of supported formats
*/
AI_INTERNAL_API
ai_size ai_buffer_fmt_get_formats(
const ai_buffer_format** formats);
/*! Conversions section *******************************************************/
/*!
* @brief Convert from ai_array_format to ai_buffer_format.
* @ingroup ai_datatypes_format
* @param fmt the input ai_array_format to convert
* @return the converted format as a ai_buffer_format
*/
AI_INTERNAL_API
ai_buffer_format ai_array_to_buffer_fmt(
const ai_array_format fmt);
/*!
* @brief Convert from ai_buffer_format to ai_array_format.
* @ingroup ai_datatypes_format
* @param fmt the input ai_buffer_format to convert
* @return the converted format as a ai_array_format
*/
AI_INTERNAL_API
ai_array_format ai_buffer_to_array_fmt(
const ai_buffer_format fmt);
/** helpers section ***********************************************************/
/*!
* @brief Computes the size in bytes given an ai_array_format and number of
* array elements.
* @details This routine computes from the number of elements of the array its
* size in bytes. If the array is referred by a tensor structure, it is the task
* of the latter to handle per-dimension padding (e.g. to align odd rows in a
* 4-bit matrix. At array level the padding elements MUST be included in the
* number of elements.
* @ingroup ai_datatypes_format
* @param[in] fmt the input array format as an ai_array_format
* @param[in] count the number of elements stored in the data array
* @return the size in bytes of the array given the specific format and number
* of elements (including padding elements)
*/
AI_INTERNAL_API
ai_size ai_array_get_byte_size(
const ai_array_format fmt, const ai_size count);
/*!
* @brief Computes the size in bytes given an ai_array_format and number of
* array elements of the data fields (e.g. LUT table size excluded).
* @details This routine computes from the number of elements of the array its
* size in bytes. If the array is referred by a tensor structure, it is the task
* of the latter to handle per-dimension padding (e.g. to align odd rows in a
* 4-bit matrix. At array level the padding elements MUST be included in the
* number of elements.
* @ingroup ai_datatypes_format
* @param[in] fmt the input array format as an ai_array_format
* @param[in] count the number of elements stored in the data array
* @return the size in bytes of the array given the specific format and number
* of elements (including padding elements)
*/
AI_INTERNAL_API
ai_size ai_array_get_data_byte_size(
const ai_array_format fmt, const ai_size count);
/*!
* @brief Computes the number of elements from ai_array_format and
* the size in byte of the array.
* @ingroup ai_datatypes_format
* @param fmt the input array format as an ai_array_format
* @param size the size in bytes of the array
* @return the number of elements that could be stored given the format
*/
AI_INTERNAL_API
ai_size ai_array_get_elems_from_size(
const ai_array_format fmt, const ai_size byte_size);
AI_API_DECLARE_END
#endif /*AI_DATATYPES_FORMAT_H*/
| 18,640 | C | 36.965377 | 91 | 0.635569 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/core_net_inspect.h | /**
******************************************************************************
* @file core_net_inspect.h
* @author AST Embedded Analytics Research Platform
* @brief header file of core network inspection APIs
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef __CORE_NET_INSPECT_H_
#define __CORE_NET_INSPECT_H_
#pragma once
#include "core_net_inspect_interface.h"
#include "core_common.h"
#include "layers_common.h"
/*!
* @defgroup core_net_inspect Core Network Inspection routines
* @brief Implementation of core network inspection routines that allows to
* inspect on a node basis a generated network model
* @details A network context @ref ai_network basically contains a chained list
* of nodes @ref ai_node that have an associated forward function.
* Each ai)network context and ai_node datastructs have as a required member
* field an opaque handler (i.e. a void pointer) to a klass object.
* This handler is intended to be used as a platform specific node context
* that implements specific target platform routines.
* The inspector module basically acts as a plugin that exploiting these features
* by temporary creating an hidden inspection context (see
* @ref ai_core_inspect_net_klass) associated to the network and
* linking it by re-routing the klass field to this inspection context. The
* inspection context saves as part of its state (by a stack push operation), the
* internal state of the network (all node / network klass pointers and actual
* forward functions).
* Thus, for each node it re-routes all node's forward functions to a dedicated
* inspection forward function (see @ref _forward_inspect_validate() routine)
* This routine is the core of the mechanism and it allows to inspect a network
* node by node. Some additional inspection could thus be done inside the
* _forward_inspect_validate() routine before and after the actual node
* forward function is called;
*
*/
AI_API_DECLARE_BEGIN
/*!
* @defgroup core_net_inspect Network Inspection Core
* @brief Implementation of the validation network routines
*/
/*!
* @brief Initialize the network inspection context on a given network
* @ingroup core net inspect
* @param network opaque handler to the network instance
* @param cfg a pointer to the inspector configuration we want to use
* @return true if execution of the API is fine, false otherwise
*/
AI_API_ENTRY
ai_bool ai_network_inspect_init(
ai_handle network, const ai_inspect_config* cfg);
/*!
* @brief Get a summary report from the inspected network
* @ingroup core net inspect
* @param network opaque handler to the network instance
* @param report a pointer to the report provided back by the inspection
* @return true if execution of the API is fine, false otherwise
*/
AI_API_ENTRY
ai_bool ai_network_inspect_get_report(
ai_handle network, ai_inspect_net_report* report);
/*!
* @brief Destroy the network inspection context on a given network
* @ingroup core net inspect
* @param network opaque handler to the network instance
* @return true if execution of the API is fine, false otherwise
*/
AI_API_ENTRY
ai_bool ai_network_inspect_destroy(ai_handle network);
AI_API_DECLARE_END
#endif /*__CORE_NET_INSPECT_H_*/
| 3,780 | C | 37.581632 | 81 | 0.682804 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/lite_nl_generic_integer.h | #ifndef LITE_NL_GENERIC_INTEGER_H
#define LITE_NL_GENERIC_INTEGER_H
#pragma once
#include "ai_lite_interface.h"
/**
* @brief forward lite function for a s8 softmax non-linearity where the softmax is applied per channel.
* @ingroup lite_nl_generic_integer
* @param output The pointer to output buffer (s8).
* @param input The pointer to input buffer (s8).
* @param in_size. The size of the input (including channels).
* @param ch_size The nsize of each channel.
* @param in_ch_step The step between consecutive elements (inputs)
* @param out_ch_step The step between consecutive elements (outputs)
* @param mult
* @param shift
* @param min_diff
*/
LITE_API_ENTRY
void forward_lite_nl_softmax_is8os8(
ai_i8* out_ptr, const ai_i8* in_ptr,
const ai_size in_size, const ai_size ch_size,
const ai_i32 in_ch_step, const ai_i32 out_ch_step,
const ai_i32 mult, const ai_i32 shift, const ai_i32 min_diff,
ai_i32* scratch);
/**
* @brief forward lite function for a u8 softmax non-linearity where the softmax is applied per channel.
* @ingroup lite_nl_generic_integer
* @param output The pointer to output buffer (s8).
* @param input The pointer to input buffer (s8).
* @param in_size. The size of the input (including channels).
* @param ch_size The nsize of each channel.
* @param in_ch_step The step between consecutive elements (inputs)
* @param out_ch_step The step between consecutive elements (outputs)
* @param mult
* @param shift
* @param min_diff
*/
LITE_API_ENTRY
void forward_lite_nl_softmax_iu8ou8(
ai_u8* out_ptr, const ai_u8* in_ptr,
const ai_size in_size, const ai_size ch_size,
const ai_i32 in_ch_step, const ai_i32 out_ch_step,
const ai_i32 mult, const ai_i32 shift, const ai_i32 min_diff,
ai_i32* scratch);
#endif /* LITE_NL_GENERIC_INTEGER_H */
| 1,815 | C | 34.607842 | 104 | 0.713499 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/ai_datatypes.h | /**
******************************************************************************
* @file ai_datatypes.h
* @author AST Embedded Analytics Research Platform
* @brief Definitions of AI platform private APIs types
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef AI_DATATYPES_H
#define AI_DATATYPES_H
#pragma once
#include <string.h>
#include "ai_platform.h"
#include "ai_platform_interface.h"
/*!
* @defgroup datatypes Platform Interface Datatypes
* @brief Data structures used by AI platform to implement neural networks
*
*/
/** Count Variable Number of Arguments (up to 64 elements) *******************/
#define AI_NUMARGS(...) \
PP_NARG_(__VA_ARGS__,PP_RSEQ_N())
#define PP_NARG_(...) \
PP_ARG_N(__VA_ARGS__)
#define PP_ARG_N( \
_1, _2, _3, _4, _5, _6, _7, _8, _9,_10, \
_11,_12,_13,_14,_15,_16,_17,_18,_19,_20, \
_21,_22,_23,_24,_25,_26,_27,_28,_29,_30, \
_31,_32,_33,_34,_35,_36,_37,_38,_39,_40, \
_41,_42,_43,_44,_45,_46,_47,_48,_49,_50, \
_51,_52,_53,_54,_55,_56,_57,_58,_59,_60, \
_61,_62,_63,N,...) N
#define PP_RSEQ_N() \
63,62,61,60, \
59,58,57,56,55,54,53,52,51,50, \
49,48,47,46,45,44,43,42,41,40, \
39,38,37,36,35,34,33,32,31,30, \
29,28,27,26,25,24,23,22,21,20, \
19,18,17,16,15,14,13,12,11,10, \
9,8,7,6,5,4,3,2,1,0
/*****************************************************************************/
#define AI_PTR_ALIGN(ptr, alignment) \
((((ai_uptr)(ptr))+((ai_uptr)(alignment)-1))&(~((ai_uptr)(alignment)-1)))
/*!
* @typedef ai_offset
* @ingroup ai_datatypes_internal
* @brief Generic index offset type
*/
typedef int32_t ai_offset;
AI_API_DECLARE_BEGIN
AI_API_DECLARE_END
#endif /* AI_DATATYPES_H */
| 2,349 | C | 29.51948 | 80 | 0.473819 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/ai_common_config.h | /**
******************************************************************************
* @file ai_common_config.h
* @author AST Embedded Analytics Research Platform
* @brief header file of AI platform common compile configuration defines
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef AI_COMMON_CONFIG_H
#define AI_COMMON_CONFIG_H
#pragma once
/*!
* @defgroup layers Layers Compilation Config Definitions
* @brief definition
*
*/
#define HAS_PROFILE_FLOAT
#define HAS_PROFILE_FIXED
#endif /*AI_COMMON_CONFIG_H*/
| 1,070 | C | 28.749999 | 80 | 0.495327 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/lite_pw_dqnn.h | /**
******************************************************************************
* @file lite_pw_dqnn.h
* @author AIS
* @brief header file of AI platform lite pw kernel datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LITE_PW_DQNN_H
#define LITE_PW_DQNN_H
#pragma once
#include "ai_lite_interface.h"
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Handles point wise convolution with binary input, binary output and
* binary weights - Lite API version
* @ingroup lite_pw_dqnn
*/
LITE_API_ENTRY
void forward_lite_pw_is1os1ws1_bn(const ai_u32 *pDataIn_init,
ai_u32 *pDataOut_init,
const ai_u32 *pWeights_init,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 width_out,
const ai_i32 height_out,
const ai_i32 *pThreshold);
/*!
* @brief Handles point wise convolution with binary input, binary output and
* binary weights - Lite API version - Optimized thanks to Optim2
* assumptions
* @ingroup lite_pw_dqnn
*/
LITE_API_ENTRY
void forward_lite_pw_is1os1ws1_bn_optim2(const ai_u32 *pDataIn_init,
ai_u32 *pDataOut_init,
const ai_u32 *pWeights_init,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 width_out,
const ai_i32 height_out,
const ai_i32 *pThreshold);
/*!
* @brief Handles point wise convolution with binary input, 8-bits output and
* binary weights - Lite API version
* @ingroup lite_pw_dqnn
*/
LITE_API_ENTRY
void forward_lite_pw_is1os8ws1_bn(const ai_u32 *pDataIn_init,
ai_i8 *pDataOut_init,
const ai_u32 *pWeights_init,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 width_out,
const ai_i32 height_out,
const ai_float *pScale,
const ai_float *pOffset);
/*!
* @brief Handles point wise convolution with binary input, 8-bits output and
* binary weights - Lite API version - Optimized thanks to Optim1
* assumptions
* @ingroup lite_pw_dqnn
*/
LITE_API_ENTRY
void forward_lite_pw_is1os8ws1_bn_optim1(const ai_u32 *pDataIn_init,
ai_i8 *pDataOut_init,
const ai_u32 *pWeights_init,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 width_out,
const ai_i32 height_out,
const ai_float *pScale,
const ai_float *pOffset);
/*!
* @brief Handles point-wise convolution with binary input, float32 output
* and binary weights - Lite API version
* @ingroup lite_pw_dqnn
*/
LITE_API_ENTRY
void forward_lite_pw_is1of32ws1_bn(const ai_u32 *pDataIn_init,
ai_float *pDataOut_init,
const ai_u32 *pWeights_init,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 width_out,
const ai_i32 height_out,
const ai_float *pScale,
const ai_float *pOffset);
/*!
* @brief Handles point-wise convolution with binary input, float32 output
* and binary weights - Lite API version - Optimized thanks to Optim1
* assumptions
* @ingroup lite_pw_dqnn
*/
LITE_API_ENTRY
void forward_lite_pw_is1of32ws1_bn_optim1(const ai_u32 *pDataIn_init,
ai_float *pDataOut_init,
const ai_u32 *pWeights_init,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 width_out,
const ai_i32 height_out,
const ai_float *pScale,
const ai_float *pOffset);
#endif /*LITE_PW_DQNN_H*/
| 5,632 | C | 42 | 80 | 0.430753 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/ai_platform.h | /**
******************************************************************************
* @file ai_platform.h
* @author AST Embedded Analytics Research Platform
* @brief Definitions of AI platform public APIs types
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef AI_PLATFORM_H
#define AI_PLATFORM_H
#pragma once
#include <stdint.h>
#include <stddef.h>
#include <inttypes.h>
#ifndef AI_PLATFORM_API_MAJOR
#define AI_PLATFORM_API_MAJOR (1)
#endif
#ifndef AI_PLATFORM_API_MINOR
#define AI_PLATFORM_API_MINOR (2)
#endif
#ifndef AI_PLATFORM_API_MICRO
#define AI_PLATFORM_API_MICRO (0)
#endif
#define AI_PLATFORM_API_VERSION \
AI_VERSION(AI_PLATFORM_API_MAJOR, \
AI_PLATFORM_API_MINOR, \
AI_PLATFORM_API_MICRO)
#ifndef AI_TOOLS_API_VERSION_MAJOR
#define AI_TOOLS_API_VERSION_MAJOR (1)
#endif
#ifndef AI_TOOLS_API_VERSION_MINOR
#define AI_TOOLS_API_VERSION_MINOR (5)
#endif
#ifndef AI_TOOLS_API_VERSION_MICRO
#define AI_TOOLS_API_VERSION_MICRO (0)
#endif
/*****************************************************************************/
#define AI_TOOLS_API_VERSION \
AI_VERSION(AI_TOOLS_API_VERSION_MAJOR, \
AI_TOOLS_API_VERSION_MINOR, \
AI_TOOLS_API_VERSION_MICRO)
#define AI_TOOLS_API_VERSION_1_3 \
AI_VERSION(1, 3, 0)
#define AI_TOOLS_API_VERSION_1_4 \
AI_VERSION(1, 4, 0)
#define AI_TOOLS_API_VERSION_1_5 \
AI_VERSION(1, 5, 0)
/*****************************************************************************/
#ifdef __cplusplus
#define AI_API_DECLARE_BEGIN extern "C" {
#define AI_API_DECLARE_END }
#else
#include <stdbool.h>
#define AI_API_DECLARE_BEGIN /* AI_API_DECLARE_BEGIN */
#define AI_API_DECLARE_END /* AI_API_DECLARE_END */
#endif
/*****************************************************************************/
#define AI_FLAG_NONE (0x0)
/*****************************************************************************/
AI_API_DECLARE_BEGIN
/*!
* @typedef ai_flags
* @ingroup ai_platform
* @brief bitmask for flags management
*/
typedef uint32_t ai_flags;
/*****************************************************************************/
#define AI_CONCAT_ARG(a, b) a ## b
#define AI_CONCAT(a, b) AI_CONCAT_ARG(a, b)
/*! AI_CAST SECTION ***********************************/
#define AI_CAST(type_, expr_) ((type_)(expr_))
/*****************************************************************************/
#define AI_MAGIC_SIGNATURE \
(0xa1facade)
#define AI_PACK(...) \
__VA_ARGS__
/*****************************************************************************/
#define AI_SHAPE_BCWH (0x01u)
/*!
* @typedef ai_shape_dimension
* @ingroup ai_platform
* @brief shape dimension type to be used in shape related structs @ref ai_buffer_shape
*/
typedef uint32_t ai_shape_dimension;
/*****************************************************************************/
#if defined(_MSC_VER)
#define AI_API_ENTRY __declspec(dllexport)
#define AI_ALIGNED(x) /* AI_ALIGNED(x) */
#elif defined(__ICCARM__) || defined (__IAR_SYSTEMS_ICC__)
#define AI_API_ENTRY /* AI_API_ENTRY */
#define AI_ALIGNED(x) AI_CONCAT(AI_ALIGNED_,x)
#define AI_ALIGNED_1 _Pragma("data_alignment = 1")
#define AI_ALIGNED_2 _Pragma("data_alignment = 2")
#define AI_ALIGNED_4 _Pragma("data_alignment = 4")
#define AI_ALIGNED_8 _Pragma("data_alignment = 8")
#define AI_ALIGNED_16 _Pragma("data_alignment = 16")
#define AI_ALIGNED_32 _Pragma("data_alignment = 32")
#elif defined(__CC_ARM)
#define AI_API_ENTRY __attribute__((visibility("default")))
#define AI_ALIGNED(x) __attribute__((aligned (x)))
/* Keil disallows anonymous union initialization by default */
#pragma anon_unions
#elif defined(__GNUC__)
//#define AI_API_ENTRY __attribute__((visibility("default")))
#define AI_API_ENTRY /* AI_API_ENTRY */
#define AI_ALIGNED(x) __attribute__((aligned(x)))
#else
/* Dynamic libraries are not supported by the compiler */
#define AI_API_ENTRY /* AI_API_ENTRY */
#define AI_ALIGNED(x) /* AI_ALIGNED(x) */
#endif
#define AI_HANDLE_PTR(ptr_) ((ai_handle)(ptr_))
#define AI_HANDLE_NULL AI_HANDLE_PTR(NULL)
#define AI_HANDLE_FUNC_PTR(func) ((ai_handle_func)(func))
#define AI_UNUSED(x) (void)(x);
#define AI_DEPRECATED /* AI_DEPRECATED */
#define AI_LEGACY /* AI_LEGACY */
#define AI_MAGIC_MARKER (0xA1FACADE)
#if defined(__cplusplus)
#define AI_STRUCT_INIT {}
#define AI_C_ARRAY_INIT {}
#else
#define AI_STRUCT_INIT {0}
#define AI_C_ARRAY_INIT {0}
#endif
#define AI_ERROR_FMT AIU32_FMT
#define AI_IS_UNSIGNED(type) \
((((type)0) - 1) > 0)
#define AI_CUSTOM_SIZE(type) \
(ai_custom_type_signature)((AI_IS_UNSIGNED(type)) \
? (0x80|(sizeof(type)&0x7f)) : (sizeof(type)&0x7f))
/*! network buffers struct handlers *******************************************/
#ifdef __cplusplus
#define AI_NETWORK_PARAMS_INIT(params_, activations_) \
{ \
{{ params_, activations_ }} \
}
#define AI_NETWORK_BUFFERS_INIT(weights_buffers_, activations_buffers_) \
{ \
AI_MAGIC_SIGNATURE, AI_PACK(weights_buffers_), AI_PACK(activations_buffers_) \
}
#else
#define AI_NETWORK_PARAMS_INIT(params_, activations_) \
{ \
.params = params_, \
.activations = activations_ \
}
#define AI_NETWORK_BUFFERS_INIT(weights_buffers_, activations_buffers_) \
{ \
.map_signature = AI_MAGIC_SIGNATURE, \
.map_weights = AI_PACK(weights_buffers_), \
.map_activations = AI_PACK(activations_buffers_) \
}
#endif // __cplusplus
/*! binary padded bits macro helpers *****************************************/
#define AI_PBITS_MASK \
(0x1F)
#define AI_PBITS_SHIFTS \
(5)
#define AI_PBITS_PADDED_BYTES_COUNT(bits_) \
(((ai_u32)(bits_) + 7) >> 3)
#define AI_PBITS_PADDED_WORDS_COUNT(bits_) \
(((ai_size)(bits_) + AI_PBITS_MASK) >> AI_PBITS_SHIFTS)
#define AI_PBITS_GET_WORD(word_ptr_, bits_) \
(((ai_pbits*)(word_ptr_)) + ((bits_) >> AI_PBITS_SHIFTS))
#define AI_PAD_CHANNELS(format_, channels_) \
((AI_BUFFER_FMT_GET_BITS(format_)==1) ? (AI_PBITS_PADDED_WORDS_COUNT(channels_) << AI_PBITS_SHIFTS) : (channels_))
/*! ai_intq_info struct handlers *********************************************/
#define INTQ_CONST const
// #define INTQ_CONST
#define AI_INTQ_INFO_LIST(list_) \
((list_)->info)
#define AI_INTQ_INFO_LIST_FLAGS(list_) \
((list_) ? (list_)->flags : 0)
#define AI_INTQ_INFO_LIST_SIZE(list_) \
((list_) ? (list_)->size : 0)
#define AI_HAS_INTQ_INFO_LIST(list_) \
((list_) ? (((list_)->info) && ((list_)->size>0)) : false)
#define AI_INTQ_INFO_LIST_SCALE(list_, type_, pos_) \
(((list_) && (list_)->info && ((pos_)<(list_)->size)) \
? ((type_*)((list_)->info->scale))[(pos_)] : 0)
#define AI_INTQ_INFO_LIST_ZEROPOINT(list_, type_, pos_) \
(((list_) && (list_)->info && ((pos_)<(list_)->size)) \
? ((type_*)((list_)->info->zeropoint))[(pos_)] : 0)
/*! ai_buffer format handlers ************************************************/
/*!
* @enum buffer format definition
* @ingroup ai_platform
*
* 32 bit signed format list.
*/
typedef int32_t ai_buffer_format;
/*! ai_buffer_meta flags & macros ********************************************/
#define AI_BUFFER_META_HAS_INTQ_INFO (0x1U << 0)
#define AI_BUFFER_META_FLAG_SCALE_FLOAT (0x1U << 0)
#define AI_BUFFER_META_FLAG_ZEROPOINT_U8 (0x1U << 1)
#define AI_BUFFER_META_FLAG_ZEROPOINT_S8 (0x1U << 2)
#define AI_BUFFER_META_FLAG_ZEROPOINT_U16 (0x1U << 3)
#define AI_BUFFER_META_FLAG_ZEROPOINT_S16 (0x1U << 4)
/*! ai_buffer format variable flags & macros *********************************/
#define AI_BUFFER_FMT_TYPE_NONE (0x0)
#define AI_BUFFER_FMT_TYPE_FLOAT (0x1)
#define AI_BUFFER_FMT_TYPE_Q (0x2)
#define AI_BUFFER_FMT_TYPE_BOOL (0x3)
#define AI_BUFFER_FMT_FLAG_CONST (0x1U<<30)
#define AI_BUFFER_FMT_FLAG_STATIC (0x1U<<29)
#define AI_BUFFER_FMT_FLAG_IS_IO (0x1U<<27)
#define AI_BUFFER_FMT_FLAG_PERSISTENT (0x1U<<29)
#define AI_BUFFER_FMT_PACK(value_, mask_, bits_) \
( ((value_) & (mask_)) << (bits_) )
#define AI_BUFFER_FMT_UNPACK(fmt_, mask_, bits_) \
( (AI_BUFFER_FMT_OBJ(fmt_) >> (bits_)) & (mask_) )
#define AI_BUFFER_FMT_OBJ(fmt_) \
((ai_buffer_format)(fmt_))
#define AI_BUFFER_FMT_GET_FLOAT(fmt_) \
AI_BUFFER_FMT_UNPACK(fmt_, 0x1, 24)
#define AI_BUFFER_FMT_GET_SIGN(fmt_) \
AI_BUFFER_FMT_UNPACK(fmt_, 0x1, 23)
#define AI_BUFFER_FMT_GET_TYPE(fmt_) \
AI_BUFFER_FMT_UNPACK(fmt_, 0xF, 17)
#define AI_BUFFER_FMT_GET_BITS(fmt_) \
AI_BUFFER_FMT_UNPACK(fmt_, 0x7F, 7)
#define AI_BUFFER_FMT_SET_BITS(bits_) \
AI_BUFFER_FMT_PACK((bits_), 0x7F, 7)
#define AI_BUFFER_FMT_GET_FBITS(fmt_) \
( (ai_i8)AI_BUFFER_FMT_UNPACK(fmt_, 0x7F, 0) - 64 )
#define AI_BUFFER_FMT_SET_FBITS(fbits_) \
AI_BUFFER_FMT_PACK((fbits_)+64, 0x7F, 0)
#define AI_BUFFER_FMT_SET(type_id_, sign_bit_, float_bit_, bits_, fbits_) \
AI_BUFFER_FMT_OBJ( \
AI_BUFFER_FMT_PACK(float_bit_, 0x1, 24) | \
AI_BUFFER_FMT_PACK(sign_bit_, 0x1, 23) | \
AI_BUFFER_FMT_PACK(0, 0x3, 21) | \
AI_BUFFER_FMT_PACK(type_id_, 0xF, 17) | \
AI_BUFFER_FMT_PACK(0, 0x7, 14) | \
AI_BUFFER_FMT_SET_BITS(bits_) | \
AI_BUFFER_FMT_SET_FBITS(fbits_) \
)
#define AI_BUFFER_FMT_SAME(fmt1_, fmt2_) \
( AI_BUFFER_FMT_GET(fmt1_) == AI_BUFFER_FMT_GET(fmt2_) )
#define AI_BUFFER_FMT_GET(fmt_) \
(AI_BUFFER_FMT_OBJ(fmt_) & 0x01FFFFFF)
#define AI_BUFFER_FORMAT(buf_) \
AI_BUFFER_FMT_GET((buf_)->format)
/*!
* @define shape type index
* @ingroup ai_platform
* @brief positional ID for generic shapes C structs
*/
#define AI_SHAPE_EXTENSION (0x5)
#define AI_SHAPE_DEPTH (0x4)
#define AI_SHAPE_HEIGHT (0x3)
#define AI_SHAPE_WIDTH (0x2)
#define AI_SHAPE_CHANNEL (0x1)
#define AI_SHAPE_IN_CHANNEL (0x0)
#define AI_SHAPE_BATCH (0x0)
#define AI_SHAPE_TIME (0x0)
AI_DEPRECATED
#define AI_BUFFER_WIDTH(buf_) \
((buf_)->shape.data[AI_SHAPE_WIDTH])
AI_DEPRECATED
#define AI_BUFFER_HEIGHT(buf_) \
((buf_)->shape.data[AI_SHAPE_HEIGHT])
AI_DEPRECATED
#define AI_BUFFER_CHANNELS(buf_) \
((buf_)->shape.data[AI_SHAPE_CHANNEL])
AI_DEPRECATED
#define AI_BUFFER_N_BATCHES(buf_) \
((buf_)->shape.data[AI_SHAPE_BATCH])
#define AI_BUFFER_DATA(buf_, type_) \
((type_*)((buf_)->data))
#define AI_BUFFER_META_INFO(buf_) \
((buf_)->meta_info)
#define AI_BUFFER_META_INFO_INTQ(meta_) \
((meta_) && ((meta_)->flags & AI_BUFFER_META_HAS_INTQ_INFO)) \
? ((meta_)->intq_info) : NULL
#define AI_BUFFER_META_INFO_INTQ_GET_SIZE(meta_) \
( (AI_BUFFER_META_INFO_INTQ(meta_)) \
? AI_INTQ_INFO_LIST_SIZE(AI_BUFFER_META_INFO_INTQ(meta_)) \
: 0 )
#define AI_BUFFER_META_INFO_INTQ_GET_SCALE(meta_, pos_) \
( (AI_BUFFER_META_INFO_INTQ(meta_)) \
? AI_INTQ_INFO_LIST_SCALE(AI_BUFFER_META_INFO_INTQ(meta_), ai_float, pos_) \
: 0 )
#define AI_BUFFER_META_INFO_INTQ_GET_ZEROPOINT(meta_, pos_) \
( (AI_BUFFER_META_INFO_INTQ(meta_)) \
? ((AI_INTQ_INFO_LIST_FLAGS(AI_BUFFER_META_INFO_INTQ(meta_))&AI_BUFFER_META_FLAG_ZEROPOINT_U8) \
? AI_INTQ_INFO_LIST_ZEROPOINT(AI_BUFFER_META_INFO_INTQ(meta_), ai_u8, pos_) \
: AI_INTQ_INFO_LIST_ZEROPOINT(AI_BUFFER_META_INFO_INTQ(meta_), ai_i8, pos_) ) \
: 0 )
#define AI_BUFFER_META_INFO_INIT(flags_, intq_info_) { \
.flags = (flags_), \
.intq_info = AI_PACK(intq_info_) \
}
#define AI_BUFFER_SIZE(buf_) \
ai_buffer_get_size(buf_, true)
#define AI_BUFFER_SIZE_UNPAD(buf_) \
ai_buffer_get_size(buf_, false)
#define AI_BUFFER_BYTE_SIZE(count_, fmt_) \
ai_buffer_get_byte_size(count_, fmt_)
#define AI_BUFFER_FLAGS(buf_) \
((buf_) ? (buf_)->flags : 0x0)
#define AI_BUFFER_SHAPE_INIT(type_, size_, ...) \
{ \
.type = (type_), \
.size = (size_), \
.data = (ai_shape_dimension[]){ __VA_ARGS__ } \
}
#define AI_BUFFER_SHAPE_INIT_FROM_ARRAY(type_, size_, array_ptr_) \
{ \
.type = (type_), \
.size = (size_), \
.data = (ai_shape_dimension*)(array_ptr_) \
}
#define AI_BUFFER_SHAPE_SIZE(buf_) \
((buf_) ? (buf_)->shape.size : 0)
#define AI_BUFFER_SHAPE_TYPE(buf_) \
((buf_) ? (buf_)->shape.type : 0)
#if defined(HAS_AI_ASSERT) && defined(AI_ASSERT)
#define AI_BUFFER_SET_SHAPE_ELEM(buf_, pos_, value_) { \
AI_ASSERT(buf_) \
(buf_)->shape.data[pos_] = (value_); \
}
#define AI_BUFFER_SHAPE_ELEM(buf_, pos_) \
(((pos_)<AI_BUFFER_SHAPE_SIZE(buf_)) ? (buf_)->shape.data[pos_] : 0)
#else
#define AI_BUFFER_SET_SHAPE_ELEM(buf_, pos_, value_) { \
(buf_)->shape.data[pos_] = (value_); \
}
#define AI_BUFFER_SHAPE_ELEM(buf_, pos_) \
(buf_)->shape.data[pos_]
#endif
AI_DEPRECATED
#define AI_BUFFER_OBJ_INIT(format_, h_, w_, ch_, n_batches_, data_) \
{ .format = (ai_buffer_format)(format_), \
.data = (ai_handle)(data_), \
.meta_info = NULL, \
.flags = AI_FLAG_NONE, \
.size = (h_) * (w_) * AI_PAD_CHANNELS(format_, ch_), \
.shape = AI_BUFFER_SHAPE_INIT(AI_SHAPE_BCWH, 4, (n_batches_), (ch_), (w_), (h_)), \
}
AI_DEPRECATED
#define AI_BUFFER_OBJ_INIT_STATIC(type_, format_, h_, w_, ch_, n_batches_, ...) \
{ .format = (ai_buffer_format)(format_), \
.data = (ai_handle)((type_[]){__VA_ARGS__}), \
.meta_info = NULL, \
.flags = AI_FLAG_NONE, \
.size = (h_) * (w_) * AI_PAD_CHANNELS(format_, ch_), \
.shape = AI_BUFFER_SHAPE_INIT(AI_SHAPE_BCWH, 4, (n_batches_), (ch_), (w_), (h_)) \
}
/* 7.1 new macro API */
#define AI_BUFFER_INIT(flags_, format_, shape_, size_, meta_info_, data_) \
{ .format = (ai_buffer_format)(format_), \
.data = (ai_handle)(data_), \
.meta_info = (meta_info_), \
.flags = (flags_), \
.size = (size_), \
.shape = AI_PACK(shape_) \
}
/* 7.1 new macro API */
#define AI_BUFFER_INIT_STATIC(type_, flags_, format_, shape_, size_, meta_info_, ...) \
{ .format = (ai_buffer_format)(format_), \
.data = (ai_handle)((type_[]){__VA_ARGS__}), \
.meta_info = (meta_info_), \
.flags = (flags_), \
.size = (size_), \
.shape = AI_PACK(shape_) \
}
/*****************************************************************************/
#define AI_NETWORK_BUFFERS_FIELD_DECLARE \
ai_signature map_signature; /*! structure signature (required!) */ \
ai_buffer_array map_weights; /*! info about weights array buffers (required!) */ \
ai_buffer_array map_activations; /*! info about activations array buffers (required!) */
#define AI_NETWORK_PARAMS_FIELDS_DECLARE \
union { \
struct { \
ai_buffer params; /*! info about params buffer(required!) */ \
ai_buffer activations; /*! info about activations buffer (required!) */ \
}; \
struct { \
AI_NETWORK_BUFFERS_FIELD_DECLARE \
}; \
};
/*****************************************************************************/
#define AI_BUFFER_ARRAY_OBJ_INIT(flags_, size_, buffer_array_) \
{ \
.flags = (ai_u16)(flags_), \
.size = (ai_u16)(size_), \
.buffer = (ai_buffer*)(buffer_array_) \
}
#define AI_BUFFER_ARRAY_OBJ_INIT_STATIC(flags_, size_, ...) \
{ \
.flags = (ai_u16)(flags_), \
.size = (ai_u16)(size_), \
.buffer = (ai_buffer*)((ai_buffer[]){__VA_ARGS__}) \
}
#define AI_BUFFER_ARRAY_SANE(buf_array_) \
ai_buffer_array_sane(buf_array_)
#define AI_BUFFER_ARRAY_FLAGS(buf_array_) \
((AI_BUFFER_ARRAY_SANE(buf_array_)) ? (buf_array_)->flags : AI_FLAG_NONE)
#define AI_BUFFER_ARRAY_SIZE(buf_array_) \
((AI_BUFFER_ARRAY_SANE(buf_array_)) ? (buf_array_)->size : 0)
#define AI_BUFFER_ARRAY_ITEM(buf_array_, pos_) \
((AI_BUFFER_ARRAY_SANE(buf_array_)) ? ((buf_array_)->buffer + (pos_)) : NULL)
#define AI_BUFFER_ARRAY_ITEM_SET_ADDRESS(buf_array_, pos_, address_) \
ai_buffer_array_item_set_address(buf_array_, pos_, address_)
/*!
* @enum buffer formats enum list
* @ingroup ai_platform
*
* List of supported ai_buffer format types.
*/
enum {
AI_BUFFER_FORMAT_NONE = AI_BUFFER_FMT_SET(AI_BUFFER_FMT_TYPE_NONE, 0, 0, 0, 0),
AI_BUFFER_FORMAT_FLOAT = AI_BUFFER_FMT_SET(AI_BUFFER_FMT_TYPE_FLOAT, 1, 1, 32, 0),
AI_BUFFER_FORMAT_U1 = AI_BUFFER_FMT_SET(AI_BUFFER_FMT_TYPE_Q, 0, 0, 1, 0),
AI_BUFFER_FORMAT_U8 = AI_BUFFER_FMT_SET(AI_BUFFER_FMT_TYPE_Q, 0, 0, 8, 0),
AI_BUFFER_FORMAT_U16 = AI_BUFFER_FMT_SET(AI_BUFFER_FMT_TYPE_Q, 0, 0, 16, 0),
AI_BUFFER_FORMAT_U32 = AI_BUFFER_FMT_SET(AI_BUFFER_FMT_TYPE_Q, 0, 0, 32, 0),
AI_BUFFER_FORMAT_S1 = AI_BUFFER_FMT_SET(AI_BUFFER_FMT_TYPE_Q, 1, 0, 1, 0),
AI_BUFFER_FORMAT_S8 = AI_BUFFER_FMT_SET(AI_BUFFER_FMT_TYPE_Q, 1, 0, 8, 0),
AI_BUFFER_FORMAT_S16 = AI_BUFFER_FMT_SET(AI_BUFFER_FMT_TYPE_Q, 1, 0, 16, 0),
AI_BUFFER_FORMAT_S32 = AI_BUFFER_FMT_SET(AI_BUFFER_FMT_TYPE_Q, 1, 0, 32, 0),
AI_BUFFER_FORMAT_Q = AI_BUFFER_FMT_SET(AI_BUFFER_FMT_TYPE_Q, 1, 0, 0, 0),
AI_BUFFER_FORMAT_Q7 = AI_BUFFER_FMT_SET(AI_BUFFER_FMT_TYPE_Q, 1, 0, 8, 7),
AI_BUFFER_FORMAT_Q15 = AI_BUFFER_FMT_SET(AI_BUFFER_FMT_TYPE_Q, 1, 0, 16, 15),
AI_BUFFER_FORMAT_UQ = AI_BUFFER_FMT_SET(AI_BUFFER_FMT_TYPE_Q, 0, 0, 0, 0),
AI_BUFFER_FORMAT_UQ7 = AI_BUFFER_FMT_SET(AI_BUFFER_FMT_TYPE_Q, 0, 0, 8, 7),
AI_BUFFER_FORMAT_UQ15 = AI_BUFFER_FMT_SET(AI_BUFFER_FMT_TYPE_Q, 0, 0, 16, 15),
AI_BUFFER_FORMAT_BOOL = AI_BUFFER_FMT_SET(AI_BUFFER_FMT_TYPE_BOOL, 0, 0, 8, 0),
};
/*****************************************************************************/
#define AI_ERROR_INIT(type_, code_) { \
.type = AI_ERROR_##type_, \
.code = AI_ERROR_CODE_##code_ \
}
/* printf formats */
#define SSIZET_FMT "%" PRIu32
#define AII32_FMT "%" PRId32
#define AIU32_FMT "%" PRIu32
#define AII64_FMT "%" PRId64
#define AIU64_FMT "%" PRIu64
#define AI_VERSION(major_, minor_, micro_) \
(((major_)<<24) | ((minor_)<<16) | ((micro_)<<8))
typedef uint8_t ai_custom_type_signature;
typedef void* ai_handle;
typedef const void* ai_handle_const;
typedef float ai_float;
typedef double ai_double;
typedef bool ai_bool;
typedef char ai_char;
typedef uint32_t ai_size;
typedef int16_t ai_short_size;
typedef uintptr_t ai_uptr;
typedef unsigned int ai_uint;
typedef uint8_t ai_u8;
typedef uint16_t ai_u16;
typedef uint32_t ai_u32;
typedef uint64_t ai_u64;
typedef int ai_int;
typedef int8_t ai_i8;
typedef int16_t ai_i16;
typedef int32_t ai_i32;
typedef int64_t ai_i64;
typedef uint64_t ai_macc;
typedef int32_t ai_pbits;
typedef uint32_t ai_signature;
typedef void (*ai_handle_func)(ai_handle);
/*****************************************************************************/
/*!
* @struct ai_error
* @ingroup ai_platform
* @brief Structure encoding details about the last error.
*/
typedef struct ai_error_ {
ai_u32 type : 8; /*!< Error type represented by @ref ai_error_type */
ai_u32 code : 24; /*!< Error code represented by @ref ai_error_code */
} ai_error;
/*****************************************************************************/
/*!
* @struct ai_intq_info
* @ingroup ai_platform
* @brief an element of the ai_intq_info_list entry. It reports an array for the
* scale and zeropoint values for each buffer. Optional flags are also present
*/
typedef struct ai_intq_info_ {
INTQ_CONST ai_float* scale;
INTQ_CONST ai_handle zeropoint;
} ai_intq_info;
/*!
* @struct ai_intq_info_list
* @ingroup ai_platform
* @brief list reporting meta info for quantized networks integer support
* when size > 1 it means a per channel out quantization
*/
typedef struct ai_intq_info_list_ {
ai_u16 flags; /*!< optional flags to store intq info attributes */
ai_u16 size; /*!< number of elements in the the intq_info list */
INTQ_CONST ai_intq_info* info; /*!< pointer to an array of metainfo
* associated to the intq_info list */
} ai_intq_info_list;
/*****************************************************************************/
/*!
* @struct ai_buffer_meta_info
* @ingroup ai_platform
* @brief Optional meta attributes associated with the I/O buffer.
* This datastruct is used also for network querying, where the data field may
* may be NULL.
*/
typedef struct ai_buffer_meta_info_ {
ai_u32 flags; /*!< meta info flags */
ai_intq_info_list* intq_info; /*!< meta info related to integer format */
} ai_buffer_meta_info;
/*!
* @struct ai_buffer_shape
* @ingroup ai_platform
* @brief Memory buffer shape datatype definition.
*/
typedef struct ai_buffer_shape_ {
ai_u32 type : 8; /*!< shape type: reserved for compatibility */
ai_u32 size : 24; /*!< size: shape cardinality */
ai_shape_dimension* data; /*!< pointer to shape tuple array */
} ai_buffer_shape;
/*!
* @struct ai_buffer
* @ingroup ai_platform
* @brief Memory buffer storing data (optional) with a shape, size and type.
* This datastruct is used also for network querying, where the data field may
* may be NULL.
*/
typedef struct ai_buffer_ {
ai_buffer_format format; /*!< buffer format */
ai_handle data; /*!< pointer to buffer data */
ai_buffer_meta_info* meta_info; /*!< pointer to buffer metadata info */
/* New 7.1 fields */
ai_flags flags; /*!< shape optional flags */
ai_size size; /*!< number of elements of the buffer (including optional padding) */
ai_buffer_shape shape; /*!< n-dimensional shape info */
} ai_buffer;
/*!
* @struct ai_buffer_array
* @ingroup ai_platform
* @brief Array of @ref ai_buffer.
*/
typedef struct ai_buffer_array_ {
ai_u16 flags; /*!< buffer array flags */
ai_u16 size; /*!< buffer array size */
ai_buffer* buffer; /*!< buffer array buffers pointer */
} ai_buffer_array;
/* enums section */
/*!
* @enum ai_error_type
* @ingroup ai_platform
*
* Generic enum to list network error types.
*/
typedef enum {
AI_ERROR_NONE = 0x00, /*!< No error */
AI_ERROR_TOOL_PLATFORM_API_MISMATCH = 0x01,
AI_ERROR_TYPES_MISMATCH = 0x02,
AI_ERROR_INVALID_HANDLE = 0x10,
AI_ERROR_INVALID_STATE = 0x11,
AI_ERROR_INVALID_INPUT = 0x12,
AI_ERROR_INVALID_OUTPUT = 0x13,
AI_ERROR_INVALID_PARAM = 0x14,
AI_ERROR_INVALID_SIGNATURE = 0x15,
AI_ERROR_INVALID_SIZE = 0x16,
AI_ERROR_INVALID_VALUE = 0x17,
AI_ERROR_INIT_FAILED = 0x30,
AI_ERROR_ALLOCATION_FAILED = 0x31,
AI_ERROR_DEALLOCATION_FAILED = 0x32,
AI_ERROR_CREATE_FAILED = 0x33,
} ai_error_type;
/*!
* @enum ai_error_code
* @ingroup ai_platform
*
* Generic enum to list network error codes.
*/
typedef enum {
AI_ERROR_CODE_NONE = 0x0000, /*!< No error */
AI_ERROR_CODE_NETWORK = 0x0010,
AI_ERROR_CODE_NETWORK_PARAMS = 0x0011,
AI_ERROR_CODE_NETWORK_WEIGHTS = 0x0012,
AI_ERROR_CODE_NETWORK_ACTIVATIONS = 0x0013,
AI_ERROR_CODE_LAYER = 0x0014,
AI_ERROR_CODE_TENSOR = 0x0015,
AI_ERROR_CODE_ARRAY = 0x0016,
AI_ERROR_CODE_INVALID_PTR = 0x0017,
AI_ERROR_CODE_INVALID_SIZE = 0x0018,
AI_ERROR_CODE_INVALID_FORMAT = 0x0019,
AI_ERROR_CODE_OUT_OF_RANGE = 0x0020,
AI_ERROR_CODE_INVALID_BATCH = 0x0021,
AI_ERROR_CODE_MISSED_INIT = 0x0030,
AI_ERROR_CODE_IN_USE = 0x0040,
AI_ERROR_CODE_LOCK = 0x0041,
} ai_error_code;
/*!
* @struct ai_platform_version
* @ingroup ai_platform
* @brief Datastruct storing platform version info
*/
typedef struct ai_platform_version_ {
ai_u8 major;
ai_u8 minor;
ai_u8 micro;
ai_u8 reserved;
} ai_platform_version;
/*!
* @struct ai_network_params
* @ingroup ai_platform
*
* Datastructure to pass parameters during network initialization.
*/
typedef struct ai_network_params_ {
AI_NETWORK_PARAMS_FIELDS_DECLARE
} ai_network_params;
/*!
* @struct ai_network_buffers
* @ingroup ai_platform
*
* Datastructure to pass network buffers during network initialization.
*/
typedef struct ai_network_buffers_ {
AI_NETWORK_BUFFERS_FIELD_DECLARE
} ai_network_buffers;
/*!
* @struct ai_network_report
* @ingroup ai_platform
*
* Datastructure to query a network report with some relevant network detail.
*/
typedef struct ai_network_report_ {
const char* model_name;
const char* model_signature;
const char* model_datetime;
const char* compile_datetime;
const char* runtime_revision;
ai_platform_version runtime_version;
const char* tool_revision;
ai_platform_version tool_version;
ai_platform_version tool_api_version;
ai_platform_version api_version;
ai_platform_version interface_api_version;
ai_macc n_macc;
ai_u16 n_inputs;
ai_u16 n_outputs;
ai_buffer* inputs;
ai_buffer* outputs;
AI_NETWORK_PARAMS_FIELDS_DECLARE
ai_u32 n_nodes;
ai_signature signature;
} ai_network_report;
/*!
* @enum ai_upsample_mode
* @ingroup ai_platform
* @brief allowed mode in upsample layer
*/
typedef enum {
AI_UPSAMPLE_ZEROS = 0x0,
AI_UPSAMPLE_NEAREST,
AI_UPSAMPLE_BILINEAR,
AI_UPSAMPLE_TRILINEAR
} ai_upsample_mode;
/*!
* @enum ai_resize_mode
* @ingroup ai_platform
* @brief allowed mode in resize layer
*/
typedef enum {
AI_RESIZE_ZEROS = 0x0,
AI_RESIZE_NEAREST,
AI_RESIZE_LINEAR,
AI_RESIZE_CUBIC
} ai_resize_mode;
/*!
* @enum ai_coord_transf_mode
* @ingroup ai_platform
* @brief coordinate_transformation_mode in resize layer
*/
typedef enum {
AI_HALF_PIXEL = 0x0,
AI_PYTORCH_HALF_PIXEL,
AI_ALIGN_CORNERS,
AI_ASYMMETRIC,
AI_TF_HALF_PIXEL_FOR_NN,
AI_TF_CROP_AND_RESIZE
} ai_coord_transf_mode;
typedef enum {
AI_ROUND_PREFER_FLOOR = 0x0,
AI_ROUND_PREFER_CEIL,
AI_ROUND_FLOOR,
AI_ROUND_CEIL
} ai_nearest_mode;
typedef enum {
AI_PAD_CONSTANT = 0x0,
AI_PAD_REFLECT,
AI_PAD_EDGE,
AI_PAD_8BIT_CH1ST_CONSTANT,
} ai_pad_mode;
#define OUTPUT_PADDING_FLAG (1 << 0)
#define CHANNEL_FIRST_FLAG (1 << 1)
/* Carefull when changing those definitions
bit0 shall always select output padding (Valid vs Same)
bit1 shall always select Channel first /channel lst format
*/
typedef enum {
AI_LAYER_FORMAT_CHANNEL_LAST_VALID = 0x0,
AI_LAYER_FORMAT_CHANNEL_LAST_SAME = 0x1,
AI_LAYER_FORMAT_CHANNEL_FIRST_VALID = 0x2,
AI_LAYER_FORMAT_CHANNEL_FIRST_SAME = 0x3,
} ai_layer_format_type;
/*! ai_platform public APIs **************************************************/
/*!
* @brief get the total number of elements of an ai_buffer.
* @ingroup ai_platform
* @param buffer a pointer to an @ref ai_buffer
* @param with_padding when true it considers also padded elements
* @return the number of elements of the buffer (with/without padded ones)
*/
AI_API_ENTRY
ai_size ai_buffer_get_size(const ai_buffer* buffer, const ai_bool with_padding);
/*!
* @brief get the size in bytes of an ai_buffer (given the number of elements and format).
* @ingroup ai_platform
* @param count the number of elements composing the buffer
* @param fmt the format of the ai_buffer
* @return the size in bytes of the buffer
*/
AI_API_ENTRY
ai_size ai_buffer_get_byte_size(const ai_size count, const ai_buffer_format fmt);
/*!
* @brief get total size in bytes of a buffer array.
* @ingroup ai_platform
* @param barray a pointer to the buffer array
* @return the total size in bytes of all the buffer arrays
*/
AI_API_ENTRY
ai_bool ai_buffer_array_is_empty(const ai_buffer_array* barray);
/*!
* @brief get total size in bytes of a buffer array.
* @ingroup ai_platform
* @param barray a pointer to the buffer array
* @return the total size in bytes of all the buffer arrays
*/
AI_API_ENTRY
ai_bool ai_buffer_array_is_valid(const ai_buffer_array* barray);
/*!
* @brief check if a buffer array is valid - i.e. not empty.
* @ingroup ai_platform
* @param barray a pointer to the buffer array
* @return true if the array is consistent and not empty, false otherwise
*/
AI_API_ENTRY
ai_bool ai_buffer_array_sane(const ai_buffer_array* barray);
/*!
* @brief get total size in bytes of a buffer array.
* @ingroup ai_platform
* @param barray a pointer to the buffer array
* @return the total size in bytes of all the buffer arrays
*/
AI_API_ENTRY
ai_size ai_buffer_array_get_byte_size(const ai_buffer_array* barray);
/*!
* @brief set the address of buffer array item @pos
* @ingroup ai_platform
* @param barray a pointer to the buffer array
* @param pos the index of the element in the array
* @param address the address to set
* @return true if successful, false otherwise
*/
AI_API_ENTRY
ai_bool ai_buffer_array_item_set_address(
ai_buffer_array* barray, const ai_u32 pos, ai_handle address);
AI_API_DECLARE_END
#endif /*AI_PLATFORM_H*/
| 30,193 | C | 30.159959 | 116 | 0.58189 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers_ml_iforest.h | /**
******************************************************************************
* @file layers_iforest.h
* @author AIS
* @brief header file of AI platform iForest layers datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_IFOREST_H
#define LAYERS_IFOREST_H
#pragma once
#include "layers_common.h"
/*!
* @defgroup layers_ml Layers Definitions
* @brief definition
*
*/
AI_API_DECLARE_BEGIN
/* Allowed tests branch in the iTrees */
typedef enum
{
AI_IFOREST_BRANCH_LT_IDX = 0,
AI_IFOREST_BRANCH_LEQ_IDX,
AI_IFOREST_BRANCH_EQ_IDX,
AI_IFOREST_BRANCH_END,
} ai_iforest_branch_e;
/*!
* @struct ai_layer_iforest
* @ingroup layers_iforest
* @brief iForest layer
*
* The type of iforest function is handled by the specific forward function
* @ref forward_iforest
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_iforest_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_float global_average_path_length; /*!< global average path length used to normalized average path length*/
ai_float score_threshold; /*!< score threshold used to center the score around 0 */
} ai_layer_iforest;
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Decodes the iforest ML algorithm.
* @ingroup layers_iforest
* @param layer iforest layer
*/
AI_INTERNAL_API
void forward_iforest(ai_layer *pLayer);
AI_API_DECLARE_END
#endif /*LAYERS_IFOREST_H*/
| 2,134 | C | 25.6875 | 112 | 0.524367 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers_ml_svc.h | /**
******************************************************************************
* @file layers_svc.h
* @author AST Embedded Analytics Research Platform
* @brief header file of AI platform SVM Classifier (SVC) datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_SVC_H
#define LAYERS_SVC_H
#pragma once
#include "layers_common.h"
/*!
* @defgroup layers_svc Layers Definitions
* @brief definition
*
*/
AI_API_DECLARE_BEGIN
/* SVM classifier (SVC) kernel types */
typedef enum ai_svc_kernel_e_ {
AI_SVC_KERNEL_LINEAR = 0,
AI_SVC_KERNEL_POLYNOMIAL,
AI_SVC_KERNEL_RBF,
AI_SVC_KERNEL_SIGMOID,
AI_SVC_KERNEL_UNSUPPORTED
} ai_svc_kernel_e;
/*!
* @struct ai_layer_svc
* @ingroup layers_svc
* @brief SVM Classifier (SVC) layer
*
* The type of svc function is handled by the specific forward function
* @ref forward_svc
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_svc_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_float gamma; /*!< kernel coefficient for rbf, polynomial and sigmoid functions */
ai_float coef0; /*!< term in polynomial and sigmoid functions */
ai_u32 degree; /*!< polynomial function degree */
ai_svc_kernel_e kernel_type; /*!< kernel type : see ai_svm_kernel_e */
ai_bool proba_support; /*!< whether or not use the parameters learned in Platt scaling */
ai_bool has_classlabels_int; /*!< if True, SVC returns classlabels int, else classlabels string */
} ai_layer_svc;
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Decodes the SVM Classifier ML operator.
* @ingroup layers_svc
* @param layer svm classifier layer
*/
AI_INTERNAL_API
void forward_svc(ai_layer *pLayer);
AI_API_DECLARE_END
#endif /*LAYERS_SVC_H*/
| 2,548 | C | 30.085365 | 110 | 0.523155 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/core_log.h | /**
******************************************************************************
* @file core_log.h
* @author AST Embedded Analytics Research Platform
* @brief header file of core log interfaces
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef CORE_LOG_H
#define CORE_LOG_H
#pragma once
#include "ai_platform.h"
#include "ai_datatypes_defines.h"
/*!
* @defgroup core_log Logger core routines wrapper interface
* @brief Common macros, datatypes and routines of ai logger module
* @details This header defines the wrapping macros interfaces to handle the
* global logger module. These macro are defined when the macro HAS_LOG is
* defined, otherwise they are all set to NOP routines and no logger code is
* compiled at all. When the macro HAS_LOG is defined, only the log messages
* having an enum id >= the value of the macro are compiled. Thus to include in
* compilation only log messages up to the error level the value of HAS_LOG must
* be equal the the enum value of LOG_ERROR macro (i.e. 3). a value of 6 means
* to include all log messages up to the lower LOG_TRACE level.
*/
#if defined HAS_LOG && (HAS_LOG>=0)
#include "ai_log.h"
#define AI_LOG_SECTION(...) \
{ __VA_ARGS__ }
#define AI_LOG_ACQUIRE() \
ai_log_acquire()
#define AI_LOG_SET_LEVEL(level_) \
AI_WRAP_FUNC(ai_log_set_level(level_);)
#define AI_LOG_SET_QUIET(onoff_) \
AI_WRAP_FUNC(ai_log_set_quiet(onoff_);)
#define AI_LOG_SET_LOCK_FN(fn_, udata_) \
AI_WRAP_FUNC(ai_log_set_lock(fn_, udata_);)
#define AI_LOG_CHANNEL_PUSH(level_, fn_, udata_) \
AI_WRAP_FUNC(ai_log_channel_push(level_, fn_, udata_);)
#define AI_LOG_CHANNEL_POP(fn_, udata_) \
AI_WRAP_FUNC(ai_log_channel_pop(fn_, udata_);)
#ifdef LOG_USE_FILE
#define AI_LOG_SET_FILE_POINTER(fp_) \
AI_WRAP_FUNC(ai_log_set_fp(fp_);)
#else
#define AI_LOG_SET_FILE_POINTER(fp_) \
AI_WRAP_FUNC(/*AI_LOG_SET_FILE_POINTER()*/)
#endif
#else
#define AI_LOG_SECTION(...) AI_WRAP_FUNC(/*AI_LOG_SECTION()*/)
#define AI_LOG_ACQUIRE() (NULL)
#define AI_LOG_SET_LEVEL(level_) AI_WRAP_FUNC(/*AI_LOG_SET_LEVEL()*/)
#define AI_LOG_SET_QUIET(onoff_) AI_WRAP_FUNC(/*AI_LOG_SET_QUIET()*/)
#define AI_LOG_SET_LOCK_FN(fn_, udata_) AI_WRAP_FUNC(/*AI_LOG_SET_LOCK_FN()*/)
#define AI_LOG_CHANNEL_PUSH(level_, fn_, udata_) AI_WRAP_FUNC(/*AI_LOG_CHANNEL_PUSH()*/)
#define AI_LOG_CHANNEL_POP(fn_, udata_) AI_WRAP_FUNC(/*AI_LOG_CHANNEL_POP()*/)
#define AI_LOG_SET_FILE_POINTER(fp_) AI_WRAP_FUNC(/*AI_LOG_SET_FILE_POINTER()*/)
#endif
#if defined HAS_LOG
#define AI_LOG_PRINT(level, fmt, ...) \
AI_WRAP_FUNC(ai_log_print(level, fmt, ##__VA_ARGS__);)
#else
#define AI_LOG_PRINT(level, fmt, ...) \
AI_WRAP_FUNC(/*AI_LOG_PRINT(...)*/)
#endif
#if defined HAS_LOG && (HAS_LOG>=LOG_SUDO)
#define AI_LOG_SUDO(fmt, ...) \
AI_WRAP_FUNC(ai_log_log(LOG_SUDO, __FILE__, __LINE__, fmt LOG_CR, ##__VA_ARGS__);)
#else
#define AI_LOG_SUDO(fmt, ...) AI_WRAP_FUNC(/*AI_LOG_SUDO()*/)
#endif
#if defined HAS_LOG && (HAS_LOG>=LOG_TRACE)
#define AI_LOG_TRACE(fmt, ...) \
AI_WRAP_FUNC(ai_log_log(LOG_TRACE, __FILE__, __LINE__, fmt LOG_CR, ##__VA_ARGS__);)
#else
#define AI_LOG_TRACE(fmt, ...) AI_WRAP_FUNC(/*AI_LOG_TRACE()*/)
#endif
#if defined HAS_LOG && (HAS_LOG>=LOG_DEBUG)
#define AI_LOG_DEBUG(fmt, ...) \
AI_WRAP_FUNC(ai_log_log(LOG_DEBUG, __FILE__, __LINE__, fmt LOG_CR, ##__VA_ARGS__);)
#else
#define AI_LOG_DEBUG(fmt, ...) AI_WRAP_FUNC(/*AI_LOG_DEBUG()*/)
#endif
#if defined HAS_LOG && (HAS_LOG>=LOG_INFO)
#define AI_LOG_INFO(fmt, ...) \
AI_WRAP_FUNC(ai_log_log(LOG_INFO, __FILE__, __LINE__, fmt LOG_CR, ##__VA_ARGS__);)
#else
#define AI_LOG_INFO(fmt, ...) AI_WRAP_FUNC(/*AI_LOG_INFO()*/)
#endif
#if defined HAS_LOG && (HAS_LOG>=LOG_WARN)
#define AI_LOG_WARN(fmt, ...) \
AI_WRAP_FUNC(ai_log_log(LOG_WARN, __FILE__, __LINE__, fmt LOG_CR, ##__VA_ARGS__);)
#else
#define AI_LOG_WARN(fmt, ...) AI_WRAP_FUNC(/*AI_LOG_WARN()*/)
#endif
#if defined HAS_LOG && (HAS_LOG>=LOG_ERROR)
#define AI_LOG_ERROR(fmt, ...) \
AI_WRAP_FUNC(ai_log_log(LOG_ERROR, __FILE__, __LINE__, fmt LOG_CR, ##__VA_ARGS__);)
#else
#define AI_LOG_ERROR(fmt, ...) AI_WRAP_FUNC(/*AI_LOG_ERROR()*/)
#endif
#if defined HAS_LOG && (HAS_LOG>=LOG_FATAL)
#define AI_LOG_FATAL(fmt, ...) \
AI_WRAP_FUNC(ai_log_log(LOG_FATAL, __FILE__, __LINE__, fmt LOG_CR, ##__VA_ARGS__);)
#else
#define AI_LOG_FATAL(fmt, ...) AI_WRAP_FUNC(/*AI_LOG_FATAL()*/)
#endif
#endif /*CORE_LOG_H*/
| 5,222 | C | 37.404411 | 97 | 0.572769 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/lite_dense_if32.h | #ifndef _LITE_DENSE_IF32_H
#define _LITE_DENSE_IF32_H
#pragma once
#include "ai_lite_interface.h"
/*!
* @brief Forward function for a dense layer with signed float input,
* signed float output, and float weights.
* @ingroup lite_dense_if32
* @param output The pointer to output buffer.
* @param input The pointer to input buffer.
* @param weights The pointer to weights.
* @param bias The pointer to bias (NULL if not available).
* @param n_channel_in The number of channels of the input.
* @param n_channel_out The number of channels of the output, i.e.,
* the number of dense hidden neurons.
*/
LITE_API_ENTRY
void forward_lite_dense_if32of32wf32(
ai_float* output, const ai_float* input,
const ai_float* weights, const ai_float* bias,
const ai_u32 n_channel_in, const ai_u32 n_channel_out);
#endif /*_LITE_DENSE_IF32_H*/
| 855 | C | 30.703703 | 69 | 0.71462 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers_dense.h | /**
******************************************************************************
* @file layers_dense.h
* @author AST Embedded Analytics Research Platform
* @brief header file of AI platform dense layers datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_DENSE_H
#define LAYERS_DENSE_H
#pragma once
#include "layers_common.h"
/*!
* @defgroup layers Normalization Layers Definitions
* @brief definition
*
*/
AI_API_DECLARE_BEGIN
/*!
* @brief Computes the activations of a fixed point dense (fully connected) layer.
* @ingroup layers_dense
* @param layer the dense layer
*/
AI_INTERNAL_API
void forward_dense_fixed(ai_layer *pLayer);
AI_API_DECLARE_END
#endif /*LAYERS_DENSE_H*/
| 1,264 | C | 24.3 | 82 | 0.524525 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers_generic_dqnn.h | /**
******************************************************************************
* @file layers_generic_dqnn.h
* @author AIS
* @brief header file of AI platform DQNN generic datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_GENERIC_DQNN_H
#define LAYERS_GENERIC_DQNN_H
#pragma once
#include "layers_common.h"
#include "layers_generic.h"
/*!
* @defgroup layers_generic_dqnn Layers Definitions
* @brief definition
*
*/
AI_API_DECLARE_BEGIN
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Handles concat with binary input, binary output and
* binary weights
* @ingroup layers_generic_dqnn
* @param layer concat layer
*/
AI_INTERNAL_API
void forward_concat_is1os1(ai_layer *pLayer);
AI_API_DECLARE_END
#endif /*LAYERS_GENERIC_DQNN_H*/
| 1,537 | C | 26.464285 | 80 | 0.454782 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/lite_generic_float.h | /**
******************************************************************************
* @file lite_conv2d_dqnn.h
* @author AIS
* @brief header file of AI platform lite conv kernel datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LITE_GENERIC_FLOAT_H
#define LITE_GENERIC_FLOAT_H
#pragma once
#include "ai_lite_interface.h"
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Handles 2D convolution with binary input, binary output and
* binary weights - with 0 padding (QKeras like) - Lite I/F
* @ingroup lite_conv2d_dqnn
*/
LITE_API_ENTRY
void forward_lite_topK_axis_0_if32of32(const ai_float *pDataIn_init,
ai_float *pDataOut_values_init,
ai_i32 *pDataOut_index_init,
const ai_size height_in,
const ai_size width_in,
const ai_size n_channel_in,
const ai_size k, ai_i16 largest,
void (*f)(const ai_float* inputs, ai_float* values, ai_i32* indices, ai_size k, ai_size n_elements, ai_i32 stride, ai_i16 largest)
);
/*!
* @brief Handles 2D convolution with binary input, binary output and
* binary weights - with 0 padding (QKeras like) - Lite I/F
* - Optimized thanks to Optim0 assumptions
* @ingroup lite_conv2d_dqnn
*/
LITE_API_ENTRY
void forward_lite_topK_axis_1_if32of32(const ai_float *pDataIn_init,
ai_float *pDataOut_values_init,
ai_i32 *pDataOut_index_init,
const ai_size height_in,
const ai_size width_in,
const ai_size n_channel_in,
const ai_size k, ai_i16 largest,
void (*f)(const ai_float* inputs, ai_float* values, ai_i32* indices, ai_size k, ai_size n_elements, ai_i32 stride, ai_i16 largest)
);
/*!
* @brief Handles 2D convolution with binary input, 8-bits output and
* binary weights - with 0 padding (QKeras like) - Lite I/F
* @ingroup lite_conv2d_dqnn
*/
LITE_API_ENTRY
void forward_lite_topK_axis_2_if32of32(const ai_float *pDataIn_init,
ai_float *pDataOut_values_init,
ai_i32 *pDataOut_index_init,
const ai_size height_in,
const ai_size width_in,
const ai_size n_channel_in,
const ai_size k, ai_i16 largest,
void (*f)(const ai_float* inputs, ai_float* values, ai_i32* indices, ai_size k, ai_size n_elements, ai_i32 stride, ai_i16 largest)
);
LITE_API_ENTRY
void forward_lite_func_reduce_l1_if32of32(
ai_float* out_ptr, const ai_float* in_ptr,
const ai_size out_size, const ai_size in_step,
const ai_size axis_size, const ai_size axis_step);
LITE_API_ENTRY
void forward_lite_func_reduce_l2_if32of32(
ai_float* out_ptr, const ai_float* in_ptr,
const ai_size out_size, const ai_size in_step,
const ai_size axis_size, const ai_size axis_step);
#endif /*LITE_GENERIC_FLOAT_H*/
| 4,287 | C | 42.755102 | 148 | 0.463028 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers_nl.h | /**
******************************************************************************
* @file layers_nl.h
* @author AST Embedded Analytics Research Platform
* @brief header file of AI platform nonlinearity layers datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_NL_H
#define LAYERS_NL_H
#pragma once
#include "layers_common.h"
/*!
* @defgroup layers_nl Normalization Layers Definitions
* @brief definition
*
*/
AI_API_DECLARE_BEGIN
/*!
* @struct ai_layer_nl
* @ingroup layers_nl
* @brief Generic Nonlinearity layer
*
* The type of nonlinearity is handled by the specific forward function.
* It is a sequential layer. see @ref ai_layer
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_nl_ {
AI_LAYER_COMMON_FIELDS_DECLARE
AI_CONST ai_array* nl_params; /*!< associated parameters array */
} ai_layer_nl;
/*!
* @struct ai_layer_sm
* @ingroup layers_nl
* @brief Softmax Nonlinearity layer
*
* It is a sequential layer. see @ref ai_layer
*/
typedef ai_layer_nl ai_layer_sm;
/*!
* @typedef (*func_nl)
* @ingroup layers_nl
* @brief Fuction pointer for generic non linear transform
* this function pointer abstracts a generic non linear layer.
* see @ref nl_func_tanh_array_f32 and similar as examples.
*/
//typedef void (*func_nl)(ai_array *out, const ai_array *in,
// const ai_size size, const ai_handle params);
typedef void (*func_nl)(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Softmax pooling computed on a single float channel
* @ingroup layers_nl
* @param out opaque handler to float output channel
* @param in opaque handler to float input channel
* @param channel_size number of elements of the input channel
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_sm_channel_f32(ai_tensor *out, const ai_tensor *in,
const ai_size channel_size, const ai_handle params);
/*!
* @brief Softmax normalization computed on an array of float channels
* @ingroup layers_nl
* @param out opaque handler to float output channel array
* @param in opaque handler to float input channel array
* @param in_size total size (number of elements) to process on the input
* @param channel_size number of elements of the input channel
* @param in_channel_step number of elements to move to next input element
* @param out_channel_step number of elements to move to next output element
*/
AI_INTERNAL_API
void nl_func_sm_array_f32(ai_tensor *out, ai_tensor *in,
const ai_size in_size,
const ai_size channel_size,
const ai_size in_channel_step,
const ai_size out_channel_step);
/*!
* @brief Softmax zero pooling computed on a single float channel
* @ingroup layers_nl
* @param out opaque handler to float output channel
* @param in opaque handler to float input channel
* @param channel_size number of elements of the input channel
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_sm_zero_channel_f32(ai_tensor *out, const ai_tensor *in,
const ai_size channel_size, const ai_handle params);
/*!
* @brief Probit non linearity
* @ingroup layers_nl
* @param out opaque handler to float output channel
* @param in opaque handler to float input channel
* @param channel_size number of elements of the input channel
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_probit_f32(ai_tensor *out, const ai_tensor *in,
const ai_size channel_size, const ai_handle params);
/*!
* @brief Computes the tanh function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_tanh_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the tanh function on a fixed point data array
* @ingroup layers_nl
* @param in opaque handler to input elements to process
* @param out opaque handler to output elements
* @param size total size (number of elements) to process on the input
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_tanh_array_fixed(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the sigmoid function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_sigmoid_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the sigmoid function on a fixed point data array
* @ingroup layers_nl
* @param in opaque handler to input elements to process
* @param out opaque handler to output elements
* @param size total size (number of elements) to process on the input
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_sigmoid_array_fixed(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the hard sigmoid function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_hard_sigmoid_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the logistic function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_logistic_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the swish function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_swish_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the hard swish function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_hard_swish_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the absolute value function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_abs_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the cosine function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_cos_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the inverse cosine function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_acos_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the hyperbolic cosine function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_cosh_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the inverse hyperbolic cosine function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_acosh_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the sine function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_sin_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the inverse sine function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_asin_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the hyperbolic sine function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_sinh_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the inverse hyperbolic sine function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_asinh_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the tangent function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_tan_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the inverse tangent function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_atan_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the inverse hyperbolic tangent function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_atanh_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the error function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_erf_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the natural logarithm function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_log_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the reciprocal square root function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_rsqrt_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the squarefunction on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_square_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the floor function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_floor_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the ceil function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_ceil_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the rounding function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_round_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the exponential function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_exp_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the sign negation function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_neg_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the sign negation function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_not_array_bool(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the reciprocal function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_reciprocal_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the square root function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_sqrt_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the soft plus function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
*/
AI_INTERNAL_API
void nl_func_soft_plus_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the soft sign function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_soft_sign_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the sign function on a single float element.
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
*/
AI_INTERNAL_API
void nl_func_sign_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the clip function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_clip_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the hardmax function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param axis direction of the max index to be searched
*/
AI_INTERNAL_API
void nl_func_hardmax_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_shape *shape, const ai_handle params);
/*!
* @brief Computes the generic relu function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_relu_generic_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the thresholded relu function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_relu_thresholded_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the relu function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_relu_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the relu function on a fixed point data array
* @ingroup layers_nl
* @param in opaque handler to input elements to process
* @param out opaque handler to output elements
* @param size total size (number of elements) to process on the input
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_relu_array_fixed(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the relu function on an integer-quantized data array
* @ingroup layers_nl
* @param in opaque handler to input elements to process
* @param out opaque handler to output elements
* @param size total size (number of elements) to process on the input
* @param params opaque handler to optional nl parameters
*/
void nl_func_relu_array_integer(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the clip function on an integer-quantized data array
* @ingroup layers_nl
* @param in opaque handler to input elements to process
* @param out opaque handler to output elements
* @param size total size (number of elements) to process on the input
* @param params opaque handler to optional nl parameters
*/
void nl_func_clip_array_integer(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the activation function on an integer-quantized data array
* @ingroup layers_nl
* @param in opaque handler to input elements to process
* @param out opaque handler to output elements
* @param size total size (number of elements) to process on the input
* @param params opaque handler to generated and used LUT
*/
void nl_func_array_integer(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the elu function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_elu_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the max relu function on a fixed point data array
* @ingroup layers_nl
* @param in opaque handler to input elements to process
* @param out opaque handler to output elements
* @param size total size (number of elements) to process on the input
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_relu_max_array_fixed(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the selu function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size number of elements in the input buffer
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_selu_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the prelu function on a float data array
* @ingroup layers_nl
* @param in opaque handler to float, size should be 1
* @param slope opaque handler to float, size should be 1
* @param out opaque handler to float output elem
* @param size size of the input data in bytes
* @param params opaque handler to optional nl parameters
*/
AI_INTERNAL_API
void nl_func_prelu_array_f32(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/*!
* @brief Computes the prelu function on an integer-quantized data array
* @ingroup layers_nl
* @param in opaque handler to input elements to process
* @param out opaque handler to output elements
* @param size total size (number of elements) to process on the input
* @param params opaque handler to optional nl parameters
*/
void nl_func_prelu_array_integer(ai_tensor *out, const ai_tensor *in,
const ai_size size, const ai_handle params);
/******************************************************************************/
/** Forward Functions Section **/
/******************************************************************************/
/*!
* @brief Computes the activations of a ReLU nonlinear layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_relu(ai_layer* layer);
/*!
* @brief Computes the activations of a fixed point ReLU nonlinear layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_relu_fixed(ai_layer *pLayer);
/*!
* @brief Computes the activations of a integer-quantized ReLU nonlinear layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_relu_integer(ai_layer *pLayer);
/*!
* @brief Computes the activations of a clip integer-quantized nonlinear layer.
* @ingroup layers_nl
* @param pLayer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_clip_integer(ai_layer *pLayer);
/*!
* @brief Computes the activations of a ReLU6 nonlinear layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_relu_thresholded(ai_layer* layer);
/*!
* @brief Computes the activations of a fixed point max ReLU layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_relu_max_fixed(ai_layer *pLayer);
/*!
* @brief Computes the activations of a ELU nonlinear layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_elu(ai_layer* layer);
/*!
* @brief Computes the activations of a SELU nonlinear layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_selu(ai_layer* layer);
/*!
* @brief Computes the activations of a PRELU nonlinear layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_prelu(ai_layer* layer);
/*!
* @brief Computes the activations of a binary tanh (sign) nonlinear layer.
* @ingroup layers
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_sign(ai_layer* layer);
/*!
* @brief Computes the activations of a clip nonlinear layer.
* @ingroup layers
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_clip(ai_layer* layer);
/*!
* @brief Computes the activations of a sigmoid nonlinear layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_sigmoid(ai_layer* layer);
/*!
* @brief Computes the activations of a fixed point sigmoid nonlinear layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_sigmoid_fixed(ai_layer *pLayer);
/*!
* @brief Computes the activations of a hard sigmoid nonlinear layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_hard_sigmoid(ai_layer* layer);
/*!
* @brief Computes the activations of a swish nonlinear layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_swish(ai_layer* layer);
/*!
* @brief Computes the activations of a hard swish nonlinear layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_hard_swish(ai_layer* layer);
/*!
* @brief Computes the activations of an exponential nonlinear layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_exp(ai_layer* layer);
/*!
* @brief Computes the activations of an square root nonlinear layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_sqrt(ai_layer* layer);
/*!
* @brief Computes the activations of a soft plus nonlinear layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_soft_plus(ai_layer* layer);
/*!
* @brief Computes the activations of a soft sign nonlinear layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_soft_sign(ai_layer* layer);
/*!
* @brief Computes the activations of a cosine (cos) layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_cos(ai_layer* layer);
/*!
* @brief Computes the activations of a inverse cosine (acos) layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_acos(ai_layer* layer);
/*!
* @brief Computes the activations of a hyperbolic cosine (cosh) layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_cosh(ai_layer* layer);
/*!
* @brief Computes the activations of a inverse hyperbolic cosine (acosh) layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_acosh(ai_layer* layer);
/*!
* @brief Computes the activations of a sine (sin) layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_sin(ai_layer* layer);
/*!
* @brief Computes the activations of a inverse sine (asin) layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_asin(ai_layer* layer);
/*!
* @brief Computes the activations of a hyperbolic sine (sinh) layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_sinh(ai_layer* layer);
/*!
* @brief Computes the activations of a inverse hyperbolic sine (asinh) layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_asinh(ai_layer* layer);
/*!
* @brief Computes the activations of a tangent (tan) layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_tan(ai_layer* layer);
/*!
* @brief Computes the activations of a inverse tangent (atan) layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_atan(ai_layer* layer);
/*!
* @brief Computes the activations of a hyperbolic tangent (tanh) layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_tanh(ai_layer* layer);
/*!
* @brief Computes the activations of a inverse hyperbolic tangent (atanh) layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_atanh(ai_layer* layer);
/*!
* @brief Computes the activations of a fixed point tanh nonlinear layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_tanh_fixed(ai_layer *pLayer);
/*!
* @brief Computes the activations of a error function (erf) layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_erf(ai_layer* layer);
/*!
* @brief Computes the activations of a natural logarithm (log) layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_log(ai_layer* layer);
/*!
* @brief Computes the activations of a reciprocal square root (rsqrt) layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_rsqrt(ai_layer* layer);
/*!
* @brief Computes the activations of a square layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_square(ai_layer* layer);
/*!
* @brief Computes the activations of an absolute value (abs) layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_abs(ai_layer* layer);
/*!
* @brief Computes the activations of a ceil layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_ceil(ai_layer* layer);
/*!
* @brief Computes the activations of a floor layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_floor(ai_layer* layer);
/*!
* @brief Computes the activations of a rounding layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_round(ai_layer* layer);
/*!
* @brief Computes the activations of a sign negation (neg) layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_neg(ai_layer* layer);
/*!
* @brief Computes the activations of a sign negation (not) layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_not(ai_layer* layer);
/*!
* @brief Computes the activations of a reciprocal layer.
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_reciprocal(ai_layer* layer);
/*!
* @brief Hardmax on an input tensors
* @ingroup layers_generic
* @param layer the hardmax layer
*/
AI_INTERNAL_API
void forward_hardmax(ai_layer* layer);
/*!
* @brief Computes the activations of a softmax nonlinear layer.
* @ingroup layers_nl
* @param layer the softmax (sm) layer
*/
AI_INTERNAL_API
void forward_sm(ai_layer* layer);
/*!
* @brief Computes the activations of a softmax nonlinear layer (integer version).
* @ingroup layers_nl
* @param layer the softmax (sm) layer
*/
AI_INTERNAL_API
void forward_sm_integer(ai_layer* layer);
/*!
* @brief Computes the activations of an integer quantized nonlinear layer.
* Non linear operation is function of used LUT defined through
* (pLayer->nl_params->data)
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_nl_integer(ai_layer *pLayer);
/*!
* @brief Computes the activations of an integer quantized PReLu.
* Slope params are located like weights, not params because they are
* quantized
* @ingroup layers_nl
* @param layer the nonlinear (nl) layer
*/
AI_INTERNAL_API
void forward_prelu_integer(ai_layer *pLayer);
AI_API_DECLARE_END
#endif /*LAYERS_NL_H*/
| 37,339 | C | 32.63964 | 84 | 0.688663 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/lite_convert_dqnn.h | /**
******************************************************************************
* @file lite_convert_dqnn.h
* @author AIS
* @brief header file of AI platform lite convert kernel datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LITE_CONVERT_DQNN_H
#define LITE_CONVERT_DQNN_H
#pragma once
#include "ai_lite_interface.h"
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
LITE_API_ENTRY
void forward_lite_node_convert_is1os8(
const ai_pbits *p_in,
ai_i8 *p_out,
const ai_i32 n_channels,
const ai_i32 n_pixels,
const ai_i8 *n_values);
LITE_API_ENTRY
void forward_lite_node_convert_is1os16(
const ai_pbits *p_in,
ai_i16 *p_out,
const ai_i32 n_channels,
const ai_i32 n_pixels,
const ai_i16 *n_values);
LITE_API_ENTRY
void forward_lite_node_convert_is1of32(
const ai_pbits *p_in,
ai_float *p_out,
const ai_i32 n_channels,
const ai_i32 n_pixels,
const ai_float *n_values);
/*!
* @brief Handles data conversion from 8-bits signed input to signed binary
* outputs - Lite API version
* @ingroup lite_pw_dqnn
*/
LITE_API_ENTRY
void forward_lite_node_convert_is8os1(
const ai_i8 *p_in,
ai_pbits *p_out,
const ai_i32 n_channels,
const ai_i32 n_pixels,
const ai_i8 zp,
const ai_i8 pad);
LITE_API_ENTRY
void forward_lite_node_convert_is16os1(
const ai_i16 *p_in,
ai_pbits *p_out,
const ai_i32 n_channels,
const ai_i32 n_pixels,
const ai_i8 zp,
const ai_i8 pad);
LITE_API_ENTRY
void forward_lite_node_convert_if32os1(
const ai_float *p_in,
ai_pbits *p_out,
const ai_i32 n_channels,
const ai_i32 n_pixels,
const ai_i8 zp,
const ai_i8 pad);
LITE_API_ENTRY
void forward_lite_node_convert_integer_if32os8(
const ai_float *p_in,
ai_i8 *p_out,
const ai_u32 size,
const ai_float out_scale,
const ai_i8 out_zeropoint);
LITE_API_ENTRY
void forward_lite_node_convert_integer_if32ou8(
const ai_float *p_in,
ai_u8 *p_out,
const ai_u32 size,
const ai_float out_scale,
const ai_u8 out_zeropoint);
LITE_API_ENTRY
void forward_lite_node_convert_integer_is8of32(
const ai_i8 *p_in,
ai_float *p_out,
const ai_u32 size,
const ai_float in_scale,
const ai_i8 in_zeropoint);
LITE_API_ENTRY
void forward_lite_node_convert_integer_iu8of32(
const ai_u8 *p_in,
ai_float *p_out,
const ai_u32 size,
const ai_float in_scale,
const ai_u8 in_zeropoint);
LITE_API_ENTRY
void forward_lite_node_convert_if32os16(
const ai_float *p_in,
ai_i16 *p_out,
const ai_u32 size,
const ai_float out_scale,
const ai_i16 out_zeropoint);
LITE_API_ENTRY
void forward_lite_node_convert_if32ou16(
const ai_float *p_in,
ai_u16 *p_out,
const ai_u32 size,
const ai_float out_scale,
const ai_u16 out_zeropoint);
LITE_API_ENTRY
void forward_lite_node_convert_is16of32(
const ai_i16 *p_in,
ai_float *p_out,
const ai_u32 size,
const ai_float in_scale,
const ai_i16 in_zeropoint);
LITE_API_ENTRY
void forward_lite_node_convert_iu16of32(
const ai_u16 *p_in,
ai_float *p_out,
const ai_u32 size,
const ai_float in_scale,
const ai_u16 in_zeropoint);
LITE_API_ENTRY
void forward_lite_node_convert_integer_iu8ou8(
const ai_u8 *p_in,
ai_u8 *p_out,
const ai_i32 n_elems,
const ai_float scale_ratio,
const ai_u8 in_zp,
const ai_u8 out_zp);
LITE_API_ENTRY
void forward_lite_node_convert_integer_iu8os8(
const ai_u8 *p_in,
ai_i8 *p_out,
const ai_i32 n_elems,
const ai_float scale_ratio,
const ai_u8 in_zp,
const ai_i8 out_zp);
LITE_API_ENTRY
void forward_lite_node_convert_integer_iu8os8_fast(
const ai_u8 *p_in,
ai_i8 *p_out,
const ai_i32 n_elems,
const ai_float scale_ratio,
const ai_u8 in_zp,
const ai_i8 out_zp);
LITE_API_ENTRY
void forward_lite_node_convert_integer_is8ou8(
const ai_i8 *p_in,
ai_u8 *p_out,
const ai_i32 n_elems,
const ai_float scale_ratio,
const ai_i8 in_zp,
const ai_u8 out_zp);
LITE_API_ENTRY
void forward_lite_node_convert_integer_is8ou8_fast(
const ai_i8 *p_in,
ai_u8 *p_out,
const ai_i32 n_elems,
const ai_float scale_ratio,
const ai_i8 in_zp,
const ai_u8 out_zp);
LITE_API_ENTRY
void forward_lite_node_convert_is16ou16(
const ai_i16 *p_in,
ai_u16 *p_out,
const ai_i32 n_elems,
const ai_float scale_ratio,
const ai_i16 in_zp,
const ai_u16 out_zp);
#endif /*LITE_CONVERT_DQNN_H*/
| 5,069 | C | 21.533333 | 80 | 0.616098 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/lite_dense_ws1.h | #ifndef LITE_DENSE_WS1_H
#define LITE_DENSE_WS1_H
#pragma once
#include "ai_lite_interface.h"
/*!
* @brief Forward function for a dense layer with signed 16bit input,
* signed 16bit output, binary weights and binary bias.
* @ingroup lite_dense_ws1
* @param output The pointer to output buffer.
* @param input The pointer to input buffer.
* @param weights The pointer to weights.
* @param bias The pointer to bias.
* @param scratch The pointer to the scratch buffer (unused).
* @param n_channel_in The number of channels of the input.
* @param n_channel_out The number of channels of the output, i.e.,
* the number of dense hidden neurons.
*/
LITE_API_ENTRY
void forward_lite_dense_is16os16ws1(
ai_i16* output, const ai_i16* input,
const ai_pbits* weights,
const ai_pbits* bias, ai_i32* scratch,
const ai_u32 n_channel_in, const ai_u32 n_channel_out);
/*!
* @brief Forward function for a dense layer with signed 16bit input,
* signed 16bit output, binary weights and binary bias.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup lite_dense_ws1
* @param output The pointer to output buffer.
* @param input The pointer to input buffer.
* @param weights The pointer to weights.
* @param scale The pointer to scale.
* @param offset The pointer to offset.
* @param scratch The pointer to the scratch buffer (unused).
* @param n_channel_in The number of channels of the input.
* @param n_channel_out The number of channels of the output, i.e.,
* the number of dense hidden neurons.
*/
LITE_API_ENTRY
void forward_lite_dense_is16os16ws1_bn(
ai_i16* output, const ai_i16* input,
const ai_pbits* weights,
const ai_float *scale, const ai_float *offset, ai_i32* scratch,
const ai_u32 n_channel_in, const ai_u32 n_channel_out);
/*!
* @brief Forward function for a dense layer with signed f32 input,
* f32 output, binary weights and binary bias.
* @ingroup lite_dense_ws1
* @param output The pointer to output buffer.
* @param input The pointer to input buffer.
* @param weights The pointer to weights.
* @param bias The pointer to bias.
* @param scratch The pointer to the scratch buffer (unused).
* @param n_channel_in The number of channels of the input.
* @param n_channel_out The number of channels of the output, i.e.,
* the number of dense hidden neurons.
*/
LITE_API_ENTRY
void forward_lite_dense_if32os1ws1(
ai_pbits *output, const ai_float *input, const ai_pbits *weights,
const ai_float *bias, ai_float *scratch,
const ai_u32 n_channel_in, const ai_u32 n_channel_out);
/*!
* @brief Forward function for a dense layer with signed f32 input,
* f32 output, binary weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup lite_dense_ws1
* @param output The pointer to output buffer.
* @param input The pointer to input buffer.
* @param weights The pointer to weights.
* @param scale The pointer to scale.
* @param offset The pointer to offset.
* @param scratch The pointer to the scratch buffer (unused).
* @param n_channel_in The number of channels of the input.
* @param n_channel_out The number of channels of the output, i.e.,
* the number of dense hidden neurons.
*/
LITE_API_ENTRY
void forward_lite_dense_if32os1ws1_bn(
ai_pbits *output, const ai_float *input, const ai_pbits *weights,
const ai_float *scale, const ai_float *offset, ai_float *scratch,
const ai_u32 n_channel_in, const ai_u32 n_channel_out);
/*!
* @brief Forward function for a dense layer with signed f32 input,
* f32 output, and binary weights.
* @ingroup lite_dense_ws1
* @param output The pointer to output buffer.
* @param input The pointer to input buffer.
* @param weights The pointer to weights.
* @param bias The pointer to binary bias.
* @param scratch The pointer to the scratch buffer (unused).
* @param n_channel_in The number of channels of the input.
* @param n_channel_out The number of channels of the output, i.e.,
* the number of dense hidden neurons.
*/
LITE_API_ENTRY
void forward_lite_dense_if32of32ws1(
ai_float* output, const ai_float* input,
const ai_pbits* weights,
const ai_pbits* bias, ai_float* scratch,
const ai_u32 n_channel_in, const ai_u32 n_channel_out);
/*!
* @brief Forward function for a dense layer with signed f32 input,
* f32 output, and binary weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup lite_dense_ws1
* @param output The pointer to output buffer.
* @param input The pointer to input buffer.
* @param weights The pointer to weights.
* @param scale The pointer to scale.
* @param offset The pointer to offset.
* @param scratch The pointer to the scratch buffer (unused).
* @param n_channel_in The number of channels of the input.
* @param n_channel_out The number of channels of the output, i.e.,
* the number of dense hidden neurons.
*/
LITE_API_ENTRY
void forward_lite_dense_if32of32ws1_bn(
ai_float *output, const ai_float *input, const ai_pbits *weights,
const ai_float *scale, const ai_float *offset, ai_float *scratch,
const ai_u32 n_channel_in, const ai_u32 n_channel_out);
#endif /* LITE_DENSE_IS1WS1_H */
| 5,884 | C | 39.586207 | 80 | 0.720768 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers_pad_dqnn.h | /**
******************************************************************************
* @file layers_pad_dqnn.h
* @author AIS
* @brief header file of AI platform DQNN padding datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_PADDING_DQNN_H
#define LAYERS_PADDING_DQNN_H
#pragma once
#include "layers_common.h"
#include "layers_generic.h"
/*!
* @defgroup layers_generic_dqnn Layers Definitions
* @brief definition
*
*/
AI_API_DECLARE_BEGIN
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Handles padding with binary input and binary output
* @ingroup layers_generic_dqnn
* @param layer pad layer
*/
AI_INTERNAL_API
void forward_pad_is1os1(ai_layer *pLayer);
AI_API_DECLARE_END
#endif /*LAYERS_PADDING_DQNN_H*/
| 1,499 | C | 26.777777 | 80 | 0.451634 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/lite_upsample.h | /**
******************************************************************************
* @file lite_upsample.h
* @author AIS
* @brief header file of AI platform lite pw kernel datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LITE_UPSAMPLE_H
#define LITE_UPSAMPLE_H
#pragma once
#include "ai_lite_interface.h"
void forward_lite_upsample_bilinear_if32of32(const ai_float* in_data,
ai_float* out_data,
const ai_size width_in,
const ai_size height_in,
const ai_float width_scale,
const ai_float height_scale,
const ai_size width_out,
const ai_size height_out,
const ai_bool center,
const ai_size n_channel);
void forward_lite_upsample_bilinear_is8os8(const ai_i8* in_data,
ai_i8* out_data,
const ai_size width_in,
const ai_size height_in,
const ai_float width_scale,
const ai_float height_scale,
const ai_size width_out,
const ai_size height_out,
const ai_bool center,
const ai_size n_channel);
void forward_lite_upsample_bilinear_iu8ou8(const ai_u8* in_data,
ai_u8* out_data,
const ai_size width_in,
const ai_size height_in,
const ai_float width_scale,
const ai_float height_scale,
const ai_size width_out,
const ai_size height_out,
const ai_bool center,
const ai_size n_channel);
void forward_lite_upsample_bilinear_is16os16(const ai_i16* in_data,
ai_i16* out_data,
const ai_size width_in,
const ai_size height_in,
const ai_float width_scale,
const ai_float height_scale,
const ai_size width_out,
const ai_size height_out,
const ai_bool center,
const ai_size n_channel);
void forward_lite_upsample_bilinear_iu16ou16(const ai_u16* in_data,
ai_u16* out_data,
const ai_size width_in,
const ai_size height_in,
const ai_float width_scale,
const ai_float height_scale,
const ai_size width_out,
const ai_size height_out,
const ai_bool center,
const ai_size n_channel);
#endif /*LITE_UPSAMPLE__H*/
| 3,970 | C | 48.024691 | 80 | 0.380605 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers_generic.h |
/**
******************************************************************************
* @file layers_generic.h
* @author AST Embedded Analytics Research Platform
* @brief header file of AI platform generic layers datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_GENERIC_H
#define LAYERS_GENERIC_H
#pragma once
#include "layers_common.h"
typedef enum {
KTfLiteNone = 0,
KTfLiteActRelu,
KTfLiteActRelu1,
KTfLiteActRelu6,
KTfLiteActTanh,
KTfLiteActSignBit,
KTfLiteActSigmoid
} ai_tflitefused_activation;
/*!
* @defgroup layers_generic Generic Layers Definitions
* @brief definition
*
*/
AI_API_DECLARE_BEGIN
/*!
* @struct ai_layer_time_delay
* @ingroup layers_generic
* @brief TimeDelay layer with sparse kernel
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_time_delay_ {
AI_LAYER_COMMON_FIELDS_DECLARE
AI_CONST ai_array* mask; /*!< sparse filter mask */
} ai_layer_time_delay;
/*!
* @struct ai_layer_split
* @ingroup layers_generic
* @brief Split layer definition
*
* This layer defines the params of a splitting layer. It is intended to be used
* by his associated forward function @ref forward_split
*/
//typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_split_ {
// AI_LAYER_COMMON_FIELDS_DECLARE
// ai_u16 out_layers_count; /*!< number of output layers to split*/
// ai_u16 out_layer_curr; /*!< current layer to split */
// ai_layer** out_layers; /*!< output layers list */
// ai_tensor** out_tensors; /*!< output tensors list */
// ai_tensor* in_tensor; /*!< input tensor */
// func_copy_tensor copy_to_out_tensor; /*!< pointer to copy tensor func
// (NULL = no copy) */
//} ai_layer_split;
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_split_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_shape_dimension axis;
//ai_tensor* num_or_size_splits;
} ai_layer_split;
/*!
* @struct ai_layer_topK
* @ingroup layers_generic
* @brief topK layer definition
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_topK_{
AI_LAYER_COMMON_FIELDS_DECLARE
ai_i16 axis;
ai_i16 largest;
} ai_layer_topK;
typedef AI_ALIGNED_TYPE(struct,4)ai_layer_svdf_{
AI_LAYER_COMMON_FIELDS_DECLARE
ai_size rank;
ai_tflitefused_activation activation;
} ai_layer_svdf;
/*!
* @struct ai_layer_slice
* @ingroup layers_generic
* @brief Slice layer definition
*
* This layer defines the params of a slicing layer. It is intended to be used
* by his associated forward function @ref forward_slice
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_slice_ {
AI_LAYER_COMMON_FIELDS_DECLARE
AI_CONST ai_array* axes; /*!< Axes that 'starts' and 'ends' apply to. It's optional*/
AI_CONST ai_array* starts; /*!< Starting indices of corrisponding axis in axes*/
AI_CONST ai_array* ends; /*!< Ending indices (exclusive) of corrisponding axis in axes*/
} ai_layer_slice;
/*!
* @struct ai_layer_gather
* @ingroup layers_generic
* @brief Gather layer definition
*
* This layer defines the params of a gathering layer. It is intended to be used
* by his associated forward function @ref forward_gather
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_gather_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_i16 axis; /*!< Which axis to gather on It's optional*/
ai_tensor* indices; /*!< Indices of corrisponding axis in axes*/
} ai_layer_gather;
/*!
* @struct ai_layer_tile
* @ingroup layers generic
* @brief Tile layer definition
*
* This layer defines the param of an tile layer. It constructs a tensor by tiling a
* given tensor. It is intended to be used by its associated forward function
* @ref forward_upsample
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_tile_{
AI_LAYER_COMMON_FIELDS_DECLARE
AI_CONST ai_array* repeats; /*!< numbers of repeated copies along each dimension */
} ai_layer_tile;
/*!
* @struct ai_layer_shape
* @ingroup layers generic
* @brief Shape layer definition
*
* This layer defines the param of a shape layer. It returns the shape of the
* input tensor. It is intended to be used by its associated forward function
* @ref forward_shape
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_shape_{
AI_LAYER_COMMON_FIELDS_DECLARE
} ai_layer_shape;
/*!
* @struct ai_layer_upsample
* @ingroup layers generic
* @brief Upsample layer definition
*
* This layer defines the param of an upsampling layer. It overloads its params
* to allow zeros upsampling, helpful traspose convolutions, for instance.
* It is intended to be used by its associated forward function @ref forward_upsample
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_upsample_{
AI_LAYER_COMMON_FIELDS_DECLARE
ai_upsample_mode mode; /*!< upsample mode */
ai_bool center; /*!< center pixels */
AI_CONST ai_array* scales; /*!< scale array along each dimension */
ai_nearest_mode nearest_mode; /*!< used in nearest mode */
} ai_layer_upsample;
/*!
* @struct ai_layer_resize
* @ingroup layers generic
* @brief Resize layer definition
*
* This layer defines the param of a resize layer.
* It is intended to be used by its associated forward function @ref forward_resize
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_resize_{
AI_LAYER_COMMON_FIELDS_DECLARE
ai_coord_transf_mode coord_transf_mode; /*!< coordinate tranformation mode */
ai_float cubic_coeff_a; /*!< the coefficient 'a' used in cubic interpolation */
ai_bool exclude_outside; /*!< exclude outside pixels flag */
ai_float extrapol_val; /*!< used in tf_crop_and_resize cas */
ai_resize_mode mode; /*!< resize mode */
ai_nearest_mode nearest_mode; /*!< used in nearest mode */
AI_CONST ai_array* scales; /*!< scale array along each dimension */
AI_CONST ai_array* roi; /*!< roi array, used in tf_crop_and_resize case */
} ai_layer_resize;
/*!
* @struct ai_layer_instanceNormalization
* @ingroup layers generic
* @brief instance normalization layer definition
*
* This layer defines the params of an instance normalization layer.
* It is intended to be used by its associated forward function @ref forward_instanceNormalization
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_instanceNormaization_{
AI_LAYER_COMMON_FIELDS_DECLARE
ai_float eps; /*!< epsilon value, to avoid by zero division */
} ai_layer_instanceNormalization;
/*!
* @struct ai_layer_mode
* @ingroup layers generic
* @brief Pad layer definition
*
* This layer defines the param of an pad layer. It pad a tensor.
* It is intended to be used by its associated forward function @ref forward_pad
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_pad_{
AI_LAYER_COMMON_FIELDS_DECLARE
ai_pad_mode mode; /*!< pad mode */
ai_shape pads; /*!< Number of padding to add or remove at the beginning and end of each axis */
const ai_array* value; /*!< Indicates the value to be filled */
} ai_layer_pad;
/*!
* @struct ai_layer_mode
* @ingroup layers generic
* @brief ConstantOfShape layer definition
*
* This layer defines the param of an constantofshape layer. It constantofshape a tensor.
* It is intended to be used by its associated forward function @ref forward_constantofshape
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_constantofshape_{
AI_LAYER_COMMON_FIELDS_DECLARE
const ai_array* value; /*!< Indicates the value to be filled */
} ai_layer_constantofshape;
/*!
* @struct ai_layer_add
* @ingroup layers_generic
* @brief Add layer definition
*
* This layer defines the params of an add layer.
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_add_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_u16 in_layers_count; /*!< number of input layers to concat */
ai_u16 in_layer_curr; /*!< current layer to concat */
ai_tensor** in_tensors; /*!< input tensors list (if NULL==no copy) */
ai_tensor* out_tensor; /*!< output tensor (if NULL==no copy) */
func_copy_tensor copy_to_out_tensor; /*!< pointer to copy tensor func
(NULL = no copy) */
ai_layer_base* split_layer; /*!< pointer to associated split layer */
ai_layer_base* next_layer; /*!< pointer to next layer to process */
} ai_layer_add;
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_argmax_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_i16 axis;
ai_i16 select_last_index;
} ai_layer_argmax;
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_argmin_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_i16 axis;
ai_i16 select_last_index;
} ai_layer_argmin;
// TODO: REMOVE This legacy
typedef ai_layer_argmax ai_layer_ArgMax;
typedef ai_layer_argmin ai_layer_ArgMin;
/*!
* @struct ai_layer_transpose
* @ingroup layers_generic
* @brief Transpose layer datastruct declaration. This defines the params of a
* transpose layer. It is intended to be used by his associated forward function
* @ref forward_transpose
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_transpose_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_shape out_mapping; /*!< transpose output mapping order. I.e. tt is a
permutation of the input tensor shape */
} ai_layer_transpose;
/*!
* @struct ai_layer_transpose_batch
* @ingroup layers_generic
* @brief Transpose batch layer datastruct declaration. This defines the params of a
* transpose layer. It is intended to be used by his associated forward function
* @ref forward_transpose_batch
*/
typedef ai_layer_base ai_layer_transpose_batch;
#define AI_TIME_DISTRIBUTED_AXIS (AI_SHAPE_HEIGHT)
/*!
* @struct ai_layer_time_distributed
* @ingroup layers_generic
* @brief Time distributed layer datastruct declaration. This defines the params
* of a time distributed layer. It is intended to be used by his associated
* forward function @ref forward_time_distributed
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_time_distributed_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_layer_base* inner_layer; /*!< inner layer to process */
} ai_layer_time_distributed;
/*!
* @struct ai_layer_concat
* @ingroup layers_generic
* @brief Concatenation layer
*
* Concat Layer.
* It is a sequential layer. see @ref ai_layer_sequential
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_concat_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_shape_dimension axis; /*!< which axis to concatenate on */
} ai_layer_concat;
/*!
* @struct ai_layer_pack
* @ingroup layers_generic
* @brief pack layer
*
* Pack Layer.
* It is a sequential layer. see @ref ai_layer_sequential
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_pack_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_shape_dimension axis; /*!< which axis to concatenate on */
} ai_layer_pack;
/*!
* @struct ai_layer_unpack
* @ingroup layers_generic
* @brief unpack layer
*
* Unpack Layer.
* It is a sequential layer. see @ref ai_layer_sequential
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_unpack_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_shape_dimension axis; /*!< which axis to concatenate on */
} ai_layer_unpack;
typedef void (*func_binary)(ai_handle out,const ai_handle a, const ai_handle b);
typedef void (*func_buffer_binary)(ai_handle out,const ai_handle a, const ai_handle b, const ai_size loop);
typedef void (*func_buffer_binary_integer)(ai_handle out,const ai_handle a, const ai_handle b, const ai_size loop,
const ai_handle scale1, const ai_handle zp1, const ai_handle scale2, const ai_handle zp2,
const ai_handle scaleout, const ai_handle zpout, const ai_i32 scalar_op);
/*!
* @struct ai_layer_eltwise
* @ingroup layers_generic
* @brief General element-wise transformation layer
*
* Elementwise Layer.
* It is a sequential layer. see @ref ai_layer_sequential
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_eltwise_ {
AI_LAYER_COMMON_FIELDS_DECLARE
func_binary operation; /*!< operation to apply elementwise */
func_buffer_binary buffer_operation; /*!< operation to apply elementwise */
} ai_layer_eltwise;
/*!
* @struct ai_layer_eltwise_integer
* @ingroup layers_generic
* @brief General element-wise transformation layer for integer data
*
* Elementwise Layer.
* It is a sequential layer. see @ref ai_layer_sequential
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_eltwise_integer_ {
AI_LAYER_COMMON_FIELDS_DECLARE
func_binary operation; /*!< operation to apply elementwise */
func_buffer_binary_integer buffer_operation; /*!< operation to apply elementwise */
} ai_layer_eltwise_integer;
/*!
* @struct ai_layer_reduce
* @ingroup layers_generic
* @brief General dimension reduction layer
*
* reduction Layer.
* It is a sequential layer. see @ref ai_layer_sequential
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_reduce_ {
AI_LAYER_COMMON_FIELDS_DECLARE
const ai_array* neutral_value; /*!< Initialization value for operation */
func_binary operation; /*!< operation to apply elementwise */
} ai_layer_reduce;
/*!
* @struct ai_layer_reduce_log_sum_exp
* @ingroup layers_generic
* @brief General dimension reduction layer
*
* reduction Layer.
* It is a sequential layer. see @ref ai_layer_sequential
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_reduce_log_sum_exp_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_shape_dimension axis;
} ai_layer_reduce_log_sum_exp;
/*!
* @struct ai_layer_reduce l1
* @ingroup layers_generic
* @brief General dimension reduction layer
*
* reduction Layer.
* It is a sequential layer. see @ref ai_layer_sequential
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_reduce_l1_ {
AI_LAYER_COMMON_FIELDS_DECLARE
AI_CONST ai_array* axes;
} ai_layer_reduce_l1;
/*!
* @struct ai_layer_reduce l2
* @ingroup layers_generic
* @brief General dimension reduction layer
*
* reduction Layer.
* It is a sequential layer. see @ref ai_layer_sequential
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_reduce_l2_ {
AI_LAYER_COMMON_FIELDS_DECLARE
AI_CONST ai_array* axes;
} ai_layer_reduce_l2;
/*!
* @struct ai_layer_where
* @ingroup layers generic
* @brief Where layer definition
*
* This layer operates on 3 input tensors: condition, X and Y.
* It return elements, either from X or Y, depending on condition
* (with Numpy-style broadcasting support).
* @ref forward_where
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_where_ {
AI_LAYER_COMMON_FIELDS_DECLARE
const ai_array *shapes_len;
ai_bool channel_first;
} ai_layer_where;
/*!
* @struct ai_layer_reverse
* @ingroup layers_reverse
* @brief Reverse layer
*
* The type of reverse function is handled by the specific forward function
* @ref forward_svm_regressor
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_reverse_ {
AI_LAYER_COMMON_FIELDS_DECLARE
ai_i32 axis; /*!< selected axis to perform the operation */
} ai_layer_reverse;
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Dummy forward routine with no processing.
* @ingroup layers_generic
* @param generic layer handle
*/
AI_INTERNAL_API
void forward_nop(ai_layer* layer);
/*!
* @brief Computes the activations of a TimeDelay layer.
* @ingroup layers_generic
* @param layer the time delay layer
*/
AI_INTERNAL_API
void forward_time_delay(ai_layer* layer);
/*!
* @brief Split network computation in N parallel branches.
* @ingroup layers_generic
* @param layer the split layer
*/
AI_INTERNAL_API
void forward_split(ai_layer* layer);
/*!
* @brief Add network computation from N parallel branches.
* @ingroup layers_generic
* @param layer the add layer
*/
AI_INTERNAL_API
void forward_add(ai_layer* layer);
/*!
* @brief Compute the indices of the max elements of the input tensor's element along the provided axis.
* @ingroup layers_generic
* @param layer argmax layer
*/
AI_INTERNAL_API
void forward_argmax(ai_layer* layer);
/*!
* @brief Compute the indices of the min elements of the input tensor's element along the provided axis.
* @ingroup layers_generic
* @param layer argmin layer
*/
AI_INTERNAL_API
void forward_argmin(ai_layer* layer);
/*!
* @brief Svdf layer.
* @ingroup layers_generic
* @param layer svdf layer
*/
AI_INTERNAL_API
void forward_svdf(ai_layer* layer);
/*!
* @brief Transpose a tensor along a pivot and save transposed values into an output
* tensor
* @ingroup layers_generic
* @param layer the transpose layer
*/
AI_INTERNAL_API
void forward_transpose(ai_layer* layer);
/*!
* @brief Transpose batch and save transposed values of a determinate batch into an output
* tensor
* @ingroup layers_generic
* @param layer the transpose batch layer
*/
AI_INTERNAL_API
void forward_transpose_batch(ai_layer* layer);
/*!
* @brief TimeDistrubuted forward layer function. This forward function
* implements the timedistributed layer.
* @ingroup layers_generic
* @param layer the time distributed layer
*/
AI_INTERNAL_API
void forward_time_distributed(ai_layer* layer);
/*!
* @brief Packing a list of tensors in a single tensor
* @ingroup layers generic
* @param layer the packing layer
*/
AI_INTERNAL_API
void forward_pack(ai_layer* layer);
/*!
* @brief Unpacking a single of tensors in a list tensor
* @ingroup layers generic
* @param layer the unpacking layer
*/
AI_INTERNAL_API
void forward_unpack(ai_layer* layer);
/*!
* @brief Concatenates a list of tensors into a single tensor.
* @ingroup layers_generic
* @param layer the concatenation layer
*/
AI_INTERNAL_API
void forward_concat(ai_layer* layer);
/*!
* @brief Gather an input tensor
* @ingroup layers_generic
* @param layer the gathered layer
*/
AI_INTERNAL_API
void forward_gather(ai_layer* layer);
/*!
* @brief Slice an input tensors
* @ingroup layers_generic
* @param layer the sliced layer
*/
AI_INTERNAL_API
void forward_slice(ai_layer* layer);
/*!
* @brief Tile an input tensors
* @ingroup layers_generic
* @param layer the tiled layer
*/
AI_INTERNAL_API
void forward_tile(ai_layer* layer);
/*!
* @brief Returns the shape of an input tensors
* @ingroup layers_generic
* @param layer the Shape layer
*/
AI_INTERNAL_API
void forward_shape(ai_layer* layer);
/*!
* @brief TopK an input tensors
* @ingroup layers_generic
* @param layer the Topked layer
*/
AI_INTERNAL_API
void forward_topK(ai_layer* layer);
/*!
* @brief Pad an input tensors
* @ingroup layers_generic
* @param layer the pad layer
*/
AI_INTERNAL_API
void forward_pad(ai_layer* layer);
/*!
* @brief ConstantofShape an input tensors
* @ingroup layers_generic
* @param layer the constantofshape layer
*/
AI_INTERNAL_API
void forward_constantofshape(ai_layer* layer);
/*!
* @brief Upsample an input tensors
* @ingroup layers_generic
* @param layer the upsampled layer
*/
AI_INTERNAL_API
void forward_upsample(ai_layer* layer);
/*!
* @brief Resize an input tensors
* @ingroup layers_generic
* @param layer the resized layer
*/
AI_INTERNAL_API
void forward_resize(ai_layer* layer);
/*!
* @brief Instance Normalization on an input tensors
* @ingroup layers_generic
* @param layer the instance normalization layer
*/
AI_INTERNAL_API
void forward_instanceNormalization(ai_layer* layer);
/*!
* @brief Apply an elementwise transformation to the input tensors
* @ingroup layers_generic
* @param layer the elementwise layer
*/
AI_INTERNAL_API
void forward_eltwise(ai_layer* layer);
/*!
* @brief Apply an elementwise transformation to the integer input tensors
* @ingroup layers_generic
* @param layer the elementwise layer
*/
AI_INTERNAL_API
void forward_eltwise_integer(ai_layer* layer);
/*!
* @brief Apply an elementwise transformation to the signed integer input tensors
* @ingroup layers_generic
* @param layer the elementwise layer
*/
AI_INTERNAL_API
void forward_eltwise_integer_INT8(ai_layer* layer);
/*!
* @brief Apply an elementwise transformation to the unsigned integer input tensors
* @ingroup layers_generic
* @param layer the elementwise layer
*/
AI_INTERNAL_API
void forward_eltwise_integer_UINT8(ai_layer* layer);
/*!
* @brief Apply a reduce transformation to the input tensors
* @ingroup layers_generic
* @param layer the reduce layer
*/
AI_INTERNAL_API
void forward_reduce(ai_layer* layer);
/*!
* @brief Apply a reduce transformation to the input tensors
* @ingroup layers_generic
* @param layer the reduce layer
*/
AI_INTERNAL_API
void forward_reduce_log_sum_exp(ai_layer* layer);
/*!
* @brief Apply a reduce transformation to the input tensors
* @ingroup layers_generic
* @param layer the reduce layer
*/
AI_INTERNAL_API
void forward_reduce_l1(ai_layer* layer);
/*!
* @brief Apply a reduce transformation to the input tensors
* @ingroup layers_generic
* @param layer the reduce layer
*/
AI_INTERNAL_API
void forward_reduce_l2(ai_layer* layer);
/*!
* @brief Behave like numpy.where with Numpy-style broadcasting support
* @ingroup layers_generic
* @param layer the where layer
*/
AI_INTERNAL_API
void forward_where(ai_layer* layer);
/*!
* @brief Apply an elementwise addition to the input tensors
* @ingroup layers_generic
* @param layer the elementwise layer
*/
AI_INTERNAL_API
void forward_add_integer(ai_layer* layer);
/*!
* @brief Apply an elementwise addition to the input tensors
* with int8 I/O
* @ingroup layers_generic
* @param layer the elementwise layer
*/
AI_INTERNAL_API
void forward_add_integer_INT8(ai_layer* layer);
/*!
* @brief Apply an elementwise addition to the input tensors
* with uint8 I/O
* @ingroup layers_generic
* @param layer the elementwise layer
*/
AI_INTERNAL_API
void forward_add_integer_UINT8(ai_layer* layer);
/*!
* @brief Reverse layer.
* @ingroup layers_generic
* @param layer reverse layer
*/
AI_INTERNAL_API
void forward_reverse(ai_layer *pLayer);
/*!
* @brief Upsample an input tensors with unsigned 8-bit integer input,.
* It is to be used also for other formats, since the function only
* performs memory copy.
* @ingroup layers_generic
* @param layer the upsampled layer
*/
AI_INTERNAL_API
void forward_upsample_generic(ai_layer* layer);
AI_API_DECLARE_END
#endif /*LAYERS_GENERIC_H*/
| 22,964 | C | 28.292092 | 130 | 0.683505 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/ai_datatypes_defines.h | /**
******************************************************************************
* @file ai_datatypes_defines.h
* @author AST Embedded Analytics Research Platform
* @brief Definitions of AI platform private APIs types
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef AI_DATATYPES_DEFINES_H
#define AI_DATATYPES_DEFINES_H
#pragma once
#include "ai_platform.h"
/*!
* @defgroup datatypes_defines Internal Datatypes Defines Header
* @brief Data structures used internally to implement neural networks
*
*/
/* define to track datatypes used by codegen */
#define AI_INTERFACE_TYPE /* AI_INTERFACE_TYPE */
#define AI_INTERNAL_API /* AI_INTERNAL_API */
#define AI_CONST const
#define AI_STATIC static
#define AI_STATIC_CONST static const
/******************************************************************************/
/* NOP operation used by codegen */
#define AI_NOP /* NOP */
#define AI_WRAP_FUNC(fn_) do { fn_ } while (0);
#define AI_CAT(a, ...) AI_PRIMITIVE_CAT(a, __VA_ARGS__)
#define AI_PRIMITIVE_CAT(a, ...) a ## __VA_ARGS__
/******************************************************************************/
#ifdef HAS_AI_ASSERT
#include <assert.h>
#define AI_ASSERT(cond) \
{ assert(cond); }
#else
#define AI_ASSERT(cond) \
AI_WRAP_FUNC(/*AI_ASSERT*/)
#endif /*HAS_AI_ASSERT*/
/******************************************************************************/
#define AI_NO_PACKED_STRUCTS
/* Macro for defining packed structures (compiler dependent).
* This just reduces memory requirements, but is not required.
*/
#if defined(AI_NO_PACKED_STRUCTS)
/* Disable struct packing */
#define AI_PACKED_STRUCT_START /* AI_PACKED_STRUCT_START */
#define AI_PACKED_STRUCT_END /* AI_PACKED_STRUCT_END */
#define AI_PACKED /* AI_PACKED */
#elif defined(__GNUC__) || defined(__clang__)
/* For GCC and clang */
#define AI_PACKED_STRUCT_START /* AI_PACKED_STRUCT_START */
#define AI_PACKED_STRUCT_END /* AI_PACKED_STRUCT_END */
#define AI_PACKED __attribute__((packed))
#elif defined(__ICCARM__) || defined (__IAR_SYSTEMS_ICC__) || defined(__CC_ARM)
/* For IAR ARM and Keil MDK-ARM compilers */
#define AI_PACKED_STRUCT_START _Pragma("pack(push, 1)")
#define AI_PACKED_STRUCT_END _Pragma("pack(pop)")
#define AI_PACKED /* AI_PACKED */
#elif defined(_MSC_VER) && (_MSC_VER >= 1500)
/* For Microsoft Visual C++ */
#define AI_PACKED_STRUCT_START __pragma(pack(push, 1))
#define AI_PACKED_STRUCT_END __pragma(pack(pop))
#define AI_PACKED /* AI_PACKED */
#else
/* Unknown compiler */
#define AI_PACKED_STRUCT_START /* AI_PACKED_STRUCT_START */
#define AI_PACKED_STRUCT_END /* AI_PACKED_STRUCT_END */
#define AI_PACKED /* AI_PACKED */
#endif /* AI_NO_PACKED_STRUCTS */
/******************************************************************************/
#define AI_STRINGIFY_ARG(contents) # contents
#define AI_STRINGIFY(macro_or_string) AI_STRINGIFY_ARG (macro_or_string)
/******************************************************************************/
#if defined(_MSC_VER)
#define AI_DECLARE_STATIC static __inline
// #define AI_FORCE_INLINE static __forceinline
#define AI_FORCE_INLINE static __inline
#define AI_HINT_INLINE static __inline
#define AI_ALIGNED_TYPE(type, x) type __declspec(align(x))
#define AI_INTERFACE_ENTRY __declspec(dllexport)
#elif defined(__ICCARM__) || defined (__IAR_SYSTEMS_ICC__)
#define AI_DECLARE_STATIC static inline
// #define AI_FORCE_INLINE static _Pragma("inline=forced") // TODO: check this definition!
#define AI_FORCE_INLINE static inline
#define AI_HINT_INLINE static inline
#define AI_ALIGNED_TYPE(type, x) type
#define AI_INTERFACE_ENTRY /* AI_INTERFACE_ENTRY */
#elif defined(__GNUC__)
#define AI_DECLARE_STATIC static __inline
#define AI_FORCE_INLINE static __inline
#define AI_HINT_INLINE static __inline
#define AI_ALIGNED_TYPE(type, x) type __attribute__ ((aligned(x)))
#define AI_INTERFACE_ENTRY /* AI_INTERFACE_ENTRY */
#else /* _MSC_VER */
#define AI_DECLARE_STATIC static __inline
// #define AI_FORCE_INLINE static __forceinline
#define AI_FORCE_INLINE static __inline
#define AI_HINT_INLINE static __inline
#define AI_ALIGNED_TYPE(type, x) type __attribute__ ((aligned(x)))
#define AI_INTERFACE_ENTRY __attribute__((visibility("default")))
#endif /* _MSC_VER */
/******************************************************************************/
#define AI_ALIGN_MASKED(value, mask) ( ((value)+(mask))&(~(mask)) )
#define AI_GET_VERSION_STRING(major, minor, micro) \
AI_STRINGIFY_ARG(major) "." \
AI_STRINGIFY_ARG(minor) "." \
AI_STRINGIFY_ARG(micro) \
#define AI_PACK_TENSORS_PTR(...) \
AI_PACK(__VA_ARGS__)
#define AI_PACK_INFO(size_) (ai_tensor_info[1]) { { \
.buffer = (ai_buffer[size_])AI_STRUCT_INIT, \
.state = (ai_tensor_state[size_])AI_STRUCT_INIT, \
} }
#define AI_CR "\r\n"
#if (defined HAS_AI_DEBUG || defined HAS_DEBUG_LIB)
#include <stdio.h>
#define AI_DEBUG(...) __VA_ARGS__
#define AI_DEBUG_PRINT(fmt, ...) { printf(fmt, ##__VA_ARGS__); }
#else
#define AI_DEBUG(...) AI_WRAP_FUNC(/*AI_DEBUG*/)
#define AI_DEBUG_PRINT(fmt, ...) AI_WRAP_FUNC(/*AI_DEBUG_PRINT*/)
#endif
#define AI_FLAG_SET(mask, flag) (mask) |= (flag)
#define AI_FLAG_UNSET(mask, flag) (mask) &= (~(flag))
#define AI_FLAG_IS_SET(mask, flag) ((flag)==((mask)&(flag)))
#endif /*AI_DATATYPES_DEFINES_H*/
| 6,551 | C | 39.444444 | 105 | 0.526637 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers_dense_dqnn.h | /**
******************************************************************************
* @file layers_dense_dqnn.h
* @author AST Embedded Analytics Research Platform
* @brief header file of deeply quantized dense layers.
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_DENSE_DQNN_H
#define LAYERS_DENSE_DQNN_H
#pragma once
#include "layers_common.h"
/*!
* @defgroup layers_dense_dqnn Quantized Dense Layers definition.
* @brief Implements the kernels and the forward functions to implement
* dense layers with quantized inputs, weights, or outputs.
*/
AI_API_DECLARE_BEGIN
/*!
* @struct ai_layer_dense_dqnn
* @ingroup layers_dense_dqnn
* @brief Specific instance of deeply quantized dense layers.
*/
typedef ai_layer_base ai_layer_dense_dqnn;
/*****************************************************************************/
/* Forward Functions Section */
/*****************************************************************************/
/*!
* @brief Forward function for a dense layer with signed binary input,
* signed binary output, and signed binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1os1ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed binary input,
* signed binary output, and signed binary weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1os1ws1_bn(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed binary input,
* 8-bit signed output, and signed binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1os8ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed binary input,
* 8-bit signed output, and signed binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1os16ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed binary input,
* 32-bit floating point output, and signed binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1of32ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed binary input,
* 32-bit floating point output, and signed binary weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1of32ws1_bn(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed binary input,
* 32-bit floating point output, and 32-bit floating point weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1of32wf32(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed binary input,
* 32-bit floating point output, and 32-bit floating point weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1of32wf32_bn(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed binary input,
* 32-bit floating point output, and 8-bit signed weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1of32ws8(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed binary input,
* 32-bit floating point output, and 8-bit signed weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1of32ws8_bn(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed binary input,
* binary output, and 8-bit signed weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1os1ws8(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed binary input,
* binary output, and 8-bit signed weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1os1ws8_bn(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed binary input,
* 8-bit signed output, and 8-bit signed weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1os8ws8(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed binary input,
* 16-bit signed output, and 8-bit signed weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is1os16ws8(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed 8-bit input,
* float output, and binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is8of32ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed 8-bit input,
* float output, and binary weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is8of32ws1_bn(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed 8-bit input,
* 1-bit signed output, and binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is8os1ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed 8-bit input,
* 1-bit signed output, and binary weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is8os1ws1_bn(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed 8-bit input,
* binary weights and binary output.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is8os1ws1_bn_fxp(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed 8-bit input,
* 8-bit signed output, and binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is8os8ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed 8-bit input,
* 16-bit signed output, and binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is8os16ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed 16-bit input,
* 1-bit signed output, and binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is16os1ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed 16-bit input,
* 1-bit signed output, and binary weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is16os1ws1_bn(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed 16-bit input,
* 8-bit signed output, and binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is16os8ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed 16-bit input,
* 16-bit signed output, and binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is16os16ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed 16-bit input,
* f32 output, and binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is16of32ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed 16-bit input,
* f32 output, and binary weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_is16of32ws1_bn(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed f32 input,
* 1-bit signed output, and binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_if32os1ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed f32 input,
* 1-bit signed output, and binary weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_if32os1ws1_bn(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed f32 input,
* 8-bit signed output, and binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_if32os8ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed f32 input,
* 16-bit signed output, and binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_if32os16ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed f32 input,
* f32 output, and binary weights.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_if32of32ws1(ai_layer* layer);
/*!
* @brief Forward function for a dense layer with signed f32 input,
* f32 output, and binary weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup layers_dense_dqnn
* @param layer template layer as an opaque pointer
*/
AI_INTERNAL_API
void forward_dense_if32of32ws1_bn(ai_layer* layer);
AI_API_DECLARE_END
#endif /*LAYERS_DENSE_DQNN_H*/
| 14,182 | C | 34.546366 | 80 | 0.709632 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/ai_lite.h | /**
******************************************************************************
* @file ai_lite.h
* @author AST Embedded Analytics Research Platform
* @brief Definitions and implementations of runtime-lite public APIs
******************************************************************************
* @attention
*
* Copyright (c) 2022 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef AI_LITE_H
#define AI_LITE_H
#pragma once
#include "ai_platform.h"
#include "ai_lite_inspect.h"
#define LITE_API_ENTRY \
/* LITE_API_ENTRY */
#define LITE_GRAPH_INIT(_inputs, _outputs, _activations, _weights, _cb, _cb_cookie) { \
.inputs = (_inputs), \
.outputs = (_outputs), \
.activations = (_activations), \
.weights = (const ai_handle*)(_weights), \
.cb = ((ai_lite_inspect_cb)(_cb)), \
.cb_cookie = ((ai_handle)(_cb_cookie)), \
}
AI_API_DECLARE_BEGIN
typedef enum {
LITE_OK = 0,
LITE_KO_INPUTS,
LITE_KO_OUTPUTS,
LITE_KO_WEIGHTS,
LITE_KO_ACTIVATIONS,
LITE_KO_GRAPH,
} lite_result;
typedef struct {
ai_handle* inputs;
ai_handle* outputs;
ai_handle* activations;
const ai_handle* weights;
ai_lite_inspect_cb cb;
ai_handle cb_cookie;
} lite_graph;
AI_API_DECLARE_END
#endif /* AI_LITE_H */
| 1,699 | C | 25.5625 | 87 | 0.521483 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers_ml_linearclassifier.h | /**
******************************************************************************
* @file layers_ml_linearclassifier.h
* @author SRA
* @brief header file of AI platform LinearClassifier datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_LINEARCLASSIFIER_H
#define LAYERS_LINEARCLASSIFIER_H
#pragma once
#include "layers_common.h"
#include "layers_nl.h"
/*!
* @defgroup layers_linearclassifier Layers Definitions
* @brief definition
*
*/
AI_API_DECLARE_BEGIN
/*!
* @struct ai_layer_linearclassifier
* @ingroup layers_linearclassifier
* @brief Linearclassifier layer
*
* The type of svmreg function is handled by the specific forward function
* @ref forward_linearclassifier
*/
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_linearclassifier_ {
AI_LAYER_COMMON_FIELDS_DECLARE
func_nl nl_func; /*!< function pointer to non linear transform */ \
ai_bool multi_class; /*!< Indicates whether to do OvR or multinomial */
ai_bool has_classlabels_int; /*!< if True, LinearClassifier returns classlabels int, else classlabels string */
} ai_layer_linearclassifier;
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Decodes the LinearClassifier ML operator.
* @ingroup layers_linaerclassifier
* @param layer linear classifier layer
*/
AI_INTERNAL_API
void forward_linearclassifier(ai_layer *pLayer);
AI_API_DECLARE_END
#endif /*LAYERS_LINEARCLASSIFIER_H*/
| 2,176 | C | 29.661971 | 118 | 0.542279 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/lite_nl_list.h | /**
******************************************************************************
* @file lite_nl_list.h
* @author AST Embedded Analytics Research Platform
* @brief header file of lite supported non-linearities routines
******************************************************************************
* @attention
*
* Copyright (c) 2022 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
// #define LITE_NL_ENTRY(nl_id_, nl_name_, nl_op_, nl_op_args_)
/* No sentry. This is deliberate!! */
LITE_NL_ENTRY(1, abs, AI_ABS, 1)
LITE_NL_ENTRY(2, acos, AI_MATH_ACOS, 1)
LITE_NL_ENTRY(3, acosh, AI_MATH_ACOSH, 1)
LITE_NL_ENTRY(4, asin, AI_MATH_ASIN, 1)
LITE_NL_ENTRY(5, asinh, AI_MATH_ASINH, 1)
LITE_NL_ENTRY(6, atan, AI_MATH_ATAN, 1)
LITE_NL_ENTRY(7, atanh, AI_MATH_ATANH, 1)
LITE_NL_ENTRY(8, ceil, AI_CEIL, 1)
LITE_NL_ENTRY(9, cos, AI_MATH_COS, 1)
LITE_NL_ENTRY(10, cosh, AI_MATH_COSH, 1)
LITE_NL_ENTRY(11, erf, AI_MATH_ERF, 1)
LITE_NL_ENTRY(12, exp, AI_MATH_EXP, 1)
LITE_NL_ENTRY(13, floor, AI_FLOOR, 1)
LITE_NL_ENTRY(14, hardmax, /**/, 0)
LITE_NL_ENTRY(15, log, AI_MATH_LOG, 1)
LITE_NL_ENTRY(16, logistic, AI_MATH_LOGISTIC, 1)
LITE_NL_ENTRY(17, neg, AI_NEG, 1)
LITE_NL_ENTRY(18, rsqrt, AI_MATH_RSQRT, 1)
LITE_NL_ENTRY(19, sin, AI_MATH_SIN, 1)
LITE_NL_ENTRY(20, sinh, AI_MATH_SINH, 1)
LITE_NL_ENTRY(21, tan, AI_MATH_TAN, 1)
LITE_NL_ENTRY(22, square, AI_MATH_SQUARE, 1)
LITE_NL_ENTRY(23, reciprocal, AI_RECIPROCAL, 1)
LITE_NL_ENTRY(24, round, AI_ROUND, 1)
LITE_NL_ENTRY(25, sigmoid, AI_MATH_SIGMOID, 1)
LITE_NL_ENTRY(26, swish, AI_MATH_SWISH, 1)
LITE_NL_ENTRY(27, hard_swish, AI_MATH_HARD_SWISH, 1)
LITE_NL_ENTRY(28, sign, AI_SIGN, 1)
LITE_NL_ENTRY(29, sqrt, AI_MATH_SQRT, 1)
// LITE_NL_ENTRY(30, softmax, /**/, 0) // for future changes
// LITE_NL_ENTRY(31, softmax_zero_channel, /**/, 0) // for future changes
LITE_NL_ENTRY(32, soft_plus, AI_MATH_SOFT_PLUS, 1)
LITE_NL_ENTRY(33, soft_sign, AI_MATH_SOFT_SIGN, 1)
LITE_NL_ENTRY(34, tanh, AI_MATH_TANH, 1)
LITE_NL_ENTRY(35, prelu, /**/, 0)
LITE_NL_ENTRY(36, relu, AI_MATH_RELU, 1)
LITE_NL_ENTRY(37, relu_generic, /**/, 0)
LITE_NL_ENTRY(101, elu, AI_MATH_ELU, 2)
LITE_NL_ENTRY(102, relu_thresholded, AI_MATH_RELU_THRESHOLDED, 2)
LITE_NL_ENTRY(201, clip, AI_CLAMP, 3)
LITE_NL_ENTRY(202, hard_sigmoid, AI_MATH_HARD_SIGMOID, 3)
LITE_NL_ENTRY(203, selu, AI_MATH_SELU, 3)
#undef LITE_NL_ENTRY
#undef LITE_NL_IIF_0
#undef LITE_NL_IIF_1
#undef LITE_NL_IIF_2
#undef LITE_NL_IIF_3
| 2,844 | C | 35.474359 | 80 | 0.60443 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/ai_math_helpers.h | /**
******************************************************************************
* @file ai_math_helpers.h
* @author AST Embedded Analytics Research Platform
* @brief Math helpers routines header file.
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef AI_MATH_HELPERS_H
#define AI_MATH_HELPERS_H
#include "ai_lite_math_helpers.h"
//#if defined(HAS_X86) || defined(__CC_ARM) || defined(CM4) || defined(CM7)
#define _AI_CONV_2D_LOOP_UNROLLING_OPTIM
//#endif
#define STM32_DOT_INLINE_OPTIM
/* Modes for element wise integer optimized implementation */
#define AI_ELTWISE_NO_SCALAR (0)
#define AI_ELTWISE_SCALAR1 (1)
#define AI_ELTWISE_SCALAR2 (2)
#define AI_ELTWISE_SCALAR_CH1 (3)
#define AI_ELTWISE_SCALAR_CH2 (4)
AI_API_DECLARE_BEGIN
/*!
* @typedef ai_vec4_float
* @ingroup ai_datatypes_internal
* @brief 32bit X 4 float (optimization for embedded MCU)
*/
typedef struct _ai_vec4_float {
ai_float a1;
ai_float a2;
ai_float a3;
ai_float a4;
} ai_vec4_float;
#define AI_VEC4_FLOAT(ptr_) \
_get_vec4_float((ai_handle)(ptr_))
AI_DECLARE_STATIC
ai_vec4_float _get_vec4_float(const ai_handle fptr)
{
return *((const ai_vec4_float*)fptr);
}
#if defined(STM32_DOT_INLINE_OPTIM)
AI_DECLARE_STATIC
void __ai_math_dot_array(
ai_float* out,
const ai_float* data0,
const ai_float* data1,
ai_size data_size)
{
register ai_float sum = 0.0f; /* Temporary result storage */
/* Run the below code for Cortex-M4 and Cortex-M3 */
#if defined(_AI_CONV_2D_LOOP_UNROLLING_OPTIM)
/* First part of the processing with loop unrolling. Compute 16 outputs at a time.
** a second loop below computes the remaining 1 to 15 samples. */
while (data_size >= 16u) {
register ai_vec4_float ch_in_f = AI_VEC4_FLOAT(data1);
register ai_vec4_float weights_in_f = AI_VEC4_FLOAT(data0);
sum += weights_in_f.a1 * ch_in_f.a1;
sum += weights_in_f.a2 * ch_in_f.a2;
sum += weights_in_f.a3 * ch_in_f.a3;
sum += weights_in_f.a4 * ch_in_f.a4;
data1 += 4;
data0 += 4;
ch_in_f = AI_VEC4_FLOAT(data1);
weights_in_f = AI_VEC4_FLOAT(data0);
sum += weights_in_f.a1 * ch_in_f.a1;
sum += weights_in_f.a2 * ch_in_f.a2;
sum += weights_in_f.a3 * ch_in_f.a3;
sum += weights_in_f.a4 * ch_in_f.a4;
data1 += 4;
data0 += 4;
ch_in_f = AI_VEC4_FLOAT(data1);
weights_in_f = AI_VEC4_FLOAT(data0);
sum += weights_in_f.a1 * ch_in_f.a1;
sum += weights_in_f.a2 * ch_in_f.a2;
sum += weights_in_f.a3 * ch_in_f.a3;
sum += weights_in_f.a4 * ch_in_f.a4;
data1 += 4;
data0 += 4;
ch_in_f = AI_VEC4_FLOAT(data1);
weights_in_f = AI_VEC4_FLOAT(data0);
sum += weights_in_f.a1 * ch_in_f.a1;
sum += weights_in_f.a2 * ch_in_f.a2;
sum += weights_in_f.a3 * ch_in_f.a3;
sum += weights_in_f.a4 * ch_in_f.a4;
data1 += 4;
data0 += 4;
data_size -= 16u;
}
#else
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while (data_size >= 4u) {
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Calculate dot product and then store the result in a temporary buffer */
sum += (*data0++) * (*data1++);
sum += (*data0++) * (*data1++);
sum += (*data0++) * (*data1++);
sum += (*data0++) * (*data1++);
/* Decrement the loop counter */
data_size -= 4u;
}
#endif
while (data_size > 0u) {
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Calculate dot product and then store the result in a temporary buffer. */
sum += (*data0++) * (*data1++);
/* Decrement the loop counter */
data_size--;
}
/* Directly accumulate the result back in the destination buffer */
*out += sum;
}
#undef AI_MATH_DOT_ARRAY
#define AI_MATH_DOT_ARRAY(dst, src0, src1, size) \
{ __ai_math_dot_array(dst, src0, src1, size); }
#else /* STM32_DOT_INLINE_OPTIM */
#undef AI_MATH_DOT_ARRAY
#define AI_MATH_DOT_ARRAY(dst, src0, src1, size) \
{ ai_math_dot_array(dst, src0, src1, size); }
#endif
/*!
* @defgroup math_helpers Math helpers
* @brief Common math functions
*
* Math functions are mapped to the underlying platform through those utility
* functions. On x86 and ARM v7 they are mapped to the float math functions in
* the C99 standard library; on MCUs they are mapped to the ARM DSP functions.
*/
/*!
* @brief platform optimized dot product of float vectors
*
* Computes the dot product between vectors and adds the result to out.
* @ingroup math_helpers
* @param out scalar result of the dot product
* @param data0 the first float vector
* @param data1 the second float vector
* @param data_size the size of both vectors
*/
AI_INTERFACE_ENTRY
void ai_math_dot_array(
ai_float* out,
const ai_float* data0,
const ai_float* data1,
const ai_size data_size);
/*!
* @brief ErfInv a float value
* @ingroup math_helpers
* @param x input value
* @return square root of the value
*/
AI_INTERFACE_ENTRY ai_float ai_math_erfinv(const ai_float x);
/*!
* @brief platform optimized exponential on a float value
* @ingroup math_helpers
* @param x input value
* @return exponential of the value
*/
AI_INTERFACE_ENTRY ai_float ai_math_exp(const ai_float x);
/*!
* @brief platform logical not
* @ingroup math_helpers
* @param x input value
* @return not of the value
*/
AI_INTERFACE_ENTRY ai_bool ai_logical_not(const ai_bool x);
/*!
* @brief platform optimized pow on a float value
* @ingroup math_helpers
* @param x input value
* @param e input value
* @return pow of the value ^ e
*/
AI_INTERFACE_ENTRY ai_float ai_math_pow(const ai_float x, const ai_float e);
/*!
* @brief platform optimized tangent on a float value
* @ingroup math_helpers
* @param x input value
* @return hyperbolic tangent of the value
*/
AI_INTERFACE_ENTRY ai_float ai_math_tanh(const ai_float x);
/*!
* @brief platform optimized relu on a float value
* @ingroup math_helpers
* @param x input value
* @return relu of the value ( x if x>0 else 0)
*/
AI_INTERFACE_ENTRY ai_float ai_math_relu(const ai_float x);
/*!
* @brief platform optimized parametric relu on a float value
* @ingroup math_helpers
* @param x input value
* @param slope input value
* @return parametric relu of the value
*/
AI_INTERFACE_ENTRY ai_float ai_math_prelu(const ai_float x, const ai_float slope);
/*!
* @brief platform optimized parametric sigmoid on a float value
* @ingroup math_helpers
* @param x input value
* @return sigmoid of the value
*/
AI_INTERFACE_ENTRY ai_float ai_math_sigmoid(const ai_float x);
/*!
* @brief platform optimized parametric hard sigmoid on a float value
* @ingroup math_helpers
* @param x input value
* @return hard sigmoid of the value
*/
AI_INTERFACE_ENTRY ai_float ai_math_hard_sigmoid(const ai_float x); // const ai_float alpha, const ai_float beta);
/*!
* @brief platform optimized parametric swish on a float value
* @ingroup math_helpers
* @param x input value
* @return swish of the value
*/
AI_INTERFACE_ENTRY ai_float ai_math_swish(const ai_float x);
/*!
* @brief platform optimized parametric hard_swish on a float value
* @ingroup math_helpers
* @param x input value
* @return hard_swish of the value
*/
AI_INTERFACE_ENTRY ai_float ai_math_hard_swish(const ai_float x);
/*!
* @brief platform optimized parametric sign function on a float value
* @ingroup math_helpers
* @param x input value
* @return sign of the value
*/
AI_INTERFACE_ENTRY ai_float ai_math_sign(const ai_float x);
/*!
* @brief optimized parametric rectified linear unit on a float value
* @ingroup math_helpers
* @param x input value
* @param slope parameter value
* @return x if x is positive and x*slope otherwise
*/
AI_INTERFACE_ENTRY ai_float ai_fast_prelu(const ai_float x, const ai_float slope);
AI_INTERFACE_ENTRY void ai_div(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_div_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_div_f32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_div_buffer_f32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_div_s32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_div_buffer_s32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_div_s16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_div_buffer_s16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_div_s8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_div_buffer_s8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_div_u32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_div_buffer_u32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_div_u16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_div_buffer_u16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_div_u8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_div_buffer_u8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_div_buffer_INT8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop,
const ai_handle pScale1, const ai_handle pZp1, const ai_handle pScale2, const ai_handle pZp2,
const ai_handle pScaleout, const ai_handle pZpout, const ai_i32 scalar_op);
AI_INTERFACE_ENTRY void ai_div_buffer_UINT8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop,
const ai_handle pScale1, const ai_handle pZp1, const ai_handle pScale2, const ai_handle pZp2,
const ai_handle pScaleout, const ai_handle pZpout, const ai_i32 scalar_op);
AI_INTERFACE_ENTRY void ai_bitshift_right(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_bitshift_right_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_bitshift_right_u32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_bitshift_right_buffer_u32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_bitshift_right_u16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_bitshift_right_buffer_u16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_bitshift_right_u8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_bitshift_right_buffer_u8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_bitshift_left(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_bitshift_left_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_bitshift_left_u32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_bitshift_left_buffer_u32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_bitshift_left_u16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_bitshift_left_buffer_u16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_bitshift_left_u8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_bitshift_left_buffer_u8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_floor_div(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_floor_div_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_floor_mod(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_floor_mod_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_max(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_max_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_max_f32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_max_buffer_f32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_max_s32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_max_buffer_s32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_max_s16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_max_buffer_s16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_max_s8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_max_buffer_s8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_max_u32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_max_buffer_u32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_max_u16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_max_buffer_u16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_max_u8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_max_buffer_u8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_max_buffer_INT8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop,
const ai_handle pScale1, const ai_handle pZp1, const ai_handle pScale2, const ai_handle pZp2,
const ai_handle pScaleout, const ai_handle pZpout, const ai_i32 scalar_op);
AI_INTERFACE_ENTRY void ai_max_buffer_UINT8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop,
const ai_handle pScale1, const ai_handle pZp1, const ai_handle pScale2, const ai_handle pZp2,
const ai_handle pScaleout, const ai_handle pZpout, const ai_i32 scalar_op);
AI_INTERFACE_ENTRY void ai_min(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_min_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_min_f32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_min_buffer_f32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_min_s32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_min_buffer_s32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_min_s16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_min_buffer_s16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_min_s8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_min_buffer_s8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_min_u32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_min_buffer_u32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_min_u16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_min_buffer_u16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_min_u8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_min_buffer_u8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_min_buffer_INT8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop,
const ai_handle pScale1, const ai_handle pZp1, const ai_handle pScale2, const ai_handle pZp2,
const ai_handle pScaleout, const ai_handle pZpout, const ai_i32 scalar_op);
AI_INTERFACE_ENTRY void ai_min_buffer_UINT8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop,
const ai_handle pScale1, const ai_handle pZp1, const ai_handle pScale2, const ai_handle pZp2,
const ai_handle pScaleout, const ai_handle pZpout, const ai_i32 scalar_op);
AI_INTERFACE_ENTRY void ai_mul(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_mul_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_mul_f32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_mul_buffer_f32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_mul_s32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_mul_buffer_s32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_mul_s16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_mul_buffer_s16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_mul_s8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_mul_buffer_s8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_mul_u32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_mul_buffer_u32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_mul_u16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_mul_buffer_u16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_mul_u8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_mul_buffer_u8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_mul_buffer_INT8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop,
const ai_handle pScale1, const ai_handle pZp1, const ai_handle pScale2, const ai_handle pZp2,
const ai_handle pScaleout, const ai_handle pZpout, const ai_i32 scalar_op);
AI_INTERFACE_ENTRY void ai_mul_buffer_UINT8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop,
const ai_handle pScale1, const ai_handle pZp1, const ai_handle pScale2, const ai_handle pZp2,
const ai_handle pScaleout, const ai_handle pZpout, const ai_i32 scalar_op);
AI_INTERFACE_ENTRY void ai_pow(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_pow_buffer(ai_handle out, const ai_handle b, const ai_handle e, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sub(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sub_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sub_f32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sub_buffer_f32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sub_s32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sub_buffer_s32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sub_s16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sub_buffer_s16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sub_s8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sub_buffer_s8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sub_u32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sub_buffer_u32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sub_u16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sub_buffer_u16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sub_u8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sub_buffer_u8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sub_buffer_INT8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop,
const ai_handle pScale1, const ai_handle pZp1, const ai_handle pScale2, const ai_handle pZp2,
const ai_handle pScaleout, const ai_handle pZpout, const ai_i32 scalar_op);
AI_INTERFACE_ENTRY void ai_sub_buffer_UINT8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop,
const ai_handle pScale1, const ai_handle pZp1, const ai_handle pScale2, const ai_handle pZp2,
const ai_handle pScaleout, const ai_handle pZpout, const ai_i32 scalar_op);
AI_INTERFACE_ENTRY void ai_sum(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sum_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sum_f32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sum_buffer_f32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sum_s32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sum_buffer_s32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sum_s16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sum_buffer_s16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sum_s8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sum_buffer_s8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sum_u32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sum_buffer_u32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sum_u16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sum_buffer_u16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sum_u8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_sum_buffer_u8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_sum_buffer_INT8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop,
const ai_handle pScale1, const ai_handle pZp1, const ai_handle pScale2, const ai_handle pZp2,
const ai_handle pScaleout, const ai_handle pZpout, const ai_i32 scalar_op);
AI_INTERFACE_ENTRY void ai_sum_buffer_UINT8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop,
const ai_handle pScale1, const ai_handle pZp1, const ai_handle pScale2, const ai_handle pZp2,
const ai_handle pScaleout, const ai_handle pZpout, const ai_i32 scalar_op);
AI_INTERFACE_ENTRY void ai_and(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_and_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_or(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_or_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_xor(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_xor_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_f32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_buffer_f32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_s32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_buffer_s32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_s16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_buffer_s16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_s8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_buffer_s8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_u32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_buffer_u32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_u16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_buffer_u16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_u8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_buffer_u8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_or_equal(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_or_equal_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_or_equal_f32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_or_equal_buffer_f32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_or_equal_s32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_or_equal_buffer_s32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_or_equal_s16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_or_equal_buffer_s16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_or_equal_s8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_or_equal_buffer_s8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_or_equal_u32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_or_equal_buffer_u32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_or_equal_u16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_or_equal_buffer_u16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_greater_or_equal_u8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_greater_or_equal_buffer_u8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_f32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_buffer_f32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_s32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_buffer_s32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_s16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_buffer_s16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_s8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_buffer_s8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_u32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_buffer_u32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_u16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_buffer_u16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_u8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_buffer_u8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_or_equal(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_or_equal_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_or_equal_f32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_or_equal_buffer_f32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_or_equal_s32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_or_equal_buffer_s32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_or_equal_s16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_or_equal_buffer_s16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_or_equal_s8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_or_equal_buffer_s8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_or_equal_u32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_or_equal_buffer_u32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_or_equal_u16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_or_equal_buffer_u16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_less_or_equal_u8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_less_or_equal_buffer_u8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_equal(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_equal_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_equal_f32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_equal_buffer_f32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_equal_s32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_equal_buffer_s32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_equal_s16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_equal_buffer_s16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_equal_s8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_equal_buffer_s8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_equal_u32(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_equal_buffer_u32(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_equal_u16(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_equal_buffer_u16(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_equal_u8(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_equal_buffer_u8(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_INTERFACE_ENTRY void ai_squared_diff(ai_handle out, const ai_handle a, const ai_handle b);
AI_INTERFACE_ENTRY void ai_squared_diff_buffer(ai_handle out, const ai_handle a, const ai_handle b, const ai_size loop);
AI_API_DECLARE_END
#endif /* AI_MATH_HELPERS_H */
| 34,676 | C | 61.820652 | 137 | 0.706252 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers_ml_treeensembleregressor.h | /**
******************************************************************************
* @file layers_svmregressor.h
* @author AIS
* @brief header file of AI platform SVM Regressor datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_TREE_ENSEMBLE_REGRESSOR_H
#define LAYERS_TREE_ENSEMBLE_REGRESSOR_H
#pragma once
#include "layers_common.h"
#include "layers_ml_treeensembleclassifier.h"
#include "layers_nl.h"
/*!
* @defgroup layers_svmreg Layers Definitions
* @brief definition
*
*/
AI_API_DECLARE_BEGIN
typedef AI_ALIGNED_TYPE(struct, 4) ai_layer_tree_ensemble_regressor_ {
AI_LAYER_COMMON_FIELDS_DECLARE
func_nl nl_func;
uint8_t all_weights_are_positive;
ai_float nodes_values_offset;
ai_float nodes_values_scale;
ai_float target_weights_offset;
ai_float target_weights_scale;
} ai_layer_tree_ensemble_regressor;
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Decodes the TreeEnsembleRegressor ML operator.
* @ingroup layers_svmreg
* @param layer tree ensemble regressor layer
*/
AI_INTERNAL_API
void forward_tree_ensemble_regressor(ai_layer *pLayer);
AI_API_DECLARE_END
#endif /*LAYERS_SVMREGRESSOR_H*/
| 1,923 | C | 29.0625 | 80 | 0.520021 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/lite_pool_f32.h | /**
******************************************************************************
* @file lite_maxpool_dqnn.h
* @author AIS
* @brief header file of AI platform lite maxpool kernel datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LITE_POOL_F32_H
#define LITE_POOL_F32_H
#include "ai_lite_interface.h"
#define FUNC_POOL(handle) \
((func_pool)(handle))
/*!
* @typedef (*func_pool)
* @ingroup layers_pool
* @brief Fuction pointer for generic pooling transform
* this function pointer abstracts a generic pooling layer.
* see @ref pool_func_ap_array_f32 as examples
*/
typedef void (*func_pool)(ai_float* in,
const ai_u16 dim_im_in_x, const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_u16 dim_kernel_x, const ai_u16 dim_kernel_y,
const ai_u16 padding_x, const ai_u16 padding_y,
const ai_u16 stride_x, const ai_u16 stride_y,
const ai_u16 dim_im_out_x, const ai_u16 dim_im_out_y,
ai_float* out);
/******************************************************************************/
/** Conv2d Functions Section **/
/******************************************************************************/
AI_INTERNAL_API
void pool_func_mp_array_f32(ai_float* pData_in,
const ai_u16 dim_im_in_x, const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_u16 dim_kernel_x, const ai_u16 dim_kernel_y,
const ai_u16 padding_x, const ai_u16 padding_y,
const ai_u16 stride_x, const ai_u16 stride_y,
const ai_u16 dim_im_out_x, const ai_u16 dim_im_out_y,
ai_float* pData_out);
AI_INTERNAL_API
void pool_func_ap_array_f32(ai_float *pData_in,
const ai_u16 dim_im_in_x, const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_u16 dim_kernel_x, const ai_u16 dim_kernel_y,
const ai_u16 padding_x, const ai_u16 padding_y,
const ai_u16 stride_x, const ai_u16 stride_y,
const ai_u16 dim_im_out_x, const ai_u16 dim_im_out_y,
ai_float *pData_out);
#endif // LITE_POOL_F32_H_
| 2,936 | C | 39.232876 | 80 | 0.466962 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/lite_gru_f32.h | #ifndef LITE_GRU_F32_H
#define LITE_GRU_F32_H
#pragma once
#include "ai_lite_interface.h"
/*!
* @brief Forward function for a stateless GRU (gate recurrent unit) layer with
* signed float input, signed float output, and float parameters.
* @ingroup lite_gru_f32
* @param output The pointer to output buffer.
* @param input The pointer to input buffer.
* @param gru_kernel The pointer to gru kernel param.
* @param gru_recurrent The pointer to gru recurrent param.
* @param gru_bias The pointer to bias.
* @param gru_scratch The pointer to GRU scratch.
* @param n_units The number of GRU cells (dimensionality of output space).
* @param n_timesteps The number of timesteps of the input sequence.
* @param n_features The number of features of the input sequence.
* @param activation_nl The activation function used to update memory state.
* @param recurrent_nl The activation function to use for the recurrent step.
* @param return_seq If True, returns the full output sequence, else only the last output.
* @param go_backwards If True, process the input sequence backwards.
* @param reverse_seq If True, reverse the input sequence
* @param reset_after Whether to apply reset gate after (True) or before (False) matmul.
* @param activation_param The parameters for activation_nl (can be NULL)
* @param recurrent_param The parameters for recurrent_nl (can be NULL)
*/
LITE_API_ENTRY
void forward_lite_gru_if32of32wf32(
ai_float* output, const ai_float* input, const ai_float* gru_kernel,
const ai_float* gru_recurrent, const ai_float* gru_bias, ai_float* gru_scratch,
const ai_u32 n_units, const ai_size n_timesteps, const ai_size n_features,
ai_handle activation_nl, ai_handle recurrent_nl, ai_bool return_seq,
ai_bool go_backwards, ai_bool reverse_seq, ai_bool reset_after,
const ai_float* activation_param, const ai_float* recurrent_param);
#endif /* LITE_GRU_F32_H */
| 1,910 | C | 46.774999 | 90 | 0.746597 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/lite_dense_is1.h | #ifndef _LITE_DENSE_IS1_H
#define _LITE_DENSE_IS1_H
#pragma once
#include "ai_lite_interface.h"
/*!
* @brief Forward function for a dense layer with signed binary input,
* signed float output, and float weights.
* @ingroup lite_dense_is1
* @param output The pointer to output buffer.
* @param input The pointer to input buffer.
* @param weights The pointer to weights.
* @param bias The pointer to bias (NULL if not available).
* @param scratch The pointer to the scratch buffer (unused).
* @param n_channel_in The number of channels of the input.
* @param n_channel_ouy The number of channels of the output, i.e.,
* the number of dense hidden neurons.
*/
LITE_API_ENTRY
void forward_lite_dense_is1of32wf32(
ai_float *output, const ai_pbits *input, const ai_float *weights,
const ai_float *bias, ai_float *scratch,
const ai_u32 n_channel_in, const ai_u32 n_channel_out
);
/*!
* @brief Forward function for a dense layer with signed binary input,
* signed float output, and float weights.
* The BN is fused, i.e., the layer requires weights, scale, and offset, where
* weights are those of the dense layer, scale is that of the BN, and the offset
* corresponds to dense bias * bn scale + bn offset. If the parameters do not
* agree with such convention, the behavior is undefined.
* @ingroup lite_dense_is1
* @param output The pointer to output buffer.
* @param input The pointer to input buffer.
* @param weights The pointer to weights.
* @param scale The pointer to scale.
* @param offset The pointer to offset.
* @param scratch The pointer to the scratch buffer (unused).
* @param n_channel_in The number of channels of the input.
* @param n_channel_ouy The number of channels of the output, i.e.,
* the number of dense hidden neurons.
*/
LITE_API_ENTRY
void forward_lite_dense_is1of32wf32_bn(
ai_float *output, const ai_pbits *input, const ai_float *weights,
const ai_float *scale, const ai_float *offset, ai_float *scratch,
const ai_u32 n_channel_in, const ai_u32 n_channel_out
);
#endif /*_LITE_DENSE_IS1_H*/
| 2,078 | C | 36.799999 | 80 | 0.720404 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/lite_nl_generic_float.h | #ifndef LITE_NL_GENERIC_FLOAT_H
#define LITE_NL_GENERIC_FLOAT_H
#pragma once
#include "ai_lite_interface.h"
#define LITE_NL_ENTRY(nl_id_, nl_name_, nl_op_, nl_op_args_) \
/** \
* @brief lite function for a templated non-linearity nl_op_. \
* @ingroup lite_nl_generic_float \
* @param out_ptr The pointer to output buffer. \
* @param in_ptr The pointer to input buffer. \
* @param in_size. The size of the input. \
* @param params opaque handler to optional NL params (not used). \
*/ \
LITE_API_ENTRY \
void forward_lite_nl_ ## nl_name_ ## _if32of32( \
ai_handle out_ptr, const ai_handle in_ptr, const ai_i32 in_size, const ai_handle params);
#include "lite_nl_list.h"
/**
* @brief lite function for a float softmax non-linearity where the softmax is applied per channel.
* @ingroup lite_nl_generic_float
* @param output The pointer to output buffer.
* @param input The pointer to input buffer.
* @param in_size. The size of the input.
* @param channel_size The nsize of each channel.
* @param in_channel_step
* @param out_channel_step
*/
LITE_API_ENTRY
void forward_lite_nl_softmax_if32of32(
ai_handle out_ptr, const ai_handle in_ptr, const ai_i32 in_size, const ai_size ch_size,
const ai_i32 in_ch_step, const ai_i32 out_ch_step);
/**
* @brief lite function for a float softmax zero channel non-linearity where the softmax is applied per channel.
* @ingroup lite_nl_generic_float
* @param output The pointer to output buffer.
* @param input The pointer to input buffer.
* @param in_size. The size of the input.
* @param channel_size The nsize of each channel.
* @param in_channel_step
* @param out_channel_step
*/
LITE_API_ENTRY
void forward_lite_nl_softmax_zero_channel_if32of32(
ai_handle out_ptr, const ai_handle in_ptr, const ai_i32 in_size, const ai_size ch_size,
const ai_i32 in_ch_step, const ai_i32 out_ch_step);
#endif /* LITE_NL_GENERIC_FLOAT_H */
| 1,907 | C | 33.071428 | 112 | 0.708967 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/lite_pw.h | /**
******************************************************************************
* @file lite_pw.h
* @author AIS
* @brief header file of AI platform lite pw kernel datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LITE_PW_H
#define LITE_PW_H
#pragma once
#include "ai_lite_interface.h"
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Handles pw convolutions generic case
* @ingroup lite_pw
*/
LITE_API_ENTRY
void
forward_lite_pw_sssa8_ch(const ai_i8 *pData_in,
const ai_u16 width_in,
const ai_u16 height_in,
const ai_u16 n_channel_in,
const ai_i8 *pWeights,
const ai_u16 n_channel_out,
const ai_i32 *pBias,
const ai_i8 in_zeropoint,
const ai_i8 out_zeropoint,
const ai_layer_format_type out_ch_format,
ai_i8 *pData_out,
ai_u32 height_loop_cnt,
ai_u16 weights_prefetch_enabled,
ai_i32 scratch_size,
ai_i16 *pBuffer_a);
#endif /*LITE_PW_H*/
| 1,973 | C | 34.249999 | 80 | 0.387228 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/ai_lite_inspect.h | /**
******************************************************************************
* @file ai_lite_inspect.h
* @author AST Embedded Analytics Research Platform
* @brief Definitions and implementations of runtime-lite inspection routines
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef AI_LITE_INSPECT_H
#define AI_LITE_INSPECT_H
#pragma once
#include "ai_platform.h"
//#define HAS_LITE_INSPECT
AI_API_DECLARE_BEGIN
/* Types needed by inspect callback signature */
typedef ai_i32 ai_data_format;
typedef ai_i32 ai_data_id;
/* Lite inspect callback definition */
typedef void (*ai_lite_inspect_cb)(
const ai_handle cookie,
const ai_data_id node_id,
const ai_handle data, const ai_size data_size,
const ai_data_format data_fmt, const ai_data_id data_id);
#ifdef HAS_LITE_INSPECT
#define LITE_INSPECT_CB(_node_id, _data, _data_size, _data_fmt, _data_id) { \
if (graph->cb) { \
graph->cb(graph->cb_cookie, \
(ai_data_id)(_node_id), (ai_handle)(_data), (ai_size)(_data_size), \
(ai_data_format)(_data_fmt), (ai_data_id)(_data_id)); \
} \
}
#else
#define LITE_INSPECT_CB(_node_id, _data, _data_size, _data_fmt, _data_id) { \
do { /* LITE_INSPECT_CB() */ } while (0); \
}
#endif /* HAS_LITE_INSPECT */
AI_API_DECLARE_END
#endif /* AI_LITE_INSPECT_H */
| 1,858 | C | 28.507936 | 82 | 0.545748 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/lite_maxpool_dqnn.h | /**
******************************************************************************
* @file lite_maxpool_dqnn.h
* @author AIS
* @brief header file of AI platform lite maxpool kernel datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LITE_MAXPOOL_DQNN_H
#define LITE_MAXPOOL_DQNN_H
#pragma once
#include "ai_lite_interface.h"
/******************************************************************************/
/* Forward Functions Section */
/******************************************************************************/
/*!
* @brief Handles maxpool with binary input and binary output - Lite I/F
* @ingroup lite_maxpool_dqnn
*/
LITE_API_ENTRY
void forward_lite_maxpool_is1os1(const ai_u32 *pDataIn_init,
ai_u32 *pDataOut_init,
const ai_i32 width_in,
const ai_i32 width_out,
const ai_i32 height_in,
const ai_i32 height_out,
const ai_u32 n_channel_in,
const ai_u32 n_channel_out,
const ai_i32 pool_width,
const ai_i32 pool_height,
const ai_i32 pool_pad_x,
const ai_i32 pool_pad_y,
const ai_i32 pool_stride_x,
const ai_i32 pool_stride_y,
const ai_u32 pool_pad_value,
ai_float *pScratch_32);
/*!
* @brief Handles maxpool with 8 bits signed input and output with a positive scale of the input- Lite I/F
* @ingroup lite_maxpool_dqnn
*/
LITE_API_ENTRY
void forward_lite_maxpool_is8os8_scalepos(const ai_i8 *pDataIn,
ai_i8 *pDataOut,
const ai_u16 dim_im_in_x, const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_u16 dim_kernel_x, const ai_u16 dim_kernel_y,
const ai_u16 padding_x, const ai_u16 padding_y,
const ai_u16 stride_x, const ai_u16 stride_y,
const ai_u16 dim_im_out_x, const ai_u16 dim_im_out_y,
const ai_float InOut_ScaleRatio,
const ai_i8 In_ZeroPoint,
const ai_i8 Out_ZeroPoint);
/*!
* @brief Handles maxpool with 8 bits signed input and output with a negative scale of the input- Lite I/F
* @ingroup lite_maxpool_dqnn
*/
LITE_API_ENTRY
void forward_lite_maxpool_is8os8_scaleneg(const ai_i8 *pDataIn,
ai_i8 *pDataOut,
const ai_u16 dim_im_in_x, const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_u16 dim_kernel_x, const ai_u16 dim_kernel_y,
const ai_u16 padding_x, const ai_u16 padding_y,
const ai_u16 stride_x, const ai_u16 stride_y,
const ai_u16 dim_im_out_x, const ai_u16 dim_im_out_y,
const ai_float InOut_ScaleRatio,
const ai_i8 In_ZeroPoint,
const ai_i8 Out_ZeroPoint);
/*!
* @brief Handles maxpool with 8 bits unsigned input and output with a positive scale of the input- Lite I/F
* @ingroup lite_maxpool_dqnn
*/
LITE_API_ENTRY
void forward_lite_maxpool_iu8ou8_scalepos(const ai_u8 *pDataIn,
ai_u8 *pDataOut,
const ai_u16 dim_im_in_x, const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_u16 dim_kernel_x, const ai_u16 dim_kernel_y,
const ai_u16 padding_x, const ai_u16 padding_y,
const ai_u16 stride_x, const ai_u16 stride_y,
const ai_u16 dim_im_out_x, const ai_u16 dim_im_out_y,
const ai_float InOut_ScaleRatio,
const ai_u8 In_ZeroPoint,
const ai_u8 Out_ZeroPoint);
/*!
* @brief Handles maxpool with 8 bits unsigned input and output with a negative scale of the input- Lite I/F
* @ingroup lite_maxpool_dqnn
*/
LITE_API_ENTRY
void forward_lite_maxpool_iu8ou8_scaleneg(const ai_u8 *pDataIn,
ai_u8 *pDataOut,
const ai_u16 dim_im_in_x, const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_u16 dim_kernel_x, const ai_u16 dim_kernel_y,
const ai_u16 padding_x, const ai_u16 padding_y,
const ai_u16 stride_x, const ai_u16 stride_y,
const ai_u16 dim_im_out_x, const ai_u16 dim_im_out_y,
const ai_float InOut_ScaleRatio,
const ai_u8 In_ZeroPoint,
const ai_u8 Out_ZeroPoint);
/*!
* @brief Handles maxpool with 16 bits signed input and output with a positive scale of the input- Lite I/F
* @ingroup lite_maxpool_dqnn
*/
LITE_API_ENTRY
void forward_lite_maxpool_is16os16_scalepos(const ai_i16 *pApInput,
ai_i16 *pApOutput,
const ai_u16 dim_im_in_x, const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_u16 dim_kernel_x, const ai_u16 dim_kernel_y,
const ai_u16 padding_x, const ai_u16 padding_y,
const ai_u16 stride_x, const ai_u16 stride_y,
const ai_u16 dim_im_out_x, const ai_u16 dim_im_out_y,
const ai_float InOut_ScaleRatio,
const ai_i16 In_ZeroPoint,
const ai_i16 Out_ZeroPoint);
/*!
* @brief Handles maxpool with 16 bits unsigned input and output with a positive scale of the input- Lite I/F
* @ingroup lite_maxpool_dqnn
*/
LITE_API_ENTRY
void forward_lite_maxpool_iu16ou16_scalepos(const ai_u16 *pApInput,
ai_u16 *pApOutput,
const ai_u16 dim_im_in_x, const ai_u16 dim_im_in_y,
const ai_u16 ch_im_in,
const ai_u16 dim_kernel_x, const ai_u16 dim_kernel_y,
const ai_u16 padding_x, const ai_u16 padding_y,
const ai_u16 stride_x, const ai_u16 stride_y,
const ai_u16 dim_im_out_x, const ai_u16 dim_im_out_y,
const ai_float InOut_ScaleRatio,
const ai_u16 In_ZeroPoint,
const ai_u16 Out_ZeroPoint);
#endif /*LITE_MAXPOOL_DQNN_H*/
| 8,459 | C | 51.546584 | 109 | 0.422154 |
Tbarkin121/GuardDog/stm32/AnymalNet/Middlewares/ST/AI/Inc/layers_common.h | /**
******************************************************************************
* @file layers_common.h
* @author AST Embedded Analytics Research Platform
* @brief header file of AI platform layers datatypes
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
@endverbatim
******************************************************************************
*/
#ifndef LAYERS_COMMON_H
#define LAYERS_COMMON_H
#pragma once
// #include <stdlib.h>
#ifdef USE_CYCLE_MEASUREMENTS
#include "layers_cycles_estimation.h"
#endif
#include "ai_platform.h"
#include "ai_common_config.h"
#include "core_common.h"
/* optimizations */
#define AI_OPTIM_DICT8_DOT_ARRAY_F32 (1)
#define AI_OPTIM_DICT8_DTCM (1)
#define AI_OPTIM_FUNC_MP_ARRAY_F32 (0)
#define AI_LAYER_OBJ(obj_) \
((ai_layer_base*)(obj_))
#define AI_LAYER_FUNC(func_) \
((layer_func)(func_))
#define AI_LAYER_TYPE(type_) \
( (ai_layer_type)((ai_u32)(type_)&0xFFFF) )
#define AI_LAYER_TYPE_ENTRY(type_) \
AI_CONCAT(AI_CONCAT(AI_LAYER_, type_), _TYPE)
#define AI_LAYER_TYPE_NAME(type_) \
ai_layer_type_name(AI_LAYER_TYPE(type_))
#if (AI_TOOLS_API_VERSION <= AI_TOOLS_API_VERSION_1_3)
#pragma message ("Including deprecated AI_LAYER_OBJ_INIT, AI_LAYER_OBJ_DECLARE")
AI_DEPRECATED
#define AI_LAYER_OBJ_INIT(type_, id_, network_, \
next_, forward_, ...) \
{ \
AI_NODE_COMMON_INIT(AI_CONCAT(AI_LAYER_, type_), id_, 0x0, \
NULL, network_, next_, forward_), \
## __VA_ARGS__ \
}
AI_DEPRECATED
#define AI_LAYER_OBJ_DECLARE(varname_, id_, type_, struct_, forward_func_, \
network_, next_, attr_, ...) \
AI_ALIGNED(4) \
attr_ AI_CONCAT(ai_layer_, struct_) varname_ = \
AI_LAYER_OBJ_INIT(type_, id_, network_, \
next_, forward_func_, \
## __VA_ARGS__);
#else
#define AI_LAYER_OBJ_INIT(type_, id_, flags_, klass_, network_, \
next_, forward_, tensors_, ...) \
{ \
AI_NODE_COMMON_INIT(AI_CONCAT(AI_LAYER_, type_), id_, flags_, \
klass_, network_, next_, forward_), \
.tensors = (tensors_), \
## __VA_ARGS__ \
}
#define AI_LAYER_OBJ_DECLARE( \
varname_, id_, \
type_, flags_, klass_obj_, \
struct_, forward_func_, \
tensors_chain_, \
network_, next_, attr_, ...) \
AI_ALIGNED(4) \
attr_ AI_CONCAT(ai_layer_, struct_) varname_ = \
AI_LAYER_OBJ_INIT(type_, id_, flags_, klass_obj_, network_, \
next_, forward_func_, tensors_chain_, ## __VA_ARGS__);
#endif /* AI_TOOLS_API_VERSION_1_3 */
#ifdef HAS_AI_ASSERT
#define AI_LAYER_IO_GET(layer_, in_, out_) \
ASSERT_LAYER_SANITY(layer_) \
const ai_tensor* in_ = GET_TENSOR_IN((layer_)->tensors, 0); \
ai_tensor* out_ = GET_TENSOR_OUT((layer_)->tensors, 0); \
ASSERT_TENSOR_DATA_SANITY(in_) \
ASSERT_TENSOR_DATA_SANITY(out_)
#define AI_LAYER_TENSOR_LIST_IO_GET(layer_, tlist_in_, tlist_out_) \
ASSERT_LAYER_SANITY(layer_) \
const ai_tensor_list* tlist_in_ = GET_TENSOR_LIST_IN((layer_)->tensors); \
ai_tensor_list* tlist_out_ = GET_TENSOR_LIST_OUT((layer_)->tensors); \
ASSERT_TENSOR_LIST_SANITY(tlist_in_) \
ASSERT_TENSOR_LIST_SANITY(tlist_out_)
#define AI_LAYER_WEIGHTS_GET(layer_, weights_, bias_) \
const ai_tensor* weights_ = GET_TENSOR_WEIGHTS((layer_)->tensors, 0); \
const ai_tensor* bias_ = (GET_TENSOR_LIST_SIZE(GET_TENSOR_LIST_WEIGTHS((layer_)->tensors))>1) \
? GET_TENSOR_WEIGHTS((layer_)->tensors, 1) \
: NULL; \
ASSERT_TENSOR_DATA_SANITY(weights_) \
if (bias_) { ASSERT_TENSOR_DATA_SANITY(bias_) }
#else
#define AI_LAYER_IO_GET(layer_, in_, out_) \
const ai_tensor* in_ = GET_TENSOR_IN((layer_)->tensors, 0); \
ai_tensor* out_ = GET_TENSOR_OUT((layer_)->tensors, 0);
#define AI_LAYER_TENSOR_LIST_IO_GET(layer_, tlist_in_, tlist_out_) \
const ai_tensor_list* tlist_in_ = GET_TENSOR_LIST_IN((layer_)->tensors); \
ai_tensor_list* tlist_out_ = GET_TENSOR_LIST_OUT((layer_)->tensors);
#define AI_LAYER_WEIGHTS_GET(layer_, weights_, bias_) \
const ai_tensor* weights_ = GET_TENSOR_WEIGHTS((layer_)->tensors, 0); \
const ai_tensor* bias_ = (GET_TENSOR_LIST_SIZE(GET_TENSOR_LIST_WEIGTHS((layer_)->tensors))>1) \
? GET_TENSOR_WEIGHTS((layer_)->tensors, 1) \
: NULL; \
#endif /*HAS_AI_ASSERT*/
AI_API_DECLARE_BEGIN
/*!
* @defgroup layers_common Layers Common
* @brief Implementation of the common layers datastructures
* This header enumerates the layers specific definition implemented in the
* library toghether with the macros and datatypes used to manipulate them.
*/
/*!
* @typedef (*func_copy_tensor)
* @ingroup layers_common
* @brief Fuction pointer for generic tensor copy routines
* this function pointer abstracts a generic tensor copy routine.
*/
typedef ai_bool (*func_copy_tensor)(ai_tensor* dst, const ai_tensor* src);
/*!
* @enum ai_layer_type
* @ingroup layers_common
* @brief ai_tools supported layers type id
*/
typedef enum {
#define LAYER_ENTRY(type_, id_, struct_, forward_func_, init_func_, destroy_func_) \
AI_LAYER_TYPE_ENTRY(type_) = id_,
#include "layers_list.h"
} ai_layer_type;
#define AI_LAYER_COMMON_FIELDS_DECLARE \
AI_NODE_COMMON_FIELDS_DECLARE
#define AI_LAYER_STATEFUL_FIELDS_DECLARE \
AI_NODE_STATEFUL_FIELDS_DECLARE
/*!
* @typedef void (*layer_func)(struct ai_layer_* layer)
* @ingroup layers_common
* @brief Callback signatures for all layers forward functions
*/
typedef node_func layer_func;
/*!
* @struct ai_layer_base
* @ingroup layers_common
* @brief Structure encoding a base layer in the network
*
*/
typedef ai_node ai_layer_base;
/*!
* @struct ai_layer_stateful
* @ingroup layers_common
* @brief Structure encoding a stateful layer in the network
*
*/
typedef ai_node_stateful ai_layer_stateful;
/*!
* @brief Check the custom network types against the internally compiled ones
* Helper function to check if the private APIs where compiled with a different
* `datatypes_network.h` than the one provided to the caller.
* @ingroup layers_common
* @param signatures list of type sizes signatures (first element is the number of types)
* @return false if there is a type size mismatch
*/
AI_INTERNAL_API
ai_bool ai_check_custom_types(const ai_custom_type_signature* signatures);
/*!
* @brief Helper API to retrieve a human readable layer type from enum
* @ingroup layers_common
* @param type in type of layer
* @return string defining the type of the layer
*/
AI_INTERNAL_API
const char* ai_layer_type_name(const ai_layer_type type);
/*!
* @brief Helper API to check if a node is a valid layer type
* @ingroup layers_common
* @param type in type of layer
* @return true if the layer is one of the ones listed in the enum,
* false otherwise
*/
AI_INTERNAL_API
ai_bool ai_layer_type_is_valid(const ai_layer_type type);
#ifdef HAS_AI_ASSERT
/*!
* @brief chack scratch size computed with actual scratch buffer size
* @ingroup layers
* @param layer_type the layer type
* @param fmt buffers format
* @param filt_width filter width (when relevant)
* @param filt_height filter height (when relevant)
* @param n_channel_in the number of channels in
* @param n_channel_out the number of channels out
* @param is_pointwise is pointwise convulation (conv2d)
* @param is_rgb is rgb convolution (conv2d)
* @param is depthwise is depthwise convolution (conv2d)
* @param is_ch_wise has weights per channel
* @param is_sssa is signed
* @param p_tensor_scratch the scratch tensor
* @param p_function_name the name of the function
* @param line_nb the the line of the function
*/
AI_INTERNAL_API
ai_size ai_layer_get_scratch_size( ai_layer_type layer_type, ai_array_format fmt,
ai_size filt_width, ai_size filt_height,
ai_u16 n_channel_in, ai_u16 n_channel_out,
ai_bool is_pointwise, ai_bool is_rgb,
ai_bool is_depthwise, ai_bool is_ch1st, ai_bool is_ch_wise,
ai_bool is_sss);
/*!
* @brief chack scratch size computed with actual scratch buffer size
* @ingroup layers
* @param layer_type the layer type
* @param fmt buffers format
* @param filt_width filter width (when relevant)
* @param filt_height filter height (when relevant)
* @param n_channel_in the number of channels in
* @param n_channel_out the number of channels out
* @param is_pointwise is pointwise convulation (conv2d)
* @param is_rgb is rgb convolution (conv2d)
* @param is depthwise is depthwise convolution (conv2d)
* @param is_ch_wise has weights per channel
* @param is_sssa is signed
* @param p_tensor_scratch the scratch tensor
* @param p_function_name the name of the function
* @param line_nb the the line of the function
*/
AI_INTERNAL_API
void ai_layer_check_scratch_size( ai_layer_type layer_type, ai_array_format fmt,
ai_size filt_width, ai_size filt_height,
ai_u16 n_channel_in, ai_u16 n_channel_out,
ai_bool is_pointwise, ai_bool is_rgb,
ai_bool is_depthwise, ai_bool is_ch1st, ai_bool is_ch_wise,
ai_bool is_sssa, ai_tensor *p_tensor_scratch,
const char *p_function_name, int line_nb);
#define CHECK_SCRATCH_BUFFER_SIZE( layer_type, fmt, \
filt_width, filt_height, \
n_channel_in, n_channel_out, \
is_pointwise, is_rgb, \
is_depthwise, is_ch1st, is_ch_wise, \
is_sssa_ch, p_tensor_scratch) \
ai_layer_check_scratch_size(layer_type, fmt, \
filt_width, filt_height, \
n_channel_in, n_channel_out, \
is_pointwise, is_rgb, \
is_depthwise, is_ch1st, is_ch_wise, \
is_sssa_ch, p_tensor_scratch,\
__FUNCTION__, __LINE__);
#endif
AI_API_DECLARE_END
#endif /*LAYERS_COMMON_H*/
| 10,739 | C | 34.681063 | 99 | 0.607133 |
Tbarkin121/GuardDog/stm32/AnymalNet/X-CUBE-AI/constants_ai.h | /**
******************************************************************************
* @file constants.h
* @author X-CUBE-AI C code generator
* @brief AI constants definitions
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __CONSTANTS_H
#define __CONSTANTS_H
#ifdef __cplusplus
extern "C" {
#endif
/* Constants definitions ------------------------------------------------------------------*/
#ifdef __cplusplus
}
#endif
#endif /*__constants_ai_h_H */
| 975 | C | 30.48387 | 93 | 0.44 |
Tbarkin121/GuardDog/stm32/AnymalNet/X-CUBE-AI/App/network_data.h | /**
******************************************************************************
* @file network_data.h
* @author AST Embedded Analytics Research Platform
* @date Sat Jan 6 20:35:01 2024
* @brief AI Tool Automatic Code Generator for Embedded NN computing
******************************************************************************
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
******************************************************************************
*/
#ifndef NETWORK_DATA_H
#define NETWORK_DATA_H
#pragma once
#include "network_config.h"
#include "network_data_params.h"
AI_DEPRECATED
#define AI_NETWORK_DATA_ACTIVATIONS(ptr_) \
ai_network_data_activations_buffer_get(AI_HANDLE_PTR(ptr_))
AI_DEPRECATED
#define AI_NETWORK_DATA_WEIGHTS(ptr_) \
ai_network_data_weights_buffer_get(AI_HANDLE_PTR(ptr_))
AI_API_DECLARE_BEGIN
extern const ai_u64 s_network_weights_array_u64[7747];
/*!
* @brief Get network activations buffer initialized struct.
* @ingroup network_data
* @param[in] ptr a pointer to the activations array storage area
* @return an ai_buffer initialized struct
*/
AI_DEPRECATED
AI_API_ENTRY
ai_buffer ai_network_data_activations_buffer_get(const ai_handle ptr);
/*!
* @brief Get network weights buffer initialized struct.
* @ingroup network_data
* @param[in] ptr a pointer to the weights array storage area
* @return an ai_buffer initialized struct
*/
AI_DEPRECATED
AI_API_ENTRY
ai_buffer ai_network_data_weights_buffer_get(const ai_handle ptr);
/*!
* @brief Get network weights array pointer as a handle ptr.
* @ingroup network_data
* @return a ai_handle pointer to the weights array
*/
AI_DEPRECATED
AI_API_ENTRY
ai_handle ai_network_data_weights_get(void);
/*!
* @brief Get network params configuration data structure.
* @ingroup network_data
* @return true if a valid configuration is present, false otherwise
*/
AI_API_ENTRY
ai_bool ai_network_data_params_get(ai_network_params* params);
AI_API_DECLARE_END
#endif /* NETWORK_DATA_H */
| 2,262 | C | 26.26506 | 80 | 0.655172 |
Tbarkin121/GuardDog/stm32/AnymalNet/X-CUBE-AI/App/network_data.c | /**
******************************************************************************
* @file network_data.c
* @author AST Embedded Analytics Research Platform
* @date Sat Jan 6 20:35:01 2024
* @brief AI Tool Automatic Code Generator for Embedded NN computing
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
******************************************************************************
*/
#include "network_data.h"
#include "ai_platform_interface.h"
AI_API_DECLARE_BEGIN
ai_buffer g_network_data_map_activations[AI_NETWORK_DATA_ACTIVATIONS_COUNT] = {
AI_BUFFER_INIT(AI_FLAG_NONE, AI_BUFFER_FORMAT_U8,
AI_BUFFER_SHAPE_INIT(AI_SHAPE_BCWH, 4, 1, 1536, 1, 1),
1536, NULL, NULL), /* heap_overlay_pool */
};
ai_buffer g_network_data_map_weights[AI_NETWORK_DATA_WEIGHTS_COUNT] = {
AI_BUFFER_INIT(AI_FLAG_NONE, AI_BUFFER_FORMAT_U8,
AI_BUFFER_SHAPE_INIT(AI_SHAPE_BCWH, 4, 1, 61976, 1, 1),
61976, NULL, s_network_weights_array_u64), /* weights_array */
};
/*!
* @brief Get network activations buffer initialized struct.
* @ingroup network_data
* @param[in] ptr a pointer to the activations array storage area
* @return an ai_buffer initialized struct
*/
AI_DEPRECATED
AI_API_ENTRY
ai_buffer ai_network_data_activations_buffer_get(const ai_handle ptr)
{
ai_buffer buf = AI_BUFFER_INIT(
AI_FLAG_NONE, AI_BUFFER_FORMAT_U8,
AI_BUFFER_SHAPE_INIT(AI_SHAPE_BCWH, 4, 1, AI_NETWORK_DATA_ACTIVATIONS_SIZE, 1, AI_NETWORK_DATA_ACTIVATIONS_COUNT),
AI_NETWORK_DATA_ACTIVATIONS_SIZE,
NULL, ptr);
return buf;
}
/*!
* @brief Get network weights buffer initialized struct.
* @ingroup network_data
* @param[in] ptr a pointer to the weights array storage area
* @return an ai_buffer initialized struct
*/
AI_DEPRECATED
AI_API_ENTRY
ai_buffer ai_network_data_weights_buffer_get(const ai_handle ptr)
{
ai_buffer buf = AI_BUFFER_INIT(
AI_FLAG_NONE, AI_BUFFER_FORMAT_U8|AI_BUFFER_FMT_FLAG_CONST,
AI_BUFFER_SHAPE_INIT(AI_SHAPE_BCWH, 4, 1, AI_NETWORK_DATA_WEIGHTS_SIZE, 1, AI_NETWORK_DATA_WEIGHTS_COUNT),
AI_NETWORK_DATA_WEIGHTS_SIZE,
NULL, ptr);
return buf;
}
/*!
* @brief Get network weights array pointer as a handle ptr.
* @ingroup network_data
* @return a ai_handle pointer to the weights array
*/
AI_DEPRECATED
AI_API_ENTRY
ai_handle ai_network_data_weights_get(void)
{
return AI_HANDLE_PTR(g_network_weights_table);
}
/*!
* @brief Get network params configuration data structure.
* @ingroup network_data
* @return true if a valid configuration is present, false otherwise
*/
AI_API_ENTRY
ai_bool ai_network_data_params_get(ai_network_params* params)
{
if (!params) return false;
const ai_buffer_array map_activations =
AI_BUFFER_ARRAY_OBJ_INIT(AI_FLAG_NONE, AI_NETWORK_DATA_ACTIVATIONS_COUNT, g_network_data_map_activations);
const ai_buffer_array map_weights =
AI_BUFFER_ARRAY_OBJ_INIT(AI_FLAG_NONE, AI_NETWORK_DATA_WEIGHTS_COUNT, g_network_data_map_weights);
return ai_platform_bind_network_params(params, &map_weights, &map_activations);
}
AI_API_DECLARE_END
| 3,411 | C | 31.188679 | 118 | 0.661976 |
Tbarkin121/GuardDog/stm32/AnymalNet/X-CUBE-AI/App/network_data_params.h | /**
******************************************************************************
* @file network_data_params.h
* @author AST Embedded Analytics Research Platform
* @date Sat Jan 6 20:35:01 2024
* @brief AI Tool Automatic Code Generator for Embedded NN computing
******************************************************************************
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
******************************************************************************
*/
#ifndef NETWORK_DATA_PARAMS_H
#define NETWORK_DATA_PARAMS_H
#pragma once
#include "ai_platform.h"
/*
#define AI_NETWORK_DATA_WEIGHTS_PARAMS \
(AI_HANDLE_PTR(&ai_network_data_weights_params[1]))
*/
#define AI_NETWORK_DATA_CONFIG (NULL)
#define AI_NETWORK_DATA_ACTIVATIONS_SIZES \
{ 1536, }
#define AI_NETWORK_DATA_ACTIVATIONS_SIZE (1536)
#define AI_NETWORK_DATA_ACTIVATIONS_COUNT (1)
#define AI_NETWORK_DATA_ACTIVATION_1_SIZE (1536)
#define AI_NETWORK_DATA_WEIGHTS_SIZES \
{ 61976, }
#define AI_NETWORK_DATA_WEIGHTS_SIZE (61976)
#define AI_NETWORK_DATA_WEIGHTS_COUNT (1)
#define AI_NETWORK_DATA_WEIGHT_1_SIZE (61976)
#define AI_NETWORK_DATA_ACTIVATIONS_TABLE_GET() \
(&g_network_activations_table[1])
extern ai_handle g_network_activations_table[1 + 2];
#define AI_NETWORK_DATA_WEIGHTS_TABLE_GET() \
(&g_network_weights_table[1])
extern ai_handle g_network_weights_table[1 + 2];
#endif /* NETWORK_DATA_PARAMS_H */
| 1,719 | C | 27.196721 | 80 | 0.596277 |
Tbarkin121/GuardDog/stm32/AnymalNet/X-CUBE-AI/App/app_x-cube-ai.h |
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __APP_AI_H
#define __APP_AI_H
#ifdef __cplusplus
extern "C" {
#endif
/**
******************************************************************************
* @file app_x-cube-ai.h
* @author X-CUBE-AI C code generator
* @brief AI entry function definitions
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "ai_platform.h"
void MX_X_CUBE_AI_Init(void);
void MX_X_CUBE_AI_Process(void);
/* USER CODE BEGIN includes */
/* USER CODE END includes */
#ifdef __cplusplus
}
#endif
#endif /*__STMicroelectronics_X-CUBE-AI_8_1_0_H */
| 1,132 | C | 30.472221 | 80 | 0.470848 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.